repo_name
stringlengths
5
92
path
stringlengths
4
232
copies
stringclasses
19 values
size
stringlengths
4
7
content
stringlengths
721
1.04M
license
stringclasses
15 values
hash
int64
-9,223,277,421,539,062,000
9,223,102,107B
line_mean
float64
6.51
99.9
line_max
int64
15
997
alpha_frac
float64
0.25
0.97
autogenerated
bool
1 class
dims/neutron
neutron/common/config.py
1
13000
# Copyright 2011 VMware, Inc. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ Routines for configuring Neutron """ import sys from keystoneauth1 import loading as ks_loading from oslo_config import cfg from oslo_db import options as db_options from oslo_log import log as logging import oslo_messaging from oslo_service import wsgi from neutron._i18n import _, _LI from neutron.api.v2 import attributes from neutron.common import utils from neutron import policy from neutron import version LOG = logging.getLogger(__name__) core_opts = [ cfg.StrOpt('bind_host', default='0.0.0.0', help=_("The host IP to bind to")), cfg.PortOpt('bind_port', default=9696, help=_("The port to bind to")), cfg.StrOpt('api_extensions_path', default="", help=_("The path for API extensions. " "Note that this can be a colon-separated list of paths. " "For example: api_extensions_path = " "extensions:/path/to/more/exts:/even/more/exts. " "The __path__ of neutron.extensions is appended to " "this, so if your extensions are in there you don't " "need to specify them here.")), cfg.StrOpt('auth_strategy', default='keystone', help=_("The type of authentication to use")), cfg.StrOpt('core_plugin', help=_("The core plugin Neutron will use")), cfg.ListOpt('service_plugins', default=[], help=_("The service plugins Neutron will use")), cfg.StrOpt('base_mac', default="fa:16:3e:00:00:00", help=_("The base MAC address Neutron will use for VIFs. " "The first 3 octets will remain unchanged. If the 4th " "octet is not 00, it will also be used. The others " "will be randomly generated.")), cfg.IntOpt('mac_generation_retries', default=16, help=_("How many times Neutron will retry MAC generation")), cfg.BoolOpt('allow_bulk', default=True, help=_("Allow the usage of the bulk API")), cfg.BoolOpt('allow_pagination', default=False, help=_("Allow the usage of the pagination")), cfg.BoolOpt('allow_sorting', default=False, help=_("Allow the usage of the sorting")), cfg.StrOpt('pagination_max_limit', default="-1", help=_("The maximum number of items returned in a single " "response, value was 'infinite' or negative integer " "means no limit")), cfg.ListOpt('default_availability_zones', default=[], help=_("Default value of availability zone hints. The " "availability zone aware schedulers use this when " "the resources availability_zone_hints is empty. " "Multiple availability zones can be specified by a " "comma separated string. This value can be empty. " "In this case, even if availability_zone_hints for " "a resource is empty, availability zone is " "considered for high availability while scheduling " "the resource.")), cfg.IntOpt('max_dns_nameservers', default=5, help=_("Maximum number of DNS nameservers per subnet")), cfg.IntOpt('max_subnet_host_routes', default=20, help=_("Maximum number of host routes per subnet")), cfg.IntOpt('max_fixed_ips_per_port', default=5, deprecated_for_removal=True, help=_("Maximum number of fixed ips per port. This option " "is deprecated and will be removed in the N " "release.")), cfg.StrOpt('default_ipv4_subnet_pool', deprecated_for_removal=True, help=_("Default IPv4 subnet pool to be used for automatic " "subnet CIDR allocation. " "Specifies by UUID the pool to be used in case where " "creation of a subnet is being called without a " "subnet pool ID. If not set then no pool " "will be used unless passed explicitly to the subnet " "create. If no pool is used, then a CIDR must be passed " "to create a subnet and that subnet will not be " "allocated from any pool; it will be considered part of " "the tenant's private address space. This option is " "deprecated for removal in the N release.")), cfg.StrOpt('default_ipv6_subnet_pool', deprecated_for_removal=True, help=_("Default IPv6 subnet pool to be used for automatic " "subnet CIDR allocation. " "Specifies by UUID the pool to be used in case where " "creation of a subnet is being called without a " "subnet pool ID. See the description for " "default_ipv4_subnet_pool for more information. This " "option is deprecated for removal in the N release.")), cfg.BoolOpt('ipv6_pd_enabled', default=False, help=_("Enables IPv6 Prefix Delegation for automatic subnet " "CIDR allocation. " "Set to True to enable IPv6 Prefix Delegation for " "subnet allocation in a PD-capable environment. Users " "making subnet creation requests for IPv6 subnets " "without providing a CIDR or subnetpool ID will be " "given a CIDR via the Prefix Delegation mechanism. " "Note that enabling PD will override the behavior of " "the default IPv6 subnetpool.")), cfg.IntOpt('dhcp_lease_duration', default=86400, deprecated_name='dhcp_lease_time', help=_("DHCP lease duration (in seconds). Use -1 to tell " "dnsmasq to use infinite lease times.")), cfg.StrOpt('dns_domain', default='openstacklocal', help=_('Domain to use for building the hostnames')), cfg.StrOpt('external_dns_driver', help=_('Driver for external DNS integration.')), cfg.BoolOpt('dhcp_agent_notification', default=True, help=_("Allow sending resource operation" " notification to DHCP agent")), cfg.BoolOpt('allow_overlapping_ips', default=False, help=_("Allow overlapping IP support in Neutron. " "Attention: the following parameter MUST be set to " "False if Neutron is being used in conjunction with " "Nova security groups.")), cfg.StrOpt('host', default=utils.get_hostname(), sample_default='example.domain', help=_("Hostname to be used by the Neutron server, agents and " "services running on this machine. All the agents and " "services running on this machine must use the same " "host value.")), cfg.BoolOpt('force_gateway_on_subnet', default=True, deprecated_for_removal=True, help=_("Ensure that configured gateway is on subnet. " "For IPv6, validate only if gateway is not a link " "local address. Deprecated, to be removed during the " "Newton release, at which point the gateway will not " "be forced on to subnet.")), cfg.BoolOpt('notify_nova_on_port_status_changes', default=True, help=_("Send notification to nova when port status changes")), cfg.BoolOpt('notify_nova_on_port_data_changes', default=True, help=_("Send notification to nova when port data (fixed_ips/" "floatingip) changes so nova can update its cache.")), cfg.IntOpt('send_events_interval', default=2, help=_('Number of seconds between sending events to nova if ' 'there are any events to send.')), cfg.BoolOpt('advertise_mtu', default=True, help=_('If True, advertise network MTU values if core plugin ' 'calculates them. MTU is advertised to running ' 'instances via DHCP and RA MTU options.')), cfg.StrOpt('ipam_driver', help=_("Neutron IPAM (IP address management) driver to use. " "If ipam_driver is not set (default behavior), no IPAM " "driver is used. In order to use the reference " "implementation of Neutron IPAM driver, " "use 'internal'.")), cfg.BoolOpt('vlan_transparent', default=False, help=_('If True, then allow plugins that support it to ' 'create VLAN transparent networks.')), cfg.StrOpt('web_framework', default='legacy', choices=('legacy', 'pecan'), help=_("This will choose the web framework in which to run " "the Neutron API server. 'pecan' is a new experiemental " "rewrite of the API server.")) ] core_cli_opts = [ cfg.StrOpt('state_path', default='/var/lib/neutron', help=_("Where to store Neutron state files. " "This directory must be writable by the agent.")), ] # Register the configuration options cfg.CONF.register_opts(core_opts) cfg.CONF.register_cli_opts(core_cli_opts) wsgi.register_opts(cfg.CONF) # Ensure that the control exchange is set correctly oslo_messaging.set_transport_defaults(control_exchange='neutron') def set_db_defaults(): # Update the default QueuePool parameters. These can be tweaked by the # conf variables - max_pool_size, max_overflow and pool_timeout db_options.set_defaults( cfg.CONF, connection='sqlite://', sqlite_db='', max_pool_size=10, max_overflow=20, pool_timeout=10) set_db_defaults() NOVA_CONF_SECTION = 'nova' ks_loading.register_auth_conf_options(cfg.CONF, NOVA_CONF_SECTION) ks_loading.register_session_conf_options(cfg.CONF, NOVA_CONF_SECTION) nova_opts = [ cfg.StrOpt('region_name', help=_('Name of nova region to use. Useful if keystone manages' ' more than one region.')), cfg.StrOpt('endpoint_type', default='public', choices=['public', 'admin', 'internal'], help=_('Type of the nova endpoint to use. This endpoint will' ' be looked up in the keystone catalog and should be' ' one of public, internal or admin.')), ] cfg.CONF.register_opts(nova_opts, group=NOVA_CONF_SECTION) logging.register_options(cfg.CONF) def init(args, **kwargs): cfg.CONF(args=args, project='neutron', version='%%(prog)s %s' % version.version_info.release_string(), **kwargs) # FIXME(ihrachys): if import is put in global, circular import # failure occurs from neutron.common import rpc as n_rpc n_rpc.init(cfg.CONF) # Validate that the base_mac is of the correct format msg = attributes._validate_regex(cfg.CONF.base_mac, attributes.MAC_PATTERN) if msg: msg = _("Base MAC: %s") % msg raise Exception(msg) def setup_logging(): """Sets up the logging options for a log with supplied name.""" product_name = "neutron" logging.setup(cfg.CONF, product_name) LOG.info(_LI("Logging enabled!")) LOG.info(_LI("%(prog)s version %(version)s"), {'prog': sys.argv[0], 'version': version.version_info.release_string()}) LOG.debug("command line: %s", " ".join(sys.argv)) def reset_service(): # Reset worker in case SIGHUP is called. # Note that this is called only in case a service is running in # daemon mode. setup_logging() policy.refresh() def load_paste_app(app_name): """Builds and returns a WSGI app from a paste config file. :param app_name: Name of the application to load """ loader = wsgi.Loader(cfg.CONF) app = loader.load_app(app_name) return app
apache-2.0
-2,916,700,827,220,835,000
46.619048
79
0.585846
false
bacemtayeb/Tierra
src/core/stream.py
1
11392
import gc import re import config from copy import copy from colors import color from textwrap import dedent from util import Msg, Error, debug, check_opts, eval_type from collections import OrderedDict, namedtuple from src.modules.services.service import Service """ Main data bus for interacting with the various modules. Dumps information, initializes objects, and houses all of the objects necessary to create/get/dump/stop the sniffers/poisoners. """ # main struct; ordered dictionary HOUSE = OrderedDict() class FailedCheck(Exception): """ Used primarily for error checking and breaking safely out of outer loops. """ pass def initialize(module): """ Initialize a module and load it into the global HOUSE variable. MODULE should be an instance of the loaded module. """ global HOUSE debug("Received module start for: %s" % (module.__name__)) if not 'service' in HOUSE: # services will always be 0 HOUSE['service'] = {} tmp_mod = module() # option management interface; i.e. if we need to # load into another menu if not tmp_mod.skip_opts: response = handle_opts(tmp_mod) else: response = True if response: if hasattr(tmp_mod, 'initialize_bg'): tmp = tmp_mod.initialize_bg() else: tmp = tmp_mod.initialize() else: return if tmp is not None and tmp is not False: if isinstance(tmp_mod, Service): HOUSE['service'][tmp_mod.which] = tmp_mod return if not tmp_mod.which in HOUSE: HOUSE[tmp_mod.which] = {} HOUSE[tmp_mod.which][tmp_mod.session_view()] = tmp_mod def display_options(options, settings): """ Given a module's options and the column headers, generate a table, print it, and return the completed table. """ table = [] for (idx, opt) in enumerate(options.keys()): tmp = [] tmp.append(idx + 1) tmp.append(options[opt].display) tmp.append(options[opt].getStr()) tmp.append(options[opt].type) tmp.append(options[opt].required) table.append(tmp) if len(table) > 0: config.pptable([settings] + table) else: Msg('\tModule has no options.') print color.B_YELLOW + '0' + color.B_GREEN + ') ' + color.B_WHITE + 'Back' + color.END return table def handle_opts(module): """ The user has selected a module, so we should parse out all the options for this particular module, set the config, and when requested, run it. This is kinda messy, but works for now. """ # fetch generic module options and module-specific options options = module.config # dump module settings Setting = ['', 'Option', 'Value', 'Type', 'Required'] table = display_options(options, Setting) while True: # fetch command/option try: choice = raw_input('%s > ' % (color.B_WHITE + module.which + color.END)) # first check global commands tmp = check_opts(choice) if tmp == -1: continue # check module commands if choice is "0": return False elif choice == "info": if module.info is None: Msg("Module has no information available") continue print '%s%s%s' % (color.GREEN, '-' * len(module.info.split('\n')[1].strip()), color.END), print dedent(module.info.rstrip()) print '%s%s%s' % (color.GREEN, '-' * len(module.info.split('\n')[1].strip()), color.END) elif choice == "ops": display_options(options, Setting) continue elif len(choice.split(' ')) > 1: choice = choice.split(' ') try: if int(choice[0]) > len(table): continue elif int(choice[0]) is 0: return False key = options.keys()[int(choice[0])-1] if choice[1] == 'o' and module.config[key].opts is not None: Msg("Options: %s" % module.config[key].opts) continue elif choice[1] == 'o' and module.config[key].type == 'list': Msg('%s' % module.config[key].value) continue # generate a temporary zoption tmp = copy(module.config[key]) tmp.value = ' '.join(choice[1::]) # we've got a valid number, validate the type and set it if not tmp.validate(): Error('Wrong type assigned. Expected value of type "%s"'% options[key].type) else: module.config[key] = tmp except Exception, e: Error('%s' % e) continue elif "r" in choice.lower() or "run" in choice.lower(): # verify all required options are set for opt in options.keys(): if options[opt].required and options[opt].value is None: Error('Option \'%s\' is required.'%opt) raise FailedCheck return True except KeyboardInterrupt: return False except FailedCheck: continue except Exception, e: Error('%s' % e) def dump_sessions(): """Format and print the currently running modules. """ global HOUSE print color.B_GREEN + '\n\t[' + color.B_YELLOW + 'Running sessions' + \ color.B_GREEN + ']' + color.END if 'service' in HOUSE: # services first tmp = HOUSE['service'] if len(tmp) > 0: print color.B_GREEN + '\t[' + color.B_YELLOW + '0' + color.B_GREEN + \ '] ' + color.B_WHITE + 'Services' + color.END for (cnt, service) in enumerate(tmp): print color.B_GREEN + '\t\t[' + color.B_YELLOW + str(cnt) + color.B_GREEN + \ '] ' + color.B_WHITE + tmp[service].session_view() + color.END if tmp[service].log_data: print color.B_YELLOW + '\t\t\t--> ' + color.B_WHITE + 'Logging to ' + \ tmp[service].log_file.name + color.END for (cnt, key) in enumerate(HOUSE.keys()): if key is 'service': continue if len(HOUSE[key]) > 0: print color.B_GREEN + '\t[' + color.B_YELLOW + str(cnt) + color.B_GREEN + \ ']' + color.B_WHITE + ' ' + key + color.END for (cnt, obj) in enumerate(HOUSE[key]): print color.B_GREEN + '\t\t[' + color.B_YELLOW + str(cnt) + color.B_GREEN + \ '] ' + color.B_WHITE + HOUSE[key][obj].session_view() + color.END if hasattr(HOUSE[key][obj], 'log_data'): if HOUSE[key][obj].log_data: print color.B_YELLOW + '\t\t\t--> ' + color.B_WHITE + 'Logging to ' + \ HOUSE[key][obj].log_file.name + color.END print '\n' def dump_module_sessions(module): """Dump running sessions for a module. @param module is the module to dump. """ global HOUSE if not module in HOUSE.keys(): Error('Module \'%s\' not found.' % module) return else: mod = HOUSE[module] print color.B_YELLOW + '[' + color.B_RED + '!' + color.B_YELLOW + '] ' + \ color.B_WHITE + module for (cnt, obj) in enumerate(mod.keys()): print color.B_GREEN + '\t[' + color.B_YELLOW + str(cnt) + color.B_GREEN + '] ' + \ color.B_WHITE + str(obj) def get_session_count(): """ Return a count of the number of running sessions """ global HOUSE cnt = 0 if len(HOUSE.keys()) > 0: for key in HOUSE.keys(): for entry in HOUSE[key]: if HOUSE[key][entry].running: cnt += 1 return cnt def stop_session(module, number): """ Stop a specific session; calls the respective module's shutdown() method. @param module is the module number @param number is the session number """ global HOUSE if module == 'all' and number == -1: # kill all for key in HOUSE.keys(): for entry in HOUSE[key]: HOUSE[key][entry].shutdown() else: (mod, mod_inst) = get_mod_num(module, number) if not mod is None and not mod_inst is None: HOUSE[mod][mod_inst].shutdown() del(HOUSE[mod][mod_inst]) if len(HOUSE[mod].keys()) is 0: del(HOUSE[mod]) else: return gc.collect() def view_session(module, number): """Initializes a module's view @param module is the module number @param number is the session number """ global HOUSE mod = get_module(module, number) if hasattr(mod, 'view'): mod.view() def toggle_log(module, number, file_loc=None, toggle=False): """Toggle the logger of a module @param module is the module number @param number is the session number @param file_loc is a string containing the file path @param toggle is True to turn on logging or False to turn off """ (mod, mod_inst) = get_mod_num(module, number) if not mod is None and not mod_inst is None and hasattr(HOUSE[mod][mod_inst], 'log'): if toggle: # enable HOUSE[mod][mod_inst].log(True, file_loc) else: # disable HOUSE[mod][mod_inst].log(False) else: Error('Module does not have a logger or doesn\'t exist.') def get_session_input(): """ Helper for obtaining module and session numbers """ try: display = color.B_GREEN + '[' + color.B_YELLOW + 'session' + color.B_GREEN + \ '] [' + color.B_YELLOW + 'number' + color.B_GREEN + ']' + \ color.B_WHITE + ' > ' tmp = raw_input(display) (module, number) = tmp.split(' ') if not module is None and not number is None: return (int(module), int(number)) except Exception: Error('Must specify [module] followed by [number]\n') return (None, None) def get_module(module, number): """ Retrieve an instance of a running session @param module is the module number @param number is the session number """ (mod, mod_inst) = get_mod_num(module, number) if not mod is None and not mod_inst is None: return HOUSE[mod][mod_inst] return None def get_mod_num(module, number): """Fetch the module and number instances given their indexes. @param module is the module index @param number is the module session index """ if len(HOUSE.keys()) > module: mod = HOUSE.keys()[module] if len(HOUSE[mod].keys()) > number: mod_instance = HOUSE[mod].keys()[number] return (mod, mod_instance) return (None, None)
gpl-3.0
4,008,644,137,442,229,000
33.313253
91
0.533971
false
nginxinc/kubernetes-ingress
tests/suite/grpc/helloworld_pb2.py
1
3911
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: helloworld.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database from google.protobuf import descriptor_pb2 # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='helloworld.proto', package='helloworld', syntax='proto3', serialized_pb=_b('\n\x10helloworld.proto\x12\nhelloworld\"\x1c\n\x0cHelloRequest\x12\x0c\n\x04name\x18\x01 \x01(\t\"\x1d\n\nHelloReply\x12\x0f\n\x07message\x18\x01 \x01(\t2I\n\x07Greeter\x12>\n\x08SayHello\x12\x18.helloworld.HelloRequest\x1a\x16.helloworld.HelloReply\"\x00\x42\x36\n\x1bio.grpc.examples.helloworldB\x0fHelloWorldProtoP\x01\xa2\x02\x03HLWb\x06proto3') ) _HELLOREQUEST = _descriptor.Descriptor( name='HelloRequest', full_name='helloworld.HelloRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='name', full_name='helloworld.HelloRequest.name', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=32, serialized_end=60, ) _HELLOREPLY = _descriptor.Descriptor( name='HelloReply', full_name='helloworld.HelloReply', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='message', full_name='helloworld.HelloReply.message', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=62, serialized_end=91, ) DESCRIPTOR.message_types_by_name['HelloRequest'] = _HELLOREQUEST DESCRIPTOR.message_types_by_name['HelloReply'] = _HELLOREPLY _sym_db.RegisterFileDescriptor(DESCRIPTOR) HelloRequest = _reflection.GeneratedProtocolMessageType('HelloRequest', (_message.Message,), dict( DESCRIPTOR = _HELLOREQUEST, __module__ = 'helloworld_pb2' # @@protoc_insertion_point(class_scope:helloworld.HelloRequest) )) _sym_db.RegisterMessage(HelloRequest) HelloReply = _reflection.GeneratedProtocolMessageType('HelloReply', (_message.Message,), dict( DESCRIPTOR = _HELLOREPLY, __module__ = 'helloworld_pb2' # @@protoc_insertion_point(class_scope:helloworld.HelloReply) )) _sym_db.RegisterMessage(HelloReply) DESCRIPTOR.has_options = True DESCRIPTOR._options = _descriptor._ParseOptions(descriptor_pb2.FileOptions(), _b('\n\033io.grpc.examples.helloworldB\017HelloWorldProtoP\001\242\002\003HLW')) _GREETER = _descriptor.ServiceDescriptor( name='Greeter', full_name='helloworld.Greeter', file=DESCRIPTOR, index=0, options=None, serialized_start=93, serialized_end=166, methods=[ _descriptor.MethodDescriptor( name='SayHello', full_name='helloworld.Greeter.SayHello', index=0, containing_service=None, input_type=_HELLOREQUEST, output_type=_HELLOREPLY, options=None, ), ]) _sym_db.RegisterServiceDescriptor(_GREETER) DESCRIPTOR.services_by_name['Greeter'] = _GREETER # @@protoc_insertion_point(module_scope)
apache-2.0
-1,847,906,107,374,825,000
28.19403
369
0.722833
false
Artanicus/python-cozify
cozify/test/test_cloud_api.py
1
1584
#!/usr/bin/env python3 import os, pytest, tempfile, datetime from cozify import cloud_api from cozify.test import debug from cozify.test.fixtures import * from cozify.Error import AuthenticationError, APIError, ConnectionError from mbtest.imposters import Imposter, Predicate, Stub, Response @pytest.mark.mbtest def test_cloud_api_mock_lan_ip(mock_server): imposter = Imposter(Stub(Predicate(path="/hub/lan_ip"), Response(body='[ "127.0.0.1" ]'))) with mock_server(imposter): assert cloud_api.lan_ip(base=imposter.url) @pytest.mark.mbtest def test_cloud_api_timeout(mock_server): imposter = Imposter( Stub(Predicate(path="/hub/lan_ip"), Response(body='[ "127.0.0.1" ]', wait=6000))) with pytest.raises(ConnectionError) as e_info: with mock_server(imposter): cloud_api.lan_ip(base=imposter.url) @pytest.mark.mbtest def test_cloud_api_emaillogin(mock_server, tmp_cloud): imposter = Imposter(Stub(Predicate(path="/user/emaillogin"), Response(body=tmp_cloud.token))) with mock_server(imposter): token = cloud_api.emaillogin(email=tmp_cloud.email, otp='42', base=imposter.url) assert isinstance(token, str) @pytest.mark.mbtest def test_cloud_api_requestlogin(mock_server, tmp_cloud): imposter = Imposter( Stub( Predicate(method=Predicate.Method.POST) & Predicate(path="/user/requestlogin") & Predicate(query={"email": tmp_cloud.email}), Response(body='null'))) with mock_server(imposter): cloud_api.requestlogin(email=tmp_cloud.email, base=imposter.url)
mit
2,131,560,475,806,072,800
35
97
0.702652
false
ercanezin/ce888labs
lab8/imdb.py
1
2192
from __future__ import print_function import numpy as np np.random.seed(1337) # for reproducibility from keras.preprocessing import sequence from keras.models import Model from keras.layers import Dense, Activation, Embedding, GlobalMaxPooling1D,Convolution1D, Input,LSTM,merge from keras.datasets import imdb max_features = 20000 maxlen = 80 # cut texts after this number of words (among top max_features most common words) batch_size = 32 ###PREPROCCESSING print('Loading data...') (X_train, y_train), (X_test, y_test) = imdb.load_data(nb_words=max_features) print(len(X_train), 'train sequences') print(len(X_test), 'test sequences') print (X_train[0]) print('Pad sequences (samples x time)') X_train = sequence.pad_sequences(X_train, maxlen=maxlen) X_test = sequence.pad_sequences(X_test, maxlen=maxlen) print('X_train shape:', X_train.shape) print('X_test shape:', X_test.shape) print('Build model...') ###PREPROCCESSING ENDS inputs = Input(shape=(maxlen,)) m = inputs m = Embedding(max_features, 128, dropout=0.2)(m) x = Convolution1D(nb_filter=32, filter_length=4, border_mode='valid',activation='relu', subsample_length=1)(m) x = GlobalMaxPooling1D()(x) y=LSTM(70)(m) z=merge([x, y], mode='concat', concat_axis=1) z = Dense(1)(z) predictions = Activation("sigmoid")(z) model = Model(input=inputs, output=predictions) # # model = Sequential() # model.add(Embedding(max_features, embedding_size, input_length=maxlen)) # model.add(Dropout(0.25)) # model.add(Convolution1D(nb_filter=nb_filter, # filter_length=filter_length, # border_mode='valid', # activation='relu', # subsample_length=1)) # model.add(MaxPooling1D(pool_length=pool_length)) # model.add(LSTM(lstm_output_size)) # model.add(Dense(1)) # model.add(Activation('sigmoid')) model.compile(loss='binary_crossentropy',optimizer='adam', metrics=['accuracy']) print('Train...') model.fit(X_train, y_train, batch_size=batch_size, nb_epoch=15,validation_data=(X_test, y_test)) score, acc = model.evaluate(X_test, y_test, batch_size=batch_size) print('Test score:', score) print('Test accuracy:', acc)
gpl-3.0
8,493,642,314,764,031,000
24.206897
110
0.69115
false
zergov/flashcards
flashcards/sets.py
1
3877
""" flashcards.sets ~~~~~~~~~~~~~~~~~~~ Contain the StudySet object and logic related to it. """ from collections import OrderedDict from flashcards import cards from flashcards.cards import StudyCard TITLE_KEY = 'title' DESC_KEY = 'description' CARDS_KEY = 'cards' def create_from_dict(data): """ Construct a StudySet Object from a dictionary object. :param data: the dictionary object :raises KeyError: when dictionary is missing a needed field to create obj :raises ValueError: if cards field in data is not of type list :returns: StudySet object """ _assert_data_is_valid(data) title = data[TITLE_KEY] description = data[DESC_KEY] study_cards = [cards.create_from_dict(card) for card in data[CARDS_KEY]] study_set = StudySet(title, description) for card in study_cards: study_set.add(card) return study_set def _assert_data_is_valid(data): """ Check that data received in `create_from_dict` has a valid format """ if TITLE_KEY not in data: raise KeyError("Invalid data string. %s key is missing" % TITLE_KEY) if DESC_KEY not in data: raise KeyError("Invalid data string. %s key is missing" % DESC_KEY) if CARDS_KEY not in data: raise KeyError("Invalid data string. %s key is missing" % CARDS_KEY) if not isinstance(data[CARDS_KEY], list): raise ValueError("Invalid data type. %s value's should be a list" % CARDS_KEY) class StudySet(object): """ A StudySet is a container of flash cards. """ def __init__(self, title, description=None): """ Creates a Study set. :param title: The title of the study set. :param description: The description for this study set. """ self._title = title self._description = '' if description is None else description self._cards = [] def __iter__(self): """Iter through the cards of this set.""" return iter(self._cards) def __len__(self): """Return the number of cards in this StudySet.""" return len(self._cards) @property def title(self): """ Get the title of this set. :returns: The title of this Study set. """ return self._title @title.setter def title(self, value): """ Set the title of this set. :param value: The new title for this set """ if isinstance(value, basestring): self._title = value else: raise TypeError("StudySet title should be of type str") @property def description(self): """ Get the description of this set. """ return self._description @description.setter def description(self, value): """ Set the description of this set. :param value: The new description for this set """ if isinstance(value, basestring): self._description = value else: raise TypeError("StudySet description should be of type str") def add(self, card): """ Add a card to the end of this set. :param card: A subclass of flashcards.cards.StudyCard object. """ if isinstance(card, StudyCard): self._cards.append(card) else: raise TypeError("A Set can only contain instances of " "StudyCard objects.") def to_dict(self): """ Get a dictionary object representing this StudySet. :returns: a dictionary object representation of this StudySet. """ serialized_cards = [c.to_dict() for c in self] data = ((TITLE_KEY, self.title), (DESC_KEY, self.description), (CARDS_KEY, serialized_cards)) return OrderedDict(data)
mit
-994,116,634,628,581,500
25.923611
77
0.594532
false
googleapis/googleapis-gen
google/ads/googleads/v6/googleads-py/google/ads/googleads/v6/resources/types/search_term_view.py
1
2213
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import proto # type: ignore from google.ads.googleads.v6.enums.types import search_term_targeting_status __protobuf__ = proto.module( package='google.ads.googleads.v6.resources', marshal='google.ads.googleads.v6', manifest={ 'SearchTermView', }, ) class SearchTermView(proto.Message): r"""A search term view with metrics aggregated by search term at the ad group level. Attributes: resource_name (str): Output only. The resource name of the search term view. Search term view resource names have the form: ``customers/{customer_id}/searchTermViews/{campaign_id}~{ad_group_id}~{URL-base64_search_term}`` search_term (str): Output only. The search term. ad_group (str): Output only. The ad group the search term served in. status (google.ads.googleads.v6.enums.types.SearchTermTargetingStatusEnum.SearchTermTargetingStatus): Output only. Indicates whether the search term is currently one of your targeted or excluded keywords. """ resource_name = proto.Field( proto.STRING, number=1, ) search_term = proto.Field( proto.STRING, number=5, optional=True, ) ad_group = proto.Field( proto.STRING, number=6, optional=True, ) status = proto.Field( proto.ENUM, number=4, enum=search_term_targeting_status.SearchTermTargetingStatusEnum.SearchTermTargetingStatus, ) __all__ = tuple(sorted(__protobuf__.manifest))
apache-2.0
-114,439,431,116,269,020
29.736111
109
0.658834
false
lpryszcz/REDiscover
taxid2sra.py
1
13105
#!/usr/bin/env python desc="""Fetch all entries from SRA for given taxid. Save the biggest run per each SAMPLE (SRS) from given date. Paired first, if any. Note, it run fastq-dump in background. Make sure you have enough free cores;) DEPENDENCIES: Biopython """ epilog="""Author: [email protected] Barcelona, 2/10/2012 """ import argparse, os, re, sys, gzip from datetime import datetime from ftplib import FTP from Bio import Entrez import xml.etree.ElementTree as ET def srr2info(srr): """Return info for SRR entry - experiment id - submission id - project id - biosample id - run date - bases - insert size - insert std - reads orientation """ ''' for child in root[0]: print child.tag, child.attrib EXPERIMENT {'center_name': 'BI', 'alias': '74116.WR23613.Solexa-42619.62C7UAAXX100916.P', 'accession': 'SRX026545'} SUBMISSION {'submission_date': '2009-06-01T02:01:25Z', 'lab_name': 'Genome Sequencing', 'submission_comment': 'Produced by user cristyn on Sun May 31 22:01:25 EDT 2009', 'alias': 'BI.Streptococcus_pyogenes_Pathogenomics', 'center_name': 'BI', 'accession': 'SRA008647'} STUDY {'center_name': 'BI', 'alias': 'Fusarium_oxysporum_Diversity_RNA_Sequencing_multi_isolate', 'accession': 'SRP002351'} SAMPLE {'center_name': 'BI', 'alias': '74336.0', 'accession': 'SRS190364'} RUN_SET {} root[0][0].keys() ['center_name', 'alias', 'accession'] ''' #search NCBI result = Entrez.read( Entrez.esearch(db="sra",term=srr ) ) if not result['IdList']: sys.stderr.write( " Entrez Error: No results for %s\n" % srr ) return elif len(result['IdList'])>1: sys.stderr.write( " Entrez Warning: Multiple hits for %s: %s\n" % (srr,",".join(result['IdList'])) ) #fetch info from NCBI xml = Entrez.efetch( db="sra",id=result['IdList'][0] ).read() root = ET.fromstring(xml)#; print xml #get experiment EXPERIMENT = root[0].find("EXPERIMENT") srx = EXPERIMENT.attrib['accession'] #get submission s = root[0].find("SUBMISSION") sra = s.attrib['accession'] #get accession s = root[0].find("STUDY") srp = s.attrib['accession'] #get accession s = root[0].find("SAMPLE") srs = s.attrib['accession'] s = root[0].find('RUN_SET') #it's within RUN_SET date = s[0].attrib['run_date'] bases = s[0].attrib['total_bases'] #LIBRARY_LAYOUT - maybe try to simplify it isize=istdv=orient = 0 DESIGN = EXPERIMENT.find("DESIGN") # [2][2][4][0].attrib#; print layout LIBRARY_DESCRIPTOR = DESIGN.find("LIBRARY_DESCRIPTOR") LIBRARY_LAYOUT = LIBRARY_DESCRIPTOR.find("LIBRARY_LAYOUT") PAIRED = LIBRARY_LAYOUT.find("PAIRED") if PAIRED is not None: layout = PAIRED.attrib isize = layout['NOMINAL_LENGTH'] # NOMINAL_LENGTH="476" orient = layout['ORIENTATION'] # ORIENTATION="5\'3\'-3\'5\' istdv = layout['NOMINAL_SDEV'] ## PAIRED NOMINAL_SDEV="149.286" return ( srx,sra,srp,srs,date,bases,isize,istdv,orient ) def xml2data(child, taxid2srs, verbose): """ """ #get experiment EXPERIMENT = child.find("EXPERIMENT") srx = EXPERIMENT.attrib['accession'] #get submission s = child.find("SUBMISSION") sra = s.attrib['accession'] #get accession s = child.find("STUDY") srp = s.attrib['accession'] #get accession for SAMPLE in child.findall("SAMPLE"): #if SAMPLE.attrib['accession']!= srs = SAMPLE.attrib['accession'] #get taxid SAMPLE_NAME = SAMPLE.find("SAMPLE_NAME") TAXON_ID = SAMPLE_NAME.find("TAXON_ID") taxid = int(TAXON_ID.text) SCIENTIFIC_NAME = SAMPLE_NAME.find("SCIENTIFIC_NAME") #malformed xml? if SCIENTIFIC_NAME is None: return taxid2srs strain = SCIENTIFIC_NAME.text strain0 = tissue = stage = "" #get strain tag - this may cause problems with non-ENA accessions! SAMPLE_ATTRIBUTES = SAMPLE.find("SAMPLE_ATTRIBUTES") if SAMPLE_ATTRIBUTES is None: continue for SAMPLE_ATTRIBUTE in SAMPLE_ATTRIBUTES.findall("SAMPLE_ATTRIBUTE"): #print SAMPLE_ATTRIBUTE.find("TAG").text if SAMPLE_ATTRIBUTE.find("TAG").text == "strain": #print SAMPLE_ATTRIBUTE.find("VALUE") strain += " %s" % SAMPLE_ATTRIBUTE.find("VALUE").text strain0 = SAMPLE_ATTRIBUTE.find("VALUE").text elif SAMPLE_ATTRIBUTE.find("TAG").text == "ArrayExpress-OrganismPart": tissue = SAMPLE_ATTRIBUTE.find("VALUE").text elif SAMPLE_ATTRIBUTE.find("TAG").text == "ArrayExpress-StrainOrLine": strain0 = SAMPLE_ATTRIBUTE.find("VALUE").text elif SAMPLE_ATTRIBUTE.find("TAG").text == "ArrayExpress-DevelopmentalStage": stage = SAMPLE_ATTRIBUTE.find("VALUE").text if strain!="unidentified organism": break # get tissue #LIBRARY_LAYOUT - maybe try to simplify it DESIGN = EXPERIMENT.find("DESIGN") # [2][2][4][0].attrib#; print layout LIBRARY_DESCRIPTOR = DESIGN.find("LIBRARY_DESCRIPTOR") LIBRARY_LAYOUT = LIBRARY_DESCRIPTOR.find("LIBRARY_LAYOUT") LIBRARY_CONSTRUCTION_PROTOCOL = LIBRARY_DESCRIPTOR.find("LIBRARY_CONSTRUCTION_PROTOCOL")# RNA-seq dUTP eukaryotic stranded = "" if LIBRARY_CONSTRUCTION_PROTOCOL is not None and LIBRARY_CONSTRUCTION_PROTOCOL.text is not None: stranded = re.sub('[ \t\n\r]+', ' ', LIBRARY_CONSTRUCTION_PROTOCOL.text) orient = "" isize = istdv = 0 PAIRED = LIBRARY_LAYOUT.find("PAIRED") if PAIRED is not None: layout = PAIRED.attrib if 'NOMINAL_LENGTH' in layout: isize = float(layout['NOMINAL_LENGTH']) # NOMINAL_LENGTH="476" if 'NOMINAL_SDEV' in layout: istdv = float(layout['NOMINAL_SDEV']) ##PAIRED NOMINAL_SDEV="149.286" if 'ORIENTATION' in layout: orient = layout['ORIENTATION'] #ORIENTATION="5\'3\'-3\'5\' #run data runs = [] RUN_SET = child.find('RUN_SET') #it's within RUN_SET for RUN in RUN_SET.findall("RUN"): srr = RUN.attrib['accession'] date = assembly = "" bases = size = 0 if 'size' in RUN.attrib: size = RUN.attrib['size'] if 'run_date' in RUN.attrib: date = RUN.attrib['run_date'] if 'total_bases' in RUN.attrib: bases = int(RUN.attrib['total_bases']) if "assembly" in RUN.attrib: assembly = RUN.attrib["assembly"] runs.append((srr, assembly, size, bases, date)) #store data childdata = (strain, strain0, tissue, stage, taxid, srx, srp, isize, istdv, orient, stranded, runs) if verbose: sys.stderr.write( " %s: %s: %s\n" % (taxid, srs, str(childdata))) if not taxid in taxid2srs: taxid2srs[taxid] = {} if not srs in taxid2srs[taxid]: taxid2srs[taxid][srs] = [] taxid2srs[taxid][srs].append(childdata) return taxid2srs def taxid2runs(outfn, taxid, verbose, db="sra", retmode="xml", retmax=10**6): """Return info from SRA for given taxid. """ taxid2srs = {} #search NCBI term = 'txid%s[organism] AND sra_public[filter] AND "biomol rna"[Properties]' % taxid if verbose: sys.stderr.write("Query: %s\n" % term) result = Entrez.read(Entrez.esearch(db=db, term=term, retmax=retmax))#; print result ids = result['IdList'] if not ids: sys.stderr.write(" Entrez Error: No results for %s\n" % taxid) return if verbose: sys.stderr.write("Downloading %s entries from NCBI %s database...\n" % (len(ids), db)) #post NCBI query for id in ids: xmlfn = os.path.join(".xml", "%s.xml.gz"%id) if os.path.isfile(xmlfn): xml = "".join(l for l in gzip.open(xmlfn)) else: xml = Entrez.efetch(db=db, retmode=retmode, id=id).read()#; print xml with gzip.open(xmlfn, "w") as out: out.write(xml) root = ET.fromstring(xml) child = root[0] taxid2srs = xml2data(child, taxid2srs, verbose) #print output out = open(outfn, "w") # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 header = "#Strain\tStrain0\tTissue\tStage\tTaxid\tSample\tExperiment\tProject\tRun\tInsert size\tOrientation\tStranded\tAssembly\tSize\tBases\tDate\n" out.write(header) info = "%s\t"*15+"%s\n" sys.stderr.write("Saving SRA info to: %s\n" % outfn) for taxid in taxid2srs: for srs in taxid2srs[taxid]: for strain, strain0, tissue, stage, taxid, srx, srp, isize, istdv, orient, stranded, runs in taxid2srs[taxid][srs]: for srr, assembly, size, bases, date in runs: line = info%(strain, strain0, tissue, stage, taxid, srs, srx, srp, srr, isize, orient, stranded, assembly, size, bases, date) out.write(line.encode('ascii', 'xmlcharrefreplace')) out.close() return taxid2srs def get_runs(taxid2srs, ftpdomain, orientth, maxisize, paired, minbases, verbose): """Select the best run for each uniq taxid-srs-date combination """ if verbose: sys.stderr.write( "Fetching best run for each uniq taxid-srs-date combination...\n" ) #select the best run for each uniq taxid-srs-date combination for taxid in taxid2srs: for srs in taxid2srs[taxid]: date2runs={} for strain, taxid, srx, srp, isize, istdv, orient, runs in taxid2srs[taxid][srs]: #check if paired if paired: if not isize: continue #skip if wrong orientation if orientth and orientth!=orient: continue #skip big insert size or not paired if maxisize: if isize>maxisize: continue #add runs passed filtering for srr,bases,date in runs: #skip if too small yield if bases < minbases*10**6: continue if date not in date2runs: date2runs[date]=[] date2runs[date].append( (srr,srx,srp,isize,bases) ) #process best run for each uniq taxid-srs-date combination for date in date2runs: # fltruns = filter( lambda x: x[3]!=0, date2runs[date] ) if not fltruns: fltruns = date2runs[date] #sort by size bestrun = sorted( fltruns,key=lambda x: x[-1],reverse=True )[0] #print bestrun,date2runs[date] srr,srx,srp,isize,bases = bestrun # fetch cmd = "fastq-dump --gzip --split-3 -O %s %s" % (outdir, srr) def main(): usage = "%(prog)s -v" parser = argparse.ArgumentParser(usage=usage, description=desc, epilog=epilog) parser.add_argument("-v", dest="verbose", default=False, action="store_true", help="verbose") parser.add_argument('--version', action='version', version='1.1') parser.add_argument("-d", "--download", default=False, action="store_true", help="download SRA files") parser.add_argument("-t", "--taxid", type=int, required=True, help="taxid of interest " ) parser.add_argument("-f", dest="ftp", default="ftp-trace.ncbi.nih.gov", help="ftp server address [%(default)s]" ) parser.add_argument("-e", "--email", default="[email protected]", type=str, help="email address [%(default)s]" ) parser.add_argument("-o", dest="orient", default="5'3'-3'5'", help="orientation [%(default)s]" ) parser.add_argument("-m", dest="maxisize", default=1000, type=int, help="max allowed insert [%(default)s]" ) parser.add_argument("-b", dest="minbases", default=600, type=int, help="min Mbases in run [%(default)s Mbases -> 10x for 60Mb genome]" ) parser.add_argument("-p", "--paired", default=False, action="store_true", help="fetch only paired runs" ) o = parser.parse_args() if o.verbose: sys.stderr.write( "Options: %s\n" % str(o) ) Entrez.email = o.email if not os.path.isdir(".xml"): os.makedirs(".xml") #get all runs for taxid outfn = "sra.tsv" taxid2srs = taxid2runs(outfn, o.taxid, o.verbose); return if o.download: #fetch best srr get_runs( taxid2srs,o.ftp,o.orient,o.maxisize,o.paired,o.minbases,o.verbose ) if __name__=='__main__': t0 = datetime.now() main() dt = datetime.now()-t0 sys.stderr.write( "#Time elapsed: %s\n" % dt )
gpl-2.0
5,824,388,399,453,832,000
42.111842
268
0.583441
false
ZhangXinNan/tensorflow
tensorflow/python/kernel_tests/partitioned_variables_test.py
1
25955
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for partitioned_variables.py.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from six.moves import xrange # pylint: disable=redefined-builtin from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import init_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import partitioned_variables from tensorflow.python.ops import random_ops from tensorflow.python.ops import variable_scope from tensorflow.python.ops import variables from tensorflow.python.platform import test from tensorflow.python.training import gradient_descent class PartitionerCreatorsTest(test.TestCase): def testFixedSizePartitioner(self): with self.test_session(): partitioner = partitioned_variables.fixed_size_partitioner(5, axis=0) with variable_scope.variable_scope("root", partitioner=partitioner): v0 = variable_scope.get_variable( "v0", dtype=dtypes.float32, shape=(10, 10)) v0_list = v0._get_variable_list() v0_part = v0._get_partitions() self.assertEqual(len(v0_list), 5) self.assertAllEqual(v0_part, (5, 1)) def testFixedSizePartitionerInt64(self): with self.test_session(): partitioner = partitioned_variables.fixed_size_partitioner(4, axis=0) with variable_scope.variable_scope("root", partitioner=partitioner): v0 = variable_scope.get_variable("v0", dtype=dtypes.int64, shape=[20]) v0_list = v0._get_variable_list() self.assertEqual(len(v0_list), 4) def testResourceFixedSizePartitioner(self): with self.test_session(): partitioner = partitioned_variables.fixed_size_partitioner(5, axis=0) with variable_scope.variable_scope( "root", partitioner=partitioner, use_resource=True): v0 = variable_scope.get_variable( "v0", dtype=dtypes.float32, shape=(10, 10)) v0_list = v0._get_variable_list() v0_part = v0._get_partitions() self.assertEqual(len(v0_list), 5) self.assertAllEqual(v0_part, (5, 1)) def _testVariableAxisSizePartitioner(self, name, axis, max_shard_bytes, expected_axis_shards, expected_partitions, max_shards=None): partitioner = partitioned_variables.variable_axis_size_partitioner( axis=axis, max_shard_bytes=max_shard_bytes, max_shards=max_shards) with variable_scope.variable_scope("root", partitioner=partitioner): v0 = variable_scope.get_variable( name, dtype=dtypes.float32, shape=(4, 8, 16, 32)) v0_list = v0._get_variable_list() v0_part = v0._get_partitions() self.assertEqual(len(v0_list), expected_axis_shards) self.assertAllEqual(v0_part, expected_partitions) def testVariableAxisSizePartitioner(self): with self.test_session(): # Create a partitioned variable of shape (4, 8, 16, 32) type float32 # Bytes per slice along the given axes: # 8 * 16 * 32 * sizeof(float32) = 16384 / slice on axis 0 # 4 * 16 * 32 * sizeof(float32) = 8192 / slice on axis 1 # 4 * 8 * 32 * sizeof(float32) = 4096 / slice on axis 2 # 4 * 8 * 16 * sizeof(float32) = 2048 / slice on axis 3 # Now partition it in different ways... # No need to slice: bytes_per_slice * dim0 = 65536 < max_shard_bytes self._testVariableAxisSizePartitioner( "v0", axis=0, max_shard_bytes=131072, expected_axis_shards=1, expected_partitions=(1, 1, 1, 1)) # Slice exactly once: bytes_per_slice * dim1 = 65536 = max_shard_bytes self._testVariableAxisSizePartitioner( "v1", axis=1, max_shard_bytes=65536, expected_axis_shards=1, expected_partitions=(1, 1, 1, 1)) # Slice into 2 parts: # bytes_per_slice = 4096 # slices_per_shard = 32768 / 4096 = 8 # axis_shards = 16 / 8 = 2 self._testVariableAxisSizePartitioner( "v2", axis=2, max_shard_bytes=32768, expected_axis_shards=2, expected_partitions=(1, 1, 2, 1)) # This partitioner makes sure we maximize the number of shards along # axis 3. Slice it into 32 parts: # bytes_per_slice = 2048 # slices_per_shard = 2048 / 2048 = 1 # axis_shards = 32 / 1 = 32 self._testVariableAxisSizePartitioner( "v3a", axis=3, max_shard_bytes=2048, expected_axis_shards=32, expected_partitions=(1, 1, 1, 32)) # This partitioner makes sure we do not go past the bound of allowable # number of shards along axis 3. # Slice into 32 parts: # bytes_per_slice = 2048 # slices_per_shard = max(1, 1024 / 2048) = 1 # axis_shards = 32 / 1 = 32 # Slice into max of 32 parts because: max_shard_bytes < bytes_per_slice self._testVariableAxisSizePartitioner( "v3b", axis=3, max_shard_bytes=1024, expected_axis_shards=32, expected_partitions=(1, 1, 1, 32)) # Specify max_shards so that it won't affect sharding. self._testVariableAxisSizePartitioner( "v3c", axis=3, max_shard_bytes=1024, expected_axis_shards=32, expected_partitions=(1, 1, 1, 32), max_shards=33) # Specify max_shards so that it will affect sharding. self._testVariableAxisSizePartitioner( "v3d", axis=3, max_shard_bytes=1024, expected_axis_shards=2, expected_partitions=(1, 1, 1, 2), max_shards=2) # Use the partitioner with strings partitioner_axis3_str = partitioned_variables.variable_axis_size_partitioner( # pylint: disable=line-too-long axis=3, max_shard_bytes=32768, bytes_per_string_element=8) with variable_scope.variable_scope( "root", partitioner=partitioner_axis3_str): v3str = variable_scope.get_variable( "v3str", initializer=np.array([""] * 4 * 8 * 16 * 32).reshape(4, 8, 16, 32), dtype=dtypes.string, shape=(4, 8, 16, 32)) v3str_list = v3str._get_variable_list() v3str_part = v3str._get_partitions() # Now the estimated bytes_per_slice = 4*8*16*bytes_per_string_element # which is equal to 4096. Setting a max_shard_bytes of 32768 # and we should get a split of 4. # Slice into 4 parts: # bytes_per_slice = 4096 # slices_per_shard = 32768 / 4096 = 8 # axis_shards = 32 / 8 = 4 self.assertEqual(len(v3str_list), 4) self.assertAllEqual(v3str_part, (1, 1, 1, 4)) def _testMinMaxVariablePartitioner(self, max_partitions, axis, min_slice_size, var_name, var_shape, expected_axis_shards, expected_partitions): partitioner = partitioned_variables.min_max_variable_partitioner( max_partitions=max_partitions, axis=axis, min_slice_size=min_slice_size) with variable_scope.variable_scope("root", partitioner=partitioner): v0 = variable_scope.get_variable( var_name, dtype=dtypes.float32, shape=var_shape) v0_list = v0._get_variable_list() v0_part = v0._get_partitions() self.assertEqual(len(v0_list), expected_axis_shards) self.assertAllEqual(v0_part, expected_partitions) def testMinMaxVariablePartitioner(self): with self.test_session(): # Partitioning a variable of shape=[2048] with a minimum of 2K per slice. self._testMinMaxVariablePartitioner( max_partitions=100, axis=0, min_slice_size=2 << 10, var_name="v0_0", var_shape=[2048], expected_axis_shards=4, expected_partitions=[4]) # Partitioning a variable of shape=[2048, 1024] with a minimum of 256K per # slice. self._testMinMaxVariablePartitioner( max_partitions=100, axis=0, min_slice_size=256 << 10, var_name="v0", var_shape=[2048, 1024], expected_axis_shards=32, expected_partitions=[32, 1]) # max_partitions restricts partitioning of the variable. self._testMinMaxVariablePartitioner( max_partitions=16, axis=0, min_slice_size=256 << 10, var_name="v1_max", var_shape=[2048, 1024], expected_axis_shards=16, expected_partitions=[16, 1]) self._testMinMaxVariablePartitioner( max_partitions=1, axis=0, min_slice_size=256 << 10, var_name="v2_max", var_shape=[2048, 1024], expected_axis_shards=1, expected_partitions=[1, 1]) # Reducing/Increasing min_slice_size proportionately increases/reduces the # number of partitions. self._testMinMaxVariablePartitioner( max_partitions=100, axis=0, min_slice_size=128 << 10, var_name="v3_slice", var_shape=[2048, 1024], expected_axis_shards=64, expected_partitions=[64, 1]) self._testMinMaxVariablePartitioner( max_partitions=100, axis=0, min_slice_size=512 << 10, var_name="v4_slice", var_shape=[2048, 1024], expected_axis_shards=16, expected_partitions=[16, 1]) # Partitioning the variable along a different axis. self._testMinMaxVariablePartitioner( max_partitions=100, axis=1, min_slice_size=256 << 10, var_name="v5_axis", var_shape=[64, 1024, 1, 3], expected_axis_shards=3, expected_partitions=[1, 3, 1, 1]) self._testMinMaxVariablePartitioner( max_partitions=100, axis=3, min_slice_size=256 << 10, var_name="v6_axis", var_shape=[64, 1024, 1, 3], expected_axis_shards=3, expected_partitions=[1, 1, 1, 3]) # Can not partition the variable more than what its shape allows. self._testMinMaxVariablePartitioner( max_partitions=100, axis=0, min_slice_size=256 << 10, var_name="v7_shape", var_shape=[16, 128, 1024], expected_axis_shards=16, expected_partitions=[16, 1, 1]) self._testMinMaxVariablePartitioner( max_partitions=100, axis=0, min_slice_size=256 << 10, var_name="v8_shape", var_shape=[4, 512, 1024], expected_axis_shards=4, expected_partitions=[4, 1, 1]) def _IotaInitializer(shape, dtype=dtypes.float32, partition_info=None): assert dtype == dtypes.float32 if len(shape) == 1: return range(shape[0]) else: val = _IotaInitializer(shape[1:], dtype) return [[(10**i) * v for v in val] for i in range(shape[0])] class PartitionedVariablesTestCase(test.TestCase): def _TestSaveSpec(self, slices, expected_specs): self.assertEqual(len(expected_specs), len(slices)) for i in xrange(len(expected_specs)): self.assertEquals(expected_specs[i], slices[i]._save_slice_info.spec) def testVecConstantInit(self): with self.test_session(): rnd_par = constant_op.constant([1, 2, 3, 4]) vs = partitioned_variables.create_partitioned_variables([4], [4], rnd_par) variables.global_variables_initializer().run() val = array_ops.concat(vs, 0).eval() rnd = rnd_par.eval() self.assertAllClose(rnd, val) self.assertEqual([dtypes.int32] * 4, [v.dtype.base_dtype for v in vs]) self._TestSaveSpec(vs, ["4 0,1", "4 1,1", "4 2,1", "4 3,1"]) def testConstantInit(self): with self.test_session(): rnd_par = constant_op.constant([[1, 2, 3, 4], [5, 6, 7, 8]]) vs = partitioned_variables.create_partitioned_variables([2, 4], [1, 2], rnd_par) variables.global_variables_initializer().run() val = array_ops.concat(vs, 1).eval() rnd = rnd_par.eval() self.assertAllClose(rnd, val) self.assertEqual([dtypes.int32] * 2, [v.dtype.base_dtype for v in vs]) self._TestSaveSpec(vs, ["2 4 0,2:0,2", "2 4 0,2:2,2"]) def _testNameHelper(self, use_resource=False): with self.test_session(): rnd_par = constant_op.constant([[1, 2, 3, 4], [5, 6, 7, 8]]) with variable_scope.variable_scope("hi", use_resource=use_resource): vs1 = partitioned_variables.create_partitioned_variables([2, 4], [1, 2], rnd_par) vs2 = partitioned_variables.create_partitioned_variables([2, 4], [1, 2], rnd_par) variables.global_variables_initializer().run() var1_name = vs1[0]._save_slice_info.full_name var2_name = vs2[0]._save_slice_info.full_name self.assertEqual("hi/PartitionedVariable", var1_name) self.assertEqual("hi/PartitionedVariable_1", var2_name) self.assertEqual(var1_name + "/part_0:0", vs1[0].name) self.assertEqual(var1_name + "/part_1:0", vs1[1].name) self.assertEqual(var2_name + "/part_0:0", vs2[0].name) self.assertEqual(var2_name + "/part_1:0", vs2[1].name) # Test same variable. with self.test_session(): rnd_par = constant_op.constant([[1, 2, 3, 4], [5, 6, 7, 8]]) with variable_scope.variable_scope( "hola", use_resource=use_resource) as vs: vs1 = partitioned_variables.create_partitioned_variables( [2, 4], [1, 2], rnd_par, dtype=dtypes.int32) with variable_scope.variable_scope( vs, reuse=True, use_resource=use_resource): vs2 = partitioned_variables.create_partitioned_variables( [2, 4], [1, 2], rnd_par, dtype=dtypes.int32) variables.global_variables_initializer().run() var1_name = vs1[0]._save_slice_info.full_name var2_name = vs2[0]._save_slice_info.full_name self.assertEqual("hola/PartitionedVariable", var1_name) self.assertEqual("hola/PartitionedVariable", var2_name) self.assertEqual(var1_name + "/part_0:0", vs1[0].name) self.assertEqual(var1_name + "/part_1:0", vs1[1].name) self.assertEqual(var2_name + "/part_0:0", vs2[0].name) self.assertEqual(var2_name + "/part_1:0", vs2[1].name) # Test name_scope with self.test_session(): rnd_par = constant_op.constant([[1, 2, 3, 4], [5, 6, 7, 8]]) with ops.name_scope("ola"): vs1 = partitioned_variables.create_partitioned_variables([2, 4], [1, 2], rnd_par) vs2 = partitioned_variables.create_partitioned_variables([2, 4], [1, 2], rnd_par) variables.global_variables_initializer().run() var1_name = vs1[0]._save_slice_info.full_name var2_name = vs2[0]._save_slice_info.full_name # Currently, the name scope 'ola' has no effect. self.assertEqual("PartitionedVariable", var1_name) self.assertEqual("PartitionedVariable_1", var2_name) self.assertEqual(var1_name + "/part_0:0", vs1[0].name) self.assertEqual(var1_name + "/part_1:0", vs1[1].name) self.assertEqual(var2_name + "/part_0:0", vs2[0].name) self.assertEqual(var2_name + "/part_1:0", vs2[1].name) def testName(self): self._testNameHelper(use_resource=False) def testResourceName(self): self._testNameHelper(use_resource=True) def testRandomInitValue(self): with self.test_session(): rnd = variables.Variable(random_ops.random_uniform([200, 40])) vs = partitioned_variables.create_partitioned_variables( rnd.get_shape(), [1, 10], rnd.initialized_value()) variables.global_variables_initializer().run() val = array_ops.concat(vs, 1).eval() rnd = rnd.eval() self.assertAllClose(rnd, val) self.assertEqual([dtypes.float32] * 10, [v.dtype.base_dtype for v in vs]) self._TestSaveSpec(vs, [ "200 40 0,200:0,4", "200 40 0,200:4,4", "200 40 0,200:8,4", "200 40 0,200:12,4", "200 40 0,200:16,4", "200 40 0,200:20,4", "200 40 0,200:24,4", "200 40 0,200:28,4", "200 40 0,200:32,4", "200 40 0,200:36,4" ]) def testRandomInitUnevenPartitions(self): with self.test_session(): rnd = variables.Variable( random_ops.random_uniform([20, 43], dtype=dtypes.float64)) var_lists = [ partitioned_variables.create_partitioned_variables( rnd.get_shape(), [1, i], rnd.initialized_value()) for i in xrange(1, 10) ] variables.global_variables_initializer().run() rnd_val = rnd.eval() # Only check the slice save specs for the first 5 tf. save_specs = [ # One slice ["20 43 0,20:0,43"], # Two slices ["20 43 0,20:0,22", "20 43 0,20:22,21"], # Three slices ["20 43 0,20:0,15", "20 43 0,20:15,14", "20 43 0,20:29,14"], # Four slices [ "20 43 0,20:0,11", "20 43 0,20:11,11", "20 43 0,20:22,11", "20 43 0,20:33,10" ], # Five slices [ "20 43 0,20:0,9", "20 43 0,20:9,9", "20 43 0,20:18,9", "20 43 0,20:27,8", "20 43 0,20:35,8" ] ] for i, vs in enumerate(var_lists): var_val = array_ops.concat(vs, 1).eval() self.assertAllClose(rnd_val, var_val) self.assertEqual([dtypes.float64] * len(vs), [v.dtype.base_dtype for v in vs]) if i < len(save_specs): self._TestSaveSpec(vs, save_specs[i]) def testDegenerate(self): with self.test_session(): rnd = variables.Variable(random_ops.random_uniform([10, 43])) vs = partitioned_variables.create_partitioned_variables( rnd.get_shape(), [1, 1], rnd.initialized_value()) variables.global_variables_initializer().run() val = array_ops.concat(vs, 0).eval() rnd = rnd.eval() self.assertAllClose(rnd, val) self._TestSaveSpec(vs, ["10 43 0,10:0,43"]) def testSliceSizeOne(self): with self.test_session(): rnd = variables.Variable(random_ops.random_uniform([10, 43])) vs = partitioned_variables.create_partitioned_variables( rnd.get_shape(), [10, 1], rnd.initialized_value()) variables.global_variables_initializer().run() val = array_ops.concat(vs, 0).eval() rnd = rnd.eval() self.assertAllClose(rnd, val) self._TestSaveSpec(vs, [ "10 43 0,1:0,43", "10 43 1,1:0,43", "10 43 2,1:0,43", "10 43 3,1:0,43", "10 43 4,1:0,43", "10 43 5,1:0,43", "10 43 6,1:0,43", "10 43 7,1:0,43", "10 43 8,1:0,43", "10 43 9,1:0,43" ]) def testIotaInitializer(self): self.assertAllClose([0., 1., 2., 3.], _IotaInitializer([4])) self.assertAllClose([[0., 1.], [0., 10.], [0., 100.], [0., 1000.]], _IotaInitializer([4, 2])) with self.test_session(): vs = partitioned_variables.create_partitioned_variables([13, 5], [3, 1], _IotaInitializer) variables.global_variables_initializer().run() slice0 = _IotaInitializer([5, 5]) slice1 = _IotaInitializer([4, 5]) slice2 = _IotaInitializer([4, 5]) val = array_ops.concat(vs, 0).eval() self.assertAllClose(slice0 + slice1 + slice2, val) self._TestSaveSpec(vs, ["13 5 0,5:0,5", "13 5 5,4:0,5", "13 5 9,4:0,5"]) def testRandomInitializer(self): # Sanity check that the slices uses a different seed when using a random # initializer function. with self.test_session(): var0, var1 = partitioned_variables.create_partitioned_variables( [20, 12], [1, 2], init_ops.random_uniform_initializer()) variables.global_variables_initializer().run() val0, val1 = var0.eval().flatten(), var1.eval().flatten() self.assertTrue(np.linalg.norm(val0 - val1) > 1e-6) # Negative test that proves that slices have the same values if # the random initializer uses a seed. with self.test_session(): var0, var1 = partitioned_variables.create_partitioned_variables( [20, 12], [1, 2], init_ops.random_uniform_initializer(seed=201)) variables.global_variables_initializer().run() val0, val1 = var0.eval().flatten(), var1.eval().flatten() self.assertAllClose(val0, val1) def testSomeErrors(self): with self.test_session(): rnd = variables.Variable(random_ops.random_uniform([10, 43])) with self.assertRaises(ValueError): partitioned_variables.create_partitioned_variables( [10], [1, 1], rnd.initialized_value()) with self.assertRaises(ValueError): partitioned_variables.create_partitioned_variables( [10, 20], [1], rnd.initialized_value()) with self.assertRaises(ValueError): partitioned_variables.create_partitioned_variables( [10, 43], [1], rnd.initialized_value()) with self.assertRaises(ValueError): partitioned_variables.create_partitioned_variables( [10, 43], [1, 2, 3], rnd.initialized_value()) with self.assertRaises(ValueError): partitioned_variables.create_partitioned_variables( [10, 43], [11, 1], rnd.initialized_value()) with self.assertRaises(ValueError): partitioned_variables.create_partitioned_variables( [10, 43], [20, 1], rnd.initialized_value()) with self.assertRaises(ValueError): partitioned_variables.create_partitioned_variables( [10, 43], [1, 50], rnd.initialized_value()) def testConcat(self): with self.test_session() as session: var_x = variable_scope.get_variable( "x", initializer=constant_op.constant([1., 2.]), partitioner=partitioned_variables.variable_axis_size_partitioner(4)) c = constant_op.constant(1.0) with ops.control_dependencies([c]): ops_before_concat = session.graph.get_operations() value = var_x._concat() # pylint: disable=protected-access concat_ops = [ op for op in session.graph.get_operations() if op not in ops_before_concat ] concat_control_inputs = [ ci for op in concat_ops for ci in op.control_inputs ] self.assertTrue( c.op in concat_control_inputs, "var_x._concat() should get control dependencies from its scope.") variables.global_variables_initializer().run() self.assertAllClose(value.eval(), var_x.as_tensor().eval()) def testVariableCreationInALoop(self): """Tests the variable created inside a loop can be used outside the loop.""" with self.test_session(): with variable_scope.variable_scope("ascope") as scope: def Body(i, _): var_x = variable_scope.get_variable( "x", shape=[2], initializer=init_ops.ones_initializer(), partitioner=partitioned_variables.variable_axis_size_partitioner( 4)) return (i + 1, var_x.as_tensor()) cond = lambda i, _: i < 2 _, x = control_flow_ops.while_loop( cond, Body, (0, constant_op.constant([7, 8], dtypes.float32))) variables.global_variables_initializer().run() self.assertAllClose([1.0, 1.0], x.eval()) scope.reuse_variables() var_x = variable_scope.get_variable( "x", shape=[2], initializer=init_ops.ones_initializer(), partitioner=partitioned_variables.variable_axis_size_partitioner(4)) self.assertAllClose([1.0, 1.0], var_x.as_tensor().eval()) def testReadInWhileLoop(self): """Tests the value is current (not cached) when read within a loop.""" with self.test_session(): var_x = variable_scope.get_variable( "x", shape=[2], initializer=init_ops.ones_initializer(), partitioner=partitioned_variables.variable_axis_size_partitioner(4)) def Body(i, _): # Use a SGD step to update the variable's value. loss = math_ops.reduce_sum(var_x) optimizer = gradient_descent.GradientDescentOptimizer(1.0) minimize = optimizer.minimize(loss * 0.7) with ops.control_dependencies([minimize]): return (i + 1, var_x.as_tensor()) cond = lambda i, _: i < 2 _, x = control_flow_ops.while_loop( cond, Body, (0, constant_op.constant([7, 8], dtypes.float32))) variables.global_variables_initializer().run() self.assertAllClose([-0.4, -0.4], x.eval()) if __name__ == "__main__": test.main()
apache-2.0
5,213,598,942,687,017,000
40.395534
116
0.599384
false
eeshangarg/zulip
zerver/views/realm_icon.py
1
2428
from django.conf import settings from django.http import HttpRequest, HttpResponse from django.shortcuts import redirect from django.utils.translation import gettext as _ from zerver.decorator import require_realm_admin from zerver.lib.actions import do_change_icon_source from zerver.lib.realm_icon import realm_icon_url from zerver.lib.response import json_error, json_success from zerver.lib.upload import upload_icon_image from zerver.lib.url_encoding import add_query_arg_to_redirect_url from zerver.models import UserProfile @require_realm_admin def upload_icon(request: HttpRequest, user_profile: UserProfile) -> HttpResponse: if len(request.FILES) != 1: return json_error(_("You must upload exactly one icon.")) icon_file = list(request.FILES.values())[0] if (settings.MAX_ICON_FILE_SIZE_MIB * 1024 * 1024) < icon_file.size: return json_error( _("Uploaded file is larger than the allowed limit of {} MiB").format( settings.MAX_ICON_FILE_SIZE_MIB, ) ) upload_icon_image(icon_file, user_profile) do_change_icon_source( user_profile.realm, user_profile.realm.ICON_UPLOADED, acting_user=user_profile ) icon_url = realm_icon_url(user_profile.realm) json_result = dict( icon_url=icon_url, ) return json_success(json_result) @require_realm_admin def delete_icon_backend(request: HttpRequest, user_profile: UserProfile) -> HttpResponse: # We don't actually delete the icon because it might still # be needed if the URL was cached and it is rewritten # in any case after next update. do_change_icon_source( user_profile.realm, user_profile.realm.ICON_FROM_GRAVATAR, acting_user=user_profile ) gravatar_url = realm_icon_url(user_profile.realm) json_result = dict( icon_url=gravatar_url, ) return json_success(json_result) def get_icon_backend(request: HttpRequest, user_profile: UserProfile) -> HttpResponse: url = realm_icon_url(user_profile.realm) # We can rely on the URL already having query parameters. Because # our templates depend on being able to use the ampersand to # add query parameters to our url, get_icon_url does '?version=version_number' # hacks to prevent us from having to jump through decode/encode hoops. url = add_query_arg_to_redirect_url(url, request.META["QUERY_STRING"]) return redirect(url)
apache-2.0
-8,473,574,400,917,262,000
37.539683
91
0.714168
false
jashort/SmartFileSorter
tests/test_integration_tests.py
1
1059
import unittest import smartfilesorter import os import tempfile import shutil class TestIntegrationTests(unittest.TestCase): """ Broader test cases """ def setUp(self): self.source_dir = tempfile.mkdtemp() self.dest_dir = os.path.join(self.source_dir, 'dest/') os.mkdir(self.dest_dir) self.test_filename = "test.txt" self.source_file = os.path.join(self.source_dir, self.test_filename) self.dest_file = os.path.join(self.dest_dir, self.test_filename) with open(self.source_file, 'w') as output: output.write("This is a test file.") self.s = smartfilesorter.SmartFileSorter() def tearDown(self): shutil.rmtree(self.source_dir) def test_file_matches_multiple_rulesets(self): test_path = os.path.dirname(__file__) test_file = os.path.join(test_path, 'match_multiple_rulesets.yml') self.s.args = self.s.parse_arguments([test_file, self.source_dir]) self.s.create_logger(self.s.args) self.s.run(self.s.args)
bsd-3-clause
-8,757,449,511,512,382,000
30.147059
76
0.645892
false
huiyiqun/check_mk
cmk/regex.py
1
2740
#!/usr/bin/python # -*- encoding: utf-8; py-indent-offset: 4 -*- # +------------------------------------------------------------------+ # | ____ _ _ __ __ _ __ | # | / ___| |__ ___ ___| | __ | \/ | |/ / | # | | | | '_ \ / _ \/ __| |/ / | |\/| | ' / | # | | |___| | | | __/ (__| < | | | | . \ | # | \____|_| |_|\___|\___|_|\_\___|_| |_|_|\_\ | # | | # | Copyright Mathias Kettner 2016 [email protected] | # +------------------------------------------------------------------+ # # This file is part of Check_MK. # The official homepage is at http://mathias-kettner.de/check_mk. # # check_mk is free software; you can redistribute it and/or modify it # under the terms of the GNU General Public License as published by # the Free Software Foundation in version 2. check_mk is distributed # in the hope that it will be useful, but WITHOUT ANY WARRANTY; with- # out even the implied warranty of MERCHANTABILITY or FITNESS FOR A # PARTICULAR PURPOSE. See the GNU General Public License for more de- # tails. You should have received a copy of the GNU General Public # License along with GNU Make; see the file COPYING. If not, write # to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, # Boston, MA 02110-1301 USA. """This module wraps some regex handling functions used by Check_MK""" import re from .exceptions import MKGeneralException # TODO: Clean this up one day by using the way recommended by gettext. # (See https://docs.python.org/2/library/gettext.html). For this we # need the path to the locale files here. try: _ except NameError: _ = lambda x: x # Fake i18n when not available g_compiled_regexes = {} def regex(pattern): """Compile regex or look it up in already compiled regexes. (compiling is a CPU consuming process. We cache compiled regexes).""" try: return g_compiled_regexes[pattern] except KeyError: pass try: reg = re.compile(pattern) except Exception, e: raise MKGeneralException(_("Invalid regular expression '%s': %s") % (pattern, e)) g_compiled_regexes[pattern] = reg return reg # Checks if a string contains characters that make it neccessary # to use regular expression logic to handle it correctly def is_regex(pattern): for c in pattern: if c in '.?*+^$|[](){}\\': return True return False def escape_regex_chars(match): r = "" for c in match: if c in r"[]\().?{}|*^$+": r += "\\" r += c return r
gpl-2.0
-2,221,331,912,281,145,600
36.027027
89
0.531752
false
SublimeHaskell/SublimeHaskell
hsdev/backend.py
1
36770
""" The `hsdev` backend. """ from functools import reduce import io import json import os import os.path import pprint import re import subprocess import threading import sublime import SublimeHaskell.hsdev.callback as HsCallback import SublimeHaskell.hsdev.client as HsDevClient import SublimeHaskell.hsdev.result_parse as ResultParse import SublimeHaskell.internals.backend as Backend import SublimeHaskell.internals.logging as Logging import SublimeHaskell.internals.output_collector as OutputCollector import SublimeHaskell.internals.proc_helper as ProcHelper import SublimeHaskell.internals.settings as Settings import SublimeHaskell.internals.utils as Utils import SublimeHaskell.sublime_haskell_common as Common def result_identity(resp): '''Identity function for results ''' return resp class HsDevBackend(Backend.HaskellBackend): """This class encapsulates all of the functions that interact with the `hsdev` backend. """ HSDEV_DEFAULT_PORT = 4567 HSDEV_DEFAULT_HOST = 'localhost' HSDEV_NOT_FOUND = [0, 0, 0, 0] HSDEV_MIN_VER = [0, 3, 3, 0] # minimum hsdev version HSDEV_MAX_VER = [0, 3, 4, 0] # maximum hsdev version HSDEV_CALL_TIMEOUT = 300.0 # second timeout for synchronous requests (5 minutes should be enough, no?) def __init__(self, backend_mgr, local=True, port=HSDEV_DEFAULT_PORT, host=HSDEV_DEFAULT_HOST, **kwargs): super().__init__(backend_mgr) Logging.log('{0}.__init__({1}, {2})'.format(type(self).__name__, host, port), Logging.LOG_INFO) # Sanity checking: exec_with = kwargs.get('exec-with') install_dir = kwargs.get('install-dir') if bool(exec_with) ^ bool(install_dir): if install_dir is None: sublime.error_message('\n'.join(['\'exec_with\' requires an \'install_dir\'.', '', 'Please check your \'backends\' configuration and retry.'])) raise RuntimeError('\'exec_with\' requires an \'install_dir\'.') else: sublime.error_message('\n'.join(['\'install_dir\' requires an \'exec_with\'.', '', 'Please check your \'backends\' configuration and retry.'])) raise RuntimeError('\'install_dir\' requires an \'exec_with\'.') elif exec_with and exec_with not in ['stack', 'cabal', 'cabal-new-build']: sublime.error_message('\n'.join(['Invalid backend \'exec_with\': {0}'.format(exec_with), '', 'Valid values are "cabal", "cabal-new-build" or "stack".', 'Please check your \'backends\' configuration and retry.'])) raise RuntimeError('Invalid backend \'exec_with\': {0}'.format(exec_with)) # Local hsdev server process and params self.is_local_hsdev = local self.hsdev_process = None self.cache = os.path.join(Common.sublime_haskell_cache_path(), 'hsdev', 'hsdev.db') self.log_file = os.path.join(Common.sublime_haskell_cache_path(), 'hsdev', 'hsdev.log') self.exec_with = exec_with self.install_dir = Utils.normalize_path(install_dir) if install_dir is not None else None # Keep track of the hsdev version early. Needed to patch command line arguments later. self.version = HsDevBackend.hsdev_version(self.exec_with, self.install_dir) self.drain_stdout = None self.drain_stderr = None # Connection params self.port = port self.hostname = host if self.is_local_hsdev: self.hostname = self.HSDEV_DEFAULT_HOST self.client = None self.serial_lock = threading.RLock() self.request_serial = 1 @staticmethod def backend_name(): return 'hsdev' @staticmethod def is_available(**kwargs): # Yes, this is slightly redundant because eventually __init__ does the same thing for a class # instance. exec_with = kwargs.get('exec-with') install_dir = kwargs.get('install-dir') local = kwargs.get('local', False) exec_install_set = not bool(exec_with) ^ bool(install_dir) backend_name = kwargs.get('backend_name', 'not specified.') if exec_install_set or local: if not exec_install_set: # Either exec-with or install-dir isn't set, so the corresponding configuration target is unavailable. return False hsdev_ver = HsDevBackend.hsdev_version(exec_with, install_dir) str_version = '.'.join([str(v) for v in hsdev_ver]) Logging.log('hsdev version: {0}'.format(str_version), Logging.LOG_INFO) retval = hsdev_ver >= HsDevBackend.HSDEV_MIN_VER and hsdev_ver < HsDevBackend.HSDEV_MAX_VER if not retval: if retval != HsDevBackend.HSDEV_NOT_FOUND: min_version = '.'.join([str(v) for v in HsDevBackend.HSDEV_MIN_VER]) max_version = '.'.join([str(v) for v in HsDevBackend.HSDEV_MAX_VER]) msg = '\n'.join(['Backend configuration: "{0}"'.format(backend_name), '', 'Incompatible hsdev, detected version ' + str_version, 'Version should be \u2265 ' + min_version + ' and < ' + max_version]) else: msg = '\n'.join(['Backend configuration: "{0}"'.format(backend_name), '', 'Tried executing hsdev to get a version number, not successful.', 'Is hsdev installed (or built, if using stack or cabal exec wrappers)?']) sublime.message_dialog(msg) return retval # Assume that a remote backend is actually available. Ultimately, we might not connect to it, but # it is available to us as a backend. return True def start_backend(self): retval = True if self.is_local_hsdev: Logging.log('Starting local \'hsdev\' server', Logging.LOG_INFO) log_level = Settings.PLUGIN.hsdev_log_level cmd = self.concat_args([(True, ["hsdev"]), (True, ["run"]), (self.port, ["--port", str(self.port)]), (self.cache, ["--db", self.cache]), (self.log_file, ["--log", self.log_file]), (True, ["--log-level", log_level]), (True, ["--no-color"])]) hsdev_proc = ProcHelper.exec_with_wrapper(self.exec_with, self.install_dir, cmd) if hsdev_proc.process is not None: # Use TextIOWrapper here because it combines decoding with newline handling, # which means less to maintain. hsdev_proc.process.stdout = io.TextIOWrapper(hsdev_proc.process.stdout, 'utf-8') hsdev_proc.process.stderr = io.TextIOWrapper(hsdev_proc.process.stderr, 'utf-8') # Read and wait for hsdev's startup messge. 15 seconds should be enough time for the message to appear. # Otherwise, kill the thread because we don't want to get stuck waiting forever. startup_reader = HsDevStartupReader(hsdev_proc.process.stdout) startup_reader.start() startup_reader.wait_startup(15.0) if startup_reader.successful(): port = startup_reader.port() if port != self.port: Logging.log('hsdev: server port changed, was {0}, now {1}'.format(self.port, port), Logging.LOG_WARNING) self.port = port self.drain_stdout = OutputCollector.DescriptorDrain('hsdev stdout', hsdev_proc.process.stdout) self.drain_stderr = OutputCollector.DescriptorDrain('hsdev stderr', hsdev_proc.process.stderr) self.drain_stdout.start() self.drain_stderr.start() self.hsdev_process = hsdev_proc Logging.log('Local \'hsdev\' server started successfully.', Logging.LOG_INFO) else: # This is a bit of a "Hail Mary!" because readline() could just hang forever. Just to make sure, # kill the process too! startup_reader.stop() hsdev_proc.process.kill() if hsdev_proc.process_err is not None: Logging.log('Possible reason for timeout: {0}'.format(hsdev_proc.process_err)) self.hsdev_process = None retval = False sublime.error_message('Timed out waiting for \'hsdev\' to start up.') else: errmsg = 'Could not start local \'hsdev\' server because:\n\n' + hsdev_proc.process_err sublime.error_message(errmsg) self.hsdev_process = None retval = False return retval def connect_backend(self): Logging.log('Connecting to \'hsdev\' server at {0}:{1}'.format(self.hostname, self.port), Logging.LOG_INFO) retval = True self.client = HsDevClient.HsDevClient(self.backend_mgr) if self.client.connect(self.hostname, self.port): # For a local hsdev server that we started, send the link command so that it exits when we exit. if self.is_local_hsdev: self.link() else: Logging.log('Connections to \'hsdev\' server unsuccessful, see tracebacks to diagnose.', Logging.LOG_ERROR) retval = False return retval def disconnect_backend(self): self.exit() self.client.close() def stop_backend(self): if self.is_local_hsdev: try: self.hsdev_process.process.wait(90.0) except subprocess.TimeoutExpired: sublime.message_dialog('\n'.join(['Time out waiting for \'hsdev\' process to terminate.', '', 'You may have to kill this process manually from a terminal or', 'console window\'s command line.'])) def is_live_backend(self): return self.client.is_connected() # -~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~- # File/project tracking functions: # -~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~- ## Pylint deems these two methods unncessary since all they do is call the superclass. However, I'm ## leaving them here just in case something more interesting has to be done in addition to calling ## the superclass. # def add_project_file(self, filename, project, project_dir): # super().add_project_file(filename, project, project_dir) # def remove_project_file(self, filename): # super().remove_project_file(filename) # -~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~- # Features # -~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~- def auto_rescan(self): return True # -~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~- # Utility functions used to implement the API: # -~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~- @staticmethod def hsdev_version(exec_with, install_dir, output_compiler_version=False): retval = [0, 0, 0, 0] compiler_version = None cmd = ['hsdev', 'version'] if output_compiler_version: cmd.append('-c') hsdev_proc = ProcHelper.exec_with_wrapper(exec_with, install_dir, cmd) if hsdev_proc.process is not None: exit_code, out, _ = hsdev_proc.wait() if exit_code == 0: ## 'cabal new-run' can spit out multiple lines of status before executing the task: for line in out.splitlines(): hsver = re.match(r'(?P<major>\d+)\.(?P<minor>\d+)\.(?P<revision>\d+)\.(?P<build>\d+)', line) if hsver: major = int(hsver.group('major')) minor = int(hsver.group('minor')) revision = int(hsver.group('revision')) build = int(hsver.group('build')) retval = [major, minor, revision, build] compiler_version = line.split()[1] if output_compiler_version else None break return (retval, compiler_version) if output_compiler_version else retval @staticmethod def concat_args(args): def inner_concat(left, right): (left_pred, left_expr) = left (right_pred, right_expr) = right return (left_pred or right_pred, (left_expr if left_pred else []) + (right_expr if right_pred else [])) return reduce(inner_concat, args, (True, []))[1] def files_and_contents(self, files, contents): contents = contents or {} retval = [{'file': f, 'contents': contents.get(f)} for f in files] if files else [] return retval def make_callbacks(self, name, on_response=None, result_convert=result_identity, on_notify=None, on_error=None, **backend_args): with self.serial_lock: req_serial = str(self.request_serial) self.request_serial += 1 # Clean up backend arguments: for param in ['on_response', 'result_convert', 'on_notify', 'on_error']: if param in backend_args: del backend_args[param] return (HsCallback.HsDevCallbacks(req_serial, name, on_response, result_convert, on_notify, on_error), backend_args) def hsdev_command(self, name, opts, callbacks, async_cmd=False, timeout=HSDEV_CALL_TIMEOUT, is_list=False, on_result_part=None, split_result=None): if split_result is None: split_res = on_result_part is not None if is_list and split_res: result = [] def hsdev_command_notify(reply): if 'result-part' in reply: notify_result = callbacks.call_result_convert([reply['result-part']])[0] on_result_part(notify_result) result.append(notify_result) else: callbacks.call_notify(reply) # FIXME: Is this option still used? opts.update({'split-result': None}) callbacks.add_notify(hsdev_command_notify) resp = self.client.call(name, opts, callbacks, wait=not async_cmd, timeout=timeout) return resp def command(self, name, opts, callbacks, timeout=HSDEV_CALL_TIMEOUT, on_result_part=None, split_result=None): return self.hsdev_command(name, opts, callbacks, async_cmd=False, timeout=timeout, is_list=False, on_result_part=on_result_part, split_result=split_result) def async_command(self, name, opts, callbacks, on_result_part=None, split_result=None): return self.hsdev_command(name, opts, callbacks, async_cmd=True, timeout=None, is_list=False, on_result_part=on_result_part, split_result=split_result) def list_command(self, name, opts, callbacks, timeout=HSDEV_CALL_TIMEOUT, on_result_part=None, split_result=None): return self.hsdev_command(name, opts, callbacks, async_cmd=False, timeout=timeout, is_list=True, on_result_part=on_result_part, split_result=split_result) def async_list_command(self, name, opts, callbacks, on_result_part=None, split_result=None): return self.hsdev_command(name, opts, callbacks, async_cmd=True, timeout=None, is_list=True, on_result_part=on_result_part, split_result=split_result) # -~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~- # API implementation: # -~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~- def link(self, hold=False): return self.command('link', {'hold': hold}, self.make_callbacks('link')[0]) def ping(self): return self.command('ping', {}, lambda r: r and ('message' in r) and (r['message'] == 'pong'), self.make_callbacks('ping')[0]) def scan(self, cabal=False, sandboxes=None, projects=None, files=None, paths=None, ghc=None, contents=None, docs=False, infer=False, wait_complete=False, **backend_args): action = self.command if wait_complete else self.async_command callbacks, backend_args = self.make_callbacks('scan', **backend_args) return action('scan', {'projects': projects or [], 'cabal': cabal, 'sandboxes': sandboxes or [], 'files': self.files_and_contents(files, contents), 'paths': paths or [], 'ghc-opts': ghc or [], 'docs': docs, 'infer': infer}, callbacks, **backend_args) def scan_project(self, project, build_tool=None, no_deps=False, wait_complete=False, **backend_args): action = self.command if wait_complete else self.async_command callbacks, backend_args = self.make_callbacks('scan project', **backend_args) return action( 'scan project', { 'project': project, 'build-tool': build_tool, 'scan-deps': not no_deps, }, callbacks, **backend_args ) def scan_file(self, file, build_tool=None, no_project=False, no_deps=False, wait_complete=False, **backend_args): action = self.command if wait_complete else self.async_command callbacks, backend_args = self.make_callbacks('scan file', **backend_args) return action( 'scan file', { 'file': file, 'build-tool': build_tool, 'scan-project': not no_project, 'scan-deps': not no_deps, }, callbacks, **backend_args ) def scan_package_dbs(self, package_dbs, wait_complete=False, **backend_args): action = self.command if wait_complete else self.async_command callbacks, backend_args = self.make_callbacks('scan package-dbs', **backend_args) return action( 'scan package-dbs', {'package-db-stack': [{'package-db': p} if p not in ['user-db', 'global-db'] else p for p in package_dbs]}, callbacks, **backend_args ) def set_file_contents(self, file, contents=None, **backend_args): callbacks, backend_args = self.make_callbacks('set-file-contents', **backend_args) return self.command('set-file-contents', {'file': file, 'contents': contents}, callbacks, **backend_args) def docs(self, projects=None, files=None, **backend_args): callbacks, backend_args = self.make_callbacks('docs', **backend_args) return self.async_command('docs', {'projects': projects or [], 'files': files or []}, callbacks, **backend_args) def infer(self, projects=None, files=None, **backend_args): callbacks, backend_args = self.make_callbacks('infer', **backend_args) return self.async_command('infer', {'projects': projects or [], 'files': files or []}, callbacks, **backend_args) def remove(self, cabal=False, sandboxes=None, projects=None, files=None, **backend_args): callbacks, backend_args = self.make_callbacks('remove', **backend_args) return self.async_list_command('remove', {'projects': projects or [], 'cabal': cabal, 'sandboxes': sandboxes or [], 'files': files or []}, callbacks, **backend_args) def remove_all(self, **backend_args): callbacks, backend_args = self.make_callbacks('remove-all', **backend_args) return self.command('remove-all', {}, callbacks, **backend_args) def list_packages(self, **backend_args): callbacks, backend_args = self.make_callbacks('packages', **backend_args) return self.list_command('packages', {}, callbacks, **backend_args) def list_projects(self, **backend_args): callbacks, backend_args = self.make_callbacks('projects', **backend_args) return self.list_command('projects', {}, callbacks, **backend_args) def list_sandboxes(self, **backend_args): return self.list_command('sandboxes', {}, **backend_args) def symbol(self, lookup="", search_type='prefix', project=None, file=None, module=None, package=None, installed=False, source=False, standalone=False, local_names=False, header=False, **backend_args): # search_type is one of: exact, prefix, infix, suffix query = {'input': lookup, 'type': search_type} filters = [] if project: filters.append({'project': project}) if file: filters.append({'file': file}) if module: filters.append({'module': module}) if package: filters.append({'package': package}) if installed: filters.append('installed') if source: filters.append('sourced') if standalone: filters.append('standalone') callbacks, backend_args = self.make_callbacks('symbol', result_convert=ResultParse.parse_symbol_ids if header else ResultParse.parse_symbols, **backend_args) return self.list_command('symbol', {'query': query, 'filters': filters, 'locals': local_names, 'header': header}, callbacks, **backend_args) def module(self, _projectname, lookup="", search_type='prefix', project=None, file=None, module=None, package=None, installed=False, source=False, standalone=False, header=False, **backend_args): query = {'input': lookup, 'type': search_type} filters = [] if project: filters.append({'project': project}) if file: filters.append({'file': file}) if module: filters.append({'module': module}) if package: filters.append({'package': package}) if installed: filters.append('installed') if source: filters.append('sourced') if standalone: filters.append('standalone') callbacks, backend_args = self.make_callbacks('module', result_convert=ResultParse.parse_module_ids if header else ResultParse.parse_modules, **backend_args) return self.command('module', {'query': query, 'filters': filters, 'header': header, 'inspection': False}, callbacks, **backend_args) def project(self, project=None, path=None, **backend_args): callbacks, backend_args = self.make_callbacks('project', **backend_args) return self.command('project', {'name': project} if project else {'path': path}, callbacks, **backend_args) def sandbox(self, path, **backend_args): callbacks, backend_args = self.make_callbacks('sandbox', **backend_args) return self.command('sandbox', {'path': path}, callbacks, **backend_args) def lookup(self, name, file, **backend_args): callbacks, backend_args = self.make_callbacks('lookup', result_convert=ResultParse.parse_symbols, **backend_args) return self.list_command('lookup', {'name': name, 'file': file}, callbacks, **backend_args) def whois(self, name, file, **backend_args): callbacks, backend_args = self.make_callbacks('whois', result_convert=ResultParse.parse_symbols, **backend_args) return self.list_command('whois', {'name': name, 'file': file}, callbacks, **backend_args) def whoat(self, line, column, file, **backend_args): callbacks, backend_args = self.make_callbacks('whoat', result_convert=ResultParse.parse_symbols, **backend_args) return self.list_command('whoat', {'line': line, 'column': column, 'file': file}, callbacks, **backend_args) def scope_modules(self, _projcname, file, lookup='', search_type='prefix', **backend_args): callbacks, backend_args = self.make_callbacks('scope_modules', result_convert=ResultParse.parse_module_ids, **backend_args) return self.list_command('scope modules', {'query': {'input': lookup, 'type': search_type}, 'file': file}, callbacks, **backend_args) def scope(self, file, lookup='', search_type='prefix', global_scope=False, **backend_args): callbacks, backend_args = self.make_callbacks('scope', result_convert=ResultParse.parse_symbol_ids, **backend_args) return self.list_command('scope', {'query': {'input': lookup, 'type': search_type }, 'file': file }, callbacks, **backend_args) def usages(self, line, column, file, **backend_args): callbacks, backend_args = self.make_callbacks('usages', result_convert=ResultParse.parse_symbol_usages, **backend_args) return self.list_command('usages', {'line': line, 'column': column, 'file': file}, callbacks, **backend_args) def complete(self, sym, file, wide=False, **backend_args): qname = sym.qualified_name() if sym.name is not None else sym.module + '.' callbacks, backend_args = self.make_callbacks('complete', result_convert=ResultParse.parse_symbols, **backend_args) return self.list_command('complete', {'prefix': qname, 'wide': wide, 'file': file}, callbacks, **backend_args) def hayoo(self, query, page=None, pages=None, **backend_args): callbacks, backend_args = self.make_callbacks('hayoo', result_convert=ResultParse.parse_symbols, **backend_args) return self.list_command('hayoo', {'query': query, 'page': page or 0, 'pages': pages or 1}, callbacks, **backend_args) def cabal_list(self, packages, **backend_args): def convert_to_cabal_packages(pkg_list): return [ResultParse.parse_cabal_package(pkg) for pkg in pkg_list] if pkg_list else None callbacks, backend_args = self.make_callbacks('cabal list', result_convert=convert_to_cabal_packages, **backend_args) return self.list_command('cabal list', {'packages': packages}, callbacks, **backend_args) def unresolveds(self, files, **backend_args): callbacks, backend_args = self.make_callbacks('unresolveds', **backend_args) return self.list_command('unresolveds', {'files': files}, callbacks, **backend_args) def lint(self, files=None, contents=None, hlint=None, wait_complete=False, **backend_args): action = self.list_command if wait_complete else self.async_list_command result_convert = backend_args.pop('result_convert', []) if result_convert and not isinstance(result_convert, list): result_convert = [result_convert] result_convert.append(self.convert_warnings) callbacks, backend_args = self.make_callbacks('lint', result_convert=result_convert, **backend_args) return action('lint', {'files': self.files_and_contents(files, contents), 'lint-opts': hlint or []}, callbacks, **backend_args) def check(self, files=None, contents=None, ghc=None, wait_complete=False, **backend_args): action = self.list_command if wait_complete else self.async_list_command callbacks, backend_args = self.make_callbacks('check', **backend_args) return action('check', {'files': self.files_and_contents(files, contents), 'ghc-opts': ghc or []}, callbacks, **backend_args) def check_lint(self, files=None, contents=None, ghc=None, hlint=None, wait_complete=False, **backend_args): action = self.list_command if wait_complete else self.async_list_command result_convert = backend_args.pop('result_convert', []) if result_convert and not isinstance(result_convert, list): result_convert = [result_convert] result_convert.append(self.convert_warnings) callbacks, backend_args = self.make_callbacks('check-lint', result_convert=result_convert, **backend_args) return action('check-lint', {'files': self.files_and_contents(files, contents), 'ghc-opts': ghc or [], 'lint-opts': hlint or []}, callbacks, **backend_args) def types(self, _projectname, file, _modulename, _line, _column, ghc_flags=None, contents=None, **backend_args): callbacks, backend_args = self.make_callbacks('types', **backend_args) return self.list_command('types', {'files': self.files_and_contents(file, contents), 'ghc-opts': ghc_flags or []}, callbacks, **backend_args) def autofixes(self, messages, wait_complete=False, **backend_args): callbacks, backend_args = self.make_callbacks('autofixes', result_convert=ResultParse.parse_corrections, **backend_args) action = self.list_command if wait_complete else self.async_list_command return action('autofixes', {'messages': messages}, callbacks, **backend_args) def refactor(self, messages, rest=[], pure=True, wait_complete=False, **backend_args): callbacks, backend_args = self.make_callbacks('refactor', result_convert=ResultParse.parse_corrections, **backend_args) action = self.list_command if wait_complete else self.async_list_command return action('refactor', {'messages': messages, 'rest': rest, 'pure': pure}, callbacks, **backend_args) def rename(self, name, new_name, file, wait_complete=False, **backend_args): callbacks, backend_args = self.make_callbacks('rename', result_convert=ResultParse.parse_corrections, **backend_args) action = self.list_command if wait_complete else self.async_list_command return action('rename', {'name': name, 'new-name': new_name, 'file': file}, callbacks, **backend_args) def langs(self, _projectname, **backend_args): callbacks, backend_args = self.make_callbacks('langs', **backend_args) return self.command('langs', {}, callbacks, **backend_args) def flags(self, _projectname, **backend_args): callbacks, backend_args = self.make_callbacks('flags', **backend_args) return self.command('flags', {}, callbacks, **backend_args) def ghc_eval(self, exprs, file=None, source=None, wait_complete=False, **backend_args): the_file = None if file is not None: the_file = {'file': file, 'contents': source} callbacks, backend_args = self.make_callbacks('ghc eval', result_convert=ResultParse.parse_repl_results, **backend_args) action = self.list_command if wait_complete else self.async_list_command return action('ghc eval', {'exprs': exprs, 'file': the_file}, callbacks, **backend_args) def ghc_type(self, exprs, file=None, source=None, wait_complete=False, **backend_args): the_file = None if file is not None: the_file = {'file': file, 'contents': source} callbacks, backend_args = self.make_callbacks('ghc type', result_convert=ResultParse.parse_repl_results, **backend_args) action = self.list_command if wait_complete else self.async_list_command return action('ghc type', {'exprs': exprs, 'file': the_file}, callbacks, **backend_args) def stop_ghc(self, **backend_args): callbacks, backend_args = self.make_callbacks('stop-ghc', **backend_args) return self.command('stop-ghc', {}, callbacks, **backend_args) def exit(self): return self.command('exit', {}, self.make_callbacks('exit')[0]) # old names for compatibility def autofix_show(self, messages, wait_complete=False, **backend_args): return self.autofixes(messages, wait_complete=wait_complete, **backend_args) def autofix_fix(self, messages, rest=[], pure=True, wait_complete=False, **backend_args): return self.refactor(messages, rest=rest, pure=pure, wait_complete=wait_complete, **backend_args) # -~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~- # Advanced features: # -~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~- def query_import(self, symname, filename): if self.whois(symname, filename): return (False, ['Symbol {0} already in scope'.format(symname)]) candidates = list(filter( lambda c: c.imported_from is not None, self.lookup(symname, filename), )) return (True, candidates) if candidates else (False, ['Symbol {0} not found'.format(symname)]) def contents_to_module(self, file, contents): self.set_file_contents(file, contents) m = self.module(file=file, header=True) proj = self.project(path=m.location.project) build_tool = proj['build-tool'] self.scan_file(file=file, build_tool=build_tool, wait_complete=True) return Utils.head_of(self.module(None, file=file)) def clean_imports(self, filename): cmd = ['hsclearimports', filename, '--max-import-list', '64'] hsclean_proc = ProcHelper.exec_with_wrapper(self.exec_with, self.install_dir, cmd) if hsclean_proc.process is not None: exit_code, result, err = hsclean_proc.wait() if exit_code == 0: return (True, result.splitlines()) return (False, err) return (False, ['\'hscleanimports\' utility not found.']) # -~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~- # Utility functions: # -~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~- def convert_warnings(self, messages): for msg in messages: if msg.get('level', '') == 'warning': msg['level'] = 'hint' return messages class HsDevStartupReader(threading.Thread): '''Separate thread object that reads the local `hsdev` server's `stdout` looking for the server's startup message. The server's port number is parsed from the startup message and saved in the object's `hsdev_port` attribute, just in case this differs from the default or requested port. ''' def __init__(self, fstdout): super().__init__(name='hsdev startup reader') self.stdout = fstdout self.hsdev_port = -1 self.end_event = threading.Event() def run(self): self.end_event.clear() while not self.end_event.is_set(): srvout = self.stdout.readline().strip() Logging.log('hsdev initial: {0}'.format(srvout), Logging.LOG_DEBUG) if srvout != '': start_confirm = re.search(r'[Ss]erver started at port (?P<port>\d+)$', srvout) if start_confirm: self.hsdev_port = int(start_confirm.group('port')) Logging.log('hsdev initial: \'hsdev\' server started at port {0}'.format(self.hsdev_port)) self.end_event.set() else: # Got EOF, stop loop. self.end_event.set() def wait_startup(self, tmo): self.end_event.wait(tmo) def successful(self): return self.end_event.is_set() def stop(self): self.end_event.clear() def port(self): return self.hsdev_port
mit
-7,706,911,259,607,050,000
49.438957
204
0.571716
false
RCOS-Grading-Server/HWserver
tests/e2e/base_testcase.py
2
10499
import shutil import tempfile from datetime import date import os import unittest import json from urllib.parse import urlencode from urllib.parse import urlparse from selenium import webdriver from websocket import create_connection from selenium.common.exceptions import WebDriverException from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver.common.by import By import sys # explicitly add this import path, so we can run it on a local host sys.path.append('../python_submitty_utils/') from submitty_utils import dateutils # noinspection PyPep8Naming class BaseTestCase(unittest.TestCase): """ Base class that all e2e tests should extend. It provides several useful helper functions, sets up the selenium webdriver, and provides a common interface for logging in/out a user. Each test then only really needs to override user_id, user_name, and user_password as necessary for a particular testcase and this class will handle the rest to setup the test. """ TEST_URL = "http://localhost:1501" USER_ID = "student" USER_NAME = "Joe" USER_PASSWORD = "student" WAIT_TIME = 20 def __init__(self, testname, user_id=None, user_password=None, user_name=None, log_in=True, use_websockets=False, socket_page=''): super().__init__(testname) if "TEST_URL" in os.environ and os.environ['TEST_URL'] is not None: self.test_url = os.environ['TEST_URL'] else: self.test_url = BaseTestCase.TEST_URL self.driver = None """ :type driver: webdriver.Chrome """ self.options = webdriver.ChromeOptions() self.options.add_argument('--no-sandbox') self.options.add_argument('--headless') self.options.add_argument("--disable-extensions") self.options.add_argument('--hide-scrollbars') self.options.add_argument('--disable-gpu') self.options.add_argument('--no-proxy-server') self.download_dir = tempfile.mkdtemp(prefix="vagrant-submitty") # https://stackoverflow.com/a/26916386/214063 profile = { 'download.prompt_for_download': False, 'download.default_directory': self.download_dir, 'download.directory_upgrade': True, 'plugins.plugins_disabled': ['Chrome PDF Viewer'] } self.options.add_experimental_option('prefs', profile) self.user_id = user_id if user_id is not None else BaseTestCase.USER_ID self.user_name = user_name if user_name is not None else BaseTestCase.USER_NAME if user_password is None and user_id is not None: user_password = user_id self.user_password = user_password if user_password is not None else BaseTestCase.USER_PASSWORD self.semester = dateutils.get_current_semester() self.full_semester = BaseTestCase.get_display_semester(self.semester) self.logged_in = False self.use_log_in = log_in self.use_websockets = use_websockets self.socket_page = socket_page def setUp(self): # attempt to set-up the connection to Chrome. Repeat a handful of times # in-case Chrome crashes during initialization for _ in range(5): try: self.driver = webdriver.Chrome(options=self.options) break except WebDriverException: pass if self.driver is None: self.driver = webdriver.Chrome(options=self.options) self.driver.set_window_size(1600, 900) self.enable_download_in_headless_chrome(self.download_dir) if self.use_log_in: self.log_in() if self.use_websockets: self.enable_websockets() def tearDown(self): self.driver.quit() shutil.rmtree(self.download_dir) if self.use_websockets: self.ws.close() def get(self, url=None, parts=None): if url is None: # Can specify parts = [('semester', 's18'), ...] self.assertIsNotNone(parts) url = "/index.php?" + urlencode(parts) if url[0] != "/": url = "/" + url self.driver.get(self.test_url + url) # Frog robot self.assertNotEqual(self.driver.title, "Submitty - Error", "Got Error Page") def log_in(self, url=None, title="Submitty", user_id=None, user_password=None, user_name=None): """ Provides a common function for logging into the site (and ensuring that we're logged in) :return: """ if url is None: url = "/index.php" if user_password is None: user_password = user_id if user_id is not None else self.user_password if user_id is None: user_id = self.user_id if user_name is None: user_name = self.user_name self.get(url) # print(self.driver.page_source) self.driver.find_element(By.NAME, 'user_id').send_keys(user_id) self.driver.find_element(By.NAME, 'password').send_keys(user_password) self.driver.find_element(By.NAME, 'login').click() # OLD self.assertEqual(user_name, self.driver.find_element(By.ID, "login-id").get_attribute('innerText').strip(' \t\r\n')) # FIXME: WANT SOMETHING LIKE THIS... WHEN WE HAVE JUST ONE ELEMENT WITH THIS ID # self.assertEqual("Logout "+user_name, self.driver.find_element(By.ID, "logout").get_attribute('innerText').strip(' \t\r\n')) # instead, just make sure this element exists self.driver.find_element(By.ID, "logout") self.logged_in = True def log_out(self): if self.logged_in: self.logged_in = False self.driver.find_element(By.ID, 'logout').click() self.driver.find_element(By.ID, 'login-guest') def click_class(self, course, course_name=None): if course_name is None: course_name = course course_name = course_name.title() self.driver.find_element(By.ID, dateutils.get_current_semester() + '_' + course).click() # print(self.driver.page_source) WebDriverWait(self.driver, BaseTestCase.WAIT_TIME).until(EC.title_is('Gradeables - ' + course_name)) # see Navigation.twig for html attributes to use as arguments # loaded_selector must recognize an element on the page being loaded (test_simple_grader.py has xpath example) def click_nav_grade_button(self, gradeable_category, gradeable_id, button_name, loaded_selector): self.driver.find_element(By.XPATH, "//div[@id='{}']/div[@class='course-button']/a[contains(@class, 'btn-nav-grade')]".format( gradeable_id)).click() WebDriverWait(self.driver, BaseTestCase.WAIT_TIME).until(EC.presence_of_element_located(loaded_selector)) def click_nav_submit_button(self, gradeable_category, gradeable_id, button_name, loaded_selector): self.driver.find_element(By.XPATH, "//div[@id='{}']/div[@class='course-button']/a[contains(@class, 'btn-nav-submit')]".format( gradeable_id)).click() WebDriverWait(self.driver, BaseTestCase.WAIT_TIME).until(EC.presence_of_element_located(loaded_selector)) # clicks the navigation header text to 'go back' pages # for homepage, selector can be gradeable list def click_header_link_text(self, text, loaded_selector): self.driver.find_element( By.XPATH, "//div[@id='breadcrumbs']/div[@class='breadcrumb']/a[text()='{}']".format(text) ).click() WebDriverWait(self.driver, BaseTestCase.WAIT_TIME).until(EC.presence_of_element_located(loaded_selector)) def wait_after_ajax(self): WebDriverWait(self.driver, 10).until(lambda driver: driver.execute_script("return jQuery.active == 0")) def wait_for_element(self, element_selector, visibility=True, timeout=WAIT_TIME): """ Waits for an element to be present in the DOM. By default, also waits for the element to be visible/interactable """ if visibility: WebDriverWait(self.driver, timeout).until(EC.visibility_of_element_located(element_selector)) else: WebDriverWait(self.driver, timeout).until(EC.presence_of_element_located(element_selector)) @staticmethod def wait_user_input(): """ Causes the running selenium test to pause until the user has hit the enter key in the terminal that is running python. This is useful for using in the middle of building tests as then you cna use the javascript console to inspect the page, get the name/id of elements or other such actions and then use that to continue building the test """ input("Hit enter to continue...") @staticmethod def get_display_semester(current_semester): s = 'Fall' if current_semester[0] == 'f' else 'Summer' if current_semester[0] == 'u' else 'Spring' s += ' 20' + current_semester[1:] return s # https://stackoverflow.com/a/47366981/214063 def enable_download_in_headless_chrome(self, download_dir): # add missing support for chrome "send_command" to selenium webdriver self.driver.command_executor._commands["send_command"] = ("POST", '/session/$sessionId/chromium/send_command') params = {'cmd': 'Page.setDownloadBehavior', 'params': {'behavior': 'allow', 'downloadPath': download_dir}} self.driver.execute("send_command", params) def enable_websockets(self): submitty_session_cookie = self.driver.get_cookie('submitty_session') address = self.test_url.replace('http', 'ws') + '/ws' parsed = urlparse(address) netloc = parsed.netloc if ':' in netloc: netloc = netloc.split(':', 1)[0] netloc += ':8443' address = parsed._replace(netloc=netloc).geturl() self.ws = create_connection(address, cookie = submitty_session_cookie['name'] +'='+ submitty_session_cookie['value'], header={"User-Agent": "python-socket-client"}) new_connection_msg = json.dumps({'type': 'new_connection', 'page': self.semester + '-sample-' + self.socket_page}) self.ws.send(new_connection_msg) def check_socket_message(self, message): ws_msg = json.loads(self.ws.recv()) self.assertIn('type', ws_msg.keys()) self.assertEqual(ws_msg['type'], message)
bsd-3-clause
-5,955,919,036,682,299,000
42.384298
172
0.645109
false
afsungur/MemWord
framefinish.py
1
2063
import wx from griddict import GridDictionary import Global class FrameFinish(wx.Frame): def __init__(self, parent, true_count, false_count, falses): FRAME_SIZE_WIDTH = 800 FRAME_SIZE_HEIGHT = 300 FRAME_POS_X = 200 FRAME_POS_Y = 200 wx.Frame.__init__(self, parent, -1, title=Global.FINISH_TITLE, size=(FRAME_SIZE_WIDTH, FRAME_SIZE_HEIGHT), pos=(FRAME_POS_X, FRAME_POS_Y), style=wx.DEFAULT_FRAME_STYLE) self.frame = parent # Text Items true_count_text = wx.StaticText(self, -1, Global.TRUE_COUNT_TEXT) false_count_text = wx.StaticText(self, -1, Global.FALSE_COUNT_TEXT) true_count_value = wx.StaticText(self, -1, str(true_count)) false_count_value = wx.StaticText(self, -1, str(false_count)) seperator = wx.StaticText(self, -1, "-----------------------------") font = wx.Font(16, wx.MODERN, wx.NORMAL, wx.BOLD) falses_big_text = wx.StaticText(self, -1, Global.WRONG_ANSWERS_TEXT+":") falses_big_text.SetFont(font) # Grid grid_falses = GridDictionary(self, falses) print "false count:", len(falses) # Sizer Set trueCountSizer = wx.GridBagSizer(2,2) trueCountSizer.Add(true_count_text,pos=(0,0)) trueCountSizer.Add(true_count_value,pos=(0,1)) trueCountSizer.Add(false_count_text,pos=(1,0)) trueCountSizer.Add(false_count_value,pos=(1,1)) mainSizer = wx.BoxSizer(wx.VERTICAL) mainSizer.Add(trueCountSizer, 0, wx.ALL, 5) mainSizer.Add(seperator,0, wx.ALL, 5) mainSizer.Add(falses_big_text,0, wx.ALL, 5) mainSizer.Add(grid_falses, 0, wx.ALL, 5) # Bind self.Bind(wx.EVT_CLOSE, self.close_event) # Frame Settings self.SetSizer(mainSizer) self.Fit() self.Show() def close_event(self, evt): print "closed..." self.frame.close()
gpl-3.0
-5,161,963,566,746,056,000
33.383333
80
0.56762
false
davidcdba/oBid
oBid/oBid/settings.py
1
6054
#encoding: utf-8 #Para que no de porculo los acentos y Ñ # Django settings for oBid project. ## EXPLICACION ## IMPORTAMOS LA LIBRERIA 'os' del sistema y establecemos como PATH del proyecto la carpeta en la que se encuentra import os PROJECT_PATH=os.path.dirname(os.path.realpath(__file__)) DEBUG = True TEMPLATE_DEBUG = DEBUG ADMINS = ( ('i12gamad', '[email protected]'), ) MANAGERS = ADMINS DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', # Add 'postgresql_psycopg2', 'mysql', 'sqlite3' or 'oracle'. 'NAME': 'oBid.db', # Or path to database file if using sqlite3. # The following settings are not used with sqlite3: 'USER': '', 'PASSWORD': '', 'HOST': '', # Empty for localhost through domain sockets or '127.0.0.1' for localhost through TCP. 'PORT': '', # Set to empty string for default. } } # Hosts/domain names that are valid for this site; required if DEBUG is False # See https://docs.djangoproject.com/en/1.5/ref/settings/#allowed-hosts ALLOWED_HOSTS = [] # Puedes ver cuales son las zonas aqui: # http://en.wikipedia.org/wiki/List_of_tz_zones_by_name ## EXPLICACION ## ESTABLECEMOS COMO ZONA HORARIA 'Europe/Madrid' para evitar cambios de tiempo TIME_ZONE = 'Europe/Madrid' ## EXPLICACION ## ESTABLECEMOS COMO IDIOMA QUE USAREMOS EL ESPANOL DE ESPANA LANGUAGE_CODE = 'es-es' SITE_ID = 1 # If you set this to False, Django will make some optimizations so as not # to load the internationalization machinery. USE_I18N = True # If you set this to False, Django will not format dates, numbers and # calendars according to the current locale. USE_L10N = True # If you set this to False, Django will not use timezone-aware datetimes. USE_TZ = True ## EXPLICACION ## ESTABLECE LA CARPETA 'media' de dentro del proyecto como carpeta donde se encuentra el contenido multimedia MEDIA_ROOT = os.path.join(PROJECT_PATH,'media') ## EXPLICACION ## ESTABLECE LA ruta 'localhost:8000/media/' como ruta de acceso a la carpeta de contenido multimedia MEDIA_URL = '/media/' # Absolute path to the directory static files should be collected to. # Don't put anything in this directory yourself; store your static files # in apps' "static/" subdirectories and in STATICFILES_DIRS. # Example: "/var/www/example.com/static/" STATIC_ROOT = '' # URL prefix for static files. # Example: "http://example.com/static/", "http://static.example.com/" STATIC_URL = '/static/' # Additional locations of static files STATICFILES_DIRS = ( # Put strings here, like "/home/html/static" or "C:/www/django/static". # Always use forward slashes, even on Windows. # Don't forget to use absolute paths, not relative paths. ## EXPLICACION ## ESTABLECE LA CARPETA 'static' de dentro del proyecto como carpeta donde se encuentra el contenido estatico os.path.join(PROJECT_PATH,'static'), ) # List of finder classes that know how to find static files in # various locations. STATICFILES_FINDERS = ( 'django.contrib.staticfiles.finders.FileSystemFinder', 'django.contrib.staticfiles.finders.AppDirectoriesFinder', ## AVISO ## Linea descomentada, activa la ruta a contenidos estaticos 'django.contrib.staticfiles.finders.DefaultStorageFinder', ) # Make this unique, and don't share it with anybody. SECRET_KEY = '##d-1%bpw32#q*_#q6e)07_n01$qy!s&9mx6_2yh4p6)gv^^p&' # List of callables that know how to import templates from various sources. TEMPLATE_LOADERS = ( 'django.template.loaders.filesystem.Loader', 'django.template.loaders.app_directories.Loader', # 'django.template.loaders.eggs.Loader', ) MIDDLEWARE_CLASSES = ( 'django.middleware.common.CommonMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', # Uncomment the next line for simple clickjacking protection: # 'django.middleware.clickjacking.XFrameOptionsMiddleware', ) ROOT_URLCONF = 'oBid.urls' # Python dotted path to the WSGI application used by Django's runserver. WSGI_APPLICATION = 'oBid.wsgi.application' TEMPLATE_DIRS = ( # Put strings here, like "/home/html/django_templates" or "C:/www/django/templates". # Always use forward slashes, even on Windows. # Don't forget to use absolute paths, not relative paths. ## EXPLICACION ## ESTABLECE LA CARPETA 'templates' de dentro del proyecto como carpeta donde se encuentra los templates os.path.join(PROJECT_PATH,'templates'), ) INSTALLED_APPS = ( 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.sites', 'django.contrib.messages', 'django.contrib.staticfiles', 'django.contrib.admin', ## AVISO ## Linea descomentada, activa el acceso al panel de administracion ## AVISO ## Linea descomentada, activa el acceso a la documentacion del panel de administracion 'django.contrib.admindocs', #añadimos la aplicación subasta 'subasta', 'usuarios', 'articulos', ) # A sample logging configuration. The only tangible logging # performed by this configuration is to send an email to # the site admins on every HTTP 500 error when DEBUG=False. # See http://docs.djangoproject.com/en/dev/topics/logging for # more details on how to customize your logging configuration. LOGGING = { 'version': 1, 'disable_existing_loggers': False, 'filters': { 'require_debug_false': { '()': 'django.utils.log.RequireDebugFalse' } }, 'handlers': { 'mail_admins': { 'level': 'ERROR', 'filters': ['require_debug_false'], 'class': 'django.utils.log.AdminEmailHandler' } }, 'loggers': { 'django.request': { 'handlers': ['mail_admins'], 'level': 'ERROR', 'propagate': True, }, } }
gpl-2.0
8,352,776,375,811,243,000
35.896341
129
0.691786
false
mblaauw/pre-publish-predictor
alchemyapi_python/tests.py
1
7384
#!/usr/bin/env python # Copyright 2013 AlchemyAPI # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. \ from __future__ import print_function from alchemyapi import AlchemyAPI test_text = 'Bob broke my heart, and then made up this silly sentence to test the PHP SDK' test_html = '<html><head><title>The best SDK Test | AlchemyAPI</title></head><body><h1>Hello World!</h1><p>My favorite language is PHP</p></body></html>' test_url = 'http://www.nytimes.com/2013/07/13/us/politics/a-day-of-friction-notable-even-for-a-fractious-congress.html?_r=0' alchemyapi = AlchemyAPI() #Entities print('Checking entities . . . ') response = alchemyapi.entities('text', test_text); assert(response['status'] == 'OK') response = alchemyapi.entities('html', test_html); assert(response['status'] == 'OK') response = alchemyapi.entities('url', test_url); assert(response['status'] == 'OK') response = alchemyapi.entities('random', test_url); assert(response['status'] == 'ERROR') #invalid flavor print('Entity tests complete!') print('') #Keywords print('Checking keywords . . . ') response = alchemyapi.keywords('text', test_text); assert(response['status'] == 'OK') response = alchemyapi.keywords('html', test_html); assert(response['status'] == 'OK') response = alchemyapi.keywords('url', test_url); assert(response['status'] == 'OK') response = alchemyapi.keywords('random', test_url); assert(response['status'] == 'ERROR') #invalid flavor print('Keyword tests complete!') print('') #Concepts print('Checking concepts . . . ') response = alchemyapi.concepts('text', test_text); assert(response['status'] == 'OK') response = alchemyapi.concepts('html', test_html); assert(response['status'] == 'OK') response = alchemyapi.concepts('url', test_url); assert(response['status'] == 'OK') response = alchemyapi.concepts('random', test_url); assert(response['status'] == 'ERROR') #invalid flavor print('Concept tests complete!') print('') #Sentiment print('Checking sentiment . . . ') response = alchemyapi.sentiment('text', test_text); assert(response['status'] == 'OK') response = alchemyapi.sentiment('html', test_html); assert(response['status'] == 'OK') response = alchemyapi.sentiment('url', test_url); assert(response['status'] == 'OK') response = alchemyapi.sentiment('random', test_url); assert(response['status'] == 'ERROR') #invalid flavor print('Sentiment tests complete!') print('') #Targeted Sentiment print('Checking targeted sentiment . . . ') response = alchemyapi.sentiment_targeted('text', test_text, 'heart'); assert(response['status'] == 'OK') response = alchemyapi.sentiment_targeted('html', test_html, 'language'); assert(response['status'] == 'OK') response = alchemyapi.sentiment_targeted('url', test_url, 'Congress'); assert(response['status'] == 'OK') response = alchemyapi.sentiment_targeted('random', test_url, 'Congress'); assert(response['status'] == 'ERROR') #invalid flavor response = alchemyapi.sentiment_targeted('text', test_text, None); assert(response['status'] == 'ERROR') #missing target print('Targeted sentiment tests complete!') print('') #Text print('Checking text . . . ') response = alchemyapi.text('text', test_text); assert(response['status'] == 'ERROR') #only works for html and url content response = alchemyapi.text('html', test_html); assert(response['status'] == 'OK') response = alchemyapi.text('url', test_url); assert(response['status'] == 'OK') print('Text tests complete!') print('') #Text Raw print('Checking raw text . . . ') response = alchemyapi.text_raw('text', test_text); assert(response['status'] == 'ERROR') #only works for html and url content response = alchemyapi.text_raw('html', test_html); assert(response['status'] == 'OK') response = alchemyapi.text_raw('url', test_url); assert(response['status'] == 'OK') print('Raw text tests complete!') print('') #Author print('Checking author . . . ') response = alchemyapi.author('text', test_text); assert(response['status'] == 'ERROR') #only works for html and url content response = alchemyapi.author('html', test_html); assert(response['status'] == 'ERROR') #there's no author in the test HTML response = alchemyapi.author('url', test_url); assert(response['status'] == 'OK') print('Author tests complete!') print('') #Language print('Checking language . . . ') response = alchemyapi.language('text', test_text); assert(response['status'] == 'OK') response = alchemyapi.language('html', test_html); assert(response['status'] == 'OK') response = alchemyapi.language('url', test_url); assert(response['status'] == 'OK') response = alchemyapi.language('random', test_url); assert(response['status'] == 'ERROR') #invalid flavor print('Language tests complete!') print('') #Title print('Checking title . . . ') response = alchemyapi.title('text', test_text); assert(response['status'] == 'ERROR') #only works for html and url content response = alchemyapi.title('html', test_html); assert(response['status'] == 'OK') response = alchemyapi.title('url', test_url); assert(response['status'] == 'OK') print('Title tests complete!') print('') #Relations print('Checking relations . . . ') response = alchemyapi.relations('text', test_text); assert(response['status'] == 'OK') response = alchemyapi.relations('html', test_html); assert(response['status'] == 'OK') response = alchemyapi.relations('url', test_url); assert(response['status'] == 'OK') response = alchemyapi.relations('random', test_url); assert(response['status'] == 'ERROR') #invalid flavor print('Relation tests complete!') print('') #Category print('Checking category . . . ') response = alchemyapi.category('text', test_text); assert(response['status'] == 'OK') response = alchemyapi.category('html', test_html, {'url':'test'}); assert(response['status'] == 'OK') response = alchemyapi.category('url', test_url); assert(response['status'] == 'OK') response = alchemyapi.category('random', test_url); assert(response['status'] == 'ERROR') #invalid flavor print('Category tests complete!') print('') #Feeds print('Checking feeds . . . ') response = alchemyapi.feeds('text', test_text); assert(response['status'] == 'ERROR') #only works for html and url content response = alchemyapi.feeds('html', test_html, {'url':'test'}); assert(response['status'] == 'OK') response = alchemyapi.feeds('url', test_url); assert(response['status'] == 'OK') print('Feed tests complete!') print('') #Microformats print('Checking microformats . . . ') response = alchemyapi.microformats('text', test_text); assert(response['status'] == 'ERROR') #only works for html and url content response = alchemyapi.microformats('html', test_html, {'url':'test'}); assert(response['status'] == 'OK') response = alchemyapi.microformats('url', test_url); assert(response['status'] == 'OK') print('Microformat tests complete!') print('') print('') print('**** All tests complete! ****')
mit
-8,312,624,307,603,858,000
30.555556
153
0.697589
false
yarikoptic/NiPy-OLD
examples/interfaces/process_fiac.py
1
6055
''' Single subject analysis script for SPM / FIAC ''' import sys from os.path import join as pjoin from glob import glob import numpy as np from nipy.interfaces.spm import spm_info, make_job, scans_for_fnames, \ run_jobdef, fnames_presuffix, fname_presuffix, fltcols def get_data(data_path, subj_id): data_def = {} subject_path = pjoin(data_path, 'fiac%s' % subj_id) data_def['functionals'] = sorted( glob(pjoin(subject_path, 'functional_*.nii'))) anatomicals = glob(pjoin(subject_path, 'anatomical.nii')) if len(anatomicals) == 1: data_def['anatomical'] = anatomicals[0] elif len(anatomicals) == 0: data_def['anatomical'] = None else: raise ValueError('Too many anatomicals') return data_def def slicetime(data_def): sess_scans = scans_for_fnames(data_def['functionals']) stinfo = make_job('temporal', 'st', { 'scans': sess_scans, 'so':range(1,31,2) + range(2,31,2), 'tr':2.5, 'ta':2.407, 'nslices':float(30), 'refslice':1 }) run_jobdef(stinfo) def realign(data_def): sess_scans = scans_for_fnames(fnames_presuffix(data_def['functionals'], 'a')) rinfo = make_job('spatial', 'realign', [{ 'estimate':{ 'data':sess_scans, 'eoptions':{ 'quality':0.9, 'sep':4.0, 'fwhm':5.0, 'rtm':True, 'interp':2.0, 'wrap':[0.0,0.0,0.0], 'weight':[] } } }]) run_jobdef(rinfo) def reslice(data_def): sess_scans = scans_for_fnames(fnames_presuffix(data_def['functionals'], 'a')) rsinfo = make_job('spatial', 'realign', [{ 'write':{ 'data': np.vstack(sess_scans.flat), 'roptions':{ 'which':[2, 1], 'interp':4.0, 'wrap':[0.0,0.0,0.0], 'mask':True, } } }]) run_jobdef(rsinfo) def coregister(data_def): func1 = data_def['functionals'][0] mean_fname = fname_presuffix(func1, 'meana') crinfo = make_job('spatial', 'coreg', [{ 'estimate':{ 'ref': [mean_fname], 'source': [data_def['anatomical']], 'other': [[]], 'eoptions':{ 'cost_fun':'nmi', 'sep':[4.0, 2.0], 'tol':np.array( [0.02,0.02,0.02, 0.001,0.001,0.001, 0.01,0.01,0.01, 0.001,0.001,0.001]).reshape(1,12), 'fwhm':[7.0, 7.0] } } }]) run_jobdef(crinfo) def segnorm(data_def): def_tpms = np.zeros((3,1), dtype=np.object) spm_path = spm_info.spm_path def_tpms[0] = pjoin(spm_path, 'tpm', 'grey.nii'), def_tpms[1] = pjoin(spm_path, 'tpm', 'white.nii'), def_tpms[2] = pjoin(spm_path, 'tpm', 'csf.nii') data = np.zeros((1,), dtype=object) data[0] = data_def['anatomical'] sninfo = make_job('spatial', 'preproc', { 'data': data, 'output':{ 'GM':fltcols([0,0,1]), 'WM':fltcols([0,0,1]), 'CSF':fltcols([0,0,0]), 'biascor':1.0, 'cleanup':False, }, 'opts':{ 'tpm':def_tpms, 'ngaus':fltcols([2,2,2,4]), 'regtype':'mni', 'warpreg':1.0, 'warpco':25.0, 'biasreg':0.0001, 'biasfwhm':60.0, 'samp':3.0, 'msk':np.array([], dtype=object), } }) run_jobdef(sninfo) def norm_write(data_def): sess_scans = scans_for_fnames(fnames_presuffix(data_def['functionals'], 'a')) matname = fname_presuffix(data_def['anatomical'], suffix='_seg_sn.mat', use_ext=False) subj = { 'matname': np.zeros((1,), dtype=object), 'resample': np.vstack(sess_scans.flat), } subj['matname'][0] = matname roptions = { 'preserve':False, 'bb':np.array([[-78,-112, -50],[78,76,85.0]]), 'vox':fltcols([2.0,2.0,2.0]), 'interp':1.0, 'wrap':[0.0,0.0,0.0], } nwinfo = make_job('spatial', 'normalise', [{ 'write':{ 'subj': subj, 'roptions': roptions, } }]) run_jobdef(nwinfo) # knock out the list of images, replacing with only one subj['resample'] = np.zeros((1,), dtype=object) subj['resample'][0] = data_def['anatomical'] roptions['interp'] = 4.0 run_jobdef(nwinfo) def smooth(data_def, fwhm=8.0): try: len(fwhm) except TypeError: fwhm = [fwhm] * 3 fwhm = np.asarray(fwhm, dtype=np.float).reshape(1,3) sess_scans = scans_for_fnames(fnames_presuffix(data_def['functionals'], 'wa')) sinfo = make_job('spatial', 'smooth', {'data':np.vstack(sess_scans.flat), 'fwhm':fwhm, 'dtype':0}) run_jobdef(sinfo) def process_subject(ddef): if not ddef['anatomical']: return slicetime(ddef) realign(ddef) reslice(ddef) coregister(ddef) segnorm(ddef) norm_write(ddef) smooth(ddef) def process_subjects(data_path, subj_ids): for subj_id in subj_ids: ddef = get_data(data_path, subj_id) process_subject(ddef) if __name__ == '__main__': try: data_path = sys.argv[1] except IndexError: raise OSError('Need FIAC data path as input') try: subj_ids = sys.argv[2:] except IndexError: subj_ids = range(16) process_subjects(data_path, subj_ids)
bsd-3-clause
-6,172,351,069,423,954,000
29.124378
82
0.471181
false
xesscorp/skidl
skidl/bus.py
1
16133
# -*- coding: utf-8 -*- # MIT license # # Copyright (C) 2018 by XESS Corp. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. """ Handles buses. """ from __future__ import absolute_import, division, print_function, unicode_literals from builtins import range, str, super from future import standard_library from .alias import Alias from .common import * from .defines import * from .logger import logger from .net import Net from .netpinlist import NetPinList from .pin import Pin from .skidlbaseobj import SkidlBaseObject from .utilities import * standard_library.install_aliases() class Bus(SkidlBaseObject): """ This class collects one or more nets into a group that can be indexed. Args: name: A string with the name of the bus. args: A list of ints, pins, nets, buses to attach to the net. Keyword Args: attribs: A dictionary of attributes and values to attach to the Net object. Example: :: n = Net() led1 = Part("Device", 'LED') b = Bus('B', 8, n, led1['K']) """ @classmethod def get(cls, name, circuit=None): """Get the bus with the given name from a circuit, or return None.""" if not circuit: circuit = builtins.default_circuit search_params = ( ("name", name, True), ("aliases", name, True), # ('name', ''.join(('.*',name,'.*')), False), # ('aliases', Alias(''.join(('.*',name,'.*'))), False) ) for attr, name, do_str_match in search_params: buses = filter_list( circuit.buses, do_str_match=do_str_match, **{attr: name} ) if buses: return list_or_scalar(buses) return None @classmethod def fetch(cls, name, *args, **attribs): """Get the bus with the given name from a circuit, or create it if not found.""" circuit = attribs.get("circuit", builtins.default_circuit) return cls.get(name, circuit=circuit) or cls(name, *args, **attribs) def __init__(self, *args, **attribs): super().__init__() # Define the member storing the nets so it's present, but it starts empty. self.nets = [] # For Bus objects, the circuit object the bus is a member of is passed # in with all the other attributes. If a circuit object isn't provided, # then the default circuit object is added to the attributes. attribs["circuit"] = attribs.get("circuit", default_circuit) # Scan through the kwargs and args to see if there is a name for this bus. name = attribs.pop("name", None) if not name: try: # The first string found will be the bus name. name = [a for a in args if isinstance(a, (basestring, type(None)))][0] # Remove the name from the list of things to be added to the bus. args = list(args) args.remove(name) # args = [a for a in args if a != name] except IndexError: # No explicit bus name found, so generate an implicit one. name = None # Attach additional attributes to the bus. (The Circuit object also gets # set here.) for k, v in list(attribs.items()): setattr(self, k, v) # The bus name is set after the circuit is assigned so the name can be # checked against the other bus names already in that circuit. self.name = name # Add the bus to the circuit. self.circuit = None # Make sure bus isn't seen as part of circuit. attribs["circuit"] += self # Add bus to circuit (also sets self.circuit). # Build the bus from net widths, existing nets, nets of pins, other buses. self.extend(args) def extend(self, *objects): """Extend bus by appending objects to the end (MSB).""" self.insert(len(self.nets), objects) def insert(self, index, *objects): """Insert objects into bus starting at indexed position.""" for obj in flatten(objects): if isinstance(obj, int): # Add a number of new nets to the bus. for _ in range(obj): self.nets.insert(index, Net()) index += obj elif isinstance(obj, Net): # Add an existing net to the bus. self.nets.insert(index, obj) index += 1 elif isinstance(obj, Pin): # Add a pin to the bus. try: # Add the pin's net to the bus. self.nets.insert(index, obj.get_nets()[0]) except IndexError: # OK, the pin wasn't already connected to a net, # so create a new net, add it to the bus, and # connect the pin to it. n = Net() n += obj self.nets.insert(index, n) index += 1 elif isinstance(obj, Bus): # Add an existing bus to this bus. for n in reversed(obj.nets): self.nets.insert(index, n) index += len(obj) else: log_and_raise( logger, ValueError, "Adding illegal type of object ({}) to Bus {}.".format( type(obj), self.name ), ) # Assign names to all the unnamed nets in the bus. # Separate index from bus name if name ends with number. sep = '_' if self.name[-1].isdigit() else '' for i, net in enumerate(self.nets): if net.is_implicit(): # Net names are the bus name with the index appended. net.name = self.name + sep + str(i) def get_nets(self): """Return the list of nets contained in this bus.""" return to_list(self.nets) def get_pins(self): """It's an error to get the list of pins attached to all bus lines.""" log_and_raise(logger, TypeError, "Can't get the list of pins on a bus!") def copy(self, num_copies=None, **attribs): """ Make zero or more copies of this bus. Args: num_copies: Number of copies to make of this bus. Keyword Args: attribs: Name/value pairs for setting attributes for the copy. Returns: A list of Bus copies or a Bus if num_copies==1. Raises: Exception if the requested number of copies is a non-integer or negative. Notes: An instance of a bus can be copied just by calling it like so:: b = Bus('A', 8) # Create a bus. b_copy = b(2) # Get two copies of the bus. You can also use the multiplication operator to make copies:: b = 10 * Bus('A', 8) # Create an array of buses. """ # If the number of copies is None, then a single copy will be made # and returned as a scalar (not a list). Otherwise, the number of # copies will be set by the num_copies parameter or the number of # values supplied for each part attribute. num_copies_attribs = find_num_copies(**attribs) return_list = (num_copies is not None) or (num_copies_attribs > 1) if num_copies is None: num_copies = max(1, num_copies_attribs) # Check that a valid number of copies is requested. if not isinstance(num_copies, int): log_and_raise( logger, ValueError, "Can't make a non-integer number ({}) of copies of a bus!".format( num_copies ), ) if num_copies < 0: log_and_raise( logger, ValueError, "Can't make a negative number ({}) of copies of a bus!".format( num_copies ), ) copies = [] for i in range(num_copies): cpy = Bus(self.name, self) # Attach additional attributes to the bus. for k, v in list(attribs.items()): if isinstance(v, (list, tuple)): try: v = v[i] except IndexError: log_and_raise( logger, ValueError, "{} copies of bus {} were requested, but too few elements in attribute {}!".format( num_copies, self.name, k ), ) setattr(cpy, k, v) copies.append(cpy) # Return a list of the copies made or just a single copy. if return_list: return copies return copies[0] # Make copies with the multiplication operator or by calling the object. __call__ = copy def __mul__(self, num_copies): if num_copies is None: num_copies = 0 return self.copy(num_copies=num_copies) __rmul__ = __mul__ def __getitem__(self, *ids): """ Return a bus made up of the nets at the given indices. Args: ids: A list of indices of bus lines. These can be individual numbers, net names, nested lists, or slices. Returns: A bus if the indices are valid, otherwise None. """ # Use the indices to get the nets from the bus. nets = [] for ident in expand_indices(0, len(self) - 1, False, *ids): if isinstance(ident, int): nets.append(self.nets[ident]) elif isinstance(ident, basestring): nets.extend(filter_list(self.nets, name=ident)) else: log_and_raise( logger, TypeError, "Can't index bus with a {}.".format(type(ident)) ) if len(nets) == 0: # No nets were selected from the bus, so return None. return None if len(nets) == 1: # Just one net selected, so return the Net object. return nets[0] # Multiple nets selected, so return them as a NetPinList list. return NetPinList(nets) def __setitem__(self, ids, *pins_nets_buses): """ You can't assign to bus lines. You must use the += operator. This method is a work-around that allows the use of the += for making connections to bus lines while prohibiting direct assignment. Python processes something like my_bus[7:0] += 8 * Pin() as follows:: 1. Bus.__getitem__ is called with '7:0' as the index. This returns a NetPinList of eight nets from my_bus. 2. The NetPinList.__iadd__ method is passed the NetPinList and the thing to connect to the it (eight pins in this case). This method makes the actual connection to the part pin or pins. Then it creates an iadd_flag attribute in the object it returns. 3. Finally, Bus.__setitem__ is called. If the iadd_flag attribute is true in the passed argument, then __setitem__ was entered as part of processing the += operator. If there is no iadd_flag attribute, then __setitem__ was entered as a result of using a direct assignment, which is not allowed. """ # If the iadd_flag is set, then it's OK that we got # here and don't issue an error. Also, delete the flag. if getattr(pins_nets_buses[0], "iadd_flag", False): del pins_nets_buses[0].iadd_flag return # No iadd_flag or it wasn't set. This means a direct assignment # was made to the pin, which is not allowed. log_and_raise(logger, TypeError, "Can't assign to a bus! Use the += operator.") def __iter__(self): """ Return an iterator for stepping thru individual lines of the bus. """ return (self[l] for l in range(len(self))) # Return generator expr. def is_movable(self): """ Return true if the bus is movable to another circuit. A bus is movable if all the nets in it are movable. """ for n in self.nets: if not n.is_movable(): # One net not movable means the entire Bus is not movable. return False return True # All the nets were movable. def is_implicit(self): """Return true if the bus name is implicit.""" from .defines import NET_PREFIX, BUS_PREFIX prefix_re = "({}|{})+".format(re.escape(NET_PREFIX), re.escape(BUS_PREFIX)) return re.match(prefix_re, self.name) def connect(self, *pins_nets_buses): """ Return the bus after connecting one or more nets, pins, or buses. Args: pins_nets_buses: One or more Pin, Net or Bus objects or lists/tuples of them. Returns: The updated bus with the new connections. Notes: You can connect nets or pins to a bus like so:: p = Pin() # Create a pin. n = Net() # Create a net. b = Bus('B', 2) # Create a two-wire bus. b += p,n # Connect pin and net to B[0] and B[1]. """ nets = NetPinList(self.nets) nets += pins_nets_buses return self __iadd__ = connect @property def name(self): """ Get, set and delete the name of the bus. When setting the bus name, if another bus with the same name is found, the name for this bus is adjusted to make it unique. """ return self._name @name.setter def name(self, name): # Remove the existing name so it doesn't cause a collision if the # object is renamed with its existing name. self._name = None # Now name the object with the given name or some variation # of it that doesn't collide with anything else in the list. self._name = get_unique_name(self.circuit.buses, "name", BUS_PREFIX, name) @name.deleter def name(self): """Delete the bus name.""" del self._name def __str__(self): """Return a list of the nets in this bus as a string.""" return self.name + ":\n\t" + "\n\t".join([n.__str__() for n in self.nets]) __repr__ = __str__ def __len__(self): """Return the number of nets in this bus.""" return len(self.nets) @property def width(self): """Return width of a Bus, which is the same as using the len() operator.""" return len(self) def __bool__(self): """Any valid Bus is True""" return True __nonzero__ = __bool__ # Python 2 compatibility.
mit
-8,701,624,065,980,637,000
34.613687
111
0.556065
false
ereOn/pyslot
doc/source/conf.py
1
9568
# -*- coding: utf-8 -*- # # PySlot documentation build configuration file, created by # sphinx-quickstart on Fri Feb 5 22:24:39 2016. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys import os import sphinx_rtd_theme # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. #sys.path.insert(0, os.path.abspath('.')) # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.doctest', 'sphinx.ext.intersphinx', 'sphinx.ext.viewcode', ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'PySlot' copyright = u'2016, Julien Kauffmann' author = u'Julien Kauffmann' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = open(os.path.join( os.path.dirname(__file__), '..', '..', 'VERSION', )).read().rstrip() # The full version, including alpha/beta/rc tags. release = version # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = [] # The reST default role (used for this markup: `text`) to use for all # documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built documents. #keep_warnings = False # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = False # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'sphinx_rtd_theme' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. html_theme_path = [sphinx_rtd_theme.get_html_theme_path()] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Add any extra paths that contain custom files (such as robots.txt or # .htaccess) here, relative to this directory. These files are copied # directly to the root of the documentation. #html_extra_path = [] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Language to be used for generating the HTML full-text search index. # Sphinx supports the following languages: # 'da', 'de', 'en', 'es', 'fi', 'fr', 'hu', 'it', 'ja' # 'nl', 'no', 'pt', 'ro', 'ru', 'sv', 'tr' #html_search_language = 'en' # A dictionary with options for the search language support, empty by default. # Now only 'ja' uses this config value #html_search_options = {'type': 'default'} # The name of a javascript file (relative to the configuration directory) that # implements a search results scorer. If empty, the default will be used. #html_search_scorer = 'scorer.js' # Output file base name for HTML help builder. htmlhelp_basename = 'PySlotdoc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', # Latex figure (float) alignment #'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'PySlot.tex', u'PySlot Documentation', u'Julien Kauffmann', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'pyslot', u'PySlot Documentation', [author], 1) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'PySlot', u'PySlot Documentation', author, 'PySlot', 'One line description of project.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote' # If true, do not generate a @detailmenu in the "Top" node's menu. #texinfo_no_detailmenu = False # Example configuration for intersphinx: refer to the Python standard library. intersphinx_mapping = {'https://docs.python.org/': None}
gpl-3.0
8,700,318,934,928,059,000
31.107383
79
0.704849
false
MicheleTobias/CurvilinearAnisotropy
Code/WillametteFiles_Centerline.py
1
1734
# import the modules I'm gonna need import glob, string, csv, os # input the files to use inputdirectory = 'C:\Users\Michele\Documents\Research\CurvilinearAnisotropy\WillametteRiver\willamette_elevations\willamette\centerline_elevation\\' outputfile1 = 'C:\Users\Michele\Documents\Research\CurvilinearAnisotropy\WillametteRiver\willamette_elevations\willamette\PythonOutput\\WillamettePoints_Centerline.txt' #outputfile2 = 'C:\Documents and Settings\Michele Tobias\My Documents\Davis\Research\GIS Data\DataOutput\\SBV_average.txt' filemake = open(outputfile1,'w') filemake.close() #filemake = open(outputfile2,'w') #filemake.close() data = [] fulldata = [] #add *.txt to the end of the inputdirectory inputdirectory += '*.txt' #---------Copying the $GPGGA Lines to their own File-------------- # find the text files you need to work with textfiles = glob.glob(inputdirectory) #print textfiles #for writing the column names at the top of the output file columnnames = ['Easting\tNorthing\tBed_Elevation'] #finding the lines I need and writing them to the output file under the column names writer = csv.writer(open(outputfile1, 'w+')) writer.writerow(columnnames) #print textfiles for i in textfiles: #shortdoc = os.path.basename(i) #point = shortdoc.rstrip(".txt") #point = shortdoc[shortdoc.find(' ')+1: shortdoc.find('.')] reader = csv.reader(open(i, "r")) data = [row for row in reader] rownum=0 for j in data: if rownum >1: writer.writerow(j) #fulldata.append(j) rownum += 1 #j.append(point) #if j[0] != '#': # writer.writerow(j) # fulldata.append(j) # #print j #rownum += 1 print 'Finished!'
gpl-2.0
6,246,451,483,380,688,000
30.527273
168
0.686275
false
garbas/mozilla-releng-services
lib/cli_common/cli_common/log.py
1
5277
# This Source Code Form is subject to the terms of the Mozilla Public # License, v. 2.0. If a copy of the MPL was not distributed with this # file, You can obtain one at http://mozilla.org/MPL/2.0/. from __future__ import absolute_import import os import structlog import logbook import structlog.exceptions CHANNELS = [ 'master', 'staging', 'production', ] class UnstructuredRenderer(structlog.processors.KeyValueRenderer): def __call__(self, logger, method_name, event_dict): event = None if 'event' in event_dict: event = event_dict.pop('event') if event_dict or event is None: # if there are other keys, use the parent class to render them # and append to the event rendered = super(UnstructuredRenderer, self).__call__( logger, method_name, event_dict) return '%s (%s)' % (event, rendered) else: return event def setup_mozdef(project_name, channel, MOZDEF): ''' Setup mozdef using taskcluster secrets ''' import mozdef_client sevirity_map = { 'critical': mozdef_client.MozDefEvent.SEVERITY_CRITICAL, 'error': mozdef_client.MozDefEvent.SEVERITY_ERROR, 'warning': mozdef_client.MozDefEvent.SEVERITY_WARNING, 'info': mozdef_client.MozDefEvent.SEVERITY_INFO, 'debug': mozdef_client.MozDefEvent.SEVERITY_DEBUG, } def send(logger, method_name, event_dict): # only send to mozdef if `mozdef` is set if event_dict.pop('mozdef', False): msg = mozdef_client.MozDefEvent(MOZDEF) msg.summary = event_dict.get('event', '') msg.tags = [ 'mozilla-releng/services/' + channel, project_name, ] if set(event_dict) - {'event'}: msg.details = event_dict.copy() msg.details.pop('event', None) msg.source = logger.name msg.set_severity( sevirity_map.get( method_name, mozdef_client.MozDefEvent.SEVERITY_INFO, ), ) msg.send() return event_dict return send def setup_papertrail(project_name, channel, PAPERTRAIL_HOST, PAPERTRAIL_PORT): ''' Setup papertrail account using taskcluster secrets ''' # Setup papertrail papertrail = logbook.SyslogHandler( application_name='mozilla-releng/services/{}/{}'.format(channel, project_name), address=(PAPERTRAIL_HOST, int(PAPERTRAIL_PORT)), format_string='{record.time} {record.channel}: {record.message}', bubble=True, ) papertrail.push_application() def setup_sentry(project_name, channel, SENTRY_DSN): ''' Setup sentry account using taskcluster secrets ''' from raven import Client from raven.handlers.logbook import SentryHandler sentry_client = Client( dsn=SENTRY_DSN, site=project_name, name='mozilla-releng/services', environment=channel, # TODO: # release=read(VERSION) we need to promote that as well via secrets # tags=... # repos=... ) sentry = SentryHandler(sentry_client, level=logbook.WARNING, bubble=True) sentry.push_application() def init_logger(project_name, channel=None, level=logbook.INFO, handler=None, PAPERTRAIL_HOST=None, PAPERTRAIL_PORT=None, SENTRY_DSN=None, MOZDEF=None ): if not channel: channel = os.environ.get('APP_CHANNEL') if channel and channel not in CHANNELS: raise Exception('Initilizing logging with channel `{}`. It should be one of: {}'.format(channel, ', '.join(CHANNELS))) # By default utput logs on stderr if handler is None: fmt = '{record.channel}: {record.message}' handler = logbook.StderrHandler(level=level, format_string=fmt) handler.push_application() # Log to papertrail if channel and PAPERTRAIL_HOST and PAPERTRAIL_PORT: setup_papertrail(project_name, channel, PAPERTRAIL_HOST, PAPERTRAIL_PORT) # Log to sentry if channel and SENTRY_DSN: setup_sentry(project_name, channel, SENTRY_DSN) def logbook_factory(*args, **kwargs): # Logger given to structlog logbook.compat.redirect_logging() return logbook.Logger(level=level, *args, **kwargs) # Setup structlog over logbook processors = [ structlog.stdlib.PositionalArgumentsFormatter(), structlog.processors.StackInfoRenderer(), structlog.processors.format_exc_info, ] # send to mozdef before formatting into a string if channel and MOZDEF: processors.append(setup_mozdef(project_name, channel, MOZDEF)) processors.append(UnstructuredRenderer()) structlog.configure( context_class=structlog.threadlocal.wrap_dict(dict), processors=processors, logger_factory=logbook_factory, wrapper_class=structlog.stdlib.BoundLogger, cache_logger_on_first_use=True, ) def get_logger(*args, **kwargs): return structlog.get_logger(*args, **kwargs)
mpl-2.0
-6,548,193,065,109,681,000
28.480447
126
0.617396
false
zfrenchee/pandas
pandas/core/api.py
1
3146
# pylint: disable=W0614,W0401,W0611 # flake8: noqa import numpy as np from pandas.core.algorithms import factorize, unique, value_counts from pandas.core.dtypes.missing import isna, isnull, notna, notnull from pandas.core.categorical import Categorical from pandas.core.groupby import Grouper from pandas.io.formats.format import set_eng_float_format from pandas.core.index import (Index, CategoricalIndex, Int64Index, UInt64Index, RangeIndex, Float64Index, MultiIndex, IntervalIndex, TimedeltaIndex, DatetimeIndex, PeriodIndex, NaT) from pandas.core.indexes.period import Period, period_range, pnow from pandas.core.indexes.timedeltas import Timedelta, timedelta_range from pandas.core.indexes.datetimes import Timestamp, date_range, bdate_range from pandas.core.indexes.interval import Interval, interval_range from pandas.core.series import Series from pandas.core.frame import DataFrame from pandas.core.panel import Panel, WidePanel from pandas.core.panel4d import Panel4D # TODO: Remove import when statsmodels updates #18264 from pandas.core.reshape.reshape import get_dummies from pandas.core.indexing import IndexSlice from pandas.core.tools.numeric import to_numeric from pandas.tseries.offsets import DateOffset from pandas.core.tools.datetimes import to_datetime from pandas.core.tools.timedeltas import to_timedelta # see gh-14094. from pandas.util._depr_module import _DeprecatedModule _removals = ['day', 'bday', 'businessDay', 'cday', 'customBusinessDay', 'customBusinessMonthEnd', 'customBusinessMonthBegin', 'monthEnd', 'yearEnd', 'yearBegin', 'bmonthEnd', 'bmonthBegin', 'cbmonthEnd', 'cbmonthBegin', 'bquarterEnd', 'quarterEnd', 'byearEnd', 'week'] datetools = _DeprecatedModule(deprmod='pandas.core.datetools', removals=_removals) from pandas.core.config import (get_option, set_option, reset_option, describe_option, option_context, options) # deprecation, xref #13790 def match(*args, **kwargs): import warnings warnings.warn("pd.match() is deprecated and will be removed " "in a future version", FutureWarning, stacklevel=2) from pandas.core.algorithms import match return match(*args, **kwargs) def groupby(*args, **kwargs): import warnings warnings.warn("pd.groupby() is deprecated and will be removed; " "Please use the Series.groupby() or " "DataFrame.groupby() methods", FutureWarning, stacklevel=2) return args[0].groupby(*args[1:], **kwargs) # Deprecation: xref gh-16747 class TimeGrouper(object): def __new__(cls, *args, **kwargs): from pandas.core.resample import TimeGrouper import warnings warnings.warn("pd.TimeGrouper is deprecated and will be removed; " "Please use pd.Grouper(freq=...)", FutureWarning, stacklevel=2) return TimeGrouper(*args, **kwargs)
bsd-3-clause
2,358,515,945,609,053,000
37.839506
76
0.679275
false
siddhantgoel/tornado-sqlalchemy
tests/test_session_mixin.py
1
1642
from unittest.mock import Mock from tornado_sqlalchemy import MissingDatabaseSettingError, SessionMixin from ._common import BaseTestCase, User, db class SessionMixinTestCase(BaseTestCase): def test_mixin_ok(self): class GoodHandler(SessionMixin): def __init__(h_self): h_self.application = Mock() h_self.application.settings = {'db': db} def run(h_self): with h_self.make_session() as session: return session.query(User).count() self.assertEqual(GoodHandler().run(), 0) def test_mixin_no_db(self): class BadHandler(SessionMixin): def __init__(h_self): h_self.application = Mock() h_self.application.settings = {} def run(h_self): with h_self.make_session() as session: return session.query(User).count() self.assertRaises(MissingDatabaseSettingError, BadHandler().run) def test_distinct_sessions(self): sessions = set() class Handler(SessionMixin): def __init__(h_self): db.configure(url=self.db_url) h_self.application = Mock() h_self.application.settings = {'db': db} def run(h_self): session = h_self.session sessions.add(id(session)) value = session.query(User).count() session.commit() session.close() return value Handler().run() Handler().run() self.assertEqual(len(sessions), 2)
mit
-7,001,430,187,323,076,000
27.807018
72
0.545676
false
detrout/pykolab
pykolab/cli/telemetry/cmd_examine_session.py
1
4119
# -*- coding: utf-8 -*- # Copyright 2010-2012 Kolab Systems AG (http://www.kolabsys.com) # # Jeroen van Meeuwen (Kolab Systems) <vanmeeuwen a kolabsys.com> # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; version 3 or, at your option, any later version # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Library General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. # import pykolab from pykolab.translate import _ log = pykolab.getLogger('pykolab.cli') conf = pykolab.getConf() from pykolab import telemetry from pykolab.cli import commands def __init__(): commands.register('examine_session', execute, group='telemetry', description="Examine a Telemetry session.") def execute(*args, **kw): db = telemetry.init_db() wanted = False if session_id == None: try: wanted = conf.cli_args.pop(0) except: log.error(_("Unspecified session identifier")) sys.exit(1) if not wanted: wanted = session_id session_wanted = None try: _wanted = (int)(wanted) session_wanted = _wanted except: user_wanted = wanted if not session_wanted == None: session = db.query( telemetry.TelemetrySession ).filter_by( id=session_wanted ).first() if session == None: log.error(_("Invalid session identifier")) sys.exit(1) user = db.query( telemetry.TelemetryUser ).filter_by( id=session.user_id ).first() server = db.query( telemetry.TelemetryServer ).filter_by( id=session.server_id ).first() else: user = db.query( telemetry.TelemetryUser ).filter_by( sasl_username=user_wanted ).first() sessions = db.query( telemetry.TelemetrySession ).filter_by( user_id=user.id ).order_by( telemetry.telemetry_session_table.c.start ) for session in sessions: self.action_telemetry_examine_session(session_id=session.id) return print _("Session by %s on server %s") % (user.sasl_username,server.fqdn) command_issues = db.query( telemetry.TelemetryCommandIssue ).filter_by( session_id=session.id ) for command_issue in command_issues: command = db.query( telemetry.TelemetryCommand ).filter_by( id=command_issue.command_id ).first() command_arg = db.query( telemetry.TelemetryCommandArg ).filter_by( id=command_issue.command_arg_id ).first() print "Client(%d): %s %s %s" % ( command_issue.id, command_issue.command_tag, command.command, command_arg.command_arg ) server_responses = db.query( telemetry.TelemetryServerResponse ).filter_by( command_issue_id=command_issue.id ) for server_response in server_responses: server_response_lines = server_response.response.split('\n'); for server_response_line in server_response_lines: print "Server(%d): %s" % ( server_response.id, server_response_line )
gpl-3.0
592,902,317,208,415,900
28.212766
112
0.554989
false
gltn/stdm
stdm/ui/view_str.py
1
44716
""" /*************************************************************************** Name : View STR Relationships Description : Main Window for searching and browsing the social tenure relationship of the participating entities. Date : 24/May/2014 copyright : (C) 2014 by UN-Habitat and implementing partners. See the accompanying file CONTRIBUTORS.txt in the root email : [email protected] ***************************************************************************/ /*************************************************************************** * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * ***************************************************************************/ """ import logging from collections import OrderedDict from datetime import date from qgis.PyQt import uic from qgis.PyQt.QtCore import ( QTimer, Qt, QSize, QObject, pyqtSignal, QThread, QRegExp, QSortFilterProxyModel, pyqtSlot ) from qgis.PyQt.QtWidgets import ( QMainWindow, QDesktopWidget, QToolBar, QAction, QApplication, QProgressDialog, QProgressBar, QMessageBox, QVBoxLayout, QWidget, QScrollArea, QFrame, QCheckBox, QTabBar, QCompleter ) from qgis.core import QgsProject from qgis.utils import ( iface ) from sqlalchemy import exc from sqlalchemy import ( func, String ) from stdm.data import globals from stdm.data.configuration import entity_model from stdm.data.database import Content from stdm.data.pg_utils import pg_table_count from stdm.data.qtmodels import ( BaseSTDMTableModel ) from stdm.exceptions import DummyException from stdm.security.authorization import Authorizer from stdm.settings import current_profile from stdm.ui.feature_details import DetailsTreeView from stdm.ui.forms.widgets import ColumnWidgetRegistry from stdm.ui.gui_utils import GuiUtils from stdm.ui.notification import ( NotificationBar ) from stdm.ui.social_tenure.str_editor import STREditor from stdm.ui.sourcedocument import ( SourceDocumentManager, DocumentWidget ) from stdm.ui.spatial_unit_manager import SpatialUnitManagerDockWidget from stdm.utils.util import ( entity_searchable_columns, entity_display_columns, format_name, lookup_parent_entity ) LOGGER = logging.getLogger('stdm') WIDGET, BASE = uic.loadUiType( GuiUtils.get_ui_file_path('ui_view_str.ui')) class ViewSTRWidget(WIDGET, BASE): """ Search and browse the social tenure relationship of all participating entities. """ def __init__(self, plugin): QMainWindow.__init__(self, plugin.iface.mainWindow()) self.setupUi(self) self.btnSearch.setIcon(GuiUtils.get_icon('search.png')) self.btnClearSearch.setIcon(GuiUtils.get_icon('reset.png')) self._plugin = plugin self.search_done = False # self.tbPropertyPreview.set_iface(self._plugin.iface) QTimer.singleShot( 100, lambda: self.tbPropertyPreview.set_iface(self._plugin.iface)) self.curr_profile = current_profile() self.spatial_units = self.curr_profile.social_tenure.spatial_units # Center me self.move(QDesktopWidget().availableGeometry().center() - self.frameGeometry().center()) self.sp_unit_manager = SpatialUnitManagerDockWidget( self._plugin.iface, self._plugin ) self.geom_cols = [] for spatial_unit in self.spatial_units: each_geom_col = self.sp_unit_manager.geom_columns(spatial_unit) self.geom_cols.extend(each_geom_col) # Configure notification bar self._notif_search_config = NotificationBar( self.vl_notification ) # set whether currently logged in user has # permissions to edit existing STR records self._can_edit = self._plugin.STRCntGroup.canUpdate() self._can_delete = self._plugin.STRCntGroup.canDelete() self._can_create = self._plugin.STRCntGroup.canCreate() # Variable used to store a reference to the # currently selected social tenure relationship # when displaying documents in the supporting documents tab window. # This ensures that there are no duplicates # when the same item is selected over and over again. self._strID = None self.removed_docs = None # Used to store the root hash of the currently selected node. self._curr_rootnode_hash = "" self.str_model, self.str_doc_model = entity_model( self.curr_profile.social_tenure, False, True ) self._source_doc_manager = SourceDocumentManager( self.curr_profile.social_tenure.supporting_doc, self.str_doc_model, self ) self._source_doc_manager.documentRemoved.connect( self.onSourceDocumentRemoved ) self._source_doc_manager.setEditPermissions(False) self.addSTR = None self.editSTR = None self.deleteSTR = None self.initGui() self.add_spatial_unit_layer() self.details_tree_view = DetailsTreeView(parent=self, plugin=self._plugin) layout = QVBoxLayout() layout.setContentsMargins(0, 0, 0, 0) layout.addWidget(self.details_tree_view) self.str_tree_container.setLayout(layout) # else: # self.details_tree_view = self._plugin.details_tree_view self.details_tree_view.activate_feature_details(True) self.details_tree_view.model.clear() count = pg_table_count(self.curr_profile.social_tenure.name) self.setWindowTitle( self.tr('{}{}'.format( self.windowTitle(), '- ' + str(count) + ' rows' )) ) self.active_spu_id = -1 self.toolBox.setStyleSheet( ''' QToolBox::tab { background: qlineargradient( x1: 0, y1: 0, x2: 0, y2: 1, stop: 0 #EDEDED, stop: 0.4 #EDEDED, stop: 0.5 #EDEDED, stop: 1.0 #D3D3D3 ); border-radius: 2px; border-style: outset; border-width: 2px; height: 100px; border-color: #C3C3C3; } QToolBox::tab:selected { font: italic; } ''' ) self.details_tree_view.view.setStyleSheet( ''' QTreeView:!active { selection-background-color: #72a6d9; } ''' ) def add_tool_buttons(self): """ Add toolbar buttons of add, edit and delete buttons. :return: None :rtype: NoneType """ tool_buttons = QToolBar() tool_buttons.setObjectName('form_toolbar') tool_buttons.setIconSize(QSize(16, 16)) self.addSTR = QAction(GuiUtils.get_icon( 'add.png'), QApplication.translate('ViewSTRWidget', 'Add'), self ) self.editSTR = QAction( GuiUtils.get_icon('edit.png'), QApplication.translate('ViewSTRWidget', 'Edit'), self ) self.deleteSTR = QAction( GuiUtils.get_icon('remove.png'), QApplication.translate('ViewSTRWidget', 'Remove'), self ) tool_buttons.addAction(self.addSTR) tool_buttons.addAction(self.editSTR) tool_buttons.addAction(self.deleteSTR) self.toolbarVBox.addWidget(tool_buttons) def initGui(self): """ Initialize widget """ self.tb_actions.setVisible(False) self._load_entity_configurations() self.add_tool_buttons() # Connect signals self.tbSTREntity.currentChanged.connect(self.entityTabIndexChanged) self.btnSearch.clicked.connect(self.searchEntityRelations) self.btnClearSearch.clicked.connect(self.clearSearch) # self.tvSTRResults.expanded.connect(self.onTreeViewItemExpanded) # Set the results treeview to accept requests for context menus # self.tvSTRResults.setContextMenuPolicy(Qt.CustomContextMenu) # self.tvSTRResults.customContextMenuRequested.connect( # self.onResultsContextMenuRequested # ) if not self._can_create: self.addSTR.hide() if not self._can_edit: self.editSTR.hide() else: self.editSTR.setDisabled(True) if not self._can_delete: self.deleteSTR.hide() else: self.deleteSTR.setDisabled(True) self.addSTR.triggered.connect(self.load_new_str_editor) self.deleteSTR.triggered.connect(self.delete_str) self.editSTR.triggered.connect(self.load_edit_str_editor) # Load async for the current widget self.entityTabIndexChanged(0) def init_progress_dialog(self): """ Initializes the progress dialog. """ self.progress = QProgressBar(self) self.progress.resize(self.width(), 10) self.progress.setTextVisible(False) def add_spatial_unit_layer(self): """ Add the spatial unit layer into the map canvas for later use. """ # Used for startup of view STR, just add the first geom layer. if len(self.geom_cols) > 0: for spatial_unit in self.spatial_units: layer_name_item = self.sp_unit_manager.geom_col_layer_name( spatial_unit.name, self.geom_cols[0] ) self.sp_unit_manager.add_layer_by_name(layer_name_item) def _check_permissions(self): """ Enable/disable actions based on the permissions defined in the content group. """ if self._can_edit: self.tb_actions.addAction(self._new_str_action) else: self.tb_actions.removeAction(self._new_str_action) if len(self.tb_actions.actions()) == 0: self.tb_actions.setVisible(False) else: self.tb_actions.setVisible(True) def _load_entity_configurations(self): """ Specify the entity configurations. """ try: self.parties = self.curr_profile.social_tenure.parties tb_str_entities = self.parties + self.spatial_units for i, t in enumerate(tb_str_entities): QApplication.processEvents() entity_cfg = self._entity_config_from_profile( str(t.name), t.short_name ) if entity_cfg is not None: entity_widget = self.add_entity_config(entity_cfg) # entity_widget.setNodeFormatter( # EntityNodeFormatter( # entity_cfg, self.tvSTRResults, self # ) # ) except DummyException as pe: self._notif_search_config.clear() self._notif_search_config.insertErrorNotification(str(pe)) def _entity_config_from_profile(self, table_name, short_name): """ Creates an EntityConfig object from the table name. :param table_name: Name of the database table. :type table_name: str :return: Entity configuration object. :rtype: EntityConfig """ table_display_name = format_name(short_name) entity = self.curr_profile.entity_by_name(table_name) model = entity_model(entity) if model is not None: # Entity configuration entity_cfg = EntityConfiguration() entity_cfg.Title = table_display_name entity_cfg.STRModel = model entity_cfg.data_source_name = table_name for col, factory in self._get_widget_factory(entity): entity_cfg.LookupFormatters[col.name] = factory # Load filter and display columns # using only those which are of # numeric/varchar type searchable_columns = entity_searchable_columns(entity) display_columns = entity_display_columns(entity) for c in searchable_columns: if c != 'id': entity_cfg.filterColumns[c] = format_name(c) for c in display_columns: if c != 'id': entity_cfg.displayColumns[c] = format_name(c) return entity_cfg else: return None def _get_widget_factory(self, entity): """ Get widget factory for specific column type :param entity: Current column entity object :type entity: Entity :return c: Column object corresponding to the widget factory :rtype c: BaseColumn :return col_factory: Widget factory corresponding to the column type :rtype col_factory: ColumnWidgetRegistry """ for c in entity.columns.values(): col_factory = ColumnWidgetRegistry.factory(c.TYPE_INFO) if col_factory is not None: yield c, col_factory(c) def add_entity_config(self, config): """ Set an entity configuration option and add it to the 'Search Entity' tab. """ entityWidg = STRViewEntityWidget(config) entityWidg.asyncStarted.connect(self._progressStart) entityWidg.asyncFinished.connect(self._progressFinish) tabIndex = self.tbSTREntity.addTab(entityWidg, config.Title) return entityWidg def entityTabIndexChanged(self, index): """ Raised when the tab index of the entity search tab widget changes. """ # Get the current widget in the tab container entityWidget = self.tbSTREntity.currentWidget() if isinstance(entityWidget, EntitySearchItem): entityWidget.loadAsync() def searchEntityRelations(self): """ Slot that searches for matching items for the specified entity and corresponding STR entities. """ entityWidget = self.tbSTREntity.currentWidget() entity_name = entityWidget.config.data_source_name self._reset_controls() if isinstance(entityWidget, EntitySearchItem): valid, msg = entityWidget.validate() if not valid: self._notif_search_config.clear() self._notif_search_config.insertErrorNotification(msg) return results, searchWord = entityWidget.executeSearch() # Show error message if len(results) == 0: noResultsMsg = QApplication.translate( 'ViewSTR', 'No results found for "{}"'.format(searchWord) ) self._notif_search_config.clear() self._notif_search_config.insertErrorNotification( noResultsMsg ) return party_names = [e.name for e in self.curr_profile.social_tenure.parties] entity = self.curr_profile.entity_by_name(entity_name) result_ids = [r.id for r in results] if entity_name in party_names: self.active_spu_id = self.details_tree_view.search_party( entity, result_ids ) else: self.details_tree_view.search_spatial_unit( entity, result_ids ) # self.tbPropertyPreview._iface.activeLayer().selectByExpression("id={}".format(self.active_spu_id)) # self.details_tree_view._selected_features = self.tbPropertyPreview._iface.activeLayer().selectedFeatures() # self._load_root_node(entity_name, formattedNode) def clearSearch(self): """ Clear search input parameters (for current widget) and results. """ entityWidget = self.tbSTREntity.currentWidget() if isinstance(entityWidget, EntitySearchItem): entityWidget.reset() self._reset_controls() def _reset_controls(self): # Clear tree view self._resetTreeView() # Clear document listings self._deleteSourceDocTabs() # Remove spatial unit memory layer self.tbPropertyPreview.remove_layer() def on_select_results(self): """ Slot which is raised when the selection is changed in the tree view selection model. """ if len(self.details_tree_view.view.selectedIndexes()) < 1: self.disable_buttons() return self.search_done = True index = self.details_tree_view.view.selectedIndexes()[0] item = self.details_tree_view.model.itemFromIndex(index) QApplication.processEvents() # STR node - edit social tenure relationship if item.text() == self.details_tree_view.str_text: entity = self.curr_profile.social_tenure str_model = self.details_tree_view.str_models[item.data()] documents = self.details_tree_view._supporting_doc_models( entity.name, str_model ) self._load_source_documents(documents) # if there is supporting document, # expand supporting document tab if len(documents) > 0: self.toolBox.setCurrentIndex(1) self.disable_buttons(False) # party node - edit party elif item.data() in self.details_tree_view.spatial_unit_items.keys(): self.toolBox.setCurrentIndex(0) entity = self.details_tree_view.spatial_unit_items[item.data()] model = self.details_tree_view.feature_model(entity, item.data()) self.draw_spatial_unit(entity.name, model) self.disable_buttons() canvas = iface.mapCanvas() if canvas: canvas.zoomToFullExtent() else: self.disable_buttons() def disable_buttons(self, status=True): if self._can_edit: self.deleteSTR.setDisabled(status) if self._can_delete: self.editSTR.setDisabled(status) def str_party_column_obj(self, record): """ Gets the current party column name in STR table by finding party column with value other than None. :param record: The STR record or result. :type record: Dictionary :return: The party column name with value. :rtype: String """ for party in self.parties: party_name = party.short_name.lower() party_id = '{}_id'.format(party_name) if party_id not in record.__dict__: return None if record.__dict__[party_id] is not None: party_id_obj = getattr(self.str_model, party_id) return party_id_obj def load_edit_str_editor(self): self.details_tree_view.edit_selected_node() self.btnSearch.click() self.disable_buttons() def load_new_str_editor(self): try: # Check type of node and perform corresponding action add_str = STREditor() add_str.exec_() except DummyException as ex: QMessageBox.critical( self._plugin.iface.mainWindow(), QApplication.translate( "STDMPlugin", "Loading Error" ), str(ex) ) def delete_str(self): self.details_tree_view.delete_selected_item() self.btnSearch.click() self.disable_buttons() def onSourceDocumentRemoved(self, container_id, doc_uuid, removed_doc): """ Slot raised when a source document is removed from the container. If there are no documents in the specified container then remove the tab. """ curr_container = self.tbSupportingDocs.currentWidget() curr_doc_widget = curr_container.findChildren(DocumentWidget) for doc in curr_doc_widget: if doc.fileUUID == doc_uuid: doc.deleteLater() self.removed_docs = removed_doc def draw_spatial_unit(self, entity_name, model): """ Render the geometry of the given spatial unit in the spatial view. :param row_id: Sqlalchemy object representing a feature. """ entity = self.curr_profile.entity_by_name(entity_name) self.tbPropertyPreview.draw_spatial_unit(entity, model) def showEvent(self, event): """ (Re)load map layers in the viewer and main canvas. :param event: Window event :type event: QShowEvent """ self.setEnabled(True) if QTimer is not None: QTimer.singleShot(200, self.init_mirror_map) return QMainWindow.showEvent(self, event) def init_mirror_map(self): self._notify_no_base_layers() # Add spatial unit layer if it doesn't exist self.tbPropertyPreview.refresh_canvas_layers() self.tbPropertyPreview.load_web_map() def _notify_no_base_layers(self): """ Checks if there are any base layers that will be used when visualizing the spatial units. If there are no base layers then insert warning message. """ self._notif_search_config.clear() num_layers = len(QgsProject.instance().mapLayers()) if num_layers == 0: msg = QApplication.translate( "ViewSTR", "No basemap layers are loaded in the " "current project. Basemap layers " "enhance the visualization of spatial units." ) self._notif_search_config.insertWarningNotification(msg) def _deleteSourceDocTabs(self): """ Removes all source document tabs and deletes their references. """ tabCount = self.tbSupportingDocs.count() while tabCount != 0: srcDocWidget = self.tbSupportingDocs.widget(tabCount - 1) self.tbSupportingDocs.removeTab(tabCount - 1) del srcDocWidget tabCount -= 1 self._strID = None self._source_doc_manager.reset() def _resetTreeView(self): """ Clears the results tree view. """ # Reset tree view strModel = self.details_tree_view.view.model() resultsSelModel = self.details_tree_view.view.selectionModel() if strModel: strModel.clear() if resultsSelModel: if self.search_done: resultsSelModel.selectionChanged.disconnect(self.on_select_results) resultsSelModel.selectionChanged.connect(self.on_select_results) def _load_source_documents(self, source_docs): """ Load source documents into document listing widget. """ # Configure progress dialog progress_msg = QApplication.translate( "ViewSTR", "Loading supporting documents..." ) progress_dialog = QProgressDialog(self) if len(source_docs) > 0: progress_dialog.setWindowTitle(progress_msg) progress_dialog.setRange(0, len(source_docs)) progress_dialog.setWindowModality(Qt.WindowModal) progress_dialog.setFixedWidth(380) progress_dialog.show() progress_dialog.setValue(0) self._notif_search_config.clear() self.tbSupportingDocs.clear() self._source_doc_manager.reset() if len(source_docs) < 1: empty_msg = QApplication.translate( 'ViewSTR', 'No supporting document is uploaded ' 'for this social tenure relationship.' ) self._notif_search_config.clear() self._notif_search_config.insertWarningNotification(empty_msg) for i, (doc_type_id, doc_obj) in enumerate(source_docs.items()): # add tabs, and container and widget for each tab tab_title = self._source_doc_manager.doc_type_mapping[doc_type_id] tab_widget = QWidget() tab_widget.setObjectName(tab_title) cont_layout = QVBoxLayout(tab_widget) cont_layout.setObjectName('widget_layout_' + tab_title) scrollArea = QScrollArea(tab_widget) scrollArea.setFrameShape(QFrame.NoFrame) scrollArea_contents = QWidget() scrollArea_contents.setObjectName('tab_scroll_area_' + tab_title) tab_layout = QVBoxLayout(scrollArea_contents) tab_layout.setObjectName('layout_' + tab_title) scrollArea.setWidgetResizable(True) scrollArea.setWidget(scrollArea_contents) cont_layout.addWidget(scrollArea) self._source_doc_manager.registerContainer( tab_layout, doc_type_id ) for doc in doc_obj: try: # add doc widgets self._source_doc_manager.insertDocFromModel( doc, doc_type_id ) except DummyException as ex: LOGGER.debug(str(ex)) self.tbSupportingDocs.addTab( tab_widget, tab_title ) progress_dialog.setValue(i + 1) progress_dialog.deleteLater() del progress_dialog # def _on_node_reference_changed(self, rootHash): # """ # Method for resetting document listing and map preview # if another root node and its children # are selected then the documents are reset as # well as the map preview control. # """ # if rootHash != self._curr_rootnode_hash: # self._deleteSourceDocTabs() # self._curr_rootnode_hash = rootHash def _progressStart(self): """ Load progress dialog window. For items whose durations is unknown, 'isindefinite' = True by default. If 'isindefinite' is False, then 'rangeitems' has to be specified. """ pass def _progressFinish(self): """ Hide progress dialog window. """ pass def _edit_permissions(self): """ Returns True/False whether the current logged in user has permissions to create new social tenure relationships. If true, then the system assumes that they can also edit STR records. """ canEdit = False userName = globals.APP_DBCONN.User.UserName authorizer = Authorizer(userName) newSTRCode = "9576A88D-C434-40A6-A318-F830216CA15A" # Get the name of the content from the code cnt = Content() createSTRCnt = cnt.queryObject().filter( Content.code == newSTRCode ).first() if createSTRCnt: name = createSTRCnt.name canEdit = authorizer.CheckAccess(name) return canEdit class EntitySearchItem(QObject): """ Abstract class for implementation by widgets that enable users to search for entity records. """ def __init__(self, formatter=None): super().__init__() # Specify the formatter that should be # applied on the result item. It should # inherit from 'stdm.navigation.STRNodeFormatter' self.formatter = formatter def setNodeFormatter(self, formatter): """ Set the formatter that should be applied on the entity search results. """ self.formatter = formatter def validate(self): """ Method for validating the input arguments before a search is conducted. Should return bool indicating whether validation was successful and message (applicable if validation fails). """ raise NotImplementedError() def executeSearch(self): """ Implemented when the a search operation is executed. Should return tuple of formatted results for render in the tree view,raw object results and search word. """ raise NotImplementedError( str( QApplication.translate( "ViewSTR", "Subclass must implement abstract method." ) ) ) def loadAsync(self): """ Any initialization that needs to be carried out when the parent container is activated. """ pass def errorHandler(self, error): """ Generic handler that logs error messages to the QGIS message log """ # QgsMessageLog.logMessage(error,2) LOGGER.debug(error) def reset(self): """ Clear search results. """ pass WIDGET2, BASE2 = uic.loadUiType( GuiUtils.get_ui_file_path('ui_str_view_entity.ui')) class STRViewEntityWidget(WIDGET2, BASE2, EntitySearchItem): """ A widget that represents options for searching through an entity. """ asyncStarted = pyqtSignal() asyncFinished = pyqtSignal() def __init__(self, config, formatter=None, parent=None): QWidget.__init__(self, parent) EntitySearchItem.__init__(self, formatter) self.setupUi(self) self.tbSTRViewEntity.setTabIcon(0, GuiUtils.get_icon('filter.png')) self.tbSTRViewEntity.setTabIcon(1, GuiUtils.get_icon('period_blue.png')) self.config = config self.setConfigOptions() self.curr_profile = current_profile() self.social_tenure = self.curr_profile.social_tenure self.str_model = entity_model(self.social_tenure) # Model for storing display and actual mapping values self._completer_model = None self._proxy_completer_model = None # Hook up signals self.cboFilterCol.currentIndexChanged.connect( self._on_column_index_changed ) self.init_validity_dates() self.validity_from_date.dateChanged.connect( self.set_minimum_to_date ) self.validity.setDisabled(True) self.init_validity_checkbox() def init_validity_checkbox(self): self.check_box_list = [] self.validity_checkbox = QCheckBox() self.check_box_list.append(self.validity_checkbox) self.tbSTRViewEntity.tabBar().setTabButton( self.tbSTRViewEntity.tabBar().count() - 1, QTabBar.LeftSide, self.validity_checkbox ) self.validity_checkbox.stateChanged.connect(self.toggle_validity_period) def toggle_validity_period(self, state): if state == Qt.Checked: self.validity.setDisabled(False) else: self.validity.setDisabled(True) def set_minimum_to_date(self): """ Set the minimum to date based on the change in value of from date. :return: :rtype: """ self.validity_to_date.setMinimumDate( self.validity_from_date.date() ) def init_validity_dates(self): """ Initialize the dates by setting the current date. :return: :rtype: """ self.validity_from_date.setDate( date.today() ) self.validity_to_date.setDate( date.today() ) def setConfigOptions(self): """ Apply configuration options. """ # Set filter columns and remove id column for col_name, display_name in self.config.filterColumns.items(): if col_name != "id": self.cboFilterCol.addItem( display_name, col_name ) def loadAsync(self): """ Asynchronously loads an entity's attribute values. """ self.asyncStarted.emit() # Create model worker workerThread = QThread(self) modelWorker = ModelWorker() modelWorker.moveToThread(workerThread) # Connect signals modelWorker.error.connect(self.errorHandler) workerThread.started.connect( lambda: modelWorker.fetch( self.config.STRModel, self.currentFieldName() ) ) modelWorker.retrieved.connect(self._asyncFinished) modelWorker.retrieved.connect(workerThread.quit) workerThread.finished.connect(modelWorker.deleteLater) workerThread.finished.connect(workerThread.deleteLater) # Start thread workerThread.start() def validate(self): """ Validate entity search widget """ is_valid = True message = "" if self.txtFilterPattern.text() == "": message = QApplication.translate( "ViewSTR", "Search word cannot be empty." ) is_valid = False return is_valid, message def executeSearch(self): """ Base class override. Search for matching items for the specified entity and column. """ model_root_node = None prog_dialog = QProgressDialog(self) prog_dialog.setFixedWidth(380) prog_dialog.setWindowTitle( QApplication.translate( "STRViewEntityWidget", "Searching for STR..." ) ) prog_dialog.show() prog_dialog.setRange( 0, 10 ) search_term = self._searchTerm() prog_dialog.setValue(2) # Try to get the corresponding search term value from the completer model if self._completer_model is not None: reg_exp = QRegExp("^%s$" % search_term, Qt.CaseInsensitive, QRegExp.RegExp2) self._proxy_completer_model.setFilterRegExp(reg_exp) if self._proxy_completer_model.rowCount() > 0: # Get corresponding actual value from the first matching item value_model_idx = self._proxy_completer_model.index(0, 1) source_model_idx = self._proxy_completer_model.mapToSource( value_model_idx ) prog_dialog.setValue(4) search_term = self._completer_model.data( source_model_idx, Qt.DisplayRole ) modelInstance = self.config.STRModel() modelQueryObj = modelInstance.queryObject() queryObjProperty = getattr( self.config.STRModel, self.currentFieldName() ) entity_name = modelQueryObj._primary_entity._label_name entity = self.curr_profile.entity_by_name(entity_name) prog_dialog.setValue(6) # Get property type so that the filter can # be applied according to the appropriate type propType = queryObjProperty.property.columns[0].type results = [] try: if not isinstance(propType, String): col_name = self.currentFieldName() col = entity.columns[self.currentFieldName()] if col.TYPE_INFO == 'LOOKUP': lookup_entity = lookup_parent_entity( self.curr_profile, col_name ) lkp_model = entity_model(lookup_entity) lkp_obj = lkp_model() value_obj = getattr( lkp_model, 'value' ) result = lkp_obj.queryObject().filter( func.lower(value_obj) == func.lower(search_term) ).first() if result is None: result = lkp_obj.queryObject().filter( func.lower(value_obj).like(search_term + '%') ).first() if result is not None: results = modelQueryObj.filter( queryObjProperty == result.id ).all() else: results = [] else: results = modelQueryObj.filter( func.lower(queryObjProperty) == func.lower(search_term) ).all() if self.validity.isEnabled(): valid_str_ids = self.str_validity_period_filter(results) else: valid_str_ids = None prog_dialog.setValue(7) except exc.StatementError: prog_dialog.deleteLater() del prog_dialog return model_root_node, [], search_term # if self.formatter is not None: # self.formatter.setData(results) # model_root_node = self.formatter.root(valid_str_ids) prog_dialog.setValue(10) prog_dialog.hide() prog_dialog.deleteLater() del prog_dialog return results, search_term def str_validity_period_filter(self, results): """ Filter the entity results using validity period in STR table. :param results: Entity result :type results: SQLAlchemy result proxy :return: Valid list of STR ids :rtype: List """ self.str_model_obj = self.str_model() valid_str_ids = [] for result in results: from_date = self.validity_from_date.date().toPyDate() to_date = self.validity_to_date.date().toPyDate() entity_id = '{}_id'.format(result.__table__.name[3:]) str_column_obj = getattr(self.str_model, entity_id) str_result = self.str_model_obj.queryObject().filter( self.str_model.validity_start >= from_date).filter( self.str_model.validity_end <= to_date ).filter(str_column_obj == result.id).all() for res in str_result: valid_str_ids.append(res.id) return valid_str_ids def reset(self): """ Clear search input parameters. """ self.txtFilterPattern.clear() if self.cboFilterCol.count() > 0: self.cboFilterCol.setCurrentIndex(0) def currentFieldName(self): """ Returns the name of the database field from the current item in the combo box. """ curr_index = self.cboFilterCol.currentIndex() field_name = self.cboFilterCol.itemData(curr_index) if field_name is None: return else: return field_name def _searchTerm(self): """ Returns the search term specified by the user. """ return self.txtFilterPattern.text() def _asyncFinished(self, model_values): """ Slot raised when worker has finished retrieving items. """ # Create QCompleter and add values to it. self._update_completer(model_values) self.asyncFinished.emit() def _update_completer(self, values): # Get the items in a tuple and put them in a list # Store display and actual values in a # model for easier mapping and # retrieval when carrying out searches model_attr_mapping = [] # Check if there are formaters specified # for the current field name for mv in values: f_model_values = [] m_val = mv[0] if m_val is not None: col_label = self.currentFieldName() if col_label in self.config.LookupFormatters: formatter = self.config.LookupFormatters[col_label] if formatter.column.TYPE_INFO == 'LOOKUP': m_val = formatter.code_value(m_val)[0] else: m_val = formatter.format_column_value(m_val) f_model_values.extend([m_val, m_val]) model_attr_mapping.append(f_model_values) self._completer_model = BaseSTDMTableModel(model_attr_mapping, ["", ""], self) # We will use the QSortFilterProxyModel for filtering purposes self._proxy_completer_model = QSortFilterProxyModel() self._proxy_completer_model.setDynamicSortFilter(True) self._proxy_completer_model.setSourceModel(self._completer_model) self._proxy_completer_model.setSortCaseSensitivity(Qt.CaseInsensitive) self._proxy_completer_model.setFilterKeyColumn(0) # Configure completer mod_completer = QCompleter(self._completer_model, self) mod_completer.setCaseSensitivity(Qt.CaseInsensitive) mod_completer.setCompletionMode(QCompleter.PopupCompletion) mod_completer.setCompletionColumn(0) mod_completer.setCompletionRole(Qt.DisplayRole) self.txtFilterPattern.setCompleter(mod_completer) def _on_column_index_changed(self, int): """ Slot raised when the user selects a different filter column. """ self.txtFilterPattern.clear() self.loadAsync() class EntityConfiguration(object): """ Specifies the configuration to apply when creating a new tab widget for performing entity searches. """ browseDescription = "Click on the browse button below to load entity " \ "records and their corresponding social tenure " \ "relationship definitions." defaultFieldName = "" # Format of each dictionary item: # property/db column name - display name filterColumns = OrderedDict() displayColumns = OrderedDict() groupBy = "" STRModel = None Title = "" data_source_name = "" # Functions for formatting values before # they are loaded into the completer LookupFormatters = {} def __init__(self): # Reset filter and display columns self.filterColumns = OrderedDict() self.displayColumns = OrderedDict() class ModelWorker(QObject): """ Worker for retrieving model attribute values stored in the database. """ retrieved = pyqtSignal(object) error = pyqtSignal(str) pyqtSlot(object, str) def fetch(self, model, fieldname): """ Fetch attribute values from the database for the specified model and corresponding column name. """ try: if hasattr(model, fieldname): modelInstance = model() obj_property = getattr(model, fieldname) model_values = modelInstance.queryObject( [obj_property] ).distinct() self.retrieved.emit(model_values) except DummyException as ex: self.error.emit(str(ex))
gpl-2.0
-8,273,558,001,482,112,000
32.030441
120
0.562371
false
multikatt/beets
beetsplug/permissions.py
1
3116
from __future__ import (division, absolute_import, print_function, unicode_literals) """Fixes file permissions after the file gets written on import. Put something like the following in your config.yaml to configure: permissions: file: 644 dir: 755 """ import os from beets import config, util from beets.plugins import BeetsPlugin from beets.util import ancestry def convert_perm(perm): """If the perm is a int it will first convert it to a string and back to an oct int. Else it just converts it to oct. """ if isinstance(perm, int): return int(bytes(perm), 8) else: return int(perm, 8) def check_permissions(path, permission): """Checks the permissions of a path. """ return oct(os.stat(path).st_mode & 0o777) == oct(permission) def dirs_in_library(library, item): """Creates a list of ancestor directories in the beets library path. """ return [ancestor for ancestor in ancestry(item) if ancestor.startswith(library)][1:] class Permissions(BeetsPlugin): def __init__(self): super(Permissions, self).__init__() # Adding defaults. self.config.add({ u'file': 644, u'dir': 755 }) self.register_listener('item_imported', permissions) self.register_listener('album_imported', permissions) def permissions(lib, item=None, album=None): """Running the permission fixer. """ # Getting the config. file_perm = config['permissions']['file'].get() dir_perm = config['permissions']['dir'].get() # Converts permissions to oct. file_perm = convert_perm(file_perm) dir_perm = convert_perm(dir_perm) # Create chmod_queue. file_chmod_queue = [] if item: file_chmod_queue.append(item.path) elif album: for album_item in album.items(): file_chmod_queue.append(album_item.path) # A set of directories to change permissions for. dir_chmod_queue = set() for path in file_chmod_queue: # Changing permissions on the destination file. os.chmod(util.bytestring_path(path), file_perm) # Checks if the destination path has the permissions configured. if not check_permissions(util.bytestring_path(path), file_perm): message = 'There was a problem setting permission on {}'.format( path) print(message) # Adding directories to the directory chmod queue. dir_chmod_queue.update( dirs_in_library(config['directory'].get(), path)) # Change permissions for the directories. for path in dir_chmod_queue: # Chaning permissions on the destination directory. os.chmod(util.bytestring_path(path), dir_perm) # Checks if the destination path has the permissions configured. if not check_permissions(util.bytestring_path(path), dir_perm): message = 'There was a problem setting permission on {}'.format( path) print(message)
mit
8,238,867,990,123,123,000
29.851485
78
0.626765
false
gonadarian/kagen
kagen/khan.py
1
1955
import os import csv import json import pymongo from kagen import utils from kagen.utils import config from datetime import datetime logger = utils.get_logger("khan") def work(): khan = utils.get_conn_khan() db = utils.get_conn_mongo() dtf = "%Y-%m-%dT%H:%M:%SZ" doc = utils.get_response_json(khan, "/api/v1/playlists") for item in doc: item["_id"] = item["id"] for playlist in doc: playlist["backup_timestamp"] = datetime.strptime(playlist["backup_timestamp"], dtf) db.playlists.drop() db.playlists.insert(doc) logger.info("loaded {} items in playlists collection".format(len(doc))) doc = utils.get_response_json(khan, "/api/v1/playlists/library") db.playlists_library.drop() db.playlists_library.insert(doc) logger.info("loaded {} items in playlists_library collection".format(len(doc))) doc = utils.get_response_json(khan, "/api/v1/playlists/library/list") for playlist in doc: playlist["_id"] = playlist["id"] playlist["backup_timestamp"] = datetime.strptime(playlist["backup_timestamp"], dtf) db.playlists_library_list.drop() db.playlists_library_list.insert(doc) logger.info("loaded {} items in playlists_library_list collection".format(len(doc))) videos = [] ids = [] for playlist in doc: for video in playlist["videos"]: video_id = video["id"] if video_id not in ids: video["_id"] = video_id videos.append(video) ids.append(video_id) video["date_added"] = datetime.strptime(video["date_added"], dtf) video["backup_timestamp"] = datetime.strptime(video["backup_timestamp"], dtf) db.video_list.drop() db.video_list.insert(videos) logger.info("loaded {} items in video_list collection".format(len(videos))) @utils.entry_point def main(): logger.info("START khan") work() logger.info("DONE khan")
mit
5,795,363,018,765,925,000
31.583333
91
0.640409
false
irvined1982/olweb-clients
bin/bkill.py
1
3674
#!/usr/bin/env python # Copyright 2014 David Irvine # # This file is part of olwclients # # olwclients is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 2 of the License, or (at # your option) any later version. # # olwclients is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # You should have received a copy of the GNU General Public License # along with olwclients. If not, see <http://www.gnu.org/licenses/>. import argparse from olwclient import * import getpass import re import sys parser = argparse.ArgumentParser(description='Displays information about hosts') OpenLavaConnection.configure_argument_list(parser) parser.add_argument("-J", dest="job_name", default=None, help="Operates only on jobs with the specified job_name. The -J option is ignored if a job ID \ other than 0 is specified in the job_ID option.") parser.add_argument("-m", dest="host_name", default=None, help="Operates only on jobs dispatched to the specified host or host group.") parser.add_argument("-q", dest="queue_name", default=None, help="Operates only on jobs in the specified queue.") parser.add_argument("-u", dest="user_name", default=getpass.getuser(), help="Operates only on jobs submitted by the specified user or user group (see bugroup(1)), or by \ all users if the reserved user name all is specified.") parser.add_argument("job_ids", nargs='+', type=str, default=None, help='Operates only on jobs that are specified by job_ID or "job_ID[index]", where \ "job_ID[index]" specifies selected job array elements (see bjobs(1)). For job arrays, quotation \ marks must enclose the job ID and index, and index must be enclosed in square brackets.') parser.add_argument("-s", dest="signal", default="kill", choices=["kill", "suspend", "resume", "requeue"], help="Sends the specified signal to specified jobs. Signals can be one of: kill, suspend, resume, \ requeue,") args = parser.parse_args() connection = OpenLavaConnection(args) if 0 in args.job_ids or "0" in args.job_ids: jobs = Job.get_job_list(connection, user_name=args.user_name, host_name=args.host_name, queue_name=args.queue_name, job_name=args.job_name, ) else: jobs = [] for job_id in args.job_ids: try: jid = int(job_id) aid = 0 except ValueError: match = re.search('\d+\[\d+\]', job_id) if match: jid = match.group(0) aid = match.group(1) else: print "Invalid job id: %s" % job_id sys.exit(1) jobs.append(Job(connection, job_id=jid, array_index=aid)) try: for job in jobs: try: print "Sending %s signal to job: %s[%s]" % (args.signal, job.job_id, job.array_index) getattr(job, args.signal)() except PermissionDeniedError, e: print "Unable to perform action on job: %s[%s]: %s" % (job.job_id, job.array_index, e.message) except RemoteServerError, e: print "Unable to display job information: %s" % e.message sys.exit(1)
gpl-2.0
4,289,308,900,084,577,300
42.223529
119
0.619488
false
panosl/helios
helios/orders/forms.py
1
1114
from django import forms from helios.shipping.models import ShippingMethodRegions class ShippingChoiceField(forms.ModelChoiceField): def label_from_instance(self, obj): return u'%s, %s - %s' % (obj.method.name, obj.method.shipper, obj.cost) # todo this needs to be handled either here # or in the checkout view in the store app class ShippingOrderForm(forms.Form): def __init__(self, customer, *args, **kwargs): super(ShippingOrderForm, self).__init__(*args, **kwargs) methods = [region.shippingmethodregions_set.all() for region in customer.country.shippingregion_set.all()] methods = [method[0] for method in methods] self.fields['shipping_choice'].queryset = ShippingMethodRegions.objects.filter(id__in=[method.id for method in methods]) shipping_choice = ShippingChoiceField( queryset=ShippingMethodRegions.objects.all(), empty_label=None, widget=forms.RadioSelect(attrs={ 'class': 'order', 'onclick': '$("#shipping_choice").submit()', }) ) class OrderForm(forms.Form): pass
bsd-3-clause
1,921,637,111,047,108,400
34.935484
128
0.670557
false
buaawp/pums
mock/migrations/0001_initial.py
1
3879
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations from django.conf import settings class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='LtMockModule', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('name', models.CharField(default='module', max_length=128)), ('description', models.CharField(max_length=1024, blank=True)), ], ), migrations.CreateModel( name='LtMockProject', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('name', models.CharField(default='project', max_length=128)), ('description', models.CharField(max_length=1024, blank=True)), ('user', models.ForeignKey(blank=True, to=settings.AUTH_USER_MODEL, null=True)), ], ), migrations.CreateModel( name='LtMockRequest', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('name', models.CharField(default='defaultName', max_length=128)), ('method', models.CharField(default='GET', max_length=20)), ('address', models.CharField(default='defaultUrl', max_length=2048)), ('params', models.CharField(max_length=1648, blank=True)), ('module', models.ForeignKey(to='mock.LtMockModule')), ('project', models.ForeignKey(to='mock.LtMockProject')), ], ), migrations.CreateModel( name='LtMockRequestHeader', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('key', models.CharField(default='defaultkey', max_length=128)), ('value', models.CharField(max_length=1024, blank=True)), ], ), migrations.CreateModel( name='LtMockRequestParam', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('key', models.CharField(default='defaultkey', max_length=128)), ('value', models.CharField(max_length=1024, blank=True)), ], ), migrations.CreateModel( name='LtMockResponse', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('name', models.CharField(default='defaultresponse', max_length=128)), ('template', models.CharField(max_length=2048, blank=True)), ('sample', models.CharField(max_length=2048, blank=True)), ], ), migrations.AddField( model_name='ltmockrequest', name='requestheader', field=models.ForeignKey(blank=True, to='mock.LtMockRequestHeader', null=True), ), migrations.AddField( model_name='ltmockrequest', name='requestparam', field=models.ForeignKey(blank=True, to='mock.LtMockRequestParam', null=True), ), migrations.AddField( model_name='ltmockrequest', name='response', field=models.ForeignKey(blank=True, to='mock.LtMockResponse', null=True), ), migrations.AddField( model_name='ltmockmodule', name='project', field=models.ForeignKey(to='mock.LtMockProject'), ), ]
mit
6,251,896,528,812,043,000
42.58427
114
0.564836
false
cossatot/culpable
culpable/magnitudes.py
1
22751
import numpy as np from .stats import Pdf, pdf_from_samples, multiply_pdfs, divide_pdfs """ Scaling relationships and related equations for earthquake magnitude calculations. """ """ Normalized slip distribution from Biasi and Weldon, 2006 """ Dn_x = np.array( [ 0. , 0.03852144, 0.07704287, 0.11556431, 0.15408574, 0.19260718, 0.23112861, 0.26965005, 0.30817149, 0.34669292, 0.38521436, 0.42373579, 0.46225723, 0.50077866, 0.5393001 , 0.57782153, 0.61634297, 0.65486441, 0.69338584, 0.73190728, 0.77042871, 0.80895015, 0.84747158, 0.88599302, 0.92451446, 0.96303589, 1.00155733, 1.04007876, 1.0786002 , 1.11712163, 1.15564307, 1.19416451, 1.23268594, 1.27120738, 1.30972881, 1.34825025, 1.38677168, 1.42529312, 1.46381456, 1.50233599, 1.54085743, 1.57937886, 1.6179003 , 1.65642173, 1.69494317, 1.7334646 , 1.77198604, 1.81050748, 1.84902891, 1.88755035, 1.92607178, 1.96459322, 2.00311465, 2.04163609, 2.08015753, 2.11867896, 2.1572004 , 2.19572183, 2.23424327, 2.2727647 , 2.31128614, 2.34980758, 2.38832901, 2.42685045, 2.46537188, 2.50389332, 2.54241475, 2.58093619, 2.61945762, 2.65797906, 2.6965005 , 2.73502193, 2.77354337, 2.8120648 , 2.85058624, 2.88910767, 2.92762911, 2.96615055, 3.00467198, 3.04319342, 3.08171485, 3.12023629, 3.15875772, 3.19727916, 3.2358006 , 3.27432203, 3.31284347, 3.3513649 , 3.38988634, 3.42840777, 3.46692921, 3.50545064, 3.54397208, 3.58249352, 3.62101495, 3.65953639, 3.69805782, 3.73657926, 3.77510069, 3.81362213]) Dn_y = np.array( [ 3.56431234e-01, 4.07514412e-01, 4.49469325e-01, 4.80250978e-01, 4.99600050e-01, 5.08967345e-01, 5.11056831e-01, 5.09135209e-01, 5.06305810e-01, 5.04929021e-01, 5.06305202e-01, 5.10647854e-01, 5.17294850e-01, 5.25056042e-01, 5.32585263e-01, 5.38688051e-01, 5.42518154e-01, 5.43657945e-01, 5.42107125e-01, 5.38215229e-01, 5.32589131e-01, 5.25993774e-01, 5.19250549e-01, 5.13129949e-01, 5.08236899e-01, 5.04898081e-01, 5.03074847e-01, 5.02334004e-01, 5.01903866e-01, 5.00822254e-01, 4.98152675e-01, 4.93216557e-01, 4.85776256e-01, 4.76112653e-01, 4.64970884e-01, 4.53387277e-01, 4.42445033e-01, 4.33023117e-01, 4.25598012e-01, 4.20136711e-01, 4.16092401e-01, 4.12492219e-01, 4.08093894e-01, 4.01583982e-01, 3.91790171e-01, 3.77880214e-01, 3.59519131e-01, 3.36956396e-01, 3.11019404e-01, 2.83002312e-01, 2.54461304e-01, 2.26954105e-01, 2.01783046e-01, 1.79805426e-01, 1.61356306e-01, 1.46292387e-01, 1.34126853e-01, 1.24201482e-01, 1.15842979e-01, 1.08470898e-01, 1.01650879e-01, 9.51051805e-02, 8.86970782e-02, 8.24006991e-02, 7.62618151e-02, 7.03540397e-02, 6.47382510e-02, 5.94357659e-02, 5.44230300e-02, 4.96471997e-02, 4.50527124e-02, 4.06047119e-02, 3.62987575e-02, 3.21550847e-02, 2.82040784e-02, 2.44727150e-02, 2.09786579e-02, 1.77325398e-02, 1.47440829e-02, 1.20266593e-02, 9.59725861e-03, 7.47225770e-03, 5.66159378e-03, 4.16411755e-03, 2.96568107e-03, 2.04006393e-03, 1.35194170e-03, 8.60866657e-04, 5.25372416e-04, 3.06545806e-04, 1.70626053e-04, 9.04155999e-05, 4.55329491e-05, 2.17590136e-05, 9.85449333e-06, 4.22528115e-06, 1.71367970e-06, 6.56980895e-07, 2.37946616e-07, 8.13790788e-08]) Dn = Pdf(Dn_x, Dn_y) Dn_sb = multiply_pdfs(Dn, Pdf([Dn_x.min(), Dn_x.max()], [Dn_x.min(), Dn_x.max()])) """ Probability distribution for an earthquake breaking the surface given Gutenberg-Richter prior; to be used as a p(M) prior for paleoseismic magnitudes from Biasi and Weldon 2006 """ gr_pm_x = [5.000, 5.001, 5.057, 5.097, 5.192, 5.300, 5.392, 5.499, 5.597, 5.753, 5.922, 6.021, 6.211, 6.353, 6.533, 6.604, 6.771, 6.999, 7.280, 7.507, 7.726, 7.953, 8.182] gr_pm_y = [0.000, 0.030, 0.050, 0.063, 0.081, 0.089, 0.089, 0.085, 0.079, 0.067, 0.054, 0.047, 0.035, 0.027, 0.020, 0.018, 0.013, 0.008, 0.005, 0.003, 0.002, 9.785e-4, 0.00] """ Conversion functions """ def _exp_10(x): return 10**x log_fn = {'e': np.log, '10': np.log10} exp_fn = {'e': np.exp, '10': _exp_10} M_from_D_coeffs = {'BW_2006': {'a': 6.94, 'b': 1.14, 'log_base': '10'}, # WC_1994 are for Average Displacement, not max. 'WC_1994_all': {'a': 6.93, 'b': 0.82, 'log_base': '10'}, 'WC_1994_SS': {'a': 7.04, 'b': 0.89, 'log_base': '10'}, 'WC_1994_R': {'a': 6.64, 'b': 0.13, 'log_base': '10'}, 'WC_1994_N': {'a': 6.78, 'b': 0.65, 'log_base': '10'}, } M_from_L_coeffs = {'Stirling_2002_instr': {'a': 5.45, 'a_err': 0.08, 'b': 0.95, 'b_err': 0.06, 'log_base': '10'}, 'Stirling_2002_pre_instr': {'a': 5.89, 'a_err': 0.11, 'b': 0.79, 'b_err': 0.06, 'log_base': '10'}, 'WC_1994_all': {'a': 5.08, 'a_err': 0.1, 'b': 1.16, 'b_err': 0.07, 'log_base': '10'}, 'WC_1994_SS': {'a': 5.16, 'a_err': 0.13, 'b': 1.12, 'b_err': 0.08, 'log_base': '10'}, 'WC_1994_R': {'a': 5.00, 'a_err': 0.22, 'b': 1.22, 'b_err': 0.16, 'log_base': '10'}, 'WC_1994_N': {'a': 4.86, 'a_err': 0.34, 'b': 1.32, 'b_err': 0.26, 'log_base': '10'}, } def M_from_D(D, ref='BW_2006', a=None, b=None, base='e'): """ Moment magnitude from displacement, using the specified scaling (keyword 'ref', or parameters 'a', 'b' and 'log'. General relationship is M = a + b * log(D). Parameters ---------- D : Scalar or vector values for displacement (in meters) ref : string indicating scaling relationship. 'BW_2006' is Biasi and Weldon (2006) (default). 'WC_1994_all' is Wells and Coppersmith (1994) for all events. 'WC_1994_SS' is Wells and Coppersmith (1994) for strike-slip events. 'WC_1994_R' is Wells and Coppersmith (1994) for reverse events. 'WC_1994_N' is Wells and Coppersmith (1994) for normal events. `ref=None` will allow you to enter your own coefficients and base. a : Scalar, or vector of same length as D. b : Scalar, or vector of same length as D. base : String, base for logarithm, default 'e'. 'e' is natural log. '10' is log10. Returns ------- M : Scalar or vector of calculated magnitude, with shape of D. """ if ref is not None: # consider warning if ref is not None and a, b, log are inputs a = M_from_D_coeffs[ref]['a'] b = M_from_D_coeffs[ref]['b'] base = M_from_D_coeffs[ref]['log_base'] else: pass return a + b * log_fn[base](D) def D_from_M(M, ref='BW_2006', a=None, b=None, base='e'): """ Moment magnitude from displacement, using the specified scaling (keyword 'ref', or parameters 'a', 'b' and 'base'. General relationship is D = base ** ((M - a) / b) Parameters ---------- M : Scalar or vector values for moment magnitude ref : string indicating scaling relationship. 'BW_2006' is Biasi and Weldon (2006) (default). 'WC_1994_all' is Wells and Coppersmith (1994) for all events. 'WC_1994_SS' is Wells and Coppersmith (1994) for strike-slip events. 'WC_1994_R' is Wells and Coppersmith (1994) for reverse events. 'WC_1994_N' is Wells and Coppersmith (1994) for normal events. `ref=None` will allow you to enter your own coefficients and base. a : Scalar, or vector of same length as M. b : Scalar, or vector of same length as M. base : String, base for exponent, default 'e'. 'e' is e. '10' is 10. Returns ------- D : Scalar or vector of calculated displacement (in meters), with shape of M. """ if ref is not None: a = M_from_D_coeffs[ref]['a'] b = M_from_D_coeffs[ref]['b'] base = M_from_D_coeffs[ref]['log_base'] return exp_fn[base]((M - a) / b) def M_from_L(L, ref='Stirling_2002_instr', unit='km', a=None, b=None, base='e', a_err=None, b_err=None, mc=False): """ Moment magnitude from length, using the specified scaling (keyword 'ref', or parameters 'a', 'b' and 'log'. General relationship is M = a + b * log(D). Parameters ---------- D : Scalar or vector values for displacement (in meters) ref : string indicating scaling relationship. 'Stirling_2002_instr' is from Stirling et al. 2002, instrumental data. 'WC_1994_all' is Wells and Coppersmith (1994) for all events. 'WC_1994_SS' is Wells and Coppersmith (1994) for strike-slip events. 'WC_1994_R' is Wells and Coppersmith (1994) for reverse events. 'WC_1994_N' is Wells and Coppersmith (1994) for normal events. `ref=None` will allow you to enter your own coefficients and base. unit : Unit of length measure. Default is 'km'. 'm' also works. a : Scalar, or vector of same length as D. a_err : Standard error of `a`. Scalar. b : Scalar, or vector of same length as D. b_err : Standard error of `b`. Scalar. log : String, base for logarithm, default 'e'. 'e' is natural log. '10' is log10. mc : Boolean that indicates whether to sample the coefficents a and b including uncertainties `a_err` and `b_err` through Monte Carlo techniques. Returns ------- M : Scalar or vector of calculated magnitude, with shape of L. """ # unit conversion if unit == 'm': L = L * 1000. if ref is not None: a = M_from_L_coeffs[ref]['a'] b = M_from_L_coeffs[ref]['b'] base = M_from_L_coeffs[ref]['log_base'] try: a_err = M_from_L_coeffs[ref]['a_err'] b_err = M_from_L_coeffs[ref]['b_err'] except KeyError: pass if mc == True: A = a if a_err is None else np.random.normal(a, a_err, len(L)) B = b if b_err is None else np.random.normal(b, b_err, len(L)) else: A = a B = b return A + B * log_fn[base](L) """ Estimation functions """ def p_D_M(D, M, ref='BW_2006', sample_bias_corr=False): """ Likelihood of predicted D given M, as defined by Biasi and Weldon (2006). Parameters ---------- D : Scalar or array of displacement values (in meters). M : Scalar or array of magnitudes. ref: Displacement-magnitude scaling reference (string). 'BW_2006' is Biasi and Weldon (2006). 'WC_1994_all' is Wells and Coppersmith (1994). Returns ------- p_D_M : Calculated likelihood. If scalar, simply returns the likelihood. If not, returns an improper pdf (a `culpable.stats.Pdf`) which is an interpolation class. Actual likelihoods are `p_D_M.y`, and corresponding magnitudes (i.e. the prior p_M) are `p_D_M.x`. """ D_ave = D_from_M(M, ref=ref) D = np.abs(D) if sample_bias_corr == True: Dn_ = Dn_sb else: Dn_ = Dn if np.isscalar(D): D_score = D / D_ave p_D_M = Dn_(D_score) else: D_score = np.array([d / D_ave for d in D]) p_D_M = Dn_(D_score) p_D_M = np.mean(p_D_M, axis=0) if np.isscalar(p_D_M): p_D_M = np.float(p_D_M) else: p_D_M = Pdf(M, p_D_M, normalize=True) return p_D_M def _make_p_M_x(p_M_min=5., p_M_max=8.5, M_step=0.1, n_M=None): """ Makes the X values (i.e., the magnitudes) for a p_M distribution. """ if n_M is not None: p_M_x = np.linspace(p_M_min, p_M_max, num=n_M) else: if M_step is None: M_step = 0.1 # in case it's passed as None from another function p_M_x = np.arange(p_M_min, p_M_max + M_step, M_step) return p_M_x def make_p_M_uniform(p_M_min=5., p_M_max=8.5, M_step=0.1, n_M=None): """ Creates a uniform PDF between the minimum and maximum magnitudes given by p_M_min and p_M_max. Parameters ---------- p_M_min : Minimum magnitude. p_M_max : Maximum magnitude. M_step : Width of steps in interpolation (no effect on final results). n_M : number of points in interpolation (no effect on final results). Returns ------- p_M : Pdf function with a uniform distribution between p_M_min and p_M_max """ p_M_x = _make_p_M_x(p_M_min=p_M_min, p_M_max=p_M_max, M_step=M_step, n_M=n_M) return Pdf(p_M_x, np.ones(len(p_M_x)) * 1 / len(p_M_x)) def make_p_M_gr_surface_break(p_M_min=5., p_M_max=8.5, M_step=0.1, n_M=None): """ Creates a PDF based on a Gutenberg-Richter distribution that is then modified to account for the decreasing likelihood of surface rupture with decreasing magnitude (distribution from Biasi and Weldon 2006, figure 8b. Returns: -------- p_M : Pdf class with a modified Gutenberg-Richter distribution. """ p_M_x = _make_p_M_x(p_M_min=p_M_min, p_M_max=p_M_max, M_step=M_step, n_M=n_M) p_M_gr_sb = Pdf(gr_pm_x, gr_pm_y) p_M_gr_sb_y = p_M_gr_sb(p_M_x) return Pdf(p_M_x, p_M_gr_sb_y) def make_p_M(p_M_type='uniform', p_M_min=None, p_M_max=None, M_step=None, n_M=None): """ Creates the a PDF of magnitudes to use as the prior p(M). Parameters ---------- p_M_type : Type of prior. Current values are 'uniform' and 'GR_surface_break' (i.e., a Gutenberg-Richter with WC 1994's correction for the likelihood of events of different sizes breaking the surface, as reported in BW 2006). p_M_min : Minimum magnitude. p_M_max : Maximum magnitude. M_step : Width of steps in interpolation (no effect on final results). n_M : number of points in interpolation (no effect on final results). Returns ------- p_M : Pdf function with a uniform distribution between p_M_min and p_M_max """ if p_M_type == 'uniform': p_M = make_p_M_uniform(p_M_min=p_M_min, p_M_max=p_M_max, M_step=M_step, n_M=n_M) elif p_M_type == 'GR_surface_break': p_M = make_p_M_gr_surface_break(p_M_min=p_M_min, p_M_max=p_M_max, M_step=M_step, n_M=n_M) return p_M def p_M_D(D, p_M=None, p_M_min=None, p_M_max=None, M_step=None, n_M=None, ref='BW_2006', p_M_type='uniform', sample_bias_corr=False): """ Calculates p(M|D), the posterior probability of an earthquake having a magnitude of M given observed displacement D, based on Biasi and Weldon 2006 (but with optional sample bias correction). Either a `p_M` Pdf object should be passed, or the additional parameters necessary to construct one; see `make_p_M`. Parameters ---------- D : Scalar or vector of displacements in meters (floats). p_M : Prior magnitude distribution p(M), in the Pdf class from culpable.stats. p_M_type : Type of prior. Current values are 'uniform' and 'GR_surface_break' (i.e., a Gutenberg-Richter with WC 1994's correction for the likelihood of events of different sizes breaking the surface, as reported in BW 2006). p_M_min : Minimum prior magnitude; only needed if `p_M` is not given. p_M_max : Maximum prior magnitude; only needed if `p_M` is not given. M_step : Spacing for `p_M`; only needed if `p_M` is not given. n_M : number of points for `p_M`; only needed if `p_M` is not given. ref : Reference for magnitude-displacement scaling relationships. See `M_from_D` for a list of implemented relationships. sample_bias_correction: Boolean indicating whether to correct for preferential sampling of scarps proportionally to the offset at a point relative to the min and max offsets. Returns ------ p_M_D : Pdf function of the posterior magnitude estimation p(M|D). """ if p_M is None: p_M = make_p_M(p_M_type=p_M_type, p_M_min=p_M_min, p_M_max=p_M_max, M_step=M_step, n_M=n_M) else: #TODO: maybe add some logic for dealing with non `Pdf` priors pass p_D = Pdf(p_M.x, [np.trapz(Dn_y, Dn_x * D_from_M(M, ref=ref)) for M in p_M.x]) p_D_M_ = p_D_M(D, p_M.x, ref=ref, sample_bias_corr=sample_bias_corr) p_M_D_ = multiply_pdfs(p_M, p_D_M_, step=M_step) p_M_D_ = divide_pdfs(p_M_D_, p_D, step=M_step) return p_M_D_ def p_M_L(L, p_M=None, p_M_min=None, p_M_max=None, M_step=None, n_M=None, p_M_type='uniform', ref='WC_1994_all', mc=True): """ Calculates p(M|L), the posterior probability of an earthquake having a magnitude of M given observed length L. Either a `p_M` Pdf object should be passed, or the additional parameters necessary to construct one; see `make_p_M`. Parameters ---------- L : Scalar or vector of lengths in kilometers (floats). p_M : Prior magnitude distribution p(M), in the Pdf class from culpable.stats. p_M_type : Type of prior. Current values are 'uniform' and 'GR_surface_break' (i.e., a Gutenberg-Richter with WC 1994's correction for the likelihood of events of different sizes breaking the surface, as reported in BW 2006). p_M_min : Minimum prior magnitude; only needed if `p_M` is not given. p_M_max : Maximum prior magnitude; only needed if `p_M` is not given. M_step : Spacing for `p_M`; only needed if `p_M` is not given. n_M : number of points for `p_M`; only needed if `p_M` is not given. ref : Reference for magnitude-length scaling relationships. See `M_from_L` for a list of implemented relationships. mc : Boolean that describes whether to propagate the uncertainty (standard errors) in the scaling relationship to the posterior using a Monte Carlo simulation. Returns ------ p_M_D : Pdf function of the posterior magnitude estimation p(M|D). """ if p_M is None: p_M = make_p_M(p_M_type=p_M_type, p_M_min=p_M_min, p_M_max=p_M_max, M_step=M_step, n_M=n_M) p_M_L_samples = M_from_L(L, ref=ref, mc=mc) p_M_L_ = pdf_from_samples(p_M_L_samples, x_min=p_M.x.min(), x_max=p_M.x.max()) p_M_L_ = multiply_pdfs(p_M, p_M_L_) return p_M_L_ def p_M_DL(D, L, p_M=None, p_M_min=None, p_M_max=None, M_step=None, n_M=None, p_M_type='uniform', D_ref='BW_2006', L_ref='WC_1994_all', L_mc=True, sample_bias_corr=False): """ Calculates p(M|D,L), the posterior probability of an earthquake having a magnitude of M given observed offset/displacement D and rupture length L. Either a `p_M` Pdf object should be passed, or the additional parameters necessary to construct one; see `make_p_M`. Parameters ---------- D : Scalar or vector of displacement in meters (floats). L : Scalar or vector of lengths in kilometers (floats). p_M : Prior magnitude distribution p(M), in the Pdf class from culpable.stats. p_M_type : Type of prior. Current values are 'uniform' and 'GR_surface_break' (i.e., a Gutenberg-Richter with WC 1994's correction for the likelihood of events of different sizes breaking the surface, as reported in BW 2006). p_M_min : Minimum prior magnitude; only needed if `p_M` is not given. p_M_min : Minimum prior magnitude; only needed if `p_M` is not given. M_step : Spacing for `p_M`; only needed if `p_M` is not given. n_M : number of points for `p_M`; only needed if `p_M` is not given. D_ref : Reference for magnitude-displacement scaling relationships. See `M_from_D` for a list of implemented relationships. L_ref : Reference for magnitude-length scaling relationships. See `M_from_L` for a list of implemented relationships. mc : Boolean that describes whether to propagate the uncertainty (standard errors) in the scaling relationship to the posterior using a Monte Carlo simulation. sample_bias_correction: Boolean indicating whether to correct for preferential sampling of scarps proportionally to the offset at a point relative to the min and max offsets. Returns ------ p_M_D : Pdf function of the posterior magnitude estimation p(M|D). """ if p_M is None: p_M = make_p_M(p_M_type=p_M_type, p_M_min=p_M_min, p_M_max=p_M_max, M_step=M_step, n_M=n_M) p_M_D_ = p_M_D(D, p_M, ref=D_ref, sample_bias_corr=sample_bias_corr) p_M_L_samples = M_from_L(L, ref=L_ref, mc=L_mc) p_M_L_ = pdf_from_samples(p_M_L_samples, x_min=p_M.x.min(), x_max=p_M.x.max()) return multiply_pdfs(p_M_L_, p_M_D_)
mit
3,321,407,271,756,784,000
33.628615
79
0.551976
false
huwiki/featured-feeds
rsslib.py
1
4281
#!/usr/bin/python # -*- coding: iso-8859-2 -*- import sys, os import re, string import time, datetime, calendar, locale import urllib import cPickle import xml.sax.saxutils locale.setlocale(locale.LC_TIME, 'en_GB') currenttimestamp = time.strftime(u'%a, %d %b %Y %H:%M:%S +0000', time.gmtime()) locale.setlocale(locale.LC_TIME, 'hu_HU') # general settings settings = { 'rss_webmaster': u'[email protected] (Tisza Gergõ)', 'program_name': 'WpFeedMaker', 'program_version': '1.0', 'program_contact': '[email protected]', } # helpers def encode_title(s): s = s[0:1].upper() + s[1:] s = re.sub(' ', '_', s) return urllib.quote(s.encode('utf-8')) def date_vars(date, extend = {}): if date.isocalendar()[2] < 4: n = 1 else: n = 2 iso = date.isocalendar() dict = { 'year': iso[0], 'years1': iso[0] % 5, 'years2': iso[0] % 5 + 5, 'month': date.month, 'monthname': calendar.month_name[date.month].decode('iso-8859-2'), 'day' : date.day, 'week': iso[1], 'dow' : iso[2], 'n' : n, } dict.update(extend) return dict # Subclassing of URLopener - sets "User-agent: ", which Wikipedia requires to be set # to something else than the default "Python-urllib" class MyURLopener(urllib.URLopener): version = settings['program_name'] + "/" + settings['program_version'] + " " + settings['program_contact'] # Caching of HTML from Wikipedia class CacheItem: def __init__(self, html, date, fetchtime): self.html = html self.date = date self.fetchtime = fetchtime class WPCache: def __init__(self, settings): self.settings = settings self.url_opener = MyURLopener() self.filename = self.settings['cache_filename'] if (os.path.exists(self.filename)): file = open(self.filename) self.cache = cPickle.load(file) file.close() else: self.cache = {} def get_html(self, url, date): if url in self.cache: return self.cache[url].html else: html = self.url_opener.open(url).read() cacheitem = CacheItem(html, date, time.gmtime()) self.cache[url] = cacheitem return html # Weed out old entries, so cache doesn't get big def too_old(self, date): return (datetime.date.today() - date).days > self.settings['time_range'] def weed_out_old(self): self.cache = dict([x for x in self.cache.items() if not self.too_old(x[1].date)]) def save(self): self.weed_out_old() file = open(self.filename, "w") p = cPickle.Pickler(file) p.dump(self.cache) class WPFeed: def __init__(self, settings): self.settings = settings self.cache = WPCache(self.settings) def get_html(self, url, date, clean = True): html = self.cache.get_html(url, date) if clean: html = re.sub('\s*<!--[\s\S]*?-->\s*', '', html) return html def rss_item(self, item): return """<item> <title>%(title)s</title> <link>%(url)s</link> <guid isPermaLink="true">%(url)s</guid> <description>%(escaped_content)s</description> </item> """ % { 'title': xml.sax.saxutils.escape(item['title']), 'url': item['url'], 'escaped_content': xml.sax.saxutils.escape(item['content']), } def rss(self, items): self.xml = """<?xml version="1.0" encoding="UTF-8"?> <rss version="2.0" xmlns:blogChannel="http://backend.userland.com/blogChannelModule"> <channel> <title>%(rss_title)s</title> <link>%(rss_link)s</link> <description>%(rss_description)s</description> <language>hu</language> <copyright>CC-BY-SA-3.0</copyright> <lastBuildDate>%(build_date)s</lastBuildDate> <docs>http://blogs.law.harvard.edu/tech/rss</docs> <webMaster>%(webmaster)s</webMaster> <generator>%(generator)s</generator> %(items)s </channel> </rss> """ % { 'rss_title': self.settings['rss_title'], 'rss_link': self.settings['rss_link'], 'rss_description': self.settings['rss_description'], 'webmaster': settings['rss_webmaster'], 'build_date': currenttimestamp, 'items': '\n'.join(map(self.rss_item, items)), 'generator': settings['program_name'] + ' ' + settings['program_version'], } def save(self): file = open(self.settings['output_filename'], "w") file.write(self.xml.encode('utf-8')) file.close() self.cache.save() def main(): print "This file cannot be invoked directly" sys.exit(1) if __name__ == '__main__': main()
mit
-2,498,234,806,636,101,000
25.103659
107
0.640972
false
mgedmin/objgraph
objgraph.py
1
43531
""" Tools for drawing Python object reference graphs with graphviz. You can find documentation online at https://mg.pov.lt/objgraph/ Copyright (c) 2008-2017 Marius Gedminas <[email protected]> and contributors Released under the MIT licence. """ # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. from __future__ import print_function import codecs import collections import gc import inspect import itertools import operator import os import re import subprocess import sys import tempfile import types try: # Python 2.x compatibility from StringIO import StringIO except ImportError: # pragma: PY3 from io import StringIO try: from types import InstanceType except ImportError: # pragma: PY3 # Python 3.x compatibility InstanceType = None __author__ = "Marius Gedminas ([email protected])" __copyright__ = "Copyright (c) 2008-2017 Marius Gedminas and contributors" __license__ = "MIT" __version__ = '3.5.1.dev0' __date__ = '2020-10-11' try: basestring except NameError: # pragma: PY3 # Python 3.x compatibility basestring = str try: iteritems = dict.iteritems except AttributeError: # pragma: PY3 # Python 3.x compatibility iteritems = dict.items IS_INTERACTIVE = False try: # pragma: nocover import graphviz if 'TerminalInteractiveShell' not in get_ipython().__class__.__name__: # So far I know two shells where it's inappropriate to use inline # graphics, because they're text only: # - ipython uses a TerminalInteractiveShell # - pycharm's console uses PyDevTerminalInteractiveShell IS_INTERACTIVE = True except (NameError, ImportError): pass def _isinstance(object, classinfo): """Return whether an object is an instance of a class or its subclass. Differs from the builtin isinstance() implementation in that it does not depend on the ``__class__`` attribute which is proxied by mock.Mock(spec=...). """ return issubclass(type(object), classinfo) def count(typename, objects=None): """Count objects tracked by the garbage collector with a given class name. The class name can optionally be fully qualified. Example: >>> count('dict') 42 >>> count('mymodule.MyClass') 2 .. note:: The Python garbage collector does not track simple objects like int or str. See https://docs.python.org/3/library/gc.html#gc.is_tracked for more information. Instead of looking through all objects tracked by the GC, you may specify your own collection, e.g. >>> count('MyClass', get_leaking_objects()) 3 See also: :func:`get_leaking_objects`. .. versionchanged:: 1.7 New parameter: ``objects``. .. versionchanged:: 1.8 Accepts fully-qualified type names (i.e. 'package.module.ClassName') as well as short type names (i.e. 'ClassName'). """ if objects is None: objects = gc.get_objects() try: if '.' in typename: return sum(1 for o in objects if _long_typename(o) == typename) else: return sum(1 for o in objects if _short_typename(o) == typename) finally: del objects # clear cyclic references to frame def typestats(objects=None, shortnames=True, filter=None): """Count the number of instances for each type tracked by the GC. Note that the GC does not track simple objects like int or str. Note that classes with the same name but defined in different modules will be lumped together if ``shortnames`` is True. If ``filter`` is specified, it should be a function taking one argument and returning a boolean. Objects for which ``filter(obj)`` returns ``False`` will be ignored. Example: >>> typestats() {'list': 12041, 'tuple': 10245, ...} >>> typestats(get_leaking_objects()) {'MemoryError': 1, 'tuple': 2795, 'RuntimeError': 1, 'list': 47, ...} .. versionadded:: 1.1 .. versionchanged:: 1.7 New parameter: ``objects``. .. versionchanged:: 1.8 New parameter: ``shortnames``. .. versionchanged:: 3.1.3 New parameter: ``filter``. """ if objects is None: objects = gc.get_objects() try: if shortnames: typename = _short_typename else: typename = _long_typename stats = {} for o in objects: if filter and not filter(o): continue n = typename(o) stats[n] = stats.get(n, 0) + 1 return stats finally: del objects # clear cyclic references to frame def most_common_types(limit=10, objects=None, shortnames=True, filter=None): """Count the names of types with the most instances. Returns a list of (type_name, count), sorted most-frequent-first. Limits the return value to at most ``limit`` items. You may set ``limit`` to None to avoid that. If ``filter`` is specified, it should be a function taking one argument and returning a boolean. Objects for which ``filter(obj)`` returns ``False`` will be ignored. The caveats documented in :func:`typestats` apply. Example: >>> most_common_types(limit=2) [('list', 12041), ('tuple', 10245)] .. versionadded:: 1.4 .. versionchanged:: 1.7 New parameter: ``objects``. .. versionchanged:: 1.8 New parameter: ``shortnames``. .. versionchanged:: 3.1.3 New parameter: ``filter``. """ stats = sorted( typestats(objects, shortnames=shortnames, filter=filter).items(), key=operator.itemgetter(1), reverse=True) if limit: stats = stats[:limit] return stats def show_most_common_types( limit=10, objects=None, shortnames=True, file=None, filter=None): """Print the table of types of most common instances. If ``filter`` is specified, it should be a function taking one argument and returning a boolean. Objects for which ``filter(obj)`` returns ``False`` will be ignored. The caveats documented in :func:`typestats` apply. Example: >>> show_most_common_types(limit=5) tuple 8959 function 2442 wrapper_descriptor 1048 dict 953 builtin_function_or_method 800 .. versionadded:: 1.1 .. versionchanged:: 1.7 New parameter: ``objects``. .. versionchanged:: 1.8 New parameter: ``shortnames``. .. versionchanged:: 3.0 New parameter: ``file``. .. versionchanged:: 3.1.3 New parameter: ``filter``. """ if file is None: file = sys.stdout stats = most_common_types(limit, objects, shortnames=shortnames, filter=filter) width = max(len(name) for name, count in stats) for name, count in stats: file.write('%-*s %i\n' % (width, name, count)) def growth(limit=10, peak_stats={}, shortnames=True, filter=None): """Count the increase in peak object since last call. Returns a list of (type_name, total_count, increase_delta), descending order by increase_delta. Limits the output to ``limit`` largest deltas. You may set ``limit`` to None to see all of them. Uses and updates ``peak_stats``, a dictionary from type names to previously seen peak object counts. Usually you don't need to pay attention to this argument. If ``filter`` is specified, it should be a function taking one argument and returning a boolean. Objects for which ``filter(obj)`` returns ``False`` will be ignored. The caveats documented in :func:`typestats` apply. Example: >>> growth(2) [(tuple, 12282, 10), (dict, 1922, 7)] .. versionadded:: 3.3.0 """ gc.collect() stats = typestats(shortnames=shortnames, filter=filter) deltas = {} for name, count in iteritems(stats): old_count = peak_stats.get(name, 0) if count > old_count: deltas[name] = count - old_count peak_stats[name] = count deltas = sorted(deltas.items(), key=operator.itemgetter(1), reverse=True) if limit: deltas = deltas[:limit] return [(name, stats[name], delta) for name, delta in deltas] def show_growth(limit=10, peak_stats=None, shortnames=True, file=None, filter=None): """Show the increase in peak object counts since last call. if ``peak_stats`` is None, peak object counts will recorded in func `growth`, and your can record the counts by yourself with set ``peak_stats`` to a dictionary. The caveats documented in :func:`growth` apply. Example: >>> show_growth() wrapper_descriptor 970 +14 tuple 12282 +10 dict 1922 +7 ... .. versionadded:: 1.5 .. versionchanged:: 1.8 New parameter: ``shortnames``. .. versionchanged:: 2.1 New parameter: ``file``. .. versionchanged:: 3.1.3 New parameter: ``filter``. """ if peak_stats is None: result = growth(limit, shortnames=shortnames, filter=filter) else: result = growth(limit, peak_stats, shortnames, filter) if result: if file is None: file = sys.stdout width = max(len(name) for name, _, _ in result) for name, count, delta in result: file.write('%-*s%9d %+9d\n' % (width, name, count, delta)) def get_new_ids(skip_update=False, limit=10, sortby='deltas', shortnames=None, file=None, _state={}): """Find and display new objects allocated since last call. Shows the increase in object counts since last call to this function and returns the memory address ids for new objects. Returns a dictionary mapping object type names to sets of object IDs that have been created since the last time this function was called. ``skip_update`` (bool): If True, returns the same dictionary that was returned during the previous call without updating the internal state or examining the objects currently in memory. ``limit`` (int): The maximum number of rows that you want to print data for. Use 0 to suppress the printing. Use None to print everything. ``sortby`` (str): This is the column that you want to sort by in descending order. Possible values are: 'old', 'current', 'new', 'deltas' ``shortnames`` (bool): If True, classes with the same name but defined in different modules will be lumped together. If False, all type names will be qualified with the module name. If None (default), ``get_new_ids`` will remember the value from previous calls, so it's enough to prime this once. By default the primed value is True. ``_state`` (dict): Stores old, current, and new_ids in memory. It is used by the function to store the internal state between calls. Never pass in this argument unless you know what you're doing. The caveats documented in :func:`growth` apply. When one gets new_ids from :func:`get_new_ids`, one can use :func:`at_addrs` to get a list of those objects. Then one can iterate over the new objects, print out what they are, and call :func:`show_backrefs` or :func:`show_chain` to see where they are referenced. Example: >>> _ = get_new_ids() # store current objects in _state >>> _ = get_new_ids() # current_ids become old_ids in _state >>> a = [0, 1, 2] # list we don't know about >>> b = [3, 4, 5] # list we don't know about >>> new_ids = get_new_ids(limit=3) # we see new lists ====================================================================== Type Old_ids Current_ids New_ids Count_Deltas ====================================================================== list 324 326 +3 +2 dict 1125 1125 +0 +0 wrapper_descriptor 1001 1001 +0 +0 ====================================================================== >>> new_lists = at_addrs(new_ids['list']) >>> a in new_lists True >>> b in new_lists True .. versionadded:: 3.4 """ if not _state: _state['old'] = collections.defaultdict(set) _state['current'] = collections.defaultdict(set) _state['new'] = collections.defaultdict(set) _state['shortnames'] = True new_ids = _state['new'] if skip_update: return new_ids old_ids = _state['old'] current_ids = _state['current'] if shortnames is None: shortnames = _state['shortnames'] else: _state['shortnames'] = shortnames gc.collect() objects = gc.get_objects() for class_name in old_ids: old_ids[class_name].clear() for class_name, ids_set in current_ids.items(): old_ids[class_name].update(ids_set) for class_name in current_ids: current_ids[class_name].clear() for o in objects: if shortnames: class_name = _short_typename(o) else: class_name = _long_typename(o) id_number = id(o) current_ids[class_name].add(id_number) for class_name in new_ids: new_ids[class_name].clear() rows = [] keys_to_remove = [] for class_name in current_ids: num_old = len(old_ids[class_name]) num_current = len(current_ids[class_name]) if num_old == 0 and num_current == 0: # remove the key from our dicts if we don't have any old or # current class_name objects keys_to_remove.append(class_name) continue new_ids_set = current_ids[class_name] - old_ids[class_name] new_ids[class_name].update(new_ids_set) num_new = len(new_ids_set) num_delta = num_current - num_old row = (class_name, num_old, num_current, num_new, num_delta) rows.append(row) for key in keys_to_remove: del old_ids[key] del current_ids[key] del new_ids[key] index_by_sortby = {'old': 1, 'current': 2, 'new': 3, 'deltas': 4} rows.sort(key=operator.itemgetter(index_by_sortby[sortby], 0), reverse=True) if limit is not None: rows = rows[:limit] if not rows: return new_ids if file is None: file = sys.stdout width = max(len(row[0]) for row in rows) print('='*(width+13*4), file=file) print('%-*s%13s%13s%13s%13s' % (width, 'Type', 'Old_ids', 'Current_ids', 'New_ids', 'Count_Deltas'), file=file) print('='*(width+13*4), file=file) for row_class, old, current, new, delta in rows: print('%-*s%13d%13d%+13d%+13d' % (width, row_class, old, current, new, delta), file=file) print('='*(width+13*4), file=file) return new_ids def get_leaking_objects(objects=None): """Return objects that do not have any referents. These could indicate reference-counting bugs in C code. Or they could be legitimate. Note that the GC does not track simple objects like int or str. .. versionadded:: 1.7 """ if objects is None: gc.collect() objects = gc.get_objects() try: ids = set(id(i) for i in objects) for i in objects: ids.difference_update(id(j) for j in gc.get_referents(i)) # this then is our set of objects without referrers return [i for i in objects if id(i) in ids] finally: del objects, i # clear cyclic references to frame def by_type(typename, objects=None): """Return objects tracked by the garbage collector with a given class name. Example: >>> by_type('MyClass') [<mymodule.MyClass object at 0x...>] Note that the GC does not track simple objects like int or str. .. versionchanged:: 1.7 New parameter: ``objects``. .. versionchanged:: 1.8 Accepts fully-qualified type names (i.e. 'package.module.ClassName') as well as short type names (i.e. 'ClassName'). """ if objects is None: objects = gc.get_objects() try: if '.' in typename: return [o for o in objects if _long_typename(o) == typename] else: return [o for o in objects if _short_typename(o) == typename] finally: del objects # clear cyclic references to frame def at(addr): """Return an object at a given memory address. The reverse of id(obj): >>> at(id(obj)) is obj True Note that this function does not work on objects that are not tracked by the GC (e.g. ints or strings). """ for o in gc.get_objects(): if id(o) == addr: return o return None def at_addrs(address_set): """Return a list of objects for a given set of memory addresses. The reverse of [id(obj1), id(obj2), ...]. Note that objects are returned in an arbitrary order. When one gets ``new_ids`` from :func:`get_new_ids`, one can use this function to get a list of those objects. Then one can iterate over the new objects, print out what they are, and call :func:`show_backrefs` or :func:`show_chain` to see where they are referenced. >>> a = [0, 1, 2] >>> new_ids = get_new_ids() >>> new_lists = at_addrs(new_ids['list']) >>> a in new_lists True Note that this function does not work on objects that are not tracked by the GC (e.g. ints or strings). .. versionadded:: 3.4 """ res = [] for o in gc.get_objects(): if id(o) in address_set: res.append(o) return res def find_ref_chain(obj, predicate, max_depth=20, extra_ignore=()): """Find a shortest chain of references leading from obj. The end of the chain will be some object that matches your predicate. ``predicate`` is a function taking one argument and returning a boolean. ``max_depth`` limits the search depth. ``extra_ignore`` can be a list of object IDs to exclude those objects from your search. Example: >>> find_ref_chain(obj, lambda x: isinstance(x, MyClass)) [obj, ..., <MyClass object at ...>] Returns ``[obj]`` if such a chain could not be found. .. versionadded:: 1.7 """ return _find_chain(obj, predicate, gc.get_referents, max_depth=max_depth, extra_ignore=extra_ignore)[::-1] def find_backref_chain(obj, predicate, max_depth=20, extra_ignore=()): """Find a shortest chain of references leading to obj. The start of the chain will be some object that matches your predicate. ``predicate`` is a function taking one argument and returning a boolean. ``max_depth`` limits the search depth. ``extra_ignore`` can be a list of object IDs to exclude those objects from your search. Example: >>> find_backref_chain(obj, is_proper_module) [<module ...>, ..., obj] Returns ``[obj]`` if such a chain could not be found. .. versionchanged:: 1.5 Returns ``obj`` instead of ``None`` when a chain could not be found. """ return _find_chain(obj, predicate, gc.get_referrers, max_depth=max_depth, extra_ignore=extra_ignore) def show_backrefs(objs, max_depth=3, extra_ignore=(), filter=None, too_many=10, highlight=None, filename=None, extra_info=None, refcounts=False, shortnames=True, output=None, extra_node_attrs=None): """Generate an object reference graph ending at ``objs``. The graph will show you what objects refer to ``objs``, directly and indirectly. ``objs`` can be a single object, or it can be a list of objects. If unsure, wrap the single object in a new list. ``filename`` if specified, can be the name of a .dot or a image file, whose extension indicates the desired output format; note that output to a specific format is entirely handled by GraphViz: if the desired format is not supported, you just get the .dot file. If ``filename`` and ``output`` are not specified, ``show_backrefs`` will try to display the graph inline (if you're using IPython), otherwise it'll try to produce a .dot file and spawn a viewer (xdot). If xdot is not available, ``show_backrefs`` will convert the .dot file to a .png and print its name. ``output`` if specified, the GraphViz output will be written to this file object. ``output`` and ``filename`` should not both be specified. Use ``max_depth`` and ``too_many`` to limit the depth and breadth of the graph. Use ``filter`` (a predicate) and ``extra_ignore`` (a list of object IDs) to remove undesired objects from the graph. Use ``highlight`` (a predicate) to highlight certain graph nodes in blue. Use ``extra_info`` (a function taking one argument and returning a string) to report extra information for objects. Use ``extra_node_attrs`` (a function taking the current object as argument, returning a dict of strings) to add extra attributes to the nodes. See https://www.graphviz.org/doc/info/attrs.html for a list of possible node attributes. Specify ``refcounts=True`` if you want to see reference counts. These will mostly match the number of arrows pointing to an object, but can be different for various reasons. Specify ``shortnames=False`` if you want to see fully-qualified type names ('package.module.ClassName'). By default you get to see only the class name part. Examples: >>> show_backrefs(obj) >>> show_backrefs([obj1, obj2]) >>> show_backrefs(obj, max_depth=5) >>> show_backrefs(obj, filter=lambda x: not inspect.isclass(x)) >>> show_backrefs(obj, highlight=inspect.isclass) >>> show_backrefs(obj, extra_ignore=[id(locals())]) >>> show_backrefs(obj, extra_node_attrs=lambda x: dict(URL=str(id(x)))) .. versionchanged:: 1.3 New parameters: ``filename``, ``extra_info``. .. versionchanged:: 1.5 New parameter: ``refcounts``. .. versionchanged:: 1.8 New parameter: ``shortnames``. .. versionchanged:: 2.0 New parameter: ``output``. .. versionchanged:: 3.5 New parameter: ``extra_node_attrs``. """ # For show_backrefs(), it makes sense to stop when reaching a # module because you'll end up in sys.modules and explode the # graph with useless clutter. That's why we're specifying # cull_func here, but not in show_graph(). return _show_graph(objs, max_depth=max_depth, extra_ignore=extra_ignore, filter=filter, too_many=too_many, highlight=highlight, edge_func=gc.get_referrers, swap_source_target=False, filename=filename, output=output, extra_info=extra_info, refcounts=refcounts, shortnames=shortnames, cull_func=is_proper_module, extra_node_attrs=extra_node_attrs) def show_refs(objs, max_depth=3, extra_ignore=(), filter=None, too_many=10, highlight=None, filename=None, extra_info=None, refcounts=False, shortnames=True, output=None, extra_node_attrs=None): """Generate an object reference graph starting at ``objs``. The graph will show you what objects are reachable from ``objs``, directly and indirectly. ``objs`` can be a single object, or it can be a list of objects. If unsure, wrap the single object in a new list. ``filename`` if specified, can be the name of a .dot or a image file, whose extension indicates the desired output format; note that output to a specific format is entirely handled by GraphViz: if the desired format is not supported, you just get the .dot file. If ``filename`` and ``output`` is not specified, ``show_refs`` will try to display the graph inline (if you're using IPython), otherwise it'll try to produce a .dot file and spawn a viewer (xdot). If xdot is not available, ``show_refs`` will convert the .dot file to a .png and print its name. ``output`` if specified, the GraphViz output will be written to this file object. ``output`` and ``filename`` should not both be specified. Use ``max_depth`` and ``too_many`` to limit the depth and breadth of the graph. Use ``filter`` (a predicate) and ``extra_ignore`` (a list of object IDs) to remove undesired objects from the graph. Use ``highlight`` (a predicate) to highlight certain graph nodes in blue. Use ``extra_info`` (a function returning a string) to report extra information for objects. Use ``extra_node_attrs`` (a function taking the current object as argument, returning a dict of strings) to add extra attributes to the nodes. See https://www.graphviz.org/doc/info/attrs.html for a list of possible node attributes. Specify ``refcounts=True`` if you want to see reference counts. Examples: >>> show_refs(obj) >>> show_refs([obj1, obj2]) >>> show_refs(obj, max_depth=5) >>> show_refs(obj, filter=lambda x: not inspect.isclass(x)) >>> show_refs(obj, highlight=inspect.isclass) >>> show_refs(obj, extra_ignore=[id(locals())]) >>> show_refs(obj, extra_node_attrs=lambda x: dict(URL=str(id(x)))) .. versionadded:: 1.1 .. versionchanged:: 1.3 New parameters: ``filename``, ``extra_info``. .. versionchanged:: 1.5 Follows references from module objects instead of stopping. New parameter: ``refcounts``. .. versionchanged:: 1.8 New parameter: ``shortnames``. .. versionchanged:: 2.0 New parameter: ``output``. .. versionchanged:: 3.5 New parameter: ``extra_node_attrs``. """ return _show_graph(objs, max_depth=max_depth, extra_ignore=extra_ignore, filter=filter, too_many=too_many, highlight=highlight, edge_func=gc.get_referents, swap_source_target=True, filename=filename, extra_info=extra_info, refcounts=refcounts, shortnames=shortnames, output=output, extra_node_attrs=extra_node_attrs) def show_chain(*chains, **kw): """Show a chain (or several chains) of object references. Useful in combination with :func:`find_ref_chain` or :func:`find_backref_chain`, e.g. >>> show_chain(find_backref_chain(obj, is_proper_module)) You can specify if you want that chain traced backwards or forwards by passing a ``backrefs`` keyword argument, e.g. >>> show_chain(find_ref_chain(obj, is_proper_module), ... backrefs=False) Ideally this shouldn't matter, but for some objects :func:`gc.get_referrers` and :func:`gc.get_referents` are not perfectly symmetrical. You can specify ``highlight``, ``extra_info``, ``refcounts``, ``shortnames``, ``filename`` or ``output`` arguments like for :func:`show_backrefs` or :func:`show_refs`. .. versionadded:: 1.5 .. versionchanged:: 1.7 New parameter: ``backrefs``. .. versionchanged:: 2.0 New parameter: ``output``. """ backrefs = kw.pop('backrefs', True) chains = [chain for chain in chains if chain] # remove empty ones def in_chains(x, ids=set(map(id, itertools.chain(*chains)))): return id(x) in ids max_depth = max(map(len, chains)) - 1 if backrefs: show_backrefs([chain[-1] for chain in chains], max_depth=max_depth, filter=in_chains, **kw) else: show_refs([chain[0] for chain in chains], max_depth=max_depth, filter=in_chains, **kw) def is_proper_module(obj): """ Returns ``True`` if ``obj`` can be treated like a garbage collector root. That is, if ``obj`` is a module that is in ``sys.modules``. >>> import types >>> is_proper_module([]) False >>> is_proper_module(types) True >>> is_proper_module(types.ModuleType('foo')) False .. versionadded:: 1.8 """ return ( inspect.ismodule(obj) and obj is sys.modules.get(getattr(obj, '__name__', None)) ) # # Internal helpers # def _find_chain(obj, predicate, edge_func, max_depth=20, extra_ignore=()): queue = [obj] depth = {id(obj): 0} parent = {id(obj): None} ignore = set(extra_ignore) ignore.add(id(extra_ignore)) ignore.add(id(queue)) ignore.add(id(depth)) ignore.add(id(parent)) ignore.add(id(ignore)) ignore.add(id(sys._getframe())) # this function ignore.add(id(sys._getframe(1))) # find_chain/find_backref_chain gc.collect() while queue: target = queue.pop(0) if predicate(target): chain = [target] while parent[id(target)] is not None: target = parent[id(target)] chain.append(target) return chain tdepth = depth[id(target)] if tdepth < max_depth: referrers = edge_func(target) ignore.add(id(referrers)) for source in referrers: if id(source) in ignore: continue if id(source) not in depth: depth[id(source)] = tdepth + 1 parent[id(source)] = target queue.append(source) return [obj] # not found def _show_graph(objs, edge_func, swap_source_target, max_depth=3, extra_ignore=(), filter=None, too_many=10, highlight=None, filename=None, extra_info=None, refcounts=False, shortnames=True, output=None, cull_func=None, extra_node_attrs=None): if not _isinstance(objs, (list, tuple)): objs = [objs] is_interactive = False if filename and output: raise ValueError('Cannot specify both output and filename.') elif output: f = output elif filename and filename.endswith('.dot'): f = codecs.open(filename, 'w', encoding='utf-8') dot_filename = filename elif IS_INTERACTIVE and not filename: is_interactive = True f = StringIO() else: fd, dot_filename = tempfile.mkstemp(prefix='objgraph-', suffix='.dot', text=True) f = os.fdopen(fd, "w") if getattr(f, 'encoding', None): # pragma: PY3 # Python 3 will wrap the file in the user's preferred encoding # Re-wrap it for utf-8 import io f = io.TextIOWrapper(f.detach(), 'utf-8') f.write('digraph ObjectGraph {\n' ' node[shape=box, style=filled, fillcolor=white];\n') queue = [] depth = {} ignore = set(extra_ignore) ignore.add(id(objs)) ignore.add(id(extra_ignore)) ignore.add(id(queue)) ignore.add(id(depth)) ignore.add(id(ignore)) ignore.add(id(sys._getframe())) # this function ignore.add(id(sys._getframe().f_locals)) ignore.add(id(sys._getframe(1))) # show_refs/show_backrefs ignore.add(id(sys._getframe(1).f_locals)) for obj in objs: f.write(' %s[fontcolor=red];\n' % (_obj_node_id(obj))) depth[id(obj)] = 0 queue.append(obj) del obj gc.collect() nodes = 0 while queue: nodes += 1 # The names "source" and "target" are reversed here because # originally there was just show_backrefs() and we were # traversing the reference graph backwards. target = queue.pop(0) tdepth = depth[id(target)] f.write(' %s[label="%s"%s];\n' % (_obj_node_id(target), _obj_label(target, extra_info, refcounts, shortnames), _obj_attrs(target, extra_node_attrs))) h, s, v = _gradient((0, 0, 1), (0, 0, .3), tdepth, max_depth) if inspect.ismodule(target): h = .3 s = 1 if highlight and highlight(target): h = .6 s = .6 v = 0.5 + v * 0.5 f.write(' %s[fillcolor="%g,%g,%g"];\n' % (_obj_node_id(target), h, s, v)) if v < 0.5: f.write(' %s[fontcolor=white];\n' % (_obj_node_id(target))) if hasattr(getattr(target, '__class__', None), '__del__'): f.write(' %s->%s_has_a_del[color=red,style=dotted,' 'len=0.25,weight=10];\n' % (_obj_node_id(target), _obj_node_id(target))) f.write(' %s_has_a_del[label="__del__",shape=doublecircle,' 'height=0.25,color=red,fillcolor="0,.5,1",fontsize=6];\n' % (_obj_node_id(target))) if tdepth >= max_depth: continue if cull_func is not None and cull_func(target): continue neighbours = edge_func(target) ignore.add(id(neighbours)) n = 0 skipped = 0 for source in neighbours: if id(source) in ignore: continue if filter and not filter(source): continue if n >= too_many: skipped += 1 continue if swap_source_target: srcnode, tgtnode = target, source else: srcnode, tgtnode = source, target elabel = _edge_label(srcnode, tgtnode, shortnames) f.write(' %s -> %s%s;\n' % (_obj_node_id(srcnode), _obj_node_id(tgtnode), elabel)) if id(source) not in depth: depth[id(source)] = tdepth + 1 queue.append(source) n += 1 del source del neighbours if skipped > 0: h, s, v = _gradient((0, 1, 1), (0, 1, .3), tdepth + 1, max_depth) if swap_source_target: label = "%d more references" % skipped edge = "%s->too_many_%s" % (_obj_node_id(target), _obj_node_id(target)) else: label = "%d more backreferences" % skipped edge = "too_many_%s->%s" % (_obj_node_id(target), _obj_node_id(target)) f.write(' %s[color=red,style=dotted,len=0.25,weight=10];\n' % edge) f.write(' too_many_%s[label="%s",shape=box,height=0.25,' 'color=red,fillcolor="%g,%g,%g",fontsize=6];\n' % (_obj_node_id(target), label, h, s, v)) f.write(' too_many_%s[fontcolor=white];\n' % (_obj_node_id(target))) f.write("}\n") if output: return if is_interactive: return graphviz.Source(f.getvalue()) else: # The file should only be closed if this function was in charge of # opening the file. f.close() print("Graph written to %s (%d nodes)" % (dot_filename, nodes)) _present_graph(dot_filename, filename) def _present_graph(dot_filename, filename=None): """Present a .dot file to the user in the requested fashion. If ``filename`` is provided, runs ``dot`` to convert the .dot file into the desired format, determined by the filename extension. If ``filename`` is not provided, tries to launch ``xdot``, a graphical .dot file viewer. If ``xdot`` is not present on the system, converts the graph to a PNG. """ if filename == dot_filename: # nothing to do, the user asked for a .dot file and got it return if not filename and _program_in_path('xdot'): print("Spawning graph viewer (xdot)") subprocess.Popen(['xdot', dot_filename], close_fds=True) elif _program_in_path('dot'): if not filename: print("Graph viewer (xdot) not found, generating a png instead") filename = dot_filename[:-4] + '.png' stem, ext = os.path.splitext(filename) cmd = ['dot', '-T' + ext[1:], '-o' + filename, dot_filename] dot = subprocess.Popen(cmd, close_fds=False) dot.wait() if dot.returncode != 0: # XXX: shouldn't this go to stderr or a log? print('dot failed (exit code %d) while executing "%s"' % (dot.returncode, ' '.join(cmd))) else: print("Image generated as %s" % filename) else: if not filename: print("Graph viewer (xdot) and image renderer (dot) not found," " not doing anything else") else: print("Image renderer (dot) not found, not doing anything else") def _obj_node_id(obj): return ('o%d' % id(obj)).replace('-', '_') def _obj_attrs(obj, extra_node_attrs): if extra_node_attrs is not None: attrs = extra_node_attrs(obj) return ", " + ", ".join('%s="%s"' % (name, _quote(value)) for name, value in sorted(iteritems(attrs)) if value is not None) else: return "" def _obj_label(obj, extra_info=None, refcounts=False, shortnames=True): if shortnames: label = [_short_typename(obj)] else: label = [_long_typename(obj)] if refcounts: label[0] += ' [%d]' % (sys.getrefcount(obj) - 4) # Why -4? To ignore the references coming from # obj_label's frame (obj) # show_graph's frame (target variable) # sys.getrefcount()'s argument # something else that doesn't show up in gc.get_referrers() label.append(_safe_repr(obj)) if extra_info: label.append(str(extra_info(obj))) return _quote('\n'.join(label)) def _quote(s): return (s.replace("\\", "\\\\") .replace("\"", "\\\"") .replace("\n", "\\n") .replace("\0", "\\\\0")) def _get_obj_type(obj): objtype = type(obj) if type(obj) == InstanceType: # pragma: PY2 -- no old-style classes on PY3 objtype = obj.__class__ return objtype def _short_typename(obj): return _get_obj_type(obj).__name__ def _long_typename(obj): objtype = _get_obj_type(obj) name = objtype.__name__ module = getattr(objtype, '__module__', None) if module: return '%s.%s' % (module, name) else: return name def _safe_repr(obj): try: return _short_repr(obj) except Exception: return '(unrepresentable)' def _name_or_repr(value): try: result = value.__name__ except AttributeError: result = repr(value)[:40] if _isinstance(result, basestring): return result else: return repr(value)[:40] def _short_repr(obj): if _isinstance(obj, (type, types.ModuleType, types.BuiltinMethodType, types.BuiltinFunctionType)): return _name_or_repr(obj) if _isinstance(obj, types.MethodType): name = _name_or_repr(obj.__func__) if obj.__self__: return name + ' (bound)' else: # pragma: PY2 -- no unbound methods on Python 3 return name # NB: types.LambdaType is an alias for types.FunctionType! if _isinstance(obj, types.LambdaType) and obj.__name__ == '<lambda>': return 'lambda: %s:%s' % (os.path.basename(obj.__code__.co_filename), obj.__code__.co_firstlineno) if _isinstance(obj, types.FrameType): return '%s:%s' % (obj.f_code.co_filename, obj.f_lineno) if _isinstance(obj, (tuple, list, dict, set)): return '%d items' % len(obj) return repr(obj)[:40] def _gradient(start_color, end_color, depth, max_depth): if max_depth == 0: # avoid division by zero return start_color h1, s1, v1 = start_color h2, s2, v2 = end_color f = float(depth) / max_depth h = h1 * (1-f) + h2 * f s = s1 * (1-f) + s2 * f v = v1 * (1-f) + v2 * f return h, s, v def _edge_label(source, target, shortnames=True): if (_isinstance(target, dict) and target is getattr(source, '__dict__', None)): return ' [label="__dict__",weight=10]' if _isinstance(source, types.FrameType): if target is source.f_locals: return ' [label="f_locals",weight=10]' if target is source.f_globals: return ' [label="f_globals",weight=10]' if _isinstance(source, types.MethodType): try: if target is source.__self__: return ' [label="__self__",weight=10]' if target is source.__func__: return ' [label="__func__",weight=10]' except AttributeError: # pragma: nocover # Python < 2.6 compatibility if target is source.im_self: return ' [label="im_self",weight=10]' if target is source.im_func: return ' [label="im_func",weight=10]' if _isinstance(source, types.FunctionType): for k in dir(source): if target is getattr(source, k): return ' [label="%s",weight=10]' % _quote(k) if _isinstance(source, dict): for k, v in iteritems(source): if v is target: if _isinstance(k, basestring) and _is_identifier(k): return ' [label="%s",weight=2]' % _quote(k) else: if shortnames: tn = _short_typename(k) else: tn = _long_typename(k) return ' [label="%s"]' % _quote(tn + "\n" + _safe_repr(k)) return '' _is_identifier = re.compile('[a-zA-Z_][a-zA-Z_0-9]*$').match def _program_in_path(program): # XXX: Consider using distutils.spawn.find_executable or shutil.which path = os.environ.get("PATH", os.defpath).split(os.pathsep) path = [os.path.join(dir, program) for dir in path] path = [True for file in path if os.path.isfile(file) or os.path.isfile(file + '.exe')] return bool(path)
mit
6,699,779,760,792,617,000
33.575854
79
0.588202
false
t794104/ansible
lib/ansible/plugins/inventory/gcp_compute.py
1
19487
# Copyright (c) 2017 Ansible Project # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import (absolute_import, division, print_function) __metaclass__ = type DOCUMENTATION = ''' name: gcp_compute plugin_type: inventory short_description: Google Cloud Compute Engine inventory source requirements: - requests >= 2.18.4 - google-auth >= 1.3.0 extends_documentation_fragment: - constructed - inventory_cache description: - Get inventory hosts from Google Cloud Platform GCE. - Uses a YAML configuration file that ends with gcp_compute.(yml|yaml) or gcp.(yml|yaml). options: plugin: description: token that ensures this is a source file for the 'gcp_compute' plugin. required: True choices: ['gcp_compute'] zones: description: A list of regions in which to describe GCE instances. If none provided, it defaults to all zones available to a given project. type: list projects: description: A list of projects in which to describe GCE instances. type: list required: True filters: description: > A list of filter value pairs. Available filters are listed here U(https://cloud.google.com/compute/docs/reference/rest/v1/instances/aggregatedList). Each additional filter in the list will act be added as an AND condition (filter1 and filter2) type: list hostnames: description: A list of options that describe the ordering for which hostnames should be assigned. Currently supported hostnames are 'public_ip', 'private_ip', or 'name'. default: ['public_ip', 'private_ip', 'name'] type: list auth_kind: description: - The type of credential used. required: True choices: ['application', 'serviceaccount', 'machineaccount'] env: - name: GCP_AUTH_KIND version_added: "2.8" scopes: description: list of authentication scopes type: list default: ['https://www.googleapis.com/auth/compute'] env: - name: GCP_SCOPES version_added: "2.8" service_account_file: description: - The path of a Service Account JSON file if serviceaccount is selected as type. type: path env: - name: GCP_SERVICE_ACCOUNT_FILE version_added: "2.8" - name: GCE_CREDENTIALS_FILE_PATH version_added: "2.8" service_account_email: description: - An optional service account email address if machineaccount is selected and the user does not wish to use the default email. env: - name: GCP_SERVICE_ACCOUNT_EMAIL version_added: "2.8" vars_prefix: description: prefix to apply to host variables, does not include facts nor params default: '' use_contrib_script_compatible_sanitization: description: - By default this plugin is using a general group name sanitization to create safe and usable group names for use in Ansible. This option allows you to override that, in efforts to allow migration from the old inventory script. - For this to work you should also turn off the TRANSFORM_INVALID_GROUP_CHARS setting, otherwise the core engine will just use the standard sanitization on top. - This is not the default as such names break certain functionality as not all characters are valid Python identifiers which group names end up being used as. type: bool default: False version_added: '2.8' retrieve_image_info: description: - Populate the C(image) host fact for the instances returned with the GCP image name - By default this plugin does not attempt to resolve the boot image of an instance to the image name cataloged in GCP because of the performance overhead of the task. - Unless this option is enabled, the C(image) host variable will be C(null) type: bool default: False version_added: '2.8' ''' EXAMPLES = ''' plugin: gcp_compute zones: # populate inventory with instances in these regions - us-east1-a projects: - gcp-prod-gke-100 - gcp-cicd-101 filters: - machineType = n1-standard-1 - scheduling.automaticRestart = true AND machineType = n1-standard-1 service_account_file: /tmp/service_account.json auth_kind: serviceaccount scopes: - 'https://www.googleapis.com/auth/cloud-platform' - 'https://www.googleapis.com/auth/compute.readonly' keyed_groups: # Create groups from GCE labels - prefix: gcp key: labels hostnames: # List host by name instead of the default public ip - name compose: # Set an inventory parameter to use the Public IP address to connect to the host # For Private ip use "networkInterfaces[0].networkIP" ansible_host: networkInterfaces[0].accessConfigs[0].natIP ''' import json from ansible.errors import AnsibleError, AnsibleParserError from ansible.module_utils._text import to_text from ansible.module_utils.basic import missing_required_lib from ansible.module_utils.gcp_utils import GcpSession, navigate_hash, GcpRequestException, HAS_GOOGLE_LIBRARIES from ansible.plugins.inventory import BaseInventoryPlugin, Constructable, Cacheable # Mocking a module to reuse module_utils class GcpMockModule(object): def __init__(self, params): self.params = params def fail_json(self, *args, **kwargs): raise AnsibleError(kwargs['msg']) class InventoryModule(BaseInventoryPlugin, Constructable, Cacheable): NAME = 'gcp_compute' _instances = r"https://www.googleapis.com/compute/v1/projects/%s/aggregated/instances" def __init__(self): super(InventoryModule, self).__init__() self.group_prefix = 'gcp_' def _populate_host(self, item): ''' :param item: A GCP instance ''' hostname = self._get_hostname(item) self.inventory.add_host(hostname) for key in item: try: self.inventory.set_variable(hostname, self.get_option('vars_prefix') + key, item[key]) except (ValueError, TypeError) as e: self.display.warning("Could not set host info hostvar for %s, skipping %s: %s" % (hostname, key, to_text(e))) self.inventory.add_child('all', hostname) def verify_file(self, path): ''' :param path: the path to the inventory config file :return the contents of the config file ''' if super(InventoryModule, self).verify_file(path): if path.endswith(('gcp.yml', 'gcp.yaml')): return True elif path.endswith(('gcp_compute.yml', 'gcp_compute.yaml')): return True return False def fetch_list(self, params, link, query): ''' :param params: a dict containing all of the fields relevant to build URL :param link: a formatted URL :param query: a formatted query string :return the JSON response containing a list of instances. ''' response = self.auth_session.get(link, params={'filter': query}) return self._return_if_object(self.fake_module, response) def _get_query_options(self, filters): ''' :param config_data: contents of the inventory config file :return A fully built query string ''' if not filters: return '' if len(filters) == 1: return filters[0] else: queries = [] for f in filters: # For multiple queries, all queries should have () if f[0] != '(' and f[-1] != ')': queries.append("(%s)" % ''.join(f)) else: queries.append(f) return ' '.join(queries) def _return_if_object(self, module, response): ''' :param module: A GcpModule :param response: A Requests response object :return JSON response ''' # If not found, return nothing. if response.status_code == 404: return None # If no content, return nothing. if response.status_code == 204: return None try: response.raise_for_status result = response.json() except getattr(json.decoder, 'JSONDecodeError', ValueError) as inst: module.fail_json(msg="Invalid JSON response with error: %s" % inst) except GcpRequestException as inst: module.fail_json(msg="Network error: %s" % inst) if navigate_hash(result, ['error', 'errors']): module.fail_json(msg=navigate_hash(result, ['error', 'errors'])) if result['kind'] != 'compute#instanceAggregatedList' and result['kind'] != 'compute#zoneList': module.fail_json(msg="Incorrect result: {kind}".format(**result)) return result def _format_items(self, items, project_disks): ''' :param items: A list of hosts ''' for host in items: if 'zone' in host: host['zone_selflink'] = host['zone'] host['zone'] = host['zone'].split('/')[-1] if 'machineType' in host: host['machineType_selflink'] = host['machineType'] host['machineType'] = host['machineType'].split('/')[-1] if 'networkInterfaces' in host: for network in host['networkInterfaces']: if 'network' in network: network['network'] = self._format_network_info(network['network']) if 'subnetwork' in network: network['subnetwork'] = self._format_network_info(network['subnetwork']) host['project'] = host['selfLink'].split('/')[6] host['image'] = self._get_image(host, project_disks) return items def _add_hosts(self, items, config_data, format_items=True, project_disks=None): ''' :param items: A list of hosts :param config_data: configuration data :param format_items: format items or not ''' if not items: return if format_items: items = self._format_items(items, project_disks) for host in items: self._populate_host(host) hostname = self._get_hostname(host) self._set_composite_vars(self.get_option('compose'), host, hostname) self._add_host_to_composed_groups(self.get_option('groups'), host, hostname) self._add_host_to_keyed_groups(self.get_option('keyed_groups'), host, hostname) def _format_network_info(self, address): ''' :param address: A GCP network address :return a dict with network shortname and region ''' split = address.split('/') region = '' if 'global' in split: region = 'global' else: region = split[8] return { 'region': region, 'name': split[-1], 'selfLink': address } def _get_hostname(self, item): ''' :param item: A host response from GCP :return the hostname of this instance ''' hostname_ordering = ['public_ip', 'private_ip', 'name'] if self.get_option('hostnames'): hostname_ordering = self.get_option('hostnames') for order in hostname_ordering: name = None if order == 'public_ip': name = self._get_publicip(item) elif order == 'private_ip': name = self._get_privateip(item) elif order == 'name': name = item[u'name'] else: raise AnsibleParserError("%s is not a valid hostname precedent" % order) if name: return name raise AnsibleParserError("No valid name found for host") def _get_publicip(self, item): ''' :param item: A host response from GCP :return the publicIP of this instance or None ''' # Get public IP if exists for interface in item['networkInterfaces']: if 'accessConfigs' in interface: for accessConfig in interface['accessConfigs']: if 'natIP' in accessConfig: return accessConfig[u'natIP'] return None def _get_image(self, instance, project_disks): ''' :param instance: A instance response from GCP :return the image of this instance or None ''' image = None if project_disks and 'disks' in instance: for disk in instance['disks']: if disk.get('boot'): image = project_disks[disk["source"]] return image def _get_project_disks(self, config_data, query): ''' project space disk images ''' try: self._project_disks except AttributeError: self._project_disks = {} request_params = {'maxResults': 500, 'filter': query} for project in config_data['projects']: session_responses = [] page_token = True while page_token: response = self.auth_session.get( 'https://www.googleapis.com/compute/v1/projects/{0}/aggregated/disks'.format(project), params=request_params ) response_json = response.json() if 'nextPageToken' in response_json: request_params['pageToken'] = response_json['nextPageToken'] elif 'pageToken' in request_params: del request_params['pageToken'] if 'items' in response_json: session_responses.append(response_json) page_token = 'pageToken' in request_params for response in session_responses: if 'items' in response: # example k would be a zone or region name # example v would be { "disks" : [], "otherkey" : "..." } for zone_or_region, aggregate in response['items'].items(): if 'zones' in zone_or_region: if 'disks' in aggregate: zone = zone_or_region.replace('zones/', '') for disk in aggregate['disks']: if 'zones' in config_data and zone in config_data['zones']: # If zones specified, only store those zones' data if 'sourceImage' in disk: self._project_disks[disk['selfLink']] = disk['sourceImage'].split('/')[-1] else: self._project_disks[disk['selfLink']] = disk['selfLink'].split('/')[-1] else: if 'sourceImage' in disk: self._project_disks[disk['selfLink']] = disk['sourceImage'].split('/')[-1] else: self._project_disks[disk['selfLink']] = disk['selfLink'].split('/')[-1] return self._project_disks def _get_privateip(self, item): ''' :param item: A host response from GCP :return the privateIP of this instance or None ''' # Fallback: Get private IP for interface in item[u'networkInterfaces']: if 'networkIP' in interface: return interface[u'networkIP'] def parse(self, inventory, loader, path, cache=True): if not HAS_GOOGLE_LIBRARIES: raise AnsibleParserError('gce inventory plugin cannot start: %s' % missing_required_lib('google-auth')) super(InventoryModule, self).parse(inventory, loader, path) config_data = {} config_data = self._read_config_data(path) if self.get_option('use_contrib_script_compatible_sanitization'): self._sanitize_group_name = self._legacy_script_compatible_group_sanitization # setup parameters as expected by 'fake module class' to reuse module_utils w/o changing the API params = { 'filters': self.get_option('filters'), 'projects': self.get_option('projects'), 'scopes': self.get_option('scopes'), 'zones': self.get_option('zones'), 'auth_kind': self.get_option('auth_kind'), 'service_account_file': self.get_option('service_account_file'), 'service_account_email': self.get_option('service_account_email'), } self.fake_module = GcpMockModule(params) self.auth_session = GcpSession(self.fake_module, 'compute') query = self._get_query_options(params['filters']) if self.get_option('retrieve_image_info'): project_disks = self._get_project_disks(config_data, query) else: project_disks = None # Cache logic if cache: cache = self.get_option('cache') cache_key = self.get_cache_key(path) else: cache_key = None cache_needs_update = False if cache: try: results = self._cache[cache_key] for project in results: for zone in results[project]: self._add_hosts(results[project][zone], config_data, False, project_disks=project_disks) except KeyError: cache_needs_update = True if not cache or cache_needs_update: cached_data = {} for project in params['projects']: cached_data[project] = {} params['project'] = project zones = params['zones'] # Fetch all instances link = self._instances % project resp = self.fetch_list(params, link, query) for key, value in resp.get('items').items(): if 'instances' in value: # Key is in format: "zones/europe-west1-b" zone = key[6:] if not zones or zone in zones: self._add_hosts(value['instances'], config_data, project_disks=project_disks) cached_data[project][zone] = value['instances'] if cache_needs_update: self._cache[cache_key] = cached_data @staticmethod def _legacy_script_compatible_group_sanitization(name): return name
gpl-3.0
8,487,148,680,798,984,000
38.769388
137
0.556935
false
acg/lwpb
python/pbsplit.py
1
1605
#!/usr/bin/env python ''' pbsplit - split a protobuf stream into multiple files ''' import sys import getopt import lwpb import lwpb.stream import lwpb.codec def shift(L): e = L[0] ; del L[0:1] ; return e def main(): typename = "" skip = 0 count = -1 splitsize = 1000 # in number of records pb2file = None infile = "-" fin = sys.stdin template = None opts, args = getopt.getopt(sys.argv[1:], 'p:m:s:c:t:z:') for o, a in opts: if o == '-p': pb2file = a elif o == '-m': typename = a elif o == '-s': skip = int(a) elif o == '-c': count = int(a) elif o == '-t': template = a elif o == '-z': splitsize = int(a) if len(args): infile = shift(args) fin = file(infile) if template == None: template = infile+".%05u" codec = lwpb.codec.MessageCodec(pb2file=pb2file, typename=typename) reader = lwpb.stream.StreamReader(fin, codec=codec) writer = None fout = None outfile = None splitnum = 0 splitwritten = 0 written = 0 for record in reader: if reader.current_number < skip: continue if count >= 0 and written >= count: break if fout == None: outfile = template % splitnum fout = file(outfile, 'w') writer = lwpb.stream.StreamWriter(fout, codec=codec) splitwritten = 0 writer.write_raw( reader.current_raw ) written += 1 splitwritten += 1 if splitwritten >= splitsize: fout.close() fout = None splitnum += 1 if fout: fout.close() return 0 if __name__ == '__main__': sys.exit(main())
apache-2.0
1,052,393,894,243,850,500
16.637363
69
0.576947
false
bitmovin/bitmovin-python
examples/encoding/create_progressive_webm_encoding_with_vp9_and_opus_codecs.py
1
4978
import datetime from bitmovin import Bitmovin, Encoding, HTTPSInput, S3Output, \ StreamInput, SelectionMode, Stream, EncodingOutput, ACLEntry, ACLPermission, \ MuxingStream, CloudRegion, ProgressiveWebMMuxing, VP9CodecConfiguration, OpusCodecConfiguration, VP9Quality from bitmovin.errors import BitmovinError API_KEY = '<INSERT_YOUR_API_KEY>' # https://<INSERT_YOUR_HTTP_HOST>/<INSERT_YOUR_HTTP_PATH> HTTPS_INPUT_HOST = '<INSERT_YOUR_HTTPS_HOST>' HTTPS_INPUT_PATH = '<INSERT_YOUR_HTTPS_PATH>' S3_OUTPUT_ACCESSKEY = '<INSERT_YOUR_ACCESS_KEY>' S3_OUTPUT_SECRETKEY = '<INSERT_YOUR_SECRET_KEY>' S3_OUTPUT_BUCKETNAME = '<INSERT_YOUR_BUCKET_NAME>' date_component = str(datetime.datetime.now()).replace(' ', '_').replace(':', '-').split('.')[0].replace('_', '__') OUTPUT_BASE_PATH = '/output/base/path/{}/'.format(date_component) def main(): bitmovin = Bitmovin(api_key=API_KEY) https_input = HTTPSInput(name='create_simple_encoding HTTPS input', host=HTTPS_INPUT_HOST) https_input = bitmovin.inputs.HTTPS.create(https_input).resource s3_output = S3Output(access_key=S3_OUTPUT_ACCESSKEY, secret_key=S3_OUTPUT_SECRETKEY, bucket_name=S3_OUTPUT_BUCKETNAME, name='Sample S3 Output') s3_output = bitmovin.outputs.S3.create(s3_output).resource encoding = Encoding(name='example webm encoding', cloud_region=CloudRegion.GOOGLE_EUROPE_WEST_1, encoder_version='BETA') encoding = bitmovin.encodings.Encoding.create(encoding).resource video_codec_configuration_1080p = VP9CodecConfiguration(name='example_video_codec_configuration_1080p', bitrate=4800000, rate=25.0, width=1920, height=1080, tile_columns=2, quality=VP9Quality.GOOD) video_codec_configuration_1080p = bitmovin.codecConfigurations.VP9.create(video_codec_configuration_1080p).resource audio_codec_configuration = OpusCodecConfiguration(name='example_audio_codec_configuration_english', bitrate=128000, rate=48000) audio_codec_configuration = bitmovin.codecConfigurations.Opus.create(audio_codec_configuration).resource video_input_stream = StreamInput(input_id=https_input.id, input_path=HTTPS_INPUT_PATH, selection_mode=SelectionMode.AUTO) audio_input_stream = StreamInput(input_id=https_input.id, input_path=HTTPS_INPUT_PATH, selection_mode=SelectionMode.AUTO) video_stream_1080p = Stream(codec_configuration_id=video_codec_configuration_1080p.id, input_streams=[video_input_stream], name='Sample Stream 1080p') video_stream_1080p = bitmovin.encodings.Stream.create(object_=video_stream_1080p, encoding_id=encoding.id).resource audio_stream = Stream(codec_configuration_id=audio_codec_configuration.id, input_streams=[audio_input_stream], name='Sample Stream AUDIO') audio_stream = bitmovin.encodings.Stream.create(object_=audio_stream, encoding_id=encoding.id).resource audio_muxing_stream = MuxingStream(audio_stream.id) video_muxing_stream_1080p = MuxingStream(video_stream_1080p.id) acl_entry = ACLEntry(permission=ACLPermission.PUBLIC_READ) webm_muxing_output = EncodingOutput(output_id=s3_output.id, output_path=OUTPUT_BASE_PATH, acl=[acl_entry]) webm_muxing = ProgressiveWebMMuxing(streams=[video_muxing_stream_1080p, audio_muxing_stream], filename='myfile.webm', outputs=[webm_muxing_output], name='Sample WebM Muxing 1080p') webm_muxing = bitmovin.encodings.Muxing.ProgressiveWebM.create(object_=webm_muxing, encoding_id=encoding.id).resource bitmovin.encodings.Encoding.start(encoding_id=encoding.id) try: bitmovin.encodings.Encoding.wait_until_finished(encoding_id=encoding.id) except BitmovinError as bitmovin_error: print("Exception occurred while waiting for encoding to finish: {}".format(bitmovin_error)) print("File successfully encoded") if __name__ == '__main__': main()
unlicense
-3,270,803,099,738,486,000
48.78
119
0.57955
false
f3at/feat
src/feat/models/value.py
1
25453
# F3AT - Flumotion Asynchronous Autonomous Agent Toolkit # Copyright (C) 2010,2011 Flumotion Services, S.A. # All rights reserved. # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License along # with this program; if not, write to the Free Software Foundation, Inc., # 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. # See "LICENSE.GPL" in the source distribution for more information. # Headers in this file shall remain intact. from zope.interface import implements, classImplements from feat.common import annotate, container from feat.models import meta as models_meta, action from feat.models.interface import IValueInfo, NotSupported, IValueOptions from feat.models.interface import IValidator, IValueRange, ValueTypes from feat.models.interface import IEncodingInfo, IModel, IReference from feat.models.interface import IValueOption, IResponse, MissingParameters from feat.models.interface import UnknownParameters, InvalidParameters from feat.models.interface import IValueCollection, IValueList from feat.interface.serialization import ISnapshotable meta = models_meta.meta def label(lable): """ Annotates the IValueInfo label. @param lable: label of the IValueInfo being defined. @type lable: str or unicode """ _annotate("label", lable) def desc(desc): """ Annotates the IValueInfo description. @param desc: description of the IValueInfo being defined. @type desc: str or unicode """ _annotate("desc", desc) def value_type(vtype): """ Annotates the IValueInfo value type. @param vtype: type of the IValueInfo being defined. @type vtype: ValueTypes """ _annotate("value_type", vtype) def default(default): """ Annotates the IValueInfo default value, will be validated at instance creation time. @param default: default value of the IValueInfo being defined. @type default: Any """ _annotate("default", default) def option(value, is_default=False, label=None): """ Annotates a possible value for IValueOptions, will be validated at instance creation time. @param value: a possible value for the IValueOptions being defined. @type value: Any @param is_default: if the option should be the default value. @type is_default: bool @param label: option label or None; if none the string representation of the value will be used as label. @type label: str or unicode or None """ _annotate("option", value, is_default=is_default, label=label) def options_only(): """ Annotates to enforce the value to be one of the specified options. """ _annotate("options_only") def allows(value_info): """ Annotate an allowed value info for a collection. @param value_info: an allowed value for the collection. @type value_info: IValueInfo """ _annotate("allows", value_info) def is_ordered(flag): """Annotate a collection to be ordered. @param flag: if the collection order is important. @type flag: bool """ _annotate("is_ordered", flag) def min_size(size): """ Annotate a collection minimum size. @param size: the collection minimum size. @type size: int """ _annotate("min_size", size) def max_size(size): """ Annotate a collection maximum size. @param size: the collection maximum size. @type size: int """ _annotate("max_size", size) def _annotate(name, *args, **kwargs): method_name = "annotate_" + name annotate.injectClassCallback(name, 4, method_name, *args, **kwargs) class BaseValue(models_meta.Metadata): implements(IValueInfo, IValidator) _class_label = None _class_desc = None _class_value_type = None _class_use_default = False _class_default = None ### IValueInfo ### @property def label(self): return self._class_label @property def desc(self): return self._class_desc @property def value_type(self): return self._class_value_type @property def use_default(self): return self._class_use_default @property def default(self): return self._class_default def __eq__(self, other): if not IValueInfo.providedBy(other): return NotSupported other = IValueInfo(other) if self.value_type != other.value_type: return False if self.use_default != other.use_default: return False if self.use_default and (self._default != other.default): return False if IValueOptions.providedBy(self) != IValueOptions.providedBy(other): return False if IValueOptions.providedBy(self): other = IValueOptions(other) other_options = set(other.iter_options()) self_options = set(self.iter_options()) if other_options != self_options: return False if self.is_restricted != other.is_restricted: return False if IValueRange.providedBy(self) != IValueRange.providedBy(other): return False if IValueRange.providedBy(self): other = IValueRange(other) if (self.minimum != other.minimum or self.maximum != other.maximum or self.increment != other.increment): return False return True def __ne__(self, other): eq = self.__eq__(other) return eq if eq is NotSupported else not eq ### IValidator ### def validate(self, value): if value is None and self.use_default: value = self.default return value def publish(self, value): if value is None and self.use_default: value = self.default return value def as_string(self, value): return unicode(self.publish(value)) ### annotations ### @classmethod def annotate_label(cls, label): """@see: feat.models.value.label""" cls._class_label = label @classmethod def annotate_desc(cls, desc): """@see: feat.models.value.desc""" cls._class_desc = desc @classmethod def annotate_value_type(cls, value_type): """@see: feat.models.value.value_type""" if value_type not in ValueTypes: raise ValueError(value_type) cls._class_value_type = value_type @classmethod def annotate_default(cls, default): """@see: feat.models.value.default""" cls._class_use_default = True cls._class_default = default class Binary(BaseValue): implements(IEncodingInfo) value_type(ValueTypes.binary) def __init__(self, mime_type=None, encoding=None): self._mime_type = mime_type self._encoding = encoding ### IEncodingInfo ### @property def mime_type(self): return self._mime_type @property def encoding(self): return self._encoding class InterfaceValue(BaseValue): _value_interface = None def __init__(self, value_interface=None): if type(self)._value_interface is None: self._value_interface = value_interface def validate(self, value): new_value = BaseValue.validate(self, value) if not self._value_interface.providedBy(value): raise ValueError(value) return new_value def publish(self, value): new_value = BaseValue.publish(self, value) if not self._value_interface.providedBy(value): raise ValueError("%r does not provide %r interface" % (value, self._value_interface)) return new_value class Response(InterfaceValue): """Definition of a model value.""" _value_interface = IResponse value_type(ValueTypes.model) class Model(InterfaceValue): """Definition of a model value.""" _value_interface = IModel value_type(ValueTypes.model) class Reference(InterfaceValue): """Definition of a model value.""" _value_interface = IReference value_type(ValueTypes.reference) class Struct(BaseValue): """Definition of a model value.""" _value_interface = ISnapshotable value_type(ValueTypes.struct) class Value(BaseValue): _class_options = None _class_options_only = False def __init__(self, *args, **kwargs): label = self._class_label desc = self._class_desc self._label = unicode(label) if label is not None else None self._desc = unicode(desc) if desc is not None else None self._value_type = self._class_value_type self._options_only = False self._options = [] if self._class_options is not None: for v, l in self._class_options: self._add_option(v, l) self._options_only = self._class_options_only self._use_default = self._class_use_default self._default = None if self._use_default: self._default = self._validate_default(self._class_default) if "default" in kwargs: if len(args) > 0: raise ValueError("If the default value is specified " "as a keyword, no argument are allowed") self._set_default(kwargs.pop("default")) else: if len(args) > 1: raise ValueError("Only default value is " "supported as argument") if len(args) > 0: self._set_default(args[0]) if kwargs: raise ValueError("Unsupported keyword arguments") ### IValueInfo ### @property def label(self): return self._label @property def desc(self): return self._desc @property def value_type(self): return self._value_type @property def use_default(self): return self._use_default @property def default(self): return self._default ### IValidator ### def validate(self, value): value = BaseValue.validate(self, value) if self._options_only and not self._has_option(value): raise ValueError("Value not allowed: %r" % (value, )) return value def publish(self, value): value = BaseValue.validate(self, value) if self._options_only and not self._has_option(value): raise ValueError("Value not allowed: %r" % (value, )) return value ### IValueOptions ### @property def is_restricted(self): return self._options_only def count_options(self): return len(self._options) def iter_options(self): return iter(self._options) def has_option(self, value): try: return self._has_option(self._validate_option(value)) except ValueError: return False def get_option(self, value): value = unicode(value) try: return next((o for o in self._options if o.value == value)) except StopIteration: return None ### protected ### def _validate_default(self, value): return self.validate(value) def _validate_option(self, value): return self.validate(value) def _has_option(self, value): try: next((o for o in self._options if o.value == value)) return True except StopIteration: return False def _set_default(self, default): self._default = self._validate_default(default) self._use_default = True def _add_option(self, value, label=None): # Disable options_only to be able to validate the value options_only = self._options_only self._options_only = False try: self._validate_option(value) option = ValueOption(value, label) self._options.append(option) finally: self._options_only = options_only ### annotations ### @classmethod def annotate_option(cls, value, is_default=False, label=None): """@see: feat.models.value.option""" if cls._class_options is None: cls._class_options = container.MroList("_mro_options") classImplements(cls, IValueOptions) if is_default: cls._class_default = value cls._class_use_default = True cls._class_options.append((value, label)) @classmethod def annotate_options_only(cls): """@see: feat.models.value.options_only""" cls._class_options_only = True class ValueOption(object): """Pair of value/label defining a possible option. @see: feat.models.interface.IValueOption""" implements(IValueOption) def __init__(self, value, label=None): self._value = value self._label = unicode(label) if label is not None else unicode(value) ### IValueOption ### @property def value(self): return self._value @property def label(self): return self._label def __eq__(self, other): if not IValueOption.providedBy(other): return False return (self._value == other.value and self._label == other.label) def __ne__(self, other): return not self.__eq__(other) def __hash__(self): return hash(self._value) ^ hash(self._label) class String(Value): """String value definition.""" value_type(ValueTypes.string) ### overridden ### def validate(self, value): """ Accepts: str, unicode Returns: unicode """ val = value if isinstance(val, str): #FIXME: unsafe decoding val = unicode(value) val = super(String, self).validate(val) if not isinstance(val, unicode): raise ValueError("Not a string: %r" % (value, )) return val def publish(self, value): """ Accepts: unicode, str Returns: unicode """ val = value if isinstance(val, str): #FIXME: unsafe decoding val = unicode(value) val = super(String, self).publish(val) if not isinstance(val, unicode): raise ValueError("Not a string: %r" % (value, )) return val class Float(Value): value_type(ValueTypes.number) def validate(self, value): """ Accepts: float, int, long, str, unicode Returns: float """ if isinstance(value, (str, unicode, int, long)): value = float(value) value = super(Float, self).validate(value) if not isinstance(value, (float)): raise ValueError("Not an float: %r" % (value, )) return value def publish(self, value): """ Accepts: float Returns: float """ value = super(Float, self).publish(value) if isinstance(value, int): value = float(value) return value class Integer(Value): """Definition of an basic integer value.""" value_type(ValueTypes.integer) ### overridden ### def validate(self, value): """ Accepts: int, long, str, unicode Returns: int, long """ if isinstance(value, (str, unicode, float)): value = int(value) value = super(Integer, self).validate(value) if not isinstance(value, (int, long)): raise ValueError("Not an integer: %r" % (value, )) return value def publish(self, value): """ Accepts: int, long Returns: int, long """ value = super(Integer, self).publish(value) if isinstance(value, float): value = int(value) if not isinstance(value, (int, long)): raise ValueError("Not an integer: %r" % (value, )) return value class Boolean(Value): """Definition of an basic integer value.""" value_type(ValueTypes.boolean) option(True, label="True") option(False, label="False") options_only() ### overridden ### def validate(self, value): """ Accepts: str, unicode, bool Returns: bool """ if isinstance(value, bool): return value if isinstance(value, (str, unicode)): if value.lower() == "true": value = True elif value.lower() == "false": value = False else: raise ValueError("Not a boolean: %r" % (value, )) value = super(Boolean, self).validate(value) if not isinstance(value, bool): raise ValueError("Not a boolean: %r" % (value, )) return value def publish(self, value): value = super(Boolean, self).publish(value) if not isinstance(value, bool): raise ValueError("Not a boolean: %r" % (value, )) return value class Enum(Value): """Definition of integer value with a fixed set of possible values taken from an enumeration.""" value_type(ValueTypes.string) options_only() implements(IValueOptions) def __init__(self, enum, *args, **kwargs): self._enum = enum Value.__init__(self, *args, **kwargs) for i in enum: self._add_option(i) ### IValidator ### def validate(self, value): if value is None and self._use_default: value = self._default if isinstance(value, (str, unicode, int)): if value in self._enum: return self._enum[value] if isinstance(value, int): if value in self._enum: return unicode(self._enum[value].name) raise ValueError(value) def publish(self, value): if value is None and self._use_default: value = self._default if isinstance(value, (str, unicode)): if value in self._enum: return unicode(value) if isinstance(value, int): if value in self._enum: return unicode(self._enum[value].name) raise ValueError(value) ### overridden ### def _validate_option(self, value): return unicode(self.validate(value).name) def _add_option(self, value, label=None): if isinstance(value, self._enum): value = unicode(value.name) return Value._add_option(self, value, label) class FixedValues(Value): ''' String value of one of defined options. Use: FixedValue(["option1", "option2", ...]) ''' value_type(ValueTypes.string) options_only() implements(IValueOptions) def __init__(self, values, *args, **kwargs): Value.__init__(self, *args, **kwargs) for v in values: self._add_option(v) class Structure(Value): implements(IValueList) value_type(ValueTypes.struct) _fields = container.MroList("_mro_fields") def validate(self, value): if not isinstance(value, dict): raise ValueError("Expected dictionary, got %r" % (value, )) fields = self.fields params = set(value.keys()) expected = set([p.name for p in fields]) required = set([p.name for p in fields if p.is_required]) missing = required - params if missing: raise MissingParameters("", params=missing) unknown = params - expected if unknown: raise UnknownParameters("", params=unknown) param_index = dict([(p.name, p) for p in fields]) validated = {} errors = {} for param_name, param_value in value.iteritems(): param_name = str(param_name) info = param_index[param_name].value_info try: valval = IValidator(info).validate(param_value) validated[param_name] = valval except ValueError, e: errors[param_name] = e if errors: raise InvalidParameters("", params=errors) for param in fields: if not param.is_required: info = param.value_info if param.name not in validated and info.use_default: validated[str(param.name)] = info.default return validated def publish(self, value): def getter(value, name): try: if isinstance(value, dict): return value[name] else: return getattr(value, name) except (KeyError, AttributeError) as e: raise ValueError(str(e)) result = dict() for field in self.fields: try: v = getter(value, field.name) result[field.name] = field.value_info.publish(v) except ValueError: if field.is_required: raise if field.value_info.use_default: result[field.name] = field.value_info.publish( field.value_info.default) return result ### IValueList ### @property def fields(self): inverted_result = [] already_added = set() for p in reversed(self._fields): if p.name not in already_added: inverted_result.append(p) already_added.add(p.name) return list(reversed(inverted_result)) ### annotations ### @classmethod def annotate_param(cls, name, value_info, is_required=True, label=None, desc=None): name = unicode(name) param = action.Param(name, value_info, is_required=is_required, label=label, desc=desc) cls._fields.append(param) field = action.param class MetaCollection(type(Value)): @staticmethod def new(name, allowed_types=[], min_size=None, max_size=None, is_ordered=True): cls = MetaCollection(name, (Collection, ), {}) for value_info in allowed_types: cls.annotate_allows(value_info) cls.annotate_is_ordered(is_ordered) if min_size is not None: cls.annotate_min_size(min_size) if max_size is not None: cls.annotate_max_size(max_size) return cls class Collection(Value): implements(IValueCollection) _class_allowed_types = container.MroList("_mro_allowed_types") _class_is_ordered = True _class_min_size = None _class_max_size = None value_type(ValueTypes.collection) ### IValueCollection ### @property def allowed_types(self): return list(self._class_allowed_types) @property def is_ordered(self): return self._class_is_ordered @property def min_size(self): return self._class_min_size @property def max_size(self): return self._class_max_size ### overridden ### def validate(self, value): return self._convert(value, "validate") def publish(self, value): return self._convert(value, "publish") ### annotations ### @classmethod def annotate_allows(cls, value_info): """@see: feat.models.value.allows""" value_info = _validate_value_info(value_info) cls._class_allowed_types.append(value_info) @classmethod def annotate_is_ordered(cls, flag): """@see: feat.models.value.is_ordered""" cls._class_is_ordered = _validate_flag(flag) @classmethod def annotate_min_size(cls, size): """@see: feat.models.value.min_size""" cls._class_min_size = _validate_size(size) @classmethod def annotate_max_size(cls, size): """@see: feat.models.value.max_size""" cls._class_max_size = _validate_size(size) ### private ### def _convert(self, value, method_name): if isinstance(value, (str, unicode)): raise ValueError(value) try: all_values = list(value) except TypeError: raise ValueError(value) result = [] if self._class_min_size is not None: if len(all_values) < self._class_min_size: raise ValueError(value) if self._class_max_size is not None: if len(all_values) > self._class_max_size: raise ValueError(value) allowed_types = list(self._class_allowed_types) for v in all_values: for allowed in allowed_types: try: result.append(getattr(allowed, method_name)(v)) break except (ValueError, InvalidParameters), e: continue else: raise ValueError(value) return result ### private ### def _validate_value_info(value_info): return IValueInfo(value_info) def _validate_size(size): return int(size) def _validate_flag(flag): return bool(flag)
gpl-2.0
6,844,360,681,269,452,000
26.606291
78
0.591011
false
beiko-lab/gengis
bin/Lib/site-packages/numpy/ma/mrecords.py
1
28557
""":mod:`numpy.ma..mrecords` Defines the equivalent of :class:`numpy.recarrays` for masked arrays, where fields can be accessed as attributes. Note that :class:`numpy.ma.MaskedArray` already supports structured datatypes and the masking of individual fields. :author: Pierre Gerard-Marchant """ #!!!: * We should make sure that no field is called '_mask','mask','_fieldmask', #!!!: or whatever restricted keywords. #!!!: An idea would be to no bother in the first place, and then rename the #!!!: invalid fields with a trailing underscore... #!!!: Maybe we could just overload the parser function ? __author__ = "Pierre GF Gerard-Marchant" import sys import numpy as np from numpy import bool_, dtype, \ ndarray, recarray, array as narray import numpy.core.numerictypes as ntypes from numpy.core.records import fromarrays as recfromarrays, \ fromrecords as recfromrecords _byteorderconv = np.core.records._byteorderconv _typestr = ntypes._typestr import numpy.ma as ma from numpy.ma import MAError, MaskedArray, masked, nomask, masked_array, \ getdata, getmaskarray, filled _check_fill_value = ma.core._check_fill_value import warnings __all__ = ['MaskedRecords', 'mrecarray', 'fromarrays', 'fromrecords', 'fromtextfile', 'addfield', ] reserved_fields = ['_data', '_mask', '_fieldmask', 'dtype'] def _getformats(data): "Returns the formats of each array of arraylist as a comma-separated string." if hasattr(data, 'dtype'): return ",".join([desc[1] for desc in data.dtype.descr]) formats = '' for obj in data: obj = np.asarray(obj) formats += _typestr[obj.dtype.type] if issubclass(obj.dtype.type, ntypes.flexible): formats += `obj.itemsize` formats += ',' return formats[:-1] def _checknames(descr, names=None): """Checks that the field names of the descriptor ``descr`` are not some reserved keywords. If this is the case, a default 'f%i' is substituted. If the argument `names` is not None, updates the field names to valid names. """ ndescr = len(descr) default_names = ['f%i' % i for i in range(ndescr)] if names is None: new_names = default_names else: if isinstance(names, (tuple, list)): new_names = names elif isinstance(names, str): new_names = names.split(',') else: raise NameError("illegal input names %s" % `names`) nnames = len(new_names) if nnames < ndescr: new_names += default_names[nnames:] ndescr = [] for (n, d, t) in zip(new_names, default_names, descr.descr): if n in reserved_fields: if t[0] in reserved_fields: ndescr.append((d, t[1])) else: ndescr.append(t) else: ndescr.append((n, t[1])) return np.dtype(ndescr) def _get_fieldmask(self): mdescr = [(n, '|b1') for n in self.dtype.names] fdmask = np.empty(self.shape, dtype=mdescr) fdmask.flat = tuple([False] * len(mdescr)) return fdmask class MaskedRecords(MaskedArray, object): """ *IVariables*: _data : {recarray} Underlying data, as a record array. _mask : {boolean array} Mask of the records. A record is masked when all its fields are masked. _fieldmask : {boolean recarray} Record array of booleans, setting the mask of each individual field of each record. _fill_value : {record} Filling values for each field. """ #............................................ def __new__(cls, shape, dtype=None, buf=None, offset=0, strides=None, formats=None, names=None, titles=None, byteorder=None, aligned=False, mask=nomask, hard_mask=False, fill_value=None, keep_mask=True, copy=False, **options): # self = recarray.__new__(cls, shape, dtype=dtype, buf=buf, offset=offset, strides=strides, formats=formats, names=names, titles=titles, byteorder=byteorder, aligned=aligned,) # mdtype = ma.make_mask_descr(self.dtype) if mask is nomask or not np.size(mask): if not keep_mask: self._mask = tuple([False] * len(mdtype)) else: mask = np.array(mask, copy=copy) if mask.shape != self.shape: (nd, nm) = (self.size, mask.size) if nm == 1: mask = np.resize(mask, self.shape) elif nm == nd: mask = np.reshape(mask, self.shape) else: msg = "Mask and data not compatible: data size is %i, " + \ "mask size is %i." raise MAError(msg % (nd, nm)) copy = True if not keep_mask: self.__setmask__(mask) self._sharedmask = True else: if mask.dtype == mdtype: _mask = mask else: _mask = np.array([tuple([m] * len(mdtype)) for m in mask], dtype=mdtype) self._mask = _mask return self #...................................................... def __array_finalize__(self, obj): # Make sure we have a _fieldmask by default .. _mask = getattr(obj, '_mask', None) if _mask is None: objmask = getattr(obj, '_mask', nomask) _dtype = ndarray.__getattribute__(self, 'dtype') if objmask is nomask: _mask = ma.make_mask_none(self.shape, dtype=_dtype) else: mdescr = ma.make_mask_descr(_dtype) _mask = narray([tuple([m] * len(mdescr)) for m in objmask], dtype=mdescr).view(recarray) # Update some of the attributes _dict = self.__dict__ _dict.update(_mask=_mask) self._update_from(obj) if _dict['_baseclass'] == ndarray: _dict['_baseclass'] = recarray return def _getdata(self): "Returns the data as a recarray." return ndarray.view(self, recarray) _data = property(fget=_getdata) def _getfieldmask(self): "Alias to mask" return self._mask _fieldmask = property(fget=_getfieldmask) def __len__(self): "Returns the length" # We have more than one record if self.ndim: return len(self._data) # We have only one record: return the nb of fields return len(self.dtype) def __getattribute__(self, attr): try: return object.__getattribute__(self, attr) except AttributeError: # attr must be a fieldname pass fielddict = ndarray.__getattribute__(self, 'dtype').fields try: res = fielddict[attr][:2] except (TypeError, KeyError): raise AttributeError("record array has no attribute %s" % attr) # So far, so good... _localdict = ndarray.__getattribute__(self, '__dict__') _data = ndarray.view(self, _localdict['_baseclass']) obj = _data.getfield(*res) if obj.dtype.fields: raise NotImplementedError("MaskedRecords is currently limited to"\ "simple records...") # Get some special attributes # Reset the object's mask hasmasked = False _mask = _localdict.get('_mask', None) if _mask is not None: try: _mask = _mask[attr] except IndexError: # Couldn't find a mask: use the default (nomask) pass hasmasked = _mask.view((np.bool, (len(_mask.dtype) or 1))).any() if (obj.shape or hasmasked): obj = obj.view(MaskedArray) obj._baseclass = ndarray obj._isfield = True obj._mask = _mask # Reset the field values _fill_value = _localdict.get('_fill_value', None) if _fill_value is not None: try: obj._fill_value = _fill_value[attr] except ValueError: obj._fill_value = None else: obj = obj.item() return obj def __setattr__(self, attr, val): "Sets the attribute attr to the value val." # Should we call __setmask__ first ? if attr in ['mask', 'fieldmask']: self.__setmask__(val) return # Create a shortcut (so that we don't have to call getattr all the time) _localdict = object.__getattribute__(self, '__dict__') # Check whether we're creating a new field newattr = attr not in _localdict try: # Is attr a generic attribute ? ret = object.__setattr__(self, attr, val) except: # Not a generic attribute: exit if it's not a valid field fielddict = ndarray.__getattribute__(self, 'dtype').fields or {} optinfo = ndarray.__getattribute__(self, '_optinfo') or {} if not (attr in fielddict or attr in optinfo): exctype, value = sys.exc_info()[:2] raise exctype, value else: # Get the list of names ...... fielddict = ndarray.__getattribute__(self, 'dtype').fields or {} # Check the attribute if attr not in fielddict: return ret if newattr: # We just added this one try: # or this setattr worked on an internal # attribute. object.__delattr__(self, attr) except: return ret # Let's try to set the field try: res = fielddict[attr][:2] except (TypeError, KeyError): raise AttributeError("record array has no attribute %s" % attr) # if val is masked: _fill_value = _localdict['_fill_value'] if _fill_value is not None: dval = _localdict['_fill_value'][attr] else: dval = val mval = True else: dval = filled(val) mval = getmaskarray(val) obj = ndarray.__getattribute__(self, '_data').setfield(dval, *res) _localdict['_mask'].__setitem__(attr, mval) return obj def __getitem__(self, indx): """Returns all the fields sharing the same fieldname base. The fieldname base is either `_data` or `_mask`.""" _localdict = self.__dict__ _mask = ndarray.__getattribute__(self, '_mask') _data = ndarray.view(self, _localdict['_baseclass']) # We want a field ........ if isinstance(indx, basestring): #!!!: Make sure _sharedmask is True to propagate back to _fieldmask #!!!: Don't use _set_mask, there are some copies being made... #!!!: ...that break propagation #!!!: Don't force the mask to nomask, that wrecks easy masking obj = _data[indx].view(MaskedArray) obj._mask = _mask[indx] obj._sharedmask = True fval = _localdict['_fill_value'] if fval is not None: obj._fill_value = fval[indx] # Force to masked if the mask is True if not obj.ndim and obj._mask: return masked return obj # We want some elements .. # First, the data ........ obj = np.array(_data[indx], copy=False).view(mrecarray) obj._mask = np.array(_mask[indx], copy=False).view(recarray) return obj #.... def __setitem__(self, indx, value): "Sets the given record to value." MaskedArray.__setitem__(self, indx, value) if isinstance(indx, basestring): self._mask[indx] = ma.getmaskarray(value) def __str__(self): "Calculates the string representation." if self.size > 1: mstr = ["(%s)" % ",".join([str(i) for i in s]) for s in zip(*[getattr(self, f) for f in self.dtype.names])] return "[%s]" % ", ".join(mstr) else: mstr = ["%s" % ",".join([str(i) for i in s]) for s in zip([getattr(self, f) for f in self.dtype.names])] return "(%s)" % ", ".join(mstr) # def __repr__(self): "Calculates the repr representation." _names = self.dtype.names fmt = "%%%is : %%s" % (max([len(n) for n in _names]) + 4,) reprstr = [fmt % (f, getattr(self, f)) for f in self.dtype.names] reprstr.insert(0, 'masked_records(') reprstr.extend([fmt % (' fill_value', self.fill_value), ' )']) return str("\n".join(reprstr)) # #...................................................... def view(self, dtype=None, type=None): """Returns a view of the mrecarray.""" # OK, basic copy-paste from MaskedArray.view... if dtype is None: if type is None: output = ndarray.view(self) else: output = ndarray.view(self, type) # Here again... elif type is None: try: if issubclass(dtype, ndarray): output = ndarray.view(self, dtype) dtype = None else: output = ndarray.view(self, dtype) # OK, there's the change except TypeError: dtype = np.dtype(dtype) # we need to revert to MaskedArray, but keeping the possibility # ...of subclasses (eg, TimeSeriesRecords), so we'll force a type # ...set to the first parent if dtype.fields is None: basetype = self.__class__.__bases__[0] output = self.__array__().view(dtype, basetype) output._update_from(self) else: output = ndarray.view(self, dtype) output._fill_value = None else: output = ndarray.view(self, dtype, type) # Update the mask, just like in MaskedArray.view if (getattr(output, '_mask', nomask) is not nomask): mdtype = ma.make_mask_descr(output.dtype) output._mask = self._mask.view(mdtype, ndarray) output._mask.shape = output.shape return output def harden_mask(self): "Forces the mask to hard" self._hardmask = True def soften_mask(self): "Forces the mask to soft" self._hardmask = False def copy(self): """Returns a copy of the masked record.""" _localdict = self.__dict__ copied = self._data.copy().view(type(self)) copied._mask = self._mask.copy() return copied def tolist(self, fill_value=None): """Copy the data portion of the array to a hierarchical python list and returns that list. Data items are converted to the nearest compatible Python type. Masked values are converted to fill_value. If fill_value is None, the corresponding entries in the output list will be ``None``. """ if fill_value is not None: return self.filled(fill_value).tolist() result = narray(self.filled().tolist(), dtype=object) mask = narray(self._mask.tolist()) result[mask] = None return result.tolist() #-------------------------------------------- # Pickling def __getstate__(self): """Return the internal state of the masked array, for pickling purposes. """ state = (1, self.shape, self.dtype, self.flags.fnc, self._data.tostring(), self._mask.tostring(), self._fill_value, ) return state # def __setstate__(self, state): """Restore the internal state of the masked array, for pickling purposes. ``state`` is typically the output of the ``__getstate__`` output, and is a 5-tuple: - class name - a tuple giving the shape of the data - a typecode for the data - a binary string for the data - a binary string for the mask. """ (ver, shp, typ, isf, raw, msk, flv) = state ndarray.__setstate__(self, (shp, typ, isf, raw)) mdtype = dtype([(k, bool_) for (k, _) in self.dtype.descr]) self.__dict__['_mask'].__setstate__((shp, mdtype, isf, msk)) self.fill_value = flv # def __reduce__(self): """Return a 3-tuple for pickling a MaskedArray. """ return (_mrreconstruct, (self.__class__, self._baseclass, (0,), 'b',), self.__getstate__()) def _mrreconstruct(subtype, baseclass, baseshape, basetype,): """Internal function that builds a new MaskedArray from the information stored in a pickle. """ _data = ndarray.__new__(baseclass, baseshape, basetype).view(subtype) # _data._mask = ndarray.__new__(ndarray, baseshape, 'b1') # return _data _mask = ndarray.__new__(ndarray, baseshape, 'b1') return subtype.__new__(subtype, _data, mask=_mask, dtype=basetype,) mrecarray = MaskedRecords #####--------------------------------------------------------------------------- #---- --- Constructors --- #####--------------------------------------------------------------------------- def fromarrays(arraylist, dtype=None, shape=None, formats=None, names=None, titles=None, aligned=False, byteorder=None, fill_value=None): """Creates a mrecarray from a (flat) list of masked arrays. Parameters ---------- arraylist : sequence A list of (masked) arrays. Each element of the sequence is first converted to a masked array if needed. If a 2D array is passed as argument, it is processed line by line dtype : {None, dtype}, optional Data type descriptor. shape : {None, integer}, optional Number of records. If None, shape is defined from the shape of the first array in the list. formats : {None, sequence}, optional Sequence of formats for each individual field. If None, the formats will be autodetected by inspecting the fields and selecting the highest dtype possible. names : {None, sequence}, optional Sequence of the names of each field. fill_value : {None, sequence}, optional Sequence of data to be used as filling values. Notes ----- Lists of tuples should be preferred over lists of lists for faster processing. """ datalist = [getdata(x) for x in arraylist] masklist = [np.atleast_1d(getmaskarray(x)) for x in arraylist] _array = recfromarrays(datalist, dtype=dtype, shape=shape, formats=formats, names=names, titles=titles, aligned=aligned, byteorder=byteorder).view(mrecarray) _array._mask.flat = zip(*masklist) if fill_value is not None: _array.fill_value = fill_value return _array #.............................................................................. def fromrecords(reclist, dtype=None, shape=None, formats=None, names=None, titles=None, aligned=False, byteorder=None, fill_value=None, mask=nomask): """Creates a MaskedRecords from a list of records. Parameters ---------- reclist : sequence A list of records. Each element of the sequence is first converted to a masked array if needed. If a 2D array is passed as argument, it is processed line by line dtype : {None, dtype}, optional Data type descriptor. shape : {None,int}, optional Number of records. If None, ``shape`` is defined from the shape of the first array in the list. formats : {None, sequence}, optional Sequence of formats for each individual field. If None, the formats will be autodetected by inspecting the fields and selecting the highest dtype possible. names : {None, sequence}, optional Sequence of the names of each field. fill_value : {None, sequence}, optional Sequence of data to be used as filling values. mask : {nomask, sequence}, optional. External mask to apply on the data. Notes ----- Lists of tuples should be preferred over lists of lists for faster processing. """ # Grab the initial _fieldmask, if needed: _mask = getattr(reclist, '_mask', None) # Get the list of records..... try: nfields = len(reclist[0]) except TypeError: nfields = len(reclist[0].dtype) if isinstance(reclist, ndarray): # Make sure we don't have some hidden mask if isinstance(reclist, MaskedArray): reclist = reclist.filled().view(ndarray) # Grab the initial dtype, just in case if dtype is None: dtype = reclist.dtype reclist = reclist.tolist() mrec = recfromrecords(reclist, dtype=dtype, shape=shape, formats=formats, names=names, titles=titles, aligned=aligned, byteorder=byteorder).view(mrecarray) # Set the fill_value if needed if fill_value is not None: mrec.fill_value = fill_value # Now, let's deal w/ the mask if mask is not nomask: mask = np.array(mask, copy=False) maskrecordlength = len(mask.dtype) if maskrecordlength: mrec._mask.flat = mask elif len(mask.shape) == 2: mrec._mask.flat = [tuple(m) for m in mask] else: mrec.__setmask__(mask) if _mask is not None: mrec._mask[:] = _mask return mrec def _guessvartypes(arr): """Tries to guess the dtypes of the str_ ndarray `arr`, by testing element-wise conversion. Returns a list of dtypes. The array is first converted to ndarray. If the array is 2D, the test is performed on the first line. An exception is raised if the file is 3D or more. """ vartypes = [] arr = np.asarray(arr) if len(arr.shape) == 2 : arr = arr[0] elif len(arr.shape) > 2: raise ValueError("The array should be 2D at most!") # Start the conversion loop ....... for f in arr: try: int(f) except ValueError: try: float(f) except ValueError: try: val = complex(f) except ValueError: vartypes.append(arr.dtype) else: vartypes.append(np.dtype(complex)) else: vartypes.append(np.dtype(float)) else: vartypes.append(np.dtype(int)) return vartypes def openfile(fname): "Opens the file handle of file `fname`" # A file handle ................... if hasattr(fname, 'readline'): return fname # Try to open the file and guess its type try: f = open(fname) except IOError: raise IOError("No such file: '%s'" % fname) if f.readline()[:2] != "\\x": f.seek(0, 0) return f f.close() raise NotImplementedError("Wow, binary file") def fromtextfile(fname, delimitor=None, commentchar='#', missingchar='', varnames=None, vartypes=None): """Creates a mrecarray from data stored in the file `filename`. Parameters ---------- filename : {file name/handle} Handle of an opened file. delimitor : {None, string}, optional Alphanumeric character used to separate columns in the file. If None, any (group of) white spacestring(s) will be used. commentchar : {'#', string}, optional Alphanumeric character used to mark the start of a comment. missingchar : {'', string}, optional String indicating missing data, and used to create the masks. varnames : {None, sequence}, optional Sequence of the variable names. If None, a list will be created from the first non empty line of the file. vartypes : {None, sequence}, optional Sequence of the variables dtypes. If None, it will be estimated from the first non-commented line. Ultra simple: the varnames are in the header, one line""" # Try to open the file ...................... f = openfile(fname) # Get the first non-empty line as the varnames while True: line = f.readline() firstline = line[:line.find(commentchar)].strip() _varnames = firstline.split(delimitor) if len(_varnames) > 1: break if varnames is None: varnames = _varnames # Get the data .............................. _variables = masked_array([line.strip().split(delimitor) for line in f if line[0] != commentchar and len(line) > 1]) (_, nfields) = _variables.shape f.close() # Try to guess the dtype .................... if vartypes is None: vartypes = _guessvartypes(_variables[0]) else: vartypes = [np.dtype(v) for v in vartypes] if len(vartypes) != nfields: msg = "Attempting to %i dtypes for %i fields!" msg += " Reverting to default." warnings.warn(msg % (len(vartypes), nfields)) vartypes = _guessvartypes(_variables[0]) # Construct the descriptor .................. mdescr = [(n, f) for (n, f) in zip(varnames, vartypes)] mfillv = [ma.default_fill_value(f) for f in vartypes] # Get the data and the mask ................. # We just need a list of masked_arrays. It's easier to create it like that: _mask = (_variables.T == missingchar) _datalist = [masked_array(a, mask=m, dtype=t, fill_value=f) for (a, m, t, f) in zip(_variables.T, _mask, vartypes, mfillv)] return fromarrays(_datalist, dtype=mdescr) #.................................................................... def addfield(mrecord, newfield, newfieldname=None): """Adds a new field to the masked record array, using `newfield` as data and `newfieldname` as name. If `newfieldname` is None, the new field name is set to 'fi', where `i` is the number of existing fields. """ _data = mrecord._data _mask = mrecord._mask if newfieldname is None or newfieldname in reserved_fields: newfieldname = 'f%i' % len(_data.dtype) newfield = ma.array(newfield) # Get the new data ............ # Create a new empty recarray newdtype = np.dtype(_data.dtype.descr + [(newfieldname, newfield.dtype)]) newdata = recarray(_data.shape, newdtype) # Add the exisintg field [newdata.setfield(_data.getfield(*f), *f) for f in _data.dtype.fields.values()] # Add the new field newdata.setfield(newfield._data, *newdata.dtype.fields[newfieldname]) newdata = newdata.view(MaskedRecords) # Get the new mask ............. # Create a new empty recarray newmdtype = np.dtype([(n, bool_) for n in newdtype.names]) newmask = recarray(_data.shape, newmdtype) # Add the old masks [newmask.setfield(_mask.getfield(*f), *f) for f in _mask.dtype.fields.values()] # Add the mask of the new field newmask.setfield(getmaskarray(newfield), *newmask.dtype.fields[newfieldname]) newdata._mask = newmask return newdata
gpl-3.0
-4,077,217,941,820,372,500
37.226648
91
0.536366
false
yaybu/touchdown
touchdown/tests/test_aws_s3_file.py
1
3062
# Copyright 2015 Isotoma Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from touchdown.tests.aws import StubberTestCase from touchdown.tests.fixtures.aws import BucketFixture from touchdown.tests.stubs.aws import S3FileStubber class TestBucketCreation(StubberTestCase): def test_create_bucket(self): goal = self.create_goal("apply") bucket = self.fixtures.enter_context(BucketFixture(goal, self.aws)) s3_file = self.fixtures.enter_context( S3FileStubber( goal.get_service( bucket.bucket.add_file(name="my-file", contents="my-test-content"), "apply", ) ) ) s3_file.add_list_objects_empty_response() s3_file.add_put_object() s3_file.add_list_objects_one_response() s3_file.add_list_objects_one_response() s3_file.add_list_objects_one_response() goal.execute() def test_create_bucket_idempotent(self): goal = self.create_goal("apply") bucket = self.fixtures.enter_context(BucketFixture(goal, self.aws)) s3_file = self.fixtures.enter_context( S3FileStubber( goal.get_service( bucket.bucket.add_file(name="my-file", contents="my-test-content"), "apply", ) ) ) s3_file.add_list_objects_one_response() self.assertEqual(len(list(goal.plan())), 0) self.assertEqual(len(goal.get_changes(s3_file.resource)), 0) class TestBucketDeletion(StubberTestCase): def test_delete_bucket(self): goal = self.create_goal("destroy") bucket = self.fixtures.enter_context(BucketFixture(goal, self.aws)) s3_file = self.fixtures.enter_context( S3FileStubber( goal.get_service(bucket.bucket.add_file(name="my-file"), "destroy") ) ) s3_file.add_list_objects_one_response() s3_file.add_delete_object() goal.execute() def test_delete_bucket_idempotent(self): goal = self.create_goal("destroy") bucket = self.fixtures.enter_context(BucketFixture(goal, self.aws)) s3_file = self.fixtures.enter_context( S3FileStubber( goal.get_service(bucket.bucket.add_file(name="my-file"), "destroy") ) ) s3_file.add_list_objects_empty_response() self.assertEqual(len(list(goal.plan())), 0) self.assertEqual(len(goal.get_changes(s3_file.resource)), 0)
apache-2.0
-4,602,095,424,609,843,000
33.022222
87
0.629001
false
schleichdi2/OPENNFR-6.1-CORE
opennfr-openembedded-core/meta/lib/oeqa/utils/qemurunner.py
1
24225
# Copyright (C) 2013 Intel Corporation # # Released under the MIT license (see COPYING.MIT) # This module provides a class for starting qemu images using runqemu. # It's used by testimage.bbclass. import subprocess import os import sys import time import signal import re import socket import select import errno import string import threading import codecs from oeqa.utils.dump import HostDumper import logging logger = logging.getLogger("BitBake.QemuRunner") logger.addHandler(logging.StreamHandler()) # Get Unicode non printable control chars control_range = list(range(0,32))+list(range(127,160)) control_chars = [chr(x) for x in control_range if chr(x) not in string.printable] re_control_char = re.compile('[%s]' % re.escape("".join(control_chars))) class QemuRunner: def __init__(self, machine, rootfs, display, tmpdir, deploy_dir_image, logfile, boottime, dump_dir, dump_host_cmds, use_kvm): # Popen object for runqemu self.runqemu = None # pid of the qemu process that runqemu will start self.qemupid = None # target ip - from the command line or runqemu output self.ip = None # host ip - where qemu is running self.server_ip = None # target ip netmask self.netmask = None self.machine = machine self.rootfs = rootfs self.display = display self.tmpdir = tmpdir self.deploy_dir_image = deploy_dir_image self.logfile = logfile self.boottime = boottime self.logged = False self.thread = None self.use_kvm = use_kvm self.runqemutime = 60 self.host_dumper = HostDumper(dump_host_cmds, dump_dir) def create_socket(self): try: sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.setblocking(0) sock.bind(("127.0.0.1",0)) sock.listen(2) port = sock.getsockname()[1] logger.info("Created listening socket for qemu serial console on: 127.0.0.1:%s" % port) return (sock, port) except socket.error: sock.close() raise def log(self, msg): if self.logfile: # It is needed to sanitize the data received from qemu # because is possible to have control characters msg = msg.decode("utf-8", errors='ignore') msg = re_control_char.sub('', msg) with codecs.open(self.logfile, "a", encoding="utf-8") as f: f.write("%s" % msg) def getOutput(self, o): import fcntl fl = fcntl.fcntl(o, fcntl.F_GETFL) fcntl.fcntl(o, fcntl.F_SETFL, fl | os.O_NONBLOCK) return os.read(o.fileno(), 1000000).decode("utf-8") def handleSIGCHLD(self, signum, frame): if self.runqemu and self.runqemu.poll(): if self.runqemu.returncode: logger.info('runqemu exited with code %d' % self.runqemu.returncode) logger.info("Output from runqemu:\n%s" % self.getOutput(self.runqemu.stdout)) self.stop() self._dump_host() raise SystemExit def start(self, qemuparams = None, get_ip = True, extra_bootparams = None, runqemuparams='', launch_cmd=None, discard_writes=True): if self.display: os.environ["DISPLAY"] = self.display # Set this flag so that Qemu doesn't do any grabs as SDL grabs # interact badly with screensavers. os.environ["QEMU_DONT_GRAB"] = "1" if not os.path.exists(self.rootfs): logger.error("Invalid rootfs %s" % self.rootfs) return False if not os.path.exists(self.tmpdir): logger.error("Invalid TMPDIR path %s" % self.tmpdir) return False else: os.environ["OE_TMPDIR"] = self.tmpdir if not os.path.exists(self.deploy_dir_image): logger.error("Invalid DEPLOY_DIR_IMAGE path %s" % self.deploy_dir_image) return False else: os.environ["DEPLOY_DIR_IMAGE"] = self.deploy_dir_image if not launch_cmd: launch_cmd = 'runqemu %s %s ' % ('snapshot' if discard_writes else '', runqemuparams) if self.use_kvm: logger.info('Using kvm for runqemu') launch_cmd += ' kvm' else: logger.info('Not using kvm for runqemu') if not self.display: launch_cmd += ' nographic' launch_cmd += ' %s %s' % (self.machine, self.rootfs) return self.launch(launch_cmd, qemuparams=qemuparams, get_ip=get_ip, extra_bootparams=extra_bootparams) def launch(self, launch_cmd, get_ip = True, qemuparams = None, extra_bootparams = None): try: threadsock, threadport = self.create_socket() self.server_socket, self.serverport = self.create_socket() except socket.error as msg: logger.error("Failed to create listening socket: %s" % msg[1]) return False bootparams = 'console=tty1 console=ttyS0,115200n8 printk.time=1' if extra_bootparams: bootparams = bootparams + ' ' + extra_bootparams self.qemuparams = 'bootparams="{0}" qemuparams="-serial tcp:127.0.0.1:{1}"'.format(bootparams, threadport) if qemuparams: self.qemuparams = self.qemuparams[:-1] + " " + qemuparams + " " + '\"' launch_cmd += ' tcpserial=%s %s' % (self.serverport, self.qemuparams) self.origchldhandler = signal.getsignal(signal.SIGCHLD) signal.signal(signal.SIGCHLD, self.handleSIGCHLD) logger.info('launchcmd=%s'%(launch_cmd)) # FIXME: We pass in stdin=subprocess.PIPE here to work around stty # blocking at the end of the runqemu script when using this within # oe-selftest (this makes stty error out immediately). There ought # to be a proper fix but this will suffice for now. self.runqemu = subprocess.Popen(launch_cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, stdin=subprocess.PIPE, preexec_fn=os.setpgrp) output = self.runqemu.stdout # # We need the preexec_fn above so that all runqemu processes can easily be killed # (by killing their process group). This presents a problem if this controlling # process itself is killed however since those processes don't notice the death # of the parent and merrily continue on. # # Rather than hack runqemu to deal with this, we add something here instead. # Basically we fork off another process which holds an open pipe to the parent # and also is setpgrp. If/when the pipe sees EOF from the parent dieing, it kills # the process group. This is like pctrl's PDEATHSIG but for a process group # rather than a single process. # r, w = os.pipe() self.monitorpid = os.fork() if self.monitorpid: os.close(r) self.monitorpipe = os.fdopen(w, "w") else: # child process os.setpgrp() os.close(w) r = os.fdopen(r) x = r.read() os.killpg(os.getpgid(self.runqemu.pid), signal.SIGTERM) sys.exit(0) logger.info("runqemu started, pid is %s" % self.runqemu.pid) logger.info("waiting at most %s seconds for qemu pid" % self.runqemutime) endtime = time.time() + self.runqemutime while not self.is_alive() and time.time() < endtime: if self.runqemu.poll(): if self.runqemu.returncode: # No point waiting any longer logger.info('runqemu exited with code %d' % self.runqemu.returncode) self._dump_host() self.stop() logger.info("Output from runqemu:\n%s" % self.getOutput(output)) return False time.sleep(1) out = self.getOutput(output) netconf = False # network configuration is not required by default if self.is_alive(): logger.info("qemu started - qemu procces pid is %s" % self.qemupid) if get_ip: cmdline = '' with open('/proc/%s/cmdline' % self.qemupid) as p: cmdline = p.read() # It is needed to sanitize the data received # because is possible to have control characters cmdline = re_control_char.sub('', cmdline) try: ips = re.findall("((?:[0-9]{1,3}\.){3}[0-9]{1,3})", cmdline.split("ip=")[1]) self.ip = ips[0] self.server_ip = ips[1] logger.info("qemu cmdline used:\n{}".format(cmdline)) except (IndexError, ValueError): # Try to get network configuration from runqemu output match = re.match('.*Network configuration: ([0-9.]+)::([0-9.]+):([0-9.]+)$.*', out, re.MULTILINE|re.DOTALL) if match: self.ip, self.server_ip, self.netmask = match.groups() # network configuration is required as we couldn't get it # from the runqemu command line, so qemu doesn't run kernel # and guest networking is not configured netconf = True else: logger.error("Couldn't get ip from qemu command line and runqemu output! " "Here is the qemu command line used:\n%s\n" "and output from runqemu:\n%s" % (cmdline, out)) self._dump_host() self.stop() return False logger.info("Target IP: %s" % self.ip) logger.info("Server IP: %s" % self.server_ip) self.thread = LoggingThread(self.log, threadsock, logger) self.thread.start() if not self.thread.connection_established.wait(self.boottime): logger.error("Didn't receive a console connection from qemu. " "Here is the qemu command line used:\n%s\nand " "output from runqemu:\n%s" % (cmdline, out)) self.stop_thread() return False logger.info("Output from runqemu:\n%s", out) logger.info("Waiting at most %d seconds for login banner" % self.boottime) endtime = time.time() + self.boottime socklist = [self.server_socket] reachedlogin = False stopread = False qemusock = None bootlog = '' data = b'' while time.time() < endtime and not stopread: try: sread, swrite, serror = select.select(socklist, [], [], 5) except InterruptedError: continue for sock in sread: if sock is self.server_socket: qemusock, addr = self.server_socket.accept() qemusock.setblocking(0) socklist.append(qemusock) socklist.remove(self.server_socket) logger.info("Connection from %s:%s" % addr) else: data = data + sock.recv(1024) if data: try: data = data.decode("utf-8", errors="surrogateescape") bootlog += data data = b'' if re.search(".* login:", bootlog): self.server_socket = qemusock stopread = True reachedlogin = True logger.info("Reached login banner") except UnicodeDecodeError: continue else: socklist.remove(sock) sock.close() stopread = True if not reachedlogin: logger.info("Target didn't reached login boot in %d seconds" % self.boottime) lines = "\n".join(bootlog.splitlines()[-25:]) logger.info("Last 25 lines of text:\n%s" % lines) logger.info("Check full boot log: %s" % self.logfile) self._dump_host() self.stop() return False # If we are not able to login the tests can continue try: (status, output) = self.run_serial("root\n", raw=True) if re.search("root@[a-zA-Z0-9\-]+:~#", output): self.logged = True logger.info("Logged as root in serial console") if netconf: # configure guest networking cmd = "ifconfig eth0 %s netmask %s up\n" % (self.ip, self.netmask) output = self.run_serial(cmd, raw=True)[1] if re.search("root@[a-zA-Z0-9\-]+:~#", output): logger.info("configured ip address %s", self.ip) else: logger.info("Couldn't configure guest networking") else: logger.info("Couldn't login into serial console" " as root using blank password") except: logger.info("Serial console failed while trying to login") else: logger.info("Qemu pid didn't appeared in %s seconds" % self.runqemutime) self._dump_host() self.stop() logger.info("Output from runqemu:\n%s" % self.getOutput(output)) return False return self.is_alive() def stop(self): self.stop_thread() self.stop_qemu_system() if hasattr(self, "origchldhandler"): signal.signal(signal.SIGCHLD, self.origchldhandler) if self.runqemu: if hasattr(self, "monitorpid"): os.kill(self.monitorpid, signal.SIGKILL) logger.info("Sending SIGTERM to runqemu") try: os.killpg(os.getpgid(self.runqemu.pid), signal.SIGTERM) except OSError as e: if e.errno != errno.ESRCH: raise endtime = time.time() + self.runqemutime while self.runqemu.poll() is None and time.time() < endtime: time.sleep(1) if self.runqemu.poll() is None: logger.info("Sending SIGKILL to runqemu") os.killpg(os.getpgid(self.runqemu.pid), signal.SIGKILL) self.runqemu = None if hasattr(self, 'server_socket') and self.server_socket: self.server_socket.close() self.server_socket = None self.qemupid = None self.ip = None def stop_qemu_system(self): if self.qemupid: try: # qemu-system behaves well and a SIGTERM is enough os.kill(self.qemupid, signal.SIGTERM) except ProcessLookupError as e: logger.warn('qemu-system ended unexpectedly') def stop_thread(self): if self.thread and self.thread.is_alive(): self.thread.stop() self.thread.join() def restart(self, qemuparams = None): logger.info("Restarting qemu process") if self.runqemu.poll() is None: self.stop() if self.start(qemuparams): return True return False def is_alive(self): if not self.runqemu: return False qemu_child = self.find_child(str(self.runqemu.pid)) if qemu_child: self.qemupid = qemu_child[0] if os.path.exists("/proc/" + str(self.qemupid)): return True return False def find_child(self,parent_pid): # # Walk the process tree from the process specified looking for a qemu-system. Return its [pid'cmd] # ps = subprocess.Popen(['ps', 'axww', '-o', 'pid,ppid,command'], stdout=subprocess.PIPE).communicate()[0] processes = ps.decode("utf-8").split('\n') nfields = len(processes[0].split()) - 1 pids = {} commands = {} for row in processes[1:]: data = row.split(None, nfields) if len(data) != 3: continue if data[1] not in pids: pids[data[1]] = [] pids[data[1]].append(data[0]) commands[data[0]] = data[2] if parent_pid not in pids: return [] parents = [] newparents = pids[parent_pid] while newparents: next = [] for p in newparents: if p in pids: for n in pids[p]: if n not in parents and n not in next: next.append(n) if p not in parents: parents.append(p) newparents = next #print("Children matching %s:" % str(parents)) for p in parents: # Need to be careful here since runqemu runs "ldd qemu-system-xxxx" # Also, old versions of ldd (2.11) run "LD_XXXX qemu-system-xxxx" basecmd = commands[p].split()[0] basecmd = os.path.basename(basecmd) if "qemu-system" in basecmd and "-serial tcp" in commands[p]: return [int(p),commands[p]] def run_serial(self, command, raw=False, timeout=5): # We assume target system have echo to get command status if not raw: command = "%s; echo $?\n" % command data = '' status = 0 self.server_socket.sendall(command.encode('utf-8')) start = time.time() end = start + timeout while True: now = time.time() if now >= end: data += "<<< run_serial(): command timed out after %d seconds without output >>>\r\n\r\n" % timeout break try: sread, _, _ = select.select([self.server_socket],[],[], end - now) except InterruptedError: continue if sread: answer = self.server_socket.recv(1024) if answer: data += answer.decode('utf-8') # Search the prompt to stop if re.search("[a-zA-Z0-9]+@[a-zA-Z0-9\-]+:~#", data): break else: raise Exception("No data on serial console socket") if data: if raw: status = 1 else: # Remove first line (command line) and last line (prompt) data = data[data.find('$?\r\n')+4:data.rfind('\r\n')] index = data.rfind('\r\n') if index == -1: status_cmd = data data = "" else: status_cmd = data[index+2:] data = data[:index] if (status_cmd == "0"): status = 1 return (status, str(data)) def _dump_host(self): self.host_dumper.create_dir("qemu") logger.warn("Qemu ended unexpectedly, dump data from host" " is in %s" % self.host_dumper.dump_dir) self.host_dumper.dump_host() # This class is for reading data from a socket and passing it to logfunc # to be processed. It's completely event driven and has a straightforward # event loop. The mechanism for stopping the thread is a simple pipe which # will wake up the poll and allow for tearing everything down. class LoggingThread(threading.Thread): def __init__(self, logfunc, sock, logger): self.connection_established = threading.Event() self.serversock = sock self.logfunc = logfunc self.logger = logger self.readsock = None self.running = False self.errorevents = select.POLLERR | select.POLLHUP | select.POLLNVAL self.readevents = select.POLLIN | select.POLLPRI threading.Thread.__init__(self, target=self.threadtarget) def threadtarget(self): try: self.eventloop() finally: self.teardown() def run(self): self.logger.info("Starting logging thread") self.readpipe, self.writepipe = os.pipe() threading.Thread.run(self) def stop(self): self.logger.info("Stopping logging thread") if self.running: os.write(self.writepipe, bytes("stop", "utf-8")) def teardown(self): self.logger.info("Tearing down logging thread") self.close_socket(self.serversock) if self.readsock is not None: self.close_socket(self.readsock) self.close_ignore_error(self.readpipe) self.close_ignore_error(self.writepipe) self.running = False def eventloop(self): poll = select.poll() event_read_mask = self.errorevents | self.readevents poll.register(self.serversock.fileno()) poll.register(self.readpipe, event_read_mask) breakout = False self.running = True self.logger.info("Starting thread event loop") while not breakout: events = poll.poll() for event in events: # An error occurred, bail out if event[1] & self.errorevents: raise Exception(self.stringify_event(event[1])) # Event to stop the thread if self.readpipe == event[0]: self.logger.info("Stop event received") breakout = True break # A connection request was received elif self.serversock.fileno() == event[0]: self.logger.info("Connection request received") self.readsock, _ = self.serversock.accept() self.readsock.setblocking(0) poll.unregister(self.serversock.fileno()) poll.register(self.readsock.fileno(), event_read_mask) self.logger.info("Setting connection established event") self.connection_established.set() # Actual data to be logged elif self.readsock.fileno() == event[0]: data = self.recv(1024) self.logfunc(data) # Since the socket is non-blocking make sure to honor EAGAIN # and EWOULDBLOCK. def recv(self, count): try: data = self.readsock.recv(count) except socket.error as e: if e.errno == errno.EAGAIN or e.errno == errno.EWOULDBLOCK: return '' else: raise if data is None: raise Exception("No data on read ready socket") elif not data: # This actually means an orderly shutdown # happened. But for this code it counts as an # error since the connection shouldn't go away # until qemu exits. raise Exception("Console connection closed unexpectedly") return data def stringify_event(self, event): val = '' if select.POLLERR == event: val = 'POLLER' elif select.POLLHUP == event: val = 'POLLHUP' elif select.POLLNVAL == event: val = 'POLLNVAL' return val def close_socket(self, sock): sock.shutdown(socket.SHUT_RDWR) sock.close() def close_ignore_error(self, fd): try: os.close(fd) except OSError: pass
gpl-2.0
2,719,740,783,573,503,000
39.107616
159
0.533375
false
Orpheus11/nile
nile/common/lockutils.py
1
3733
import threading import weakref import contextlib import logging import fasteners import os LOG = logging.getLogger(__name__) class Semaphores(object): def __init__(self): self._semaphores = weakref.WeakValueDictionary() self._lock = threading.Lock() def get(self, name): with self._lock: try: return self._semaphores[name] except KeyError: sem = threading.Semaphore() self._semaphores[name] = sem return sem def __len__(self): return len(self._semaphores) _semaphores = Semaphores() InterProcessLock = fasteners.InterProcessLock ReaderWriterLock = fasteners.ReaderWriterLock def internal_lock(name, semaphores=None): if semaphores is None: semaphores = _semaphores return semaphores.get(name) def external_lock(name, lock_file_prefix=None, lock_path=None): lock_file_path = _get_lock_path(name, lock_file_prefix, lock_path) return InterProcessLock(lock_file_path) def _get_lock_path(name, lock_file_prefix, lock_path=None): name = name.replace(os.sep, '_') if lock_file_prefix: sep = '' if lock_file_prefix.endswith('-') else '-' name = '%s%s%s' % (lock_file_prefix, sep, name) local_lock_path = lock_path if not local_lock_path: # raise cfg.RequiredOptError('lock_path') raise return os.path.join(local_lock_path, name) @contextlib.contextmanager def lock(name, lock_file_prefix=None, external=False, lock_path=None, do_log=True, semaphores=None, delay=0.01): """Context based lock This function yields a `threading.Semaphore` instance (if we don't use eventlet.monkey_patch(), else `semaphore.Semaphore`) unless external is True, in which case, it'll yield an InterProcessLock instance. :param lock_file_prefix: The lock_file_prefix argument is used to provide lock files on disk with a meaningful prefix. :param external: The external keyword argument denotes whether this lock should work across multiple processes. This means that if two different workers both run a method decorated with @synchronized('mylock', external=True), only one of them will execute at a time. :param lock_path: The path in which to store external lock files. For external locking to work properly, this must be the same for all references to the lock. :param do_log: Whether to log acquire/release messages. This is primarily intended to reduce log message duplication when `lock` is used from the `synchronized` decorator. :param semaphores: Container that provides semaphores to use when locking. This ensures that threads inside the same application can not collide, due to the fact that external process locks are unaware of a processes active threads. :param delay: Delay between acquisition attempts (in seconds). .. versionchanged:: 0.2 Added *do_log* optional parameter. .. versionchanged:: 0.3 Added *delay* and *semaphores* optional parameters. """ int_lock = internal_lock(name, semaphores=semaphores) with int_lock: if do_log: LOG.debug('Acquired semaphore "%(lock)s"', {'lock': name}) try: if external: ext_lock = external_lock(name, lock_file_prefix, lock_path) ext_lock.acquire(delay=delay) try: yield ext_lock finally: ext_lock.release() else: yield int_lock finally: if do_log: LOG.debug('Releasing semaphore "%(lock)s"', {'lock': name})
apache-2.0
-4,795,306,328,737,834,000
33.247706
78
0.646397
false
Fokko/incubator-airflow
tests/test_utils/mock_operators.py
1
1355
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from typing import NamedTuple from airflow.models.baseoperator import BaseOperator from airflow.utils.decorators import apply_defaults # Namedtuple for testing purposes class MockNamedTuple(NamedTuple): var1: str var2: str class MockOperator(BaseOperator): """Operator for testing purposes.""" template_fields = ("arg1", "arg2") @apply_defaults def __init__(self, arg1: str = "", arg2: str = "", **kwargs): super().__init__(**kwargs) self.arg1 = arg1 self.arg2 = arg2 def execute(self, context): pass
apache-2.0
3,725,370,474,415,175,700
31.261905
65
0.723985
false
FedoraScientific/salome-paravis
test/VisuPrs/ImportMedField/B3.py
1
1389
# Copyright (C) 2010-2014 CEA/DEN, EDF R&D # # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2.1 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this library; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA # # See http://www.salome-platform.org/ or email : [email protected] # # This case corresponds to: /visu/ImportMedField/B3 case # Import MED file; create presentations for the given fields. from paravistest import datadir, Import_Med_Field import pvserver as paravis med_file = datadir + "zzzz121b.med" field_names = ["RESUZERODEPL____________________", "RESUZEROERRE_ELGA_NORE__________", "RESUZEROSIEF_ELGA_DEPL__________", "RESUZEROSIGM_ELNO_DEPL__________"] prs_list = [ [0,1,5,6,7], [0,1,5,6,7], [0,1,5,6,7], [0,1,5,6,7,9] ] Import_Med_Field(paravis.myParavis, med_file, field_names, 1, prs_list)
lgpl-2.1
7,929,004,548,466,227,000
45.3
158
0.718503
false
Greymerk/python-rpg
src/world/terrain/chunkmanager.py
1
1344
from random import choice from mapcache import MapCache from chunk import Chunk class ChunkManager: def __init__(self, world): self.world = world self.chunkCache = [] self.mapCache = MapCache(self, self.world.seed) self.maxCacheSize = 64 def getChunk(self, x, y): chunkX = int(x) >> 4 chunkY = int(y) >> 4 for c in self.chunkCache: if c.getPos() == (chunkX, chunkY): return c toLoad = Chunk((chunkX, chunkY), self.world.getSeed(), self.world.mobManager, self.mapCache) self.chunkCache.append(toLoad) if len(self.chunkCache) > self.maxCacheSize: toUnload = self.chunkCache.popleft() toUnload.unload() return toLoad def getMap(self, x, y): return self.mapCache.get(x, y) def getTile(self, pos): x = int(pos[0]) y = int(pos[1]) c = self.getChunk(x, y) return c.getTile(x % Chunk.size, y % Chunk.size) def isLoaded(self, x, y): for c in self.chunkCache: if c.pos is (x, y): return True return False def setTile(self, (x, y), id): c = self.getChunk(x, y) c.setTile((x, y), id) def saveChunks(self): for c in self.chunkCache: c.unload() def getRandomChunk(self): return choice(self.chunkCache) def cull(self, center, dist): for c in self.chunkCache: if c.getDistToChunk(center) > dist: c.unload() self.chunkCache.remove(c)
gpl-3.0
-1,728,710,524,475,288,800
19.676923
94
0.65253
false
daniel-dinu/rational-python
test_rational/test_rational.py
1
32468
import unittest2 from unittest2 import TestCase from rational.rational import gcd from rational.rational import Rational __author__ = 'Daniel Dinu' class TestRational(TestCase): def setUp(self): self.known_values = [(1, 2, 1, 2), (-1, 2, -1, 2), (1, -2, -1, 2), (-1, -2, 1, 2), (2, 4, 1, 2), (-2, 4, -1, 2), (2, -4, -1, 2), (-2, -4, 1, 2), (2, 1, 2, 1), (-2, 1, -2, 1), (2, -1, -2, 1), (-2, -1, 2, 1), (4, 2, 2, 1), (-4, 2, -2, 1), (4, -2, -2, 1), (-4, -2, 2, 1)] def tearDown(self): del self.known_values def test_constructor_numerator_type_error(self): self.assertRaises(TypeError, Rational, 1.2) def test_constructor_denominator_type_error(self): self.assertRaises(TypeError, Rational, 1, 1.2) def test_constructor_denominator_zero_division_error(self): numerator = 1 denominator = 0 with self.subTest(numerator=numerator, denominator=denominator): self.assertRaises(ZeroDivisionError, Rational, numerator, denominator) numerator = Rational() denominator = 0 with self.subTest(numerator=numerator, denominator=denominator): self.assertRaises(ZeroDivisionError, Rational, numerator, denominator) numerator = Rational() denominator = Rational() with self.subTest(numerator=numerator, denominator=denominator): self.assertRaises(ZeroDivisionError, Rational, numerator, denominator) def test_constructor_numerator(self): for numerator, denominator, expected_numerator, expected_denominator in self.known_values: with self.subTest(numerator=numerator, denominator=denominator): r = Rational(numerator, denominator) self.assertEqual(expected_numerator, r.numerator) def test_constructor_denominator(self): for numerator, denominator, expected_numerator, expected_denominator in self.known_values: with self.subTest(numerator=numerator, denominator=denominator): r = Rational(numerator, denominator) self.assertEqual(expected_denominator, r.denominator) def test_constructor_transform(self): test_constructor_transform_values = [(Rational(1, 2), Rational(1, 2), Rational(1)), (Rational(1, 2), Rational(1, 4), Rational(2)), (Rational(1, 4), Rational(1, 2), Rational(1, 2)), (Rational(-1, 2), Rational(1, 2), Rational(-1)), (Rational(-1, 2), Rational(1, 4), Rational(-2)), (Rational(-1, 4), Rational(1, 2), Rational(-1, 2)), (Rational(1, 2), Rational(-1, 2), Rational(-1)), (Rational(1, 2), Rational(-1, 4), Rational(-2)), (Rational(1, 4), Rational(-1, 2), Rational(-1, 2)), (Rational(-1, 2), Rational(-1, 2), Rational(1)), (Rational(-1, 2), Rational(-1, 4), Rational(2)), (Rational(-1, 4), Rational(-1, 2), Rational(1, 2))] for a, b, expected_result in test_constructor_transform_values: with self.subTest(a=a, b=b, expected_result=expected_result): computed_result = Rational(a, b) self.assertEqual(expected_result, computed_result) def test_transform(self): test_transform_values = [(1, 2, (1, 2)), (2, 4, (2, 4)), (-1, 2, (-1, 2)), (-2, 4, (-2, 4)), (1, -2, (1, -2)), (2, -4, (2, -4)), (-1, -2, (-1, -2)), (-2, -4, (-2, -4)), (Rational(1, 2), 1, (1, 2)), (Rational(1, 2), 2, (1, 4)), (Rational(-1, 2), 1, (-1, 2)), (Rational(-1, 2), 2, (-1, 4)), (Rational(1, -2), 1, (-1, 2)), (Rational(1, -2), 2, (-1, 4)), (Rational(1, 2), -1, (1, -2)), (Rational(1, 2), -2, (1, -4)), (Rational(-1, 2), -1, (-1, -2)), (Rational(-1, 2), -2, (-1, -4)), (1, Rational(1, 2), (2, 1)), (2, Rational(1, 2), (4, 1)), (-1, Rational(1, 2), (-2, 1)), (-2, Rational(1, 2), (-4, 1)), (1, Rational(-1, 2), (2, -1)), (2, Rational(-1, 2), (4, -1)), (1, Rational(1, -2), (2, -1)), (2, Rational(1, -2), (4, -1)), (-1, Rational(1, 2), (-2, 1)), (-2, Rational(1, 2), (-4, 1)), (Rational(1, 2), Rational(1, 2), (2, 2)), (Rational(1, 2), Rational(1, 4), (4, 2)), (Rational(1, 4), Rational(1, 2), (2, 4)), (Rational(-1, 2), Rational(1, 2), (-2, 2)), (Rational(-1, 2), Rational(1, 4), (-4, 2)), (Rational(-1, 4), Rational(1, 2), (-2, 4)), (Rational(1, 2), Rational(-1, 2), (2, -2)), (Rational(1, 2), Rational(-1, 4), (4, -2)), (Rational(1, 4), Rational(-1, 2), (2, -4)), (Rational(-1, 2), Rational(-1, 2), (-2, -2)), (Rational(-1, 2), Rational(-1, 4), (-4, -2)), (Rational(-1, 4), Rational(-1, 2), (-2, -4))] for a, b, expected_result in test_transform_values: with self.subTest(a=a, b=b, expected_result=expected_result): computed_result = Rational.transform(a, b) self.assertEqual(expected_result, computed_result) def test_gcd(self): gcd_test_values = [(0, 0, 0), (0, 1, 1), (1, 0, 1), (0, -1, -1), (-1, 0, -1), (2, 4, 2), (-2, 4, 2), (-2, -4, -2), (42, 30, 6), (42, -30, -6), (-42, -30, -6)] for a, b, expected_gcd in gcd_test_values: with self.subTest(a=a, b=b, expected_gcd=expected_gcd): computed_gcd = gcd(a, b) self.assertEqual(expected_gcd, computed_gcd) def test_value(self): for numerator, denominator, expected_numerator, expected_denominator in self.known_values: with self.subTest(numerator=numerator, denominator=denominator): r = Rational(numerator, denominator) expected_value = expected_numerator / (expected_denominator * 1.0) self.assertEqual(expected_value, r.value) def test_quotient(self): for numerator, denominator, expected_numerator, expected_denominator in self.known_values: with self.subTest(numerator=numerator, denominator=denominator): r = Rational(numerator, denominator) expected_value = expected_numerator // expected_denominator self.assertEqual(expected_value, r.quotient) def test_remainder(self): for numerator, denominator, expected_numerator, expected_denominator in self.known_values: with self.subTest(numerator=numerator, denominator=denominator): r = Rational(numerator, denominator) expected_value = expected_numerator % expected_denominator self.assertEqual(expected_value, r.remainder) def test_str(self): for numerator, denominator, expected_numerator, expected_denominator in self.known_values: with self.subTest(numerator=numerator, denominator=denominator): r = Rational(numerator, denominator) if 1 == expected_denominator: expected_str = '{0}'.format(expected_numerator) else: expected_str = '{0}/{1}'.format(expected_numerator, expected_denominator) self.assertEqual(expected_str, str(r)) def test_repr(self): for numerator, denominator, expected_numerator, expected_denominator in self.known_values: with self.subTest(numerator=numerator, denominator=denominator): r = Rational(numerator, denominator) expected_repr = 'Rational({0}, {1})'.format(expected_numerator, expected_denominator) self.assertEqual(expected_repr, repr(r)) def test_float(self): for numerator, denominator, expected_numerator, expected_denominator in self.known_values: with self.subTest(numerator=numerator, denominator=denominator): r = Rational(numerator, denominator) expected_value = expected_numerator / (expected_denominator * 1.0) self.assertEqual(expected_value, float(r)) def test_int(self): for numerator, denominator, expected_numerator, expected_denominator in self.known_values: with self.subTest(numerator=numerator, denominator=denominator): r = Rational(numerator, denominator) expected_value = expected_numerator // expected_denominator self.assertEqual(expected_value, int(r)) def test_neg(self): for numerator, denominator, expected_numerator, expected_denominator in self.known_values: with self.subTest(numerator=numerator, denominator=denominator): r = -Rational(numerator, denominator) self.assertEqual(-expected_numerator, r.numerator) self.assertEqual(expected_denominator, r.denominator) def test_pos(self): for numerator, denominator, expected_numerator, expected_denominator in self.known_values: with self.subTest(numerator=numerator, denominator=denominator): r = +Rational(numerator, denominator) self.assertEqual(expected_numerator, r.numerator) self.assertEqual(expected_denominator, r.denominator) def test_abs(self): for numerator, denominator, expected_numerator, expected_denominator in self.known_values: with self.subTest(numerator=numerator, denominator=denominator): r = abs(Rational(numerator, denominator)) self.assertEqual(abs(expected_numerator), r.numerator) self.assertEqual(expected_denominator, r.denominator) def test_invert_zero_division_error(self): r = Rational(0) with self.assertRaises(ZeroDivisionError): ~r def test_invert(self): for numerator, denominator, expected_numerator, expected_denominator in self.known_values: with self.subTest(numerator=numerator, denominator=denominator): r = ~Rational(numerator, denominator) if 0 > expected_numerator: expected_inverted_numerator = -expected_denominator expected_inverted_denominator = -expected_numerator else: expected_inverted_numerator = expected_denominator expected_inverted_denominator = expected_numerator self.assertEqual(expected_inverted_numerator, r.numerator) self.assertEqual(expected_inverted_denominator, r.denominator) def test_lt(self): true_test_cases = [(Rational(-1, 2), Rational()), (Rational(), Rational(1, 2)), (Rational(-1, 2), Rational(1, 2)), (Rational(1, 4), Rational(1, 2)), (Rational(-1, 2), Rational(-1, 4))] false_test_cases = [(Rational(), Rational()), (Rational(1, 2), Rational()), (Rational(), Rational(-1, 2)), (Rational(-1, 2), Rational(1, -2)), (Rational(1, 2), Rational(2, 4)), (Rational(1, 2), Rational(-1, 2)), (Rational(1, 2), Rational(1, 4)), (Rational(-1, 4), Rational(-1, 2))] for r1, r2 in true_test_cases: with self.subTest(r1=r1, r2=r2, result=True): self.assertTrue(r1 < r2) for r1, r2 in false_test_cases: with self.subTest(r1=r1, r2=r2, result=False): self.assertFalse(r1 < r2) def test_le(self): true_test_cases = [(Rational(), Rational()), (Rational(-1, 2), Rational()), (Rational(), Rational(1, 2)), (Rational(-1, 2), Rational(1, -2)), (Rational(1, 2), Rational(2, 4)), (Rational(-1, 2), Rational(1, 2)), (Rational(1, 4), Rational(1, 2)), (Rational(-1, 2), Rational(-1, 4))] false_test_cases = [(Rational(1, 2), Rational()), (Rational(), Rational(-1, 2)), (Rational(1, 2), Rational(-1, 2)), (Rational(1, 2), Rational(1, 4)), (Rational(-1, 4), Rational(-1, 2))] for r1, r2 in true_test_cases: with self.subTest(r1=r1, r2=r2, result=True): self.assertTrue(r1 <= r2) for r1, r2 in false_test_cases: with self.subTest(r1=r1, r2=r2, result=False): self.assertFalse(r1 <= r2) def test_eq(self): true_test_cases = [(Rational(), Rational()), (Rational(-1, 2), Rational(1, -2)), (Rational(1, 2), Rational(2, 4))] false_test_cases = [(Rational(-1, 2), Rational()), (Rational(), Rational(1, 2)), (Rational(1, 2), Rational()), (Rational(), Rational(-1, 2)), (Rational(-1, 2), Rational(1, 2)), (Rational(1, 4), Rational(1, 2)), (Rational(-1, 2), Rational(-1, 4)), (Rational(1, 2), Rational(-1, 2)), (Rational(1, 2), Rational(1, 4)), (Rational(-1, 4), Rational(-1, 2))] for r1, r2 in true_test_cases: with self.subTest(r1=r1, r2=r2, result=True): self.assertTrue(r1 == r2) for r1, r2 in false_test_cases: with self.subTest(r1=r1, r2=r2, result=False): self.assertFalse(r1 == r2) def test_ne(self): true_test_cases = [(Rational(-1, 2), Rational()), (Rational(), Rational(1, 2)), (Rational(1, 2), Rational()), (Rational(), Rational(-1, 2)), (Rational(-1, 2), Rational(1, 2)), (Rational(1, 4), Rational(1, 2)), (Rational(-1, 2), Rational(-1, 4)), (Rational(1, 2), Rational(-1, 2)), (Rational(1, 2), Rational(1, 4)), (Rational(-1, 4), Rational(-1, 2))] false_test_cases = [(Rational(), Rational()), (Rational(-1, 2), Rational(1, -2)), (Rational(1, 2), Rational(2, 4))] for r1, r2 in true_test_cases: with self.subTest(r1=r1, r2=r2, result=True): self.assertTrue(r1 != r2) for r1, r2 in false_test_cases: with self.subTest(r1=r1, r2=r2, result=False): self.assertFalse(r1 != r2) def test_ge(self): true_test_cases = [(Rational(), Rational()), (Rational(1, 2), Rational()), (Rational(), Rational(-1, 2)), (Rational(-1, 2), Rational(1, -2)), (Rational(1, 2), Rational(2, 4)), (Rational(1, 2), Rational(-1, 2)), (Rational(1, 2), Rational(1, 4)), (Rational(-1, 4), Rational(-1, 2))] false_test_cases = [(Rational(-1, 2), Rational()), (Rational(), Rational(1, 2)), (Rational(-1, 2), Rational(1, 2)), (Rational(1, 4), Rational(1, 2)), (Rational(-1, 2), Rational(-1, 4))] for r1, r2 in true_test_cases: with self.subTest(r1=r1, r2=r2, result=True): self.assertTrue(r1 >= r2) for r1, r2 in false_test_cases: with self.subTest(r1=r1, r2=r2, result=False): self.assertFalse(r1 >= r2) def test_gt(self): true_test_cases = [(Rational(1, 2), Rational()), (Rational(), Rational(-1, 2)), (Rational(1, 2), Rational(-1, 2)), (Rational(1, 2), Rational(1, 4)), (Rational(-1, 4), Rational(-1, 2))] false_test_cases = [(Rational(), Rational()), (Rational(-1, 2), Rational()), (Rational(), Rational(1, 2)), (Rational(-1, 2), Rational(1, -2)), (Rational(1, 2), Rational(2, 4)), (Rational(-1, 2), Rational(1, 2)), (Rational(1, 4), Rational(1, 2)), (Rational(-1, 2), Rational(-1, 4))] for r1, r2 in true_test_cases: with self.subTest(r1=r1, r2=r2, result=True): self.assertTrue(r1 > r2) for r1, r2 in false_test_cases: with self.subTest(r1=r1, r2=r2, result=False): self.assertFalse(r1 > r2) def test_add_type_error(self): r = Rational() with self.assertRaises(TypeError): r + 1.2 def test_add(self): add_test_values = [(Rational(), Rational(1, 2), Rational(1, 2)), (Rational(1, 2), Rational(), Rational(1, 2)), (Rational(1, 2), Rational(1, 2), Rational(1, 1)), (Rational(1, 2), Rational(-1, 2), Rational(0, 1)), (Rational(1, 4), Rational(2, 4), Rational(3, 4)), (Rational(1, 4), Rational(3, 4), Rational(1, 1)), (Rational(1, 4), Rational(-3, 4), Rational(-1, 2)), (Rational(1, 2), Rational(1, 3), Rational(5, 6)), (Rational(2), -1, Rational(1)), (Rational(2), 1, Rational(3))] for r1, r2, expected_r in add_test_values: with self.subTest(r1=r1, r2=r2, expected_r=expected_r): r = r1 + r2 self.assertEqual(expected_r, r) def test_sub_type_error(self): r = Rational() with self.assertRaises(TypeError): r - 1.2 def test_sub(self): sub_test_values = [(Rational(), Rational(1, 2), Rational(-1, 2)), (Rational(1, 2), Rational(), Rational(1, 2)), (Rational(1, 2), Rational(1, 2), Rational(0, 1)), (Rational(1, 2), Rational(-1, 2), Rational(1, 1)), (Rational(1, 4), Rational(2, 4), Rational(-1, 4)), (Rational(1, 4), Rational(3, 4), Rational(-1, 2)), (Rational(1, 4), Rational(-3, 4), Rational(1, 1)), (Rational(1, 2), Rational(1, 3), Rational(1, 6)), (Rational(2), -1, Rational(3)), (Rational(2), 1, Rational(1))] for r1, r2, expected_r in sub_test_values: with self.subTest(r1=r1, r2=r2, expected_r=expected_r): r = r1 - r2 self.assertEqual(expected_r, r) def test_mul_type_error(self): r = Rational() with self.assertRaises(TypeError): r * 1.2 def test_mul(self): mul_test_values = [(Rational(), Rational(1, 2), Rational()), (Rational(1, 2), Rational(), Rational()), (Rational(1, 2), Rational(1, 2), Rational(1, 4)), (Rational(1, 2), Rational(-1, 2), Rational(-1, 4)), (Rational(1, 4), Rational(2, 4), Rational(1, 8)), (Rational(1, 4), Rational(3, 4), Rational(3, 16)), (Rational(1, 4), Rational(-3, 4), Rational(-3, 16)), (Rational(1, 2), Rational(1, 3), Rational(1, 6)), (Rational(2), 1, Rational(2)), (Rational(2), -1, Rational(-2))] for r1, r2, expected_r in mul_test_values: with self.subTest(r1=r1, r2=r2, expected_r=expected_r): r = r1 * r2 self.assertEqual(expected_r, r) def test_truediv_zero_division_error(self): r1 = Rational(1, 2) r2 = Rational() with self.assertRaises(ZeroDivisionError): r1 / r2 def test_truediv_type_error(self): r = Rational() with self.assertRaises(TypeError): r / 1.2 def test_truediv(self): div_test_values = [(Rational(), Rational(1, 2), Rational()), (Rational(1, 2), Rational(1, 2), Rational(1, 1)), (Rational(1, 2), Rational(-1, 2), Rational(-1, 1)), (Rational(1, 4), Rational(2, 4), Rational(1, 2)), (Rational(1, 4), Rational(3, 4), Rational(1, 3)), (Rational(1, 4), Rational(-3, 4), Rational(-1, 3)), (Rational(1, 2), Rational(1, 3), Rational(3, 2)), (Rational(2), 1, Rational(2)), (Rational(2), -1, Rational(-2))] for r1, r2, expected_r in div_test_values: with self.subTest(r1=r1, r2=r2, expected_r=expected_r): r = r1 / r2 self.assertEqual(expected_r, r) def test_pow_zero_division_error(self): r = Rational() for power in range(-3, 0): with self.subTest(r=r, power=power): with self.assertRaises(ZeroDivisionError): r ** power def test_pow_type_error(self): r = Rational() with self.assertRaises(TypeError): r ** 1.2 def test_pow(self): pow_test_values = [(Rational(), 0, Rational()), (Rational(), 1, Rational()), (Rational(), 2, Rational()), (Rational(), 3, Rational()), (Rational(1, 2), -3, Rational(8, 1)), (Rational(1, 2), -2, Rational(4, 1)), (Rational(1, 2), -1, Rational(2, 1)), (Rational(1, 2), 0, Rational(1, 1)), (Rational(1, 2), 1, Rational(1, 2)), (Rational(1, 2), 2, Rational(1, 4)), (Rational(1, 2), 3, Rational(1, 8)), (Rational(-1, 2), -3, Rational(-8, 1)), (Rational(-1, 2), -2, Rational(4, 1)), (Rational(-1, 2), -1, Rational(-2, 1)), (Rational(-1, 2), 0, Rational(1, 1)), (Rational(-1, 2), 1, Rational(-1, 2)), (Rational(-1, 2), 2, Rational(1, 4)), (Rational(-1, 2), 3, Rational(-1, 8)), (Rational(1, 3), -3, Rational(27, 1)), (Rational(1, 3), -2, Rational(9, 1)), (Rational(1, 3), -1, Rational(3, 1)), (Rational(1, 3), 0, Rational(1, 1)), (Rational(1, 3), 1, Rational(1, 3)), (Rational(1, 3), 2, Rational(1, 9)), (Rational(1, 3), 3, Rational(1, 27)), (Rational(-1, 3), -3, Rational(-27, 1)), (Rational(-1, 3), -2, Rational(9, 1)), (Rational(-1, 3), -1, Rational(-3, 1)), (Rational(-1, 3), 0, Rational(1, 1)), (Rational(-1, 3), 1, Rational(-1, 3)), (Rational(-1, 3), 2, Rational(1, 9)), (Rational(-1, 3), 3, Rational(-1, 27))] for r1, power, expected_r in pow_test_values: with self.subTest(r1=r1, power=power, expected_r=expected_r): r = r1 ** power self.assertEqual(expected_r, r) def test_radd_type_error(self): r = Rational() with self.assertRaises(TypeError): 1.2 + r def test_radd(self): radd_test_values = [(1, Rational(1, 2), Rational(3, 2)), (1, Rational(), Rational(1, 1)), (-1, Rational(1, 2), Rational(-1, 2)), (1, Rational(-1, 2), Rational(1, 2)), (1, Rational(2, 4), Rational(3, 2)), (1, Rational(3, 4), Rational(7, 4)), (1, Rational(-3, 4), Rational(1, 4)), (1, Rational(1, 3), Rational(4, 3))] for r1, r2, expected_r in radd_test_values: with self.subTest(r1=r1, r2=r2, expected_r=expected_r): r = r1 + r2 self.assertEqual(expected_r, r) def test_rsub_type_error(self): r = Rational() with self.assertRaises(TypeError): 1.2 - r def test_rsub(self): rsub_test_values = [(1, Rational(1, 2), Rational(1, 2)), (1, Rational(), Rational(1, 1)), (-1, Rational(1, 2), Rational(-3, 2)), (1, Rational(-1, 2), Rational(3, 2)), (1, Rational(2, 4), Rational(1, 2)), (1, Rational(3, 4), Rational(1, 4)), (1, Rational(-3, 4), Rational(7, 4)), (1, Rational(1, 3), Rational(2, 3))] for r1, r2, expected_r in rsub_test_values: with self.subTest(r1=r1, r2=r2, expected_r=expected_r): r = r1 - r2 self.assertEqual(expected_r, r) def test_rmul_type_error(self): r = Rational() with self.assertRaises(TypeError): 1.2 * r def test_rmul(self): rmul_test_values = [(1, Rational(1, 2), Rational(1, 2)), (1, Rational(), Rational(0, 1)), (-1, Rational(1, 2), Rational(-1, 2)), (1, Rational(-1, 2), Rational(-1, 2)), (1, Rational(2, 4), Rational(1, 2)), (1, Rational(3, 4), Rational(3, 4)), (1, Rational(-3, 4), Rational(-3, 4)), (1, Rational(1, 3), Rational(1, 3))] for r1, r2, expected_r in rmul_test_values: with self.subTest(r1=r1, r2=r2, expected_r=expected_r): r = r1 * r2 self.assertEqual(expected_r, r) def test_rtruediv_zero_division_error(self): r = Rational() with self.assertRaises(ZeroDivisionError): 1 / r def test_rtruediv_type_error(self): r = Rational() with self.assertRaises(TypeError): 1.2 / r def test_rtruediv(self): rdiv_test_values = [(1, Rational(1, 2), Rational(2, 1)), (-1, Rational(1, 2), Rational(-2, 1)), (1, Rational(-1, 2), Rational(-2, 1)), (1, Rational(2, 4), Rational(2, 1)), (1, Rational(3, 4), Rational(4, 3)), (1, Rational(-3, 4), Rational(-4, 3)), (1, Rational(1, 3), Rational(3, 1))] for r1, r2, expected_r in rdiv_test_values: with self.subTest(r1=r1, r2=r2, expected_r=expected_r): r = r1 / r2 self.assertEqual(expected_r, r) def test_rpow_zero_division_error(self): base = 0 for denominator in range(-3, 0): power = Rational(1, denominator) with self.subTest(base=base, power=power): with self.assertRaises(ZeroDivisionError): base ** power def test_rpow_value_error(self): rpow_test_values = [(-2, Rational(1, 2)), (-1, Rational(1, 2)), (-3, Rational(-1, 2)), (-2, Rational(-1, 2)), (-1, Rational(-1, 2)), (-3, Rational(1, 3)), (-2, Rational(1, 3)), (-1, Rational(1, 3)), (-3, Rational(-1, 3)), (-2, Rational(-1, 3)), (-1, Rational(-1, 3))] for base, power in rpow_test_values: with self.subTest(base=base, power=power): with self.assertRaises(ValueError): base ** power def test_rpow(self): rpow_test_values = [(0, Rational(), 1), (1, Rational(), 1), (2, Rational(), 1), (3, Rational(), 1), (0, Rational(1, 2), 0), (1, Rational(1, 2), 1), (2, Rational(1, 2), 1.4142135623730951), (3, Rational(1, 2), 1.7320508075688772), (1, Rational(-1, 2), 1), (2, Rational(-1, 2), 0.7071067811865476), (3, Rational(-1, 2), 0.5773502691896257), (0, Rational(1, 3), 0), (1, Rational(1, 3), 1), (2, Rational(1, 3), 1.2599210498948732), (3, Rational(1, 3), 1.4422495703074083), (1, Rational(-1, 3), 1), (2, Rational(-1, 3), 0.7937005259840998), (3, Rational(-1, 3), 0.6933612743506348), (-1, Rational(1), -1), (-2, Rational(1), -2), (-1, Rational(-1), -1), (-2, Rational(-2), 0.25)] for base, power, expected_power in rpow_test_values: with self.subTest(base=base, power=power, expected_power=expected_power): computed_power = base ** power self.assertAlmostEqual(expected_power, computed_power) if '__main__' == __name__: unittest2.main()
mit
958,887,407,180,967,000
46.123367
101
0.43951
false
WaveBlocks/WaveBlocks
src/WaveBlocks/MatrixPotential1S.py
1
13237
"""The WaveBlocks Project This file contains code for the representation of potentials for a single component. These potential are of course scalar ones. @author: R. Bourquin @copyright: Copyright (C) 2010, 2011 R. Bourquin @license: Modified BSD License """ import sympy import numpy from MatrixPotential import MatrixPotential class MatrixPotential1S(MatrixPotential): r""" This class represents a scalar potential :math:`V\left(x\right)`. The potential is given as an analytical :math:`1 \times 1` matrix expression. Some symbolic calculations with the potential are supported. For example calculation of eigenvalues and exponentials and numerical evaluation. Further, there are methods for splitting the potential into a Taylor expansion and for basis transformations between canonical and eigenbasis. """ def __init__(self, expression, variables): r""" Create a new ``MatrixPotential1S`` instance for a given potential matrix :math:`V\left(x\right)`. :param expression: An expression representing the potential. """ #: The variable :math:`x` that represents position space. self.x = variables[0] #: The matrix of the potential :math:`V\left(x\right)`. self.potential = expression # Unpack single matrix entry self.potential = self.potential[0,0] self.exponential = None self.number_components = 1 # prepare the function in every potential matrix cell for numerical evaluation self.potential_n = sympy.vectorize(0)(sympy.lambdify(self.x, self.potential, "numpy")) # Symbolic and numerical eigenvalues and eigenvectors self.eigenvalues_s = None self.eigenvalues_n = None self.eigenvectors_s = None self.eigenvectors_n = None self.taylor_eigen_s = None self.taylor_eigen_n = None self.remainder_eigen_s = None self.remainder_eigen_n = None def __str__(self): r""" Put the number of components and the analytical expression (the matrix) into a printable string. """ return """Scalar potential given by the expression: V(x) = \n""" + str(self.potential) def get_number_components(self): r""" :return: The number :math:`N` of components the potential supports. In the one dimensional case, it's just 1. """ return 1 def evaluate_at(self, nodes, component=0, as_matrix=False): r""" Evaluate the potential matrix elementwise at some given grid nodes :math:`\gamma`. :param nodes: The grid nodes :math:`\gamma` we want to evaluate the potential at. :param component: The component :math:`V_{i,j}` that gets evaluated or 'None' to evaluate all. :param as_matrix: Dummy parameter which has no effect here. :return: A list with the single entry evaluated at the nodes. """ return tuple([ numpy.array(self.potential_n(nodes), dtype=numpy.floating) ]) def calculate_eigenvalues(self): r""" Calculate the eigenvalue :math:`\lambda_0\left(x\right)` of the potential :math:`V\left(x\right)`. In the scalar case this is just the matrix entry :math:`V_{0,0}`. .. note:: This function is idempotent and the eigenvalues are memoized for later reuse. """ if self.eigenvalues_s is None: self.eigenvalues_s = self.potential self.eigenvalues_n = sympy.vectorize(0)(sympy.lambdify(self.x, self.potential, "numpy")) def evaluate_eigenvalues_at(self, nodes, component=None, as_matrix=False): r""" Evaluate the eigenvalue :math:`\lambda_0\left(x\right)` at some grid nodes :math:`\gamma`. :param nodes: The grid nodes :math:`\gamma` we want to evaluate the eigenvalue at. :param diagonal_component: Dummy parameter that has no effect here. :param as_matrix: Dummy parameter which has no effect here. :return: A list with the single eigenvalue evaluated at the nodes. """ self.calculate_eigenvalues() return tuple([ numpy.array(self.eigenvalues_n(nodes)) ]) def calculate_eigenvectors(self): r""" Calculate the eigenvector :math:`nu_0\left(x\right)` of the potential :math:`V\left(x\right)`. In the scalar case this is just the value :math:`1`. .. note:: This function is idempotent and the eigenvectors are memoized for later reuse. """ if self.eigenvectors_s is None: self.eigenvectors_s = sympy.Matrix([[1]]) self.eigenvectors_n = sympy.vectorize(0)(sympy.lambdify(self.x, 1, "numpy")) def evaluate_eigenvectors_at(self, nodes): r""" Evaluate the eigenvector :math:`nu_0\left(x\right)` at some grid nodes :math:`\gamma`. :param nodes: The grid nodes :math:`\gamma` we want to evaluate the eigenvector at. :return: A list with the eigenvector evaluated at the given nodes. """ self.calculate_eigenvectors() return tuple([ numpy.ones((1, len(nodes)), dtype=numpy.floating) ]) def project_to_eigen(self, nodes, values, basis=None): r""" Project a given vector from the canonical basis to the eigenbasis of the potential. :param nodes: The grid nodes :math:`\gamma` for the pointwise transformation. :param values: The list of vectors :math:`\varphi_i` containing the values we want to transform. :param basis: A list of basisvectors :math:`nu_i`. Allows to use this function for external data, similar to a static function. :return: This method does nothing and returns the values. """ return [ values[0].copy() ] def project_to_canonical(self, nodes, values, basis=None): r""" Project a given vector from the potential's eigenbasis to the canonical basis. :param nodes: The grid nodes :math:`\gamma` for the pointwise transformation. :param values: The list of vectors :math:`\varphi_i` containing the values we want to transform. :param basis: A list of basis vectors :math:`nu_i`. Allows to use this function for external data, similar to a static function. :return: This method does nothing and returns the values. """ return [ values[0].copy() ] def calculate_exponential(self, factor=1): r""" Calculate the matrix exponential :math:`E = \exp\left(\alpha M\right)`. In this case the matrix is of size :math:`1 \times 1` thus the exponential simplifies to the scalar exponential function. :param factor: A prefactor :math:`\alpha` in the exponential. .. note:: This function is idempotent. """ if self.exponential is None: self.exponential = sympy.exp(factor*self.potential) def evaluate_exponential_at(self, nodes): r""" Evaluate the exponential of the potential matrix :math:`V` at some grid nodes :math:`\gamma`. :param nodes: The grid nodes :math:`\gamma` we want to evaluate the exponential at. :return: The numerical approximation of the matrix exponential at the given grid nodes. """ # Hack for older sympy versions, see recent issue: # http://www.mail-archive.com/[email protected]/msg05137.html lookup = {"I" : 1j} # prepare the function of every potential matrix exponential cell for numerical evaluation self.expfunctions = sympy.vectorize(0)(sympy.lambdify(self.x, self.exponential, (lookup, "numpy"))) return tuple([ numpy.array(self.expfunctions(nodes)) ]) def calculate_jacobian(self): r""" Calculate the jacobian matrix for the component :math:`V_{0,0}` of the potential. For potentials which depend only one variable :math:`x`, this equals the first derivative. """ self.jacobian_s = sympy.diff(self.potential, self.x) self.jacobian_n = sympy.vectorize(0)(sympy.lambdify(self.x, self.jacobian_s, "numpy")) def evaluate_jacobian_at(self, nodes, component=None): r""" Evaluate the potential's jacobian at some grid nodes :math:`\gamma`. :param nodes: The grid nodes :math:`\gamma` the jacobian gets evaluated at. :param component: Dummy parameter that has no effect here. :return: The value of the potential's jacobian at the given nodes. """ return tuple([ self.jacobian_n(nodes) ]) def calculate_hessian(self): r""" Calculate the hessian matrix for component :math:`V_{0,0}` of the potential. For potentials which depend only one variable :math:`x`, this equals the second derivative. """ self.hessian_s = sympy.diff(self.potential, self.x, 2) self.hessian_n = sympy.vectorize(0)(sympy.lambdify(self.x, self.hessian_s, "numpy")) def evaluate_hessian_at(self, nodes, component=None): r""" Evaluate the potential's hessian at some grid nodes :math:`\gamma`. :param nodes: The grid nodes :math:`\gamma` the hessian gets evaluated at. :param component: Dummy parameter that has no effect here. :return: The value of the potential's hessian at the given nodes. """ return tuple([ self.hessian_n(nodes) ]) def calculate_local_quadratic(self, diagonal_component=None): r""" Calculate the local quadratic approximation :math:`U` of the potential's eigenvalue :math:`\lambda`. :param diagonal_component: Dummy parameter that has no effect here. .. note:: This function is idempotent. """ # Calculation already done at some earlier time? if self.taylor_eigen_s is not None: return self.calculate_eigenvalues() self.calculate_jacobian() self.calculate_hessian() self.taylor_eigen_s = [ (0, self.eigenvalues_s), (1, self.jacobian_s), (2, self.hessian_s) ] # Construct function to evaluate the approximation at point q at the given nodes assert(self.taylor_eigen_n is None) self.taylor_eigen_n = [ (order, sympy.vectorize(0)(sympy.lambdify([self.x], f, "numpy"))) for order, f in self.taylor_eigen_s ] def evaluate_local_quadratic_at(self, nodes, diagonal_component=None): r""" Numerically evaluate the local quadratic approximation :math:`U` of the potential's eigenvalue :math:`\lambda` at the given grid nodes :math:`\gamma`. This function is used for the homogeneous case. :param nodes: The grid nodes :math:`\gamma` we want to evaluate the quadratic approximation at. :return: An array containing the values of :math:`U` at the nodes :math:`\gamma`. """ return tuple([ numpy.array(f(nodes), dtype=numpy.floating) for order, f in self.taylor_eigen_n ]) def calculate_local_remainder(self, diagonal_component=None): r""" Calculate the non-quadratic remainder :math:`W` of the quadratic approximation :math:`U` of the potential's eigenvalue :math:`\lambda`. This function is used for the homogeneous case and takes into account the leading component :math:`\chi`. :param diagonal_component: Dummy parameter that has no effect here. .. note:: This function is idempotent. """ # Calculation already done at some earlier time? if self.remainder_eigen_s is not None: return self.calculate_eigenvalues() f = self.eigenvalues_s # point where the taylor series is computed q = sympy.Symbol("q") p = f.subs(self.x, q) j = sympy.diff(f, self.x) j = j.subs(self.x, q) h = sympy.diff(f, self.x, 2) h = h.subs(self.x, q) quadratic = p + j*(self.x-q) + sympy.Rational(1,2)*h*(self.x-q)**2 # Symbolic expression for the taylor expansion remainder term self.remainder_eigen_s = self.potential - quadratic # Construct functions to evaluate the approximation at point q at the given nodes assert(self.remainder_eigen_n is None) self.remainder_eigen_n = sympy.vectorize(1)(sympy.lambdify([q, self.x], self.remainder_eigen_s, "numpy")) def evaluate_local_remainder_at(self, position, nodes, diagonal_component=None, component=None): r""" Numerically evaluate the non-quadratic remainder :math:`W` of the quadratic approximation :math:`U` of the potential's eigenvalue :math:`\lambda` at the given nodes :math:`\gamma`. This function is used for the homogeneous and the inhomogeneous case and just evaluates the remainder :math:`W`. :param position: The point :math:`q` where the Taylor series is computed. :param nodes: The grid nodes :math:`\gamma` we want to evaluate the potential at. :param component: Dummy parameter that has no effect here. :return: A list with a single entry consisting of an array containing the values of :math:`W` at the nodes :math:`\gamma`. """ return tuple([ numpy.array(self.remainder_eigen_n(position, nodes), dtype=numpy.floating) ])
bsd-3-clause
-6,184,886,920,704,668,000
40.495298
136
0.652187
false
naturali/tensorflow
tensorflow/python/kernel_tests/segment_reduction_ops_test.py
1
23515
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Functional tests for segment reduction ops.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow as tf from tensorflow.python.util.all_util import reveal_undocumented class SegmentReductionHelper(tf.test.TestCase): def _input(self, input_shape, dtype=tf.int32): num_elem = 1 for x in input_shape: num_elem *= x values = np.arange(1, num_elem + 1) np_values = values.reshape(input_shape).astype(dtype.as_numpy_dtype) return tf.constant(values, shape=input_shape, dtype=dtype), np_values def _segmentReduce(self, indices, x, op1, op2=None, num_out_rows=None): if not x.size: return np.array([]) indices = np.asarray(indices) if num_out_rows is None: num_out_rows = indices[-1] + 1 output = [None] * num_out_rows slice_shape = x.shape[indices.ndim:] x_flat = x.reshape((indices.size,) + slice_shape) for i, index in enumerate(indices.ravel()): if output[index] is not None: output[index] = op1(output[index], x_flat[i]) else: output[index] = x_flat[i] # zero initialize values that are still uncalcuated. output = [o if o is not None else np.zeros(slice_shape) for o in output] if op2 is not None: output = [op2(o) for o in output] output = [o.reshape(slice_shape) for o in output] return np.array(output) def _assertAllClose(self, indices, np_x, tf_x): for i in set(np.asarray(indices).ravel()): self.assertAllClose(np_x[i], tf_x[i]) def _mean_cum_op(self, x, y): return (x[0] + y, x[1] + 1) if isinstance(x, tuple) else (x + y, 2) def _mean_reduce_op(self, x): return x[0] / x[1] if isinstance(x, tuple) else x class SegmentReductionOpTest(SegmentReductionHelper): def testValues(self): dtypes = [tf.float32, tf.float64, tf.int64, tf.int32, tf.complex64, tf.complex128] # Each item is np_op1, np_op2, tf_op ops_list = [(np.add, None, tf.segment_sum), (self._mean_cum_op, self._mean_reduce_op, tf.segment_mean), (np.ndarray.__mul__, None, tf.segment_prod), (np.minimum, None, tf.segment_min), (np.maximum, None, tf.segment_max)] # A subset of ops has been enabled for complex numbers complex_ops_list = [(np.add, None, tf.segment_sum), (np.ndarray.__mul__, None, tf.segment_prod)] n = 10 shape = [n, 2] indices = [i // 3 for i in range(n)] for dtype in dtypes: if dtype in (tf.complex64, tf.complex128): curr_ops_list = complex_ops_list else: curr_ops_list = ops_list with self.test_session(use_gpu=False): tf_x, np_x = self._input(shape, dtype=dtype) for np_op1, np_op2, tf_op in curr_ops_list: np_ans = self._segmentReduce(indices, np_x, np_op1, np_op2) s = tf_op(data=tf_x, segment_ids=indices) tf_ans = s.eval() self._assertAllClose(indices, np_ans, tf_ans) # NOTE(mrry): The static shape inference that computes # `tf_ans.shape` can only infer that sizes from dimension 1 # onwards, because the size of dimension 0 is data-dependent # and may therefore vary dynamically. self.assertAllEqual(np_ans.shape[1:], tf_ans.shape[1:]) def testSegmentIdsShape(self): shape = [4, 4] tf_x, _ = self._input(shape) indices = tf.constant([0, 1, 2, 2], shape=[2, 2]) with self.assertRaises(ValueError): tf.segment_sum(data=tf_x, segment_ids=indices) def testSegmentIdsSize(self): shape = [4, 4] with self.test_session(): tf_x, _ = self._input(shape) indices = [0, 1] s = tf.segment_sum(data=tf_x, segment_ids=indices) with self.assertRaisesOpError("segment_ids should be the same size"): s.eval() def testSegmentIdsValid(self): # This is a baseline for the following SegmentIdsInvalid* tests. shape = [4, 4] with self.test_session(): tf_x, _ = self._input(shape) indices = [0, 0, 0, 1] result = tf.segment_sum(data=tf_x, segment_ids=indices).eval() self.assertAllEqual([[15, 18, 21, 24], [13, 14, 15, 16]], result) def testSegmentIdsInvalid1(self): shape = [4, 4] with self.test_session(): tf_x, _ = self._input(shape) indices = [-1, -1, 0, 0] s = tf.segment_sum(data=tf_x, segment_ids=indices) with self.assertRaisesOpError("segment ids do not start at 0"): s.eval() def testSegmentIdsInvalid2(self): shape = [4, 4] with self.test_session(): tf_x, _ = self._input(shape) indices = [1, 1, 2, 2] s = tf.segment_sum(data=tf_x, segment_ids=indices) with self.assertRaisesOpError("segment ids do not start at 0"): s.eval() def testSegmentIdsInvalid3(self): shape = [4, 4] with self.test_session(): tf_x, _ = self._input(shape) indices = [0, 0, 2, 2] s = tf.segment_sum(data=tf_x, segment_ids=indices) with self.assertRaisesOpError("segment ids are not increasing by 1"): s.eval() def testSegmentIdsInvalid4(self): shape = [4, 4] with self.test_session(): tf_x, _ = self._input(shape) indices = [0, 1, 0, 1] s = tf.segment_sum(data=tf_x, segment_ids=indices) with self.assertRaisesOpError("segment ids are not increasing by 1"): s.eval() def testSegmentIdsInvalid5(self): shape = [4, 4] with self.test_session(): tf_x, _ = self._input(shape) indices = [0, 1, 2, 0] s = tf.segment_sum(data=tf_x, segment_ids=indices) with self.assertRaisesOpError( r"Segment id 1 out of range \[0, 1\), probably " "because 'segment_ids' input is not sorted."): s.eval() def testSegmentIdsInvalid6(self): shape = [4, 4] with self.test_session(): tf_x, _ = self._input(shape) indices = [0, 0, 0, -1] s = tf.segment_sum(data=tf_x, segment_ids=indices) with self.assertRaisesOpError("segment ids must be >= 0"): s.eval() def testSegmentIdsInvalid7(self): shape = [4, 4] with self.test_session(): tf_x, _ = self._input(shape) indices = [0, 0, 0, -2] s = tf.segment_sum(data=tf_x, segment_ids=indices) with self.assertRaisesOpError("segment ids must be >= 0"): s.eval() def testGradient(self): shape = [4, 4] indices = [0, 1, 2, 2] for tf_op in [tf.segment_sum, tf.segment_mean, tf.segment_min, tf.segment_max]: with self.test_session(): tf_x, np_x = self._input(shape, dtype=tf.float64) s = tf_op(data=tf_x, segment_ids=indices) jacob_t, jacob_n = tf.test.compute_gradient( tf_x, shape, s, [3, 4], x_init_value=np_x.astype(np.double), delta=1) self.assertAllClose(jacob_t, jacob_n, rtol=1e-3, atol=1e-3) class UnsortedSegmentSumTest(SegmentReductionHelper): use_gpu = False def testValues(self): dtypes = [tf.float32, tf.float64, tf.int64, tf.int32, tf.complex64, tf.complex128] indices_flat = np.array([0, 4, 0, 8, 3, 8, 4, 7, 7, 3]) num_segments = 12 for indices in indices_flat, indices_flat.reshape(5, 2): shape = indices.shape + (2,) for dtype in dtypes: with self.test_session(use_gpu=self.use_gpu): tf_x, np_x = self._input(shape, dtype=dtype) np_ans = self._segmentReduce(indices, np_x, np.add, op2=None, num_out_rows=num_segments) s = tf.unsorted_segment_sum(data=tf_x, segment_ids=indices, num_segments=num_segments) tf_ans = s.eval() self._assertAllClose(indices, np_ans, tf_ans) self.assertShapeEqual(np_ans, s) def testGradient(self): num_cols = 2 indices_flat = np.array([0, 4, 0, 8, 3, 8, 4, 7, 7, 3]) num_segments = max(indices_flat) + 3 for indices in indices_flat, indices_flat.reshape(5, 2): shape = indices.shape + (num_cols,) with self.test_session(use_gpu=self.use_gpu): tf_x, np_x = self._input(shape, dtype=tf.float64) s = tf.unsorted_segment_sum(data=tf_x, segment_ids=indices, num_segments=num_segments) jacob_t, jacob_n = tf.test.compute_gradient( tf_x, shape, s, [num_segments, num_cols], x_init_value=np_x.astype(np.double), delta=1) self.assertAllClose(jacob_t, jacob_n, rtol=1e-3, atol=1e-3) def testGradientMatchesSegmentSum(self): # Strategy: compute the gradient for UnsortedSegmentSum and SegmentSum # and compare the outputs, which should be identical. # NB: for this test to work, indices must be valid for SegmentSum, namely # it must be sorted, the indices must be contiguous, and num_segments # must be max(indices) + 1. indices = [0, 0, 1, 1, 1, 2, 3, 4, 5] n = len(indices) num_cols = 2 shape = [n, num_cols] num_segments = max(indices) + 1 with self.test_session(use_gpu=self.use_gpu): tf_x, np_x = self._input(shape, dtype=tf.float64) # Results from UnsortedSegmentSum unsorted_s = tf.unsorted_segment_sum(data=tf_x, segment_ids=indices, num_segments=num_segments) (unsorted_jacob_t, unsorted_jacob_n) = tf.test.compute_gradient( tf_x, shape, unsorted_s, [num_segments, num_cols], x_init_value=np_x.astype(np.double), delta=1) # Results from SegmentSum sorted_s = tf.segment_sum(data=tf_x, segment_ids=indices) sorted_jacob_t, sorted_jacob_n = tf.test.compute_gradient( tf_x, shape, sorted_s, [num_segments, num_cols], x_init_value=np_x.astype(np.double), delta=1) self.assertAllClose(unsorted_jacob_t, sorted_jacob_t, rtol=1e-3, atol=1e-3) self.assertAllClose(unsorted_jacob_n, sorted_jacob_n, rtol=1e-3, atol=1e-3) def testBadIndices(self): # Note: GPU kernel does not return the out-of-range error needed for this # test, so this test is marked as cpu-only. with self.test_session(use_gpu=False): for bad in [[-1]], [[7]]: unsorted = tf.unsorted_segment_sum([[17]], bad, num_segments=2) with self.assertRaisesOpError( r"segment_ids\[0,0\] = %d is out of range \[0, 2\)" % bad[0][0]): unsorted.eval() def testEmptySecondDimension(self): dtypes = [np.float32, np.float64, np.int64, np.int32, np.complex64, np.complex128] with self.test_session(use_gpu=self.use_gpu): for dtype in dtypes: for itype in (np.int32, np.int64): data = np.zeros((2, 0), dtype=dtype) segment_ids = np.array([0, 1], dtype=itype) unsorted = tf.unsorted_segment_sum(data, segment_ids, 2) self.assertAllEqual(unsorted.eval(), np.zeros((2, 0), dtype=dtype)) class UnsortedSegmentSumGpuTest(UnsortedSegmentSumTest): use_gpu = True class SparseSegmentReductionHelper(SegmentReductionHelper): def _sparse_input(self, input_shape, num_indices, dtype=tf.int32): a, b = super(SparseSegmentReductionHelper, self)._input(input_shape, dtype) indices = np.random.randint(0, input_shape[0], num_indices).astype(np.int32) return (tf.constant(indices, dtype=tf.int32), indices, a, b) def _sparseSegmentReduce(self, x, indices, segment_indices, op1, op2=None): return self._segmentReduce(segment_indices, x[indices], op1, op2) class SparseSegmentReductionOpTest(SparseSegmentReductionHelper): def setUp(self): reveal_undocumented("tensorflow.python." "sparse_segment_mean_grad", tf) reveal_undocumented("tensorflow.python." "sparse_segment_sqrt_n_grad", tf) def testValues(self): dtypes = [tf.float32, tf.float64, tf.int64, tf.int32] mean_dtypes = [tf.float32, tf.float64] # Each item is np_op1, np_op2, tf_op ops_list = [(np.add, None, tf.sparse_segment_sum), (self._mean_cum_op, self._mean_reduce_op, tf.sparse_segment_mean)] n = 400 shape = [n, 2] segment_indices = [] for i in range(20): for _ in range(i + 1): segment_indices.append(i) num_indices = len(segment_indices) for dtype in dtypes: with self.test_session(use_gpu=False): tf_indices, np_indices, tf_x, np_x = self._sparse_input(shape, num_indices, dtype=dtype) for np_op1, np_op2, tf_op in ops_list: if tf_op == tf.sparse_segment_mean and dtype not in mean_dtypes: continue np_ans = self._sparseSegmentReduce(np_x, np_indices, segment_indices, np_op1, np_op2) s = tf_op(data=tf_x, indices=tf_indices, segment_ids=segment_indices) tf_ans = s.eval() self._assertAllClose(segment_indices, np_ans, tf_ans) # NOTE(mrry): The static shape inference that computes # `tf_ans.shape` can only infer that sizes from dimension 1 # onwards, because the size of dimension 0 is data-dependent # and may therefore vary dynamically. self.assertAllEqual(np_ans.shape[1:], tf_ans.shape[1:]) def testValid(self): # Baseline for the test*Invalid* methods below. tf_x, _ = self._input([10, 4], dtype=tf.float32) ops_list = [tf.sparse_segment_sum, tf.sparse_segment_mean] segment_indices = [0, 1, 2, 2] tf_indices = [8, 3, 0, 9] with self.test_session(use_gpu=False): for tf_op in ops_list: s = tf_op(data=tf_x, indices=tf_indices, segment_ids=segment_indices) s.eval() def testIndiciesInvalid1(self): tf_x, _ = self._input([10, 4], dtype=tf.float32) ops_list = [tf.sparse_segment_sum, tf.sparse_segment_mean] segment_indices = [0, 1, 2, 2] tf_indices = [8, -1, 0, 9] with self.test_session(use_gpu=False): for tf_op in ops_list: s = tf_op(data=tf_x, indices=tf_indices, segment_ids=segment_indices) with self.assertRaisesOpError( r"indices\[1\] == -1 out of range \[0, 10\)"): s.eval() def testIndiciesInvalid2(self): tf_x, _ = self._input([10, 4], dtype=tf.float32) ops_list = [tf.sparse_segment_sum, tf.sparse_segment_mean] segment_indices = [0, 1, 2, 2] tf_indices = [8, 3, 0, 10] with self.test_session(use_gpu=False): for tf_op in ops_list: s = tf_op(data=tf_x, indices=tf_indices, segment_ids=segment_indices) with self.assertRaisesOpError( r"indices\[3\] == 10 out of range \[0, 10\)"): s.eval() def testSegmentsInvalid1(self): tf_x, _ = self._input([10, 4], dtype=tf.float32) ops_list = [tf.sparse_segment_sum, tf.sparse_segment_mean] segment_indices = [0, 2, 2, 2] tf_indices = [8, 3, 0, 9] with self.test_session(use_gpu=False): for tf_op in ops_list: s = tf_op(data=tf_x, indices=tf_indices, segment_ids=segment_indices) with self.assertRaisesOpError("segment ids are not increasing by 1"): s.eval() def testSegmentsInvalid2(self): tf_x, _ = self._input([10, 4], dtype=tf.float32) ops_list = [tf.sparse_segment_sum, tf.sparse_segment_mean] segment_indices = [0, 1, 0, 1] tf_indices = [8, 3, 0, 9] with self.test_session(use_gpu=False): for tf_op in ops_list: s = tf_op(data=tf_x, indices=tf_indices, segment_ids=segment_indices) with self.assertRaisesOpError("segment ids are not increasing by 1"): s.eval() def testSegmentsInvalid3(self): tf_x, _ = self._input([10, 4], dtype=tf.float32) ops_list = [tf.sparse_segment_sum, tf.sparse_segment_mean] segment_indices = [0, 1, 2, 0] tf_indices = [8, 3, 0, 9] with self.test_session(use_gpu=False): for tf_op in ops_list: s = tf_op(data=tf_x, indices=tf_indices, segment_ids=segment_indices) with self.assertRaisesOpError( r"Segment id 1 out of range \[0, 1\), probably because " "'segment_ids' input is not sorted"): s.eval() def testSegmentsInvalid4(self): tf_x, _ = self._input([10, 4], dtype=tf.float32) ops_list = [tf.sparse_segment_sum, tf.sparse_segment_mean] segment_indices = [-1, 0, 1, 1] tf_indices = [8, 3, 0, 9] with self.test_session(use_gpu=False): for tf_op in ops_list: s = tf_op(data=tf_x, indices=tf_indices, segment_ids=segment_indices) with self.assertRaisesOpError("segment ids do not start at 0"): s.eval() def testSegmentsInvalid5(self): tf_x, _ = self._input([10, 4], dtype=tf.float32) ops_list = [tf.sparse_segment_sum, tf.sparse_segment_mean] segment_indices = [1, 2, 2, 2] tf_indices = [8, 3, 0, 9] with self.test_session(use_gpu=False): for tf_op in ops_list: s = tf_op(data=tf_x, indices=tf_indices, segment_ids=segment_indices) with self.assertRaisesOpError("segment ids do not start at 0"): s.eval() def testSegmentsInvalid6(self): tf_x, _ = self._input([10, 4], dtype=tf.float32) ops_list = [tf.sparse_segment_sum, tf.sparse_segment_mean] segment_indices = [0, 0, 0, -1] tf_indices = [8, 3, 0, 9] with self.test_session(use_gpu=False): for tf_op in ops_list: s = tf_op(data=tf_x, indices=tf_indices, segment_ids=segment_indices) with self.assertRaisesOpError("segment ids must be >= 0"): s.eval() def testSegmentsInvalid7(self): tf_x, _ = self._input([10, 4], dtype=tf.float32) ops_list = [tf.sparse_segment_sum, tf.sparse_segment_mean] segment_indices = [0, 0, 0, -2] tf_indices = [8, 3, 0, 9] with self.test_session(use_gpu=False): for tf_op in ops_list: s = tf_op(data=tf_x, indices=tf_indices, segment_ids=segment_indices) with self.assertRaisesOpError("segment ids must be >= 0"): s.eval() def testGradient(self): shape = [10, 4] segment_indices = [0, 1, 2, 2] num_indices = len(segment_indices) for tf_op in [tf.sparse_segment_sum, tf.sparse_segment_mean]: with self.test_session(): tf_indices, _, tf_x, np_x = self._sparse_input( shape, num_indices, dtype=tf.float64) s = tf_op(data=tf_x, indices=tf_indices, segment_ids=segment_indices) jacob_t, jacob_n = tf.test.compute_gradient( tf_x, shape, s, [3, 4], x_init_value=np_x.astype(np.double), delta=1) self.assertAllClose(jacob_t, jacob_n, rtol=1e-3, atol=1e-3) def testGradientValid(self): # Baseline for the testGradient*Invalid* methods below. tf_x, _ = self._input([3, 4], dtype=tf.float32) ops_list = [tf.sparse_segment_mean_grad, tf.sparse_segment_sqrt_n_grad] segment_indices = [0, 1, 2, 2] tf_indices = [8, 3, 0, 9] with self.test_session(use_gpu=False): for tf_op in ops_list: s = tf_op(tf_x, tf_indices, segment_indices, 10) s.eval() def testGradientIndicesInvalid1(self): tf_x, _ = self._input([3, 4], dtype=tf.float32) ops_list = [tf.sparse_segment_mean_grad, tf.sparse_segment_sqrt_n_grad] segment_indices = [0, 1, 2, 2] tf_indices = [8, 3, 0, 10] with self.test_session(use_gpu=False): for tf_op in ops_list: s = tf_op(tf_x, tf_indices, segment_indices, 10) with self.assertRaisesOpError(r"Index 10 out of range \[0, 10\)"): s.eval() def testGradientIndicesInvalid2(self): tf_x, _ = self._input([3, 4], dtype=tf.float32) ops_list = [tf.sparse_segment_mean_grad, tf.sparse_segment_sqrt_n_grad] segment_indices = [0, 1, 2, 2] tf_indices = [8, 3, -1, 9] with self.test_session(use_gpu=False): for tf_op in ops_list: s = tf_op(tf_x, tf_indices, segment_indices, 10) with self.assertRaisesOpError(r"Index -1 out of range \[0, 10\)"): s.eval() def testGradientSegmentsInvalid1(self): tf_x, _ = self._input([3, 4], dtype=tf.float32) # expecting 3 segments ops_list = [tf.sparse_segment_mean_grad, tf.sparse_segment_sqrt_n_grad] segment_indices = [0, 1, 1, 1] # 2 segments tf_indices = [8, 3, 0, 9] with self.test_session(use_gpu=False): for tf_op in ops_list: s = tf_op(tf_x, tf_indices, segment_indices, 10) with self.assertRaisesOpError("Invalid number of segments"): s.eval() def testGradientSegmentsInvalid2(self): tf_x, _ = self._input([1, 4], dtype=tf.float32) ops_list = [tf.sparse_segment_mean_grad, tf.sparse_segment_sqrt_n_grad] segment_indices = [0, 1, 2, 0] tf_indices = [8, 3, 0, 9] with self.test_session(use_gpu=False): for tf_op in ops_list: s = tf_op(tf_x, tf_indices, segment_indices, 10) with self.assertRaisesOpError(r"Segment id 1 out of range \[0, 1\)"): s.eval() def testGradientSegmentsInvalid3(self): tf_x, _ = self._input([2, 4], dtype=tf.float32) ops_list = [tf.sparse_segment_mean_grad, tf.sparse_segment_sqrt_n_grad] segment_indices = [-1, 0, 1, 1] tf_indices = [8, 3, 0, 9] with self.test_session(use_gpu=False): for tf_op in ops_list: s = tf_op(tf_x, tf_indices, segment_indices, 10) with self.assertRaisesOpError(r"Segment id -1 out of range \[0, 2\)"): s.eval() def testGradientSegmentsInvalid4(self): tf_x, _ = self._input([0, 4], dtype=tf.float32) ops_list = [tf.sparse_segment_mean_grad, tf.sparse_segment_sqrt_n_grad] segment_indices = [0, 1, 2, -1] tf_indices = [8, 3, 0, 9] with self.test_session(use_gpu=False): for tf_op in ops_list: s = tf_op(tf_x, tf_indices, segment_indices, 10) with self.assertRaisesOpError(r"Segment id 0 out of range \[0, 0\)"): s.eval() if __name__ == "__main__": tf.test.main()
apache-2.0
-4,520,860,088,002,389,000
37.423203
80
0.587242
false
ampproject/amp-github-apps
project-metrics/metrics_service/scrapers/commit_scraper.py
1
5432
import datetime from typing import Sequence import logging import time import sqlalchemy from apis import github from database import db from database import models SCRAPE_INTERVAL_SECONDS = 5 def timestamp_90_days_ago() -> datetime.datetime: return datetime.datetime.now() - datetime.timedelta(days=90) class CommitScraper(object): def __init__(self): self.github = github.GitHubGraphQL() self.session = db.Session() self.cursor = None def __del__(self): self.session.close() def _get_latest_commit_timestamp(self) -> datetime.datetime: commit = self.session.query(models.Commit).order_by( models.Commit.committed_at.desc()).first() return commit.committed_at if commit else timestamp_90_days_ago() def _get_oldest_commit_timestamp(self) -> datetime.datetime: commit = self.session.query(models.Commit).order_by( models.Commit.committed_at.asc()).first() return commit.committed_at if commit else datetime.now() def scrape_page(self, since: str, until: str = None, after: str = None) -> Sequence[models.Commit]: """Fetch a page of commits from the repository. Updates the cursor with the `after` field from the paging info. Args: since: timestamp to start scraping at. until: timestamp to end scraping at. after: end cursor returned by GraaphQL paging info Returns: The list of returned commits. """ history_args = 'since: "%s"' % github.Timestamp(since).git_timestamp if after: history_args += ', after: "%s"' % after if until: history_args += ', until: "%s"' % github.Timestamp(until).git_timestamp logging.info('Querying GitHub for commits with args: %s', history_args) response = self.github.query_main_branch("""target {{ ... on Commit {{ history(first: {page_size}, {history_args}) {{ pageInfo {{ endCursor }} nodes {{ oid committedDate associatedPullRequests(first: 1) {{ nodes {{ number }} }} }} }} }} }}""".format(page_size=github.MAX_PAGE_SIZE, history_args=history_args)) commit_history = response['target']['history'] self.cursor = commit_history['pageInfo']['endCursor'] if self.cursor is None: raise IndexError('No further commits available from GitHub') for commit in commit_history['nodes']: try: pull_request = commit['associatedPullRequests']['nodes'][0] pull_request_status = 'UNKNOWN' # TODO(rcebulko): Scrape CheckSuite runs and set the status yield models.Commit( hash=commit['oid'], committed_at=github.Timestamp(commit['committedDate']).datetime, pull_request=pull_request['number'], pull_request_status=models.PullRequestStatus.UNKNOWN) except IndexError: logging.warn('No pull request found for commit %s', commit['oid'][:7]) def scrape_since_latest(self): """Scrapes latest commits from GitHub and saves them to the DB. When the database is empty, it will scrape all commits from the last 90 days. Otherwise, it will scrape commits since the latest commit currently in the DB. """ self.cursor = None latest_timestamp = self._get_latest_commit_timestamp() page_count = 1 try: while True: logging.info('Fetching page %d of commits from GitHub', page_count) commits = self.scrape_page(since=latest_timestamp, after=self.cursor) commit_dicts = [{ 'hash': commit.hash, 'committed_at': commit.committed_at, 'pull_request': commit.pull_request, 'pull_request_status': commit.pull_request_status, } for commit in commits] logging.info('Scraped %d commits', len(commit_dicts)) db.get_engine().execute( models.Commit.__table__.insert().prefix_with('IGNORE'), commit_dicts) page_count += 1 time.sleep(SCRAPE_INTERVAL_SECONDS) except IndexError: logging.info('Completed scraping %d pages of commits', page_count) def scrape_historical(self, since: datetime.datetime): """Scrapes historical commits going back as far as is specified. Args: since: datetime to scrape backwards in commit history until """ self.cursor = None oldest_timestamp = self._get_oldest_commit_timestamp() page_count = 1 try: while True: logging.info('Fetching page %d of historical commits from GitHub', page_count) commits = self.scrape_page( since=since, until=oldest_timestamp, after=self.cursor) commit_dicts = [{ 'hash': commit.hash, 'committed_at': commit.committed_at, 'pull_request': commit.pull_request, 'pull_request_status': commit.pull_request_status, } for commit in commits] logging.info('Scraped %d commits', len(commit_dicts)) db.get_engine().execute( models.Commit.__table__.insert().prefix_with('IGNORE'), commit_dicts) page_count += 1 time.sleep(SCRAPE_INTERVAL_SECONDS) except IndexError: logging.info('Completed scraping %d pages of historical commits', page_count) @classmethod def scrape(cls): cls().scrape_since_latest()
apache-2.0
4,349,031,889,459,565,600
32.121951
80
0.628866
false
tobijk/ecromedos
lib/net/ecromedos/ecmlprocessor.py
1
4602
# -*- coding: utf-8 -*- # # Desc: This file is part of the ecromedos Document Preparation System # Author: Tobias Koch <[email protected]> # License: MIT # URL: http://www.ecromedos.net # import os, sys import lxml.etree as etree from net.ecromedos.error import ECMDSError, ECMDSPluginError from net.ecromedos.configreader import ECMDSConfigReader from net.ecromedos.dtdresolver import ECMDSDTDResolver from net.ecromedos.preprocessor import ECMDSPreprocessor class ECMLProcessor(ECMDSConfigReader, ECMDSDTDResolver, ECMDSPreprocessor): def __init__(self, options={}): ECMDSConfigReader.__init__(self) ECMDSDTDResolver. __init__(self) ECMDSPreprocessor.__init__(self) self.readConfig(options) self.loadPlugins() self.loadStylesheet() #end function def loadXMLDocument(self, filename): """Try to load XML document from @filename.""" try: # create parser parser = etree.XMLParser( load_dtd=True, no_network=True, strip_cdata=True, remove_comments=True, resolve_entities=True ) # register custom resolver parser.resolvers.add(self) # parse the document tree = etree.parse(filename, parser=parser) except Exception as e: raise ECMDSError(str(e)) # return document tree return tree #end function def loadStylesheet(self): """Load matching stylesheet for desired output format.""" target_format = self.config['target_format'] try: style_dir = self.config['style_dir'] except KeyError: msg = "Please specify the location of the stylesheets." raise ECMDSError(msg) #end try filename = os.path.join(style_dir, target_format, "ecmds.xsl") try: tree = self.loadXMLDocument(filename) except ECMDSError as e: msg = "Could not load stylesheet:\n %s" % (e.msg(),) raise ECMDSError(msg) #end try try: self.stylesheet = etree.XSLT(tree) except Exception as e: raise ECMDSError(str(e)) #end if return self.stylesheet #end function def validateDocument(self, document): """Validate the given document.""" try: style_dir = self.config['style_dir'] except KeyError: msg = "Please specify the location of the stylesheets." raise ECMDSError(msg) #end try # load the DTD dtd_filename = os.path.join(style_dir, "DTD", "ecromedos.dtd") dtd = etree.DTD(dtd_filename) # validate the document result = dtd.validate(document) if result == False: raise ECMDSError(dtd.error_log.last_error) return result #end function def applyStylesheet(self, document): """Apply stylesheet to document.""" params = None try: params = self.config['xsl_params'] except KeyError: pass try: result = self.stylesheet(document, **params) except Exception as e: msg = "Error transforming document:\n %s." % (str(e),) raise ECMDSError(msg) #end try return result #end function def process(self, filename, verbose=True): """Convert the document stored under filename.""" def message(msg, verbose): if not verbose: return sys.stdout.write(" * " + msg) sys.stdout.write(" " * (40 - len(msg))) sys.stdout.flush() #end inline function def status(status, verbose): if not verbose: return sys.stdout.write(status + "\n") #end inline function # load document message("Reading document...", verbose) document = self.loadXMLDocument(filename) status("DONE", verbose) # validate document if self.config['do_validate']: message("Validating document...", verbose) self.validateDocument(document) status("VALID", verbose) #end if # prepare document message("Pre-processing document tree...", verbose) self.prepareDocument(document) status("DONE", verbose) # apply stylesheet message("Transforming document...", verbose) self.applyStylesheet(document) status("DONE", verbose) #end function #end class
mit
7,828,527,572,711,646,000
27.407407
76
0.58279
false
danielquinn/spirithunter
src/spirits/api/resources.py
1
8242
import json import random from math import sin, cos from django.conf import settings from django.core.exceptions import ValidationError from django.shortcuts import get_object_or_404 from tastypie import fields from tastypie import http from tastypie.authentication import MultiAuthentication, Authentication, BasicAuthentication, SessionAuthentication from tastypie.resources import ModelResource, convert_post_to_patch from tastypie.exceptions import BadRequest from aspects.models import Element, Facet from geography.models import Country from spirithunter import logger from .authorization import SpiritAuthorization from ..forms import PatchForm from ..models.spirit import ElementalStrength, Spirit class ImageMixin(object): def dehydrate(self, bundle): bundle.data.update({ "images": {} }) for size in self.AVAILABLE_IMAGE_SIZES: bundle.data["images"][str(size)] = getattr( bundle.obj, 'image{size}'.format(size=size) ) return bundle class ElementResource(ImageMixin, ModelResource): AVAILABLE_IMAGE_SIZES = (16, 32) class Meta: queryset = Element.objects.all() include_resource_uri = False resource_name = "elements" class ElementalStrengthResource(ModelResource): AVAILABLE_IMAGE_SIZES = (16, 32) element = fields.ToOneField(ElementResource, "element", full=True) class Meta: queryset = ElementalStrength.objects.all() include_resource_uri = False resource_name = "elements" class FacetResource(ImageMixin, ModelResource): AVAILABLE_IMAGE_SIZES = (16, 32) class Meta: queryset = Facet.objects.all() include_resource_uri = False resource_name = "facets" class NationalityResource(ModelResource): class Meta: queryset = Country.objects.all() include_resource_uri = False resource_name = "nationalities" def dehydrate(self, bundle): return { "code": bundle.obj.country.code, "name": bundle.obj.country.name, } class SpiritResource(ImageMixin, ModelResource): AVAILABLE_IMAGE_SIZES = (16, 32, 64, 128, 256) SPIRITS_TO_GENERATE = 5 SPAWN_RADIUS = 50 owner = fields.ToOneField("users.api.UserResource", "owner", null=True) elementals = fields.ManyToManyField( ElementalStrengthResource, "elemental_strengths", full=True ) facets = fields.ManyToManyField( FacetResource, "facets", full=True ) nationalities = fields.ManyToManyField( NationalityResource, "nationalities", full=True ) class Meta: allowed_methods = ("get", "patch",) authentication = MultiAuthentication( SessionAuthentication(), BasicAuthentication(), Authentication() ) authorization = SpiritAuthorization() object_class = Spirit queryset = Spirit.objects.all() resource_name = "spirits" filtering = { "id": ("exact",), "owner": ("exact",), "activity": ("exact",), } def dehydrate(self, bundle): bundle = ModelResource.dehydrate(self, bundle) bundle = ImageMixin.dehydrate(self, bundle) if bundle.obj.activity == Spirit.ACTIVITY_WANDER: if bundle.obj.health_current == 0: bundle.data["experience_given"] = bundle.obj.get_ladder().xp_given return bundle @staticmethod def dehydrate_origin(bundle): if bundle.obj.origin: r = json.loads(bundle.obj.origin.geojson) r["coordinates"][0] = round(r["coordinates"][0], settings.COORDINATES_ROUNDING) r["coordinates"][1] = round(r["coordinates"][1], settings.COORDINATES_ROUNDING) return r return None @staticmethod def dehydrate_location(bundle): if bundle.obj.location: r = json.loads(bundle.obj.location.geojson) r["coordinates"][0] = round(r["coordinates"][0], settings.COORDINATES_ROUNDING) r["coordinates"][1] = round(r["coordinates"][1], settings.COORDINATES_ROUNDING) return r return None @staticmethod def dehydrate_activity(bundle): return { "id": bundle.obj.activity, "name": bundle.obj.get_activity_display() } def obj_get_list(self, bundle, **kwargs): if bundle.request.GET.get("finder"): if not bundle.request.location: raise BadRequest( "Finder cannot be invoked without a location header" ) if not bundle.request.user.is_authenticated(): raise BadRequest( "Finder is only available to authenticated users" ) try: return self._finder(bundle.request) except ValidationError as e: raise BadRequest(e.messages[0]) else: return ModelResource.obj_get_list(self, bundle, **kwargs) def patch_list(self, request, **kwargs): return http.HttpNotImplemented() def patch_detail(self, request, **kwargs): pk = kwargs.get("pk") request = convert_post_to_patch(request) self.authorized_update_detail( Spirit.objects.filter(pk=pk), self.build_bundle(request=request) ) form = PatchForm( request, get_object_or_404(Spirit, pk=pk), self.deserialize( request, request.body, format=request.META.get("CONTENT_TYPE", "application/json") ) ) if form.is_valid(): form.save() return self.create_response(request, "", status=202) raise BadRequest(form.errors.as_text()) def _finder(self, request): """ Open the app and show me what's here. If there's nothing here (common) make some spirits relevant to the environment to play with. """ lat, lng = (request.location.y, request.location.x) if lat > 80 or lat < -80: raise ValidationError("Invalid lat value: %s" % lat) if lng > 180 or lng < -180: raise ValidationError("Invalid lng value: %s" % lng) level_low, level_high = 1, 1 if request.user.is_authenticated(): spirit_levels = sorted( request.user.spirits.filter( activity=Spirit.ACTIVITY_JARRED ).values_list( "level", flat=True ) ) if spirit_levels: level_low, level_high = spirit_levels[0], spirit_levels[-1] spirits = list(Spirit.objects.filter( activity=Spirit.ACTIVITY_WANDER, health_current__gt=0, location__distance_lte=(request.location, self.SPAWN_RADIUS) )) while len(spirits) < self.SPIRITS_TO_GENERATE: # Magic centre_x = float(lat) centre_y = float(lng) r = random.uniform(0, self.SPAWN_RADIUS) a = random.uniform(0, 360) target_x = centre_x + ((r * cos(a)) / settings.M_LNG) target_y = centre_y + ((r * sin(a)) / settings.M_LAT) # /Magic logger.debug("Creating a spirit at {lat},{lng}".format( lat=target_x, lng=target_y )) spirit = Spirit.objects.create_for_environment( centre=(centre_x, centre_y), target=(target_x, target_y), level_low=level_low, level_high=level_high ) spirits.append(spirit) # Feel lucky? if random.randint(1, 10) == 5: # Start encounter immediately pass return SpiritResource.get_object_list(self, request).filter( activity=Spirit.ACTIVITY_WANDER, health_current__gt=0, location__distance_lte=(request.location, 5000) )
agpl-3.0
-7,481,127,565,425,262,000
26.565217
115
0.579592
false
linuxrocks123/MailTask
mt_attache.py
1
3151
#! /usr/bin/env python # MailTask Alpha: The Email Manager # Copyright (C) 2015 Patrick Simmons # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. import codecs import fltk from html2text import html2text import os import tempfile #Note: EVERY method here must correctly handle unicode by decoding it with utf-8/replace, #then ENCODING it with utf-8 #Note: FLTK 1.1 seems to use ISO-8859-1 as its native encoding. # FLTK 1.3 changes this to UTF-8. #FLTK_ENCODING="ISO-8859-1" FLTK_ENCODING="UTF-8" def text_plain(submsg,mime_encoding): return submsg.get_payload(decode=True).decode(encoding=mime_encoding,errors="replace").encode(encoding=FLTK_ENCODING,errors="replace") def text_html(submsg,mime_encoding): return html2text(submsg.get_payload(decode=True).decode(encoding=mime_encoding,errors="replace")).encode(encoding=FLTK_ENCODING,errors="replace") def application_pdf(submsg,mime_encoding): temptuple=tempfile.mkstemp() os.fdopen(temptuple[0],'w').write(submsg.get_payload(decode=True)) os.system("xpdf "+temptuple[1]+" & ( sleep 10; rm "+temptuple[1]+" ) &") return "PDF file opened" def application_octetstream(submsg,mime_encoding): fc = fltk.Fl_File_Chooser(".","*",fltk.Fl_File_Chooser.CREATE,"Select Save Location") fc.show() while fc.shown(): fltk.Fl_wait() if fc.value()==None: return submsg.get_payload(decode=True).decode(encoding=mime_encoding,errors="replace").encode(encoding=FLTK_ENCODING,errors="replace") open(fc.value(),'w').write(submsg.get_payload(decode=True)) return "Undisplayable file; saved to "+fc.value() def display_submessage(submsg): if submsg['Content-Transfer-Encoding']==None: del submsg['Content-Transfer-Encoding'] if submsg.get_payload(decode=True)==None: return "" ATTACHE = { "text/plain" : text_plain, "text/html" : text_html, "application/pdf" : application_pdf } mime_encoding = submsg.get_content_charset() if mime_encoding==None: mime_encoding="utf-8" else: try: codecs.lookup(mime_encoding) valid_encoding = True except LookupError: valid_encoding = False if not valid_encoding: mime_encoding="utf-8" mimetype = submsg.get_content_type() print mimetype if mimetype in ATTACHE: return ATTACHE[mimetype](submsg,mime_encoding) elif mimetype.find("text/")==0: return text_plain(submsg,mime_encoding) return application_octetstream(submsg,mime_encoding)
gpl-3.0
-9,170,419,339,616,157,000
35.218391
149
0.699778
false
unapiedra/BBChop
tests/dumbdag.py
1
3423
# Copyright 2008 Ealdwulf Wuffinga # This file is part of BBChop. # # BBChop is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 2 of the License, or # (at your option) any later version. # # BBChop is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with BBChop. If not, see <http://www.gnu.org/licenses/>. from . import dagAlg from BBChop.listUtils import listSub,prod # class for computing over directed acyclic graphs. # values are held outside the graph object, in lists # the dag is defined by a parents relation: for each index, which indexes are its parents. # it is required that < and > on indexes is consistent with the transitive closure of the parents # relation. That is, if parent*(a,b) then a<b and b>a. This is checked. # this version of the class has a simple O(N^2) implementation for test purposes class IllFormedDAGFile(Exception): pass class DAGWrongLength(Exception): pass # abstract dag class: defines sum,and type functions in terms of comb functions class absDag: def sumUpto(self,values): return self.combUpto(values,sum) def sumAfter(self,values): return self.combAfter(values,sum) def anyUpto(self,values): return self.combUpto(values,any) def anyAfter(self,values): return self.combAfter(values,any) def prodAfter(self,values): return self.combAfter(values,prod) class dag(absDag): def __init__(self,parents,N): self.parents=parents children=[[] for i in range(N)] for i in range(N): for p in parents[i]: children[p].append(i) self.children=children childRel=dagAlg.childLists2Rel(self.children) self.decendentRel=dagAlg.transitiveClosure(childRel,N) # these methods assume the consistentency defined above. # for each location, return the sum of lower locations from values def combUpto(self,values,comb): res=[comb([v for (i,v) in enumerate(values) if (i,j) in self.decendentRel]) for j in range(len(values))] return res # for each location, return the sum of higher locations from values def combAfter(self,values,comb): res=[comb([v for (i,v) in enumerate(values) if (j,i) in self.decendentRel]) for j in range(len(values))] return res # for each location, return the sum of locations neither lower or higher from values # we do this by taking the total and subtracting everything else. def sumOther(self,values,sumUpto=None,sumAfter=None): # save recalculating sumUpto/After if already known if sumUpto is None: sumUpto=self.sumUpto(values) if sumAfter is None: sumAfter=self.sumAfter(values) sums=[sum(values)]*len(values) # sums=listSub(sums,values,sumUpto,sumAfter) return sums def linearTestDag(N): parents=['%d %d' %(a+1,a) for a in range(N-1)] parents[:0]='0' return dag(parents,N)
gpl-2.0
-1,333,789,492,420,188,700
29.5625
112
0.674847
false
jleete97/python-graphics
games/turns/reversi/reversi.py
1
3731
import random import sys import time from reversiboard import * from games.turns.reversi.reversimoves import * # Window parameters WINDOW_WIDTH = 800 WINDOW_HEIGHT = 700 # Colors DARK_GREEN = (0, 128, 0) DARK_GREY = (128, 128, 128) LIGHT_RED = (255, 192, 192) GREEN = (0, 255, 0) WHITE = (255, 255, 255) BLACK = (0, 0, 0) # Board size (number of squares on each side) BOARD_SIZE = 8 HUMAN = 'human' COMPUTER = 'computer' # Players: computer is 'W', human is 'B' # Pick random starting player sides = [ HUMAN, COMPUTER ] colors = { HUMAN : WHITE , COMPUTER : BLACK } pygame.init() surface = pygame.display.set_mode((WINDOW_WIDTH, WINDOW_HEIGHT), 0, 32) another_game = True while another_game: playerIndex = random.randrange(2) board = ReversiBoard(BOARD_SIZE, sides) drawer = ReversiBoardDrawer(board, surface, WINDOW_WIDTH, WINDOW_HEIGHT, DARK_GREY, DARK_GREEN, GREEN, sides, colors) try: playing = True missedMoves = 0 winner = None while playing: opponentIndex = 1 - playerIndex player = sides[playerIndex] opponent = sides[opponentIndex] drawer.drawBoard() moveResult = [] if board.noLegalMoves(player, opponent): print(player + " has no legal move.") move = None time.sleep(3) else: print(player + " is moving...") if player == HUMAN: while moveResult == []: move = getPlayerMove(drawer) moveResult = board.resultOfMove(move, player, opponent) else: move = getComputerMove(board, COMPUTER, HUMAN) moveResult = board.resultOfMove(move, player, opponent) print(" move result: " + str(moveResult)) displayMove = None if (move is not None): displayMove = (move[0] + 1, move[1] + 1); print(player + " has moved: " + str(displayMove)) if move is None: missedMoves += 1 else: missedMoves = 0 if missedMoves == 2: winner = board.determineWinner() playing = False else: board.apply(move, moveResult, player) drawer.drawMove(move, player) if board.isFull(): winner = board.determineWinner() playing = False playerIndex = 1 - playerIndex except PlayerQuitException: pass if winner is None: outcome = "The game is a tie." else: outcome = "The " + winner + " wins!" fontObj = pygame.font.Font('freesansbold.ttf', 32) textSurface = fontObj.render(outcome, True, LIGHT_RED, DARK_GREY) textRect = textSurface.get_rect() textRect.center = (WINDOW_WIDTH // 2, WINDOW_HEIGHT // 2) surface.blit(textSurface, textRect) pygame.display.update() asking_about_another_game = True while asking_about_another_game: for event in pygame.event.get(): if event.type == QUIT: another_game = False asking_about_another_game = False break elif event.type == KEYUP and event.key in [K_ESCAPE, ord('r')]: asking_about_another_game = False break pygame.display.update() pygame.quit() sys.exit()
mit
-7,343,959,332,232,993,000
26.233577
79
0.5197
false
Lothiraldan/MongoTSDB
tests/test_range.py
1
3744
import unittest from mongotsdb import Range, SubRange, RangeSet, MultiRangeWorker, RangeWorker class RangeTestCase(unittest.TestCase): def setUp(self): self.start = 0 self.stop = 7 self.step = self.stop - self.start self.r = Range(self.start, self.stop) def test_instantiation(self): self.assertTrue(self.r.is_empty()) self.assertFalse(self.r.is_partial()) self.assertFalse(self.r.is_full()) def test_sub_range_beggining(self): value = 42 sub_range = SubRange(0, 3, value) self.r.add_sub_range(sub_range) self.assertFalse(self.r.is_empty()) self.assertTrue(self.r.is_partial()) self.assertFalse(self.r.is_full()) expected_subrange = SubRange(4, 7) self.assertEqual(self.r.get_missing_ranges(), [expected_subrange]) def test_sub_range_end(self): value = 42 sub_range = SubRange(4, 7, value) self.r.add_sub_range(sub_range) self.assertFalse(self.r.is_empty()) self.assertTrue(self.r.is_partial()) self.assertFalse(self.r.is_full()) expected_subrange = SubRange(0, 3) self.assertEqual(self.r.get_missing_ranges(), [expected_subrange]) def test_sub_range_middle(self): value = 42 sub_range = SubRange(2, 6, value) self.r.add_sub_range(sub_range) self.assertFalse(self.r.is_empty()) self.assertTrue(self.r.is_partial()) self.assertFalse(self.r.is_full()) expected_subrange_1 = SubRange(0, 1) expected_subrange_2 = SubRange(7, 7) self.assertEqual(self.r.get_missing_ranges(), [expected_subrange_1, expected_subrange_2]) def test_sub_range_full(self): value = 42 sub_range = SubRange(0, 7, value) self.r.add_sub_range(sub_range) self.assertFalse(self.r.is_empty()) self.assertFalse(self.r.is_partial()) self.assertTrue(self.r.is_full()) self.assertEqual(self.r.get_missing_ranges(), []) def test_sub_range_full_with_2_subranges(self): value = 42 sub_range1 = SubRange(0, 3, value) value = 42 sub_range2 = SubRange(4, 7, value) self.r.add_sub_range(sub_range1) self.r.add_sub_range(sub_range2) self.assertFalse(self.r.is_empty()) self.assertFalse(self.r.is_partial()) self.assertTrue(self.r.is_full()) self.assertEqual(self.r.get_missing_ranges(), []) class RangeSetTestCase(unittest.TestCase): def setUp(self): self.start = 0 self.stop = 49 self.step = 10 self.range_set = RangeSet(self.start, self.stop, self.step) def test_simple(self): workers = list(self.range_set.generate_workers()) expected_workers = [MultiRangeWorker(0, 49, 10)] self.assertEqual(workers, expected_workers) def test_add_subrange(self): sub_range = SubRange(22, 25, value=42) self.range_set.add_sub_range(sub_range) workers = list(self.range_set.generate_workers()) expected_range = Range(20, 29) expected_range.missing_ranges = [SubRange(20, 21), SubRange(26, 29)] expected_range.sub_ranges = [sub_range] partial_range_worker = RangeWorker(expected_range) expected_workers = [MultiRangeWorker(0, 19, 10), partial_range_worker, MultiRangeWorker(30, 49, 10)] self.assertEqual(workers, expected_workers) def test_not_aligned_ranges(self): start = 5 stop = 25 step = 10 range_set = RangeSet(start, stop, step) self.assertEqual(range_set.ranges, [Range(5, 9), Range(10, 19), Range(20, 25)])
gpl-3.0
-5,210,675,510,729,629,000
28.480315
78
0.60844
false
Foair/course-crawler
mooc/xuetangx.py
1
7412
# -*- coding: utf-8 -*- """学堂在线""" import json from bs4 import BeautifulSoup from .utils import * BASE_URL = 'http://www.xuetangx.com' CANDY = Crawler() CONFIG = {} FILES = {} def get_book(url): """获得所有的 PDF 电子书""" nav_page = CANDY.get(url).text shelves = set(re.findall(r'/courses/.+/pdfbook/\d/', nav_page)) for shelf_count, shelf in enumerate(shelves, 1): res = CANDY.get(BASE_URL + shelf).text soup = BeautifulSoup(res, 'lxml') WORK_DIR.change('Books', str(shelf_count)) for book_count, book in enumerate(soup.select('#booknav a'), 1): res_print(book.string) file_name = Resource.file_to_save(book.string) + '.pdf' CANDY.download_bin(BASE_URL + book['rel'][0], WORK_DIR.file(file_name)) def get_handout(url): """从课程信息页面获得课程讲义并存为 HTML 文件""" handouts_html = ClassicFile('Handouts.html') res = CANDY.get(url).text soup = BeautifulSoup(res, 'lxml') handouts = soup.find(class_='handouts') # 将相对地址替换为绝对地址 for link in handouts.select('a[href^="/"]'): link['href'] = BASE_URL + link['href'] handouts_html.write_string('<!DOCTYPE html>\n<html>\n<head>\n<title>讲义</title>\n<meta charset="utf-8">\n' '</head>\n<body>\n%s</body>\n</html>' % handouts.prettify()) def get_video(video): """根据视频 ID 和文件名字获取视频信息""" file_name = video.file_name res_print(file_name + '.mp4') res = CANDY.get('https://xuetangx.com/videoid2source/' + video.meta).text try: video_url = json.loads(res)['sources']['quality20'][0] except: video_url = json.loads(res)['sources']['quality10'][0] FILES['videos'].write_string(video_url) FILES['renamer'].write(re.search(r'(\w+-[12]0.mp4)', video_url).group(1), file_name) def get_content(url): """获取网页详细内容""" outline = Outline() counter = Counter() video_counter = Counter() playlist = Playlist() video_list = [] courseware = CANDY.get(url).text soup = BeautifulSoup(courseware, 'lxml') chapters = soup.find(id='accordion').find_all(class_='chapter') for chapter in chapters: counter.add(0) video_counter.add(0) chapter_title = chapter.h3.a.get_text(strip=True) outline.write(chapter_title, counter, 0) sections = chapter.select('ul a') for section_info in sections: counter.add(1) video_counter.add(1) section_url = BASE_URL + section_info['href'] section_title = section_info.p.string.strip() outline.write(section_title, counter, 1) section_page = CANDY.get(section_url).text soup = BeautifulSoup(section_page, 'lxml') # 对于某些需要安装 MathPlayer 插件的网页 try: tabs = soup.find(id='sequence-list').find_all('li') except AttributeError: break for tab_count, tab_info in enumerate(tabs, 1): counter.add(2) # title 可能出现换行符和重复,所以用 data-page-title tab_title = tab_info.a.get('data-page-title') outline.write(tab_title, counter) if tab_title == 'Video' or tab_title == '视频' or tab_title == '': tab_title = section_title tab_sequence = tab_info.a.get('aria-controls') tab_escape = soup.find(id=tab_sequence).string tab = BeautifulSoup(tab_escape, 'lxml').div.div blocks = tab.find_all('div', class_='xblock') for block in blocks: try: # 极少数没有 data-type 属性 block_type = block['data-type'] except KeyError: continue if block_type == 'Video': video_counter.add(2) # 替换连续空格或制表符为单个空格 video_name = block.h2.string.strip() outline.write(video_name, video_counter, level=3, sign='#') if video_name == 'Video' or video_name == '视频' or video_name == '': video_name = tab_title video_id = block.div['data-ccsource'] video = Video(video_counter, video_name, video_id) video_list.append(video) if CONFIG['sub']: get_subtitles(block.div['data-transcript-available-translations-url'], block.div['data-transcript-translation-url'], video.file_name) if video_list: WORK_DIR.change('Videos') rename = WORK_DIR.file('Names.txt') if CONFIG['rename'] else False if CONFIG['dpl']: parse_res_list(video_list, rename, playlist.write, get_video) else: parse_res_list(video_list, rename, get_video) def get_subtitles(available, transcript, file_name): """获取字幕""" subtitle_available_url = BASE_URL + available try: subtitle_available = CANDY.get(subtitle_available_url).json() except json.decoder.JSONDecodeError: return WORK_DIR.change('Videos') base_subtitle_url = BASE_URL + transcript + '/' multi_subtitle = False if len(subtitle_available) == 1 else True for subtitle_desc in subtitle_available: subtitle_url = base_subtitle_url + subtitle_desc CANDY.get(subtitle_url) if multi_subtitle: sub_file_name = file_name + '_' + subtitle_desc.replace('_xuetangx', '') + '.srt' else: sub_file_name = file_name + '.srt' subtitle = CANDY.get(subtitle_available_url.rstrip('available_translations') + 'download').content with open(WORK_DIR.file(sub_file_name), 'wb') as subtitle_file: subtitle_file.write(subtitle) def get_summary(url): """从课程地址获得课程文件夹名称""" about_page = CANDY.get(url).text soup = BeautifulSoup(about_page, 'lxml') course_name = soup.find(id='title1').string institution = soup.find(class_='courseabout_text').a.string dir_name = course_dir(course_name, institution) print(dir_name) return dir_name def start(url, config, cookies=None): """调用接口函数""" global WORK_DIR CONFIG.update(config) CANDY.set_cookies(cookies) status = CANDY.get('http://www.xuetangx.com/header_ajax') if status.json()['login']: print('验证成功!') else: print('Cookie 失效。请获取新的 Cookie 并删除 xuetangx.json。') return course_name = get_summary(url) WORK_DIR = WorkingDir(CONFIG['dir'], course_name) WORK_DIR.change('Videos') FILES['renamer'] = Renamer(WORK_DIR.file('Rename.bat')) FILES['videos'] = ClassicFile(WORK_DIR.file('Videos.txt')) handout = url.rstrip('about') + 'info' courseware = url.rstrip('about') + 'courseware' if CONFIG['doc']: # 使用 handout 作为入口更快 get_book(handout) get_handout(handout) get_content(courseware)
mit
-4,430,089,417,675,538,400
32.685714
109
0.566582
false
googleads/google-ads-python
google/ads/googleads/v8/errors/types/keyword_plan_error.py
1
1758
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import proto # type: ignore __protobuf__ = proto.module( package="google.ads.googleads.v8.errors", marshal="google.ads.googleads.v8", manifest={"KeywordPlanErrorEnum",}, ) class KeywordPlanErrorEnum(proto.Message): r"""Container for enum describing possible errors from applying a keyword plan resource (keyword plan, keyword plan campaign, keyword plan ad group or keyword plan keyword) or KeywordPlanService RPC. """ class KeywordPlanError(proto.Enum): r"""Enum describing possible errors from applying a keyword plan.""" UNSPECIFIED = 0 UNKNOWN = 1 BID_MULTIPLIER_OUT_OF_RANGE = 2 BID_TOO_HIGH = 3 BID_TOO_LOW = 4 BID_TOO_MANY_FRACTIONAL_DIGITS = 5 DAILY_BUDGET_TOO_LOW = 6 DAILY_BUDGET_TOO_MANY_FRACTIONAL_DIGITS = 7 INVALID_VALUE = 8 KEYWORD_PLAN_HAS_NO_KEYWORDS = 9 KEYWORD_PLAN_NOT_ENABLED = 10 KEYWORD_PLAN_NOT_FOUND = 11 MISSING_BID = 13 MISSING_FORECAST_PERIOD = 14 INVALID_FORECAST_DATE_RANGE = 15 INVALID_NAME = 16 __all__ = tuple(sorted(__protobuf__.manifest))
apache-2.0
8,135,299,712,212,321,000
32.169811
76
0.677474
false
TribeMedia/synapse
synapse/handlers/e2e_keys.py
2
12592
# -*- coding: utf-8 -*- # Copyright 2016 OpenMarket Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import ujson as json import logging from canonicaljson import encode_canonical_json from twisted.internet import defer from synapse.api.errors import SynapseError, CodeMessageException from synapse.types import get_domain_from_id from synapse.util.logcontext import preserve_fn, preserve_context_over_deferred from synapse.util.retryutils import get_retry_limiter, NotRetryingDestination logger = logging.getLogger(__name__) class E2eKeysHandler(object): def __init__(self, hs): self.store = hs.get_datastore() self.federation = hs.get_replication_layer() self.device_handler = hs.get_device_handler() self.is_mine_id = hs.is_mine_id self.clock = hs.get_clock() # doesn't really work as part of the generic query API, because the # query request requires an object POST, but we abuse the # "query handler" interface. self.federation.register_query_handler( "client_keys", self.on_federation_query_client_keys ) @defer.inlineCallbacks def query_devices(self, query_body, timeout): """ Handle a device key query from a client { "device_keys": { "<user_id>": ["<device_id>"] } } -> { "device_keys": { "<user_id>": { "<device_id>": { ... } } } } """ device_keys_query = query_body.get("device_keys", {}) # separate users by domain. # make a map from domain to user_id to device_ids local_query = {} remote_queries = {} for user_id, device_ids in device_keys_query.items(): if self.is_mine_id(user_id): local_query[user_id] = device_ids else: remote_queries[user_id] = device_ids # Firt get local devices. failures = {} results = {} if local_query: local_result = yield self.query_local_devices(local_query) for user_id, keys in local_result.items(): if user_id in local_query: results[user_id] = keys # Now attempt to get any remote devices from our local cache. remote_queries_not_in_cache = {} if remote_queries: query_list = [] for user_id, device_ids in remote_queries.iteritems(): if device_ids: query_list.extend((user_id, device_id) for device_id in device_ids) else: query_list.append((user_id, None)) user_ids_not_in_cache, remote_results = ( yield self.store.get_user_devices_from_cache( query_list ) ) for user_id, devices in remote_results.iteritems(): user_devices = results.setdefault(user_id, {}) for device_id, device in devices.iteritems(): keys = device.get("keys", None) device_display_name = device.get("device_display_name", None) if keys: result = dict(keys) unsigned = result.setdefault("unsigned", {}) if device_display_name: unsigned["device_display_name"] = device_display_name user_devices[device_id] = result for user_id in user_ids_not_in_cache: domain = get_domain_from_id(user_id) r = remote_queries_not_in_cache.setdefault(domain, {}) r[user_id] = remote_queries[user_id] # Now fetch any devices that we don't have in our cache @defer.inlineCallbacks def do_remote_query(destination): destination_query = remote_queries_not_in_cache[destination] try: limiter = yield get_retry_limiter( destination, self.clock, self.store ) with limiter: remote_result = yield self.federation.query_client_keys( destination, {"device_keys": destination_query}, timeout=timeout ) for user_id, keys in remote_result["device_keys"].items(): if user_id in destination_query: results[user_id] = keys except CodeMessageException as e: failures[destination] = { "status": e.code, "message": e.message } except NotRetryingDestination as e: failures[destination] = { "status": 503, "message": "Not ready for retry", } except Exception as e: # include ConnectionRefused and other errors failures[destination] = { "status": 503, "message": e.message } yield preserve_context_over_deferred(defer.gatherResults([ preserve_fn(do_remote_query)(destination) for destination in remote_queries_not_in_cache ])) defer.returnValue({ "device_keys": results, "failures": failures, }) @defer.inlineCallbacks def query_local_devices(self, query): """Get E2E device keys for local users Args: query (dict[string, list[string]|None): map from user_id to a list of devices to query (None for all devices) Returns: defer.Deferred: (resolves to dict[string, dict[string, dict]]): map from user_id -> device_id -> device details """ local_query = [] result_dict = {} for user_id, device_ids in query.items(): if not self.is_mine_id(user_id): logger.warning("Request for keys for non-local user %s", user_id) raise SynapseError(400, "Not a user here") if not device_ids: local_query.append((user_id, None)) else: for device_id in device_ids: local_query.append((user_id, device_id)) # make sure that each queried user appears in the result dict result_dict[user_id] = {} results = yield self.store.get_e2e_device_keys(local_query) # Build the result structure, un-jsonify the results, and add the # "unsigned" section for user_id, device_keys in results.items(): for device_id, device_info in device_keys.items(): r = dict(device_info["keys"]) r["unsigned"] = {} display_name = device_info["device_display_name"] if display_name is not None: r["unsigned"]["device_display_name"] = display_name result_dict[user_id][device_id] = r defer.returnValue(result_dict) @defer.inlineCallbacks def on_federation_query_client_keys(self, query_body): """ Handle a device key query from a federated server """ device_keys_query = query_body.get("device_keys", {}) res = yield self.query_local_devices(device_keys_query) defer.returnValue({"device_keys": res}) @defer.inlineCallbacks def claim_one_time_keys(self, query, timeout): local_query = [] remote_queries = {} for user_id, device_keys in query.get("one_time_keys", {}).items(): if self.is_mine_id(user_id): for device_id, algorithm in device_keys.items(): local_query.append((user_id, device_id, algorithm)) else: domain = get_domain_from_id(user_id) remote_queries.setdefault(domain, {})[user_id] = device_keys results = yield self.store.claim_e2e_one_time_keys(local_query) json_result = {} failures = {} for user_id, device_keys in results.items(): for device_id, keys in device_keys.items(): for key_id, json_bytes in keys.items(): json_result.setdefault(user_id, {})[device_id] = { key_id: json.loads(json_bytes) } @defer.inlineCallbacks def claim_client_keys(destination): device_keys = remote_queries[destination] try: limiter = yield get_retry_limiter( destination, self.clock, self.store ) with limiter: remote_result = yield self.federation.claim_client_keys( destination, {"one_time_keys": device_keys}, timeout=timeout ) for user_id, keys in remote_result["one_time_keys"].items(): if user_id in device_keys: json_result[user_id] = keys except CodeMessageException as e: failures[destination] = { "status": e.code, "message": e.message } except NotRetryingDestination as e: failures[destination] = { "status": 503, "message": "Not ready for retry", } except Exception as e: # include ConnectionRefused and other errors failures[destination] = { "status": 503, "message": e.message } yield preserve_context_over_deferred(defer.gatherResults([ preserve_fn(claim_client_keys)(destination) for destination in remote_queries ])) defer.returnValue({ "one_time_keys": json_result, "failures": failures }) @defer.inlineCallbacks def upload_keys_for_user(self, user_id, device_id, keys): time_now = self.clock.time_msec() # TODO: Validate the JSON to make sure it has the right keys. device_keys = keys.get("device_keys", None) if device_keys: logger.info( "Updating device_keys for device %r for user %s at %d", device_id, user_id, time_now ) # TODO: Sign the JSON with the server key changed = yield self.store.set_e2e_device_keys( user_id, device_id, time_now, device_keys, ) if changed: # Only notify about device updates *if* the keys actually changed yield self.device_handler.notify_device_update(user_id, [device_id]) one_time_keys = keys.get("one_time_keys", None) if one_time_keys: logger.info( "Adding %d one_time_keys for device %r for user %r at %d", len(one_time_keys), device_id, user_id, time_now ) key_list = [] for key_id, key_json in one_time_keys.items(): algorithm, key_id = key_id.split(":") key_list.append(( algorithm, key_id, encode_canonical_json(key_json) )) yield self.store.add_e2e_one_time_keys( user_id, device_id, time_now, key_list ) # the device should have been registered already, but it may have been # deleted due to a race with a DELETE request. Or we may be using an # old access_token without an associated device_id. Either way, we # need to double-check the device is registered to avoid ending up with # keys without a corresponding device. self.device_handler.check_device_registered(user_id, device_id) result = yield self.store.count_e2e_one_time_keys(user_id, device_id) defer.returnValue({"one_time_key_counts": result})
apache-2.0
1,883,954,235,118,884,400
37.98452
87
0.542011
false
hoomanlogic/hoomancmd
hoomancmd/matchsuggestion.py
1
17803
### score matched, proximity, missing, or nomatch to find the best fit command ### # todo: Improve suggestion engine # >> plns # Did you mean 'logs'? : 97 : journal:90 # used by all versions proximity_mapping = { 'q': ['a', 's', 'w', '2', '1', '`'], 'w': ['q', 'a', 's', 'd', 'e', '3', '2', '1'], 'e': ['w', 's', 'd', 'f', 'r', '4', '3', '2'], 'r': ['e', 'd', 'f', 'g', 't', '5', '4', '3'], 't': ['r', 'f', 'g', 'h', 'y', '6', '5', '4'], 'y': ['t', 'g', 'h', 'j', 'u', '7', '6', '5'], 'u': ['y', 'h', 'j', 'k', 'i', '8', '7', '6'], 'i': ['u', 'j', 'k', 'l', 'o', '9', '8', '7'], 'o': ['i', 'k', 'l', ';', 'p', '0', '9', '8'], 'p': ['o', 'l', ';', '\'', '[', '-', '0', '9'], '[': ['p', ';', '\'', ']', '=', '-', '0'], ']': ['[', '\'', '\\', '='], 'a': ['z', 'x', 's', 'w', 'q'], 's': ['a', 'z', 'x', 'c', 'd', 'e', 'w', 'q'], 'd': ['s', 'x', 'c', 'v', 'f', 'r', 'e', 'w'], 'f': ['d', 'c', 'v', 'b', 'g', 't', 'r', 'e'], 'g': ['f', 'v', 'b', 'n', 'h', 'y', 't', 'r'], 'h': ['g', 'b', 'n', 'm', 'j', 'u', 'y', 't'], 'j': ['h', 'n', 'm', ',', 'k', 'i', 'u', 'y'], 'k': ['j', 'm', ',', '.', 'l', 'o', 'i', 'u'], 'l': ['k', ',', '.', '/', ';', 'p', 'o', 'i'], ';': ['l', '.', '/', '\'', '[', 'p'], '\'': [';', '/', ']', '[', 'p'], 'z': [ 'x', 's', 'a'], 'x': ['z', 'c', 'd', 's', 'a'], 'c': ['x', 'v', 'f', 'd', 's'], 'v': ['c', 'b', 'g', 'f', 'd'], 'b': ['v', 'n', 'h', 'g', 'f'], 'n': ['b', 'm', 'j', 'h', 'g'], 'm': ['n', ',', 'k', 'j', 'h'], '1': ['q', 'w', '2', '`'], '2': ['1', 'q', 'w', 'e', '3'], '3': ['2', 'w', 'e', 'r', '4'], '4': ['3', 'e', 'r', 't', '5'], '5': ['4', 'r', 't', 'y', '6'], '6': ['5', 't', 'y', 'u', '7'], '7': ['6', 'y', 'u', 'i', '8'], '8': ['7', 'u', 'i', 'o', '9'], '9': ['8', 'i', 'o', 'p', '0'], '0': ['9', 'o', 'p', '[', '-'], '-': ['0', 'p', '[', ']', '='], '+': ['-', '[', ']', '\\'] } # version 1 variables max_extra = 1 # input has extra characters max_missing = -1 # input has less characters class MatchStats(object): def __init__(self, item, disparity): self.match = 0 self.proximity = 0 self.disparity = disparity self.item = item self.too_disparate = False self.missing = 0 def increment_match(self): self.match += 1 def increment_proximity(self): self.proximity += 1 def increment_proximity(self): self.proximity += 1 def increment_missing(self): self.missing += 1 def compare(self, other_instance): if other_instance is None: return self if self.proximity > other_instance.proximity: return other_instance elif self.proximity < other_instance.proximity: return self else: if self.match > other_instance.match: return self elif self.match < other_instance.match: return other_instance else: if self.disparity > other_instance.disparity: return other_instance else: return self class BetterMatchStats(object): # version 2 & 3 variables max_sequential_disparity = 2 def __init__(self, matchterm): self.match = 0 self.proximity = 0 self.disparity = 0 self.sequential_disparity = 0 self.matchterm = matchterm self.too_disparate = False self.runner_up_score = 0 self.runner_up_matchterm = '' def increment_match(self): self.match += 1 self._reset_sequential_disparity() def increment_proximity(self): self.proximity += 1 self._reset_sequential_disparity() def increment_disparity(self): self.disparity += 1 self._increment_sequential_disparity() if self.disparity > len(self.matchterm): self.too_disparate = True def _increment_sequential_disparity(self): self.sequential_disparity += 1 if self.sequential_disparity > BetterMatchStats.max_sequential_disparity: self.too_disparate = True def _reset_sequential_disparity(self): self.sequential_disparity = 0 def get_score(self): if self.disparity == 0 and self.proximity == 0: return 100 else: return 100 - ((self.disparity * 2) + self.proximity) def compare(self, other_instance): if other_instance is None or other_instance.too_disparate: return self if self.too_disparate: other_instance.runner_up_score = self.get_score() other_instance.runner_up_matchterm = self.matchterm return other_instance if self.disparity > other_instance.disparity: other_instance.runner_up_score = self.get_score() other_instance.runner_up_matchterm = self.matchterm return other_instance elif self.disparity < other_instance.disparity: return self if self.match > other_instance.match: return self elif self.match < other_instance.match: other_instance.runner_up_score = self.get_score() other_instance.runner_up_matchterm = self.matchterm return other_instance if self.proximity > other_instance.proximity: other_instance.runner_up_score = self.get_score() other_instance.runner_up_matchterm = self.matchterm return other_instance else: return self def copy_attributes(self, other_instance): self.match = other_instance.match self.proximity = other_instance.proximity self.disparity = other_instance.disparity self.sequential_disparity = other_instance.sequential_disparity self.too_disparate = other_instance.too_disparate @classmethod def copy(cls, obj): instance = BetterMatchStats(obj.matchterm) instance.match = obj.match instance.proximity = obj.proximity instance.disparity = obj.disparity instance.sequential_disparity = obj.sequential_disparity instance.too_disparate = obj.too_disparate return instance def is_in_proximity(char1, char2): if char2 in proximity_mapping[char1]: return True else: return False # version 1 def getbestmatch_v1(input_, list_): input_ = input_.lower() matchstats_best = None for item in list_: item = item.lower() disparity = len(input_) - len(item) # ensure disparity isn't too great if disparity < max_missing or disparity > max_extra: continue inner = input_ outer = item if disparity < 0: inner = input_ outer = item elif disparity > 0: inner = item outer = input_ # now we put the smaller as the inner to move around # so we use the absolute val of disparity to # put the smaller through the scenarios for i in range(0, abs(disparity) + 1): outer_subset = outer[i:] matchstats = MatchStats(item, abs(disparity)) # loop through characters and compare them for j, inner_char in enumerate(inner): if inner_char == outer_subset[j]: matchstats.increment_match() continue elif is_in_proximity(inner_char, outer_subset[j]): matchstats.increment_proximity() continue else: matchstats.too_disparate = True break if not matchstats.too_disparate: matchstats_best = matchstats.compare(matchstats_best) if matchstats_best is None: return None else: return matchstats_best.item # version 2 def getbestmatch_v2(input_, list_): # case insenitive matching input_ = input_.lower() # stores best match so far current_matchstats_best = None # iterate through all the possible matchterms # to find the best match for matchterm in list_: # case insenitive matching matchterm = matchterm.lower() # ensure disparity isn't too great from the get go # by comparing overall length, if it is too disparate # then move on to the next matchterm # if abs(len(input_) - len(matchterm)) > max_sequential_disparity: # continue # create object to hold the match stats matchstats = BetterMatchStats(matchterm) # run the input_ and matchterm through # scenarios find a potential match matchup_v2(input_, matchterm, matchstats) # done with while because we hit the end of an index # now let's calculate the leftover disparity max_char_len = 0 if len(input_) > len(matchterm): max_char_len = len(input_) else: max_char_len = len(matchterm) for i in (range(0, abs(max_char_len - (matchstats.match + matchstats.proximity + matchstats.disparity)))): matchstats.increment_disparity() # compare the matchstats after matchup with the current best matchstats # and set the better of the two to the best match so far # -- may the best match win... current_matchstats_best = matchstats.compare(current_matchstats_best) return current_matchstats_best.matchterm def matchup_v2(input_, matchterm, matchstats, depth=0): input_index = 0 matchterm_index = 0 while matchterm_index < len(matchterm) and input_index < len(input_): if input_[input_index] == matchterm[matchterm_index]: matchstats.increment_match() input_index = input_index + 1 matchterm_index = matchterm_index + 1 continue elif is_in_proximity(input_[input_index], matchterm[matchterm_index]): matchstats.increment_proximity() input_index = input_index + 1 matchterm_index = matchterm_index + 1 else: # increment disparity and check if we are too disparate matchstats.increment_disparity() if matchstats.too_disparate: return # here we need to branch and try both the possibility that input_ has # missing or extra chars, then compare the two branches to pick the # best matchup # input_ may have bad chars, similar to the proximity solution, # but treats it as a disparity bad_char_scenario = None if input_index + 1 <= len(input_) and matchterm_index + 1 <= len(matchterm): bad_char_scenario = BetterMatchStats.copy(matchstats) matchup_v2(input_[input_index + 1:], matchterm[matchterm_index + 1:], bad_char_scenario, depth=depth+1) # input_ may have missing chars missing_char_scenario = None if matchterm_index + 1 <= len(matchterm): missing_char_scenario = BetterMatchStats.copy(matchstats) matchup_v2(input_[input_index:], matchterm[matchterm_index + 1:], missing_char_scenario, depth=depth+1) # input_ may have extra chars extra_char_scenario = None if input_index + 1 <= len(input_): extra_char_scenario = BetterMatchStats.copy(matchstats) matchup_v2(input_[input_index + 1:], matchterm[matchterm_index:], extra_char_scenario, depth=depth+1) # if both the input_ and matchterm have reached the end of their input_ # then return if input_index + 1 >= len(input_) and matchterm_index + 1 >= len(matchterm): return # grab either one that is not None and compare to the other # one, which may be None, but one of these scenarios is # guaranteed to not be None by this point best_scenario = None if missing_char_scenario is not None: best_scenario = missing_char_scenario.compare(extra_char_scenario) else: best_scenario = extra_char_scenario.compare(missing_char_scenario) # compare the winner of missing vs extra with the bad chars scenario best_scenario = best_scenario.compare(bad_char_scenario) # copy the attributes from the best scenario # because simply setting the object makes the # root caller lose the changes matchstats.copy_attributes(best_scenario) return # investigate this # >> veweerython # Did you mean "deleteprop"? # version 3 def getbestmatch_v3(input_, list_, set_max_sequential_disparity=None): # case insenitive matching input_ = input_.lower() # stores best match so far current_matchstats_best = None if set_max_sequential_disparity is not None: BetterMatchStats.max_sequential_disparity = set_max_sequential_disparity # iterate through all the possible matchterms # to find the best match for matchterm in list_: # case insenitive matching matchterm = matchterm.lower() # ensure disparity isn't too great from the get go # by comparing overall length, if it is too disparate # then move on to the next matchterm # if abs(len(input_) - len(matchterm)) > max_sequential_disparity: # continue # create object to hold the match stats matchstats = BetterMatchStats(matchterm) if len(input_) > len(matchterm): max_char_len = len(input_) inner = matchterm outer = input_ else: max_char_len = len(matchterm) inner = input_ outer = matchterm # run the input_ and matchterm through # scenarios find a potential match matchup_v3(inner, outer, matchstats) for i in (range(0, abs(max_char_len - (matchstats.match + matchstats.proximity + matchstats.disparity)))): matchstats.disparity = matchstats.disparity + 1 # compare the matchstats after matchup with the current best matchstats # and set the better of the two to the best match so far # -- may the best match win... current_matchstats_best = matchstats.compare(current_matchstats_best) # >> testmatch hooman human humous humid # humid 90 0 return current_matchstats_best def matchup_v3(input_, matchterm, matchstats, depth=0): input_index = 0 matchterm_index = 0 while matchterm_index < len(matchterm) and input_index < len(input_): if input_[input_index] == matchterm[matchterm_index]: matchstats.increment_match() input_index = input_index + 1 matchterm_index = matchterm_index + 1 continue elif is_in_proximity(input_[input_index], matchterm[matchterm_index]): matchstats.increment_proximity() input_index = input_index + 1 matchterm_index = matchterm_index + 1 else: # increment disparity and check if we are too disparate matchstats.increment_disparity() if matchstats.too_disparate: return # here we need to branch and try both the possibility that input_ has # missing or extra chars, then compare the two branches to pick the # best matchup # input_ may have bad chars, similar to the proximity solution, # but treats it as a disparity bad_char_scenario = None if input_index + 1 <= len(input_) and matchterm_index + 1 <= len(matchterm): bad_char_scenario = BetterMatchStats.copy(matchstats) matchup_v3(input_[input_index + 1:], matchterm[matchterm_index + 1:], bad_char_scenario, depth=depth+1) # input_ may have missing chars missing_char_scenario = None if matchterm_index + 1 <= len(matchterm): missing_char_scenario = BetterMatchStats.copy(matchstats) matchup_v3(input_[input_index:], matchterm[matchterm_index + 1:], missing_char_scenario, depth=depth+1) # input_ may have extra chars extra_char_scenario = None if input_index + 1 <= len(input_): extra_char_scenario = BetterMatchStats.copy(matchstats) matchup_v3(input_[input_index + 1:], matchterm[matchterm_index:], extra_char_scenario, depth=depth+1) # if both the input_ and matchterm have reached the end of their input_ # then return if input_index + 1 >= len(input_) and matchterm_index + 1 >= len(matchterm): return # grab either one that is not None and compare to the other # one, which may be None, but one of these scenarios is # guaranteed to not be None by this point best_scenario = None if missing_char_scenario is not None: best_scenario = missing_char_scenario.compare(extra_char_scenario) else: best_scenario = extra_char_scenario.compare(missing_char_scenario) # compare the winner of missing vs extra with the bad chars scenario best_scenario = best_scenario.compare(bad_char_scenario) # copy the attributes from the best scenario # because simply setting the object makes the # root caller lose the changes matchstats.copy_attributes(best_scenario) return
apache-2.0
-2,147,103,867,725,780,500
35.935685
119
0.559569
false
pernici/sympy
sympy/series/tests/test_order.py
1
6982
from sympy import Symbol, Rational, Order, C, exp, ln, log, O, var, nan, pi, S from sympy.utilities.pytest import XFAIL, raises from sympy.abc import w, x, y, z def test_caching_bug(): #needs to be a first test, so that all caches are clean #cache it e = O(w) #and test that this won't raise an exception f = O(w**(-1/x/log(3)*log(5)), w) def test_simple_1(): o = Rational(0) assert Order(2*x) == Order(x) assert Order(x)*3 == Order(x) assert -28*Order(x) == Order(x) assert Order(-23) == Order(1) assert Order(exp(x)) == Order(1,x) assert Order(exp(1/x)).expr == exp(1/x) assert Order(x*exp(1/x)).expr == x*exp(1/x) assert Order(x**(o/3)).expr == x**(o/3) assert Order(x**(5*o/3)).expr == x**(5*o/3) assert Order(x**2 + x + y, x) == \ Order(x**2 + x + y, y) == O(1) raises(NotImplementedError, 'Order(x, 2 - x)') def test_simple_2(): assert Order(2*x)*x == Order(x**2) assert Order(2*x)/x == Order(1,x) assert Order(2*x)*x*exp(1/x) == Order(x**2*exp(1/x)) assert (Order(2*x)*x*exp(1/x)/ln(x)**3).expr == x**2*exp(1/x)*ln(x)**-3 def test_simple_3(): assert Order(x)+x == Order(x) assert Order(x)+2 == 2+Order(x) assert Order(x)+x**2 == Order(x) assert Order(x)+1/x == 1/x+Order(x) assert Order(1/x)+1/x**2 == 1/x**2+Order(1/x) assert Order(x)+exp(1/x) == Order(x)+exp(1/x) def test_simple_4(): assert Order(x)**2 == Order(x**2) assert Order(x**3)**-2 == Order(x**-6) def test_simple_5(): assert Order(x)+Order(x**2) == Order(x) assert Order(x)+Order(x**-2) == Order(x**-2) assert Order(x)+Order(1/x) == Order(1/x) def test_simple_6(): assert Order(x)-Order(x) == Order(x) assert Order(x)+Order(1) == Order(1) assert Order(x)+Order(x**2) == Order(x) assert Order(1/x)+Order(1) == Order(1/x) assert Order(x)+Order(exp(1/x)) == Order(exp(1/x)) assert Order(x**3)+Order(exp(2/x)) == Order(exp(2/x)) assert Order(x**-3)+Order(exp(2/x)) == Order(exp(2/x)) def test_simple_7(): assert 1+O(1) == O(1) assert 2+O(1) == O(1) assert x+O(1) == O(1) assert 1/x+O(1) == 1/x+O(1) def test_contains_0(): assert Order(1,x).contains(Order(1,x)) assert Order(1,x).contains(Order(1)) assert Order(1).contains(Order(1,x)) def test_contains_1(): assert Order(x).contains(Order(x)) assert Order(x).contains(Order(x**2)) assert not Order(x**2).contains(Order(x)) assert not Order(x).contains(Order(1/x)) assert not Order(1/x).contains(Order(exp(1/x))) assert not Order(x).contains(Order(exp(1/x))) assert Order(1/x).contains(Order(x)) assert Order(exp(1/x)).contains(Order(x)) assert Order(exp(1/x)).contains(Order(1/x)) assert Order(exp(1/x)).contains(Order(exp(1/x))) assert Order(exp(2/x)).contains(Order(exp(1/x))) assert not Order(exp(1/x)).contains(Order(exp(2/x))) def test_contains_2(): assert Order(x).contains(Order(y)) is None assert Order(x).contains(Order(y*x)) assert Order(y*x).contains(Order(x)) assert Order(y).contains(Order(x*y)) assert Order(x).contains(Order(y**2*x)) def test_contains_3(): assert Order(x*y**2).contains(Order(x**2*y)) is None assert Order(x**2*y).contains(Order(x*y**2)) is None def test_add_1(): assert Order(x+x) == Order(x) assert Order(3*x-2*x**2) == Order(x) assert Order(1+x) == Order(1,x) assert Order(1+1/x) == Order(1/x) assert Order(ln(x)+1/ln(x)) == Order(ln(x)) assert Order(exp(1/x)+x) == Order(exp(1/x)) assert Order(exp(1/x)+1/x**20) == Order(exp(1/x)) def test_ln_args(): assert O(log(x)) + O(log(2*x)) == O(log(x)) assert O(log(x)) + O(log(x**3)) == O(log(x)) assert O(log(x*y)) + O(log(x)+log(y)) == O(log(x*y)) def test_multivar_0(): assert Order(x*y).expr == x*y assert Order(x*y**2).expr == x*y**2 assert Order(x*y,x).expr == x assert Order(x*y**2,y).expr == y**2 assert Order(x*y*z).expr == x*y*z assert Order(x/y).expr == x/y assert Order(x*exp(1/y)).expr == x*exp(1/y) assert Order(exp(x)*exp(1/y)).expr == exp(1/y) def test_multivar_0a(): assert Order(exp(1/x)*exp(1/y)).expr == exp(1/x + 1/y) def test_multivar_1(): assert Order(x+y).expr == x+y assert Order(x+2*y).expr == x+y assert (Order(x+y)+x).expr == (x+y) assert (Order(x+y)+x**2) == Order(x+y) assert (Order(x+y)+1/x) == 1/x+Order(x+y) assert Order(x**2+y*x).expr == x**2+y*x def test_multivar_2(): assert Order(x**2*y+y**2*x,x,y).expr == x**2*y+y**2*x def test_multivar_mul_1(): assert Order(x+y)*x == Order(x**2+y*x,x,y) def test_multivar_3(): assert (Order(x)+Order(y)).args in [ (Order(x), Order(y)), (Order(y), Order(x))] assert Order(x)+Order(y)+Order(x+y) == Order(x+y) assert (Order(x**2*y)+Order(y**2*x)).args in [ (Order(x*y**2), Order(y*x**2)), (Order(y*x**2), Order(x*y**2))] assert (Order(x**2*y)+Order(y*x)) == Order(x*y) def test_issue369(): x = Symbol('x') y = Symbol('y', negative=True) z = Symbol('z', complex=True) # check that Order does not modify assumptions about symbols Order(x) Order(y) Order(z) assert x.is_positive == None assert y.is_positive == False assert z.is_positive == None assert x.is_infinitesimal == None assert y.is_infinitesimal == None assert z.is_infinitesimal == None def test_leading_order(): assert (x+1+1/x**5).extract_leading_order(x) == ((1/x**5, O(1/x**5)),) assert (1+1/x).extract_leading_order(x) == ((1/x, O(1/x)),) assert (1+x).extract_leading_order(x) == ((1, O(1, x)),) assert (1+x**2).extract_leading_order(x) == ((1, O(1, x)),) assert (2+x**2).extract_leading_order(x) == ((2, O(1, x)),) assert (x+x**2).extract_leading_order(x) == ((x, O(x)),) def test_leading_order2(): assert set((2+pi+x**2).extract_leading_order(x)) == set(((pi, O(1, x)), (S(2), O(1, x)))) assert set((2*x+pi*x+x**2).extract_leading_order(x)) == set(((2*x, O(x)), (x*pi, O(x)))) def test_order_leadterm(): assert O(x**2)._eval_as_leading_term(x) == O(x**2) def test_nan(): assert not O(x).contains(nan) def test_O1(): assert O(1) == O(1, x) assert O(1) == O(1, y) assert hash(O(1)) == hash(O(1, x)) assert hash(O(1)) == hash(O(1, y)) def test_getn(): # other lines are tested incidentally by the suite assert O(x).getn() == 1 assert O(x/log(x)).getn() == 1 assert O(x**2/log(x)**2).getn() == 2 assert O(x*log(x)).getn() == 1 raises(NotImplementedError, '(O(x) + O(y)).getn()') def test_diff(): assert O(x**2).diff(x) == O(x) def test_getO(): assert (x).getO() is None assert (x).removeO() == x assert (O(x)).getO() == O(x) assert (O(x)).removeO() == 0 assert (z + O(x) + O(y)).getO() == O(x) + O(y) assert (z + O(x) + O(y)).removeO() == z raises(NotImplementedError, '(O(x)+O(y)).getn()')
bsd-3-clause
-6,458,170,842,665,350,000
32.567308
78
0.563879
false
nadgowdas/cargo
cli/cargo.py
1
2456
#!/usr/bin/env python #Copyright IBM Corporation 2015. #LICENSE: Apache License 2.0 http://opensource.org/licenses/Apache-2.0 import os import optparse import logging from voyage import * def main(): usage = "usage: python %prog -f <config_file> {--list | --migrate --source <source> --container <container> --target <target> (optional)--rootfs}" parser = optparse.OptionParser(usage=usage) parser.add_option("-l", "--list", action="store_true", dest="listc", default=False, help="list containers") parser.add_option("-m", "--migrate", action="store_true", dest="migrate", default=False, help="migrate container") parser.add_option("-f", "--failover", action="store_true", dest="failover", default=False, help="failover container") parser.add_option("--status", action="store_true", dest="status", default=False, help="query lazy replication status") parser.add_option("--source", action="store", dest="source", default = None, help="Source Host (agent name)") parser.add_option("--container", action="store", dest="container", default = None, help="Container name to be migrated") parser.add_option("--target", action="store", dest="target", default = None, help="Target Host (agent name)") parser.add_option("--rootfs", action="store_true", dest="rootfs", default=False, help="migrate rootfs") parser.add_option("-s", "--server", action="store", dest="server", default="127.0.0.1:5000", help="Cargo server and port") opts,args= parser.parse_args() listc = opts.listc migrate = opts.migrate failover = opts.failover server = opts.server source = opts.source target = opts.target rootfs = opts.rootfs container = opts.container status = opts.container if not listc and not migrate and not failover and not status: parser.print_help() if migrate and not source and not target and not container: parser.print_help() if failover and not target and not container and not server: parser.print_help() if status and not container: parser.print_help() voyage = Voyage(server) if listc: voyage.listcontainers() sys.exit(0) if migrate: voyage.migrate(source, container, target, rootfs) sys.exit(0) if failover: voyage.failover(container, target) sys.exit(0) if status: voyage.getStatus(container) if __name__=="__main__": main()
apache-2.0
8,801,125,674,314,020,000
35.117647
150
0.661645
false
Ilphrin/TuxleTriad
Menu.py
1
16142
# coding: utf-8 import pygame import os import sys import gettext from functions import * from color import * from pygame.locals import * from game import Application from Sound import Sound from Text import Text from Buttons import Button from listOfCards import * from Card import Card pygame.init() class Menu(pygame.sprite.Sprite): def __init__(self, width, height): self.FONT = "Playball.ttf" # We create the window self.width = width self.height = height fullscreen = pygame.NOFRAME self.dimension = (self.width, self.height) self.screen = pygame.display.set_mode(self.dimension, fullscreen) pygame.display.set_caption("TuxleTriad") self._load_translation() self.bkgrnd, self.bkgrndRect = loadImage("background.jpg") self.bkgrndRect = self.bkgrnd.get_rect() # The Clock of the game, to manage the frame-rate self.clock = pygame.time.Clock() self.fps = 30 # We start the Sound object, playing music and sounds. self.sound = Sound() # Needed to keep track of the game if we do a pause during the game. self.app = None self.main() def main(self): elemText = [_("Play"), _("Options"), _("Rules"), _("About"), _("Quit Game")] self.menu = [] for elem in elemText: self.menu.append(Text(elem, self.FONT, white, 40)) posx = 400 posy = 400 - (60 * len(elemText)) for elem in self.menu: elem.rect.center = ((posx, posy)) posy += 100 pygame.event.clear() self.updateMenu() while 1: pygame.display.flip() deactivate() event = pygame.event.wait() if event.type == MOUSEBUTTONUP: self.clicked() elif event.type == QUIT: self.quitGame() self.clock.tick(self.fps) def updateMenu(self): self.screen.blit(self.bkgrnd, self.bkgrndRect) for i in range(len(self.menu)): self.screen.blit(self.menu[i].surface, self.menu[i].rect) self.clock.tick(self.fps) def quitGame(self): setConfig(self.sound.volume) pygame.quit() sys.exit() def oldMenu(self): while(1): for button in self.menu: button.rect.centerx -= 100 - self.fps if (button.rect.centerx <= - 500): return; self.updateMenu() pygame.display.flip() def clicked(self): for button in self.menu: if button.rect.collidepoint(pygame.mouse.get_pos()): self.sound.clicMenu.play() if button.text == _(u"Quit Game"): self.quitGame() self.oldMenu() if button.text == _(u"Play"): self.play() elif button.text == _(u"Options"): self.options() elif button.text == _(u"Rules"): self.rules() elif button.text == _(u"About"): self.about() self.main() def play(self): """User clicked on "Play" """ if self.app != None: texts = [_("Continue"),_("Adventure"), _("Solo"), _("Hot Seat"), _("Back")] else: texts = [_("Adventure"), _("Solo"), _("Hot Seat"), _("Back")] length = len(texts) if self.app != None: textPos = [(250, 100), (250,200), (250, 300), (250,400), (550, 500)] else: textPos = [(250, 100), (250,200), (250, 300), (550, 500)] self.menu = [] for i in range(length): self.menu.append(Text(texts[i], self.FONT, white, 45)) self.menu[i].rect.topleft = textPos[i] self.updateMenu() pygame.display.flip() self.clock.tick(self.fps) while 1: event = pygame.event.wait() if event.type == QUIT: pygame.quit() sys.exit() elif event.type == MOUSEBUTTONUP: coordinates = pygame.mouse.get_pos() for i in range(length): if self.menu[i].rect.collidepoint(coordinates): self.sound.clicMenu.play() self.oldMenu() if self.menu[i].text == _("Adventure"): return elif self.menu[i].text == _("Solo"): return elif self.menu[i].text == _("Hot Seat"): self.hotSeat() elif self.menu[i].text == _("Back"): return elif self.menu[i].text == _("Continue"): self.app.main() def options(self): texts = [_("Audio"), _("Sounds"), _("Music"), _("Back")] length = len(texts) textsPos = [(320, 100), (100, 200), (100, 300), (550, 500)] self.menu = [] for i in range(length): self.menu.append(Text(texts[i], self.FONT, white, 50)) self.menu[i].rect.topleft = textsPos[i] bar1, bar1Rect = loadImage("barSound.jpg") bar2, bar2Rect = loadImage("barSound.jpg") bar1Rect.topleft = (300, 220) bar2Rect.topleft = (300, 320) bars = [bar1Rect, bar2Rect] # X coordinates, relative to the bar's, of beginning and ending # of each volume cursor. MIN_VOLUME = 15 MAX_VOLUME = 240 # X absolute coordinates of the volume cursor. MIN = bars[0].x + MIN_VOLUME MAX = bars[0].x + MAX_VOLUME cursor1, cursor1Rect = loadImage("cursorSound.png") cursor2, cursor2Rect = loadImage("cursorSound.png") cursor1Rect.topleft = \ (bar1Rect.x + 225 * self.sound.soundVolume, bar1Rect.y - 23) cursor2Rect.topleft = \ (bar2Rect.x + 225 * self.sound.musicVolume, bar2Rect.y - 23) cursors = [cursor1Rect, cursor2Rect] self.screen.blit(self.bkgrnd, self.bkgrndRect) self.screen.blit(bar1, bar1Rect) self.screen.blit(bar2, bar2Rect) self.screen.blit(cursor1, cursors[0]) self.screen.blit(cursor2, cursors[1]) for i in range(length): self.screen.blit(self.menu[i].surface, self.menu[i].rect) pygame.display.update() move = 0 while 1: event = pygame.event.wait() mousex, mousey = pygame.mouse.get_pos() if event.type == QUIT: self.quitGame() elif event.type == MOUSEBUTTONDOWN: move = 1 reactivate() elif event.type == MOUSEBUTTONUP: move = 0 deactivate() for i in range(len(bars)): if move == 1 and bars[i].collidepoint((mousex, mousey)): if MIN <= mousex <= MAX: cursors[i].centerx = mousex elif mousex > bars[i].x + MAX_VOLUME: cursors[i].centerx = bars[i].x + MAX_VOLUME else: cursors[i].centerx = bars[i].x + MIN_VOLUME volume = cursors[i].centerx - MIN if volume != 0: volume = (volume / 2.25) / 100.0 assert (0.0 <= volume <= 1.0) if i == 0: self.sound.soundVolume = volume self.sound.playPutCard() self.sound.update() elif i == 1: self.sound.musicVolume = volume self.sound.update() self.screen.blit(self.bkgrnd, self.bkgrndRect) self.screen.blit(bar1, bar1Rect) self.screen.blit(bar2, bar2Rect) self.screen.blit(cursor1, cursors[0]) self.screen.blit(cursor2, cursors[1]) for j in range(4): self.screen.blit(self.menu[j].surface,\ self.menu[j].rect) pygame.display.update() self.clock.tick(self.fps) if move and self.menu[3].rect.collidepoint((mousex, mousey)): del bar1, bar2, bars, cursor1, cursor2, cursors self.oldMenu() self.sound.clicMenu.play() return def about(self): page = 1 allPage = [] pageList = [] index = 0 for number in range(len(allCards)): pageList.append(Card(number, 1)) index += 1 if index == 3 or number == (len(allCards) or len(allCards)-1): allPage.append(pageList) del pageList pageList = [] index = 0 maxPage = len(allPage) txtPage = str(page) + "/" + str(maxPage) navigation = [_("Back"), _("Next"), _("Quit"), "Programming:", "Kevin \"Ilphrin\" Pellet", "Graphics:", "Yunero Kisapsodos", txtPage] navigationPos = [(80,550), (650,550), (660,40), (630, 100), (640, 130), (630, 200), (640, 230), (350,550)] self.menu = [] for i in range(len(navigation)): if 2 < i < 7: size = 12 font = "rimouski sb.ttf" else: font = self.FONT size = 30 self.menu.append(Text(navigation[i], font, white, size)) self.menu[i].rect.topleft = navigationPos[i] cardPos = [(50,50), (50,200), (50, 350)] self.screen.blit(self.bkgrnd, self.bkgrndRect) for element in self.menu: self.screen.blit(element.surface,element.rect) for elem in range(len(allPage[page-1])): card = allPage[page-1][elem] card.rect.topleft = cardPos[elem] card.About.rect.topleft = card.rect.topright for elem in allPage[page-1]: self.screen.blit(elem.image, elem.rect) self.screen.blit(elem.About.surface, elem.About.rect) while 1: self.clock.tick(self.fps) pygame.display.flip() event = pygame.event.wait() if event.type == MOUSEBUTTONUP: coords = pygame.mouse.get_pos() for button in self.menu: if button.rect.collidepoint(coords): if button.text == _("Back"): if page > 1: page -= 1 self.sound.putcard.play() if button.text == _("Next"): if page < maxPage: page += 1 self.sound.putcard.play() if button.text == _("Quit"): self.oldMenu() return txtPage = str(page) + "/" + str(maxPage) self.menu[7] = Text(txtPage, self.FONT, white, 30) self.menu[7].rect.topleft = navigationPos[7] self.screen.blit(self.bkgrnd, self.bkgrndRect) for element in self.menu: self.screen.blit(element.surface,element.rect) for elem in range(len(allPage[page-1])): card = allPage[page-1][elem] card.rect.topleft = cardPos[elem] card.About.rect.topleft = card.rect.topright for elem in allPage[page-1]: self.screen.blit(elem.image, elem.rect) self.screen.blit(elem.About.surface, elem.About.rect) if event.type == QUIT: self.quitGame() def rules(self): tutorialButton = Button(_(u"Tutorial"), self.FONT, white) howtoButton = Button(_(u"How To"), self.FONT, white) backButton = Button(_(u"Back"), self.FONT, white) tutorialButton.rect.topleft = (250, 100) howtoButton.rect.topleft = (250, 200) backButton.rect.topleft = (550, 500) self.menu = [] self.menu.append(tutorialButton) self.menu.append(howtoButton) self.menu.append(backButton) self.updateMenu() while (1): self.clock.tick(self.fps) pygame.display.flip() event = pygame.event.wait() if event.type == MOUSEBUTTONUP: coords = pygame.mouse.get_pos() for i in range(len(self.menu)): if self.menu[i].rect.collidepoint(coords): self.oldMenu() if self.menu[i].text == _(u"Tutorial"): self.main() elif self.menu[i].text == _(u"How To"): self.HowTo() return elif self.menu[i].text == _(u"Back"): self.main() elif event.type == QUIT: self.quitGame() def HowTo(self): backButton = Button(_("Back"), self.FONT, white) prevButton = Button(_("Prev"), self.FONT, white) nextButton = Button(_("Next"), self.FONT, white) page = 1 maxPage = 2 pageList = [] for i in range(maxPage): pageList.append(pygame.image.load(getHowTo(i))) pageRect = pageList[i - 1].get_rect() pageRect.topleft = (-20, 0) backButton.rect.topleft = (600, 40) prevButton.rect.topleft = (80, 550) nextButton.rect.topleft = (660, 550) self.menu = [] self.menu.append(backButton) self.menu.append(prevButton) self.menu.append(nextButton) self.updateMenu() self.screen.blit(pageList[page - 1], pageRect) while (1): self.clock.tick(self.fps) pygame.display.flip() event = pygame.event.wait() if event.type == MOUSEBUTTONUP: coords = pygame.mouse.get_pos() if backButton.rect.collidepoint(coords): self.oldMenu() return elif prevButton.rect.collidepoint(coords) and page > 1: page -= 1 elif nextButton.rect.collidepoint(coords) and page < maxPage: page += 1 self.updateMenu() self.screen.blit(pageList[page - 1], pageRect) elif event.type == QUIT: self.quitGame() def _load_translation(self): base_path = os.getcwd() directory = os.path.join(base_path, 'translations') print "Loading translations at: ", directory params = { 'domain': 'tuxle-triad', 'fallback': True } if os.path.isdir(directory): params.update({'localedir': directory}) translation = gettext.translation(**params) translation.install("ngettext") def solo(self): """1vsIA mode""" print "Solo!" def adventure(self): """Adventure mode against IA""" print "Adventure!" def hotSeat(self): """1vs1 mode""" if self.app != None: del self.app Application(800, 600, self.screen, self.sound, self).main() else: Application(800, 600, self.screen, self.sound, self).main() Menu(800, 600)
mit
1,228,710,710,715,892,200
36.714953
78
0.477016
false
mattilyra/gensim
docs/src/conf.py
1
7457
# -*- coding: utf-8 -*- # # gensim documentation build configuration file, created by # sphinx-quickstart on Wed Mar 17 13:42:21 2010. # # This file is execfile()d with the current directory set to its containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import os import sys # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. sys.path.append(os.path.abspath('.')) # -- General configuration ----------------------------------------------------- html_theme = 'gensim_theme' # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = ['sphinx.ext.autodoc', 'sphinxcontrib.napoleon', 'sphinx.ext.imgmath', 'sphinxcontrib.programoutput'] autoclass_content = "both" napoleon_google_docstring = False # Disable support for google-style docstring # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. # source_encoding = 'utf-8' # The master toctree document. master_doc = 'indextoc' # Additional templates that should be rendered to pages, maps page names to # template names. html_additional_pages = {'index': './_templates/indexcontent.html'} # General information about the project. project = u'gensim' copyright = u'2009-now, Radim Řehůřek <me(at)radimrehurek.com>' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = '3.4' # The full version, including alpha/beta/rc tags. release = '3.4.0' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: # today = '' # Else, today_fmt is used as the format for a strftime call. # today_fmt = '%B %d, %Y' # List of documents that shouldn't be included in the build. # unused_docs = [] # List of directories, relative to source directory, that shouldn't be searched # for source files. exclude_trees = ['_build'] # The reST default role (used for this markup: `text`) to use for all documents. # default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. # add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). # add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. # show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. # modindex_common_prefix = [] # -- Options for HTML output --------------------------------------------------- # The theme to use for HTML and HTML Help pages. Major themes that come with # Sphinx are currently 'default' and 'sphinxdoc'. # html_theme = 'default' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # main_colour = "#ffbbbb" html_theme_options = { # "rightsidebar": "false", # "stickysidebar": "true", # "bodyfont": "'Lucida Grande', 'Lucida Sans Unicode', 'Geneva', 'Verdana', 'sans-serif'", # "headfont": "'Lucida Grande', 'Lucida Sans Unicode', 'Geneva', 'Verdana', 'sans-serif'", # "sidebarbgcolor": "fuckyou", # "footerbgcolor": "#771111", # "relbarbgcolor": "#993333", # "sidebartextcolor": "#000000", # "sidebarlinkcolor": "#330000", # "codebgcolor": "#fffff0", # "headtextcolor": "#000080", # "headbgcolor": "#f0f0ff", # "bgcolor": "#ffffff", } # Add any paths that contain custom themes here, relative to this directory. html_theme_path = ['.'] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". html_title = "gensim" # A shorter title for the navigation bar. Default is the same as html_title. # html_short_title = '' # The name of an image file (relative to this directory) to place at the top # of the sidebar. # html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. html_favicon = '_static/favicon.ico' # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. # html_use_smartypants = True # Custom sidebar templates, maps document names to template names. html_sidebars = {} # {'index': ['download.html', 'globaltoc.html', 'searchbox.html', 'indexsidebar.html']} # html_sidebars = {'index': ['globaltoc.html', 'searchbox.html']} # If false, no module index is generated. # html_use_modindex = True # If false, no index is generated. # html_use_index = True # If true, the index is split into individual pages for each letter. html_split_index = False # If true, links to the reST sources are added to the pages. html_show_sourcelink = False html_domain_indices = False # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. # html_use_opensearch = '' # If nonempty, this is the file name suffix for HTML files (e.g. ".xhtml"). # html_file_suffix = '' # Output file base name for HTML help builder. htmlhelp_basename = 'gensimdoc' html_show_sphinx = False # -- Options for LaTeX output -------------------------------------------------- # The paper size ('letter' or 'a4'). # latex_paper_size = 'letter' # The font size ('10pt', '11pt' or '12pt'). # latex_font_size = '10pt' # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass [howto/manual]). latex_documents = [('index', 'gensim.tex', u'gensim Documentation', u'Radim Řehůřek', 'manual')] # The name of an image file (relative to this directory) to place at the top of # the title page. # latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. latex_use_parts = False # Additional stuff for the LaTeX preamble. # latex_preamble = '' # Documents to append as an appendix to all manuals. # latex_appendices = [] # If false, no module index is generated. # latex_use_modindex = True suppress_warnings = ['image.nonlocal_uri', 'ref.citation', 'ref.footnote']
lgpl-2.1
-371,278,304,731,654,850
32.868182
114
0.707153
false
matham/cutils
cutils/knspace.py
1
15278
'''Provides namespace functionality for Kivy objects. It allows kivy objects to be named and then accessed using the namespace. :class:`KNSpace` instances are the namespaces that store the named objects. Classes need to inherit from :class:`KNSpaceBehavior` so that the class, when named, will be stored in the namespace. :attr:`knspace` is the default namespace where objects are stored, unless the object is associated with a different namespace. Simple Example ----------------- Here, because no namespace is specified, the default :attr:`knspace` is used so we can access its widgets directly, as in `knspace.keyboard`, to get the keyboard widget:: #:import knspace cutils.knspace.knspace #:import Factory kivy.lang.Factory <NamedTextInput@KNSpaceBehavior+TextInput> <Keyboard@Popup>: BoxLayout: GridLayout: cols: 1 NamedTextInput: name: 'keyboard' hint_text: 'Type something' Label: text: 'My Keyboard' Button: text: 'Close Keyboard' on_press: root.dismiss() <RootWidget@BoxLayout>: Button: on_parent: self.popup = Factory.Keyboard() on_release: self.popup.open() text: 'Open keyboard' Label: text: 'Keyboard output:\\n' + knspace.keyboard.text if knspace.keyboard else '' To test, run a app with `RootWidget`. Multiple Namespaces ------------------- In the previous example, only the default namespace was used. However, sometimes we need to split namespaces so we can reuse the name across multiple widgets using the same name. When a :class:`KNSpaceBehavior` derived widget is given a name, first we find the associated namespace using the :attr:`KNSpaceBehavior.knspace` property. Then, we create a :class:`~kivy.properties.ObjectProperty` in that namespace, whose name is that name and assign the named widget as its value. See :attr:`KNSpaceBehavior.knspace` for details on how that namespace is found. In short, we check if the widget was assigned one, if not, we find the namespace by walking up its parent tree using :attr:`KNSpaceBehavior.knspace_key` and finding the first one with a namespace. Finally, if not found, we use :attr:`knspace`. Therefore, above, the default namespace was used since none was specified. :: #:import Factory kivy.lang.Factory <NamedTextInput@KNSpaceBehavior+TextInput> <Keyboard@KNSpaceBehavior+Popup>: knspace_key: 'knspace_parent' knspace_parent: None BoxLayout: GridLayout: cols: 1 NamedTextInput: name: 'keyboard' hint_text: 'Type something' Label: text: 'My Keyboard' Button: text: 'Close Keyboard' on_press: root.dismiss() <Typist@KNSpaceBehavior+BoxLayout>: knspace: getattr(self, 'knspace').clone() # So we don't create a rule binding Button: on_parent: self.popup = Factory.Keyboard() self.popup.knspace_parent = root on_release: self.popup.open() text: 'Open keyboard' Label: text: 'Keyboard output:\\n' + root.knspace.keyboard.text if root.knspace.keyboard else '' <RootWidget@BoxLayout>: Typist Typist In this example, we wanted two typists, rather than a single keyboard. But within a typist we wanted to be able to use names, even though typist share identical names. To do this, we have `knspace: getattr(self, 'knspace').clone()`. This forks the current namespace (which happens to be the default, :attr:`knspace`) and create a namespace shared by widgets that are offspring of that `Typist`. Now, each `Typist` gets its own namespace, while still sharing the default namespaces from which it was cloned for widgets not in its namespace. `knspace_key: 'knspace_parent'` is required, since a `Popup` is not a child the `Typist`, but they do have to share the namspace, so instead of using `parent` to find the next namespace up the tree, we use the specified `knspace_parent` attribute which points to the Typist and hence its namespace. Traditional namespace --------------------- In the above example, we accessed the namespace using e.g. `root.knspace.keyboard`. We can also access it without having access to e.g. `root` like in a traditional namespace access. We can change the above `RootWidget` into:: <RootWidget@KNSpaceBehavior+BoxLayout>: name: 'root' Typist Typist Now, we can do:: knspace.root.children[0].knspace.keyboard.hint_text = 'Type something else' And the second Typist's keyboard will have a different hint text. Of course we could also have done `root.children[0].knspace.keyboard.hint_text = 'Type something else'` if had access to the root widget. ''' __all__ = ('KNSpace', 'KNSpaceBehavior', 'knspace') from kivy.event import EventDispatcher from kivy.properties import StringProperty, ObjectProperty, AliasProperty from kivy.lang import Factory knspace = None '''The default :class:`KNSpace` namespace. If a :class:`KNSpace` namespace has not been assigned to a :class:`KNSpaceBehavior` instance, then this :class:`KNSpace` namespace serves as the default namespace. See the examples and :class:`KNSpaceBehavior` for more details. ''' class KNSpace(EventDispatcher): '''Each :class:`KNSpace` instance is a namespace that stores the named Kivy objects when they are associated with this namespace. Each named object is stored as the value of a Kivy :class:`~kivy.properties.ObjectProperty` of this instance whose property name is the object's given name. Both `rebind` and `allownone` are set to `True` for the property. See :attr:`KNSpaceBehavior` for details on how a namespace is associated with a named object. When storing an object in the namespace, the object's `proxy_ref` is stored if the object has such an attribute. :Parameters: `parent`: (internal) A :class:`KNSpace` instance or None. If specified, it's a parent namespace, in which case, the current namespace will have in its namespace all its named objects as well as the named objects of its parent and parent's parent etc. See :meth:`clone` for more details. ''' parent = None '''(internal) The parent namespace instance, :class:`KNSpace`, or None. See :meth:`clone`. ''' __has_applied = None def __init__(self, parent=None, **kwargs): super(KNSpace, self).__init__(**kwargs) self.parent = parent self.__has_applied = set(self.properties().keys()) def __setattr__(self, name, value): prop = super(KNSpace, self).property(name, quiet=True) has_applied = self.__has_applied if prop is None: if hasattr(self, name): super(KNSpace, self).__setattr__(name, value) else: value = getattr(value, 'proxy_ref', value) self.apply_property( **{name: ObjectProperty(value, rebind=True, allownone=True)} ) has_applied.add(name) elif name not in has_applied: self.apply_property(**{name: prop}) has_applied.add(name) value = getattr(value, 'proxy_ref', value) super(KNSpace, self).__setattr__(name, value) else: value = getattr(value, 'proxy_ref', value) super(KNSpace, self).__setattr__(name, value) def __getattr__(self, name): parent = self.parent if parent is None: raise AttributeError(name) return getattr(parent, name) def property(self, name, quiet=False): # needs to overwrite EventDispatcher.property so kv lang will work prop = super(KNSpace, self).property(name, quiet=quiet) if prop is not None: return prop prop = ObjectProperty(None, rebind=True, allownone=True) self.apply_property(**{name: prop}) self.__has_applied.add(name) return prop def clone(self): '''Creates a new :class:`KNSpace` instance which will have access to all the named objects in the current namespace but will also have a namespace of its own that is unique to it. Any new names added to a :class:`KNSpaceBehavior` associated with this instance will be accesible only through this instance and not its parent(s). However, when looking for a named object using this namespace, if the object is not found in this namespace we search it's parent namespace and so on until we (don't) find it. ''' return KNSpace(parent=self) class KNSpaceBehavior(object): '''Inheriting from this class allows naming of the inherited object, which is then added to the associated namespace :attr:`knspace` and accessible through it. ''' _knspace = ObjectProperty(None, allownone=True) _name = StringProperty('') __last_knspace = None __callbacks = None def __init__(self, knspace=None, **kwargs): self.knspace = knspace super(KNSpaceBehavior, self).__init__(**kwargs) def __knspace_clear_callbacks(self, *largs): for obj, name, uid in self.__callbacks: obj.unbind_uid(name, uid) last = self.__last_knspace self.__last_knspace = self.__callbacks = None assert self._knspace is None assert last new = self.__set_parent_knspace() if new is last: return self.property('_knspace').dispatch(self) name = self.name if not name: return if getattr(last, name) == self: setattr(last, name, None) if new: setattr(new, name, self) else: raise ValueError('Object has name "{}", but no namespace'. format(name)) def __set_parent_knspace(self): callbacks = self.__callbacks = [] fbind = self.fbind append = callbacks.append parent_key = self.knspace_key clear = self.__knspace_clear_callbacks append((self, 'knspace_key', fbind('knspace_key', clear))) if not parent_key: self.__last_knspace = knspace return knspace append((self, parent_key, fbind(parent_key, clear))) parent = getattr(self, parent_key, None) while parent is not None: fbind = parent.fbind parent_knspace = getattr(parent, 'knspace', 0) if parent_knspace is not 0: append((parent, 'knspace', fbind('knspace', clear))) self.__last_knspace = parent_knspace return parent_knspace append((parent, parent_key, fbind(parent_key, clear))) new_parent = getattr(parent, parent_key, None) if new_parent is parent: break parent = new_parent self.__last_knspace = knspace return knspace def _get_knspace(self): _knspace = self._knspace if _knspace is not None: return _knspace if self.__callbacks is not None: return self.__last_knspace # we only get here if we never accessed our knspace return self.__set_parent_knspace() def _set_knspace(self, value): if value is self._knspace: return knspace = self._knspace or self.__last_knspace name = self.name if name and knspace: setattr(knspace, name, None) # reset old namespace if value == 'clone': if not knspace: knspace = self.knspace # get parents in case we haven't before if knspace: value = knspace.clone() else: raise ValueError('Cannot clone with no namesapce') for obj, prop_name, uid in self.__callbacks or []: obj.unbind_uid(prop_name, uid) self.__last_knspace = self.__callbacks = None if name: if value is None: # if None, first update the recursive knspace knspace = self.__set_parent_knspace() if knspace: setattr(knspace, name, self) self._knspace = None # cause a kv trigger else: setattr(value, name, self) knspace = self._knspace = value if not knspace: raise ValueError('Object has name "{}", but no namespace'. format(name)) else: if value is None: self.__set_parent_knspace() # update before trigger below self._knspace = value knspace = AliasProperty( _get_knspace, _set_knspace, bind=('_knspace', ), cache=False, rebind=True, allownone=True) '''The namespace instance, :class:`KNSpace`, associated with this widget. When this widget is named with :attr:`name` the name is added to the :attr:`knspace` namespace pointing to this widget. If the namespace has been set with a :class:`KNSpace` instance, e.g. with `self.knspace = ...`, then that instance is used. Otherwise, we look at the property named :attr:`knspace_key` of this obj. If that object has a knspace property we use that namespace. Otherwise, we look at its :attr:`knspace_key` object and walk up the parent tree until we find a parent who has a namespace instance. Finally, if there's no parent with a namespace, the default :attr:`~cutils.knspace.knspace` namespace is used. Both `rebind` and `allownone` are `True`. ''' knspace_key = StringProperty('parent', allownone=True) '''The name of the property of this instance, to use to find the namespace associated with this instance. Defaults to `'parent'` so that we'll look up the parent tree to find the namespace. See :attr:`knspace`. When `None`, we won't search the parent tree for the namespace. `allownone` is `True`. ''' def _get_name(self): return self._name def _set_name(self, value): old_name = self._name knspace = self.knspace if old_name and knspace: setattr(knspace, old_name, None) self._name = value if value: if knspace: setattr(knspace, value, self) else: raise ValueError('Object has name "{}", but no namespace'. format(value)) name = AliasProperty(_get_name, _set_name, bind=('_name', ), cache=False) '''The name given to this object. If named, the name will be added to the associated :attr:`knspace` and will point to the `proxy_ref` of this object. When named, one can access this object by e.g. knspace.name, where `name` is the given name of this instance. See :attr:`knspace` and the module description for more details. ''' knspace = KNSpace() Factory.register('KNSpaceBehavior', cls=KNSpaceBehavior)
mit
1,435,365,778,809,909,800
35.63789
101
0.623969
false
iNecas/katello
cli/test/katello/tests/core/product/product_promote_test.py
1
3293
import unittest from mock import Mock import os from katello.tests.core.action_test_utils import CLIOptionTestCase, CLIActionTestCase from katello.tests.core.organization import organization_data from katello.tests.core.product import product_data from katello.tests.core.provider import provider_data from katello.tests.core.repo import repo_data import katello.client.core.product from katello.client.core.product import Promote from katello.client.api.utils import ApiDataError class RequiredCLIOptionsTests(CLIOptionTestCase): action = Promote() disallowed_options = [ ('--org=ACME', '--name=product_1'), ] allowed_options = [ ('--org=ACME', '--name=product_1', '--environment=env_1') ] class ProductPromoteTest(CLIActionTestCase): ORG = organization_data.ORGS[0] ENV = organization_data.ENVS[0] PROV = provider_data.PROVIDERS[2] PROD = product_data.PRODUCTS[0] CSET = product_data.EMPTY_CHANGESET TMP_CHANGESET_NAME = 'tmp_changeset_name' TYPE = 'PROMOTION' OPTIONS = { 'org': ORG['name'], 'name': PROD['name'], 'environment': ENV['name'] } def setUp(self): self.set_action(Promote()) self.set_module(katello.client.core.product) self.mock_printer() self.mock_options(self.OPTIONS) self.mock(self.action.csapi, 'create', self.CSET) self.mock(self.action.csapi, 'add_content') self.mock(self.action.csapi, 'apply', repo_data.SYNC_RESULT_WITHOUT_ERROR) self.mock(self.action.csapi, 'delete') self.mock(self.action, 'create_cs_name', self.TMP_CHANGESET_NAME) self.mock(self.module, 'get_environment', self.ENV) self.mock(self.module, 'get_product', self.PROD) self.mock(self.module, 'run_spinner_in_bg', repo_data.SYNC_RESULT_WITHOUT_ERROR) def tearDown(self): self.restore_mocks() def test_it_finds_the_environment(self): self.run_action() self.module.get_environment.assert_called_once_with(self.ORG['name'], self.ENV['name']) def test_it_returns_with_error_when_no_environment_found(self): self.mock(self.module, 'get_environment').side_effect = ApiDataError() self.run_action(os.EX_DATAERR) def test_it_finds_the_product(self): self.run_action() self.module.get_product.assert_called_once_with(self.ORG['name'], self.PROD['name']) def test_it_returns_with_error_when_no_product_found(self): self.mock(self.module, 'get_product').side_effect = ApiDataError() self.run_action(os.EX_DATAERR) def test_it_creates_new_changeset(self): self.run_action() self.action.csapi.create.assert_called_once_with(self.ORG['name'], self.ENV['id'], self.TMP_CHANGESET_NAME, self.TYPE) def test_it_updates_the_changeset(self): self.run_action() self.action.csapi.add_content.assert_called_once_with(self.CSET['id'], 'products', {'product_id': self.PROD['id']}) def test_it_promotes_the_changeset(self): self.run_action() self.action.csapi.apply.assert_called_once_with(self.CSET['id']) def test_waits_for_promotion(self): self.run_action() self.module.run_spinner_in_bg.assert_called_once()
gpl-2.0
-6,475,309,587,878,731,000
32.262626
126
0.668084
false
takashi-suehiro/rtmtools
rtc_handle_example/rtc_handle/rtc_handle_1.0.py
1
16845
#/usr/bin/env python # -*- coding: utf-8 -*- # -*- Python -*- # import sys from omniORB import CORBA, URI # from omniORB import any from omniORB import any, cdrMarshal, cdrUnmarshal import OpenRTM_aist import RTC from CorbaNaming import * import SDOPackage # from EmbryonicRtc import * # class RtmEnv : # rtm environment manager # orb, naming service, rtc proxy list # class RtmEnv : def __init__(self, orb_args, nserver_names=["localhost"], orb=None, naming=None): if not orb : orb = CORBA.ORB_init(orb_args) self.orb = orb self.name_space = {} if naming : # naming can specify only one naming service self.name_space['default']=NameSpace(orb, naming=naming) else : for ns in nserver_names : self.name_space[ns]=NameSpace(orb, server_name=ns) def __del__(self): self.orb.shutdown(wait_for_completion=CORBA.FALSE) self.orb.destroy() # # class NameSpace : # rtc_handles and object list in naming service # class NameSpace : def __init__(self, orb, server_name=None, naming=None): self.orb = orb self.name = server_name if naming : self.naming = naming else : self.naming = CorbaNaming(self.orb, server_name) self.b_len = 10 # iteration cut off no. self.rtc_handles = {} self.obj_list = {} def get_object_by_name(self, name, cl=RTC.RTObject): ref = self.naming.resolveStr(name) if ref is None: return None # return CORBA.nil ? if cl : return ref._narrow(cl) else : return ref def list_obj(self) : self.rtc_handes = {} self.obj_list = {} return self.list_obj1(self.naming._rootContext, "") def list_obj1(self, name_context, parent) : if not name_context : name_context = self.naming._rootContext rslt = [] b_list = name_context.list(self.b_len) for bd in b_list[0] : rslt = rslt + self.proc_bd(bd, name_context, parent) if b_list[1] : # iterator : there exists remaining. t_list = b_list[1].next_n(self.b_len) while t_list[0] : for bd in t_list[1] : rslt = rslt + self.proc_bd(bd, name_context, parent) t_list = b_list[1].next_n(self.b_len) return rslt def proc_bd(self, bd, name_context, parent) : # print '-------------------------------------------------------------------' # print 'bd= ', bd # print 'name_context= ', name_context # print 'parent= ', parent rslt = [] pre = "" if parent : pre = parent + "/" nam = pre + URI.nameToString(bd.binding_name) if bd.binding_type == CosNaming.nobject : tmp = name_context.resolve(bd.binding_name) self.obj_list[nam]=tmp print 'objcet '+nam+' was listed.' try : tmp = tmp._narrow(RTC.RTObject) except : print nam+' is not RTC.' tmp = None try : if tmp : rslt = [[nam, tmp]] self.rtc_handles[nam]=RtcHandle(nam,self,tmp) print 'handle for '+nam+' was created.' else : pass except : print nam+' is not alive.' pass else : tmp = name_context.resolve(bd.binding_name) tmp = tmp._narrow(CosNaming.NamingContext) rslt = self.list_obj1(tmp, nam) return rslt # # data conversion # def nvlist2dict(nvlist) : rslt = {} for tmp in nvlist : rslt[tmp.name]=tmp.value.value() # nv.value and any.value() return rslt def dict2nvlist(dict) : rslt = [] for tmp in dict.keys() : rslt.append(SDOPackage.NameValue(tmp, any.to_any(dict[tmp]))) return rslt # # connector, port, inport, outport, service # class Connector : def __init__(self, plist, name = None, id="", prop_dict={}) : self.connectp=False self.plist = plist self.port_reflist = [tmp.port_profile.port_ref for tmp in plist] if name : self.name = name else : self.name = string.join([tmp.name for tmp in plist],'_') self.prop_dict_req = prop_dict self.prop_nvlist_req = dict2nvlist(self.prop_dict_req) self.profile_req = RTC.ConnectorProfile(self.name, id, self.port_reflist, self.prop_nvlist_req) self.nego_prop() def nego_prop(self) : self.possible = True for kk in self.def_prop : if kk in self.prop_dict_req : if not self.prop_dict_req[kk] : self.prop_dict_req[kk]=self.def_prop[kk] else : self.prop_dict_req[kk]=self.def_prop[kk] for pp in self.plist : if not ((self.prop_dict_req[kk] in pp.prop[kk]) or ('Any' in pp.prop[kk])) : print kk, self.prop_dict_req[kk] self.prop_dict_req[kk] = "" self.possible = False self.prop_nvlist_req = dict2nvlist(self.prop_dict_req) self.profile_req.properties = self.prop_nvlist_req return self.possible def connect(self) : # # out and inout parameters are retuned as a tuple # if self.connectp == False : ret, self.profile = self.port_reflist[0].connect(self.profile_req) self.prop_nvlist = self.profile.properties self.prop_dict = nvlist2dict(self.prop_nvlist) if ret == RTC.RTC_OK : self.connectp=True else : ret = "?" return ret def disconnect(self) : if self.connectp == True : ret = self.port_reflist[0].disconnect(self.profile.connector_id) else : ret = "?" self.connectp = False return ret class IOConnector(Connector) : def __init__(self, plist, name = None, id="", prop_dict={}) : # self.def_prop = {'dataport.dataflow_type':'Push' , # 'dataport.interface_type':'CORBA_Any' , # 'dataport.subscription_type':'Flush'} self.def_prop = {'dataport.dataflow_type':'push', 'dataport.interface_type':'corba_cdr' , 'dataport.subscription_type':'flush'} Connector.__init__(self, plist, name, id, prop_dict) class ServiceConnector(Connector) : def __init__(self, plist, name = None, id="", prop_dict={}) : self.def_prop = {'port.port_type':'CorbaPort' } Connector.__init__(self, plist, name, id, prop_dict) class Port : def __init__(self, profile,nv_dict=None,handle=None) : self.handle=handle self.name=profile.name self.port_profile = profile if not nv_dict : nv_dict = nvlist2dict(profile.properties) self.prop = nv_dict self.con = None # this must be set in each subclasses def get_info(self) : self.con.connect() tmp1 = self.get_connections() tmp2 = [pp.connector_id for pp in tmp1] if self.con.profile.connector_id in tmp2 : print "connecting" self.con.disconnect() def get_connections(self) : return self.port_profile.port_ref.get_connector_profiles() class CorbaServer : def __init__(self, profile, port) : self.profile = profile self.port = port self.name = profile.instance_name self.type = profile.type_name self.ref = None ref_key = 'port.' + self.type + '.' + self.name self.ref=self.port.con.prop_dict[ref_key] if isinstance(self.ref,str) : self.ref=port.handle.env.orb.string_to_object(self.ref) # # if we import stubs before we create instances, # we rarely need to narrow the object references. # we need to specify global symbol table to evaluate class symbols. # def narrow_ref(self, gls) : if self.type.find('::') == -1 : self.narrow_sym = eval('_GlobalIDL.' + self.type, gls) else : self.narrow_sym = eval(self.type.replace('::','.'), gls) self.ref = self.ref._narrow(self.narrow_sym) class CorbaClient : def __init__(self, profile) : self.profile = profile self.name = profile.instance_name self.type = profile.type_name # # to connect to an outside corba client, # we need an implementation of the corresponding corba server. # but .... # class RtcService(Port) : def __init__(self, profile,nv_dict=None, handle=None) : Port.__init__(self, profile, nv_dict, handle) self.con = ServiceConnector([self]) self.get_info() self.provided={} self.required={} tmp = self.port_profile.interfaces for itf in tmp : if itf.polarity == RTC.PROVIDED : self.provided[itf.instance_name] = CorbaServer(itf,self) elif itf.polarity == RTC.REQUIRED : self.required[itf.instance_name] = CorbaClient(itf) # def open(self) : # self.con.connect() # self.provided={} # self.required={} # tmp = self.port_profile.interfaces # for itf in tmp : # if itf.polarity == RTC.PROVIDED : # self.provided[itf.instance_name] = CorbaServer(itf,self) # elif itf.polarity == RTC.REQUIRED : # self.required[itf.instance_name] = CorbaClient(itf) # def close(self) : # return self.con.disconnect() class RtcInport(Port) : def __init__(self, profile, nv_dict=None, handle=None) : Port.__init__(self, profile, nv_dict, handle) self.con = IOConnector([self], prop_dict={'dataport.dataflow_type':'push'}) self.get_info() # self.ref = self.con.prop_dict['dataport.corba_any.inport_ref'] self.ref = self.con.prop_dict['dataport.corba_cdr.inport_ref'] self.data_class = eval('RTC.' + self.prop['dataport.data_type']) self.data_tc = eval('RTC._tc_' + self.prop['dataport.data_type']) def write(self,data) : # self.ref.put(CORBA.Any(self.data_tc, # self.data_class(RTC.Time(0,0),data))) self.ref.put(cdrMarshal(self.data_tc, self.data_class(RTC.Time(0,0),data), 1)) def open(self) : self.con.connect() self.ref = self.con.prop_dict['dataport.corba_cdr.inport_ref'] def close(self) : return self.con.disconnect() class RtcOutport(Port) : def __init__(self, profile,nv_dict=None, handle=None) : Port.__init__(self, profile, nv_dict, handle) con_prop_dict={'dataport.dataflow_type':'pull', 'dataport.buffer.type':'ringbuffer', 'dataport.buffer.read.empty_policy':'last', 'dataport.buffer.length':'1'} self.con = IOConnector([self], prop_dict=con_prop_dict) self.get_info() # if 'dataport.corba_any.outport_ref' in self.con.prop_dict : # self.ref = self.con.prop_dict['dataport.corba_any.outport_ref'] if 'dataport.corba_cdr.outport_ref' in self.con.prop_dict : self.ref = self.con.prop_dict['dataport.corba_cdr.outport_ref'] else : self.ref=None self.data_class = eval('RTC.' + self.prop['dataport.data_type']) self.data_tc = eval('RTC._tc_' + self.prop['dataport.data_type']) def read(self) : if self.ref : try : tmp1=self.ref.get() tmp2= cdrUnmarshal(self.data_tc,tmp1[1], 1) # return tmp2.data return tmp2 except : return None else : print "not supported" return None def open(self) : self.con.connect() if 'dataport.corba_cdr.outport_ref' in self.con.prop_dict : self.ref = self.con.prop_dict['dataport.corba_cdr.outport_ref'] def close(self) : return self.con.disconnect() # # RtcHandle # class RtcHandle : def __init__(self, name, env, ref=None) : self.name = name self.env = env if ref : self.rtc_ref = ref else : self.rtc_ref = env.naming.resolve(name)._narrow(RTC.RTObject) self.conf_ref = None self.retrieve_info() def retrieve_info(self) : self.conf_set={} self.conf_set_data={} self.port_refs = [] self.execution_contexts =[] if self.rtc_ref : self.conf_ref = self.rtc_ref.get_configuration() conf_set = self.conf_ref.get_configuration_sets() for cc in conf_set : self.conf_set[cc.id]=cc self.conf_set_data[cc.id]=nvlist2dict(cc.configuration_data) self.profile = self.rtc_ref.get_component_profile() self.prop = nvlist2dict(self.profile.properties) #self.execution_contexts = self.rtc_ref.get_contexts() self.execution_contexts = self.rtc_ref.get_owned_contexts() self.port_refs = self.rtc_ref.get_ports() # this includes inports, outports and service ports self.ports = {} self.services = {} self.inports = {} self.outports = {} for pp in self.port_refs : tmp = pp.get_port_profile() tmp_prop = nvlist2dict(tmp.properties) tmp_name = tmp.name.lstrip(self.name.split('.')[0]).lstrip('.') print 'port_name:', tmp_name # self.ports[tmp.name]=Port(tmp, tmp_prop) if tmp_prop['port.port_type']=='DataInPort' : self.inports[tmp_name]=RtcInport(tmp,tmp_prop, self) # self.inports[tmp.name]=Port(tmp, tmp_prop) elif tmp_prop['port.port_type']=='DataOutPort' : self.outports[tmp_name]=RtcOutport(tmp, tmp_prop, self) # self.outports[tmp.name]=Port(tmp, tmp_prop) elif tmp_prop['port.port_type']=='CorbaPort' : self.services[tmp_name]=RtcService(tmp, tmp_prop, self) # self.services[tmp.name]=Port(tmp, tmp_prop) def set_conf(self,conf_set_name,param_name,value) : conf_set=self.conf_set[conf_set_name] conf_set_data=self.conf_set_data[conf_set_name] conf_set_data[param_name]=value conf_set.configuration_data=dict2nvlist(conf_set_data) # self.conf_ref.set_configuration_set_values(conf_set_name,conf_set) self.conf_ref.set_configuration_set_values(conf_set) def set_conf_activate(self,conf_set_name,param_name,value) : self.set_conf(conf_set_name,param_name,value) self.conf_ref.activate_configuration_set(conf_set_name) def activate(self): return self.execution_contexts[0].activate_component(self.rtc_ref) def deactivate(self): return self.execution_contexts[0].deactivate_component(self.rtc_ref) def reset(self): return self.execution_contexts[0].reset_component(self.rtc_ref) def get_state(self): return self.execution_contexts[0].get_component_state(self.rtc_ref) # # pipe # a pipe is an port (interface & implementation) # for a port(an RtcInport or RtcOutport object) of an outside rtc. # you need an empty rtc (comp) to create pipes. # you can subscribe and communicate to the outside port with the pipe. # # class InPipe() : def __init__(self,comp, port) : self.comp=comp self.port=port self.pname=port.name.replace('.','_') self.pipe=comp.makeOutPort(self.pname,port.data_class(RTC.Time(0,0),[]),OpenRTM_aist.RingBuffer(1)) self.buf=getattr(comp,'_d_'+self.pname) tmp = self.pipe.getPortProfile() self.pipe_port = RtcOutport(tmp, nvlist2dict(tmp.properties)) self.con = IOConnector([self.pipe_port,self.port]) def connect(self): return self.con.connect() def disconnect(self): return self.con.disconnect() def write(self, data) : self.buf.data=data self.pipe.write() class OutPipe() : def __init__(self,comp, port) : self.comp=comp self.port=port self.pname=port.name.replace('.','_') self.pipe=comp.makeInPort(self.pname,port.data_class(RTC.Time(0,0),[]),OpenRTM_aist.RingBuffer(1)) self.buf=getattr(comp,'_d_'+self.pname) tmp = self.pipe.getPortProfile() self.pipe_port = RtcInport(tmp, nvlist2dict(tmp.properties)) self.con = IOConnector([self.pipe_port,self.port]) def connect(self): return self.con.connect() def disconnect(self): return self.con.disconnect() def read(self) : return self.pipe.read().data # # # def make_pipe(comp, handle) : handle.in_pipe={} for i_port in handle.inports : handle.in_pipe[i_port]=InPipe(comp, handle.inports[i_port]) handle.out_pipe={} for o_port in handle.outports : handle.out_pipe[o_port]=OutPipe(comp, handle.outports[o_port])
mit
-8,554,086,833,814,778,000
34.840426
103
0.581656
false
nikdoof/django-eveigb
test_project/settings.py
1
5384
# Django settings for test_project project. DEBUG = True TEMPLATE_DEBUG = DEBUG ADMINS = ( # ('Your Name', '[email protected]'), ) MANAGERS = ADMINS DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', # Add 'postgresql_psycopg2', 'mysql', 'sqlite3' or 'oracle'. 'NAME': 'test.db3', # Or path to database file if using sqlite3. # The following settings are not used with sqlite3: 'USER': '', 'PASSWORD': '', 'HOST': '', # Empty for localhost through domain sockets or '127.0.0.1' for localhost through TCP. 'PORT': '', # Set to empty string for default. } } # Hosts/domain names that are valid for this site; required if DEBUG is False # See https://docs.djangoproject.com/en/1.5/ref/settings/#allowed-hosts ALLOWED_HOSTS = [] # Local time zone for this installation. Choices can be found here: # http://en.wikipedia.org/wiki/List_of_tz_zones_by_name # although not all choices may be available on all operating systems. # In a Windows environment this must be set to your system time zone. TIME_ZONE = 'America/Chicago' # Language code for this installation. All choices can be found here: # http://www.i18nguy.com/unicode/language-identifiers.html LANGUAGE_CODE = 'en-us' SITE_ID = 1 # If you set this to False, Django will make some optimizations so as not # to load the internationalization machinery. USE_I18N = True # If you set this to False, Django will not format dates, numbers and # calendars according to the current locale. USE_L10N = True # If you set this to False, Django will not use timezone-aware datetimes. USE_TZ = True # Absolute filesystem path to the directory that will hold user-uploaded files. # Example: "/var/www/example.com/media/" MEDIA_ROOT = '' # URL that handles the media served from MEDIA_ROOT. Make sure to use a # trailing slash. # Examples: "http://example.com/media/", "http://media.example.com/" MEDIA_URL = '' # Absolute path to the directory static files should be collected to. # Don't put anything in this directory yourself; store your static files # in apps' "static/" subdirectories and in STATICFILES_DIRS. # Example: "/var/www/example.com/static/" STATIC_ROOT = '' # URL prefix for static files. # Example: "http://example.com/static/", "http://static.example.com/" STATIC_URL = '/static/' # Additional locations of static files STATICFILES_DIRS = ( # Put strings here, like "/home/html/static" or "C:/www/django/static". # Always use forward slashes, even on Windows. # Don't forget to use absolute paths, not relative paths. ) # List of finder classes that know how to find static files in # various locations. STATICFILES_FINDERS = ( 'django.contrib.staticfiles.finders.FileSystemFinder', 'django.contrib.staticfiles.finders.AppDirectoriesFinder', # 'django.contrib.staticfiles.finders.DefaultStorageFinder', ) # Make this unique, and don't share it with anybody. SECRET_KEY = '29)2ec_!4fy$mb0c+u7sz5-q84@tjp(b!atfh-3v@0^c9c=do*' # List of callables that know how to import templates from various sources. TEMPLATE_LOADERS = ( 'django.template.loaders.filesystem.Loader', 'django.template.loaders.app_directories.Loader', # 'django.template.loaders.eggs.Loader', ) MIDDLEWARE_CLASSES = ( 'django.middleware.common.CommonMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', # Uncomment the next line for simple clickjacking protection: # 'django.middleware.clickjacking.XFrameOptionsMiddleware', ) ROOT_URLCONF = 'urls' # Python dotted path to the WSGI application used by Django's runserver. WSGI_APPLICATION = 'test_project.wsgi.application' TEMPLATE_DIRS = ( # Put strings here, like "/home/html/django_templates" or "C:/www/django/templates". # Always use forward slashes, even on Windows. # Don't forget to use absolute paths, not relative paths. ) INSTALLED_APPS = ( 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.sites', 'django.contrib.messages', 'django.contrib.staticfiles', # Uncomment the next line to enable the admin: # 'django.contrib.admin', # Uncomment the next line to enable admin documentation: # 'django.contrib.admindocs', 'eveigb', ) # A sample logging configuration. The only tangible logging # performed by this configuration is to send an email to # the site admins on every HTTP 500 error when DEBUG=False. # See http://docs.djangoproject.com/en/dev/topics/logging for # more details on how to customize your logging configuration. LOGGING = { 'version': 1, 'disable_existing_loggers': False, 'filters': { 'require_debug_false': { '()': 'django.utils.log.RequireDebugFalse' } }, 'handlers': { 'mail_admins': { 'level': 'ERROR', 'filters': ['require_debug_false'], 'class': 'django.utils.log.AdminEmailHandler' } }, 'loggers': { 'django.request': { 'handlers': ['mail_admins'], 'level': 'ERROR', 'propagate': True, }, } }
bsd-3-clause
2,804,299,625,662,578,700
33.292994
127
0.685921
false
eayunstack/oslo.messaging
tests/utils.py
1
2075
# Copyright 2010-2011 OpenStack Foundation # Copyright 2010 United States Government as represented by the # Administrator of the National Aeronautics and Space Administration. # Copyright 2013 Hewlett-Packard Development Company, L.P. # All Rights Reserved. # Copyright 2013 Red Hat, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Common utilities used in testing""" import six from oslo.config import cfg from oslotest import base from oslotest import moxstubout TRUE_VALUES = ('true', '1', 'yes') class BaseTestCase(base.BaseTestCase): def setUp(self, conf=cfg.CONF): super(BaseTestCase, self).setUp() from oslo.messaging import conffixture self.messaging_conf = self.useFixture(conffixture.ConfFixture(conf)) self.messaging_conf.transport_driver = 'fake' self.conf = self.messaging_conf.conf moxfixture = self.useFixture(moxstubout.MoxStubout()) self.mox = moxfixture.mox self.stubs = moxfixture.stubs def config(self, **kw): """Override some configuration values. The keyword arguments are the names of configuration options to override and their values. If a group argument is supplied, the overrides are applied to the specified configuration option group. All overrides are automatically cleared at the end of the current test by the tearDown() method. """ group = kw.pop('group', None) for k, v in six.iteritems(kw): self.conf.set_override(k, v, group)
apache-2.0
8,998,579,657,641,622,000
33.583333
78
0.701687
false
NinjaMSP/crossbar
crossbar/router/test/test_testament.py
2
8815
##################################################################################### # # Copyright (c) Crossbar.io Technologies GmbH # # Unless a separate license agreement exists between you and Crossbar.io GmbH (e.g. # you have purchased a commercial license), the license terms below apply. # # Should you enter into a separate license agreement after having received a copy of # this software, then the terms of such license agreement replace the terms below at # the time at which such license agreement becomes effective. # # In case a separate license agreement ends, and such agreement ends without being # replaced by another separate license agreement, the license terms below apply # from the time at which said agreement ends. # # LICENSE TERMS # # This program is free software: you can redistribute it and/or modify it under the # terms of the GNU Affero General Public License, version 3, as published by the # Free Software Foundation. This program is distributed in the hope that it will be # useful, but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # # See the GNU Affero General Public License Version 3 for more details. # # You should have received a copy of the GNU Affero General Public license along # with this program. If not, see <http://www.gnu.org/licenses/agpl-3.0.en.html>. # ##################################################################################### from __future__ import absolute_import import six from twisted.trial import unittest from twisted.internet.defer import inlineCallbacks from autobahn.twisted.wamp import ApplicationSession from .helpers import make_router_and_realm, connect_application_session from crossbar._logging import LogCapturer class TestamentTests(unittest.TestCase): def setUp(self): self.logs = LogCapturer() self.logs.__enter__() self.addCleanup(lambda: self.logs.__exit__(None, None, None)) def test_destroy_testament_sent_on_destroy(self): """ If one session calls wamp.session.add_testament and then the session is destroyed, the message it filed as a testament will be sent to subscribers of the chosen topic. """ router, server_factory, router_factory = make_router_and_realm() class ObservingSession(ApplicationSession): @inlineCallbacks def onJoin(self, details): self.events = [] self.s = yield self.subscribe( lambda *a, **kw: self.events.append({'args': a, 'kwargs': kw}), u'com.test.destroyed') session, pump = connect_application_session(server_factory, ApplicationSession) ob_session, ob_pump = connect_application_session(server_factory, ObservingSession) d = session.call(u"wamp.session.add_testament", u"com.test.destroyed", [u'hello'], {}) pump.flush() # Make sure it returns a publication ID self.assertIsInstance(self.successResultOf(d), six.integer_types) # No testament sent yet pump.flush() ob_pump.flush() self.assertEqual(ob_session.events, []) # Then leave... session.leave() pump.flush() ob_pump.flush() # Testament is sent self.assertEqual(ob_session.events, [{'args': (u"hello",), 'kwargs': {}}]) def test_destroy_testament_not_sent_when_cleared(self): """ If one session calls wamp.session.add_testament, then the same session calls wamp.session.flush_testaments, and then the session is destroyed, the message it filed as a testament will not be sent, as it was deleted. """ router, server_factory, router_factory = make_router_and_realm() class ObservingSession(ApplicationSession): @inlineCallbacks def onJoin(self, details): self.events = [] self.s = yield self.subscribe( lambda *a, **kw: self.events.append({'args': a, 'kwargs': kw}), u'com.test.destroyed') session, pump = connect_application_session(server_factory, ApplicationSession) ob_session, ob_pump = connect_application_session(server_factory, ObservingSession) d = session.call(u"wamp.session.add_testament", u"com.test.destroyed", [u'hello'], {}) pump.flush() # Make sure it returns an integer (the testament event publication ID) self.assertIsInstance(self.successResultOf(d), six.integer_types) # No testament sent yet pump.flush() ob_pump.flush() self.assertEqual(ob_session.events, []) # Flush the testament d = session.call(u"wamp.session.flush_testaments") pump.flush() # Make sure it returns flushed count 1 self.assertEqual(self.successResultOf(d), 1) # Then leave... session.leave() pump.flush() ob_pump.flush() # No testaments were sent self.assertEqual(ob_session.events, []) def test_add_testament_needs_valid_scope(self): """ Only 'detatched' and 'destroyed' are valid scopes for add_testament. """ router, server_factory, router_factory = make_router_and_realm() session, pump = connect_application_session(server_factory, ApplicationSession) d = session.call(u"wamp.session.add_testament", u"com.test.destroyed", [u'hello'], {}, scope=u"bar") pump.flush() # Make sure it returns a failure failure = self.failureResultOf(d) self.assertEqual(failure.value.args, (u"scope must be destroyed or detatched",)) def test_flush_testament_needs_valid_scope(self): """ Only 'detatched' and 'destroyed' are valid scopes for flush_testament. """ router, server_factory, router_factory = make_router_and_realm() session, pump = connect_application_session(server_factory, ApplicationSession) d = session.call(u"wamp.session.flush_testaments", scope=u"bar") pump.flush() # Make sure it returns a failure failure = self.failureResultOf(d) self.assertEqual(failure.value.args, (u"scope must be destroyed or detatched",)) def test_one_scope_does_not_affect_other(self): """ Adding a testament to one scope and flushing the other maintains the added testament. """ router, server_factory, router_factory = make_router_and_realm() class ObservingSession(ApplicationSession): @inlineCallbacks def onJoin(self, details): self.events = [] self.s = yield self.subscribe( lambda *a, **kw: self.events.append({'args': a, 'kwargs': kw}), u'com.test.dc') session, pump = connect_application_session(server_factory, ApplicationSession) ob_session, ob_pump = connect_application_session(server_factory, ObservingSession) # Add a destroyed testament d = session.call(u"wamp.session.add_testament", u"com.test.dc", [u'destroyed'], {}, scope=u"destroyed") pump.flush() self.assertIsInstance(self.successResultOf(d), six.integer_types) # Add a detatched testament d = session.call(u"wamp.session.add_testament", u"com.test.dc", [u'detatched'], {}, scope=u"detatched") pump.flush() self.assertIsInstance(self.successResultOf(d), six.integer_types) # No testament sent yet pump.flush() ob_pump.flush() self.assertEqual(ob_session.events, []) # Flush the destroyed testament d = session.call(u"wamp.session.flush_testaments", scope=u"destroyed") pump.flush() # Make sure it returns number of flushed testaments self.assertEqual(self.successResultOf(d), 1) # Then leave... session.leave() pump.flush() ob_pump.flush() # Just the detatched testament is sent self.assertEqual(ob_session.events, [{"args": (u'detatched',), "kwargs": {}}])
agpl-3.0
2,491,934,011,154,283,500
36.67094
86
0.586954
false
prashrock/Python
leetCode/largest_number/create_largest_number_from_array.py
1
1340
# Use a custom sort comparator to sort the integers # Converted the sorted integer array into a string def cmp_to_key(mycmp): 'Convert a cmp= function into a key= function' class K: def __init__(self, obj, *args): self.obj = obj def __lt__(self, other): return mycmp(self.obj, other.obj) < 0 def __gt__(self, other): return mycmp(self.obj, other.obj) > 0 def __eq__(self, other): return mycmp(self.obj, other.obj) == 0 def __le__(self, other): return mycmp(self.obj, other.obj) <= 0 def __ge__(self, other): return mycmp(self.obj, other.obj) >= 0 def __ne__(self, other): return mycmp(self.obj, other.obj) != 0 return K # @param x, first integer # @param y, second integer # @return (xy - yx) def cmp_aggregate(x, y): str_xy = ''.join((str(x), str(y))) str_yx = ''.join((str(y), str(x))) return int(str_xy) - int(str_yx) #Sort with a custom comparator and get descending order def largestNumber(num): sorted_num = sorted(num, key=cmp_to_key(cmp_aggregate), reverse=True) print sorted_num sorted_str = ''.join(map(str, sorted_num)) if(int(sorted_str) == 0): return '0' else: return sorted_str num = [3, 30, 34, 5, 9] print num print largestNumber(num)
gpl-2.0
4,418,024,888,891,023,400
31.682927
73
0.581343
false
emulbreh/lymph
lymph/core/events.py
1
3099
import re import logging from lymph.core.interfaces import Component from lymph.core import trace logger = logging.getLogger(__name__) class Event(object): def __init__(self, evt_type, body, source=None, headers=None, event_id=None): self.event_id = event_id self.evt_type = evt_type self.body = body self.source = source self.headers = headers or {} def __getitem__(self, key): return self.body[key] def __iter__(self): return iter(self.body) def __repr__(self): return '<Event type=%r body=%r>' % (self.evt_type, self.body) def __str__(self): return '{type=%s id=%s}' % (self.evt_type, self.event_id) @classmethod def deserialize(cls, data): return cls(data.get('type'), data.get('body', {}), source=data.get('source'), headers=data.get('headers')) def serialize(self): return { 'type': self.evt_type, 'headers': self.headers, 'body': self.body, 'source': self.source, } class EventHandler(Component): def __init__(self, interface, func, event_types, sequential=False, queue_name=None, active=True): self.func = func self.event_types = event_types self.sequential = sequential self.active = active self.interface = interface self._queue_name = queue_name or func.__name__ @property def queue_name(self): return '%s-%s' % (self.interface.name, self._queue_name) @queue_name.setter def queue_name(self, value): self._queue_name = value def on_start(self): self.interface.container.subscribe(self, consume=self.active) def __call__(self, event, *args, **kwargs): trace.set_id(event.headers.get('trace_id')) logger.debug('<E %s', event) return self.func(self.interface, event, *args, **kwargs) class EventDispatcher(object): wildcards = { '#': r'[\w.]*(?=\.|$)', '*': r'\w+', } def __init__(self, patterns=()): self.patterns = [] self.update(patterns) def compile(self, key): words = (self.wildcards.get(word, re.escape(word)) for word in key.split('.')) return re.compile('^%s$' % r'\.'.join(words)) def register(self, pattern, handler): self.patterns.append(( self.compile(pattern), pattern, handler, )) def __iter__(self): for regex, pattern, handler in self.patterns: yield pattern, handler def update(self, other): for pattern, handler in other: self.register(pattern, handler) def dispatch(self, evt_type): for regex, pattern, handler in self.patterns: if regex.match(evt_type): yield pattern, handler def __call__(self, event): handlers = set() for pattern, handler in self.dispatch(event.evt_type): if handler not in handlers: handlers.add(handler) handler(event) return bool(handlers)
apache-2.0
1,420,763,787,660,582,100
26.918919
114
0.571475
false
mesocentrefc/Janua-SMS
janua/actions/sms_usage.py
1
2426
# -*- Mode: Python; coding: utf-8; indent-tabs-mode: nil; tab-width: 4 -*- # # Copyright (c) 2016 Cédric Clerget - HPC Center of Franche-Comté University # # This file is part of Janua-SMS # # http://github.com/mesocentrefc/Janua-SMS # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation v2. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # from janua import jdb from janua.actions.action import Action from janua.utils.utilities import get_role from janua.ws.services import urlconfig, jsonify class SmsUsage(Action): """ Get SMS usage based on administrator quota * Sample request with administrator level: .. code-block:: javascript GET /sms-usage HTTP/1.1 Host: janua.mydomain.com Content-Type: application/json JanuaAuthToken: abcdef123456789 Sample response: .. code-block:: javascript HTTP/1.1 200 { "smsusage": { "global": 18, "quota": "100 M", "sent": 18 } } * Sample request with supervisor level: .. code-block:: javascript GET /sms-usage HTTP/1.1 Host: janua.mydomain.com Content-Type: application/json Sample response: .. code-block:: javascript HTTP/1.1 200 { "smsusage": { "quota": "200 D", "sent": 4 } } """ category = '__INTERNAL__' @urlconfig('/sms-usage') def web(self): admin = jdb.admin.get_by_phone(self.phone_number) data = { 'success': True, 'params': [], 'num_params': 0 } reached, numsms = jdb.sms.is_admin_quota_reached(admin) quota = admin.sms_quota data = {'sent': int(numsms), 'quota': quota} if get_role(admin) == 'admin': data.update({'global': int(jdb.sms.month_usage())}) return jsonify(smsusage=data)
gpl-2.0
3,349,284,974,751,728,000
25.347826
76
0.60066
false
Dziolas/invenio-oaiserver
tests/test_invenio_oaiserver.py
1
1878
# -*- coding: utf-8 -*- # # This file is part of Invenio. # Copyright (C) 2015 CERN. # # Invenio is free software; you can redistribute it # and/or modify it under the terms of the GNU General Public License as # published by the Free Software Foundation; either version 2 of the # License, or (at your option) any later version. # # Invenio is distributed in the hope that it will be # useful, but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Invenio; if not, write to the # Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, # MA 02111-1307, USA. # # In applying this license, CERN does not # waive the privileges and immunities granted to it by virtue of its status # as an Intergovernmental Organization or submit itself to any jurisdiction. """Module tests.""" from __future__ import absolute_import, print_function from flask import Flask from flask_babelex import Babel from invenio_oaiserver import InvenioOAIServer def test_version(): """Test version import.""" from invenio_oaiserver import __version__ assert __version__ def test_init(): """Test extension initialization.""" app = Flask('testapp') ext = InvenioOAIServer(app) assert 'invenio-oaiserver' in app.extensions app = Flask('testapp') ext = InvenioOAIServer() assert 'invenio-oaiserver' not in app.extensions ext.init_app(app) assert 'invenio-oaiserver' in app.extensions def test_view(app): """Test view.""" Babel(app) InvenioOAIServer(app) with app.test_client() as client: res = client.get("/") assert res.status_code == 200 assert 'Welcome to Invenio-OAIServer' in str(res.data)
gpl-2.0
-5,224,454,211,882,588,000
29.290323
76
0.714058
false
nathanbjenx/cairis
cairis/controllers/TemplateGoalController.py
1
3319
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import sys if (sys.version_info > (3,)): import http.client from http.client import BAD_REQUEST, CONFLICT, NOT_FOUND, OK else: import httplib from httplib import BAD_REQUEST, CONFLICT, NOT_FOUND, OK from flask import session, request, make_response from flask_restful import Resource from cairis.data.TemplateGoalDAO import TemplateGoalDAO from cairis.tools.JsonConverter import json_serialize from cairis.tools.MessageDefinitions import TemplateGoalMessage from cairis.tools.ModelDefinitions import TemplateGoalModel from cairis.tools.SessionValidator import get_session_id __author__ = 'Shamal Faily' class TemplateGoalsAPI(Resource): def get(self): session_id = get_session_id(session, request) constraint_id = request.args.get('constraint_id', -1) dao = TemplateGoalDAO(session_id) tgs = dao.get_template_goals(constraint_id=constraint_id) dao.close() resp = make_response(json_serialize(tgs, session_id=session_id)) resp.headers['Content-Type'] = "application/json" return resp def post(self): session_id = get_session_id(session, request) dao = TemplateGoalDAO(session_id) new_tg = dao.from_json(request) dao.add_template_goal(new_tg) dao.close() resp_dict = {'message': 'Template Goal successfully added'} resp = make_response(json_serialize(resp_dict, session_id=session_id), OK) resp.contenttype = 'application/json' return resp class TemplateGoalByNameAPI(Resource): def get(self, name): session_id = get_session_id(session, request) dao = TemplateGoalDAO(session_id) found_tg = dao.get_template_goal(name) dao.close() resp = make_response(json_serialize(found_tg, session_id=session_id)) resp.headers['Content-Type'] = "application/json" return resp def put(self, name): session_id = get_session_id(session, request) dao = TemplateGoalDAO(session_id) upd_tg = dao.from_json(request) dao.update_template_goal(upd_tg, name) dao.close() resp_dict = {'message': 'Template Goal successfully updated'} resp = make_response(json_serialize(resp_dict), OK) resp.contenttype = 'application/json' return resp def delete(self, name): session_id = get_session_id(session, request) dao = TemplateGoalDAO(session_id) dao.delete_template_goal(name) dao.close() resp_dict = {'message': 'Template Goal successfully deleted'} resp = make_response(json_serialize(resp_dict), OK) resp.contenttype = 'application/json' return resp
apache-2.0
2,627,098,913,465,853,000
32.525253
78
0.726424
false
andyr0id/PyGFNN
examples/gfnn/example1F.py
1
1657
#!/usr/bin/env python __author__ = 'Andrew J. Lambert, [email protected]' """ example1P A one layer network with fixed internal connections """ from pygfnn.tools.plotting.gfnn import * import pygfnn.tools.shortcuts as gfnn import numpy as np import timeit import matplotlib.pyplot as plt import scipy.io as sio if __name__ == '__main__': # Network parameters oscParams = { 'a': 1, 'b1': -1, 'b2': -1000, 'd1': 0, 'd2': 0, 'e': 1 } # Limit cycle learnParams = gfnn.NOLEARN_ALLFREQ freqDist = { 'fspac': 'log', 'min': 0.5, 'max': 8 } # Make network n = gfnn.buildGFNN(196, oscParams = oscParams, freqDist = freqDist, learnParams = learnParams) n.recurrentConns[0].c0[:] = gfnn.getInitC(n, n, [(1,1), (1,2), (1,3), (1,4), (1,6), (1,8), (2,3), (3,4), (3,8)], thresh=0.01) n.reset() # First plots, showing initial connection state ampFig1, phaseFig1 = plotConns(n.recurrentConns[0].c, freqDist['min'], freqDist['max']) # Stimulus - 50 seconds of 1Hz sin t = np.arange(0, 50, n['h'].dt) x = np.sin(2 * np.pi * 1 * t) * 0.1 # Run the network timer = timeit.default_timer start = timer() for i in range(len(t)): out = n.activate(x[i]) end = timer() print('Elapsed time is %f seconds' % (end - start)) if learnParams is not None: # Second plots, showing final connection state ampFig2, phaseFig2 = plotConns(n.recurrentConns[0].c, freqDist['min'], freqDist['max']) Z = n['h'].outputbuffer[:n.offset] fig1 = ampx(Z, n.dt, freqDist['min'], freqDist['max']) fig2 = phasex(Z, n.dt, freqDist['min'], freqDist['max']) plt.show()
gpl-2.0
3,656,434,342,488,919,600
29.685185
129
0.608328
false
liberiun/cynin-intranet
src/ubify.viewlets/ubify/viewlets/browser/typetitle.py
1
3657
############################################################################### #cyn.in is an open source Collaborative Knowledge Management Appliance that #enables teams to seamlessly work together on files, documents and content in #a secure central environment. # #cyn.in v2 an open source appliance is distributed under the GPL v3 license #along with commercial support options. # #cyn.in is a Cynapse Invention. # #Copyright (C) 2008 Cynapse India Pvt. Ltd. # #This program is free software: you can redistribute it and/or modify it under #the terms of the GNU General Public License as published by the Free Software #Foundation, either version 3 of the License, or any later version and observe #the Additional Terms applicable to this program and must display appropriate #legal notices. In accordance with Section 7(b) of the GNU General Public #License version 3, these Appropriate Legal Notices must retain the display of #the "Powered by cyn.in" AND "A Cynapse Invention" logos. You should have #received a copy of the detailed Additional Terms License with this program. # #This program is distributed in the hope that it will be useful, #but WITHOUT ANY WARRANTY; without even the implied warranty of #MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General #Public License for more details. # #You should have received a copy of the GNU General Public License along with #this program. If not, see <http://www.gnu.org/licenses/>. # #You can contact Cynapse at [email protected] with any problems with cyn.in. #For any queries regarding the licensing, please send your mails to # [email protected] # #You can also contact Cynapse at: #802, Building No. 1, #Dheeraj Sagar, Malad(W) #Mumbai-400064, India ############################################################################### from Products.Five.browser.pagetemplatefile import ViewPageTemplateFile from plone.app.layout.viewlets.common import ViewletBase from zope.component import getMultiAdapter from Products.CMFCore.utils import getToolByName from ubify.viewlets.config import plone_site_type_title from ubify.policy import CyninMessageFactory as _ class TypetitleViewlet(ViewletBase): render = ViewPageTemplateFile('typetitle.pt') def update(self): portal_state = getMultiAdapter((self.context, self.request),name=u'plone_portal_state') context_state = getMultiAdapter((self.context, self.request),name=u'plone_context_state') tools = getMultiAdapter((self.context, self.request), name=u'plone_tools') typetool= getToolByName(self.context, 'portal_types') portal_title = portal_state.portal_title() object_title = context_state.object_title() self.object_icon = self.context.icon object_typename = self.context.portal_type object_typeobj = typetool[object_typename] self.typeiconname = object_typeobj.icon_expr if object_typeobj.title == '' and self.context.portal_type.lower() == 'plone site': self.typetitle = plone_site_type_title else: self.typetitle = _(object_typeobj.title,object_typeobj.title) self.app_name = object_title if self.context.portal_type.lower() == 'plone site': self.tdescription = 'cyn.in site|A cyn.in site allows instant collaboration among peers and provides a central social computer and network.' else: self.tdescription = self.typetitle + '|' + object_typeobj.description self.isaddscreen = False if hasattr(context_state.parent(),'portal_type') and context_state.parent().portal_type == 'TempFolder': self.isaddscreen = True
gpl-3.0
1,373,551,312,006,338,000
50.507042
152
0.710965
false
code-for-india/sahana_shelter_worldbank
controllers/vol.py
1
40041
# -*- coding: utf-8 -*- """ Volunteer Management """ module = request.controller resourcename = request.function if not settings.has_module(module): raise HTTP(404, body="Module disabled: %s" % module) s3db.hrm_vars() # ============================================================================= def index(): """ Dashboard """ mode = session.s3.hrm.mode if mode is not None: # Go to Personal Profile redirect(URL(f="person")) else: # Bypass home page & go direct to Volunteers Summary redirect(URL(f="volunteer", args=["summary"])) # ============================================================================= # People # ============================================================================= def human_resource(): """ HR Controller - combined Used for Summary view, Imports, S3AddPersonWidget2 and the service record """ # Custom method for Service Record s3db.set_method("hrm", "human_resource", method = "form", action = s3db.vol_service_record) return s3db.hrm_human_resource_controller() # ----------------------------------------------------------------------------- def volunteer(): """ Volunteers Controller """ # Volunteers only s3.filter = s3base.S3FieldSelector("type") == 2 vol_experience = settings.get_hrm_vol_experience() def prep(r): resource = r.resource get_config = resource.get_config # CRUD String s3.crud_strings[resource.tablename] = s3.crud_strings["hrm_volunteer"] # Default to volunteers table = r.table table.type.default = 2 # Volunteers use home address location_id = table.location_id location_id.label = T("Home Address") # Configure list_fields if r.representation == "xls": # Split person_id into first/middle/last to # make it match Import sheets list_fields = ["person_id$first_name", "person_id$middle_name", "person_id$last_name", ] else: list_fields = ["person_id", ] list_fields.extend(("job_title_id", "organisation_id", (settings.get_ui_label_mobile_phone(), "phone.value"), (T("Email"), "email.value"), "location_id", )) if settings.get_hrm_use_trainings(): list_fields.append("person_id$training.course_id") if settings.get_hrm_use_certificates(): list_fields.append("person_id$certification.certificate_id") # Volunteer Programme and Active-status report_options = get_config("report_options") if vol_experience in ("programme", "both"): # Don't use status field table.status.readable = table.status.writable = False # Use active field? vol_active = settings.get_hrm_vol_active() if vol_active: list_fields.insert(3, (T("Active?"), "details.active")) # Add Programme to List Fields list_fields.insert(6, "person_id$hours.programme_id") # Add active and programme to Report Options report_fields = report_options.rows report_fields.append("person_id$hours.programme_id") if vol_active: report_fields.append((T("Active?"), "details.active")) report_options.rows = report_fields report_options.cols = report_fields report_options.fact = report_fields else: # Use status field list_fields.append("status") # Update filter widgets filter_widgets = s3db.hrm_human_resource_filters( resource_type="volunteer", hrm_type_opts=s3db.hrm_type_opts) # Reconfigure resource.configure(list_fields = list_fields, filter_widgets = filter_widgets, report_options = report_options, ) if r.interactive: if r.id: if r.method not in ("profile", "delete"): # Redirect to person controller vars = { "human_resource.id": r.id, "group": "volunteer" } redirect(URL(f="person", vars=vars)) else: if r.method == "import": # Redirect to person controller redirect(URL(f="person", args="import", vars={"group": "volunteer"})) elif not r.component and r.method != "delete": # Configure AddPersonWidget table.person_id.widget = S3AddPersonWidget2(controller="vol") # Show location ID location_id.writable = location_id.readable = True # Hide unwanted fields for fn in ("site_id", "code", "department_id", "essential", "site_contact", "status", ): table[fn].writable = table[fn].readable = False # Organisation Dependent Fields set_org_dependent_field = settings.set_org_dependent_field set_org_dependent_field("pr_person_details", "father_name") set_org_dependent_field("pr_person_details", "mother_name") set_org_dependent_field("pr_person_details", "affiliations") set_org_dependent_field("pr_person_details", "company") set_org_dependent_field("vol_details", "availability") set_org_dependent_field("vol_volunteer_cluster", "vol_cluster_type_id") set_org_dependent_field("vol_volunteer_cluster", "vol_cluster_id") set_org_dependent_field("vol_volunteer_cluster", "vol_cluster_position_id") # Label for "occupation" s3db.pr_person_details.occupation.label = T("Normal Job") # Assume volunteers only between 12-81 s3db.pr_person.date_of_birth.widget = S3DateWidget(past=972, future=-144) return True s3.prep = prep def postp(r, output): if r.interactive and not r.component: # Set the minimum end_date to the same as the start_date s3.jquery_ready.append( '''S3.start_end_date('hrm_human_resource_start_date','hrm_human_resource_end_date')''') # Configure action buttons s3_action_buttons(r, deletable=settings.get_hrm_deletable()) if "msg" in settings.modules: # @ToDo: Remove this now that we have it in Events? s3.actions.append({ "url": URL(f="compose", vars = {"human_resource.id": "[id]"}), "_class": "action-btn send", "label": str(T("Send Message")) }) # Insert field to set the Programme if vol_experience in ("programme", "both") and \ r.method not in ("search", "report", "import") and \ "form" in output: # @ToDo: Re-implement using # http://eden.sahanafoundation.org/wiki/S3SQLForm # NB This means adjusting IFRC/config.py too sep = ": " table = s3db.hrm_programme_hours field = table.programme_id default = field.default widget = field.widget or SQLFORM.widgets.options.widget(field, default) field_id = "%s_%s" % (table._tablename, field.name) label = field.label row_id = field_id + SQLFORM.ID_ROW_SUFFIX if s3_formstyle == "bootstrap": label = LABEL(label, label and sep, _class="control-label", _for=field_id) _controls = DIV(widget, _class="controls") row = DIV(label, _controls, _class="control-group", _id=row_id, ) output["form"][0].insert(4, row) elif callable(s3_formstyle): label = LABEL(label, label and sep, _for=field_id, _id=field_id + SQLFORM.ID_LABEL_SUFFIX) programme = s3_formstyle(row_id, label, widget, field.comment) if isinstance(programme, DIV) and \ "form-row" in programme["_class"]: # Foundation formstyle output["form"][0].insert(4, programme) else: try: output["form"][0].insert(4, programme[1]) except: # A non-standard formstyle with just a single row pass try: output["form"][0].insert(4, programme[0]) except: pass else: # Unsupported raise elif r.representation == "plain": # Map Popups output = s3db.hrm_map_popup(r) return output s3.postp = postp return s3_rest_controller("hrm", "human_resource") # ----------------------------------------------------------------------------- def person(): """ Person Controller - used to see PR component tabs, for Personal Profile & Imports - includes components relevant to HRM """ configure = s3db.configure set_method = s3db.set_method # Custom Method for Contacts set_method("pr", resourcename, method = "contacts", action = s3db.pr_contacts) # Custom Method for CV set_method("pr", resourcename, method = "cv", action = s3db.hrm_cv) # Custom Method for HR Record set_method("pr", resourcename, method = "record", action = s3db.hrm_record) # Plug-in role matrix for Admins/OrgAdmins realms = auth.user is not None and auth.user.realms or [] if ADMIN in realms or ORG_ADMIN in realms: set_method("pr", resourcename, method = "roles", action = s3base.S3PersonRoleManager()) if settings.has_module("asset"): # Assets as component of people s3db.add_components("pr_person", asset_asset="assigned_to_id") # Edits should always happen via the Asset Log # @ToDo: Allow this method too, if we can do so safely configure("asset_asset", insertable = False, editable = False, deletable = False) get_vars = request.get_vars group = get_vars.get("group", "volunteer") hr_id = get_vars.get("human_resource.id", None) if not str(hr_id).isdigit(): hr_id = None # Configure human resource table table = s3db.hrm_human_resource table.type.default = 2 get_vars["xsltmode"] = "volunteer" if hr_id: hr = db(table.id == hr_id).select(table.type, limitby=(0, 1)).first() if hr: group = hr.type == 2 and "volunteer" or "staff" # Also inform the back-end of this finding get_vars["group"] = group # Configure person table tablename = "pr_person" table = s3db[tablename] configure(tablename, deletable = False) mode = session.s3.hrm.mode if mode is not None: # Configure for personal mode s3db.hrm_human_resource.organisation_id.readable = True s3.crud_strings[tablename].update( title_display = T("Personal Profile"), title_update = T("Personal Profile")) # People can view their own HR data, but not edit it configure("hrm_human_resource", insertable = False, editable = False, deletable = False) configure("hrm_certification", insertable = True, editable = True, deletable = True) configure("hrm_credential", insertable = False, editable = False, deletable = False) configure("hrm_competency", insertable = True, # Can add unconfirmed editable = False, deletable = False) configure("hrm_training", # Can add but not provide grade insertable = True, editable = False, deletable = False) configure("hrm_experience", insertable = False, editable = False, deletable = False) configure("pr_group_membership", insertable = False, editable = False, deletable = False) else: # Configure for HR manager mode s3.crud_strings[tablename].update( title_display = T("Volunteer Details"), title_update = T("Volunteer Details"), title_upload = T("Import Volunteers"), ) # Upload for configuration (add replace option) s3.importerPrep = lambda: dict(ReplaceOption=T("Remove existing data before import")) # Import pre-process def import_prep(data, group=group): """ Deletes all HR records (of the given group) of the organisation before processing a new data import, used for the import_prep hook in response.s3 """ resource, tree = data xml = current.xml tag = xml.TAG att = xml.ATTRIBUTE if s3.import_replace: if tree is not None: if group == "staff": group = 1 elif group == "volunteer": group = 2 else: return # don't delete if no group specified root = tree.getroot() expr = "/%s/%s[@%s='org_organisation']/%s[@%s='name']" % \ (tag.root, tag.resource, att.name, tag.data, att.field) orgs = root.xpath(expr) for org in orgs: org_name = org.get("value", None) or org.text if org_name: try: org_name = json.loads(xml.xml_decode(org_name)) except: pass if org_name: htable = s3db.hrm_human_resource otable = s3db.org_organisation query = (otable.name == org_name) & \ (htable.organisation_id == otable.id) & \ (htable.type == group) resource = s3db.resource("hrm_human_resource", filter=query) resource.delete(format="xml", cascade=True) s3.import_prep = import_prep # CRUD pre-process def prep(r): if r.representation == "s3json": current.xml.show_ids = True elif r.interactive and r.method != "import": if not r.component: table = r.table # Assume volunteers only between 12-81 table.date_of_birth.widget = S3DateWidget(past=972, future=-144) table.pe_label.readable = table.pe_label.writable = False table.missing.readable = table.missing.writable = False table.age_group.readable = table.age_group.writable = False s3db.pr_person_details.occupation.label = T("Normal Job") # Organisation Dependent Fields set_org_dependent_field = settings.set_org_dependent_field set_org_dependent_field("pr_person", "middle_name") set_org_dependent_field("pr_person_details", "father_name") set_org_dependent_field("pr_person_details", "mother_name") set_org_dependent_field("pr_person_details", "affiliations") set_org_dependent_field("pr_person_details", "company") else: if r.component_name == "hours": # Exclude records which are just to link to Programme component_table = r.component.table filter = (r.component.table.hours != None) r.resource.add_component_filter("hours", filter) component_table.training.readable = False component_table.training_id.readable = False elif r.component_name == "physical_description": # Hide all but those details that we want # Lock all the fields table = r.component.table for field in table.fields: table[field].writable = table[field].readable = False # Now enable those that we want table.ethnicity.writable = table.ethnicity.readable = True table.blood_type.writable = table.blood_type.readable = True table.medical_conditions.writable = table.medical_conditions.readable = True table.other_details.writable = table.other_details.readable = True elif r.component_name == "asset": # Edits should always happen via the Asset Log # @ToDo: Allow this method too, if we can do so safely configure("asset_asset", insertable = False, editable = False, deletable = False) elif r.component_name == "group_membership": s3db.hrm_configure_pr_group_membership() if r.method == "record" or r.component_name == "human_resource": table = s3db.hrm_human_resource table.code.writable = table.code.readable = False table.department_id.writable = table.department_id.readable = False table.essential.writable = table.essential.readable = False #table.location_id.readable = table.location_id.writable = True table.person_id.writable = table.person_id.readable = False table.site_id.writable = table.site_id.readable = False table.site_contact.writable = table.site_contact.readable = False org = session.s3.hrm.org field = table.organisation_id if org is None: field.widget = None else: field.default = org field.readable = field.writable = False # Organisation Dependent Fields set_org_dependent_field = settings.set_org_dependent_field set_org_dependent_field("vol_details", "availability") set_org_dependent_field("vol_volunteer_cluster", "vol_cluster_type_id") set_org_dependent_field("vol_volunteer_cluster", "vol_cluster_id") set_org_dependent_field("vol_volunteer_cluster", "vol_cluster_position_id") resource = r.resource if mode is not None: r.resource.build_query(id=s3_logged_in_person()) elif r.method not in ("deduplicate", "search_ac"): if not r.id and not hr_id: # pre-action redirect => must retain prior errors if response.error: session.error = response.error redirect(URL(r=r, f="volunteer")) if resource.count() == 1: resource.load() r.record = resource.records().first() if r.record: r.id = r.record.id if not r.record: session.error = T("Record not found") redirect(URL(f="volunteer", args=["search"])) if hr_id and r.component_name == "human_resource": r.component_id = hr_id configure("hrm_human_resource", insertable = False) elif r.component_name == "group_membership" and r.representation == "aadata": s3db.hrm_configure_pr_group_membership() return True s3.prep = prep # CRUD post-process def postp(r, output): if r.interactive and r.component: if r.component_name == "human_resource": # Set the minimum end_date to the same as the start_date s3.jquery_ready.append( '''S3.start_end_date('hrm_human_resource_start_date','hrm_human_resource_end_date')''') vol_experience = settings.get_hrm_vol_experience() if vol_experience in ("programme", "both") and \ r.method not in ["search", "report", "import"] and \ "form" in output: # Insert field to set the Programme # @ToDo: Re-implement using http://eden.sahanafoundation.org/wiki/S3SQLForm sep = ": " table = s3db.hrm_programme_hours field = table.programme_id if r.id: query = (table.person_id == r.id) default = db(query).select(table.programme_id, orderby=table.date).last() if default: default = default.programme_id else: default = field.default widget = field.widget or SQLFORM.widgets.options.widget(field, default) field_id = "%s_%s" % (table._tablename, field.name) label = field.label label = LABEL(label, label and sep, _for=field_id, _id=field_id + SQLFORM.ID_LABEL_SUFFIX) row_id = field_id + SQLFORM.ID_ROW_SUFFIX programme = s3_formstyle(row_id, label, widget, field.comment) try: output["form"][0].insert(2, programme[1]) except: # A non-standard formstyle with just a single row pass try: output["form"][0].insert(2, programme[0]) except: pass elif r.component_name == "experience": # Set the minimum end_date to the same as the start_date s3.jquery_ready.append( '''S3.start_end_date('hrm_experience_start_date','hrm_experience_end_date')''') elif r.component_name == "asset": # Provide a link to assign a new Asset # @ToDo: Proper Widget to do this inline output["add_btn"] = A(T("Assign Asset"), _href=URL(c="asset", f="asset"), _id="add-btn", _class="action-btn") return output s3.postp = postp # REST Interface if session.s3.hrm.orgname and mode is None: orgname = session.s3.hrm.orgname else: orgname = None return s3_rest_controller("pr", resourcename, csv_template = ("hrm", "volunteer"), csv_stylesheet = ("hrm", "person.xsl"), csv_extra_fields = [ dict(label="Type", field=s3db.hrm_human_resource.type) ], orgname = orgname, replace_option = T("Remove existing data before import"), rheader = s3db.hrm_rheader, ) # ----------------------------------------------------------------------------- def hr_search(): """ Human Resource REST controller - limited to just search_ac for use in Autocompletes - allows differential access permissions """ # Filter to just Volunteers s3.filter = s3base.S3FieldSelector("human_resource.type") == 2 # Only allow use in the search_ac method s3.prep = lambda r: r.method == "search_ac" return s3_rest_controller("hrm", "human_resource") # ----------------------------------------------------------------------------- def person_search(): """ Person REST controller - limited to just search_ac for use in Autocompletes - allows differential access permissions """ # Filter to just Volunteers s3.filter = s3base.S3FieldSelector("human_resource.type") == 2 # Only allow use in the search_ac method s3.prep = lambda r: r.method == "search_ac" return s3_rest_controller("pr", "person") # ============================================================================= # Teams # ============================================================================= def group(): """ Team controller - uses the group table from PR, but filtered to just 'Relief Teams' """ return s3db.hrm_group_controller() # ----------------------------------------------------------------------------- def group_membership(): """ Membership controller - uses the group_membership table from PR """ # Change Labels s3db.hrm_configure_pr_group_membership() table = db.pr_group_membership # Amend list_fields s3db.configure("pr_group_membership", list_fields=["group_id", "group_id$description", "group_head", "person_id$first_name", "person_id$middle_name", "person_id$last_name", (T("Email"), "person_id$email.value"), (settings.get_ui_label_mobile_phone(), "person_id$phone.value"), ]) # Only show Relief Teams # Do not show system groups # Only show Volunteers gtable = db.pr_group htable = s3db.hrm_human_resource s3.filter = (gtable.system == False) & \ (gtable.group_type == 3) & \ (htable.type == 2) & \ (htable.person_id == table.person_id) def prep(r): if r.method in ("create", "create.popup", "update", "update.popup"): # Coming from Profile page? person_id = request.get_vars.get("~.person_id", None) if person_id: field = table.person_id field.default = person_id field.readable = field.writable = False return True s3.prep = prep return s3_rest_controller("pr", "group_membership", csv_template=("hrm", "group_membership"), csv_stylesheet=("hrm", "group_membership.xsl"), ) # ============================================================================= # Jobs # ============================================================================= def department(): """ Departments Controller """ mode = session.s3.hrm.mode def prep(r): if mode is not None: r.error(403, message=auth.permission.INSUFFICIENT_PRIVILEGES) return True s3.prep = prep if not auth.s3_has_role(ADMIN): s3.filter = auth.filter_by_root_org(s3db.hrm_department) return s3_rest_controller("hrm", resourcename) # ----------------------------------------------------------------------------- def job_title(): """ Job Titles Controller """ mode = session.s3.hrm.mode def prep(r): if mode is not None: r.error(403, message=auth.permission.INSUFFICIENT_PRIVILEGES) return True s3.prep = prep s3.filter = s3base.S3FieldSelector("human_resource.type").belongs((2, 3)) if not auth.s3_has_role(ADMIN): s3.filter &= auth.filter_by_root_org(s3db.hrm_job_title) return s3_rest_controller("hrm", resourcename, csv_template=("hrm", "job_title"), csv_stylesheet=("hrm", "job_title.xsl"), ) # ============================================================================= # Skills # ============================================================================= def skill(): """ Skills Controller """ mode = session.s3.hrm.mode if mode is not None: session.error = T("Access denied") redirect(URL(f="index")) return s3_rest_controller("hrm", resourcename, csv_template=("hrm", "skill"), csv_stylesheet=("hrm", "skill.xsl"), ) # ----------------------------------------------------------------------------- def skill_type(): """ Skill Types Controller """ mode = session.s3.hrm.mode if mode is not None: session.error = T("Access denied") redirect(URL(f="index")) return s3_rest_controller("hrm", resourcename) # ----------------------------------------------------------------------------- def competency_rating(): """ Competency Rating for Skill Types Controller """ mode = session.s3.hrm.mode if mode is not None: session.error = T("Access denied") redirect(URL(f="index")) return s3_rest_controller("hrm", resourcename, csv_template=("hrm", "competency_rating"), csv_stylesheet=("hrm", "competency_rating.xsl"), ) # ----------------------------------------------------------------------------- def skill_provision(): """ Skill Provisions Controller """ mode = session.s3.hrm.mode if mode is not None: session.error = T("Access denied") redirect(URL(f="index")) return s3_rest_controller("hrm", resourcename) # ----------------------------------------------------------------------------- def course(): """ Courses Controller """ mode = session.s3.hrm.mode if mode is not None: session.error = T("Access denied") redirect(URL(f="index")) if not auth.s3_has_role(ADMIN): s3.filter = auth.filter_by_root_org(s3db.hrm_course) return s3_rest_controller("hrm", resourcename, rheader=s3db.hrm_rheader, csv_template=("hrm", "course"), csv_stylesheet=("hrm", "course.xsl"), ) # ----------------------------------------------------------------------------- def course_certificate(): """ Courses to Certificates Controller """ mode = session.s3.hrm.mode if mode is not None: session.error = T("Access denied") redirect(URL(f="index")) return s3_rest_controller("hrm", resourcename) # ----------------------------------------------------------------------------- def certificate(): """ Certificates Controller """ mode = session.s3.hrm.mode def prep(r): if mode is not None: r.error(403, message=auth.permission.INSUFFICIENT_PRIVILEGES) return True s3.prep = prep if settings.get_hrm_filter_certificates() and \ not auth.s3_has_role(ADMIN): s3.filter = auth.filter_by_root_org(s3db.hrm_certificate) return s3_rest_controller("hrm", resourcename, rheader=s3db.hrm_rheader, csv_template=("hrm", "certificate"), csv_stylesheet=("hrm", "certificate.xsl"), ) # ----------------------------------------------------------------------------- def certificate_skill(): """ Certificates to Skills Controller """ mode = session.s3.hrm.mode if mode is not None: session.error = T("Access denied") redirect(URL(f="index")) return s3_rest_controller("hrm", resourcename) # ----------------------------------------------------------------------------- def training(): """ Training Controller - used for Searching for Participants """ # Filter to just Volunteers s3.filter = s3base.S3FieldSelector("human_resource.type") == 2 return s3db.hrm_training_controller() # ----------------------------------------------------------------------------- def training_event(): """ Training Events Controller """ table = s3db.hrm_training table.person_id.widget = S3PersonAutocompleteWidget(controller="vol") return s3db.hrm_training_event_controller() # ----------------------------------------------------------------------------- def competency(): """ RESTful CRUD controller used to allow searching for people by Skill""" # Filter to just Volunteers s3.filter = s3base.S3FieldSelector("person_id$human_resource.type") == 2 return s3db.hrm_competency_controller() # ----------------------------------------------------------------------------- def credential(): """ Credentials Controller """ # Filter to just Volunteers s3.filter = s3base.S3FieldSelector("person_id$human_resource.type") == 2 return s3db.hrm_credential_controller() # ----------------------------------------------------------------------------- def experience(): """ Experience Controller """ # Filter to just Volunteers s3.filter = s3base.S3FieldSelector("person_id$human_resource.type") == 2 return s3db.hrm_experience_controller() # ============================================================================= def skill_competencies(): """ Called by S3OptionsFilter to provide the competency options for a particular Skill Type """ table = s3db.hrm_skill ttable = s3db.hrm_skill_type rtable = s3db.hrm_competency_rating query = (table.id == request.args[0]) & \ (table.skill_type_id == ttable.id) & \ (rtable.skill_type_id == table.skill_type_id) records = db(query).select(rtable.id, rtable.name, orderby=~rtable.priority) response.headers["Content-Type"] = "application/json" return records.json() # ============================================================================= def staff_org_site_json(): """ Used by the Asset - Assign to Person page """ table = s3db.hrm_human_resource otable = s3db.org_organisation #db.req_commit.date.represent = lambda dt: dt[:10] query = (table.person_id == request.args[0]) & \ (table.organisation_id == otable.id) records = db(query).select(table.site_id, otable.id, otable.name) response.headers["Content-Type"] = "application/json" return records.json() # ============================================================================= def programme(): """ Volunteer Programmes controller """ mode = session.s3.hrm.mode if mode is not None: session.error = T("Access denied") redirect(URL(f="index")) if not auth.s3_has_role(ADMIN): s3.filter = auth.filter_by_root_org(s3db.hrm_programme) def prep(r): if r.component_name == "person": s3db.configure("hrm_programme_hours", list_fields=["person_id", "training", "programme_id", "date", "hours", ]) return True s3.prep = prep return s3_rest_controller("hrm", resourcename, rheader=s3db.hrm_rheader, csv_stylesheet = ("hrm", "programme.xsl"), csv_template = ("hrm", "programme") ) # ----------------------------------------------------------------------------- def programme_hours(): """ Volunteer Programme Hours controller - used for Imports & Reports """ mode = session.s3.hrm.mode if mode is not None: session.error = T("Access denied") redirect(URL(f="index")) return s3_rest_controller("hrm", resourcename, csv_stylesheet=("hrm", "programme_hours.xsl"), csv_template=("hrm", "programme_hours") ) # ============================================================================= def award(): """ Volunteer Awards controller """ return s3_rest_controller() # ----------------------------------------------------------------------------- def volunteer_award(): """ Used for returning options to the S3AddResourceLink PopUp """ # We use component form instead #def prep(r): # if r.method in ("create", "create.popup", "update", "update.popup"): # # Coming from Profile page? # person_id = request.get_vars.get("~.person_id", None) # if person_id: # field = r.table.person_id # field.default = person_id # field.readable = field.writable = False # return True #s3.prep = prep return s3_rest_controller() # ============================================================================= def cluster_type(): """ Volunteer Cluster Types controller """ return s3_rest_controller() # ----------------------------------------------------------------------------- def cluster(): """ Volunteer Clusters controller """ return s3_rest_controller() # ----------------------------------------------------------------------------- def cluster_position(): """ Volunteer Group Positions controller """ return s3_rest_controller() # ----------------------------------------------------------------------------- def volunteer_cluster(): """ ONLY FOR RETURNING options to the S3AddResourceLink PopUp """ return s3_rest_controller() # ============================================================================= def task(): """ Tasks controller """ return s3db.project_task_controller() # ============================================================================= # Messaging # ============================================================================= def compose(): """ Send message to people/teams """ return s3db.hrm_compose() # END =========================================================================
mit
-4,564,152,393,702,601,700
38.294406
96
0.471192
false
rosenbrockc/fortpy
fortpy/stats/bp.py
1
5243
"""Methods for testing a code library against Fortran best practices to help uncover subtle bugs that took a while for us to track down. See especially http://www.cs.rpi.edu/~szymansk/OOF90/bugs.html""" def _exec_check_pointers(executable): """Checks the specified executable for the pointer condition that not all members of the derived type have had their values set. Returns (list of offending members, parameter name). """ oparams = [] pmembers = {} xassigns = map(lambda x: x.lower().strip(), executable.external_assignments()) def add_offense(pname, member): """Adds the specified member as an offender under the specified parameter.""" if pname not in oparams: oparams.append(pname) if pname not in pmembers: pmembers[pname] = [member] else: pmembers[pname].append(member) def check_buried(executable, pname, member): """Checks whether the member has its value changed by one of the dependency subroutines in the executable. """ for d in executable.dependencies: if pname in d.argnames: pindex = d.argnames.index(pname) dtarget = d.target if dtarget is not None: mparam = dtarget.ordered_parameters[pindex] for pname, param in executable.parameters.items(): if param.direction == "(out)" and param.is_custom: utype = param.customtype if utype is None: continue for mname, member in utype.members.items(): key = "{}%{}".format(pname, mname).lower().strip() if key not in xassigns: #We also need to check the dependency calls to other, buried subroutines. compname = "{}%{}".format(pname, mname).lower() if executable.changed(compname) is None: add_offense(pname, member) return (oparams, pmembers) def _type_check_pointers(utype): """Checks the user-derived type for non-nullified pointer array declarations in its base definition. Returns (list of offending members). """ result = [] for mname, member in utype.members.items(): if ("pointer" in member.modifiers and member.D > 0 and (member.default is None or "null" not in member.default)): result.append(member) return result def check_pointers(parser, codedir=None, mfilter=None, recursive=False): """Checks the modules in the specified code parser to see if they have common, but subtle, pointer bugs in: 1. subroutines with a parameter of intent(out) and user-derived type must* set *all* members of that parameter or they will have an *undefined* status. 2. pointer-type arrays that are not nullified are set to a valid target will return 'T' when passed to `associated`. Best practice is to nullify pointer arrays in user-derived types as the default value on those types. :arg parser: [fortpy.code.CodeParser] with the modules to search *already loaded*. :arg codedir: specify the full path to the library whose modules should be searched, just another way to filter which modules are generating the warnings. :arg mfilter: filter to apply to module names; can use the wildcard standard from bash. """ from fnmatch import fnmatch from fortpy.msg import std, set_verbosity, info set_verbosity(0) W1 = " {} '{}' does not set the value of members '{}' in parameter '{}'." W2 = " Type '{}' does not nullify members '{}' on creation." offenders = {} for (modname, module) in parser.modules.items(): if not recursive and codedir is not None and not codedir.lower() in module.filepath.lower(): continue if mfilter is not None and not fnmatch(module.name.lower(), mfilter.lower()): continue #Test the first condition above for all subroutines in the module; also handle #the recursively defined subroutines. hprinted = False for xname, xvalue in module.executables.items(): oparams, pmembers = _exec_check_pointers(xvalue) if len(oparams) > 0: if not hprinted: info("Best practice suggestions: {}".format(module.filepath)) hprinted = True for oparam in oparams: plist = ', '.join([p.name for p in pmembers[oparam]]) std(W1.format(type(xvalue).__name__, xname, plist, oparam), 0) offenders[xvalue.full_name] = (oparams, pmembers) for tname, tvalue in module.types.items(): result = _type_check_pointers(tvalue) if len(result) > 0: if not hprinted: info("Best practice suggestions: {}".format(module.filepath)) hprinted = True plist = ', '.join([p.name for p in result]) std(W2.format(tname, plist), 0) offenders[xvalue.full_name] = result return offenders
mit
-214,200,888,926,042,880
42.330579
100
0.60576
false
mitoNGS/MToolBox
aux/filter_HF.py
1
2956
#!/usr/bin/env python import fileinput import sys, os def usage(): print ''' This script is compatible with MToolBox versions < 1.2 only This script filters the MToolBox vcf file based on Heteroplasmy threshold Usage: filter_HF.py <sample_name> <vcf_file> <HF_threshold[float]> <DP_threshold[float]> <out_type[vcf|txt]> <outfilename> <convert_to_homoplamy[Yes|No]> \n<vcf_file> can also be .gz file\n\n<convert_to_homoplasmy> is boolean and takes Yes or No values and converts HF >= 0.9 to GT=1/1. Useful for haplogroup prediction with other methods (e.g. haplogrep)\n\n''' if __name__ == "__main__": if len(sys.argv[1:]) < 7: sys.stderr.write('ERROR: argument missing\n') usage() sys.exit(1) samplename,vcf,HFt,DPt,out_type,outfile,homo_convert= sys.argv[1:] HFt = float(HFt) DPt = float(DPt) out = open(outfile,'w') homo_convert = str(homo_convert) if homo_convert not in ['Yes','No']: sys.stderr.write('Values accepted for <convert_to_homoplasmy> are [Yes|No].\nExit!\n') sys.exit(1) if 'gz' in vcf or 'gzip' or 'bz2' in vcf: ifile = fileinput.input(vcf,openhook=fileinput.hook_compressed) else: ifile = fileinput.input(vcf) for line in ifile: if line.startswith('##'): if out_type == 'vcf': command_string = "##contig=<ID=chrMT,length=16569>\n##filter_VCF_command=filter_vcf.py {0} {1} {2} {3} {4} {5}\n".format(vcf,HFt,DPt,out_type,outfile,homo_convert) out.write(line) else: pass else: if line.startswith('#CHROM') and out_type == 'vcf': out.write(command_string) line = line.split('\t') line[-1] = samplename+'\n' line = '\t'.join(line) out.write(line) elif line.startswith('#CHROM') and out_type == 'txt': header='CHROM\tPOS\tID\tREF\tALT\tDP\tHF\tCIL\tCIU\t'+samplename out.write(header+'\n') else: line = line.split('\t') geno,DPv,HFv_l,CIL,CIU = line[-1].split(':') geno = geno.split('/') if '0' in geno: geno.remove('0') HFv_l = HFv_l.split(',') CIL = CIL.split(',') CIU = CIU.split(',') ALT = line[4].split(',') c =0 while c < (len(geno)): HFv = float(HFv_l[c]) CILv = float(CIL[c]) CIUv = float(CIU[c]) DPv = float(DPv) ALTv = str(ALT[c]) if DPv >= float(DPt) and HFv >= float(HFt): if out_type == 'txt': res='\t'.join(map(lambda x:str(x),[line[0],line[1],line[2],line[3],ALTv,DPv,HFv,CILv,CIUv,samplename])) out.write(res+'\n') else: if HFv == 1: res='\t'.join(map(lambda x:str(x),[line[0],line[1],line[2],line[3],ALTv,'.','PASS','AC=2,AN=2','GT','1/1'])) elif HFv >= 0.9 and homo_convert == 'Yes': res='\t'.join(map(lambda x:str(x),[line[0],line[1],line[2],line[3],ALTv,'.','PASS','AC=2,AN=2','GT','1/1'])) else: res='\t'.join(map(lambda x:str(x),[line[0],line[1],line[2],line[3],ALTv,'.','PASS','AC=1,AN=2','GT','0/1'])) out.write(res+'\n') else: pass c += 1 out.close()
gpl-3.0
-3,761,606,398,086,951,400
33.776471
356
0.60115
false
fogleman/DCPU-16
app/assembler.py
1
16148
import ply.lex as lex import ply.yacc as yacc # Constants SIZE = 0x10000 # Lookups BASIC_OPCODES = { 'SET': 0x01, 'ADD': 0x02, 'SUB': 0x03, 'MUL': 0x04, 'MLI': 0x05, 'DIV': 0x06, 'DVI': 0x07, 'MOD': 0x08, 'MDI': 0x09, 'AND': 0x0a, 'BOR': 0x0b, 'XOR': 0x0c, 'SHR': 0x0d, 'ASR': 0x0e, 'SHL': 0x0f, 'IFB': 0x10, 'IFC': 0x11, 'IFE': 0x12, 'IFN': 0x13, 'IFG': 0x14, 'IFA': 0x15, 'IFL': 0x16, 'IFU': 0x17, 'ADX': 0x1a, 'SUX': 0x1b, 'STI': 0x1e, 'STD': 0x1f, } SPECIAL_OPCODES = { 'JSR': 0x01, 'INT': 0x08, 'IAG': 0x09, 'IAS': 0x0a, 'RFI': 0x0b, 'IAQ': 0x0c, 'HWN': 0x10, 'HWQ': 0x11, 'HWI': 0x12, } COMMAND_OPCODES = { 'NOP': 0x0000, 'BRK': 0x0040, 'RFI': 0x0160, } REGISTERS = { 'A': 0x0, 'B': 0x1, 'C': 0x2, 'X': 0x3, 'Y': 0x4, 'Z': 0x5, 'I': 0x6, 'J': 0x7, } DST_CODES = { 'PUSH': 0x18, 'PEEK': 0x19, 'SP': 0x1b, 'PC': 0x1c, 'EX': 0x1d, } SRC_CODES = { 'POP': 0x18, 'PEEK': 0x19, 'SP': 0x1b, 'PC': 0x1c, 'EX': 0x1d, } # Reverse Lookups REV_BASIC_OPCODES = dict((v, k) for k, v in BASIC_OPCODES.items()) REV_SPECIAL_OPCODES = dict((v, k) for k, v in SPECIAL_OPCODES.items()) REV_COMMAND_OPCODES = dict((v, k) for k, v in COMMAND_OPCODES.items()) REV_REGISTERS = dict((v, k) for k, v in REGISTERS.items()) REV_DST_CODES = dict((v, k) for k, v in DST_CODES.items()) REV_SRC_CODES = dict((v, k) for k, v in SRC_CODES.items()) # Helper Functions def pretty_value(x): return '%d' % x if x <= 0xff else '0x%04x' % x def do_lookup(lookup, word): if isinstance(word, basestring): try: word = lookup[word] except KeyError: raise Exception('Undefined symbol: "%s"' % word) return word # Classes class Program(object): def __init__(self, instructions): self.instructions = instructions self.text = None self.lookup = {} self.size = 0 for instruction in instructions: if instruction.offset is None: instruction.offset = self.size self.size += instruction.size if isinstance(instruction, Label): self.lookup[instruction.name] = instruction.offset def assemble(self): result = [] for instruction in self.instructions: result.extend(instruction.assemble(self.lookup)) return result def pretty(self): lines = [] skip = False for instruction in self.instructions: line = instruction.pretty().strip() if isinstance(instruction, Label): pad = 0 else: pad = 4 if skip else 2 line = '%s%s' % (' ' * pad, line) data = instruction.assemble(self.lookup) if data and not isinstance(instruction, Data): pad = ' ' * (32 - len(line)) data = ' '.join('%04x' % x for x in data) line = '%s%s; %s' % (line, pad, data) lines.append(line) skip = instruction.conditional return '\n'.join(lines) class Data(object): def __init__(self, data): self.data = data self.size = len(data) self.offset = None self.conditional = False def assemble(self, lookup): return [do_lookup(lookup, word) for word in self.data] def pretty(self): data = ', '.join('"%s"' % x if isinstance(x, str) else pretty_value(x) for x in self.data) return 'DAT %s' % data class Reserve(object): def __init__(self, size): self.size = size self.offset = None self.conditional = False def assemble(self, lookup): return [0] * self.size def pretty(self): return 'RESERVE %s' % pretty_value(self.size) class Label(object): def __init__(self, name, offset=None): self.name = name self.size = 0 self.offset = offset self.conditional = False def assemble(self, lookup): return [] def pretty(self): return ':%s' % self.name class BasicInstruction(object): def __init__(self, op, dst, src): self.op = op self.dst = dst self.src = src value = self.op value |= (self.dst.value & 0x1f) << 5 value |= (self.src.value & 0x3f) << 10 self.value = value self.size = 1 + dst.size + src.size self.offset = None self.conditional = 0x10 <= self.op <= 0x17 def assemble(self, lookup): result = [self.value] result.extend(self.src.assemble(lookup)) result.extend(self.dst.assemble(lookup)) return result def pretty(self): op = REV_BASIC_OPCODES[self.op] dst = self.dst.pretty() src = self.src.pretty() return '%s %s, %s' % (op, dst, src) class SpecialInstruction(object): def __init__(self, op, src): self.op = op self.src = src value = 0 value |= (self.op & 0x1f) << 5 value |= (self.src.value & 0x3f) << 10 self.value = value self.size = 1 + src.size self.offset = None self.conditional = False def assemble(self, lookup): result = [self.value] result.extend(self.src.assemble(lookup)) return result def pretty(self): op = REV_SPECIAL_OPCODES[self.op] src = self.src.pretty() return '%s %s' % (op, src) class CommandInstruction(object): def __init__(self, value): self.value = value self.size = 1 self.offset = None self.conditional = False def assemble(self, lookup): result = [self.value] return result def pretty(self): return REV_COMMAND_OPCODES[self.value] class Operand(object): def __init__(self, codes, value, word=None): self.codes = codes self.value = value self.word = word self.size = int(word is not None) def assemble(self, lookup): return [] if self.word is None else [do_lookup(lookup, self.word)] def pretty(self): x = self.value word = self.word if isinstance(word, int): word = pretty_value(word) if x in REV_REGISTERS: return REV_REGISTERS[x] elif x - 0x08 in REV_REGISTERS: return '[%s]' % REV_REGISTERS[x - 0x08] elif x - 0x10 in REV_REGISTERS: return '[%s + %s]' % (REV_REGISTERS[x - 0x10], word) elif x in self.codes: return self.codes[x] elif x == 0x1a: return 'PICK %s' % word elif x == 0x1e: return '[%s]' % word elif x == 0x1f: return '%s' % word elif x == 0x20: return pretty_value(0xffff) elif x >= 0x21: return pretty_value(x - 0x21) class DstOperand(Operand): def __init__(self, *args): super(DstOperand, self).__init__(REV_DST_CODES, *args) class SrcOperand(Operand): def __init__(self, *args): super(SrcOperand, self).__init__(REV_SRC_CODES, *args) # Lexer Rules reserved = set( BASIC_OPCODES.keys() + SPECIAL_OPCODES.keys() + COMMAND_OPCODES.keys() + REGISTERS.keys() + DST_CODES.keys() + SRC_CODES.keys() + ['PICK', 'DAT', 'RESERVE'] ) tokens = [ 'LBRACK', 'RBRACK', 'PLUS', 'LABEL', 'ID', 'DECIMAL', 'HEX', 'OCT', 'STRING', 'CHAR', 'INC', 'DEC', 'AT' ] + list(reserved) t_ignore = ' \t\r,' t_ignore_COMMENT = r';.*' t_INC = r'\+\+' t_DEC = r'\-\-' t_LBRACK = r'\[' t_RBRACK = r'\]' t_PLUS = r'\+' t_AT = r'\@' def t_newline(t): r'\n+' t.lexer.lineno += len(t.value) def t_STRING(t): r'"[^"]*"' t.value = tuple(ord(x) for x in t.value[1:-1]) return t def t_CHAR(t): r"'[^']'" t.value = ord(t.value[1]) return t def t_HEX(t): r'\-?0x[a-fA-F0-9]+' t.value = int(t.value, 16) % SIZE return t def t_OCT(t): r'\-?0\d+' t.value = int(t.value, 8) % SIZE return t def t_DECIMAL(t): r'\-?\d+' t.value = int(t.value) % SIZE return t def t_LABEL(t): r':\.?[a-zA-Z_][a-zA-Z_0-9]*' t.value = t.value[1:] if t.value[0] == '.': t.value = '%s%s' % (t.lexer.label_prefix, t.value) else: t.lexer.label_prefix = t.value return t def t_ID(t): r'\.?[a-zA-Z_][a-zA-Z_0-9]*' upper = t.value.upper() if upper in reserved: t.type = upper t.value = upper else: t.type = 'ID' if t.value[0] == '.': t.value = '%s%s' % (t.lexer.label_prefix, t.value) return t def t_error(t): raise Exception('Unrecognized token on line %d: %s' % (t.lineno, t.value)) # Parser Rules def p_program(t): 'program : instructions' t[0] = Program(t[1]) def p_instructions1(t): 'instructions : instruction instructions' t[0] = (t[1],) + t[2] def p_instructions2(t): 'instructions : instruction' t[0] = (t[1],) def p_data1(t): 'data : literal data' arg = t[1] if isinstance(t[1], tuple) else (t[1],) t[0] = arg + t[2] def p_data2(t): 'data : literal' arg = t[1] if isinstance(t[1], tuple) else (t[1],) t[0] = arg def p_instruction_data(t): 'instruction : DAT data' t[0] = Data(t[2]) def p_instruction_reserve(t): 'instruction : RESERVE literal' t[0] = Reserve(t[2]) def p_instruction_label1(t): 'instruction : LABEL' t[0] = Label(t[1]) def p_instruction_label2(t): 'instruction : LABEL AT literal' t[0] = Label(t[1], t[3]) def p_instruction_basic(t): 'instruction : basic_opcode dst_operand src_operand' t[0] = BasicInstruction(t[1], t[2], t[3]) def p_instruction_special(t): 'instruction : special_opcode src_operand' t[0] = SpecialInstruction(t[1], t[2]) def p_instruction_command(t): 'instruction : command_opcode' t[0] = CommandInstruction(t[1]) def p_dst_operand_register(t): 'dst_operand : register' t[0] = DstOperand(REGISTERS[t[1]]) def p_dst_operand_register_dereference(t): 'dst_operand : LBRACK register RBRACK' t[0] = DstOperand(REGISTERS[t[2]] + 0x08) def p_dst_operand_register_literal_dereference1(t): 'dst_operand : LBRACK register PLUS literal RBRACK' t[0] = DstOperand(REGISTERS[t[2]] + 0x10, t[4]) def p_dst_operand_register_literal_dereference2(t): 'dst_operand : LBRACK literal PLUS register RBRACK' t[0] = DstOperand(REGISTERS[t[4]] + 0x10, t[2]) def p_dst_operand_pick1(t): 'dst_operand : LBRACK SP PLUS literal RBRACK' t[0] = DstOperand(0x1a, t[4]) def p_dst_operand_pick2(t): 'dst_operand : LBRACK literal PLUS SP RBRACK' t[0] = DstOperand(0x1a, t[2]) def p_dst_operand_pick3(t): 'dst_operand : PICK literal' t[0] = DstOperand(0x1a, t[2]) def p_dst_operand_code(t): 'dst_operand : dst_code' t[0] = DstOperand(DST_CODES[t[1]]) def p_dst_operand_push(t): 'dst_operand : LBRACK DEC SP RBRACK' t[0] = DstOperand(0x18) def p_dst_operand_peek(t): 'dst_operand : LBRACK SP RBRACK' t[0] = DstOperand(0x19) def p_dst_operand_literal_dereference(t): 'dst_operand : LBRACK literal RBRACK' t[0] = DstOperand(0x1e, t[2]) def p_dst_operand_literal(t): 'dst_operand : literal' t[0] = DstOperand(0x1f, t[1]) def p_src_operand_register(t): 'src_operand : register' t[0] = SrcOperand(REGISTERS[t[1]]) def p_src_operand_register_dereference(t): 'src_operand : LBRACK register RBRACK' t[0] = SrcOperand(REGISTERS[t[2]] + 0x08) def p_src_operand_register_literal_dereference1(t): 'src_operand : LBRACK register PLUS literal RBRACK' t[0] = SrcOperand(REGISTERS[t[2]] + 0x10, t[4]) def p_src_operand_register_literal_dereference2(t): 'src_operand : LBRACK literal PLUS register RBRACK' t[0] = SrcOperand(REGISTERS[t[4]] + 0x10, t[2]) def p_src_operand_pick1(t): 'src_operand : LBRACK SP PLUS literal RBRACK' t[0] = SrcOperand(0x1a, t[4]) def p_src_operand_pick2(t): 'src_operand : LBRACK literal PLUS SP RBRACK' t[0] = SrcOperand(0x1a, t[2]) def p_src_operand_pick3(t): 'src_operand : PICK literal' t[0] = SrcOperand(0x1a, t[2]) def p_src_operand_code(t): 'src_operand : src_code' t[0] = SrcOperand(SRC_CODES[t[1]]) def p_src_operand_pop(t): 'src_operand : LBRACK SP INC RBRACK' t[0] = SrcOperand(0x18) def p_src_operand_peek(t): 'src_operand : LBRACK SP RBRACK' t[0] = SrcOperand(0x19) def p_src_operand_literal_dereference(t): 'src_operand : LBRACK literal RBRACK' t[0] = SrcOperand(0x1e, t[2]) def p_src_operand_literal(t): 'src_operand : literal' if t[1] == 0xffff: t[0] = SrcOperand(0x20) elif t[1] <= 0x1e: t[0] = SrcOperand(0x21 + t[1]) else: t[0] = SrcOperand(0x1f, t[1]) def p_literal(t): '''literal : DECIMAL | HEX | OCT | ID | STRING | CHAR''' t[0] = t[1] def p_basic_opcode(t): t[0] = BASIC_OPCODES[t[1]] p_basic_opcode.__doc__ = ('basic_opcode : %s' % '\n | '.join(sorted(BASIC_OPCODES))) def p_special_opcode(t): t[0] = SPECIAL_OPCODES[t[1]] p_special_opcode.__doc__ = ('special_opcode : %s' % '\n | '.join(sorted(SPECIAL_OPCODES))) def p_command_opcode(t): t[0] = COMMAND_OPCODES[t[1]] p_command_opcode.__doc__ = ('command_opcode : %s' % '\n | '.join(sorted(COMMAND_OPCODES))) def p_register(t): t[0] = t[1] p_register.__doc__ = ('register : %s' % '\n | '.join(sorted(REGISTERS))) def p_dst_code(t): t[0] = t[1] p_dst_code.__doc__ = ('dst_code : %s' % '\n | '.join(sorted(DST_CODES))) def p_src_code(t): t[0] = t[1] p_src_code.__doc__ = ('src_code : %s' % '\n | '.join(sorted(SRC_CODES))) def p_error(t): raise Exception('Invalid token on line %d: %s' % (t.lineno, t.value)) # Assembler Functions def create_lexer(): lexer = lex.lex() lexer.label_prefix = None return lexer def create_parser(): parser = yacc.yacc(debug=False, write_tables=False) return parser LEXER = create_lexer() PARSER = create_parser() def parse(text): LEXER.lineno = 1 program = PARSER.parse(text, lexer=LEXER) program.text = text return program def parse_file(path): with open(path) as fp: text = fp.read() return parse(text) def assemble(text): program = parse(text) return program.assemble() def assemble_file(path): with open(path) as fp: text = fp.read() return assemble(text) def pretty(text): program = parse(text) return program.pretty() def pretty_file(path): with open(path) as fp: text = fp.read() return pretty(text) # Disassembler Functions def disassemble(words): def next_word(): return words.pop() if words else 0 instructions = [] use_next_word = set(range(0x10, 0x18) + [0x1a, 0x1e, 0x1f]) words = list(reversed(words)) while words: word = next_word() op = word & 0x1f dst = (word >> 5) & 0x1f src = (word >> 10) & 0x3f if op != 0 and op in REV_BASIC_OPCODES: dst = DstOperand(dst, next_word() if dst in use_next_word else None) src = SrcOperand(src, next_word() if src in use_next_word else None) instruction = BasicInstruction(op, dst, src) instructions.append(instruction) elif op == 0 and dst in REV_SPECIAL_OPCODES: src = SrcOperand(src, next_word() if src in use_next_word else None) instruction = SpecialInstruction(dst, src) instructions.append(instruction) else: instruction = Data([word]) instructions.append(instruction) program = Program(instructions) program.text = program.pretty() return program def disassemble_file(path): with open(path, 'rb') as fp: data = fp.read() words = [(ord(a) << 8) | ord(b) for a, b in zip(data[::2], data[1::2])] return disassemble(words)
mit
4,979,945,226,758,335,000
24.631746
78
0.560503
false
bnkr/selenit
selenibench/scripts.py
1
3871
from __future__ import print_function import sys, argparse, selenium, contextlib, os, json, traceback from datetime import datetime as DateTime from datetime import timedelta as TimeDelta from selenium.webdriver import Remote as WebDriverRemote from selenium.webdriver.support.ui import WebDriverWait class SelenibenchCli(object): """Downloads timings from the web performance api.""" def __init__(self, argv): self.argv = argv def run(self): parser = self.get_parser() settings = self.get_settings(parser) if settings.log_json: io = open(settings.log_json, 'w') else: io = None runs = 0 contiguous_failures = 0 while runs < settings.number: runs += 1 remote = WebDriverRemote(command_executor=settings.webdriver, desired_capabilities=settings.capabilities) with contextlib.closing(remote) as driver: try: driver.get(settings.url[0]) self.find_load_times(driver, io) contiguous_failures = 0 except: if contiguous_failures > 3: print("Failure getting load times. Giving up.") raise contiguous_failures += 1 runs -= 1 print("Failure getting load times. Will try again.") traceback.print_ex() return 0 def find_load_times(self, driver, log): def is_loaded(driver): return driver.execute_script("return (document.readyState == 'complete')") WebDriverWait(driver, 15).until(is_loaded) timings = driver.execute_script("return window.performance.timing") times = {} for key, value in timings.iteritems(): if not isinstance(value, int): continue if value in (True, False): continue value = str(value) unixey = int(value[0:10]) if value[10:]: ms = int(value[10:]) else: ms = 0 converted = DateTime.fromtimestamp(unixey) converted += TimeDelta(milliseconds=ms) times[key] = converted # This kind of thing really needs unit tests. The thing takes so long # to run it's just going to break horribly. if log: serialisable = dict( (key, value.isoformat()) for key, value in times.iteritems()) log.write(json.dumps(serialisable)) log.write("\n") print(times) def get_parser(self): parser = argparse.ArgumentParser() parser.add_argument("url", nargs="+") parser.add_argument("-w", "--webdriver", required=True, help="Location to hub or webdriver.") parser.add_argument("-c", "--capabilities", action="append", default=[], help="Add a capability.") parser.add_argument("-n", "--number", type=int, default=1, help="How many requests to run.") parser.add_argument("-j", "--log-json", default=None, help="Log json per-line for each hit.") return parser def get_settings(self, parser): settings = parser.parse_args(self.argv[1:]) capabilities = {'browserName': "firefox"} for capability in settings.capabilities: name, value = capability.split("=") capabilities[name.strip()] = value.strip() settings.capabilities = capabilities return settings def selenibench_main(): """Command-line entry point.""" cli = SelenibenchCli(sys.argv) sys.exit(cli.run())
mit
-2,705,399,600,824,886,300
32.08547
86
0.547145
false
tobykurien/MakerDroid
assetsrc/public.mp3/fabmetheus_utilities/vector3index.py
1
13371
""" Vector3 is a three dimensional vector class. Below are examples of Vector3 use. >>> from vector3 import Vector3 >>> origin = Vector3() >>> origin 0.0, 0.0, 0.0 >>> pythagoras = Vector3( 3, 4, 0 ) >>> pythagoras 3.0, 4.0, 0.0 >>> pythagoras.magnitude() 5.0 >>> pythagoras.magnitudeSquared() 25 >>> triplePythagoras = pythagoras * 3.0 >>> triplePythagoras 9.0, 12.0, 0.0 >>> plane = pythagoras.dropAxis( 2 ) >>> plane (3+4j) """ from __future__ import absolute_import try: import psyco psyco.full() except: pass #Init has to be imported first because it has code to workaround the python bug where relative imports don't work if the module is imported as a main module. import __init__ import math import operator __author__ = "Enrique Perez ([email protected])" __credits__ = 'Nophead <http://forums.reprap.org/profile.php?12,28>\nArt of Illusion <http://www.artofillusion.org/>' __date__ = "$Date: 2008/21/04 $" __license__ = "GPL 3.0" class Vector3Index: "A three dimensional vector index class." __slots__ = [ 'index', 'x', 'y', 'z' ] def __init__( self, index, x = 0.0, y = 0.0, z = 0.0 ): self.index = index self.x = x self.y = y self.z = z def __abs__( self ): "Get the magnitude of the Vector3." return math.sqrt( self.x * self.x + self.y * self.y + self.z * self.z ) magnitude = __abs__ def __add__( self, other ): "Get the sum of this Vector3 and other one." return Vector3( self.x + other.x, self.y + other.y, self.z + other.z ) def __copy__( self ): "Get the copy of this Vector3." return Vector3( self.x, self.y, self.z ) __pos__ = __copy__ copy = __copy__ def __div__( self, other ): "Get a new Vector3 by dividing each component of this one." return Vector3( self.x / other, self.y / other, self.z / other ) def __eq__( self, other ): "Determine whether this vector is identical to other one." if other == None: return False return self.x == other.x and self.y == other.y and self.z == other.z def __floordiv__( self, other ): "Get a new Vector3 by floor dividing each component of this one." return Vector3( self.x // other, self.y // other, self.z // other ) def __hash__( self ): "Determine whether this vector is identical to other one." return self.__repr__().__hash__() def __iadd__( self, other ): "Add other Vector3 to this one." self.x += other.x self.y += other.y self.z += other.z return self def __idiv__( self, other ): "Divide each component of this Vector3." self.x /= other self.y /= other self.z /= other return self def __ifloordiv__( self, other ): "Floor divide each component of this Vector3." self.x //= other self.y //= other self.z //= other return self def __imul__( self, other ): "Multiply each component of this Vector3." self.x *= other self.y *= other self.z *= other return self def __isub__( self, other ): "Subtract other Vector3 from this one." self.x -= other.x self.y -= other.y self.z -= other.z return self def __itruediv__( self, other ): "True divide each component of this Vector3." self.x = operator.truediv( self.x, other ) self.y = operator.truediv( self.y, other ) self.z = operator.truediv( self.z, other ) return self def __mul__( self, other ): "Get a new Vector3 by multiplying each component of this one." return Vector3( self.x * other, self.y * other, self.z * other ) def __ne__( self, other ): "Determine whether this vector is not identical to other one." return not self.__eq__( other ) def __neg__( self ): return Vector3( - self.x, - self.y, - self.z ) def __nonzero__( self ): return self.x != 0 or self.y != 0 or self.z != 0 def __repr__( self ): "Get the string representation of this Vector3." return '%s, %s, %s, %s' % ( self.index, self.x, self.y, self.z ) def __rdiv__( self, other ): "Get a new Vector3 by dividing each component of this one." return Vector3( other / self.x, other / self.y, other / self.z ) def __rfloordiv__( self, other ): "Get a new Vector3 by floor dividing each component of this one." return Vector3( other // self.x, other // self.y, other // self.z ) def __rmul__( self, other ): "Get a new Vector3 by multiplying each component of this one." return Vector3( self.x * other, self.y * other, self.z * other ) def __rtruediv__( self, other ): "Get a new Vector3 by true dividing each component of this one." return Vector3( operator.truediv( other , self.x ), operator.truediv( other, self.y ), operator.truediv( other, self.z ) ) def __sub__( self, other ): "Get the difference between the Vector3 and other one." return Vector3( self.x - other.x, self.y - other.y, self.z - other.z ) def __truediv__( self, other ): "Get a new Vector3 by true dividing each component of this one." return Vector3( operator.truediv( self.x, other ), operator.truediv( self.y, other ), operator.truediv( self.z, other ) ) def cross( self, other ): "Calculate the cross product of this vector with other one." return Vector3( self.y * other.z - self.z * other.y, - self.x * other.z + self.z * other.x, self.x * other.y - self.y * other.x ) def distance( self, other ): "Get the Euclidean distance between this vector and other one." return math.sqrt( self.distanceSquared( other ) ) def distanceSquared( self, other ): "Get the square of the Euclidean distance between this vector and other one." separationX = self.x - other.x separationY = self.y - other.y separationZ = self.z - other.z return separationX * separationX + separationY * separationY + separationZ * separationZ def dot( self, other ): "Calculate the dot product of this vector with other one." return self.x * other.x + self.y * other.y + self.z * other.z def dropAxis( self, which ): """Get a complex by removing one axis of this one. Keyword arguments: which -- the axis to drop (0=X, 1=Y, 2=Z)""" if which == 0: return complex( self.y, self.z ) if which == 1: return complex( self.x, self.z ) if which == 2: return complex( self.x, self.y ) def getNormalized( self, other ): "Get the normalized Vector3." magnitude = abs( self ) if magnitude == 0.0: return self.copy() return self / magnitude def magnitudeSquared( self ): "Get the square of the magnitude of the Vector3." return self.x * self.x + self.y * self.y + self.z * self.z def normalize( self ): "Scale each component of this Vector3 so that it has a magnitude of 1. If this Vector3 has a magnitude of 0, this method has no effect." magnitude = abs( self ) if magnitude != 0.0: self /= magnitude def reflect( self, normal ): "Reflect the Vector3 across the normal, which is assumed to be normalized." distance = 2 * ( self.x * normal.x + self.y * normal.y + self.z * normal.z ) return Vector3( self.x - distance * normal.x, self.y - distance * normal.y, self.z - distance * normal.z ) def setToVector3( self, other ): "Set this Vector3 to be identical to other one." self.x = other.x self.y = other.y self.z = other.z def setToXYZ( self, x, y, z ): "Set the x, y, and z components of this Vector3." self.x = x self.y = y self.z = z """ class Vector3: __slots__ = ['x', 'y', 'z'] def __init__(self, x, y, z): self.x = x self.y = y self.z = z def __copy__(self): return self.__class__(self.x, self.y, self.z) copy = __copy__ def __repr__(self): return 'Vector3(%.2f, %.2f, %.2f)' % (self.x, self.y, self.z) def __eq__(self, other): if isinstance(other, Vector3): return self.x == other.x and \ self.y == other.y and \ self.z == other.z else: assert hasattr(other, '__len__') and len(other) == 3 return self.x == other[0] and \ self.y == other[1] and \ self.z == other[2] def __ne__(self, other): return not self.__eq__(other) def __nonzero__(self): return self.x != 0 or self.y != 0 or self.z != 0 def __len__(self): return 3 def __getitem__(self, key): return (self.x, self.y, self.z)[key] def __setitem__(self, key, value): l = [self.x, self.y, self.z] l[key] = value self.x, self.y, self.z = l def __iter__(self): return iter((self.x, self.y, self.z)) def __getattr__(self, name): try: return tuple([(self.x, self.y, self.z)['xyz'.index(c)] \ for c in name]) except ValueError: raise AttributeError, name if _enable_swizzle_set: # This has detrimental performance on ordinary setattr as well # if enabled def __setattr__(self, name, value): if len(name) == 1: object.__setattr__(self, name, value) else: try: l = [self.x, self.y, self.z] for c, v in map(None, name, value): l['xyz'.index(c)] = v self.x, self.y, self.z = l except ValueError: raise AttributeError, name def __add__(self, other): if isinstance(other, Vector3): # Vector + Vector -> Vector # Vector + Point -> Point # Point + Point -> Vector if self.__class__ is other.__class__: _class = Vector3 else: _class = Point3 return _class(self.x + other.x, self.y + other.y, self.z + other.z) else: assert hasattr(other, '__len__') and len(other) == 3 return Vector3(self.x + other[0], self.y + other[1], self.z + other[2]) __radd__ = __add__ def __iadd__(self, other): if isinstance(other, Vector3): self.x += other.x self.y += other.y self.z += other.z else: self.x += other[0] self.y += other[1] self.z += other[2] return self def __sub__(self, other): if isinstance(other, Vector3): # Vector - Vector -> Vector # Vector - Point -> Point # Point - Point -> Vector if self.__class__ is other.__class__: _class = Vector3 else: _class = Point3 return Vector3(self.x - other.x, self.y - other.y, self.z - other.z) else: assert hasattr(other, '__len__') and len(other) == 3 return Vector3(self.x - other[0], self.y - other[1], self.z - other[2]) def __rsub__(self, other): if isinstance(other, Vector3): return Vector3(other.x - self.x, other.y - self.y, other.z - self.z) else: assert hasattr(other, '__len__') and len(other) == 3 return Vector3(other.x - self[0], other.y - self[1], other.z - self[2]) def __mul__(self, other): if isinstance(other, Vector3): # TODO component-wise mul/div in-place and on Vector2; docs. if self.__class__ is Point3 or other.__class__ is Point3: _class = Point3 else: _class = Vector3 return _class(self.x * other.x, self.y * other.y, self.z * other.z) else: assert type(other) in (int, long, float) return Vector3(self.x * other, self.y * other, self.z * other) __rmul__ = __mul__ def __imul__(self, other): assert type(other) in (int, long, float) self.x *= other self.y *= other self.z *= other return self def __div__(self, other): assert type(other) in (int, long, float) return Vector3(operator.div(self.x, other), operator.div(self.y, other), operator.div(self.z, other)) def __rdiv__(self, other): assert type(other) in (int, long, float) return Vector3(operator.div(other, self.x), operator.div(other, self.y), operator.div(other, self.z)) def __floordiv__(self, other): assert type(other) in (int, long, float) return Vector3(operator.floordiv(self.x, other), operator.floordiv(self.y, other), operator.floordiv(self.z, other)) def __rfloordiv__(self, other): assert type(other) in (int, long, float) return Vector3(operator.floordiv(other, self.x), operator.floordiv(other, self.y), operator.floordiv(other, self.z)) def __truediv__(self, other): assert type(other) in (int, long, float) return Vector3(operator.truediv(self.x, other), operator.truediv(self.y, other), operator.truediv(self.z, other)) def __rtruediv__(self, other): assert type(other) in (int, long, float) return Vector3(operator.truediv(other, self.x), operator.truediv(other, self.y), operator.truediv(other, self.z)) def __neg__(self): return Vector3(-self.x, -self.y, -self.z) __pos__ = __copy__ def __abs__(self): return math.sqrt(self.x ** 2 + \ self.y ** 2 + \ self.z ** 2) magnitude = __abs__ def magnitude_squared(self): return self.x ** 2 + \ self.y ** 2 + \ self.z ** 2 def normalize(self): d = self.magnitude() if d: self.x /= d self.y /= d self.z /= d return self def normalized(self): d = self.magnitude() if d: return Vector3(self.x / d, self.y / d, self.z / d) return self.copy() def dot(self, other): assert isinstance(other, Vector3) return self.x * other.x + \ self.y * other.y + \ self.z * other.z def cross(self, other): assert isinstance(other, Vector3) return Vector3(self.y * other.z - self.z * other.y, -self.x * other.z + self.z * other.x, self.x * other.y - self.y * other.x) def reflect(self, normal): # assume normal is normalized assert isinstance(normal, Vector3) d = 2 * (self.x * normal.x + self.y * normal.y + self.z * normal.z) return Vector3(self.x - d * normal.x, self.y - d * normal.y, self.z - d * normal.z) """
gpl-3.0
-3,217,481,328,199,761,400
26.289796
157
0.614315
false
IQSS/geoconnect
gc_apps/classification/layer_link_helper.py
1
5041
""" Used for development to create WorldMap-related links from a layer name """ from __future__ import print_function import logging import re import requests from django.conf import settings LOGGER = logging.getLogger(__name__) GEONODE_PREFIX = 'geonode:' class LayerLink(object): """Holds name, link, description""" def __init__(self, name, link, description=None): self.name = name self.link = link self.description = description def show(self): """print info""" info = ('name: {0}' 'link: {1}' 'description: {2}'\ ).format(self.name, self.link, self.description) print (info) class LayerLinkHelper(object): """ For development/debugging, given a WorldMap layer name, create links related to various geonode services including: - Listing geoserver attributes for the layer - Retrieving the current SLD in XML format - Showing the classify service url, etc. """ def __init__(self, layer_name, server_name='http://localhost:8000'): assert layer_name is not None, "layer_name cannot be None" self.layer_name = layer_name # geonode:boston_social_disorder self.server_name = server_name if self.server_name.endswith('/'): self.server_name = self.server_name[:-1] self.layer_name_no_prefix = None # boston_social_disorder self.links_dict = {} self.links_list = [] # Secondary processing involving requests self.sld_name = None self.format_layer_name() self.format_layer_links() def format_layer_name(self): """ Make sure the layer name has the GEONODE_PREFIX e.g. "geonode:boston_social_disorder" Set a variable w/o the prefix e.g. layer_name_no_prefix = "boston_social_disorder" """ if not self.layer_name.startswith(GEONODE_PREFIX): self.layer_name = '%s%s' % (GEONODE_PREFIX, self.layer_name) self.layer_name_no_prefix = self.layer_name[len(GEONODE_PREFIX):] def add_link(self, name, link, description=''): """ Add a LayerLink object to "links_list" """ layer_link_obj = LayerLink(name, link, description) # add to list self.links_list.append(layer_link_obj) # add to dict self.links_dict[name] = layer_link_obj LOGGER.debug('links count: %s', len(self.links_list)) def get_geoserver(self): """Retrieve the geoserver url""" return self.server_name.replace(':8000', ':8080') def format_layer_links(self): """Format/Create the layer links""" # View layer view_url = '%s/data/%s' % (self.server_name, self.layer_name) self.add_link('wm_layer', view_url, 'WorldMap layer view') # Geoserver attributes attr_url = ('%s/geoserver/rest/sldservice/%s/attributes.xml'\ % (self.get_geoserver(), self.layer_name)) self.add_link('attributes', attr_url, 'Geoserver Attributes') # SLD Name layer_url = '%s/geoserver/rest/layers/%s.html' %\ (self.get_geoserver(), self.layer_name_no_prefix) self.add_link('sld_name', layer_url, 'SLD name') if not self.get_sld_name(): return sld_url = '%s/geoserver/rest/styles/%s.sld' % \ (self.get_geoserver(), self.sld_name) self.add_link('sld_xml', sld_url, 'current SLD XML') sld_url2 = '%s%s%s%s' % (\ self.get_geoserver(), '/geoserver/web/?wicket:bookmarkablePage=', ':org.geoserver.wms.web.data.StyleEditPage&name=', self.sld_name) self.add_link('sld_xml2', sld_url2, 'Editable/Formatted SLD XML') def get_sld_name(self): """ Retrieve the layer's SLD name from the server """ if not 'sld_name' in self.links_dict: return False sld_url = self.links_dict['sld_name'].link #print ('Attempt to retrieve SLD sld_url: %s' % sld_url) resp = requests.get(sld_url, auth=settings.WORLDMAP_ACCOUNT_AUTH) if not resp.status_code == 200: LOGGER.error('Failed to retrieve SLD: %s', sld_url) return False # Parse out the SLD Name sld_search = re.search(r'<li>Default style: StyleInfoImpl\[(.*)\]',\ resp.text, re.IGNORECASE) if sld_search is None: LOGGER.error('Failed to retrieve SLD') return False sld_name = sld_search.group(1) self.sld_name = sld_name return True """ if title_search: title = title_search.group(1) content = r.text start_tag = idx = content.find('<li>Default style: StyleInfoImpl[') if idx == -1: print 'Failed to retrieve SLD' return end_idx = content.find(']', idx + print r.text """
apache-2.0
4,475,897,529,455,973,400
29.551515
76
0.575878
false
MetricsGrimoire/sortinghat
tests/test_cmd_log.py
1
8958
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright (C) 2014-2017 Bitergia # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # # Authors: # Santiago Dueñas <[email protected]> # import datetime import sys import unittest if '..' not in sys.path: sys.path.insert(0, '..') from sortinghat import api from sortinghat.command import CMD_SUCCESS from sortinghat.cmd.log import Log from sortinghat.exceptions import CODE_INVALID_DATE_ERROR, CODE_VALUE_ERROR, CODE_NOT_FOUND_ERROR from tests.base import TestCommandCaseBase LOG_UUID_NOT_FOUND_ERROR = "Error: Jane Roe not found in the registry" LOG_ORG_NOT_FOUND_ERROR = "Error: LibreSoft not found in the registry" LOG_INVALID_PERIOD_ERROR = "Error: 'from_date' 2001-01-01 00:00:00 cannot be greater than 1999-01-01 00:00:00" LOG_INVALID_DATE_ERROR = "Error: 1999-13-01 is not a valid date" LOG_INVALID_FORMAT_DATE_ERROR = "Error: YYZYY is not a valid date" LOG_EMPTY_OUTPUT = "" LOG_OUTPUT = """John Doe\tExample\t1900-01-01 00:00:00\t2100-01-01 00:00:00 John Smith\tBitergia\t1900-01-01 00:00:00\t2100-01-01 00:00:00 John Smith\tBitergia\t1999-01-01 00:00:00\t2000-01-01 00:00:00 John Smith\tBitergia\t2006-01-01 00:00:00\t2008-01-01 00:00:00 John Smith\tExample\t1900-01-01 00:00:00\t2100-01-01 00:00:00""" LOG_UUID_OUTPUT = """John Doe\tExample\t1900-01-01 00:00:00\t2100-01-01 00:00:00""" LOG_ORG_OUTPUT = """John Smith\tBitergia\t1900-01-01 00:00:00\t2100-01-01 00:00:00 John Smith\tBitergia\t1999-01-01 00:00:00\t2000-01-01 00:00:00 John Smith\tBitergia\t2006-01-01 00:00:00\t2008-01-01 00:00:00""" LOG_TIME_PERIOD_OUTPUT = """John Smith\tBitergia\t1999-01-01 00:00:00\t2000-01-01 00:00:00""" class TestLogCaseBase(TestCommandCaseBase): """Defines common setup and teardown methods on log unit tests""" cmd_klass = Log def load_test_dataset(self): self.db.clear() api.add_unique_identity(self.db, 'John Smith') api.add_unique_identity(self.db, 'John Doe') api.add_organization(self.db, 'Example') api.add_organization(self.db, 'Bitergia') api.add_enrollment(self.db, 'John Smith', 'Example') api.add_enrollment(self.db, 'John Doe', 'Example') api.add_enrollment(self.db, 'John Smith', 'Bitergia') api.add_enrollment(self.db, 'John Smith', 'Bitergia', datetime.datetime(1999, 1, 1), datetime.datetime(2000, 1, 1)) api.add_enrollment(self.db, 'John Smith', 'Bitergia', datetime.datetime(2006, 1, 1), datetime.datetime(2008, 1, 1)) class TestLogCommand(TestLogCaseBase): """Unit tests for log command""" def test_log(self): """Check log output""" code = self.cmd.run() self.assertEqual(code, CMD_SUCCESS) output = sys.stdout.getvalue().strip() self.assertEqual(output, LOG_OUTPUT) def test_log_uuid(self): """Check log using a uuid""" code = self.cmd.run('--uuid', 'John Doe') self.assertEqual(code, CMD_SUCCESS) output = sys.stdout.getvalue().strip() self.assertEqual(output, LOG_UUID_OUTPUT) def test_log_organization(self): """Check log using a organization""" code = self.cmd.run('--organization', 'Bitergia') self.assertEqual(code, CMD_SUCCESS) output = sys.stdout.getvalue().strip() self.assertEqual(output, LOG_ORG_OUTPUT) def test_log_period(self): """Check log using a time period""" code = self.cmd.run('--from', '1990-1-1 08:59:17', '--to', '2005-1-1') self.assertEqual(code, CMD_SUCCESS) output = sys.stdout.getvalue().strip() self.assertEqual(output, LOG_TIME_PERIOD_OUTPUT) def test_log_mix_filter(self): """Check log using some filters""" code = self.cmd.run('--uuid', 'John Doe', '--organization', 'Example', '--from', '1990-1-1 08:59:17', '--to', '2005-1-1') self.assertEqual(code, CMD_SUCCESS) output = sys.stdout.getvalue().strip() self.assertEqual(output, LOG_EMPTY_OUTPUT) def test_empty_registry(self): """Check output when the registry is empty""" # Delete the contents of the database self.db.clear() code = self.cmd.run() self.assertEqual(code, CMD_SUCCESS) output = sys.stdout.getvalue().strip() self.assertEqual(output, LOG_EMPTY_OUTPUT) def test_invalid_dates(self): """Check whether it fails when invalid dates are given""" code = self.cmd.run('--from', '1999-13-01') self.assertEqual(code, CODE_INVALID_DATE_ERROR) output = sys.stderr.getvalue().strip().split('\n')[0] self.assertEqual(output, LOG_INVALID_DATE_ERROR) code = self.cmd.run('--from', 'YYZYY') self.assertEqual(code, CODE_INVALID_DATE_ERROR) x = sys.stderr.getvalue() output = sys.stderr.getvalue().strip().split('\n')[-1] self.assertEqual(output, LOG_INVALID_FORMAT_DATE_ERROR) code = self.cmd.run('--to', '1999-13-01') self.assertEqual(code, CODE_INVALID_DATE_ERROR) x = sys.stderr.getvalue() output = sys.stderr.getvalue().strip().split('\n')[-1] self.assertEqual(output, LOG_INVALID_DATE_ERROR) code = self.cmd.run('--to', 'YYZYY') self.assertEqual(code, CODE_INVALID_DATE_ERROR) x = sys.stderr.getvalue() output = sys.stderr.getvalue().strip().split('\n')[-1] self.assertEqual(output, LOG_INVALID_FORMAT_DATE_ERROR) class TestLog(TestLogCaseBase): """Unit tests for log""" def test_log(self): """Check log output""" code = self.cmd.log() self.assertEqual(code, CMD_SUCCESS) output = sys.stdout.getvalue().strip() self.assertEqual(output, LOG_OUTPUT) def test_log_uuid(self): """Check log using a uuid""" code = self.cmd.log('John Doe') self.assertEqual(code, CMD_SUCCESS) output = sys.stdout.getvalue().strip() self.assertEqual(output, LOG_UUID_OUTPUT) def test_log_organization(self): """Check log using a organization""" code = self.cmd.log(organization='Bitergia') self.assertEqual(code, CMD_SUCCESS) output = sys.stdout.getvalue().strip() self.assertEqual(output, LOG_ORG_OUTPUT) def test_log_period(self): """Check log using a time period""" code = self.cmd.log(from_date=datetime.datetime(1990, 1, 1), to_date=datetime.datetime(2005, 1, 1)) self.assertEqual(code, CMD_SUCCESS) output = sys.stdout.getvalue().strip() self.assertEqual(output, LOG_TIME_PERIOD_OUTPUT) def test_period_ranges(self): """Check whether enrollments cannot be listed giving invalid period ranges""" code = self.cmd.log('John Smith', 'Example', datetime.datetime(2001, 1, 1), datetime.datetime(1999, 1, 1)) self.assertEqual(code, CODE_VALUE_ERROR) output = sys.stderr.getvalue().strip() self.assertEqual(output, LOG_INVALID_PERIOD_ERROR) def test_not_found_uuid(self): """Check whether it raises an error when the uiid is not available""" code = self.cmd.log(uuid='Jane Roe') self.assertEqual(code, CODE_NOT_FOUND_ERROR) output = sys.stderr.getvalue().strip() self.assertEqual(output, LOG_UUID_NOT_FOUND_ERROR) def test_not_found_organization(self): """Check whether it raises an error when the organization is not available""" code = self.cmd.log(organization='LibreSoft') self.assertEqual(code, CODE_NOT_FOUND_ERROR) output = sys.stderr.getvalue().strip() self.assertEqual(output, LOG_ORG_NOT_FOUND_ERROR) def test_empty_registry(self): """Check output when the registry is empty""" # Delete the contents of the database self.db.clear() code = self.cmd.log() self.assertEqual(code, CMD_SUCCESS) output = sys.stderr.getvalue().strip('\n') self.assertEqual(output, LOG_EMPTY_OUTPUT) if __name__ == "__main__": unittest.main(buffer=True, exit=False)
gpl-3.0
3,161,797,829,543,985,000
35.263158
110
0.631126
false
sbidoul/buildbot
master/buildbot/www/oauth2.py
1
9591
# This file is part of Buildbot. Buildbot is free software: you can # redistribute it and/or modify it under the terms of the GNU General Public # License as published by the Free Software Foundation, version 2. # # This program is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS # FOR A PARTICULAR PURPOSE. See the GNU General Public License for more # details. # # You should have received a copy of the GNU General Public License along with # this program; if not, write to the Free Software Foundation, Inc., 51 # Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. # # Copyright Buildbot Team Members from __future__ import absolute_import from __future__ import print_function from future.moves.urllib.parse import parse_qs from future.moves.urllib.parse import urlencode from future.utils import iteritems from future.utils import string_types import json from posixpath import join import requests from twisted.internet import defer from twisted.internet import threads from buildbot.www import auth from buildbot.www import resource class OAuth2LoginResource(auth.LoginResource): # disable reconfigResource calls needsReconfig = False def __init__(self, master, _auth): auth.LoginResource.__init__(self, master) self.auth = _auth def render_POST(self, request): return self.asyncRenderHelper(request, self.renderLogin) @defer.inlineCallbacks def renderLogin(self, request): code = request.args.get(b"code", [""])[0] token = request.args.get(b"token", [""])[0] if not token and not code: url = request.args.get("redirect", [None])[0] url = yield self.auth.getLoginURL(url) raise resource.Redirect(url) else: if not token: details = yield self.auth.verifyCode(code) else: details = yield self.auth.acceptToken(token) if self.auth.userInfoProvider is not None: infos = yield self.auth.userInfoProvider.getUserInfo(details['username']) details.update(infos) session = request.getSession() session.user_info = details session.updateSession(request) state = request.args.get("state", [""])[0] if state: for redirect in parse_qs(state).get('redirect', []): raise resource.Redirect(self.auth.homeUri + "#" + redirect) raise resource.Redirect(self.auth.homeUri) class OAuth2Auth(auth.AuthBase): name = 'oauth2' getTokenUseAuthHeaders = False authUri = None tokenUri = None grantType = 'authorization_code' authUriAdditionalParams = {} tokenUriAdditionalParams = {} loginUri = None homeUri = None sslVerify = None def __init__(self, clientId, clientSecret, autologin=False, **kwargs): auth.AuthBase.__init__(self, **kwargs) self.clientId = clientId self.clientSecret = clientSecret self.autologin = autologin def reconfigAuth(self, master, new_config): self.master = master self.loginUri = join(new_config.buildbotURL, "auth/login") self.homeUri = new_config.buildbotURL def getConfigDict(self): return dict(name=self.name, oauth2=True, fa_icon=self.faIcon, autologin=self.autologin ) def getLoginResource(self): return OAuth2LoginResource(self.master, self) def getLoginURL(self, redirect_url): """ Returns the url to redirect the user to for user consent """ oauth_params = {'redirect_uri': self.loginUri, 'client_id': self.clientId, 'response_type': 'code'} if redirect_url is not None: oauth_params['state'] = urlencode(dict(redirect=redirect_url)) oauth_params.update(self.authUriAdditionalParams) sorted_oauth_params = sorted(oauth_params.items(), key=lambda val: val[0]) return defer.succeed("%s?%s" % (self.authUri, urlencode(sorted_oauth_params))) def createSessionFromToken(self, token): s = requests.Session() s.params = {'access_token': token['access_token']} s.verify = self.sslVerify return s def get(self, session, path): ret = session.get(self.resourceEndpoint + path) return ret.json() # If the user wants to authenticate directly with an access token they # already have, go ahead and just directly accept an access_token from them. def acceptToken(self, token): def thd(): session = self.createSessionFromToken({'access_token': token}) return self.getUserInfoFromOAuthClient(session) return threads.deferToThread(thd) # based on https://github.com/maraujop/requests-oauth # from Miguel Araujo, augmented to support header based clientSecret # passing def verifyCode(self, code): # everything in deferToThread is not counted with trial --coverage :-( def thd(): url = self.tokenUri data = {'redirect_uri': self.loginUri, 'code': code, 'grant_type': self.grantType} auth = None if self.getTokenUseAuthHeaders: auth = (self.clientId, self.clientSecret) else: data.update( {'client_id': self.clientId, 'client_secret': self.clientSecret}) data.update(self.tokenUriAdditionalParams) response = requests.post( url, data=data, auth=auth, verify=self.sslVerify) response.raise_for_status() if isinstance(response.content, string_types): try: content = json.loads(response.content) except ValueError: content = parse_qs(response.content) for k, v in iteritems(content): content[k] = v[0] else: content = response.content session = self.createSessionFromToken(content) return self.getUserInfoFromOAuthClient(session) return threads.deferToThread(thd) def getUserInfoFromOAuthClient(self, c): return {} class GoogleAuth(OAuth2Auth): name = "Google" faIcon = "fa-google-plus" resourceEndpoint = "https://www.googleapis.com/oauth2/v1" authUri = 'https://accounts.google.com/o/oauth2/auth' tokenUri = 'https://accounts.google.com/o/oauth2/token' authUriAdditionalParams = dict(scope=" ".join([ 'https://www.googleapis.com/auth/userinfo.email', 'https://www.googleapis.com/auth/userinfo.profile' ])) def getUserInfoFromOAuthClient(self, c): data = self.get(c, '/userinfo') return dict(full_name=data["name"], username=data['email'].split("@")[0], email=data["email"], avatar_url=data["picture"]) class GitHubAuth(OAuth2Auth): name = "GitHub" faIcon = "fa-github" authUri = 'https://github.com/login/oauth/authorize' authUriAdditionalParams = {'scope': 'user:email read:org'} tokenUri = 'https://github.com/login/oauth/access_token' resourceEndpoint = 'https://api.github.com' def getUserInfoFromOAuthClient(self, c): user = self.get(c, '/user') emails = self.get(c, '/user/emails') for email in emails: if email.get('primary', False): user['email'] = email['email'] break orgs = self.get(c, '/user/orgs') return dict(full_name=user['name'], email=user['email'], username=user['login'], groups=[org['login'] for org in orgs]) class GitLabAuth(OAuth2Auth): name = "GitLab" faIcon = "fa-git" def __init__(self, instanceUri, clientId, clientSecret, **kwargs): uri = instanceUri.rstrip("/") self.authUri = "%s/oauth/authorize" % uri self.tokenUri = "%s/oauth/token" % uri self.resourceEndpoint = "%s/api/v3" % uri super(GitLabAuth, self).__init__(clientId, clientSecret, **kwargs) def getUserInfoFromOAuthClient(self, c): user = self.get(c, "/user") groups = self.get(c, "/groups") return dict(full_name=user["name"], username=user["username"], email=user["email"], avatar_url=user["avatar_url"], groups=[g["path"] for g in groups]) class BitbucketAuth(OAuth2Auth): name = "Bitbucket" faIcon = "fa-bitbucket" authUri = 'https://bitbucket.org/site/oauth2/authorize' tokenUri = 'https://bitbucket.org/site/oauth2/access_token' resourceEndpoint = 'https://api.bitbucket.org/2.0' def getUserInfoFromOAuthClient(self, c): user = self.get(c, '/user') emails = self.get(c, '/user/emails') for email in emails["values"]: if email.get('is_primary', False): user['email'] = email['email'] break orgs = self.get(c, '/teams?role=member') return dict(full_name=user['display_name'], email=user['email'], username=user['username'], groups=[org['username'] for org in orgs["values"]])
gpl-2.0
-19,559,649,487,698,830
36.759843
89
0.603587
false
nijx/hypertable
src/py/ThriftClient/client_test.py
1
4079
import sys import time from hypertable.thriftclient import * from hyperthrift.gen.ttypes import * try: client = ThriftClient("localhost", 38080) print "HQL examples" try: namespace = client.namespace_open("bad") except: print "Caught exception when tyring to open 'bad' namespace" namespace = client.namespace_open("test") res = client.hql_query(namespace, "show tables") print res res = client.hql_query(namespace, "select * from thrift_test") print res print "mutator examples"; mutator = client.mutator_open(namespace, "thrift_test", 0, 0); client.mutator_set_cell(mutator, Cell(Key("py-k1", "col", None), "py-v1")) client.mutator_flush(mutator); client.mutator_close(mutator); print "shared mutator examples"; mutate_spec = MutateSpec("test_py", 1000, 0); client.shared_mutator_set_cell(namespace, "thrift_test", mutate_spec, Cell(Key("py-put-k1", "col", None), "py-put-v1")) client.shared_mutator_refresh(namespace, "thrift_test", mutate_spec) client.shared_mutator_set_cell(namespace, "thrift_test", mutate_spec, Cell(Key("py-put-k2", "col", None), "py-put-v2")) time.sleep(2) print "scanner examples"; scanner = client.scanner_open(namespace, "thrift_test", ScanSpec(None, None, None, 1)); while True: cells = client.scanner_get_cells(scanner) if (len(cells) == 0): break print cells client.scanner_close(scanner) print "asynchronous api examples\n"; future = client.future_open(0); mutator_async_1 = client.async_mutator_open(namespace, "thrift_test", future, 0); mutator_async_2 = client.async_mutator_open(namespace, "thrift_test", future, 0); client.async_mutator_set_cell(mutator_async_1, Cell(Key("py-k1","col", None), "py-v1-async")); client.async_mutator_set_cell(mutator_async_2, Cell(Key("py-k1","col", None), "py-v2-async")); client.async_mutator_flush(mutator_async_1); client.async_mutator_flush(mutator_async_2); num_results=0; while True: result = client.future_get_result(future, 0); if(result.is_empty): break num_results+=1; print result; if (result.is_error or result.is_scan): print "Unexpected result\n" exit(1); if (num_results>2): print "Expected only 2 results\n" exit(1) if (num_results!=2): print "Expected only 2 results\n" exit(1) if (client.future_is_cancelled(future) or client.future_is_full(future) or not (client.future_is_empty(future)) or client.future_has_outstanding(future)): print "Future object in unexpected state" exit(1) client.async_mutator_close(mutator_async_1) client.async_mutator_close(mutator_async_2) color_scanner = client.async_scanner_open(namespace, "FruitColor", future, ScanSpec(None, None, None, 1)); location_scanner = client.async_scanner_open(namespace, "FruitLocation", future, ScanSpec(None, None, None, 1)); energy_scanner = client.async_scanner_open(namespace, "FruitEnergy", future, ScanSpec(None, None, None, 1)); expected_cells = 6; num_cells = 0; while True: result = client.future_get_result(future, 0); print result; if (result.is_empty or result.is_error or not(result.is_scan) ): print "Unexpected result\n" exit(1); for cell in result.cells: print cell; num_cells+=1; if(num_cells >= 6): client.future_cancel(future); break; if (not client.future_is_cancelled(future)): print "Expected future ops to be cancelled\n" exit(1) print "regexp scanner example"; scanner = client.scanner_open(namespace, "thrift_test", ScanSpec(None, None, None, 1, 0, None, None, ["col"], False,0, 0, "k", "v[24]")); while True: cells = client.scanner_get_cells(scanner) if (len(cells) == 0): break print cells client.scanner_close(scanner) client.async_scanner_close(color_scanner); client.async_scanner_close(location_scanner); client.async_scanner_close(energy_scanner); client.future_close(future); client.namespace_close(namespace) except: print sys.exc_info() raise
gpl-3.0
-526,401,585,103,323,140
32.162602
156
0.679333
false
earlbellinger/asteroseismology
grid/calibrate.py
1
3590
#### Calibrate a solar model #### Author: Earl Bellinger ( [email protected] ) #### Stellar Ages & Galactic Evolution Group #### Max-Planck-Institut fur Sonnensystemforschung #### Department of Astronomy, Yale University import numpy as np import pandas as pd from scipy import optimize from os import path from subprocess import Popen from math import log10 Z_div_X_solar = 0.02293 # GS98 # 0.0245 # GN93 # log10_Z_div_X_solar = np.log10(Z_div_X_solar) constraint_names = ("log L", "log R", "Fe/H") param_names = ("Y", "alpha", "Z") param_init = [0.273449170177157, 1.83413390909832, 0.0197444964340224] directory = 'calibrate_py' print(directory) def objective(): ## minimize sum(log(model values / solar values)**2) # searches in LOGS_MS subdirectory of the global 'directory' variable hstry_file = path.join(directory, 'LOGS_MS', 'history.data') if (not path.exists(hstry_file)): return np.inf hstry = pd.read_table(hstry_file, header=0, skiprows=5, delimiter='\s+') #header=1, mdl = hstry.loc[hstry.shape[0]-1] #hstry[nrow(hstry),] # [Fe/H] = log10 ( Z / X / (Z/X)_Sun ) mdl_Fe_H = mdl['log_surf_cell_z']-np.log10(mdl['surface_h1'])-log10_Z_div_X_solar mdl_vals = [mdl['log_L'], mdl['log_R'], mdl_Fe_H] print("*** Model values") print(constraint_names, mdl_vals) print('L', 10**mdl['log_L'], 'R', 10**mdl['log_R']) result = sum([ii**2 for ii in mdl_vals]) if np.isfinite(result): return log10(result) return 10**10 ### SEARCH iteration = 0 best_val = np.inf best_param = param_init #run = function(params) { def run(params): global iteration global best_val global best_param iteration = iteration + 1 print("**** iter:", iteration) Y, alpha, Z = params print(param_names, (Y, alpha, Z)) if (Y < 0.2 or Y > 0.4 or Z < 0 or Z > 0.04 or alpha < 1 or alpha > 3): return 10**10 #if (Y < 0.23): # Y = 0.23 #if (Y > 0.33): # Y = 0.33 #if (Z < 0.01): # Z = 0.01 #if (Z > 0.04): # Z = 0.04 #if (alpha < 1): # alpha = 1 #if (alpha > 3): # alpha = 3 command = "./dispatch.sh" + \ ' -Y ' + str(Y) + \ ' -a ' + str(alpha) + \ ' -o ' + '0' + \ ' -Z ' + str(Z) + \ ' -D ' + '1' + \ ' -g ' + '1' + \ ' -e ' + '0' + \ ' -c ' + "4572000000" + \ ' -d ' + directory print(command) #system(command) process = Popen(command.split(), shell=False) process.wait() obj_val = objective() print("**** objective value =", obj_val) if (obj_val < best_val): best_val = obj_val print("*****", param_names, params) best_param = params print("***** New record!") return obj_val result = optimize.minimize(fun=run, x0=param_init, method='Nelder-Mead', options={'disp': True, 'maxiter': 10000}) #, #bounds=((0.25, 0.32), (1, 3), (0.012, 0.03))) print("Optimization terminated. Saving best result") Y, alpha, Z = result.x command = "./dispatch.sh" + \ ' -Y ' + str(Y) + \ ' -a ' + str(alpha) + \ ' -o ' + '0' + \ ' -Z ' + str(Z) + \ ' -D ' + '1' + \ ' -g ' + '1' + \ ' -e ' + '0' + \ ' -c ' + "4572000000" + \ ' -d ' + directory print(command) process = Popen(command.split(), shell=False) process.wait() print(result)
gpl-2.0
-8,822,781,440,106,951,000
26.72
88
0.51532
false
huajiahen/hotspot
backend/Busy/models.py
1
1154
# -*- coding:utf-8 -*- from django.db.models import * class Event(Model): content = CharField(u'内容',max_length = 200) starttime = IntegerField(u'开始时间') endtime = IntegerField(u'结束时间') #longitude = DecimalField(u'经度',max_digits = 18,decimal_places = 14) #latitude = DecimalField(u'纬度',max_digits = 18,decimal_places = 14) longitude = FloatField(u'经度') latitude = FloatField(u'纬度') address = CharField(u'地点',max_length = 100) hit = IntegerField(u'想去数',default = 0) class Emergency(Model): content = CharField(u'内容',max_length = 100) #longitude = DecimalField(u'经度',max_digits = 18,decimal_places = 14) #latitude = DecimalField(u'纬度',max_digits = 18,decimal_places = 14) longitude = FloatField(u'经度') latitude = FloatField(u'纬度') class Man(Model): user_id = CharField(u'用户ID',max_length = 200) longitude = DecimalField(u'经度',max_digits = 18,decimal_places = 14) latitude = DecimalField(u'纬度',max_digits = 18,decimal_places = 14) hadevent = BooleanField(u'是否参与事件',default = False)
mit
-7,604,758,913,650,735,000
38.407407
72
0.662594
false
cmaclell/py_plan
py_plan/problems/blocksworld.py
1
3681
from operator import ne from py_search.utils import compare_searches from py_search.uninformed import depth_first_search from py_search.uninformed import breadth_first_search from py_search.uninformed import iterative_deepening_search from py_plan.total_order import StateSpacePlanningProblem from py_plan.base import Operator move = Operator('move', [('on', '?b', '?x'), ('block', '?b'), ('block', '?x'), ('block', '?y'), ('block', '?other'), ('block', '?other2'), ('not', ('on', '?other', '?b')), ('not', ('on', '?other2', '?y')), # ('clear', '?b'), # ('clear', '?y'), (ne, '?b', '?x'), (ne, '?b', '?y'), (ne, '?x', '?y')], [('on', '?b', '?y'), # ('clear', '?x'), ('not', ('on', '?b', '?x')), # ('not', ('clear', '?y')) ]) move_from_table = Operator('move_from_table', [('on', '?b', 'Table'), ('block', '?other'), ('block', '?other2'), ('not', ('on', '?other', '?b')), ('not', ('on', '?other2', '?y')), # ('clear', '?b'), # ('clear', '?y'), ('block', '?b'), ('block', '?y'), (ne, '?b', '?y')], [('on', '?b', '?y'), ('not', ('on', '?b', 'Table')), # ('not', ('clear', '?y')) ]) move_to_table = Operator('move_to_table', [('on', '?b', '?x'), ('block', '?b'), ('block', '?x'), ('block', '?other'), ('not', ('on', '?other', '?b')), # ('clear', '?b'), (ne, '?b', '?x')], [('on', '?b', 'Table'), # ('clear', '?x'), ('not', ('on', '?b', '?x'))]) if __name__ == "__main__": start = [('on', 'A', 'Table'), ('on', 'B', 'Table'), ('on', 'C', 'A'), ('block', 'A'), ('block', 'B'), ('block', 'C'), # ('clear', 'B'), # ('clear', 'C') ] goal = [('on', 'A', 'B'), ('on', 'B', 'C'), ('on', 'C', 'Table')] # start = [('on', 'A', 'Table'), # ('on', 'B', 'Table'), # ('on', 'C', 'Table'), # ('block', 'A'), # ('block', 'B'), # ('block', 'C'), # ('clear', 'A'), # ('clear', 'B'), # ('clear', 'C')] def progression(x): return breadth_first_search(x, forward=True, backward=False) def regression(x): return breadth_first_search(x, forward=False, backward=True) def bidirectional(x): return breadth_first_search(x, forward=True, backward=True) p = StateSpacePlanningProblem(start, goal, [move_from_table, move_to_table]) # print(next(best_first_search(p)).state) compare_searches([p], [progression, regression, bidirectional, # iterative_deepening_search ]) print(next(progression(p)).path()) print(next(regression(p)).path())
mit
1,218,365,807,427,348,500
33.401869
68
0.32627
false
ntymtsiv/tempest
tempest/thirdparty/boto/test_ec2_instance_run.py
1
14269
# Copyright 2012 OpenStack Foundation # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from boto import exception from tempest.common.utils import data_utils from tempest.common.utils.linux.remote_client import RemoteClient from tempest import config from tempest import exceptions from tempest.openstack.common import log as logging from tempest.test import attr from tempest.test import skip_because from tempest.thirdparty.boto.test import BotoTestCase from tempest.thirdparty.boto.utils.s3 import s3_upload_dir from tempest.thirdparty.boto.utils.wait import re_search_wait from tempest.thirdparty.boto.utils.wait import state_wait CONF = config.CONF LOG = logging.getLogger(__name__) class InstanceRunTest(BotoTestCase): @classmethod def setUpClass(cls): super(InstanceRunTest, cls).setUpClass() if not cls.conclusion['A_I_IMAGES_READY']: raise cls.skipException("".join(("EC2 ", cls.__name__, ": requires ami/aki/ari manifest"))) cls.s3_client = cls.os.s3_client cls.ec2_client = cls.os.ec2api_client cls.zone = cls.ec2_client.get_good_zone() cls.materials_path = CONF.boto.s3_materials_path ami_manifest = CONF.boto.ami_manifest aki_manifest = CONF.boto.aki_manifest ari_manifest = CONF.boto.ari_manifest cls.instance_type = CONF.boto.instance_type cls.bucket_name = data_utils.rand_name("s3bucket-") cls.keypair_name = data_utils.rand_name("keypair-") cls.keypair = cls.ec2_client.create_key_pair(cls.keypair_name) cls.addResourceCleanUp(cls.ec2_client.delete_key_pair, cls.keypair_name) bucket = cls.s3_client.create_bucket(cls.bucket_name) cls.addResourceCleanUp(cls.destroy_bucket, cls.s3_client.connection_data, cls.bucket_name) s3_upload_dir(bucket, cls.materials_path) cls.images = {"ami": {"name": data_utils.rand_name("ami-name-"), "location": cls.bucket_name + "/" + ami_manifest}, "aki": {"name": data_utils.rand_name("aki-name-"), "location": cls.bucket_name + "/" + aki_manifest}, "ari": {"name": data_utils.rand_name("ari-name-"), "location": cls.bucket_name + "/" + ari_manifest}} for image in cls.images.itervalues(): image["image_id"] = cls.ec2_client.register_image( name=image["name"], image_location=image["location"]) cls.addResourceCleanUp(cls.ec2_client.deregister_image, image["image_id"]) for image in cls.images.itervalues(): def _state(): retr = cls.ec2_client.get_image(image["image_id"]) return retr.state state = state_wait(_state, "available") if state != "available": for _image in cls.images.itervalues(): cls.ec2_client.deregister_image(_image["image_id"]) raise exceptions.EC2RegisterImageException(image_id= image["image_id"]) @attr(type='smoke') def test_run_idempotent_instances(self): # EC2 run instances idempotently def _run_instance(client_token): reservation = self.ec2_client.run_instances( image_id=self.images["ami"]["image_id"], kernel_id=self.images["aki"]["image_id"], ramdisk_id=self.images["ari"]["image_id"], instance_type=self.instance_type, client_token=client_token) rcuk = self.addResourceCleanUp(self.destroy_reservation, reservation) return (reservation, rcuk) def _terminate_reservation(reservation, rcuk): for instance in reservation.instances: instance.terminate() self.cancelResourceCleanUp(rcuk) reservation_1, rcuk_1 = _run_instance('token_1') reservation_2, rcuk_2 = _run_instance('token_2') reservation_1a, rcuk_1a = _run_instance('token_1') self.assertIsNotNone(reservation_1) self.assertIsNotNone(reservation_2) self.assertIsNotNone(reservation_1a) # same reservation for token_1 self.assertEqual(reservation_1.id, reservation_1a.id) # Cancel cleanup -- since it's a duplicate, it's # handled by rcuk1 self.cancelResourceCleanUp(rcuk_1a) _terminate_reservation(reservation_1, rcuk_1) _terminate_reservation(reservation_2, rcuk_2) reservation_3, rcuk_3 = _run_instance('token_1') self.assertIsNotNone(reservation_3) # make sure we don't get the old reservation back self.assertNotEqual(reservation_1.id, reservation_3.id) # clean up _terminate_reservation(reservation_3, rcuk_3) @attr(type='smoke') def test_run_stop_terminate_instance(self): # EC2 run, stop and terminate instance image_ami = self.ec2_client.get_image(self.images["ami"] ["image_id"]) reservation = image_ami.run(kernel_id=self.images["aki"]["image_id"], ramdisk_id=self.images["ari"]["image_id"], instance_type=self.instance_type) rcuk = self.addResourceCleanUp(self.destroy_reservation, reservation) for instance in reservation.instances: LOG.info("state: %s", instance.state) if instance.state != "running": self.assertInstanceStateWait(instance, "running") for instance in reservation.instances: instance.stop() LOG.info("state: %s", instance.state) if instance.state != "stopped": self.assertInstanceStateWait(instance, "stopped") for instance in reservation.instances: instance.terminate() self.cancelResourceCleanUp(rcuk) @attr(type='smoke') def test_run_stop_terminate_instance_with_tags(self): # EC2 run, stop and terminate instance with tags image_ami = self.ec2_client.get_image(self.images["ami"] ["image_id"]) reservation = image_ami.run(kernel_id=self.images["aki"]["image_id"], ramdisk_id=self.images["ari"]["image_id"], instance_type=self.instance_type) rcuk = self.addResourceCleanUp(self.destroy_reservation, reservation) for instance in reservation.instances: LOG.info("state: %s", instance.state) if instance.state != "running": self.assertInstanceStateWait(instance, "running") instance.add_tag('key1', value='value1') tags = self.ec2_client.get_all_tags() self.assertEqual(tags[0].name, 'key1') self.assertEqual(tags[0].value, 'value1') tags = self.ec2_client.get_all_tags(filters={'key': 'key1'}) self.assertEqual(tags[0].name, 'key1') self.assertEqual(tags[0].value, 'value1') tags = self.ec2_client.get_all_tags(filters={'value': 'value1'}) self.assertEqual(tags[0].name, 'key1') self.assertEqual(tags[0].value, 'value1') tags = self.ec2_client.get_all_tags(filters={'key': 'value2'}) self.assertEqual(len(tags), 0, str(tags)) for instance in reservation.instances: instance.remove_tag('key1', value='value1') tags = self.ec2_client.get_all_tags() self.assertEqual(len(tags), 0, str(tags)) for instance in reservation.instances: instance.stop() LOG.info("state: %s", instance.state) if instance.state != "stopped": self.assertInstanceStateWait(instance, "stopped") for instance in reservation.instances: instance.terminate() self.cancelResourceCleanUp(rcuk) @skip_because(bug="1098891") @attr(type='smoke') def test_run_terminate_instance(self): # EC2 run, terminate immediately image_ami = self.ec2_client.get_image(self.images["ami"] ["image_id"]) reservation = image_ami.run(kernel_id=self.images["aki"]["image_id"], ramdisk_id=self.images["ari"]["image_id"], instance_type=self.instance_type) for instance in reservation.instances: instance.terminate() try: instance.update(validate=True) except ValueError: pass except exception.EC2ResponseError as exc: if self.ec2_error_code.\ client.InvalidInstanceID.NotFound.match(exc): pass else: raise else: self.assertNotEqual(instance.state, "running") # NOTE(afazekas): doctored test case, # with normal validation it would fail @skip_because(bug="1182679") @attr(type='smoke') def test_integration_1(self): # EC2 1. integration test (not strict) image_ami = self.ec2_client.get_image(self.images["ami"]["image_id"]) sec_group_name = data_utils.rand_name("securitygroup-") group_desc = sec_group_name + " security group description " security_group = self.ec2_client.create_security_group(sec_group_name, group_desc) self.addResourceCleanUp(self.destroy_security_group_wait, security_group) self.assertTrue( self.ec2_client.authorize_security_group( sec_group_name, ip_protocol="icmp", cidr_ip="0.0.0.0/0", from_port=-1, to_port=-1)) self.assertTrue( self.ec2_client.authorize_security_group( sec_group_name, ip_protocol="tcp", cidr_ip="0.0.0.0/0", from_port=22, to_port=22)) reservation = image_ami.run(kernel_id=self.images["aki"]["image_id"], ramdisk_id=self.images["ari"]["image_id"], instance_type=self.instance_type, key_name=self.keypair_name, security_groups=(sec_group_name,)) self.addResourceCleanUp(self.destroy_reservation, reservation) volume = self.ec2_client.create_volume(1, self.zone) self.addResourceCleanUp(self.destroy_volume_wait, volume) instance = reservation.instances[0] LOG.info("state: %s", instance.state) if instance.state != "running": self.assertInstanceStateWait(instance, "running") address = self.ec2_client.allocate_address() rcuk_a = self.addResourceCleanUp(address.delete) self.assertTrue(address.associate(instance.id)) rcuk_da = self.addResourceCleanUp(address.disassociate) # TODO(afazekas): ping test. dependecy/permission ? self.assertVolumeStatusWait(volume, "available") # NOTE(afazekas): it may be reports availble before it is available ssh = RemoteClient(address.public_ip, CONF.compute.ssh_user, pkey=self.keypair.material) text = data_utils.rand_name("Pattern text for console output -") resp = ssh.write_to_console(text) self.assertFalse(resp) def _output(): output = instance.get_console_output() return output.output re_search_wait(_output, text) part_lines = ssh.get_partitions().split('\n') volume.attach(instance.id, "/dev/vdh") def _volume_state(): volume.update(validate=True) return volume.status self.assertVolumeStatusWait(_volume_state, "in-use") re_search_wait(_volume_state, "in-use") # NOTE(afazekas): Different Hypervisor backends names # differently the devices, # now we just test is the partition number increased/decrised def _part_state(): current = ssh.get_partitions().split('\n') if current > part_lines: return 'INCREASE' if current < part_lines: return 'DECREASE' return 'EQUAL' state_wait(_part_state, 'INCREASE') part_lines = ssh.get_partitions().split('\n') # TODO(afazekas): Resource compare to the flavor settings volume.detach() self.assertVolumeStatusWait(_volume_state, "available") re_search_wait(_volume_state, "available") LOG.info("Volume %s state: %s", volume.id, volume.status) state_wait(_part_state, 'DECREASE') instance.stop() address.disassociate() self.assertAddressDissasociatedWait(address) self.cancelResourceCleanUp(rcuk_da) address.release() self.assertAddressReleasedWait(address) self.cancelResourceCleanUp(rcuk_a) LOG.info("state: %s", instance.state) if instance.state != "stopped": self.assertInstanceStateWait(instance, "stopped") # TODO(afazekas): move steps from teardown to the test case # TODO(afazekas): Snapshot/volume read/write test case
apache-2.0
-516,099,398,364,878,460
40.479651
78
0.583152
false
citrix-openstack-build/horizon
horizon/tables/base.py
1
53167
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright 2012 Nebula, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import collections import copy import logging from operator import attrgetter # noqa import sys from django.conf import settings # noqa from django.core import urlresolvers from django import forms from django.http import HttpResponse # noqa from django import template from django.template.defaultfilters import truncatechars # noqa from django.template.loader import render_to_string # noqa from django.utils.datastructures import SortedDict # noqa from django.utils.html import escape # noqa from django.utils import http from django.utils.http import urlencode # noqa from django.utils.safestring import mark_safe # noqa from django.utils import termcolors from django.utils.translation import ugettext_lazy as _ # noqa from horizon import conf from horizon import exceptions from horizon import messages from horizon.tables.actions import FilterAction # noqa from horizon.tables.actions import LinkAction # noqa from horizon.utils import html LOG = logging.getLogger(__name__) PALETTE = termcolors.PALETTES[termcolors.DEFAULT_PALETTE] STRING_SEPARATOR = "__" class Column(html.HTMLElement): """ A class which represents a single column in a :class:`.DataTable`. .. attribute:: transform A string or callable. If ``transform`` is a string, it should be the name of the attribute on the underlying data class which should be displayed in this column. If it is a callable, it will be passed the current row's data at render-time and should return the contents of the cell. Required. .. attribute:: verbose_name The name for this column which should be used for display purposes. Defaults to the value of ``transform`` with the first letter of each word capitalized. .. attribute:: sortable Boolean to determine whether this column should be sortable or not. Defaults to ``True``. .. attribute:: hidden Boolean to determine whether or not this column should be displayed when rendering the table. Default: ``False``. .. attribute:: link A string or callable which returns a URL which will be wrapped around this column's text as a link. .. attribute:: allowed_data_types A list of data types for which the link should be created. Default is an empty list (``[]``). When the list is empty and the ``link`` attribute is not None, all the rows under this column will be links. .. attribute:: status Boolean designating whether or not this column represents a status (i.e. "enabled/disabled", "up/down", "active/inactive"). Default: ``False``. .. attribute:: status_choices A tuple of tuples representing the possible data values for the status column and their associated boolean equivalent. Positive states should equate to ``True``, negative states should equate to ``False``, and indeterminate states should be ``None``. Values are compared in a case-insensitive manner. Example (these are also the default values):: status_choices = ( ('enabled', True), ('true', True) ('up', True), ('active', True), ('yes', True), ('on', True), ('none', None), ('unknown', None), ('', None), ('disabled', False), ('down', False), ('false', False), ('inactive', False), ('no', False), ('off', False), ) .. attribute:: display_choices A tuple of tuples representing the possible values to substitute the data when displayed in the column cell. .. attribute:: empty_value A string or callable to be used for cells which have no data. Defaults to the string ``"-"``. .. attribute:: summation A string containing the name of a summation method to be used in the generation of a summary row for this column. By default the options are ``"sum"`` or ``"average"``, which behave as expected. Optional. .. attribute:: filters A list of functions (often template filters) to be applied to the value of the data for this column prior to output. This is effectively a shortcut for writing a custom ``transform`` function in simple cases. .. attribute:: classes An iterable of CSS classes which should be added to this column. Example: ``classes=('foo', 'bar')``. .. attribute:: attrs A dict of HTML attribute strings which should be added to this column. Example: ``attrs={"data-foo": "bar"}``. .. attribute:: truncate An integer for the maximum length of the string in this column. If the data in this column is larger than the supplied number, the data for this column will be truncated and an ellipsis will be appended to the truncated data. Defaults to ``None``. .. attribute:: link_classes An iterable of CSS classes which will be added when the column's text is displayed as a link. Example: ``classes=('link-foo', 'link-bar')``. Defaults to ``None``. .. attribute:: wrap_list Boolean value indicating whether the contents of this cell should be wrapped in a ``<ul></ul>`` tag. Useful in conjunction with Django's ``unordered_list`` template filter. Defaults to ``False``. """ summation_methods = { "sum": sum, "average": lambda data: sum(data, 0.0) / len(data) } # Used to retain order when instantiating columns on a table creation_counter = 0 transform = None name = None verbose_name = None status_choices = ( ('enabled', True), ('true', True), ('up', True), ('yes', True), ('active', True), ('on', True), ('none', None), ('unknown', None), ('', None), ('disabled', False), ('down', False), ('false', False), ('inactive', False), ('no', False), ('off', False), ) def __init__(self, transform, verbose_name=None, sortable=True, link=None, allowed_data_types=[], hidden=False, attrs=None, status=False, status_choices=None, display_choices=None, empty_value=None, filters=None, classes=None, summation=None, auto=None, truncate=None, link_classes=None, wrap_list=False): self.classes = list(classes or getattr(self, "classes", [])) super(Column, self).__init__() self.attrs.update(attrs or {}) if callable(transform): self.transform = transform self.name = transform.__name__ else: self.transform = unicode(transform) self.name = self.transform # Empty string is a valid value for verbose_name if verbose_name is None: verbose_name = self.transform.title() else: verbose_name = verbose_name self.auto = auto self.sortable = sortable self.verbose_name = verbose_name self.link = link self.allowed_data_types = allowed_data_types self.hidden = hidden self.status = status self.empty_value = empty_value or '-' self.filters = filters or [] self.truncate = truncate self.link_classes = link_classes or [] self.wrap_list = wrap_list if status_choices: self.status_choices = status_choices self.display_choices = display_choices if summation is not None and summation not in self.summation_methods: raise ValueError("Summation method %s must be one of %s." % (summation, ", ".join(self.summation_methods.keys()))) self.summation = summation self.creation_counter = Column.creation_counter Column.creation_counter += 1 if self.sortable and not self.auto: self.classes.append("sortable") if self.hidden: self.classes.append("hide") if self.link is not None: self.classes.append('anchor') def __unicode__(self): return unicode(self.verbose_name) def __repr__(self): return '<%s: %s>' % (self.__class__.__name__, self.name) def get_raw_data(self, datum): """ Returns the raw data for this column, before any filters or formatting are applied to it. This is useful when doing calculations on data in the table. """ # Callable transformations if callable(self.transform): data = self.transform(datum) # Basic object lookups elif hasattr(datum, self.transform): data = getattr(datum, self.transform, None) # Dict lookups elif isinstance(datum, collections.Iterable) and \ self.transform in datum: data = datum.get(self.transform) else: if settings.DEBUG: msg = _("The attribute %(attr)s doesn't exist on " "%(obj)s.") % {'attr': self.transform, 'obj': datum} msg = termcolors.colorize(msg, **PALETTE['ERROR']) LOG.warning(msg) data = None return data def get_data(self, datum): """ Returns the final display data for this column from the given inputs. The return value will be either the attribute specified for this column or the return value of the attr:`~horizon.tables.Column.transform` method for this column. """ datum_id = self.table.get_object_id(datum) if datum_id in self.table._data_cache[self]: return self.table._data_cache[self][datum_id] data = self.get_raw_data(datum) display_value = None if self.display_choices: display_value = [display for (value, display) in self.display_choices if value.lower() == (data or '').lower()] if display_value: data = display_value[0] else: for filter_func in self.filters: data = filter_func(data) if data and self.truncate: data = truncatechars(data, self.truncate) self.table._data_cache[self][datum_id] = data return self.table._data_cache[self][datum_id] def get_link_url(self, datum): """ Returns the final value for the column's ``link`` property. If ``allowed_data_types`` of this column is not empty and the datum has an assigned type, check if the datum's type is in the ``allowed_data_types`` list. If not, the datum won't be displayed as a link. If ``link`` is a callable, it will be passed the current data object and should return a URL. Otherwise ``get_link_url`` will attempt to call ``reverse`` on ``link`` with the object's id as a parameter. Failing that, it will simply return the value of ``link``. """ if self.allowed_data_types: data_type_name = self.table._meta.data_type_name data_type = getattr(datum, data_type_name, None) if data_type and (data_type not in self.allowed_data_types): return None obj_id = self.table.get_object_id(datum) if callable(self.link): return self.link(datum) try: return urlresolvers.reverse(self.link, args=(obj_id,)) except urlresolvers.NoReverseMatch: return self.link def get_summation(self): """ Returns the summary value for the data in this column if a valid summation method is specified for it. Otherwise returns ``None``. """ if self.summation not in self.summation_methods: return None summation_function = self.summation_methods[self.summation] data = [self.get_raw_data(datum) for datum in self.table.data] data = filter(lambda datum: datum is not None, data) if len(data): summation = summation_function(data) for filter_func in self.filters: summation = filter_func(summation) return summation else: return None class Row(html.HTMLElement): """ Represents a row in the table. When iterated, the ``Row`` instance will yield each of its cells. Rows are capable of AJAX updating, with a little added work: The ``ajax`` property needs to be set to ``True``, and subclasses need to define a ``get_data`` method which returns a data object appropriate for consumption by the table (effectively the "get" lookup versus the table's "list" lookup). The automatic update interval is configurable by setting the key ``ajax_poll_interval`` in the ``HORIZON_CONFIG`` dictionary. Default: ``2500`` (measured in milliseconds). .. attribute:: table The table which this row belongs to. .. attribute:: datum The data object which this row represents. .. attribute:: id A string uniquely representing this row composed of the table name and the row data object's identifier. .. attribute:: cells The cells belonging to this row stored in a ``SortedDict`` object. This attribute is populated during instantiation. .. attribute:: status Boolean value representing the status of this row calculated from the values of the table's ``status_columns`` if they are set. .. attribute:: status_class Returns a css class for the status of the row based on ``status``. .. attribute:: ajax Boolean value to determine whether ajax updating for this row is enabled. .. attribute:: ajax_action_name String that is used for the query parameter key to request AJAX updates. Generally you won't need to change this value. Default: ``"row_update"``. """ ajax = False ajax_action_name = "row_update" def __init__(self, table, datum=None): super(Row, self).__init__() self.table = table self.datum = datum self.selected = False if self.datum: self.load_cells() else: self.id = None self.cells = [] def load_cells(self, datum=None): """ Load the row's data (either provided at initialization or as an argument to this function), initiailize all the cells contained by this row, and set the appropriate row properties which require the row's data to be determined. This function is called automatically by :meth:`~horizon.tables.Row.__init__` if the ``datum`` argument is provided. However, by not providing the data during initialization this function allows for the possibility of a two-step loading pattern when you need a row instance but don't yet have the data available. """ # Compile all the cells on instantiation. table = self.table if datum: self.datum = datum else: datum = self.datum cells = [] for column in table.columns.values(): if column.auto == "multi_select": widget = forms.CheckboxInput(check_test=lambda value: False) # Convert value to string to avoid accidental type conversion data = widget.render('object_ids', unicode(table.get_object_id(datum))) table._data_cache[column][table.get_object_id(datum)] = data elif column.auto == "actions": data = table.render_row_actions(datum) table._data_cache[column][table.get_object_id(datum)] = data else: data = column.get_data(datum) cell = Cell(datum, data, column, self) cells.append((column.name or column.auto, cell)) self.cells = SortedDict(cells) if self.ajax: interval = conf.HORIZON_CONFIG['ajax_poll_interval'] self.attrs['data-update-interval'] = interval self.attrs['data-update-url'] = self.get_ajax_update_url() self.classes.append("ajax-update") # Add the row's status class and id to the attributes to be rendered. self.classes.append(self.status_class) id_vals = {"table": self.table.name, "sep": STRING_SEPARATOR, "id": table.get_object_id(datum)} self.id = "%(table)s%(sep)srow%(sep)s%(id)s" % id_vals self.attrs['id'] = self.id # Add the row's display name if available display_name = table.get_object_display(datum) if display_name: self.attrs['data-display'] = escape(display_name) def __repr__(self): return '<%s: %s>' % (self.__class__.__name__, self.id) def __iter__(self): return iter(self.cells.values()) @property def status(self): column_names = self.table._meta.status_columns if column_names: statuses = dict([(column_name, self.cells[column_name].status) for column_name in column_names]) return self.table.calculate_row_status(statuses) @property def status_class(self): column_names = self.table._meta.status_columns if column_names: return self.table.get_row_status_class(self.status) else: return '' def render(self): return render_to_string("horizon/common/_data_table_row.html", {"row": self}) def get_cells(self): """ Returns the bound cells for this row in order. """ return self.cells.values() def get_ajax_update_url(self): table_url = self.table.get_absolute_url() params = urlencode({"table": self.table.name, "action": self.ajax_action_name, "obj_id": self.table.get_object_id(self.datum)}) return "%s?%s" % (table_url, params) def get_data(self, request, obj_id): """ Fetches the updated data for the row based on the object id passed in. Must be implemented by a subclass to allow AJAX updating. """ raise NotImplementedError("You must define a get_data method on %s" % self.__class__.__name__) class Cell(html.HTMLElement): """ Represents a single cell in the table. """ def __init__(self, datum, data, column, row, attrs=None, classes=None): self.classes = classes or getattr(self, "classes", []) super(Cell, self).__init__() self.attrs.update(attrs or {}) self.datum = datum self.data = data self.column = column self.row = row self.wrap_list = column.wrap_list def __repr__(self): return '<%s: %s, %s>' % (self.__class__.__name__, self.column.name, self.row.id) @property def value(self): """ Returns a formatted version of the data for final output. This takes into consideration the :attr:`~horizon.tables.Column.link`` and :attr:`~horizon.tables.Column.empty_value` attributes. """ try: data = self.column.get_data(self.datum) if data is None: if callable(self.column.empty_value): data = self.column.empty_value(self.datum) else: data = self.column.empty_value except Exception: data = None exc_info = sys.exc_info() raise template.TemplateSyntaxError, exc_info[1], exc_info[2] if self.url: link_classes = ' '.join(self.column.link_classes) # Escape the data inside while allowing our HTML to render data = mark_safe('<a href="%s" class="%s">%s</a>' % (self.url, link_classes, escape(data))) return data @property def url(self): if self.column.link: url = self.column.get_link_url(self.datum) if url: return url else: return None @property def status(self): """ Gets the status for the column based on the cell's data. """ # Deal with status column mechanics based in this cell's data if hasattr(self, '_status'): return self._status if self.column.status or \ self.column.name in self.column.table._meta.status_columns: #returns the first matching status found data_value_lower = unicode(self.data).lower() for status_name, status_value in self.column.status_choices: if unicode(status_name).lower() == data_value_lower: self._status = status_value return self._status self._status = None return self._status def get_status_class(self, status): """ Returns a css class name determined by the status value. """ if status is True: return "status_up" elif status is False: return "status_down" else: return "status_unknown" def get_default_classes(self): """ Returns a flattened string of the cell's CSS classes. """ if not self.url: self.column.classes = [cls for cls in self.column.classes if cls != "anchor"] column_class_string = self.column.get_final_attrs().get('class', "") classes = set(column_class_string.split(" ")) if self.column.status: classes.add(self.get_status_class(self.status)) return list(classes) class DataTableOptions(object): """ Contains options for :class:`.DataTable` objects. .. attribute:: name A short name or slug for the table. .. attribute:: verbose_name A more verbose name for the table meant for display purposes. .. attribute:: columns A list of column objects or column names. Controls ordering/display of the columns in the table. .. attribute:: table_actions A list of action classes derived from the :class:`~horizon.tables.Action` class. These actions will handle tasks such as bulk deletion, etc. for multiple objects at once. .. attribute:: row_actions A list similar to ``table_actions`` except tailored to appear for each row. These actions act on a single object at a time. .. attribute:: actions_column Boolean value to control rendering of an additional column containing the various actions for each row. Defaults to ``True`` if any actions are specified in the ``row_actions`` option. .. attribute:: multi_select Boolean value to control rendering of an extra column with checkboxes for selecting multiple objects in the table. Defaults to ``True`` if any actions are specified in the ``table_actions`` option. .. attribute:: filter Boolean value to control the display of the "filter" search box in the table actions. By default it checks whether or not an instance of :class:`.FilterAction` is in :attr:`.table_actions`. .. attribute:: template String containing the template which should be used to render the table. Defaults to ``"horizon/common/_data_table.html"``. .. attribute:: context_var_name The name of the context variable which will contain the table when it is rendered. Defaults to ``"table"``. .. attribute:: pagination_param The name of the query string parameter which will be used when paginating this table. When using multiple tables in a single view this will need to be changed to differentiate between the tables. Default: ``"marker"``. .. attribute:: status_columns A list or tuple of column names which represents the "state" of the data object being represented. If ``status_columns`` is set, when the rows are rendered the value of this column will be used to add an extra class to the row in the form of ``"status_up"`` or ``"status_down"`` for that row's data. The row status is used by other Horizon components to trigger tasks such as dynamic AJAX updating. .. attribute:: row_class The class which should be used for rendering the rows of this table. Optional. Default: :class:`~horizon.tables.Row`. .. attribute:: column_class The class which should be used for handling the columns of this table. Optional. Default: :class:`~horizon.tables.Column`. .. attribute:: mixed_data_type A toggle to indicate if the table accepts two or more types of data. Optional. Default: :``False`` .. attribute:: data_types A list of data types that this table would accept. Default to be an empty list, but if the attibute ``mixed_data_type`` is set to ``True``, then this list must have at least one element. .. attribute:: data_type_name The name of an attribute to assign to data passed to the table when it accepts mix data. Default: ``"_table_data_type"`` .. attribute:: footer Boolean to control whether or not to show the table's footer. Default: ``True``. .. attribute:: permissions A list of permission names which this table requires in order to be displayed. Defaults to an empty list (``[]``). """ def __init__(self, options): self.name = getattr(options, 'name', self.__class__.__name__) verbose_name = getattr(options, 'verbose_name', None) \ or self.name.title() self.verbose_name = verbose_name self.columns = getattr(options, 'columns', None) self.status_columns = getattr(options, 'status_columns', []) self.table_actions = getattr(options, 'table_actions', []) self.row_actions = getattr(options, 'row_actions', []) self.row_class = getattr(options, 'row_class', Row) self.column_class = getattr(options, 'column_class', Column) self.pagination_param = getattr(options, 'pagination_param', 'marker') self.browser_table = getattr(options, 'browser_table', None) self.footer = getattr(options, 'footer', True) self.no_data_message = getattr(options, "no_data_message", _("No items to display.")) self.permissions = getattr(options, 'permissions', []) # Set self.filter if we have any FilterActions filter_actions = [action for action in self.table_actions if issubclass(action, FilterAction)] if len(filter_actions) > 1: raise NotImplementedError("Multiple filter actions is not " "currently supported.") self.filter = getattr(options, 'filter', len(filter_actions) > 0) if len(filter_actions) == 1: self._filter_action = filter_actions.pop() else: self._filter_action = None self.template = getattr(options, 'template', 'horizon/common/_data_table.html') self.row_actions_template = \ 'horizon/common/_data_table_row_actions.html' self.table_actions_template = \ 'horizon/common/_data_table_table_actions.html' self.context_var_name = unicode(getattr(options, 'context_var_name', 'table')) self.actions_column = getattr(options, 'actions_column', len(self.row_actions) > 0) self.multi_select = getattr(options, 'multi_select', len(self.table_actions) > 0) # Set runtime table defaults; not configurable. self.has_more_data = False # Set mixed data type table attr self.mixed_data_type = getattr(options, 'mixed_data_type', False) self.data_types = getattr(options, 'data_types', []) # If the data_types has more than 2 elements, set mixed_data_type # to True automatically. if len(self.data_types) > 1: self.mixed_data_type = True # However, if the mixed_data_type is set to True manually and the # the data_types is empty, raise an errror. if self.mixed_data_type and len(self.data_types) <= 1: raise ValueError("If mixed_data_type is set to True in class %s, " "data_types should has more than one types" % self.name) self.data_type_name = getattr(options, 'data_type_name', "_table_data_type") class DataTableMetaclass(type): """ Metaclass to add options to DataTable class and collect columns. """ def __new__(mcs, name, bases, attrs): # Process options from Meta class_name = name attrs["_meta"] = opts = DataTableOptions(attrs.get("Meta", None)) # Gather columns; this prevents the column from being an attribute # on the DataTable class and avoids naming conflicts. columns = [] for attr_name, obj in attrs.items(): if issubclass(type(obj), (opts.column_class, Column)): column_instance = attrs.pop(attr_name) column_instance.name = attr_name column_instance.classes.append('normal_column') columns.append((attr_name, column_instance)) columns.sort(key=lambda x: x[1].creation_counter) # Iterate in reverse to preserve final order for base in bases[::-1]: if hasattr(base, 'base_columns'): columns = base.base_columns.items() + columns attrs['base_columns'] = SortedDict(columns) # If the table is in a ResourceBrowser, the column number must meet # these limits because of the width of the browser. if opts.browser_table == "navigation" and len(columns) > 1: raise ValueError("You can only assign one column to %s." % class_name) if opts.browser_table == "content" and len(columns) > 2: raise ValueError("You can only assign two columns to %s." % class_name) if opts.columns: # Remove any columns that weren't declared if we're being explicit # NOTE: we're iterating a COPY of the list here! for column_data in columns[:]: if column_data[0] not in opts.columns: columns.pop(columns.index(column_data)) # Re-order based on declared columns columns.sort(key=lambda x: attrs['_meta'].columns.index(x[0])) # Add in our auto-generated columns if opts.multi_select and opts.browser_table != "navigation": multi_select = opts.column_class("multi_select", verbose_name="", auto="multi_select") multi_select.classes.append('multi_select_column') columns.insert(0, ("multi_select", multi_select)) if opts.actions_column: actions_column = opts.column_class("actions", verbose_name=_("Actions"), auto="actions") actions_column.classes.append('actions_column') columns.append(("actions", actions_column)) # Store this set of columns internally so we can copy them per-instance attrs['_columns'] = SortedDict(columns) # Gather and register actions for later access since we only want # to instantiate them once. # (list() call gives deterministic sort order, which sets don't have.) actions = list(set(opts.row_actions) | set(opts.table_actions)) actions.sort(key=attrgetter('name')) actions_dict = SortedDict([(action.name, action()) for action in actions]) attrs['base_actions'] = actions_dict if opts._filter_action: # Replace our filter action with the instantiated version opts._filter_action = actions_dict[opts._filter_action.name] # Create our new class! return type.__new__(mcs, name, bases, attrs) class DataTable(object): """ A class which defines a table with all data and associated actions. .. attribute:: name String. Read-only access to the name specified in the table's Meta options. .. attribute:: multi_select Boolean. Read-only access to whether or not this table should display a column for multi-select checkboxes. .. attribute:: data Read-only access to the data this table represents. .. attribute:: filtered_data Read-only access to the data this table represents, filtered by the :meth:`~horizon.tables.FilterAction.filter` method of the table's :class:`~horizon.tables.FilterAction` class (if one is provided) using the current request's query parameters. """ __metaclass__ = DataTableMetaclass def __init__(self, request, data=None, needs_form_wrapper=None, **kwargs): self.request = request self.data = data self.kwargs = kwargs self._needs_form_wrapper = needs_form_wrapper self._no_data_message = self._meta.no_data_message self.breadcrumb = None self.current_item_id = None self.permissions = self._meta.permissions # Create a new set columns = [] for key, _column in self._columns.items(): column = copy.copy(_column) column.table = self columns.append((key, column)) self.columns = SortedDict(columns) self._populate_data_cache() # Associate these actions with this table for action in self.base_actions.values(): action.table = self self.needs_summary_row = any([col.summation for col in self.columns.values()]) def __unicode__(self): return unicode(self._meta.verbose_name) def __repr__(self): return '<%s: %s>' % (self.__class__.__name__, self._meta.name) @property def name(self): return self._meta.name @property def footer(self): return self._meta.footer @property def multi_select(self): return self._meta.multi_select @property def filtered_data(self): if not hasattr(self, '_filtered_data'): self._filtered_data = self.data if self._meta.filter and self._meta._filter_action: action = self._meta._filter_action filter_string = self.get_filter_string() request_method = self.request.method needs_preloading = (not filter_string and request_method == 'GET' and action.needs_preloading) valid_method = (request_method == action.method) if (filter_string and valid_method) or needs_preloading: if self._meta.mixed_data_type: self._filtered_data = action.data_type_filter(self, self.data, filter_string) else: self._filtered_data = action.filter(self, self.data, filter_string) return self._filtered_data def get_filter_string(self): filter_action = self._meta._filter_action param_name = filter_action.get_param_name() filter_string = self.request.POST.get(param_name, '') return filter_string def _populate_data_cache(self): self._data_cache = {} # Set up hash tables to store data points for each column for column in self.get_columns(): self._data_cache[column] = {} def _filter_action(self, action, request, datum=None): try: # Catch user errors in permission functions here row_matched = True if self._meta.mixed_data_type: row_matched = action.data_type_matched(datum) return action._allowed(request, datum) and row_matched except Exception: LOG.exception("Error while checking action permissions.") return None def is_browser_table(self): if self._meta.browser_table: return True return False def render(self): """ Renders the table using the template from the table options. """ table_template = template.loader.get_template(self._meta.template) extra_context = {self._meta.context_var_name: self} context = template.RequestContext(self.request, extra_context) return table_template.render(context) def get_absolute_url(self): """ Returns the canonical URL for this table. This is used for the POST action attribute on the form element wrapping the table. In many cases it is also useful for redirecting after a successful action on the table. For convenience it defaults to the value of ``request.get_full_path()`` with any query string stripped off, e.g. the path at which the table was requested. """ return self.request.get_full_path().partition('?')[0] def get_empty_message(self): """ Returns the message to be displayed when there is no data. """ return self._no_data_message def get_object_by_id(self, lookup): """ Returns the data object from the table's dataset which matches the ``lookup`` parameter specified. An error will be raised if the match is not a single data object. We will convert the object id and ``lookup`` to unicode before comparison. Uses :meth:`~horizon.tables.DataTable.get_object_id` internally. """ if not isinstance(lookup, unicode): lookup = unicode(str(lookup), 'utf-8') matches = [] for datum in self.data: obj_id = self.get_object_id(datum) if not isinstance(obj_id, unicode): obj_id = unicode(str(obj_id), 'utf-8') if obj_id == lookup: matches.append(datum) if len(matches) > 1: raise ValueError("Multiple matches were returned for that id: %s." % matches) if not matches: raise exceptions.Http302(self.get_absolute_url(), _('No match returned for the id "%s".') % lookup) return matches[0] @property def has_actions(self): """ Boolean. Indicates whether there are any available actions on this table. """ if not self.base_actions: return False return any(self.get_table_actions()) or any(self._meta.row_actions) @property def needs_form_wrapper(self): """ Boolean. Indicates whather this table should be rendered wrapped in a ``<form>`` tag or not. """ # If needs_form_wrapper is explicitly set, defer to that. if self._needs_form_wrapper is not None: return self._needs_form_wrapper # Otherwise calculate whether or not we need a form element. return self.has_actions def get_table_actions(self): """ Returns a list of the action instances for this table. """ bound_actions = [self.base_actions[action.name] for action in self._meta.table_actions] return [action for action in bound_actions if self._filter_action(action, self.request)] def get_row_actions(self, datum): """ Returns a list of the action instances for a specific row. """ bound_actions = [] for action in self._meta.row_actions: # Copy to allow modifying properties per row bound_action = copy.copy(self.base_actions[action.name]) bound_action.attrs = copy.copy(bound_action.attrs) bound_action.datum = datum # Remove disallowed actions. if not self._filter_action(bound_action, self.request, datum): continue # Hook for modifying actions based on data. No-op by default. bound_action.update(self.request, datum) # Pre-create the URL for this link with appropriate parameters if issubclass(bound_action.__class__, LinkAction): bound_action.bound_url = bound_action.get_link_url(datum) bound_actions.append(bound_action) return bound_actions def render_table_actions(self): """ Renders the actions specified in ``Meta.table_actions``. """ template_path = self._meta.table_actions_template table_actions_template = template.loader.get_template(template_path) bound_actions = self.get_table_actions() extra_context = {"table_actions": bound_actions} if self._meta.filter and \ self._filter_action(self._meta._filter_action, self.request): extra_context["filter"] = self._meta._filter_action context = template.RequestContext(self.request, extra_context) return table_actions_template.render(context) def render_row_actions(self, datum): """ Renders the actions specified in ``Meta.row_actions`` using the current row data. """ template_path = self._meta.row_actions_template row_actions_template = template.loader.get_template(template_path) bound_actions = self.get_row_actions(datum) extra_context = {"row_actions": bound_actions, "row_id": self.get_object_id(datum)} context = template.RequestContext(self.request, extra_context) return row_actions_template.render(context) @staticmethod def parse_action(action_string): """ Parses the ``action`` parameter (a string) sent back with the POST data. By default this parses a string formatted as ``{{ table_name }}__{{ action_name }}__{{ row_id }}`` and returns each of the pieces. The ``row_id`` is optional. """ if action_string: bits = action_string.split(STRING_SEPARATOR) bits.reverse() table = bits.pop() action = bits.pop() try: object_id = bits.pop() except IndexError: object_id = None return table, action, object_id def take_action(self, action_name, obj_id=None, obj_ids=None): """ Locates the appropriate action and routes the object data to it. The action should return an HTTP redirect if successful, or a value which evaluates to ``False`` if unsuccessful. """ # See if we have a list of ids obj_ids = obj_ids or self.request.POST.getlist('object_ids') action = self.base_actions.get(action_name, None) if not action or action.method != self.request.method: # We either didn't get an action or we're being hacked. Goodbye. return None # Meanhile, back in Gotham... if not action.requires_input or obj_id or obj_ids: if obj_id: obj_id = self.sanitize_id(obj_id) if obj_ids: obj_ids = [self.sanitize_id(i) for i in obj_ids] # Single handling is easy if not action.handles_multiple: response = action.single(self, self.request, obj_id) # Otherwise figure out what to pass along else: # Preference given to a specific id, since that implies # the user selected an action for just one row. if obj_id: obj_ids = [obj_id] response = action.multiple(self, self.request, obj_ids) return response elif action and action.requires_input and not (obj_id or obj_ids): messages.info(self.request, _("Please select a row before taking that action.")) return None @classmethod def check_handler(cls, request): """ Determine whether the request should be handled by this table. """ if request.method == "POST" and "action" in request.POST: table, action, obj_id = cls.parse_action(request.POST["action"]) elif "table" in request.GET and "action" in request.GET: table = request.GET["table"] action = request.GET["action"] obj_id = request.GET.get("obj_id", None) else: table = action = obj_id = None return table, action, obj_id def maybe_preempt(self): """ Determine whether the request should be handled by a preemptive action on this table or by an AJAX row update before loading any data. """ request = self.request table_name, action_name, obj_id = self.check_handler(request) if table_name == self.name: # Handle AJAX row updating. new_row = self._meta.row_class(self) if new_row.ajax and new_row.ajax_action_name == action_name: try: datum = new_row.get_data(request, obj_id) new_row.load_cells(datum) error = False except Exception: datum = None error = exceptions.handle(request, ignore=True) if request.is_ajax(): if not error: return HttpResponse(new_row.render()) else: return HttpResponse(status=error.status_code) preemptive_actions = [action for action in self.base_actions.values() if action.preempt] if action_name: for action in preemptive_actions: if action.name == action_name: handled = self.take_action(action_name, obj_id) if handled: return handled return None def maybe_handle(self): """ Determine whether the request should be handled by any action on this table after data has been loaded. """ request = self.request table_name, action_name, obj_id = self.check_handler(request) if table_name == self.name and action_name: action_names = [action.name for action in self.base_actions.values() if not action.preempt] # do not run preemptive actions here if action_name in action_names: return self.take_action(action_name, obj_id) return None def sanitize_id(self, obj_id): """ Override to modify an incoming obj_id to match existing API data types or modify the format. """ return obj_id def get_object_id(self, datum): """ Returns the identifier for the object this row will represent. By default this returns an ``id`` attribute on the given object, but this can be overridden to return other values. .. warning:: Make sure that the value returned is a unique value for the id otherwise rendering issues can occur. """ return datum.id def get_object_display(self, datum): """ Returns a display name that identifies this object. By default, this returns a ``name`` attribute from the given object, but this can be overriden to return other values. """ if hasattr(datum, 'name'): return datum.name return None def has_more_data(self): """ Returns a boolean value indicating whether there is more data available to this table from the source (generally an API). The method is largely meant for internal use, but if you want to override it to provide custom behavior you can do so at your own risk. """ return self._meta.has_more_data def get_marker(self): """ Returns the identifier for the last object in the current data set for APIs that use marker/limit-based paging. """ return http.urlquote_plus(self.get_object_id(self.data[-1])) def get_pagination_string(self): """ Returns the query parameter string to paginate this table. """ return "=".join([self._meta.pagination_param, self.get_marker()]) def calculate_row_status(self, statuses): """ Returns a boolean value determining the overall row status based on the dictionary of column name to status mappings passed in. By default, it uses the following logic: #. If any statuses are ``False``, return ``False``. #. If no statuses are ``False`` but any or ``None``, return ``None``. #. If all statuses are ``True``, return ``True``. This provides the greatest protection against false positives without weighting any particular columns. The ``statuses`` parameter is passed in as a dictionary mapping column names to their statuses in order to allow this function to be overridden in such a way as to weight one column's status over another should that behavior be desired. """ values = statuses.values() if any([status is False for status in values]): return False elif any([status is None for status in values]): return None else: return True def get_row_status_class(self, status): """ Returns a css class name determined by the status value. This class name is used to indicate the status of the rows in the table if any ``status_columns`` have been specified. """ if status is True: return "status_up" elif status is False: return "status_down" else: return "status_unknown" def get_columns(self): """ Returns this table's columns including auto-generated ones.""" return self.columns.values() def get_rows(self): """ Return the row data for this table broken out by columns. """ rows = [] try: for datum in self.filtered_data: row = self._meta.row_class(self, datum) if self.get_object_id(datum) == self.current_item_id: self.selected = True row.classes.append('current_selected') rows.append(row) except Exception: # Exceptions can be swallowed at the template level here, # re-raising as a TemplateSyntaxError makes them visible. LOG.exception("Error while rendering table rows.") exc_info = sys.exc_info() raise template.TemplateSyntaxError, exc_info[1], exc_info[2] return rows
apache-2.0
670,515,343,822,811,100
37.779723
79
0.584479
false
jromang/retina-old
distinclude/spyderlib/interpreter.py
1
11927
# -*- coding: utf-8 -*- # # Copyright © 2009-2010 Pierre Raybaut # Licensed under the terms of the MIT License # (see spyderlib/__init__.py for details) """Shell Interpreter""" import sys import atexit import threading import ctypes import os import re import os.path as osp import pydoc from subprocess import Popen, PIPE from code import InteractiveConsole # Local imports: from spyderlib.utils.dochelpers import isdefined from spyderlib.utils import encoding # Force Python to search modules in the current directory first: sys.path.insert(0, '') def guess_filename(filename): """Guess filename""" if osp.isfile(filename): return filename if not filename.endswith('.py'): filename += '.py' for path in [os.getcwdu()]+sys.path: fname = osp.join(path, filename) if osp.isfile(fname): return fname elif osp.isfile(fname+'.py'): return fname+'.py' elif osp.isfile(fname+'.pyw'): return fname+'.pyw' return filename class Interpreter(InteractiveConsole, threading.Thread): """Interpreter, executed in a separate thread""" p1 = ">>> " p2 = "... " def __init__(self, namespace=None, exitfunc=None, Output=None, WidgetProxy=None, debug=False): """ namespace: locals send to InteractiveConsole object commands: list of commands executed at startup """ InteractiveConsole.__init__(self, namespace) threading.Thread.__init__(self) self._id = None self.exit_flag = False self.debug = debug # Execution Status self.more = False if exitfunc is not None: atexit.register(exitfunc) self.namespace = self.locals self.namespace['__name__'] = '__main__' self.namespace['execfile'] = self.execfile self.namespace['runfile'] = self.runfile self.namespace['help'] = self.help_replacement # Capture all interactive input/output self.initial_stdout = sys.stdout self.initial_stderr = sys.stderr self.initial_stdin = sys.stdin # Create communication pipes pr, pw = os.pipe() self.stdin_read = os.fdopen(pr, "r") self.stdin_write = os.fdopen(pw, "w", 0) self.stdout_write = Output() self.stderr_write = Output() self.widget_proxy = WidgetProxy() self.redirect_stds() #------ Standard input/output def redirect_stds(self): """Redirects stds""" if not self.debug: sys.stdout = self.stdout_write sys.stderr = self.stderr_write sys.stdin = self.stdin_read def restore_stds(self): """Restore stds""" if not self.debug: sys.stdout = self.initial_stdout sys.stderr = self.initial_stderr sys.stdin = self.initial_stdin def help_replacement(self, text=None, interactive=False): """For help() support""" if text is not None and not interactive: return pydoc.help(text) elif text is None: pyver = "%d.%d" % (sys.version_info[0], sys.version_info[1]) self.write(""" Welcome to Python %s! This is the online help utility. If this is your first time using Python, you should definitely check out the tutorial on the Internet at http://www.python.org/doc/tut/. Enter the name of any module, keyword, or topic to get help on writing Python programs and using Python modules. To quit this help utility and return to the interpreter, just type "quit". To get a list of available modules, keywords, or topics, type "modules", "keywords", or "topics". Each module also comes with a one-line summary of what it does; to list the modules whose summaries contain a given word such as "spam", type "modules spam". """ % pyver) else: text = text.strip() try: eval("pydoc.help(%s)" % text) except (NameError, SyntaxError): print "no Python documentation found for '%r'" % text self.write(os.linesep) self.widget_proxy.new_prompt("help> ") inp = self.raw_input() if inp.strip(): self.help_replacement(inp, interactive=True) else: self.write(""" You are now leaving help and returning to the Python interpreter. If you want to ask for help on a particular object directly from the interpreter, you can type "help(object)". Executing "help('string')" has the same effect as typing a particular string at the help> prompt. """) def run_command(self, cmd, new_prompt=True): """Run command in interpreter""" if cmd == 'exit()': self.exit_flag = True self.write('\n') return # -- Special commands type I # (transformed into commands executed in the interpreter) # ? command special_pattern = r"^%s (?:r\')?(?:u\')?\"?\'?([a-zA-Z0-9_\.]+)" run_match = re.match(special_pattern % 'run', cmd) help_match = re.match(r'^([a-zA-Z0-9_\.]+)\?$', cmd) cd_match = re.match(r"^\!cd \"?\'?([a-zA-Z0-9_ \.]+)", cmd) if help_match: cmd = 'help(%s)' % help_match.group(1) # run command elif run_match: filename = guess_filename(run_match.groups()[0]) cmd = 'runfile(r"%s", args=None)' % filename # !cd system command elif cd_match: cmd = 'import os; os.chdir(r"%s")' % cd_match.groups()[0].strip() # -- End of Special commands type I # -- Special commands type II # (don't need code execution in interpreter) xedit_match = re.match(special_pattern % 'xedit', cmd) edit_match = re.match(special_pattern % 'edit', cmd) clear_match = re.match(r"^clear ([a-zA-Z0-9_, ]+)", cmd) # (external) edit command if xedit_match: filename = guess_filename(xedit_match.groups()[0]) self.widget_proxy.edit(filename, external_editor=True) # local edit command elif edit_match: filename = guess_filename(edit_match.groups()[0]) if osp.isfile(filename): self.widget_proxy.edit(filename) else: self.stderr_write.write( "No such file or directory: %s\n" % filename) # remove reference (equivalent to MATLAB's clear command) elif clear_match: varnames = clear_match.groups()[0].replace(' ', '').split(',') for varname in varnames: try: self.namespace.pop(varname) except KeyError: pass # Execute command elif cmd.startswith('!'): # System ! command pipe = Popen(cmd[1:], shell=True, stdin=PIPE, stderr=PIPE, stdout=PIPE) txt_out = encoding.transcode( pipe.stdout.read() ) txt_err = encoding.transcode( pipe.stderr.read().rstrip() ) if txt_err: self.stderr_write.write(txt_err) if txt_out: self.stdout_write.write(txt_out) self.stdout_write.write('\n') self.more = False # -- End of Special commands type II else: # Command executed in the interpreter # self.widget_proxy.set_readonly(True) self.more = self.push(cmd) # self.widget_proxy.set_readonly(False) if new_prompt: self.widget_proxy.new_prompt(self.p2 if self.more else self.p1) if not self.more: self.resetbuffer() def run(self): """Wait for input and run it""" while not self.exit_flag: self.run_line() def run_line(self): line = self.stdin_read.readline() if self.exit_flag: return # Remove last character which is always '\n': self.run_command(line[:-1]) def get_thread_id(self): """Return thread id""" if self._id is None: for thread_id, obj in threading._active.items(): if obj is self: self._id = thread_id return self._id def raise_keyboard_interrupt(self): if self.isAlive(): ctypes.pythonapi.PyThreadState_SetAsyncExc(self.get_thread_id(), ctypes.py_object(KeyboardInterrupt)) return True else: return False def closing(self): """Actions to be done before restarting this interpreter""" pass def execfile(self, filename): """Exec filename""" source = open(filename, 'r').read() try: try: name = filename.encode('ascii') except UnicodeEncodeError: name = '<executed_script>' code = compile(source, name, "exec") except (OverflowError, SyntaxError): InteractiveConsole.showsyntaxerror(self, filename) else: self.runcode(code) def runfile(self, filename, args=None): """ Run filename args: command line arguments (string) """ if args is not None and not isinstance(args, basestring): raise TypeError("expected a character buffer object") self.namespace['__file__'] = filename sys.argv = [filename] if args is not None: for arg in args.split(): sys.argv.append(arg) self.execfile(filename) sys.argv = [''] self.namespace.pop('__file__') def eval(self, text): """ Evaluate text and return (obj, valid) where *obj* is the object represented by *text* and *valid* is True if object evaluation did not raise any exception """ assert isinstance(text, (str, unicode)) try: return eval(text, self.locals), True except: return None, False def is_defined(self, objtxt, force_import=False): """Return True if object is defined""" return isdefined(objtxt, force_import=force_import, namespace=self.locals) #=========================================================================== # InteractiveConsole API #=========================================================================== def push(self, line): """ Push a line of source text to the interpreter The line should not have a trailing newline; it may have internal newlines. The line is appended to a buffer and the interpreter’s runsource() method is called with the concatenated contents of the buffer as source. If this indicates that the command was executed or invalid, the buffer is reset; otherwise, the command is incomplete, and the buffer is left as it was after the line was appended. The return value is True if more input is required, False if the line was dealt with in some way (this is the same as runsource()). """ return InteractiveConsole.push(self, line) def resetbuffer(self): """Remove any unhandled source text from the input buffer""" InteractiveConsole.resetbuffer(self)
gpl-3.0
547,717,842,301,860,860
35.26875
80
0.545035
false
danforthcenter/plantcv
tests/tests.py
1
288502
#!/usr/bin/env python import pytest import os import shutil import json import numpy as np import cv2 import sys import pandas as pd from plotnine import ggplot from plantcv import plantcv as pcv import plantcv.learn import plantcv.parallel import plantcv.utils # Import matplotlib and use a null Template to block plotting to screen # This will let us test debug = "plot" import matplotlib import matplotlib.pyplot as plt import dask from dask.distributed import Client from skimage import img_as_ubyte PARALLEL_TEST_DATA = os.path.join(os.path.dirname(os.path.abspath(__file__)), "parallel_data") TEST_TMPDIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), "..", ".cache") TEST_IMG_DIR = "images" TEST_IMG_DIR2 = "images_w_date" TEST_SNAPSHOT_DIR = "snapshots" TEST_PIPELINE = os.path.join(PARALLEL_TEST_DATA, "plantcv-script.py") META_FIELDS = {"imgtype": 0, "camera": 1, "frame": 2, "zoom": 3, "lifter": 4, "gain": 5, "exposure": 6, "id": 7} VALID_META = { # Camera settings "camera": { "label": "camera identifier", "datatype": "<class 'str'>", "value": "none" }, "imgtype": { "label": "image type", "datatype": "<class 'str'>", "value": "none" }, "zoom": { "label": "camera zoom setting", "datatype": "<class 'str'>", "value": "none" }, "exposure": { "label": "camera exposure setting", "datatype": "<class 'str'>", "value": "none" }, "gain": { "label": "camera gain setting", "datatype": "<class 'str'>", "value": "none" }, "frame": { "label": "image series frame identifier", "datatype": "<class 'str'>", "value": "none" }, "lifter": { "label": "imaging platform height setting", "datatype": "<class 'str'>", "value": "none" }, # Date-Time "timestamp": { "label": "datetime of image", "datatype": "<class 'datetime.datetime'>", "value": None }, # Sample attributes "id": { "label": "image identifier", "datatype": "<class 'str'>", "value": "none" }, "plantbarcode": { "label": "plant barcode identifier", "datatype": "<class 'str'>", "value": "none" }, "treatment": { "label": "treatment identifier", "datatype": "<class 'str'>", "value": "none" }, "cartag": { "label": "plant carrier identifier", "datatype": "<class 'str'>", "value": "none" }, # Experiment attributes "measurementlabel": { "label": "experiment identifier", "datatype": "<class 'str'>", "value": "none" }, # Other "other": { "label": "other identifier", "datatype": "<class 'str'>", "value": "none" } } METADATA_COPROCESS = { 'VIS_SV_0_z1_h1_g0_e82_117770.jpg': { 'path': os.path.join(PARALLEL_TEST_DATA, 'snapshots', 'snapshot57383', 'VIS_SV_0_z1_h1_g0_e82_117770.jpg'), 'camera': 'SV', 'imgtype': 'VIS', 'zoom': 'z1', 'exposure': 'e82', 'gain': 'g0', 'frame': '0', 'lifter': 'h1', 'timestamp': '2014-10-22 17:49:35.187', 'id': '117770', 'plantbarcode': 'Ca031AA010564', 'treatment': 'none', 'cartag': '2143', 'measurementlabel': 'C002ch_092214_biomass', 'other': 'none', 'coimg': 'NIR_SV_0_z1_h1_g0_e65_117779.jpg' }, 'NIR_SV_0_z1_h1_g0_e65_117779.jpg': { 'path': os.path.join(PARALLEL_TEST_DATA, 'snapshots', 'snapshot57383', 'NIR_SV_0_z1_h1_g0_e65_117779.jpg'), 'camera': 'SV', 'imgtype': 'NIR', 'zoom': 'z1', 'exposure': 'e65', 'gain': 'g0', 'frame': '0', 'lifter': 'h1', 'timestamp': '2014-10-22 17:49:35.187', 'id': '117779', 'plantbarcode': 'Ca031AA010564', 'treatment': 'none', 'cartag': '2143', 'measurementlabel': 'C002ch_092214_biomass', 'other': 'none' } } METADATA_VIS_ONLY = { 'VIS_SV_0_z1_h1_g0_e82_117770.jpg': { 'path': os.path.join(PARALLEL_TEST_DATA, 'snapshots', 'snapshot57383', 'VIS_SV_0_z1_h1_g0_e82_117770.jpg'), 'camera': 'SV', 'imgtype': 'VIS', 'zoom': 'z1', 'exposure': 'e82', 'gain': 'g0', 'frame': '0', 'lifter': 'h1', 'timestamp': '2014-10-22 17:49:35.187', 'id': '117770', 'plantbarcode': 'Ca031AA010564', 'treatment': 'none', 'cartag': '2143', 'measurementlabel': 'C002ch_092214_biomass', 'other': 'none' } } METADATA_NIR_ONLY = { 'NIR_SV_0_z1_h1_g0_e65_117779.jpg': { 'path': os.path.join(PARALLEL_TEST_DATA, 'snapshots', 'snapshot57383', 'NIR_SV_0_z1_h1_g0_e65_117779.jpg'), 'camera': 'SV', 'imgtype': 'NIR', 'zoom': 'z1', 'exposure': 'e65', 'gain': 'g0', 'frame': '0', 'lifter': 'h1', 'timestamp': '2014-10-22 17:49:35.187', 'id': '117779', 'plantbarcode': 'Ca031AA010564', 'treatment': 'none', 'cartag': '2143', 'measurementlabel': 'C002ch_092214_biomass', 'other': 'none' } } # Set the temp directory for dask dask.config.set(temporary_directory=TEST_TMPDIR) # ########################## # Tests setup function # ########################## def setup_function(): if not os.path.exists(TEST_TMPDIR): os.mkdir(TEST_TMPDIR) # ############################## # Tests for the parallel subpackage # ############################## def test_plantcv_parallel_workflowconfig_save_config_file(): # Create a test tmp directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_parallel_workflowconfig_save_config_file") os.mkdir(cache_dir) # Define output path/filename template_file = os.path.join(cache_dir, "config.json") # Create config instance config = plantcv.parallel.WorkflowConfig() # Save template file config.save_config(config_file=template_file) assert os.path.exists(template_file) def test_plantcv_parallel_workflowconfig_import_config_file(): # Define input path/filename config_file = os.path.join(PARALLEL_TEST_DATA, "workflow_config_template.json") # Create config instance config = plantcv.parallel.WorkflowConfig() # import config file config.import_config(config_file=config_file) assert config.cluster == "LocalCluster" def test_plantcv_parallel_workflowconfig_validate_config(): # Create a test tmp directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_parallel_workflowconfig_validate_config") os.mkdir(cache_dir) # Create config instance config = plantcv.parallel.WorkflowConfig() # Set valid values in config config.input_dir = os.path.join(PARALLEL_TEST_DATA, "images") config.json = os.path.join(cache_dir, "valid_config.json") config.filename_metadata = ["imgtype", "camera", "frame", "zoom", "lifter", "gain", "exposure", "id"] config.workflow = TEST_PIPELINE config.img_outdir = cache_dir # Validate config assert config.validate_config() def test_plantcv_parallel_workflowconfig_invalid_startdate(): # Create a test tmp directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_parallel_workflowconfig_invalid_startdate") os.mkdir(cache_dir) # Create config instance config = plantcv.parallel.WorkflowConfig() # Set valid values in config config.input_dir = os.path.join(PARALLEL_TEST_DATA, "images") config.json = os.path.join(cache_dir, "valid_config.json") config.filename_metadata = ["imgtype", "camera", "frame", "zoom", "lifter", "gain", "exposure", "id"] config.workflow = TEST_PIPELINE config.img_outdir = cache_dir config.start_date = "2020-05-10" # Validate config assert not config.validate_config() def test_plantcv_parallel_workflowconfig_invalid_enddate(): # Create a test tmp directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_parallel_workflowconfig_invalid_enddate") os.mkdir(cache_dir) # Create config instance config = plantcv.parallel.WorkflowConfig() # Set valid values in config config.input_dir = os.path.join(PARALLEL_TEST_DATA, "images") config.json = os.path.join(cache_dir, "valid_config.json") config.filename_metadata = ["imgtype", "camera", "frame", "zoom", "lifter", "gain", "exposure", "id"] config.workflow = TEST_PIPELINE config.img_outdir = cache_dir config.end_date = "2020-05-10" config.timestampformat = "%Y%m%d" # Validate config assert not config.validate_config() def test_plantcv_parallel_workflowconfig_invalid_metadata_terms(): # Create a test tmp directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_parallel_workflowconfig_invalid_metadata_terms") os.mkdir(cache_dir) # Create config instance config = plantcv.parallel.WorkflowConfig() # Set invalid values in config # input_dir and json are not defined by default, but are required # Set an incorrect metadata term config.filename_metadata.append("invalid") # Validate config assert not config.validate_config() def test_plantcv_parallel_workflowconfig_invalid_filename_metadata(): # Create a test tmp directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_parallel_workflowconfig_invalid_filename_metadata") os.mkdir(cache_dir) # Create config instance config = plantcv.parallel.WorkflowConfig() # Set invalid values in config # input_dir and json are not defined by default, but are required # Do not set required filename_metadata # Validate config assert not config.validate_config() def test_plantcv_parallel_workflowconfig_invalid_cluster(): # Create a test tmp directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_parallel_workflowconfig_invalid_cluster") os.mkdir(cache_dir) # Create config instance config = plantcv.parallel.WorkflowConfig() # Set invalid values in config # input_dir and json are not defined by default, but are required # Set invalid cluster type config.cluster = "MyCluster" # Validate config assert not config.validate_config() def test_plantcv_parallel_metadata_parser_snapshots(): # Create config instance config = plantcv.parallel.WorkflowConfig() config.input_dir = os.path.join(PARALLEL_TEST_DATA, TEST_SNAPSHOT_DIR) config.json = os.path.join(TEST_TMPDIR, "test_plantcv_parallel_metadata_parser_snapshots", "output.json") config.filename_metadata = ["imgtype", "camera", "frame", "zoom", "lifter", "gain", "exposure", "id"] config.workflow = TEST_PIPELINE config.metadata_filters = {"imgtype": "VIS", "camera": "SV"} config.start_date = "2014-10-21 00:00:00.0" config.end_date = "2014-10-23 00:00:00.0" config.timestampformat = '%Y-%m-%d %H:%M:%S.%f' config.imgformat = "jpg" meta = plantcv.parallel.metadata_parser(config=config) assert meta == METADATA_VIS_ONLY def test_plantcv_parallel_metadata_parser_snapshots_coimg(): # Create config instance config = plantcv.parallel.WorkflowConfig() config.input_dir = os.path.join(PARALLEL_TEST_DATA, TEST_SNAPSHOT_DIR) config.json = os.path.join(TEST_TMPDIR, "test_plantcv_parallel_metadata_parser_snapshots_coimg", "output.json") config.filename_metadata = ["imgtype", "camera", "frame", "zoom", "lifter", "gain", "exposure", "id"] config.workflow = TEST_PIPELINE config.metadata_filters = {"imgtype": "VIS"} config.start_date = "2014-10-21 00:00:00.0" config.end_date = "2014-10-23 00:00:00.0" config.timestampformat = '%Y-%m-%d %H:%M:%S.%f' config.imgformat = "jpg" config.coprocess = "FAKE" meta = plantcv.parallel.metadata_parser(config=config) assert meta == METADATA_VIS_ONLY def test_plantcv_parallel_metadata_parser_images(): # Create config instance config = plantcv.parallel.WorkflowConfig() config.input_dir = os.path.join(PARALLEL_TEST_DATA, TEST_IMG_DIR) config.json = os.path.join(TEST_TMPDIR, "test_plantcv_parallel_metadata_parser_images", "output.json") config.filename_metadata = ["imgtype", "camera", "frame", "zoom", "lifter", "gain", "exposure", "id"] config.workflow = TEST_PIPELINE config.metadata_filters = {"imgtype": "VIS"} config.start_date = "2014" config.end_date = "2014" config.timestampformat = '%Y' # no date in filename so check date range and date_format are ignored config.imgformat = "jpg" meta = plantcv.parallel.metadata_parser(config=config) expected = { 'VIS_SV_0_z1_h1_g0_e82_117770.jpg': { 'path': os.path.join(PARALLEL_TEST_DATA, 'images', 'VIS_SV_0_z1_h1_g0_e82_117770.jpg'), 'camera': 'SV', 'imgtype': 'VIS', 'zoom': 'z1', 'exposure': 'e82', 'gain': 'g0', 'frame': '0', 'lifter': 'h1', 'timestamp': None, 'id': '117770', 'plantbarcode': 'none', 'treatment': 'none', 'cartag': 'none', 'measurementlabel': 'none', 'other': 'none'} } assert meta == expected config.include_all_subdirs = False meta = plantcv.parallel.metadata_parser(config=config) assert meta == expected def test_plantcv_parallel_metadata_parser_multivalue_filter(): # Create config instance config = plantcv.parallel.WorkflowConfig() config.input_dir = os.path.join(PARALLEL_TEST_DATA, TEST_IMG_DIR) config.json = os.path.join(TEST_TMPDIR, "test_plantcv_parallel_metadata_parser_images", "output.json") config.filename_metadata = ["imgtype", "camera", "frame", "zoom", "lifter", "gain", "exposure", "id"] config.workflow = TEST_PIPELINE config.metadata_filters = {"imgtype": ["VIS", "NIR"]} config.imgformat = "jpg" meta = plantcv.parallel.metadata_parser(config=config) expected = { 'VIS_SV_0_z1_h1_g0_e82_117770.jpg': { 'path': os.path.join(PARALLEL_TEST_DATA, TEST_IMG_DIR, 'VIS_SV_0_z1_h1_g0_e82_117770.jpg'), 'camera': 'SV', 'imgtype': 'VIS', 'zoom': 'z1', 'exposure': 'e82', 'gain': 'g0', 'frame': '0', 'lifter': 'h1', 'timestamp': None, 'id': '117770', 'plantbarcode': 'none', 'treatment': 'none', 'cartag': 'none', 'measurementlabel': 'none', 'other': 'none' }, 'NIR_SV_0_z1_h1_g0_e65_117779.jpg': { 'path': os.path.join(PARALLEL_TEST_DATA, TEST_IMG_DIR, 'NIR_SV_0_z1_h1_g0_e65_117779.jpg'), 'camera': 'SV', 'imgtype': 'NIR', 'zoom': 'z1', 'exposure': 'e65', 'gain': 'g0', 'frame': '0', 'lifter': 'h1', 'timestamp': None, 'id': '117779', 'plantbarcode': 'none', 'treatment': 'none', 'cartag': 'none', 'measurementlabel': 'none', 'other': 'none' } } assert meta == expected def test_plantcv_parallel_metadata_parser_multivalue_filter_nomatch(): # Create config instance config = plantcv.parallel.WorkflowConfig() config.input_dir = os.path.join(PARALLEL_TEST_DATA, TEST_IMG_DIR) config.json = os.path.join(TEST_TMPDIR, "test_plantcv_parallel_metadata_parser_images", "output.json") config.filename_metadata = ["imgtype", "camera", "frame", "zoom", "lifter", "gain", "exposure", "id"] config.workflow = TEST_PIPELINE config.metadata_filters = {"imgtype": ["VIS", "PSII"]} config.imgformat = "jpg" meta = plantcv.parallel.metadata_parser(config=config) expected = { 'VIS_SV_0_z1_h1_g0_e82_117770.jpg': { 'path': os.path.join(PARALLEL_TEST_DATA, TEST_IMG_DIR, 'VIS_SV_0_z1_h1_g0_e82_117770.jpg'), 'camera': 'SV', 'imgtype': 'VIS', 'zoom': 'z1', 'exposure': 'e82', 'gain': 'g0', 'frame': '0', 'lifter': 'h1', 'timestamp': None, 'id': '117770', 'plantbarcode': 'none', 'treatment': 'none', 'cartag': 'none', 'measurementlabel': 'none', 'other': 'none' } } assert meta == expected def test_plantcv_parallel_metadata_parser_regex(): # Create config instance config = plantcv.parallel.WorkflowConfig() config.input_dir = os.path.join(PARALLEL_TEST_DATA, TEST_IMG_DIR) config.json = os.path.join(TEST_TMPDIR, "test_plantcv_parallel_metadata_parser_images", "output.json") config.filename_metadata = ["imgtype", "camera", "frame", "zoom", "lifter", "gain", "exposure", "id"] config.workflow = TEST_PIPELINE config.metadata_filters = {"imgtype": "VIS"} config.start_date = "2014-10-21 00:00:00.0" config.end_date = "2014-10-23 00:00:00.0" config.timestampformat = '%Y-%m-%d %H:%M:%S.%f' config.imgformat = "jpg" config.delimiter = r'(VIS)_(SV)_(\d+)_(z1)_(h1)_(g0)_(e82)_(\d+)' meta = plantcv.parallel.metadata_parser(config=config) expected = { 'VIS_SV_0_z1_h1_g0_e82_117770.jpg': { 'path': os.path.join(PARALLEL_TEST_DATA, 'images', 'VIS_SV_0_z1_h1_g0_e82_117770.jpg'), 'camera': 'SV', 'imgtype': 'VIS', 'zoom': 'z1', 'exposure': 'e82', 'gain': 'g0', 'frame': '0', 'lifter': 'h1', 'timestamp': None, 'id': '117770', 'plantbarcode': 'none', 'treatment': 'none', 'cartag': 'none', 'measurementlabel': 'none', 'other': 'none'} } assert meta == expected def test_plantcv_parallel_metadata_parser_images_outside_daterange(): # Create config instance config = plantcv.parallel.WorkflowConfig() config.input_dir = os.path.join(PARALLEL_TEST_DATA, TEST_IMG_DIR2) config.json = os.path.join(TEST_TMPDIR, "test_plantcv_parallel_metadata_parser_images_outside_daterange", "output.json") config.filename_metadata = ["imgtype", "camera", "frame", "zoom", "lifter", "gain", "exposure", "timestamp"] config.workflow = TEST_PIPELINE config.metadata_filters = {"imgtype": "NIR"} config.start_date = "1970-01-01 00_00_00" config.end_date = "1970-01-01 00_00_00" config.timestampformat = "%Y-%m-%d %H_%M_%S" config.imgformat = "jpg" config.delimiter = r"(NIR)_(SV)_(\d)_(z1)_(h1)_(g0)_(e65)_(\d{4}-\d{2}-\d{2} \d{2}_\d{2}_\d{2})" meta = plantcv.parallel.metadata_parser(config=config) assert meta == {} def test_plantcv_parallel_metadata_parser_no_default_dates(): # Create config instance config = plantcv.parallel.WorkflowConfig() config.input_dir = os.path.join(PARALLEL_TEST_DATA, TEST_SNAPSHOT_DIR) config.json = os.path.join(TEST_TMPDIR, "test_plantcv_parallel_metadata_parser_no_default_dates", "output.json") config.filename_metadata = ["imgtype", "camera", "frame", "zoom", "lifter", "gain", "exposure", "id"] config.workflow = TEST_PIPELINE config.metadata_filters = {"imgtype": "VIS", "camera": "SV", "id": "117770"} config.start_date = None config.end_date = None config.timestampformat = '%Y-%m-%d %H:%M:%S.%f' config.imgformat = "jpg" meta = plantcv.parallel.metadata_parser(config=config) assert meta == METADATA_VIS_ONLY def test_plantcv_parallel_workflowconfig_subdaily_timestampformat(): ''' timestampformats with only hours and smaller units of time were failing if the script was run earlier in the day than the images were taken. this was fixed by setting end_date to 23-59-59 if we don't detect the year-month-day ''' # Create config instance config = plantcv.parallel.WorkflowConfig() config.input_dir = os.path.join(PARALLEL_TEST_DATA, TEST_IMG_DIR2) config.json = os.path.join(TEST_IMG_DIR2, "test_plantcv_parallel_metadata_parser_subdaily_timestampformat", "output.json") config.filename_metadata = ["imgtype", "camera", "frame", "zoom", "lifter", "gain", "exposure", "timestamp"] config.workflow = TEST_PIPELINE config.metadata_filters = {"imgtype": "NIR", "camera": "SV"} config.start_date = None config.end_date = None config.timestampformat = "%H_%M_%S" config.imgformat = "jpg" config.delimiter = r"(NIR)_(SV)_(\d)_(z1)_(h1)_(g0)_(e65)_(\d{2}_\d{2}_\d{2})" meta = plantcv.parallel.metadata_parser(config=config) assert meta == { 'NIR_SV_0_z1_h1_g0_e65_23_59_59.jpg': { 'path': os.path.join(PARALLEL_TEST_DATA, 'images_w_date','NIR_SV_0_z1_h1_g0_e65_23_59_59.jpg'), 'imgtype': 'NIR', 'camera': 'SV', 'frame': '0', 'zoom': 'z1', 'lifter': 'h1', 'gain': 'g0', 'exposure': 'e65', 'timestamp': '23_59_59', 'measurementlabel': 'none', 'cartag':'none', 'id': 'none', 'treatment': 'none', 'plantbarcode': 'none', 'other': 'none' } } def test_plantcv_parallel_check_date_range_wrongdateformat(): start_date = 10 end_date = 10 img_time = '2010-10-10' with pytest.raises(SystemExit, match=r'does not match format'): date_format = '%Y%m%d' _ = plantcv.parallel.check_date_range( start_date, end_date, img_time, date_format) def test_plantcv_parallel_metadata_parser_snapshot_outside_daterange(): # Create config instance config = plantcv.parallel.WorkflowConfig() config.input_dir = os.path.join(PARALLEL_TEST_DATA, TEST_SNAPSHOT_DIR) config.json = os.path.join(TEST_TMPDIR, "test_plantcv_parallel_metadata_parser_snapshot_outside_daterange", "output.json") config.filename_metadata = ["imgtype", "camera", "frame", "zoom", "lifter", "gain", "exposure", "id"] config.workflow = TEST_PIPELINE config.metadata_filters = {"imgtype": "VIS"} config.start_date = "1970-01-01 00:00:00.0" config.end_date = "1970-01-01 00:00:00.0" config.timestampformat = '%Y-%m-%d %H:%M:%S.%f' config.imgformat = "jpg" meta = plantcv.parallel.metadata_parser(config=config) assert meta == {} def test_plantcv_parallel_metadata_parser_fail_images(): # Create config instance config = plantcv.parallel.WorkflowConfig() config.input_dir = os.path.join(PARALLEL_TEST_DATA, TEST_SNAPSHOT_DIR) config.json = os.path.join(TEST_TMPDIR, "test_plantcv_parallel_metadata_parser_fail_images", "output.json") config.filename_metadata = ["imgtype", "camera", "frame", "zoom", "lifter", "gain", "exposure", "id"] config.workflow = TEST_PIPELINE config.metadata_filters = {"cartag": "VIS"} config.start_date = "1970-01-01 00:00:00.0" config.end_date = "1970-01-01 00:00:00.0" config.timestampformat = '%Y-%m-%d %H:%M:%S.%f' config.imgformat = "jpg" config.coprocess = "NIR" meta = plantcv.parallel.metadata_parser(config=config) assert meta == METADATA_NIR_ONLY def test_plantcv_parallel_metadata_parser_images_with_frame(): # Create config instance config = plantcv.parallel.WorkflowConfig() config.input_dir = os.path.join(PARALLEL_TEST_DATA, TEST_SNAPSHOT_DIR) config.json = os.path.join(TEST_TMPDIR, "test_plantcv_parallel_metadata_parser_images_with_frame", "output.json") config.filename_metadata = ["imgtype", "camera", "frame", "zoom", "lifter", "gain", "exposure", "id"] config.workflow = TEST_PIPELINE config.metadata_filters = {"imgtype": "VIS"} config.start_date = "2014-10-21 00:00:00.0" config.end_date = "2014-10-23 00:00:00.0" config.timestampformat = '%Y-%m-%d %H:%M:%S.%f' config.imgformat = "jpg" config.coprocess = "NIR" meta = plantcv.parallel.metadata_parser(config=config) assert meta == { 'VIS_SV_0_z1_h1_g0_e82_117770.jpg': { 'path': os.path.join(PARALLEL_TEST_DATA, 'snapshots', 'snapshot57383', 'VIS_SV_0_z1_h1_g0_e82_117770.jpg'), 'camera': 'SV', 'imgtype': 'VIS', 'zoom': 'z1', 'exposure': 'e82', 'gain': 'g0', 'frame': '0', 'lifter': 'h1', 'timestamp': '2014-10-22 17:49:35.187', 'id': '117770', 'plantbarcode': 'Ca031AA010564', 'treatment': 'none', 'cartag': '2143', 'measurementlabel': 'C002ch_092214_biomass', 'other': 'none', 'coimg': 'NIR_SV_0_z1_h1_g0_e65_117779.jpg' }, 'NIR_SV_0_z1_h1_g0_e65_117779.jpg': { 'path': os.path.join(PARALLEL_TEST_DATA, 'snapshots', 'snapshot57383', 'NIR_SV_0_z1_h1_g0_e65_117779.jpg'), 'camera': 'SV', 'imgtype': 'NIR', 'zoom': 'z1', 'exposure': 'e65', 'gain': 'g0', 'frame': '0', 'lifter': 'h1', 'timestamp': '2014-10-22 17:49:35.187', 'id': '117779', 'plantbarcode': 'Ca031AA010564', 'treatment': 'none', 'cartag': '2143', 'measurementlabel': 'C002ch_092214_biomass', 'other': 'none' } } def test_plantcv_parallel_metadata_parser_images_no_frame(): # Create config instance config = plantcv.parallel.WorkflowConfig() config.input_dir = os.path.join(PARALLEL_TEST_DATA, TEST_SNAPSHOT_DIR) config.json = os.path.join(TEST_TMPDIR, "test_plantcv_parallel_metadata_parser_images_no_frame", "output.json") config.filename_metadata = ["imgtype", "camera", "X", "zoom", "lifter", "gain", "exposure", "id"] config.workflow = TEST_PIPELINE config.metadata_filters = {"imgtype": "VIS"} config.start_date = "2014-10-21 00:00:00.0" config.end_date = "2014-10-23 00:00:00.0" config.timestampformat = '%Y-%m-%d %H:%M:%S.%f' config.imgformat = "jpg" config.coprocess = "NIR" meta = plantcv.parallel.metadata_parser(config=config) assert meta == { 'VIS_SV_0_z1_h1_g0_e82_117770.jpg': { 'path': os.path.join(PARALLEL_TEST_DATA, 'snapshots', 'snapshot57383', 'VIS_SV_0_z1_h1_g0_e82_117770.jpg'), 'camera': 'SV', 'imgtype': 'VIS', 'zoom': 'z1', 'exposure': 'e82', 'gain': 'g0', 'frame': 'none', 'lifter': 'h1', 'timestamp': '2014-10-22 17:49:35.187', 'id': '117770', 'plantbarcode': 'Ca031AA010564', 'treatment': 'none', 'cartag': '2143', 'measurementlabel': 'C002ch_092214_biomass', 'other': 'none', 'coimg': 'NIR_SV_0_z1_h1_g0_e65_117779.jpg' }, 'NIR_SV_0_z1_h1_g0_e65_117779.jpg': { 'path': os.path.join(PARALLEL_TEST_DATA, 'snapshots', 'snapshot57383', 'NIR_SV_0_z1_h1_g0_e65_117779.jpg'), 'camera': 'SV', 'imgtype': 'NIR', 'zoom': 'z1', 'exposure': 'e65', 'gain': 'g0', 'frame': 'none', 'lifter': 'h1', 'timestamp': '2014-10-22 17:49:35.187', 'id': '117779', 'plantbarcode': 'Ca031AA010564', 'treatment': 'none', 'cartag': '2143', 'measurementlabel': 'C002ch_092214_biomass', 'other': 'none' } } def test_plantcv_parallel_metadata_parser_images_no_camera(): # Create config instance config = plantcv.parallel.WorkflowConfig() config.input_dir = os.path.join(PARALLEL_TEST_DATA, TEST_SNAPSHOT_DIR) config.json = os.path.join(TEST_TMPDIR, "test_plantcv_parallel_metadata_parser_images_no_frame", "output.json") config.filename_metadata = ["imgtype", "X", "frame", "zoom", "lifter", "gain", "exposure", "id"] config.workflow = TEST_PIPELINE config.metadata_filters = {"imgtype": "VIS"} config.start_date = "2014-10-21 00:00:00.0" config.end_date = "2014-10-23 00:00:00.0" config.timestampformat = '%Y-%m-%d %H:%M:%S.%f' config.imgformat = "jpg" config.coprocess = "NIR" meta = plantcv.parallel.metadata_parser(config=config) assert meta == { 'VIS_SV_0_z1_h1_g0_e82_117770.jpg': { 'path': os.path.join(PARALLEL_TEST_DATA, 'snapshots', 'snapshot57383', 'VIS_SV_0_z1_h1_g0_e82_117770.jpg'), 'camera': 'none', 'imgtype': 'VIS', 'zoom': 'z1', 'exposure': 'e82', 'gain': 'g0', 'frame': '0', 'lifter': 'h1', 'timestamp': '2014-10-22 17:49:35.187', 'id': '117770', 'plantbarcode': 'Ca031AA010564', 'treatment': 'none', 'cartag': '2143', 'measurementlabel': 'C002ch_092214_biomass', 'other': 'none', 'coimg': 'NIR_SV_0_z1_h1_g0_e65_117779.jpg' }, 'NIR_SV_0_z1_h1_g0_e65_117779.jpg': { 'path': os.path.join(PARALLEL_TEST_DATA, 'snapshots', 'snapshot57383', 'NIR_SV_0_z1_h1_g0_e65_117779.jpg'), 'camera': 'none', 'imgtype': 'NIR', 'zoom': 'z1', 'exposure': 'e65', 'gain': 'g0', 'frame': '0', 'lifter': 'h1', 'timestamp': '2014-10-22 17:49:35.187', 'id': '117779', 'plantbarcode': 'Ca031AA010564', 'treatment': 'none', 'cartag': '2143', 'measurementlabel': 'C002ch_092214_biomass', 'other': 'none' } } def test_plantcv_parallel_job_builder_single_image(): # Create cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_parallel_job_builder_single_image") os.mkdir(cache_dir) # Create config instance config = plantcv.parallel.WorkflowConfig() config.input_dir = os.path.join(PARALLEL_TEST_DATA, TEST_SNAPSHOT_DIR) config.json = os.path.join(cache_dir, "output.json") config.tmp_dir = cache_dir config.filename_metadata = ["imgtype", "camera", "frame", "zoom", "lifter", "gain", "exposure", "id"] config.workflow = TEST_PIPELINE config.img_outdir = cache_dir config.metadata_filters = {"imgtype": "VIS", "camera": "SV"} config.start_date = "2014-10-21 00:00:00.0" config.end_date = "2014-10-23 00:00:00.0" config.timestampformat = '%Y-%m-%d %H:%M:%S.%f' config.imgformat = "jpg" config.other_args = ["--other", "on"] config.writeimg = True jobs = plantcv.parallel.job_builder(meta=METADATA_VIS_ONLY, config=config) image_name = list(METADATA_VIS_ONLY.keys())[0] result_file = os.path.join(cache_dir, image_name + '.txt') expected = ['python', TEST_PIPELINE, '--image', METADATA_VIS_ONLY[image_name]['path'], '--outdir', cache_dir, '--result', result_file, '--writeimg', '--other', 'on'] if len(expected) != len(jobs[0]): assert False else: assert all([i == j] for i, j in zip(jobs[0], expected)) def test_plantcv_parallel_job_builder_coprocess(): # Create cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_parallel_job_builder_coprocess") os.mkdir(cache_dir) # Create config instance config = plantcv.parallel.WorkflowConfig() config.input_dir = os.path.join(PARALLEL_TEST_DATA, TEST_SNAPSHOT_DIR) config.json = os.path.join(cache_dir, "output.json") config.tmp_dir = cache_dir config.filename_metadata = ["imgtype", "camera", "frame", "zoom", "lifter", "gain", "exposure", "id"] config.workflow = TEST_PIPELINE config.img_outdir = cache_dir config.metadata_filters = {"imgtype": "VIS", "camera": "SV"} config.start_date = "2014-10-21 00:00:00.0" config.end_date = "2014-10-23 00:00:00.0" config.timestampformat = '%Y-%m-%d %H:%M:%S.%f' config.imgformat = "jpg" config.other_args = ["--other", "on"] config.writeimg = True config.coprocess = "NIR" jobs = plantcv.parallel.job_builder(meta=METADATA_COPROCESS, config=config) img_names = list(METADATA_COPROCESS.keys()) vis_name = img_names[0] vis_path = METADATA_COPROCESS[vis_name]['path'] result_file = os.path.join(cache_dir, vis_name + '.txt') nir_name = img_names[1] coresult_file = os.path.join(cache_dir, nir_name + '.txt') expected = ['python', TEST_PIPELINE, '--image', vis_path, '--outdir', cache_dir, '--result', result_file, '--coresult', coresult_file, '--writeimg', '--other', 'on'] if len(expected) != len(jobs[0]): assert False else: assert all([i == j] for i, j in zip(jobs[0], expected)) def test_plantcv_parallel_multiprocess_create_dask_cluster_local(): client = plantcv.parallel.create_dask_cluster(cluster="LocalCluster", cluster_config={}) status = client.status client.shutdown() assert status == "running" def test_plantcv_parallel_multiprocess_create_dask_cluster(): client = plantcv.parallel.create_dask_cluster(cluster="HTCondorCluster", cluster_config={"cores": 1, "memory": "1GB", "disk": "1GB"}) status = client.status client.shutdown() assert status == "running" def test_plantcv_parallel_multiprocess_create_dask_cluster_invalid_cluster(): with pytest.raises(ValueError): _ = plantcv.parallel.create_dask_cluster(cluster="Skynet", cluster_config={}) def test_plantcv_parallel_convert_datetime_to_unixtime(): unix_time = plantcv.parallel.convert_datetime_to_unixtime(timestamp_str="1970-01-01", date_format="%Y-%m-%d") assert unix_time == 0 def test_plantcv_parallel_convert_datetime_to_unixtime_bad_strptime(): with pytest.raises(SystemExit): _ = plantcv.parallel.convert_datetime_to_unixtime(timestamp_str="1970-01-01", date_format="%Y-%m") def test_plantcv_parallel_multiprocess(): image_name = list(METADATA_VIS_ONLY.keys())[0] image_path = os.path.join(METADATA_VIS_ONLY[image_name]['path'], image_name) result_file = os.path.join(TEST_TMPDIR, image_name + '.txt') jobs = [['python', TEST_PIPELINE, '--image', image_path, '--outdir', TEST_TMPDIR, '--result', result_file, '--writeimg', '--other', 'on']] # Create a dask LocalCluster client client = Client(n_workers=1) plantcv.parallel.multiprocess(jobs, client=client) assert os.path.exists(result_file) def test_plantcv_parallel_process_results(): # Create a test tmp directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_parallel_process_results") os.mkdir(cache_dir) plantcv.parallel.process_results(job_dir=os.path.join(PARALLEL_TEST_DATA, "results"), json_file=os.path.join(cache_dir, 'appended_results.json')) plantcv.parallel.process_results(job_dir=os.path.join(PARALLEL_TEST_DATA, "results"), json_file=os.path.join(cache_dir, 'appended_results.json')) # Assert that the output JSON file matches the expected output JSON file result_file = open(os.path.join(cache_dir, "appended_results.json"), "r") results = json.load(result_file) result_file.close() expected_file = open(os.path.join(PARALLEL_TEST_DATA, "appended_results.json")) expected = json.load(expected_file) expected_file.close() assert results == expected def test_plantcv_parallel_process_results_new_output(): # Create a test tmp directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_parallel_process_results_new_output") os.mkdir(cache_dir) plantcv.parallel.process_results(job_dir=os.path.join(PARALLEL_TEST_DATA, "results"), json_file=os.path.join(cache_dir, 'new_result.json')) # Assert output matches expected values result_file = open(os.path.join(cache_dir, "new_result.json"), "r") results = json.load(result_file) result_file.close() expected_file = open(os.path.join(PARALLEL_TEST_DATA, "new_result.json")) expected = json.load(expected_file) expected_file.close() assert results == expected def test_plantcv_parallel_process_results_valid_json(): # Test when the file is a valid json file but doesn't contain expected keys with pytest.raises(RuntimeError): plantcv.parallel.process_results(job_dir=os.path.join(PARALLEL_TEST_DATA, "results"), json_file=os.path.join(PARALLEL_TEST_DATA, "valid.json")) def test_plantcv_parallel_process_results_invalid_json(): # Create a test tmp directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_parallel_process_results_invalid_json") os.mkdir(cache_dir) # Move the test data to the tmp directory shutil.copytree(os.path.join(PARALLEL_TEST_DATA, "bad_results"), os.path.join(cache_dir, "bad_results")) with pytest.raises(RuntimeError): plantcv.parallel.process_results(job_dir=os.path.join(cache_dir, "bad_results"), json_file=os.path.join(cache_dir, "bad_results", "invalid.txt")) # #################################################################################################################### # ########################################### PLANTCV MAIN PACKAGE ################################################### matplotlib.use('Template') TEST_DATA = os.path.join(os.path.dirname(os.path.abspath(__file__)), "data") HYPERSPECTRAL_TEST_DATA = os.path.join(os.path.dirname(os.path.abspath(__file__)), "hyperspectral_data") HYPERSPECTRAL_DATA = "darkReference" HYPERSPECTRAL_WHITE = "darkReference_whiteReference" HYPERSPECTRAL_DARK = "darkReference_darkReference" HYPERSPECTRAL_HDR = "darkReference.hdr" HYPERSPECTRAL_MASK = "darkReference_mask.png" HYPERSPECTRAL_DATA_NO_DEFAULT = "darkReference2" HYPERSPECTRAL_HDR_NO_DEFAULT = "darkReference2.hdr" HYPERSPECTRAL_DATA_APPROX_PSEUDO = "darkReference3" HYPERSPECTRAL_HDR_APPROX_PSEUDO = "darkReference3.hdr" HYPERSPECTRAL_DATA_BAD_INTERLEAVE = "darkReference4" HYPERSPECTRAL_HDR_BAD_INTERLEAVE = "darkReference4.hdr" HYPERSPECTRAL_HDR_SMALL_RANGE = {'description': '{[HEADWALL Hyperspec III]}', 'samples': '800', 'lines': '1', 'bands': '978', 'header offset': '0', 'file type': 'ENVI Standard', 'interleave': 'bil', 'sensor type': 'Unknown', 'byte order': '0', 'default bands': '159,253,520', 'wavelength units': 'nm', 'wavelength': ['379.027', '379.663', '380.3', '380.936', '381.573', '382.209']} FLUOR_TEST_DATA = os.path.join(os.path.dirname(os.path.abspath(__file__)), "photosynthesis_data") FLUOR_IMG = "PSII_PSD_supopt_temp_btx623_22_rep1.DAT" TEST_COLOR_DIM = (2056, 2454, 3) TEST_GRAY_DIM = (2056, 2454) TEST_BINARY_DIM = TEST_GRAY_DIM TEST_INPUT_COLOR = "input_color_img.jpg" TEST_INPUT_GRAY = "input_gray_img.jpg" TEST_INPUT_GRAY_SMALL = "input_gray_img_small.jpg" TEST_INPUT_BINARY = "input_binary_img.png" # Image from http://www.libpng.org/pub/png/png-OwlAlpha.html # This image may be used, edited and reproduced freely. TEST_INPUT_RGBA = "input_rgba.png" TEST_INPUT_BAYER = "bayer_img.png" TEST_INPUT_ROI_CONTOUR = "input_roi_contour.npz" TEST_INPUT_ROI_HIERARCHY = "input_roi_hierarchy.npz" TEST_INPUT_CONTOURS = "input_contours.npz" TEST_INPUT_OBJECT_CONTOURS = "input_object_contours.npz" TEST_INPUT_OBJECT_HIERARCHY = "input_object_hierarchy.npz" TEST_VIS = "VIS_SV_0_z300_h1_g0_e85_v500_93054.png" TEST_NIR = "NIR_SV_0_z300_h1_g0_e15000_v500_93059.png" TEST_VIS_TV = "VIS_TV_0_z300_h1_g0_e85_v500_93054.png" TEST_NIR_TV = "NIR_TV_0_z300_h1_g0_e15000_v500_93059.png" TEST_INPUT_MASK = "input_mask_binary.png" TEST_INPUT_MASK_OOB = "mask_outbounds.png" TEST_INPUT_MASK_RESIZE = "input_mask_resize.png" TEST_INPUT_NIR_MASK = "input_nir.png" TEST_INPUT_FDARK = "FLUO_TV_dark.png" TEST_INPUT_FDARK_LARGE = "FLUO_TV_DARK_large" TEST_INPUT_FMIN = "FLUO_TV_min.png" TEST_INPUT_FMAX = "FLUO_TV_max.png" TEST_INPUT_FMASK = "FLUO_TV_MASK.png" TEST_INPUT_GREENMAG = "input_green-magenta.jpg" TEST_INPUT_MULTI = "multi_ori_image.jpg" TEST_INPUT_MULTI_MASK = "multi_ori_mask.jpg" TEST_INPUT_MULTI_OBJECT = "roi_objects.npz" TEST_INPUT_MULTI_CONTOUR = "multi_contours.npz" TEST_INPUT_ClUSTER_CONTOUR = "clusters_i.npz" TEST_INPUT_MULTI_HIERARCHY = "multi_hierarchy.npz" TEST_INPUT_VISUALIZE_CONTOUR = "roi_objects_visualize.npz" TEST_INPUT_VISUALIZE_HIERARCHY = "roi_obj_hierarchy_visualize.npz" TEST_INPUT_VISUALIZE_CLUSTERS = "clusters_i_visualize.npz" TEST_INPUT_VISUALIZE_BACKGROUND = "visualize_background_img.png" TEST_INPUT_GENOTXT = "cluster_names.txt" TEST_INPUT_GENOTXT_TOO_MANY = "cluster_names_too_many.txt" TEST_INPUT_CROPPED = 'cropped_img.jpg' TEST_INPUT_CROPPED_MASK = 'cropped-mask.png' TEST_INPUT_MARKER = 'seed-image.jpg' TEST_INPUT_SKELETON = 'input_skeleton.png' TEST_INPUT_SKELETON_PRUNED = 'input_pruned_skeleton.png' TEST_FOREGROUND = "TEST_FOREGROUND.jpg" TEST_BACKGROUND = "TEST_BACKGROUND.jpg" TEST_PDFS = "naive_bayes_pdfs.txt" TEST_PDFS_BAD = "naive_bayes_pdfs_bad.txt" TEST_VIS_SMALL = "setaria_small_vis.png" TEST_MASK_SMALL = "setaria_small_mask.png" TEST_VIS_COMP_CONTOUR = "setaria_composed_contours.npz" TEST_ACUTE_RESULT = np.asarray([[[119, 285]], [[151, 280]], [[168, 267]], [[168, 262]], [[171, 261]], [[224, 269]], [[246, 271]], [[260, 277]], [[141, 248]], [[183, 194]], [[188, 237]], [[173, 240]], [[186, 260]], [[147, 244]], [[163, 246]], [[173, 268]], [[170, 272]], [[151, 320]], [[195, 289]], [[228, 272]], [[210, 272]], [[209, 247]], [[210, 232]]]) TEST_VIS_SMALL_PLANT = "setaria_small_plant_vis.png" TEST_MASK_SMALL_PLANT = "setaria_small_plant_mask.png" TEST_VIS_COMP_CONTOUR_SMALL_PLANT = "setaria_small_plant_composed_contours.npz" TEST_SAMPLED_RGB_POINTS = "sampled_rgb_points.txt" TEST_TARGET_IMG = "target_img.png" TEST_TARGET_IMG_WITH_HEXAGON = "target_img_w_hexagon.png" TEST_TARGET_IMG_TRIANGLE = "target_img copy.png" TEST_SOURCE1_IMG = "source1_img.png" TEST_SOURCE2_IMG = "source2_img.png" TEST_TARGET_MASK = "mask_img.png" TEST_TARGET_IMG_COLOR_CARD = "color_card_target.png" TEST_SOURCE2_MASK = "mask2_img.png" TEST_TARGET_MATRIX = "target_matrix.npz" TEST_SOURCE1_MATRIX = "source1_matrix.npz" TEST_SOURCE2_MATRIX = "source2_matrix.npz" TEST_MATRIX_B1 = "matrix_b1.npz" TEST_MATRIX_B2 = "matrix_b2.npz" TEST_TRANSFORM1 = "transformation_matrix1.npz" TEST_MATRIX_M1 = "matrix_m1.npz" TEST_MATRIX_M2 = "matrix_m2.npz" TEST_S1_CORRECTED = "source_corrected.png" TEST_SKELETON_OBJECTS = "skeleton_objects.npz" TEST_SKELETON_HIERARCHIES = "skeleton_hierarchies.npz" TEST_THERMAL_ARRAY = "thermal_img.npz" TEST_THERMAL_IMG_MASK = "thermal_img_mask.png" TEST_INPUT_THERMAL_CSV = "FLIR2600.csv" # TEST_BAD_MASK = "bad_mask_test.pkl" # TEST_IM_BAD_NONE = "bad_mask_none.pkl" # TEST_IM_BAD_BOTH = "bad_mask_both.pkl" # TEST_IM_BAD_NAN = "bad_mask_nan.pkl" # TEST_IM_BAD_INF = "bad_mask_inf.pkl" PIXEL_VALUES = "pixel_inspector_rgb_values.txt" # ########################## # Tests for the main package # ########################## @pytest.mark.parametrize("debug", ["print", "plot"]) def test_plantcv_debug(debug, tmpdir): from plantcv.plantcv._debug import _debug # Create a test tmp directory img_outdir = tmpdir.mkdir("sub") pcv.params.debug = debug img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) _debug(visual=img, filename=os.path.join(img_outdir, TEST_INPUT_COLOR)) assert True @pytest.mark.parametrize("datatype,value", [[list, []], [int, 2], [float, 2.2], [bool, True], [str, "2"], [dict, {}], [tuple, ()], [None, None]]) def test_plantcv_outputs_add_observation(datatype, value): # Create output instance outputs = pcv.Outputs() outputs.add_observation(sample='default', variable='test', trait='test variable', method='type', scale='none', datatype=datatype, value=value, label=[]) assert outputs.observations["default"]["test"]["value"] == value def test_plantcv_outputs_add_observation_invalid_type(): # Create output instance outputs = pcv.Outputs() with pytest.raises(RuntimeError): outputs.add_observation(sample='default', variable='test', trait='test variable', method='type', scale='none', datatype=list, value=np.array([2]), label=[]) def test_plantcv_outputs_save_results_json_newfile(tmpdir): # Create a test tmp directory cache_dir = tmpdir.mkdir("sub") outfile = os.path.join(cache_dir, "results.json") # Create output instance outputs = pcv.Outputs() outputs.add_observation(sample='default', variable='test', trait='test variable', method='test', scale='none', datatype=str, value="test", label="none") outputs.save_results(filename=outfile, outformat="json") with open(outfile, "r") as fp: results = json.load(fp) assert results["observations"]["default"]["test"]["value"] == "test" def test_plantcv_outputs_save_results_json_existing_file(tmpdir): # Create a test tmp directory cache_dir = tmpdir.mkdir("sub") outfile = os.path.join(cache_dir, "data_results.txt") shutil.copyfile(os.path.join(TEST_DATA, "data_results.txt"), outfile) # Create output instance outputs = pcv.Outputs() outputs.add_observation(sample='default', variable='test', trait='test variable', method='test', scale='none', datatype=str, value="test", label="none") outputs.save_results(filename=outfile, outformat="json") with open(outfile, "r") as fp: results = json.load(fp) assert results["observations"]["default"]["test"]["value"] == "test" def test_plantcv_outputs_save_results_csv(tmpdir): # Create a test tmp directory cache_dir = tmpdir.mkdir("sub") outfile = os.path.join(cache_dir, "results.csv") testfile = os.path.join(TEST_DATA, "data_results.csv") # Create output instance outputs = pcv.Outputs() outputs.add_observation(sample='default', variable='string', trait='string variable', method='string', scale='none', datatype=str, value="string", label="none") outputs.add_observation(sample='default', variable='boolean', trait='boolean variable', method='boolean', scale='none', datatype=bool, value=True, label="none") outputs.add_observation(sample='default', variable='list', trait='list variable', method='list', scale='none', datatype=list, value=[1, 2, 3], label=[1, 2, 3]) outputs.add_observation(sample='default', variable='tuple', trait='tuple variable', method='tuple', scale='none', datatype=tuple, value=(1, 2), label=(1, 2)) outputs.add_observation(sample='default', variable='tuple_list', trait='list of tuples variable', method='tuple_list', scale='none', datatype=list, value=[(1, 2), (3, 4)], label=[1, 2]) outputs.save_results(filename=outfile, outformat="csv") with open(outfile, "r") as fp: results = fp.read() with open(testfile, "r") as fp: test_results = fp.read() assert results == test_results def test_plantcv_acute(): # Read in test data mask = cv2.imread(os.path.join(TEST_DATA, TEST_MASK_SMALL), -1) contours_npz = np.load(os.path.join(TEST_DATA, TEST_VIS_COMP_CONTOUR), encoding="latin1") obj_contour = contours_npz['arr_0'] # Test with debug = "print" pcv.params.debug = "print" _ = pcv.acute(obj=obj_contour, win=5, thresh=15, mask=mask) _ = pcv.acute(obj=obj_contour, win=0, thresh=15, mask=mask) _ = pcv.acute(obj=np.array(([[213, 190]], [[83, 61]], [[149, 246]])), win=84, thresh=192, mask=mask) _ = pcv.acute(obj=np.array(([[3, 29]], [[31, 102]], [[161, 63]])), win=148, thresh=56, mask=mask) _ = pcv.acute(obj=np.array(([[103, 154]], [[27, 227]], [[152, 83]])), win=35, thresh=0, mask=mask) # Test with debug = None pcv.params.debug = None _ = pcv.acute(obj=np.array(([[103, 154]], [[27, 227]], [[152, 83]])), win=35, thresh=0, mask=mask) _ = pcv.acute(obj=obj_contour, win=0, thresh=15, mask=mask) homology_pts = pcv.acute(obj=obj_contour, win=5, thresh=15, mask=mask) assert all([i == j] for i, j in zip(np.shape(homology_pts), (29, 1, 2))) def test_plantcv_acute_vertex(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_acute_vertex") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_VIS_SMALL)) contours_npz = np.load(os.path.join(TEST_DATA, TEST_VIS_COMP_CONTOUR), encoding="latin1") obj_contour = contours_npz['arr_0'] # Test with debug = "print" pcv.params.debug = "print" _ = pcv.acute_vertex(obj=obj_contour, win=5, thresh=15, sep=5, img=img, label="prefix") _ = pcv.acute_vertex(obj=[], win=5, thresh=15, sep=5, img=img) _ = pcv.acute_vertex(obj=[], win=.01, thresh=.01, sep=1, img=img) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.acute_vertex(obj=obj_contour, win=5, thresh=15, sep=5, img=img) # Test with debug = None pcv.params.debug = None acute = pcv.acute_vertex(obj=obj_contour, win=5, thresh=15, sep=5, img=img) assert all([i == j] for i, j in zip(np.shape(acute), np.shape(TEST_ACUTE_RESULT))) pcv.outputs.clear() def test_plantcv_acute_vertex_bad_obj(): img = cv2.imread(os.path.join(TEST_DATA, TEST_VIS_SMALL)) obj_contour = np.array([]) pcv.params.debug = None result = pcv.acute_vertex(obj=obj_contour, win=5, thresh=15, sep=5, img=img) assert all([i == j] for i, j in zip(result, [0, ("NA", "NA")])) pcv.outputs.clear() def test_plantcv_analyze_bound_horizontal(): # Clear previous outputs pcv.outputs.clear() # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_analyze_bound_horizontal") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) img_above_bound_only = cv2.imread(os.path.join(TEST_DATA, TEST_MASK_SMALL_PLANT)) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) contours_npz = np.load(os.path.join(TEST_DATA, TEST_INPUT_CONTOURS), encoding="latin1") object_contours = contours_npz['arr_0'] # Test with debug = "print" pcv.params.debug = "print" _ = pcv.analyze_bound_horizontal(img=img, obj=object_contours, mask=mask, line_position=300, label="prefix") pcv.outputs.clear() _ = pcv.analyze_bound_horizontal(img=img, obj=object_contours, mask=mask, line_position=100) _ = pcv.analyze_bound_horizontal(img=img_above_bound_only, obj=object_contours, mask=mask, line_position=1756) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.analyze_bound_horizontal(img=img, obj=object_contours, mask=mask, line_position=1756) # Test with debug = None pcv.params.debug = None _ = pcv.analyze_bound_horizontal(img=img, obj=object_contours, mask=mask, line_position=1756) assert len(pcv.outputs.observations["default"]) == 7 def test_plantcv_analyze_bound_horizontal_grayscale_image(): # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) contours_npz = np.load(os.path.join(TEST_DATA, TEST_INPUT_CONTOURS), encoding="latin1") object_contours = contours_npz['arr_0'] # Test with a grayscale reference image and debug="plot" pcv.params.debug = "plot" boundary_img1 = pcv.analyze_bound_horizontal(img=img, obj=object_contours, mask=mask, line_position=1756) assert len(np.shape(boundary_img1)) == 3 def test_plantcv_analyze_bound_horizontal_neg_y(): # Clear previous outputs pcv.outputs.clear() # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_analyze_bound_horizontal") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) contours_npz = np.load(os.path.join(TEST_DATA, TEST_INPUT_CONTOURS), encoding="latin1") object_contours = contours_npz['arr_0'] # Test with debug=None, line position that will trigger -y pcv.params.debug = "plot" _ = pcv.analyze_bound_horizontal(img=img, obj=object_contours, mask=mask, line_position=-1000) _ = pcv.analyze_bound_horizontal(img=img, obj=object_contours, mask=mask, line_position=0) _ = pcv.analyze_bound_horizontal(img=img, obj=object_contours, mask=mask, line_position=2056) assert pcv.outputs.observations['default']['height_above_reference']['value'] == 713 def test_plantcv_analyze_bound_vertical(): # Clear previous outputs pcv.outputs.clear() # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_analyze_bound_vertical") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) contours_npz = np.load(os.path.join(TEST_DATA, TEST_INPUT_CONTOURS), encoding="latin1") object_contours = contours_npz['arr_0'] # Test with debug = "print" pcv.params.debug = "print" _ = pcv.analyze_bound_vertical(img=img, obj=object_contours, mask=mask, line_position=1000, label="prefix") # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.analyze_bound_vertical(img=img, obj=object_contours, mask=mask, line_position=1000) # Test with debug = None pcv.params.debug = None _ = pcv.analyze_bound_vertical(img=img, obj=object_contours, mask=mask, line_position=1000) assert pcv.outputs.observations['default']['width_left_reference']['value'] == 94 def test_plantcv_analyze_bound_vertical_grayscale_image(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_analyze_bound_vertical") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) contours_npz = np.load(os.path.join(TEST_DATA, TEST_INPUT_CONTOURS), encoding="latin1") object_contours = contours_npz['arr_0'] # Test with a grayscale reference image and debug="plot" pcv.params.debug = "plot" _ = pcv.analyze_bound_vertical(img=img, obj=object_contours, mask=mask, line_position=1000) assert pcv.outputs.observations['default']['width_left_reference']['value'] == 94 pcv.outputs.clear() def test_plantcv_analyze_bound_vertical_neg_x(): # Clear previous outputs pcv.outputs.clear() # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_analyze_bound_vertical") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) contours_npz = np.load(os.path.join(TEST_DATA, TEST_INPUT_CONTOURS), encoding="latin1") object_contours = contours_npz['arr_0'] # Test with debug="plot", line position that will trigger -x pcv.params.debug = "plot" _ = pcv.analyze_bound_vertical(img=img, obj=object_contours, mask=mask, line_position=2454) assert pcv.outputs.observations['default']['width_left_reference']['value'] == 441 def test_plantcv_analyze_bound_vertical_small_x(): # Clear previous outputs pcv.outputs.clear() # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_analyze_bound_vertical") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) contours_npz = np.load(os.path.join(TEST_DATA, TEST_INPUT_CONTOURS), encoding="latin1") object_contours = contours_npz['arr_0'] # Test with debug='plot', line position that will trigger -x, and two channel object pcv.params.debug = "plot" _ = pcv.analyze_bound_vertical(img=img, obj=object_contours, mask=mask, line_position=1) assert pcv.outputs.observations['default']['width_right_reference']['value'] == 441 def test_plantcv_analyze_color(): # Clear previous outputs pcv.outputs.clear() # Test with debug = None pcv.params.debug = None # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) _ = pcv.analyze_color(rgb_img=img, mask=mask, hist_plot_type="all") _ = pcv.analyze_color(rgb_img=img, mask=mask, hist_plot_type=None, label="prefix") _ = pcv.analyze_color(rgb_img=img, mask=mask, hist_plot_type=None) _ = pcv.analyze_color(rgb_img=img, mask=mask, hist_plot_type='lab') _ = pcv.analyze_color(rgb_img=img, mask=mask, hist_plot_type='hsv') _ = pcv.analyze_color(rgb_img=img, mask=mask, hist_plot_type=None) # Test with debug = "print" # pcv.params.debug = "print" _ = pcv.analyze_color(rgb_img=img, mask=mask, hist_plot_type="all") _ = pcv.analyze_color(rgb_img=img, mask=mask, hist_plot_type=None, label="prefix") # Test with debug = "plot" # pcv.params.debug = "plot" # _ = pcv.analyze_color(rgb_img=img, mask=mask, hist_plot_type=None) _ = pcv.analyze_color(rgb_img=img, mask=mask, hist_plot_type='lab') _ = pcv.analyze_color(rgb_img=img, mask=mask, hist_plot_type='hsv') # _ = pcv.analyze_color(rgb_img=img, mask=mask, hist_plot_type=None) # Test with debug = None # pcv.params.debug = None _ = pcv.analyze_color(rgb_img=img, mask=mask, hist_plot_type='rgb') assert pcv.outputs.observations['default']['hue_median']['value'] == 84.0 def test_plantcv_analyze_color_incorrect_image(): img_binary = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) with pytest.raises(RuntimeError): _ = pcv.analyze_color(rgb_img=img_binary, mask=mask, hist_plot_type=None) # # def test_plantcv_analyze_color_bad_hist_type(): img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) pcv.params.debug = "plot" with pytest.raises(RuntimeError): _ = pcv.analyze_color(rgb_img=img, mask=mask, hist_plot_type='bgr') def test_plantcv_analyze_color_incorrect_hist_plot_type(): img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) with pytest.raises(RuntimeError): pcv.params.debug = "plot" _ = pcv.analyze_color(rgb_img=img, mask=mask, hist_plot_type="bgr") def test_plantcv_analyze_nir(): # Clear previous outputs pcv.outputs.clear() # Test with debug=None pcv.params.debug = None # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR), 0) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) _ = pcv.analyze_nir_intensity(gray_img=img, mask=mask, bins=256, histplot=True) result = len(pcv.outputs.observations['default']['nir_frequencies']['value']) assert result == 256 def test_plantcv_analyze_nir_16bit(): # Clear previous outputs pcv.outputs.clear() # Test with debug=None pcv.params.debug = None # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR), 0) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) _ = pcv.analyze_nir_intensity(gray_img=np.uint16(img), mask=mask, bins=256, histplot=True) result = len(pcv.outputs.observations['default']['nir_frequencies']['value']) assert result == 256 def test_plantcv_analyze_object(): # Test with debug = None pcv.params.debug = None # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) contours_npz = np.load(os.path.join(TEST_DATA, TEST_INPUT_CONTOURS), encoding="latin1") obj_contour = contours_npz['arr_0'] obj_images = pcv.analyze_object(img=img, obj=obj_contour, mask=mask) pcv.outputs.clear() assert len(obj_images) != 0 def test_plantcv_analyze_object_grayscale_input(): # Test with debug = None pcv.params.debug = None # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR), 0) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) contours_npz = np.load(os.path.join(TEST_DATA, TEST_INPUT_CONTOURS), encoding="latin1") obj_contour = contours_npz['arr_0'] obj_images = pcv.analyze_object(img=img, obj=obj_contour, mask=mask) assert len(obj_images) != 1 def test_plantcv_analyze_object_zero_slope(): # Test with debug = None pcv.params.debug = None # Create a test image img = np.zeros((50, 50, 3), dtype=np.uint8) img[10:11, 10:40, 0] = 255 mask = img[:, :, 0] obj_contour = np.array([[[10, 10]], [[11, 10]], [[12, 10]], [[13, 10]], [[14, 10]], [[15, 10]], [[16, 10]], [[17, 10]], [[18, 10]], [[19, 10]], [[20, 10]], [[21, 10]], [[22, 10]], [[23, 10]], [[24, 10]], [[25, 10]], [[26, 10]], [[27, 10]], [[28, 10]], [[29, 10]], [[30, 10]], [[31, 10]], [[32, 10]], [[33, 10]], [[34, 10]], [[35, 10]], [[36, 10]], [[37, 10]], [[38, 10]], [[39, 10]], [[38, 10]], [[37, 10]], [[36, 10]], [[35, 10]], [[34, 10]], [[33, 10]], [[32, 10]], [[31, 10]], [[30, 10]], [[29, 10]], [[28, 10]], [[27, 10]], [[26, 10]], [[25, 10]], [[24, 10]], [[23, 10]], [[22, 10]], [[21, 10]], [[20, 10]], [[19, 10]], [[18, 10]], [[17, 10]], [[16, 10]], [[15, 10]], [[14, 10]], [[13, 10]], [[12, 10]], [[11, 10]]], dtype=np.int32) obj_images = pcv.analyze_object(img=img, obj=obj_contour, mask=mask) assert len(obj_images) != 0 def test_plantcv_analyze_object_longest_axis_2d(): # Test with debug = None pcv.params.debug = None # Create a test image img = np.zeros((50, 50, 3), dtype=np.uint8) img[0:5, 45:49, 0] = 255 img[0:5, 0:5, 0] = 255 mask = img[:, :, 0] obj_contour = np.array([[[45, 1]], [[45, 2]], [[45, 3]], [[45, 4]], [[46, 4]], [[47, 4]], [[48, 4]], [[48, 3]], [[48, 2]], [[48, 1]], [[47, 1]], [[46, 1]], [[1, 1]], [[1, 2]], [[1, 3]], [[1, 4]], [[2, 4]], [[3, 4]], [[4, 4]], [[4, 3]], [[4, 2]], [[4, 1]], [[3, 1]], [[2, 1]]], dtype=np.int32) obj_images = pcv.analyze_object(img=img, obj=obj_contour, mask=mask) assert len(obj_images) != 0 def test_plantcv_analyze_object_longest_axis_2e(): # Test with debug = None pcv.params.debug = None # Create a test image img = np.zeros((50, 50, 3), dtype=np.uint8) img[10:15, 10:40, 0] = 255 mask = img[:, :, 0] obj_contour = np.array([[[10, 10]], [[10, 11]], [[10, 12]], [[10, 13]], [[10, 14]], [[11, 14]], [[12, 14]], [[13, 14]], [[14, 14]], [[15, 14]], [[16, 14]], [[17, 14]], [[18, 14]], [[19, 14]], [[20, 14]], [[21, 14]], [[22, 14]], [[23, 14]], [[24, 14]], [[25, 14]], [[26, 14]], [[27, 14]], [[28, 14]], [[29, 14]], [[30, 14]], [[31, 14]], [[32, 14]], [[33, 14]], [[34, 14]], [[35, 14]], [[36, 14]], [[37, 14]], [[38, 14]], [[39, 14]], [[39, 13]], [[39, 12]], [[39, 11]], [[39, 10]], [[38, 10]], [[37, 10]], [[36, 10]], [[35, 10]], [[34, 10]], [[33, 10]], [[32, 10]], [[31, 10]], [[30, 10]], [[29, 10]], [[28, 10]], [[27, 10]], [[26, 10]], [[25, 10]], [[24, 10]], [[23, 10]], [[22, 10]], [[21, 10]], [[20, 10]], [[19, 10]], [[18, 10]], [[17, 10]], [[16, 10]], [[15, 10]], [[14, 10]], [[13, 10]], [[12, 10]], [[11, 10]]], dtype=np.int32) obj_images = pcv.analyze_object(img=img, obj=obj_contour, mask=mask) assert len(obj_images) != 0 def test_plantcv_analyze_object_small_contour(): # Test with debug = None pcv.params.debug = None # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) obj_contour = [np.array([[[0, 0]], [[0, 50]], [[50, 50]], [[50, 0]]], dtype=np.int32)] obj_images = pcv.analyze_object(img=img, obj=obj_contour, mask=mask) assert obj_images is None def test_plantcv_analyze_thermal_values(): # Clear previous outputs pcv.outputs.clear() # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_analyze_thermal_values") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data # img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR), 0) mask = cv2.imread(os.path.join(TEST_DATA, TEST_THERMAL_IMG_MASK), -1) contours_npz = np.load(os.path.join(TEST_DATA, TEST_THERMAL_ARRAY), encoding="latin1") img = contours_npz['arr_0'] pcv.params.debug = None thermal_hist = pcv.analyze_thermal_values(thermal_array=img, mask=mask, histplot=True) assert thermal_hist is not None and pcv.outputs.observations['default']['median_temp']['value'] == 33.20922 def test_plantcv_apply_mask_white(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_apply_mask_white") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.apply_mask(img=img, mask=mask, mask_color="white") # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.apply_mask(img=img, mask=mask, mask_color="white") # Test with debug = None pcv.params.debug = None masked_img = pcv.apply_mask(img=img, mask=mask, mask_color="white") assert all([i == j] for i, j in zip(np.shape(masked_img), TEST_COLOR_DIM)) def test_plantcv_apply_mask_black(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_apply_mask_black") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.apply_mask(img=img, mask=mask, mask_color="black") # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.apply_mask(img=img, mask=mask, mask_color="black") # Test with debug = None pcv.params.debug = None masked_img = pcv.apply_mask(img=img, mask=mask, mask_color="black") assert all([i == j] for i, j in zip(np.shape(masked_img), TEST_COLOR_DIM)) def test_plantcv_apply_mask_hyperspectral(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_apply_mask_hyperspectral") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) hyper_array = pcv.hyperspectral.read_data(filename=spectral_filename) img = np.ones((2056, 2454)) img_stacked = cv2.merge((img, img, img, img)) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.apply_mask(img=img_stacked, mask=img, mask_color="black") # Test with debug = "plot" pcv.params.debug = "plot" masked_array = pcv.apply_mask(img=hyper_array.array_data, mask=img, mask_color="black") assert np.mean(masked_array) == 13.97111260224949 def test_plantcv_apply_mask_bad_input(): # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) with pytest.raises(RuntimeError): pcv.params.debug = "plot" _ = pcv.apply_mask(img=img, mask=mask, mask_color="wite") def test_plantcv_auto_crop(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_auto_crop") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img1 = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MULTI), -1) contours = np.load(os.path.join(TEST_DATA, TEST_INPUT_MULTI_OBJECT), encoding="latin1") roi_contours = [contours[arr_n] for arr_n in contours] # Test with debug = "print" pcv.params.debug = "print" _ = pcv.auto_crop(img=img1, obj=roi_contours[1], padding_x=(20, 10), padding_y=(20, 10), color='black') # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.auto_crop(img=img1, obj=roi_contours[1], color='image') _ = pcv.auto_crop(img=img1, obj=roi_contours[1], padding_x=2000, padding_y=2000, color='image') # Test with debug = None pcv.params.debug = None cropped = pcv.auto_crop(img=img1, obj=roi_contours[1], padding_x=20, padding_y=20, color='black') x, y, z = np.shape(img1) x1, y1, z1 = np.shape(cropped) assert x > x1 def test_plantcv_auto_crop_grayscale_input(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_auto_crop_grayscale_input") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data rgb_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MULTI), -1) gray_img = cv2.cvtColor(rgb_img, cv2.COLOR_BGR2GRAY) contours = np.load(os.path.join(TEST_DATA, TEST_INPUT_MULTI_OBJECT), encoding="latin1") roi_contours = [contours[arr_n] for arr_n in contours] # Test with debug = "plot" pcv.params.debug = "plot" cropped = pcv.auto_crop(img=gray_img, obj=roi_contours[1], padding_x=20, padding_y=20, color='white') x, y = np.shape(gray_img) x1, y1 = np.shape(cropped) assert x > x1 def test_plantcv_auto_crop_bad_color_input(): # Read in test data rgb_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MULTI), -1) gray_img = cv2.cvtColor(rgb_img, cv2.COLOR_BGR2GRAY) contours = np.load(os.path.join(TEST_DATA, TEST_INPUT_MULTI_OBJECT), encoding="latin1") roi_contours = [contours[arr_n] for arr_n in contours] with pytest.raises(RuntimeError): _ = pcv.auto_crop(img=gray_img, obj=roi_contours[1], padding_x=20, padding_y=20, color='wite') def test_plantcv_auto_crop_bad_padding_input(): # Read in test data rgb_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MULTI), -1) gray_img = cv2.cvtColor(rgb_img, cv2.COLOR_BGR2GRAY) contours = np.load(os.path.join(TEST_DATA, TEST_INPUT_MULTI_OBJECT), encoding="latin1") roi_contours = [contours[arr_n] for arr_n in contours] with pytest.raises(RuntimeError): _ = pcv.auto_crop(img=gray_img, obj=roi_contours[1], padding_x="one", padding_y=20, color='white') def test_plantcv_canny_edge_detect(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_canny_edge_detect") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data rgb_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.canny_edge_detect(img=rgb_img, mask=mask, mask_color='white') _ = pcv.canny_edge_detect(img=img, mask=mask, mask_color='black') # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.canny_edge_detect(img=img, thickness=2) _ = pcv.canny_edge_detect(img=img) # Test with debug = None pcv.params.debug = None edge_img = pcv.canny_edge_detect(img=img) # Assert that the output image has the dimensions of the input image if all([i == j] for i, j in zip(np.shape(edge_img), TEST_BINARY_DIM)): # Assert that the image is binary if all([i == j] for i, j in zip(np.unique(edge_img), [0, 255])): assert 1 else: assert 0 else: assert 0 def test_plantcv_canny_edge_detect_bad_input(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_canny_edge_detect") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) with pytest.raises(RuntimeError): _ = pcv.canny_edge_detect(img=img, mask=mask, mask_color="gray") def test_plantcv_closing(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_closing") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data rgb_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MULTI), -1) gray_img = cv2.cvtColor(rgb_img, cv2.COLOR_BGR2GRAY) bin_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) # Test with debug=None pcv.params.debug = None _ = pcv.closing(gray_img) # Test with debug='plot' pcv.params.debug = 'plot' _ = pcv.closing(bin_img, np.ones((4, 4), np.uint8)) # Test with debug='print' pcv.params.debug = 'print' filtered_img = pcv.closing(bin_img) assert np.sum(filtered_img) == 16261860 def test_plantcv_closing_bad_input(): # Read in test data rgb_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MULTI), -1) with pytest.raises(RuntimeError): _ = pcv.closing(rgb_img) def test_plantcv_cluster_contours(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_cluster_contours") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img1 = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MULTI), -1) roi_objects = np.load(os.path.join(TEST_DATA, TEST_INPUT_MULTI_OBJECT), encoding="latin1") hierarchy = np.load(os.path.join(TEST_DATA, TEST_INPUT_MULTI_HIERARCHY), encoding="latin1") objs = [roi_objects[arr_n] for arr_n in roi_objects] obj_hierarchy = hierarchy['arr_0'] # Test with debug = "print" pcv.params.debug = "print" _ = pcv.cluster_contours(img=img1, roi_objects=objs, roi_obj_hierarchy=obj_hierarchy, nrow=4, ncol=6) _ = pcv.cluster_contours(img=img1, roi_objects=objs, roi_obj_hierarchy=obj_hierarchy, show_grid=True) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.cluster_contours(img=img1, roi_objects=objs, roi_obj_hierarchy=obj_hierarchy, nrow=4, ncol=6) # Test with debug = None pcv.params.debug = None clusters_i, contours, hierarchy = pcv.cluster_contours(img=img1, roi_objects=objs, roi_obj_hierarchy=obj_hierarchy, nrow=4, ncol=6) lenori = len(objs) lenclust = len(clusters_i) assert lenori > lenclust def test_plantcv_cluster_contours_grayscale_input(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_cluster_contours_grayscale_input") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img1 = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MULTI), 0) roi_objects = np.load(os.path.join(TEST_DATA, TEST_INPUT_MULTI_OBJECT), encoding="latin1") hierachy = np.load(os.path.join(TEST_DATA, TEST_INPUT_MULTI_HIERARCHY), encoding="latin1") objs = [roi_objects[arr_n] for arr_n in roi_objects] obj_hierarchy = hierachy['arr_0'] # Test with debug = "print" pcv.params.debug = "print" _ = pcv.cluster_contours(img=img1, roi_objects=objs, roi_obj_hierarchy=obj_hierarchy, nrow=4, ncol=6) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.cluster_contours(img=img1, roi_objects=objs, roi_obj_hierarchy=obj_hierarchy, nrow=4, ncol=6) # Test with debug = None pcv.params.debug = None clusters_i, contours, hierachy = pcv.cluster_contours(img=img1, roi_objects=objs, roi_obj_hierarchy=obj_hierarchy, nrow=4, ncol=6) lenori = len(objs) lenclust = len(clusters_i) assert lenori > lenclust def test_plantcv_cluster_contours_splitimg(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_cluster_contours_splitimg") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img1 = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MULTI), -1) contours = np.load(os.path.join(TEST_DATA, TEST_INPUT_MULTI_CONTOUR), encoding="latin1") clusters = np.load(os.path.join(TEST_DATA, TEST_INPUT_ClUSTER_CONTOUR), encoding="latin1") hierachy = np.load(os.path.join(TEST_DATA, TEST_INPUT_MULTI_HIERARCHY), encoding="latin1") cluster_names = os.path.join(TEST_DATA, TEST_INPUT_GENOTXT) cluster_names_too_many = os.path.join(TEST_DATA, TEST_INPUT_GENOTXT_TOO_MANY) roi_contours = [contours[arr_n] for arr_n in contours] cluster_contours = [clusters[arr_n] for arr_n in clusters] obj_hierarchy = hierachy['arr_0'] # Test with debug = None pcv.params.debug = None _, _, _ = pcv.cluster_contour_splitimg(img=img1, grouped_contour_indexes=cluster_contours, contours=roi_contours, hierarchy=obj_hierarchy, outdir=cache_dir, file=None, filenames=None) _, _, _ = pcv.cluster_contour_splitimg(img=img1, grouped_contour_indexes=[[0]], contours=[], hierarchy=np.array([[[1, -1, -1, -1]]])) _, _, _ = pcv.cluster_contour_splitimg(img=img1, grouped_contour_indexes=cluster_contours, contours=roi_contours, hierarchy=obj_hierarchy, outdir=cache_dir, file='multi', filenames=None) _, _, _ = pcv.cluster_contour_splitimg(img=img1, grouped_contour_indexes=cluster_contours, contours=roi_contours, hierarchy=obj_hierarchy, outdir=None, file=None, filenames=cluster_names) _, _, _ = pcv.cluster_contour_splitimg(img=img1, grouped_contour_indexes=cluster_contours, contours=roi_contours, hierarchy=obj_hierarchy, outdir=None, file=None, filenames=cluster_names_too_many) output_path, imgs, masks = pcv.cluster_contour_splitimg(img=img1, grouped_contour_indexes=cluster_contours, contours=roi_contours, hierarchy=obj_hierarchy, outdir=None, file=None, filenames=None) assert len(output_path) != 0 def test_plantcv_cluster_contours_splitimg_grayscale(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_cluster_contours_splitimg_grayscale") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img1 = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MULTI), 0) contours = np.load(os.path.join(TEST_DATA, TEST_INPUT_MULTI_CONTOUR), encoding="latin1") clusters = np.load(os.path.join(TEST_DATA, TEST_INPUT_ClUSTER_CONTOUR), encoding="latin1") hierachy = np.load(os.path.join(TEST_DATA, TEST_INPUT_MULTI_HIERARCHY), encoding="latin1") cluster_names = os.path.join(TEST_DATA, TEST_INPUT_GENOTXT) cluster_names_too_many = os.path.join(TEST_DATA, TEST_INPUT_GENOTXT_TOO_MANY) roi_contours = [contours[arr_n] for arr_n in contours] cluster_contours = [clusters[arr_n] for arr_n in clusters] obj_hierarchy = hierachy['arr_0'] pcv.params.debug = None output_path, imgs, masks = pcv.cluster_contour_splitimg(img=img1, grouped_contour_indexes=cluster_contours, contours=roi_contours, hierarchy=obj_hierarchy, outdir=None, file=None, filenames=None) assert len(output_path) != 0 def test_plantcv_color_palette(): # Return a color palette colors = pcv.color_palette(num=10, saved=False) assert np.shape(colors) == (10, 3) def test_plantcv_color_palette_random(): # Return a color palette in random order pcv.params.color_sequence = "random" colors = pcv.color_palette(num=10, saved=False) assert np.shape(colors) == (10, 3) def test_plantcv_color_palette_saved(): # Return a color palette that was saved pcv.params.saved_color_scale = [[0, 0, 0], [255, 255, 255]] colors = pcv.color_palette(num=2, saved=True) assert colors == [[0, 0, 0], [255, 255, 255]] def test_plantcv_crop(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_crop") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir img, _, _ = pcv.readimage(os.path.join(TEST_DATA, TEST_INPUT_NIR_MASK), 'gray') # Test with debug = "print" pcv.params.debug = "print" _ = pcv.crop(img=img, x=10, y=10, h=50, w=50) # Test with debug = "plot" pcv.params.debug = "plot" cropped = pcv.crop(img=img, x=10, y=10, h=50, w=50) assert np.shape(cropped) == (50, 50) def test_plantcv_crop_hyperspectral(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_crop_hyperspectral") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = np.ones((2056, 2454)) img_stacked = cv2.merge((img, img, img, img)) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.crop(img=img_stacked, x=10, y=10, h=50, w=50) # Test with debug = "plot" pcv.params.debug = "plot" cropped = pcv.crop(img=img_stacked, x=10, y=10, h=50, w=50) assert np.shape(cropped) == (50, 50, 4) def test_plantcv_crop_position_mask(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_crop_position_mask") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data nir, path1, filename1 = pcv.readimage(os.path.join(TEST_DATA, TEST_INPUT_NIR_MASK), 'gray') mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MASK), -1) mask_three_channel = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MASK), -1) mask_resize = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MASK_RESIZE), -1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.crop_position_mask(nir, mask, x=40, y=3, v_pos="top", h_pos="right") _ = pcv.crop_position_mask(nir, mask_resize, x=40, y=3, v_pos="top", h_pos="right") _ = pcv.crop_position_mask(nir, mask_three_channel, x=40, y=3, v_pos="top", h_pos="right") # Test with debug = "print" with bottom _ = pcv.crop_position_mask(nir, mask, x=40, y=3, v_pos="bottom", h_pos="left") # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.crop_position_mask(nir, mask, x=40, y=3, v_pos="top", h_pos="right") # Test with debug = "plot" with bottom _ = pcv.crop_position_mask(nir, mask, x=45, y=2, v_pos="bottom", h_pos="left") # Test with debug = None pcv.params.debug = None newmask = pcv.crop_position_mask(nir, mask, x=40, y=3, v_pos="top", h_pos="right") assert np.sum(newmask) == 707115 def test_plantcv_crop_position_mask_color(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_crop_position_mask") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data nir, path1, filename1 = pcv.readimage(os.path.join(TEST_DATA, TEST_INPUT_COLOR), mode='native') mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MASK), -1) mask_resize = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MASK_RESIZE)) mask_non_binary = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MASK)) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.crop_position_mask(nir, mask, x=40, y=3, v_pos="top", h_pos="right") # Test with debug = "print" with bottom _ = pcv.crop_position_mask(nir, mask, x=40, y=3, v_pos="bottom", h_pos="left") # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.crop_position_mask(nir, mask, x=40, y=3, v_pos="top", h_pos="right") # Test with debug = "plot" with bottom _ = pcv.crop_position_mask(nir, mask, x=45, y=2, v_pos="bottom", h_pos="left") _ = pcv.crop_position_mask(nir, mask_non_binary, x=45, y=2, v_pos="bottom", h_pos="left") _ = pcv.crop_position_mask(nir, mask_non_binary, x=45, y=2, v_pos="top", h_pos="left") _ = pcv.crop_position_mask(nir, mask_non_binary, x=45, y=2, v_pos="bottom", h_pos="right") _ = pcv.crop_position_mask(nir, mask_resize, x=45, y=2, v_pos="top", h_pos="left") # Test with debug = None pcv.params.debug = None newmask = pcv.crop_position_mask(nir, mask, x=40, y=3, v_pos="top", h_pos="right") assert np.sum(newmask) == 707115 def test_plantcv_crop_position_mask_bad_input_x(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_crop_position_mask") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MASK), -1) # Read in test data nir, path1, filename1 = pcv.readimage(os.path.join(TEST_DATA, TEST_INPUT_NIR_MASK)) pcv.params.debug = None with pytest.raises(RuntimeError): _ = pcv.crop_position_mask(nir, mask, x=-1, y=-1, v_pos="top", h_pos="right") def test_plantcv_crop_position_mask_bad_input_vpos(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_crop_position_mask") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MASK), -1) # Read in test data nir, path1, filename1 = pcv.readimage(os.path.join(TEST_DATA, TEST_INPUT_NIR_MASK)) pcv.params.debug = None with pytest.raises(RuntimeError): _ = pcv.crop_position_mask(nir, mask, x=40, y=3, v_pos="below", h_pos="right") def test_plantcv_crop_position_mask_bad_input_hpos(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_crop_position_mask") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MASK), -1) # Read in test data nir, path1, filename1 = pcv.readimage(os.path.join(TEST_DATA, TEST_INPUT_NIR_MASK)) pcv.params.debug = None with pytest.raises(RuntimeError): _ = pcv.crop_position_mask(nir, mask, x=40, y=3, v_pos="top", h_pos="starboard") def test_plantcv_dilate(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_dilate") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.dilate(gray_img=img, ksize=5, i=1) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.dilate(gray_img=img, ksize=5, i=1) # Test with debug = None pcv.params.debug = None dilate_img = pcv.dilate(gray_img=img, ksize=5, i=1) # Assert that the output image has the dimensions of the input image if all([i == j] for i, j in zip(np.shape(dilate_img), TEST_BINARY_DIM)): # Assert that the image is binary if all([i == j] for i, j in zip(np.unique(dilate_img), [0, 255])): assert 1 else: assert 0 else: assert 0 def test_plantcv_dilate_small_k(): # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) # Test with debug = None pcv.params.debug = None with pytest.raises(ValueError): _ = pcv.dilate(img, 1, 1) def test_plantcv_erode(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_erode") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.erode(gray_img=img, ksize=5, i=1) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.erode(gray_img=img, ksize=5, i=1) # Test with debug = None pcv.params.debug = None erode_img = pcv.erode(gray_img=img, ksize=5, i=1) # Assert that the output image has the dimensions of the input image if all([i == j] for i, j in zip(np.shape(erode_img), TEST_BINARY_DIM)): # Assert that the image is binary if all([i == j] for i, j in zip(np.unique(erode_img), [0, 255])): assert 1 else: assert 0 else: assert 0 def test_plantcv_erode_small_k(): # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) # Test with debug = None pcv.params.debug = None with pytest.raises(ValueError): _ = pcv.erode(img, 1, 1) def test_plantcv_distance_transform(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_distance_transform") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_CROPPED_MASK), -1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.distance_transform(bin_img=mask, distance_type=1, mask_size=3) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.distance_transform(bin_img=mask, distance_type=1, mask_size=3) # Test with debug = None pcv.params.debug = None distance_transform_img = pcv.distance_transform(bin_img=mask, distance_type=1, mask_size=3) # Assert that the output image has the dimensions of the input image assert all([i == j] for i, j in zip(np.shape(distance_transform_img), np.shape(mask))) def test_plantcv_fatal_error(): # Verify that the fatal_error function raises a RuntimeError with pytest.raises(RuntimeError): pcv.fatal_error("Test error") def test_plantcv_fill(): # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) # Test with debug = None pcv.params.debug = None fill_img = pcv.fill(bin_img=img, size=63632) # Assert that the output image has the dimensions of the input image # assert all([i == j] for i, j in zip(np.shape(fill_img), TEST_BINARY_DIM)) assert np.sum(fill_img) == 0 def test_plantcv_fill_bad_input(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_fill_bad_input") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) with pytest.raises(RuntimeError): _ = pcv.fill(bin_img=img, size=1) def test_plantcv_fill_holes(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_fill_holes") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.fill_holes(bin_img=img) pcv.params.debug = "plot" _ = pcv.fill_holes(bin_img=img) # Test with debug = None pcv.params.debug = None fill_img = pcv.fill_holes(bin_img=img) assert np.sum(fill_img) > np.sum(img) def test_plantcv_fill_holes_bad_input(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_fill_holes_bad_input") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) with pytest.raises(RuntimeError): _ = pcv.fill_holes(bin_img=img) def test_plantcv_find_objects(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_find_objects") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.find_objects(img=img, mask=mask) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.find_objects(img=img, mask=mask) # Test with debug = None pcv.params.debug = None contours, hierarchy = pcv.find_objects(img=img, mask=mask) # Assert the correct number of contours are found assert len(contours) == 2 def test_plantcv_find_objects_grayscale_input(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_find_objects_grayscale_input") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR), 0) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) # Test with debug = "plot" pcv.params.debug = "plot" contours, hierarchy = pcv.find_objects(img=img, mask=mask) # Assert the correct number of contours are found assert len(contours) == 2 def test_plantcv_flip(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_flip") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) img_binary = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.flip(img=img, direction="horizontal") # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.flip(img=img, direction="vertical") _ = pcv.flip(img=img_binary, direction="vertical") # Test with debug = None pcv.params.debug = None flipped_img = pcv.flip(img=img, direction="horizontal") assert all([i == j] for i, j in zip(np.shape(flipped_img), TEST_COLOR_DIM)) def test_plantcv_flip_bad_input(): img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) pcv.params.debug = None with pytest.raises(RuntimeError): _ = pcv.flip(img=img, direction="vert") def test_plantcv_gaussian_blur(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_gaussian_blur") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) img_color = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR), -1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.gaussian_blur(img=img, ksize=(51, 51), sigma_x=0, sigma_y=None) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.gaussian_blur(img=img, ksize=(51, 51), sigma_x=0, sigma_y=None) _ = pcv.gaussian_blur(img=img_color, ksize=(51, 51), sigma_x=0, sigma_y=None) # Test with debug = None pcv.params.debug = None gaussian_img = pcv.gaussian_blur(img=img, ksize=(51, 51), sigma_x=0, sigma_y=None) imgavg = np.average(img) gavg = np.average(gaussian_img) assert gavg != imgavg def test_plantcv_get_kernel_cross(): kernel = pcv.get_kernel(size=(3, 3), shape="cross") assert (kernel == np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]])).all() def test_plantcv_get_kernel_rectangle(): kernel = pcv.get_kernel(size=(3, 3), shape="rectangle") assert (kernel == np.array([[1, 1, 1], [1, 1, 1], [1, 1, 1]])).all() def test_plantcv_get_kernel_ellipse(): kernel = pcv.get_kernel(size=(3, 3), shape="ellipse") assert (kernel == np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]])).all() def test_plantcv_get_kernel_bad_input_size(): with pytest.raises(ValueError): _ = pcv.get_kernel(size=(1, 1), shape="ellipse") def test_plantcv_get_kernel_bad_input_shape(): with pytest.raises(RuntimeError): _ = pcv.get_kernel(size=(3, 1), shape="square") def test_plantcv_get_nir_sv(): nirpath = pcv.get_nir(TEST_DATA, TEST_VIS) nirpath1 = os.path.join(TEST_DATA, TEST_NIR) assert nirpath == nirpath1 def test_plantcv_get_nir_tv(): nirpath = pcv.get_nir(TEST_DATA, TEST_VIS_TV) nirpath1 = os.path.join(TEST_DATA, TEST_NIR_TV) assert nirpath == nirpath1 def test_plantcv_hist_equalization(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hist_equalization") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.hist_equalization(gray_img=img) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.hist_equalization(gray_img=img) # Test with debug = None pcv.params.debug = None hist = pcv.hist_equalization(gray_img=img) histavg = np.average(hist) imgavg = np.average(img) assert histavg != imgavg def test_plantcv_hist_equalization_bad_input(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hist_equalization_bad_input") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), 1) # Test with debug = None pcv.params.debug = None with pytest.raises(RuntimeError): _ = pcv.hist_equalization(gray_img=img) def test_plantcv_image_add(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_image_add") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img1 = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) img2 = np.copy(img1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.image_add(gray_img1=img1, gray_img2=img2) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.image_add(gray_img1=img1, gray_img2=img2) # Test with debug = None pcv.params.debug = None added_img = pcv.image_add(gray_img1=img1, gray_img2=img2) assert all([i == j] for i, j in zip(np.shape(added_img), TEST_BINARY_DIM)) def test_plantcv_image_fusion(): # Read in test data # 16-bit image img1 = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_FMAX), -1) img2 = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_FMIN)) # 8-bit image img2 = img_as_ubyte(img2) fused_img = pcv.image_fusion(img1, img2, [480.0], [550.0, 640.0, 800.0]) assert str(type(fused_img)) == "<class 'plantcv.plantcv.classes.Spectral_data'>" def test_plantcv_image_fusion_size_diff(): img1 = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), 0) img2 = np.copy(img1) img2 = img2[0:10, 0:10] with pytest.raises(RuntimeError): _ = pcv.image_fusion(img1, img2, [480.0, 550.0, 670.0], [480.0, 550.0, 670.0]) def test_plantcv_image_subtract(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_image_sub") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # read in images img1 = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) img2 = np.copy(img1) # Test with debug = "print" pcv.params.debug = 'print' _ = pcv.image_subtract(img1, img2) # Test with debug = "plot" pcv.params.debug = 'plot' _ = pcv.image_subtract(img1, img2) # Test with debug = None pcv.params.debug = None new_img = pcv.image_subtract(img1, img2) assert np.array_equal(new_img, np.zeros(np.shape(new_img), np.uint8)) def test_plantcv_image_subtract_fail(): # read in images img1 = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) img2 = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY)) # test with pytest.raises(RuntimeError): _ = pcv.image_subtract(img1, img2) def test_plantcv_invert(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_invert") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.invert(gray_img=img) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.invert(gray_img=img) # Test with debug = None pcv.params.debug = None inverted_img = pcv.invert(gray_img=img) # Assert that the output image has the dimensions of the input image if all([i == j] for i, j in zip(np.shape(inverted_img), TEST_BINARY_DIM)): # Assert that the image is binary if all([i == j] for i, j in zip(np.unique(inverted_img), [0, 255])): assert 1 else: assert 0 else: assert 0 def test_plantcv_landmark_reference_pt_dist(): # Clear previous outputs pcv.outputs.clear() cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_landmark_reference") os.mkdir(cache_dir) points_rescaled = [(0.0139, 0.2569), (0.2361, 0.2917), (0.3542, 0.3819), (0.3542, 0.4167), (0.375, 0.4236), (0.7431, 0.3681), (0.8958, 0.3542), (0.9931, 0.3125), (0.1667, 0.5139), (0.4583, 0.8889), (0.4931, 0.5903), (0.3889, 0.5694), (0.4792, 0.4306), (0.2083, 0.5417), (0.3194, 0.5278), (0.3889, 0.375), (0.3681, 0.3472), (0.2361, 0.0139), (0.5417, 0.2292), (0.7708, 0.3472), (0.6458, 0.3472), (0.6389, 0.5208), (0.6458, 0.625)] centroid_rescaled = (0.4685, 0.4945) bottomline_rescaled = (0.4685, 0.2569) _ = pcv.landmark_reference_pt_dist(points_r=[], centroid_r=('a', 'b'), bline_r=(0, 0)) _ = pcv.landmark_reference_pt_dist(points_r=[(10, 1000)], centroid_r=(10, 10), bline_r=(10, 10)) _ = pcv.landmark_reference_pt_dist(points_r=[], centroid_r=(0, 0), bline_r=(0, 0)) _ = pcv.landmark_reference_pt_dist(points_r=points_rescaled, centroid_r=centroid_rescaled, bline_r=bottomline_rescaled, label="prefix") assert len(pcv.outputs.observations['prefix'].keys()) == 8 def test_plantcv_laplace_filter(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_laplace_filter") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.laplace_filter(gray_img=img, ksize=1, scale=1) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.laplace_filter(gray_img=img, ksize=1, scale=1) # Test with debug = None pcv.params.debug = None lp_img = pcv.laplace_filter(gray_img=img, ksize=1, scale=1) # Assert that the output image has the dimensions of the input image assert all([i == j] for i, j in zip(np.shape(lp_img), TEST_GRAY_DIM)) def test_plantcv_logical_and(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_logical_and") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img1 = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) img2 = np.copy(img1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.logical_and(bin_img1=img1, bin_img2=img2) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.logical_and(bin_img1=img1, bin_img2=img2) # Test with debug = None pcv.params.debug = None and_img = pcv.logical_and(bin_img1=img1, bin_img2=img2) assert all([i == j] for i, j in zip(np.shape(and_img), TEST_BINARY_DIM)) def test_plantcv_logical_or(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_logical_or") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img1 = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) img2 = np.copy(img1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.logical_or(bin_img1=img1, bin_img2=img2) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.logical_or(bin_img1=img1, bin_img2=img2) # Test with debug = None pcv.params.debug = None or_img = pcv.logical_or(bin_img1=img1, bin_img2=img2) assert all([i == j] for i, j in zip(np.shape(or_img), TEST_BINARY_DIM)) def test_plantcv_logical_xor(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_logical_xor") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img1 = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) img2 = np.copy(img1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.logical_xor(bin_img1=img1, bin_img2=img2) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.logical_xor(bin_img1=img1, bin_img2=img2) # Test with debug = None pcv.params.debug = None xor_img = pcv.logical_xor(bin_img1=img1, bin_img2=img2) assert all([i == j] for i, j in zip(np.shape(xor_img), TEST_BINARY_DIM)) def test_plantcv_median_blur(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_median_blur") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.median_blur(gray_img=img, ksize=5) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.median_blur(gray_img=img, ksize=5) # Test with debug = None pcv.params.debug = None blur_img = pcv.median_blur(gray_img=img, ksize=5) # Assert that the output image has the dimensions of the input image if all([i == j] for i, j in zip(np.shape(blur_img), TEST_BINARY_DIM)): # Assert that the image is binary if all([i == j] for i, j in zip(np.unique(blur_img), [0, 255])): assert 1 else: assert 0 else: assert 0 def test_plantcv_median_blur_bad_input(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_median_blur_bad_input") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) with pytest.raises(RuntimeError): _ = pcv.median_blur(img, 5.) def test_plantcv_naive_bayes_classifier(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_naive_bayes_classifier") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.naive_bayes_classifier(rgb_img=img, pdf_file=os.path.join(TEST_DATA, TEST_PDFS)) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.naive_bayes_classifier(rgb_img=img, pdf_file=os.path.join(TEST_DATA, TEST_PDFS)) # Test with debug = None pcv.params.debug = None mask = pcv.naive_bayes_classifier(rgb_img=img, pdf_file=os.path.join(TEST_DATA, TEST_PDFS)) # Assert that the output image has the dimensions of the input image if all([i == j] for i, j in zip(np.shape(mask), TEST_GRAY_DIM)): # Assert that the image is binary if all([i == j] for i, j in zip(np.unique(mask), [0, 255])): assert 1 else: assert 0 else: assert 0 def test_plantcv_naive_bayes_classifier_bad_input(): # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) pcv.params.debug = None with pytest.raises(RuntimeError): _ = pcv.naive_bayes_classifier(rgb_img=img, pdf_file=os.path.join(TEST_DATA, TEST_PDFS_BAD)) def test_plantcv_object_composition(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_object_composition") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) object_contours_npz = np.load(os.path.join(TEST_DATA, TEST_INPUT_OBJECT_CONTOURS), encoding="latin1") object_contours = [object_contours_npz[arr_n] for arr_n in object_contours_npz] object_hierarchy_npz = np.load(os.path.join(TEST_DATA, TEST_INPUT_OBJECT_HIERARCHY), encoding="latin1") object_hierarchy = object_hierarchy_npz['arr_0'] # Test with debug = "print" pcv.params.debug = "print" _ = pcv.object_composition(img=img, contours=object_contours, hierarchy=object_hierarchy) _ = pcv.object_composition(img=img, contours=[], hierarchy=object_hierarchy) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.object_composition(img=img, contours=object_contours, hierarchy=object_hierarchy) # Test with debug = None pcv.params.debug = None contours, mask = pcv.object_composition(img=img, contours=object_contours, hierarchy=object_hierarchy) # Assert that the objects have been combined contour_shape = np.shape(contours) # type: tuple assert contour_shape[1] == 1 def test_plantcv_object_composition_grayscale_input(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_object_composition_grayscale_input") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR), 0) object_contours_npz = np.load(os.path.join(TEST_DATA, TEST_INPUT_OBJECT_CONTOURS), encoding="latin1") object_contours = [object_contours_npz[arr_n] for arr_n in object_contours_npz] object_hierarchy_npz = np.load(os.path.join(TEST_DATA, TEST_INPUT_OBJECT_HIERARCHY), encoding="latin1") object_hierarchy = object_hierarchy_npz['arr_0'] # Test with debug = "plot" pcv.params.debug = "plot" contours, mask = pcv.object_composition(img=img, contours=object_contours, hierarchy=object_hierarchy) # Assert that the objects have been combined contour_shape = np.shape(contours) # type: tuple assert contour_shape[1] == 1 def test_plantcv_within_frame(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_within_frame") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data mask_ib = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MASK), -1) mask_oob = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MASK_OOB), -1) in_bounds_ib = pcv.within_frame(mask=mask_ib, border_width=1, label="prefix") in_bounds_oob = pcv.within_frame(mask=mask_oob, border_width=1) assert (in_bounds_ib is True and in_bounds_oob is False) def test_plantcv_within_frame_bad_input(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_within_frame") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data grayscale_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR), 0) with pytest.raises(RuntimeError): _ = pcv.within_frame(grayscale_img) def test_plantcv_opening(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_closing") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data rgb_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MULTI), -1) gray_img = cv2.cvtColor(rgb_img, cv2.COLOR_BGR2GRAY) bin_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) # Test with debug=None pcv.params.debug = None _ = pcv.opening(gray_img) # Test with debug='plot' pcv.params.debug = 'plot' _ = pcv.opening(bin_img, np.ones((4, 4), np.uint8)) # Test with debug='print' pcv.params.debug = 'print' filtered_img = pcv.opening(bin_img) assert np.sum(filtered_img) == 16184595 def test_plantcv_opening_bad_input(): # Read in test data rgb_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MULTI), -1) with pytest.raises(RuntimeError): _ = pcv.opening(rgb_img) def test_plantcv_output_mask(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_output_mask") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) img_color = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR), -1) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.output_mask(img=img, mask=mask, filename='test.png', outdir=None, mask_only=False) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.output_mask(img=img, mask=mask, filename='test.png', outdir=cache_dir, mask_only=False) _ = pcv.output_mask(img=img_color, mask=mask, filename='test.png', outdir=None, mask_only=False) # Remove tmp files in working direcctory shutil.rmtree("ori-images") shutil.rmtree("mask-images") # Test with debug = None pcv.params.debug = None imgpath, maskpath, analysis_images = pcv.output_mask(img=img, mask=mask, filename='test.png', outdir=cache_dir, mask_only=False) assert all([os.path.exists(imgpath) is True, os.path.exists(maskpath) is True]) def test_plantcv_output_mask_true(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_output_mask") pcv.params.debug_outdir = cache_dir os.mkdir(cache_dir) # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) img_color = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR), -1) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.output_mask(img=img, mask=mask, filename='test.png', outdir=cache_dir, mask_only=True) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.output_mask(img=img_color, mask=mask, filename='test.png', outdir=cache_dir, mask_only=True) pcv.params.debug = None imgpath, maskpath, analysis_images = pcv.output_mask(img=img, mask=mask, filename='test.png', outdir=cache_dir, mask_only=False) assert all([os.path.exists(imgpath) is True, os.path.exists(maskpath) is True]) def test_plantcv_plot_image_matplotlib_input(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_pseudocolor") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) pimg = pcv.visualize.pseudocolor(gray_img=img, mask=mask, min_value=10, max_value=200) with pytest.raises(RuntimeError): pcv.plot_image(pimg) def test_plantcv_plot_image_plotnine(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_plot_image_plotnine") os.mkdir(cache_dir) dataset = pd.DataFrame({'x': [1, 2, 3, 4], 'y': [1, 2, 3, 4]}) img = ggplot(data=dataset) try: pcv.plot_image(img=img) except RuntimeError: assert False # Assert that the image was plotted without error assert True def test_plantcv_print_image(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_print_image") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img, path, img_name = pcv.readimage(filename=os.path.join(TEST_DATA, TEST_INPUT_COLOR)) filename = os.path.join(cache_dir, 'plantcv_print_image.png') pcv.print_image(img=img, filename=filename) # Assert that the file was created assert os.path.exists(filename) is True def test_plantcv_print_image_bad_type(): with pytest.raises(RuntimeError): pcv.print_image(img=[], filename="/dev/null") def test_plantcv_print_image_plotnine(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_print_image_plotnine") os.mkdir(cache_dir) dataset = pd.DataFrame({'x': [1, 2, 3, 4], 'y': [1, 2, 3, 4]}) img = ggplot(data=dataset) filename = os.path.join(cache_dir, 'plantcv_print_image.png') pcv.print_image(img=img, filename=filename) # Assert that the file was created assert os.path.exists(filename) is True def test_plantcv_print_image_matplotlib(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_print_image_plotnine") os.mkdir(cache_dir) # Input data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) plt.figure() plt.imshow(img) plot = plt.gcf() filename = os.path.join(cache_dir, 'plantcv_print_image.png') pcv.print_image(img=plot, filename=filename) # Assert that the file was created assert os.path.exists(filename) is True def test_plantcv_print_results(tmpdir): # Create a tmp directory cache_dir = tmpdir.mkdir("sub") outfile = os.path.join(cache_dir, "results.json") pcv.print_results(filename=outfile) assert os.path.exists(outfile) def test_plantcv_readimage_native(): # Test with debug = None pcv.params.debug = None _ = pcv.readimage(filename=os.path.join(TEST_DATA, TEST_INPUT_COLOR), mode='rgba') _ = pcv.readimage(filename=os.path.join(TEST_DATA, TEST_INPUT_COLOR)) img, path, img_name = pcv.readimage(filename=os.path.join(TEST_DATA, TEST_INPUT_COLOR), mode='native') # Assert that the image name returned equals the name of the input image # Assert that the path of the image returned equals the path of the input image # Assert that the dimensions of the returned image equals the expected dimensions if img_name == TEST_INPUT_COLOR and path == TEST_DATA: if all([i == j] for i, j in zip(np.shape(img), TEST_COLOR_DIM)): assert 1 else: assert 0 else: assert 0 def test_plantcv_readimage_grayscale(): # Test with debug = None pcv.params.debug = None _, _, _ = pcv.readimage(filename=os.path.join(TEST_DATA, TEST_INPUT_GRAY), mode="grey") img, path, img_name = pcv.readimage(filename=os.path.join(TEST_DATA, TEST_INPUT_GRAY), mode="gray") assert len(np.shape(img)) == 2 def test_plantcv_readimage_rgb(): # Test with debug = None pcv.params.debug = None img, path, img_name = pcv.readimage(filename=os.path.join(TEST_DATA, TEST_INPUT_GRAY), mode="rgb") assert len(np.shape(img)) == 3 def test_plantcv_readimage_rgba_as_rgb(): # Test with debug = None pcv.params.debug = None img, path, img_name = pcv.readimage(filename=os.path.join(TEST_DATA, TEST_INPUT_RGBA), mode="native") assert np.shape(img)[2] == 3 def test_plantcv_readimage_csv(): # Test with debug = None pcv.params.debug = None img, path, img_name = pcv.readimage(filename=os.path.join(TEST_DATA, TEST_INPUT_THERMAL_CSV), mode="csv") assert len(np.shape(img)) == 2 def test_plantcv_readimage_envi(): # Test with debug = None pcv.params.debug = None array_data = pcv.readimage(filename=os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA), mode="envi") if sys.version_info[0] < 3: assert len(array_data.array_type) == 8 def test_plantcv_readimage_bad_file(): with pytest.raises(RuntimeError): _ = pcv.readimage(filename=TEST_INPUT_COLOR) def test_plantcv_readbayer_default_bg(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_readbayer_default_bg") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Test with debug = "print" pcv.params.debug = "print" _, _, _ = pcv.readbayer(filename=os.path.join(TEST_DATA, TEST_INPUT_BAYER), bayerpattern="BG", alg="default") # Test with debug = "plot" pcv.params.debug = "plot" img, path, img_name = pcv.readbayer(filename=os.path.join(TEST_DATA, TEST_INPUT_BAYER), bayerpattern="BG", alg="default") assert all([i == j] for i, j in zip(np.shape(img), (335, 400, 3))) def test_plantcv_readbayer_default_gb(): # Test with debug = None pcv.params.debug = None img, path, img_name = pcv.readbayer(filename=os.path.join(TEST_DATA, TEST_INPUT_BAYER), bayerpattern="GB", alg="default") assert all([i == j] for i, j in zip(np.shape(img), (335, 400, 3))) def test_plantcv_readbayer_default_rg(): # Test with debug = None pcv.params.debug = None img, path, img_name = pcv.readbayer(filename=os.path.join(TEST_DATA, TEST_INPUT_BAYER), bayerpattern="RG", alg="default") assert all([i == j] for i, j in zip(np.shape(img), (335, 400, 3))) def test_plantcv_readbayer_default_gr(): # Test with debug = None pcv.params.debug = None img, path, img_name = pcv.readbayer(filename=os.path.join(TEST_DATA, TEST_INPUT_BAYER), bayerpattern="GR", alg="default") assert all([i == j] for i, j in zip(np.shape(img), (335, 400, 3))) def test_plantcv_readbayer_edgeaware_bg(): # Test with debug = None pcv.params.debug = None img, path, img_name = pcv.readbayer(filename=os.path.join(TEST_DATA, TEST_INPUT_BAYER), bayerpattern="BG", alg="edgeaware") assert all([i == j] for i, j in zip(np.shape(img), (335, 400, 3))) def test_plantcv_readbayer_edgeaware_gb(): # Test with debug = None pcv.params.debug = None img, path, img_name = pcv.readbayer(filename=os.path.join(TEST_DATA, TEST_INPUT_BAYER), bayerpattern="GB", alg="edgeaware") assert all([i == j] for i, j in zip(np.shape(img), (335, 400, 3))) def test_plantcv_readbayer_edgeaware_rg(): # Test with debug = None pcv.params.debug = None img, path, img_name = pcv.readbayer(filename=os.path.join(TEST_DATA, TEST_INPUT_BAYER), bayerpattern="RG", alg="edgeaware") assert all([i == j] for i, j in zip(np.shape(img), (335, 400, 3))) def test_plantcv_readbayer_edgeaware_gr(): # Test with debug = None pcv.params.debug = None img, path, img_name = pcv.readbayer(filename=os.path.join(TEST_DATA, TEST_INPUT_BAYER), bayerpattern="GR", alg="edgeaware") assert all([i == j] for i, j in zip(np.shape(img), (335, 400, 3))) def test_plantcv_readbayer_variablenumbergradients_bg(): # Test with debug = None pcv.params.debug = None img, path, img_name = pcv.readbayer(filename=os.path.join(TEST_DATA, TEST_INPUT_BAYER), bayerpattern="BG", alg="variablenumbergradients") assert all([i == j] for i, j in zip(np.shape(img), (335, 400, 3))) def test_plantcv_readbayer_variablenumbergradients_gb(): # Test with debug = None pcv.params.debug = None img, path, img_name = pcv.readbayer(filename=os.path.join(TEST_DATA, TEST_INPUT_BAYER), bayerpattern="GB", alg="variablenumbergradients") assert all([i == j] for i, j in zip(np.shape(img), (335, 400, 3))) def test_plantcv_readbayer_variablenumbergradients_rg(): # Test with debug = None pcv.params.debug = None img, path, img_name = pcv.readbayer(filename=os.path.join(TEST_DATA, TEST_INPUT_BAYER), bayerpattern="RG", alg="variablenumbergradients") assert all([i == j] for i, j in zip(np.shape(img), (335, 400, 3))) def test_plantcv_readbayer_variablenumbergradients_gr(): # Test with debug = None pcv.params.debug = None img, path, img_name = pcv.readbayer(filename=os.path.join(TEST_DATA, TEST_INPUT_BAYER), bayerpattern="GR", alg="variablenumbergradients") assert all([i == j] for i, j in zip(np.shape(img), (335, 400, 3))) def test_plantcv_readbayer_default_bad_input(): # Test with debug = None pcv.params.debug = None with pytest.raises(RuntimeError): _, _, _ = pcv.readbayer(filename=os.path.join(TEST_DATA, "no-image.png"), bayerpattern="GR", alg="default") def test_plantcv_rectangle_mask(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_rectangle_mask") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) img_color = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.rectangle_mask(img=img, p1=(0, 0), p2=(2454, 2056), color="white") _ = pcv.rectangle_mask(img=img, p1=(0, 0), p2=(2454, 2056), color="white") # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.rectangle_mask(img=img_color, p1=(0, 0), p2=(2454, 2056), color="gray") # Test with debug = None pcv.params.debug = None masked, hist, contour, heir = pcv.rectangle_mask(img=img, p1=(0, 0), p2=(2454, 2056), color="black") maskedsum = np.sum(masked) imgsum = np.sum(img) assert maskedsum < imgsum def test_plantcv_rectangle_mask_bad_input(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_rectangle_mask") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) # Test with debug = None pcv.params.debug = None with pytest.raises(RuntimeError): _ = pcv.rectangle_mask(img=img, p1=(0, 0), p2=(2454, 2056), color="whit") def test_plantcv_report_size_marker_detect(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_report_size_marker_detect") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MARKER), -1) # ROI contour roi_contour = [np.array([[[3550, 850]], [[3550, 1349]], [[4049, 1349]], [[4049, 850]]], dtype=np.int32)] roi_hierarchy = np.array([[[-1, -1, -1, -1]]], dtype=np.int32) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.report_size_marker_area(img=img, roi_contour=roi_contour, roi_hierarchy=roi_hierarchy, marker='detect', objcolor='light', thresh_channel='s', thresh=120, label="prefix") # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.report_size_marker_area(img=img, roi_contour=roi_contour, roi_hierarchy=roi_hierarchy, marker='detect', objcolor='light', thresh_channel='s', thresh=120) # Test with debug = None pcv.params.debug = None images = pcv.report_size_marker_area(img=img, roi_contour=roi_contour, roi_hierarchy=roi_hierarchy, marker='detect', objcolor='light', thresh_channel='s', thresh=120) pcv.outputs.clear() assert len(images) != 0 def test_plantcv_report_size_marker_define(): # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MARKER), -1) # ROI contour roi_contour = [np.array([[[3550, 850]], [[3550, 1349]], [[4049, 1349]], [[4049, 850]]], dtype=np.int32)] roi_hierarchy = np.array([[[-1, -1, -1, -1]]], dtype=np.int32) # Test with debug = None pcv.params.debug = None images = pcv.report_size_marker_area(img=img, roi_contour=roi_contour, roi_hierarchy=roi_hierarchy, marker='define', objcolor='light', thresh_channel='s', thresh=120) assert len(images) != 0 def test_plantcv_report_size_marker_grayscale_input(): # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) # ROI contour roi_contour = [np.array([[[0, 0]], [[0, 49]], [[49, 49]], [[49, 0]]], dtype=np.int32)] roi_hierarchy = np.array([[[-1, -1, -1, -1]]], dtype=np.int32) # Test with debug = None pcv.params.debug = None images = pcv.report_size_marker_area(img=img, roi_contour=roi_contour, roi_hierarchy=roi_hierarchy, marker='define', objcolor='light', thresh_channel='s', thresh=120) assert len(images) != 0 def test_plantcv_report_size_marker_bad_marker_input(): # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MARKER), -1) # ROI contour roi_contour = [np.array([[[3550, 850]], [[3550, 1349]], [[4049, 1349]], [[4049, 850]]], dtype=np.int32)] roi_hierarchy = np.array([[[-1, -1, -1, -1]]], dtype=np.int32) with pytest.raises(RuntimeError): _ = pcv.report_size_marker_area(img=img, roi_contour=roi_contour, roi_hierarchy=roi_hierarchy, marker='none', objcolor='light', thresh_channel='s', thresh=120) def test_plantcv_report_size_marker_bad_threshold_input(): # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MARKER), -1) # ROI contour roi_contour = [np.array([[[3550, 850]], [[3550, 1349]], [[4049, 1349]], [[4049, 850]]], dtype=np.int32)] roi_hierarchy = np.array([[[-1, -1, -1, -1]]], dtype=np.int32) with pytest.raises(RuntimeError): _ = pcv.report_size_marker_area(img=img, roi_contour=roi_contour, roi_hierarchy=roi_hierarchy, marker='detect', objcolor='light', thresh_channel=None, thresh=120) def test_plantcv_rgb2gray_cmyk(): # Test with debug = None pcv.params.debug = None # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) c = pcv.rgb2gray_cmyk(rgb_img=img, channel="c") # Assert that the output image has the dimensions of the input image but is only a single channel assert all([i == j] for i, j in zip(np.shape(c), TEST_GRAY_DIM)) def test_plantcv_rgb2gray_cmyk_bad_channel(): # Test with debug = None pcv.params.debug = None # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) with pytest.raises(RuntimeError): # Channel S is not in CMYK _ = pcv.rgb2gray_cmyk(rgb_img=img, channel="s") def test_plantcv_rgb2gray_hsv(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_rgb2gray_hsv") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.rgb2gray_hsv(rgb_img=img, channel="s") # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.rgb2gray_hsv(rgb_img=img, channel="s") # Test with debug = None pcv.params.debug = None s = pcv.rgb2gray_hsv(rgb_img=img, channel="s") # Assert that the output image has the dimensions of the input image but is only a single channel assert all([i == j] for i, j in zip(np.shape(s), TEST_GRAY_DIM)) def test_plantcv_rgb2gray_hsv_bad_input(): img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) pcv.params.debug = None with pytest.raises(RuntimeError): _ = pcv.rgb2gray_hsv(rgb_img=img, channel="l") def test_plantcv_rgb2gray_lab(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_rgb2gray_lab") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.rgb2gray_lab(rgb_img=img, channel='b') # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.rgb2gray_lab(rgb_img=img, channel='b') # Test with debug = None pcv.params.debug = None b = pcv.rgb2gray_lab(rgb_img=img, channel='b') # Assert that the output image has the dimensions of the input image but is only a single channel assert all([i == j] for i, j in zip(np.shape(b), TEST_GRAY_DIM)) def test_plantcv_rgb2gray_lab_bad_input(): img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) pcv.params.debug = None with pytest.raises(RuntimeError): _ = pcv.rgb2gray_lab(rgb_img=img, channel="v") def test_plantcv_rgb2gray(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_rgb2gray") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) # Test with debug = None pcv.params.debug = None gray = pcv.rgb2gray(rgb_img=img) # Assert that the output image has the dimensions of the input image but is only a single channel assert all([i == j] for i, j in zip(np.shape(gray), TEST_GRAY_DIM)) def test_plantcv_roi2mask(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_acute_vertex") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_VIS_SMALL)) contours_npz = np.load(os.path.join(TEST_DATA, TEST_VIS_COMP_CONTOUR), encoding="latin1") obj_contour = contours_npz['arr_0'] pcv.params.debug = "plot" _ = pcv.roi.roi2mask(img=img, contour=obj_contour) pcv.params.debug = "print" mask = pcv.roi.roi2mask(img=img, contour=obj_contour) assert np.shape(mask)[0:2] == np.shape(img)[0:2] and np.sum(mask) == 255 def test_plantcv_roi_objects(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_roi_objects") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) roi_contour_npz = np.load(os.path.join(TEST_DATA, TEST_INPUT_ROI_CONTOUR), encoding="latin1") roi_contour = [roi_contour_npz[arr_n] for arr_n in roi_contour_npz] roi_hierarchy_npz = np.load(os.path.join(TEST_DATA, TEST_INPUT_ROI_HIERARCHY), encoding="latin1") roi_hierarchy = roi_hierarchy_npz['arr_0'] object_contours_npz = np.load(os.path.join(TEST_DATA, TEST_INPUT_OBJECT_CONTOURS), encoding="latin1") object_contours = [object_contours_npz[arr_n] for arr_n in object_contours_npz] object_hierarchy_npz = np.load(os.path.join(TEST_DATA, TEST_INPUT_OBJECT_HIERARCHY), encoding="latin1") object_hierarchy = object_hierarchy_npz['arr_0'] # Test with debug = "print" pcv.params.debug = "print" _ = pcv.roi_objects(img=img, roi_contour=roi_contour, roi_hierarchy=roi_hierarchy, object_contour=object_contours, obj_hierarchy=object_hierarchy, roi_type="largest") # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.roi_objects(img=img, roi_contour=roi_contour, roi_hierarchy=roi_hierarchy, object_contour=object_contours, obj_hierarchy=object_hierarchy, roi_type="partial") # Test with debug = None and roi_type = cutto pcv.params.debug = None _ = pcv.roi_objects(img=img, roi_contour=roi_contour, roi_hierarchy=roi_hierarchy, object_contour=object_contours, obj_hierarchy=object_hierarchy, roi_type="cutto") # Test with debug = None kept_contours, kept_hierarchy, mask, area = pcv.roi_objects(img=img, roi_contour=roi_contour, roi_hierarchy=roi_hierarchy, object_contour=object_contours, obj_hierarchy=object_hierarchy, roi_type="partial") # Assert that the contours were filtered as expected assert len(kept_contours) == 1891 def test_plantcv_roi_objects_bad_input(): # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) roi_contour_npz = np.load(os.path.join(TEST_DATA, TEST_INPUT_ROI_CONTOUR), encoding="latin1") roi_contour = [roi_contour_npz[arr_n] for arr_n in roi_contour_npz] roi_hierarchy_npz = np.load(os.path.join(TEST_DATA, TEST_INPUT_ROI_HIERARCHY), encoding="latin1") roi_hierarchy = roi_hierarchy_npz['arr_0'] object_contours_npz = np.load(os.path.join(TEST_DATA, TEST_INPUT_OBJECT_CONTOURS), encoding="latin1") object_contours = [object_contours_npz[arr_n] for arr_n in object_contours_npz] object_hierarchy_npz = np.load(os.path.join(TEST_DATA, TEST_INPUT_OBJECT_HIERARCHY), encoding="latin1") object_hierarchy = object_hierarchy_npz['arr_0'] pcv.params.debug = None with pytest.raises(RuntimeError): _ = pcv.roi_objects(img=img, roi_type="cut", roi_contour=roi_contour, roi_hierarchy=roi_hierarchy, object_contour=object_contours, obj_hierarchy=object_hierarchy) def test_plantcv_roi_objects_grayscale_input(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_roi_objects_grayscale_input") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR), 0) roi_contour_npz = np.load(os.path.join(TEST_DATA, TEST_INPUT_ROI_CONTOUR), encoding="latin1") roi_contour = [roi_contour_npz[arr_n] for arr_n in roi_contour_npz] roi_hierarchy_npz = np.load(os.path.join(TEST_DATA, TEST_INPUT_ROI_HIERARCHY), encoding="latin1") roi_hierarchy = roi_hierarchy_npz['arr_0'] object_contours_npz = np.load(os.path.join(TEST_DATA, TEST_INPUT_OBJECT_CONTOURS), encoding="latin1") object_contours = [object_contours_npz[arr_n] for arr_n in object_contours_npz] object_hierarchy_npz = np.load(os.path.join(TEST_DATA, TEST_INPUT_OBJECT_HIERARCHY), encoding="latin1") object_hierarchy = object_hierarchy_npz['arr_0'] # Test with debug = "plot" pcv.params.debug = "plot" kept_contours, kept_hierarchy, mask, area = pcv.roi_objects(img=img, roi_type="partial", roi_contour=roi_contour, roi_hierarchy=roi_hierarchy, object_contour=object_contours, obj_hierarchy=object_hierarchy) # Assert that the contours were filtered as expected assert len(kept_contours) == 1891 def test_plantcv_rotate(): img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) rotated = pcv.rotate(img=img, rotation_deg=45, crop=True) imgavg = np.average(img) rotateavg = np.average(rotated) assert rotateavg != imgavg def test_plantcv_transform_rotate(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_rotate_img") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.transform.rotate(img=img, rotation_deg=45, crop=True) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.transform.rotate(img=img, rotation_deg=45, crop=True) # Test with debug = None pcv.params.debug = None rotated = pcv.transform.rotate(img=img, rotation_deg=45, crop=True) imgavg = np.average(img) rotateavg = np.average(rotated) assert rotateavg != imgavg def test_plantcv_transform_rotate_gray(): img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.transform.rotate(img=img, rotation_deg=45, crop=False) # Test with debug = None pcv.params.debug = None rotated = pcv.transform.rotate(img=img, rotation_deg=45, crop=False) imgavg = np.average(img) rotateavg = np.average(rotated) assert rotateavg != imgavg def test_plantcv_scale_features(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_scale_features") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data mask = cv2.imread(os.path.join(TEST_DATA, TEST_MASK_SMALL), -1) contours_npz = np.load(os.path.join(TEST_DATA, TEST_VIS_COMP_CONTOUR), encoding="latin1") obj_contour = contours_npz['arr_0'] # Test with debug = "print" pcv.params.debug = "print" _ = pcv.scale_features(obj=obj_contour, mask=mask, points=TEST_ACUTE_RESULT, line_position=50) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.scale_features(obj=obj_contour, mask=mask, points=TEST_ACUTE_RESULT, line_position='NA') # Test with debug = None pcv.params.debug = None points_rescaled, centroid_rescaled, bottomline_rescaled = pcv.scale_features(obj=obj_contour, mask=mask, points=TEST_ACUTE_RESULT, line_position=50) assert len(points_rescaled) == 23 def test_plantcv_scale_features_bad_input(): mask = np.array([]) obj_contour = np.array([]) pcv.params.debug = None result = pcv.scale_features(obj=obj_contour, mask=mask, points=TEST_ACUTE_RESULT, line_position=50) assert all([i == j] for i, j in zip(result, [("NA", "NA"), ("NA", "NA"), ("NA", "NA")])) def test_plantcv_scharr_filter(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_scharr_filter") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) pcv.params.debug = "print" # Test with debug = "print" _ = pcv.scharr_filter(img=img, dx=1, dy=0, scale=1) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.scharr_filter(img=img, dx=1, dy=0, scale=1) # Test with debug = None pcv.params.debug = None scharr_img = pcv.scharr_filter(img=img, dx=1, dy=0, scale=1) # Assert that the output image has the dimensions of the input image assert all([i == j] for i, j in zip(np.shape(scharr_img), TEST_GRAY_DIM)) def test_plantcv_shift_img(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_shift_img") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.shift_img(img=img, number=300, side="top") # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.shift_img(img=img, number=300, side="top") # Test with debug = "plot" _ = pcv.shift_img(img=img, number=300, side="bottom") # Test with debug = "plot" _ = pcv.shift_img(img=img, number=300, side="right") # Test with debug = "plot" _ = pcv.shift_img(img=mask, number=300, side="left") # Test with debug = None pcv.params.debug = None rotated = pcv.shift_img(img=img, number=300, side="top") imgavg = np.average(img) shiftavg = np.average(rotated) assert shiftavg != imgavg def test_plantcv_shift_img_bad_input(): # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) with pytest.raises(RuntimeError): pcv.params.debug = None _ = pcv.shift_img(img=img, number=-300, side="top") def test_plantcv_shift_img_bad_side_input(): # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) with pytest.raises(RuntimeError): pcv.params.debug = None _ = pcv.shift_img(img=img, number=300, side="starboard") def test_plantcv_sobel_filter(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_sobel_filter") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.sobel_filter(gray_img=img, dx=1, dy=0, ksize=1) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.sobel_filter(gray_img=img, dx=1, dy=0, ksize=1) # Test with debug = None pcv.params.debug = None sobel_img = pcv.sobel_filter(gray_img=img, dx=1, dy=0, ksize=1) # Assert that the output image has the dimensions of the input image assert all([i == j] for i, j in zip(np.shape(sobel_img), TEST_GRAY_DIM)) def test_plantcv_stdev_filter(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_sobel_filter") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY_SMALL), -1) pcv.params.debug = "plot" _ = pcv.stdev_filter(img=img, ksize=11) pcv.params.debug = "print" filter_img = pcv.stdev_filter(img=img, ksize=11) assert (np.shape(filter_img) == np.shape(img)) def test_plantcv_watershed_segmentation(): # Clear previous outputs pcv.outputs.clear() # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_watershed_segmentation") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_CROPPED)) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_CROPPED_MASK), -1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.watershed_segmentation(rgb_img=img, mask=mask, distance=10, label="prefix") # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.watershed_segmentation(rgb_img=img, mask=mask, distance=10) # Test with debug = None pcv.params.debug = None _ = pcv.watershed_segmentation(rgb_img=img, mask=mask, distance=10) assert pcv.outputs.observations['default']['estimated_object_count']['value'] > 9 def test_plantcv_white_balance_gray_16bit(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_white_balance_gray_16bit") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_NIR_MASK), -1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.white_balance(img=img, mode='hist', roi=(5, 5, 80, 80)) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.white_balance(img=img, mode='max', roi=(5, 5, 80, 80)) # Test without an ROI pcv.params.debug = None _ = pcv.white_balance(img=img, mode='hist', roi=None) # Test with debug = None white_balanced = pcv.white_balance(img=img, roi=(5, 5, 80, 80)) imgavg = np.average(img) balancedavg = np.average(white_balanced) assert balancedavg != imgavg def test_plantcv_white_balance_gray_8bit(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_white_balance_gray_8bit") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_NIR_MASK)) img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.white_balance(img=img, mode='hist', roi=(5, 5, 80, 80)) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.white_balance(img=img, mode='max', roi=(5, 5, 80, 80)) # Test without an ROI pcv.params.debug = None _ = pcv.white_balance(img=img, mode='hist', roi=None) # Test with debug = None white_balanced = pcv.white_balance(img=img, roi=(5, 5, 80, 80)) imgavg = np.average(img) balancedavg = np.average(white_balanced) assert balancedavg != imgavg def test_plantcv_white_balance_rgb(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_white_balance_rgb") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MARKER)) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.white_balance(img=img, mode='hist', roi=(5, 5, 80, 80)) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.white_balance(img=img, mode='max', roi=(5, 5, 80, 80)) # Test without an ROI pcv.params.debug = None _ = pcv.white_balance(img=img, mode='hist', roi=None) # Test with debug = None white_balanced = pcv.white_balance(img=img, roi=(5, 5, 80, 80)) imgavg = np.average(img) balancedavg = np.average(white_balanced) assert balancedavg != imgavg def test_plantcv_white_balance_bad_input(): # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_NIR_MASK), -1) # Test with debug = None with pytest.raises(RuntimeError): pcv.params.debug = "plot" _ = pcv.white_balance(img=img, mode='hist', roi=(5, 5, 5, 5, 5)) def test_plantcv_white_balance_bad_mode_input(): # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MARKER)) # Test with debug = None with pytest.raises(RuntimeError): pcv.params.debug = "plot" _ = pcv.white_balance(img=img, mode='histogram', roi=(5, 5, 80, 80)) def test_plantcv_white_balance_bad_input_int(): # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_NIR_MASK), -1) # Test with debug = None with pytest.raises(RuntimeError): pcv.params.debug = "plot" _ = pcv.white_balance(img=img, mode='hist', roi=(5., 5, 5, 5)) def test_plantcv_x_axis_pseudolandmarks(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_x_axis_pseudolandmarks_debug") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir img = cv2.imread(os.path.join(TEST_DATA, TEST_VIS_SMALL)) mask = cv2.imread(os.path.join(TEST_DATA, TEST_MASK_SMALL), -1) contours_npz = np.load(os.path.join(TEST_DATA, TEST_VIS_COMP_CONTOUR), encoding="latin1") obj_contour = contours_npz['arr_0'] pcv.params.debug = "print" _ = pcv.x_axis_pseudolandmarks(obj=obj_contour, mask=mask, img=img) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.x_axis_pseudolandmarks(obj=obj_contour, mask=mask, img=img, label="prefix") _ = pcv.x_axis_pseudolandmarks(obj=np.array([[0, 0], [0, 0]]), mask=np.array([[0, 0], [0, 0]]), img=img) _ = pcv.x_axis_pseudolandmarks(obj=np.array(([[89, 222]], [[252, 39]], [[89, 207]])), mask=np.array(([[42, 161]], [[2, 47]], [[211, 222]])), img=img) _ = pcv.x_axis_pseudolandmarks(obj=(), mask=mask, img=img) # Test with debug = None pcv.params.debug = None top, bottom, center_v = pcv.x_axis_pseudolandmarks(obj=obj_contour, mask=mask, img=img) pcv.outputs.clear() assert all([all([i == j] for i, j in zip(np.shape(top), (20, 1, 2))), all([i == j] for i, j in zip(np.shape(bottom), (20, 1, 2))), all([i == j] for i, j in zip(np.shape(center_v), (20, 1, 2)))]) def test_plantcv_x_axis_pseudolandmarks_small_obj(): img = cv2.imread(os.path.join(TEST_DATA, TEST_VIS_SMALL_PLANT)) mask = cv2.imread(os.path.join(TEST_DATA, TEST_MASK_SMALL_PLANT), -1) contours_npz = np.load(os.path.join(TEST_DATA, TEST_VIS_COMP_CONTOUR_SMALL_PLANT), encoding="latin1") obj_contour = contours_npz['arr_0'] # Test with debug = "print" pcv.params.debug = "print" _, _, _ = pcv.x_axis_pseudolandmarks(obj=[], mask=mask, img=img) _, _, _ = pcv.x_axis_pseudolandmarks(obj=obj_contour, mask=mask, img=img) # Test with debug = "plot" pcv.params.debug = "plot" _, _, _ = pcv.x_axis_pseudolandmarks(obj=[], mask=mask, img=img) top, bottom, center_v = pcv.x_axis_pseudolandmarks(obj=obj_contour, mask=mask, img=img) assert all([all([i == j] for i, j in zip(np.shape(top), (20, 1, 2))), all([i == j] for i, j in zip(np.shape(bottom), (20, 1, 2))), all([i == j] for i, j in zip(np.shape(center_v), (20, 1, 2)))]) def test_plantcv_x_axis_pseudolandmarks_bad_input(): img = np.array([]) mask = np.array([]) obj_contour = np.array([]) pcv.params.debug = None result = pcv.x_axis_pseudolandmarks(obj=obj_contour, mask=mask, img=img) assert all([i == j] for i, j in zip(result, [("NA", "NA"), ("NA", "NA"), ("NA", "NA")])) def test_plantcv_x_axis_pseudolandmarks_bad_obj_input(): img = cv2.imread(os.path.join(TEST_DATA, TEST_VIS_SMALL_PLANT)) with pytest.raises(RuntimeError): _ = pcv.x_axis_pseudolandmarks(obj=np.array([[-2, -2], [-2, -2]]), mask=np.array([[-2, -2], [-2, -2]]), img=img) def test_plantcv_y_axis_pseudolandmarks(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_y_axis_pseudolandmarks_debug") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir img = cv2.imread(os.path.join(TEST_DATA, TEST_VIS_SMALL)) mask = cv2.imread(os.path.join(TEST_DATA, TEST_MASK_SMALL), -1) contours_npz = np.load(os.path.join(TEST_DATA, TEST_VIS_COMP_CONTOUR), encoding="latin1") obj_contour = contours_npz['arr_0'] pcv.params.debug = "print" _ = pcv.y_axis_pseudolandmarks(obj=obj_contour, mask=mask, img=img, label="prefix") # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.y_axis_pseudolandmarks(obj=obj_contour, mask=mask, img=img) pcv.outputs.clear() _ = pcv.y_axis_pseudolandmarks(obj=[], mask=mask, img=img) _ = pcv.y_axis_pseudolandmarks(obj=(), mask=mask, img=img) _ = pcv.y_axis_pseudolandmarks(obj=np.array(([[89, 222]], [[252, 39]], [[89, 207]])), mask=np.array(([[42, 161]], [[2, 47]], [[211, 222]])), img=img) _ = pcv.y_axis_pseudolandmarks(obj=np.array(([[21, 11]], [[159, 155]], [[237, 11]])), mask=np.array(([[38, 54]], [[144, 169]], [[81, 137]])), img=img) # Test with debug = None pcv.params.debug = None left, right, center_h = pcv.y_axis_pseudolandmarks(obj=obj_contour, mask=mask, img=img) pcv.outputs.clear() assert all([all([i == j] for i, j in zip(np.shape(left), (20, 1, 2))), all([i == j] for i, j in zip(np.shape(right), (20, 1, 2))), all([i == j] for i, j in zip(np.shape(center_h), (20, 1, 2)))]) def test_plantcv_y_axis_pseudolandmarks_small_obj(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_y_axis_pseudolandmarks_debug") os.mkdir(cache_dir) img = cv2.imread(os.path.join(TEST_DATA, TEST_VIS_SMALL_PLANT)) mask = cv2.imread(os.path.join(TEST_DATA, TEST_MASK_SMALL_PLANT), -1) contours_npz = np.load(os.path.join(TEST_DATA, TEST_VIS_COMP_CONTOUR_SMALL_PLANT), encoding="latin1") obj_contour = contours_npz['arr_0'] # Test with debug = "print" pcv.params.debug = "print" _, _, _ = pcv.y_axis_pseudolandmarks(obj=[], mask=mask, img=img) _, _, _ = pcv.y_axis_pseudolandmarks(obj=obj_contour, mask=mask, img=img) # Test with debug = "plot" pcv.params.debug = "plot" pcv.outputs.clear() left, right, center_h = pcv.y_axis_pseudolandmarks(obj=obj_contour, mask=mask, img=img) pcv.outputs.clear() assert all([all([i == j] for i, j in zip(np.shape(left), (20, 1, 2))), all([i == j] for i, j in zip(np.shape(right), (20, 1, 2))), all([i == j] for i, j in zip(np.shape(center_h), (20, 1, 2)))]) def test_plantcv_y_axis_pseudolandmarks_bad_input(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_y_axis_pseudolandmarks_debug") os.mkdir(cache_dir) img = np.array([]) mask = np.array([]) obj_contour = np.array([]) pcv.params.debug = None result = pcv.y_axis_pseudolandmarks(obj=obj_contour, mask=mask, img=img) pcv.outputs.clear() assert all([i == j] for i, j in zip(result, [("NA", "NA"), ("NA", "NA"), ("NA", "NA")])) def test_plantcv_y_axis_pseudolandmarks_bad_obj_input(): img = cv2.imread(os.path.join(TEST_DATA, TEST_VIS_SMALL_PLANT)) with pytest.raises(RuntimeError): _ = pcv.y_axis_pseudolandmarks(obj=np.array([[-2, -2], [-2, -2]]), mask=np.array([[-2, -2], [-2, -2]]), img=img) def test_plantcv_background_subtraction(): # List to hold result of all tests. truths = [] fg_img = cv2.imread(os.path.join(TEST_DATA, TEST_FOREGROUND)) bg_img = cv2.imread(os.path.join(TEST_DATA, TEST_BACKGROUND)) big_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) # Testing if background subtraction is actually still working. # This should return an array whose sum is greater than one pcv.params.debug = None fgmask = pcv.background_subtraction(background_image=bg_img, foreground_image=fg_img) truths.append(np.sum(fgmask) > 0) fgmask = pcv.background_subtraction(background_image=big_img, foreground_image=bg_img) truths.append(np.sum(fgmask) > 0) # The same foreground subtracted from itself should be 0 fgmask = pcv.background_subtraction(background_image=fg_img, foreground_image=fg_img) truths.append(np.sum(fgmask) == 0) # The same background subtracted from itself should be 0 fgmask = pcv.background_subtraction(background_image=bg_img, foreground_image=bg_img) truths.append(np.sum(fgmask) == 0) # All of these should be true for the function to pass testing. assert (all(truths)) def test_plantcv_background_subtraction_debug(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_background_subtraction_debug") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # List to hold result of all tests. truths = [] fg_img = cv2.imread(os.path.join(TEST_DATA, TEST_FOREGROUND)) bg_img = cv2.imread(os.path.join(TEST_DATA, TEST_BACKGROUND)) # Test with debug = "print" pcv.params.debug = "print" fgmask = pcv.background_subtraction(background_image=bg_img, foreground_image=fg_img) truths.append(np.sum(fgmask) > 0) # Test with debug = "plot" pcv.params.debug = "plot" fgmask = pcv.background_subtraction(background_image=bg_img, foreground_image=fg_img) truths.append(np.sum(fgmask) > 0) # All of these should be true for the function to pass testing. assert (all(truths)) def test_plantcv_background_subtraction_bad_img_type(): fg_color = cv2.imread(os.path.join(TEST_DATA, TEST_FOREGROUND)) bg_gray = cv2.imread(os.path.join(TEST_DATA, TEST_BACKGROUND), 0) pcv.params.debug = None with pytest.raises(RuntimeError): _ = pcv.background_subtraction(background_image=bg_gray, foreground_image=fg_color) def test_plantcv_background_subtraction_different_sizes(): fg_img = cv2.imread(os.path.join(TEST_DATA, TEST_FOREGROUND)) bg_img = cv2.imread(os.path.join(TEST_DATA, TEST_BACKGROUND)) bg_shp = np.shape(bg_img) # type: tuple bg_img_resized = cv2.resize(bg_img, (int(bg_shp[0] / 2), int(bg_shp[1] / 2)), interpolation=cv2.INTER_AREA) pcv.params.debug = None fgmask = pcv.background_subtraction(background_image=bg_img_resized, foreground_image=fg_img) assert np.sum(fgmask) > 0 def test_plantcv_spatial_clustering_dbscan(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_spatial_clustering_dbscan") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MULTI_MASK), -1) pcv.params.debug = "print" _ = pcv.spatial_clustering(img, algorithm="DBSCAN", min_cluster_size=10, max_distance=None) pcv.params.debug = "plot" spmask = pcv.spatial_clustering(img, algorithm="DBSCAN", min_cluster_size=10, max_distance=None) assert len(spmask[1]) == 2 def test_plantcv_spatial_clustering_optics(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_spatial_clustering_optics") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MULTI_MASK), -1) pcv.params.debug = None spmask = pcv.spatial_clustering(img, algorithm="OPTICS", min_cluster_size=100, max_distance=5000) assert len(spmask[1]) == 2 def test_plantcv_spatial_clustering_badinput(): img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MULTI_MASK), -1) pcv.params.debug = None with pytest.raises(NameError): _ = pcv.spatial_clustering(img, algorithm="Hydra", min_cluster_size=5, max_distance=100) # ############################## # Tests for the learn subpackage # ############################## def test_plantcv_learn_naive_bayes(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_learn_naive_bayes") os.mkdir(cache_dir) # Make image and mask directories in the cache directory imgdir = os.path.join(cache_dir, "images") maskdir = os.path.join(cache_dir, "masks") if not os.path.exists(imgdir): os.mkdir(imgdir) if not os.path.exists(maskdir): os.mkdir(maskdir) # Copy and image and mask to the image/mask directories shutil.copyfile(os.path.join(TEST_DATA, TEST_VIS_SMALL), os.path.join(imgdir, "image.png")) shutil.copyfile(os.path.join(TEST_DATA, TEST_MASK_SMALL), os.path.join(maskdir, "image.png")) # Run the naive Bayes training module outfile = os.path.join(cache_dir, "naive_bayes_pdfs.txt") plantcv.learn.naive_bayes(imgdir=imgdir, maskdir=maskdir, outfile=outfile, mkplots=True) assert os.path.exists(outfile) def test_plantcv_learn_naive_bayes_multiclass(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_learn_naive_bayes_multiclass") os.mkdir(cache_dir) # Run the naive Bayes multiclass training module outfile = os.path.join(cache_dir, "naive_bayes_multiclass_pdfs.txt") plantcv.learn.naive_bayes_multiclass(samples_file=os.path.join(TEST_DATA, TEST_SAMPLED_RGB_POINTS), outfile=outfile, mkplots=True) assert os.path.exists(outfile) # #################################### # Tests for the morphology subpackage # #################################### def test_plantcv_morphology_segment_curvature(): # Clear previous outputs pcv.outputs.clear() # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_morphology_curvature") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir skeleton = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_SKELETON_PRUNED), -1) pcv.params.debug = "print" segmented_img, seg_objects = pcv.morphology.segment_skeleton(skel_img=skeleton) pcv.outputs.clear() _ = pcv.morphology.segment_curvature(segmented_img, seg_objects, label="prefix") pcv.params.debug = "plot" pcv.outputs.clear() _ = pcv.morphology.segment_curvature(segmented_img, seg_objects) assert len(pcv.outputs.observations['default']['segment_curvature']['value']) == 22 def test_plantcv_morphology_check_cycles(): # Clear previous outputs pcv.outputs.clear() # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_morphology_branches") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) pcv.params.debug = "print" _ = pcv.morphology.check_cycles(mask, label="prefix") pcv.params.debug = "plot" _ = pcv.morphology.check_cycles(mask) pcv.params.debug = None _ = pcv.morphology.check_cycles(mask) assert pcv.outputs.observations['default']['num_cycles']['value'] == 1 def test_plantcv_morphology_find_branch_pts(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_morphology_branches") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) skeleton = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_SKELETON), -1) pcv.params.debug = "print" _ = pcv.morphology.find_branch_pts(skel_img=skeleton, mask=mask, label="prefix") pcv.params.debug = "plot" _ = pcv.morphology.find_branch_pts(skel_img=skeleton) pcv.params.debug = None branches = pcv.morphology.find_branch_pts(skel_img=skeleton) assert np.sum(branches) == 9435 def test_plantcv_morphology_find_tips(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_morphology_tips") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) skeleton = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_SKELETON), -1) pcv.params.debug = "print" _ = pcv.morphology.find_tips(skel_img=skeleton, mask=mask, label="prefix") pcv.params.debug = "plot" _ = pcv.morphology.find_tips(skel_img=skeleton) pcv.params.debug = None tips = pcv.morphology.find_tips(skel_img=skeleton) assert np.sum(tips) == 9435 def test_plantcv_morphology_prune(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_morphology_pruned") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir skeleton = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_SKELETON), -1) pcv.params.debug = "print" _ = pcv.morphology.prune(skel_img=skeleton, size=1) pcv.params.debug = "plot" _ = pcv.morphology.prune(skel_img=skeleton, size=1, mask=skeleton) pcv.params.debug = None pruned_img, _, _ = pcv.morphology.prune(skel_img=skeleton, size=3) assert np.sum(pruned_img) < np.sum(skeleton) def test_plantcv_morphology_prune_size0(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_morphology_pruned") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir skeleton = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_SKELETON), -1) pruned_img, _, _ = pcv.morphology.prune(skel_img=skeleton, size=0) assert np.sum(pruned_img) == np.sum(skeleton) def test_plantcv_morphology_iterative_prune(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_morphology_pruned") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir skeleton = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_SKELETON), -1) pruned_img = pcv.morphology._iterative_prune(skel_img=skeleton, size=3) assert np.sum(pruned_img) < np.sum(skeleton) def test_plantcv_morphology_segment_skeleton(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_morphology_segment_skeleton") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) skeleton = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_SKELETON), -1) pcv.params.debug = "print" _ = pcv.morphology.segment_skeleton(skel_img=skeleton, mask=mask) pcv.params.debug = "plot" segmented_img, segment_objects = pcv.morphology.segment_skeleton(skel_img=skeleton) assert len(segment_objects) == 73 def test_plantcv_morphology_fill_segments(): # Clear previous outputs pcv.outputs.clear() mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) obj_dic = np.load(os.path.join(TEST_DATA, TEST_SKELETON_OBJECTS)) obj = [] for key, val in obj_dic.items(): obj.append(val) pcv.params.debug = None _ = pcv.morphology.fill_segments(mask, obj) tests = [pcv.outputs.observations['default']['segment_area']['value'][42] == 5529, pcv.outputs.observations['default']['segment_area']['value'][20] == 5057, pcv.outputs.observations['default']['segment_area']['value'][49] == 3323] assert all(tests) def test_plantcv_morphology_fill_segments_with_stem(): # Clear previous outputs pcv.outputs.clear() mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) obj_dic = np.load(os.path.join(TEST_DATA, TEST_SKELETON_OBJECTS)) obj = [] for key, val in obj_dic.items(): obj.append(val) stem_obj = obj[0:4] pcv.params.debug = None _ = pcv.morphology.fill_segments(mask, obj, stem_obj) num_objects = len(pcv.outputs.observations['default']['leaf_area']['value']) assert num_objects == 69 def test_plantcv_morphology_segment_angle(): # Clear previous outputs pcv.outputs.clear() # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_morphology_segment_angles") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir skeleton = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_SKELETON_PRUNED), -1) pcv.params.debug = "print" segmented_img, segment_objects = pcv.morphology.segment_skeleton(skel_img=skeleton) _ = pcv.morphology.segment_angle(segmented_img=segmented_img, objects=segment_objects, label="prefix") pcv.params.debug = "plot" _ = pcv.morphology.segment_angle(segmented_img, segment_objects) assert len(pcv.outputs.observations['default']['segment_angle']['value']) == 22 def test_plantcv_morphology_segment_angle_overflow(): # Clear previous outputs pcv.outputs.clear() # Don't prune, would usually give overflow error without extra if statement in segment_angle # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_morphology_segment_angles") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir skeleton = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_SKELETON), -1) segmented_img, segment_objects = pcv.morphology.segment_skeleton(skel_img=skeleton) _ = pcv.morphology.segment_angle(segmented_img, segment_objects) assert len(pcv.outputs.observations['default']['segment_angle']['value']) == 73 def test_plantcv_morphology_segment_euclidean_length(): # Clear previous outputs pcv.outputs.clear() # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_morphology_segment_eu_length") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir skeleton = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_SKELETON_PRUNED), -1) pcv.params.debug = "print" segmented_img, segment_objects = pcv.morphology.segment_skeleton(skel_img=skeleton) _ = pcv.morphology.segment_euclidean_length(segmented_img, segment_objects, label="prefix") pcv.params.debug = "plot" _ = pcv.morphology.segment_euclidean_length(segmented_img, segment_objects) assert len(pcv.outputs.observations['default']['segment_eu_length']['value']) == 22 def test_plantcv_morphology_segment_euclidean_length_bad_input(): mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) skel = pcv.morphology.skeletonize(mask=mask) pcv.params.debug = None segmented_img, segment_objects = pcv.morphology.segment_skeleton(skel_img=skel) with pytest.raises(RuntimeError): _ = pcv.morphology.segment_euclidean_length(segmented_img, segment_objects) def test_plantcv_morphology_segment_path_length(): # Clear previous outputs pcv.outputs.clear() # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_morphology_segment_path_length") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir skeleton = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_SKELETON_PRUNED), -1) pcv.params.debug = "print" segmented_img, segment_objects = pcv.morphology.segment_skeleton(skel_img=skeleton) _ = pcv.morphology.segment_path_length(segmented_img, segment_objects, label="prefix") pcv.params.debug = "plot" _ = pcv.morphology.segment_path_length(segmented_img, segment_objects) assert len(pcv.outputs.observations['default']['segment_path_length']['value']) == 22 def test_plantcv_morphology_skeletonize(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_morphology_skeletonize") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) input_skeleton = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_SKELETON), -1) pcv.params.debug = "print" _ = pcv.morphology.skeletonize(mask=mask) pcv.params.debug = "plot" _ = pcv.morphology.skeletonize(mask=mask) pcv.params.debug = None skeleton = pcv.morphology.skeletonize(mask=mask) arr = np.array(skeleton == input_skeleton) assert arr.all() def test_plantcv_morphology_segment_sort(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_morphology_segment_sort") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir skeleton = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_SKELETON), -1) segmented_img, seg_objects = pcv.morphology.segment_skeleton(skel_img=skeleton) pcv.params.debug = "print" _ = pcv.morphology.segment_sort(skeleton, seg_objects, mask=skeleton) pcv.params.debug = "plot" leaf_obj, stem_obj = pcv.morphology.segment_sort(skeleton, seg_objects) assert len(leaf_obj) == 36 def test_plantcv_morphology_segment_tangent_angle(): # Clear previous outputs pcv.outputs.clear() # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_morphology_segment_tangent_angle") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir skel = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_SKELETON_PRUNED), -1) objects = np.load(os.path.join(TEST_DATA, TEST_SKELETON_OBJECTS), encoding="latin1") objs = [objects[arr_n] for arr_n in objects] pcv.params.debug = "print" _ = pcv.morphology.segment_tangent_angle(skel, objs, 2, label="prefix") pcv.params.debug = "plot" _ = pcv.morphology.segment_tangent_angle(skel, objs, 2) assert len(pcv.outputs.observations['default']['segment_tangent_angle']['value']) == 73 def test_plantcv_morphology_segment_id(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_morphology_segment_tangent_angle") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir skel = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_SKELETON_PRUNED), -1) objects = np.load(os.path.join(TEST_DATA, TEST_SKELETON_OBJECTS), encoding="latin1") objs = [objects[arr_n] for arr_n in objects] pcv.params.debug = "print" _ = pcv.morphology.segment_id(skel, objs) pcv.params.debug = "plot" _, labeled_img = pcv.morphology.segment_id(skel, objs, mask=skel) assert np.sum(labeled_img) > np.sum(skel) def test_plantcv_morphology_segment_insertion_angle(): # Clear previous outputs pcv.outputs.clear() # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_morphology_segment_insertion_angle") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir skeleton = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_SKELETON), -1) pruned, _, _ = pcv.morphology.prune(skel_img=skeleton, size=6) segmented_img, seg_objects = pcv.morphology.segment_skeleton(skel_img=pruned) leaf_obj, stem_obj = pcv.morphology.segment_sort(pruned, seg_objects) pcv.params.debug = "plot" _ = pcv.morphology.segment_insertion_angle(pruned, segmented_img, leaf_obj, stem_obj, 3, label="prefix") pcv.params.debug = "print" _ = pcv.morphology.segment_insertion_angle(pruned, segmented_img, leaf_obj, stem_obj, 10) assert pcv.outputs.observations['default']['segment_insertion_angle']['value'][:6] == ['NA', 'NA', 'NA', 24.956918822001636, 50.7313343343401, 56.427712102130734] def test_plantcv_morphology_segment_insertion_angle_bad_stem(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_morphology_segment_insertion_angle") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir skeleton = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_SKELETON), -1) pruned, _, _ = pcv.morphology.prune(skel_img=skeleton, size=5) segmented_img, seg_objects = pcv.morphology.segment_skeleton(skel_img=pruned) leaf_obj, stem_obj = pcv.morphology.segment_sort(pruned, seg_objects) stem_obj = [leaf_obj[0], leaf_obj[10]] with pytest.raises(RuntimeError): _ = pcv.morphology.segment_insertion_angle(pruned, segmented_img, leaf_obj, stem_obj, 10) def test_plantcv_morphology_segment_combine(): skel = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_SKELETON_PRUNED), -1) segmented_img, seg_objects = pcv.morphology.segment_skeleton(skel_img=skel) pcv.params.debug = "plot" # Test with list of IDs input _, new_objects = pcv.morphology.segment_combine([0, 1], seg_objects, skel) assert len(new_objects) + 1 == len(seg_objects) def test_plantcv_morphology_segment_combine_lists(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_morphology_segment_insertion_angle") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir skel = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_SKELETON_PRUNED), -1) segmented_img, seg_objects = pcv.morphology.segment_skeleton(skel_img=skel) pcv.params.debug = "print" # Test with list of lists input _, new_objects = pcv.morphology.segment_combine([[0, 1, 2], [3, 4]], seg_objects, skel) assert len(new_objects) + 3 == len(seg_objects) def test_plantcv_morphology_segment_combine_bad_input(): skel = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_SKELETON_PRUNED), -1) segmented_img, seg_objects = pcv.morphology.segment_skeleton(skel_img=skel) pcv.params.debug = "plot" with pytest.raises(RuntimeError): _, new_objects = pcv.morphology.segment_combine([0.5, 1.5], seg_objects, skel) def test_plantcv_morphology_analyze_stem(): # Clear previous outputs pcv.outputs.clear() # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_morphology_analyze_stem") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir skeleton = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_SKELETON), -1) pruned, segmented_img, _ = pcv.morphology.prune(skel_img=skeleton, size=6) segmented_img, seg_objects = pcv.morphology.segment_skeleton(skel_img=pruned) leaf_obj, stem_obj = pcv.morphology.segment_sort(pruned, seg_objects) pcv.params.debug = "plot" _ = pcv.morphology.analyze_stem(rgb_img=segmented_img, stem_objects=stem_obj, label="prefix") pcv.params.debug = "print" _ = pcv.morphology.analyze_stem(rgb_img=segmented_img, stem_objects=stem_obj) assert pcv.outputs.observations['default']['stem_angle']['value'] == -12.531776428222656 def test_plantcv_morphology_analyze_stem_bad_angle(): # Clear previous outputs pcv.outputs.clear() # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_morphology_segment_insertion_angle") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir skeleton = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_SKELETON), -1) pruned, _, _ = pcv.morphology.prune(skel_img=skeleton, size=5) segmented_img, seg_objects = pcv.morphology.segment_skeleton(skel_img=pruned) _, _ = pcv.morphology.segment_sort(pruned, seg_objects) # print([stem_obj[3]]) # stem_obj = [stem_obj[3]] stem_obj = [[[[1116, 1728]], [[1116, 1]]]] _ = pcv.morphology.analyze_stem(rgb_img=segmented_img, stem_objects=stem_obj) assert pcv.outputs.observations['default']['stem_angle']['value'] == 22877334.0 # ######################################## # Tests for the hyperspectral subpackage # ######################################## def test_plantcv_hyperspectral_read_data_default(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_read_data_default") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir pcv.params.debug = "plot" spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) _ = pcv.hyperspectral.read_data(filename=spectral_filename) pcv.params.debug = "print" array_data = pcv.hyperspectral.read_data(filename=spectral_filename) assert np.shape(array_data.array_data) == (1, 1600, 978) def test_plantcv_hyperspectral_read_data_no_default_bands(): pcv.params.debug = "plot" spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA_NO_DEFAULT) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) assert np.shape(array_data.array_data) == (1, 1600, 978) def test_plantcv_hyperspectral_read_data_approx_pseudorgb(): pcv.params.debug = "plot" spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA_APPROX_PSEUDO) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) assert np.shape(array_data.array_data) == (1, 1600, 978) def test_plantcv_hyperspectral_read_data_bad_interleave(): spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA_BAD_INTERLEAVE) with pytest.raises(RuntimeError): _ = pcv.hyperspectral.read_data(filename=spectral_filename) def test_plantcv_spectral_index_ndvi(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_index_ndvi") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir pcv.params.debug = None spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.ndvi(hsi=array_data, distance=20) assert np.shape(index_array.array_data) == (1, 1600) and np.nanmax(index_array.pseudo_rgb) == 255 def test_plantcv_spectral_index_ndvi_bad_input(): spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) pcv.params.debug = None array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.ndvi(hsi=array_data, distance=20) with pytest.raises(RuntimeError): _ = pcv.spectral_index.ndvi(hsi=index_array, distance=20) def test_plantcv_spectral_index_gdvi(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_index_gdvi") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir pcv.params.debug = None spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.gdvi(hsi=array_data, distance=20) assert np.shape(index_array.array_data) == (1, 1600) and np.nanmax(index_array.pseudo_rgb) == 255 def test_plantcv_spectral_index_gdvi_bad_input(): spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) pcv.params.debug = None array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.gdvi(hsi=array_data, distance=20) with pytest.raises(RuntimeError): _ = pcv.spectral_index.gdvi(hsi=index_array, distance=20) def test_plantcv_spectral_index_savi(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_index_savi") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir pcv.params.debug = None spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.savi(hsi=array_data, distance=20) assert np.shape(index_array.array_data) == (1, 1600) and np.nanmax(index_array.pseudo_rgb) == 255 def test_plantcv_spectral_index_savi_bad_input(): spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) pcv.params.debug = None array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.savi(hsi=array_data, distance=20) with pytest.raises(RuntimeError): _ = pcv.spectral_index.savi(hsi=index_array, distance=20) def test_plantcv_spectral_index_pri(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_index_pri") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir pcv.params.debug = None spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.pri(hsi=array_data, distance=20) assert np.shape(index_array.array_data) == (1, 1600) and np.nanmax(index_array.pseudo_rgb) == 255 def test_plantcv_spectral_index_pri_bad_input(): spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) pcv.params.debug = None array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.pri(hsi=array_data, distance=20) with pytest.raises(RuntimeError): _ = pcv.spectral_index.pri(hsi=index_array, distance=20) def test_plantcv_spectral_index_ari(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_index_ari") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir pcv.params.debug = None spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.ari(hsi=array_data, distance=20) assert np.shape(index_array.array_data) == (1, 1600) and np.nanmax(index_array.pseudo_rgb) == 255 def test_plantcv_spectral_index_ari_bad_input(): spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) pcv.params.debug = None array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.ari(hsi=array_data, distance=20) with pytest.raises(RuntimeError): _ = pcv.spectral_index.ari(hsi=index_array, distance=20) def test_plantcv_spectral_index_ci_rededge(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_index_ci_rededge") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir pcv.params.debug = None spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.ci_rededge(hsi=array_data, distance=20) assert np.shape(index_array.array_data) == (1, 1600) and np.nanmax(index_array.pseudo_rgb) == 255 def test_plantcv_spectral_index_ci_rededge_bad_input(): spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) pcv.params.debug = None array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.ci_rededge(hsi=array_data, distance=20) with pytest.raises(RuntimeError): _ = pcv.spectral_index.ci_rededge(hsi=index_array, distance=20) def test_plantcv_spectral_index_cri550(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_index_cri550") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir pcv.params.debug = None spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.cri550(hsi=array_data, distance=20) assert np.shape(index_array.array_data) == (1, 1600) and np.nanmax(index_array.pseudo_rgb) == 255 def test_plantcv_spectral_index_cri550_bad_input(): spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) pcv.params.debug = None array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.cri550(hsi=array_data, distance=20) with pytest.raises(RuntimeError): _ = pcv.spectral_index.cri550(hsi=index_array, distance=20) def test_plantcv_spectral_index_cri700(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_index_cri700") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir pcv.params.debug = None spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.cri700(hsi=array_data, distance=20) assert np.shape(index_array.array_data) == (1, 1600) and np.nanmax(index_array.pseudo_rgb) == 255 def test_plantcv_spectral_index_cri700_bad_input(): spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) pcv.params.debug = None array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.cri700(hsi=array_data, distance=20) with pytest.raises(RuntimeError): _ = pcv.spectral_index.cri700(hsi=index_array, distance=20) def test_plantcv_spectral_index_egi(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_index_egi") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir pcv.params.debug = None rgb_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) index_array = pcv.spectral_index.egi(rgb_img=rgb_img) assert np.shape(index_array.array_data) == (2056, 2454) and np.nanmax(index_array.pseudo_rgb) == 255 def test_plantcv_spectral_index_evi(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_index_evi") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir pcv.params.debug = None spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.evi(hsi=array_data, distance=20) assert np.shape(index_array.array_data) == (1, 1600) and np.nanmax(index_array.pseudo_rgb) == 255 def test_plantcv_spectral_index_evi_bad_input(): spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) pcv.params.debug = None array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.evi(hsi=array_data, distance=20) with pytest.raises(RuntimeError): _ = pcv.spectral_index.evi(hsi=index_array, distance=20) def test_plantcv_spectral_index_mari(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_index_mari") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir pcv.params.debug = None spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.mari(hsi=array_data, distance=20) assert np.shape(index_array.array_data) == (1, 1600) and np.nanmax(index_array.pseudo_rgb) == 255 def test_plantcv_spectral_index_mari_bad_input(): spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) pcv.params.debug = None array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.mari(hsi=array_data, distance=20) with pytest.raises(RuntimeError): _ = pcv.spectral_index.mari(hsi=index_array, distance=20) def test_plantcv_spectral_index_mcari(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_index_mcari") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir pcv.params.debug = None spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.mcari(hsi=array_data, distance=20) assert np.shape(index_array.array_data) == (1, 1600) and np.nanmax(index_array.pseudo_rgb) == 255 def test_plantcv_spectral_index_mcari_bad_input(): spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) pcv.params.debug = None array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.mcari(hsi=array_data, distance=20) with pytest.raises(RuntimeError): _ = pcv.spectral_index.mcari(hsi=index_array, distance=20) def test_plantcv_spectral_index_mtci(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_index_mtci") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir pcv.params.debug = None spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.mtci(hsi=array_data, distance=20) assert np.shape(index_array.array_data) == (1, 1600) and np.nanmax(index_array.pseudo_rgb) == 255 def test_plantcv_spectral_index_mtci_bad_input(): spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) pcv.params.debug = None array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.mtci(hsi=array_data, distance=20) with pytest.raises(RuntimeError): _ = pcv.spectral_index.mtci(hsi=index_array, distance=20) def test_plantcv_spectral_index_ndre(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_index_ndre") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir pcv.params.debug = None spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.ndre(hsi=array_data, distance=20) assert np.shape(index_array.array_data) == (1, 1600) and np.nanmax(index_array.pseudo_rgb) == 255 def test_plantcv_spectral_index_ndre_bad_input(): spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) pcv.params.debug = None array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.ndre(hsi=array_data, distance=20) with pytest.raises(RuntimeError): _ = pcv.spectral_index.ndre(hsi=index_array, distance=20) def test_plantcv_spectral_index_psnd_chla(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_index_psnd_chla") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir pcv.params.debug = None spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.psnd_chla(hsi=array_data, distance=20) assert np.shape(index_array.array_data) == (1, 1600) and np.nanmax(index_array.pseudo_rgb) == 255 def test_plantcv_spectral_index_psnd_chla_bad_input(): spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) pcv.params.debug = None array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.psnd_chla(hsi=array_data, distance=20) with pytest.raises(RuntimeError): _ = pcv.spectral_index.psnd_chla(hsi=index_array, distance=20) def test_plantcv_spectral_index_psnd_chlb(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_index_psnd_chlb") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir pcv.params.debug = None spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.psnd_chlb(hsi=array_data, distance=20) assert np.shape(index_array.array_data) == (1, 1600) and np.nanmax(index_array.pseudo_rgb) == 255 def test_plantcv_spectral_index_psnd_chlb_bad_input(): spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) pcv.params.debug = None array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.psnd_chlb(hsi=array_data, distance=20) with pytest.raises(RuntimeError): _ = pcv.spectral_index.psnd_chlb(hsi=index_array, distance=20) def test_plantcv_spectral_index_psnd_car(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_index_psnd_car") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir pcv.params.debug = None spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.psnd_car(hsi=array_data, distance=20) assert np.shape(index_array.array_data) == (1, 1600) and np.nanmax(index_array.pseudo_rgb) == 255 def test_plantcv_spectral_index_psnd_car_bad_input(): spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) pcv.params.debug = None array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.psnd_car(hsi=array_data, distance=20) with pytest.raises(RuntimeError): _ = pcv.spectral_index.psnd_car(hsi=index_array, distance=20) def test_plantcv_spectral_index_psri(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_index_psri") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir pcv.params.debug = None spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.psri(hsi=array_data, distance=20) assert np.shape(index_array.array_data) == (1, 1600) and np.nanmax(index_array.pseudo_rgb) == 255 def test_plantcv_spectral_index_psri_bad_input(): spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) pcv.params.debug = None array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.psri(hsi=array_data, distance=20) with pytest.raises(RuntimeError): _ = pcv.spectral_index.psri(hsi=index_array, distance=20) def test_plantcv_spectral_index_pssr_chla(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_index_pssr_chla") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir pcv.params.debug = None spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.pssr_chla(hsi=array_data, distance=20) assert np.shape(index_array.array_data) == (1, 1600) and np.nanmax(index_array.pseudo_rgb) == 255 def test_plantcv_spectral_index_pssr_chla_bad_input(): spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) pcv.params.debug = None array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.pssr_chla(hsi=array_data, distance=20) with pytest.raises(RuntimeError): _ = pcv.spectral_index.pssr_chla(hsi=index_array, distance=20) def test_plantcv_spectral_index_pssr_chlb(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_index_pssr_chlb") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir pcv.params.debug = None spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.pssr_chlb(hsi=array_data, distance=20) assert np.shape(index_array.array_data) == (1, 1600) and np.nanmax(index_array.pseudo_rgb) == 255 def test_plantcv_spectral_index_pssr_chlb_bad_input(): spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) pcv.params.debug = None array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.pssr_chlb(hsi=array_data, distance=20) with pytest.raises(RuntimeError): _ = pcv.spectral_index.pssr_chlb(hsi=index_array, distance=20) def test_plantcv_spectral_index_pssr_car(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_index_pssr_car") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir pcv.params.debug = None spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.pssr_car(hsi=array_data, distance=20) assert np.shape(index_array.array_data) == (1, 1600) and np.nanmax(index_array.pseudo_rgb) == 255 def test_plantcv_spectral_index_pssr_car_bad_input(): spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) pcv.params.debug = None array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.pssr_car(hsi=array_data, distance=20) with pytest.raises(RuntimeError): _ = pcv.spectral_index.pssr_car(hsi=index_array, distance=20) def test_plantcv_spectral_index_rgri(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_index_rgri") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir pcv.params.debug = None spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.rgri(hsi=array_data, distance=20) assert np.shape(index_array.array_data) == (1, 1600) and np.nanmax(index_array.pseudo_rgb) == 255 def test_plantcv_spectral_index_rgri_bad_input(): spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) pcv.params.debug = None array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.rgri(hsi=array_data, distance=20) with pytest.raises(RuntimeError): _ = pcv.spectral_index.rgri(hsi=index_array, distance=20) def test_plantcv_spectral_index_rvsi(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_index_rvsi") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir pcv.params.debug = None spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.rvsi(hsi=array_data, distance=20) assert np.shape(index_array.array_data) == (1, 1600) and np.nanmax(index_array.pseudo_rgb) == 255 def test_plantcv_spectral_index_rvsi_bad_input(): spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) pcv.params.debug = None array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.rvsi(hsi=array_data, distance=20) with pytest.raises(RuntimeError): _ = pcv.spectral_index.rvsi(hsi=index_array, distance=20) def test_plantcv_spectral_index_sipi(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_index_sipi") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir pcv.params.debug = None spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.sipi(hsi=array_data, distance=20) assert np.shape(index_array.array_data) == (1, 1600) and np.nanmax(index_array.pseudo_rgb) == 255 def test_plantcv_spectral_index_sipi_bad_input(): spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) pcv.params.debug = None array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.sipi(hsi=array_data, distance=20) with pytest.raises(RuntimeError): _ = pcv.spectral_index.sipi(hsi=index_array, distance=20) def test_plantcv_spectral_index_sr(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_index_sr") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir pcv.params.debug = None spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.sr(hsi=array_data, distance=20) assert np.shape(index_array.array_data) == (1, 1600) and np.nanmax(index_array.pseudo_rgb) == 255 def test_plantcv_spectral_index_sr_bad_input(): spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) pcv.params.debug = None array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.sr(hsi=array_data, distance=20) with pytest.raises(RuntimeError): _ = pcv.spectral_index.sr(hsi=index_array, distance=20) def test_plantcv_spectral_index_vari(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_index_vari") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir pcv.params.debug = None spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.vari(hsi=array_data, distance=20) assert np.shape(index_array.array_data) == (1, 1600) and np.nanmax(index_array.pseudo_rgb) == 255 def test_plantcv_spectral_index_vari_bad_input(): spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) pcv.params.debug = None array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.vari(hsi=array_data, distance=20) with pytest.raises(RuntimeError): _ = pcv.spectral_index.vari(hsi=index_array, distance=20) def test_plantcv_spectral_index_vi_green(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_index_vi_green") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir pcv.params.debug = None spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.vi_green(hsi=array_data, distance=20) assert np.shape(index_array.array_data) == (1, 1600) and np.nanmax(index_array.pseudo_rgb) == 255 def test_plantcv_spectral_index_vi_green_bad_input(): spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) pcv.params.debug = None array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.vi_green(hsi=array_data, distance=20) with pytest.raises(RuntimeError): _ = pcv.spectral_index.vi_green(hsi=index_array, distance=20) def test_plantcv_spectral_index_wi(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_index_wi") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir pcv.params.debug = None spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.wi(hsi=array_data, distance=20) assert np.shape(index_array.array_data) == (1, 1600) and np.nanmax(index_array.pseudo_rgb) == 255 def test_plantcv_spectral_index_wi_bad_input(): spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) pcv.params.debug = None array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.wi(hsi=array_data, distance=20) with pytest.raises(RuntimeError): _ = pcv.spectral_index.wi(hsi=index_array, distance=20) def test_plantcv_hyperspectral_analyze_spectral(): # Clear previous outputs pcv.outputs.clear() cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_analyze_spectral") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir pcv.params.debug = None spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) mask = cv2.imread(os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_MASK), -1) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) # pcv.params.debug = "plot" # _ = pcv.hyperspectral.analyze_spectral(array=array_data, mask=mask, histplot=True) # pcv.params.debug = "print" # _ = pcv.hyperspectral.analyze_spectral(array=array_data, mask=mask, histplot=True, label="prefix") pcv.params.debug = None _ = pcv.hyperspectral.analyze_spectral(array=array_data, mask=mask, histplot=True, label="prefix") assert len(pcv.outputs.observations['prefix']['spectral_frequencies']['value']) == 978 def test_plantcv_hyperspectral_analyze_index(): # Clear previous outputs pcv.outputs.clear() cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_analyze_index") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.savi(hsi=array_data, distance=801) mask_img = np.ones(np.shape(index_array.array_data), dtype=np.uint8) * 255 # pcv.params.debug = "print" # pcv.hyperspectral.analyze_index(index_array=index_array, mask=mask_img, histplot=True) # pcv.params.debug = "plot" # pcv.hyperspectral.analyze_index(index_array=index_array, mask=mask_img, histplot=True) pcv.params.debug = None pcv.hyperspectral.analyze_index(index_array=index_array, mask=mask_img, histplot=True) assert pcv.outputs.observations['default']['mean_index_savi']['value'] > 0 def test_plantcv_hyperspectral_analyze_index_set_range(): # Clear previous outputs pcv.outputs.clear() cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_analyze_index_set_range") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.savi(hsi=array_data, distance=801) mask_img = np.ones(np.shape(index_array.array_data), dtype=np.uint8) * 255 pcv.params.debug = None pcv.hyperspectral.analyze_index(index_array=index_array, mask=mask_img, histplot=True, min_bin=0, max_bin=1) assert pcv.outputs.observations['default']['mean_index_savi']['value'] > 0 def test_plantcv_hyperspectral_analyze_index_auto_range(): # Clear previous outputs pcv.outputs.clear() cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_analyze_index_auto_range") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.savi(hsi=array_data, distance=801) mask_img = np.ones(np.shape(index_array.array_data), dtype=np.uint8) * 255 pcv.params.debug = None pcv.hyperspectral.analyze_index(index_array=index_array, mask=mask_img, min_bin="auto", max_bin="auto") assert pcv.outputs.observations['default']['mean_index_savi']['value'] > 0 def test_plantcv_hyperspectral_analyze_index_outside_range_warning(): import io from contextlib import redirect_stdout cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_analyze_index_auto_range") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.savi(hsi=array_data, distance=801) mask_img = np.ones(np.shape(index_array.array_data), dtype=np.uint8) * 255 f = io.StringIO() with redirect_stdout(f): pcv.params.debug = None pcv.hyperspectral.analyze_index(index_array=index_array, mask=mask_img, min_bin=.5, max_bin=.55, label="i") out = f.getvalue() # assert os.listdir(cache_dir) is 0 assert out[0:10] == 'WARNING!!!' def test_plantcv_hyperspectral_analyze_index_bad_input_mask(): pcv.params.debug = None spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.savi(hsi=array_data, distance=801) mask_img = cv2.imread(os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_MASK)) with pytest.raises(RuntimeError): pcv.hyperspectral.analyze_index(index_array=index_array, mask=mask_img) def test_plantcv_hyperspectral_analyze_index_bad_input_index(): pcv.params.debug = None spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.savi(hsi=array_data, distance=801) mask_img = cv2.imread(os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_MASK), -1) index_array.array_data = cv2.imread(os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_MASK)) with pytest.raises(RuntimeError): pcv.hyperspectral.analyze_index(index_array=index_array, mask=mask_img) def test_plantcv_hyperspectral_analyze_index_bad_input_datatype(): pcv.params.debug = None spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) mask_img = cv2.imread(os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_MASK), -1) with pytest.raises(RuntimeError): pcv.hyperspectral.analyze_index(index_array=array_data, mask=mask_img) def test_plantcv_hyperspectral_calibrate(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_calibrate") os.mkdir(cache_dir) raw = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) white = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_WHITE) dark = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DARK) raw = pcv.hyperspectral.read_data(filename=raw) white = pcv.hyperspectral.read_data(filename=white) dark = pcv.hyperspectral.read_data(filename=dark) pcv.params.debug = "plot" _ = pcv.hyperspectral.calibrate(raw_data=raw, white_reference=white, dark_reference=dark) pcv.params.debug = "print" calibrated = pcv.hyperspectral.calibrate(raw_data=raw, white_reference=white, dark_reference=dark) assert np.shape(calibrated.array_data) == (1, 1600, 978) def test_plantcv_hyperspectral_extract_wavelength(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_extract_wavelength") os.mkdir(cache_dir) spectral = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) spectral = pcv.hyperspectral.read_data(filename=spectral) pcv.params.debug = "plot" _ = pcv.hyperspectral.extract_wavelength(spectral_data=spectral, wavelength=500) pcv.params.debug = "print" new = pcv.hyperspectral.extract_wavelength(spectral_data=spectral, wavelength=500) assert np.shape(new.array_data) == (1, 1600) def test_plantcv_hyperspectral_avg_reflectance(): spectral = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) mask_img = cv2.imread(os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_MASK), -1) spectral = pcv.hyperspectral.read_data(filename=spectral) avg_reflect = pcv.hyperspectral._avg_reflectance(spectral, mask=mask_img) assert len(avg_reflect) == 978 def test_plantcv_hyperspectral_inverse_covariance(): spectral = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) spectral = pcv.hyperspectral.read_data(filename=spectral) inv_cov = pcv.hyperspectral._inverse_covariance(spectral) assert np.shape(inv_cov) == (978, 978) # ######################################## # Tests for the photosynthesis subpackage # ######################################## def test_plantcv_photosynthesis_read_dat(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_photosynthesis_read_dat") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir pcv.params.debug = "plot" fluor_filename = os.path.join(FLUOR_TEST_DATA, FLUOR_IMG) _, _, _ = pcv.photosynthesis.read_cropreporter(filename=fluor_filename) pcv.params.debug = "print" fdark, fmin, fmax = pcv.photosynthesis.read_cropreporter(filename=fluor_filename) assert np.sum(fmin) < np.sum(fmax) def test_plantcv_photosynthesis_analyze_fvfm(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_analyze_fvfm") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # filename = os.path.join(cache_dir, 'plantcv_fvfm_hist.png') # Read in test data fdark = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_FDARK), -1) fmin = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_FMIN), -1) fmax = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_FMAX), -1) fmask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_FMASK), -1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.photosynthesis.analyze_fvfm(fdark=fdark, fmin=fmin, fmax=fmax, mask=fmask, bins=1000, label="prefix") # Test with debug = "plot" pcv.params.debug = "plot" fvfm_images = pcv.photosynthesis.analyze_fvfm(fdark=fdark, fmin=fmin, fmax=fmax, mask=fmask, bins=1000) assert len(fvfm_images) != 0 def test_plantcv_photosynthesis_analyze_fvfm_print_analysis_results(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_analyze_fvfm") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir fdark = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_FDARK), -1) fmin = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_FMIN), -1) fmax = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_FMAX), -1) fmask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_FMASK), -1) _ = pcv.photosynthesis.analyze_fvfm(fdark=fdark, fmin=fmin, fmax=fmax, mask=fmask, bins=1000) result_file = os.path.join(cache_dir, "results.txt") pcv.print_results(result_file) pcv.outputs.clear() assert os.path.exists(result_file) def test_plantcv_photosynthesis_analyze_fvfm_bad_fdark(): # Clear previous outputs pcv.outputs.clear() cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_analyze_fvfm") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data fdark = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_FDARK), -1) fmin = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_FMIN), -1) fmax = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_FMAX), -1) fmask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_FMASK), -1) _ = pcv.photosynthesis.analyze_fvfm(fdark=fdark + 3000, fmin=fmin, fmax=fmax, mask=fmask, bins=1000) check = pcv.outputs.observations['default']['fdark_passed_qc']['value'] is False assert check def test_plantcv_photosynthesis_analyze_fvfm_bad_input(): fdark = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) fmin = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_FMIN), -1) fmax = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_FMAX), -1) fmask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_FMASK), -1) with pytest.raises(RuntimeError): _ = pcv.photosynthesis.analyze_fvfm(fdark=fdark, fmin=fmin, fmax=fmax, mask=fmask, bins=1000) # ############################## # Tests for the roi subpackage # ############################## def test_plantcv_roi_from_binary_image(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_roi_from_binary_image") os.mkdir(cache_dir) # Read in test RGB image rgb_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) # Create a binary image bin_img = np.zeros(np.shape(rgb_img)[0:2], dtype=np.uint8) cv2.rectangle(bin_img, (100, 100), (1000, 1000), 255, -1) # Test with debug = "print" pcv.params.debug = "print" pcv.params.debug_outdir = cache_dir _, _ = pcv.roi.from_binary_image(bin_img=bin_img, img=rgb_img) # Test with debug = "plot" pcv.params.debug = "plot" _, _ = pcv.roi.from_binary_image(bin_img=bin_img, img=rgb_img) # Test with debug = None pcv.params.debug = None roi_contour, roi_hierarchy = pcv.roi.from_binary_image(bin_img=bin_img, img=rgb_img) # Assert the contours and hierarchy lists contain only the ROI assert np.shape(roi_contour) == (1, 3600, 1, 2) def test_plantcv_roi_from_binary_image_grayscale_input(): # Read in a test grayscale image gray_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) # Create a binary image bin_img = np.zeros(np.shape(gray_img)[0:2], dtype=np.uint8) cv2.rectangle(bin_img, (100, 100), (1000, 1000), 255, -1) # Test with debug = "plot" pcv.params.debug = "plot" roi_contour, roi_hierarchy = pcv.roi.from_binary_image(bin_img=bin_img, img=gray_img) # Assert the contours and hierarchy lists contain only the ROI assert np.shape(roi_contour) == (1, 3600, 1, 2) def test_plantcv_roi_from_binary_image_bad_binary_input(): # Read in test RGB image rgb_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) # Binary input is required but an RGB input is provided with pytest.raises(RuntimeError): _, _ = pcv.roi.from_binary_image(bin_img=rgb_img, img=rgb_img) def test_plantcv_roi_rectangle(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_roi_rectangle") os.mkdir(cache_dir) # Read in test RGB image rgb_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) # Test with debug = "print" pcv.params.debug = "print" pcv.params.debug_outdir = cache_dir _, _ = pcv.roi.rectangle(x=100, y=100, h=500, w=500, img=rgb_img) # Test with debug = "plot" pcv.params.debug = "plot" _, _ = pcv.roi.rectangle(x=100, y=100, h=500, w=500, img=rgb_img) # Test with debug = None pcv.params.debug = None roi_contour, roi_hierarchy = pcv.roi.rectangle(x=100, y=100, h=500, w=500, img=rgb_img) # Assert the contours and hierarchy lists contain only the ROI assert np.shape(roi_contour) == (1, 4, 1, 2) def test_plantcv_roi_rectangle_grayscale_input(): # Read in a test grayscale image gray_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) # Test with debug = "plot" pcv.params.debug = "plot" roi_contour, roi_hierarchy = pcv.roi.rectangle(x=100, y=100, h=500, w=500, img=gray_img) # Assert the contours and hierarchy lists contain only the ROI assert np.shape(roi_contour) == (1, 4, 1, 2) def test_plantcv_roi_rectangle_out_of_frame(): # Read in test RGB image rgb_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) # The resulting rectangle needs to be within the dimensions of the image with pytest.raises(RuntimeError): _, _ = pcv.roi.rectangle(x=100, y=100, h=500, w=3000, img=rgb_img) def test_plantcv_roi_circle(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_roi_circle") os.mkdir(cache_dir) # Read in test RGB image rgb_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) # Test with debug = "print" pcv.params.debug = "print" pcv.params.debug_outdir = cache_dir _, _ = pcv.roi.circle(x=100, y=100, r=50, img=rgb_img) # Test with debug = "plot" pcv.params.debug = "plot" _, _ = pcv.roi.circle(x=100, y=100, r=50, img=rgb_img) # Test with debug = None pcv.params.debug = None roi_contour, roi_hierarchy = pcv.roi.circle(x=200, y=225, r=75, img=rgb_img) # Assert the contours and hierarchy lists contain only the ROI assert np.shape(roi_contour) == (1, 424, 1, 2) def test_plantcv_roi_circle_grayscale_input(): # Read in a test grayscale image gray_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) # Test with debug = "plot" pcv.params.debug = "plot" roi_contour, roi_hierarchy = pcv.roi.circle(x=200, y=225, r=75, img=gray_img) # Assert the contours and hierarchy lists contain only the ROI assert np.shape(roi_contour) == (1, 424, 1, 2) def test_plantcv_roi_circle_out_of_frame(): # Read in test RGB image rgb_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) # The resulting rectangle needs to be within the dimensions of the image with pytest.raises(RuntimeError): _, _ = pcv.roi.circle(x=50, y=225, r=75, img=rgb_img) def test_plantcv_roi_ellipse(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_roi_ellipse") os.mkdir(cache_dir) # Read in test RGB image rgb_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) # Test with debug = "print" pcv.params.debug = "print" pcv.params.debug_outdir = cache_dir _, _ = pcv.roi.ellipse(x=200, y=200, r1=75, r2=50, angle=0, img=rgb_img) # Test with debug = "plot" pcv.params.debug = "plot" _, _ = pcv.roi.ellipse(x=200, y=200, r1=75, r2=50, angle=0, img=rgb_img) # Test with debug = None pcv.params.debug = None roi_contour, roi_hierarchy = pcv.roi.ellipse(x=200, y=200, r1=75, r2=50, angle=0, img=rgb_img) # Assert the contours and hierarchy lists contain only the ROI assert np.shape(roi_contour) == (1, 360, 1, 2) def test_plantcv_roi_ellipse_grayscale_input(): # Read in a test grayscale image gray_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) # Test with debug = "plot" pcv.params.debug = "plot" roi_contour, roi_hierarchy = pcv.roi.ellipse(x=200, y=200, r1=75, r2=50, angle=0, img=gray_img) # Assert the contours and hierarchy lists contain only the ROI assert np.shape(roi_contour) == (1, 360, 1, 2) def test_plantcv_roi_ellipse_out_of_frame(): # Read in test RGB image rgb_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) # The resulting rectangle needs to be within the dimensions of the image with pytest.raises(RuntimeError): _, _ = pcv.roi.ellipse(x=50, y=225, r1=75, r2=50, angle=0, img=rgb_img) def test_plantcv_roi_multi(): # Read in test RGB image rgb_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.roi.multi(rgb_img, coord=[(25, 120), (100, 100)], radius=20) # Test with debug = None pcv.params.debug = None rois1, roi_hierarchy1 = pcv.roi.multi(rgb_img, coord=(25, 120), radius=20, spacing=(10, 10), nrows=3, ncols=6) # Assert the contours has 18 ROIs assert len(rois1) == 18 def test_plantcv_roi_multi_bad_input(): # Read in test RGB image rgb_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) # The user must input a list of custom coordinates OR inputs to make a grid. Not both with pytest.raises(RuntimeError): _, _ = pcv.roi.multi(rgb_img, coord=[(25, 120), (100, 100)], radius=20, spacing=(10, 10), nrows=3, ncols=6) def test_plantcv_roi_multi_bad_input_oob(): # Read in test RGB image rgb_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) # nputs to make a grid make ROIs that go off the screen with pytest.raises(RuntimeError): _, _ = pcv.roi.multi(rgb_img, coord=(25000, 12000), radius=2, spacing=(1, 1), nrows=3, ncols=6) def test_plantcv_roi_multi_bad_input_oob_list(): # Read in test RGB image rgb_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) # All vertices in the list of centers must draw roi's that are inside the image with pytest.raises(RuntimeError): _, _ = pcv.roi.multi(rgb_img, coord=[(25000, 25000), (25000, 12000), (12000, 12000)], radius=20) def test_plantcv_roi_custom(): # Read in test RGB image img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) pcv.params.debug = "plot" cnt, hier = pcv.roi.custom(img=img, vertices=[[226, 1], [313, 184], [240, 202], [220, 229], [161, 171]]) assert np.shape(cnt) == (1, 5, 2) def test_plantcv_roi_custom_bad_input(): # Read in test RGB image img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) # ROI goes out of bounds with pytest.raises(RuntimeError): _ = pcv.roi.custom(img=img, vertices=[[226, -1], [3130, 1848], [2404, 2029], [2205, 2298], [1617, 1761]]) # ############################## # Tests for the transform subpackage # ############################## def test_plantcv_transform_get_color_matrix(): # load in target_matrix matrix_file = np.load(os.path.join(TEST_DATA, TEST_TARGET_MATRIX), encoding="latin1") matrix_compare = matrix_file['arr_0'] # Read in rgb_img and gray-scale mask rgb_img = cv2.imread(os.path.join(TEST_DATA, TEST_TARGET_IMG)) mask = cv2.imread(os.path.join(TEST_DATA, TEST_TARGET_MASK), -1) # The result should be a len(np.unique(mask))-1 x 4 matrix headers, matrix = pcv.transform.get_color_matrix(rgb_img, mask) assert np.array_equal(matrix, matrix_compare) def test_plantcv_transform_get_color_matrix_img(): # Read in two gray-scale images rgb_img = cv2.imread(os.path.join(TEST_DATA, TEST_TARGET_MASK), -1) mask = cv2.imread(os.path.join(TEST_DATA, TEST_TARGET_MASK), -1) # The input for rgb_img needs to be an RGB image with pytest.raises(RuntimeError): _, _ = pcv.transform.get_color_matrix(rgb_img, mask) def test_plantcv_transform_get_color_matrix_mask(): # Read in two gray-scale images rgb_img = cv2.imread(os.path.join(TEST_DATA, TEST_TARGET_IMG)) mask = cv2.imread(os.path.join(TEST_DATA, TEST_TARGET_MASK)) # The input for rgb_img needs to be an RGB image with pytest.raises(RuntimeError): _, _ = pcv.transform.get_color_matrix(rgb_img, mask) def test_plantcv_transform_get_matrix_m(): # load in comparison matrices matrix_m_file = np.load(os.path.join(TEST_DATA, TEST_MATRIX_M1), encoding="latin1") matrix_compare_m = matrix_m_file['arr_0'] matrix_b_file = np.load(os.path.join(TEST_DATA, TEST_MATRIX_B1), encoding="latin1") matrix_compare_b = matrix_b_file['arr_0'] # read in matrices t_matrix_file = np.load(os.path.join(TEST_DATA, TEST_TARGET_MATRIX), encoding="latin1") t_matrix = t_matrix_file['arr_0'] s_matrix_file = np.load(os.path.join(TEST_DATA, TEST_SOURCE1_MATRIX), encoding="latin1") s_matrix = s_matrix_file['arr_0'] # apply matrices to function matrix_a, matrix_m, matrix_b = pcv.transform.get_matrix_m(t_matrix, s_matrix) matrix_compare_m = np.rint(matrix_compare_m) matrix_compare_b = np.rint(matrix_compare_b) matrix_m = np.rint(matrix_m) matrix_b = np.rint(matrix_b) assert np.array_equal(matrix_m, matrix_compare_m) and np.array_equal(matrix_b, matrix_compare_b) def test_plantcv_transform_get_matrix_m_unequal_data(): # load in comparison matrices matrix_m_file = np.load(os.path.join(TEST_DATA, TEST_MATRIX_M2), encoding="latin1") matrix_compare_m = matrix_m_file['arr_0'] matrix_b_file = np.load(os.path.join(TEST_DATA, TEST_MATRIX_B2), encoding="latin1") matrix_compare_b = matrix_b_file['arr_0'] # read in matrices t_matrix_file = np.load(os.path.join(TEST_DATA, TEST_TARGET_MATRIX), encoding="latin1") t_matrix = t_matrix_file['arr_0'] s_matrix_file = np.load(os.path.join(TEST_DATA, TEST_SOURCE2_MATRIX), encoding="latin1") s_matrix = s_matrix_file['arr_0'] # apply matrices to function matrix_a, matrix_m, matrix_b = pcv.transform.get_matrix_m(t_matrix, s_matrix) matrix_compare_m = np.rint(matrix_compare_m) matrix_compare_b = np.rint(matrix_compare_b) matrix_m = np.rint(matrix_m) matrix_b = np.rint(matrix_b) assert np.array_equal(matrix_m, matrix_compare_m) and np.array_equal(matrix_b, matrix_compare_b) def test_plantcv_transform_calc_transformation_matrix(): # load in comparison matrices matrix_file = np.load(os.path.join(TEST_DATA, TEST_TRANSFORM1), encoding="latin1") matrix_compare = matrix_file['arr_0'] # read in matrices matrix_m_file = np.load(os.path.join(TEST_DATA, TEST_MATRIX_M1), encoding="latin1") matrix_m = matrix_m_file['arr_0'] matrix_b_file = np.load(os.path.join(TEST_DATA, TEST_MATRIX_B1), encoding="latin1") matrix_b = matrix_b_file['arr_0'] # apply to function _, matrix_t = pcv.transform.calc_transformation_matrix(matrix_m, matrix_b) matrix_t = np.rint(matrix_t) matrix_compare = np.rint(matrix_compare) assert np.array_equal(matrix_t, matrix_compare) def test_plantcv_transform_calc_transformation_matrix_b_incorrect(): # read in matrices matrix_m_file = np.load(os.path.join(TEST_DATA, TEST_MATRIX_M1), encoding="latin1") matrix_m = matrix_m_file['arr_0'] matrix_b_file = np.load(os.path.join(TEST_DATA, TEST_MATRIX_B1), encoding="latin1") matrix_b = matrix_b_file['arr_0'] matrix_b = np.asmatrix(matrix_b, float) with pytest.raises(RuntimeError): _, _ = pcv.transform.calc_transformation_matrix(matrix_m, matrix_b.T) def test_plantcv_transform_calc_transformation_matrix_not_mult(): # read in matrices matrix_m_file = np.load(os.path.join(TEST_DATA, TEST_MATRIX_M1), encoding="latin1") matrix_m = matrix_m_file['arr_0'] matrix_b_file = np.load(os.path.join(TEST_DATA, TEST_MATRIX_B1), encoding="latin1") matrix_b = matrix_b_file['arr_0'] with pytest.raises(RuntimeError): _, _ = pcv.transform.calc_transformation_matrix(matrix_m, matrix_b[:3]) def test_plantcv_transform_calc_transformation_matrix_not_mat(): # read in matrices matrix_m_file = np.load(os.path.join(TEST_DATA, TEST_MATRIX_M1), encoding="latin1") matrix_m = matrix_m_file['arr_0'] matrix_b_file = np.load(os.path.join(TEST_DATA, TEST_MATRIX_B1), encoding="latin1") matrix_b = matrix_b_file['arr_0'] with pytest.raises(RuntimeError): _, _ = pcv.transform.calc_transformation_matrix(matrix_m[:, 1], matrix_b[:, 1]) def test_plantcv_transform_apply_transformation(): # load corrected image to compare corrected_compare = cv2.imread(os.path.join(TEST_DATA, TEST_S1_CORRECTED)) # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_transform") os.mkdir(cache_dir) # Make image and mask directories in the cache directory imgdir = os.path.join(cache_dir, "images") # read in matrices matrix_t_file = np.load(os.path.join(TEST_DATA, TEST_TRANSFORM1), encoding="latin1") matrix_t = matrix_t_file['arr_0'] # read in images target_img = cv2.imread(os.path.join(TEST_DATA, TEST_TARGET_IMG)) source_img = cv2.imread(os.path.join(TEST_DATA, TEST_SOURCE1_IMG)) # Test with debug = "print" pcv.params.debug = "print" pcv.params.debug_outdir = imgdir _ = pcv.transform.apply_transformation_matrix(source_img, target_img, matrix_t) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.transform.apply_transformation_matrix(source_img, target_img, matrix_t) # Test with debug = None pcv.params.debug = None corrected_img = pcv.transform.apply_transformation_matrix(source_img, target_img, matrix_t) # assert source and corrected have same shape assert np.array_equal(corrected_img, corrected_compare) def test_plantcv_transform_apply_transformation_incorrect_t(): # read in matrices matrix_t_file = np.load(os.path.join(TEST_DATA, TEST_MATRIX_B1), encoding="latin1") matrix_t = matrix_t_file['arr_0'] # read in images target_img = cv2.imread(os.path.join(TEST_DATA, TEST_TARGET_IMG)) source_img = cv2.imread(os.path.join(TEST_DATA, TEST_SOURCE1_IMG)) with pytest.raises(RuntimeError): _ = pcv.transform.apply_transformation_matrix(source_img, target_img, matrix_t) def test_plantcv_transform_apply_transformation_incorrect_img(): # read in matrices matrix_t_file = np.load(os.path.join(TEST_DATA, TEST_TRANSFORM1), encoding="latin1") matrix_t = matrix_t_file['arr_0'] # read in images target_img = cv2.imread(os.path.join(TEST_DATA, TEST_TARGET_IMG)) source_img = cv2.imread(os.path.join(TEST_DATA, TEST_TARGET_MASK), -1) with pytest.raises(RuntimeError): _ = pcv.transform.apply_transformation_matrix(source_img, target_img, matrix_t) def test_plantcv_transform_save_matrix(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_transform") os.mkdir(cache_dir) # read in matrix matrix_t_file = np.load(os.path.join(TEST_DATA, TEST_TRANSFORM1), encoding="latin1") matrix_t = matrix_t_file['arr_0'] # .npz filename filename = os.path.join(cache_dir, 'test.npz') pcv.transform.save_matrix(matrix_t, filename) assert os.path.exists(filename) is True def test_plantcv_transform_save_matrix_incorrect_filename(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_transform") os.mkdir(cache_dir) # read in matrix matrix_t_file = np.load(os.path.join(TEST_DATA, TEST_TRANSFORM1), encoding="latin1") matrix_t = matrix_t_file['arr_0'] # .npz filename filename = "test" with pytest.raises(RuntimeError): pcv.transform.save_matrix(matrix_t, filename) def test_plantcv_transform_load_matrix(): # read in matrix_t matrix_t_file = np.load(os.path.join(TEST_DATA, TEST_TRANSFORM1), encoding="latin1") matrix_t = matrix_t_file['arr_0'] # test load function with matrix_t matrix_t_loaded = pcv.transform.load_matrix(os.path.join(TEST_DATA, TEST_TRANSFORM1)) assert np.array_equal(matrix_t, matrix_t_loaded) def test_plantcv_transform_correct_color(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_transform") os.mkdir(cache_dir) # load corrected image to compare corrected_compare = cv2.imread(os.path.join(TEST_DATA, TEST_S1_CORRECTED)) # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_transform_correct_color") os.mkdir(cache_dir) # Make image and mask directories in the cache directory imgdir = os.path.join(cache_dir, "images") matdir = os.path.join(cache_dir, "saved_matrices") # Read in target, source, and gray-scale mask target_img = cv2.imread(os.path.join(TEST_DATA, TEST_TARGET_IMG)) source_img = cv2.imread(os.path.join(TEST_DATA, TEST_SOURCE1_IMG)) mask = cv2.imread(os.path.join(TEST_DATA, TEST_TARGET_MASK), -1) output_path = os.path.join(matdir) # Test with debug = "print" pcv.params.debug = "print" pcv.params.debug_outdir = imgdir _, _, _, _ = pcv.transform.correct_color(target_img, mask, source_img, mask, cache_dir) # Test with debug = "plot" pcv.params.debug = "plot" _, _, _, _ = pcv.transform.correct_color(target_img, mask, source_img, mask, output_path) # Test with debug = None pcv.params.debug = None _, _, matrix_t, corrected_img = pcv.transform.correct_color(target_img, mask, source_img, mask, output_path) # assert source and corrected have same shape assert all([np.array_equal(corrected_img, corrected_compare), os.path.exists(os.path.join(output_path, "target_matrix.npz")) is True, os.path.exists(os.path.join(output_path, "source_matrix.npz")) is True, os.path.exists(os.path.join(output_path, "transformation_matrix.npz")) is True]) def test_plantcv_transform_correct_color_output_dne(): # load corrected image to compare corrected_compare = cv2.imread(os.path.join(TEST_DATA, TEST_S1_CORRECTED)) # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_transform_correct_color_output_dne") os.mkdir(cache_dir) # Make image and mask directories in the cache directory imgdir = os.path.join(cache_dir, "images") # Read in target, source, and gray-scale mask target_img = cv2.imread(os.path.join(TEST_DATA, TEST_TARGET_IMG)) source_img = cv2.imread(os.path.join(TEST_DATA, TEST_SOURCE1_IMG)) mask = cv2.imread(os.path.join(TEST_DATA, TEST_TARGET_MASK), -1) output_path = os.path.join(cache_dir, "saved_matrices_1") # output_directory that does not currently exist # Test with debug = "print" pcv.params.debug = "print" pcv.params.debug_outdir = imgdir _, _, _, _ = pcv.transform.correct_color(target_img, mask, source_img, mask, output_path) # Test with debug = "plot" pcv.params.debug = "plot" _, _, _, _ = pcv.transform.correct_color(target_img, mask, source_img, mask, output_path) # Test with debug = None pcv.params.debug = None _, _, matrix_t, corrected_img = pcv.transform.correct_color(target_img, mask, source_img, mask, output_path) # assert source and corrected have same shape assert all([np.array_equal(corrected_img, corrected_compare), os.path.exists(os.path.join(output_path, "target_matrix.npz")) is True, os.path.exists(os.path.join(output_path, "source_matrix.npz")) is True, os.path.exists(os.path.join(output_path, "transformation_matrix.npz")) is True]) def test_plantcv_transform_create_color_card_mask(): # Load target image rgb_img = cv2.imread(os.path.join(TEST_DATA, TEST_TARGET_IMG)) # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_transform_create_color_card_mask") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Test with debug = "print" pcv.params.debug = "print" _ = pcv.transform.create_color_card_mask(rgb_img=rgb_img, radius=6, start_coord=(166, 166), spacing=(21, 21), nrows=6, ncols=4, exclude=[20, 0]) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.transform.create_color_card_mask(rgb_img=rgb_img, radius=6, start_coord=(166, 166), spacing=(21, 21), nrows=6, ncols=4, exclude=[20, 0]) # Test with debug = None pcv.params.debug = None mask = pcv.transform.create_color_card_mask(rgb_img=rgb_img, radius=6, start_coord=(166, 166), spacing=(21, 21), nrows=6, ncols=4, exclude=[20, 0]) assert all([i == j] for i, j in zip(np.unique(mask), np.array([0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220], dtype=np.uint8))) def test_plantcv_transform_quick_color_check(): # Load target image t_matrix = np.load(os.path.join(TEST_DATA, TEST_TARGET_MATRIX), encoding="latin1") target_matrix = t_matrix['arr_0'] s_matrix = np.load(os.path.join(TEST_DATA, TEST_SOURCE1_MATRIX), encoding="latin1") source_matrix = s_matrix['arr_0'] # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_transform_quick_color_check") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Test with debug = "print" pcv.params.debug = "print" pcv.transform.quick_color_check(target_matrix, source_matrix, num_chips=22) # Test with debug = "plot" pcv.params.debug = "plot" pcv.transform.quick_color_check(target_matrix, source_matrix, num_chips=22) # Test with debug = None pcv.params.debug = None pcv.transform.quick_color_check(target_matrix, source_matrix, num_chips=22) assert os.path.exists(os.path.join(cache_dir, "color_quick_check.png")) def test_plantcv_transform_find_color_card(): # Load rgb image rgb_img = cv2.imread(os.path.join(TEST_DATA, TEST_TARGET_IMG)) # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_transform_find_color_card") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir df, start, space = pcv.transform.find_color_card(rgb_img=rgb_img, threshold_type='adaptgauss', blurry=False, threshvalue=90) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.transform.create_color_card_mask(rgb_img=rgb_img, radius=6, start_coord=start, spacing=space, nrows=6, ncols=4, exclude=[20, 0]) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.transform.create_color_card_mask(rgb_img=rgb_img, radius=6, start_coord=start, spacing=space, nrows=6, ncols=4, exclude=[20, 0]) # Test with debug = None pcv.params.debug = None mask = pcv.transform.create_color_card_mask(rgb_img=rgb_img, radius=6, start_coord=start, spacing=space, nrows=6, ncols=4, exclude=[20, 0]) assert all([i == j] for i, j in zip(np.unique(mask), np.array([0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220], dtype=np.uint8))) def test_plantcv_transform_find_color_card_optional_parameters(): # Clear previous outputs pcv.outputs.clear() # Load rgb image rgb_img = cv2.imread(os.path.join(TEST_DATA, TEST_TARGET_IMG_COLOR_CARD)) # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_transform_find_color_card") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Test with threshold ='normal' df1, start1, space1 = pcv.transform.find_color_card(rgb_img=rgb_img, threshold_type='normal', blurry=True, background='light', threshvalue=90, label="prefix") assert pcv.outputs.observations["prefix"]["color_chip_size"]["value"] > 15000 def test_plantcv_transform_find_color_card_otsu(): # Clear previous outputs pcv.outputs.clear() # Load rgb image rgb_img = cv2.imread(os.path.join(TEST_DATA, TEST_TARGET_IMG_COLOR_CARD)) # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_transform_find_color_card_otsu") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Test with threshold ='normal' df1, start1, space1 = pcv.transform.find_color_card(rgb_img=rgb_img, threshold_type='otsu', blurry=True, background='light', threshvalue=90, label="prefix") assert pcv.outputs.observations["prefix"]["color_chip_size"]["value"] > 15000 def test_plantcv_transform_find_color_card_optional_size_parameters(): # Clear previous outputs pcv.outputs.clear() # Load rgb image rgb_img = cv2.imread(os.path.join(TEST_DATA, TEST_TARGET_IMG_COLOR_CARD)) # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_transform_find_color_card") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir _, _, _ = pcv.transform.find_color_card(rgb_img=rgb_img, record_chip_size="mean") assert pcv.outputs.observations["default"]["color_chip_size"]["value"] > 15000 def test_plantcv_transform_find_color_card_optional_size_parameters_none(): # Clear previous outputs pcv.outputs.clear() # Load rgb image rgb_img = cv2.imread(os.path.join(TEST_DATA, TEST_TARGET_IMG_COLOR_CARD)) # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_transform_find_color_card") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir _, _, _ = pcv.transform.find_color_card(rgb_img=rgb_img, record_chip_size=None) assert pcv.outputs.observations.get("default") is None def test_plantcv_transform_find_color_card_bad_record_chip_size(): # Clear previous outputs pcv.outputs.clear() # Load rgb image rgb_img = cv2.imread(os.path.join(TEST_DATA, TEST_TARGET_IMG)) pcv.params.debug = None _, _, _ = pcv.transform.find_color_card(rgb_img=rgb_img, record_chip_size='averageeeed') assert pcv.outputs.observations["default"]["color_chip_size"]["value"] is None def test_plantcv_transform_find_color_card_bad_thresh_input(): # Load rgb image rgb_img = cv2.imread(os.path.join(TEST_DATA, TEST_TARGET_IMG)) with pytest.raises(RuntimeError): pcv.params.debug = None _, _, _ = pcv.transform.find_color_card(rgb_img=rgb_img, threshold_type='gaussian') def test_plantcv_transform_find_color_card_bad_background_input(): # Load rgb image rgb_img = cv2.imread(os.path.join(TEST_DATA, TEST_TARGET_IMG)) with pytest.raises(RuntimeError): pcv.params.debug = None _, _, _ = pcv.transform.find_color_card(rgb_img=rgb_img, background='lite') def test_plantcv_transform_find_color_card_bad_colorcard(): # Load rgb image rgb_img = cv2.imread(os.path.join(TEST_DATA, TEST_TARGET_IMG_WITH_HEXAGON)) with pytest.raises(RuntimeError): pcv.params.debug = None _, _, _ = pcv.transform.find_color_card(rgb_img=rgb_img) def test_plantcv_transform_rescale(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_transform_rescale") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir gray_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.transform.rescale(gray_img=gray_img, min_value=0, max_value=100) pcv.params.debug = "plot" rescaled_img = pcv.transform.rescale(gray_img=gray_img, min_value=0, max_value=100) assert max(np.unique(rescaled_img)) == 100 def test_plantcv_transform_rescale_bad_input(): # Load rgb image rgb_img = cv2.imread(os.path.join(TEST_DATA, TEST_TARGET_IMG)) with pytest.raises(RuntimeError): _ = pcv.transform.rescale(gray_img=rgb_img) def test_plantcv_transform_resize(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_trancform_resize") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir gray_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY_SMALL), -1) size = (100, 100) # Test with debug "print" pcv.params.debug = "print" _ = pcv.transform.resize(img=gray_img, size=size, interpolation="auto") # Test with debug "plot" pcv.params.debug = "plot" resized_img = pcv.transform.resize(img=gray_img, size=size, interpolation="auto") assert resized_img.shape == size def test_plantcv_transform_resize_unsupported_method(): gray_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY_SMALL), -1) with pytest.raises(RuntimeError): _ = pcv.transform.resize(img=gray_img, size=(100, 100), interpolation="mymethod") def test_plantcv_transform_resize_crop(): gray_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY_SMALL), -1) size = (20, 20) resized_im = pcv.transform.resize(img=gray_img, size=size, interpolation=None) assert resized_im.shape == size def test_plantcv_transform_resize_pad(): gray_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY_SMALL), -1) size = (100, 100) resized_im = pcv.transform.resize(img=gray_img, size=size, interpolation=None) assert resized_im.shape == size def test_plantcv_transform_resize_pad_crop_color(): color_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY_SMALL)) size = (100, 100) resized_im = pcv.transform.resize(img=color_img, size=size, interpolation=None) assert resized_im.shape == (size[1], size[0], 3) def test_plantcv_transform_resize_factor(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_trancform_resize_factor") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir gray_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY_SMALL), -1) # Resizing factors factor_x = 0.5 factor_y = 0.2 # Test with debug "print" pcv.params.debug = "print" _ = pcv.transform.resize_factor(img=gray_img, factors=(factor_x, factor_y), interpolation="auto") # Test with debug "plot" pcv.params.debug = "plot" resized_img = pcv.transform.resize_factor(img=gray_img, factors=(factor_x, factor_y), interpolation="auto") output_size = resized_img.shape expected_size = (int(gray_img.shape[0] * factor_y), int(gray_img.shape[1] * factor_x)) assert output_size == expected_size def test_plantcv_transform_resize_factor_bad_input(): gray_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY_SMALL), -1) with pytest.raises(RuntimeError): _ = pcv.transform.resize_factor(img=gray_img, factors=(0, 2), interpolation="auto") def test_plantcv_transform_nonuniform_illumination_rgb(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_transform_nonuniform_illumination") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Load rgb image rgb_img = cv2.imread(os.path.join(TEST_DATA, TEST_TARGET_IMG)) pcv.params.debug = "plot" _ = pcv.transform.nonuniform_illumination(img=rgb_img, ksize=11) pcv.params.debug = "print" corrected = pcv.transform.nonuniform_illumination(img=rgb_img, ksize=11) assert np.mean(corrected) < np.mean(rgb_img) def test_plantcv_transform_nonuniform_illumination_gray(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_transform_nonuniform_illumination") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Load rgb image gray_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) pcv.params.debug = "plot" _ = pcv.transform.nonuniform_illumination(img=gray_img, ksize=11) pcv.params.debug = "print" corrected = pcv.transform.nonuniform_illumination(img=gray_img, ksize=11) assert np.shape(corrected) == np.shape(gray_img) def test_plantcv_transform_warp_default(): pcv.params.debug = "plot" img = create_test_img((12, 10, 3)) refimg = create_test_img((12, 10, 3)) pts = [(0, 0),(1, 0),(0, 3),(4, 4)] refpts = [(0, 0),(1, 0),(0, 3),(4, 4)] warped_img, mat = pcv.transform.warp(img, refimg, pts, refpts, method="default") assert mat.shape == (3, 3) def test_plantcv_transform_warp_lmeds(): pcv.params.debug = "plot" img = create_test_img((10, 10, 3)) refimg = create_test_img((11, 11)) pts = [(0, 0), (1, 0), (0, 3), (4, 4)] refpts = [(0, 0), (1, 0), (0, 3), (4, 4)] warped_img, mat = pcv.transform.warp(img, refimg, pts, refpts, method="lmeds") assert mat.shape == (3, 3) def test_plantcv_transform_warp_rho(): pcv.params.debug = "plot" img = create_test_img_bin((10, 10)) refimg = create_test_img((11, 11)) pts = [(0, 0), (1, 0), (0, 3), (4, 4)] refpts = [(0, 0), (1, 0), (0, 3), (4, 4)] warped_img, mat = pcv.transform.warp(img, refimg, pts, refpts, method="rho") assert mat.shape == (3, 3) def test_plantcv_transform_warp_ransac(): pcv.params.debug = "plot" img = create_test_img((100, 150)) refimg = create_test_img((10, 15)) pts = [(0, 0), (149, 0), (99, 149), (0, 99), (3, 3)] refpts = [(0, 0), (0, 14), (9, 14), (0, 9), (3, 3)] warped_img, mat = pcv.transform.warp(img, refimg, pts, refpts, method="ransac") assert mat.shape == (3, 3) @pytest.mark.parametrize("pts, refpts", [ [[(0,0)],[(0,0),(0,1)]], # different # of points provided for img and refimg [[(0,0)],[(0,0)]], # not enough pairs of points provided [[(0, 0), (0, 14), (9, 14), (0, 9), (3, 3)], [(0, 0), (149, 0), (99, 149), (0, 99), (3, 3)]] # homography not able to be calculated (cannot converge) ]) def test_plantcv_transform_warp_err(pts, refpts): img = create_test_img((10, 15)) refimg = create_test_img((100, 150)) method = "rho" with pytest.raises(RuntimeError): pcv.transform.warp(img, refimg, pts, refpts, method=method) def test_plantcv_transform_warp_align(): img = create_test_img((10, 10, 3)) refimg = create_test_img((11, 11)) mat = np.array([[ 1.00000000e+00, 1.04238500e-15, -7.69185075e-16], [ 1.44375646e-16, 1.00000000e+00, 0.00000000e+00], [-5.41315251e-16, 1.78930521e-15, 1.00000000e+00]]) warp_img = pcv.transform.warp_align(img=img, mat=mat, refimg=refimg) assert warp_img.shape == (11, 11, 3) # ############################## # Tests for the threshold subpackage # ############################## @pytest.mark.parametrize("objtype", ["dark", "light"]) def test_plantcv_threshold_binary(objtype): # Read in test data gray_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) # Test with object type = dark pcv.params.debug = None binary_img = pcv.threshold.binary(gray_img=gray_img, threshold=25, max_value=255, object_type=objtype) # Assert that the output image has the dimensions of the input image if all([i == j] for i, j in zip(np.shape(binary_img), TEST_GRAY_DIM)): # Assert that the image is binary if all([i == j] for i, j in zip(np.unique(binary_img), [0, 255])): assert 1 else: assert 0 else: assert 0 def test_plantcv_threshold_binary_incorrect_object_type(): gray_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) with pytest.raises(RuntimeError): pcv.params.debug = None _ = pcv.threshold.binary(gray_img=gray_img, threshold=25, max_value=255, object_type="lite") @pytest.mark.parametrize("objtype", ["dark", "light"]) def test_plantcv_threshold_gaussian(objtype): # Read in test data gray_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) # Test with object type = dark pcv.params.debug = None binary_img = pcv.threshold.gaussian(gray_img=gray_img, max_value=255, object_type=objtype) # Assert that the output image has the dimensions of the input image if all([i == j] for i, j in zip(np.shape(binary_img), TEST_GRAY_DIM)): # Assert that the image is binary if all([i == j] for i, j in zip(np.unique(binary_img), [0, 255])): assert 1 else: assert 0 else: assert 0 def test_plantcv_threshold_gaussian_incorrect_object_type(): gray_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) with pytest.raises(RuntimeError): pcv.params.debug = None _ = pcv.threshold.gaussian(gray_img=gray_img, max_value=255, object_type="lite") @pytest.mark.parametrize("objtype", ["dark", "light"]) def test_plantcv_threshold_mean(objtype): # Read in test data gray_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) # Test with object type = dark pcv.params.debug = None binary_img = pcv.threshold.mean(gray_img=gray_img, max_value=255, object_type=objtype) # Assert that the output image has the dimensions of the input image if all([i == j] for i, j in zip(np.shape(binary_img), TEST_GRAY_DIM)): # Assert that the image is binary if all([i == j] for i, j in zip(np.unique(binary_img), [0, 255])): assert 1 else: assert 0 else: assert 0 def test_plantcv_threshold_mean_incorrect_object_type(): gray_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) with pytest.raises(RuntimeError): pcv.params.debug = None _ = pcv.threshold.mean(gray_img=gray_img, max_value=255, object_type="lite") @pytest.mark.parametrize("objtype", ["dark", "light"]) def test_plantcv_threshold_otsu(objtype): # Read in test data gray_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GREENMAG), -1) # Test with object set to light pcv.params.debug = None binary_img = pcv.threshold.otsu(gray_img=gray_img, max_value=255, object_type=objtype) # Assert that the output image has the dimensions of the input image if all([i == j] for i, j in zip(np.shape(binary_img), TEST_GRAY_DIM)): # Assert that the image is binary if all([i == j] for i, j in zip(np.unique(binary_img), [0, 255])): assert 1 else: assert 0 else: assert 0 def test_plantcv_threshold_otsu_incorrect_object_type(): gray_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) with pytest.raises(RuntimeError): pcv.params.debug = None _ = pcv.threshold.otsu(gray_img=gray_img, max_value=255, object_type="lite") @pytest.mark.parametrize("channel,lower_thresh,upper_thresh", [["HSV", [0, 0, 0], [255, 255, 255]], ["LAB", [0, 0, 0], [255, 255, 255]], ["RGB", [0, 0, 0], [255, 255, 255]], ["GRAY", [0], [255]]]) def test_plantcv_threshold_custom_range_rgb(channel, lower_thresh, upper_thresh): # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) # Test with debug = None pcv.params.debug = None mask, binary_img = pcv.threshold.custom_range(img, lower_thresh=lower_thresh, upper_thresh=upper_thresh, channel=channel) # Assert that the output image has the dimensions of the input image if all([i == j] for i, j in zip(np.shape(binary_img), TEST_GRAY_DIM)): # Assert that the image is binary if all([i == j] for i, j in zip(np.unique(binary_img), [0, 255])): assert 1 else: assert 0 else: assert 0 def test_plantcv_threshold_custom_range_grayscale(): # Read in test data gray_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) # Test with debug = None pcv.params.debug = None # # Test channel='gray' mask, binary_img = pcv.threshold.custom_range(gray_img, lower_thresh=[0], upper_thresh=[255], channel='gray') # Assert that the output image has the dimensions of the input image if all([i == j] for i, j in zip(np.shape(binary_img), TEST_GRAY_DIM)): # Assert that the image is binary if all([i == j] for i, j in zip(np.unique(binary_img), [0, 255])): assert 1 else: assert 0 else: assert 0 def test_plantcv_threshold_custom_range_bad_input_hsv(): # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) with pytest.raises(RuntimeError): _, _ = pcv.threshold.custom_range(img, lower_thresh=[0, 0], upper_thresh=[2, 2, 2, 2], channel='HSV') def test_plantcv_threshold_custom_range_bad_input_rgb(): # Read in test data pcv.params.debug = None img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) with pytest.raises(RuntimeError): _, _ = pcv.threshold.custom_range(img, lower_thresh=[0, 0], upper_thresh=[2, 2, 2, 2], channel='RGB') def test_plantcv_threshold_custom_range_bad_input_lab(): # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) with pytest.raises(RuntimeError): _, _ = pcv.threshold.custom_range(img, lower_thresh=[0, 0], upper_thresh=[2, 2, 2], channel='LAB') def test_plantcv_threshold_custom_range_bad_input_gray(): # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) with pytest.raises(RuntimeError): _, _ = pcv.threshold.custom_range(img, lower_thresh=[0, 0], upper_thresh=[2], channel='gray') def test_plantcv_threshold_custom_range_bad_input_channel(): # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) with pytest.raises(RuntimeError): _, _ = pcv.threshold.custom_range(img, lower_thresh=[0], upper_thresh=[2], channel='CMYK') @pytest.mark.parametrize("channel", ["all", "any"]) def test_plantcv_threshold_saturation(channel): # Read in test data rgb_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) # Test with debug = None pcv.params.debug = None thresh = pcv.threshold.saturation(rgb_img=rgb_img, threshold=254, channel=channel) assert len(np.unique(thresh)) == 2 def test_plantcv_threshold_saturation_bad_input(): # Read in test data rgb_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) with pytest.raises(RuntimeError): _ = pcv.threshold.saturation(rgb_img=rgb_img, threshold=254, channel="red") def test_plantcv_threshold_triangle(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_threshold_triangle") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data gray_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) pcv.params.debug = None _ = pcv.threshold.triangle(gray_img=gray_img, max_value=255, object_type="dark", xstep=10) pcv.params.debug = "plot" _ = pcv.threshold.triangle(gray_img=gray_img, max_value=255, object_type="light", xstep=10) pcv.params.debug = "print" binary_img = pcv.threshold.triangle(gray_img=gray_img, max_value=255, object_type="light", xstep=10) # Assert that the output image has the dimensions of the input image if all([i == j] for i, j in zip(np.shape(binary_img), TEST_GRAY_DIM)): # Assert that the image is binary if all([i == j] for i, j in zip(np.unique(binary_img), [0, 255])): assert 1 else: assert 0 else: assert 0 def test_plantcv_threshold_triangle_incorrect_object_type(): gray_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) with pytest.raises(RuntimeError): pcv.params.debug = None _ = pcv.threshold.triangle(gray_img=gray_img, max_value=255, object_type="lite", xstep=10) def test_plantcv_threshold_texture(): # Test with debug = None pcv.params.debug = None gray_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY_SMALL), -1) binary_img = pcv.threshold.texture(gray_img, ksize=6, threshold=7, offset=3, texture_method='dissimilarity', borders='nearest', max_value=255) # Assert that the output image has the dimensions of the input image if all([i == j] for i, j in zip(np.shape(binary_img), TEST_GRAY_DIM)): # Assert that the image is binary if all([i == j] for i, j in zip(np.unique(binary_img), [0, 255])): assert 1 else: assert 0 else: assert 0 def create_test_img(sz_img): img = np.random.randint(np.prod(sz_img), size=sz_img) * 255 img = img.astype(np.uint8) return img def create_test_img_bin(sz_img): img = np.zeros(sz_img) img[3:7, 2:8] = 1 return img @pytest.mark.parametrize("bad_type", ["native", "nan", "inf"]) def test_plantcv_threshold_mask_bad(bad_type): # Create a synthetic bad image bad_img = np.reshape(np.random.rand(25), (5, 5)) bad_img[2, 2] = np.inf bad_img[2, 3] = np.nan sz = np.shape(bad_img) pcv.params.debug = None mask = pcv.threshold.mask_bad(bad_img, bad_type=bad_type) assert((np.shape(mask) == sz) and (len(np.unique(mask)) == 2)) def test_plantcv_threshold_mask_bad_native_bad_input(): # Create a synthetic bad image bad_img = np.reshape(np.random.rand(25), (5, 5)) sz = np.shape(bad_img) mask10 = pcv.threshold.mask_bad(bad_img, bad_type='native') assert mask10.all() == np.zeros(sz, dtype='uint8').all() def test_plantcv_threshold_mask_bad_nan_bad_input(): # Create a synthetic bad image bad_img = np.reshape(np.random.rand(25), (5, 5)) bad_img[2, 2] = np.inf sz = np.shape(bad_img) mask11 = pcv.threshold.mask_bad(bad_img, bad_type='nan') assert mask11.all() == np.zeros(sz, dtype='uint8').all() def test_plantcv_threshold_mask_bad_input_color_img(): # Read in test data bad_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) with pytest.raises(RuntimeError): pcv.threshold.mask_bad(bad_img, bad_type='nan') # ################################### # Tests for the visualize subpackage # ################################### def test_plantcv_visualize_auto_threshold_methods_bad_input(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_auto_threshold_methods") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) with pytest.raises(RuntimeError): _ = pcv.visualize.auto_threshold_methods(gray_img=img) def test_plantcv_visualize_auto_threshold_methods(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_auto_threshold_methods") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) pcv.params.debug = "print" _ = pcv.visualize.auto_threshold_methods(gray_img=img) pcv.params.debug = "plot" labeled_imgs = pcv.visualize.auto_threshold_methods(gray_img=img) assert len(labeled_imgs) == 5 and np.shape(labeled_imgs[0])[0] == np.shape(img)[0] @pytest.mark.parametrize("debug,axes", [["print", True], ["plot", False]]) def test_plantcv_visualize_pseudocolor(debug, axes, tmpdir): # Create a tmp directory cache_dir = tmpdir.mkdir("sub") pcv.params.debug_outdir = cache_dir # Input image img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) r, c = img.shape # generate 200 "bad" pixels mask_bad = np.zeros((r, c), dtype=np.uint8) mask_bad = np.reshape(mask_bad, (-1, 1)) mask_bad[0:100] = 255 mask_bad = np.reshape(mask_bad, (r, c)) # Debug mode pcv.params.debug = debug pseudo_img = pcv.visualize.pseudocolor(gray_img=img, mask=None, title="Pseudocolored image", axes=axes, bad_mask=mask_bad) # Assert that the output image has the dimensions of the input image assert all([i == j] for i, j in zip(np.shape(pseudo_img), TEST_BINARY_DIM)) @pytest.mark.parametrize("bkgrd,axes,pad", [["image", True, "auto"], ["white", False, 1], ["black", True, "auto"]]) def test_plantcv_visualize_pseudocolor_mask(bkgrd, axes, pad): # Test with debug = None pcv.params.debug = None # Input image img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) # Input mask mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) # Input contours contours_npz = np.load(os.path.join(TEST_DATA, TEST_INPUT_CONTOURS), encoding="latin1") obj_contour = contours_npz['arr_0'] r, c = img.shape # generate 200 "bad" pixels mask_bad = np.zeros((r, c), dtype=np.uint8) mask_bad = np.reshape(mask_bad, (-1, 1)) mask_bad[0:100] = 255 mask_bad = np.reshape(mask_bad, (r, c)) pseudo_img = pcv.visualize.pseudocolor(gray_img=img, obj=obj_contour, mask=mask, background=bkgrd, bad_mask=mask_bad, title="Pseudocolored image", axes=axes, obj_padding=pad) # Assert that the output image has the dimensions of the input image if all([i == j] for i, j in zip(np.shape(pseudo_img), TEST_BINARY_DIM)): assert 1 else: assert 0 def test_plantcv_visualize_pseudocolor_bad_input(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_pseudocolor") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) with pytest.raises(RuntimeError): _ = pcv.visualize.pseudocolor(gray_img=img) def test_plantcv_visualize_pseudocolor_bad_background(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_pseudocolor_bad_background") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) with pytest.raises(RuntimeError): _ = pcv.visualize.pseudocolor(gray_img=img, mask=mask, background="pink") def test_plantcv_visualize_pseudocolor_bad_padding(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_pseudocolor_bad_background") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) contours_npz = np.load(os.path.join(TEST_DATA, TEST_INPUT_CONTOURS), encoding="latin1") obj_contour = contours_npz['arr_0'] with pytest.raises(RuntimeError): _ = pcv.visualize.pseudocolor(gray_img=img, mask=mask, obj=obj_contour, obj_padding="pink") def test_plantcv_visualize_pseudocolor_bad_mask(): # Test with debug = None pcv.params.debug = None def test_plantcv_visualize_colorize_masks(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_naive_bayes_classifier") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) # Test with debug = "print" pcv.params.debug = "print" mask = pcv.naive_bayes_classifier(rgb_img=img, pdf_file=os.path.join(TEST_DATA, TEST_PDFS)) _ = pcv.visualize.colorize_masks(masks=[mask['plant'], mask['background']], colors=[(0, 0, 0), (1, 1, 1)]) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.visualize.colorize_masks(masks=[mask['plant'], mask['background']], colors=[(0, 0, 0), (1, 1, 1)]) # Test with debug = None pcv.params.debug = None colored_img = pcv.visualize.colorize_masks(masks=[mask['plant'], mask['background']], colors=['red', 'blue']) # Assert that the output image has the dimensions of the input image assert not np.average(colored_img) == 0 def test_plantcv_visualize_colorize_masks_bad_input_empty(): with pytest.raises(RuntimeError): _ = pcv.visualize.colorize_masks(masks=[], colors=[]) def test_plantcv_visualize_colorize_masks_bad_input_mismatch_number(): # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) # Test with debug = "print" pcv.params.debug = "print" mask = pcv.naive_bayes_classifier(rgb_img=img, pdf_file=os.path.join(TEST_DATA, TEST_PDFS)) with pytest.raises(RuntimeError): _ = pcv.visualize.colorize_masks(masks=[mask['plant'], mask['background']], colors=['red', 'green', 'blue']) def test_plantcv_visualize_colorize_masks_bad_color_input(): # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) # Test with debug = "print" pcv.params.debug = "print" mask = pcv.naive_bayes_classifier(rgb_img=img, pdf_file=os.path.join(TEST_DATA, TEST_PDFS)) with pytest.raises(RuntimeError): _ = pcv.visualize.colorize_masks(masks=[mask['plant'], mask['background']], colors=['red', 1.123]) def test_plantcv_visualize_colorize_label_img(): label_img = np.array([[1,2,3],[4,5,6],[7,8,9]]) pcv.params.debug = None colored_img = pcv.visualize.colorize_label_img(label_img) assert (colored_img.shape[0:-1] == label_img.shape) and colored_img.shape[-1] == 3 @pytest.mark.parametrize("bins,lb,ub,title", [[200, 0, 255, "Include Title"], [100, None, None, None]]) def test_plantcv_visualize_histogram(bins, lb, ub, title): # Test with debug = None pcv.params.debug = None # Read test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) fig_hist, hist_df = pcv.visualize.histogram(img=img, mask=mask, bins=bins, lower_bound=lb, upper_bound=ub, title=title, hist_data=True) assert all([isinstance(fig_hist, ggplot), isinstance(hist_df, pd.core.frame.DataFrame)]) def test_plantcv_visualize_histogram_no_mask(): # Test with debug = None pcv.params.debug = None # Read test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) fig_hist = pcv.visualize.histogram(img=img, mask=None) assert isinstance(fig_hist, ggplot) def test_plantcv_visualize_histogram_rgb_img(): # Test with debug = None pcv.params.debug = None # Test RGB input image img_rgb = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) fig_hist = pcv.visualize.histogram(img=img_rgb) assert isinstance(fig_hist, ggplot) def test_plantcv_visualize_histogram_multispectral_img(): # Test with debug = None pcv.params.debug = None # Test multi-spectral image img_rgb = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) img_multi = np.concatenate((img_rgb, img_rgb), axis=2) fig_hist = pcv.visualize.histogram(img=img_multi) assert isinstance(fig_hist, ggplot) def test_plantcv_visualize_histogram_no_img(): with pytest.raises(RuntimeError): _ = pcv.visualize.histogram(img=None) def test_plantcv_visualize_histogram_array(): # Read test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) with pytest.raises(RuntimeError): _ = pcv.visualize.histogram(img=img[0, :]) def test_plantcv_visualize_clustered_contours(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_plot_hist") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) img1 = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_VISUALIZE_BACKGROUND), -1) roi_objects = np.load(os.path.join(TEST_DATA, TEST_INPUT_VISUALIZE_CONTOUR), encoding="latin1") hierarchy = np.load(os.path.join(TEST_DATA, TEST_INPUT_VISUALIZE_HIERARCHY), encoding="latin1") cluster_i = np.load(os.path.join(TEST_DATA, TEST_INPUT_VISUALIZE_CLUSTERS), encoding="latin1") objs = [roi_objects[arr_n] for arr_n in roi_objects] obj_hierarchy = hierarchy['arr_0'] cluster = [cluster_i[arr_n] for arr_n in cluster_i] # Test in plot mode pcv.params.debug = "plot" # Reset the saved color scale (can be saved between tests) pcv.params.saved_color_scale = None _ = pcv.visualize.clustered_contours(img=img1, grouped_contour_indices=cluster, roi_objects=objs, roi_obj_hierarchy=obj_hierarchy, bounding=False) # Test in print mode pcv.params.debug = "print" # Reset the saved color scale (can be saved between tests) pcv.params.saved_color_scale = None cluster_img = pcv.visualize.clustered_contours(img=img, grouped_contour_indices=cluster, roi_objects=objs, roi_obj_hierarchy=obj_hierarchy, nrow=2, ncol=2, bounding=True) assert np.sum(cluster_img) > np.sum(img) def test_plantcv_visualize_colorspaces(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_plot_hist") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) pcv.params.debug = "plot" vis_img_small = pcv.visualize.colorspaces(rgb_img=img, original_img=False) pcv.params.debug = "print" vis_img = pcv.visualize.colorspaces(rgb_img=img) assert np.shape(vis_img)[1] > (np.shape(img)[1]) and np.shape(vis_img_small)[1] > (np.shape(img)[1]) def test_plantcv_visualize_colorspaces_bad_input(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_plot_hist") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) with pytest.raises(RuntimeError): _ = pcv.visualize.colorspaces(rgb_img=img) def test_plantcv_visualize_overlay_two_imgs(): pcv.params.debug = None cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_visualize_overlay_two_imgs") os.mkdir(cache_dir) img1 = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) img2 = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY)) pcv.params.debug = None out_img = pcv.visualize.overlay_two_imgs(img1=img1, img2=img2) sample_pt1 = img1[1445, 1154] sample_pt2 = img2[1445, 1154] sample_pt3 = out_img[1445, 1154] pred_rgb = (sample_pt1 * 0.5) + (sample_pt2 * 0.5) pred_rgb = pred_rgb.astype(np.uint8) assert np.array_equal(sample_pt3, pred_rgb) def test_plantcv_visualize_overlay_two_imgs_grayscale(): pcv.params.debug = None cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_visualize_overlay_two_imgs_grayscale") os.mkdir(cache_dir) img1 = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) img2 = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) out_img = pcv.visualize.overlay_two_imgs(img1=img1, img2=img2) sample_pt1 = np.array([255, 255, 255], dtype=np.uint8) sample_pt2 = np.array([255, 255, 255], dtype=np.uint8) sample_pt3 = out_img[1445, 1154] pred_rgb = (sample_pt1 * 0.5) + (sample_pt2 * 0.5) pred_rgb = pred_rgb.astype(np.uint8) assert np.array_equal(sample_pt3, pred_rgb) def test_plantcv_visualize_overlay_two_imgs_bad_alpha(): pcv.params.debug = None cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_visualize_overlay_two_imgs_bad_alpha") os.mkdir(cache_dir) img1 = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) img2 = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY)) alpha = -1 with pytest.raises(RuntimeError): _ = pcv.visualize.overlay_two_imgs(img1=img1, img2=img2, alpha=alpha) def test_plantcv_visualize_overlay_two_imgs_size_mismatch(): pcv.params.debug = None cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_visualize_overlay_two_imgs_size_mismatch") os.mkdir(cache_dir) img1 = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) img2 = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_CROPPED)) with pytest.raises(RuntimeError): _ = pcv.visualize.overlay_two_imgs(img1=img1, img2=img2) @pytest.mark.parametrize("title", ["Include Title", None]) def test_plantcv_visualize_obj_size_ecdf(title): pcv.params.debug = None mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MASK), -1) fig_ecdf = plantcv.plantcv.visualize.obj_size_ecdf(mask=mask, title=title) assert isinstance(fig_ecdf, ggplot) # ############################## # Tests for the utils subpackage # ############################## def test_plantcv_utils_json2csv(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_utils_json2csv") os.mkdir(cache_dir) plantcv.utils.json2csv(json_file=os.path.join(TEST_DATA, "merged_output.json"), csv_file=os.path.join(cache_dir, "exports")) assert all([os.path.exists(os.path.join(cache_dir, "exports-single-value-traits.csv")), os.path.exists(os.path.join(cache_dir, "exports-multi-value-traits.csv"))]) def test_plantcv_utils_json2csv_no_json(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_utils_json2csv_no_json") os.mkdir(cache_dir) with pytest.raises(IOError): plantcv.utils.json2csv(json_file=os.path.join(TEST_DATA, "not_a_file.json"), csv_file=os.path.join(cache_dir, "exports")) def test_plantcv_utils_json2csv_bad_json(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_utils_json2csv_bad_json") os.mkdir(cache_dir) with pytest.raises(ValueError): plantcv.utils.json2csv(json_file=os.path.join(TEST_DATA, "incorrect_json_data.txt"), csv_file=os.path.join(cache_dir, "exports")) def test_plantcv_utils_sample_images_snapshot(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_utils_sample_images") os.mkdir(cache_dir) snapshot_dir = os.path.join(PARALLEL_TEST_DATA, TEST_SNAPSHOT_DIR) img_outdir = os.path.join(cache_dir, "snapshot") plantcv.utils.sample_images(source_path=snapshot_dir, dest_path=img_outdir, num=3) assert os.path.exists(os.path.join(cache_dir, "snapshot")) def test_plantcv_utils_sample_images_flatdir(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_utils_sample_images") os.mkdir(cache_dir) flat_dir = os.path.join(TEST_DATA) img_outdir = os.path.join(cache_dir, "images") plantcv.utils.sample_images(source_path=flat_dir, dest_path=img_outdir, num=30) random_images = os.listdir(img_outdir) assert all([len(random_images) == 30, len(np.unique(random_images)) == 30]) def test_plantcv_utils_sample_images_bad_source(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_utils_sample_images") os.mkdir(cache_dir) fake_dir = os.path.join(TEST_DATA, "snapshot") img_outdir = os.path.join(cache_dir, "images") with pytest.raises(IOError): plantcv.utils.sample_images(source_path=fake_dir, dest_path=img_outdir, num=3) def test_plantcv_utils_sample_images_bad_flat_num(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_utils_sample_images") os.mkdir(cache_dir) flat_dir = os.path.join(TEST_DATA) img_outdir = os.path.join(cache_dir, "images") with pytest.raises(RuntimeError): plantcv.utils.sample_images(source_path=flat_dir, dest_path=img_outdir, num=300) def test_plantcv_utils_sample_images_bad_phenofront_num(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_utils_sample_images") os.mkdir(cache_dir) snapshot_dir = os.path.join(PARALLEL_TEST_DATA, TEST_SNAPSHOT_DIR) img_outdir = os.path.join(cache_dir, "images") with pytest.raises(RuntimeError): plantcv.utils.sample_images(source_path=snapshot_dir, dest_path=img_outdir, num=300) def test_plantcv_utils_tabulate_bayes_classes(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_utils_tabulate_bayes_classes") os.mkdir(cache_dir) outfile = os.path.join(cache_dir, "rgb_table.txt") plantcv.utils.tabulate_bayes_classes(input_file=os.path.join(TEST_DATA, PIXEL_VALUES), output_file=outfile) table = pd.read_csv(outfile, sep="\t") assert table.shape == (228, 2) def test_plantcv_utils_tabulate_bayes_classes_missing_input(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_utils_tabulate_bayes_classes_missing_input") os.mkdir(cache_dir) outfile = os.path.join(cache_dir, "rgb_table.txt") with pytest.raises(IOError): plantcv.utils.tabulate_bayes_classes(input_file=os.path.join(PIXEL_VALUES), output_file=outfile) # ############################## # Clean up test files # ############################## def teardown_function(): shutil.rmtree(TEST_TMPDIR)
mit
-1,479,096,808,573,593,300
42.811997
229
0.650335
false
spectralpython/spectral
spectral/database/aster.py
1
15620
''' Code for reading and managing ASTER spectral library data. ''' from __future__ import absolute_import, division, print_function, unicode_literals from spectral.utilities.python23 import IS_PYTHON3, tobytes, frombytes from .spectral_database import SpectralDatabase if IS_PYTHON3: readline = lambda fin: fin.readline() open_file = lambda filename: open(filename, encoding='iso-8859-1') else: readline = lambda fin: fin.readline().decode('iso-8859-1') open_file = lambda filename: open(filename) table_schemas = [ 'CREATE TABLE Samples (SampleID INTEGER PRIMARY KEY, Name TEXT, Type TEXT, Class TEXT, SubClass TEXT, ' 'ParticleSize TEXT, SampleNum TEXT, Owner TEXT, Origin TEXT, Phase TEXT, Description TEXT)', 'CREATE TABLE Spectra (SpectrumID INTEGER PRIMARY KEY, SampleID INTEGER, SensorCalibrationID INTEGER, ' 'Instrument TEXT, Environment TEXT, Measurement TEXT, ' 'XUnit TEXT, YUnit TEXT, MinWavelength FLOAT, MaxWavelength FLOAT, ' 'NumValues INTEGER, XData BLOB, YData BLOB)', ] arraytypecode = chr(ord('f')) # These files contained malformed signature data and will be ignored. bad_files = [ 'jhu.nicolet.mineral.silicate.tectosilicate.fine.albite1.spectrum.txt', 'usgs.perknic.rock.igneous.mafic.colid.me3.spectrum.txt' ] def read_pair(fin, num_lines=1): '''Reads a colon-delimited attribute-value pair from the file stream.''' s = '' for i in range(num_lines): s += " " + readline(fin).strip() return [x.strip().lower() for x in s.split(':')] class Signature: '''Object to store sample/measurement metadata, as well as wavelength-signatrure vectors.''' def __init__(self): self.sample = {} self.measurement = {} def read_aster_file(filename): '''Reads an ASTER 2.x spectrum file.''' fin = open_file(filename) s = Signature() # Number of lines per metadata attribute value lpv = [1] * 8 + [2] + [6] # A few files have an additional "Colleted by" sample metadata field, which # sometimes affects the number of header lines haveCollectedBy = False for i in range(30): line = readline(fin).strip() if line.find('Collected by:') >= 0: haveCollectedBy = True collectedByLineNum = i if line.startswith('Description:'): descriptionLineNum = i if line.startswith('Measurement:'): measurementLineNum = i if haveCollectedBy: lpv = [1] * 10 + [measurementLineNum - descriptionLineNum] # Read sample metadata fin.seek(0) for i in range(len(lpv)): pair = read_pair(fin, lpv[i]) s.sample[pair[0].lower()] = pair[1] # Read measurement metadata lpv = [1] * 8 + [2] for i in range(len(lpv)): pair = read_pair(fin, lpv[i]) if len(pair) < 2: print(pair) s.measurement[pair[0].lower()] = pair[1] # Read signature spectrum pairs = [] for line in fin.readlines(): line = line.strip() if len(line) == 0: continue pair = line.split() nItems = len(pair) # Try to handle invalid values on signature lines if nItems == 1: # print 'single item (%s) on signature line, %s' \ # % (pair[0], filename) continue elif nItems > 2: print('more than 2 values on signature line,', filename) continue try: x = float(pair[0]) except: print('corrupt signature line,', filename) if x == 0: # print 'Zero wavelength value', filename continue elif x < 0: print('Negative wavelength value,', filename) continue pairs.append(pair) [x, y] = [list(v) for v in zip(*pairs)] # Make sure wavelengths are ascending if float(x[0]) > float(x[-1]): x.reverse() y.reverse() s.x = [float(val) for val in x] s.y = [float(val) for val in y] s.measurement['first x value'] = x[0] s.measurement['last x value'] = x[-1] s.measurement['number of x values'] = len(x) fin.close() return s class AsterDatabase(SpectralDatabase): '''A relational database to manage ASTER spectral library data.''' schemas = table_schemas def _add_sample(self, name, sampleType, sampleClass, subClass, particleSize, sampleNumber, owner, origin, phase, description): sql = '''INSERT INTO Samples (Name, Type, Class, SubClass, ParticleSize, SampleNum, Owner, Origin, Phase, Description) VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?)''' self.cursor.execute(sql, (name, sampleType, sampleClass, subClass, particleSize, sampleNumber, owner, origin, phase, description)) rowId = self.cursor.lastrowid self.db.commit() return rowId def _add_signature( self, sampleID, calibrationID, instrument, environment, measurement, xUnit, yUnit, minWavelength, maxWavelength, xData, yData): import sqlite3 import array sql = '''INSERT INTO Spectra (SampleID, SensorCalibrationID, Instrument, Environment, Measurement, XUnit, YUnit, MinWavelength, MaxWavelength, NumValues, XData, YData) VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)''' xBlob = sqlite3.Binary(tobytes(array.array(arraytypecode, xData))) yBlob = sqlite3.Binary(tobytes(array.array(arraytypecode, yData))) numValues = len(xData) self.cursor.execute( sql, ( sampleID, calibrationID, instrument, environment, measurement, xUnit, yUnit, minWavelength, maxWavelength, numValues, xBlob, yBlob)) rowId = self.cursor.lastrowid self.db.commit() return rowId @classmethod def create(cls, filename, aster_data_dir=None): '''Creates an ASTER relational database by parsing ASTER data files. Arguments: `filename` (str): Name of the new sqlite database file to create. `aster_data_dir` (str): Path to the directory containing ASTER library data files. If this argument is not provided, no data will be imported. Returns: An :class:`~spectral.database.AsterDatabase` object. Example:: >>> AsterDatabase.create("aster_lib.db", "/CDROM/ASTER2.0/data") This is a class method (it does not require instantiating an AsterDatabase object) that creates a new database by parsing all of the files in the ASTER library data directory. Normally, this should only need to be called once. Subsequently, a corresponding database object can be created by instantiating a new AsterDatabase object with the path the database file as its argument. For example:: >>> from spectral.database.aster import AsterDatabase >>> db = AsterDatabase("aster_lib.db") ''' import os if os.path.isfile(filename): raise Exception('Error: Specified file already exists.') db = cls() db._connect(filename) for schema in cls.schemas: db.cursor.execute(schema) if aster_data_dir: db._import_files(aster_data_dir) return db def __init__(self, sqlite_filename=None): '''Creates a database object to interface an existing database. Arguments: `sqlite_filename` (str): Name of the database file. If this argument is not provided, an interface to a database file will not be established. Returns: An :class:`~spectral.AsterDatabase` connected to the database. ''' from spectral.io.spyfile import find_file_path if sqlite_filename: self._connect(find_file_path(sqlite_filename)) else: self.db = None self.cursor = None def read_file(self, filename): return read_aster_file(filename) def _import_files(self, data_dir, ignore=bad_files): '''Read each file in the ASTER library and convert to AVIRIS bands.''' from glob import glob import numpy import os if not os.path.isdir(data_dir): raise Exception('Error: Invalid directory name specified.') if ignore is not None: filesToIgnore = [data_dir + '/' + f for f in ignore] else: filesToIgnore = [] numFiles = 0 numIgnored = 0 sigID = 1 class Sig: pass sigs = [] for f in glob(data_dir + '/*spectrum.txt'): if f in filesToIgnore: numIgnored += 1 continue print('Importing %s.' % f) numFiles += 1 sig = self.read_file(f) s = sig.sample if s['particle size'].lower == 'liquid': phase = 'liquid' else: phase = 'solid' if 'sample no.' in s: sampleNum = s['sample no.'] else: sampleNum = '' id = self._add_sample( s['name'], s['type'], s['class'], s[ 'subclass'], s['particle size'], sampleNum, s['owner'], s['origin'], phase, s['description']) instrument = os.path.basename(f).split('.')[1] environment = 'lab' m = sig.measurement # Correct numerous mispellings of "reflectance" and "transmittance" yUnit = m['y units'] if yUnit.find('reflectence') > -1: yUnit = 'reflectance (percent)' elif yUnit.find('trans') == 0: yUnit = 'transmittance (percent)' measurement = m['measurement'] if measurement[0] == 't': measurement = 'transmittance' self._add_signature(id, -1, instrument, environment, measurement, m['x units'], yUnit, m['first x value'], m['last x value'], sig.x, sig.y) if numFiles == 0: print('No data files were found in directory "%s".' \ % data_dir) else: print('Processed %d files.' % numFiles) if numIgnored > 0: print('Ignored the following %d bad files:' % (numIgnored)) for f in filesToIgnore: print('\t' + f) return sigs def get_spectrum(self, spectrumID): '''Returns a spectrum from the database. Usage: (x, y) = aster.get_spectrum(spectrumID) Arguments: `spectrumID` (int): The **SpectrumID** value for the desired spectrum from the **Spectra** table in the database. Returns: `x` (list): Band centers for the spectrum. `y` (list): Spectrum data values for each band. Returns a pair of vectors containing the wavelengths and measured values values of a measurment. For additional metadata, call "get_signature" instead. ''' import array query = '''SELECT XData, YData FROM Spectra WHERE SpectrumID = ?''' result = self.cursor.execute(query, (spectrumID,)) rows = result.fetchall() if len(rows) < 1: raise 'Measurement record not found' x = array.array(arraytypecode) frombytes(x, rows[0][0]) y = array.array(arraytypecode) frombytes(y, rows[0][1]) return (list(x), list(y)) def get_signature(self, spectrumID): '''Returns a spectrum with some additional metadata. Usage:: sig = aster.get_signature(spectrumID) Arguments: `spectrumID` (int): The **SpectrumID** value for the desired spectrum from the **Spectra** table in the database. Returns: `sig` (:class:`~spectral.database.aster.Signature`): An object with the following attributes: ============== ===== ======================================== Attribute Type Description ============== ===== ======================================== measurement_id int SpectrumID value from Spectra table sample_name str **Sample** from the **Samples** table sample_id int **SampleID** from the **Samples** table x list list of band center wavelengths y list list of spectrum values for each band ============== ===== ======================================== ''' import array # Retrieve spectrum from Spectra table query = '''SELECT Samples.Name, Samples.SampleID, XData, YData FROM Samples, Spectra WHERE Samples.SampleID = Spectra.SampleID AND Spectra.SpectrumID = ?''' result = self.cursor.execute(query, (spectrumID,)) results = result.fetchall() if len(results) < 1: raise "Measurement record not found" sig = Signature() sig.measurement_id = spectrumID sig.sample_name = results[0][0] sig.sample_id = results[0][1] x = array.array(arraytypecode) frombytes(x, results[0][2]) sig.x = list(x) y = array.array(arraytypecode) frombytes(y, results[0][3]) sig.y = list(y) return sig def create_envi_spectral_library(self, spectrumIDs, bandInfo): '''Creates an ENVI-formatted spectral library for a list of spectra. Arguments: `spectrumIDs` (list of ints): List of **SpectrumID** values for of spectra in the "Spectra" table of the ASTER database. `bandInfo` (:class:`~spectral.BandInfo`): The spectral bands to which the original ASTER library spectra will be resampled. Returns: A :class:`~spectral.io.envi.SpectralLibrary` object. The IDs passed to the method should correspond to the SpectrumID field of the ASTER database "Spectra" table. All specified spectra will be resampled to the same discretization specified by the bandInfo parameter. See :class:`spectral.BandResampler` for details on the resampling method used. ''' from spectral.algorithms.resampling import BandResampler from spectral.io.envi import SpectralLibrary import numpy import unicodedata spectra = numpy.empty((len(spectrumIDs), len(bandInfo.centers))) names = [] for i in range(len(spectrumIDs)): sig = self.get_signature(spectrumIDs[i]) resample = BandResampler( sig.x, bandInfo.centers, None, bandInfo.bandwidths) spectra[i] = resample(sig.y) names.append(unicodedata.normalize('NFKD', sig.sample_name). encode('ascii', 'ignore')) header = {} header['wavelength units'] = 'um' header['spectra names'] = names header['wavelength'] = bandInfo.centers header['fwhm'] = bandInfo.bandwidths return SpectralLibrary(spectra, header, {})
gpl-2.0
-1,652,097,644,647,048,200
33.866071
126
0.564277
false
pbugni/pheme.webAPIclient
pheme/webAPIclient/archive.py
1
4121
from datetime import datetime import os import requests import json from pheme.util.config import Config def url_builder(predicate=None, resource=None, view=None, query_params={}): """Build webAPI url from config and passed values :param predicate: desired action or type of document :param resource: filename or object identifier :param view: specilized view, such as metadata :param query_params: dictionary of key, values to append returns URL ready for request, post, etc. """ config = Config() url = 'http://%s:%s' % (config.get("WebAPI", "host"), config.get("WebAPI", "port")) if predicate: url = '/'.join((url, predicate)) if resource: url = '/'.join((url, resource)) if view: url = '/'.join((url, '@@' + view)) if query_params: url = '?'.join((url, '&'.join([k+'='+v for k, v in query_params.items()]))) return url def document_store(document, document_type, compress_with=None, allow_duplicate_filename=False, **metadata): """Client call to put document and meta data in PHEME archive The PHEME archive exposes a Wep API to PUT documents in the document store (database), among other things. This function wraps the HTTP request for easy client code use. :param document: the document to persist, a path to the readable file on the local filesystem. :param document_type: type, such as 'essence', 'gipse', etc. See pheme.webAPI.resources.Root for options. :param compress_with: Can be 'gzip' or 'zip' (or None). Will transmit the requested compression of the document prior to store. :param allow_duplicate_filename: If set, duplicates will be versioned. By default a duplicate raises an exception. :param metadata: Any additional key, value strings to associate with the document returns the resulting document_id, a key which may be used to retrieve the same document. """ url = url_builder(predicate=document_type, resource=os.path.basename(document)) payload = dict() if compress_with: payload['compress_with'] = compress_with if allow_duplicate_filename: payload['allow_duplicate_filename'] = allow_duplicate_filename if metadata: # special handler for datetime types datetime_handler = lambda x: x.isoformat()\ if isinstance(x, datetime)\ else None payload['metadata'] = json.dumps(metadata, default=datetime_handler) with open(document, 'rb') as content: files = {os.path.basename(document): content} r = requests.put(url, files=files, data=payload) if r.status_code != 200: # pragma no cover raise RuntimeError("Failed POST (%d) for store document: " "%s , see PHEME archive log" % (r.status_code, url)) # Pull the doc id from the json reponse response = json.loads("".join([i for i in r.iter_content()])) return response['document_id'] def document_delete(document_id): """Delete the requested document""" r = requests.delete(url_builder(resource=document_id)) assert(r.status_code == 200) def document_fetch_metadata(document_id): """Returns all metadata from the archived document if found""" r = requests.get(url_builder(resource=document_id, view='metadata')) return(json.loads(r.text)) def document_find(criteria, limit=0): """Search for best matching document(s) in archive :param criteria: dictionary of key, values to search for :param limit: optional restriction on number or matching docs; zero implies no limit returns a list of metadata if multiple matches are found. returns the document text if only a single match or limit is set to 1. """ query_params = {'query': json.dumps(criteria), 'limit': str(limit)} r = requests.get(url_builder(predicate='search', query_params=query_params)) return json.loads(r.text)
bsd-3-clause
1,370,055,112,182,797,800
33.923729
78
0.645232
false
ActiveState/code
recipes/Python/436229_RecordJar_Parser/recipe-436229.py
1
2025
#!/usr/bin/env python # recordjar.py - Parse a Record-Jar into a list of dictionaries. # Copyright 2005 Lutz Horn <[email protected]> # Licensed unter the same terms as Python. def parse_jar(flo): """Parse a Record-Jar from a file like object into a list of dictionaries. This method parses a file like object as described in "The Art of Unix Programming" <http://www.faqs.org/docs/artu/ch05s02.html#id2906931>. The records are divided by lines containing '%%'. Each record consists of one or more lines, each containing a key, a colon, and a value. Whitespace around both key and value are ignored. >>> import StringIO >>> flo = StringIO.StringIO("a:b\\nc:d\\n%%\\nx:y\\n") >>> out = parse_jar(flo) >>> print out [{'a': 'b', 'c': 'd'}, {'x': 'y'}] If a record contains a key more than once, the value for this key is a list containing the values in their order of occurence. >>> flo = StringIO.StringIO("a:b\\nc:d\\n%%\\nx:y\\nx:z\\n") >>> out = parse_jar(flo) >>> print out [{'a': 'b', 'c': 'd'}, {'x': ['y', 'z']}] Leading or trailing separator lines ('%%') and lines containing only whitespace are ignored. >>> flo = StringIO.StringIO("%%\\na:b\\nc:d\\n%%\\n\\nx:y\\nx:z\\n") >>> out = parse_jar(flo) >>> print out [{'a': 'b', 'c': 'd'}, {'x': ['y', 'z']}] """ records = [] for record in flo.read().split("%%"): dict = {} for line in [line for line in record.split("\n") if line.strip() != ""]: key, value = line.split(":", 1) key, value = key.strip(), value.strip() try: dict[key].append(value) except AttributeError: dict[key] = [dict[key], value] except KeyError: dict[key] = value if len(dict) > 0: records.append(dict) return records def _test(): import doctest, recordjar return doctest.testmod(recordjar) if __name__ == "__main__": _test()
mit
-8,003,185,806,157,289,000
32.75
80
0.565432
false
randomchars/pushbullet.py
tests/fixtures.py
1
2011
import time devices_list_response = { "devices": [ { "active": True, "iden": "1", "created": time.time(), "modified": time.time(), "icon": "system", "generated_nickname": False, "nickname": "test dev", "manufacturer": "test c", "model": "test m", "has_sms": False, }, { "active": False, "iden": "2", "created": time.time(), "modified": time.time(), "icon": "system", "generated_nickname": False, "nickname": "test dev", "manufacturer": "test c", "model": "test m", "has_sms": False, }, ] } chats_list_response = { "chats": [ { "active": True, "created": time.time(), "modified": time.time(), "with": { "name": "test chat", "status": "user", "email": "[email protected]", "email_normalized": "[email protected]", }, }, { "active": False, "created": time.time(), "modified": time.time(), "with": { "name": "test chat", "status": "user", "email": "[email protected]", "email_normalized": "[email protected]", }, }, ] } channels_list_response = { "channels": [ { "iden": "test_iden", "name": "test channel", "created": time.time(), "modified": time.time(), "tag": "test_tag", "active": True, }, { "iden": "test_iden2", "name": "test channel", "created": time.time(), "modified": time.time(), "tag": "test_tag", "active": False, }, ] }
mit
-2,881,495,122,680,451,000
24.455696
62
0.380905
false
mbourqui/django-publications-bootstrap
publications_bootstrap/admin_views/import_bibtex.py
1
7261
# -*- coding: utf-8 -*- import re from django.contrib import messages from django.contrib.admin.views.decorators import staff_member_required from django.http import HttpResponseRedirect from django.shortcuts import render from django_countries import countries from ..bibtex import parse from ..models import Publication, Type # mapping of months MONTHS = { 'jan': 1, 'january': 1, 'feb': 2, 'february': 2, 'mar': 3, 'march': 3, 'apr': 4, 'april': 4, 'may': 5, 'jun': 6, 'june': 6, 'jul': 7, 'july': 7, 'aug': 8, 'august': 8, 'sep': 9, 'september': 9, 'oct': 10, 'october': 10, 'nov': 11, 'november': 11, 'dec': 12, 'december': 12} COUNTRIES_BY_CODE = dict(countries) # Reversed dict try: # Python 2.7.x COUNTRIES_BY_NAME = {v: k for k, v in COUNTRIES_BY_CODE.iteritems()} except: # Python 3+ COUNTRIES_BY_NAME = {v: k for k, v in COUNTRIES_BY_CODE.items()} def import_bibtex(request): if request.method == 'POST': # try to parse BibTex bib = parse(request.POST['bibliography']) # container for error messages errors = {} # publication types types = Type.objects.all() # check for errors if not bib: if not request.POST['bibliography']: errors['bibliography'] = 'This field is required.' if not errors: publications = [] # try adding publications for entry in bib: if 'title' in entry and 'author' in entry and 'year' in entry: # parse authors authors = entry['author'].split(' and ') for i in range(len(authors)): author = authors[i].split(',') author = [author[-1]] + author[:-1] authors[i] = ' '.join(author) authors = ', '.join(authors) # add missing keys keys = [ 'journal', 'booktitle', 'address', 'publisher', 'editor', 'edition', 'institution', 'school', 'organization', 'series', 'url', 'doi', 'isbn', 'tags', 'note', 'abstract', 'month'] for key in keys: if key not in entry: entry[key] = '' # map integer fields to integers entry['month'] = Publication.EMonths.get(MONTHS.get(entry['month'].lower(), 0), None) for field in ['volume', 'number', 'chapter', 'section']: entry[field] = entry.get(field, None) # remove whitespace characters (likely due to line breaks) entry['url'] = re.sub(r'\s', '', entry['url']) if 'country' not in entry: entry['country'] = '' else: if entry['country'].strip() in COUNTRIES_BY_NAME: entry['country'] = COUNTRIES_BY_NAME[entry['country'].strip()] elif entry['country'].upper() in COUNTRIES_BY_CODE: entry['country'] = entry['country'].upper() else: entry['country'] = '' # determine type type_id = None for t in types: if entry['type'] in t.bibtex_type_list: type_id = t.id break if type_id is None: errors['bibliography'] = 'Type "{}" unknown.'.format(entry['type']) break # add publication publications.append(Publication( type_id=type_id, citekey=entry['key'], title=entry['title'], authors=authors, year=entry['year'], month=entry['month'], journal=entry['journal'], book_title=entry['booktitle'], publisher=entry['publisher'], location=entry['address'], country=entry['country'], editor=entry['editor'], edition=entry['edition'], institution=entry['institution'], school=entry['school'], organization=entry['organization'], series=entry['series'], volume=entry['volume'], number=entry['number'], chapter=entry['chapter'], section=entry['section'], note=entry['note'], url=entry['url'], doi=entry['doi'], isbn=entry['isbn'], external=False, abstract=entry['abstract'], tags=entry['tags'], status=Publication.EStatuses.PUBLISHED)) else: errors['bibliography'] = 'Make sure that the keys <title>, <author> and <year> are present.' break if not publications: errors['bibliography'] = 'No valid BibTex entries found.' if errors: # some error occurred return render( request, 'admin/publications_bootstrap/import_bibtex.html', { 'errors': errors, 'title': 'Import BibTex', 'types': Type.objects.all(), 'request': request}) else: try: # save publications for publication in publications: publication.save() except: msg = 'Some error occurred during saving of publications.' else: if len(publications) > 1: msg = 'Successfully added {} publications.'.format(len(publications)) else: msg = 'Successfully added {} publication.'.format(len(publications)) # show message messages.info(request, msg) # redirect to publication listing return HttpResponseRedirect('../') else: return render(request, 'admin/publications_bootstrap/import_bibtex.html', {'title': 'Import BibTex', 'types': Type.objects.all(), 'request': request}) import_bibtex = staff_member_required(import_bibtex)
mit
-2,223,934,309,947,411,700
36.235897
112
0.428729
false
hbeatty/dell-wsman-client-api-python
setup.py
1
1520
""" Setup file for egg builds @copyright: 2010-2012 @author: Joseph Tallieu <[email protected]> @author: Vijay Halaharvi <[email protected]> @organization: Dell Inc. - PG Validation @license: GNU LGLP v2.1 """ # This file is part of WSManAPI. # # WSManAPI is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 2.1 of the License, or # (at your option) any later version. # # WSManAPI is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with WSManAPI. If not, see <http://www.gnu.org/licenses/>. from setuptools import setup, find_packages # setup meta data and entry points setup( name='wsman', version="0.9.27", description="Web Services Management", author="Vijay Halaharvi, Joseph Tallieu", author_email="[email protected], [email protected]", license="Dell Software License", packages=find_packages(), package_data={'wsman':['transport/dummy/responses/winrm/*', 'transport/dummy/responses/wsmancli/*', 'loghandlers/templates/*']}, include_package_data=True )
lgpl-3.0
-7,334,710,254,634,723,000
36.073171
80
0.694079
false
dchenaux/Yoda
yoda/flask_debugtoolbar_mongo/panel.py
1
2746
from flask_debugtoolbar.panels import DebugPanel import jinja2 from . import operation_tracker from . import jinja_filters class MongoDebugPanel(DebugPanel): """Panel that shows information about MongoDB operations. """ name = 'Mongo' has_content = True def __init__(self, *args, **kwargs): super(MongoDebugPanel, self).__init__(*args, **kwargs) self.jinja_env.loader = jinja2.ChoiceLoader([ self.jinja_env.loader, jinja2.PrefixLoader({ 'debug_tb_mongo': jinja2.PackageLoader(__name__, 'templates') }) ]) filters = ('format_stack_trace', 'embolden_file', 'format_dict', 'highlight', 'pluralize') for jfilter in filters: self.jinja_env.filters[jfilter] = getattr(jinja_filters, jfilter) operation_tracker.install_tracker() def process_request(self, request): operation_tracker.reset() def nav_title(self): return 'MongoDB' def nav_subtitle(self): fun = lambda x, y: (x, len(y), '%.2f' % sum(z['time'] for z in y)) ctx = {'operations': [], 'count': 0, 'time': 0} if operation_tracker.queries: ctx['operations'].append(fun('read', operation_tracker.queries)) ctx['count'] += len(operation_tracker.queries) ctx['time'] += sum(x['time'] for x in operation_tracker.queries) if operation_tracker.inserts: ctx['operations'].append(fun('insert', operation_tracker.inserts)) ctx['count'] += len(operation_tracker.inserts) ctx['time'] += sum(x['time'] for x in operation_tracker.inserts) if operation_tracker.updates: ctx['operations'].append(fun('update', operation_tracker.updates)) ctx['count'] += len(operation_tracker.updates) ctx['time'] += sum(x['time'] for x in operation_tracker.updates) if operation_tracker.removes: ctx['operations'].append(fun('delete', operation_tracker.removes)) ctx['count'] += len(operation_tracker.removes) ctx['time'] += sum(x['time'] for x in operation_tracker.removes) ctx['time'] = '%.2f' % ctx['time'] return self.render('debug_tb_mongo/mongo-panes-subtitle.html', ctx) def title(self): return 'MongoDB Operations' def url(self): return '' def content(self): context = self.context.copy() context['queries'] = operation_tracker.queries context['inserts'] = operation_tracker.inserts context['updates'] = operation_tracker.updates context['removes'] = operation_tracker.removes return self.render('debug_tb_mongo/mongo-panel.html', context)
bsd-3-clause
3,575,773,966,745,471,000
36.616438
78
0.60488
false