repo_name
stringlengths
5
92
path
stringlengths
4
232
copies
stringclasses
19 values
size
stringlengths
4
7
content
stringlengths
721
1.04M
license
stringclasses
15 values
hash
int64
-9,223,277,421,539,062,000
9,223,102,107B
line_mean
float64
6.51
99.9
line_max
int64
15
997
alpha_frac
float64
0.25
0.97
autogenerated
bool
1 class
HewlettPackard/oneview-ansible
library/oneview_network_set_facts.py
1
4474
#!/usr/bin/python # -*- coding: utf-8 -*- ### # Copyright (2016-2020) Hewlett Packard Enterprise Development LP # # Licensed under the Apache License, Version 2.0 (the "License"); # You may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ### from __future__ import (absolute_import, division, print_function) __metaclass__ = type ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ['preview'], 'supported_by': 'community'} DOCUMENTATION = ''' --- module: oneview_network_set_facts short_description: Retrieve facts about the OneView Network Sets description: - Retrieve facts about the Network Sets from OneView. version_added: "2.4" requirements: - hpeOneView >= 5.4.0 author: - Felipe Bulsoni (@fgbulsoni) - Thiago Miotto (@tmiotto) - Adriane Cardozo (@adriane-cardozo) options: name: description: - Network Set name. options: description: - "List with options to gather facts about Network Set. Option allowed: C(withoutEthernet). The option C(withoutEthernet) retrieves the list of network_sets excluding Ethernet networks." extends_documentation_fragment: - oneview - oneview.factsparams ''' EXAMPLES = ''' - name: Gather facts about all Network Sets oneview_network_set_facts: hostname: 172.16.101.48 username: administrator password: my_password api_version: 1200 no_log: true delegate_to: localhost - debug: var=network_sets - name: Gather paginated, filtered, and sorted facts about Network Sets oneview_network_set_facts: hostname: 172.16.101.48 username: administrator password: my_password api_version: 1200 params: start: 0 count: 3 sort: 'name:descending' filter: name='netset001' no_log: true delegate_to: localhost - debug: var=network_sets - name: Gather facts about all Network Sets, excluding Ethernet networks oneview_network_set_facts: hostname: 172.16.101.48 username: administrator password: my_password api_version: 1200 options: - withoutEthernet no_log: true delegate_to: localhost - debug: var=network_sets - name: Gather facts about a Network Set by name oneview_network_set_facts: hostname: 172.16.101.48 username: administrator password: my_password api_version: 1200 name: Name of the Network Set no_log: true delegate_to: localhost - debug: var=network_sets - name: Gather facts about a Network Set by name, excluding Ethernet networks oneview_network_set_facts: hostname: 172.16.101.48 username: administrator password: my_password api_version: 1200 name: Name of the Network Set options: - withoutEthernet no_log: true delegate_to: localhost - debug: var=network_sets ''' RETURN = ''' network_sets: description: Has all the OneView facts about the Network Sets. returned: Always, but can be empty. type: dict ''' from ansible.module_utils.oneview import OneViewModule class NetworkSetFactsModule(OneViewModule): argument_spec = dict( name=dict(type='str'), options=dict(type='list'), params=dict(type='dict'), ) def __init__(self): super(NetworkSetFactsModule, self).__init__(additional_arg_spec=self.argument_spec) self.set_resource_object(self.oneview_client.network_sets) def execute_module(self): name = self.module.params.get('name') if 'withoutEthernet' in self.options: filter_by_name = ("\"'name'='%s'\"" % name) if name else '' network_sets = self.resource_client.get_all_without_ethernet(filter=filter_by_name) elif name: network_sets = self.resource_client.get_by('name', name) else: network_sets = self.resource_client.get_all(**self.facts_params) return dict(changed=False, ansible_facts=dict(network_sets=network_sets)) def main(): NetworkSetFactsModule().run() if __name__ == '__main__': main()
apache-2.0
-7,717,356,519,994,723,000
25.790419
104
0.673894
false
anntzer/scikit-learn
sklearn/utils/_estimator_html_repr.py
1
9497
from contextlib import closing from contextlib import suppress from io import StringIO from string import Template import uuid import html from sklearn import config_context class _VisualBlock: """HTML Representation of Estimator Parameters ---------- kind : {'serial', 'parallel', 'single'} kind of HTML block estimators : list of estimators or `_VisualBlock`s or a single estimator If kind != 'single', then `estimators` is a list of estimators. If kind == 'single', then `estimators` is a single estimator. names : list of str, default=None If kind != 'single', then `names` corresponds to estimators. If kind == 'single', then `names` is a single string corresponding to the single estimator. name_details : list of str, str, or None, default=None If kind != 'single', then `name_details` corresponds to `names`. If kind == 'single', then `name_details` is a single string corresponding to the single estimator. dash_wrapped : bool, default=True If true, wrapped HTML element will be wrapped with a dashed border. Only active when kind != 'single'. """ def __init__(self, kind, estimators, *, names=None, name_details=None, dash_wrapped=True): self.kind = kind self.estimators = estimators self.dash_wrapped = dash_wrapped if self.kind in ('parallel', 'serial'): if names is None: names = (None, ) * len(estimators) if name_details is None: name_details = (None, ) * len(estimators) self.names = names self.name_details = name_details def _sk_visual_block_(self): return self def _write_label_html(out, name, name_details, outer_class="sk-label-container", inner_class="sk-label", checked=False): """Write labeled html with or without a dropdown with named details""" out.write(f'<div class="{outer_class}">' f'<div class="{inner_class} sk-toggleable">') name = html.escape(name) if name_details is not None: checked_str = 'checked' if checked else '' est_id = uuid.uuid4() out.write(f'<input class="sk-toggleable__control sk-hidden--visually" ' f'id="{est_id}" type="checkbox" {checked_str}>' f'<label class="sk-toggleable__label" for="{est_id}">' f'{name}</label>' f'<div class="sk-toggleable__content"><pre>{name_details}' f'</pre></div>') else: out.write(f'<label>{name}</label>') out.write('</div></div>') # outer_class inner_class def _get_visual_block(estimator): """Generate information about how to display an estimator. """ with suppress(AttributeError): return estimator._sk_visual_block_() if isinstance(estimator, str): return _VisualBlock('single', estimator, names=estimator, name_details=estimator) elif estimator is None: return _VisualBlock('single', estimator, names='None', name_details='None') # check if estimator looks like a meta estimator wraps estimators if hasattr(estimator, 'get_params'): estimators = [] for key, value in estimator.get_params().items(): # Only look at the estimators in the first layer if '__' not in key and hasattr(value, 'get_params'): estimators.append(value) if len(estimators): return _VisualBlock('parallel', estimators, names=None) return _VisualBlock('single', estimator, names=estimator.__class__.__name__, name_details=str(estimator)) def _write_estimator_html(out, estimator, estimator_label, estimator_label_details, first_call=False): """Write estimator to html in serial, parallel, or by itself (single). """ if first_call: est_block = _get_visual_block(estimator) else: with config_context(print_changed_only=True): est_block = _get_visual_block(estimator) if est_block.kind in ('serial', 'parallel'): dashed_wrapped = first_call or est_block.dash_wrapped dash_cls = " sk-dashed-wrapped" if dashed_wrapped else "" out.write(f'<div class="sk-item{dash_cls}">') if estimator_label: _write_label_html(out, estimator_label, estimator_label_details) kind = est_block.kind out.write(f'<div class="sk-{kind}">') est_infos = zip(est_block.estimators, est_block.names, est_block.name_details) for est, name, name_details in est_infos: if kind == 'serial': _write_estimator_html(out, est, name, name_details) else: # parallel out.write('<div class="sk-parallel-item">') # wrap element in a serial visualblock serial_block = _VisualBlock('serial', [est], dash_wrapped=False) _write_estimator_html(out, serial_block, name, name_details) out.write('</div>') # sk-parallel-item out.write('</div></div>') elif est_block.kind == 'single': _write_label_html(out, est_block.names, est_block.name_details, outer_class="sk-item", inner_class="sk-estimator", checked=first_call) _STYLE = """ #$id { color: black; background-color: white; } #$id pre{ padding: 0; } #$id div.sk-toggleable { background-color: white; } #$id label.sk-toggleable__label { cursor: pointer; display: block; width: 100%; margin-bottom: 0; padding: 0.2em 0.3em; box-sizing: border-box; text-align: center; } #$id div.sk-toggleable__content { max-height: 0; max-width: 0; overflow: hidden; text-align: left; background-color: #f0f8ff; } #$id div.sk-toggleable__content pre { margin: 0.2em; color: black; border-radius: 0.25em; background-color: #f0f8ff; } #$id input.sk-toggleable__control:checked~div.sk-toggleable__content { max-height: 200px; max-width: 100%; overflow: auto; } #$id div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label { background-color: #d4ebff; } #$id div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label { background-color: #d4ebff; } #$id input.sk-hidden--visually { border: 0; clip: rect(1px 1px 1px 1px); clip: rect(1px, 1px, 1px, 1px); height: 1px; margin: -1px; overflow: hidden; padding: 0; position: absolute; width: 1px; } #$id div.sk-estimator { font-family: monospace; background-color: #f0f8ff; margin: 0.25em 0.25em; border: 1px dotted black; border-radius: 0.25em; box-sizing: border-box; } #$id div.sk-estimator:hover { background-color: #d4ebff; } #$id div.sk-parallel-item::after { content: ""; width: 100%; border-bottom: 1px solid gray; flex-grow: 1; } #$id div.sk-label:hover label.sk-toggleable__label { background-color: #d4ebff; } #$id div.sk-serial::before { content: ""; position: absolute; border-left: 1px solid gray; box-sizing: border-box; top: 2em; bottom: 0; left: 50%; } #$id div.sk-serial { display: flex; flex-direction: column; align-items: center; background-color: white; } #$id div.sk-item { z-index: 1; } #$id div.sk-parallel { display: flex; align-items: stretch; justify-content: center; background-color: white; } #$id div.sk-parallel-item { display: flex; flex-direction: column; position: relative; background-color: white; } #$id div.sk-parallel-item:first-child::after { align-self: flex-end; width: 50%; } #$id div.sk-parallel-item:last-child::after { align-self: flex-start; width: 50%; } #$id div.sk-parallel-item:only-child::after { width: 0; } #$id div.sk-dashed-wrapped { border: 1px dashed gray; margin: 0.2em; box-sizing: border-box; padding-bottom: 0.1em; background-color: white; position: relative; } #$id div.sk-label label { font-family: monospace; font-weight: bold; background-color: white; display: inline-block; line-height: 1.2em; } #$id div.sk-label-container { position: relative; z-index: 2; text-align: center; } #$id div.sk-container { display: inline-block; position: relative; } """.replace(' ', '').replace('\n', '') # noqa def estimator_html_repr(estimator): """Build a HTML representation of an estimator. Read more in the :ref:`User Guide <visualizing_composite_estimators>`. Parameters ---------- estimator : estimator object The estimator to visualize. Returns ------- html: str HTML representation of estimator. """ with closing(StringIO()) as out: container_id = "sk-" + str(uuid.uuid4()) style_template = Template(_STYLE) style_with_id = style_template.substitute(id=container_id) out.write(f'<style>{style_with_id}</style>' f'<div id="{container_id}" class"sk-top-container">' '<div class="sk-container">') _write_estimator_html(out, estimator, estimator.__class__.__name__, str(estimator), first_call=True) out.write('</div></div>') html_output = out.getvalue() return html_output
bsd-3-clause
-6,215,935,959,145,116,000
28.77116
87
0.605349
false
zack3241/incubator-airflow
airflow/operators/docker_operator.py
1
9407
# -*- coding: utf-8 -*- # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json from airflow.hooks.docker_hook import DockerHook from airflow.exceptions import AirflowException from airflow.models import BaseOperator from airflow.utils.decorators import apply_defaults from airflow.utils.file import TemporaryDirectory from docker import Client, tls import ast class DockerOperator(BaseOperator): """ Execute a command inside a docker container. A temporary directory is created on the host and mounted into a container to allow storing files that together exceed the default disk size of 10GB in a container. The path to the mounted directory can be accessed via the environment variable ``AIRFLOW_TMP_DIR``. If a login to a private registry is required prior to pulling the image, a Docker connection needs to be configured in Airflow and the connection ID be provided with the parameter ``docker_conn_id``. :param image: Docker image from which to create the container. :type image: str :param api_version: Remote API version. Set to ``auto`` to automatically detect the server's version. :type api_version: str :param command: Command to be run in the container. :type command: str or list :param cpus: Number of CPUs to assign to the container. This value gets multiplied with 1024. See https://docs.docker.com/engine/reference/run/#cpu-share-constraint :type cpus: float :param docker_url: URL of the host running the docker daemon. Default is unix://var/run/docker.sock :type docker_url: str :param environment: Environment variables to set in the container. :type environment: dict :param force_pull: Pull the docker image on every run. Default is false. :type force_pull: bool :param mem_limit: Maximum amount of memory the container can use. Either a float value, which represents the limit in bytes, or a string like ``128m`` or ``1g``. :type mem_limit: float or str :param network_mode: Network mode for the container. :type network_mode: str :param tls_ca_cert: Path to a PEM-encoded certificate authority to secure the docker connection. :type tls_ca_cert: str :param tls_client_cert: Path to the PEM-encoded certificate used to authenticate docker client. :type tls_client_cert: str :param tls_client_key: Path to the PEM-encoded key used to authenticate docker client. :type tls_client_key: str :param tls_hostname: Hostname to match against the docker server certificate or False to disable the check. :type tls_hostname: str or bool :param tls_ssl_version: Version of SSL to use when communicating with docker daemon. :type tls_ssl_version: str :param tmp_dir: Mount point inside the container to a temporary directory created on the host by the operator. The path is also made available via the environment variable ``AIRFLOW_TMP_DIR`` inside the container. :type tmp_dir: str :param user: Default user inside the docker container. :type user: int or str :param volumes: List of volumes to mount into the container, e.g. ``['/host/path:/container/path', '/host/path2:/container/path2:ro']``. :param working_dir: Working directory to set on the container (equivalent to the -w switch the docker client) :type working_dir: str :param xcom_push: Does the stdout will be pushed to the next step using XCom. The default is False. :type xcom_push: bool :param xcom_all: Push all the stdout or just the last line. The default is False (last line). :type xcom_all: bool :param docker_conn_id: ID of the Airflow connection to use :type docker_conn_id: str """ template_fields = ('command', 'environment',) template_ext = ('.sh', '.bash',) @apply_defaults def __init__( self, image, api_version=None, command=None, cpus=1.0, docker_url='unix://var/run/docker.sock', environment=None, force_pull=False, mem_limit=None, network_mode=None, tls_ca_cert=None, tls_client_cert=None, tls_client_key=None, tls_hostname=None, tls_ssl_version=None, tmp_dir='/tmp/airflow', user=None, volumes=None, working_dir=None, xcom_push=False, xcom_all=False, docker_conn_id=None, *args, **kwargs): super(DockerOperator, self).__init__(*args, **kwargs) self.api_version = api_version self.command = command self.cpus = cpus self.docker_url = docker_url self.environment = environment or {} self.force_pull = force_pull self.image = image self.mem_limit = mem_limit self.network_mode = network_mode self.tls_ca_cert = tls_ca_cert self.tls_client_cert = tls_client_cert self.tls_client_key = tls_client_key self.tls_hostname = tls_hostname self.tls_ssl_version = tls_ssl_version self.tmp_dir = tmp_dir self.user = user self.volumes = volumes or [] self.working_dir = working_dir self.xcom_push_flag = xcom_push self.xcom_all = xcom_all self.docker_conn_id = docker_conn_id self.cli = None self.container = None def get_hook(self): return DockerHook( docker_conn_id=self.docker_conn_id, base_url=self.docker_url, version=self.api_version, tls=self.__get_tls_config() ) def execute(self, context): self.log.info('Starting docker container from image %s', self.image) tls_config = self.__get_tls_config() if self.docker_conn_id: self.cli = self.get_hook().get_conn() else: self.cli = Client( base_url=self.docker_url, version=self.api_version, tls=tls_config ) if ':' not in self.image: image = self.image + ':latest' else: image = self.image if self.force_pull or len(self.cli.images(name=image)) == 0: self.log.info('Pulling docker image %s', image) for l in self.cli.pull(image, stream=True): output = json.loads(l.decode('utf-8')) self.log.info("%s", output['status']) cpu_shares = int(round(self.cpus * 1024)) with TemporaryDirectory(prefix='airflowtmp') as host_tmp_dir: self.environment['AIRFLOW_TMP_DIR'] = self.tmp_dir self.volumes.append('{0}:{1}'.format(host_tmp_dir, self.tmp_dir)) self.container = self.cli.create_container( command=self.get_command(), cpu_shares=cpu_shares, environment=self.environment, host_config=self.cli.create_host_config(binds=self.volumes, network_mode=self.network_mode), image=image, mem_limit=self.mem_limit, user=self.user, working_dir=self.working_dir ) self.cli.start(self.container['Id']) line = '' for line in self.cli.logs(container=self.container['Id'], stream=True): line = line.strip() if hasattr(line, 'decode'): line = line.decode('utf-8') self.log.info(line) exit_code = self.cli.wait(self.container['Id']) if exit_code != 0: raise AirflowException('docker container failed') if self.xcom_push_flag: return self.cli.logs(container=self.container['Id']) if self.xcom_all else str(line) def get_command(self): if self.command is not None and self.command.strip().find('[') == 0: commands = ast.literal_eval(self.command) else: commands = self.command return commands def on_kill(self): if self.cli is not None: self.log.info('Stopping docker container') self.cli.stop(self.container['Id']) def __get_tls_config(self): tls_config = None if self.tls_ca_cert and self.tls_client_cert and self.tls_client_key: tls_config = tls.TLSConfig( ca_cert=self.tls_ca_cert, client_cert=(self.tls_client_cert, self.tls_client_key), verify=True, ssl_version=self.tls_ssl_version, assert_hostname=self.tls_hostname ) self.docker_url = self.docker_url.replace('tcp://', 'https://') return tls_config
apache-2.0
-7,895,282,612,694,790,000
38.860169
100
0.613586
false
openstack/yaql
yaql/language/conventions.py
1
1410
# Copyright (c) 2015 Mirantis, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import abc import re class Convention(metaclass=abc.ABCMeta): @abc.abstractmethod def convert_function_name(self, name): pass @abc.abstractmethod def convert_parameter_name(self, name): pass class PythonConvention(Convention): def convert_function_name(self, name): return name def convert_parameter_name(self, name): return name class CamelCaseConvention(Convention): def __init__(self): self.regex = re.compile(r'(?!^)_(\w)', flags=re.UNICODE) def convert_function_name(self, name): return self._to_camel_case(name) def convert_parameter_name(self, name): return self._to_camel_case(name) def _to_camel_case(self, name): return self.regex.sub(lambda m: m.group(1).upper(), name)
apache-2.0
-6,692,259,790,340,050,000
28.375
78
0.680851
false
henry0312/LightGBM
python-package/lightgbm/basic.py
1
150238
# coding: utf-8 """Wrapper for C API of LightGBM.""" import ctypes import json import os import warnings from collections import OrderedDict from copy import deepcopy from functools import wraps from logging import Logger from tempfile import NamedTemporaryFile from typing import Any, Dict, List, Set, Union import numpy as np import scipy.sparse from .compat import PANDAS_INSTALLED, concat, dt_DataTable, is_dtype_sparse, pd_DataFrame, pd_Series from .libpath import find_lib_path class _DummyLogger: def info(self, msg): print(msg) def warning(self, msg): warnings.warn(msg, stacklevel=3) _LOGGER = _DummyLogger() def register_logger(logger): """Register custom logger. Parameters ---------- logger : logging.Logger Custom logger. """ if not isinstance(logger, Logger): raise TypeError("Logger should inherit logging.Logger class") global _LOGGER _LOGGER = logger def _normalize_native_string(func): """Join log messages from native library which come by chunks.""" msg_normalized = [] @wraps(func) def wrapper(msg): nonlocal msg_normalized if msg.strip() == '': msg = ''.join(msg_normalized) msg_normalized = [] return func(msg) else: msg_normalized.append(msg) return wrapper def _log_info(msg): _LOGGER.info(msg) def _log_warning(msg): _LOGGER.warning(msg) @_normalize_native_string def _log_native(msg): _LOGGER.info(msg) def _log_callback(msg): """Redirect logs from native library into Python.""" _log_native(str(msg.decode('utf-8'))) def _load_lib(): """Load LightGBM library.""" lib_path = find_lib_path() if len(lib_path) == 0: return None lib = ctypes.cdll.LoadLibrary(lib_path[0]) lib.LGBM_GetLastError.restype = ctypes.c_char_p callback = ctypes.CFUNCTYPE(None, ctypes.c_char_p) lib.callback = callback(_log_callback) if lib.LGBM_RegisterLogCallback(lib.callback) != 0: raise LightGBMError(lib.LGBM_GetLastError().decode('utf-8')) return lib _LIB = _load_lib() NUMERIC_TYPES = (int, float, bool) def _safe_call(ret): """Check the return value from C API call. Parameters ---------- ret : int The return value from C API calls. """ if ret != 0: raise LightGBMError(_LIB.LGBM_GetLastError().decode('utf-8')) def is_numeric(obj): """Check whether object is a number or not, include numpy number, etc.""" try: float(obj) return True except (TypeError, ValueError): # TypeError: obj is not a string or a number # ValueError: invalid literal return False def is_numpy_1d_array(data): """Check whether data is a numpy 1-D array.""" return isinstance(data, np.ndarray) and len(data.shape) == 1 def is_numpy_column_array(data): """Check whether data is a column numpy array.""" if not isinstance(data, np.ndarray): return False shape = data.shape return len(shape) == 2 and shape[1] == 1 def cast_numpy_1d_array_to_dtype(array, dtype): """Cast numpy 1d array to given dtype.""" if array.dtype == dtype: return array return array.astype(dtype=dtype, copy=False) def is_1d_list(data): """Check whether data is a 1-D list.""" return isinstance(data, list) and (not data or is_numeric(data[0])) def list_to_1d_numpy(data, dtype=np.float32, name='list'): """Convert data to numpy 1-D array.""" if is_numpy_1d_array(data): return cast_numpy_1d_array_to_dtype(data, dtype) elif is_numpy_column_array(data): _log_warning('Converting column-vector to 1d array') array = data.ravel() return cast_numpy_1d_array_to_dtype(array, dtype) elif is_1d_list(data): return np.array(data, dtype=dtype, copy=False) elif isinstance(data, pd_Series): if _get_bad_pandas_dtypes([data.dtypes]): raise ValueError('Series.dtypes must be int, float or bool') return np.array(data, dtype=dtype, copy=False) # SparseArray should be supported as well else: raise TypeError(f"Wrong type({type(data).__name__}) for {name}.\n" "It should be list, numpy 1-D array or pandas Series") def cfloat32_array_to_numpy(cptr, length): """Convert a ctypes float pointer array to a numpy array.""" if isinstance(cptr, ctypes.POINTER(ctypes.c_float)): return np.ctypeslib.as_array(cptr, shape=(length,)).copy() else: raise RuntimeError('Expected float pointer') def cfloat64_array_to_numpy(cptr, length): """Convert a ctypes double pointer array to a numpy array.""" if isinstance(cptr, ctypes.POINTER(ctypes.c_double)): return np.ctypeslib.as_array(cptr, shape=(length,)).copy() else: raise RuntimeError('Expected double pointer') def cint32_array_to_numpy(cptr, length): """Convert a ctypes int pointer array to a numpy array.""" if isinstance(cptr, ctypes.POINTER(ctypes.c_int32)): return np.ctypeslib.as_array(cptr, shape=(length,)).copy() else: raise RuntimeError('Expected int32 pointer') def cint64_array_to_numpy(cptr, length): """Convert a ctypes int pointer array to a numpy array.""" if isinstance(cptr, ctypes.POINTER(ctypes.c_int64)): return np.ctypeslib.as_array(cptr, shape=(length,)).copy() else: raise RuntimeError('Expected int64 pointer') def c_str(string): """Convert a Python string to C string.""" return ctypes.c_char_p(string.encode('utf-8')) def c_array(ctype, values): """Convert a Python array to C array.""" return (ctype * len(values))(*values) def json_default_with_numpy(obj): """Convert numpy classes to JSON serializable objects.""" if isinstance(obj, (np.integer, np.floating, np.bool_)): return obj.item() elif isinstance(obj, np.ndarray): return obj.tolist() else: return obj def param_dict_to_str(data): """Convert Python dictionary to string, which is passed to C API.""" if data is None or not data: return "" pairs = [] for key, val in data.items(): if isinstance(val, (list, tuple, set)) or is_numpy_1d_array(val): def to_string(x): if isinstance(x, list): return f"[{','.join(map(str, x))}]" else: return str(x) pairs.append(f"{key}={','.join(map(to_string, val))}") elif isinstance(val, (str, NUMERIC_TYPES)) or is_numeric(val): pairs.append(f"{key}={val}") elif val is not None: raise TypeError(f'Unknown type of parameter:{key}, got:{type(val).__name__}') return ' '.join(pairs) class _TempFile: def __enter__(self): with NamedTemporaryFile(prefix="lightgbm_tmp_", delete=True) as f: self.name = f.name return self def __exit__(self, exc_type, exc_val, exc_tb): if os.path.isfile(self.name): os.remove(self.name) def readlines(self): with open(self.name, "r+") as f: ret = f.readlines() return ret def writelines(self, lines): with open(self.name, "w+") as f: f.writelines(lines) class LightGBMError(Exception): """Error thrown by LightGBM.""" pass # DeprecationWarning is not shown by default, so let's create our own with higher level class LGBMDeprecationWarning(UserWarning): """Custom deprecation warning.""" pass class _ConfigAliases: aliases = {"bin_construct_sample_cnt": {"bin_construct_sample_cnt", "subsample_for_bin"}, "boosting": {"boosting", "boosting_type", "boost"}, "categorical_feature": {"categorical_feature", "cat_feature", "categorical_column", "cat_column"}, "data_random_seed": {"data_random_seed", "data_seed"}, "early_stopping_round": {"early_stopping_round", "early_stopping_rounds", "early_stopping", "n_iter_no_change"}, "enable_bundle": {"enable_bundle", "is_enable_bundle", "bundle"}, "eval_at": {"eval_at", "ndcg_eval_at", "ndcg_at", "map_eval_at", "map_at"}, "group_column": {"group_column", "group", "group_id", "query_column", "query", "query_id"}, "header": {"header", "has_header"}, "ignore_column": {"ignore_column", "ignore_feature", "blacklist"}, "is_enable_sparse": {"is_enable_sparse", "is_sparse", "enable_sparse", "sparse"}, "label_column": {"label_column", "label"}, "local_listen_port": {"local_listen_port", "local_port", "port"}, "machines": {"machines", "workers", "nodes"}, "metric": {"metric", "metrics", "metric_types"}, "num_class": {"num_class", "num_classes"}, "num_iterations": {"num_iterations", "num_iteration", "n_iter", "num_tree", "num_trees", "num_round", "num_rounds", "num_boost_round", "n_estimators"}, "num_machines": {"num_machines", "num_machine"}, "num_threads": {"num_threads", "num_thread", "nthread", "nthreads", "n_jobs"}, "objective": {"objective", "objective_type", "app", "application"}, "pre_partition": {"pre_partition", "is_pre_partition"}, "tree_learner": {"tree_learner", "tree", "tree_type", "tree_learner_type"}, "two_round": {"two_round", "two_round_loading", "use_two_round_loading"}, "verbosity": {"verbosity", "verbose"}, "weight_column": {"weight_column", "weight"}} @classmethod def get(cls, *args): ret = set() for i in args: ret |= cls.aliases.get(i, {i}) return ret def _choose_param_value(main_param_name: str, params: Dict[str, Any], default_value: Any) -> Dict[str, Any]: """Get a single parameter value, accounting for aliases. Parameters ---------- main_param_name : str Name of the main parameter to get a value for. One of the keys of ``_ConfigAliases``. params : dict Dictionary of LightGBM parameters. default_value : Any Default value to use for the parameter, if none is found in ``params``. Returns ------- params : dict A ``params`` dict with exactly one value for ``main_param_name``, and all aliases ``main_param_name`` removed. If both ``main_param_name`` and one or more aliases for it are found, the value of ``main_param_name`` will be preferred. """ # avoid side effects on passed-in parameters params = deepcopy(params) # find a value, and remove other aliases with .pop() # prefer the value of 'main_param_name' if it exists, otherwise search the aliases found_value = None if main_param_name in params.keys(): found_value = params[main_param_name] for param in _ConfigAliases.get(main_param_name): val = params.pop(param, None) if found_value is None and val is not None: found_value = val if found_value is not None: params[main_param_name] = found_value else: params[main_param_name] = default_value return params MAX_INT32 = (1 << 31) - 1 """Macro definition of data type in C API of LightGBM""" C_API_DTYPE_FLOAT32 = 0 C_API_DTYPE_FLOAT64 = 1 C_API_DTYPE_INT32 = 2 C_API_DTYPE_INT64 = 3 """Matrix is row major in Python""" C_API_IS_ROW_MAJOR = 1 """Macro definition of prediction type in C API of LightGBM""" C_API_PREDICT_NORMAL = 0 C_API_PREDICT_RAW_SCORE = 1 C_API_PREDICT_LEAF_INDEX = 2 C_API_PREDICT_CONTRIB = 3 """Macro definition of sparse matrix type""" C_API_MATRIX_TYPE_CSR = 0 C_API_MATRIX_TYPE_CSC = 1 """Macro definition of feature importance type""" C_API_FEATURE_IMPORTANCE_SPLIT = 0 C_API_FEATURE_IMPORTANCE_GAIN = 1 """Data type of data field""" FIELD_TYPE_MAPPER = {"label": C_API_DTYPE_FLOAT32, "weight": C_API_DTYPE_FLOAT32, "init_score": C_API_DTYPE_FLOAT64, "group": C_API_DTYPE_INT32} """String name to int feature importance type mapper""" FEATURE_IMPORTANCE_TYPE_MAPPER = {"split": C_API_FEATURE_IMPORTANCE_SPLIT, "gain": C_API_FEATURE_IMPORTANCE_GAIN} def convert_from_sliced_object(data): """Fix the memory of multi-dimensional sliced object.""" if isinstance(data, np.ndarray) and isinstance(data.base, np.ndarray): if not data.flags.c_contiguous: _log_warning("Usage of np.ndarray subset (sliced data) is not recommended " "due to it will double the peak memory cost in LightGBM.") return np.copy(data) return data def c_float_array(data): """Get pointer of float numpy array / list.""" if is_1d_list(data): data = np.array(data, copy=False) if is_numpy_1d_array(data): data = convert_from_sliced_object(data) assert data.flags.c_contiguous if data.dtype == np.float32: ptr_data = data.ctypes.data_as(ctypes.POINTER(ctypes.c_float)) type_data = C_API_DTYPE_FLOAT32 elif data.dtype == np.float64: ptr_data = data.ctypes.data_as(ctypes.POINTER(ctypes.c_double)) type_data = C_API_DTYPE_FLOAT64 else: raise TypeError(f"Expected np.float32 or np.float64, met type({data.dtype})") else: raise TypeError(f"Unknown type({type(data).__name__})") return (ptr_data, type_data, data) # return `data` to avoid the temporary copy is freed def c_int_array(data): """Get pointer of int numpy array / list.""" if is_1d_list(data): data = np.array(data, copy=False) if is_numpy_1d_array(data): data = convert_from_sliced_object(data) assert data.flags.c_contiguous if data.dtype == np.int32: ptr_data = data.ctypes.data_as(ctypes.POINTER(ctypes.c_int32)) type_data = C_API_DTYPE_INT32 elif data.dtype == np.int64: ptr_data = data.ctypes.data_as(ctypes.POINTER(ctypes.c_int64)) type_data = C_API_DTYPE_INT64 else: raise TypeError(f"Expected np.int32 or np.int64, met type({data.dtype})") else: raise TypeError(f"Unknown type({type(data).__name__})") return (ptr_data, type_data, data) # return `data` to avoid the temporary copy is freed def _get_bad_pandas_dtypes(dtypes): pandas_dtype_mapper = {'int8': 'int', 'int16': 'int', 'int32': 'int', 'int64': 'int', 'uint8': 'int', 'uint16': 'int', 'uint32': 'int', 'uint64': 'int', 'bool': 'int', 'float16': 'float', 'float32': 'float', 'float64': 'float'} bad_indices = [i for i, dtype in enumerate(dtypes) if (dtype.name not in pandas_dtype_mapper and (not is_dtype_sparse(dtype) or dtype.subtype.name not in pandas_dtype_mapper))] return bad_indices def _data_from_pandas(data, feature_name, categorical_feature, pandas_categorical): if isinstance(data, pd_DataFrame): if len(data.shape) != 2 or data.shape[0] < 1: raise ValueError('Input data must be 2 dimensional and non empty.') if feature_name == 'auto' or feature_name is None: data = data.rename(columns=str) cat_cols = list(data.select_dtypes(include=['category']).columns) cat_cols_not_ordered = [col for col in cat_cols if not data[col].cat.ordered] if pandas_categorical is None: # train dataset pandas_categorical = [list(data[col].cat.categories) for col in cat_cols] else: if len(cat_cols) != len(pandas_categorical): raise ValueError('train and valid dataset categorical_feature do not match.') for col, category in zip(cat_cols, pandas_categorical): if list(data[col].cat.categories) != list(category): data[col] = data[col].cat.set_categories(category) if len(cat_cols): # cat_cols is list data = data.copy() # not alter origin DataFrame data[cat_cols] = data[cat_cols].apply(lambda x: x.cat.codes).replace({-1: np.nan}) if categorical_feature is not None: if feature_name is None: feature_name = list(data.columns) if categorical_feature == 'auto': # use cat cols from DataFrame categorical_feature = cat_cols_not_ordered else: # use cat cols specified by user categorical_feature = list(categorical_feature) if feature_name == 'auto': feature_name = list(data.columns) bad_indices = _get_bad_pandas_dtypes(data.dtypes) if bad_indices: bad_index_cols_str = ', '.join(data.columns[bad_indices]) raise ValueError("DataFrame.dtypes for data must be int, float or bool.\n" "Did not expect the data types in the following fields: " f"{bad_index_cols_str}") data = data.values if data.dtype != np.float32 and data.dtype != np.float64: data = data.astype(np.float32) else: if feature_name == 'auto': feature_name = None if categorical_feature == 'auto': categorical_feature = None return data, feature_name, categorical_feature, pandas_categorical def _label_from_pandas(label): if isinstance(label, pd_DataFrame): if len(label.columns) > 1: raise ValueError('DataFrame for label cannot have multiple columns') if _get_bad_pandas_dtypes(label.dtypes): raise ValueError('DataFrame.dtypes for label must be int, float or bool') label = np.ravel(label.values.astype(np.float32, copy=False)) return label def _dump_pandas_categorical(pandas_categorical, file_name=None): categorical_json = json.dumps(pandas_categorical, default=json_default_with_numpy) pandas_str = f'\npandas_categorical:{categorical_json}\n' if file_name is not None: with open(file_name, 'a') as f: f.write(pandas_str) return pandas_str def _load_pandas_categorical(file_name=None, model_str=None): pandas_key = 'pandas_categorical:' offset = -len(pandas_key) if file_name is not None: max_offset = -os.path.getsize(file_name) with open(file_name, 'rb') as f: while True: if offset < max_offset: offset = max_offset f.seek(offset, os.SEEK_END) lines = f.readlines() if len(lines) >= 2: break offset *= 2 last_line = lines[-1].decode('utf-8').strip() if not last_line.startswith(pandas_key): last_line = lines[-2].decode('utf-8').strip() elif model_str is not None: idx = model_str.rfind('\n', 0, offset) last_line = model_str[idx:].strip() if last_line.startswith(pandas_key): return json.loads(last_line[len(pandas_key):]) else: return None class _InnerPredictor: """_InnerPredictor of LightGBM. Not exposed to user. Used only for prediction, usually used for continued training. .. note:: Can be converted from Booster, but cannot be converted to Booster. """ def __init__(self, model_file=None, booster_handle=None, pred_parameter=None): """Initialize the _InnerPredictor. Parameters ---------- model_file : string or None, optional (default=None) Path to the model file. booster_handle : object or None, optional (default=None) Handle of Booster. pred_parameter: dict or None, optional (default=None) Other parameters for the prediciton. """ self.handle = ctypes.c_void_p() self.__is_manage_handle = True if model_file is not None: """Prediction task""" out_num_iterations = ctypes.c_int(0) _safe_call(_LIB.LGBM_BoosterCreateFromModelfile( c_str(model_file), ctypes.byref(out_num_iterations), ctypes.byref(self.handle))) out_num_class = ctypes.c_int(0) _safe_call(_LIB.LGBM_BoosterGetNumClasses( self.handle, ctypes.byref(out_num_class))) self.num_class = out_num_class.value self.num_total_iteration = out_num_iterations.value self.pandas_categorical = _load_pandas_categorical(file_name=model_file) elif booster_handle is not None: self.__is_manage_handle = False self.handle = booster_handle out_num_class = ctypes.c_int(0) _safe_call(_LIB.LGBM_BoosterGetNumClasses( self.handle, ctypes.byref(out_num_class))) self.num_class = out_num_class.value self.num_total_iteration = self.current_iteration() self.pandas_categorical = None else: raise TypeError('Need model_file or booster_handle to create a predictor') pred_parameter = {} if pred_parameter is None else pred_parameter self.pred_parameter = param_dict_to_str(pred_parameter) def __del__(self): try: if self.__is_manage_handle: _safe_call(_LIB.LGBM_BoosterFree(self.handle)) except AttributeError: pass def __getstate__(self): this = self.__dict__.copy() this.pop('handle', None) return this def predict(self, data, start_iteration=0, num_iteration=-1, raw_score=False, pred_leaf=False, pred_contrib=False, data_has_header=False, is_reshape=True): """Predict logic. Parameters ---------- data : string, numpy array, pandas DataFrame, H2O DataTable's Frame or scipy.sparse Data source for prediction. When data type is string, it represents the path of txt file. start_iteration : int, optional (default=0) Start index of the iteration to predict. num_iteration : int, optional (default=-1) Iteration used for prediction. raw_score : bool, optional (default=False) Whether to predict raw scores. pred_leaf : bool, optional (default=False) Whether to predict leaf index. pred_contrib : bool, optional (default=False) Whether to predict feature contributions. data_has_header : bool, optional (default=False) Whether data has header. Used only for txt data. is_reshape : bool, optional (default=True) Whether to reshape to (nrow, ncol). Returns ------- result : numpy array, scipy.sparse or list of scipy.sparse Prediction result. Can be sparse or a list of sparse objects (each element represents predictions for one class) for feature contributions (when ``pred_contrib=True``). """ if isinstance(data, Dataset): raise TypeError("Cannot use Dataset instance for prediction, please use raw data instead") data = _data_from_pandas(data, None, None, self.pandas_categorical)[0] predict_type = C_API_PREDICT_NORMAL if raw_score: predict_type = C_API_PREDICT_RAW_SCORE if pred_leaf: predict_type = C_API_PREDICT_LEAF_INDEX if pred_contrib: predict_type = C_API_PREDICT_CONTRIB int_data_has_header = 1 if data_has_header else 0 if isinstance(data, str): with _TempFile() as f: _safe_call(_LIB.LGBM_BoosterPredictForFile( self.handle, c_str(data), ctypes.c_int(int_data_has_header), ctypes.c_int(predict_type), ctypes.c_int(start_iteration), ctypes.c_int(num_iteration), c_str(self.pred_parameter), c_str(f.name))) lines = f.readlines() nrow = len(lines) preds = [float(token) for line in lines for token in line.split('\t')] preds = np.array(preds, dtype=np.float64, copy=False) elif isinstance(data, scipy.sparse.csr_matrix): preds, nrow = self.__pred_for_csr(data, start_iteration, num_iteration, predict_type) elif isinstance(data, scipy.sparse.csc_matrix): preds, nrow = self.__pred_for_csc(data, start_iteration, num_iteration, predict_type) elif isinstance(data, np.ndarray): preds, nrow = self.__pred_for_np2d(data, start_iteration, num_iteration, predict_type) elif isinstance(data, list): try: data = np.array(data) except BaseException: raise ValueError('Cannot convert data list to numpy array.') preds, nrow = self.__pred_for_np2d(data, start_iteration, num_iteration, predict_type) elif isinstance(data, dt_DataTable): preds, nrow = self.__pred_for_np2d(data.to_numpy(), start_iteration, num_iteration, predict_type) else: try: _log_warning('Converting data to scipy sparse matrix.') csr = scipy.sparse.csr_matrix(data) except BaseException: raise TypeError(f'Cannot predict data for type {type(data).__name__}') preds, nrow = self.__pred_for_csr(csr, start_iteration, num_iteration, predict_type) if pred_leaf: preds = preds.astype(np.int32) is_sparse = scipy.sparse.issparse(preds) or isinstance(preds, list) if is_reshape and not is_sparse and preds.size != nrow: if preds.size % nrow == 0: preds = preds.reshape(nrow, -1) else: raise ValueError(f'Length of predict result ({preds.size}) cannot be divide nrow ({nrow})') return preds def __get_num_preds(self, start_iteration, num_iteration, nrow, predict_type): """Get size of prediction result.""" if nrow > MAX_INT32: raise LightGBMError('LightGBM cannot perform prediction for data' f'with number of rows greater than MAX_INT32 ({MAX_INT32}).\n' 'You can split your data into chunks' 'and then concatenate predictions for them') n_preds = ctypes.c_int64(0) _safe_call(_LIB.LGBM_BoosterCalcNumPredict( self.handle, ctypes.c_int(nrow), ctypes.c_int(predict_type), ctypes.c_int(start_iteration), ctypes.c_int(num_iteration), ctypes.byref(n_preds))) return n_preds.value def __pred_for_np2d(self, mat, start_iteration, num_iteration, predict_type): """Predict for a 2-D numpy matrix.""" if len(mat.shape) != 2: raise ValueError('Input numpy.ndarray or list must be 2 dimensional') def inner_predict(mat, start_iteration, num_iteration, predict_type, preds=None): if mat.dtype == np.float32 or mat.dtype == np.float64: data = np.array(mat.reshape(mat.size), dtype=mat.dtype, copy=False) else: # change non-float data to float data, need to copy data = np.array(mat.reshape(mat.size), dtype=np.float32) ptr_data, type_ptr_data, _ = c_float_array(data) n_preds = self.__get_num_preds(start_iteration, num_iteration, mat.shape[0], predict_type) if preds is None: preds = np.zeros(n_preds, dtype=np.float64) elif len(preds.shape) != 1 or len(preds) != n_preds: raise ValueError("Wrong length of pre-allocated predict array") out_num_preds = ctypes.c_int64(0) _safe_call(_LIB.LGBM_BoosterPredictForMat( self.handle, ptr_data, ctypes.c_int(type_ptr_data), ctypes.c_int32(mat.shape[0]), ctypes.c_int32(mat.shape[1]), ctypes.c_int(C_API_IS_ROW_MAJOR), ctypes.c_int(predict_type), ctypes.c_int(start_iteration), ctypes.c_int(num_iteration), c_str(self.pred_parameter), ctypes.byref(out_num_preds), preds.ctypes.data_as(ctypes.POINTER(ctypes.c_double)))) if n_preds != out_num_preds.value: raise ValueError("Wrong length for predict results") return preds, mat.shape[0] nrow = mat.shape[0] if nrow > MAX_INT32: sections = np.arange(start=MAX_INT32, stop=nrow, step=MAX_INT32) # __get_num_preds() cannot work with nrow > MAX_INT32, so calculate overall number of predictions piecemeal n_preds = [self.__get_num_preds(start_iteration, num_iteration, i, predict_type) for i in np.diff([0] + list(sections) + [nrow])] n_preds_sections = np.array([0] + n_preds, dtype=np.intp).cumsum() preds = np.zeros(sum(n_preds), dtype=np.float64) for chunk, (start_idx_pred, end_idx_pred) in zip(np.array_split(mat, sections), zip(n_preds_sections, n_preds_sections[1:])): # avoid memory consumption by arrays concatenation operations inner_predict(chunk, start_iteration, num_iteration, predict_type, preds[start_idx_pred:end_idx_pred]) return preds, nrow else: return inner_predict(mat, start_iteration, num_iteration, predict_type) def __create_sparse_native(self, cs, out_shape, out_ptr_indptr, out_ptr_indices, out_ptr_data, indptr_type, data_type, is_csr=True): # create numpy array from output arrays data_indices_len = out_shape[0] indptr_len = out_shape[1] if indptr_type == C_API_DTYPE_INT32: out_indptr = cint32_array_to_numpy(out_ptr_indptr, indptr_len) elif indptr_type == C_API_DTYPE_INT64: out_indptr = cint64_array_to_numpy(out_ptr_indptr, indptr_len) else: raise TypeError("Expected int32 or int64 type for indptr") if data_type == C_API_DTYPE_FLOAT32: out_data = cfloat32_array_to_numpy(out_ptr_data, data_indices_len) elif data_type == C_API_DTYPE_FLOAT64: out_data = cfloat64_array_to_numpy(out_ptr_data, data_indices_len) else: raise TypeError("Expected float32 or float64 type for data") out_indices = cint32_array_to_numpy(out_ptr_indices, data_indices_len) # break up indptr based on number of rows (note more than one matrix in multiclass case) per_class_indptr_shape = cs.indptr.shape[0] # for CSC there is extra column added if not is_csr: per_class_indptr_shape += 1 out_indptr_arrays = np.split(out_indptr, out_indptr.shape[0] / per_class_indptr_shape) # reformat output into a csr or csc matrix or list of csr or csc matrices cs_output_matrices = [] offset = 0 for cs_indptr in out_indptr_arrays: matrix_indptr_len = cs_indptr[cs_indptr.shape[0] - 1] cs_indices = out_indices[offset + cs_indptr[0]:offset + matrix_indptr_len] cs_data = out_data[offset + cs_indptr[0]:offset + matrix_indptr_len] offset += matrix_indptr_len # same shape as input csr or csc matrix except extra column for expected value cs_shape = [cs.shape[0], cs.shape[1] + 1] # note: make sure we copy data as it will be deallocated next if is_csr: cs_output_matrices.append(scipy.sparse.csr_matrix((cs_data, cs_indices, cs_indptr), cs_shape)) else: cs_output_matrices.append(scipy.sparse.csc_matrix((cs_data, cs_indices, cs_indptr), cs_shape)) # free the temporary native indptr, indices, and data _safe_call(_LIB.LGBM_BoosterFreePredictSparse(out_ptr_indptr, out_ptr_indices, out_ptr_data, ctypes.c_int(indptr_type), ctypes.c_int(data_type))) if len(cs_output_matrices) == 1: return cs_output_matrices[0] return cs_output_matrices def __pred_for_csr(self, csr, start_iteration, num_iteration, predict_type): """Predict for a CSR data.""" def inner_predict(csr, start_iteration, num_iteration, predict_type, preds=None): nrow = len(csr.indptr) - 1 n_preds = self.__get_num_preds(start_iteration, num_iteration, nrow, predict_type) if preds is None: preds = np.zeros(n_preds, dtype=np.float64) elif len(preds.shape) != 1 or len(preds) != n_preds: raise ValueError("Wrong length of pre-allocated predict array") out_num_preds = ctypes.c_int64(0) ptr_indptr, type_ptr_indptr, __ = c_int_array(csr.indptr) ptr_data, type_ptr_data, _ = c_float_array(csr.data) assert csr.shape[1] <= MAX_INT32 csr_indices = csr.indices.astype(np.int32, copy=False) _safe_call(_LIB.LGBM_BoosterPredictForCSR( self.handle, ptr_indptr, ctypes.c_int(type_ptr_indptr), csr_indices.ctypes.data_as(ctypes.POINTER(ctypes.c_int32)), ptr_data, ctypes.c_int(type_ptr_data), ctypes.c_int64(len(csr.indptr)), ctypes.c_int64(len(csr.data)), ctypes.c_int64(csr.shape[1]), ctypes.c_int(predict_type), ctypes.c_int(start_iteration), ctypes.c_int(num_iteration), c_str(self.pred_parameter), ctypes.byref(out_num_preds), preds.ctypes.data_as(ctypes.POINTER(ctypes.c_double)))) if n_preds != out_num_preds.value: raise ValueError("Wrong length for predict results") return preds, nrow def inner_predict_sparse(csr, start_iteration, num_iteration, predict_type): ptr_indptr, type_ptr_indptr, __ = c_int_array(csr.indptr) ptr_data, type_ptr_data, _ = c_float_array(csr.data) csr_indices = csr.indices.astype(np.int32, copy=False) matrix_type = C_API_MATRIX_TYPE_CSR if type_ptr_indptr == C_API_DTYPE_INT32: out_ptr_indptr = ctypes.POINTER(ctypes.c_int32)() else: out_ptr_indptr = ctypes.POINTER(ctypes.c_int64)() out_ptr_indices = ctypes.POINTER(ctypes.c_int32)() if type_ptr_data == C_API_DTYPE_FLOAT32: out_ptr_data = ctypes.POINTER(ctypes.c_float)() else: out_ptr_data = ctypes.POINTER(ctypes.c_double)() out_shape = np.zeros(2, dtype=np.int64) _safe_call(_LIB.LGBM_BoosterPredictSparseOutput( self.handle, ptr_indptr, ctypes.c_int(type_ptr_indptr), csr_indices.ctypes.data_as(ctypes.POINTER(ctypes.c_int32)), ptr_data, ctypes.c_int(type_ptr_data), ctypes.c_int64(len(csr.indptr)), ctypes.c_int64(len(csr.data)), ctypes.c_int64(csr.shape[1]), ctypes.c_int(predict_type), ctypes.c_int(start_iteration), ctypes.c_int(num_iteration), c_str(self.pred_parameter), ctypes.c_int(matrix_type), out_shape.ctypes.data_as(ctypes.POINTER(ctypes.c_int64)), ctypes.byref(out_ptr_indptr), ctypes.byref(out_ptr_indices), ctypes.byref(out_ptr_data))) matrices = self.__create_sparse_native(csr, out_shape, out_ptr_indptr, out_ptr_indices, out_ptr_data, type_ptr_indptr, type_ptr_data, is_csr=True) nrow = len(csr.indptr) - 1 return matrices, nrow if predict_type == C_API_PREDICT_CONTRIB: return inner_predict_sparse(csr, start_iteration, num_iteration, predict_type) nrow = len(csr.indptr) - 1 if nrow > MAX_INT32: sections = [0] + list(np.arange(start=MAX_INT32, stop=nrow, step=MAX_INT32)) + [nrow] # __get_num_preds() cannot work with nrow > MAX_INT32, so calculate overall number of predictions piecemeal n_preds = [self.__get_num_preds(start_iteration, num_iteration, i, predict_type) for i in np.diff(sections)] n_preds_sections = np.array([0] + n_preds, dtype=np.intp).cumsum() preds = np.zeros(sum(n_preds), dtype=np.float64) for (start_idx, end_idx), (start_idx_pred, end_idx_pred) in zip(zip(sections, sections[1:]), zip(n_preds_sections, n_preds_sections[1:])): # avoid memory consumption by arrays concatenation operations inner_predict(csr[start_idx:end_idx], start_iteration, num_iteration, predict_type, preds[start_idx_pred:end_idx_pred]) return preds, nrow else: return inner_predict(csr, start_iteration, num_iteration, predict_type) def __pred_for_csc(self, csc, start_iteration, num_iteration, predict_type): """Predict for a CSC data.""" def inner_predict_sparse(csc, start_iteration, num_iteration, predict_type): ptr_indptr, type_ptr_indptr, __ = c_int_array(csc.indptr) ptr_data, type_ptr_data, _ = c_float_array(csc.data) csc_indices = csc.indices.astype(np.int32, copy=False) matrix_type = C_API_MATRIX_TYPE_CSC if type_ptr_indptr == C_API_DTYPE_INT32: out_ptr_indptr = ctypes.POINTER(ctypes.c_int32)() else: out_ptr_indptr = ctypes.POINTER(ctypes.c_int64)() out_ptr_indices = ctypes.POINTER(ctypes.c_int32)() if type_ptr_data == C_API_DTYPE_FLOAT32: out_ptr_data = ctypes.POINTER(ctypes.c_float)() else: out_ptr_data = ctypes.POINTER(ctypes.c_double)() out_shape = np.zeros(2, dtype=np.int64) _safe_call(_LIB.LGBM_BoosterPredictSparseOutput( self.handle, ptr_indptr, ctypes.c_int(type_ptr_indptr), csc_indices.ctypes.data_as(ctypes.POINTER(ctypes.c_int32)), ptr_data, ctypes.c_int(type_ptr_data), ctypes.c_int64(len(csc.indptr)), ctypes.c_int64(len(csc.data)), ctypes.c_int64(csc.shape[0]), ctypes.c_int(predict_type), ctypes.c_int(start_iteration), ctypes.c_int(num_iteration), c_str(self.pred_parameter), ctypes.c_int(matrix_type), out_shape.ctypes.data_as(ctypes.POINTER(ctypes.c_int64)), ctypes.byref(out_ptr_indptr), ctypes.byref(out_ptr_indices), ctypes.byref(out_ptr_data))) matrices = self.__create_sparse_native(csc, out_shape, out_ptr_indptr, out_ptr_indices, out_ptr_data, type_ptr_indptr, type_ptr_data, is_csr=False) nrow = csc.shape[0] return matrices, nrow nrow = csc.shape[0] if nrow > MAX_INT32: return self.__pred_for_csr(csc.tocsr(), start_iteration, num_iteration, predict_type) if predict_type == C_API_PREDICT_CONTRIB: return inner_predict_sparse(csc, start_iteration, num_iteration, predict_type) n_preds = self.__get_num_preds(start_iteration, num_iteration, nrow, predict_type) preds = np.zeros(n_preds, dtype=np.float64) out_num_preds = ctypes.c_int64(0) ptr_indptr, type_ptr_indptr, __ = c_int_array(csc.indptr) ptr_data, type_ptr_data, _ = c_float_array(csc.data) assert csc.shape[0] <= MAX_INT32 csc_indices = csc.indices.astype(np.int32, copy=False) _safe_call(_LIB.LGBM_BoosterPredictForCSC( self.handle, ptr_indptr, ctypes.c_int(type_ptr_indptr), csc_indices.ctypes.data_as(ctypes.POINTER(ctypes.c_int32)), ptr_data, ctypes.c_int(type_ptr_data), ctypes.c_int64(len(csc.indptr)), ctypes.c_int64(len(csc.data)), ctypes.c_int64(csc.shape[0]), ctypes.c_int(predict_type), ctypes.c_int(start_iteration), ctypes.c_int(num_iteration), c_str(self.pred_parameter), ctypes.byref(out_num_preds), preds.ctypes.data_as(ctypes.POINTER(ctypes.c_double)))) if n_preds != out_num_preds.value: raise ValueError("Wrong length for predict results") return preds, nrow def current_iteration(self): """Get the index of the current iteration. Returns ------- cur_iter : int The index of the current iteration. """ out_cur_iter = ctypes.c_int(0) _safe_call(_LIB.LGBM_BoosterGetCurrentIteration( self.handle, ctypes.byref(out_cur_iter))) return out_cur_iter.value class Dataset: """Dataset in LightGBM.""" def __init__(self, data, label=None, reference=None, weight=None, group=None, init_score=None, silent=False, feature_name='auto', categorical_feature='auto', params=None, free_raw_data=True): """Initialize Dataset. Parameters ---------- data : string, numpy array, pandas DataFrame, H2O DataTable's Frame, scipy.sparse or list of numpy arrays Data source of Dataset. If string, it represents the path to txt file. label : list, numpy 1-D array, pandas Series / one-column DataFrame or None, optional (default=None) Label of the data. reference : Dataset or None, optional (default=None) If this is Dataset for validation, training data should be used as reference. weight : list, numpy 1-D array, pandas Series or None, optional (default=None) Weight for each instance. group : list, numpy 1-D array, pandas Series or None, optional (default=None) Group/query data. Only used in the learning-to-rank task. sum(group) = n_samples. For example, if you have a 100-document dataset with ``group = [10, 20, 40, 10, 10, 10]``, that means that you have 6 groups, where the first 10 records are in the first group, records 11-30 are in the second group, records 31-70 are in the third group, etc. init_score : list, numpy 1-D array, pandas Series or None, optional (default=None) Init score for Dataset. silent : bool, optional (default=False) Whether to print messages during construction. feature_name : list of strings or 'auto', optional (default="auto") Feature names. If 'auto' and data is pandas DataFrame, data columns names are used. categorical_feature : list of strings or int, or 'auto', optional (default="auto") Categorical features. If list of int, interpreted as indices. If list of strings, interpreted as feature names (need to specify ``feature_name`` as well). If 'auto' and data is pandas DataFrame, pandas unordered categorical columns are used. All values in categorical features should be less than int32 max value (2147483647). Large values could be memory consuming. Consider using consecutive integers starting from zero. All negative values in categorical features will be treated as missing values. The output cannot be monotonically constrained with respect to a categorical feature. params : dict or None, optional (default=None) Other parameters for Dataset. free_raw_data : bool, optional (default=True) If True, raw data is freed after constructing inner Dataset. """ self.handle = None self.data = data self.label = label self.reference = reference self.weight = weight self.group = group self.init_score = init_score self.silent = silent self.feature_name = feature_name self.categorical_feature = categorical_feature self.params = deepcopy(params) self.free_raw_data = free_raw_data self.used_indices = None self.need_slice = True self._predictor = None self.pandas_categorical = None self.params_back_up = None self.feature_penalty = None self.monotone_constraints = None self.version = 0 def __del__(self): try: self._free_handle() except AttributeError: pass def get_params(self): """Get the used parameters in the Dataset. Returns ------- params : dict or None The used parameters in this Dataset object. """ if self.params is not None: # no min_data, nthreads and verbose in this function dataset_params = _ConfigAliases.get("bin_construct_sample_cnt", "categorical_feature", "data_random_seed", "enable_bundle", "feature_pre_filter", "forcedbins_filename", "group_column", "header", "ignore_column", "is_enable_sparse", "label_column", "linear_tree", "max_bin", "max_bin_by_feature", "min_data_in_bin", "pre_partition", "two_round", "use_missing", "weight_column", "zero_as_missing") return {k: v for k, v in self.params.items() if k in dataset_params} def _free_handle(self): if self.handle is not None: _safe_call(_LIB.LGBM_DatasetFree(self.handle)) self.handle = None self.need_slice = True if self.used_indices is not None: self.data = None return self def _set_init_score_by_predictor(self, predictor, data, used_indices=None): data_has_header = False if isinstance(data, str): # check data has header or not data_has_header = any(self.params.get(alias, False) for alias in _ConfigAliases.get("header")) num_data = self.num_data() if predictor is not None: init_score = predictor.predict(data, raw_score=True, data_has_header=data_has_header, is_reshape=False) if used_indices is not None: assert not self.need_slice if isinstance(data, str): sub_init_score = np.zeros(num_data * predictor.num_class, dtype=np.float32) assert num_data == len(used_indices) for i in range(len(used_indices)): for j in range(predictor.num_class): sub_init_score[i * predictor.num_class + j] = init_score[used_indices[i] * predictor.num_class + j] init_score = sub_init_score if predictor.num_class > 1: # need to regroup init_score new_init_score = np.zeros(init_score.size, dtype=np.float32) for i in range(num_data): for j in range(predictor.num_class): new_init_score[j * num_data + i] = init_score[i * predictor.num_class + j] init_score = new_init_score elif self.init_score is not None: init_score = np.zeros(self.init_score.shape, dtype=np.float32) else: return self self.set_init_score(init_score) def _lazy_init(self, data, label=None, reference=None, weight=None, group=None, init_score=None, predictor=None, silent=False, feature_name='auto', categorical_feature='auto', params=None): if data is None: self.handle = None return self if reference is not None: self.pandas_categorical = reference.pandas_categorical categorical_feature = reference.categorical_feature data, feature_name, categorical_feature, self.pandas_categorical = _data_from_pandas(data, feature_name, categorical_feature, self.pandas_categorical) label = _label_from_pandas(label) # process for args params = {} if params is None else params args_names = (getattr(self.__class__, '_lazy_init') .__code__ .co_varnames[:getattr(self.__class__, '_lazy_init').__code__.co_argcount]) for key, _ in params.items(): if key in args_names: _log_warning(f'{key} keyword has been found in `params` and will be ignored.\n' f'Please use {key} argument of the Dataset constructor to pass this parameter.') # user can set verbose with params, it has higher priority if not any(verbose_alias in params for verbose_alias in _ConfigAliases.get("verbosity")) and silent: params["verbose"] = -1 # get categorical features if categorical_feature is not None: categorical_indices = set() feature_dict = {} if feature_name is not None: feature_dict = {name: i for i, name in enumerate(feature_name)} for name in categorical_feature: if isinstance(name, str) and name in feature_dict: categorical_indices.add(feature_dict[name]) elif isinstance(name, int): categorical_indices.add(name) else: raise TypeError(f"Wrong type({type(name).__name__}) or unknown name({name}) in categorical_feature") if categorical_indices: for cat_alias in _ConfigAliases.get("categorical_feature"): if cat_alias in params: _log_warning(f'{cat_alias} in param dict is overridden.') params.pop(cat_alias, None) params['categorical_column'] = sorted(categorical_indices) params_str = param_dict_to_str(params) self.params = params # process for reference dataset ref_dataset = None if isinstance(reference, Dataset): ref_dataset = reference.construct().handle elif reference is not None: raise TypeError('Reference dataset should be None or dataset instance') # start construct data if isinstance(data, str): self.handle = ctypes.c_void_p() _safe_call(_LIB.LGBM_DatasetCreateFromFile( c_str(data), c_str(params_str), ref_dataset, ctypes.byref(self.handle))) elif isinstance(data, scipy.sparse.csr_matrix): self.__init_from_csr(data, params_str, ref_dataset) elif isinstance(data, scipy.sparse.csc_matrix): self.__init_from_csc(data, params_str, ref_dataset) elif isinstance(data, np.ndarray): self.__init_from_np2d(data, params_str, ref_dataset) elif isinstance(data, list) and len(data) > 0 and all(isinstance(x, np.ndarray) for x in data): self.__init_from_list_np2d(data, params_str, ref_dataset) elif isinstance(data, dt_DataTable): self.__init_from_np2d(data.to_numpy(), params_str, ref_dataset) else: try: csr = scipy.sparse.csr_matrix(data) self.__init_from_csr(csr, params_str, ref_dataset) except BaseException: raise TypeError(f'Cannot initialize Dataset from {type(data).__name__}') if label is not None: self.set_label(label) if self.get_label() is None: raise ValueError("Label should not be None") if weight is not None: self.set_weight(weight) if group is not None: self.set_group(group) if isinstance(predictor, _InnerPredictor): if self._predictor is None and init_score is not None: _log_warning("The init_score will be overridden by the prediction of init_model.") self._set_init_score_by_predictor(predictor, data) elif init_score is not None: self.set_init_score(init_score) elif predictor is not None: raise TypeError(f'Wrong predictor type {type(predictor).__name__}') # set feature names return self.set_feature_name(feature_name) def __init_from_np2d(self, mat, params_str, ref_dataset): """Initialize data from a 2-D numpy matrix.""" if len(mat.shape) != 2: raise ValueError('Input numpy.ndarray must be 2 dimensional') self.handle = ctypes.c_void_p() if mat.dtype == np.float32 or mat.dtype == np.float64: data = np.array(mat.reshape(mat.size), dtype=mat.dtype, copy=False) else: # change non-float data to float data, need to copy data = np.array(mat.reshape(mat.size), dtype=np.float32) ptr_data, type_ptr_data, _ = c_float_array(data) _safe_call(_LIB.LGBM_DatasetCreateFromMat( ptr_data, ctypes.c_int(type_ptr_data), ctypes.c_int32(mat.shape[0]), ctypes.c_int32(mat.shape[1]), ctypes.c_int(C_API_IS_ROW_MAJOR), c_str(params_str), ref_dataset, ctypes.byref(self.handle))) return self def __init_from_list_np2d(self, mats, params_str, ref_dataset): """Initialize data from a list of 2-D numpy matrices.""" ncol = mats[0].shape[1] nrow = np.zeros((len(mats),), np.int32) if mats[0].dtype == np.float64: ptr_data = (ctypes.POINTER(ctypes.c_double) * len(mats))() else: ptr_data = (ctypes.POINTER(ctypes.c_float) * len(mats))() holders = [] type_ptr_data = None for i, mat in enumerate(mats): if len(mat.shape) != 2: raise ValueError('Input numpy.ndarray must be 2 dimensional') if mat.shape[1] != ncol: raise ValueError('Input arrays must have same number of columns') nrow[i] = mat.shape[0] if mat.dtype == np.float32 or mat.dtype == np.float64: mats[i] = np.array(mat.reshape(mat.size), dtype=mat.dtype, copy=False) else: # change non-float data to float data, need to copy mats[i] = np.array(mat.reshape(mat.size), dtype=np.float32) chunk_ptr_data, chunk_type_ptr_data, holder = c_float_array(mats[i]) if type_ptr_data is not None and chunk_type_ptr_data != type_ptr_data: raise ValueError('Input chunks must have same type') ptr_data[i] = chunk_ptr_data type_ptr_data = chunk_type_ptr_data holders.append(holder) self.handle = ctypes.c_void_p() _safe_call(_LIB.LGBM_DatasetCreateFromMats( ctypes.c_int32(len(mats)), ctypes.cast(ptr_data, ctypes.POINTER(ctypes.POINTER(ctypes.c_double))), ctypes.c_int(type_ptr_data), nrow.ctypes.data_as(ctypes.POINTER(ctypes.c_int32)), ctypes.c_int32(ncol), ctypes.c_int(C_API_IS_ROW_MAJOR), c_str(params_str), ref_dataset, ctypes.byref(self.handle))) return self def __init_from_csr(self, csr, params_str, ref_dataset): """Initialize data from a CSR matrix.""" if len(csr.indices) != len(csr.data): raise ValueError(f'Length mismatch: {len(csr.indices)} vs {len(csr.data)}') self.handle = ctypes.c_void_p() ptr_indptr, type_ptr_indptr, __ = c_int_array(csr.indptr) ptr_data, type_ptr_data, _ = c_float_array(csr.data) assert csr.shape[1] <= MAX_INT32 csr_indices = csr.indices.astype(np.int32, copy=False) _safe_call(_LIB.LGBM_DatasetCreateFromCSR( ptr_indptr, ctypes.c_int(type_ptr_indptr), csr_indices.ctypes.data_as(ctypes.POINTER(ctypes.c_int32)), ptr_data, ctypes.c_int(type_ptr_data), ctypes.c_int64(len(csr.indptr)), ctypes.c_int64(len(csr.data)), ctypes.c_int64(csr.shape[1]), c_str(params_str), ref_dataset, ctypes.byref(self.handle))) return self def __init_from_csc(self, csc, params_str, ref_dataset): """Initialize data from a CSC matrix.""" if len(csc.indices) != len(csc.data): raise ValueError(f'Length mismatch: {len(csc.indices)} vs {len(csc.data)}') self.handle = ctypes.c_void_p() ptr_indptr, type_ptr_indptr, __ = c_int_array(csc.indptr) ptr_data, type_ptr_data, _ = c_float_array(csc.data) assert csc.shape[0] <= MAX_INT32 csc_indices = csc.indices.astype(np.int32, copy=False) _safe_call(_LIB.LGBM_DatasetCreateFromCSC( ptr_indptr, ctypes.c_int(type_ptr_indptr), csc_indices.ctypes.data_as(ctypes.POINTER(ctypes.c_int32)), ptr_data, ctypes.c_int(type_ptr_data), ctypes.c_int64(len(csc.indptr)), ctypes.c_int64(len(csc.data)), ctypes.c_int64(csc.shape[0]), c_str(params_str), ref_dataset, ctypes.byref(self.handle))) return self def construct(self): """Lazy init. Returns ------- self : Dataset Constructed Dataset object. """ if self.handle is None: if self.reference is not None: reference_params = self.reference.get_params() if self.get_params() != reference_params: _log_warning('Overriding the parameters from Reference Dataset.') self._update_params(reference_params) if self.used_indices is None: # create valid self._lazy_init(self.data, label=self.label, reference=self.reference, weight=self.weight, group=self.group, init_score=self.init_score, predictor=self._predictor, silent=self.silent, feature_name=self.feature_name, params=self.params) else: # construct subset used_indices = list_to_1d_numpy(self.used_indices, np.int32, name='used_indices') assert used_indices.flags.c_contiguous if self.reference.group is not None: group_info = np.array(self.reference.group).astype(np.int32, copy=False) _, self.group = np.unique(np.repeat(range(len(group_info)), repeats=group_info)[self.used_indices], return_counts=True) self.handle = ctypes.c_void_p() params_str = param_dict_to_str(self.params) _safe_call(_LIB.LGBM_DatasetGetSubset( self.reference.construct().handle, used_indices.ctypes.data_as(ctypes.POINTER(ctypes.c_int32)), ctypes.c_int32(used_indices.shape[0]), c_str(params_str), ctypes.byref(self.handle))) if not self.free_raw_data: self.get_data() if self.group is not None: self.set_group(self.group) if self.get_label() is None: raise ValueError("Label should not be None.") if isinstance(self._predictor, _InnerPredictor) and self._predictor is not self.reference._predictor: self.get_data() self._set_init_score_by_predictor(self._predictor, self.data, used_indices) else: # create train self._lazy_init(self.data, label=self.label, weight=self.weight, group=self.group, init_score=self.init_score, predictor=self._predictor, silent=self.silent, feature_name=self.feature_name, categorical_feature=self.categorical_feature, params=self.params) if self.free_raw_data: self.data = None return self def create_valid(self, data, label=None, weight=None, group=None, init_score=None, silent=False, params=None): """Create validation data align with current Dataset. Parameters ---------- data : string, numpy array, pandas DataFrame, H2O DataTable's Frame, scipy.sparse or list of numpy arrays Data source of Dataset. If string, it represents the path to txt file. label : list, numpy 1-D array, pandas Series / one-column DataFrame or None, optional (default=None) Label of the data. weight : list, numpy 1-D array, pandas Series or None, optional (default=None) Weight for each instance. group : list, numpy 1-D array, pandas Series or None, optional (default=None) Group/query data. Only used in the learning-to-rank task. sum(group) = n_samples. For example, if you have a 100-document dataset with ``group = [10, 20, 40, 10, 10, 10]``, that means that you have 6 groups, where the first 10 records are in the first group, records 11-30 are in the second group, records 31-70 are in the third group, etc. init_score : list, numpy 1-D array, pandas Series or None, optional (default=None) Init score for Dataset. silent : bool, optional (default=False) Whether to print messages during construction. params : dict or None, optional (default=None) Other parameters for validation Dataset. Returns ------- valid : Dataset Validation Dataset with reference to self. """ ret = Dataset(data, label=label, reference=self, weight=weight, group=group, init_score=init_score, silent=silent, params=params, free_raw_data=self.free_raw_data) ret._predictor = self._predictor ret.pandas_categorical = self.pandas_categorical return ret def subset(self, used_indices, params=None): """Get subset of current Dataset. Parameters ---------- used_indices : list of int Indices used to create the subset. params : dict or None, optional (default=None) These parameters will be passed to Dataset constructor. Returns ------- subset : Dataset Subset of the current Dataset. """ if params is None: params = self.params ret = Dataset(None, reference=self, feature_name=self.feature_name, categorical_feature=self.categorical_feature, params=params, free_raw_data=self.free_raw_data) ret._predictor = self._predictor ret.pandas_categorical = self.pandas_categorical ret.used_indices = sorted(used_indices) return ret def save_binary(self, filename): """Save Dataset to a binary file. .. note:: Please note that `init_score` is not saved in binary file. If you need it, please set it again after loading Dataset. Parameters ---------- filename : string Name of the output file. Returns ------- self : Dataset Returns self. """ _safe_call(_LIB.LGBM_DatasetSaveBinary( self.construct().handle, c_str(filename))) return self def _update_params(self, params): if not params: return self params = deepcopy(params) def update(): if not self.params: self.params = params else: self.params_back_up = deepcopy(self.params) self.params.update(params) if self.handle is None: update() elif params is not None: ret = _LIB.LGBM_DatasetUpdateParamChecking( c_str(param_dict_to_str(self.params)), c_str(param_dict_to_str(params))) if ret != 0: # could be updated if data is not freed if self.data is not None: update() self._free_handle() else: raise LightGBMError(_LIB.LGBM_GetLastError().decode('utf-8')) return self def _reverse_update_params(self): if self.handle is None: self.params = deepcopy(self.params_back_up) self.params_back_up = None return self def set_field(self, field_name, data): """Set property into the Dataset. Parameters ---------- field_name : string The field name of the information. data : list, numpy 1-D array, pandas Series or None The array of data to be set. Returns ------- self : Dataset Dataset with set property. """ if self.handle is None: raise Exception(f"Cannot set {field_name} before construct dataset") if data is None: # set to None _safe_call(_LIB.LGBM_DatasetSetField( self.handle, c_str(field_name), None, ctypes.c_int(0), ctypes.c_int(FIELD_TYPE_MAPPER[field_name]))) return self dtype = np.float32 if field_name == 'group': dtype = np.int32 elif field_name == 'init_score': dtype = np.float64 data = list_to_1d_numpy(data, dtype, name=field_name) if data.dtype == np.float32 or data.dtype == np.float64: ptr_data, type_data, _ = c_float_array(data) elif data.dtype == np.int32: ptr_data, type_data, _ = c_int_array(data) else: raise TypeError(f"Expected np.float32/64 or np.int32, met type({data.dtype})") if type_data != FIELD_TYPE_MAPPER[field_name]: raise TypeError("Input type error for set_field") _safe_call(_LIB.LGBM_DatasetSetField( self.handle, c_str(field_name), ptr_data, ctypes.c_int(len(data)), ctypes.c_int(type_data))) self.version += 1 return self def get_field(self, field_name): """Get property from the Dataset. Parameters ---------- field_name : string The field name of the information. Returns ------- info : numpy array A numpy array with information from the Dataset. """ if self.handle is None: raise Exception(f"Cannot get {field_name} before construct Dataset") tmp_out_len = ctypes.c_int(0) out_type = ctypes.c_int(0) ret = ctypes.POINTER(ctypes.c_void_p)() _safe_call(_LIB.LGBM_DatasetGetField( self.handle, c_str(field_name), ctypes.byref(tmp_out_len), ctypes.byref(ret), ctypes.byref(out_type))) if out_type.value != FIELD_TYPE_MAPPER[field_name]: raise TypeError("Return type error for get_field") if tmp_out_len.value == 0: return None if out_type.value == C_API_DTYPE_INT32: return cint32_array_to_numpy(ctypes.cast(ret, ctypes.POINTER(ctypes.c_int32)), tmp_out_len.value) elif out_type.value == C_API_DTYPE_FLOAT32: return cfloat32_array_to_numpy(ctypes.cast(ret, ctypes.POINTER(ctypes.c_float)), tmp_out_len.value) elif out_type.value == C_API_DTYPE_FLOAT64: return cfloat64_array_to_numpy(ctypes.cast(ret, ctypes.POINTER(ctypes.c_double)), tmp_out_len.value) else: raise TypeError("Unknown type") def set_categorical_feature(self, categorical_feature): """Set categorical features. Parameters ---------- categorical_feature : list of int or strings Names or indices of categorical features. Returns ------- self : Dataset Dataset with set categorical features. """ if self.categorical_feature == categorical_feature: return self if self.data is not None: if self.categorical_feature is None: self.categorical_feature = categorical_feature return self._free_handle() elif categorical_feature == 'auto': _log_warning('Using categorical_feature in Dataset.') return self else: _log_warning('categorical_feature in Dataset is overridden.\n' f'New categorical_feature is {sorted(list(categorical_feature))}') self.categorical_feature = categorical_feature return self._free_handle() else: raise LightGBMError("Cannot set categorical feature after freed raw data, " "set free_raw_data=False when construct Dataset to avoid this.") def _set_predictor(self, predictor): """Set predictor for continued training. It is not recommended for user to call this function. Please use init_model argument in engine.train() or engine.cv() instead. """ if predictor is self._predictor and (predictor is None or predictor.current_iteration() == self._predictor.current_iteration()): return self if self.handle is None: self._predictor = predictor elif self.data is not None: self._predictor = predictor self._set_init_score_by_predictor(self._predictor, self.data) elif self.used_indices is not None and self.reference is not None and self.reference.data is not None: self._predictor = predictor self._set_init_score_by_predictor(self._predictor, self.reference.data, self.used_indices) else: raise LightGBMError("Cannot set predictor after freed raw data, " "set free_raw_data=False when construct Dataset to avoid this.") return self def set_reference(self, reference): """Set reference Dataset. Parameters ---------- reference : Dataset Reference that is used as a template to construct the current Dataset. Returns ------- self : Dataset Dataset with set reference. """ self.set_categorical_feature(reference.categorical_feature) \ .set_feature_name(reference.feature_name) \ ._set_predictor(reference._predictor) # we're done if self and reference share a common upstrem reference if self.get_ref_chain().intersection(reference.get_ref_chain()): return self if self.data is not None: self.reference = reference return self._free_handle() else: raise LightGBMError("Cannot set reference after freed raw data, " "set free_raw_data=False when construct Dataset to avoid this.") def set_feature_name(self, feature_name): """Set feature name. Parameters ---------- feature_name : list of strings Feature names. Returns ------- self : Dataset Dataset with set feature name. """ if feature_name != 'auto': self.feature_name = feature_name if self.handle is not None and feature_name is not None and feature_name != 'auto': if len(feature_name) != self.num_feature(): raise ValueError(f"Length of feature_name({len(feature_name)}) and num_feature({self.num_feature()}) don't match") c_feature_name = [c_str(name) for name in feature_name] _safe_call(_LIB.LGBM_DatasetSetFeatureNames( self.handle, c_array(ctypes.c_char_p, c_feature_name), ctypes.c_int(len(feature_name)))) return self def set_label(self, label): """Set label of Dataset. Parameters ---------- label : list, numpy 1-D array, pandas Series / one-column DataFrame or None The label information to be set into Dataset. Returns ------- self : Dataset Dataset with set label. """ self.label = label if self.handle is not None: label = list_to_1d_numpy(_label_from_pandas(label), name='label') self.set_field('label', label) self.label = self.get_field('label') # original values can be modified at cpp side return self def set_weight(self, weight): """Set weight of each instance. Parameters ---------- weight : list, numpy 1-D array, pandas Series or None Weight to be set for each data point. Returns ------- self : Dataset Dataset with set weight. """ if weight is not None and np.all(weight == 1): weight = None self.weight = weight if self.handle is not None and weight is not None: weight = list_to_1d_numpy(weight, name='weight') self.set_field('weight', weight) self.weight = self.get_field('weight') # original values can be modified at cpp side return self def set_init_score(self, init_score): """Set init score of Booster to start from. Parameters ---------- init_score : list, numpy 1-D array, pandas Series or None Init score for Booster. Returns ------- self : Dataset Dataset with set init score. """ self.init_score = init_score if self.handle is not None and init_score is not None: init_score = list_to_1d_numpy(init_score, np.float64, name='init_score') self.set_field('init_score', init_score) self.init_score = self.get_field('init_score') # original values can be modified at cpp side return self def set_group(self, group): """Set group size of Dataset (used for ranking). Parameters ---------- group : list, numpy 1-D array, pandas Series or None Group/query data. Only used in the learning-to-rank task. sum(group) = n_samples. For example, if you have a 100-document dataset with ``group = [10, 20, 40, 10, 10, 10]``, that means that you have 6 groups, where the first 10 records are in the first group, records 11-30 are in the second group, records 31-70 are in the third group, etc. Returns ------- self : Dataset Dataset with set group. """ self.group = group if self.handle is not None and group is not None: group = list_to_1d_numpy(group, np.int32, name='group') self.set_field('group', group) return self def get_feature_name(self): """Get the names of columns (features) in the Dataset. Returns ------- feature_names : list The names of columns (features) in the Dataset. """ if self.handle is None: raise LightGBMError("Cannot get feature_name before construct dataset") num_feature = self.num_feature() tmp_out_len = ctypes.c_int(0) reserved_string_buffer_size = 255 required_string_buffer_size = ctypes.c_size_t(0) string_buffers = [ctypes.create_string_buffer(reserved_string_buffer_size) for _ in range(num_feature)] ptr_string_buffers = (ctypes.c_char_p * num_feature)(*map(ctypes.addressof, string_buffers)) _safe_call(_LIB.LGBM_DatasetGetFeatureNames( self.handle, ctypes.c_int(num_feature), ctypes.byref(tmp_out_len), ctypes.c_size_t(reserved_string_buffer_size), ctypes.byref(required_string_buffer_size), ptr_string_buffers)) if num_feature != tmp_out_len.value: raise ValueError("Length of feature names doesn't equal with num_feature") actual_string_buffer_size = required_string_buffer_size.value # if buffer length is not long enough, reallocate buffers if reserved_string_buffer_size < actual_string_buffer_size: string_buffers = [ctypes.create_string_buffer(actual_string_buffer_size) for _ in range(num_feature)] ptr_string_buffers = (ctypes.c_char_p * num_feature)(*map(ctypes.addressof, string_buffers)) _safe_call(_LIB.LGBM_DatasetGetFeatureNames( self.handle, ctypes.c_int(num_feature), ctypes.byref(tmp_out_len), ctypes.c_size_t(actual_string_buffer_size), ctypes.byref(required_string_buffer_size), ptr_string_buffers)) return [string_buffers[i].value.decode('utf-8') for i in range(num_feature)] def get_label(self): """Get the label of the Dataset. Returns ------- label : numpy array or None The label information from the Dataset. """ if self.label is None: self.label = self.get_field('label') return self.label def get_weight(self): """Get the weight of the Dataset. Returns ------- weight : numpy array or None Weight for each data point from the Dataset. """ if self.weight is None: self.weight = self.get_field('weight') return self.weight def get_init_score(self): """Get the initial score of the Dataset. Returns ------- init_score : numpy array or None Init score of Booster. """ if self.init_score is None: self.init_score = self.get_field('init_score') return self.init_score def get_data(self): """Get the raw data of the Dataset. Returns ------- data : string, numpy array, pandas DataFrame, H2O DataTable's Frame, scipy.sparse, list of numpy arrays or None Raw data used in the Dataset construction. """ if self.handle is None: raise Exception("Cannot get data before construct Dataset") if self.need_slice and self.used_indices is not None and self.reference is not None: self.data = self.reference.data if self.data is not None: if isinstance(self.data, np.ndarray) or scipy.sparse.issparse(self.data): self.data = self.data[self.used_indices, :] elif isinstance(self.data, pd_DataFrame): self.data = self.data.iloc[self.used_indices].copy() elif isinstance(self.data, dt_DataTable): self.data = self.data[self.used_indices, :] else: _log_warning(f"Cannot subset {type(self.data).__name__} type of raw data.\n" "Returning original raw data") self.need_slice = False if self.data is None: raise LightGBMError("Cannot call `get_data` after freed raw data, " "set free_raw_data=False when construct Dataset to avoid this.") return self.data def get_group(self): """Get the group of the Dataset. Returns ------- group : numpy array or None Group/query data. Only used in the learning-to-rank task. sum(group) = n_samples. For example, if you have a 100-document dataset with ``group = [10, 20, 40, 10, 10, 10]``, that means that you have 6 groups, where the first 10 records are in the first group, records 11-30 are in the second group, records 31-70 are in the third group, etc. """ if self.group is None: self.group = self.get_field('group') if self.group is not None: # group data from LightGBM is boundaries data, need to convert to group size self.group = np.diff(self.group) return self.group def num_data(self): """Get the number of rows in the Dataset. Returns ------- number_of_rows : int The number of rows in the Dataset. """ if self.handle is not None: ret = ctypes.c_int(0) _safe_call(_LIB.LGBM_DatasetGetNumData(self.handle, ctypes.byref(ret))) return ret.value else: raise LightGBMError("Cannot get num_data before construct dataset") def num_feature(self): """Get the number of columns (features) in the Dataset. Returns ------- number_of_columns : int The number of columns (features) in the Dataset. """ if self.handle is not None: ret = ctypes.c_int(0) _safe_call(_LIB.LGBM_DatasetGetNumFeature(self.handle, ctypes.byref(ret))) return ret.value else: raise LightGBMError("Cannot get num_feature before construct dataset") def get_ref_chain(self, ref_limit=100): """Get a chain of Dataset objects. Starts with r, then goes to r.reference (if exists), then to r.reference.reference, etc. until we hit ``ref_limit`` or a reference loop. Parameters ---------- ref_limit : int, optional (default=100) The limit number of references. Returns ------- ref_chain : set of Dataset Chain of references of the Datasets. """ head = self ref_chain = set() while len(ref_chain) < ref_limit: if isinstance(head, Dataset): ref_chain.add(head) if (head.reference is not None) and (head.reference not in ref_chain): head = head.reference else: break else: break return ref_chain def add_features_from(self, other): """Add features from other Dataset to the current Dataset. Both Datasets must be constructed before calling this method. Parameters ---------- other : Dataset The Dataset to take features from. Returns ------- self : Dataset Dataset with the new features added. """ if self.handle is None or other.handle is None: raise ValueError('Both source and target Datasets must be constructed before adding features') _safe_call(_LIB.LGBM_DatasetAddFeaturesFrom(self.handle, other.handle)) was_none = self.data is None old_self_data_type = type(self.data).__name__ if other.data is None: self.data = None elif self.data is not None: if isinstance(self.data, np.ndarray): if isinstance(other.data, np.ndarray): self.data = np.hstack((self.data, other.data)) elif scipy.sparse.issparse(other.data): self.data = np.hstack((self.data, other.data.toarray())) elif isinstance(other.data, pd_DataFrame): self.data = np.hstack((self.data, other.data.values)) elif isinstance(other.data, dt_DataTable): self.data = np.hstack((self.data, other.data.to_numpy())) else: self.data = None elif scipy.sparse.issparse(self.data): sparse_format = self.data.getformat() if isinstance(other.data, np.ndarray) or scipy.sparse.issparse(other.data): self.data = scipy.sparse.hstack((self.data, other.data), format=sparse_format) elif isinstance(other.data, pd_DataFrame): self.data = scipy.sparse.hstack((self.data, other.data.values), format=sparse_format) elif isinstance(other.data, dt_DataTable): self.data = scipy.sparse.hstack((self.data, other.data.to_numpy()), format=sparse_format) else: self.data = None elif isinstance(self.data, pd_DataFrame): if not PANDAS_INSTALLED: raise LightGBMError("Cannot add features to DataFrame type of raw data " "without pandas installed. " "Install pandas and restart your session.") if isinstance(other.data, np.ndarray): self.data = concat((self.data, pd_DataFrame(other.data)), axis=1, ignore_index=True) elif scipy.sparse.issparse(other.data): self.data = concat((self.data, pd_DataFrame(other.data.toarray())), axis=1, ignore_index=True) elif isinstance(other.data, pd_DataFrame): self.data = concat((self.data, other.data), axis=1, ignore_index=True) elif isinstance(other.data, dt_DataTable): self.data = concat((self.data, pd_DataFrame(other.data.to_numpy())), axis=1, ignore_index=True) else: self.data = None elif isinstance(self.data, dt_DataTable): if isinstance(other.data, np.ndarray): self.data = dt_DataTable(np.hstack((self.data.to_numpy(), other.data))) elif scipy.sparse.issparse(other.data): self.data = dt_DataTable(np.hstack((self.data.to_numpy(), other.data.toarray()))) elif isinstance(other.data, pd_DataFrame): self.data = dt_DataTable(np.hstack((self.data.to_numpy(), other.data.values))) elif isinstance(other.data, dt_DataTable): self.data = dt_DataTable(np.hstack((self.data.to_numpy(), other.data.to_numpy()))) else: self.data = None else: self.data = None if self.data is None: err_msg = (f"Cannot add features from {type(other.data).__name__} type of raw data to " f"{old_self_data_type} type of raw data.\n") err_msg += ("Set free_raw_data=False when construct Dataset to avoid this" if was_none else "Freeing raw data") _log_warning(err_msg) self.feature_name = self.get_feature_name() _log_warning("Reseting categorical features.\n" "You can set new categorical features via ``set_categorical_feature`` method") self.categorical_feature = "auto" self.pandas_categorical = None return self def _dump_text(self, filename): """Save Dataset to a text file. This format cannot be loaded back in by LightGBM, but is useful for debugging purposes. Parameters ---------- filename : string Name of the output file. Returns ------- self : Dataset Returns self. """ _safe_call(_LIB.LGBM_DatasetDumpText( self.construct().handle, c_str(filename))) return self class Booster: """Booster in LightGBM.""" def __init__(self, params=None, train_set=None, model_file=None, model_str=None, silent=False): """Initialize the Booster. Parameters ---------- params : dict or None, optional (default=None) Parameters for Booster. train_set : Dataset or None, optional (default=None) Training dataset. model_file : string or None, optional (default=None) Path to the model file. model_str : string or None, optional (default=None) Model will be loaded from this string. silent : bool, optional (default=False) Whether to print messages during construction. """ self.handle = None self.network = False self.__need_reload_eval_info = True self._train_data_name = "training" self.__attr = {} self.__set_objective_to_none = False self.best_iteration = -1 self.best_score = {} params = {} if params is None else deepcopy(params) # user can set verbose with params, it has higher priority if not any(verbose_alias in params for verbose_alias in _ConfigAliases.get("verbosity")) and silent: params["verbose"] = -1 if train_set is not None: # Training task if not isinstance(train_set, Dataset): raise TypeError(f'Training data should be Dataset instance, met {type(train_set).__name__}') params = _choose_param_value( main_param_name="machines", params=params, default_value=None ) # if "machines" is given, assume user wants to do distributed learning, and set up network if params["machines"] is None: params.pop("machines", None) else: machines = params["machines"] if isinstance(machines, str): num_machines_from_machine_list = len(machines.split(',')) elif isinstance(machines, (list, set)): num_machines_from_machine_list = len(machines) machines = ','.join(machines) else: raise ValueError("Invalid machines in params.") params = _choose_param_value( main_param_name="num_machines", params=params, default_value=num_machines_from_machine_list ) params = _choose_param_value( main_param_name="local_listen_port", params=params, default_value=12400 ) self.set_network( machines=machines, local_listen_port=params["local_listen_port"], listen_time_out=params.get("time_out", 120), num_machines=params["num_machines"] ) # construct booster object train_set.construct() # copy the parameters from train_set params.update(train_set.get_params()) params_str = param_dict_to_str(params) self.handle = ctypes.c_void_p() _safe_call(_LIB.LGBM_BoosterCreate( train_set.handle, c_str(params_str), ctypes.byref(self.handle))) # save reference to data self.train_set = train_set self.valid_sets = [] self.name_valid_sets = [] self.__num_dataset = 1 self.__init_predictor = train_set._predictor if self.__init_predictor is not None: _safe_call(_LIB.LGBM_BoosterMerge( self.handle, self.__init_predictor.handle)) out_num_class = ctypes.c_int(0) _safe_call(_LIB.LGBM_BoosterGetNumClasses( self.handle, ctypes.byref(out_num_class))) self.__num_class = out_num_class.value # buffer for inner predict self.__inner_predict_buffer = [None] self.__is_predicted_cur_iter = [False] self.__get_eval_info() self.pandas_categorical = train_set.pandas_categorical self.train_set_version = train_set.version elif model_file is not None: # Prediction task out_num_iterations = ctypes.c_int(0) self.handle = ctypes.c_void_p() _safe_call(_LIB.LGBM_BoosterCreateFromModelfile( c_str(model_file), ctypes.byref(out_num_iterations), ctypes.byref(self.handle))) out_num_class = ctypes.c_int(0) _safe_call(_LIB.LGBM_BoosterGetNumClasses( self.handle, ctypes.byref(out_num_class))) self.__num_class = out_num_class.value self.pandas_categorical = _load_pandas_categorical(file_name=model_file) elif model_str is not None: self.model_from_string(model_str, not silent) else: raise TypeError('Need at least one training dataset or model file or model string ' 'to create Booster instance') self.params = params def __del__(self): try: if self.network: self.free_network() except AttributeError: pass try: if self.handle is not None: _safe_call(_LIB.LGBM_BoosterFree(self.handle)) except AttributeError: pass def __copy__(self): return self.__deepcopy__(None) def __deepcopy__(self, _): model_str = self.model_to_string(num_iteration=-1) booster = Booster(model_str=model_str) return booster def __getstate__(self): this = self.__dict__.copy() handle = this['handle'] this.pop('train_set', None) this.pop('valid_sets', None) if handle is not None: this["handle"] = self.model_to_string(num_iteration=-1) return this def __setstate__(self, state): model_str = state.get('handle', None) if model_str is not None: handle = ctypes.c_void_p() out_num_iterations = ctypes.c_int(0) _safe_call(_LIB.LGBM_BoosterLoadModelFromString( c_str(model_str), ctypes.byref(out_num_iterations), ctypes.byref(handle))) state['handle'] = handle self.__dict__.update(state) def free_dataset(self): """Free Booster's Datasets. Returns ------- self : Booster Booster without Datasets. """ self.__dict__.pop('train_set', None) self.__dict__.pop('valid_sets', None) self.__num_dataset = 0 return self def _free_buffer(self): self.__inner_predict_buffer = [] self.__is_predicted_cur_iter = [] return self def set_network( self, machines: Union[List[str], Set[str], str], local_listen_port: int = 12400, listen_time_out: int = 120, num_machines: int = 1 ) -> "Booster": """Set the network configuration. Parameters ---------- machines : list, set or string Names of machines. local_listen_port : int, optional (default=12400) TCP listen port for local machines. listen_time_out : int, optional (default=120) Socket time-out in minutes. num_machines : int, optional (default=1) The number of machines for distributed learning application. Returns ------- self : Booster Booster with set network. """ if isinstance(machines, (list, set)): machines = ','.join(machines) _safe_call(_LIB.LGBM_NetworkInit(c_str(machines), ctypes.c_int(local_listen_port), ctypes.c_int(listen_time_out), ctypes.c_int(num_machines))) self.network = True return self def free_network(self): """Free Booster's network. Returns ------- self : Booster Booster with freed network. """ _safe_call(_LIB.LGBM_NetworkFree()) self.network = False return self def trees_to_dataframe(self): """Parse the fitted model and return in an easy-to-read pandas DataFrame. The returned DataFrame has the following columns. - ``tree_index`` : int64, which tree a node belongs to. 0-based, so a value of ``6``, for example, means "this node is in the 7th tree". - ``node_depth`` : int64, how far a node is from the root of the tree. The root node has a value of ``1``, its direct children are ``2``, etc. - ``node_index`` : string, unique identifier for a node. - ``left_child`` : string, ``node_index`` of the child node to the left of a split. ``None`` for leaf nodes. - ``right_child`` : string, ``node_index`` of the child node to the right of a split. ``None`` for leaf nodes. - ``parent_index`` : string, ``node_index`` of this node's parent. ``None`` for the root node. - ``split_feature`` : string, name of the feature used for splitting. ``None`` for leaf nodes. - ``split_gain`` : float64, gain from adding this split to the tree. ``NaN`` for leaf nodes. - ``threshold`` : float64, value of the feature used to decide which side of the split a record will go down. ``NaN`` for leaf nodes. - ``decision_type`` : string, logical operator describing how to compare a value to ``threshold``. For example, ``split_feature = "Column_10", threshold = 15, decision_type = "<="`` means that records where ``Column_10 <= 15`` follow the left side of the split, otherwise follows the right side of the split. ``None`` for leaf nodes. - ``missing_direction`` : string, split direction that missing values should go to. ``None`` for leaf nodes. - ``missing_type`` : string, describes what types of values are treated as missing. - ``value`` : float64, predicted value for this leaf node, multiplied by the learning rate. - ``weight`` : float64 or int64, sum of hessian (second-order derivative of objective), summed over observations that fall in this node. - ``count`` : int64, number of records in the training data that fall into this node. Returns ------- result : pandas DataFrame Returns a pandas DataFrame of the parsed model. """ if not PANDAS_INSTALLED: raise LightGBMError('This method cannot be run without pandas installed. ' 'You must install pandas and restart your session to use this method.') if self.num_trees() == 0: raise LightGBMError('There are no trees in this Booster and thus nothing to parse') def _is_split_node(tree): return 'split_index' in tree.keys() def create_node_record(tree, node_depth=1, tree_index=None, feature_names=None, parent_node=None): def _get_node_index(tree, tree_index): tree_num = f'{tree_index}-' if tree_index is not None else '' is_split = _is_split_node(tree) node_type = 'S' if is_split else 'L' # if a single node tree it won't have `leaf_index` so return 0 node_num = tree.get('split_index' if is_split else 'leaf_index', 0) return f"{tree_num}{node_type}{node_num}" def _get_split_feature(tree, feature_names): if _is_split_node(tree): if feature_names is not None: feature_name = feature_names[tree['split_feature']] else: feature_name = tree['split_feature'] else: feature_name = None return feature_name def _is_single_node_tree(tree): return set(tree.keys()) == {'leaf_value'} # Create the node record, and populate universal data members node = OrderedDict() node['tree_index'] = tree_index node['node_depth'] = node_depth node['node_index'] = _get_node_index(tree, tree_index) node['left_child'] = None node['right_child'] = None node['parent_index'] = parent_node node['split_feature'] = _get_split_feature(tree, feature_names) node['split_gain'] = None node['threshold'] = None node['decision_type'] = None node['missing_direction'] = None node['missing_type'] = None node['value'] = None node['weight'] = None node['count'] = None # Update values to reflect node type (leaf or split) if _is_split_node(tree): node['left_child'] = _get_node_index(tree['left_child'], tree_index) node['right_child'] = _get_node_index(tree['right_child'], tree_index) node['split_gain'] = tree['split_gain'] node['threshold'] = tree['threshold'] node['decision_type'] = tree['decision_type'] node['missing_direction'] = 'left' if tree['default_left'] else 'right' node['missing_type'] = tree['missing_type'] node['value'] = tree['internal_value'] node['weight'] = tree['internal_weight'] node['count'] = tree['internal_count'] else: node['value'] = tree['leaf_value'] if not _is_single_node_tree(tree): node['weight'] = tree['leaf_weight'] node['count'] = tree['leaf_count'] return node def tree_dict_to_node_list(tree, node_depth=1, tree_index=None, feature_names=None, parent_node=None): node = create_node_record(tree, node_depth=node_depth, tree_index=tree_index, feature_names=feature_names, parent_node=parent_node) res = [node] if _is_split_node(tree): # traverse the next level of the tree children = ['left_child', 'right_child'] for child in children: subtree_list = tree_dict_to_node_list( tree[child], node_depth=node_depth + 1, tree_index=tree_index, feature_names=feature_names, parent_node=node['node_index']) # In tree format, "subtree_list" is a list of node records (dicts), # and we add node to the list. res.extend(subtree_list) return res model_dict = self.dump_model() feature_names = model_dict['feature_names'] model_list = [] for tree in model_dict['tree_info']: model_list.extend(tree_dict_to_node_list(tree['tree_structure'], tree_index=tree['tree_index'], feature_names=feature_names)) return pd_DataFrame(model_list, columns=model_list[0].keys()) def set_train_data_name(self, name): """Set the name to the training Dataset. Parameters ---------- name : string Name for the training Dataset. Returns ------- self : Booster Booster with set training Dataset name. """ self._train_data_name = name return self def add_valid(self, data, name): """Add validation data. Parameters ---------- data : Dataset Validation data. name : string Name of validation data. Returns ------- self : Booster Booster with set validation data. """ if not isinstance(data, Dataset): raise TypeError(f'Validation data should be Dataset instance, met {type(data).__name__}') if data._predictor is not self.__init_predictor: raise LightGBMError("Add validation data failed, " "you should use same predictor for these data") _safe_call(_LIB.LGBM_BoosterAddValidData( self.handle, data.construct().handle)) self.valid_sets.append(data) self.name_valid_sets.append(name) self.__num_dataset += 1 self.__inner_predict_buffer.append(None) self.__is_predicted_cur_iter.append(False) return self def reset_parameter(self, params): """Reset parameters of Booster. Parameters ---------- params : dict New parameters for Booster. Returns ------- self : Booster Booster with new parameters. """ params_str = param_dict_to_str(params) if params_str: _safe_call(_LIB.LGBM_BoosterResetParameter( self.handle, c_str(params_str))) self.params.update(params) return self def update(self, train_set=None, fobj=None): """Update Booster for one iteration. Parameters ---------- train_set : Dataset or None, optional (default=None) Training data. If None, last training data is used. fobj : callable or None, optional (default=None) Customized objective function. Should accept two parameters: preds, train_data, and return (grad, hess). preds : list or numpy 1-D array The predicted values. Predicted values are returned before any transformation, e.g. they are raw margin instead of probability of positive class for binary task. train_data : Dataset The training dataset. grad : list or numpy 1-D array The value of the first order derivative (gradient) of the loss with respect to the elements of preds for each sample point. hess : list or numpy 1-D array The value of the second order derivative (Hessian) of the loss with respect to the elements of preds for each sample point. For multi-class task, the preds is group by class_id first, then group by row_id. If you want to get i-th row preds in j-th class, the access way is score[j * num_data + i] and you should group grad and hess in this way as well. Returns ------- is_finished : bool Whether the update was successfully finished. """ # need reset training data if train_set is None and self.train_set_version != self.train_set.version: train_set = self.train_set is_the_same_train_set = False else: is_the_same_train_set = train_set is self.train_set and self.train_set_version == train_set.version if train_set is not None and not is_the_same_train_set: if not isinstance(train_set, Dataset): raise TypeError(f'Training data should be Dataset instance, met {type(train_set).__name__}') if train_set._predictor is not self.__init_predictor: raise LightGBMError("Replace training data failed, " "you should use same predictor for these data") self.train_set = train_set _safe_call(_LIB.LGBM_BoosterResetTrainingData( self.handle, self.train_set.construct().handle)) self.__inner_predict_buffer[0] = None self.train_set_version = self.train_set.version is_finished = ctypes.c_int(0) if fobj is None: if self.__set_objective_to_none: raise LightGBMError('Cannot update due to null objective function.') _safe_call(_LIB.LGBM_BoosterUpdateOneIter( self.handle, ctypes.byref(is_finished))) self.__is_predicted_cur_iter = [False for _ in range(self.__num_dataset)] return is_finished.value == 1 else: if not self.__set_objective_to_none: self.reset_parameter({"objective": "none"}).__set_objective_to_none = True grad, hess = fobj(self.__inner_predict(0), self.train_set) return self.__boost(grad, hess) def __boost(self, grad, hess): """Boost Booster for one iteration with customized gradient statistics. .. note:: Score is returned before any transformation, e.g. it is raw margin instead of probability of positive class for binary task. For multi-class task, the score is group by class_id first, then group by row_id. If you want to get i-th row score in j-th class, the access way is score[j * num_data + i] and you should group grad and hess in this way as well. Parameters ---------- grad : list or numpy 1-D array The value of the first order derivative (gradient) of the loss with respect to the elements of score for each sample point. hess : list or numpy 1-D array The value of the second order derivative (Hessian) of the loss with respect to the elements of score for each sample point. Returns ------- is_finished : bool Whether the boost was successfully finished. """ grad = list_to_1d_numpy(grad, name='gradient') hess = list_to_1d_numpy(hess, name='hessian') assert grad.flags.c_contiguous assert hess.flags.c_contiguous if len(grad) != len(hess): raise ValueError(f"Lengths of gradient({len(grad)}) and hessian({len(hess)}) don't match") is_finished = ctypes.c_int(0) _safe_call(_LIB.LGBM_BoosterUpdateOneIterCustom( self.handle, grad.ctypes.data_as(ctypes.POINTER(ctypes.c_float)), hess.ctypes.data_as(ctypes.POINTER(ctypes.c_float)), ctypes.byref(is_finished))) self.__is_predicted_cur_iter = [False for _ in range(self.__num_dataset)] return is_finished.value == 1 def rollback_one_iter(self): """Rollback one iteration. Returns ------- self : Booster Booster with rolled back one iteration. """ _safe_call(_LIB.LGBM_BoosterRollbackOneIter( self.handle)) self.__is_predicted_cur_iter = [False for _ in range(self.__num_dataset)] return self def current_iteration(self): """Get the index of the current iteration. Returns ------- cur_iter : int The index of the current iteration. """ out_cur_iter = ctypes.c_int(0) _safe_call(_LIB.LGBM_BoosterGetCurrentIteration( self.handle, ctypes.byref(out_cur_iter))) return out_cur_iter.value def num_model_per_iteration(self): """Get number of models per iteration. Returns ------- model_per_iter : int The number of models per iteration. """ model_per_iter = ctypes.c_int(0) _safe_call(_LIB.LGBM_BoosterNumModelPerIteration( self.handle, ctypes.byref(model_per_iter))) return model_per_iter.value def num_trees(self): """Get number of weak sub-models. Returns ------- num_trees : int The number of weak sub-models. """ num_trees = ctypes.c_int(0) _safe_call(_LIB.LGBM_BoosterNumberOfTotalModel( self.handle, ctypes.byref(num_trees))) return num_trees.value def upper_bound(self): """Get upper bound value of a model. Returns ------- upper_bound : double Upper bound value of the model. """ ret = ctypes.c_double(0) _safe_call(_LIB.LGBM_BoosterGetUpperBoundValue( self.handle, ctypes.byref(ret))) return ret.value def lower_bound(self): """Get lower bound value of a model. Returns ------- lower_bound : double Lower bound value of the model. """ ret = ctypes.c_double(0) _safe_call(_LIB.LGBM_BoosterGetLowerBoundValue( self.handle, ctypes.byref(ret))) return ret.value def eval(self, data, name, feval=None): """Evaluate for data. Parameters ---------- data : Dataset Data for the evaluating. name : string Name of the data. feval : callable or None, optional (default=None) Customized evaluation function. Should accept two parameters: preds, eval_data, and return (eval_name, eval_result, is_higher_better) or list of such tuples. preds : list or numpy 1-D array The predicted values. If ``fobj`` is specified, predicted values are returned before any transformation, e.g. they are raw margin instead of probability of positive class for binary task in this case. eval_data : Dataset The evaluation dataset. eval_name : string The name of evaluation function (without whitespace). eval_result : float The eval result. is_higher_better : bool Is eval result higher better, e.g. AUC is ``is_higher_better``. For multi-class task, the preds is group by class_id first, then group by row_id. If you want to get i-th row preds in j-th class, the access way is preds[j * num_data + i]. Returns ------- result : list List with evaluation results. """ if not isinstance(data, Dataset): raise TypeError("Can only eval for Dataset instance") data_idx = -1 if data is self.train_set: data_idx = 0 else: for i in range(len(self.valid_sets)): if data is self.valid_sets[i]: data_idx = i + 1 break # need to push new valid data if data_idx == -1: self.add_valid(data, name) data_idx = self.__num_dataset - 1 return self.__inner_eval(name, data_idx, feval) def eval_train(self, feval=None): """Evaluate for training data. Parameters ---------- feval : callable or None, optional (default=None) Customized evaluation function. Should accept two parameters: preds, train_data, and return (eval_name, eval_result, is_higher_better) or list of such tuples. preds : list or numpy 1-D array The predicted values. If ``fobj`` is specified, predicted values are returned before any transformation, e.g. they are raw margin instead of probability of positive class for binary task in this case. train_data : Dataset The training dataset. eval_name : string The name of evaluation function (without whitespace). eval_result : float The eval result. is_higher_better : bool Is eval result higher better, e.g. AUC is ``is_higher_better``. For multi-class task, the preds is group by class_id first, then group by row_id. If you want to get i-th row preds in j-th class, the access way is preds[j * num_data + i]. Returns ------- result : list List with evaluation results. """ return self.__inner_eval(self._train_data_name, 0, feval) def eval_valid(self, feval=None): """Evaluate for validation data. Parameters ---------- feval : callable or None, optional (default=None) Customized evaluation function. Should accept two parameters: preds, valid_data, and return (eval_name, eval_result, is_higher_better) or list of such tuples. preds : list or numpy 1-D array The predicted values. If ``fobj`` is specified, predicted values are returned before any transformation, e.g. they are raw margin instead of probability of positive class for binary task in this case. valid_data : Dataset The validation dataset. eval_name : string The name of evaluation function (without whitespace). eval_result : float The eval result. is_higher_better : bool Is eval result higher better, e.g. AUC is ``is_higher_better``. For multi-class task, the preds is group by class_id first, then group by row_id. If you want to get i-th row preds in j-th class, the access way is preds[j * num_data + i]. Returns ------- result : list List with evaluation results. """ return [item for i in range(1, self.__num_dataset) for item in self.__inner_eval(self.name_valid_sets[i - 1], i, feval)] def save_model(self, filename, num_iteration=None, start_iteration=0, importance_type='split'): """Save Booster to file. Parameters ---------- filename : string Filename to save Booster. num_iteration : int or None, optional (default=None) Index of the iteration that should be saved. If None, if the best iteration exists, it is saved; otherwise, all iterations are saved. If <= 0, all iterations are saved. start_iteration : int, optional (default=0) Start index of the iteration that should be saved. importance_type : string, optional (default="split") What type of feature importance should be saved. If "split", result contains numbers of times the feature is used in a model. If "gain", result contains total gains of splits which use the feature. Returns ------- self : Booster Returns self. """ if num_iteration is None: num_iteration = self.best_iteration importance_type_int = FEATURE_IMPORTANCE_TYPE_MAPPER[importance_type] _safe_call(_LIB.LGBM_BoosterSaveModel( self.handle, ctypes.c_int(start_iteration), ctypes.c_int(num_iteration), ctypes.c_int(importance_type_int), c_str(filename))) _dump_pandas_categorical(self.pandas_categorical, filename) return self def shuffle_models(self, start_iteration=0, end_iteration=-1): """Shuffle models. Parameters ---------- start_iteration : int, optional (default=0) The first iteration that will be shuffled. end_iteration : int, optional (default=-1) The last iteration that will be shuffled. If <= 0, means the last available iteration. Returns ------- self : Booster Booster with shuffled models. """ _safe_call(_LIB.LGBM_BoosterShuffleModels( self.handle, ctypes.c_int(start_iteration), ctypes.c_int(end_iteration))) return self def model_from_string(self, model_str, verbose=True): """Load Booster from a string. Parameters ---------- model_str : string Model will be loaded from this string. verbose : bool, optional (default=True) Whether to print messages while loading model. Returns ------- self : Booster Loaded Booster object. """ if self.handle is not None: _safe_call(_LIB.LGBM_BoosterFree(self.handle)) self._free_buffer() self.handle = ctypes.c_void_p() out_num_iterations = ctypes.c_int(0) _safe_call(_LIB.LGBM_BoosterLoadModelFromString( c_str(model_str), ctypes.byref(out_num_iterations), ctypes.byref(self.handle))) out_num_class = ctypes.c_int(0) _safe_call(_LIB.LGBM_BoosterGetNumClasses( self.handle, ctypes.byref(out_num_class))) if verbose: _log_info(f'Finished loading model, total used {int(out_num_iterations.value)} iterations') self.__num_class = out_num_class.value self.pandas_categorical = _load_pandas_categorical(model_str=model_str) return self def model_to_string(self, num_iteration=None, start_iteration=0, importance_type='split'): """Save Booster to string. Parameters ---------- num_iteration : int or None, optional (default=None) Index of the iteration that should be saved. If None, if the best iteration exists, it is saved; otherwise, all iterations are saved. If <= 0, all iterations are saved. start_iteration : int, optional (default=0) Start index of the iteration that should be saved. importance_type : string, optional (default="split") What type of feature importance should be saved. If "split", result contains numbers of times the feature is used in a model. If "gain", result contains total gains of splits which use the feature. Returns ------- str_repr : string String representation of Booster. """ if num_iteration is None: num_iteration = self.best_iteration importance_type_int = FEATURE_IMPORTANCE_TYPE_MAPPER[importance_type] buffer_len = 1 << 20 tmp_out_len = ctypes.c_int64(0) string_buffer = ctypes.create_string_buffer(buffer_len) ptr_string_buffer = ctypes.c_char_p(*[ctypes.addressof(string_buffer)]) _safe_call(_LIB.LGBM_BoosterSaveModelToString( self.handle, ctypes.c_int(start_iteration), ctypes.c_int(num_iteration), ctypes.c_int(importance_type_int), ctypes.c_int64(buffer_len), ctypes.byref(tmp_out_len), ptr_string_buffer)) actual_len = tmp_out_len.value # if buffer length is not long enough, re-allocate a buffer if actual_len > buffer_len: string_buffer = ctypes.create_string_buffer(actual_len) ptr_string_buffer = ctypes.c_char_p(*[ctypes.addressof(string_buffer)]) _safe_call(_LIB.LGBM_BoosterSaveModelToString( self.handle, ctypes.c_int(start_iteration), ctypes.c_int(num_iteration), ctypes.c_int(importance_type_int), ctypes.c_int64(actual_len), ctypes.byref(tmp_out_len), ptr_string_buffer)) ret = string_buffer.value.decode('utf-8') ret += _dump_pandas_categorical(self.pandas_categorical) return ret def dump_model(self, num_iteration=None, start_iteration=0, importance_type='split'): """Dump Booster to JSON format. Parameters ---------- num_iteration : int or None, optional (default=None) Index of the iteration that should be dumped. If None, if the best iteration exists, it is dumped; otherwise, all iterations are dumped. If <= 0, all iterations are dumped. start_iteration : int, optional (default=0) Start index of the iteration that should be dumped. importance_type : string, optional (default="split") What type of feature importance should be dumped. If "split", result contains numbers of times the feature is used in a model. If "gain", result contains total gains of splits which use the feature. Returns ------- json_repr : dict JSON format of Booster. """ if num_iteration is None: num_iteration = self.best_iteration importance_type_int = FEATURE_IMPORTANCE_TYPE_MAPPER[importance_type] buffer_len = 1 << 20 tmp_out_len = ctypes.c_int64(0) string_buffer = ctypes.create_string_buffer(buffer_len) ptr_string_buffer = ctypes.c_char_p(*[ctypes.addressof(string_buffer)]) _safe_call(_LIB.LGBM_BoosterDumpModel( self.handle, ctypes.c_int(start_iteration), ctypes.c_int(num_iteration), ctypes.c_int(importance_type_int), ctypes.c_int64(buffer_len), ctypes.byref(tmp_out_len), ptr_string_buffer)) actual_len = tmp_out_len.value # if buffer length is not long enough, reallocate a buffer if actual_len > buffer_len: string_buffer = ctypes.create_string_buffer(actual_len) ptr_string_buffer = ctypes.c_char_p(*[ctypes.addressof(string_buffer)]) _safe_call(_LIB.LGBM_BoosterDumpModel( self.handle, ctypes.c_int(start_iteration), ctypes.c_int(num_iteration), ctypes.c_int(importance_type_int), ctypes.c_int64(actual_len), ctypes.byref(tmp_out_len), ptr_string_buffer)) ret = json.loads(string_buffer.value.decode('utf-8')) ret['pandas_categorical'] = json.loads(json.dumps(self.pandas_categorical, default=json_default_with_numpy)) return ret def predict(self, data, start_iteration=0, num_iteration=None, raw_score=False, pred_leaf=False, pred_contrib=False, data_has_header=False, is_reshape=True, **kwargs): """Make a prediction. Parameters ---------- data : string, numpy array, pandas DataFrame, H2O DataTable's Frame or scipy.sparse Data source for prediction. If string, it represents the path to txt file. start_iteration : int, optional (default=0) Start index of the iteration to predict. If <= 0, starts from the first iteration. num_iteration : int or None, optional (default=None) Total number of iterations used in the prediction. If None, if the best iteration exists and start_iteration <= 0, the best iteration is used; otherwise, all iterations from ``start_iteration`` are used (no limits). If <= 0, all iterations from ``start_iteration`` are used (no limits). raw_score : bool, optional (default=False) Whether to predict raw scores. pred_leaf : bool, optional (default=False) Whether to predict leaf index. pred_contrib : bool, optional (default=False) Whether to predict feature contributions. .. note:: If you want to get more explanations for your model's predictions using SHAP values, like SHAP interaction values, you can install the shap package (https://github.com/slundberg/shap). Note that unlike the shap package, with ``pred_contrib`` we return a matrix with an extra column, where the last column is the expected value. data_has_header : bool, optional (default=False) Whether the data has header. Used only if data is string. is_reshape : bool, optional (default=True) If True, result is reshaped to [nrow, ncol]. **kwargs Other parameters for the prediction. Returns ------- result : numpy array, scipy.sparse or list of scipy.sparse Prediction result. Can be sparse or a list of sparse objects (each element represents predictions for one class) for feature contributions (when ``pred_contrib=True``). """ predictor = self._to_predictor(deepcopy(kwargs)) if num_iteration is None: if start_iteration <= 0: num_iteration = self.best_iteration else: num_iteration = -1 return predictor.predict(data, start_iteration, num_iteration, raw_score, pred_leaf, pred_contrib, data_has_header, is_reshape) def refit(self, data, label, decay_rate=0.9, **kwargs): """Refit the existing Booster by new data. Parameters ---------- data : string, numpy array, pandas DataFrame, H2O DataTable's Frame or scipy.sparse Data source for refit. If string, it represents the path to txt file. label : list, numpy 1-D array or pandas Series / one-column DataFrame Label for refit. decay_rate : float, optional (default=0.9) Decay rate of refit, will use ``leaf_output = decay_rate * old_leaf_output + (1.0 - decay_rate) * new_leaf_output`` to refit trees. **kwargs Other parameters for refit. These parameters will be passed to ``predict`` method. Returns ------- result : Booster Refitted Booster. """ if self.__set_objective_to_none: raise LightGBMError('Cannot refit due to null objective function.') predictor = self._to_predictor(deepcopy(kwargs)) leaf_preds = predictor.predict(data, -1, pred_leaf=True) nrow, ncol = leaf_preds.shape out_is_linear = ctypes.c_bool(False) _safe_call(_LIB.LGBM_BoosterGetLinear( self.handle, ctypes.byref(out_is_linear))) new_params = deepcopy(self.params) new_params["linear_tree"] = out_is_linear.value train_set = Dataset(data, label, silent=True, params=new_params) new_params['refit_decay_rate'] = decay_rate new_booster = Booster(new_params, train_set) # Copy models _safe_call(_LIB.LGBM_BoosterMerge( new_booster.handle, predictor.handle)) leaf_preds = leaf_preds.reshape(-1) ptr_data, _, _ = c_int_array(leaf_preds) _safe_call(_LIB.LGBM_BoosterRefit( new_booster.handle, ptr_data, ctypes.c_int32(nrow), ctypes.c_int32(ncol))) new_booster.network = self.network new_booster.__attr = self.__attr.copy() return new_booster def get_leaf_output(self, tree_id, leaf_id): """Get the output of a leaf. Parameters ---------- tree_id : int The index of the tree. leaf_id : int The index of the leaf in the tree. Returns ------- result : float The output of the leaf. """ ret = ctypes.c_double(0) _safe_call(_LIB.LGBM_BoosterGetLeafValue( self.handle, ctypes.c_int(tree_id), ctypes.c_int(leaf_id), ctypes.byref(ret))) return ret.value def _to_predictor(self, pred_parameter=None): """Convert to predictor.""" predictor = _InnerPredictor(booster_handle=self.handle, pred_parameter=pred_parameter) predictor.pandas_categorical = self.pandas_categorical return predictor def num_feature(self): """Get number of features. Returns ------- num_feature : int The number of features. """ out_num_feature = ctypes.c_int(0) _safe_call(_LIB.LGBM_BoosterGetNumFeature( self.handle, ctypes.byref(out_num_feature))) return out_num_feature.value def feature_name(self): """Get names of features. Returns ------- result : list List with names of features. """ num_feature = self.num_feature() # Get name of features tmp_out_len = ctypes.c_int(0) reserved_string_buffer_size = 255 required_string_buffer_size = ctypes.c_size_t(0) string_buffers = [ctypes.create_string_buffer(reserved_string_buffer_size) for _ in range(num_feature)] ptr_string_buffers = (ctypes.c_char_p * num_feature)(*map(ctypes.addressof, string_buffers)) _safe_call(_LIB.LGBM_BoosterGetFeatureNames( self.handle, ctypes.c_int(num_feature), ctypes.byref(tmp_out_len), ctypes.c_size_t(reserved_string_buffer_size), ctypes.byref(required_string_buffer_size), ptr_string_buffers)) if num_feature != tmp_out_len.value: raise ValueError("Length of feature names doesn't equal with num_feature") actual_string_buffer_size = required_string_buffer_size.value # if buffer length is not long enough, reallocate buffers if reserved_string_buffer_size < actual_string_buffer_size: string_buffers = [ctypes.create_string_buffer(actual_string_buffer_size) for _ in range(num_feature)] ptr_string_buffers = (ctypes.c_char_p * num_feature)(*map(ctypes.addressof, string_buffers)) _safe_call(_LIB.LGBM_BoosterGetFeatureNames( self.handle, ctypes.c_int(num_feature), ctypes.byref(tmp_out_len), ctypes.c_size_t(actual_string_buffer_size), ctypes.byref(required_string_buffer_size), ptr_string_buffers)) return [string_buffers[i].value.decode('utf-8') for i in range(num_feature)] def feature_importance(self, importance_type='split', iteration=None): """Get feature importances. Parameters ---------- importance_type : string, optional (default="split") How the importance is calculated. If "split", result contains numbers of times the feature is used in a model. If "gain", result contains total gains of splits which use the feature. iteration : int or None, optional (default=None) Limit number of iterations in the feature importance calculation. If None, if the best iteration exists, it is used; otherwise, all trees are used. If <= 0, all trees are used (no limits). Returns ------- result : numpy array Array with feature importances. """ if iteration is None: iteration = self.best_iteration importance_type_int = FEATURE_IMPORTANCE_TYPE_MAPPER[importance_type] result = np.zeros(self.num_feature(), dtype=np.float64) _safe_call(_LIB.LGBM_BoosterFeatureImportance( self.handle, ctypes.c_int(iteration), ctypes.c_int(importance_type_int), result.ctypes.data_as(ctypes.POINTER(ctypes.c_double)))) if importance_type_int == 0: return result.astype(np.int32) else: return result def get_split_value_histogram(self, feature, bins=None, xgboost_style=False): """Get split value histogram for the specified feature. Parameters ---------- feature : int or string The feature name or index the histogram is calculated for. If int, interpreted as index. If string, interpreted as name. .. warning:: Categorical features are not supported. bins : int, string or None, optional (default=None) The maximum number of bins. If None, or int and > number of unique split values and ``xgboost_style=True``, the number of bins equals number of unique split values. If string, it should be one from the list of the supported values by ``numpy.histogram()`` function. xgboost_style : bool, optional (default=False) Whether the returned result should be in the same form as it is in XGBoost. If False, the returned value is tuple of 2 numpy arrays as it is in ``numpy.histogram()`` function. If True, the returned value is matrix, in which the first column is the right edges of non-empty bins and the second one is the histogram values. Returns ------- result_tuple : tuple of 2 numpy arrays If ``xgboost_style=False``, the values of the histogram of used splitting values for the specified feature and the bin edges. result_array_like : numpy array or pandas DataFrame (if pandas is installed) If ``xgboost_style=True``, the histogram of used splitting values for the specified feature. """ def add(root): """Recursively add thresholds.""" if 'split_index' in root: # non-leaf if feature_names is not None and isinstance(feature, str): split_feature = feature_names[root['split_feature']] else: split_feature = root['split_feature'] if split_feature == feature: if isinstance(root['threshold'], str): raise LightGBMError('Cannot compute split value histogram for the categorical feature') else: values.append(root['threshold']) add(root['left_child']) add(root['right_child']) model = self.dump_model() feature_names = model.get('feature_names') tree_infos = model['tree_info'] values = [] for tree_info in tree_infos: add(tree_info['tree_structure']) if bins is None or isinstance(bins, int) and xgboost_style: n_unique = len(np.unique(values)) bins = max(min(n_unique, bins) if bins is not None else n_unique, 1) hist, bin_edges = np.histogram(values, bins=bins) if xgboost_style: ret = np.column_stack((bin_edges[1:], hist)) ret = ret[ret[:, 1] > 0] if PANDAS_INSTALLED: return pd_DataFrame(ret, columns=['SplitValue', 'Count']) else: return ret else: return hist, bin_edges def __inner_eval(self, data_name, data_idx, feval=None): """Evaluate training or validation data.""" if data_idx >= self.__num_dataset: raise ValueError("Data_idx should be smaller than number of dataset") self.__get_eval_info() ret = [] if self.__num_inner_eval > 0: result = np.zeros(self.__num_inner_eval, dtype=np.float64) tmp_out_len = ctypes.c_int(0) _safe_call(_LIB.LGBM_BoosterGetEval( self.handle, ctypes.c_int(data_idx), ctypes.byref(tmp_out_len), result.ctypes.data_as(ctypes.POINTER(ctypes.c_double)))) if tmp_out_len.value != self.__num_inner_eval: raise ValueError("Wrong length of eval results") for i in range(self.__num_inner_eval): ret.append((data_name, self.__name_inner_eval[i], result[i], self.__higher_better_inner_eval[i])) if callable(feval): feval = [feval] if feval is not None: if data_idx == 0: cur_data = self.train_set else: cur_data = self.valid_sets[data_idx - 1] for eval_function in feval: if eval_function is None: continue feval_ret = eval_function(self.__inner_predict(data_idx), cur_data) if isinstance(feval_ret, list): for eval_name, val, is_higher_better in feval_ret: ret.append((data_name, eval_name, val, is_higher_better)) else: eval_name, val, is_higher_better = feval_ret ret.append((data_name, eval_name, val, is_higher_better)) return ret def __inner_predict(self, data_idx): """Predict for training and validation dataset.""" if data_idx >= self.__num_dataset: raise ValueError("Data_idx should be smaller than number of dataset") if self.__inner_predict_buffer[data_idx] is None: if data_idx == 0: n_preds = self.train_set.num_data() * self.__num_class else: n_preds = self.valid_sets[data_idx - 1].num_data() * self.__num_class self.__inner_predict_buffer[data_idx] = np.zeros(n_preds, dtype=np.float64) # avoid to predict many time in one iteration if not self.__is_predicted_cur_iter[data_idx]: tmp_out_len = ctypes.c_int64(0) data_ptr = self.__inner_predict_buffer[data_idx].ctypes.data_as(ctypes.POINTER(ctypes.c_double)) _safe_call(_LIB.LGBM_BoosterGetPredict( self.handle, ctypes.c_int(data_idx), ctypes.byref(tmp_out_len), data_ptr)) if tmp_out_len.value != len(self.__inner_predict_buffer[data_idx]): raise ValueError(f"Wrong length of predict results for data {data_idx}") self.__is_predicted_cur_iter[data_idx] = True return self.__inner_predict_buffer[data_idx] def __get_eval_info(self): """Get inner evaluation count and names.""" if self.__need_reload_eval_info: self.__need_reload_eval_info = False out_num_eval = ctypes.c_int(0) # Get num of inner evals _safe_call(_LIB.LGBM_BoosterGetEvalCounts( self.handle, ctypes.byref(out_num_eval))) self.__num_inner_eval = out_num_eval.value if self.__num_inner_eval > 0: # Get name of eval metrics tmp_out_len = ctypes.c_int(0) reserved_string_buffer_size = 255 required_string_buffer_size = ctypes.c_size_t(0) string_buffers = [ ctypes.create_string_buffer(reserved_string_buffer_size) for _ in range(self.__num_inner_eval) ] ptr_string_buffers = (ctypes.c_char_p * self.__num_inner_eval)(*map(ctypes.addressof, string_buffers)) _safe_call(_LIB.LGBM_BoosterGetEvalNames( self.handle, ctypes.c_int(self.__num_inner_eval), ctypes.byref(tmp_out_len), ctypes.c_size_t(reserved_string_buffer_size), ctypes.byref(required_string_buffer_size), ptr_string_buffers)) if self.__num_inner_eval != tmp_out_len.value: raise ValueError("Length of eval names doesn't equal with num_evals") actual_string_buffer_size = required_string_buffer_size.value # if buffer length is not long enough, reallocate buffers if reserved_string_buffer_size < actual_string_buffer_size: string_buffers = [ ctypes.create_string_buffer(actual_string_buffer_size) for _ in range(self.__num_inner_eval) ] ptr_string_buffers = (ctypes.c_char_p * self.__num_inner_eval)(*map(ctypes.addressof, string_buffers)) _safe_call(_LIB.LGBM_BoosterGetEvalNames( self.handle, ctypes.c_int(self.__num_inner_eval), ctypes.byref(tmp_out_len), ctypes.c_size_t(actual_string_buffer_size), ctypes.byref(required_string_buffer_size), ptr_string_buffers)) self.__name_inner_eval = [ string_buffers[i].value.decode('utf-8') for i in range(self.__num_inner_eval) ] self.__higher_better_inner_eval = [ name.startswith(('auc', 'ndcg@', 'map@', 'average_precision')) for name in self.__name_inner_eval ] def attr(self, key): """Get attribute string from the Booster. Parameters ---------- key : string The name of the attribute. Returns ------- value : string or None The attribute value. Returns None if attribute does not exist. """ return self.__attr.get(key, None) def set_attr(self, **kwargs): """Set attributes to the Booster. Parameters ---------- **kwargs The attributes to set. Setting a value to None deletes an attribute. Returns ------- self : Booster Booster with set attributes. """ for key, value in kwargs.items(): if value is not None: if not isinstance(value, str): raise ValueError("Only string values are accepted") self.__attr[key] = value else: self.__attr.pop(key, None) return self
mit
6,481,589,992,037,159,000
41.512168
161
0.553914
false
llvm/llvm-zorg
zorg/buildbot/builders/AnnotatedBuilder.py
1
3401
from buildbot.process.properties import WithProperties from buildbot.steps.shell import SetProperty from zorg.buildbot.commands.AnnotatedCommand import AnnotatedCommand from zorg.buildbot.process.factory import LLVMBuildFactory def getAnnotatedBuildFactory( script, clean=False, depends_on_projects=None, env=None, extra_args=None, timeout=1200, checkout_llvm_sources=True): """ Returns a new build factory that uses AnnotatedCommand, which allows the build to be run by version-controlled scripts that do not require a buildmaster restart to update. script: script under "builders/annotated" to be run by python clean: set to true for a clean build of llvm depends_on_projects: which subprojects to enable llvm must be first in the list (default: ["llvm", "clang", "compiler-rt", "libcxx", "libcxxabi", "libunwind", "lld"]) env: environment overrides (map; default is no overrides) extra_args: extra arguments to pass to the script (default: []) timeout: specifies the builder's timeout in seconds (default: 1200) """ if depends_on_projects is None: depends_on_projects = [ "llvm", "clang", "compiler-rt", "libcxx", "libcxxabi", "libunwind", "lld"] if extra_args is None: extra_args = [] f = LLVMBuildFactory( clean=clean, depends_on_projects=depends_on_projects) if clean: f.addStep(SetProperty(property='clean', command='echo 1')) # We normally use the clean property to indicate that we want a # clean build, but AnnotatedCommand uses the clobber property # instead. Therefore, set clobber if clean is set to a truthy # value. This will cause AnnotatedCommand to set # BUILDBOT_CLOBBER=1 in the environment, which is how we # communicate to the script that we need a clean build. f.addStep(SetProperty( property='clobber', command='echo 1', doStepIf=lambda step: step.build.getProperty('clean', False))) merged_env = { 'TERM': 'dumb' # Be cautious and disable color output from all tools. } if env is not None: # Overwrite pre-set items with the given ones, so user can set # anything. merged_env.update(env) scripts_dir = "annotated" # Check out zorg so we can run the annotator scripts. f.addGetSourcecodeForProject( name='update-annotated-scripts', project='zorg', src_dir='llvm-zorg', alwaysUseLatest=True) if checkout_llvm_sources: f.addGetSourcecodeSteps() extra_args_with_props = [WithProperties(arg) for arg in extra_args] # Explicitly use '/' as separator, because it works on *nix and Windows. if script.startswith('/'): command = [script] else: script_path = "../llvm-zorg/zorg/buildbot/builders/annotated/%s" % (script) command = ["python", script_path, WithProperties("--jobs=%(jobs:-)s")] command += extra_args_with_props f.addStep(AnnotatedCommand(name="annotate", description="annotate", timeout=timeout, haltOnFailure=True, command=command, env=merged_env)) return f
apache-2.0
84,255,668,484,032,700
34.427083
81
0.628051
false
cbitterfield/JobCard
archive/bulkvideosize.py
1
3578
#!/opt/local/bin/python # encoding: utf-8 ''' bulkvideosize -- shortdesc bulkvideosize is a description It defines classes_and_methods @author: user_name @copyright: 2017 organization_name. All rights reserved. @license: license @contact: user_email @deffield updated: Updated ''' import sys import os import argparse __all__ = [] __version__ = 0.1 __date__ = '2017-10-20' __updated__ = '2017-10-20' DEBUG = 1 TESTRUN = 0 PROFILE = 0 program_name = os.path.basename(sys.argv[0]) # Setup argument parser parser = argparse.ArgumentParser() group = parser.add_mutually_exclusive_group() group.add_argument("-v", "--verbose", action="store_true", help="Display detailed debugging information") parser.add_argument("-l","--logfile", action="store", help="Write Logfile if ommitted write to STDOUT") parser.add_argument("-s","--source", action="store", help="Source Directory") # Process arguments args = parser.parse_args() verbose = args.verbose path = args.source logfile = args.logfile if verbose > 0: print("Verbose mode on") ## Use Get Video Size Function def getvideosize(src): import shlex import os from string import Template import subprocess import datetime FFPROBE="/opt/local/bin/ffprobe" Error = False log_text = open(logfile, "w") for video in os.listdir(src): if video.endswith(".mp4"): CMD_TEMPLATE = "$FFPROBE -v error -of flat=s=_ -select_streams v:0 -show_entries stream=height,width,bit_rate,duration '$VIDEO'" CMD = Template(CMD_TEMPLATE).safe_substitute(FFPROBE=FFPROBE, VIDEO=src + "/" + video) videoName = os.path.basename(video) pathName = os.path.dirname(src + "/" + video) #print("Get the Video Size Information for Video: " + videoName ) #print("Source Dir:" + pathName ) #print("getVideoSizeCMD:\n " ) pCMD = shlex.split(CMD) #print("Command:" + CMD) try: result=subprocess.check_output(pCMD) cWidth = result.splitlines(True)[0] cHeight = result.splitlines(True)[1] cDuration = result.splitlines(True)[2] cBit_Rate = result.splitlines(True)[3] lWidth = cWidth.split("=")[1] lHeight = cHeight.split("=")[1] lDuration = cDuration.split("=")[1] lBitRate = cBit_Rate.split("=")[1] Width = lWidth.replace('\n','') Height = lHeight.replace('\n','') Duration = lDuration.replace('\n','') BitRate = lBitRate.replace('\n','') Duration = Duration.replace('"','') BitRate = BitRate.replace('"','') sizeofVideo = str(Width) + "x" + str(Height) myduration = str(datetime.timedelta(seconds=int(float(Duration)))) mybitrate = str(int(BitRate)/1000) #print("Video Source: " + video + " Size: " + sizeofVideo + " Duration: " + myduration + " BitRate:" + mybitrate + " kbps" ) log_text.write("Video Source: " + video + " Size: " + sizeofVideo + " Duration: " + myduration + " BitRate:" + mybitrate + " kbps\n") except: #print("Video Source: " + video + "ERROR") log_text.write("Video Source: " + video + "ERROR\n") log_text.close() return(Error, sizeofVideo, Duration, BitRate) myError, mySize, myDuraction, myBitrate = getvideosize(path)
gpl-3.0
-261,463,053,978,957,760
28.089431
149
0.58161
false
Dapid/pywt
demo/dwt_signal_decomposition.py
1
1789
#!/usr/bin/env python # -*- coding: utf-8 -*- import os import numpy as np import matplotlib.pyplot as plt import pywt ecg = np.load(os.path.join('data', 'ecg.npy')) data1 = np.concatenate((np.arange(1, 400), np.arange(398, 600), np.arange(601, 1024))) x = np.linspace(0.082, 2.128, num=1024)[::-1] data2 = np.sin(40 * np.log(x)) * np.sign((np.log(x))) mode = pywt.MODES.sp1 def plot_signal_decomp(data, w, title): """Decompose and plot a signal S. S = An + Dn + Dn-1 + ... + D1 """ w = pywt.Wavelet(w) a = data ca = [] cd = [] for i in range(5): (a, d) = pywt.dwt(a, w, mode) ca.append(a) cd.append(d) rec_a = [] rec_d = [] for i, coeff in enumerate(ca): coeff_list = [coeff, None] + [None] * i rec_a.append(pywt.waverec(coeff_list, w)) for i, coeff in enumerate(cd): coeff_list = [None, coeff] + [None] * i rec_d.append(pywt.waverec(coeff_list, w)) fig = plt.figure() ax_main = fig.add_subplot(len(rec_a) + 1, 1, 1) ax_main.set_title(title) ax_main.plot(data) ax_main.set_xlim(0, len(data) - 1) for i, y in enumerate(rec_a): ax = fig.add_subplot(len(rec_a) + 1, 2, 3 + i * 2) ax.plot(y, 'r') ax.set_xlim(0, len(y) - 1) ax.set_ylabel("A%d" % (i + 1)) for i, y in enumerate(rec_d): ax = fig.add_subplot(len(rec_d) + 1, 2, 4 + i * 2) ax.plot(y, 'g') ax.set_xlim(0, len(y) - 1) ax.set_ylabel("D%d" % (i + 1)) plot_signal_decomp(data1, 'coif5', "DWT: Signal irregularity") plot_signal_decomp(data2, 'sym5', "DWT: Frequency and phase change - Symmlets5") plot_signal_decomp(ecg, 'sym5', "DWT: Ecg sample - Symmlets5") plt.show()
mit
5,571,234,884,135,789,000
23.847222
80
0.536613
false
danrg/RGT-tool
src/RGT/XML/SVG/Attribs/xlinkAttributes.py
1
4217
from RGT.XML.SVG.Attribs.basicSvgAttribute import BasicSvgAttribute from types import StringType class XlinkAttributes(BasicSvgAttribute): ATTRIBUTE_XLINK_HREF = 'xlink:href' ATTRIBUTE_XLINK_SHOW = 'xlink:show' ATTRIBUTE_XLINK_ACTUATE = 'xlink:actuate' ATTRIBUTE_XLINK_TYPE = 'xlink:type' ATTRIBUTE_XLINK_ROLE = 'xlink:role' ATTRIBUTE_XLINK_ARCROLE = 'xlink:arcrole' ATTRIBUTE_XLINK_TITLE = 'xlink:title' def __init__(self): BasicSvgAttribute.__init__(self) def setXlinkHref(self, data): if data is not None: if type(data) is not StringType: data = str(data) self._setNodeAttribute(self.ATTRIBUTE_XLINK_HREF, data) def setXlinkShow(self, data): allowedValues = ['new', 'replace', 'embed', 'other', 'none'] if data is not None: if data not in allowedValues: values = '' for value in allowedValues: values += value + ', ' values = values[0: len(values) - 2] raise ValueError('Value not allowed, only ' + values + 'are allowed') else: self._setNodeAttribute(self.ATTRIBUTE_XLINK_SHOW, data) def setXlinkActuate(self, data): allowedValues = ['onLoad'] if data is not None: if data not in allowedValues: values = '' for value in allowedValues: values += value + ', ' values = values[0: len(values) - 2] raise ValueError('Value not allowed, only ' + values + 'are allowed') else: self._setNodeAttribute(self.ATTRIBUTE_XLINK_ACTUATE, data) def setXlinkType(self, data): allowedValues = ['simple'] if data is not None: if data not in allowedValues: values = '' for value in allowedValues: values += value + ', ' values = values[0: len(values) - 2] raise ValueError('Value not allowed, only ' + values + 'are allowed') else: self._setNodeAttribute(self.ATTRIBUTE_XLINK_TYPE, data) def setXlinkRole(self, data): if data is not None: if type(data) is not StringType: data = str(data) self._setNodeAttribute(self.ATTRIBUTE_XLINK_ROLE, data) def setXlinkArcrole(self, data): if data is not None: if type(data) is not StringType: data = str(data) self._setNodeAttribute(self.ATTRIBUTE_XLINK_ARCROLE, data) def setXlinkTitle(self, data): if data is not None: if type(data) is not StringType: data = str(data) self._setNodeAttribute(self.ATTRIBUTE_XLINK_TITLE, data) def getXlinkHref(self): node = self._getNodeAttribute(self.ATTRIBUTE_XLINK_HREF) if node is not None: return node.nodeValue return None def getXlinkShow(self): node = self._getNodeAttribute(self.ATTRIBUTE_XLINK_SHOW) if node is not None: return node.nodeValue return None def getXlinkActuate(self): node = self._getNodeAttribute(self.ATTRIBUTE_XLINK_ACTUATE) if node is not None: return node.nodeValue return None def getXlinkType(self): node = self._getNodeAttribute(self.ATTRIBUTE_XLINK_TYPE) if node is not None: return node.nodeValue return None def getXlinkRole(self): node = self._getNodeAttribute(self.ATTRIBUTE_XLINK_ROLE) if node is not None: return node.nodeValue return None def getXlinkArcrole(self): node = self._getNodeAttribute(self.ATTRIBUTE_XLINK_ARCROLE) if node is not None: return node.nodeValue return None def getXlinkTitle(self): node = self._getNodeAttribute(self.ATTRIBUTE_XLINK_TITLE) if node is not None: return node.nodeValue return None
mit
2,037,298,200,612,529,700
32.867769
85
0.564857
false
hsnr-gamera/gamera
gamera/gui/gaoptimizer/StopCriteriaPanel.py
1
4654
# # Copyright (C) 2012 Tobias Bolten # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. # import wx from gamera.gui import compat_wx from gamera.gui.gaoptimizer.ExpertSettingPanel import * #------------------------------------------------------------------------------- class StopCriteriaPanel(ExpertSettingPanel): #------------------------------------------------------------------------------- #--------------------------------------------------------------------------- def __init__(self, parent, id): #--------------------------------------------------------------------------- ExpertSettingPanel.__init__(self, parent, id) sizer = wx.GridBagSizer(hgap=5, vgap=5) self.SetSizer(sizer) # best fitness self.bestFitness = wx.CheckBox(self, -1, "Perfect LOO-recognition reached", \ name = "bestFitnessStop") sizer.Add(self.bestFitness, pos=(0,0), \ flag = wx.LEFT | wx.RIGHT | wx.TOP | wx.EXPAND, border=10) self.genericWidgets.append(self.bestFitness) # generation counter self.maxGeneration = wx.CheckBox(self, -1, "Max. number of generations", \ name = "maxGenerations") sizer.Add(self.maxGeneration, pos=(1,0), \ flag = wx.LEFT | wx.RIGHT | wx.EXPAND, border = 10) self.maxGenerationCount = wx.SpinCtrl(self, -1, size=(100,-1), \ min=10, max=5000, value='100') compat_wx.set_tool_tip(self.maxGenerationCount, "Number of generations") self.maxGenerationCount.Disable() sizer.Add(self.maxGenerationCount, pos=(1,1), \ flag = wx.LEFT | wx.RIGHT | wx.EXPAND, border=10) self.genericWidgets.append(self.maxGeneration) self.AddChildToParent(self.maxGeneration, self.maxGenerationCount) # fitness counter self.maxFitnessEval = wx.CheckBox(self, -1, "Max. number of fitness evals", \ name = "maxFitnessEvals") sizer.Add(self.maxFitnessEval, pos=(2,0), \ flag = wx.LEFT | wx.RIGHT | wx.EXPAND, border=10) self.maxFitnessEvalCount = wx.SpinCtrl(self, -1, size=(100,-1), \ min=10, max=50000, value='5000') compat_wx.set_tool_tip(self.maxFitnessEvalCount, "Number of evaluations") self.maxFitnessEvalCount.Disable() sizer.Add(self.maxFitnessEvalCount, pos=(2,1), \ flag = wx.LEFT | wx.RIGHT | wx.EXPAND, border=10) self.genericWidgets.append(self.maxFitnessEval) self.AddChildToParent(self.maxFitnessEval, self.maxFitnessEvalCount) # steady state continue self.steadyContinue = wx.CheckBox(self, -1, "Steady state continue", \ name = "steadyStateStop") self.steadyContinue.SetValue(True) sizer.Add(self.steadyContinue, pos=(3,0), \ flag = wx.LEFT | wx.RIGHT | wx.BOTTOM | wx.EXPAND, border=10) self.steadyContinueMin = wx.SpinCtrl(self, -1, size=(100,-1), \ min=10, max=250000, value='40') compat_wx.set_tool_tip(self.steadyContinueMin, "Minimum generations") sizer.Add(self.steadyContinueMin, pos=(3,1), \ flag = wx.LEFT | wx.RIGHT | wx.BOTTOM | wx.EXPAND, border=10) self.steadyContinueNoChange = wx.SpinCtrl(self, -1, size=(100,-1), \ min=1, max=10000, value='10') compat_wx.set_tool_tip(self.steadyContinueNoChange, "Generations without improvement") sizer.Add(self.steadyContinueNoChange, pos=(3,2), \ flag = wx.LEFT | wx.RIGHT | wx.BOTTOM | wx.EXPAND, border=10) self.genericWidgets.append(self.steadyContinue) self.AddChildToParent(self.steadyContinue, self.steadyContinueMin) self.AddChildToParent(self.steadyContinue, self.steadyContinueNoChange) # bind the EVT_CHECKBOX to the CheckBoxes self.BindEvent(wx.EVT_CHECKBOX, self.OnCheckBox, \ [self.bestFitness, self.maxGeneration, self.maxFitnessEval, self.steadyContinue])
gpl-2.0
-2,199,924,503,062,840,000
46.489796
94
0.613666
false
BenKaehler/q2-feature-classifier
q2_feature_classifier/tests/__init__.py
1
1162
# ---------------------------------------------------------------------------- # Copyright (c) 2016-2019, QIIME 2 development team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file LICENSE, distributed with this software. # ---------------------------------------------------------------------------- import tempfile import shutil from warnings import filterwarnings from qiime2.plugin.testing import TestPluginBase class FeatureClassifierTestPluginBase(TestPluginBase): def setUp(self): try: from q2_feature_classifier.plugin_setup import plugin except ImportError: self.fail("Could not import plugin object.") self.plugin = plugin self.temp_dir = tempfile.TemporaryDirectory( prefix='q2-feature-classifier-test-temp-') filterwarnings('ignore', 'The TaxonomicClassifier ', UserWarning) def _setup_dir(self, filenames, dirfmt): for filename in filenames: filepath = self.get_data_path(filename) shutil.copy(filepath, self.temp_dir.name) return dirfmt(self.temp_dir.name, mode='r')
bsd-3-clause
-7,658,275,673,037,822,000
32.2
78
0.598107
false
kalyan02/dayone
do/lib.py
1
2300
from BeautifulSoup import BeautifulSoup as Soupify import urllib, re import settings import oauth2, urlparse, json from do import settings class DropboxAPI(object): def __init__(self, user): self.user = user dinfo = self.user.social_auth.get(provider='dropbox') access_token = urlparse.parse_qs( dinfo.extra_data['access_token'] ) self.user_token = oauth2.Token(key=access_token['oauth_token'][0],secret=access_token['oauth_token_secret'][0]) self.cons_token = oauth2.Consumer(key=settings.DROPBOX_APP_ID,secret=settings.DROPBOX_API_SECRET) def request( self, api_call, extra_params=None ): self.parameters = { 'oauth_signature_method': oauth2.SignatureMethod_PLAINTEXT.name, 'oauth_timestamp' : oauth2.generate_timestamp(), 'oauth_nonce' : oauth2.generate_nonce(), 'oauth_version' : '1.0', } if type(extra_params) is dict: self.parameters.update(extra_params) self.req = oauth2.Request( url=api_call, parameters=self.parameters ) self.req.sign_request( signature_method=oauth2.SignatureMethod_PLAINTEXT(), token=self.user_token, consumer=self.cons_token) return self.req def call(self,method,params): pass def format_json(json_string): return json.dumps( json.loads( json_string ), indent=4 ) # def file_put_contents( fname, fcon ): # fh = open( fname, 'w+' ) # fh.write( fcon ) # fh.close() # def file_get_contents( fname ): # fh = open( fname, 'r') # return fh.read() # dropbox_url = "https://www.dropbox.com/sh/7gcfvmk9h107ryc/F39GaH7W8C" # con = urllib.urlopen( dropbox_url ).read() # file_put_contents( 'fh.txt', con ) # con = file_get_contents('fh.txt') # scon = Soupify( con ) # entries_url = scon.findAll( 'a', attrs={'href':re.compile('/entries$')} )[0]['href'] # photos_url = scon.findAll( 'a', attrs={'href':re.compile('/photos$')} )[0]['href'] # print entries_url # print photos_url # # entries_page = urllib.urlopen(entries_url).read() # # file_put_contents('entries_page.txt',entries_page) # entries_page = file_get_contents('entries_page.txt') # econ = Soupify(entries_page) # posts = econ.findAll( 'a', attrs={'href':re.compile('\.doentry')} ) # urls = [ each['href'] for i,each in enumerate(posts) if i % 2 == 1 ] # mods = econ.findAll( attrs={'class':'modified-time'} )
gpl-2.0
-606,869,924,962,227,300
33.863636
126
0.677391
false
cfobel/sconspiracy
Python/racy/plugins/qt/sconstools/qt4.py
1
21143
# ***** BEGIN LICENSE BLOCK ***** # Sconspiracy - Copyright (C) IRCAD, 2004-2010. # Distributed under the terms of the BSD Licence as # published by the Open Source Initiative. # ****** END LICENSE BLOCK ****** """SCons.Tool.qt Tool-specific initialization for Qt. There normally shouldn't be any need to import this module directly. It will usually be imported through the generic SCons.Tool.Tool() selection method. Tool provided by http://www.iua.upf.es/~dgarcia/Codders/sconstools.html """ # # Copyright (c) 2001, 2002, 2003, 2004, 2005, 2006, 2007 The SCons Foundation # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY # KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE # WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # __revision__ = "/home/scons/scons/branch.0/branch.96/baseline/src/engine/SCons/Tool/qt.py 0.96.92.D001 2006/04/10 23:13:27 knight" import os.path import re import SCons.Action import SCons.Builder import SCons.Defaults import SCons.Scanner import SCons.Tool import SCons.Util class ToolQtWarning(SCons.Warnings.Warning): pass class GeneratedMocFileNotIncluded(ToolQtWarning): pass class QtdirNotFound(ToolQtWarning): pass SCons.Warnings.enableWarningClass(ToolQtWarning) qrcinclude_re = re.compile(r'<file>([^<]*)</file>', re.M) def transformToWinePath(path) : return os.popen('winepath -w "%s"'%path).read().strip().replace('\\','/') header_extensions = [".h", ".hxx", ".hpp", ".hh"] if SCons.Util.case_sensitive_suffixes('.h', '.H'): header_extensions.append('.H') # TODO: The following two lines will work when integrated back to SCons # TODO: Meanwhile the third line will do the work #cplusplus = __import__('c++', globals(), locals(), []) #cxx_suffixes = cplusplus.CXXSuffixes cxx_suffixes = [".c", ".cxx", ".cpp", ".cc"] def checkMocIncluded(target, source, env): moc = target[0] cpp = source[0] # looks like cpp.includes is cleared before the build stage :-( # not really sure about the path transformations (moc.cwd? cpp.cwd?) :-/ path = SCons.Defaults.CScan.path_function(env, moc.cwd) includes = SCons.Defaults.CScan(cpp, env, path) if not moc in includes: SCons.Warnings.warn( GeneratedMocFileNotIncluded, "Generated moc file '%s' is not included by '%s'" % (str(moc), str(cpp))) def find_file(filename, paths, node_factory): for dir in paths: node = node_factory(filename, dir) if node.rexists(): return node return None class _Automoc: """ Callable class, which works as an emitter for Programs, SharedLibraries and StaticLibraries. """ def __init__(self, objBuilderName): self.objBuilderName = objBuilderName def __call__(self, target, source, env): """ Smart autoscan function. Gets the list of objects for the Program or Lib. Adds objects and builders for the special qt files. """ try: if int(env.subst('$QT4_AUTOSCAN')) == 0: return target, source except ValueError: pass try: debug = int(env.subst('$QT4_DEBUG')) except ValueError: debug = 0 # some shortcuts used in the scanner splitext = SCons.Util.splitext objBuilder = getattr(env, self.objBuilderName) # some regular expressions: # Q_OBJECT detection q_object_search = re.compile(r'[^A-Za-z0-9]Q_OBJECT[^A-Za-z0-9]') # cxx and c comment 'eater' #comment = re.compile(r'(//.*)|(/\*(([^*])|(\*[^/]))*\*/)') # CW: something must be wrong with the regexp. See also bug #998222 # CURRENTLY THERE IS NO TEST CASE FOR THAT # The following is kind of hacky to get builders working properly (FIXME) objBuilderEnv = objBuilder.env objBuilder.env = env mocBuilderEnv = env.Moc4.env env.Moc4.env = env # make a deep copy for the result; MocH objects will be appended out_sources = source[:] for obj in source: if isinstance(obj,basestring): # big kludge! print "scons: qt4: '%s' MAYBE USING AN OLD SCONS VERSION AND NOT CONVERTED TO 'File'. Discarded." % str(obj) continue if not obj.has_builder(): # binary obj file provided if debug: print "scons: qt: '%s' seems to be a binary. Discarded." % str(obj) continue cpp = obj.sources[0] if not splitext(str(cpp))[1] in cxx_suffixes: if debug: print "scons: qt: '%s' is no cxx file. Discarded." % str(cpp) # c or fortran source continue #cpp_contents = comment.sub('', cpp.get_contents()) try: cpp_contents = cpp.get_contents() except: continue # may be an still not generated source h=None for h_ext in header_extensions: # try to find the header file in the corresponding source # directory hname = splitext(cpp.name)[0] + h_ext h = find_file(hname, (cpp.get_dir(),), env.File) if h: if debug: print "scons: qt: Scanning '%s' (header of '%s')" % (str(h), str(cpp)) #h_contents = comment.sub('', h.get_contents()) h_contents = h.get_contents() break if not h and debug: print "scons: qt: no header for '%s'." % (str(cpp)) if h and q_object_search.search(h_contents): # h file with the Q_OBJECT macro found -> add moc_cpp moc_cpp = env.Moc4(h) moc_o = objBuilder(moc_cpp) out_sources.append(moc_o) #moc_cpp.target_scanner = SCons.Defaults.CScan if debug: print "scons: qt: found Q_OBJECT macro in '%s', moc'ing to '%s'" % (str(h), str(moc_cpp)) if cpp and q_object_search.search(cpp_contents): # cpp file with Q_OBJECT macro found -> add moc # (to be included in cpp) moc = env.Moc4(cpp) env.Ignore(moc, moc) if debug: print "scons: qt: found Q_OBJECT macro in '%s', moc'ing to '%s'" % (str(cpp), str(moc)) #moc.source_scanner = SCons.Defaults.CScan # restore the original env attributes (FIXME) objBuilder.env = objBuilderEnv env.Moc4.env = mocBuilderEnv return (target, out_sources) AutomocShared = _Automoc('SharedObject') AutomocStatic = _Automoc('StaticObject') def _detect(env): """Not really safe, but fast method to detect the QT library""" try: return env['QTDIR'] except KeyError: pass try: return os.environ['QTDIR'] except KeyError: pass moc = env.WhereIs('moc-qt4') or env.WhereIs('moc4') or env.WhereIs('moc') if moc: QTDIR = os.path.dirname(os.path.dirname(moc)) SCons.Warnings.warn( QtdirNotFound, "QTDIR variable is not defined, using moc executable as a hint (QTDIR=%s)" % QTDIR) return QTDIR raise SCons.Errors.StopError( QtdirNotFound, "Could not detect Qt 4 installation") return None def generate(env): """Add Builders and construction variables for qt to an Environment.""" def locateQt4Command(env, command, qtdir) : suffixes = [ '-qt4', '-qt4.exe', '4', '4.exe', '', '.exe', ] triedPaths = [] for suffix in suffixes : fullpath = os.path.join(qtdir,'bin',command + suffix) if os.access(fullpath, os.X_OK) : return fullpath triedPaths.append(fullpath) fullpath = env.Detect([command+'-qt4', command+'4', command]) if not (fullpath is None) : return fullpath raise Exception("Qt4 command '" + command + "' not found. Tried: " + ', '.join(triedPaths)) CLVar = SCons.Util.CLVar Action = SCons.Action.Action Builder = SCons.Builder.Builder splitext = SCons.Util.splitext env['QTDIR'] = _detect(env) # TODO: 'Replace' should be 'SetDefault' # env.SetDefault( env.Replace( QTDIR = env['QTDIR'], QT4_BINPATH = os.path.join('$QTDIR', 'bin'), QT4_CPPPATH = os.path.join('$QTDIR', 'include'), QT4_LIBPATH = os.path.join('$QTDIR', 'lib'), # TODO: This is not reliable to QTDIR value changes but needed in order to support '-qt4' variants QT4_MOC = locateQt4Command(env,'moc', env['QTDIR']), QT4_UIC = locateQt4Command(env,'uic', env['QTDIR']), QT4_RCC = locateQt4Command(env,'rcc', env['QTDIR']), QT4_LUPDATE = locateQt4Command(env,'lupdate', env['QTDIR']), QT4_LRELEASE = locateQt4Command(env,'lrelease', env['QTDIR']), QT4_LIB = '', # KLUDGE to avoid linking qt3 library QT4_AUTOSCAN = 0, # Should the qt tool try to figure out, which sources are to be moc'ed? # Some QT specific flags. I don't expect someone wants to # manipulate those ... QT4_UICFLAGS = CLVar(''), QT4_MOCFROMHFLAGS = CLVar(''), QT4_MOCFROMCXXFLAGS = CLVar('-i'), QT4_QRCFLAGS = '', # suffixes/prefixes for the headers / sources to generate QT4_UISUFFIX = '.ui', QT4_UICDECLPREFIX = 'ui_', QT4_UICDECLSUFFIX = '.h', QT4_MOCINCPREFIX = '-I', QT4_MOCHPREFIX = 'moc_', QT4_MOCHSUFFIX = '$CXXFILESUFFIX', QT4_MOCCXXPREFIX = '', QT4_MOCCXXSUFFIX = '.moc', QT4_QRCSUFFIX = '.qrc', QT4_QRCCXXSUFFIX = '$CXXFILESUFFIX', QT4_QRCCXXPREFIX = 'qrc_', QT4_MOCCPPPATH = [], QT4_MOCINCFLAGS = '$( ${_concat(QT4_MOCINCPREFIX, QT4_MOCCPPPATH, INCSUFFIX, __env__, RDirs)} $)', # Commands for the qt support ... QT4_UICCOM = '$QT4_UIC $QT4_UICFLAGS -o $TARGET $SOURCE', QT4_MOCFROMHCOM = '$QT4_MOC $QT4_MOCFROMHFLAGS $QT4_MOCINCFLAGS -o $TARGET $SOURCE', QT4_MOCFROMCXXCOM = [ '$QT4_MOC $QT4_MOCFROMCXXFLAGS $QT4_MOCINCFLAGS -o $TARGET $SOURCE', Action(checkMocIncluded,None)], QT4_LUPDATECOM = '$QT4_LUPDATE $SOURCE -ts $TARGET', QT4_LRELEASECOM = '$QT4_LRELEASE $SOURCE', QT4_RCCCOM = '$QT4_RCC $QT4_QRCFLAGS $SOURCE -o $TARGET -name ${SOURCE.filebase}', ) # Translation builder tsbuilder = Builder( action = SCons.Action.Action('$QT4_LUPDATECOM'), #,'$QT4_LUPDATECOMSTR'), multi=1 ) env.Append( BUILDERS = { 'Ts': tsbuilder } ) qmbuilder = Builder( action = SCons.Action.Action('$QT4_LRELEASECOM'),# , '$QT4_LRELEASECOMSTR'), src_suffix = '.ts', suffix = '.qm', single_source = True ) env.Append( BUILDERS = { 'Qm': qmbuilder } ) # Resource builder def scanResources(node, env, path, arg): # I've being careful on providing names relative to the qrc file # If that was not needed that code could be simplified a lot def recursiveFiles(basepath, path) : result = [] for item in os.listdir(os.path.join(basepath, path)) : itemPath = os.path.join(path, item) if os.path.isdir(os.path.join(basepath, itemPath)) : result += recursiveFiles(basepath, itemPath) else: result.append(itemPath) return result contents = node.get_contents() includes = qrcinclude_re.findall(contents) qrcpath = os.path.dirname(node.path) dirs = [included for included in includes if os.path.isdir(os.path.join(qrcpath,included))] # dirs need to include files recursively for dir in dirs : includes.remove(dir) includes+=recursiveFiles(qrcpath,dir) return includes qrcscanner = SCons.Scanner.Scanner(name = 'qrcfile', function = scanResources, argument = None, skeys = ['.qrc']) qrcbuilder = Builder( action = SCons.Action.Action('$QT4_RCCCOM'), #, '$QT4_RCCCOMSTR'), source_scanner = qrcscanner, src_suffix = '$QT4_QRCSUFFIX', suffix = '$QT4_QRCCXXSUFFIX', prefix = '$QT4_QRCCXXPREFIX', single_source = True ) env.Append( BUILDERS = { 'Qrc': qrcbuilder } ) # Interface builder uic4builder = Builder( action = SCons.Action.Action('$QT4_UICCOM'), #, '$QT4_UICCOMSTR'), src_suffix='$QT4_UISUFFIX', suffix='$QT4_UICDECLSUFFIX', prefix='$QT4_UICDECLPREFIX', single_source = True #TODO: Consider the uiscanner on new scons version ) env['BUILDERS']['Uic4'] = uic4builder # Metaobject builder mocBld = Builder(action={}, prefix={}, suffix={}) for h in header_extensions: act = SCons.Action.Action('$QT4_MOCFROMHCOM') #, '$QT4_MOCFROMHCOMSTR') mocBld.add_action(h, act) mocBld.prefix[h] = '$QT4_MOCHPREFIX' mocBld.suffix[h] = '$QT4_MOCHSUFFIX' for cxx in cxx_suffixes: act = SCons.Action.Action('$QT4_MOCFROMCXXCOM') #, '$QT4_MOCFROMCXXCOMSTR') mocBld.add_action(cxx, act) mocBld.prefix[cxx] = '$QT4_MOCCXXPREFIX' mocBld.suffix[cxx] = '$QT4_MOCCXXSUFFIX' env['BUILDERS']['Moc4'] = mocBld # er... no idea what that was for static_obj, shared_obj = SCons.Tool.createObjBuilders(env) static_obj.src_builder.append('Uic4') shared_obj.src_builder.append('Uic4') # We use the emitters of Program / StaticLibrary / SharedLibrary # to scan for moc'able files # We can't refer to the builders directly, we have to fetch them # as Environment attributes because that sets them up to be called # correctly later by our emitter. env.AppendUnique(PROGEMITTER =[AutomocStatic], SHLIBEMITTER=[AutomocShared], LIBEMITTER =[AutomocStatic], # Of course, we need to link against the qt libraries # CPPPATH=["$QT4_CPPPATH"], LIBPATH=["$QT4_LIBPATH"], LIBS=['$QT4_LIB']) # TODO: Does dbusxml2cpp need an adapter env.AddMethod(enable_modules, "EnableQt4Modules") def enable_modules(self, modules, debug=False, crosscompiling=False) : import sys validModules = [ 'QtCore', 'QtGui', 'QtOpenGL', 'Qt3Support', 'QtAssistant', 'QtScript', 'QtDBus', 'QtSql', # The next modules have not been tested yet so, please # maybe they require additional work on non Linux platforms 'QtNetwork', 'QtSvg', 'QtTest', 'QtXml', 'QtXmlPatterns', 'QtUiTools', 'QtDesigner', 'QtDesignerComponents', 'QtWebKit', 'QtHelp', 'QtScript', ] pclessModules = [ # in qt <= 4.3 designer and designerComponents are pcless, on qt4.4 they are not, so removed. # 'QtDesigner', # 'QtDesignerComponents', ] staticModules = [ 'QtUiTools', ] invalidModules=[] for module in modules: if module not in validModules : invalidModules.append(module) if invalidModules : raise Exception("Modules %s are not Qt4 modules. Valid Qt4 modules are: %s"% ( str(invalidModules),str(validModules))) moduleDefines = { 'QtScript' : ['QT_SCRIPT_LIB'], 'QtSvg' : ['QT_SVG_LIB'], 'Qt3Support' : ['QT_QT3SUPPORT_LIB','QT3_SUPPORT'], 'QtSql' : ['QT_SQL_LIB'], 'QtXml' : ['QT_XML_LIB'], 'QtOpenGL' : ['QT_OPENGL_LIB'], 'QtGui' : ['QT_GUI_LIB'], 'QtNetwork' : ['QT_NETWORK_LIB'], 'QtCore' : ['QT_CORE_LIB'], } for module in modules : try : self.AppendUnique(CPPDEFINES=moduleDefines[module]) except: pass debugSuffix = '' if sys.platform in ["darwin", "linux2"] and not crosscompiling : if debug : debugSuffix = '_debug' for module in modules : if module not in pclessModules : continue self.AppendUnique(LIBS=[module+debugSuffix]) self.AppendUnique(LIBPATH=[os.path.join("$QTDIR","lib")]) self.AppendUnique(CPPPATH=[os.path.join("$QTDIR","include","qt4")]) self.AppendUnique(CPPPATH=[os.path.join("$QTDIR","include","qt4",module)]) pcmodules = [module+debugSuffix for module in modules if module not in pclessModules ] if 'QtDBus' in pcmodules: self.AppendUnique(CPPPATH=[os.path.join("$QTDIR","include","qt4","QtDBus")]) if "QtAssistant" in pcmodules: self.AppendUnique(CPPPATH=[os.path.join("$QTDIR","include","qt4","QtAssistant")]) pcmodules.remove("QtAssistant") pcmodules.append("QtAssistantClient") self.ParseConfig('pkg-config %s --libs --cflags'% ' '.join(pcmodules)) self["QT4_MOCCPPPATH"] = self["CPPPATH"] return if sys.platform == "win32" or crosscompiling : if crosscompiling: transformedQtdir = transformToWinePath(self['QTDIR']) self['QT4_MOC'] = "QTDIR=%s %s"%( transformedQtdir, self['QT4_MOC']) self.AppendUnique(CPPPATH=[os.path.join("$QTDIR","include")]) try: modules.remove("QtDBus") except: pass if debug : debugSuffix = 'd' if "QtAssistant" in modules: self.AppendUnique(CPPPATH=[os.path.join("$QTDIR","include","QtAssistant")]) modules.remove("QtAssistant") modules.append("QtAssistantClient") self.AppendUnique(LIBS=[lib+'4'+debugSuffix for lib in modules if lib not in staticModules]) self.PrependUnique(LIBS=[lib+debugSuffix for lib in modules if lib in staticModules]) if 'QtOpenGL' in modules: self.AppendUnique(LIBS=['opengl32']) self.AppendUnique(CPPPATH=[ '$QTDIR/include/']) self.AppendUnique(CPPPATH=[ '$QTDIR/include/'+module for module in modules]) if crosscompiling : self["QT4_MOCCPPPATH"] = [ path.replace('$QTDIR', transformedQtdir) for path in self['CPPPATH'] ] else : self["QT4_MOCCPPPATH"] = self["CPPPATH"] self.AppendUnique(LIBPATH=[os.path.join('$QTDIR','lib')]) return """ if sys.platform=="darwin" : # TODO: Test debug version on Mac self.AppendUnique(LIBPATH=[os.path.join('$QTDIR','lib')]) self.AppendUnique(LINKFLAGS="-F$QTDIR/lib") self.AppendUnique(LINKFLAGS="-L$QTDIR/lib") #TODO clean! if debug : debugSuffix = 'd' for module in modules : # self.AppendUnique(CPPPATH=[os.path.join("$QTDIR","include")]) # self.AppendUnique(CPPPATH=[os.path.join("$QTDIR","include",module)]) # port qt4-mac: self.AppendUnique(CPPPATH=[os.path.join("$QTDIR","include", "qt4")]) self.AppendUnique(CPPPATH=[os.path.join("$QTDIR","include", "qt4", module)]) if module in staticModules : self.AppendUnique(LIBS=[module+debugSuffix]) # TODO: Add the debug suffix self.AppendUnique(LIBPATH=[os.path.join("$QTDIR","lib")]) else : # self.Append(LINKFLAGS=['-framework', module]) # port qt4-mac: self.Append(LIBS=module) if 'QtOpenGL' in modules: self.AppendUnique(LINKFLAGS="-F/System/Library/Frameworks") self.Append(LINKFLAGS=['-framework', 'AGL']) #TODO ughly kludge to avoid quotes self.Append(LINKFLAGS=['-framework', 'OpenGL']) self["QT4_MOCCPPPATH"] = self["CPPPATH"] return # This should work for mac but doesn't # env.AppendUnique(FRAMEWORKPATH=[os.path.join(env['QTDIR'],'lib')]) # env.AppendUnique(FRAMEWORKS=['QtCore','QtGui','QtOpenGL', 'AGL']) """ def exists(env): return _detect(env)
bsd-3-clause
6,324,493,422,340,307,000
38.593633
130
0.593577
false
terrelln/python-zstandard
tests/test_train_dictionary.py
1
2899
import sys import unittest import zstandard as zstd from . common import ( make_cffi, ) if sys.version_info[0] >= 3: int_type = int else: int_type = long def generate_samples(): samples = [] for i in range(128): samples.append(b'foo' * 64) samples.append(b'bar' * 64) samples.append(b'foobar' * 64) samples.append(b'baz' * 64) samples.append(b'foobaz' * 64) samples.append(b'bazfoo' * 64) return samples @make_cffi class TestTrainDictionary(unittest.TestCase): def test_no_args(self): with self.assertRaises(TypeError): zstd.train_dictionary() def test_bad_args(self): with self.assertRaises(TypeError): zstd.train_dictionary(8192, u'foo') with self.assertRaises(ValueError): zstd.train_dictionary(8192, [u'foo']) def test_basic(self): samples = generate_samples() d = zstd.train_dictionary(8192, samples) self.assertLessEqual(len(d), 8192) dict_id = d.dict_id() self.assertIsInstance(dict_id, int_type) data = d.as_bytes() self.assertEqual(data[0:4], b'\x37\xa4\x30\xec') def test_set_dict_id(self): samples = generate_samples() d = zstd.train_dictionary(8192, samples, dict_id=42) self.assertEqual(d.dict_id(), 42) @make_cffi class TestTrainCoverDictionary(unittest.TestCase): def test_no_args(self): with self.assertRaises(TypeError): zstd.train_cover_dictionary() def test_bad_args(self): with self.assertRaises(TypeError): zstd.train_cover_dictionary(8192, u'foo') with self.assertRaises(ValueError): zstd.train_cover_dictionary(8192, [u'foo']) def test_basic(self): samples = [] for i in range(128): samples.append(b'foo' * 64) samples.append(b'foobar' * 64) d = zstd.train_cover_dictionary(8192, samples, k=64, d=16) self.assertIsInstance(d.dict_id(), int_type) data = d.as_bytes() self.assertEqual(data[0:4], b'\x37\xa4\x30\xec') self.assertEqual(d.k, 64) self.assertEqual(d.d, 16) def test_set_dict_id(self): samples = [] for i in range(128): samples.append(b'foo' * 64) samples.append(b'foobar' * 64) d = zstd.train_cover_dictionary(8192, samples, k=64, d=16, dict_id=42) self.assertEqual(d.dict_id(), 42) def test_optimize(self): samples = [] for i in range(128): samples.append(b'foo' * 64) samples.append(b'foobar' * 64) d = zstd.train_cover_dictionary(8192, samples, optimize=True, threads=-1, steps=1, d=16) self.assertEqual(d.k, 50) self.assertEqual(d.d, 16)
bsd-3-clause
-5,757,206,112,141,331,000
25.842593
69
0.574336
false
jpopelka/fabric8-analytics-worker
f8a_worker/solver.py
1
37059
"""Classes for resolving dependencies as specified in each ecosystem.""" import anymarkup from bs4 import BeautifulSoup from collections import defaultdict from functools import cmp_to_key import logging from lxml import etree from operator import itemgetter from pip._internal.req.req_file import parse_requirements from pip._vendor.packaging.specifiers import _version_split import re from requests import get from semantic_version import Version as semver_version from subprocess import check_output from tempfile import NamedTemporaryFile, TemporaryDirectory from urllib.parse import urljoin, quote from urllib.request import urlopen import requests from f8a_worker.enums import EcosystemBackend from f8a_worker.models import Analysis, Ecosystem, Package, Version from f8a_worker.utils import cwd, TimedCommand from f8a_worker.process import Git logger = logging.getLogger(__name__) class SolverException(Exception): """Exception to be raised in Solver.""" pass class Tokens(object): """Comparison token representation.""" operators = ['>=', '<=', '==', '>', '<', '=', '!='] (GTE, LTE, EQ1, GT, LT, EQ2, NEQ) = range(len(operators)) def compare_version(a, b): """Compare two version strings. :param a: str :param b: str :return: -1 / 0 / 1 """ def _range(q): """Convert a version string to array of integers. "1.2.3" -> [1, 2, 3] :param q: str :return: List[int] """ r = [] for n in q.replace('-', '.').split('.'): try: r.append(int(n)) except ValueError: # sort rc*, alpha, beta etc. lower than their non-annotated counterparts r.append(-1) return r def _append_zeros(x, num_zeros): """Append `num_zeros` zeros to a copy of `x` and return it. :param x: List[int] :param num_zeros: int :return: List[int] """ nx = list(x) for _ in range(num_zeros): nx.append(0) return nx def _cardinal(x, y): """Make both input lists be of same cardinality. :param x: List[int] :param y: List[int] :return: List[int] """ lx, ly = len(x), len(y) if lx == ly: return x, y elif lx > ly: return x, _append_zeros(y, lx - ly) else: return _append_zeros(x, ly - lx), y left, right = _cardinal(_range(a), _range(b)) return (left > right) - (left < right) class ReleasesFetcher(object): """Base class for fetching releases.""" def __init__(self, ecosystem): """Initialize ecosystem.""" self._ecosystem = ecosystem @property def ecosystem(self): """Get ecosystem property.""" return self._ecosystem def fetch_releases(self, package): """Abstract method for getting list of releases versions.""" raise NotImplementedError class PypiReleasesFetcher(ReleasesFetcher): """Releases fetcher for Pypi.""" def __init__(self, ecosystem): """Initialize instance.""" super(PypiReleasesFetcher, self).__init__(ecosystem) def fetch_releases(self, package): """Fetch package releases versions. XML-RPC API Documentation: https://wiki.python.org/moin/PyPIXmlRpc Signature: package_releases(package_name, show_hidden=False) """ if not package: raise ValueError("package") package = package.lower() pypi_package_url = urljoin( self.ecosystem.fetch_url, '{pkg_name}/json'.format(pkg_name=package) ) response = requests.get(pypi_package_url) if response.status_code != 200: logger.error('Unable to obtain a list of versions for {pkg_name}'.format( pkg_name=package )) return package, [] return package, list({x for x in response.json().get('releases', {})}) class NpmReleasesFetcher(ReleasesFetcher): """Releases fetcher for NPM.""" def __init__(self, ecosystem): """Initialize instance.""" super(NpmReleasesFetcher, self).__init__(ecosystem) def fetch_releases(self, package): """Fetch package releases versions. Example output from the NPM endpoint: { ... versions: { "0.1.0": {}, "0.1.2": {} ... } } """ if not package: raise ValueError("package") # quote '/' (but not '@') in scoped package name, e.g. in '@slicemenice/item-layouter' r = get(self.ecosystem.fetch_url + quote(package, safe='@')) if r.status_code == 200 and r.content: return package, list(r.json().get('versions', {}).keys()) return package, [] class RubyGemsReleasesFetcher(ReleasesFetcher): """Releases fetcher for Rubygems.""" def __init__(self, ecosystem): """Initialize instance.""" super(RubyGemsReleasesFetcher, self).__init__(ecosystem) def _search_package_name(self, package): """Search package on rubygems.org.""" url = '{url}/search.json?query={pkg}'.format(url=self.ecosystem.fetch_url, pkg=package) r = get(url) if r.status_code == 200: exact_match = [p['name'] for p in r.json() if p['name'].lower() == package.lower()] if exact_match: return exact_match.pop() raise ValueError("Package {} not found".format(package)) def fetch_releases(self, package): """Fetch package releases versions. Example output from the RubyGems endpoint [ { "number": "1.0.0", ... }, { "number": "2.0.0", ... } ... ] """ if not package: raise ValueError("package") url = '{url}/versions/{pkg}.json'.format(url=self.ecosystem.fetch_url, pkg=package) r = get(url) if r.status_code == 404: return self.fetch_releases(self._search_package_name(package)) return package, [ver['number'] for ver in r.json()] class NugetReleasesFetcher(ReleasesFetcher): """Releases fetcher for Nuget.""" def __init__(self, ecosystem): """Initialize instance.""" super(NugetReleasesFetcher, self).__init__(ecosystem) def scrape_versions_from_nuget_org(self, package, sort_by_downloads=False): """Scrape 'Version History' from Nuget.""" releases = [] nuget_packages_url = 'https://www.nuget.org/packages/' page = get(nuget_packages_url + package) page = BeautifulSoup(page.text, 'html.parser') version_history = page.find(class_="version-history") for version in version_history.find_all(href=re.compile('/packages/')): version_text = version.text.replace('(current)', '').strip() try: semver_version.coerce(version_text) downloads = int(version.find_next('td').text.strip().replace(',', '')) except ValueError: pass else: releases.append((version_text, downloads)) if sort_by_downloads: releases.sort(key=itemgetter(1)) return package, [p[0] for p in reversed(releases)] def fetch_releases(self, package): """Fetch package releases versions.""" if not package: raise ValueError("package not specified") # There's an API interface which lists available releases at # https://api.nuget.org/v3-flatcontainer/{package}/index.json # But it lists also unlisted/deprecated/shouldn't-be-used versions, # so we don't use it. return self.scrape_versions_from_nuget_org(package) class MavenReleasesFetcher(ReleasesFetcher): """Releases fetcher for Maven.""" def __init__(self, ecosystem): """Initialize instance.""" super().__init__(ecosystem) def releases_from_maven_org(self, group_id, artifact_id): """Fetch releases versions for group_id/artifact_id.""" metadata_filenames = ['maven-metadata.xml', 'maven-metadata-local.xml'] group_id_path = group_id.replace('.', '/') versions = set() we_good = False for filename in metadata_filenames: url = urljoin( self.ecosystem.fetch_url, '{g}/{a}/{f}'.format(g=group_id_path, a=artifact_id, f=filename) ) try: metadata_xml = etree.parse(urlopen(url)) we_good = True # We successfully downloaded at least one of the metadata files version_elements = metadata_xml.findall('.//version') versions = versions.union({x.text for x in version_elements}) except OSError: # Not both XML files have to exist, so don't freak out yet pass if not we_good: logger.error('Unable to obtain a list of versions for {g}:{a}'.format( g=group_id, a=artifact_id) ) return list(versions) def fetch_releases(self, package): """Fetch package releases versions.""" if not package: raise ValueError("package not specified") try: group_id, artifact_id = package.split(':') except ValueError as exc: raise ValueError("Invalid Maven coordinates: {a}".format(a=package)) from exc return package, self.releases_from_maven_org(group_id, artifact_id) class GolangReleasesFetcher(ReleasesFetcher): """Releases fetcher for Golang.""" def __init__(self, ecosystem): """Initialize instance.""" super(GolangReleasesFetcher, self).__init__(ecosystem) def fetch_releases(self, package): """Fetch package releases versions.""" if not package: raise ValueError('package not specified') parts = package.split("/")[:3] if len(parts) == 3: # this assumes github.com/org/project like structure host, org, proj = parts repo_url = 'git://{host}/{org}/{proj}.git'.format(host=host, org=org, proj=proj) elif len(parts) == 2 and parts[0] == 'gopkg.in': # specific to gopkg.in/packages host, proj = parts repo_url = 'https://{host}/{proj}.git'.format(host=host, proj=proj) else: raise ValueError("Package {} is invalid git repository".format(package)) output = Git.ls_remote(repo_url, args=['-q'], refs=['HEAD']) version, ref = output[0].split() if not version: raise ValueError("Package {} does not have associated versions".format(package)) return package, [version] class F8aReleasesFetcher(ReleasesFetcher): """Releases fetcher for internal database.""" def __init__(self, ecosystem, database): """Initialize instance.""" super(F8aReleasesFetcher, self).__init__(ecosystem) self.database = database def fetch_releases(self, package): """Fetch analysed versions for specific ecosystem + package from f8a.""" query = self.database.query(Version).\ join(Analysis).join(Package).join(Ecosystem).\ filter(Package.name == package, Ecosystem.name == self.ecosystem.name, Analysis.finished_at.isnot(None)) versions = {v.identifier for v in query} return package, list(sorted(versions, key=cmp_to_key(compare_version))) class Dependency(object): """A Dependency consists of (package) name and version spec.""" def __init__(self, name, spec): """Initialize instance.""" self._name = name # spec is a list where each item is either 2-tuple (operator, version) or list of these # example: [[('>=', '0.6.0'), ('<', '0.7.0')], ('>', '1.0.0')] means: # (>=0.6.0 and <0.7.0) or >1.0.0 self._spec = spec @property def name(self): """Get name property.""" return self._name @property def spec(self): """Get version spec property.""" return self._spec def __contains__(self, item): """Implement 'in' operator.""" return self.check(item) def __repr__(self): """Return string representation of this instance.""" return "{} {}".format(self.name, self.spec) def __eq__(self, other): """Implement '==' operator.""" return self.name == other.name and self.spec == other.spec def check(self, version): """Check if `version` fits into our dependency specification. :param version: str :return: bool """ def _compare_spec(spec): if len(spec) == 1: spec = ('=', spec[0]) token = Tokens.operators.index(spec[0]) comparison = compare_version(version, spec[1]) if token in [Tokens.EQ1, Tokens.EQ2]: return comparison == 0 elif token == Tokens.GT: return comparison == 1 elif token == Tokens.LT: return comparison == -1 elif token == Tokens.GTE: return comparison >= 0 elif token == Tokens.LTE: return comparison <= 0 elif token == Tokens.NEQ: return comparison != 0 else: raise ValueError('Invalid comparison token') def _all(spec_): return all(_all(s) if isinstance(s, list) else _compare_spec(s) for s in spec_) return any(_all(s) if isinstance(s, list) else _compare_spec(s) for s in self.spec) class DependencyParser(object): """Base class for Dependency parsing.""" def parse(self, specs): """Abstract method for Dependency parsing.""" pass @staticmethod def compose_sep(deps, separator): """Opposite of parse(). :param deps: list of Dependency() :param separator: when joining dependencies, use this separator :return: dict of {name: version spec} """ result = {} for dep in deps: if dep.name not in result: result[dep.name] = separator.join([op + ver for op, ver in dep.spec]) else: result[dep.name] += separator + separator.join([op + ver for op, ver in dep.spec]) return result class PypiDependencyParser(DependencyParser): """Pypi Dependency parsing.""" @staticmethod def _parse_python(spec): """Parse PyPI specification of a single dependency. :param spec: str, for example "Django>=1.5,<1.8" :return: [Django [[('>=', '1.5'), ('<', '1.8')]]] """ def _extract_op_version(spec): # https://www.python.org/dev/peps/pep-0440/#compatible-release if spec.operator == '~=': version = _version_split(spec.version) if len(version) > 1: # ignore pre-release, post-release or developmental release while not version[-1].isdigit(): del version[-1] del version[-1] # will increase the last but one in next line version[-1] = str(int(version[-1]) + 1) else: raise ValueError('%r must not be used with %r' % (spec.operator, spec.version)) return [('>=', spec.version), ('<', '.'.join(version))] # Trailing .* is permitted per # https://www.python.org/dev/peps/pep-0440/#version-matching elif spec.operator == '==' and spec.version.endswith('.*'): try: result = check_output(['/usr/bin/semver-ranger', spec.version], universal_newlines=True).strip() gte, lt = result.split() return [('>=', gte.lstrip('>=')), ('<', lt.lstrip('<'))] except ValueError: logger.info("couldn't resolve ==%s", spec.version) return spec.operator, spec.version # https://www.python.org/dev/peps/pep-0440/#arbitrary-equality # Use of this operator is heavily discouraged, so just convert it to 'Version matching' elif spec.operator == '===': return '==', spec.version else: return spec.operator, spec.version def _get_pip_spec(requirements): """There's no `specs` field In Pip 8+, take info from `specifier` field.""" if hasattr(requirements, 'specs'): return requirements.specs elif hasattr(requirements, 'specifier'): specs = [_extract_op_version(spec) for spec in requirements.specifier] if len(specs) == 0: specs = [('>=', '0.0.0')] elif len(specs) > 1: specs = [specs] return specs # create a temporary file and store the spec there since # `parse_requirements` requires a file with NamedTemporaryFile(mode='w+', suffix='pysolve') as f: f.write(spec) f.flush() parsed = parse_requirements(f.name, session=f.name) dependency = [Dependency(x.name, _get_pip_spec(x.req)) for x in parsed].pop() return dependency def parse(self, specs): """Parse specs.""" return [self._parse_python(s) for s in specs] @staticmethod def compose(deps): """Compose deps.""" return DependencyParser.compose_sep(deps, ',') @staticmethod def restrict_versions(deps): """Not implemented.""" return deps # TODO class NpmDependencyParser(DependencyParser): """NPM Dependency parsing.""" @staticmethod def _parse_npm_tokens(spec): """Parse npm tokens.""" for token in Tokens.operators: if token in spec: return token, spec.split(token)[1] return spec, def _parse_npm(self, name, spec): """Parse NPM specification of a single dependency. :param name: str :param spec: str :return: Dependency """ if spec == 'latest': specs = '*' else: specs = check_output(['/usr/bin/semver-ranger', spec], universal_newlines=True).strip() if specs == 'null': logger.info("invalid version specification for %s = %s", name, spec) return None ret = [] for s in specs.split('||'): if ' ' in s: spaced = s.split(' ') assert len(spaced) == 2 left, right = spaced ret.append([self._parse_npm_tokens(left), self._parse_npm_tokens(right)]) elif s == '*': ret.append(('>=', '0.0.0')) else: ret.append(self._parse_npm_tokens(s)) return Dependency(name, ret) def parse(self, specs): """Transform list of dependencies (strings) to list of Dependency.""" deps = [] for spec in specs: name, ver = spec.split(' ', 1) parsed = self._parse_npm(name, ver) if parsed: deps.append(parsed) return deps @staticmethod def compose(deps): """Oposite of parse().""" return DependencyParser.compose_sep(deps, ' ') @staticmethod def restrict_versions(deps): """From list of semver ranges select only the most restricting ones for each operator. :param deps: list of Dependency(), example: [node [('>=', '0.6.0')], node [('<', '1.0.0')], node [('>=', '0.8.0')]] :return: list of Dependency() with only the most restrictive versions, example: [node [('<', '1.0.0')], node [('>=', '0.8.0')]] """ # list to dict # { # 'node' : { # '>=': ['0.8.0', '0.6.0'], # '<': ['1.0.0'] # } # } dps_dict = defaultdict(dict) for dp in deps: if dp.name not in dps_dict: dps_dict[dp.name] = defaultdict(list) for spec in dp.spec: if len(spec) != 2: continue operator, version = spec dps_dict[dp.name][operator].append(version) # select only the most restrictive versions result = [] for name, version_spec_dict in dps_dict.items(): specs = [] for operator, versions in version_spec_dict.items(): if operator in ['>', '>=']: # select highest version version = sorted(versions, key=cmp_to_key(compare_version))[-1] elif operator in ['<', '<=']: # select lowest version version = sorted(versions, key=cmp_to_key(compare_version))[0] specs.append((operator, version)) # dict back to list result.append(Dependency(name, specs)) return result RubyGemsDependencyParser = NpmDependencyParser class OSSIndexDependencyParser(NpmDependencyParser): """Parse OSS Index version specification.""" def _parse_npm(self, name, spec): """Parse OSS Index version specification. It's similar to NPM semver, with few tweaks.""" # sometimes there's '|' instead of '||', but the meaning seems to be the same spec = spec.replace(' | ', ' || ') # remove superfluous brackets spec = spec.replace('(', '').replace(')', '') return super()._parse_npm(name, spec) class NugetDependencyParser(object): """Nuget version specification parsing.""" def parse(self, specs): """Transform list of dependencies (strings) to list of Dependency. https://docs.microsoft.com/en-us/nuget/create-packages/dependency-versions#version-ranges :param specs: list of dependencies (strings) :return: list of Dependency """ # TODO: reduce cyclomatic complexity deps = [] for spec in specs: name, version_range = spec.split(' ', 1) # 1.0 -> 1.0≤x if re.search(r'[,()\[\]]', version_range) is None: dep = Dependency(name, [('>=', version_range)]) # [1.0,2.0] -> 1.0≤x≤2.0 elif re.fullmatch(r'\[(.+),(.+)\]', version_range): m = re.fullmatch(r'\[(.+),(.+)\]', version_range) dep = Dependency(name, [[('>=', m.group(1)), ('<=', m.group(2))]]) # (1.0,2.0) -> 1.0<x<2.0 elif re.fullmatch(r'\((.+),(.+)\)', version_range): m = re.fullmatch(r'\((.+),(.+)\)', version_range) dep = Dependency(name, [[('>', m.group(1)), ('<', m.group(2))]]) # The following one is not in specification, # so we can just guess what was the intention. # Seen in NLog:5.0.0-beta08 dependencies # [1.0, ) -> 1.0≤x elif re.fullmatch(r'\[(.+), \)', version_range): m = re.fullmatch(r'\[(.+), \)', version_range) dep = Dependency(name, [('>=', m.group(1))]) # [1.0,2.0) -> 1.0≤x<2.0 elif re.fullmatch(r'\[(.+),(.+)\)', version_range): m = re.fullmatch(r'\[(.+),(.+)\)', version_range) dep = Dependency(name, [[('>=', m.group(1)), ('<', m.group(2))]]) # (1.0,) -> 1.0<x elif re.fullmatch(r'\((.+),\)', version_range): m = re.fullmatch(r'\((.+),\)', version_range) dep = Dependency(name, [('>', m.group(1))]) # [1.0] -> x==1.0 elif re.fullmatch(r'\[(.+)\]', version_range): m = re.fullmatch(r'\[(.+)\]', version_range) dep = Dependency(name, [('==', m.group(1))]) # (,1.0] -> x≤1.0 elif re.fullmatch(r'\(,(.+)\]', version_range): m = re.fullmatch(r'\(,(.+)\]', version_range) dep = Dependency(name, [('<=', m.group(1))]) # (,1.0) -> x<1.0 elif re.fullmatch(r'\(,(.+)\)', version_range): m = re.fullmatch(r'\(,(.+)\)', version_range) dep = Dependency(name, [('<', m.group(1))]) elif re.fullmatch(r'\((.+)\)', version_range): raise ValueError("invalid version range %r" % version_range) deps.append(dep) return deps class NoOpDependencyParser(DependencyParser): """Dummy dependency parser for ecosystems that don't support version ranges.""" def parse(self, specs): """Transform list of dependencies (strings) to list of Dependency.""" return [Dependency(*x.split(' ')) for x in specs] @staticmethod def compose(deps): """Opposite of parse().""" return DependencyParser.compose_sep(deps, ' ') @staticmethod def restrict_versions(deps): """Not implemented.""" return deps class GolangDependencyParser(DependencyParser): """Dependency parser for Golang.""" def parse(self, specs): """Transform list of dependencies (strings) to list of Dependency.""" dependencies = [] for spec in specs: spec_list = spec.split(' ') if len(spec_list) > 1: dependencies.append(Dependency(spec_list[0], spec_list[1])) else: dependencies.append(Dependency(spec_list[0], '')) return dependencies @staticmethod def compose(deps): """Opposite of parse().""" return DependencyParser.compose_sep(deps, ' ') @staticmethod def restrict_versions(deps): """Not implemented.""" return deps class Solver(object): """Base class for resolving dependencies.""" def __init__(self, ecosystem, dep_parser=None, fetcher=None, highest_dependency_version=True): """Initialize instance.""" self.ecosystem = ecosystem self._dependency_parser = dep_parser self._release_fetcher = fetcher self._highest_dependency_version = highest_dependency_version @property def dependency_parser(self): """Return DependencyParser instance used by this solver.""" return self._dependency_parser @property def release_fetcher(self): """Return ReleasesFetcher instance used by this solver.""" return self._release_fetcher def solve(self, dependencies, graceful=True, all_versions=False): """Solve `dependencies` against upstream repository. :param dependencies: List, List of dependencies in native format :param graceful: bool, Print info output to stdout :param all_versions: bool, Return all matched versions instead of the latest :return: Dict[str, str], Matched versions """ solved = {} for dep in self.dependency_parser.parse(dependencies): logger.debug("Fetching releases for: {}".format(dep)) name, releases = self.release_fetcher.fetch_releases(dep.name) if name in solved: raise SolverException("Dependency: {} is listed multiple times".format(name)) if not releases: if graceful: logger.info("No releases found for: %s", dep.name) else: raise SolverException("No releases found for: {}".format(dep.name)) matching = sorted([release for release in releases if release in dep], key=cmp_to_key(compare_version)) logger.debug(" matching:\n {}".format(matching)) if all_versions: solved[name] = matching else: if not matching: solved[name] = None else: if self._highest_dependency_version: solved[name] = matching[-1] else: solved[name] = matching[0] return solved class PypiSolver(Solver): """Pypi dependencies solver.""" def __init__(self, ecosystem, parser=None, fetcher=None): """Initialize instance.""" super(PypiSolver, self).__init__(ecosystem, parser or PypiDependencyParser(), fetcher or PypiReleasesFetcher(ecosystem)) class NpmSolver(Solver): """Npm dependencies solver.""" def __init__(self, ecosystem, parser=None, fetcher=None): """Initialize instance.""" super(NpmSolver, self).__init__(ecosystem, parser or NpmDependencyParser(), fetcher or NpmReleasesFetcher(ecosystem)) class RubyGemsSolver(Solver): """Rubygems dependencies solver.""" def __init__(self, ecosystem, parser=None, fetcher=None): """Initialize instance.""" super(RubyGemsSolver, self).__init__(ecosystem, parser or RubyGemsDependencyParser(), fetcher or RubyGemsReleasesFetcher(ecosystem)) class NugetSolver(Solver): """Nuget dependencies solver. Nuget is a bit specific because it by default resolves version specs to lowest possible version. https://docs.microsoft.com/en-us/nuget/release-notes/nuget-2.8#-dependencyversion-switch """ def __init__(self, ecosystem, parser=None, fetcher=None): """Initialize instance.""" super(NugetSolver, self).__init__(ecosystem, parser or NugetDependencyParser(), fetcher or NugetReleasesFetcher(ecosystem), highest_dependency_version=False) class MavenManualSolver(Solver): """Use this only if you need to resolve all versions or use specific DependencyParser. Otherwise use MavenSolver (below). """ def __init__(self, ecosystem, parser, fetcher=None): """Initialize instance.""" super().__init__(ecosystem, parser, fetcher or MavenReleasesFetcher(ecosystem)) class GolangSolver(Solver): """Golang dependencies solver.""" def __init__(self, ecosystem, parser=None, fetcher=None): """Initialize instance.""" super(GolangSolver, self).__init__(ecosystem, parser or GolangDependencyParser(), fetcher or GolangReleasesFetcher(ecosystem)) def solve(self, dependencies): """Solve `dependencies` against upstream repository.""" result = {} for dependency in self.dependency_parser.parse(dependencies): if dependency.spec: result[dependency.name] = dependency.spec else: version = self.release_fetcher.fetch_releases(dependency.name)[1][0] result[dependency.name] = version return result class MavenSolver(object): """Doesn't inherit from Solver, because we don't use its solve(). We also don't need a DependencyParser nor a ReleasesFetcher for Maven. 'mvn versions:resolve-ranges' does all the dirty work for us. Resolves only to one version, so if you need solve(all_versions=True), use MavenManualSolver """ @staticmethod def _generate_pom_xml(to_solve): """Create pom.xml with dependencies from to_solve. And run 'mvn versions:resolve-ranges', which resolves the version ranges (overwrites the pom.xml). :param to_solve: {"groupId:artifactId": "version-range"} """ project = etree.Element('project') etree.SubElement(project, 'modelVersion').text = '4.0.0' etree.SubElement(project, 'groupId').text = 'foo.bar.baz' etree.SubElement(project, 'artifactId').text = 'testing' etree.SubElement(project, 'version').text = '1.0.0' dependencies = etree.SubElement(project, 'dependencies') for name, version_range in to_solve.items(): group_id, artifact_id = name.rstrip(':').split(':') dependency = etree.SubElement(dependencies, 'dependency') etree.SubElement(dependency, 'groupId').text = group_id etree.SubElement(dependency, 'artifactId').text = artifact_id etree.SubElement(dependency, 'version').text = version_range with open('pom.xml', 'wb') as pom: pom.write(etree.tostring(project, xml_declaration=True, pretty_print=True)) TimedCommand.get_command_output(['mvn', 'versions:resolve-ranges'], graceful=False) @staticmethod def _dependencies_from_pom_xml(): """Extract dependencies from pom.xml in current directory. :return: {"groupId:artifactId": "version"} """ solved = {} with open('pom.xml') as r: pom_dict = anymarkup.parse(r.read()) dependencies = pom_dict.get('project', {}).get('dependencies', {}).get('dependency', []) if not isinstance(dependencies, list): dependencies = [dependencies] for dependency in dependencies: name = "{}:{}".format(dependency['groupId'], dependency['artifactId']) solved[name] = str(dependency['version']) return solved @staticmethod def _resolve_versions(to_solve): """Resolve version ranges in to_solve. :param to_solve: {"groupId:artifactId": "version-range"} :return: {"groupId:artifactId": "version"} """ if not to_solve: return {} with TemporaryDirectory() as tmpdir: with cwd(tmpdir): MavenSolver._generate_pom_xml(to_solve) return MavenSolver._dependencies_from_pom_xml() @staticmethod def is_version_range(ver_spec): """Check whether ver_spec contains version range.""" # http://maven.apache.org/enforcer/enforcer-rules/versionRanges.html return re.search(r'[,()\[\]]', ver_spec) is not None def solve(self, dependencies): """Solve version ranges in dependencies.""" already_solved = {} to_solve = {} for dependency in dependencies: name, ver_spec = dependency.split(' ', 1) if not self.is_version_range(ver_spec): already_solved[name] = ver_spec else: to_solve[name] = ver_spec result = already_solved.copy() result.update(self._resolve_versions(to_solve)) return result def get_ecosystem_solver(ecosystem, with_parser=None, with_fetcher=None): """Get Solver subclass instance for particular ecosystem. :param ecosystem: Ecosystem :param with_parser: DependencyParser instance :param with_fetcher: ReleasesFetcher instance :return: Solver """ if ecosystem.is_backed_by(EcosystemBackend.maven): if with_parser is None: return MavenSolver() else: return MavenManualSolver(ecosystem, with_parser, with_fetcher) elif ecosystem.is_backed_by(EcosystemBackend.npm): return NpmSolver(ecosystem, with_parser, with_fetcher) elif ecosystem.is_backed_by(EcosystemBackend.pypi): return PypiSolver(ecosystem, with_parser, with_fetcher) elif ecosystem.is_backed_by(EcosystemBackend.rubygems): return RubyGemsSolver(ecosystem, with_parser, with_fetcher) elif ecosystem.is_backed_by(EcosystemBackend.nuget): return NugetSolver(ecosystem, with_parser, with_fetcher) elif ecosystem.is_backed_by(EcosystemBackend.go): return GolangSolver(ecosystem, with_parser, with_fetcher) raise ValueError('Unknown ecosystem: {}'.format(ecosystem.name)) def get_ecosystem_parser(ecosystem): """Get DependencyParser subclass instance for particular ecosystem.""" if ecosystem.is_backed_by(EcosystemBackend.maven): return NoOpDependencyParser() elif ecosystem.is_backed_by(EcosystemBackend.npm): return NpmDependencyParser() elif ecosystem.is_backed_by(EcosystemBackend.pypi): return PypiDependencyParser() elif ecosystem.is_backed_by(EcosystemBackend.rubygems): return RubyGemsDependencyParser() elif ecosystem.is_backed_by(EcosystemBackend.nuget): return NugetDependencyParser() elif ecosystem.is_backed_by(EcosystemBackend.go): return GolangDependencyParser() raise ValueError('Unknown ecosystem: {}'.format(ecosystem.name))
gpl-3.0
-6,675,852,524,338,168,000
35.320588
100
0.562799
false
JohnLunzer/flexx
flexx/ui/widgets/_html.py
1
3211
""" Simple example: .. UIExample:: 75 from flexx import app, ui class Example(ui.Widget): def init(self): with ui.html.UL(): ui.html.LI(text='foo') ui.html.LI(text='bar') .. UIExample:: 150 from flexx import app, ui, event class Example(ui.Widget): def init(self): with ui.html.UL(): ui.html.LI(text='foo') ui.html.LI(text='bar') with ui.html.LI(): with ui.html.I(): self.now = ui.html.Span(text='0') self.but = ui.html.Button(text='press me') class JS: @event.connect('but.mouse_down') def on_click(self, *events): self.now.text = window.Date.now() """ from ... import event from . import Widget class Div(Widget): """ This class is the base class for "HTML widgets". These provides a lower-level way of working with HTML content that can feel more natural to users with a background in web development. Via the ``flexx.ui.html`` factory object, it is possible to create *any* type of DOM element. E.g. ``ui.html.Table()`` creates an table and ``ui.html.b(text='foo')`` creates a piece of bold text. Since this class inherits from ``Widget``, all base widget functionality (e.g. mouse events) work as expected. However, the specific functionality of each element (e.g. ``src`` for img elements) must be used in the "JavaScript way". In contrast to regular Flexx widgets, the css class name of the node only consists of the name(s) provided via the ``css_class`` property. Also see :ref:`this example <classic_web_dev.py>`. """ class Both: @event.prop def text(self, v=''): """ The inner HTML for this element. """ return str(v) class JS: def __init__(self, *args): super().__init__(*args) self.node.className = '' def _init_phosphor_and_node(self): self.phosphor = self._create_phosphor_widget(self._class_name.lower()) self.node = self.phosphor.node @event.connect('text') def __on_inner_html(self, *events): self.node.innerHTML = events[-1].new_value def _add_child(self, widget): self.node.appendChild(widget.node) class HTMLElementFactory: """ This object can be used to generate a Flexx Widget class for any HTML element that you'd like. These Widget classes inherit from ``Div``. """ def __getattr__(self, name): name = name.lower() cache = globals() if name.startswith('_'): return super().__getattr__(name) if name not in cache: # Create new class, put it in this module so that JSModule can find it cls = type(name, (Div,), {}) cls.__module__ = cls.__jsmodule__ = __name__ cache[name] = cls return cache[name] html = HTMLElementFactory()
bsd-2-clause
-7,527,310,105,070,645,000
27.415929
82
0.540953
false
oskyar/test-TFG
TFG/urls.py
1
2144
from django.conf import settings from django.conf.urls import patterns, include, url from django.contrib import admin from django.contrib.auth.views import login, logout_then_login from django.views.static import serve import logging from importlib import import_module from django.conf import settings from TFG.apps.handlererrors.views import Error403, Error404, Error500 from TFG.apps.user.views import Index from vanilla import TemplateView from django.core import exceptions from TFG.apps.user.views import ClientViewErrors # from registration.views import RegistrationView admin.autodiscover() urlpatterns = [ # Examples: # url(r'^$', 'TFG.views.home', name='home'), # url(r'^blog/', include('blog.urls')), url(r'^$', Index.as_view(), name='index'), url(r'^cookies$', TemplateView.as_view(template_name="cookies.html"), name='cookies'), url(r'^$', login, {'template_name': 'user/login.html'}, name='login'), url(r'^logout/$', logout_then_login, name='logout'), # url(r'^', include('TFG.apps.handlererrors.urls')), # url(r'^db', TFG.apps.index.views.db, name='db'), url(r'^admin/', include(admin.site.urls)), url(r'^chaining/', include('smart_selects.urls')), url(r'^user/', include('TFG.apps.user.urls')), url(r'^test/', include('TFG.apps.test.urls')), url(r'^subject/', include('TFG.apps.subject.urls')), url(r'^search/', include('TFG.apps.search.urls')), url(r'^s3direct/', include('s3direct.urls')), # url(r'^test/', include('TFG.apps.test.urls')), url(r'^media/(?P<path>.*)$', serve, {'document_root': settings.MEDIA_ROOT,}), ] # import_module("TFG.apps.index.signals") # Este código sirve para buscar todos los signals añadidos a las apps """logger = logging.getLogger(__name__) signal_modules = {} for app in settings.INSTALLED_APPS: signals_module = '%s.signals' % app try: logger.debug('loading "%s" ..' % signals_module) signal_modules[app] = import_module(signals_module) except ImportError as e: logger.warning( 'failed to import "%s", reason: %s' % (signals_module, str(e))) """
gpl-2.0
830,453,397,419,805,600
34.7
90
0.668534
false
dingzg/onepanel
lib/module/user.py
1
10650
#!/usr/bin/env python2.6 #-*- coding: utf-8 -*- # Copyright [OnePanel] # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Package for user management. """ import os if __name__ == '__main__': import sys root_path = os.path.abspath(os.path.join(os.path.dirname(__file__), '..')) sys.path.insert(0, root_path) import pexpect import shlex import time import pwd import grp import subprocess from utils import b2h, ftime #--------------------------------------------------------------------------------------------------- #Function Name : main_process #Usage : #Parameters : None # #Return value : # 1 #--------------------------------------------------------------------------------------------------- def main_process(self): action = self.get_argument('action', '') if action == 'listuser': fullinfo = self.get_argument('fullinfo', 'on') self.write({'code': 0, 'msg': u'成功获取用户列表!', 'data': listuser(fullinfo=='on')}) elif action == 'listgroup': fullinfo = self.get_argument('fullinfo', 'on') self.write({'code': 0, 'msg': u'成功获取用户组列表!', 'data': listgroup(fullinfo=='on')}) elif action in ('useradd', 'usermod'): if self.config.get('runtime', 'mode') == 'demo': self.write({'code': -1, 'msg': u'DEMO状态不允许添加和修改用户!'}) return pw_name = self.get_argument('pw_name', '') pw_gecos = self.get_argument('pw_gecos', '') pw_gname = self.get_argument('pw_gname', '') pw_dir = self.get_argument('pw_dir', '') pw_shell = self.get_argument('pw_shell', '') pw_passwd = self.get_argument('pw_passwd', '') pw_passwdc = self.get_argument('pw_passwdc', '') lock = self.get_argument('lock', '') lock = (lock == 'on') and True or False if pw_passwd != pw_passwdc: self.write({'code': -1, 'msg': u'两次输入的密码不一致!'}) return options = { 'pw_gecos': _u(pw_gecos), 'pw_gname': _u(pw_gname), 'pw_dir': _u(pw_dir), 'pw_shell': _u(pw_shell), 'lock': lock } if len(pw_passwd)>0: options['pw_passwd'] = _u(pw_passwd) if action == 'useradd': createhome = self.get_argument('createhome', '') createhome = (createhome == 'on') and True or False options['createhome'] = createhome if useradd(_u(pw_name), options): self.write({'code': 0, 'msg': u'用户添加成功!'}) else: self.write({'code': -1, 'msg': u'用户添加失败!'}) elif action == 'usermod': if usermod(_u(pw_name), options): self.write({'code': 0, 'msg': u'用户修改成功!'}) else: self.write({'code': -1, 'msg': u'用户修改失败!'}) elif action == 'userdel': if self.config.get('runtime', 'mode') == 'demo': self.write({'code': -1, 'msg': u'DEMO状态不允许删除用户!'}) return pw_name = self.get_argument('pw_name', '') if userdel(_u(pw_name)): self.write({'code': 0, 'msg': u'用户删除成功!'}) else: self.write({'code': -1, 'msg': u'用户删除失败!'}) elif action in ('groupadd', 'groupmod', 'groupdel'): if self.config.get('runtime', 'mode') == 'demo': self.write({'code': -1, 'msg': u'DEMO状态不允许操作用户组!'}) return gr_name = self.get_argument('gr_name', '') gr_newname = self.get_argument('gr_newname', '') actionstr = {'groupadd': u'添加', 'groupmod': u'修改', 'groupdel': u'删除'}; if action == 'groupmod': rt = groupmod(_u(gr_name), _u(gr_newname)) else: rt = getattr(user, action)(_u(gr_name)) if rt: self.write({'code': 0, 'msg': u'用户组%s成功!' % actionstr[action]}) else: self.write({'code': -1, 'msg': u'用户组%s失败!' % actionstr[action]}) elif action in ('groupmems_add', 'groupmems_del'): if self.config.get('runtime', 'mode') == 'demo': self.write({'code': -1, 'msg': u'DEMO状态不允许操作用户组成员!'}) return gr_name = self.get_argument('gr_name', '') mem = self.get_argument('mem', '') option = action.split('_')[1] optionstr = {'add': u'添加', 'del': u'删除'} if groupmems(_u(gr_name), _u(option), _u(mem)): self.write({'code': 0, 'msg': u'用户组成员%s成功!' % optionstr[option]}) else: self.write({'code': -1, 'msg': u'用户组成员%s成功!' % optionstr[option]}) def listuser(fullinfo=True): if fullinfo: # get lock status from /etc/shadow locks = {} with open('/etc/shadow') as f: for line in f: fields = line.split(':', 2) locks[fields[0]] = fields[1].startswith('!') users = pwd.getpwall() for i, user in enumerate(users): users[i] = dict((name, getattr(user, name)) for name in dir(user) if not name.startswith('__')) try: gname = grp.getgrgid(user.pw_gid).gr_name except: gname = '' users[i]['pw_gname'] = gname users[i]['lock'] = locks[user.pw_name] else: users = [pw.pw_name for pw in pwd.getpwall()] return users def passwd(username, password): try: cmd = shlex.split('passwd \'%s\'' % username) except: return False child = pexpect.spawn(cmd[0], cmd[1:]) i = child.expect(['New password', 'Unknown user name']) if i == 1: if child.isalive(): child.wait() return False child.sendline(password) child.expect('Retype new password') child.sendline(password) i = child.expect(['updated successfully', pexpect.EOF]) if child.isalive(): child.wait() return i == 0 def useradd(username, options): # command like: useradd -c 'New User' -g newgroup -s /bin/bash -m newuser cmd = ['useradd'] if options.has_key('pw_gname') and options['pw_gname']: cmd.extend(['-g', options['pw_gname']]) if options.has_key('pw_gecos'): cmd.extend(['-c', options['pw_gecos']]) if options.has_key('pw_shell'): cmd.extend(['-s', options['pw_shell']]) if options.has_key('createhome') and options['createhome']: cmd.append('-m') else: cmd.append('-M') cmd.append(username) p = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, close_fds=True) p.stdout.read() p.stderr.read() if p.wait() != 0: return False # check if need to lock/unlock the new account if options.has_key('lock') and options['lock']: if not usermod(username, {'lock': options['lock']}): return False # check if need to set passwd if options.has_key('pw_passwd'): if not passwd(username, options['pw_passwd']): return False return True def usermod(username, options): user = pwd.getpwnam(username) # command like: usermod -c 'I am root' -g root -d /root/ -s /bin/bash -U root cmd = ['usermod'] if options.has_key('pw_gname'): cmd.extend(['-g', options['pw_gname']]) if options.has_key('pw_gecos') and options['pw_gecos'] != user.pw_gecos: cmd.extend(['-c', options['pw_gecos']]) if options.has_key('pw_dir') and options['pw_dir'] != user.pw_dir: cmd.extend(['-d', options['pw_dir']]) if options.has_key('pw_shell') and options['pw_shell'] != user.pw_shell: cmd.extend(['-s', options['pw_shell']]) if options.has_key('lock') and options['lock']: cmd.append('-L') else: cmd.append('-U') cmd.append(username) if len(cmd) > 2: p = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, close_fds=True) p.stdout.read() msg = p.stderr.read() if p.wait() != 0: if not 'no changes' in msg: return False # check if need to change passwd if options.has_key('pw_passwd'): if not passwd(username, options['pw_passwd']): return False return True def userdel(username): p = subprocess.Popen(['userdel', username], stdout=subprocess.PIPE, stderr=subprocess.PIPE, close_fds=True) p.stdout.read() p.stderr.read() return p.wait() == 0 def listgroup(fullinfo=True): if fullinfo: groups = grp.getgrall() for i, group in enumerate(groups): groups[i] = dict((name, getattr(group, name)) for name in dir(group) if not name.startswith('__')) else: groups = [gr.gr_name for gr in grp.getgrall()] return groups def groupadd(groupname): p = subprocess.Popen(['groupadd', groupname], stdout=subprocess.PIPE, stderr=subprocess.PIPE, close_fds=True) p.stdout.read() p.stderr.read() return p.wait() == 0 def groupmod(groupname, newgroupname): p = subprocess.Popen(['groupmod', '-n', newgroupname, groupname], stdout=subprocess.PIPE, stderr=subprocess.PIPE, close_fds=True) p.stdout.read() p.stderr.read() return p.wait() == 0 def groupdel(groupname): p = subprocess.Popen(['groupdel', groupname], stdout=subprocess.PIPE, stderr=subprocess.PIPE, close_fds=True) p.stdout.read() p.stderr.read() return p.wait() == 0 def groupmems(groupname, option, mem): cmd = ['groupmems', '-g', groupname] if option == 'add': cmd.extend(['-a', mem]) elif option == 'del': cmd.extend(['-d', mem]) p = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, close_fds=True) p.stdout.read() p.stderr.read() return p.wait() == 0
apache-2.0
-5,547,206,471,437,395,000
33.801347
100
0.543731
false
Fat-Zer/FreeCAD_sf_master
src/Tools/updatefromcrowdin.py
11
12203
#!/usr/bin/python #*************************************************************************** #* * #* Copyright (c) 2009 Yorik van Havre <[email protected]> * #* * #* This program is free software; you can redistribute it and/or modify * #* it under the terms of the GNU Library General Public License (LGPL) * #* as published by the Free Software Foundation; either version 2 of * #* the License, or (at your option) any later version. * #* for detail see the LICENCE text file. * #* * #* This program is distributed in the hope that it will be useful, * #* but WITHOUT ANY WARRANTY; without even the implied warranty of * #* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * #* GNU Library General Public License for more details. * #* * #* You should have received a copy of the GNU Library General Public * #* License along with this program; if not, write to the Free Software * #* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 * #* USA * #* * #*************************************************************************** from __future__ import print_function ''' Usage: updatefromcrowdin.py [options] [LANGCODE] [LANGCODE LANGCODE...] Example: ./updatefromcrowdin.py [-d <directory>] fr nl pt_BR Options: -h or --help : prints this help text -d or --directory : specifies a directory containing unzipped translation folders -z or --zipfile : specifies a path to the freecad.zip file -m or --module : specifies a single module name to be updated, instead of all modules If no argument is specified, the command will try to find and use a freecad.zip file located in the current src/Tools directory (such as the one obtained by running updatecrowdin.py download) and will extract the default languages specified below in this file. This command must be run from its current source tree location (/src/Tools) so it can find the correct places to put the translation files. If run with no arguments, the latest translations from crowdin will be downloaded, unzipped and put to the correct locations. The necessary renaming of files and .qm generation will be taken care of. The qrc files will also be updated when new translations are added. NOTE! The crowdin site only allows to download "builds" (zipped archives) which must be built prior to downloading. This means a build might not reflect the latest state of the translations. Better always make a build before using this script! You can specify a directory with the -d option if you already downloaded and extracted the build, or you can specify a single module to update with -m. You can also run the script without any language code, in which case all the languages contained in the archive or directory will be added. ''' import sys, os, shutil, tempfile, zipfile, getopt, StringIO, re crowdinpath = "http://crowdin.net/download/project/freecad.zip" # locations list contains Module name, relative path to translation folder and relative path to qrc file locations = [["AddonManager","../Mod/AddonManager/Resources/translations","../Mod/AddonManager/Resources/AddonManager.qrc"], ["Arch","../Mod/Arch/Resources/translations","../Mod/Arch/Resources/Arch.qrc"], ["Assembly","../Mod/Assembly/Gui/Resources/translations","../Mod/Assembly/Gui/Resources/Assembly.qrc"], ["draft","../Mod/Draft/Resources/translations","../Mod/Draft/Resources/Draft.qrc"], ["Drawing","../Mod/Drawing/Gui/Resources/translations","../Mod/Drawing/Gui/Resources/Drawing.qrc"], ["Fem","../Mod/Fem/Gui/Resources/translations","../Mod/Fem/Gui/Resources/Fem.qrc"], ["FreeCAD","../Gui/Language","../Gui/Language/translation.qrc"], ["Image","../Mod/Image/Gui/Resources/translations","../Mod/Image/Gui/Resources/Image.qrc"], ["Mesh","../Mod/Mesh/Gui/Resources/translations","../Mod/Mesh/Gui/Resources/Mesh.qrc"], ["MeshPart","../Mod/MeshPart/Gui/Resources/translations","../Mod/MeshPart/Gui/Resources/MeshPart.qrc"], ["OpenSCAD","../Mod/OpenSCAD/Resources/translations","../Mod/OpenSCAD/Resources/OpenSCAD.qrc"], ["Part","../Mod/Part/Gui/Resources/translations","../Mod/Part/Gui/Resources/Part.qrc"], ["PartDesign","../Mod/PartDesign/Gui/Resources/translations","../Mod/PartDesign/Gui/Resources/PartDesign.qrc"], ["Points","../Mod/Points/Gui/Resources/translations","../Mod/Points/Gui/Resources/Points.qrc"], ["Raytracing","../Mod/Raytracing/Gui/Resources/translations","../Mod/Raytracing/Gui/Resources/Raytracing.qrc"], ["ReverseEngineering","../Mod/ReverseEngineering/Gui/Resources/translations","../Mod/ReverseEngineering/Gui/Resources/ReverseEngineering.qrc"], ["Robot","../Mod/Robot/Gui/Resources/translations","../Mod/Robot/Gui/Resources/Robot.qrc"], ["Sketcher","../Mod/Sketcher/Gui/Resources/translations","../Mod/Sketcher/Gui/Resources/Sketcher.qrc"], ["StartPage","../Mod/Start/Gui/Resources/translations","../Mod/Start/Gui/Resources/Start.qrc"], ["Test","../Mod/Test/Gui/Resources/translations","../Mod/Test/Gui/Resources/Test.qrc"], ["Ship","../Mod/Ship/resources/translations","../Mod/Ship/resources/Ship.qrc"], ["Plot","../Mod/Plot/resources/translations","../Mod/Plot/resources/Plot.qrc"], ["Web","../Mod/Web/Gui/Resources/translations","../Mod/Web/Gui/Resources/Web.qrc"], ["Spreadsheet","../Mod/Spreadsheet/Gui/Resources/translations","../Mod/Spreadsheet/Gui/Resources/Spreadsheet.qrc"], ["Path","../Mod/Path/Gui/Resources/translations","../Mod/Path/Gui/Resources/Path.qrc"], ["Tux","../Mod/Tux/Resources/translations","../Mod/Tux/Resources/Tux.qrc"], ["TechDraw","../Mod/TechDraw/Gui/Resources/translations","../Mod/TechDraw/Gui/Resources/TechDraw.qrc"], ] default_languages = "af ar ca cs de el es-ES eu fi fil fr gl hr hu id it ja kab ko lt nl no pl pt-BR pt-PT ro ru sk sl sr sv-SE tr uk val-ES vi zh-CN zh-TW" def updateqrc(qrcpath,lncode): "updates a qrc file with the given translation entry" print("opening " + qrcpath + "...") # getting qrc file contents if not os.path.exists(qrcpath): print("ERROR: Resource file " + qrcpath + " doesn't exist") sys.exit() f = open(qrcpath,"ro") resources = [] for l in f.readlines(): resources.append(l) f.close() # checking for existing entry name = "_" + lncode + ".qm" for r in resources: if name in r: print("language already exists in qrc file") return # find the latest qm line pos = None for i in range(len(resources)): if ".qm" in resources[i]: pos = i if pos is None: print("No existing .qm file in this resource. Appending to the end position") for i in range(len(resources)): if "</qresource>" in resources[i]: pos = i-1 if pos is None: print("ERROR: couldn't add qm files to this resource: " + qrcpath) sys.exit() # inserting new entry just after the last one line = resources[pos] if ".qm" in line: line = re.sub("_.*\.qm","_"+lncode+".qm",line) else: modname = os.path.splitext(os.path.basename(qrcpath))[0] line = " <file>translations/"+modname+"_"+lncode+".qm</file>\n" #print "ERROR: no existing qm entry in this resource: Please add one manually " + qrcpath #sys.exit() print("inserting line: ",line) resources.insert(pos+1,line) # writing the file f = open(qrcpath,"wb") for r in resources: f.write(r) f.close() print("successfully updated ",qrcpath) def doFile(tsfilepath,targetpath,lncode,qrcpath): "updates a single ts file, and creates a corresponding qm file" basename = os.path.basename(tsfilepath)[:-3] # special fix of the draft filename... if basename == "draft": basename = "Draft" newname = basename + "_" + lncode + ".ts" newpath = targetpath + os.sep + newname shutil.copyfile(tsfilepath, newpath) os.system("lrelease " + newpath) newqm = targetpath + os.sep + basename + "_" + lncode + ".qm" if not os.path.exists(newqm): print("ERROR: impossible to create " + newqm + ", aborting") sys.exit() updateqrc(qrcpath,lncode) def doLanguage(lncode,fmodule=""): " treats a single language" if lncode == "en": # never treat "english" translation... For now :) return mods = [] if fmodule: for l in locations: if l[0].upper() == fmodule.upper(): mods = [l] else: mods = locations if not mods: print("Error: Couldn't find module "+fmodule) sys.exit() for target in mods: basefilepath = tempfolder + os.sep + lncode + os.sep + target[0] + ".ts" targetpath = os.path.abspath(target[1]) qrcpath = os.path.abspath(target[2]) doFile(basefilepath,targetpath,lncode,qrcpath) print(lncode + " done!") if __name__ == "__main__": inputdir = "" inputzip = "" fmodule = "" args = sys.argv[1:] if len(args) < 1: inputzip = os.path.join(os.path.abspath(os.curdir),"freecad.zip") if os.path.exists(inputzip): print("Using zip file found at",inputzip) else: print(__doc__) sys.exit() else: try: opts, args = getopt.getopt(sys.argv[1:], "hd:z:m:", ["help", "directory=","zipfile=", "module="]) except getopt.GetoptError: print(__doc__) sys.exit() # checking on the options for o, a in opts: if o in ("-h", "--help"): print(__doc__) sys.exit() if o in ("-d", "--directory"): inputdir = a if o in ("-z", "--zipfile"): inputzip = a if o in ("-m", "--module"): fmodule = a currentfolder = os.getcwd() if inputdir: tempfolder = os.path.realpath(inputdir) if not os.path.exists(tempfolder): print("ERROR: " + tempfolder + " not found") sys.exit() elif inputzip: tempfolder = tempfile.mkdtemp() print("creating temp folder " + tempfolder) inputzip=os.path.realpath(inputzip) if not os.path.exists(inputzip): print("ERROR: " + inputzip + " not found") sys.exit() shutil.copy(inputzip,tempfolder) os.chdir(tempfolder) zfile=zipfile.ZipFile("freecad.zip") print("extracting freecad.zip...") zfile.extractall() else: tempfolder = tempfile.mkdtemp() print("creating temp folder " + tempfolder) os.chdir(tempfolder) os.system("wget "+crowdinpath) if not os.path.exists("freecad.zip"): print("download failed!") sys.exit() zfile=zipfile.ZipFile("freecad.zip") print("extracting freecad.zip...") zfile.extractall() os.chdir(currentfolder) if not args: #args = [o for o in os.listdir(tempfolder) if o != "freecad.zip"] # do not treat all languages in the zip file. Some are not translated enough. args = default_languages.split() for ln in args: if not os.path.exists(tempfolder + os.sep + ln): print("ERROR: language path for " + ln + " not found!") else: doLanguage(ln,fmodule)
lgpl-2.1
-2,449,099,759,645,174,300
44.87594
156
0.588462
false
tlksio/tlksio
env/lib/python3.4/site-packages/logilab/astng/mixins.py
1
4348
# copyright 2003-2013 LOGILAB S.A. (Paris, FRANCE), all rights reserved. # contact http://www.logilab.fr/ -- mailto:[email protected] # # This file is part of logilab-astng. # # logilab-astng is free software: you can redistribute it and/or modify it # under the terms of the GNU Lesser General Public License as published by the # Free Software Foundation, either version 2.1 of the License, or (at your # option) any later version. # # logilab-astng is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or # FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License # for more details. # # You should have received a copy of the GNU Lesser General Public License along # with logilab-astng. If not, see <http://www.gnu.org/licenses/>. """This module contains some mixins for the different nodes. """ from logilab.astng.exceptions import (ASTNGBuildingException, InferenceError, NotFoundError) class BlockRangeMixIn(object): """override block range """ def set_line_info(self, lastchild): self.fromlineno = self.lineno self.tolineno = lastchild.tolineno self.blockstart_tolineno = self._blockstart_toline() def _elsed_block_range(self, lineno, orelse, last=None): """handle block line numbers range for try/finally, for, if and while statements """ if lineno == self.fromlineno: return lineno, lineno if orelse: if lineno >= orelse[0].fromlineno: return lineno, orelse[-1].tolineno return lineno, orelse[0].fromlineno - 1 return lineno, last or self.tolineno class FilterStmtsMixin(object): """Mixin for statement filtering and assignment type""" def _get_filtered_stmts(self, _, node, _stmts, mystmt): """method used in _filter_stmts to get statemtents and trigger break""" if self.statement() is mystmt: # original node's statement is the assignment, only keep # current node (gen exp, list comp) return [node], True return _stmts, False def ass_type(self): return self class AssignTypeMixin(object): def ass_type(self): return self def _get_filtered_stmts(self, lookup_node, node, _stmts, mystmt): """method used in filter_stmts""" if self is mystmt: return _stmts, True if self.statement() is mystmt: # original node's statement is the assignment, only keep # current node (gen exp, list comp) return [node], True return _stmts, False class ParentAssignTypeMixin(AssignTypeMixin): def ass_type(self): return self.parent.ass_type() class FromImportMixIn(FilterStmtsMixin): """MixIn for From and Import Nodes""" def _infer_name(self, frame, name): return name def do_import_module(self, modname): """return the ast for a module whose name is <modname> imported by <self> """ # handle special case where we are on a package node importing a module # using the same name as the package, which may end in an infinite loop # on relative imports # XXX: no more needed ? mymodule = self.root() level = getattr(self, 'level', None) # Import as no level # XXX we should investigate deeper if we really want to check # importing itself: modname and mymodule.name be relative or absolute if mymodule.relative_to_absolute_name(modname, level) == mymodule.name: # FIXME: we used to raise InferenceError here, but why ? return mymodule try: return mymodule.import_module(modname, level=level) except ASTNGBuildingException: raise InferenceError(modname) except SyntaxError as ex: raise InferenceError(str(ex)) def real_name(self, asname): """get name from 'as' name""" for name, _asname in self.names: if name == '*': return asname if not _asname: name = name.split('.', 1)[0] _asname = name if asname == _asname: return name raise NotFoundError(asname)
mit
-2,813,748,875,574,029,000
34.639344
81
0.635005
false
naturali/tensorflow
tensorflow/python/kernel_tests/variable_scope_test.py
1
35348
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for variable store.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy import tensorflow as tf from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import variable_scope class VariableScopeTest(tf.test.TestCase): def testGetVar(self): vs = variable_scope._get_default_variable_store() v = vs.get_variable("v", [1]) v1 = vs.get_variable("v", [1]) assert v == v1 def testNameExists(self): vs = variable_scope._get_default_variable_store() # No check by default, so we can both create and get existing names. v = vs.get_variable("v", [1]) v1 = vs.get_variable("v", [1]) assert v == v1 # When reuse is False, we fail when variables are already there. vs.get_variable("w", [1], reuse=False) # That's ok. with self.assertRaises(ValueError): vs.get_variable("v", [1], reuse=False) # That fails. # When reuse is True, we fail when variables are new. vs.get_variable("v", [1], reuse=True) # That's ok. with self.assertRaises(ValueError): vs.get_variable("u", [1], reuse=True) # That fails. def testNamelessStore(self): vs = variable_scope._get_default_variable_store() vs.get_variable("v1", [2]) vs.get_variable("v2", [2]) expected_names = ["%s:0" % name for name in ["v1", "v2"]] self.assertEqual(set(expected_names), set([v.name for v in vs._vars.values()])) def testVarScopeInitializer(self): with self.test_session() as sess: init = tf.constant_initializer(0.3) with tf.variable_scope("tower") as tower: with tf.variable_scope("foo", initializer=init): v = tf.get_variable("v", []) sess.run(tf.initialize_variables([v])) self.assertAllClose(v.eval(), 0.3) with tf.variable_scope(tower, initializer=init): w = tf.get_variable("w", []) sess.run(tf.initialize_variables([w])) self.assertAllClose(w.eval(), 0.3) def testVarScopeDType(self): with self.test_session(): with tf.variable_scope("tower") as tower: with tf.variable_scope("foo", dtype=tf.float16): v = tf.get_variable("v", []) self.assertEqual(v.dtype, tf.float16_ref) with tf.variable_scope(tower, dtype=tf.float16): w = tf.get_variable("w", []) self.assertEqual(w.dtype, tf.float16_ref) def testInitFromNonTensorValue(self): with self.test_session() as sess: v = tf.get_variable("v", initializer=4, dtype=tf.int32) sess.run(tf.initialize_variables([v])) self.assertAllClose(v.eval(), 4) w = tf.get_variable("w", initializer=numpy.array([1, 2, 3]), dtype=tf.int64) sess.run(tf.initialize_variables([w])) self.assertAllClose(w.eval(), [1, 2, 3]) with self.assertRaises(TypeError): tf.get_variable("x", initializer={}) def testVarScopeCachingDevice(self): with self.test_session(): caching_device = "/job:moo" with tf.variable_scope("tower"): with tf.variable_scope("caching", caching_device=caching_device): v = tf.get_variable("v", []) self.assertTrue(v.value().device.startswith(caching_device)) with tf.variable_scope("child"): v2 = tf.get_variable("v", []) self.assertTrue(v2.value().device.startswith(caching_device)) with tf.variable_scope("not_cached", caching_device=""): v2_not_cached = tf.get_variable("v", []) self.assertFalse( v2_not_cached.value().device.startswith(caching_device)) with tf.variable_scope( "not_cached_identity_device", caching_device=lambda op: op.device): v2_identity_device = tf.get_variable("v", []) self.assertFalse( v2_identity_device.value().device.startswith(caching_device)) with tf.variable_scope("we_will_do_it_live") as vs_live: vs_live.set_caching_device("/job:live") v_live = tf.get_variable("v", []) self.assertTrue(v_live.value().device.startswith("/job:live")) v_tower = tf.get_variable("v", []) self.assertFalse(v_tower.value().device.startswith(caching_device)) def testVarScopeRegularizer(self): with self.test_session() as sess: init = tf.constant_initializer(0.3) def regularizer1(v): return tf.reduce_mean(v) + 0.1 def regularizer2(v): return tf.reduce_mean(v) + 0.2 with tf.variable_scope("tower", regularizer=regularizer1) as tower: with tf.variable_scope("foo", initializer=init): v = tf.get_variable("v", []) sess.run(tf.initialize_variables([v])) losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES) self.assertEqual(1, len(losses)) self.assertAllClose(losses[0].eval(), 0.4) with tf.variable_scope(tower, initializer=init) as vs: u = tf.get_variable("u", []) vs.set_regularizer(regularizer2) w = tf.get_variable("w", []) # Next 3 variable not regularized to test disabling regularization. x = tf.get_variable("x", [], regularizer=tf.no_regularizer) with tf.variable_scope("baz", regularizer=tf.no_regularizer): y = tf.get_variable("y", []) vs.set_regularizer(tf.no_regularizer) z = tf.get_variable("z", []) # Check results. losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES) self.assertEqual(3, len(losses)) sess.run(tf.initialize_variables([u, w, x, y, z])) self.assertAllClose(losses[0].eval(), 0.4) self.assertAllClose(losses[1].eval(), 0.4) self.assertAllClose(losses[2].eval(), 0.5) with tf.variable_scope("foo", reuse=True): v = tf.get_variable("v", []) # "v" is alredy there, reused losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES) self.assertEqual(3, len(losses)) # No new loss added. def testIntializeFromValue(self): with self.test_session() as sess: init = tf.constant(0.1) w = tf.get_variable("v", initializer=init) sess.run(tf.initialize_variables([w])) self.assertAllClose(w.eval(), 0.1) with self.assertRaisesRegexp(ValueError, "shape"): # We disallow explicit shape specification when initializer is constant. tf.get_variable("u", [1], initializer=init) with tf.variable_scope("foo", initializer=init): # Constant initializer can be passed through scopes if needed. v = tf.get_variable("v") sess.run(tf.initialize_variables([v])) self.assertAllClose(v.eval(), 0.1) # Check that non-float32 initializer creates a non-float32 variable. init = tf.constant(1, dtype=tf.int32) t = tf.get_variable("t", initializer=init) self.assertEqual(t.dtype.base_dtype, tf.int32) # Raise error if `initializer` dtype and `dtype` are not identical. with self.assertRaisesRegexp(ValueError, "don't match"): tf.get_variable("s", initializer=init, dtype=tf.float64) def testControlDeps(self): with self.test_session() as sess: v0 = tf.get_variable("v0", [1], initializer=tf.constant_initializer(0)) with tf.control_dependencies([v0.value()]): v1 = tf.get_variable("v1", [1], initializer=tf.constant_initializer(1)) add = v1 + v0 # v0 should be uninitialized. with self.assertRaisesRegexp(tf.OpError, "uninitialized"): sess.run(v0) # We should be able to initialize and run v1 without initializing # v0, even if the variable was created with a control dep on v0. sess.run(v1.initializer) self.assertEqual(1, sess.run(v1)) # v0 should still be uninitialized. with self.assertRaisesRegexp(tf.OpError, "uninitialized"): sess.run(v0) with self.assertRaisesRegexp(tf.OpError, "uninitialized"): sess.run(add) # If we initialize v0 we should be able to run 'add'. sess.run(v0.initializer) sess.run(add) def testControlFlow(self): with self.test_session() as sess: v0 = tf.get_variable("v0", [], initializer=tf.constant_initializer(0)) var_dict = {} # Call get_variable in each of the cond clauses. def var_in_then_clause(): v1 = tf.get_variable("v1", [1], initializer=tf.constant_initializer(1)) var_dict["v1"] = v1 return v1 + v0 def var_in_else_clause(): v2 = tf.get_variable("v2", [1], initializer=tf.constant_initializer(2)) var_dict["v2"] = v2 return v2 + v0 add = control_flow_ops.cond(tf.less(v0, 10), var_in_then_clause, var_in_else_clause) v1 = var_dict["v1"] v2 = var_dict["v2"] # We should be able to initialize and run v1 and v2 without initializing # v0, even if the variable was created with a control dep on v0. sess.run(v1.initializer) self.assertEqual([1], sess.run(v1)) sess.run(v2.initializer) self.assertEqual([2], sess.run(v2)) # v0 should still be uninitialized. with self.assertRaisesRegexp(tf.OpError, "uninitialized"): sess.run(v0) # We should not be able to run 'add' yet. with self.assertRaisesRegexp(tf.OpError, "uninitialized"): sess.run(add) # If we initialize v0 we should be able to run 'add'. sess.run(v0.initializer) sess.run(add) def testGetVariableScope(self): # Test the get_variable_scope() function and setting properties of result. with self.test_session() as sess: init = tf.constant_initializer(0.3) with tf.variable_scope("foo"): new_init1 = tf.get_variable_scope().initializer self.assertEqual(new_init1, None) # Check that we can set initializer like this. tf.get_variable_scope().set_initializer(init) v = tf.get_variable("v", []) sess.run(tf.initialize_variables([v])) self.assertAllClose(v.eval(), 0.3) # Check that we can set reuse. tf.get_variable_scope().reuse_variables() with self.assertRaises(ValueError): # Fail, w does not exist yet. tf.get_variable("w", [1]) # Check that the set initializer goes away. new_init = tf.get_variable_scope().initializer self.assertEqual(new_init, None) def testVarScope(self): with self.test_session(): with tf.variable_scope("tower") as tower: self.assertEqual(tower.name, "tower") with tf.name_scope("scope") as sc: self.assertEqual(sc, "tower/scope/") with tf.variable_scope("foo"): with tf.variable_scope("bar") as bar: self.assertEqual(bar.name, "foo/bar") with tf.name_scope("scope") as sc: self.assertEqual(sc, "foo/bar/scope/") with tf.variable_scope("foo"): with tf.variable_scope(tower, reuse=True) as tower_shared: self.assertEqual(tower_shared.name, "tower") with tf.name_scope("scope") as sc: self.assertEqual(sc, "foo_1/tower/scope/") def testVarScopeNameScope(self): with self.test_session(): with tf.name_scope("scope1"): with tf.variable_scope("tower") as tower: with tf.name_scope("scope2") as sc2: self.assertEqual(sc2, "scope1/tower/scope2/") with tf.variable_scope(tower): # Re-entering acts like another "tower". with tf.name_scope("scope2") as sc2: self.assertEqual(sc2, "scope1/tower_1/scope2/") with tf.variable_scope("tower"): # Re-entering by string acts the same. with tf.name_scope("scope2") as sc2: self.assertEqual(sc2, "scope1/tower_2/scope2/") with tf.name_scope("scope3"): with tf.variable_scope("tower"): with tf.name_scope("scope2") as sc2: self.assertEqual(sc2, "scope3/tower/scope2/") with tf.variable_scope(tower): with tf.name_scope("scope2") as sc2: self.assertEqual(sc2, "scope3/tower_1/scope2/") root_var_scope = tf.get_variable_scope() with tf.name_scope("scope4"): with tf.variable_scope(root_var_scope): with tf.name_scope("scope2") as sc2: self.assertEqual(sc2, "scope4/scope2/") def testVarScopeOriginalNameScope(self): with self.test_session(): with tf.name_scope("scope1"): with tf.variable_scope("tower") as tower: self.assertEqual(tower.original_name_scope, "scope1/tower/") with tf.name_scope("scope2") as sc2: self.assertEqual(sc2, "scope1/tower/scope2/") with tf.name_scope("scope2"): with tf.variable_scope(tower) as tower1: # Re-entering preserves original name scope. self.assertEqual(tower1.original_name_scope, "scope1/tower/") with tf.name_scope("foo") as sc2: self.assertEqual(sc2, "scope2/tower/foo/") # Test re-entering original name scope. with tf.name_scope(tower.original_name_scope): with tf.name_scope("bar") as sc3: self.assertEqual(sc3, "scope1/tower/bar/") with tf.name_scope("scope2"): with tf.variable_scope(tower): with tf.name_scope(tower.original_name_scope): with tf.name_scope("bar") as sc3: self.assertEqual(sc3, "scope1/tower/bar_1/") def testVarScopeObjectReuse(self): with self.test_session(): vs = None with tf.variable_scope("jump", reuse=True) as scope: vs = scope with tf.variable_scope(vs) as jump: self.assertTrue(jump.reuse) with tf.variable_scope(vs, reuse=True) as jump_reuse: self.assertTrue(jump_reuse.reuse) with tf.variable_scope(vs, reuse=False) as jump_no_reuse: self.assertFalse(jump_no_reuse.reuse) with tf.variable_scope("jump", reuse=False) as scope: vs = scope with tf.variable_scope(vs) as jump: self.assertFalse(jump.reuse) with tf.variable_scope(vs, reuse=True) as jump_reuse: self.assertTrue(jump_reuse.reuse) with tf.variable_scope(vs, reuse=False) as jump_no_reuse: self.assertFalse(jump_no_reuse.reuse) def testVarOpScope(self): with self.test_session(): with tf.name_scope("scope1"): with tf.variable_scope("tower", "default", []): self.assertEqual(tf.get_variable("w", []).name, "tower/w:0") with tf.name_scope("scope2") as sc2: self.assertEqual(sc2, "scope1/tower/scope2/") with tf.variable_scope("tower", "default", []): with self.assertRaises(ValueError): tf.get_variable("w", []) with tf.name_scope("scope2") as sc2: self.assertEqual(sc2, "scope1/tower_1/scope2/") with tf.name_scope("scope2"): with tf.variable_scope(None, "default", []): self.assertEqual(tf.get_variable("w", []).name, "default/w:0") with tf.name_scope("scope2") as sc2: self.assertEqual(sc2, "scope2/default/scope2/") with tf.variable_scope(None, "default", []): self.assertEqual(tf.get_variable("w", []).name, "default_1/w:0") with tf.name_scope("scope2") as sc2: self.assertEqual(sc2, "scope2/default_1/scope2/") def testVarOpScopeUniqueNamesInterleavedSubstringScopes(self): with self.test_session(): with tf.variable_scope(None, "defaultScope1"): with tf.variable_scope(None, "layer"): self.assertEqual(tf.get_variable("w", []).name, "defaultScope1/layer/w:0") with tf.variable_scope(None, "defaultScope1"): with tf.variable_scope(None, "layer"): self.assertEqual(tf.get_variable("w", []).name, "defaultScope1_1/layer/w:0") with tf.variable_scope(None, "defaultScope"): with tf.variable_scope(None, "layer"): self.assertEqual(tf.get_variable("w", []).name, "defaultScope/layer/w:0") with tf.variable_scope(None, "defaultScope1"): with tf.variable_scope(None, "layer"): self.assertEqual(tf.get_variable("w", []).name, "defaultScope1_2/layer/w:0") def testVarOpScopeReuse(self): with self.test_session(): with tf.variable_scope("outer") as outer: with tf.variable_scope("tower", "default", []): self.assertEqual(tf.get_variable("w", []).name, "outer/tower/w:0") with tf.name_scope("scope2") as sc2: self.assertEqual(sc2, "outer/tower/scope2/") with tf.variable_scope(None, "default", []): self.assertEqual(tf.get_variable("w", []).name, "outer/default/w:0") with tf.name_scope("scope2") as sc2: self.assertEqual(sc2, "outer/default/scope2/") with tf.variable_scope(outer, reuse=True) as outer: with tf.variable_scope("tower", "default", []): self.assertEqual(tf.get_variable("w", []).name, "outer/tower/w:0") with tf.name_scope("scope2") as sc2: self.assertEqual(sc2, "outer_1/tower/scope2/") with tf.variable_scope(None, "default", []): self.assertEqual(tf.get_variable("w", []).name, "outer/default/w:0") with tf.name_scope("scope2") as sc2: self.assertEqual(sc2, "outer_1/default/scope2/") def testVarScopeGetVar(self): with self.test_session(): with tf.variable_scope("root"): with tf.variable_scope("towerA") as tower_a: va = tf.get_variable("v", [1]) self.assertEqual(va.name, "root/towerA/v:0") with tf.variable_scope(tower_a, reuse=True): va2 = tf.get_variable("v", [1]) self.assertEqual(va2, va) with tf.variable_scope("towerB"): vb = tf.get_variable("v", [1]) self.assertEqual(vb.name, "root/towerB/v:0") with self.assertRaises(ValueError): with tf.variable_scope("towerA"): va2 = tf.get_variable("v", [1]) with tf.variable_scope("towerA", reuse=True): va2 = tf.get_variable("v", [1]) self.assertEqual(va2, va) with tf.variable_scope("foo"): with tf.variable_scope("bar"): v = tf.get_variable("v", [1]) self.assertEqual(v.name, "root/foo/bar/v:0") with tf.variable_scope(tower_a, reuse=True): va3 = tf.get_variable("v", [1]) self.assertEqual(va, va3) with self.assertRaises(ValueError): with tf.variable_scope(tower_a, reuse=True): with tf.variable_scope("baz"): tf.get_variable("v", [1]) with self.assertRaises(ValueError) as exc: with tf.variable_scope(tower_a, reuse=True): tf.get_variable("v", [2]) # Different shape. self.assertEqual("shape" in str(exc.exception), True) with self.assertRaises(ValueError) as exc: with tf.variable_scope(tower_a, reuse=True): tf.get_variable("v", [1], dtype=tf.int32) self.assertEqual("dtype" in str(exc.exception), True) def testVarScopeOuterScope(self): with self.test_session(): with tf.variable_scope("outer") as outer: pass with tf.variable_scope(outer): self.assertEqual(tf.get_variable("w", []).name, "outer/w:0") with tf.name_scope("scope2") as sc2: self.assertEqual(sc2, "outer_1/scope2/") with tf.variable_scope("default"): self.assertEqual(tf.get_variable("w", []).name, "outer/default/w:0") with tf.name_scope("scope2") as sc2: self.assertEqual(sc2, "outer_1/default/scope2/") with tf.variable_scope(outer, reuse=True): self.assertEqual(tf.get_variable("w", []).name, "outer/w:0") with tf.name_scope("scope2") as sc2: self.assertEqual(sc2, "outer_2/scope2/") with tf.variable_scope("default", reuse=True): self.assertEqual(tf.get_variable("w", []).name, "outer/default/w:0") with tf.name_scope("scope2") as sc2: self.assertEqual(sc2, "outer_2/default/scope2/") def testVarScopeNestedOuterScope(self): with self.test_session(): with tf.variable_scope("outer") as outer: with tf.variable_scope(outer): self.assertEqual(tf.get_variable("w", []).name, "outer/w:0") with tf.name_scope("scope2") as sc2: self.assertEqual(sc2, "outer/outer/scope2/") with tf.variable_scope("default"): self.assertEqual(tf.get_variable("w", []).name, "outer/default/w:0") with tf.name_scope("scope2") as sc2: self.assertEqual(sc2, "outer/default/scope2/") with tf.variable_scope(outer, reuse=True): self.assertEqual(tf.get_variable("w", []).name, "outer/w:0") with tf.name_scope("scope2") as sc2: self.assertEqual(sc2, "outer/outer_1/scope2/") with tf.variable_scope("default", reuse=True): self.assertEqual(tf.get_variable("w", []).name, "outer/default/w:0") with tf.name_scope("scope2") as sc2: self.assertEqual(sc2, "outer/default_1/scope2/") def testVarOpScopeReuseParam(self): with self.test_session(): with tf.variable_scope("outer") as outer: with tf.variable_scope("tower", "default", []): self.assertEqual(tf.get_variable("w", []).name, "outer/tower/w:0") with tf.name_scope("scope2") as sc2: self.assertEqual(sc2, "outer/tower/scope2/") with tf.variable_scope(None, "default", []): self.assertEqual(tf.get_variable("w", []).name, "outer/default/w:0") with tf.name_scope("scope2") as sc2: self.assertEqual(sc2, "outer/default/scope2/") with tf.variable_scope(outer) as outer: with tf.variable_scope("tower", "default", reuse=True): self.assertEqual(tf.get_variable("w", []).name, "outer/tower/w:0") with tf.name_scope("scope2") as sc2: self.assertEqual(sc2, "outer_1/tower/scope2/") outer.reuse_variables() with tf.variable_scope(None, "default", []): self.assertEqual(tf.get_variable("w", []).name, "outer/default/w:0") with tf.name_scope("scope2") as sc2: self.assertEqual(sc2, "outer_1/default/scope2/") def testVarOpScopeReuseError(self): with self.test_session(): with self.assertRaises(ValueError): with tf.variable_scope(None, "default", reuse=True): self.assertEqual(tf.get_variable("w", []).name, "outer/tower/w:0") def testVarOpScopeOuterScope(self): with self.test_session(): with tf.variable_scope("outer") as outer: pass with tf.variable_scope(outer, "default", []): self.assertEqual(tf.get_variable("w", []).name, "outer/w:0") with tf.name_scope("scope2") as sc2: self.assertEqual(sc2, "outer_1/scope2/") with tf.variable_scope(None, "default", []): self.assertEqual(tf.get_variable("w", []).name, "outer/default/w:0") with tf.name_scope("scope2") as sc2: self.assertEqual(sc2, "outer_1/default/scope2/") with tf.variable_scope(outer, "default", reuse=True): self.assertEqual(tf.get_variable("w", []).name, "outer/w:0") with tf.name_scope("scope2") as sc2: self.assertEqual(sc2, "outer_2/scope2/") outer.reuse_variables() with tf.variable_scope(None, "default", []): self.assertEqual(tf.get_variable("w", []).name, "outer/default/w:0") with tf.name_scope("scope2") as sc2: self.assertEqual(sc2, "outer_2/default/scope2/") def testVarOpScopeNestedOuterScope(self): with self.test_session(): with tf.variable_scope("outer") as outer: with tf.variable_scope(outer, "default", []): self.assertEqual(tf.get_variable("w", []).name, "outer/w:0") with tf.name_scope("scope2") as sc2: self.assertEqual(sc2, "outer/outer/scope2/") with tf.variable_scope(None, "default", []): self.assertEqual(tf.get_variable("w", []).name, "outer/default/w:0") with tf.name_scope("scope2") as sc2: self.assertEqual(sc2, "outer/default/scope2/") with tf.variable_scope(outer, "default", reuse=True): self.assertEqual(tf.get_variable("w", []).name, "outer/w:0") with tf.name_scope("scope2") as sc2: self.assertEqual(sc2, "outer_1/scope2/") with tf.variable_scope(None, "default", []): self.assertEqual(tf.get_variable("w", []).name, "outer/default/w:0") with tf.name_scope("scope2") as sc2: self.assertEqual(sc2, "outer_1/default/scope2/") def testGetLocalVar(self): with self.test_session(): # Check that local variable respects naming. with tf.variable_scope("outer") as outer: with tf.variable_scope(outer, "default", []): local_var = variable_scope.get_local_variable( "w", [], collections=["foo"]) self.assertEqual(local_var.name, "outer/w:0") # Since variable is local, it should be in the local variable collection # but not the the trainable collection. self.assertIn(local_var, tf.get_collection(tf.GraphKeys.LOCAL_VARIABLES)) self.assertIn(local_var, tf.get_collection("foo")) self.assertNotIn( local_var, tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES)) # Check that local variable respects `reuse`. with tf.variable_scope(outer, "default", reuse=True): self.assertEqual(variable_scope.get_local_variable("w", []).name, "outer/w:0") def axis0_into1_partitioner(shape=None, **unused_kwargs): part = [1] * len(shape) return part def axis0_into2_partitioner(shape=None, **unused_kwargs): part = [1] * len(shape) part[0] = 2 return part def axis0_into3_partitioner(shape=None, **unused_kwargs): part = [1] * len(shape) part[0] = 3 return part class VariableScopeWithPartitioningTest(tf.test.TestCase): def testResultNameMatchesRequested(self): with tf.variable_scope("scope0", partitioner=axis0_into2_partitioner): v = tf.get_variable("name0", shape=(3, 1, 1)) self.assertEqual(v.name, "scope0/name0") v_concat = v.as_tensor() self.assertEqual(v_concat.name, "scope0/name0:0") variables = tf.get_collection(tf.GraphKeys.VARIABLES) self.assertTrue("scope0/name0/part_0:0" in [x.name for x in variables]) self.assertTrue("scope0/name0/part_1:0" in [x.name for x in variables]) self.assertFalse("scope0/name0/part_2:0" in [x.name for x in variables]) def testBreaksIfPartitioningChanges(self): with tf.variable_scope("scope0", partitioner=axis0_into2_partitioner): tf.get_variable("name0", shape=(3, 1, 1)) with tf.variable_scope("scope0", partitioner=axis0_into3_partitioner, reuse=True): with self.assertRaisesRegexp( ValueError, "Trying to reuse partitioned variable .* but specified partitions .* " "and found partitions .*"): tf.get_variable("name0", shape=(3, 1, 1)) with tf.variable_scope("scope0", partitioner=axis0_into1_partitioner, reuse=True): with self.assertRaisesRegexp( ValueError, "Trying to reuse partitioned variable .* but specified partitions .* " "and found partitions .*"): tf.get_variable("name0", shape=(3, 1, 1)) def testReturnsExistingConcatenatedValueIfReuse(self): with tf.variable_scope("scope0", partitioner=axis0_into2_partitioner): v_concat = tf.get_variable("name0", shape=(3, 1, 1)) tf.get_variable_scope().reuse_variables() v_concat_2 = tf.get_variable("name0", shape=(3, 1, 1)) self.assertEqual(v_concat, v_concat_2) def testAllowsReuseWithoutPartitioner(self): with tf.variable_scope("scope0", partitioner=axis0_into2_partitioner): v = tf.get_variable("name0", shape=(3, 1, 1)) with tf.variable_scope("scope0", reuse=True): v_reused = tf.get_variable("name0") self.assertEqual(v, v_reused) def testPropagatePartitionerOnReopening(self): with tf.variable_scope("scope0", partitioner=axis0_into2_partitioner) as vs: self.assertEqual(axis0_into2_partitioner, vs.partitioner) with tf.variable_scope(vs) as vs1: self.assertEqual(axis0_into2_partitioner, vs1.partitioner) def testPartitionConcatenatesAlongCorrectAxis(self): def _part_axis_0(**unused_kwargs): return (2, 1, 1) def _part_axis_1(**unused_kwargs): return (1, 2, 1) with tf.variable_scope("root"): v0 = tf.get_variable("n0", shape=(2, 2, 2), partitioner=_part_axis_0) v1 = tf.get_variable("n1", shape=(2, 2, 2), partitioner=_part_axis_1) self.assertEqual(v0.get_shape(), (2, 2, 2)) self.assertEqual(v1.get_shape(), (2, 2, 2)) n0_0 = tf.get_default_graph().get_tensor_by_name("root/n0/part_0:0") n0_1 = tf.get_default_graph().get_tensor_by_name("root/n0/part_1:0") self.assertEqual(n0_0.get_shape(), (1, 2, 2)) self.assertEqual(n0_1.get_shape(), (1, 2, 2)) n1_0 = tf.get_default_graph().get_tensor_by_name("root/n1/part_0:0") n1_1 = tf.get_default_graph().get_tensor_by_name("root/n1/part_1:0") self.assertEqual(n1_0.get_shape(), (2, 1, 2)) self.assertEqual(n1_1.get_shape(), (2, 1, 2)) class VariableScopeWithCustomGetterTest(tf.test.TestCase): def testNonCallableGetterFails(self): with self.assertRaisesRegexp(ValueError, r"custom_getter .* not callable:"): with tf.variable_scope("scope0", custom_getter=3): tf.get_variable("name0") with self.assertRaisesRegexp(ValueError, r"custom_getter .* not callable:"): tf.get_variable("name0", custom_getter=3) def testNoSideEffectsWithIdentityCustomGetter(self): called = [0] def custom_getter(getter, *args, **kwargs): called[0] += 1 return getter(*args, **kwargs) with tf.variable_scope("scope", custom_getter=custom_getter) as scope: v = tf.get_variable("v", [1]) with tf.variable_scope(scope, reuse=True): v2 = tf.get_variable("v", [1]) with tf.variable_scope("new_scope") as new_scope: v3 = tf.get_variable("v3", [1]) with tf.variable_scope(new_scope, reuse=True, custom_getter=custom_getter): v4 = tf.get_variable("v3", [1]) self.assertEqual(v, v2) self.assertEqual(v3, v4) self.assertEqual(3, called[0]) # skipped one in the first new_scope def testGetterThatCreatesTwoVariablesAndSumsThem(self): def custom_getter(getter, name, *args, **kwargs): g_0 = getter("%s/0" % name, *args, **kwargs) g_1 = getter("%s/1" % name, *args, **kwargs) with tf.name_scope("custom_getter"): return g_0 + g_1 with tf.variable_scope("scope", custom_getter=custom_getter): v = tf.get_variable("v", [1, 2, 3]) self.assertEqual([1, 2, 3], v.get_shape()) true_vars = tf.trainable_variables() self.assertEqual(2, len(true_vars)) self.assertEqual("scope/v/0:0", true_vars[0].name) self.assertEqual("scope/v/1:0", true_vars[1].name) self.assertEqual("custom_getter/add:0", v.name) with self.test_session() as sess: tf.initialize_all_variables().run() np_vars, np_v = sess.run([true_vars, v]) self.assertAllClose(np_v, sum(np_vars)) class PartitionInfoTest(tf.test.TestCase): def testConstructorChecks(self): # Invalid arg types. with self.assertRaises(TypeError): variable_scope._PartitionInfo(full_shape=None, var_offset=[0, 1]) with self.assertRaises(TypeError): variable_scope._PartitionInfo(full_shape=[0, 1], var_offset=None) with self.assertRaises(TypeError): variable_scope._PartitionInfo(full_shape="foo", var_offset=[0, 1]) with self.assertRaises(TypeError): variable_scope._PartitionInfo(full_shape=[0, 1], var_offset="foo") # full_shape and var_offset must have same length. with self.assertRaises(ValueError): variable_scope._PartitionInfo(full_shape=[0, 1], var_offset=[0]) # Offset must always be less than shape. with self.assertRaises(ValueError): variable_scope._PartitionInfo(full_shape=[1, 1], var_offset=[0, 1]) def testSingleOffset(self): partition_info = variable_scope._PartitionInfo( full_shape=[9, 3], var_offset=[4, 0]) self.assertEqual(4, partition_info.single_offset([1, 3])) # Tests when the variable isn't partitioned at all. partition_info = variable_scope._PartitionInfo( full_shape=[9, 3], var_offset=[0, 0]) self.assertEqual(0, partition_info.single_offset([9, 3])) def testSingleSliceDim(self): partition_info = variable_scope._PartitionInfo( full_shape=[9, 3], var_offset=[4, 0]) # Invalid shape. with self.assertRaises(TypeError): partition_info.single_slice_dim(None) # Rank of shape differs from full_shape. with self.assertRaises(ValueError): partition_info.single_slice_dim([1, 2, 3]) # Shape is too large given var_offset (4+6 > 9). with self.assertRaises(ValueError): partition_info.single_slice_dim([6, 3]) # Multiple possible slice dim from shape. with self.assertRaises(ValueError): partition_info.single_slice_dim([1, 1]) partition_info = variable_scope._PartitionInfo( full_shape=[9, 3], var_offset=[0, 0]) self.assertEqual(1, partition_info.single_slice_dim([9, 2])) partition_info = variable_scope._PartitionInfo( full_shape=[9, 3], var_offset=[4, 0]) self.assertEqual(0, partition_info.single_slice_dim([2, 3])) if __name__ == "__main__": tf.test.main()
apache-2.0
-7,995,408,519,929,527,000
40.931198
80
0.606286
false
craigderington/striker_api
tutorial/snippets/views4.py
1
1130
from snippets.models import Snippet from snippets.serializers import SnippetSerializer from rest_framework import mixins from rest_framework import generics class SnippetList(mixins.ListModelMixin, mixins.CreateModelMixin, generics.GenericAPIView): queryset = Snippet.objects.all() serializer_class = SnippetSerializer def get(self, request, *args, **kwargs): return self.list(request, *args, **kwargs) def post(self, request, *args, **kwargs): return self.create(request, *args, **kwargs) class SnippetDetail(mixins.RetrieveModelMixin, mixins.UpdateModelMixin, mixins.DestroyModelMixin, generics.GenericAPIView): queryset = Snippet.objects.all() serializer_class = SnippetSerializer def get(self, request, *args, **kwargs): return self.retrieve(request, *args, **kwargs) def put(self, request, *args, **kwargs): return self.update(request, *args, **kwargs) def delete(self, request, *args, **kwargs): return self.destroy(request, *args, *kwargs)
gpl-3.0
2,336,629,355,937,926,000
30.388889
54
0.659292
false
bretttegart/treadmill
lib/python/treadmill/runtime/linux/image/native.py
1
18468
"""A collection of native images. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import errno import glob import io import logging import os import pwd import shutil import stat from treadmill import appcfg from treadmill import cgroups from treadmill import fs from treadmill import keytabs from treadmill import runtime from treadmill import subproc from treadmill import supervisor from treadmill import utils from treadmill.fs import linux as fs_linux from . import fs as image_fs from . import _image_base from . import _repository_base from .. import _manifest _LOGGER = logging.getLogger(__name__) _CONTAINER_ENV_DIR = 'env' _CONTAINER_DOCKER_ENV_DIR = os.path.join('docker', 'env') _CONTAINER_DOCKER_ETC_DIR = os.path.join('docker', 'etc') def create_docker_environ_dir(container_dir, root_dir, app): """Creates environ dir for docker""" env_dir = os.path.join(container_dir, _CONTAINER_DOCKER_ENV_DIR) env = {} if app.ephemeral_ports.tcp or app.ephemeral_ports.udp: env['LD_PRELOAD'] = os.path.join( _manifest.TREADMILL_BIND_PATH, '$LIB', 'treadmill_bind_preload.so' ) supervisor.create_environ_dir(env_dir, env) # Bind the environ directory in the container volume fs.mkdir_safe(os.path.join(root_dir, _CONTAINER_DOCKER_ENV_DIR)) fs_linux.mount_bind( root_dir, os.path.join(os.sep, _CONTAINER_DOCKER_ENV_DIR), source=os.path.join(container_dir, _CONTAINER_DOCKER_ENV_DIR), recursive=False, read_only=True ) def create_environ_dir(container_dir, root_dir, app): """Creates environ dir for s6-envdir.""" env_dir = os.path.join(container_dir, _CONTAINER_ENV_DIR) env = { 'TREADMILL_APP': app.app, 'TREADMILL_CELL': app.cell, 'TREADMILL_CPU': app.cpu, 'TREADMILL_DISK': app.disk, 'TREADMILL_HOST_IP': app.network.external_ip, 'TREADMILL_IDENTITY': app.identity, 'TREADMILL_IDENTITY_GROUP': app.identity_group, 'TREADMILL_INSTANCEID': app.task, 'TREADMILL_MEMORY': app.memory, 'TREADMILL_PROID': app.proid, 'TREADMILL_ENV': app.environment, } for endpoint in app.endpoints: envname = 'TREADMILL_ENDPOINT_{0}'.format(endpoint.name.upper()) env[envname] = endpoint.real_port env['TREADMILL_EPHEMERAL_TCP_PORTS'] = ' '.join( [str(port) for port in app.ephemeral_ports.tcp] ) env['TREADMILL_EPHEMERAL_UDP_PORTS'] = ' '.join( [str(port) for port in app.ephemeral_ports.udp] ) env['TREADMILL_CONTAINER_IP'] = app.network.vip env['TREADMILL_GATEWAY_IP'] = app.network.gateway if app.shared_ip: env['TREADMILL_SERVICE_IP'] = app.network.external_ip supervisor.create_environ_dir(env_dir, env) # Bind the environ directory in the container volume fs.mkdir_safe(os.path.join(root_dir, _CONTAINER_ENV_DIR)) fs_linux.mount_bind( root_dir, os.path.join(os.sep, _CONTAINER_ENV_DIR), source=os.path.join(container_dir, _CONTAINER_ENV_DIR), recursive=False, read_only=True ) if app.docker: create_docker_environ_dir(container_dir, root_dir, app) def create_supervision_tree(tm_env, container_dir, root_dir, app, cgroups_path): """Creates s6 supervision tree.""" uniq_name = appcfg.app_unique_name(app) ctl_uds = os.path.join(os.sep, 'run', 'tm_ctl') tombstone_ctl_uds = os.path.join(ctl_uds, 'tombstone') sys_dir = os.path.join(container_dir, 'sys') sys_scandir = supervisor.create_scan_dir( sys_dir, finish_timeout=6000, wait_cgroups=cgroups_path, ) for svc_def in app.system_services: if svc_def.restart is not None: monitor_policy = { 'limit': svc_def.restart.limit, 'interval': svc_def.restart.interval, 'tombstone': { 'uds': False, 'path': tm_env.services_tombstone_dir, 'id': '{},{}'.format(uniq_name, svc_def.name) } } else: monitor_policy = None supervisor.create_service( sys_scandir, name=svc_def.name, app_run_script=svc_def.command, userid='root', environ_dir=os.path.join(container_dir, _CONTAINER_ENV_DIR), environ={ envvar.name: envvar.value for envvar in svc_def.environ }, environment=app.environment, downed=svc_def.downed, trace=None, monitor_policy=monitor_policy ) sys_scandir.write() services_dir = os.path.join(container_dir, 'services') services_scandir = supervisor.create_scan_dir( services_dir, finish_timeout=5000 ) for svc_def in app.services: if svc_def.restart is not None: monitor_policy = { 'limit': svc_def.restart.limit, 'interval': svc_def.restart.interval, 'tombstone': { 'uds': True, 'path': tombstone_ctl_uds, 'id': '{},{}'.format(uniq_name, svc_def.name) } } else: monitor_policy = None if svc_def.trace is not None: trace = { 'instanceid': app.name, 'uniqueid': app.uniqueid, 'service': svc_def.name, 'path': os.path.join(ctl_uds, 'appevents') } else: trace = None logger_template = getattr(svc_def, 'logger', 's6.app-logger.run') _LOGGER.info('Using logger: %s', logger_template) supervisor.create_service( services_scandir, name=svc_def.name, app_run_script=svc_def.command, userid=svc_def.proid, environ_dir='/' + _CONTAINER_ENV_DIR, environ={ envvar.name: envvar.value for envvar in svc_def.environ }, environment=app.environment, downed=False, trace=trace if svc_def.trace else None, log_run_script=logger_template, monitor_policy=monitor_policy ) services_scandir.write() # Bind the service directory in the container volume fs.mkdir_safe(os.path.join(root_dir, 'services')) fs_linux.mount_bind( root_dir, os.path.join(os.sep, 'services'), source=os.path.join(container_dir, 'services'), recursive=False, read_only=False ) # Bind the ctrl directory in the container volume which has all the # unix domain sockets to communicate outside the container to treadmill fs.mkdir_safe(os.path.join(root_dir, 'run', 'tm_ctl')) fs_linux.mount_bind( root_dir, os.path.join(os.sep, 'run', 'tm_ctl'), source=tm_env.ctl_dir, recursive=False, read_only=False ) def make_fsroot(root_dir, app): """Initializes directory structure for the container in a new root. The container uses pretty much a blank a FHS 3 layout. - Bind directories in parent / (with exceptions - see below.) - Skip /tmp, create /tmp in the new root with correct permissions. - Selectively create / bind /var. - /var/tmp (new) - /var/log (new) - /var/spool - create empty with dirs. - Bind everything in /var, skipping /spool/tickets """ newroot_norm = fs.norm_safe(root_dir) emptydirs = [ '/bin', '/dev', '/etc', '/home', '/lib', '/lib64', '/opt', '/proc', '/root', '/run', '/sbin', '/sys', '/tmp', '/usr', '/var/cache', '/var/empty', '/var/lib', '/var/lock', '/var/log', '/var/opt', '/var/spool', '/var/tmp', '/var/spool/keytabs', '/var/spool/tickets', '/var/spool/tokens', # for SSS '/var/lib/sss', ] stickydirs = [ '/opt', '/run', '/tmp', '/var/cache', '/var/lib', '/var/lock', '/var/log', '/var/opt', '/var/tmp', '/var/spool/keytabs', '/var/spool/tickets', '/var/spool/tokens', ] # these folders are shared with underlying host and other containers, mounts = [ '/bin', '/etc', # TODO: Add /etc/opt '/lib', '/lib64', '/root', '/sbin', '/usr', # for SSS '/var/lib/sss', # TODO: Remove below once PAM UDS is implemented '/var/tmp/treadmill/env', '/var/tmp/treadmill/spool', ] # Add everything under /opt mounts += glob.glob('/opt/*') for directory in emptydirs: fs.mkdir_safe(newroot_norm + directory) for directory in stickydirs: os.chmod(newroot_norm + directory, 0o777 | stat.S_ISVTX) # /var/empty must be owned by root and not group or world-writable. os.chmod(os.path.join(newroot_norm, 'var/empty'), 0o711) fs_linux.mount_bind( newroot_norm, os.path.join(os.sep, 'sys'), source='/sys', recursive=True, read_only=False ) # TODO: For security, /dev/ should be minimal and separated to each # container. fs_linux.mount_bind( newroot_norm, os.path.join(os.sep, 'dev'), source='/dev', recursive=True, read_only=False ) # Per FHS3 /var/run should be a symlink to /run which should be tmpfs fs.symlink_safe( os.path.join(newroot_norm, 'var', 'run'), '/run' ) # We create an unbounded tmpfs mount so that runtime data can be written to # it, counting against the memory limit of the container. fs_linux.mount_tmpfs(newroot_norm, '/run') # Make shared directories/files readonly to container for mount in mounts: if os.path.exists(mount): fs_linux.mount_bind( newroot_norm, mount, recursive=True, read_only=True ) if app.docker: _mount_docker_tmpfs(newroot_norm) def _mount_docker_tmpfs(newroot_norm): """Mount tmpfs for docker """ # /etc/docker as temp fs as dockerd create /etc/docker/key.json fs_linux.mount_tmpfs(newroot_norm, '/etc/docker') def create_overlay(tm_env, container_dir, root_dir, app): """Create overlay configuration files for the container. """ # ldpreloads _prepare_ldpreload(container_dir, app) # hosts _prepare_hosts(container_dir, app) # resolv.conf _prepare_resolv_conf(tm_env, container_dir) # sshd PAM configuration _prepare_pam_sshd(tm_env, container_dir, app) # constructed keytab. _prepare_krb(tm_env, container_dir, root_dir, app) # bind prepared inside container _bind_overlay(container_dir, root_dir) if app.docker: _bind_overlay_docker(container_dir, root_dir) def _prepare_krb(tm_env, container_dir, root_dir, app): """Manage kerberos environment inside container. """ etc_dir = os.path.join(container_dir, 'overlay', 'etc') fs.mkdir_safe(etc_dir) kt_dest = os.path.join(etc_dir, 'krb5.keytab') kt_sources = glob.glob(os.path.join(tm_env.spool_dir, 'keytabs', 'host#*')) keytabs.make_keytab(kt_dest, kt_sources) for kt_spec in app.keytabs: if ':' in kt_spec: owner, princ = kt_spec.split(':', 1) else: owner = kt_spec princ = kt_spec kt_dest = os.path.join(root_dir, 'var', 'spool', 'keytabs', owner) kt_sources = glob.glob(os.path.join(tm_env.spool_dir, 'keytabs', '%s#*' % princ)) keytabs.make_keytab(kt_dest, kt_sources, owner) def _prepare_ldpreload(container_dir, app): """Add mandatory ldpreloads to the container environment. """ etc_dir = os.path.join(container_dir, 'overlay', 'etc') fs.mkdir_safe(etc_dir) new_ldpreload = os.path.join(etc_dir, 'ld.so.preload') try: shutil.copyfile('/etc/ld.so.preload', new_ldpreload) except IOError as err: if err.errno != errno.ENOENT: raise _LOGGER.info('/etc/ld.so.preload not found, creating empty.') utils.touch(new_ldpreload) ldpreloads = [] if app.ephemeral_ports.tcp or app.ephemeral_ports.udp: treadmill_bind_preload = subproc.resolve('treadmill_bind_preload.so') ldpreloads.append(treadmill_bind_preload) if not ldpreloads: return _LOGGER.info('Configuring /etc/ld.so.preload: %r', ldpreloads) with io.open(new_ldpreload, 'a') as f: f.write('\n'.join(ldpreloads) + '\n') def _prepare_hosts(container_dir, app): """Create a hosts file for the container. overlay/ /etc/ hosts # hosts file to be bind mounted in container. /run/ /host-aliases/ # Directory to be bind mounted in container. """ etc_dir = os.path.join(container_dir, 'overlay', 'etc') ha_dir = os.path.join(container_dir, 'overlay', 'run', 'host-aliases') fs.mkdir_safe(etc_dir) fs.mkdir_safe(ha_dir) shutil.copyfile( '/etc/hosts', os.path.join(etc_dir, 'hosts') ) pwnam = pwd.getpwnam(app.proid) os.chown(ha_dir, pwnam.pw_uid, pwnam.pw_gid) def _prepare_pam_sshd(tm_env, container_dir, app): """Override pam.d sshd stack with special sshd pam stack. """ pamd_dir = os.path.join(container_dir, 'overlay', 'etc', 'pam.d') fs.mkdir_safe(pamd_dir) new_pam_sshd = os.path.join(pamd_dir, 'sshd') if app.shared_network: template_pam_sshd = os.path.join( tm_env.root, 'etc', 'pam.d', 'sshd.shared_network' ) else: template_pam_sshd = os.path.join( tm_env.root, 'etc', 'pam.d', 'sshd' ) if not os.path.exists(template_pam_sshd): _LOGGER.warning('Falling back to local PAM sshd config.') template_pam_sshd = '/etc/pam.d/sshd' shutil.copyfile( template_pam_sshd, new_pam_sshd ) def _prepare_resolv_conf(tm_env, container_dir): """Create an resolv.conf file for the container. """ etc_dir = os.path.join(container_dir, 'overlay', 'etc') fs.mkdir_safe(etc_dir) new_resolv_conf = os.path.join(etc_dir, 'resolv.conf') # TODO(boysson): This should probably be based instead on /etc/resolv.conf # for other resolver options template_resolv_conf = os.path.join(tm_env.root, 'etc', 'resolv.conf') if not os.path.exists(template_resolv_conf): _LOGGER.warning('Falling back to local resolver config.') template_resolv_conf = '/etc/resolv.conf' shutil.copyfile( template_resolv_conf, new_resolv_conf ) def _bind_overlay(container_dir, root_dir): """Create the overlay in the container. :param ``str`` container_dir: Base directory of container data/config. :param ``str`` root_dir: New root directory of the container. """ # Overlay overrides container configs # - /etc/resolv.conf, so that container always uses dnscache. # - pam.d sshd stack with special sshd pam that unshares network. # - /etc/ld.so.preload to enforce necessary system hooks # overlay_dir = os.path.join(container_dir, 'overlay') for overlay_file in ['etc/hosts', 'etc/krb5.keytab', 'etc/ld.so.preload', 'etc/pam.d/sshd', 'etc/resolv.conf']: fs_linux.mount_bind( root_dir, os.path.join(os.sep, overlay_file), source=os.path.join(overlay_dir, overlay_file), recursive=False, read_only=True) # Mount host-aliases as read-write fs_linux.mount_bind( root_dir, os.path.join(os.sep, 'run', 'host-aliases'), source=os.path.join(overlay_dir, 'run', 'host-aliases'), recursive=False, read_only=False ) # Also override resolv.conf in the current mount namespace so that # system services have access to our resolver. fs_linux.mount_bind( '/', '/etc/resolv.conf', source=os.path.join(overlay_dir, 'etc/resolv.conf'), recursive=False, read_only=True ) def _bind_overlay_docker(container_dir, root_dir): """Mount etc/hosts for docker container """ # XXX: This path is mounted as RW # because ro volume in treadmill container can not be mounted in docker # 'Error response from daemon: chown /etc/hosts: read-only file system.' overlay_dir = os.path.join(container_dir, 'overlay') fs_linux.mount_bind( root_dir, os.path.join(os.sep, _CONTAINER_DOCKER_ETC_DIR, 'hosts'), source=os.path.join(overlay_dir, 'etc/hosts'), recursive=False, read_only=False ) def get_cgroup_path(app): """Gets the path of the cgroup.""" unique_name = appcfg.app_unique_name(app) cgrp = os.path.join('treadmill', 'apps', unique_name) return cgrp class NativeImage(_image_base.Image): """Represents a native image.""" __slots__ = ( 'tm_env', ) def __init__(self, tm_env): self.tm_env = tm_env def unpack(self, container_dir, root_dir, app): make_fsroot(root_dir, app) image_fs.configure_plugins(self.tm_env, container_dir, app) # FIXME: Lots of things are still reading this file. # Copy updated state manifest as app.json in the # container_dir so it is visible in chrooted env. shutil.copy(os.path.join(container_dir, runtime.STATE_JSON), os.path.join(root_dir, appcfg.APP_JSON)) cgrp = get_cgroup_path(app) create_environ_dir(container_dir, root_dir, app) create_supervision_tree( self.tm_env, container_dir, root_dir, app, cgroups_path=cgroups.makepath( 'memory', cgrp ) ) create_overlay(self.tm_env, container_dir, root_dir, app) class NativeImageRepository(_repository_base.ImageRepository): """A collection of native images.""" def get(self, url): return NativeImage(self.tm_env)
apache-2.0
-8,521,182,695,245,798,000
30.038655
79
0.589398
false
catalpainternational/OIPA
OIPA/api/v3/resources/csv_serializer.py
1
7048
from __future__ import print_function from future import standard_library standard_library.install_aliases() import csv import io from tastypie.serializers import Serializer import string class CsvSerializer(Serializer): formats = ['json', 'xml', 'csv'] content_types = { 'json': 'application/json', 'xml': 'application/xml', 'csv': 'text/csv', } def to_csv(self, data, options=None): options = options or {} data = self.to_simple(data, options) raw_data = io.StringIO() first = True try: if "meta" in list(data.keys()): #if multiple objects are returned objects = data.get("objects") for value in objects: test = self.set_data(value) if first: writer = csv.DictWriter(raw_data, list(test.keys()), delimiter=";", quotechar="'", quoting=csv.QUOTE_NONNUMERIC) writer.writeheader() writer.writerow(test) first=False else: writer.writerow(test) else: test = {} self.flatten("", data, test) if first: writer = csv.DictWriter(raw_data, list(test.keys()), delimiter=";", quotechar="'", quoting=csv.QUOTE_NONNUMERIC) writer.writeheader() writer.writerow(test) first=False else: writer.writerow(test) CSVContent=raw_data.getvalue() return CSVContent except Exception as e: print(e) def set_data(self, data): # set keys column_dict = {'activity_scope': None, 'activity_status': None, 'total_budget': None, 'collaboration_type': None, 'countries': None, 'default_aid_type': None, 'default_finance_type': None, 'default_flow_type': None, 'descriptions': None, 'titles': None, 'end_actual': None, 'end_planned': None, 'start_actual': None, 'start_planned': None, 'iati_identifier': None, 'last_updated_datetime': None, 'participating_organisations': None, 'participating_org_accountable': None, 'participating_org_extending': None, 'participating_org_funding': None, 'participating_org_implementing': None} try: # fill keys for dest_key in column_dict: if dest_key in list(data.keys()): if isinstance(data[dest_key], list): if dest_key == "participating_organisations": participating_org_accountable = [] participating_org_extending = [] participating_org_funding = [] participating_org_implementing = [] for org in data[dest_key]: if not org["name"]: continue if 'role_id' in org: if org["role_id"] == "Accountable": participating_org_accountable.append(org["name"]) if org["role_id"] == "Extending": participating_org_extending.append(org["name"]) if org["role_id"] == "Funding": participating_org_funding.append(org["name"]) if org["role_id"] == "Implementing": participating_org_implementing.append(org["name"]) column_dict["participating_org_accountable"] = ", ".join(participating_org_accountable) column_dict["participating_org_extending"] = ", ".join(participating_org_extending) column_dict["participating_org_funding"] = ", ".join(participating_org_funding) column_dict["participating_org_implementing"] = ", ".join(participating_org_implementing) if dest_key == "countries": countries = [] for country in data[dest_key]: countries.append(country["name"]) column_dict[dest_key] = ", ".join(countries) if dest_key == "regions": regions = [] for region in data[dest_key]: regions.append(region["name"]) column_dict[dest_key] = ", ".join(regions) if dest_key == "sectors": sectors = [] for sector in data[dest_key]: sectors.append(sector["name"]) column_dict[dest_key] = ", ".join(sectors) if dest_key == "titles": titles = [] for title in data[dest_key]: if title["title"]: titles.append(title["title"]) column_dict[dest_key] = ", ".join(titles) if dest_key == "descriptions": descriptions = [] for description in data[dest_key]: if description["description"]: descriptions.append(description["description"]) column_dict[dest_key] = ", ".join(descriptions) continue if isinstance(data[dest_key], dict): if "name" in data[dest_key]: column_dict[dest_key] = data[dest_key]["name"] continue column_dict[dest_key] = data[dest_key] del column_dict["participating_organisations"] for dest_key in column_dict: if column_dict[dest_key]: column_dict[dest_key] = column_dict[dest_key].encode('utf-8', 'ignore') except Exception as e: print(e) return column_dict def flatten(self, parent_name, data, odict={}): # if list, flatten the list if isinstance(data, list): for value in data: self.flatten(parent_name, value, odict) # if dictionary, flatten the dictionary elif isinstance(data, dict): for (key, value) in list(data.items()): # if no dict or list, add to odict if not isinstance(value, (dict, list)): if parent_name: key = parent_name + "_" + key odict[key] = value else: self.flatten(key, value, odict)
agpl-3.0
7,082,719,169,658,676,000
37.939227
591
0.462684
false
ClimbsRocks/auto_ml
tests/advanced_tests/automated_tests.py
1
1586
from collections import OrderedDict import os import sys sys.path = [os.path.abspath(os.path.dirname(__file__))] + sys.path os.environ['is_test_suite'] = 'True' import classifiers as classifier_tests import regressors as regressor_tests training_parameters = { 'model_names': ['DeepLearning', 'GradientBoosting', 'XGB', 'LGBM', 'CatBoost'] } # Make this an OrderedDict so that we run the tests in a consistent order test_names = OrderedDict([ ('getting_single_predictions_multilabel_classification', classifier_tests.getting_single_predictions_multilabel_classification), # ('getting_single_predictions_classification', classifier_tests.getting_single_predictions_classification), ('optimize_final_model_classification', classifier_tests.optimize_final_model_classification) # ('feature_learning_getting_single_predictions_classification', classifier_tests.feature_learning_getting_single_predictions_classification), # ('categorical_ensembling_classification', classifier_tests.categorical_ensembling_classification), # ('feature_learning_categorical_ensembling_getting_single_predictions_classification', classifier_tests.feature_learning_categorical_ensembling_getting_single_predictions_classification) ]) def test_generator(): for model_name in training_parameters['model_names']: for test_name, test in test_names.items(): test_model_name = model_name + 'Classifier' # test_model_name = model_name test.description = str(test_model_name) + '_' + test_name yield test, test_model_name
mit
-5,031,269,755,627,746,000
45.647059
191
0.747793
false
hlange/LogSoCR
.waf/waflib/extras/use_config.py
1
5505
#!/usr/bin/env python # coding=utf-8 # Mathieu Courtois - EDF R&D, 2013 - http://www.code-aster.org """ When a project has a lot of options the 'waf configure' command line can be very long and it becomes a cause of error. This tool provides a convenient way to load a set of configuration parameters from a local file or from a remote url. The configuration parameters are stored in a Python file that is imported as an extra waf tool can be. Example: $ waf configure --use-config-dir=http://www.anywhere.org --use-config=myconf1 ... The file 'myconf1' will be downloaded from 'http://www.anywhere.org' (or 'http://www.anywhere.org/wafcfg'). If the files are available locally, it could be: $ waf configure --use-config-dir=/somewhere/myconfigurations --use-config=myconf1 ... The configuration of 'myconf1.py' is automatically loaded by calling its 'configure' function. In this example, it defines environment variables and set options: def configure(self): self.env['CC'] = 'gcc-4.8' self.env.append_value('LIBPATH', [...]) self.options.perlbinary = '/usr/local/bin/perl' self.options.pyc = False The corresponding command line should have been: $ CC=gcc-4.8 LIBPATH=... waf configure --nopyc --with-perl-binary=/usr/local/bin/perl This is an extra tool, not bundled with the default waf binary. To add the use_config tool to the waf file: $ ./waf-light --tools=use_config When using this tool, the wscript will look like: def options(opt): opt.load('use_config') def configure(conf): conf.load('use_config') """ import sys import os.path as osp import os local_repo = '' """Local repository containing additional Waf tools (plugins)""" remote_repo = 'https://raw.githubusercontent.com/waf-project/waf/master/' """ Remote directory containing downloadable waf tools. The missing tools can be downloaded by using:: $ waf configure --download """ remote_locs = ['waflib/extras', 'waflib/Tools'] """ Remote directories for use with :py:const:`waflib.extras.use_config.remote_repo` """ try: from urllib import request except ImportError: from urllib import urlopen else: urlopen = request.urlopen from waflib import Errors, Context, Logs, Utils, Options, Configure try: from urllib.parse import urlparse except ImportError: from urlparse import urlparse DEFAULT_DIR = 'wafcfg' # add first the current wafcfg subdirectory sys.path.append(osp.abspath(DEFAULT_DIR)) def options(self): group = self.add_option_group('configure options') group.add_option('--download', dest='download', default=False, action='store_true', help='try to download the tools if missing') group.add_option('--use-config', action='store', default=None, metavar='CFG', dest='use_config', help='force the configuration parameters by importing ' 'CFG.py. Several modules may be provided (comma ' 'separated).') group.add_option('--use-config-dir', action='store', default=DEFAULT_DIR, metavar='CFG_DIR', dest='use_config_dir', help='path or url where to find the configuration file') def download_check(node): """ Hook to check for the tools which are downloaded. Replace with your function if necessary. """ pass def download_tool(tool, force=False, ctx=None): """ Download a Waf tool from the remote repository defined in :py:const:`waflib.extras.use_config.remote_repo`:: $ waf configure --download """ for x in Utils.to_list(remote_repo): for sub in Utils.to_list(remote_locs): url = '/'.join((x, sub, tool + '.py')) try: web = urlopen(url) try: if web.getcode() != 200: continue except AttributeError: pass except Exception: # on python3 urlopen throws an exception # python 2.3 does not have getcode and throws an exception to fail continue else: tmp = ctx.root.make_node(os.sep.join((Context.waf_dir, 'waflib', 'extras', tool + '.py'))) tmp.write(web.read(), 'wb') Logs.warn('Downloaded %s from %s', tool, url) download_check(tmp) try: module = Context.load_tool(tool) except Exception: Logs.warn('The tool %s from %s is unusable', tool, url) try: tmp.delete() except Exception: pass continue return module raise Errors.WafError('Could not load the Waf tool') def load_tool(tool, tooldir=None, ctx=None, with_sys_path=True): try: module = Context.load_tool_default(tool, tooldir, ctx, with_sys_path) except ImportError as e: if Options.options.download: module = download_tool(tool, ctx=ctx) if not module: ctx.fatal('Could not load the Waf tool %r or download a suitable replacement from the repository (sys.path %r)\n%s' % (tool, sys.path, e)) else: ctx.fatal('Could not load the Waf tool %r from %r (try the --download option?):\n%s' % (tool, sys.path, e)) return module Context.load_tool_default = Context.load_tool Context.load_tool = load_tool Configure.download_tool = download_tool def configure(self): opts = self.options use_cfg = opts.use_config if use_cfg is None: return url = urlparse(opts.use_config_dir) kwargs = {} if url.scheme: kwargs['download'] = True kwargs['remote_url'] = url.geturl() # search first with the exact url, else try with +'/wafcfg' kwargs['remote_locs'] = ['', DEFAULT_DIR] tooldir = url.geturl() + ' ' + DEFAULT_DIR for cfg in use_cfg.split(','): Logs.pprint('NORMAL', "Searching configuration '%s'..." % cfg) self.load(cfg, tooldir=tooldir, **kwargs) self.start_msg('Checking for configuration') self.end_msg(use_cfg)
agpl-3.0
2,054,614,675,661,956,600
29.247253
142
0.702997
false
madedotcom/photon-pump
test/conversations/test_read_all_events_stream_conversation.py
1
4703
from asyncio import Queue from uuid import uuid4 import pytest from photonpump import messages as msg, exceptions from photonpump import messages_pb2 as proto from photonpump.conversations import ReadAllEvents @pytest.mark.asyncio async def test_read_all_request(): output = Queue() convo = ReadAllEvents(msg.Position(10, 11)) await convo.start(output) request = await output.get() body = proto.ReadAllEvents() body.ParseFromString(request.payload) assert request.command is msg.TcpCommand.ReadAllEventsForward assert body.commit_position == 10 assert body.prepare_position == 11 assert body.resolve_link_tos is True assert body.require_master is False assert body.max_count == 100 @pytest.mark.asyncio async def test_read_all_backward(): output = Queue() convo = ReadAllEvents( from_position=msg.Position(10, 11), direction=msg.StreamDirection.Backward, max_count=20, ) await convo.start(output) request = await output.get() body = proto.ReadAllEvents() body.ParseFromString(request.payload) assert request.command is msg.TcpCommand.ReadAllEventsBackward assert body.commit_position == 10 assert body.prepare_position == 11 assert body.resolve_link_tos is True assert body.require_master is False assert body.max_count == 20 @pytest.mark.asyncio async def test_read_all_success(): event_1_id = uuid4() event_2_id = uuid4() convo = ReadAllEvents() response = proto.ReadAllEventsCompleted() response.result = msg.ReadEventResult.Success response.next_commit_position = 10 response.next_prepare_position = 10 response.commit_position = 9 response.prepare_position = 9 event_1 = proto.ResolvedEvent() event_1.commit_position = 8 event_1.prepare_position = 8 event_1.event.event_stream_id = "stream-123" event_1.event.event_number = 32 event_1.event.event_id = event_1_id.bytes_le event_1.event.event_type = "event-type" event_1.event.data_content_type = msg.ContentType.Json event_1.event.metadata_content_type = msg.ContentType.Binary event_1.event.data = """ { 'color': 'red', 'winner': true } """.encode( "UTF-8" ) event_2 = proto.ResolvedEvent() event_2.CopyFrom(event_1) event_2.event.event_stream_id = "stream-456" event_2.event.event_type = "event-2-type" event_2.event.event_id = event_2_id.bytes_le event_2.event.event_number = 32 response.events.extend([event_1, event_2]) await convo.respond_to( msg.InboundMessage( uuid4(), msg.TcpCommand.ReadAllEventsForwardCompleted, response.SerializeToString(), ), None, ) result = await convo.result assert isinstance(result, msg.AllStreamSlice) [event_1, event_2] = result.events assert event_1.stream == "stream-123" assert event_1.id == event_1_id assert event_1.type == "event-type" assert event_1.event_number == 32 assert event_2.stream == "stream-456" assert event_2.id == event_2_id assert event_2.type == "event-2-type" assert event_2.event_number == 32 @pytest.mark.asyncio async def test_all_events_error(): convo = ReadAllEvents() response = proto.ReadAllEventsCompleted() response.result = msg.ReadAllResult.Error response.next_commit_position = 10 response.next_prepare_position = 10 response.commit_position = 9 response.prepare_position = 9 response.error = "Something really weird just happened" await convo.respond_to( msg.InboundMessage( uuid4(), msg.TcpCommand.ReadAllEventsForwardCompleted, response.SerializeToString(), ), None, ) with pytest.raises(exceptions.ReadError) as exn: await convo.result assert exn.stream == "$all" assert exn.conversation_id == convo.conversation_id @pytest.mark.asyncio async def test_all_events_access_denied(): convo = ReadAllEvents() response = proto.ReadAllEventsCompleted() response.result = msg.ReadAllResult.AccessDenied response.next_commit_position = 10 response.next_prepare_position = 10 response.commit_position = 9 response.prepare_position = 9 await convo.respond_to( msg.InboundMessage( uuid4(), msg.TcpCommand.ReadAllEventsForward, response.SerializeToString() ), None, ) with pytest.raises(exceptions.AccessDenied) as exn: await convo.result assert exn.conversation_id == convo.conversation_id assert exn.conversation_type == "ReadAllEvents"
mit
23,669,084,093,015,520
26.828402
86
0.672549
false
unixunion/python-libsolace
bin/solace-list-clients.py
1
4986
#!/usr/bin/env python """ Show solace clients and counts, optionally pump all stats into influxdb """ import logging import sys logging.basicConfig(format='[%(module)s] %(filename)s:%(lineno)s %(asctime)s %(levelname)s %(message)s', stream=sys.stderr) import libsolace.settingsloader as settings from libsolace.SolaceAPI import SolaceAPI from libsolace.SolaceXMLBuilder import SolaceXMLBuilder from optparse import OptionParser import simplejson as json import sys import pprint import demjson from time import gmtime, strftime import time pp = pprint.PrettyPrinter(indent=4, width=20) if __name__ == '__main__': """ parse opts, read site.xml, start provisioning vpns. """ usage = "list all vpns in an environment" parser = OptionParser(usage=usage) parser.add_option("-e", "--env", "--environment", action="store", type="string", dest="env", help="environment to run job in eg:[ dev | ci1 | si1 | qa1 | pt1 | prod ]") parser.add_option("-d", "--debug", action="store_true", dest="debug", default=False, help="toggles solace debug mode") parser.add_option("--details", action="store_true", dest="details", help="Show client details", default=False) parser.add_option("--stats", action="store_true", dest="stats", help="Show client stats", default=False) parser.add_option("--client", action="store", type="string", dest="client", help="client filter e.g. 'dev_*'", default="*") parser.add_option("--influxdb", action="store_true", dest="influxdb", help="influxdb url and port", default=False) parser.add_option("--influxdb-host", action="store", type="string", dest="influxdb_host", help="influxdb hostname", default="defiant") parser.add_option("--influxdb-port", action="store", type="int", dest="influxdb_port", help="influxdb port", default=8086) parser.add_option("--influxdb-user", action="store", type="string", dest="influxdb_user", help="influxdb user", default="root") parser.add_option("--influxdb-pass", action="store", type="string", dest="influxdb_pass", help="influxdb pass", default="root") parser.add_option("--influxdb-db", action="store", type="string", dest="influxdb_db", help="influxdb db name", default="solace-clients") (options, args) = parser.parse_args() if not options.env: parser.print_help() sys.exit() if options.debug: logging.getLogger().setLevel(logging.DEBUG) if options.influxdb: logging.info("Connecting to influxdb") from influxdb import InfluxDBClient try: client = InfluxDBClient(options.influxdb_host, options.influxdb_port, options.influxdb_user, options.influxdb_pass, options.influxdb_db) try: client.create_database(options.influxdb_db) except Exception, e: logging.warn("Unable to create database, does it already exist?") except Exception, e: logging.error("Unable to connect to influxdb") sys.exit(1) # forces read-only options.testmode = True settings.env = options.env.lower() logging.info("Connecting to appliance in %s, testmode:%s" % (settings.env, options.testmode)) connection = SolaceAPI(settings.env, testmode=options.testmode) if options.details: connection.x = SolaceXMLBuilder("show clients details") connection.x.show.client.name = options.client connection.x.show.client.detais elif options.stats: connection.x = SolaceXMLBuilder("show clients stats") connection.x.show.client.name = options.client connection.x.show.client.stats # get the clients clients = connection.rpc(str(connection.x), primaryOnly=True) count = 0 # print clients[0] timeNow = strftime("%Y-%m-%dT%H:%M:%SZ", gmtime()) startTime = time.time() for c in clients[0]['rpc-reply']['rpc']['show']['client']['primary-virtual-router']['client']: j = demjson.encode(c) p = json.loads(j) if options.stats: t = {} for k in p["stats"]: logging.debug("Key: %s value %s" % (k, p["stats"][k])) try: t[k] = long(p["stats"][k]) except Exception, ve: logging.debug("skipping") pass json_body = [{ "measurement": "client-stats", "tags": { "message-vpn": p['message-vpn'], "name": p['name'] }, "fields": t, "time": timeNow }] # print json.dumps(json_body) # print json.dumps(json_body, sort_keys=False, indent=4, separators=(',', ': ')) client.write_points(json_body) logging.info("Total Clients: %s" % count) logging.info("Time Taken: %s" % (time.time()-startTime) )
mit
-2,089,378,427,571,660,000
37.953125
140
0.609306
false
sonicyang/TIE
src/forwarder/dev-bluetooth.py
1
4067
#!/usr/bin/env python # # Copyright (C) 2013 AcoMo Technology. # All rights reserved. # # Authored by Jyun-Yu Huang <[email protected]> # # This is a bluetooth forwarder. # # AcoMo forwarder bridge sensor and server, the protocol of client (sensor) is bluetooth RFCOMM, # and the protocol of server is XML-RPC. # # TODO: Restore data before upload. # Receiver from bluetooth import * import bluetooth import urllib2 # XML-RPC import sys import xmlrpclib # Acomo format check from xmlhandle import check_acomo_xml_format, append_elem_to_root # Information from info import parse_argument # Account management from account import get_username, search_user # Quality test #from test_forwarder import test # Environment variable #import sys import time # Timestamp flag : # The flag will be hang up "ONE TIME" when a user start to testing, # teh other hand the range of ECG data load from DB for NN file calculate # are [latest to flag = 1], it's a short-term test. #flag_timestamp = 0 # User list : # When a registered user device queried by forwarder, # the username will be appended into the list, # and the "TIMESTAMP" tag value will be seted to "1" ONE TIME # the other hand the range of ECG data load from DB for NN file calculate # are [latest to TIMESTAMP = 1], it's a short-term test list_user = [] # Forwarder flag : # When the flag is hang up: continue to transfer, # down : stop transfer. flag_forwarder = 1 # Define DEBUG = 0 CHANNEL = 6 BUFFERSIZE = 1024 ADDR_DEVICE = "00:11:67:E9:56:03" VALUE_TIMEOUT = 10#1 # Site SITE_BASE = 'hrv.acomotech.com' SITE = "http://" + SITE_BASE + "/xmldata/forwarder" SITE_CHECK = "http://" + SITE_BASE + "/xmldata/latestecg" SITE_UPDATE_USER = "http://" + SITE_BASE + "/account/update" # Custom tags TAG_ACOMO_USER = 'USER' TAG_ACOMO_TIMESTAMP = 'TIMESTAMP' TAG_ACOMO_MAC = 'MAC' def forwarder(): # Parsing argument if(parse_argument() == 1): return # Start to forwarder: # 1. devices query # 2. server connect detect # 3. data transfer while(flag_forwarder == 1): # Device query print "Performing inquiry..." nearby_devices = bluetooth.discover_devices(lookup_names = True) print "Found %d devices" % len(nearby_devices) # Continue to find if 0 == len(nearby_devices): continue # Set proxy for server site rpc_srv = xmlrpclib.ServerProxy(SITE, allow_none=True, verbose=False) # Collect devices done, check if these device have registered for addr, name in nearby_devices: username = get_username(addr) if(username == ""): continue # Device connecting print "Name:%s, Address:%s connecting" % (name, addr) client_socket=BluetoothSocket( RFCOMM ) client_socket.connect((addr, CHANNEL)) data = "" # Data receiveing try: data = client_socket.recv(BUFFERSIZE) except IOError: pass # XML RPC if 0 == check_acomo_xml_format(data): # Append username to data username = get_username(addr) data = append_elem_to_root(data, TAG_ACOMO_USER, username) data = append_elem_to_root(data, TAG_ACOMO_MAC, addr) # First appear ? if(not search_user(username, list_user)): list_user.append(username) data = append_elem_to_root(data, TAG_ACOMO_TIMESTAMP, '1') else: data = append_elem_to_root(data, TAG_ACOMO_TIMESTAMP, '0') print("data == " + data) result = rpc_srv.raw_handle(data) # Hand shake try: url_site_check = SITE_CHECK + "?user=" + username response = urllib2.urlopen(url_site_check, timeout = VALUE_TIMEOUT) value = response.read() if(cmp(value, data) != 0): print "Error: Server-side data do not match." except urllib2.URLError, e: print "Error: Connection timeout!" # Update users and devices try: url_site_update_user = SITE_UPDATE_USER + "?user=" + username + "&" + "device=" + name response = urllib2.urlopen(url_site_update_user) value = response.read() except urllib2.URLError, e: print "Error: Connection timeout!" client_socket.close() forwarder()
gpl-2.0
5,352,912,468,466,347,000
23.208333
96
0.681338
false
ingadhoc/sale
sale_require_ref/__manifest__.py
1
1503
############################################################################## # # Copyright (C) 2015 ADHOC SA (http://www.adhoc.com.ar) # All Rights Reserved. # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################## { 'name': 'Sale Order Require Reference on Confirmation', 'version': '12.0.1.0.0', 'category': 'Projects & Services', 'sequence': 14, 'summary': '', 'author': 'ADHOC SA', 'website': 'www.adhoc.com.ar', 'license': 'AGPL-3', 'images': [ ], 'depends': [ 'sale_exception', ], 'data': [ 'data/exception_rule_data.xml', ], 'demo': [ 'demo/exception_rule_demo.xml', 'demo/sale_order_demo.xml', ], 'installable': False, 'auto_install': False, 'application': False, }
agpl-3.0
5,450,806,373,730,809,000
33.159091
78
0.566201
false
espensirnes/paneltime
paneltime/system/system_arguments.py
1
8361
#!/usr/bin/env python # -*- coding: utf-8 -*- #This module contains the arguments class used to handle regression arguments import numpy as np import functions as fu import stat_functions as stat class arguments: """Sets initial arguments and stores static properties of the arguments""" def __init__(self,panel, args_d_old): p,q,d,k,m=panel.pqdkm self.args_d_old=args_d_old self.categories=['beta','rho','lambda','gamma','psi','omega','z'] self.args_init,self.args_d_OLS, self.args_d_restricted=dict(),dict(),dict() self.panel=panel self.equations=[] self.n_equations=len(panel.X) self.n_args=[] self.positions=dict() self.positions_map=dict() self.name_positions_map=dict() arg_count=0 self.names_v=[] self.eq_number_v=[] if args_d_old is None: args_d_old=[None]*self.n_equations for i in range(self.n_equations): e=equation(panel.X[i],panel.Y[i],panel.W,self, args_d_old[i],i,arg_count,panel.X_names[i]) self.equations.append(e) self.n_args.append(e.n_args) self.args_init[i]=e.args_init self.args_d_OLS[i]=e.args_d_OLS self.args_d_restricted[i]=e.args_d_restricted arg_count+=e.n_args self.args_init['rho']=np.diag(np.ones(self.n_equations)) self.args_d_OLS['rho']=np.diag(np.ones(self.n_equations)) self.args_d_restricted['rho']=np.diag(np.ones(self.n_equations)) self.n_args_eq=arg_count self.n_args_tot=int(np.sum(self.n_args)+(self.n_equations-1)*self.n_equations/2) add_rho_names(self.names_v,arg_count) self.eq_number_v.extend([None]*(self.n_args_tot-arg_count)) def system_conv_to_dicts(self,args): args_d=dict() if type(args[0])==dict: return args for eq in self.equations: d=dict() for category in self.categories: rng=eq.positions[category] s=self.args_init[eq.id][category].shape d[category]=args[rng].reshape(s) args_d[eq.id]=d args_d['rho']=rho_list_to_matrix(args[self.n_args_eq:],self.n_equations) return args_d def system_conv_to_vector(self,args): args_v=[] if type(args[0])!=dict: return args n=0 for i in range(self.n_equations): for name in self.categories: args_v.extend(args[i][name].flatten()) n+=len(args[i][name]) args_v.extend(rho_matrix_to_list(args['rho'],self.n_equations)) args_v=np.array(args_v) return args_v def rho_definitions(self): n=self.n_args_eq self.rho_position_list=[] r=range(n) x=[[[min((i,j)),max((i,j))] for i in r] for j in r] self.rho_position_matrix=np.array([[str(x[i,j]) for i in r] for j in r]) for i in range(n): for j in range(i,n): self.names_v.append('System reg. rho(%s,%s)' %(i,j)) self.rho_position_list.append[x[i,j]] def rho_list_to_matrix(self,lst): n=len(self.rho_position_list) m=np.zeros((n,n)) for k in range(n): i,j=self.rho_position_list[k] m[i,j]=lst[k] m[j,i]=lst[k] return m def rho_matrix_to_list(self,m): n=len(self.rho_position_list) lst=np.zeros(n) for k in range(n): i,j=self.rho_position_list[k] lst[k]=m[i,j] return lst class equation: def __init__(self,X,Y,W,arguments,args_d_old,i,arg_count,X_names): a=arguments self.id=i p,q,d,k,m=panel.pqdkm self.args_init,self.args_d_OLS, self.args_d_restricted=set_init_args(X,Y,W,args_d_old,p, d, q, m, k,a.panel) self.names_d=get_namevector(a.panel,p, q, m, k,X_names,a,i) self.position_defs(a,arg_count,X_names) self.args_v=conv_to_vector(self.args_init,a.categories) self.n_args=len(self.args_v) self.args_rng=range(arg_count,arg_count+self.n_args) a.eq_number_v.extend([i]*self.n_args) def position_defs(self,system,arg_count,X_names): """Defines positions in vector argument in each equation for the system args_v vector""" self.positions_map=dict()#a dictionary of indicies containing the string name and sub-position of index within the category self.positions=dict()#a dictionary of category strings containing the index range of the category self.beta_map=dict() k=arg_count for category in system.categories: n=len(self.args_init[category]) rng=range(k,k+n) self.positions[category]=rng#self.positions[<category>]=range(<system position start>,<system position end>) if category in system.positions: system.positions[category].append(rng) else: system.positions[category]=[rng] for j in rng: self.positions_map[j]=[category,j-k]#self.positions_map[<system position>]=<category>,<equation position> system.positions_map[j]=[self.id,category,j-k]#system.positions_map[<system position>]=<equation number>,<category>,<equation position> k+=n for i in range(len(X_names)): self.beta_map[X_names[i]]=self.positions['beta'][i] def initargs(X,Y,W,args_old,p,d,q,m,k,panel): N,T,k=X.shape if args_old is None: armacoefs=0 else: armacoefs=0 args=dict() args['beta']=np.zeros((k,1)) args['omega']=np.zeros((W.shape[2],1)) args['rho']=np.ones(p)*armacoefs args['lambda']=np.ones(q)*armacoefs args['psi']=np.ones(m)*armacoefs args['gamma']=np.ones(k)*armacoefs args['z']=np.array([]) if m>0 and N>1: args['omega'][0][0]=0 if m>0: args['psi'][0]=0.00001 args['z']=np.array([0.00001]) return args def set_init_args(X,Y,W,args_old,p,d,q,m,k,panel): args=initargs(X,Y,W,args_old,p, d, q, m, k, panel) args_restricted=fu.copy_array_dict(args) if panel.has_intercept: args_restricted['beta'][0][0]=panel.mean(Y) args_restricted['omega'][0][0]=np.log(panel.var(Y)) else: args_restricted['omega'][0][0]=np.log(panel.var(Y,k=0,mean=0)) beta,e=stat.OLS(panel,X,Y,return_e=True) args['beta']=beta args['omega'][0]=np.log(np.sum(e**2*panel.included)/np.sum(panel.included)) args_OLS=fu.copy_array_dict(args) if panel.m_zero: args['omega'][0]=0 if not args_old is None: args['beta']=insert_arg(args['beta'],args_old['beta']) args['omega']=insert_arg(args['omega'],args_old['omega']) args['rho']=insert_arg(args['rho'],args_old['rho']) args['lambda']=insert_arg(args['lambda'],args_old['lambda']) args['psi']=insert_arg(args['psi'],args_old['psi']) args['gamma']=insert_arg(args['gamma'],args_old['gamma']) args['z']=insert_arg(args['z'],args_old['z']) return args,args_OLS, args_restricted def conv_to_dict(args,categories,positions): """Converts a vector argument args to a dictionary argument. If args is a dict, it is returned unchanged""" if type(args)==dict: return args else: d=dict() k=0 for i in categories: n=len(positions[i]) rng=range(k,k+n) d[i]=args[rng] if i=='beta' or i=='omega': d[i]=d[i].reshape((n,1)) k+=n return d def conv_to_vector(args,categories): """Converts a dict argument args to vector argument. if args is a vector, it is returned unchanged.\n If args=None, the vector of self.args is returned""" if type(args)==list or type(args)==np.ndarray: return args v=np.array([]) for category in categories: s=args[category] if type(s)==np.ndarray: s=s.flatten() v=np.concatenate((v,s)) return v def get_namevector(panel,p, q, m, k,X_names,system,eq_num): """Creates a vector of the names of all regression varaibles, including variables, ARIMA and GARCH terms. This defines the positions of the variables througout the estimation.""" names_d=dict() #sequence must match definition of categories in arguments.__init__: #self.categories=['beta','rho','lambda','gamma','psi','omega','z'] eq_prefix='%02d|' %(eq_num,) names_v=[eq_prefix+i for i in X_names]#copy variable names names_d['beta']=names_v add_names(p,eq_prefix+'AR term %s (p)','rho',names_d,names_v) add_names(q,eq_prefix+'MA term %s (q)','lambda',names_d,names_v) add_names(m,eq_prefix+'MACH term %s (m)','psi',names_d,names_v) add_names(k,eq_prefix+'ARCH term %s (k)','gamma',names_d,names_v) names_d['omega']=[eq_prefix+i for i in panel.heteroscedasticity_factors]#copy variable names names_v.extend(names_d['omega']) if m>0: names_d['z']=[eq_prefix+'z in h(e,z)'] names_v.extend(names_d['z']) n=len(system.names_v) for i in range(len(names_v)): system.name_positions_map[names_v[i]]=n+i system.names_v.extend(names_v) return names_d def add_names(T,namesstr,category,d,names): a=[] for i in range(T): a.append(namesstr %(i,)) names.extend(a) d[category]=a def insert_arg(arg,add): n=min((len(arg),len(add))) arg[:n]=add[:n] return arg
gpl-3.0
7,984,326,016,556,555,000
28.234266
139
0.668222
false
praekelt/panya-event
event/models.py
1
1514
from django.db import models from django.core.urlresolvers import reverse from ckeditor.fields import RichTextField from panya.models import ModelBase PROVINCES = ( ('Eastern Cape', 'Eastern Cape'), ('Free State', 'Free State'), ('Gauteng', 'Gauteng'), ('KwaZulu-Natal', 'KwaZulu-Natal'), ('Limpopo', 'Limpopo'), ('Mpumalanga', 'Mpumalanga'), ('Northern Cape', 'Northern Cape'), ('North-West', 'North-West'), ('Western Cape', 'Western Cape'), ) class Location(models.Model): city = models.CharField(max_length=255, help_text='Name of the city.') province = models.CharField( choices=PROVINCES, max_length=255, help_text='Name of the province.' ) def __unicode__(self): return "%s, %s" % (self.city, self.province) class Venue(models.Model): name = models.CharField(max_length=255, help_text='A short descriptive name.') address = models.CharField(max_length=512, help_text='Physical venue address.') location = models.ForeignKey( Location, blank=True, null=True, help_text='Location of the venue.' ) def __unicode__(self): return self.name class Event(ModelBase): venue = models.ForeignKey( Venue, help_text='Venue where the event will take place.' ) content = RichTextField(help_text='Full article detailing this event.') def get_absolute_url(self): return reverse('event_object_detail', kwargs={'slug': self.slug})
bsd-3-clause
7,660,587,681,568,411,000
28.115385
83
0.637384
false
xindiguo/pythonSynapseUtils
pythonSynapseUtils/synutils.py
1
4081
#!/usr/bin/env python import argparse import os import sys import synapseclient import hashlib import string script_path = os.path.dirname(__file__) local_module_path = os.path.abspath(os.path.join(script_path,'lib')) sys.path.append(local_module_path) import s3 STATIC_BUCKET = "static.synapse.org" def create_html_file(html_link): #get a unique file name from txt/link html_file_name = str(hashlib.md5(html_link).hexdigest()) + '.html' f = open(html_file_name, 'w') html_template = string.Template(""" <!DOCTYPE html> <html> <body> <iframe src="$HTML_LINK" width="1500" height="1000" allowfullscreen="true" mozallowfullscreen="true" webkitallowfullscreen="true"></iframe> </body> </html> """) html_content = html_template.substitute(HTML_LINK=html_link) f.write(html_content) f.close() os.chmod(html_file_name, 0755) #make the file web readable before upload return(html_file_name) def s3manage(args): """ Utilities for managing S3 bukcets """ #establish a connection to S3 bucket = s3.bucketManager(STATIC_BUCKET, args.aws_key, args.aws_secret, rememberMe=args.rememberMe) #if user specifies an html link if args.html_link is not None: html_file = create_html_file(args.html_link) args.upload_path = html_file if os.path.isdir(args.upload_path) is True: url = bucket.uploadDir(args.upload_path,args.upload_prefix) else: url = bucket.uploadFiles(args.upload_path,args.upload_prefix) if args.synapse_wikiID is not None: embed_url_in_synapse_wiki(url,args.synapse_wikiID) def embed_url_in_synapse_wiki(url, wikiID): import synapseclient syn = synapseclient.login() wiki = syn.getWiki(wikiID) markdown = wiki['markdown'] #complete hack if len(url) > 1: url = [url[x] for x in url if x.endswith('index.html')] url = url[0] else: url = url.values()[0] #percent encoded URL import urllib url = urllib.quote(url, safe='') link_markdown = '${iframe?site=' + url + '&height=1000}' wiki['markdown'] = link_markdown wiki = syn.store(wiki) syn.onweb(wikiID) def build_parser(): """Builds the argument parser and returns the result.""" parser = argparse.ArgumentParser(description='Synapse Python Utilities') parser.add_argument('--debug', dest='debug', action='store_true') subparsers = parser.add_subparsers(title='commands', description='The following commands are available:', help='For additional help: "synutils.py <COMMAND> -h"') parser_s3 = subparsers.add_parser('s3',help='utilities to manage data on static.synapse.org') parser_s3.add_argument('-k' , '--aws_key', dest='aws_key', help='AWS Key', default=None) parser_s3.add_argument('-s' , '--aws_secret', dest='aws_secret', help='AWS secret key', default=None) parser_s3.add_argument('-up', '--upload', dest='upload_path', type=str, default=None) parser_s3.add_argument('-l', '--link', dest='html_link', type=str, default=None, help = "html link to embed in a synapse wiki") parser_s3.add_argument('-w', '--wikiID', dest='synapse_wikiID', type=str, default=None, help = "synapse wiki id to embed the link in") parser_s3.add_argument('-p', '--prefix', dest='upload_prefix', type=str, default='scratch/', help = 'prefix adds the sub dir structure on S3 eg. test/ will add the file under test/ folder on s3 bucket') parser_s3.add_argument('--rememberMe', '--remember-me', dest='rememberMe', action='store_true', default=False, help='Cache credentials for automatic authentication for future interactions') parser_s3.set_defaults(func=s3manage) return parser def perform_main(args): if 'func' in args: try: args.func(args) except Exception as ex: raise def main(): args = build_parser().parse_args() perform_main(args) if __name__ == "__main__": main()
apache-2.0
-1,364,867,809,172,800,000
33.008333
144
0.645675
false
dddomodossola/remi
examples/onclose_window_app.py
1
1513
""" Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import remi.gui as gui from remi import start, App class MyApp(App): def main(self, name='world'): # margin 0px auto allows to center the app to the screen wid = gui.VBox(width=300, height=200, margin='0px auto') lbl = gui.Label("Close or reload the page, the console thread will stop automatically.") wid.append(lbl) # add the following 3 lines to your app and the on_window_close method to make the console close automatically tag = gui.Tag(_type='script') tag.add_child("javascript", """window.onunload=function(e){remi.sendCallback('%s','%s');return "close?";};""" % ( str(id(self)), "on_window_close")) wid.add_child("onunloadevent", tag) # returning the root widget return wid def on_window_close(self): # here you can handle the unload print("app closing") self.close() if __name__ == "__main__": start(MyApp)
apache-2.0
-3,865,904,934,796,648,400
34.186047
121
0.662921
false
opentripplanner/OTPQA
hreport.py
1
2481
import simplejson as json import numpy as np def parsetime(aa): if aa is None: return None return float( aa.split()[0] ) def main(filenames): if len(filenames)==0: return yield "<html>" yield """<head><style>table, th, td { border: 1px solid black; border-collapse: collapse; } th, td { text-align: left; }</style></head>""" datasets = [] shas = [] for fn in filenames: blob = json.load( open(fn) ) shas.append( blob['git_sha1'] ) dataset = dict( [(response["id_tuple"], response) for response in blob['responses']] ) datasets.append( dataset ) id_tuples = datasets[0].keys() yield """<table border="1">""" dataset_total_times = dict(zip( range(len(datasets)),[[] for x in range(len(datasets))]) ) dataset_avg_times = dict(zip(range(len(datasets)),[[] for x in range(len(datasets))]) ) dataset_fails = dict(zip(range(len(datasets)), [0]*len(datasets))) yield "<tr><td>request id</td>" for fn,sha in zip(filenames,shas): yield "<td>%s (commit:%s)</td>"%(fn,sha) yield "</tr>" for id_tuple in id_tuples: yield """<tr><td rowspan="2"><a href="%s">%s</a></td>"""%(datasets[0][id_tuple]['url'], id_tuple) for i, dataset in enumerate( datasets ): response = dataset[id_tuple] dataset_total_times[i].append( parsetime( response['total_time'] ) ) dataset_avg_times[i].append( parsetime( response['avg_time'] ) ) yield "<td>%s total, %s avg</td>"%(response['total_time'],response['avg_time']) yield "</tr>" for i, dataset in enumerate( datasets ): yield "<td>" response = dataset[id_tuple] yield "<table border=1 width=100%><tr>" if len(response['itins']) == 0: dataset_fails[i] += 1 yield "<td style=\"background-color:#EDA1A1\">NONE</td>" for itin in response['itins']: filling = itin['routes'] if filling=="{}": color = "#EDECA1" else: color = "#AEEDA1" yield "<td style=\"background-color:%s\">%s</td>"%(color,filling) yield "</tr></table>" yield "</td>" yield "</tr>" yield "<tr><td>stats</td>" for i in range(len(datasets)): yield "<td>fails: %s (%.2f%%). total time: median:%.2fs mean:%.2fs</td>"%(dataset_fails[i], 100*dataset_fails[i]/float(len(id_tuples)), np.median(dataset_total_times[i]),np.mean(dataset_total_times[i])) yield "</tr>" yield "</table>" yield "</html>" if __name__=='__main__': import sys if len(sys.argv)<2: print "usage: cmd fn1 [fn2 [fn3 ...]]" exit() for line in main(sys.argv[1:]): print line
gpl-3.0
-7,302,979,014,916,302,000
24.854167
204
0.614672
false
gnowledge/OTM2
opentreemap/treemap/plugin.py
1
3086
# -*- coding: utf-8 -*- from __future__ import print_function from __future__ import unicode_literals from __future__ import division from django.conf import settings from django.db.models import Q from django.test.signals import setting_changed from django.dispatch import receiver from treemap.lib import get_function_by_path # For use in tests, as basic functions to use in override_settings always_false = lambda *args, **kwargs: False # # Plugin functions allow python modules which are not part of the OTM2 core the # the ability to override select functionality. # # For instance, feature_enabled is called in certain locations in OTM2 before # showing a feature. It's default implementation always returns True to enable # the feature, but an outside python module can override this to selectively # disable certain unwanted features. # _plugin_fn_dict = {} _plugin_setting_dict = {} def get_plugin_function(plugin_fn_setting, default_fn): """ Gets a plugin function from an external python module, and wraps it so that it can be safely overridden for testing purposes. Implementors of plugin functions should ensure that their function's signature matches that of the default_fn plugin_fn_setting - A string in the Django settings specifiying the module and function path default_fn - The function to call if plugin_fn_setting is not set """ # cache the function _plugin_fn_dict[plugin_fn_setting] =\ _resolve_plugin_function(plugin_fn_setting, default_fn) def wrapper(*args, **kwargs): plugin_fn = _plugin_fn_dict.get(plugin_fn_setting) if plugin_fn is None: plugin_fn = _resolve_plugin_function(plugin_fn_setting, default_fn) _plugin_fn_dict[plugin_fn_setting] = plugin_fn return plugin_fn(*args, **kwargs) return wrapper def _resolve_plugin_function(fn_setting, default_fn): fn_path = getattr(settings, fn_setting, None) if fn_path is None: return default_fn return get_function_by_path(fn_path) # Needed to support use of @override_settings in unit tests @receiver(setting_changed) def reset(sender, setting, value, **kwargs): if setting in _plugin_fn_dict: _plugin_fn_dict[setting] = None feature_enabled = get_plugin_function('FEATURE_BACKEND_FUNCTION', lambda instance, feature: True) # Should return True if an activation email should be sent on user creation should_send_user_activation = get_plugin_function( 'USER_ACTIVATION_FUNCTION', lambda request, username, email, password: True) setup_for_ui_test = get_plugin_function('UITEST_SETUP_FUNCTION', lambda: None) get_mobile_instances_filter = get_plugin_function('MOBILE_INSTANCES_FUNCTION', lambda: Q()) get_viewable_instances_filter = get_plugin_function( 'VIEWABLE_INSTANCES_FUNCTION', lambda: Q()) get_tree_limit = get_plugin_function('TREE_LIMIT_FUNCTION', lambda instance: None)
gpl-3.0
-6,459,698,252,821,900,000
30.814433
79
0.692158
false
pdamodaran/yellowbrick
yellowbrick/text/dispersion.py
1
10916
# yellowbrick.text.dispersion # Implementations of lexical dispersions for text visualization. # # Author: Larry Gray # Created: 2018-06-21 10:06 # # Copyright (C) 2018 District Data Labs # For license information, see LICENSE.txt # # ID: dispersion.py [] [email protected] $ """ Implementation of lexical dispersion for text visualization """ ########################################################################## ## Imports ########################################################################## from collections import defaultdict import itertools from yellowbrick.text.base import TextVisualizer from yellowbrick.style.colors import resolve_colors from yellowbrick.exceptions import YellowbrickValueError import numpy as np ########################################################################## ## Dispersion Plot Visualizer ########################################################################## class DispersionPlot(TextVisualizer): """ DispersionPlotVisualizer allows for visualization of the lexical dispersion of words in a corpus. Lexical dispersion is a measure of a word's homeogeneity across the parts of a corpus. This plot notes the occurences of a word and how many words from the beginning it appears. Parameters ---------- target_words : list A list of target words whose dispersion across a corpus passed at fit will be visualized. ax : matplotlib axes, default: None The axes to plot the figure on. labels : list of strings The names of the classes in the target, used to create a legend. Labels must match names of classes in sorted order. colors : list or tuple of colors Specify the colors for each individual class colormap : string or matplotlib cmap Qualitative colormap for discrete target ignore_case : boolean, default: False Specify whether input will be case-sensitive. annotate_docs : boolean, default: False Specify whether document boundaries will be displayed. Vertical lines are positioned at the end of each document. kwargs : dict Pass any additional keyword arguments to the super class. These parameters can be influenced later on in the visualization process, but can and should be set as early as possible. """ # NOTE: cannot be np.nan NULL_CLASS = None def __init__(self, target_words, ax=None, colors=None, ignore_case=False, annotate_docs=False, labels=None, colormap=None, **kwargs): super(DispersionPlot, self).__init__(ax=ax, **kwargs) self.labels = labels self.colors = colors self.colormap = colormap self.target_words = target_words self.ignore_case = ignore_case self.annotate_docs = annotate_docs def _compute_dispersion(self, text, y): self.boundaries_ = [] offset = 0 if y is None: y = itertools.repeat(None) for doc, target in zip(text, y): for word in doc: if self.ignore_case: word = word.lower() # NOTE: this will find all indices if duplicate words are supplied # In the case that word is not in target words, any empty list is # returned and no data will be yielded offset += 1 for y_coord in (self.indexed_words_ == word).nonzero()[0]: y_coord = int(y_coord) yield (offset, y_coord, target) if self.annotate_docs: self.boundaries_.append(offset) self.boundaries_ = np.array(self.boundaries_, dtype=int) def _check_missing_words(self, points): for index in range(len(self.indexed_words_)): if index in points[:,1]: pass else: raise YellowbrickValueError(( "The indexed word '{}' is not found in " "this corpus" ).format(self.indexed_words_[index])) def fit(self, X, y=None, **kwargs): """ The fit method is the primary drawing input for the dispersion visualization. Parameters ---------- X : list or generator Should be provided as a list of documents or a generator that yields a list of documents that contain a list of words in the order they appear in the document. y : ndarray or Series of length n An optional array or series of target or class values for instances. If this is specified, then the points will be colored according to their class. kwargs : dict Pass generic arguments to the drawing method Returns ------- self : instance Returns the instance of the transformer/visualizer """ if y is not None: self.classes_ = np.unique(y) elif y is None and self.labels is not None: self.classes_ = np.array([self.labels[0]]) else: self.classes_ = np.array([self.NULL_CLASS]) # Create an index (e.g. the y position) for the target words self.indexed_words_ = np.flip(self.target_words, axis=0) if self.ignore_case: self.indexed_words_ = np.array([w.lower() for w in self.indexed_words_]) # Stack is used to create a 2D array from the generator try: points_target = np.stack(self._compute_dispersion(X, y)) except ValueError: raise YellowbrickValueError(( "No indexed words were found in the corpus" )) points = np.stack(zip(points_target[:,0].astype(int), points_target[:,1].astype(int))) self.target = points_target[:,2] self._check_missing_words(points) self.draw(points, self.target) return self def draw(self, points, target=None, **kwargs): """ Called from the fit method, this method creates the canvas and draws the plot on it. Parameters ---------- kwargs: generic keyword arguments. """ # Resolve the labels with the classes labels = self.labels if self.labels is not None else self.classes_ if len(labels) != len(self.classes_): raise YellowbrickValueError(( "number of supplied labels ({}) does not " "match the number of classes ({})" ).format(len(labels), len(self.classes_))) # Create the color mapping for the labels. color_values = resolve_colors( n_colors=len(labels), colormap=self.colormap, colors=self.color) colors = dict(zip(labels, color_values)) # Transform labels into a map of class to label labels = dict(zip(self.classes_, labels)) # Define boundaries with a vertical line if self.annotate_docs: for xcoords in self.boundaries_: self.ax.axvline(x=xcoords, color='lightgray', linestyle='dashed') series = defaultdict(lambda: {'x':[], 'y':[]}) if target is not None: for point, t in zip(points, target): label = labels[t] series[label]['x'].append(point[0]) series[label]['y'].append(point[1]) else: label = self.classes_[0] for x, y in points: series[label]['x'].append(x) series[label]['y'].append(y) for label, points in series.items(): self.ax.scatter(points['x'], points['y'], marker='|', c=colors[label], zorder=100, label=label) self.ax.set_yticks(list(range(len(self.indexed_words_)))) self.ax.set_yticklabels(self.indexed_words_) def finalize(self, **kwargs): """ The finalize method executes any subclass-specific axes finalization steps. The user calls poof & poof calls finalize. Parameters ---------- kwargs: generic keyword arguments. """ self.ax.set_ylim(-1, len(self.indexed_words_)) self.ax.set_title("Lexical Dispersion Plot") self.ax.set_xlabel("Word Offset") self.ax.grid(False) # Add the legend outside of the figure box. if not all(self.classes_ == np.array([self.NULL_CLASS])): box = self.ax.get_position() self.ax.set_position([box.x0, box.y0, box.width * 0.8, box.height]) self.ax.legend(loc='center left', bbox_to_anchor=(1, 0.5)) ########################################################################## ## Quick Method ########################################################################## def dispersion(words, corpus, y=None, ax=None, colors=None, colormap=None, labels=None, annotate_docs=False, ignore_case=False, **kwargs): """ Displays lexical dispersion plot for words in a corpus This helper function is a quick wrapper to utilize the DisperstionPlot Visualizer for one-off analysis Parameters ---------- words : list A list of words whose dispersion will be examined within a corpus y : ndarray or Series of length n An optional array or series of target or class values for instances. If this is specified, then the points will be colored according to their class. corpus : list Should be provided as a list of documents that contain a list of words in the order they appear in the document. ax : matplotlib axes, default: None The axes to plot the figure on. labels : list of strings The names of the classes in the target, used to create a legend. Labels must match names of classes in sorted order. colors : list or tuple of colors Specify the colors for each individual class colormap : string or matplotlib cmap Qualitative colormap for discrete target annotate_docs : boolean, default: False Specify whether document boundaries will be displayed. Vertical lines are positioned at the end of each document. ignore_case : boolean, default: False Specify whether input will be case-sensitive. kwargs : dict Pass any additional keyword arguments to the super class. Returns ------- ax: matplotlib axes Returns the axes that the plot was drawn on """ # Instantiate the visualizer visualizer = DispersionPlot( words, ax=ax, colors=colors, colormap=colormap, ignore_case=ignore_case, labels=labels, annotate_docs=annotate_docs, **kwargs ) # Fit and transform the visualizer (calls draw) visualizer.fit(corpus, y, **kwargs) # Return the axes object on the visualizer return visualizer.ax
apache-2.0
-2,299,755,290,369,907,200
33.764331
84
0.588402
false
lucasberti/telegrao-py
plugins/apex.py
1
2106
import requests import json from api import send_message ENDPOINT = "https://public-api.tracker.gg/apex/v1/standard/profile/5/" PLAYERS = { 14160874: "bertoncio", 16631085: "beartz", 85867003: "R3TCH4", 52451934: "xisteaga", 10549434: "Axasdas123", 123123862: "MeroFabio", 569341881: "burnovisk", 299335806: "Springl3s", 77547673: "BeDabul" } def get_stats(username): headers = { "TRN-Api-Key": "987c5b41-5649-4b4e-9d3f-4d58cc904584" } return requests.get(ENDPOINT + username, headers=headers).json() def get_string(data): data = data["data"] legend_on_menu = data["children"][0]["metadata"]["legend_name"] username = data["metadata"]["platformUserHandle"] hero_stats = "" for legend in data["children"]: hero_stats += f"{legend['metadata']['legend_name']}\n" for stat in legend["stats"]: name = stat["metadata"]["name"] value = stat["displayValue"] percentile = stat["percentile"] if "percentile" in stat.keys() else "desconecidi" rank = stat["rank"] if "rank" in stat.keys() else "desconecidi" hero_stats += f"{name}: {value} (top {percentile}% rank {rank})\n" hero_stats += "\n" global_stats = "" for stat in data["stats"]: global_stats += f"{stat['metadata']['name']}: {stat['displayValue']}\n" return f"""{username} mt noob rs ta c {legend_on_menu} selelessiondn {hero_stats} globau: {global_stats}""" def on_msg_received(msg, matches): chat = msg["chat"]["id"] user = msg["from"]["id"] player = None if matches.group(1): player = matches.group(1) else: if user in PLAYERS: player = PLAYERS[user] if player is not None: try: data = get_stats(player) stats = get_string(data) print(stats) send_message(chat, stats) except Exception as e: send_message(chat, f"vish deu merda..... {e}")
mit
2,123,689,757,657,363,200
25
93
0.561254
false
DecipherOne/Troglodyte
Trog Build Dependencies/Python26/Lib/bsddb/test/test_all.py
1
16100
"""Run all test cases. """ import sys import os import unittest try: # For Pythons w/distutils pybsddb import bsddb3 as bsddb except ImportError: # For Python 2.3 import bsddb if sys.version_info[0] >= 3 : charset = "iso8859-1" # Full 8 bit class cursor_py3k(object) : def __init__(self, db, *args, **kwargs) : self._dbcursor = db.cursor(*args, **kwargs) def __getattr__(self, v) : return getattr(self._dbcursor, v) def _fix(self, v) : if v is None : return None key, value = v if isinstance(key, bytes) : key = key.decode(charset) return (key, value.decode(charset)) def __next__(self) : v = getattr(self._dbcursor, "next")() return self._fix(v) next = __next__ def previous(self) : v = self._dbcursor.previous() return self._fix(v) def last(self) : v = self._dbcursor.last() return self._fix(v) def set(self, k) : if isinstance(k, str) : k = bytes(k, charset) v = self._dbcursor.set(k) return self._fix(v) def set_recno(self, num) : v = self._dbcursor.set_recno(num) return self._fix(v) def set_range(self, k, dlen=-1, doff=-1) : if isinstance(k, str) : k = bytes(k, charset) v = self._dbcursor.set_range(k, dlen=dlen, doff=doff) return self._fix(v) def dup(self, flags=0) : cursor = self._dbcursor.dup(flags) return dup_cursor_py3k(cursor) def next_dup(self) : v = self._dbcursor.next_dup() return self._fix(v) def next_nodup(self) : v = self._dbcursor.next_nodup() return self._fix(v) def put(self, key, value, flags=0, dlen=-1, doff=-1) : if isinstance(key, str) : key = bytes(key, charset) if isinstance(value, str) : value = bytes(value, charset) return self._dbcursor.put(key, value, flags=flags, dlen=dlen, doff=doff) def current(self, flags=0, dlen=-1, doff=-1) : v = self._dbcursor.current(flags=flags, dlen=dlen, doff=doff) return self._fix(v) def first(self) : v = self._dbcursor.first() return self._fix(v) def pget(self, key=None, data=None, flags=0) : # Incorrect because key can be a bare number, # but enough to pass testsuite if isinstance(key, int) and (data is None) and (flags == 0) : flags = key key = None if isinstance(key, str) : key = bytes(key, charset) if isinstance(data, int) and (flags==0) : flags = data data = None if isinstance(data, str) : data = bytes(data, charset) v=self._dbcursor.pget(key=key, data=data, flags=flags) if v is not None : v1, v2, v3 = v if isinstance(v1, bytes) : v1 = v1.decode(charset) if isinstance(v2, bytes) : v2 = v2.decode(charset) v = (v1, v2, v3.decode(charset)) return v def join_item(self) : v = self._dbcursor.join_item() if v is not None : v = v.decode(charset) return v def get(self, *args, **kwargs) : l = len(args) if l == 2 : k, f = args if isinstance(k, str) : k = bytes(k, "iso8859-1") args = (k, f) elif l == 3 : k, d, f = args if isinstance(k, str) : k = bytes(k, charset) if isinstance(d, str) : d = bytes(d, charset) args =(k, d, f) v = self._dbcursor.get(*args, **kwargs) if v is not None : k, v = v if isinstance(k, bytes) : k = k.decode(charset) v = (k, v.decode(charset)) return v def get_both(self, key, value) : if isinstance(key, str) : key = bytes(key, charset) if isinstance(value, str) : value = bytes(value, charset) v=self._dbcursor.get_both(key, value) return self._fix(v) class dup_cursor_py3k(cursor_py3k) : def __init__(self, dbcursor) : self._dbcursor = dbcursor class DB_py3k(object) : def __init__(self, *args, **kwargs) : args2=[] for i in args : if isinstance(i, DBEnv_py3k) : i = i._dbenv args2.append(i) args = tuple(args2) for k, v in kwargs.items() : if isinstance(v, DBEnv_py3k) : kwargs[k] = v._dbenv self._db = bsddb._db.DB_orig(*args, **kwargs) def __contains__(self, k) : if isinstance(k, str) : k = bytes(k, charset) return getattr(self._db, "has_key")(k) def __getitem__(self, k) : if isinstance(k, str) : k = bytes(k, charset) v = self._db[k] if v is not None : v = v.decode(charset) return v def __setitem__(self, k, v) : if isinstance(k, str) : k = bytes(k, charset) if isinstance(v, str) : v = bytes(v, charset) self._db[k] = v def __delitem__(self, k) : if isinstance(k, str) : k = bytes(k, charset) del self._db[k] def __getattr__(self, v) : return getattr(self._db, v) def __len__(self) : return len(self._db) def has_key(self, k, txn=None) : if isinstance(k, str) : k = bytes(k, charset) return self._db.has_key(k, txn=txn) def put(self, key, value, txn=None, flags=0, dlen=-1, doff=-1) : if isinstance(key, str) : key = bytes(key, charset) if isinstance(value, str) : value = bytes(value, charset) return self._db.put(key, value, flags=flags, txn=txn, dlen=dlen, doff=doff) def append(self, value, txn=None) : if isinstance(value, str) : value = bytes(value, charset) return self._db.append(value, txn=txn) def get_size(self, key) : if isinstance(key, str) : key = bytes(key, charset) return self._db.get_size(key) def get(self, key, default="MagicCookie", txn=None, flags=0, dlen=-1, doff=-1) : if isinstance(key, str) : key = bytes(key, charset) if default != "MagicCookie" : # Magic for 'test_get_none.py' v=self._db.get(key, default=default, txn=txn, flags=flags, dlen=dlen, doff=doff) else : v=self._db.get(key, txn=txn, flags=flags, dlen=dlen, doff=doff) if (v is not None) and isinstance(v, bytes) : v = v.decode(charset) return v def pget(self, key, txn=None) : if isinstance(key, str) : key = bytes(key, charset) v=self._db.pget(key, txn=txn) if v is not None : v1, v2 = v if isinstance(v1, bytes) : v1 = v1.decode(charset) v = (v1, v2.decode(charset)) return v def get_both(self, key, value, txn=None, flags=0) : if isinstance(key, str) : key = bytes(key, charset) if isinstance(value, str) : value = bytes(value, charset) v=self._db.get_both(key, value, txn=txn, flags=flags) if v is not None : v = v.decode(charset) return v def delete(self, key, txn=None) : if isinstance(key, str) : key = bytes(key, charset) return self._db.delete(key, txn=txn) def keys(self) : k = self._db.keys() if len(k) and isinstance(k[0], bytes) : return [i.decode(charset) for i in self._db.keys()] else : return k def items(self) : data = self._db.items() if not len(data) : return data data2 = [] for k, v in data : if isinstance(k, bytes) : k = k.decode(charset) data2.append((k, v.decode(charset))) return data2 def associate(self, secondarydb, callback, flags=0, txn=None) : class associate_callback(object) : def __init__(self, callback) : self._callback = callback def callback(self, key, data) : if isinstance(key, str) : key = key.decode(charset) data = data.decode(charset) key = self._callback(key, data) if (key != bsddb._db.DB_DONOTINDEX) and isinstance(key, str) : key = bytes(key, charset) return key return self._db.associate(secondarydb._db, associate_callback(callback).callback, flags=flags, txn=txn) def cursor(self, txn=None, flags=0) : return cursor_py3k(self._db, txn=txn, flags=flags) def join(self, cursor_list) : cursor_list = [i._dbcursor for i in cursor_list] return dup_cursor_py3k(self._db.join(cursor_list)) class DBEnv_py3k(object) : def __init__(self, *args, **kwargs) : self._dbenv = bsddb._db.DBEnv_orig(*args, **kwargs) def __getattr__(self, v) : return getattr(self._dbenv, v) class DBSequence_py3k(object) : def __init__(self, db, *args, **kwargs) : self._db=db self._dbsequence = bsddb._db.DBSequence_orig(db._db, *args, **kwargs) def __getattr__(self, v) : return getattr(self._dbsequence, v) def open(self, key, *args, **kwargs) : return self._dbsequence.open(bytes(key, charset), *args, **kwargs) def get_key(self) : return self._dbsequence.get_key().decode(charset) def get_dbp(self) : return self._db import string string.letters=[chr(i) for i in xrange(65,91)] bsddb._db.DBEnv_orig = bsddb._db.DBEnv bsddb._db.DB_orig = bsddb._db.DB bsddb._db.DBSequence_orig = bsddb._db.DBSequence def do_proxy_db_py3k(flag) : flag2 = do_proxy_db_py3k.flag do_proxy_db_py3k.flag = flag if flag : bsddb.DBEnv = bsddb.db.DBEnv = bsddb._db.DBEnv = DBEnv_py3k bsddb.DB = bsddb.db.DB = bsddb._db.DB = DB_py3k bsddb._db.DBSequence = DBSequence_py3k else : bsddb.DBEnv = bsddb.db.DBEnv = bsddb._db.DBEnv = bsddb._db.DBEnv_orig bsddb.DB = bsddb.db.DB = bsddb._db.DB = bsddb._db.DB_orig bsddb._db.DBSequence = bsddb._db.DBSequence_orig return flag2 do_proxy_db_py3k.flag = False do_proxy_db_py3k(True) try: # For Pythons w/distutils pybsddb from bsddb3 import db, dbtables, dbutils, dbshelve, \ hashopen, btopen, rnopen, dbobj except ImportError: # For Python 2.3 from bsddb import db, dbtables, dbutils, dbshelve, \ hashopen, btopen, rnopen, dbobj try: from bsddb3 import test_support except ImportError: if sys.version_info[0] < 3 : from test import test_support else : from test import support as test_support try: if sys.version_info[0] < 3 : from threading import Thread, currentThread del Thread, currentThread else : from threading import Thread, current_thread del Thread, current_thread have_threads = True except ImportError: have_threads = False verbose = 0 if 'verbose' in sys.argv: verbose = 1 sys.argv.remove('verbose') if 'silent' in sys.argv: # take care of old flag, just in case verbose = 0 sys.argv.remove('silent') def print_versions(): print print '-=' * 38 print db.DB_VERSION_STRING print 'bsddb.db.version(): %s' % (db.version(), ) print 'bsddb.db.__version__: %s' % db.__version__ print 'bsddb.db.cvsid: %s' % db.cvsid print 'py module: %s' % bsddb.__file__ print 'extension module: %s' % bsddb._bsddb.__file__ print 'python version: %s' % sys.version print 'My pid: %s' % os.getpid() print '-=' * 38 def get_new_path(name) : get_new_path.mutex.acquire() try : import os path=os.path.join(get_new_path.prefix, name+"_"+str(os.getpid())+"_"+str(get_new_path.num)) get_new_path.num+=1 finally : get_new_path.mutex.release() return path def get_new_environment_path() : path=get_new_path("environment") import os try: os.makedirs(path,mode=0700) except os.error: test_support.rmtree(path) os.makedirs(path) return path def get_new_database_path() : path=get_new_path("database") import os if os.path.exists(path) : os.remove(path) return path # This path can be overriden via "set_test_path_prefix()". import os, os.path get_new_path.prefix=os.path.join(os.sep,"tmp","z-Berkeley_DB") get_new_path.num=0 def get_test_path_prefix() : return get_new_path.prefix def set_test_path_prefix(path) : get_new_path.prefix=path def remove_test_path_directory() : test_support.rmtree(get_new_path.prefix) if have_threads : import threading get_new_path.mutex=threading.Lock() del threading else : class Lock(object) : def acquire(self) : pass def release(self) : pass get_new_path.mutex=Lock() del Lock class PrintInfoFakeTest(unittest.TestCase): def testPrintVersions(self): print_versions() # This little hack is for when this module is run as main and all the # other modules import it so they will still be able to get the right # verbose setting. It's confusing but it works. if sys.version_info[0] < 3 : import test_all test_all.verbose = verbose else : import sys print >>sys.stderr, "Work to do!" def suite(module_prefix='', timing_check=None): test_modules = [ 'test_associate', 'test_basics', 'test_compare', 'test_compat', 'test_cursor_pget_bug', 'test_dbobj', 'test_dbshelve', 'test_dbtables', 'test_distributed_transactions', 'test_early_close', 'test_get_none', 'test_join', 'test_lock', 'test_misc', 'test_pickle', 'test_queue', 'test_recno', 'test_replication', 'test_sequence', 'test_thread', ] alltests = unittest.TestSuite() for name in test_modules: #module = __import__(name) # Do it this way so that suite may be called externally via # python's Lib/test/test_bsddb3. module = __import__(module_prefix+name, globals(), locals(), name) alltests.addTest(module.test_suite()) if timing_check: alltests.addTest(unittest.makeSuite(timing_check)) return alltests def test_suite(): suite = unittest.TestSuite() suite.addTest(unittest.makeSuite(PrintInfoFakeTest)) return suite if __name__ == '__main__': print_versions() unittest.main(defaultTest='suite')
mit
-3,441,069,557,960,012,300
29.666667
88
0.511677
false
vik001ind/RSAExploits
RSAExploits/exploits/hastad.py
1
3524
""" Class defintion for simple hastad broadcast exploit """ from RSAExploits import util from RSAExploits.exploits.exploit import Exploit class Hastad(Exploit): """ Class providing a run interface to hastad broadcast exploit""" def run(self, rsadata_list, info_dict = None): """ Attempts to recover plaintext using Hastad's broadcast attack This attack works when we have a list of RSA_Data objects such that the length of the list is greater than or equal to e, unique and coprime moduli are used for each encryption, and the same plaintext message is encrypted to generate all ciphertexts. Args: rsadata_list: A list of RSA_Data objects on which to attempt Hastad's exploit info_dict: Not currently used Assumptions: None of the RSA_Data objects in rsadata_list have the same public exponent e, same id number, and same modulus N. This should be prevented by calling the remove_duplicates() function in RSA_Data.py Side Effects: If a message is recovered, the corresponding RSA_Data objects will be updated with this information Return: True if at least one message was recovered """ print ("Hastad: Running Attack...") success = False e_id_dict = self.group_by_e_and_id(rsadata_list) for group in e_id_dict: msg = self.hastad_broadcast_exploit(e_id_dict[group]) if msg != None: success = True for rsadata in e_id_dict[group]: rsadata.set_m(msg) if success: print("Hastad: Success, message found.") else: print("Hastad: Failure, message not found.") return success @staticmethod def group_by_e_and_id(rsadata_list): """ Group the RSA_Data objects by public exponent and id """ e_id_dict = {} for rsadata in rsadata_list: # Only consider entries with an ID number if rsadata.get_id() == None: continue # Only consider entries with a ciphertext if rsadata.get_c() == None: continue # If the (e, idnum) tuple already exists in the dictionary, just # append the new entry to the already existing list if (rsadata.get_e(), rsadata.get_id()) in e_id_dict: e_id_dict[(rsadata.get_e(), rsadata.get_id())].append(rsadata) # Otherwise, create a new list for the new tuple else: e_id_dict[(rsadata.get_e(), rsadata.get_id())] = [rsadata] return e_id_dict @staticmethod def hastad_broadcast_exploit(rsadata_list): """ Recover the plaintext message using chinese remainder theorem """ e = rsadata_list[0].get_e() if len(rsadata_list) < e: return None ns = [] cs = [] for index in range(e): ns.append(rsadata_list[index].get_n()) cs.append(rsadata_list[index].get_c()) s = util.crt(ns, cs) pt = util.int_nthroot(s, e) if pt is not None: return pt else: return None
mit
-132,503,831,933,218,540
33.891089
80
0.542849
false
aschleg/mathpy
mathpy/special/gamma.py
1
1555
# encoding=utf8 import numpy as np def k_function(n): r""" Returns the K-function up to a given integer n. Parameters ---------- n : int The length of the returned K-function as in :math:`K(n)`. Returns ------- array-like numpy array of the computed integers returned by the K-function. Notes ----- The K-function generalizes the hyperfactorial for complex numbers and is defined for positive integers as: .. math:: K(n) \equiv 1^1 2^2 3^3 \cdots (n - 1)^{n - 1} The K-function can also be expressed as a hyperfactorial, :math:`H`: .. math:: K(n) = H(n - 1) The Gamma function and Barnes G-Function are also closely related by: .. math:: K(n) = \frac{[\Gamma{n}]^{n - 1}}{G(n)} Examples -------- >>> k_function(3) array([1., 1., 4.]) >>> k_function(5).astype(int) array([ 1, 1, 4, 108, 27648]) References ---------- Sloane, N. J. A. Sequence A002109/M3706 in "The On-Line Encyclopedia of Integer Sequences." Weisstein, Eric W. "K-Function." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/K-Function.html Wikipedia contributors. (2015, December 5). K-function. In Wikipedia, The Free Encyclopedia. Retrieved 13:56, March 1, 2018, from https://en.wikipedia.org/w/index.php?title=K-function&oldid=693891074 """ kn = np.empty(n) k = 1 for i in np.arange(0, n): k *= (i) ** (i) kn[i] = k return kn
mit
-6,329,161,334,717,358,000
21.867647
114
0.573633
false
maarteninja/ml2014
three/minimize.py
1
8935
#This program is distributed WITHOUT ANY WARRANTY; without even the implied #warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # # #This file contains a Python version of Carl Rasmussen's Matlab-function #minimize.m # #minimize.m is copyright (C) 1999 - 2006, Carl Edward Rasmussen. #Python adaptation by Roland Memisevic 2008. # # #The following is the original copyright notice that comes with the #function minimize.m #(from http://www.kyb.tuebingen.mpg.de/bs/people/carl/code/minimize/Copyright): # # #"(C) Copyright 1999 - 2006, Carl Edward Rasmussen # #Permission is granted for anyone to copy, use, or modify these #programs and accompanying documents for purposes of research or #education, provided this copyright notice is retained, and note is #made of any changes that have been made. # #These programs and documents are distributed without any warranty, #express or implied. As the programs were written for research #purposes only, they have not been tested to the degree that would be #advisable in any important application. All use of these programs is #entirely at the user's own risk." """minimize.py This module contains a function 'minimize' that performs unconstrained gradient based optimization using nonlinear conjugate gradients. The function is a straightforward Python-translation of Carl Rasmussen's Matlab-function minimize.m """ from numpy import dot, isinf, isnan, any, sqrt, isreal, real, nan, inf def minimize(X, f, grad, args, maxnumlinesearch=None, maxnumfuneval=None, red=1.0, verbose=True): INT = 0.1;# don't reevaluate within 0.1 of the limit of the current bracket EXT = 3.0; # extrapolate maximum 3 times the current step-size MAX = 20; # max 20 function evaluations per line search RATIO = 10; # maximum allowed slope ratio SIG = 0.1;RHO = SIG/2;# SIG and RHO are the constants controlling the Wolfe- #Powell conditions. SIG is the maximum allowed absolute ratio between #previous and new slopes (derivatives in the search direction), thus setting #SIG to low (positive) values forces higher precision in the line-searches. #RHO is the minimum allowed fraction of the expected (from the slope at the #initial point in the linesearch). Constants must satisfy 0 < RHO < SIG < 1. #Tuning of SIG (depending on the nature of the function to be optimized) may #speed up the minimization; it is probably not worth playing much with RHO. SMALL = 10.**-16 #minimize.m uses matlab's realmin if maxnumlinesearch == None: if maxnumfuneval == None: raise "Specify maxnumlinesearch or maxnumfuneval" else: S = 'Function evaluation' length = maxnumfuneval else: if maxnumfuneval != None: raise "Specify either maxnumlinesearch or maxnumfuneval (not both)" else: S = 'Linesearch' length = maxnumlinesearch i = 0 # zero the run length counter ls_failed = 0 # no previous line search has failed f0 = f(X, *args) # get function value and gradient df0 = grad(X, *args) fX = [f0] i = i + (length<0) # count epochs?! s = -df0; d0 = -dot(s,s) # initial search direction (steepest) and slope x3 = red/(1.0-d0) # initial step is red/(|s|+1) while i < abs(length): # while not finished i = i + (length>0) # count iterations?! X0 = X; F0 = f0; dF0 = df0 # make a copy of current values if length>0: M = MAX else: M = min(MAX, -length-i) while 1: # keep extrapolating as long as necessary x2 = 0; f2 = f0; d2 = d0; f3 = f0; df3 = df0 success = 0 while (not success) and (M > 0): try: M = M - 1; i = i + (length<0) # count epochs?! f3 = f(X+x3*s, *args) df3 = grad(X+x3*s, *args) if isnan(f3) or isinf(f3) or any(isnan(df3)+isinf(df3)): print "an error in minimize error" print "f3 = ", f3 print "df3 = ", df3 return success = 1 except: # catch any error which occured in f x3 = (x2+x3)/2 # bisect and try again if f3 < F0: X0 = X+x3*s; F0 = f3; dF0 = df3 # keep best values d3 = dot(df3,s) # new slope if d3 > SIG*d0 or f3 > f0+x3*RHO*d0 or M == 0: # are we done extrapolating? break x1 = x2; f1 = f2; d1 = d2 # move point 2 to point 1 x2 = x3; f2 = f3; d2 = d3 # move point 3 to point 2 A = 6*(f1-f2)+3*(d2+d1)*(x2-x1) # make cubic extrapolation B = 3*(f2-f1)-(2*d1+d2)*(x2-x1) Z = B+sqrt(complex(B*B-A*d1*(x2-x1))) if Z != 0.0: x3 = x1-d1*(x2-x1)**2/Z # num. error possible, ok! else: x3 = inf if (not isreal(x3)) or isnan(x3) or isinf(x3) or (x3 < 0): # num prob | wrong sign? x3 = x2*EXT # extrapolate maximum amount elif x3 > x2*EXT: # new point beyond extrapolation limit? x3 = x2*EXT # extrapolate maximum amount elif x3 < x2+INT*(x2-x1): # new point too close to previous point? x3 = x2+INT*(x2-x1) x3 = real(x3) while (abs(d3) > -SIG*d0 or f3 > f0+x3*RHO*d0) and M > 0: # keep interpolating if (d3 > 0) or (f3 > f0+x3*RHO*d0): # choose subinterval x4 = x3; f4 = f3; d4 = d3 # move point 3 to point 4 else: x2 = x3; f2 = f3; d2 = d3 # move point 3 to point 2 if f4 > f0: x3 = x2-(0.5*d2*(x4-x2)**2)/(f4-f2-d2*(x4-x2)) # quadratic interpolation else: A = 6*(f2-f4)/(x4-x2)+3*(d4+d2) # cubic interpolation B = 3*(f4-f2)-(2*d2+d4)*(x4-x2) if A != 0: x3=x2+(sqrt(B*B-A*d2*(x4-x2)**2)-B)/A # num. error possible, ok! else: x3 = inf if isnan(x3) or isinf(x3): x3 = (x2+x4)/2 # if we had a numerical problem then bisect x3 = max(min(x3, x4-INT*(x4-x2)),x2+INT*(x4-x2)) # don't accept too close f3 = f(X+x3*s, *args) df3 = grad(X+x3*s, *args) if f3 < F0: X0 = X+x3*s; F0 = f3; dF0 = df3 # keep best values M = M - 1; i = i + (length<0) # count epochs?! d3 = dot(df3,s) # new slope if abs(d3) < -SIG*d0 and f3 < f0+x3*RHO*d0: # if line search succeeded X = X+x3*s; f0 = f3; fX.append(f0) # update variables if verbose: print '%s %6i; Value %4.6e\r' % (S, i, f0) s = (dot(df3,df3)-dot(df0,df3))/dot(df0,df0)*s - df3 # Polack-Ribiere CG direction df0 = df3 # swap derivatives d3 = d0; d0 = dot(df0,s) if d0 > 0: # new slope must be negative s = -df0; d0 = -dot(s,s) # otherwise use steepest direction x3 = x3 * min(RATIO, d3/(d0-SMALL)) # slope ratio but max RATIO ls_failed = 0 # this line search did not fail else: X = X0; f0 = F0; df0 = dF0 # restore best point so far if ls_failed or (i>abs(length)):# line search failed twice in a row break # or we ran out of time, so we give up s = -df0; d0 = -dot(s,s) # try steepest x3 = 1/(1-d0) ls_failed = 1 # this line search failed if verbose: print "\n" return X, fX, i
gpl-2.0
-1,338,693,259,614,311,000
49.196629
97
0.484835
false
rande/python-element
element/plugins/disqus/disqus.py
1
1405
# # Copyright 2014 Thomas Rabaix <[email protected]> # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import element.node class DisqusHandler(element.node.NodeHandler): def __init__(self, account, templating): self.account = account self.templating = templating def get_defaults(self, node): return { 'template': 'element.plugins.disqus:comments.html' } def get_name(self): return 'Disqus' def execute(self, request_handler, context): if not self.account: return params = { 'account': self.account, } self.render(request_handler, self.templating, context.settings['template'], params) def listener(self, event): node = element.node.Node('disqus://%s' % event.get('subject').id, { 'type': 'disqus.comments', }) event.set('node', node)
apache-2.0
-9,126,190,087,776,498,000
29.565217
91
0.659786
false
GiulioRossetti/ndlib
ndlib/models/epidemics/IndependentCascadesModel.py
1
3628
from ..DiffusionModel import DiffusionModel import numpy as np import future.utils __author__ = 'Giulio Rossetti' __license__ = "BSD-2-Clause" __email__ = "[email protected]" class IndependentCascadesModel(DiffusionModel): """ Edge Parameters to be specified via ModelConfig :param threshold: The edge threshold. As default a value of 0.1 is assumed for all edges. """ def __init__(self, graph, seed=None): """ Model Constructor :param graph: A networkx graph object """ super(self.__class__, self).__init__(graph, seed) self.available_statuses = { "Susceptible": 0, "Infected": 1, "Removed": 2 } self.parameters = { "model": {}, "nodes": {}, "edges": { "threshold": { "descr": "Edge threshold", "range": [0, 1], "optional": True, "default": 0.1 } }, } self.name = "Independent Cascades" def iteration(self, node_status=True): """ Execute a single model iteration :return: Iteration_id, Incremental node status (dictionary node->status) """ self.clean_initial_status(self.available_statuses.values()) actual_status = {node: nstatus for node, nstatus in future.utils.iteritems(self.status)} if self.actual_iteration == 0: self.actual_iteration += 1 delta, node_count, status_delta = self.status_delta(actual_status) if node_status: return {"iteration": 0, "status": actual_status.copy(), "node_count": node_count.copy(), "status_delta": status_delta.copy()} else: return {"iteration": 0, "status": {}, "node_count": node_count.copy(), "status_delta": status_delta.copy()} for u in self.graph.nodes: if self.status[u] != 1: continue neighbors = list(self.graph.neighbors(u)) # neighbors and successors (in DiGraph) produce the same result # Standard threshold if len(neighbors) > 0: threshold = 1.0/len(neighbors) for v in neighbors: if actual_status[v] == 0: key = (u, v) # Individual specified thresholds if 'threshold' in self.params['edges']: if key in self.params['edges']['threshold']: threshold = self.params['edges']['threshold'][key] elif (v, u) in self.params['edges']['threshold'] and not self.graph.directed: threshold = self.params['edges']['threshold'][(v, u)] flip = np.random.random_sample() if flip <= threshold: actual_status[v] = 1 actual_status[u] = 2 delta, node_count, status_delta = self.status_delta(actual_status) self.status = actual_status self.actual_iteration += 1 if node_status: return {"iteration": self.actual_iteration - 1, "status": delta.copy(), "node_count": node_count.copy(), "status_delta": status_delta.copy()} else: return {"iteration": self.actual_iteration - 1, "status": {}, "node_count": node_count.copy(), "status_delta": status_delta.copy()}
bsd-2-clause
-6,692,687,738,186,138,000
35.28
118
0.507993
false
Northeaster/TargetSentimentAnalysis
lib/rnn_cells/gru_cell.py
1
1575
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf from lib.rnn_cells.base_cell import BaseCell from lib import linalg #*************************************************************** class GRUCell(BaseCell): """""" #============================================================= def __call__(self, inputs, state, scope=None): """""" with tf.variable_scope(scope or type(self).__name__): with tf.variable_scope('Gates'): linear = linalg.linear([inputs, state], self.output_size, add_bias=True, n_splits=2, moving_params=self.moving_params) update_act, reset_act = linear update_gate = linalg.sigmoid(update_act-self.forget_bias) reset_gate = linalg.sigmoid(reset_act) reset_state = reset_gate * state with tf.variable_scope('Candidate'): hidden_act = linalg.linear([inputs, reset_state], self.output_size, add_bias=False, moving_params=self.moving_params) hidden_tilde = self.recur_func(hidden_act) hidden = update_gate * state + (1-update_gate) * hidden_tilde return hidden, hidden #============================================================= @property def state_size(self): return self.output_size
apache-2.0
-7,597,540,596,920,359,000
34.795455
68
0.486984
false
cbenhagen/kivy
kivy/uix/textinput.py
1
108858
# -*- encoding: utf-8 -*- ''' Text Input ========== .. versionadded:: 1.0.4 .. image:: images/textinput-mono.jpg .. image:: images/textinput-multi.jpg The :class:`TextInput` widget provides a box for editable plain text. Unicode, multiline, cursor navigation, selection and clipboard features are supported. The :class:`TextInput` uses two different coordinate systems: * (x, y) - coordinates in pixels, mostly used for rendering on screen. * (row, col) - cursor index in characters / lines, used for selection and cursor movement. Usage example ------------- To create a multiline :class:`TextInput` (the 'enter' key adds a new line):: from kivy.uix.textinput import TextInput textinput = TextInput(text='Hello world') To create a singleline :class:`TextInput`, set the :class:`TextInput.multiline` property to False (the 'enter' key will defocus the TextInput and emit an 'on_text_validate' event):: def on_enter(instance, value): print('User pressed enter in', instance) textinput = TextInput(text='Hello world', multiline=False) textinput.bind(on_text_validate=on_enter) The textinput's text is stored in its :attr:`TextInput.text` property. To run a callback when the text changes:: def on_text(instance, value): print('The widget', instance, 'have:', value) textinput = TextInput() textinput.bind(text=on_text) You can set the :class:`focus <kivy.uix.behaviors.FocusBehavior>` to a Textinput, meaning that the input box will be highlighted and keyboard focus will be requested:: textinput = TextInput(focus=True) The textinput is defocused if the 'escape' key is pressed, or if another widget requests the keyboard. You can bind a callback to the focus property to get notified of focus changes:: def on_focus(instance, value): if value: print('User focused', instance) else: print('User defocused', instance) textinput = TextInput() textinput.bind(focus=on_focus) See :class:`~kivy.uix.behaviors.FocusBehavior`, from which the :class:`TextInput` inherits, for more details. Selection --------- The selection is automatically updated when the cursor position changes. You can get the currently selected text from the :attr:`TextInput.selection_text` property. Filtering --------- You can control which text can be added to the :class:`TextInput` by overwriting :meth:`TextInput.insert_text`. Every string that is typed, pasted or inserted by any other means into the :class:`TextInput` is passed through this function. By overwriting it you can reject or change unwanted characters. For example, to write only in capitalized characters:: class CapitalInput(TextInput): def insert_text(self, substring, from_undo=False): s = substring.upper() return super(CapitalInput, self).insert_text(s,\ from_undo=from_undo) Or to only allow floats (0 - 9 and a single period):: class FloatInput(TextInput): pat = re.compile('[^0-9]') def insert_text(self, substring, from_undo=False): pat = self.pat if '.' in self.text: s = re.sub(pat, '', substring) else: s = '.'.join([re.sub(pat, '', s) for s in\ substring.split('.', 1)]) return super(FloatInput, self).insert_text(s, from_undo=from_undo) Default shortcuts ----------------- =============== ======================================================== Shortcuts Description --------------- -------------------------------------------------------- Left Move cursor to left Right Move cursor to right Up Move cursor to up Down Move cursor to down Home Move cursor at the beginning of the line End Move cursor at the end of the line PageUp Move cursor to 3 lines before PageDown Move cursor to 3 lines after Backspace Delete the selection or character before the cursor Del Delete the selection of character after the cursor Shift + <dir> Start a text selection. Dir can be Up, Down, Left or Right Control + c Copy selection Control + x Cut selection Control + p Paste selection Control + a Select all the content Control + z undo Control + r redo =============== ======================================================== .. note:: To enable Emacs-style keyboard shortcuts, you can use :class:`~kivy.uix.behaviors.emacs.EmacsBehavior`. ''' __all__ = ('TextInput', ) import re import sys import string from functools import partial from os import environ from weakref import ref from kivy.animation import Animation from kivy.base import EventLoop from kivy.cache import Cache from kivy.clock import Clock from kivy.config import Config from kivy.compat import PY2 from kivy.logger import Logger from kivy.metrics import inch from kivy.utils import boundary, platform from kivy.uix.behaviors import FocusBehavior from kivy.core.text import Label from kivy.graphics import Color, Rectangle, PushMatrix, PopMatrix, Callback from kivy.graphics.context_instructions import Transform from kivy.graphics.texture import Texture from kivy.uix.widget import Widget from kivy.uix.bubble import Bubble from kivy.uix.behaviors import ButtonBehavior from kivy.uix.image import Image from kivy.properties import StringProperty, NumericProperty, \ BooleanProperty, AliasProperty, \ ListProperty, ObjectProperty, VariableListProperty, OptionProperty Cache_register = Cache.register Cache_append = Cache.append Cache_get = Cache.get Cache_remove = Cache.remove Cache_register('textinput.label', timeout=60.) Cache_register('textinput.width', timeout=60.) FL_IS_NEWLINE = 0x01 # late binding Clipboard = None CutBuffer = None MarkupLabel = None _platform = platform # for reloading, we need to keep a list of textinput to retrigger the rendering _textinput_list = [] # cache the result _is_osx = sys.platform == 'darwin' # When we are generating documentation, Config doesn't exist _is_desktop = False if Config: _is_desktop = Config.getboolean('kivy', 'desktop') # register an observer to clear the textinput cache when OpenGL will reload if 'KIVY_DOC' not in environ: def _textinput_clear_cache(*l): Cache_remove('textinput.label') Cache_remove('textinput.width') for wr in _textinput_list[:]: textinput = wr() if textinput is None: _textinput_list.remove(wr) else: textinput._trigger_refresh_text() textinput._refresh_hint_text() from kivy.graphics.context import get_context get_context().add_reload_observer(_textinput_clear_cache, True) class Selector(ButtonBehavior, Image): # Internal class for managing the selection Handles. window = ObjectProperty() target = ObjectProperty() matrix = ObjectProperty() def __init__(self, **kwargs): super(Selector, self).__init__(**kwargs) self.window.bind(on_touch_down=self.on_window_touch_down) self.matrix = self.target.get_window_matrix() with self.canvas.before: Callback(self.update_transform) PushMatrix() self.transform = Transform() with self.canvas.after: PopMatrix() def update_transform(self, cb): m = self.target.get_window_matrix() if self.matrix != m: self.matrix = m self.transform.identity() self.transform.transform(self.matrix) def transform_touch(self, touch): matrix = self.matrix.inverse() touch.apply_transform_2d( lambda x, y: matrix.transform_point(x, y, 0)[:2]) def on_window_touch_down(self, win, touch): if self.parent is not win: return try: touch.push() self.transform_touch(touch) self._touch_diff = self.top - touch.y if self.collide_point(*touch.pos): FocusBehavior.ignored_touch.append(touch) return super(Selector, self).on_touch_down(touch) finally: touch.pop() class TextInputCutCopyPaste(Bubble): # Internal class used for showing the little bubble popup when # copy/cut/paste happen. textinput = ObjectProperty(None) ''' Holds a reference to the TextInput this Bubble belongs to. ''' but_cut = ObjectProperty(None) but_copy = ObjectProperty(None) but_paste = ObjectProperty(None) but_selectall = ObjectProperty(None) matrix = ObjectProperty(None) def __init__(self, **kwargs): self.mode = 'normal' super(TextInputCutCopyPaste, self).__init__(**kwargs) Clock.schedule_interval(self._check_parent, .5) self.matrix = self.textinput.get_window_matrix() with self.canvas.before: Callback(self.update_transform) PushMatrix() self.transform = Transform() with self.canvas.after: PopMatrix() def update_transform(self, cb): m = self.textinput.get_window_matrix() if self.matrix != m: self.matrix = m self.transform.identity() self.transform.transform(self.matrix) def transform_touch(self, touch): matrix = self.matrix.inverse() touch.apply_transform_2d( lambda x, y: matrix.transform_point(x, y, 0)[:2]) def on_touch_down(self, touch): try: touch.push() self.transform_touch(touch) if self.collide_point(*touch.pos): FocusBehavior.ignored_touch.append(touch) return super(TextInputCutCopyPaste, self).on_touch_down(touch) finally: touch.pop() def on_textinput(self, instance, value): global Clipboard if value and not Clipboard and not _is_desktop: value._ensure_clipboard() def _check_parent(self, dt): # this is a prevention to get the Bubble staying on the screen, if the # attached textinput is not on the screen anymore. parent = self.textinput while parent is not None: if parent == parent.parent: break parent = parent.parent if parent is None: Clock.unschedule(self._check_parent) if self.textinput: self.textinput._hide_cut_copy_paste() def on_parent(self, instance, value): parent = self.textinput mode = self.mode if parent: self.clear_widgets() if mode == 'paste': # show only paste on long touch self.but_selectall.opacity = 1 widget_list = [self.but_selectall, ] if not parent.readonly: widget_list.append(self.but_paste) elif parent.readonly: # show only copy for read only text input widget_list = (self.but_copy, ) else: # normal mode widget_list = (self.but_cut, self.but_copy, self.but_paste) for widget in widget_list: self.add_widget(widget) def do(self, action): textinput = self.textinput if action == 'cut': textinput._cut(textinput.selection_text) elif action == 'copy': textinput.copy() elif action == 'paste': textinput.paste() elif action == 'selectall': textinput.select_all() self.mode = '' anim = Animation(opacity=0, d=.333) anim.bind(on_complete=lambda *args: self.on_parent(self, self.parent)) anim.start(self.but_selectall) return self.hide() def hide(self): parent = self.parent if not parent: return anim = Animation(opacity=0, d=.225) anim.bind(on_complete=lambda *args: parent.remove_widget(self)) anim.start(self) class TextInput(FocusBehavior, Widget): '''TextInput class. See module documentation for more information. :Events: `on_text_validate` Fired only in multiline=False mode when the user hits 'enter'. This will also unfocus the textinput. `on_double_tap` Fired when a double tap happens in the text input. The default behavior selects the text around the cursor position. More info at :meth:`on_double_tap`. `on_triple_tap` Fired when a triple tap happens in the text input. The default behavior selects the line around the cursor position. More info at :meth:`on_triple_tap`. `on_quad_touch` Fired when four fingers are touching the text input. The default behavior selects the whole text. More info at :meth:`on_quad_touch`. .. warning:: When changing a :class:`TextInput` property that requires re-drawing, e.g. modifying the :attr:`text`, the updates occur on the next clock cycle and not instantly. This might cause any changes to the :class:`TextInput` that occur between the modification and the next cycle to be ignored, or to use previous values. For example, after a update to the :attr:`text`, changing the cursor in the same clock frame will move it using the previous text and will likely end up in an incorrect position. The solution is to schedule any updates to occur on the next clock cycle using :meth:`~kivy.clock.ClockBase.schedule_once`. .. Note:: Selection is cancelled when TextInput is focused. If you need to show selection when TextInput is focused, you should delay (use Clock.schedule) the call to the functions for selecting text (select_all, select_text). .. versionchanged:: 1.9.0 :class:`TextInput` now inherits from :class:`~kivy.uix.behaviors.FocusBehavior`. :attr:`~kivy.uix.behaviors.FocusBehavior.keyboard_mode`, :meth:`~kivy.uix.behaviors.FocusBehavior.show_keyboard`, :meth:`~kivy.uix.behaviors.FocusBehavior.hide_keyboard`, :meth:`~kivy.uix.behaviors.FocusBehavior.focus`, and :attr:`~kivy.uix.behaviors.FocusBehavior.input_type` have been removed since they are now inherited from :class:`~kivy.uix.behaviors.FocusBehavior`. .. versionchanged:: 1.7.0 `on_double_tap`, `on_triple_tap` and `on_quad_touch` events added. ''' __events__ = ('on_text_validate', 'on_double_tap', 'on_triple_tap', 'on_quad_touch') def __init__(self, **kwargs): self.is_focusable = kwargs.get('is_focusable', True) self._cursor_blink_time = Clock.get_time() self._cursor = [0, 0] self._selection = False self._selection_finished = True self._selection_touch = None self.selection_text = u'' self._selection_from = None self._selection_to = None self._selection_callback = None self._handle_left = None self._handle_right = None self._handle_middle = None self._bubble = None self._lines_flags = [] self._lines_labels = [] self._lines_rects = [] self._hint_text_flags = [] self._hint_text_labels = [] self._hint_text_rects = [] self._label_cached = None self._line_options = None self._keyboard_mode = Config.get('kivy', 'keyboard_mode') self._command_mode = False self._command = '' self.reset_undo() self._touch_count = 0 self._ctrl_l = False self._ctrl_r = False self._alt_l = False self._alt_r = False self.interesting_keys = { 8: 'backspace', 13: 'enter', 127: 'del', 271: 'enter', 273: 'cursor_up', 274: 'cursor_down', 275: 'cursor_right', 276: 'cursor_left', 278: 'cursor_home', 279: 'cursor_end', 280: 'cursor_pgup', 281: 'cursor_pgdown', 303: 'shift_L', 304: 'shift_R', 305: 'ctrl_L', 306: 'ctrl_R', 308: 'alt_L', 307: 'alt_R'} super(TextInput, self).__init__(**kwargs) fbind = self.fbind refresh_line_options = self._trigger_refresh_line_options update_text_options = self._update_text_options fbind('font_size', refresh_line_options) fbind('font_name', refresh_line_options) def handle_readonly(instance, value): if value and (not _is_desktop or not self.allow_copy): self.is_focusable = False fbind('padding', update_text_options) fbind('tab_width', update_text_options) fbind('font_size', update_text_options) fbind('font_name', update_text_options) fbind('size', update_text_options) fbind('password', update_text_options) fbind('password_mask', update_text_options) fbind('pos', self._trigger_update_graphics) fbind('readonly', handle_readonly) fbind('focus', self._on_textinput_focused) handle_readonly(self, self.readonly) handles = self._trigger_position_handles = Clock.create_trigger( self._position_handles) self._trigger_show_handles = Clock.create_trigger( self._show_handles, .05) self._trigger_update_cutbuffer = Clock.create_trigger( self._update_cutbuffer) refresh_line_options() self._trigger_refresh_text() fbind('pos', handles) fbind('size', handles) # when the gl context is reloaded, trigger the text rendering again. _textinput_list.append(ref(self, TextInput._reload_remove_observer)) if platform == 'linux': self._ensure_clipboard() def on_text_validate(self): pass def cursor_index(self, cursor=None): '''Return the cursor index in the text/value. ''' if not cursor: cursor = self.cursor try: l = self._lines if len(l) == 0: return 0 lf = self._lines_flags index, cr = cursor for row in range(cr): if row >= len(l): continue index += len(l[row]) if lf[row] & FL_IS_NEWLINE: index += 1 if lf[cr] & FL_IS_NEWLINE: index += 1 return index except IndexError: return 0 def cursor_offset(self): '''Get the cursor x offset on the current line. ''' offset = 0 row = self.cursor_row col = self.cursor_col _lines = self._lines if col and row < len(_lines): offset = self._get_text_width( _lines[row][:col], self.tab_width, self._label_cached) return offset def get_cursor_from_index(self, index): '''Return the (row, col) of the cursor from text index. ''' index = boundary(index, 0, len(self.text)) if index <= 0: return 0, 0 lf = self._lines_flags l = self._lines i = 0 for row in range(len(l)): ni = i + len(l[row]) if lf[row] & FL_IS_NEWLINE: ni += 1 i += 1 if ni >= index: return index - i, row i = ni return index, row def select_text(self, start, end): ''' Select a portion of text displayed in this TextInput. .. versionadded:: 1.4.0 :Parameters: `start` Index of textinput.text from where to start selection `end` Index of textinput.text till which the selection should be displayed ''' if end < start: raise Exception('end must be superior to start') m = len(self.text) self._selection_from = boundary(start, 0, m) self._selection_to = boundary(end, 0, m) self._selection_finished = True self._update_selection(True) self._update_graphics_selection() def select_all(self): ''' Select all of the text displayed in this TextInput. .. versionadded:: 1.4.0 ''' self.select_text(0, len(self.text)) re_indent = re.compile('^(\s*|)') def _auto_indent(self, substring): index = self.cursor_index() _text = self._get_text(encode=False) if index > 0: line_start = _text.rfind('\n', 0, index) if line_start > -1: line = _text[line_start + 1:index] indent = self.re_indent.match(line).group() substring += indent return substring def insert_text(self, substring, from_undo=False): '''Insert new text at the current cursor position. Override this function in order to pre-process text for input validation. ''' if self.readonly or not substring: return if isinstance(substring, bytes): substring = substring.decode('utf8') if self.replace_crlf: substring = substring.replace(u'\r\n', u'\n') mode = self.input_filter if mode is not None: chr = type(substring) if chr is bytes: int_pat = self._insert_int_patb else: int_pat = self._insert_int_patu if mode == 'int': substring = re.sub(int_pat, chr(''), substring) elif mode == 'float': if '.' in self.text: substring = re.sub(int_pat, chr(''), substring) else: substring = '.'.join([re.sub(int_pat, chr(''), k) for k in substring.split(chr('.'), 1)]) else: substring = mode(substring, from_undo) if not substring: return self._hide_handles(EventLoop.window) if not from_undo and self.multiline and self.auto_indent \ and substring == u'\n': substring = self._auto_indent(substring) cc, cr = self.cursor sci = self.cursor_index ci = sci() text = self._lines[cr] len_str = len(substring) new_text = text[:cc] + substring + text[cc:] self._set_line_text(cr, new_text) wrap = (self._get_text_width( new_text, self.tab_width, self._label_cached) > self.width) if len_str > 1 or substring == u'\n' or wrap: # Avoid refreshing text on every keystroke. # Allows for faster typing of text when the amount of text in # TextInput gets large. start, finish, lines,\ lineflags, len_lines = self._get_line_from_cursor(cr, new_text) # calling trigger here could lead to wrong cursor positioning # and repeating of text when keys are added rapidly in a automated # fashion. From Android Keyboard for example. self._refresh_text_from_property('insert', start, finish, lines, lineflags, len_lines) self.cursor = self.get_cursor_from_index(ci + len_str) # handle undo and redo self._set_unredo_insert(ci, ci + len_str, substring, from_undo) def _get_line_from_cursor(self, start, new_text): # get current paragraph from cursor position finish = start lines = self._lines linesflags = self._lines_flags if start and not linesflags[start]: start -= 1 new_text = u''.join((lines[start], new_text)) try: while not linesflags[finish + 1]: new_text = u''.join((new_text, lines[finish + 1])) finish += 1 except IndexError: pass lines, lineflags = self._split_smart(new_text) len_lines = max(1, len(lines)) return start, finish, lines, lineflags, len_lines def _set_unredo_insert(self, ci, sci, substring, from_undo): # handle undo and redo if from_undo: return self._undo.append({'undo_command': ('insert', ci, sci), 'redo_command': (ci, substring)}) # reset redo when undo is appended to self._redo = [] def reset_undo(self): '''Reset undo and redo lists from memory. .. versionadded:: 1.3.0 ''' self._redo = self._undo = [] def do_redo(self): '''Do redo operation. .. versionadded:: 1.3.0 This action re-does any command that has been un-done by do_undo/ctrl+z. This function is automatically called when `ctrl+r` keys are pressed. ''' try: x_item = self._redo.pop() undo_type = x_item['undo_command'][0] _get_cusror_from_index = self.get_cursor_from_index if undo_type == 'insert': ci, substring = x_item['redo_command'] self.cursor = _get_cusror_from_index(ci) self.insert_text(substring, True) elif undo_type == 'bkspc': self.cursor = _get_cusror_from_index(x_item['redo_command']) self.do_backspace(from_undo=True) elif undo_type == 'shiftln': direction, rows, cursor = x_item['redo_command'][1:] self._shift_lines(direction, rows, cursor, True) else: # delsel ci, sci = x_item['redo_command'] self._selection_from = ci self._selection_to = sci self._selection = True self.delete_selection(True) self.cursor = _get_cusror_from_index(ci) self._undo.append(x_item) except IndexError: # reached at top of undo list pass def do_undo(self): '''Do undo operation. .. versionadded:: 1.3.0 This action un-does any edits that have been made since the last call to reset_undo(). This function is automatically called when `ctrl+z` keys are pressed. ''' try: x_item = self._undo.pop() undo_type = x_item['undo_command'][0] self.cursor = self.get_cursor_from_index(x_item['undo_command'][1]) if undo_type == 'insert': ci, sci = x_item['undo_command'][1:] self._selection_from = ci self._selection_to = sci self._selection = True self.delete_selection(True) elif undo_type == 'bkspc': substring = x_item['undo_command'][2:][0] self.insert_text(substring, True) elif undo_type == 'shiftln': direction, rows, cursor = x_item['undo_command'][1:] self._shift_lines(direction, rows, cursor, True) else: # delsel substring = x_item['undo_command'][2:][0] self.insert_text(substring, True) self._redo.append(x_item) except IndexError: # reached at top of undo list pass def do_backspace(self, from_undo=False, mode='bkspc'): '''Do backspace operation from the current cursor position. This action might do several things: - removing the current selection if available. - removing the previous char and move the cursor back. - do nothing, if we are at the start. ''' if self.readonly: return cc, cr = self.cursor _lines = self._lines text = _lines[cr] cursor_index = self.cursor_index() text_last_line = _lines[cr - 1] if cc == 0 and cr == 0: return _lines_flags = self._lines_flags start = cr if cc == 0: substring = u'\n' if _lines_flags[cr] else u' ' new_text = text_last_line + text self._set_line_text(cr - 1, new_text) self._delete_line(cr) start = cr - 1 else: #ch = text[cc-1] substring = text[cc - 1] new_text = text[:cc - 1] + text[cc:] self._set_line_text(cr, new_text) # refresh just the current line instead of the whole text start, finish, lines, lineflags, len_lines =\ self._get_line_from_cursor(start, new_text) # avoid trigger refresh, leads to issue with # keys/text send rapidly through code. self._refresh_text_from_property('del', start, finish, lines, lineflags, len_lines) self.cursor = self.get_cursor_from_index(cursor_index - 1) # handle undo and redo self._set_undo_redo_bkspc( cursor_index, cursor_index - 1, substring, from_undo) def _set_undo_redo_bkspc(self, ol_index, new_index, substring, from_undo): # handle undo and redo for backspace if from_undo: return self._undo.append({ 'undo_command': ('bkspc', new_index, substring), 'redo_command': ol_index}) #reset redo when undo is appended to self._redo = [] _re_whitespace = re.compile(r'\s+') def _move_cursor_word_left(self, index=None): pos = index or self.cursor_index() if pos == 0: return self.cursor lines = self._lines col, row = self.get_cursor_from_index(pos) if col == 0: row -= 1 col = len(lines[row]) while True: matches = list(self._re_whitespace.finditer(lines[row], 0, col)) if not matches: if col == 0: if row == 0: return 0, 0 row -= 1 col = len(lines[row]) continue return 0, row match = matches[-1] mpos = match.end() if mpos == col: if len(matches) > 1: match = matches[-2] mpos = match.end() else: if match.start() == 0: if row == 0: return 0, 0 row -= 1 col = len(lines[row]) continue return 0, row col = mpos return col, row def _move_cursor_word_right(self, index=None): pos = index or self.cursor_index() col, row = self.get_cursor_from_index(pos) lines = self._lines mrow = len(lines) - 1 if row == mrow and col == len(lines[row]): return col, row if col == len(lines[row]): row += 1 col = 0 while True: matches = list(self._re_whitespace.finditer(lines[row], col)) if not matches: if col == len(lines[row]): if row == mrow: return col, row row += 1 col = 0 continue return len(lines[row]), row match = matches[0] mpos = match.start() if mpos == col: if len(matches) > 1: match = matches[1] mpos = match.start() else: if match.end() == len(lines[row]): if row == mrow: return col, row row += 1 col = 0 continue return len(lines[row]), row col = mpos return col, row def _expand_range(self, ifrom, ito=None): if ito is None: ito = ifrom rfrom = self.get_cursor_from_index(ifrom)[1] rtcol, rto = self.get_cursor_from_index(ito) rfrom, rto = self._expand_rows(rfrom, rto + 1 if rtcol else rto) return (self.cursor_index((0, rfrom)), self.cursor_index((0, rto))) def _expand_rows(self, rfrom, rto=None): if rto is None or rto == rfrom: rto = rfrom + 1 lines = self._lines flags = list(reversed(self._lines_flags)) while rfrom > 0 and not (flags[rfrom - 1] & FL_IS_NEWLINE): rfrom -= 1 rmax = len(lines) - 1 while 0 < rto < rmax and not (flags[rto - 1] & FL_IS_NEWLINE): rto += 1 return max(0, rfrom), min(rmax, rto) def _shift_lines(self, direction, rows=None, old_cursor=None, from_undo=False): if self._selection_callback: if from_undo: self._selection_callback.cancel() else: return lines = self._lines flags = list(reversed(self._lines_flags)) labels = self._lines_labels rects = self._lines_rects orig_cursor = self.cursor sel = None if old_cursor is not None: self.cursor = old_cursor if not rows: sindex = self.selection_from eindex = self.selection_to if (sindex or eindex) and sindex != eindex: sindex, eindex = tuple(sorted((sindex, eindex))) sindex, eindex = self._expand_range(sindex, eindex) else: sindex, eindex = self._expand_range(self.cursor_index()) srow = self.get_cursor_from_index(sindex)[1] erow = self.get_cursor_from_index(eindex)[1] sel = sindex, eindex if direction < 0 and srow > 0: psrow, perow = self._expand_rows(srow - 1) rows = ((srow, erow), (psrow, perow)) elif direction > 0 and erow < len(lines) - 1: psrow, perow = self._expand_rows(erow) rows = ((srow, erow), (psrow, perow)) if rows: (srow, erow), (psrow, perow) = rows if direction < 0: m1srow, m1erow = psrow, perow m2srow, m2erow = srow, erow cdiff = psrow - perow xdiff = srow - erow else: m1srow, m1erow = srow, erow m2srow, m2erow = psrow, perow cdiff = perow - psrow xdiff = erow - srow self._lines_flags = list(reversed( flags[:m1srow] + flags[m2srow:m2erow] + flags[m1srow:m1erow] + flags[m2erow:])) self._lines = (lines[:m1srow] + lines[m2srow:m2erow] + lines[m1srow:m1erow] + lines[m2erow:]) self._lines_labels = (labels[:m1srow] + labels[m2srow:m2erow] + labels[m1srow:m1erow] + labels[m2erow:]) self._lines_rects = (rects[:m1srow] + rects[m2srow:m2erow] + rects[m1srow:m1erow] + rects[m2erow:]) self._trigger_update_graphics() csrow = srow + cdiff cerow = erow + cdiff sel = (self.cursor_index((0, csrow)), self.cursor_index((0, cerow))) self.cursor = self.cursor_col, self.cursor_row + cdiff if not from_undo: undo_rows = ((srow + cdiff, erow + cdiff), (psrow - xdiff, perow - xdiff)) self._undo.append({ 'undo_command': ('shiftln', direction * -1, undo_rows, self.cursor), 'redo_command': ('shiftln', direction, rows, orig_cursor), }) self._redo = [] if sel: def cb(dt): self.select_text(*sel) self._selection_callback = None self._selection_callback = Clock.schedule_once(cb) def do_cursor_movement(self, action, control=False, alt=False): '''Move the cursor relative to it's current position. Action can be one of : - cursor_left: move the cursor to the left - cursor_right: move the cursor to the right - cursor_up: move the cursor on the previous line - cursor_down: move the cursor on the next line - cursor_home: move the cursor at the start of the current line - cursor_end: move the cursor at the end of current line - cursor_pgup: move one "page" before - cursor_pgdown: move one "page" after In addition, the behavior of certain actions can be modified: - control + cursor_left: move the cursor one word to the left - control + cursor_right: move the cursor one word to the right - control + cursor_up: scroll up one line - control + cursor_down: scroll down one line - control + cursor_home: go to beginning of text - control + cursor_end: go to end of text - alt + cursor_up: shift line(s) up - alt + cursor_down: shift line(s) down .. versionchanged:: 1.9.1 ''' pgmove_speed = int(self.height / (self.line_height + self.line_spacing) - 1) col, row = self.cursor if action == 'cursor_up': if self.multiline and control: self.scroll_y = max(0, self.scroll_y - self.line_height) elif not self.readonly and self.multiline and alt: self._shift_lines(-1) return else: row = max(row - 1, 0) col = min(len(self._lines[row]), col) elif action == 'cursor_down': if self.multiline and control: maxy = self.minimum_height - self.height self.scroll_y = max(0, min(maxy, self.scroll_y + self.line_height)) elif not self.readonly and self.multiline and alt: self._shift_lines(1) return else: row = min(row + 1, len(self._lines) - 1) col = min(len(self._lines[row]), col) elif action == 'cursor_left': if not self.password and control: col, row = self._move_cursor_word_left() else: if col == 0: if row: row -= 1 col = len(self._lines[row]) else: col, row = col - 1, row elif action == 'cursor_right': if not self.password and control: col, row = self._move_cursor_word_right() else: if col == len(self._lines[row]): if row < len(self._lines) - 1: col = 0 row += 1 else: col, row = col + 1, row elif action == 'cursor_home': col = 0 if control: row = 0 elif action == 'cursor_end': if control: row = len(self._lines) - 1 col = len(self._lines[row]) elif action == 'cursor_pgup': row = max(0, row - pgmove_speed) col = min(len(self._lines[row]), col) elif action == 'cursor_pgdown': row = min(row + pgmove_speed, len(self._lines) - 1) col = min(len(self._lines[row]), col) self.cursor = (col, row) def get_cursor_from_xy(self, x, y): '''Return the (row, col) of the cursor from an (x, y) position. ''' padding_left = self.padding[0] padding_top = self.padding[1] l = self._lines dy = self.line_height + self.line_spacing cx = x - self.x scrl_y = self.scroll_y scrl_x = self.scroll_x scrl_y = scrl_y / dy if scrl_y > 0 else 0 cy = (self.top - padding_top + scrl_y * dy) - y cy = int(boundary(round(cy / dy - 0.5), 0, len(l) - 1)) _get_text_width = self._get_text_width _tab_width = self.tab_width _label_cached = self._label_cached for i in range(0, len(l[cy])): if _get_text_width(l[cy][:i], _tab_width, _label_cached) + \ _get_text_width(l[cy][i], _tab_width, _label_cached)*0.6 + \ padding_left > cx + scrl_x: cx = i break return cx, cy # # Selection control # def cancel_selection(self): '''Cancel current selection (if any). ''' self._selection_from = self._selection_to = self.cursor_index() self._selection = False self._selection_finished = True self._selection_touch = None self._trigger_update_graphics() def delete_selection(self, from_undo=False): '''Delete the current text selection (if any). ''' if self.readonly: return self._hide_handles(EventLoop.window) scrl_x = self.scroll_x scrl_y = self.scroll_y cc, cr = self.cursor if not self._selection: return v = self._get_text(encode=False) a, b = self._selection_from, self._selection_to if a > b: a, b = b, a self.cursor = cursor = self.get_cursor_from_index(a) start = cursor finish = self.get_cursor_from_index(b) cur_line = self._lines[start[1]][:start[0]] +\ self._lines[finish[1]][finish[0]:] lines, lineflags = self._split_smart(cur_line) len_lines = len(lines) if start[1] == finish[1]: self._set_line_text(start[1], cur_line) else: self._refresh_text_from_property('del', start[1], finish[1], lines, lineflags, len_lines) self.scroll_x = scrl_x self.scroll_y = scrl_y # handle undo and redo for delete selecttion self._set_unredo_delsel(a, b, v[a:b], from_undo) self.cancel_selection() def _set_unredo_delsel(self, a, b, substring, from_undo): # handle undo and redo for backspace if from_undo: return self._undo.append({ 'undo_command': ('delsel', a, substring), 'redo_command': (a, b)}) # reset redo when undo is appended to self._redo = [] def _update_selection(self, finished=False): '''Update selection text and order of from/to if finished is True. Can be called multiple times until finished is True. ''' a, b = self._selection_from, self._selection_to if a > b: a, b = b, a self._selection_finished = finished _selection_text = self._get_text(encode=False)[a:b] self.selection_text = ("" if not self.allow_copy else ((self.password_mask * (b - a)) if self.password else _selection_text)) if not finished: self._selection = True else: self._selection = bool(len(_selection_text)) self._selection_touch = None if a == 0: # update graphics only on new line # allows smoother scrolling, noticeably # faster when dealing with large text. self._update_graphics_selection() #self._trigger_update_graphics() # # Touch control # def long_touch(self, dt): if self._selection_to == self._selection_from: pos = self.to_local(*self._long_touch_pos, relative=True) self._show_cut_copy_paste( pos, EventLoop.window, mode='paste') def on_double_tap(self): '''This event is dispatched when a double tap happens inside TextInput. The default behavior is to select the word around the current cursor position. Override this to provide different behavior. Alternatively, you can bind to this event to provide additional functionality. ''' ci = self.cursor_index() cc = self.cursor_col line = self._lines[self.cursor_row] len_line = len(line) start = max(0, len(line[:cc]) - line[:cc].rfind(u' ') - 1) end = line[cc:].find(u' ') end = end if end > - 1 else (len_line - cc) Clock.schedule_once(lambda dt: self.select_text(ci - start, ci + end)) def on_triple_tap(self): '''This event is dispatched when a triple tap happens inside TextInput. The default behavior is to select the line around current cursor position. Override this to provide different behavior. Alternatively, you can bind to this event to provide additional functionality. ''' ci = self.cursor_index() sindex, eindex = self._expand_range(ci) Clock.schedule_once(lambda dt: self.select_text(sindex, eindex)) def on_quad_touch(self): '''This event is dispatched when four fingers are touching inside TextInput. The default behavior is to select all text. Override this to provide different behavior. Alternatively, you can bind to this event to provide additional functionality. ''' Clock.schedule_once(lambda dt: self.select_all()) def on_touch_down(self, touch): if self.disabled: return touch_pos = touch.pos if not self.collide_point(*touch_pos): return False if super(TextInput, self).on_touch_down(touch): return True # Check for scroll wheel if 'button' in touch.profile and touch.button.startswith('scroll'): scroll_type = touch.button[6:] if scroll_type == 'down': if self.multiline: if self.scroll_y <= 0: return self.scroll_y -= self.line_height else: if self.scroll_x <= 0: return self.scroll_x -= self.line_height if scroll_type == 'up': if self.multiline: if (self._lines_rects[-1].pos[1] > self.y + self.line_height): return self.scroll_y += self.line_height else: if (self.scroll_x + self.width >= self._lines_rects[-1].texture.size[0]): return self.scroll_x += self.line_height touch.grab(self) self._touch_count += 1 if touch.is_double_tap: self.dispatch('on_double_tap') if touch.is_triple_tap: self.dispatch('on_triple_tap') if self._touch_count == 4: self.dispatch('on_quad_touch') self._hide_cut_copy_paste(EventLoop.window) # schedule long touch for paste self._long_touch_pos = touch.pos Clock.schedule_once(self.long_touch, .5) self.cursor = self.get_cursor_from_xy(*touch_pos) if not self._selection_touch: self.cancel_selection() self._selection_touch = touch self._selection_from = self._selection_to = self.cursor_index() self._update_selection() if CutBuffer and 'button' in touch.profile and touch.button == 'middle': self.insert_text(CutBuffer.get_cutbuffer()) return True return False def on_touch_move(self, touch): if touch.grab_current is not self: return if not self.focus: touch.ungrab(self) if self._selection_touch is touch: self._selection_touch = None return False if self._selection_touch is touch: self.cursor = self.get_cursor_from_xy(touch.x, touch.y) self._selection_to = self.cursor_index() self._update_selection() return True def on_touch_up(self, touch): if touch.grab_current is not self: return touch.ungrab(self) self._touch_count -= 1 # schedule long touch for paste Clock.unschedule(self.long_touch) if not self.focus: return False if self._selection_touch is touch: self._selection_to = self.cursor_index() self._update_selection(True) # show Bubble win = EventLoop.window if self._selection_to != self._selection_from: self._show_cut_copy_paste(touch.pos, win) elif self.use_handles: self._hide_handles() handle_middle = self._handle_middle if handle_middle is None: self._handle_middle = handle_middle = Selector( source=self.handle_image_middle, window=win, target=self, size_hint=(None, None), size=('45dp', '45dp')) handle_middle.bind(on_press=self._handle_pressed, on_touch_move=self._handle_move, on_release=self._handle_released) if not self._handle_middle.parent and self.text: EventLoop.window.add_widget(handle_middle, canvas='after') self._position_handles(mode='middle') return True def _handle_pressed(self, instance): self._hide_cut_copy_paste() sf, st = self._selection_from, self.selection_to if sf > st: self._selection_from, self._selection_to = st, sf def _handle_released(self, instance): sf, st = self._selection_from, self.selection_to if sf == st: return self._update_selection() self._show_cut_copy_paste( (instance.right if instance is self._handle_left else instance.x, instance.top + self.line_height), EventLoop.window) def _handle_move(self, instance, touch): if touch.grab_current != instance: return get_cursor = self.get_cursor_from_xy handle_right = self._handle_right handle_left = self._handle_left handle_middle = self._handle_middle try: touch.push() touch.apply_transform_2d(self.to_widget) x, y = touch.pos finally: touch.pop() cursor = get_cursor( x, y + instance._touch_diff + (self.line_height / 2)) if instance != touch.grab_current: return if instance == handle_middle: self.cursor = cursor self._position_handles(mode='middle') return ci = self.cursor_index(cursor=cursor) sf, st = self._selection_from, self.selection_to if instance == handle_left: self._selection_from = ci elif instance == handle_right: self._selection_to = ci self._trigger_update_graphics() self._trigger_position_handles() def _position_handles(self, *args, **kwargs): if not self.text: return mode = kwargs.get('mode', 'both') lh = self.line_height handle_middle = self._handle_middle if handle_middle: hp_mid = self.cursor_pos pos = self.to_local(*hp_mid, relative=True) handle_middle.x = pos[0] - handle_middle.width / 2 handle_middle.top = pos[1] - lh if mode[0] == 'm': return group = self.canvas.get_group('selection') if not group: return EventLoop.window.remove_widget(self._handle_middle) handle_left = self._handle_left if not handle_left: return hp_left = group[2].pos handle_left.pos = self.to_local(*hp_left, relative=True) handle_left.x -= handle_left.width handle_left.y -= handle_left.height handle_right = self._handle_right last_rect = group[-1] hp_right = last_rect.pos[0], last_rect.pos[1] x, y = self.to_local(*hp_right, relative=True) handle_right.x = x + last_rect.size[0] handle_right.y = y - handle_right.height def _hide_handles(self, win=None): win = win or EventLoop.window if win is None: return win.remove_widget(self._handle_right) win.remove_widget(self._handle_left) win.remove_widget(self._handle_middle) def _show_handles(self, dt): if not self.use_handles or not self.text: return win = EventLoop.window handle_right = self._handle_right handle_left = self._handle_left if self._handle_left is None: self._handle_left = handle_left = Selector( source=self.handle_image_left, target=self, window=win, size_hint=(None, None), size=('45dp', '45dp')) handle_left.bind(on_press=self._handle_pressed, on_touch_move=self._handle_move, on_release=self._handle_released) self._handle_right = handle_right = Selector( source=self.handle_image_right, target=self, window=win, size_hint=(None, None), size=('45dp', '45dp')) handle_right.bind(on_press=self._handle_pressed, on_touch_move=self._handle_move, on_release=self._handle_released) else: if self._handle_left.parent: self._position_handles() return if not self.parent: return self._trigger_position_handles() if self.selection_from != self.selection_to: self._handle_left.opacity = self._handle_right.opacity = 0 win.add_widget(self._handle_left, canvas='after') win.add_widget(self._handle_right, canvas='after') anim = Animation(opacity=1, d=.4) anim.start(self._handle_right) anim.start(self._handle_left) def _show_cut_copy_paste(self, pos, win, parent_changed=False, mode='', pos_in_window=False, *l): # Show a bubble with cut copy and paste buttons if not self.use_bubble: return bubble = self._bubble if bubble is None: self._bubble = bubble = TextInputCutCopyPaste(textinput=self) self.fbind('parent', self._show_cut_copy_paste, pos, win, True) win.bind( size=lambda *args: self._hide_cut_copy_paste(win)) self.bind(cursor_pos=lambda *args: self._hide_cut_copy_paste(win)) else: win.remove_widget(bubble) if not self.parent: return if parent_changed: return # Search the position from the touch to the window lh, ls = self.line_height, self.line_spacing x, y = pos t_pos = (x, y) if pos_in_window else self.to_window(x, y) bubble_size = bubble.size bubble_hw = bubble_size[0] / 2. win_size = win.size bubble_pos = (t_pos[0], t_pos[1] + inch(.25)) if (bubble_pos[0] - bubble_hw) < 0: # bubble beyond left of window if bubble_pos[1] > (win_size[1] - bubble_size[1]): # bubble above window height bubble_pos = (bubble_hw, (t_pos[1]) - (lh + ls + inch(.25))) bubble.arrow_pos = 'top_left' else: bubble_pos = (bubble_hw, bubble_pos[1]) bubble.arrow_pos = 'bottom_left' elif (bubble_pos[0] + bubble_hw) > win_size[0]: # bubble beyond right of window if bubble_pos[1] > (win_size[1] - bubble_size[1]): # bubble above window height bubble_pos = (win_size[0] - bubble_hw, (t_pos[1]) - (lh + ls + inch(.25))) bubble.arrow_pos = 'top_right' else: bubble_pos = (win_size[0] - bubble_hw, bubble_pos[1]) bubble.arrow_pos = 'bottom_right' else: if bubble_pos[1] > (win_size[1] - bubble_size[1]): # bubble above window height bubble_pos = (bubble_pos[0], (t_pos[1]) - (lh + ls + inch(.25))) bubble.arrow_pos = 'top_mid' else: bubble.arrow_pos = 'bottom_mid' bubble_pos = self.to_widget(*bubble_pos) bubble.center_x = bubble_pos[0] if bubble.arrow_pos[0] == 't': bubble.top = bubble_pos[1] else: bubble.y = bubble_pos[1] bubble.mode = mode Animation.cancel_all(bubble) bubble.opacity = 0 win.add_widget(bubble, canvas='after') Animation(opacity=1, d=.225).start(bubble) def _hide_cut_copy_paste(self, win=None): bubble = self._bubble if not bubble: return bubble.hide() # # Private # @staticmethod def _reload_remove_observer(wr): # called when the textinput is deleted if wr in _textinput_list: _textinput_list.remove(wr) def _on_textinput_focused(self, instance, value, *largs): self.focus = value win = EventLoop.window self.cancel_selection() self._hide_cut_copy_paste(win) if value: if (not (self.readonly or self.disabled) or _is_desktop and self._keyboard_mode == 'system'): Clock.schedule_interval(self._do_blink_cursor, 1 / 2.) self._editable = True else: self._editable = False else: Clock.unschedule(self._do_blink_cursor) self._hide_handles(win) def _ensure_clipboard(self): global Clipboard, CutBuffer if not Clipboard: from kivy.core.clipboard import Clipboard, CutBuffer def cut(self): ''' Copy current selection to clipboard then delete it from TextInput. .. versionadded:: 1.8.0 ''' self._cut(self.selection_text) def _cut(self, data): self._ensure_clipboard() Clipboard.copy(data) self.delete_selection() def copy(self, data=''): ''' Copy the value provided in argument `data` into current clipboard. If data is not of type string it will be converted to string. If no data is provided then current selection if present is copied. .. versionadded:: 1.8.0 ''' self._ensure_clipboard() if data: return Clipboard.copy(data) if self.selection_text: return Clipboard.copy(self.selection_text) def paste(self): ''' Insert text from system :class:`~kivy.core.clipboard.Clipboard` into the :class:`~kivy.uix.textinput.TextInput` at current cursor position. .. versionadded:: 1.8.0 ''' self._ensure_clipboard() data = Clipboard.paste() self.delete_selection() self.insert_text(data) def _update_cutbuffer(self, *args): CutBuffer.set_cutbuffer(self.selection_text) def _get_text_width(self, text, tab_width, _label_cached): # Return the width of a text, according to the current line options kw = self._get_line_options() try: cid = u'{}\0{}\0{}'.format(text, self.password, kw) except UnicodeDecodeError: cid = '{}\0{}\0{}'.format(text, self.password, kw) width = Cache_get('textinput.width', cid) if width: return width if not _label_cached: _label_cached = self._label_cached text = text.replace('\t', ' ' * tab_width) if not self.password: width = _label_cached.get_extents(text)[0] else: width = _label_cached.get_extents( self.password_mask * len(text))[0] Cache_append('textinput.width', cid, width) return width def _do_blink_cursor(self, dt): # Callback called by the timer to blink the cursor, according to the # last activity in the widget b = (Clock.get_time() - self._cursor_blink_time) self.cursor_blink = int(b * 2) % 2 def on_cursor(self, instance, value): # When the cursor is moved, reset the activity timer, and update all # the graphics. self._cursor_blink_time = Clock.get_time() self._trigger_update_graphics() def _delete_line(self, idx): # Delete current line, and fix cursor position assert(idx < len(self._lines)) self._lines_flags.pop(idx) self._lines_labels.pop(idx) self._lines.pop(idx) self.cursor = self.cursor def _set_line_text(self, line_num, text): # Set current line with other text than the default one. self._lines_labels[line_num] = self._create_line_label(text) self._lines[line_num] = text def _trigger_refresh_line_options(self, *largs): Clock.unschedule(self._refresh_line_options) Clock.schedule_once(self._refresh_line_options, 0) def _refresh_line_options(self, *largs): self._line_options = None self._get_line_options() self._refresh_text_from_property() self._refresh_hint_text() self.cursor = self.get_cursor_from_index(len(self.text)) def _trigger_refresh_text(self, *largs): if len(largs) and largs[0] == self: largs = () Clock.unschedule(lambda dt: self._refresh_text_from_property(*largs)) Clock.schedule_once(lambda dt: self._refresh_text_from_property(*largs)) def _update_text_options(self, *largs): Cache_remove('textinput.width') self._trigger_refresh_text() def _refresh_text_from_trigger(self, dt, *largs): self._refresh_text_from_property(*largs) def _refresh_text_from_property(self, *largs): self._refresh_text(self._get_text(encode=False), *largs) def _refresh_text(self, text, *largs): # Refresh all the lines from a new text. # By using cache in internal functions, this method should be fast. mode = 'all' if len(largs) > 1: mode, start, finish, _lines, _lines_flags, len_lines = largs #start = max(0, start) cursor = None else: cursor = self.cursor_index() _lines, self._lines_flags = self._split_smart(text) _lines_labels = [] _line_rects = [] _create_label = self._create_line_label for x in _lines: lbl = _create_label(x) _lines_labels.append(lbl) _line_rects.append(Rectangle(size=lbl.size)) if mode == 'all': self._lines_labels = _lines_labels self._lines_rects = _line_rects self._lines = _lines elif mode == 'del': if finish > start: self._insert_lines(start, finish if start == finish else (finish + 1), len_lines, _lines_flags, _lines, _lines_labels, _line_rects) elif mode == 'insert': self._insert_lines( start, finish if (start == finish and not len_lines) else (finish + 1), len_lines, _lines_flags, _lines, _lines_labels, _line_rects) min_line_ht = self._label_cached.get_extents('_')[1] # with markup texture can be of height `1` self.line_height = max(_lines_labels[0].height, min_line_ht) #self.line_spacing = 2 # now, if the text change, maybe the cursor is not at the same place as # before. so, try to set the cursor on the good place row = self.cursor_row self.cursor = self.get_cursor_from_index(self.cursor_index() if cursor is None else cursor) # if we back to a new line, reset the scroll, otherwise, the effect is # ugly if self.cursor_row != row: self.scroll_x = 0 # with the new text don't forget to update graphics again self._trigger_update_graphics() def _insert_lines(self, start, finish, len_lines, _lines_flags, _lines, _lines_labels, _line_rects): self_lines_flags = self._lines_flags _lins_flags = [] _lins_flags.extend(self_lines_flags[:start]) if len_lines: # if not inserting at first line then if start: # make sure line flags restored for first line # _split_smart assumes first line to be not a new line _lines_flags[0] = self_lines_flags[start] _lins_flags.extend(_lines_flags) _lins_flags.extend(self_lines_flags[finish:]) self._lines_flags = _lins_flags _lins_lbls = [] _lins_lbls.extend(self._lines_labels[:start]) if len_lines: _lins_lbls.extend(_lines_labels) _lins_lbls.extend(self._lines_labels[finish:]) self._lines_labels = _lins_lbls _lins_rcts = [] _lins_rcts.extend(self._lines_rects[:start]) if len_lines: _lins_rcts.extend(_line_rects) _lins_rcts.extend(self._lines_rects[finish:]) self._lines_rects = _lins_rcts _lins = [] _lins.extend(self._lines[:start]) if len_lines: _lins.extend(_lines) _lins.extend(self._lines[finish:]) self._lines = _lins def _trigger_update_graphics(self, *largs): Clock.unschedule(self._update_graphics) Clock.schedule_once(self._update_graphics, -1) def _update_graphics(self, *largs): # Update all the graphics according to the current internal values. # # This is a little bit complex, cause we have to : # - handle scroll_x # - handle padding # - create rectangle for the lines matching the viewport # - crop the texture coordinates to match the viewport # # This is the first step of graphics, the second is the selection. self.canvas.clear() add = self.canvas.add lh = self.line_height dy = lh + self.line_spacing # adjust view if the cursor is going outside the bounds sx = self.scroll_x sy = self.scroll_y # draw labels if not self._lines or ( not self._lines[0] and len(self._lines) == 1): rects = self._hint_text_rects labels = self._hint_text_labels lines = self._hint_text_lines else: rects = self._lines_rects labels = self._lines_labels lines = self._lines padding_left, padding_top, padding_right, padding_bottom = self.padding x = self.x + padding_left y = self.top - padding_top + sy miny = self.y + padding_bottom maxy = self.top - padding_top for line_num, value in enumerate(lines): if miny <= y <= maxy + dy: texture = labels[line_num] size = list(texture.size) texc = texture.tex_coords[:] # calcul coordinate viewport_pos = sx, 0 vw = self.width - padding_left - padding_right vh = self.height - padding_top - padding_bottom tw, th = list(map(float, size)) oh, ow = tch, tcw = texc[1:3] tcx, tcy = 0, 0 # adjust size/texcoord according to viewport if viewport_pos: tcx, tcy = viewport_pos tcx = tcx / tw * (ow) tcy = tcy / th * oh if tw - viewport_pos[0] < vw: tcw = tcw - tcx size[0] = tcw * size[0] elif vw < tw: tcw = (vw / tw) * tcw size[0] = vw if vh < th: tch = (vh / th) * tch size[1] = vh # cropping mlh = lh if y > maxy: vh = (maxy - y + lh) tch = (vh / float(lh)) * oh tcy = oh - tch size[1] = vh if y - lh < miny: diff = miny - (y - lh) y += diff vh = lh - diff tch = (vh / float(lh)) * oh size[1] = vh texc = ( tcx, tcy + tch, tcx + tcw, tcy + tch, tcx + tcw, tcy, tcx, tcy) # add rectangle. r = rects[line_num] r.pos = int(x), int(y - mlh) r.size = size r.texture = texture r.tex_coords = texc add(r) y -= dy self._update_graphics_selection() def _update_graphics_selection(self): if not self._selection: return self.canvas.remove_group('selection') dy = self.line_height + self.line_spacing rects = self._lines_rects padding_top = self.padding[1] padding_bottom = self.padding[3] _top = self.top y = _top - padding_top + self.scroll_y miny = self.y + padding_bottom maxy = _top - padding_top draw_selection = self._draw_selection a, b = self._selection_from, self._selection_to if a > b: a, b = b, a get_cursor_from_index = self.get_cursor_from_index s1c, s1r = get_cursor_from_index(a) s2c, s2r = get_cursor_from_index(b) s2r += 1 # pass only the selection lines[] # passing all the lines can get slow when dealing with a lot of text y -= s1r * dy _lines = self._lines _get_text_width = self._get_text_width tab_width = self.tab_width _label_cached = self._label_cached width = self.width padding_left = self.padding[0] padding_right = self.padding[2] x = self.x canvas_add = self.canvas.add selection_color = self.selection_color for line_num, value in enumerate(_lines[s1r:s2r], start=s1r): if miny <= y <= maxy + dy: r = rects[line_num] draw_selection(r.pos, r.size, line_num, (s1c, s1r), (s2c, s2r - 1), _lines, _get_text_width, tab_width, _label_cached, width, padding_left, padding_right, x, canvas_add, selection_color) y -= dy self._position_handles('both') def _draw_selection(self, *largs): pos, size, line_num, (s1c, s1r), (s2c, s2r),\ _lines, _get_text_width, tab_width, _label_cached, width,\ padding_left, padding_right, x, canvas_add, selection_color = largs # Draw the current selection on the widget. if line_num < s1r or line_num > s2r: return x, y = pos w, h = size x1 = x x2 = x + w if line_num == s1r: lines = _lines[line_num] x1 -= self.scroll_x x1 += _get_text_width(lines[:s1c], tab_width, _label_cached) if line_num == s2r: lines = _lines[line_num] x2 = (x - self.scroll_x) + _get_text_width(lines[:s2c], tab_width, _label_cached) width_minus_padding = width - (padding_right + padding_left) maxx = x + width_minus_padding if x1 > maxx: return x1 = max(x1, x) x2 = min(x2, x + width_minus_padding) canvas_add(Color(*selection_color, group='selection')) canvas_add(Rectangle( pos=(x1, pos[1]), size=(x2 - x1, size[1]), group='selection')) def on_size(self, instance, value): # if the size change, we might do invalid scrolling / text split # size the text maybe be put after size_hint have been resolved. self._trigger_refresh_text() self._refresh_hint_text() self.scroll_x = self.scroll_y = 0 def _get_cursor_pos(self): # return the current cursor x/y from the row/col dy = self.line_height + self.line_spacing padding_left = self.padding[0] padding_top = self.padding[1] left = self.x + padding_left top = self.top - padding_top y = top + self.scroll_y y -= self.cursor_row * dy x, y = left + self.cursor_offset() - self.scroll_x, y if x < left: self.scroll_x = 0 x = left if y > top: y = top self.scroll_y = 0 return x, y def _get_line_options(self): # Get or create line options, to be used for Label creation if self._line_options is None: self._line_options = kw = { 'font_size': self.font_size, 'font_name': self.font_name, 'anchor_x': 'left', 'anchor_y': 'top', 'padding_x': 0, 'padding_y': 0, 'padding': (0, 0)} self._label_cached = Label(**kw) return self._line_options def _create_line_label(self, text, hint=False): # Create a label from a text, using line options ntext = text.replace(u'\n', u'').replace(u'\t', u' ' * self.tab_width) if self.password and not hint: # Don't replace hint_text with * ntext = self.password_mask * len(ntext) kw = self._get_line_options() cid = '%s\0%s' % (ntext, str(kw)) texture = Cache_get('textinput.label', cid) if texture is None: # FIXME right now, we can't render very long line... # if we move on "VBO" version as fallback, we won't need to # do this. try to found the maximum text we can handle label = None label_len = len(ntext) ld = None # check for blank line if not ntext: texture = Texture.create(size=(1, 1)) Cache_append('textinput.label', cid, texture) return texture while True: try: label = Label(text=ntext[:label_len], **kw) label.refresh() if ld is not None and ld > 2: ld = int(ld / 2) label_len += ld else: break except: # exception happen when we tried to render the text # reduce it... if ld is None: ld = len(ntext) ld = int(ld / 2) if ld < 2 and label_len: label_len -= 1 label_len -= ld continue # ok, we found it. texture = label.texture Cache_append('textinput.label', cid, texture) return texture def _tokenize(self, text): # Tokenize a text string from some delimiters if text is None: return delimiters = u' ,\'".;:\n\r\t' oldindex = 0 for index, char in enumerate(text): if char not in delimiters: continue if oldindex != index: yield text[oldindex:index] yield text[index:index + 1] oldindex = index + 1 yield text[oldindex:] def _split_smart(self, text): # Do a "smart" split. If autowidth or autosize is set, # we are not doing smart split, just a split on line break. # Otherwise, we are trying to split as soon as possible, to prevent # overflow on the widget. # depend of the options, split the text on line, or word if not self.multiline: lines = text.split(u'\n') lines_flags = [0] + [FL_IS_NEWLINE] * (len(lines) - 1) return lines, lines_flags # no autosize, do wordwrap. x = flags = 0 line = [] lines = [] lines_flags = [] _join = u''.join lines_append, lines_flags_append = lines.append, lines_flags.append padding_left = self.padding[0] padding_right = self.padding[2] width = self.width - padding_left - padding_right text_width = self._get_text_width _tab_width, _label_cached = self.tab_width, self._label_cached # try to add each word on current line. for word in self._tokenize(text): is_newline = (word == u'\n') w = text_width(word, _tab_width, _label_cached) # if we have more than the width, or if it's a newline, # push the current line, and create a new one if (x + w > width and line) or is_newline: lines_append(_join(line)) lines_flags_append(flags) flags = 0 line = [] x = 0 if is_newline: flags |= FL_IS_NEWLINE else: x += w line.append(word) if line or flags & FL_IS_NEWLINE: lines_append(_join(line)) lines_flags_append(flags) return lines, lines_flags def _key_down(self, key, repeat=False): displayed_str, internal_str, internal_action, scale = key if internal_action is None: if self._selection: self.delete_selection() self.insert_text(displayed_str) elif internal_action in ('shift', 'shift_L', 'shift_R'): if not self._selection: self._selection_from = self._selection_to = self.cursor_index() self._selection = True self._selection_finished = False elif internal_action == 'ctrl_L': self._ctrl_l = True elif internal_action == 'ctrl_R': self._ctrl_r = True elif internal_action == 'alt_L': self._alt_l = True elif internal_action == 'alt_R': self._alt_r = True elif internal_action.startswith('cursor_'): cc, cr = self.cursor self.do_cursor_movement(internal_action, self._ctrl_l or self._ctrl_r, self._alt_l or self._alt_r) if self._selection and not self._selection_finished: self._selection_to = self.cursor_index() self._update_selection() else: self.cancel_selection() elif self._selection and internal_action in ('del', 'backspace'): self.delete_selection() elif internal_action == 'del': # Move cursor one char to the right. If that was successful, # do a backspace (effectively deleting char right of cursor) cursor = self.cursor self.do_cursor_movement('cursor_right') if cursor != self.cursor: self.do_backspace(mode='del') elif internal_action == 'backspace': self.do_backspace() elif internal_action == 'enter': if self.multiline: self.insert_text(u'\n') else: self.dispatch('on_text_validate') self.focus = False elif internal_action == 'escape': self.focus = False if internal_action != 'escape': #self._recalc_size() pass def _key_up(self, key, repeat=False): displayed_str, internal_str, internal_action, scale = key if internal_action in ('shift', 'shift_L', 'shift_R'): if self._selection: self._update_selection(True) elif internal_action == 'ctrl_L': self._ctrl_l = False elif internal_action == 'ctrl_R': self._ctrl_r = False elif internal_action == 'alt_L': self._alt_l = False elif internal_action == 'alt_R': self._alt_r = False def keyboard_on_key_down(self, window, keycode, text, modifiers): # Keycodes on OS X: ctrl, cmd = 64, 1024 key, key_str = keycode win = EventLoop.window # This allows *either* ctrl *or* cmd, but not both. is_shortcut = (modifiers == ['ctrl'] or ( _is_osx and modifiers == ['meta'])) is_interesting_key = key in (list(self.interesting_keys.keys()) + [27]) if not self.write_tab and super(TextInput, self).keyboard_on_key_down(window, keycode, text, modifiers): return True if not self._editable: # duplicated but faster testing for non-editable keys if text and not is_interesting_key: if is_shortcut and key == ord('c'): self.copy() elif key == 27: self.focus = False return True if text and not is_interesting_key: self._hide_handles(win) self._hide_cut_copy_paste(win) win.remove_widget(self._handle_middle) # check for command modes # we use \x01INFO\x02 to get info from IME on mobiles # pygame seems to pass \x01 as the unicode for ctrl+a # checking for modifiers ensures conflict resolution. first_char = ord(text[0]) if not modifiers and first_char == 1: self._command_mode = True self._command = '' if not modifiers and first_char == 2: self._command_mode = False self._command = self._command[1:] if self._command_mode: self._command += text return _command = self._command if _command and first_char == 2: from_undo = True _command, data = _command.split(':') self._command = '' if self._selection: self.delete_selection() if _command == 'DEL': count = int(data) if not count: self.delete_selection(from_undo=True) end = self.cursor_index() self._selection_from = max(end - count, 0) self._selection_to = end self._selection = True self.delete_selection(from_undo=True) return elif _command == 'INSERT': self.insert_text(data, from_undo) elif _command == 'INSERTN': from_undo = False self.insert_text(data, from_undo) elif _command == 'SELWORD': self.dispatch('on_double_tap') elif _command == 'SEL': if data == '0': Clock.schedule_once(lambda dt: self.cancel_selection()) elif _command == 'CURCOL': self.cursor = int(data), self.cursor_row return if is_shortcut: if key == ord('x'): # cut selection self._cut(self.selection_text) elif key == ord('c'): # copy selection self.copy() elif key == ord('v'): # paste selection self.paste() elif key == ord('a'): # select all self.select_all() elif key == ord('z'): # undo self.do_undo() elif key == ord('r'): # redo self.do_redo() else: if EventLoop.window.__class__.__module__ == \ 'kivy.core.window.window_sdl2': return if self._selection: self.delete_selection() self.insert_text(text) #self._recalc_size() return if is_interesting_key: self._hide_cut_copy_paste(win) self._hide_handles(win) if key == 27: # escape self.focus = False return True elif key == 9: # tab self.insert_text(u'\t') return True k = self.interesting_keys.get(key) if k: key = (None, None, k, 1) self._key_down(key) def keyboard_on_key_up(self, window, keycode): key, key_str = keycode k = self.interesting_keys.get(key) if k: key = (None, None, k, 1) self._key_up(key) def keyboard_on_textinput(self, window, text): if self._selection: self.delete_selection() self.insert_text(text, False) def on_hint_text(self, instance, value): self._refresh_hint_text() def _refresh_hint_text(self): _lines, self._hint_text_flags = self._split_smart(self.hint_text) _hint_text_labels = [] _hint_text_rects = [] _create_label = self._create_line_label for x in _lines: lbl = _create_label(x, hint=True) _hint_text_labels.append(lbl) _hint_text_rects.append(Rectangle(size=lbl.size)) self._hint_text_lines = _lines self._hint_text_labels = _hint_text_labels self._hint_text_rects = _hint_text_rects # Remember to update graphics self._trigger_update_graphics() # # Properties # _lines = ListProperty([]) _hint_text_lines = ListProperty([]) _editable = BooleanProperty(True) _insert_int_patu = re.compile(u'[^0-9]') _insert_int_patb = re.compile(b'[^0-9]') readonly = BooleanProperty(False) '''If True, the user will not be able to change the content of a textinput. .. versionadded:: 1.3.0 :attr:`readonly` is a :class:`~kivy.properties.BooleanProperty` and defaults to False. ''' multiline = BooleanProperty(True) '''If True, the widget will be able show multiple lines of text. If False, the "enter" keypress will defocus the textinput instead of adding a new line. :attr:`multiline` is a :class:`~kivy.properties.BooleanProperty` and defaults to True. ''' password = BooleanProperty(False) '''If True, the widget will display its characters as the character set in :attr:`password_mask`. .. versionadded:: 1.2.0 :attr:`password` is a :class:`~kivy.properties.BooleanProperty` and defaults to False. ''' password_mask = StringProperty('*') '''Sets the character used to mask the text when :attr:`password` is True. .. versionadded:: 1.9.2 :attr:`password_mask` is a :class:`~kivy.properties.StringProperty` and defaults to `'*'`. ''' keyboard_suggestions = BooleanProperty(True) '''If True provides auto suggestions on top of keyboard. This will only work if :attr:`input_type` is set to `text`. .. versionadded:: 1.8.0 :attr:`keyboard_suggestions` is a :class:`~kivy.properties.BooleanProperty` defaults to True. ''' cursor_blink = BooleanProperty(False) '''This property is used to blink the cursor graphic. The value of :attr:`cursor_blink` is automatically computed. Setting a value on it will have no impact. :attr:`cursor_blink` is a :class:`~kivy.properties.BooleanProperty` and defaults to False. ''' def _get_cursor(self): return self._cursor def _set_cursor(self, pos): if not self._lines: self._trigger_refresh_text() return l = self._lines cr = boundary(pos[1], 0, len(l) - 1) cc = boundary(pos[0], 0, len(l[cr])) cursor = cc, cr if self._cursor == cursor: return self._cursor = cursor # adjust scrollview to ensure that the cursor will be always inside our # viewport. padding_left = self.padding[0] padding_right = self.padding[2] viewport_width = self.width - padding_left - padding_right sx = self.scroll_x offset = self.cursor_offset() # if offset is outside the current bounds, reajust if offset > viewport_width + sx: self.scroll_x = offset - viewport_width if offset < sx: self.scroll_x = offset # do the same for Y # this algo try to center the cursor as much as possible dy = self.line_height + self.line_spacing offsety = cr * dy sy = self.scroll_y padding_top = self.padding[1] padding_bottom = self.padding[3] viewport_height = self.height - padding_top - padding_bottom - dy if offsety > viewport_height + sy: sy = offsety - viewport_height if offsety < sy: sy = offsety self.scroll_y = sy return True cursor = AliasProperty(_get_cursor, _set_cursor) '''Tuple of (row, col) values indicating the current cursor position. You can set a new (row, col) if you want to move the cursor. The scrolling area will be automatically updated to ensure that the cursor is visible inside the viewport. :attr:`cursor` is an :class:`~kivy.properties.AliasProperty`. ''' def _get_cursor_col(self): return self._cursor[0] cursor_col = AliasProperty(_get_cursor_col, None, bind=('cursor', )) '''Current column of the cursor. :attr:`cursor_col` is an :class:`~kivy.properties.AliasProperty` to cursor[0], read-only. ''' def _get_cursor_row(self): return self._cursor[1] cursor_row = AliasProperty(_get_cursor_row, None, bind=('cursor', )) '''Current row of the cursor. :attr:`cursor_row` is an :class:`~kivy.properties.AliasProperty` to cursor[1], read-only. ''' cursor_pos = AliasProperty(_get_cursor_pos, None, bind=( 'cursor', 'padding', 'pos', 'size', 'focus', 'scroll_x', 'scroll_y')) '''Current position of the cursor, in (x, y). :attr:`cursor_pos` is an :class:`~kivy.properties.AliasProperty`, read-only. ''' cursor_color = ListProperty([1, 0, 0, 1]) '''Current color of the cursor, in (r, g, b, a) format. .. versionadded:: 1.9.0 :attr:`cursor_color` is a :class:`~kivy.properties.ListProperty` and defaults to [1, 0, 0, 1]. ''' line_height = NumericProperty(1) '''Height of a line. This property is automatically computed from the :attr:`font_name`, :attr:`font_size`. Changing the line_height will have no impact. .. note:: :attr:`line_height` is the height of a single line of text. Use :attr:`minimum_height`, which also includes padding, to get the height required to display the text properly. :attr:`line_height` is a :class:`~kivy.properties.NumericProperty`, read-only. ''' tab_width = NumericProperty(4) '''By default, each tab will be replaced by four spaces on the text input widget. You can set a lower or higher value. :attr:`tab_width` is a :class:`~kivy.properties.NumericProperty` and defaults to 4. ''' padding_x = VariableListProperty([0, 0], length=2) '''Horizontal padding of the text: [padding_left, padding_right]. padding_x also accepts a one argument form [padding_horizontal]. :attr:`padding_x` is a :class:`~kivy.properties.VariableListProperty` and defaults to [0, 0]. This might be changed by the current theme. .. deprecated:: 1.7.0 Use :attr:`padding` instead. ''' def on_padding_x(self, instance, value): self.padding[0] = value[0] self.padding[2] = value[1] padding_y = VariableListProperty([0, 0], length=2) '''Vertical padding of the text: [padding_top, padding_bottom]. padding_y also accepts a one argument form [padding_vertical]. :attr:`padding_y` is a :class:`~kivy.properties.VariableListProperty` and defaults to [0, 0]. This might be changed by the current theme. .. deprecated:: 1.7.0 Use :attr:`padding` instead. ''' def on_padding_y(self, instance, value): self.padding[1] = value[0] self.padding[3] = value[1] padding = VariableListProperty([6, 6, 6, 6]) '''Padding of the text: [padding_left, padding_top, padding_right, padding_bottom]. padding also accepts a two argument form [padding_horizontal, padding_vertical] and a one argument form [padding]. .. versionchanged:: 1.7.0 Replaced AliasProperty with VariableListProperty. :attr:`padding` is a :class:`~kivy.properties.VariableListProperty` and defaults to [6, 6, 6, 6]. ''' scroll_x = NumericProperty(0) '''X scrolling value of the viewport. The scrolling is automatically updated when the cursor is moved or text changed. If there is no user input, the scroll_x and scroll_y properties may be changed. :attr:`scroll_x` is a :class:`~kivy.properties.NumericProperty` and defaults to 0. ''' scroll_y = NumericProperty(0) '''Y scrolling value of the viewport. See :attr:`scroll_x` for more information. :attr:`scroll_y` is a :class:`~kivy.properties.NumericProperty` and defaults to 0. ''' selection_color = ListProperty([0.1843, 0.6549, 0.8313, .5]) '''Current color of the selection, in (r, g, b, a) format. .. warning:: The color should always have an "alpha" component less than 1 since the selection is drawn after the text. :attr:`selection_color` is a :class:`~kivy.properties.ListProperty` and defaults to [0.1843, 0.6549, 0.8313, .5]. ''' border = ListProperty([4, 4, 4, 4]) '''Border used for :class:`~kivy.graphics.vertex_instructions.BorderImage` graphics instruction. Used with :attr:`background_normal` and :attr:`background_active`. Can be used for a custom background. .. versionadded:: 1.4.1 It must be a list of four values: (top, right, bottom, left). Read the BorderImage instruction for more information about how to use it. :attr:`border` is a :class:`~kivy.properties.ListProperty` and defaults to (4, 4, 4, 4). ''' background_normal = StringProperty( 'atlas://data/images/defaulttheme/textinput') '''Background image of the TextInput when it's not in focus. .. versionadded:: 1.4.1 :attr:`background_normal` is a :class:`~kivy.properties.StringProperty` and defaults to 'atlas://data/images/defaulttheme/textinput'. ''' background_disabled_normal = StringProperty( 'atlas://data/images/defaulttheme/textinput_disabled') '''Background image of the TextInput when disabled. .. versionadded:: 1.8.0 :attr:`background_disabled_normal` is a :class:`~kivy.properties.StringProperty` and defaults to 'atlas://data/images/defaulttheme/textinput_disabled'. ''' background_active = StringProperty( 'atlas://data/images/defaulttheme/textinput_active') '''Background image of the TextInput when it's in focus. .. versionadded:: 1.4.1 :attr:`background_active` is a :class:`~kivy.properties.StringProperty` and defaults to 'atlas://data/images/defaulttheme/textinput_active'. ''' background_disabled_active = StringProperty( 'atlas://data/images/defaulttheme/textinput_disabled_active') '''Background image of the TextInput when it's in focus and disabled. .. versionadded:: 1.8.0 :attr:`background_disabled_active` is a :class:`~kivy.properties.StringProperty` and defaults to 'atlas://data/images/defaulttheme/textinput_disabled_active'. ''' background_color = ListProperty([1, 1, 1, 1]) '''Current color of the background, in (r, g, b, a) format. .. versionadded:: 1.2.0 :attr:`background_color` is a :class:`~kivy.properties.ListProperty` and defaults to [1, 1, 1, 1] (white). ''' foreground_color = ListProperty([0, 0, 0, 1]) '''Current color of the foreground, in (r, g, b, a) format. .. versionadded:: 1.2.0 :attr:`foreground_color` is a :class:`~kivy.properties.ListProperty` and defaults to [0, 0, 0, 1] (black). ''' disabled_foreground_color = ListProperty([0, 0, 0, .5]) '''Current color of the foreground when disabled, in (r, g, b, a) format. .. versionadded:: 1.8.0 :attr:`disabled_foreground_color` is a :class:`~kivy.properties.ListProperty` and defaults to [0, 0, 0, 5] (50% transparent black). ''' use_bubble = BooleanProperty(not _is_desktop) '''Indicates whether the cut/copy/paste bubble is used. .. versionadded:: 1.7.0 :attr:`use_bubble` is a :class:`~kivy.properties.BooleanProperty` and defaults to True on mobile OS's, False on desktop OS's. ''' use_handles = BooleanProperty(not _is_desktop) '''Indicates whether the selection handles are displayed. .. versionadded:: 1.8.0 :attr:`use_handles` is a :class:`~kivy.properties.BooleanProperty` and defaults to True on mobile OS's, False on desktop OS's. ''' suggestion_text = StringProperty('') '''Shows a suggestion text/word from currentcursor position onwards, that can be used as a possible completion. Usefull for suggesting completion text. This can also be used by the IME to setup the current word being edited .. versionadded:: 1.9.0 :attr:`suggestion_text` is a :class:`~kivy.properties.StringProperty` defaults to `''` ''' def on_suggestion_text(self, instance, value): global MarkupLabel if not MarkupLabel: from kivy.core.text.markup import MarkupLabel cursor_pos = self.cursor_pos txt = self._lines[self.cursor_row] cr = self.cursor_row kw = self._get_line_options() rct = self._lines_rects[cr] lbl = text = None if value: lbl = MarkupLabel( text=txt + "[b]{}[/b]".format(value), **kw) else: lbl = Label(**kw) text = txt lbl.refresh() self._lines_labels[cr] = lbl.texture rct.size = lbl.size self._update_graphics() def get_sel_from(self): return self._selection_from selection_from = AliasProperty(get_sel_from, None) '''If a selection is in progress or complete, this property will represent the cursor index where the selection started. .. versionchanged:: 1.4.0 :attr:`selection_from` is an :class:`~kivy.properties.AliasProperty` and defaults to None, readonly. ''' def get_sel_to(self): return self._selection_to selection_to = AliasProperty(get_sel_to, None) '''If a selection is in progress or complete, this property will represent the cursor index where the selection started. .. versionchanged:: 1.4.0 :attr:`selection_to` is an :class:`~kivy.properties.AliasProperty` and defaults to None, readonly. ''' selection_text = StringProperty(u'') '''Current content selection. :attr:`selection_text` is a :class:`~kivy.properties.StringProperty` and defaults to '', readonly. ''' def on_selection_text(self, instance, value): if value: if self.use_handles: self._trigger_show_handles() if CutBuffer and not self.password: self._trigger_update_cutbuffer() def _get_text(self, encode=False): lf = self._lines_flags l = self._lines len_l = len(l) if len(lf) < len_l: lf.append(1) text = u''.join([(u'\n' if (lf[i] & FL_IS_NEWLINE) else u'') + l[i] for i in range(len_l)]) if encode and not isinstance(text, bytes): text = text.encode('utf8') return text def _set_text(self, text): if isinstance(text, bytes): text = text.decode('utf8') if self.replace_crlf: text = text.replace(u'\r\n', u'\n') if self._get_text(encode=False) == text: return self._refresh_text(text) self.cursor = self.get_cursor_from_index(len(text)) text = AliasProperty(_get_text, _set_text, bind=('_lines', )) '''Text of the widget. Creation of a simple hello world:: widget = TextInput(text='Hello world') If you want to create the widget with an unicode string, use:: widget = TextInput(text=u'My unicode string') :attr:`text` is an :class:`~kivy.properties.AliasProperty`. ''' font_name = StringProperty('Roboto') '''Filename of the font to use. The path can be absolute or relative. Relative paths are resolved by the :func:`~kivy.resources.resource_find` function. .. warning:: Depending on your text provider, the font file may be ignored. However, you can mostly use this without problems. If the font used lacks the glyphs for the particular language/symbols you are using, you will see '[]' blank box characters instead of the actual glyphs. The solution is to use a font that has the glyphs you need to display. For example, to display |unicodechar|, use a font like freesans.ttf that has the glyph. .. |unicodechar| image:: images/unicode-char.png :attr:`font_name` is a :class:`~kivy.properties.StringProperty` and defaults to 'Roboto'. ''' font_size = NumericProperty('15sp') '''Font size of the text in pixels. :attr:`font_size` is a :class:`~kivy.properties.NumericProperty` and defaults to 10. ''' hint_text = StringProperty('') '''Hint text of the widget. Shown if text is '' and focus is False. .. versionadded:: 1.6.0 :attr:`hint_text` a :class:`~kivy.properties.StringProperty` and defaults to ''. ''' hint_text_color = ListProperty([0.5, 0.5, 0.5, 1.0]) '''Current color of the hint_text text, in (r, g, b, a) format. .. versionadded:: 1.6.0 :attr:`hint_text_color` is a :class:`~kivy.properties.ListProperty` and defaults to [0.5, 0.5, 0.5, 1.0] (grey). ''' auto_indent = BooleanProperty(False) '''Automatically indent multiline text. .. versionadded:: 1.7.0 :attr:`auto_indent` is a :class:`~kivy.properties.BooleanProperty` and defaults to False. ''' replace_crlf = BooleanProperty(True) '''Automatically replace CRLF with LF. .. versionadded:: 1.9.1 :attr:`replace_crlf` is a :class:`~kivy.properties.BooleanProperty` and defaults to True. ''' allow_copy = BooleanProperty(True) '''Decides whether to allow copying the text. .. versionadded:: 1.8.0 :attr:`allow_copy` is a :class:`~kivy.properties.BooleanProperty` and defaults to True. ''' def _get_min_height(self): return (len(self._lines) * (self.line_height + self.line_spacing) + self.padding[1] + self.padding[3]) minimum_height = AliasProperty(_get_min_height, None, bind=('_lines', 'line_spacing', 'padding', 'font_size', 'font_name', 'password', 'hint_text', 'line_height')) '''Minimum height of the content inside the TextInput. .. versionadded:: 1.8.0 :attr:`minimum_height` is a readonly :class:`~kivy.properties.AliasProperty`. .. warning:: :attr:`minimum_width` is calculated based on :attr:`width` therefore code like this will lead to an infinite loop:: <FancyTextInput>: height: self.minimum_height width: self.height ''' line_spacing = NumericProperty(0) '''Space taken up between the lines. .. versionadded:: 1.8.0 :attr:`line_spacing` is a :class:`~kivy.properties.NumericProperty` and defaults to 0. ''' input_filter = ObjectProperty(None, allownone=True) ''' Filters the input according to the specified mode, if not None. If None, no filtering is applied. .. versionadded:: 1.9.0 :attr:`input_filter` is an :class:`~kivy.properties.ObjectProperty` and defaults to `None`. Can be one of `None`, `'int'` (string), or `'float'` (string), or a callable. If it is `'int'`, it will only accept numbers. If it is `'float'` it will also accept a single period. Finally, if it is a callable it will be called with two parameter; the string to be added and a bool indicating whether the string is a result of undo (True). The callable should return a new substring that will be used instead. ''' handle_image_middle = StringProperty( 'atlas://data/images/defaulttheme/selector_middle') '''Image used to display the middle handle on the TextInput for cursor positioning. .. versionadded:: 1.8.0 :attr:`handle_image_middle` is a :class:`~kivy.properties.StringProperty` and defaults to 'atlas://data/images/defaulttheme/selector_middle'. ''' def on_handle_image_middle(self, instance, value): if self._handle_middle: self._handle_middle.source = value handle_image_left = StringProperty( 'atlas://data/images/defaulttheme/selector_left') '''Image used to display the Left handle on the TextInput for selection. .. versionadded:: 1.8.0 :attr:`handle_image_left` is a :class:`~kivy.properties.StringProperty` and defaults to 'atlas://data/images/defaulttheme/selector_left'. ''' def on_handle_image_left(self, instance, value): if self._handle_left: self._handle_left.source = value handle_image_right = StringProperty( 'atlas://data/images/defaulttheme/selector_right') '''Image used to display the Right handle on the TextInput for selection. .. versionadded:: 1.8.0 :attr:`handle_image_right` is a :class:`~kivy.properties.StringProperty` and defaults to 'atlas://data/images/defaulttheme/selector_right'. ''' def on_handle_image_right(self, instance, value): if self._handle_right: self._handle_right.source = value write_tab = BooleanProperty(True) '''Whether the tab key should move focus to the next widget or if it should enter a tab in the :class:`TextInput`. If `True` a tab will be written, otherwise, focus will move to the next widget. .. versionadded:: 1.9.0 :attr:`write_tab` is a :class:`~kivy.properties.BooleanProperty` and defaults to `True`. ''' if __name__ == '__main__': from kivy.app import App from kivy.uix.boxlayout import BoxLayout from kivy.lang import Builder class TextInputApp(App): def build(self): Builder.load_string(''' <TextInput> on_text: self.suggestion_text = '' self.suggestion_text = 'ion_text' ''') root = BoxLayout(orientation='vertical') textinput = TextInput(multiline=True, use_bubble=True, use_handles=True) #textinput.text = __doc__ root.add_widget(textinput) textinput2 = TextInput(multiline=False, text='monoline textinput', size_hint=(1, None), height=30) root.add_widget(textinput2) return root TextInputApp().run()
mit
6,712,873,367,837,512,000
34.263362
80
0.549193
false
gregpuzzles1/Sandbox
Example Programs/Ch_12_Student_Files/teststudent.py
1
1833
""" File: teststudent.py Unit test suite for the Student class. """ from student import Student import unittest class TestStudent(unittest.TestCase): """Defines a unit test suite for the Student class.""" def setUp(self): """Sets up the test fixture. Scores are 1-5.""" self._student = Student("TEST", 5) for index in xrange(1, 6): score = self._student.setScore(index, index) def tearDown(self): """Cleans up the test fixture after testing.""" pass def testGetAverage(self): """Unit test for getAverage.""" average = self._student.getAverage() self.assertEquals(3, average) def testGetHighScore(self): """Unit test for getHighScore.""" high = self._student.getHighScore() self.assertEquals(5, high) def testGetName(self): """Test case for getName.""" self.assertEquals("TEST", self._student.getName()) def testGetScore(self): """Unit test for getScore.""" for index in xrange(1, 6): score = self._student.getScore(index) self.assertEquals(index, score) self.assertRaises(IndexError, self._student.getScore, 0) self.assertRaises(IndexError, self._student.getScore, 6) def testSetScore(self): """Unit test for setScore.""" for index in xrange(1, 6): score = self._student.setScore(index, index + 1) for index in xrange(1, 6): score = self._student.getScore(index) self.assertEquals(index + 1, score) # Creates a suite and runs the text-based test on it suite = unittest.makeSuite(TestStudent) unittest.TextTestRunner().run(suite)
gpl-3.0
2,613,367,701,992,044,500
28.095238
61
0.578833
false
robcarver17/systematictradingexamples
plots_for_perhaps/compareoptmethods.py
1
22426
import numpy as np import matplotlib.pyplot as plt from matplotlib.pyplot import plot, show, xticks, xlabel, ylabel, legend, yscale, title, savefig, rcParams, figure, hist, text, bar, subplots import Image def file_process(filename): fig = plt.gcf() fig.set_size_inches(18.5,10.5) fig.savefig("/home/rob/%s.png" % filename,dpi=300) fig.savefig("/home/rob/%sLOWRES.png" % filename,dpi=50) Image.open("/home/rob/%s.png" % filename).convert('L').save("/home/rob/%s.jpg" % filename) Image.open("/home/rob/%sLOWRES.png" % filename).convert('L').save("/home/rob/%sLOWRES.jpg" % filename) """ compare: handcrafting bootstrapped one shot equal weights market cap weights """ import pandas as pd from datetime import datetime as dt def read_ts_csv(fname, dindex="Date"): data=pd.read_csv(fname) dateindex=[dt.strptime(dx, "%d/%m/%y") for dx in list(data[dindex])] data.index=dateindex del(data[dindex]) return data def calc_asset_returns(rawdata, tickers): asset_returns=pd.concat([get_monthly_tr(tickname, rawdata) for tickname in tickers], axis=1) asset_returns.columns=tickers return asset_returns def get_monthly_tr(tickname, rawdata): total_returns=rawdata[tickname+"_TR"] return (total_returns / total_returns.shift(1)) - 1.0 def portfolio_return(asset_returns, cash_weights): index_returns=asset_returns.cumsum().ffill().diff() cash_align = cash_weights.reindex(asset_returns.index, method="ffill") cash_align[np.isnan(index_returns)]=0.0 cash_align[np.isnan(cash_align)]=0.0 vols=pd.ewmstd(asset_returns, span=100, min_periods=1) riskweights=pd.DataFrame(cash_align.values / vols.values, index=vols.index) riskweights.columns=asset_returns.columns riskweights[np.isnan(riskweights)]=0.0 def _rowfix(x): if all([y==0.0 for y in x]): return x sumx=sum(x) return [y/sumx for y in x] riskweights = riskweights.apply(_rowfix, axis=1) portfolio_returns=asset_returns*riskweights portfolio_returns[np.isnan(portfolio_returns)]=0.0 portfolio_returns=portfolio_returns.sum(axis=1) return portfolio_returns import matplotlib.pyplot as plt from scipy import stats import pandas as pd import numpy as np from datetime import datetime as dt import datetime from scipy.optimize import minimize from copy import copy import random def correlation_matrix(returns): """ Calcs a correlation matrix using weekly returns from a pandas time series We use weekly returns because otherwise end of day effects, especially over time zones, give unrealistically low correlations """ asset_index=returns.cumsum().ffill() asset_index=asset_index.resample('1W') ## Only want index, fill method is irrelevant asset_index = asset_index - asset_index.shift(1) return asset_index.corr().values def create_dull_pd_matrix(dullvalue=0.0, dullname="A", startdate=pd.datetime(1970,1,1).date(), enddate=datetime.datetime.now().date(), index=None): """ create a single valued pd matrix """ if index is None: index=pd.date_range(startdate, enddate) dullvalue=np.array([dullvalue]*len(index)) ans=pd.DataFrame(dullvalue, index, columns=[dullname]) return ans def addem(weights): ## Used for constraints return 1.0 - sum(weights) def variance(weights, sigma): ## returns the variance (NOT standard deviation) given weights and sigma return (np.matrix(weights)*sigma*np.matrix(weights).transpose())[0,0] def neg_SR(weights, sigma, mus): ## Returns minus the Sharpe Ratio (as we're minimising) """ estreturn=250.0*((np.matrix(x)*mus)[0,0]) variance=(variance(x,sigma)**.5)*16.0 """ estreturn=(np.matrix(weights)*mus)[0,0] std_dev=(variance(weights,sigma)**.5) return -estreturn/std_dev def sigma_from_corr(std, corr): sigma=std*corr*std return sigma def basic_opt(std,corr,mus): number_assets=mus.shape[0] sigma=sigma_from_corr(std, corr) start_weights=[1.0/number_assets]*number_assets ## Constraints - positive weights, adding to 1.0 bounds=[(0.0,1.0)]*number_assets cdict=[{'type':'eq', 'fun':addem}] return minimize(neg_SR_riskfree, start_weights, (sigma, mus), method='SLSQP', bounds=bounds, constraints=cdict, tol=0.00001) def neg_SR_riskfree(weights, sigma, mus, riskfree=0.005): ## Returns minus the Sharpe Ratio (as we're minimising) """ estreturn=250.0*((np.matrix(x)*mus)[0,0]) variance=(variance(x,sigma)**.5)*16.0 """ estreturn=(np.matrix(weights)*mus)[0,0] - riskfree std_dev=(variance(weights,sigma)**.5) return -estreturn/std_dev def equalise_vols(returns, default_vol): """ Normalises returns so they have the in sample vol of defaul_vol (annualised) Assumes daily returns """ factors=(default_vol/16.0)/returns.std(axis=0) facmat=create_dull_pd_matrix(dullvalue=factors, dullname=returns.columns, index=returns.index) norm_returns=returns*facmat norm_returns.columns=returns.columns return norm_returns def offdiag_matrix(offvalue, nlength): identity=np.diag([1.0]*nlength) for x in range(nlength): for y in range(nlength): if x!=y: identity[x][y]=offvalue return identity def get_avg_corr(sigma): new_sigma=copy(sigma) np.fill_diagonal(new_sigma,np.nan) return np.nanmean(new_sigma) def nearest_to_listvals(x, lvalues=[0.0, 0.25, 0.5, 0.75, 0.9]): ## return x rounded to nearest of lvalues if len(lvalues)==1: return lvalues[0] d1=abs(x - lvalues[0]) d2=abs(x - lvalues[1]) if d1<d2: return lvalues[0] newlvalues=lvalues[1:] return nearest_to_listvals(x, newlvalues) def handcrafted(returns, equalisevols=True, default_vol=0.2): """ Handcrafted optimiser """ count_assets=len(returns.columns) try: assert equalisevols is True assert count_assets<=3 except: raise Exception("Handcrafting only works with equalised vols and 3 or fewer assets") if count_assets<3: ## Equal weights return [1.0/count_assets]*count_assets est_corr=returns.corr().values c1=nearest_to_listvals(est_corr[0][1]) c2=nearest_to_listvals(est_corr[0][2]) c3=nearest_to_listvals(est_corr[1][2]) wts_to_use=HANDCRAFTED_WTS[(HANDCRAFTED_WTS.c1==c1) & (HANDCRAFTED_WTS.c2==c2) & (HANDCRAFTED_WTS.c3==c3)].irow(0) return [wts_to_use.w1, wts_to_use.w2, wts_to_use.w3] def opt_shrinkage(returns, shrinkage_factors, equalisevols=True, default_vol=0.2): """ Returns the optimal portfolio for the dataframe returns using shrinkage shrinkage_factors is a tuple, shrinkage of mean and correlation If equalisevols=True then normalises returns to have same standard deviation; the weights returned will be 'risk weightings' """ if equalisevols: use_returns=equalise_vols(returns, default_vol) else: use_returns=returns (shrinkage_mean, shrinkage_corr)=shrinkage_factors ## Sigma matrix ## Use correlation and then convert back to variance est_corr=use_returns.corr().values avg_corr=get_avg_corr(est_corr) prior_corr=offdiag_matrix(avg_corr, est_corr.shape[0]) sigma_corr=shrinkage_corr*prior_corr+(1-shrinkage_corr)*est_corr cov_vector=use_returns.std().values sigma=cov_vector*sigma_corr*cov_vector ## mus vector avg_return=np.mean(use_returns.mean()) est_mus=np.array([use_returns[asset_name].mean() for asset_name in use_returns.columns], ndmin=2).transpose() prior_mus=np.array([avg_return for asset_name in use_returns.columns], ndmin=2).transpose() mus=shrinkage_mean*prior_mus+(1-shrinkage_mean)*est_mus ## Starting weights number_assets=use_returns.shape[1] start_weights=[1.0/number_assets]*number_assets ## Constraints - positive weights, adding to 1.0 bounds=[(0.0,1.0)]*number_assets cdict=[{'type':'eq', 'fun':addem}] ans=minimize(neg_SR, start_weights, (sigma, mus), method='SLSQP', bounds=bounds, constraints=cdict, tol=0.00001) return ans['x'] def handcraft_equal(returns): """ dynamic handcrafting, equal weights only """ ## RETURNS Correlation matrix use_returns=equalise_vols(returns, default_vol=16.0) ## Sigma matrix = correlations sigma=use_returns.cov() sigma[sigma<0.0]=0.0 ungroupedreturns=dict([(x,returns[x]) for x in returns.columns]) tree_data=hc_sigma(sigma, ungroupedreturns) tree_data=grouping_tree(tree_data) weights=tree_to_weights(tree_data) return weights def hc_sigma(ungrouped_sigma, ungroupedreturns, groupdata=None): """ handcraft weights from sigma matrix Algo: - Find pair of assets with highest correlation - Form them into a new group with equal weights - The group becomes like a new asset - Once we only have two assets left, stop. Need to """ if len(ungroupedreturns)==1: return groupdata[1] if groupdata is None: ## first run ## groupdata stores grouping information ## To begin with each group just consists of one asset groupdata=[[],list(ungrouped_sigma.columns)] groupedreturns=dict() ## iteration while len(ungroupedreturns)>0: ## current_sigma consists of the correlation of things we currently have if len(ungroupedreturns)==1: idx_list=[0] else: idx_list=find_highest_corr(ungrouped_sigma) name_list=tuple([ungrouped_sigma.columns[idx] for idx in idx_list]) ## pair those things up (ungrouped_sigma, ungroupedreturns, groupedreturns, groupdata)=group_assets(ungrouped_sigma, ungroupedreturns, groupedreturns, groupdata, idx_list, name_list) new_returns=pd.concat(groupedreturns, axis=1) new_sigma=new_returns.corr() ## recursive return hc_sigma(new_sigma, groupedreturns, groupdata=[[],groupdata[0]]) def find_highest_corr(sigmat): new_sigmat=copy(sigmat.values) np.fill_diagonal(new_sigmat, -100.0) (i,j)=np.unravel_index(new_sigmat.argmax(), new_sigmat.shape) return (i,j) def group_assets(ungrouped_sigma, ungroupedreturns, groupedreturns, groupdata, idx_list, name_list): """ Group assets """ todelete=[] names=[] grouping=[] group_returns=[] weights=[1.0/len(idx_list)]*len(idx_list) ## could have more complex thing here... for (itemweight,idx, iname) in zip(weights,idx_list, name_list): gi=groupdata[1][idx] grouping.append(gi) gri=ungroupedreturns.pop(iname) group_returns.append(gri*itemweight) names.append(gri.name) ungrouped_sigma=ungrouped_sigma.drop(iname, axis=0) ungrouped_sigma=ungrouped_sigma.drop(iname, axis=1) todelete.append(idx) groupdata[0].append(grouping) gr_returns=pd.concat(group_returns, axis=1) gr_returns=gr_returns.sum(axis=1) gr_returns.name="[%s]" % "+".join(names) print "Pairing %s" % ", ".join(names) groupedreturns[gr_returns.name]=gr_returns groupdata[1]=[element for eindex, element in enumerate(groupdata[1]) if eindex not in todelete] return (ungrouped_sigma, ungroupedreturns, groupedreturns, groupdata) def grouping_tree(tree_data, sigma): """ Group branches of 2 into larger if possible """ pass def corrs_in_group(group, sigma): asset_list=sum(group, []) littlesigma=sigma.loc[asset_list, asset_list] def corr_from_leaf(leaf, sigma): return sigma[leaf[0]][leaf[1]] def tree_to_weights(tree_data): """ convert a tree into weights """ pass def markosolver(returns, equalisemeans=False, equalisevols=True, default_vol=0.2, default_SR=1.0): """ Returns the optimal portfolio for the dataframe returns If equalisemeans=True then assumes all assets have same return if False uses the asset means If equalisevols=True then normalises returns to have same standard deviation; the weights returned will be 'risk weightings' Note if usemeans=True and equalisevols=True effectively assumes all assets have same sharpe ratio """ if equalisevols: use_returns=equalise_vols(returns, default_vol) else: use_returns=returns ## Sigma matrix sigma=use_returns.cov().values ## Expected mean returns est_mus=[use_returns[asset_name].mean() for asset_name in use_returns.columns] missingvals=[np.isnan(x) for x in est_mus] if equalisemeans: ## Don't use the data - Set to the average Sharpe Ratio mus=[default_vol*default_SR]*returns.shape[1] else: mus=est_mus mus=np.array(mus, ndmin=2).transpose() ## Starting weights number_assets=use_returns.shape[1] start_weights=[1.0/number_assets]*number_assets ## Constraints - positive weights, adding to 1.0 bounds=[(0.0,1.0)]*number_assets cdict=[{'type':'eq', 'fun':addem}] ans=minimize(neg_SR, start_weights, (sigma, mus), method='SLSQP', bounds=bounds, constraints=cdict, tol=0.00001) wts=ans['x'] return wts def bootstrap_portfolio(returns_to_bs, monte_carlo=200, monte_length=250, equalisemeans=False, equalisevols=True, default_vol=0.2, default_SR=1.0): """ Given dataframe of returns; returns_to_bs, performs a bootstrap optimisation We run monte_carlo numbers of bootstraps Each one contains monte_length days drawn randomly, with replacement (so *not* block bootstrapping) The other arguments are passed to the optimisation function markosolver Note - doesn't deal gracefully with missing data. Will end up downweighting stuff depending on how much data is missing in each boostrap. You'll need to think about how to solve this problem. """ weightlist=[] for unused_index in range(monte_carlo): bs_idx=[int(random.uniform(0,1)*len(returns_to_bs)) for i in range(monte_length)] returns=returns_to_bs.iloc[bs_idx,:] weight=markosolver(returns, equalisemeans=equalisemeans, equalisevols=equalisevols, default_vol=default_vol, default_SR=default_SR) weightlist.append(weight) ### We can take an average here; only because our weights always add up to 1. If that isn't true ### then you will need to some kind of renormalisation theweights_mean=list(np.mean(weightlist, axis=0)) return theweights_mean def optimise_over_periods(data, date_method, fit_method, rollyears=20, equalisemeans=False, equalisevols=True, monte_carlo=100, monte_length=None, shrinkage_factors=(0.5, 0.5), weightdf=None): """ Do an optimisation Returns data frame of weights Note if fitting in sample weights will be somewhat boring Doesn't deal with eg missing data in certain subperiods """ if monte_length is None: monte_length=int(len(data.index)*.1) ## Get the periods fit_periods=generate_fitting_dates(data, date_method, rollyears=rollyears) ## Do the fitting ## Build up a list of weights, which we'll concat weight_list=[] for fit_tuple in fit_periods: ## Fit on the slice defined by first two parts of the tuple period_subset_data=data[fit_tuple[0]:fit_tuple[1]] ## Can be slow, if bootstrapping, so indicate where we are print "Fitting data for %s to %s" % (str(fit_tuple[2]), str(fit_tuple[3])) if fit_method=="one_period": weights=markosolver(period_subset_data, equalisemeans=equalisemeans, equalisevols=equalisevols) elif fit_method=="bootstrap": weights=bootstrap_portfolio(period_subset_data, equalisemeans=equalisemeans, equalisevols=equalisevols, monte_carlo=monte_carlo, monte_length=monte_length) elif fit_method=="shrinkage": weights=opt_shrinkage(period_subset_data, shrinkage_factors=shrinkage_factors, equalisevols=equalisevols) elif fit_method=="fixed": weights=[float(weightdf[weightdf.Country==ticker].Weight.values) for ticker in list(period_subset_data.columns)] else: raise Exception("Fitting method %s unknown" % fit_method) ## We adjust dates slightly to ensure no overlaps dindex=[fit_tuple[2]+datetime.timedelta(seconds=1), fit_tuple[3]-datetime.timedelta(seconds=1)] ## create a double row to delineate start and end of test period weight_row=pd.DataFrame([weights]*2, index=dindex, columns=data.columns) weight_list.append(weight_row) weight_df=pd.concat(weight_list, axis=0) return weight_df """ Now we need to do this with expanding or rolling window """ """ Generate the date tuples """ def generate_fitting_dates(data, date_method, rollyears=20): """ generate a list 4 tuples, one element for each year in the data each tuple contains [fit_start, fit_end, period_start, period_end] datetime objects the last period will be a 'stub' if we haven't got an exact number of years date_method can be one of 'in_sample', 'expanding', 'rolling' if 'rolling' then use rollyears variable """ start_date=data.index[0] end_date=data.index[-1] ## generate list of dates, one year apart, including the final date yearstarts=list(pd.date_range(start_date, end_date, freq="12M"))+[end_date] ## loop through each period periods=[] for tidx in range(len(yearstarts))[1:-1]: ## these are the dates we test in period_start=yearstarts[tidx] period_end=yearstarts[tidx+1] ## now generate the dates we use to fit if date_method=="in_sample": fit_start=start_date elif date_method=="expanding": fit_start=start_date elif date_method=="rolling": yearidx_to_use=max(0, tidx-rollyears) fit_start=yearstarts[yearidx_to_use] else: raise Exception("don't recognise date_method %s" % date_method) if date_method=="in_sample": fit_end=end_date elif date_method in ['rolling', 'expanding']: fit_end=period_start else: raise Exception("don't recognise date_method %s " % date_method) periods.append([fit_start, fit_end, period_start, period_end]) ## give the user back the list of periods return periods rawdata=read_ts_csv("/home/rob/workspace/systematictradingexamples/plots_for_perhaps/MSCI_data.csv") refdata=pd.read_csv("/home/rob/workspace/systematictradingexamples/plots_for_perhaps/MSCI_ref.csv") tickers=list(refdata[(refdata.EmorDEV=="DEV") & (refdata.Type=="Country")].Country.values) #mom 12bp #tickers=list(refdata[refdata.Type=="Country"].Country.values) #mom 12bp fix_hcweights=pd.read_csv("/home/rob/workspace/systematictradingexamples/plots_for_perhaps/devhcweights.csv") fix_capweights=pd.read_csv("/home/rob/workspace/systematictradingexamples/plots_for_perhaps/devcapweights.csv") fix_eqweights=pd.DataFrame(dict(Country=tickers, Weight=[1.0/len(tickers)]*len(tickers))) data=calc_asset_returns(rawdata, tickers) ### IDEA: to boostrap the results ### Repeatedly draw from 'data' to make new pseudo series oneperiodweights=optimise_over_periods(data, "expanding", "one_period", equalisemeans=False, equalisevols=True) #bootstrapweights=optimise_over_periods(data, "expanding", "bootstrap", equalisemeans=True, equalisevols=True) exposthcweights=optimise_over_periods(data, "expanding", "fixed", weightdf=fix_hcweights, equalisemeans=True, equalisevols=True) equalweights=optimise_over_periods(data, "expanding", "fixed", weightdf=fix_eqweights, equalisemeans=True, equalisevols=True) marketcapweights=optimise_over_periods(data, "expanding", "fixed", weightdf=fix_capweights, equalisemeans=True, equalisevols=True) index_returns=(1.0+data).cumprod().ffill() last_return=index_returns.irow(-1).values last_return=pd.DataFrame(np.array([last_return]*len(data)), data.index) last_return.columns=data.columns index_returns = index_returns / last_return marketcapweights = marketcapweights.reindex(index_returns.index, method="ffill") marketcapweights=marketcapweights*index_returns marketcapweights=marketcapweights.ffill() ## portfolio, take out missing weights p1=portfolio_return(data, oneperiodweights)[pd.datetime(1994,1,1):] #p2=portfolio_return(data, bootstrapweights) p3=portfolio_return(data, exposthcweights)[pd.datetime(1994,1,1):] p4=portfolio_return(data, equalweights)[pd.datetime(1994,1,1):] p5=portfolio_return(data, marketcapweights)[pd.datetime(1994,1,1):] drag1=p3 - p1 drag2=p4 - p5 def stats(x): ann_mean=x.mean()*12 ann_std = x.std()*(12**.5) geo_mean = ann_mean - (ann_std**2)/2.0 sharpe = geo_mean / ann_std return (ann_mean, ann_std, geo_mean, sharpe) print stats(p1) print stats(p3) print stats(p4) print stats(p5) toplot=pd.concat([p1, p3, p4, p5], axis=1) toplot.columns=["Optimised", "Handcraft", "Equal", "Market Cap"] toplot.cumsum().plot() show() p1.cumsum().plot(color="black", ls="solid") p3.cumsum().plot(color="gray", ls="solid") p4.cumsum().plot(color="black", ls="dashed") p5.cumsum().plot(color="gray", ls="dashed") legend( ["Optimised", "Handcraft", "Equal", "Market Cap"], loc="upper left") frame=plt.gca() #frame.get_yaxis().set_visible(False) rcParams.update({'font.size': 18}) file_process("compareoptmethods") show() drag1.cumsum().plot(color="gray", ls="solid") legend( [ "Handcraft vs MktCap"], loc="upper left") frame=plt.gca() #frame.get_yaxis().set_visible(False) rcParams.update({'font.size': 18}) file_process("compareoptmethodstracking") show()
gpl-2.0
4,701,163,412,939,915,000
30.408964
147
0.66463
false
anchore/anchore-engine
tests/integration/subsys/auth/stores/test_basic_store.py
1
5494
import json import unittest from anchore_engine.db import session_scope from anchore_engine.subsys import identities from anchore_engine.subsys.identities import AccountTypes, UserAccessCredentialTypes from anchore_engine.subsys.auth.stores import basic as basic_accountstore from yosai.core import UsernamePasswordToken, DefaultPermission from passlib.context import CryptContext class TestBasicStore(unittest.TestCase): """ Tests for the auth subsys Identities etc. """ @classmethod def setup_engine_config(cls, db_connect_str): """ Sets the config for the service to bootstrap a specific db. :param db_connect_str: :return: """ from anchore_engine.configuration import localconfig localconfig.load_defaults() localconfig.localconfig["credentials"] = { "database": {"db_connect": db_connect_str} } return localconfig.localconfig @classmethod def init_db(cls, connect_str="sqlite:///:memory:", do_bootstrap=True): """ Policy-Engine specific db initialization and setup for testing. :param connect_str: connection string, defaults to sqllite in-memory if none provided :return: """ conf = cls.setup_engine_config(connect_str) from anchore_engine.db import ( initialize, Account, AccountUser, AccessCredential, Anchore, ) from anchore_engine.db.entities.common import do_create from anchore_engine.version import version, db_version initialize( versions={"service_version": version, "db_version": db_version}, localconfig=conf, ) do_create( specific_tables=[ Account.__table__, AccountUser.__table__, AccessCredential.__table__, Anchore.__table__, ] ) @classmethod def setUpClass(cls): cls.init_db() # # def tearDown(self): # for accnt in identities.list_accounts(): # print('Deleting accnt: {}'.format(accnt)) # identities.delete_account(accnt['name']) def test_account_store(self): cc = CryptContext(schemes=["argon2"]) with session_scope() as session: mgr = identities.manager_factory.for_session(session) accnt = mgr.create_account( account_name="accountAbc", account_type=AccountTypes.user, email="someemail", ) user1 = mgr.create_user( account_name=accnt["name"], username="testuser1", password="password123" ) print("user 1: {}".format(user1)) user2 = mgr.create_user( account_name=accnt["name"], username="testuser2", password="password123" ) print("user 2: {}".format(user2)) accnt2 = mgr.create_account( account_name="admin1", account_type=AccountTypes.admin, email="someemail", ) user3 = mgr.create_user( account_name=accnt2["name"], username="admin1", password="password123" ) print("user 3: {}".format(user3)) store = basic_accountstore.DbAccountStore() # Authc stuff token = UsernamePasswordToken( username="testuser1", password=user1["credentials"][UserAccessCredentialTypes.password]["value"], ) print(token.credentials) resp = store.get_authc_info(token.identifier) print(resp) self.assertTrue( token.credentials == bytes(resp["authc_info"]["password"]["credential"], "utf8") ) # Authz stuff authz_resp = store.get_authz_permissions(token.identifier) print(authz_resp) # Standard user self.assertTrue( DefaultPermission( parts=json.loads(authz_resp[user1["account_name"]])[0] ).implies( DefaultPermission( parts={ "domain": user1["account_name"], "action": "*", "target": "*", } ) ) ) self.assertIsNone(authz_resp.get("*")) self.assertTrue( DefaultPermission( parts=json.loads(authz_resp[user1["account_name"]])[0] ).implies( DefaultPermission( parts={ "domain": user1["account_name"], "action": "listImages", "target": "*", } ) ) ) admin_token = UsernamePasswordToken( username="admin1", password=user3["credentials"][UserAccessCredentialTypes.password]["value"], ) # Authz stuff authz_resp = store.get_authz_permissions(admin_token.identifier) print(authz_resp) # Admin user self.assertIsNotNone(authz_resp.get("*")) self.assertIsNone(authz_resp.get(user3["account_name"])) self.assertTrue( DefaultPermission(parts=json.loads(authz_resp["*"])[0]).implies( DefaultPermission(parts={"domain": "*", "action": "*", "target": "*"}) ) )
apache-2.0
-7,519,868,430,979,338,000
31.508876
93
0.542956
false
bqbn/addons-server
src/olympia/users/tests/test_user_utils.py
1
1451
# -*- coding: utf-8 -*- import pytest from olympia.amo.tests import user_factory from olympia.users.utils import ( UnsubscribeCode, system_addon_submission_allowed) def test_email_unsubscribe_code_parse(): email = u'nobody@mozîlla.org' token, hash_ = UnsubscribeCode.create(email) r_email = UnsubscribeCode.parse(token, hash_) assert email == r_email # A bad token or hash raises ValueError with pytest.raises(ValueError): UnsubscribeCode.parse(token, hash_[:-5]) with pytest.raises(ValueError): UnsubscribeCode.parse(token[5:], hash_) system_guids = pytest.mark.parametrize('guid', [ 'foø@mozilla.org', '[email protected]', '[email protected]', 'blâ[email protected]', 'foø@Mozilla.Org', '[email protected]', '[email protected]', '[email protected]', 'blâ[email protected]', '[email protected]', '[email protected]', '[email protected]' ]) @system_guids @pytest.mark.django_db def test_system_addon_submission_allowed_mozilla_allowed(guid): user = user_factory(email='[email protected]') data = {'guid': guid} assert system_addon_submission_allowed(user, data) @system_guids @pytest.mark.django_db def test_system_addon_submission_allowed_not_mozilla_not_allowed(guid): user = user_factory(email='[email protected]') data = {'guid': guid} assert not system_addon_submission_allowed(user, data)
bsd-3-clause
2,683,786,618,169,446,000
31.133333
76
0.707469
false
maxive/erp
addons/google_drive/models/google_drive.py
9
11240
# -*- coding: utf-8 -*- # Part of Odoo. See LICENSE file for full copyright and licensing details. import logging import json import re import requests import werkzeug.urls from odoo import api, fields, models from odoo.exceptions import RedirectWarning, UserError from odoo.tools import pycompat from odoo.tools.safe_eval import safe_eval from odoo.tools.translate import _ from odoo.addons.google_account.models.google_service import GOOGLE_TOKEN_ENDPOINT, TIMEOUT _logger = logging.getLogger(__name__) class GoogleDrive(models.Model): _name = 'google.drive.config' _description = "Google Drive templates config" @api.multi def get_google_drive_url(self, res_id, template_id): self.ensure_one() self = self.sudo() model = self.model_id filter_name = self.filter_id.name if self.filter_id else False record = self.env[model.model].browse(res_id).read()[0] record.update({ 'model': model.name, 'filter': filter_name }) name_gdocs = self.name_template try: name_gdocs = name_gdocs % record except: raise UserError(_("At least one key cannot be found in your Google Drive name pattern")) attachments = self.env["ir.attachment"].search([('res_model', '=', model.model), ('name', '=', name_gdocs), ('res_id', '=', res_id)]) url = False if attachments: url = attachments[0].url else: url = self.copy_doc(res_id, template_id, name_gdocs, model.model).get('url') return url @api.model def get_access_token(self, scope=None): Config = self.env['ir.config_parameter'].sudo() google_drive_refresh_token = Config.get_param('google_drive_refresh_token') user_is_admin = self.env['res.users'].browse(self.env.user.id)._is_admin() if not google_drive_refresh_token: if user_is_admin: dummy, action_id = self.env['ir.model.data'].get_object_reference('base_setup', 'action_general_configuration') msg = _("You haven't configured 'Authorization Code' generated from google, Please generate and configure it .") raise RedirectWarning(msg, action_id, _('Go to the configuration panel')) else: raise UserError(_("Google Drive is not yet configured. Please contact your administrator.")) google_drive_client_id = Config.get_param('google_drive_client_id') google_drive_client_secret = Config.get_param('google_drive_client_secret') #For Getting New Access Token With help of old Refresh Token data = { 'client_id': google_drive_client_id, 'refresh_token': google_drive_refresh_token, 'client_secret': google_drive_client_secret, 'grant_type': "refresh_token", 'scope': scope or 'https://www.googleapis.com/auth/drive' } headers = {"Content-type": "application/x-www-form-urlencoded"} try: req = requests.post(GOOGLE_TOKEN_ENDPOINT, data=data, headers=headers, timeout=TIMEOUT) req.raise_for_status() except requests.HTTPError: if user_is_admin: dummy, action_id = self.env['ir.model.data'].get_object_reference('base_setup', 'action_general_configuration') msg = _("Something went wrong during the token generation. Please request again an authorization code .") raise RedirectWarning(msg, action_id, _('Go to the configuration panel')) else: raise UserError(_("Google Drive is not yet configured. Please contact your administrator.")) return req.json().get('access_token') @api.model def copy_doc(self, res_id, template_id, name_gdocs, res_model): google_web_base_url = self.env['ir.config_parameter'].sudo().get_param('web.base.url') access_token = self.get_access_token() # Copy template in to drive with help of new access token request_url = "https://www.googleapis.com/drive/v2/files/%s?fields=parents/id&access_token=%s" % (template_id, access_token) headers = {"Content-type": "application/x-www-form-urlencoded"} try: req = requests.get(request_url, headers=headers, timeout=TIMEOUT) req.raise_for_status() parents_dict = req.json() except requests.HTTPError: raise UserError(_("The Google Template cannot be found. Maybe it has been deleted.")) record_url = "Click on link to open Record in Odoo\n %s/?db=%s#id=%s&model=%s" % (google_web_base_url, self._cr.dbname, res_id, res_model) data = { "title": name_gdocs, "description": record_url, "parents": parents_dict['parents'] } request_url = "https://www.googleapis.com/drive/v2/files/%s/copy?access_token=%s" % (template_id, access_token) headers = { 'Content-type': 'application/json', 'Accept': 'text/plain' } # resp, content = Http().request(request_url, "POST", data_json, headers) req = requests.post(request_url, data=json.dumps(data), headers=headers, timeout=TIMEOUT) req.raise_for_status() content = req.json() res = {} if content.get('alternateLink'): res['id'] = self.env["ir.attachment"].create({ 'res_model': res_model, 'name': name_gdocs, 'res_id': res_id, 'type': 'url', 'url': content['alternateLink'] }).id # Commit in order to attach the document to the current object instance, even if the permissions has not been written. self._cr.commit() res['url'] = content['alternateLink'] key = self._get_key_from_url(res['url']) request_url = "https://www.googleapis.com/drive/v2/files/%s/permissions?emailMessage=This+is+a+drive+file+created+by+Odoo&sendNotificationEmails=false&access_token=%s" % (key, access_token) data = {'role': 'writer', 'type': 'anyone', 'value': '', 'withLink': True} try: req = requests.post(request_url, data=json.dumps(data), headers=headers, timeout=TIMEOUT) req.raise_for_status() except requests.HTTPError: raise self.env['res.config.settings'].get_config_warning(_("The permission 'reader' for 'anyone with the link' has not been written on the document")) if self.env.user.email: data = {'role': 'writer', 'type': 'user', 'value': self.env.user.email} try: requests.post(request_url, data=json.dumps(data), headers=headers, timeout=TIMEOUT) except requests.HTTPError: pass return res @api.model def get_google_drive_config(self, res_model, res_id): ''' Function called by the js, when no google doc are yet associated with a record, with the aim to create one. It will first seek for a google.docs.config associated with the model `res_model` to find out what's the template of google doc to copy (this is usefull if you want to start with a non-empty document, a type or a name different than the default values). If no config is associated with the `res_model`, then a blank text document with a default name is created. :param res_model: the object for which the google doc is created :param ids: the list of ids of the objects for which the google doc is created. This list is supposed to have a length of 1 element only (batch processing is not supported in the code, though nothing really prevent it) :return: the config id and config name ''' # TO DO in master: fix my signature and my model if isinstance(res_model, pycompat.string_types): res_model = self.env['ir.model'].search([('model', '=', res_model)]).id if not res_id: raise UserError(_("Creating google drive may only be done by one at a time.")) # check if a model is configured with a template configs = self.search([('model_id', '=', res_model)]) config_values = [] for config in configs.sudo(): if config.filter_id: if config.filter_id.user_id and config.filter_id.user_id.id != self.env.user.id: #Private continue domain = [('id', 'in', [res_id])] + safe_eval(config.filter_id.domain) additionnal_context = safe_eval(config.filter_id.context) google_doc_configs = self.env[config.filter_id.model_id].with_context(**additionnal_context).search(domain) if google_doc_configs: config_values.append({'id': config.id, 'name': config.name}) else: config_values.append({'id': config.id, 'name': config.name}) return config_values name = fields.Char('Template Name', required=True) model_id = fields.Many2one('ir.model', 'Model', ondelete='set null', required=True) model = fields.Char('Related Model', related='model_id.model', readonly=True) filter_id = fields.Many2one('ir.filters', 'Filter', domain="[('model_id', '=', model)]") google_drive_template_url = fields.Char('Template URL', required=True) google_drive_resource_id = fields.Char('Resource Id', compute='_compute_ressource_id') google_drive_client_id = fields.Char('Google Client', compute='_compute_client_id') name_template = fields.Char('Google Drive Name Pattern', default='Document %(name)s', help='Choose how the new google drive will be named, on google side. Eg. gdoc_%(field_name)s', required=True) active = fields.Boolean('Active', default=True) def _get_key_from_url(self, url): word = re.search("(key=|/d/)([A-Za-z0-9-_]+)", url) if word: return word.group(2) return None @api.multi def _compute_ressource_id(self): result = {} for record in self: word = self._get_key_from_url(record.google_drive_template_url) if word: record.google_drive_resource_id = word else: raise UserError(_("Please enter a valid Google Document URL.")) return result @api.multi def _compute_client_id(self): google_drive_client_id = self.env['ir.config_parameter'].sudo().get_param('google_drive_client_id') for record in self: record.google_drive_client_id = google_drive_client_id @api.onchange('model_id') def _onchange_model_id(self): if self.model_id: self.model = self.model_id.model else: self.filter_id = False self.model = False @api.constrains('model_id', 'filter_id') def _check_model_id(self): if self.filter_id and self.model_id.model != self.filter_id.model_id: return False return True def get_google_scope(self): return 'https://www.googleapis.com/auth/drive https://www.googleapis.com/auth/drive.file'
agpl-3.0
3,801,002,757,147,754,000
48.515419
201
0.611833
false
vst/normalazy
normalazy.py
1
27657
import copy import datetime from collections import OrderedDict from decimal import Decimal from functools import wraps from six import add_metaclass #: Defines the version of the `normalazy` library. __version__ = "0.0.3" def iffnotnull(func): """ Wraps a function, returns None if the first argument is None, invokes the method otherwise. :param func: The function to be wrapped. :return: None or the result of the function. >>> test1 = iffnotnull(lambda x: x) >>> test1(None) >>> test1(1) 1 """ @wraps(func) def wrapper(value, *args, **kwargs): return None if value is None else func(value, *args, **kwargs) return wrapper def iffnotblank(func): """ Wraps a function, returns None if the first argument is empty, invokes the method otherwise. :param func: The function to be wrapped. :return: Empty string or the result of the function. >>> test1 = iffnotblank(lambda x: x) >>> test1("") '' >>> test1(1) 1 """ @wraps(func) def wrapper(value, *args, **kwargs): return value if value == "" else func(value, *args, **kwargs) return wrapper def identity(x): """ Defines an identity function. :param x: value :return: value >>> identity(None) >>> identity(1) 1 """ return x @iffnotnull def as_string(x): """ Converts the value to a trimmed string. :param x: Value. :return: Trimmed string value. >>> as_string(None) >>> as_string("") '' >>> as_string("a") 'a' >>> as_string(" a ") 'a' """ return str(x).strip() @iffnotnull def as_factor(x): """ Converts the value to a factor string. :param x: Value. :return: Trimmed, up-cased string value. >>> as_factor(None) >>> as_factor("") '' >>> as_factor("a") 'A' >>> as_factor(" a ") 'A' """ return as_string(x).upper() @iffnotnull @iffnotblank def as_number(x): """ Converts the value to a decimal value. :param x: The value to be converted to a decimal value. :return: A Decimal instance. >>> as_number(None) >>> as_number(1) Decimal('1') >>> as_number("1") Decimal('1') >>> as_number(" 1 ") Decimal('1') """ return Decimal(as_string(x)) def as_boolean(x, predicate=None): """ Converts the value to a boolean value. :param x: The value to be converted to a boolean value. :param predicate: The predicate function if required. :return: Boolean >>> as_boolean(None) False >>> as_boolean("") False >>> as_boolean(" ") True >>> as_boolean(1) True >>> as_boolean(0) False >>> as_boolean("1") True >>> as_boolean("0") True >>> as_boolean("1", predicate=lambda x: int(x) != 0) True >>> as_boolean("0", predicate=lambda x: int(x) != 0) False >>> as_boolean("1", predicate=int) True >>> as_boolean("0", predicate=int) False >>> as_boolean("1", int) True >>> as_boolean("0", int) False """ return bool(x if predicate is None else predicate(x)) @iffnotnull @iffnotblank def as_datetime(x, fmt=None): """ Converts the value to a datetime value. :param x: The value to be converted to a datetime value. :param fmt: The format of the date/time string. :return: A datetime.date instance. >>> as_datetime(None) >>> as_datetime("") '' >>> as_datetime("2015-01-01 00:00:00") datetime.datetime(2015, 1, 1, 0, 0) >>> as_datetime("2015-01-01T00:00:00", "%Y-%m-%dT%H:%M:%S") datetime.datetime(2015, 1, 1, 0, 0) >>> as_datetime("2015-01-01T00:00:00", fmt="%Y-%m-%dT%H:%M:%S") datetime.datetime(2015, 1, 1, 0, 0) """ return datetime.datetime.strptime(x, fmt or "%Y-%m-%d %H:%M:%S") @iffnotnull @iffnotblank def as_date(x, fmt=None): """ Converts the value to a date value. :param x: The value to be converted to a date value. :param fmt: The format of the date string. :return: A datetime.date instance. >>> as_date(None) >>> as_date('') '' >>> as_date("2015-01-01") datetime.date(2015, 1, 1) >>> as_date("Date: 2015-01-01", "Date: %Y-%m-%d") datetime.date(2015, 1, 1) >>> as_date("Date: 2015-01-01", fmt="Date: %Y-%m-%d") datetime.date(2015, 1, 1) """ return datetime.datetime.strptime(x, fmt or "%Y-%m-%d").date() class Value: """ Defines an immutable *[sic.]* boxed value with message, status and extra data as payload if required. >>> value = Value(value=42, message=None, status=Value.Status.Success, extras="41 + 1") >>> value.value 42 >>> value.message >>> value.status == Value.Status.Success True >>> value.extras '41 + 1' >>> value = Value.success(42, date="2015-01-01") >>> value.value 42 >>> value.status == Value.Status.Success True >>> value.date '2015-01-01' >>> value = Value.warning(value="fortytwo", message="Failed to convert to integer.", date="2015-01-01") >>> value.value 'fortytwo' >>> value.status == Value.Status.Warning True >>> value.date '2015-01-01' >>> value.message 'Failed to convert to integer.' >>> value = Value.error(message="Failed to compute the value.", date="2015-01-01") >>> value.value >>> value.status == Value.Status.Error True >>> value.date '2015-01-01' >>> value.message 'Failed to compute the value.' """ class Status: """ Defines an enumeration for value status. """ #: Indicates that value is mapped successfully. Success = 1 #: Indicates that value is mapped successfully with warnings. Warning = 2 #: Indicates that value could not be mapped successfully. Error = 3 def __init__(self, value=None, message=None, status=None, **kwargs): """ Constructs an immutable Value class instance. Note that the classmethods `success`, `warning` and `error` should be preferred over this constructor. :param value: The atomic value. :param message: Any messages if required. :param status: The value status. :param kwargs: Extra payload for the value. """ self.__value = value self.__status = status or self.Status.Success self.__message = message self.__payload = kwargs @property def value(self): return self.__value @property def status(self): return self.__status @property def message(self): return self.__message @property def payload(self): return self.__payload def __getattr__(self, item): """ Provides access to payload through attributes. :param item: The name of the attribute. :return: The value for the attribute if the attribute name is in payload. """ ## Check if the item is in the payload: if item in self.payload: ## Yes, return it. return self.payload.get(item) ## Nope, escalate: return super(Value, self).__getattr__(item) @classmethod def success(cls, value=None, message=None, **kwargs): """ Provides a convenience constructor for successful Value instances. :param value: The value of the Value instance to be constructed. :param message: The message, if any. :param kwargs: Extra payload for the value. :return: A successful Value instance. """ return cls(value=value, message=message, status=cls.Status.Success, **kwargs) @classmethod def warning(cls, value=None, message=None, **kwargs): """ Provides a convenience constructor for Values instances with warnings. :param value: The value of the Value instance to be constructed. :param message: The message, if any. :param kwargs: Extra payload for the value. :return: A Value instance with warnings. """ return cls(value=value, message=message, status=cls.Status.Warning, **kwargs) @classmethod def error(cls, value=None, message=None, **kwargs): """ Provides a convenience constructor for Values instances with errors. :param value: The value of the Value instance to be constructed. :param message: The message, if any. :param kwargs: Extra payload for the value. :return: A Value instance with errors. """ return cls(value=value, message=message, status=cls.Status.Error, **kwargs) class Field(object): """ Provides a concrete mapper field. >>> field = Field() >>> field.map(None, dict()).value >>> field.map(None, dict()).status == Value.Status.Success True >>> field = Field(null=False) >>> field.map(None, dict()).value >>> field.map(None, dict()).status == Value.Status.Error True >>> field = Field(func=lambda i, r: r.get("a", None)) >>> field.map(None, dict(a="")).value '' >>> field.map(None, dict(a="")).status == Value.Status.Success True >>> field = Field(func=lambda i, r: r.get("a", None), blank=False) >>> field.map(None, dict(a="")).value '' >>> field.map(None, dict(a="")).status == Value.Status.Error True >>> field = Field(func=lambda i, r: r.get("a", None)) >>> field.map(None, dict()).value >>> field.map(None, dict(a=1)).value 1 >>> field.map(None, dict(a=1)).status == Value.Status.Success True """ def __init__(self, name=None, func=None, blank=True, null=True): """ Constructs a mapper field with the given argument. :param name: The name of the field. :param func: The function which is to be used to map the value. :param blank: Boolean indicating if blank values are allowed. :param null: Boolean indicating if null values are allowed. """ self.__name = name self.__func = func self.__blank = blank self.__null = null @property def name(self): """ Returns the name of the field. :return: The name of the field. """ return self.__name @property def func(self): """ Returns the mapping function of the field. :return: The mapping function of the field. """ return self.__func @property def blank(self): """ Indicates if the value is allowed to be blank. :return: Boolean indicating if the value is allowed to be blank. """ return self.__blank @property def null(self): """ Indicates if the value is allowed to be null. :return: Boolean indicating if the value is allowed to be null. """ return self.__null def rename(self, name): """ Renames the field. :param name: The new name of the field. """ self.__name = name def treat_value(self, value): """ Treats the value and return. :param value: The value to be treated. :return: A Value instance. """ ## By now we have a value. If it is an instance of Value ## class, return it as is: if isinstance(value, Value): return value ## If the value is string and empty, but is not allowed to be so, return ## with error: if not self.blank and isinstance(value, str) and value == "": return Value.error(value="", message="Value is not allowed to be blank.") ## If the value is None but is not allowed to be so, return ## with error: if not self.null and value is None: return Value.error(message="Value is not allowed to be None.") ## OK, we have a value to be boxed and returned successfully: return Value.success(value=value) def map(self, instance, record): """ Returns the value of for field as a Value instance. :param instance: The instance for which the value will be retrieved. :param record: The raw record. :return: A Value instance. """ ## Check if we have a function: if self.func is None: ## OK, value shall be None: value = None ## Check if the function is a callable or the name of an attribute of the instance: elif hasattr(self.func, "__call__"): ## The function is a callable. Call it directly on the ## instance and the record and get the raw value: value = self.func(instance, record) else: ## The function is not a callable. We assume that it is ## the name of a method of the instance. Apply the ## instance method on the record and get the raw value: value = getattr(instance, self.func)(record) ## Treat the value and return: return self.treat_value(value) class KeyField(Field): """ Provides a mapper field for a given key which belongs to the record. The record can be an object which has `__getitem__` method or a simple object just with attribute access. The method starts reading the source value using the key provided checking `__getitem__` method (for iterables such as `dict` or `list`), then checks the attribute for simple object attribute access. >>> field = KeyField(key="a") >>> field.map(None, dict(a="")).value '' >>> field.map(None, dict(a="")).status == Value.Status.Success True >>> field = KeyField(key="a", blank=False) >>> field.map(None, dict(a="")).value '' >>> field.map(None, dict(a="")).status == Value.Status.Error True >>> field = KeyField(key="a", func=lambda i, r, v: as_number(v)) >>> field.map(None, dict(a="12")).value Decimal('12') >>> field.map(None, dict(a="12")).status == Value.Status.Success True >>> field = KeyField(key="a", cast=as_number) >>> field.map(None, dict(a="12")).value Decimal('12') >>> field.map(None, dict(a="12")).status == Value.Status.Success True >>> class Student: ... def __init__(self, name): ... self.name = name >>> field = KeyField(key="name") >>> field.map(None, Student("Sinan")).value 'Sinan' """ def __init__(self, key=None, cast=None, **kwargs): """ Constructs a mapper field with the given argument. :param key: The key of the property of the record to be mapped. :param cast: The function to be applied to the value. :param **kwargs: Keyword arguments to `Field`. """ super(KeyField, self).__init__(**kwargs) self.__key = key self.__cast = cast @property def key(self): """ Returns the key of for the field mapping. """ return self.__key def rename(self, name): """ Renames the field. :param name: The new name of the field. """ ## Call the super: super(KeyField, self).rename(name) ## If the key is None, set it with joy: if self.__key is None: self.__key = name def map(self, instance, record): """ Returns the value of for field as a Value instance. :param instance: The instance for which the value will be retrieved. :param record: The raw record. :return: A Value instance. """ ## Does the record have __getitem__ method (Indexable) and key exist? if hasattr(record, "__getitem__") and self.key in record: ## Yes, get the value: value = record.get(self.key) ## Nope, let's check if the record has such an attribute: elif hasattr(record, self.key): ## Yes, get the value using attribute access: value = getattr(record, self.key) ## We can't access such a value in the record. else: ## OK, Value shall be None: value = None ## Do we have a function: if self.func is None: ## Nope, skip: pass ## Check if the function is a callable or the name of an attribute of the instance: elif hasattr(self.func, "__call__"): ## The function is a callable. Call it directly on the ## instance, the record and the raw value: value = self.func(instance, record, value) else: ## The function is not a callable. We assume that it is ## the name of a method on the instance. Apply the ## instance method on the record and the raw value: value = getattr(instance, self.func)(record, value) ## OK, now we will cast if required: if self.__cast is not None: ## Is it a Value instance? if isinstance(value, Value): value = Value(value=self.__cast(value.value), status=value.status, message=value.message) else: value = self.__cast(value) ## Done, treat the value and return: return self.treat_value(value) class ChoiceKeyField(KeyField): """ Defines a choice mapper for the index of the record provided. >>> field = ChoiceKeyField(key="a", choices=dict(a=1, b=2)) >>> field.map(None, dict(a="a")).value 1 >>> field = ChoiceKeyField(key="a", choices=dict(a=1, b=2), func=lambda i, r, v: Decimal(str(v))) >>> field.map(None, dict(a="a")).value Decimal('1') """ def __init__(self, *args, **kwargs): ## Choices? choices = kwargs.pop("choices", {}) ## Get the function: functmp = kwargs.pop("func", None) ## Compute the func if functmp is not None: func = lambda i, r, v: functmp(i, r, choices.get(v, None)) else: func = lambda i, r, v: choices.get(v, None) ## Add the func back: kwargs["func"] = func ## OK, proceed as usual: super(ChoiceKeyField, self).__init__(*args, **kwargs) class RecordMetaclass(type): """ Provides a record metaclass. """ def __new__(mcs, name, bases, attrs, **kwargs): ## Pop all fields: fields = dict([(key, attrs.pop(key)) for key in list(attrs.keys()) if isinstance(attrs.get(key), Field)]) ## Check fields and make sure that names are added: for name, field in fields.items(): if field.name is None: field.rename(name) ## Get the record class as usual: record_cls = super(RecordMetaclass, mcs).__new__(mcs, name, bases, attrs, **kwargs) ## Attach fields to the class: record_cls._fields = {} ## Now, process the fields: record_cls._fields.update(fields) ## Done, return the record class: return record_cls @add_metaclass(RecordMetaclass) class Record(object): """ Provides a record normalizer base class. >>> class Test1Record(Record): ... a = KeyField() >>> record1 = Test1Record(dict(a=1)) >>> record1.a 1 >>> class Test2Record(Record): ... a = KeyField() ... b = ChoiceKeyField(choices={1: "Bir", 2: "Iki"}) >>> record2 = Test2Record(dict(a=1, b=2)) >>> record2.a 1 >>> record2.b 'Iki' We can get the dictionary representation of records: >>> record1.as_dict() OrderedDict([('a', 1)]) >>> record2.as_dict() OrderedDict([('a', 1), ('b', 'Iki')]) Or detailed: >>> record1.as_dict(detailed=True) OrderedDict([('a', OrderedDict([('value', '1'), ('status', 1), ('message', None)]))]) >>> record2.as_dict(detailed=True) OrderedDict([('a', OrderedDict([('value', '1'), ('status', 1), ('message', None)])), \ ('b', OrderedDict([('value', 'Iki'), ('status', 1), ('message', None)]))]) We can also create a new record from an existing record or dictionary: >>> class Test3Record(Record): ... a = KeyField() ... b = KeyField() >>> record3 = Test3Record.new(record2) >>> record3.a 1 >>> record3.b 'Iki' >>> record3.a == record2.a True >>> record3.b == record2.b True With dictionary: >>> record4 = Test3Record.new({"a": 1, "b": "Iki"}) >>> record4.a 1 >>> record4.b 'Iki' >>> record4.a == record2.a True >>> record4.b == record2.b True Or even override some fields: >>> record5 = Test3Record.new(record3, b="Bir") >>> record5.a 1 >>> record5.b 'Bir' """ ## TODO: [Improvement] Rename _fields -> __fields, _values -> __value def __init__(self, record): ## Save the record slot: self.__record = record ## Declare the values map: self._values = {} def __getattr__(self, item): """ Returns the value of the attribute named `item`, particularly from within the fields set or pre-calculated field values set. :param item: The name of the attribute, in particular the field name. :return: The value (value attribute of the Value). """ return self.getval(item).value def hasval(self, name): """ Indicates if we have a value slot called ``name``. :param name: The name of the value slot. :return: ``True`` if we have a value slot called ``name``, ``False`` otherwise. """ return name in self._fields def getval(self, name): """ Returns the value slot identified by the ``name``. :param name: The name of the value slot. :return: The value slot, ie. the boxed value instance of class :class:`Value`. """ ## Did we compute this before? if name in self._values: ## Yes, return the value slot: return self._values.get(name) ## Do we have such a value slot? if not self.hasval(name): raise AttributeError("Record does not have value slot named '{}'".format(name)) ## Apparently, we have never computed the value. Let's compute the value slot and return: return self.setval(name, self._fields.get(name).map(self, self.__record)) def setval(self, name, value, status=None, message=None, **kwargs): """ Sets a value to the value slot. :param name: The name of the value slot. :param value: The value to be set (Either a Python value or a :class:`Value` instance.) :param status: The status of the value slot if any. :param message: The message of the value slot if any. :param kwargs: Additional named values as payload to value. :return: The :class:`Value` instance set. """ ## Do we have such a value slot? if not self.hasval(name): raise AttributeError("Record does not have value slot named '{}'".format(name)) ## Create a value instance: if isinstance(value, Value): ## Get a copy of payload if any: payload = copy.deepcopy(value.payload) ## Update the payload with kwargs: payload.update(kwargs.copy()) ## Create the new value: value = Value(value=value.value, status=status or value.status, message=message or value.message, **payload) else: value = Value(value=value, status=status or Value.Status.Success, message=message, **kwargs) ## Save the slot: self._values[name] = value ## Done, return the value set: return value def delval(self, name): """ Deletes a stored value. :param name: The name of the value. """ if name in self._values: del self._values[name] def allvals(self): """ Returns all the value slots. :return: A dictionary of all computed value slots. """ return {field: self.getval(field) for field in self._fields} def val_none(self, name): """ Indicates if the value is None. :param name: The name of the value slot. :return: Boolean indicating if the value is None. """ return self.getval(name).value is None def val_blank(self, name): """ Indicates if the value is blank. :param name: The name of the value slot. :return: Boolean indicating if the value is blank. """ return self.getval(name).value == "" def val_some(self, name): """ Indicates if the value is something other than None or blank. :param name: The name of the value slot. :return: Boolean indicating if the value is something other than None or blank. """ return not self.val_none(name) and not self.val_blank(name) def val_success(self, name): """ Indicates if the value is success. :param name: The name of the value slot. :return: Boolean indicating if the value is success. """ return self.getval(name).status == Value.Status.Success def val_warning(self, name): """ Indicates if the value is warning. :param name: The name of the value slot. :return: Boolean indicating if the value is warning. """ return self.getval(name).status == Value.Status.Warning def val_error(self, name): """ Indicates if the value is error. :param name: The name of the value slot. :return: Boolean indicating if the value is error. """ return self.getval(name).status == Value.Status.Error def as_dict(self, detailed=False): """ Provides a JSON representation of the record instance. :param detailed: Indicates if we need detailed result, ie. with status and message for each field. :return: A JSON representation of the record instance. """ ## We have the fields and values saved in the `_fields` and `_values` attributes respectively. We will ## simply iterate over these fields and their respective values. ## ## Let's start with defining the data dictionary: retval = OrderedDict([]) ## Iterate over fields and get their values: for key in sorted(self._fields): ## Add the field to return value: retval[key] = getattr(self, key, None) ## If detailed, override with real Value instance: if detailed: ## Get the value: value = self._values.get(key, None) ## Add the value: retval[key] = OrderedDict([("value", str(value.value)), ("status", value.status), ("message", value.message)]) ## Done, return the value: return retval @classmethod def new(cls, record, **kwargs): """ Creates a new record from the provided record or dictionary and overriding values from the provided additional named arguments. :param record: The record or dictionary to be copied from. :param kwargs: Named arguments to override. :return: New record. """ ## First of all, get the record as value dictionary: base = copy.deepcopy(record.as_dict() if isinstance(record, Record) else record) ## Update the dictionary: base.update(kwargs) ## Done, create the new record and return: return cls(base)
bsd-2-clause
2,155,762,320,283,130,600
28.674893
120
0.576599
false
janhahne/nest-simulator
pynest/nest/tests/test_connect_arrays.py
1
3293
# -*- coding: utf-8 -*- # # test_connect_arrays.py # # This file is part of NEST. # # Copyright (C) 2004 The NEST Initiative # # NEST is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 2 of the License, or # (at your option) any later version. # # NEST is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with NEST. If not, see <http://www.gnu.org/licenses/>. import unittest import warnings import nest import numpy as np nest.set_verbosity('M_WARNING') class TestConnectArrays(unittest.TestCase): def setUp(self): nest.ResetKernel() def test_connect_arrays_nonunique_node_ids(self): """Connecting arrays with nonunique node IDs""" nest.Create('iaf_psc_alpha', 4) source = [1, 1, 2, 2] target = [3, 3, 4, 4] nest.Connect(source, target) conns = nest.GetConnections() st_pairs = np.array([(s, t) for s in source for t in target]) self.assertTrue(np.array_equal(st_pairs[:, 0], list(conns.sources()))) self.assertTrue(np.array_equal(st_pairs[:, 1], list(conns.targets()))) def test_connect_numpy_arrays_node_ids(self): """Connecting numpy arrays with nonunique node IDs""" nest.Create('iaf_psc_alpha', 4) source = np.array([1, 1, 2, 2]) target = np.array([3, 3, 4, 4]) nest.Connect(source, target) conns = nest.GetConnections() st_pairs = np.array([(s, t) for s in source for t in target]) self.assertTrue(np.array_equal(st_pairs[:, 0], list(conns.sources()))) self.assertTrue(np.array_equal(st_pairs[:, 1], list(conns.targets()))) def test_connect_arrays_unique_node_ids(self): """Connecting arrays with unique node IDs""" n = nest.Create('iaf_psc_alpha', 4) node_ids = n.tolist() with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") nest.Connect(node_ids, node_ids) self.assertEqual(len(w), 1) self.assertTrue(issubclass(w[-1].category, UserWarning)) self.assertTrue('unique' in str(w[-1].message)) conns = nest.GetConnections() st_pairs = np.array([(s, t) for s in node_ids for t in node_ids]) self.assertTrue(np.array_equal(st_pairs[:, 0], list(conns.sources()))) self.assertTrue(np.array_equal(st_pairs[:, 1], list(conns.targets()))) def test_connect_array_with_nc(self): """Connecting one array with a NodeCollection""" nc = nest.Create('iaf_psc_alpha', 4) node_ids = [1, 1, 2, 2] with self.assertRaises(TypeError): nest.Connect(node_ids, nc) with self.assertRaises(TypeError): nest.Connect(nc, node_ids) def suite(): suite = unittest.TestLoader().loadTestsFromTestCase(TestConnectArrays) return suite if __name__ == '__main__': runner = unittest.TextTestRunner(verbosity=2) runner.run(suite())
gpl-2.0
-6,105,020,392,207,008,000
36
78
0.641057
false
CIECODE-Madrid/tipi-engine
stats/process_stats.py
1
6001
from tipi_data.models.stats import Stats from tipi_data.models.topic import Topic from tipi_data.models.initiative import Initiative class GenerateStats(object): def __init__(self): self.topics = Topic.objects() self.subtopics = self.topics.distinct('tags.subtopic') self.stats = Stats() def generate(self): Stats.objects().delete() self.overall() self.deputies_by_topics() self.deputies_by_subtopics() self.parliamentarygroups_by_topics() self.parliamentarygroups_by_subtopics() self.places_by_topics() self.places_by_subtopics() self.stats.save() def overall(self): self.stats['overall'] = { 'initiatives': Initiative.objects.count(), 'allinitiatives': Initiative.all.count(), 'topics': list(), 'subtopics': list() } pipeline = [ {'$match': {'topics': {'$exists': True, '$not': {'$size': 0}}}}, {'$unwind': '$topics'}, {'$group': {'_id': '$topics', 'initiatives': {'$sum': 1}}}, {'$sort': {'initiatives': -1}} ] result = Initiative.objects().aggregate(*pipeline) for item in result: self.stats['overall']['topics'].append(item) for subtopic in self.subtopics: pipeline = [ {'$match': {'tags.subtopic': subtopic}}, {'$group': {'_id': subtopic, 'initiatives': {'$sum': 1}}} ] result = Initiative.objects().aggregate(*pipeline) if result._has_next(): self.stats['overall']['subtopics'].append(result.next()) self.stats['overall']['subtopics'].sort(key=lambda x: x['initiatives'], reverse=True) def deputies_by_topics(self): self.stats['deputiesByTopics'] = list() for topic in self.topics: pipeline = [ {'$match': {'topics': topic['name']}}, {'$unwind': '$author_deputies'}, {'$group': {'_id': '$author_deputies', 'initiatives': {'$sum': 1}}}, {'$sort': {'initiatives': -1}}, {'$limit': 10} ] result = list(Initiative.objects().aggregate(*pipeline)) if len(result) > 0: self.stats['deputiesByTopics'].append({ '_id': topic['name'], 'deputies': result }) def parliamentarygroups_by_topics(self): self.stats['parliamentarygroupsByTopics'] = list() for topic in self.topics: pipeline = [ {'$match': {'topics': topic['name']}}, {'$unwind': '$author_parliamentarygroups'}, {'$group': {'_id': '$author_parliamentarygroups', 'initiatives': {'$sum': 1}}}, {'$sort': {'initiatives': -1}} ] result = list(Initiative.objects().aggregate(*pipeline)) if len(result) > 0: self.stats['parliamentarygroupsByTopics'].append({ '_id': topic['name'], 'parliamentarygroups': result }) def places_by_topics(self): self.stats['placesByTopics'] = list() for topic in self.topics: pipeline = [ {'$match': {'topics': topic['name'], 'place': {'$not': {'$eq': ""}, '$exists': True}}}, {'$group': {'_id': '$place', 'initiatives': {'$sum': 1}}}, {'$sort': {'initiatives': -1}}, {'$limit': 5} ] result = list(Initiative.objects().aggregate(*pipeline)) if len(result) > 0: self.stats['placesByTopics'].append({ '_id': topic['name'], 'places': result }) def deputies_by_subtopics(self): self.stats['deputiesBySubtopics'] = list() for subtopic in self.subtopics: pipeline = [ {'$match': { 'tags.subtopic': subtopic } }, {'$unwind': '$author_deputies'}, {'$group': {'_id': '$author_deputies', 'initiatives': {'$sum': 1}}}, {'$sort': {'initiatives': -1}}, {'$limit': 10} ] result = list(Initiative.objects().aggregate(*pipeline)) if len(result) > 0: self.stats['deputiesBySubtopics'].append({ '_id': subtopic, 'deputies': result }) def parliamentarygroups_by_subtopics(self): self.stats['parliamentarygroupsBySubtopics'] = list() for subtopic in self.subtopics: pipeline = [ {'$match': { 'tags.subtopic': subtopic } }, {'$unwind': '$author_parliamentarygroups'}, {'$group': {'_id': '$author_parliamentarygroups', 'initiatives': {'$sum': 1}}}, {'$sort': {'initiatives': -1}} ] result = list(Initiative.objects().aggregate(*pipeline)) if len(result) > 0: self.stats['parliamentarygroupsBySubtopics'].append({ '_id': subtopic, 'parliamentarygroups': result }) def places_by_subtopics(self): self.stats['placesBySubtopics'] = list() for subtopic in self.subtopics: pipeline = [ {'$match': { 'tags.subtopic': subtopic, 'place': {'$not': {'$eq': ""}, '$exists': True}}}, {'$group': {'_id': '$place', 'initiatives': {'$sum': 1}}}, {'$sort': {'initiatives': -1}}, {'$limit': 5} ] result = list(Initiative.objects().aggregate(*pipeline)) if len(result) > 0: self.stats['placesBySubtopics'].append({ '_id': subtopic, 'places': result }) if __name__ == "__main__": GenerateStats().generate()
gpl-3.0
3,043,947,720,192,462,300
41.864286
130
0.481753
false
DayGitH/Python-Challenges
DailyProgrammer/DP20120723C.py
1
1700
""" [7/23/2012] Challenge #80 [difficult] (Multi-word anagrams) https://www.reddit.com/r/dailyprogrammer/comments/x0vj7/7232012_challenge_80_difficult_multiword_anagrams/ In [today's easy problem](http://www.reddit.com/r/dailyprogrammer/comments/x0v3e/7232012_challenge_80_easy_anagrams/), we investigated anagrams that were single words. However, as is clear in the "I am Lord Voldemort" and "Tom Marvolo Riddle" example, anagrams can also be several words long. Your difficult task today is to write a program that given a word will generate all multi-word anagrams of that word. Use [the same dictionary as in the easy problem](http://code.google.com/p/dotnetperls-controls/downloads/detail?name=enable1.txt). So, for instance, the word "PARLIAMENT" has (by my count) ~~6636~~ 8438 multi-word anagrams using that dictionary. Examples include "MENIAL PRAT", "INEPT ALARM", "EAT NIL PRAM" (most of them will not make any sense) and "PARLIAMENT" itself. Note that in this problem, if the difference between two permutation is only word order, they count as the same anagram. So "INEPT ALARM" and "ALARM INEPT" should just count as one anagram. Also, if there are single-word anagrams of the input, they should be counted in the total. For instance, in the 63 (again, by my count) multi-word anagrams of "MARBLES", the words "AMBLERS", "BLAMERS", "LAMBERS" and "RAMBLES" are included, as well as "MARBLES" itself (a few examples of multi-word anagrams for "MARBLES" are "ARM BELS", "REM LABS" and "ELM BARS"). How many multi-word anagrams is there for "CARPENTER" and "INHERITANCE"? EDIT: Thanks to Cosmologicon for corrections! """ def main(): pass if __name__ == "__main__": main()
mit
8,144,650,209,013,004,000
55.666667
119
0.752941
false
mercycorps/tola-activity
htdocs/activitydb/migrations/0037_auto_20151028_1631.py
1
1470
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('activitydb', '0036_auto_20151028_1519'), ] operations = [ migrations.AlterField( model_name='siteprofile', name='avg_landholding_size', field=models.DecimalField(decimal_places=14, max_digits=25, blank=True, help_text='In hectares/jeribs', null=True, verbose_name='Average Landholding Size'), ), migrations.AlterField( model_name='siteprofile', name='populations_owning_land', field=models.IntegerField(help_text='(%)', null=True, verbose_name='Households Owning Land', blank=True), ), migrations.AlterField( model_name='siteprofile', name='literacy_rate', field=models.IntegerField(help_text='%', null=True, verbose_name='Literacy Rate (%)', blank=True), ), migrations.AlterField( model_name='siteprofile', name='literate_females', field=models.IntegerField(help_text='%', null=True, verbose_name='% of Literate Females', blank=True), ), migrations.AlterField( model_name='siteprofile', name='literate_males', field=models.IntegerField(help_text='%', null=True, verbose_name='% of Literate Males', blank=True), ), ]
gpl-2.0
-7,011,314,465,358,522,000
35.75
168
0.6
false
williamthegrey/swift
test/probe/test_object_metadata_replication.py
1
30416
#!/usr/bin/python -u # Copyright (c) 2010-2012 OpenStack Foundation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. from io import StringIO import unittest import os import uuid from swift.common.direct_client import direct_get_suffix_hashes from swift.common.exceptions import DiskFileDeleted from swift.common.internal_client import UnexpectedResponse from swift.container.backend import ContainerBroker from swift.common import utils from swiftclient import client from swift.common.ring import Ring from swift.common.utils import Timestamp, get_logger, hash_path from swift.obj.diskfile import DiskFileManager from swift.common.storage_policy import POLICIES from test.probe.brain import BrainSplitter from test.probe.common import ReplProbeTest class Test(ReplProbeTest): def setUp(self): """ Reset all environment and start all servers. """ super(Test, self).setUp() self.container_name = 'container-%s' % uuid.uuid4() self.object_name = 'object-%s' % uuid.uuid4() self.brain = BrainSplitter(self.url, self.token, self.container_name, self.object_name, 'object', policy=self.policy) self.int_client = self.make_internal_client(object_post_as_copy=False) def tearDown(self): super(Test, self).tearDown() def _get_object_info(self, account, container, obj, number): obj_conf = self.configs['object-server'] config_path = obj_conf[number] options = utils.readconf(config_path, 'app:object-server') swift_dir = options.get('swift_dir', '/etc/swift') ring = POLICIES.get_object_ring(int(self.policy), swift_dir) part, nodes = ring.get_nodes(account, container, obj) for node in nodes: # assumes one to one mapping if node['port'] == int(options.get('bind_port')): device = node['device'] break else: return None mgr = DiskFileManager(options, get_logger(options)) disk_file = mgr.get_diskfile(device, part, account, container, obj, self.policy) info = disk_file.read_metadata() return info def _assert_consistent_object_metadata(self): obj_info = [] for i in range(1, 5): info_i = self._get_object_info(self.account, self.container_name, self.object_name, i) if info_i: obj_info.append(info_i) self.assertTrue(len(obj_info) > 1) for other in obj_info[1:]: self.assertDictEqual(obj_info[0], other) def _assert_consistent_deleted_object(self): for i in range(1, 5): try: info = self._get_object_info(self.account, self.container_name, self.object_name, i) if info is not None: self.fail('Expected no disk file info but found %s' % info) except DiskFileDeleted: pass def _get_db_info(self, account, container, number): server_type = 'container' obj_conf = self.configs['%s-server' % server_type] config_path = obj_conf[number] options = utils.readconf(config_path, 'app:container-server') root = options.get('devices') swift_dir = options.get('swift_dir', '/etc/swift') ring = Ring(swift_dir, ring_name=server_type) part, nodes = ring.get_nodes(account, container) for node in nodes: # assumes one to one mapping if node['port'] == int(options.get('bind_port')): device = node['device'] break else: return None path_hash = utils.hash_path(account, container) _dir = utils.storage_directory('%ss' % server_type, part, path_hash) db_dir = os.path.join(root, device, _dir) db_file = os.path.join(db_dir, '%s.db' % path_hash) db = ContainerBroker(db_file) return db.get_info() def _assert_consistent_container_dbs(self): db_info = [] for i in range(1, 5): info_i = self._get_db_info(self.account, self.container_name, i) if info_i: db_info.append(info_i) self.assertTrue(len(db_info) > 1) for other in db_info[1:]: self.assertEqual(db_info[0]['hash'], other['hash'], 'Container db hash mismatch: %s != %s' % (db_info[0]['hash'], other['hash'])) def _assert_object_metadata_matches_listing(self, listing, metadata): self.assertEqual(listing['bytes'], int(metadata['content-length'])) self.assertEqual(listing['hash'], metadata['etag']) self.assertEqual(listing['content_type'], metadata['content-type']) modified = Timestamp(metadata['x-timestamp']).isoformat self.assertEqual(listing['last_modified'], modified) def _put_object(self, headers=None, body=u'stuff'): headers = headers or {} self.int_client.upload_object(StringIO(body), self.account, self.container_name, self.object_name, headers) def _post_object(self, headers): self.int_client.set_object_metadata(self.account, self.container_name, self.object_name, headers) def _delete_object(self): self.int_client.delete_object(self.account, self.container_name, self.object_name) def _get_object(self, headers=None, expect_statuses=(2,)): return self.int_client.get_object(self.account, self.container_name, self.object_name, headers, acceptable_statuses=expect_statuses) def _get_object_metadata(self): return self.int_client.get_object_metadata(self.account, self.container_name, self.object_name) def _assert_consistent_suffix_hashes(self): opart, onodes = self.object_ring.get_nodes( self.account, self.container_name, self.object_name) name_hash = hash_path( self.account, self.container_name, self.object_name) results = [] for node in onodes: results.append( (node, direct_get_suffix_hashes(node, opart, [name_hash[-3:]]))) for (node, hashes) in results[1:]: self.assertEqual(results[0][1], hashes, 'Inconsistent suffix hashes found: %s' % results) def test_object_delete_is_replicated(self): self.brain.put_container(policy_index=int(self.policy)) # put object self._put_object() # put newer object with sysmeta to first server subset self.brain.stop_primary_half() self._put_object() self.brain.start_primary_half() # delete object on second server subset self.brain.stop_handoff_half() self._delete_object() self.brain.start_handoff_half() # run replicator self.get_to_final_state() # check object deletion has been replicated on first server set self.brain.stop_primary_half() self._get_object(expect_statuses=(4,)) self.brain.start_primary_half() # check object deletion persists on second server set self.brain.stop_handoff_half() self._get_object(expect_statuses=(4,)) # put newer object to second server set self._put_object() self.brain.start_handoff_half() # run replicator self.get_to_final_state() # check new object has been replicated on first server set self.brain.stop_primary_half() self._get_object() self.brain.start_primary_half() # check new object persists on second server set self.brain.stop_handoff_half() self._get_object() def test_object_after_replication_with_subsequent_post(self): self.brain.put_container(policy_index=0) # put object self._put_object(headers={'Content-Type': 'foo'}, body=u'older') # put newer object to first server subset self.brain.stop_primary_half() self._put_object(headers={'Content-Type': 'bar'}, body=u'newer') metadata = self._get_object_metadata() etag = metadata['etag'] self.brain.start_primary_half() # post some user meta to all servers self._post_object({'x-object-meta-bar': 'meta-bar'}) # run replicator self.get_to_final_state() # check that newer data has been replicated to second server subset self.brain.stop_handoff_half() metadata = self._get_object_metadata() self.assertEqual(etag, metadata['etag']) self.assertEqual('bar', metadata['content-type']) self.assertEqual('meta-bar', metadata['x-object-meta-bar']) self.brain.start_handoff_half() self._assert_consistent_object_metadata() self._assert_consistent_container_dbs() self._assert_consistent_suffix_hashes() def test_sysmeta_after_replication_with_subsequent_put(self): sysmeta = {'x-object-sysmeta-foo': 'older'} sysmeta2 = {'x-object-sysmeta-foo': 'newer'} usermeta = {'x-object-meta-bar': 'meta-bar'} self.brain.put_container(policy_index=0) # put object with sysmeta to first server subset self.brain.stop_primary_half() self._put_object(headers=sysmeta) metadata = self._get_object_metadata() for key in sysmeta: self.assertTrue(key in metadata) self.assertEqual(metadata[key], sysmeta[key]) self.brain.start_primary_half() # put object with updated sysmeta to second server subset self.brain.stop_handoff_half() self._put_object(headers=sysmeta2) metadata = self._get_object_metadata() for key in sysmeta2: self.assertTrue(key in metadata) self.assertEqual(metadata[key], sysmeta2[key]) self._post_object(usermeta) metadata = self._get_object_metadata() for key in usermeta: self.assertTrue(key in metadata) self.assertEqual(metadata[key], usermeta[key]) for key in sysmeta2: self.assertTrue(key in metadata) self.assertEqual(metadata[key], sysmeta2[key]) self.brain.start_handoff_half() # run replicator self.get_to_final_state() # check sysmeta has been replicated to first server subset self.brain.stop_primary_half() metadata = self._get_object_metadata() for key in usermeta: self.assertTrue(key in metadata) self.assertEqual(metadata[key], usermeta[key]) for key in sysmeta2.keys(): self.assertTrue(key in metadata, key) self.assertEqual(metadata[key], sysmeta2[key]) self.brain.start_primary_half() # check user sysmeta ok on second server subset self.brain.stop_handoff_half() metadata = self._get_object_metadata() for key in usermeta: self.assertTrue(key in metadata) self.assertEqual(metadata[key], usermeta[key]) for key in sysmeta2.keys(): self.assertTrue(key in metadata, key) self.assertEqual(metadata[key], sysmeta2[key]) self.brain.start_handoff_half() self._assert_consistent_object_metadata() self._assert_consistent_container_dbs() self._assert_consistent_suffix_hashes() def test_sysmeta_after_replication_with_subsequent_post(self): sysmeta = {'x-object-sysmeta-foo': 'sysmeta-foo'} usermeta = {'x-object-meta-bar': 'meta-bar'} self.brain.put_container(policy_index=int(self.policy)) # put object self._put_object() # put newer object with sysmeta to first server subset self.brain.stop_primary_half() self._put_object(headers=sysmeta) metadata = self._get_object_metadata() for key in sysmeta: self.assertTrue(key in metadata) self.assertEqual(metadata[key], sysmeta[key]) self.brain.start_primary_half() # post some user meta to second server subset self.brain.stop_handoff_half() self._post_object(usermeta) metadata = self._get_object_metadata() for key in usermeta: self.assertTrue(key in metadata) self.assertEqual(metadata[key], usermeta[key]) for key in sysmeta: self.assertFalse(key in metadata) self.brain.start_handoff_half() # run replicator self.get_to_final_state() # check user metadata has been replicated to first server subset # and sysmeta is unchanged self.brain.stop_primary_half() metadata = self._get_object_metadata() expected = dict(sysmeta) expected.update(usermeta) for key in expected.keys(): self.assertTrue(key in metadata, key) self.assertEqual(metadata[key], expected[key]) self.brain.start_primary_half() # check user metadata and sysmeta both on second server subset self.brain.stop_handoff_half() metadata = self._get_object_metadata() for key in expected.keys(): self.assertTrue(key in metadata, key) self.assertEqual(metadata[key], expected[key]) self.brain.start_handoff_half() self._assert_consistent_object_metadata() self._assert_consistent_container_dbs() self._assert_consistent_suffix_hashes() def test_sysmeta_after_replication_with_prior_post(self): sysmeta = {'x-object-sysmeta-foo': 'sysmeta-foo'} usermeta = {'x-object-meta-bar': 'meta-bar'} self.brain.put_container(policy_index=int(self.policy)) # put object self._put_object() # put user meta to first server subset self.brain.stop_handoff_half() self._post_object(headers=usermeta) metadata = self._get_object_metadata() for key in usermeta: self.assertTrue(key in metadata) self.assertEqual(metadata[key], usermeta[key]) self.brain.start_handoff_half() # put newer object with sysmeta to second server subset self.brain.stop_primary_half() self._put_object(headers=sysmeta) metadata = self._get_object_metadata() for key in sysmeta: self.assertTrue(key in metadata) self.assertEqual(metadata[key], sysmeta[key]) self.brain.start_primary_half() # run replicator self.get_to_final_state() # check stale user metadata is not replicated to first server subset # and sysmeta is unchanged self.brain.stop_primary_half() metadata = self._get_object_metadata() for key in sysmeta: self.assertTrue(key in metadata) self.assertEqual(metadata[key], sysmeta[key]) for key in usermeta: self.assertFalse(key in metadata) self.brain.start_primary_half() # check stale user metadata is removed from second server subset # and sysmeta is replicated self.brain.stop_handoff_half() metadata = self._get_object_metadata() for key in sysmeta: self.assertTrue(key in metadata) self.assertEqual(metadata[key], sysmeta[key]) for key in usermeta: self.assertFalse(key in metadata) self.brain.start_handoff_half() self._assert_consistent_object_metadata() self._assert_consistent_container_dbs() self._assert_consistent_suffix_hashes() def test_post_ctype_replicated_when_previous_incomplete_puts(self): # primary half handoff half # ------------ ------------ # t0.data: ctype = foo # t1.data: ctype = bar # t2.meta: ctype = baz # # ...run replicator and expect... # # t1.data: # t2.meta: ctype = baz self.brain.put_container(policy_index=0) # incomplete write to primary half self.brain.stop_handoff_half() self._put_object(headers={'Content-Type': 'foo'}) self.brain.start_handoff_half() # handoff write self.brain.stop_primary_half() self._put_object(headers={'Content-Type': 'bar'}) self.brain.start_primary_half() # content-type update to primary half self.brain.stop_handoff_half() self._post_object(headers={'Content-Type': 'baz'}) self.brain.start_handoff_half() self.get_to_final_state() # check object metadata metadata = client.head_object(self.url, self.token, self.container_name, self.object_name) # check container listing metadata container_metadata, objs = client.get_container(self.url, self.token, self.container_name) for obj in objs: if obj['name'] == self.object_name: break expected = 'baz' self.assertEqual(obj['content_type'], expected) self._assert_object_metadata_matches_listing(obj, metadata) self._assert_consistent_container_dbs() self._assert_consistent_object_metadata() self._assert_consistent_suffix_hashes() def test_put_ctype_replicated_when_subsequent_post(self): # primary half handoff half # ------------ ------------ # t0.data: ctype = foo # t1.data: ctype = bar # t2.meta: # # ...run replicator and expect... # # t1.data: ctype = bar # t2.meta: self.brain.put_container(policy_index=0) # incomplete write self.brain.stop_handoff_half() self._put_object(headers={'Content-Type': 'foo'}) self.brain.start_handoff_half() # handoff write self.brain.stop_primary_half() self._put_object(headers={'Content-Type': 'bar'}) self.brain.start_primary_half() # metadata update with newest data unavailable self.brain.stop_handoff_half() self._post_object(headers={'X-Object-Meta-Color': 'Blue'}) self.brain.start_handoff_half() self.get_to_final_state() # check object metadata metadata = client.head_object(self.url, self.token, self.container_name, self.object_name) # check container listing metadata container_metadata, objs = client.get_container(self.url, self.token, self.container_name) for obj in objs: if obj['name'] == self.object_name: break else: self.fail('obj not found in container listing') expected = 'bar' self.assertEqual(obj['content_type'], expected) self.assertEqual(metadata['x-object-meta-color'], 'Blue') self._assert_object_metadata_matches_listing(obj, metadata) self._assert_consistent_container_dbs() self._assert_consistent_object_metadata() self._assert_consistent_suffix_hashes() def test_post_ctype_replicated_when_subsequent_post_without_ctype(self): # primary half handoff half # ------------ ------------ # t0.data: ctype = foo # t1.data: ctype = bar # t2.meta: ctype = bif # t3.data: ctype = baz, color = 'Red' # t4.meta: color = Blue # # ...run replicator and expect... # # t1.data: # t4-delta.meta: ctype = baz, color = Blue self.brain.put_container(policy_index=0) # incomplete write self.brain.stop_handoff_half() self._put_object(headers={'Content-Type': 'foo', 'X-Object-Sysmeta-Test': 'older'}) self.brain.start_handoff_half() # handoff write self.brain.stop_primary_half() self._put_object(headers={'Content-Type': 'bar', 'X-Object-Sysmeta-Test': 'newer'}) self.brain.start_primary_half() # incomplete post with content type self.brain.stop_handoff_half() self._post_object(headers={'Content-Type': 'bif'}) self.brain.start_handoff_half() # incomplete post to handoff with content type self.brain.stop_primary_half() self._post_object(headers={'Content-Type': 'baz', 'X-Object-Meta-Color': 'Red'}) self.brain.start_primary_half() # complete post with no content type self._post_object(headers={'X-Object-Meta-Color': 'Blue', 'X-Object-Sysmeta-Test': 'ignored'}) # 'baz' wins over 'bar' but 'Blue' wins over 'Red' self.get_to_final_state() # check object metadata metadata = self._get_object_metadata() # check container listing metadata container_metadata, objs = client.get_container(self.url, self.token, self.container_name) for obj in objs: if obj['name'] == self.object_name: break expected = 'baz' self.assertEqual(obj['content_type'], expected) self.assertEqual(metadata['x-object-meta-color'], 'Blue') self.assertEqual(metadata['x-object-sysmeta-test'], 'newer') self._assert_object_metadata_matches_listing(obj, metadata) self._assert_consistent_container_dbs() self._assert_consistent_object_metadata() self._assert_consistent_suffix_hashes() def test_put_ctype_replicated_when_subsequent_posts_without_ctype(self): # primary half handoff half # ------------ ------------ # t0.data: ctype = foo # t1.data: ctype = bar # t2.meta: # t3.meta # # ...run replicator and expect... # # t1.data: ctype = bar # t3.meta self.brain.put_container(policy_index=0) self._put_object(headers={'Content-Type': 'foo', 'X-Object-Sysmeta-Test': 'older'}) # incomplete write to handoff half self.brain.stop_primary_half() self._put_object(headers={'Content-Type': 'bar', 'X-Object-Sysmeta-Test': 'newer'}) self.brain.start_primary_half() # incomplete post with no content type to primary half self.brain.stop_handoff_half() self._post_object(headers={'X-Object-Meta-Color': 'Red', 'X-Object-Sysmeta-Test': 'ignored'}) self.brain.start_handoff_half() # incomplete post with no content type to handoff half self.brain.stop_primary_half() self._post_object(headers={'X-Object-Meta-Color': 'Blue'}) self.brain.start_primary_half() self.get_to_final_state() # check object metadata metadata = self._get_object_metadata() # check container listing metadata container_metadata, objs = client.get_container(self.url, self.token, self.container_name) for obj in objs: if obj['name'] == self.object_name: break expected = 'bar' self.assertEqual(obj['content_type'], expected) self._assert_object_metadata_matches_listing(obj, metadata) self.assertEqual(metadata['x-object-meta-color'], 'Blue') self.assertEqual(metadata['x-object-sysmeta-test'], 'newer') self._assert_object_metadata_matches_listing(obj, metadata) self._assert_consistent_container_dbs() self._assert_consistent_object_metadata() self._assert_consistent_suffix_hashes() def test_posted_metadata_only_persists_after_prior_put(self): # newer metadata posted to subset of nodes should persist after an # earlier put on other nodes, but older content-type on that subset # should not persist self.brain.put_container(policy_index=0) # incomplete put to handoff self.brain.stop_primary_half() self._put_object(headers={'Content-Type': 'oldest', 'X-Object-Sysmeta-Test': 'oldest', 'X-Object-Meta-Test': 'oldest'}) self.brain.start_primary_half() # incomplete put to primary self.brain.stop_handoff_half() self._put_object(headers={'Content-Type': 'oldest', 'X-Object-Sysmeta-Test': 'oldest', 'X-Object-Meta-Test': 'oldest'}) self.brain.start_handoff_half() # incomplete post with content-type to handoff self.brain.stop_primary_half() self._post_object(headers={'Content-Type': 'newer', 'X-Object-Meta-Test': 'newer'}) self.brain.start_primary_half() # incomplete put to primary self.brain.stop_handoff_half() self._put_object(headers={'Content-Type': 'newest', 'X-Object-Sysmeta-Test': 'newest', 'X-Object-Meta-Test': 'newer'}) self.brain.start_handoff_half() # incomplete post with no content-type to handoff which still has # out of date content-type self.brain.stop_primary_half() self._post_object(headers={'X-Object-Meta-Test': 'newest'}) metadata = self._get_object_metadata() self.assertEqual(metadata['x-object-meta-test'], 'newest') self.assertEqual(metadata['content-type'], 'newer') self.brain.start_primary_half() self.get_to_final_state() # check object metadata metadata = self._get_object_metadata() self.assertEqual(metadata['x-object-meta-test'], 'newest') self.assertEqual(metadata['x-object-sysmeta-test'], 'newest') self.assertEqual(metadata['content-type'], 'newest') # check container listing metadata container_metadata, objs = client.get_container(self.url, self.token, self.container_name) for obj in objs: if obj['name'] == self.object_name: break self.assertEqual(obj['content_type'], 'newest') self._assert_object_metadata_matches_listing(obj, metadata) self._assert_object_metadata_matches_listing(obj, metadata) self._assert_consistent_container_dbs() self._assert_consistent_object_metadata() self._assert_consistent_suffix_hashes() def test_post_trumped_by_prior_delete(self): # new metadata and content-type posted to subset of nodes should not # cause object to persist after replication of an earlier delete on # other nodes. self.brain.put_container(policy_index=0) # incomplete put self.brain.stop_primary_half() self._put_object(headers={'Content-Type': 'oldest', 'X-Object-Sysmeta-Test': 'oldest', 'X-Object-Meta-Test': 'oldest'}) self.brain.start_primary_half() # incomplete put then delete self.brain.stop_handoff_half() self._put_object(headers={'Content-Type': 'oldest', 'X-Object-Sysmeta-Test': 'oldest', 'X-Object-Meta-Test': 'oldest'}) self._delete_object() self.brain.start_handoff_half() # handoff post self.brain.stop_primary_half() self._post_object(headers={'Content-Type': 'newest', 'X-Object-Sysmeta-Test': 'ignored', 'X-Object-Meta-Test': 'newest'}) # check object metadata metadata = self._get_object_metadata() self.assertEqual(metadata['x-object-sysmeta-test'], 'oldest') self.assertEqual(metadata['x-object-meta-test'], 'newest') self.assertEqual(metadata['content-type'], 'newest') self.brain.start_primary_half() # delete trumps later post self.get_to_final_state() # check object is now deleted self.assertRaises(UnexpectedResponse, self._get_object_metadata) container_metadata, objs = client.get_container(self.url, self.token, self.container_name) self.assertEqual(0, len(objs)) self._assert_consistent_container_dbs() self._assert_consistent_deleted_object() self._assert_consistent_suffix_hashes() if __name__ == "__main__": unittest.main()
apache-2.0
-900,956,658,026,259,200
39.500666
79
0.57233
false
srajag/contrail-controller
src/config/device-manager/device_manager/db.py
1
14129
# # Copyright (c) 2014 Juniper Networks, Inc. All rights reserved. # """ This file contains implementation of data model for physical router configuration manager """ from vnc_api.common.exceptions import NoIdError from physical_router_config import PhysicalRouterConfig from sandesh.dm_introspect import ttypes as sandesh from cfgm_common.vnc_db import DBBase import copy class BgpRouterDM(DBBase): _dict = {} obj_type = 'bgp_router' def __init__(self, uuid, obj_dict=None): self.uuid = uuid self.bgp_routers = {} self.physical_router = None self.update(obj_dict) # end __init__ def update(self, obj=None): if obj is None: obj = self.read_obj(self.uuid) self.name = obj['fq_name'][-1] self.params = obj['bgp_router_parameters'] self.update_single_ref('physical_router', obj) new_peers = {} for ref in obj.get('bgp_router_refs', []): new_peers[ref['uuid']] = ref['attr'] for peer_id in set(self.bgp_routers.keys()) - set(new_peers.keys()): peer = BgpRouterDM.get(peer_id) if self.uuid in peer.bgp_routers: del peer.bgp_routers[self.uuid] for peer_id, attrs in new_peers.items(): peer = BgpRouterDM.get(peer_id) if peer: peer.bgp_routers[self.uuid] = attrs self.bgp_routers = new_peers def sandesh_build(self): return sandesh.BgpRouter(name=self.name, uuid=self.uuid, peers=self.bgp_routers, physical_router=self.physical_router) @classmethod def sandesh_request(cls, req): # Return the list of BGP routers resp = sandesh.BgpRouterListResp(bgp_routers=[]) if req.name_or_uuid is None: for router in cls.values(): sandesh_router = router.sandesh_build() resp.bgp_routers.extend(sandesh_router) else: router = cls.find_by_name_or_uuid(req.name_or_uuid) if router: sandesh_router = router.sandesh_build() resp.bgp_routers.extend(sandesh_router) resp.response(req.context()) # end class BgpRouterDM class PhysicalRouterDM(DBBase): _dict = {} obj_type = 'physical_router' def __init__(self, uuid, obj_dict=None): self.uuid = uuid self.virtual_networks = set() self.bgp_router = None self.update(obj_dict) self.config_manager = PhysicalRouterConfig( self.management_ip, self.user_credentials, self._logger) # end __init__ def update(self, obj=None): if obj is None: obj = self.read_obj(self.uuid) self.management_ip = obj.get('physical_router_management_ip') self.vendor = obj.get('physical_router_vendor_name') self.user_credentials = obj.get('physical_router_user_credentials') self.update_single_ref('bgp_router', obj) self.update_multiple_refs('virtual_network', obj) self.physical_interfaces = set([pi['uuid'] for pi in obj.get('physical_interfaces', [])]) self.logical_interfaces = set([li['uuid'] for li in obj.get('logical_interfaces', [])]) # end update @classmethod def delete(cls, uuid): if uuid not in cls._dict: return obj = cls._dict[uuid] obj.config_manager.delete_bgp_config() obj.update_single_ref('bgp_router', {}) obj.update_multiple_refs('virtual_network', {}) del cls._dict[uuid] # end delete def push_config(self): self.config_manager.reset_bgp_config() bgp_router = BgpRouterDM.get(self.bgp_router) if bgp_router: for peer_uuid, params in bgp_router.bgp_routers.items(): peer = BgpRouterDM.get(peer_uuid) if peer is None: continue external = (bgp_router.params['autonomous_system'] == peer.params['autonomous_system']) self.config_manager.add_bgp_peer(peer.params['address'], params, external) self.config_manager.set_bgp_config(bgp_router.params) vn_dict = {} for vn_id in self.virtual_networks: vn_dict[vn_id] = [] li_set = self.logical_interfaces for pi_uuid in self.physical_interfaces: pi = PhysicalInterfaceDM.get(pi_uuid) if pi is None: continue li_set |= pi.logical_interfaces for li_uuid in li_set: li = LogicalInterfaceDM.get(li_uuid) if li is None: continue vmi_id = li.virtual_machine_interface vmi = VirtualMachineInterfaceDM.get(vmi_id) if vmi is None: continue vn_id = vmi.virtual_network if vn_id in vn_dict: vn_dict[vn_id].append(li.name) else: vn_dict[vn_id] = [li.name] for vn_id, interfaces in vn_dict.items(): vn_obj = VirtualNetworkDM.get(vn_id) if vn_obj is None: continue for ri_id in vn_obj.routing_instances: # Find the primary RI by matching the name ri_obj = RoutingInstanceDM.get(ri_id) if ri_obj is None: continue if ri_obj.fq_name[-1] == vn_obj.fq_name[-1]: vrf_name = ':'.join(vn_obj.fq_name) export_set = copy.copy(ri_obj.export_targets) import_set = copy.copy(ri_obj.import_targets) for ri2_id in ri_obj.routing_instances: ri2 = RoutingInstanceDM.get(ri2_id) if ri2 is None: continue import_set |= ri2.export_targets export_set |= ri2.import_targets self.config_manager.add_routing_instance(vrf_name, import_set, export_set, vn_obj.prefixes, vn_obj.gateways, vn_obj.router_external, interfaces, vn_obj.vxlan_vni) break self.config_manager.send_bgp_config() # end push_config # end PhysicalRouterDM class PhysicalInterfaceDM(DBBase): _dict = {} obj_type = 'physical_interface' def __init__(self, uuid, obj_dict=None): self.uuid = uuid self.update(obj_dict) pr = PhysicalRouterDM.get(self.physical_router) if pr: pr.physical_interfaces.add(self.uuid) # end __init__ def update(self, obj=None): if obj is None: obj = self.read_obj(self.uuid) self.physical_router = self.get_parent_uuid(obj) self.logical_interfaces = set([li['uuid'] for li in obj.get('logical_interfaces', [])]) # end update @classmethod def delete(cls, uuid): if uuid not in cls._dict: return obj = cls._dict[uuid] pr = PhysicalRouterDM.get(obj.physical_router) if pr: pr.physical_interfaces.discard(obj.uuid) del cls._dict[uuid] # end delete # end PhysicalInterfaceDM class LogicalInterfaceDM(DBBase): _dict = {} obj_type = 'logical_interface' def __init__(self, uuid, obj_dict=None): self.uuid = uuid self.virtual_machine_interface = None self.update(obj_dict) if self.physical_interface: parent = PhysicalInterfaceDM.get(self.physical_interface) elif self.physical_router: parent = PhysicalRouterDM.get(self.physical_router) if parent: parent.logical_interfaces.add(self.uuid) # end __init__ def update(self, obj=None): if obj is None: obj = self.read_obj(self.uuid) if obj['parent_type'] == 'physical-router': self.physical_router = self.get_parent_uuid(obj) self.physical_interface = None else: self.physical_interface = self.get_parent_uuid(obj) self.physical_router = None self.update_single_ref('virtual_machine_interface', obj) self.name = obj['fq_name'][-1] # end update @classmethod def delete(cls, uuid): if uuid not in cls._dict: return obj = cls._dict[uuid] if obj.physical_interface: parent = PhysicalInterfaceDM.get(obj.physical_interface) elif obj.physical_router: parent = PhysicalInterfaceDM.get(obj.physical_router) if parent: parent.logical_interfaces.discard(obj.uuid) obj.update_single_ref('virtual_machine_interface', {}) del cls._dict[uuid] # end delete # end LogicalInterfaceDM class VirtualMachineInterfaceDM(DBBase): _dict = {} obj_type = 'virtual_machine_interface' def __init__(self, uuid, obj_dict=None): self.uuid = uuid self.virtual_network = None self.logical_interface = None self.update(obj_dict) # end __init__ def update(self, obj=None): if obj is None: obj = self.read_obj(self.uuid) self.update_single_ref('logical_interface', obj) self.update_single_ref('virtual_network', obj) # end update @classmethod def delete(cls, uuid): if uuid not in cls._dict: return obj = cls._dict[uuid] obj.update_single_ref('logical_interface', {}) obj.update_single_ref('virtual_network', {}) del cls._dict[uuid] # end delete # end VirtualMachineInterfaceDM class VirtualNetworkDM(DBBase): _dict = {} obj_type = 'virtual_network' def __init__(self, uuid, obj_dict=None): self.uuid = uuid self.physical_routers = set() self.router_external = False self.vxlan_configured = False self.vxlan_vni = None self.gateways = None self.update(obj_dict) # end __init__ def update(self, obj=None): if obj is None: obj = self.read_obj(self.uuid) self.update_multiple_refs('physical_router', obj) self.fq_name = obj['fq_name'] try: self.router_external = obj['router_external'] except KeyError: self.router_external = False try: prop = obj['virtual_network_properties'] if prop['vxlan_network_identifier'] is not None: self.vxlan_configured = True self.vxlan_vni = prop['vxlan_network_identifier'] except KeyError: self.vxlan_configured = False self.vxlan_vni = None self.routing_instances = set([ri['uuid'] for ri in obj.get('routing_instances', [])]) self.virtual_machine_interfaces = set( [vmi['uuid'] for vmi in obj.get('virtual_machine_interface_back_refs', [])]) self.prefixes = set() self.gateways = set() for ipam_ref in obj.get('network_ipam_refs', []): for subnet in ipam_ref['attr'].get('ipam_subnets', []): self.prefixes.add('%s/%d' % (subnet['subnet']['ip_prefix'], subnet['subnet']['ip_prefix_len']) ) self.gateways.add(subnet['default_gateway']) # end update @classmethod def delete(cls, uuid): if uuid not in cls._dict: return obj = cls._dict[uuid] obj.update_multiple_refs('physical_router', {}) del cls._dict[uuid] # end delete # end VirtualNetworkDM class RoutingInstanceDM(DBBase): _dict = {} obj_type = 'routing_instance' def __init__(self, uuid, obj_dict=None): self.uuid = uuid self.virtual_network = None self.import_targets = set() self.export_targets = set() self.routing_instances = set() self.update(obj_dict) vn = VirtualNetworkDM.get(self.virtual_network) if vn: vn.routing_instances.add(self.uuid) # end __init__ def update(self, obj=None): if obj is None: obj = self.read_obj(self.uuid) self.fq_name = obj['fq_name'] self.virtual_network = self.get_parent_uuid(obj) self.import_targets = set() self.export_targets = set() for rt_ref in obj.get('route_target_refs', []): rt_name = rt_ref['to'][0] exim = rt_ref.get('attr').get('import_export') if exim == 'export': self.export_targets.add(rt_name) elif exim == 'import': self.import_targets.add(rt_name) else: self.import_targets.add(rt_name) self.export_targets.add(rt_name) self.update_multiple_refs('routing_instance', obj) # end update @classmethod def delete(cls, uuid): if uuid not in cls._dict: return obj = cls._dict[uuid] vn = VirtualNetworkDM.get(obj.virtual_network) if vn: vn.routing_instances.discard(obj.uuid) del cls._dict[uuid] # end delete # end RoutingInstanceDM DBBase._OBJ_TYPE_MAP = { 'bgp_router': BgpRouterDM, 'physical_router': PhysicalRouterDM, 'physical_interface': PhysicalInterfaceDM, 'logical_interface': LogicalInterfaceDM, 'virtual_machine_interface': VirtualMachineInterfaceDM, 'virtual_network': VirtualNetworkDM, 'routing_instance': RoutingInstanceDM, }
apache-2.0
-7,415,153,349,394,149,000
33.972772
84
0.544978
false
sl4shme/pplloopp
images/shaddock/mistral/configparse.py
1
2038
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright (C) 2014 Thibaut Lapierre <[email protected]>. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import ConfigParser import os configfile = '/mistral/etc/mistral.conf.sample' config = ConfigParser.RawConfigParser() config.read(configfile) section = 'DEFAULT' config.set(section, 'rpc_backend', 'rabbit') config.set(section, 'rabbit_host', os.environ.get('HOST_IP')) config.set(section, 'rabbit_password', os.environ.get('RABBIT_PASS')) section = 'database' if not set([section]).issubset(config.sections()): config.add_section(section) config.set(section, 'connection', 'mysql://mistral:%s@%s/mistral' % (os.environ.get('MISTRAL_DBPASS'), os.environ.get('HOST_IP'))) section = 'keystone_authtoken' if not set([section]).issubset(config.sections()): config.add_section(section) config.set(section, 'auth_uri', 'http://%s:5000/v3' % os.environ.get('HOST_IP')) config.set(section, 'identity_uri', 'http://%s:35357' % os.environ.get('HOST_IP')) config.set(section, 'admin_tenant_name', 'service') config.set(section, 'auth_version', 'v3') config.set(section, 'admin_user', 'mistral') config.set(section, 'admin_password', os.environ.get('MISTRAL_PASS')) configfile = '/mistral/etc/mistral.conf' print('Parsing of %s...' % configfile) with open(configfile, 'w') as configfile: config.write(configfile) print('Done')
apache-2.0
166,885,613,919,734,000
36.740741
78
0.677134
false
globocom/database-as-a-service
dbaas/drivers/tests/test_driver_pymongo.py
1
9370
# -*- coding: utf-8 -*- from __future__ import absolute_import, unicode_literals import os from mock import patch, MagicMock from drivers import DriverFactory from physical.tests import factory as factory_physical from logical.tests import factory as factory_logical from logical.models import Database from drivers.mongodb import MongoDB, MongoDBReplicaSet from drivers.tests.base import (BaseMongoDriverTestCase, FakeDriverClient, BaseSingleInstanceUpdateSizesTest, BaseHAInstanceUpdateSizesTest) from physical.models import Instance @patch('drivers.mongodb.MongoDB.pymongo', new=FakeDriverClient) @patch('physical.models.DiskOffering.size_bytes', new=MagicMock(return_value=90)) class MongoSingleUpdateSizesTestCase( BaseSingleInstanceUpdateSizesTest, BaseMongoDriverTestCase): pass @patch('drivers.mongodb.MongoDB.pymongo', new=FakeDriverClient) @patch('physical.models.DiskOffering.size_bytes', new=MagicMock(return_value=90)) class MongoReplicaSetUpdateSizesTestCase( BaseMongoDriverTestCase, BaseHAInstanceUpdateSizesTest): driver_class = MongoDBReplicaSet secondary_instance_quantity = 2 secondary_instance_type = Instance.MONGODB_ARBITER class MongoUsedAndTotalTestCase(BaseMongoDriverTestCase): """ Tests Mongo total and used """ def test_masters_single_instance(self): """ Test validates return total and used size when has single instance """ self.instance.total_size_in_bytes = 105 self.instance.used_size_in_bytes = 55 self.instance.save() self.assertEqual(self.driver.masters_total_size_in_bytes, 105) expected_total_size_in_gb = 105 * self.GB_FACTOR self.assertEqual( self.driver.get_master_instance_total_size_in_gb(), expected_total_size_in_gb ) self.assertEqual(self.driver.masters_used_size_in_bytes, 55) def test_masters_replicaset_instance(self): """ Test validates return total and used size when has single instance """ self.driver = MongoDBReplicaSet(databaseinfra=self.databaseinfra) self.driver.check_instance_is_master = MagicMock( side_effect=self.instance_helper.check_instance_is_master ) self.instance_helper.create_instances_by_quant( infra=self.databaseinfra, base_address='131', instance_type=self.instance_type, total_size_in_bytes=35, used_size_in_bytes=10 ) self.instance.total_size_in_bytes = 35 self.instance.used_size_in_bytes = 10 self.instance.save() self.assertEqual(self.driver.masters_total_size_in_bytes, 35) expected_total_size_in_gb = 35 * self.GB_FACTOR self.assertEqual( self.driver.get_master_instance_total_size_in_gb(), expected_total_size_in_gb ) self.assertEqual(self.driver.masters_used_size_in_bytes, 10) class MongoDBEngineTestCase(BaseMongoDriverTestCase): """ Tests MongoDB Engine """ def test_mongodb_app_installed(self): self.assertTrue(DriverFactory.is_driver_available("mongodb_single")) self.assertTrue( DriverFactory.is_driver_available("mongodb_replica_set") ) # test mongo methods def test_instantiate_mongodb_using_engine_factory(self): self.assertEqual(MongoDB, type(self.driver)) self.assertEqual(self.databaseinfra, self.driver.databaseinfra) def test_connection_string(self): self.assertEqual( "mongodb://<user>:<password>@{}".format( self.instance_endpoint), self.driver.get_connection() ) def test_get_user(self): self.assertEqual(self.databaseinfra.user, self.driver.get_user()) def test_get_password(self): self.assertEqual( self.databaseinfra.password, self.driver.get_password()) def test_get_default_port(self): self.assertEqual(27017, self.driver.default_port) @patch.object(MongoDB, 'get_replica_name') def test_connection_string_when_in_replica_set(self, get_replica_name): self.instance = factory_physical.InstanceFactory( databaseinfra=self.databaseinfra, address='127.0.0.2', port=27018) get_replica_name.return_value = 'my_repl' expected_conn = ("mongodb://<user>:<password>" "@{},127.0.0.2:27018" "?replicaSet=my_repl").format(self.instance_endpoint) self.assertEqual(expected_conn, self.driver.get_connection()) def test_connection_with_database(self): self.database = factory_logical.DatabaseFactory( name="my_db_url_name", databaseinfra=self.databaseinfra) expected_conn = ("mongodb://<user>:<password>" "@{}/my_db_url_name").format(self.instance_endpoint) self.assertEqual( expected_conn, self.driver.get_connection(database=self.database) ) @patch.object(MongoDB, 'get_replica_name') def test_connection_with_database_and_replica(self, get_replica_name): self.instance = factory_physical.InstanceFactory( databaseinfra=self.databaseinfra, address='127.0.0.2', port=27018) get_replica_name.return_value = 'my_repl' self.database = factory_logical.DatabaseFactory( name="my_db_url_name", databaseinfra=self.databaseinfra) expected_conn = ("mongodb://<user>:<password>" "@{},127.0.0.2:27018/my_db_url_name" "?replicaSet=my_repl").format(self.instance_endpoint) self.assertEqual( expected_conn, self.driver.get_connection(database=self.database) ) class ManageDatabaseMongoDBTestCase(BaseMongoDriverTestCase): """ Test case to managing database in mongodb engine """ def setUp(self): super(ManageDatabaseMongoDBTestCase, self).setUp() self.database = factory_logical.DatabaseFactory( databaseinfra=self.databaseinfra) self.instance.address = os.getenv('TESTS_MONGODB_HOST', '127.0.0.1') self.instance.save() # ensure database is dropped self.driver_client.drop_database(self.database.name) def tearDown(self): if not Database.objects.filter(databaseinfra_id=self.databaseinfra.id): self.database.delete() super(ManageDatabaseMongoDBTestCase, self).tearDown() def test_mongodb_create_database(self): self.assertFalse( self.database.name in self.driver_client.database_names()) self.driver.create_database(self.database) self.assertTrue( self.database.name in self.driver_client.database_names()) def test_mongodb_remove_database(self): self.driver.create_database(self.database) self.assertTrue( self.database.name in self.driver_client.database_names()) self.driver.remove_database(self.database) self.assertFalse( self.database.name in self.driver_client.database_names()) class ManageCredentialsMongoDBTestCase(BaseMongoDriverTestCase): """ Test case to managing credentials in mongodb engine """ def setUp(self): super(ManageCredentialsMongoDBTestCase, self).setUp() self.database = factory_logical.DatabaseFactory( databaseinfra=self.databaseinfra) self.credential = factory_logical.CredentialFactory( database=self.database) self.instance.address = os.getenv('TESTS_MONGODB_HOST', '127.0.0.1') # self.instance.address = '127.0.0.1' self.instance.save() self.driver.create_database(self.database) def tearDown(self): self.driver.remove_database(self.database) self.credential.delete() self.database.delete() super(ManageCredentialsMongoDBTestCase, self).tearDown() def __find_user__(self, credential): v = self.driver_client.server_info()['version'] if v < '2.6': return getattr( self.driver_client, credential.database.name ).system.users.find_one({"user": credential.user}) else: return getattr( self.driver_client, "admin" ).system.users.find_one( {"user": credential.user, "db": credential.database.name} ) def test_mongodb_create_credential(self): self.assertIsNone( self.__find_user__(self.credential), "User %s already exists. Invalid test" % self.credential ) self.driver.create_user(self.credential) user = self.__find_user__(self.credential) self.assertIsNotNone(user) self.assertEquals(self.credential.user, user['user']) self.driver.remove_user(self.credential) def test_mongodb_remove_credential(self): self.driver.create_user(self.credential) self.assertIsNotNone( self.__find_user__(self.credential), "Error creating user %s. Invalid test" % self.credential ) self.driver.remove_user(self.credential) self.assertIsNone(self.__find_user__(self.credential))
bsd-3-clause
-8,187,081,293,294,255,000
36.48
79
0.649733
false
aliyun/aliyun-oss-python-sdk
tests/test_utils.py
1
14543
# -*- coding: utf-8 -*- import unittest import oss2 from oss2.exceptions import make_exception import os import sys import tempfile import requests import datetime import locale import io from functools import partial from .common import * import logging try: xrange except NameError: xrange = range is_py2 = (sys.version_info[0] == 2) is_py3 = (sys.version_info[0] == 3) class TestUtils(OssTestCase): def test_is_ip(self): self.assertTrue(oss2.utils.is_ip_or_localhost('1.2.3.4')) self.assertTrue(oss2.utils.is_ip_or_localhost('[2401:b180::dc]')) self.assertTrue(oss2.utils.is_ip_or_localhost('localhost')) self.assertTrue(oss2.utils.is_ip_or_localhost('1.2.3.4:80')) self.assertTrue(oss2.utils.is_ip_or_localhost('[2401:b180::dc]:80')) self.assertTrue(oss2.utils.is_ip_or_localhost('localhost:80')) self.assertTrue(not oss2.utils.is_ip_or_localhost('-1.2.3.4')) self.assertTrue(not oss2.utils.is_ip_or_localhost('1.256.1.2')) self.assertTrue(not oss2.utils.is_ip_or_localhost('一.二.三.四')) self.assertTrue(not oss2.utils.is_ip_or_localhost('[2401:b180::dc')) def test_is_valid_bucket_name(self): self.assertTrue(oss2.is_valid_bucket_name('abc')) self.assertTrue(oss2.is_valid_bucket_name('hello-world')) self.assertTrue(not oss2.is_valid_bucket_name('HELLO')) self.assertTrue(not oss2.is_valid_bucket_name('hello_world')) self.assertTrue(not oss2.is_valid_bucket_name('hello-')) self.assertTrue(not oss2.is_valid_bucket_name('-hello')) access_key_id = "test_access_key_id" access_key_secret = "test_access_key_secret" endpoint = "oss-cn-shenzhen.aliyuncs.com" bucket_name = "hello" bucket = oss2.Bucket(oss2.Auth(access_key_id, access_key_secret), endpoint, bucket_name) bucket_name = "hello-" self.assertRaises(oss2.exceptions.ClientError, oss2.Bucket, oss2.Auth(access_key_id, access_key_secret), endpoint, bucket_name) def test_is_valid_endpoint(self): from oss2 import utils self.assertTrue(utils.is_valid_endpoint('oss-cn-shenzhen.aliyuncs.com')) self.assertTrue(utils.is_valid_endpoint('http://www.aliyun_cs.com')) self.assertTrue(utils.is_valid_endpoint('http://www.aliyun_cs.com:80')) self.assertTrue(utils.is_valid_endpoint('https://www.aliyuncs.com')) self.assertTrue(utils.is_valid_endpoint('http://192.168.1.1')) self.assertTrue(utils.is_valid_endpoint('http://192.168.1.1:3182')) self.assertTrue(utils.is_valid_endpoint('ftp://www.aliyuncs.com:21')) self.assertTrue(utils.is_valid_endpoint('192.168.1.1:80')) self.assertTrue(utils.is_valid_endpoint('www.aliyun_cs.com:80')) self.assertFalse(utils.is_valid_endpoint(None)) self.assertFalse(utils.is_valid_endpoint('')) self.assertFalse(utils.is_valid_endpoint('www.aliyuncs.com:')) self.assertFalse(utils.is_valid_endpoint('http://192.168.1.1:318r')) self.assertFalse(utils.is_valid_endpoint('www.aliyuncs.com\\www.test.com')) def test_compat(self): # from unicode u = u'中文' self.assertEqual(u, oss2.to_unicode(u)) self.assertEqual(u.encode('utf-8'), oss2.to_bytes(u)) if is_py2: self.assertEqual(u.encode('utf-8'), oss2.to_string(u)) if is_py3: self.assertEqual(u, oss2.to_string(u)) # from bytes b = u.encode('utf-8') self.assertEqual(b.decode('utf-8'), oss2.to_unicode(b)) self.assertEqual(b, oss2.to_bytes(b)) if is_py2: self.assertEqual(b, oss2.to_string(b)) if is_py3: self.assertEqual(b.decode('utf-8'), oss2.to_string(b)) def test_makedir_p(self): tempdir = tempfile.gettempdir() dirpath = os.path.join(tempdir, random_string(10)) oss2.utils.makedir_p(dirpath) os.path.isdir(dirpath) # recreate same dir should not issue an error oss2.utils.makedir_p(dirpath) def __fake_response(self, status, error_body): key = self.random_key() self.bucket.put_object(key, oss2.to_bytes(error_body)) resp = self.bucket.get_object(key).resp resp.status = status return resp def test_make_exception(self): body = 'bad body' e = make_exception(self.__fake_response(400, body)) self.assertTrue(isinstance(e, oss2.exceptions.ServerError)) self.assertEqual(e.status, 400) self.assertEqual(e.body, oss2.to_bytes(body)) body = '<Error><Code>NoSuchKey</Code><Message>中文和控制字符&#12;</Message></Error>' e = make_exception(self.__fake_response(404, body)) self.assertTrue(isinstance(e, oss2.exceptions.NoSuchKey)) self.assertEqual(e.status, 404) self.assertEqual(e.code, 'NoSuchKey') def test_len(self): adapter = oss2.utils.SizedFileAdapter('ss', 2500000000) self.assertEqual(requests.utils.super_len(adapter), 2500000000) adapter = oss2.utils._BytesAndFileAdapter('ss', size=2500000000) self.assertEqual(requests.utils.super_len(adapter), 2500000000) def test_adapter_composition(self): def progress_callback(consumed_bytes, total_bytes): pass crc_adapter = oss2.utils.make_crc_adapter('sss') progress_adapter = oss2.utils.make_progress_adapter(crc_adapter, progress_callback) self.assertEqual(progress_adapter.len, 3) def test_default_logger_basic(self): # verify default logger # self.assertEqual(oss2.defaults.get_logger(), logging.getLogger()) # verify custom logger # custom_logger = logging.getLogger('oss2') # oss2.defaults.logger = custom_logger # self.assertEqual(oss2.defaults.get_logger(), custom_logger) custom_logger = logging.getLogger('oss2') self.assertEqual(oss2.logger, custom_logger) def test_default_logger_put(self): custom_logger = logging.getLogger('oss2') # oss2.defaults.logger = custom_logger custom_logger.addHandler(logging.StreamHandler(sys.stdout)) custom_logger.setLevel(logging.DEBUG) key = self.random_key() self.bucket.put_object(key, 'abc') resp = self.bucket.get_object(key).resp self.assertEqual(b'abc', resp.read()) custom_logger.setLevel(logging.CRITICAL) def test_http_to_unixtime_in_zh_CN_locale(self): time_string = 'Sat, 06 Jan 2018 00:00:00 GMT' time_val = 1515196800 saved_locale = locale.setlocale(locale.LC_TIME) if os.name == 'nt': locale.setlocale(locale.LC_TIME, '') else: locale.setlocale(locale.LC_TIME, 'zh_CN.UTF-8') self.assertEqual(time_val, oss2.utils.http_to_unixtime(time_string)) self.assertRaises(ValueError, oss2.utils.to_unixtime, time_string, '%a, %d %b %Y %H:%M:%S GMT') locale.setlocale(locale.LC_TIME, saved_locale) def test_http_to_unixtime_basic(self): case_list = [ ('Sat, 06 Jan 2018 00:00:00 GMT', 1515196800), ('Fri, 09 Feb 2018 01:01:01 GMT', 1518138061), ('Sun, 11 Mar 2018 10:10:10 GMT', 1520763010), ('Mon, 23 Apr 2018 21:21:21 GMT', 1524518481), ('Thu, 31 May 2018 23:59:59 GMT', 1527811199), ('Wed, 20 Jun 2018 20:31:30 GMT', 1529526690), ('Tue, 10 Jul 2018 11:11:11 GMT', 1531221071), ('Tue, 21 Aug 1979 09:09:09 GMT', 304074549), ('Wed, 29 Sep 2100 10:21:32 GMT', 4125896492), ('Fri, 01 Oct 1999 08:00:00 GMT', 938764800), ('Wed, 11 Nov 2009 00:00:00 GMT', 1257897600), ('Wed, 12 Dec 2012 12:12:12 GMT', 1355314332) ] for time_string, time_val in case_list: t1 = oss2.utils.http_to_unixtime(time_string) t2 = oss2.utils.to_unixtime(time_string, '%a, %d %b %Y %H:%M:%S GMT') self.assertEqual(time_val, t1) self.assertEqual(time_val, t2) self.assertEqual(time_string, oss2.utils.http_date(time_val)) def test_http_to_unixtime_one_day(self): now = int(time.time()) for t in xrange(now, now + 86400): time_string = oss2.utils.http_date(t) self.assertEqual(t, oss2.utils.http_to_unixtime(time_string)) def test_http_to_unixtime_one_year(self): now = int(time.time()) for i in xrange(366): t = now + i * 86400 time_string = oss2.utils.http_date(t) self.assertEqual(t, oss2.utils.http_to_unixtime(time_string)) def test_http_to_unixtime_bad_format(self): case_list = [ '', 'Sat', 'Sat, 06 ', 'Sat, 06 Jan', 'Sat, 06 Jan 20', 'Sat, 06 Jan 2018 ', 'Sat, 06 Jan 2018 00', 'Sat, 06 Jan 2018 00:', 'Sat, 06 Jan 2018 00:00:', 'Sat, 06 Jan 2018 00:00:00', 'Sat, 06 Jan 2018 00:00:00 G', 'Unk, 06 Jan 2018 00:00:00 GMT', 'Friday, 12 Dec 2012 12:12:12 GMT', 'We, 12 Dec 2012 12:12:12 GMT', 'Wed 12 Dec 2012 12:12:12 GMT', 'Wed, 32 Dec 2012 12:12:12 GMT', 'Wed, 31 December 2012 12:12:12 GMT', 'Wed, 31 De 2012 12:12:12 GMT', 'Wed, 31 2012 12:12:12 GMT', 'Wed, 12 Dec 12:12:12 GMT', 'Wed, 31 Dec 2012 24:12:12 GMT', 'Wed, 31 Dec 2012 23:60:12 GMT', 'Wed, 31 Dec 2012 23:10:60 GMT', 'Wed, 31 Dec 2012 2:10:60 GMT', 'Wed, 31 Dec 2012 :10:60 GMT', 'Wed, 31 Dec 2012 02:1:60 GMT', 'Wed, 31 Dec 2012 02:01:0 GMT', 'Wed, 31 Dec 2012 02:01:01 CST', 'Wed, 31 Dec 2012 02:01:01 GMTA', 'Wed, 31 Dec 2012 02:01:01 GMT ABC', 'X Wed, 31 Dec 2012 02:01:01 GMT', ' Wed, 31 Dec 2012 02:01:01 GMT' ] for bad_string in case_list: try: oss2.utils.http_to_unixtime(bad_string) except ValueError as e: self.assertEqual(str(e), bad_string + ' is not in valid HTTP date format') else: self.assertTrue(False, bad_string) def test_iso8601_to_unixtime_in_zh_CN_locale(self): time_string = '2018-02-09T01:01:01.000Z' time_val = 1518138061 saved_locale = locale.setlocale(locale.LC_TIME) if os.name == 'nt': locale.setlocale(locale.LC_TIME, '') else: locale.setlocale(locale.LC_TIME, 'zh_CN.UTF-8') # iso8601 contains no locale related info, so it is OK to use to_unixtime() self.assertEqual(time_val, oss2.utils.iso8601_to_unixtime(time_string)) self.assertEqual(time_val, oss2.utils.to_unixtime(time_string, '%Y-%m-%dT%H:%M:%S.000Z')) locale.setlocale(locale.LC_TIME, saved_locale) def test_iso8601_to_unixtime_basic(self): case_list = [ ('2018-01-06T00:00:00.000Z', 1515196800), ('2018-02-09T01:01:01.000Z', 1518138061), ('2018-03-11T10:10:10.000Z', 1520763010), ('2018-04-23T21:21:21.000Z', 1524518481), ('2018-05-31T23:59:59.000Z', 1527811199), ('2018-06-20T20:31:30.000Z', 1529526690), ('2018-07-10T11:11:11.000Z', 1531221071), ('1979-08-21T09:09:09.000Z', 304074549), ('2100-09-29T10:21:32.000Z', 4125896492), ('1999-10-01T08:00:00.000Z', 938764800), ('2009-11-11T00:00:00.000Z', 1257897600), ('2012-12-12T12:12:12.000Z', 1355314332) ] for time_string, time_val in case_list: t1 = oss2.utils.iso8601_to_unixtime(time_string) t2 = oss2.utils.to_unixtime(time_string, '%Y-%m-%dT%H:%M:%S.000Z') self.assertEqual(time_val, t1) self.assertEqual(time_val, t2) self.assertEqual(time_string, oss2.utils.date_to_iso8601(datetime.datetime.utcfromtimestamp(time_val))) def test_iso8601_to_unixtime_one_day(self): now = int(time.time()) for t in xrange(now, now + 86400): time_string = oss2.utils.date_to_iso8601(datetime.datetime.utcfromtimestamp(t)) self.assertEqual(t, oss2.utils.iso8601_to_unixtime(time_string)) def test_iso8601_to_unixtime_one_year(self): now = int(time.time()) for i in xrange(366): t = now + i * 86400 time_string = oss2.utils.date_to_iso8601(datetime.datetime.utcfromtimestamp(t)) self.assertEqual(t, oss2.utils.iso8601_to_unixtime(time_string)) def test_iso8601_to_unixtime_bad_format(self): case_list = [ '', '2012', '2012-', '2012-12', '2012-12-', '2012-12-12', '2012-12-12T', '2012-12-12T12', '2012-12-12T12:', '2012-12-12T12:1', '2012-12-12T12:12:', '2012-12-12T12:12:12', '2012-12-12T12:12:12.', '2012-12-12T12:12:12.0', '2012-12-12T12:12:12.00', '2012-12-12T12:12:12.000', '2012-12-12T12:12:12.000X', '-12-12T12:12:12.000Z', '2012-13-12T12:12:12.000Z', '2012-12-32T12:12:12.000Z', '2012-12-12X12:12:12.000Z', '2012-12-12T:12:12.000Z', '2012-12-12T0:12:12.000Z', '2012-12-12T60:12:12.000Z', '2012-12-12T12::12.000Z', '2012-12-12T12:1:12.000Z', '2012-12-12T12:60:12.000Z', '2012-12-12T12:12:1.000Z', '2012-12-12T12:12:60.000Z', '2012-12-12T12:12:12.100Z', '2012-12-12T12:12:12.010Z', '2012-12-12T12:12:12.001Z', '2012-12-12T12:12:12.000ZZ', '2012-12-12T12:12:12.000Z X', '2012-12-12T12:12:00.000Z ', ' 2012-12-12T12:12:00.000Z', 'X 2012-12-12T12:12:00.000Z', ] for bad_string in case_list: try: oss2.utils.iso8601_to_unixtime(bad_string) except ValueError as e: self.assertEqual(str(e), bad_string + ' is not in valid ISO8601 format') else: self.assertTrue(False, bad_string) if __name__ == '__main__': unittest.main()
mit
-59,843,685,782,884,540
36.318766
115
0.581112
false
rcomer/iris
lib/iris/tests/unit/fileformats/cf/test_CFReader.py
1
14385
# Copyright Iris contributors # # This file is part of Iris and is released under the LGPL license. # See COPYING and COPYING.LESSER in the root of the repository for full # licensing details. """ Unit tests for the `iris.fileformats.cf.CFReader` class. """ # Import iris.tests first so that some things can be initialised before # importing anything else. import iris.tests as tests from unittest import mock import numpy as np from iris.fileformats.cf import CFReader def netcdf_variable( name, dimensions, dtype, ancillary_variables=None, coordinates="", bounds=None, climatology=None, formula_terms=None, grid_mapping=None, cell_measures=None, standard_name=None, ): """Return a mock NetCDF4 variable.""" ndim = 0 if dimensions is not None: dimensions = dimensions.split() ndim = len(dimensions) else: dimensions = [] ncvar = mock.Mock( name=name, dimensions=dimensions, ncattrs=mock.Mock(return_value=[]), ndim=ndim, dtype=dtype, ancillary_variables=ancillary_variables, coordinates=coordinates, bounds=bounds, climatology=climatology, formula_terms=formula_terms, grid_mapping=grid_mapping, cell_measures=cell_measures, standard_name=standard_name, ) return ncvar class Test_translate__global_attributes(tests.IrisTest): def setUp(self): ncvar = netcdf_variable("ncvar", "height", np.float64) ncattrs = mock.Mock(return_value=["dimensions"]) getncattr = mock.Mock(return_value="something something_else") self.dataset = mock.Mock( file_format="NetCDF4", variables={"ncvar": ncvar}, ncattrs=ncattrs, getncattr=getncattr, ) def test_create_global_attributes(self): with mock.patch("netCDF4.Dataset", return_value=self.dataset): global_attrs = CFReader("dummy").cf_group.global_attributes self.assertEqual( global_attrs["dimensions"], "something something_else" ) class Test_translate__formula_terms(tests.IrisTest): def setUp(self): self.delta = netcdf_variable( "delta", "height", np.float64, bounds="delta_bnds" ) self.delta_bnds = netcdf_variable( "delta_bnds", "height bnds", np.float ) self.sigma = netcdf_variable( "sigma", "height", np.float64, bounds="sigma_bnds" ) self.sigma_bnds = netcdf_variable( "sigma_bnds", "height bnds", np.float ) self.orography = netcdf_variable("orography", "lat lon", np.float64) formula_terms = "a: delta b: sigma orog: orography" standard_name = "atmosphere_hybrid_height_coordinate" self.height = netcdf_variable( "height", "height", np.float64, formula_terms=formula_terms, bounds="height_bnds", standard_name=standard_name, ) # Over-specify the formula terms on the bounds variable, # which will be ignored by the cf loader. formula_terms = "a: delta_bnds b: sigma_bnds orog: orography" self.height_bnds = netcdf_variable( "height_bnds", "height bnds", np.float64, formula_terms=formula_terms, ) self.lat = netcdf_variable("lat", "lat", np.float64) self.lon = netcdf_variable("lon", "lon", np.float64) # Note that, only lat and lon are explicitly associated as coordinates. self.temp = netcdf_variable( "temp", "height lat lon", np.float64, coordinates="lat lon" ) self.variables = dict( delta=self.delta, sigma=self.sigma, orography=self.orography, height=self.height, lat=self.lat, lon=self.lon, temp=self.temp, delta_bnds=self.delta_bnds, sigma_bnds=self.sigma_bnds, height_bnds=self.height_bnds, ) ncattrs = mock.Mock(return_value=[]) self.dataset = mock.Mock( file_format="NetCDF4", variables=self.variables, ncattrs=ncattrs ) # Restrict the CFReader functionality to only performing translations. build_patch = mock.patch( "iris.fileformats.cf.CFReader._build_cf_groups" ) reset_patch = mock.patch("iris.fileformats.cf.CFReader._reset") build_patch.start() reset_patch.start() self.addCleanup(build_patch.stop) self.addCleanup(reset_patch.stop) def test_create_formula_terms(self): with mock.patch("netCDF4.Dataset", return_value=self.dataset): cf_group = CFReader("dummy").cf_group self.assertEqual(len(cf_group), len(self.variables)) # Check there is a singular data variable. group = cf_group.data_variables self.assertEqual(len(group), 1) self.assertEqual(list(group.keys()), ["temp"]) self.assertIs(group["temp"].cf_data, self.temp) # Check there are three coordinates. group = cf_group.coordinates self.assertEqual(len(group), 3) coordinates = ["height", "lat", "lon"] self.assertEqual(set(group.keys()), set(coordinates)) for name in coordinates: self.assertIs(group[name].cf_data, getattr(self, name)) # Check there are three auxiliary coordinates. group = cf_group.auxiliary_coordinates self.assertEqual(len(group), 3) aux_coordinates = ["delta", "sigma", "orography"] self.assertEqual(set(group.keys()), set(aux_coordinates)) for name in aux_coordinates: self.assertIs(group[name].cf_data, getattr(self, name)) # Check all the auxiliary coordinates are formula terms. formula_terms = cf_group.formula_terms self.assertEqual(set(group.items()), set(formula_terms.items())) # Check there are three bounds. group = cf_group.bounds self.assertEqual(len(group), 3) bounds = ["height_bnds", "delta_bnds", "sigma_bnds"] self.assertEqual(set(group.keys()), set(bounds)) for name in bounds: self.assertEqual(group[name].cf_data, getattr(self, name)) class Test_build_cf_groups__formula_terms(tests.IrisTest): def setUp(self): self.delta = netcdf_variable( "delta", "height", np.float64, bounds="delta_bnds" ) self.delta_bnds = netcdf_variable( "delta_bnds", "height bnds", np.float ) self.sigma = netcdf_variable( "sigma", "height", np.float64, bounds="sigma_bnds" ) self.sigma_bnds = netcdf_variable( "sigma_bnds", "height bnds", np.float ) self.orography = netcdf_variable("orography", "lat lon", np.float64) formula_terms = "a: delta b: sigma orog: orography" standard_name = "atmosphere_hybrid_height_coordinate" self.height = netcdf_variable( "height", "height", np.float64, formula_terms=formula_terms, bounds="height_bnds", standard_name=standard_name, ) # Over-specify the formula terms on the bounds variable, # which will be ignored by the cf loader. formula_terms = "a: delta_bnds b: sigma_bnds orog: orography" self.height_bnds = netcdf_variable( "height_bnds", "height bnds", np.float64, formula_terms=formula_terms, ) self.lat = netcdf_variable("lat", "lat", np.float64) self.lon = netcdf_variable("lon", "lon", np.float64) self.x = netcdf_variable("x", "lat lon", np.float64) self.y = netcdf_variable("y", "lat lon", np.float64) # Note that, only lat and lon are explicitly associated as coordinates. self.temp = netcdf_variable( "temp", "height lat lon", np.float64, coordinates="x y" ) self.variables = dict( delta=self.delta, sigma=self.sigma, orography=self.orography, height=self.height, lat=self.lat, lon=self.lon, temp=self.temp, delta_bnds=self.delta_bnds, sigma_bnds=self.sigma_bnds, height_bnds=self.height_bnds, x=self.x, y=self.y, ) ncattrs = mock.Mock(return_value=[]) self.dataset = mock.Mock( file_format="NetCDF4", variables=self.variables, ncattrs=ncattrs ) # Restrict the CFReader functionality to only performing translations # and building first level cf-groups for variables. patcher = mock.patch("iris.fileformats.cf.CFReader._reset") patcher.start() self.addCleanup(patcher.stop) def test_associate_formula_terms_with_data_variable(self): with mock.patch("netCDF4.Dataset", return_value=self.dataset): cf_group = CFReader("dummy").cf_group self.assertEqual(len(cf_group), len(self.variables)) # Check the cf-group associated with the data variable. temp_cf_group = cf_group["temp"].cf_group # Check the data variable is associated with eight variables. self.assertEqual(len(temp_cf_group), 8) # Check there are three coordinates. group = temp_cf_group.coordinates self.assertEqual(len(group), 3) coordinates = ["height", "lat", "lon"] self.assertEqual(set(group.keys()), set(coordinates)) for name in coordinates: self.assertIs(group[name].cf_data, getattr(self, name)) # Check the height coordinate is bounded. group = group["height"].cf_group self.assertEqual(len(group.bounds), 1) self.assertIn("height_bnds", group.bounds) self.assertIs(group["height_bnds"].cf_data, self.height_bnds) # Check there are five auxiliary coordinates. group = temp_cf_group.auxiliary_coordinates self.assertEqual(len(group), 5) aux_coordinates = ["delta", "sigma", "orography", "x", "y"] self.assertEqual(set(group.keys()), set(aux_coordinates)) for name in aux_coordinates: self.assertIs(group[name].cf_data, getattr(self, name)) # Check all the auxiliary coordinates are formula terms. formula_terms = cf_group.formula_terms self.assertTrue( set(formula_terms.items()).issubset(list(group.items())) ) # Check the terms by root. for name, term in zip(aux_coordinates, ["a", "b", "orog"]): self.assertEqual( formula_terms[name].cf_terms_by_root, dict(height=term) ) # Check the bounded auxiliary coordinates. for name, name_bnds in zip( ["delta", "sigma"], ["delta_bnds", "sigma_bnds"] ): aux_coord_group = group[name].cf_group self.assertEqual(len(aux_coord_group.bounds), 1) self.assertIn(name_bnds, aux_coord_group.bounds) self.assertIs( aux_coord_group[name_bnds].cf_data, getattr(self, name_bnds), ) def test_promote_reference(self): with mock.patch("netCDF4.Dataset", return_value=self.dataset): cf_group = CFReader("dummy").cf_group self.assertEqual(len(cf_group), len(self.variables)) # Check the number of data variables. self.assertEqual(len(cf_group.data_variables), 1) self.assertEqual(list(cf_group.data_variables.keys()), ["temp"]) # Check the number of promoted variables. self.assertEqual(len(cf_group.promoted), 1) self.assertEqual(list(cf_group.promoted.keys()), ["orography"]) # Check the promoted variable dependencies. group = cf_group.promoted["orography"].cf_group.coordinates self.assertEqual(len(group), 2) coordinates = ("lat", "lon") self.assertEqual(set(group.keys()), set(coordinates)) for name in coordinates: self.assertIs(group[name].cf_data, getattr(self, name)) def test_formula_terms_ignore(self): self.orography.dimensions = ["lat", "wibble"] with mock.patch( "netCDF4.Dataset", return_value=self.dataset ), mock.patch("warnings.warn") as warn: cf_group = CFReader("dummy").cf_group group = cf_group.promoted self.assertEqual(list(group.keys()), ["orography"]) self.assertIs(group["orography"].cf_data, self.orography) self.assertEqual(warn.call_count, 1) def test_auxiliary_ignore(self): self.x.dimensions = ["lat", "wibble"] with mock.patch( "netCDF4.Dataset", return_value=self.dataset ), mock.patch("warnings.warn") as warn: cf_group = CFReader("dummy").cf_group promoted = ["x", "orography"] group = cf_group.promoted self.assertEqual(set(group.keys()), set(promoted)) for name in promoted: self.assertIs(group[name].cf_data, getattr(self, name)) self.assertEqual(warn.call_count, 1) def test_promoted_auxiliary_ignore(self): self.wibble = netcdf_variable("wibble", "lat wibble", np.float64) self.variables["wibble"] = self.wibble self.orography.coordinates = "wibble" with mock.patch( "netCDF4.Dataset", return_value=self.dataset ), mock.patch("warnings.warn") as warn: cf_group = CFReader("dummy").cf_group.promoted promoted = ["wibble", "orography"] self.assertEqual(set(cf_group.keys()), set(promoted)) for name in promoted: self.assertIs(cf_group[name].cf_data, getattr(self, name)) self.assertEqual(warn.call_count, 2) if __name__ == "__main__": tests.main()
lgpl-3.0
7,296,252,401,670,800,000
39.407303
79
0.583455
false
Impavidity/kim_cnn
model.py
1
2614
import torch import torch.nn as nn import torch.nn.functional as F class KimCNN(nn.Module): def __init__(self, config): super(KimCNN, self).__init__() output_channel = config.output_channel target_class = config.target_class words_num = config.words_num words_dim = config.words_dim embed_num = config.embed_num embed_dim = config.embed_dim self.mode = config.mode Ks = 3 # There are three conv net here if config.mode == 'multichannel': input_channel = 2 else: input_channel = 1 self.embed = nn.Embedding(words_num, words_dim) self.static_embed = nn.Embedding(embed_num, embed_dim) self.non_static_embed = nn.Embedding(embed_num, embed_dim) self.static_embed.weight.requires_grad = False self.conv1 = nn.Conv2d(input_channel, output_channel, (3, words_dim), padding=(2,0)) self.conv2 = nn.Conv2d(input_channel, output_channel, (4, words_dim), padding=(3,0)) self.conv3 = nn.Conv2d(input_channel, output_channel, (5, words_dim), padding=(4,0)) self.dropout = nn.Dropout(config.dropout) self.fc1 = nn.Linear(Ks * output_channel, target_class) def forward(self, x): x = x.text if self.mode == 'rand': word_input = self.embed(x) # (batch, sent_len, embed_dim) x = word_input.unsqueeze(1) # (batch, channel_input, sent_len, embed_dim) elif self.mode == 'static': static_input = self.static_embed(x) x = static_input.unsqueeze(1) # (batch, channel_input, sent_len, embed_dim) elif self.mode == 'non-static': non_static_input = self.non_static_embed(x) x = non_static_input.unsqueeze(1) # (batch, channel_input, sent_len, embed_dim) elif self.mode == 'multichannel': non_static_input = self.non_static_embed(x) static_input = self.static_embed(x) x = torch.stack([non_static_input, static_input], dim=1) # (batch, channel_input=2, sent_len, embed_dim) else: print("Unsupported Mode") exit() x = [F.relu(self.conv1(x)).squeeze(3), F.relu(self.conv2(x)).squeeze(3), F.relu(self.conv3(x)).squeeze(3)] # (batch, channel_output, ~=sent_len) * Ks x = [F.max_pool1d(i, i.size(2)).squeeze(2) for i in x] # max-over-time pooling # (batch, channel_output) * Ks x = torch.cat(x, 1) # (batch, channel_output * Ks) x = self.dropout(x) logit = self.fc1(x) # (batch, target_size) return logit
mit
-8,031,420,437,314,376,000
43.305085
116
0.590283
false
sony/nnabla
python/src/nnabla/backward_function/greater_equal_scalar.py
1
1032
# Copyright 2019,2020,2021 Sony Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import nnabla.functions as F from .utils import no_grad def greater_equal_scalar_backward(inputs, val=1): """ Args: inputs (list of nn.Variable): Incomming grads/inputs to/of the forward function. kwargs (dict of arguments): Dictionary of the corresponding function arguments. Return: list of Variable: Return the gradients wrt inputs of the corresponding function. """ return [None] * len(inputs)
apache-2.0
-4,171,969,917,226,927,600
34.586207
86
0.738372
false
Dzess/ALFIRT
alfirt.runner/src/readers/tests/TagReaderX3DUnitTests.py
1
4002
''' Created on Jun 9, 2011 @author: Piotr ''' import unittest import os from readers.TagReaderX3D import TagReaderX3D class TagReaderX3DUnitTests(unittest.TestCase): def setUp(self): # Setting up the X3D string with ALFIRT namespace tags x3dString = """<?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE X3D PUBLIC "ISO//Web3D//DTD X3D 3.2//EN" "http://www.web3d.org/specifications/x3d-3.2.dtd"> <X3D profile="Interchange" version="3.2" xmlns:xsd="http://www.w3.org/2001/XMLSchema-instance" xmlns:alfirt="ALFIRT" xsd:noNamespaceSchemaLocation=" http://www.web3d.org/specifications/x3d-3.2.xsd "> <Scene> <Viewpoint description='Rear View' orientation='0 1 0 3.14159' position='0 0 -10'/> <Shape alfirt:anchor_translate="0 1 2" alfirt:anchor_rotate="0.4 0.2 0.3"> <IndexedFaceSet coordIndex="0 1 2"> <Coordinate point="0 0 0 1 0 0 0.5 1 0"/> </IndexedFaceSet> </Shape> </Scene> </X3D> """ # Creating file self.fileName = "test_file_name" with open(self.fileName, 'w') as fileStream: fileStream.write(x3dString) fileStream.close() def tearDown(self): # Removing file after test os.remove(self.fileName) def test_reading_none_results_in_exception(self): x3dReader = TagReaderX3D() with self.assertRaises(ValueError): x3dReader.readScene(None) with self.assertRaises(ValueError): x3dReader.readScene("some no existing file") def test_reading_file_with_no_anchor_results_in_exception(self): ''' The anchor is required for the polar transformations around the object. ''' # Setting up the X3D string with ALFIRT namespace tags x3dString = """<?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE X3D PUBLIC "ISO//Web3D//DTD X3D 3.2//EN" "http://www.web3d.org/specifications/x3d-3.2.dtd"> <X3D profile="Interchange" version="3.2" xmlns:xsd="http://www.w3.org/2001/XMLSchema-instance" xmlns:alfirt="ALFIRT" xsd:noNamespaceSchemaLocation=" http://www.web3d.org/specifications/x3d-3.2.xsd "> <Scene> <Viewpoint description='Rear View' orientation='0 1 0 3.14159' position='0 0 -10'/> <Shape> <IndexedFaceSet coordIndex="0 1 2"> <Coordinate point="0 0 0 1 0 0 0.5 1 0"/> </IndexedFaceSet> </Shape> </Scene> </X3D> """ # Write this file into the data fileName = "test_file_without_anchor" with open(fileName, 'w') as fileStream: fileStream.write(x3dString) fileStream.close() # Get reader x3dReader = TagReaderX3D() try: x3dReader.readScene(fileName) except RuntimeError: return finally: os.remove(fileName) self.fail("The exception should have been thrown") def test_reading_file_with_alfirt_tags(self): ''' Checks if the elements passed in X3D string are correct. ''' x3dReader = TagReaderX3D() results = x3dReader.readScene(self.fileName) # assert the values translateCamera = results.camera.translate rotateCamera = results.camera.rotate translateAnchor = results.anchor.translate rotateAnchor = results.anchor.rotate self.assertEqual(translateAnchor, [0.0, 1.0, 2.0], 'Translate of the anchor should be 0 1 2') self.assertEqual(rotateAnchor , [0.4, 0.2, 0.3 ], "Rotate of the anchor should be 0.4, 0.2 0.3") self.assertEqual(translateCamera, [0.0, -10, 0], "The position of the camera should be 0 0 -10") self.assertEqual(rotateCamera, [1.5707963705062866, 1.7340079025429667e-13, 3.1415903568267822], "The rotation of the camera should be 0 1 0 3.14") #=============================================================================== # Test runner #=============================================================================== if (__name__ == 'main'): unittest.main(verbosity=2)
mit
5,748,462,383,747,537,000
32.07438
155
0.615942
false
cloud-fan/spark
python/pyspark/pandas/internal.py
1
68330
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ An internal immutable DataFrame with some metadata to manage indexes. """ import re from typing import Any, Dict, List, Optional, Sequence, Tuple, Union, TYPE_CHECKING, cast from itertools import accumulate import py4j import numpy as np import pandas as pd from pandas.api.types import CategoricalDtype # noqa: F401 from pyspark import sql as spark from pyspark._globals import _NoValue, _NoValueType from pyspark.sql import functions as F, Window from pyspark.sql.functions import pandas_udf from pyspark.sql.types import ( # noqa: F401 BooleanType, DataType, IntegralType, LongType, StructField, StructType, StringType, ) # For running doctests and reference resolution in PyCharm. from pyspark import pandas as ps if TYPE_CHECKING: # This is required in old Python 3.5 to prevent circular reference. from pyspark.pandas.series import Series # noqa: F401 (SPARK-34943) from pyspark.pandas.spark.utils import as_nullable_spark_type, force_decimal_precision_scale from pyspark.pandas.data_type_ops.base import DataTypeOps from pyspark.pandas.typedef import ( Dtype, as_spark_type, extension_dtypes, infer_pd_series_spark_type, spark_type_to_pandas_dtype, ) from pyspark.pandas.utils import ( column_labels_level, default_session, is_name_like_tuple, is_testing, lazy_property, name_like_string, scol_for, spark_column_equals, verify_temp_column_name, ) # A function to turn given numbers to Spark columns that represent pandas-on-Spark index. SPARK_INDEX_NAME_FORMAT = "__index_level_{}__".format SPARK_DEFAULT_INDEX_NAME = SPARK_INDEX_NAME_FORMAT(0) # A pattern to check if the name of a Spark column is a pandas-on-Spark index name or not. SPARK_INDEX_NAME_PATTERN = re.compile(r"__index_level_[0-9]+__") NATURAL_ORDER_COLUMN_NAME = "__natural_order__" HIDDEN_COLUMNS = {NATURAL_ORDER_COLUMN_NAME} DEFAULT_SERIES_NAME = 0 SPARK_DEFAULT_SERIES_NAME = str(DEFAULT_SERIES_NAME) class InternalField: """ The internal field to store the dtype as well as the Spark's StructField optionally. Parameters ---------- dtype : numpy.dtype or pandas' ExtensionDtype The dtype for the field struct_field : StructField, optional The `StructField` for the field. If None, InternalFrame will properly set. """ def __init__(self, dtype: Dtype, struct_field: Optional[StructField] = None): self._dtype = dtype self._struct_field = struct_field @staticmethod def from_struct_field( struct_field: StructField, *, use_extension_dtypes: bool = False ) -> "InternalField": """ Returns a new InternalField object created from the given StructField. The dtype will be inferred from the data type of the given StructField. Parameters ---------- struct_field : StructField The StructField used to create a new InternalField object. use_extension_dtypes : bool If True, try to use the extension dtypes. Returns ------- InternalField """ return InternalField( dtype=spark_type_to_pandas_dtype( struct_field.dataType, use_extension_dtypes=use_extension_dtypes ), struct_field=struct_field, ) @property def dtype(self) -> Dtype: """Return the dtype for the field.""" return self._dtype @property def struct_field(self) -> Optional[StructField]: """Return the StructField for the field.""" return self._struct_field @property def name(self) -> str: """Return the field name if the StructField exists.""" assert self.struct_field is not None return self.struct_field.name @property def spark_type(self) -> DataType: """Return the spark data type for the field if the StructField exists.""" assert self.struct_field is not None return self.struct_field.dataType @property def nullable(self) -> bool: """Return the nullability for the field if the StructField exists.""" assert self.struct_field is not None return self.struct_field.nullable @property def metadata(self) -> Dict[str, Any]: """Return the metadata for the field if the StructField exists.""" assert self.struct_field is not None return self.struct_field.metadata @property def is_extension_dtype(self) -> bool: """Return whether the dtype for the field is an extension type or not.""" return isinstance(self.dtype, extension_dtypes) def normalize_spark_type(self) -> "InternalField": """Return a new InternalField object with normalized Spark data type.""" assert self.struct_field is not None return self.copy( spark_type=force_decimal_precision_scale(as_nullable_spark_type(self.spark_type)), nullable=True, ) def copy( self, *, name: Union[str, _NoValueType] = _NoValue, dtype: Union[Dtype, _NoValueType] = _NoValue, spark_type: Union[DataType, _NoValueType] = _NoValue, nullable: Union[bool, _NoValueType] = _NoValue, metadata: Union[Optional[Dict[str, Any]], _NoValueType] = _NoValue, ) -> "InternalField": """Copy the InternalField object.""" if name is _NoValue: name = self.name if dtype is _NoValue: dtype = self.dtype if spark_type is _NoValue: spark_type = self.spark_type if nullable is _NoValue: nullable = self.nullable if metadata is _NoValue: metadata = self.metadata return InternalField( dtype=cast(Dtype, dtype), struct_field=StructField( name=cast(str, name), dataType=cast(DataType, spark_type), nullable=cast(bool, nullable), metadata=cast(Optional[Dict[str, Any]], metadata), ), ) def __repr__(self) -> str: return "InternalField(dtype={dtype},struct_field={struct_field})".format( dtype=self.dtype, struct_field=self.struct_field ) class InternalFrame(object): """ The internal immutable DataFrame which manages Spark DataFrame and column names and index information. .. note:: this is an internal class. It is not supposed to be exposed to users and users should not directly access to it. The internal immutable DataFrame represents the index information for a DataFrame it belongs to. For instance, if we have a pandas-on-Spark DataFrame as below, pandas DataFrame does not store the index as columns. >>> psdf = ps.DataFrame({ ... 'A': [1, 2, 3, 4], ... 'B': [5, 6, 7, 8], ... 'C': [9, 10, 11, 12], ... 'D': [13, 14, 15, 16], ... 'E': [17, 18, 19, 20]}, columns = ['A', 'B', 'C', 'D', 'E']) >>> psdf # doctest: +NORMALIZE_WHITESPACE A B C D E 0 1 5 9 13 17 1 2 6 10 14 18 2 3 7 11 15 19 3 4 8 12 16 20 However, all columns including index column are also stored in Spark DataFrame internally as below. >>> psdf._internal.to_internal_spark_frame.show() # doctest: +NORMALIZE_WHITESPACE +-----------------+---+---+---+---+---+ |__index_level_0__| A| B| C| D| E| +-----------------+---+---+---+---+---+ | 0| 1| 5| 9| 13| 17| | 1| 2| 6| 10| 14| 18| | 2| 3| 7| 11| 15| 19| | 3| 4| 8| 12| 16| 20| +-----------------+---+---+---+---+---+ In order to fill this gap, the current metadata is used by mapping Spark's internal column to pandas-on-Spark's index. See the method below: * `spark_frame` represents the internal Spark DataFrame * `data_spark_column_names` represents non-indexing Spark column names * `data_spark_columns` represents non-indexing Spark columns * `data_fields` represents non-indexing InternalFields * `index_spark_column_names` represents internal index Spark column names * `index_spark_columns` represents internal index Spark columns * `index_fields` represents index InternalFields * `spark_column_names` represents all columns * `index_names` represents the external index name as a label * `to_internal_spark_frame` represents Spark DataFrame derived by the metadata. Includes index. * `to_pandas_frame` represents pandas DataFrame derived by the metadata >>> internal = psdf._internal >>> internal.spark_frame.show() # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS +-----------------+---+---+---+---+---+-----------------+ |__index_level_0__| A| B| C| D| E|__natural_order__| +-----------------+---+---+---+---+---+-----------------+ | 0| 1| 5| 9| 13| 17| ...| | 1| 2| 6| 10| 14| 18| ...| | 2| 3| 7| 11| 15| 19| ...| | 3| 4| 8| 12| 16| 20| ...| +-----------------+---+---+---+---+---+-----------------+ >>> internal.data_spark_column_names ['A', 'B', 'C', 'D', 'E'] >>> internal.index_spark_column_names ['__index_level_0__'] >>> internal.spark_column_names ['__index_level_0__', 'A', 'B', 'C', 'D', 'E'] >>> internal.index_names [None] >>> internal.data_fields # doctest: +NORMALIZE_WHITESPACE [InternalField(dtype=int64,struct_field=StructField(A,LongType,false)), InternalField(dtype=int64,struct_field=StructField(B,LongType,false)), InternalField(dtype=int64,struct_field=StructField(C,LongType,false)), InternalField(dtype=int64,struct_field=StructField(D,LongType,false)), InternalField(dtype=int64,struct_field=StructField(E,LongType,false))] >>> internal.index_fields [InternalField(dtype=int64,struct_field=StructField(__index_level_0__,LongType,false))] >>> internal.to_internal_spark_frame.show() # doctest: +NORMALIZE_WHITESPACE +-----------------+---+---+---+---+---+ |__index_level_0__| A| B| C| D| E| +-----------------+---+---+---+---+---+ | 0| 1| 5| 9| 13| 17| | 1| 2| 6| 10| 14| 18| | 2| 3| 7| 11| 15| 19| | 3| 4| 8| 12| 16| 20| +-----------------+---+---+---+---+---+ >>> internal.to_pandas_frame A B C D E 0 1 5 9 13 17 1 2 6 10 14 18 2 3 7 11 15 19 3 4 8 12 16 20 In case that index is set to one of the existing column as below: >>> psdf1 = psdf.set_index("A") >>> psdf1 # doctest: +NORMALIZE_WHITESPACE B C D E A 1 5 9 13 17 2 6 10 14 18 3 7 11 15 19 4 8 12 16 20 >>> psdf1._internal.to_internal_spark_frame.show() # doctest: +NORMALIZE_WHITESPACE +---+---+---+---+---+ | A| B| C| D| E| +---+---+---+---+---+ | 1| 5| 9| 13| 17| | 2| 6| 10| 14| 18| | 3| 7| 11| 15| 19| | 4| 8| 12| 16| 20| +---+---+---+---+---+ >>> internal = psdf1._internal >>> internal.spark_frame.show() # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS +-----------------+---+---+---+---+---+-----------------+ |__index_level_0__| A| B| C| D| E|__natural_order__| +-----------------+---+---+---+---+---+-----------------+ | 0| 1| 5| 9| 13| 17| ...| | 1| 2| 6| 10| 14| 18| ...| | 2| 3| 7| 11| 15| 19| ...| | 3| 4| 8| 12| 16| 20| ...| +-----------------+---+---+---+---+---+-----------------+ >>> internal.data_spark_column_names ['B', 'C', 'D', 'E'] >>> internal.index_spark_column_names ['A'] >>> internal.spark_column_names ['A', 'B', 'C', 'D', 'E'] >>> internal.index_names [('A',)] >>> internal.data_fields [InternalField(dtype=int64,struct_field=StructField(B,LongType,false)), InternalField(dtype=int64,struct_field=StructField(C,LongType,false)), InternalField(dtype=int64,struct_field=StructField(D,LongType,false)), InternalField(dtype=int64,struct_field=StructField(E,LongType,false))] >>> internal.index_fields [InternalField(dtype=int64,struct_field=StructField(A,LongType,false))] >>> internal.to_internal_spark_frame.show() # doctest: +NORMALIZE_WHITESPACE +---+---+---+---+---+ | A| B| C| D| E| +---+---+---+---+---+ | 1| 5| 9| 13| 17| | 2| 6| 10| 14| 18| | 3| 7| 11| 15| 19| | 4| 8| 12| 16| 20| +---+---+---+---+---+ >>> internal.to_pandas_frame # doctest: +NORMALIZE_WHITESPACE B C D E A 1 5 9 13 17 2 6 10 14 18 3 7 11 15 19 4 8 12 16 20 In case that index becomes a multi index as below: >>> psdf2 = psdf.set_index("A", append=True) >>> psdf2 # doctest: +NORMALIZE_WHITESPACE B C D E A 0 1 5 9 13 17 1 2 6 10 14 18 2 3 7 11 15 19 3 4 8 12 16 20 >>> psdf2._internal.to_internal_spark_frame.show() # doctest: +NORMALIZE_WHITESPACE +-----------------+---+---+---+---+---+ |__index_level_0__| A| B| C| D| E| +-----------------+---+---+---+---+---+ | 0| 1| 5| 9| 13| 17| | 1| 2| 6| 10| 14| 18| | 2| 3| 7| 11| 15| 19| | 3| 4| 8| 12| 16| 20| +-----------------+---+---+---+---+---+ >>> internal = psdf2._internal >>> internal.spark_frame.show() # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS +-----------------+---+---+---+---+---+-----------------+ |__index_level_0__| A| B| C| D| E|__natural_order__| +-----------------+---+---+---+---+---+-----------------+ | 0| 1| 5| 9| 13| 17| ...| | 1| 2| 6| 10| 14| 18| ...| | 2| 3| 7| 11| 15| 19| ...| | 3| 4| 8| 12| 16| 20| ...| +-----------------+---+---+---+---+---+-----------------+ >>> internal.data_spark_column_names ['B', 'C', 'D', 'E'] >>> internal.index_spark_column_names ['__index_level_0__', 'A'] >>> internal.spark_column_names ['__index_level_0__', 'A', 'B', 'C', 'D', 'E'] >>> internal.index_names [None, ('A',)] >>> internal.data_fields # doctest: +NORMALIZE_WHITESPACE [InternalField(dtype=int64,struct_field=StructField(B,LongType,false)), InternalField(dtype=int64,struct_field=StructField(C,LongType,false)), InternalField(dtype=int64,struct_field=StructField(D,LongType,false)), InternalField(dtype=int64,struct_field=StructField(E,LongType,false))] >>> internal.index_fields # doctest: +NORMALIZE_WHITESPACE [InternalField(dtype=int64,struct_field=StructField(__index_level_0__,LongType,false)), InternalField(dtype=int64,struct_field=StructField(A,LongType,false))] >>> internal.to_internal_spark_frame.show() # doctest: +NORMALIZE_WHITESPACE +-----------------+---+---+---+---+---+ |__index_level_0__| A| B| C| D| E| +-----------------+---+---+---+---+---+ | 0| 1| 5| 9| 13| 17| | 1| 2| 6| 10| 14| 18| | 2| 3| 7| 11| 15| 19| | 3| 4| 8| 12| 16| 20| +-----------------+---+---+---+---+---+ >>> internal.to_pandas_frame # doctest: +NORMALIZE_WHITESPACE B C D E A 0 1 5 9 13 17 1 2 6 10 14 18 2 3 7 11 15 19 3 4 8 12 16 20 For multi-level columns, it also holds column_labels >>> columns = pd.MultiIndex.from_tuples([('X', 'A'), ('X', 'B'), ... ('Y', 'C'), ('Y', 'D')]) >>> psdf3 = ps.DataFrame([ ... [1, 2, 3, 4], ... [5, 6, 7, 8], ... [9, 10, 11, 12], ... [13, 14, 15, 16], ... [17, 18, 19, 20]], columns = columns) >>> psdf3 # doctest: +NORMALIZE_WHITESPACE X Y A B C D 0 1 2 3 4 1 5 6 7 8 2 9 10 11 12 3 13 14 15 16 4 17 18 19 20 >>> internal = psdf3._internal >>> internal.spark_frame.show() # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS +-----------------+------+------+------+------+-----------------+ |__index_level_0__|(X, A)|(X, B)|(Y, C)|(Y, D)|__natural_order__| +-----------------+------+------+------+------+-----------------+ | 0| 1| 2| 3| 4| ...| | 1| 5| 6| 7| 8| ...| | 2| 9| 10| 11| 12| ...| | 3| 13| 14| 15| 16| ...| | 4| 17| 18| 19| 20| ...| +-----------------+------+------+------+------+-----------------+ >>> internal.data_spark_column_names ['(X, A)', '(X, B)', '(Y, C)', '(Y, D)'] >>> internal.column_labels [('X', 'A'), ('X', 'B'), ('Y', 'C'), ('Y', 'D')] For Series, it also holds scol to represent the column. >>> psseries = psdf1.B >>> psseries A 1 5 2 6 3 7 4 8 Name: B, dtype: int64 >>> internal = psseries._internal >>> internal.spark_frame.show() # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS +-----------------+---+---+---+---+---+-----------------+ |__index_level_0__| A| B| C| D| E|__natural_order__| +-----------------+---+---+---+---+---+-----------------+ | 0| 1| 5| 9| 13| 17| ...| | 1| 2| 6| 10| 14| 18| ...| | 2| 3| 7| 11| 15| 19| ...| | 3| 4| 8| 12| 16| 20| ...| +-----------------+---+---+---+---+---+-----------------+ >>> internal.data_spark_column_names ['B'] >>> internal.index_spark_column_names ['A'] >>> internal.spark_column_names ['A', 'B'] >>> internal.index_names [('A',)] >>> internal.data_fields [InternalField(dtype=int64,struct_field=StructField(B,LongType,false))] >>> internal.index_fields [InternalField(dtype=int64,struct_field=StructField(A,LongType,false))] >>> internal.to_internal_spark_frame.show() # doctest: +NORMALIZE_WHITESPACE +---+---+ | A| B| +---+---+ | 1| 5| | 2| 6| | 3| 7| | 4| 8| +---+---+ >>> internal.to_pandas_frame # doctest: +NORMALIZE_WHITESPACE B A 1 5 2 6 3 7 4 8 """ def __init__( self, spark_frame: spark.DataFrame, index_spark_columns: Optional[List[spark.Column]], index_names: Optional[List[Optional[Tuple]]] = None, index_fields: Optional[List[InternalField]] = None, column_labels: Optional[List[Tuple]] = None, data_spark_columns: Optional[List[spark.Column]] = None, data_fields: Optional[List[InternalField]] = None, column_label_names: Optional[List[Optional[Tuple]]] = None, ): """ Create a new internal immutable DataFrame to manage Spark DataFrame, column fields and index fields and names. :param spark_frame: Spark DataFrame to be managed. :param index_spark_columns: list of Spark Column Spark Columns for the index. :param index_names: list of tuples the index names. :param index_fields: list of InternalField the InternalFields for the index columns :param column_labels: list of tuples with the same length The multi-level values in the tuples. :param data_spark_columns: list of Spark Column Spark Columns to appear as columns. If this is None, calculated from spark_frame. :param data_fields: list of InternalField the InternalFields for the data columns :param column_label_names: Names for each of the column index levels. See the examples below to refer what each parameter means. >>> column_labels = pd.MultiIndex.from_tuples( ... [('a', 'x'), ('a', 'y'), ('b', 'z')], names=["column_labels_a", "column_labels_b"]) >>> row_index = pd.MultiIndex.from_tuples( ... [('foo', 'bar'), ('foo', 'bar'), ('zoo', 'bar')], ... names=["row_index_a", "row_index_b"]) >>> psdf = ps.DataFrame( ... [[1, 2, 3], [4, 5, 6], [7, 8, 9]], index=row_index, columns=column_labels) >>> psdf.set_index(('a', 'x'), append=True, inplace=True) >>> psdf # doctest: +NORMALIZE_WHITESPACE column_labels_a a b column_labels_b y z row_index_a row_index_b (a, x) foo bar 1 2 3 4 5 6 zoo bar 7 8 9 >>> internal = psdf._internal >>> internal.spark_frame.show() # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS +-----------------+-----------------+------+------+------+... |__index_level_0__|__index_level_1__|(a, x)|(a, y)|(b, z)|... +-----------------+-----------------+------+------+------+... | foo| bar| 1| 2| 3|... | foo| bar| 4| 5| 6|... | zoo| bar| 7| 8| 9|... +-----------------+-----------------+------+------+------+... >>> internal.index_spark_columns # doctest: +SKIP [Column<'__index_level_0__'>, Column<'__index_level_1__'>, Column<'(a, x)'>] >>> internal.index_names [('row_index_a',), ('row_index_b',), ('a', 'x')] >>> internal.index_fields # doctest: +NORMALIZE_WHITESPACE [InternalField(dtype=object,struct_field=StructField(__index_level_0__,StringType,false)), InternalField(dtype=object,struct_field=StructField(__index_level_1__,StringType,false)), InternalField(dtype=int64,struct_field=StructField((a, x),LongType,false))] >>> internal.column_labels [('a', 'y'), ('b', 'z')] >>> internal.data_spark_columns # doctest: +SKIP [Column<'(a, y)'>, Column<'(b, z)'>] >>> internal.data_fields # doctest: +NORMALIZE_WHITESPACE [InternalField(dtype=int64,struct_field=StructField((a, y),LongType,false)), InternalField(dtype=int64,struct_field=StructField((b, z),LongType,false))] >>> internal.column_label_names [('column_labels_a',), ('column_labels_b',)] """ assert isinstance(spark_frame, spark.DataFrame) assert not spark_frame.isStreaming, "pandas-on-Spark does not support Structured Streaming." if not index_spark_columns: if data_spark_columns is not None: if column_labels is not None: data_spark_columns = [ scol.alias(name_like_string(label)) for scol, label in zip(data_spark_columns, column_labels) ] spark_frame = spark_frame.select(data_spark_columns) assert not any(SPARK_INDEX_NAME_PATTERN.match(name) for name in spark_frame.columns), ( "Index columns should not appear in columns of the Spark DataFrame. Avoid " "index column names [%s]." % SPARK_INDEX_NAME_PATTERN ) # Create default index. spark_frame, force_nullable = InternalFrame.attach_default_index(spark_frame) index_spark_columns = [scol_for(spark_frame, SPARK_DEFAULT_INDEX_NAME)] index_fields = [ InternalField.from_struct_field( StructField(SPARK_DEFAULT_INDEX_NAME, LongType(), nullable=False) ) ] if data_spark_columns is not None: data_struct_fields = [ field for field in spark_frame.schema.fields if field.name != SPARK_DEFAULT_INDEX_NAME ] data_spark_columns = [ scol_for(spark_frame, field.name) for field in data_struct_fields ] if data_fields is not None: data_fields = [ field.copy( name=name_like_string(struct_field.name), nullable=(force_nullable or field.nullable), ) for field, struct_field in zip(data_fields, data_struct_fields) ] if NATURAL_ORDER_COLUMN_NAME not in spark_frame.columns: spark_frame = spark_frame.withColumn( NATURAL_ORDER_COLUMN_NAME, F.monotonically_increasing_id() ) self._sdf = spark_frame # type: spark.DataFrame # index_spark_columns assert all( isinstance(index_scol, spark.Column) for index_scol in index_spark_columns ), index_spark_columns self._index_spark_columns = index_spark_columns # type: List[spark.Column] # data_spark_columns if data_spark_columns is None: data_spark_columns = [ scol_for(spark_frame, col) for col in spark_frame.columns if all( not spark_column_equals(scol_for(spark_frame, col), index_scol) for index_scol in index_spark_columns ) and col not in HIDDEN_COLUMNS ] self._data_spark_columns = data_spark_columns # type: List[spark.Column] else: assert all(isinstance(scol, spark.Column) for scol in data_spark_columns) self._data_spark_columns = data_spark_columns # fields if index_fields is None: index_fields = [None] * len(index_spark_columns) if data_fields is None: data_fields = [None] * len(data_spark_columns) assert len(index_spark_columns) == len(index_fields), ( len(index_spark_columns), len(index_fields), ) assert len(data_spark_columns) == len(data_fields), ( len(data_spark_columns), len(data_fields), ) if any(field is None or field.struct_field is None for field in index_fields) and any( field is None or field.struct_field is None for field in data_fields ): schema = spark_frame.select(index_spark_columns + data_spark_columns).schema fields = [ InternalField.from_struct_field(struct_field) if field is None else InternalField(field.dtype, struct_field) if field.struct_field is None else field for field, struct_field in zip(index_fields + data_fields, schema.fields) ] index_fields = fields[: len(index_spark_columns)] data_fields = fields[len(index_spark_columns) :] elif any(field is None or field.struct_field is None for field in index_fields): schema = spark_frame.select(index_spark_columns).schema index_fields = [ InternalField.from_struct_field(struct_field) if field is None else InternalField(field.dtype, struct_field) if field.struct_field is None else field for field, struct_field in zip(index_fields, schema.fields) ] elif any(field is None or field.struct_field is None for field in data_fields): schema = spark_frame.select(data_spark_columns).schema data_fields = [ InternalField.from_struct_field(struct_field) if field is None else InternalField(field.dtype, struct_field) if field.struct_field is None else field for field, struct_field in zip(data_fields, schema.fields) ] assert all( isinstance(ops.dtype, Dtype.__args__) # type: ignore and ( ops.dtype == np.dtype("object") or as_spark_type(ops.dtype, raise_error=False) is not None ) for ops in index_fields ), index_fields if is_testing(): struct_fields = spark_frame.select(index_spark_columns).schema.fields assert all( index_field.struct_field == struct_field for index_field, struct_field in zip(index_fields, struct_fields) ), (index_fields, struct_fields) self._index_fields = index_fields # type: List[InternalField] assert all( isinstance(ops.dtype, Dtype.__args__) # type: ignore and ( ops.dtype == np.dtype("object") or as_spark_type(ops.dtype, raise_error=False) is not None ) for ops in data_fields ), data_fields if is_testing(): struct_fields = spark_frame.select(data_spark_columns).schema.fields assert all( data_field.struct_field == struct_field for data_field, struct_field in zip(data_fields, struct_fields) ), (data_fields, struct_fields) self._data_fields = data_fields # type: List[InternalField] # index_names if not index_names: index_names = [None] * len(index_spark_columns) assert len(index_spark_columns) == len(index_names), ( len(index_spark_columns), len(index_names), ) assert all( is_name_like_tuple(index_name, check_type=True) for index_name in index_names ), index_names self._index_names = index_names # type: List[Optional[Tuple]] # column_labels if column_labels is None: self._column_labels = [ (col,) for col in spark_frame.select(self._data_spark_columns).columns ] # type: List[Tuple] else: assert len(column_labels) == len(self._data_spark_columns), ( len(column_labels), len(self._data_spark_columns), ) if len(column_labels) == 1: column_label = column_labels[0] assert is_name_like_tuple(column_label, check_type=True), column_label else: assert all( is_name_like_tuple(column_label, check_type=True) for column_label in column_labels ), column_labels assert len(set(len(label) for label in column_labels)) <= 1, column_labels self._column_labels = column_labels # column_label_names if column_label_names is None: self._column_label_names = [None] * column_labels_level( self._column_labels ) # type: List[Optional[Tuple]] else: if len(self._column_labels) > 0: assert len(column_label_names) == column_labels_level(self._column_labels), ( len(column_label_names), column_labels_level(self._column_labels), ) else: assert len(column_label_names) > 0, len(column_label_names) assert all( is_name_like_tuple(column_label_name, check_type=True) for column_label_name in column_label_names ), column_label_names self._column_label_names = column_label_names @staticmethod def attach_default_index( sdf: spark.DataFrame, default_index_type: Optional[str] = None ) -> Tuple[spark.DataFrame, bool]: """ This method attaches a default index to Spark DataFrame. Spark does not have the index notion so corresponding column should be generated. There are several types of default index can be configured by `compute.default_index_type`. >>> spark_frame = ps.range(10).to_spark() >>> spark_frame DataFrame[id: bigint] It adds the default index column '__index_level_0__'. >>> spark_frame = InternalFrame.attach_default_index(spark_frame)[0] >>> spark_frame DataFrame[__index_level_0__: bigint, id: bigint] It throws an exception if the given column name already exists. >>> InternalFrame.attach_default_index(spark_frame)[0] ... # doctest: +ELLIPSIS Traceback (most recent call last): ... AssertionError: '__index_level_0__' already exists... """ index_column = SPARK_DEFAULT_INDEX_NAME assert ( index_column not in sdf.columns ), "'%s' already exists in the Spark column names '%s'" % (index_column, sdf.columns) if default_index_type is None: default_index_type = ps.get_option("compute.default_index_type") if default_index_type == "sequence": return InternalFrame.attach_sequence_column(sdf, column_name=index_column) elif default_index_type == "distributed-sequence": return InternalFrame.attach_distributed_sequence_column(sdf, column_name=index_column) elif default_index_type == "distributed": return InternalFrame.attach_distributed_column(sdf, column_name=index_column) else: raise ValueError( "'compute.default_index_type' should be one of 'sequence'," " 'distributed-sequence' and 'distributed'" ) @staticmethod def attach_sequence_column( sdf: spark.DataFrame, column_name: str ) -> Tuple[spark.DataFrame, bool]: scols = [scol_for(sdf, column) for column in sdf.columns] sequential_index = ( F.row_number().over(Window.orderBy(F.monotonically_increasing_id())).cast("long") - 1 ) return sdf.select(sequential_index.alias(column_name), *scols), False @staticmethod def attach_distributed_column( sdf: spark.DataFrame, column_name: str ) -> Tuple[spark.DataFrame, bool]: scols = [scol_for(sdf, column) for column in sdf.columns] return sdf.select(F.monotonically_increasing_id().alias(column_name), *scols), False @staticmethod def attach_distributed_sequence_column( sdf: spark.DataFrame, column_name: str ) -> Tuple[spark.DataFrame, bool]: """ This method attaches a Spark column that has a sequence in a distributed manner. This is equivalent to the column assigned when default index type 'distributed-sequence'. >>> sdf = ps.DataFrame(['a', 'b', 'c']).to_spark() >>> sdf, force_nullable = ( ... InternalFrame.attach_distributed_sequence_column(sdf, column_name="sequence") ... ) >>> sdf.show() # doctest: +NORMALIZE_WHITESPACE +--------+---+ |sequence| 0| +--------+---+ | 0| a| | 1| b| | 2| c| +--------+---+ >>> force_nullable True """ if len(sdf.columns) > 0: try: jdf = sdf._jdf.toDF() # type: ignore sql_ctx = sdf.sql_ctx encoders = sql_ctx._jvm.org.apache.spark.sql.Encoders # type: ignore encoder = encoders.tuple(jdf.exprEnc(), encoders.scalaLong()) jrdd = jdf.localCheckpoint(False).rdd().zipWithIndex() df = spark.DataFrame( sql_ctx.sparkSession._jsparkSession.createDataset( # type: ignore jrdd, encoder ).toDF(), sql_ctx, ) columns = df.columns return ( df.selectExpr( "`{}` as `{}`".format(columns[1], column_name), "`{}`.*".format(columns[0]) ), True, ) except py4j.protocol.Py4JError: if is_testing(): raise return InternalFrame._attach_distributed_sequence_column(sdf, column_name) else: cnt = sdf.count() if cnt > 0: return default_session().range(cnt).toDF(column_name), False else: return ( default_session().createDataFrame( [], schema=StructType().add(column_name, data_type=LongType(), nullable=False), ), False, ) @staticmethod def _attach_distributed_sequence_column( sdf: spark.DataFrame, column_name: str ) -> Tuple[spark.DataFrame, bool]: """ >>> sdf = ps.DataFrame(['a', 'b', 'c']).to_spark() >>> sdf, force_nullable = ( ... InternalFrame._attach_distributed_sequence_column(sdf, column_name="sequence") ... ) >>> sdf.sort("sequence").show() # doctest: +NORMALIZE_WHITESPACE +--------+---+ |sequence| 0| +--------+---+ | 0| a| | 1| b| | 2| c| +--------+---+ >>> force_nullable False """ scols = [scol_for(sdf, column) for column in sdf.columns] spark_partition_column = verify_temp_column_name(sdf, "__spark_partition_id__") offset_column = verify_temp_column_name(sdf, "__offset__") row_number_column = verify_temp_column_name(sdf, "__row_number__") # 1. Calculates counts per each partition ID. `counts` here is, for instance, # { # 1: 83, # 6: 83, # 3: 83, # ... # } sdf = sdf.withColumn(spark_partition_column, F.spark_partition_id()) # Checkpoint the DataFrame to fix the partition ID. sdf = sdf.localCheckpoint(eager=False) counts = map( lambda x: (x["key"], x["count"]), sdf.groupby(sdf[spark_partition_column].alias("key")).count().collect(), ) # 2. Calculates cumulative sum in an order of partition id. # Note that it does not matter if partition id guarantees its order or not. # We just need a one-by-one sequential id. # sort by partition key. sorted_counts = sorted(counts, key=lambda x: x[0]) # get cumulative sum in an order of partition key. cumulative_counts = [0] + list(accumulate(map(lambda count: count[1], sorted_counts))) # zip it with partition key. sums = dict(zip(map(lambda count: count[0], sorted_counts), cumulative_counts)) # 3. Attach offset for each partition. @pandas_udf(returnType=LongType()) # type: ignore def offset(id: pd.Series) -> pd.Series: current_partition_offset = sums[id.iloc[0]] return pd.Series(current_partition_offset).repeat(len(id)) sdf = sdf.withColumn(offset_column, offset(spark_partition_column)) # 4. Calculate row_number in each partition. w = Window.partitionBy(spark_partition_column).orderBy(F.monotonically_increasing_id()) row_number = F.row_number().over(w) sdf = sdf.withColumn(row_number_column, row_number) # 5. Calculate the index. return ( sdf.select( (sdf[offset_column] + sdf[row_number_column] - 1).alias(column_name), *scols ), False, ) def spark_column_for(self, label: Tuple) -> spark.Column: """Return Spark Column for the given column label.""" column_labels_to_scol = dict(zip(self.column_labels, self.data_spark_columns)) if label in column_labels_to_scol: return column_labels_to_scol[label] else: raise KeyError(name_like_string(label)) def spark_column_name_for(self, label_or_scol: Union[Tuple, spark.Column]) -> str: """Return the actual Spark column name for the given column label.""" if isinstance(label_or_scol, spark.Column): return self.spark_frame.select(label_or_scol).columns[0] else: return self.field_for(label_or_scol).name def spark_type_for(self, label_or_scol: Union[Tuple, spark.Column]) -> DataType: """Return DataType for the given column label.""" if isinstance(label_or_scol, spark.Column): return self.spark_frame.select(label_or_scol).schema[0].dataType else: return self.field_for(label_or_scol).spark_type def spark_column_nullable_for(self, label_or_scol: Union[Tuple, spark.Column]) -> bool: """Return nullability for the given column label.""" if isinstance(label_or_scol, spark.Column): return self.spark_frame.select(label_or_scol).schema[0].nullable else: return self.field_for(label_or_scol).nullable def field_for(self, label: Tuple) -> InternalField: """Return InternalField for the given column label.""" column_labels_to_fields = dict(zip(self.column_labels, self.data_fields)) if label in column_labels_to_fields: return column_labels_to_fields[label] else: raise KeyError(name_like_string(label)) @property def spark_frame(self) -> spark.DataFrame: """Return the managed Spark DataFrame.""" return self._sdf @lazy_property def data_spark_column_names(self) -> List[str]: """Return the managed column field names.""" return [field.name for field in self.data_fields] @property def data_spark_columns(self) -> List[spark.Column]: """Return Spark Columns for the managed data columns.""" return self._data_spark_columns @property def index_spark_column_names(self) -> List[str]: """Return the managed index field names.""" return [field.name for field in self.index_fields] @property def index_spark_columns(self) -> List[spark.Column]: """Return Spark Columns for the managed index columns.""" return self._index_spark_columns @lazy_property def spark_column_names(self) -> List[str]: """Return all the field names including index field names.""" return self.spark_frame.select(self.spark_columns).columns @lazy_property def spark_columns(self) -> List[spark.Column]: """Return Spark Columns for the managed columns including index columns.""" index_spark_columns = self.index_spark_columns return index_spark_columns + [ spark_column for spark_column in self.data_spark_columns if all(not spark_column_equals(spark_column, scol) for scol in index_spark_columns) ] @property def index_names(self) -> List[Optional[Tuple]]: """Return the managed index names.""" return self._index_names @lazy_property def index_level(self) -> int: """Return the level of the index.""" return len(self._index_names) @property def column_labels(self) -> List[Tuple]: """Return the managed column index.""" return self._column_labels @lazy_property def column_labels_level(self) -> int: """Return the level of the column index.""" return len(self._column_label_names) @property def column_label_names(self) -> List[Optional[Tuple]]: """Return names of the index levels.""" return self._column_label_names @property def index_fields(self) -> List[InternalField]: """Return InternalFields for the managed index columns.""" return self._index_fields @property def data_fields(self) -> List[InternalField]: """Return InternalFields for the managed columns.""" return self._data_fields @lazy_property def to_internal_spark_frame(self) -> spark.DataFrame: """ Return as Spark DataFrame. This contains index columns as well and should be only used for internal purposes. """ index_spark_columns = self.index_spark_columns data_columns = [] for spark_column in self.data_spark_columns: if all(not spark_column_equals(spark_column, scol) for scol in index_spark_columns): data_columns.append(spark_column) return self.spark_frame.select(index_spark_columns + data_columns) @lazy_property def to_pandas_frame(self) -> pd.DataFrame: """Return as pandas DataFrame.""" sdf = self.to_internal_spark_frame pdf = sdf.toPandas() if len(pdf) == 0 and len(sdf.schema) > 0: pdf = pdf.astype( {field.name: spark_type_to_pandas_dtype(field.dataType) for field in sdf.schema} ) return InternalFrame.restore_index(pdf, **self.arguments_for_restore_index) @lazy_property def arguments_for_restore_index(self) -> Dict: """Create arguments for `restore_index`.""" column_names = [] fields = self.index_fields.copy() ext_fields = { col: field for col, field in zip(self.index_spark_column_names, self.index_fields) if isinstance(field.dtype, extension_dtypes) } for spark_column, column_name, field in zip( self.data_spark_columns, self.data_spark_column_names, self.data_fields ): for index_spark_column_name, index_spark_column in zip( self.index_spark_column_names, self.index_spark_columns ): if spark_column_equals(spark_column, index_spark_column): column_names.append(index_spark_column_name) break else: column_names.append(column_name) fields.append(field) if isinstance(field.dtype, extension_dtypes): ext_fields[column_name] = field return dict( index_columns=self.index_spark_column_names, index_names=self.index_names, data_columns=column_names, column_labels=self.column_labels, column_label_names=self.column_label_names, fields=fields, ext_fields=ext_fields, ) @staticmethod def restore_index( pdf: pd.DataFrame, *, index_columns: List[str], index_names: List[Tuple], data_columns: List[str], column_labels: List[Tuple], column_label_names: List[Tuple], fields: List[InternalField] = None, ext_fields: Dict[str, InternalField] = None, ) -> pd.DataFrame: """ Restore pandas DataFrame indices using the metadata. :param pdf: the pandas DataFrame to be processed. :param index_columns: the original column names for index columns. :param index_names: the index names after restored. :param data_columns: the original column names for data columns. :param column_labels: the column labels after restored. :param column_label_names: the column label names after restored. :param fields: the fields after restored. :param ext_fields: the map from the original column names to extension data fields. :return: the restored pandas DataFrame >>> from numpy import dtype >>> pdf = pd.DataFrame({"index": [10, 20, 30], "a": ['a', 'b', 'c'], "b": [0, 2, 1]}) >>> InternalFrame.restore_index( ... pdf, ... index_columns=["index"], ... index_names=[("idx",)], ... data_columns=["a", "b", "index"], ... column_labels=[("x",), ("y",), ("z",)], ... column_label_names=[("lv1",)], ... fields=[ ... InternalField( ... dtype=dtype('int64'), ... struct_field=StructField(name='index', dataType=LongType(), nullable=False), ... ), ... InternalField( ... dtype=dtype('object'), ... struct_field=StructField(name='a', dataType=StringType(), nullable=False), ... ), ... InternalField( ... dtype=CategoricalDtype(categories=["i", "j", "k"]), ... struct_field=StructField(name='b', dataType=LongType(), nullable=False), ... ), ... ], ... ext_fields=None, ... ) # doctest: +NORMALIZE_WHITESPACE lv1 x y z idx 10 a i 10 20 b k 20 30 c j 30 """ if ext_fields is not None and len(ext_fields) > 0: pdf = pdf.astype({col: field.dtype for col, field in ext_fields.items()}, copy=True) for col, field in zip(pdf.columns, fields): pdf[col] = DataTypeOps(field.dtype, field.spark_type).restore(pdf[col]) append = False for index_field in index_columns: drop = index_field not in data_columns pdf = pdf.set_index(index_field, drop=drop, append=append) append = True pdf = pdf[data_columns] pdf.index.names = [ name if name is None or len(name) > 1 else name[0] for name in index_names ] names = [name if name is None or len(name) > 1 else name[0] for name in column_label_names] if len(column_label_names) > 1: pdf.columns = pd.MultiIndex.from_tuples(column_labels, names=names) else: pdf.columns = pd.Index( [None if label is None else label[0] for label in column_labels], name=names[0], ) return pdf @lazy_property def resolved_copy(self) -> "InternalFrame": """Copy the immutable InternalFrame with the updates resolved.""" sdf = self.spark_frame.select(self.spark_columns + list(HIDDEN_COLUMNS)) return self.copy( spark_frame=sdf, index_spark_columns=[scol_for(sdf, col) for col in self.index_spark_column_names], data_spark_columns=[scol_for(sdf, col) for col in self.data_spark_column_names], ) def with_new_sdf( self, spark_frame: spark.DataFrame, *, index_fields: Optional[List[InternalField]] = None, data_columns: Optional[List[str]] = None, data_fields: Optional[List[InternalField]] = None, ) -> "InternalFrame": """Copy the immutable InternalFrame with the updates by the specified Spark DataFrame. :param spark_frame: the new Spark DataFrame :param index_fields: the new InternalFields for the index columns. If None, the original dtyeps are used. :param data_columns: the new column names. If None, the original one is used. :param data_fields: the new InternalFields for the data columns. If None, the original dtyeps are used. :return: the copied InternalFrame. """ if index_fields is None: index_fields = self.index_fields else: assert len(index_fields) == len(self.index_fields), ( len(index_fields), len(self.index_fields), ) if data_columns is None: data_columns = self.data_spark_column_names else: assert len(data_columns) == len(self.column_labels), ( len(data_columns), len(self.column_labels), ) if data_fields is None: data_fields = self.data_fields else: assert len(data_fields) == len(self.column_labels), ( len(data_fields), len(self.column_labels), ) sdf = spark_frame.drop(NATURAL_ORDER_COLUMN_NAME) return self.copy( spark_frame=sdf, index_spark_columns=[scol_for(sdf, col) for col in self.index_spark_column_names], index_fields=index_fields, data_spark_columns=[scol_for(sdf, col) for col in data_columns], data_fields=data_fields, ) def with_new_columns( self, scols_or_pssers: Sequence[Union[spark.Column, "Series"]], *, column_labels: Optional[List[Tuple]] = None, data_fields: Optional[List[InternalField]] = None, column_label_names: Union[Optional[List[Optional[Tuple]]], _NoValueType] = _NoValue, keep_order: bool = True, ) -> "InternalFrame": """ Copy the immutable InternalFrame with the updates by the specified Spark Columns or Series. :param scols_or_pssers: the new Spark Columns or Series. :param column_labels: the new column index. If None, the column_labels of the corresponding `scols_or_pssers` is used if it is Series; otherwise the original one is used. :param data_fields: the new InternalFields for the data columns. If None, the dtypes of the corresponding `scols_or_pssers` is used if it is Series; otherwise the dtypes will be inferred from the corresponding `scols_or_pssers`. :param column_label_names: the new names of the column index levels. :return: the copied InternalFrame. """ from pyspark.pandas.series import Series if column_labels is None: if all(isinstance(scol_or_psser, Series) for scol_or_psser in scols_or_pssers): column_labels = [cast(Series, psser)._column_label for psser in scols_or_pssers] else: assert len(scols_or_pssers) == len(self.column_labels), ( len(scols_or_pssers), len(self.column_labels), ) column_labels = [] for scol_or_psser, label in zip(scols_or_pssers, self.column_labels): if isinstance(scol_or_psser, Series): column_labels.append(scol_or_psser._column_label) else: column_labels.append(label) else: assert len(scols_or_pssers) == len(column_labels), ( len(scols_or_pssers), len(column_labels), ) data_spark_columns = [] for scol_or_psser in scols_or_pssers: if isinstance(scol_or_psser, Series): scol = scol_or_psser.spark.column else: scol = scol_or_psser data_spark_columns.append(scol) if data_fields is None: data_fields = [] for scol_or_psser in scols_or_pssers: if isinstance(scol_or_psser, Series): data_fields.append(scol_or_psser._internal.data_fields[0]) else: data_fields.append(None) else: assert len(scols_or_pssers) == len(data_fields), ( len(scols_or_pssers), len(data_fields), ) sdf = self.spark_frame if not keep_order: sdf = self.spark_frame.select(self.index_spark_columns + data_spark_columns) index_spark_columns = [scol_for(sdf, col) for col in self.index_spark_column_names] data_spark_columns = [ scol_for(sdf, col) for col in self.spark_frame.select(data_spark_columns).columns ] else: index_spark_columns = self.index_spark_columns if column_label_names is _NoValue: column_label_names = self._column_label_names return self.copy( spark_frame=sdf, index_spark_columns=index_spark_columns, column_labels=column_labels, data_spark_columns=data_spark_columns, data_fields=data_fields, column_label_names=column_label_names, ) def with_filter(self, pred: Union[spark.Column, "Series"]) -> "InternalFrame": """ Copy the immutable InternalFrame with the updates by the predicate. :param pred: the predicate to filter. :return: the copied InternalFrame. """ from pyspark.pandas.series import Series if isinstance(pred, Series): assert isinstance(pred.spark.data_type, BooleanType), pred.spark.data_type condition = pred.spark.column else: spark_type = self.spark_frame.select(pred).schema[0].dataType assert isinstance(spark_type, BooleanType), spark_type condition = pred return self.with_new_sdf(self.spark_frame.filter(condition).select(self.spark_columns)) def with_new_spark_column( self, column_label: Tuple, scol: spark.Column, *, field: Optional[InternalField] = None, keep_order: bool = True, ) -> "InternalFrame": """ Copy the immutable InternalFrame with the updates by the specified Spark Column. :param column_label: the column label to be updated. :param scol: the new Spark Column :param field: the new InternalField for the data column. If not specified, the InternalField will be inferred from the spark Column. :return: the copied InternalFrame. """ assert column_label in self.column_labels, column_label idx = self.column_labels.index(column_label) data_spark_columns = self.data_spark_columns.copy() data_spark_columns[idx] = scol data_fields = self.data_fields.copy() data_fields[idx] = field return self.with_new_columns( data_spark_columns, data_fields=data_fields, keep_order=keep_order ) def select_column(self, column_label: Tuple) -> "InternalFrame": """ Copy the immutable InternalFrame with the specified column. :param column_label: the column label to use. :return: the copied InternalFrame. """ assert column_label in self.column_labels, column_label return self.copy( column_labels=[column_label], data_spark_columns=[self.spark_column_for(column_label)], data_fields=[self.field_for(column_label)], column_label_names=None, ) def copy( self, *, spark_frame: Union[spark.DataFrame, _NoValueType] = _NoValue, index_spark_columns: Union[List[spark.Column], _NoValueType] = _NoValue, index_names: Union[Optional[List[Optional[Tuple]]], _NoValueType] = _NoValue, index_fields: Union[Optional[List[InternalField]], _NoValueType] = _NoValue, column_labels: Union[Optional[List[Tuple]], _NoValueType] = _NoValue, data_spark_columns: Union[Optional[List[spark.Column]], _NoValueType] = _NoValue, data_fields: Union[Optional[List[InternalField]], _NoValueType] = _NoValue, column_label_names: Union[Optional[List[Optional[Tuple]]], _NoValueType] = _NoValue, ) -> "InternalFrame": """ Copy the immutable InternalFrame. :param spark_frame: the new Spark DataFrame. If not specified, the original one is used. :param index_spark_columns: the list of Spark Column. If not specified, the original ones are used. :param index_names: the index names. If not specified, the original ones are used. :param index_fields: the new InternalFields for the index columns. If not specified, the original metadata are used. :param column_labels: the new column labels. If not specified, the original ones are used. :param data_spark_columns: the new Spark Columns. If not specified, the original ones are used. :param data_fields: the new InternalFields for the data columns. If not specified, the original metadata are used. :param column_label_names: the new names of the column index levels. If not specified, the original ones are used. :return: the copied immutable InternalFrame. """ if spark_frame is _NoValue: spark_frame = self.spark_frame if index_spark_columns is _NoValue: index_spark_columns = self.index_spark_columns if index_names is _NoValue: index_names = self.index_names if index_fields is _NoValue: index_fields = self.index_fields if column_labels is _NoValue: column_labels = self.column_labels if data_spark_columns is _NoValue: data_spark_columns = self.data_spark_columns if data_fields is _NoValue: data_fields = self.data_fields if column_label_names is _NoValue: column_label_names = self.column_label_names return InternalFrame( spark_frame=cast(spark.DataFrame, spark_frame), index_spark_columns=cast(List[spark.Column], index_spark_columns), index_names=cast(Optional[List[Optional[Tuple]]], index_names), index_fields=cast(Optional[List[InternalField]], index_fields), column_labels=cast(Optional[List[Tuple]], column_labels), data_spark_columns=cast(Optional[List[spark.Column]], data_spark_columns), data_fields=cast(Optional[List[InternalField]], data_fields), column_label_names=cast(Optional[List[Optional[Tuple]]], column_label_names), ) @staticmethod def from_pandas(pdf: pd.DataFrame) -> "InternalFrame": """Create an immutable DataFrame from pandas DataFrame. :param pdf: :class:`pd.DataFrame` :return: the created immutable DataFrame """ index_names = [ name if name is None or isinstance(name, tuple) else (name,) for name in pdf.index.names ] columns = pdf.columns if isinstance(columns, pd.MultiIndex): column_labels = columns.tolist() else: column_labels = [(col,) for col in columns] column_label_names = [ name if name is None or isinstance(name, tuple) else (name,) for name in columns.names ] ( pdf, index_columns, index_fields, data_columns, data_fields, ) = InternalFrame.prepare_pandas_frame(pdf) schema = StructType([field.struct_field for field in index_fields + data_fields]) sdf = default_session().createDataFrame(pdf, schema=schema) return InternalFrame( spark_frame=sdf, index_spark_columns=[scol_for(sdf, col) for col in index_columns], index_names=index_names, index_fields=index_fields, column_labels=column_labels, data_spark_columns=[scol_for(sdf, col) for col in data_columns], data_fields=data_fields, column_label_names=column_label_names, ) @staticmethod def prepare_pandas_frame( pdf: pd.DataFrame, *, retain_index: bool = True ) -> Tuple[pd.DataFrame, List[str], List[InternalField], List[str], List[InternalField]]: """ Prepare pandas DataFrame for creating Spark DataFrame. :param pdf: the pandas DataFrame to be prepared. :param retain_index: whether the indices should be retained. :return: the tuple of - the prepared pandas dataFrame - index column names for Spark DataFrame - the InternalFields for the index columns of the given pandas DataFrame - data column names for Spark DataFrame - the InternalFields for the data columns of the given pandas DataFrame >>> pdf = pd.DataFrame( ... {("x", "a"): ['a', 'b', 'c'], ... ("y", "b"): pd.Categorical(["i", "k", "j"], categories=["i", "j", "k"])}, ... index=[10, 20, 30]) >>> prepared, index_columns, index_fields, data_columns, data_fields = ( ... InternalFrame.prepare_pandas_frame(pdf) ... ) >>> prepared __index_level_0__ (x, a) (y, b) 0 10 a 0 1 20 b 2 2 30 c 1 >>> index_columns ['__index_level_0__'] >>> index_fields [InternalField(dtype=int64,struct_field=StructField(__index_level_0__,LongType,false))] >>> data_columns ['(x, a)', '(y, b)'] >>> data_fields # doctest: +NORMALIZE_WHITESPACE [InternalField(dtype=object,struct_field=StructField((x, a),StringType,false)), InternalField(dtype=category,struct_field=StructField((y, b),ByteType,false))] """ pdf = pdf.copy() data_columns = [name_like_string(col) for col in pdf.columns] pdf.columns = data_columns if retain_index: index_nlevels = pdf.index.nlevels index_columns = [SPARK_INDEX_NAME_FORMAT(i) for i in range(index_nlevels)] pdf.index.names = index_columns reset_index = pdf.reset_index() else: index_nlevels = 0 index_columns = [] reset_index = pdf index_dtypes = list(reset_index.dtypes)[:index_nlevels] data_dtypes = list(reset_index.dtypes)[index_nlevels:] for col, dtype in zip(reset_index.columns, reset_index.dtypes): spark_type = infer_pd_series_spark_type(reset_index[col], dtype) reset_index[col] = DataTypeOps(dtype, spark_type).prepare(reset_index[col]) fields = [ InternalField( dtype=dtype, struct_field=StructField( name=name, dataType=infer_pd_series_spark_type(col, dtype), nullable=bool(col.isnull().any()), ), ) for (name, col), dtype in zip(reset_index.iteritems(), index_dtypes + data_dtypes) ] return ( reset_index, index_columns, fields[:index_nlevels], data_columns, fields[index_nlevels:], ) def _test() -> None: import os import doctest import sys from pyspark.sql import SparkSession import pyspark.pandas.internal os.chdir(os.environ["SPARK_HOME"]) globs = pyspark.pandas.internal.__dict__.copy() globs["ps"] = pyspark.pandas spark = ( SparkSession.builder.master("local[4]") .appName("pyspark.pandas.internal tests") .getOrCreate() ) (failure_count, test_count) = doctest.testmod( pyspark.pandas.internal, globs=globs, optionflags=doctest.ELLIPSIS | doctest.NORMALIZE_WHITESPACE, ) spark.stop() if failure_count: sys.exit(-1) if __name__ == "__main__": _test()
apache-2.0
5,017,516,604,919,470,000
39.052755
100
0.549305
false
Russell-IO/ansible
lib/ansible/plugins/action/gather_facts.py
1
1434
# Copyright (c) 2017 Ansible Project # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import (absolute_import, division, print_function) __metaclass__ = type from collections import MutableMapping from ansible import constants as C from ansible.plugins.action import ActionBase class ActionModule(ActionBase): def run(self, tmp=None, task_vars=None): ''' handler for package operations ''' self._supports_check_mode = True self._supports_async = True result = super(ActionModule, self).run(tmp, task_vars) result['ansible_facts'] = {} for fact_module in C.config.get_config_value('FACTS_MODULES', variables=task_vars): mod_args = task_vars.get('ansible_facts_modules', {}).get(fact_module, {}) if isinstance(mod_args, MutableMapping): mod_args.update(self._task.args.copy()) else: mod_args = self._task.args.copy() if fact_module != 'setup': del mod_args['gather_subset'] self._display.vvvv("Running %s" % fact_module) result.update(self._execute_module(module_name=fact_module, module_args=mod_args, task_vars=task_vars, wrap_async=self._task.async_val)) # tell executor facts were gathered result['ansible_facts']['_ansible_facts_gathered'] = True return result
gpl-3.0
-5,338,959,078,966,732,000
33.97561
148
0.640167
false
h1ds/h1ds
h1ds/h1ds/migrations/0010_auto__chg_field_nodepath_parent.py
1
11299
# -*- coding: utf-8 -*- import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Changing field 'NodePath.parent' db.alter_column(u'h1ds_nodepath', 'parent_id', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['h1ds.NodePath'], null=True)) def backwards(self, orm): # User chose to not deal with backwards NULL issues for 'NodePath.parent' raise RuntimeError("Cannot reverse this migration. 'NodePath.parent' and its values cannot be restored.") models = { u'auth.group': { 'Meta': {'object_name': 'Group'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, u'auth.permission': { 'Meta': {'ordering': "(u'content_type__app_label', u'content_type__model', u'codename')", 'unique_together': "((u'content_type', u'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['contenttypes.ContentType']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, u'auth.user': { 'Meta': {'object_name': 'User'}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['auth.Group']", 'symmetrical': 'False', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}) }, u'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, u'h1ds.device': { 'Meta': {'object_name': 'Device'}, 'description': ('django.db.models.fields.TextField', [], {}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_default': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'latest_shot': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'+'", 'null': 'True', 'to': u"orm['h1ds.Shot']"}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '32'}), 'slug': ('django.db.models.fields.SlugField', [], {'max_length': '50'}) }, u'h1ds.filter': { 'Meta': {'object_name': 'Filter'}, 'code': ('python_field.fields.PythonCodeField', [], {}), 'data_dim': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['h1ds.FilterDim']", 'symmetrical': 'False'}), 'data_type': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['h1ds.FilterDtype']", 'symmetrical': 'False'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'slug': ('django.db.models.fields.SlugField', [], {'max_length': '50'}) }, u'h1ds.filterdim': { 'Meta': {'object_name': 'FilterDim'}, 'code': ('python_field.fields.PythonCodeField', [], {}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '128'}) }, u'h1ds.filterdtype': { 'Meta': {'object_name': 'FilterDtype'}, 'code': ('python_field.fields.PythonCodeField', [], {}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '128'}) }, u'h1ds.h1dssignal': { 'Meta': {'object_name': 'H1DSSignal'}, 'description': ('django.db.models.fields.CharField', [], {'max_length': '500'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '50'}) }, u'h1ds.h1dssignalinstance': { 'Meta': {'ordering': "('-time',)", 'object_name': 'H1DSSignalInstance'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'signal': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['h1ds.H1DSSignal']"}), 'time': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'value': ('django.db.models.fields.CharField', [], {'max_length': '1024', 'blank': 'True'}) }, u'h1ds.node': { 'Meta': {'object_name': 'Node'}, 'children': ('django.db.models.fields.related.ManyToManyField', [], {'related_name': "'children_rel_+'", 'to': u"orm['h1ds.Node']"}), 'dtype': ('django.db.models.fields.CharField', [], {'max_length': '16', 'blank': 'True'}), 'has_data': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'n_channels': ('django.db.models.fields.PositiveSmallIntegerField', [], {'null': 'True', 'blank': 'True'}), 'n_dimensions': ('django.db.models.fields.PositiveSmallIntegerField', [], {'null': 'True', 'blank': 'True'}), 'subtree_hash': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '40'}) }, u'h1ds.nodepath': { 'Meta': {'object_name': 'NodePath'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'node': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['h1ds.Node']", 'through': u"orm['h1ds.PathMap']", 'symmetrical': 'False'}), 'parent': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['h1ds.NodePath']", 'null': 'True', 'blank': 'True'}), 'path': ('django.db.models.fields.CharField', [], {'max_length': '1024'}) }, u'h1ds.pagelet': { 'Meta': {'object_name': 'Pagelet'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '1024'}), 'pagelet_type': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'url': ('django.db.models.fields.URLField', [], {'max_length': '2048'}) }, u'h1ds.pageletcoordinates': { 'Meta': {'object_name': 'PageletCoordinates'}, 'coordinates': ('django.db.models.fields.CharField', [], {'max_length': '128'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'pagelet': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['h1ds.Pagelet']"}), 'worksheet': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['h1ds.Worksheet']"}) }, u'h1ds.pathmap': { 'Meta': {'object_name': 'PathMap'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'node': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['h1ds.Node']"}), 'node_path': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['h1ds.NodePath']"}), 'shot': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['h1ds.Shot']"}) }, u'h1ds.shot': { 'Meta': {'object_name': 'Shot'}, 'device': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['h1ds.Device']", 'on_delete': 'models.PROTECT'}), 'number': ('django.db.models.fields.PositiveIntegerField', [], {'primary_key': 'True'}), 'timestamp': ('django.db.models.fields.DateTimeField', [], {}) }, u'h1ds.usersignal': { 'Meta': {'object_name': 'UserSignal'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '1024'}), 'ordering': ('django.db.models.fields.IntegerField', [], {'blank': 'True'}), 'url': ('django.db.models.fields.URLField', [], {'max_length': '2048'}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['auth.User']"}) }, u'h1ds.worksheet': { 'Meta': {'object_name': 'Worksheet'}, 'description': ('django.db.models.fields.TextField', [], {}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_public': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '256'}), 'pagelets': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['h1ds.Pagelet']", 'through': u"orm['h1ds.PageletCoordinates']", 'symmetrical': 'False'}), 'slug': ('django.db.models.fields.SlugField', [], {'max_length': '50'}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['auth.User']"}) } } complete_apps = ['h1ds']
mit
7,576,822,004,211,700,000
67.902439
187
0.543588
false
SCPR/firetracker
calfire_tracker/utilities.py
1
3930
from django.conf import settings from django.db import models from django.utils.encoding import smart_str from django.utils import timezone from django.template.defaultfilters import slugify from geopy import geocoders import pytz import time import datetime import requests import logging logger = logging.getLogger("firetracker") def search_assethost_for_image(kpcc_image_token, **kwargs): ''' model save function to query kpcc image api given an asset_host_id ''' if kwargs['image_id'] is not None: url_prefix = 'https://a.scpr.org/api/assets/' url_suffix = '.json?auth_token=' search_url = '%s%s%s%s' % (url_prefix, kwargs['image_id'], url_suffix, kpcc_image_token) kpcc_query_api = requests.get(search_url, verify=False, headers={"From": "[email protected]","User-Agent": "Mozilla/5.0 (Windows; U; Windows NT 6.0; en-US) AppleWebKit/525.19 (KHTML, like Gecko) Chrome/1.0.154.53 Safari/525.19"}) kpcc_image_asset = kpcc_query_api.json() try: kpcc_image_data = {'asset_url_link': kpcc_image_asset['urls']['full'], 'asset_photo_credit': kpcc_image_asset['owner'], 'asset_host_image_id': kwargs['image_id']} except: kpcc_image_data = {'asset_url_link': None, 'asset_photo_credit': None, 'asset_host_image_id': None} else: kpcc_image_data = {'asset_url_link': None, 'asset_photo_credit': None, 'asset_host_image_id': None} return kpcc_image_data def fill_air_quality_data(location_latitude, location_longitude): try: air_quality_url = 'http://www.airnowapi.org/aq/observation/latLong/current/?format=application/json&latitude=%s&longitude=%s&distance=30&API_KEY=AABE5F75-6C5A-47C2-AB74-2D138C9055B2' % (location_latitude, location_longitude) air_quality_query = requests.get(air_quality_url, headers= {"User-Agent": "Mozilla/5.0 (Windows; U; Windows NT 6.0; en-US) AppleWebKit/525.19 (KHTML, like Gecko) Chrome/1.0.154.53 Safari/525.19"}) air_quality_json = air_quality_query.json() if len(air_quality_json) == 0: air_quality_rating = None air_quality_parameter = None elif len(air_quality_json) >= 1: for data in air_quality_json: if data["ParameterName"] == "PM2.5": air_quality_rating = data["AQI"] air_quality_parameter = "Fine particles (PM2.5)" elif data["ParameterName"] == "O3": air_quality_rating = data["AQI"] air_quality_parameter = "Ozone (O3)" else: air_quality_rating = None air_quality_parameter = None else: air_quality_rating = None air_quality_parameter = None except: air_quality_rating = None air_quality_parameter = None print "exception for %s, %s\n" % (location_latitude, location_longitude) return {"air_quality_rating": air_quality_rating, "air_quality_parameter": air_quality_parameter} def fill_geocode_data(computed_location): if computed_location is not None: try: g = geocoders.GoogleV3() address = smart_str(computed_location) computed_location, (location_latitude, location_longitude) = g.geocode(address) geolocation_data = { 'computed_location': str(computed_location), 'location_latitude': location_latitude, 'location_longitude': location_longitude, 'location_geocode_error': False, } except (UnboundLocalError, ValueError,geocoders.google.GQueryError): geolocation_data = { 'computed_location': str(computed_location), 'location_latitude': None, 'location_longitude': None, 'location_geocode_error': True, } return geolocation_data
gpl-2.0
-4,657,212,522,448,050,000
48.125
236
0.622901
false
AlexEKoren/grumpy
compiler/stmt_test.py
1
14166
# coding=utf-8 # Copyright 2016 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for StatementVisitor.""" import ast import re import subprocess import textwrap import unittest from grumpy.compiler import block from grumpy.compiler import shard_test from grumpy.compiler import stmt from grumpy.compiler import util class StatementVisitorTest(unittest.TestCase): def testAssertNoMsg(self): self.assertEqual((0, 'AssertionError()\n'), _GrumpRun(textwrap.dedent("""\ try: assert False except AssertionError as e: print repr(e)"""))) def testAssertMsg(self): want = (0, "AssertionError('foo',)\n") self.assertEqual(want, _GrumpRun(textwrap.dedent("""\ try: assert False, 'foo' except AssertionError as e: print repr(e)"""))) def testAssignAttribute(self): self.assertEqual((0, '123\n'), _GrumpRun(textwrap.dedent("""\ e = Exception() e.foo = 123 print e.foo"""))) def testAssignName(self): self.assertEqual((0, 'bar\n'), _GrumpRun(textwrap.dedent("""\ foo = 'bar' print foo"""))) def testAssignMultiple(self): self.assertEqual((0, 'baz baz\n'), _GrumpRun(textwrap.dedent("""\ foo = bar = 'baz' print foo, bar"""))) def testAssignSubscript(self): self.assertEqual((0, "{'bar': None}\n"), _GrumpRun(textwrap.dedent("""\ foo = {} foo['bar'] = None print foo"""))) def testAssignTuple(self): self.assertEqual((0, 'a b\n'), _GrumpRun(textwrap.dedent("""\ baz = ('a', 'b') foo, bar = baz print foo, bar"""))) def testAugAssign(self): self.assertEqual((0, '42\n'), _GrumpRun(textwrap.dedent("""\ foo = 41 foo += 1 print foo"""))) def testAugAssignBitAnd(self): self.assertEqual((0, '3\n'), _GrumpRun(textwrap.dedent("""\ foo = 7 foo &= 3 print foo"""))) def testAugAssignUnsupportedOp(self): expected = 'augmented assignment op not implemented' self.assertRaisesRegexp(util.ParseError, expected, _ParseAndVisit, 'foo **= bar') def testClassDef(self): self.assertEqual((0, "<type 'type'>\n"), _GrumpRun(textwrap.dedent("""\ class Foo(object): pass print type(Foo)"""))) def testClassDefWithVar(self): self.assertEqual((0, 'abc\n'), _GrumpRun(textwrap.dedent("""\ class Foo(object): bar = 'abc' print Foo.bar"""))) def testDeleteAttribute(self): self.assertEqual((0, 'False\n'), _GrumpRun(textwrap.dedent("""\ class Foo(object): bar = 42 del Foo.bar print hasattr(Foo, 'bar')"""))) def testDeleteClassLocal(self): self.assertEqual((0, 'False\n'), _GrumpRun(textwrap.dedent("""\ class Foo(object): bar = 'baz' del bar print hasattr(Foo, 'bar')"""))) def testDeleteGlobal(self): self.assertEqual((0, 'False\n'), _GrumpRun(textwrap.dedent("""\ foo = 42 del foo print 'foo' in globals()"""))) def testDeleteLocal(self): self.assertEqual((0, 'ok\n'), _GrumpRun(textwrap.dedent("""\ def foo(): bar = 123 del bar try: print bar raise AssertionError except UnboundLocalError: print 'ok' foo()"""))) def testDeleteNonexistentLocal(self): self.assertRaisesRegexp( util.ParseError, 'cannot delete nonexistent local', _ParseAndVisit, 'def foo():\n del bar') def testDeleteSubscript(self): self.assertEqual((0, '{}\n'), _GrumpRun(textwrap.dedent("""\ foo = {'bar': 'baz'} del foo['bar'] print foo"""))) def testExprCall(self): self.assertEqual((0, 'bar\n'), _GrumpRun(textwrap.dedent("""\ def foo(): print 'bar' foo()"""))) def testExprNameGlobal(self): self.assertEqual((0, ''), _GrumpRun(textwrap.dedent("""\ foo = 42 foo"""))) def testExprNameLocal(self): self.assertEqual((0, ''), _GrumpRun(textwrap.dedent("""\ foo = 42 def bar(): foo bar()"""))) def testFor(self): self.assertEqual((0, '1\n2\n3\n'), _GrumpRun(textwrap.dedent("""\ for i in (1, 2, 3): print i"""))) def testForBreak(self): self.assertEqual((0, '1\n'), _GrumpRun(textwrap.dedent("""\ for i in (1, 2, 3): print i break"""))) def testForContinue(self): self.assertEqual((0, '1\n2\n3\n'), _GrumpRun(textwrap.dedent("""\ for i in (1, 2, 3): print i continue raise AssertionError"""))) def testForElse(self): self.assertEqual((0, 'foo\nbar\n'), _GrumpRun(textwrap.dedent("""\ for i in (1,): print 'foo' else: print 'bar'"""))) def testFunctionDef(self): self.assertEqual((0, 'bar baz\n'), _GrumpRun(textwrap.dedent("""\ def foo(a, b): print a, b foo('bar', 'baz')"""))) def testFunctionDefGenerator(self): self.assertEqual((0, "['foo', 'bar']\n"), _GrumpRun(textwrap.dedent("""\ def gen(): yield 'foo' yield 'bar' print list(gen())"""))) def testFunctionDefGeneratorReturnValue(self): self.assertRaisesRegexp( util.ParseError, 'returning a value in a generator function', _ParseAndVisit, 'def foo():\n yield 1\n return 2') def testFunctionDefLocal(self): self.assertEqual((0, 'baz\n'), _GrumpRun(textwrap.dedent("""\ def foo(): def bar(): print 'baz' bar() foo()"""))) def testIf(self): self.assertEqual((0, 'foo\n'), _GrumpRun(textwrap.dedent("""\ if 123: print 'foo' if '': print 'bar'"""))) def testIfElif(self): self.assertEqual((0, 'foo\nbar\n'), _GrumpRun(textwrap.dedent("""\ if True: print 'foo' elif False: print 'bar' if False: print 'foo' elif True: print 'bar'"""))) def testIfElse(self): self.assertEqual((0, 'foo\nbar\n'), _GrumpRun(textwrap.dedent("""\ if True: print 'foo' else: print 'bar' if False: print 'foo' else: print 'bar'"""))) def testImport(self): self.assertEqual((0, "<type 'dict'>\n"), _GrumpRun(textwrap.dedent("""\ import sys print type(sys.modules)"""))) def testImportConflictingPackage(self): self.assertEqual((0, ''), _GrumpRun(textwrap.dedent("""\ import time from __go__.time import Now"""))) def testImportNative(self): self.assertEqual((0, '1 1000000000\n'), _GrumpRun(textwrap.dedent("""\ from __go__.time import Nanosecond, Second print Nanosecond, Second"""))) def testImportGrump(self): self.assertEqual((0, ''), _GrumpRun(textwrap.dedent("""\ from __go__.grumpy import Assert Assert(__frame__(), True, 'bad')"""))) def testImportNativeModuleRaises(self): regexp = r'for native imports use "from __go__\.xyz import \.\.\." syntax' self.assertRaisesRegexp(util.ParseError, regexp, _ParseAndVisit, 'import __go__.foo') def testImportNativeType(self): self.assertEqual((0, "<type 'Duration'>\n"), _GrumpRun(textwrap.dedent("""\ from __go__.time import type_Duration as Duration print Duration"""))) def testPrint(self): self.assertEqual((0, 'abc 123\nfoo bar\n'), _GrumpRun(textwrap.dedent("""\ print 'abc', print '123' print 'foo', 'bar'"""))) def testRaiseExitStatus(self): self.assertEqual(1, _GrumpRun('raise Exception')[0]) def testRaiseInstance(self): self.assertEqual((0, 'foo\n'), _GrumpRun(textwrap.dedent("""\ try: raise RuntimeError('foo') print 'bad' except RuntimeError as e: print e"""))) def testRaiseTypeAndArg(self): self.assertEqual((0, 'foo\n'), _GrumpRun(textwrap.dedent("""\ try: raise KeyError('foo') print 'bad' except KeyError as e: print e"""))) def testRaiseAgain(self): self.assertEqual((0, 'foo\n'), _GrumpRun(textwrap.dedent("""\ try: try: raise AssertionError('foo') except AssertionError: raise except Exception as e: print e"""))) def testRaiseTraceback(self): self.assertEqual((0, ''), _GrumpRun(textwrap.dedent("""\ import sys try: try: raise Exception except: e, _, tb = sys.exc_info() raise e, None, tb except: e2, _, tb2 = sys.exc_info() assert e is e2 assert tb is tb2"""))) def testReturn(self): self.assertEqual((0, 'bar\n'), _GrumpRun(textwrap.dedent("""\ def foo(): return 'bar' print foo()"""))) def testTryBareExcept(self): self.assertEqual((0, ''), _GrumpRun(textwrap.dedent("""\ try: raise AssertionError except: pass"""))) def testTryElse(self): self.assertEqual((0, 'foo baz\n'), _GrumpRun(textwrap.dedent("""\ try: print 'foo', except: print 'bar' else: print 'baz'"""))) def testTryMultipleExcept(self): self.assertEqual((0, 'bar\n'), _GrumpRun(textwrap.dedent("""\ try: raise AssertionError except RuntimeError: print 'foo' except AssertionError: print 'bar' except: print 'baz'"""))) def testTryFinally(self): result = _GrumpRun(textwrap.dedent("""\ try: print 'foo', finally: print 'bar' try: print 'foo', raise Exception finally: print 'bar'""")) self.assertEqual(1, result[0]) # Some platforms show "exit status 1" message so don't test strict equality. self.assertIn('foo bar\nfoo bar\nException\n', result[1]) def testWhile(self): self.assertEqual((0, '2\n1\n'), _GrumpRun(textwrap.dedent("""\ i = 2 while i: print i i -= 1"""))) def testWhileElse(self): self.assertEqual((0, 'bar\n'), _GrumpRun(textwrap.dedent("""\ while False: print 'foo' else: print 'bar'"""))) def testWith(self): self.assertEqual((0, 'enter\n1\nexit\nenter\n2\nexit\n3\n'), _GrumpRun(textwrap.dedent("""\ class ContextManager(object): def __enter__(self): print "enter" def __exit__(self, exc_type, value, traceback): print "exit" a = ContextManager() with a: print 1 try: with a: print 2 raise RuntimeError except RuntimeError: print 3 """))) def testWithAs(self): self.assertEqual((0, '1 2 3\n'), _GrumpRun(textwrap.dedent("""\ class ContextManager(object): def __enter__(self): return (1, (2, 3)) def __exit__(self, *args): pass with ContextManager() as [x, (y, z)]: print x, y, z """))) def testWriteExceptDispatcherBareExcept(self): visitor = stmt.StatementVisitor(_MakeModuleBlock()) handlers = [ast.ExceptHandler(type=ast.Name(id='foo')), ast.ExceptHandler(type=None)] self.assertEqual(visitor._write_except_dispatcher( # pylint: disable=protected-access 'exc', 'tb', handlers), [1, 2]) expected = re.compile(r'ResolveGlobal\(.*foo.*\bIsInstance\(.*' r'goto Label1.*goto Label2', re.DOTALL) self.assertRegexpMatches(visitor.writer.out.getvalue(), expected) def testWriteExceptDispatcherBareExceptionNotLast(self): visitor = stmt.StatementVisitor(_MakeModuleBlock()) handlers = [ast.ExceptHandler(type=None), ast.ExceptHandler(type=ast.Name(id='foo'))] self.assertRaisesRegexp(util.ParseError, r"default 'except:' must be last", visitor._write_except_dispatcher, # pylint: disable=protected-access 'exc', 'tb', handlers) def testWriteExceptDispatcherMultipleExcept(self): visitor = stmt.StatementVisitor(_MakeModuleBlock()) handlers = [ast.ExceptHandler(type=ast.Name(id='foo')), ast.ExceptHandler(type=ast.Name(id='bar'))] self.assertEqual(visitor._write_except_dispatcher( # pylint: disable=protected-access 'exc', 'tb', handlers), [1, 2]) expected = re.compile( r'ResolveGlobal\(.*foo.*\bif .*\bIsInstance\(.*\{.*goto Label1.*' r'ResolveGlobal\(.*bar.*\bif .*\bIsInstance\(.*\{.*goto Label2.*' r'\bRaise\(exc\.ToObject\(\), nil, tb\.ToObject\(\)\)', re.DOTALL) self.assertRegexpMatches(visitor.writer.out.getvalue(), expected) def _MakeModuleBlock(): return block.ModuleBlock('__main__', 'grumpy', 'grumpy/lib', '<test>', []) def _ParseAndVisit(source): b = block.ModuleBlock('__main__', 'grumpy', 'grumpy/lib', '<test>', source.split('\n')) visitor = stmt.StatementVisitor(b) visitor.visit(ast.parse(source)) return visitor def _GrumpRun(cmd): p = subprocess.Popen(['grumprun'], stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) out, _ = p.communicate(cmd) return p.returncode, out if __name__ == '__main__': shard_test.main()
apache-2.0
3,293,463,276,318,064,600
28.94926
97
0.567203
false
h2oloopan/easymerge
EasyMerge/tests/beets/ui/migrate.py
1
13881
# This file is part of beets. # Copyright 2013, Adrian Sampson. # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. """Conversion from legacy (pre-1.1) configuration to Confit/YAML configuration. """ import os import ConfigParser import codecs import yaml import logging import time import itertools import re import beets from beets import util from beets import ui from beets.util import confit CONFIG_PATH_VAR = 'BEETSCONFIG' DEFAULT_CONFIG_FILENAME_UNIX = '.beetsconfig' DEFAULT_CONFIG_FILENAME_WINDOWS = 'beetsconfig.ini' DEFAULT_LIBRARY_FILENAME_UNIX = '.beetsmusic.blb' DEFAULT_LIBRARY_FILENAME_WINDOWS = 'beetsmusic.blb' WINDOWS_BASEDIR = os.environ.get('APPDATA') or '~' OLD_CONFIG_SUFFIX = '.old' PLUGIN_NAMES = { 'rdm': 'random', 'fuzzy_search': 'fuzzy', } AUTO_KEYS = ('automatic', 'autofetch', 'autoembed', 'autoscrub') IMPORTFEEDS_PREFIX = 'feeds_' CONFIG_MIGRATED_MESSAGE = u""" You appear to be upgrading from beets 1.0 (or earlier) to 1.1. Your configuration file has been migrated automatically to: {newconfig} Edit this file to configure beets. You might want to remove your old-style ".beetsconfig" file now. See the documentation for more details on the new configuration system: http://beets.readthedocs.org/page/reference/config.html """.strip() DB_MIGRATED_MESSAGE = u'Your database file has also been copied to:\n{newdb}' YAML_COMMENT = '# Automatically migrated from legacy .beetsconfig.\n\n' log = logging.getLogger('beets') # An itertools recipe. def grouper(n, iterable): args = [iter(iterable)] * n return itertools.izip_longest(*args) def _displace(fn): """Move a file aside using a timestamp suffix so a new file can be put in its place. """ util.move( fn, u'{0}.old.{1}'.format(fn, int(time.time())), True ) def default_paths(): """Produces the appropriate default config and library database paths for the current system. On Unix, this is always in ~. On Windows, tries ~ first and then $APPDATA for the config and library files (for backwards compatibility). """ windows = os.path.__name__ == 'ntpath' if windows: windata = os.environ.get('APPDATA') or '~' # Shorthand for joining paths. def exp(*vals): return os.path.expanduser(os.path.join(*vals)) config = exp('~', DEFAULT_CONFIG_FILENAME_UNIX) if windows and not os.path.exists(config): config = exp(windata, DEFAULT_CONFIG_FILENAME_WINDOWS) libpath = exp('~', DEFAULT_LIBRARY_FILENAME_UNIX) if windows and not os.path.exists(libpath): libpath = exp(windata, DEFAULT_LIBRARY_FILENAME_WINDOWS) return config, libpath def get_config(): """Using the same logic as beets 1.0, locate and read the .beetsconfig file. Return a ConfigParser instance or None if no config is found. """ default_config, default_libpath = default_paths() if CONFIG_PATH_VAR in os.environ: configpath = os.path.expanduser(os.environ[CONFIG_PATH_VAR]) else: configpath = default_config config = ConfigParser.SafeConfigParser() if os.path.exists(util.syspath(configpath)): with codecs.open(configpath, 'r', encoding='utf-8') as f: config.readfp(f) return config, configpath else: return None, configpath def flatten_config(config): """Given a ConfigParser, flatten the values into a dict-of-dicts representation where each section gets its own dictionary of values. """ out = confit.OrderedDict() for section in config.sections(): sec_dict = out[section] = confit.OrderedDict() for option in config.options(section): sec_dict[option] = config.get(section, option, True) return out def transform_value(value): """Given a string read as the value of a config option, return a massaged version of that value (possibly with a different type). """ # Booleans. if value.lower() in ('false', 'no', 'off'): return False elif value.lower() in ('true', 'yes', 'on'): return True # Integers. try: return int(value) except ValueError: pass # Floats. try: return float(value) except ValueError: pass return value def transform_data(data): """Given a dict-of-dicts representation of legacy config data, tweak the data into a new form. This new form is suitable for dumping as YAML. """ out = confit.OrderedDict() for section, pairs in data.items(): if section == 'beets': # The "main" section. In the new config system, these values # are in the "root": no section at all. for key, value in pairs.items(): value = transform_value(value) if key.startswith('import_'): # Importer config is now under an "import:" key. if 'import' not in out: out['import'] = confit.OrderedDict() out['import'][key[7:]] = value elif key == 'plugins': # Renamed plugins. plugins = value.split() new_plugins = [PLUGIN_NAMES.get(p, p) for p in plugins] out['plugins'] = ' '.join(new_plugins) elif key == 'replace': # YAMLy representation for character replacements. replacements = confit.OrderedDict() for pat, repl in grouper(2, value.split()): if repl == '<strip>': repl = '' replacements[pat] = repl out['replace'] = replacements elif key == 'pluginpath': # Used to be a colon-separated string. Now a list. out['pluginpath'] = value.split(':') else: out[key] = value elif pairs: # Other sections (plugins, etc). sec_out = out[section] = confit.OrderedDict() for key, value in pairs.items(): # Standardized "auto" option. if key in AUTO_KEYS: key = 'auto' # Unnecessary : hack in queries. if section == 'paths': key = key.replace('_', ':') # Changed option names for importfeeds plugin. if section == 'importfeeds': if key.startswith(IMPORTFEEDS_PREFIX): key = key[len(IMPORTFEEDS_PREFIX):] sec_out[key] = transform_value(value) return out def outsideFunc(self): return "outside" class outsideClass: def __init__(self): print "outside" class Dumper(yaml.SafeDumper): """A PyYAML Dumper that represents OrderedDicts as ordinary mappings (in order, of course). """ # From http://pyyaml.org/attachment/ticket/161/use_ordered_dict.py class insideClass: def __init__(self): print "inside" def represent_mapping(self, tag, mapping="0,0", flow_style=None): def insideFunc(inside): return "Inside" value = [] node = yaml.MappingNode(tag, value, flow_style=flow_style) if self.alias_key is not None: self.represented_objects[self.alias_key] = node best_style = True testFunc = outsideFunc() testFunc = insideFunc() testFunc = outsideClass() testFunc = Dumper.insideClass() if hasattr(mapping, 'items'): mapping = list(mapping.items()) for item_key, item_value in mapping: node_key = self.represent_data(item_key) node_value = self.represent_data(item_value) if not (isinstance(node_key, yaml.ScalarNode) and \ not node_key.style): best_style = False if not (isinstance(node_value, yaml.ScalarNode) and \ not node_value.style): best_style = False value.append((node_key, node_value)) if flow_style is None: if self.default_flow_style is not None: node.flow_style = self.default_flow_style else: node.flow_style = best_style return node Dumper.add_representer(confit.OrderedDict, Dumper.represent_dict) def migrate_config(replace=False): """Migrate a legacy beetsconfig file to a new-style config.yaml file in an appropriate place. If `replace` is enabled, then any existing config.yaml will be moved aside. Otherwise, the process is aborted when the file exists. """ # Load legacy configuration data, if any. config, configpath = get_config() if not config: log.debug(u'no config file found at {0}'.format( util.displayable_path(configpath) )) return # Get the new configuration file path and possibly move it out of # the way. destfn = os.path.join(beets.config.config_dir(), confit.CONFIG_FILENAME) if os.path.exists(destfn): if replace: log.debug(u'moving old config aside: {0}'.format( util.displayable_path(destfn) )) _displace(destfn) else: # File exists and we won't replace it. We're done. return log.debug(u'migrating config file {0}'.format( util.displayable_path(configpath) )) # Convert the configuration to a data structure ready to be dumped # as the new Confit file. data = transform_data(flatten_config(config)) # Encode result as YAML. yaml_out = yaml.dump( data, Dumper=Dumper, default_flow_style=False, indent=4, width=1000, ) # A ridiculous little hack to add some whitespace between "sections" # in the YAML output. I hope this doesn't break any YAML syntax. yaml_out = re.sub(r'(\n\w+:\n [^-\s])', '\n\\1', yaml_out) yaml_out = YAML_COMMENT + yaml_out # Write the data to the new config destination. log.debug(u'writing migrated config to {0}'.format( util.displayable_path(destfn) )) with open(destfn, 'w') as f: f.write(yaml_out) return destfn def migrate_db(replace=False): """Copy the beets library database file to the new location (e.g., from ~/.beetsmusic.blb to ~/.config/beets/library.db). """ _, srcfn = default_paths() destfn = beets.config['library'].as_filename() if not os.path.exists(srcfn) or srcfn == destfn: # Old DB does not exist or we're configured to point to the same # database. Do nothing. return if os.path.exists(destfn): if replace: log.debug(u'moving old database aside: {0}'.format( util.displayable_path(destfn) )) _displace(destfn) else: return log.debug(u'copying database from {0} to {1}'.format( util.displayable_path(srcfn), util.displayable_path(destfn) )) util.copy(srcfn, destfn) return destfn def migrate_state(replace=False): """Copy the beets runtime state file from the old path (i.e., ~/.beetsstate) to the new path (i.e., ~/.config/beets/state.pickle). """ srcfn = os.path.expanduser(os.path.join('~', '.beetsstate')) if not os.path.exists(srcfn): return destfn = beets.config['statefile'].as_filename() if os.path.exists(destfn): if replace: _displace(destfn) else: return log.debug(u'copying state file from {0} to {1}'.format( util.displayable_path(srcfn), util.displayable_path(destfn) )) util.copy(srcfn, destfn) return destfn # Automatic migration when beets starts. def automigrate(): """Migrate the configuration, database, and state files. If any migration occurs, print out a notice with some helpful next steps. """ config_fn = migrate_config() db_fn = migrate_db() migrate_state() if config_fn: ui.print_(ui.colorize('fuchsia', u'MIGRATED CONFIGURATION')) ui.print_(CONFIG_MIGRATED_MESSAGE.format( newconfig=util.displayable_path(config_fn)) ) if db_fn: ui.print_(DB_MIGRATED_MESSAGE.format( newdb=util.displayable_path(db_fn) )) ui.input_(ui.colorize('fuchsia', u'Press ENTER to continue:')) ui.print_() # CLI command for explicit migration. migrate_cmd = ui.Subcommand('migrate', help='convert legacy config') def migrate_func(lib, opts, args): """Explicit command for migrating files. Existing files in each destination are moved aside. """ config_fn = migrate_config(replace=True) if config_fn: log.info(u'Migrated configuration to: {0}'.format( util.displayable_path(config_fn) )) db_fn = migrate_db(replace=True) if db_fn: log.info(u'Migrated library database to: {0}'.format( util.displayable_path(db_fn) )) state_fn = migrate_state(replace=True) if state_fn: log.info(u'Migrated state file to: {0}'.format( util.displayable_path(state_fn) )) migrate_cmd.func = migrate_func
mit
-8,236,018,070,992,035,000
32.367788
77
0.610187
false
tinyms/ArchiveX
tinyms/controller/setting.py
1
3046
__author__ = 'tinyms' #coding=UTF8 from sqlalchemy import func from tinyms.core.common import Utils from tinyms.core.web import IAuthRequest from tinyms.core.entity import Account from tinyms.core.orm import SessionFactory from tinyms.core.annotation import ObjectPool, route, setting, api from tinyms.core.setting import UserSettingHelper, AppSettingHelper @route("/workbench/setting") class SettingPage(IAuthRequest): def get(self, *args, **kwargs): return self.render("workbench/setting.html", items=ObjectPool.setting) @api("tinyms.core.setting") class SettingApi(): def load(self): usr = self.request.current_user level_u = UserSettingHelper(usr) level_u_ = level_u.load() level_s = AppSettingHelper.load() level_all = dict(level_u_, **level_s) return level_all def save(self): kv = self.request.wrap_params_to_dict() level_user = dict() level_system = dict() for k in kv: if k.startswith("u_"): level_user[k] = kv[k] elif k.startswith("s_"): level_system[k] = kv[k] AppSettingHelper.set(level_system) u = UserSettingHelper("%s" % self.request.current_user) u.set(level_user) #允许用户在设置保存之后再做其它数据变更 items = ObjectPool.setting for k in items.keys(): obj = items[k].cls() if hasattr(obj, "save"): msg = obj.save(kv, self.request) if msg: return msg AppSettingHelper.reload() return "success" @setting("tinyms_core_setting_sys", "workbench/sys_setting_page.html", "基本", "tinyms.entity.setting.system") class SystemSetting(): def save(self, kv, http_req): return "" def form_submit_javascript(self, http_req): pass def form_fill_javascript(self, http_req): pass @setting("tinyms_core_setting_user", "workbench/user_setting_page.html", "个人", "tinyms.entity.setting.user") class SystemSetting(): def save(self, kv, http_req): _usr_old_pwd = kv.get("_usr_old_pwd") _usr_new_pwd = kv.get("_usr_new_pwd") _usr_new_repwd = kv.get("_usr_new_repwd") if _usr_old_pwd and _usr_new_pwd: if _usr_new_pwd == _usr_new_repwd: usr_id = http_req.current_user sf = SessionFactory.new() num = sf.query(func.count(Account.id)).filter(Account.id == usr_id) \ .filter(Account.login_pwd == Utils.md5(_usr_old_pwd)).scalar() if num > 0: a = sf.query(Account).get(usr_id) a.login_pwd = Utils.md5(_usr_new_pwd) sf.commit() return "" else: return "PasswordError" else: return "PasswordNotSame" def form_submit_javascript(self, req): pass def form_fill_javascript(self, req): pass
bsd-3-clause
-2,948,846,204,067,711,000
30.925532
108
0.576
false
phobson/statsmodels
statsmodels/tools/tests/test_tools.py
1
20793
""" Test functions for models.tools """ from statsmodels.compat.python import lrange, range import numpy as np from numpy.random import standard_normal from numpy.testing import (assert_equal, assert_array_equal, assert_almost_equal, assert_string_equal, TestCase) from nose.tools import (assert_true, assert_false, assert_raises) import pandas as pd from pandas.util.testing import assert_frame_equal, assert_series_equal from statsmodels.datasets import longley from statsmodels.tools import tools from statsmodels.tools.tools import pinv_extended from statsmodels.compat.numpy import np_matrix_rank class TestTools(TestCase): def test_add_constant_list(self): x = lrange(1,5) x = tools.add_constant(x) y = np.asarray([[1,1,1,1],[1,2,3,4.]]).T assert_equal(x, y) def test_add_constant_1d(self): x = np.arange(1,5) x = tools.add_constant(x) y = np.asarray([[1,1,1,1],[1,2,3,4.]]).T assert_equal(x, y) def test_add_constant_has_constant1d(self): x = np.ones(5) x = tools.add_constant(x, has_constant='skip') assert_equal(x, np.ones((5,1))) assert_raises(ValueError, tools.add_constant, x, has_constant='raise') assert_equal(tools.add_constant(x, has_constant='add'), np.ones((5, 2))) def test_add_constant_has_constant2d(self): x = np.asarray([[1,1,1,1],[1,2,3,4.]]).T y = tools.add_constant(x, has_constant='skip') assert_equal(x, y) assert_raises(ValueError, tools.add_constant, x, has_constant='raise') assert_equal(tools.add_constant(x, has_constant='add'), np.column_stack((np.ones(4), x))) def test_add_constant_recarray(self): dt = np.dtype([('', int), ('', '<S4'), ('', np.float32), ('', np.float64)]) x = np.array([(1, 'abcd', 1.0, 2.0), (7, 'abcd', 2.0, 4.0), (21, 'abcd', 2.0, 8.0)], dt) x = x.view(np.recarray) y = tools.add_constant(x) assert_equal(y['const'],np.array([1.0,1.0,1.0])) for f in x.dtype.fields: assert_true(y[f].dtype == x[f].dtype) def test_add_constant_series(self): s = pd.Series([1.0,2.0,3.0]) output = tools.add_constant(s) expected = pd.Series([1.0,1.0,1.0],name='const') assert_series_equal(expected, output['const']) def test_add_constant_dataframe(self): df = pd.DataFrame([[1.0, 'a', 4], [2.0, 'bc', 9], [3.0, 'def', 16]]) output = tools.add_constant(df) expected = pd.Series([1.0, 1.0, 1.0], name='const') assert_series_equal(expected, output['const']) dfc = df.copy() dfc.insert(0, 'const', np.ones(3)) assert_frame_equal(dfc, output) def test_add_constant_zeros(self): a = np.zeros(100) output = tools.add_constant(a) assert_equal(output[:,0],np.ones(100)) s = pd.Series([0.0,0.0,0.0]) output = tools.add_constant(s) expected = pd.Series([1.0, 1.0, 1.0], name='const') assert_series_equal(expected, output['const']) df = pd.DataFrame([[0.0, 'a', 4], [0.0, 'bc', 9], [0.0, 'def', 16]]) output = tools.add_constant(df) dfc = df.copy() dfc.insert(0, 'const', np.ones(3)) assert_frame_equal(dfc, output) df = pd.DataFrame([[1.0, 'a', 0], [0.0, 'bc', 0], [0.0, 'def', 0]]) output = tools.add_constant(df) dfc = df.copy() dfc.insert(0, 'const', np.ones(3)) assert_frame_equal(dfc, output) def test_recipr(self): X = np.array([[2,1],[-1,0]]) Y = tools.recipr(X) assert_almost_equal(Y, np.array([[0.5,1],[0,0]])) def test_recipr0(self): X = np.array([[2,1],[-4,0]]) Y = tools.recipr0(X) assert_almost_equal(Y, np.array([[0.5,1],[-0.25,0]])) def test_rank(self): import warnings with warnings.catch_warnings(): warnings.simplefilter("ignore") X = standard_normal((40,10)) self.assertEquals(tools.rank(X), np_matrix_rank(X)) X[:,0] = X[:,1] + X[:,2] self.assertEquals(tools.rank(X), np_matrix_rank(X)) def test_extendedpinv(self): X = standard_normal((40, 10)) np_inv = np.linalg.pinv(X) np_sing_vals = np.linalg.svd(X, 0, 0) sm_inv, sing_vals = pinv_extended(X) assert_almost_equal(np_inv, sm_inv) assert_almost_equal(np_sing_vals, sing_vals) def test_extendedpinv_singular(self): X = standard_normal((40, 10)) X[:, 5] = X[:, 1] + X[:, 3] np_inv = np.linalg.pinv(X) np_sing_vals = np.linalg.svd(X, 0, 0) sm_inv, sing_vals = pinv_extended(X) assert_almost_equal(np_inv, sm_inv) assert_almost_equal(np_sing_vals, sing_vals) def test_fullrank(self): import warnings with warnings.catch_warnings(): warnings.simplefilter("ignore") X = standard_normal((40,10)) X[:,0] = X[:,1] + X[:,2] Y = tools.fullrank(X) self.assertEquals(Y.shape, (40,9)) self.assertEquals(tools.rank(Y), 9) X[:,5] = X[:,3] + X[:,4] Y = tools.fullrank(X) self.assertEquals(Y.shape, (40,8)) warnings.simplefilter("ignore") self.assertEquals(tools.rank(Y), 8) def test_estimable(): rng = np.random.RandomState(20120713) N, P = (40, 10) X = rng.normal(size=(N, P)) C = rng.normal(size=(1, P)) isestimable = tools.isestimable assert_true(isestimable(C, X)) assert_true(isestimable(np.eye(P), X)) for row in np.eye(P): assert_true(isestimable(row, X)) X = np.ones((40, 2)) assert_true(isestimable([1, 1], X)) assert_false(isestimable([1, 0], X)) assert_false(isestimable([0, 1], X)) assert_false(isestimable(np.eye(2), X)) halfX = rng.normal(size=(N, 5)) X = np.hstack([halfX, halfX]) assert_false(isestimable(np.hstack([np.eye(5), np.zeros((5, 5))]), X)) assert_false(isestimable(np.hstack([np.zeros((5, 5)), np.eye(5)]), X)) assert_true(isestimable(np.hstack([np.eye(5), np.eye(5)]), X)) # Test array-like for design XL = X.tolist() assert_true(isestimable(np.hstack([np.eye(5), np.eye(5)]), XL)) # Test ValueError for incorrect number of columns X = rng.normal(size=(N, 5)) for n in range(1, 4): assert_raises(ValueError, isestimable, np.ones((n,)), X) assert_raises(ValueError, isestimable, np.eye(4), X) class TestCategoricalNumerical(object): #TODO: use assert_raises to check that bad inputs are taken care of def __init__(self): #import string stringabc = 'abcdefghijklmnopqrstuvwxy' self.des = np.random.randn(25,2) self.instr = np.floor(np.arange(10,60, step=2)/10) x=np.zeros((25,5)) x[:5,0]=1 x[5:10,1]=1 x[10:15,2]=1 x[15:20,3]=1 x[20:25,4]=1 self.dummy = x structdes = np.zeros((25,1),dtype=[('var1', 'f4'),('var2', 'f4'), ('instrument','f4'),('str_instr','a10')]) structdes['var1'] = self.des[:,0][:,None] structdes['var2'] = self.des[:,1][:,None] structdes['instrument'] = self.instr[:,None] string_var = [stringabc[0:5], stringabc[5:10], stringabc[10:15], stringabc[15:20], stringabc[20:25]] string_var *= 5 self.string_var = np.array(sorted(string_var)) structdes['str_instr'] = self.string_var[:,None] self.structdes = structdes self.recdes = structdes.view(np.recarray) def test_array2d(self): des = np.column_stack((self.des, self.instr, self.des)) des = tools.categorical(des, col=2) assert_array_equal(des[:,-5:], self.dummy) assert_equal(des.shape[1],10) def test_array1d(self): des = tools.categorical(self.instr) assert_array_equal(des[:,-5:], self.dummy) assert_equal(des.shape[1],6) def test_array2d_drop(self): des = np.column_stack((self.des, self.instr, self.des)) des = tools.categorical(des, col=2, drop=True) assert_array_equal(des[:,-5:], self.dummy) assert_equal(des.shape[1],9) def test_array1d_drop(self): des = tools.categorical(self.instr, drop=True) assert_array_equal(des, self.dummy) assert_equal(des.shape[1],5) def test_recarray2d(self): des = tools.categorical(self.recdes, col='instrument') # better way to do this? test_des = np.column_stack(([des[_] for _ in des.dtype.names[-5:]])) assert_array_equal(test_des, self.dummy) assert_equal(len(des.dtype.names), 9) def test_recarray2dint(self): des = tools.categorical(self.recdes, col=2) test_des = np.column_stack(([des[_] for _ in des.dtype.names[-5:]])) assert_array_equal(test_des, self.dummy) assert_equal(len(des.dtype.names), 9) def test_recarray1d(self): instr = self.structdes['instrument'].view(np.recarray) dum = tools.categorical(instr) test_dum = np.column_stack(([dum[_] for _ in dum.dtype.names[-5:]])) assert_array_equal(test_dum, self.dummy) assert_equal(len(dum.dtype.names), 6) def test_recarray1d_drop(self): instr = self.structdes['instrument'].view(np.recarray) dum = tools.categorical(instr, drop=True) test_dum = np.column_stack(([dum[_] for _ in dum.dtype.names])) assert_array_equal(test_dum, self.dummy) assert_equal(len(dum.dtype.names), 5) def test_recarray2d_drop(self): des = tools.categorical(self.recdes, col='instrument', drop=True) test_des = np.column_stack(([des[_] for _ in des.dtype.names[-5:]])) assert_array_equal(test_des, self.dummy) assert_equal(len(des.dtype.names), 8) def test_structarray2d(self): des = tools.categorical(self.structdes, col='instrument') test_des = np.column_stack(([des[_] for _ in des.dtype.names[-5:]])) assert_array_equal(test_des, self.dummy) assert_equal(len(des.dtype.names), 9) def test_structarray2dint(self): des = tools.categorical(self.structdes, col=2) test_des = np.column_stack(([des[_] for _ in des.dtype.names[-5:]])) assert_array_equal(test_des, self.dummy) assert_equal(len(des.dtype.names), 9) def test_structarray1d(self): instr = self.structdes['instrument'].view(dtype=[('var1', 'f4')]) dum = tools.categorical(instr) test_dum = np.column_stack(([dum[_] for _ in dum.dtype.names[-5:]])) assert_array_equal(test_dum, self.dummy) assert_equal(len(dum.dtype.names), 6) def test_structarray2d_drop(self): des = tools.categorical(self.structdes, col='instrument', drop=True) test_des = np.column_stack(([des[_] for _ in des.dtype.names[-5:]])) assert_array_equal(test_des, self.dummy) assert_equal(len(des.dtype.names), 8) def test_structarray1d_drop(self): instr = self.structdes['instrument'].view(dtype=[('var1', 'f4')]) dum = tools.categorical(instr, drop=True) test_dum = np.column_stack(([dum[_] for _ in dum.dtype.names])) assert_array_equal(test_dum, self.dummy) assert_equal(len(dum.dtype.names), 5) # def test_arraylike2d(self): # des = tools.categorical(self.structdes.tolist(), col=2) # test_des = des[:,-5:] # assert_array_equal(test_des, self.dummy) # assert_equal(des.shape[1], 9) # def test_arraylike1d(self): # instr = self.structdes['instrument'].tolist() # dum = tools.categorical(instr) # test_dum = dum[:,-5:] # assert_array_equal(test_dum, self.dummy) # assert_equal(dum.shape[1], 6) # def test_arraylike2d_drop(self): # des = tools.categorical(self.structdes.tolist(), col=2, drop=True) # test_des = des[:,-5:] # assert_array_equal(test__des, self.dummy) # assert_equal(des.shape[1], 8) # def test_arraylike1d_drop(self): # instr = self.structdes['instrument'].tolist() # dum = tools.categorical(instr, drop=True) # assert_array_equal(dum, self.dummy) # assert_equal(dum.shape[1], 5) class TestCategoricalString(TestCategoricalNumerical): # comment out until we have type coercion # def test_array2d(self): # des = np.column_stack((self.des, self.instr, self.des)) # des = tools.categorical(des, col=2) # assert_array_equal(des[:,-5:], self.dummy) # assert_equal(des.shape[1],10) # def test_array1d(self): # des = tools.categorical(self.instr) # assert_array_equal(des[:,-5:], self.dummy) # assert_equal(des.shape[1],6) # def test_array2d_drop(self): # des = np.column_stack((self.des, self.instr, self.des)) # des = tools.categorical(des, col=2, drop=True) # assert_array_equal(des[:,-5:], self.dummy) # assert_equal(des.shape[1],9) def test_array1d_drop(self): des = tools.categorical(self.string_var, drop=True) assert_array_equal(des, self.dummy) assert_equal(des.shape[1],5) def test_recarray2d(self): des = tools.categorical(self.recdes, col='str_instr') # better way to do this? test_des = np.column_stack(([des[_] for _ in des.dtype.names[-5:]])) assert_array_equal(test_des, self.dummy) assert_equal(len(des.dtype.names), 9) def test_recarray2dint(self): des = tools.categorical(self.recdes, col=3) test_des = np.column_stack(([des[_] for _ in des.dtype.names[-5:]])) assert_array_equal(test_des, self.dummy) assert_equal(len(des.dtype.names), 9) def test_recarray1d(self): instr = self.structdes['str_instr'].view(np.recarray) dum = tools.categorical(instr) test_dum = np.column_stack(([dum[_] for _ in dum.dtype.names[-5:]])) assert_array_equal(test_dum, self.dummy) assert_equal(len(dum.dtype.names), 6) def test_recarray1d_drop(self): instr = self.structdes['str_instr'].view(np.recarray) dum = tools.categorical(instr, drop=True) test_dum = np.column_stack(([dum[_] for _ in dum.dtype.names])) assert_array_equal(test_dum, self.dummy) assert_equal(len(dum.dtype.names), 5) def test_recarray2d_drop(self): des = tools.categorical(self.recdes, col='str_instr', drop=True) test_des = np.column_stack(([des[_] for _ in des.dtype.names[-5:]])) assert_array_equal(test_des, self.dummy) assert_equal(len(des.dtype.names), 8) def test_structarray2d(self): des = tools.categorical(self.structdes, col='str_instr') test_des = np.column_stack(([des[_] for _ in des.dtype.names[-5:]])) assert_array_equal(test_des, self.dummy) assert_equal(len(des.dtype.names), 9) def test_structarray2dint(self): des = tools.categorical(self.structdes, col=3) test_des = np.column_stack(([des[_] for _ in des.dtype.names[-5:]])) assert_array_equal(test_des, self.dummy) assert_equal(len(des.dtype.names), 9) def test_structarray1d(self): instr = self.structdes['str_instr'].view(dtype=[('var1', 'a10')]) dum = tools.categorical(instr) test_dum = np.column_stack(([dum[_] for _ in dum.dtype.names[-5:]])) assert_array_equal(test_dum, self.dummy) assert_equal(len(dum.dtype.names), 6) def test_structarray2d_drop(self): des = tools.categorical(self.structdes, col='str_instr', drop=True) test_des = np.column_stack(([des[_] for _ in des.dtype.names[-5:]])) assert_array_equal(test_des, self.dummy) assert_equal(len(des.dtype.names), 8) def test_structarray1d_drop(self): instr = self.structdes['str_instr'].view(dtype=[('var1', 'a10')]) dum = tools.categorical(instr, drop=True) test_dum = np.column_stack(([dum[_] for _ in dum.dtype.names])) assert_array_equal(test_dum, self.dummy) assert_equal(len(dum.dtype.names), 5) def test_arraylike2d(self): pass def test_arraylike1d(self): pass def test_arraylike2d_drop(self): pass def test_arraylike1d_drop(self): pass def test_rec_issue302(): arr = np.rec.fromrecords([[10], [11]], names='group') actual = tools.categorical(arr) expected = np.rec.array([(10, 1.0, 0.0), (11, 0.0, 1.0)], dtype=[('group', int), ('group_10', float), ('group_11', float)]) assert_array_equal(actual, expected) def test_issue302(): arr = np.rec.fromrecords([[10, 12], [11, 13]], names=['group', 'whatever']) actual = tools.categorical(arr, col=['group']) expected = np.rec.array([(10, 12, 1.0, 0.0), (11, 13, 0.0, 1.0)], dtype=[('group', int), ('whatever', int), ('group_10', float), ('group_11', float)]) assert_array_equal(actual, expected) def test_pandas_const_series(): dta = longley.load_pandas() series = dta.exog['GNP'] series = tools.add_constant(series, prepend=False) assert_string_equal('const', series.columns[1]) assert_equal(series.var(0)[1], 0) def test_pandas_const_series_prepend(): dta = longley.load_pandas() series = dta.exog['GNP'] series = tools.add_constant(series, prepend=True) assert_string_equal('const', series.columns[0]) assert_equal(series.var(0)[0], 0) def test_pandas_const_df(): dta = longley.load_pandas().exog dta = tools.add_constant(dta, prepend=False) assert_string_equal('const', dta.columns[-1]) assert_equal(dta.var(0)[-1], 0) def test_pandas_const_df_prepend(): dta = longley.load_pandas().exog # regression test for #1025 dta['UNEMP'] /= dta['UNEMP'].std() dta = tools.add_constant(dta, prepend=True) assert_string_equal('const', dta.columns[0]) assert_equal(dta.var(0)[0], 0) def test_chain_dot(): A = np.arange(1,13).reshape(3,4) B = np.arange(3,15).reshape(4,3) C = np.arange(5,8).reshape(3,1) assert_equal(tools.chain_dot(A,B,C), np.array([[1820],[4300],[6780]])) class TestNanDot(object): @classmethod def setupClass(cls): nan = np.nan cls.mx_1 = np.array([[nan, 1.], [2., 3.]]) cls.mx_2 = np.array([[nan, nan], [2., 3.]]) cls.mx_3 = np.array([[0., 0.], [0., 0.]]) cls.mx_4 = np.array([[1., 0.], [1., 0.]]) cls.mx_5 = np.array([[0., 1.], [0., 1.]]) cls.mx_6 = np.array([[1., 2.], [3., 4.]]) def test_11(self): test_res = tools.nan_dot(self.mx_1, self.mx_1) expected_res = np.array([[ np.nan, np.nan], [ np.nan, 11.]]) assert_array_equal(test_res, expected_res) def test_12(self): nan = np.nan test_res = tools.nan_dot(self.mx_1, self.mx_2) expected_res = np.array([[ nan, nan], [ nan, nan]]) assert_array_equal(test_res, expected_res) def test_13(self): nan = np.nan test_res = tools.nan_dot(self.mx_1, self.mx_3) expected_res = np.array([[ 0., 0.], [ 0., 0.]]) assert_array_equal(test_res, expected_res) def test_14(self): nan = np.nan test_res = tools.nan_dot(self.mx_1, self.mx_4) expected_res = np.array([[ nan, 0.], [ 5., 0.]]) assert_array_equal(test_res, expected_res) def test_41(self): nan = np.nan test_res = tools.nan_dot(self.mx_4, self.mx_1) expected_res = np.array([[ nan, 1.], [ nan, 1.]]) assert_array_equal(test_res, expected_res) def test_23(self): nan = np.nan test_res = tools.nan_dot(self.mx_2, self.mx_3) expected_res = np.array([[ 0., 0.], [ 0., 0.]]) assert_array_equal(test_res, expected_res) def test_32(self): nan = np.nan test_res = tools.nan_dot(self.mx_3, self.mx_2) expected_res = np.array([[ 0., 0.], [ 0., 0.]]) assert_array_equal(test_res, expected_res) def test_24(self): nan = np.nan test_res = tools.nan_dot(self.mx_2, self.mx_4) expected_res = np.array([[ nan, 0.], [ 5., 0.]]) assert_array_equal(test_res, expected_res) def test_25(self): nan = np.nan test_res = tools.nan_dot(self.mx_2, self.mx_5) expected_res = np.array([[ 0., nan], [ 0., 5.]]) assert_array_equal(test_res, expected_res) def test_66(self): nan = np.nan test_res = tools.nan_dot(self.mx_6, self.mx_6) expected_res = np.array([[ 7., 10.], [ 15., 22.]]) assert_array_equal(test_res, expected_res)
bsd-3-clause
-8,172,001,138,678,050,000
36.943431
83
0.581879
false
IonAgorria/SysWatcher
modules/smart.py
1
2212
import logging from subprocess import run, PIPE from module import Module from utils import break_lines, show_message __author__ = 'Ion Agorria' class Smart(Module): name = "SMART" def __init__(self, modules): super().__init__(modules) self.update_notified = [] def run(self): """Called at interval, must return number (negative if error)""" for device, config_code in self.get_config(): error = None status, firmware, test, code = self.get_smart(device) device = device.split(" ")[0] if status is None: continue if status != "Enabled": error = "Device %s doesn't have SMART enabled: %s [%s]" % (device, status, code) elif test != "PASSED": error = "Device %s has test result: %s [%s]" % (device, test, code) elif code != int(config_code): error = "Device %s returned code %s instead of %s" % (device, code, config_code) elif firmware and device not in self.update_notified: self.update_notified.append(device) text = "Device %s has firmware update [%s]" % (device, code) show_message(self.logger, logging.INFO, text) if error is not None: show_message(self.logger, logging.WARNING, error) return 0 @staticmethod def get_smart(device): process = run("smartctl -H -i /dev/%s" % device, stdout=PIPE, shell=True) result = str(process.stdout, "UTF-8") code = process.returncode result = break_lines(result) line_status = "SMART support is:" line_firmware = "A firmware update for this drive may be available" line_test = "SMART overall-health self-assessment test result:" status = None firmware = False test = None for line in result: parts = line.split(" ") if line_status in line: status = parts[-1] if line_firmware in line: firmware = True if line_test in line: test = parts[-1] return status, firmware, test, code
gpl-3.0
-7,410,101,434,767,311,000
35.866667
96
0.55651
false
jcnix/shade
social/auth.py
1
2295
from django.contrib import auth from django.contrib.auth.models import User from django.http import HttpResponse, HttpResponseRedirect from django.shortcuts import render, render_to_response from django.template import RequestContext import forms as myforms def login(request): if not request.user.is_authenticated(): form = myforms.LoginForm() if request.method == 'POST': form = myforms.LoginForm(request.POST) if form.is_valid(): e = form.cleaned_data['email'] p = form.cleaned_data['password'] user = auth.authenticate(username=e, password=p) if user is not None: auth.login(request, user) return HttpResponseRedirect('/dashboard/') else: form._errors['email'] = [u'Unable to authenticate'] return render(request, 'registration/login.html', {'form': form}) return render(request, 'registration/login.html', {'form': form}) else: return HttpResponseRedirect('/') def logout(request): auth.logout(request) return HttpResponseRedirect('/login/') def register(request): if not request.user.is_authenticated(): if request.method == 'POST': form = myforms.RegisterForm(request.POST) if form.is_valid(): e = form.cleaned_data['email'] p = form.cleaned_data['password'] fn = form.cleaned_data['first_name'] ln = form.cleaned_data['last_name'] user = User.objects.create_user( username=e, email=e, password=p ) user.first_name = fn user.last_name= ln user.save() return HttpResponseRedirect('/') else: return render_to_response('register.html', {'form': form}, context_instance=RequestContext(request)) else: form = myforms.RegisterForm() return render_to_response('register.html', {'form': form}, context_instance=RequestContext(request)) else: return HttpResponseRedirect('/')
gpl-3.0
-197,508,900,974,582,820
37.898305
85
0.554684
false
CoachCoen/games
settings.py
1
2112
from vector import Vector class Config: """ Configuration - mostly the (relative) position of various screen elements """ # TODO: Work this out dynamically tabletop_size = Vector(1368, 768) scaling_factor = 1 card_size = Vector(100, 120) card_spacing = 10 column_width = card_size.x + card_spacing row_height = card_size.y + card_spacing points_location = Vector(40, 10) cost_location = Vector(20, 18) card_decks_location = Vector(50, 120) chip_size = 23 chip_spacing = 10 central_area_location = Vector(360, 130) chip_stack_location = Vector(0, 100) chip_stack_size = 25 chip_stack_spacing = 5 chip_cost_scaling = 0.47 tile_size = Vector(100, 100) tile_spacing = 10 tiles_row_location = Vector(50, 0) chip_font_size = 36 reward_chip_location = Vector(75, 25) reward_chip_scaling = 0.7 player_area_size = Vector(300, 225) player_name_location = Vector(5, 5) player_chip_stack_location = Vector(40, 40) player_chip_stack_scaling = 0.5 player_item_size = 30 player_reserved_location = Vector(10, 95) player_points_location = Vector(player_area_size.x - 30, 5) player_winner_message_location = Vector(player_area_size.x / 2 - 50, player_area_size.y - 50) player_winner_font_size = 36 holding_area_size = Vector(350, 200) holding_area_location = Vector(1000, 300) holding_area_tile_location = Vector(30, 30) holding_area_card_location = Vector(30, 30) holding_area_chips_location = Vector(150, 30) holding_area_name_location = Vector(5, 5) holding_area_chip_scaling = 1 holding_area_too_many_chips_location = Vector(30, 120) button_text_location = Vector(5, 5) # TODO: Dynamically determine button size button_size = Vector(80, 30) cancel_button_location = Vector(10, 160) confirm_button_location = Vector(100, 160) config = Config() try: from settings_local import local_config config.__dict__.update(local_config) except ImportError: pass
mit
-4,934,462,521,332,214,000
24.445783
78
0.645833
false
pierrelux/mathnotes
mathnotes/views/auth.py
1
1936
from flask_oauthlib.client import OAuth from mathnotes.models import db, ZoteroAuthorization from flask import Flask, redirect, url_for, render_template, jsonify, Response, current_app, Blueprint, request from flask.ext.login import login_required, current_user oauth = OAuth() auth = Blueprint('auth', __name__, url_prefix='/auth') zotero = oauth.remote_app( 'zotero', base_url='https://api.zotero.org', request_token_url='https://www.zotero.org/oauth/request', access_token_url='https://www.zotero.org/oauth/access', authorize_url='https://www.zotero.org/oauth/authorize', app_key='ZOTERO' ) @zotero.tokengetter def get_zotero_token(): auth=current_user.authorizations.first() if auth is not None: return auth.oauth_token, auth.oauth_secret return None @auth.route('/oauth/zotero') @login_required def zotero_auth(): callback_url = url_for('auth.zotero_authorized', next=request.args.get('next')) return zotero.authorize(callback=callback_url or request.referrer or None) @auth.route('/oauth/zotero/authorized') @login_required @zotero.authorized_handler def zotero_authorized(resp): if resp is not None: auth = ZoteroAuthorization(oauth_token=resp['oauth_token'], oauth_secret=resp['oauth_token_secret'], userID=resp['userID'], username=resp['username'], user_id=current_user.id) db.session.add(auth) db.session.commit() else: flash("Remote authentication to Zotero failed") return redirect(request.args.get("next") or url_for("frontend.index")) @auth.route('/oauth/zotero/disconnect') @login_required def zotero_disconnect(): auth=current_user.authorizations.first() db.session.delete(auth) db.session.commit() return redirect(request.args.get("next") or url_for("frontend.index"))
bsd-3-clause
237,288,060,501,950,180
32.964912
111
0.668388
false
malaterre/dicom-private-dicts
re/pms/dump1.py
1
3032
#!/usr/bin/env python """ dump 1 """ import sys, json from struct import * array=[] def doit(f): chunk = f.read(0x2) l0 = unpack('>H', chunk) assert l0[0] == 50 chunk = f.read(l0[0]) s = unpack('>%ds' % l0[0], chunk) chunk = f.read(0x1) l2 = unpack('>B', chunk) #assert l2[0] == 0 chunk = f.read(0x2) l1 = unpack('>H', chunk) #print l1[0] # wotsit ? #print l0[0],s[0].decode('utf-16'),l1[0],l2[0] #print l0[0],s[0].decode('utf-16'),l1[0]+l2[0] #print s[0].decode('utf-16'),l1[0] el = {} el['name'] = s[0].decode('utf-16') el['index'] = l1[0]+l2[0] array.append( el ) def extract_name(i,f): chunk = f.read(0x1) o = unpack('>B', chunk) assert o[0] == 1 chunk = f.read(0x1) l0 = unpack('>B', chunk) chunk = f.read(l0[0]) s = unpack('>%ds' % l0[0], chunk) #print s[0] array[i]['value']=s[0] array[i]['len']=l0[0] def isnull(instr): for c in instr: assert ord(c) == 0 def extract_dad_file(i,f): print f.tell() corr = 1 # old (orig file) corr = 0 # already aligned ??? assert (f.tell() - corr) % 8 == 0 # 8bytes alignement # read length: chunk = f.read(0x4) z = unpack('<I', chunk) fl = z[0] chunk = f.read(fl) with open("output_%03d.dad" % i, "wb") as binfile: binfile.write( chunk ) # trailing stuff handling: pad = (f.tell() - corr) % 8 if pad != 0: chunk = f.read(8 - pad) isnull(chunk) # no digital trash, must be an in-memory representation # the intersting stuff lie in: # $ dd if=PmsDView.DMP of=dummy2.exe skip=104921721 count=1802240 bs=1 # as a side note we also have: # $ dd if=PmsDView.DMP of=dummy3.exe skip=106723961 count=1802240 bs=1 # $ md5sum dummy2.exe dummy3.exe # 6a58cd8dc039b2cfbeb4529b4fd13106 dummy2.exe # 6a58cd8dc039b2cfbeb4529b4fd13106 dummy3.exe if __name__ == "__main__": filename = sys.argv[1] with open(filename,'rb') as f: # MZ starts at 0x640FA79 #f.seek( 104932524 ) # 0x64124ac # orig file f.seek( 0x12F86F3 ) # new # file type 1: #print "start:", f.tell() chunk = f.read(0x2) d = unpack('>H', chunk) assert d[0] == 120 # number of elements (x2)? chunk = f.read(0x2) d = unpack('>H', chunk) print d # wotsit ? assert d[0] == 0x0f00 for i in range(0,60): doit(f) chunk = f.read(0x1) z = unpack('>B', chunk) assert z[0] == 0 #print (f.tell() - 1) % 4 for i in range(0,60): extract_name(i,f) #print "end:", f.tell() # file type dad/dotd: chunk = f.read(5) for i in range(0,153): # i > 153 is junk... extract_dad_file(i,f) print format(f.tell(), '08x') chunk = f.read(2000) # Some .NET stuff (BSJB) # The initials correspond to Brian Harry, Susan Radke-Sproull, Jason # Zander, and Bill Evans who were part of the team in 1998 that worked on # the CLR. with open("general_metadata_header.bin" , "wb") as binfile: binfile.write( chunk ) #print array #print json.dumps(array, sort_keys=True, indent=4)
bsd-3-clause
-5,247,748,825,108,255,000
26.315315
77
0.581464
false
parksandwildlife/wastd
taxonomy/migrations/0003_auto_20181022_1156.py
1
3205
# Generated by Django 2.0.8 on 2018-10-22 03:56 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('taxonomy', '0002_auto_20180926_1147'), ] operations = [ migrations.AlterField( model_name='hbvfamily', name='class_name', field=models.CharField(blank=True, help_text='', max_length=1000, null=True, verbose_name='Class'), ), migrations.AlterField( model_name='hbvfamily', name='division_name', field=models.CharField(blank=True, help_text='', max_length=1000, null=True, verbose_name='Division'), ), migrations.AlterField( model_name='hbvfamily', name='family_name', field=models.CharField(blank=True, help_text='', max_length=1000, null=True, verbose_name='Family Name'), ), migrations.AlterField( model_name='hbvfamily', name='kingdom_name', field=models.CharField(blank=True, help_text='', max_length=1000, null=True, verbose_name='Kingdom'), ), migrations.AlterField( model_name='hbvfamily', name='order_name', field=models.CharField(blank=True, help_text='', max_length=1000, null=True, verbose_name='Order Name'), ), migrations.AlterField( model_name='hbvfamily', name='supra_code', field=models.CharField(blank=True, help_text='', max_length=1000, null=True, verbose_name='HBV Suprafamily Group Code'), ), migrations.AlterField( model_name='hbvgroup', name='class_id', field=models.CharField(blank=True, help_text='', max_length=1000, null=True, verbose_name='HBV Suprafamily Group Code'), ), migrations.AlterField( model_name='hbvparent', name='class_id', field=models.CharField(blank=True, help_text='', max_length=100, null=True, verbose_name='WACensus ClassID'), ), migrations.AlterField( model_name='hbvspecies', name='consv_code', field=models.CharField(blank=True, help_text='', max_length=100, null=True, verbose_name='Conservation Code'), ), migrations.AlterField( model_name='hbvspecies', name='naturalised', field=models.CharField(blank=True, help_text='', max_length=100, null=True, verbose_name='Naturalised'), ), migrations.AlterField( model_name='hbvspecies', name='ranking', field=models.CharField(blank=True, help_text='', max_length=100, null=True, verbose_name='Ranking'), ), migrations.AlterField( model_name='hbvvernacular', name='name', field=models.CharField(blank=True, help_text='', max_length=1000, null=True, verbose_name='Name'), ), migrations.AlterField( model_name='hbvvernacular', name='vernacular', field=models.CharField(blank=True, help_text='', max_length=1000, null=True, verbose_name='Vernacular Name'), ), ]
mit
3,855,156,913,284,721,700
40.089744
132
0.582527
false
jamespcole/home-assistant
homeassistant/components/openuv/binary_sensor.py
1
3751
"""Support for OpenUV binary sensors.""" import logging from homeassistant.components.binary_sensor import BinarySensorDevice from homeassistant.core import callback from homeassistant.helpers.dispatcher import async_dispatcher_connect from homeassistant.util.dt import as_local, parse_datetime, utcnow from . import ( BINARY_SENSORS, DATA_OPENUV_CLIENT, DATA_PROTECTION_WINDOW, DOMAIN, TOPIC_UPDATE, TYPE_PROTECTION_WINDOW, OpenUvEntity) _LOGGER = logging.getLogger(__name__) ATTR_PROTECTION_WINDOW_ENDING_TIME = 'end_time' ATTR_PROTECTION_WINDOW_ENDING_UV = 'end_uv' ATTR_PROTECTION_WINDOW_STARTING_TIME = 'start_time' ATTR_PROTECTION_WINDOW_STARTING_UV = 'start_uv' DEPENDENCIES = ['openuv'] async def async_setup_platform( hass, config, async_add_entities, discovery_info=None): """Set up an OpenUV sensor based on existing config.""" pass async def async_setup_entry(hass, entry, async_add_entities): """Set up an OpenUV sensor based on a config entry.""" openuv = hass.data[DOMAIN][DATA_OPENUV_CLIENT][entry.entry_id] binary_sensors = [] for sensor_type in openuv.binary_sensor_conditions: name, icon = BINARY_SENSORS[sensor_type] binary_sensors.append( OpenUvBinarySensor( openuv, sensor_type, name, icon, entry.entry_id)) async_add_entities(binary_sensors, True) class OpenUvBinarySensor(OpenUvEntity, BinarySensorDevice): """Define a binary sensor for OpenUV.""" def __init__(self, openuv, sensor_type, name, icon, entry_id): """Initialize the sensor.""" super().__init__(openuv) self._async_unsub_dispatcher_connect = None self._entry_id = entry_id self._icon = icon self._latitude = openuv.client.latitude self._longitude = openuv.client.longitude self._name = name self._sensor_type = sensor_type self._state = None @property def icon(self): """Return the icon.""" return self._icon @property def is_on(self): """Return the status of the sensor.""" return self._state @property def should_poll(self): """Disable polling.""" return False @property def unique_id(self) -> str: """Return a unique, HASS-friendly identifier for this entity.""" return '{0}_{1}_{2}'.format( self._latitude, self._longitude, self._sensor_type) async def async_added_to_hass(self): """Register callbacks.""" @callback def update(): """Update the state.""" self.async_schedule_update_ha_state(True) self._async_unsub_dispatcher_connect = async_dispatcher_connect( self.hass, TOPIC_UPDATE, update) async def async_will_remove_from_hass(self): """Disconnect dispatcher listener when removed.""" if self._async_unsub_dispatcher_connect: self._async_unsub_dispatcher_connect() async def async_update(self): """Update the state.""" data = self.openuv.data[DATA_PROTECTION_WINDOW] if not data: return if self._sensor_type == TYPE_PROTECTION_WINDOW: self._state = parse_datetime( data['from_time']) <= utcnow() <= parse_datetime( data['to_time']) self._attrs.update({ ATTR_PROTECTION_WINDOW_ENDING_TIME: as_local(parse_datetime(data['to_time'])), ATTR_PROTECTION_WINDOW_ENDING_UV: data['to_uv'], ATTR_PROTECTION_WINDOW_STARTING_UV: data['from_uv'], ATTR_PROTECTION_WINDOW_STARTING_TIME: as_local(parse_datetime(data['from_time'])), })
apache-2.0
5,144,571,123,839,647,000
32.491071
72
0.625966
false
gokmen/Rasta
rasta_lib/model.py
1
1631
#!/usr/bin/python # -*- coding: utf-8 -*- ''' Rasta RST Editor 2010 - Gökmen Göksel <gokmeng:gmail.com> ''' # This program is free software; you can redistribute it and/or modify it under # the terms of the GNU General Public License as Published by the Free # Software Foundation; either version 2 of the License, or (at your option) # any later version. from PyQt4.QtCore import Qt from PyQt4.QtCore import QVariant from PyQt4.QtCore import QAbstractTableModel # i18n Support import gettext _ = gettext.translation('rasta', fallback=True).ugettext class LogTableModel(QAbstractTableModel): ''' Log table model for showing the logs in a proper way ''' def __init__(self, logs, parent=None, *args): QAbstractTableModel.__init__(self, parent, *args) self.arraydata = logs self.headerdata = [_('Line'), _('Message')] def rowCount(self, parent): ''' Return number of logs ''' return len(self.arraydata) def columnCount(self, parent): ''' It always returns 2 for now: Line and Message ''' return len(self.headerdata) def data(self, index, role): ''' Return data for given index and role ''' if not index.isValid(): return QVariant() elif role != Qt.DisplayRole: return QVariant() return QVariant(self.arraydata[index.row()][index.column()]) def headerData(self, col, orientation, role): ''' Return Header data for given column ''' if orientation == Qt.Horizontal and role == Qt.DisplayRole: return QVariant(self.headerdata[col]) return QVariant()
gpl-2.0
9,176,064,816,522,145,000
32.9375
79
0.654389
false
mdavoodi/konkourse-python
messages/views.py
1
2496
# Create your views here. from django.http import HttpResponse from django.template import loader from django.template.context import Context from django.template import RequestContext from django.shortcuts import redirect from django.shortcuts import render from conversation.models import ConvoWall, ConversationPost def messages(request): if request.user.is_authenticated(): first_name = request.user.first_name last_name = request.user.last_name username = request.user.username messageWall = request.user.get_profile().messages messages = ConversationPost.objects.filter(wall=request.user.get_profile().messages) variables_for_template = { 'first_name': first_name, 'last_name': last_name, 'username': username, 'messages': messages, 'messageWall': messageWall, } return render(request, 'website/messages.html', variables_for_template, context_instance=RequestContext(request)) def messages_compose(request): if request.user.is_authenticated(): first_name = request.user.first_name last_name = request.user.last_name username = request.user.username messageWall = request.user.get_profile().messages messages = ConversationPost.objects.filter(wall=request.user.get_profile().messages) variables_for_template = { 'first_name': first_name, 'last_name': last_name, 'username': username, 'messages': messages, 'messageWall': messageWall, } return render(request, 'website/messages_compose.html', variables_for_template, context_instance=RequestContext(request)) def messages_view(request): if request.user.is_authenticated(): first_name = request.user.first_name last_name = request.user.last_name username = request.user.username messageWall = request.user.get_profile().messages messages = ConversationPost.objects.filter(wall=request.user.get_profile().messages) variables_for_template = { 'first_name': first_name, 'last_name': last_name, 'username': username, 'messages': messages, 'messageWall': messageWall, } return render(request, 'website/messages_view.html', variables_for_template, context_instance=RequestContext(request))
mit
-7,466,661,102,449,948,000
37.4
92
0.648638
false
jelly/calibre
src/calibre/gui2/tweak_book/ui.py
1
39312
#!/usr/bin/env python2 # vim:fileencoding=utf-8 from __future__ import (unicode_literals, division, absolute_import, print_function) __license__ = 'GPL v3' __copyright__ = '2013, Kovid Goyal <kovid at kovidgoyal.net>' import os from functools import partial from itertools import product from future_builtins import map from PyQt5.Qt import ( QDockWidget, Qt, QLabel, QIcon, QAction, QApplication, QWidget, QEvent, QVBoxLayout, QStackedWidget, QTabWidget, QImage, QPixmap, pyqtSignal, QMenu, QHBoxLayout, QTimer, QUrl, QSize) from calibre import prints from calibre.constants import __appname__, get_version, isosx, DEBUG from calibre.gui2 import elided_text, open_url from calibre.gui2.dbus_export.widgets import factory from calibre.gui2.keyboard import Manager as KeyboardManager from calibre.gui2.main_window import MainWindow from calibre.gui2.throbber import ThrobbingButton from calibre.gui2.tweak_book import ( current_container, tprefs, actions, capitalize, toolbar_actions, editors, update_mark_text_action) from calibre.gui2.tweak_book.file_list import FileListWidget from calibre.gui2.tweak_book.job import BlockingJob from calibre.gui2.tweak_book.boss import Boss from calibre.gui2.tweak_book.undo import CheckpointView from calibre.gui2.tweak_book.preview import Preview from calibre.gui2.tweak_book.plugin import create_plugin_actions from calibre.gui2.tweak_book.search import SearchPanel from calibre.gui2.tweak_book.check import Check from calibre.gui2.tweak_book.check_links import CheckExternalLinks from calibre.gui2.tweak_book.spell import SpellCheck from calibre.gui2.tweak_book.search import SavedSearches from calibre.gui2.tweak_book.text_search import TextSearch from calibre.gui2.tweak_book.toc import TOCViewer from calibre.gui2.tweak_book.char_select import CharSelect from calibre.gui2.tweak_book.live_css import LiveCSS from calibre.gui2.tweak_book.reports import Reports from calibre.gui2.tweak_book.manage_fonts import ManageFonts from calibre.gui2.tweak_book.function_replace import DebugOutput from calibre.gui2.tweak_book.editor.widget import register_text_editor_actions from calibre.gui2.tweak_book.editor.insert_resource import InsertImage from calibre.utils.icu import character_name, sort_key from calibre.utils.localization import localize_user_manual_link def open_donate(): open_url(QUrl('https://calibre-ebook.com/donate')) class Central(QStackedWidget): # {{{ ' The central widget, hosts the editors ' current_editor_changed = pyqtSignal() close_requested = pyqtSignal(object) def __init__(self, parent=None): QStackedWidget.__init__(self, parent) self.welcome = w = QLabel('<p>'+_( 'Double click a file in the left panel to start editing' ' it.')) self.addWidget(w) w.setWordWrap(True) w.setAlignment(Qt.AlignTop | Qt.AlignHCenter) self.container = c = QWidget(self) self.addWidget(c) l = c.l = QVBoxLayout(c) c.setLayout(l) l.setContentsMargins(0, 0, 0, 0) self.editor_tabs = t = QTabWidget(c) l.addWidget(t) t.setDocumentMode(True) t.setTabsClosable(True) t.setMovable(True) pal = self.palette() if pal.color(pal.WindowText).lightness() > 128: i = QImage(I('modified.png')) i.invertPixels() self.modified_icon = QIcon(QPixmap.fromImage(i)) else: self.modified_icon = QIcon(I('modified.png')) self.editor_tabs.currentChanged.connect(self.current_editor_changed) self.editor_tabs.tabCloseRequested.connect(self._close_requested) self.search_panel = SearchPanel(self) l.addWidget(self.search_panel) self.restore_state() self.editor_tabs.tabBar().installEventFilter(self) def _close_requested(self, index): editor = self.editor_tabs.widget(index) self.close_requested.emit(editor) def add_editor(self, name, editor): fname = name.rpartition('/')[2] index = self.editor_tabs.addTab(editor, fname) self.editor_tabs.setTabToolTip(index, _('Full path:') + ' ' + name) editor.modification_state_changed.connect(self.editor_modified) @property def tab_order(self): ans = [] rmap = {v:k for k, v in editors.iteritems()} for i in xrange(self.editor_tabs.count()): name = rmap.get(self.editor_tabs.widget(i)) if name is not None: ans.append(name) return ans def rename_editor(self, editor, name): for i in xrange(self.editor_tabs.count()): if self.editor_tabs.widget(i) is editor: fname = name.rpartition('/')[2] self.editor_tabs.setTabText(i, fname) self.editor_tabs.setTabToolTip(i, _('Full path:') + ' ' + name) def show_editor(self, editor): self.setCurrentIndex(1) self.editor_tabs.setCurrentWidget(editor) def close_editor(self, editor): for i in xrange(self.editor_tabs.count()): if self.editor_tabs.widget(i) is editor: self.editor_tabs.removeTab(i) if self.editor_tabs.count() == 0: self.setCurrentIndex(0) return True return False def editor_modified(self, *args): tb = self.editor_tabs.tabBar() for i in xrange(self.editor_tabs.count()): editor = self.editor_tabs.widget(i) modified = getattr(editor, 'is_modified', False) tb.setTabIcon(i, self.modified_icon if modified else QIcon()) def close_current_editor(self): ed = self.current_editor if ed is not None: self.close_requested.emit(ed) def close_all_but_current_editor(self): self.close_all_but(self.current_editor) def close_all_but(self, ed): close = [] if ed is not None: for i in xrange(self.editor_tabs.count()): q = self.editor_tabs.widget(i) if q is not None and q is not ed: close.append(q) for q in close: self.close_requested.emit(q) @property def current_editor(self): return self.editor_tabs.currentWidget() def save_state(self): tprefs.set('search-panel-visible', self.search_panel.isVisible()) self.search_panel.save_state() for ed in editors.itervalues(): ed.save_state() if self.current_editor is not None: self.current_editor.save_state() # Ensure the current editor saves it state last def restore_state(self): self.search_panel.setVisible(tprefs.get('search-panel-visible', False)) self.search_panel.restore_state() def show_find(self): self.search_panel.show_panel() def pre_fill_search(self, text): self.search_panel.pre_fill(text) def eventFilter(self, obj, event): base = super(Central, self) if obj is not self.editor_tabs.tabBar() or event.type() != QEvent.MouseButtonPress or event.button() not in (Qt.RightButton, Qt.MidButton): return base.eventFilter(obj, event) index = self.editor_tabs.tabBar().tabAt(event.pos()) if index < 0: return base.eventFilter(obj, event) if event.button() == Qt.MidButton: self._close_requested(index) ed = self.editor_tabs.widget(index) if ed is not None: menu = QMenu(self) menu.addAction(actions['close-current-tab'].icon(), _('Close tab'), partial(self.close_requested.emit, ed)) menu.addSeparator() menu.addAction(actions['close-all-but-current-tab'].icon(), _('Close other tabs'), partial(self.close_all_but, ed)) menu.exec_(self.editor_tabs.tabBar().mapToGlobal(event.pos())) return True # }}} class CursorPositionWidget(QWidget): # {{{ def __init__(self, parent): QWidget.__init__(self, parent) self.l = QHBoxLayout(self) self.setLayout(self.l) self.la = QLabel('') self.l.addWidget(self.la) self.l.setContentsMargins(0, 0, 0, 0) f = self.la.font() f.setBold(False) self.la.setFont(f) def update_position(self, line=None, col=None, character=None): if line is None: self.la.setText('') else: try: name = character_name(character) if character and tprefs['editor_show_char_under_cursor'] else None except Exception: name = None text = _('Line: {0} : {1}').format(line, col) if not name: name = {'\t':'TAB'}.get(character, None) if name and tprefs['editor_show_char_under_cursor']: text = name + ' : ' + text self.la.setText(text) # }}} class Main(MainWindow): APP_NAME = _('Edit book') STATE_VERSION = 0 def __init__(self, opts, notify=None): MainWindow.__init__(self, opts, disable_automatic_gc=True) self.setWindowTitle(self.APP_NAME) self.boss = Boss(self, notify=notify) self.setWindowIcon(QIcon(I('tweak.png'))) self.opts = opts self.path_to_ebook = None self.container = None self.current_metadata = None self.blocking_job = BlockingJob(self) self.keyboard = KeyboardManager(self, config_name='shortcuts/tweak_book') self.central = Central(self) self.setCentralWidget(self.central) self.check_book = Check(self) self.spell_check = SpellCheck(parent=self) self.toc_view = TOCViewer(self) self.text_search = TextSearch(self) self.saved_searches = SavedSearches(self) self.image_browser = InsertImage(self, for_browsing=True) self.reports = Reports(self) self.check_external_links = CheckExternalLinks(self) self.insert_char = CharSelect(self) self.manage_fonts = ManageFonts(self) self.sr_debug_output = DebugOutput(self) self.create_actions() self.create_toolbars() self.create_docks() self.create_menubar() self.status_bar = self.statusBar() self.status_bar.addPermanentWidget(self.boss.save_manager.status_widget) self.cursor_position_widget = CursorPositionWidget(self) self.status_bar.addPermanentWidget(self.cursor_position_widget) self.status_bar_default_msg = la = QLabel(' ' + _('{0} {1} created by {2}').format(__appname__, get_version(), 'Kovid Goyal')) la.base_template = unicode(la.text()) self.status_bar.addWidget(la) f = self.status_bar.font() f.setBold(True) self.status_bar.setFont(f) self.boss(self) g = QApplication.instance().desktop().availableGeometry(self) self.resize(g.width()-50, g.height()-50) self.restore_state() self.apply_settings() def apply_settings(self): self.keyboard.finalize() self.setDockNestingEnabled(tprefs['nestable_dock_widgets']) for v, h in product(('top', 'bottom'), ('left', 'right')): p = 'dock_%s_%s' % (v, h) pref = tprefs[p] or tprefs.defaults[p] area = getattr(Qt, '%sDockWidgetArea' % capitalize({'vertical':h, 'horizontal':v}[pref])) self.setCorner(getattr(Qt, '%s%sCorner' % tuple(map(capitalize, (v, h)))), area) self.preview.apply_settings() self.live_css.apply_theme() for bar in (self.global_bar, self.tools_bar, self.plugins_bar): bar.setIconSize(QSize(tprefs['toolbar_icon_size'], tprefs['toolbar_icon_size'])) def show_status_message(self, msg, timeout=5): self.status_bar.showMessage(msg, int(timeout*1000)) def elided_text(self, text, width=300): return elided_text(text, font=self.font(), width=width) @property def editor_tabs(self): return self.central.editor_tabs def create_actions(self): group = _('Global actions') def reg(icon, text, target, sid, keys, description, toolbar_allowed=False): if not isinstance(icon, QIcon): icon = QIcon(I(icon)) ac = actions[sid] = QAction(icon, text, self) if icon else QAction(text, self) ac.setObjectName('action-' + sid) if toolbar_allowed: toolbar_actions[sid] = ac if target is not None: ac.triggered.connect(target) if isinstance(keys, type('')): keys = (keys,) self.keyboard.register_shortcut( sid, unicode(ac.text()).replace('&', ''), default_keys=keys, description=description, action=ac, group=group) self.addAction(ac) return ac def treg(icon, text, target, sid, keys, description): return reg(icon, text, target, sid, keys, description, toolbar_allowed=icon is not None) self.action_new_file = treg('document-new.png', _('&New file (images/fonts/HTML/etc.)'), self.boss.add_file, 'new-file', (), _('Create a new file in the current book')) self.action_import_files = treg('document-import.png', _('&Import files into book'), self.boss.add_files, 'new-files', (), _('Import files into book')) self.action_open_book = treg('document_open.png', _('&Open book'), self.boss.open_book, 'open-book', 'Ctrl+O', _('Open a new book')) self.action_open_book_folder = treg('mimetypes/dir.png', _('Open &folder (unzipped EPUB) as book'), partial(self.boss.open_book, open_folder=True), 'open-folder-as-book', (), _('Open a folder (unzipped EPUB) as a book')) # Qt does not generate shortcut overrides for cmd+arrow on os x which # means these shortcuts interfere with editing self.action_global_undo = treg('back.png', _('&Revert to before'), self.boss.do_global_undo, 'global-undo', () if isosx else 'Ctrl+Left', _('Revert book to before the last action (Undo)')) self.action_global_redo = treg('forward.png', _('&Revert to after'), self.boss.do_global_redo, 'global-redo', () if isosx else 'Ctrl+Right', _('Revert book state to after the next action (Redo)')) self.action_save = treg('save.png', _('&Save'), self.boss.save_book, 'save-book', 'Ctrl+S', _('Save book')) self.action_save.setEnabled(False) self.action_save_copy = treg('save.png', _('Save a &copy'), self.boss.save_copy, 'save-copy', 'Ctrl+Alt+S', _('Save a copy of the book')) self.action_quit = treg('window-close.png', _('&Quit'), self.boss.quit, 'quit', 'Ctrl+Q', _('Quit')) self.action_preferences = treg('config.png', _('&Preferences'), self.boss.preferences, 'preferences', 'Ctrl+P', _('Preferences')) self.action_new_book = treg('plus.png', _('Create &new, empty book'), self.boss.new_book, 'new-book', (), _('Create a new, empty book')) self.action_import_book = treg('add_book.png', _('&Import an HTML or DOCX file as a new book'), self.boss.import_book, 'import-book', (), _('Import an HTML or DOCX file as a new book')) self.action_quick_edit = treg('modified.png', _('&Quick open a file to edit'), self.boss.quick_open, 'quick-open', ('Ctrl+T'), _( 'Quickly open a file from the book to edit it')) # Editor actions group = _('Editor actions') self.action_editor_undo = reg('edit-undo.png', _('&Undo'), self.boss.do_editor_undo, 'editor-undo', 'Ctrl+Z', _('Undo typing')) self.action_editor_redo = reg('edit-redo.png', _('R&edo'), self.boss.do_editor_redo, 'editor-redo', 'Ctrl+Y', _('Redo typing')) self.action_editor_cut = reg('edit-cut.png', _('Cut &text'), self.boss.do_editor_cut, 'editor-cut', ('Ctrl+X', 'Shift+Delete', ), _('Cut text')) self.action_editor_copy = reg('edit-copy.png', _('&Copy to clipboard'), self.boss.do_editor_copy, 'editor-copy', ('Ctrl+C', 'Ctrl+Insert'), _('Copy to clipboard')) self.action_editor_paste = reg('edit-paste.png', _('P&aste from clipboard'), self.boss.do_editor_paste, 'editor-paste', ('Ctrl+V', 'Shift+Insert', ), _('Paste from clipboard')) self.action_editor_cut.setEnabled(False) self.action_editor_copy.setEnabled(False) self.action_editor_undo.setEnabled(False) self.action_editor_redo.setEnabled(False) # Tool actions group = _('Tools') self.action_toc = treg('toc.png', _('&Edit Table of Contents'), self.boss.edit_toc, 'edit-toc', (), _('Edit Table of Contents')) self.action_inline_toc = treg('chapters.png', _('&Insert inline Table of Contents'), self.boss.insert_inline_toc, 'insert-inline-toc', (), _('Insert inline Table of Contents')) self.action_fix_html_current = reg('html-fix.png', _('&Fix HTML'), partial(self.boss.fix_html, True), 'fix-html-current', (), _('Fix HTML in the current file')) self.action_fix_html_all = treg('html-fix.png', _('&Fix HTML - all files'), partial(self.boss.fix_html, False), 'fix-html-all', (), _('Fix HTML in all files')) self.action_pretty_current = reg('beautify.png', _('&Beautify current file'), partial(self.boss.pretty_print, True), 'pretty-current', (), _('Beautify current file')) self.action_pretty_all = treg('beautify.png', _('&Beautify all files'), partial(self.boss.pretty_print, False), 'pretty-all', (), _('Beautify all files')) self.action_insert_char = treg('character-set.png', _('&Insert special character'), self.boss.insert_character, 'insert-character', (), _('Insert special character')) self.action_rationalize_folders = treg('mimetypes/dir.png', _('&Arrange into folders'), self.boss.rationalize_folders, 'rationalize-folders', (), _('Arrange into folders')) self.action_set_semantics = treg('tags.png', _('Set &semantics'), self.boss.set_semantics, 'set-semantics', (), _('Set semantics')) self.action_filter_css = treg('filter.png', _('&Filter style information'), self.boss.filter_css, 'filter-css', (), _('Filter style information')) self.action_manage_fonts = treg('font.png', _('&Manage fonts'), self.boss.manage_fonts, 'manage-fonts', (), _('Manage fonts in the book')) self.action_add_cover = treg('default_cover.png', _('Add &cover'), self.boss.add_cover, 'add-cover', (), _('Add a cover to the book')) self.action_reports = treg( 'reports.png', _('&Reports'), self.boss.show_reports, 'show-reports', ('Ctrl+Shift+R',), _('Show a report on various aspects of the book')) self.action_check_external_links = treg('insert-link.png', _('Check &external links'), self.boss.check_external_links, 'check-external-links', (), _( 'Check external links in the book')) self.action_compress_images = treg('compress-image.png', _('C&ompress images losslessly'), self.boss.compress_images, 'compress-images', (), _( 'Compress images losslessly')) self.action_transform_styles = treg('wizard.png', _('Transform &styles'), self.boss.transform_styles, 'transform-styles', (), _( 'Transform styles used in the book')) self.action_get_ext_resources = treg('download-metadata.png', _('Download external &resources'), self.boss.get_external_resources, 'get-external-resources', (), _( 'Download external resources in the book (images/stylesheets/etc/ that are not included in the book)')) def ereg(icon, text, target, sid, keys, description): return reg(icon, text, partial(self.boss.editor_action, target), sid, keys, description) register_text_editor_actions(ereg, self.palette()) # Polish actions group = _('Polish book') self.action_subset_fonts = treg( 'subset-fonts.png', _('&Subset embedded fonts'), partial( self.boss.polish, 'subset', _('Subset fonts')), 'subset-fonts', (), _('Subset embedded fonts')) self.action_embed_fonts = treg( 'embed-fonts.png', _('&Embed referenced fonts'), partial( self.boss.polish, 'embed', _('Embed fonts')), 'embed-fonts', (), _('Embed referenced fonts')) self.action_smarten_punctuation = treg( 'smarten-punctuation.png', _('&Smarten punctuation (works best for English)'), partial( self.boss.polish, 'smarten_punctuation', _('Smarten punctuation')), 'smarten-punctuation', (), _('Smarten punctuation')) self.action_remove_unused_css = treg( 'edit-clear.png', _('Remove &unused CSS rules'), partial( self.boss.polish, 'remove_unused_css', _('Remove unused CSS rules')), 'remove-unused-css', (), _('Remove unused CSS rules')) # Preview actions group = _('Preview') self.action_auto_reload_preview = reg('auto-reload.png', _('Auto reload preview'), None, 'auto-reload-preview', (), _('Auto reload preview')) self.action_auto_sync_preview = reg('sync-right.png', _('Sync preview position to editor position'), None, 'sync-preview-to-editor', (), _( 'Sync preview position to editor position')) self.action_reload_preview = reg('view-refresh.png', _('Refresh preview'), None, 'reload-preview', ('F5',), _('Refresh preview')) self.action_split_in_preview = reg('document-split.png', _('Split this file'), None, 'split-in-preview', (), _( 'Split file in the preview panel')) self.action_find_next_preview = reg('arrow-down.png', _('Find next'), None, 'find-next-preview', (), _('Find next in preview')) self.action_find_prev_preview = reg('arrow-up.png', _('Find previous'), None, 'find-prev-preview', (), _('Find previous in preview')) # Search actions group = _('Search') self.action_find = treg('search.png', _('&Find/replace'), self.boss.show_find, 'find-replace', ('Ctrl+F',), _('Show the Find/replace panel')) def sreg(name, text, action, overrides={}, keys=(), description=None, icon=None): return reg(icon, text, partial(self.boss.search_action_triggered, action, overrides), name, keys, description or text.replace('&', '')) self.action_find_next = sreg('find-next', _('Find &next'), 'find', {'direction':'down'}, ('F3', 'Ctrl+G'), _('Find next match')) self.action_find_previous = sreg('find-previous', _('Find &previous'), 'find', {'direction':'up'}, ('Shift+F3', 'Shift+Ctrl+G'), _('Find previous match')) self.action_replace = sreg('replace', _('&Replace'), 'replace', keys=('Ctrl+R'), description=_('Replace current match')) self.action_replace_next = sreg('replace-next', _('&Replace and find next'), 'replace-find', {'direction':'down'}, ('Ctrl+]'), _('Replace current match and find next')) self.action_replace_previous = sreg('replace-previous', _('R&eplace and find previous'), 'replace-find', {'direction':'up'}, ('Ctrl+['), _('Replace current match and find previous')) self.action_replace_all = sreg('replace-all', _('Replace &all'), 'replace-all', keys=('Ctrl+A'), description=_('Replace all matches')) self.action_count = sreg('count-matches', _('&Count all'), 'count', keys=('Ctrl+N'), description=_('Count number of matches')) self.action_mark = reg(None, _('&Mark selected text'), self.boss.mark_selected_text, 'mark-selected-text', ('Ctrl+Shift+M',), _('Mark selected text or unmark already marked text')) self.action_mark.default_text = self.action_mark.text() self.action_go_to_line = reg(None, _('Go to &line'), self.boss.go_to_line_number, 'go-to-line-number', ('Ctrl+.',), _('Go to line number')) self.action_saved_searches = treg('folder_saved_search.png', _('Sa&ved searches'), self.boss.saved_searches, 'saved-searches', (), _('Show the saved searches dialog')) self.action_text_search = treg('view.png', _('&Search ignoring HTML markup'), self.boss.show_text_search, 'text-search', (), _('Show the text search panel')) # Check Book actions group = _('Check book') self.action_check_book = treg('debug.png', _('&Check book'), self.boss.check_requested, 'check-book', ('F7'), _('Check book for errors')) self.action_spell_check_book = treg('spell-check.png', _('Check &spelling'), self.boss.spell_check_requested, 'spell-check-book', ('Alt+F7'), _( 'Check book for spelling errors')) self.action_check_book_next = reg('forward.png', _('&Next error'), partial( self.check_book.next_error, delta=1), 'check-book-next', ('Ctrl+F7'), _('Show next error')) self.action_check_book_previous = reg('back.png', _('&Previous error'), partial( self.check_book.next_error, delta=-1), 'check-book-previous', ('Ctrl+Shift+F7'), _('Show previous error')) self.action_spell_check_next = reg('forward.png', _('&Next spelling mistake'), self.boss.next_spell_error, 'spell-next', ('F8'), _('Go to next spelling mistake')) # Miscellaneous actions group = _('Miscellaneous') self.action_create_checkpoint = treg( 'marked.png', _('&Create checkpoint'), self.boss.create_checkpoint, 'create-checkpoint', (), _( 'Create a checkpoint with the current state of the book')) self.action_close_current_tab = reg( 'window-close.png', _('&Close current tab'), self.central.close_current_editor, 'close-current-tab', 'Ctrl+W', _( 'Close the currently open tab')) self.action_close_all_but_current_tab = reg( 'edit-clear.png', _('&Close other tabs'), self.central.close_all_but_current_editor, 'close-all-but-current-tab', 'Ctrl+Alt+W', _( 'Close all tabs except the current tab')) self.action_help = treg( 'help.png', _('User &Manual'), lambda : open_url(QUrl(localize_user_manual_link( 'https://manual.calibre-ebook.com/edit.html'))), 'user-manual', 'F1', _( 'Show User Manual')) self.action_browse_images = treg( 'view-image.png', _('&Browse images in book'), self.boss.browse_images, 'browse-images', (), _( 'Browse images in the books visually')) self.action_multiple_split = treg( 'document-split.png', _('&Split at multiple locations'), self.boss.multisplit, 'multisplit', (), _( 'Split HTML file at multiple locations')) self.action_compare_book = treg('diff.png', _('Compare to &another book'), self.boss.compare_book, 'compare-book', (), _( 'Compare to another book')) self.action_manage_snippets = treg( 'snippets.png', _('Manage &Snippets'), self.boss.manage_snippets, 'manage-snippets', (), _( 'Manage user created snippets')) self.plugin_menu_actions = [] create_plugin_actions(actions, toolbar_actions, self.plugin_menu_actions) def create_menubar(self): if isosx: p, q = self.create_application_menubar() q.triggered.connect(self.action_quit.trigger) p.triggered.connect(self.action_preferences.trigger) f = factory(app_id='com.calibre-ebook.EditBook-%d' % os.getpid()) b = f.create_window_menubar(self) f = b.addMenu(_('&File')) f.addAction(self.action_new_file) f.addAction(self.action_import_files) f.addSeparator() f.addAction(self.action_open_book) f.addAction(self.action_new_book) f.addAction(self.action_import_book) f.addAction(self.action_open_book_folder) self.recent_books_menu = f.addMenu(_('&Recently opened books')) self.update_recent_books() f.addSeparator() f.addAction(self.action_save) f.addAction(self.action_save_copy) f.addSeparator() f.addAction(self.action_compare_book) f.addAction(self.action_quit) e = b.addMenu(_('&Edit')) e.addAction(self.action_global_undo) e.addAction(self.action_global_redo) e.addAction(self.action_create_checkpoint) e.addSeparator() e.addAction(self.action_editor_undo) e.addAction(self.action_editor_redo) e.addSeparator() e.addAction(self.action_editor_cut) e.addAction(self.action_editor_copy) e.addAction(self.action_editor_paste) e.addAction(self.action_insert_char) e.addSeparator() e.addAction(self.action_quick_edit) e.addAction(self.action_preferences) e = b.addMenu(_('&Tools')) tm = e.addMenu(_('Table of Contents')) tm.addAction(self.action_toc) tm.addAction(self.action_inline_toc) e.addAction(self.action_manage_fonts) e.addAction(self.action_embed_fonts) e.addAction(self.action_subset_fonts) e.addAction(self.action_compress_images) e.addAction(self.action_smarten_punctuation) e.addAction(self.action_remove_unused_css) e.addAction(self.action_transform_styles) e.addAction(self.action_fix_html_all) e.addAction(self.action_pretty_all) e.addAction(self.action_rationalize_folders) e.addAction(self.action_add_cover) e.addAction(self.action_set_semantics) e.addAction(self.action_filter_css) e.addAction(self.action_spell_check_book) er = e.addMenu(_('External &links')) er.addAction(self.action_check_external_links) er.addAction(self.action_get_ext_resources) e.addAction(self.action_check_book) e.addAction(self.action_reports) e = b.addMenu(_('&View')) t = e.addMenu(_('Tool&bars')) e.addSeparator() for name in sorted(actions, key=lambda x:sort_key(actions[x].text())): ac = actions[name] if name.endswith('-dock'): e.addAction(ac) elif name.endswith('-bar'): t.addAction(ac) e.addAction(self.action_browse_images) e.addSeparator() e.addAction(self.action_close_current_tab) e.addAction(self.action_close_all_but_current_tab) e = b.addMenu(_('&Search')) a = e.addAction a(self.action_find) e.addSeparator() a(self.action_find_next) a(self.action_find_previous) e.addSeparator() a(self.action_replace) a(self.action_replace_next) a(self.action_replace_previous) a(self.action_replace_all) e.addSeparator() a(self.action_count) e.addSeparator() a(self.action_mark) e.addSeparator() a(self.action_go_to_line) e.addSeparator() a(self.action_saved_searches) e.aboutToShow.connect(self.search_menu_about_to_show) e.addSeparator() a(self.action_text_search) if self.plugin_menu_actions: e = b.addMenu(_('&Plugins')) for ac in sorted(self.plugin_menu_actions, key=lambda x:sort_key(unicode(x.text()))): e.addAction(ac) e = b.addMenu(_('&Help')) a = e.addAction a(self.action_help) a(QIcon(I('donate.png')), _('&Donate to support calibre development'), open_donate) a(self.action_preferences) def search_menu_about_to_show(self): ed = self.central.current_editor update_mark_text_action(ed) def update_recent_books(self): m = self.recent_books_menu m.clear() books = tprefs.get('recent-books', []) for path in books: m.addAction(self.elided_text(path, width=500), partial(self.boss.open_book, path=path)) def create_toolbars(self): def create(text, name): name += '-bar' b = self.addToolBar(text) b.setObjectName(name) # Needed for saveState actions[name] = b.toggleViewAction() b.setIconSize(QSize(tprefs['toolbar_icon_size'], tprefs['toolbar_icon_size'])) return b self.global_bar = create(_('Book tool bar'), 'global') self.tools_bar = create(_('Tools tool bar'), 'tools') self.plugins_bar = create(_('Plugins tool bar'), 'plugins') self.populate_toolbars(animate=True) def populate_toolbars(self, animate=False): self.global_bar.clear(), self.tools_bar.clear(), self.plugins_bar.clear() def add(bar, ac): if ac is None: bar.addSeparator() elif ac == 'donate': self.donate_button = b = ThrobbingButton(self) b.clicked.connect(open_donate) b.setAutoRaise(True) b.setToolTip(_('Donate to support calibre development')) if animate: QTimer.singleShot(10, b.start_animation) bar.addWidget(b) else: try: bar.addAction(actions[ac]) except KeyError: if DEBUG: prints('Unknown action for toolbar %r: %r' % (unicode(bar.objectName()), ac)) for x in tprefs['global_book_toolbar']: add(self.global_bar, x) for x in tprefs['global_tools_toolbar']: add(self.tools_bar, x) for x in tprefs['global_plugins_toolbar']: add(self.plugins_bar, x) self.plugins_bar.setVisible(bool(tprefs['global_plugins_toolbar'])) def create_docks(self): def create(name, oname): oname += '-dock' d = QDockWidget(name, self) d.setObjectName(oname) # Needed for saveState ac = d.toggleViewAction() desc = _('Toggle %s') % name.replace('&', '') self.keyboard.register_shortcut( oname, desc, description=desc, action=ac, group=_('Windows')) actions[oname] = ac setattr(self, oname.replace('-', '_'), d) return d d = create(_('File browser'), 'files-browser') d.setAllowedAreas(Qt.LeftDockWidgetArea | Qt.RightDockWidgetArea) self.file_list = FileListWidget(d) d.setWidget(self.file_list) self.addDockWidget(Qt.LeftDockWidgetArea, d) d = create(_('File preview'), 'preview') d.setAllowedAreas(Qt.LeftDockWidgetArea | Qt.RightDockWidgetArea) self.preview = Preview(d) d.setWidget(self.preview) self.addDockWidget(Qt.RightDockWidgetArea, d) d = create(_('Live CSS'), 'live-css') d.setAllowedAreas(Qt.LeftDockWidgetArea | Qt.RightDockWidgetArea | Qt.BottomDockWidgetArea | Qt.TopDockWidgetArea) self.live_css = LiveCSS(self.preview, parent=d) d.setWidget(self.live_css) self.addDockWidget(Qt.RightDockWidgetArea, d) d.close() # Hidden by default d = create(_('Check book'), 'check-book') d.setAllowedAreas(Qt.LeftDockWidgetArea | Qt.RightDockWidgetArea | Qt.BottomDockWidgetArea | Qt.TopDockWidgetArea) d.setWidget(self.check_book) self.addDockWidget(Qt.TopDockWidgetArea, d) d.close() # By default the check window is closed d = create(_('Inspector'), 'inspector') d.setAllowedAreas(Qt.LeftDockWidgetArea | Qt.RightDockWidgetArea | Qt.BottomDockWidgetArea | Qt.TopDockWidgetArea) d.setWidget(self.preview.inspector) self.preview.inspector.setParent(d) self.addDockWidget(Qt.BottomDockWidgetArea, d) d.close() # By default the inspector window is closed d.setFeatures(d.DockWidgetClosable | d.DockWidgetMovable) # QWebInspector does not work in a floating dock d = create(_('Table of Contents'), 'toc-viewer') d.setAllowedAreas(Qt.LeftDockWidgetArea | Qt.RightDockWidgetArea | Qt.BottomDockWidgetArea | Qt.TopDockWidgetArea) d.setWidget(self.toc_view) self.addDockWidget(Qt.LeftDockWidgetArea, d) d.close() # Hidden by default d = create(_('Text search'), 'text-search') d.setAllowedAreas(Qt.LeftDockWidgetArea | Qt.RightDockWidgetArea | Qt.BottomDockWidgetArea | Qt.TopDockWidgetArea) d.setWidget(self.text_search) self.addDockWidget(Qt.LeftDockWidgetArea, d) d.close() # Hidden by default d = create(_('Checkpoints'), 'checkpoints') d.setAllowedAreas(Qt.LeftDockWidgetArea | Qt.RightDockWidgetArea | Qt.BottomDockWidgetArea | Qt.TopDockWidgetArea) self.checkpoints = CheckpointView(self.boss.global_undo, parent=d) d.setWidget(self.checkpoints) self.addDockWidget(Qt.LeftDockWidgetArea, d) d.close() # Hidden by default d = create(_('Saved searches'), 'saved-searches') d.setAllowedAreas(Qt.LeftDockWidgetArea | Qt.RightDockWidgetArea | Qt.BottomDockWidgetArea | Qt.TopDockWidgetArea) d.setWidget(self.saved_searches) self.addDockWidget(Qt.LeftDockWidgetArea, d) d.close() # Hidden by default def resizeEvent(self, ev): self.blocking_job.resize(ev.size()) return super(Main, self).resizeEvent(ev) def update_window_title(self): fname = os.path.basename(current_container().path_to_ebook) self.setWindowTitle(self.current_metadata.title + ' [%s] :: %s :: %s' %(current_container().book_type.upper(), fname, self.APP_NAME)) def closeEvent(self, e): if self.boss.quit(): e.accept() else: e.ignore() def save_state(self): tprefs.set('main_window_geometry', bytearray(self.saveGeometry())) tprefs.set('main_window_state', bytearray(self.saveState(self.STATE_VERSION))) self.central.save_state() self.saved_searches.save_state() self.check_book.save_state() self.text_search.save_state() def restore_state(self): geom = tprefs.get('main_window_geometry', None) if geom is not None: self.restoreGeometry(geom) state = tprefs.get('main_window_state', None) if state is not None: self.restoreState(state, self.STATE_VERSION) self.central.restore_state() self.saved_searches.restore_state() def contextMenuEvent(self, ev): ev.ignore()
gpl-3.0
1,148,555,098,009,233,500
49.142857
159
0.604777
false
andrewlewis/camera-id
test_characteristic.py
1
1197
#!/usr/bin/env python from make_characteristic import get_noise_from_file import cPickle import glob import numpy import sys from PIL import Image, ImageOps TILE_OVERLAP = 8 if len(sys.argv) != 3: print "Usage:\n\t%s noise_file_name path_with_png_files" % (sys.argv[0],) sys.exit(0) noise_file_name = sys.argv[1] image_path_name = sys.argv[2] # Load the camera noise. camera_noise = numpy.loadtxt(noise_file_name, dtype=numpy.float) camera_noise_average = numpy.average(camera_noise) camera_noise -= camera_noise_average camera_noise_norm = numpy.sqrt(numpy.sum(camera_noise * camera_noise)) file_list = glob.glob(image_path_name + '/*.png') print "Processing %d images" % (len(file_list),) for f in file_list: # Get this image's noise. image_noise = get_noise_from_file(f)[1] image_noise_average = numpy.average(image_noise) image_noise -= image_noise_average image_noise_norm = numpy.sqrt(numpy.sum(image_noise * image_noise)) # Calculate the correlation between the two signals. print "Dot product %s is: %s" % (f, numpy.sum(camera_noise * image_noise) / (camera_noise_norm * image_noise_norm))
mit
6,780,480,121,013,508,000
29.692308
76
0.675856
false
mitodl/micromasters
dashboard/api_edx_cache_test.py
1
21604
""" Tests for the dashboard APIs functions that deal with the edx cached data """ from datetime import timedelta from unittest.mock import patch, MagicMock, ANY import ddt from requests.exceptions import HTTPError from edx_api.certificates.models import Certificate, Certificates from edx_api.enrollments.models import Enrollment, Enrollments from edx_api.grades.models import CurrentGrade, CurrentGrades from backends.edxorg import EdxOrgOAuth2 from backends.exceptions import InvalidCredentialStored from courses.factories import ( FullProgramFactory, CourseFactory, CourseRunFactory, ) from dashboard import models from dashboard.api_edx_cache import ( CachedEdxUserData, CachedEdxDataApi, UserCachedRunData, ) from dashboard.factories import ( CachedEnrollmentFactory, CachedCertificateFactory, CachedCurrentGradeFactory, UserCacheRefreshTimeFactory, ) from dashboard.models import ( UserCacheRefreshTime, CachedEnrollment, ) from micromasters.factories import UserFactory from micromasters.utils import ( load_json_from_file, now_in_utc, ) from search.base import MockedESTestCase class CachedEdxUserDataTests(MockedESTestCase): """ Tests for the CachedEdxUserData class """ @classmethod def setUpTestData(cls): cls.user = UserFactory.create() # Create Programs, Courses, CourseRuns... cls.p1_course_run_keys = ['p1_course_run'] cls.p2_course_run_keys = ['p2_course_run_1', 'p2_course_run_2'] cls.p1_course_run = CourseRunFactory.create(edx_course_key=cls.p1_course_run_keys[0]) p2 = FullProgramFactory.create() first_course = p2.course_set.first() extra_course = CourseFactory.create(program=p2) cls.p2_course_run_1 = CourseRunFactory.create(course=first_course, edx_course_key=cls.p2_course_run_keys[0]) cls.p2_course_run_2 = CourseRunFactory.create(course=extra_course, edx_course_key=cls.p2_course_run_keys[1]) all_course_runs = [cls.p1_course_run, cls.p2_course_run_1, cls.p2_course_run_2] # Create cached edX data cls.enrollments = [ CachedEnrollmentFactory.create(user=cls.user, course_run=course_run) for course_run in all_course_runs ] cls.certificates = [ CachedCertificateFactory.create(user=cls.user, course_run=course_run) for course_run in all_course_runs ] cls.current_grades = [ CachedCurrentGradeFactory.create(user=cls.user, course_run=course_run) for course_run in all_course_runs ] def assert_edx_data_has_given_ids(self, edx_user_data, ids): """Asserts that all edX object course id sets match the given list of ids""" assert sorted(edx_user_data.enrollments.get_enrolled_course_ids()) == sorted(ids) assert sorted(edx_user_data.certificates.all_courses_verified_certs) == sorted(ids) assert sorted(edx_user_data.current_grades.all_course_ids) == sorted(ids) def test_edx_data_fetch_and_set(self): """Test that a user's edX data is properly fetched and set onto object properties""" edx_user_data = CachedEdxUserData(self.user) assert isinstance(edx_user_data.enrollments, Enrollments) assert isinstance(edx_user_data.certificates, Certificates) assert isinstance(edx_user_data.current_grades, CurrentGrades) self.assert_edx_data_has_given_ids(edx_user_data, self.p1_course_run_keys + self.p2_course_run_keys) def test_edx_data_with_program(self): """Test that a user's edX data is filtered by program when specified""" p1_course_run_program = self.p1_course_run.course.program edx_user_data = CachedEdxUserData(self.user, program=p1_course_run_program) self.assert_edx_data_has_given_ids(edx_user_data, self.p1_course_run_keys) p2_course_run_program = self.p2_course_run_1.course.program edx_user_data = CachedEdxUserData(self.user, program=p2_course_run_program) self.assert_edx_data_has_given_ids(edx_user_data, self.p2_course_run_keys) def test_get_run_data(self): """Test for the get_run_data method""" edx_user_data = CachedEdxUserData(self.user) run_data = edx_user_data.get_run_data(self.p1_course_run_keys[0]) assert isinstance(run_data, UserCachedRunData) assert isinstance(run_data.enrollment, Enrollment) assert isinstance(run_data.certificate, Certificate) assert isinstance(run_data.current_grade, CurrentGrade) assert run_data.enrollment.course_id == self.p1_course_run_keys[0] assert run_data.certificate.course_id == self.p1_course_run_keys[0] assert run_data.current_grade.course_id == self.p1_course_run_keys[0] @ddt.ddt class CachedEdxDataApiTests(MockedESTestCase): """ Tests for the CachedEdxDataApi class """ @classmethod def setUpTestData(cls): """ Set up data """ cls.user = UserFactory.create() cls.user.social_auth.create( provider=EdxOrgOAuth2.name, uid="{}_edx".format(cls.user.username), extra_data={"access_token": "fooooootoken"} ) certificates_json = load_json_from_file('dashboard/fixtures/certificates.json') cls.certificates = Certificates([Certificate(cert_json) for cert_json in certificates_json]) enrollments_json = load_json_from_file('dashboard/fixtures/user_enrollments.json') cls.enrollments = Enrollments(enrollments_json) # the grades need to have all the same usernames current_grades_json = [] for grade in load_json_from_file('dashboard/fixtures/current_grades.json'): grade.update({'username': cls.user.username}) current_grades_json.append(grade) cls.current_grades = CurrentGrades([CurrentGrade(grade_json) for grade_json in current_grades_json]) cls.certificates_ids = set(cls.certificates.all_courses_certs) cls.verified_certificates_ids = set(cls.certificates.all_courses_verified_certs) cls.enrollment_ids = set(cls.enrollments.get_enrolled_course_ids()) cls.grades_ids = set(cls.current_grades.all_course_ids) cls.all_course_run_ids = list( cls.certificates_ids | cls.enrollment_ids | cls.grades_ids ) cls.all_runs = [] for course_id in cls.all_course_run_ids: cls.all_runs.append(CourseRunFactory.create( edx_course_key=course_id, course__program__live=True, )) cls.edx_client = MagicMock() cls.edx_client.enrollments.get_student_enrollments.return_value = cls.enrollments cls.edx_client.certificates.get_student_certificates.return_value = cls.certificates cls.edx_client.current_grades.get_student_current_grades.return_value = cls.current_grades def assert_cache_in_db(self, enrollment_keys=None, certificate_keys=None, grades_keys=None): """ Helper function to assert the course keys in the database cache """ enrollment_keys = enrollment_keys or [] certificate_keys = certificate_keys or [] grades_keys = grades_keys or [] enrollments = CachedEdxDataApi.get_cached_edx_data(self.user, CachedEdxDataApi.ENROLLMENT) certificates = CachedEdxDataApi.get_cached_edx_data(self.user, CachedEdxDataApi.CERTIFICATE) grades = CachedEdxDataApi.get_cached_edx_data(self.user, CachedEdxDataApi.CURRENT_GRADE) assert sorted(list(enrollments.enrollments.keys())) == sorted(enrollment_keys) assert sorted(list(certificates.certificates.keys())) == sorted(certificate_keys) assert sorted(list(grades.current_grades.keys())) == sorted(grades_keys) def test_constants(self): """Tests class constants""" assert CachedEdxDataApi.SUPPORTED_CACHES == ( CachedEdxDataApi.ENROLLMENT, CachedEdxDataApi.CERTIFICATE, CachedEdxDataApi.CURRENT_GRADE, ) assert CachedEdxDataApi.CACHED_EDX_MODELS == { CachedEdxDataApi.ENROLLMENT: models.CachedEnrollment, CachedEdxDataApi.CERTIFICATE: models.CachedCertificate, CachedEdxDataApi.CURRENT_GRADE: models.CachedCurrentGrade, } assert CachedEdxDataApi.CACHE_EXPIRATION_DELTAS == { CachedEdxDataApi.ENROLLMENT: timedelta(minutes=5), CachedEdxDataApi.CERTIFICATE: timedelta(hours=6), CachedEdxDataApi.CURRENT_GRADE: timedelta(hours=1), } def test_get_cached_edx_data(self): """ Test for get_cached_edx_data """ with self.assertRaises(ValueError): CachedEdxDataApi.get_cached_edx_data(self.user, 'footype') self.assert_cache_in_db() for run in self.all_runs: CachedEnrollmentFactory.create(user=self.user, course_run=run) CachedCertificateFactory.create(user=self.user, course_run=run) CachedCurrentGradeFactory.create(user=self.user, course_run=run) self.assert_cache_in_db(self.all_course_run_ids, self.all_course_run_ids, self.all_course_run_ids) def test_update_cache_last_access(self): """Test for update_cache_last_access""" with self.assertRaises(ValueError): CachedEdxDataApi.update_cache_last_access(self.user, 'footype') assert UserCacheRefreshTime.objects.filter(user=self.user).exists() is False CachedEdxDataApi.update_cache_last_access(self.user, CachedEdxDataApi.ENROLLMENT) cache_time = UserCacheRefreshTime.objects.get(user=self.user) assert cache_time.enrollment <= now_in_utc() assert cache_time.certificate is None assert cache_time.current_grade is None old_timestamp = now_in_utc() - timedelta(days=1) CachedEdxDataApi.update_cache_last_access(self.user, CachedEdxDataApi.ENROLLMENT, old_timestamp) cache_time.refresh_from_db() assert cache_time.enrollment == old_timestamp def test_is_cache_fresh(self): """Test for is_cache_fresh""" with self.assertRaises(ValueError): CachedEdxDataApi.is_cache_fresh(self.user, 'footype') # if there is no entry in the table, the cache is not fresh assert UserCacheRefreshTime.objects.filter(user=self.user).exists() is False for cache_type in CachedEdxDataApi.SUPPORTED_CACHES: assert CachedEdxDataApi.is_cache_fresh(self.user, cache_type) is False now = now_in_utc() user_cache = UserCacheRefreshTimeFactory.create( user=self.user, enrollment=now, certificate=now, current_grade=now, ) for cache_type in CachedEdxDataApi.SUPPORTED_CACHES: assert CachedEdxDataApi.is_cache_fresh(self.user, cache_type) is True # moving back the timestamp of one day, makes the cache not fresh again yesterday = now - timedelta(days=1) user_cache.enrollment = yesterday user_cache.certificate = yesterday user_cache.current_grade = yesterday user_cache.save() for cache_type in CachedEdxDataApi.SUPPORTED_CACHES: assert CachedEdxDataApi.is_cache_fresh(self.user, cache_type) is False @ddt.data('certificate', 'enrollment', 'current_grade') def test_are_all_caches_fresh(self, cache_type): """Test for are_all_caches_fresh""" assert UserCacheRefreshTime.objects.filter(user=self.user).exists() is False assert CachedEdxDataApi.are_all_caches_fresh(self.user) is False now = now_in_utc() yesterday = now - timedelta(days=1) user_cache = UserCacheRefreshTimeFactory.create( user=self.user, enrollment=now, certificate=now, current_grade=now, ) assert CachedEdxDataApi.are_all_caches_fresh(self.user) is True setattr(user_cache, cache_type, yesterday) user_cache.save() assert CachedEdxDataApi.are_all_caches_fresh(self.user) is False setattr(user_cache, cache_type, now) user_cache.save() assert CachedEdxDataApi.are_all_caches_fresh(self.user) is True @patch('search.tasks.index_users', autospec=True) def test_update_cached_enrollment(self, mocked_index): """Test for update_cached_enrollment""" course_id = list(self.enrollment_ids)[0] enrollment = self.enrollments.get_enrollment_for_course(course_id) self.assert_cache_in_db() # normal update that creates also the entry CachedEdxDataApi.update_cached_enrollment(self.user, enrollment, course_id, False) self.assert_cache_in_db(enrollment_keys=[course_id]) cached_enr = CachedEnrollment.objects.get(user=self.user, course_run__edx_course_key=course_id) assert cached_enr.data == enrollment.json assert mocked_index.delay.called is False # update of different data with indexing enr_json = { "course_details": { "course_id": course_id, }, "is_active": True, "mode": "verified", "user": self.user.username } enrollment_new = Enrollment(enr_json) CachedEdxDataApi.update_cached_enrollment(self.user, enrollment_new, course_id, True) self.assert_cache_in_db(enrollment_keys=[course_id]) cached_enr.refresh_from_db() assert cached_enr.data == enr_json mocked_index.delay.assert_any_call([self.user.id], check_if_changed=True) @patch('search.tasks.index_users', autospec=True) def test_update_cached_enrollments(self, mocked_index): """Test for update_cached_enrollments.""" self.assert_cache_in_db() assert UserCacheRefreshTime.objects.filter(user=self.user).exists() is False CachedEdxDataApi.update_cached_enrollments(self.user, self.edx_client) self.assert_cache_in_db(enrollment_keys=self.enrollment_ids) cache_time = UserCacheRefreshTime.objects.get(user=self.user) now = now_in_utc() assert cache_time.enrollment <= now assert mocked_index.delay.called is True mocked_index.reset_mock() # add another cached element for another course that will be removed by the refresh cached_enr = CachedEnrollmentFactory.create(user=self.user) self.assert_cache_in_db(enrollment_keys=list(self.enrollment_ids) + [cached_enr.course_run.edx_course_key]) CachedEdxDataApi.update_cached_enrollments(self.user, self.edx_client) self.assert_cache_in_db(enrollment_keys=self.enrollment_ids) cache_time.refresh_from_db() assert cache_time.enrollment >= now mocked_index.delay.assert_called_once_with([self.user.id], check_if_changed=True) @patch('search.tasks.index_users', autospec=True) def test_update_cached_certificates(self, mocked_index): """Test for update_cached_certificates.""" assert self.verified_certificates_ids.issubset(self.certificates_ids) self.assert_cache_in_db() assert UserCacheRefreshTime.objects.filter(user=self.user).exists() is False CachedEdxDataApi.update_cached_certificates(self.user, self.edx_client) self.assert_cache_in_db(certificate_keys=self.verified_certificates_ids) cache_time = UserCacheRefreshTime.objects.get(user=self.user) now = now_in_utc() assert cache_time.certificate <= now assert mocked_index.delay.called is True mocked_index.reset_mock() # add another cached element for another course that will be removed by the refresh cached_cert = CachedCertificateFactory.create(user=self.user) self.assert_cache_in_db( certificate_keys=list(self.verified_certificates_ids) + [cached_cert.course_run.edx_course_key]) CachedEdxDataApi.update_cached_certificates(self.user, self.edx_client) self.assert_cache_in_db(certificate_keys=self.verified_certificates_ids) cache_time.refresh_from_db() assert cache_time.certificate >= now mocked_index.delay.assert_called_once_with([self.user.id], check_if_changed=True) @patch('search.tasks.index_users', autospec=True) def test_update_cached_current_grades(self, mocked_index): """Test for update_cached_current_grades.""" self.assert_cache_in_db() assert UserCacheRefreshTime.objects.filter(user=self.user).exists() is False CachedEdxDataApi.update_cached_current_grades(self.user, self.edx_client) self.assert_cache_in_db(grades_keys=self.grades_ids) cache_time = UserCacheRefreshTime.objects.get(user=self.user) now = now_in_utc() assert cache_time.current_grade <= now assert mocked_index.delay.called is True mocked_index.reset_mock() # add another cached element for another course that will be removed by the refresh cached_grade = CachedCurrentGradeFactory.create(user=self.user) self.assert_cache_in_db(grades_keys=list(self.grades_ids) + [cached_grade.course_run.edx_course_key]) CachedEdxDataApi.update_cached_current_grades(self.user, self.edx_client) self.assert_cache_in_db(grades_keys=self.grades_ids) cache_time.refresh_from_db() assert cache_time.current_grade >= now mocked_index.delay.assert_called_once_with([self.user.id], check_if_changed=True) @patch('dashboard.api_edx_cache.CachedEdxDataApi.update_cached_current_grades') @patch('dashboard.api_edx_cache.CachedEdxDataApi.update_cached_certificates') @patch('dashboard.api_edx_cache.CachedEdxDataApi.update_cached_enrollments') def test_update_cache_if_expired(self, mock_enr, mock_cert, mock_grade): """Test for update_cache_if_expired""" all_mocks = (mock_enr, mock_cert, mock_grade, ) with self.assertRaises(ValueError): CachedEdxDataApi.update_cache_if_expired(self.user, self.edx_client, 'footype') # if there is no entry in the UserCacheRefreshTime the cache is not fresh and needs to be refreshed for cache_type in CachedEdxDataApi.SUPPORTED_CACHES: # the following is possible only because a mocked function is called assert UserCacheRefreshTime.objects.filter(user=self.user).exists() is False CachedEdxDataApi.update_cache_if_expired(self.user, self.edx_client, cache_type) for mock_func in all_mocks: assert mock_func.called is True mock_func.reset_mock() # if we create a fresh entry in the UserCacheRefreshTime, no update is called now = now_in_utc() user_cache = UserCacheRefreshTimeFactory.create( user=self.user, enrollment=now, certificate=now, current_grade=now, ) for cache_type in CachedEdxDataApi.SUPPORTED_CACHES: CachedEdxDataApi.update_cache_if_expired(self.user, self.edx_client, cache_type) for mock_func in all_mocks: assert mock_func.called is False mock_func.reset_mock() # moving back the last access time, the functions are called again yesterday = now - timedelta(days=1) user_cache.enrollment = yesterday user_cache.certificate = yesterday user_cache.current_grade = yesterday user_cache.save() for cache_type in CachedEdxDataApi.SUPPORTED_CACHES: CachedEdxDataApi.update_cache_if_expired(self.user, self.edx_client, cache_type) for mock_func in all_mocks: assert mock_func.called is True @patch('dashboard.api_edx_cache.CachedEdxDataApi.update_cached_enrollments') @ddt.data(400, 401, 405,) def test_update_cache_if_expired_http_errors(self, status_code, mock_enr): """ Test for update_cache_if_expired in case a backend function raises an HTTPError """ def raise_http_error(*args, **kwargs): # pylint: disable=unused-argument """Mock function to raise an exception""" error = HTTPError() error.response = MagicMock() error.response.status_code = status_code raise error mock_enr.side_effect = raise_http_error if status_code in (400, 401): with self.assertRaises(InvalidCredentialStored): CachedEdxDataApi.update_cache_if_expired(self.user, self.edx_client, CachedEdxDataApi.ENROLLMENT) else: with self.assertRaises(HTTPError): CachedEdxDataApi.update_cache_if_expired(self.user, self.edx_client, CachedEdxDataApi.ENROLLMENT) @patch('dashboard.api_edx_cache.CachedEdxDataApi.update_cached_current_grades') @patch('dashboard.api_edx_cache.CachedEdxDataApi.update_cached_certificates') @patch('dashboard.api_edx_cache.CachedEdxDataApi.update_cached_enrollments') @patch('backends.utils.refresh_user_token', autospec=True) def test_update_all_cached_grade_data(self, mock_refr, mock_enr, mock_cert, mock_grade): """Test for update_all_cached_grade_data""" for mock_func in (mock_refr, mock_enr, mock_cert, mock_grade, ): assert mock_func.called is False CachedEdxDataApi.update_all_cached_grade_data(self.user) assert mock_enr.called is False mock_refr.assert_called_once_with(self.user.social_auth.get(provider=EdxOrgOAuth2.name)) for mock_func in (mock_cert, mock_grade, ): mock_func.assert_called_once_with(self.user, ANY)
bsd-3-clause
3,159,953,239,633,138,000
47.767494
116
0.679133
false
unt-libraries/django-nomination
nomination/migrations/0004_auto_20190927_1904.py
1
7862
# -*- coding: utf-8 -*- # Generated by Django 1.11.24 on 2019-09-27 19:04 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('nomination', '0003_project_archive_url'), ] operations = [ migrations.AlterField( model_name='metadata', name='name', field=models.SlugField(help_text='Assign a name for the metadata field (letters, numbers, underscores, and hyphens are permissible).'), ), migrations.AlterField( model_name='metadata', name='value_sets', field=models.ManyToManyField(blank=True, help_text='In addition to values manually assigned, values in selected pre-defined sets will also be available to metadata fields.', to='nomination.ValueSet', verbose_name='metadata value sets'), ), migrations.AlterField( model_name='metadata', name='values', field=models.ManyToManyField(blank=True, help_text='Allowed value for metadata field.', through='nomination.Metadata_Values', to='nomination.Value', verbose_name='values'), ), migrations.AlterField( model_name='metadata_values', name='value_order', field=models.PositiveIntegerField(default=1, help_text='Change the ordering of the value fields, ordered lowest to highest'), ), migrations.AlterField( model_name='nominator', name='nominator_email', field=models.CharField(help_text='An email address for identifying your nominations in the system.', max_length=100), ), migrations.AlterField( model_name='nominator', name='nominator_institution', field=models.CharField(help_text='Your institutional affiliation.', max_length=100), ), migrations.AlterField( model_name='nominator', name='nominator_name', field=models.CharField(help_text='Your name.', max_length=100), ), migrations.AlterField( model_name='project', name='admin_email', field=models.CharField(help_text='Email address of project administrator.', max_length=80), ), migrations.AlterField( model_name='project', name='admin_name', field=models.CharField(help_text='Name of project administrator.', max_length=80), ), migrations.AlterField( model_name='project', name='archive_url', field=models.URLField(blank=True, help_text='Base URL for accessing site archives.', null=True), ), migrations.AlterField( model_name='project', name='nomination_end', field=models.DateTimeField(help_text='Date to stop accepting URL nominations.'), ), migrations.AlterField( model_name='project', name='nomination_start', field=models.DateTimeField(help_text='Date to start accepting URL nominations.'), ), migrations.AlterField( model_name='project', name='project_description', field=models.TextField(help_text='Description of project.'), ), migrations.AlterField( model_name='project', name='project_end', field=models.DateTimeField(help_text='Ending date for project.'), ), migrations.AlterField( model_name='project', name='project_name', field=models.CharField(help_text='Name given to nomination project.', max_length=250), ), migrations.AlterField( model_name='project', name='project_slug', field=models.CharField(help_text='Up to 25 character identifier for the project (used in URLS, etc.).', max_length=25, unique=True), ), migrations.AlterField( model_name='project', name='project_start', field=models.DateTimeField(help_text='Starting date for project.'), ), migrations.AlterField( model_name='project', name='project_url', field=models.CharField(help_text='Project affiliated URL.', max_length=255), ), migrations.AlterField( model_name='project_metadata', name='description', field=models.CharField(help_text='Used as a descriptive title for the metadata field on Web forms.', max_length=255), ), migrations.AlterField( model_name='project_metadata', name='form_type', field=models.CharField(choices=[('checkbox', 'checkbox'), ('date', 'date'), ('radio', 'radio button'), ('select', 'menu-select multiple values'), ('selectsingle', 'menu-select single value'), ('text', 'text input'), ('textarea', 'text area')], help_text='Type of HTML form element that should represent the field.', max_length=30), ), migrations.AlterField( model_name='project_metadata', name='help', field=models.CharField(blank=True, help_text='String used on Web forms to prompt users for accurate data.', max_length=255), ), migrations.AlterField( model_name='project_metadata', name='metadata_order', field=models.PositiveIntegerField(default=1, help_text='Change the ordering of the metadata fields, ordered lowest to highest'), ), migrations.AlterField( model_name='project_metadata', name='required', field=models.BooleanField(help_text='Are users required to submit data for this field when nominating a URL?'), ), migrations.AlterField( model_name='url', name='attribute', field=models.CharField(help_text='A property of the URL you wish to describe.', max_length=255), ), migrations.AlterField( model_name='url', name='entity', field=models.CharField(help_text='The URL to nominate for capture.', max_length=300), ), migrations.AlterField( model_name='url', name='url_project', field=models.ForeignKey(help_text='The project for which you want to add a URL.', on_delete=django.db.models.deletion.CASCADE, to='nomination.Project'), ), migrations.AlterField( model_name='url', name='value', field=models.CharField(help_text='The value of the associated attribute.', max_length=255), ), migrations.AlterField( model_name='value', name='key', field=models.CharField(help_text='Up to 35 character identifier for the metadata field.', max_length=35, unique=True), ), migrations.AlterField( model_name='value', name='value', field=models.CharField(help_text='Permitted value for associated metadata field.', max_length=255), ), migrations.AlterField( model_name='valueset', name='name', field=models.CharField(help_text='Name given to value set.', max_length=75, unique=True), ), migrations.AlterField( model_name='valueset', name='values', field=models.ManyToManyField(through='nomination.Valueset_Values', to='nomination.Value', verbose_name='values'), ), migrations.AlterField( model_name='valueset_values', name='value_order', field=models.PositiveIntegerField(default=1, help_text='Change the ordering of the value fields, ordered lowest to highest'), ), ]
bsd-3-clause
2,851,599,570,489,149,000
43.670455
343
0.598067
false
medunigraz/outpost
src/outpost/django/kages/api.py
1
1284
import logging import ldap from rest_framework import ( exceptions, permissions, viewsets, ) from rest_framework.response import Response from . import models from .conf import settings logger = logging.getLogger(__name__) class TranslateViewSet(viewsets.ViewSet): permission_classes = ( permissions.IsAuthenticated, ) def list(self, request): return Response() def retrieve(self, request, pk=None): if not pk: return Response(False) try: conn = ldap.initialize(settings.AUTH_LDAP_SERVER_URI) conn.simple_bind_s( settings.AUTH_LDAP_BIND_DN, settings.AUTH_LDAP_BIND_PASSWORD ) result = conn.search_s( settings.AUTH_LDAP_USER_SEARCH.base_dn, settings.AUTH_LDAP_USER_SEARCH.scope, settings.KAGES_PERS_ID_FILTER.format(id=int(pk)), settings.KAGES_PERS_FIELDS ) found = len(result) == 1 except Exception as e: logger.warn( f'LDAP query failed when matching KAGes ID: {e}' ) found = False logger.debug(f'Matched KAGes ID: {found}') return Response({'exists': found})
bsd-2-clause
-7,632,317,316,049,999,000
26.319149
65
0.576324
false
jscn/django
django/contrib/contenttypes/models.py
1
7319
from __future__ import unicode_literals from django.apps import apps from django.db import models from django.db.utils import IntegrityError, OperationalError, ProgrammingError from django.utils.encoding import force_text, python_2_unicode_compatible from django.utils.translation import ugettext_lazy as _ class ContentTypeManager(models.Manager): use_in_migrations = True def __init__(self, *args, **kwargs): super(ContentTypeManager, self).__init__(*args, **kwargs) # Cache shared by all the get_for_* methods to speed up # ContentType retrieval. self._cache = {} def get_by_natural_key(self, app_label, model): try: ct = self._cache[self.db][(app_label, model)] except KeyError: ct = self.get(app_label=app_label, model=model) self._add_to_cache(self.db, ct) return ct def _get_opts(self, model, for_concrete_model): if for_concrete_model: model = model._meta.concrete_model return model._meta def _get_from_cache(self, opts): key = (opts.app_label, opts.model_name) return self._cache[self.db][key] def get_for_model(self, model, for_concrete_model=True): """ Returns the ContentType object for a given model, creating the ContentType if necessary. Lookups are cached so that subsequent lookups for the same model don't hit the database. """ opts = self._get_opts(model, for_concrete_model) try: return self._get_from_cache(opts) except KeyError: pass # The ContentType entry was not found in the cache, therefore we # proceed to load or create it. try: try: # We start with get() and not get_or_create() in order to use # the db_for_read (see #20401). ct = self.get(app_label=opts.app_label, model=opts.model_name) except self.model.DoesNotExist: # Not found in the database; we proceed to create it. This time we # use get_or_create to take care of any race conditions. ct, created = self.get_or_create( app_label=opts.app_label, model=opts.model_name, ) except (OperationalError, ProgrammingError, IntegrityError): # It's possible to migrate a single app before contenttypes, # as it's not a required initial dependency (it's contrib!) # Have a nice error for this. raise RuntimeError( "Error creating new content types. Please make sure contenttypes " "is migrated before trying to migrate apps individually." ) self._add_to_cache(self.db, ct) return ct def get_for_models(self, *models, **kwargs): """ Given *models, returns a dictionary mapping {model: content_type}. """ for_concrete_models = kwargs.pop('for_concrete_models', True) # Final results results = {} # models that aren't already in the cache needed_app_labels = set() needed_models = set() needed_opts = set() for model in models: opts = self._get_opts(model, for_concrete_models) try: ct = self._get_from_cache(opts) except KeyError: needed_app_labels.add(opts.app_label) needed_models.add(opts.model_name) needed_opts.add(opts) else: results[model] = ct if needed_opts: cts = self.filter( app_label__in=needed_app_labels, model__in=needed_models ) for ct in cts: model = ct.model_class() if model._meta in needed_opts: results[model] = ct needed_opts.remove(model._meta) self._add_to_cache(self.db, ct) for opts in needed_opts: # These weren't in the cache, or the DB, create them. ct = self.create( app_label=opts.app_label, model=opts.model_name, ) self._add_to_cache(self.db, ct) results[ct.model_class()] = ct return results def get_for_id(self, id): """ Lookup a ContentType by ID. Uses the same shared cache as get_for_model (though ContentTypes are obviously not created on-the-fly by get_by_id). """ try: ct = self._cache[self.db][id] except KeyError: # This could raise a DoesNotExist; that's correct behavior and will # make sure that only correct ctypes get stored in the cache dict. ct = self.get(pk=id) self._add_to_cache(self.db, ct) return ct def clear_cache(self): """ Clear out the content-type cache. This needs to happen during database flushes to prevent caching of "stale" content type IDs (see django.contrib.contenttypes.management.update_contenttypes for where this gets called). """ self._cache.clear() def _add_to_cache(self, using, ct): """Insert a ContentType into the cache.""" # Note it's possible for ContentType objects to be stale; model_class() will return None. # Hence, there is no reliance on model._meta.app_label here, just using the model fields instead. key = (ct.app_label, ct.model) self._cache.setdefault(using, {})[key] = ct self._cache.setdefault(using, {})[ct.id] = ct @python_2_unicode_compatible class ContentType(models.Model): app_label = models.CharField(max_length=100) model = models.CharField(_('python model class name'), max_length=100) objects = ContentTypeManager() class Meta: verbose_name = _('content type') verbose_name_plural = _('content types') db_table = 'django_content_type' unique_together = (('app_label', 'model'),) def __str__(self): return self.name @property def name(self): model = self.model_class() if not model: return self.model return force_text(model._meta.verbose_name) def model_class(self): "Returns the Python model class for this type of content." try: return apps.get_model(self.app_label, self.model) except LookupError: return None def get_object_for_this_type(self, **kwargs): """ Returns an object of this type for the keyword arguments given. Basically, this is a proxy around this object_type's get_object() model method. The ObjectNotExist exception, if thrown, will not be caught, so code that calls this method should catch it. """ return self.model_class()._base_manager.using(self._state.db).get(**kwargs) def get_all_objects_for_this_type(self, **kwargs): """ Returns all objects of this type for the keyword arguments given. """ return self.model_class()._base_manager.using(self._state.db).filter(**kwargs) def natural_key(self): return (self.app_label, self.model)
bsd-3-clause
8,636,261,011,933,846,000
37.119792
105
0.585872
false
Acidburn0zzz/archiso-gui
releng/root-image/usr/share/cnchi/src/misc.py
1
28903
#!/usr/bin/python # -*- coding: UTF-8 -*- # # Copyright (c) 2012 Canonical Ltd. # Copyright (c) 2013 Antergos # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA from collections import namedtuple import contextlib import grp import os import pwd import re import shutil import subprocess import syslog import socket import osextras def copytree(src, dst, symlinks=False, ignore=None): for item in os.listdir(src): s = os.path.join(src, item) d = os.path.join(dst, item) if os.path.isdir(s): shutil.copytree(s, d, symlinks, ignore) else: shutil.copy2(s, d) def utf8(s, errors="strict"): """Decode a string as UTF-8 if it isn't already Unicode.""" if isinstance(s, str): return s else: return str(s, "utf-8", errors) def is_swap(device): try: with open('/proc/swaps') as fp: for line in fp: if line.startswith(device + ' '): return True except Exception: pass return False _dropped_privileges = 0 def set_groups_for_uid(uid): if uid == os.geteuid() or uid == os.getuid(): return user = pwd.getpwuid(uid).pw_name try: os.setgroups([g.gr_gid for g in grp.getgrall() if user in g.gr_mem]) except OSError: import traceback for line in traceback.format_exc().split('\n'): syslog.syslog(syslog.LOG_ERR, line) def drop_all_privileges(): # gconf needs both the UID and effective UID set. global _dropped_privileges uid = os.environ.get('SUDO_UID') gid = os.environ.get('SUDO_GID') if uid is not None: uid = int(uid) set_groups_for_uid(uid) if gid is not None: gid = int(gid) os.setregid(gid, gid) if uid is not None: uid = int(uid) os.setreuid(uid, uid) os.environ['HOME'] = pwd.getpwuid(uid).pw_dir os.environ['LOGNAME'] = pwd.getpwuid(uid).pw_name _dropped_privileges = None def drop_privileges(): global _dropped_privileges assert _dropped_privileges is not None if _dropped_privileges == 0: uid = os.environ.get('SUDO_UID') gid = os.environ.get('SUDO_GID') if uid is not None: uid = int(uid) set_groups_for_uid(uid) if gid is not None: gid = int(gid) os.setegid(gid) if uid is not None: os.seteuid(uid) _dropped_privileges += 1 def regain_privileges(): global _dropped_privileges assert _dropped_privileges is not None _dropped_privileges -= 1 if _dropped_privileges == 0: os.seteuid(0) os.setegid(0) os.setgroups([]) def drop_privileges_save(): """Drop the real UID/GID as well, and hide them in saved IDs.""" # At the moment, we only know how to handle this when effective # privileges were already dropped. assert _dropped_privileges is not None and _dropped_privileges > 0 uid = os.environ.get('SUDO_UID') gid = os.environ.get('SUDO_GID') if uid is not None: uid = int(uid) set_groups_for_uid(uid) if gid is not None: gid = int(gid) os.setresgid(gid, gid, 0) if uid is not None: os.setresuid(uid, uid, 0) def regain_privileges_save(): """Recover our real UID/GID after calling drop_privileges_save.""" assert _dropped_privileges is not None and _dropped_privileges > 0 os.setresuid(0, 0, 0) os.setresgid(0, 0, 0) os.setgroups([]) @contextlib.contextmanager def raised_privileges(): """As regain_privileges/drop_privileges, but in context manager style.""" regain_privileges() try: yield finally: drop_privileges() def raise_privileges(func): """As raised_privileges, but as a function decorator.""" from functools import wraps @wraps(func) def helper(*args, **kwargs): with raised_privileges(): return func(*args, **kwargs) return helper @raise_privileges def grub_options(): """ Generates a list of suitable targets for grub-installer @return empty list or a list of ['/dev/sda1','Ubuntu Hardy 8.04'] """ from ubiquity.parted_server import PartedServer l = [] try: oslist = {} subp = subprocess.Popen( ['os-prober'], stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True) result = subp.communicate()[0].splitlines() for res in result: res = res.split(':') oslist[res[0]] = res[1] p = PartedServer() for disk in p.disks(): p.select_disk(disk) with open(p.device_entry('model')) as fp: mod = fp.readline() with open(p.device_entry('device')) as fp: dev = fp.readline() with open(p.device_entry('size')) as fp: size = fp.readline() if dev and mod: if size.isdigit(): size = format_size(int(size)) l.append([dev, '%s (%s)' % (mod, size)]) else: l.append([dev, mod]) for part in p.partitions(): ostype = '' if part[4] == 'linux-swap': continue if part[4] == 'free': continue if os.path.exists(p.part_entry(part[1], 'format')): # Don't bother looking for an OS type. pass elif part[5] in oslist.keys(): ostype = oslist[part[5]] l.append([part[5], ostype]) except: import traceback for line in traceback.format_exc().split('\n'): syslog.syslog(syslog.LOG_ERR, line) return l @raise_privileges def boot_device(): from ubiquity.parted_server import PartedServer boot = None root = None try: p = PartedServer() for disk in p.disks(): p.select_disk(disk) for part in p.partitions(): part = part[1] if p.has_part_entry(part, 'mountpoint'): mp = p.readline_part_entry(part, 'mountpoint') if mp == '/boot': boot = disk.replace('=', '/') elif mp == '/': root = disk.replace('=', '/') except Exception: import traceback for line in traceback.format_exc().split('\n'): syslog.syslog(syslog.LOG_ERR, line) if boot: return boot return root def is_removable(device): if device is None: return None device = os.path.realpath(device) devpath = None is_partition = False removable_bus = False subp = subprocess.Popen(['udevadm', 'info', '-q', 'property', '-n', device], stdout=subprocess.PIPE, universal_newlines=True) for line in subp.communicate()[0].splitlines(): line = line.strip() if line.startswith('DEVPATH='): devpath = line[8:] elif line == 'DEVTYPE=partition': is_partition = True elif line == 'ID_BUS=usb' or line == 'ID_BUS=ieee1394': removable_bus = True if devpath is not None: if is_partition: devpath = os.path.dirname(devpath) is_removable = removable_bus try: with open('/sys%s/removable' % devpath) as removable: if removable.readline().strip() != '0': is_removable = True except IOError: pass if is_removable: try: subp = subprocess.Popen(['udevadm', 'info', '-q', 'name', '-p', devpath], stdout=subprocess.PIPE, universal_newlines=True) return ('/dev/%s' % subp.communicate()[0].splitlines()[0].strip()) except Exception: pass return None def mount_info(path): """Return filesystem name, type, and ro/rw for a given mountpoint.""" fsname = '' fstype = '' writable = '' with open('/proc/mounts') as fp: for line in fp: line = line.split() if line[1] == path: fsname = line[0] fstype = line[2] writable = line[3].split(',')[0] return fsname, fstype, writable def udevadm_info(args): fullargs = ['udevadm', 'info', '-q', 'property'] fullargs.extend(args) udevadm = {} subp = subprocess.Popen( fullargs, stdout=subprocess.PIPE, universal_newlines=True) for line in subp.communicate()[0].splitlines(): line = line.strip() if '=' not in line: continue name, value = line.split('=', 1) udevadm[name] = value return udevadm def partition_to_disk(partition): """Convert a partition device to its disk device, if any.""" udevadm_part = udevadm_info(['-n', partition]) if ('DEVPATH' not in udevadm_part or udevadm_part.get('DEVTYPE') != 'partition'): return partition disk_syspath = '/sys%s' % udevadm_part['DEVPATH'].rsplit('/', 1)[0] udevadm_disk = udevadm_info(['-p', disk_syspath]) return udevadm_disk.get('DEVNAME', partition) def is_boot_device_removable(boot=None): if boot: return is_removable(boot) else: return is_removable(boot_device()) def cdrom_mount_info(): """Return mount information for /cdrom. This is the same as mount_info, except that the partition is converted to its containing disk, and we don't care whether the mount point is writable. """ cdsrc, cdfs, _ = mount_info('/cdrom') cdsrc = partition_to_disk(cdsrc) return cdsrc, cdfs @raise_privileges def grub_device_map(): """Return the contents of the default GRUB device map.""" subp = subprocess.Popen(['grub-mkdevicemap', '--no-floppy', '-m', '-'], stdout=subprocess.PIPE, universal_newlines=True) return subp.communicate()[0].splitlines() def grub_default(boot=None): """Return the default GRUB installation target.""" # Much of this is intentionally duplicated from grub-installer, so that # we can show the user what device GRUB will be installed to before # grub-installer is run. Pursuant to that, we intentionally run this in # the installer root as /target might not yet be available. bootremovable = is_boot_device_removable(boot=boot) if bootremovable is not None: return bootremovable devices = grub_device_map() target = None if devices: try: target = os.path.realpath(devices[0].split('\t')[1]) except (IndexError, OSError): pass # last resort if target is None: target = '(hd0)' cdsrc, cdfs = cdrom_mount_info() try: # The target is usually under /dev/disk/by-id/, so string equality # is insufficient. same = os.path.samefile(cdsrc, target) except OSError: same = False if ((same or target == '(hd0)') and ((cdfs and cdfs != 'iso9660') or is_removable(cdsrc))): # Installing from removable media other than a CD. Make sure that # we don't accidentally install GRUB to it. boot = boot_device() try: if boot: target = boot else: # Try the next disk along (which can't also be the CD source). target = os.path.realpath(devices[1].split('\t')[1]) target = re.sub(r'(/dev/(cciss|ida)/c[0-9]d[0-9]|/dev/[a-z]+).*', r'\1', target) except (IndexError, OSError): pass return target _os_prober_oslist = {} _os_prober_osvers = {} _os_prober_called = False def find_in_os_prober(device, with_version=False): """Look for the device name in the output of os-prober. Return the friendly name of the device, or the empty string on error. """ try: oslist, osvers = os_prober() if device in oslist: ret = oslist[device] elif is_swap(device): ret = 'swap' else: syslog.syslog('Device %s not found in os-prober output' % device) ret = '' ret = utf8(ret, errors='replace') ver = utf8(osvers.get(device, ''), errors='replace') if with_version: return ret, ver else: return ret except (KeyboardInterrupt, SystemExit): pass except: import traceback syslog.syslog(syslog.LOG_ERR, "Error in find_in_os_prober:") for line in traceback.format_exc().split('\n'): syslog.syslog(syslog.LOG_ERR, line) return '' @raise_privileges def os_prober(): global _os_prober_oslist global _os_prober_osvers global _os_prober_called if not _os_prober_called: _os_prober_called = True subp = subprocess.Popen( ['os-prober'], stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True) result = subp.communicate()[0].splitlines() for res in result: res = res.split(':') if res[2] == 'Ubuntu': version = [v for v in re.findall('[0-9.]*', res[1]) if v][0] # Get rid of the superfluous (development version) (11.04) text = re.sub('\s*\(.*\).*', '', res[1]) _os_prober_oslist[res[0]] = text _os_prober_osvers[res[0]] = version else: # Get rid of the bootloader indication. It's not relevant here. _os_prober_oslist[res[0]] = res[1].replace(' (loader)', '') return _os_prober_oslist, _os_prober_osvers @raise_privileges def remove_os_prober_cache(): osextras.unlink_force('/var/lib/ubiquity/os-prober-cache') shutil.rmtree('/var/lib/ubiquity/linux-boot-prober-cache', ignore_errors=True) def windows_startup_folder(mount_path): locations = [ # Windows 8 'ProgramData/Microsoft/Windows/Start Menu/Programs/StartUp', # Windows 7 'ProgramData/Microsoft/Windows/Start Menu/Programs/Startup', # Windows XP 'Documents and Settings/All Users/Start Menu/Programs/Startup', # Windows NT 'Winnt/Profiles/All Users/Start Menu/Programs/Startup', ] for location in locations: path = os.path.join(mount_path, location) if os.path.exists(path): return path return '' ReleaseInfo = namedtuple('ReleaseInfo', 'name, version') def get_release(): if get_release.release_info is None: try: with open('/cdrom/.disk/info') as fp: line = fp.readline() if line: line = line.split() if line[2] == 'LTS': line[1] += ' LTS' get_release.release_info = ReleaseInfo( name=line[0], version=line[1]) except: syslog.syslog(syslog.LOG_ERR, 'Unable to determine the release.') if not get_release.release_info: get_release.release_info = ReleaseInfo(name='Ubuntu', version='') return get_release.release_info get_release.release_info = None def get_release_name(): import warnings warnings.warn('get_release_name() is deprecated, ' 'use get_release().name instead.', category=DeprecationWarning) if not get_release_name.release_name: try: with open('/cdrom/.disk/info') as fp: line = fp.readline() if line: line = line.split() if line[2] == 'LTS': get_release_name.release_name = ' '.join(line[:3]) else: get_release_name.release_name = ' '.join(line[:2]) except: syslog.syslog( syslog.LOG_ERR, "Unable to determine the distribution name from " "/cdrom/.disk/info") if not get_release_name.release_name: get_release_name.release_name = 'Ubuntu' return get_release_name.release_name get_release_name.release_name = '' @raise_privileges def get_install_medium(): if not get_install_medium.medium: try: if os.access('/cdrom', os.W_OK): get_install_medium.medium = 'USB' else: get_install_medium.medium = 'CD' except: syslog.syslog( syslog.LOG_ERR, "Unable to determine install medium.") get_install_medium.medium = 'CD' return get_install_medium.medium get_install_medium.medium = '' def execute(*args): """runs args* in shell mode. Output status is taken.""" log_args = ['log-output', '-t', 'ubiquity'] log_args.extend(args) try: status = subprocess.call(log_args) except IOError as e: syslog.syslog(syslog.LOG_ERR, ' '.join(log_args)) syslog.syslog(syslog.LOG_ERR, "OS error(%s): %s" % (e.errno, e.strerror)) return False else: if status != 0: syslog.syslog(syslog.LOG_ERR, ' '.join(log_args)) return False syslog.syslog(' '.join(log_args)) return True @raise_privileges def execute_root(*args): return execute(*args) def format_size(size): """Format a partition size.""" if size < 1000: unit = 'B' factor = 1 elif size < 1000 * 1000: unit = 'kB' factor = 1000 elif size < 1000 * 1000 * 1000: unit = 'MB' factor = 1000 * 1000 elif size < 1000 * 1000 * 1000 * 1000: unit = 'GB' factor = 1000 * 1000 * 1000 else: unit = 'TB' factor = 1000 * 1000 * 1000 * 1000 return '%.1f %s' % (float(size) / factor, unit) def debconf_escape(text): escaped = text.replace('\\', '\\\\').replace('\n', '\\n') return re.sub(r'(\s)', r'\\\1', escaped) def create_bool(text): if text == 'true': return True elif text == 'false': return False else: return text @raise_privileges def dmimodel(): model = '' kwargs = {} if os.geteuid() != 0: # Silence annoying warnings during the test suite. kwargs['stderr'] = open('/dev/null', 'w') try: proc = subprocess.Popen( ['dmidecode', '--string', 'system-manufacturer'], stdout=subprocess.PIPE, universal_newlines=True, **kwargs) manufacturer = proc.communicate()[0] if not manufacturer: return manufacturer = manufacturer.lower() if 'to be filled' in manufacturer: # Don't bother with products in development. return if 'bochs' in manufacturer or 'vmware' in manufacturer: model = 'virtual machine' # VirtualBox sets an appropriate system-product-name. else: if 'lenovo' in manufacturer or 'ibm' in manufacturer: key = 'system-version' else: key = 'system-product-name' proc = subprocess.Popen(['dmidecode', '--string', key], stdout=subprocess.PIPE, universal_newlines=True) model = proc.communicate()[0] if 'apple' in manufacturer: # MacBook4,1 - strip the 4,1 model = re.sub('[^a-zA-Z\s]', '', model) # Replace each gap of non-alphanumeric characters with a dash. # Ensure the resulting string does not begin or end with a dash. model = re.sub('[^a-zA-Z0-9]+', '-', model).rstrip('-').lstrip('-') if model.lower() == 'not-available': return except Exception: syslog.syslog(syslog.LOG_ERR, 'Unable to determine the model from DMI') finally: if 'stderr' in kwargs: kwargs['stderr'].close() return model def set_indicator_keymaps(lang): import xml.etree.cElementTree as ElementTree from gi.repository import Xkl, GdkX11 # GdkX11.x11_get_default_xdisplay() segfaults if Gtk hasn't been # imported; possibly finer-grained than this, but anything using this # will already have imported Gtk anyway ... from gi.repository import Gtk from ubiquity import gsettings # pacify pyflakes Gtk gsettings_key = ['org.gnome.libgnomekbd.keyboard', 'layouts'] lang = lang.split('_')[0] variants = [] # Map inspired from that of gfxboot-theme-ubuntu that's itself # based on console-setup's. This one has been restricted to # language => keyboard layout not locale => keyboard layout as # we don't actually know the exact locale default_keymap = { 'ar': 'ara', 'bs': 'ba', 'de': 'de', 'el': 'gr', 'en': 'us', 'eo': 'epo', 'fr': 'fr_oss', 'gu': 'in_guj', 'hi': 'in', 'hr': 'hr', 'hy': 'am', 'ka': 'ge', 'kn': 'in_kan', 'lo': 'la', 'ml': 'in_mal', 'pa': 'in_guru', 'sr': 'rs', 'sv': 'se', 'ta': 'in_tam', 'te': 'in_tel', 'zh': 'cn', } def item_str(s): '''Convert a zero-terminated byte array to a proper str''' i = s.find(b'\x00') return s[:i].decode() def process_variant(*args): if hasattr(args[2], 'name'): variants.append( '%s\t%s' % (item_str(args[1].name), item_str(args[2].name))) else: variants.append(item_str(args[1].name)) def restrict_list(variants): new_variants = [] # Start by looking by an explicit default layout in the keymap if lang in default_keymap: if default_keymap[lang] in variants: variants.remove(default_keymap[lang]) new_variants.append(default_keymap[lang]) else: tab_keymap = default_keymap[lang].replace('_', '\t') if tab_keymap in variants: variants.remove(tab_keymap) new_variants.append(tab_keymap) # Prioritize the layout matching the language (if any) if lang in variants: variants.remove(lang) new_variants.append(lang) # Uniquify our list (just in case) variants = list(set(variants)) if len(variants) > 4: # We have a problem, X only supports 4 # Add as many entry as we can that are layouts without variant country_variants = sorted( entry for entry in variants if '\t' not in entry) for entry in country_variants[:4 - len(new_variants)]: new_variants.append(entry) variants.remove(entry) if len(new_variants) < 4: # We can add some more simple_variants = sorted( entry for entry in variants if '_' not in entry) for entry in simple_variants[:4 - len(new_variants)]: new_variants.append(entry) variants.remove(entry) if len(new_variants) < 4: # Now just add anything left for entry in variants[:4 - len(new_variants)]: new_variants.append(entry) variants.remove(entry) else: new_variants += list(variants) # gsettings doesn't understand utf8 new_variants = [str(variant) for variant in new_variants] return new_variants def call_setxkbmap(variants): kb_layouts = [] kb_variants = [] for entry in variants: fields = entry.split('\t') if len(fields) > 1: kb_layouts.append(fields[0]) kb_variants.append(fields[1]) else: kb_layouts.append(fields[0]) kb_variants.append("") execute( "setxkbmap", "-layout", ",".join(kb_layouts), "-variant", ",".join(kb_variants)) iso_639_3 = ElementTree.parse('/usr/share/xml/iso-codes/iso_639_3.xml') nodes = [element for element in iso_639_3.findall('iso_639_3_entry') if element.get('part1_code') == lang] display = GdkX11.x11_get_default_xdisplay() engine = Xkl.Engine.get_instance(display) if nodes: configreg = Xkl.ConfigRegistry.get_instance(engine) configreg.load(False) # Apparently part2_code doesn't always work (fails with French) for prop in ('part2_code', 'id', 'part1_code'): code = nodes[0].get(prop) if code is not None: configreg.foreach_language_variant(code, process_variant, None) if variants: restricted_variants = restrict_list(variants) call_setxkbmap(restricted_variants) gsettings.set_list( gsettings_key[0], gsettings_key[1], restricted_variants) break else: # Use the system default if no other keymaps can be determined. gsettings.set_list(gsettings_key[0], gsettings_key[1], []) engine.lock_group(0) NM = 'org.freedesktop.NetworkManager' NM_STATE_CONNECTED_GLOBAL = 70 def get_prop(obj, iface, prop): import dbus try: return obj.Get(iface, prop, dbus_interface=dbus.PROPERTIES_IFACE) except dbus.DBusException as e: if e.get_dbus_name() == 'org.freedesktop.DBus.Error.UnknownMethod': return None else: raise def is_wireless_enabled(): import dbus bus = dbus.SystemBus() manager = bus.get_object(NM, '/org/freedesktop/NetworkManager') return get_prop(manager, NM, 'WirelessEnabled') def has_connection(): import dbus bus = dbus.SystemBus() manager = bus.get_object(NM, '/org/freedesktop/NetworkManager') state = get_prop(manager, NM, 'state') return state == NM_STATE_CONNECTED_GLOBAL def add_connection_watch(func): import dbus def connection_cb(state): func(state == NM_STATE_CONNECTED_GLOBAL) bus = dbus.SystemBus() bus.add_signal_receiver(connection_cb, 'StateChanged', NM, NM) try: func(has_connection()) except dbus.DBusException: # We can't talk to NM, so no idea. Wild guess: we're connected # using ssh with X forwarding, and are therefore connected. This # allows us to proceed with a minimum of complaint. func(True) def install_size(): if min_install_size: return min_install_size # Fallback size to 5 GB size = 5 * 1024 * 1024 * 1024 # Maximal size to 8 GB max_size = 8 * 1024 * 1024 * 1024 try: with open('/cdrom/casper/filesystem.size') as fp: size = int(fp.readline()) except IOError: pass # TODO substitute into the template for the state box. min_disk_size = size * 2 # fudge factor # Set minimum size to 8GB if current minimum size is larger # than 8GB and we still have an extra 20% of free space if min_disk_size > max_size and size * 1.2 < max_size: min_disk_size = max_size return min_disk_size min_install_size = None # vim:ai:et:sts=4:tw=80:sw=4: def get_network(): intip = False s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) try: s.connect(("antergos.com",1234)) except: return "" myip = s.getsockname()[0] s.close() spip = myip.split(".") if spip[0] == '192': if spip[1] == '168': intip = True elif spip[0] == '10': intip = True elif spip[0] == '172': if int(spip[1]) > 15 and int(spip[1]) < 32: intip = True if intip: ipran = '.'.join(spip[:-1]) + ".0/24" else: ipran = '.'.join(spip) return ipran
gpl-3.0
-3,050,432,571,631,182,000
30.484749
79
0.558593
false
bytedance/fedlearner
test/data_join/test_data_portal_job_manager.py
1
8196
# Copyright 2021 The FedLearner Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # coding: utf-8 import os import time import unittest import logging os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' from tensorflow.compat.v1 import gfile from fnmatch import fnmatch from google.protobuf import text_format from fedlearner.data_join import common from fedlearner.common import data_portal_service_pb2 as dp_pb from fedlearner.common.db_client import DBClient from fedlearner.data_join.data_portal_job_manager import DataPortalJobManager class Timer: def __init__(self, content): self._content = content self._start_time = 0 def __enter__(self): self._start_time = time.time() def __exit__(self, exc_type, exc_val, exc_tb): logging.info("%s takes %s second", self._content, time.time() - self._start_time) class TestDataPortalJobManager(unittest.TestCase): def setUp(self) -> None: logging.getLogger().setLevel(logging.DEBUG) self._data_portal_name = 'test_data_portal_job_manager' self._kvstore = DBClient('etcd', True) self._portal_input_base_dir = './portal_input_dir' self._portal_output_base_dir = './portal_output_dir' self._raw_data_publish_dir = 'raw_data_publish_dir' if gfile.Exists(self._portal_input_base_dir): gfile.DeleteRecursively(self._portal_input_base_dir) gfile.MakeDirs(self._portal_input_base_dir) self._data_fnames = ['1001/{}.data'.format(i) for i in range(100)] self._data_fnames_without_success = \ ['1002/{}.data'.format(i) for i in range(100)] self._csv_fnames = ['1003/{}.csv'.format(i) for i in range(100)] self._unused_fnames = ['{}.xx'.format(100)] self._ignored_fnames = [f'.part-{i}.crc' for i in range(10)] self._all_fnames = self._data_fnames + \ self._data_fnames_without_success + \ self._csv_fnames + self._unused_fnames all_fnames_with_success = ['1001/_SUCCESS'] + ['1003/_SUCCESS'] +\ self._all_fnames + self._ignored_fnames for fname in all_fnames_with_success: fpath = os.path.join(self._portal_input_base_dir, fname) gfile.MakeDirs(os.path.dirname(fpath)) with gfile.Open(fpath, "w") as f: f.write('xxx') def tearDown(self) -> None: gfile.DeleteRecursively(self._portal_input_base_dir) def _list_input_dir(self, portal_options, file_wildcard, target_fnames, max_files_per_job=8000): portal_manifest = dp_pb.DataPortalManifest( name=self._data_portal_name, data_portal_type=dp_pb.DataPortalType.Streaming, output_partition_num=4, input_file_wildcard=file_wildcard, input_base_dir=self._portal_input_base_dir, output_base_dir=self._portal_output_base_dir, raw_data_publish_dir=self._raw_data_publish_dir, processing_job_id=-1, next_job_id=0 ) self._kvstore.set_data( common.portal_kvstore_base_dir(self._data_portal_name), text_format.MessageToString(portal_manifest)) with Timer("DataPortalJobManager initialization"): data_portal_job_manager = DataPortalJobManager( self._kvstore, self._data_portal_name, portal_options.long_running, portal_options.check_success_tag, portal_options.single_subfolder, portal_options.files_per_job_limit, max_files_per_job ) portal_job = data_portal_job_manager._sync_processing_job() target_fnames.sort() fpaths = [os.path.join(self._portal_input_base_dir, f) for f in target_fnames] self.assertEqual(len(fpaths), len(portal_job.fpaths)) for index, fpath in enumerate(fpaths): self.assertEqual(fpath, portal_job.fpaths[index]) def test_list_input_dir(self): portal_options = dp_pb.DataPotraMasterlOptions( use_mock_etcd=True, long_running=False, check_success_tag=True, single_subfolder=False, files_per_job_limit=None ) self._list_input_dir(portal_options, "*.data", self._data_fnames) def test_list_input_dir_single_folder(self): portal_options = dp_pb.DataPotraMasterlOptions( use_mock_etcd=True, long_running=False, check_success_tag=False, single_subfolder=True, files_per_job_limit=None, ) self._list_input_dir( portal_options, "*.data", self._data_fnames) def test_list_input_dir_files_limit(self): portal_options = dp_pb.DataPotraMasterlOptions( use_mock_etcd=True, long_running=False, check_success_tag=False, single_subfolder=False, files_per_job_limit=1, ) self._list_input_dir( portal_options, "*.data", self._data_fnames) portal_options = dp_pb.DataPotraMasterlOptions( use_mock_etcd=True, long_running=False, check_success_tag=False, single_subfolder=False, files_per_job_limit=150, ) self._list_input_dir( portal_options, "*.data", self._data_fnames) portal_options = dp_pb.DataPotraMasterlOptions( use_mock_etcd=True, long_running=False, check_success_tag=False, single_subfolder=False, files_per_job_limit=200, ) self._list_input_dir( portal_options, "*.data", self._data_fnames + self._data_fnames_without_success) def test_list_input_dir_over_limit(self): portal_options = dp_pb.DataPotraMasterlOptions( use_mock_etcd=True, long_running=False, check_success_tag=False, single_subfolder=False, ) self._list_input_dir( portal_options, "*.data", self._data_fnames, max_files_per_job=100) self._list_input_dir( portal_options, "*.data", self._data_fnames + self._data_fnames_without_success, max_files_per_job=200) def test_list_input_dir_without_success_check(self): portal_options = dp_pb.DataPotraMasterlOptions( use_mock_etcd=True, long_running=False, check_success_tag=False, single_subfolder=False, files_per_job_limit=None ) self._list_input_dir( portal_options, "*.data", self._data_fnames + self._data_fnames_without_success) def test_list_input_dir_without_wildcard(self): portal_options = dp_pb.DataPotraMasterlOptions( use_mock_etcd=True, long_running=False, check_success_tag=True, single_subfolder=False, files_per_job_limit=None ) self._list_input_dir( portal_options, None, self._data_fnames + self._csv_fnames) def test_list_input_dir_without_wildcard_and_success_check(self): portal_options = dp_pb.DataPotraMasterlOptions( use_mock_etcd=True, long_running=False, check_success_tag=False, single_subfolder=False, files_per_job_limit=None ) self._list_input_dir(portal_options, None, self._all_fnames) if __name__ == '__main__': unittest.main()
apache-2.0
402,065,272,321,751,940
36.424658
79
0.599683
false
mosbasik/fluidspaces
src/fluidspaces/i3_commands.py
1
1215
import subprocess class i3Commands(object): @staticmethod def send_to_wp(i3_name): '''Send the currently focused window/container to the named workspace''' subprocess.Popen(['i3-msg', 'move container to workspace', i3_name], stdout=subprocess.PIPE) @staticmethod def go_to_wp(i3_name): '''Go to the named workspace''' subprocess.Popen(['i3-msg', 'workspace', i3_name], stdout=subprocess.PIPE) @staticmethod def get_wps_str(): '''Query i3 for current workspaces and return stdout as a string''' completed_proc = subprocess.run(['i3-msg', '-t', 'get_workspaces'], stdout=subprocess.PIPE) stdout = completed_proc.stdout.decode('utf-8') return stdout @staticmethod def rename_wp(old_i3_name, new_i3_name): subprocess.run([ 'i3-msg', 'rename workspace', '"{}"'.format(old_i3_name), 'to', '"{}"'.format(new_i3_name), ], stdout=subprocess.PIPE) @staticmethod def rename_wps(old_i3_names, new_i3_names): for old_i3_name, new_i3_name in zip(old_i3_names, new_i3_names): i3Commands.rename_wp(old_i3_name, new_i3_name)
mit
-4,274,740,972,160,197,000
32.75
100
0.604938
false
gigglearrows/anniesbot
pajbot/models/timer.py
1
6625
import json import logging from pajbot.models.db import DBManager, Base from pajbot.models.action import ActionParser from pajbot.tbutil import find from sqlalchemy import orm from sqlalchemy import Column, Integer, String, Boolean from sqlalchemy.dialects.mysql import TEXT log = logging.getLogger('pajbot') class Timer(Base): __tablename__ = 'tb_timer' id = Column(Integer, primary_key=True) name = Column(String(256), nullable=False) action_json = Column('action', TEXT, nullable=False) interval_online = Column(Integer, nullable=False) interval_offline = Column(Integer, nullable=False) enabled = Column(Boolean, nullable=False, default=True) def __init__(self, **options): self.id = None self.name = '??' self.action_json = '{}' self.interval_online = 5 self.interval_offline = 30 self.enabled = True self.refresh_tts() self.set(**options) def set(self, **options): self.name = options.get('name', self.name) log.debug(options) if 'action' in options: log.info('new action!') self.action_json = json.dumps(options['action']) self.action = ActionParser.parse(self.action_json) self.interval_online = options.get('interval_online', self.interval_online) self.interval_offline = options.get('interval_offline', self.interval_offline) self.enabled = options.get('enabled', self.enabled) @orm.reconstructor def init_on_load(self): self.action = ActionParser.parse(self.action_json) self.refresh_tts() def refresh_tts(self): self.time_to_send_online = self.interval_online self.time_to_send_offline = self.interval_offline def refresh_action(self): self.action = ActionParser.parse(self.action_json) def run(self, bot): self.action.run(bot, source=None, message=None) class TimerManager: def __init__(self, bot): self.bot = bot self.bot.execute_every(60, self.tick) if self.bot: self.bot.socket_manager.add_handler('timer.update', self.on_timer_update) self.bot.socket_manager.add_handler('timer.remove', self.on_timer_remove) def on_timer_update(self, data, conn): try: timer_id = int(data['timer_id']) except (KeyError, ValueError): log.warn('No timer ID found in on_timer_update') return False updated_timer = find(lambda timer: timer.id == timer_id, self.timers) if updated_timer: with DBManager.create_session_scope(expire_on_commit=False) as db_session: db_session.add(updated_timer) db_session.refresh(updated_timer) updated_timer.refresh_action() db_session.expunge(updated_timer) else: with DBManager.create_session_scope(expire_on_commit=False) as db_session: updated_timer = db_session.query(Timer).filter_by(id=timer_id).one_or_none() # Add the updated timer to the timer lists if required if updated_timer: if updated_timer not in self.timers: self.timers.append(updated_timer) if updated_timer not in self.online_timers and updated_timer.interval_online > 0: self.online_timers.append(updated_timer) updated_timer.refresh_tts() if updated_timer not in self.offline_timers and updated_timer.interval_offline > 0: self.offline_timers.append(updated_timer) updated_timer.refresh_tts() for timer in self.online_timers: if timer.enabled is False or timer.interval_online <= 0: self.online_timers.remove(timer) for timer in self.offline_timers: if timer.enabled is False or timer.interval_offline <= 0: self.offline_timers.remove(timer) def on_timer_remove(self, data, conn): try: timer_id = int(data['timer_id']) except (KeyError, ValueError): log.warn('No timer ID found in on_timer_update') return False removed_timer = find(lambda timer: timer.id == timer_id, self.timers) if removed_timer: if removed_timer in self.timers: self.timers.remove(removed_timer) if removed_timer in self.online_timers: self.online_timers.remove(removed_timer) if removed_timer in self.offline_timers: self.offline_timers.remove(removed_timer) def tick(self): if self.bot.is_online: for timer in self.online_timers: timer.time_to_send_online -= 1 timer = find(lambda timer: timer.time_to_send_online <= 0, self.online_timers) if timer: timer.run(self.bot) timer.time_to_send_online = timer.interval_online self.online_timers.remove(timer) self.online_timers.append(timer) else: for timer in self.offline_timers: timer.time_to_send_offline -= 1 timer = find(lambda timer: timer.time_to_send_offline <= 0, self.offline_timers) if timer: timer.run(self.bot) timer.time_to_send_offline = timer.interval_offline self.offline_timers.remove(timer) self.offline_timers.append(timer) def redistribute_timers(self): for x in range(0, len(self.offline_timers)): timer = self.offline_timers[x] timer.time_to_send_offline = timer.interval_offline * ((x + 1) / len(self.offline_timers)) for x in range(0, len(self.online_timers)): timer = self.online_timers[x] timer.time_to_send_online = timer.interval_online * ((x + 1) / len(self.online_timers)) def load(self): self.timers = [] with DBManager.create_session_scope(expire_on_commit=False) as db_session: self.timers = db_session.query(Timer).order_by(Timer.interval_online, Timer.interval_offline, Timer.name).all() db_session.expunge_all() self.online_timers = [timer for timer in self.timers if timer.interval_online > 0 and timer.enabled] self.offline_timers = [timer for timer in self.timers if timer.interval_offline > 0 and timer.enabled] self.redistribute_timers() log.info('Loaded {} timers ({} online/{} offline)'.format(len(self.timers), len(self.online_timers), len(self.offline_timers))) return self
mit
-3,706,695,500,516,823,600
38.201183
135
0.616453
false
white-lab/pyproteome
brainrnaseq/__init__.py
1
2373
from . import cache, mapping, enrichments CELL_TYPE_COLS = { 'Homo sapiens': { 'Astrocyte': [ '8yo', '13yo', '16yo', '21yo.1', '22yo.1', '35yo', '47yo', '51yo', '53yo', '60yo', '63yo - 1', '63yo - 2', ], 'Neuron': [ '25yo', ], 'OPC': [ '22yoGC', '63yoGC - 1', '63yo GC - 2', '47yoO4', '63yoO4', ], 'New Oligodendrocytes': [ '22yoGC', '63yoGC - 1', '63yo GC - 2', '47yoO4', '63yoO4', ], 'Myelinating Oligodendrocytes': [ '22yoGC', '63yoGC - 1', '63yo GC - 2', '47yoO4', '63yoO4', ], 'Microglia': [ '45yo', '51yo.1', '63yo', ], 'Endothelia': [ '13yo.1', '47yo.1', ], }, 'Mus musculus': { 'Astrocyte': [ # 'FACS - p69', # 'FACS p70', '1 month', '4 months', '7 months', '9 months', ], 'Neuron': [ 'Neuron 3', 'Neuron 4', ], 'OPC': [ 'Oligodendrocyte precursor cell 3', 'Oligodendrocyte precursor cell 4', ], 'New Oligodendrocytes': [ 'Newly formed oligodendrocyte 3', 'Newly formed oligodendrocyte 4', ], 'Myelinating Oligodendrocytes': [ 'Myelinating oligodendrocyte 4', 'Myelinating oligodenrocyte 5', ], 'Microglia': [ 'Microglia 1', 'Microglia 2', ], 'Endothelia': [ 'Endo 1', 'Endo 2', ], }, } CELL_TYPES = [ 'Astrocyte', 'Endothelia', 'Microglia', 'Myelinating Oligodendrocytes', 'Neuron', 'New Oligodendrocytes', 'OPC', ] DEFAULT_CELL_TYPES = [ i for i in CELL_TYPES if i not in ['OPC', 'New Oligodendrocytes'] ] CELL_COLORS = colors = { 'Astrocyte': '#bfee90', 'Endothelia': '#ff9b90', 'Microglia': '#5bd3ff', 'Myelinating Oligodendrocytes': '#ff39ff', 'Neuron': '#ffc467', 'New Oligodendrocytes': 'lightpurple', 'OPC': 'darkpurple', } __all__ = [ 'cache', 'mapping', 'enrichments', 'CELL_TYPE_COLS', 'CELL_TYPES', 'DEFAULT_CELL_TYPES', 'CELL_COLORS', ]
bsd-2-clause
7,507,329,908,707,769,000
21.6
79
0.435735
false
arthur-e/gass
public/views.py
1
3181
import datetime from django.shortcuts import render_to_response from django.http import HttpResponse from django.core.cache import cache from django.core.exceptions import ObjectDoesNotExist from django.views.decorators.cache import cache_page from public.models import News from bering.models import Station, Ablation def load_defaults(): ''' The base.html template requires this load routine. ''' sites = Station.objects.all().order_by('site') stations = [] campaigns = [] then = datetime.datetime(1900,1,1,0,0,0) for each in sites: try: latest_campaign = each.campaign_set.latest() latest_ablation = each.ablation_set.latest() latest_ablation.operational = each.operational except ObjectDoesNotExist: return { 'stations': [], 'campaigns': [], 'then': then } # Check for site visits where height of sensor may have changed try: last_visit = latest_campaign.site_visits.latest() if last_visit.ablato_adjusted: # Subtract sensor height when last adjusted latest_ablation.rng_cm -= last_visit.ablation_height_cm else: # Subtract sensor height when sensor was installed latest_ablation.rng_cm -= latest_campaign.site.init_height_cm except ObjectDoesNotExist: # No visits? Subtract sensor height when sensor was installed latest_ablation.rng_cm -= latest_campaign.site.init_height_cm # Get the latest ablation observation for each site stations.append(latest_ablation) # Get a list of field campaigns and latest observational data campaigns.append({ 'region': latest_campaign.region, 'site': latest_campaign.site, 'lat': latest_ablation.lat, 'lng': latest_ablation.lng, 'datetime': latest_ablation.datetime, 'gps_valid': latest_ablation.gps_valid, 'rng_cm_valid': latest_ablation.rng_cm_valid, 'operational': each.operational }) if latest_ablation.datetime > then: then = latest_ablation.datetime return { 'stations': stations, 'campaigns': campaigns, 'then': then } def display_index(request): ''' localhost/gass/ ''' data_dict = load_defaults() data_dict['news'] = News.objects.all().order_by('-timestamp')[0:5] data_dict['now'] = datetime.datetime.now() return render_to_response('index.html', data_dict) def display_about(request): ''' localhost/gass/about/ ''' return render_to_response('about.html', load_defaults()) def display_access(request): ''' localhost/gass/access/ ''' return render_to_response('data.html', load_defaults()) def display_instruments(request): ''' localhost/gass/hardware/ ''' return render_to_response('instruments.html', load_defaults()) def display_team(request): ''' localhost/gass/team/ ''' return render_to_response('team.html', load_defaults())
mit
8,327,074,673,310,716,000
29.009434
77
0.61773
false
synthesio/infra-ovh-ansible-module
plugins/modules/dedicated_server_install.py
1
2843
#!/usr/bin/python # -*- coding: utf-8 -*- from __future__ import (absolute_import, division, print_function) __metaclass__ = type from ansible.module_utils.basic import AnsibleModule DOCUMENTATION = ''' --- module: dedicated_server_install short_description: Install a new dedicated server description: - Install a new dedicated server author: Synthesio SRE Team requirements: - ovh >= 0.5.0 options: service_name: required: true description: Ovh name of the server hostname: required: true description: Name of the new dedicated server template: required: true description: template to use to spawn the server ''' EXAMPLES = ''' synthesio.ovh.dedicated_server_install: service_name: "ns12345.ip-1-2-3.eu" hostname: "server01.example.net" template: "debian10_64" delegate_to: localhost ''' RETURN = ''' # ''' from ansible_collections.synthesio.ovh.plugins.module_utils.ovh import ovh_api_connect, ovh_argument_spec try: from ovh.exceptions import APIError HAS_OVH = True except ImportError: HAS_OVH = False def run_module(): module_args = ovh_argument_spec() module_args.update(dict( service_name=dict(required=True), hostname=dict(required=True), template=dict(required=True) )) module = AnsibleModule( argument_spec=module_args, supports_check_mode=True ) client = ovh_api_connect(module) service_name = module.params['service_name'] hostname = module.params['hostname'] template = module.params['template'] if module.check_mode: module.exit_json(msg="Installation in progress on {} as {} with template {} - (dry run mode)".format(service_name, hostname, template), changed=True) try: compatible_templates = client.get( '/dedicated/server/%s/install/compatibleTemplates' % service_name ) if template not in compatible_templates["ovh"] and template not in compatible_templates["personal"]: module.fail_json(msg="{} doesn't exist in compatibles templates".format(template)) except APIError as api_error: return module.fail_json(msg="Failed to call OVH API: {0}".format(api_error)) details = {"details": {"language": "en", "customHostname": hostname} } try: client.post( '/dedicated/server/%s/install/start' % service_name, **details, templateName=template) module.exit_json(msg="Installation in progress on {} as {} with template {}!".format(service_name, hostname, template), changed=True) except APIError as api_error: module.fail_json(msg="Failed to call OVH API: {0}".format(api_error)) def main(): run_module() if __name__ == '__main__': main()
mit
5,904,091,304,778,387,000
27.148515
143
0.646148
false
certik/sfepy
tests/test_parsing.py
1
3180
from sfepy.base.testing import TestCommon ## # 16.07.2007, c class Test( TestCommon ): ## # 16.07.2007, c def from_conf( conf, options ): return Test( conf = conf, options = options ) from_conf = staticmethod( from_conf ) ## # c: 16.07.2007, r: 08.07.2008 def test_parse_equations( self ): from sfepy.fem.parseEq import create_bnf test_strs = [ """- d_volume.i1.Omega( uc )""", """2 * dw_term.i1.Omega( uc ) = - 3.0 * dw_term2.i1.Omega2( uc )""", """d_term1.Y( fluid, u, w, Nu, dcf, mode ) + d_term2.Omega( u, w, Nu, dcf, mode ) - d_another_term.Elsewhere( w, p, Nu, dcf, mode ) = - dw_rhs.Y3.a( u, q, Nu, dcf, mode )""", """no_args() = 0""", """+ something( a, b, c ) = + something_else( c, a, d[-1] )""", """term_.a.a( u )""", """term.i1.Omega( v, du/dt ) + term2.i2.Gamma( v, dphi/dt)""" ] n_fail = 0 term_descs = [] for test_str in test_strs: term_descs[:] = [] try: bnf = create_bnf( term_descs, {} ) bnf.parseString( test_str ) except: self.report( 'failed: %s' % test_str ) if self.options.debug: raise n_fail += 1 for td in term_descs: print td self.report( '%d failure(s)' % n_fail ) if n_fail: raise AssertionError return True ## # c: 16.07.2007, r: 14.07.2008 def test_parse_regions( self ): from sfepy.fem.parseReg import create_bnf, _test_strs test_strs = ['nodes of surface -n r.Omega', 'r.Y_2 +n copy r.Y_1', 'nodes in (y <= 0.00001) & (x < 0.11)', 'nodes in ((y <= 0.00001) & (x < 0.11))', 'nodes in (((y <= 0.00001) & (x < 0.11)))', 'nodes in (((0.00001 < y) & (x < 0.11)))', 'all -n nodes in (y == 0.00001)', 'all -n nodes of surface', 'all -e r.DOmega_100', 'r.Y_1 -n nodes of surface *e r.Z_8 *n nodes in (y > 0)', 'nodes of surface +n nodes by pokus( x, y, z )', 'elements of group 6 +e nodes by fn2_3c( x )', """r.Y_1 *n (r.Y_2 +e (nodes in (y > 0) *n r.Y_32)) -n nodes of surface -e r.Y_5""", 'nodes by noargs()', 'nodes by extraargs( x, y, z, abc,3 )', 'node in r.Gamma_3', 'node 10', 'elements by afun( domain )'] stack = [] bnf = create_bnf( stack ) n_fail = 0 for test_str in test_strs: stack[:] = [] try: out = bnf.parseString( test_str ) except: self.report( 'failed: %s' % test_str ) n_fail += 1 self.report( '%d failures' % n_fail ) if n_fail: raise AssertionError return True
bsd-3-clause
-26,389,724,490,425,080
33.193548
80
0.416981
false
robtherad/BC-Mod
tools/make.py
1
56000
#!/usr/bin/env python3 # vim: set fileencoding=utf-8 : # make.py # An Arma 3 addon build system # Created by ACE 3 team, modified by BC: https://github.com/acemod/ACE3 ############################################################################### # The MIT License (MIT) # Copyright (c) 2013-2014 Ryan Schultz # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. ############################################################################### __version__ = "0.7" import sys if sys.version_info[0] == 2: print("Python 3 is required.") sys.exit(1) import os import os.path import shutil import platform import glob import subprocess import hashlib import configparser import json import traceback import time import timeit import re from tempfile import mkstemp if sys.platform == "win32": import winreg ######## GLOBALS ######### project = "@bc" project_version = "0.1.0" arma3tools_path = "" work_drive = "" module_root = "" make_root = "" release_dir = "" module_root_parent = "" optionals_root = "" key_name = "bc" key = "" dssignfile = "" prefix = "bc" pbo_name_prefix = "bc_" signature_blacklist = [] importantFiles = ["mod.cpp", "README.md", "ACE_LICENSE", "logo_bc.paa", "meta.cpp"] versionFiles = [] ciBuild = False # Used for CI builds ############################################################################### # http://akiscode.com/articles/sha-1directoryhash.shtml # Copyright (c) 2009 Stephen Akiki # MIT License (Means you can do whatever you want with this) # See http://www.opensource.org/licenses/mit-license.php # Error Codes: # -1 -> Directory does not exist # -2 -> General error (see stack traceback) def get_directory_hash(directory): directory_hash = hashlib.sha1() if not os.path.exists (directory): return -1 try: for root, dirs, files in os.walk(directory): for names in files: path = os.path.join(root, names) try: f = open(path, 'rb') except: # You can't open the file for some reason f.close() continue while 1: # Read file in as little chunks buf = f.read(4096) if not buf: break new = hashlib.sha1(buf) directory_hash.update(new.digest()) f.close() except: # Print the stack traceback traceback.print_exc() return -2 retVal = directory_hash.hexdigest() #print_yellow("Hash Value for {} is {}".format(directory,retVal)) return directory_hash.hexdigest() def Fract_Sec(s): temp = float() temp = float(s) / (60*60*24) d = int(temp) temp = (temp - d) * 24 h = int(temp) temp = (temp - h) * 60 m = int(temp) temp = (temp - m) * 60 sec = temp return d,h,m,sec #endef Fract_Sec # Copyright (c) André Burgaud # http://www.burgaud.com/bring-colors-to-the-windows-console-with-python/ if sys.platform == "win32": from ctypes import windll, Structure, c_short, c_ushort, byref SHORT = c_short WORD = c_ushort class COORD(Structure): """struct in wincon.h.""" _fields_ = [ ("X", SHORT), ("Y", SHORT)] class SMALL_RECT(Structure): """struct in wincon.h.""" _fields_ = [ ("Left", SHORT), ("Top", SHORT), ("Right", SHORT), ("Bottom", SHORT)] class CONSOLE_SCREEN_BUFFER_INFO(Structure): """struct in wincon.h.""" _fields_ = [ ("dwSize", COORD), ("dwCursorPosition", COORD), ("wAttributes", WORD), ("srWindow", SMALL_RECT), ("dwMaximumWindowSize", COORD)] # winbase.h STD_INPUT_HANDLE = -10 STD_OUTPUT_HANDLE = -11 STD_ERROR_HANDLE = -12 # wincon.h FOREGROUND_BLACK = 0x0000 FOREGROUND_BLUE = 0x0001 FOREGROUND_GREEN = 0x0002 FOREGROUND_CYAN = 0x0003 FOREGROUND_RED = 0x0004 FOREGROUND_MAGENTA = 0x0005 FOREGROUND_YELLOW = 0x0006 FOREGROUND_GREY = 0x0007 FOREGROUND_INTENSITY = 0x0008 # foreground color is intensified. BACKGROUND_BLACK = 0x0000 BACKGROUND_BLUE = 0x0010 BACKGROUND_GREEN = 0x0020 BACKGROUND_CYAN = 0x0030 BACKGROUND_RED = 0x0040 BACKGROUND_MAGENTA = 0x0050 BACKGROUND_YELLOW = 0x0060 BACKGROUND_GREY = 0x0070 BACKGROUND_INTENSITY = 0x0080 # background color is intensified. stdout_handle = windll.kernel32.GetStdHandle(STD_OUTPUT_HANDLE) SetConsoleTextAttribute = windll.kernel32.SetConsoleTextAttribute GetConsoleScreenBufferInfo = windll.kernel32.GetConsoleScreenBufferInfo def get_text_attr(): """Returns the character attributes (colors) of the console screen buffer.""" csbi = CONSOLE_SCREEN_BUFFER_INFO() GetConsoleScreenBufferInfo(stdout_handle, byref(csbi)) return csbi.wAttributes def set_text_attr(color): """Sets the character attributes (colors) of the console screen buffer. Color is a combination of foreground and background color, foreground and background intensity.""" SetConsoleTextAttribute(stdout_handle, color) ############################################################################### def find_bi_tools(work_drive): """Find BI tools.""" reg = winreg.ConnectRegistry(None, winreg.HKEY_CURRENT_USER) try: k = winreg.OpenKey(reg, r"Software\bohemia interactive\arma 3 tools") arma3tools_path = winreg.QueryValueEx(k, "path")[0] winreg.CloseKey(k) except: raise Exception("BadTools","Arma 3 Tools are not installed correctly or the P: drive needs to be created.") addonbuilder_path = os.path.join(arma3tools_path, "AddonBuilder", "AddonBuilder.exe") dssignfile_path = os.path.join(arma3tools_path, "DSSignFile", "DSSignFile.exe") dscreatekey_path = os.path.join(arma3tools_path, "DSSignFile", "DSCreateKey.exe") cfgconvert_path = os.path.join(arma3tools_path, "CfgConvert", "CfgConvert.exe") if os.path.isfile(addonbuilder_path) and os.path.isfile(dssignfile_path) and os.path.isfile(dscreatekey_path) and os.path.isfile(cfgconvert_path): return [addonbuilder_path, dssignfile_path, dscreatekey_path, cfgconvert_path] else: raise Exception("BadTools","Arma 3 Tools are not installed correctly or the P: drive needs to be created.") def find_depbo_tools(regKey): """Use registry entries to find DePBO-based tools.""" stop = False if regKey == "HKCU": reg = winreg.ConnectRegistry(None, winreg.HKEY_CURRENT_USER) stop = True else: reg = winreg.ConnectRegistry(None, winreg.HKEY_LOCAL_MACHINE) try: try: k = winreg.OpenKey(reg, r"Software\Wow6432Node\Mikero\pboProject") except FileNotFoundError: k = winreg.OpenKey(reg, r"Software\Mikero\pboProject") try: pboproject_path = winreg.QueryValueEx(k, "exe")[0] winreg.CloseKey(k) print("Found pboproject.") except: print_error("ERROR: Could not find pboProject.") try: k = winreg.OpenKey(reg, r"Software\Wow6432Node\Mikero\rapify") except FileNotFoundError: k = winreg.OpenKey(reg, r"Software\Mikero\rapify") try: rapify_path = winreg.QueryValueEx(k, "exe")[0] winreg.CloseKey(k) print("Found rapify.") except: print_error("Could not find rapify.") try: k = winreg.OpenKey(reg, r"Software\Wow6432Node\Mikero\MakePbo") except FileNotFoundError: k = winreg.OpenKey(reg, r"Software\Mikero\MakePbo") try: makepbo_path = winreg.QueryValueEx(k, "exe")[0] winreg.CloseKey(k) print("Found makepbo.") except: print_error("Could not find makepbo.") except: if stop == True: raise Exception("BadDePBO", "DePBO tools not installed correctly") return -1 #Strip any quotations from the path due to a MikeRo tool bug which leaves a trailing space in some of its registry paths. return [pboproject_path.strip('"'),rapify_path.strip('"'),makepbo_path.strip('"')] def color(color): """Set the color. Works on Win32 and normal terminals.""" if sys.platform == "win32": if color == "green": set_text_attr(FOREGROUND_GREEN | get_text_attr() & 0x0070 | FOREGROUND_INTENSITY) elif color == "yellow": set_text_attr(FOREGROUND_YELLOW | get_text_attr() & 0x0070 | FOREGROUND_INTENSITY) elif color == "red": set_text_attr(FOREGROUND_RED | get_text_attr() & 0x0070 | FOREGROUND_INTENSITY) elif color == "blue": set_text_attr(FOREGROUND_BLUE | get_text_attr() & 0x0070 | FOREGROUND_INTENSITY) elif color == "reset": set_text_attr(FOREGROUND_GREY | get_text_attr() & 0x0070) elif color == "grey": set_text_attr(FOREGROUND_GREY | get_text_attr() & 0x0070) else : if color == "green": sys.stdout.write('\033[92m') elif color == "red": sys.stdout.write('\033[91m') elif color == "blue": sys.stdout.write('\033[94m') elif color == "reset": sys.stdout.write('\033[0m') def print_error(msg): color("red") print ("ERROR: {}".format(msg)) color("reset") def print_green(msg): color("green") print(msg) color("reset") def print_blue(msg): color("blue") print(msg) color("reset") def print_yellow(msg): color("yellow") print(msg) color("reset") def copy_important_files(source_dir,destination_dir): originalDir = os.getcwd() # Copy importantFiles try: print_blue("\nSearching for important files in {}".format(source_dir)) print("Source_dir: {}".format(source_dir)) print("Destination_dir: {}".format(destination_dir)) for file in importantFiles: filePath = os.path.join(module_root_parent, file) # Take only file name for destination path (to put it into root of release dir) if "\\" in file: count = file.count("\\") file = file.split("\\", count)[-1] print_green("Copying file => {}".format(os.path.join(source_dir,file))) shutil.copyfile(os.path.join(source_dir,filePath),os.path.join(destination_dir,file)) except: print_error("COPYING IMPORTANT FILES.") raise #copy all extension dlls try: os.chdir(os.path.join(source_dir)) print_blue("\nSearching for DLLs in {}".format(os.getcwd())) filenames = glob.glob("*.dll") if not filenames: print ("Empty SET") for dll in filenames: print_green("Copying dll => {}".format(os.path.join(source_dir,dll))) if os.path.isfile(dll): shutil.copyfile(os.path.join(source_dir,dll),os.path.join(destination_dir,dll)) except: print_error("COPYING DLL FILES.") raise finally: os.chdir(originalDir) def copy_optionals_for_building(mod,pbos): src_directories = os.listdir(optionals_root) current_dir = os.getcwd() print_blue("\nChecking Optionals folder...") try: #special server.pbo processing files = glob.glob(os.path.join(release_dir, project, "optionals", "*.pbo")) for file in files: file_name = os.path.basename(file) #print ("Adding the following file: {}".format(file_name)) pbos.append(file_name) pbo_path = os.path.join(release_dir, project, "optionals", file_name) sigFile_name = file_name +"."+ key_name + ".bisign" sig_path = os.path.join(release_dir, project, "optionals", sigFile_name) if (os.path.isfile(pbo_path)): print("Moving {} for processing.".format(pbo_path)) shutil.move(pbo_path, os.path.join(release_dir, project, "addons", file_name)) if (os.path.isfile(sig_path)): #print("Moving {} for processing.".format(sig_path)) shutil.move(sig_path, os.path.join(release_dir, project, "addons", sigFile_name)) except: print_error("Error in moving") raise finally: os.chdir(current_dir) print("") try: for dir_name in src_directories: mod.append(dir_name) #userconfig requires special handling since it is not a PBO source folder. #CfgConvert fails to build server.pbo if userconfig is not found in P:\ if (dir_name == "userconfig"): if (os.path.exists(os.path.join(release_dir, project, "optionals", dir_name))): shutil.rmtree(os.path.join(release_dir, project, "optionals", dir_name), True) shutil.copytree(os.path.join(optionals_root,dir_name), os.path.join(release_dir, project, "optionals", dir_name)) destination = os.path.join(work_drive,dir_name) else: destination = os.path.join(module_root,dir_name) print("Temporarily copying {} => {} for building.".format(os.path.join(optionals_root,dir_name),destination)) if (os.path.exists(destination)): shutil.rmtree(destination, True) shutil.copytree(os.path.join(optionals_root,dir_name), destination) except: print_error("Copy Optionals Failed") raise finally: os.chdir(current_dir) def cleanup_optionals(mod): print("") try: for dir_name in mod: #userconfig requires special handling since it is not a PBO source folder. if (dir_name == "userconfig"): destination = os.path.join(work_drive,dir_name) else: destination = os.path.join(module_root,dir_name) print("Cleaning {}".format(destination)) try: file_name = "{}{}.pbo".format(pbo_name_prefix,dir_name) src_file_path = os.path.join(release_dir, project, "addons", file_name) dst_file_path = os.path.join(release_dir, project, "optionals", file_name) sigFile_name = "{}.{}.bisign".format(file_name,key_name) src_sig_path = os.path.join(release_dir, project, "addons", sigFile_name) dst_sig_path = os.path.join(release_dir, project, "optionals", sigFile_name) if (os.path.isfile(src_file_path)): #print("Preserving {}".format(file_name)) os.renames(src_file_path,dst_file_path) if (os.path.isfile(src_sig_path)): #print("Preserving {}".format(sigFile_name)) os.renames(src_sig_path,dst_sig_path) except FileExistsError: print_error("{} already exists".format(file_name)) continue shutil.rmtree(destination) except FileNotFoundError: print_yellow("{} file not found".format(file_name)) except: print_error("Cleaning Optionals Failed") raise def purge(dir, pattern, friendlyPattern="files"): print_green("Deleting {} files from directory: {}".format(friendlyPattern,dir)) for f in os.listdir(dir): if re.search(pattern, f): os.remove(os.path.join(dir, f)) def build_signature_file(file_name): global key global dssignfile global signature_blacklist ret = 0 baseFile = os.path.basename(file_name) #print_yellow("Sig_fileName: {}".format(baseFile)) if not (baseFile in signature_blacklist): print("Signing with {}.".format(key)) ret = subprocess.call([dssignfile, key, file_name]) if ret == 0: return True else: return False def check_for_obsolete_pbos(addonspath, file): module = file[len(pbo_name_prefix):-4] if not os.path.exists(os.path.join(addonspath, module)): return True return False def backup_config(module): #backup original $PBOPREFIX$ global work_drive global prefix try: configpath = os.path.join(work_drive, prefix, module, "$PBOPREFIX$") if os.path.isfile(configpath): shutil.copyfile(configpath, os.path.join(work_drive, prefix, module, "$PBOPREFIX$.backup")) else: print_error("$PBOPREFIX$ Does not exist for module: {}.".format(module)) except: print_error("Error creating backup of $PBOPREFIX$ for module {}.".format(module)) return True def addon_restore(modulePath): #restore original $PBOPREFIX$ try: if os.path.isfile(os.path.join(modulePath, "$PBOPREFIX$.backup")): if os.path.isfile(os.path.join(modulePath, "$PBOPREFIX$")): os.remove(os.path.join(modulePath, "$PBOPREFIX$")) os.rename(os.path.join(modulePath, "$PBOPREFIX$.backup"), os.path.join(modulePath, "$PBOPREFIX$")) except: print_yellow("Some error occurred. Check your addon folder {} for integrity".format(modulePath)) return True def get_project_version(): global project_version versionStamp = project_version #do the magic based on https://github.com/acemod/ACE3/issues/806#issuecomment-95639048 try: scriptModPath = os.path.join(work_drive, prefix, "main\script_mod.hpp") if os.path.isfile(scriptModPath): f = open(scriptModPath, "r") hpptext = f.read() f.close() if hpptext: majorText = re.search(r"#define MAJOR (.*\b)", hpptext).group(1) minorText = re.search(r"#define MINOR (.*\b)", hpptext).group(1) patchlvlText = re.search(r"#define PATCHLVL (.*\b)", hpptext).group(1) buildText = re.search(r"#define BUILD (.*\b)", hpptext).group(1) if majorText: versionStamp = "{major}.{minor}.{patchlvl}.{build}".format(major=majorText,minor=minorText,patchlvl=patchlvlText,build=buildText) else: print_error("A Critical file seems to be missing or inaccessible: {}".format(scriptModPath)) raise FileNotFoundError("File Not Found: {}".format(scriptModPath)) except Exception as e: print_error("Get_project_version error: {}".format(e)) print_error("Check the integrity of the file: {}".format(scriptModPath)) versionStamp = project_version print_error("Resetting to the default version stamp: {}".format(versionStamp)) input("Press Enter to continue...") print("Resuming build...") print_yellow("{} VERSION set to {}".format(project.lstrip("@").upper(),versionStamp)) project_version = versionStamp return project_version def replace_file(filePath, oldSubstring, newSubstring): #Create temp file fh, absPath = mkstemp() with open(absPath,'w') as newFile: with open(filePath) as oldFile: for line in oldFile: newFile.write(line.replace(oldSubstring, newSubstring)) newFile.close() #Remove original file os.remove(filePath) #Move new file shutil.move(absPath, filePath) def set_version_in_files(): newVersion = project_version # MAJOR.MINOR.PATCH.BUILD newVersionShort = newVersion[:-2] # MAJOR.MINOR.PATCH # Regex patterns pattern = re.compile(r"(\b[0\.-9]+\b\.[0\.-9]+\b\.[0\.-9]+\b\.[0\.-9]+)") # MAJOR.MINOR.PATCH.BUILD patternShort = re.compile(r"(\b[0\.-9]+\b\.[0\.-9]+\b\.[0\.-9]+)") # MAJOR.MINOR.PATCH # Change versions in files containing version for i in versionFiles: filePath = os.path.join(module_root_parent, i) try: # Save the file contents to a variable if the file exists if os.path.isfile(filePath): f = open(filePath, "r+") fileText = f.read() f.close() if fileText: # Search and save version stamp, search short if long not found versionFound = re.findall(pattern, fileText) if not versionFound: versionFound = re.findall(patternShort, fileText) # Replace version stamp if any of the new version parts is higher than the one found if versionFound: # First item in the list findall returns versionFound = versionFound[0] # Use the same version length as the one found if len(versionFound) == len(newVersion): newVersionUsed = newVersion if len(versionFound) == len(newVersionShort): newVersionUsed = newVersionShort # Print change and modify the file if changed if versionFound != newVersionUsed: print_green("Changing version {} => {} in {}".format(versionFound, newVersionUsed, filePath)) replace_file(filePath, versionFound, newVersionUsed) except WindowsError as e: # Temporary file is still "in use" by Python, pass this exception pass except Exception as e: print_error("set_version_in_files error: {}".format(e)) raise return True def stash_version_files_for_building(): try: for file in versionFiles: filePath = os.path.join(module_root_parent, file) # Take only file name for stash location if in subfolder (otherwise it gets removed when removing folders from release dir) if "\\" in file: count = file.count("\\") file = file.split("\\", count)[-1] stashPath = os.path.join(release_dir, file) print("Temporarily stashing {} => {}.bak for version update".format(filePath, stashPath)) shutil.copy(filePath, "{}.bak".format(stashPath)) except: print_error("Stashing version files failed") raise # Set version set_version_in_files() return True def restore_version_files(): try: for file in versionFiles: filePath = os.path.join(module_root_parent, file) # Take only file name for stash path if in subfolder (otherwise it gets removed when removing folders from release dir) if "\\" in file: count = file.count("\\") file = file.split("\\", count)[-1] stashPath = os.path.join(release_dir, file) print("Restoring {}".format(filePath)) shutil.move("{}.bak".format(stashPath), filePath) except: print_error("Restoring version files failed") raise return True def get_private_keyname(commitID,module="main"): global pbo_name_prefix aceVersion = get_project_version() keyName = str("{prefix}{version}-{commit_id}".format(prefix=pbo_name_prefix,version=aceVersion,commit_id=commitID)) return keyName def get_commit_ID(): # Get latest commit ID global make_root curDir = os.getcwd() try: gitpath = os.path.join(os.path.dirname(make_root), ".git") assert os.path.exists(gitpath) os.chdir(make_root) commit_id = subprocess.check_output(["git", "rev-parse", "HEAD"]) commit_id = str(commit_id, "utf-8")[:8] except: print_error("FAILED TO DETERMINE COMMIT ID.") print_yellow("Verify that \GIT\BIN or \GIT\CMD is in your system path or user path.") commit_id = "NOGIT" raise finally: pass os.chdir(curDir) print_yellow("COMMIT ID set to {}".format(commit_id)) return commit_id def version_stamp_pboprefix(module,commitID): ### Update pboPrefix with the correct version stamp. Use commit_id as the build number. #This function will not handle any $PBOPREFIX$ backup or cleanup. global work_drive global prefix configpath = os.path.join(work_drive, prefix, module, "$PBOPREFIX$") try: f = open(configpath, "r") configtext = f.read() f.close() if configtext: if re.search(r"version=(.*?)$", configtext, re.DOTALL): if configtext: configtext = re.sub(r"version=(.*?)$", "version={}\n".format(commitID), configtext, flags=re.DOTALL) f = open(configpath, "w") f.write(configtext) f.close() else: os.remove(os.path.join(work_drive, prefix, module, "$PBOPREFIX$")) os.rename(os.path.join(work_drive, prefix, module, "$PBOPREFIX$.backup"), os.path.join(work_drive, prefix, module, "$PBOPREFIX$")) else: if configtext: #append version info f = open(configpath, "a") f.write("\nversion = {}".format(commitID)) f.close() else: os.remove(os.path.join(work_drive, prefix, module, "$PBOPREFIX$")) os.rename(os.path.join(work_drive, prefix, module, "$PBOPREFIX$.backup"), os.path.join(work_drive, prefix, module, "$PBOPREFIX$")) except Exception as e: print_error("Failed to include build number: {}".format(e)) return False return True ############################################################################### def main(argv): """Build an Arma addon suite in a directory from rules in a make.cfg file.""" print_blue("\nmake.py for Arma, modified for Advanced Combat Environment v{}".format(__version__)) global project_version global arma3tools_path global work_drive global module_root global make_root global release_dir global module_root_parent global optionals_root global key_name global key global dssignfile global prefix global pbo_name_prefix global ciBuild if sys.platform != "win32": print_error("Non-Windows platform (Cygwin?). Please re-run from cmd.") sys.exit(1) reg = winreg.ConnectRegistry(None, winreg.HKEY_CURRENT_USER) try: k = winreg.OpenKey(reg, r"Software\bohemia interactive\arma 3 tools") arma3tools_path = winreg.QueryValueEx(k, "path")[0] winreg.CloseKey(k) except: raise Exception("BadTools","Arma 3 Tools are not installed correctly or the P: drive needs to be created.") # Default behaviors test = False # Copy to Arma 3 directory? arg_modules = False # Only build modules on command line? use_pboproject = True # Default to pboProject build tool make_target = "DEFAULT" # Which section in make.cfg to use for the build new_key = True # Make a new key and use it to sign? quiet = False # Suppress output from build tool? # Parse arguments if "help" in argv or "-h" in argv or "--help" in argv: print (""" make.py [help] [test] [force] [key <name>] [target <name>] [release <version>] [module name] [module name] [...] test -- Copy result to Arma 3. release <version> -- Make archive with <version>. force -- Ignore cache and build all. checkexternal -- Check External Files target <name> -- Use rules in make.cfg under heading [<name>] rather than default [Make] key <name> -- Use key in working directory with <name> to sign. If it does not exist, create key. quiet -- Suppress command line output from build tool. If module names are specified, only those modules will be built. Examples: make.py force test Build all modules (ignoring cache) and copy the mod folder to the Arma 3 directory. make.py mymodule_gun Only build the module named 'mymodule_gun'. make.py force key MyNewKey release 1.0 Build all modules (ignoring cache), sign them with NewKey, and pack them into a zip file for release with version 1.0. If a file called $NOBIN$ is found in the module directory, that module will not be binarized. See the make.cfg file for additional build options. """) sys.exit(0) if "force" in argv: argv.remove("force") force_build = True else: force_build = False if "test" in argv: test = True argv.remove("test") if "release" in argv: make_release_zip = True release_version = argv[argv.index("release") + 1] argv.remove(release_version) argv.remove("release") else: make_release_zip = False release_version = project_version if "target" in argv: make_target = argv[argv.index("target") + 1] argv.remove("target") argv.remove(make_target) force_build = True if "key" in argv: new_key = True key_name = argv[argv.index("key") + 1] argv.remove("key") argv.remove(key_name) if "quiet" in argv: quiet = True argv.remove("quiet") if "checkexternal" in argv: argv.remove("checkexternal") check_external = True else: check_external = False if "version" in argv: argv.remove("version") version_update = True else: version_update = False if "--ci" in argv: argv.remove("--ci") ciBuild = True print_yellow("\nCheck external references is set to {}".format(str(check_external))) # Get the directory the make script is in. make_root = os.path.dirname(os.path.realpath(__file__)) make_root_parent = os.path.abspath(os.path.join(os.getcwd(), os.pardir)) os.chdir(make_root) cfg = configparser.ConfigParser(); try: cfg.read(os.path.join(make_root, "make.cfg")) # Project name (with @ symbol) project = cfg.get(make_target, "project", fallback="@"+os.path.basename(os.getcwd())) # BI Tools work drive on Windows work_drive = cfg.get(make_target, "work_drive", fallback="P:\\") # Private key path key = cfg.get(make_target, "key", fallback=None) # Private key creation directory private_key_path = cfg.get(make_target, "private_key_path", fallback=os.path.join(work_drive, "private_keys")) # Project prefix (folder path) prefix = cfg.get(make_target, "prefix", fallback="") # Release archive prefix zipPrefix = cfg.get(make_target, "zipPrefix", fallback=project.lstrip("@").lower()) # Should we autodetect modules on a complete build? module_autodetect = cfg.getboolean(make_target, "module_autodetect", fallback=True) # Manual list of modules to build for a complete build modules = cfg.get(make_target, "modules", fallback=None) # Parse it out if modules: modules = [x.strip() for x in modules.split(',')] else: modules = [] # List of directories to ignore when detecting ignore = [x.strip() for x in cfg.get(make_target, "ignore", fallback="release").split(',')] # Which build tool should we use? build_tool = cfg.get(make_target, "build_tool", fallback="addonbuilder").lower() # Release/build directory, relative to script dir release_dir = cfg.get(make_target, "release_dir", fallback="release") #Directory to copy the final built PBO's for a test run. test_dir = cfg.get(make_target, "test_dir", fallback=os.path.join(os.environ["USERPROFILE"],r"documents\Arma 3")) # Project PBO file prefix (files are renamed to prefix_name.pbo) pbo_name_prefix = cfg.get(make_target, "pbo_name_prefix", fallback=None) # Project module Root module_root_parent = os.path.abspath(os.path.join(os.path.join(work_drive, prefix), os.pardir)) module_root = cfg.get(make_target, "module_root", fallback=os.path.join(make_root_parent, "addons")) optionals_root = os.path.join(module_root_parent, "optionals") extensions_root = os.path.join(module_root_parent, "extensions") commit_id = get_commit_ID() key_name = versionStamp = get_private_keyname(commit_id) print_green ("module_root: {}".format(module_root)) if (os.path.isdir(module_root)): os.chdir(module_root) else: print_error ("Directory {} does not exist.".format(module_root)) sys.exit() if (os.path.isdir(optionals_root)): print_green ("optionals_root: {}".format(optionals_root)) else: print_error ("Directory {} does not exist.".format(optionals_root)) sys.exit() print_green ("release_dir: {}".format(release_dir)) except: raise print_error("Could not parse make.cfg.") sys.exit(1) # See if we have been given specific modules to build from command line. if len(argv) > 1 and not make_release_zip: arg_modules = True modules = [a for a in argv[1:] if a[0] != "-"] # Find the tools we need. try: tools = find_bi_tools(work_drive) addonbuilder = tools[0] dssignfile = tools[1] dscreatekey = tools[2] cfgconvert = tools[3] except: print_error("Arma 3 Tools are not installed correctly or the P: drive has not been created.") sys.exit(1) if build_tool == "pboproject": try: depbo_tools = find_depbo_tools("HKLM") if depbo_tools == -1: depbo_tools = find_depbo_tools("HKCU") pboproject = depbo_tools[0] rapifyTool = depbo_tools[1] makepboTool = depbo_tools[2] except: raise print_error("Could not find dePBO tools. Download the needed tools from: https://dev.withsix.com/projects/mikero-pbodll/files") sys.exit(1) # Try to open and deserialize build cache file. try: cache = {} with open(os.path.join(make_root, "make.cache"), 'r') as f: cache_raw = f.read() cache = json.loads(cache_raw) except: print ("No cache found.") cache = {} # Check the build version (from main) with cached version - forces a full rebuild when version changes project_version = get_project_version() cacheVersion = "None"; if 'cacheVersion' in cache: cacheVersion = cache['cacheVersion'] if (project_version != cacheVersion): cache = {} print("Reseting Cache {0} to New Version {1}".format(cacheVersion, project_version)) cache['cacheVersion'] = project_version if not os.path.isdir(os.path.join(release_dir, project, "addons")): try: os.makedirs(os.path.join(release_dir, project, "addons")) except: print_error("Cannot create release directory") raise if not os.path.isdir(os.path.join(release_dir, project, "keys")): try: os.makedirs(os.path.join(release_dir, project, "keys")) except: print_error("Cannot create release directory") raise # Update version stamp in all files that contain it # Update version only for release if full update not requested (backup and restore files) print_blue("\nChecking for obsolete version numbers...") if not version_update: stash_version_files_for_building() else: # Set version set_version_in_files(); print("Version in files has been changed, make sure you commit and push the updates!") amountOfBuildsFailed = 0 namesOfBuildsFailed = [] try: # Temporarily copy optionals_root for building. They will be removed later. optionals_modules = [] optional_files = [] copy_optionals_for_building(optionals_modules,optional_files) # Get list of subdirs in make root. dirs = next(os.walk(module_root))[1] # Autodetect what directories to build. if module_autodetect and not arg_modules: modules = [] for path in dirs: # Any dir that has a config.cpp in its root is an addon to build. config_path = os.path.join(path, 'config.cpp') if os.path.isfile(config_path) and not path in ignore: modules.append(path) # Make the key specified from command line if necessary. if new_key: if not os.path.isfile(os.path.join(private_key_path, key_name + ".biprivatekey")): print_yellow("\nRequested key does not exist.") try: os.makedirs(private_key_path) except: pass curDir = os.getcwd() os.chdir(private_key_path) ret = subprocess.call([dscreatekey, key_name]) # Created in make_root os.chdir(curDir) if ret == 0: print_green("Created: {}".format(os.path.join(private_key_path, key_name + ".biprivatekey"))) print("Removing any old signature keys...") purge(os.path.join(module_root, release_dir, project, "addons"), "^.*\.bisign$","*.bisign") purge(os.path.join(module_root, release_dir, project, "optionals"), "^.*\.bisign$","*.bisign") purge(os.path.join(module_root, release_dir, project, "keys"), "^.*\.bikey$","*.bikey") else: print_error("Failed to create key!") else: print_green("\nNOTE: Using key {}".format(os.path.join(private_key_path, key_name + ".biprivatekey"))) try: print("Copying public key to release directory.") try: os.makedirs(os.path.join(module_root, release_dir, project, "keys")) except: pass # Use biKeyNameAbrev to attempt to minimize problems from this BI Bug REFERENCE: http://feedback.arma3.com/view.php?id=22133 biKeyNameAbrev = key_name.split("-")[0] shutil.copyfile(os.path.join(private_key_path, key_name + ".bikey"), os.path.join(module_root, release_dir, project, "keys", "{}.bikey".format(biKeyNameAbrev))) except: print_error("Could not copy key to release directory.") raise key = os.path.join(private_key_path, "{}.biprivatekey".format(key_name)) # Remove any obsolete files. print_blue("\nChecking for obsolete files...") obsolete_check_path = os.path.join(module_root, release_dir, project,"addons") for file in os.listdir(obsolete_check_path): if (file.endswith(".pbo") and os.path.isfile(os.path.join(obsolete_check_path,file))): if check_for_obsolete_pbos(module_root, file): fileName = os.path.splitext(file)[0] print_yellow("Removing obsolete file => {}".format(file)) purge(obsolete_check_path, "{}\..".format(fileName), "{}.*".format(fileName)) obsolete_check_path = os.path.join(module_root, release_dir, project) for file in os.listdir(obsolete_check_path): if (file.endswith(".dll") and os.path.isfile(os.path.join(obsolete_check_path,file))): if check_for_obsolete_pbos(extensions_root, file): fileName = os.path.splitext(file)[0] print_yellow("Removing obsolete file => {}".format(file)) try: os.remove(os.path.join(obsolete_check_path,file)) except: print_error("\nFailed to delete {}".format(os.path.join(obsolete_check_path,file))) pass # For each module, prep files and then build. print_blue("\nBuilding...") for module in modules: print_green("\nMaking {}".format(module + "-"*max(1, (60-len(module))))) missing = False sigMissing = False # Cache check if module in cache: old_sha = cache[module] else: old_sha = "" # Hash the module new_sha = get_directory_hash(os.path.join(module_root, module)) # Is the pbo or sig file missing? missing = not os.path.isfile(os.path.join(release_dir, project, "addons", "{}{}.pbo".format(pbo_name_prefix,module))) sigFile = "{}{}.pbo.{}.bisign".format(pbo_name_prefix,module,key_name) sigMissing = not os.path.isfile(os.path.join(release_dir, project, "addons", sigFile)) if missing: print_yellow("Missing PBO file {}{}.pbo. Building...".format(pbo_name_prefix,module)) # Check if it needs rebuilt # print ("Hash:", new_sha) if old_sha == new_sha and not missing: if not force_build: print("Module has not changed.") if sigMissing: if key: print("Missing Signature key {}".format(sigFile)) build_signature_file(os.path.join(module_root, release_dir, project, "addons", "{}{}.pbo".format(pbo_name_prefix,module))) # Skip everything else continue # Only do this if the project isn't stored directly on the work drive. # Split the path at the drive name and see if they are on the same drive (usually P:) if os.path.splitdrive(module_root)[0] != os.path.splitdrive(work_drive)[0]: try: # Remove old work drive version (ignore errors) shutil.rmtree(os.path.join(work_drive, prefix, module), True) # Copy module to the work drive shutil.copytree(module, os.path.join(work_drive, prefix, module)) except: raise print_error("ERROR: Could not copy module to work drive. Does the module exist?") input("Press Enter to continue...") print("Resuming build...") continue #else: #print("WARNING: Module is stored on work drive ({}).".format(work_drive)) try: # Remove the old pbo, key, and log old = os.path.join(module_root, release_dir, project, "addons", "{}{}".format(pbo_name_prefix,module)) + "*" files = glob.glob(old) for f in files: os.remove(f) if pbo_name_prefix: old = os.path.join(module_root, release_dir, project, "addons", "{}{}".format(pbo_name_prefix,module)) + "*" files = glob.glob(old) for f in files: os.remove(f) except: raise print_error("ERROR: Could not copy module to work drive. Does the module exist?") input("Press Enter to continue...") print("Resuming build...") continue # Build the module into a pbo print_blue("Building: {}".format(os.path.join(work_drive, prefix, module))) print_blue("Destination: {}".format(os.path.join(module_root, release_dir, project, "addons"))) # Make destination folder (if needed) try: os.makedirs(os.path.join(module_root, release_dir, project, "addons")) except: pass # Run build tool build_successful = False if build_tool == "pboproject": try: nobinFilePath = os.path.join(work_drive, prefix, module, "$NOBIN$") backup_config(module) version_stamp_pboprefix(module,commit_id) if os.path.isfile(nobinFilePath): print_green("$NOBIN$ Found. Proceeding with non-binarizing!") cmd = [makepboTool, "-P","-A","-L","-G","-X=*.backup", os.path.join(work_drive, prefix, module),os.path.join(module_root, release_dir, project,"addons")] else: if check_external: cmd = [pboproject, "-P", os.path.join(work_drive, prefix, module), "+Engine=Arma3", "-S","+Noisy", "+X", "+Clean", "+Mod="+os.path.join(module_root, release_dir, project), "-Key"] else: cmd = [pboproject, "-P", os.path.join(work_drive, prefix, module), "+Engine=Arma3", "-S","+Noisy", "-X", "+Clean", "+Mod="+os.path.join(module_root, release_dir, project), "-Key"] color("grey") if quiet: devnull = open(os.devnull, 'w') ret = subprocess.call(cmd, stdout=devnull) devnull.close() else: ret = subprocess.call(cmd) color("reset") if ret == 0: print_green("pboProject return code == {}".format(str(ret))) # Prettyprefix rename the PBO if requested. if pbo_name_prefix: try: os.rename(os.path.join(module_root, release_dir, project, "addons", "{}.pbo".format(module)), os.path.join(module_root, release_dir, project, "addons", "{}{}.pbo".format(pbo_name_prefix,module))) except: raise print_error("Could not rename built PBO with prefix.") # Sign result if (key and not "{}{}.pbo".format(pbo_name_prefix,module) in signature_blacklist): print("Signing with {}.".format(key)) if pbo_name_prefix: ret = subprocess.call([dssignfile, key, os.path.join(module_root, release_dir, project, "addons", "{}{}.pbo".format(pbo_name_prefix,module))]) else: ret = subprocess.call([dssignfile, key, os.path.join(module_root, release_dir, project, "addons", "{}.pbo".format(module))]) if ret == 0: build_successful = True else: build_successful = True if not build_successful: print_error("pboProject return code == {}".format(str(ret))) print_error("Module not successfully built/signed. Check your {}temp\{}_packing.log for more info.".format(work_drive,module)) print ("Resuming build...") amountOfBuildsFailed += 1 namesOfBuildsFailed.append("{}".format(module)) continue # Back to the root os.chdir(module_root) except: raise print_error("Could not run Addon Builder.") input("Press Enter to continue...") print ("Resuming build...") continue finally: addon_restore(os.path.join(work_drive, prefix, module)) elif build_tool== "addonbuilder": # Detect $NOBIN$ and do not binarize if found. if os.path.isfile(os.path.join(work_drive, prefix, module, "$NOBIN$")): do_binarize = False print("$NOBIN$ file found in module, packing only.") else: do_binarize = True try: # Call AddonBuilder os.chdir("P:\\") cmd = [addonbuilder, os.path.join(work_drive, prefix, module), os.path.join(make_root, release_dir, project, "addons"), "-clear", "-project="+work_drive] if not do_binarize: cmd.append("-packonly") if quiet: previousDirectory = os.getcwd() os.chdir(arma3tools_path) devnull = open(os.devnull, 'w') ret = subprocess.call(cmd, stdout=devnull) devnull.close() os.chdir(previousDirectory) else: previousDirectory = os.getcwd() os.chdir(arma3tools_path) print_error("Current directory - {}".format(os.getcwd())) ret = subprocess.call(cmd) os.chdir(previousDirectory) print_error("Current directory - {}".format(os.getcwd())) color("reset") print_green("completed") # Prettyprefix rename the PBO if requested. if pbo_name_prefix: try: os.rename(os.path.join(make_root, release_dir, project, "addons", "{}.pbo".format(module)), os.path.join(make_root, release_dir, project, "addons", "{}{}.pbo".format(pbo_name_prefix,module))) except: raise print_error("Could not rename built PBO with prefix.") if ret == 0: # Sign result #print_yellow("Sig_fileName: ace_{}.pbo".format(module)) if (key and not "{}{}.pbo".format(pbo_name_prefix,module) in signature_blacklist) : print("Signing with {}.".format(key)) if pbo_name_prefix: ret = subprocess.call([dssignfile, key, os.path.join(make_root, release_dir, project, "addons","{}{}.pbo".format(pbo_name_prefix,module))]) else: ret = subprocess.call([dssignfile, key, os.path.join(make_root, release_dir, project, "addons", "{}.pbo".format(module))]) if ret == 0: build_successful = True else: build_successful = True if not build_successful: print_error("Module not successfully built. Check your {}temp\{}_packing.log for more info.".format(work_drive,module)) # Back to the root os.chdir(make_root) except: raise print_error("Could not run Addon Builder.") input("Press Enter to continue...") print ("Resuming build...") continue else: print_error("Unknown build_tool {}!".format(build_tool)) # Update the hash for a successfully built module if build_successful: cache[module] = new_sha except Exception as e: print_yellow("Cancel or some error detected: {}".format(e)) finally: copy_important_files(module_root_parent,os.path.join(release_dir, project)) cleanup_optionals(optionals_modules) if not version_update: restore_version_files() # Done building all modules! # Write out the cache state cache_out = json.dumps(cache) with open(os.path.join(make_root, "make.cache"), 'w') as f: f.write(cache_out) # Delete the pboproject temp files if building a release. if make_release_zip and build_tool == "pboproject": try: shutil.rmtree(os.path.join(release_dir, project, "temp"), True) except: print_error("ERROR: Could not delete pboProject temp files.") # Make release if make_release_zip: release_name = "{}_{}".format(zipPrefix, release_version) print_blue("\nMaking release: {}.zip".format(release_name)) try: # Delete all log files for root, dirs, files in os.walk(os.path.join(release_dir, project, "addons")): for currentFile in files: if currentFile.lower().endswith("log"): os.remove(os.path.join(root, currentFile)) # Remove all zip files from release folder to prevent zipping the zip for file in os.listdir(release_dir): if file.endswith(".zip"): os.remove(os.path.join(release_dir, file)) # Create a zip with the contents of release folder in it release_zip = shutil.make_archive("{}".format(release_name), "zip", release_dir) # Move release zip to release folder shutil.copy(release_zip, release_dir) os.remove(release_zip) except: raise print_error("Could not make release.") # Copy to Arma 3 folder for testing if test: print_blue("\nCopying to Arma 3.") if sys.platform == "win32": reg = winreg.ConnectRegistry(None, winreg.HKEY_LOCAL_MACHINE) try: k = winreg.OpenKey(reg, r"SOFTWARE\Wow6432Node\Bohemia Interactive\Arma 3") a3_path = winreg.EnumValue(k, 1)[1] winreg.CloseKey(k) except: print_error("Could not find Arma 3's directory in the registry.") else: a3_path = cygwin_a3path print_yellow("Path from the registry => {}".format(a3_path)) a3_path = test_dir print_yellow("Copying build files to {}".format(a3_path)) if os.path.exists(a3_path): try: shutil.rmtree(os.path.join(a3_path, project), True) shutil.copytree(os.path.join(module_root, release_dir, project), os.path.join(a3_path, project)) except: print_error("Could not copy files. Is Arma 3 running?") if amountOfBuildsFailed > 0: print_error("Build failed. {} pbos failed.".format(amountOfBuildsFailed)) for failedModuleName in namesOfBuildsFailed: print("- {} failed.".format(failedModuleName)) sys.exit(1) else: print_green("\Completed with 0 errors.") if __name__ == "__main__": start_time = timeit.default_timer() main(sys.argv) d,h,m,s = Fract_Sec(timeit.default_timer() - start_time) print("\nTotal Program time elapsed: {0:2}h {1:2}m {2:4.5f}s".format(h,m,s)) if ciBuild: sys.exit(0) input("Press Enter to continue...")
gpl-3.0
-626,459,769,304,963,800
37.780471
227
0.56901
false
waidyanatha/pingsam
visualize.py
1
8668
import numpy as np import datetime as dtm from dateutil import rrule import pandas as pd import csv import matplotlib.pylab as plt import sys, os #lets first create the csv file # #change this to actual csv file name pingfile="weeklylogs.csv" #paramters @plotinterval = 10 minutes plotinterval = 10 #csv file columns col_seq=0 col_pingtime=1 col_domain=2 col_state=3 # ########## FUNCTION TO SYNTHESEIZE MISSING DATA POINTS ########## # def synth_data(synthdf, interval): #create a temporary dataframe to hold the syntheseized data tmpdf = pd.DataFrame(columns=['seqnum', 'pingdatetime', 'domain', 'statenow']) #first check we have a none empty dataframe if not synthdf.empty: #pick the originating TS data point synthdf.sort_values(by='pingdatetime') #check if first timestamp starts at 00:00:00; if not add a dumy record startseqnum = synthdf.index[0] startpingdt = synthdf.iloc[0]['pingdatetime'] startdomain = synthdf.iloc[0]['domain'] startstate = synthdf.iloc[0]['statenow'] #loop through each TS data point to synthetically add new TS points #to fill the gap between two consecutive data points for i, row in synthdf.iterrows(): #initiate the synthesiezed data point to the origin nextdatapoint = 0 pingdt_plus_interval = startpingdt #stepwise loop to add syntheseized points from relative origin to the next TS data point while row['pingdatetime'] > pingdt_plus_interval + dtm.timedelta(minutes = interval) : nextdatapoint += 1 pingdt_plus_interval = startpingdt + dtm.timedelta(minutes = nextdatapoint*interval) tmpdf.loc[len(tmpdf.index)] = [startseqnum,pingdt_plus_interval,startdomain,startstate] startseqnum = i startpingdt = row['pingdatetime'] startstate = row['statenow'] #after completing through all the TS datapoints check if a none empty dataframe was created if not tmpdf.empty: tmpdf = pd.concat([tmpdf,synthdf]) tmpdf = tmpdf.set_index('seqnum') #whether null or not return a dataframe with syntheseized TS data tmpdf.dropna(thresh=2) return tmpdf # ########## PLOT HISTOGRAM TO FIGURE ########## # def plot_hist_to_fig(histdf, dname): #get date range of the plot to use in suptitile begdt = histdf['pingdatetime'].min().date() findt = histdf['pingdatetime'].max().date() #create a new x-axis index using dataframe index; starting from 1 instead of 0 histdf['pingdate'] = histdf['pingdatetime'].apply(lambda x: x.date()) downdf = pd.DataFrame(columns=['xlabel','pingdate', 'downcount']) datelist = list(histdf.pingdate.unique()) for uniquedate in datelist: xlabel = str('{:02d}'.format(uniquedate.month))+'-'+str('{:02d}'.format(uniquedate.day)) downcount = len(histdf[(histdf.statenow == '0') & (histdf.pingdate == uniquedate)]) totalcount = len(histdf[(histdf.pingdate == uniquedate)]) downdf.loc[len(downdf.index)] = [xlabel, uniquedate,100*downcount//totalcount] downdf = downdf.as_matrix() #x-axis values are in the newly generated xvalues column xl = np.array(downdf[:,0]) x = np.array(downdf[:,1]) #y-axis values (1 or 0) are in the dateframe statenow column y = np.array(downdf[:,2]) histfig, ax = plt.subplots() ax.bar(x,y,color='red',width=0.5, align="center") #to give enough spacing for the suptitle; otherwise overlaps with title histfig.subplots_adjust(top=0.87) # plt.figure(figsize=(8,6), dpi=150) #beautify the plot and name the labels, titles ax.set_title('Percentage of time Server Failed each Day', fontsize=14, fontweight='bold', color='gray') histfig.suptitle(dname+'\n'+str(begdt)+' --- '+str(findt), fontsize=10, color='blue') ax.set_xlabel('Month-Day', fontsize=12, color='gray') ax.set_ylabel('Faile Rate (%)', fontsize=12, color='gray') plt.yticks(fontsize=10, color='gray', rotation='horizontal') plt.xticks(x, xl, fontsize=10, color='gray', rotation='vertical') ax.grid(True) return histfig # ########## PLOT DOWN TIMES FREQUENCY TO FIGURE ########## # def plot_freq_to_fig(plotdf, dname): #get date range of the plot to use in suptitile begdt = plotdf['pingdatetime'].min().date() findt = plotdf['pingdatetime'].max().date() failrate = 100-(sum(100*plotdf['statenow'].astype(int))/len(plotdf)) failrate = failrate.astype(float) #create a new x-axis index using dataframe index; starting from 1 instead of 0 plotdf['xvalues'] = range(1,len(plotdf)+1) plotdf = plotdf.as_matrix() #x-axis values are in the newly generated xvalues column x = np.array(plotdf[:,3].astype(int)) #y-axis values (1 or 0) are in the dateframe statenow column y = np.array(plotdf[:,2].astype(int)) #setup to catputure the plot into a figure plotfig = plt.figure(num=None, figsize=(8, 6), dpi=150, facecolor='y', edgecolor='k') ax = plotfig.add_subplot(311) ax.fill_between(x, 0, y, color='green') ax.plot(x,y,color='green',lw=2) #to give enough spacing for the suptitle; otherwise overlaps with title plotfig.subplots_adjust(top=0.87) #beautify the plot and name the labels, titles ax.set_title('Frequency of Server Access Failure ('+str(failrate)+'%)', fontsize=14, fontweight='bold', color='gray') plotfig.suptitle(dname+'\n'+str(begdt)+' --- '+str(findt), fontsize=10, color='blue') ax.set_xlabel('Attempted Machine Accesss Times', fontsize=12, color='gray') ax.set_ylabel('Machine State', fontsize=12, color='gray') plt.yticks(y, ['UP','DOWN'], fontsize=10, color='gray', rotation='vertical') plt.xticks(fontsize=10, color='gray', rotation='horizontal') plt.ylim(0,1.1) plt.xlim(0,x.max()+10) ax.grid(True) return plotfig # ############# MAIN ################################ # print("Complile data from file the log files") #os.system('./analytics.sh') print("Reading data from file "+pingfile) with open(pingfile, 'rb') as f: data = [i.split(",") for i in f.read().split()] df = pd.DataFrame(data, columns=['seqnum', 'pingdatetime', 'domain', 'statenow']) for index, row in df.iterrows(): row[col_pingtime] = dtm.datetime.strptime(row[col_pingtime], '%Y-%m-%d:%H:%M:%S') #to avoid duplicate data and to reflect ping time to be on the minute row[col_pingtime] = row[col_pingtime].replace(second = 0) #format pingdatetime as proper datetime, set it as the indext and then order them df['pingdatetime'] = pd.to_datetime(df['pingdatetime']) df.sort_values(by='pingdatetime') df = df.set_index('seqnum') #begin processing for each unique domain print(str(len(df.index))+" data rows added to the dataframe, ready for processing ...") print ('-----------------------------------------------------') for thedomain in df.domain.unique(): #insert syntheseised data points dompingdf = df[df['domain']==thedomain] print("Begin data synthesis for "+thedomain+" with data rows = "+str(len(dompingdf.index))) amenddf = synth_data(dompingdf,plotinterval) if not amenddf.empty: #output the syntheseized dataframe to output file print(str(len(amenddf.index))+" data rows of syntheseised added to "+thedomain ) amenddf['pingdatetime'] = pd.to_datetime(amenddf.pingdatetime) amenddf = amenddf.sort(['pingdatetime']) amenddf.index = range(0,len(amenddf)) print('writing data to file: ./data/syndata_'+thedomain+'.csv') amenddf.to_csv('./data/syndata_'+thedomain+'.csv') #plot timeseries with function (need to add if conditions to check if function returns valid fig) fig = plot_freq_to_fig(amenddf, thedomain) fig.savefig('./plots/freqplot_'+thedomain+'.png', bbox_inches='tight') print ('frequency plot created in file: ./plots/freqplot_'+thedomain+'.png') fig = plot_hist_to_fig(amenddf, thedomain) fig.savefig('./plots/histplot_'+thedomain+'.png', bbox_inches='tight') print ('histogram plot created in file: ./plots/histplot_'+thedomain+'.png') print ('process complete for '+thedomain) print ('-----------------------------------------------------') else: print ("Warning: no syntheseized data was added to: "+thedomain) print ('-----------------------------------------------------') print ('End processing data for visualization !!! ')
mit
-8,745,131,300,681,286,000
48.531429
121
0.639132
false
pbauman/libmesh
doc/statistics/libmesh_pagehits.py
1
10542
#!/usr/bin/env python import matplotlib.pyplot as plt import numpy as np # Import stuff for working with dates from datetime import datetime from matplotlib.dates import date2num # Hits/month, pages, and gigabytes served. # To get the Google analytics data: # .) Go to analytics.google.com. # .) There should be (as of July 2017) a "Google Analytics Home" box at the top left of the dashboard. # .) Click the "Audience Overview" link at the bottom right corner of this box. # .) Adjust date range to previous month. # .) Record the number of "Pageviews" in the "Hits" column below. # The data below are from the libmesh.github.io site, which uses the # number UA-24978333-1. # # Note: we do not have control over the analytics for the # https://www.github.com/libMesh/libmesh page. If you look at the page # source, analytics code UA-3769691-2 appears, but if I try to add # this property in my analytics account, Google assigns me the number # UA-24978333-{2,3,...} (where the last digit may change depending on # how many times you tried to add/remove this property in the # Analytics Dashboard) and there does not seem to be a straightforward # way of inserting this code into the source. There have been some # README.md based hacks for doing this in the past, but I don't think # they are particularly reliable... # Hits, pages, GB served data = [ # 'Jan 2003', 616, 616, 0 # 'Feb 2003', 2078, 2078, 0, # 'Mar 2003', 3157, 3157, 0, # 'Apr 2003', 7800, 7800, 0, # 'May 2003', 4627, 4627, 0, # 'Jun 2003', 6156, 6156, 0, # 'Jul 2003', 6389, 6389, 0, # 'Aug 2003', 10136, 10136, 0, # 'Sep 2003', 8871, 8871, 0, # 'Oct 2003', 9703, 9703, 0, # 'Nov 2003', 9802, 9802, 0, # 'Dec 2003', 9123, 9123, 0, # 'Jan 2004', 13599, 13599, 0, # 'Feb 2004', 11018, 11018, 0, # 'Mar 2004', 11713, 11713, 0, # 'Apr 2004', 14995, 14995, 0, # 'May 2004', 11285, 11285, 0, # 'Jun 2004', 12974, 12974, 0, # 'Jul 2004', 12939, 12939, 0, # 'Aug 2004', 9708, 9708, 0, # 'Sep 2004', 7994, 7994, 0, # 'Oct 2004', 6920, 6920, 0, # 'Nov 2004', 10261, 10261, 0, # 'Dec 2004', 7483, 7483, 0, # 'Jan 2005', 3184, 3184, 0, # 'Feb 2005', 37733, 14077, .4373, # 'Mar 2005', 43927, 16408, .5637, # 'Apr 2005', 29792, 8518, .2890, # 'May 2005', 51288, 17629, .5689, # 'Jun 2005', 40617, 16599, .5379, # 'Jul 2005', 29944, 10006, .3363, # 'Aug 2005', 39592, 14556, .4577, # 'Sep 2005', 57638, 14666, .4881, # 'Oct 2005', 48336, 17976, .5749, # 'Nov 2005', 49563, 15308, .5810, # 'Dec 2005', 90863, 40736, .9415, # 'Jan 2006', 46723, 13487, .5662, # 'Feb 2006', 62285, 26567, .8229, # 'Mar 2006', 47446, 14711, .6534, # 'Apr 2006', 90314, 29635, .9762, # 'May 2006', 68209, 20998, .7949, # 'Jun 2006', 50495, 17128, .6881, # 'Jul 2006', 42387, 10958, .6016, # 'Aug 2006', 55658, 11793, .6174, # 'Sep 2006', 54919, 20591, .9056, # 'Oct 2006', 52916, 17944, .9015, # 'Nov 2006', 55382, 19833, .9439, # 'Dec 2006', 54265, 22688, .9162, # 'Jan 2007', 53813, 19881, 1.0 , # 'Feb 2007', 52434, 17920, .9472, # 'Mar 2007', 61530, 21172, 1.2, # 'Apr 2007', 125578, 77539, 1.3, # 'May 2007', 182764, 129596, 1.6, # 'Jun 2007', 115730, 38571, 1.7, # 'Jul 2007', 121054, 42757, 1.8, # 'Aug 2007', 81192, 28187, 1.3, # 'Sep 2007', 143553, 39734, 2.3, # 'Oct 2007', 110449, 42111, 2.4, # 'Nov 2007', 128307, 57851, 2.3, # 'Dec 2007', 80584, 42631, 2.0, # 'Jan 2008', 69623, 34155, 2.0, # 'Feb 2008', 144881, 111751, 2.5, # 'Mar 2008', 69801, 29211, 1.9, # 'Apr 2008', 74023, 31149, 2.0, # 'May 2008', 63123, 23277, 1.8, # 'Jun 2008', 66055, 25418, 2.1, # 'Jul 2008', 60046, 22082, 2.0, # 'Aug 2008', 60206, 24543, 2.0, # 'Sep 2008', 53057, 18635, 1.6, # 'Oct 2008', 64828, 27042, 2.1, # 'Nov 2008', 72406, 29767, 2.3, # 'Dec 2008', 76248, 31690, 2.3, # 'Jan 2009', 73002, 29744, 2.0, # 'Feb 2009', 70801, 29156, 2.1, # 'Mar 2009', 78200, 31139, 2.1, # 'Apr 2009', 70888, 26182, 1.7, # 'May 2009', 67263, 26210, 1.8, # 'Jun 2009', 73146, 31328, 2.6, # 'Jul 2009', 77828, 33711, 2.4, # 'Aug 2009', 64378, 28542, 1.9, # 'Sep 2009', 76167, 33484, 2.2, # 'Oct 2009', 95727, 41062, 2.8, # 'Nov 2009', 88042, 38869, 2.5, # 'Dec 2009', 76148, 37609, 2.3, # 'Jan 2010', 268856, 45983, 3.2, # 'Feb 2010', 208210, 42680, 3.0, # 'Mar 2010', 116263, 42660, 2.6, # 'Apr 2010', 102493, 32942, 2.4, # 'May 2010', 117023, 37107, 2.5, # 'Jun 2010', 128589, 38019, 2.5, # 'Jul 2010', 87183, 34026, 2.2, # 'Aug 2010', 99161, 33199, 2.5, # 'Sep 2010', 81657, 32305, 2.5, # 'Oct 2010', 98236, 42091, 3.4, # 'Nov 2010', 115603, 48695, 3.4, # 'Dec 2010', 105030, 45570, 3.4, # 'Jan 2011', 133476, 43549, 3.1, # 'Feb 2011', 34483, 15002, 1.1, # 'Mar 2011', 0, 0, 0.0, # 'Apr 2011', 0, 0, 0.0, # 'May 2011', 0, 0, 0.0, # 'Jun 2011', 0, 0, 0.0, # 'Jul 2011', 0, 0, 0.0, 'Aug 2011', 10185, 0, 0.0, # New "Pageviews" data from google analytics, does not seem comparable to sf.net pagehits data 'Sep 2011', 10305, 0, 0.0, 'Oct 2011', 14081, 0, 0.0, 'Nov 2011', 13397, 0, 0.0, 'Dec 2011', 13729, 0, 0.0, 'Jan 2012', 11050, 0, 0.0, 'Feb 2012', 12779, 0, 0.0, 'Mar 2012', 12970, 0, 0.0, 'Apr 2012', 13051, 0, 0.0, 'May 2012', 11857, 0, 0.0, 'Jun 2012', 12584, 0, 0.0, 'Jul 2012', 12995, 0, 0.0, 'Aug 2012', 13204, 0, 0.0, 'Sep 2012', 13170, 0, 0.0, 'Oct 2012', 13335, 0, 0.0, 'Nov 2012', 11337, 0, 0.0, 'Dec 2012', 10108, 0, 0.0, # libmesh switched to github on December 10, 2012 'Jan 2013', 13029, 0, 0.0, 'Feb 2013', 10420, 0, 0.0, 'Mar 2013', 13400, 0, 0.0, 'Apr 2013', 14416, 0, 0.0, 'May 2013', 13875, 0, 0.0, 'Jun 2013', 13747, 0, 0.0, 'Jul 2013', 14019, 0, 0.0, 'Aug 2013', 10828, 0, 0.0, 'Sep 2013', 9969, 0, 0.0, 'Oct 2013', 13083, 0, 0.0, 'Nov 2013', 12938, 0, 0.0, 'Dec 2013', 9079, 0, 0.0, 'Jan 2014', 9736, 0, 0.0, 'Feb 2014', 11824, 0, 0.0, 'Mar 2014', 10861, 0, 0.0, 'Apr 2014', 12711, 0, 0.0, 'May 2014', 11177, 0, 0.0, 'Jun 2014', 10738, 0, 0.0, 'Jul 2014', 10349, 0, 0.0, 'Aug 2014', 8877, 0, 0.0, 'Sep 2014', 9226, 0, 0.0, 'Oct 2014', 8052, 0, 0.0, # Google analytics number moved over to libmesh.github.io in Oct 2014 'Nov 2014', 9243, 0, 0.0, 'Dec 2014', 10714, 0, 0.0, 'Jan 2015', 11508, 0, 0.0, 'Feb 2015', 11278, 0, 0.0, 'Mar 2015', 13305, 0, 0.0, 'Apr 2015', 12347, 0, 0.0, 'May 2015', 11368, 0, 0.0, 'Jun 2015', 11203, 0, 0.0, 'Jul 2015', 10419, 0, 0.0, 'Aug 2015', 11282, 0, 0.0, 'Sep 2015', 13535, 0, 0.0, 'Oct 2015', 12912, 0, 0.0, 'Nov 2015', 13894, 0, 0.0, 'Dec 2015', 11694, 0, 0.0, 'Jan 2016', 11837, 0, 0.0, 'Feb 2016', 14102, 0, 0.0, 'Mar 2016', 13212, 0, 0.0, 'Apr 2016', 13355, 0, 0.0, 'May 2016', 12486, 0, 0.0, 'Jun 2016', 13973, 0, 0.0, 'Jul 2016', 10688, 0, 0.0, 'Aug 2016', 10048, 0, 0.0, 'Sep 2016', 10847, 0, 0.0, 'Oct 2016', 10984, 0, 0.0, 'Nov 2016', 12233, 0, 0.0, 'Dec 2016', 11430, 0, 0.0, 'Jan 2017', 10327, 0, 0.0, 'Feb 2017', 11039, 0, 0.0, 'Mar 2017', 12986, 0, 0.0, 'Apr 2017', 9773, 0, 0.0, 'May 2017', 10880, 0, 0.0, 'Jun 2017', 9179, 0, 0.0, 'Jul 2017', 8344, 0, 0.0, 'Aug 2017', 8617, 0, 0.0, 'Sep 2017', 8576, 0, 0.0, 'Oct 2017', 11255, 0, 0.0, 'Nov 2017', 10362, 0, 0.0, 'Dec 2017', 7948, 0, 0.0, 'Jan 2018', 9376, 0, 0.0, 'Feb 2018', 8864, 0, 0.0, 'Mar 2018', 10339, 0, 0.0, 'Apr 2018', 10958, 0, 0.0, 'May 2018', 10151, 0, 0.0, 'Jun 2018', 8981, 0, 0.0, 'Jul 2018', 8619, 0, 0.0, 'Aug 2018', 9226, 0, 0.0, 'Sep 2018', 8507, 0, 0.0, 'Oct 2018', 9150, 0, 0.0, 'Nov 2018', 8135, 0, 0.0, 'Dec 2018', 7522, 0, 0.0, 'Jan 2019', 8643, 0, 0.0, 'Feb 2019', 8729, 0, 0.0, 'Mar 2019', 7916, 0, 0.0, ] # Extract number of hits/month n_hits_month = data[1::4] # Divide by 1000 for plotting... n_hits_month = np.divide(n_hits_month, 1000.) # Extract list of date strings date_strings = data[0::4] # Convert date strings into numbers date_nums = [] for d in date_strings: date_nums.append(date2num(datetime.strptime(d, '%b %Y'))) # Get a reference to the figure fig = plt.figure() # 111 is equivalent to Matlab's subplot(1,1,1) command ax = fig.add_subplot(111) # Make the bar chart. We have one number/month, there are about 30 # days in each month, this defines the bar width... # The color used comes from sns.color_palette("muted").as_hex() They # are the "same basic order of hues as the default matplotlib color # cycle but more attractive colors." ax.plot(date_nums, n_hits_month, marker='o', linewidth=2, color=u'#4878cf') # Create title fig.suptitle('libmesh.github.io Hits/Month (in Thousands)') # Set up x-tick locations -- August of each year ticks_names = ['2012', '2013', '2014', '2015', '2016', '2017', '2018', '2019'] # Get numerical values for the names tick_nums = [] for x in ticks_names: tick_nums.append(date2num(datetime.strptime('Jan ' + x, '%b %Y'))) # Set tick labels and positions ax.set_xticks(tick_nums) ax.set_xticklabels(ticks_names) # Set x limits for the plot plt.xlim(date_nums[0], date_nums[-1]+30); # Make x-axis ticks point outward ax.get_xaxis().set_tick_params(direction='out') # Save as PDF plt.savefig('libmesh_pagehits.pdf') # Local Variables: # python-indent: 2 # End:
lgpl-2.1
-5,319,884,989,136,103,000
36.119718
131
0.525232
false
not-na/peng3d
peng3d/gui/layout.py
1
8877
#!/usr/bin/env python # -*- coding: utf-8 -*- # # layout.py # # Copyright 2020 notna <[email protected]> # # This file is part of peng3d. # # peng3d is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # peng3d is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with peng3d. If not, see <http://www.gnu.org/licenses/>. # __all__ = [ "Layout", "GridLayout", "LayoutCell", ] import peng3d from peng3d import util from peng3d.util import WatchingList try: import pyglet from pyglet.gl import * except ImportError: pass # Headless mode class Layout(util.ActionDispatcher): """ Base Layout class. This class does not serve any purpose directly other than to be a common base class for all layouts. Note that layouts can be nested, e.g. usually the first layouts parent is a SubMenu and sub-layouts get a LayoutCell of their parent layout as their parent. """ def __init__(self, peng, parent): self.peng = peng self.parent = parent @property def pos(self): return self.parent.pos @property def size(self): return self.parent.size class GridLayout(Layout): """ Grid-based layout helper class. This class provides a grid-like layout to its sub-widgets. A border between widgets can be defined. Additionally, all widgets using this layout should automatically scale with screen size. """ def __init__(self, peng, parent, res, border): super().__init__(peng, parent) self.res = res self.bordersize = border @property def cell_size(self): """ Helper property defining the current size of cells in both x and y axis. :return: 2-tuple of float """ return self.size[0]/self.res[0], self.size[1]/self.res[1] def get_cell(self, pos, size, anchor_x="left", anchor_y="bottom", border=1): """ Returns a grid cell suitable for use as the ``pos`` parameter of any widget. The ``size`` parameter of the widget will automatically be overwritten. :param pos: Grid position, in cell :param size: Size, in cells :param anchor_x: either ``left``\\ , ``center`` or ``right`` :param anchor_y: either ``bottom``\\ , ``center`` or ``top`` :return: LayoutCell subclass """ return _GridCell(self.peng, self, pos, size, anchor_x, anchor_y, border) class LayoutCell(object): """ Base Layout Cell. Not to be used directly. Usually subclasses of this class are returned by layouts. Instances can be passed to Widgets as the ``pos`` argument. The ``size`` argument will be automatically overridden. Note that manually setting ``size`` will override the size set by the layout cell, though the position will be kept. """ @property def pos(self): """ Property accessing the position of the cell. This usually refers to the bottom-left corner, but may change depending on arguments passed during creation. Note that results can be floats. :return: 2-tuple of ``(x,y)`` """ raise NotImplementedError("pos property has to be overridden") @property def size(self): """ Property accessing the size of the cell. Note that results can be floats. :return: 2-tuple of ``(width, height)`` """ raise NotImplementedError("size property has to be overridden") class DumbLayoutCell(LayoutCell): """ Dumb layout cell that behaves like a widget. Note that this class is not actually widget and should only be used as the ``pos`` argument to a widget or the ``parent`` to another Layout. It can be used to create, for example, a :py:class:`GridLayout()` over only a portion of the screen. Even though setting the :py:attr:`pos` and :py:attr:`size` attributes is possible, sometimes a redraw cannot be triggered correctly if e.g. the parent is not submenu. """ def __init__(self, parent, pos, size): self.parent = parent self._pos = pos self._size = size @property def pos(self): """ Property that will always be a 2-tuple representing the position of the widget. Note that this method may call the method given as ``pos`` in the initializer. The returned object will actually be an instance of a helper class to allow for setting only the x/y coordinate. This property also respects any :py:class:`Container` set as its parent, any offset will be added automatically. Note that setting this property will override any callable set permanently. """ if isinstance(self._pos, list) or isinstance(self._pos, tuple): r = self._pos elif callable(self._pos): w, h = self.parent.size[:] r = self._pos(w, h, *self.size) elif isinstance(self._pos, LayoutCell): r = self._pos.pos else: raise TypeError("Invalid position type") ox, oy = self.parent.pos r = r[0] + ox, r[1] + oy # if isinstance(self.submenu,ScrollableContainer) and not self._is_scrollbar:# and self.name != "__scrollbar_%s"%self.submenu.name: # Widget inside scrollable container and not the scrollbar # r = r[0],r[1]+self.submenu.offset_y return WatchingList(r, self._wlredraw_pos) @pos.setter def pos(self, value): self._pos = value if hasattr(self.parent, "redraw"): self.parent.redraw() @property def size(self): """ Similar to :py:attr:`pos` but for the size instead. """ if isinstance(getattr(self, "_pos", None), LayoutCell): s = self._pos.size elif isinstance(self._size, list) or isinstance(self._size, tuple): s = self._size elif callable(self._size): w, h = self.parent.size[:] s = self._size(w, h) else: raise TypeError("Invalid size type") s = s[:] if s[0] == -1 or s[1] == -1: raise ValueError("Cannot set size to -1 in DumbLayoutCell") # Prevents crashes with negative size s = [max(s[0], 0), max(s[1], 0)] return WatchingList(s, self._wlredraw_size) @size.setter def size(self, value): self._size = value if hasattr(self.parent, "redraw"): self.parent.redraw() def _wlredraw_pos(self,wl): self._pos = wl[:] if hasattr(self.parent, "redraw"): self.parent.redraw() def _wlredraw_size(self,wl): self._size = wl[:] if hasattr(self.parent, "redraw"): self.parent.redraw() class _GridCell(LayoutCell): def __init__(self, peng, parent, offset, size, anchor_x, anchor_y, border=1): self.peng = peng self.parent = parent self.offset = offset self._size = size self.anchor_x = anchor_x self.anchor_y = anchor_y self.border = border @property def pos(self): dx, dy = self.parent.bordersize dx *= self.border dy *= self.border px, py = self.parent.pos # Parent position in px oxc, oyc = self.offset # Offset in cells csx, csy = self.parent.cell_size # Cell size in px ox, oy = oxc*csx, oyc*csy # Offset in px sxc, sxy = self._size # Size in cells sx, sy = sxc*csx, sxy*csy # Size in px if self.anchor_x == "left": x = px+ox+dx/2 elif self.anchor_x == "center": x = px+ox+sx/2 elif self.anchor_x == "right": x = px+ox+sx-dx/2 else: raise ValueError(f"Invalid anchor_x of {self.anchor_x}") if self.anchor_y == "bottom": y = py+oy+dy/2 elif self.anchor_y == "center": y = py+oy+sy/2 elif self.anchor_y == "top": y = py+oy+sy-dy/2 else: raise ValueError(f"Invalid anchor_y of {self.anchor_y}") return x, y @property def size(self): dx, dy = self.parent.bordersize csx, csy = self.parent.cell_size # Cell size in px sxc, sxy = self._size # Size in cells sx, sy = sxc * csx-dx*self.border, sxy * csy-dy*self.border return sx, sy
gpl-2.0
-6,435,422,355,169,676,000
30.038462
198
0.600315
false