repo_name
stringlengths
5
92
path
stringlengths
4
232
copies
stringclasses
19 values
size
stringlengths
4
7
content
stringlengths
721
1.04M
license
stringclasses
15 values
hash
int64
-9,223,277,421,539,062,000
9,223,102,107B
line_mean
float64
6.51
99.9
line_max
int64
15
997
alpha_frac
float64
0.25
0.97
autogenerated
bool
1 class
lavalamp-/ws-backend-community
lib/debugging.py
1
4429
# -*- coding: utf-8 -*- from __future__ import absolute_import from uuid import uuid4 def clear_celery_queue(): """ Clear out all tasks for the Web Sight Celery application. :return: None """ from tasknode import websight_app websight_app.control.purge() def enqueue_database_debugging_task(*args, **kwargs): """ Create and enqueue a Celery task of the debugging_database_task type. :param args: Positional arguments to pass to the task. :param kwargs: Keyword arguments to pass to the task. :return: None """ from tasknode.tasks import debugging_database_task sig = debugging_database_task.si(*args, **kwargs) sig.apply_async() def get_debugging_network_service(ip_address=None, port=None, protocol=None): """ Get a OrganizationNetworkService attached to the debugging organization that points to the given IP address, port, and protocol. :param ip_address: The IP address for the service. :param port: The port for the service. :param protocol: The protocol for the service. :return: A OrganizationNetworkService attached to the debugging organization that points to the given IP address, port, and protocol. """ debugging_org = get_debugging_organization() network = debugging_org.org_networks[0] from .sqlalchemy import get_sa_session, get_or_create_network_service_from_org_ip, \ get_or_create_ip_address_from_org_network db_session = get_sa_session() address_model = get_or_create_ip_address_from_org_network( network_uuid=network.uuid, address=ip_address, address_type="ipv4", db_session=db_session, ) service = get_or_create_network_service_from_org_ip( ip_uuid=address_model.uuid, port=port, protocol=protocol, db_session=db_session, ) return service def get_debugging_organization( org_uuid=u"a9def2a2-54be-40d4-83bf-efc34cc2fbbc", user_email=u"[email protected]", ): """ Create the default debugging organization for the specified user, or return it if it already exists. :param org_uuid: The UUID to give the organization. :param user_email: The email address for the user to add the organization to. :return: The debugging organization owned by the given user. """ from .sqlalchemy import Organization, Network, get_sa_session, get_organization_by_uuid, \ get_user_uuid_by_username db_session = get_sa_session() existing_org = get_organization_by_uuid(org_uuid=org_uuid, db_session=db_session) if existing_org is not None: return existing_org user_uuid = get_user_uuid_by_username(username=user_email, db_session=db_session) new_org = Organization.new( uuid=org_uuid, user_id=user_uuid, name=u"Debugging Organization", description=u"Debugging Organization Description", scanning_status=0, ) new_org_network = Network.new( name=u"Debugging Network", address=u"157.166.255.0", mask_length=24, scanning_enabled=True, organization_id=org_uuid, endpoint_count=0, ) db_session.add(new_org) db_session.add(new_org_network) db_session.commit() db_session.close() return new_org def perform_network_service_inspection( org_uuid=None, scan_uuid=None, ip_address=None, port=None, protocol=None, ): """ Create and enqueue a Celery task of the inspect_network_service_for_organization type. :param org_uuid: The UUID for the organization. :param scan_uuid: The UUID for the scan. :param ip_address: The IP address to check. :param port: The port to check. :param protocol: The protocol to use to connect to the remote service. :return: None """ pass # from tasknode.tasks import perform_network_service_inspection # from wselasticsearch import bootstrap_index_model_mappings # org_uuid = org_uuid if org_uuid is not None else str(uuid4()) # scan_uuid = scan_uuid if scan_uuid is not None else str(uuid4()) # bootstrap_index_model_mappings(index=org_uuid, delete_first=True) # task_sig = perform_network_service_inspection.si( # org_uuid=org_uuid, # scan_uuid=scan_uuid, # port=port, # protocol=protocol, # ip_address=ip_address, # ) # task_sig.apply_async()
gpl-3.0
6,063,669,412,163,870,000
33.874016
96
0.669677
false
GENETX/alpg
configs/example.py
1
4948
#!/usr/bin/python3 #Artifical load profile generator v1.1, generation of artificial load profiles to benchmark demand side management approaches #Copyright (C) 2018 Gerwin Hoogsteen #This program is free software: you can redistribute it and/or modify #it under the terms of the GNU General Public License as published by #the Free Software Foundation, either version 3 of the License, or #(at your option) any later version. #This program is distributed in the hope that it will be useful, #but WITHOUT ANY WARRANTY; without even the implied warranty of #MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the #GNU General Public License for more details. #You should have received a copy of the GNU General Public License #along with this program. If not, see <http://www.gnu.org/licenses/>. #This is an example configuration file! # Select the output writer import writer as writer #Random seed seed = 42 #input files: weather_irradiation = 'input/weather/solarirradiation_twenthe.csv' weather_timebaseDataset = 3600 #in seconds per interval #Simulation: #number of days to simulate and skipping of initial days. Simulation starts at Sunday January 1. numDays = 365 # number of days startDay = 0 # Initial day #Select the geographic location. Refer to the Astral plugin to see available locations (or give a lon+lat) # Use e.g. https://www.latlong.net/ from astral import Location location = Location() location.solar_depression = 'civil' location.latitude = 52.239095 location.longitude = 6.857018 location.timezone = 'Europe/Amsterdam' location.elevation = 0 #Select the devices in the neighbourhood #Devices #Scale overall consumption: consumptionFactor = 1.0 #consumption was a bit too high # Penetration of emerging technology in percentages # all values must be between 0-100 # These indicate what percentage of the houses has a certain device # Electric mobility, restriction that the sum <= 100 # Note, households with larger driving distances will receive EVs first penetrationEV = 13 penetrationPHEV = 32 # PV and storage, restriction that Battery <= PV # Note PV and battery size depend on the annual household consumption # This emulates the Dutch "nul-op-the-meter regime (net zero annual electricity usage) penetrationPV = 50 penetrationBattery = 10 #Note only houses with PV will receive a battery! # Heating systems, with restriction that the sum <= 100 penetrationHeatPump = 25 penetrationCHP = 5 # Combined heat and power penetrationInductioncooking = 25 #Device parameters: #EV capacityEV = 42000 #Wh powerEV = 7400 #W capacityPHEV = 12000 #Wh powerPHEV = 3700 #W #PV PVProductionPerYear = 220 #average kWh per m2 solar panel on annual basis PVAngleMean = 35 #degrees, 0 is horizontal to earth surface PVAngleSigma = 10 #degrees PVAzimuthMean = 180 #degrees, 0 is north, 90 is east PVAzimuthSigma = 90 #degrees PVEfficiencyMin = 15 #% of theoretical max PVEfficiencyMax = 20 #% of theoretical max #Driving distances commuteDistanceMean = 25 #km commuteDistanceSigma = 10 #km #Battery capacityBatteryLarge = 12000 #Wh capacityBatteryMedium = 5000 #Wh capacityBatterySmall = 2000 #Wh powerBatteryLarge = 3700 #W powerBatteryMedium = 3700 #W powerBatterySmall = 3700 #W #Kitchen #Consumption of devices ConsumptionOven = 2000 #W ConsumptionMicroWave = 800 #W ConsumptionStoveVentilation = 120 #W #But this is maximum, usually set lower! ConsumptionInductionStove = 2200 #W #http://homeguides.sfgate.com/many-watts-induction-stove-85380.html ConsumptionFridgeBigMin = 80 #W ConsumptionFridgeBigMax = 120 #W ConsumptionFridgeSmallMin = 50 #W ConsumptionFridgeSmallMax = 80 #W ConsumptionKettle = 2000 #W #White goods ConsumptionIron = 2000 #W ConsumptionVacuumcleaner = 1500 #W #House ConsumptionHouseVentilation = 50 #W #Household randomization #all values must be between 0-1000 familyOutingChanceMin = 10 #percentage familyOutingChanceMax = 20 #percentage personWeekdayActivityChanceMin = 20 #percentage personWeekdayActivityChanceMax = 30 #percentage personWeekendActivityChanceMin = 20 #percentage personWeekendActivityChanceMax = 30 #percentage householdList = [] #Select the types of households import households for i in range(0,1): householdList.append(households.HouseholdSingleWorker()) for i in range(0,2): householdList.append(households.HouseholdSingleRetired()) for i in range(0,1): householdList.append(households.HouseholdDualWorker(True)) for i in range(0,1): householdList.append(households.HouseholdDualWorker(False)) for i in range(0,2): householdList.append(households.HouseholdDualRetired()) for i in range(0,2): householdList.append(households.HouseholdFamilyDualWorker(True)) for i in range(0,1): householdList.append(households.HouseholdFamilyDualWorker(False))
gpl-3.0
4,827,155,180,199,970,000
28.628743
126
0.760509
false
woodem/woo
examples/perf/showPlots.py
1
2971
import numpy as np from pprint import pprint dd={} for l in open('timings.txt'): if l.startswith('#'): continue ll=l[:-1].split() if len(ll)==0: continue tag,cores,nPar,nSteps=ll[0],int(ll[1]),int(ll[2]),int(ll[3]) t1,t,colliderRel=[float(i) for i in ll[4:]] key=(tag,cores,nPar,nSteps) data=[t1,t,colliderRel] if key not in dd: dd[key]=[data] else: dd[key]+=[data] # compute averages for k in dd: dd[k]=tuple([np.average(d) for d in zip(*dd[k])]) # nn=set() # for k in dd: nn.add((k[1],k[2])) out=[] #refTag,cmpTag='par2_threadSafe','par3_oneMutex' #refTag,cmpTag='par1','par3_oneMutex' #refTag,cmpTag='orig','parBounds' #refTag,cmpTag='noInvFast','par3_oneMutex' #refTag,cmpTag='par1','par4_shortCircuit' #refTag,cmpTag='par4_shortCircuit','parBounds' #refTag,cmpTag='parBounds','gcc49' #refTag,cmpTag='orig','ompTuneSort1_10k_0' #refTag,cmpTag='r3547','r3552' refTag,cmpTag='r3530','iniConParallel' for k in sorted(dd.keys()): if k[0]==refTag: continue if k[0]!=cmpTag: continue refKey=(refTag,k[1],k[2],k[3]) if refKey not in dd.keys(): continue for i,name in enumerate(['t1','t','coll%']): # if i==1 or i==2: continue # if i!=2: continue if i!=0: continue val0=dd[refKey][i] val=dd[k][i] out+=[[k[1],k[2],k[3],name,refTag,val0,k[0],val,'%.2f%%'%(100*(val-val0)/val0)]] # import prettytable # print prettytable.PrettyTable(out,border=False) # pprint(out) # print out for o in out: print('\t'.join([str(oo) for oo in o])) import pylab cores=set([k[1] for k in dd.keys() if k[0]==cmpTag]) steps=set([k[3] for k in dd.keys() if k[0]==cmpTag]) nPar=set([k[2] for k in dd.keys() if k[0]==cmpTag]) #cores=[1] if 0: for core in cores: for step in steps: nPar=sorted(list(set([k[2] for k in dd.keys() if (cmpTag,core,k[2],step) in dd.keys() and (refTag,core,k[2],step) in dd.keys()]))) print(core,step,nPar) pylab.plot(nPar,[dd[refTag,core,N,step][1] for N in nPar],label='%s, %d cores'%(refTag,core)) pylab.plot(nPar,[dd[cmpTag,core,N,step][1] for N in nPar],label='%s, %d cores'%(cmpTag,core),linewidth=4,alpha=.5) pylab.xlabel('Number of particles') pylab.ylabel('Time per one step [s]') pylab.grid(True) pylab.legend(loc='best') if 1: pylab.figure() for core in cores: for step in steps: nPar=sorted(list(set([k[2] for k in dd.keys() if (cmpTag,core,k[2],step) in dd.keys() and (refTag,core,k[2],step) in dd.keys()]))) print(core,step,nPar) pylab.plot(nPar,[dd[refTag,core,N,step][0] for N in nPar],label='%s, %d cores'%(refTag,core)) pylab.plot(nPar,[dd[cmpTag,core,N,step][0] for N in nPar],label='%s, %d cores'%(cmpTag,core),linewidth=4,alpha=.5) pylab.xlabel('Number of particles') pylab.ylabel('Time of the intial sort [s]') pylab.grid(True) pylab.legend(loc='best') pylab.show()
gpl-2.0
5,512,987,470,357,769,000
33.952941
142
0.612252
false
schristakidis/p2ner
p2ner/components/serveroverlay/centralserver/centralserver/messages/messageobjects.py
1
2833
# -*- coding: utf-8 -*- # Copyright 2012 Loris Corazza, Sakis Christakidis # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from construct import Container from p2ner.base.Consts import MessageCodes as MSG from p2ner.base.ControlMessage import trap_sent, BaseControlMessage,probe_all,ControlMessage class StreamMessage(BaseControlMessage): type = "streammessage" code = MSG.STREAM ack = True @classmethod def send(cls, stream, peer, out): #cls.log.debug('sending stream message to %s',peer) return out.send(cls, Container(stream=stream), peer).addErrback(trap_sent) class PeerListMessage(BaseControlMessage): type = "peerlistmessage" code = MSG.SEND_IP_LIST ack = True @classmethod def send(cls, sid, peerlist, peer, out): #cls.log.debug('sending peerList message to %s',peer) msg = Container(streamid = sid, peer = peerlist) return out.send(cls, msg, peer).addErrback(trap_sent) class PeerListProducerMessage(PeerListMessage): type = "peerlistmessage" code = MSG.SEND_IP_LIST_PRODUCER ack = True class PeerRemoveMessage(BaseControlMessage): type = "peerlistmessage" code = MSG.REMOVE_NEIGHBOURS ack = True @classmethod def send(cls, sid, peerlist, peer, out): #cls.log.debug('sending peerRemove message to %s',peer) msg = Container(streamid = sid, peer = peerlist) return out.send(cls, msg, peer).addErrback(trap_sent) class PeerRemoveProducerMessage(PeerRemoveMessage): type = "peerlistmessage" code = MSG.REMOVE_NEIGHBOURS_PRODUCER ack = True class SuggestNewPeerMessage(ControlMessage): type = "peerlistmessage" code = MSG.SUGGEST_NEW_PEER ack = True def trigger(self, message): if self.stream.id != message.streamid: return False return True def action(self, message, peer): self.log.debug('received suggest new peer message from %s',peer) self.overlay.suggestNewPeer(peer,message.peer) class SuggestMessage(BaseControlMessage): type = "peerlistmessage" code = MSG.SUGGEST ack = True @classmethod def send(cls, sid, peerlist, peer, out): return out.send(cls, Container(streamid=sid, peer=peerlist), peer).addErrback(trap_sent)
apache-2.0
-8,950,229,297,693,526,000
31.563218
98
0.692199
false
dfehrenbach/Swen343_Human_Resources
hr/controllers/authentication.py
1
1073
""" This is the controller of the /confirm_login endpoint The following functions are called from here: GET """ import logging import requests import employees logging.basicConfig(filename='./log.txt',format='%(asctime)s :: %(name)s :: %(message)s') logger = logging.getLogger(__name__) def get(department="",token=""): """ This is the GET function that will return an object with an employee id if they are authenticated. :param token: :return: an object with employee_id """ response = requests.post('https://www.googleapis.com/oauth2/v3/tokeninfo',{'access_token': token}) logger.info(response) if response.status_code == 200: email = response.json()["email"] emps = employees.get() for e in emps["employee_array"]: employee_department = e["department"].replace(" ","") if e["email"] == email and (employee_department == department or employee_department == "Board"): return {"employee_id": e["employee_id"]} return {'error_message': 'User is not authenticated'}, 400
mit
-5,626,718,884,545,181,000
36
109
0.65424
false
BiaDarkia/scikit-learn
sklearn/cluster/k_means_.py
1
61736
"""K-means clustering""" # Authors: Gael Varoquaux <[email protected]> # Thomas Rueckstiess <[email protected]> # James Bergstra <[email protected]> # Jan Schlueter <[email protected]> # Nelle Varoquaux # Peter Prettenhofer <[email protected]> # Olivier Grisel <[email protected]> # Mathieu Blondel <[email protected]> # Robert Layton <[email protected]> # License: BSD 3 clause import warnings import numpy as np import scipy.sparse as sp from ..base import BaseEstimator, ClusterMixin, TransformerMixin from ..metrics.pairwise import euclidean_distances from ..metrics.pairwise import pairwise_distances_argmin_min from ..utils.extmath import row_norms, squared_norm, stable_cumsum from ..utils.sparsefuncs_fast import assign_rows_csr from ..utils.sparsefuncs import mean_variance_axis from ..utils.validation import _num_samples from ..utils import check_array from ..utils import check_random_state from ..utils import as_float_array from ..utils import gen_batches from ..utils.validation import check_is_fitted from ..utils.validation import FLOAT_DTYPES from ..externals.joblib import Parallel from ..externals.joblib import delayed from ..externals.six import string_types from ..exceptions import ConvergenceWarning from . import _k_means from ._k_means_elkan import k_means_elkan ############################################################################### # Initialization heuristic def _k_init(X, n_clusters, x_squared_norms, random_state, n_local_trials=None): """Init n_clusters seeds according to k-means++ Parameters ----------- X : array or sparse matrix, shape (n_samples, n_features) The data to pick seeds for. To avoid memory copy, the input data should be double precision (dtype=np.float64). n_clusters : integer The number of seeds to choose x_squared_norms : array, shape (n_samples,) Squared Euclidean norm of each data point. random_state : int, RandomState instance The generator used to initialize the centers. Use an int to make the randomness deterministic. See :term:`Glossary <random_state>`. n_local_trials : integer, optional The number of seeding trials for each center (except the first), of which the one reducing inertia the most is greedily chosen. Set to None to make the number of trials depend logarithmically on the number of seeds (2+log(k)); this is the default. Notes ----- Selects initial cluster centers for k-mean clustering in a smart way to speed up convergence. see: Arthur, D. and Vassilvitskii, S. "k-means++: the advantages of careful seeding". ACM-SIAM symposium on Discrete algorithms. 2007 Version ported from http://www.stanford.edu/~darthur/kMeansppTest.zip, which is the implementation used in the aforementioned paper. """ n_samples, n_features = X.shape centers = np.empty((n_clusters, n_features), dtype=X.dtype) assert x_squared_norms is not None, 'x_squared_norms None in _k_init' # Set the number of local seeding trials if none is given if n_local_trials is None: # This is what Arthur/Vassilvitskii tried, but did not report # specific results for other than mentioning in the conclusion # that it helped. n_local_trials = 2 + int(np.log(n_clusters)) # Pick first center randomly center_id = random_state.randint(n_samples) if sp.issparse(X): centers[0] = X[center_id].toarray() else: centers[0] = X[center_id] # Initialize list of closest distances and calculate current potential closest_dist_sq = euclidean_distances( centers[0, np.newaxis], X, Y_norm_squared=x_squared_norms, squared=True) current_pot = closest_dist_sq.sum() # Pick the remaining n_clusters-1 points for c in range(1, n_clusters): # Choose center candidates by sampling with probability proportional # to the squared distance to the closest existing center rand_vals = random_state.random_sample(n_local_trials) * current_pot candidate_ids = np.searchsorted(stable_cumsum(closest_dist_sq), rand_vals) # Compute distances to center candidates distance_to_candidates = euclidean_distances( X[candidate_ids], X, Y_norm_squared=x_squared_norms, squared=True) # Decide which candidate is the best best_candidate = None best_pot = None best_dist_sq = None for trial in range(n_local_trials): # Compute potential when including center candidate new_dist_sq = np.minimum(closest_dist_sq, distance_to_candidates[trial]) new_pot = new_dist_sq.sum() # Store result if it is the best local trial so far if (best_candidate is None) or (new_pot < best_pot): best_candidate = candidate_ids[trial] best_pot = new_pot best_dist_sq = new_dist_sq # Permanently add best center candidate found in local tries if sp.issparse(X): centers[c] = X[best_candidate].toarray() else: centers[c] = X[best_candidate] current_pot = best_pot closest_dist_sq = best_dist_sq return centers ############################################################################### # K-means batch estimation by EM (expectation maximization) def _validate_center_shape(X, n_centers, centers): """Check if centers is compatible with X and n_centers""" if len(centers) != n_centers: raise ValueError('The shape of the initial centers (%s) ' 'does not match the number of clusters %i' % (centers.shape, n_centers)) if centers.shape[1] != X.shape[1]: raise ValueError( "The number of features of the initial centers %s " "does not match the number of features of the data %s." % (centers.shape[1], X.shape[1])) def _tolerance(X, tol): """Return a tolerance which is independent of the dataset""" if sp.issparse(X): variances = mean_variance_axis(X, axis=0)[1] else: variances = np.var(X, axis=0) return np.mean(variances) * tol def k_means(X, n_clusters, init='k-means++', precompute_distances='auto', n_init=10, max_iter=300, verbose=False, tol=1e-4, random_state=None, copy_x=True, n_jobs=1, algorithm="auto", return_n_iter=False): """K-means clustering algorithm. Read more in the :ref:`User Guide <k_means>`. Parameters ---------- X : array-like or sparse matrix, shape (n_samples, n_features) The observations to cluster. It must be noted that the data will be converted to C ordering, which will cause a memory copy if the given data is not C-contiguous. n_clusters : int The number of clusters to form as well as the number of centroids to generate. init : {'k-means++', 'random', or ndarray, or a callable}, optional Method for initialization, default to 'k-means++': 'k-means++' : selects initial cluster centers for k-mean clustering in a smart way to speed up convergence. See section Notes in k_init for more details. 'random': choose k observations (rows) at random from data for the initial centroids. If an ndarray is passed, it should be of shape (n_clusters, n_features) and gives the initial centers. If a callable is passed, it should take arguments X, k and and a random state and return an initialization. precompute_distances : {'auto', True, False} Precompute distances (faster but takes more memory). 'auto' : do not precompute distances if n_samples * n_clusters > 12 million. This corresponds to about 100MB overhead per job using double precision. True : always precompute distances False : never precompute distances n_init : int, optional, default: 10 Number of time the k-means algorithm will be run with different centroid seeds. The final results will be the best output of n_init consecutive runs in terms of inertia. max_iter : int, optional, default 300 Maximum number of iterations of the k-means algorithm to run. verbose : boolean, optional Verbosity mode. tol : float, optional The relative increment in the results before declaring convergence. random_state : int, RandomState instance or None (default) Determines random number generation for centroid initialization. Use an int to make the randomness deterministic. See :term:`Glossary <random_state>`. copy_x : boolean, optional When pre-computing distances it is more numerically accurate to center the data first. If copy_x is True (default), then the original data is not modified, ensuring X is C-contiguous. If False, the original data is modified, and put back before the function returns, but small numerical differences may be introduced by subtracting and then adding the data mean, in this case it will also not ensure that data is C-contiguous which may cause a significant slowdown. n_jobs : int The number of jobs to use for the computation. This works by computing each of the n_init runs in parallel. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used. algorithm : "auto", "full" or "elkan", default="auto" K-means algorithm to use. The classical EM-style algorithm is "full". The "elkan" variation is more efficient by using the triangle inequality, but currently doesn't support sparse data. "auto" chooses "elkan" for dense data and "full" for sparse data. return_n_iter : bool, optional Whether or not to return the number of iterations. Returns ------- centroid : float ndarray with shape (k, n_features) Centroids found at the last iteration of k-means. label : integer ndarray with shape (n_samples,) label[i] is the code or index of the centroid the i'th observation is closest to. inertia : float The final value of the inertia criterion (sum of squared distances to the closest centroid for all observations in the training set). best_n_iter : int Number of iterations corresponding to the best results. Returned only if `return_n_iter` is set to True. """ if n_init <= 0: raise ValueError("Invalid number of initializations." " n_init=%d must be bigger than zero." % n_init) random_state = check_random_state(random_state) if max_iter <= 0: raise ValueError('Number of iterations should be a positive number,' ' got %d instead' % max_iter) # avoid forcing order when copy_x=False order = "C" if copy_x else None X = check_array(X, accept_sparse='csr', dtype=[np.float64, np.float32], order=order, copy=copy_x) # verify that the number of samples given is larger than k if _num_samples(X) < n_clusters: raise ValueError("n_samples=%d should be >= n_clusters=%d" % ( _num_samples(X), n_clusters)) tol = _tolerance(X, tol) # If the distances are precomputed every job will create a matrix of shape # (n_clusters, n_samples). To stop KMeans from eating up memory we only # activate this if the created matrix is guaranteed to be under 100MB. 12 # million entries consume a little under 100MB if they are of type double. if precompute_distances == 'auto': n_samples = X.shape[0] precompute_distances = (n_clusters * n_samples) < 12e6 elif isinstance(precompute_distances, bool): pass else: raise ValueError("precompute_distances should be 'auto' or True/False" ", but a value of %r was passed" % precompute_distances) # Validate init array if hasattr(init, '__array__'): init = check_array(init, dtype=X.dtype.type, copy=True) _validate_center_shape(X, n_clusters, init) if n_init != 1: warnings.warn( 'Explicit initial center position passed: ' 'performing only one init in k-means instead of n_init=%d' % n_init, RuntimeWarning, stacklevel=2) n_init = 1 # subtract of mean of x for more accurate distance computations if not sp.issparse(X): X_mean = X.mean(axis=0) # The copy was already done above X -= X_mean if hasattr(init, '__array__'): init -= X_mean # precompute squared norms of data points x_squared_norms = row_norms(X, squared=True) best_labels, best_inertia, best_centers = None, None, None if n_clusters == 1: # elkan doesn't make sense for a single cluster, full will produce # the right result. algorithm = "full" if algorithm == "auto": algorithm = "full" if sp.issparse(X) else 'elkan' if algorithm == "full": kmeans_single = _kmeans_single_lloyd elif algorithm == "elkan": kmeans_single = _kmeans_single_elkan else: raise ValueError("Algorithm must be 'auto', 'full' or 'elkan', got" " %s" % str(algorithm)) if n_jobs == 1: # For a single thread, less memory is needed if we just store one set # of the best results (as opposed to one set per run per thread). for it in range(n_init): # run a k-means once labels, inertia, centers, n_iter_ = kmeans_single( X, n_clusters, max_iter=max_iter, init=init, verbose=verbose, precompute_distances=precompute_distances, tol=tol, x_squared_norms=x_squared_norms, random_state=random_state) # determine if these results are the best so far if best_inertia is None or inertia < best_inertia: best_labels = labels.copy() best_centers = centers.copy() best_inertia = inertia best_n_iter = n_iter_ else: # parallelisation of k-means runs seeds = random_state.randint(np.iinfo(np.int32).max, size=n_init) results = Parallel(n_jobs=n_jobs, verbose=0)( delayed(kmeans_single)(X, n_clusters, max_iter=max_iter, init=init, verbose=verbose, tol=tol, precompute_distances=precompute_distances, x_squared_norms=x_squared_norms, # Change seed to ensure variety random_state=seed) for seed in seeds) # Get results with the lowest inertia labels, inertia, centers, n_iters = zip(*results) best = np.argmin(inertia) best_labels = labels[best] best_inertia = inertia[best] best_centers = centers[best] best_n_iter = n_iters[best] if not sp.issparse(X): if not copy_x: X += X_mean best_centers += X_mean distinct_clusters = len(set(best_labels)) if distinct_clusters < n_clusters: warnings.warn("Number of distinct clusters ({}) found smaller than " "n_clusters ({}). Possibly due to duplicate points " "in X.".format(distinct_clusters, n_clusters), ConvergenceWarning, stacklevel=2) if return_n_iter: return best_centers, best_labels, best_inertia, best_n_iter else: return best_centers, best_labels, best_inertia def _kmeans_single_elkan(X, n_clusters, max_iter=300, init='k-means++', verbose=False, x_squared_norms=None, random_state=None, tol=1e-4, precompute_distances=True): if sp.issparse(X): raise TypeError("algorithm='elkan' not supported for sparse input X") random_state = check_random_state(random_state) if x_squared_norms is None: x_squared_norms = row_norms(X, squared=True) # init centers = _init_centroids(X, n_clusters, init, random_state=random_state, x_squared_norms=x_squared_norms) centers = np.ascontiguousarray(centers) if verbose: print('Initialization complete') centers, labels, n_iter = k_means_elkan(X, n_clusters, centers, tol=tol, max_iter=max_iter, verbose=verbose) inertia = np.sum((X - centers[labels]) ** 2, dtype=np.float64) return labels, inertia, centers, n_iter def _kmeans_single_lloyd(X, n_clusters, max_iter=300, init='k-means++', verbose=False, x_squared_norms=None, random_state=None, tol=1e-4, precompute_distances=True): """A single run of k-means, assumes preparation completed prior. Parameters ---------- X : array-like of floats, shape (n_samples, n_features) The observations to cluster. n_clusters : int The number of clusters to form as well as the number of centroids to generate. max_iter : int, optional, default 300 Maximum number of iterations of the k-means algorithm to run. init : {'k-means++', 'random', or ndarray, or a callable}, optional Method for initialization, default to 'k-means++': 'k-means++' : selects initial cluster centers for k-mean clustering in a smart way to speed up convergence. See section Notes in k_init for more details. 'random': choose k observations (rows) at random from data for the initial centroids. If an ndarray is passed, it should be of shape (k, p) and gives the initial centers. If a callable is passed, it should take arguments X, k and and a random state and return an initialization. tol : float, optional The relative increment in the results before declaring convergence. verbose : boolean, optional Verbosity mode x_squared_norms : array Precomputed x_squared_norms. precompute_distances : boolean, default: True Precompute distances (faster but takes more memory). random_state : int, RandomState instance or None (default) Determines random number generation for centroid initialization. Use an int to make the randomness deterministic. See :term:`Glossary <random_state>`. Returns ------- centroid : float ndarray with shape (k, n_features) Centroids found at the last iteration of k-means. label : integer ndarray with shape (n_samples,) label[i] is the code or index of the centroid the i'th observation is closest to. inertia : float The final value of the inertia criterion (sum of squared distances to the closest centroid for all observations in the training set). n_iter : int Number of iterations run. """ random_state = check_random_state(random_state) best_labels, best_inertia, best_centers = None, None, None # init centers = _init_centroids(X, n_clusters, init, random_state=random_state, x_squared_norms=x_squared_norms) if verbose: print("Initialization complete") # Allocate memory to store the distances for each sample to its # closer center for reallocation in case of ties distances = np.zeros(shape=(X.shape[0],), dtype=X.dtype) # iterations for i in range(max_iter): centers_old = centers.copy() # labels assignment is also called the E-step of EM labels, inertia = \ _labels_inertia(X, x_squared_norms, centers, precompute_distances=precompute_distances, distances=distances) # computation of the means is also called the M-step of EM if sp.issparse(X): centers = _k_means._centers_sparse(X, labels, n_clusters, distances) else: centers = _k_means._centers_dense(X, labels, n_clusters, distances) if verbose: print("Iteration %2d, inertia %.3f" % (i, inertia)) if best_inertia is None or inertia < best_inertia: best_labels = labels.copy() best_centers = centers.copy() best_inertia = inertia center_shift_total = squared_norm(centers_old - centers) if center_shift_total <= tol: if verbose: print("Converged at iteration %d: " "center shift %e within tolerance %e" % (i, center_shift_total, tol)) break if center_shift_total > 0: # rerun E-step in case of non-convergence so that predicted labels # match cluster centers best_labels, best_inertia = \ _labels_inertia(X, x_squared_norms, best_centers, precompute_distances=precompute_distances, distances=distances) return best_labels, best_inertia, best_centers, i + 1 def _labels_inertia_precompute_dense(X, x_squared_norms, centers, distances): """Compute labels and inertia using a full distance matrix. This will overwrite the 'distances' array in-place. Parameters ---------- X : numpy array, shape (n_sample, n_features) Input data. x_squared_norms : numpy array, shape (n_samples,) Precomputed squared norms of X. centers : numpy array, shape (n_clusters, n_features) Cluster centers which data is assigned to. distances : numpy array, shape (n_samples,) Pre-allocated array in which distances are stored. Returns ------- labels : numpy array, dtype=np.int, shape (n_samples,) Indices of clusters that samples are assigned to. inertia : float Sum of squared distances of samples to their closest cluster center. """ n_samples = X.shape[0] # Breakup nearest neighbor distance computation into batches to prevent # memory blowup in the case of a large number of samples and clusters. # TODO: Once PR #7383 is merged use check_inputs=False in metric_kwargs. labels, mindist = pairwise_distances_argmin_min( X=X, Y=centers, metric='euclidean', metric_kwargs={'squared': True}) # cython k-means code assumes int32 inputs labels = labels.astype(np.int32) if n_samples == distances.shape[0]: # distances will be changed in-place distances[:] = mindist inertia = mindist.sum() return labels, inertia def _labels_inertia(X, x_squared_norms, centers, precompute_distances=True, distances=None): """E step of the K-means EM algorithm. Compute the labels and the inertia of the given samples and centers. This will compute the distances in-place. Parameters ---------- X : float64 array-like or CSR sparse matrix, shape (n_samples, n_features) The input samples to assign to the labels. x_squared_norms : array, shape (n_samples,) Precomputed squared euclidean norm of each data point, to speed up computations. centers : float array, shape (k, n_features) The cluster centers. precompute_distances : boolean, default: True Precompute distances (faster but takes more memory). distances : float array, shape (n_samples,) Pre-allocated array to be filled in with each sample's distance to the closest center. Returns ------- labels : int array of shape(n) The resulting assignment inertia : float Sum of squared distances of samples to their closest cluster center. """ n_samples = X.shape[0] # set the default value of centers to -1 to be able to detect any anomaly # easily labels = -np.ones(n_samples, np.int32) if distances is None: distances = np.zeros(shape=(0,), dtype=X.dtype) # distances will be changed in-place if sp.issparse(X): inertia = _k_means._assign_labels_csr( X, x_squared_norms, centers, labels, distances=distances) else: if precompute_distances: return _labels_inertia_precompute_dense(X, x_squared_norms, centers, distances) inertia = _k_means._assign_labels_array( X, x_squared_norms, centers, labels, distances=distances) return labels, inertia def _init_centroids(X, k, init, random_state=None, x_squared_norms=None, init_size=None): """Compute the initial centroids Parameters ---------- X : array, shape (n_samples, n_features) k : int number of centroids init : {'k-means++', 'random' or ndarray or callable} optional Method for initialization random_state : int, RandomState instance or None (default) Determines random number generation for centroid initialization. Use an int to make the randomness deterministic. See :term:`Glossary <random_state>`. x_squared_norms : array, shape (n_samples,), optional Squared euclidean norm of each data point. Pass it if you have it at hands already to avoid it being recomputed here. Default: None init_size : int, optional Number of samples to randomly sample for speeding up the initialization (sometimes at the expense of accuracy): the only algorithm is initialized by running a batch KMeans on a random subset of the data. This needs to be larger than k. Returns ------- centers : array, shape(k, n_features) """ random_state = check_random_state(random_state) n_samples = X.shape[0] if x_squared_norms is None: x_squared_norms = row_norms(X, squared=True) if init_size is not None and init_size < n_samples: if init_size < k: warnings.warn( "init_size=%d should be larger than k=%d. " "Setting it to 3*k" % (init_size, k), RuntimeWarning, stacklevel=2) init_size = 3 * k init_indices = random_state.randint(0, n_samples, init_size) X = X[init_indices] x_squared_norms = x_squared_norms[init_indices] n_samples = X.shape[0] elif n_samples < k: raise ValueError( "n_samples=%d should be larger than k=%d" % (n_samples, k)) if isinstance(init, string_types) and init == 'k-means++': centers = _k_init(X, k, random_state=random_state, x_squared_norms=x_squared_norms) elif isinstance(init, string_types) and init == 'random': seeds = random_state.permutation(n_samples)[:k] centers = X[seeds] elif hasattr(init, '__array__'): # ensure that the centers have the same dtype as X # this is a requirement of fused types of cython centers = np.array(init, dtype=X.dtype) elif callable(init): centers = init(X, k, random_state=random_state) centers = np.asarray(centers, dtype=X.dtype) else: raise ValueError("the init parameter for the k-means should " "be 'k-means++' or 'random' or an ndarray, " "'%s' (type '%s') was passed." % (init, type(init))) if sp.issparse(centers): centers = centers.toarray() _validate_center_shape(X, k, centers) return centers class KMeans(BaseEstimator, ClusterMixin, TransformerMixin): """K-Means clustering Read more in the :ref:`User Guide <k_means>`. Parameters ---------- n_clusters : int, optional, default: 8 The number of clusters to form as well as the number of centroids to generate. init : {'k-means++', 'random' or an ndarray} Method for initialization, defaults to 'k-means++': 'k-means++' : selects initial cluster centers for k-mean clustering in a smart way to speed up convergence. See section Notes in k_init for more details. 'random': choose k observations (rows) at random from data for the initial centroids. If an ndarray is passed, it should be of shape (n_clusters, n_features) and gives the initial centers. n_init : int, default: 10 Number of time the k-means algorithm will be run with different centroid seeds. The final results will be the best output of n_init consecutive runs in terms of inertia. max_iter : int, default: 300 Maximum number of iterations of the k-means algorithm for a single run. tol : float, default: 1e-4 Relative tolerance with regards to inertia to declare convergence precompute_distances : {'auto', True, False} Precompute distances (faster but takes more memory). 'auto' : do not precompute distances if n_samples * n_clusters > 12 million. This corresponds to about 100MB overhead per job using double precision. True : always precompute distances False : never precompute distances verbose : int, default 0 Verbosity mode. random_state : int, RandomState instance or None (default) Determines random number generation for centroid initialization. Use an int to make the randomness deterministic. See :term:`Glossary <random_state>`. copy_x : boolean, optional When pre-computing distances it is more numerically accurate to center the data first. If copy_x is True (default), then the original data is not modified, ensuring X is C-contiguous. If False, the original data is modified, and put back before the function returns, but small numerical differences may be introduced by subtracting and then adding the data mean, in this case it will also not ensure that data is C-contiguous which may cause a significant slowdown. n_jobs : int The number of jobs to use for the computation. This works by computing each of the n_init runs in parallel. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used. algorithm : "auto", "full" or "elkan", default="auto" K-means algorithm to use. The classical EM-style algorithm is "full". The "elkan" variation is more efficient by using the triangle inequality, but currently doesn't support sparse data. "auto" chooses "elkan" for dense data and "full" for sparse data. Attributes ---------- cluster_centers_ : array, [n_clusters, n_features] Coordinates of cluster centers labels_ : Labels of each point inertia_ : float Sum of squared distances of samples to their closest cluster center. Examples -------- >>> from sklearn.cluster import KMeans >>> import numpy as np >>> X = np.array([[1, 2], [1, 4], [1, 0], ... [4, 2], [4, 4], [4, 0]]) >>> kmeans = KMeans(n_clusters=2, random_state=0).fit(X) >>> kmeans.labels_ array([0, 0, 0, 1, 1, 1], dtype=int32) >>> kmeans.predict([[0, 0], [4, 4]]) array([0, 1], dtype=int32) >>> kmeans.cluster_centers_ array([[1., 2.], [4., 2.]]) See also -------- MiniBatchKMeans Alternative online implementation that does incremental updates of the centers positions using mini-batches. For large scale learning (say n_samples > 10k) MiniBatchKMeans is probably much faster than the default batch implementation. Notes ------ The k-means problem is solved using Lloyd's algorithm. The average complexity is given by O(k n T), were n is the number of samples and T is the number of iteration. The worst case complexity is given by O(n^(k+2/p)) with n = n_samples, p = n_features. (D. Arthur and S. Vassilvitskii, 'How slow is the k-means method?' SoCG2006) In practice, the k-means algorithm is very fast (one of the fastest clustering algorithms available), but it falls in local minima. That's why it can be useful to restart it several times. """ def __init__(self, n_clusters=8, init='k-means++', n_init=10, max_iter=300, tol=1e-4, precompute_distances='auto', verbose=0, random_state=None, copy_x=True, n_jobs=1, algorithm='auto'): self.n_clusters = n_clusters self.init = init self.max_iter = max_iter self.tol = tol self.precompute_distances = precompute_distances self.n_init = n_init self.verbose = verbose self.random_state = random_state self.copy_x = copy_x self.n_jobs = n_jobs self.algorithm = algorithm def _check_test_data(self, X): X = check_array(X, accept_sparse='csr', dtype=FLOAT_DTYPES) n_samples, n_features = X.shape expected_n_features = self.cluster_centers_.shape[1] if not n_features == expected_n_features: raise ValueError("Incorrect number of features. " "Got %d features, expected %d" % ( n_features, expected_n_features)) return X def fit(self, X, y=None): """Compute k-means clustering. Parameters ---------- X : array-like or sparse matrix, shape=(n_samples, n_features) Training instances to cluster. It must be noted that the data will be converted to C ordering, which will cause a memory copy if the given data is not C-contiguous. y : Ignored """ random_state = check_random_state(self.random_state) self.cluster_centers_, self.labels_, self.inertia_, self.n_iter_ = \ k_means( X, n_clusters=self.n_clusters, init=self.init, n_init=self.n_init, max_iter=self.max_iter, verbose=self.verbose, precompute_distances=self.precompute_distances, tol=self.tol, random_state=random_state, copy_x=self.copy_x, n_jobs=self.n_jobs, algorithm=self.algorithm, return_n_iter=True) return self def fit_predict(self, X, y=None): """Compute cluster centers and predict cluster index for each sample. Convenience method; equivalent to calling fit(X) followed by predict(X). Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] New data to transform. y : Ignored Returns ------- labels : array, shape [n_samples,] Index of the cluster each sample belongs to. """ return self.fit(X).labels_ def fit_transform(self, X, y=None): """Compute clustering and transform X to cluster-distance space. Equivalent to fit(X).transform(X), but more efficiently implemented. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] New data to transform. y : Ignored Returns ------- X_new : array, shape [n_samples, k] X transformed in the new space. """ # Currently, this just skips a copy of the data if it is not in # np.array or CSR format already. # XXX This skips _check_test_data, which may change the dtype; # we should refactor the input validation. return self.fit(X)._transform(X) def transform(self, X): """Transform X to a cluster-distance space. In the new space, each dimension is the distance to the cluster centers. Note that even if X is sparse, the array returned by `transform` will typically be dense. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] New data to transform. Returns ------- X_new : array, shape [n_samples, k] X transformed in the new space. """ check_is_fitted(self, 'cluster_centers_') X = self._check_test_data(X) return self._transform(X) def _transform(self, X): """guts of transform method; no input validation""" return euclidean_distances(X, self.cluster_centers_) def predict(self, X): """Predict the closest cluster each sample in X belongs to. In the vector quantization literature, `cluster_centers_` is called the code book and each value returned by `predict` is the index of the closest code in the code book. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] New data to predict. Returns ------- labels : array, shape [n_samples,] Index of the cluster each sample belongs to. """ check_is_fitted(self, 'cluster_centers_') X = self._check_test_data(X) x_squared_norms = row_norms(X, squared=True) return _labels_inertia(X, x_squared_norms, self.cluster_centers_)[0] def score(self, X, y=None): """Opposite of the value of X on the K-means objective. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] New data. y : Ignored Returns ------- score : float Opposite of the value of X on the K-means objective. """ check_is_fitted(self, 'cluster_centers_') X = self._check_test_data(X) x_squared_norms = row_norms(X, squared=True) return -_labels_inertia(X, x_squared_norms, self.cluster_centers_)[1] def _mini_batch_step(X, x_squared_norms, centers, counts, old_center_buffer, compute_squared_diff, distances, random_reassign=False, random_state=None, reassignment_ratio=.01, verbose=False): """Incremental update of the centers for the Minibatch K-Means algorithm. Parameters ---------- X : array, shape (n_samples, n_features) The original data array. x_squared_norms : array, shape (n_samples,) Squared euclidean norm of each data point. centers : array, shape (k, n_features) The cluster centers. This array is MODIFIED IN PLACE counts : array, shape (k,) The vector in which we keep track of the numbers of elements in a cluster. This array is MODIFIED IN PLACE distances : array, dtype float, shape (n_samples), optional If not None, should be a pre-allocated array that will be used to store the distances of each sample to its closest center. May not be None when random_reassign is True. random_state : int, RandomState instance or None (default) Determines random number generation for centroid initialization and to pick new clusters amongst observations with uniform probability. Use an int to make the randomness deterministic. See :term:`Glossary <random_state>`. random_reassign : boolean, optional If True, centers with very low counts are randomly reassigned to observations. reassignment_ratio : float, optional Control the fraction of the maximum number of counts for a center to be reassigned. A higher value means that low count centers are more likely to be reassigned, which means that the model will take longer to converge, but should converge in a better clustering. verbose : bool, optional, default False Controls the verbosity. compute_squared_diff : bool If set to False, the squared diff computation is skipped. old_center_buffer : int Copy of old centers for monitoring convergence. Returns ------- inertia : float Sum of squared distances of samples to their closest cluster center. squared_diff : numpy array, shape (n_clusters,) Squared distances between previous and updated cluster centers. """ # Perform label assignment to nearest centers nearest_center, inertia = _labels_inertia(X, x_squared_norms, centers, distances=distances) if random_reassign and reassignment_ratio > 0: random_state = check_random_state(random_state) # Reassign clusters that have very low counts to_reassign = counts < reassignment_ratio * counts.max() # pick at most .5 * batch_size samples as new centers if to_reassign.sum() > .5 * X.shape[0]: indices_dont_reassign = np.argsort(counts)[int(.5 * X.shape[0]):] to_reassign[indices_dont_reassign] = False n_reassigns = to_reassign.sum() if n_reassigns: # Pick new clusters amongst observations with uniform probability new_centers = random_state.choice(X.shape[0], replace=False, size=n_reassigns) if verbose: print("[MiniBatchKMeans] Reassigning %i cluster centers." % n_reassigns) if sp.issparse(X) and not sp.issparse(centers): assign_rows_csr(X, new_centers.astype(np.intp), np.where(to_reassign)[0].astype(np.intp), centers) else: centers[to_reassign] = X[new_centers] # reset counts of reassigned centers, but don't reset them too small # to avoid instant reassignment. This is a pretty dirty hack as it # also modifies the learning rates. counts[to_reassign] = np.min(counts[~to_reassign]) # implementation for the sparse CSR representation completely written in # cython if sp.issparse(X): return inertia, _k_means._mini_batch_update_csr( X, x_squared_norms, centers, counts, nearest_center, old_center_buffer, compute_squared_diff) # dense variant in mostly numpy (not as memory efficient though) k = centers.shape[0] squared_diff = 0.0 for center_idx in range(k): # find points from minibatch that are assigned to this center center_mask = nearest_center == center_idx count = center_mask.sum() if count > 0: if compute_squared_diff: old_center_buffer[:] = centers[center_idx] # inplace remove previous count scaling centers[center_idx] *= counts[center_idx] # inplace sum with new points members of this cluster centers[center_idx] += np.sum(X[center_mask], axis=0) # update the count statistics for this center counts[center_idx] += count # inplace rescale to compute mean of all points (old and new) # Note: numpy >= 1.10 does not support '/=' for the following # expression for a mixture of int and float (see numpy issue #6464) centers[center_idx] = centers[center_idx] / counts[center_idx] # update the squared diff if necessary if compute_squared_diff: diff = centers[center_idx].ravel() - old_center_buffer.ravel() squared_diff += np.dot(diff, diff) return inertia, squared_diff def _mini_batch_convergence(model, iteration_idx, n_iter, tol, n_samples, centers_squared_diff, batch_inertia, context, verbose=0): """Helper function to encapsulate the early stopping logic""" # Normalize inertia to be able to compare values when # batch_size changes batch_inertia /= model.batch_size centers_squared_diff /= model.batch_size # Compute an Exponentially Weighted Average of the squared # diff to monitor the convergence while discarding # minibatch-local stochastic variability: # https://en.wikipedia.org/wiki/Moving_average ewa_diff = context.get('ewa_diff') ewa_inertia = context.get('ewa_inertia') if ewa_diff is None: ewa_diff = centers_squared_diff ewa_inertia = batch_inertia else: alpha = float(model.batch_size) * 2.0 / (n_samples + 1) alpha = 1.0 if alpha > 1.0 else alpha ewa_diff = ewa_diff * (1 - alpha) + centers_squared_diff * alpha ewa_inertia = ewa_inertia * (1 - alpha) + batch_inertia * alpha # Log progress to be able to monitor convergence if verbose: progress_msg = ( 'Minibatch iteration %d/%d:' ' mean batch inertia: %f, ewa inertia: %f ' % ( iteration_idx + 1, n_iter, batch_inertia, ewa_inertia)) print(progress_msg) # Early stopping based on absolute tolerance on squared change of # centers position (using EWA smoothing) if tol > 0.0 and ewa_diff <= tol: if verbose: print('Converged (small centers change) at iteration %d/%d' % (iteration_idx + 1, n_iter)) return True # Early stopping heuristic due to lack of improvement on smoothed inertia ewa_inertia_min = context.get('ewa_inertia_min') no_improvement = context.get('no_improvement', 0) if ewa_inertia_min is None or ewa_inertia < ewa_inertia_min: no_improvement = 0 ewa_inertia_min = ewa_inertia else: no_improvement += 1 if (model.max_no_improvement is not None and no_improvement >= model.max_no_improvement): if verbose: print('Converged (lack of improvement in inertia)' ' at iteration %d/%d' % (iteration_idx + 1, n_iter)) return True # update the convergence context to maintain state across successive calls: context['ewa_diff'] = ewa_diff context['ewa_inertia'] = ewa_inertia context['ewa_inertia_min'] = ewa_inertia_min context['no_improvement'] = no_improvement return False class MiniBatchKMeans(KMeans): """Mini-Batch K-Means clustering Read more in the :ref:`User Guide <mini_batch_kmeans>`. Parameters ---------- n_clusters : int, optional, default: 8 The number of clusters to form as well as the number of centroids to generate. init : {'k-means++', 'random' or an ndarray}, default: 'k-means++' Method for initialization, defaults to 'k-means++': 'k-means++' : selects initial cluster centers for k-mean clustering in a smart way to speed up convergence. See section Notes in k_init for more details. 'random': choose k observations (rows) at random from data for the initial centroids. If an ndarray is passed, it should be of shape (n_clusters, n_features) and gives the initial centers. max_iter : int, optional Maximum number of iterations over the complete dataset before stopping independently of any early stopping criterion heuristics. batch_size : int, optional, default: 100 Size of the mini batches. verbose : boolean, optional Verbosity mode. compute_labels : boolean, default=True Compute label assignment and inertia for the complete dataset once the minibatch optimization has converged in fit. random_state : int, RandomState instance or None (default) Determines random number generation for centroid initialization and random reassignment. Use an int to make the randomness deterministic. See :term:`Glossary <random_state>`. tol : float, default: 0.0 Control early stopping based on the relative center changes as measured by a smoothed, variance-normalized of the mean center squared position changes. This early stopping heuristics is closer to the one used for the batch variant of the algorithms but induces a slight computational and memory overhead over the inertia heuristic. To disable convergence detection based on normalized center change, set tol to 0.0 (default). max_no_improvement : int, default: 10 Control early stopping based on the consecutive number of mini batches that does not yield an improvement on the smoothed inertia. To disable convergence detection based on inertia, set max_no_improvement to None. init_size : int, optional, default: 3 * batch_size Number of samples to randomly sample for speeding up the initialization (sometimes at the expense of accuracy): the only algorithm is initialized by running a batch KMeans on a random subset of the data. This needs to be larger than n_clusters. n_init : int, default=3 Number of random initializations that are tried. In contrast to KMeans, the algorithm is only run once, using the best of the ``n_init`` initializations as measured by inertia. reassignment_ratio : float, default: 0.01 Control the fraction of the maximum number of counts for a center to be reassigned. A higher value means that low count centers are more easily reassigned, which means that the model will take longer to converge, but should converge in a better clustering. Attributes ---------- cluster_centers_ : array, [n_clusters, n_features] Coordinates of cluster centers labels_ : Labels of each point (if compute_labels is set to True). inertia_ : float The value of the inertia criterion associated with the chosen partition (if compute_labels is set to True). The inertia is defined as the sum of square distances of samples to their nearest neighbor. See also -------- KMeans The classic implementation of the clustering method based on the Lloyd's algorithm. It consumes the whole set of input data at each iteration. Notes ----- See http://www.eecs.tufts.edu/~dsculley/papers/fastkmeans.pdf """ def __init__(self, n_clusters=8, init='k-means++', max_iter=100, batch_size=100, verbose=0, compute_labels=True, random_state=None, tol=0.0, max_no_improvement=10, init_size=None, n_init=3, reassignment_ratio=0.01): super(MiniBatchKMeans, self).__init__( n_clusters=n_clusters, init=init, max_iter=max_iter, verbose=verbose, random_state=random_state, tol=tol, n_init=n_init) self.max_no_improvement = max_no_improvement self.batch_size = batch_size self.compute_labels = compute_labels self.init_size = init_size self.reassignment_ratio = reassignment_ratio def fit(self, X, y=None): """Compute the centroids on X by chunking it into mini-batches. Parameters ---------- X : array-like or sparse matrix, shape=(n_samples, n_features) Training instances to cluster. It must be noted that the data will be converted to C ordering, which will cause a memory copy if the given data is not C-contiguous. y : Ignored """ random_state = check_random_state(self.random_state) X = check_array(X, accept_sparse="csr", order='C', dtype=[np.float64, np.float32]) n_samples, n_features = X.shape if n_samples < self.n_clusters: raise ValueError("n_samples=%d should be >= n_clusters=%d" % (n_samples, self.n_clusters)) n_init = self.n_init if hasattr(self.init, '__array__'): self.init = np.ascontiguousarray(self.init, dtype=X.dtype) if n_init != 1: warnings.warn( 'Explicit initial center position passed: ' 'performing only one init in MiniBatchKMeans instead of ' 'n_init=%d' % self.n_init, RuntimeWarning, stacklevel=2) n_init = 1 x_squared_norms = row_norms(X, squared=True) if self.tol > 0.0: tol = _tolerance(X, self.tol) # using tol-based early stopping needs the allocation of a # dedicated before which can be expensive for high dim data: # hence we allocate it outside of the main loop old_center_buffer = np.zeros(n_features, dtype=X.dtype) else: tol = 0.0 # no need for the center buffer if tol-based early stopping is # disabled old_center_buffer = np.zeros(0, dtype=X.dtype) distances = np.zeros(self.batch_size, dtype=X.dtype) n_batches = int(np.ceil(float(n_samples) / self.batch_size)) n_iter = int(self.max_iter * n_batches) init_size = self.init_size if init_size is None: init_size = 3 * self.batch_size if init_size > n_samples: init_size = n_samples self.init_size_ = init_size validation_indices = random_state.randint(0, n_samples, init_size) X_valid = X[validation_indices] x_squared_norms_valid = x_squared_norms[validation_indices] # perform several inits with random sub-sets best_inertia = None for init_idx in range(n_init): if self.verbose: print("Init %d/%d with method: %s" % (init_idx + 1, n_init, self.init)) counts = np.zeros(self.n_clusters, dtype=np.int32) # TODO: once the `k_means` function works with sparse input we # should refactor the following init to use it instead. # Initialize the centers using only a fraction of the data as we # expect n_samples to be very large when using MiniBatchKMeans cluster_centers = _init_centroids( X, self.n_clusters, self.init, random_state=random_state, x_squared_norms=x_squared_norms, init_size=init_size) # Compute the label assignment on the init dataset batch_inertia, centers_squared_diff = _mini_batch_step( X_valid, x_squared_norms[validation_indices], cluster_centers, counts, old_center_buffer, False, distances=None, verbose=self.verbose) # Keep only the best cluster centers across independent inits on # the common validation set _, inertia = _labels_inertia(X_valid, x_squared_norms_valid, cluster_centers) if self.verbose: print("Inertia for init %d/%d: %f" % (init_idx + 1, n_init, inertia)) if best_inertia is None or inertia < best_inertia: self.cluster_centers_ = cluster_centers self.counts_ = counts best_inertia = inertia # Empty context to be used inplace by the convergence check routine convergence_context = {} # Perform the iterative optimization until the final convergence # criterion for iteration_idx in range(n_iter): # Sample a minibatch from the full dataset minibatch_indices = random_state.randint( 0, n_samples, self.batch_size) # Perform the actual update step on the minibatch data batch_inertia, centers_squared_diff = _mini_batch_step( X[minibatch_indices], x_squared_norms[minibatch_indices], self.cluster_centers_, self.counts_, old_center_buffer, tol > 0.0, distances=distances, # Here we randomly choose whether to perform # random reassignment: the choice is done as a function # of the iteration index, and the minimum number of # counts, in order to force this reassignment to happen # every once in a while random_reassign=((iteration_idx + 1) % (10 + self.counts_.min()) == 0), random_state=random_state, reassignment_ratio=self.reassignment_ratio, verbose=self.verbose) # Monitor convergence and do early stopping if necessary if _mini_batch_convergence( self, iteration_idx, n_iter, tol, n_samples, centers_squared_diff, batch_inertia, convergence_context, verbose=self.verbose): break self.n_iter_ = iteration_idx + 1 if self.compute_labels: self.labels_, self.inertia_ = self._labels_inertia_minibatch(X) return self def _labels_inertia_minibatch(self, X): """Compute labels and inertia using mini batches. This is slightly slower than doing everything at once but preventes memory errors / segfaults. Parameters ---------- X : array-like, shape (n_samples, n_features) Input data. Returns ------- labels : array, shape (n_samples,) Cluster labels for each point. inertia : float Sum of squared distances of points to nearest cluster. """ if self.verbose: print('Computing label assignment and total inertia') x_squared_norms = row_norms(X, squared=True) slices = gen_batches(X.shape[0], self.batch_size) results = [_labels_inertia(X[s], x_squared_norms[s], self.cluster_centers_) for s in slices] labels, inertia = zip(*results) return np.hstack(labels), np.sum(inertia) def partial_fit(self, X, y=None): """Update k means estimate on a single mini-batch X. Parameters ---------- X : array-like, shape = [n_samples, n_features] Coordinates of the data points to cluster. It must be noted that X will be copied if it is not C-contiguous. y : Ignored """ X = check_array(X, accept_sparse="csr", order="C") n_samples, n_features = X.shape if hasattr(self.init, '__array__'): self.init = np.ascontiguousarray(self.init, dtype=X.dtype) if n_samples == 0: return self x_squared_norms = row_norms(X, squared=True) self.random_state_ = getattr(self, "random_state_", check_random_state(self.random_state)) if (not hasattr(self, 'counts_') or not hasattr(self, 'cluster_centers_')): # this is the first call partial_fit on this object: # initialize the cluster centers self.cluster_centers_ = _init_centroids( X, self.n_clusters, self.init, random_state=self.random_state_, x_squared_norms=x_squared_norms, init_size=self.init_size) self.counts_ = np.zeros(self.n_clusters, dtype=np.int32) random_reassign = False distances = None else: # The lower the minimum count is, the more we do random # reassignment, however, we don't want to do random # reassignment too often, to allow for building up counts random_reassign = self.random_state_.randint( 10 * (1 + self.counts_.min())) == 0 distances = np.zeros(X.shape[0], dtype=X.dtype) _mini_batch_step(X, x_squared_norms, self.cluster_centers_, self.counts_, np.zeros(0, dtype=X.dtype), 0, random_reassign=random_reassign, distances=distances, random_state=self.random_state_, reassignment_ratio=self.reassignment_ratio, verbose=self.verbose) if self.compute_labels: self.labels_, self.inertia_ = _labels_inertia( X, x_squared_norms, self.cluster_centers_) return self def predict(self, X): """Predict the closest cluster each sample in X belongs to. In the vector quantization literature, `cluster_centers_` is called the code book and each value returned by `predict` is the index of the closest code in the code book. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] New data to predict. Returns ------- labels : array, shape [n_samples,] Index of the cluster each sample belongs to. """ check_is_fitted(self, 'cluster_centers_') X = self._check_test_data(X) return self._labels_inertia_minibatch(X)[0]
bsd-3-clause
8,976,565,480,837,188,000
37.730238
81
0.611701
false
vaishaksuresh/udacity_data_analyst
P2/ProblemSets_2_to_4/P2_01.py
1
1464
import pandas import pandasql def num_rainy_days(filename): ''' This function should run a SQL query on a dataframe of weather data. The SQL query should return one column and one row - a count of the number of days in the dataframe where the rain column is equal to 1 (i.e., the number of days it rained). The dataframe will be titled 'weather_data'. You'll need to provide the SQL query. You might find SQL's count function useful for this exercise. You can read more about it here: https://dev.mysql.com/doc/refman/5.1/en/counting-rows.html You might also find that interpreting numbers as integers or floats may not work initially. In order to get around this issue, it may be equal to cast these numbers as integers. This can be done by writing cast(column as integer). So for example, if we wanted to cast the maxtempi column as an integer, we would actually write something like where cast(maxtempi as integer) = 76, as opposed to simply where maxtempi = 76. You can see the weather data that we are passing in below: https://www.dropbox.com/s/7sf0yqc9ykpq3w8/weather_underground.csv ''' weather_data = pandas.read_csv(filename) q = """ select count(*) from weather_data where cast(rain as integer) = 1 """ #Execute your SQL command against the pandas frame rainy_days = pandasql.sqldf(q.lower(), locals()) return rainy_days
gpl-2.0
7,580,475,719,071,482,000
38.567568
93
0.70082
false
IvanRybakov/cachewarmer
cw.py
1
3233
import urllib2 as ur import re, traceback import sys import os from scw.fetcher import Fetcher from scw.app import App class CacheWarmer(): def __init__(self, sitemap, processes = 100): self.processes = processes self.active_threads = [] self.app = App() self.urls = [] self.updated_count = 0 self.fetched_count = 0 self.sitemap_url = sitemap self.code_statistics = {} self.average_time = 0.0 def start(self): """ Execute the main process """ self.app.printflush('Sitemap: ' + self.sitemap_url) self.getUrlsList() self.app.printflush('Fetched: ' + str(self.fetched_count)) self.app.printflush('Processes: ' + str(self.processes)) self.CheckURLs() self.printReport() def printReport(self): """ Print a report after process execution """ self.app.printflush('Fetched: ' + str(self.fetched_count), self.app.IGNORE_EXIT_FLAG) self.app.printflush('Processes: ' + str(self.processes), self.app.IGNORE_EXIT_FLAG) self.app.printflush('Updated: ' + str(self.updated_count), self.app.IGNORE_EXIT_FLAG) self.app.printflush('Average page load time: ' + str(self.average_time), self.app.IGNORE_EXIT_FLAG) self.app.printflush('Returned with code: ' + repr(self.code_statistics), self.app.IGNORE_EXIT_FLAG) self.app.printflush('Closing Processes... ', self.app.IGNORE_EXIT_FLAG) def getUrlsList(self): """ Fetch an URLs list from website XML sitemap """ try: f = ur.urlopen(self.sitemap_url) res = f.readlines() for d in res: data = re.findall('<loc>(https?:\/\/.+?)<\/loc>',d) for i in data: self.urls.append(i) except Exception as e: self.app.printflush(str(e)) self.app.printflush(traceback.format_exc()) self.fetched_count = len(self.urls) def CheckURLs(self): """ Start multy-threading requests to website """ self.updated_count = 0 self.app.setExitFlag(False) try: parsed_params = self.urls while (parsed_params): self.active_threads = [] while True: while len(self.active_threads) < self.processes and len(parsed_params) > 0: urlItem = parsed_params.pop() if urlItem != None: thread = Fetcher(self.app, urlItem) thread.start() self.active_threads.append( thread ) if self.app.getExitFlag(): break if len( self.active_threads ) == 0: break else: for thread in self.active_threads: if not thread.isAlive(): thread.printStatus() self.collectStat(thread) self.active_threads.remove(thread) if self.app.getExitFlag(): break except KeyboardInterrupt as e: self.app.setExitFlag(True) except Exception as e: self.app.printflush(traceback.format_exc()) def collectStat(self, thread): """ Collect statistic for a request """ # update average page load time if self.updated_count == 0: self.average_time = thread.load_time else: self.average_time = (self.average_time * self.updated_count + thread.load_time) / (self.updated_count + 1) # update stitistics by HTTP code if thread.code not in self.code_statistics: self.code_statistics[thread.code] = 1 else: self.code_statistics[thread.code] += 1 # update count of processed pages self.updated_count += 1
mit
-5,689,395,381,370,856,000
28.126126
109
0.67275
false
t-neumann/slamdunk
slamdunk/contrib/RNASeqReadSimulator/src/gensimreads.py
1
9905
#!/usr/bin/env python """ This script generates simulated RNA-Seq reads (in .bed format) from known gene annotations. USAGE gensimreads.py {OPTIONS} <BED-File|-> PARAMETER BED-File\tThe gene annotation file (in BED format). Use '-' for STDIN input OPTIONS -e/--expression [expression level file] \tSpecify the weight of each transcript. Each line in the file should have at least (NFIELD+1) fields, with field 0 the annotation id, and field NFIELD the weight of this annoation. If this file is not provided, uniform weight is applied. -n/--nreads readcnt \tSpecify the number of reads to be generated. Default 100000. -b/--posbias [positional bias file] \tSpecify the positional bias file. The file should include at least 100 lines, each contains only one integer number, showing the preference of the positional bias at this position. If no positional bias file is specified, use uniform distribution bias. -l/--readlen [read length] \tSpecify the read length. Default 32. -o/--output [output .bed file] \tSpecify the output file. Default STDOUT -f/--field [NFIELD] \tThe field of each line as weight input. Default 7 (beginning from field 0) to compatible to genexplvprofile.py. -p/--pairend [PELENMEAN,PELENSTD]\t Generate paired-end reads with specified insert length mean and standard derivation. The default is 200,20. --stranded \tThe reads are strand specific. NOTE 1. The bed file is required to sort according to the chromosome name and position. In Unix systems, use "sort -k 1,1 -k 2,2n in.BED > out.BED" to get a sorted version (out.BED) of the bed file (in.BED). 2. No problem to handle reads spanning multiple exons. HISTORY 04/30/2012 Support generating stranded RNA-Seq reads 02/16/2012 Now runs on python 2.7 02/08/2012 Change default value of NFIELD from 4 to 7 to be compatible with default genexplvprofile values. 01/29/2012 Add paired-end support. 01/09/2012 Add -f option. AUTHOR Wei Li (li.david.wei AT gmail.com) """ from __future__ import print_function import sys; import subprocess; import pydoc; import os; import random; import bisect; import math; from getSegs import *; import pdb; # read length readlen=32; # number of reads to sample readcnt=100000; nfield=7; if len(sys.argv)<2: print(pydoc.render_doc(sys.modules[__name__])); sys.exit(); allids={}; allidl=[]; allexp=[]; posweight=[]; #onbedfile=sys.argv[-1]+'.reads.bed'; onbedfile="-"; genpereads=False; pemean=200; pestd=20; stranded=False; for i in range(len(sys.argv)): if i<len(sys.argv)-1: if sys.argv[i]=='-e' or sys.argv[i]=='--expression': # parse the annoatation file, and sum up the weights nline=0; totalweight=0; print('Reading annoatation file...',file=sys.stderr); for lines in open(sys.argv[i+1]): nline=nline+1; if lines[0]=='#': continue; fields=lines.strip().split(); if len(fields)<nfield+1: print('Error: the annotation file should include at least '+str(nfield+1)+' fields.',file=sys.stderr); sys.exit(); allids[fields[0]]=0; totalweight+=float(fields[nfield]); allexp.append(totalweight); allidl.append(fields[0]); print('Read %d lines of the annoatation' % nline,file=sys.stderr); #print('Total weight: %f' % sum(totalweight)); if sys.argv[i]=='-b' or sys.argv[i]=='--posbias': bline=0; tbweight=0; for lines in open(sys.argv[i+1]): bline=bline+1; if bline>100: break; tbweight=float(lines.strip()); posweight.append(tbweight); if len(posweight)!=100: print('Error: the bias file should include at least 100 lines.',file=sys.stderr); sys.exit(); if sys.argv[i]=='-n' or sys.argv[i]=='--nreads': readcnt=int(sys.argv[i+1]); print('Read count:',readcnt,file=sys.stderr); if sys.argv[i]=='-l' or sys.argv[i]=='--readlen': readlen=int(sys.argv[i+1]); print('Read length:',readlen,file=sys.stderr); if sys.argv[i]=='-o' or sys.argv[i]=='--output': onbedfile=sys.argv[i+1]; print('Output bed file:',onbedfile,file=sys.stderr); if sys.argv[i]=='-f' or sys.argv[i]=='--field': nfield=int(sys.argv[i+1]); print('Field:',nfield,file=sys.stderr); if sys.argv[i]=='-p' or sys.argv[i]=='--pairend': genpereads=True; pef=sys.argv[i+1].split(','); pemean=int(pef[0]); pestd=int(pef[1]); print('Generate paired-end reads with mean and std '+str(pemean)+','+str(pestd),file=sys.stderr); if sys.argv[i]=='-h' or sys.argv[i]=='--help': print(pydoc.render_doc(sys.modules[__name__])); sys.exit(); if sys.argv[i]=='--stranded': stranded=True; bedfile=sys.argv[-1]; # if no annotation file is specified, use uniform distri. print('Assigning weights...',file=sys.stderr); if len(allexp)==0: totalweight=0; for lines in open(bedfile): bedfield=lines.strip().split(); allids[bedfield[3]]=0; totalweight+=1; allexp.append(totalweight); allidl.append(bedfield[3]); # sampling process print('Sampling...',file=sys.stderr); for j in range(readcnt): k=random.random()*totalweight; sel=bisect.bisect_right(allexp,k); allids[allidl[sel]]=allids[allidl[sel]]+1; # if no bias file specified, use uniform distrib print('Total assigned reads:',sum(allids.values()),file=sys.stderr); #debug info: #for k in allidl: # print (k, allids[k]); #sys.exit(); if onbedfile!="-": onfid=open(onbedfile,'w'); else: onfid=sys.stdout; nlines=0; totalgenreads=0; # read bed file for lines in open(bedfile): # update line counter nlines=nlines+1; if nlines %10000==1: print('Processing '+str(nlines)+' lines...',file=sys.stderr); # parse lines bedfield=lines.strip().split(); if len(bedfield)!=12: print('Error: incorrect number of fields (should be 12)',file=sys.stderr); continue; if bedfield[5]=='+': direction=1; elif bedfield[5]=='-': direction=-1; else: print('Error: incorrect field in field[5] %s:' %bedfield[5],file=sys.stderr); if bedfield[3] not in allids: # the current id not found, continue continue; nreads=allids[bedfield[3]]; if nreads<1: continue; # parse all segments fieldrange=(int(bedfield[1]),int(bedfield[2])); if bedfield[10][-1]==',': bedfield[10]=bedfield[10][:-1]; if bedfield[11][-1]==',': bedfield[11]=bedfield[11][:-1]; exonlen=[int(x) for x in bedfield[10].split(',')]; exonstart=[int(x)+fieldrange[0] for x in bedfield[11].split(',')]; # old code: for each possible position in the transcript, build its segments # for ne in range(len(exonlen)): # for pos in range(exonstart[ne],exonstart[ne]+exonlen[ne]): # create a position totallen=sum(exonlen); # here, we randomly choose one position if genpereads==False: selrange=totallen-readlen+1; else: selrange=totallen-pemean+2*pestd; if selrange<1: if genpereads==False: print('Ignore annoatation',bedfield[3],'of length',totallen,'Reads:',allids[bedfield[3]],file=sys.stderr); else: print('Ignore annoatation',bedfield[3],'of length',totallen,'since its shorter than paired-end mean insert length. Reads:',allids[bedfield[3]],file=sys.stderr); continue; totalgenreads+=nreads; cumlen=[];cumlen.extend(exonlen); for i in range(1,len(cumlen)): cumlen[i]=cumlen[i]+cumlen[i-1]; # for nun-uniform distribution, construct a new array for selection thistbweight=[]; if len(posweight)!=0: kweight=0; for i in range(selrange): nfrac=i*100.0/selrange; # a value between 0-100 nlower=int(math.floor(nfrac)); # 0-100 nhigher=int(math.ceil(nfrac)); # 0-100 if nhigher==nlower: nhigher=nlower+1; if nhigher<100: val=posweight[nlower]*(nfrac-nlower)+posweight[nhigher]*(nhigher-nfrac); else: val=posweight[99]; kweight+=val; thistbweight.append(kweight); for t in range(nreads): if len(posweight)==0: tpos=random.choice(range(selrange)); else: rd=random.random()*kweight; bsl=bisect.bisect_right(thistbweight,rd); # for reverse transcripts: flip the position if direction==-1: bsl=selrange-1-bsl; tpos=bsl; pos=tpos2pos(tpos,cumlen,exonstart); if genpereads==True: tpos2=tpos+int(random.normalvariate(pemean-readlen+1,pestd)); pos2=tpos2pos(tpos2,cumlen,exonstart); # get the segments if True: (startrange,lenrange,status)=getSegs(pos,readlen,1,exonstart,exonlen); if status!=0: print('Status:',status,', pos:', pos,'out of',len(cumlen),file=sys.stderr); #pdb.set_trace(); continue; # generate another pair if genpereads==True: (startrange2,lenrange2,status2)=getSegs(pos2,readlen,1,exonstart,exonlen); if status==1: print('Status:',status,', pos:', pos,'out of',len(cumlen),file=sys.stderr); if genpereads==False: lineid="%s_e_%d_%s_%d" % (bedfield[3],t,bedfield[0],pos); else: lineid="%s_e_%d_%s_%d/1" % (bedfield[3],t,bedfield[0],pos); lineid2="%s_e_%d_%s_%d/2" % (bedfield[3],t,bedfield[0],pos); # random direction if stranded==False or direction==0: thisdir=random.choice([1,-1]); else: thisdir=direction; writeBedline(onfid,lineid,bedfield[0],thisdir,startrange,lenrange); if genpereads==True: writeBedline(onfid,lineid2,bedfield[0],thisdir*(-1),startrange2,lenrange2); else: print(bedfield[0],file=sys.stdout); #print('Pospool:'); #for k in sorted(pospool.keys()): # print(str(k)+":"+str(pospool[k]),end=","); #print(); print('Total '+str(nlines)+' lines...',file=sys.stderr); print('Total '+str(totalgenreads)+' reads...',file=sys.stderr); if onbedfile!="-": onfid.close();
agpl-3.0
3,342,112,633,374,298,000
30.645367
292
0.651186
false
APTrust/EarthDiver
dpnode/dpn/client/management/commands/accept_transfers.py
1
1510
""" 'Contrary to what people may say, there is no upper limit to stupidity.' - Stephen Colbert """ from optparse import make_option from django.conf import settings from django.core.management.base import BaseCommand, CommandError from dpn.data.models import Node from dpn.client.tasks import accept_transfers class Command(BaseCommand): help = 'Pulls registry entries from all nodes or named node only if ' \ 'specified.' option_list = BaseCommand.option_list + ( make_option("--node", dest="namespace", default=None, help="Namespace of specific node to pull registry entries from." ), make_option("--max", dest="max", default=settings.DPN_MAX_ACCEPT, help="Max number of transfer to mark as accepted at once." ) ) def handle(self, *args, **options): nodes = Node.objects.exclude(api_root__isnull=True).exclude( api_root__exact='').exclude(namespace=settings.DPN_NAMESPACE) nodes = nodes.filter(replicate_from=True) if options['namespace']: nodes.filter(namespace=options['namespace']) if not nodes: raise CommandError("No nodes found to query.") for node in nodes: accept_transfers(node, options['max']) self.stdout.write("Done accepting transfers from %s" % node.namespace)
apache-2.0
-3,021,411,262,614,179,300
32.577778
78
0.59404
false
eduNEXT/edunext-ecommerce
ecommerce/courses/publishers.py
1
6029
from __future__ import absolute_import, unicode_literals import json import logging import six from django.utils.translation import ugettext_lazy as _ from edx_rest_api_client.exceptions import SlumberHttpBaseException from oscar.core.loading import get_model from ecommerce.core.constants import ENROLLMENT_CODE_SEAT_TYPES from ecommerce.courses.utils import mode_for_product logger = logging.getLogger(__name__) Product = get_model('catalogue', 'Product') StockRecord = get_model('partner', 'StockRecord') class LMSPublisher: def get_seat_expiration(self, seat): if not seat.expires or 'professional' in getattr(seat.attr, 'certificate_type', ''): return None return seat.expires.isoformat() def get_course_verification_deadline(self, course): return course.verification_deadline.isoformat() if course.verification_deadline else None def serialize_seat_for_commerce_api(self, seat): """ Serializes a course seat product to a dict that can be further serialized to JSON. """ stock_record = seat.stockrecords.first() bulk_sku = None if getattr(seat.attr, 'certificate_type', '') in ENROLLMENT_CODE_SEAT_TYPES: enrollment_code = seat.course.enrollment_code_product if enrollment_code: bulk_sku = enrollment_code.stockrecords.first().partner_sku return { 'name': mode_for_product(seat), 'currency': stock_record.price_currency, 'price': int(stock_record.price_excl_tax), 'sku': stock_record.partner_sku, 'bulk_sku': bulk_sku, 'expires': self.get_seat_expiration(seat), } def publish(self, course): """ Publish course commerce data to LMS. Uses the Commerce API to publish course modes, prices, and SKUs to LMS. Uses CreditCourse API endpoints to publish CreditCourse data to LMS when necessary. Arguments: course (Course): Course to be published. Returns: None, if publish operation succeeded; otherwise, error message. """ site = course.partner.default_site course_id = course.id error_message = _('Failed to publish commerce data for {course_id} to LMS.').format(course_id=course_id) name = course.name verification_deadline = self.get_course_verification_deadline(course) modes = [self.serialize_seat_for_commerce_api(seat) for seat in course.seat_products] has_credit = 'credit' in [mode['name'] for mode in modes] if has_credit: try: data = { 'course_key': course_id, 'enabled': True } credit_api_client = site.siteconfiguration.credit_api_client credit_api_client.courses(course_id).put(data) logger.info('Successfully published CreditCourse for [%s] to LMS.', course_id) except SlumberHttpBaseException as e: # Note that %r is used to log the repr() of the response content, which may sometimes # contain non-ASCII Unicode. We don't know (or want to guess) the encoding, so using %r will log the # raw bytes of the message, freeing us from the possibility of encoding errors. logger.exception( 'Failed to publish CreditCourse for [%s] to LMS. Status was [%d]. Body was [%s].', course_id, e.response.status_code, e.content.decode('utf-8') ) return error_message except: # pylint: disable=bare-except logger.exception('Failed to publish CreditCourse for [%s] to LMS.', course_id) return error_message try: data = { 'id': course_id, 'name': name, 'verification_deadline': verification_deadline, 'modes': modes, } commerce_api_client = site.siteconfiguration.commerce_api_client commerce_api_client.courses(course_id).put(data=data) logger.info('Successfully published commerce data for [%s].', course_id) return None except SlumberHttpBaseException as e: # pylint: disable=bare-except logger.exception( 'Failed to publish commerce data for [%s] to LMS. Status was [%d]. Body was [%s].', course_id, e.response.status_code, e.content.decode('utf-8') ) return self._parse_error(e.content.decode('utf-8'), error_message) except Exception: # pylint: disable=broad-except logger.exception('Failed to publish commerce data for [%s] to LMS.', course_id) return error_message def _parse_error(self, response, default_error_message): """When validation errors occur during publication, the LMS is expected to return an error message. Arguments: response (Response): A 'Response' object which contains json error message. default_error_message (str) : default error message in case of exception. Returns: string: Returns the error message extracted from response.content along with default message. If no message is available in response then default message will be return. """ message = None try: data = json.loads(response) if isinstance(data, six.string_types): message = data elif isinstance(data, dict) and data: message = list(data.values())[0] if isinstance(message, list): message = message[0] except Exception: # pylint: disable=broad-except pass if message: return ' '.join([default_error_message, message]) return default_error_message
agpl-3.0
152,557,083,518,754,620
40.294521
116
0.603914
false
Nic30/HWToolkit
hwt/synthesizer/rtlLevel/netlist.py
1
8089
from typing import List, Optional, Union from hdlConvertorAst.hdlAst._defs import HdlIdDef from hdlConvertorAst.hdlAst._expr import HdlValueId from hdlConvertorAst.hdlAst._structural import HdlModuleDec, HdlModuleDef, \ HdlCompInst from hwt.code import If from hwt.hdl.operatorDefs import AllOps from hwt.hdl.types.defs import BIT from hwt.hdl.value import HValue from hwt.serializer.utils import HdlStatement_sort_key, RtlSignal_sort_key from hwt.synthesizer.dummyPlatform import DummyPlatform from hwt.synthesizer.exceptions import SigLvlConfErr from hwt.synthesizer.interfaceLevel.mainBases import InterfaceBase from hwt.synthesizer.param import Param from hwt.synthesizer.rtlLevel.mark_visibility_of_signals_and_check_drivers import\ markVisibilityOfSignalsAndCheckDrivers from hwt.synthesizer.rtlLevel.remove_unconnected_signals import removeUnconnectedSignals from hwt.synthesizer.rtlLevel.rtlSignal import RtlSignal, NOT_SPECIFIED from hwt.synthesizer.rtlLevel.rtlSyncSignal import RtlSyncSignal from hwt.synthesizer.rtlLevel.statements_to_HdlStmCodeBlockContainers import\ statements_to_HdlStmCodeBlockContainers from hwt.doc_markers import internal class RtlNetlist(): """ Hierarchical container for signals :ivar ~.parent: optional parent for debug and late component inspection :ivar ~.signals: set of all signals in this context :ivar ~.statements: list of all statements which are connected to signals in this context :ivar ~.subUnits: is set of all units in this context :type ~.interfaces: Dict[RtlSignal, DIRECTION] :ivar ~.interfaces: initialized in create_HdlModuleDef :type ~.ent: HdlModuleDec :ivar ~.ent: initialized in create_HdlModuleDec :type ~.arch: HdlModuleDef :ivar ~.arch: initialized in create_HdlModuleDef :ivar ~.hdl_objs: The list of HDL objects which were produced by this instance usually contains HdlModudeleDef but may contain imports/globals etc. """ def __init__(self, parent: Optional["Unit"]=None): self.parent = parent self.signals = set() self.statements = set() self.subUnits = set() self.interfaces = {} self.hdl_objs = [] self.ent = None self.arch = None self._port_items = [] def sig(self, name, dtype=BIT, clk=None, syncRst=None, def_val=None, nop_val=NOT_SPECIFIED) -> Union[RtlSignal, RtlSyncSignal]: """ Create new signal in this context :param clk: clk signal, if specified signal is synthesized as SyncSignal :param syncRst: synchronous reset signal :param def_val: a default value used for reset and intialization :param nop_val: a value which is used to drive the signal if there is no other drive (used to prevent latches and to specify default values for unconnected signals) """ _def_val = _try_cast_any_to_HValue(def_val, dtype, True) if nop_val is not NOT_SPECIFIED: nop_val = _try_cast_any_to_HValue(nop_val, dtype, False) if clk is not None: s = RtlSyncSignal(self, name, dtype, _def_val, nop_val) if syncRst is not None and def_val is None: raise SigLvlConfErr( "Probably forgotten default value on sync signal %s", name) # dst_resolve_fn is overriden because default assign would assign to the "next" signal if syncRst is not None: r = If(syncRst._isOn(), s(_def_val, dst_resolve_fn=lambda x: x) ).Else( s(s.next, dst_resolve_fn=lambda x: x) ) else: r = [ s(s.next, dst_resolve_fn=lambda x: x) ] if isinstance(clk, (InterfaceBase, RtlSignal)): clk_trigger = clk._onRisingEdge() else: # has to be tuple of (clk_sig, AllOps.RISING/FALLING_EDGE) clk, clk_edge = clk if clk_edge is AllOps.RISING_EDGE: clk_trigger = clk._onRisingEdge() elif clk_edge is AllOps.FALLING_EDGE: clk_trigger = clk._onRisingEdge() else: raise ValueError( "Invalid clock edge specification", clk_edge) If(clk_trigger, r ) else: if syncRst: raise SigLvlConfErr( f"Signal {name:s} has reset but has no clk") s = RtlSignal(self, name, dtype, def_val=_def_val, nop_val=nop_val) return s def create_HdlModuleDec(self, name: str, store_manager: "StoreManager", params: List[Param]): """ Generate a module header (entity) for this module """ self.ent = ent = HdlModuleDec() ent.name = store_manager.name_scope.checked_name(name, ent) ns = store_manager.hierarchy_push(ent) # create generics for p in sorted(params, key=lambda x: x._name): hdl_val = p.get_hdl_value() v = HdlIdDef() v.origin = p v.name = p.hdl_name = ns.checked_name(p._name, p) v.type = hdl_val._dtype v.value = hdl_val ent.params.append(v) return ent def create_HdlModuleDef(self, target_platform: DummyPlatform, store_manager: "StoreManager"): """ Generate a module body (architecture) for this module * Resolve name collisions * Convert netlist representation to HdlProcesses * Remove unconnected * Mark visibility of signals """ for proc in target_platform.beforeHdlArchGeneration: proc(self) ns = store_manager.name_scope mdef = HdlModuleDef() mdef.dec = self.ent mdef.module_name = HdlValueId(self.ent.name, obj=self.ent) mdef.name = "rtl" processes = sorted(self.statements, key=HdlStatement_sort_key) processes = sorted(statements_to_HdlStmCodeBlockContainers(processes), key=HdlStatement_sort_key) # add signals, variables etc. in architecture for s in sorted((s for s in self.signals if not s.hidden and s not in self.interfaces.keys()), key=RtlSignal_sort_key): v = HdlIdDef() v.origin = s s.name = v.name = ns.checked_name(s.name, s) v.type = s._dtype v.value = s.def_val v.is_const = s._const mdef.objs.append(v) for p in processes: p.name = ns.checked_name(p.name, p) mdef.objs.extend(processes) # instantiate subUnits in architecture for u in self.subUnits: ci = HdlCompInst() ci.origin = u ci.module_name = HdlValueId(u._ctx.ent.name, obj=u._ctx.ent) ci.name = HdlValueId(ns.checked_name(u._name + "_inst", ci), obj=u) e = u._ctx.ent ci.param_map.extend(e.params) ci.port_map.extend(e.ports) mdef.objs.append(ci) self.arch = mdef return mdef def getDebugScopeName(self): scope = [] p = self.parent while p is not None: scope.append(p._name) try: p = p._parent except AttributeError: break return ".".join(reversed(scope)) @internal def _try_cast_any_to_HValue(v, dtype, require_const): if isinstance(v, RtlSignal): assert not require_const or v._const, \ "Initial value of signal has to be a constant" return v._auto_cast(dtype) elif isinstance(v, HValue): return v._auto_cast(dtype) elif isinstance(v, InterfaceBase): return v._sig else: return dtype.from_py(v)
mit
2,040,947,391,428,766,200
37.160377
105
0.593769
false
EdinburghNLP/nematus
nematus/exponential_smoothing.py
1
3493
import tensorflow as tf # How often to update smoothed variables (in terms of training steps). DEFAULT_UPDATE_FREQUENCY = 5 class ExponentialSmoothing(object): """Defines TensorFlow variables and operations for exponential smoothing. Following Marian [1], we maintain smoothed versions of all trainable variables. This class creates the smoothed variables (assuming that the model has already been initialized) and provides operations that can be run to update the variables and to interchange the values of the raw and the smoothed variables (which can be used to swap-in the smoothed versions for validation, for instance). Ideally, the smoothed variables would be updated after every training step, but in practice that introduces a noticeable overhead (around 20%) due to the need to transfer tensor values from GPU memory into CPU memory. Instead we allow updating after every N steps by increasing the smoothing factor accordingly. The default N=5 seems to be a good compromise. [1] "Marian: Fast Neural Machine Translation in C++", Junczys-Dowmunt et al., in Proceedings of ACL 2018, System Demonstrations. """ def __init__(self, smoothing_factor, update_frequency=DEFAULT_UPDATE_FREQUENCY): """Creates TF variables and operations. Args: smoothing_factor: float controlling weight of past vs new values. update_frequency: integer indicating how often updates will occur. """ self._update_frequency = update_frequency adjusted_smoothing_factor = smoothing_factor * update_frequency # Smoothed variables are stored in CPU memory to avoid eating into # valuable GPU memory. device_spec = tf.DeviceSpec(device_type="CPU", device_index=0) with tf.device(device_spec): # Create variables to hold the smoothed versions of all trainable # variables. smooth_vars = {} for v in tf.compat.v1.trainable_variables(): assert v.name[-2:] == ":0" name = v.name[:-2] + "_smooth" s = tf.compat.v1.get_variable(name=name, initializer=tf.zeros_like(v), trainable=False, use_resource=True) smooth_vars[v.name] = s # Define the ops to update the smoothed variables. self._update_ops = [] for v in tf.compat.v1.trainable_variables(): s = smooth_vars[v.name] updated_s = (1 - adjusted_smoothing_factor) * s \ + adjusted_smoothing_factor * v self._update_ops += [tf.compat.v1.assign(s, updated_s)] # Define the ops to swap the raw and smoothed variables. self._swap_ops = [] for v in tf.compat.v1.trainable_variables(): s = smooth_vars[v.name] v_value = v.read_value() s_value = s.read_value() with tf.control_dependencies([v_value, s_value]): self._swap_ops += [v.assign(s_value)] self._swap_ops += [s.assign(v_value)] @property def update_ops(self): return self._update_ops @property def swap_ops(self): return self._swap_ops @property def update_frequency(self): return self._update_frequency
bsd-3-clause
2,266,908,589,127,385,000
42.123457
79
0.608932
false
thakadu/Abraxas
scripts/load_feeds.py
1
1986
"""Loads Feed data from a csv file into the feed table of the database""" import logging import csv from optparse import OptionParser from paste.deploy import appconfig #from pylons import app_globals from abraxas.config.environment import load_environment from sqlalchemy import create_engine, MetaData, select from sqlalchemy.exc import IntegrityError import sqlalchemy as sa """ The format of the input file should be csv with these fields Title, Web Url, Feed Url """ log = logging.getLogger(__name__) class DataFormatException(Exception): """Raise when the csv file does not have the correct number of fields""" pass if __name__ == '__main__': parser = OptionParser() parser.add_option('--ini', help='INI file to use for application settings', type='str', default='development.ini') parser.add_option('--filename', help='File containing place names data.', type='str', default='data/feeds.csv') (options, args) = parser.parse_args() conf = appconfig('config:' + options.ini, relative_to='.') load_environment(conf.global_conf, conf.local_conf) engine = create_engine(conf['sqlalchemy.url'], echo=True) meta = MetaData() conn = engine.connect() print conn fh = open(options.filename) reader = csv.reader(fh) feed_table = sa.Table('feed', meta, autoload=True, autoload_with=engine) for line in reader: if len(line) != 3: raise DataFormatException title = line[0] weburl = line[1] url = line[2] insert = feed_table.insert().values( title=title, url=url, weburl=weburl) try: conn.execute(insert) except IntegrityError: # Most likely loading a duplicate feed row log.debug("Duplicate row, skipping this line...") continue
bsd-3-clause
1,864,919,659,832,746,000
27.782609
76
0.613797
false
axiom-data-science/pyaxiom
pyaxiom/netcdf/sensors/dsg/timeseries/ir.py
1
1602
#!python # coding=utf-8 from pyaxiom.netcdf import CFDataset from pyaxiom import logger class IndexedRaggedTimeseries(CFDataset): @classmethod def is_mine(cls, dsg): try: rvars = dsg.get_variables_by_attributes(cf_role='timeseries_id') assert len(rvars) == 1 assert dsg.featureType.lower() == 'timeseries' assert len(dsg.t_axes()) >= 1 assert len(dsg.x_axes()) >= 1 assert len(dsg.y_axes()) >= 1 r_index_vars = dsg.get_variables_by_attributes( instance_dimension=lambda x: x is not None ) assert len(r_index_vars) == 1 assert r_index_vars[0].instance_dimension in dsg.dimensions # Station dimension # Allow for string variables rvar = rvars[0] # 0 = single # 1 = array of strings/ints/bytes/etc # 2 = array of character arrays assert 0 <= len(rvar.dimensions) <= 2 except AssertionError: return False return True def from_dataframe(self, df, variable_attributes=None, global_attributes=None): variable_attributes = variable_attributes or {} global_attributes = global_attributes or {} raise NotImplementedError def calculated_metadata(self, df=None, geometries=True, clean_cols=True, clean_rows=True): # if df is None: # df = self.to_dataframe(clean_cols=clean_cols, clean_rows=clean_rows) raise NotImplementedError def to_dataframe(self): raise NotImplementedError
mit
3,502,373,414,636,524,500
31.693878
94
0.601124
false
andrewyoung1991/scons
QMTest/TestCommon.py
1
27429
""" TestCommon.py: a testing framework for commands and scripts with commonly useful error handling The TestCommon module provides a simple, high-level interface for writing tests of executable commands and scripts, especially commands and scripts that interact with the file system. All methods throw exceptions and exit on failure, with useful error messages. This makes a number of explicit checks unnecessary, making the test scripts themselves simpler to write and easier to read. The TestCommon class is a subclass of the TestCmd class. In essence, TestCommon is a wrapper that handles common TestCmd error conditions in useful ways. You can use TestCommon directly, or subclass it for your program and add additional (or override) methods to tailor it to your program's specific needs. Alternatively, the TestCommon class serves as a useful example of how to define your own TestCmd subclass. As a subclass of TestCmd, TestCommon provides access to all of the variables and methods from the TestCmd module. Consequently, you can use any variable or method documented in the TestCmd module without having to explicitly import TestCmd. A TestCommon environment object is created via the usual invocation: import TestCommon test = TestCommon.TestCommon() You can use all of the TestCmd keyword arguments when instantiating a TestCommon object; see the TestCmd documentation for details. Here is an overview of the methods and keyword arguments that are provided by the TestCommon class: test.must_be_writable('file1', ['file2', ...]) test.must_contain('file', 'required text\n') test.must_contain_all_lines(output, lines, ['title', find]) test.must_contain_any_line(output, lines, ['title', find]) test.must_contain_exactly_lines(output, lines, ['title', find]) test.must_exist('file1', ['file2', ...]) test.must_match('file', "expected contents\n") test.must_not_be_writable('file1', ['file2', ...]) test.must_not_contain('file', 'banned text\n') test.must_not_contain_any_line(output, lines, ['title', find]) test.must_not_exist('file1', ['file2', ...]) test.run(options = "options to be prepended to arguments", stdout = "expected standard output from the program", stderr = "expected error output from the program", status = expected_status, match = match_function) The TestCommon module also provides the following variables TestCommon.python TestCommon._python_ TestCommon.exe_suffix TestCommon.obj_suffix TestCommon.shobj_prefix TestCommon.shobj_suffix TestCommon.lib_prefix TestCommon.lib_suffix TestCommon.dll_prefix TestCommon.dll_suffix """ # Copyright 2000-2010 Steven Knight # This module is free software, and you may redistribute it and/or modify # it under the same terms as Python itself, so long as this copyright message # and disclaimer are retained in their original form. # # IN NO EVENT SHALL THE AUTHOR BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, # SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OF # THIS CODE, EVEN IF THE AUTHOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH # DAMAGE. # # THE AUTHOR SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A # PARTICULAR PURPOSE. THE CODE PROVIDED HEREUNDER IS ON AN "AS IS" BASIS, # AND THERE IS NO OBLIGATION WHATSOEVER TO PROVIDE MAINTENANCE, # SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS. __author__ = "Steven Knight <knight at baldmt dot com>" __revision__ = "TestCommon.py 1.3.D001 2010/06/03 12:58:27 knight" __version__ = "1.3" import copy import os import stat import sys import glob try: from collections import UserList except ImportError: # no 'collections' module or no UserList in collections exec('from UserList import UserList') from TestCmd import * from TestCmd import __all__ __all__.extend([ 'TestCommon', 'exe_suffix', 'obj_suffix', 'shobj_prefix', 'shobj_suffix', 'lib_prefix', 'lib_suffix', 'dll_prefix', 'dll_suffix', ]) try: sorted except NameError: # Pre-2.4 Python has no sorted() function. # # The pre-2.4 Python list.sort() method does not support # list.sort(key=) nor list.sort(reverse=) keyword arguments, so # we must implement the functionality of those keyword arguments # by hand instead of passing them to list.sort(). def sorted(iterable, cmp=None, key=None, reverse=False): if key is not None: result = [(key(x), x) for x in iterable] else: result = iterable[:] if cmp is None: # Pre-2.3 Python does not support list.sort(None). result.sort() else: result.sort(cmp) if key is not None: result = [t1 for t0,t1 in result] if reverse: result.reverse() return result # Variables that describe the prefixes and suffixes on this system. if sys.platform == 'win32': exe_suffix = '.exe' obj_suffix = '.obj' shobj_suffix = '.obj' shobj_prefix = '' lib_prefix = '' lib_suffix = '.lib' dll_prefix = '' dll_suffix = '.dll' elif sys.platform == 'cygwin': exe_suffix = '.exe' obj_suffix = '.o' shobj_suffix = '.os' shobj_prefix = '' lib_prefix = 'lib' lib_suffix = '.a' dll_prefix = 'cyg' dll_suffix = '.dll' elif sys.platform.find('irix') != -1: exe_suffix = '' obj_suffix = '.o' shobj_suffix = '.o' shobj_prefix = '' lib_prefix = 'lib' lib_suffix = '.a' dll_prefix = 'lib' dll_suffix = '.so' elif sys.platform.find('darwin') != -1: exe_suffix = '' obj_suffix = '.o' shobj_suffix = '.os' shobj_prefix = '' lib_prefix = 'lib' lib_suffix = '.a' dll_prefix = 'lib' dll_suffix = '.dylib' elif sys.platform.find('sunos') != -1: exe_suffix = '' obj_suffix = '.o' shobj_suffix = '.o' shobj_prefix = 'so_' lib_prefix = 'lib' lib_suffix = '.a' dll_prefix = 'lib' dll_suffix = '.so' else: exe_suffix = '' obj_suffix = '.o' shobj_suffix = '.os' shobj_prefix = '' lib_prefix = 'lib' lib_suffix = '.a' dll_prefix = 'lib' dll_suffix = '.so' def is_List(e): return isinstance(e, (list, UserList)) def is_Tuple(e): return isinstance(e, tuple) def is_Sequence(e): return (not hasattr(e, "strip") and hasattr(e, "__getitem__") or hasattr(e, "__iter__")) def is_writable(f): mode = os.stat(f)[stat.ST_MODE] return mode & stat.S_IWUSR def separate_files(flist): existing = [] missing = [] for f in flist: if os.path.exists(f): existing.append(f) else: missing.append(f) return existing, missing if os.name == 'posix': def _failed(self, status = 0): if self.status is None or status is None: return None return _status(self) != status def _status(self): return self.status elif os.name == 'nt': def _failed(self, status = 0): return not (self.status is None or status is None) and \ self.status != status def _status(self): return self.status class TestCommon(TestCmd): # Additional methods from the Perl Test::Cmd::Common module # that we may wish to add in the future: # # $test->subdir('subdir', ...); # # $test->copy('src_file', 'dst_file'); def __init__(self, **kw): """Initialize a new TestCommon instance. This involves just calling the base class initialization, and then changing directory to the workdir. """ TestCmd.__init__(self, **kw) os.chdir(self.workdir) def options_arguments(self, options, arguments): """Merges the "options" keyword argument with the arguments.""" if options: if arguments is None: return options if isinstance(options, str): options = [options] if isinstance(arguments, str): arguments = [arguments] arguments = ' '.join(options + arguments) return arguments def must_be_writable(self, *files): """Ensures that the specified file(s) exist and are writable. An individual file can be specified as a list of directory names, in which case the pathname will be constructed by concatenating them. Exits FAILED if any of the files does not exist or is not writable. """ files = [is_List(x) and os.path.join(*x) or x for x in files] existing, missing = separate_files(files) unwritable = [x for x in existing if not is_writable(x)] if missing: print "Missing files: `%s'" % "', `".join(missing) if unwritable: print "Unwritable files: `%s'" % "', `".join(unwritable) self.fail_test(missing + unwritable) def must_contain(self, file, required, mode = 'rb', find = None): """Ensures that the specified file contains the required text. """ file_contents = self.read(file, mode) if find is None: def find(o, l): try: return o.index(l) except ValueError: return None contains = find(file_contents, required) if not contains: print "File `%s' does not contain required string." % file print self.banner('Required string ') print required print self.banner('%s contents ' % file) print file_contents self.fail_test(not contains) def must_contain_all_lines(self, output, lines, title=None, find=None): """Ensures that the specified output string (first argument) contains all of the specified lines (second argument). An optional third argument can be used to describe the type of output being searched, and only shows up in failure output. An optional fourth argument can be used to supply a different function, of the form "find(line, output), to use when searching for lines in the output. """ if find is None: def find(o, l): try: return o.index(l) except ValueError: return None missing = [] if is_List(output): output = '\n'.join(output) for line in lines: if find(output, line) is None: missing.append(line) if missing: if title is None: title = 'output' sys.stdout.write("Missing expected lines from %s:\n" % title) for line in missing: sys.stdout.write(' ' + repr(line) + '\n') sys.stdout.write(self.banner(title + ' ') + '\n') sys.stdout.write(output) self.fail_test() def must_contain_any_line(self, output, lines, title=None, find=None): """Ensures that the specified output string (first argument) contains at least one of the specified lines (second argument). An optional third argument can be used to describe the type of output being searched, and only shows up in failure output. An optional fourth argument can be used to supply a different function, of the form "find(line, output), to use when searching for lines in the output. """ if find is None: def find(o, l): try: return o.index(l) except ValueError: return None for line in lines: if find(output, line) is not None: return if title is None: title = 'output' sys.stdout.write("Missing any expected line from %s:\n" % title) for line in lines: sys.stdout.write(' ' + repr(line) + '\n') sys.stdout.write(self.banner(title + ' ') + '\n') sys.stdout.write(output) self.fail_test() def must_contain_exactly_lines(self, output, expect, title=None, find=None): """Ensures that the specified output string (first argument) contains all of the lines in the expected string (second argument) with none left over. An optional third argument can be used to describe the type of output being searched, and only shows up in failure output. An optional fourth argument can be used to supply a different function, of the form "find(line, output), to use when searching for lines in the output. The function must return the index of the found line in the output, or None if the line is not found. """ out = output.splitlines() if is_List(expect): exp = [ e.rstrip('\n') for e in expect ] else: exp = expect.splitlines() if sorted(out) == sorted(exp): # early out for exact match return if find is None: def find(o, l): try: return o.index(l) except ValueError: return None missing = [] for line in exp: found = find(out, line) if found is None: missing.append(line) else: out.pop(found) if not missing and not out: # all lines were matched return if title is None: title = 'output' if missing: sys.stdout.write("Missing expected lines from %s:\n" % title) for line in missing: sys.stdout.write(' ' + repr(line) + '\n') sys.stdout.write(self.banner('Missing %s ' % title) + '\n') if out: sys.stdout.write("Extra unexpected lines from %s:\n" % title) for line in out: sys.stdout.write(' ' + repr(line) + '\n') sys.stdout.write(self.banner('Extra %s ' % title) + '\n') sys.stdout.flush() self.fail_test() def must_contain_lines(self, lines, output, title=None, find = None): # Deprecated; retain for backwards compatibility. return self.must_contain_all_lines(output, lines, title, find) def must_exist(self, *files): """Ensures that the specified file(s) must exist. An individual file be specified as a list of directory names, in which case the pathname will be constructed by concatenating them. Exits FAILED if any of the files does not exist. """ files = [is_List(x) and os.path.join(*x) or x for x in files] missing = [x for x in files if not os.path.exists(x) and not os.path.islink(x) ] if missing: print "Missing files: `%s'" % "', `".join(missing) self.fail_test(missing) def must_exist_one_of(self, files): """Ensures that at least one of the specified file(s) exists. The filenames can be given as a list, where each entry may be a single path string, or a tuple of folder names and the final filename that get concatenated. Supports wildcard names like 'foo-1.2.3-*.rpm'. Exits FAILED if none of the files exists. """ missing = [] for x in files: if is_List(x) or is_Tuple(x): xpath = os.path.join(*x) else: xpath = is_Sequence(x) and os.path.join(x) or x if glob.glob(xpath): return missing.append(xpath) print "Missing one of: `%s'" % "', `".join(missing) self.fail_test(missing) def must_match(self, file, expect, mode = 'rb', match=None): """Matches the contents of the specified file (first argument) against the expected contents (second argument). The expected contents are a list of lines or a string which will be split on newlines. """ file_contents = self.read(file, mode) if not match: match = self.match try: self.fail_test(not match(file_contents, expect)) except KeyboardInterrupt: raise except: print "Unexpected contents of `%s'" % file self.diff(expect, file_contents, 'contents ') raise def must_not_contain(self, file, banned, mode = 'rb', find = None): """Ensures that the specified file doesn't contain the banned text. """ file_contents = self.read(file, mode) if find is None: def find(o, l): try: return o.index(l) except ValueError: return None contains = find(file_contents, banned) if contains: print "File `%s' contains banned string." % file print self.banner('Banned string ') print banned print self.banner('%s contents ' % file) print file_contents self.fail_test(contains) def must_not_contain_any_line(self, output, lines, title=None, find=None): """Ensures that the specified output string (first argument) does not contain any of the specified lines (second argument). An optional third argument can be used to describe the type of output being searched, and only shows up in failure output. An optional fourth argument can be used to supply a different function, of the form "find(line, output), to use when searching for lines in the output. """ if find is None: def find(o, l): try: return o.index(l) except ValueError: return None unexpected = [] for line in lines: if find(output, line) is not None: unexpected.append(line) if unexpected: if title is None: title = 'output' sys.stdout.write("Unexpected lines in %s:\n" % title) for line in unexpected: sys.stdout.write(' ' + repr(line) + '\n') sys.stdout.write(self.banner(title + ' ') + '\n') sys.stdout.write(output) self.fail_test() def must_not_contain_lines(self, lines, output, title=None, find=None): return self.must_not_contain_any_line(output, lines, title, find) def must_not_exist(self, *files): """Ensures that the specified file(s) must not exist. An individual file be specified as a list of directory names, in which case the pathname will be constructed by concatenating them. Exits FAILED if any of the files exists. """ files = [is_List(x) and os.path.join(*x) or x for x in files] existing = [x for x in files if os.path.exists(x) or os.path.islink(x)] if existing: print "Unexpected files exist: `%s'" % "', `".join(existing) self.fail_test(existing) def must_not_exist_any_of(self, files): """Ensures that none of the specified file(s) exists. The filenames can be given as a list, where each entry may be a single path string, or a tuple of folder names and the final filename that get concatenated. Supports wildcard names like 'foo-1.2.3-*.rpm'. Exits FAILED if any of the files exists. """ existing = [] for x in files: if is_List(x) or is_Tuple(x): xpath = os.path.join(*x) else: xpath = is_Sequence(x) and os.path.join(x) or x if glob.glob(xpath): existing.append(xpath) if existing: print "Unexpected files exist: `%s'" % "', `".join(existing) self.fail_test(existing) def must_not_be_writable(self, *files): """Ensures that the specified file(s) exist and are not writable. An individual file can be specified as a list of directory names, in which case the pathname will be constructed by concatenating them. Exits FAILED if any of the files does not exist or is writable. """ files = [is_List(x) and os.path.join(*x) or x for x in files] existing, missing = separate_files(files) writable = list(filter(is_writable, existing)) if missing: print "Missing files: `%s'" % "', `".join(missing) if writable: print "Writable files: `%s'" % "', `".join(writable) self.fail_test(missing + writable) def _complete(self, actual_stdout, expected_stdout, actual_stderr, expected_stderr, status, match): """ Post-processes running a subcommand, checking for failure status and displaying output appropriately. """ if _failed(self, status): expect = '' if status != 0: expect = " (expected %s)" % str(status) print "%s returned %s%s" % (self.program, _status(self), expect) print self.banner('STDOUT ') print actual_stdout print self.banner('STDERR ') print actual_stderr self.fail_test() if (expected_stdout is not None and not match(actual_stdout, expected_stdout)): self.diff(expected_stdout, actual_stdout, 'STDOUT ') if actual_stderr: print self.banner('STDERR ') print actual_stderr self.fail_test() if (expected_stderr is not None and not match(actual_stderr, expected_stderr)): print self.banner('STDOUT ') print actual_stdout self.diff(expected_stderr, actual_stderr, 'STDERR ') self.fail_test() def start(self, program = None, interpreter = None, options = None, arguments = None, universal_newlines = None, **kw): """ Starts a program or script for the test environment, handling any exceptions. """ arguments = self.options_arguments(options, arguments) try: return TestCmd.start(self, program, interpreter, arguments, universal_newlines, **kw) except KeyboardInterrupt: raise except Exception, e: print self.banner('STDOUT ') try: print self.stdout() except IndexError: pass print self.banner('STDERR ') try: print self.stderr() except IndexError: pass cmd_args = self.command_args(program, interpreter, arguments) sys.stderr.write('Exception trying to execute: %s\n' % cmd_args) raise e def finish(self, popen, stdout = None, stderr = '', status = 0, **kw): """ Finishes and waits for the process being run under control of the specified popen argument. Additional arguments are similar to those of the run() method: stdout The expected standard output from the command. A value of None means don't test standard output. stderr The expected error output from the command. A value of None means don't test error output. status The expected exit status from the command. A value of None means don't test exit status. """ TestCmd.finish(self, popen, **kw) match = kw.get('match', self.match) self._complete(self.stdout(), stdout, self.stderr(), stderr, status, match) def run(self, options = None, arguments = None, stdout = None, stderr = '', status = 0, **kw): """Runs the program under test, checking that the test succeeded. The parameters are the same as the base TestCmd.run() method, with the addition of: options Extra options that get appended to the beginning of the arguments. stdout The expected standard output from the command. A value of None means don't test standard output. stderr The expected error output from the command. A value of None means don't test error output. status The expected exit status from the command. A value of None means don't test exit status. By default, this expects a successful exit (status = 0), does not test standard output (stdout = None), and expects that error output is empty (stderr = ""). """ kw['arguments'] = self.options_arguments(options, arguments) try: match = kw['match'] del kw['match'] except KeyError: match = self.match TestCmd.run(self, **kw) self._complete(self.stdout(), stdout, self.stderr(), stderr, status, match) def skip_test(self, message="Skipping test.\n"): """Skips a test. Proper test-skipping behavior is dependent on the external TESTCOMMON_PASS_SKIPS environment variable. If set, we treat the skip as a PASS (exit 0), and otherwise treat it as NO RESULT. In either case, we print the specified message as an indication that the substance of the test was skipped. (This was originally added to support development under Aegis. Technically, skipping a test is a NO RESULT, but Aegis would treat that as a test failure and prevent the change from going to the next step. Since we ddn't want to force anyone using Aegis to have to install absolutely every tool used by the tests, we would actually report to Aegis that a skipped test has PASSED so that the workflow isn't held up.) """ if message: sys.stdout.write(message) sys.stdout.flush() pass_skips = os.environ.get('TESTCOMMON_PASS_SKIPS') if pass_skips in [None, 0, '0']: # skip=1 means skip this function when showing where this # result came from. They only care about the line where the # script called test.skip_test(), not the line number where # we call test.no_result(). self.no_result(skip=1) else: # We're under the development directory for this change, # so this is an Aegis invocation; pass the test (exit 0). self.pass_test() # Local Variables: # tab-width:4 # indent-tabs-mode:nil # End: # vim: set expandtab tabstop=4 shiftwidth=4:
mit
3,280,582,583,667,174,400
36.116373
88
0.580298
false
Pikecillo/genna
external/PyXML-0.8.4/test/dom/test_entity.py
1
1296
from TestSuite import EMPTY_NAMESPACE def test(tester): tester.startGroup('Entity') tester.startTest('Testing syntax') try: from xml.dom import Entity from xml.dom.Entity import Entity except: tester.error('Error in syntax', 1) tester.testDone() tester.startTest('Creating test environment') from xml.dom import implementation dt = implementation.createDocumentType('','','') doc = implementation.createDocument(EMPTY_NAMESPACE,'ROOT',dt) ent = doc._4dom_createEntity("-//FOURTHOUGHT//EN", "/tmp/entity", "") tester.testDone() tester.startTest('Testing attributes') if ent.publicId != '-//FOURTHOUGHT//EN': tester.error('publicId is incorrect') if ent.systemId != '/tmp/entity': tester.error('systemId is incorrect') tester.testDone() tester.startTest('Test cloneNode()') ent1 = ent.cloneNode(1) if ent1.publicId != ent.publicId: tester.error("cloneNode fails on publicId") if ent1.systemId != ent.systemId: tester.error("cloneNode fails on systemId") tester.testDone() return tester.groupDone() if __name__ == '__main__': import sys import TestSuite tester = TestSuite.TestSuite() retVal = test(tester) sys.exit(retVal)
gpl-2.0
7,661,269,185,216,156,000
24.411765
73
0.652778
false
opennode/waldur-mastermind
src/waldur_core/core/tests/test_admin.py
1
4743
from django.contrib.admin.sites import AdminSite from django.contrib.contenttypes.models import ContentType from django.test import TestCase, override_settings from reversion.models import Version from waldur_core.core.admin import UserAdmin from waldur_core.core.models import User from waldur_core.core.tests.helpers import override_waldur_core_settings from waldur_core.structure.admin import CustomerAdmin from waldur_core.structure.models import Customer from waldur_core.structure.tests.factories import CustomerFactory, UserFactory class MockRequest: pass class MockSuperUser: def has_perm(self, perm): return True request = MockRequest() request.user = MockSuperUser() class UserAdminTest(TestCase): def change_user(self, **kwargs): user = UserFactory() ma = UserAdmin(User, AdminSite()) UserChangeForm = ma.get_form(request, user, change=True) form_for_data = UserChangeForm(instance=user) post_data = form_for_data.initial post_data.update(kwargs) form = UserChangeForm(instance=user, data=post_data) form.save() user.refresh_from_db() return user def test_civil_number_is_stripped(self): user = self.change_user(civil_number=' NEW_CIVIL_NUMBER ') self.assertEqual(user.civil_number, 'NEW_CIVIL_NUMBER') def test_whitespace_civil_number_converts_to_none(self): user = self.change_user(civil_number=' ') self.assertEqual(user.civil_number, None) def test_empty_civil_number_converts_to_none(self): user = self.change_user(civil_number='') self.assertEqual(user.civil_number, None) class NativeNameAdminTest(TestCase): @override_waldur_core_settings(NATIVE_NAME_ENABLED=False) def test_native_name_is_omitted_in_user_admin_if_feature_is_not_enabled(self): user = UserFactory() ma = UserAdmin(User, AdminSite()) self.assertFalse('native_name' in ma.get_list_display(request)) self.assertFalse('native_name' in ma.get_search_fields(request)) self.assertTrue( all( 'native_name' not in fieldset[1]['fields'] for fieldset in ma.get_fieldsets(request, user) ) ) @override_waldur_core_settings(NATIVE_NAME_ENABLED=True) def test_native_name_is_rendered_in_user_admin_if_feature_is_enabled(self): user = UserFactory() ma = UserAdmin(User, AdminSite()) self.assertTrue('native_name' in ma.get_list_display(request)) self.assertTrue('native_name' in ma.get_search_fields(request)) self.assertTrue( any( 'native_name' in fieldset[1]['fields'] for fieldset in ma.get_fieldsets(request, user) ) ) @override_waldur_core_settings(NATIVE_NAME_ENABLED=False) def test_native_name_is_omitted_in_customer_admin_if_feature_is_disabled(self): customer = CustomerFactory() ma = CustomerAdmin(Customer, AdminSite()) self.assertFalse('native_name' in ma.get_fields(request, customer)) @override_waldur_core_settings(NATIVE_NAME_ENABLED=True) def test_native_name_is_rendered_in_customer_admin_if_feature_is_enabled(self): customer = CustomerFactory() ma = CustomerAdmin(Customer, AdminSite()) self.assertTrue('native_name' in ma.get_fields(request, customer)) class UserReversionTest(TestCase): @override_settings( AUTHENTICATION_BACKENDS=('django.contrib.auth.backends.ModelBackend',) ) def test_new_revisions_are_not_created_on_each_authentication(self): staff = UserFactory(is_staff=True, is_superuser=True) staff_password = User.objects.make_random_password() staff.set_password(staff_password) staff.save() self.assertTrue( self.client.login(username=staff.username, password=staff_password) ) url = '/admin/core/user/add/' user_password = User.objects.make_random_password() self.client.post( url, { 'username': 'test', 'password1': user_password, 'password2': user_password, }, ) user = User.objects.get(username='test') ct = ContentType.objects.get_for_model(user) self.assertEqual( Version.objects.filter(object_id=user.id, content_type=ct).count(), 1 ) user.is_staff = True user.save() self.assertTrue( self.client.login(username=user.username, password=user_password) ) self.assertEqual( Version.objects.filter(object_id=user.id, content_type=ct).count(), 1 )
mit
5,806,270,913,715,895,000
34.931818
83
0.654649
false
yro/veda_worker
veda_worker/generate_delivery.py
1
5380
import boto import boto.s3 from boto.s3.key import Key import hashlib import os from os.path import expanduser import sys import shutil from global_vars import * from reporting import ErrorObject from config import WorkerSetup homedir = expanduser("~") """ Gets specified Video and Encode object, and delivers file to endpoint from VEDA_WORK_DIR, retrieves and checks URL, and passes info to objects """ WS = WorkerSetup() if os.path.exists(WS.instance_yaml): WS.run() settings = WS.settings_dict class Deliverable(): def __init__(self, VideoObject, encode_profile, output_file, **kwargs): self.VideoObject = VideoObject self.encode_profile = encode_profile self.output_file = output_file self.jobid = kwargs.get('jobid', None) self.workdir = kwargs.get('workdir', None) self.endpoint_url = None self.hash_sum = 0 self.upload_filesize = 0 self.delivered = False def run(self): """ Get file particulars, upload to s3 """ if self.workdir is None: if self.jobid is None: self.workdir = os.path.join( homedir, 'ENCODE_WORKDIR' ) else: self.workdir = os.path.join( homedir, 'ENCODE_WORKDIR', self.jobid ) # file size self.upload_filesize = os.stat( os.path.join(self.workdir, self.output_file) ).st_size # hash sum self.hash_sum = hashlib.md5( open( os.path.join( self.workdir, self.output_file ), 'rb' ).read() ).hexdigest() if self.upload_filesize < MULTI_UPLOAD_BARRIER: """ Upload single part """ self.delivered = self._s3_upload() else: """ Upload multipart """ self.delivered = self._boto_multipart() if self.delivered is False: return None self.endpoint_url = '/'.join(( 'https://s3.amazonaws.com', settings['aws_deliver_bucket'], self.output_file )) return True def _s3_upload(self): """ Upload single part (under threshold in node_config) node_config MULTI_UPLOAD_BARRIER """ try: conn = boto.connect_s3( settings['aws_deliver_access_key'], settings['aws_deliver_secret_key'] ) delv_bucket = conn.get_bucket(settings['aws_deliver_bucket']) except: ErrorObject().print_error( message='Deliverable Fail: s3 Connection Error - Singleton' ) return False upload_key = Key(delv_bucket) upload_key.key = self.output_file upload_key.set_contents_from_filename( os.path.join(self.workdir, self.output_file) ) return True def _boto_multipart(self): """ Split file into chunks, upload chunks NOTE: this should never happen, as your files should be much smaller than this, but one never knows """ if not os.path.exists( os.path.join( self.workdir, self.output_file.split('.')[0] ) ): os.mkdir(os.path.join( self.workdir, self.output_file.split('.')[0] )) os.chdir( os.path.join(self.workdir, self.output_file.split('.')[0]) ) # Split File into chunks split_command = 'split -b10m -a5' # 5 part names of 5mb sys.stdout.write('%s : %s\n' % (self.output_file, 'Generating Multipart')) os.system(' '.join((split_command, os.path.join(self.workdir, self.output_file)))) sys.stdout.flush() # Connect to s3 try: c = boto.connect_s3( settings['aws_deliver_access_key'], settings['aws_deliver_secret_key'] ) b = c.lookup(settings['aws_deliver_bucket']) except: ErrorObject().print_error( message='Deliverable Fail: s3 Connection Error - Multipart' ) return False if b is None: ErrorObject().print_error( message='Deliverable Fail: s3 Bucket Connection Error' ) return False """ Upload and stitch parts """ mp = b.initiate_multipart_upload(self.output_file) x = 1 for fle in sorted(os.listdir( os.path.join( self.workdir, self.output_file.split('.')[0] ) )): sys.stdout.write('%s : %s\r' % (fle, 'uploading part')) fp = open(fle, 'rb') mp.upload_part_from_file(fp, x) fp.close() sys.stdout.flush() x += 1 sys.stdout.write('\n') mp.complete_upload() # Clean up multipart shutil.rmtree(os.path.join(self.workdir, self.output_file.split('.')[0])) return True def main(): pass if __name__ == '__main__': sys.exit(main())
gpl-3.0
7,279,386,653,945,648,000
26.589744
90
0.512639
false
yeleman/ramed-desktop
ramed/static.py
1
1980
#!/usr/bin/env python # -*- encoding: utf-8 -*- # vim: ai ts=4 sts=4 et sw=4 nu import os import sys import platform import json import logging IS_FROZEN = hasattr(sys, 'frozen') WORKING_DIR = os.path.dirname(os.path.abspath(sys.executable if IS_FROZEN else os.path.dirname(__file__))) print(WORKING_DIR) try: with open(os.path.join(WORKING_DIR, 'ramed.config'), encoding='UTF-8', mode='r') as f: CONFIG = json.load(f) except Exception as ex: if not isinstance(ex, IOError): print(repr(ex)) CONFIG = {} def get_log_level(value): level = value.upper() if level in ('DEBUG', 'INFO', 'WARNING', 'CRITICAL'): return getattr(logging, level) return logging.DEBUG class Constants(object): SYSTEM = platform.system() IS_FROZEN = IS_FROZEN WORKING_DIR = WORKING_DIR MAIN_SCRIPT = "ramed.py" APP_NAME = "RAMED Desktop" APP_TITLE = "Export des fichiers de collecte RAMED" APP_VERSION = "1.3" APP_DATE = "juillet 2016" IMAGES_FOLDER = os.path.join("media", "img") PNG_ICON = os.path.join(IMAGES_FOLDER, "logo.png") ICO_ICON = os.path.join(IMAGES_FOLDER, "logo.ico") DATE_DISPLAY_FORMAT = "dd/MM/yyyy" AUTHOR = "yɛlɛman s.à.r.l" AUTHOR_EMAIL = "[email protected]" AUTHOR_PHONE = "(223) 76 33 30 05" AUTHOR_COPY = "© RAMED/UNICEF/YELEMAN" VERBOSE = CONFIG.get('VERBOSE', False) LOG_LEVEL = get_log_level(CONFIG.get('LOG_LEVEL', 'DEBUG')) AGGREGATE_URL = CONFIG.get('AGGREGATE_URL', "http://192.168.0.10") DEFAULT_FOLDER_NAME = CONFIG.get('DEFAULT_FOLDER_NAME', "Données Collecte") ODK_TIMEOUT = CONFIG.get('ODK_TIMEOUT', 1) @classmethod def intpath(cls, path): # assume path is either a str path or a list of components if not isinstance(path, str): path = os.path.join(*path) return os.path.join(cls.WORKING_DIR, path)
mit
2,534,540,856,373,804,000
26.774648
79
0.616633
false
SpaceGroupUCL/qgisSpaceSyntaxToolkit
esstoolkit/external/networkx/algorithms/isomorphism/ismags.py
1
42775
""" **************** ISMAGS Algorithm **************** Provides a Python implementation of the ISMAGS algorithm. [1]_ It is capable of finding (subgraph) isomorphisms between two graphs, taking the symmetry of the subgraph into account. In most cases the VF2 algorithm is faster (at least on small graphs) than this implementation, but in some cases there is an exponential number of isomorphisms that are symmetrically equivalent. In that case, the ISMAGS algorithm will provide only one solution per symmetry group. >>> petersen = nx.petersen_graph() >>> ismags = nx.isomorphism.ISMAGS(petersen, petersen) >>> isomorphisms = list(ismags.isomorphisms_iter(symmetry=False)) >>> len(isomorphisms) 120 >>> isomorphisms = list(ismags.isomorphisms_iter(symmetry=True)) >>> answer = [{0: 0, 1: 1, 2: 2, 3: 3, 4: 4, 5: 5, 6: 6, 7:7, 8: 8, 9: 9}] >>> answer == isomorphisms True In addition, this implementation also provides an interface to find the largest common induced subgraph [2]_ between any two graphs, again taking symmetry into account. Given `graph` and `subgraph` the algorithm will remove nodes from the `subgraph` until `subgraph` is isomorphic to a subgraph of `graph`. Since only the symmetry of `subgraph` is taken into account it is worth thinking about how you provide your graphs: >>> graph1 = nx.path_graph(4) >>> graph2 = nx.star_graph(3) >>> ismags = nx.isomorphism.ISMAGS(graph1, graph2) >>> ismags.is_isomorphic() False >>> largest_common_subgraph = list(ismags.largest_common_subgraph()) >>> answer = [ ... {1: 0, 0: 1, 2: 2}, ... {2: 0, 1: 1, 3: 2} ... ] >>> answer == largest_common_subgraph True >>> ismags2 = nx.isomorphism.ISMAGS(graph2, graph1) >>> largest_common_subgraph = list(ismags2.largest_common_subgraph()) >>> answer = [ ... {1: 0, 0: 1, 2: 2}, ... {1: 0, 0: 1, 3: 2}, ... {2: 0, 0: 1, 1: 2}, ... {2: 0, 0: 1, 3: 2}, ... {3: 0, 0: 1, 1: 2}, ... {3: 0, 0: 1, 2: 2} ... ] >>> answer == largest_common_subgraph True However, when not taking symmetry into account, it doesn't matter: >>> largest_common_subgraph = list(ismags.largest_common_subgraph(symmetry=False)) >>> answer = [ ... {1: 0, 0: 1, 2: 2}, ... {1: 0, 2: 1, 0: 2}, ... {2: 0, 1: 1, 3: 2}, ... {2: 0, 3: 1, 1: 2}, ... {1: 0, 0: 1, 2: 3}, ... {1: 0, 2: 1, 0: 3}, ... {2: 0, 1: 1, 3: 3}, ... {2: 0, 3: 1, 1: 3}, ... {1: 0, 0: 2, 2: 3}, ... {1: 0, 2: 2, 0: 3}, ... {2: 0, 1: 2, 3: 3}, ... {2: 0, 3: 2, 1: 3} ... ] >>> answer == largest_common_subgraph True >>> largest_common_subgraph = list(ismags2.largest_common_subgraph(symmetry=False)) >>> answer = [ ... {1: 0, 0: 1, 2: 2}, ... {1: 0, 0: 1, 3: 2}, ... {2: 0, 0: 1, 1: 2}, ... {2: 0, 0: 1, 3: 2}, ... {3: 0, 0: 1, 1: 2}, ... {3: 0, 0: 1, 2: 2}, ... {1: 1, 0: 2, 2: 3}, ... {1: 1, 0: 2, 3: 3}, ... {2: 1, 0: 2, 1: 3}, ... {2: 1, 0: 2, 3: 3}, ... {3: 1, 0: 2, 1: 3}, ... {3: 1, 0: 2, 2: 3} ... ] >>> answer == largest_common_subgraph True Notes ----- - The current implementation works for undirected graphs only. The algorithm in general should work for directed graphs as well though. - Node keys for both provided graphs need to be fully orderable as well as hashable. - Node and edge equality is assumed to be transitive: if A is equal to B, and B is equal to C, then A is equal to C. References ---------- .. [1] M. Houbraken, S. Demeyer, T. Michoel, P. Audenaert, D. Colle, M. Pickavet, "The Index-Based Subgraph Matching Algorithm with General Symmetries (ISMAGS): Exploiting Symmetry for Faster Subgraph Enumeration", PLoS One 9(5): e97896, 2014. https://doi.org/10.1371/journal.pone.0097896 .. [2] https://en.wikipedia.org/wiki/Maximum_common_induced_subgraph """ __all__ = ["ISMAGS"] from collections import defaultdict, Counter from functools import reduce, wraps import itertools def are_all_equal(iterable): """ Returns ``True`` if and only if all elements in `iterable` are equal; and ``False`` otherwise. Parameters ---------- iterable: collections.abc.Iterable The container whose elements will be checked. Returns ------- bool ``True`` iff all elements in `iterable` compare equal, ``False`` otherwise. """ try: shape = iterable.shape except AttributeError: pass else: if len(shape) > 1: message = "The function does not works on multidimension arrays." raise NotImplementedError(message) from None iterator = iter(iterable) first = next(iterator, None) return all(item == first for item in iterator) def make_partitions(items, test): """ Partitions items into sets based on the outcome of ``test(item1, item2)``. Pairs of items for which `test` returns `True` end up in the same set. Parameters ---------- items : collections.abc.Iterable[collections.abc.Hashable] Items to partition test : collections.abc.Callable[collections.abc.Hashable, collections.abc.Hashable] A function that will be called with 2 arguments, taken from items. Should return `True` if those 2 items need to end up in the same partition, and `False` otherwise. Returns ------- list[set] A list of sets, with each set containing part of the items in `items`, such that ``all(test(*pair) for pair in itertools.combinations(set, 2)) == True`` Notes ----- The function `test` is assumed to be transitive: if ``test(a, b)`` and ``test(b, c)`` return ``True``, then ``test(a, c)`` must also be ``True``. """ partitions = [] for item in items: for partition in partitions: p_item = next(iter(partition)) if test(item, p_item): partition.add(item) break else: # No break partitions.append({item}) return partitions def partition_to_color(partitions): """ Creates a dictionary with for every item in partition for every partition in partitions the index of partition in partitions. Parameters ---------- partitions: collections.abc.Sequence[collections.abc.Iterable] As returned by :func:`make_partitions`. Returns ------- dict """ colors = dict() for color, keys in enumerate(partitions): for key in keys: colors[key] = color return colors def intersect(collection_of_sets): """ Given an collection of sets, returns the intersection of those sets. Parameters ---------- collection_of_sets: collections.abc.Collection[set] A collection of sets. Returns ------- set An intersection of all sets in `collection_of_sets`. Will have the same type as the item initially taken from `collection_of_sets`. """ collection_of_sets = list(collection_of_sets) first = collection_of_sets.pop() out = reduce(set.intersection, collection_of_sets, set(first)) return type(first)(out) class ISMAGS: """ Implements the ISMAGS subgraph matching algorith. [1]_ ISMAGS stands for "Index-based Subgraph Matching Algorithm with General Symmetries". As the name implies, it is symmetry aware and will only generate non-symmetric isomorphisms. Notes ----- The implementation imposes additional conditions compared to the VF2 algorithm on the graphs provided and the comparison functions (:attr:`node_equality` and :attr:`edge_equality`): - Node keys in both graphs must be orderable as well as hashable. - Equality must be transitive: if A is equal to B, and B is equal to C, then A must be equal to C. Attributes ---------- graph: networkx.Graph subgraph: networkx.Graph node_equality: collections.abc.Callable The function called to see if two nodes should be considered equal. It's signature looks like this: ``f(graph1: networkx.Graph, node1, graph2: networkx.Graph, node2) -> bool``. `node1` is a node in `graph1`, and `node2` a node in `graph2`. Constructed from the argument `node_match`. edge_equality: collections.abc.Callable The function called to see if two edges should be considered equal. It's signature looks like this: ``f(graph1: networkx.Graph, edge1, graph2: networkx.Graph, edge2) -> bool``. `edge1` is an edge in `graph1`, and `edge2` an edge in `graph2`. Constructed from the argument `edge_match`. References ---------- .. [1] M. Houbraken, S. Demeyer, T. Michoel, P. Audenaert, D. Colle, M. Pickavet, "The Index-Based Subgraph Matching Algorithm with General Symmetries (ISMAGS): Exploiting Symmetry for Faster Subgraph Enumeration", PLoS One 9(5): e97896, 2014. https://doi.org/10.1371/journal.pone.0097896 """ def __init__(self, graph, subgraph, node_match=None, edge_match=None, cache=None): """ Parameters ---------- graph: networkx.Graph subgraph: networkx.Graph node_match: collections.abc.Callable or None Function used to determine whether two nodes are equivalent. Its signature should look like ``f(n1: dict, n2: dict) -> bool``, with `n1` and `n2` node property dicts. See also :func:`~networkx.algorithms.isomorphism.categorical_node_match` and friends. If `None`, all nodes are considered equal. edge_match: collections.abc.Callable or None Function used to determine whether two edges are equivalent. Its signature should look like ``f(e1: dict, e2: dict) -> bool``, with `e1` and `e2` edge property dicts. See also :func:`~networkx.algorithms.isomorphism.categorical_edge_match` and friends. If `None`, all edges are considered equal. cache: collections.abc.Mapping A cache used for caching graph symmetries. """ # TODO: graph and subgraph setter methods that invalidate the caches. # TODO: allow for precomputed partitions and colors self.graph = graph self.subgraph = subgraph self._symmetry_cache = cache # Naming conventions are taken from the original paper. For your # sanity: # sg: subgraph # g: graph # e: edge(s) # n: node(s) # So: sgn means "subgraph nodes". self._sgn_partitions_ = None self._sge_partitions_ = None self._sgn_colors_ = None self._sge_colors_ = None self._gn_partitions_ = None self._ge_partitions_ = None self._gn_colors_ = None self._ge_colors_ = None self._node_compat_ = None self._edge_compat_ = None if node_match is None: self.node_equality = self._node_match_maker(lambda n1, n2: True) self._sgn_partitions_ = [set(self.subgraph.nodes)] self._gn_partitions_ = [set(self.graph.nodes)] self._node_compat_ = {0: 0} else: self.node_equality = self._node_match_maker(node_match) if edge_match is None: self.edge_equality = self._edge_match_maker(lambda e1, e2: True) self._sge_partitions_ = [set(self.subgraph.edges)] self._ge_partitions_ = [set(self.graph.edges)] self._edge_compat_ = {0: 0} else: self.edge_equality = self._edge_match_maker(edge_match) @property def _sgn_partitions(self): if self._sgn_partitions_ is None: def nodematch(node1, node2): return self.node_equality(self.subgraph, node1, self.subgraph, node2) self._sgn_partitions_ = make_partitions(self.subgraph.nodes, nodematch) return self._sgn_partitions_ @property def _sge_partitions(self): if self._sge_partitions_ is None: def edgematch(edge1, edge2): return self.edge_equality(self.subgraph, edge1, self.subgraph, edge2) self._sge_partitions_ = make_partitions(self.subgraph.edges, edgematch) return self._sge_partitions_ @property def _gn_partitions(self): if self._gn_partitions_ is None: def nodematch(node1, node2): return self.node_equality(self.graph, node1, self.graph, node2) self._gn_partitions_ = make_partitions(self.graph.nodes, nodematch) return self._gn_partitions_ @property def _ge_partitions(self): if self._ge_partitions_ is None: def edgematch(edge1, edge2): return self.edge_equality(self.graph, edge1, self.graph, edge2) self._ge_partitions_ = make_partitions(self.graph.edges, edgematch) return self._ge_partitions_ @property def _sgn_colors(self): if self._sgn_colors_ is None: self._sgn_colors_ = partition_to_color(self._sgn_partitions) return self._sgn_colors_ @property def _sge_colors(self): if self._sge_colors_ is None: self._sge_colors_ = partition_to_color(self._sge_partitions) return self._sge_colors_ @property def _gn_colors(self): if self._gn_colors_ is None: self._gn_colors_ = partition_to_color(self._gn_partitions) return self._gn_colors_ @property def _ge_colors(self): if self._ge_colors_ is None: self._ge_colors_ = partition_to_color(self._ge_partitions) return self._ge_colors_ @property def _node_compatibility(self): if self._node_compat_ is not None: return self._node_compat_ self._node_compat_ = {} for sgn_part_color, gn_part_color in itertools.product( range(len(self._sgn_partitions)), range(len(self._gn_partitions)) ): sgn = next(iter(self._sgn_partitions[sgn_part_color])) gn = next(iter(self._gn_partitions[gn_part_color])) if self.node_equality(self.subgraph, sgn, self.graph, gn): self._node_compat_[sgn_part_color] = gn_part_color return self._node_compat_ @property def _edge_compatibility(self): if self._edge_compat_ is not None: return self._edge_compat_ self._edge_compat_ = {} for sge_part_color, ge_part_color in itertools.product( range(len(self._sge_partitions)), range(len(self._ge_partitions)) ): sge = next(iter(self._sge_partitions[sge_part_color])) ge = next(iter(self._ge_partitions[ge_part_color])) if self.edge_equality(self.subgraph, sge, self.graph, ge): self._edge_compat_[sge_part_color] = ge_part_color return self._edge_compat_ @staticmethod def _node_match_maker(cmp): @wraps(cmp) def comparer(graph1, node1, graph2, node2): return cmp(graph1.nodes[node1], graph2.nodes[node2]) return comparer @staticmethod def _edge_match_maker(cmp): @wraps(cmp) def comparer(graph1, edge1, graph2, edge2): return cmp(graph1.edges[edge1], graph2.edges[edge2]) return comparer def find_isomorphisms(self, symmetry=True): """Find all subgraph isomorphisms between subgraph and graph Finds isomorphisms where :attr:`subgraph` <= :attr:`graph`. Parameters ---------- symmetry: bool Whether symmetry should be taken into account. If False, found isomorphisms may be symmetrically equivalent. Yields ------ dict The found isomorphism mappings of {graph_node: subgraph_node}. """ # The networkx VF2 algorithm is slightly funny in when it yields an # empty dict and when not. if not self.subgraph: yield {} return elif not self.graph: return elif len(self.graph) < len(self.subgraph): return if symmetry: _, cosets = self.analyze_symmetry( self.subgraph, self._sgn_partitions, self._sge_colors ) constraints = self._make_constraints(cosets) else: constraints = [] candidates = self._find_nodecolor_candidates() la_candidates = self._get_lookahead_candidates() for sgn in self.subgraph: extra_candidates = la_candidates[sgn] if extra_candidates: candidates[sgn] = candidates[sgn] | {frozenset(extra_candidates)} if any(candidates.values()): start_sgn = min(candidates, key=lambda n: min(candidates[n], key=len)) candidates[start_sgn] = (intersect(candidates[start_sgn]),) yield from self._map_nodes(start_sgn, candidates, constraints) else: return @staticmethod def _find_neighbor_color_count(graph, node, node_color, edge_color): """ For `node` in `graph`, count the number of edges of a specific color it has to nodes of a specific color. """ counts = Counter() neighbors = graph[node] for neighbor in neighbors: n_color = node_color[neighbor] if (node, neighbor) in edge_color: e_color = edge_color[node, neighbor] else: e_color = edge_color[neighbor, node] counts[e_color, n_color] += 1 return counts def _get_lookahead_candidates(self): """ Returns a mapping of {subgraph node: collection of graph nodes} for which the graph nodes are feasible candidates for the subgraph node, as determined by looking ahead one edge. """ g_counts = {} for gn in self.graph: g_counts[gn] = self._find_neighbor_color_count( self.graph, gn, self._gn_colors, self._ge_colors ) candidates = defaultdict(set) for sgn in self.subgraph: sg_count = self._find_neighbor_color_count( self.subgraph, sgn, self._sgn_colors, self._sge_colors ) new_sg_count = Counter() for (sge_color, sgn_color), count in sg_count.items(): try: ge_color = self._edge_compatibility[sge_color] gn_color = self._node_compatibility[sgn_color] except KeyError: pass else: new_sg_count[ge_color, gn_color] = count for gn, g_count in g_counts.items(): if all(new_sg_count[x] <= g_count[x] for x in new_sg_count): # Valid candidate candidates[sgn].add(gn) return candidates def largest_common_subgraph(self, symmetry=True): """ Find the largest common induced subgraphs between :attr:`subgraph` and :attr:`graph`. Parameters ---------- symmetry: bool Whether symmetry should be taken into account. If False, found largest common subgraphs may be symmetrically equivalent. Yields ------ dict The found isomorphism mappings of {graph_node: subgraph_node}. """ # The networkx VF2 algorithm is slightly funny in when it yields an # empty dict and when not. if not self.subgraph: yield {} return elif not self.graph: return if symmetry: _, cosets = self.analyze_symmetry( self.subgraph, self._sgn_partitions, self._sge_colors ) constraints = self._make_constraints(cosets) else: constraints = [] candidates = self._find_nodecolor_candidates() if any(candidates.values()): yield from self._largest_common_subgraph(candidates, constraints) else: return def analyze_symmetry(self, graph, node_partitions, edge_colors): """ Find a minimal set of permutations and corresponding co-sets that describe the symmetry of :attr:`subgraph`. Returns ------- set[frozenset] The found permutations. This is a set of frozenset of pairs of node keys which can be exchanged without changing :attr:`subgraph`. dict[collections.abc.Hashable, set[collections.abc.Hashable]] The found co-sets. The co-sets is a dictionary of {node key: set of node keys}. Every key-value pair describes which `values` can be interchanged without changing nodes less than `key`. """ if self._symmetry_cache is not None: key = hash( ( tuple(graph.nodes), tuple(graph.edges), tuple(map(tuple, node_partitions)), tuple(edge_colors.items()), ) ) if key in self._symmetry_cache: return self._symmetry_cache[key] node_partitions = list( self._refine_node_partitions(graph, node_partitions, edge_colors) ) assert len(node_partitions) == 1 node_partitions = node_partitions[0] permutations, cosets = self._process_ordered_pair_partitions( graph, node_partitions, node_partitions, edge_colors ) if self._symmetry_cache is not None: self._symmetry_cache[key] = permutations, cosets return permutations, cosets def is_isomorphic(self, symmetry=False): """ Returns True if :attr:`graph` is isomorphic to :attr:`subgraph` and False otherwise. Returns ------- bool """ return len(self.subgraph) == len(self.graph) and self.subgraph_is_isomorphic( symmetry ) def subgraph_is_isomorphic(self, symmetry=False): """ Returns True if a subgraph of :attr:`graph` is isomorphic to :attr:`subgraph` and False otherwise. Returns ------- bool """ # symmetry=False, since we only need to know whether there is any # example; figuring out all symmetry elements probably costs more time # than it gains. isom = next(self.subgraph_isomorphisms_iter(symmetry=symmetry), None) return isom is not None def isomorphisms_iter(self, symmetry=True): """ Does the same as :meth:`find_isomorphisms` if :attr:`graph` and :attr:`subgraph` have the same number of nodes. """ if len(self.graph) == len(self.subgraph): yield from self.subgraph_isomorphisms_iter(symmetry=symmetry) def subgraph_isomorphisms_iter(self, symmetry=True): """Alternative name for :meth:`find_isomorphisms`.""" return self.find_isomorphisms(symmetry) def _find_nodecolor_candidates(self): """ Per node in subgraph find all nodes in graph that have the same color. """ candidates = defaultdict(set) for sgn in self.subgraph.nodes: sgn_color = self._sgn_colors[sgn] if sgn_color in self._node_compatibility: gn_color = self._node_compatibility[sgn_color] candidates[sgn].add(frozenset(self._gn_partitions[gn_color])) else: candidates[sgn].add(frozenset()) candidates = dict(candidates) for sgn, options in candidates.items(): candidates[sgn] = frozenset(options) return candidates @staticmethod def _make_constraints(cosets): """ Turn cosets into constraints. """ constraints = [] for node_i, node_ts in cosets.items(): for node_t in node_ts: if node_i != node_t: # Node i must be smaller than node t. constraints.append((node_i, node_t)) return constraints @staticmethod def _find_node_edge_color(graph, node_colors, edge_colors): """ For every node in graph, come up with a color that combines 1) the color of the node, and 2) the number of edges of a color to each type of node. """ counts = defaultdict(lambda: defaultdict(int)) for node1, node2 in graph.edges: if (node1, node2) in edge_colors: # FIXME directed graphs ecolor = edge_colors[node1, node2] else: ecolor = edge_colors[node2, node1] # Count per node how many edges it has of what color to nodes of # what color counts[node1][ecolor, node_colors[node2]] += 1 counts[node2][ecolor, node_colors[node1]] += 1 node_edge_colors = dict() for node in graph.nodes: node_edge_colors[node] = node_colors[node], set(counts[node].items()) return node_edge_colors @staticmethod def _get_permutations_by_length(items): """ Get all permutations of items, but only permute items with the same length. >>> found = list(ISMAGS._get_permutations_by_length([[1], [2], [3, 4], [4, 5]])) >>> answer = [ ... (([1], [2]), ([3, 4], [4, 5])), ... (([1], [2]), ([4, 5], [3, 4])), ... (([2], [1]), ([3, 4], [4, 5])), ... (([2], [1]), ([4, 5], [3, 4])), ... ] >>> found == answer True """ by_len = defaultdict(list) for item in items: by_len[len(item)].append(item) yield from itertools.product( *(itertools.permutations(by_len[l]) for l in sorted(by_len)) ) @classmethod def _refine_node_partitions(cls, graph, node_partitions, edge_colors, branch=False): """ Given a partition of nodes in graph, make the partitions smaller such that all nodes in a partition have 1) the same color, and 2) the same number of edges to specific other partitions. """ def equal_color(node1, node2): return node_edge_colors[node1] == node_edge_colors[node2] node_partitions = list(node_partitions) node_colors = partition_to_color(node_partitions) node_edge_colors = cls._find_node_edge_color(graph, node_colors, edge_colors) if all( are_all_equal(node_edge_colors[node] for node in partition) for partition in node_partitions ): yield node_partitions return new_partitions = [] output = [new_partitions] for partition in node_partitions: if not are_all_equal(node_edge_colors[node] for node in partition): refined = make_partitions(partition, equal_color) if ( branch and len(refined) != 1 and len({len(r) for r in refined}) != len([len(r) for r in refined]) ): # This is where it breaks. There are multiple new cells # in refined with the same length, and their order # matters. # So option 1) Hit it with a big hammer and simply make all # orderings. permutations = cls._get_permutations_by_length(refined) new_output = [] for n_p in output: for permutation in permutations: new_output.append(n_p + list(permutation[0])) output = new_output else: for n_p in output: n_p.extend(sorted(refined, key=len)) else: for n_p in output: n_p.append(partition) for n_p in output: yield from cls._refine_node_partitions(graph, n_p, edge_colors, branch) def _edges_of_same_color(self, sgn1, sgn2): """ Returns all edges in :attr:`graph` that have the same colour as the edge between sgn1 and sgn2 in :attr:`subgraph`. """ if (sgn1, sgn2) in self._sge_colors: # FIXME directed graphs sge_color = self._sge_colors[sgn1, sgn2] else: sge_color = self._sge_colors[sgn2, sgn1] if sge_color in self._edge_compatibility: ge_color = self._edge_compatibility[sge_color] g_edges = self._ge_partitions[ge_color] else: g_edges = [] return g_edges def _map_nodes(self, sgn, candidates, constraints, mapping=None, to_be_mapped=None): """ Find all subgraph isomorphisms honoring constraints. """ if mapping is None: mapping = {} else: mapping = mapping.copy() if to_be_mapped is None: to_be_mapped = set(self.subgraph.nodes) # Note, we modify candidates here. Doesn't seem to affect results, but # remember this. # candidates = candidates.copy() sgn_candidates = intersect(candidates[sgn]) candidates[sgn] = frozenset([sgn_candidates]) for gn in sgn_candidates: # We're going to try to map sgn to gn. if gn in mapping.values() or sgn not in to_be_mapped: # gn is already mapped to something continue # pragma: no cover # REDUCTION and COMBINATION mapping[sgn] = gn # BASECASE if to_be_mapped == set(mapping.keys()): yield {v: k for k, v in mapping.items()} continue left_to_map = to_be_mapped - set(mapping.keys()) new_candidates = candidates.copy() sgn_neighbours = set(self.subgraph[sgn]) not_gn_neighbours = set(self.graph.nodes) - set(self.graph[gn]) for sgn2 in left_to_map: if sgn2 not in sgn_neighbours: gn2_options = not_gn_neighbours else: # Get all edges to gn of the right color: g_edges = self._edges_of_same_color(sgn, sgn2) # FIXME directed graphs # And all nodes involved in those which are connected to gn gn2_options = {n for e in g_edges for n in e if gn in e} # Node color compatibility should be taken care of by the # initial candidate lists made by find_subgraphs # Add gn2_options to the right collection. Since new_candidates # is a dict of frozensets of frozensets of node indices it's # a bit clunky. We can't do .add, and + also doesn't work. We # could do |, but I deem union to be clearer. new_candidates[sgn2] = new_candidates[sgn2].union( [frozenset(gn2_options)] ) if (sgn, sgn2) in constraints: gn2_options = {gn2 for gn2 in self.graph if gn2 > gn} elif (sgn2, sgn) in constraints: gn2_options = {gn2 for gn2 in self.graph if gn2 < gn} else: continue # pragma: no cover new_candidates[sgn2] = new_candidates[sgn2].union( [frozenset(gn2_options)] ) # The next node is the one that is unmapped and has fewest # candidates # Pylint disables because it's a one-shot function. next_sgn = min( left_to_map, key=lambda n: min(new_candidates[n], key=len) ) # pylint: disable=cell-var-from-loop yield from self._map_nodes( next_sgn, new_candidates, constraints, mapping=mapping, to_be_mapped=to_be_mapped, ) # Unmap sgn-gn. Strictly not necessary since it'd get overwritten # when making a new mapping for sgn. # del mapping[sgn] def _largest_common_subgraph(self, candidates, constraints, to_be_mapped=None): """ Find all largest common subgraphs honoring constraints. """ if to_be_mapped is None: to_be_mapped = {frozenset(self.subgraph.nodes)} # The LCS problem is basically a repeated subgraph isomorphism problem # with smaller and smaller subgraphs. We store the nodes that are # "part of" the subgraph in to_be_mapped, and we make it a little # smaller every iteration. # pylint disable becuase it's guarded against by default value current_size = len( next(iter(to_be_mapped), []) ) # pylint: disable=stop-iteration-return found_iso = False if current_size <= len(self.graph): # There's no point in trying to find isomorphisms of # graph >= subgraph if subgraph has more nodes than graph. # Try the isomorphism first with the nodes with lowest ID. So sort # them. Those are more likely to be part of the final # correspondence. This makes finding the first answer(s) faster. In # theory. for nodes in sorted(to_be_mapped, key=sorted): # Find the isomorphism between subgraph[to_be_mapped] <= graph next_sgn = min(nodes, key=lambda n: min(candidates[n], key=len)) isomorphs = self._map_nodes( next_sgn, candidates, constraints, to_be_mapped=nodes ) # This is effectively `yield from isomorphs`, except that we look # whether an item was yielded. try: item = next(isomorphs) except StopIteration: pass else: yield item yield from isomorphs found_iso = True # BASECASE if found_iso or current_size == 1: # Shrinking has no point because either 1) we end up with a smaller # common subgraph (and we want the largest), or 2) there'll be no # more subgraph. return left_to_be_mapped = set() for nodes in to_be_mapped: for sgn in nodes: # We're going to remove sgn from to_be_mapped, but subject to # symmetry constraints. We know that for every constraint we # have those subgraph nodes are equal. So whenever we would # remove the lower part of a constraint, remove the higher # instead. This is all dealth with by _remove_node. And because # left_to_be_mapped is a set, we don't do double work. # And finally, make the subgraph one node smaller. # REDUCTION new_nodes = self._remove_node(sgn, nodes, constraints) left_to_be_mapped.add(new_nodes) # COMBINATION yield from self._largest_common_subgraph( candidates, constraints, to_be_mapped=left_to_be_mapped ) @staticmethod def _remove_node(node, nodes, constraints): """ Returns a new set where node has been removed from nodes, subject to symmetry constraints. We know, that for every constraint we have those subgraph nodes are equal. So whenever we would remove the lower part of a constraint, remove the higher instead. """ while True: for low, high in constraints: if low == node and high in nodes: node = high break else: # no break, couldn't find node in constraints break return frozenset(nodes - {node}) @staticmethod def _find_permutations(top_partitions, bottom_partitions): """ Return the pairs of top/bottom partitions where the partitions are different. Ensures that all partitions in both top and bottom partitions have size 1. """ # Find permutations permutations = set() for top, bot in zip(top_partitions, bottom_partitions): # top and bot have only one element if len(top) != 1 or len(bot) != 1: raise IndexError( "Not all nodes are coupled. This is" f" impossible: {top_partitions}, {bottom_partitions}" ) if top != bot: permutations.add(frozenset((next(iter(top)), next(iter(bot))))) return permutations @staticmethod def _update_orbits(orbits, permutations): """ Update orbits based on permutations. Orbits is modified in place. For every pair of items in permutations their respective orbits are merged. """ for permutation in permutations: node, node2 = permutation # Find the orbits that contain node and node2, and replace the # orbit containing node with the union first = second = None for idx, orbit in enumerate(orbits): if first is not None and second is not None: break if node in orbit: first = idx if node2 in orbit: second = idx if first != second: orbits[first].update(orbits[second]) del orbits[second] def _couple_nodes( self, top_partitions, bottom_partitions, pair_idx, t_node, b_node, graph, edge_colors, ): """ Generate new partitions from top and bottom_partitions where t_node is coupled to b_node. pair_idx is the index of the partitions where t_ and b_node can be found. """ t_partition = top_partitions[pair_idx] b_partition = bottom_partitions[pair_idx] assert t_node in t_partition and b_node in b_partition # Couple node to node2. This means they get their own partition new_top_partitions = [top.copy() for top in top_partitions] new_bottom_partitions = [bot.copy() for bot in bottom_partitions] new_t_groups = {t_node}, t_partition - {t_node} new_b_groups = {b_node}, b_partition - {b_node} # Replace the old partitions with the coupled ones del new_top_partitions[pair_idx] del new_bottom_partitions[pair_idx] new_top_partitions[pair_idx:pair_idx] = new_t_groups new_bottom_partitions[pair_idx:pair_idx] = new_b_groups new_top_partitions = self._refine_node_partitions( graph, new_top_partitions, edge_colors ) new_bottom_partitions = self._refine_node_partitions( graph, new_bottom_partitions, edge_colors, branch=True ) new_top_partitions = list(new_top_partitions) assert len(new_top_partitions) == 1 new_top_partitions = new_top_partitions[0] for bot in new_bottom_partitions: yield list(new_top_partitions), bot def _process_ordered_pair_partitions( self, graph, top_partitions, bottom_partitions, edge_colors, orbits=None, cosets=None, ): """ Processes ordered pair partitions as per the reference paper. Finds and returns all permutations and cosets that leave the graph unchanged. """ if orbits is None: orbits = [{node} for node in graph.nodes] else: # Note that we don't copy orbits when we are given one. This means # we leak information between the recursive branches. This is # intentional! orbits = orbits if cosets is None: cosets = {} else: cosets = cosets.copy() assert all( len(t_p) == len(b_p) for t_p, b_p in zip(top_partitions, bottom_partitions) ) # BASECASE if all(len(top) == 1 for top in top_partitions): # All nodes are mapped permutations = self._find_permutations(top_partitions, bottom_partitions) self._update_orbits(orbits, permutations) if permutations: return [permutations], cosets else: return [], cosets permutations = [] unmapped_nodes = { (node, idx) for idx, t_partition in enumerate(top_partitions) for node in t_partition if len(t_partition) > 1 } node, pair_idx = min(unmapped_nodes) b_partition = bottom_partitions[pair_idx] for node2 in sorted(b_partition): if len(b_partition) == 1: # Can never result in symmetry continue if node != node2 and any( node in orbit and node2 in orbit for orbit in orbits ): # Orbit prune branch continue # REDUCTION # Couple node to node2 partitions = self._couple_nodes( top_partitions, bottom_partitions, pair_idx, node, node2, graph, edge_colors, ) for opp in partitions: new_top_partitions, new_bottom_partitions = opp new_perms, new_cosets = self._process_ordered_pair_partitions( graph, new_top_partitions, new_bottom_partitions, edge_colors, orbits, cosets, ) # COMBINATION permutations += new_perms cosets.update(new_cosets) mapped = { k for top, bottom in zip(top_partitions, bottom_partitions) for k in top if len(top) == 1 and top == bottom } ks = {k for k in graph.nodes if k < node} # Have all nodes with ID < node been mapped? find_coset = ks <= mapped and node not in cosets if find_coset: # Find the orbit that contains node for orbit in orbits: if node in orbit: cosets[node] = orbit.copy() return permutations, cosets
gpl-3.0
-174,510,596,902,812,900
36.002595
88
0.56678
false
ngoix/OCRF
sklearn/datasets/fetch_ml_mieux.py
1
13778
from zipfile import ZipFile from io import BytesIO import logging from os.path import exists, join try: from urllib2 import urlopen except ImportError: from urllib.request import urlopen import numpy as np from .base import get_data_home from .base import Bunch from .base import _pkl_filepath from ..utils.fixes import makedirs from ..externals import joblib from ..utils import check_random_state logger = logging.getLogger() def fetch_spambase(data_home=None, download_if_missing=True, random_state=None, shuffle=False): """Load the spambase dataset, downloading it if necessary. Read more in the :ref:`User Guide <datasets>`. Parameters ---------- data_home : string, optional Specify another download and cache folder for the datasets. By default all scikit learn data is stored in '~/scikit_learn_data' subfolders. download_if_missing : boolean, default=True If False, raise a IOError if the data is not locally available instead of trying to download the data from the source site. random_state : int, RandomState instance or None, optional (default=None) Random state for shuffling the dataset. If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. shuffle : bool, default=False Whether to shuffle dataset. Returns ------- dataset : dict-like object with the following attributes: dataset.data : numpy array of shape (581012, 54) Each row corresponds to the 54 features in the dataset. dataset.target : numpy array of shape (581012,) Each value corresponds to one of the 7 forest spambases with values ranging between 1 to 7. dataset.DESCR : string Description of the forest spambase dataset. """ URL = ('http://archive.ics.uci.edu/ml/' 'machine-learning-databases/spambase/spambase.zip') data_home = get_data_home(data_home=data_home) spambase_dir = join(data_home, "spambase") samples_path = _pkl_filepath(spambase_dir, "samples") targets_path = _pkl_filepath(spambase_dir, "targets") available = exists(samples_path) if download_if_missing and not available: makedirs(spambase_dir, exist_ok=True) logger.warning("Downloading %s" % URL) f = BytesIO(urlopen(URL).read()) file_ = ZipFile(f, mode='r').open('spambase.data') Xy = np.genfromtxt(file_, delimiter=',') X = Xy[:, :-1] y = Xy[:, -1].astype(np.int32) joblib.dump(X, samples_path, compress=9) joblib.dump(y, targets_path, compress=9) try: X, y except NameError: X = joblib.load(samples_path) y = joblib.load(targets_path) if shuffle: ind = np.arange(X.shape[0]) rng = check_random_state(random_state) rng.shuffle(ind) X = X[ind] y = y[ind] return Bunch(data=X, target=y, DESCR=__doc__) def fetch_annthyroid(data_home=None, download_if_missing=True, random_state=None, shuffle=False): """Load the annthyroid dataset, downloading it if necessary. """ URL1 = ('http://archive.ics.uci.edu/ml/' 'machine-learning-databases/thyroid-disease/ann-train.data') URL2 = ('http://archive.ics.uci.edu/ml/' 'machine-learning-databases/thyroid-disease/ann-test.data') data_home = get_data_home(data_home=data_home) annthyroid_dir = join(data_home, "annthyroid") samples_path = _pkl_filepath(annthyroid_dir, "samples") targets_path = _pkl_filepath(annthyroid_dir, "targets") available = exists(samples_path) if download_if_missing and not available: makedirs(annthyroid_dir, exist_ok=True) logger.warning("Downloading %s" % URL1) f = BytesIO(urlopen(URL1).read()) # ou X = np.load(f) Xy1 = np.genfromtxt(f, delimiter=' ') logger.warning("Downloading %s" % URL2) f = BytesIO(urlopen(URL2).read()) Xy2 = np.genfromtxt(f, delimiter=' ') Xy = np.r_[Xy1, Xy2] X = Xy[:, :-1] y = Xy[:, -1].astype(np.int32) joblib.dump(X, samples_path, compress=9) joblib.dump(y, targets_path, compress=9) try: X, y except NameError: X = joblib.load(samples_path) y = joblib.load(targets_path) if shuffle: ind = np.arange(X.shape[0]) rng = check_random_state(random_state) rng.shuffle(ind) X = X[ind] y = y[ind] return Bunch(data=X, target=y, DESCR=__doc__) def fetch_arrhythmia(data_home=None, download_if_missing=True, random_state=None, shuffle=False): """Load the arrhythmia dataset, downloading it if necessary. """ URL = ('http://archive.ics.uci.edu/ml/' 'machine-learning-databases/arrhythmia/arrhythmia.data') data_home = get_data_home(data_home=data_home) arrhythmia_dir = join(data_home, "arrhythmia") samples_path = _pkl_filepath(arrhythmia_dir, "samples") targets_path = _pkl_filepath(arrhythmia_dir, "targets") available = exists(samples_path) if download_if_missing and not available: makedirs(arrhythmia_dir, exist_ok=True) logger.warning("Downloading %s" % URL) f = BytesIO(urlopen(URL).read()) # ou X = np.load(f) Xy = np.genfromtxt(f, delimiter=',') X = Xy[:, :-1] y = Xy[:, -1].astype(np.int32) joblib.dump(X, samples_path, compress=9) joblib.dump(y, targets_path, compress=9) try: X, y except NameError: X = joblib.load(samples_path) y = joblib.load(targets_path) if shuffle: ind = np.arange(X.shape[0]) rng = check_random_state(random_state) rng.shuffle(ind) X = X[ind] y = y[ind] return Bunch(data=X, target=y, DESCR=__doc__) def fetch_pendigits(data_home=None, download_if_missing=True, random_state=None, shuffle=False): """Load the pendigits dataset, downloading it if necessary. """ URL1 = ('http://archive.ics.uci.edu/ml/' 'machine-learning-databases/pendigits/pendigits.tra') URL2 = ('http://archive.ics.uci.edu/ml/' 'machine-learning-databases/pendigits/pendigits.tes') data_home = get_data_home(data_home=data_home) pendigits_dir = join(data_home, "pendigits") samples_path = _pkl_filepath(pendigits_dir, "samples") targets_path = _pkl_filepath(pendigits_dir, "targets") available = exists(samples_path) if download_if_missing and not available: makedirs(pendigits_dir, exist_ok=True) logger.warning("Downloading %s" % URL1) f = BytesIO(urlopen(URL1).read()) # ou X = np.load(f) Xy1 = np.genfromtxt(f, delimiter=',') logger.warning("Downloading %s" % URL2) f = BytesIO(urlopen(URL2).read()) Xy2 = np.genfromtxt(f, delimiter=',') Xy = np.r_[Xy1, Xy2] X = Xy[:, :-1] y = Xy[:, -1].astype(np.int32) joblib.dump(X, samples_path, compress=9) joblib.dump(y, targets_path, compress=9) try: X, y except NameError: X = joblib.load(samples_path) y = joblib.load(targets_path) if shuffle: ind = np.arange(X.shape[0]) rng = check_random_state(random_state) rng.shuffle(ind) X = X[ind] y = y[ind] return Bunch(data=X, target=y, DESCR=__doc__) def fetch_pima(data_home=None, download_if_missing=True, random_state=None, shuffle=False): """Load the pima-indians-diabetes dataset, downloading it if necessary. """ URL = ('http://archive.ics.uci.edu/ml/machine-learning-databases/' 'pima-indians-diabetes/pima-indians-diabetes.data') data_home = get_data_home(data_home=data_home) pima_dir = join(data_home, "pima") samples_path = _pkl_filepath(pima_dir, "samples") targets_path = _pkl_filepath(pima_dir, "targets") available = exists(samples_path) if download_if_missing and not available: makedirs(pima_dir, exist_ok=True) logger.warning("Downloading %s" % URL) f = BytesIO(urlopen(URL).read()) # ou X = np.load(f) Xy = np.genfromtxt(f, delimiter=',') X = Xy[:, :-1] y = Xy[:, -1].astype(np.int32) joblib.dump(X, samples_path, compress=9) joblib.dump(y, targets_path, compress=9) try: X, y except NameError: X = joblib.load(samples_path) y = joblib.load(targets_path) if shuffle: ind = np.arange(X.shape[0]) rng = check_random_state(random_state) rng.shuffle(ind) X = X[ind] y = y[ind] return Bunch(data=X, target=y, DESCR=__doc__) def fetch_wilt(data_home=None, download_if_missing=True, random_state=None, shuffle=False): """Load the wilt dataset, downloading it if necessary. """ URL = ('http://archive.ics.uci.edu/ml/' 'machine-learning-databases/00285/wilt.zip') data_home = get_data_home(data_home=data_home) wilt_dir = join(data_home, "wilt") samples_path = _pkl_filepath(wilt_dir, "samples") targets_path = _pkl_filepath(wilt_dir, "targets") available = exists(samples_path) if download_if_missing and not available: makedirs(wilt_dir, exist_ok=True) logger.warning("Downloading %s" % URL) f = BytesIO(urlopen(URL).read()) # ou X = np.load(f) ff = ZipFile(f, mode='r') file1 = ff.open('training.csv') Xy1 = np.genfromtxt(file1, delimiter=',', dtype=object) file2 = ff.open('testing.csv') Xy2 = np.genfromtxt(file2, delimiter=',', dtype=object) # the first row is nan: Xy1 = Xy1[1:, :] Xy2 = Xy2[1:, :] Xy = np.r_[Xy1, Xy2] X = Xy[:, 1:].astype(float) y = Xy[:, 0] joblib.dump(X, samples_path, compress=9) joblib.dump(y, targets_path, compress=9) try: X, y except NameError: X = joblib.load(samples_path) y = joblib.load(targets_path) if shuffle: ind = np.arange(X.shape[0]) rng = check_random_state(random_state) rng.shuffle(ind) X = X[ind] y = y[ind] return Bunch(data=X, target=y, DESCR=__doc__) def fetch_internet_ads(data_home=None, download_if_missing=True, random_state=None, shuffle=False): """Load the internet_ads dataset, downloading it if necessary. """ URL = ('http://archive.ics.uci.edu/ml/machine-learning-databases/' 'internet_ads/ad.data') data_home = get_data_home(data_home=data_home) internet_ads_dir = join(data_home, "internet_ads") samples_path = _pkl_filepath(internet_ads_dir, "samples") targets_path = _pkl_filepath(internet_ads_dir, "targets") available = exists(samples_path) if download_if_missing and not available: makedirs(internet_ads_dir, exist_ok=True) logger.warning("Downloading %s" % URL) f = BytesIO(urlopen(URL).read()) Xy = np.genfromtxt(f, delimiter=',', dtype=object) X = Xy[:, :-1].astype(object) X = np.delete(X, [0, 1, 2, 3], axis=1) # remaining features are not continuous: not adapted to OneClassRF X = X.astype(float) y = Xy[:, -1] joblib.dump(X, samples_path, compress=9) joblib.dump(y, targets_path, compress=9) try: X, y except NameError: X = joblib.load(samples_path) y = joblib.load(targets_path) if shuffle: ind = np.arange(X.shape[0]) rng = check_random_state(random_state) rng.shuffle(ind) X = X[ind] y = y[ind] return Bunch(data=X, target=y, DESCR=__doc__) def fetch_adult(data_home=None, download_if_missing=True, random_state=None, shuffle=False): """Load the adult dataset, downloading it if necessary. """ URL1 = ('http://archive.ics.uci.edu/ml/' 'machine-learning-databases/adult/adult.data') URL2 = ('http://archive.ics.uci.edu/ml/' 'machine-learning-databases/adult/adult.test') data_home = get_data_home(data_home=data_home) adult_dir = join(data_home, "adult") samples_path = _pkl_filepath(adult_dir, "samples") targets_path = _pkl_filepath(adult_dir, "targets") available = exists(samples_path) if download_if_missing and not available: makedirs(adult_dir, exist_ok=True) logger.warning("Downloading %s" % URL1) f = BytesIO(urlopen(URL1).read()) # ou X = np.load(f) Xy1 = np.genfromtxt(f, delimiter=',', dtype=object) # select continuous features: Xy1 = Xy1[:, [0, 2, 4, 10, 11, 12, -1]] logger.warning("Downloading %s" % URL2) f = BytesIO(urlopen(URL2).read()) # idem that Xy1 but skip first line which contains instructions: Xy2 = np.genfromtxt(f, delimiter=',', skip_header=1, dtype=object) Xy2 = Xy2[:, [0, 2, 4, 10, 11, 12, -1]] Xy = np.r_[Xy1, Xy2] X = Xy[:, :-1].astype(float) y = Xy[:, -1] joblib.dump(X, samples_path, compress=9) joblib.dump(y, targets_path, compress=9) try: X, y except NameError: X = joblib.load(samples_path) y = joblib.load(targets_path) if shuffle: ind = np.arange(X.shape[0]) rng = check_random_state(random_state) rng.shuffle(ind) X = X[ind] y = y[ind] return Bunch(data=X, target=y, DESCR=__doc__)
bsd-3-clause
-8,359,151,599,805,482,000
31.495283
78
0.604369
false
capitalone/cloud-custodian
c7n/filters/vpc.py
1
10368
# Copyright 2016-2017 Capital One Services, LLC # Copyright The Cloud Custodian Authors. # SPDX-License-Identifier: Apache-2.0 from c7n.exceptions import PolicyValidationError from c7n.utils import local_session, type_schema from .core import Filter, ValueFilter from .related import RelatedResourceFilter class MatchResourceValidator: def validate(self): if self.data.get('match-resource'): self.required_keys = set('key',) return super(MatchResourceValidator, self).validate() class SecurityGroupFilter(MatchResourceValidator, RelatedResourceFilter): """Filter a resource by its associated security groups.""" schema = type_schema( 'security-group', rinherit=ValueFilter.schema, **{'match-resource': {'type': 'boolean'}, 'operator': {'enum': ['and', 'or']}}) schema_alias = True RelatedResource = "c7n.resources.vpc.SecurityGroup" AnnotationKey = "matched-security-groups" class SubnetFilter(MatchResourceValidator, RelatedResourceFilter): """Filter a resource by its associated subnets.""" schema = type_schema( 'subnet', rinherit=ValueFilter.schema, **{'match-resource': {'type': 'boolean'}, 'operator': {'enum': ['and', 'or']}}) schema_alias = True RelatedResource = "c7n.resources.vpc.Subnet" AnnotationKey = "matched-subnets" class VpcFilter(MatchResourceValidator, RelatedResourceFilter): """Filter a resource by its associated vpc.""" schema = type_schema( 'vpc', rinherit=ValueFilter.schema, **{'match-resource': {'type': 'boolean'}, 'operator': {'enum': ['and', 'or']}}) schema_alias = True RelatedResource = "c7n.resources.vpc.Vpc" AnnotationKey = "matched-vpcs" class DefaultVpcBase(Filter): """Filter to resources in a default vpc.""" vpcs = None default_vpc = None permissions = ('ec2:DescribeVpcs',) def match(self, vpc_id): if self.default_vpc is None: self.log.debug("querying default vpc %s" % vpc_id) client = local_session(self.manager.session_factory).client('ec2') vpcs = [v['VpcId'] for v in client.describe_vpcs()['Vpcs'] if v['IsDefault']] if vpcs: self.default_vpc = vpcs.pop() return vpc_id == self.default_vpc and True or False class NetworkLocation(Filter): """On a network attached resource, determine intersection of security-group attributes, subnet attributes, and resource attributes. The use case is a bit specialized, for most use cases using `subnet` and `security-group` filters suffice. but say for example you wanted to verify that an ec2 instance was only using subnets and security groups with a given tag value, and that tag was not present on the resource. :Example: .. code-block:: yaml policies: - name: ec2-mismatched-sg-remove resource: ec2 filters: - type: network-location compare: ["resource","security-group"] key: "tag:TEAM_NAME" ignore: - "tag:TEAM_NAME": Enterprise actions: - type: modify-security-groups remove: network-location isolation-group: sg-xxxxxxxx """ schema = type_schema( 'network-location', **{'missing-ok': { 'type': 'boolean', 'default': False, 'description': ( "How to handle missing keys on elements, by default this causes" "resources to be considered not-equal")}, 'match': {'type': 'string', 'enum': ['equal', 'not-equal'], 'default': 'non-equal'}, 'compare': { 'type': 'array', 'description': ( 'Which elements of network location should be considered when' ' matching.'), 'default': ['resource', 'subnet', 'security-group'], 'items': { 'enum': ['resource', 'subnet', 'security-group']}}, 'key': { 'type': 'string', 'description': 'The attribute expression that should be matched on'}, 'max-cardinality': { 'type': 'integer', 'default': 1, 'title': ''}, 'ignore': {'type': 'array', 'items': {'type': 'object'}}, 'required': ['key'], }) schema_alias = True permissions = ('ec2:DescribeSecurityGroups', 'ec2:DescribeSubnets') def validate(self): rfilters = self.manager.filter_registry.keys() if 'subnet' not in rfilters: raise PolicyValidationError( "network-location requires resource subnet filter availability on %s" % ( self.manager.data)) if 'security-group' not in rfilters: raise PolicyValidationError( "network-location requires resource security-group filter availability on %s" % ( self.manager.data)) return self def process(self, resources, event=None): self.sg = self.manager.filter_registry.get('security-group')({}, self.manager) related_sg = self.sg.get_related(resources) self.subnet = self.manager.filter_registry.get('subnet')({}, self.manager) related_subnet = self.subnet.get_related(resources) self.sg_model = self.manager.get_resource_manager('security-group').get_model() self.subnet_model = self.manager.get_resource_manager('subnet').get_model() self.vf = self.manager.filter_registry.get('value')({}, self.manager) # filter options key = self.data.get('key') self.compare = self.data.get('compare', ['subnet', 'security-group', 'resource']) self.max_cardinality = self.data.get('max-cardinality', 1) self.match = self.data.get('match', 'not-equal') self.missing_ok = self.data.get('missing-ok', False) results = [] for r in resources: resource_sgs = self.filter_ignored( [related_sg[sid] for sid in self.sg.get_related_ids([r])]) resource_subnets = self.filter_ignored([ related_subnet[sid] for sid in self.subnet.get_related_ids([r])]) found = self.process_resource(r, resource_sgs, resource_subnets, key) if found: results.append(found) return results def filter_ignored(self, resources): ignores = self.data.get('ignore', ()) results = [] for r in resources: found = False for i in ignores: for k, v in i.items(): if self.vf.get_resource_value(k, r) == v: found = True if found is True: break if found is True: continue results.append(r) return results def process_resource(self, r, resource_sgs, resource_subnets, key): evaluation = [] sg_space = set() subnet_space = set() if 'subnet' in self.compare: subnet_values = { rsub[self.subnet_model.id]: self.subnet.get_resource_value(key, rsub) for rsub in resource_subnets} if not self.missing_ok and None in subnet_values.values(): evaluation.append({ 'reason': 'SubnetLocationAbsent', 'subnets': subnet_values}) subnet_space = set(filter(None, subnet_values.values())) if len(subnet_space) > self.max_cardinality: evaluation.append({ 'reason': 'SubnetLocationCardinality', 'subnets': subnet_values}) if 'security-group' in self.compare: sg_values = { rsg[self.sg_model.id]: self.sg.get_resource_value(key, rsg) for rsg in resource_sgs} if not self.missing_ok and None in sg_values.values(): evaluation.append({ 'reason': 'SecurityGroupLocationAbsent', 'security-groups': sg_values}) sg_space = set(filter(None, sg_values.values())) if len(sg_space) > self.max_cardinality: evaluation.append({ 'reason': 'SecurityGroupLocationCardinality', 'security-groups': sg_values}) if ('subnet' in self.compare and 'security-group' in self.compare and sg_space != subnet_space): evaluation.append({ 'reason': 'LocationMismatch', 'subnets': subnet_values, 'security-groups': sg_values}) if 'resource' in self.compare: r_value = self.vf.get_resource_value(key, r) if not self.missing_ok and r_value is None: evaluation.append({ 'reason': 'ResourceLocationAbsent', 'resource': r_value}) elif 'security-group' in self.compare and resource_sgs and r_value not in sg_space: evaluation.append({ 'reason': 'ResourceLocationMismatch', 'resource': r_value, 'security-groups': sg_values}) elif 'subnet' in self.compare and resource_subnets and r_value not in subnet_space: evaluation.append({ 'reason': 'ResourceLocationMismatch', 'resource': r_value, 'subnet': subnet_values}) if 'security-group' in self.compare and resource_sgs: mismatched_sgs = {sg_id: sg_value for sg_id, sg_value in sg_values.items() if sg_value != r_value} if mismatched_sgs: evaluation.append({ 'reason': 'SecurityGroupMismatch', 'resource': r_value, 'security-groups': mismatched_sgs}) if evaluation and self.match == 'not-equal': r['c7n:NetworkLocation'] = evaluation return r elif not evaluation and self.match == 'equal': return r
apache-2.0
-2,030,043,321,442,465,000
37.831461
97
0.558738
false
vmagamedov/pi
fixers/fix_imports.py
1
2965
import os.path from lib2to3.pygram import python_symbols from lib2to3.fixer_util import Name from lib2to3.fixes.fix_imports import FixImports as BaseFixImports, alternates PATH = '{}/../pi/_requires'.format(os.path.dirname(__file__)) LIBS = [i.rstrip('.py') for i in os.listdir(PATH) if not i.startswith('_') and not i.endswith(('.pyc', '.pyo'))] def build_pattern(mapping): mod_list = ' | '.join(["module_name='%s'" % key for key in mapping]) dotted_mod_list = ' | '.join(["module_name=dotted_name<'{}' ('.' NAME)*>" .format(key) for key in mapping]) bare_names = alternates(mapping.keys()) yield """name_import=import_name< 'import' ((%s) | multiple_imports=dotted_as_names< any* (%s) any* >) > """ % (dotted_mod_list, dotted_mod_list) yield """import_from< 'from' (%s) 'import' ['('] ( any | import_as_name< any 'as' any > | import_as_names< any* >) [')'] > """ % dotted_mod_list yield """import_name< 'import' (dotted_as_name< (%s) 'as' any > | multiple_imports=dotted_as_names< any* dotted_as_name< (%s) 'as' any > any* >) > """ % (dotted_mod_list, dotted_mod_list) yield """name_import=import_name< 'import' ((%s) | multiple_imports=dotted_as_names< any* (%s) any* >) > """ % (mod_list, mod_list) yield """import_from< 'from' (%s) 'import' ['('] ( any | import_as_name< any 'as' any > | import_as_names< any* >) [')'] > """ % mod_list yield """import_name< 'import' (dotted_as_name< (%s) 'as' any > | multiple_imports=dotted_as_names< any* dotted_as_name< (%s) 'as' any > any* >) > """ % (mod_list, mod_list) # Find usages of module members in code e.g. thread.foo(bar) yield "power< bare_with_attr=(%s) trailer<'.' any > any* >" % bare_names class FixImports(BaseFixImports): mapping = {"{}".format(lib): 'pi._requires.{}'.format(lib) for lib in LIBS} def build_pattern(self): return "|".join(build_pattern(self.mapping)) def transform(self, node, results): import_mod = results.get("module_name") if import_mod and import_mod.type == python_symbols.dotted_name: mod_name = import_mod.children[0].value new_name = self.mapping[mod_name] tail = ''.join(child.value for child in import_mod.children[1:]) import_mod.replace(Name(new_name + tail, prefix=import_mod.prefix)) if "name_import" in results: self.replace[mod_name] = new_name if "multiple_imports" in results: results = self.match(node) if results: self.transform(node, results) else: return super().transform(node, results)
bsd-3-clause
-102,682,145,929,447,380
41.357143
79
0.536931
false
swapnilsm/redis-rw-lock
setup.py
1
1796
#!/usr/bin/env python # -*- encoding: utf-8 -*- from __future__ import absolute_import from __future__ import print_function import io from os.path import dirname from os.path import join from setuptools import setup def read(*names, **kwargs): return io.open( join(dirname(__file__), *names), encoding=kwargs.get('encoding', 'utf8') ).read() setup( name='redis-rw-lock', version='1.0.6', license='MIT', description="Redis based Reader-Writer lock with Writer's priority.", long_description='', author='Swapnil S. Mahajan', author_email='[email protected]', url='https://github.com/swapnilsm/redis-rw-lock', packages=['redis_rw_lock', ], include_package_data=True, zip_safe=False, classifiers=[ # complete classifier list: http://pypi.python.org/pypi?%3Aaction=list_classifiers 'Development Status :: 5 - Production/Stable', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Operating System :: Unix', 'Operating System :: POSIX', 'Operating System :: Microsoft :: Windows', 'Programming Language :: Python', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: Implementation :: CPython', 'Programming Language :: Python :: Implementation :: PyPy', 'Topic :: Utilities', ], keywords=[ 'redis', 'lock', 'rwlock' ], install_requires=[ 'redis>=2.10.0', 'python-redis-lock>=3.2.0' ] )
mit
9,055,668,874,280,245,000
29.965517
90
0.603563
false
rwatson/chromium-capsicum
webkit/tools/layout_tests/layout_package/platform_utils_mac.py
1
5197
# Copyright (c) 2008-2009 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """This is the Mac implementation of the layout_package.platform_utils package. This file should only be imported by that package.""" import os import platform import signal import subprocess import path_utils def PlatformName(): """Returns the name of the platform we're currently running on.""" # At the moment all chromium mac results are version-independent. At some # point we may need to return 'chromium-mac' + PlatformVersion() return 'chromium-mac' def PlatformVersion(): """Returns the version string for the platform, e.g. '-vista' or '-snowleopard'. If the platform does not distinguish between minor versions, it returns ''.""" os_version_string = platform.mac_ver()[0] # e.g. "10.5.6" if not os_version_string: return '-leopard' release_version = int(os_version_string.split('.')[1]) # we don't support 'tiger' or earlier releases if release_version == 5: return '-leopard' elif release_version == 6: return '-snowleopard' return '' def GetNumCores(): """Returns the number of cores on the machine. For hyperthreaded machines, this will be double the number of actual processors.""" return int(os.popen2("sysctl -n hw.ncpu")[1].read()) # TODO: We should add leopard and snowleopard to the list of paths to check # once we start running the tests from snowleopard. def BaselineSearchPath(all_versions=False): """Returns the list of directories to search for baselines/results, in order of preference. Paths are relative to the top of the source tree.""" return [path_utils.ChromiumBaselinePath(PlatformName()), path_utils.WebKitBaselinePath('mac' + PlatformVersion()), path_utils.WebKitBaselinePath('mac')] def WDiffPath(): """Path to the WDiff executable, which we assume is already installed and in the user's $PATH.""" return 'wdiff' def ImageDiffPath(target): """Path to the image_diff executable Args: target: build type - 'Debug','Release',etc.""" return path_utils.PathFromBase('xcodebuild', target, 'image_diff') def LayoutTestHelperPath(target): """Path to the layout_test_helper executable, if needed, empty otherwise Args: target: build type - 'Debug','Release',etc.""" return path_utils.PathFromBase('xcodebuild', target, 'layout_test_helper') def TestShellPath(target): """Path to the test_shell executable. Args: target: build type - 'Debug','Release',etc.""" # TODO(pinkerton): make |target| happy with case-sensitive file systems. return path_utils.PathFromBase('xcodebuild', target, 'TestShell.app', 'Contents', 'MacOS','TestShell') def ApacheExecutablePath(): """Returns the executable path to start Apache""" return os.path.join("/usr", "sbin", "httpd") def ApacheConfigFilePath(): """Returns the path to Apache config file""" return path_utils.PathFromBase("third_party", "WebKit", "LayoutTests", "http", "conf", "apache2-httpd.conf") def LigHTTPdExecutablePath(): """Returns the executable path to start LigHTTPd""" return path_utils.PathFromBase('third_party', 'lighttpd', 'mac', 'bin', 'lighttpd') def LigHTTPdModulePath(): """Returns the library module path for LigHTTPd""" return path_utils.PathFromBase('third_party', 'lighttpd', 'mac', 'lib') def LigHTTPdPHPPath(): """Returns the PHP executable path for LigHTTPd""" return path_utils.PathFromBase('third_party', 'lighttpd', 'mac', 'bin', 'php-cgi') def ShutDownHTTPServer(server_pid): """Shut down the lighttpd web server. Blocks until it's fully shut down. Args: server_pid: The process ID of the running server. """ # server_pid is not set when "http_server.py stop" is run manually. if server_pid is None: # TODO(mmoss) This isn't ideal, since it could conflict with lighttpd # processes not started by http_server.py, but good enough for now. KillAllProcess('lighttpd') KillAllProcess('httpd') else: try: os.kill(server_pid, signal.SIGTERM) #TODO(mmoss) Maybe throw in a SIGKILL just to be sure? except OSError: # Sometimes we get a bad PID (e.g. from a stale httpd.pid file), so if # kill fails on the given PID, just try to 'killall' web servers. ShutDownHTTPServer(None) def KillProcess(pid): """Forcefully kill the process. Args: pid: The id of the process to be killed. """ os.kill(pid, signal.SIGKILL) def KillAllProcess(process_name): # On Mac OS X 10.6, killall has a new constraint: -SIGNALNAME or # -SIGNALNUMBER must come first. Example problem: # $ killall -u $USER -TERM lighttpd # killall: illegal option -- T # Use of the earlier -TERM placement is just fine on 10.5. null = open("/dev/null"); subprocess.call(['killall', '-TERM', '-u', os.getenv('USER'), process_name], stderr=null) null.close() def KillAllTestShells(): """Kills all instances of the test_shell binary currently running.""" KillAllProcess('TestShell')
bsd-3-clause
-4,367,166,175,675,160,000
34.59589
80
0.689051
false
mareknetusil/twist
demo/dynamic/flap.py
1
1495
from __future__ import print_function __author__ = "Harish Narayanan" __copyright__ = "Copyright (C) 2010 Simula Research Laboratory and %s" % __author__ __license__ = "GNU GPL Version 3 or any later version" from cbc.twist import * class Obstruction(Hyperelasticity): def mesh(self): n = 4 return RectangleMesh(Point(0, 0), Point(0.2, 0.5), n, 5*n/2) def end_time(self): return 4.0 def time_step(self): return 0.001 def is_dynamic(self): return True def neumann_conditions(self): fluid_force = Expression(("magnitude*t", "0.0"), magnitude=1.5, t=0, degree=0) return [fluid_force] def neumann_boundaries(self): fluid_interface = "x[1] > 0.0 && x[0] == 0" return [fluid_interface] def dirichlet_values(self): fix = Constant((0.0, 0.0)) return [fix] def dirichlet_boundaries(self): bottom = "x[1] == 0.0" return [bottom] def material_model(self): mu = 60 lmbda = 90 #material = StVenantKirchhoff([mu, lmbda]) material = neoHookean({'half_nkT':mu, 'bulk':lmbda}) return material def reference_density(self): return 1.0 def time_stepping(self): return "CG1" def __str__(self): return "An obstruction being deformed by an ambient flow" # Setup problem problem = Obstruction() problem.parameters['element_degree'] = 1 # Solve problem print(problem) problem.solve()
gpl-3.0
-6,887,895,058,826,794,000
23.508197
86
0.599331
false
jinankjain/zamboni
mkt/api/paginator.py
1
4202
import urlparse from django.core.paginator import EmptyPage, Page, PageNotAnInteger, Paginator from django.http import QueryDict from django.utils.http import urlencode from rest_framework import pagination, serializers class ESPaginator(Paginator): """ A better paginator for search results The normal Paginator does a .count() query and then a slice. Since ES results contain the total number of results, we can take an optimistic slice and then adjust the count. """ def validate_number(self, number): """ Validates the given 1-based page number. This class overrides the default behavior and ignores the upper bound. """ try: number = int(number) except (TypeError, ValueError): raise PageNotAnInteger('That page number is not an integer') if number < 1: raise EmptyPage('That page number is less than 1') return number def page(self, number): """ Returns a page object. This class overrides the default behavior and ignores "orphans" and assigns the count from the ES result to the Paginator. """ number = self.validate_number(number) bottom = (number - 1) * self.per_page top = bottom + self.per_page page = Page(self.object_list[bottom:top], number, self) # Force the search to evaluate and then attach the count. We want to # avoid an extra useless query even if there are no results, so we # directly fetch the count from _results_cache instead of calling # page.object_list.count(). # FIXME: replace by simply calling page.object_list.count() when # https://github.com/mozilla/elasticutils/pull/212 is merged and # released. page.object_list.execute() self._count = page.object_list._results_cache.count return page class MetaSerializer(serializers.Serializer): """ Serializer for the 'meta' dict holding pagination info that allows to stay backwards-compatible with the way tastypie does pagination (using offsets instead of page numbers), while still using a "standard" Paginator class. """ next = serializers.SerializerMethodField('get_next') previous = serializers.SerializerMethodField('get_previous') total_count = serializers.SerializerMethodField('get_total_count') offset = serializers.SerializerMethodField('get_offset') limit = serializers.SerializerMethodField('get_limit') def replace_query_params(self, url, params): (scheme, netloc, path, query, fragment) = urlparse.urlsplit(url) query_dict = QueryDict(query).dict() query_dict.update(params) query = urlencode(query_dict) return urlparse.urlunsplit((scheme, netloc, path, query, fragment)) def get_offset_link_for_page(self, page, number): request = self.context.get('request') url = request and request.get_full_path() or '' number = number - 1 # Pages are 1-based, but offsets are 0-based. per_page = page.paginator.per_page return self.replace_query_params(url, {'offset': number * per_page, 'limit': per_page}) def get_next(self, page): if not page.has_next(): return None return self.get_offset_link_for_page(page, page.next_page_number()) def get_previous(self, page): if not page.has_previous(): return None return self.get_offset_link_for_page(page, page.previous_page_number()) def get_total_count(self, page): return page.paginator.count def get_offset(self, page): index = page.start_index() if index > 0: # start_index() is 1-based, and we want a 0-based offset, so we # need to remove 1, unless it's already 0. return index - 1 return index def get_limit(self, page): return page.paginator.per_page class CustomPaginationSerializer(pagination.BasePaginationSerializer): meta = MetaSerializer(source='*') # Takes the page object as the source results_field = 'objects'
bsd-3-clause
899,639,658,611,445,600
36.185841
79
0.651832
false
hwen3/410-lab5
todolist.py
1
2612
import sqlite3 from flask import Flask, render_template, g, request, session, flash, redirect, url_for, abort DATABASE = 'test.db' USERNAME = 'admin' PASSWORD = 'admin' SECRET_KEY = 'he who shall not be named' app = Flask(__name__) app.config.from_object(__name__) @app.route('/') def welcome(): return '<h1>Welcome to COMPUT 410 - Jinja Lab!</h1>' @app.route('/login', methods=['GET', 'POST']) def login(): error = None if request.method == 'POST': if request.form['username'] != app.config['USERNAME']: error = 'invalid username' elif request.form['password'] != app.config['PASSWORD']: error = 'invalid password' else: session['logged_in'] = True flash("You are logged in :-)") return redirect(url_for('task')) return render_template('login.html', error=error) @app.route('/logout') def logout(): session.pop('logged_in') flash("You are logged out!") return redirect(url_for('task')) @app.route('/delete', methods=['GET', 'POST']) def delete(): if not session.get('logged_in'): abort(401) removetask(request.form['id']) flash('Task was deleted successfully!') return redirect(url_for('task')) @app.route('/task', methods=['GET', 'POST']) def task(): if request.method == 'POST': if not session.get('logged_in'): abort(401) category = request.form['category'] priority = request.form['priority'] description = request.form['description'] addtask(category, priority, description) flash("New task added successfully") return redirect(url_for('task')) return render_template('show_entries.html', tasks=query_db('select * from tasks')) def query_db(query, args=(), one=False): cur = get_db().cursor() cur.execute(query, args) rv = cur.fetchall() cur.close() return (rv[0] if rv else None) if one else rv def get_db(): db = getattr(g, '_database', None) if db is None: db = g._database = sqlite3.connect(DATABASE) db.row_factory = sqlite3.Row return db def removetask(id): query_db('delete from tasks where id = ?', [id], True) get_db().commit() def addtask(category, priority, description): query_db('insert into tasks values (null, ?, ?, ?)', [category, priority, description], True) get_db().commit() @app.teardown_appcontext def close_connection(exception): db = getattr(g, '_database', None) if db is not None: db.close() db = None if __name__ == '__main__': app.debug = True app.run()
apache-2.0
7,709,553,751,303,551,000
27.402174
97
0.609495
false
Azure/azure-storage-python
samples/blob/block_blob_usage.py
1
18393
# coding: utf-8 # ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # -------------------------------------------------------------------------- import io import os import random import time import uuid from azure.storage.blob import ( ContentSettings, BlobBlock, BlockListType, ) class BlockBlobSamples(): def __init__(self, account): self.account = account def run_all_samples(self): self.service = self.account.create_block_blob_service() self.delete_blob() self.blob_metadata() self.blob_properties() self.blob_exists() self.copy_blob() self.snapshot_blob() self.lease_blob() self.blob_with_bytes() self.blob_with_stream() self.blob_with_path() self.blob_with_text() self.blocks() def _get_resource_reference(self, prefix): return '{}{}'.format(prefix, str(uuid.uuid4()).replace('-', '')) def _get_blob_reference(self, prefix='blob'): return self._get_resource_reference(prefix) def _create_blob(self, container_name, prefix='blob'): blob_name = self._get_resource_reference(prefix) self.service.create_blob_from_text(container_name, blob_name, u'hello world') return blob_name def _create_container(self, prefix='container'): container_name = self._get_resource_reference(prefix) self.service.create_container(container_name) return container_name def _get_random_bytes(self, size): rand = random.Random() result = bytearray(size) for i in range(size): result[i] = rand.randint(0, 255) return bytes(result) def delete_blob(self): container_name = self._create_container() blob_name = self._create_blob(container_name) # Basic self.service.delete_blob(container_name, blob_name) self.service.delete_container(container_name) def blob_metadata(self): container_name = self._create_container() blob_name = self._create_blob(container_name) metadata = {'val1': 'foo', 'val2': 'blah'} # Basic self.service.set_blob_metadata(container_name, blob_name, metadata=metadata) metadata = self.service.get_blob_metadata(container_name, blob_name) # metadata={'val1': 'foo', 'val2': 'blah'} # Replaces values, does not merge metadata = {'new': 'val'} self.service.set_blob_metadata(container_name, blob_name, metadata=metadata) metadata = self.service.get_blob_metadata(container_name, blob_name) # metadata={'new': 'val'} # Capital letters metadata = {'NEW': 'VAL'} self.service.set_blob_metadata(container_name, blob_name, metadata=metadata) metadata = self.service.get_blob_metadata(container_name, blob_name) # metadata={'new': 'VAL'} # Clearing self.service.set_blob_metadata(container_name, blob_name) metadata = self.service.get_blob_metadata(container_name, blob_name) # metadata={} self.service.delete_container(container_name) def blob_properties(self): container_name = self._create_container() blob_name = self._get_blob_reference() metadata = {'val1': 'foo', 'val2': 'blah'} self.service.create_blob_from_text(container_name, blob_name, u'hello world', metadata=metadata) settings = ContentSettings(content_type='html', content_language='fr') # Basic self.service.set_blob_properties(container_name, blob_name, content_settings=settings) blob = self.service.get_blob_properties(container_name, blob_name) content_language = blob.properties.content_settings.content_language # fr content_type = blob.properties.content_settings.content_type # html content_length = blob.properties.content_length # 512 # Metadata # Can't set metadata, but get will return metadata already on the blob blob = self.service.get_blob_properties(container_name, blob_name) metadata = blob.metadata # metadata={'val1': 'foo', 'val2': 'blah'} # Replaces values, does not merge settings = ContentSettings(content_encoding='utf-8') self.service.set_blob_properties(container_name, blob_name, content_settings=settings) blob = self.service.get_blob_properties(container_name, blob_name) content_encoding = blob.properties.content_settings.content_encoding # utf-8 content_language = blob.properties.content_settings.content_language # None self.service.delete_container(container_name) def blob_exists(self): container_name = self._create_container() blob_name = self._get_blob_reference() # Basic exists = self.service.exists(container_name, blob_name) # False self.service.create_blob_from_text(container_name, blob_name, u'hello world') exists = self.service.exists(container_name, blob_name) # True self.service.delete_container(container_name) def copy_blob(self): container_name = self._create_container() source_blob_name = self._create_blob(container_name) # Basic # Copy the blob from the directory to the root of the container source = self.service.make_blob_url(container_name, source_blob_name) copy = self.service.copy_blob(container_name, 'blob1copy', source) # Poll for copy completion count = 0 while copy.status != 'success': count = count + 1 if count > 5: print('Timed out waiting for async copy to complete.') time.sleep(30) copy = self.service.get_blob_properties(container_name, 'blob1copy').properties.copy # With SAS from a remote account to local blob # Commented out as remote container, directory, blob, and sas would need to be created ''' source_blob_url = self.service.make_blob_url( remote_container_name, remote_blob_name, sas_token=remote_sas_token, ) copy = self.service.copy_blob(destination_containername, destination_blob_name, source_blob_url) ''' # Abort copy # Commented out as this involves timing the abort to be sent while the copy is still running # Abort copy is useful to do along with polling # self.service.abort_copy_blob(container_name, blob_name, copy.id) # Sync copy # Set requires_sync=True to indicate that the service should not return a result until the blob is copied. # This eliminates the need for polling. self.service.copy_blob(container_name, 'blob1copy', source, requires_sync=True) self.service.delete_container(container_name) def snapshot_blob(self): container_name = self._create_container() base_blob_name = self._create_blob(container_name) # Basic snapshot_blob = self.service.snapshot_blob(container_name, base_blob_name) snapshot_id = snapshot_blob.snapshot # Set Metadata (otherwise metadata will be copied from base blob) metadata = {'val1': 'foo', 'val2': 'blah'} snapshot_blob = self.service.snapshot_blob(container_name, base_blob_name, metadata=metadata) snapshot_id = snapshot_blob.snapshot self.service.delete_container(container_name) def lease_blob(self): container_name = self._create_container() blob_name1 = self._create_blob(container_name) blob_name2 = self._create_blob(container_name) blob_name3 = self._create_blob(container_name) # Acquire # Defaults to infinite lease infinite_lease_id = self.service.acquire_blob_lease(container_name, blob_name1) # Acquire # Set lease time, may be between 15 and 60 seconds fixed_lease_id = self.service.acquire_blob_lease(container_name, blob_name2, lease_duration=30) # Acquire # Proposed lease id proposed_lease_id_1 = '55e97f64-73e8-4390-838d-d9e84a374321' modified_lease_id = self.service.acquire_blob_lease(container_name, blob_name3, proposed_lease_id=proposed_lease_id_1, lease_duration=30) modified_lease_id # equal to proposed_lease_id_1 # Renew # Resets the 30 second lease timer # Note that the lease may be renewed even if it has expired as long as # the container has not been leased again since the expiration of that lease self.service.renew_blob_lease(container_name, blob_name3, proposed_lease_id_1) # Change # Change the lease ID of an active lease. proposed_lease_id_2 = '55e97f64-73e8-4390-838d-d9e84a374322' self.service.change_blob_lease(container_name, blob_name3, modified_lease_id, proposed_lease_id=proposed_lease_id_2) # Release # Releasing the lease allows another client to immediately acquire the # lease for the container as soon as the release is complete. self.service.release_blob_lease(container_name, blob_name3, proposed_lease_id_2) # Break # A matching lease ID is not required. # By default, a fixed-duration lease breaks after the remaining lease period # elapses, and an infinite lease breaks immediately. infinite_lease_break_time = self.service.break_blob_lease(container_name, blob_name1) infinite_lease_break_time # 0 # Break # By default this would leave whatever time remained of the 30 second # lease period, but a break period can be provided to indicate when the # break should take affect lease_break_time = self.service.break_blob_lease(container_name, blob_name2, lease_break_period=10) lease_break_time # 10 self.service.delete_container(container_name) def blob_with_bytes(self): container_name = self._create_container() # Basic data = b'hello world' blob_name = self._get_blob_reference() self.service.create_blob_from_bytes(container_name, blob_name, data) blob = self.service.get_blob_to_bytes(container_name, blob_name) content = blob.content # hello world # Download range blob = self.service.get_blob_to_bytes(container_name, blob_name, start_range=3, end_range=10) content = blob.content # data from 3-10 # Upload from index in byte array blob_name = self._get_blob_reference() self.service.create_blob_from_bytes(container_name, blob_name, data, index=3) # Content settings, metadata settings = ContentSettings(content_type='html', content_language='fr') metadata = {'val1': 'foo', 'val2': 'blah'} blob_name = self._get_blob_reference() self.service.create_blob_from_bytes(container_name, blob_name, data, content_settings=settings, metadata=metadata) blob = self.service.get_blob_to_bytes(container_name, blob_name) metadata = blob.metadata # metadata={'val1': 'foo', 'val2': 'blah'} content_language = blob.properties.content_settings.content_language # fr content_type = blob.properties.content_settings.content_type # html # Progress # Use slightly larger data so the chunking is more visible data = self._get_random_bytes(8 * 1024 * 1024) def upload_callback(current, total): print('({}, {})'.format(current, total)) def download_callback(current, total): print('({}, {}) '.format(current, total)) blob_name = self._get_blob_reference() print('upload: ') self.service.create_blob_from_bytes(container_name, blob_name, data, progress_callback=upload_callback) print('download: ') blob = self.service.get_blob_to_bytes(container_name, blob_name, progress_callback=download_callback) self.service.delete_container(container_name) def blob_with_stream(self): container_name = self._create_container() # Basic input_stream = io.BytesIO(self._get_random_bytes(15)) output_stream = io.BytesIO() blob_name = self._get_blob_reference() self.service.create_blob_from_stream(container_name, blob_name, input_stream, 15) blob = self.service.get_blob_to_stream(container_name, blob_name, output_stream) content_length = blob.properties.content_length # Download range # Content settings, metadata # Progress # Parallelism # See blob_with_bytes for these examples. The code will be very similar. self.service.delete_container(container_name) def blob_with_path(self): container_name = self._create_container() INPUT_FILE_PATH = 'blob_input.temp.dat' OUTPUT_FILE_PATH = 'blob_output.temp.dat' data = self._get_random_bytes(4 * 1024) with open(INPUT_FILE_PATH, 'wb') as stream: stream.write(data) # Basic blob_name = self._get_blob_reference() self.service.create_blob_from_path(container_name, blob_name, INPUT_FILE_PATH) blob = self.service.get_blob_to_path(container_name, blob_name, OUTPUT_FILE_PATH) content_length = blob.properties.content_length # Open mode # Append to the blob instead of starting from the beginning # Append streams are not seekable and so must be downloaded serially by setting max_connections=1. blob = self.service.get_blob_to_path(container_name, blob_name, OUTPUT_FILE_PATH, open_mode='ab', max_connections=1) content_length = blob.properties.content_length # will be the same, but local blob length will be longer # Download range # Content settings, metadata # Progress # Parallelism # See blob_with_bytes for these examples. The code will be very similar. self.service.delete_container(container_name) if os.path.isfile(INPUT_FILE_PATH): try: os.remove(INPUT_FILE_PATH) except: pass if os.path.isfile(OUTPUT_FILE_PATH): try: os.remove(OUTPUT_FILE_PATH) except: pass def blob_with_text(self): container_name = self._create_container() # Basic data = u'hello world' blob_name = self._get_blob_reference() self.service.create_blob_from_text(container_name, blob_name, data) blob = self.service.get_blob_to_text(container_name, blob_name) content = blob.content # 'hello world' # Encoding text = u'hello 啊齄丂狛狜 world' data = text.encode('utf-16') blob_name = self._get_blob_reference() self.service.create_blob_from_text(container_name, blob_name, text, 'utf-16') blob = self.service.get_blob_to_text(container_name, blob_name, 'utf-16') content = blob.content # 'hello 啊齄丂狛狜 world' # Download range # Content settings, metadata # Progress # Parallelism # See blob_with_bytes for these examples. The code will be very similar. self.service.delete_container(container_name) def blocks(self): container_name = self._create_container() blob_name = self._get_blob_reference() # Put block # Block id's must be the same length self.service.put_block(container_name, blob_name, b'AAA', '1') self.service.put_block(container_name, blob_name, b'BBB', '2') self.service.put_block(container_name, blob_name, b'CCC', '3') # Get Block List # Defaults to committed only, specify all to get committed and uncommitted block_list = self.service.get_block_list(container_name, blob_name, block_list_type=BlockListType.All) uncommitted = len(block_list.uncommitted_blocks) # 3 committed = len(block_list.committed_blocks) # 0 # Note the blob does not yet appears as blocks have not been committed exists = self.service.exists(container_name, blob_name) # False # Commit the blocks # BlockBlock state defaults to Latest meaning the uncommitted and then # the committed list is searched for the block id to commit block_list = [BlobBlock(id='1'), BlobBlock(id='2'), BlobBlock(id='3')] self.service.put_block_list(container_name, blob_name, block_list) # Get Block List # Defaults to committed only, specify all to get committed and uncommitted block_list = self.service.get_block_list(container_name, blob_name, block_list_type=BlockListType.All) uncommitted = len(block_list.uncommitted_blocks) # 0 committed = len(block_list.committed_blocks) # 3 # Add a block # Put the block self.service.put_block(container_name, blob_name, b'DDD', '4') # Get the existing blocks block_list = self.service.get_block_list(container_name, blob_name, block_list_type=BlockListType.All) uncommitted = len(block_list.uncommitted_blocks) # 1 committed = len(block_list.committed_blocks) # 3 # Added the new block to the existing list and commit new_block_list = block_list.committed_blocks new_block_list.append(block_list.uncommitted_blocks[0]) self.service.put_block_list(container_name, blob_name, new_block_list) self.service.delete_container(container_name)
mit
8,936,790,025,452,813,000
40.474041
120
0.618625
false
mbalazin/cse599c-17sp-projects
spark-advantage/pandasbench.py
1
1488
# coding: utf-8 # In[1]: import pandas as pd import time from sys import argv logfile = argv[1] filesize = argv[2] # # Python Pandas Benchmark # In[3]: prefix = "file:////Users/tony/Dropbox/Projects/UW/cse599c-17sp-projects/spark-advantage/data/" if(filesize == 'original'): tairfname = "Tair_WA_nohead.csv" tsoilfname = "Tsoil_WA_nohead.csv" tsurfacefname = "Tsurface_WA_nohead.csv" elif (filesize == 'medium'): tairfname = "Tair_WA_nohead.MEDIUM.csv" tsoilfname = "Tsoil_WA_nohead.MEDIUM.csv" tsurfacefname = "Tsurface_WA_nohead.MEDIUM.csv" elif (filesize == "small"): tairfname = "Tair_WA_nohead.SMALL.csv" tsoilfname = "Tsoil_WA_nohead.SMALL.csv" tsurfacefname = "Tsurface_WA_nohead.SMALL.csv" startTime = time.time() tair = pd.read_csv(prefix+tairfname) tsoil = pd.read_csv(prefix+tsoilfname) tsurface = pd.read_csv(prefix+tsurfacefname) joined = tair.merge(tsoil, on=["datetime", " lat", " lon"]).merge(tsurface, on=["datetime", " lat", " lon"]) joined.columns = [name.strip() for name in joined.columns] joined[['lat', 'lon']] = joined[['lat', 'lon']].apply(pd.to_numeric) seattle = joined[(joined['lon'] > -125.52) & \ (joined['lon'] < -120.2) & \ (joined['lat'] > 49.0) & \ (joined['lat'] < 51.0)] seattle.groupby(by=['lat', 'lon'])['Tair'].mean() exptime = time.time() - startTime with open(logfile, 'a') as log: log.write(str(exptime)+'\n')
bsd-3-clause
-4,992,153,284,442,744,000
24.672414
108
0.623656
false
openai/baselines
baselines/ppo1/run_atari.py
1
1583
#!/usr/bin/env python3 from mpi4py import MPI from baselines.common import set_global_seeds from baselines import bench import os.path as osp from baselines import logger from baselines.common.atari_wrappers import make_atari, wrap_deepmind from baselines.common.cmd_util import atari_arg_parser def train(env_id, num_timesteps, seed): from baselines.ppo1 import pposgd_simple, cnn_policy import baselines.common.tf_util as U rank = MPI.COMM_WORLD.Get_rank() sess = U.single_threaded_session() sess.__enter__() if rank == 0: logger.configure() else: logger.configure(format_strs=[]) workerseed = seed + 10000 * MPI.COMM_WORLD.Get_rank() if seed is not None else None set_global_seeds(workerseed) env = make_atari(env_id) def policy_fn(name, ob_space, ac_space): #pylint: disable=W0613 return cnn_policy.CnnPolicy(name=name, ob_space=ob_space, ac_space=ac_space) env = bench.Monitor(env, logger.get_dir() and osp.join(logger.get_dir(), str(rank))) env.seed(workerseed) env = wrap_deepmind(env) env.seed(workerseed) pposgd_simple.learn(env, policy_fn, max_timesteps=int(num_timesteps * 1.1), timesteps_per_actorbatch=256, clip_param=0.2, entcoeff=0.01, optim_epochs=4, optim_stepsize=1e-3, optim_batchsize=64, gamma=0.99, lam=0.95, schedule='linear' ) env.close() def main(): args = atari_arg_parser().parse_args() train(args.env, num_timesteps=args.num_timesteps, seed=args.seed) if __name__ == '__main__': main()
mit
-257,343,598,731,253,380
31.979167
87
0.670246
false
bptripp/it-cnn
tuning/clutter.py
1
2870
__author__ = 'bptripp' import numpy as np import matplotlib matplotlib.rcParams['xtick.labelsize'] = 14 matplotlib.rcParams['ytick.labelsize'] = 14 import matplotlib.pyplot as plt from cnn_stimuli import get_image_file_list from alexnet import preprocess, load_net, load_vgg def get_clutter_responses(remove_level): model = load_net(weights_path='../weights/alexnet_weights.h5', remove_level=remove_level) use_vgg = False # model = load_vgg(weights_path='../weights/vgg16_weights.h5', remove_level=remove_level) # use_vgg = True bottom_dir = './images/clutter/bottom/' bottom_image_files = get_image_file_list(bottom_dir, 'png', with_path=True) bottom_out = model.predict(preprocess(bottom_image_files, use_vgg=use_vgg)) top_dir = './images/clutter/top/' top_image_files = get_image_file_list(top_dir, 'png', with_path=True) top_out = model.predict(preprocess(top_image_files, use_vgg=use_vgg)) pair_dir = './images/clutter/pair/' pair_image_files = get_image_file_list(pair_dir, 'png', with_path=True) pair_out = model.predict(preprocess(pair_image_files, use_vgg=use_vgg)) maxima = np.max(pair_out, axis=0) n = 100 ind = (-maxima).argsort()[:n] # n = 500 # ind = range(n) sum_out = np.zeros_like(pair_out) n_top = len(top_image_files) n_bottom = len(bottom_image_files) for i in range(n_top): for j in range(n_bottom): sum_out[i*n_bottom+j,:] = top_out[i,:] + bottom_out[j,:] large_pair_out = pair_out[:,ind] large_sum_out = sum_out[:,ind] return large_pair_out, large_sum_out if False: remove_level = 1 large_pair_out, large_sum_out = get_clutter_responses(remove_level) plt.figure(figsize=(4.5,4)) plt.scatter(large_sum_out, large_pair_out, marker='.', c='k') plt.plot([0, 15], [0, 15], 'k--') plt.plot([0, 15], [0, 7.5], 'k') plt.xlim((0,16)) plt.ylim((0,16)) plt.xlabel('Sum of responses to single objects', fontsize=14) plt.ylabel('Response to object pairs', fontsize=14) plt.tight_layout() plt.savefig('../figures/clutter-' + str(remove_level) + '.eps') plt.show() if True: plt.figure(figsize=(6,2)) edges = np.linspace(0, np.pi/2, 20) for remove_level in range(3): plt.subplot(1,3,remove_level+1) large_pair_out, large_sum_out = get_clutter_responses(remove_level) angle = np.arctan((large_pair_out.flatten() + 1e-6) / (large_sum_out.flatten() + 1e-6)) plt.hist(angle, edges, color=[.5,.5,.5]) # if remove_level == 1: # plt.xlabel('Angle from horizontal (radians)', fontsize=14) plt.yticks([]) plt.xticks([0, np.pi/4], ['0', 'pi/4']) plt.plot([np.arctan(.5), np.arctan(.5)], plt.gca().get_ylim(), 'r') plt.tight_layout() plt.savefig('../figures/clutter-angles.eps') plt.show()
mit
-5,060,137,306,948,743,000
35.341772
95
0.628223
false
amenonsen/ansible
lib/ansible/modules/network/fortios/fortios_wireless_controller_hotspot20_h2qp_osu_provider.py
1
13230
#!/usr/bin/python from __future__ import (absolute_import, division, print_function) # Copyright 2019 Fortinet, Inc. # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <https://www.gnu.org/licenses/>. __metaclass__ = type ANSIBLE_METADATA = {'status': ['preview'], 'supported_by': 'community', 'metadata_version': '1.1'} DOCUMENTATION = ''' --- module: fortios_wireless_controller_hotspot20_h2qp_osu_provider short_description: Configure online sign up (OSU) provider list in Fortinet's FortiOS and FortiGate. description: - This module is able to configure a FortiGate or FortiOS (FOS) device by allowing the user to set and modify wireless_controller_hotspot20 feature and h2qp_osu_provider category. Examples include all parameters and values need to be adjusted to datasources before usage. Tested with FOS v6.0.4 version_added: "2.9" author: - Miguel Angel Munoz (@mamunozgonzalez) - Nicolas Thomas (@thomnico) notes: - Requires fortiosapi library developed by Fortinet - Run as a local_action in your playbook requirements: - fortiosapi>=0.9.8 options: host: description: - FortiOS or FortiGate IP address. type: str required: false username: description: - FortiOS or FortiGate username. type: str required: false password: description: - FortiOS or FortiGate password. type: str default: "" vdom: description: - Virtual domain, among those defined previously. A vdom is a virtual instance of the FortiGate that can be configured and used as a different unit. type: str default: root https: description: - Indicates if the requests towards FortiGate must use HTTPS protocol. type: bool default: true ssl_verify: description: - Ensures FortiGate certificate must be verified by a proper CA. type: bool default: true state: description: - Indicates whether to create or remove the object. type: str required: true choices: - present - absent wireless_controller_hotspot20_h2qp_osu_provider: description: - Configure online sign up (OSU) provider list. default: null type: dict suboptions: friendly_name: description: - OSU provider friendly name. type: list suboptions: friendly_name: description: - OSU provider friendly name. type: str index: description: - OSU provider friendly name index. required: true type: int lang: description: - Language code. type: str icon: description: - OSU provider icon. Source wireless-controller.hotspot20.icon.name. type: str name: description: - OSU provider ID. required: true type: str osu_method: description: - OSU method list. type: str choices: - oma-dm - soap-xml-spp - reserved osu_nai: description: - OSU NAI. type: str server_uri: description: - Server URI. type: str service_description: description: - OSU service name. type: list suboptions: lang: description: - Language code. type: str service_description: description: - Service description. type: str service_id: description: - OSU service ID. type: int ''' EXAMPLES = ''' - hosts: localhost vars: host: "192.168.122.40" username: "admin" password: "" vdom: "root" ssl_verify: "False" tasks: - name: Configure online sign up (OSU) provider list. fortios_wireless_controller_hotspot20_h2qp_osu_provider: host: "{{ host }}" username: "{{ username }}" password: "{{ password }}" vdom: "{{ vdom }}" https: "False" state: "present" wireless_controller_hotspot20_h2qp_osu_provider: friendly_name: - friendly_name: "<your_own_value>" index: "5" lang: "<your_own_value>" icon: "<your_own_value> (source wireless-controller.hotspot20.icon.name)" name: "default_name_8" osu_method: "oma-dm" osu_nai: "<your_own_value>" server_uri: "<your_own_value>" service_description: - lang: "<your_own_value>" service_description: "<your_own_value>" service_id: "15" ''' RETURN = ''' build: description: Build number of the fortigate image returned: always type: str sample: '1547' http_method: description: Last method used to provision the content into FortiGate returned: always type: str sample: 'PUT' http_status: description: Last result given by FortiGate on last operation applied returned: always type: str sample: "200" mkey: description: Master key (id) used in the last call to FortiGate returned: success type: str sample: "id" name: description: Name of the table used to fulfill the request returned: always type: str sample: "urlfilter" path: description: Path of the table used to fulfill the request returned: always type: str sample: "webfilter" revision: description: Internal revision number returned: always type: str sample: "17.0.2.10658" serial: description: Serial number of the unit returned: always type: str sample: "FGVMEVYYQT3AB5352" status: description: Indication of the operation's result returned: always type: str sample: "success" vdom: description: Virtual domain used returned: always type: str sample: "root" version: description: Version of the FortiGate returned: always type: str sample: "v5.6.3" ''' from ansible.module_utils.basic import AnsibleModule from ansible.module_utils.connection import Connection from ansible.module_utils.network.fortios.fortios import FortiOSHandler from ansible.module_utils.network.fortimanager.common import FAIL_SOCKET_MSG def login(data, fos): host = data['host'] username = data['username'] password = data['password'] ssl_verify = data['ssl_verify'] fos.debug('on') if 'https' in data and not data['https']: fos.https('off') else: fos.https('on') fos.login(host, username, password, verify=ssl_verify) def filter_wireless_controller_hotspot20_h2qp_osu_provider_data(json): option_list = ['friendly_name', 'icon', 'name', 'osu_method', 'osu_nai', 'server_uri', 'service_description'] dictionary = {} for attribute in option_list: if attribute in json and json[attribute] is not None: dictionary[attribute] = json[attribute] return dictionary def underscore_to_hyphen(data): if isinstance(data, list): for elem in data: elem = underscore_to_hyphen(elem) elif isinstance(data, dict): new_data = {} for k, v in data.items(): new_data[k.replace('_', '-')] = underscore_to_hyphen(v) data = new_data return data def wireless_controller_hotspot20_h2qp_osu_provider(data, fos): vdom = data['vdom'] state = data['state'] wireless_controller_hotspot20_h2qp_osu_provider_data = data['wireless_controller_hotspot20_h2qp_osu_provider'] filtered_data = underscore_to_hyphen(filter_wireless_controller_hotspot20_h2qp_osu_provider_data(wireless_controller_hotspot20_h2qp_osu_provider_data)) if state == "present": return fos.set('wireless-controller.hotspot20', 'h2qp-osu-provider', data=filtered_data, vdom=vdom) elif state == "absent": return fos.delete('wireless-controller.hotspot20', 'h2qp-osu-provider', mkey=filtered_data['name'], vdom=vdom) def is_successful_status(status): return status['status'] == "success" or \ status['http_method'] == "DELETE" and status['http_status'] == 404 def fortios_wireless_controller_hotspot20(data, fos): if data['wireless_controller_hotspot20_h2qp_osu_provider']: resp = wireless_controller_hotspot20_h2qp_osu_provider(data, fos) return not is_successful_status(resp), \ resp['status'] == "success", \ resp def main(): fields = { "host": {"required": False, "type": "str"}, "username": {"required": False, "type": "str"}, "password": {"required": False, "type": "str", "default": "", "no_log": True}, "vdom": {"required": False, "type": "str", "default": "root"}, "https": {"required": False, "type": "bool", "default": True}, "ssl_verify": {"required": False, "type": "bool", "default": True}, "state": {"required": True, "type": "str", "choices": ["present", "absent"]}, "wireless_controller_hotspot20_h2qp_osu_provider": { "required": False, "type": "dict", "default": None, "options": { "friendly_name": {"required": False, "type": "list", "options": { "friendly_name": {"required": False, "type": "str"}, "index": {"required": True, "type": "int"}, "lang": {"required": False, "type": "str"} }}, "icon": {"required": False, "type": "str"}, "name": {"required": True, "type": "str"}, "osu_method": {"required": False, "type": "str", "choices": ["oma-dm", "soap-xml-spp", "reserved"]}, "osu_nai": {"required": False, "type": "str"}, "server_uri": {"required": False, "type": "str"}, "service_description": {"required": False, "type": "list", "options": { "lang": {"required": False, "type": "str"}, "service_description": {"required": False, "type": "str"}, "service_id": {"required": False, "type": "int"} }} } } } module = AnsibleModule(argument_spec=fields, supports_check_mode=False) # legacy_mode refers to using fortiosapi instead of HTTPAPI legacy_mode = 'host' in module.params and module.params['host'] is not None and \ 'username' in module.params and module.params['username'] is not None and \ 'password' in module.params and module.params['password'] is not None if not legacy_mode: if module._socket_path: connection = Connection(module._socket_path) fos = FortiOSHandler(connection) is_error, has_changed, result = fortios_wireless_controller_hotspot20(module.params, fos) else: module.fail_json(**FAIL_SOCKET_MSG) else: try: from fortiosapi import FortiOSAPI except ImportError: module.fail_json(msg="fortiosapi module is required") fos = FortiOSAPI() login(module.params, fos) is_error, has_changed, result = fortios_wireless_controller_hotspot20(module.params, fos) fos.logout() if not is_error: module.exit_json(changed=has_changed, meta=result) else: module.fail_json(msg="Error in repo", meta=result) if __name__ == '__main__': main()
gpl-3.0
-5,820,145,933,093,998,000
32.324937
155
0.552079
false
icyflame/batman
pywikibot/families/wikibooks_family.py
1
7244
# -*- coding: utf-8 -*- """Family module for Wikibooks.""" from __future__ import absolute_import, unicode_literals from pywikibot import family __version__ = '$Id$' # The Wikimedia family that is known as Wikibooks class Family(family.SubdomainFamily, family.WikimediaFamily): """Family class for Wikibooks.""" name = 'wikibooks' closed_wikis = [ # https://meta.wikimedia.org/wiki/Proposals_for_closing_projects/Closure_of_Afar_Wikibooks 'aa', # https://meta.wikimedia.org/wiki/Proposals_for_closing_projects/Closure_of_Akan_Wikibooks 'ak', # https://als.wikipedia.org/wiki/Wikipedia:Stammtisch/Archiv_2008-1#Afterwards.2C_closure_and_deletion_of_Wiktionary.2C_Wikibooks_and_Wikiquote_sites 'als', # https://meta.wikimedia.org/wiki/Proposals_for_closing_projects/Closure_of_Assamese_Wikibooks 'as', # https://meta.wikimedia.org/wiki/Proposals_for_closing_projects/Closure_of_Asturianu_Wikibooks 'ast', # https://meta.wikimedia.org/wiki/Proposals_for_closing_projects/Closure_of_Aymar_Wikibooks 'ay', # https://meta.wikimedia.org/wiki/Proposals_for_closing_projects/Closure_of_Bashkir_Wikibooks 'ba', # https://meta.wikimedia.org/wiki/Proposals_for_closing_projects/Closure_of_Bislama_Wikibooks 'bi', # https://meta.wikimedia.org/wiki/Proposals_for_closing_projects/Closure_of_Bambara_Wikibooks 'bm', # https://meta.wikimedia.org/wiki/Proposals_for_closing_projects/Closure_of_Tibetan_Wikibooks 'bo', # https://meta.wikimedia.org/wiki/Proposals_for_closing_projects/Closure_of_Chamorro_Wikibooks 'ch', # https://meta.wikimedia.org/wiki/Proposals_for_closing_projects/Closure_of_Corsu_Wikibooks 'co', # https://meta.wikimedia.org/wiki/Proposals_for_closing_projects/Closure_of_Gaeilge_Wikibooks 'ga', # https://meta.wikimedia.org/wiki/Proposals_for_closing_projects/Closure_of_Gothic_Wikibooks 'got', # https://meta.wikimedia.org/wiki/Proposals_for_closing_projects/Closure_of_Guarani_Wikibooks 'gn', # https://meta.wikimedia.org/wiki/Proposals_for_closing_projects/Closure_of_Gujarati_Wikibooks 'gu', # https://meta.wikimedia.org/wiki/Proposals_for_closing_projects/Closure_of_Kannada_Wikibooks 'kn', # https://meta.wikimedia.org/wiki/Proposals_for_closing_projects/Closure_of_Kashmiri_Wikibooks 'ks', # https://meta.wikimedia.org/wiki/Proposals_for_closing_projects/Closure_of_L%C3%ABtzebuergesch_Wikibooks 'lb', # https://meta.wikimedia.org/wiki/Proposals_for_closing_projects/Closure_of_Lingala_Wikibooks 'ln', # https://meta.wikimedia.org/wiki/Proposals_for_closing_projects/Closure_of_Latvian_Wikibooks 'lv', # https://meta.wikimedia.org/wiki/Proposals_for_closing_projects/Closure_of_Maori_Wikibooks 'mi', # https://meta.wikimedia.org/wiki/Proposals_for_closing_projects/Closure_of_Mongolian_Wikibooks 'mn', # https://meta.wikimedia.org/wiki/Proposals_for_closing_projects/Closure_of_Burmese_Wikibooks 'my', # https://meta.wikimedia.org/wiki/Proposals_for_closing_projects/Closure_of_Nauruan_Wikibooks 'na', # https://meta.wikimedia.org/wiki/Proposals_for_closing_projects/Closure_of_Nahuatl_Wikibooks 'nah', # https://meta.wikimedia.org/wiki/Proposals_for_closing_projects/Closure_of_Plattd%C3%BC%C3%BCtsch_Wikibooks 'nds', # https://meta.wikimedia.org/wiki/Proposals_for_closing_projects/Closure_of_Pashto_Wikibooks 'ps', # https://meta.wikimedia.org/wiki/Proposals_for_closing_projects/Closure_of_Quechua_Wikibooks 'qu', # https://meta.wikimedia.org/wiki/Proposals_for_closing_projects/Closure_of_Rumantsch_Wikibooks 'rm', # https://meta.wikimedia.org/wiki/Proposals_for_closing_projects/Closure_of_Sami_Wikibooks 'se', # https://meta.wikimedia.org/wiki/Proposals_for_closing_projects/Closure_of_Simple_English_Wikibooks_(3) 'simple', # https://meta.wikimedia.org/wiki/Proposals_for_closing_projects/Closure_of_Basa_Sunda_Wikibooks_(2) 'su', # https://meta.wikimedia.org/wiki/Proposals_for_closing_projects/Closure_of_Swahili_Wikibooks 'sw', # https://meta.wikimedia.org/wiki/Proposals_for_closing_projects/Closure_of_Turkmen_Wikibooks 'tk', # https://meta.wikimedia.org/wiki/Proposals_for_closing_projects/Closure_of_Uyghur_Wikibooks 'ug', # https://meta.wikimedia.org/wiki/Proposals_for_closing_projects/Closure_of_Volap%C3%BCk_Wikibooks 'vo', # https://meta.wikimedia.org/wiki/Proposals_for_closing_projects/Closure_of_Walon_Wikibooks 'wa', # https://meta.wikimedia.org/wiki/Proposals_for_closing_projects/Closure_of_Xhosa_Wikibooks 'xh', # https://meta.wikimedia.org/wiki/Proposals_for_closing_projects/Closure_of_Yoruba_Wikibooks 'yo', # https://meta.wikimedia.org/wiki/Proposals_for_closing_projects/Closure_of_Zhuang_Wikibooks 'za', # https://meta.wikimedia.org/wiki/Proposals_for_closing_projects/Closure_of_Zulu_Wikibooks 'zu', ] removed_wikis = [ 'tokipona', ] def __init__(self): """Constructor.""" self.languages_by_size = [ 'en', 'de', 'fr', 'hu', 'ja', 'it', 'es', 'pt', 'nl', 'pl', 'he', 'vi', 'ca', 'id', 'sq', 'fi', 'ru', 'fa', 'cs', 'zh', 'sv', 'hr', 'tr', 'ro', 'sr', 'ar', 'no', 'th', 'ko', 'gl', 'da', 'ta', 'mk', 'az', 'tl', 'is', 'ka', 'lt', 'tt', 'uk', 'eo', 'bg', 'sk', 'sl', 'el', 'hy', 'ms', 'sa', 'si', 'li', 'la', 'ml', 'ur', 'bn', 'ang', 'ia', 'cv', 'et', 'hi', 'km', 'mr', 'eu', 'oc', 'kk', 'fy', 'ne', 'ie', 'te', 'af', 'tg', 'ky', 'bs', 'pa', 'be', 'mg', 'cy', 'zh-min-nan', 'ku', 'uz', ] super(Family, self).__init__() # Global bot allowed languages on # https://meta.wikimedia.org/wiki/Bot_policy/Implementation#Current_implementation self.cross_allowed = [ 'af', 'ang', 'ca', 'fa', 'fy', 'it', 'nl', 'ru', 'th', 'zh', ] # Which languages have a special order for putting interlanguage links, # and what order is it? If a language is not in interwiki_putfirst, # alphabetical order on language code is used. For languages that are in # interwiki_putfirst, interwiki_putfirst is checked first, and # languages are put in the order given there. All other languages are # put after those, in code-alphabetical order. self.interwiki_putfirst = { 'en': self.alphabetic, 'fi': self.alphabetic, 'fr': self.alphabetic, 'he': ['en'], 'hu': ['en'], 'pl': self.alphabetic, 'simple': self.alphabetic } def shared_data_repository(self, code, transcluded=False): """Return the shared data repository for this family.""" return ('wikidata', 'wikidata')
mit
-3,807,221,727,684,377,000
48.278912
157
0.628934
false
mpachas/django-monthfield
month/tests.py
1
5197
from django.test import TestCase from month.models import Month from example.models import Example import datetime # Create your tests here. def TestMonthFunctions(TestCase): def test_constructors(self): m = Month(2010, 1) self.assertEqual(m.year, 2010) self.assertEqual(m.month, 1) m = Month.from_string('2010-01') self.assertEqual(m.year, 2010) self.assertEqual(m.month, 1) m = Month.from_date(datetime.date(year=2010, month=1, day=20)) self.assertEqual(m.year, 2010) self.assertEqual(m.month, 1) def test_addition(self): m = Month(2010, 1) x = m + 5 self.assertEqual(x.year, 2010) self.assertEqual(x.month, 6) x = m + 11 self.assertEqual(x.year, 2010) self.assertEqual(x.month, 12) x = m + 12 self.assertEqual(x.year, 2011) self.assertEqual(x.month, 1) x = m + 13 self.assertEqual(x.year, 2011) self.assertEqual(x.month, 2) x = m - 1 self.assertEqual(x.year, 2009) self.assertEqual(x.month, 12) x = m + 0 self.assertEqual(x.year, 2010) self.assertEqual(x.month, 1) x = m - 12 self.assertEqual(x.year, 2009) self.assertEqual(x.month, 1) x = m.next_month() self.assertEqual(x.year, 2010) self.assertEqual(x.month, 2) x = m.prev_month() self.assertEqual(x.year, 2009) self.assertEqual(x.month, 12) def test_firstday(self): m = Month(2010, 1) self.assertEqual(m.firstDay(), datetime.date(year=2010, month=1, day=1)) self.assertEqual(m.last_day(), datetime.date(year=2010, month=1, day=31)) m = Month(2010, 2) self.assertEqual(m.firstDay(), datetime.date(year=2010, month=2, day=1)) self.assertEqual(m.last_day(), datetime.date(year=2010, month=2, day=28)) m = Month(2008, 2) self.assertEqual(m.firstDay(), datetime.date(year=2008, month=2, day=1)) self.assertEqual(m.last_day(), datetime.date(year=2008, month=2, day=29)) def test_contains(self): m = Month(2010, 1) assert datetime.date(year=2010, month=1, day=1) in m assert datetime.date(year=2010, month=1, day=10) in m assert datetime.date(year=2010, month=1, day=31) in m assert datetime.date(year=2010, month=2, day=1) not in m assert datetime.date(year=2009, month=12, day=31) not in m assert datetime.date(year=2009, month=1, day=31) not in m assert datetime.date(year=2010, month=2, day=15) not in m def test_int_conversion(self): m = Month(2010, 1) n = Month.from_int(int(m)) self.assertEqual(n.year, 2010) self.assertEqual(n.month, 1) def test_comparisons(self): m = Month(2010, 1) assert m == "2010-01-20" assert m == "2010-01-20" assert m == "2010-01" assert m == "2010-01-20" assert m < "2010-02-01" assert m > "2009-12" assert m > "2009-12-31" p = m.prev_month() n = m.next_month() assert m == m assert m <= m assert m >= m assert not m > m assert not m < m assert not m != m assert not m == p assert m > p assert m >= p assert not m <= p assert not m < p assert m != p assert not m == n assert m != n assert m < n assert m <= n assert not m > n assert not m >= n class test_model_field(TestCase): def test_queries(self): e = Example(name='2010-01', month=Month(2010, 1)) e.save() assert isinstance(e.month, Month) assert e.month.month == 1 assert e.month.year == 2010 pk = e.pk e = Example.objects.get(pk=pk) assert isinstance(e.month, Month) assert e.month.month == 1 assert e.month.year == 2010 e = Example(name='2010-01', month='2010-01') e.save() pk = e.pk e = Example.objects.get(pk=pk) assert isinstance(e.month, Month) assert e.month.month == 1 assert e.month.year == 2010 e = Example(name='2010-01', month=datetime.date(year=2010, month=1, day=20)) e.save() pk = e.pk e = Example.objects.get(pk=pk) assert isinstance(e.month, Month) assert e.month.month == 1 assert e.month.year == 2010 Example.objects.all().delete() for year in range(2001, 2011): for month in range(1, 13): name = "%s - %02d" %(year, month) Example(name=name, month=Month(year, month)).save() qs = Example.objects.filter(month='2005-12') assert qs.exists() assert qs.count() == 1 qs = Example.objects.filter(month__gte='2005-12') assert qs.exists() self.assertEqual(qs.count(), 61) qs = Example.objects.filter(month__gt='2005-12') assert qs.exists() assert qs.count() == 60 def tearDown(self): Example.objects.all().delete()
bsd-3-clause
6,722,813,776,884,100,000
28.196629
84
0.552819
false
brianjimenez/lightdock
bin/test/post/test_generate_glowworm_positions.py
1
1125
"""Test for generate_glowworm_positions post script""" import os import filecmp import shutil from ..regression import RegressionTest class TestGenerateGlowwormPositions(RegressionTest): def setup(self): self.path = os.path.dirname(os.path.realpath(__file__)) self.test_path = self.path + '/scratch_generate_glowworm_positions/' self.ini_test_path() self.golden_data_path = os.path.normpath(os.path.dirname(os.path.realpath(__file__))) + \ '/golden_data/generate_glowworm_positions/' def teardown(self): self.clean_test_path() def test_generate_conformations(self): os.chdir(self.test_path) shutil.copyfile(os.path.join(self.golden_data_path, 'gso_10.out'), os.path.join(self.test_path, 'gso_10.out')) command = "lgd_generate_glowworm_positions.py %s > test.out" % (os.path.join(self.test_path, 'gso_10.out')) os.system(command) assert filecmp.cmp(os.path.join(self.golden_data_path, 'gso_10.pdb'), os.path.join(self.test_path, 'gso_10.pdb'))
gpl-3.0
7,381,194,362,340,665,000
37.793103
115
0.629333
false
sh0ked/vmmaster
backend/queue_producer.py
1
4076
# coding: utf-8 import aioamqp import uuid import logging from core.utils import async_wait_for log = logging.getLogger(__name__) class AsyncQueueProducer(object): messages = {} connection = None channel = None consumer_tag = None responses_queue = None commands_queue = None def __init__(self, app): self.app = app async def connect(self): params = { 'loop': self.app.loop, 'login': self.app.cfg.RABBITMQ_USER, 'password': self.app.cfg.RABBITMQ_PASSWORD, 'host': self.app.cfg.RABBITMQ_HOST, 'port': self.app.cfg.RABBITMQ_PORT } self.connection = await self.make_connection(params) self.channel = await self.connection.channel() self.responses_queue, self.consumer_tag = await self.create_queue_and_consume() self.commands_queue = await self.create_queue(self.app.cfg.RABBITMQ_COMMAND_QUEUE) async def create_queue(self, queue_name=None): if not queue_name: result = await self.channel.queue_declare(exclusive=True) else: result = await self.channel.queue_declare(queue_name=queue_name) queue, messages, consumers = result.get('queue'), result.get('message_count'), result.get('consumer_count') log.info("Queue %s was declared(messages: %s, consumers: %s)" % (queue, messages, consumers)) return queue async def delete_queue(self, queue_name): await self.channel.queue_delete(queue_name) log.info('Queue %s was deleted' % queue_name) async def create_queue_and_consume(self, queue_name=None): if not queue_name: queue_name = await self.create_queue() else: await self.create_queue(queue_name) consumer_tag = await self.queue_consume(queue_name) return queue_name, consumer_tag @staticmethod async def make_connection(params): transport, connection = await aioamqp.connect(**params) return connection async def queue_consume(self, queue_name): log.info("Start consuming for queue %s" % queue_name) await self.channel.basic_consume( callback=self.on_message, queue_name=queue_name, no_ack=False ) async def on_message(self, channel, body, envelope, properties): log.debug("Got new message %s" % body) for correlation_id in list(self.messages.keys()): if correlation_id == properties.correlation_id: log.info("Response with corr_id %s from queue %s: %s" % (correlation_id, self.responses_queue, body)) self.messages[correlation_id]["response"] = body channel.basic_client_ack(delivery_tag=envelope.delivery_tag) async def add_msg_to_queue(self, queue_name, msg): correlation_id = str(uuid.uuid4()) await self.channel.basic_publish( payload=str(msg), exchange_name='', routing_key=queue_name, properties={ "reply_to": self.responses_queue, "correlation_id": correlation_id }) log.info("Message(id:%s body: %s) was published to %s" % (correlation_id, msg, queue_name)) self.messages[correlation_id] = {"request": msg, "response": None} return correlation_id async def get_message_from_queue(self, correlation_id): log.info("Waiting response for message with id: %s" % correlation_id) response = await async_wait_for( lambda: self.messages.get(correlation_id).get("response"), self.app.loop, timeout=self.app.cfg.BACKEND_REQUEST_TIMEOUT ) del self.messages[correlation_id] log.info("Got response %s for message with id: %s" % (response, correlation_id)) return response async def add_msg_to_queue_with_response(self, queue_name, msg): correlation_id = await self.add_msg_to_queue(queue_name, msg) response = await self.get_message_from_queue(correlation_id) return response
mit
1,020,926,549,248,728,000
38.192308
117
0.626349
false
fsmMLK/inkscapeCircuitSymbols
0.9x/drawRLC.py
1
14781
#!/usr/bin/python import inkscapeMadeEasy_Base as inkBase import inkscapeMadeEasy_Draw as inkDraw class RLC(inkBase.inkscapeMadeEasy): # --------------------------------------------- def drawBipoleGeneral(self, parent, position=[0, 0], value='Z', label='Bipole', angleDeg=0, flagVolt=True, voltName='v', flagCurr=True, currName='i', invertArrows=False, convention='passive'): """ draws a generic bipole with a rectangle parent: parent object position: position [x,y] value: string with resistor value. (default 'Z') label: label of the object (it can be repeated) angleDeg: rotation angle in degrees counter-clockwise (default 0) flagVolt: indicates whether the voltage arrow must be drawn (default: true) voltName: voltage drop name (default: v) flagCurr: indicates whether the current arrow must be drawn (default: true) currName: current drop name (default: i) invertArrows: invert V/I arrow directions (default: False) convention: passive/active sign convention. available types: 'passive' (default) , 'active' """ group = self.createGroup(parent, label) elem = self.createGroup(group) inkDraw.line.relCoords(elem, [[15.5, 0]], position) inkDraw.line.relCoords(elem, [[19, 0], [0, -6], [-19, 0], [0, 6]], [position[0] + 15.5, position[1] + 3]) inkDraw.line.relCoords(elem, [[15.5, 0]], [position[0] + 34.5, position[1]]) pos_text = [position[0] + 25, position[1] - 3 - self.textOffset] if inkDraw.useLatex: value = '$' + value + '$' inkDraw.text.latex(self, group, value, pos_text, fontSize=self.fontSize, refPoint='bc', preambleFile=self.preambleFile) if angleDeg != 0: self.rotateElement(group, position, angleDeg) if flagVolt: if convention == 'passive': self.drawVoltArrow(group, [position[0] + 25, position[1] + 5], name=voltName, color=self.voltageColor, angleDeg=angleDeg, invertArrows=not invertArrows) if convention == 'active': self.drawVoltArrow(group, [position[0] + 25, position[1] + 5], name=voltName, color=self.voltageColor, angleDeg=angleDeg, invertArrows=invertArrows) if flagCurr: self.drawCurrArrow(group, [position[0] + 40, position[1] - 5], name=currName, color=self.currentColor, angleDeg=angleDeg, invertArrows=invertArrows) return group # --------------------------------------------- def drawResistor(self, parent, position=[0, 0], value='R', label='Resistor', angleDeg=0, flagVolt=True, voltName='v', flagCurr=True, currName='i', invertArrows=False, convention='passive'): """ draws a resistor parent: parent object position: position [x,y] value: string with resistor value. If it ends with 'ohm', 'OHM' or 'Ohm', proper Ohm symbol will be added. (Default 'R') label: label of the object (it can be repeated) angleDeg: rotation angle in degrees counter-clockwise (default 0) flagVolt: indicates whether the voltage arrow must be drawn (default: true) voltName: voltage drop name (default: v) flagCurr: indicates whether the current arrow must be drawn (default: true) currName: current drop name (default: i) invertArrows: invert V/I arrow directions (default: False) convention: passive/active sign convention. available types: 'passive' (default) , 'active' """ group = self.createGroup(parent, label) elem = self.createGroup(group) inkDraw.line.relCoords(elem, [[15.5, 0], [2, 3], [3, -6], [3, 6], [3, -6], [3, 6], [3, -6], [2, 3], [15.5, 0]], position) pos_text = [position[0] + 25, position[1] - 3 - self.textOffset] if inkDraw.useLatex: value = '$' + value + '$' inkDraw.text.latex(self, group, value, pos_text, fontSize=self.fontSize, refPoint='bc', preambleFile=self.preambleFile) if angleDeg != 0: self.rotateElement(group, position, angleDeg) if flagVolt: if convention == 'passive': self.drawVoltArrow(group, [position[0] + 25, position[1] + 5], name=voltName, color=self.voltageColor, angleDeg=angleDeg, invertArrows=not invertArrows) if convention == 'active': self.drawVoltArrow(group, [position[0] + 25, position[1] + 5], name=voltName, color=self.voltageColor, angleDeg=angleDeg, invertArrows=invertArrows) if flagCurr: self.drawCurrArrow(group, [position[0] + 40, position[1] - 5], name=currName, color=self.currentColor, angleDeg=angleDeg, invertArrows=invertArrows) return group # --------------------------------------------- def drawPotentiometer(self, parent, position=[0, 0], value='R', label='Potentiometer', angleDeg=0, flagVolt=True, voltName='v', flagCurr=True, currName='i', invertArrows=False, is3T=False, convention='passive'): """ draws a potentiometer parent: parent object position: position [x,y] value: string with resistor value. label: label of the object (it can be repeated) angleDeg: rotation angle in degrees counter-clockwise (default 0) flagVolt: indicates whether the voltage arrow must be drawn (default: true) voltName: voltage drop name (default: v) flagCurr: indicates whether the current arrow must be drawn (default: true) currName: current drop name (default: i) invertArrows: invert V/I arrow directions (default: False) is3T: indicates the drawPotentiometer has 3 terminals (default:false) convention: passive/active sign convention. available types: 'passive' (default) , 'active' """ group = self.createGroup(parent, label) elem = self.createGroup(group) # build arrow marker colorBlack = inkDraw.color.defined('black') L_arrow = 2.5 markerPath = 'M 0,0 l -%f,%f l 0,-%f z' % (L_arrow * 1.2, L_arrow / 2.0, L_arrow) markerArrow = inkDraw.marker.createMarker(self, 'BJTArrow', markerPath, RenameMode=1, strokeColor=colorBlack, fillColor=colorBlack, lineWidth=0.6, markerTransform='translate (1,0)') lineStyleArrow = inkDraw.lineStyle.set(lineWidth=1, lineColor=colorBlack, markerEnd=markerArrow) inkDraw.line.relCoords(elem, [[15.5, 0], [2, 3], [3, -6], [3, 6], [3, -6], [3, 6], [3, -6], [2, 3], [15.5, 0]], position) # 2-terminal Potentiometer if is3T: inkDraw.line.relCoords(elem, [[0, -10]], [position[0] + 25, position[1] + 15], lineStyle=lineStyleArrow) pos_text = [position[0] + 25, position[1] - 3 - self.textOffset] else: inkDraw.line.relCoords(elem, [[20, -12]], [position[0] + 15, position[1] + 6], lineStyle=lineStyleArrow) pos_text = [position[0] + 25, position[1] - 6 - self.textOffset] if inkDraw.useLatex: value = '$' + value + '$' inkDraw.text.latex(self, group, value, pos_text, fontSize=self.fontSize, refPoint='bc', preambleFile=self.preambleFile) if angleDeg != 0: self.rotateElement(group, position, angleDeg) if flagVolt: if is3T: pos = [position[0] + 25, position[1] - 13] invertCurvature = True else: pos = [position[0] + 25, position[1] + 8] invertCurvature = False if convention == 'passive': self.drawVoltArrowSimple(group, pos, name=voltName, color=self.voltageColor, angleDeg=0, invertArrows=invertArrows, invertCurvatureDirection=invertCurvature) if convention == 'active': self.drawVoltArrowSimple(group, pos, name=voltName, color=self.voltageColor, angleDeg=0, invertArrows=not invertArrows, invertCurvatureDirection=invertCurvature) if flagCurr: if is3T: pos = [position[0] + 40, position[1] - 5] else: pos = [position[0] + 42, position[1] - 5] self.drawCurrArrow(group, pos, name=currName, color=self.currentColor, angleDeg=angleDeg, invertArrows=invertArrows) return group # --------------------------------------------- def drawCapacitor(self, parent, position=[0, 0], value='C', label='Capacitor', flagPol=False, angleDeg=0, flagVolt=True, voltName='v', flagCurr=True, currName='i', invertArrows=False, convention='passive'): """ draws a capacitor parent: parent object position: position [x,y] value: string with value. label: label of the object (it can be repeated) flagPol: draw sign for polarized capacitor angleDeg: rotation angle in degrees counter-clockwise (default 0) flagVolt: indicates whether the voltage arrow must be drawn (default: true) voltName: voltage drop name (default: v) flagCurr: indicates whether the current arrow must be drawn (default: true) currName: current drop name (default: i) invertArrows: invert V/I arrow directions (default: False) convention: passive/active sign convention. available types: 'passive' (default) , 'active' """ group = self.createGroup(parent, label) elem = self.createGroup(group, label) inkDraw.line.relCoords(elem, [[23, 0]], position) inkDraw.line.relCoords(elem, [[-23, 0]], [position[0] + 50, position[1]]) inkDraw.line.relCoords(elem, [[0, -14]], [position[0] + 23, position[1] + 7]) inkDraw.line.relCoords(elem, [[0, -14]], [position[0] + 27, position[1] + 7]) pos_text = [position[0] + 25, position[1] - 8 - self.textOffset] if inkDraw.useLatex: value = '$' + value + '$' inkDraw.text.latex(self, group, value, pos_text, fontSize=self.fontSize, refPoint='bc', preambleFile=self.preambleFile) if flagPol: inkDraw.text.write(self, '+', [position[0] + 31, position[1] - 3], group, self.textStyle, fontSize=5) if angleDeg != 0: self.rotateElement(group, position, angleDeg) if flagVolt: if convention == 'passive': self.drawVoltArrow(group, [position[0] + 25, position[1] + 9], name=voltName, color=self.voltageColor, angleDeg=angleDeg, invertArrows=not invertArrows) if convention == 'active': self.drawVoltArrow(group, [position[0] + 25, position[1] + 9], name=voltName, color=self.voltageColor, angleDeg=angleDeg, invertArrows=invertArrows) if flagCurr: self.drawCurrArrow(group, [position[0] + 40, position[1] - 5], name=currName, color=self.currentColor, angleDeg=angleDeg, invertArrows=invertArrows) return group # --------------------------------------------- def drawInductor(self, parent, position=[0, 0], value='L', label='Inductro', angleDeg=0, flagVolt=True, voltName='v', flagCurr=True, currName='i', invertArrows=False, convention='passive'): """ draws an inductor parent: parent object position: position [x,y] value: string with resistor value. If it ends with 'ohm', 'OHM' or 'Ohm', proper Ohm symbol will be added. (Default 'R') label: label of the object (it can be repeated) angleDeg: rotation angle in degrees counter-clockwise (default 0) flagVolt: indicates whether the voltage arrow must be drawn (default: true) voltName: voltage drop name (default: v) flagCurr: indicates whether the current arrow must be drawn (default: true) currName: current drop name (default: i) invertArrows: invert V/I arrow directions (default: False) convention: passive/active sign convention. available types: 'passive' (default) , 'active' """ group = self.createGroup(parent, label) elem = self.createGroup(group, label) inkDraw.line.relCoords(elem, [[13, 0]], position) inkDraw.line.relCoords(elem, [[-13, 0]], [position[0] + 50, position[1]]) inkDraw.arc.centerAngStartAngEnd(elem, [position[0] + 16, position[1]], 3.0, 0.0, 180.0, [0, 0], flagOpen=True, largeArc=False) inkDraw.arc.centerAngStartAngEnd(elem, [position[0] + 22, position[1]], 3.0, 0.0, 180.0, [0, 0], flagOpen=True, largeArc=False) inkDraw.arc.centerAngStartAngEnd(elem, [position[0] + 28, position[1]], 3.0, 0.0, 180.0, [0, 0], flagOpen=True, largeArc=False) inkDraw.arc.centerAngStartAngEnd(elem, [position[0] + 34, position[1]], 3.0, 0.0, 180.0, [0, 0], flagOpen=True, largeArc=False) pos_text = [position[0] + 25, position[1] - self.textOffset] if inkDraw.useLatex: value = '$' + value + '$' inkDraw.text.latex(self, group, value, pos_text, fontSize=self.fontSize, refPoint='bc', preambleFile=self.preambleFile) if angleDeg != 0: self.rotateElement(group, position, angleDeg) if flagVolt: if convention == 'passive': self.drawVoltArrow(group, [position[0] + 25, position[1] + 5], name=voltName, color=self.voltageColor, angleDeg=angleDeg, invertArrows=not invertArrows) if convention == 'active': self.drawVoltArrow(group, [position[0] + 25, position[1] + 5], name=voltName, color=self.voltageColor, angleDeg=angleDeg, invertArrows=invertArrows) if flagCurr: self.drawCurrArrow(group, [position[0] + 40, position[1] - 5], name=currName, color=self.currentColor, angleDeg=angleDeg, invertArrows=invertArrows) return group
gpl-3.0
-5,235,465,511,251,690,000
48.767677
128
0.577633
false
Iconoclasteinc/tgit
testing/drivers/track_list_tab_driver.py
1
3521
# -*- coding: utf-8 -*- from PyQt5.QtWidgets import QMenu, QTableWidget from hamcrest import contains, has_items, equal_to from cute import gestures from cute.matchers import named from cute.widgets import MenuDriver, TableViewDriver from tgit.ui.pages.track_list_tab import TrackListTab from ._screen_driver import ScreenDriver def track_list_tab(parent): return TrackListTabDriver.find_single(parent, TrackListTab, named("track_list_tab")) class TrackListTabDriver(ScreenDriver): def __init__(self, selector, prober, gesture_performer): super().__init__(selector, prober, gesture_performer) def shows_column_headers(self, *headers): self._track_table().has_headers(contains(*headers)) def shows_track_details(self, *details): return self._track_table().has_row(has_items(*details)) def has_selected_track(self, *cells): return self._track_table().has_selected_row(has_items(*cells)) def shows_tracks_in_order(self, *tracks): rows = [has_items(*[column for column in track]) for track in tracks] return self._track_table().contains_rows(contains(*rows)) def has_track_count(self, count): self._track_table().has_row_count(equal_to(count)) def add_tracks(self): self.button(named("_add_tracks_button")).click() def has_context_menu_item(self, matching): context_menu = self._from_context_menu() context_menu.has_menu_item(matching) context_menu.close() @property def remove_button(self): return self.button(named("_remove_track_button")) @property def move_up_button(self): return self.button(named("_move_track_up_button")) @property def move_down_button(self): return self.button(named("_move_track_down_button")) def has_disabled_play_context_menu_item(self, title): self.select_track(title) self._from_context_menu().menu_item(named("_play_action")).is_disabled() def _from_context_menu(self): self.perform(gestures.mouse_right_click()) return MenuDriver.find_single(self, QMenu, named("context_menu")) def select_track(self, title): row = self.shows_track_details(title) self._track_table().click_on_cell(row, 0) def play_track(self, title): self.select_track(title) self._from_context_menu().select_menu_item(named("_play_action")) def stop_track(self, title): self.select_track(title) self._from_context_menu().select_menu_item(named("_stop_action")) def remove_selected_track(self, using="shortcut"): if using == "shortcut": self.perform(gestures.delete_previous()) elif using == "menu": self._from_context_menu().select_menu_item(named("_remove_action")) elif using == "button": self.remove_button.click() else: raise AssertionError("Don't know how to remove a track using {}", using) def remove_track(self, title): self.select_track(title) self.remove_selected_track() def move_track(self, title, to): from_ = self.shows_track_details(title) self._track_table().move_row(from_, to) def move_track_up(self): self.move_up_button.click() def move_track_down(self): self.move_down_button.click() def _track_table(self): table = TableViewDriver.find_single(self, QTableWidget, named('_track_table')) table.is_showing_on_screen() return table
gpl-3.0
5,953,029,582,942,851,000
33.184466
88
0.652655
false
nict-isp/scn-openflow-driver
src/ncps_openflow/protocols/application/tcp.py
1
13729
# -*- coding: utf-8 -*- """ protocols.application.tcp ~~~~~~~~~~~~~~~~~~~~~~~~~ :copyright: Copyright (c) 2015, National Institute of Information and Communications Technology.All rights reserved. :license: GPL3, see LICENSE for more details. """ import logging from protocols.application.application import Server from protocols.application.application import Client from protocols import ipv4 as Ipv4Agent from protocols import tcp as TcpAgent from protocols.tcp import TcpSegment from protocols.tcp import TcpConnection from pox.core import core from pox.lib.packet.tcp import tcp from random import randint log = logging.getLogger('protocols.application.tcp') class TcpServer(Server): """Implements a basic TCP Server which handles raw TCP packets passed to it.""" protocol = tcp agent = TcpAgent def __init__(self, lport, max_active_conns=1000): #was max_active_conns=250 """port is the port the TCPServer should listen for SYN packets on.""" assert lport>=0 and lport<65536, "Port must be between 0 and 65536 (exclusive)" self.lport = lport self.connections = {} self.max_active_conns = max_active_conns Server.__init__(self) def processPacket(self, packet, *args, **kwargs): tcpPkt = self.agent.extract(packet) if tcpPkt is None: return None if not self.matches(packet, *args, **kwargs): return None for f in self.filters: packet = f.packetIn(packet) conn = self.getConnection(packet, *args, **kwargs) if not conn: return None conn = self.processTcpPkt(conn, packet, tcpPkt) if not conn or conn.closed: return None conn = self.processTcpData(conn, packet, tcpPkt, *args, **kwargs) _tcpPkt = self.getReply(packet, *args, **kwargs) if _tcpPkt is None: return None resp = self.agent.buildStandardTcpResponse(packet, _tcpPkt, payload=_tcpPkt.next, ipId=None if not conn.ipId else conn.ipId+1) if conn.ipId is None: ipId = Ipv4Agent.extractId(resp) if ipId == 0: ipId = randint(0, 2**16-1) conn.ipId = ipId conn.ipId += 1 return resp def matches(self, packet, *args, **kwargs): dstip, dstport = self.agent.extractDst(packet) if dstport == self.lport: return True return False def getReply(self, packet, *args, **kwargs): conn = self.getConnection(packet, *args, **kwargs) if conn is None: return None pkts = conn.get_packets_to_send() if not pkts: return return pkts[0] def getConnection(self, packet, *args, **kwargs): socPair = self.agent.extractConnection(packet) key = self.agent.socPairInt(socPair) conn = self.connections.get(key) if not conn: conn = self.createConnection(packet, socPair, *args, **kwargs) if conn is None: return conn self.connections[key] = conn log.debug("{TcpServer} adding the %dth connection [%s]" % (len(self.connections), key)) return conn def createConnection(self, packet, socPair, *args, **kwargs): if len(self.connections) >= self.max_active_conns: s = 'Ignoring new connection request:' s += 'already have %d active connections' log.warn(s % self.max_active_conns) return None if not self.agent.isSyn(packet): return None _kwargs = {} _kwargs.update(kwargs) _kwargs['connection_over_cb'] = self.connectionClosed _kwargs['has_data_to_send_cb'] = self.connHasDataToSend conn = TcpConnection.createFromPacket(packet, **_kwargs) return conn def connHasDataToSend(self, conn): if conn is None: return None pkts = conn.get_packets_to_send() if len(pkts)==0: return None tcpPkt = pkts[0] pkt = self.agent.buildFrameFromConn(conn, tcpPkt) self.sendConnectionPkt(conn, pkt) def sendConnectionPkt(self, conn, pkt): self.sendPkt(pkt) def processTcpPkt(self, conn, packet, tcpPkt): seq = self.agent.extractSeq(tcpPkt) if seq is None: return None try: if len(tcpPkt.next) > 0: segment = TcpSegment(seq, tcpPkt.next) conn.add_segment(segment) except Exception as inst: log.exception(inst) conn.close() return None if self.agent.isFin(tcpPkt): conn.fin_received(seq) window = self.agent.extractWin(tcpPkt) if window is None: return None conn.window = max(1460, window) # ignore requests to shrink the window below an MTU if self.agent.isAck(tcpPkt): ack = self.agent.extractAck(tcpPkt) if ack is None: return None conn.set_ack(ack) return conn def processTcpData(self, conn, packet, tcpPkt, *args, **kwargs): if not conn or conn.closed: return conn if not conn.has_ready_data(): return conn data = conn.get_data() self.payloadReceived(packet, data, *args, **kwargs) conn.segments = [] return conn def sendPayload(self, payload, *args, **kwargs): """ TODO """ def connectionClosed(self, *args, **kwargs): """Called when it is ready to be removed. Removes the connection.""" if len(args) == 0: return conn = args[0] if not conn: return socPair = conn.get_socket_pair() socPair = socPair[::-1] key = self.agent.socPairInt(socPair) try: conn = self.connections[key] core.callDelayed(1, self.delConnection, key) if not conn.closed: conn.close() except KeyError: log.warn('Tried to remove connection which is not in our dictionary: %s' % str(key)) pass def delConnection(self, key): try: del self.connections[key] log.debug("Deleting the %dth connection [%s]" % (len(self.connections)+1, key)) except: log.error("unable to delete this connection [%s]" % key) pass class OF_TcpServer(TcpServer): def sendConnectionPkt(self, conn, pkt): self.sendPkt(pkt, conn.dpid, conn.port) def getConnection(self, packet, dpid, port, *args, **kwargs): socPair = self.agent.extractConnection(packet) key = self.agent.socPairInt(socPair) conn = self.connections.get(key) if not conn: kwargs['dpid'] = dpid kwargs['port'] = port conn = self.createConnection(packet, socPair, *args, **kwargs) if conn is None: return conn self.connections[key] = conn log.debug("{OF_TcpServer} Adding the %dth connection [%s]" % (len(self.connections), key)) return conn class TcpClient(Client, TcpConnection): protocol = tcp agent = TcpAgent def __init__(self, src, dst, payload=''): kwargs = {} kwargs['my_mac'] = src[0] kwargs['my_ip'] = src[1] if len(src) == 3: srcport = src[2] kwargs['my_port'] = srcport kwargs['other_mac'] = dst[0] kwargs['other_ip'] = dst[1] kwargs['other_port'] = dst[2] kwargs['connection_over_cb'] = self.connectionClosed kwargs['has_data_to_send_cb'] = self.connHasDataToSend kwargs['payload'] = payload self.d = None # deferred TcpConnection.__init__(self, **kwargs) Client.__init__(self) def start(self): tcpPkt = self.createSyn() self.firstSYN = tcpPkt packet = self.agent.buildFrameFromConn(self, tcpPkt) self.sendPkt(packet) def processPacket(self, packet, *args, **kwargs): tcpPkt = self.agent.extract(packet) if tcpPkt is None: return None if not self.matches(packet, *args, **kwargs): return None for f in self.filters: packet = f.packetIn(packet) if self.agent.isRst(tcpPkt) and not self.my_first_syn_acked: self.doConnectionFailure() return self.processTcpPkt(packet, tcpPkt) self.processTcpData(packet, tcpPkt, *args, **kwargs) _tcpPkt = self.getReply(packet, *args, **kwargs) if _tcpPkt is None: return None resp = self.agent.buildStandardTcpResponse(packet, _tcpPkt, payload=_tcpPkt.next, ipId=None if not self.ipId else self.ipId) if self.ipId is None: ipId = Ipv4Agent.extractId(resp) if ipId == 0: ipId = randint(0, 2**16-1) del randint self.ipId = ipId self.ipId += 1 return resp def matches(self, packet, *args, **kwargs): src = (self.my_mac, self.my_ip, self.my_port) dst = (self.other_mac, self.other_ip, self.other_port) socPair = self.agent.extractConnection(packet) if src != socPair[1]: return False if dst != socPair[0]: return False return True def processTcpPkt(self, packet, tcpPkt): ethPkt = packet ipPkt = ethPkt.find('ipv4') if tcpPkt.payload_len > 0 and not (ipPkt.iplen==tcpPkt.hdr_len+len(ipPkt.hdr(''))): self.add_segment(TcpSegment(tcpPkt.seq, tcpPkt.next)) if self.agent.isFin(tcpPkt): if not self.closed: self.fin_received(tcpPkt.seq) # remember window and latest ACK self.window = max(1460, tcpPkt.win) # ignore requests to shrink the window below an MTU if not self.agent.isAck(tcpPkt): return if not self.my_first_syn_acked: self.my_first_syn_acked = True self.my_syn_acked = True self.need_to_send_ack = True self.first_unacked_seq = tcpPkt.ack self.next_seq_needed = tcpPkt.seq + 1 if self.agent.isFin(tcpPkt) and self.closed: # it means we already sent a fin, ack and we just received a fin, ack self.need_to_send_ack = True self.last_seq_sent += 1 self.next_seq_needed += 1 self.set_ack(tcpPkt.ack) else: if self.my_first_syn_acked and not self.connected: self.connected = True core.callDelayed(0.01, self.connectionEstablished) self.set_ack(tcpPkt.ack) def processTcpData(self, packet, tcpPkt, *args, **kwargs): if not self.has_ready_data(): return self data = self.get_data() self.payloadReceived(packet, data, *args, **kwargs) self.segments = [] def getReply(self, packet, *args, **kwargs): if not self.my_first_syn_acked: return self.firstSYN pkts = self.get_packets_to_send() if not pkts: return return pkts[0] def connHasDataToSend(self, conn): if self != conn: return None pkts = self.get_packets_to_send() if len(pkts) == 0: return None tcpPkt = pkts[0] pkt = self.agent.buildFrameFromConn(self, tcpPkt) self.sendPkt(pkt) def connectionEstablished(self): """ to be overriden """ # when syn, syn_ack, ack is finished def connectionLost(self): """ to be overriden """ def doConnectionFailure(self): self.dead = True self.connectionFailure() def connectionFailure(self): """ to be overriden """ def sendPayload(self, payload, *args, **kwargs): i = 0 payloadLenth = len(payload) while i < payloadLenth: #TODO change 1460 by the real value for this connection endOfSegment= min(i+1000, payloadLenth) # dataToSend = payload[i:endOfSegment] i = endOfSegment tcpPkt = self.buildDataTransmissionAck(dataToSend) packet = self.agent.buildFrameFromConn(self, tcpPkt) self.sendPkt(packet) self.last_seq_sent += len(dataToSend) self.all_data_sent = True tcpPkt = self.buildFin(self.last_seq_sent+1) packet = self.agent.buildFrameFromConn(self, tcpPkt) self.sendPkt(packet) self.my_fin_sent = True self.last_seq_sent += 1 self.payloadSent(payload, *args, **kwargs) def connectionClosed(self, *args, **kwargs): core.callDelayed(0.01, self.finished) class OF_TcpClient(TcpClient): def __init__(self, dpid, port, src, dst, payload=''): self.dpid = dpid self.port = port TcpClient.__init__(self, src, dst, payload) def matches(self, packet, dpid, port): _dpid = getattr(self, 'dpid', None) if _dpid is None: self.dpid = dpid if self.dpid != dpid: return False _port = getattr(self, 'port', None) if _port is None: self.port = port if self.port != port: return False return TcpClient.matches(self, packet, dpid, port) def sendPkt(self, pkt, *args, **kwargs): if not self.sendCb: return TcpClient.sendPkt(self, pkt, self.dpid, self.port)
gpl-3.0
1,546,076,728,354,864,000
27.365702
134
0.571127
false
csningli/MultiAgent
examples/avoid_static_obstacle/static_sim.py
1
2287
# MultiAgent 2.0 # (c) 2017-2018, NiL, [email protected] import sys, math sys.path.append("../..") from mas.multiagent import * from mas.extension import ShowLabelObject POS_ERROR = 5 SPIN_SPEED = math.pi / 6.0 class SpinModule(ObjectModule) : def act(self, resp) : resp.add_msg(Message(key = "avel", value = SPIN_SPEED)) super(SpinModule, self).act(resp) class AvoidObstacleAgent(Agent) : def __init__(self, name) : super(AvoidObstacleAgent, self).__init__(name) self.mods = [RadarModule(), SpinModule()] def get_focus(self) : focus_info = super(AvoidObstacleAgent, self).get_focus() pos = self.mem.read("pos", None) detect = self.mem.read("radar_detect", None) if detect is not None : for i, block in enumerate(detect) : if pos is None or abs(block[2] - pos[0]) > POS_ERROR or abs(block[3] - pos[1]) > POS_ERROR : focus_info["block_%d" % i] = "(%.1f, %.1f)" % (block[2], block[3]) else : focus_info["detect"] = "none" return focus_info def run_sim(filename = None) : ''' run_sim(filename = None) ------------------------ filename : the name of the file to save the data; None by default. ''' # create the oracle space oracle = OracleSpace() # create the context context = Context(oracle = oracle) # create the schedule for adding agents in the running schedule = Schedule() # add objects and agents to the context obt = Obstacle(name ="0", a = (50.0, -50.0), b = (50.0, 50.0), radius = 2.0) context.add_obt(obt) obj = ShowLabelObject(name = "0") obj.pos = (0, 0) context.add_obj(obj) agent = AvoidObstacleAgent(name = "0") agent.mem.reg("radar_dist", 100.0) schedule.add_agent(agent) # create the driver driver = Driver(context = context, schedule = schedule) # create the inspector # inspector = Inspector(delay = 10) # create the simulator sim = Simulator(driver = driver) print("Simulating") sim.simulate(graphics = True, filename = filename) if __name__ == '__main__' : filename = None if (len(sys.argv) > 1) : filename = sys.argv[1] run_sim(filename = filename)
apache-2.0
-4,195,351,703,851,307,000
23.591398
108
0.589418
false
olivierverdier/sfepy
sfepy/mechanics/matcoefs.py
1
12857
# -*- coding: utf-8 -*- from sfepy.base.base import * ## # c: 22.07.2008 def youngpoisson_to_lame( young, poisson, plane = 'strain' ): r""" The relationship between Lame parameters and Young's modulus, Poisson's ratio (see [1],[2]): .. math:: \lambda = {\nu E \over (1+\nu)(1-2\nu)},\qquad \mu = {E \over 2(1+\nu)} The plain stress hypothesis: .. math:: \bar\lambda = {2\lambda\mu \over \lambda + 2\mu} [1] I.S. Sokolnikoff: Mathematical Theory of Elasticity. New York, 1956. [2] T.J.R. Hughes: The Finite Element Method, Linear Static and Dynamic Finite Element Analysis. New Jersey, 1987. """ mu = young/(2.0*(1.0 + poisson)) lam = young*poisson/((1.0 + poisson)*(1.0 - 2.0*poisson)) if plane == 'stress': lam = 2*lam*mu/(lam + 2*mu) return lam, mu ## # c: 22.07.2008 def stiffness_tensor_lame( dim, lam, mu ): r""" Stiffness tensor - using Lame coefficients .. math:: {\bm D}_{(2D)} = \begin{bmatrix} \lambda + 2\mu & \lambda & 0\\ \lambda & \lambda + 2\mu & 0\\ 0 & 0 & \mu \end{bmatrix} .. math:: {\bm D}_{(3D)} = \begin{bmatrix} \lambda + 2\mu & \lambda & \lambda & 0 & 0 & 0\\ \lambda & \lambda + 2\mu & \lambda & 0 & 0 & 0 \\ \lambda & \lambda & \lambda + 2\mu & 0 & 0 & 0 \\ 0 & 0 & 0 & \mu & 0 & 0 \\ 0 & 0 & 0 & 0 & \mu & 0 \\ 0 & 0 & 0 & 0 & 0 & \mu\\ \end{bmatrix} """ sym = (dim + 1) * dim / 2 o = nm.array( [1.] * dim + [0.] * (sym - dim), dtype = nm.float64 ) oot = nm.outer( o, o ) return lam * oot + mu * nm.diag( o + 1.0 ) ## # c: 22.07.2008 def stiffness_tensor_youngpoisson( dim, young, poisson, plane = 'strain' ): lam, mu = youngpoisson_to_lame( young, poisson, plane ) return stiffness_tensor_lame( dim, lam, mu ) ## # c: 10.08.2009 def stiffness_tensor_lame_mixed( dim, lam, mu ): r""" Stiffness tensor - using Lame coefficients .. math:: {\bm D}_{(2D)} = \begin{bmatrix} \widetilde\lambda + 2\mu & \widetilde\lambda & 0\\ \widetilde\lambda & \widetilde\lambda + 2\mu & 0\\ 0 & 0 & \mu \end{bmatrix} .. math:: {\bm D}_{(3D)} = \begin{bmatrix} \widetilde\lambda + 2\mu & \widetilde\lambda & \widetilde\lambda & 0 & 0 & 0\\ \widetilde\lambda & \widetilde\lambda + 2\mu & \widetilde\lambda & 0 & 0 & 0 \\ \widetilde\lambda & \widetilde\lambda & \widetilde\lambda + 2\mu & 0 & 0 & 0 \\ 0 & 0 & 0 & \mu & 0 & 0 \\ 0 & 0 & 0 & 0 & \mu & 0 \\ 0 & 0 & 0 & 0 & 0 & \mu\\ \end{bmatrix} where .. math:: \widetilde\lambda = {2\over 3} (\lambda - \mu) """ sym = (dim + 1) * dim / 2 o = nm.array( [1.] * dim + [0.] * (sym - dim), dtype = nm.float64 ) oot = nm.outer( o, o ) return 2.0/3.0*(lam-mu) * oot + mu * nm.diag( o + 1.0 ) ## # c: 10.08.2009 def stiffness_tensor_youngpoisson_mixed( dim, young, poisson, plane = 'strain' ): lam, mu = youngpoisson_to_lame( young, poisson, plane ) return stiffness_tensor_lame_mixed( dim, lam, mu ) ## # c: 10.08.2009 def bulk_modulus_lame( lam, mu ): r""" Bulk modulus - using Lame coefficients .. math:: \gamma = {1\over 3}(\lambda + 2\mu) """ return 1.0/3.0 * (2*mu + lam) ## # c: 10.08.2009 def bulk_modulus_youngpoisson( young, poisson, plane = 'strain' ): lam, mu = youngpoisson_to_lame( young, poisson, plane ) return bulk_modulus_lame( lam, mu ) elastic_constants_relations = { } class ElasticConstants(Struct): r""" Conversion formulas for various groups of elastic constants. The elastic constants supported are: - :math:`E` : Young's modulus - :math:`\nu` : Poisson's ratio - :math:`K` : bulk modulus - :math:`\lambda` : Lamé's first parameter - :math:`\mu, G` : shear modulus, Lamé's second parameter - :math:`M` : P-wave modulus, longitudinal wave modulus The elastic constants are referred to by the following keyword arguments: young, poisson, bulk, lam, mu, p_wave. Exactly two of them must be provided to the __init__() method. Examples -------- - basic usage:: >>> from sfepy.mechanics.matcoefs import ElasticConstants >>> ec = ElasticConstants(lam=1.0, mu=1.5) >>> ec.young 3.6000000000000001 >>> ec.poisson 0.20000000000000001 >>> ec.bulk 2.0 >>> ec.p_wave 4.0 >>> ec.get(['bulk', 'lam', 'mu', 'young', 'poisson', 'p_wave']) [2.0, 1.0, 1.5, 3.6000000000000001, 0.20000000000000001, 4.0] - reinitialize existing instance:: >>> ec.init(p_wave=4.0, bulk=2.0) >>> ec.get(['bulk', 'lam', 'mu', 'young', 'poisson', 'p_wave']) [2.0, 1.0, 1.5, 3.6000000000000001, 0.20000000000000001, 4.0] """ def __init__(self, young=None, poisson=None, bulk=None, lam=None, mu=None, p_wave=None, _regenerate_relations=False): """ Set exactly two of the elastic constants, and compute the remaining. """ self.names = ['bulk', 'lam', 'mu', 'young', 'poisson', 'p_wave'] if _regenerate_relations: self.relations = self._construct_relations() else: from elastic_constants import relations self.relations = relations ## print sorted(self.relations.keys()) ## print len(self.relations) self.init(young=young, poisson=poisson, bulk=bulk, lam=lam, mu=mu, p_wave=p_wave) def _construct_relations(self): """ Construct the dictionary of all relations among the six elastic constants and save it as `elastic_constants.py` module, that can be imported for reuse. Users should not call this! """ import sympy as sm relations = {} def _expand_keys(sols): for key, val in sols.iteritems(): if len(val) == 2 and (key.name == 'poisson'): val = val[0] else: val = val[-1] skey = tuple(sorted([ii.name for ii in val.atoms() if ii.is_Symbol])) + (key.name,) if skey in relations: print '!', skey relations[skey] = val bulk, lam, mu, young, poisson, p_wave = sm.symbols(self.names, real=True) _expand_keys(sm.solve(bulk - (lam + 2 * mu / 3))) _expand_keys(sm.solve(young - (mu * (3 * lam + 2 * mu) / (lam + mu)))) _expand_keys(sm.solve(poisson - (lam / (2 * (lam + mu))))) _expand_keys(sm.solve(p_wave - (lam + 2 * mu))) _expand_keys(sm.solve(bulk - (young / (3 * (1 - 2 * poisson))))) _expand_keys(sm.solve(p_wave - ((young * (1 - poisson)) / ((1 + poisson) * (1 - 2 * poisson))))) # Choose the correct root manually. ## relations[('p_wave', 'young', 'poisson')] \ ## = (young - p_wave + (-10*p_wave*young + young**2 + ## 9*p_wave**2)**(0.5))/(4*p_wave) _expand_keys(sm.solve(lam - (young * poisson / ((1 + poisson) * (1 - 2 * poisson))))) # Choose the correct root. ## relations[('lam', 'young', 'poisson')] \ ## = (lam + young - (2*lam*young + young**2 + ## 9*(lam**2))**(0.5))/(-4*lam) _expand_keys(sm.solve(mu - (young / (2 * (1 + poisson))))) _expand_keys(sm.solve(bulk - (young * mu / (3 * (3 * mu - young))))) _expand_keys(sm.solve(p_wave - (mu * (4 * mu - young) / (3 * mu - young)))) _expand_keys(sm.solve(young - (9 * bulk * (bulk - lam) / (3 * bulk - lam)))) _expand_keys(sm.solve(poisson - (lam / (3 * bulk - lam)))) _expand_keys(sm.solve(p_wave - (3 * bulk - 2 * lam))) _expand_keys(sm.solve(poisson - ((3 * bulk - 2 * mu) / (2 * (3 * bulk + mu))))) _expand_keys(sm.solve(p_wave - (bulk + 4 * mu / 3))) _expand_keys(sm.solve(p_wave - (lam * (1 - poisson) / poisson))) _expand_keys(sm.solve(p_wave - (2 * mu * (1 - poisson) / (1 - 2 * poisson)))) _expand_keys(sm.solve(p_wave - (3 * bulk * (1 - poisson) / (1 + poisson)))) _expand_keys(sm.solve(p_wave - (3 * bulk * (3 * bulk + young) / (9 * bulk - young)))) _expand_keys(sm.solve(young - ((lam*p_wave + p_wave**2 - 2*lam**2) / (lam + p_wave)))) fd = open(os.path.join(os.path.dirname(__file__), 'elastic_constants.py'), 'w') fd.write(""" from __future__ import division import sympy as sm names = ['bulk', 'lam', 'mu', 'young', 'poisson', 'p_wave'] bulk, lam, mu, young, poisson, p_wave = sm.symbols(names, real=True) relations = { %s } """ % ',\n'.join([' %s : %s' % (key, val) for key, val in relations.iteritems()])) fd.close() return relations def init(self, young=None, poisson=None, bulk=None, lam=None, mu=None, p_wave=None): """ Set exactly two of the elastic constants, and compute the remaining. (Re)-initializes the existing instance of ElasticConstants. """ Struct.__init__(self, young=young, poisson=poisson, bulk=bulk, lam=lam, mu=mu, p_wave=p_wave) values = {} for key, val in self.__dict__.iteritems(): if (key in self.names) and (val is not None): values[key] = val known = values.keys() if len(known) != 2: raise ValueError('exactly two elastic constants must be provided!') unknown = set(self.names).difference(known) for name in unknown: key = tuple(sorted(known)) + (name,) val = float(self.relations[key].n(subs=values)) setattr(self, name, val) def get(self, names): """ Get the named elastic constants. """ out = [getattr(self, name) for name in names] return out class TransformToPlane( Struct ): """Transformmations of constitutive law coefficients of 3D problems to 2D.""" def __init__( self, iplane = None ): """`iplane` ... vector of indices denoting the plane, e.g.: [0, 1]""" if iplane is None: iplane = [0, 1] # Choose the "master" variables and the "slave" ones # ... for vectors i_m = nm.sort( iplane ) i_s = nm.setdiff1d( nm.arange( 3 ), i_m ) # ... for second order tensors (symmetric storage) i_ms = {(0, 1) : [0, 1, 3], (0, 2) : [0, 2, 4], (1, 2) : [1, 2, 5]}[tuple( i_m )] i_ss = nm.setdiff1d( nm.arange( 6 ), i_ms ) Struct.__init__( self, iplane = iplane, i_m = i_m, i_s = i_s, i_ms = i_ms, i_ss = i_ss ) def tensor_plane_stress( self, c3 = None, d3 = None, b3 = None ): """Transforms all coefficients of the piezoelectric constitutive law from 3D to plane stress problem in 2D: strain/stress ordering/ 11 22 33 12 13 23. If `d3` is None, uses only the stiffness tensor `c3`. `c3` ... stiffness tensor `d3` ... dielectric tensor `b3` ... piezoelectric coupling tensor""" mg = nm.meshgrid cs = c3[mg(self.i_ss,self.i_ss)] cm = c3[mg(self.i_ss,self.i_ms)].T if d3 is None: # elasticity only. A = cs Feps = cm Ainv = nm.linalg.inv( A ) c2 = c3[mg(self.i_ms,self.i_ms)] \ - nm.dot( Feps.T, nm.dot( Ainv, Feps ) ) return c2 else: dm = d3[mg(self.i_s,self.i_m)].T ds = d3[mg(self.i_s,self.i_s)] ii = mg( self.i_s, self.i_ss ) A = nm.r_[nm.c_[cs, b3[ii]], nm.c_[b3[ii].T, -ds]] #=> sym !!! F = nm.r_[nm.c_[cm, b3[mg(self.i_m,self.i_ss)]], nm.c_[b3[mg(self.i_s,self.i_ms)].T, -dm ]] Feps = F[:,:3] FE = F[:,3:] Ainv = nm.linalg.inv( A ) c2 = c3[mg(self.i_ms,self.i_ms)] \ - nm.dot( Feps.T, nm.dot( Ainv, Feps ) ) d2 = d3[mg(self.i_m,self.i_m)] \ - nm.dot( FE.T, nm.dot( Ainv, FE ) ) b2 = b3[mg(self.i_m,self.i_ms)].T \ - nm.dot( FE.T, nm.dot( Ainv, Feps ) ) return c2, d2, b2
bsd-3-clause
-4,280,246,495,239,971,000
33.371658
81
0.496227
false
opennode/waldur-mastermind
src/waldur_mastermind/booking/processors.py
1
4711
from django.db import transaction from django.utils import timezone from django.utils.dateparse import datetime_re, parse_datetime from django.utils.translation import ugettext_lazy as _ from rest_framework.serializers import ValidationError from waldur_mastermind.booking.utils import ( get_offering_bookings, get_other_offering_booking_requests, ) from waldur_mastermind.marketplace import models as marketplace_models from waldur_mastermind.marketplace import processors from .utils import TimePeriod, is_interval_in_schedules, sort_attributes_schedules class BookingCreateProcessor(processors.BaseOrderItemProcessor): def process_order_item(self, user): with transaction.atomic(): sort_attributes_schedules(self.order_item.attributes) resource = marketplace_models.Resource( project=self.order_item.order.project, offering=self.order_item.offering, plan=self.order_item.plan, limits=self.order_item.limits, attributes=self.order_item.attributes, name=self.order_item.attributes.get('name') or '', state=marketplace_models.Resource.States.CREATING, ) resource.init_cost() resource.save() resource.init_quotas() self.order_item.resource = resource self.order_item.save(update_fields=['resource']) def validate_order_item(self, request): schedules = self.order_item.attributes.get('schedules') # We check that the schedule is set. if not schedules: raise ValidationError(_('Schedules are required.')) if not len(schedules): raise ValidationError(_('Schedules are required.')) for period in schedules: try: start = period['start'] end = period['end'] if not start or not end: raise ValidationError( _( 'Value \'start\' or \'end\' does not exist in schedules item.' ) ) except KeyError: raise ValidationError( _('Key \'start\' or \'end\' does not exist in schedules item.') ) for value in [start, end]: match = datetime_re.match(value) kw = match.groupdict() if list( filter( lambda x: not kw[x], ['hour', 'month', 'second', 'year', 'tzinfo', 'day', 'minute'], ) ): raise ValidationError( _('The value %s does not match the format.') % value ) if parse_datetime(start) < timezone.now(): raise ValidationError(_('Past slots are not available for selection.')) # Check that the schedule is available for the offering. offering = self.order_item.offering offering_schedules = offering.attributes.get('schedules', []) for period in schedules: if not is_interval_in_schedules( TimePeriod(period['start'], period['end']), [TimePeriod(i['start'], i['end']) for i in offering_schedules], ): raise ValidationError( _( 'Time period from %s to %s is not available for selected offering.' ) % (period['start'], period['end']) ) # Check that there are no other bookings. bookings = get_offering_bookings(offering) for period in schedules: if is_interval_in_schedules( TimePeriod(period['start'], period['end']), bookings ): raise ValidationError( _('Time period from %s to %s is not available.') % (period['start'], period['end']) ) # Check that there are no other booking requests. booking_requests = get_other_offering_booking_requests(self.order_item) for period in schedules: if is_interval_in_schedules( TimePeriod(period['start'], period['end']), booking_requests ): raise ValidationError( _( 'Time period from %s to %s is not available. Other booking request exists.' ) % (period['start'], period['end']) ) class BookingDeleteProcessor(processors.DeleteScopedResourceProcessor): pass
mit
1,439,147,289,079,598,300
37.933884
99
0.545956
false
manz/python-mapnik
test/python_tests/sqlite_test.py
1
20465
#!/usr/bin/env python from __future__ import print_function from nose.tools import eq_, raises from .utilities import execution_path, run_all import os import mapnik def setup(): # All of the paths used are relative, if we run the tests # from another directory we need to chdir() os.chdir(execution_path('.')) def teardown(): index = '../data/sqlite/world.sqlite.index' if os.path.exists(index): os.unlink(index) if 'sqlite' in mapnik.DatasourceCache.plugin_names(): def test_attachdb_with_relative_file(): # The point table and index is in the qgis_spatiallite.sqlite # database. If either is not found, then this fails ds = mapnik.SQLite(file='../data/sqlite/world.sqlite', table='point', attachdb='scratch@qgis_spatiallite.sqlite' ) fs = ds.featureset() feature = fs.next() eq_(feature['pkuid'],1) test_attachdb_with_relative_file.requires_data = True def test_attachdb_with_multiple_files(): ds = mapnik.SQLite(file='../data/sqlite/world.sqlite', table='attachedtest', attachdb='scratch1@:memory:,scratch2@:memory:', initdb=''' create table scratch1.attachedtest (the_geom); create virtual table scratch2.idx_attachedtest_the_geom using rtree(pkid,xmin,xmax,ymin,ymax); insert into scratch2.idx_attachedtest_the_geom values (1,-7799225.5,-7778571.0,1393264.125,1417719.375); ''' ) fs = ds.featureset() feature = None try : feature = fs.next() except StopIteration: pass # the above should not throw but will result in no features eq_(feature,None) test_attachdb_with_multiple_files.requires_data = True def test_attachdb_with_absolute_file(): # The point table and index is in the qgis_spatiallite.sqlite # database. If either is not found, then this fails ds = mapnik.SQLite(file=os.getcwd() + '/../data/sqlite/world.sqlite', table='point', attachdb='scratch@qgis_spatiallite.sqlite' ) fs = ds.featureset() feature = fs.next() eq_(feature['pkuid'],1) test_attachdb_with_absolute_file.requires_data = True def test_attachdb_with_index(): ds = mapnik.SQLite(file='../data/sqlite/world.sqlite', table='attachedtest', attachdb='scratch@:memory:', initdb=''' create table scratch.attachedtest (the_geom); create virtual table scratch.idx_attachedtest_the_geom using rtree(pkid,xmin,xmax,ymin,ymax); insert into scratch.idx_attachedtest_the_geom values (1,-7799225.5,-7778571.0,1393264.125,1417719.375); ''' ) fs = ds.featureset() feature = None try : feature = fs.next() except StopIteration: pass eq_(feature,None) test_attachdb_with_index.requires_data = True def test_attachdb_with_explicit_index(): ds = mapnik.SQLite(file='../data/sqlite/world.sqlite', table='attachedtest', index_table='myindex', attachdb='scratch@:memory:', initdb=''' create table scratch.attachedtest (the_geom); create virtual table scratch.myindex using rtree(pkid,xmin,xmax,ymin,ymax); insert into scratch.myindex values (1,-7799225.5,-7778571.0,1393264.125,1417719.375); ''' ) fs = ds.featureset() feature = None try: feature = fs.next() except StopIteration: pass eq_(feature,None) test_attachdb_with_explicit_index.requires_data = True def test_attachdb_with_sql_join(): ds = mapnik.SQLite(file='../data/sqlite/world.sqlite', table='(select * from world_merc INNER JOIN business on world_merc.iso3 = business.ISO3 limit 100)', attachdb='[email protected]' ) eq_(len(ds.fields()),29) eq_(ds.fields(),['OGC_FID', 'fips', 'iso2', 'iso3', 'un', 'name', 'area', 'pop2005', 'region', 'subregion', 'lon', 'lat', 'ISO3:1', '1995', '1996', '1997', '1998', '1999', '2000', '2001', '2002', '2003', '2004', '2005', '2006', '2007', '2008', '2009', '2010']) eq_(ds.field_types(),['int', 'str', 'str', 'str', 'int', 'str', 'int', 'int', 'int', 'int', 'float', 'float', 'str', 'int', 'int', 'int', 'int', 'int', 'int', 'int', 'int', 'int', 'int', 'int', 'int', 'int', 'int', 'int', 'int']) fs = ds.featureset() feature = fs.next() eq_(feature.id(),1) expected = { 1995:0, 1996:0, 1997:0, 1998:0, 1999:0, 2000:0, 2001:0, 2002:0, 2003:0, 2004:0, 2005:0, 2006:0, 2007:0, 2008:0, 2009:0, 2010:0, # this appears to be sqlites way of # automatically handling clashing column names 'ISO3:1':'ATG', 'OGC_FID':1, 'area':44, 'fips':u'AC', 'iso2':u'AG', 'iso3':u'ATG', 'lat':17.078, 'lon':-61.783, 'name':u'Antigua and Barbuda', 'pop2005':83039, 'region':19, 'subregion':29, 'un':28 } for k,v in expected.items(): try: eq_(feature[str(k)],v) except: #import pdb;pdb.set_trace() print('invalid key/v %s/%s for: %s' % (k,v,feature)) test_attachdb_with_sql_join.requires_data = True def test_attachdb_with_sql_join_count(): ds = mapnik.SQLite(file='../data/sqlite/world.sqlite', table='(select * from world_merc INNER JOIN business on world_merc.iso3 = business.ISO3 limit 100)', attachdb='[email protected]' ) eq_(len(ds.fields()),29) eq_(ds.fields(),['OGC_FID', 'fips', 'iso2', 'iso3', 'un', 'name', 'area', 'pop2005', 'region', 'subregion', 'lon', 'lat', 'ISO3:1', '1995', '1996', '1997', '1998', '1999', '2000', '2001', '2002', '2003', '2004', '2005', '2006', '2007', '2008', '2009', '2010']) eq_(ds.field_types(),['int', 'str', 'str', 'str', 'int', 'str', 'int', 'int', 'int', 'int', 'float', 'float', 'str', 'int', 'int', 'int', 'int', 'int', 'int', 'int', 'int', 'int', 'int', 'int', 'int', 'int', 'int', 'int', 'int']) eq_(len(ds.all_features()),100) test_attachdb_with_sql_join_count.requires_data = True def test_attachdb_with_sql_join_count2(): ''' sqlite3 world.sqlite attach database 'business.sqlite' as business; select count(*) from world_merc INNER JOIN business on world_merc.iso3 = business.ISO3; ''' ds = mapnik.SQLite(file='../data/sqlite/world.sqlite', table='(select * from world_merc INNER JOIN business on world_merc.iso3 = business.ISO3)', attachdb='[email protected]' ) eq_(len(ds.fields()),29) eq_(ds.fields(),['OGC_FID', 'fips', 'iso2', 'iso3', 'un', 'name', 'area', 'pop2005', 'region', 'subregion', 'lon', 'lat', 'ISO3:1', '1995', '1996', '1997', '1998', '1999', '2000', '2001', '2002', '2003', '2004', '2005', '2006', '2007', '2008', '2009', '2010']) eq_(ds.field_types(),['int', 'str', 'str', 'str', 'int', 'str', 'int', 'int', 'int', 'int', 'float', 'float', 'str', 'int', 'int', 'int', 'int', 'int', 'int', 'int', 'int', 'int', 'int', 'int', 'int', 'int', 'int', 'int', 'int']) eq_(len(ds.all_features()),192) test_attachdb_with_sql_join_count2.requires_data = True def test_attachdb_with_sql_join_count3(): ''' select count(*) from (select * from world_merc where 1=1) as world_merc INNER JOIN business on world_merc.iso3 = business.ISO3; ''' ds = mapnik.SQLite(file='../data/sqlite/world.sqlite', table='(select * from (select * from world_merc where !intersects!) as world_merc INNER JOIN business on world_merc.iso3 = business.ISO3)', attachdb='[email protected]' ) eq_(len(ds.fields()),29) eq_(ds.fields(),['OGC_FID', 'fips', 'iso2', 'iso3', 'un', 'name', 'area', 'pop2005', 'region', 'subregion', 'lon', 'lat', 'ISO3:1', '1995', '1996', '1997', '1998', '1999', '2000', '2001', '2002', '2003', '2004', '2005', '2006', '2007', '2008', '2009', '2010']) eq_(ds.field_types(),['int', 'str', 'str', 'str', 'int', 'str', 'int', 'int', 'int', 'int', 'float', 'float', 'str', 'int', 'int', 'int', 'int', 'int', 'int', 'int', 'int', 'int', 'int', 'int', 'int', 'int', 'int', 'int', 'int']) eq_(len(ds.all_features()),192) test_attachdb_with_sql_join_count3.requires_data = True def test_attachdb_with_sql_join_count4(): ''' select count(*) from (select * from world_merc where 1=1) as world_merc INNER JOIN business on world_merc.iso3 = business.ISO3; ''' ds = mapnik.SQLite(file='../data/sqlite/world.sqlite', table='(select * from (select * from world_merc where !intersects! limit 1) as world_merc INNER JOIN business on world_merc.iso3 = business.ISO3)', attachdb='[email protected]' ) eq_(len(ds.fields()),29) eq_(ds.fields(),['OGC_FID', 'fips', 'iso2', 'iso3', 'un', 'name', 'area', 'pop2005', 'region', 'subregion', 'lon', 'lat', 'ISO3:1', '1995', '1996', '1997', '1998', '1999', '2000', '2001', '2002', '2003', '2004', '2005', '2006', '2007', '2008', '2009', '2010']) eq_(ds.field_types(),['int', 'str', 'str', 'str', 'int', 'str', 'int', 'int', 'int', 'int', 'float', 'float', 'str', 'int', 'int', 'int', 'int', 'int', 'int', 'int', 'int', 'int', 'int', 'int', 'int', 'int', 'int', 'int', 'int']) eq_(len(ds.all_features()),1) test_attachdb_with_sql_join_count4.requires_data = True def test_attachdb_with_sql_join_count5(): ''' select count(*) from (select * from world_merc where 1=1) as world_merc INNER JOIN business on world_merc.iso3 = business.ISO3; ''' ds = mapnik.SQLite(file='../data/sqlite/world.sqlite', table='(select * from (select * from world_merc where !intersects! and 1=2) as world_merc INNER JOIN business on world_merc.iso3 = business.ISO3)', attachdb='[email protected]' ) # nothing is able to join to business so we don't pick up business schema eq_(len(ds.fields()),12) eq_(ds.fields(),['OGC_FID', 'fips', 'iso2', 'iso3', 'un', 'name', 'area', 'pop2005', 'region', 'subregion', 'lon', 'lat']) eq_(ds.field_types(),['int', 'str', 'str', 'str', 'int', 'str', 'int', 'int', 'int', 'int', 'float', 'float']) eq_(len(ds.all_features()),0) test_attachdb_with_sql_join_count5.requires_data = True def test_subqueries(): ds = mapnik.SQLite(file='../data/sqlite/world.sqlite', table='world_merc', ) fs = ds.featureset() feature = fs.next() eq_(feature['OGC_FID'],1) eq_(feature['fips'],u'AC') eq_(feature['iso2'],u'AG') eq_(feature['iso3'],u'ATG') eq_(feature['un'],28) eq_(feature['name'],u'Antigua and Barbuda') eq_(feature['area'],44) eq_(feature['pop2005'],83039) eq_(feature['region'],19) eq_(feature['subregion'],29) eq_(feature['lon'],-61.783) eq_(feature['lat'],17.078) ds = mapnik.SQLite(file='../data/sqlite/world.sqlite', table='(select * from world_merc)', ) fs = ds.featureset() feature = fs.next() eq_(feature['OGC_FID'],1) eq_(feature['fips'],u'AC') eq_(feature['iso2'],u'AG') eq_(feature['iso3'],u'ATG') eq_(feature['un'],28) eq_(feature['name'],u'Antigua and Barbuda') eq_(feature['area'],44) eq_(feature['pop2005'],83039) eq_(feature['region'],19) eq_(feature['subregion'],29) eq_(feature['lon'],-61.783) eq_(feature['lat'],17.078) ds = mapnik.SQLite(file='../data/sqlite/world.sqlite', table='(select OGC_FID,GEOMETRY from world_merc)', ) fs = ds.featureset() feature = fs.next() eq_(feature['OGC_FID'],1) eq_(len(feature),1) ds = mapnik.SQLite(file='../data/sqlite/world.sqlite', table='(select GEOMETRY,OGC_FID,fips from world_merc)', ) fs = ds.featureset() feature = fs.next() eq_(feature['OGC_FID'],1) eq_(feature['fips'],u'AC') # same as above, except with alias like postgres requires # TODO - should we try to make this work? #ds = mapnik.SQLite(file='../data/sqlite/world.sqlite', # table='(select GEOMETRY,rowid as aliased_id,fips from world_merc) as table', # key_field='aliased_id' # ) #fs = ds.featureset() #feature = fs.next() #eq_(feature['aliased_id'],1) #eq_(feature['fips'],u'AC') ds = mapnik.SQLite(file='../data/sqlite/world.sqlite', table='(select GEOMETRY,OGC_FID,OGC_FID as rowid,fips from world_merc)', ) fs = ds.featureset() feature = fs.next() eq_(feature['rowid'],1) eq_(feature['fips'],u'AC') test_subqueries.requires_data = True def test_empty_db(): ds = mapnik.SQLite(file='../data/sqlite/empty.db', table='empty', ) fs = ds.featureset() feature = None try: feature = fs.next() except StopIteration: pass eq_(feature,None) test_empty_db.requires_data = True @raises(RuntimeError) def test_that_nonexistant_query_field_throws(**kwargs): ds = mapnik.SQLite(file='../data/sqlite/empty.db', table='empty', ) eq_(len(ds.fields()),25) eq_(ds.fields(),['OGC_FID', 'scalerank', 'labelrank', 'featurecla', 'sovereignt', 'sov_a3', 'adm0_dif', 'level', 'type', 'admin', 'adm0_a3', 'geou_dif', 'name', 'abbrev', 'postal', 'name_forma', 'terr_', 'name_sort', 'map_color', 'pop_est', 'gdp_md_est', 'fips_10_', 'iso_a2', 'iso_a3', 'iso_n3']) eq_(ds.field_types(),['int', 'int', 'int', 'str', 'str', 'str', 'float', 'float', 'str', 'str', 'str', 'float', 'str', 'str', 'str', 'str', 'str', 'str', 'float', 'float', 'float', 'float', 'str', 'str', 'float']) query = mapnik.Query(ds.envelope()) for fld in ds.fields(): query.add_property_name(fld) # also add an invalid one, triggering throw query.add_property_name('bogus') ds.features(query) test_that_nonexistant_query_field_throws.requires_data = True def test_intersects_token1(): ds = mapnik.SQLite(file='../data/sqlite/empty.db', table='(select * from empty where !intersects!)', ) fs = ds.featureset() feature = None try : feature = fs.next() except StopIteration: pass eq_(feature,None) test_intersects_token1.requires_data = True def test_intersects_token2(): ds = mapnik.SQLite(file='../data/sqlite/empty.db', table='(select * from empty where "a"!="b" and !intersects!)', ) fs = ds.featureset() feature = None try : feature = fs.next() except StopIteration: pass eq_(feature,None) test_intersects_token2.requires_data = True def test_intersects_token3(): ds = mapnik.SQLite(file='../data/sqlite/empty.db', table='(select * from empty where "a"!="b" and !intersects!)', ) fs = ds.featureset() feature = None try : feature = fs.next() except StopIteration: pass eq_(feature,None) test_intersects_token3.requires_data = True # https://github.com/mapnik/mapnik/issues/1537 # this works because key_field is manually set def test_db_with_one_text_column(): # form up an in-memory test db wkb = '010100000000000000000000000000000000000000' ds = mapnik.SQLite(file=':memory:', table='test1', initdb=''' create table test1 (alias TEXT,geometry BLOB); insert into test1 values ("test",x'%s'); ''' % wkb, extent='-180,-60,180,60', use_spatial_index=False, key_field='alias' ) eq_(len(ds.fields()),1) eq_(ds.fields(),['alias']) eq_(ds.field_types(),['str']) fs = ds.all_features() eq_(len(fs),1) feat = fs[0] eq_(feat.id(),0) # should be 1? eq_(feat['alias'],'test') eq_(feat.geometry.to_wkt(),'POINT(0 0)') def test_db_with_one_untyped_column(): # form up an in-memory test db wkb = '010100000000000000000000000000000000000000' ds = mapnik.SQLite(file=':memory:', table='test1', initdb=''' create table test1 (geometry BLOB, untyped); insert into test1 values (x'%s', 'untyped'); ''' % wkb, extent='-180,-60,180,60', use_spatial_index=False, key_field='rowid' ) # ensure the untyped column is found eq_(len(ds.fields()),2) eq_(ds.fields(),['rowid', 'untyped']) eq_(ds.field_types(),['int', 'str']) def test_db_with_one_untyped_column_using_subquery(): # form up an in-memory test db wkb = '010100000000000000000000000000000000000000' ds = mapnik.SQLite(file=':memory:', table='(SELECT rowid, geometry, untyped FROM test1)', initdb=''' create table test1 (geometry BLOB, untyped); insert into test1 values (x'%s', 'untyped'); ''' % wkb, extent='-180,-60,180,60', use_spatial_index=False, key_field='rowid' ) # ensure the untyped column is found eq_(len(ds.fields()),3) eq_(ds.fields(),['rowid', 'untyped', 'rowid']) eq_(ds.field_types(),['int', 'str', 'int']) def test_that_64bit_int_fields_work(): ds = mapnik.SQLite(file='../data/sqlite/64bit_int.sqlite', table='int_table', use_spatial_index=False ) eq_(len(ds.fields()),3) eq_(ds.fields(),['OGC_FID','id','bigint']) eq_(ds.field_types(),['int','int','int']) fs = ds.featureset() feat = fs.next() eq_(feat.id(),1) eq_(feat['OGC_FID'],1) eq_(feat['bigint'],2147483648) feat = fs.next() eq_(feat.id(),2) eq_(feat['OGC_FID'],2) eq_(feat['bigint'],922337203685477580) test_that_64bit_int_fields_work.requires_data = True def test_null_id_field(): # silence null key warning: https://github.com/mapnik/mapnik/issues/1889 default_logging_severity = mapnik.logger.get_severity() mapnik.logger.set_severity(mapnik.severity_type.none) # form up an in-memory test db wkb = '010100000000000000000000000000000000000000' # note: the osm_id should be declared INTEGER PRIMARY KEY # but in this case we intentionally do not make this a valid pkey # otherwise sqlite would turn the null into a valid, serial id ds = mapnik.SQLite(file=':memory:', table='test1', initdb=''' create table test1 (osm_id INTEGER,geometry BLOB); insert into test1 values (null,x'%s'); ''' % wkb, extent='-180,-60,180,60', use_spatial_index=False, key_field='osm_id' ) fs = ds.featureset() feature = None try : feature = fs.next() except StopIteration: pass eq_(feature,None) mapnik.logger.set_severity(default_logging_severity) if __name__ == "__main__": setup() result = run_all(eval(x) for x in dir() if x.startswith("test_")) teardown() exit(result)
lgpl-2.1
4,323,102,137,931,213,300
39.766932
305
0.538334
false
frac/lettuce
tests/functional/output_features/success_table/success_table_steps.py
1
1617
# -*- coding: utf-8 -*- # <Lettuce - Behaviour Driven Development for python> # Copyright (C) <2010> Gabriel Falcão <[email protected]> # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. from lettuce import step from lettuce import world from lettuce.terrain import before from nose.tools import assert_equals @before.all def set_balance(): world.my_balance = 0 @step('I have (\d+) bucks') def compare_bucks(step, cash): assert_equals(world.my_balance, int(cash)) @step('I have these items') def havetheseitems(step): cars = {} for data in step.hashes: key = data['name'] value = int(data['price']) cars[key] = value world.cars = cars @step('sell the "([^"]+)"') def sell_item(step, name): world.my_balance += world.cars[name] del world.cars[name] @step('my garage contains:') def alsothese(step): cars = {} for data in step.hashes: key = data['name'] value = int(data['price']) cars[key] = value assert_equals(cars, world.cars)
gpl-3.0
2,192,169,248,575,762,400
28.925926
71
0.686881
false
prculley/gramps
gramps/plugins/view/geofamily.py
1
20779
# -*- python -*- # -*- coding: utf-8 -*- # # Gramps - a GTK+/GNOME based genealogy program # # Copyright (C) 2011-2016 Serge Noiraud # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. # """ Geography for one family """ #------------------------------------------------------------------------- # # Python modules # #------------------------------------------------------------------------- import operator from gi.repository import Gdk KEY_TAB = Gdk.KEY_Tab from gi.repository import Gtk #------------------------------------------------------------------------- # # set up logging # #------------------------------------------------------------------------- import logging _LOG = logging.getLogger("GeoGraphy.geofamily") #------------------------------------------------------------------------- # # Gramps Modules # #------------------------------------------------------------------------- from gramps.gen.const import GRAMPS_LOCALE as glocale _ = glocale.translation.gettext from gramps.gen.lib import EventRoleType, EventType from gramps.gen.config import config from gramps.gen.datehandler import displayer from gramps.gen.display.name import displayer as _nd from gramps.gen.display.place import displayer as _pd from gramps.gen.utils.place import conv_lat_lon from gramps.gui.views.bookmarks import FamilyBookmarks from gramps.plugins.lib.maps.geography import GeoGraphyView #------------------------------------------------------------------------- # # Constants # #------------------------------------------------------------------------- _UI_DEF = '''\ <ui> <menubar name="MenuBar"> <menu action="GoMenu"> <placeholder name="CommonGo"> <menuitem action="Back"/> <menuitem action="Forward"/> <separator/> </placeholder> </menu> <menu action="EditMenu"> <placeholder name="CommonEdit"> <menuitem action="PrintView"/> </placeholder> </menu> <menu action="BookMenu"> <placeholder name="AddEditBook"> <menuitem action="AddBook"/> <menuitem action="EditBook"/> </placeholder> </menu> </menubar> <toolbar name="ToolBar"> <placeholder name="CommonNavigation"> <toolitem action="Back"/> <toolitem action="Forward"/> </placeholder> <placeholder name="CommonEdit"> <toolitem action="PrintView"/> </placeholder> </toolbar> </ui> ''' # pylint: disable=no-member # pylint: disable=unused-variable # pylint: disable=unused-argument #------------------------------------------------------------------------- # # GeoView # #------------------------------------------------------------------------- class GeoFamily(GeoGraphyView): """ The view used to render family map. """ def __init__(self, pdata, dbstate, uistate, nav_group=0): GeoGraphyView.__init__(self, _('Family places map'), pdata, dbstate, uistate, FamilyBookmarks, nav_group) self.dbstate = dbstate self.uistate = uistate self.place_list = [] self.place_without_coordinates = [] self.minlat = self.maxlat = self.minlon = self.maxlon = 0.0 self.minyear = 9999 self.maxyear = 0 self.nbplaces = 0 self.nbmarkers = 0 self.sort = [] self.additional_uis.append(self.additional_ui()) self.no_show_places_in_status_bar = False self.cal = None def get_title(self): """ Used to set the titlebar in the configuration window. """ return _('GeoFamily') def get_stock(self): """ Returns the name of the stock icon to use for the display. This assumes that this icon has already been registered as a stock icon. """ return 'geo-show-family' def get_viewtype_stock(self): """Type of view in category """ return 'geo-show-family' def additional_ui(self): """ Specifies the UIManager XML code that defines the menus and buttons associated with the interface. """ return _UI_DEF def navigation_type(self): """ Indicates the navigation type. Navigation type can be the string name of any of the primary objects. """ return 'Family' def goto_handle(self, handle=None): """ Rebuild the tree with the given person handle as the root. """ self.build_tree() def build_tree(self): """ This is called by the parent class when the view becomes visible. Since all handling of visibility is now in rebuild_trees, see that for more information. """ if not self.dbstate.is_open(): return if self.uistate.get_active('Family'): self._createmap(self.uistate.get_active('Family')) else: self._createmap(self.uistate.get_active('Person')) def _createpersonmarkers(self, dbstate, person, comment, fam_id): """ Create all markers for the specified person. """ self.cal = config.get('preferences.calendar-format-report') latitude = longitude = "" if person: # For each event, if we have a place, set a marker. for event_ref in person.get_event_ref_list(): if not event_ref: continue role = event_ref.get_role() event = dbstate.db.get_event_from_handle(event_ref.ref) eyear = event.get_date_object().to_calendar(self.cal).get_year() place_handle = event.get_place_handle() if place_handle: place = dbstate.db.get_place_from_handle(place_handle) if place: longitude = place.get_longitude() latitude = place.get_latitude() latitude, longitude = conv_lat_lon(latitude, longitude, "D.D8") descr = _pd.display(dbstate.db, place) evt = EventType(event.get_type()) descr1 = _("%(eventtype)s : %(name)s") % { 'eventtype': evt, 'name': _nd.display(person)} # place.get_longitude and place.get_latitude return # one string. We have coordinates when the two values # contains non null string. if longitude and latitude: if not self._present_in_places_list(2, str(descr1 + descr + str(evt))): self._append_to_places_list(descr, str(descr1 + descr + str(evt)), _nd.display(person), latitude, longitude, role, eyear, event.get_type(), person.gramps_id, place.gramps_id, event.gramps_id, fam_id ) else: self._append_to_places_without_coord( place.gramps_id, descr) family_list = person.get_family_handle_list() for family_hdl in family_list: family = self.dbstate.db.get_family_from_handle(family_hdl) if family is not None: for event_ref in family.get_event_ref_list(): if event_ref: event = dbstate.db.get_event_from_handle( event_ref.ref) role = event_ref.get_role() if event.get_place_handle(): place_handle = event.get_place_handle() if place_handle: place = dbstate.db.get_place_from_handle( place_handle) if place: longitude = place.get_longitude() latitude = place.get_latitude() (latitude, longitude) = conv_lat_lon(latitude, longitude, "D.D8") descr = _pd.display(dbstate.db, place) evt = EventType(event.get_type()) (father_name, mother_name) = self._get_father_and_mother_name(event) descr1 = "%s : %s - " % (evt, father_name) descr1 = "%s%s" % (descr1, mother_name) eyear = event.get_date_object().to_calendar(self.cal).get_year() if longitude and latitude: if not self._present_in_places_list( 2, str(descr1 + descr + str(evt))): self._append_to_places_list( descr, str(descr1 + descr + str(evt)), _nd.display(person), latitude, longitude, role, eyear, event.get_type(), person.gramps_id, place.gramps_id, event.gramps_id, family.gramps_id ) else: self._append_to_places_without_coord(place.gramps_id, descr) def family_label(self, family): """ Create the family label depending on existence of the father and mother """ if family is None: return "Unknown" father = mother = None hdl = family.get_father_handle() if hdl: father = self.dbstate.db.get_person_from_handle(hdl) hdl = family.get_mother_handle() if hdl: mother = self.dbstate.db.get_person_from_handle(hdl) if father and mother: label = _("%(gramps_id)s : %(father)s and %(mother)s") % { 'father' : _nd.display(father), 'mother' : _nd.display(mother), 'gramps_id' : family.gramps_id, } elif father: label = "%(gramps_id)s : %(father)s" % { 'father' : _nd.display(father), 'gramps_id' : family.gramps_id, } elif mother: label = "%(gramps_id)s : %(mother)s" % { 'mother' : _nd.display(mother), 'gramps_id' : family.gramps_id, } else: # No translation for bare gramps_id label = "%(gramps_id)s :" % { 'gramps_id' : family.gramps_id, } return label def _createmap_for_one_family(self, family): """ Create all markers for one family : all event's places with a lat/lon. """ dbstate = self.dbstate self.message_layer.add_message( _("Family places for %s") % self.family_label(family)) person = None if family: person = dbstate.db.get_person_from_handle( family.get_father_handle()) else: return family_id = family.gramps_id if person is None: # family without father ? handle = family.get_mother_handle() if handle: person = dbstate.db.get_person_from_handle(handle) if person is None: handle = self.uistate.get_active('Person') if handle: person = dbstate.db.get_person_from_handle(handle) if person is not None: family_list = person.get_family_handle_list() if len(family_list) > 0: fhandle = family_list[0] # first is primary fam = dbstate.db.get_family_from_handle(fhandle) father = mother = None handle = fam.get_father_handle() if handle: father = dbstate.db.get_person_from_handle(handle) if father: comment = _("Father : %(id)s : %(name)s") % { 'id': father.gramps_id, 'name': _nd.display(father)} self._createpersonmarkers(dbstate, father, comment, family_id) handle = fam.get_mother_handle() if handle: mother = dbstate.db.get_person_from_handle(handle) if mother: comment = _("Mother : %(id)s : %(name)s") % { 'id': mother.gramps_id, 'name': _nd.display(mother)} self._createpersonmarkers(dbstate, mother, comment, family_id) index = 0 child_ref_list = fam.get_child_ref_list() if child_ref_list: for child_ref in child_ref_list: child = dbstate.db.get_person_from_handle(child_ref.ref) if child: index += 1 comment = _("Child : %(id)s - %(index)d " ": %(name)s") % { 'id' : child.gramps_id, 'index' : index, 'name' : _nd.display(child) } self._createpersonmarkers(dbstate, child, comment, family_id) else: comment = _("Person : %(id)s %(name)s has no family.") % { 'id' : person.gramps_id, 'name' : _nd.display(person) } self._createpersonmarkers(dbstate, person, comment, family_id) def _createmap(self, handle): """ Create all markers for each people's event in the database which has a lat/lon. """ if not handle: return self.place_list = [] self.place_without_coordinates = [] self.places_found = [] self.nbplaces = 0 self.nbmarkers = 0 self.minlat = self.maxlat = self.minlon = self.maxlon = 0.0 self.minyear = 9999 self.maxyear = 0 self.message_layer.clear_messages() if self.dbstate.db.has_family_handle(handle): family = self.dbstate.db.get_family_from_handle(handle) self._createmap_for_one_family(family) else: person = self.dbstate.db.get_person_from_handle(handle) if not person: return family_list = person.get_family_handle_list() for family_hdl in family_list: family = self.dbstate.db.get_family_from_handle(family_hdl) if family is not None: self._createmap_for_one_family(family) self.sort = sorted(self.place_list, key=operator.itemgetter(3, 4, 6) ) self._create_markers() def add_event_bubble_message(self, event, lat, lon, mark, menu): """ Add an item to the popup menu. """ self.itemoption = Gtk.Menu() itemoption = self.itemoption itemoption.show() menu.set_submenu(itemoption) modify = Gtk.MenuItem(label=_("Edit Family")) modify.show() modify.connect("activate", self.edit_family, event, lat, lon, mark) itemoption.append(modify) modify = Gtk.MenuItem(label=_("Edit Person")) modify.show() modify.connect("activate", self.edit_person, event, lat, lon, mark) itemoption.append(modify) modify = Gtk.MenuItem(label=_("Edit Event")) modify.show() modify.connect("activate", self.edit_event, event, lat, lon, mark) itemoption.append(modify) center = Gtk.MenuItem(label=_("Center on this place")) center.show() center.connect("activate", self.center_here, event, lat, lon, mark) itemoption.append(center) def bubble_message(self, event, lat, lon, marks): """ Add the popup menu. """ self.menu = Gtk.Menu() menu = self.menu menu.set_title("family") message = "" oldplace = "" prevmark = None for mark in marks: if message != "": add_item = Gtk.MenuItem(label=message) add_item.show() menu.append(add_item) self.add_event_bubble_message(event, lat, lon, prevmark, add_item) if mark[0] != oldplace: message = "%s :" % mark[0] self.add_place_bubble_message(event, lat, lon, marks, menu, message, mark) oldplace = mark[0] evt = self.dbstate.db.get_event_from_gramps_id(mark[10]) # format the date as described in preferences. date = displayer.display(evt.get_date_object()) if date == "": date = _("Unknown") if mark[5] == EventRoleType.PRIMARY: message = "(%s) %s : %s" % (date, mark[7], mark[1]) elif mark[5] == EventRoleType.FAMILY: evt = self.dbstate.db.get_event_from_gramps_id(mark[10]) (father_name, mother_name) = self._get_father_and_mother_name(evt) message = "(%s) %s : %s - %s" % (date, mark[7], father_name, mother_name) else: evt = self.dbstate.db.get_event_from_gramps_id(mark[10]) descr = evt.get_description() if descr == "": descr = _('No description') message = "(%s) %s => %s" % (date, mark[5], descr) prevmark = mark add_item = Gtk.MenuItem(label=message) add_item.show() menu.append(add_item) self.add_event_bubble_message(event, lat, lon, prevmark, add_item) menu.popup(None, None, None, None, event.button, event.time) return 1 def add_specific_menu(self, menu, event, lat, lon): """ Add specific entry to the navigation menu. """ return def get_default_gramplets(self): """ Define the default gramplets for the sidebar and bottombar. """ return (("Family Filter",), ())
gpl-2.0
6,691,864,510,758,257,000
40.39243
104
0.455893
false
drjova/cds-demosite
tests/unit/test_provider.py
1
2108
# -*- coding: utf-8 -*- # # This file is part of CDS. # Copyright (C) 2015, 2016 CERN. # # CDS is free software; you can redistribute it # and/or modify it under the terms of the GNU General Public License as # published by the Free Software Foundation; either version 2 of the # License, or (at your option) any later version. # # CDS is distributed in the hope that it will be # useful, but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # You should have received a copy of the GNU General Public License # along with CDS; if not, write to the # Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, # MA 02111-1307, USA. # # In applying this license, CERN does not # waive the privileges and immunities granted to it by virtue of its status # as an Intergovernmental Organization or submit itself to any jurisdiction. """Test access control package.""" from __future__ import absolute_import, print_function import mock import pytest from cds.modules.records.minters import recid_minter from invenio_pidstore.models import PIDStatus def test_recid_provider(db): """Test the CDS recid provider.""" with mock.patch('requests.get') as httpmock, mock.patch( 'invenio_pidstore.models.PersistentIdentifier.create')\ as pid_create: pid_create.configure_mock(**{'return_value.pid_provider': None, 'return_value.pid_value': 1}) httpmock.return_value.text = '1' data = dict() uuid = '12345678123456781234567812345678' recid_minter(uuid, data) assert data['recid'] == 1 pid_create.assert_called_once_with( 'recid', '1', pid_provider=None, object_type='rec', object_uuid=uuid, status=PIDStatus.REGISTERED) def test_recid_provider_exception(db): """Test if providing a recid will cause an error.""" with pytest.raises(AssertionError): recid_minter('12345678123456781234567812345678', dict({'recid': 1}))
gpl-2.0
496,742,994,712,681,000
35.982456
76
0.695446
false
iScrE4m/RSES
tests/objects/test_stock.py
1
2053
# coding=utf-8 from pytest import raises from rses.src.objects import stock import rses_errors def test_ingredient_type_create(ingredient_type_no_create): ingredient_type = stock.IngredientType(name=ingredient_type_no_create) assert ingredient_type.id assert ingredient_type.name == ingredient_type_no_create def test_ingredient_type_rename(ingredient_type, ingredient_type_new_name): ingredient_type.name = ingredient_type_new_name assert ingredient_type.name == ingredient_type_new_name new = stock.IngredientType(ingredient_type_id=ingredient_type.id) assert new.name == ingredient_type_new_name assert ingredient_type == new def test_ingredient_type_delete(ingredient_type): ingredient_type.delete() with raises(rses_errors.DoesNotExist) as e: stock.IngredientType.load_by_name(ingredient_type.name) assert ingredient_type.name in str(e) def test_ingredient_create(ingredient_type, ingredient_no_create, ingredient_unit, positive_float, positive_float2, positive_int): """ In arguments, ingredient_type has to come before ingredient_no_create, otherwise teardown of ingredient_type will come first and will cascade delete ingredient_unit """ ingredient = stock.Ingredient(name=ingredient_no_create, unit=ingredient_unit, ingredient_type=ingredient_type, suggestion_threshold=positive_float, rebuy_threshold=positive_float2, durability=positive_int) assert ingredient.name == ingredient_no_create assert ingredient.unit == ingredient_unit assert ingredient.type == ingredient_type assert ingredient.suggestion_threshold == positive_float assert ingredient.rebuy_threshold == positive_float2 assert ingredient.durability == positive_int
mit
7,995,718,306,625,569,000
39.254902
75
0.651242
false
kimbauters/sparsepy
search_structure.py
1
8409
import textwrap # used for embellishing the Graphviz DOT file layout class Node: # since we will be using a lot of Node instances, optimise the memory use by relying on slots rather than a dict __slots__ = ['problem', 'parent', 'action', 'effect', 'state', 'is_goal', 'children', 'visits', 'utility', 'untried_actions', 'tried_actions'] def __init__(self, problem, parent, action, effect, state): self.problem = problem # the problem space in which this node is relevant self.parent = parent # parent node of this node self.action = action # action that was used to get from the parent node to this node self.effect = effect # effect of the action that resulted in the current node self.state = state # the state of the world in this node self.is_goal = problem.goal_reached(self.state) # whether or not this node represents a goal state self.children = dict() # dictionary of children of this node, key-ed by the action and effect to get to them self.visits = 0 # number of times this node has been visited self.utility = 0 # cumulative utility from going through this node # the available actions for which the current state agrees with their preconditions self.untried_actions = [a for a in problem.actions if any(pos <= self.state and not (neg & self.state) for neg, pos in a.preconditions)] self.tried_actions = {} # dictionary with the actions we tried so far as keys, # and linked to a tuple consisting of their average reward and number of times we applied them: e.g. # a1 -> (15, 2) # a2 -> (10, 1) def simulate_action(self, action, most_probable=False): """ Execute the rollout of an action, *without* taking this action out of the list of untried actions. :param action: the action to execute :return: a new node obtained by applying the action in the current node """ if most_probable: effect = action.effects[0] else: effect = action.outcome() # trigger one of the effects of the action if (action, effect) in self.children: # check whether we already applied this action, and gotten this effect child = self.children[(action, effect)] # we already encountered this state; retrieve it else: state = self.state - effect.delete | effect.add # compute the new state by using set operations child = Node(self.problem, self, action, effect, state) # create a new node with state self.children[(action, effect)] = child # add this child to the children of this node return child def perform_action(self, action): """ Execute the rollout of an action, *with* taking this action out of the list of untried actions. :param action: the action to execute :return: a new node obtained through action in the current node, and the reward associated with this effect :raises: a ValueError if trying to perform an action that is already tried for this node """ self.untried_actions.remove(action) # remove the action from the list of untried actions self.tried_actions[action] = (0, 0) # add the action to the sequence of actions we already tried return self.simulate_action(action) # get and return (one of) the child(ren) as a result of applying the action def rollout_actions(self, rollout_action, depth, horizon): """ Organise a rollout from a given node to either a goal node or a leaf node (e.g. by hitting the horizon). :param rollout_action: the heuristic to select the action to use for the rollout :param depth: the current depth at which the rollout is requested :param horizon: the maximum depth to consider :return: a new node obtained through action in the current node, and the reward associated with this effect :raises: a ValueError if trying to perform an action that is already tried for this node """ if self.is_goal: # check if we have hit a goal state return self, depth elif depth < horizon: action = rollout_action(self) # use the heuristic to select the next action to perform node = self.simulate_action(action, True) # simulate the execution of this action return node.rollout_actions(rollout_action, depth + 1, horizon) else: # the horizon has been reached; return the current node, reward so far, and the current depth return self, depth def update(self, discounting): """ Traverse back up a branch to collect all rewards and to backpropagate these rewards to successor nodes. :param discounting: the discounting factor to use when updating ancestor nodes """ node = self # set this node as the current node in the backpropagation current_reward = 0 # initialise the reward to 0 while node is not None: # continue until we have processed the root node current_reward *= discounting # discount the reward obtained in descendants if node.is_goal: # check if this node is a goal state current_reward += self.problem.goal_reward # if it is, assign to it the goal reward if node.effect: current_reward += node.effect.reward # add any rewards obtained associated with the effect if not node.parent or node.action in node.parent.tried_actions: # only update the real non-simulated nodes if node.parent: # check if it is not the root node; continue if not utility, visits = node.parent.tried_actions[node.action] # get the action info from the parent node.parent.tried_actions[node.action] = (utility + current_reward, visits + 1) # and update node.utility += current_reward # update the total utility gathered in this node node.visits += 1 # update the number of visits to this node node = node.parent # move to the parent node def create_graphviz(self, location="graphviz.dot"): """ Produce the contents for a Graphviz DOT file representing the search tree as starting from this node. :param location: the location of where to save the generated file. :return: the location where the Graphviz DOT file has been saved """ output = "graph sparsepy {\n" output += textwrap.indent(self.__graphviz(), " ") output += "}" with open(location, 'w') as file: file.write(output) return location def __graphviz(self, name="0"): """ Internal method used in the creation of the Graphviz DOT file. This method will be called recursively, and only helps to fill the body specifications of the DOT file. """ output = 'decision_node' + str(name) # give a unique name to this node output += ' [label="' + ', '.join(self.state) + '\n' + \ str('%0.2f' % self.utility) + ',' + str(self.visits) + '"]\n' # add the label to identify its state next_id = 0 for key, child in self.children.items(): (action, effect) = key # extract the action out of the (action, effect) pair if action in self.tried_actions: # if this is an action we actually performed, not just simulated: show it output += 'action_node' + str(name) + action.name output += '[label="' + action.name + '", shape=box]\n' child_node_name = name + '_' + str(next_id) output += child.__graphviz(child_node_name) output += 'action_node' + str(name) + action.name + ' -- ' output += 'decision_node' + str(child_node_name) + ' [style=dashed, label="' + str(effect) + '"]\n' next_id += 1 for action, info in self.tried_actions.items(): reward, visits = info output += 'decision_node' + str(name) + ' -- action_node' + str(name) + action.name output += ' [label="' + '%0.2f' % reward + ',' + str(visits) + '", penwidth="' + str(visits**(1/4)) + '"]\n' return output
mit
5,978,570,223,246,047,000
68.663866
120
0.625996
false
alexanderganderson/Diffusion-Probabilistic-Models
regression.py
1
8365
""" Defines the function approximators """ import numpy as np import theano.tensor as T # from theano.tensor.signal import downsample from blocks.bricks import Activation, MLP, Initializable, application, Identity from blocks.bricks.conv import ConvolutionalActivation from blocks.initialization import IsotropicGaussian, Constant, Orthogonal # TODO IsotropicGaussian init will be wrong scale for some layers class LeakyRelu(Activation): @application(inputs=['input_'], outputs=['output']) def apply(self, input_): return T.switch(input_ > 0, input_, 0.05*input_) dense_nonlinearity = LeakyRelu() # dense_nonlinearity = Tanh() conv_nonlinearity = LeakyRelu() class MultiScaleConvolution(Initializable): def __init__(self, num_channels, num_filters, spatial_width, num_scales, filter_size, downsample_method='meanout', name=""): """ A brick implementing a single layer in a multi-scale convolutional network. """ super(MultiScaleConvolution, self).__init__() self.num_scales = num_scales self.filter_size = filter_size self.num_filters = num_filters self.spatial_width = spatial_width self.downsample_method = downsample_method self.children = [] print "adding MultiScaleConvolution layer" # for scale in range(self.num_scales-1, -1, -1): for scale in range(self.num_scales): print "scale %d"%scale conv_layer = ConvolutionalActivation(activation=conv_nonlinearity.apply, filter_size=(filter_size,filter_size), num_filters=num_filters, num_channels=num_channels, image_size=(spatial_width/2**scale, spatial_width/2**scale), # assume images are spatially smooth -- in which case output magnitude scales with # # filter pixels rather than square root of # filter pixels, so initialize # accordingly. weights_init=IsotropicGaussian(std=np.sqrt(1./(num_filters))/filter_size**2), biases_init=Constant(0), border_mode='full', name=name+"scale%d"%scale) self.children.append(conv_layer) def downsample(self, imgs_in, scale): """ Downsample an image by a factor of 2**scale """ imgs = imgs_in.copy() if scale == 0: return imgs # if self.downsample_method == 'maxout': # print "maxout", # imgs_maxout = downsample.max_pool_2d(imgs.copy(), (2**scale, 2**scale), ignore_border=False) # else: # print "meanout", # imgs_maxout = self.downsample_mean_pool_2d(imgs.copy(), (2**scale, 2**scale)) num_imgs = imgs.shape[0].astype('int16') num_layers = imgs.shape[1].astype('int16') nlx0 = imgs.shape[2].astype('int16') nlx1 = imgs.shape[3].astype('int16') scalepow = np.int16(2**scale) # downsample imgs = imgs.reshape((num_imgs, num_layers, nlx0/scalepow, scalepow, nlx1/scalepow, scalepow)) imgs = T.mean(imgs, axis=5) imgs = T.mean(imgs, axis=3) return imgs @application def apply(self, X): print "MultiScaleConvolution apply" nsamp = X.shape[0].astype('int16') Z = 0 overshoot = (self.filter_size - 1)/2 imgs_accum = 0 # accumulate the output image for scale in range(self.num_scales-1, -1, -1): # downsample image to appropriate scale imgs_down = self.downsample(X, scale) # do a convolutional transformation on it conv_layer = self.children[scale] # NOTE this is different than described in the paper, since each conv_layer # includes a nonlinearity -- it's not just one nonlinearity at the end imgs_down_conv = conv_layer.apply(imgs_down) # crop the edge so it's the same size as the input at that scale imgs_down_conv_croppoed = imgs_down_conv[:,:,overshoot:-overshoot,overshoot:-overshoot] imgs_accum += imgs_down_conv_croppoed if scale > 0: # scale up by factor of 2 layer_width = self.spatial_width/2**scale imgs_accum = imgs_accum.reshape((nsamp, self.num_filters, layer_width, 1, layer_width, 1)) imgs_accum = T.concatenate((imgs_accum, imgs_accum), axis=5) imgs_accum = T.concatenate((imgs_accum, imgs_accum), axis=3) imgs_accum = imgs_accum.reshape((nsamp, self.num_filters, layer_width*2, layer_width*2)) return imgs_accum/self.num_scales class MultiLayerConvolution(Initializable): def __init__(self, n_layers, n_hidden, spatial_width, n_colors, n_scales, filter_size=3): """ A brick implementing a multi-layer convolutional network. TODO make this multi-scale multi-layer convolution """ super(MultiLayerConvolution, self).__init__() self.children = [] num_channels = n_colors for ii in xrange(n_layers): conv_layer = MultiScaleConvolution(num_channels, n_hidden, spatial_width, n_scales, filter_size, name="layer%d_"%ii) self.children.append(conv_layer) num_channels = n_hidden @application def apply(self, X): Z = X for conv_layer in self.children: Z = conv_layer.apply(Z) return Z class MLP_conv_dense(Initializable): def __init__(self, n_layers_conv, n_layers_dense_lower, n_layers_dense_upper, n_hidden_conv, n_hidden_dense_lower, n_hidden_dense_lower_output, n_hidden_dense_upper, spatial_width, n_colors, n_scales, n_temporal_basis): """ The multilayer perceptron, that provides temporal weighting coefficients for mu and sigma images. This consists of a lower segment with a convolutional MLP, and optionally with a dense MLP in parallel. The upper segment then consists of a per-pixel dense MLP (convolutional MLP with 1x1 kernel). """ super(MLP_conv_dense, self).__init__() self.n_colors = n_colors self.spatial_width = spatial_width self.n_hidden_dense_lower = n_hidden_dense_lower self.n_hidden_dense_lower_output = n_hidden_dense_lower_output self.n_hidden_conv = n_hidden_conv ## the lower layers self.mlp_conv = MultiLayerConvolution(n_layers_conv, n_hidden_conv, spatial_width, n_colors, n_scales) self.children = [self.mlp_conv] if n_hidden_dense_lower > 0 and n_layers_dense_lower > 0: n_input = n_colors*spatial_width**2 n_output = n_hidden_dense_lower_output*spatial_width**2 self.mlp_dense_lower = MLP([dense_nonlinearity] * n_layers_conv, [n_input] + [n_hidden_dense_lower] * (n_layers_conv-1) + [n_output], name='MLP dense lower', weights_init=Orthogonal(), biases_init=Constant(0)) self.children.append(self.mlp_dense_lower) else: n_hidden_dense_lower_output = 0 ## the upper layers (applied to each pixel independently) n_output = n_colors*n_temporal_basis*2 # "*2" for both mu and sigma self.mlp_dense_upper = MLP([dense_nonlinearity] * (n_layers_dense_upper-1) + [Identity()], [n_hidden_conv+n_hidden_dense_lower_output] + [n_hidden_dense_upper] * (n_layers_dense_upper-1) + [n_output], name='MLP dense upper', weights_init=Orthogonal(), biases_init=Constant(0)) self.children.append(self.mlp_dense_upper) @application def apply(self, X): """ Take in noisy input image and output temporal coefficients for mu and sigma. """ Y = self.mlp_conv.apply(X) Y = Y.dimshuffle(0,2,3,1) if self.n_hidden_dense_lower > 0: n_images = X.shape[0].astype('int16') X = X.reshape((n_images, self.n_colors*self.spatial_width**2)) Y_dense = self.mlp_dense_lower.apply(X) Y_dense = Y_dense.reshape((n_images, self.spatial_width, self.spatial_width, self.n_hidden_dense_lower_output)) Y = T.concatenate([Y/T.sqrt(self.n_hidden_conv), Y_dense/T.sqrt(self.n_hidden_dense_lower_output)], axis=3) Z = self.mlp_dense_upper.apply(Y) return Z
mit
2,050,625,259,363,093,200
42.341969
128
0.618649
false
downpoured/labs_coordinate_pictures
src/tools/ben_python_img/img_tests.py
1
15862
import img_utils import img_convert_resize import img_resize_keep_exif import PIL from PIL import Image import sys sys.path.append('bn_python_common.zip') from bn_python_common import * def img_utils_testGetMarkFromFilename(): # tests splitting a filename that contains the "__MARKAS__" marker. assertEq(('/test/file.jpg', '123'), img_utils.getMarkFromFilename('/test/file__MARKAS__123.jpg')) assertEq(('/test/file.also.jpg', '123'), img_utils.getMarkFromFilename('/test/file.also__MARKAS__123.jpg')) assertEq(('/test/file.jpg', ''), img_utils.getMarkFromFilename('/test/file__MARKAS__.jpg')) assertException(lambda: img_utils.getMarkFromFilename( '/test/dirmark__MARKAS__b/file__MARKAS__123.jpg'), ValueError, 'Directories') assertException(lambda: img_utils.getMarkFromFilename( '/test/dirmark__MARKAS__b/file.jpg'), ValueError, 'Directories') assertException(lambda: img_utils.getMarkFromFilename( '/test/file__MARKAS__123__MARKAS__123.jpg'), ValueError, 'exactly one marker') assertException(lambda: img_utils.getMarkFromFilename( '/test/file.jpg'), ValueError, 'exactly one marker') assertException(lambda: img_utils.getMarkFromFilename( '/test/file__MARKAS__123.foo.jpg'), ValueError, 'after the marker') def img_utils_testGetFilesWithWrongExtension(tmpDir): # looks for files that do not have the given extension. tmpDirExt = files.join(tmpDir, 'testWrongExtension') files.makedirs(tmpDirExt) files.writeall(files.join(tmpDirExt, 'a.jpg'), 'content') files.writeall(files.join(tmpDirExt, 'B.JPG'), 'content') files.writeall(files.join(tmpDirExt, 'c.jpg'), 'content') files.writeall(files.join(tmpDirExt, 'd.txt'), 'content') files.writeall(files.join(tmpDirExt, 'e'), 'content') files.makedirs(tmpDirExt + '/subdir') fnGetFiles = files.listfiles setRet = img_utils.getFilesWrongExtension(tmpDirExt, fnGetFiles, 'jpg') expected = [files.join(tmpDirExt, 'd.txt'), files.join(tmpDirExt, 'e')] assertEq(expected, list(sorted(f[0] for f in setRet))) def img_convert_testGetNewSizeFromResizeSpec(): # common valid cases assertEq((50, 100), img_convert_resize.getNewSizeFromResizeSpec('50%', 100, 200)) assertEq((90, 180), img_convert_resize.getNewSizeFromResizeSpec('90%', 101, 201)) assertEq((80, 160), img_convert_resize.getNewSizeFromResizeSpec('80h', 100, 200)) assertEq((160, 80), img_convert_resize.getNewSizeFromResizeSpec('80h', 200, 100)) assertEq((5, 10), img_convert_resize.getNewSizeFromResizeSpec('5%', 100, 200)) # invalid spec assertException(lambda: img_convert_resize.getNewSizeFromResizeSpec('50x', 100, 200), ValueError) assertException(lambda: img_convert_resize.getNewSizeFromResizeSpec('50', 100, 200), ValueError) assertException(lambda: img_convert_resize.getNewSizeFromResizeSpec('0.5%', 100, 200), AssertionError) assertException(lambda: img_convert_resize.getNewSizeFromResizeSpec(' 50%', 100, 200), AssertionError) assertException(lambda: img_convert_resize.getNewSizeFromResizeSpec('50% ', 100, 200), ValueError) assertException(lambda: img_convert_resize.getNewSizeFromResizeSpec('50%%', 100, 200), AssertionError) assertException(lambda: img_convert_resize.getNewSizeFromResizeSpec('50%50%', 100, 200), AssertionError) assertException(lambda: img_convert_resize.getNewSizeFromResizeSpec('0%', 100, 200), AssertionError) assertException(lambda: img_convert_resize.getNewSizeFromResizeSpec('00%', 100, 200), AssertionError) assertException(lambda: img_convert_resize.getNewSizeFromResizeSpec('%', 100, 200), AssertionError) assertException(lambda: img_convert_resize.getNewSizeFromResizeSpec('h', 100, 200), AssertionError) assertException(lambda: img_convert_resize.getNewSizeFromResizeSpec('1a0%', 100, 200), AssertionError) assertException(lambda: img_convert_resize.getNewSizeFromResizeSpec('1a0h', 100, 200), AssertionError) assertException(lambda: img_convert_resize.getNewSizeFromResizeSpec('110%', 100, 200), AssertionError) assertException(lambda: img_convert_resize.getNewSizeFromResizeSpec('-10%', 100, 200), AssertionError) assertException(lambda: img_convert_resize.getNewSizeFromResizeSpec('-10h', 100, 200), AssertionError) # cases not to resize. assertEq((0, 0), img_convert_resize.getNewSizeFromResizeSpec('100%', 100, 200)) assertEq((0, 0), img_convert_resize.getNewSizeFromResizeSpec('101h', 100, 200)) assertEq((0, 0), img_convert_resize.getNewSizeFromResizeSpec('101h', 200, 100)) def img_resize_keep_exif_testActualFiles(tmpDir): trace('img_resize_keep_exif_testActualFiles started.') tmpDir = files.join(tmpDir, 'testResizeKeepExif') files.makedirs(tmpDir) # create initial files im = createTestImage(96, 144, 1) filenames = [files.join(tmpDir, 'a100p__MARKAS__100%.jpg'), files.join(tmpDir, 'a50p__MARKAS__50%.jpg'), files.join(tmpDir, 'a32h__MARKAS__32h.jpg'), files.join(tmpDir, 'a200h__MARKAS__200h.jpg')] for filename in filenames: im.save(filename) del im for index, filename in enumerate(filenames): assertEq((96, 144), img_utils.getImageDims(filename)) # set an obscure tag that won't be transferred img_utils.setExifField(filename, 'ProfileCopyright', 'ObscureTagSet' + str(index)) assertEq('ObscureTagSet' + str(index), img_utils.readExifField(filename, 'ProfileCopyright')) # set a common tag that will be transferred img_utils.setExifField(filename, 'Make', 'TestingMake' + str(index)) assertEq('TestingMake' + str(index), img_utils.readExifField(filename, 'Make')) # run the resizes. resizeAllAndKeepExif resizes based on the filename. img_resize_keep_exif.resizeAllAndKeepExif(tmpDir, recurse=False, storeOriginalFilename=True, storeExifFromOriginal=True, jpgHighQualityChromaSampling=False) # check dimensions assertEq((96, 144), img_utils.getImageDims(files.join(tmpDir, 'a100p.jpg'))) assertEq((48, 72), img_utils.getImageDims(files.join(tmpDir, 'a50p.jpg'))) assertEq((32, 48), img_utils.getImageDims(files.join(tmpDir, 'a32h.jpg'))) assertEq((96, 144), img_utils.getImageDims(files.join(tmpDir, 'a200h.jpg'))) # check common tag, should have been transferred assertEq('TestingMake0', img_utils.readExifField(files.join(tmpDir, 'a100p.jpg'), 'Make')) assertEq('TestingMake1', img_utils.readExifField(files.join(tmpDir, 'a50p.jpg'), 'Make')) assertEq('TestingMake2', img_utils.readExifField(files.join(tmpDir, 'a32h.jpg'), 'Make')) assertEq('TestingMake3', img_utils.readExifField(files.join(tmpDir, 'a200h.jpg'), 'Make')) # check uncommon tag, should only be present for the ones moved instead of resized assertEq('ObscureTagSet0', img_utils.readExifField(files.join(tmpDir, 'a100p.jpg'), 'ProfileCopyright')) assertEq('', img_utils.readExifField(files.join(tmpDir, 'a50p.jpg'), 'ProfileCopyright')) assertEq('', img_utils.readExifField(files.join(tmpDir, 'a32h.jpg'), 'ProfileCopyright')) assertEq('ObscureTagSet3', img_utils.readExifField(files.join(tmpDir, 'a200h.jpg'), 'ProfileCopyright')) # check that original filename is stored in exif data assertEq('a100p.jpg', img_utils.readOriginalFilename(files.join(tmpDir, 'a100p.jpg'))) assertEq('a50p.jpg', img_utils.readOriginalFilename(files.join(tmpDir, 'a50p.jpg'))) assertEq('a32h.jpg', img_utils.readOriginalFilename(files.join(tmpDir, 'a32h.jpg'))) assertEq('a200h.jpg', img_utils.readOriginalFilename(files.join(tmpDir, 'a200h.jpg'))) expectedSizes = '''a100p.jpg|8524 a200h.jpg|8524 a200h__MARKAS__200h.jpg|8502 a32h.jpg|1335 a32h__MARKAS__32h.jpg|8502 a50p.jpg|2549 a50p__MARKAS__50%.jpg|8502'''.replace('\r\n', '\n') resultSizes = '\n'.join([short + '|' + str(files.getsize(file)) for file, short in sorted(files.listfiles(tmpDir))]) assertEq(expectedSizes, resultSizes, 'current pillow version=%s' % PIL.PILLOW_VERSION) trace('img_resize_keep_exif_testActualFiles passed.') def img_resize_keep_exif_testCleanup(tmpDir): # when the user has reviewed that the conversion looks correct, they'll run cleanup() # which will discard the previous files with __MARKAS__. trace('img_resize_keep_exif_testCleanup started.') tmpDir = files.join(tmpDir, 'testCleanup') files.makedirs(tmpDir) files.writeall(files.join(tmpDir, 'a1.jpg'), '') files.writeall(files.join(tmpDir, 'a1__MARKAS__50%.jpg'), '') files.writeall(files.join(tmpDir, 'a2.jpg'), '') files.writeall(files.join(tmpDir, 'a2__MARKAS__200h.jpg'), '') files.writeall(files.join(tmpDir, 'a3.png'), '') files.writeall(files.join(tmpDir, 'a3__MARKAS__100%.png'), '') # file with no corresponding markas should not be deleted. files.writeall(files.join(tmpDir, 'a4.jpg'), '') # files with no corresponding converted file should not be deleted. files.writeall(files.join(tmpDir, 'a5__MARKAS__100%.jpg'), '') files.writeall(files.join(tmpDir, 'a6__MARKAS__.jpg'), '') img_resize_keep_exif.cleanup(tmpDir, recurse=False, prompt=False) expectedSizes = '''a1.jpg|0 a2.jpg|0 a3.png|0 a3__MARKAS__100%.png|0 a4.jpg|0 a5__MARKAS__100%.jpg|0 a6__MARKAS__.jpg|0'''.replace('\r\n', '\n') resultSizes = '\n'.join([short + '|' + str(files.getsize(file)) for file, short in sorted(files.listfiles(tmpDir))]) assertEq(expectedSizes, resultSizes) trace('img_resize_keep_exif_testCleanup passed.') def assertExceptionOrFalse(fn, excType): ret = False try: ret = fn() except: e = sys.exc_info()[1] assertTrue(isinstance(e, excType), 'wrong exc type') assertTrue(not ret) def img_resize_keep_exif_testExifErrorsShouldRaise(tmpDir): # most exif operations on an invalid jpg should raise PythonImgExifError files.writeall(files.join(tmpDir, 'invalidjpg.jpg'), 'not a valid jpg') files.writeall(files.join(tmpDir, 'invalidjpg2.jpg'), 'not a valid jpg') assertExceptionOrFalse(lambda: not img_utils.readOriginalFilename( files.join(tmpDir, 'invalidjpg.jpg')), img_utils.PythonImgExifError) assertException(lambda: img_utils.stampJpgWithOriginalFilename( files.join(tmpDir, 'invalidjpg.jpg'), 'test'), img_utils.PythonImgExifError) assertException(lambda: img_utils.transferMostUsefulExifTags( files.join(tmpDir, 'invalidjpg.jpg'), files.join(tmpDir, 'invalidjpg2.jpg')), img_utils.PythonImgExifError) assertException(lambda: img_utils.removeResolutionTags( files.join(tmpDir, 'invalidjpg.jpg')), img_utils.PythonImgExifError) class RNG(object): # so that same sequence is generated regardless of Python version def __init__(self, seed=0): self.previous = seed def next(self): # use contants from glibc's rand() modulus = 2**31 - 1 a, c = 1103515245, 12345 ret = (self.previous * a + c) % modulus self.previous = ret return ret def createTestImage(width, height, seed): rng = RNG(seed) im = Image.new("RGB", (width, height)) for y in xrange(height): for x in xrange(width): v = rng.next() % 256 im.putpixel((x, y), (v, v, v)) return im def testCombinatoricImageConversion(tmpDir, testImage): # go from each format to every other format! # note: bmp should be first in the list formats = ['bmp', 'png', 'jpg', 'webp'] jpgQuality = 100 if not getInputBool('run combinatoricImageConversionTest?'): return for format in formats: startfile = files.join(tmpDir, 'start.' + format) if format == 'bmp': testImage.save(startfile) else: img_convert_resize.convertOrResizeImage(files.join(tmpDir, 'start.bmp'), startfile, jpgQuality=jpgQuality) for outformat in formats: if outformat != format: outfile = startfile + '.' + outformat assertTrue(not files.exists(outfile)) img_convert_resize.convertOrResizeImage(startfile, outfile, jpgQuality=jpgQuality) assertTrue(files.exists(outfile)) expectedSizes = '''start.bmp|43254 start.bmp.jpg|15580 start.bmp.png|39430 start.bmp.webp|14454 start.jpg|15580 start.jpg.bmp|43254 start.jpg.png|39483 start.jpg.webp|14454 start.png|39430 start.png.bmp|43254 start.png.jpg|15580 start.png.webp|14454 start.webp|14454 start.webp.bmp|43254 start.webp.jpg|15580 start.webp.png|22366'''.replace('\r\n', '\n') resultSizes = '\n'.join([short + '|' + str(files.getsize(file)) for file, short in sorted(files.listfiles(tmpDir)) if short.startswith('start')]) assertEq(expectedSizes, resultSizes) # are bmps equivalent assertTrue(files.fileContentsEqual(files.join(tmpDir, 'start.bmp'), files.join(tmpDir, 'start.png.bmp'))) assertTrue(files.fileContentsEqual(files.join(tmpDir, 'start.bmp'), files.join(tmpDir, 'start.webp.bmp'))) # are jpgs equivalent assertTrue(files.fileContentsEqual(files.join(tmpDir, 'start.bmp.jpg'), files.join(tmpDir, 'start.jpg'))) assertTrue(files.fileContentsEqual(files.join(tmpDir, 'start.bmp.jpg'), files.join(tmpDir, 'start.png.jpg'))) assertTrue(files.fileContentsEqual(files.join(tmpDir, 'start.bmp.jpg'), files.join(tmpDir, 'start.webp.jpg'))) # are webps equivalent assertTrue(files.fileContentsEqual(files.join(tmpDir, 'start.bmp.webp'), files.join(tmpDir, 'start.png.webp'))) assertTrue(files.fileContentsEqual(files.join(tmpDir, 'start.bmp.webp'), files.join(tmpDir, 'start.webp'))) # are pngs equivalent assertTrue(files.fileContentsEqual(files.join(tmpDir, 'start.bmp.png'), files.join(tmpDir, 'start.png'))) # png written by dwebp is different, but it should still roundtrip img_convert_resize.convertOrResizeImage(files.join(tmpDir, 'start.webp.png'), files.join(tmpDir, 'start.webp.png.bmp')) assertTrue(files.fileContentsEqual(files.join(tmpDir, 'start.bmp'), files.join(tmpDir, 'start.webp.png.bmp'))) def testJpgQualities(tmpDir, testImage): # simply write several jpgs at different qualities, and make sure the file sizes are as expected. tmpDir = files.join(tmpDir, 'testJpgQuality') files.makedirs(tmpDir) testImage.save(files.join(tmpDir, 'start.bmp')) qualities = [100, 90, 60, 10] for qual in qualities: img_convert_resize.convertOrResizeImage(files.join(tmpDir, 'start.bmp'), files.join(tmpDir, 'q%d.jpg'%qual), jpgQuality=qual) expectedSizes = '''q10.jpg|993 q100.jpg|15580 q60.jpg|5120 q90.jpg|9406 start.bmp|43254'''.replace('\r\n', '\n') resultSizes = '\n'.join([short + '|' + str(files.getsize(file)) for file, short in sorted(files.listfiles(tmpDir))]) assertEq(expectedSizes, resultSizes) def img_convert_resize_tests(tmpDir): width, height = 120, 120 testImage = createTestImage(width, height, 1) testCombinatoricImageConversion(tmpDir, testImage) testJpgQualities(tmpDir, testImage) if __name__ == '__main__': # passes on pillow 3.2, 3.3, 4.0 tmpDir = files.join(img_utils.getTempLocation(), 'testimgconvert') if files.isdir(tmpDir): files.rmtree(tmpDir) files.makedirs(tmpDir) try: img_utils_testGetMarkFromFilename() img_utils_testGetFilesWithWrongExtension(tmpDir) img_resize_keep_exif_testActualFiles(tmpDir) img_resize_keep_exif_testCleanup(tmpDir) img_resize_keep_exif_testExifErrorsShouldRaise(tmpDir) img_convert_testGetNewSizeFromResizeSpec() img_convert_resize_tests(tmpDir) finally: files.rmtree(tmpDir)
gpl-3.0
5,360,751,421,662,296,000
48.26087
123
0.696129
false
HoverHell/pyimapsmtpt
pyimapsmtpt/common.py
1
3253
# coding: utf8 import re import logging _log = logging.getLogger(__name__) class EventProcessed(Exception): """ A special exception to end the current event processing """ def to_bytes(val): if isinstance(val, unicode): return val.encode('utf-8') return val def get_html2text(config): try: import html2text except Exception, exc: _log.warning("html2text import failure: %r", exc) return lambda s: s # dummy replacement obj = html2text.HTML2Text(bodywidth=config.html2text_bodywidth) obj.links_each_paragraph = config.html2text_links_each_paragraph for k, v in config.html2text_etcetera.items(): setattr(obj, k, v) ## postprocess def func(val, *ar, **kwa): res = obj.handle(val, *ar, **kwa) if config.html2text_strip: res = res.strip() return res func.html2text_mod = html2text func.html2text = obj return func def configure_logging(config): import logging.config as logconf if config.log_level is not None: config.logging['root']['level'] = config.log_level if config.log_file: config.logging['handlers']['main_file']['filename'] = config.log_file config.logging['root']['handlers'] = ['main_file'] logconf.dictConfig(config.logging) def config_email_utf8(): """ Apparently, for created email, this makes the email module avoid using base64 for encoding utf-8 email body parts. It also sets `output_charset` to None. The exact reasons are still unclear. """ import email.charset email.charset.add_charset( 'utf-8', ## Default: 3 header_enc=email.charset.SHORTEST, ## Default: 2 body_enc=None, ## Default: 'utf-8' output_charset=None) ####### ## Library-independence for JIDs ####### def jid_to_data(jid): """ ... :param jid: xmpp.protocol.JID instance or jid_data or string """ if isinstance(jid, dict): assert 'node' in jid assert 'domain' in jid assert 'resource' in jid return jid if isinstance(jid, basestring): return jid_string_to_data(jid) ## Probably an xmpp.protocol.JID or equivalent return dict(node=jid.node, domain=jid.domain, resource=jid.resource) def jid_data_to_string(jid_data, resource=True): res = [ '%s@' % (jid_data['node'],) if jid_data['node'] else '', jid_data['domain'], '/%s' % (jid_data['resource'],) if resource else '' ] return ''.join(res) _re_optional = lambda s: r'(?:%s)?' % (s,) _jid_re = ''.join([ r'^', _re_optional(r'(?P<node>[^@]+)@'), r'(?P<domain>[^/@]+)', _re_optional(r'/(?P<resource>.*)'), '$']) # http://stackoverflow.com/a/1406200 - not perfectly strict but workable _jid_re_strict = r'''^(?:([^@/<>'\"]+)@)?([^@/<>'\"]+)(?:/([^<>'\"]*))?$''' def jid_string_to_data(jid_str, strict=True): if strict: m = re.match(_jid_re_strict, jid_str) else: m = re.match(_jid_re, jid_str) if not m: raise ValueError("Malformed JID", jid_str) node, domain, resource = m.groups() _pp = lambda v: v or '' return dict(node=_pp(node), domain=_pp(domain), resource=_pp(resource))
gpl-2.0
-7,889,025,405,643,893,000
26.108333
78
0.597602
false
sunweaver/ganetimgr
apply/urls/user.py
1
2001
# -*- coding: utf-8 -*- vim:fileencoding=utf-8: # Copyright (C) 2010-2014 GRNET S.A. # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # from django.conf.urls.defaults import patterns, url from apply import views urlpatterns = patterns( '', url(r'^info/(?P<type>\w+)/(?P<usergroup>[\w\.\@-]+)/?$', views.user_info, name="user-info"), url(r'^idle/$', views.idle_accounts, name="idle_accounts"), url(r'^profile/$', views.profile, name="profile"), url(r'^mail_change/$', views.mail_change, name="mail-change"), url(r'^name_change/$', views.name_change, name="name-change"), url(r'^other_change/$', views.other_change, name="other-change"), url(r'^keys/$', views.user_keys, name="user-keys"), url(r'^keys/delete/(?P<key_id>\d+)?$', views.delete_key, name="delete-key"), url(r'^login/', 'django.contrib.auth.views.login', {'template_name': 'users/login.html'}, name="login"), url(r'^logout/', 'django.contrib.auth.views.logout', {'next_page': '/'}, name="logout"), url(r'^pass_change/$', 'django.contrib.auth.views.password_change', {'template_name':'users/pass_change.html', 'post_change_redirect':'done'}, name="pass_change"), url(r'^pass_change/done/$', 'django.contrib.auth.views.password_change_done', {'template_name':'users/pass_change_done.html'}, name="pass_change_done" ), url(r'^pass_change/notify/$', views.pass_notify, name="pass_change_notify"), )
gpl-3.0
-2,009,622,974,093,488,000
54.583333
167
0.684658
false
luisxiaomai/robotframework-anywherelibrary
src/AnywhereLibrary/base/logging.py
1
1083
import os #from robot.variables import GLOBAL_VARIABLES from robot.libraries.BuiltIn import BuiltIn from robot.api import logger from keywordgroup import KeywordGroup class Logging(KeywordGroup): # Private def _debug(self, message): logger.debug(message) def _get_log_dir(self): logfile = GLOBAL_VARIABLES['${LOG FILE}'] if logfile != 'NONE': return os.path.dirname(logfile) return GLOBAL_VARIABLES['${OUTPUTDIR}'] def _html(self, message): logger.info(message, True, False) def _info(self, message): logger.info(message) def _log(self, message, level='INFO'): level = level.upper() if (level == 'INFO'): self._info(message) elif (level == 'DEBUG'): self._debug(message) elif (level == 'WARN'): self._warn(message) elif (level == 'HTML'): self._html(message) elif (level=='Error'):self._error(message) def _error(self,message): raise AssertionError(message) def _warn(self, message): logger.warn(message)
mit
-5,113,758,825,957,334,000
27.5
53
0.615882
false
regebro/hovercraft
hovercraft/generate.py
1
8341
import os import re import shutil from lxml import etree, html from pkg_resources import resource_string from .parse import rst2xml, SlideMaker from .position import position_slides from .template import ( Template, CSS_RESOURCE, JS_RESOURCE, JS_POSITION_HEADER, JS_POSITION_BODY, OTHER_RESOURCE, DIRECTORY_RESOURCE, ) class ResourceResolver(etree.Resolver): def resolve(self, url, pubid, context): if url.startswith("resource:"): prefix, filename = url.split(":", 1) return self.resolve_string(resource_string(__name__, filename), context) def rst2html( filepath, template_info, auto_console=False, skip_help=False, skip_notes=False, mathjax=False, slide_numbers=False, ): # Read the infile with open(filepath, "rb") as infile: rststring = infile.read() presentation_dir = os.path.split(filepath)[0] # First convert reST to XML xml, dependencies = rst2xml(rststring, filepath) tree = etree.fromstring(xml) # Fix up the resulting XML so it makes sense sm = SlideMaker(tree, skip_notes=skip_notes) tree = sm.walk() # Pick up CSS information from the tree: for attrib in tree.attrib: if attrib.startswith("css"): if "-" in attrib: dummy, media = attrib.split("-", 1) else: media = "screen,projection" css_files = tree.attrib[attrib].split() for css_file in css_files: if media in ("console", "preview"): # The "console" media is used to style the presenter # console and does not need to be included in the header, # but must be copied. So we add it as a non css file, # even though it's a css-file. template_info.add_resource( os.path.abspath(os.path.join(presentation_dir, css_file)), OTHER_RESOURCE, target=css_file, ) else: # Add as a css resource: template_info.add_resource( os.path.abspath(os.path.join(presentation_dir, css_file)), CSS_RESOURCE, target=css_file, extra_info=media, ) elif attrib.startswith("js"): if attrib == "js-header": media = JS_POSITION_HEADER else: # Put javascript in body tag as default. media = JS_POSITION_BODY js_files = tree.attrib[attrib].split() for js_file in js_files: template_info.add_resource( os.path.abspath(os.path.join(presentation_dir, js_file)), JS_RESOURCE, target=js_file, extra_info=media, ) if sm.need_mathjax and mathjax: if mathjax.startswith("http"): template_info.add_resource( None, JS_RESOURCE, target=mathjax, extra_info=JS_POSITION_HEADER ) else: # Local copy template_info.add_resource(mathjax, DIRECTORY_RESOURCE, target="mathjax") template_info.add_resource( None, JS_RESOURCE, target="mathjax/MathJax.js?config=TeX-MML-AM_CHTML", extra_info=JS_POSITION_HEADER, ) # Position all slides position_slides(tree) # Add the template info to the tree: tree.append(template_info.xml_node()) # If the console-should open automatically, set an attribute on the document: if auto_console: tree.attrib["auto-console"] = "True" # If the console-should open automatically, set an attribute on the document: if skip_help: tree.attrib["skip-help"] = "True" # If the slide numbers should be displayed, set an attribute on the document: if slide_numbers: tree.attrib["slide-numbers"] = "True" # We need to set up a resolver for resources, so we can include the # reST.xsl file if so desired. parser = etree.XMLParser() parser.resolvers.add(ResourceResolver()) # Transform the tree to HTML xsl_tree = etree.fromstring(template_info.xsl, parser) transformer = etree.XSLT(xsl_tree) tree = transformer(tree) result = html.tostring(tree) return template_info.doctype + result, dependencies def copy_resource(filename, sourcedir, targetdir): if filename[0] == "/" or ":" in filename: # Absolute path or URI: Do nothing return None # No monitoring needed sourcepath = os.path.join(sourcedir, filename) targetpath = os.path.join(targetdir, filename) if os.path.exists(targetpath) and os.path.getmtime(sourcepath) <= os.path.getmtime( targetpath ): # File has not changed since last copy, so skip. return sourcepath # Monitor this file targetdir = os.path.split(targetpath)[0] if not os.path.exists(targetdir): os.makedirs(targetdir) shutil.copy2(sourcepath, targetpath) return sourcepath # Monitor this file def generate(args): """Generates the presentation and returns a list of files used""" source_files = {args.presentation} # Parse the template info template_info = Template(args.template) if args.css: presentation_dir = os.path.split(args.presentation)[0] target_path = os.path.relpath(args.css, presentation_dir) template_info.add_resource( args.css, CSS_RESOURCE, target=target_path, extra_info="all" ) source_files.add(args.css) if args.js: presentation_dir = os.path.split(args.presentation)[0] target_path = os.path.relpath(args.js, presentation_dir) template_info.add_resource( args.js, JS_RESOURCE, target=target_path, extra_info=JS_POSITION_BODY ) source_files.add(args.js) # Make the resulting HTML htmldata, dependencies = rst2html( args.presentation, template_info, args.auto_console, args.skip_help, args.skip_notes, args.mathjax, args.slide_numbers, ) source_files.update(dependencies) # Write the HTML out if not os.path.exists(args.targetdir): os.makedirs(args.targetdir) with open(os.path.join(args.targetdir, "index.html"), "wb") as outfile: outfile.write(htmldata) # Copy supporting files source_files.update(template_info.copy_resources(args.targetdir)) # Copy files from the source: sourcedir = os.path.split(os.path.abspath(args.presentation))[0] tree = html.fromstring(htmldata) for image in tree.iterdescendants("img"): filename = image.attrib["src"] source_files.add(copy_resource(filename, sourcedir, args.targetdir)) for source in tree.iterdescendants('source'): filename = source.attrib['src'] source_files.add(copy_resource(filename, sourcedir, args.targetdir)) RE_CSS_URL = re.compile(br"""url\(['"]?(.*?)['"]?[\)\?\#]""") # Copy any files referenced by url() in the css-files: for resource in template_info.resources: if resource.resource_type != CSS_RESOURCE: continue # path in CSS is relative to CSS file; construct source/dest accordingly css_base = template_info.template_root if resource.is_in_template else sourcedir css_sourcedir = os.path.dirname(os.path.join(css_base, resource.filepath)) css_targetdir = os.path.dirname( os.path.join(args.targetdir, resource.final_path()) ) uris = RE_CSS_URL.findall(template_info.read_data(resource)) uris = [uri.decode() for uri in uris] if resource.is_in_template and template_info.builtin_template: for filename in uris: template_info.add_resource( filename, OTHER_RESOURCE, target=css_targetdir, is_in_template=True ) else: for filename in uris: source_files.add(copy_resource(filename, css_sourcedir, css_targetdir)) # All done! return {os.path.abspath(f) for f in source_files if f}
mit
-971,954,912,299,686,000
33.754167
88
0.602686
false
GluuFederation/cluster-tools
recovery/recovery.py
1
10339
#!/usr/bin/env python # -*- coding: utf-8 -*- # The MIT License (MIT) # # Copyright (c) 2016 Gluu # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import json import logging import os import socket import subprocess import sys import time DATABASE_URI = "/var/lib/gluuengine/db/shared.json" DATABASE_URI_COMPAT = "/var/lib/gluu-cluster/db/shared.json" RECOVERY_PRIORITY_CHOICES = { "ldap": 1, "oxauth": 2, "oxtrust": 3, "oxidp": 4, "nginx": 5, } logger = logging.getLogger("recovery") logger.setLevel(logging.INFO) ch = logging.StreamHandler() fmt = logging.Formatter('[%(levelname)s] %(message)s') ch.setFormatter(fmt) logger.addHandler(ch) def load_database(): """Loads JSON-based database as Python object. """ data = [] if not any(map(os.path.exists, [DATABASE_URI, DATABASE_URI_COMPAT])): logger.warn("unable to read {} or {}".format(DATABASE_URI, DATABASE_URI_COMPAT)) # noqa sys.exit(1) with open(DATABASE_URI) as fp: data = json.loads(fp.read()) return data def get_current_cluster(): """Gets a cluster. """ data = load_database() clusters = [item for _, item in data.get("clusters", {}).iteritems()] try: cluster = clusters[0] except IndexError: cluster = {} return cluster def get_node(hostname=""): """Gets node based. :param hostname: Hostname; if omitted, will check for FQDN or hostname from socket connection. """ data = load_database() nodes = [ item for _, item in data.get("nodes", {}).iteritems() if item["name"] in (hostname, socket.getfqdn(), socket.gethostname(),) ] try: node = nodes[0] except IndexError: node = {} return node def get_containers(node_id): """Gets all containers belong to certain node. :param node_id: ID of the node. """ data = load_database() containers = [] for _, item in data.get("containers", {}).iteritems(): if item["node_id"] == node_id and item["state"] == "SUCCESS": # adds recovery_priority item["recovery_priority"] = RECOVERY_PRIORITY_CHOICES.get( item["type"], 0 ) containers.append(item) return containers def safe_subprocess_exec(cmd): """Runs shell command safely. :param cmd: String of command. """ cmdlist = cmd.strip().split() ppn = subprocess.Popen( cmdlist, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, ) out, err = ppn.communicate() return out.strip(), err.strip(), ppn.returncode def container_stopped(container_id): """Checks whether a container is stopped. :param container_id: ID of the container assigned by docker daemon. """ out, _, _ = safe_subprocess_exec("docker inspect {}".format(container_id)) data = json.loads(out) return data[0]["State"]["Running"] is False def container_exists(container_id): """Checks whether a container exists. :param container_id: ID of the container assigned by docker daemon. """ out, _, _ = safe_subprocess_exec("docker inspect {}".format(container_id)) data = json.loads(out) return len(data) > 0 def restart_container(container_id): """Restarts a container regardless its state. :param container_id: ID of the container assigned by docker daemon. """ return safe_subprocess_exec("docker restart {}".format(container_id)) def add_dns(container_id, hostname): """Adds DNS entry to weavedns. :param container_id: ID of the container assigned by docker daemon. :param hostname: Hostname that should be added into weavedns. """ return safe_subprocess_exec("weave dns-add {} -h {}".format( container_id, hostname )) def detach_ip(container_id): """Detaches container from weave network. :param container_id: ID of the container assigned by docker daemon. """ safe_subprocess_exec("weave detach {}".format(container_id)) def httpd_crashed(container_id): """Checks whether httpd process managed by supervisor is crashed or not. :param container_id: ID of the container assigned by docker daemon. """ out, _, _ = safe_subprocess_exec( "docker exec {} supervisorctl status httpd".format(container_id) ) return "RUNNING" not in out def weave_component_ready(name): delay = 10 max_retry = 6 retry_attempt = 0 component_ready = False while retry_attempt < max_retry: if container_stopped(name): logger.warn("{} is not ready; retrying ...".format(name)) time.sleep(delay) retry_attempt += 1 else: component_ready = True break return component_ready def recover_containers(node_id, ox_cluster_hostname): """Recovers all containers. :param node_id: ID of the node. :param ox_cluster_hostname: Name of IDP server. """ containers = sorted(get_containers(node_id), key=lambda x: x["recovery_priority"]) for container in containers: if not container_exists(container["cid"]): continue if not container_stopped(container["cid"]): # no need to restart already running container logger.info("{} container {} already running; skipping ...".format( container["type"], container["name"], )) continue logger.info("restarting {} container {}".format( container["type"], container["name"] )) _, err, returncode = restart_container(container["cid"]) if returncode != 0: # if restarting failed, continue to other containers # and let this specific container stopped so we can # retry the recovery process again logger.warn( "something is wrong while restarting " "{} container {}; reason={}".format( container["type"], container["name"], err ) ) continue # DISABLED container must be detached from weave network if container["state"] == "DISABLED": detach_ip(container["cid"]) continue # manually re-adding DNS entry logger.info("adding DNS entry {} for {} container {}".format( container["hostname"], container["type"], container["name"] )) add_dns(container["cid"], container["hostname"]) if container["type"] in ("ldap", "oxauth", "oxtrust",): add_dns(container["cid"], "{}.weave.local".format(container["type"])) # noqa if container["type"] == "ldap": # introduce delay to wait for a running opendj instance # before restarting other containers logger.info("waiting for ldap server startup; " "this may take a while ...") time.sleep(20) # if cluster hostname contains `weave.local` suffix, this extra DNS # entry will be added into weavedns; pretty useful for setup which # doesn't have resolvable domain name if container["type"] == "nginx": add_dns(container["cid"], ox_cluster_hostname) # currently, only oxauth and oxidp use httpd if container["type"] in ("oxauth", "oxidp"): if httpd_crashed(container["cid"]): # httpd refuses to work if previous shutdown was unclean # a workaround is to remove ``/var/run/apache2/apache2.pid`` # before restarting supervisor program cmd = "rm /var/run/apache2/apache2.pid " \ "&& supervisorctl restart httpd" safe_subprocess_exec( '''docker exec {} sh -c "{}"'''.format(container["cid"], cmd) # noqa ) if __name__ == "__main__": try: logger.info("starting recovery process for current node; " "this may take a while ...") cluster = get_current_cluster() if not cluster: logger.warn("unable to find any cluster") sys.exit(1) node = get_node() if not node: logger.warn("unable to find node matches existing hostname") sys.exit(1) if not weave_component_ready("weave"): logger.error("aborting recovery process due to weave being " "not ready; please try again later ...") sys.exit(1) if not weave_component_ready("weaveproxy"): logger.error("aborting recovery process due to weaveproxy being " "not ready; please try again later ...") sys.exit(1) if not weave_component_ready("weaveplugin"): logger.error("aborting recovery process due to weaveplugin being " "not ready; please try again later ...") sys.exit(1) time.sleep(10) recover_containers(node.get("id"), cluster.get("ox_cluster_hostname")) logger.info("recovery process for current node is finished") except KeyboardInterrupt: logger.warn("recovery process aborted by user") sys.exit(0)
mit
5,439,546,729,971,558,000
31.309375
96
0.610697
false
googleapis/google-cloud-cpp
google/cloud/storage/emulator/gcs/bucket.py
1
18283
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Implement a class to simulate GCS buckets.""" import datetime import hashlib import json import random import re import scalpl import utils from google.cloud.storage_v1.proto import storage_resources_pb2 as resources_pb2 from google.cloud.storage_v1.proto.storage_resources_pb2 import CommonEnums from google.iam.v1 import policy_pb2 from google.protobuf import field_mask_pb2, json_format class Bucket: modifiable_fields = [ "acl", "default_object_acl", "lifecycle", "cors", "storage_class", "default_event_based_hold", "labels", "website", "versioning", "logging", "encryption", "billing", "retention_policy", "location_type", "iam_configuration", ] rest_only_fields = ["iamConfiguration.publicAccessPrevention"] def __init__(self, metadata, notifications, iam_policy, rest_only): self.metadata = metadata self.notifications = notifications self.iam_policy = iam_policy self.rest_only = rest_only @classmethod def __validate_bucket_name(cls, bucket_name, context): valid = True if "." in bucket_name: valid &= len(bucket_name) <= 222 valid &= all([len(part) <= 63 for part in bucket_name.split(".")]) else: valid &= len(bucket_name) <= 63 valid &= ( re.match("^[a-z0-9][a-z0-9._\\-]+[a-z0-9]$", bucket_name) is not None ) valid &= not bucket_name.startswith("goog") valid &= re.search("g[0o][0o]g[1l][e3]", bucket_name) is None if not valid: utils.error.invalid("Bucket name %s" % bucket_name, context) @classmethod def __preprocess_rest(cls, data): proxy = scalpl.Cut(data) keys = utils.common.nested_key(data) proxy.pop("iamConfiguration.bucketPolicyOnly", False) for key in keys: if key.endswith("createdBefore"): proxy[key] = proxy[key] + "T00:00:00Z" rest_only = {} for field in Bucket.rest_only_fields: if field in proxy: rest_only[field] = proxy.pop(field) return proxy.data, rest_only @classmethod def __postprocess_rest(cls, data, rest_only): proxy = scalpl.Cut(data) keys = utils.common.nested_key(data) for key in keys: if key.endswith("createdBefore"): proxy[key] = proxy[key].replace("T00:00:00Z", "") proxy["kind"] = "storage#bucket" proxy.update(rest_only) return proxy.data @classmethod def __insert_predefined_acl(cls, metadata, predefined_acl, context): if ( predefined_acl == "" or predefined_acl == CommonEnums.PredefinedBucketAcl.PREDEFINED_BUCKET_ACL_UNSPECIFIED ): return if metadata.iam_configuration.uniform_bucket_level_access.enabled: utils.error.invalid( "Predefined ACL with uniform bucket level access enabled", context ) acls = utils.acl.compute_predefined_bucket_acl( metadata.name, predefined_acl, context ) del metadata.acl[:] metadata.acl.extend(acls) @classmethod def __insert_predefined_default_object_acl( cls, metadata, predefined_default_object_acl, context ): if ( predefined_default_object_acl == "" or predefined_default_object_acl == CommonEnums.PredefinedObjectAcl.PREDEFINED_OBJECT_ACL_UNSPECIFIED ): return if metadata.iam_configuration.uniform_bucket_level_access.enabled: utils.error.invalid( "Predefined Default Object ACL with uniform bucket level access enabled", context, ) acls = utils.acl.compute_predefined_default_object_acl( metadata.name, predefined_default_object_acl, context ) del metadata.default_object_acl[:] metadata.default_object_acl.extend(acls) # === INITIALIZATION === # @classmethod def init(cls, request, context, rest_only=None): time_created = datetime.datetime.now() metadata = None if context is not None: metadata = request.bucket else: metadata, rest_only = cls.__preprocess_rest(json.loads(request.data)) metadata = json_format.ParseDict(metadata, resources_pb2.Bucket()) cls.__validate_bucket_name(metadata.name, context) default_projection = CommonEnums.Projection.NO_ACL if len(metadata.acl) != 0 or len(metadata.default_object_acl) != 0: default_projection = CommonEnums.Projection.FULL is_uniform = metadata.iam_configuration.uniform_bucket_level_access.enabled metadata.iam_configuration.uniform_bucket_level_access.enabled = False if len(metadata.acl) == 0: predefined_acl = utils.acl.extract_predefined_acl(request, False, context) if ( predefined_acl == CommonEnums.PredefinedBucketAcl.PREDEFINED_BUCKET_ACL_UNSPECIFIED ): predefined_acl = ( CommonEnums.PredefinedBucketAcl.BUCKET_ACL_PROJECT_PRIVATE ) elif predefined_acl == "": predefined_acl = "projectPrivate" elif is_uniform: utils.error.invalid( "Predefined ACL with uniform bucket level access enabled", context ) cls.__insert_predefined_acl(metadata, predefined_acl, context) if len(metadata.default_object_acl) == 0: predefined_default_object_acl = utils.acl.extract_predefined_default_object_acl( request, context ) if ( predefined_default_object_acl == CommonEnums.PredefinedObjectAcl.PREDEFINED_OBJECT_ACL_UNSPECIFIED ): predefined_default_object_acl = ( CommonEnums.PredefinedObjectAcl.OBJECT_ACL_PROJECT_PRIVATE ) elif predefined_default_object_acl == "": predefined_default_object_acl = "projectPrivate" elif is_uniform: utils.error.invalid( "Predefined Default Object ACL with uniform bucket level access enabled", context, ) cls.__insert_predefined_default_object_acl( metadata, predefined_default_object_acl, context ) metadata.iam_configuration.uniform_bucket_level_access.enabled = is_uniform metadata.id = metadata.name metadata.project_number = int(utils.acl.PROJECT_NUMBER) metadata.metageneration = 0 metadata.etag = hashlib.md5(metadata.name.encode("utf-8")).hexdigest() metadata.time_created.FromDatetime(time_created) metadata.updated.FromDatetime(time_created) metadata.owner.entity = utils.acl.get_project_entity("owners", context) metadata.owner.entity_id = hashlib.md5( metadata.owner.entity.encode("utf-8") ).hexdigest() if rest_only is None: rest_only = {} return ( cls(metadata, {}, cls.__init_iam_policy(metadata, context), rest_only), utils.common.extract_projection(request, default_projection, context), ) # === IAM === # @classmethod def __init_iam_policy(cls, metadata, context): role_mapping = { "READER": "roles/storage.legacyBucketReader", "WRITER": "roles/storage.legacyBucketWriter", "OWNER": "roles/storage.legacyBucketOwner", } bindings = [] for entry in metadata.acl: legacy_role = entry.role if legacy_role is None or entry.entity is None: utils.error.invalid("ACL entry", context) role = role_mapping.get(legacy_role) if role is None: utils.error.invalid("Legacy role %s" % legacy_role, context) bindings.append(policy_pb2.Binding(role=role, members=[entry.entity])) return policy_pb2.Policy( version=1, bindings=bindings, etag=datetime.datetime.now().isoformat().encode("utf-8"), ) def get_iam_policy(self, request, context): return self.iam_policy def set_iam_policy(self, request, context): policy = None if context is not None: policy = request.iam_request.policy else: data = json.loads(request.data) if "iam_request" in data: data = data["iam_request"]["policy"] data.pop("kind", None) data.pop("etag", None) data.pop("resourceId", None) policy = json_format.ParseDict(data, policy_pb2.Policy()) self.iam_policy = policy self.iam_policy.etag = datetime.datetime.now().isoformat().encode("utf-8") return self.iam_policy # === METADATA === # def __update_metadata(self, source, update_mask): if update_mask is None: update_mask = field_mask_pb2.FieldMask(paths=Bucket.modifiable_fields) update_mask.MergeMessage(source, self.metadata, True, True) if self.metadata.versioning.enabled: self.metadata.metageneration += 1 self.metadata.updated.FromDatetime(datetime.datetime.now()) def update(self, request, context): metadata = None if context is not None: metadata = request.metadata else: metadata, rest_only = self.__preprocess_rest(json.loads(request.data)) self.rest_only.update(rest_only) metadata = json_format.ParseDict(metadata, resources_pb2.Bucket()) self.__update_metadata(metadata, None) self.__insert_predefined_acl( metadata, utils.acl.extract_predefined_acl(request, False, context), context ) self.__insert_predefined_default_object_acl( metadata, utils.acl.extract_predefined_default_object_acl(request, context), context, ) def patch(self, request, context): update_mask = field_mask_pb2.FieldMask() metadata = None if context is not None: metadata = request.metadata update_mask = request.update_mask else: data = json.loads(request.data) if "labels" in data: if data["labels"] is None: self.metadata.labels.clear() else: for key, value in data["labels"].items(): if value is None: self.metadata.labels.pop(key, None) else: self.metadata.labels[key] = value data.pop("labels", None) data, rest_only = self.__preprocess_rest(data) self.rest_only.update(rest_only) metadata = json_format.ParseDict(data, resources_pb2.Bucket()) paths = set() for key in utils.common.nested_key(data): key = utils.common.to_snake_case(key) head = key for i, c in enumerate(key): if c == "." or c == "[": head = key[0:i] break if head in Bucket.modifiable_fields: if "[" in key: paths.add(head) else: paths.add(key) update_mask = field_mask_pb2.FieldMask(paths=list(paths)) self.__update_metadata(metadata, update_mask) self.__insert_predefined_acl( metadata, utils.acl.extract_predefined_acl(request, False, context), context ) self.__insert_predefined_default_object_acl( metadata, utils.acl.extract_predefined_default_object_acl(request, context), context, ) # === ACL === # def __search_acl(self, entity, must_exist, context): entity = utils.acl.get_canonical_entity(entity) for i in range(len(self.metadata.acl)): if self.metadata.acl[i].entity == entity: return i if must_exist: utils.error.notfound("ACL %s" % entity, context) def __upsert_acl(self, entity, role, context): # For simplicity, we treat `insert`, `update` and `patch` ACL the same way. index = self.__search_acl(entity, False, context) acl = utils.acl.create_bucket_acl(self.metadata.name, entity, role, context) if index is not None: self.metadata.acl[index].CopyFrom(acl) return self.metadata.acl[index] else: self.metadata.acl.append(acl) return acl def get_acl(self, entity, context): index = self.__search_acl(entity, True, context) return self.metadata.acl[index] def insert_acl(self, request, context): entity, role = "", "" if context is not None: entity, role = ( request.bucket_access_control.entity, request.bucket_access_control.role, ) else: payload = json.loads(request.data) entity, role = payload["entity"], payload["role"] return self.__upsert_acl(entity, role, context) def update_acl(self, request, entity, context): role = "" if context is not None: role = request.bucket_access_control.role else: payload = json.loads(request.data) role = payload["role"] return self.__upsert_acl(entity, role, context) def patch_acl(self, request, entity, context): role = "" if context is not None: role = request.bucket_access_control.role else: payload = json.loads(request.data) role = payload["role"] return self.__upsert_acl(entity, role, context) def delete_acl(self, entity, context): del self.metadata.acl[self.__search_acl(entity, True, context)] # === DEFAULT OBJECT ACL === # def __search_default_object_acl(self, entity, must_exist, context): entity = utils.acl.get_canonical_entity(entity) for i in range(len(self.metadata.default_object_acl)): if self.metadata.default_object_acl[i].entity == entity: return i if must_exist: utils.error.notfound("Default Object ACL %s" % entity, context) def __upsert_default_object_acl(self, entity, role, context): # For simplicity, we treat `insert`, `update` and `patch` Default Object ACL the same way. index = self.__search_default_object_acl(entity, False, context) acl = utils.acl.create_default_object_acl( self.metadata.name, entity, role, context ) if index is not None: self.metadata.default_object_acl[index].CopyFrom(acl) return self.metadata.default_object_acl[index] else: self.metadata.default_object_acl.append(acl) return acl def get_default_object_acl(self, entity, context): index = self.__search_default_object_acl(entity, True, context) return self.metadata.default_object_acl[index] def insert_default_object_acl(self, request, context): entity, role = "", "" if context is not None: entity, role = ( request.object_access_control.entity, request.object_access_control.role, ) else: payload = json.loads(request.data) entity, role = payload["entity"], payload["role"] return self.__upsert_default_object_acl(entity, role, context) def update_default_object_acl(self, request, entity, context): role = "" if context is not None: role = request.object_access_control.role else: payload = json.loads(request.data) role = payload["role"] return self.__upsert_default_object_acl(entity, role, context) def patch_default_object_acl(self, request, entity, context): role = "" if context is not None: role = request.object_access_control.role else: payload = json.loads(request.data) role = payload["role"] return self.__upsert_default_object_acl(entity, role, context) def delete_default_object_acl(self, entity, context): del self.metadata.default_object_acl[ self.__search_default_object_acl(entity, True, context) ] # === NOTIFICATIONS === # def insert_notification(self, request, context): notification = None if context is not None: notification = request.notification else: notification = json_format.ParseDict( json.loads(request.data), resources_pb2.Notification() ) notification.id = "notification-%d" % random.getrandbits(16) self.notifications[notification.id] = notification return notification def get_notification(self, notification_id, context): return self.notifications[notification_id] def delete_notification(self, notification_id, context): del self.notifications[notification_id] # === RESPONSE === # def rest(self): response = json_format.MessageToDict(self.metadata) return Bucket.__postprocess_rest(response, self.rest_only)
apache-2.0
2,046,264,609,927,782,400
37.9
98
0.587322
false
mancoast/CPythonPyc_test
cpython/234_test_sax.py
1
19309
# regression test for SAX 2.0 -*- coding: iso-8859-1 -*- # $Id: test_sax.py,v 1.24.16.1 2004/03/20 08:20:03 fdrake Exp $ from xml.sax import make_parser, ContentHandler, \ SAXException, SAXReaderNotAvailable, SAXParseException try: make_parser() except SAXReaderNotAvailable: # don't try to test this module if we cannot create a parser raise ImportError("no XML parsers available") from xml.sax.saxutils import XMLGenerator, escape, unescape, quoteattr, \ XMLFilterBase from xml.sax.expatreader import create_parser from xml.sax.xmlreader import InputSource, AttributesImpl, AttributesNSImpl from cStringIO import StringIO from test.test_support import verify, verbose, TestFailed, findfile import os # ===== Utilities tests = 0 failures = [] def confirm(outcome, name): global tests tests = tests + 1 if outcome: if verbose: print "Failed", name else: failures.append(name) def test_make_parser2(): try: # Creating parsers several times in a row should succeed. # Testing this because there have been failures of this kind # before. from xml.sax import make_parser p = make_parser() from xml.sax import make_parser p = make_parser() from xml.sax import make_parser p = make_parser() from xml.sax import make_parser p = make_parser() from xml.sax import make_parser p = make_parser() from xml.sax import make_parser p = make_parser() except: return 0 else: return p # =========================================================================== # # saxutils tests # # =========================================================================== # ===== escape def test_escape_basic(): return escape("Donald Duck & Co") == "Donald Duck &amp; Co" def test_escape_all(): return escape("<Donald Duck & Co>") == "&lt;Donald Duck &amp; Co&gt;" def test_escape_extra(): return escape("Hei på deg", {"å" : "&aring;"}) == "Hei p&aring; deg" # ===== unescape def test_unescape_basic(): return unescape("Donald Duck &amp; Co") == "Donald Duck & Co" def test_unescape_all(): return unescape("&lt;Donald Duck &amp; Co&gt;") == "<Donald Duck & Co>" def test_unescape_extra(): return unescape("Hei på deg", {"å" : "&aring;"}) == "Hei p&aring; deg" def test_unescape_amp_extra(): return unescape("&amp;foo;", {"&foo;": "splat"}) == "&foo;" # ===== quoteattr def test_quoteattr_basic(): return quoteattr("Donald Duck & Co") == '"Donald Duck &amp; Co"' def test_single_quoteattr(): return (quoteattr('Includes "double" quotes') == '\'Includes "double" quotes\'') def test_double_quoteattr(): return (quoteattr("Includes 'single' quotes") == "\"Includes 'single' quotes\"") def test_single_double_quoteattr(): return (quoteattr("Includes 'single' and \"double\" quotes") == "\"Includes 'single' and &quot;double&quot; quotes\"") # ===== make_parser def test_make_parser(): try: # Creating a parser should succeed - it should fall back # to the expatreader p = make_parser(['xml.parsers.no_such_parser']) except: return 0 else: return p # ===== XMLGenerator start = '<?xml version="1.0" encoding="iso-8859-1"?>\n' def test_xmlgen_basic(): result = StringIO() gen = XMLGenerator(result) gen.startDocument() gen.startElement("doc", {}) gen.endElement("doc") gen.endDocument() return result.getvalue() == start + "<doc></doc>" def test_xmlgen_content(): result = StringIO() gen = XMLGenerator(result) gen.startDocument() gen.startElement("doc", {}) gen.characters("huhei") gen.endElement("doc") gen.endDocument() return result.getvalue() == start + "<doc>huhei</doc>" def test_xmlgen_pi(): result = StringIO() gen = XMLGenerator(result) gen.startDocument() gen.processingInstruction("test", "data") gen.startElement("doc", {}) gen.endElement("doc") gen.endDocument() return result.getvalue() == start + "<?test data?><doc></doc>" def test_xmlgen_content_escape(): result = StringIO() gen = XMLGenerator(result) gen.startDocument() gen.startElement("doc", {}) gen.characters("<huhei&") gen.endElement("doc") gen.endDocument() return result.getvalue() == start + "<doc>&lt;huhei&amp;</doc>" def test_xmlgen_attr_escape(): result = StringIO() gen = XMLGenerator(result) gen.startDocument() gen.startElement("doc", {"a": '"'}) gen.startElement("e", {"a": "'"}) gen.endElement("e") gen.startElement("e", {"a": "'\""}) gen.endElement("e") gen.endElement("doc") gen.endDocument() return result.getvalue() == start \ + "<doc a='\"'><e a=\"'\"></e><e a=\"'&quot;\"></e></doc>" def test_xmlgen_ignorable(): result = StringIO() gen = XMLGenerator(result) gen.startDocument() gen.startElement("doc", {}) gen.ignorableWhitespace(" ") gen.endElement("doc") gen.endDocument() return result.getvalue() == start + "<doc> </doc>" ns_uri = "http://www.python.org/xml-ns/saxtest/" def test_xmlgen_ns(): result = StringIO() gen = XMLGenerator(result) gen.startDocument() gen.startPrefixMapping("ns1", ns_uri) gen.startElementNS((ns_uri, "doc"), "ns1:doc", {}) # add an unqualified name gen.startElementNS((None, "udoc"), None, {}) gen.endElementNS((None, "udoc"), None) gen.endElementNS((ns_uri, "doc"), "ns1:doc") gen.endPrefixMapping("ns1") gen.endDocument() return result.getvalue() == start + \ ('<ns1:doc xmlns:ns1="%s"><udoc></udoc></ns1:doc>' % ns_uri) # ===== XMLFilterBase def test_filter_basic(): result = StringIO() gen = XMLGenerator(result) filter = XMLFilterBase() filter.setContentHandler(gen) filter.startDocument() filter.startElement("doc", {}) filter.characters("content") filter.ignorableWhitespace(" ") filter.endElement("doc") filter.endDocument() return result.getvalue() == start + "<doc>content </doc>" # =========================================================================== # # expatreader tests # # =========================================================================== # ===== XMLReader support def test_expat_file(): parser = create_parser() result = StringIO() xmlgen = XMLGenerator(result) parser.setContentHandler(xmlgen) parser.parse(open(findfile("test"+os.extsep+"xml"))) return result.getvalue() == xml_test_out # ===== DTDHandler support class TestDTDHandler: def __init__(self): self._notations = [] self._entities = [] def notationDecl(self, name, publicId, systemId): self._notations.append((name, publicId, systemId)) def unparsedEntityDecl(self, name, publicId, systemId, ndata): self._entities.append((name, publicId, systemId, ndata)) def test_expat_dtdhandler(): parser = create_parser() handler = TestDTDHandler() parser.setDTDHandler(handler) parser.feed('<!DOCTYPE doc [\n') parser.feed(' <!ENTITY img SYSTEM "expat.gif" NDATA GIF>\n') parser.feed(' <!NOTATION GIF PUBLIC "-//CompuServe//NOTATION Graphics Interchange Format 89a//EN">\n') parser.feed(']>\n') parser.feed('<doc></doc>') parser.close() return handler._notations == [("GIF", "-//CompuServe//NOTATION Graphics Interchange Format 89a//EN", None)] and \ handler._entities == [("img", None, "expat.gif", "GIF")] # ===== EntityResolver support class TestEntityResolver: def resolveEntity(self, publicId, systemId): inpsrc = InputSource() inpsrc.setByteStream(StringIO("<entity/>")) return inpsrc def test_expat_entityresolver(): parser = create_parser() parser.setEntityResolver(TestEntityResolver()) result = StringIO() parser.setContentHandler(XMLGenerator(result)) parser.feed('<!DOCTYPE doc [\n') parser.feed(' <!ENTITY test SYSTEM "whatever">\n') parser.feed(']>\n') parser.feed('<doc>&test;</doc>') parser.close() return result.getvalue() == start + "<doc><entity></entity></doc>" # ===== Attributes support class AttrGatherer(ContentHandler): def startElement(self, name, attrs): self._attrs = attrs def startElementNS(self, name, qname, attrs): self._attrs = attrs def test_expat_attrs_empty(): parser = create_parser() gather = AttrGatherer() parser.setContentHandler(gather) parser.feed("<doc/>") parser.close() return verify_empty_attrs(gather._attrs) def test_expat_attrs_wattr(): parser = create_parser() gather = AttrGatherer() parser.setContentHandler(gather) parser.feed("<doc attr='val'/>") parser.close() return verify_attrs_wattr(gather._attrs) def test_expat_nsattrs_empty(): parser = create_parser(1) gather = AttrGatherer() parser.setContentHandler(gather) parser.feed("<doc/>") parser.close() return verify_empty_nsattrs(gather._attrs) def test_expat_nsattrs_wattr(): parser = create_parser(1) gather = AttrGatherer() parser.setContentHandler(gather) parser.feed("<doc xmlns:ns='%s' ns:attr='val'/>" % ns_uri) parser.close() attrs = gather._attrs return attrs.getLength() == 1 and \ attrs.getNames() == [(ns_uri, "attr")] and \ (attrs.getQNames() == [] or attrs.getQNames() == ["ns:attr"]) and \ len(attrs) == 1 and \ attrs.has_key((ns_uri, "attr")) and \ attrs.keys() == [(ns_uri, "attr")] and \ attrs.get((ns_uri, "attr")) == "val" and \ attrs.get((ns_uri, "attr"), 25) == "val" and \ attrs.items() == [((ns_uri, "attr"), "val")] and \ attrs.values() == ["val"] and \ attrs.getValue((ns_uri, "attr")) == "val" and \ attrs[(ns_uri, "attr")] == "val" # ===== InputSource support xml_test_out = open(findfile("test"+os.extsep+"xml"+os.extsep+"out")).read() def test_expat_inpsource_filename(): parser = create_parser() result = StringIO() xmlgen = XMLGenerator(result) parser.setContentHandler(xmlgen) parser.parse(findfile("test"+os.extsep+"xml")) return result.getvalue() == xml_test_out def test_expat_inpsource_sysid(): parser = create_parser() result = StringIO() xmlgen = XMLGenerator(result) parser.setContentHandler(xmlgen) parser.parse(InputSource(findfile("test"+os.extsep+"xml"))) return result.getvalue() == xml_test_out def test_expat_inpsource_stream(): parser = create_parser() result = StringIO() xmlgen = XMLGenerator(result) parser.setContentHandler(xmlgen) inpsrc = InputSource() inpsrc.setByteStream(open(findfile("test"+os.extsep+"xml"))) parser.parse(inpsrc) return result.getvalue() == xml_test_out # ===== IncrementalParser support def test_expat_incremental(): result = StringIO() xmlgen = XMLGenerator(result) parser = create_parser() parser.setContentHandler(xmlgen) parser.feed("<doc>") parser.feed("</doc>") parser.close() return result.getvalue() == start + "<doc></doc>" def test_expat_incremental_reset(): result = StringIO() xmlgen = XMLGenerator(result) parser = create_parser() parser.setContentHandler(xmlgen) parser.feed("<doc>") parser.feed("text") result = StringIO() xmlgen = XMLGenerator(result) parser.setContentHandler(xmlgen) parser.reset() parser.feed("<doc>") parser.feed("text") parser.feed("</doc>") parser.close() return result.getvalue() == start + "<doc>text</doc>" # ===== Locator support def test_expat_locator_noinfo(): result = StringIO() xmlgen = XMLGenerator(result) parser = create_parser() parser.setContentHandler(xmlgen) parser.feed("<doc>") parser.feed("</doc>") parser.close() return parser.getSystemId() is None and \ parser.getPublicId() is None and \ parser.getLineNumber() == 1 def test_expat_locator_withinfo(): result = StringIO() xmlgen = XMLGenerator(result) parser = create_parser() parser.setContentHandler(xmlgen) parser.parse(findfile("test.xml")) return parser.getSystemId() == findfile("test.xml") and \ parser.getPublicId() is None # =========================================================================== # # error reporting # # =========================================================================== def test_expat_inpsource_location(): parser = create_parser() parser.setContentHandler(ContentHandler()) # do nothing source = InputSource() source.setByteStream(StringIO("<foo bar foobar>")) #ill-formed name = "a file name" source.setSystemId(name) try: parser.parse(source) except SAXException, e: return e.getSystemId() == name def test_expat_incomplete(): parser = create_parser() parser.setContentHandler(ContentHandler()) # do nothing try: parser.parse(StringIO("<foo>")) except SAXParseException: return 1 # ok, error found else: return 0 def test_sax_parse_exception_str(): # pass various values from a locator to the SAXParseException to # make sure that the __str__() doesn't fall apart when None is # passed instead of an integer line and column number # # use "normal" values for the locator: str(SAXParseException("message", None, DummyLocator(1, 1))) # use None for the line number: str(SAXParseException("message", None, DummyLocator(None, 1))) # use None for the column number: str(SAXParseException("message", None, DummyLocator(1, None))) # use None for both: str(SAXParseException("message", None, DummyLocator(None, None))) return 1 class DummyLocator: def __init__(self, lineno, colno): self._lineno = lineno self._colno = colno def getPublicId(self): return "pubid" def getSystemId(self): return "sysid" def getLineNumber(self): return self._lineno def getColumnNumber(self): return self._colno # =========================================================================== # # xmlreader tests # # =========================================================================== # ===== AttributesImpl def verify_empty_attrs(attrs): try: attrs.getValue("attr") gvk = 0 except KeyError: gvk = 1 try: attrs.getValueByQName("attr") gvqk = 0 except KeyError: gvqk = 1 try: attrs.getNameByQName("attr") gnqk = 0 except KeyError: gnqk = 1 try: attrs.getQNameByName("attr") gqnk = 0 except KeyError: gqnk = 1 try: attrs["attr"] gik = 0 except KeyError: gik = 1 return attrs.getLength() == 0 and \ attrs.getNames() == [] and \ attrs.getQNames() == [] and \ len(attrs) == 0 and \ not attrs.has_key("attr") and \ attrs.keys() == [] and \ attrs.get("attrs") is None and \ attrs.get("attrs", 25) == 25 and \ attrs.items() == [] and \ attrs.values() == [] and \ gvk and gvqk and gnqk and gik and gqnk def verify_attrs_wattr(attrs): return attrs.getLength() == 1 and \ attrs.getNames() == ["attr"] and \ attrs.getQNames() == ["attr"] and \ len(attrs) == 1 and \ attrs.has_key("attr") and \ attrs.keys() == ["attr"] and \ attrs.get("attr") == "val" and \ attrs.get("attr", 25) == "val" and \ attrs.items() == [("attr", "val")] and \ attrs.values() == ["val"] and \ attrs.getValue("attr") == "val" and \ attrs.getValueByQName("attr") == "val" and \ attrs.getNameByQName("attr") == "attr" and \ attrs["attr"] == "val" and \ attrs.getQNameByName("attr") == "attr" def test_attrs_empty(): return verify_empty_attrs(AttributesImpl({})) def test_attrs_wattr(): return verify_attrs_wattr(AttributesImpl({"attr" : "val"})) # ===== AttributesImpl def verify_empty_nsattrs(attrs): try: attrs.getValue((ns_uri, "attr")) gvk = 0 except KeyError: gvk = 1 try: attrs.getValueByQName("ns:attr") gvqk = 0 except KeyError: gvqk = 1 try: attrs.getNameByQName("ns:attr") gnqk = 0 except KeyError: gnqk = 1 try: attrs.getQNameByName((ns_uri, "attr")) gqnk = 0 except KeyError: gqnk = 1 try: attrs[(ns_uri, "attr")] gik = 0 except KeyError: gik = 1 return attrs.getLength() == 0 and \ attrs.getNames() == [] and \ attrs.getQNames() == [] and \ len(attrs) == 0 and \ not attrs.has_key((ns_uri, "attr")) and \ attrs.keys() == [] and \ attrs.get((ns_uri, "attr")) is None and \ attrs.get((ns_uri, "attr"), 25) == 25 and \ attrs.items() == [] and \ attrs.values() == [] and \ gvk and gvqk and gnqk and gik and gqnk def test_nsattrs_empty(): return verify_empty_nsattrs(AttributesNSImpl({}, {})) def test_nsattrs_wattr(): attrs = AttributesNSImpl({(ns_uri, "attr") : "val"}, {(ns_uri, "attr") : "ns:attr"}) return attrs.getLength() == 1 and \ attrs.getNames() == [(ns_uri, "attr")] and \ attrs.getQNames() == ["ns:attr"] and \ len(attrs) == 1 and \ attrs.has_key((ns_uri, "attr")) and \ attrs.keys() == [(ns_uri, "attr")] and \ attrs.get((ns_uri, "attr")) == "val" and \ attrs.get((ns_uri, "attr"), 25) == "val" and \ attrs.items() == [((ns_uri, "attr"), "val")] and \ attrs.values() == ["val"] and \ attrs.getValue((ns_uri, "attr")) == "val" and \ attrs.getValueByQName("ns:attr") == "val" and \ attrs.getNameByQName("ns:attr") == (ns_uri, "attr") and \ attrs[(ns_uri, "attr")] == "val" and \ attrs.getQNameByName((ns_uri, "attr")) == "ns:attr" # ===== Main program def make_test_output(): parser = create_parser() result = StringIO() xmlgen = XMLGenerator(result) parser.setContentHandler(xmlgen) parser.parse(findfile("test"+os.extsep+"xml")) outf = open(findfile("test"+os.extsep+"xml"+os.extsep+"out"), "w") outf.write(result.getvalue()) outf.close() items = locals().items() items.sort() for (name, value) in items: if name[ : 5] == "test_": confirm(value(), name) if verbose: print "%d tests, %d failures" % (tests, len(failures)) if failures: raise TestFailed("%d of %d tests failed: %s" % (len(failures), tests, ", ".join(failures)))
gpl-3.0
-2,254,858,870,572,087,000
26.782734
117
0.5702
false
sio2project/oioioi
oioioi/szkopul/views.py
1
2838
import django from django.conf import settings from django.template.response import TemplateResponse from django.urls import reverse from django.utils.translation import ugettext_lazy as _ from oioioi.base.main_page import register_main_page_view from oioioi.contests.controllers import submission_template_context from oioioi.contests.models import Submission from oioioi.contests.processors import recent_contests from oioioi.contests.utils import visible_contests from oioioi.problems.utils import filter_my_all_visible_submissions from oioioi.szkopul.menu import navbar_links_registry navbar_links_registry.register( name='contests_list', text=_("Contests"), url_generator=lambda request: reverse('select_contest'), order=100, ) navbar_links_registry.register( name='problemset', text=_("Problemset"), url_generator=lambda request: reverse('problemset_main'), order=200, ) navbar_links_registry.register( name='task_archive', text=_("Task archive"), url_generator=lambda request: reverse('task_archive'), order=300, ) # TODO Add Portals main page to the menu: # navbar_links_registry.register( # name='portals', # text=_("Portals"), # ... # ) @register_main_page_view(order=100) def main_page_view(request): navbar_links = navbar_links_registry.template_context(request) to_show = getattr(settings, 'NUM_RECENT_CONTESTS', 7) rcontests = recent_contests(request) contests = list(visible_contests(request).difference(rcontests)) contests.sort(key=lambda x: x.creation_date, reverse=True) contests = (rcontests + contests)[:to_show] submissions = [] show_scores = False if request.user.is_authenticated: queryset = Submission.objects.filter(user=request.user).order_by('-date') to_show = getattr(settings, 'NUM_PANEL_SUBMISSIONS', 7) # limit queryset size, because filtering all submissions is slow queryset = queryset[:to_show] limit_queryset_ids = [submission.id for submission in queryset] queryset = Submission.objects.filter(id__in=limit_queryset_ids).select_related( 'user', 'problem_instance', 'problem_instance__contest', 'problem_instance__round', 'problem_instance__problem', ) submissions_list = filter_my_all_visible_submissions( request, queryset ).order_by('-date') submissions = [ submission_template_context(request, s) for s in submissions_list ] show_scores = any(s['can_see_score'] for s in submissions) context = { 'navbar_links': navbar_links, 'contests': contests, 'submissions': submissions, 'show_scores': show_scores, } return TemplateResponse(request, 'main-page.html', context)
gpl-3.0
-4,068,311,784,596,601,300
32.388235
87
0.686399
false
osuripple/pep.py
objects/chatFilters.py
1
1250
class chatFilters: def __init__(self, fileName="filters.txt"): """ Initialize chat filters :param fileName: name of the file containing filters. Default: filters.txt """ self.filters = {} self.loadFilters(fileName) def loadFilters(self, fileName="filters.txt"): """ Load filters from a file :param fileName: name of the file containing filters. Default: filters.txt :return: """ # Reset chat filters self.filters = {} # Open filters file with open(fileName, "r") as f: # Read all lines data = f.readlines() # Process each line for line in data: # Get old/new word and save it in dictionary lineSplit = line.split("=") self.filters[lineSplit[0].lower()] = lineSplit[1].replace("\n", "") def filterMessage(self, message): """ Replace forbidden words with filtered ones :param message: normal message :return: filtered message """ return message """ # Split words by spaces messageTemp = message.split(" ") # Check each word for word in messageTemp: lowerWord = word.lower() # If the word is filtered, replace it if lowerWord in self.filters: message = message.replace(word, self.filters[lowerWord]) # Return filtered message return message """
agpl-3.0
-5,941,986,136,163,623,000
22.148148
76
0.672
false
jef-n/QGIS
tests/src/python/providertestbase.py
1
52878
# -*- coding: utf-8 -*- """QGIS Unit test utils for provider tests. .. note:: This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. """ from builtins import str from builtins import object __author__ = 'Matthias Kuhn' __date__ = '2015-04-27' __copyright__ = 'Copyright 2015, The QGIS Project' from qgis.core import ( QgsApplication, QgsRectangle, QgsFeatureRequest, QgsFeature, QgsGeometry, QgsAbstractFeatureIterator, QgsExpressionContextScope, QgsExpressionContext, QgsExpression, QgsVectorDataProvider, QgsVectorLayerFeatureSource, QgsFeatureSink, QgsTestUtils, QgsFeatureSource, NULL ) from qgis.PyQt.QtCore import QDate, QTime, QDateTime from qgis.PyQt.QtTest import QSignalSpy from utilities import compareWkt from featuresourcetestbase import FeatureSourceTestCase class ProviderTestCase(FeatureSourceTestCase): ''' This is a collection of tests for vector data providers and kept generic. To make use of it, subclass it and set self.source to a provider you want to test. Make sure that your provider uses the default dataset by converting one of the provided datasets from the folder tests/testdata/provider to a dataset your provider is able to handle. To test expression compilation, add the methods `enableCompiler()` and `disableCompiler()` to your subclass. If these methods are present, the tests will ensure that the result of server side and client side expression evaluation are equal. ''' def uncompiledFilters(self): """ Individual derived provider tests should override this to return a list of expressions which cannot be compiled """ return set() def enableCompiler(self): """By default there is no expression compiling available, needs to be overridden in subclass""" print('Provider does not support compiling') return False def partiallyCompiledFilters(self): """ Individual derived provider tests should override this to return a list of expressions which should be partially compiled """ return set() def assert_query(self, source, expression, expected): FeatureSourceTestCase.assert_query(self, source, expression, expected) if self.compiled: # Check compilation status it = source.getFeatures(QgsFeatureRequest().setFilterExpression(expression)) if expression in self.uncompiledFilters(): self.assertEqual(it.compileStatus(), QgsAbstractFeatureIterator.NoCompilation) elif expression in self.partiallyCompiledFilters(): self.assertEqual(it.compileStatus(), QgsAbstractFeatureIterator.PartiallyCompiled) else: self.assertEqual(it.compileStatus(), QgsAbstractFeatureIterator.Compiled, expression) def runGetFeatureTests(self, source): FeatureSourceTestCase.runGetFeatureTests(self, source) # combination of an uncompilable expression and limit feature = next(self.vl.getFeatures('pk=4')) context = QgsExpressionContext() scope = QgsExpressionContextScope() scope.setVariable('parent', feature) context.appendScope(scope) request = QgsFeatureRequest() request.setExpressionContext(context) request.setFilterExpression('"pk" = attribute(@parent, \'pk\')') request.setLimit(1) values = [f['pk'] for f in self.vl.getFeatures(request)] self.assertEqual(values, [4]) def runPolyGetFeatureTests(self, provider): assert len([f for f in provider.getFeatures()]) == 4 # geometry self.assert_query(provider, 'x($geometry) < -70', [1]) self.assert_query(provider, 'y($geometry) > 79', [1, 2]) self.assert_query(provider, 'xmin($geometry) < -70', [1, 3]) self.assert_query(provider, 'ymin($geometry) < 76', [3]) self.assert_query(provider, 'xmax($geometry) > -68', [2, 3]) self.assert_query(provider, 'ymax($geometry) > 80', [1, 2]) self.assert_query(provider, 'area($geometry) > 10', [1]) self.assert_query(provider, 'perimeter($geometry) < 12', [2, 3]) self.assert_query(provider, 'relate($geometry,geom_from_wkt( \'Polygon ((-68.2 82.1, -66.95 82.1, -66.95 79.05, -68.2 79.05, -68.2 82.1))\')) = \'FF2FF1212\'', [1, 3]) self.assert_query(provider, 'relate($geometry,geom_from_wkt( \'Polygon ((-68.2 82.1, -66.95 82.1, -66.95 79.05, -68.2 79.05, -68.2 82.1))\'), \'****F****\')', [1, 3]) self.assert_query(provider, 'crosses($geometry,geom_from_wkt( \'Linestring (-68.2 82.1, -66.95 82.1, -66.95 79.05)\'))', [2]) self.assert_query(provider, 'overlaps($geometry,geom_from_wkt( \'Polygon ((-68.2 82.1, -66.95 82.1, -66.95 79.05, -68.2 79.05, -68.2 82.1))\'))', [2]) self.assert_query(provider, 'within($geometry,geom_from_wkt( \'Polygon ((-75.1 76.1, -75.1 81.6, -68.8 81.6, -68.8 76.1, -75.1 76.1))\'))', [1]) self.assert_query(provider, 'overlaps(translate($geometry,-1,-1),geom_from_wkt( \'Polygon ((-75.1 76.1, -75.1 81.6, -68.8 81.6, -68.8 76.1, -75.1 76.1))\'))', [1]) self.assert_query(provider, 'overlaps(buffer($geometry,1),geom_from_wkt( \'Polygon ((-75.1 76.1, -75.1 81.6, -68.8 81.6, -68.8 76.1, -75.1 76.1))\'))', [1, 3]) self.assert_query(provider, 'intersects(centroid($geometry),geom_from_wkt( \'Polygon ((-74.4 78.2, -74.4 79.1, -66.8 79.1, -66.8 78.2, -74.4 78.2))\'))', [2]) self.assert_query(provider, 'intersects(point_on_surface($geometry),geom_from_wkt( \'Polygon ((-74.4 78.2, -74.4 79.1, -66.8 79.1, -66.8 78.2, -74.4 78.2))\'))', [1, 2]) self.assert_query(provider, 'distance($geometry,geom_from_wkt( \'Point (-70 70)\')) > 7', [1, 2]) def testGetFeaturesUncompiled(self): self.compiled = False try: self.disableCompiler() except AttributeError: pass self.runGetFeatureTests(self.source) if hasattr(self, 'poly_provider'): self.runPolyGetFeatureTests(self.poly_provider) def testGetFeaturesExp(self): if self.enableCompiler(): self.compiled = True self.runGetFeatureTests(self.source) if hasattr(self, 'poly_provider'): self.runPolyGetFeatureTests(self.poly_provider) def testSubsetString(self): if not self.source.supportsSubsetString(): print('Provider does not support subset strings') return changed_spy = QSignalSpy(self.source.dataChanged) subset = self.getSubsetString() self.source.setSubsetString(subset) self.assertEqual(self.source.subsetString(), subset) self.assertEqual(len(changed_spy), 1) # No signal should be emitted if the subset string is not modified self.source.setSubsetString(subset) self.assertEqual(len(changed_spy), 1) result = set([f['pk'] for f in self.source.getFeatures()]) all_valid = (all(f.isValid() for f in self.source.getFeatures())) self.source.setSubsetString(None) expected = set([2, 3, 4]) assert set(expected) == result, 'Expected {} and got {} when testing subset string {}'.format(set(expected), result, subset) self.assertTrue(all_valid) # Subset string AND filter rect self.source.setSubsetString(subset) extent = QgsRectangle(-70, 70, -60, 75) request = QgsFeatureRequest().setFilterRect(extent) result = set([f['pk'] for f in self.source.getFeatures(request)]) all_valid = (all(f.isValid() for f in self.source.getFeatures(request))) self.source.setSubsetString(None) expected = set([2]) assert set(expected) == result, 'Expected {} and got {} when testing subset string {}'.format(set(expected), result, subset) self.assertTrue(all_valid) # Subset string AND filter rect, version 2 self.source.setSubsetString(subset) extent = QgsRectangle(-71, 65, -60, 80) result = set([f['pk'] for f in self.source.getFeatures(QgsFeatureRequest().setFilterRect(extent))]) self.source.setSubsetString(None) expected = set([2, 4]) assert set(expected) == result, 'Expected {} and got {} when testing subset string {}'.format(set(expected), result, subset) # Subset string AND expression self.source.setSubsetString(subset) request = QgsFeatureRequest().setFilterExpression('length("name")=5') result = set([f['pk'] for f in self.source.getFeatures(request)]) all_valid = (all(f.isValid() for f in self.source.getFeatures(request))) self.source.setSubsetString(None) expected = set([2, 4]) assert set(expected) == result, 'Expected {} and got {} when testing subset string {}'.format(set(expected), result, subset) self.assertTrue(all_valid) # Subset string AND filter fid ids = {f['pk']: f.id() for f in self.source.getFeatures()} self.source.setSubsetString(subset) request = QgsFeatureRequest().setFilterFid(4) result = set([f.id() for f in self.source.getFeatures(request)]) all_valid = (all(f.isValid() for f in self.source.getFeatures(request))) self.source.setSubsetString(None) expected = set([4]) assert set(expected) == result, 'Expected {} and got {} when testing subset string {}'.format(set(expected), result, subset) self.assertTrue(all_valid) # Subset string AND filter fids self.source.setSubsetString(subset) request = QgsFeatureRequest().setFilterFids([ids[2], ids[4]]) result = set([f.id() for f in self.source.getFeatures(request)]) all_valid = (all(f.isValid() for f in self.source.getFeatures(request))) self.source.setSubsetString(None) expected = set([ids[2], ids[4]]) assert set(expected) == result, 'Expected {} and got {} when testing subset string {}'.format(set(expected), result, subset) self.assertTrue(all_valid) def getSubsetString(self): """Individual providers may need to override this depending on their subset string formats""" return '"cnt" > 100 and "cnt" < 410' def getSubsetString2(self): """Individual providers may need to override this depending on their subset string formats""" return '"cnt" > 100 and "cnt" < 400' def getSubsetString3(self): """Individual providers may need to override this depending on their subset string formats""" return '"name"=\'Apple\'' def getSubsetStringNoMatching(self): """Individual providers may need to override this depending on their subset string formats""" return '"name"=\'AppleBearOrangePear\'' def testGetFeaturesThreadSafety(self): # no request self.assertTrue(QgsTestUtils.testProviderIteratorThreadSafety(self.source)) # filter rect request extent = QgsRectangle(-73, 70, -63, 80) request = QgsFeatureRequest().setFilterRect(extent) self.assertTrue(QgsTestUtils.testProviderIteratorThreadSafety(self.source, request)) def testOrderBy(self): try: self.disableCompiler() except AttributeError: pass self.runOrderByTests() def testOrderByCompiled(self): if self.enableCompiler(): self.runOrderByTests() def runOrderByTests(self): FeatureSourceTestCase.runOrderByTests(self) # Combination with subset of attributes request = QgsFeatureRequest().addOrderBy('num_char', False).setSubsetOfAttributes(['pk'], self.vl.fields()) values = [f['pk'] for f in self.vl.getFeatures(request)] self.assertEqual(values, [5, 4, 3, 2, 1]) def testOpenIteratorAfterLayerRemoval(self): """ Test that removing layer after opening an iterator does not crash. All required information should be captured in the iterator's source and there MUST be no links between the iterators and the layer's data provider """ if not getattr(self, 'getEditableLayer', None): return l = self.getEditableLayer() self.assertTrue(l.isValid()) # store the source source = QgsVectorLayerFeatureSource(l) # delete the layer del l # get the features pks = [] for f in source.getFeatures(): pks.append(f['pk']) self.assertEqual(set(pks), {1, 2, 3, 4, 5}) def testCloneLayer(self): """ Test that cloning layer works and has all expected features """ l = self.vl.clone() pks = [] for f in l.getFeatures(): pks.append(f['pk']) self.assertEqual(set(pks), {1, 2, 3, 4, 5}) def testGetFeaturesPolyFilterRectTests(self): """ Test fetching features from a polygon layer with filter rect""" try: if not self.poly_provider: return except: return extent = QgsRectangle(-73, 70, -63, 80) request = QgsFeatureRequest().setFilterRect(extent) features = [f['pk'] for f in self.poly_provider.getFeatures(request)] all_valid = (all(f.isValid() for f in self.source.getFeatures(request))) # Some providers may return the exact intersection matches (2, 3) even without the ExactIntersect flag, so we accept that too assert set(features) == set([2, 3]) or set(features) == set([1, 2, 3]), 'Got {} instead'.format(features) self.assertTrue(all_valid) # Test with exact intersection request = QgsFeatureRequest().setFilterRect(extent).setFlags(QgsFeatureRequest.ExactIntersect) features = [f['pk'] for f in self.poly_provider.getFeatures(request)] all_valid = (all(f.isValid() for f in self.source.getFeatures(request))) assert set(features) == set([2, 3]), 'Got {} instead'.format(features) self.assertTrue(all_valid) # test with an empty rectangle extent = QgsRectangle() features = [f['pk'] for f in self.source.getFeatures(QgsFeatureRequest().setFilterRect(extent))] assert set(features) == set([1, 2, 3, 4, 5]), 'Got {} instead'.format(features) def testMinValue(self): self.assertFalse(self.source.minimumValue(-1)) self.assertFalse(self.source.minimumValue(1000)) self.assertEqual(self.source.minimumValue(self.source.fields().lookupField('cnt')), -200) self.assertEqual(self.source.minimumValue(self.source.fields().lookupField('name')), 'Apple') if self.treat_datetime_as_string(): self.assertEqual(self.source.minimumValue(self.source.fields().lookupField('dt')), '2020-05-03 12:13:14') else: self.assertEqual(self.source.minimumValue(self.source.fields().lookupField('dt')), QDateTime(QDate(2020, 5, 3), QTime(12, 13, 14))) if self.treat_date_as_string(): self.assertEqual(self.source.minimumValue(self.source.fields().lookupField('date')), '2020-05-02') elif not self.treat_date_as_datetime(): self.assertEqual(self.source.minimumValue(self.source.fields().lookupField('date')), QDate(2020, 5, 2)) else: self.assertEqual(self.source.minimumValue(self.source.fields().lookupField('date')), QDateTime(2020, 5, 2, 0, 0, 0)) if not self.treat_time_as_string(): self.assertEqual(self.source.minimumValue(self.source.fields().lookupField('time')), QTime(12, 13, 1)) else: self.assertEqual(self.source.minimumValue(self.source.fields().lookupField('time')), '12:13:01') if self.source.supportsSubsetString(): subset = self.getSubsetString() self.source.setSubsetString(subset) min_value = self.source.minimumValue(self.source.fields().lookupField('cnt')) self.source.setSubsetString(None) self.assertEqual(min_value, 200) def testMaxValue(self): self.assertFalse(self.source.maximumValue(-1)) self.assertFalse(self.source.maximumValue(1000)) self.assertEqual(self.source.maximumValue(self.source.fields().lookupField('cnt')), 400) self.assertEqual(self.source.maximumValue(self.source.fields().lookupField('name')), 'Pear') if not self.treat_datetime_as_string(): self.assertEqual(self.source.maximumValue(self.source.fields().lookupField('dt')), QDateTime(QDate(2021, 5, 4), QTime(13, 13, 14))) else: self.assertEqual(self.source.maximumValue(self.source.fields().lookupField('dt')), '2021-05-04 13:13:14') if self.treat_date_as_string(): self.assertEqual(self.source.maximumValue(self.source.fields().lookupField('date')), '2021-05-04') elif not self.treat_date_as_datetime(): self.assertEqual(self.source.maximumValue(self.source.fields().lookupField('date')), QDate(2021, 5, 4)) else: self.assertEqual(self.source.maximumValue(self.source.fields().lookupField('date')), QDateTime(2021, 5, 4, 0, 0, 0)) if not self.treat_time_as_string(): self.assertEqual(self.source.maximumValue(self.source.fields().lookupField('time')), QTime(13, 13, 14)) else: self.assertEqual(self.source.maximumValue(self.source.fields().lookupField('time')), '13:13:14') if self.source.supportsSubsetString(): subset = self.getSubsetString2() self.source.setSubsetString(subset) max_value = self.source.maximumValue(self.source.fields().lookupField('cnt')) self.source.setSubsetString(None) self.assertEqual(max_value, 300) def testExtent(self): reference = QgsGeometry.fromRect( QgsRectangle(-71.123, 66.33, -65.32, 78.3)) provider_extent = self.source.extent() self.assertAlmostEqual(provider_extent.xMinimum(), -71.123, 3) self.assertAlmostEqual(provider_extent.xMaximum(), -65.32, 3) self.assertAlmostEqual(provider_extent.yMinimum(), 66.33, 3) self.assertAlmostEqual(provider_extent.yMaximum(), 78.3, 3) def testExtentSubsetString(self): if self.source.supportsSubsetString(): # with only one point subset = self.getSubsetString3() self.source.setSubsetString(subset) count = self.source.featureCount() provider_extent = self.source.extent() self.source.setSubsetString(None) self.assertEqual(count, 1) self.assertAlmostEqual(provider_extent.xMinimum(), -68.2, 3) self.assertAlmostEqual(provider_extent.xMaximum(), -68.2, 3) self.assertAlmostEqual(provider_extent.yMinimum(), 70.8, 3) self.assertAlmostEqual(provider_extent.yMaximum(), 70.8, 3) # with no points subset = self.getSubsetStringNoMatching() self.source.setSubsetString(subset) count = self.source.featureCount() provider_extent = self.source.extent() self.source.setSubsetString(None) self.assertEqual(count, 0) self.assertTrue(provider_extent.isNull()) self.assertEqual(self.source.featureCount(), 5) def testUnique(self): self.assertEqual(self.source.uniqueValues(-1), set()) self.assertEqual(self.source.uniqueValues(1000), set()) self.assertEqual(set(self.source.uniqueValues(self.source.fields().lookupField('cnt'))), set([-200, 100, 200, 300, 400])) assert set(['Apple', 'Honey', 'Orange', 'Pear', NULL]) == set( self.source.uniqueValues(self.source.fields().lookupField('name'))), 'Got {}'.format( set(self.source.uniqueValues(self.source.fields().lookupField('name')))) if self.treat_datetime_as_string(): self.assertEqual(set(self.source.uniqueValues(self.source.fields().lookupField('dt'))), set(['2021-05-04 13:13:14', '2020-05-04 12:14:14', '2020-05-04 12:13:14', '2020-05-03 12:13:14', NULL])) else: self.assertEqual(set(self.source.uniqueValues(self.source.fields().lookupField('dt'))), set([QDateTime(2021, 5, 4, 13, 13, 14), QDateTime(2020, 5, 4, 12, 14, 14), QDateTime(2020, 5, 4, 12, 13, 14), QDateTime(2020, 5, 3, 12, 13, 14), NULL])) if self.treat_date_as_string(): self.assertEqual(set(self.source.uniqueValues(self.source.fields().lookupField('date'))), set(['2020-05-03', '2020-05-04', '2021-05-04', '2020-05-02', NULL])) elif self.treat_date_as_datetime(): self.assertEqual(set(self.source.uniqueValues(self.source.fields().lookupField('date'))), set([QDateTime(2020, 5, 3, 0, 0, 0), QDateTime(2020, 5, 4, 0, 0, 0), QDateTime(2021, 5, 4, 0, 0, 0), QDateTime(2020, 5, 2, 0, 0, 0), NULL])) else: self.assertEqual(set(self.source.uniqueValues(self.source.fields().lookupField('date'))), set([QDate(2020, 5, 3), QDate(2020, 5, 4), QDate(2021, 5, 4), QDate(2020, 5, 2), NULL])) if self.treat_time_as_string(): self.assertEqual(set(self.source.uniqueValues(self.source.fields().lookupField('time'))), set(['12:14:14', '13:13:14', '12:13:14', '12:13:01', NULL])) else: self.assertEqual(set(self.source.uniqueValues(self.source.fields().lookupField('time'))), set([QTime(12, 14, 14), QTime(13, 13, 14), QTime(12, 13, 14), QTime(12, 13, 1), NULL])) if self.source.supportsSubsetString(): subset = self.getSubsetString2() self.source.setSubsetString(subset) values = self.source.uniqueValues(self.source.fields().lookupField('cnt')) self.source.setSubsetString(None) self.assertEqual(set(values), set([200, 300])) def testUniqueStringsMatching(self): self.assertEqual(self.source.uniqueStringsMatching(-1, 'a'), []) self.assertEqual(self.source.uniqueStringsMatching(100001, 'a'), []) field_index = self.source.fields().lookupField('name') self.assertEqual(set(self.source.uniqueStringsMatching(field_index, 'a')), set(['Pear', 'Orange', 'Apple'])) # test case insensitive self.assertEqual(set(self.source.uniqueStringsMatching(field_index, 'A')), set(['Pear', 'Orange', 'Apple'])) # test string ending in substring self.assertEqual(set(self.source.uniqueStringsMatching(field_index, 'ney')), set(['Honey'])) # test limit result = set(self.source.uniqueStringsMatching(field_index, 'a', 2)) self.assertEqual(len(result), 2) self.assertTrue(result.issubset(set(['Pear', 'Orange', 'Apple']))) assert set([u'Apple', u'Honey', u'Orange', u'Pear', NULL]) == set( self.source.uniqueValues(field_index)), 'Got {}'.format(set(self.source.uniqueValues(field_index))) if self.source.supportsSubsetString(): subset = self.getSubsetString2() self.source.setSubsetString(subset) values = self.source.uniqueStringsMatching(field_index, 'a') self.source.setSubsetString(None) self.assertEqual(set(values), set(['Pear', 'Apple'])) def testFeatureCount(self): self.assertEqual(self.source.featureCount(), 5) if self.source.supportsSubsetString(): # Add a subset string and test feature count subset = self.getSubsetString() self.source.setSubsetString(subset) count = self.source.featureCount() self.source.setSubsetString(None) self.assertEqual(count, 3) self.assertEqual(self.source.featureCount(), 5) # one matching records subset = self.getSubsetString3() self.source.setSubsetString(subset) count = self.source.featureCount() self.source.setSubsetString(None) self.assertEqual(count, 1) self.assertEqual(self.source.featureCount(), 5) # no matching records subset = self.getSubsetStringNoMatching() self.source.setSubsetString(subset) count = self.source.featureCount() self.source.setSubsetString(None) self.assertEqual(count, 0) self.assertEqual(self.source.featureCount(), 5) def testEmpty(self): self.assertFalse(self.source.empty()) self.assertEqual(self.source.hasFeatures(), QgsFeatureSource.FeaturesAvailable) if self.source.supportsSubsetString(): try: backup = self.source.subsetString() # Add a subset string and test feature count subset = self.getSubsetString() self.source.setSubsetString(subset) self.assertFalse(self.source.empty()) self.assertEqual(self.source.hasFeatures(), QgsFeatureSource.FeaturesAvailable) subsetNoMatching = self.getSubsetStringNoMatching() self.source.setSubsetString(subsetNoMatching) self.assertTrue(self.source.empty()) self.assertEqual(self.source.hasFeatures(), QgsFeatureSource.NoFeaturesAvailable) finally: self.source.setSubsetString(None) self.assertFalse(self.source.empty()) # If the provider supports tests on editable layers if getattr(self, 'getEditableLayer', None): l = self.getEditableLayer() self.assertTrue(l.isValid()) self.assertEqual(l.hasFeatures(), QgsFeatureSource.FeaturesAvailable) # Test that deleting some features in the edit buffer does not # return empty, we accept FeaturesAvailable as well as # MaybeAvailable l.startEditing() l.deleteFeature(next(l.getFeatures()).id()) self.assertNotEqual(l.hasFeatures(), QgsFeatureSource.NoFeaturesAvailable) l.rollBack() # Call truncate(), we need an empty set now l.dataProvider().truncate() self.assertTrue(l.dataProvider().empty()) self.assertEqual(l.dataProvider().hasFeatures(), QgsFeatureSource.NoFeaturesAvailable) def testGetFeaturesNoGeometry(self): """ Test that no geometry is present when fetching features without geometry""" for f in self.source.getFeatures(QgsFeatureRequest().setFlags(QgsFeatureRequest.NoGeometry)): self.assertFalse(f.hasGeometry(), 'Expected no geometry, got one') self.assertTrue(f.isValid()) def testAddFeature(self): if not getattr(self, 'getEditableLayer', None): return l = self.getEditableLayer() self.assertTrue(l.isValid()) f1 = QgsFeature() f1.setAttributes([6, -220, NULL, 'String', '15', '2019-01-02 03:04:05' if self.treat_datetime_as_string() else QDateTime(2019, 1, 2, 3, 4, 5), '2019-01-02' if self.treat_date_as_string() else QDateTime(2019, 1, 2, 0, 0, 0) if self.treat_date_as_datetime() else QDate( 2019, 1, 2), '03:04:05' if self.treat_time_as_string() else QTime(3, 4, 5)]) f1.setGeometry(QgsGeometry.fromWkt('Point (-72.345 71.987)')) f2 = QgsFeature() f2.setAttributes([7, 330, 'Coconut', 'CoCoNut', '13', '2018-05-06 07:08:09' if self.treat_datetime_as_string() else QDateTime(2018, 5, 6, 7, 8, 9), '2018-05-06' if self.treat_date_as_string() else QDateTime(2018, 5, 6, 0, 0, 0) if self.treat_date_as_datetime() else QDate( 2018, 5, 6), '07:08:09' if self.treat_time_as_string() else QTime(7, 8, 9)]) if l.dataProvider().capabilities() & QgsVectorDataProvider.AddFeatures: # expect success result, added = l.dataProvider().addFeatures([f1, f2]) self.assertTrue(result, 'Provider reported AddFeatures capability, but returned False to addFeatures') f1.setId(added[0].id()) f2.setId(added[1].id()) # check result self.testGetFeatures(l.dataProvider(), [f1, f2]) # add empty list, should return true for consistency self.assertTrue(l.dataProvider().addFeatures([])) # ensure that returned features have been given the correct id f = next(l.getFeatures(QgsFeatureRequest().setFilterFid(added[0].id()))) self.assertTrue(f.isValid()) self.assertEqual(f['cnt'], -220) f = next(l.getFeatures(QgsFeatureRequest().setFilterFid(added[1].id()))) self.assertTrue(f.isValid()) self.assertEqual(f['cnt'], 330) else: # expect fail self.assertFalse(l.dataProvider().addFeatures([f1, f2]), 'Provider reported no AddFeatures capability, but returned true to addFeatures') def testAddFeatureFastInsert(self): if not getattr(self, 'getEditableLayer', None): return l = self.getEditableLayer() self.assertTrue(l.isValid()) f1 = QgsFeature() f1.setAttributes( [6, -220, NULL, 'String', '15', '2019-01-02 03:04:05' if self.treat_datetime_as_string() else QDateTime(2019, 1, 2, 3, 4, 5), '2019-01-02' if self.treat_date_as_string() else QDateTime(2019, 1, 2, 0, 0, 0) if self.treat_date_as_datetime() else QDate(2019, 1, 2), '03:04:05' if self.treat_time_as_string() else QTime(3, 4, 5)]) f1.setGeometry(QgsGeometry.fromWkt('Point (-72.345 71.987)')) f2 = QgsFeature() f2.setAttributes([7, 330, 'Coconut', 'CoCoNut', '13', '2019-01-02 03:04:05' if self.treat_datetime_as_string() else QDateTime(2019, 1, 2, 3, 4, 5), '2019-01-02' if self.treat_date_as_string() else QDateTime(2019, 1, 2, 0, 0, 0) if self.treat_date_as_datetime() else QDate(2019, 1, 2), '03:04:05' if self.treat_time_as_string() else QTime(3, 4, 5)]) if l.dataProvider().capabilities() & QgsVectorDataProvider.AddFeatures: # expect success result, added = l.dataProvider().addFeatures([f1, f2], QgsFeatureSink.FastInsert) self.assertTrue(result, 'Provider reported AddFeatures capability, but returned False to addFeatures') self.assertEqual(l.dataProvider().featureCount(), 7) def testAddFeatureMissingAttributes(self): if not getattr(self, 'getEditableLayer', None): return l = self.getEditableLayer() self.assertTrue(l.isValid()) if not l.dataProvider().capabilities() & QgsVectorDataProvider.AddFeatures: return # test that adding features with missing attributes pads out these # attributes with NULL values to the correct length f1 = QgsFeature() f1.setAttributes([6, -220, NULL, 'String']) f2 = QgsFeature() f2.setAttributes([7, 330]) result, added = l.dataProvider().addFeatures([f1, f2]) self.assertTrue(result, 'Provider returned False to addFeatures with missing attributes. Providers should accept these features but add NULL attributes to the end of the existing attributes to the required field length.') f1.setId(added[0].id()) f2.setId(added[1].id()) # check result - feature attributes MUST be padded out to required number of fields f1.setAttributes([6, -220, NULL, 'String', 'NULL', NULL, NULL, NULL]) f2.setAttributes([7, 330, NULL, NULL, 'NULL', NULL, NULL, NULL]) self.testGetFeatures(l.dataProvider(), [f1, f2]) def testAddFeatureExtraAttributes(self): if not getattr(self, 'getEditableLayer', None): return l = self.getEditableLayer() self.assertTrue(l.isValid()) if not l.dataProvider().capabilities() & QgsVectorDataProvider.AddFeatures: return # test that adding features with too many attributes drops these attributes # we be more tricky and also add a valid feature to stress test the provider f1 = QgsFeature() f1.setAttributes([6, -220, NULL, 'String', '15', '2019-01-02 03:04:05' if self.treat_datetime_as_string() else QDateTime(2019, 1, 2, 3, 4, 5), '2019-01-02' if self.treat_date_as_string() else QDateTime(2019, 1, 2, 0, 0, 0) if self.treat_date_as_datetime() else QDate(2019, 1, 2), '03:04:05' if self.treat_time_as_string() else QTime(3, 4, 5)]) f2 = QgsFeature() f2.setAttributes([7, -230, NULL, 'String', '15', '2019-01-02 03:04:05' if self.treat_datetime_as_string() else QDateTime(2019, 1, 2, 3, 4, 5), '2019-01-02' if self.treat_date_as_string() else QDateTime(2019, 1, 2, 0, 0, 0) if self.treat_date_as_datetime() else QDate(2019, 1, 2), '03:04:05' if self.treat_time_as_string() else QTime(3, 4, 5), 15, 16, 17]) result, added = l.dataProvider().addFeatures([f1, f2]) self.assertTrue(result, 'Provider returned False to addFeatures with extra attributes. Providers should accept these features but truncate the extra attributes.') # make sure feature was added correctly added = [f for f in l.dataProvider().getFeatures() if f['pk'] == 7][0] self.assertEqual(added.attributes(), [7, -230, NULL, 'String', '15', '2019-01-02 03:04:05' if self.treat_datetime_as_string() else QDateTime( 2019, 1, 2, 3, 4, 5), '2019-01-02' if self.treat_date_as_string() else QDateTime(2019, 1, 2, 0, 0, 0) if self.treat_date_as_datetime() else QDate(2019, 1, 2), '03:04:05' if self.treat_time_as_string() else QTime(3, 4, 5)]) def testAddFeatureWrongGeomType(self): if not getattr(self, 'getEditableLayer', None): return l = self.getEditableLayer() self.assertTrue(l.isValid()) if not l.dataProvider().capabilities() & QgsVectorDataProvider.AddFeatures: return # test that adding features with incorrect geometry type rejects the feature # we be more tricky and also add a valid feature to stress test the provider f1 = QgsFeature() f1.setGeometry(QgsGeometry.fromWkt('LineString (-72.345 71.987, -80 80)')) f1.setAttributes([7]) f2 = QgsFeature() f2.setGeometry(QgsGeometry.fromWkt('Point (-72.345 71.987)')) f2.setAttributes([8]) result, added = l.dataProvider().addFeatures([f1, f2]) self.assertFalse(result, 'Provider returned True to addFeatures with incorrect geometry type. Providers should reject these features.') # make sure feature was not added added = [f for f in l.dataProvider().getFeatures() if f['pk'] == 7] self.assertFalse(added) # yet providers MUST always accept null geometries f3 = QgsFeature() f3.setAttributes([9]) result, added = l.dataProvider().addFeatures([f3]) self.assertTrue(result, 'Provider returned False to addFeatures with null geometry. Providers should always accept these features.') # make sure feature was added correctly added = [f for f in l.dataProvider().getFeatures() if f['pk'] == 9][0] self.assertFalse(added.hasGeometry()) def testAddFeaturesUpdateExtent(self): if not getattr(self, 'getEditableLayer', None): return l = self.getEditableLayer() self.assertTrue(l.isValid()) self.assertEqual(l.dataProvider().extent().toString(1), '-71.1,66.3 : -65.3,78.3') if l.dataProvider().capabilities() & QgsVectorDataProvider.AddFeatures: f1 = QgsFeature() f1.setAttributes([6, -220, NULL, 'String', '15']) f1.setGeometry(QgsGeometry.fromWkt('Point (-50 90)')) l.dataProvider().addFeatures([f1]) l.dataProvider().updateExtents() self.assertEqual(l.dataProvider().extent().toString(1), '-71.1,66.3 : -50.0,90.0') def testDeleteFeatures(self): if not getattr(self, 'getEditableLayer', None): return l = self.getEditableLayer() self.assertTrue(l.isValid()) # find 2 features to delete features = [f for f in l.dataProvider().getFeatures()] to_delete = [f.id() for f in features if f.attributes()[0] in [1, 3]] if l.dataProvider().capabilities() & QgsVectorDataProvider.DeleteFeatures: # expect success result = l.dataProvider().deleteFeatures(to_delete) self.assertTrue(result, 'Provider reported DeleteFeatures capability, but returned False to deleteFeatures') # check result self.testGetFeatures(l.dataProvider(), skip_features=[1, 3]) # delete empty list, should return true for consistency self.assertTrue(l.dataProvider().deleteFeatures([])) else: # expect fail self.assertFalse(l.dataProvider().deleteFeatures(to_delete), 'Provider reported no DeleteFeatures capability, but returned true to deleteFeatures') def testDeleteFeaturesUpdateExtent(self): if not getattr(self, 'getEditableLayer', None): return l = self.getEditableLayer() self.assertTrue(l.isValid()) self.assertEqual(l.dataProvider().extent().toString(1), '-71.1,66.3 : -65.3,78.3') to_delete = [f.id() for f in l.dataProvider().getFeatures() if f.attributes()[0] in [5, 4]] if l.dataProvider().capabilities() & QgsVectorDataProvider.DeleteFeatures: l.dataProvider().deleteFeatures(to_delete) l.dataProvider().updateExtents() self.assertEqual(l.dataProvider().extent().toString(1), '-70.3,66.3 : -68.2,70.8') def testTruncate(self): if not getattr(self, 'getEditableLayer', None): return l = self.getEditableLayer() self.assertTrue(l.isValid()) features = [f['pk'] for f in l.dataProvider().getFeatures()] if l.dataProvider().capabilities() & QgsVectorDataProvider.FastTruncate or l.dataProvider().capabilities() & QgsVectorDataProvider.DeleteFeatures: # expect success result = l.dataProvider().truncate() self.assertTrue(result, 'Provider reported FastTruncate or DeleteFeatures capability, but returned False to truncate()') # check result features = [f['pk'] for f in l.dataProvider().getFeatures()] self.assertEqual(len(features), 0) else: # expect fail self.assertFalse(l.dataProvider().truncate(), 'Provider reported no FastTruncate or DeleteFeatures capability, but returned true to truncate()') def testChangeAttributes(self): if not getattr(self, 'getEditableLayer', None): return l = self.getEditableLayer() self.assertTrue(l.isValid()) # find 2 features to change features = [f for f in l.dataProvider().getFeatures()] # need to keep order here to_change = [f for f in features if f.attributes()[0] == 1] to_change.extend([f for f in features if f.attributes()[0] == 3]) # changes by feature id, for changeAttributeValues call changes = {to_change[0].id(): {1: 501, 3: 'new string'}, to_change[1].id(): {1: 502, 4: 'NEW'}} # changes by pk, for testing after retrieving changed features new_attr_map = {1: {1: 501, 3: 'new string'}, 3: {1: 502, 4: 'NEW'}} if l.dataProvider().capabilities() & QgsVectorDataProvider.ChangeAttributeValues: # expect success result = l.dataProvider().changeAttributeValues(changes) self.assertTrue(result, 'Provider reported ChangeAttributeValues capability, but returned False to changeAttributeValues') # check result self.testGetFeatures(l.dataProvider(), changed_attributes=new_attr_map) # change empty list, should return true for consistency self.assertTrue(l.dataProvider().changeAttributeValues({})) else: # expect fail self.assertFalse(l.dataProvider().changeAttributeValues(changes), 'Provider reported no ChangeAttributeValues capability, but returned true to changeAttributeValues') def testChangeGeometries(self): if not getattr(self, 'getEditableLayer', None): return l = self.getEditableLayer() self.assertTrue(l.isValid()) # find 2 features to change features = [f for f in l.dataProvider().getFeatures()] to_change = [f for f in features if f.attributes()[0] == 1] to_change.extend([f for f in features if f.attributes()[0] == 3]) # changes by feature id, for changeGeometryValues call changes = {to_change[0].id(): QgsGeometry.fromWkt('Point (10 20)'), to_change[1].id(): QgsGeometry()} # changes by pk, for testing after retrieving changed features new_geom_map = {1: QgsGeometry.fromWkt('Point ( 10 20 )'), 3: QgsGeometry()} if l.dataProvider().capabilities() & QgsVectorDataProvider.ChangeGeometries: # expect success result = l.dataProvider().changeGeometryValues(changes) self.assertTrue(result, 'Provider reported ChangeGeometries capability, but returned False to changeGeometryValues') # check result self.testGetFeatures(l.dataProvider(), changed_geometries=new_geom_map) # change empty list, should return true for consistency self.assertTrue(l.dataProvider().changeGeometryValues({})) else: # expect fail self.assertFalse(l.dataProvider().changeGeometryValues(changes), 'Provider reported no ChangeGeometries capability, but returned true to changeGeometryValues') def testChangeFeatures(self): if not getattr(self, 'getEditableLayer', None): return l = self.getEditableLayer() self.assertTrue(l.isValid()) features = [f for f in l.dataProvider().getFeatures()] # find 2 features to change attributes for features = [f for f in l.dataProvider().getFeatures()] # need to keep order here to_change = [f for f in features if f.attributes()[0] == 1] to_change.extend([f for f in features if f.attributes()[0] == 2]) # changes by feature id, for changeAttributeValues call attribute_changes = {to_change[0].id(): {1: 501, 3: 'new string'}, to_change[1].id(): {1: 502, 4: 'NEW'}} # changes by pk, for testing after retrieving changed features new_attr_map = {1: {1: 501, 3: 'new string'}, 2: {1: 502, 4: 'NEW'}} # find 2 features to change geometries for to_change = [f for f in features if f.attributes()[0] == 1] to_change.extend([f for f in features if f.attributes()[0] == 3]) # changes by feature id, for changeGeometryValues call geometry_changes = {to_change[0].id(): QgsGeometry.fromWkt('Point (10 20)'), to_change[1].id(): QgsGeometry()} # changes by pk, for testing after retrieving changed features new_geom_map = {1: QgsGeometry.fromWkt('Point ( 10 20 )'), 3: QgsGeometry()} if l.dataProvider().capabilities() & QgsVectorDataProvider.ChangeGeometries and l.dataProvider().capabilities() & QgsVectorDataProvider.ChangeAttributeValues: # expect success result = l.dataProvider().changeFeatures(attribute_changes, geometry_changes) self.assertTrue(result, 'Provider reported ChangeGeometries and ChangeAttributeValues capability, but returned False to changeFeatures') # check result self.testGetFeatures(l.dataProvider(), changed_attributes=new_attr_map, changed_geometries=new_geom_map) # change empty list, should return true for consistency self.assertTrue(l.dataProvider().changeFeatures({}, {})) elif not l.dataProvider().capabilities() & QgsVectorDataProvider.ChangeGeometries: # expect fail self.assertFalse(l.dataProvider().changeFeatures(attribute_changes, geometry_changes), 'Provider reported no ChangeGeometries capability, but returned true to changeFeatures') elif not l.dataProvider().capabilities() & QgsVectorDataProvider.ChangeAttributeValues: # expect fail self.assertFalse(l.dataProvider().changeFeatures(attribute_changes, geometry_changes), 'Provider reported no ChangeAttributeValues capability, but returned true to changeFeatures') def testMinMaxAfterChanges(self): """ Tests retrieving field min and max value after making changes to the provider's features """ if not getattr(self, 'getEditableLayer', None): return vl = self.getEditableLayer() self.assertTrue(vl.isValid()) self.assertEqual(vl.dataProvider().minimumValue(0), 1) self.assertEqual(vl.dataProvider().minimumValue(1), -200) self.assertEqual(vl.dataProvider().maximumValue(0), 5) self.assertEqual(vl.dataProvider().maximumValue(1), 400) # add feature f6 = QgsFeature() f6.setAttributes([15, 1400]) res, [f6] = vl.dataProvider().addFeatures([f6]) self.assertTrue(res) self.assertEqual(vl.dataProvider().minimumValue(0), 1) self.assertEqual(vl.dataProvider().minimumValue(1), -200) self.assertEqual(vl.dataProvider().maximumValue(0), 15) self.assertEqual(vl.dataProvider().maximumValue(1), 1400) f7 = QgsFeature() f7.setAttributes([0, -1400]) res, [f7] = vl.dataProvider().addFeatures([f7]) self.assertTrue(res) self.assertEqual(vl.dataProvider().minimumValue(0), 0) self.assertEqual(vl.dataProvider().minimumValue(1), -1400) self.assertEqual(vl.dataProvider().maximumValue(0), 15) self.assertEqual(vl.dataProvider().maximumValue(1), 1400) # change attribute values self.assertTrue(vl.dataProvider().changeAttributeValues({f6.id(): {1: 150}, f7.id(): {1: -100}})) self.assertEqual(vl.dataProvider().minimumValue(1), -200) self.assertEqual(vl.dataProvider().maximumValue(1), 400) # delete features f1 = [f for f in vl.getFeatures() if f['pk'] == 5][0] f3 = [f for f in vl.getFeatures() if f['pk'] == 3][0] self.assertTrue(vl.dataProvider().deleteFeatures([f6.id(), f7.id()])) self.assertEqual(vl.dataProvider().minimumValue(0), 1) self.assertEqual(vl.dataProvider().minimumValue(1), -200) self.assertEqual(vl.dataProvider().maximumValue(0), 5) self.assertEqual(vl.dataProvider().maximumValue(1), 400) if vl.dataProvider().capabilities() & QgsVectorDataProvider.DeleteAttributes: # delete attributes if vl.dataProvider().deleteAttributes([0]): # may not be possible, e.g. if it's a primary key self.assertEqual(vl.dataProvider().minimumValue(0), -200) self.assertEqual(vl.dataProvider().maximumValue(0), 400) def testStringComparison(self): """ Test if string comparisons with numbers are cast by the expression compiler (or work fine without doing anything :P) """ for expression in ( '5 LIKE \'5\'', '5 ILIKE \'5\'', '15 NOT LIKE \'5\'', '15 NOT ILIKE \'5\'', '5 ~ \'5\''): iterator = self.source.getFeatures(QgsFeatureRequest().setFilterExpression('5 LIKE \'5\'')) count = len([f for f in iterator]) self.assertEqual(count, 5) self.assertFalse(iterator.compileFailed()) if self.enableCompiler(): iterator = self.source.getFeatures(QgsFeatureRequest().setFilterExpression('5 LIKE \'5\'')) self.assertEqual(count, 5) self.assertFalse(iterator.compileFailed()) self.disableCompiler() def testConcurrency(self): """ The connection pool has a maximum of 4 connections defined (+2 spare connections) Make sure that if we exhaust those 4 connections and force another connection it is actually using the spare connections and does not freeze. This situation normally happens when (at least) 4 rendering threads are active in parallel and one requires an expression to be evaluated. """ # Acquire the maximum amount of concurrent connections iterators = list() for i in range(QgsApplication.instance().maxConcurrentConnectionsPerPool()): iterators.append(self.vl.getFeatures()) # Run an expression that will also do a request and should use a spare # connection. It just should not deadlock here. feat = next(iterators[0]) context = QgsExpressionContext() context.setFeature(feat) exp = QgsExpression('get_feature(\'{layer}\', \'pk\', 5)'.format(layer=self.vl.id())) exp.evaluate(context) def testEmptySubsetOfAttributesWithSubsetString(self): if self.source.supportsSubsetString(): try: # Add a subset string subset = self.getSubsetString() self.source.setSubsetString(subset) # First test, in a regular way features = [f for f in self.source.getFeatures()] count = len(features) self.assertEqual(count, 3) has_geometry = features[0].hasGeometry() # Ask for no attributes request = QgsFeatureRequest().setSubsetOfAttributes([]) # Make sure we still retrieve features ! features = [f for f in self.source.getFeatures(request)] count = len(features) self.assertEqual(count, 3) # Check that we still get a geometry if we add one before self.assertEqual(features[0].hasGeometry(), has_geometry) finally: self.source.setSubsetString(None)
gpl-2.0
-9,024,574,573,250,967,000
47.780443
221
0.604429
false
Autostew/autostew
autostew_back/event_handlers/collision.py
1
4077
from autostew_back.event_handlers.base_event_handler import BaseEventHandler from autostew_web_enums.models import EventType, ParticipantState from autostew_web_session.models.event import Event from autostew_web_session.models.participant import Participant warn_at = 0.7 environment_crash_multiplier = 0.1 class HandleCollision(BaseEventHandler): @classmethod def can_consume(cls, server, event: Event): return ( event.type.name == EventType.impact and event.participant is not None ) @classmethod def consume(cls, server, event: Event): magnitude = event.magnitude if event.human_to_human else int(event.magnitude * environment_crash_multiplier) if event.ai_involved: return if event.participant.state.name != ParticipantState.racing: return if event.other_participant and event.other_participant.state.name != ParticipantState.racing: return if event.participant.is_player: cls.add_crash_points(magnitude, event.participant, server, event.other_participant) if event.other_participant and event.other_participant.is_player: cls.add_crash_points(magnitude, event.other_participant, server, event.participant) @classmethod def add_crash_points(cls, crash_points_increase: int, participant: Participant, server, opponent: Participant=None): if opponent: crash_points_increase *= cls.get_interclass_multiplier(participant, opponent) crash_points_increase = round(crash_points_increase) participant.accumulated_crash_points += crash_points_increase class_changed = participant.member.steam_user.add_crash_points(crash_points_increase) cls.crash_notification(crash_points_increase, participant, server, opponent, class_changed) if participant.member.steam_user.over_class_kick_impact_threshold(crash_points_increase): participant.kick(server, server.back_crash_points_limit_ban_seconds) if server.back_crash_points_limit and participant.accumulated_crash_points > server.back_crash_points_limit: participant.kick(server, server.back_crash_points_limit_ban_seconds) elif server.back_crash_points_limit and participant.accumulated_crash_points > warn_at * server.back_crash_points_limit: cls.crash_limit_warning(participant, server) @classmethod def get_interclass_multiplier(cls, participant: Participant, opponent: Participant): if ( opponent.member.steam_user.safety_class and opponent.member.steam_user.safety_class.impact_weight and participant.member.steam_user.safety_class and participant.member.steam_user.safety_class.impact_weight and participant.member.steam_user.safety_class.impact_weight < opponent.member.steam_user.safety_class.impact_weight ): return participant.member.steam_user.safety_class.impact_weight / opponent.member.steam_user.safety_class.impact_weight return 1 @classmethod def crash_notification(cls, crash_points_increase, participant, server, opponent: Participant=None, class_changed=False): participant.send_chat("", server) if opponent: participant.send_chat("CONTACT with {}".format(opponent.name), server) participant.send_chat("CONTACT logged for {points} points.".format(points=crash_points_increase), server) if class_changed: participant.send_chat("Your SAFETY CLASS is now {}".format(participant.member.steam_user.safety_class), server) @classmethod def crash_limit_warning(cls, participant, server): participant.send_chat( "CONTACT: You have collected {points} crash points.".format(points=participant.accumulated_crash_points), server ) participant.send_chat( "CONTACT: Disqualification at {max_crash_points} points.".format(max_crash_points=server.back_crash_points_limit), server )
agpl-3.0
1,326,310,007,162,899,000
49.333333
131
0.704194
false
47lining/nucleator-core
lib/nucleator/cli/cli.py
1
5116
# Copyright 2015 47Lining LLC. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nucleator.cli import properties from nucleator.cli import utils import sys, os, argparse class Cli(object): """ An object and helper methods to represent an installation of Nucleator """ def __init__(self): self.commands = {} self.command_paths = [] # Setup the root argument parser self.parser = argparse.ArgumentParser() self.parser.add_argument("-v", "--verbosity", required=False, action="count", help="Increase output verbosity") self.parser.add_argument("--debug-credentials", required=False, action='store_true', help="Show credential output for debugging purposes") self.parser.add_argument("--no-debug-credentials", required=False, action='store_false', help="Dont show credential output") self.parser.add_argument("-p", "--preview", required=False, action="store_true", help="Display information about what a command will do, without actually executing the command.\n" + "The --preview flag should come before any subcommands on the command line.") self.parser.add_argument("-d", "--debug", required=False, action="store_true", help="Turn on debugging mode") self.subparsers = self.parser.add_subparsers(dest="command") def core_path(self): """path to to core commands installed with Nucleator""" return properties.core_path() def contrib_path(self): """path to to contrib commands, added by user via Nucleator's update command""" return properties.contrib_path() def import_commands(self, path): # too early to use self.parse() debug = "--debug" in sys.argv or "-d" in sys.argv if debug: print ">>>IMPORT COMMANDS PATH: "+path if not os.path.isdir(path): if debug: print ">>>IMPORT PATH NOT A DIR: "+path # skip if path to import doesn't exist return sys.path.append(path) # iterate through nucleator command definitions found as immediate subdirs of path for command_dir in next(os.walk(path))[1]: self.command_paths.append(os.path.join(path,command_dir)) if debug: print ">>> IMPORT COMMAND_DIR: "+command_dir candidate_location = os.path.join(path, command_dir, "commands") if debug: print ">>> IMPORT CANDIDATE LOCATION: "+candidate_location import_candidates = os.listdir(candidate_location) if os.path.isdir(candidate_location) else [] # iterate through filtered import candidates for name in [n for n in import_candidates if n.endswith('.py') and n != "__init__.py"]: if debug: print ">>> IMPORT CANDIDATE NAME: "+name name = name.replace('.py', '') if debug: print ">>> IMPORT "+"{0}.commands.{1}".format(command_dir, name) module = __import__( "{0}.commands.{1}".format(command_dir, name), fromlist=[''] ) command = getattr(module, "command", None) if command is None: utils.write_err("Invalid command implementation (%s)" % name) command.parser_init(self.subparsers) self.commands[command.name] = command def parse(self): self.opts = vars(self.parser.parse_args()) self.opts["verbose"] = self.opts.get("verbosity", 0) > 0 self.opts["cli"] = self return self.opts def current_command_name(self): return self.opts.get("command") def get_nucleator_command(self, command_name): return self.commands[command_name] def current_nucleator_command(self): return self.get_nucleator_command(self.current_command_name()) def execute(self): self.current_nucleator_command().execute(**self.opts) def dump(self): utils.write ("{0}{1}".format(self.current_command_name(), os.linesep)) import json utils.write ( "{0}{1}".format( json.dumps( {k:v for (k,v) in self.opts.iteritems() if k != "cli"}, self.opts, sort_keys=True, indent=4, separators=(',', ': ') ), os.linesep ) )
apache-2.0
9,091,823,914,105,722,000
40.934426
146
0.585418
false
robcarver17/pysystemtrade
sysobjects/production/roll_state.py
1
2906
from enum import Enum from syscore.objects import named_object RollState = Enum("RollState",( "No_Roll", "Passive", "Force", "Force_Outright", "Roll_Adjusted")) default_state = RollState.No_Roll roll_adj_state = RollState.Roll_Adjusted roll_explanations = { RollState.No_Roll:"No rolling happens. Will only trade priced contract.", RollState.Passive:"Allow the contract to roll naturally (closing trades in priced contract, opening trades in forward contract)", RollState.Force:"Force the contract to roll ASAP using spread order", RollState.Force_Outright:"Force the contract to roll ASAP using two outright orders", RollState.Roll_Adjusted:"Roll adjusted prices from existing priced to new forward contract (after adjusted prices have been changed, will automatically move state to no roll"} def is_forced_roll_state(roll_state: RollState): if roll_state == RollState.Force or roll_state == RollState.Force_Outright: return True else: return False def is_type_of_active_rolling_roll_state(roll_state: RollState): if is_forced_roll_state(roll_state) or roll_state == RollState.Roll_Adjusted: return True else: return False def explain_roll_state_str(roll_state: RollState): return roll_explanations[RollState[roll_state]] def name_of_roll_state(roll_state: RollState): return roll_state.name def complete_roll_state(roll_state: RollState, priced_position): if priced_position == 0: flag_position_in_priced = 0 else: flag_position_in_priced = 1 return "%s%s" % (name_of_roll_state(roll_state), flag_position_in_priced) def allowable_roll_state_from_current_and_position( current_roll_state: RollState, priced_position:int): # Transition matrix: First option is recommended # A 0 suffix indicates we have no position in the priced contract # A 1 suffix indicates we do have a position in the priced contract allowed_transition = dict( No_Roll0=["Roll_Adjusted", "Passive", "No_Roll"], No_Roll1=["Passive", "Force", "Force_Outright", "No_Roll"], Passive0=["Roll_Adjusted", "Passive", "No_Roll"], Passive1=["Force", "Force_Outright", "Passive", "No_Roll"], Force0=["Roll_Adjusted", "Passive"], Force1=["Force", "Force_Outright", "Passive", "No_Roll"], Force_Outright0=["Roll_Adjusted", "Passive"], Force_Outright1=["Force", "Force_Outright", "Passive", "No_Roll"], Roll_Adjusted0=["No_Roll"], Roll_Adjusted1=["Roll_Adjusted"], ) status_plus_position = complete_roll_state( current_roll_state, priced_position) try: allowable_states = allowed_transition[status_plus_position] except KeyError: raise Exception( "State plus position %s not recognised" % status_plus_position) return allowable_states
gpl-3.0
1,969,242,482,449,701,400
36.25641
179
0.681693
false
Bajoo/client-pc
bajoo/common/periodic_task.py
1
5677
# -*- coding: utf-8 -*- import logging from threading import Timer, Lock from ..promise import Deferred, CancelledError _logger = logging.getLogger(__name__) class PeriodicTask(object): """Generic Thread-based service, executing a task at regular interval. The task is executed first right after the call to `start()`, in a new thread. After each execution, the next execution is scheduled after the specified delay. The delay doesn't include the task's duration. Attributes: delay (int): delay between two executions, in seconds. When modified, the new value will be used only after the next execution. context (dict): dict that can be used as a scope shared between the multiple executions and/or the caller. args (tuple): arguments passed to the task. kwargs (dict): keyword arguments passed to the task. Note: context, args and kwargs attributes are not thread-safe. If needed, the sync mechanisms (to avoid race conditions) are up to the user. Example: >>> def _task(pt, arg): ... assert pt.context['value'] == 3 ... assert arg == 17 >>> args = 1 >>> task = PeriodicTask('MyTask', 1, _task, 17) >>> task.context['value'] = 3 >>> task.start() >>> task.stop() """ def __init__(self, name, delay, task, *args, **kwargs): """Constructor Args: name (str): Thread name. delay (float): Delay between two executions, in seconds task (Callable[[PeriodicTask, ...], T]): task to execute each periods. First argument is the PeriodicTask instance. *args (optional): arguments passed to the task. **kwargs (optional): keywords arguments passed to the task. """ self.delay = delay self.context = {} self.args = args self.kwargs = kwargs self._name = name self._task = task self._timer = None self._canceled = False self._lock = Lock() self._is_running = False # must be acceded only with self._lock self._apply_now = False self._deferred = None def _exec_task(self, *args, **kwargs): with self._lock: df = self._deferred self._deferred = None self._is_running = True # self._lock must be released during task execution. result, error = None, None try: result = self._task(self, *args, **kwargs) except BaseException as err: error = err _logger.exception('Periodic task %s has raised exception', self._task) with self._lock: self._is_running = False if self._apply_now: delay = 0 self._apply_now = False else: delay = self.delay self._timer = Timer(delay, self._exec_task, args=self.args, kwargs=self.kwargs) self._timer.name = self._name self._timer.daemon = True if not self._canceled: self._timer.start() if df: if error is None: df.resolve(result) else: df.reject(error) def start(self): """Start the task. The first execution is immediate. """ _logger.debug('Start periodic task %s', self._task) self._timer = Timer(0, self._exec_task, args=self.args, kwargs=self.kwargs) self._timer.name = self._name self._timer.daemon = True self._timer.start() def stop(self, join=False): """Stop the task. Note that if the function is running at the moment this method is called, the current iteration cannot be stopped. Args: join (bool, optional): if True, will block until the running task finish. Default to False """ _logger.debug('Stop periodic task %s', self._task) with self._lock: self._canceled = True self._timer.cancel() if self._deferred: self._deferred.reject(CancelledError('PeriodicTask stop now.')) self._deferred = None if join: self._timer.join() def apply_now(self): """Apply the task as soon as possible. Note that if the task is currently running, it will wait the end, then another iteration will be executed immediately after that. The method can be called from inside the task itself. Returns: Promise[T]: resolved when the task has returned. The promise resolves with the value returned by the task. If the task raises an exception, the promise is rejected. """ self._timer.cancel() with self._lock: if self._deferred: # special case: twice or more apply_now() at the same time. return self._deferred.promise self._deferred = Deferred() if self._is_running: # We can't stop the current task, so we set a flag to rerun as # soon as the task returns. self._apply_now = True else: self._timer.cancel() self._timer = Timer(0, self._exec_task, args=self.args) self._timer.name = self._name self._timer.daemon = True self._timer.start() return self._deferred.promise
gpl-3.0
-4,949,742,910,043,404,000
33.198795
79
0.550114
false
spillai/procgraph
src/procgraph_mpl/plot_anim.py
1
1093
__all__ = [ 'PlotAnim', ] class PlotAnim(object): def __init__(self): self.handle_line = {} self.handle_text = {} self.pylab = None def set_pylab(self, pylab): self.pylab = pylab def assert_pylab_given(self): if self.pylab is None: msg = 'Please call set_pylab() before plotting.' raise ValueError(msg) def plot(self, name, x, y, *args, **kwargs): self.assert_pylab_given() if not name in self.handle_line: handle, = self.pylab.plot(x, y, *args, **kwargs) self.handle_line[name] = handle else: handle = self.handle_line[name] handle.set_data(x, y) def text(self, name, x, y, text, *args, **kwargs): self.assert_pylab_given() if not name in self.handle_text: handle = self.pylab.text(x, y, text, *args, **kwargs) self.handle_text[name] = handle else: handle = self.handle_text[name] handle.set_text(text)
lgpl-3.0
-8,553,758,529,945,379,000
26.325
65
0.511436
false
silasary/StackIt
StackIt/builder.py
1
18659
import os, sys, re #Image manipulation from PIL import Image from PIL import ImageFont from PIL import ImageDraw #Check input format import mmap #XML parsing import xml.etree.ElementTree #HTML parsing from lxml import html from StackIt import scraper, config, decklist, globals from StackIt.globals import Card, specmana, aftermath #ensure that mana costs greater than 9 (Kozilek, Emrakul...) aren't misaligned FILTER = Image.LANCZOS # Sizes INNER_MTG_MANA_COST_IMAGE_SIZE = 15 OUTER_MTG_MANA_COST_IMAGE_SIZE = 16 HEX_MANA_COST_IMAGE_SIZE = 20 INNER_ENTRY_HEIGHT = 34 OUTER_ENTRY_HEIGHT = 35 DECK_WIDTH = 280 HEX_DECK_WIDTH = 219 HEX_MASTER_DECK_WIDTH = 320 SCROLLING_DECK_WIDTH_ADJUSTMENT = 10 SCROLLING_DECK_WIDTH = DECK_WIDTH - SCROLLING_DECK_WIDTH_ADJUSTMENT # Image Positioning HEX_MANA_COST_LEFT = 10 HEX_MANA_COST_TOP = 7 HEX_MANA_COST_SIZE = 20 HEX_BANNER_TOP = 50 SIDEBOARD_LEFT = 50 MTG_CMC_OFFSET_TOP = 8 # Crops HEX_IMAGE_CROP = (39, 130, 309, 164) HEX_MAINGUY_CROP = (134, 55, 185, 275) MTG_BACKGROUND_X_TOP_OFFSET = 12 MTG_BACKGROUND_Y_OFFSET = 125 MTG_BACKGROUND_Y_OFFSET_AFTERMATH = 55 POKEMON_BACKGROUND_OFFSET_Y_TOP = 90 POKEMON_BACKGROUND_OFFSET_X_BOTTOM = 10 POKEMON_BACKGROUND_OFFSET_Y_BOTTOM = 100 MTG_WIDTH_CROP_RIGHT = 10 POKEMON_WIDTH_CROP_RIGHT = 10 HEX_WIDTH_CROP_RIGHT = 22 # Colors BLACK = (0, 0, 0) NEARLY_WHITE = (250, 250, 250) RGB_MAX_0 = 255 RGB_MAX_1 = 256 HALF = int(RGB_MAX_1 / 2) BAD_HALF = int(RGB_MAX_0 / 2) QUARTER = int(RGB_MAX_1 / 4) BAD_THREE_QUARTERS = 190 # Text Positioning TEXT_LEFT, TEXT_TOP = 7, 7 POKEMON_TEXT_LEFT, POKEMON_TEXT_TOP = 7, 12 MTG_TITLE_POSITION = (10, 7) POKEMON_TITLE_POSITION = (10, 8) TEXT_PASTE_LEFT = 50 HEX_TITLE_LEFT = 15 HEX_TITLE_TOP = 12 SIDEBOARD_TITLE_POSITION = (10, 7) HEX_BANNER_POSITION = (15, 15) if config.Get('options', 'indent_hex_title'): TITLE_INDENT = TEXT_PASTE_LEFT else: TITLE_INDENT = 0 # Type Sizes MTG_FONT_SIZE = 14 MTG_TITLE_FONT_SIZE = 18 HEX_FONT_SIZE = 16 HEX_TITLE_FONT_SIZE = 18 POKEMON_FONT_SIZE = 10 POKEMON_TITLE_FONT_SIZE = 14 # Rotation ROTATE_RIGHT = 90 ROTATE_LEFT = -90 #some position initialization X_TOP = 8 X_BOTTOM = 304 Y_TOP = 11.5 Y_BOTTOM = 45.25 X_TOP_POKEMON = 8 X_BOTTOM_POKEMON = 237 Y_TOP_POKEMON = 11.5 Y_BOTTOM_POKEMON = 45.25 def GenerateCMC(name, cost): check9 = '0123456' adjustcmc = False cmc = Image.new('RGBA', (OUTER_MTG_MANA_COST_IMAGE_SIZE * len(cost), OUTER_MTG_MANA_COST_IMAGE_SIZE)) diskcost = cost.strip().replace('*', '_').replace('/', '-') lookupCMC = os.path.join(globals.CMC_PATH, '{cost}.png'.format(cost=diskcost)) if os.path.exists(lookupCMC): tap0 = Image.open(lookupCMC) if tap0.mode != 'RGBA': tap0 = tap0.convert('RGBA') cmc.paste(tap0, (0, 0), mask=tap0) #still need to check cost adjustment... for n in range(len(cost) - 1): if (cost[n] == '1') and (check9.find(cost[n + 1]) != -1): adjustcmc = True else: greaterthan9 = False for n in range(len(cost)): #reset the large mana cost markers if greaterthan9: greaterthan9 = False adjustcmc = True continue #lands have no mana cost and are tagged with '*' if cost[n] == "*": continue #add correct treatment of separation for split cards elif cost[n] == '/': symbol = os.path.join(globals.RESOURCES_PATH, 'mana', 'Mana_spn.png') tap0 = Image.open(symbol) if tap0.mode != 'RGBA': tap0 = tap0.convert('RGBA') tap = tap0.resize((OUTER_MTG_MANA_COST_IMAGE_SIZE, OUTER_MTG_MANA_COST_IMAGE_SIZE), FILTER) cmc.paste(tap, (INNER_MTG_MANA_COST_IMAGE_SIZE * n, 0), mask=tap) else: if (len(cost) > n + 1) and (cost[n] == '1') and (check9.find(cost[ n+ 1]) != -1): finalcost = cost[n] + cost[n + 1] greaterthan9 = True else: finalcost = cost[n] symbol = os.path.join(globals.RESOURCES_PATH, 'mana', 'Mana_' + finalcost + '.png') tap0 = Image.open(symbol) if tap0.mode != 'RGBA': tap0 = tap0.convert('RGBA') tap = tap0.resize((OUTER_MTG_MANA_COST_IMAGE_SIZE, OUTER_MTG_MANA_COST_IMAGE_SIZE), FILTER) cmc.paste(tap, (INNER_MTG_MANA_COST_IMAGE_SIZE * n, 0), mask=tap) cmc.save(lookupCMC) return cmc, adjustcmc def draw_hex_card(name, guid, quantity, nstep): lookupScan = scraper.download_scanHex(name, guid) img = Image.open(lookupScan) img = img.crop(HEX_IMAGE_CROP) #resize the gradient to the size of im... alpha = gradient.resize(img.size, FILTER) #put alpha in the alpha band of im... img.putalpha(alpha) bkgd = Image.new("RGB", img.size, "black") bkgd.paste(img, (0, 0), mask=img) cut = bkgd draw = ImageDraw.Draw(cut) #create text outline text = str(quantity) + ' ' + name draw.text((TEXT_LEFT - 1, TEXT_TOP - 1), text, BLACK, font=fnt) draw.text((TEXT_LEFT + 1, TEXT_TOP - 1), text, BLACK, font=fnt) draw.text((TEXT_LEFT - 1, TEXT_TOP + 1), text, BLACK, font=fnt) draw.text((TEXT_LEFT + 1, TEXT_TOP + 1), text, BLACK, font=fnt) #enter text draw.text((TEXT_LEFT, TEXT_TOP), text, NEARLY_WHITE, font=fnt) deck.paste(cut, (TEXT_PASTE_LEFT, (OUTER_ENTRY_HEIGHT) * nstep)) def draw_mtg_card(card, nstep): isAftermath = False if card.name.find(" // ") != -1: namesplit = card.name.replace(" // ", "/") lookupScan = scraper.download_scan(namesplit, card.set, card.collector_num) if card.name in aftermath: isAftermath = True else: lookupScan = scraper.download_scan(card.name, card.set, card.collector_num) img = Image.open(lookupScan) if (card.name.find(" // ") != -1) and (isAftermath == False): img = img.rotate(ROTATE_LEFT) #check if im has Alpha band... if img.mode != 'RGBA': img = img.convert('RGBA') #resize the gradient to the size of im... alpha = gradient.resize(img.size, FILTER) #put alpha in the alpha band of im... img.putalpha(alpha) bkgd = Image.new("RGB", img.size, "black") bkgd.paste(img, (0, 0), mask=img) if isAftermath == True: cut = bkgd.crop((X_TOP + MTG_BACKGROUND_X_TOP_OFFSET, Y_TOP + MTG_BACKGROUND_Y_OFFSET_AFTERMATH, X_BOTTOM, Y_BOTTOM + MTG_BACKGROUND_Y_OFFSET_AFTERMATH)) else: cut = bkgd.crop((X_TOP + MTG_BACKGROUND_X_TOP_OFFSET, Y_TOP + MTG_BACKGROUND_Y_OFFSET, X_BOTTOM, Y_BOTTOM + MTG_BACKGROUND_Y_OFFSET)) draw = ImageDraw.Draw(cut) text = str(card.quantity) + ' ' + card.name #create text outline draw.text((TEXT_LEFT - 1, TEXT_TOP - 1), text, BLACK, font=fnt) draw.text((TEXT_LEFT + 1, TEXT_TOP - 1), text, BLACK, font=fnt) draw.text((TEXT_LEFT - 1, TEXT_TOP + 1), text, BLACK, font=fnt) draw.text((TEXT_LEFT + 1, TEXT_TOP + 1), text, BLACK, font=fnt) #enter text draw.text((TEXT_LEFT, TEXT_TOP), text, NEARLY_WHITE, font=fnt) cmc, adjustcmc = GenerateCMC(card.name, card.cost) #place the cropped picture of the current card deck.paste(cut, (0, INNER_ENTRY_HEIGHT * nstep)) #for scrolling decklist tmpwidth, tmpheight = cut.size cut2 = cut.crop((0, 0, tmpwidth - SCROLLING_DECK_WIDTH_ADJUSTMENT, tmpheight)) deck2.paste(cut2, (SCROLLING_DECK_WIDTH * nstep, 0)) #adjust cmc size to reflex manacost greater than 9 if adjustcmc: deck.paste(cmc, (DECK_WIDTH - INNER_MTG_MANA_COST_IMAGE_SIZE * len(card.cost), MTG_CMC_OFFSET_TOP + INNER_ENTRY_HEIGHT * nstep), mask=cmc) #for scrolling decklist deck2.paste(cmc, (SCROLLING_DECK_WIDTH * (nstep + 1) - INNER_MTG_MANA_COST_IMAGE_SIZE * len(card.cost), MTG_CMC_OFFSET_TOP), mask=cmc) adjustcmc = False else: deck.paste(cmc, (DECK_WIDTH - INNER_MTG_MANA_COST_IMAGE_SIZE * (len(card.cost) + 1), MTG_CMC_OFFSET_TOP + INNER_ENTRY_HEIGHT * nstep), mask=cmc) #for scrolling decklist deck2.paste(cmc, (SCROLLING_DECK_WIDTH * (nstep + 1) - INNER_MTG_MANA_COST_IMAGE_SIZE * (len(card.cost) + 1), MTG_CMC_OFFSET_TOP), mask=cmc) globals.mkcachepaths() # create a horizontal gradient... Hexgradient = Image.new('L', (1, RGB_MAX_0)) #map the gradient for x in range(QUARTER): Hexgradient.putpixel((0, x), RGB_MAX_0) for x in range(QUARTER): Hexgradient.putpixel((0, QUARTER + x), RGB_MAX_0 - x) for x in range(HALF): Hexgradient.putpixel((0, BAD_HALF + x), BAD_THREE_QUARTERS - int(1.5 * x)) # create a horizontal gradient... gradient = Image.new('L', (RGB_MAX_0, 1)) #map the gradient for x in range(HALF): gradient.putpixel((x, 0), int(1.5 * x)) for x in range(QUARTER): gradient.putpixel((BAD_HALF + x, 0), BAD_THREE_QUARTERS + x) for x in range(QUARTER): gradient.putpixel((BAD_THREE_QUARTERS + x, 0), RGB_MAX_0 - 1) def main(filename): doSideboard = config.Get('options', 'display_sideboard') #open user input decklist raw_decklist = open(str(filename), 'r') deck_list = decklist.parse_list(raw_decklist) raw_decklist.close() print(repr(deck_list)) nstep = 1 # create a header with the deck's name global fnt if deck_list.game == decklist.MTG: fnt = ImageFont.truetype(os.path.join(globals.RESOURCES_PATH, 'fonts', config.Get('fonts', 'mtg')), MTG_FONT_SIZE) fnt_title = ImageFont.truetype(os.path.join(globals.RESOURCES_PATH, 'fonts', config.Get('fonts', 'mtg')), MTG_TITLE_FONT_SIZE) title = Image.new("RGB", (DECK_WIDTH, INNER_ENTRY_HEIGHT), "black") drawtitle = ImageDraw.Draw(title) drawtitle.text(MTG_TITLE_POSITION, os.path.basename(str(filename))[0:-4], NEARLY_WHITE, font=fnt_title) elif deck_list.game == decklist.POKEMON: fnt = ImageFont.truetype(os.path.join(globals.RESOURCES_PATH, 'fonts', config.Get('fonts', 'pkmn')), POKEMON_FONT_SIZE) fnt_title = ImageFont.truetype(os.path.join(globals.RESOURCES_PATH, 'fonts', config.Get('fonts', 'pkmn')), POKEMON_TITLE_FONT_SIZE) title = Image.new("RGB", (HEX_DECK_WIDTH, OUTER_ENTRY_HEIGHT), "black") drawtitle = ImageDraw.Draw(title) drawtitle.text(POKEMON_TITLE_POSITION, os.path.basename(str(filename))[0:-4], NEARLY_WHITE, font=fnt_title) elif deck_list.game == decklist.HEX: fnt = ImageFont.truetype(os.path.join(globals.RESOURCES_PATH, 'fonts', config.Get('fonts', 'hex')), HEX_FONT_SIZE) fnt_title = ImageFont.truetype(os.path.join(globals.RESOURCES_PATH, 'fonts', config.Get('fonts', 'hex')), HEX_TITLE_FONT_SIZE) title = Image.new("RGB", (HEX_MASTER_DECK_WIDTH, INNER_ENTRY_HEIGHT), "black") nametitle = str(filename)[0:-4] nshard = 0 for re_match in re.finditer(r'(\[[^\]]*\])', nametitle): shard = re_match.group(0) if nametitle.find(shard) != -1: nametitle = nametitle.replace(shard, '') newshard = Image.open(os.path.join(globals.RESOURCES_PATH, 'hexicons', shard + '.png')).resize((HEX_MANA_COST_IMAGE_SIZE, HEX_MANA_COST_IMAGE_SIZE), FILTER) title.paste(newshard, (TITLE_INDENT + HEX_MANA_COST_LEFT + nshard * HEX_MANA_COST_SIZE, HEX_MANA_COST_TOP)) nshard = nshard + 1 drawtitle = ImageDraw.Draw(title) drawtitle.text((TITLE_INDENT + HEX_TITLE_LEFT + nshard * HEX_MANA_COST_IMAGE_SIZE, HEX_TITLE_TOP), os.path.basename(nametitle), NEARLY_WHITE, font=fnt_title) ncountMB = len(deck_list.mainboard) ncountSB = len(deck_list.sideboard) ncount = ncountMB if ncountSB == 0: doSideboard = False if doSideboard: #create a Sideboard partition sideboard = Image.new("RGB", (DECK_WIDTH, INNER_ENTRY_HEIGHT), "black") drawtitle = ImageDraw.Draw(sideboard) sideboard_name = "Sideboard" if deck_list.game == decklist.HEX: sideboard_name = "Reserves" drawtitle.text(SIDEBOARD_TITLE_POSITION, sideboard_name, NEARLY_WHITE, font=fnt_title) ncount += ncountSB + 1 #define the size of the canvas, incl. space for the title header if deck_list.game == decklist.MTG: deckwidth = DECK_WIDTH deckheight = INNER_ENTRY_HEIGHT * (ncount + 1) #for scrolling decklist deckwidth2 = SCROLLING_DECK_WIDTH * (ncount + 1) deckheight2 = INNER_ENTRY_HEIGHT elif deck_list.game == decklist.POKEMON: deckwidth = HEX_DECK_WIDTH deckheight = OUTER_ENTRY_HEIGHT * (ncount + 1) deckwidth2 = SCROLLING_DECK_WIDTH * (ncount + 1) deckheight2 = INNER_ENTRY_HEIGHT elif deck_list.game == decklist.HEX: deckwidth = HEX_MASTER_DECK_WIDTH deckheight = OUTER_ENTRY_HEIGHT * (ncount + 1) deckwidth2 = SCROLLING_DECK_WIDTH * (ncount + 1) deckheight2 = INNER_ENTRY_HEIGHT #reset the sideboard marker isSideboard = 0 global deck deck = Image.new("RGB", (deckwidth, deckheight), "white") #for scrolling decklist global deck2 deck2 = Image.new("RGB", (deckwidth2, deckheight2), "white") deck.paste(title, (0, 0)) #for scrolling decklist title2 = title.crop((0, 0, SCROLLING_DECK_WIDTH, INNER_ENTRY_HEIGHT)) deck2.paste(title2, (0, 0)) #now read the decklist if deck_list.game == decklist.MTG: lands = [] for card in deck_list.mainboard: #this step checks whether a specific art is requested by the user - provided via the set name if card.cost == "*": lands.append(card) continue draw_mtg_card(card, nstep) nstep = nstep + 1 for card in lands: draw_mtg_card(card, nstep) nstep = nstep + 1 if doSideboard: deck.paste(sideboard, (0, INNER_ENTRY_HEIGHT * nstep)) #for scrolling decklist sideboard2 = sideboard.crop((0, 0, SCROLLING_DECK_WIDTH, INNER_ENTRY_HEIGHT)) deck2.paste(sideboard2, (SCROLLING_DECK_WIDTH * nstep, 0)) nstep = nstep + 1 for card in deck_list.sideboard: draw_mtg_card(card, nstep) nstep = nstep + 1 elif deck_list.game == decklist.POKEMON: for card in deck_list.mainboard: quantity = card.quantity lookupScan, displayname = scraper.download_scanPKMN(card.name, card.set, card.collector_num) img = Image.open(lookupScan) #check if im has Alpha band... if img.mode != 'RGBA': img = img.convert('RGBA') #resize the gradient to the size of im... alpha = gradient.resize(img.size, FILTER) #put alpha in the alpha band of im... img.putalpha(alpha) bkgd = Image.new("RGB", img.size, "black") bkgd.paste(img, (0, 0), mask=img) cut = bkgd.crop((X_TOP_POKEMON, Y_TOP_POKEMON + POKEMON_BACKGROUND_OFFSET_Y_TOP, X_BOTTOM_POKEMON - POKEMON_BACKGROUND_OFFSET_X_BOTTOM, Y_BOTTOM_POKEMON + POKEMON_BACKGROUND_OFFSET_Y_BOTTOM)) cut = cut.resize((deckwidth, INNER_ENTRY_HEIGHT)) draw = ImageDraw.Draw(cut) #create text outline text = str(quantity) + ' ' + displayname draw.text((POKEMON_TEXT_LEFT - 1, POKEMON_TEXT_TOP - 1), text, BLACK, font=fnt) draw.text((POKEMON_TEXT_LEFT + 1, POKEMON_TEXT_TOP - 1), text, BLACK, font=fnt) draw.text((POKEMON_TEXT_LEFT - 1, POKEMON_TEXT_TOP + 1), text, BLACK, font=fnt) draw.text((POKEMON_TEXT_LEFT + 1, POKEMON_TEXT_TOP + 1), text, BLACK, font=fnt) #enter text draw.text((POKEMON_TEXT_LEFT, POKEMON_TEXT_TOP), text, NEARLY_WHITE, font=fnt) #place the cropped picture of the current card deck.paste(cut, (0, OUTER_ENTRY_HEIGHT * nstep)) nstep = nstep + 1 elif deck_list.game == decklist.HEX: banner = Image.new("RGB", (deckheight - OUTER_ENTRY_HEIGHT, HEX_BANNER_TOP), "black") if len(deck_list.commander) > 0: cmdr = deck_list.commander[0] guid = cmdr.collector_num typeCM = cmdr.set drawbanner = ImageDraw.Draw(banner) drawbanner.text(HEX_BANNER_POSITION, str(cmdr.name), NEARLY_WHITE, font=fnt_title) lookupScan = scraper.download_scanHexCM(cmdr.name, guid, typeCM) mainguyImg = Image.open(lookupScan) mainguycut = mainguyImg.crop(HEX_MAINGUY_CROP) banner = banner.rotate(ROTATE_RIGHT, expand=True) #check if im has Alpha band... if mainguycut.mode != 'RGBA': mainguycut = mainguycut.convert('RGBA') #resize the gradient to the size of im... alpha = Hexgradient.resize(mainguycut.size, FILTER) #put alpha in the alpha band of im... mainguycut.putalpha(alpha) banner.paste(mainguycut, (0, 0), mask=mainguycut) deck.paste(banner, (0, OUTER_ENTRY_HEIGHT)) for card in deck_list.mainboard: draw_hex_card(card.name, card.collector_num, card.quantity, nstep) nstep = nstep + 1 if doSideboard: deck.paste(sideboard, (SIDEBOARD_LEFT, OUTER_ENTRY_HEIGHT * nstep)) nstep = nstep + 1 for card in deck_list.sideboard: draw_hex_card(card.name, card.collector_num, card.quantity, nstep) nstep = nstep + 1 if deck_list.game == decklist.MTG: deck = deck.crop((0, 0, deckwidth - MTG_WIDTH_CROP_RIGHT, deckheight)) deck2 = deck2.crop((0, 0, deckwidth2, deckheight2 - 2)) elif deck_list.game == decklist.POKEMON: deck = deck.crop((0, 0, deckwidth - POKEMON_WIDTH_CROP_RIGHT, OUTER_ENTRY_HEIGHT * nstep)) elif deck_list.game == decklist.HEX: deck = deck.crop((0, 0, deckwidth - HEX_WIDTH_CROP_RIGHT, deckheight)) output_path = str(filename)[0:-4] + ".png" deck.save(output_path) #for scrolling decklist output_path2 = str(filename)[0:-4] + "-scroll.png" deck2.save(output_path2) altpath = config.Get('options', 'output_path') if altpath is not None: deck.save(altpath) return output_path
mit
3,783,695,594,269,186,600
37.235656
207
0.613109
false
superfluidity/RDCL3D
code/translator/hot/tosca/tests/test_tosca_autoscaling.py
1
3440
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from toscaparser.nodetemplate import NodeTemplate from toscaparser.policy import Policy from toscaparser.tests.base import TestCase import toscaparser.utils.yamlparser from translator.hot.tosca.tosca_compute import ToscaCompute from translator.hot.tosca.tosca_policies_scaling import ToscaAutoscaling class AutoscalingTest(TestCase): def _tosca_scaling_test(self, tpl_snippet, expectedprops): nodetemplates = (toscaparser.utils.yamlparser. simple_parse(tpl_snippet)['node_templates']) policies = (toscaparser.utils.yamlparser. simple_parse(tpl_snippet)['policies']) name = list(nodetemplates.keys())[0] policy_name = list(policies[0].keys())[0] for policy in policies: tpl = policy[policy_name] targets = tpl["targets"] properties = tpl["properties"] try: nodetemplate = NodeTemplate(name, nodetemplates) toscacompute = ToscaCompute(nodetemplate) toscacompute.handle_properties() policy = Policy(policy_name, tpl, targets, properties, "node_templates") toscascaling = ToscaAutoscaling(policy) parameters = toscascaling.handle_properties([toscacompute]) self.assertEqual(parameters[0].properties, expectedprops) except Exception: raise def test_compute_with_scaling(self): tpl_snippet = ''' node_templates: my_server_1: type: tosca.nodes.Compute capabilities: host: properties: num_cpus: 2 disk_size: 10 GB mem_size: 512 MB os: properties: # host Operating System image properties architecture: x86_64 type: Linux distribution: RHEL version: 6.5 policies: - asg: type: tosca.policies.Scaling description: Simple node autoscaling targets: [my_server_1] triggers: resize_compute: description: trigger condition: constraint: utilization greater_than 50% period: 60 evaluations: 1 method: average properties: min_instances: 2 max_instances: 10 default_instances: 3 increment: 1 ''' expectedprops = {'desired_capacity': 3, 'max_size': 10, 'min_size': 2, 'resource': {'type': 'asg_res.yaml'}} self._tosca_scaling_test( tpl_snippet, expectedprops)
apache-2.0
-5,870,668,493,590,456,000
36.802198
78
0.566279
false
arseneyr/essentia
test/src/unittest/temporal/test_loudnessebur128.py
1
6832
#!/usr/bin/env python # Copyright (C) 2006-2016 Music Technology Group - Universitat Pompeu Fabra # # This file is part of Essentia # # Essentia is free software: you can redistribute it and/or modify it under # the terms of the GNU Affero General Public License as published by the Free # Software Foundation (FSF), either version 3 of the License, or (at your # option) any later version. # # This program is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS # FOR A PARTICULAR PURPOSE. See the GNU General Public License for more # details. # # You should have received a copy of the Affero GNU General Public License # version 3 along with this program. If not, see http://www.gnu.org/licenses/ from essentia_test import * class TestLoudnessEBUR128(TestCase): def testRegression(self): # The test audio files for loudness are provided in EBU Tech 3341 # https://tech.ebu.ch/docs/tech/tech3341.pdf # M, S, I = -20 +- 0.1 LUFS filename = join(testdata.audio_dir, 'generated', 'ebur128', '1kHz_sine_-20LUFS-16bit.flac') audio, samplerate, _, _, _, _ = AudioLoader(filename=filename)() m, s, i, r = LoudnessEBUR128(sampleRate=samplerate)(audio) self.assertAlmostEqualVector(m, essentia.array([-20.] * len(m)), 0.1) self.assertAlmostEqualVector(s, essentia.array([-20.] * len(s)), 0.1) self.assertAlmostEqual(i, -20., 0.1) # M, S, I = -26 +- 0.1 LUFS filename = join(testdata.audio_dir, 'generated', 'ebur128', '1kHz_sine_-26LUFS-16bit.flac') audio, samplerate, _, _, _, _ = AudioLoader(filename=filename)() m, s, i, r = LoudnessEBUR128(sampleRate=samplerate)(audio) self.assertAlmostEqualVector(m, essentia.array([-26.] * len(m)), 0.1) self.assertAlmostEqualVector(s, essentia.array([-26.] * len(s)), 0.1) self.assertAlmostEqual(i, -26., 0.1) # M, S, I = -40 +- 0.1 LUFS filename = join(testdata.audio_dir, 'generated', 'ebur128', '1kHz_sine_-40LUFS-16bit.flac') audio, samplerate, _, _, _, _ = AudioLoader(filename=filename)() m, s, i, r = LoudnessEBUR128(sampleRate=samplerate)(audio) self.assertAlmostEqualVector(m, essentia.array([-40.] * len(m)), 0.1) self.assertAlmostEqualVector(s, essentia.array([-40.] * len(s)), 0.1) self.assertAlmostEqual(i, -40., 0.1) # M, S, I = -23 +- 0.1 LUFS filename = join(testdata.audio_dir, 'generated', 'ebur128', 'seq-3341-1-16bit.flac') audio, samplerate, _, _, _, _ = AudioLoader(filename=filename)() m, s, i, r = LoudnessEBUR128(sampleRate=samplerate)(audio) self.assertAlmostEqualVector(m, essentia.array([-23.] * len(m)), 0.1) self.assertAlmostEqualVector(s, essentia.array([-23.] * len(s)), 0.1) self.assertAlmostEqual(i, -23., 0.1) # M, S, I = -33 +- 0.1 LUFS filename = join(testdata.audio_dir, 'generated', 'ebur128', 'seq-3341-2-16bit.flac') audio, samplerate, _, _, _, _ = AudioLoader(filename=filename)() m, s, i, r = LoudnessEBUR128(sampleRate=samplerate)(audio) self.assertAlmostEqualVector(m, essentia.array([-33.] * len(m)), 0.1) self.assertAlmostEqualVector(s, essentia.array([-33.] * len(s)), 0.1) self.assertAlmostEqual(i, -33., 0.1) # I = -23 +- 0.1 LUFS filename = join(testdata.audio_dir, 'generated', 'ebur128', 'seq-3341-3-16bit-v02.flac') audio, samplerate, _, _, _, _ = AudioLoader(filename=filename)() _, _, i, _ = LoudnessEBUR128(sampleRate=samplerate)(audio) self.assertAlmostEqual(i, -23., 0.1) # I = -23 +- 0.1 LUFS filename = join(testdata.audio_dir, 'generated', 'ebur128', 'seq-3341-4-16bit-v02.flac') audio, samplerate, _, _, _, _ = AudioLoader(filename=filename)() _, _, i, _ = LoudnessEBUR128(sampleRate=samplerate)(audio) self.assertAlmostEqual(i, -23., 0.1) # I = -23 +- 0.1 LUFS filename = join(testdata.audio_dir, 'generated', 'ebur128', 'seq-3341-5-16bit-v02.flac') audio, samplerate, _, _, _, _ = AudioLoader(filename=filename)() _, _, i, _ = LoudnessEBUR128(sampleRate=samplerate)(audio) self.assertAlmostEqual(i, -23., 0.1) # I = -23 +- 0.1 LUFS filename = join(testdata.audio_dir, 'generated', 'ebur128', 'seq-3341-7_seq-3342-5-16bit.flac') audio, samplerate, _, _, _, _ = AudioLoader(filename=filename)() _, _, i, _ = LoudnessEBUR128(sampleRate=samplerate)(audio) self.assertAlmostEqual(i, -23., 0.1) # Test audio files for dynamic range are provided in EBU Tech Doc 3342 # https://tech.ebu.ch/docs/tech/tech3342.pdf # LRA = 10 +- 1 LU filename = join(testdata.audio_dir, 'generated', 'ebur128', 'seq-3342-1-16bit.flac') audio, samplerate, _, _, _, _ = AudioLoader(filename=filename)() _, _, _, r = LoudnessEBUR128(sampleRate=samplerate)(audio) self.assertAlmostEqual(r, 10., 1.) # LRA = 5 +- 1 LU filename = join(testdata.audio_dir, 'generated', 'ebur128', 'seq-3342-2-16bit.flac') audio, samplerate, _, _, _, _ = AudioLoader(filename=filename)() _, _, _, r = LoudnessEBUR128(sampleRate=samplerate)(audio) self.assertAlmostEqual(r, 5., 1.) # LRA = 20 +- 1 LU filename = join(testdata.audio_dir, 'generated', 'ebur128', 'seq-3342-3-16bit.flac') audio, samplerate, _, _, _, _ = AudioLoader(filename=filename)() _, _, _, r = LoudnessEBUR128(sampleRate=samplerate)(audio) self.assertAlmostEqual(r, 20., 1.) # LRA = 15 +- 1 LU filename = join(testdata.audio_dir, 'generated', 'ebur128', 'seq-3342-4-16bit.flac') audio, samplerate, _, _, _, _ = AudioLoader(filename=filename)() _, _, _, r = LoudnessEBUR128(sampleRate=samplerate)(audio) self.assertAlmostEqual(r, 15., 1.) def testEmpty(self): # empty (0,2) array audio = essentia.array([[1.,1.]])[:-1] self.assertComputeFails(LoudnessEBUR128(), audio) def testSilence(self): audio = essentia.array([[0, 0]] * 44100) m, s, i, r = LoudnessEBUR128()(audio) # Momentary and short-term loudness can have values below absolute threshold of -70. LUFS for x in m: self.assert_(x <= -70.) for x in s: self.assert_(x <= -70.) self.assertEqual(i, -70.) self.assertEqual(r, 0.) suite = allTests(TestLoudnessEBUR128) if __name__ == '__main__': TextTestRunner(verbosity=2).run(suite)
agpl-3.0
2,107,436,726,347,414,000
46.453901
103
0.600117
false
GregSilverman/cohort_rest_api
rest_api/build_atom.py
1
14183
#!/usr/bin/env python from sqlalchemy import between from sqlalchemy.sql import and_, label from app import db, models import htsql_methods as hsql Clinical = models.ClinicalData Attribute = models.Attribute """ Example SQL atomic query for modified nested model: select * from clinical_data (select patient_sid, lft, rgt, a.attribute_id from clinical_data where attribute_id = 'ID FOR DEMOGRAPHICS') ldl on cd.patient_sid = ldl.patient_sid and cd.lft >= ldl.lft and cd.rgt <= ldl.rgt Procedure creates an atomic query, defined by: i%2 = 0 -> initial subquery of bucket/attribute From above example, the initial subquery that pulls the bucket: select patient_sid, lft, rgt, attribute_id from clinical_data where attribute_id = 'ID FOR DEMOGRAPHICS') 1%2 != 0 -> drill down to specific bucket attribute URL comprised of a single atom will look like: atom: demographics:'id for demographics';eq;demographics;demographics:'id for sex';eq;M NB: this is attached to incoming requests as a JSON document element part 1: bucket type:key -> demographics:attribute.id for attribute.value = demographics comparator -> eq attribute value (bucket) -> demographics element part 2: bucket item type:key -> demographics:attribute.id for attribute.value = sex comparator -> eq attribute value -> M molecule made up of two atoms: (test_code:'id for test_code';eq;13457-7;test_code:'id for result_value_num';ge;160 & basic_vitals:'id for blood_pressure_systolic';eq;blood_pressure_systolic;basic_vitals:'id for blood_pressure_systolic';ge;160) example query: select * from clinical_data cd inner join (select patient_sid, lft as lft_ldl, rgt as rgt_ldl from clinical_data where string_value = '13457-7' and attribute_id = '12345') ldl on cd.patient_sid = ldl.patient_sid and cd.lft >= ldl.lft_ldl and cd.rgt <= ldl.rgt_ldl where double_value >= 160 and attribute_id = '34567' order by cd.lft; """ # assemble canonical atomic query using parsed components from URL payload def make_atomic_query(key_type, key, comparator, value, comparator_date, value_date): a = [] # atomic array of query elements date = [] whole = [] # entire data set with no constraints transform = ['medications', 'demographics']# data need to have special characters removed for querying numeric = ['int', 'float', 'double'] char = ['string'] # initialize lists for i in xrange(0, 2): a.append('') whole.append('') if comparator[i] == 'between': arg = value[i].split(',', 2) if comparator_date[i]: if comparator_date[i] == 'between': date = value_date[i].split(',', 2) # create queries for i in xrange(0, 2): # assemble base query if i == 0: a[i] = db.session.query(Clinical.patient_sid, Clinical.lft, Clinical.rgt, Clinical.attribute_id) else: a[i] = db.session.query(Clinical.patient_sid, Clinical.lft, Clinical.rgt, label('attribute_value', Clinical.attribute_id), Clinical.double_value, Clinical.string_value) ''' equivalent to: select patient_sid, lft, rgt from clinical_data ''' # grab the desired bucket if i == 0: # grab bucket by attribute a[i] = a[i].filter(Clinical.attribute_id == int(key[i])) ''' equivalent to: select patient_sid, lft, rgt from clinical_data where attribute_id = '12345' ''' # NB: these are special characters for building the parse tree -> clean them if key_type[i] in transform: name = value[i].replace('_', ' ').\ replace('{', '('). \ replace('}', ')') else: name = value[i] # grab specific bucket a[i] = a[i].filter(Clinical.string_value.op(comparator[i])(name)).subquery() ''' equivalent to: select patient_sid, lft, rgt from clinical_data where string_value = '13457-7' and attribute_id = '12345' ''' # pull item from bucket by attribute name with criterion value elif i == 1: # grab attribute of interest by name ''' a[i] = a[i].join(a[i-1], and_(Clinical.patient_sid == a[i-1].c.patient_sid, Clinical.lft >= a[i-1].c.lft, Clinical.rgt <= a[i-1].c.rgt)).\ filter(Clinical.attribute_id == key[i]) ''' a[i] = a[i].join(a[i-1], and_(Clinical.patient_sid == a[i-1].c.patient_sid, Clinical.attribute_id == int(key[i]))). \ filter(Clinical.lft >= a[i-1].c.lft, Clinical.rgt <= a[i-1].c.rgt) # unconstrained data set for printing all records whole[i] = a[i] ''' equivalent to: select patient_sid, lft, rgt from clinical_data cd inner join (select patient_sid, lft, rgt from clinical_data where string_value = '13457-7' and attribute_id = '12345') ldl on cd.patient_sid = ldl.patient_sid and cd.lft >= ldl.lft and cd.rgt <= ldl.rgt where attribute_id = '34567'; ''' # flag to control output of all data for desired bucket print_all = False # for all data for bucket, no filtering is necessary if 'OUT' in comparator[i]: print_all = True if not 'OUT' in comparator[i]: qstring = "/attribute{data_type.name}?id='" + key[i] + "'" data_type = hsql.get_data(qstring) # first: convert to correct data type for utilization of proper covering index # NB: default is string if data_type in numeric: if comparator[i] != 'between': a[i] = a[i].filter(Clinical.double_value.op(comparator[i])((float(value[i])))) else: a[i] = a[i].filter(between(Clinical.double_value, float(arg[0]), float(arg[1]))) elif data_type in char: # clean up incoming string values representative of specific criterion value if key_type[i] in transform: name = value[i].replace('_', ' ').\ replace('{', '('). \ replace('}', ')') else: name = value[i] a[i] = a[i].filter(Clinical.string_value.op(comparator[i])(name)) ''' equivalent to: select patient_sid, lft, rgt from clinical_data cd inner join (select attribute_id, patient_sid, lft, rgt from clinical_data where string_value = '13457-7' and attribute_id = '12345') ldl on cd.patient_sid = ldl.patient_sid and cd.lft >= ldl.lft and cd.rgt <= ldl.rgt where double_value >= 160 and attribute_id = '34567'; ''' # query by date if comparator_date[i]: if comparator_date[i] == 'between': a[i] = a[i].filter(between(Clinical.event_date, date[0], date[1])) else: a[i] = a[i].filter(Clinical.event_date.op(comparator_date[i])([value_date[i]])) ''' equivalent to: select patient_sid, lft, rgt from clinical_data cd inner join (select attribute_id, patient_sid, lft, rgt from clinical_data where string_value = '13457-7' and attribute_id = '12345') ldl on cd.patient_sid = ldl.patient_sid and cd.lft >= ldl.lft and cd.rgt <= ldl.rgt where double_value >= 160 and attribute_id = '34567' and cd.event_date >= '1/1/1970'; ''' # construct final subquery a[i] = a[i].subquery() else: print 'ERROR' return a[1], whole[1], print_all # parse query components: atoms -> particles # TODO future: implement more general method of mapping using # http://stackoverflow.com/questions/14845196/dynamically-constructing-filters-in-sqlalchemy # TODO: implement as parallel loop def parse_atomic_particles(atom): # delimiter between atomic query particles: key, comparator, value # used to split atom into particles separator = ';' # initialize lists a = [] # list element for returned atoms whole = [] for i in xrange(0, 1): a.append('') whole.append('') for j in xrange(0, 1): # initialize query components particles = atom.split(separator, 6) # atom consists of 6 query components to be parsed, aka particles key_type = [] # array of query bucket names key = [] # array of key bucket ids comparator = [] # array of comparators value = [] # array of values comparator_date = [] # array of date comparators value_date = [] # array of date components for i in xrange(len(particles)): particle = particles[i] # Each atomic unit consists of 6 "particles" delimited by a ';', # where each particle consists of a: # # -> key: representing a bucket name by an attribute # -> comparator: representing the logical operation to perform, NB: for bucket this should always be 'eq' # -> value: name of bucket # -> key: representing an item within the bucket to query by attribute name # -> comparator: representing the logical operation to perform on given attribute compared to given value # -> value: attribute item's value for comparison # map particle components to appropriate lists value_comparator_list = ['eq', 'grte', 'lete', 'bt', 'gt', 'lt', 'prn'] date_comparator_list = ['between', 'grt', 'lss'] comparator_mapper = [ (':', particle.split(':')), ('eq', '='), ('grte', '>='), ('lete', '<='), ('bt', 'between'), ('between', 'between'), ('grt', '>='), ('lss', '<='), ('lt', '<'), ('gt', '>'), ('prn', 'OUT') ] if any(ext in particle for ext in value_comparator_list) or \ any(ext in particle for ext in date_comparator_list) or \ ':' in particle: def apply_mapper(particle): for item, action in comparator_mapper: if item in particle: if ':' in particle: key_type.append(action[0]) key.append(action[1]) break elif any(ext in particle for ext in value_comparator_list): comparator.append(action) break # date comparison given in value particle elif any(ext in particle for ext in date_comparator_list): # grab operator for date comparison from list date_stuff = particle.split(',DATE,') value.append(date_stuff[0]) comparator_date.append(action) # get dates and split in the case of a between comparison date = date_stuff[1].split(',') if len(date) == 2: temp = date[1] else: temp = date[1] + ',' + date[2] value_date.append(temp) break else: print'error' apply_mapper(particle) # if DATE component is not part of value particle use way back in history as default else: comparator_date.append('>=') value_date.append('1776-01-01') value.append(particle) a[j], whole[j], print_all = make_atomic_query(key_type, key, comparator, value, comparator_date, value_date) return a[0], whole[0], print_all
gpl-3.0
-4,821,364,456,509,184,000
34.019753
131
0.476345
false
Iconoclasteinc/tgit
tgit/tagging/embedded_containers.py
1
1536
# -*- coding: utf-8 -*- # # TGiT, Music Tagger for Professionals # Copyright (C) 2013 Iconoclaste Musique Inc. # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. from collections import defaultdict from tgit.metadata import Metadata from tgit import fs from .flac_container import FlacContainer from .id3_container import ID3Container class EmptyContainer: # noinspection PyUnusedLocal @staticmethod def load(filename): return Metadata() @staticmethod def save(filename, metadata): pass _containers = defaultdict(EmptyContainer, {".mp3": ID3Container(), ".flac": FlacContainer()}) def _container_for(filename): return _containers[fs.ext(filename)] def load_metadata(filename): return _container_for(filename).load(filename) def save_metadata(filename, metadata): return _container_for(filename).save(filename, metadata)
gpl-3.0
2,475,258,062,397,315,000
29.72
93
0.747396
false
crakensio/django_training
lib/python2.7/site-packages/bpython/curtsiesfrontend/interaction.py
1
4789
import greenlet import time import curtsies.events as events from bpython.repl import Interaction as BpythonInteraction from bpython.curtsiesfrontend.manual_readline import char_sequences as rl_char_sequences class StatusBar(BpythonInteraction): """StatusBar and Interaction for Repl Passing of control back and forth between calls that use interact api (notify, confirm, file_prompt) like bpython.Repl.write2file and events on the main thread happens via those calls and self.wait_for_request_or_notify. Calling one of these three is required for the main thread to regain control! This is probably a terrible idea, and better would be rewriting this functionality in a evented or callback style, but trying to integrate bpython.Repl code. """ def __init__(self, initial_message='', permanent_text="", refresh_request=lambda: None): self._current_line = '' self.cursor_offset_in_line = 0 self.in_prompt = False self.in_confirm = False self.waiting_for_refresh = False self.prompt = '' self._message = initial_message self.message_start_time = time.time() self.message_time = 3 self.permanent_text = permanent_text self.main_greenlet = greenlet.getcurrent() self.request_greenlet = None self.refresh_request = refresh_request @property def has_focus(self): return self.in_prompt or self.in_confirm or self.waiting_for_refresh def message(self, msg): self.message_start_time = time.time() self._message = msg def _check_for_expired_message(self): if self._message and time.time() > self.message_start_time + self.message_time: self._message = '' def process_event(self, e): """Returns True if shutting down""" assert self.in_prompt or self.in_confirm or self.waiting_for_refresh if isinstance(e, events.RefreshRequestEvent): self.waiting_for_refresh = False self.request_greenlet.switch() elif isinstance(e, events.PasteEvent): for ee in e.events: self.add_normal_character(ee if len(ee) == 1 else ee[-1]) #strip control seq elif e in rl_char_sequences: self.cursor_offset_in_line, self._current_line = rl_char_sequences[e](self.cursor_offset_in_line, self._current_line) elif e == "": raise KeyboardInterrupt() elif e == "": raise SystemExit() elif self.in_prompt and e in ("\n", "\r"): line = self._current_line self.escape() self.request_greenlet.switch(line) elif self.in_confirm: if e in ('y', 'Y'): self.request_greenlet.switch(True) else: self.request_greenlet.switch(False) self.escape() elif e in ['\x1b']: self.request_greenlet.switch(False) self.escape() else: # add normal character self.add_normal_character(e) def add_normal_character(self, e): self._current_line = (self._current_line[:self.cursor_offset_in_line] + e + self._current_line[self.cursor_offset_in_line:]) self.cursor_offset_in_line += 1 def escape(self): """unfocus from statusbar, clear prompt state, wait for notify call""" self.in_prompt = False self.in_confirm = False self.prompt = '' self._current_line = '' @property def current_line(self): self._check_for_expired_message() if self.in_prompt: return self.prompt + self._current_line if self.in_confirm: return self.prompt if self._message: return self._message return self.permanent_text # interaction interface - should be called from other greenlets def notify(self, msg, n=3): self.request_greenlet = greenlet.getcurrent() self.message_time = n self.message(msg) self.waiting_for_refresh = True self.refresh_request() self.main_greenlet.switch(msg) # below Really ought to be called from greenlets other than main because they block def confirm(self, q): """Expected to return True or False, given question prompt q""" self.request_greenlet = greenlet.getcurrent() self.prompt = q self.in_confirm = True return self.main_greenlet.switch(q) def file_prompt(self, s): """Expected to return a file name, given """ self.request_greenlet = greenlet.getcurrent() self.prompt = s self.in_prompt = True result = self.main_greenlet.switch(s) return result
cc0-1.0
-3,079,365,304,622,484,500
37.007937
129
0.618083
false
cltrudeau/django-awl
awl/templatetags/awltags.py
1
4065
# awl.templatetags.awltags.py from django import template register = template.Library() # ============================================================================ @register.filter def getitem(dictionary, keyvar): """Custom django template filter that allows access to an item of a dictionary through the key contained in a template variable. Example: .. code-block:: python context_data = { 'data':{ 'foo':'bar', }, 'key':'foo', } template = Template('{% load awltags %}{{data|getitem:key}}') context = Context(context_data) result = template.render(context) >>> result 'bar' .. note:: Any KeyErrors are ignored and return an empty string """ try: return dictionary[keyvar] except KeyError: return '' # ---------------------------------------------------------------------------- @register.tag def accessor(parser, token): """This template tag is used to do complex nested attribute accessing of an object. The first parameter is the object being accessed, subsequent paramters are one of: * a variable in the template context * a literal in the template context * either of the above surrounded in square brackets For each variable or literal parameter given a `getattr` is called on the object, chaining to the next parameter. For any sqaure bracket enclosed items the access is done through a dictionary lookup. Example:: {% accessor car where 'front_seat' [position] ['fabric'] %} The above would result in the following chain of commands: .. code-block:: python ref = getattr(car, where) ref = getattr(ref, 'front_seat') ref = ref[position] return ref['fabric'] This tag also supports "as" syntax, putting the results into a template variable:: {% accessor car 'interior' as foo %} """ contents = token.split_contents() tag = contents[0] if len(contents) < 3: raise template.TemplateSyntaxError(('%s requires at least two ' 'arguments: object and one or more getattr parms') % tag) as_var = None if len(contents) >= 4: # check for "as" syntax if contents[-2] == 'as': as_var = contents[-1] contents = contents[:-2] return AccessorNode(contents[1], contents[2:], as_var) class AccessorNode(template.Node): def __init__(self, obj_name, parms, as_var): self.obj_name = obj_name self.parms = parms self.as_var = as_var def render(self, context): try: ref = context[self.obj_name] for parm in self.parms: if parm[0] == '"' or parm[0] == "'": # parm is a literal ref = getattr(ref, parm[1:-1]) elif parm[0] == '[': # parm is a dictionary lookup if parm[1] == '"' or parm[1] == "'": # dict key is a literal ref = ref[parm[2:-2]] else: # dict key is a template var key = context[parm[1:-1]] ref = ref[key] else: # parm is a template var attr = context[parm] ref = getattr(ref, attr) if self.as_var: context[self.as_var] = ref return '' return ref except: # any lookup errors should result in empty if self.as_var: context[self.as_var] = '' return '' # ---------------------------------------------------------------------------- @register.simple_tag def nop(*args): """This tag does nothing. Useful for a comment without having to build a full comment block. All parameters are ignored. Example:: {% nop 'this is a string' %} """ return ''
mit
-5,902,167,371,774,256,000
28.456522
78
0.512423
false
squidsrc/python-rocksdb
setup.py
1
1079
from setuptools import setup, find_packages from distutils.extension import Extension from Cython.Build import cythonize extension_defaults = { 'extra_compile_args': [ '-std=gnu++11', '-O3', '-Wall', '-Wextra', '-Wconversion', '-fno-strict-aliasing' ], 'language': 'c++', 'libraries': [ 'rt', 'snappy', 'bz2', 'z' ], 'extra_objects': ['librocksdb.a'] } mod1 = Extension( 'rocksdb._rocksdb', ['rocksdb/_rocksdb.pyx'], **extension_defaults ) setup( name="pyrocksdb", version='0.3', description="Python bindings for RocksDB", keywords='rocksdb', author='Stephan Hofmockel', author_email="Use the github issues", url="https://github.com/stephan-hof/pyrocksdb", license='BSD License', install_requires=[ 'setuptools', 'Cython>=0.20', ], package_dir={'rocksdb': 'rocksdb'}, packages=find_packages('.'), ext_modules=cythonize([mod1]), test_suite='rocksdb.tests', include_package_data=True )
bsd-3-clause
5,162,525,097,040,509,000
21.479167
51
0.578313
false
nateprewitt/pipenv
pipenv/project.py
1
17449
# -*- coding: utf-8 -*- import json import os import re import sys import base64 import hashlib import contoml import delegator import pipfile import toml from .utils import ( mkdir_p, convert_deps_from_pip, pep423_name, recase_file, find_requirements, is_file, is_vcs, python_version, cleanup_toml, is_installable_file, is_valid_url ) from .environments import PIPENV_MAX_DEPTH, PIPENV_VENV_IN_PROJECT from .environments import PIPENV_VIRTUALENV, PIPENV_PIPFILE if PIPENV_PIPFILE: if not os.path.isfile(PIPENV_PIPFILE): raise RuntimeError('Given PIPENV_PIPFILE is not found!') else: PIPENV_PIPFILE = os.path.abspath(PIPENV_PIPFILE) class Project(object): """docstring for Project""" def __init__(self, chdir=True): super(Project, self).__init__() self._name = None self._virtualenv_location = None self._download_location = None self._proper_names_location = None self._pipfile_location = None self._requirements_location = None self._original_dir = os.path.abspath(os.curdir) # Hack to skip this during pipenv run, or -r. if ('run' not in sys.argv) and chdir: try: os.chdir(self.project_directory) except (TypeError, AttributeError): pass def path_to(self, p): """Returns the absolute path to a given relative path.""" if os.path.isabs(p): return p return os.sep.join([self._original_dir, p]) def _build_package_list(self, package_section): """Returns a list of packages for pip-tools to consume.""" ps = {} # TODO: Separate the logic for showing packages from the filters for supplying pip-tools for k, v in self.parsed_pipfile.get(package_section, {}).items(): # Skip editable VCS deps. if hasattr(v, 'keys'): # When a vcs url is gven without editable it only appears as a key # Eliminate any vcs, path, or url entries which are not editable # Since pip-tools can't do deep resolution on them, even setuptools-installable ones if (is_vcs(v) or is_vcs(k) or (is_installable_file(k) or is_installable_file(v)) or any((prefix in v and (os.path.isfile(v[prefix]) or is_valid_url(v[prefix]))) for prefix in ['path', 'file'])): # If they are editable, do resolve them if 'editable' not in v: continue else: ps.update({k: v}) else: ps.update({k: v}) else: # Since these entries have no attributes we know they are not editable # So we can safely exclude things that need to be editable in order to be resolved # First exclude anything that is a vcs entry either in the key or value if not (any(is_vcs(i) for i in [k, v]) or # Then exclude any installable files that are not directories # Because pip-tools can resolve setup.py for example any(is_installable_file(i) for i in [k, v]) or # Then exclude any URLs because they need to be editable also # Things that are excluded can only be 'shallow resolved' any(is_valid_url(i) for i in [k, v])): ps.update({k: v}) return ps @property def name(self): if self._name is None: self._name = self.pipfile_location.split(os.sep)[-2] return self._name @property def pipfile_exists(self): return bool(self.pipfile_location) @property def required_python_version(self): if self.pipfile_exists: required = self.parsed_pipfile.get('requires', {}).get('python_full_version') if not required: required = self.parsed_pipfile.get('requires', {}).get('python_version') if required != "*": return required @property def project_directory(self): if self.pipfile_location is not None: return os.path.abspath(os.path.join(self.pipfile_location, os.pardir)) else: return None @property def requirements_exists(self): return bool(self.requirements_location) @property def virtualenv_exists(self): # TODO: Decouple project from existence of Pipfile. if self.pipfile_exists and os.path.exists(self.virtualenv_location): if os.name == 'nt': extra = ['Scripts', 'activate.bat'] else: extra = ['bin', 'activate'] return os.path.isfile(os.sep.join([self.virtualenv_location] + extra)) return False @property def virtualenv_name(self): # Replace dangerous characters into '_'. The length of the sanitized # project name is limited as 42 because of the limit of linux kernel # # 42 = 127 - len('/home//.local/share/virtualenvs//bin/python2') - 32 - len('-HASHHASH') # # 127 : BINPRM_BUF_SIZE - 1 # 32 : Maximum length of username # # References: # https://www.gnu.org/software/bash/manual/html_node/Double-Quotes.html # http://www.tldp.org/LDP/abs/html/special-chars.html#FIELDREF # https://github.com/torvalds/linux/blob/2bfe01ef/include/uapi/linux/binfmts.h#L18 sanitized = re.sub(r'[ $`!*@"\\\r\n\t]', '_', self.name)[0:42] # Hash the full path of the pipfile hash = hashlib.sha256(self.pipfile_location.encode()).digest()[:6] encoded_hash = base64.urlsafe_b64encode(hash).decode() # If the pipfile was located at '/home/user/MY_PROJECT/Pipfile', # the name of its virtualenv will be 'my-project-wyUfYPqE' return sanitized + '-' + encoded_hash @property def virtualenv_location(self): # if VIRTUAL_ENV is set, use that. if PIPENV_VIRTUALENV: return PIPENV_VIRTUALENV # Use cached version, if available. if self._virtualenv_location: return self._virtualenv_location # The user wants the virtualenv in the project. if not PIPENV_VENV_IN_PROJECT: c = delegator.run('pew dir "{0}"'.format(self.virtualenv_name)) loc = c.out.strip() # Default mode. else: loc = os.sep.join(self.pipfile_location.split(os.sep)[:-1] + ['.venv']) self._virtualenv_location = loc return loc @property def virtualenv_src_location(self): loc = os.sep.join([self.virtualenv_location, 'src']) mkdir_p(loc) return loc @property def download_location(self): if self._download_location is None: loc = os.sep.join([self.virtualenv_location, 'downloads']) self._download_location = loc # Create the directory, if it doesn't exist. mkdir_p(self._download_location) return self._download_location @property def proper_names_location(self): if self._proper_names_location is None: loc = os.sep.join([self.virtualenv_location, 'pipenv-proper-names.txt']) self._proper_names_location = loc # Create the database, if it doesn't exist. open(self._proper_names_location, 'a').close() return self._proper_names_location @property def proper_names(self): with open(self.proper_names_location) as f: return f.read().splitlines() def register_proper_name(self, name): """Registers a proper name to the database.""" with open(self.proper_names_location, 'a') as f: f.write('{0}\n'.format(name)) @property def pipfile_location(self): if PIPENV_PIPFILE: return PIPENV_PIPFILE if self._pipfile_location is None: try: loc = pipfile.Pipfile.find(max_depth=PIPENV_MAX_DEPTH) except RuntimeError: loc = None self._pipfile_location = loc return self._pipfile_location @property def requirements_location(self): if self._requirements_location is None: try: loc = find_requirements(max_depth=PIPENV_MAX_DEPTH) except RuntimeError: loc = None self._requirements_location = loc return self._requirements_location @property def parsed_pipfile(self): # Open the pipfile, read it into memory. with open(self.pipfile_location) as f: contents = f.read() # If any outline tables are present... if ('[packages.' in contents) or ('[dev-packages.' in contents): data = toml.loads(contents) # Convert all outline tables to inline tables. for section in ('packages', 'dev-packages'): for package in data.get(section, {}): # Convert things to inline tables — fancy :) if hasattr(data[section][package], 'keys'): _data = data[section][package] data[section][package] = toml._get_empty_inline_table(dict) data[section][package].update(_data) # We lose comments here, but it's for the best.) try: return contoml.loads(toml.dumps(data, preserve=True)) except RuntimeError: return toml.loads(toml.dumps(data, preserve=True)) else: # Fallback to toml parser, for large files. try: return contoml.loads(contents) except Exception: return toml.loads(contents) @property def _pipfile(self): """Pipfile divided by PyPI and external dependencies.""" pfile = self.parsed_pipfile for section in ('packages', 'dev-packages'): p_section = pfile.get(section, {}) for key in list(p_section.keys()): # Normalize key name to PEP 423. norm_key = pep423_name(key) p_section[norm_key] = p_section.pop(key) return pfile @property def settings(self): """A dictionary of the settings added to the Pipfile.""" return self.parsed_pipfile.get('pipenv', {}) def update_settings(self, d): settings = self.settings changed = False for new in d: if new not in settings: settings[new] = d[new] changed = True if changed: p = self.parsed_pipfile p['pipenv'] = settings # Write the changes to disk. self.write_toml(p) @property def _lockfile(self): """Pipfile.lock divided by PyPI and external dependencies.""" pfile = pipfile.load(self.pipfile_location) lockfile = json.loads(pfile.lock()) for section in ('default', 'develop'): lock_section = lockfile.get(section, {}) for key in list(lock_section.keys()): norm_key = pep423_name(key) lockfile[section][norm_key] = lock_section.pop(key) return lockfile @property def lockfile_location(self): return '{0}.lock'.format(self.pipfile_location) @property def lockfile_exists(self): return os.path.isfile(self.lockfile_location) @property def lockfile_content(self): with open(self.lockfile_location) as lock: return json.load(lock) @property def vcs_packages(self): """Returns a list of VCS packages, for not pip-tools to consume.""" ps = {} for k, v in self.parsed_pipfile.get('packages', {}).items(): if is_vcs(v) or is_vcs(k): ps.update({k: v}) return ps @property def vcs_dev_packages(self): """Returns a list of VCS packages, for not pip-tools to consume.""" ps = {} for k, v in self.parsed_pipfile.get('dev-packages', {}).items(): if is_vcs(v) or is_vcs(k): ps.update({k: v}) return ps @property def all_packages(self): """Returns a list of all packages.""" p = dict(self.parsed_pipfile.get('dev-packages', {})) p.update(self.parsed_pipfile.get('packages', {})) return p @property def packages(self): """Returns a list of packages, for pip-tools to consume.""" return self._build_package_list('packages') @property def dev_packages(self): """Returns a list of dev-packages, for pip-tools to consume.""" return self._build_package_list('dev-packages') def touch_pipfile(self): """Simply touches the Pipfile, for later use.""" with open('Pipfile', 'a'): os.utime('Pipfile', None) @property def pipfile_is_empty(self): if not self.pipfile_exists: return True with open(self.pipfile_location, 'r') as f: if not f.read(): return True return False def create_pipfile(self, python=None): """Creates the Pipfile, filled with juicy defaults.""" data = { # Default source. u'source': [ {u'url': u'https://pypi.python.org/simple', u'verify_ssl': True, 'name': 'pypi'} ], # Default packages. u'packages': {}, u'dev-packages': {}, } # Default requires. if python: data[u'requires'] = {'python_version': python_version(python)[:len('2.7')]} self.write_toml(data, 'Pipfile') def write_toml(self, data, path=None): """Writes the given data structure out as TOML.""" if path is None: path = self.pipfile_location try: formatted_data = contoml.dumps(data).rstrip() except Exception: for section in ('packages', 'dev-packages'): for package in data[section]: # Convert things to inline tables — fancy :) if hasattr(data[section][package], 'keys'): _data = data[section][package] data[section][package] = toml._get_empty_inline_table(dict) data[section][package].update(_data) formatted_data = toml.dumps(data).rstrip() formatted_data = cleanup_toml(formatted_data) with open(path, 'w') as f: f.write(formatted_data) @property def sources(self): if self.lockfile_exists: meta_ = self.lockfile_content['_meta'] sources_ = meta_.get('sources') if sources_: return sources_ if 'source' in self.parsed_pipfile: return self.parsed_pipfile['source'] else: return [{u'url': u'https://pypi.python.org/simple', u'verify_ssl': True, 'name': 'pypi'}] def get_source(self, name=None, url=None): for source in self.sources: if name: if source.get('name') == name: return source elif url: if source.get('url') in url: return source def destroy_lockfile(self): """Deletes the lockfile.""" try: return os.remove(self.lockfile_location) except OSError: pass def remove_package_from_pipfile(self, package_name, dev=False): # Read and append Pipfile. p = self._pipfile package_name = pep423_name(package_name) key = 'dev-packages' if dev else 'packages' if key in p and package_name in p[key]: del p[key][package_name] # Write Pipfile. self.write_toml(recase_file(p)) def add_package_to_pipfile(self, package_name, dev=False): # Read and append Pipfile. p = self._pipfile # Don't re-capitalize file URLs or VCSs. converted = convert_deps_from_pip(package_name) converted = converted[[k for k in converted.keys()][0]] if not (is_file(package_name) or is_vcs(converted) or 'path' in converted): package_name = pep423_name(package_name) key = 'dev-packages' if dev else 'packages' # Set empty group if it doesn't exist yet. if key not in p: p[key] = {} package = convert_deps_from_pip(package_name) package_name = [k for k in package.keys()][0] # Add the package to the group. p[key][package_name] = package[package_name] # Write Pipfile. self.write_toml(p) def add_index_to_pipfile(self, index): """Adds a given index to the Pipfile.""" # Read and append Pipfile. p = self._pipfile source = {'url': index, 'verify_ssl': True} # Add the package to the group. if 'source' not in p: p['source'] = [source] else: p['source'].append(source) # Write Pipfile. self.write_toml(p) def recase_pipfile(self): self.write_toml(recase_file(self._pipfile))
mit
562,355,048,727,634,100
32.41954
101
0.562224
false
mrcslws/nupic.research
projects/dynamic_sparse/runs/run_test.py
1
1756
# ---------------------------------------------------------------------- # Numenta Platform for Intelligent Computing (NuPIC) # Copyright (C) 2019, Numenta, Inc. Unless you have an agreement # with Numenta, Inc., for a separate license for this software code, the # following terms and conditions apply: # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU Affero Public License for more details. # # You should have received a copy of the GNU Affero Public License # along with this program. If not, see http://www.gnu.org/licenses. # # http://numenta.org/licenses/ # ---------------------------------------------------------------------- import os from nupic.research.frameworks.dynamic_sparse.common.utils import run_ray # alternative initialization based on configuration exp_config = dict( device="cuda", network="resnet18", dataset_name="CIFAR10", input_size=(3, 32, 32), num_classes=10, stats_mean=(0.4914, 0.4822, 0.4465), stats_std=(0.2023, 0.1994, 0.2010), model="SparseModel", data_dir="~/nta/data", on_perc=0.2, batch_size_train=10, batch_size_test=10, ) # run tune_config = dict( name=__file__, num_samples=1, local_dir=os.path.expanduser("~/nta/results"), checkpoint_freq=0, checkpoint_at_end=False, stop={"training_iteration": 10}, resources_per_trial={"cpu": 1, "gpu": 1}, verbose=2, ) run_ray(tune_config, exp_config)
agpl-3.0
5,158,335,504,190,792,000
31.518519
73
0.646925
false
wendlers/scratch-pynetsense
example-src/WrappedRemoteSensor.py
1
2457
## # This file is part of the Scratch Remote Sensor (SRS) Library project # # Copyright (C) 2012 Stefan Wendler <[email protected]> # # The SRS Library is free software; you can redistribute # it and/or modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2.1 of the License, or (at your option) any later version. # # SRS Library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with the JSherpa firmware; if not, write to the Free # Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA # 02111-1307 USA. ## ''' This file is part of the Scratch Remote Sensor Library project ''' import time import socket import logging from scratch.remotesensor import RemoteSensor, DEFAULT_HOST, DEFAULT_PORT class WrappedRemoteSensor(RemoteSensor): ''' This example shows how to write a baic wrapped remote sensor. It reads "/proc/meminfo" and parses out the values for "memtotal" and "memfree". Each time one of this values changes, a sensor-update is send to the server. To start this sensor, pass it as a wrapper to the wrapper daemon: source setenv.sh python src/scratch/wrappers/daemon.py --foreground --loglevel DEBUG \ --wrap WrappedRemoteSensor#WrappedRemoteSensor start ''' __args = None # name used e.g. for heartbeat name = "wrap" def __init__(self, myArgs = {}): ''' Create a new instance of the monitoring remote sensor. @param myArgs arguments for the sensor: host and port. ''' RemoteSensor.__init__(self, args = myArgs) def worker(self): ''' Read memory info from proc filesystem (memtotal and memfree). If the value changed, send a sensor-update message to the server. ''' try: f = open('/proc/meminfo', 'r') lines = f.readlines() f.close() changed = False for l in lines: w = l.split(':') k = w[0].strip().lower() v = int(w[1].strip().split(' ')[0]) # this are the only field we are interested in if k in [ 'memtotal', 'memfree']: if self.values.set(k, v): changed = True if changed: self.bcastMsg('input-changed') except Exception as e: logging.error(e)
lgpl-2.1
-1,918,675,807,934,093,300
26.606742
74
0.699634
false
luotao1/Paddle
python/paddle/tensor/logic.py
1
16431
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..fluid.layer_helper import LayerHelper from ..fluid.data_feeder import check_type, check_variable_and_dtype from ..fluid.layers.layer_function_generator import templatedoc from .. import fluid from ..fluid.framework import in_dygraph_mode from paddle.common_ops_import import * from ..framework import VarBase as Tensor # TODO: define logic functions of a tensor from ..fluid.layers import is_empty #DEFINE_ALIAS from ..fluid.layers import logical_and #DEFINE_ALIAS from ..fluid.layers import logical_not #DEFINE_ALIAS from ..fluid.layers import logical_or #DEFINE_ALIAS from ..fluid.layers import logical_xor #DEFINE_ALIAS __all__ = [ 'equal', 'equal_all', 'greater_equal', 'greater_than', 'is_empty', 'less_equal', 'less_than', 'logical_and', 'logical_not', 'logical_or', 'logical_xor', 'not_equal', 'allclose', 'is_tensor' # 'isnan' ] def equal_all(x, y, name=None): """ This OP returns the truth value of :math:`x == y`. True if two inputs have the same elements, False otherwise. **NOTICE**: The output of this OP has no gradient. Args: x(Tensor): Tensor, data type is float32, float64, int32, int64. y(Tensor): Tensor, data type is float32, float64, int32, int64. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor: output Tensor, data type is bool, value is [False] or [True]. Examples: .. code-block:: python import paddle x = paddle.to_tensor([1, 2, 3]) y = paddle.to_tensor([1, 2, 3]) z = paddle.to_tensor([1, 4, 3]) result1 = paddle.equal_all(x, y) print(result1) # result1 = [True ] result2 = paddle.equal_all(x, z) print(result2) # result2 = [False ] """ helper = LayerHelper("equal_all", **locals()) out = helper.create_variable_for_type_inference(dtype='bool') helper.append_op( type='equal_all', inputs={'X': [x], 'Y': [y]}, outputs={'Out': [out]}) return out @templatedoc() def allclose(x, y, rtol=1e-05, atol=1e-08, equal_nan=False, name=None): """ ${comment} Args: x(Tensor): ${input_comment}. y(Tensor): ${other_comment}. rtol(rtoltype, optional): The relative tolerance. Default: :math:`1e-5` . atol(atoltype, optional): The absolute tolerance. Default: :math:`1e-8` . equal_nan(equalnantype, optional): ${equal_nan_comment}. name (str, optional): Name for the operation. For more information, please refer to :ref:`api_guide_Name`. Default: None. Returns: Tensor: ${out_comment}. Raises: TypeError: The data type of ``x`` must be one of float32, float64. TypeError: The data type of ``y`` must be one of float32, float64. TypeError: The type of ``rtol`` must be float. TypeError: The type of ``atol`` must be float. TypeError: The type of ``equal_nan`` must be bool. Examples: .. code-block:: python import paddle x = paddle.to_tensor([10000., 1e-07]) y = paddle.to_tensor([10000.1, 1e-08]) result1 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08, equal_nan=False, name="ignore_nan") np_result1 = result1.numpy() # [False] result2 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08, equal_nan=True, name="equal_nan") np_result2 = result2.numpy() # [False] x = paddle.to_tensor([1.0, float('nan')]) y = paddle.to_tensor([1.0, float('nan')]) result1 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08, equal_nan=False, name="ignore_nan") np_result1 = result1.numpy() # [False] result2 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08, equal_nan=True, name="equal_nan") np_result2 = result2.numpy() # [True] """ if in_dygraph_mode(): return core.ops.allclose(x, y, 'rtol', str(rtol), 'atol', str(atol), 'equal_nan', equal_nan) check_variable_and_dtype(x, "input", ['float32', 'float64'], 'allclose') check_variable_and_dtype(y, "input", ['float32', 'float64'], 'allclose') check_type(rtol, 'rtol', float, 'allclose') check_type(atol, 'atol', float, 'allclose') check_type(equal_nan, 'equal_nan', bool, 'allclose') helper = LayerHelper("allclose", **locals()) out = helper.create_variable_for_type_inference(dtype='bool') inputs = {'Input': x, 'Other': y} outputs = {'Out': out} attrs = {'rtol': str(rtol), 'atol': str(atol), 'equal_nan': equal_nan} helper.append_op( type='allclose', inputs=inputs, outputs=outputs, attrs=attrs) return out @templatedoc() def equal(x, y, name=None): """ This layer returns the truth value of :math:`x == y` elementwise. **NOTICE**: The output of this OP has no gradient. Args: x(Tensor): Tensor, data type is float32, float64, int32, int64. y(Tensor): Tensor, data type is float32, float64, int32, int64. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor: output Tensor, it's shape is the same as the input's Tensor, and the data type is bool. The result of this op is stop_gradient. Examples: .. code-block:: python import paddle x = paddle.to_tensor([1, 2, 3]) y = paddle.to_tensor([1, 3, 2]) result1 = paddle.equal(x, y) print(result1) # result1 = [True False False] """ if in_dygraph_mode(): return core.ops.equal(x, y) check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"], "equal") check_variable_and_dtype(y, "y", ["float32", "float64", "int32", "int64"], "equal") helper = LayerHelper("equal", **locals()) out = helper.create_variable_for_type_inference(dtype='bool') out.stop_gradient = True helper.append_op( type='equal', inputs={'X': [x], 'Y': [y]}, outputs={'Out': [out]}) return out @templatedoc() def greater_equal(x, y, name=None): """ This OP returns the truth value of :math:`x >= y` elementwise, which is equivalent function to the overloaded operator `>=`. **NOTICE**: The output of this OP has no gradient. Args: x(Tensor): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64. y(Tensor): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor, the output data type is bool: The tensor storing the output, the output shape is same as input :attr:`x`. Examples: .. code-block:: python import paddle x = paddle.to_tensor([1, 2, 3]) y = paddle.to_tensor([1, 3, 2]) result1 = paddle.greater_equal(x, y) print(result1) # result1 = [True False True] """ if in_dygraph_mode(): return core.ops.greater_equal(x, y) check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"], "greater_equal") check_variable_and_dtype(y, "y", ["float32", "float64", "int32", "int64"], "greater_equal") helper = LayerHelper("greater_equal", **locals()) out = helper.create_variable_for_type_inference(dtype='bool') out.stop_gradient = True helper.append_op( type='greater_equal', inputs={'X': [x], 'Y': [y]}, outputs={'Out': [out]}) return out @templatedoc() def greater_than(x, y, name=None): """ This OP returns the truth value of :math:`x > y` elementwise, which is equivalent function to the overloaded operator `>`. **NOTICE**: The output of this OP has no gradient. Args: x(Tensor): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64. y(Tensor): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor, the output data type is bool: The tensor storing the output, the output shape is same as input :attr:`x` . Examples: .. code-block:: python import paddle x = paddle.to_tensor([1, 2, 3]) y = paddle.to_tensor([1, 3, 2]) result1 = paddle.greater_than(x, y) print(result1) # result1 = [False False True] """ if in_dygraph_mode(): return core.ops.greater_than(x, y) check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"], "greater_than") check_variable_and_dtype(y, "y", ["float32", "float64", "int32", "int64"], "greater_than") helper = LayerHelper("greater_than", **locals()) out = helper.create_variable_for_type_inference(dtype='bool') out.stop_gradient = True helper.append_op( type='greater_than', inputs={'X': [x], 'Y': [y]}, outputs={'Out': [out]}) return out @templatedoc() def less_equal(x, y, name=None): """ This OP returns the truth value of :math:`x <= y` elementwise, which is equivalent function to the overloaded operator `<=`. **NOTICE**: The output of this OP has no gradient. Args: x(Tensor): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64. y(Tensor): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor, the output data type is bool: The tensor storing the output, the output shape is same as input :attr:`x`. Examples: .. code-block:: python import paddle x = paddle.to_tensor([1, 2, 3]) y = paddle.to_tensor([1, 3, 2]) result1 = paddle.less_equal(x, y) print(result1) # result1 = [True True False] """ if in_dygraph_mode(): return core.ops.less_equal(x, y) check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"], "less_equal") check_variable_and_dtype(y, "y", ["float32", "float64", "int32", "int64"], "less_equal") helper = LayerHelper("less_equal", **locals()) out = helper.create_variable_for_type_inference(dtype='bool') out.stop_gradient = True helper.append_op( type='less_equal', inputs={'X': [x], 'Y': [y]}, outputs={'Out': [out]}) return out @templatedoc() def less_than(x, y, name=None): """ This OP returns the truth value of :math:`x < y` elementwise, which is equivalent function to the overloaded operator `<`. **NOTICE**: The output of this OP has no gradient. Args: x(Tensor): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64. y(Tensor): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor, the output data type is bool: The tensor storing the output, the output shape is same as input :attr:`x`. Examples: .. code-block:: python import paddle x = paddle.to_tensor([1, 2, 3]) y = paddle.to_tensor([1, 3, 2]) result1 = paddle.less_than(x, y) print(result1) # result1 = [False True False] """ if in_dygraph_mode(): return core.ops.less_than(x, y) check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"], "less_than") check_variable_and_dtype(y, "y", ["float32", "float64", "int32", "int64"], "less_than") helper = LayerHelper("less_than", **locals()) out = helper.create_variable_for_type_inference(dtype='bool') out.stop_gradient = True helper.append_op( type='less_than', inputs={'X': [x], 'Y': [y]}, outputs={'Out': [out]}) return out @templatedoc() def not_equal(x, y, name=None): """ This OP returns the truth value of :math:`x != y` elementwise, which is equivalent function to the overloaded operator `!=`. **NOTICE**: The output of this OP has no gradient. Args: x(Tensor): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64. y(Tensor): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor, the output data type is bool: The tensor storing the output, the output shape is same as input :attr:`x`. Examples: .. code-block:: python import paddle x = paddle.to_tensor([1, 2, 3]) y = paddle.to_tensor([1, 3, 2]) result1 = paddle.not_equal(x, y) print(result1) # result1 = [False True True] """ if in_dygraph_mode(): return core.ops.not_equal(x, y) check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"], "not_equal") check_variable_and_dtype(y, "y", ["float32", "float64", "int32", "int64"], "not_equal") helper = LayerHelper("not_equal", **locals()) out = helper.create_variable_for_type_inference(dtype='bool') out.stop_gradient = True helper.append_op( type='not_equal', inputs={'X': [x], 'Y': [y]}, outputs={'Out': [out]}) return out def is_tensor(x): """ This function tests whether input object is a paddle.Tensor. Args: x (object): Object to test. Returns: A boolean value. True if 'x' is a paddle.Tensor, otherwise False. Examples: .. code-block:: python import paddle input1 = paddle.rand(shape=[2, 3, 5], dtype='float32') check = paddle.is_tensor(input1) print(check) #True input3 = [1, 4] check = paddle.is_tensor(input3) print(check) #False """ return isinstance(x, Tensor)
apache-2.0
1,783,713,438,296,025,000
35.676339
128
0.585296
false
alsrgv/tensorflow
tensorflow/python/ops/math_grad.py
1
57271
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Gradients for operators defined in math_ops.py.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.python.compat import compat from tensorflow.python.eager import context from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import gen_array_ops from tensorflow.python.ops import gen_math_ops from tensorflow.python.ops import math_ops def _safe_shape_div(x, y): """Divides `x / y` assuming `x, y >= 0`, treating `0 / 0 = 0`.""" return x // math_ops.maximum(y, 1) @ops.RegisterGradient("ArgMax") def _ArgMaxGrad(op, grad): del op, grad return [None, None] @ops.RegisterGradient("ArgMin") def _ArgMinGrad(op, grad): del op, grad return [None, None] # TODO(rmlarsen): Implement gradient. ops.NotDifferentiable("EuclideanNorm") _empty_tuple = () def _IsScalar(x): return x._shape_tuple() is _empty_tuple # pylint: disable=protected-access @ops.RegisterGradient("Sum") def _SumGrad(op, grad): """Gradient for Sum.""" # Fast path for when reducing to a scalar and ndims is known: adds only # Reshape and Tile ops (and possibly a Shape). input_0_shape = op.inputs[0]._shape_tuple() # pylint: disable=protected-access if input_0_shape is not None: axes = tensor_util.constant_value(op.inputs[1]) if axes is not None: rank = len(input_0_shape) if np.array_equal(axes, np.arange(rank)): # Reduce all dims. if context.executing_eagerly(): ctx = context.context() new_shape = ctx.ones_rank_cache().get(rank) if new_shape is None: new_shape = constant_op.constant([1] * rank, dtype=dtypes.int32) ctx.ones_rank_cache().put(rank, new_shape) else: new_shape = [1] * rank grad = array_ops.reshape(grad, new_shape) # If shape is not fully defined (but rank is), we use Shape. if None not in input_0_shape: input_shape = constant_op.constant(input_0_shape, dtype=dtypes.int32) else: input_shape = array_ops.shape(op.inputs[0]) return [array_ops.tile(grad, input_shape), None] input_shape = array_ops.shape(op.inputs[0]) # TODO(apassos) remove this once device placement for eager ops makes more # sense. with ops.colocate_with(input_shape): output_shape_kept_dims = math_ops.reduced_shape(input_shape, op.inputs[1]) tile_scaling = _safe_shape_div(input_shape, output_shape_kept_dims) grad = array_ops.reshape(grad, output_shape_kept_dims) return [array_ops.tile(grad, tile_scaling), None] def _MinOrMaxGrad(op, grad): """Gradient for Min or Max. Amazingly it's precisely the same code.""" input_shape = array_ops.shape(op.inputs[0]) output_shape_kept_dims = math_ops.reduced_shape(input_shape, op.inputs[1]) y = op.outputs[0] y = array_ops.reshape(y, output_shape_kept_dims) grad = array_ops.reshape(grad, output_shape_kept_dims) # Compute the number of selected (maximum or minimum) elements in each # reduction dimension. If there are multiple minimum or maximum elements # then the gradient will be divided between them. indicators = math_ops.cast(math_ops.equal(y, op.inputs[0]), grad.dtype) num_selected = array_ops.reshape( math_ops.reduce_sum(indicators, op.inputs[1]), output_shape_kept_dims) return [math_ops.divide(indicators, num_selected) * grad, None] @ops.RegisterGradient("Max") def _MaxGrad(op, grad): """Gradient for Max.""" return _MinOrMaxGrad(op, grad) @ops.RegisterGradient("Min") def _MinGrad(op, grad): return _MinOrMaxGrad(op, grad) @ops.RegisterGradient("Mean") def _MeanGrad(op, grad): """Gradient for Mean.""" sum_grad = _SumGrad(op, grad)[0] input_shape = op.inputs[0]._shape_tuple() # pylint: disable=protected-access output_shape = op.outputs[0]._shape_tuple() # pylint: disable=protected-access if (input_shape is not None and output_shape is not None and None not in input_shape and None not in output_shape): input_size = np.prod(input_shape) output_size = np.prod(output_shape) factor = input_size // max(output_size, 1) factor = constant_op.constant(factor, dtype=sum_grad.dtype) else: input_shape = array_ops.shape(op.inputs[0]) output_shape = array_ops.shape(op.outputs[0]) factor = _safe_shape_div( math_ops.reduce_prod(input_shape), math_ops.reduce_prod(output_shape)) return math_ops.truediv(sum_grad, math_ops.cast(factor, sum_grad.dtype)), None @ops.RegisterGradient("Prod") def _ProdGrad(op, grad): """Gradient for Prod.""" # The gradient can be expressed by dividing the product by each entry of the # input tensor, but this approach can't deal with zeros in the input. # Here, we avoid this problem by composing the output as a product of two # cumprod operations. input_shape = array_ops.shape(op.inputs[0]) # Reshape reduction indices for the case where the parameter is a scalar reduction_indices = array_ops.reshape(op.inputs[1], [-1]) # Expand grad to full input shape output_shape_kept_dims = math_ops.reduced_shape(input_shape, op.inputs[1]) tile_scaling = _safe_shape_div(input_shape, output_shape_kept_dims) grad = array_ops.reshape(grad, output_shape_kept_dims) grad = array_ops.tile(grad, tile_scaling) # Pack all reduced dimensions into a single one, so we can perform the # cumprod ops. If the reduction dims list is empty, it defaults to float32, # so we need to cast here. We put all the shape-related ops on CPU to avoid # copying back and forth, and since listdiff is CPU only. with ops.device("/cpu:0"): rank = array_ops.rank(op.inputs[0]) reduction_indices = (reduction_indices + rank) % rank reduced = math_ops.cast(reduction_indices, dtypes.int32) idx = math_ops.range(0, rank) other, _ = array_ops.setdiff1d(idx, reduced) perm = array_ops.concat([reduced, other], 0) reduced_num = math_ops.reduce_prod(array_ops.gather(input_shape, reduced)) other_num = math_ops.reduce_prod(array_ops.gather(input_shape, other)) permuted = array_ops.transpose(op.inputs[0], perm) permuted_shape = array_ops.shape(permuted) reshaped = array_ops.reshape(permuted, (reduced_num, other_num)) # Calculate product, leaving out the current entry left = math_ops.cumprod(reshaped, axis=0, exclusive=True) right = math_ops.cumprod(reshaped, axis=0, exclusive=True, reverse=True) # For complex inputs, the gradient is in the conjugate direction. y = array_ops.reshape( math_ops.conj(left) * math_ops.conj(right), permuted_shape) # Invert the transpose and reshape operations. # Make sure to set the statically known shape information through a reshape. out = grad * array_ops.transpose(y, array_ops.invert_permutation(perm)) return array_ops.reshape(out, input_shape), None @ops.RegisterGradient("SegmentSum") def _SegmentSumGrad(op, grad): """Gradient for SegmentSum.""" return array_ops.gather(grad, op.inputs[1]), None @ops.RegisterGradient("SegmentMean") def _SegmentMeanGrad(op, grad): """Gradient for SegmentMean.""" input_rank = array_ops.rank(op.inputs[0]) ones_shape = array_ops.concat([ array_ops.shape(op.inputs[1]), array_ops.fill(array_ops.expand_dims(input_rank - 1, 0), 1) ], 0) ones = array_ops.fill(ones_shape, constant_op.constant(1, dtype=grad.dtype)) scaled_grad = math_ops.divide(grad, math_ops.segment_sum(ones, op.inputs[1])) return array_ops.gather(scaled_grad, op.inputs[1]), None @ops.RegisterGradient("SparseSegmentSum") def _SparseSegmentSumGrad(op, grad): """Gradient for SparseSegmentSum.""" input_rows = array_ops.shape(op.inputs[0])[0] return (math_ops.unsorted_segment_sum( array_ops.gather(grad, op.inputs[2]), op.inputs[1], input_rows), None, None) @ops.RegisterGradient("SparseSegmentSumWithNumSegments") def _SparseSegmentSumWithNumSegmentsGrad(op, grad): """Gradient for SparseSegmentSumWithNumSegments.""" input_rows = array_ops.shape(op.inputs[0])[0] return (math_ops.unsorted_segment_sum( array_ops.gather(grad, op.inputs[2]), op.inputs[1], input_rows), None, None, None) @ops.RegisterGradient("SparseSegmentMean") def _SparseSegmentMeanGrad(op, grad): """Gradient for SparseSegmentMean.""" dim0 = array_ops.shape(op.inputs[0])[0] return (math_ops.sparse_segment_mean_grad(grad, op.inputs[1], op.inputs[2], dim0), None, None) @ops.RegisterGradient("SparseSegmentMeanWithNumSegments") def _SparseSegmentMeanWithNumSegmentsGrad(op, grad): """Gradient for SparseSegmentMeanWithNumSegments.""" dim0 = array_ops.shape(op.inputs[0])[0] return (math_ops.sparse_segment_mean_grad(grad, op.inputs[1], op.inputs[2], dim0), None, None, None) @ops.RegisterGradient("SparseSegmentSqrtN") def _SparseSegmentSqrtNGrad(op, grad): """Gradient for SparseSegmentSqrtN.""" dim0 = array_ops.shape(op.inputs[0])[0] return (math_ops.sparse_segment_sqrt_n_grad(grad, op.inputs[1], op.inputs[2], dim0), None, None) @ops.RegisterGradient("SparseSegmentSqrtNWithNumSegments") def _SparseSegmentSqrtNWithNumSegmentsGrad(op, grad): """Gradient for SparseSegmentSqrtNWithNumSegments.""" dim0 = array_ops.shape(op.inputs[0])[0] return (math_ops.sparse_segment_sqrt_n_grad(grad, op.inputs[1], op.inputs[2], dim0), None, None, None) def _SegmentMinOrMaxGrad(op, grad): """ Gradient for SegmentMin and SegmentMax. """ zeros = array_ops.zeros_like(op.inputs[0], dtype=op.inputs[0].dtype) # Get the number of selected (minimum or maximum) elements in each segment. gathered_outputs = array_ops.gather(op.outputs[0], op.inputs[1]) is_selected = math_ops.equal(op.inputs[0], gathered_outputs) num_selected = math_ops.segment_sum( math_ops.cast(is_selected, grad.dtype), op.inputs[1]) # Compute the gradient for each segment. The gradient for the ith segment is # divided evenly among the selected elements in that segment. weighted_grads = math_ops.divide(grad, num_selected) gathered_grads = array_ops.gather(weighted_grads, op.inputs[1]) return array_ops.where(is_selected, gathered_grads, zeros), None @ops.RegisterGradient("SegmentMin") def _SegmentMinGrad(op, grad): """Gradient for SegmentMin.""" return _SegmentMinOrMaxGrad(op, grad) @ops.RegisterGradient("SegmentMax") def _SegmentMaxGrad(op, grad): """Gradient for SegmentMax.""" return _SegmentMinOrMaxGrad(op, grad) def _GatherDropNegatives(params, ids, zero_clipped_indices=None, is_positive=None): """ Helper function for unsorted segment ops. Gathers params for positive segment ids and gathers 0 for inputs with negative segment id. Also returns the clipped indices and a boolean mask with the same shape as ids where a positive id is masked as true. With this, the latter two can be passed as arguments to this function to reuse them. """ if zero_clipped_indices is None: zero_clipped_indices = math_ops.maximum(ids, array_ops.zeros_like(ids)) gathered = array_ops.gather(params, zero_clipped_indices) if is_positive is None: is_positive = math_ops.greater_equal(ids, 0) # tf.where(condition, x, y) requires condition to have the same shape as x # and y. # todo(philjd): remove this if tf.where supports broadcasting (#9284) for _ in range(gathered.shape.ndims - is_positive.shape.ndims): is_positive = array_ops.expand_dims(is_positive, -1) is_positive = ( is_positive & array_ops.ones_like(gathered, dtype=dtypes.bool)) # replace gathered params of negative indices with 0 zero_slice = array_ops.zeros_like(gathered) return (array_ops.where(is_positive, gathered, zero_slice), zero_clipped_indices, is_positive) def _UnsortedSegmentMinOrMaxGrad(op, grad): """ Gradient for UnsortedSegmentMin and UnsortedSegmentMax. """ # Get the number of selected (minimum or maximum) elements in each segment. gathered_outputs, zero_clipped_indices, is_positive = \ _GatherDropNegatives(op.outputs[0], op.inputs[1]) is_selected = math_ops.equal(op.inputs[0], gathered_outputs) is_selected = math_ops.logical_and(is_selected, is_positive) num_selected = math_ops.unsorted_segment_sum( math_ops.cast(is_selected, grad.dtype), op.inputs[1], op.inputs[2]) # Compute the gradient for each segment. The gradient for the ith segment is # divided evenly among the selected elements in that segment. weighted_grads = math_ops.divide(grad, num_selected) gathered_grads, _, _ = _GatherDropNegatives(weighted_grads, None, zero_clipped_indices, is_positive) zeros = array_ops.zeros_like(gathered_grads) return array_ops.where(is_selected, gathered_grads, zeros), None, None @ops.RegisterGradient("UnsortedSegmentSum") def _UnsortedSegmentSumGrad(op, grad): """Gradient for UnsortedSegmentSum.""" return _GatherDropNegatives(grad, op.inputs[1])[0], None, None @ops.RegisterGradient("UnsortedSegmentMax") def _UnsortedSegmentMaxGrad(op, grad): """ Gradient for UnsortedSegmentMax. """ return _UnsortedSegmentMinOrMaxGrad(op, grad) @ops.RegisterGradient("UnsortedSegmentMin") def _UnsortedSegmentMinGrad(op, grad): """ Gradient for UnsortedSegmentMin. """ return _UnsortedSegmentMinOrMaxGrad(op, grad) @ops.RegisterGradient("UnsortedSegmentProd") def _UnsortedSegmentProdGrad(op, grad): """ Gradient for UnsortedSegmentProd. The gradient can be expressed for each segment by dividing the segment's product by each element of the segment input tensor, but this approach can't deal with zeros in the input. Unlike reduce_prod we can't use cumsum here as individual segments may have a different number of elements. Therefore we consider three cases: 1) A segment input contains no zeros and we can safely divide by the input tensor. 2) A segment contains exactly one zero. Then the gradient of each input of the segment is zero except for the 0-input, there the gradient is the product of the remaining segment entries. 3) A segment contains at least two zeros. The gradient is zero for all segment inputs. """ # Note that unsorted_segment_sum will filter out the negative indices, # so we don't need to do a logical_and with is_positive here is_zero = math_ops.equal(op.inputs[0], 0) num_zeros = gen_math_ops.unsorted_segment_sum( math_ops.cast(is_zero, dtype=dtypes.int32), op.inputs[1], op.inputs[2]) # handle case 3 and set the gradient to 0 for segments with more than one # 0 as input grad = array_ops.where( math_ops.greater(num_zeros, 1), array_ops.zeros_like(grad), grad) # replace all zeros with ones and compute the unsorted_segment_prod non_zero_data = array_ops.where(is_zero, array_ops.ones_like(op.inputs[0]), op.inputs[0]) non_zero_prod = gen_math_ops.unsorted_segment_prod(non_zero_data, op.inputs[1], op.inputs[2]) # clip the indices for gather to be positive zero_clipped_indices = math_ops.maximum(op.inputs[1], array_ops.zeros_like(op.inputs[1])) gathered_prod = array_ops.gather(op.outputs[0], zero_clipped_indices) gathered_non_zero_prod = array_ops.gather(non_zero_prod, zero_clipped_indices) prod_divided_by_el = gathered_prod / op.inputs[0] # May contain nan/inf. # Now fetch the individual results for segments containing 0 and those that # don't. is_zero will also fetch results for entries with negative index # but the following gather_drop_negatives sets the corresponding entry in # grad to 0 for these partial_derivative = array_ops.where(is_zero, gathered_non_zero_prod, prod_divided_by_el) gathered_grad = _GatherDropNegatives(grad, op.inputs[1], zero_clipped_indices)[0] return gathered_grad * partial_derivative, None, None @ops.RegisterGradient("Abs") def _AbsGrad(op, grad): x = op.inputs[0] return grad * math_ops.sign(x) @ops.RegisterGradient("Neg") def _NegGrad(_, grad): """Returns -grad.""" return -grad @ops.RegisterGradient("Inv") def _InvGrad(op, grad): """Returns -grad * (1 / x^2).""" y = op.outputs[0] # y = 1 / x return gen_math_ops.reciprocal_grad(y, grad) @ops.RegisterGradient("Reciprocal") def _ReciprocalGrad(op, grad): """Returns -grad * (1 / x^2).""" y = op.outputs[0] # y = 1 / x return gen_math_ops.reciprocal_grad(y, grad) @ops.RegisterGradient("InvGrad") def _InvGradGrad(op, grad): b = op.inputs[1] # op.output[0]: y = -b * conj(a)^2 with ops.control_dependencies([grad]): ca = math_ops.conj(op.inputs[0]) cg = math_ops.conj(grad) return cg * -2.0 * b * ca, gen_math_ops.reciprocal_grad(ca, grad) @ops.RegisterGradient("ReciprocalGrad") def _ReciprocalGradGrad(op, grad): b = op.inputs[1] # op.output[0]: y = -b * conj(a)^2 with ops.control_dependencies([grad]): ca = math_ops.conj(op.inputs[0]) cg = math_ops.conj(grad) return cg * -2.0 * b * ca, gen_math_ops.reciprocal_grad(ca, grad) @ops.RegisterGradient("Square") def _SquareGrad(op, grad): x = op.inputs[0] # Added control dependencies to prevent 2*x from being computed too early. with ops.control_dependencies([grad]): x = math_ops.conj(x) y = constant_op.constant(2.0, dtype=x.dtype) return math_ops.multiply(grad, math_ops.multiply(x, y)) @ops.RegisterGradient("Sqrt") def _SqrtGrad(op, grad): y = op.outputs[0] # y = x^(1/2) return gen_math_ops.sqrt_grad(y, grad) @ops.RegisterGradient("SqrtGrad") def _SqrtGradGrad(op, grad): a = op.inputs[0] y = op.outputs[0] # y = 0.5 * b / conj(a) with ops.control_dependencies([grad]): if compat.forward_compatible(2019, 9, 14): ga = gen_math_ops.xdivy(grad, a) return -gen_math_ops.mul_no_nan(y, math_ops.conj(ga)), 0.5 * ga else: ga = grad / a return -math_ops.conj(ga) * y, 0.5 * ga @ops.RegisterGradient("Rsqrt") def _RsqrtGrad(op, grad): """Returns -0.5 * grad * conj(y)^3.""" y = op.outputs[0] # y = x^(-1/2) return gen_math_ops.rsqrt_grad(y, grad) @ops.RegisterGradient("RsqrtGrad") def _RsqrtGradGrad(op, grad): """Returns backprop gradient for f(a,b) = -0.5 * b * conj(a)^3.""" a = op.inputs[0] # a = x^{-1/2} b = op.inputs[1] # backprop gradient for a with ops.control_dependencies([grad]): ca = math_ops.conj(a) cg = math_ops.conj(grad) grad_a = -1.5 * cg * b * math_ops.square(ca) grad_b = gen_math_ops.rsqrt_grad(ca, grad) return grad_a, grad_b @ops.RegisterGradient("Exp") def _ExpGrad(op, grad): """Returns grad * exp(x).""" y = op.outputs[0] # y = e^x with ops.control_dependencies([grad]): y = math_ops.conj(y) if compat.forward_compatible(2019, 9, 14): return math_ops.mul_no_nan(y, grad) else: return grad * y @ops.RegisterGradient("Expm1") def _Expm1Grad(op, grad): """Returns grad * exp(x).""" x = op.inputs[0] with ops.control_dependencies([grad]): x = math_ops.conj(x) y = math_ops.exp(x) if compat.forward_compatible(2019, 9, 14): return math_ops.mul_no_nan(y, grad) else: return grad * y @ops.RegisterGradient("Log") def _LogGrad(op, grad): """Returns grad * (1/x).""" x = op.inputs[0] with ops.control_dependencies([grad]): x = math_ops.conj(x) if compat.forward_compatible(2019, 9, 14): return gen_math_ops.xdivy(grad, x) else: return grad * math_ops.reciprocal(x) @ops.RegisterGradient("Log1p") def _Log1pGrad(op, grad): """Returns grad * (1/(1 + x)).""" x = op.inputs[0] with ops.control_dependencies([grad]): x = math_ops.conj(x) if compat.forward_compatible(2019, 9, 14): return gen_math_ops.xdivy(grad, 1 + x) else: return grad * math_ops.reciprocal(1 + x) @ops.RegisterGradient("Xlogy") def _XLogyGrad(op, grad): """Returns gradient of xlogy(x, y) with respect to x and y.""" x = op.inputs[0] y = op.inputs[1] sx = array_ops.shape(x) sy = array_ops.shape(y) rx, ry = gen_array_ops.broadcast_gradient_args(sx, sy) with ops.control_dependencies([grad]): not_zero_x = math_ops.cast( math_ops.not_equal(x, math_ops.cast(0., dtype=x.dtype)), dtype=x.dtype) partial_x = gen_math_ops.xlogy(not_zero_x, y) partial_y = gen_math_ops.xdivy(x, y) return (array_ops.reshape(math_ops.reduce_sum(partial_x * grad, rx), sx), array_ops.reshape(math_ops.reduce_sum(partial_y * grad, ry), sy)) @ops.RegisterGradient("Xdivy") def _XDivyGrad(op, grad): """Returns gradient of xdivy(x, y) with respect to x and y.""" x = op.inputs[0] y = op.inputs[1] sx = array_ops.shape(x) sy = array_ops.shape(y) rx, ry = gen_array_ops.broadcast_gradient_args(sx, sy) with ops.control_dependencies([grad]): not_zero_x = math_ops.cast( math_ops.not_equal(x, math_ops.cast(0., dtype=x.dtype)), dtype=x.dtype) partial_x = gen_math_ops.xdivy(not_zero_x, y) partial_y = gen_math_ops.xdivy(math_ops.negative(x), y**2) return (array_ops.reshape(math_ops.reduce_sum(partial_x * grad, rx), sx), array_ops.reshape(math_ops.reduce_sum(partial_y * grad, ry), sy)) @ops.RegisterGradient("Sinh") def _SinhGrad(op, grad): """Returns grad * cosh(x).""" x = op.inputs[0] with ops.control_dependencies([grad]): x = math_ops.conj(x) return grad * math_ops.cosh(x) @ops.RegisterGradient("Cosh") def _CoshGrad(op, grad): """Returns grad * sinh(x).""" x = op.inputs[0] with ops.control_dependencies([grad]): x = math_ops.conj(x) return grad * math_ops.sinh(x) @ops.RegisterGradient("Tanh") def _TanhGrad(op, grad): """Returns grad * (1 - tanh(x) * tanh(x)).""" y = op.outputs[0] # y = tanh(x) with ops.control_dependencies([grad]): y = math_ops.conj(y) return gen_math_ops.tanh_grad(y, grad) @ops.RegisterGradient("Asinh") def _AsinhGrad(op, grad): """Returns grad * 1/cosh(y).""" y = op.outputs[0] with ops.control_dependencies([grad]): y = math_ops.conj(y) return grad / math_ops.cosh(y) @ops.RegisterGradient("Acosh") def _AcoshGrad(op, grad): """Returns grad * 1/sinh(y).""" y = op.outputs[0] with ops.control_dependencies([grad]): y = math_ops.conj(y) if compat.forward_compatible(2019, 9, 14): return math_ops.xdivy(grad, math_ops.sinh(y)) else: return grad / math_ops.sinh(y) @ops.RegisterGradient("Atanh") def _AtanhGrad(op, grad): """Returns grad * 1/ (1 - x^2).""" x = op.inputs[0] with ops.control_dependencies([grad]): x = math_ops.conj(x) x2 = math_ops.square(x) one = constant_op.constant(1, dtype=grad.dtype) inv = math_ops.reciprocal(math_ops.subtract(one, x2)) return grad * inv @ops.RegisterGradient("TanhGrad") def _TanhGradGrad(op, grad): with ops.control_dependencies([grad]): a = math_ops.conj(op.inputs[0]) b = math_ops.conj(op.inputs[1]) return grad * -2.0 * b * a, gen_math_ops.tanh_grad(a, grad) @ops.RegisterGradient("Erf") def _ErfGrad(op, grad): """Returns grad * 2/sqrt(pi) * exp(-x**2).""" x = op.inputs[0] two_over_root_pi = constant_op.constant(2 / np.sqrt(np.pi), dtype=grad.dtype) with ops.control_dependencies([grad]): x = math_ops.conj(x) return grad * two_over_root_pi * math_ops.exp(-math_ops.square(x)) @ops.RegisterGradient("Erfc") def _ErfcGrad(op, grad): """Returns -grad * 2/sqrt(pi) * exp(-x**2).""" x = op.inputs[0] minus_two_over_root_pi = constant_op.constant( -2 / np.sqrt(np.pi), dtype=grad.dtype) with ops.control_dependencies([grad]): x = math_ops.conj(x) return grad * minus_two_over_root_pi * math_ops.exp(-math_ops.square(x)) @ops.RegisterGradient("Lgamma") def _LgammaGrad(op, grad): """Returns grad * digamma(x).""" x = op.inputs[0] with ops.control_dependencies([grad]): x = math_ops.conj(x) if compat.forward_compatible(2019, 9, 14): return math_ops.mul_no_nan(math_ops.digamma(x), grad) else: return grad * math_ops.digamma(x) @ops.RegisterGradient("Digamma") def _DigammaGrad(op, grad): """Compute gradient of the digamma function with respect to its argument.""" x = op.inputs[0] with ops.control_dependencies([grad]): x = math_ops.conj(x) partial_x = math_ops.polygamma(array_ops.constant(1, dtype=x.dtype), x) if compat.forward_compatible(2019, 9, 14): return math_ops.mul_no_nan(partial_x, grad) else: return grad * partial_x @ops.RegisterGradient("BesselI0e") def _BesselI0eGrad(op, grad): """Compute gradient of bessel_i0e(x) with respect to its argument.""" x = op.inputs[0] y = op.outputs[0] with ops.control_dependencies([grad]): partial_x = (math_ops.bessel_i1e(x) - math_ops.sign(x) * y) if compat.forward_compatible(2019, 9, 14): return math_ops.mul_no_nan(partial_x, grad) else: return grad * partial_x @ops.RegisterGradient("BesselI1e") def _BesselI1eGrad(op, grad): """Compute gradient of bessel_i1e(x) with respect to its argument.""" x = op.inputs[0] y = op.outputs[0] with ops.control_dependencies([grad]): # For x = 0, the correct gradient is 0.5. # However, the main branch gives NaN because of the division by x, so # we impute the gradient manually. # An alternative solution is to express the gradient via bessel_i0e and # bessel_i2e, but the latter is not yet implemented in Eigen. eps = np.finfo(x.dtype.as_numpy_dtype).eps zeros = array_ops.zeros_like(x) x_is_not_tiny = math_ops.abs(x) > eps safe_x = array_ops.where(x_is_not_tiny, x, eps + zeros) dy_dx = math_ops.bessel_i0e(safe_x) - y * ( math_ops.sign(safe_x) + math_ops.reciprocal(safe_x)) dy_dx = array_ops.where(x_is_not_tiny, dy_dx, 0.5 + zeros) if compat.forward_compatible(2019, 9, 14): return math_ops.mul_no_nan(dy_dx, grad) else: return grad * dy_dx @ops.RegisterGradient("Igamma") def _IgammaGrad(op, grad): """Returns gradient of igamma(a, x) with respect to a and x.""" a = op.inputs[0] x = op.inputs[1] sa = array_ops.shape(a) sx = array_ops.shape(x) ra, rx = gen_array_ops.broadcast_gradient_args(sa, sx) with ops.control_dependencies([grad]): partial_a = gen_math_ops.igamma_grad_a(a, x) # Perform operations in log space before summing, because Gamma(a) # and Gamma'(a) can grow large. partial_x = math_ops.exp(-x + (a - 1) * math_ops.log(x) - math_ops.lgamma(a)) if compat.forward_compatible(2019, 9, 14): return (array_ops.reshape( math_ops.reduce_sum(math_ops.mul_no_nan(partial_a, grad), ra), sa), array_ops.reshape( math_ops.reduce_sum(math_ops.mul_no_nan(partial_x, grad), rx), sx)) else: return (array_ops.reshape(math_ops.reduce_sum(partial_a * grad, ra), sa), array_ops.reshape(math_ops.reduce_sum(partial_x * grad, rx), sx)) @ops.RegisterGradient("Igammac") def _IgammacGrad(op, grad): """Returns gradient of igammac(a, x) = 1 - igamma(a, x) w.r.t. a and x.""" igamma_grad_a, igamma_grad_x = _IgammaGrad(op, grad) return (-igamma_grad_a, -igamma_grad_x) @ops.RegisterGradient("Betainc") def _BetaincGrad(op, grad): """Returns gradient of betainc(a, b, x) with respect to x.""" # TODO(ebrevdo): Perhaps add the derivative w.r.t. a, b a, b, x = op.inputs # two cases: x is a scalar and a/b are same-shaped tensors, or vice # versa; so its sufficient to check against shape(a). sa = array_ops.shape(a) sx = array_ops.shape(x) _, rx = gen_array_ops.broadcast_gradient_args(sa, sx) # Perform operations in log space before summing, because terms # can grow large. log_beta = ( gen_math_ops.lgamma(a) + gen_math_ops.lgamma(b) - gen_math_ops.lgamma(a + b)) partial_x = math_ops.exp((b - 1) * math_ops.log(1 - x) + (a - 1) * math_ops.log(x) - log_beta) # TODO(b/36815900): Mark None return values as NotImplemented if compat.forward_compatible(2019, 9, 14): return ( None, # da None, # db array_ops.reshape( math_ops.reduce_sum(math_ops.mul_no_nan(partial_x, grad), rx), sx)) else: return ( None, # da None, # db array_ops.reshape(math_ops.reduce_sum(partial_x * grad, rx), sx)) @ops.RegisterGradient("Zeta") def _ZetaGrad(op, grad): """Returns gradient of zeta(x, q) with respect to x and q.""" # TODO(tillahoffmann): Add derivative with respect to x x = op.inputs[0] q = op.inputs[1] # Broadcast gradients sx = array_ops.shape(x) sq = array_ops.shape(q) unused_rx, rq = gen_array_ops.broadcast_gradient_args(sx, sq) # Evaluate gradient with ops.control_dependencies([grad]): x = math_ops.conj(x) q = math_ops.conj(q) partial_q = -x * math_ops.zeta(x + 1, q) # TODO(b/36815900): Mark None return values as NotImplemented if compat.forward_compatible(2019, 9, 14): return (None, array_ops.reshape( math_ops.reduce_sum(math_ops.mul_no_nan(partial_q, grad), rq), sq)) else: return (None, array_ops.reshape(math_ops.reduce_sum(partial_q * grad, rq), sq)) @ops.RegisterGradient("Polygamma") def _PolygammaGrad(op, grad): """Returns gradient of psi(n, x) with respect to n and x.""" # TODO(tillahoffmann): Add derivative with respect to n n = op.inputs[0] x = op.inputs[1] # Broadcast gradients sn = array_ops.shape(n) sx = array_ops.shape(x) unused_rn, rx = gen_array_ops.broadcast_gradient_args(sn, sx) # Evaluate gradient with ops.control_dependencies([grad]): n = math_ops.conj(n) x = math_ops.conj(x) partial_x = math_ops.polygamma(n + 1, x) # TODO(b/36815900): Mark None return values as NotImplemented if compat.forward_compatible(2019, 9, 14): return (None, array_ops.reshape( math_ops.reduce_sum(math_ops.mul_no_nan(partial_x, grad), rx), sx)) else: return (None, array_ops.reshape(math_ops.reduce_sum(partial_x * grad, rx), sx)) @ops.RegisterGradient("Sigmoid") def _SigmoidGrad(op, grad): """Returns grad * sigmoid(x) * (1 - sigmoid(x)).""" y = op.outputs[0] # y = sigmoid(x) with ops.control_dependencies([grad]): y = math_ops.conj(y) return gen_math_ops.sigmoid_grad(y, grad) @ops.RegisterGradient("SigmoidGrad") def _SigmoidGradGrad(op, grad): with ops.control_dependencies([grad]): a = math_ops.conj(op.inputs[0]) b = math_ops.conj(op.inputs[1]) gb = grad * b return gb - 2.0 * gb * a, gen_math_ops.sigmoid_grad(a, grad) @ops.RegisterGradient("Sign") def _SignGrad(op, _): """Returns 0.""" x = op.inputs[0] return array_ops.zeros(array_ops.shape(x), dtype=x.dtype) @ops.RegisterGradient("Sin") def _SinGrad(op, grad): """Returns grad * cos(x).""" x = op.inputs[0] with ops.control_dependencies([grad]): x = math_ops.conj(x) return grad * math_ops.cos(x) @ops.RegisterGradient("Cos") def _CosGrad(op, grad): """Returns grad * -sin(x).""" x = op.inputs[0] with ops.control_dependencies([grad]): x = math_ops.conj(x) return -grad * math_ops.sin(x) @ops.RegisterGradient("Tan") def _TanGrad(op, grad): """Returns grad * 1/sec^2(x).""" x = op.inputs[0] with ops.control_dependencies([grad]): x = math_ops.conj(x) secx = math_ops.reciprocal(math_ops.cos(x)) secx2 = math_ops.square(secx) if compat.forward_compatible(2019, 9, 14): return math_ops.mul_no_nan(secx2, grad) else: return secx2 * grad @ops.RegisterGradient("Asin") def _AsinGrad(op, grad): """Returns grad * 1/sqrt(1-x^2).""" x = op.inputs[0] with ops.control_dependencies([grad]): x = math_ops.conj(x) x2 = math_ops.square(x) one = constant_op.constant(1, dtype=grad.dtype) den = math_ops.sqrt(math_ops.subtract(one, x2)) if compat.forward_compatible(2019, 9, 14): return math_ops.xdivy(grad, den) else: inv = math_ops.reciprocal(den) return grad * inv @ops.RegisterGradient("Acos") def _AcosGrad(op, grad): """Returns grad * -1/sqrt(1-x^2).""" x = op.inputs[0] with ops.control_dependencies([grad]): x = math_ops.conj(x) x2 = math_ops.square(x) one = constant_op.constant(1, dtype=grad.dtype) den = math_ops.sqrt(math_ops.subtract(one, x2)) if compat.forward_compatible(2019, 9, 14): return -math_ops.xdivy(grad, den) else: inv = math_ops.reciprocal(den) return -grad * inv @ops.RegisterGradient("Atan") def _AtanGrad(op, grad): """Returns grad * 1/ (1 + x^2).""" x = op.inputs[0] with ops.control_dependencies([grad]): x = math_ops.conj(x) x2 = math_ops.square(x) one = constant_op.constant(1, dtype=grad.dtype) inv = math_ops.reciprocal(math_ops.add(one, x2)) return grad * inv @ops.RegisterGradient("Atan2") def _Atan2Grad(op, grad): """Returns grad * x / (x^2 + y^2), grad * -y / (x^2 + y^2).""" y = op.inputs[0] x = op.inputs[1] with ops.control_dependencies([grad]): if compat.forward_compatible(2019, 9, 14): grad_inv = math_ops.xdivy(grad, (math_ops.square(x) + math_ops.square(y))) else: grad_inv = grad / (math_ops.square(x) + math_ops.square(y)) return x * grad_inv, -y * grad_inv @ops.RegisterGradient("AddN") def _AddNGrad(op, grad): """Copies the gradient to all inputs.""" # Not broadcasting. return [grad] * len(op.inputs) def _ShapesFullySpecifiedAndEqual(x, y, grad): # pylint: disable=protected-access x_shape = x._shape_tuple() y_shape = y._shape_tuple() grad_shape = grad._shape_tuple() # pylint: enable=protected-access return (x_shape == y_shape and x_shape == grad_shape and x_shape is not None and None not in x_shape) @ops.RegisterGradient("Add") @ops.RegisterGradient("AddV2") def _AddGrad(op, grad): """Gradient for Add.""" y = op.inputs[1] skip_input_indices = None try: skip_input_indices = op.skip_input_indices if skip_input_indices is not None and 1 in skip_input_indices and _IsScalar( y): return grad, None except AttributeError: # No gradient skipping, so do the full gradient computation pass x = op.inputs[0] if (isinstance(grad, ops.Tensor) and _ShapesFullySpecifiedAndEqual(x, y, grad)): return grad, grad sx = array_ops.shape(x) sy = array_ops.shape(y) rx, ry = gen_array_ops.broadcast_gradient_args(sx, sy) if skip_input_indices is not None and 0 in skip_input_indices: gx = None else: gx = array_ops.reshape(math_ops.reduce_sum(grad, rx), sx) if skip_input_indices is not None and 1 in skip_input_indices: gy = None else: gy = array_ops.reshape(math_ops.reduce_sum(grad, ry), sy) return (gx, gy) @ops.RegisterGradient("Sub") def _SubGrad(op, grad): """Gradient for Sub.""" x = op.inputs[0] y = op.inputs[1] if (isinstance(grad, ops.Tensor) and _ShapesFullySpecifiedAndEqual(x, y, grad)): return grad, -grad sx = array_ops.shape(x) sy = array_ops.shape(y) rx, ry = gen_array_ops.broadcast_gradient_args(sx, sy) return (array_ops.reshape(math_ops.reduce_sum(grad, rx), sx), array_ops.reshape(-math_ops.reduce_sum(grad, ry), sy)) @ops.RegisterGradient("Mul") def _MulGrad(op, grad): """The gradient of scalar multiplication.""" x = op.inputs[0] y = op.inputs[1] if (isinstance(grad, ops.Tensor) and _ShapesFullySpecifiedAndEqual(x, y, grad) and grad.dtype in (dtypes.int32, dtypes.float32)): return gen_math_ops.mul(grad, y), gen_math_ops.mul(grad, x) assert x.dtype.base_dtype == y.dtype.base_dtype, (x.dtype, " vs. ", y.dtype) sx = array_ops.shape(x) sy = array_ops.shape(y) rx, ry = gen_array_ops.broadcast_gradient_args(sx, sy) x = math_ops.conj(x) y = math_ops.conj(y) return (array_ops.reshape( math_ops.reduce_sum(gen_math_ops.mul(grad, y), rx), sx), array_ops.reshape( math_ops.reduce_sum(gen_math_ops.mul(x, grad), ry), sy)) @ops.RegisterGradient("MulNoNan") def _MulNoNanGrad(op, grad): """The gradient of scalar multiplication with NaN-suppression.""" x = op.inputs[0] y = op.inputs[1] if (isinstance(grad, ops.Tensor) and _ShapesFullySpecifiedAndEqual(x, y, grad)): return gen_math_ops.mul_no_nan(grad, y), gen_math_ops.mul_no_nan(x, grad) assert x.dtype.base_dtype == y.dtype.base_dtype, (x.dtype, " vs. ", y.dtype) sx = array_ops.shape(x) sy = array_ops.shape(y) rx, ry = gen_array_ops.broadcast_gradient_args(sx, sy) return (array_ops.reshape( math_ops.reduce_sum(gen_math_ops.mul_no_nan(grad, y), rx), sx), array_ops.reshape( math_ops.reduce_sum(gen_math_ops.mul_no_nan(x, grad), ry), sy)) @ops.RegisterGradient("Div") def _DivGrad(op, grad): """The gradient for the Div operator.""" x = op.inputs[0] y = op.inputs[1] sx = array_ops.shape(x) sy = array_ops.shape(y) rx, ry = gen_array_ops.broadcast_gradient_args(sx, sy) x = math_ops.conj(x) y = math_ops.conj(y) if compat.forward_compatible(2019, 9, 14): return (array_ops.reshape( math_ops.reduce_sum(math_ops.xdivy(grad, y), rx), sx), array_ops.reshape( math_ops.reduce_sum( math_ops.mul_no_nan( math_ops.divide(math_ops.divide(-x, y), y), grad), ry), sy)) else: return (array_ops.reshape( math_ops.reduce_sum(math_ops.divide(grad, y), rx), sx), array_ops.reshape( math_ops.reduce_sum( grad * math_ops.divide(math_ops.divide(-x, y), y), ry), sy)) @ops.RegisterGradient("FloorDiv") def _FloorDivGrad(_, unused_grad): """The gradient for the FloorDiv operator.""" return None, None @ops.RegisterGradient("FloorMod") def _FloorModGrad(op, grad): """Returns grad * (1, -floor(x/y)).""" x = math_ops.conj(op.inputs[0]) y = math_ops.conj(op.inputs[1]) sx = array_ops.shape(x) sy = array_ops.shape(y) rx, ry = gen_array_ops.broadcast_gradient_args(sx, sy) floor_xy = math_ops.floor_div(x, y) gx = array_ops.reshape(math_ops.reduce_sum(grad, rx), sx) gy = array_ops.reshape( math_ops.reduce_sum(grad * math_ops.negative(floor_xy), ry), sy) return gx, gy @ops.RegisterGradient("TruncateDiv") def _TruncateDivGrad(_, unused_grad): return None, None @ops.RegisterGradient("RealDiv") def _RealDivGrad(op, grad): """RealDiv op gradient.""" x = op.inputs[0] y = op.inputs[1] sx = array_ops.shape(x) sy = array_ops.shape(y) rx, ry = gen_array_ops.broadcast_gradient_args(sx, sy) x = math_ops.conj(x) y = math_ops.conj(y) if compat.forward_compatible(2019, 9, 14): return (array_ops.reshape( math_ops.reduce_sum(math_ops.xdivy(grad, y), rx), sx), array_ops.reshape( math_ops.reduce_sum( math_ops.mul_no_nan( math_ops.realdiv(math_ops.realdiv(-x, y), y), grad), ry), sy)) else: return (array_ops.reshape( math_ops.reduce_sum(math_ops.realdiv(grad, y), rx), sx), array_ops.reshape( math_ops.reduce_sum( grad * math_ops.realdiv(math_ops.realdiv(-x, y), y), ry), sy)) @ops.RegisterGradient("DivNoNan") def _DivNoNanGrad(op, grad): """DivNoNan op gradient.""" x = op.inputs[0] y = op.inputs[1] sx = array_ops.shape(x) sy = array_ops.shape(y) rx, ry = gen_array_ops.broadcast_gradient_args(sx, sy) x = math_ops.conj(x) y = math_ops.conj(y) if compat.forward_compatible(2019, 9, 14): return (array_ops.reshape( math_ops.reduce_sum(math_ops.div_no_nan(grad, y), rx), sx), array_ops.reshape( math_ops.reduce_sum( math_ops.mul_no_nan( math_ops.div_no_nan(math_ops.div_no_nan(-x, y), y), grad), ry), sy)) else: return (array_ops.reshape( math_ops.reduce_sum(math_ops.div_no_nan(grad, y), rx), sx), array_ops.reshape( math_ops.reduce_sum( grad * math_ops.div_no_nan(math_ops.div_no_nan(-x, y), y), ry), sy)) @ops.RegisterGradient("Pow") def _PowGrad(op, grad): """Returns grad * (y*x^(y-1), z*log(x)).""" x = op.inputs[0] y = op.inputs[1] z = op.outputs[0] sx = array_ops.shape(x) sy = array_ops.shape(y) rx, ry = gen_array_ops.broadcast_gradient_args(sx, sy) x = math_ops.conj(x) y = math_ops.conj(y) z = math_ops.conj(z) if compat.forward_compatible(2019, 9, 14): gx = array_ops.reshape( math_ops.reduce_sum( gen_math_ops.mul_no_nan(y * math_ops.pow(x, y - 1), grad), rx), sx) else: gx = array_ops.reshape( math_ops.reduce_sum(grad * y * math_ops.pow(x, y - 1), rx), sx) # Avoid false singularity at x = 0 if x.dtype.is_complex: # real(x) < 0 is fine for the complex case mask = math_ops.not_equal(x, 0) else: # There's no sensible real value to return if x < 0, so return 0 mask = x > 0 safe_x = array_ops.where(mask, x, array_ops.ones_like(x)) log_x = array_ops.where(mask, math_ops.log(safe_x), array_ops.zeros_like(x)) if compat.forward_compatible(2019, 9, 14): gy = array_ops.reshape( math_ops.reduce_sum(gen_math_ops.mul_no_nan(z * log_x, grad), ry), sy) else: gy = array_ops.reshape(math_ops.reduce_sum(grad * z * log_x, ry), sy) return gx, gy def _MaximumMinimumGradInputOnly(op, grad, selector_op): x = op.inputs[0] y = op.inputs[1] zeros = array_ops.zeros_like(grad) xmask = selector_op(x, y) xgrad = array_ops.where(xmask, grad, zeros) ygrad = None # Return None for ygrad since the config allows that. return (xgrad, ygrad) def _MaximumMinimumGrad(op, grad, selector_op): """Factor out the code for the gradient of Maximum or Minimum.""" y = op.inputs[1] skip_input_indices = None try: skip_input_indices = op.skip_input_indices if skip_input_indices is not None and 1 in skip_input_indices and _IsScalar( y): # When we want to get gradients for the first input only, and the second # input tensor is a scalar, we can do a much simpler calculation return _MaximumMinimumGradInputOnly(op, grad, selector_op) except AttributeError: # No gradient skipping, so do the full gradient computation pass x = op.inputs[0] gdtype = grad.dtype sx = array_ops.shape(x) sy = array_ops.shape(y) gradshape = array_ops.shape(grad) zeros = array_ops.zeros(gradshape, gdtype) xmask = selector_op(x, y) rx, ry = gen_array_ops.broadcast_gradient_args(sx, sy) if skip_input_indices is not None and 0 in skip_input_indices: gx = None else: xgrad = array_ops.where(xmask, grad, zeros) gx = array_ops.reshape(math_ops.reduce_sum(xgrad, rx), sx) if skip_input_indices is not None and 1 in skip_input_indices: gy = None else: ygrad = array_ops.where(xmask, zeros, grad) gy = array_ops.reshape(math_ops.reduce_sum(ygrad, ry), sy) return (gx, gy) @ops.RegisterGradient("Maximum") def _MaximumGrad(op, grad): """Returns grad*(x > y, x <= y) with type of grad.""" return _MaximumMinimumGrad(op, grad, math_ops.greater_equal) @ops.RegisterGradient("Minimum") def _MinimumGrad(op, grad): """Returns grad*(x < y, x >= y) with type of grad.""" return _MaximumMinimumGrad(op, grad, math_ops.less_equal) @ops.RegisterGradient("SquaredDifference") def _SquaredDifferenceGrad(op, grad): """Returns the gradient for (x-y)^2.""" x = op.inputs[0] y = op.inputs[1] sx = array_ops.shape(x) sy = array_ops.shape(y) rx, ry = gen_array_ops.broadcast_gradient_args(sx, sy) with ops.control_dependencies([grad]): # The parens ensure that if grad is IndexedSlices, it'll get multiplied by # Tensor (not a number like 2.0) which causes it to convert to Tensor. x_grad = math_ops.scalar_mul(2.0, grad) * (x - y) return (array_ops.reshape(math_ops.reduce_sum(x_grad, rx), sx), -array_ops.reshape(math_ops.reduce_sum(x_grad, ry), sy)) # Logical operations have no gradients. ops.NotDifferentiable("Less") ops.NotDifferentiable("LessEqual") ops.NotDifferentiable("Greater") ops.NotDifferentiable("GreaterEqual") ops.NotDifferentiable("Equal") ops.NotDifferentiable("ApproximateEqual") ops.NotDifferentiable("NotEqual") ops.NotDifferentiable("LogicalAnd") ops.NotDifferentiable("LogicalOr") ops.NotDifferentiable("LogicalNot") @ops.RegisterGradient("Select") def _SelectGrad(op, grad): c = op.inputs[0] x = op.inputs[1] zeros = array_ops.zeros_like(x) return (None, array_ops.where(c, grad, zeros), array_ops.where( c, zeros, grad)) @ops.RegisterGradient("SelectV2") def _SelectGradV2(op, grad): c = op.inputs[0] x = op.inputs[1] y = op.inputs[2] zeros = array_ops.zeros([], dtype=grad.dtype.base_dtype) gx = array_ops.where_v2(c, grad, zeros) x_shape = array_ops.shape(x) output_shape = array_ops.shape(op.outputs[0]) # Reduce away broadcasted leading dims. reduce_x, _ = gen_array_ops.broadcast_gradient_args(x_shape, output_shape) gx = math_ops.reduce_sum(gx, keepdims=True, axis=reduce_x) gx = array_ops.reshape(gx, x_shape) gy = array_ops.where_v2(c, zeros, grad) y_shape = array_ops.shape(y) # Reduce away broadcasted leading dims. reduce_y, _ = gen_array_ops.broadcast_gradient_args(y_shape, output_shape) gy = math_ops.reduce_sum(gy, keepdims=True, axis=reduce_y) gy = array_ops.reshape(gy, y_shape) return (None, gx, gy) def _MatMulGradAgainstFirstOnly(op, grad): """Gradient for MatMul, only for the first input.""" t_a = op.get_attr("transpose_a") t_b = op.get_attr("transpose_b") b = math_ops.conj(op.inputs[1]) if not t_a and not t_b: grad_a = gen_math_ops.mat_mul(grad, b, transpose_b=True) elif not t_a and t_b: grad_a = gen_math_ops.mat_mul(grad, b) elif t_a and not t_b: grad_a = gen_math_ops.mat_mul(b, grad, transpose_b=True) elif t_a and t_b: grad_a = gen_math_ops.mat_mul(b, grad, transpose_a=True, transpose_b=True) return grad_a, None def _MatMulGradAgainstSecondOnly(op, grad): """Gradient for MatMul, only for the second input.""" t_a = op.get_attr("transpose_a") t_b = op.get_attr("transpose_b") a = math_ops.conj(op.inputs[0]) if not t_a and not t_b: grad_b = gen_math_ops.mat_mul(a, grad, transpose_a=True) elif not t_a and t_b: grad_b = gen_math_ops.mat_mul(grad, a, transpose_a=True) elif t_a and not t_b: grad_b = gen_math_ops.mat_mul(a, grad) elif t_a and t_b: grad_b = gen_math_ops.mat_mul(grad, a, transpose_a=True, transpose_b=True) return None, grad_b @ops.RegisterGradient("MatMul") def _MatMulGrad(op, grad): """Gradient for MatMul.""" try: skip_input_indices = op.skip_input_indices if skip_input_indices is not None: if 1 in skip_input_indices: return _MatMulGradAgainstFirstOnly(op, grad) elif 0 in skip_input_indices: return _MatMulGradAgainstSecondOnly(op, grad) except AttributeError: # No gradient skipping, so do the full gradient computation pass t_a = op.get_attr("transpose_a") t_b = op.get_attr("transpose_b") a = math_ops.conj(op.inputs[0]) b = math_ops.conj(op.inputs[1]) if not t_a and not t_b: grad_a = gen_math_ops.mat_mul(grad, b, transpose_b=True) grad_b = gen_math_ops.mat_mul(a, grad, transpose_a=True) elif not t_a and t_b: grad_a = gen_math_ops.mat_mul(grad, b) grad_b = gen_math_ops.mat_mul(grad, a, transpose_a=True) elif t_a and not t_b: grad_a = gen_math_ops.mat_mul(b, grad, transpose_b=True) grad_b = gen_math_ops.mat_mul(a, grad) elif t_a and t_b: grad_a = gen_math_ops.mat_mul(b, grad, transpose_a=True, transpose_b=True) grad_b = gen_math_ops.mat_mul(grad, a, transpose_a=True, transpose_b=True) return grad_a, grad_b @ops.RegisterGradient("SparseMatMul") def _SparseMatMulGrad(op, grad): """Gradient for SparseMatMul.""" t_a = op.get_attr("transpose_a") t_b = op.get_attr("transpose_b") is_sparse = { op.inputs[0]: op.get_attr("a_is_sparse"), op.inputs[1]: op.get_attr("b_is_sparse"), # Use heuristic to figure out if grad might be sparse grad: not context.executing_eagerly() and (grad.op.type == "ReluGrad") } def _SparseMatMul(t1, t2, out_dtype, transpose_a=False, transpose_b=False): """Helper function to create SparseMatMul op.""" assert t1 in is_sparse and t2 in is_sparse t1_sparse = is_sparse[t1] t2_sparse = is_sparse[t2] if transpose_b: t2 = array_ops.transpose(t2) transpose_b = False prod = math_ops.matmul( t1, t2, transpose_a=transpose_a, transpose_b=transpose_b, a_is_sparse=t1_sparse, b_is_sparse=t2_sparse) if prod.dtype != out_dtype: prod = math_ops.cast(prod, out_dtype) return prod dtype_a = op.inputs[0].dtype dtype_b = op.inputs[1].dtype if not t_a and not t_b: return (_SparseMatMul(grad, op.inputs[1], dtype_a, transpose_b=True), _SparseMatMul(op.inputs[0], grad, dtype_b, transpose_a=True)) elif not t_a and t_b: return (_SparseMatMul(grad, op.inputs[1], dtype_a), _SparseMatMul(grad, op.inputs[0], dtype_b, transpose_a=True)) elif t_a and not t_b: return (_SparseMatMul(op.inputs[1], grad, dtype_a, transpose_b=True), _SparseMatMul(op.inputs[0], grad, dtype_b)) elif t_a and t_b: return (_SparseMatMul( op.inputs[1], grad, dtype_a, transpose_a=True, transpose_b=True), _SparseMatMul( grad, op.inputs[0], dtype_b, transpose_a=True, transpose_b=True)) @ops.RegisterGradient("Floor") def _FloorGrad(_, unused_grad): return [None] @ops.RegisterGradient("Ceil") def _CeilGrad(_, unused_grad): return [None] @ops.RegisterGradient("Round") def _RoundGrad(_, unused_grad): return [None] @ops.RegisterGradient("Rint") def _RintGrad(_, unused_grad): # the gradient of Rint is zero return [None] @ops.RegisterGradient("BatchMatMul") def _BatchMatMul(op, grad): """Returns the gradient of x and y given the gradient of x * y.""" x = op.inputs[0] y = op.inputs[1] adj_x = op.get_attr("adj_x") adj_y = op.get_attr("adj_y") if not adj_x: if not adj_y: grad_x = math_ops.matmul(grad, y, adjoint_a=False, adjoint_b=True) grad_y = math_ops.matmul(x, grad, adjoint_a=True, adjoint_b=False) else: grad_x = math_ops.matmul(grad, y, adjoint_a=False, adjoint_b=False) grad_y = math_ops.matmul(grad, x, adjoint_a=True, adjoint_b=False) else: if not adj_y: grad_x = math_ops.matmul(y, grad, adjoint_a=False, adjoint_b=True) grad_y = math_ops.matmul(x, grad, adjoint_a=False, adjoint_b=False) else: grad_x = math_ops.matmul(y, grad, adjoint_a=True, adjoint_b=True) grad_y = math_ops.matmul(grad, x, adjoint_a=True, adjoint_b=True) return grad_x, grad_y @ops.RegisterGradient("BatchMatMulV2") def _BatchMatMulV2(op, grad): """Returns the gradient of x and y given the gradient of x * y.""" x = op.inputs[0] y = op.inputs[1] adj_x = op.get_attr("adj_x") adj_y = op.get_attr("adj_y") if not adj_x: if not adj_y: grad_x = math_ops.matmul(grad, y, adjoint_a=False, adjoint_b=True) grad_y = math_ops.matmul(x, grad, adjoint_a=True, adjoint_b=False) else: grad_x = math_ops.matmul(grad, y, adjoint_a=False, adjoint_b=False) grad_y = math_ops.matmul(grad, x, adjoint_a=True, adjoint_b=False) else: if not adj_y: grad_x = math_ops.matmul(y, grad, adjoint_a=False, adjoint_b=True) grad_y = math_ops.matmul(x, grad, adjoint_a=False, adjoint_b=False) else: grad_x = math_ops.matmul(y, grad, adjoint_a=True, adjoint_b=True) grad_y = math_ops.matmul(grad, x, adjoint_a=True, adjoint_b=True) # Reduce along the broadcasted batch dimensions, if broadcasting is required. shape_x_static = x.get_shape() shape_y_static = y.get_shape() if not (shape_x_static.is_fully_defined() and shape_y_static.is_fully_defined() and shape_x_static == shape_y_static): sx = array_ops.shape(x) sy = array_ops.shape(y) rx, ry = gen_array_ops.broadcast_gradient_args(sx[:-2], sy[:-2]) grad_x = array_ops.reshape(math_ops.reduce_sum(grad_x, rx), sx) grad_y = array_ops.reshape(math_ops.reduce_sum(grad_y, ry), sy) return grad_x, grad_y ops.NotDifferentiable("Range") ops.NotDifferentiable("LinSpace") @ops.RegisterGradient("Complex") def _ComplexGrad(op, grad): """Returns the real and imaginary components of 'grad', respectively.""" x = op.inputs[0] y = op.inputs[1] sx = array_ops.shape(x) sy = array_ops.shape(y) rx, ry = gen_array_ops.broadcast_gradient_args(sx, sy) return (array_ops.reshape(math_ops.reduce_sum(math_ops.real(grad), rx), sx), array_ops.reshape(math_ops.reduce_sum(math_ops.imag(grad), ry), sy)) @ops.RegisterGradient("Real") def _RealGrad(_, grad): """Returns 'grad' as the real part and set the imaginary part 0.""" zero = constant_op.constant(0, dtype=grad.dtype) return math_ops.complex(grad, zero) @ops.RegisterGradient("Imag") def _ImagGrad(_, grad): """Returns 'grad' as the imaginary part and set the real part 0.""" zero = constant_op.constant(0, dtype=grad.dtype) return math_ops.complex(zero, grad) @ops.RegisterGradient("Angle") def _AngleGrad(op, grad): """Returns -grad / (Im(x) + iRe(x))""" x = op.inputs[0] with ops.control_dependencies([grad]): re = math_ops.real(x) im = math_ops.imag(x) z = math_ops.reciprocal(math_ops.complex(im, re)) zero = constant_op.constant(0, dtype=grad.dtype) complex_grad = math_ops.complex(grad, zero) return -complex_grad * z @ops.RegisterGradient("Conj") def _ConjGrad(_, grad): """Returns the complex conjugate of grad.""" return math_ops.conj(grad) @ops.RegisterGradient("ComplexAbs") def _ComplexAbsGrad(op, grad): """Returns the gradient of ComplexAbs.""" return math_ops.div_no_nan( math_ops.complex( grad, array_ops.zeros_like(grad)) * op.inputs[0], math_ops.complex( op.outputs[0], array_ops.zeros_like(op.outputs[0]))) @ops.RegisterGradient("Cast") def _CastGrad(op, grad): t = [ dtypes.float16, dtypes.float32, dtypes.float64, dtypes.bfloat16, dtypes.complex64, dtypes.complex128 ] src_type = op.inputs[0].dtype.base_dtype dst_type = grad.dtype.base_dtype if src_type in t and dst_type in t: return math_ops.cast(grad, src_type) else: return None @ops.RegisterGradient("Cross") def _CrossGrad(op, grad): u = op.inputs[0] v = op.inputs[1] return (math_ops.cross(v, grad), math_ops.cross(grad, u)) @ops.RegisterGradient("Cumsum") def _CumsumGrad(op, grad): axis = op.inputs[1] exclusive = op.get_attr("exclusive") reverse = op.get_attr("reverse") return [ math_ops.cumsum(grad, axis, exclusive=exclusive, reverse=not reverse), None ] @ops.RegisterGradient("Cumprod") def _CumprodGrad(op, grad): x = op.inputs[0] axis = op.inputs[1] exclusive = op.get_attr("exclusive") reverse = op.get_attr("reverse") # TODO This fails when x contains 0 and should be fixed prod = math_ops.cumprod(x, axis, exclusive=exclusive, reverse=reverse) out = math_ops.cumsum( prod * grad, axis, exclusive=exclusive, reverse=not reverse) return [out / x, None] @ops.RegisterGradient("NextAfter") def _NextAfterGrad(op, grad): """Returns gradient of nextafter(x1, x2) with respect to x1 and x2.""" x1 = op.inputs[0] x2 = op.inputs[1] s_x1 = array_ops.shape(x1) s_x2 = array_ops.shape(x2) r_x1, r_x2 = gen_array_ops.broadcast_gradient_args(s_x1, s_x2) with ops.control_dependencies([grad]): partial_x1 = array_ops.ones(s_x1, dtype=x1.dtype) partial_x2 = array_ops.zeros(s_x2, dtype=x2.dtype) return (array_ops.reshape( math_ops.reduce_sum(partial_x1 * grad, r_x1), s_x1), array_ops.reshape( math_ops.reduce_sum(partial_x2 * grad, r_x2), s_x2))
apache-2.0
2,105,415,834,781,362,400
33.54222
81
0.653891
false
robled/rocket-depot
setup.py
1
2523
import subprocess from distutils.log import warn, info from setuptools import setup setup( name='rocket-depot', version='1.0.0', scripts=['rocket-depot'], # metadata for upload to PyPI platforms='linux', author='David Roble', author_email='[email protected]', maintainer='David Roble', maintainer_email='[email protected]', description='An rdesktop/xfreerdp frontend.', long_description=open('README.txt').read(), license='GNU GPLv3', keywords=['rdesktop', 'freerdp', 'rdp', 'remote desktop', 'terminal server'], url='https://github.com/robled/rocket-depot', data_files=[ ('/usr/share/applications', ['data/rocket-depot.desktop']), ('/usr/share/icons/hicolor/16x16/apps', ['data/icons/16x16/apps/rocket-depot.png']), ('/usr/share/icons/hicolor/22x22/apps', ['data/icons/22x22/apps/rocket-depot.png']), ('/usr/share/icons/hicolor/24x24/apps', ['data/icons/24x24/apps/rocket-depot.png']), ('/usr/share/icons/hicolor/32x32/apps', ['data/icons/32x32/apps/rocket-depot.png']), ('/usr/share/icons/hicolor/48x48/apps', ['data/icons/48x48/apps/rocket-depot.png']), ('/usr/share/icons/hicolor/64x64/apps', ['data/icons/64x64/apps/rocket-depot.png']), ('/usr/share/icons/hicolor/128x128/apps', ['data/icons/128x128/apps/rocket-depot.png']), ('/usr/share/icons/hicolor/256x256/apps', ['data/icons/256x256/apps/rocket-depot.png']), ('/usr/share/icons/hicolor/scalable/apps', ['data/icons/scalable/apps/rocket-depot.svg']), ], classifiers=[ 'Development Status :: 3 - Alpha', 'Environment :: X11 Applications :: GTK', 'Intended Audience :: End Users/Desktop', 'Intended Audience :: Information Technology', 'Intended Audience :: System Administrators', 'License :: OSI Approved :: GNU General Public License (GPL)', 'Natural Language :: English', 'Operating System :: POSIX :: Linux', 'Programming Language :: Python', 'Topic :: System :: Systems Administration', 'Topic :: Utilities', ], ) info('running gtk-update-icon-cache') try: subprocess.call(['gtk-update-icon-cache', '-q', '-f', '-t', '/usr/share/icons/hicolor']) except OSError as e: warn('updating the GTK icon cache failed: %s' % str(e))
gpl-3.0
8,640,305,625,367,821,000
38.421875
70
0.604439
false
mjcaley/aiospamc
tests/test_responses.py
1
3390
#!/usr/bin/env python3 import pytest import zlib from aiospamc.exceptions import * from aiospamc.header_values import CompressValue from aiospamc.incremental_parser import ResponseParser from aiospamc.responses import Response def test_init_version(): r = Response(version="4.2", status_code=0, message="EX_OK") result = bytes(r).split(b" ")[0] assert result == b"SPAMD/4.2" def test_init_status_code(): r = Response(version="1.5", status_code=0, message="EX_OK") result = bytes(r).split(b" ")[1] assert result == str(0).encode() def test_init_message(): r = Response(version="1.5", status_code=0, message="EX_OK") result = bytes(r).split(b"\r\n")[0] assert result.endswith("EX_OK".encode()) def test_bytes_status(): r = Response(status_code=999, message="Test message") result = bytes(r).partition(b"\r\n")[0] assert b"999 Test message" in result def test_bytes_headers(x_headers): r = Response(version="1.5", status_code=0, message="EX_OK", headers=x_headers) result = bytes(r).partition(b"\r\n")[2] expected = b"".join( [ b"%b: %b\r\n" % (key.encode("ascii"), bytes(value)) for key, value in r.headers.items() ] ) assert result.startswith(expected) assert result.endswith(b"\r\n\r\n") def test_bytes_body(): test_input = b"Test body\n" r = Response(version="1.5", status_code=0, message="EX_OK", body=test_input) result = bytes(r).rpartition(b"\r\n")[2] assert result == test_input def test_bytes_body_compressed(): test_input = b"Test body\n" r = Response( version="1.5", status_code=0, message="EX_OK", headers={"Compress": CompressValue()}, body=test_input, ) result = bytes(r).rpartition(b"\r\n")[2] assert result == zlib.compress(test_input) def test_str(): r = Response(status_code=0, message="EX_OK") result = str(r) assert result == f"<0 - EX_OK: aiospamc.responses.Response object at {id(r)}>" def test_eq_other_obj_is_false(): r = Response() assert False is (r == "") def test_raise_for_status_ok(): r = Response(version="1.5", status_code=0, message="") assert r.raise_for_status() is None @pytest.mark.parametrize( "status_code, exception", [ (64, UsageException), (65, DataErrorException), (66, NoInputException), (67, NoUserException), (68, NoHostException), (69, UnavailableException), (70, InternalSoftwareException), (71, OSErrorException), (72, OSFileException), (73, CantCreateException), (74, IOErrorException), (75, TemporaryFailureException), (76, ProtocolException), (77, NoPermissionException), (78, ConfigException), (79, ServerTimeoutException), ], ) def test_raise_for_status(status_code, exception): r = Response(version="1.5", status_code=status_code, message="") with pytest.raises(exception): r.raise_for_status() def test_raise_for_undefined_status(): r = Response(version="1.5", status_code=999, message="") with pytest.raises(ResponseException): r.raise_for_status() def test_response_from_parser_result(response_with_body): p = ResponseParser().parse(response_with_body) r = Response(**p) assert r is not None
mit
6,483,868,723,979,816,000
24.111111
82
0.623009
false
swegener/gruvi
lib/gruvi/address.py
1
3675
# # This file is part of Gruvi. Gruvi is free software available under the # terms of the MIT license. See the file "LICENSE" that was provided # together with this source file for the licensing terms. # # Copyright (c) 2012-2014 the Gruvi authors. See the file "AUTHORS" for a # complete list. from __future__ import absolute_import, print_function import six import pyuv from .hub import get_hub, switch_back, switchpoint __all__ = ['saddr', 'paddr', 'getaddrinfo', 'getnameinfo'] def saddr(address): """Return a string representation for an address. The *address* paramater can be a pipe name, an IP address tuple, or a socket address. The return value is always a ``str`` instance. """ if isinstance(address, six.binary_type) and six.PY3: return address.decode('utf8') elif isinstance(address, six.string_types): return address elif isinstance(address, tuple) and ':' in address[0]: return '[{}]:{}'.format(address[0], address[1]) elif isinstance(address, tuple): return '{}:{}'.format(*address) else: raise TypeError('illegal address type: {!s}'.format(type(address))) def paddr(address): """Parse a string representation of an address. This function is the inverse of :func:`saddr`. """ if address.startswith('['): p1 = address.find(']:') if p1 == -1: raise ValueError return (address[1:p1], int(address[p1+2:])) elif ':' in address: p1 = address.find(':') return (address[:p1], int(address[p1+1:])) else: return address @switchpoint def getaddrinfo(node, service=0, family=0, socktype=0, protocol=0, flags=0, timeout=30): """Resolve an Internet *node* name and *service* into a socket address. The *family*, *socktype* and *protocol* are optional arguments that specify the address family, socket type and protocol, respectively. The *flags* argument allows you to pass flags to further modify the resolution process. See the :func:`socket.getaddrinfo` function for a detailed description of these arguments. The return value is a list of ``(family, socktype, proto, canonname, sockaddr)`` tuples. The fifth element (``sockaddr``) is the socket address. It will be a 2-tuple ``(addr, port)`` for an IPv4 address, and a 4-tuple ``(addr, port, flowinfo, scopeid)`` for an IPv6 address. The address resolution is performed in the libuv thread pool. """ hub = get_hub() with switch_back(timeout) as switcher: request = pyuv.dns.getaddrinfo(hub.loop, node, service, family, socktype, protocol, flags, callback=switcher) switcher.add_cleanup(request.cancel) result = hub.switch() result, error = result[0] if error: message = pyuv.errno.strerror(error) raise pyuv.error.UVError(error, message) return result @switchpoint def getnameinfo(sockaddr, flags=0, timeout=30): """Resolve a socket address *sockaddr* back to a ``(node, service)`` tuple. The *flags* argument can be used to modify the resolution process. See the :func:`socket.getnameinfo` function for more information. The address resolution is performed in the libuv thread pool. """ hub = get_hub() with switch_back(timeout) as switcher: request = pyuv.dns.getnameinfo(hub.loop, sockaddr, flags, callback=switcher) switcher.add_cleanup(request.cancel) result = hub.switch() result, error = result[0] if error: message = pyuv.errno.strerror(error) raise pyuv.error.UVError(error, message) return result
mit
-7,268,691,083,574,085,000
34.336538
88
0.661224
false
harrystech/arthur-redshift-etl
python/etl/monitor.py
1
36933
""" Monitoring (and logging) for ETL steps. This module provides a context for the ETL that allows to monitor the start time of an ETL step along with its successful or unsuccessful completion. Events for start, finish or failure may be emitted to a persistence layer. """ import http.server import itertools import logging import os import queue import random import socketserver import sys import threading import time import traceback import urllib.parse import uuid from calendar import timegm from collections import Counter, OrderedDict from copy import deepcopy from datetime import datetime, timedelta from decimal import Decimal from http import HTTPStatus from operator import itemgetter from typing import Dict, Iterable, List, Optional, Union import boto3 import botocore.exceptions import funcy as fy import simplejson as json from boto3.dynamodb.types import TypeDeserializer from tqdm import tqdm import etl.assets import etl.config import etl.text from etl.errors import ETLRuntimeError from etl.json_encoder import FancyJsonEncoder from etl.timer import Timer, elapsed_seconds, utc_now logger = logging.getLogger(__name__) logger.addHandler(logging.NullHandler()) STEP_START = "start" STEP_FINISH = "finish" STEP_FAIL = "fail" _DUMMY_TARGET = "#.dummy" def trace_key(): """ Return a "trace key" suitable to track program execution. It's most likely unique between invocations. """ # We will never make a 32-bit operating system. return uuid.uuid4().hex[:16].upper() class MetaMonitor(type): """ Metaclass to implement read-only attributes of our ETL's Monitor. If you need to find out the current trace key, call Monitor.etl_id. If you want to know the "environment" (selected by using --prefix or the user's login), then use Monitor.environment. If you want to know the runtime environment (EMR, instance, step), use Monitor.cluster_info. Behind the scenes, some properties actually do a lazy evaluation. """ @property def etl_id(cls): if cls._trace_key is None: cls._trace_key = trace_key() return cls._trace_key @property def environment(cls): if cls._environment is None: raise ValueError("value of 'environment' is None") return cls._environment @environment.setter def environment(cls, value): cls._environment = value @property def cluster_info(cls): if cls._cluster_info is None: job_flow = "/mnt/var/lib/info/job-flow.json" if os.path.exists(job_flow): with open(job_flow) as f: data = json.load(f) cluster_info = {"cluster_id": data["jobFlowId"], "instance_id": data["masterInstanceId"]} parent_dir, current_dir = os.path.split(os.getcwd()) if parent_dir == "/mnt/var/lib/hadoop/steps": cluster_info["step_id"] = current_dir else: cluster_info = {} cls._cluster_info = cluster_info return cls._cluster_info class Monitor(metaclass=MetaMonitor): """ Context manager to monitor ETL steps for some target table. Monitor instances have these properties which will be stored in the event payload: environment: a description of the source folder (aka prefix) etl_id: a UUID for each ETL run (All monitors of the same ETL run with the same 'etl_id'.) target: name of table or view in the data warehouse step: command that is running, like 'dump', or 'load' The payloads will have at least the properties of the Monitor instance and: event: one of ('start', 'finish', 'fail') timestamp: UTC timestamp In case of errors, they are added as an array 'errors'. It is also possible to send some extra information into monitor payloads. Anything extra must be of type list, dict, str, or int (or bad things will happen). Example usage of attributes: >>> id_ = Monitor.etl_id >>> isinstance(id_, str) True >>> Monitor.etl_id == id_ True >>> Monitor.environment Traceback (most recent call last): ... ValueError: value of 'environment' is None >>> Monitor.environment = 'saturn' >>> Monitor.environment 'saturn' Example use of a monitor instance (with dry_run=True to avoid persistence calls during testing): >>> m = Monitor('schema.table', 'frobnicate', dry_run=True) >>> payload = MonitorPayload(m, 'test', utc_now()) >>> payload.step 'frobnicate' >>> payload.event 'test' Normally, you would leave the creation of the payload to the context manager: >>> with Monitor('schema.table', 'frobnicate', dry_run=True): ... pass """ # See MetaMonitor class for getters and setters _trace_key = None _environment = None _cluster_info = None def __init__(self, target: str, step: str, dry_run: bool = False, **kwargs) -> None: self._monitor_id = trace_key() self._target = target self._step = step self._dry_run = dry_run # Create a deep copy so that changes made later by the caller don't alter our payload. self._extra = deepcopy(dict(**kwargs)) self._index = self._extra.get("index") # Read-only properties (in order of cardinality) @property def environment(self): return Monitor.environment @property def cluster_info(self): return Monitor.cluster_info @property def etl_id(self): return Monitor.etl_id @property def target(self): return self._target @property def step(self): return self._step @property def monitor_id(self): return self._monitor_id def __enter__(self): if self._index: logger.info( "Starting %s step for '%s' (%d/%d)", self.step, self.target, self._index["current"], self._index["final"], ) else: logger.info("Starting %s step for '%s'", self.step, self.target) self._start_time = utc_now() payload = MonitorPayload(self, STEP_START, self._start_time, extra=self._extra) payload.emit(dry_run=self._dry_run) return self def __exit__(self, exc_type, exc_value, tb): self._end_time = utc_now() seconds = elapsed_seconds(self._start_time, self._end_time) if exc_type is None: event = STEP_FINISH errors = None logger.info("Finished %s step for '%s' (%0.2fs)", self._step, self._target, seconds) else: event = STEP_FAIL errors = [ { "code": (exc_type.__module__ + "." + exc_type.__qualname__).upper(), "message": traceback.format_exception_only(exc_type, exc_value)[0].strip(), } ] logger.warning("Failed %s step for '%s' (%0.2fs)", self._step, self._target, seconds) payload = MonitorPayload( self, event, self._end_time, elapsed=seconds, errors=errors, extra=self._extra ) payload.emit(dry_run=self._dry_run) def add_extra(self, key, value): if key in self._extra: raise KeyError("duplicate key in 'extra' payload") self._extra[key] = value @classmethod def marker_payload(cls, step: str): monitor = cls(_DUMMY_TARGET, step) return MonitorPayload(monitor, STEP_FINISH, utc_now(), elapsed=0, extra={"is_marker": True}) class InsertTraceKey(logging.Filter): """Called as a logging filter: insert the ETL id as the trace key into the logging record.""" def filter(self, record): record.trace_key = Monitor.etl_id return True class PayloadDispatcher: def store(self, payload): """Send payload to persistence layer.""" raise NotImplementedError("PayloadDispatcher failed to implement store method") class MonitorPayload: """ Simple class to encapsulate data for Monitor events which knows how to morph into JSON etc. You should consider all attributes to be read-only with the possible exception of 'errors' that may be set to a list of objects (in JSON-terminology) with 'code' and 'message' fields. (Which is to say: do not modify the payload object!) """ # Append instances with a 'store' method here (skipping writing a metaclass this time) dispatchers: List[PayloadDispatcher] = [] def __init__(self, monitor, event, timestamp, elapsed=None, errors=None, extra=None): # Basic info self.environment = monitor.environment self.etl_id = monitor.etl_id self.target = monitor.target self.step = monitor.step self.monitor_id = monitor.monitor_id self.event = event self.timestamp = timestamp # Premium info (when available) self.cluster_info = monitor.cluster_info self.elapsed = elapsed self.errors = errors self.extra = extra def emit(self, dry_run=False): payload = vars(self) # Delete entries that are often not present: for key in ["cluster_info", "elapsed", "extra", "errors"]: if not payload[key]: del payload[key] compact_text = json.dumps(payload, sort_keys=True, separators=(",", ":"), cls=FancyJsonEncoder) if dry_run: logger.debug("Dry-run: payload = %s", compact_text) return logger.debug("Monitor payload = %s", compact_text) for d in MonitorPayload.dispatchers: d.store(payload) class DynamoDBStorage(PayloadDispatcher): """ Store ETL events in a DynamoDB table. Note the table is created if it doesn't already exist when a payload needs to be stored. """ @staticmethod def factory() -> "DynamoDBStorage": table_name = "{}-{}".format(etl.config.get_config_value("resource_prefix"), "events") return DynamoDBStorage( table_name, etl.config.get_config_value("etl_events.read_capacity"), etl.config.get_config_value("etl_events.write_capacity"), ) def __init__(self, table_name, read_capacity, write_capacity): self.table_name = table_name self.initial_read_capacity = read_capacity self.initial_write_capacity = write_capacity # Avoid default sessions and have one table reference per thread self._thread_local_table = threading.local() def get_table(self, create_if_not_exists=True): """Get table reference from DynamoDB or create it (within a new session).""" session = boto3.session.Session() logger.debug(f"Started new boto3 session in region '{session.region_name}'") dynamodb = session.resource("dynamodb") try: table = dynamodb.Table(self.table_name) status = table.table_status logger.info(f"Found existing events table '{self.table_name}' in DynamoDB (status: {status})") except botocore.exceptions.ClientError as exc: # Check whether this is just a ResourceNotFoundException (sadly a 400, not a 404) if exc.response["ResponseMetadata"]["HTTPStatusCode"] != 400: raise # Nullify assignment and start over table = None status = None if not (status == "ACTIVE" or create_if_not_exists): raise ETLRuntimeError("DynamoDB table '%s' does not exist or is not active" % self.table_name) if table is None: logger.info(f"Creating DynamoDB table: '{self.table_name}'") table = dynamodb.create_table( TableName=self.table_name, KeySchema=[ {"AttributeName": "target", "KeyType": "HASH"}, {"AttributeName": "timestamp", "KeyType": "RANGE"}, ], AttributeDefinitions=[ {"AttributeName": "target", "AttributeType": "S"}, {"AttributeName": "timestamp", "AttributeType": "N"}, ], ProvisionedThroughput={ "ReadCapacityUnits": self.initial_read_capacity, "WriteCapacityUnits": self.initial_write_capacity, }, ) status = table.table_status if status != "ACTIVE": logger.info(f"Waiting for events table '{self.table_name}' to become active") table.wait_until_exists() logger.debug( f"Finished creating or updating events table '{self.table_name}' (arn={table.table_arn})" ) return table def store(self, payload: dict, _retry: bool = True): """ Actually send the payload to the DynamoDB table. If this is the first call at all, then get a reference to the table, or even create the table as necessary. This method will try to store the payload a second time if there's an error in the first attempt. """ try: table = getattr(self._thread_local_table, "table", None) if not table: table = self.get_table() self._thread_local_table.table = table item = dict(payload) # Cast timestamp (and elapsed seconds) into Decimal since DynamoDB cannot handle float. # But decimals maybe finicky when instantiated from float so we make sure to fix the # number of decimals. item["timestamp"] = Decimal("%.6f" % item["timestamp"].timestamp()) if "elapsed" in item: item["elapsed"] = Decimal("%.6f" % item["elapsed"]) table.put_item(Item=item) except botocore.exceptions.ClientError: # Something bad happened while talking to the service ... just try one more time. if _retry: logger.warning("Trying to store payload a second time after this mishap:", exc_info=True) self._thread_local_table.table = None delay = random.uniform(3, 10) logger.debug("Snoozing for %.1fs", delay) time.sleep(delay) self.store(payload, _retry=False) else: raise class _ThreadingSimpleServer(socketserver.ThreadingMixIn, http.server.HTTPServer): pass class MemoryStorage(PayloadDispatcher): """ Store ETL events in memory and make the events accessible via HTTP. When the ETL is running for extract, load, or unload, connect to port 8086. When the ETL is running on a host other than your local computer, say in EC2, then use port forwarding, to send requests from your host to an address seen on the other host: ssh -L 8086:localhost:8086 <hostname> The output should pass validator at https://validator.w3.org/#validate_by_input+with_options """ SERVER_HOST = "" # meaning: all that we can bind to locally SERVER_PORT = 8086 def __init__(self): self.queue = queue.Queue() self.events = OrderedDict() self.start_server() def store(self, payload: dict): self.queue.put(payload) def _drain_queue(self): try: while True: payload = self.queue.get_nowait() if not payload.get("extra", {}).get("is_marker", False): # Overwrite earlier events by later ones key = payload["target"], payload["step"] self.events[key] = payload except queue.Empty: pass def get_indices(self): self._drain_queue() indices = {} counter = Counter() for payload in self.events.values(): index = dict(payload.get("extra", {}).get("index", {})) name = index.setdefault("name", "N/A") if name not in indices: indices[name] = index elif index["current"] > indices[name]["current"]: indices[name].update(index) if payload["event"] != STEP_START: counter[name] += 1 indices[name]["counter"] = counter[name] indices_as_list = [indices[name] for name in sorted(indices)] return etl.assets.Content(json=indices_as_list) def get_events(self, event_id: Optional[str]): self._drain_queue() if event_id is None: events_as_list = sorted( (self.events[key] for key in self.events), key=lambda p: (2 if p["event"] == STEP_START else 1, p["timestamp"]), reverse=True, ) else: events_as_list = [event for event in self.events.values() if event["monitor_id"] == event_id] return etl.assets.Content(json=events_as_list) def create_handler(self): """Return a handler that serves our storage content, used as factory method.""" storage = self http_logger = logging.getLogger("arthur_http") class MonitorHTTPHandler(http.server.BaseHTTPRequestHandler): server_version = "MonitorHTTPServer/1.0" log_error = http_logger.error log_message = http_logger.info def do_GET(self): """ Serve a GET (or HEAD) request. We serve assets or JSON via the API. If the command is HEAD (and not GET), only the header is sent. Duh. """ parts = urllib.parse.urlparse(self.path.rstrip("/")) path = (parts.path or "/index.html").lstrip("/") if path == "api/etl-id": result = etl.assets.Content(json={"id": Monitor.etl_id}) elif path == "api/indices": result = storage.get_indices() elif path.startswith("api/events"): segment = path.replace("api/events", "").strip("/") result = storage.get_events(segment or None) elif path == "api/command-line": result = etl.assets.Content(json={"args": " ".join(sys.argv)}) elif etl.assets.asset_exists(path): result = etl.assets.get_asset(path) else: # self.send_response(HTTPStatus.NOT_FOUND) self.send_response(HTTPStatus.MOVED_PERMANENTLY) new_parts = (parts.scheme, parts.netloc, "/", None, None) new_url = urllib.parse.urlunsplit(new_parts) self.send_header("Location", new_url) self.end_headers() return self.send_response(HTTPStatus.OK) self.send_header("Content-Type", result.content_type) self.send_header("Content-Length", result.content_length) if result.content_encoding is not None: self.send_header("Content-Encoding", result.content_encoding) self.send_header("Last-Modified", result.last_modified) if result.cache_control is not None: self.send_header("Cache-Control", result.cache_control) self.end_headers() if self.command == "GET": self.wfile.write(result.content) do_HEAD = do_GET return MonitorHTTPHandler def start_server(self): """Start background daemon to serve our events.""" handler_class = self.create_handler() class BackgroundServer(threading.Thread): def run(self): logger.info("Starting background server for monitor on port %d", MemoryStorage.SERVER_PORT) try: httpd = _ThreadingSimpleServer( (MemoryStorage.SERVER_HOST, MemoryStorage.SERVER_PORT), handler_class ) httpd.serve_forever() except Exception as exc: logger.info("Background server stopped: %s", str(exc)) try: thread = BackgroundServer(daemon=True) thread.start() except RuntimeError: logger.warning("Failed to start monitor server:", exc_info=True) def start_monitors(environment): Monitor.environment = environment memory = MemoryStorage() MonitorPayload.dispatchers.append(memory) if etl.config.get_config_value("etl_events.enabled"): ddb = DynamoDBStorage.factory() MonitorPayload.dispatchers.append(ddb) else: logger.warning("Writing events to a DynamoDB table is disabled in settings.") def _format_output_column(key: str, value: str) -> str: if value is None: return "---" elif key == "timestamp": # Make timestamp readable by turning epoch seconds into a date. return datetime.utcfromtimestamp(float(value)).replace(microsecond=0).isoformat() elif key == "elapsed": # Reduce number of decimals to 2. return "{:6.2f}".format(float(value)) elif key == "rowcount": return "{:9d}".format(int(value)) else: return value def _query_for_etls(step=None, hours_ago=0, days_ago=0) -> List[dict]: """Search for ETLs by looking for the "marker" event at the start of an ETL command.""" start_time = datetime.utcnow() - timedelta(days=days_ago, hours=hours_ago) epoch_seconds = timegm(start_time.utctimetuple()) attribute_values = { ":marker": _DUMMY_TARGET, ":epoch_seconds": epoch_seconds, ":finish_event": STEP_FINISH, } if step is not None: attribute_values[":step"] = step filter_exp = "event = :finish_event" if step is not None: filter_exp += " and step = :step" ddb = DynamoDBStorage.factory() table = ddb.get_table(create_if_not_exists=False) response = table.query( ConsistentRead=True, ExpressionAttributeNames={"#timestamp": "timestamp"}, # "timestamp" is a reserved word. ExpressionAttributeValues=attribute_values, KeyConditionExpression="target = :marker and #timestamp > :epoch_seconds", FilterExpression=filter_exp, ProjectionExpression="etl_id, step, #timestamp", ReturnConsumedCapacity="TOTAL", ) if "LastEvaluatedKey" in response: logger.warning("This is is a partial result! Last evaluated key: '%s'", response["LastEvaluatedKey"]) logger.info( "Query result: count = %d, scanned count = %d, consumed capacity = %f", response["Count"], response["ScannedCount"], response["ConsumedCapacity"]["CapacityUnits"], ) return response["Items"] def query_for_etl_ids(hours_ago=0, days_ago=0) -> None: """Show recent ETLs with their step and execution start.""" etl_info = _query_for_etls(hours_ago=hours_ago, days_ago=days_ago) keys = ["etl_id", "step", "timestamp"] rows = [[_format_output_column(key, info[key]) for key in keys] for info in etl_info] rows.sort(key=itemgetter(keys.index("timestamp"))) print(etl.text.format_lines(rows, header_row=keys)) def scan_etl_events(etl_id, selected_columns: Optional[Iterable[str]] = None) -> None: """ Scan for all events belonging to a specific ETL. If a list of columns is provided, then the output is limited to those columns. But note that the target (schema.table) and the event are always present. """ ddb = DynamoDBStorage.factory() table = ddb.get_table(create_if_not_exists=False) available_columns = ["target", "step", "event", "timestamp", "elapsed", "rowcount"] if selected_columns is None: selected_columns = available_columns # We will always select "target" and "event" to have a meaningful output. columns = list(fy.filter(frozenset(selected_columns).union(["target", "event"]), available_columns)) keys = ["extra.rowcount" if column == "rowcount" else column for column in columns] # We need to scan here since the events are stored by "target" and not by "etl_id". # TODO Try to find all the "known" relations and query on them with a filter on the etl_id. client = boto3.client("dynamodb") paginator = client.get_paginator("scan") response_iterator = paginator.paginate( TableName=table.name, ConsistentRead=False, ExpressionAttributeNames={"#timestamp": "timestamp"}, ExpressionAttributeValues={ ":etl_id": {"S": etl_id}, ":marker": {"S": _DUMMY_TARGET}, ":start_event": {"S": STEP_START}, }, FilterExpression="etl_id = :etl_id and target <> :marker and event <> :start_event", ProjectionExpression="target, step, event, #timestamp, elapsed, extra.rowcount", ReturnConsumedCapacity="TOTAL", # PaginationConfig={ # "PageSize": 100 # } ) logger.info("Scanning events table '%s' for elapsed times", table.name) consumed_capacity = 0.0 scanned_count = 0 rows: List[List[str]] = [] deserialize = TypeDeserializer().deserialize for response in response_iterator: consumed_capacity += response["ConsumedCapacity"]["CapacityUnits"] scanned_count += response["ScannedCount"] # We need to turn something like "'event': {'S': 'finish'}" into "'event': 'finish'". deserialized = [ {key: deserialize(value) for key, value in item.items()} for item in response["Items"] ] # Lookup "elapsed" or "extra.rowcount" (the latter as ["extra", "rowcount"]). items = [{key: fy.get_in(item, key.split(".")) for key in keys} for item in deserialized] # Scope down to selected keys and format the columns. rows.extend([_format_output_column(key, item[key]) for key in keys] for item in items) logger.info("Scan result: scanned count = %d, consumed capacity = %f", scanned_count, consumed_capacity) if "timestamp" in keys: rows.sort(key=itemgetter(keys.index("timestamp"))) else: rows.sort(key=itemgetter(keys.index("target"))) print(etl.text.format_lines(rows, header_row=columns)) class EventsQuery: def __init__(self, step: Optional[str] = None) -> None: self._keys = ["target", "step", "event", "timestamp", "elapsed", "extra.rowcount"] values = { ":target": None, # will be set when called ":epoch_seconds": None, # will be set when called ":start_event": STEP_START, } # Only look for finish or fail events filter_exp = "event <> :start_event" if step is not None: values[":step"] = step filter_exp += " and step = :step" base_query = { "ConsistentRead": False, "ExpressionAttributeNames": {"#timestamp": "timestamp"}, "ExpressionAttributeValues": values, "KeyConditionExpression": "target = :target and #timestamp > :epoch_seconds", "FilterExpression": filter_exp, "ProjectionExpression": "target, step, event, #timestamp, elapsed, extra.rowcount", } self._base_query = base_query @property def keys(self): return self._keys[:] def __call__(self, table, target, epoch_seconds): query = deepcopy(self._base_query) query["ExpressionAttributeValues"][":target"] = target query["ExpressionAttributeValues"][":epoch_seconds"] = epoch_seconds response = table.query(**query) events = [{key: fy.get_in(item, key.split(".")) for key in self.keys} for item in response["Items"]] # Return latest event or None if events: events.sort(key=itemgetter("timestamp")) return events[-1] return None class BackgroundQueriesRunner(threading.Thread): """ An instance of this thread will repeatedly try to run queries on a DynamoDB table. Every time a query returns a result, this result is sent to a queue and the query will no longer be tried. """ def __init__( self, targets, query, consumer_queue, start_time, update_interval, idle_time_out, **kwargs ) -> None: super().__init__(**kwargs) self.targets = list(targets) self.query = query self.queue = consumer_queue self.start_time = start_time self.update_interval = update_interval self.idle_time_out = idle_time_out def run(self): ddb = DynamoDBStorage.factory() table = ddb.get_table(create_if_not_exists=False) targets = self.targets start_time = self.start_time idle = Timer() while targets: logger.debug( "Waiting for events for %d target(s), start time = '%s'", len(targets), datetime.utcfromtimestamp(start_time).isoformat(), ) new_start_time = datetime.utcnow() - timedelta(seconds=1) # avoid rounding errors query_loop = Timer() retired = set() for target in targets: latest_event = self.query(table, target, start_time) if latest_event: self.queue.put(latest_event) retired.add(latest_event["target"]) targets = [t for t in targets if t not in retired] start_time = timegm(new_start_time.utctimetuple()) if self.update_interval is None or not targets: break if retired: idle = Timer() elif self.idle_time_out and idle.elapsed > self.idle_time_out: logger.info( "Idle time-out: Waited for %d seconds but no events arrived, " "%d target(s) remaining", self.idle_time_out, len(targets), ) break if query_loop.elapsed < self.update_interval: time.sleep(self.update_interval - query_loop.elapsed) logger.info( "Found events for %d out of %d target(s)", len(self.targets) - len(targets), len(self.targets) ) self.queue.put(None) def recently_extracted_targets(source_relations, start_time): """ Query the events table for "extract" events on the provided source_relations after start_time. Waits for up to an hour, sleeping for 30s between checks. Return the set of targets (ie, relation.identifier or event["target"]) with successful extracts. """ targets = [relation.identifier for relation in source_relations] query = EventsQuery("extract") consumer_queue = queue.Queue() # type: ignore start_as_epoch = timegm(start_time.utctimetuple()) timeout = 60 * 60 extract_querying_thread = BackgroundQueriesRunner( targets, query, consumer_queue, start_as_epoch, update_interval=30, idle_time_out=timeout, daemon=True ) extract_querying_thread.start() extracted_targets = set() while True: try: event = consumer_queue.get(timeout=timeout) if event is None: break if event["event"] == STEP_FINISH: extracted_targets.add(event["target"]) except queue.Empty: break return extracted_targets def summarize_events(relations, step: Optional[str] = None) -> None: """Summarize latest ETL step for the given relations by showing elapsed time and row count.""" etl_info = _query_for_etls(step=step, days_ago=7) if not len(etl_info): logger.warning("Found no ETLs within the last 7 days") return latest_etl = sorted(etl_info, key=itemgetter("timestamp"))[-1] latest_start = latest_etl["timestamp"] logger.info("Latest ETL: %s", latest_etl) ddb = DynamoDBStorage.factory() table = ddb.get_table(create_if_not_exists=False) query = EventsQuery(step) events = [] schema_events: Dict[str, Dict[str, Union[str, Decimal]]] = {} for relation in tqdm( desc="Querying for events", disable=None, iterable=relations, leave=False, unit="table" ): event = query(table, relation.identifier, latest_start) if event: # Make the column for row counts easier to read by dropping "extra.". event["rowcount"] = event.pop("extra.rowcount") events.append(dict(event, kind=relation.kind)) schema = relation.target_table_name.schema if schema not in schema_events: schema_events[schema] = { "target": schema, "kind": "---", "step": event["step"], "timestamp": Decimal(0), "event": "complete", "elapsed": Decimal(0), "rowcount": Decimal(0), } if event["timestamp"] > schema_events[schema]["timestamp"]: schema_events[schema]["timestamp"] = event["timestamp"] schema_events[schema]["elapsed"] += event["elapsed"] schema_events[schema]["rowcount"] += event["rowcount"] if event["rowcount"] else 0 # Add pseudo events to show schemas are done. events.extend(schema_events.values()) keys = ["target", "kind", "step", "timestamp", "event", "elapsed", "rowcount"] rows = [[_format_output_column(key, info[key]) for key in keys] for info in events] rows.sort(key=itemgetter(keys.index("timestamp"))) print(etl.text.format_lines(rows, header_row=keys)) def tail_events( relations, start_time, update_interval=None, idle_time_out=None, step: Optional[str] = None ) -> None: """Tail the events table and show latest finish or fail events coming in.""" targets = [relation.identifier for relation in relations] query = EventsQuery(step) consumer_queue = queue.Queue() # type: ignore epoch_seconds = timegm(start_time.utctimetuple()) thread = BackgroundQueriesRunner( targets, query, consumer_queue, epoch_seconds, update_interval, idle_time_out, daemon=True ) thread.start() events = [] n_printed = 0 done = False while not done: progress = Timer() while progress.elapsed < 10: try: event = consumer_queue.get(timeout=10) if event is None: done = True break event["timestamp"] = datetime.utcfromtimestamp(event["timestamp"]).isoformat() events.append(event) except queue.Empty: break # Keep printing tail of table that accumulates the events. if len(events) > n_printed: lines = etl.text.format_lines( [[event[header] for header in query.keys] for event in events], header_row=query.keys ).split("\n") if n_printed: print("\n".join(lines[n_printed + 2 : -1])) # skip header and final "(x rows)" line else: print("\n".join(lines[:-1])) # only skip the "(x rows)" line n_printed = len(lines) - 3 # header, separator, final = 3 extra rows if done: print(lines[-1]) def test_run(): Monitor.environment = "test" # type: ignore memory = MemoryStorage() MonitorPayload.dispatchers.append(memory) schema_names = ["auburn", "burgundy", "cardinal", "flame", "fuchsia"] table_names = ["apple", "banana", "cantaloupe", "durian", "fig"] index = {"current": 0, "final": len(schema_names) * len(table_names)} host = MemoryStorage.SERVER_HOST if MemoryStorage.SERVER_HOST else "localhost" print("Creating events ... follow along at http://{}:{}/".format(host, MemoryStorage.SERVER_PORT)) with Monitor("color.fruit", "test", index={"current": 1, "final": 1, "name": "outer"}): for i, names in enumerate(itertools.product(schema_names, table_names)): try: with Monitor(".".join(names), "test", index=dict(index, current=i + 1)): time.sleep(random.uniform(0.5, 2.0)) # Create an error on one "table" so that highlighting of errors can be tested: if i == 9: raise RuntimeError("An error occurred!") except RuntimeError: pass input("Press return (or Ctrl-c) to stop server\n") if __name__ == "__main__": logging.basicConfig(level=logging.INFO) # This allows to test the HTTP server. When running inside a Docker container, make sure # that port 8086 is exposed. (bin/run_arthur.sh -w). # Invoke using "python -m etl.monitor" inside the Docker container and follow along # with "open http://localhost:8086" from your host. test_run()
mit
-3,399,315,863,732,583,000
38.123941
110
0.600601
false
att-comdev/armada
armada/tests/unit/handlers/test_manifest.py
1
19376
# Copyright 2017 The Armada Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import os import yaml import testtools from armada import const from armada import exceptions from armada.handlers import manifest from armada.utils import validate class ManifestTestCase(testtools.TestCase): def setUp(self): super(ManifestTestCase, self).setUp() examples_dir = os.path.join( os.getcwd(), 'armada', 'tests', 'unit', 'resources') with open(os.path.join(examples_dir, 'keystone-manifest.yaml')) as f: self.documents = list(yaml.safe_load_all(f.read())) def test_get_documents(self): armada_manifest = manifest.Manifest(self.documents) self.assertIsInstance(armada_manifest.charts, list) self.assertIsInstance(armada_manifest.groups, list) self.assertIsNotNone(armada_manifest.manifest) self.assertEqual(4, len(armada_manifest.charts)) self.assertEqual(2, len(armada_manifest.groups)) self.assertEqual([self.documents[x] for x in range(4)], armada_manifest.charts) self.assertEqual([self.documents[x] for x in range(4, 6)], armada_manifest.groups) self.assertEqual(self.documents[-1], armada_manifest.manifest) def test_get_documents_with_target_manifest(self): # Validate that specifying `target_manifest` flag returns the correct # manifest. armada_manifest = manifest.Manifest( self.documents, target_manifest='armada-manifest') self.assertIsInstance(armada_manifest.charts, list) self.assertIsInstance(armada_manifest.groups, list) self.assertIsNotNone(armada_manifest.manifest) self.assertEqual(4, len(armada_manifest.charts)) self.assertEqual(2, len(armada_manifest.groups)) self.assertEqual([self.documents[x] for x in range(4)], armada_manifest.charts) self.assertEqual([self.documents[x] for x in range(4, 6)], armada_manifest.groups) self.assertEqual(self.documents[-1], armada_manifest.manifest) self.assertEqual('armada-manifest', self.documents[-1]['metadata']['name']) def test_get_documents_with_multi_manifest_and_target_manifest(self): # Validate that specifying `target_manifest` flag returns the correct # manifest even if there are multiple existing manifests. (Only works # when the manifest names are distinct or else should raise error.) documents = copy.deepcopy(self.documents) other_manifest = copy.deepcopy(self.documents[-1]) other_manifest['metadata']['name'] = 'alt-armada-manifest' documents.append(other_manifest) # Specify the "original" manifest and verify it works. armada_manifest = manifest.Manifest( documents, target_manifest='armada-manifest') self.assertIsInstance(armada_manifest.charts, list) self.assertIsInstance(armada_manifest.groups, list) self.assertIsNotNone(armada_manifest.manifest) self.assertEqual(4, len(armada_manifest.charts)) self.assertEqual(2, len(armada_manifest.groups)) self.assertEqual([self.documents[x] for x in range(4)], armada_manifest.charts) self.assertEqual([self.documents[x] for x in range(4, 6)], armada_manifest.groups) self.assertEqual(armada_manifest.manifest, self.documents[-1]) self.assertEqual('armada-manifest', armada_manifest.manifest['metadata']['name']) # Specify the alternative manifest and verify it works. armada_manifest = manifest.Manifest( documents, target_manifest='alt-armada-manifest') self.assertIsNotNone(armada_manifest.manifest) self.assertEqual(other_manifest, armada_manifest.manifest) self.assertEqual('alt-armada-manifest', armada_manifest.manifest['metadata']['name']) def test_get_manifest(self): armada_manifest = manifest.Manifest(self.documents) obtained_manifest = armada_manifest.get_manifest() self.assertIsInstance(obtained_manifest, dict) self.assertEqual(obtained_manifest['armada'], armada_manifest.manifest['data']) def test_find_documents(self): armada_manifest = manifest.Manifest(self.documents) chart_documents, chart_groups, manifests = armada_manifest. \ _find_documents() # checking if all the chart documents are present self.assertIsInstance(chart_documents, list) helm_toolkit_chart = armada_manifest. \ find_chart_document('helm-toolkit') self.assertEqual(chart_documents[0], helm_toolkit_chart) mariadb_chart = armada_manifest.find_chart_document('mariadb') self.assertEqual(chart_documents[1], mariadb_chart) memcached_chart = armada_manifest.find_chart_document('memcached') self.assertEqual(chart_documents[2], memcached_chart) keystone_chart = armada_manifest.find_chart_document('keystone') self.assertEqual(chart_documents[3], keystone_chart) # checking if all the chart group documents are present self.assertIsInstance(chart_groups, list) keystone_infra_services_chart_group = armada_manifest. \ find_chart_group_document('keystone-infra-services') self.assertEqual(chart_groups[0], keystone_infra_services_chart_group) openstack_keystone_chart_group = armada_manifest. \ find_chart_group_document('openstack-keystone') self.assertEqual(chart_groups[1], openstack_keystone_chart_group) # verifying the manifests self.assertIsInstance(manifests, list) self.assertEqual(manifests[0], armada_manifest.manifest) def test_verify_chart_documents(self): armada_manifest = manifest.Manifest(self.documents) helm_toolkit_chart = armada_manifest. \ find_chart_document('helm-toolkit') self.assertIsInstance(helm_toolkit_chart, dict) self.assertEqual(self.documents[0], helm_toolkit_chart) mariadb_chart = armada_manifest.find_chart_document('mariadb') self.assertIsInstance(mariadb_chart, dict) self.assertEqual(self.documents[1], mariadb_chart) memcached_chart = armada_manifest.find_chart_document('memcached') self.assertIsInstance(memcached_chart, dict) self.assertEqual(self.documents[2], memcached_chart) keystone_chart = armada_manifest.find_chart_document('keystone') self.assertIsInstance(keystone_chart, dict) self.assertEqual(self.documents[3], keystone_chart) def test_verify_chart_group_documents(self): armada_manifest = manifest.Manifest(self.documents) ok_chart = armada_manifest. \ find_chart_group_document('openstack-keystone') self.assertIsInstance(ok_chart, dict) self.assertEqual(self.documents[-2], ok_chart) armada_manifest = manifest.Manifest(self.documents) kis_chart = armada_manifest.find_chart_group_document( 'keystone-infra-services') self.assertIsInstance(kis_chart, dict) self.assertEqual(self.documents[-3], kis_chart) def test_verify_build_armada_manifest(self): armada_manifest = manifest.Manifest(self.documents) built_armada_manifest = armada_manifest.build_armada_manifest() self.assertIsNotNone(built_armada_manifest) self.assertIsInstance(built_armada_manifest, dict) # the first chart group in the Armada manifest keystone_infra_services_chart_group = armada_manifest. \ find_chart_group_document('keystone-infra-services') keystone_infra_services_chart_group_data = \ keystone_infra_services_chart_group.get('data') self.assertEqual(keystone_infra_services_chart_group_data, built_armada_manifest['data']['chart_groups'][0]) # the first chart group in the Armada manifest openstack_keystone_chart_group = armada_manifest. \ find_chart_group_document('openstack-keystone') openstack_keystone_chart_group_data = \ openstack_keystone_chart_group.get('data') self.assertEqual(openstack_keystone_chart_group_data, built_armada_manifest['data']['chart_groups'][1]) def test_verify_build_chart_group_deps(self): armada_manifest = manifest.Manifest(self.documents) # building the deps for openstack-keystone chart group chart_group = armada_manifest.find_chart_group_document( 'openstack-keystone') openstack_keystone_chart_group_deps = armada_manifest. \ build_chart_group(chart_group) openstack_keystone_chart_group_deps_dep_added = \ openstack_keystone_chart_group_deps[ 'data']['chart_group'][0]['chart']['dependencies'] # keystone chart dependencies keystone_chart = armada_manifest.find_chart_document('keystone') keystone_chart_with_deps = armada_manifest.build_chart_deps( keystone_chart) keystone_dependencies = keystone_chart_with_deps[ 'data']['dependencies'] self.assertEqual(openstack_keystone_chart_group_deps_dep_added[0], keystone_dependencies[0]) # building the deps for openstack-keystone chart group chart_group = armada_manifest.find_chart_group_document( 'keystone-infra-services') openstack_keystone_chart_group_deps = armada_manifest. \ build_chart_group(chart_group) keystone_infra_services_dep_added = \ openstack_keystone_chart_group_deps[ 'data']['chart_group'][0]['chart']['dependencies'] # building mariadb chart dependencies mariadb_chart = armada_manifest.find_chart_document('mariadb') mariadb_chart_with_deps = armada_manifest.build_chart_deps( mariadb_chart) mariadb_dependencies = mariadb_chart_with_deps[ 'data']['dependencies'] # building memcached chart dependencies memcached_chart = armada_manifest.find_chart_document('memcached') memcached_chart_with_deps = armada_manifest.build_chart_deps( memcached_chart) memcached_dependencies = memcached_chart_with_deps[ 'data']['dependencies'] self.assertEqual(keystone_infra_services_dep_added[0], mariadb_dependencies[0]) self.assertEqual(keystone_infra_services_dep_added[0], memcached_dependencies[0]) def test_verify_build_chart_deps(self): armada_manifest = manifest.Manifest(self.documents) # helm-toolkit chart helm_toolkit_chart = armada_manifest.find_chart_document( 'helm-toolkit') helm_toolkit_original_dependency = helm_toolkit_chart.get('data') helm_toolkit_chart_with_deps = armada_manifest.build_chart_deps( helm_toolkit_chart).get('data') # since not dependent on other charts, the original and modified # dependencies are the same self.assertEqual(helm_toolkit_original_dependency, helm_toolkit_chart_with_deps) # helm-toolkit dependency, the basis for comparison of d # ependencies in other charts expected_helm_toolkit_dependency = {'chart': helm_toolkit_chart.get( 'data')} # keystone chart dependencies keystone_chart = armada_manifest.find_chart_document('keystone') original_keystone_chart = copy.deepcopy(keystone_chart) keystone_chart_with_deps = armada_manifest.build_chart_deps( keystone_chart) self.assertNotEqual(original_keystone_chart, keystone_chart_with_deps) self.assertIn('data', keystone_chart_with_deps) self.assertIn('dependencies', keystone_chart_with_deps['data']) keystone_dependencies = keystone_chart_with_deps[ 'data']['dependencies'] self.assertIsInstance(keystone_dependencies, list) self.assertEqual(1, len(keystone_dependencies)) self.assertEqual(expected_helm_toolkit_dependency, keystone_dependencies[0]) # mariadb chart dependencies mariadb_chart = armada_manifest.find_chart_document('mariadb') original_mariadb_chart = copy.deepcopy(mariadb_chart) mariadb_chart_with_deps = armada_manifest.build_chart_deps( mariadb_chart) self.assertNotEqual(original_mariadb_chart, mariadb_chart_with_deps) self.assertIn('data', mariadb_chart_with_deps) self.assertIn('dependencies', mariadb_chart_with_deps['data']) mariadb_dependencies = mariadb_chart_with_deps[ 'data']['dependencies'] self.assertIsInstance(mariadb_dependencies, list) self.assertEqual(1, len(mariadb_dependencies)) self.assertEqual(expected_helm_toolkit_dependency, mariadb_dependencies[0]) # memcached chart dependencies memcached_chart = armada_manifest.find_chart_document('memcached') original_memcached_chart = copy.deepcopy(memcached_chart) memcached_chart_with_deps = armada_manifest.build_chart_deps( memcached_chart) self.assertNotEqual(original_memcached_chart, memcached_chart_with_deps) self.assertIn('data', memcached_chart_with_deps) self.assertIn('dependencies', memcached_chart_with_deps['data']) memcached_dependencies = memcached_chart_with_deps[ 'data']['dependencies'] self.assertIsInstance(memcached_dependencies, list) self.assertEqual(1, len(memcached_dependencies)) self.assertEqual(expected_helm_toolkit_dependency, memcached_dependencies[0]) class ManifestNegativeTestCase(testtools.TestCase): def setUp(self): super(ManifestNegativeTestCase, self).setUp() examples_dir = os.path.join( os.getcwd(), 'armada', 'tests', 'unit', 'resources') with open(os.path.join(examples_dir, 'keystone-manifest.yaml')) as f: self.documents = list(yaml.safe_load_all(f.read())) def test_get_documents_multi_manifests_raises_value_error(self): # Validates that finding multiple manifests without `target_manifest` # flag raises exceptions.ManifestException. documents = copy.deepcopy(self.documents) documents.append(documents[-1]) # Copy the last manifest. error_re = r'Multiple manifests are not supported.*' self.assertRaisesRegexp( exceptions.ManifestException, error_re, manifest.Manifest, documents) def test_get_documents_multi_target_manifests_raises_value_error(self): # Validates that finding multiple manifests with `target_manifest` # flag raises exceptions.ManifestException. documents = copy.deepcopy(self.documents) documents.append(documents[-1]) # Copy the last manifest. error_re = r'Multiple manifests are not supported.*' self.assertRaisesRegexp( exceptions.ManifestException, error_re, manifest.Manifest, documents, target_manifest='armada-manifest') def test_get_documents_missing_manifest(self): # Validates exceptions.ManifestException is thrown if no manifest is # found. Manifest is last document in sample YAML. error_re = ('Documents must be a list of documents with at least one ' 'of each of the following schemas: .*') self.assertRaisesRegexp( exceptions.ManifestException, error_re, manifest.Manifest, self.documents[:-1]) def test_get_documents_missing_charts(self): # Validates exceptions.ManifestException is thrown if no chart is # found. Charts are first 4 documents in sample YAML. error_re = ('Documents must be a list of documents with at least one ' 'of each of the following schemas: .*') self.assertRaisesRegexp( exceptions.ManifestException, error_re, manifest.Manifest, self.documents[4:]) def test_get_documents_missing_chart_groups(self): # Validates exceptions.ManifestException is thrown if no chart is # found. ChartGroups are 5-6 documents in sample YAML. documents = self.documents[:4] + [self.documents[-1]] error_re = ('Documents must be a list of documents with at least one ' 'of each of the following schemas: .*') self.assertRaisesRegexp( exceptions.ManifestException, error_re, manifest.Manifest, documents) def test_find_chart_document_negative(self): armada_manifest = manifest.Manifest(self.documents) error_re = r'Could not find a %s named "%s"' % ( const.DOCUMENT_CHART, 'invalid') self.assertRaisesRegexp(exceptions.ManifestException, error_re, armada_manifest.find_chart_document, 'invalid') def test_find_group_document_negative(self): armada_manifest = manifest.Manifest(self.documents) error_re = r'Could not find a %s named "%s"' % ( const.DOCUMENT_GROUP, 'invalid') self.assertRaisesRegexp(exceptions.ManifestException, error_re, armada_manifest.find_chart_group_document, 'invalid') def test_build_chart_deps_with_missing_dependency_fails(self): """Validate that attempting to build a chart that points to a missing dependency fails. """ self.documents[1]['data']['dependencies'] = ['missing-dependency'] valid, details = validate.validate_armada_documents(self.documents) self.assertFalse(valid) def test_build_chart_group_with_missing_chart_grp_fails(self): """Validate that attempting to build a chart group document with missing chart group fails. """ self.documents[5]['data']['chart_group'] = ['missing-chart-group'] valid, details = validate.validate_armada_documents(self.documents) self.assertFalse(valid) def test_build_armada_manifest_with_missing_chart_grps_fails(self): """Validate that attempting to build a manifest with missing chart groups fails. """ self.documents[6]['data']['chart_groups'] = ['missing-chart-groups'] valid, details = validate.validate_armada_documents(self.documents) self.assertFalse(valid)
apache-2.0
8,929,328,809,343,949,000
43.748268
79
0.658805
false
linuxrocks123/MailTask
mt_chronos.py
1
1986
#! /usr/bin/env python # MailTask Alpha: The Email Manager # Copyright (C) 2015 Patrick Simmons # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. #Note: This library should have no dependencies on other parts of MailTask. #This is to allow Chronos-Ananke messages to be generated and parsed #from external software. #Just to be clear, the license to this file is still GPLv3, though. ##Given a string representing the body of an email message, # return a four-tuple with the information necessary to create # a calendar event from it using the MT-CHRONOS-ANANKE format. # The format of the return tuple: # ("summary","description",epoch-starttime,epoch-endtime) def extract_calendar_event(email_body): inside_calendar=False lines = email_body.splitlines() i=0 while i<len(lines): if lines[i].find("MT-CHRONOS-ANANKE")!=-1: try: to_return=(lines[i+1],lines[i+2],int(lines[i+3]),int(lines[i+4])) return to_return except: pass i+=1 return None ##Generate the MT-CHRONOS-ANANKE event string to put in the body of an email message def gen_calendar_event(summary,description,starttime,endtime): to_return="MT-CHRONOS-ANANKE\n" to_return+=summary+"\n" to_return+=description+"\n" to_return+=repr(starttime)+"\n" to_return+=repr(endtime)+"\n" return to_return
gpl-3.0
-4,021,911,731,758,143,000
37.192308
84
0.703424
false
delcypher/klee-runner
tools/show-klee-dir.py
1
5821
#!/usr/bin/env python # vim: set sw=4 ts=4 softtabstop=4 expandtab: """ Perform verification of a klee-runner result yaml file and associated working directory. """ import argparse from enum import Enum import logging import os # pylint: disable=wrong-import-position from load_klee_analysis import add_kleeanalysis_to_module_search_path from load_klee_runner import add_KleeRunner_to_module_search_path add_kleeanalysis_to_module_search_path() add_KleeRunner_to_module_search_path() import KleeRunner.ResultInfo import KleeRunner.DriverUtil as DriverUtil from kleeanalysis.kleedir.kleedir import KleeDir _logger = logging.getLogger(__name__) def main(argv): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument("klee_dir", default=None) parser.add_argument("--messages", default=False, action="store_true") parser.add_argument("--warnings", default=False, action="store_true") parser.add_argument("--show-invalid", dest="show_invalid", default=False, action="store_true") parser.add_argument("--show-error-locations", dest="show_error_locations", default=False, action="store_true") DriverUtil.parserAddLoggerArg(parser) args = parser.parse_args(args=argv) DriverUtil.handleLoggerArgs(args, parser) if not os.path.exists(args.klee_dir): _logger.error("Klee directory \"{}\" does not exist".format(args.klee_dir)) return 1 if not os.path.isdir(args.klee_dir): _logger.error("\"{}\" is not a directory".format(args.klee_dir)) return 1 _logger.info('Reading KLEE directory "{}"'.format(args.klee_dir)) klee_dir = KleeDir(args.klee_dir) _logger.info('Finished reading KLEE directory') # Report stuff about the KLEE directory if not klee_dir.is_valid: if args.show_invalid: _logger.warning("\n") _logger.warning('KLEE directory is invalid. Showing all available information.') _logger.warning("\n") else: _logger.error('KLEE directory is invalid (use --show-invalid to show anyway)') return 1 _logger.info('Total # of test cases: {}'.format(len(klee_dir.tests))) _logger.info('#'*70) abort_errors = list(klee_dir.abort_errors) _logger.info('# of abort errors: {}'.format(len(abort_errors))) show_error_locations(abort_errors, args.show_error_locations) assert_errors = list(klee_dir.assertion_errors) _logger.info('# of assert errors: {}'.format(len(assert_errors))) show_error_locations(assert_errors, args.show_error_locations) division_errors = list(klee_dir.division_errors) _logger.info('# of division errors: {}'.format(len(division_errors))) show_error_locations(division_errors, args.show_error_locations) execution_errors = list(klee_dir.execution_errors) _logger.info('# of execution errors: {}'.format(len(execution_errors))) show_error_locations(execution_errors, args.show_error_locations) free_errors = list(klee_dir.free_errors) _logger.info('# of free errors: {}'.format(len(free_errors))) show_error_locations(free_errors, args.show_error_locations) overflow_errors = list(klee_dir.overflow_errors) _logger.info('# of overflow errors: {}'.format(len(overflow_errors))) show_error_locations(overflow_errors, args.show_error_locations) overshift_errors = list(klee_dir.overshift_errors) _logger.info('# of overshift errors: {}'.format(len(overshift_errors))) ptr_errors = list(klee_dir.ptr_errors) _logger.info('# of ptr errors: {}'.format(len(ptr_errors))) read_only_errors = list(klee_dir.read_only_errors) _logger.info('# of read only errors: {}'.format(len(read_only_errors))) user_errors = list(klee_dir.user_errors) _logger.info('# of user errors: {}'.format(len(user_errors))) misc_errors = list(klee_dir.misc_errors) _logger.info('# of misc errors: {}'.format(len(misc_errors))) _logger.info('#'*70) successful_terminations = list(klee_dir.successful_terminations) _logger.info('# of successful terminations: {}'.format(len(successful_terminations))) _logger.info('#'*70) early_terminations = list(klee_dir.early_terminations) _logger.info('# of early terminations: {}'.format(len(early_terminations))) # Show the reason for early termination by count reasonCounts = dict() for t in early_terminations: msg = ' '.join(t.early.message).strip() if msg not in reasonCounts: reasonCounts[msg] = 1 else: reasonCounts[msg] += 1 for reason, count in sorted(reasonCounts.items(), key=lambda i: i[0]): _logger.info("\"{}\": {}".format(reason, count)) if args.messages: _logger.info('#'*70) msgs = ''.join(klee_dir.messages) _logger.info('KLEE messages:\n{}'.format(msgs)) if args.warnings: _logger.info('#'*70) warnings = ''.join(klee_dir.warnings) _logger.info('KLEE warnings:\n{}'.format(warnings)) def show_error_locations(tests, enabled): assert isinstance(tests, list) if not enabled: return for test in tests: error = test.error msg = "{msg}: {file}:{line}\n".format( file=error.file, line=error.line, msg=error.message) msg += "assembly line: {}\n".format(error.assembly_line) if len(error.stack) > 0: msg += "stack:\n" for l in error.stack: msg += l _logger.info(msg) if __name__ == '__main__': import sys sys.exit(main(sys.argv[1:]))
mit
-734,669,082,042,310,700
36.076433
92
0.633912
false
codesy/codesy
payments/migrations/0001_initial.py
1
1590
# -*- coding: utf-8 -*- # Generated by Django 1.9.4 on 2016-08-03 23:59 from __future__ import unicode_literals from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='StripeAccount', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('account_id', models.CharField(blank=True, max_length=100)), ('secret_key', models.CharField(blank=True, max_length=100)), ('public_key', models.CharField(blank=True, max_length=100)), ('available_balance', models.DecimalField(blank=True, decimal_places=2, default=0, max_digits=6)), ('verification', models.TextField(blank=True, default=b'')), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), migrations.CreateModel( name='StripeEvent', fields=[ ('event_id', models.CharField(blank=True, max_length=100, primary_key=True, serialize=False)), ('type', models.CharField(blank=True, max_length=100)), ('message_text', models.TextField()), ('processed', models.BooleanField(default=False)), ], ), ]
agpl-3.0
-4,125,141,983,997,128,000
38.75
118
0.597484
false
Dutchj/pbtweeter
pbtweeter/speedrun.py
1
1678
import config as cfg import json from datetime import datetime from urllib2 import urlopen, quote def get_lb(): try: response = urlopen('http://www.speedrun.com/api_records.php?amount=999&game='+quote(cfg.game)) return json.load(response) except Exception, e: print datetime.now().strftime('[%Y-%m-%d %H:%M:%S]'), 'Error getting leaderboard data:', e return def get_twitter_handle(user): try: response = urlopen('http://www.speedrun.com/api/v1/users?max=200&name='+user) users = json.load(response) except Exception, e: print datetime.now().strftime('[%Y-%m-%d %H:%M:%S]'), 'Error getting user search:', e return else: if users['data'] is []: print "Unable to retrieve Twitter handle: No data, user most likely doesn't exist" return '' for entry in users['data']: if entry['names']['international'].lower() == user.lower(): identifier = entry['id'] break else: print "Unable to retrieve Twitter handle: User doesn't exist" return '' try: response = urlopen('http://www.speedrun.com/api/v1/users/'+str(identifier)) except Exception, e: print datetime.now().strftime('[%Y-%m-%d %H:%M:%S]'), 'Error getting user data:', e return else: user_data = json.load(response) if user_data['data']['twitter'] is None: return '' twitter_link = user_data['data']['twitter']['uri'] return '@' + twitter_link.replace('http://www.twitter.com/', '').replace('%40', '')
gpl-2.0
-8,179,702,171,126,471,000
37.136364
102
0.564958
false
wpoely86/easybuild-easyblocks
easybuild/easyblocks/r/rserve.py
1
1691
## # Copyright 2009-2016 Ghent University # # This file is part of EasyBuild, # originally created by the HPC team of Ghent University (http://ugent.be/hpc/en), # with support of Ghent University (http://ugent.be/hpc), # the Flemish Supercomputer Centre (VSC) (https://vscentrum.be/nl/en), # Flemish Research Foundation (FWO) (http://www.fwo.be/en) # and the Department of Economy, Science and Innovation (EWI) (http://www.ewi-vlaanderen.be/en). # # http://github.com/hpcugent/easybuild # # EasyBuild is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation v2. # # EasyBuild is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with EasyBuild. If not, see <http://www.gnu.org/licenses/>. ## """ EasyBuild support for building and installing the Bioconductor R library, implemented as an easyblock @author: Stijn De Weirdt (Ghent University) @author: Dries Verdegem (Ghent University) @author: Kenneth Hoste (Ghent University) @author: Jens Timmerman (Ghent University) @author: Toon Willems (Ghent University) """ from easybuild.easyblocks.generic.rpackage import RPackage class EB_Rserve(RPackage): """Build and install Rserve R library.""" def run(self): """Set LIBS environment variable correctly prior to building.""" self.configurevars = ['LIBS="$LIBS -lpthread"'] super(EB_Rserve, self).run()
gpl-2.0
-6,841,785,805,231,180,000
37.431818
101
0.740982
false
mjirik/lisa
lisa/vessels_segmentation.py
1
3265
#! /usr/bin/python # -*- coding: utf-8 -*- # import funkcí z jiného adresáře import sys import os.path import io3d path_to_script = os.path.dirname(os.path.abspath(__file__)) #import featurevector import unittest from loguru import logger # logger = logging.getLogger() # import apdb # apdb.set_trace(); # import scipy.io import numpy as np # ----------------- my scripts -------- import argparse from . import segmentation_general class VesselSegmentation: def __init__(self): pass def set_params(self): pass def run(self): pass def get_output(self): pass if __name__ == "__main__": ## logger = logging.getLogger() # logger = logging.getLogger() logger.setLevel(logging.WARNING) ch = logging.StreamHandler() logger.addHandler(ch) #logger.debug('input params') # input parser parser = argparse.ArgumentParser(description='Segment vessels from liver') parser.add_argument('-dd','--dcmdir', default=None, help='path to data dir') parser.add_argument('-d', '--debug', action='store_true', help='run in debug mode') parser.add_argument('-i', '--inputfile', default=None, help='input file or directory with data') args = parser.parse_args() if args.debug: logger.setLevel(logging.DEBUG) defaultoutputfile = "vessels.pkl" if args.defaultoutputfile: args.outputfile = defaultoutputfile #else: #dcm_read_from_dir('/home/mjirik/data/medical/data_orig/46328096/') #data3d, metadata = dcmreaddata.dcm_read_from_dir() datap = io3d.read(args.inputfile) import sed3 # pyed = sed3.sed3(oseg.orig_scale_segmentation) #pyed.show() # information about crop #cri = oseg.crinfo #oseg.data3d = oseg.data3d[cri[0][0]:cri[0][1],cri[1][0]:cri[1][1],cri[2][0]:cri[2][1]] #pyed = sed3.sed3(oseg.data3d, contour = oseg.orig_scale_segmentation) print('slab', datap['slab']) #import ipdb; ipdb.set_trace() # BREAKPOINT #pyed = sed3.sed3(data['data3d'], contour = data['segmentation']) #pyed.show() #import pdb; pdb.set_trace() outputTmp = segmentation_general.vesselSegmentation( datap['data3d'], segmentation = datap['segmentation'], #segmentation = oseg.orig_scale_segmentation, threshold = -1, inputSigma = 0.15, dilationIterations = 2, nObj = 1, biggestObjects = args.biggest, # dataFiltering = True, interactivity = True, binaryClosingIterations = 2, binaryOpeningIterations = 0) datap['slab']['none'] = 0 datap['slab']['liver'] = 1 datap['slab']['porta'] = 2 #print np.max(output) #import pdb; pdb.set_trace() #data = {} #data['data3d'] = oseg.data3d #data['crinfo'] = oseg.crinfo #data['segmentation'] = oseg.segmentation datap['segmentation'][output] = datap['slab']['porta'] #data['slab'] = slab pyed = sed3.sed3(datap['data3d'], contour=datap['segmentation'] == datap['slab']['porta']) pyed.show() #pyed = sed3.sed3(data['segmentation']) #pyed.show() # Uvolneni pameti if args.outputfile == None: io3d.write(datap, args.outpufile)
bsd-3-clause
-3,153,561,909,537,196,000
23.89313
94
0.616069
false
voilet/cmdb
assets/ztree/api.py
1
11656
#!/usr/bin/env python # -*- coding: utf-8 -*- # ============================================================================= # FileName: api.py # Desc: 2015-15/4/16:下午5:54 # Author: 苦咖啡 # Email: [email protected] # HomePage: http://blog.kukafei520.net # History: # ============================================================================= from django.shortcuts import render_to_response, HttpResponseRedirect, HttpResponse from django.template import RequestContext from django.contrib.auth.decorators import login_required import commands, json, yaml from assets.models import Project from mysite.settings import auth_key from assets.models import Host, IDC import hashlib, time from django.views.decorators.csrf import csrf_exempt from django.shortcuts import redirect # 登录 from users.models import CustomUser from assets.models import project_swan from assets.ztree.service import ztree_tag from django.shortcuts import get_object_or_404 from assets.models import Host, IDC, Service, Line, Project, HostRecord from cmdb_auth.models import AuthNode # songxs add @login_required def ztree_project(request): line_list = Line.objects.filter() business = Project.objects.filter(line__isnull=False) no_business = Project.objects.filter(line__isnull=True) ztree_data = ztree_tag(request.user.username) return render_to_response('default/default.html', locals(), context_instance=RequestContext(request)) @login_required def ztree_business(request): """ 树请求验证 :param request: :return: """ business_name = request.GET.get("uuid", False) get_token = str(request.GET.get("token", False)) ztree_data = ztree_tag(request.user.username) try: sum_token = str(hashlib.sha1(request.user.username + auth_key + business_name + time.strftime('%Y-%m-%d', time.localtime(time.time()))).hexdigest()) except TypeError: sum_token = False if request.GET.get("options") == "host": uuid = request.GET.get('uuid', '') ip = request.GET.get('ip', '') if uuid: host = get_object_or_404(Host, uuid=uuid) elif ip: host = get_object_or_404(Host, eth1=ip) host_record = HostRecord.objects.filter(host=host).order_by('-time') user_audit = AuthNode.objects.filter(node=host) audit_count = user_audit.count() return render_to_response('ztree/host_detail.html', locals(), context_instance=RequestContext(request)) content_status = True idle = request.GET.get("idle", False) if get_token != sum_token: content_status = False return render_to_response('ztree/ztree_service.html', locals(), context_instance=RequestContext(request)) if business_name != u"未分类": try: bus_data = Project.objects.get(uuid=request.GET.get("uuid")) if not idle: server_list = Host.objects.filter(business=bus_data, idle=True).order_by("create_time") else: server_list = Host.objects.filter(business=bus_data, idle=False).order_by("create_time") except: pass else: bus_data = u'未分类' idc_data = IDC.objects.filter(type=1) if not idle: server_list = Host.objects.filter(business__isnull=True, idc=idc_data, idle=True).order_by("create_time") else: server_list = Host.objects.filter(business__isnull=True, idc=idc_data, idle=False).order_by("create_time") if request.GET.get("options") == "swan_push": s = Ztree_class(business_name, request.user.first_name) rst = s.swan() rst_data = rst.get("swan_name") status = len(rst_data) return render_to_response('ztree/swan.html', locals(), context_instance=RequestContext(request)) if request.GET.get("options") == "doc": data = Project.objects.get(pk=business_name) # return render_to_response('ztree/swan.html', locals(), context_instance=RequestContext(request)) return render_to_response('markdown/index.html', locals(), context_instance=RequestContext(request)) if request.GET.get("options") == "highstate": project = Project.objects.get(uuid=business_name) host_list = Host.objects.filter(business=project) return render_to_response('ztree/highstate.html', locals(), context_instance=RequestContext(request)) if request.GET.get("options") == "monitor": return render_to_response('ztree/zabbix_count.html', locals(), context_instance=RequestContext(request)) if request.GET.get("options") == "salt": return render_to_response('ztree/saltstack.html', locals(), context_instance=RequestContext(request)) if request.GET.get("options") == "project": ip_list = [] server_list = {} line_name = Line.objects.get(pk=business_name) business_data = Project.objects.filter(line=business_name) for i in business_data: node = Host.objects.filter(business=i, idle=True) for k in node: if k.eth1 not in ip_list: ip_list.append(k.eth1) server_list[str(k.uuid)] = k.eth1 count = len(ip_list) return render_to_response('ztree/project.html', locals(), context_instance=RequestContext(request)) if request.GET.get("options") == "types": get_env = request.GET.get("name") business_data = Project.objects.filter(pk=business_name) server_list = Host.objects.filter(business=business_data, env=get_env).order_by("-create_time") count = server_list.count() return render_to_response('ztree/ztree.html', locals(), context_instance=RequestContext(request)) if request.GET.get("options") == "service": s = [] bus_data = Project.objects.get(uuid=business_name) server_list = Host.objects.filter(business=bus_data, idle=True).order_by("create_time") for i in server_list: t = i.service.all() for b in t: if b not in s: s.append(b) tag = request.GET.get("tgt", False) if tag: service_all = Service.objects.get(name=tag) server_list = Host.objects.filter(service=service_all, business=bus_data) return render_to_response('ztree/ztree_service.html', locals(), context_instance=RequestContext(request)) count = server_list.count() return render_to_response('ztree/ztree.html', locals(), context_instance=RequestContext(request)) @login_required def CdnCache(request): """ 树请求验证 :param request: :return: """ service = request.GET.get("services") get_token = str(request.GET.get("token")) uuid = str(request.GET.get("uuid")) sum_token = str(hashlib.sha1(request.user.username + auth_key + service + time.strftime('%Y-%m-%d', time.localtime( time.time()))).hexdigest()) content_status = True if get_token != sum_token: content_status = False idc_data = IDC.objects.get(uuid=uuid) service_all = Service.objects.get(name=service) server_list = Host.objects.filter(idc=idc_data, service=service_all) business_name = idc_data.name service_tag = service return render_to_response('ztree/service.html', locals(), context_instance=RequestContext(request)) @login_required def CdnIdc(request): """ 树请求验证 :param request: :return: """ get_token = str(request.GET.get("token")) uuid = str(request.GET.get("uuid")) idc_data = IDC.objects.get(uuid=uuid) sum_token = str(hashlib.sha1(request.user.username + auth_key + idc_data.name + time.strftime('%Y-%m-%d', time.localtime( time.time()))).hexdigest()) content_status = True if get_token != sum_token: content_status = False server_list = Host.objects.filter(idc=idc_data) business_name = idc_data.name return render_to_response('ztree/idc.html', locals(), context_instance=RequestContext(request)) class Ztree_class(object): """ ztree 类 """ def __init__(self, project_name, user): self.project_name = project_name self.user = user def monitor(self): return True def swan(self): rst_data = {} user_info = CustomUser.objects.get(first_name=self.user) myform_rst = Project.objects.get(uuid=self.project_name) rst = project_swan.objects.filter(project_name_id=myform_rst.uuid) """ 所有当前项目发布名称放到一个list中 """ swan_name_list = [i.swan_name for i in rst] swan_push = user_info.project_swan_set.all() user = CustomUser.objects.get(first_name=self.user) if user.is_superuser: for i in rst: rst_data[str(i.uuid)] = i.swan_name else: swan_push = user_info.project_swan_set.all() for i in swan_push: if i.swan_name in swan_name_list: rst_data[str(i.uuid)] = i.swan_name host_list = myform_rst.host_set.all() content = {"swan_name": rst_data, "host": host_list} return content def highstate(self): project = Project.objects.get(service_name=self.project_name) # server_list = project.host_set host_list = Host.objects.filter(business=project) return True @csrf_exempt def ZtreeIndex(request): """ :param request: :return: """ if request.method == 'POST': otherParam = request.POST.get("otherParam") status = request.POST.get("status") line_id = request.POST.get("line_id") try: name = request.POST.get("name") id = request.POST.get("id") except: name = False if not name: ztree = ztree_tag(request.user.username) return HttpResponse(json.dumps(ztree, ensure_ascii=False, indent=4)) elif int(status[0]) == 1: ztree = [] return HttpResponse(json.dumps(ztree, ensure_ascii=False, indent=4)) else: ztree = [] bus_data = Project.objects.get(service_name=name) server_list = Host.objects.filter(business=bus_data).order_by("create_time") s = [] for i in server_list: t = i.service.all().values() for b in t: if b not in s: s.append(b) tree_id = 0 for i in s: tree_id += 1 token = hashlib.sha1(request.user.username + auth_key + i.get("name") + time.strftime('%Y-%m-%d', time.localtime( time.time()))).hexdigest() ztree.append({"id": tree_id, "status": 3, "line_id": line_id, "name": i.get("name"), "token": token, "t": i.get("name"), "business": bus_data.service_name}) return HttpResponse(json.dumps(ztree, ensure_ascii=False, indent=4)) content = {"status": 403, "message": "auth error"} return HttpResponse(json.dumps(content, ensure_ascii=False, indent=4))
agpl-3.0
1,779,326,221,662,780,700
34.814241
136
0.585927
false
Cygnus-Inc/Cygnet-Adapter
docs/conf.py
1
1240
# -*- coding: utf-8 -*- from __future__ import unicode_literals import os import sys sys.path.append(os.path.abspath('src/cygnet_adapter')) extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.autosummary', 'sphinx.ext.todo', 'sphinx.ext.coverage', 'sphinx.ext.ifconfig', 'sphinx.ext.viewcode', 'sphinxcontrib.napoleon' ] if os.getenv('SPELLCHECK'): extensions += 'sphinxcontrib.spelling', spelling_show_suggestions = True spelling_lang = 'en_US' source_suffix = '.rst' master_doc = 'index' project = u'cygnet_adapter' year = u'2015' author = u'Cygnus' copyright = '{0}, {1}'.format(year, author) version = release = u'0.1.0' # on_rtd is whether we are on readthedocs.org on_rtd = os.environ.get('READTHEDOCS', None) == 'True' if not on_rtd: # only import and set the theme if we're building docs locally import sphinx_rtd_theme html_theme = 'sphinx_rtd_theme' html_theme_path = [sphinx_rtd_theme.get_html_theme_path()] pygments_style = 'trac' templates_path = ['.'] html_use_smartypants = True html_last_updated_fmt = '%b %d, %Y' html_split_index = True html_sidebars = {'**': ['searchbox.html', 'globaltoc.html', 'sourcelink.html'], } html_short_title = '%s-%s' % (project, version)
apache-2.0
-935,034,756,308,814,500
27.181818
81
0.670161
false
qpiel/python_estimation_source
Script/AllSourcesFit_Ctools.py
1
3157
import os,sys from os.path import join import ctools from ctoolsAnalysis.config import get_config,get_default_config from ctoolsAnalysis.LikeFit import CTA_ctools_analyser from Common_Functions import * Astropy = True try : import Coordinates.CoordHandler as CH import Coordinates.CoordUtilities as CU from astropy.coordinates import FK5 except : Astropy = False def DoFit(source,area,simutime): #define source name. This also allows to have the coordinate if you have astropy #source = "AP Librae" ra = None dec = None if Astropy: coord = CH.CoordinatesHandler.fromName(source,FK5) ra, dec = CU.GetCoordInDegrees(coord) #default work and out path. Not use if you provide a config file in the command line out = join(os.getcwd(), "out") work = join(os.getcwd(), "work") # setup : Time, Energy and IRFS. Not use if you provide a config file in the command line tmin = 0 #tmax = 3600 tmaxtmp=simutime*3600 tmax = int(tmaxtmp) irfTime=IrfChoice(simutime) emin = 0.2 emax = 10 irf = str(area)+"_"+str(irfTime)+"h" caldb = "prod2" #irf = "South_0.5h" #quentin fitsFile = out+"/"+source.replace(" ","")+"_"+str(simutime)+"h"+"_event00001.fits" #fitsFile="/Users/gateflorian/Documents/CTAtools/Script/out/Mkn180_event00001.fits" #fitsFile = "/Users/gateflorian/Documents/CTAtools/Script/out/table_20161213.fits" try: #conf file provided config_tmp = get_config(sys.argv[-1]) config = MakeconfigFromFile(out,work,source,ra,dec,config_tmp) #config["file"]["inobs"] = sys.argv[-2] config["file"]["inobs"] = fitsFile except: #Not use if you provide a config file in the command line config = MakeconfigFromDefault(out,work,source,ra,dec) config["file"]["inobs"] = fitsFile #config["file"]["inobs"] = sys.argv[-1] config.write(open(work+"/Fit_"+source.replace(" ","")+"_"+str(simutime)+"h"+".conf", 'w')) Analyse = CTA_ctools_analyser.fromConfig(config) #set up if there is no config file provided if len(sys.argv) == 1 : Analyse.SetTimeRange(tmin,tmax) Analyse.SetEnergyRange(emin,emax) Analyse.SetIRFs(caldb,irf) Analyse.create_fit(log = True,debug = False) Analyse.fit() Analyse.PrintResults() def IrfChoice(simutime): attempt1=abs(simutime-0.5) attempt2=abs(simutime-5) attempt3=abs(simutime-50) mini=min(attempt1,attempt2,attempt3) if mini==attempt1: irfResult=0.5 elif mini==attempt2: irfResult=5 else: irfResult=50 return irfResult #DoFit("AP Librae","South",0.5) with open("Source2.txt") as f: for line in f: # print (line.split("\t")[0]) DoFit(line.split("\t")[0],line.split("\t")[5],0.3) #raw_input("Press Enter to terminate.") #DoFit(line.split("\t")[0],line.split("\t")[5],3) #raw_input("Press Enter to terminate.") #DoFit(line.split("\t")[0],line.split("\t")[5],10) #DoFit(line.split("\t")[0],line.split("\t")[5],30) #DoFit(line.split("\t")[0],line.split("\t")[5],100)
gpl-3.0
-4,762,860,779,201,160,000
31.214286
98
0.638581
false
Aeronautics/aero
aero/commands/install.py
1
1362
# -*- coding: utf-8 -*- from aero.__version__ import __version_info__ __author__ = 'nickl-' from .base import CommandProcessor as CommandProcessor class InstallCommand(CommandProcessor): from .base import coroutine package = '' adapter = '' def wiring(self): self.out = self.write() self.ticker.routine(self.progress(None)) return self.each(self.spacing(self.call(self.res()))) def seen(self, command, adapter, package, result=False): self.package = package self.adapter = adapter return result @coroutine def res(self): while True: res = (yield) if res[1] == 0: print 'Successfully installed package: {} with {}'.format(self.package, self.adapter) else: print 'Aborted: Error while installing package: {} {} returned exit code {}'.format( self.package, self.adapter, res[1] ) @coroutine def write(self): import sys out = sys.stdout while True: text = (yield) out.write(text) @coroutine def spacing(self, target): while True: payload = (yield) print u'\n' target.send(payload) @coroutine def progress(self, responder): while True: (yield)
bsd-3-clause
-6,355,324,622,234,375,000
24.698113
101
0.556535
false
pmghalvorsen/gramps_branch
gramps/gui/editors/displaytabs/groupembeddedlist.py
1
14240
# # Gramps - a GTK+/GNOME based genealogy program # # Copyright (C) 2000-2006 Donald N. Allingham # 2009 Benny Malengier # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. # #------------------------------------------------------------------------- # # python # #------------------------------------------------------------------------- import sys if sys.version_info[0] < 3: import cPickle as pickle else: import pickle #------------------------------------------------------------------------- # # GTK libraries # #------------------------------------------------------------------------- from gi.repository import Gdk from gi.repository import Gtk from gi.repository import Pango from gi.repository import GObject from gi.repository import GLib #------------------------------------------------------------------------- # # GRAMPS classes # #------------------------------------------------------------------------- from ...utils import is_right_click from .embeddedlist import EmbeddedList, TEXT_COL, MARKUP_COL, ICON_COL #------------------------------------------------------------------------- # # Classes # #------------------------------------------------------------------------- class GroupEmbeddedList(EmbeddedList): """ This class provides the base class for all the list tabs that show grouped data. It maintains a Gtk.TreeView, including the selection and button sensitivity. """ _WORKGROUP = 0 def __init__(self, dbstate, uistate, track, name, build_model, share_button=False, move_buttons=False, jump_button=False, **kwargs): """ Create a new list, using the passed build_model to populate the list. """ self.kwargs = kwargs EmbeddedList.__init__(self, dbstate, uistate, track, name, build_model, share_button, move_buttons, jump_button) #connect click on the first column self.columns[0].connect('clicked', self.groupcol_click) for col in self.columns[1:]: col.connect('clicked', self.col_click) self.dbsort = True def construct_model(self): """ Method that creates the model using the passed build_model parameter Overwrites the EmbeddedList calling sequence by adding the different groups """ return self.build_model(self.get_data(), self.dbstate.db, self.groups(), **self.kwargs) def groups(self): """ Return the (group key, group name)s in the order as given by get_data() """ raise NotImplementedError def groupcol_click(self, obj): """ The group column is clicked, sort it as it was """ self.columns[0].set_sort_order(Gtk.SortType.ASCENDING) self.rebuild() self.dbsort = True def col_click(self, obj): self.dbsort = False def _on_button_press(self, obj, event): """ Handle button press, not double-click, that is done in init_interface """ self._select_row_at_coords(event.x, event.y) if is_right_click(event): obj = self.get_selected() if obj and obj[1]: self._tmpgroup = obj[0] self.right_click(obj[1], event) return True elif event.type == Gdk.EventType.BUTTON_PRESS and event.button == 2: fun = self.get_middle_click() if fun: fun() return True return False def is_empty(self): """ Return True if the get_data returns a length greater than 0. Typically, get_data returns the list of associated data. """ return len(self.get_data()[self._WORKGROUP]) == 0 def drag_data_get(self, widget, context, sel_data, info, time): """ Provide the drag_data_get function, which passes a tuple consisting of: 1) Drag type defined by the .drag_type field specified by the value assigned to _DND_TYPE 2) The id value of this object, used for the purpose of determining the source of the object. If the source of the object is the same as the object, we are doing a reorder instead of a normal drag and drop 3) Pickled data. The pickled version of the selected object 4) Source row. Used for a reorder to determine the original position of the object """ # get the selected object, returning if not is defined obj = self.get_selected() if not obj or obj[1] is None: #nothing selected or a grouping selected return # pickle the data, and build the tuple to be passed value = (self._DND_TYPE.drag_type, id(self), obj[1], self.find_index(obj)) data = pickle.dumps(value) # pass as a string (8 bits) sel_data.set(self._DND_TYPE.atom_drag_type, 8, data) def drag_data_received(self, widget, context, x, y, sel_data, info, time): """ Handle the standard gtk interface for drag_data_received. If the selection data is define, extract the value from sel_data.data, and decide if this is a move or a reorder. """ if sel_data and sel_data.get_data(): # make sure data = 1 row # pickle.loads(sel_data.data)[3] = 0 try: (mytype, selfid, obj, row_from) = pickle.loads(sel_data.get_data()) except ValueError: return # make sure this is the correct DND type for this object if mytype == self._DND_TYPE.drag_type: # determine the destination row row = self._find_row(x, y) # if this is same object, we have a move, otherwise, # it is a standard drag-n-drop if id(self) == selfid and self.get_selected() is not None: self._move(row_from, row, obj) else: self._handle_drag(row, obj) self.rebuild() elif self._DND_EXTRA and mytype == self._DND_EXTRA.drag_type: self.handle_extra_type(mytype, obj) def tree_drag_motion(self, *args): """ On drag motion one wants the list to show as the database representation so it is clear how save will change the data """ if not self.dbsort: self.columns[0].clicked() def find_index(self, obj): """ Returns the index of the object within the associated data. This will be a path (groupindex, index) """ data = self.get_data() groupindex = None index = None for groupindex, group in enumerate(data): try: index = group.index(obj[1]) break except ValueError: pass return (groupindex, index) def _find_row(self, x, y): """ Return a path as [groupindex, index] of the row on x,y. If no row, then a new line in the working group is returned """ dest = self.tree.get_dest_row_at_pos(x, y) if dest is None: # Below last item in list if self.is_empty(): return [self._WORKGROUP, 0] else: return [self._WORKGROUP, len(self.get_data()[self._WORKGROUP])] else: path = dest[0].get_indices() wgroup = path[0] if len(path) == 1: # On a heading if dest[1] == Gtk.TreeViewDropPosition.BEFORE: if wgroup != 0: # If before then put at end of previous group return (wgroup-1, len(self.get_data()[wgroup-1])) else: # unless it is the first group return (wgroup, 0) else: return (wgroup, 0) else: if dest[1] in (Gtk.TreeViewDropPosition.BEFORE, Gtk.TreeViewDropPosition.INTO_OR_BEFORE): return (wgroup, path[1]) else: return (wgroup, path[1]+1) def _handle_drag(self, row, obj): """ drag from external place to row of obj """ if row[0] == self._WORKGROUP: self.get_data()[self._WORKGROUP].insert(row[1], obj) self.changed = True else: self.dropnotworkgroup(row, obj) def dropnotworkgroup(self, row, obj): """ Drop of obj on row that is not WORKGROUP """ pass def _move(self, row_from, row_to, obj): """ Drag and drop move of the order. Allow in workgroup """ if row_from[0] == row_to[0] and row_from[0] == self._WORKGROUP: dlist = self.get_data()[self._WORKGROUP] if row_from[1] < row_to[1]: dlist.insert(row_to[1], obj) del dlist[row_from[1]] else: del dlist[row_from[1]] dlist.insert(row_to[1], obj) self.changed = True elif row_from[0] == self._WORKGROUP: self.move_away_work(row_from, row_to, obj) elif row_to[0] == self._WORKGROUP: self.move_to_work(row_from, row_to, obj) def move_away_work(self, row_from, row_to, obj): """ move from the workgroup to a not workgroup handle in inherited class, default is nothing changes """ pass def move_to_work(self, row_from, row_to, obj): """ move from a non workgroup to the workgroup handle in inherited class, default is nothing changes """ pass def _move_up(self, row_from, obj, selmethod=None): """ Move the item a position up in the EmbeddedList. Eg: 0,1,2,3 needs to become 0,2,1,3, here row_from = 2 """ if row_from[0] == self._WORKGROUP: if selmethod : dlist = selmethod() else : dlist = self.get_data()[self._WORKGROUP] del dlist[row_from[1]] dlist.insert(row_from[1]-1, obj) self.changed = True self.rebuild() #select the row path = (self._WORKGROUP, row_from[1]-1) self.tree.get_selection().select_path(path) GLib.idle_add(self.tree.scroll_to_cell, path) else: self._move_up_notwork(row_from, obj, selmethod) def _move_up_notwork(self, row_from, obj, selmethod=None): """ move up outside of workgroup """ pass def _move_up_group(self, groupindex): """ move up pressed on the group """ pass def _move_down(self, row_from, obj, selmethod=None): """ Move the item a position down in the EmbeddedList. Eg: 0,1,2,3 needs to become 0,2,1,3, here row_from = 1 """ if row_from[0] == self._WORKGROUP: if selmethod : dlist = selmethod() else : dlist = self.get_data()[self._WORKGROUP] del dlist[row_from[1]] dlist.insert(row_from[1]+1, obj) self.changed = True self.rebuild() #select the row path = (self._WORKGROUP, row_from[1]+1) self.tree.get_selection().select_path(path) GLib.idle_add(self.tree.scroll_to_cell, path) else: self._move_down_notwork(row_from, obj, selmethod) def _move_down_notwork(self, row_from, obj, selmethod=None): """ move down outside of workgroup """ pass def _move_down_group(self, groupindex): """ move down pressed on the group """ pass def get_icon_name(self): """ Specifies the basic icon used for a generic list. Typically, a derived class will override this. The icon chosen is the STOCK_JUSTIFY_FILL icon, which in the default GTK style looks kind of like a list. """ return Gtk.STOCK_JUSTIFY_FILL def del_button_clicked(self, obj): ref = self.get_selected() if ref and ref[1] is not None: if ref[0]==self._WORKGROUP: ref_list = self.get_data()[self._WORKGROUP] ref_list.remove(ref[1]) self.changed = True self.rebuild() else: self.del_notwork(ref) def del_notwork(self, ref): """ delete of ref asked that is not part of workgroup """ pass def up_button_clicked(self, obj): ref = self.get_selected() if ref and ref[1] is not None: pos = self.find_index(ref) if pos[1] > 0 : self._move_up(pos, ref[1]) elif ref and ref[1] is None: self._move_up_group(ref[0]) def down_button_clicked(self, obj): ref = self.get_selected() if ref and ref[1] is not None: pos = self.find_index(ref) if pos[1] >=0 and pos[1] < len(self.get_data()[pos[0]])-1: self._move_down(pos, ref[1]) elif ref and ref[1] is None: self._move_down_group(ref[0])
gpl-2.0
-4,655,648,685,835,140,000
34.073892
86
0.523596
false
mdevaev/emonoda
emonoda/plugins/confetti/pushover.py
1
3447
""" Emonoda -- A set of tools to organize and manage your torrents Copyright (C) 2015 Devaev Maxim <[email protected]> This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. """ import urllib.parse from typing import List from typing import Dict from typing import Any from ...optconf import Option from ...optconf import SecretOption from ...optconf.converters import as_string_list from ...optconf.converters import as_path_or_empty from . import STATUSES from . import ResultsType from . import WithWeb from . import WithStatuses from . import templated # ===== class Plugin(WithWeb, WithStatuses): PLUGIN_NAMES = ["pushover"] def __init__( # pylint: disable=super-init-not-called self, user_key: str, api_key: str, devices: List[str], title: str, template: str, **kwargs: Any, ) -> None: self._init_bases(**kwargs) self._init_opener() self.__user_key = user_key self.__api_key = api_key self.__devices = devices self.__title = title self.__template_path = template @classmethod def get_options(cls) -> Dict[str, Option]: return cls._get_merged_options({ "user_key": SecretOption(default="CHANGE_ME", help="User key"), "api_key": SecretOption(default="CHANGE_ME", help="API/Application key"), "devices": Option(default=[], type=as_string_list, help="Devices list (empty for all)"), "title": Option(default="Emonoda ({source})", help="Message title"), "template": Option(default="", type=as_path_or_empty, help="Mako template file name"), }) def send_results(self, source: str, results: ResultsType) -> None: for status in self._statuses: for (file_name, result) in results[status].items(): post = { "token": self.__api_key, "user": self.__user_key, "html": "1", "title": self.__title.format(source=source), "message": templated( name=(self.__template_path if self.__template_path else "pushover.{source}.mako").format(source=source), built_in=(not self.__template_path), source=source, file_name=file_name, status=status, status_msg=STATUSES[status], result=result, ), } if self.__devices: post["device"] = ",".join(self.__devices) self._read_url( url="https://api.pushover.net/1/messages.json", data=urllib.parse.urlencode(post).encode("utf-8"), )
gpl-3.0
4,823,935,925,674,717,000
35.670213
128
0.577314
false
yusukemurayama/ppytrading
ppyt/filters/historical_filters.py
1
1741
# coding: utf-8 import logging from sqlalchemy.sql import func from ppyt.filters import FilterBase from ppyt.models.orm import start_session, History logger = logging.getLogger(__name__) class AverageVolumeFilter(FilterBase): """平均出来形で銘柄を絞り込むクラスです。""" _findkey = '平均出来高フィルタ' # フィルタを一意に特定できる名前をつけます。 def _setup(self, volume=None): """初期化処理を行います。 Args: volume: 平均出来高の閾値 Raises: ArgumentError: 引数チェックに引っかかった場合に発生します。 """ self._is_valid_argument('volume', volume, int) self.volume = float(volume) def _filter_stocks(self, stocks): """銘柄を絞り込みます。 絞り込み条件: - 過去の平均出来高が規定の値を上回っている。 Args: stocks: 絞り込み前の銘柄のリスト Returns: 絞り込み後の銘柄のリスト """ filtered_stocks = [] with start_session() as session: for s in stocks: avg_volume = session.query(func.avg(History.volume)) \ .filter_by(symbol=s.symbol).scalar() logger.debug('symbol - avg_volume: {} - {}'.format( s.symbol, avg_volume)) if avg_volume is not None and float(avg_volume) >= self.volume: # 過去の平均出来高が規定値を上回っている場合、絞り込み後のリストに追加します。 filtered_stocks.append(s) return filtered_stocks
mit
-2,557,690,650,821,079,000
24.240741
79
0.567865
false
Magic-Translater/Pwntools.Doc.In.Zh-cn
source/conf.py
1
11053
# -*- coding: utf-8 -*- # # pwntools documentation build configuration file, created by # sphinx-quickstart on Wed May 28 15:00:52 2014. # # This file is execfile()d with the current directory set to its containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import os import subprocess import sys build_dash = tags.has('dash') # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. sys.path.insert(0, os.path.abspath('../..')) import pwnlib # -- General configuration ----------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = [ 'pwnlib.internal.dochelper', 'sphinx.ext.autodoc', 'sphinx.ext.doctest', 'sphinx.ext.linkcode', 'sphinx.ext.autosummary', 'sphinx.ext.coverage', 'sphinx.ext.todo', 'sphinx.ext.intersphinx', 'sphinxcontrib.autoprogram', 'sphinxcontrib.napoleon' ] doctest_global_setup = ''' import sys, os os.environ['PWNLIB_NOTERM'] = '1' os.environ['PWNLIB_RANDOMIZE'] = '0' import pwnlib pwnlib.context.context.reset_local() pwnlib.context.ContextType.defaults['log_level'] = 'ERROR' pwnlib.context.ContextType.defaults['randomize'] = False pwnlib.term.text.when = 'never' pwnlib.log.install_default_handler() pwnlib.log.rootlogger.setLevel(1) # Sphinx modifies sys.stdout, and context.log_terminal has # a reference to the original instance. We need to update # it for logging to be captured. class stdout(object): def __getattr__(self, name): return getattr(sys.stdout, name) def __setattr__(self, name, value): return setattr(sys.stdout, name, value) pwnlib.context.ContextType.defaults['log_console'] = stdout() ''' autodoc_member_order = 'alphabetical' # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] doctest_test_doctest_blocks = True # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'pwntools' copyright = u'2016, Gallopsled et al.' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. release = pwnlib.__version__ version = release.rsplit('.', 1)[0] # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = "zh_CN" # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = [] # The reST default role (used for this markup: `text`) to use for all documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # -- Options for HTML output --------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'sphinx_rtd_theme' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. #html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = [] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. html_domain_indices = not build_dash # If false, no index is generated. html_use_index = not build_dash # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'pwntoolsdoc' # -- Options for LaTeX output -------------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass [howto/manual]). latex_documents = [ ('index', 'pwntools.tex', u'pwntools Documentation', u'2016, Gallopsled et al.', 'manual'), ] intersphinx_mapping = {'python': ('https://docs.python.org/2.7', None), 'paramiko': ('https://paramiko-docs.readthedocs.org/en/1.15/', None)} # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output -------------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'pwntools', u'pwntools Documentation', [u'2016, Gallopsled et al.'], 1) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ------------------------------------------------ # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ('index', 'pwntools', u'pwntools Documentation', u'', 'pwntools', 'CTF exploit writing toolkit.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote' branch = release try: git_branch = subprocess.check_output('git describe --tags', shell = True) except subprocess.CalledProcessError: git_branch = '-' try: if '-' in git_branch: branch = subprocess.check_output('git rev-parse HEAD', shell = True).strip()[:10] except subprocess.CalledProcessError: pass def linkcode_resolve(domain, info): if domain != 'py': return None if not info['module']: return None import importlib, inspect, types mod = importlib.import_module(info['module']) # Try to find the value val = mod for k in info['fullname'].split('.'): val = getattr(val, k, None) if val == None: break # Special case for shellcraft if info['module'].startswith('pwnlib.shellcraft.'): filename = 'pwnlib/shellcraft/templates/%s' % val._relpath # Case for everything else else: filename = info['module'].replace('.', '/') + '.py' if isinstance(val, (types.ModuleType, types.ClassType, types.MethodType, types.FunctionType, types.TracebackType, types.FrameType, types.CodeType)): try: lines, first = inspect.getsourcelines(val) filename += '#L%d-%d' % (first, first + len(lines) - 1) except IOError: pass return "https://github.com/Gallopsled/pwntools/blob/%s/%s" % (branch, filename) # The readthedocs theme is used by the Dash generator. (Can be used for HTML too.) if build_dash: # on_rtd is whether we are on readthedocs.org on_rtd = os.environ.get('READTHEDOCS', None) == 'True' if not on_rtd: # only import and set the theme if we're building docs locally import sphinx_rtd_theme html_theme = 'sphinx_rtd_theme' html_theme_path = [sphinx_rtd_theme.get_html_theme_path()] # otherwise, readthedocs.org uses their theme by default, so no need to specify it
mit
-6,300,908,279,611,668,000
30.670487
156
0.689406
false
auready/django
tests/auth_tests/test_forms.py
2
34292
import datetime import re from unittest import mock from django import forms from django.contrib.auth.forms import ( AdminPasswordChangeForm, AuthenticationForm, PasswordChangeForm, PasswordResetForm, ReadOnlyPasswordHashField, ReadOnlyPasswordHashWidget, SetPasswordForm, UserChangeForm, UserCreationForm, ) from django.contrib.auth.models import User from django.contrib.auth.signals import user_login_failed from django.contrib.sites.models import Site from django.core import mail from django.core.mail import EmailMultiAlternatives from django.forms.fields import CharField, Field, IntegerField from django.test import SimpleTestCase, TestCase, override_settings from django.utils import translation from django.utils.text import capfirst from django.utils.translation import ugettext as _ from .models.custom_user import ( CustomUser, CustomUserWithoutIsActiveField, ExtensionUser, ) from .models.with_custom_email_field import CustomEmailField from .models.with_integer_username import IntegerUsernameUser from .settings import AUTH_TEMPLATES class TestDataMixin: @classmethod def setUpTestData(cls): cls.u1 = User.objects.create_user(username='testclient', password='password', email='[email protected]') cls.u2 = User.objects.create_user(username='inactive', password='password', is_active=False) cls.u3 = User.objects.create_user(username='staff', password='password') cls.u4 = User.objects.create(username='empty_password', password='') cls.u5 = User.objects.create(username='unmanageable_password', password='$') cls.u6 = User.objects.create(username='unknown_password', password='foo$bar') class UserCreationFormTest(TestDataMixin, TestCase): def test_user_already_exists(self): data = { 'username': 'testclient', 'password1': 'test123', 'password2': 'test123', } form = UserCreationForm(data) self.assertFalse(form.is_valid()) self.assertEqual(form["username"].errors, [str(User._meta.get_field('username').error_messages['unique'])]) def test_invalid_data(self): data = { 'username': 'jsmith!', 'password1': 'test123', 'password2': 'test123', } form = UserCreationForm(data) self.assertFalse(form.is_valid()) validator = next(v for v in User._meta.get_field('username').validators if v.code == 'invalid') self.assertEqual(form["username"].errors, [str(validator.message)]) def test_password_verification(self): # The verification password is incorrect. data = { 'username': 'jsmith', 'password1': 'test123', 'password2': 'test', } form = UserCreationForm(data) self.assertFalse(form.is_valid()) self.assertEqual(form["password2"].errors, [str(form.error_messages['password_mismatch'])]) def test_both_passwords(self): # One (or both) passwords weren't given data = {'username': 'jsmith'} form = UserCreationForm(data) required_error = [str(Field.default_error_messages['required'])] self.assertFalse(form.is_valid()) self.assertEqual(form['password1'].errors, required_error) self.assertEqual(form['password2'].errors, required_error) data['password2'] = 'test123' form = UserCreationForm(data) self.assertFalse(form.is_valid()) self.assertEqual(form['password1'].errors, required_error) self.assertEqual(form['password2'].errors, []) @mock.patch('django.contrib.auth.password_validation.password_changed') def test_success(self, password_changed): # The success case. data = { 'username': '[email protected]', 'password1': 'test123', 'password2': 'test123', } form = UserCreationForm(data) self.assertTrue(form.is_valid()) form.save(commit=False) self.assertEqual(password_changed.call_count, 0) u = form.save() self.assertEqual(password_changed.call_count, 1) self.assertEqual(repr(u), '<User: [email protected]>') def test_unicode_username(self): data = { 'username': '宝', 'password1': 'test123', 'password2': 'test123', } form = UserCreationForm(data) self.assertTrue(form.is_valid()) u = form.save() self.assertEqual(u.username, '宝') def test_normalize_username(self): # The normalization happens in AbstractBaseUser.clean() and ModelForm # validation calls Model.clean(). ohm_username = 'testΩ' # U+2126 OHM SIGN data = { 'username': ohm_username, 'password1': 'pwd2', 'password2': 'pwd2', } form = UserCreationForm(data) self.assertTrue(form.is_valid()) user = form.save() self.assertNotEqual(user.username, ohm_username) self.assertEqual(user.username, 'testΩ') # U+03A9 GREEK CAPITAL LETTER OMEGA def test_duplicate_normalized_unicode(self): """ To prevent almost identical usernames, visually identical but differing by their unicode code points only, Unicode NFKC normalization should make appear them equal to Django. """ omega_username = 'iamtheΩ' # U+03A9 GREEK CAPITAL LETTER OMEGA ohm_username = 'iamtheΩ' # U+2126 OHM SIGN self.assertNotEqual(omega_username, ohm_username) User.objects.create_user(username=omega_username, password='pwd') data = { 'username': ohm_username, 'password1': 'pwd2', 'password2': 'pwd2', } form = UserCreationForm(data) self.assertFalse(form.is_valid()) self.assertEqual( form.errors['username'], ["A user with that username already exists."] ) @override_settings(AUTH_PASSWORD_VALIDATORS=[ {'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator'}, {'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', 'OPTIONS': { 'min_length': 12, }}, ]) def test_validates_password(self): data = { 'username': 'testclient', 'password1': 'testclient', 'password2': 'testclient', } form = UserCreationForm(data) self.assertFalse(form.is_valid()) self.assertEqual(len(form['password2'].errors), 2) self.assertIn('The password is too similar to the username.', form['password2'].errors) self.assertIn( 'This password is too short. It must contain at least 12 characters.', form['password2'].errors ) def test_custom_form(self): class CustomUserCreationForm(UserCreationForm): class Meta(UserCreationForm.Meta): model = ExtensionUser fields = UserCreationForm.Meta.fields + ('date_of_birth',) data = { 'username': 'testclient', 'password1': 'testclient', 'password2': 'testclient', 'date_of_birth': '1988-02-24', } form = CustomUserCreationForm(data) self.assertTrue(form.is_valid()) def test_custom_form_with_different_username_field(self): class CustomUserCreationForm(UserCreationForm): class Meta(UserCreationForm.Meta): model = CustomUser fields = ('email', 'date_of_birth') data = { 'email': '[email protected]', 'password1': 'testclient', 'password2': 'testclient', 'date_of_birth': '1988-02-24', } form = CustomUserCreationForm(data) self.assertTrue(form.is_valid()) def test_custom_form_hidden_username_field(self): class CustomUserCreationForm(UserCreationForm): class Meta(UserCreationForm.Meta): model = CustomUserWithoutIsActiveField fields = ('email',) # without USERNAME_FIELD data = { 'email': '[email protected]', 'password1': 'testclient', 'password2': 'testclient', } form = CustomUserCreationForm(data) self.assertTrue(form.is_valid()) def test_password_whitespace_not_stripped(self): data = { 'username': 'testuser', 'password1': ' testpassword ', 'password2': ' testpassword ', } form = UserCreationForm(data) self.assertTrue(form.is_valid()) self.assertEqual(form.cleaned_data['password1'], data['password1']) self.assertEqual(form.cleaned_data['password2'], data['password2']) @override_settings(AUTH_PASSWORD_VALIDATORS=[ {'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator'}, ]) def test_password_help_text(self): form = UserCreationForm() self.assertEqual( form.fields['password1'].help_text, '<ul><li>Your password can&#39;t be too similar to your other personal information.</li></ul>' ) # To verify that the login form rejects inactive users, use an authentication # backend that allows them. @override_settings(AUTHENTICATION_BACKENDS=['django.contrib.auth.backends.AllowAllUsersModelBackend']) class AuthenticationFormTest(TestDataMixin, TestCase): def test_invalid_username(self): # The user submits an invalid username. data = { 'username': 'jsmith_does_not_exist', 'password': 'test123', } form = AuthenticationForm(None, data) self.assertFalse(form.is_valid()) self.assertEqual( form.non_field_errors(), [ form.error_messages['invalid_login'] % { 'username': User._meta.get_field('username').verbose_name } ] ) def test_inactive_user(self): # The user is inactive. data = { 'username': 'inactive', 'password': 'password', } form = AuthenticationForm(None, data) self.assertFalse(form.is_valid()) self.assertEqual(form.non_field_errors(), [str(form.error_messages['inactive'])]) def test_login_failed(self): signal_calls = [] def signal_handler(**kwargs): signal_calls.append(kwargs) user_login_failed.connect(signal_handler) fake_request = object() try: form = AuthenticationForm(fake_request, { 'username': 'testclient', 'password': 'incorrect', }) self.assertFalse(form.is_valid()) self.assertIs(signal_calls[0]['request'], fake_request) finally: user_login_failed.disconnect(signal_handler) def test_inactive_user_i18n(self): with self.settings(USE_I18N=True), translation.override('pt-br', deactivate=True): # The user is inactive. data = { 'username': 'inactive', 'password': 'password', } form = AuthenticationForm(None, data) self.assertFalse(form.is_valid()) self.assertEqual(form.non_field_errors(), [str(form.error_messages['inactive'])]) def test_custom_login_allowed_policy(self): # The user is inactive, but our custom form policy allows them to log in. data = { 'username': 'inactive', 'password': 'password', } class AuthenticationFormWithInactiveUsersOkay(AuthenticationForm): def confirm_login_allowed(self, user): pass form = AuthenticationFormWithInactiveUsersOkay(None, data) self.assertTrue(form.is_valid()) # If we want to disallow some logins according to custom logic, # we should raise a django.forms.ValidationError in the form. class PickyAuthenticationForm(AuthenticationForm): def confirm_login_allowed(self, user): if user.username == "inactive": raise forms.ValidationError("This user is disallowed.") raise forms.ValidationError("Sorry, nobody's allowed in.") form = PickyAuthenticationForm(None, data) self.assertFalse(form.is_valid()) self.assertEqual(form.non_field_errors(), ['This user is disallowed.']) data = { 'username': 'testclient', 'password': 'password', } form = PickyAuthenticationForm(None, data) self.assertFalse(form.is_valid()) self.assertEqual(form.non_field_errors(), ["Sorry, nobody's allowed in."]) def test_success(self): # The success case data = { 'username': 'testclient', 'password': 'password', } form = AuthenticationForm(None, data) self.assertTrue(form.is_valid()) self.assertEqual(form.non_field_errors(), []) def test_unicode_username(self): User.objects.create_user(username='Σαρα', password='pwd') data = { 'username': 'Σαρα', 'password': 'pwd', } form = AuthenticationForm(None, data) self.assertTrue(form.is_valid()) self.assertEqual(form.non_field_errors(), []) def test_username_field_label(self): class CustomAuthenticationForm(AuthenticationForm): username = CharField(label="Name", max_length=75) form = CustomAuthenticationForm() self.assertEqual(form['username'].label, "Name") def test_username_field_label_not_set(self): class CustomAuthenticationForm(AuthenticationForm): username = CharField() form = CustomAuthenticationForm() username_field = User._meta.get_field(User.USERNAME_FIELD) self.assertEqual(form.fields['username'].label, capfirst(username_field.verbose_name)) def test_username_field_label_empty_string(self): class CustomAuthenticationForm(AuthenticationForm): username = CharField(label='') form = CustomAuthenticationForm() self.assertEqual(form.fields['username'].label, "") def test_password_whitespace_not_stripped(self): data = { 'username': 'testuser', 'password': ' pass ', } form = AuthenticationForm(None, data) form.is_valid() # Not necessary to have valid credentails for the test. self.assertEqual(form.cleaned_data['password'], data['password']) @override_settings(AUTH_USER_MODEL='auth_tests.IntegerUsernameUser') def test_integer_username(self): class CustomAuthenticationForm(AuthenticationForm): username = IntegerField() user = IntegerUsernameUser.objects.create_user(username=0, password='pwd') data = { 'username': 0, 'password': 'pwd', } form = CustomAuthenticationForm(None, data) self.assertTrue(form.is_valid()) self.assertEqual(form.cleaned_data['username'], data['username']) self.assertEqual(form.cleaned_data['password'], data['password']) self.assertEqual(form.errors, {}) self.assertEqual(form.user_cache, user) class SetPasswordFormTest(TestDataMixin, TestCase): def test_password_verification(self): # The two new passwords do not match. user = User.objects.get(username='testclient') data = { 'new_password1': 'abc123', 'new_password2': 'abc', } form = SetPasswordForm(user, data) self.assertFalse(form.is_valid()) self.assertEqual( form["new_password2"].errors, [str(form.error_messages['password_mismatch'])] ) @mock.patch('django.contrib.auth.password_validation.password_changed') def test_success(self, password_changed): user = User.objects.get(username='testclient') data = { 'new_password1': 'abc123', 'new_password2': 'abc123', } form = SetPasswordForm(user, data) self.assertTrue(form.is_valid()) form.save(commit=False) self.assertEqual(password_changed.call_count, 0) form.save() self.assertEqual(password_changed.call_count, 1) @override_settings(AUTH_PASSWORD_VALIDATORS=[ {'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator'}, {'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', 'OPTIONS': { 'min_length': 12, }}, ]) def test_validates_password(self): user = User.objects.get(username='testclient') data = { 'new_password1': 'testclient', 'new_password2': 'testclient', } form = SetPasswordForm(user, data) self.assertFalse(form.is_valid()) self.assertEqual(len(form["new_password2"].errors), 2) self.assertIn('The password is too similar to the username.', form["new_password2"].errors) self.assertIn( 'This password is too short. It must contain at least 12 characters.', form["new_password2"].errors ) def test_password_whitespace_not_stripped(self): user = User.objects.get(username='testclient') data = { 'new_password1': ' password ', 'new_password2': ' password ', } form = SetPasswordForm(user, data) self.assertTrue(form.is_valid()) self.assertEqual(form.cleaned_data['new_password1'], data['new_password1']) self.assertEqual(form.cleaned_data['new_password2'], data['new_password2']) @override_settings(AUTH_PASSWORD_VALIDATORS=[ {'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator'}, {'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', 'OPTIONS': { 'min_length': 12, }}, ]) def test_help_text_translation(self): french_help_texts = [ 'Votre mot de passe ne peut pas trop ressembler à vos autres informations personnelles.', 'Votre mot de passe doit contenir au minimum 12 caractères.', ] form = SetPasswordForm(self.u1) with translation.override('fr'): html = form.as_p() for french_text in french_help_texts: self.assertIn(french_text, html) class PasswordChangeFormTest(TestDataMixin, TestCase): def test_incorrect_password(self): user = User.objects.get(username='testclient') data = { 'old_password': 'test', 'new_password1': 'abc123', 'new_password2': 'abc123', } form = PasswordChangeForm(user, data) self.assertFalse(form.is_valid()) self.assertEqual(form["old_password"].errors, [str(form.error_messages['password_incorrect'])]) def test_password_verification(self): # The two new passwords do not match. user = User.objects.get(username='testclient') data = { 'old_password': 'password', 'new_password1': 'abc123', 'new_password2': 'abc', } form = PasswordChangeForm(user, data) self.assertFalse(form.is_valid()) self.assertEqual(form["new_password2"].errors, [str(form.error_messages['password_mismatch'])]) @mock.patch('django.contrib.auth.password_validation.password_changed') def test_success(self, password_changed): # The success case. user = User.objects.get(username='testclient') data = { 'old_password': 'password', 'new_password1': 'abc123', 'new_password2': 'abc123', } form = PasswordChangeForm(user, data) self.assertTrue(form.is_valid()) form.save(commit=False) self.assertEqual(password_changed.call_count, 0) form.save() self.assertEqual(password_changed.call_count, 1) def test_field_order(self): # Regression test - check the order of fields: user = User.objects.get(username='testclient') self.assertEqual(list(PasswordChangeForm(user, {}).fields), ['old_password', 'new_password1', 'new_password2']) def test_password_whitespace_not_stripped(self): user = User.objects.get(username='testclient') user.set_password(' oldpassword ') data = { 'old_password': ' oldpassword ', 'new_password1': ' pass ', 'new_password2': ' pass ', } form = PasswordChangeForm(user, data) self.assertTrue(form.is_valid()) self.assertEqual(form.cleaned_data['old_password'], data['old_password']) self.assertEqual(form.cleaned_data['new_password1'], data['new_password1']) self.assertEqual(form.cleaned_data['new_password2'], data['new_password2']) class UserChangeFormTest(TestDataMixin, TestCase): def test_username_validity(self): user = User.objects.get(username='testclient') data = {'username': 'not valid'} form = UserChangeForm(data, instance=user) self.assertFalse(form.is_valid()) validator = next(v for v in User._meta.get_field('username').validators if v.code == 'invalid') self.assertEqual(form["username"].errors, [str(validator.message)]) def test_bug_14242(self): # A regression test, introduce by adding an optimization for the # UserChangeForm. class MyUserForm(UserChangeForm): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.fields['groups'].help_text = 'These groups give users different permissions' class Meta(UserChangeForm.Meta): fields = ('groups',) # Just check we can create it MyUserForm({}) def test_unusable_password(self): user = User.objects.get(username='empty_password') user.set_unusable_password() user.save() form = UserChangeForm(instance=user) self.assertIn(_("No password set."), form.as_table()) def test_bug_17944_empty_password(self): user = User.objects.get(username='empty_password') form = UserChangeForm(instance=user) self.assertIn(_("No password set."), form.as_table()) def test_bug_17944_unmanageable_password(self): user = User.objects.get(username='unmanageable_password') form = UserChangeForm(instance=user) self.assertIn(_("Invalid password format or unknown hashing algorithm."), form.as_table()) def test_bug_17944_unknown_password_algorithm(self): user = User.objects.get(username='unknown_password') form = UserChangeForm(instance=user) self.assertIn(_("Invalid password format or unknown hashing algorithm."), form.as_table()) def test_bug_19133(self): "The change form does not return the password value" # Use the form to construct the POST data user = User.objects.get(username='testclient') form_for_data = UserChangeForm(instance=user) post_data = form_for_data.initial # The password field should be readonly, so anything # posted here should be ignored; the form will be # valid, and give back the 'initial' value for the # password field. post_data['password'] = 'new password' form = UserChangeForm(instance=user, data=post_data) self.assertTrue(form.is_valid()) # original hashed password contains $ self.assertIn('$', form.cleaned_data['password']) def test_bug_19349_bound_password_field(self): user = User.objects.get(username='testclient') form = UserChangeForm(data={}, instance=user) # When rendering the bound password field, # ReadOnlyPasswordHashWidget needs the initial # value to render correctly self.assertEqual(form.initial['password'], form['password'].value()) def test_custom_form(self): class CustomUserChangeForm(UserChangeForm): class Meta(UserChangeForm.Meta): model = ExtensionUser fields = ('username', 'password', 'date_of_birth',) user = User.objects.get(username='testclient') data = { 'username': 'testclient', 'password': 'testclient', 'date_of_birth': '1998-02-24', } form = CustomUserChangeForm(data, instance=user) self.assertTrue(form.is_valid()) form.save() self.assertEqual(form.cleaned_data['username'], 'testclient') self.assertEqual(form.cleaned_data['date_of_birth'], datetime.date(1998, 2, 24)) @override_settings(TEMPLATES=AUTH_TEMPLATES) class PasswordResetFormTest(TestDataMixin, TestCase): @classmethod def setUpClass(cls): super().setUpClass() # This cleanup is necessary because contrib.sites cache # makes tests interfere with each other, see #11505 Site.objects.clear_cache() def create_dummy_user(self): """ Create a user and return a tuple (user_object, username, email). """ username = 'jsmith' email = '[email protected]' user = User.objects.create_user(username, email, 'test123') return (user, username, email) def test_invalid_email(self): data = {'email': 'not valid'} form = PasswordResetForm(data) self.assertFalse(form.is_valid()) self.assertEqual(form['email'].errors, [_('Enter a valid email address.')]) def test_nonexistent_email(self): """ Test nonexistent email address. This should not fail because it would expose information about registered users. """ data = {'email': '[email protected]'} form = PasswordResetForm(data) self.assertTrue(form.is_valid()) self.assertEqual(len(mail.outbox), 0) def test_cleaned_data(self): (user, username, email) = self.create_dummy_user() data = {'email': email} form = PasswordResetForm(data) self.assertTrue(form.is_valid()) form.save(domain_override='example.com') self.assertEqual(form.cleaned_data['email'], email) self.assertEqual(len(mail.outbox), 1) def test_custom_email_subject(self): data = {'email': '[email protected]'} form = PasswordResetForm(data) self.assertTrue(form.is_valid()) # Since we're not providing a request object, we must provide a # domain_override to prevent the save operation from failing in the # potential case where contrib.sites is not installed. Refs #16412. form.save(domain_override='example.com') self.assertEqual(len(mail.outbox), 1) self.assertEqual(mail.outbox[0].subject, 'Custom password reset on example.com') def test_custom_email_constructor(self): data = {'email': '[email protected]'} class CustomEmailPasswordResetForm(PasswordResetForm): def send_mail(self, subject_template_name, email_template_name, context, from_email, to_email, html_email_template_name=None): EmailMultiAlternatives( "Forgot your password?", "Sorry to hear you forgot your password.", None, [to_email], ['[email protected]'], headers={'Reply-To': '[email protected]'}, alternatives=[ ("Really sorry to hear you forgot your password.", "text/html") ], ).send() form = CustomEmailPasswordResetForm(data) self.assertTrue(form.is_valid()) # Since we're not providing a request object, we must provide a # domain_override to prevent the save operation from failing in the # potential case where contrib.sites is not installed. Refs #16412. form.save(domain_override='example.com') self.assertEqual(len(mail.outbox), 1) self.assertEqual(mail.outbox[0].subject, 'Forgot your password?') self.assertEqual(mail.outbox[0].bcc, ['[email protected]']) self.assertEqual(mail.outbox[0].content_subtype, "plain") def test_preserve_username_case(self): """ Preserve the case of the user name (before the @ in the email address) when creating a user (#5605). """ user = User.objects.create_user('forms_test2', '[email protected]', 'test') self.assertEqual(user.email, '[email protected]') user = User.objects.create_user('forms_test3', 'tesT', 'test') self.assertEqual(user.email, 'tesT') def test_inactive_user(self): """ Inactive user cannot receive password reset email. """ (user, username, email) = self.create_dummy_user() user.is_active = False user.save() form = PasswordResetForm({'email': email}) self.assertTrue(form.is_valid()) form.save() self.assertEqual(len(mail.outbox), 0) def test_unusable_password(self): user = User.objects.create_user('testuser', '[email protected]', 'test') data = {"email": "[email protected]"} form = PasswordResetForm(data) self.assertTrue(form.is_valid()) user.set_unusable_password() user.save() form = PasswordResetForm(data) # The form itself is valid, but no email is sent self.assertTrue(form.is_valid()) form.save() self.assertEqual(len(mail.outbox), 0) def test_save_plaintext_email(self): """ Test the PasswordResetForm.save() method with no html_email_template_name parameter passed in. Test to ensure original behavior is unchanged after the parameter was added. """ (user, username, email) = self.create_dummy_user() form = PasswordResetForm({"email": email}) self.assertTrue(form.is_valid()) form.save() self.assertEqual(len(mail.outbox), 1) message = mail.outbox[0].message() self.assertFalse(message.is_multipart()) self.assertEqual(message.get_content_type(), 'text/plain') self.assertEqual(message.get('subject'), 'Custom password reset on example.com') self.assertEqual(len(mail.outbox[0].alternatives), 0) self.assertEqual(message.get_all('to'), [email]) self.assertTrue(re.match(r'^http://example.com/reset/[\w+/-]', message.get_payload())) def test_save_html_email_template_name(self): """ Test the PasswordResetFOrm.save() method with html_email_template_name parameter specified. Test to ensure that a multipart email is sent with both text/plain and text/html parts. """ (user, username, email) = self.create_dummy_user() form = PasswordResetForm({"email": email}) self.assertTrue(form.is_valid()) form.save(html_email_template_name='registration/html_password_reset_email.html') self.assertEqual(len(mail.outbox), 1) self.assertEqual(len(mail.outbox[0].alternatives), 1) message = mail.outbox[0].message() self.assertEqual(message.get('subject'), 'Custom password reset on example.com') self.assertEqual(len(message.get_payload()), 2) self.assertTrue(message.is_multipart()) self.assertEqual(message.get_payload(0).get_content_type(), 'text/plain') self.assertEqual(message.get_payload(1).get_content_type(), 'text/html') self.assertEqual(message.get_all('to'), [email]) self.assertTrue(re.match(r'^http://example.com/reset/[\w/-]+', message.get_payload(0).get_payload())) self.assertTrue(re.match( r'^<html><a href="http://example.com/reset/[\w/-]+/">Link</a></html>$', message.get_payload(1).get_payload() )) @override_settings(AUTH_USER_MODEL='auth_tests.CustomEmailField') def test_custom_email_field(self): email = '[email protected]' CustomEmailField.objects.create_user('test name', 'test password', email) form = PasswordResetForm({'email': email}) self.assertTrue(form.is_valid()) form.save() self.assertEqual(form.cleaned_data['email'], email) self.assertEqual(len(mail.outbox), 1) self.assertEqual(mail.outbox[0].to, [email]) class ReadOnlyPasswordHashTest(SimpleTestCase): def test_bug_19349_render_with_none_value(self): # Rendering the widget with value set to None # mustn't raise an exception. widget = ReadOnlyPasswordHashWidget() html = widget.render(name='password', value=None, attrs={}) self.assertIn(_("No password set."), html) def test_readonly_field_has_changed(self): field = ReadOnlyPasswordHashField() self.assertFalse(field.has_changed('aaa', 'bbb')) class AdminPasswordChangeFormTest(TestDataMixin, TestCase): @mock.patch('django.contrib.auth.password_validation.password_changed') def test_success(self, password_changed): user = User.objects.get(username='testclient') data = { 'password1': 'test123', 'password2': 'test123', } form = AdminPasswordChangeForm(user, data) self.assertTrue(form.is_valid()) form.save(commit=False) self.assertEqual(password_changed.call_count, 0) form.save() self.assertEqual(password_changed.call_count, 1) def test_password_whitespace_not_stripped(self): user = User.objects.get(username='testclient') data = { 'password1': ' pass ', 'password2': ' pass ', } form = AdminPasswordChangeForm(user, data) self.assertTrue(form.is_valid()) self.assertEqual(form.cleaned_data['password1'], data['password1']) self.assertEqual(form.cleaned_data['password2'], data['password2'])
bsd-3-clause
-8,254,887,055,535,520,000
38.944056
119
0.616743
false