repo_name
stringlengths
5
100
path
stringlengths
4
299
copies
stringclasses
990 values
size
stringlengths
4
7
content
stringlengths
666
1.03M
license
stringclasses
15 values
hash
int64
-9,223,351,895,964,839,000
9,223,297,778B
line_mean
float64
3.17
100
line_max
int64
7
1k
alpha_frac
float64
0.25
0.98
autogenerated
bool
1 class
aevri/mel
mel/cmddebug/meldebug.py
1
3100
"""Mel Debug - for debugging the internals of the 'mel' command.""" import argparse import sys import mel.cmd.error import mel.cmddebug.benchautomark import mel.cmddebug.genrepo import mel.cmddebug.rendervaluefield import mel.lib.ui def main(): parser = argparse.ArgumentParser( formatter_class=argparse.RawDescriptionHelpFormatter, description=__doc__, ) subparsers = parser.add_subparsers() # Work around a bug in argparse with subparsers no longer being required: # http://bugs.python.org/issue9253#msg186387 subparsers.required = True subparsers.dest = "command" # vulture will report these as unused unless we do this # # pylint: disable=pointless-statement subparsers.required subparsers.dest # pylint: enable=pointless-statement _setup_parser_for_module( subparsers, mel.cmddebug.benchautomark, "bench-automark" ) _setup_parser_for_module(subparsers, mel.cmddebug.genrepo, "gen-repo") _setup_parser_for_module( subparsers, mel.cmddebug.rendervaluefield, "render-valuefield" ) args = parser.parse_args() try: return args.func(args) except mel.cmd.error.UsageError as e: print("Usage error:", e, file=sys.stderr) return 2 except BrokenPipeError: # Silently exit on broken pipes, e.g. when our output is piped to head. # Explicitly close stderr before exiting, to avoid an additional # message from Python on stderr about the pipe break being ignored. # http://bugs.python.org/issue11380,#msg153320 sys.stderr.close() except mel.lib.ui.AbortKeyInterruptError: # Using this return code may also break us out of an outer loop, e.g. # 'xargs' will stop processing if the program it calls exists with 255. return 255 def _setup_parser_for_module(subparsers, module, name): doc = module.__doc__ doc_subject = doc.splitlines()[0] doc_epilog = "\n".join(doc.splitlines()[1:]) parser = subparsers.add_parser( name, formatter_class=argparse.RawDescriptionHelpFormatter, help=doc_subject, description=doc_subject, epilog=doc_epilog, ) module.setup_parser(parser) parser.set_defaults(func=module.process_args) if __name__ == "__main__": sys.exit(main()) # ----------------------------------------------------------------------------- # Copyright (C) 2016-2018 Angelos Evripiotis. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ------------------------------ END-OF-FILE ----------------------------------
apache-2.0
-5,583,005,775,866,671,000
31.978723
79
0.660968
false
FarnazH/horton
horton/__init__.py
4
1447
# -*- coding: utf-8 -*- # HORTON: Helpful Open-source Research TOol for N-fermion systems. # Copyright (C) 2011-2017 The HORTON Development Team # # This file is part of HORTON. # # HORTON is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 3 # of the License, or (at your option) any later version. # # HORTON is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, see <http://www.gnu.org/licenses/> # # -- '''The main HORTON Package''' __version__ = '2.1.0' # Extensions are imported first to call fpufix as early as possible from horton.cext import * from horton.cache import * from horton.constants import * from horton.context import * from horton.part import * from horton.espfit import * from horton.exceptions import * from horton.gbasis import * from horton.grid import * from horton.io import * from horton.log import * from horton.meanfield import * from horton.moments import * from horton.periodic import * from horton.quadprog import * from horton.units import * from horton.utils import * from horton.modelhamiltonians import *
gpl-3.0
5,630,239,729,071,877,000
30.456522
69
0.756738
false
tgillet1/PASTA
tree.py
1
1739
from sequence import NeuriteSequence class TreeIndexLogic(): ''' A class which captures tree-specific logic given two characters. @param char1: First character @param char2: Second character ''' def __init__(self, char1, char2): self.char1 = char1 self.char2 = char2 def get(self): if (self.char1 == 'A' and self.char2 == 'C') or (self.char2 == 'A' and self.char1 == 'C'): return 'A' if (self.char1 == 'A' and self.char2 == '-') or (self.char2 == 'A' and self.char1 == '-'): return 'A' if (self.char1 == 'T' and self.char2 == '-') or (self.char2 == 'T' and self.char1 == '-'): return 'T' if (self.char1 == 'C' and self.char2 == '-') or (self.char2 == 'C' and self.char1 == '-'): return 'C' raise Exception("Improper character alignment: "+self.char1+" with "+self.char2) class TreeLogicFactory(): ''' Parses and processes the composite string to ultimately yield a single string which encapsulate the pairwise alignment. ''' def __init__(self, str1, str2): self.str1 = str1 self.str2 = str2 def get_alignment(self): ''' Simple function to merge two strings and produce a composite. @return: NeuriteSequence object representing the composite sequence. ''' composite = '' for idx, char1 in enumerate(self.str1): char2 = self.str2[idx] if char1 == self.str2[idx]: composite += char1 else: # Apply neuronal logic given two specific characters. composite += TreeIndexLogic(char1, char2).get() return composite
mit
-1,689,353,366,102,372,600
36.804348
98
0.562967
false
zak-k/iris
docs/iris/example_code/General/cross_section.py
6
1297
""" Cross section plots =================== This example demonstrates contour plots of a cross-sectioned multi-dimensional cube which features a hybrid height vertical coordinate system. """ import matplotlib.pyplot as plt import iris import iris.plot as iplt import iris.quickplot as qplt def main(): # Enable a future option, to ensure that the netcdf load works the same way # as in future Iris versions. iris.FUTURE.netcdf_promote = True # Load some test data. fname = iris.sample_data_path('hybrid_height.nc') theta = iris.load_cube(fname, 'air_potential_temperature') # Extract a single height vs longitude cross-section. N.B. This could # easily be changed to extract a specific slice, or even to loop over *all* # cross section slices. cross_section = next(theta.slices(['grid_longitude', 'model_level_number'])) qplt.contourf(cross_section, coords=['grid_longitude', 'altitude'], cmap='RdBu_r') iplt.show() # Now do the equivalent plot, only against model level plt.figure() qplt.contourf(cross_section, coords=['grid_longitude', 'model_level_number'], cmap='RdBu_r') iplt.show() if __name__ == '__main__': main()
gpl-3.0
-1,278,188,299,362,343,400
27.195652
79
0.639167
false
calexil/FightstickDisplay
pyglet/event.py
1
19212
# ---------------------------------------------------------------------------- # pyglet # Copyright (c) 2006-2008 Alex Holkner # Copyright (c) 2008-2021 pyglet contributors # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in # the documentation and/or other materials provided with the # distribution. # * Neither the name of pyglet nor the names of its # contributors may be used to endorse or promote products # derived from this software without specific prior written # permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # ---------------------------------------------------------------------------- """Event dispatch framework. All objects that produce events in pyglet implement :py:class:`~pyglet.event.EventDispatcher`, providing a consistent interface for registering and manipulating event handlers. A commonly used event dispatcher is `pyglet.window.Window`. Event types =========== For each event dispatcher there is a set of events that it dispatches; these correspond with the type of event handlers you can attach. Event types are identified by their name, for example, ''on_resize''. If you are creating a new class which implements :py:class:`~pyglet.event.EventDispatcher`, you must call `EventDispatcher.register_event_type` for each event type. Attaching event handlers ======================== An event handler is simply a function or method. You can attach an event handler by setting the appropriate function on the instance:: def on_resize(width, height): # ... dispatcher.on_resize = on_resize There is also a convenience decorator that reduces typing:: @dispatcher.event def on_resize(width, height): # ... You may prefer to subclass and override the event handlers instead:: class MyDispatcher(DispatcherClass): def on_resize(self, width, height): # ... Event handler stack =================== When attaching an event handler to a dispatcher using the above methods, it replaces any existing handler (causing the original handler to no longer be called). Each dispatcher maintains a stack of event handlers, allowing you to insert an event handler "above" the existing one rather than replacing it. There are two main use cases for "pushing" event handlers: * Temporarily intercepting the events coming from the dispatcher by pushing a custom set of handlers onto the dispatcher, then later "popping" them all off at once. * Creating "chains" of event handlers, where the event propagates from the top-most (most recently added) handler to the bottom, until a handler takes care of it. Use `EventDispatcher.push_handlers` to create a new level in the stack and attach handlers to it. You can push several handlers at once:: dispatcher.push_handlers(on_resize, on_key_press) If your function handlers have different names to the events they handle, use keyword arguments:: dispatcher.push_handlers(on_resize=my_resize, on_key_press=my_key_press) After an event handler has processed an event, it is passed on to the next-lowest event handler, unless the handler returns `EVENT_HANDLED`, which prevents further propagation. To remove all handlers on the top stack level, use `EventDispatcher.pop_handlers`. Note that any handlers pushed onto the stack have precedence over the handlers set directly on the instance (for example, using the methods described in the previous section), regardless of when they were set. For example, handler ``foo`` is called before handler ``bar`` in the following example:: dispatcher.push_handlers(on_resize=foo) dispatcher.on_resize = bar Dispatching events ================== pyglet uses a single-threaded model for all application code. Event handlers are only ever invoked as a result of calling EventDispatcher.dispatch_events`. It is up to the specific event dispatcher to queue relevant events until they can be dispatched, at which point the handlers are called in the order the events were originally generated. This implies that your application runs with a main loop that continuously updates the application state and checks for new events:: while True: dispatcher.dispatch_events() # ... additional per-frame processing Not all event dispatchers require the call to ``dispatch_events``; check with the particular class documentation. .. note:: In order to prevent issues with garbage collection, the :py:class:`~pyglet.event.EventDispatcher` class only holds weak references to pushed event handlers. That means the following example will not work, because the pushed object will fall out of scope and be collected:: dispatcher.push_handlers(MyHandlerClass()) Instead, you must make sure to keep a reference to the object before pushing it. For example:: my_handler_instance = MyHandlerClass() dispatcher.push_handlers(my_handler_instance) """ import inspect from functools import partial from weakref import WeakMethod EVENT_HANDLED = True EVENT_UNHANDLED = None class EventException(Exception): """An exception raised when an event handler could not be attached. """ pass class EventDispatcher: """Generic event dispatcher interface. See the module docstring for usage. """ # Placeholder empty stack; real stack is created only if needed _event_stack = () @classmethod def register_event_type(cls, name): """Register an event type with the dispatcher. Registering event types allows the dispatcher to validate event handler names as they are attached, and to search attached objects for suitable handlers. :Parameters: `name` : str Name of the event to register. """ if not hasattr(cls, 'event_types'): cls.event_types = [] cls.event_types.append(name) return name def push_handlers(self, *args, **kwargs): """Push a level onto the top of the handler stack, then attach zero or more event handlers. If keyword arguments are given, they name the event type to attach. Otherwise, a callable's `__name__` attribute will be used. Any other object may also be specified, in which case it will be searched for callables with event names. """ # Create event stack if necessary if type(self._event_stack) is tuple: self._event_stack = [] # Place dict full of new handlers at beginning of stack self._event_stack.insert(0, {}) self.set_handlers(*args, **kwargs) def _get_handlers(self, args, kwargs): """Implement handler matching on arguments for set_handlers and remove_handlers. """ for obj in args: if inspect.isroutine(obj): # Single magically named function name = obj.__name__ if name not in self.event_types: raise EventException('Unknown event "%s"' % name) if inspect.ismethod(obj): yield name, WeakMethod(obj, partial(self._remove_handler, name)) else: yield name, obj else: # Single instance with magically named methods for name in dir(obj): if name in self.event_types: meth = getattr(obj, name) yield name, WeakMethod(meth, partial(self._remove_handler, name)) for name, handler in kwargs.items(): # Function for handling given event (no magic) if name not in self.event_types: raise EventException('Unknown event "%s"' % name) if inspect.ismethod(handler): yield name, WeakMethod(handler, partial(self._remove_handler, name)) else: yield name, handler def set_handlers(self, *args, **kwargs): """Attach one or more event handlers to the top level of the handler stack. See :py:meth:`~pyglet.event.EventDispatcher.push_handlers` for the accepted argument types. """ # Create event stack if necessary if type(self._event_stack) is tuple: self._event_stack = [{}] for name, handler in self._get_handlers(args, kwargs): self.set_handler(name, handler) def set_handler(self, name, handler): """Attach a single event handler. :Parameters: `name` : str Name of the event type to attach to. `handler` : callable Event handler to attach. """ # Create event stack if necessary if type(self._event_stack) is tuple: self._event_stack = [{}] self._event_stack[0][name] = handler def pop_handlers(self): """Pop the top level of event handlers off the stack. """ assert self._event_stack and 'No handlers pushed' del self._event_stack[0] def remove_handlers(self, *args, **kwargs): """Remove event handlers from the event stack. See :py:meth:`~pyglet.event.EventDispatcher.push_handlers` for the accepted argument types. All handlers are removed from the first stack frame that contains any of the given handlers. No error is raised if any handler does not appear in that frame, or if no stack frame contains any of the given handlers. If the stack frame is empty after removing the handlers, it is removed from the stack. Note that this interferes with the expected symmetry of :py:meth:`~pyglet.event.EventDispatcher.push_handlers` and :py:meth:`~pyglet.event.EventDispatcher.pop_handlers`. """ handlers = list(self._get_handlers(args, kwargs)) # Find the first stack frame containing any of the handlers def find_frame(): for frame in self._event_stack: for name, handler in handlers: try: if frame[name] == handler: return frame except KeyError: pass frame = find_frame() # No frame matched; no error. if not frame: return # Remove each handler from the frame. for name, handler in handlers: try: if frame[name] == handler: del frame[name] except KeyError: pass # Remove the frame if it's empty. if not frame: self._event_stack.remove(frame) def remove_handler(self, name, handler): """Remove a single event handler. The given event handler is removed from the first handler stack frame it appears in. The handler must be the exact same callable as passed to `set_handler`, `set_handlers` or :py:meth:`~pyglet.event.EventDispatcher.push_handlers`; and the name must match the event type it is bound to. No error is raised if the event handler is not set. :Parameters: `name` : str Name of the event type to remove. `handler` : callable Event handler to remove. """ for frame in self._event_stack: try: if frame[name] == handler: del frame[name] break except KeyError: pass def _remove_handler(self, name, handler): """Used internally to remove all handler instances for the given event name. This is normally called from a dead ``WeakMethod`` to remove itself from the event stack. """ # Iterate over a copy as we might mutate the list for frame in list(self._event_stack): if name in frame: try: if frame[name] == handler: del frame[name] if not frame: self._event_stack.remove(frame) except TypeError: # weakref is already dead pass def dispatch_event(self, event_type, *args): """Dispatch a single event to the attached handlers. The event is propagated to all handlers from from the top of the stack until one returns `EVENT_HANDLED`. This method should be used only by :py:class:`~pyglet.event.EventDispatcher` implementors; applications should call the ``dispatch_events`` method. Since pyglet 1.2, the method returns `EVENT_HANDLED` if an event handler returned `EVENT_HANDLED` or `EVENT_UNHANDLED` if all events returned `EVENT_UNHANDLED`. If no matching event handlers are in the stack, ``False`` is returned. :Parameters: `event_type` : str Name of the event. `args` : sequence Arguments to pass to the event handler. :rtype: bool or None :return: (Since pyglet 1.2) `EVENT_HANDLED` if an event handler returned `EVENT_HANDLED`; `EVENT_UNHANDLED` if one or more event handlers were invoked but returned only `EVENT_UNHANDLED`; otherwise ``False``. In pyglet 1.1 and earlier, the return value is always ``None``. """ assert hasattr(self, 'event_types'), ( "No events registered on this EventDispatcher. " "You need to register events with the class method " "EventDispatcher.register_event_type('event_name')." ) assert event_type in self.event_types,\ "%r not found in %r.event_types == %r" % (event_type, self, self.event_types) invoked = False # Search handler stack for matching event handlers for frame in list(self._event_stack): handler = frame.get(event_type, None) if not handler: continue if isinstance(handler, WeakMethod): handler = handler() assert handler is not None try: invoked = True if handler(*args): return EVENT_HANDLED except TypeError as exception: self._raise_dispatch_exception(event_type, args, handler, exception) # Check instance for an event handler try: if getattr(self, event_type)(*args): return EVENT_HANDLED except AttributeError as e: event_op = getattr(self, event_type, None) if callable(event_op): raise e except TypeError as exception: self._raise_dispatch_exception(event_type, args, getattr(self, event_type), exception) else: invoked = True if invoked: return EVENT_UNHANDLED return False def _raise_dispatch_exception(self, event_type, args, handler, exception): # A common problem in applications is having the wrong number of # arguments in an event handler. This is caught as a TypeError in # dispatch_event but the error message is obfuscated. # # Here we check if there is indeed a mismatch in argument count, # and construct a more useful exception message if so. If this method # doesn't find a problem with the number of arguments, the error # is re-raised as if we weren't here. n_args = len(args) # Inspect the handler argspecs = inspect.getfullargspec(handler) handler_args = argspecs.args handler_varargs = argspecs.varargs handler_defaults = argspecs.defaults n_handler_args = len(handler_args) # Remove "self" arg from handler if it's a bound method if inspect.ismethod(handler) and handler.__self__: n_handler_args -= 1 # Allow *args varargs to overspecify arguments if handler_varargs: n_handler_args = max(n_handler_args, n_args) # Allow default values to overspecify arguments if (n_handler_args > n_args and handler_defaults and n_handler_args - len(handler_defaults) <= n_args): n_handler_args = n_args if n_handler_args != n_args: if inspect.isfunction(handler) or inspect.ismethod(handler): descr = "'%s' at %s:%d" % (handler.__name__, handler.__code__.co_filename, handler.__code__.co_firstlineno) else: descr = repr(handler) raise TypeError("The '{0}' event was dispatched with {1} arguments, " "but your handler {2} accepts only {3} arguments.".format( event_type, len(args), descr, len(handler_args))) else: raise exception def event(self, *args): """Function decorator for an event handler. Usage:: win = window.Window() @win.event def on_resize(self, width, height): # ... or:: @win.event('on_resize') def foo(self, width, height): # ... """ if len(args) == 0: # @window.event() def decorator(func): name = func.__name__ self.set_handler(name, func) return func return decorator elif inspect.isroutine(args[0]): # @window.event func = args[0] name = func.__name__ self.set_handler(name, func) return args[0] elif isinstance(args[0], str): # @window.event('on_resize') name = args[0] def decorator(func): self.set_handler(name, func) return func return decorator
gpl-3.0
4,335,954,009,987,605,500
36.017341
99
0.616229
false
Svalorzen/AI-Toolbox
test/Python/POMDP/GapMinTests.py
1
1985
import unittest import sys import os sys.path.append(os.getcwd()) from AIToolbox import POMDP class POMDPPythonGapMin(unittest.TestCase): def chengD35(self): # Actions are: 0-listen, 1-open-left, 2-open-right S = 3 A = 3 O = 3 model = POMDP.Model(O, S, A) # SAS form t = [0,0,0] r = [0,0,0] # SAO form o = [0,0,0] t[0] = [ [0.445, 0.222, 0.333], [0.234, 0.064, 0.702], [0.535, 0.313, 0.152], ] t[1] = [ [0.500, 0.173, 0.327], [0.549, 0.218, 0.233], [0.114, 0.870, 0.016], ] t[2] = [ [0.204, 0.553, 0.243], [0.061, 0.466, 0.473], [0.325, 0.360, 0.315], ] o[0] = [ [0.686, 0.182, 0.132], [0.698, 0.131, 0.171], [0.567, 0.234, 0.199], ] o[1] = [ [0.138, 0.786, 0.076], [0.283, 0.624, 0.093], [0.243, 0.641, 0.116], ] o[2] = [ [0.279, 0.083, 0.638], [0.005, 0.202, 0.793], [0.186, 0.044, 0.770], ] r[0] = [ [5.2] * 3, [0.8] * 3, [9.0] * 3, ] r[1] = [ [4.6] * 3, [6.8] * 3, [9.3] * 3, ] r[2] = [ [4.1] * 3, [6.9] * 3, [0.8] * 3, ] model.setTransitionFunction(t) model.setRewardFunction(r) model.setObservationFunction(o) model.setDiscount(0.999) return model def test_solver(self): gm = POMDP.GapMin(0.005, 3); model = self.chengD35(); initialBelief = [1.0/3, 1.0/3, 1.0/3] lb, ub, vlist, qfun = gm(model, initialBelief); self.assertTrue(9.0 < ub - lb and ub - lb < 11.0); if __name__ == '__main__': unittest.main(verbosity=2)
gpl-3.0
2,645,549,243,620,513,300
19.255102
58
0.379849
false
Lamecarlate/gourmet
gourmet/importers/html_importer.py
6
20973
import urllib, re, tempfile, os.path import importer import BeautifulSoup import socket from gourmet.gdebug import debug from gettext import gettext as _ import traceback DEFAULT_SOCKET_TIMEOUT=45.0 URLOPEN_SOCKET_TIMEOUT=15.0 socket.setdefaulttimeout(DEFAULT_SOCKET_TIMEOUT) # To add additional HTML import sites, see html_rules.py def read_socket_w_progress (socket, progress, message): """Read piecemeal reporting progress as we go.""" if not progress: data = socket.read() else: bs = 1024 * 8 if hasattr(socket,'headers'): fs = int(socket.headers.get('content-length',-1)) else: fs = -1 block = socket.read(bs) data = block sofar = bs while block: if fs>0: progress(float(sofar)/fs, message) else: progress(-1, message) sofar += bs block = socket.read(bs) data += block socket.close() return data def get_url (url, progress): """Return data from URL, possibly displaying progress.""" if type(url)==str: socket.setdefaulttimeout(URLOPEN_SOCKET_TIMEOUT) sock = urllib.urlopen(url) socket.setdefaulttimeout(DEFAULT_SOCKET_TIMEOUT) return read_socket_w_progress(sock,progress,_('Retrieving %s'%url)) else: sock = url return read_socket_w_progress(sock,progress,_('Retrieving file')) class MyBeautifulSoup (BeautifulSoup.ICantBelieveItsBeautifulSoup): def __init__ (self, *args, **kwargs): # Avoid invalid doctype decls of the type # <!DOCTYPE foo ... /> # From the overly XML zealous folks at sfgate... # http://sfgate.com/cgi-bin/article.cgi?f=/chronicle/archive/2006/08/16/FDG1LKHOMG1.DTL self.PARSER_MASSAGE.append( (re.compile('<!([^<>]*)/>',), lambda x: '<!'+x.group(1)+'>' ) ) kwargs['avoidParserProblems']=True BeautifulSoup.ICantBelieveItsBeautifulSoup.__init__(self,*args,**kwargs) def handle_comment (self, text): pass def handle_decl (self, data): pass def handle_pi (self, text): pass class BeautifulSoupScraper: """We take a set of rules and create a scraper using BeautifulSoup. This will be quite wonderfully magical. Handed rules, we can customize a scraper for any set of data from any website. Writing new rules should be simpler than writing a new class would be. The rules will take the following form: ['foobar',DIRECTIONS_TO_TAG,METHOD_OF_STORAGE, POST_PROCESSING] DIRECTIONS_TO_TAG is a list of instructions followed to find our tag. We can search by tagname and attributes or by text. By default, we drill down the structure each time. METHOD_OF_STORAGE is either TEXT or MARKUP, depending what we want to store in our return dictionary. OPTIONAL POST_PROCESSING, which can be a function or a regexp. If it is a regexp, it should have a grouping construct which will contain the text we want to keep. """ TEXT = 'text' MARKUP = 'markup' def __init__ (self, rules): """Set up a scraper according to a list of rules.""" self.rules = rules def feed_url (self, url,progress=None): """Feed ourselves a url. URL can be a string or an already open socket. """ self.url = url self.feed_data(get_url(url,progress)) def feed_data (self, data): self.soup = MyBeautifulSoup(data) def scrape_url (self, url, progress=None): self.feed_url(url,progress) return self.scrape() def scrape_data (self, data): self.feed_data(data) return self.scrape() def scrape (self): """Do our actual scraping according to our rules.""" self.dic = {} for rule in self.rules: self.apply_rule(rule) return self.dic def apply_rule (self, rule): """Apply a rule from our rule list.""" if len(rule)==3: store_as,tagpath,retmethod = rule post_processing=None elif len(rule)==4: store_as,tagpath,retmethod,post_processing=rule else: raise Exception("Rule %s is invalid (it should be 3 or 4 items long)." % rule) tag = self.get_tag_according_to_path(tagpath) self.store_tag(store_as,tag,retmethod,post_processing) def post_process (self, post_processing, value, tag): """Post process value according to post_processing post_processing is either callable (and will return a modified string based on what it's handed), or a tuple: (regexp, force_match). The regexp must always yield the desired value in the first grouping construct (if you require something more complicated, write a lambda). If force_match is True, return '' if there is no match. Otherwise, default to the unadulterated value. """ if type(post_processing) == tuple and len(post_processing)==2: regexp=re.compile(post_processing[0],re.UNICODE) m=regexp.search(value) if m: return m.groups()[0] else: if post_processing[1]: return "" else: return value elif callable(post_processing): return post_processing(value,tag) else: return value def get_tag_according_to_path (self, path): """Follow path to tag. Path is a list of instructions. """ base = self.soup for step in path: base=self.follow_path(base,step) if type(base)==list: # then we'd better be the last step break return base def follow_path (self, base, step): """Follow step from base of base. Base is a tag. Step is a set of instructions as a dictionary. {'regexp':regexp} {'string':string} OR {'tag':tagname, 'attributes':{attr:name,attr:name,...}, 'index': NUMBER or [FIRST,LAST], } """ if not base: return # path ran out... ind=step.get('index',0) if step.has_key('regexp'): ret = base.fetchText(re.compile(step['regexp'])) elif step.has_key('string'): ret = base.fetchText('string') else: get_to = None if ind: if type(ind)==list: get_to=ind[-1] elif type(ind)==int: get_to=ind if not get_to or get_to < 0: get_to=None else: get_to += 1 if get_to: ret = base.fetch(step.get('tag'), step.get('attributes',{}), get_to) else: ret = base.fetch(step.get('tag'),step.get('attributes',{})) if ret: # if we have moveto, we do it with our index -- for # example, if we have step['moveto']='parent', we grab the # parents of each tag we would otherwise return. This can # also work for previousSibling, nextSibling, etc. if step.has_key('moveto'): ret = [getattr(o,step['moveto']) for o in ret] else: for motion in ['firstNext','firstPrevious','findParent']: if step.has_key(motion): ret = [getattr(o,motion)(step[motion]) for o in ret] break if type(ind)==list or type(ind)==tuple: return ret[ind[0]:ind[1]] else: #ind is an integer if ind < len(ret): return ret[ind] else: print 'Problem following path.' print 'I am supposed to get item: ',ind print 'from: ',ret print 'instructions were : ', try: print 'base: ',base except UnicodeDecodeError: print '(ugly unicodeness)' try: print 'step: ',step except UnicodeDecodeError: print '(ugly unicodeness)' def store_tag (self, name, tag, method, post_processing=None): """Store our tag in our dictionary according to our method.""" if type(tag)==list: for t in tag: self.store_tag(name,t,method,post_processing) return if method==self.TEXT: if tag: val = get_text(tag) else: val = "" elif method==self.MARKUP: if tag: val = tag.prettify() else: val = "" else: #otherwise, we assume our method is an attribute name val = "" if tag: for aname,aval in tag.attrs: if aname==method: val=aval if post_processing: val=self.post_process(post_processing, val, tag) if not val: return # don't store empty values if self.dic.has_key(name): curval = self.dic[name] if type(curval)==list: self.dic[name].append(val) else: self.dic[name]=[self.dic[name],val] else: self.dic[name]=val class GenericScraper (BeautifulSoupScraper): """A very simple scraper. We grab a list of images and all the text. """ def __init__ (self): BeautifulSoupScraper.__init__(self, [['text', [{'tag':'body', # Believe it or not, I've found recipe webpages with # more than one body tag 'index':[0,None], }], 'text', ], ['images', [{'tag':'img', 'index':[0,None]}], 'src', ], ['title', [{'tag':'title'}], 'text',], ] ) def scrape (self): dic = BeautifulSoupScraper.scrape(self) text = dic.get('title','')+'\n'+dic.get('text','') images = dic.get('images',[]) if type(images)!=list: images = [images] images = [urllib.basejoin(self.url,i) for i in images] return text,images class FancyTextGetter: """Starting with a BeautifulSoup tag, get text in some kind of reasonable w3mish way. """ IS_BREAK = ['br'] TWO_LB_BEFORE = ['table','p','blockquote'] LB_BEFORE = ['tr','li'] TAB_BEFORE = ['td'] IGNORE = ['script','meta','select'] def __call__ (self, top_tag, strip=True): self.text = '' if hasattr(top_tag,'contents'): self.add_tag(top_tag) else: self.text = top_tag.string if strip: self.text = self.text.strip() # No more than two spaces! self.text = re.sub('\n\t','\n',self.text) self.text = re.sub('\n\s*\n\s+','\n\n',self.text) try: return unicode(self.text,errors='ignore') except: print 'Odd encoding problems with ',self.text return self.text def add_tag (self, t): for item in t.contents: self.get_text_fancy(item) def get_text_fancy (self, item): #print 'get_text_fancy looking at:',item if self.text and hasattr(item,'name'): if item.name in self.IGNORE: return if item.name in self.IS_BREAK: self.text += '\n' return elif item.name in self.TWO_LB_BEFORE: self.text += '\n\n' elif item.name in self.LB_BEFORE: self.text += '\n' elif item.name in self.TAB_BEFORE: self.text += '\t' if hasattr(item,'contents'): self.add_tag(item) else: try: s = item.string.encode('utf8','replace') self.text += s except UnicodeDecodeError: print 'UNICODE DECODING ERROR IN TAG', if hasattr(item,'name'): print item.name if hasattr(item,'fetchParents'): print 'CHILD OF: ','<'.join([p.name for p in item.fetchParents()]) get_text = FancyTextGetter() img_src_regexp = re.compile('<img[^>]+src=[\'\"]([^\'"]+)') def get_image_from_tag (iurl, page_url): if not iurl: return iurl = urllib.basejoin(page_url,iurl) tmpfi,info=urllib.urlretrieve(iurl) ifi=file(tmpfi,'rb') retval=ifi.read() ifi.close() return retval def scrape_url (url, progress=None): if type(url)==str: domain=url.split('/')[2] if SUPPORTED_URLS.has_key(domain): bss = BeautifulSoupScraper(SUPPORTED_URLS[domain]) else: bss = None for regexp,v in SUPPORTED_URLS_REGEXPS.items(): if re.match(regexp,domain): bss=BeautifulSoupScraper(v) break if bss: return bss.scrape_url(url,progress=progress) def add_to_fn (fn): '''Add 1 to a filename.''' f,e=os.path.splitext(fn) try: f,n=os.path.splitext(f) n = int(n[1:]) n += 1 return f + "%s%s"%(os.path.extsep,n) + e except: return f + "%s1"%os.path.extsep + e def import_url (url, rd, progress=None, add_webpage_source=True, threaded=False, interactive=True): """Import information from URL. We handle HTML with scrape_url. Everything else, we hand back to our caller as a list of files. This is a little stupid -- it would be more elegant to just hand back a class, but our importer stuff is a little munged up with gui-ness and it's just going to have to be ugly for now """ if progress: progress(0.01,'Fetching webpage') sock=urllib.urlopen(url) header=sock.headers.get('content-type','text/html') if progress: progress(0.02, 'Reading headers') if header.find('html')>=0: #return scrape_url(url,progress) return WebPageImporter(rd, url, prog=progress, add_webpage_source=add_webpage_source, threaded=threaded, interactive=interactive) elif header=='application/zip': import zip_importer return zip_importer.zipfile_to_filelist(sock,progress,os.path.splitext(url.split('/')[-1])[0]) else: fn = os.path.join(tempfile.tempdir,url.split('/')[-1]) while os.path.exists(fn): fn=add_to_fn(fn) ofi = open(fn,'w') ofi.write(get_url(sock,progress)) ofi.close() return [fn] class WebPageImporter (importer.Importer): """Import a webpage as a recipe We use our BeautifulSoupScraper class to do the actual scraping. We use predefined webpages already registered in the global variable SUPPORTED_URLS in this module. If we don't know the web page, we will prompt the user to guide us through a generic import. To create a new type of web page import, create a new set of import rules and register them with SUPPORTED_URLS. """ JOIN_AS_PARAGRAPHS = ['instructions','modifications','ingredient_block'] def __init__ (self, rd, url, add_webpage_source=True, threaded=False, total=0, prog=None,conv=None, interactive=True): self.add_webpage_source=add_webpage_source self.url = url self.prog = prog self.interactive = interactive importer.Importer.__init__(self,rd,threaded=threaded,total=total,prog=prog,do_markup=True, conv=conv) def run (self): """Import our recipe to our database. This must be called after self.d is already populated by scraping our web page. """ debug('Scraping url %s'%self.url,0) try: self.d = scrape_url(self.url, progress=self.prog) except: print 'Trouble using default recipe filter to download %s'%self.url traceback.print_exc() print 'We will use a generic importer instead.' self.d = {} debug('Scraping url returned %s'%self.d,0) do_generic = not self.d if not do_generic: try: if self.prog: self.prog(-1,'Parsing webpage based on template.') self.get_url_based_on_template() except: if not self.interactive: raise do_generic = True print """Automated HTML Import failed ***Falling back to generic import*** We were attempting to scrape using the following rules: """ print self.d print """The following exception was raised:""" traceback.print_exc() print """If you think automated import should have worked for the webpage you were importing, copy the output starting at "Automated HTML Import failed" into a bug report and submit it at the GitHub site https://github.com/thinkle/gourmet/issues Sorry automated import didn't work. I hope you like the new generic web importer! """ if do_generic: if not self.interactive: raise Exception("Unable to find importer for %s" % self.url) # Interactive we go... self.prog(-1,_("Don't recognize this webpage. Using generic importer...")) gs = GenericScraper() text,images = gs.scrape_url(self.url, progress=self.prog) if not text and not images: raise Exception("Unable to obtain text or images from url %s" % self.url) import interactive_importer ii = interactive_importer.InteractiveImporter(self.rd) ii.set_text(text) ii.add_attribute('link',self.url) ii.set_images(images) ii.run() if self.prog: self.prog(1,_('Import complete.')) return def get_url_based_on_template (self): """Get URL based on template stored in d """ self.start_rec() # Set link self.rec['link']=self.url # Add webpage as source if self.add_webpage_source: # add Domain as source domain = self.url.split('/')[2] src=self.d.get('source',None) add_str = '(%s)'%domain if type(src)==list: src.append(add_str) elif src: src = [src,add_str] else: src = domain # no parens if we're the only source self.d['source']=src for k,v in self.d.items(): debug('processing %s:%s'%(k,v),1) if self.prog: self.prog(-1,_('Importing recipe')) # parsed ingredients... if k=='ingredient_parsed': if type(v) != list: v=[v] for ingdic in v: if self.prog: self.prog(-1,_('Processing ingredients')) # we take a special keyword, "text", which gets # parsed if ingdic.has_key('text'): d = self.rd.parse_ingredient(ingdic['text'],conv=self.conv) if d: for dk,dv in d.items(): if not ingdic.has_key(dk) or not ingdic[dk]: ingdic[dk]=dv elif not ingdic.has_key('item'): ingdic['item']=ingdic['text'] del ingdic['text'] self.start_ing(**ingdic) self.commit_ing() continue # Listy stuff... elif type(v)==list: if k in self.JOIN_AS_PARAGRAPHS: v = "\n".join(v) else: v = " ".join(v) # Ingredients in blocks if k == 'ingredient_block': for l in v.split('\n'): if self.prog: self.prog(-1,_('Processing ingredients.')) dic=self.rd.parse_ingredient(l,conv=self.conv) if dic: self.start_ing(**dic) self.commit_ing() elif k == 'image': try: if v: img = get_image_from_tag(v,self.url) except: print 'Error retrieving image' print 'tried to retrieve image from %s'%v else: if img: self.rec['image'] = img else: self.rec[k]=v #print 'COMMITTING RECIPE',self.rec self.commit_rec() if self.prog: self.prog(1,_('Import complete.'))
gpl-2.0
-2,221,629,064,807,461,600
35.989418
102
0.536166
false
grofte/NAMI
ConvertScripts/steponeplus_v2.2-to-NAMI.py
1
1068
# # steponeplus_v2.2-to-NAMI.py # # Pedro Sousa Lacerda <[email protected]> # LaBiMM, UFBA # # This script converts XLS data from a StepOnePlus (v2.2.2) to CSV format # # You need pandas and xlrd installed in order to run this script. # pip install pandas xlrd # # To run type # python steponeplus_v2.2-to-NAMI.py my_raw_data.xls # output # is my_raw_data_NAMI.csv # import sys import csv from os.path import splitext import pandas as pd # IO file paths xls_path = sys.argv[1] output_path = splitext(xls_path)[0] + '_NAMI.csv' # Read sheet sheet_name = "Multicomponent Data" data = pd.read_excel(xls_path, sheet_name, header=7) data.columns = [col.strip() for col in data.columns] data = data.set_index('Reading') data.columns = [int(w) for w in range(1, len(data.columns)+1)] with open(output_path, 'wb') as output_file: writer = csv.writer(output_file) writer.writerow(("Temp", "Well", "Intensities")) for well, intensities in data.iteritems(): for temp, intensity in intensities.iteritems(): writer.writerow((temp, well, intensity))
bsd-3-clause
-4,377,033,368,681,352,000
26.384615
73
0.70412
false
cyx1231st/nova
nova/api/openstack/compute/fixed_ips.py
11
4459
# Copyright 2012 IBM Corp. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import webob import webob.exc from nova.api.openstack.compute.schemas import fixed_ips from nova.api.openstack import extensions from nova.api.openstack import wsgi from nova.api import validation from nova import exception from nova.i18n import _ from nova import objects ALIAS = 'os-fixed-ips' authorize = extensions.os_compute_authorizer(ALIAS) class FixedIPController(wsgi.Controller): @wsgi.Controller.api_version('2.1', '2.3') def _fill_reserved_status(self, req, fixed_ip, fixed_ip_info): # NOTE(mriedem): To be backwards compatible, < 2.4 version does not # show anything about reserved status. pass @wsgi.Controller.api_version('2.4') # noqa def _fill_reserved_status(self, req, fixed_ip, fixed_ip_info): fixed_ip_info['fixed_ip']['reserved'] = fixed_ip.reserved @extensions.expected_errors((400, 404)) def show(self, req, id): """Return data about the given fixed IP.""" context = req.environ['nova.context'] authorize(context) attrs = ['network', 'instance'] try: fixed_ip = objects.FixedIP.get_by_address(context, id, expected_attrs=attrs) except exception.FixedIpNotFoundForAddress as ex: raise webob.exc.HTTPNotFound(explanation=ex.format_message()) except exception.FixedIpInvalid as ex: raise webob.exc.HTTPBadRequest(explanation=ex.format_message()) fixed_ip_info = {"fixed_ip": {}} if fixed_ip is None: msg = _("Fixed IP %s has been deleted") % id raise webob.exc.HTTPNotFound(explanation=msg) fixed_ip_info['fixed_ip']['cidr'] = str(fixed_ip.network.cidr) fixed_ip_info['fixed_ip']['address'] = str(fixed_ip.address) if fixed_ip.instance: fixed_ip_info['fixed_ip']['hostname'] = fixed_ip.instance.hostname fixed_ip_info['fixed_ip']['host'] = fixed_ip.instance.host else: fixed_ip_info['fixed_ip']['hostname'] = None fixed_ip_info['fixed_ip']['host'] = None self._fill_reserved_status(req, fixed_ip, fixed_ip_info) return fixed_ip_info @wsgi.response(202) @extensions.expected_errors((400, 404)) @validation.schema(fixed_ips.reserve) @wsgi.action('reserve') def reserve(self, req, id, body): context = req.environ['nova.context'] authorize(context) return self._set_reserved(context, id, True) @wsgi.response(202) @extensions.expected_errors((400, 404)) @validation.schema(fixed_ips.unreserve) @wsgi.action('unreserve') def unreserve(self, req, id, body): context = req.environ['nova.context'] authorize(context) return self._set_reserved(context, id, False) def _set_reserved(self, context, address, reserved): try: fixed_ip = objects.FixedIP.get_by_address(context, address) fixed_ip.reserved = reserved fixed_ip.save() except exception.FixedIpNotFoundForAddress: msg = _("Fixed IP %s not found") % address raise webob.exc.HTTPNotFound(explanation=msg) except exception.FixedIpInvalid: msg = _("Fixed IP %s not valid") % address raise webob.exc.HTTPBadRequest(explanation=msg) class FixedIps(extensions.V21APIExtensionBase): """Fixed IPs support.""" name = "FixedIPs" alias = ALIAS version = 1 def get_resources(self): member_actions = {'action': 'POST'} resources = extensions.ResourceExtension(ALIAS, FixedIPController(), member_actions=member_actions) return [resources] def get_controller_extensions(self): return []
apache-2.0
8,456,095,108,908,163,000
35.252033
78
0.630859
false
alexus37/AugmentedRealityChess
pythonAnimations/pyOpenGLChess/engineDirectory/oglc-env/lib/python2.7/site-packages/OpenGL/GL/SGIX/sprite.py
7
3385
'''OpenGL extension SGIX.sprite This module customises the behaviour of the OpenGL.raw.GL.SGIX.sprite to provide a more Python-friendly API Overview (from the spec) This extension provides support for viewpoint dependent alignment of geometry, in particular geometry that rotates about a point or a specified axis to face the eye point. The primary use is for quickly rendering roughly cylindrically or spherically symmetric objects, e.g. trees, smoke, clouds, etc. using geometry textured with a partially transparent texture map. Rendering sprite geometry requires applying a transformation to primitives before the current model view. This matrix includes a rotation which is computed based on the current model view matrix and a translation which is specified explicitly (SPRITE_TRANSLATION_SGIX). The current model view matrix itself is not modified. Primitives are first transformed by a rotation, depending on the sprite mode: SPRITE_AXIAL_SGIX: The front of the object is rotated about an axis so that it faces the eye as much as the axis constraint allows. This is used for roughly rendering cylindrical objects such as trees in visual simulation. SPRITE_OBJECT_ALIGNED_SGIX: The front of the object is rotated about a point to face the eye with the remaining rotational degree of freedom specified by aligning the top of the object with a specified axis in object coordinates. This is used for spherical objects and special effects such as smoke which must maintain an alignment in object coordinates for realism. SPRITE_EYE_ALIGNED_SGIX: The front of the object is rotated about a point to face the eye with the remaining rotational degree of freedom specified by aligning the top of the object with a specified axis in eye coordinates. This is used for rendering sprites which must maintain an alignment on the screen, such as 3D annotations. The axis of rotation or alignment, SPRITE_AXIS_SGIX, can be an arbitrary direction to support geocentric coordinate frames in which "up" is not along X, Y or Z. Sprite geometry is modeled in a canonical frame: +Z is the up vector. -Y is the front vector which is rotated to point towards the eye. In the discussion below, the eye vector is the vector to the eye from the origin of the model view frame translated by the sprite position. The official definition of this extension is available here: http://www.opengl.org/registry/specs/SGIX/sprite.txt ''' from OpenGL import platform, constant, arrays from OpenGL import extensions, wrapper import ctypes from OpenGL.raw.GL import _types, _glgets from OpenGL.raw.GL.SGIX.sprite import * from OpenGL.raw.GL.SGIX.sprite import _EXTENSION_NAME def glInitSpriteSGIX(): '''Return boolean indicating whether this extension is available''' from OpenGL import extensions return extensions.hasGLExtension( _EXTENSION_NAME ) # INPUT glSpriteParameterfvSGIX.params size not checked against 'pname' glSpriteParameterfvSGIX=wrapper.wrapper(glSpriteParameterfvSGIX).setInputArraySize( 'params', None ) # INPUT glSpriteParameterivSGIX.params size not checked against 'pname' glSpriteParameterivSGIX=wrapper.wrapper(glSpriteParameterivSGIX).setInputArraySize( 'params', None ) ### END AUTOGENERATED SECTION
mit
-4,355,365,621,870,238,000
41.860759
83
0.770162
false
firecat53/py-multistatus
plugins/worker.py
1
1861
import psutil from threading import Thread class Worker(Thread): """Worker thread skeleton class. """ def __init__(self, cfg, interval, **kwargs): Thread.__init__(self) self.cfg = cfg self.interval = int(interval) self.daemon = True def _update_queue(self): self.cfg.queue.put(self.data) def _sel_text(self, text): # Wrap string with selection color, and reset to normal fg color at the # end if not text: return "" return "{}{}{}{}".format(self.cfg.bar.sel_fg, self.cfg.bar.sel_bg, text, self.cfg.bar.reset_sym) def _err_text(self, text): # Wrap string with error color, and reset to normal fg color at the end if not text: return "" return "{}{}{}{}".format(self.cfg.bar.err_fg, self.cfg.bar.err_bg, text, self.cfg.bar.reset_sym) def _color_text(self, text, fg=None, bg=None): if not text: return "" fg = fg or self.cfg.bar.norm_fg bg = bg or self.cfg.bar.norm_bg # Wrap text in arbitrary fg/bg colors. Defaults to norm fg, norm bg. # Resets to norm fg, norm bg. if fg != self.cfg.bar.norm_fg: fg = self.cfg.bar.fg_sym.format(fg) if bg != self.cfg.bar.norm_bg: bg = self.cfg.bar.bg_sym.format(bg) return "{}{}{}{}".format(fg, bg, text, self.cfg.bar.reset_sym) def _out_format(self, text): """Add the separator to the output text. """ if not text: return "" else: return "{}{}".format(self.cfg.bar.separator, text) def run(self): while True: self.data = self._update_data() self._update_queue() psutil.time.sleep(self.interval)
mit
3,264,540,620,264,844,300
30.542373
79
0.534121
false
timsloan/prometeo-erp
core/auth/admin.py
3
1195
#!/usr/bin/env python # -*- coding: utf-8 -*- """This file is part of the prometeo project. This program is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this program. If not, see <http://www.gnu.org/licenses/> """ __author__ = 'Emanuele Bertoldi <[email protected]>' __copyright__ = 'Copyright (c) 2011 Emanuele Bertoldi' __version__ = '0.0.5' from django.contrib import admin from django.contrib.auth.models import Permission from models import * class PermissionAdmin(admin.ModelAdmin): pass class ObjectPermissionAdmin(admin.ModelAdmin): pass admin.site.register(Permission, PermissionAdmin) admin.site.register(ObjectPermission, ObjectPermissionAdmin)
lgpl-3.0
-3,862,497,090,343,114,000
33.142857
76
0.769038
false
MridulS/sympy
sympy/core/basic.py
4
59519
"""Base class for all the objects in SymPy""" from __future__ import print_function, division from .assumptions import ManagedProperties from .cache import cacheit from .core import BasicType, C from .sympify import _sympify, sympify, SympifyError from .compatibility import (reduce, iterable, Iterator, ordered, string_types, with_metaclass, zip_longest) from .decorators import deprecated from .singleton import S from inspect import getmro class Basic(with_metaclass(ManagedProperties)): """ Base class for all objects in SymPy. Conventions: 1) Always use ``.args``, when accessing parameters of some instance: >>> from sympy import cot >>> from sympy.abc import x, y >>> cot(x).args (x,) >>> cot(x).args[0] x >>> (x*y).args (x, y) >>> (x*y).args[1] y 2) Never use internal methods or variables (the ones prefixed with ``_``): >>> cot(x)._args # do not use this, use cot(x).args instead (x,) """ __slots__ = ['_mhash', # hash value '_args', # arguments '_assumptions' ] # To be overridden with True in the appropriate subclasses is_number = False is_Atom = False is_Symbol = False is_Dummy = False is_Wild = False is_Function = False is_Add = False is_Mul = False is_Pow = False is_Number = False is_Float = False is_Rational = False is_Integer = False is_NumberSymbol = False is_Order = False is_Derivative = False is_Piecewise = False is_Poly = False is_AlgebraicNumber = False is_Relational = False is_Equality = False is_Boolean = False is_Not = False is_Matrix = False is_Vector = False def __new__(cls, *args): obj = object.__new__(cls) obj._assumptions = cls.default_assumptions obj._mhash = None # will be set by __hash__ method. obj._args = args # all items in args must be Basic objects return obj def copy(self): return self.func(*self.args) def __reduce_ex__(self, proto): """ Pickling support.""" return type(self), self.__getnewargs__(), self.__getstate__() def __getnewargs__(self): return self.args def __getstate__(self): return {} def __setstate__(self, state): for k, v in state.items(): setattr(self, k, v) def __hash__(self): # hash cannot be cached using cache_it because infinite recurrence # occurs as hash is needed for setting cache dictionary keys h = self._mhash if h is None: h = hash((type(self).__name__,) + self._hashable_content()) self._mhash = h return h def _hashable_content(self): """Return a tuple of information about self that can be used to compute the hash. If a class defines additional attributes, like ``name`` in Symbol, then this method should be updated accordingly to return such relevant attributes. Defining more than _hashable_content is necessary if __eq__ has been defined by a class. See note about this in Basic.__eq__.""" return self._args @property def assumptions0(self): """ Return object `type` assumptions. For example: Symbol('x', real=True) Symbol('x', integer=True) are different objects. In other words, besides Python type (Symbol in this case), the initial assumptions are also forming their typeinfo. Examples ======== >>> from sympy import Symbol >>> from sympy.abc import x >>> x.assumptions0 {'commutative': True} >>> x = Symbol("x", positive=True) >>> x.assumptions0 {'commutative': True, 'complex': True, 'hermitian': True, 'imaginary': False, 'negative': False, 'nonnegative': True, 'nonpositive': False, 'nonzero': True, 'positive': True, 'real': True, 'zero': False} """ return {} def compare(self, other): """ Return -1, 0, 1 if the object is smaller, equal, or greater than other. Not in the mathematical sense. If the object is of a different type from the "other" then their classes are ordered according to the sorted_classes list. Examples ======== >>> from sympy.abc import x, y >>> x.compare(y) -1 >>> x.compare(x) 0 >>> y.compare(x) 1 """ # all redefinitions of __cmp__ method should start with the # following lines: if self is other: return 0 n1 = self.__class__ n2 = other.__class__ c = (n1 > n2) - (n1 < n2) if c: return c # st = self._hashable_content() ot = other._hashable_content() c = (len(st) > len(ot)) - (len(st) < len(ot)) if c: return c for l, r in zip(st, ot): l = Basic(*l) if isinstance(l, frozenset) else l r = Basic(*r) if isinstance(r, frozenset) else r if isinstance(l, Basic): c = l.compare(r) else: c = (l > r) - (l < r) if c: return c return 0 @staticmethod def _compare_pretty(a, b): from sympy.series.order import Order if isinstance(a, Order) and not isinstance(b, Order): return 1 if not isinstance(a, Order) and isinstance(b, Order): return -1 if a.is_Rational and b.is_Rational: l = a.p * b.q r = b.p * a.q return (l > r) - (l < r) else: from sympy.core.symbol import Wild p1, p2, p3 = Wild("p1"), Wild("p2"), Wild("p3") r_a = a.match(p1 * p2**p3) if r_a and p3 in r_a: a3 = r_a[p3] r_b = b.match(p1 * p2**p3) if r_b and p3 in r_b: b3 = r_b[p3] c = Basic.compare(a3, b3) if c != 0: return c return Basic.compare(a, b) @classmethod def fromiter(cls, args, **assumptions): """ Create a new object from an iterable. This is a convenience function that allows one to create objects from any iterable, without having to convert to a list or tuple first. Examples ======== >>> from sympy import Tuple >>> Tuple.fromiter(i for i in range(5)) (0, 1, 2, 3, 4) """ return cls(*tuple(args), **assumptions) @classmethod def class_key(cls): """Nice order of classes. """ return 5, 0, cls.__name__ @cacheit def sort_key(self, order=None): """ Return a sort key. Examples ======== >>> from sympy.core import S, I >>> sorted([S(1)/2, I, -I], key=lambda x: x.sort_key()) [1/2, -I, I] >>> S("[x, 1/x, 1/x**2, x**2, x**(1/2), x**(1/4), x**(3/2)]") [x, 1/x, x**(-2), x**2, sqrt(x), x**(1/4), x**(3/2)] >>> sorted(_, key=lambda x: x.sort_key()) [x**(-2), 1/x, x**(1/4), sqrt(x), x, x**(3/2), x**2] """ # XXX: remove this when issue 5169 is fixed def inner_key(arg): if isinstance(arg, Basic): return arg.sort_key(order) else: return arg args = self._sorted_args args = len(args), tuple([ inner_key(arg) for arg in args ]) return self.class_key(), args, S.One.sort_key(), S.One def __eq__(self, other): """Return a boolean indicating whether a == b on the basis of their symbolic trees. This is the same as a.compare(b) == 0 but faster. Notes ===== If a class that overrides __eq__() needs to retain the implementation of __hash__() from a parent class, the interpreter must be told this explicitly by setting __hash__ = <ParentClass>.__hash__. Otherwise the inheritance of __hash__() will be blocked, just as if __hash__ had been explicitly set to None. References ========== from http://docs.python.org/dev/reference/datamodel.html#object.__hash__ """ if self is other: return True from .function import AppliedUndef, UndefinedFunction as UndefFunc if isinstance(self, UndefFunc) and isinstance(other, UndefFunc): if self.class_key() == other.class_key(): return True else: return False if type(self) is not type(other): # issue 6100 a**1.0 == a like a**2.0 == a**2 if isinstance(self, C.Pow) and self.exp == 1: return self.base == other if isinstance(other, C.Pow) and other.exp == 1: return self == other.base try: other = _sympify(other) except SympifyError: return False # sympy != other if isinstance(self, AppliedUndef) and isinstance(other, AppliedUndef): if self.class_key() != other.class_key(): return False elif type(self) is not type(other): return False return self._hashable_content() == other._hashable_content() def __ne__(self, other): """a != b -> Compare two symbolic trees and see whether they are different this is the same as: a.compare(b) != 0 but faster """ return not self.__eq__(other) def dummy_eq(self, other, symbol=None): """ Compare two expressions and handle dummy symbols. Examples ======== >>> from sympy import Dummy >>> from sympy.abc import x, y >>> u = Dummy('u') >>> (u**2 + 1).dummy_eq(x**2 + 1) True >>> (u**2 + 1) == (x**2 + 1) False >>> (u**2 + y).dummy_eq(x**2 + y, x) True >>> (u**2 + y).dummy_eq(x**2 + y, y) False """ dummy_symbols = [ s for s in self.free_symbols if s.is_Dummy ] if not dummy_symbols: return self == other elif len(dummy_symbols) == 1: dummy = dummy_symbols.pop() else: raise ValueError( "only one dummy symbol allowed on the left-hand side") if symbol is None: symbols = other.free_symbols if not symbols: return self == other elif len(symbols) == 1: symbol = symbols.pop() else: raise ValueError("specify a symbol in which expressions should be compared") tmp = dummy.__class__() return self.subs(dummy, tmp) == other.subs(symbol, tmp) # Note, we always use the default ordering (lex) in __str__ and __repr__, # regardless of the global setting. See issue 5487. def __repr__(self): from sympy.printing import sstr return sstr(self, order=None) def __str__(self): from sympy.printing import sstr return sstr(self, order=None) def atoms(self, *types): """Returns the atoms that form the current object. By default, only objects that are truly atomic and can't be divided into smaller pieces are returned: symbols, numbers, and number symbols like I and pi. It is possible to request atoms of any type, however, as demonstrated below. Examples ======== >>> from sympy import I, pi, sin >>> from sympy.abc import x, y >>> (1 + x + 2*sin(y + I*pi)).atoms() set([1, 2, I, pi, x, y]) If one or more types are given, the results will contain only those types of atoms. Examples ======== >>> from sympy import Number, NumberSymbol, Symbol >>> (1 + x + 2*sin(y + I*pi)).atoms(Symbol) set([x, y]) >>> (1 + x + 2*sin(y + I*pi)).atoms(Number) set([1, 2]) >>> (1 + x + 2*sin(y + I*pi)).atoms(Number, NumberSymbol) set([1, 2, pi]) >>> (1 + x + 2*sin(y + I*pi)).atoms(Number, NumberSymbol, I) set([1, 2, I, pi]) Note that I (imaginary unit) and zoo (complex infinity) are special types of number symbols and are not part of the NumberSymbol class. The type can be given implicitly, too: >>> (1 + x + 2*sin(y + I*pi)).atoms(x) # x is a Symbol set([x, y]) Be careful to check your assumptions when using the implicit option since ``S(1).is_Integer = True`` but ``type(S(1))`` is ``One``, a special type of sympy atom, while ``type(S(2))`` is type ``Integer`` and will find all integers in an expression: >>> from sympy import S >>> (1 + x + 2*sin(y + I*pi)).atoms(S(1)) set([1]) >>> (1 + x + 2*sin(y + I*pi)).atoms(S(2)) set([1, 2]) Finally, arguments to atoms() can select more than atomic atoms: any sympy type (loaded in core/__init__.py) can be listed as an argument and those types of "atoms" as found in scanning the arguments of the expression recursively: >>> from sympy import Function, Mul >>> from sympy.core.function import AppliedUndef >>> f = Function('f') >>> (1 + f(x) + 2*sin(y + I*pi)).atoms(Function) set([f(x), sin(y + I*pi)]) >>> (1 + f(x) + 2*sin(y + I*pi)).atoms(AppliedUndef) set([f(x)]) >>> (1 + x + 2*sin(y + I*pi)).atoms(Mul) set([I*pi, 2*sin(y + I*pi)]) """ if types: types = tuple( [t if isinstance(t, type) else type(t) for t in types]) else: types = (Atom,) result = set() for expr in preorder_traversal(self): if isinstance(expr, types): result.add(expr) return result @property def free_symbols(self): """Return from the atoms of self those which are free symbols. For most expressions, all symbols are free symbols. For some classes this is not true. e.g. Integrals use Symbols for the dummy variables which are bound variables, so Integral has a method to return all symbols except those. Derivative keeps track of symbols with respect to which it will perform a derivative; those are bound variables, too, so it has its own symbols method. Any other method that uses bound variables should implement a symbols method.""" return reduce(set.union, [a.free_symbols for a in self.args], set()) @property def canonical_variables(self): """Return a dictionary mapping any variable defined in ``self.variables`` as underscore-suffixed numbers corresponding to their position in ``self.variables``. Enough underscores are added to ensure that there will be no clash with existing free symbols. Examples ======== >>> from sympy import Lambda >>> from sympy.abc import x >>> Lambda(x, 2*x).canonical_variables {x: 0_} """ if not hasattr(self, 'variables'): return {} u = "_" while any(s.name.endswith(u) for s in self.free_symbols): u += "_" name = '%%i%s' % u V = self.variables return dict(list(zip(V, [C.Symbol(name % i, **v.assumptions0) for i, v in enumerate(V)]))) def rcall(self, *args): """Apply on the argument recursively through the expression tree. This method is used to simulate a common abuse of notation for operators. For instance in SymPy the the following will not work: ``(x+Lambda(y, 2*y))(z) == x+2*z``, however you can use >>> from sympy import Lambda >>> from sympy.abc import x,y,z >>> (x + Lambda(y, 2*y)).rcall(z) x + 2*z """ return Basic._recursive_call(self, args) @staticmethod def _recursive_call(expr_to_call, on_args): def the_call_method_is_overridden(expr): for cls in getmro(type(expr)): if '__call__' in cls.__dict__: return cls != Basic if callable(expr_to_call) and the_call_method_is_overridden(expr_to_call): if isinstance(expr_to_call, C.Symbol): # XXX When you call a Symbol it is return expr_to_call # transformed into an UndefFunction else: return expr_to_call(*on_args) elif expr_to_call.args: args = [Basic._recursive_call( sub, on_args) for sub in expr_to_call.args] return type(expr_to_call)(*args) else: return expr_to_call def is_hypergeometric(self, k): from sympy.simplify import hypersimp return hypersimp(self, k) is not None @property def is_comparable(self): """Return True if self can be computed to a real number with precision, else False. Examples ======== >>> from sympy import exp_polar, pi, I >>> (I*exp_polar(I*pi/2)).is_comparable True >>> (I*exp_polar(I*pi*2)).is_comparable False """ is_real = self.is_real if is_real is False: return False is_number = self.is_number if is_number is False: return False if is_real and is_number: return True n, i = [p.evalf(2) for p in self.as_real_imag()] if not i.is_Number or not n.is_Number: return False if i: # if _prec = 1 we can't decide and if not, # the answer is False so return False return False else: return n._prec != 1 @property def func(self): """ The top-level function in an expression. The following should hold for all objects:: >> x == x.func(*x.args) Examples ======== >>> from sympy.abc import x >>> a = 2*x >>> a.func <class 'sympy.core.mul.Mul'> >>> a.args (2, x) >>> a.func(*a.args) 2*x >>> a == a.func(*a.args) True """ return self.__class__ @property def args(self): """Returns a tuple of arguments of 'self'. Examples ======== >>> from sympy import cot >>> from sympy.abc import x, y >>> cot(x).args (x,) >>> cot(x).args[0] x >>> (x*y).args (x, y) >>> (x*y).args[1] y Notes ===== Never use self._args, always use self.args. Only use _args in __new__ when creating a new function. Don't override .args() from Basic (so that it's easy to change the interface in the future if needed). """ return self._args @property def _sorted_args(self): """ The same as ``args``. Derived classes which don't fix an order on their arguments should override this method to produce the sorted representation. """ return self.args @deprecated(useinstead="iter(self.args)", issue=7717, deprecated_since_version="0.7.6") def iter_basic_args(self): """ Iterates arguments of ``self``. """ return iter(self.args) def as_poly(self, *gens, **args): """Converts ``self`` to a polynomial or returns ``None``. >>> from sympy import sin >>> from sympy.abc import x, y >>> print((x**2 + x*y).as_poly()) Poly(x**2 + x*y, x, y, domain='ZZ') >>> print((x**2 + x*y).as_poly(x, y)) Poly(x**2 + x*y, x, y, domain='ZZ') >>> print((x**2 + sin(y)).as_poly(x, y)) None """ from sympy.polys import Poly, PolynomialError try: poly = Poly(self, *gens, **args) if not poly.is_Poly: return None else: return poly except PolynomialError: return None def as_content_primitive(self, radical=False): """A stub to allow Basic args (like Tuple) to be skipped when computing the content and primitive components of an expression. See docstring of Expr.as_content_primitive """ return S.One, self def subs(self, *args, **kwargs): """ Substitutes old for new in an expression after sympifying args. `args` is either: - two arguments, e.g. foo.subs(old, new) - one iterable argument, e.g. foo.subs(iterable). The iterable may be o an iterable container with (old, new) pairs. In this case the replacements are processed in the order given with successive patterns possibly affecting replacements already made. o a dict or set whose key/value items correspond to old/new pairs. In this case the old/new pairs will be sorted by op count and in case of a tie, by number of args and the default_sort_key. The resulting sorted list is then processed as an iterable container (see previous). If the keyword ``simultaneous`` is True, the subexpressions will not be evaluated until all the substitutions have been made. Examples ======== >>> from sympy import pi, exp, limit, oo >>> from sympy.abc import x, y >>> (1 + x*y).subs(x, pi) pi*y + 1 >>> (1 + x*y).subs({x:pi, y:2}) 1 + 2*pi >>> (1 + x*y).subs([(x, pi), (y, 2)]) 1 + 2*pi >>> reps = [(y, x**2), (x, 2)] >>> (x + y).subs(reps) 6 >>> (x + y).subs(reversed(reps)) x**2 + 2 >>> (x**2 + x**4).subs(x**2, y) y**2 + y To replace only the x**2 but not the x**4, use xreplace: >>> (x**2 + x**4).xreplace({x**2: y}) x**4 + y To delay evaluation until all substitutions have been made, set the keyword ``simultaneous`` to True: >>> (x/y).subs([(x, 0), (y, 0)]) 0 >>> (x/y).subs([(x, 0), (y, 0)], simultaneous=True) nan This has the added feature of not allowing subsequent substitutions to affect those already made: >>> ((x + y)/y).subs({x + y: y, y: x + y}) 1 >>> ((x + y)/y).subs({x + y: y, y: x + y}, simultaneous=True) y/(x + y) In order to obtain a canonical result, unordered iterables are sorted by count_op length, number of arguments and by the default_sort_key to break any ties. All other iterables are left unsorted. >>> from sympy import sqrt, sin, cos >>> from sympy.abc import a, b, c, d, e >>> A = (sqrt(sin(2*x)), a) >>> B = (sin(2*x), b) >>> C = (cos(2*x), c) >>> D = (x, d) >>> E = (exp(x), e) >>> expr = sqrt(sin(2*x))*sin(exp(x)*x)*cos(2*x) + sin(2*x) >>> expr.subs(dict([A,B,C,D,E])) a*c*sin(d*e) + b The resulting expression represents a literal replacement of the old arguments with the new arguments. This may not reflect the limiting behavior of the expression: >>> (x**3 - 3*x).subs({x: oo}) nan >>> limit(x**3 - 3*x, x, oo) oo If the substitution will be followed by numerical evaluation, it is better to pass the substitution to evalf as >>> (1/x).evalf(subs={x: 3.0}, n=21) 0.333333333333333333333 rather than >>> (1/x).subs({x: 3.0}).evalf(21) 0.333333333333333314830 as the former will ensure that the desired level of precision is obtained. See Also ======== replace: replacement capable of doing wildcard-like matching, parsing of match, and conditional replacements xreplace: exact node replacement in expr tree; also capable of using matching rules evalf: calculates the given formula to a desired level of precision """ from sympy.core.containers import Dict from sympy.utilities import default_sort_key unordered = False if len(args) == 1: sequence = args[0] if isinstance(sequence, set): unordered = True elif isinstance(sequence, (Dict, dict)): unordered = True sequence = sequence.items() elif not iterable(sequence): from sympy.utilities.misc import filldedent raise ValueError(filldedent(""" When a single argument is passed to subs it should be a dictionary of old: new pairs or an iterable of (old, new) tuples.""")) elif len(args) == 2: sequence = [args] else: raise ValueError("subs accepts either 1 or 2 arguments") sequence = list(sequence) for i in range(len(sequence)): o, n = sequence[i] so, sn = sympify(o), sympify(n) if not isinstance(so, Basic): if type(o) is str: so = C.Symbol(o) sequence[i] = (so, sn) if _aresame(so, sn): sequence[i] = None continue sequence = list(filter(None, sequence)) if unordered: sequence = dict(sequence) if not all(k.is_Atom for k in sequence): d = {} for o, n in sequence.items(): try: ops = o.count_ops(), len(o.args) except TypeError: ops = (0, 0) d.setdefault(ops, []).append((o, n)) newseq = [] for k in sorted(d.keys(), reverse=True): newseq.extend( sorted([v[0] for v in d[k]], key=default_sort_key)) sequence = [(k, sequence[k]) for k in newseq] del newseq, d else: sequence = sorted([(k, v) for (k, v) in sequence.items()], key=default_sort_key) if kwargs.pop('simultaneous', False): # XXX should this be the default for dict subs? reps = {} rv = self kwargs['hack2'] = True m = C.Dummy() for old, new in sequence: d = C.Dummy(commutative=new.is_commutative) # using d*m so Subs will be used on dummy variables # in things like Derivative(f(x, y), x) in which x # is both free and bound rv = rv._subs(old, d*m, **kwargs) if not isinstance(rv, Basic): break reps[d] = new reps[m] = S.One # get rid of m return rv.xreplace(reps) else: rv = self for old, new in sequence: rv = rv._subs(old, new, **kwargs) if not isinstance(rv, Basic): break return rv @cacheit def _subs(self, old, new, **hints): """Substitutes an expression old -> new. If self is not equal to old then _eval_subs is called. If _eval_subs doesn't want to make any special replacement then a None is received which indicates that the fallback should be applied wherein a search for replacements is made amongst the arguments of self. >>> from sympy import Add >>> from sympy.abc import x, y, z Examples ======== Add's _eval_subs knows how to target x + y in the following so it makes the change: >>> (x + y + z).subs(x + y, 1) z + 1 Add's _eval_subs doesn't need to know how to find x + y in the following: >>> Add._eval_subs(z*(x + y) + 3, x + y, 1) is None True The returned None will cause the fallback routine to traverse the args and pass the z*(x + y) arg to Mul where the change will take place and the substitution will succeed: >>> (z*(x + y) + 3).subs(x + y, 1) z + 3 ** Developers Notes ** An _eval_subs routine for a class should be written if: 1) any arguments are not instances of Basic (e.g. bool, tuple); 2) some arguments should not be targeted (as in integration variables); 3) if there is something other than a literal replacement that should be attempted (as in Piecewise where the condition may be updated without doing a replacement). If it is overridden, here are some special cases that might arise: 1) If it turns out that no special change was made and all the original sub-arguments should be checked for replacements then None should be returned. 2) If it is necessary to do substitutions on a portion of the expression then _subs should be called. _subs will handle the case of any sub-expression being equal to old (which usually would not be the case) while its fallback will handle the recursion into the sub-arguments. For example, after Add's _eval_subs removes some matching terms it must process the remaining terms so it calls _subs on each of the un-matched terms and then adds them onto the terms previously obtained. 3) If the initial expression should remain unchanged then the original expression should be returned. (Whenever an expression is returned, modified or not, no further substitution of old -> new is attempted.) Sum's _eval_subs routine uses this strategy when a substitution is attempted on any of its summation variables. """ def fallback(self, old, new): """ Try to replace old with new in any of self's arguments. """ hit = False args = list(self.args) for i, arg in enumerate(args): if not hasattr(arg, '_eval_subs'): continue arg = arg._subs(old, new, **hints) if not _aresame(arg, args[i]): hit = True args[i] = arg if hit: rv = self.func(*args) hack2 = hints.get('hack2', False) if hack2 and self.is_Mul and not rv.is_Mul: # 2-arg hack coeff = S.One nonnumber = [] for i in args: if i.is_Number: coeff *= i else: nonnumber.append(i) nonnumber = self.func(*nonnumber) if coeff is S.One: return nonnumber else: return self.func(coeff, nonnumber, evaluate=False) return rv return self if _aresame(self, old): return new rv = self._eval_subs(old, new) if rv is None: rv = fallback(self, old, new) return rv def _eval_subs(self, old, new): """Override this stub if you want to do anything more than attempt a replacement of old with new in the arguments of self. See also: _subs """ return None def xreplace(self, rule): """ Replace occurrences of objects within the expression. Parameters ========== rule : dict-like Expresses a replacement rule Returns ======= xreplace : the result of the replacement Examples ======== >>> from sympy import symbols, pi, exp >>> x, y, z = symbols('x y z') >>> (1 + x*y).xreplace({x: pi}) pi*y + 1 >>> (1 + x*y).xreplace({x:pi, y:2}) 1 + 2*pi Replacements occur only if an entire node in the expression tree is matched: >>> (x*y + z).xreplace({x*y: pi}) z + pi >>> (x*y*z).xreplace({x*y: pi}) x*y*z >>> (2*x).xreplace({2*x: y, x: z}) y >>> (2*2*x).xreplace({2*x: y, x: z}) 4*z >>> (x + y + 2).xreplace({x + y: 2}) x + y + 2 >>> (x + 2 + exp(x + 2)).xreplace({x + 2: y}) x + exp(y) + 2 xreplace doesn't differentiate between free and bound symbols. In the following, subs(x, y) would not change x since it is a bound symbol, but xreplace does: >>> from sympy import Integral >>> Integral(x, (x, 1, 2*x)).xreplace({x: y}) Integral(y, (y, 1, 2*y)) Trying to replace x with an expression raises an error: >>> Integral(x, (x, 1, 2*x)).xreplace({x: 2*y}) #doctest: +SKIP ValueError: Invalid limits given: ((2*y, 1, 4*y),) See Also ======== replace: replacement capable of doing wildcard-like matching, parsing of match, and conditional replacements subs: substitution of subexpressions as defined by the objects themselves. """ if self in rule: return rule[self] elif rule: args = [] for a in self.args: try: args.append(a.xreplace(rule)) except AttributeError: args.append(a) args = tuple(args) if not _aresame(args, self.args): return self.func(*args) return self @cacheit def has(self, *patterns): """ Test whether any subexpression matches any of the patterns. Examples ======== >>> from sympy import sin >>> from sympy.abc import x, y, z >>> (x**2 + sin(x*y)).has(z) False >>> (x**2 + sin(x*y)).has(x, y, z) True >>> x.has(x) True Note that ``expr.has(*patterns)`` is exactly equivalent to ``any(expr.has(p) for p in patterns)``. In particular, ``False`` is returned when the list of patterns is empty. >>> x.has() False """ return any(self._has(pattern) for pattern in patterns) def _has(self, pattern): """Helper for .has()""" from sympy.core.function import UndefinedFunction, Function if isinstance(pattern, UndefinedFunction): return any(f.func == pattern or f == pattern for f in self.atoms(Function, UndefinedFunction)) pattern = sympify(pattern) if isinstance(pattern, BasicType): return any(isinstance(arg, pattern) for arg in preorder_traversal(self)) try: match = pattern._has_matcher() return any(match(arg) for arg in preorder_traversal(self)) except AttributeError: return any(arg == pattern for arg in preorder_traversal(self)) def _has_matcher(self): """Helper for .has()""" return self.__eq__ def replace(self, query, value, map=False, simultaneous=True, exact=False): """ Replace matching subexpressions of ``self`` with ``value``. If ``map = True`` then also return the mapping {old: new} where ``old`` was a sub-expression found with query and ``new`` is the replacement value for it. If the expression itself doesn't match the query, then the returned value will be ``self.xreplace(map)`` otherwise it should be ``self.subs(ordered(map.items()))``. Traverses an expression tree and performs replacement of matching subexpressions from the bottom to the top of the tree. The default approach is to do the replacement in a simultaneous fashion so changes made are targeted only once. If this is not desired or causes problems, ``simultaneous`` can be set to False. In addition, if an expression containing more than one Wild symbol is being used to match subexpressions and the ``exact`` flag is True, then the match will only succeed if non-zero values are received for each Wild that appears in the match pattern. The list of possible combinations of queries and replacement values is listed below: Examples ======== Initial setup >>> from sympy import log, sin, cos, tan, Wild, Mul, Add >>> from sympy.abc import x, y >>> f = log(sin(x)) + tan(sin(x**2)) 1.1. type -> type obj.replace(type, newtype) When object of type ``type`` is found, replace it with the result of passing its argument(s) to ``newtype``. >>> f.replace(sin, cos) log(cos(x)) + tan(cos(x**2)) >>> sin(x).replace(sin, cos, map=True) (cos(x), {sin(x): cos(x)}) >>> (x*y).replace(Mul, Add) x + y 1.2. type -> func obj.replace(type, func) When object of type ``type`` is found, apply ``func`` to its argument(s). ``func`` must be written to handle the number of arguments of ``type``. >>> f.replace(sin, lambda arg: sin(2*arg)) log(sin(2*x)) + tan(sin(2*x**2)) >>> (x*y).replace(Mul, lambda *args: sin(2*Mul(*args))) sin(2*x*y) 2.1. pattern -> expr obj.replace(pattern(wild), expr(wild)) Replace subexpressions matching ``pattern`` with the expression written in terms of the Wild symbols in ``pattern``. >>> a = Wild('a') >>> f.replace(sin(a), tan(a)) log(tan(x)) + tan(tan(x**2)) >>> f.replace(sin(a), tan(a/2)) log(tan(x/2)) + tan(tan(x**2/2)) >>> f.replace(sin(a), a) log(x) + tan(x**2) >>> (x*y).replace(a*x, a) y When the default value of False is used with patterns that have more than one Wild symbol, non-intuitive results may be obtained: >>> b = Wild('b') >>> (2*x).replace(a*x + b, b - a) 2/x For this reason, the ``exact`` option can be used to make the replacement only when the match gives non-zero values for all Wild symbols: >>> (2*x + y).replace(a*x + b, b - a, exact=True) y - 2 >>> (2*x).replace(a*x + b, b - a, exact=True) 2*x 2.2. pattern -> func obj.replace(pattern(wild), lambda wild: expr(wild)) All behavior is the same as in 2.1 but now a function in terms of pattern variables is used rather than an expression: >>> f.replace(sin(a), lambda a: sin(2*a)) log(sin(2*x)) + tan(sin(2*x**2)) 3.1. func -> func obj.replace(filter, func) Replace subexpression ``e`` with ``func(e)`` if ``filter(e)`` is True. >>> g = 2*sin(x**3) >>> g.replace(lambda expr: expr.is_Number, lambda expr: expr**2) 4*sin(x**9) The expression itself is also targeted by the query but is done in such a fashion that changes are not made twice. >>> e = x*(x*y + 1) >>> e.replace(lambda x: x.is_Mul, lambda x: 2*x) 2*x*(2*x*y + 1) See Also ======== subs: substitution of subexpressions as defined by the objects themselves. xreplace: exact node replacement in expr tree; also capable of using matching rules """ from sympy.core.symbol import Dummy from sympy.simplify.simplify import bottom_up try: query = sympify(query) except SympifyError: pass try: value = sympify(value) except SympifyError: pass if isinstance(query, type): _query = lambda expr: isinstance(expr, query) if isinstance(value, type): _value = lambda expr, result: value(*expr.args) elif callable(value): _value = lambda expr, result: value(*expr.args) else: raise TypeError( "given a type, replace() expects another " "type or a callable") elif isinstance(query, Basic): _query = lambda expr: expr.match(query) # XXX remove the exact flag and make multi-symbol # patterns use exact=True semantics; to do this the query must # be tested to find out how many Wild symbols are present. # See https://groups.google.com/forum/ # ?fromgroups=#!topic/sympy/zPzo5FtRiqI # for a method of inspecting a function to know how many # parameters it has. if isinstance(value, Basic): if exact: _value = lambda expr, result: (value.subs(result) if all(val for val in result.values()) else expr) else: _value = lambda expr, result: value.subs(result) elif callable(value): # match dictionary keys get the trailing underscore stripped # from them and are then passed as keywords to the callable; # if ``exact`` is True, only accept match if there are no null # values amongst those matched. if exact: _value = lambda expr, result: (value(**dict([ ( str(key)[:-1], val) for key, val in result.items()])) if all(val for val in result.values()) else expr) else: _value = lambda expr, result: value(**dict([ ( str(key)[:-1], val) for key, val in result.items()])) else: raise TypeError( "given an expression, replace() expects " "another expression or a callable") elif callable(query): _query = query if callable(value): _value = lambda expr, result: value(expr) else: raise TypeError( "given a callable, replace() expects " "another callable") else: raise TypeError( "first argument to replace() must be a " "type, an expression or a callable") mapping = {} # changes that took place mask = [] # the dummies that were used as change placeholders def rec_replace(expr): result = _query(expr) if result or result == {}: new = _value(expr, result) if new is not None and new != expr: mapping[expr] = new if simultaneous: # don't let this expression be changed during rebuilding com = getattr(new, 'is_commutative', True) if com is None: com = True d = Dummy(commutative=com) mask.append((d, new)) expr = d else: expr = new return expr rv = bottom_up(self, rec_replace, atoms=True) # restore original expressions for Dummy symbols if simultaneous: mask = list(reversed(mask)) for o, n in mask: r = {o: n} rv = rv.xreplace(r) if not map: return rv else: if simultaneous: # restore subexpressions in mapping for o, n in mask: r = {o: n} mapping = dict([(k.xreplace(r), v.xreplace(r)) for k, v in mapping.items()]) return rv, mapping def find(self, query, group=False): """Find all subexpressions matching a query. """ query = _make_find_query(query) results = list(filter(query, preorder_traversal(self))) if not group: return set(results) else: groups = {} for result in results: if result in groups: groups[result] += 1 else: groups[result] = 1 return groups def count(self, query): """Count the number of matching subexpressions. """ query = _make_find_query(query) return sum(bool(query(sub)) for sub in preorder_traversal(self)) def matches(self, expr, repl_dict={}, old=False): """ Helper method for match() that looks for a match between Wild symbols in self and expressions in expr. Examples ======== >>> from sympy import symbols, Wild, Basic >>> a, b, c = symbols('a b c') >>> x = Wild('x') >>> Basic(a + x, x).matches(Basic(a + b, c)) is None True >>> Basic(a + x, x).matches(Basic(a + b + c, b + c)) {x_: b + c} """ expr = sympify(expr) if not isinstance(expr, self.__class__): return None if self == expr: return repl_dict if len(self.args) != len(expr.args): return None d = repl_dict.copy() for arg, other_arg in zip(self.args, expr.args): if arg == other_arg: continue d = arg.xreplace(d).matches(other_arg, d, old=old) if d is None: return None return d def match(self, pattern, old=False): """ Pattern matching. Wild symbols match all. Return ``None`` when expression (self) does not match with pattern. Otherwise return a dictionary such that:: pattern.xreplace(self.match(pattern)) == self Examples ======== >>> from sympy import Wild >>> from sympy.abc import x, y >>> p = Wild("p") >>> q = Wild("q") >>> r = Wild("r") >>> e = (x+y)**(x+y) >>> e.match(p**p) {p_: x + y} >>> e.match(p**q) {p_: x + y, q_: x + y} >>> e = (2*x)**2 >>> e.match(p*q**r) {p_: 4, q_: x, r_: 2} >>> (p*q**r).xreplace(e.match(p*q**r)) 4*x**2 The ``old`` flag will give the old-style pattern matching where expressions and patterns are essentially solved to give the match. Both of the following give None unless ``old=True``: >>> (x - 2).match(p - x, old=True) {p_: 2*x - 2} >>> (2/x).match(p*x, old=True) {p_: 2/x**2} """ from sympy import signsimp pattern = sympify(pattern) s = signsimp(self) p = signsimp(pattern) # if we still have the same relationship between the types of # input, then use the sign simplified forms if (pattern.func == self.func) and (s.func == p.func): rv = p.matches(s, old=old) else: rv = pattern.matches(self, old=old) return rv def count_ops(self, visual=None): """wrapper for count_ops that returns the operation count.""" from sympy import count_ops return count_ops(self, visual) def doit(self, **hints): """Evaluate objects that are not evaluated by default like limits, integrals, sums and products. All objects of this kind will be evaluated recursively, unless some species were excluded via 'hints' or unless the 'deep' hint was set to 'False'. >>> from sympy import Integral >>> from sympy.abc import x >>> 2*Integral(x, x) 2*Integral(x, x) >>> (2*Integral(x, x)).doit() x**2 >>> (2*Integral(x, x)).doit(deep = False) 2*Integral(x, x) """ if hints.get('deep', True): terms = [ term.doit(**hints) if isinstance(term, Basic) else term for term in self.args ] return self.func(*terms) else: return self def _eval_rewrite(self, pattern, rule, **hints): if self.is_Atom: if hasattr(self, rule): return getattr(self, rule)() return self if hints.get('deep', True): args = [ a._eval_rewrite(pattern, rule, **hints) if isinstance(a, Basic) else a for a in self.args ] else: args = self.args if pattern is None or isinstance(self.func, pattern): if hasattr(self, rule): rewritten = getattr(self, rule)(*args) if rewritten is not None: return rewritten return self.func(*args) def rewrite(self, *args, **hints): """ Rewrite functions in terms of other functions. Rewrites expression containing applications of functions of one kind in terms of functions of different kind. For example you can rewrite trigonometric functions as complex exponentials or combinatorial functions as gamma function. As a pattern this function accepts a list of functions to to rewrite (instances of DefinedFunction class). As rule you can use string or a destination function instance (in this case rewrite() will use the str() function). There is also the possibility to pass hints on how to rewrite the given expressions. For now there is only one such hint defined called 'deep'. When 'deep' is set to False it will forbid functions to rewrite their contents. Examples ======== >>> from sympy import sin, exp >>> from sympy.abc import x Unspecified pattern: >>> sin(x).rewrite(exp) -I*(exp(I*x) - exp(-I*x))/2 Pattern as a single function: >>> sin(x).rewrite(sin, exp) -I*(exp(I*x) - exp(-I*x))/2 Pattern as a list of functions: >>> sin(x).rewrite([sin, ], exp) -I*(exp(I*x) - exp(-I*x))/2 """ if not args: return self else: pattern = args[:-1] if isinstance(args[-1], string_types): rule = '_eval_rewrite_as_' + args[-1] else: rule = '_eval_rewrite_as_' + args[-1].__name__ if not pattern: return self._eval_rewrite(None, rule, **hints) else: if iterable(pattern[0]): pattern = pattern[0] pattern = [ p.__class__ for p in pattern if self.has(p) ] if pattern: return self._eval_rewrite(tuple(pattern), rule, **hints) else: return self @property @deprecated(useinstead="is_finite", issue=8071, deprecated_since_version="0.7.6") def is_bounded(self): return super(Basic, self).__getattribute__('is_finite') @property @deprecated(useinstead="is_infinite", issue=8071, deprecated_since_version="0.7.6") def is_unbounded(self): return super(Basic, self).__getattribute__('is_infinite') @deprecated(useinstead="is_zero", issue=8071, deprecated_since_version="0.7.6") def is_infinitesimal(self): return super(Basic, self).__getattribute__('is_zero') class Atom(Basic): """ A parent class for atomic things. An atom is an expression with no subexpressions. Examples ======== Symbol, Number, Rational, Integer, ... But not: Add, Mul, Pow, ... """ is_Atom = True __slots__ = [] def matches(self, expr, repl_dict={}, old=False): if self == expr: return repl_dict def xreplace(self, rule, hack2=False): return rule.get(self, self) def doit(self, **hints): return self @classmethod def class_key(cls): return 2, 0, cls.__name__ @cacheit def sort_key(self, order=None): from sympy.core import S return self.class_key(), (1, (str(self),)), S.One.sort_key(), S.One def _eval_simplify(self, ratio, measure): return self @property def _sorted_args(self): # this is here as a safeguard against accidentally using _sorted_args # on Atoms -- they cannot be rebuilt as atom.func(*atom._sorted_args) # since there are no args. So the calling routine should be checking # to see that this property is not called for Atoms. raise AttributeError('Atoms have no args. It might be necessary' ' to make a check for Atoms in the calling code.') def _aresame(a, b): """Return True if a and b are structurally the same, else False. Examples ======== To SymPy, 2.0 == 2: >>> from sympy import S >>> 2.0 == S(2) True Since a simple 'same or not' result is sometimes useful, this routine was written to provide that query: >>> from sympy.core.basic import _aresame >>> _aresame(S(2.0), S(2)) False """ from .function import AppliedUndef, UndefinedFunction as UndefFunc for i, j in zip_longest(preorder_traversal(a), preorder_traversal(b)): if i != j or type(i) != type(j): if ((isinstance(i, UndefFunc) and isinstance(j, UndefFunc)) or (isinstance(i, AppliedUndef) and isinstance(j, AppliedUndef))): if i.class_key() != j.class_key(): return False else: return False else: return True def _atomic(e): """Return atom-like quantities as far as substitution is concerned: Derivatives, Functions and Symbols. Don't return any 'atoms' that are inside such quantities unless they also appear outside, too. Examples ======== >>> from sympy import Derivative, Function, cos >>> from sympy.abc import x, y >>> from sympy.core.basic import _atomic >>> f = Function('f') >>> _atomic(x + y) set([x, y]) >>> _atomic(x + f(y)) set([x, f(y)]) >>> _atomic(Derivative(f(x), x) + cos(x) + y) set([y, cos(x), Derivative(f(x), x)]) """ from sympy import Derivative, Function, Symbol pot = preorder_traversal(e) seen = set() try: free = e.free_symbols except AttributeError: return set([e]) atoms = set() for p in pot: if p in seen: pot.skip() continue seen.add(p) if isinstance(p, Symbol) and p in free: atoms.add(p) elif isinstance(p, (Derivative, Function)): pot.skip() atoms.add(p) return atoms class preorder_traversal(Iterator): """ Do a pre-order traversal of a tree. This iterator recursively yields nodes that it has visited in a pre-order fashion. That is, it yields the current node then descends through the tree breadth-first to yield all of a node's children's pre-order traversal. For an expression, the order of the traversal depends on the order of .args, which in many cases can be arbitrary. Parameters ========== node : sympy expression The expression to traverse. keys : (default None) sort key(s) The key(s) used to sort args of Basic objects. When None, args of Basic objects are processed in arbitrary order. If key is defined, it will be passed along to ordered() as the only key(s) to use to sort the arguments; if ``key`` is simply True then the default keys of ordered will be used. Yields ====== subtree : sympy expression All of the subtrees in the tree. Examples ======== >>> from sympy import symbols >>> from sympy.core.basic import preorder_traversal >>> x, y, z = symbols('x y z') The nodes are returned in the order that they are encountered unless key is given; simply passing key=True will guarantee that the traversal is unique. >>> list(preorder_traversal((x + y)*z, keys=None)) # doctest: +SKIP [z*(x + y), z, x + y, y, x] >>> list(preorder_traversal((x + y)*z, keys=True)) [z*(x + y), z, x + y, x, y] """ def __init__(self, node, keys=None): self._skip_flag = False self._pt = self._preorder_traversal(node, keys) def _preorder_traversal(self, node, keys): yield node if self._skip_flag: self._skip_flag = False return if isinstance(node, Basic): if not keys and hasattr(node, '_argset'): # LatticeOp keeps args as a set. We should use this if we # don't care about the order, to prevent unnecessary sorting. args = node._argset else: args = node.args if keys: if keys != True: args = ordered(args, keys, default=False) else: args = ordered(args) for arg in args: for subtree in self._preorder_traversal(arg, keys): yield subtree elif iterable(node): for item in node: for subtree in self._preorder_traversal(item, keys): yield subtree def skip(self): """ Skip yielding current node's (last yielded node's) subtrees. Examples -------- >>> from sympy.core import symbols >>> from sympy.core.basic import preorder_traversal >>> x, y, z = symbols('x y z') >>> pt = preorder_traversal((x+y*z)*z) >>> for i in pt: ... print(i) ... if i == x+y*z: ... pt.skip() z*(x + y*z) z x + y*z """ self._skip_flag = True def __next__(self): return next(self._pt) def __iter__(self): return self def _make_find_query(query): """Convert the argument of Basic.find() into a callable""" try: query = sympify(query) except SympifyError: pass if isinstance(query, type): return lambda expr: isinstance(expr, query) elif isinstance(query, Basic): return lambda expr: expr.match(query) is not None return query
bsd-3-clause
-1,768,743,844,078,496,000
31.347283
94
0.521783
false
matt-desmarais/P0Wcrosshair
Book.py
1
1837
addressbook = { 'MAG_ADDRESS': 0x1E, 'ACC_ADDRESS': 0x1E, 'GYR_ADDRESS' : 0x6A, #LSM9DS0 Gyro Registers 'WHO_AM_I_G': 0x0F, 'CTRL_REG1_G': 0x20, 'CTRL_REG2_G': 0x21, 'CTRL_REG3_G': 0x22, 'CTRL_REG4_G': 0x23, 'CTRL_REG5_G': 0x24, 'REFERENCE_G': 0x25, 'STATUS_REG_G': 0x27, 'OUT_X_L_G': 0x28, 'OUT_X_H_G': 0x29, 'OUT_Y_L_G': 0x2A, 'OUT_Y_H_G': 0x2B, 'OUT_Z_L_G': 0x2C, 'OUT_Z_H_G': 0x2D, 'FIFO_CTRL_REG_G': 0x2E, 'FIFO_SRC_REG_G': 0x2F, 'INT1_CFG_G': 0x30 , 'INT1_SRC_G' : 0x31 , 'INT1_THS_XH_G': 0x32, 'INT1_THS_XL_G': 0x33, 'INT1_THS_YH_G': 0x34, 'INT1_THS_YL_G': 0x35, 'INT1_THS_ZH_G': 0x36, 'INT1_THS_ZL_G': 0x37, 'INT1_DURATION_G': 0x38, #LSM9DS0 Accel and Magneto Registers 'OUT_TEMP_L_XM': 0x05, 'OUT_TEMP_H_XM': 0x06, 'STATUS_REG_M': 0x07, 'OUT_X_L_M': 0x08, 'OUT_X_H_M': 0x09, 'OUT_Y_L_M': 0x0A, 'OUT_Y_H_M': 0x0B, 'OUT_Z_L_M': 0x0C, 'OUT_Z_H_M': 0x0D, 'WHO_AM_I_XM': 0x0F, 'INT_CTRL_REG_M': 0x12, 'INT_SRC_REG_M': 0x13, 'INT_THS_L_M': 0x14, 'INT_THS_H_M': 0x15, 'OFFSET_X_L_M': 0x16, 'OFFSET_X_H_M': 0x17, 'OFFSET_Y_L_M': 0x18, 'OFFSET_Y_H_M': 0x19, 'OFFSET_Z_L_M': 0x1A, 'OFFSET_Z_H_M': 0x1B, 'REFERENCE_X': 0x1C, 'REFERENCE_Y': 0x1D, 'REFERENCE_Z': 0x1E, 'CTRL_REG0_XM': 0x1F, 'CTRL_REG1_XM': 0x20, 'CTRL_REG2_XM': 0x21, 'CTRL_REG3_XM': 0x22, 'CTRL_REG4_XM': 0x23, 'CTRL_REG5_XM': 0x24, 'CTRL_REG6_XM': 0x25, 'CTRL_REG7_XM': 0x26, 'STATUS_REG_A': 0x27, 'OUT_X_L_A': 0x28, 'OUT_X_H_A': 0x29, 'OUT_Y_L_A': 0x2A, 'OUT_Y_H_A': 0x2B, 'OUT_Z_L_A': 0x2C, 'OUT_Z_H_A': 0x2D, 'FIFO_CTRL_REG': 0x2E, 'FIFO_SRC_REG': 0x2F, 'INT_GEN_1_REG': 0x30, 'INT_GEN_1_SRC': 0x31, 'INT_GEN_1_THS': 0x32, 'INT_GEN_1_DURATION': 0x33, 'INT_GEN_2_REG': 0x34, 'INT_GEN_2_SRC': 0x35, 'INT_GEN_2_THS': 0x36, 'INT_GEN_2_DURATION': 0x37, 'CLICK_CFG': 0x38, 'CLICK_SRC': 0x39, 'CLICK_THS': 0x3A, 'TIME_LIMIT': 0x3B, 'TIME_LATENCY': 0x3C, 'TIME_WINDOW': 0x3D}
mit
-1,842,013,110,187,638,800
20.611765
36
0.612956
false
samnashi/howdoflawsgetlonger
Conv1D_LSTM_AuxRegressor.py
1
20107
from __future__ import print_function import numpy as np from random import shuffle import matplotlib.lines as mlines import matplotlib.pyplot as plt import pickle as pkl from keras.models import Sequential, Model, load_model from keras.utils import plot_model from keras.layers import Dense, LSTM, GRU, Flatten, Input, Reshape, TimeDistributed, Bidirectional, Dense, Dropout, \ Activation, Flatten, Conv1D, MaxPooling1D, GlobalAveragePooling1D, AveragePooling1D, concatenate, BatchNormalization from keras.initializers import lecun_normal, glorot_normal from keras.regularizers import l1, l1_l2, l2 from keras import metrics from keras.optimizers import adam, rmsprop import pandas as pd import scipy.io as sio from keras.callbacks import CSVLogger, TerminateOnNaN import os import csv import json import scattergro_utils as sg_utils import sklearn.preprocessing #import xgboost as xgb from sklearn.ensemble import RandomForestRegressor, ExtraTreesRegressor from sklearn.linear_model import LinearRegression, Ridge from sklearn.preprocessing import StandardScaler, MinMaxScaler, RobustScaler from sklearn.metrics import mean_squared_error, mean_absolute_error, median_absolute_error, explained_variance_score, \ r2_score from sklearn.kernel_ridge import KernelRidge import time from sklearn.externals import joblib from sklearn.multioutput import MultiOutputRegressor from sklearn.gaussian_process import GaussianProcessRegressor from sklearn.linear_model import ElasticNet from Conv1D_LSTM_Ensemble import pair_generator_1dconv_lstm_bagged from AuxRegressor import create_training_set,create_testing_set,create_model_list,generate_model_id '''This loads a saved Keras model and uses it as a feature extractor, which then feeds into Scikit-learn multivariate regressors. The generators created need to match what the Keras model asks for.''' # @@@@@@@@@@@@@@ RELATIVE PATHS @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ Base_Path = "./" image_path = "./images/" train_path = "./train/" test_path = "./test/" analysis_path = "./analysis/" models_path = analysis_path + "models_to_load/" # @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ if __name__ == "__main__": num_sequence_draws = 25 GENERATOR_BATCH_SIZE = 128 num_epochs = 1 #because you gotta feed the base model the same way you fed it during training... (RNN commandments) save_preds = False #create the data-pair filenames (using zip), use the helper methods train_set_filenames = create_training_set() test_set_filenames = create_testing_set() model_filenames = create_model_list() print(train_set_filenames) print(test_set_filenames) print(model_filenames) # load model #identifier shouldn't have a leading underscore! #TODO!!!!! REVERT BACK for model in model_filenames: identifier_post_training = model #identifier_post_training = "bag_conv_lstm_dense_tiny_shufstart_softplus_ca_tanh_da_3_cbd_standard_per_batch_sclr_l1l2_kr_HLR.h5" # './' + identifier_post_training + '.h5' raw_base_model = load_model(models_path + model) time_dict = {} #switch to load item in that model_filenames list. print("using: {} as model".format(model)) label_scaler_aux_regressor = StandardScaler() train_start_time = time.clock() tree_regressor_check_cond = False for i in range(0, num_sequence_draws): index_to_load = np.random.randint(0, len(train_set_filenames)) # switch to iterations files = train_set_filenames[index_to_load] print("files: {}".format(files)) data_load_path = train_path + '/data/' + files[0] label_load_path = train_path + '/label/' + files[1] # print("data/label load path: {} \n {}".format(data_load_path,label_load_path)) train_array = np.load(data_load_path) label_array = np.load(label_load_path)[:, 1:] if train_array.shape[1] != 11: train_array = train_array[:, 1:] print("data/label shape: {}, {}, draw #: {}".format(train_array.shape, label_array.shape, i)) aux_reg_train_generator = pair_generator_1dconv_lstm_bagged( train_array, label_array, start_at=0, generator_batch_size=GENERATOR_BATCH_SIZE,use_precomputed_coeffs=False, scaled=True, scaler_type = 'standard_per_batch',no_labels=True) num_generator_yields = train_array.shape[0]//GENERATOR_BATCH_SIZE base_model = Model(inputs=raw_base_model.input, outputs=raw_base_model.get_layer(name='dense_post_concat').output) base_model_output = base_model.predict_generator(aux_reg_train_generator, steps=num_generator_yields) #print(type(base_model_output)) print("base model output shape: {}".format(base_model_output.shape)) #1,128,64 (if steps=1) or # num_generator_yields,GENERATOR_BATCH_SIZE, num of neurons in dense_after_concat base_model_output_2d_shape = (base_model_output.shape[0] * base_model_output.shape[1], base_model_output.shape[2]) base_model_output_2d = np.zeros(shape=base_model_output_2d_shape) for reshape_counter in range(0,base_model_output.shape[0]): base_model_output_2d[reshape_counter:reshape_counter + GENERATOR_BATCH_SIZE, :] = np.reshape( base_model_output[reshape_counter,:,:],newshape=(GENERATOR_BATCH_SIZE,base_model_output.shape[2])) #1,128,64 to 128,64 reshape_counter += 1 print("pretrained net's output shape: {}".format(base_model_output_2d.shape)) #batch-scale the target array. per batch size. batch_scaled_labels = np.zeros(shape=(label_array.shape)) for label_batch_scaler_counter in range(0,label_array.shape[0]): #how many batches there are batch_scaled_labels[label_batch_scaler_counter:label_batch_scaler_counter+GENERATOR_BATCH_SIZE,:] = \ label_scaler_aux_regressor.fit_transform( label_array[label_batch_scaler_counter:label_batch_scaler_counter+GENERATOR_BATCH_SIZE,:]) label_batch_scaler_counter += GENERATOR_BATCH_SIZE label_array_to_fit = batch_scaled_labels[0:base_model_output_2d.shape[0],:] #data_dmatrix = xgb.DMatrix(data=base_model_output_dmatrix) #input to the DMatrix has to be 2D. default is 3D. #label_array_reshaped = np.reshape(label_array,newshape=()) #reshape to what? it needed reshaping for the Keras LSTM. #label_dmatrix = xgb.DMatrix(data=label_array) #forget trying to get it through the generator. #print(type(base_model_output_2d), type(label_array)) print("for fitting: feature shape: {}, uncut label shape: {}".format(base_model_output_2d.shape, label_array.shape)) if i == 0: #initialize for the first time aux_reg_regressor = Ridge(solver='saga') #aux_reg_regressor = LinearRegression() #aux_reg_regressor = KernelRidge(alpha=1,kernel='polynomial',gamma=1.0e-3,) #aux_reg_regressor = ExtraTreesRegressor(n_estimators=5,criterion='mse',n_jobs=2,warm_start=True) #aux_reg_regressor = RandomForestRegressor(n_estimators=5,criterion='mse',n_jobs=-1,warm_start=True,oob_score=False) #aux_reg_regressor = MultiOutputRegressor(estimator = GaussianProcessRegressor(random_state=1337),n_jobs=1) #MEMORY ERROR #aux_reg_regressor = MultiOutputRegressor(estimator=ElasticNet(warm_start=True),n_jobs=1) model_id = generate_model_id(aux_reg_regressor) assert model_id != "" print("model id is: ", model_id) print("fitting regressor..") if isinstance(aux_reg_regressor,MultiOutputRegressor) == True: aux_reg_regressor.fit(X=base_model_output_2d, y=label_array_to_fit) #should be partial fit else: aux_reg_regressor.fit(X=base_model_output_2d, y=label_array_to_fit) if isinstance(aux_reg_regressor,ExtraTreesRegressor) or isinstance(aux_reg_regressor,RandomForestRegressor): tree_regressor_check_cond = True if not isinstance(aux_reg_regressor,ExtraTreesRegressor) and not isinstance(aux_reg_regressor,RandomForestRegressor): tree_regressor_check_cond = False if i != 0: #aux_reg_regressor = aux_reg_regressor_cached label_array_to_fit = label_scaler_aux_regressor.fit_transform(label_array[0:base_model_output_2d.shape[0],:]) print("fitting regressor..") if tree_regressor_check_cond == True: print("feat_imp before fitting: {}".format(aux_reg_regressor.feature_importances_)) if isinstance(aux_reg_regressor,MultiOutputRegressor) == True: aux_reg_regressor.fit(X=base_model_output_2d, y=label_array_to_fit) else: aux_reg_regressor.fit(X=base_model_output_2d, y=label_array_to_fit) if tree_regressor_check_cond == True: print("feat_imp after fitting: {}".format(aux_reg_regressor.feature_importances_)) # aux_reg_regressor_cached = aux_reg_regressor.fit(X=base_model_output_2d,y=label_array_to_fit) #assert aux_reg_regressor_cached.feature_importances_ != aux_reg_regressor.feature_importances_ #aux_reg_regressor = aux_reg_regressor_cached if tree_regressor_check_cond == True: print("feat-imp: {}, estimators: {}, estimator params: {} ".format( aux_reg_regressor.feature_importances_,aux_reg_regressor.estimators_,aux_reg_regressor.estimator_params)) train_end_time = time.clock() train_time_elapsed = train_end_time - train_start_time print("training time elapsed: {}".format(train_time_elapsed)) time_dict['train'] = train_time_elapsed print("TESTING PHASE") data_filenames = list(set(os.listdir(test_path + "data"))) # print("before sorting, data_filenames: {}".format(data_filenames)) data_filenames.sort() # print("after sorting, data_filenames: {}".format(data_filenames)) label_filenames = list(set(os.listdir(test_path + "label"))) label_filenames.sort() # print("label_filenames: {}".format(data_filenames)) assert len(data_filenames) == len(label_filenames) combined_filenames = zip(data_filenames, label_filenames) # print("before shuffling: {}".format(combined_filenames)) shuffle(combined_filenames) print("after shuffling: {}".format(combined_filenames)) # shuffling works ok. i = 0 score_rows_list = [] score_rows_list_scikit_raw = [] scores_dict = {} mse_dict = {} mse_dict_raw = {} mae_dict = {} mae_dict_raw = {} mape_dict = {} scores_dict_f3 = {} mse_dict_f3 = {} mse_dict_f3_raw = {} mae_dict_f3 = {} mae_dict_f3_raw = {} mape_dict_f3 = {} test_start_time = time.clock() getparams_dict = aux_reg_regressor.get_params(deep=True) print("getparams_dict: ", getparams_dict) getparams_df = pd.DataFrame.from_dict(data=getparams_dict,orient='index') getparams_df.to_csv(analysis_path + model_id + str(model)[:-4] + "getparams.csv") model_as_pkl_filename = analysis_path + model_id + str(model)[:-4] +".pkl" joblib.dump(aux_reg_regressor,filename=model_as_pkl_filename) #np.savetxt(analysis_path + "rf5getparams.txt",fmt='%s',X=str(aux_reg_regressor.get_params(deep=True))) #np.savetxt(analysis_path + "rf5estimatorparams.txt",fmt='%s',X=aux_reg_regressor.estimator_params) USELESS #np.savetxt(analysis_path + "rf5classes.txt",fmt='%s',X=aux_reg_regressor.classes_) #np.savetxt(analysis_path + "rf5baseestim.txt",fmt='%s',X=aux_reg_regressor.base_estimator_) #TODO: CHANGE THIS BACK IF CUT SHORT!! for files in combined_filenames: print("filename", files) i += 1 data_load_path = test_path + '/data/' + files[0] label_load_path = test_path + '/label/' + files[1] # print("data/label load path: {} \n {}".format(data_load_path,label_load_path)) test_array = np.load(data_load_path) test_label_array = np.load(label_load_path)[:, 1:] # --------COMMENTED OUT BECAUSE OF SCALER IN THE GENERATOR----------------------------------- # test_array = np.reshape(test_array, (1, test_array.shape[0], test_array.shape[1])) # label_array = np.reshape(label_array,(1,label_array.shape[0],label_array.shape[1])) #label doesn't need to be 3D # print("file: {} data/label shape: {}, {}".format(files[0],test_array.shape, label_array.shape)) print(files[0]) # print("Metrics: {}".format(model.metrics_names)) # steps per epoch is how many times that generator is called test_generator = pair_generator_1dconv_lstm_bagged( test_array, test_label_array, start_at=0, generator_batch_size=GENERATOR_BATCH_SIZE, use_precomputed_coeffs=False, scaled=True, scaler_type='standard_per_batch',no_labels=True) num_generator_yields = test_array.shape[0]//GENERATOR_BATCH_SIZE base_model_output_test = base_model.predict_generator(test_generator, steps=num_generator_yields) base_model_output_2d_test_shape = (base_model_output_test.shape[0] * base_model_output_test.shape[1], base_model_output_test.shape[2]) base_model_output_2d_test = np.zeros(shape=base_model_output_2d_test_shape) reshape_counter_test=0 for reshape_counter_test in range(0,base_model_output_test.shape[0]): base_model_output_2d_test[reshape_counter_test:reshape_counter_test + GENERATOR_BATCH_SIZE, :] = np.reshape( base_model_output_test[reshape_counter_test,:,:],newshape=(GENERATOR_BATCH_SIZE,base_model_output_test.shape[2])) #1,128,64 to 128,64 reshape_counter_test += 1 batch_scaled_test_labels = np.zeros(shape=(test_label_array.shape)) for label_batch_scaler_counter in range(0,base_model_output_test.shape[0]): #how many batches there are batch_scaled_test_labels[label_batch_scaler_counter:label_batch_scaler_counter+GENERATOR_BATCH_SIZE,:] = \ label_scaler_aux_regressor.fit_transform( test_label_array[label_batch_scaler_counter:label_batch_scaler_counter+GENERATOR_BATCH_SIZE,:]) label_batch_scaler_counter += GENERATOR_BATCH_SIZE print("for fitting: feature shape: {}, uncut label shape: {}".format(base_model_output_2d_test.shape, batch_scaled_test_labels.shape)) print("pretrained net's output shape: {}".format(base_model_output_2d_test.shape)) #tested_regressor = pkl.loads(trained_regressor) test_label_array_to_fit = batch_scaled_test_labels[0:base_model_output_2d_test.shape[0],:] index_last_3_batches = batch_scaled_test_labels.shape[0] - 3 * GENERATOR_BATCH_SIZE score = aux_reg_regressor.score(X=base_model_output_2d_test,y=test_label_array_to_fit) score_f3 = aux_reg_regressor.score(X=base_model_output_2d_test[index_last_3_batches:, :], y=test_label_array_to_fit[index_last_3_batches:, :]) print("score: {}".format(score)) print("score_f3: {}".format(score_f3)) scores_dict[str(files[0])[:-4]] = score scores_dict_f3[str(files[0])[:-4]] = score_f3 preds = aux_reg_regressor.predict(base_model_output_2d_test) if save_preds == True: #<class 'sklearn.ensemble.forest.RandomForestRegressor'> #< class 'sklearn.ensemble.forest.ExtraTreesRegressor'> preds_filename = analysis_path + "preds_" + model_id + "_" + str(files[0])[:-4] + "_" + str(model)[:-3] np.save(file=preds_filename, arr=preds) row_dict_scikit_raw = {} mse = mean_squared_error(test_label_array_to_fit, preds) mse_raw = mean_squared_error(test_label_array_to_fit, preds, multioutput='raw_values') mse_f3 = mean_squared_error(test_label_array_to_fit[index_last_3_batches:, :], preds[index_last_3_batches:, :]) mse_f3_raw = mean_squared_error(test_label_array_to_fit[index_last_3_batches:, :], preds[index_last_3_batches:, :], multioutput='raw_values') print("mse: {}".format(mse)) print("mse_f3: {}".format(mse_f3)) mse_dict[str(files[0])[:-4]] = mse mse_dict_f3[str(files[0])[:-4]] = mse_f3 for flaw in range(0, len(mse_raw)): row_dict_scikit_raw['mse_' + str(flaw)] = mse_raw[flaw] for flaw in range(0, len(mse_f3_raw)): row_dict_scikit_raw['mse_f3_' + str(flaw)] = mse_f3_raw[flaw] mae = mean_absolute_error(test_label_array_to_fit, preds) mae_raw = mean_absolute_error(test_label_array_to_fit, preds, multioutput='raw_values') mae_f3 = mean_absolute_error(test_label_array_to_fit[index_last_3_batches:, :], preds[index_last_3_batches:, :]) mae_f3_raw = mean_absolute_error(test_label_array_to_fit[index_last_3_batches:, :], preds[index_last_3_batches:, :], multioutput='raw_values') print("mae: {}".format(mae)) print("mae_f3: {}".format(mae_f3)) mae_dict[str(files[0])[:-4]] = mae mae_dict_f3[str(files[0])[:-4]] = mae_f3 for flaw in range(0, len(mae_raw)): row_dict_scikit_raw['mae_' + str(flaw)] = mae_raw[flaw] for flaw in range(0, len(mae_f3_raw)): row_dict_scikit_raw['mae_f3_' + str(flaw)] = mae_f3_raw[flaw] score_rows_list_scikit_raw.append(row_dict_scikit_raw) test_end_time = time.clock() test_time_elapsed = test_end_time - test_start_time print("test time elapsed: {}".format(test_time_elapsed)) time_dict['test_time'] = test_time_elapsed time_df = pd.DataFrame.from_dict(time_dict,orient='index') #time_df.rename(columns=['time']) r2_scores_df = pd.DataFrame.from_dict(scores_dict,orient='index') #r2_scores_df.rename(columns=['r2']) mse_scores_df = pd.DataFrame.from_dict(mse_dict,orient='index') #mse_scores_df.rename(columns=['mse']) mae_scores_df = pd.DataFrame.from_dict(mae_dict,orient='index') #mae_scores_df.rename(columns=['mae']) name_list = ['filename','r2','mse','mae'] scores_combined_df = pd.DataFrame(pd.concat([r2_scores_df,mse_scores_df,mae_scores_df],axis=1)) scores_combined_df.set_axis(labels=name_list[1:], axis=1) # time_df.to_csv("./analysis/time_rf5a_" + str(model) + ".csv") # r2_scores_df.to_csv("./analysis/r2_rf5a_" + str(model) + ".csv") # mse_scores_df.to_csv("./analysis/mse_rf5a_" + str(model) + ".csv") # mae_scores_df.to_csv("./analysis/mae_rf5a_" + str(model) + ".csv") scores_combined_df.to_csv("./analysis/combi_scores_" + model_id + "_" + str(model)[:-3] + ".csv") #score_df = pd.DataFrame(data=score_rows_list, columns=score_rows_list[0].keys()) raw_scores_df = pd.DataFrame(data=score_rows_list_scikit_raw,columns = score_rows_list_scikit_raw[0].keys())
gpl-3.0
-7,266,670,127,247,519,000
56.778736
153
0.618591
false
jimi-c/ansible
lib/ansible/modules/network/aci/aci_interface_selector_to_switch_policy_leaf_profile.py
10
7609
#!/usr/bin/python # -*- coding: utf-8 -*- # Copyright: (c) 2017, Bruno Calogero <[email protected]> # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import absolute_import, division, print_function __metaclass__ = type ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ['preview'], 'supported_by': 'community'} DOCUMENTATION = r''' --- module: aci_interface_selector_to_switch_policy_leaf_profile short_description: Bind interface selector profiles to switch policy leaf profiles (infra:RsAccPortP) description: - Bind interface selector profiles to switch policy leaf profiles on Cisco ACI fabrics. notes: - This module requires an existing leaf profile, the module M(aci_switch_policy_leaf_profile) can be used for this. - More information about the internal APIC class B(infra:RsAccPortP) from L(the APIC Management Information Model reference,https://developer.cisco.com/docs/apic-mim-ref/). author: - Bruno Calogero (@brunocalogero) version_added: '2.5' options: leaf_profile: description: - Name of the Leaf Profile to which we add a Selector. aliases: [ leaf_profile_name ] interface_selector: description: - Name of Interface Profile Selector to be added and associated with the Leaf Profile. aliases: [ name, interface_selector_name, interface_profile_name ] state: description: - Use C(present) or C(absent) for adding or removing. - Use C(query) for listing an object or multiple objects. choices: [ absent, present, query ] default: present extends_documentation_fragment: aci ''' EXAMPLES = r''' - name: Associating an interface selector profile to a switch policy leaf profile aci_interface_selector_to_switch_policy_leaf_profile: host: apic username: admin password: SomeSecretPassword leaf_profile: sw_name interface_selector: interface_profile_name state: present delegate_to: localhost - name: Remove an interface selector profile associated with a switch policy leaf profile aci_interface_selector_to_switch_policy_leaf_profile: host: apic username: admin password: SomeSecretPassword leaf_profile: sw_name interface_selector: interface_profile_name state: absent delegate_to: localhost - name: Query an interface selector profile associated with a switch policy leaf profile aci_interface_selector_to_switch_policy_leaf_profile: host: apic username: admin password: SomeSecretPassword leaf_profile: sw_name interface_selector: interface_profile_name state: query delegate_to: localhost register: query_result ''' RETURN = r''' current: description: The existing configuration from the APIC after the module has finished returned: success type: list sample: [ { "fvTenant": { "attributes": { "descr": "Production environment", "dn": "uni/tn-production", "name": "production", "nameAlias": "", "ownerKey": "", "ownerTag": "" } } } ] error: description: The error information as returned from the APIC returned: failure type: dict sample: { "code": "122", "text": "unknown managed object class foo" } raw: description: The raw output returned by the APIC REST API (xml or json) returned: parse error type: string sample: '<?xml version="1.0" encoding="UTF-8"?><imdata totalCount="1"><error code="122" text="unknown managed object class foo"/></imdata>' sent: description: The actual/minimal configuration pushed to the APIC returned: info type: list sample: { "fvTenant": { "attributes": { "descr": "Production environment" } } } previous: description: The original configuration from the APIC before the module has started returned: info type: list sample: [ { "fvTenant": { "attributes": { "descr": "Production", "dn": "uni/tn-production", "name": "production", "nameAlias": "", "ownerKey": "", "ownerTag": "" } } } ] proposed: description: The assembled configuration from the user-provided parameters returned: info type: dict sample: { "fvTenant": { "attributes": { "descr": "Production environment", "name": "production" } } } filter_string: description: The filter string used for the request returned: failure or debug type: string sample: ?rsp-prop-include=config-only method: description: The HTTP method used for the request to the APIC returned: failure or debug type: string sample: POST response: description: The HTTP response from the APIC returned: failure or debug type: string sample: OK (30 bytes) status: description: The HTTP status from the APIC returned: failure or debug type: int sample: 200 url: description: The HTTP url used for the request to the APIC returned: failure or debug type: string sample: https://10.11.12.13/api/mo/uni/tn-production.json ''' from ansible.module_utils.network.aci.aci import ACIModule, aci_argument_spec from ansible.module_utils.basic import AnsibleModule def main(): argument_spec = aci_argument_spec() argument_spec.update( leaf_profile=dict(type='str', aliases=['leaf_profile_name']), # Not required for querying all objects interface_selector=dict(type='str', aliases=['interface_profile_name', 'interface_selector_name', 'name']), # Not required for querying all objects state=dict(type='str', default='present', choices=['absent', 'present', 'query']) ) module = AnsibleModule( argument_spec=argument_spec, supports_check_mode=True, required_if=[ ['state', 'absent', ['leaf_profile', 'interface_selector']], ['state', 'present', ['leaf_profile', 'interface_selector']] ], ) leaf_profile = module.params['leaf_profile'] # WARNING: interface_selector accepts non existing interface_profile names and they appear on APIC gui with a state of "missing-target" interface_selector = module.params['interface_selector'] state = module.params['state'] # Defining the interface profile tDn for clarity interface_selector_tDn = 'uni/infra/accportprof-{0}'.format(interface_selector) aci = ACIModule(module) aci.construct_url( root_class=dict( aci_class='infraNodeP', aci_rn='infra/nprof-{0}'.format(leaf_profile), module_object=leaf_profile, target_filter={'name': leaf_profile}, ), subclass_1=dict( aci_class='infraRsAccPortP', aci_rn='rsaccPortP-[{0}]'.format(interface_selector_tDn), module_object=interface_selector, target_filter={'name': interface_selector}, ) ) aci.get_existing() if state == 'present': aci.payload( aci_class='infraRsAccPortP', class_config=dict(tDn=interface_selector_tDn), ) aci.get_diff(aci_class='infraRsAccPortP') aci.post_config() elif state == 'absent': aci.delete_config() aci.exit_json() if __name__ == "__main__": main()
gpl-3.0
5,042,319,242,676,004,000
29.805668
156
0.635957
false
fp7-netide/Usecases
Usecase1/POX/Application/basic_bridge.py
1
2013
from pox.core import core import pox.openflow.libopenflow_01 as of ETH_ARP = 0x0806 ETH_IP = 0x0800 # Lifetime of rules, in seconds. FLOW_LIFE = 30 """ Everything received at a port is forwarded thru the other. The bridge learns the src ARP address that comes thru each port, so to filter messages doing a loop. knownMACs["srcMAC"] = switch_port """ class BasicBridge(object): def __init__(self, connection): self.connection = connection self.knownMACs = {} self.connection.addListeners(self) def installFlowForwarding(self, event, packet, outport, duration = 0): msg = of.ofp_flow_mod() msg.match = of.ofp_match.from_packet(packet, event.port) msg.actions.append(of.ofp_action_output(port = outport)) msg.data = event.ofp if duration > 0: msg.hard_timeout = duration msg.idle_timeout = duration self.connection.send(msg) def drop(self, event): # Does not install a rule. Just drops this packet. if event.ofp.buffer_id is not None: msg = of.ofp_packet_out() msg.buffer_id = event.ofp.buffer_id msg.in_port = event.port self.connection.send(msg) def forwardPacket(self, event, outPort): # Does not install a rule. Just forwards this packet. if event.ofp.buffer_id is not None: msg = of.ofp_packet_out() msg.actions.append(of.ofp_action_output(port = outPort)) msg.buffer_id = event.ofp.buffer_id msg.in_port = event.port self.connection.send(msg) def _handle_PacketIn(self, event): packet = event.parsed outPort = 1 if event.port == 2 else 2 forwarded = False if packet.type == ETH_IP: self.installFlowForwarding(event, packet, outPort, FLOW_LIFE) forwarded = True elif packet.type == ETH_ARP: srcMac = packet.src.toStr() try: port = self.knownMACs[srcMac] if port == event.port: self.forwardPacket(event, outPort) forwarded = True except KeyError: self.knownMACs[srcMac] = event.port self.forwardPacket(event, outPort) forwarded = True if not forwarded: self.drop(event)
epl-1.0
4,620,845,121,418,771,000
26.202703
78
0.700944
false
nikitanovosibirsk/jj
tests/logs/test_simple_formatter.py
1
1188
from unittest.mock import Mock, sentinel import pytest from jj.logs import SimpleFormatter from .._test_utils.steps import given, then, when from ._log_record import TestLogRecord @pytest.fixture() def formatter(): return SimpleFormatter() @pytest.fixture() def record(): return TestLogRecord(sentinel.message) def test_format_without_request_and_response(formatter: SimpleFormatter, record: TestLogRecord): with when: res = formatter.format(record) with then: assert res == str(sentinel.message) def test_format_with_request(formatter: SimpleFormatter, record: TestLogRecord): with given: record.jj_request = Mock(url=Mock(path=sentinel.path)) with when: res = formatter.format(record) with then: assert res == "-> {}".format(sentinel.path) def test_format_with_response(formatter: SimpleFormatter, record: TestLogRecord): with given: record.jj_request = Mock() record.jj_response = Mock(status=sentinel.status, reason=sentinel.reason) with when: res = formatter.format(record) with then: assert res == "<- {} {}\n".format(sentinel.status, sentinel.reason)
apache-2.0
-1,510,866,519,037,399,600
23.244898
96
0.691077
false
steveb/paunch
paunch/tests/test_builder_compose1.py
1
7561
# -*- coding: utf-8 -*- # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import mock from paunch.builder import compose1 from paunch.tests import base class TestComposeV1Builder(base.TestCase): @mock.patch('paunch.runner.DockerRunner', autospec=True) def test_apply(self, runner): config = { 'one': { 'start_order': 0, 'image': 'centos:7', }, 'two': { 'start_order': 1, 'image': 'centos:7', }, 'three': { 'start_order': 2, 'image': 'centos:7', }, 'four': { 'start_order': 10, 'image': 'centos:7', }, 'four_ls': { 'action': 'exec', 'start_order': 20, 'command': ['four', 'ls', '-l', '/'] } } r = runner.return_value r.managed_by = 'tester' r.discover_container_name = lambda n, c: '%s-12345678' % n r.unique_container_name = lambda n: '%s-12345678' % n r.docker_cmd = 'docker' r.execute.return_value = ('Done!', '', 0) builder = compose1.ComposeV1Builder('foo', config, r) stdout, stderr, deploy_status_code = builder.apply() self.assertEqual(0, deploy_status_code) self.assertEqual(['Done!', 'Done!', 'Done!', 'Done!', 'Done!'], stdout) self.assertEqual([], stderr) r.execute.assert_has_calls([ mock.call( ['docker', 'run', '--name', 'one-12345678', '--label', 'config_id=foo', '--label', 'container_name=one', '--label', 'managed_by=tester', '--detach=true', 'centos:7'] ), mock.call( ['docker', 'run', '--name', 'two-12345678', '--label', 'config_id=foo', '--label', 'container_name=two', '--label', 'managed_by=tester', '--detach=true', 'centos:7'] ), mock.call( ['docker', 'run', '--name', 'three-12345678', '--label', 'config_id=foo', '--label', 'container_name=three', '--label', 'managed_by=tester', '--detach=true', 'centos:7'] ), mock.call( ['docker', 'run', '--name', 'four-12345678', '--label', 'config_id=foo', '--label', 'container_name=four', '--label', 'managed_by=tester', '--detach=true', 'centos:7'] ), mock.call( ['docker', 'exec', 'four-12345678', 'ls', '-l', '/'] ), ]) @mock.patch('paunch.runner.DockerRunner', autospec=True) def test_label_arguments(self, runner): r = runner.return_value r.managed_by = 'tester' builder = compose1.ComposeV1Builder('foo', {}, r) cmd = [] builder.label_arguments(cmd, 'one') self.assertEqual( ['--label', 'config_id=foo', '--label', 'container_name=one', '--label', 'managed_by=tester'], cmd) labels = { 'foo': 'bar', 'bar': 'baz' } builder = compose1.ComposeV1Builder('foo', {}, r, labels=labels) cmd = [] builder.label_arguments(cmd, 'one') self.assertEqual( ['--label', 'foo=bar', '--label', 'bar=baz', '--label', 'config_id=foo', '--label', 'container_name=one', '--label', 'managed_by=tester'], cmd) def test_docker_run_args(self): config = { 'one': { 'image': 'centos:7', 'privileged': True, 'user': 'bar', 'net': 'host', 'pid': 'container:bar', 'restart': 'always', 'env_file': '/tmp/foo.env', } } builder = compose1.ComposeV1Builder('foo', config, None) cmd = ['docker', 'run', '--name', 'one'] builder.docker_run_args(cmd, 'one') self.assertEqual( ['docker', 'run', '--name', 'one', '--detach=true', '--env-file=/tmp/foo.env', '--net=host', '--pid=container:bar', '--privileged=true', '--restart=always', '--user=bar', 'centos:7'], cmd ) def test_docker_run_args_lists(self): config = { 'one': { 'image': 'centos:7', 'detach': False, 'command': 'ls -l /foo', 'environment': ['FOO=BAR', 'BAR=BAZ'], 'env_file': ['/tmp/foo.env', '/tmp/bar.env'], 'volumes': ['/foo:/foo:rw', '/bar:/bar:ro'], 'volumes_from': ['two', 'three'] } } builder = compose1.ComposeV1Builder('foo', config, None) cmd = ['docker', 'run', '--name', 'one'] builder.docker_run_args(cmd, 'one') self.assertEqual( ['docker', 'run', '--name', 'one', '--env-file=/tmp/foo.env', '--env-file=/tmp/bar.env', '--env=FOO=BAR', '--env=BAR=BAZ', '--volume=/foo:/foo:rw', '--volume=/bar:/bar:ro', '--volumes-from=two', '--volumes-from=three', 'centos:7', 'ls', '-l', '/foo'], cmd ) @mock.patch('paunch.runner.DockerRunner', autospec=True) def test_docker_exec_args(self, runner): r = runner.return_value r.discover_container_name.return_value = 'one-12345678' config = { 'one': { 'command': 'ls -l /foo', 'privileged': True, 'user': 'bar' } } self.builder = compose1.ComposeV1Builder( 'foo', config, runner.return_value) cmd = ['docker', 'exec'] self.builder.docker_exec_args(cmd, 'one') self.assertEqual( ['docker', 'exec', '--privileged=true', '--user=bar', 'one-12345678', '-l', '/foo'], cmd ) def test_command_argument(self): b = compose1.ComposeV1Builder self.assertEqual([], b.command_argument(None)) self.assertEqual([], b.command_argument('')) self.assertEqual([], b.command_argument([])) self.assertEqual( ['ls', '-l', '/foo-bar'], b.command_argument(['ls', '-l', '/foo-bar']) ) self.assertEqual( ['ls', '-l', '/foo-bar'], b.command_argument('ls -l /foo-bar') ) self.assertEqual( ['ls', '-l', '/foo bar'], b.command_argument(['ls', '-l', '/foo bar']) ) # don't expect quoted spaces to do the right thing self.assertEqual( ['ls', '-l', '"/foo', 'bar"'], b.command_argument('ls -l "/foo bar"') )
apache-2.0
-3,199,082,565,730,056,700
33.525114
79
0.459595
false
gangadharkadam/vlinkerp
erpnext/accounts/doctype/pos_profile/pos_profile.py
23
2364
# Copyright (c) 2015, Frappe Technologies Pvt. Ltd. and Contributors # License: GNU General Public License v3. See license.txt from __future__ import unicode_literals import frappe from frappe import msgprint, _ from frappe.utils import cint from frappe.model.document import Document class POSProfile(Document): def validate(self): self.check_for_duplicate() self.validate_expense_account() self.validate_all_link_fields() def check_for_duplicate(self): res = frappe.db.sql("""select name, user from `tabPOS Profile` where ifnull(user, '') = %s and name != %s and company = %s""", (self.user, self.name, self.company)) if res: if res[0][1]: msgprint(_("POS Profile {0} already created for user: {1} and company {2}").format(res[0][0], res[0][1], self.company), raise_exception=1) else: msgprint(_("Global POS Profile {0} already created for company {1}").format(res[0][0], self.company), raise_exception=1) def validate_expense_account(self): if cint(frappe.defaults.get_global_default("auto_accounting_for_stock")) \ and not self.expense_account: msgprint(_("Expense Account is mandatory"), raise_exception=1) def validate_all_link_fields(self): accounts = {"Account": [self.cash_bank_account, self.income_account, self.expense_account], "Cost Center": [self.cost_center], "Warehouse": [self.warehouse]} for link_dt, dn_list in accounts.items(): for link_dn in dn_list: if link_dn and not frappe.db.exists({"doctype": link_dt, "company": self.company, "name": link_dn}): frappe.throw(_("{0} does not belong to Company {1}").format(link_dn, self.company)) def on_update(self): self.set_defaults() def on_trash(self): self.set_defaults(include_current_pos=False) def set_defaults(self, include_current_pos=True): frappe.defaults.clear_default("is_pos") if not include_current_pos: condition = " where name != '%s'" % self.name.replace("'", "\'") else: condition = "" pos_view_users = frappe.db.sql_list("""select user from `tabPOS Profile` {0}""".format(condition)) for user in pos_view_users: if user: frappe.defaults.set_user_default("is_pos", 1, user) else: frappe.defaults.set_global_default("is_pos", 1) @frappe.whitelist() def get_series(): return frappe.get_meta("Sales Invoice").get_field("naming_series").options or ""
agpl-3.0
-314,239,003,495,290,240
32.771429
97
0.686548
false
ro0lz/Stino
stino/pyarduino/base/i18n.py
14
2332
#!/usr/bin/env python #-*- coding: utf-8 -*- # # Documents # """ Documents """ from __future__ import absolute_import from __future__ import print_function from __future__ import division from __future__ import unicode_literals import os import glob from . import deco from . import sys_info from . import language_file from . import settings @deco.singleton class I18N(object): def __init__(self): self.load() def load(self): self.lang_params = {} self.lang_ids = [] self.id_path_dict = {} self.trans_dict = {} self.list_ids() self.settings = settings.get_arduino_settings() self.lang_id = self.settings.get( 'lang_id', sys_info.get_sys_language()) self.change_lang(self.lang_id) def list_ids(self): self.lang_params = settings.get_user_settings( 'language.stino-settings') preset_paths = [settings.get_preset_path(), settings.get_user_preset_path()] for preset_path in preset_paths: lang_file_paths = glob.glob(preset_path + '/lang_*.txt') lang_file_names = [os.path.basename(p) for p in lang_file_paths] self.lang_ids += [name[5:-4] for name in lang_file_names] self.id_path_dict.update(dict(zip(self.lang_ids, lang_file_paths))) self.lang_ids.sort(key=lambda _id: self.lang_params.get(_id)[1]) def change_lang(self, lang_id): if lang_id in self.id_path_dict: self.lang_id = lang_id lang_file_path = self.id_path_dict[lang_id] lang_file = language_file.LanguageFile(lang_file_path) self.trans_dict = lang_file.get_trans_dict() else: self.lang_id = 'en' self.trans_dict = {} self.settings.set('lang_id', self.lang_id) def translate(self, text, *params): trans_text = self.trans_dict.get(text, text) for seq, param in enumerate(params): seq_text = '{%d}' % seq trans_text = trans_text.replace(seq_text, str(param)) return trans_text def get_lang_id(self): return self.lang_id def get_lang_ids(self): return self.lang_ids def get_lang_names(self, lang_id): return self.lang_params.get(lang_id, ['Unknown', 'Unknown'])
mit
-2,367,766,367,153,444,000
28.518987
79
0.590051
false
OpenMOOC/moocng
moocng/courses/security.py
1
5074
# -*- coding: utf-8 -*- # Copyright 2012-2013 UNED # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from datetime import date from django.contrib import messages from django.core.urlresolvers import reverse from django.db.models import Q from django.http import Http404 from django.shortcuts import get_object_or_404 from django.utils.translation import ugettext as _ from moocng.courses.models import Course, Unit, CourseTeacher from moocng.http import Http410 def can_user_view_course(course, user): """ Returns a pair where the first element is a bool indicating if the user can view the course and the second one is a string code explaining the reason. :returns: Bool .. versionadded:: 0.1 """ if course.is_active: return True, 'active' if user.is_superuser: return True, 'is_superuser' if user.is_staff: return True, 'is_staff' # check if the user is a teacher of the course if not user.is_anonymous(): try: CourseTeacher.objects.get(teacher=user, course=course) return True, 'is_teacher' except CourseTeacher.DoesNotExist: pass # at this point you don't have permissions to see a course if course.is_public: return False, 'not_active_outdated' return False, 'not_active_yet' def check_user_can_view_course(course, request): """ Raises a 404 error if the user can't see the course. :returns: message or 404 .. versionadded:: 0.1 """ can_view, reason = can_user_view_course(course, request.user) if can_view: if reason != 'active': msg_table = { 'is_staff': _(u'This course is not public. Your have access to it because you are staff member'), 'is_superuser': _(u'This course is not public. Your have access to it because you are a super user'), 'is_teacher': _(u'This course is not public. Your have access to it because you are a teacher of the course'), } messages.warning(request, msg_table[reason]) else: if reason == 'not_active_yet': raise Http404() else: user = request.user msg = _("We're sorry, but the course has finished. ") if not user.is_anonymous(): msg += _("You could see your transcript <a href=\"%s\">here</a>") % reverse('transcript', args=(course.slug,)) raise Http410(msg) def get_course_if_user_can_view_or_404(course_slug, request): course = get_object_or_404(Course, slug=course_slug) check_user_can_view_course(course, request) return course def get_courses_available_for_user(user): """ Filter in a list of courses what courses are available for the user. :returns: Object list .. versionadded:: 0.1 """ if user.is_superuser or user.is_staff: # Return every course that hasn't finished return Course.objects.exclude(end_date__lt=date.today()) elif user.is_anonymous() or not CourseTeacher.objects.filter(teacher=user).exists(): # Regular user, return only the published courses return Course.objects.exclude(end_date__lt=date.today()).filter(status='p') else: # Is a teacher, return draft courses if he is one of its teachers return Course.objects.exclude(end_date__lt=date.today()).filter(Q(status='p') | Q(status='d', courseteacher__teacher=user)).distinct() def get_units_available_for_user(course, user, is_overview=False): """ Filter units of a course what courses are available for the user. :returns: Object list .. versionadded:: 0.1 """ if user.is_superuser or user.is_staff: return course.unit_set.all() elif user.is_anonymous(): if is_overview: return course.unit_set.filter(Q(status='p') | Q(status='l')) else: return [] else: if is_overview: return Unit.objects.filter( Q(status='p', course=course) | Q(status='l', course=course) | Q(status='d', course=course, course__courseteacher__teacher=user, course__courseteacher__course=course)).distinct() else: return Unit.objects.filter( Q(status='p', course=course) | Q(status='l', course=course, course__courseteacher__teacher=user, course__courseteacher__course=course) | Q(status='d', course=course, course__courseteacher__teacher=user, course__courseteacher__course=course)).distinct()
apache-2.0
-7,393,958,337,664,639,000
33.753425
142
0.645447
false
100star/h2o
py/testdir_multi_jvm/notest_build_cloud_relaxed.py
9
1284
import unittest, time, sys # not needed, but in case you move it down to subdir sys.path.extend(['.','..','../..','py']) import h2o class Basic(unittest.TestCase): def tearDown(self): h2o.check_sandbox_for_errors() @classmethod def setUpClass(cls): print "Test cloud building with completion = one node says desired size plus consensus=1" print "Check is that all nodes agree on cloud size after completion rule" pass @classmethod def tearDownClass(cls): h2o.tear_down_cloud() def test_A_build_cloud_relaxed_2(self): for trials in range(3): h2o.init(2,java_heap_GB=1, conservative=False) h2o.verify_cloud_size() h2o.tear_down_cloud() time.sleep(5) def test_B_build_cloud_relaxed_3(self): for trials in range(3): h2o.init(3,java_heap_GB=1, conservative=False) h2o.verify_cloud_size() h2o.tear_down_cloud() time.sleep(5) def test_C_build_cloud_relaxed_1(self): for trials in range(1): h2o.init(1,java_heap_GB=1, conservative=False) h2o.verify_cloud_size() h2o.tear_down_cloud() time.sleep(5) if __name__ == '__main__': h2o.unit_main()
apache-2.0
7,457,234,420,988,644,000
29.571429
97
0.591121
false
bdoner/SickRage
sickbeard/show_queue.py
4
26177
# Author: Nic Wolfe <[email protected]> # URL: http://code.google.com/p/sickbeard/ # # This file is part of SickRage. # # SickRage is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # SickRage is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with SickRage. If not, see <http://www.gnu.org/licenses/>. from __future__ import with_statement import traceback import sickbeard from imdb import _exceptions as imdb_exceptions from sickbeard.common import WANTED from sickbeard.tv import TVShow from sickbeard import exceptions from sickbeard import logger from sickbeard import notifiers from sickbeard import ui from sickbeard import generic_queue from sickbeard import name_cache from sickbeard.exceptions import ex from sickbeard.blackandwhitelist import BlackAndWhiteList from libtrakt import TraktAPI class ShowQueue(generic_queue.GenericQueue): def __init__(self): generic_queue.GenericQueue.__init__(self) self.queue_name = "SHOWQUEUE" def _isInQueue(self, show, actions): return show.indexerid in [x.show.indexerid for x in self.queue if x.action_id in actions] def _isBeingSomethinged(self, show, actions): return self.currentItem != None and show == self.currentItem.show and \ self.currentItem.action_id in actions def isInUpdateQueue(self, show): return self._isInQueue(show, (ShowQueueActions.UPDATE, ShowQueueActions.FORCEUPDATE)) def isInRefreshQueue(self, show): return self._isInQueue(show, (ShowQueueActions.REFRESH,)) def isInRenameQueue(self, show): return self._isInQueue(show, (ShowQueueActions.RENAME,)) def isInSubtitleQueue(self, show): return self._isInQueue(show, (ShowQueueActions.SUBTITLE,)) def isBeingAdded(self, show): return self._isBeingSomethinged(show, (ShowQueueActions.ADD,)) def isBeingUpdated(self, show): return self._isBeingSomethinged(show, (ShowQueueActions.UPDATE, ShowQueueActions.FORCEUPDATE)) def isBeingRefreshed(self, show): return self._isBeingSomethinged(show, (ShowQueueActions.REFRESH,)) def isBeingRenamed(self, show): return self._isBeingSomethinged(show, (ShowQueueActions.RENAME,)) def isBeingSubtitled(self, show): return self._isBeingSomethinged(show, (ShowQueueActions.SUBTITLE,)) def _getLoadingShowList(self): return [x for x in self.queue + [self.currentItem] if x != None and x.isLoading] loadingShowList = property(_getLoadingShowList) def updateShow(self, show, force=False): if self.isBeingAdded(show): raise exceptions.CantUpdateException( str(show.name) + u" is still being added, wait until it is finished before you update.") if self.isBeingUpdated(show): raise exceptions.CantUpdateException( str(show.name) + u" is already being updated by Post-processor or manually started, can't update again until it's done.") if self.isInUpdateQueue(show): raise exceptions.CantUpdateException( str(show.name) + u" is in process of being updated by Post-processor or manually started, can't update again until it's done.") if not force: queueItemObj = QueueItemUpdate(show) else: queueItemObj = QueueItemForceUpdate(show) self.add_item(queueItemObj) return queueItemObj def refreshShow(self, show, force=False): if self.isBeingRefreshed(show) and not force: raise exceptions.CantRefreshException("This show is already being refreshed, not refreshing again.") if (self.isBeingUpdated(show) or self.isInUpdateQueue(show)) and not force: logger.log( u"A refresh was attempted but there is already an update queued or in progress. Since updates do a refresh at the end anyway I'm skipping this request.", logger.DEBUG) return queueItemObj = QueueItemRefresh(show, force=force) logger.log(u"Queueing show refresh for " + show.name, logger.DEBUG) self.add_item(queueItemObj) return queueItemObj def renameShowEpisodes(self, show, force=False): queueItemObj = QueueItemRename(show) self.add_item(queueItemObj) return queueItemObj def downloadSubtitles(self, show, force=False): queueItemObj = QueueItemSubtitle(show) self.add_item(queueItemObj) return queueItemObj def addShow(self, indexer, indexer_id, showDir, default_status=None, quality=None, flatten_folders=None, lang=None, subtitles=None, anime=None, scene=None, paused=None, blacklist=None, whitelist=None, default_status_after=None): if lang is None: lang = sickbeard.INDEXER_DEFAULT_LANGUAGE queueItemObj = QueueItemAdd(indexer, indexer_id, showDir, default_status, quality, flatten_folders, lang, subtitles, anime, scene, paused, blacklist, whitelist, default_status_after) self.add_item(queueItemObj) return queueItemObj def removeShow(self, show, full=False): if self._isInQueue(show, ShowQueueActions.REMOVE): raise sickbeard.exceptions.CantRemoveException("This show is already queued to be removed") # remove other queued actions for this show. for x in self.queue: if show.indexerid == x.show.indexerid and x != self.currentItem: self.queue.remove(x) queueItemObj = QueueItemRemove(show=show, full=full) self.add_item(queueItemObj) return queueItemObj class ShowQueueActions: REFRESH = 1 ADD = 2 UPDATE = 3 FORCEUPDATE = 4 RENAME = 5 SUBTITLE = 6 REMOVE = 7 names = {REFRESH: 'Refresh', ADD: 'Add', UPDATE: 'Update', FORCEUPDATE: 'Force Update', RENAME: 'Rename', SUBTITLE: 'Subtitle', REMOVE: 'Remove Show' } class ShowQueueItem(generic_queue.QueueItem): """ Represents an item in the queue waiting to be executed Can be either: - show being added (may or may not be associated with a show object) - show being refreshed - show being updated - show being force updated - show being subtitled """ def __init__(self, action_id, show): generic_queue.QueueItem.__init__(self, ShowQueueActions.names[action_id], action_id) self.show = show def isInQueue(self): return self in sickbeard.showQueueScheduler.action.queue + [ sickbeard.showQueueScheduler.action.currentItem] #@UndefinedVariable def _getName(self): return str(self.show.indexerid) def _isLoading(self): return False show_name = property(_getName) isLoading = property(_isLoading) class QueueItemAdd(ShowQueueItem): def __init__(self, indexer, indexer_id, showDir, default_status, quality, flatten_folders, lang, subtitles, anime, scene, paused, blacklist, whitelist, default_status_after): self.indexer = indexer self.indexer_id = indexer_id self.showDir = showDir self.default_status = default_status self.quality = quality self.flatten_folders = flatten_folders self.lang = lang self.subtitles = subtitles self.anime = anime self.scene = scene self.paused = paused self.blacklist = blacklist self.whitelist = whitelist self.default_status_after = default_status_after self.show = None # this will initialize self.show to None ShowQueueItem.__init__(self, ShowQueueActions.ADD, self.show) # Process add show in priority self.priority = generic_queue.QueuePriorities.HIGH def _getName(self): """ Returns the show name if there is a show object created, if not returns the dir that the show is being added to. """ if self.show == None: return self.showDir return self.show.name show_name = property(_getName) def _isLoading(self): """ Returns True if we've gotten far enough to have a show object, or False if we still only know the folder name. """ if self.show == None: return True return False isLoading = property(_isLoading) def run(self): ShowQueueItem.run(self) logger.log(u"Starting to add show " + self.showDir) # make sure the Indexer IDs are valid try: lINDEXER_API_PARMS = sickbeard.indexerApi(self.indexer).api_params.copy() if self.lang: lINDEXER_API_PARMS['language'] = self.lang logger.log(u"" + str(sickbeard.indexerApi(self.indexer).name) + ": " + repr(lINDEXER_API_PARMS)) t = sickbeard.indexerApi(self.indexer).indexer(**lINDEXER_API_PARMS) s = t[self.indexer_id] # this usually only happens if they have an NFO in their show dir which gave us a Indexer ID that has no proper english version of the show if getattr(s, 'seriesname', None) is None: logger.log(u"Show in " + self.showDir + " has no name on " + str( sickbeard.indexerApi(self.indexer).name) + ", probably the wrong language used to search with.", logger.ERROR) ui.notifications.error("Unable to add show", "Show in " + self.showDir + " has no name on " + str(sickbeard.indexerApi( self.indexer).name) + ", probably the wrong language. Delete .nfo and add manually in the correct language.") self._finishEarly() return # if the show has no episodes/seasons if not s: logger.log(u"Show " + str(s['seriesname']) + " is on " + str( sickbeard.indexerApi(self.indexer).name) + " but contains no season/episode data.", logger.ERROR) ui.notifications.error("Unable to add show", "Show " + str(s['seriesname']) + " is on " + str(sickbeard.indexerApi( self.indexer).name) + " but contains no season/episode data.") self._finishEarly() return except Exception, e: logger.log(u"Show name with ID %s doesn't exist on %s anymore. If you are using trakt, it will be removed from your TRAKT watchlist. If you are adding manually, try removing the nfo and adding again" % (self.indexer_id,sickbeard.indexerApi(self.indexer).name) , logger.ERROR) ui.notifications.error("Unable to add show", "Unable to look up the show in " + self.showDir + " on " + str(sickbeard.indexerApi( self.indexer).name) + " using ID " + str( self.indexer_id) + ", not using the NFO. Delete .nfo and try adding manually again.") if sickbeard.USE_TRAKT: trakt_id = sickbeard.indexerApi(self.indexer).config['trakt_id'] trakt_api = TraktAPI(sickbeard.SSL_VERIFY, sickbeard.TRAKT_TIMEOUT) title = self.showDir.split("/")[-1] data = { 'shows': [ { 'title': title, 'ids': {} } ] } if trakt_id == 'tvdb_id': data['shows'][0]['ids']['tvdb'] = self.indexer_id else: data['shows'][0]['ids']['tvrage'] = self.indexer_id trakt_api.traktRequest("sync/watchlist/remove", data, method='POST') self._finishEarly() return try: newShow = TVShow(self.indexer, self.indexer_id, self.lang) newShow.loadFromIndexer() self.show = newShow # set up initial values self.show.location = self.showDir self.show.subtitles = self.subtitles if self.subtitles != None else sickbeard.SUBTITLES_DEFAULT self.show.quality = self.quality if self.quality else sickbeard.QUALITY_DEFAULT self.show.flatten_folders = self.flatten_folders if self.flatten_folders != None else sickbeard.FLATTEN_FOLDERS_DEFAULT self.show.anime = self.anime if self.anime != None else sickbeard.ANIME_DEFAULT self.show.scene = self.scene if self.scene != None else sickbeard.SCENE_DEFAULT self.show.paused = self.paused if self.paused != None else False # set up default new/missing episode status logger.log(u"Setting all episodes to the specified default status: " + str(self.show.default_ep_status)) self.show.default_ep_status = self.default_status if self.show.anime: self.show.release_groups = BlackAndWhiteList(self.show.indexerid) if self.blacklist: self.show.release_groups.set_black_keywords(self.blacklist) if self.whitelist: self.show.release_groups.set_white_keywords(self.whitelist) # be smartish about this #if self.show.genre and "talk show" in self.show.genre.lower(): # self.show.air_by_date = 1 #if self.show.genre and "documentary" in self.show.genre.lower(): # self.show.air_by_date = 0 #if self.show.classification and "sports" in self.show.classification.lower(): # self.show.sports = 1 except sickbeard.indexer_exception, e: logger.log( u"Unable to add show due to an error with " + sickbeard.indexerApi(self.indexer).name + ": " + ex(e), logger.ERROR) if self.show: ui.notifications.error( "Unable to add " + str(self.show.name) + " due to an error with " + sickbeard.indexerApi( self.indexer).name + "") else: ui.notifications.error( "Unable to add show due to an error with " + sickbeard.indexerApi(self.indexer).name + "") self._finishEarly() return except exceptions.MultipleShowObjectsException: logger.log(u"The show in " + self.showDir + " is already in your show list, skipping", logger.WARNING) ui.notifications.error('Show skipped', "The show in " + self.showDir + " is already in your show list") self._finishEarly() return except Exception, e: logger.log(u"Error trying to add show: " + ex(e), logger.ERROR) logger.log(traceback.format_exc(), logger.DEBUG) self._finishEarly() raise logger.log(u"Retrieving show info from IMDb", logger.DEBUG) try: self.show.loadIMDbInfo() except imdb_exceptions.IMDbError, e: logger.log(u" Something wrong on IMDb api: " + ex(e), logger.WARNING) except Exception, e: logger.log(u"Error loading IMDb info: " + ex(e), logger.ERROR) try: self.show.saveToDB() except Exception, e: logger.log(u"Error saving the show to the database: " + ex(e), logger.ERROR) logger.log(traceback.format_exc(), logger.DEBUG) self._finishEarly() raise # add it to the show list sickbeard.showList.append(self.show) try: self.show.loadEpisodesFromIndexer() except Exception, e: logger.log( u"Error with " + sickbeard.indexerApi(self.show.indexer).name + ", not creating episode list: " + ex(e), logger.ERROR) logger.log(traceback.format_exc(), logger.DEBUG) # update internal name cache name_cache.buildNameCache() try: self.show.loadEpisodesFromDir() except Exception, e: logger.log(u"Error searching dir for episodes: " + ex(e), logger.ERROR) logger.log(traceback.format_exc(), logger.DEBUG) # if they set default ep status to WANTED then run the backlog to search for episodes # FIXME: This needs to be a backlog queue item!!! if self.show.default_ep_status == WANTED: logger.log(u"Launching backlog for this show since its episodes are WANTED") sickbeard.backlogSearchScheduler.action.searchBacklog([self.show]) self.show.writeMetadata() self.show.updateMetadata() self.show.populateCache() self.show.flushEpisodes() if sickbeard.USE_TRAKT: # if there are specific episodes that need to be added by trakt sickbeard.traktCheckerScheduler.action.manageNewShow(self.show) # add show to trakt.tv library if sickbeard.TRAKT_SYNC: sickbeard.traktCheckerScheduler.action.addShowToTraktLibrary(self.show) if sickbeard.TRAKT_SYNC_WATCHLIST: logger.log(u"update watchlist") notifiers.trakt_notifier.update_watchlist(show_obj=self.show) # Load XEM data to DB for show sickbeard.scene_numbering.xem_refresh(self.show.indexerid, self.show.indexer, force=True) # check if show has XEM mapping so we can determin if searches should go by scene numbering or indexer numbering. if not self.scene and sickbeard.scene_numbering.get_xem_numbering_for_show(self.show.indexerid, self.show.indexer): self.show.scene = 1 # After initial add, set to default_status_after. self.show.default_ep_status = self.default_status_after self.finish() def _finishEarly(self): if self.show != None: sickbeard.showQueueScheduler.action.removeShow(self.show) self.finish() class QueueItemRefresh(ShowQueueItem): def __init__(self, show=None, force=False): ShowQueueItem.__init__(self, ShowQueueActions.REFRESH, show) # do refreshes first because they're quick self.priority = generic_queue.QueuePriorities.NORMAL # force refresh certain items self.force = force def run(self): ShowQueueItem.run(self) logger.log(u"Performing refresh on " + self.show.name) self.show.refreshDir() self.show.writeMetadata() #if self.force: # self.show.updateMetadata() self.show.populateCache() # Load XEM data to DB for show sickbeard.scene_numbering.xem_refresh(self.show.indexerid, self.show.indexer) self.finish() class QueueItemRename(ShowQueueItem): def __init__(self, show=None): ShowQueueItem.__init__(self, ShowQueueActions.RENAME, show) def run(self): ShowQueueItem.run(self) logger.log(u"Performing rename on " + self.show.name) try: show_loc = self.show.location except exceptions.ShowDirNotFoundException: logger.log(u"Can't perform rename on " + self.show.name + " when the show dir is missing.", logger.WARNING) return ep_obj_rename_list = [] ep_obj_list = self.show.getAllEpisodes(has_location=True) for cur_ep_obj in ep_obj_list: # Only want to rename if we have a location if cur_ep_obj.location: if cur_ep_obj.relatedEps: # do we have one of multi-episodes in the rename list already have_already = False for cur_related_ep in cur_ep_obj.relatedEps + [cur_ep_obj]: if cur_related_ep in ep_obj_rename_list: have_already = True break if not have_already: ep_obj_rename_list.append(cur_ep_obj) else: ep_obj_rename_list.append(cur_ep_obj) for cur_ep_obj in ep_obj_rename_list: cur_ep_obj.rename() self.finish() class QueueItemSubtitle(ShowQueueItem): def __init__(self, show=None): ShowQueueItem.__init__(self, ShowQueueActions.SUBTITLE, show) def run(self): ShowQueueItem.run(self) logger.log(u"Downloading subtitles for " + self.show.name) self.show.downloadSubtitles() self.finish() class QueueItemUpdate(ShowQueueItem): def __init__(self, show=None): ShowQueueItem.__init__(self, ShowQueueActions.UPDATE, show) self.force = False def run(self): ShowQueueItem.run(self) logger.log(u"Beginning update of " + self.show.name, logger.DEBUG) logger.log(u"Retrieving show info from " + sickbeard.indexerApi(self.show.indexer).name + "", logger.DEBUG) try: self.show.loadFromIndexer(cache=not self.force) except sickbeard.indexer_error, e: logger.log(u"Unable to contact " + sickbeard.indexerApi(self.show.indexer).name + ", aborting: " + ex(e), logger.WARNING) return except sickbeard.indexer_attributenotfound, e: logger.log(u"Data retrieved from " + sickbeard.indexerApi( self.show.indexer).name + " was incomplete, aborting: " + ex(e), logger.ERROR) return logger.log(u"Retrieving show info from IMDb", logger.DEBUG) try: self.show.loadIMDbInfo() except imdb_exceptions.IMDbError, e: logger.log(u" Something wrong on IMDb api: " + ex(e), logger.WARNING) except Exception, e: logger.log(u"Error loading IMDb info: " + ex(e), logger.ERROR) logger.log(traceback.format_exc(), logger.DEBUG) # have to save show before reading episodes from db try: self.show.saveToDB() except Exception, e: logger.log(u"Error saving show info to the database: " + ex(e), logger.ERROR) logger.log(traceback.format_exc(), logger.DEBUG) # get episode list from DB logger.log(u"Loading all episodes from the database", logger.DEBUG) DBEpList = self.show.loadEpisodesFromDB() # get episode list from TVDB logger.log(u"Loading all episodes from " + sickbeard.indexerApi(self.show.indexer).name + "", logger.DEBUG) try: IndexerEpList = self.show.loadEpisodesFromIndexer(cache=not self.force) except sickbeard.indexer_exception, e: logger.log(u"Unable to get info from " + sickbeard.indexerApi( self.show.indexer).name + ", the show info will not be refreshed: " + ex(e), logger.ERROR) IndexerEpList = None if IndexerEpList is None: logger.log(u"No data returned from " + sickbeard.indexerApi( self.show.indexer).name + ", unable to update this show", logger.ERROR) else: # for each ep we found on the Indexer delete it from the DB list for curSeason in IndexerEpList: for curEpisode in IndexerEpList[curSeason]: curEp = self.show.getEpisode(curSeason, curEpisode) curEp.saveToDB() if curSeason in DBEpList and curEpisode in DBEpList[curSeason]: del DBEpList[curSeason][curEpisode] # remaining episodes in the DB list are not on the indexer, just delete them from the DB for curSeason in DBEpList: for curEpisode in DBEpList[curSeason]: logger.log(u"Permanently deleting episode " + str(curSeason) + "x" + str( curEpisode) + " from the database", logger.INFO) curEp = self.show.getEpisode(curSeason, curEpisode) try: curEp.deleteEpisode() except exceptions.EpisodeDeletedException: pass # save show again, in case episodes have changed try: self.show.saveToDB() except Exception, e: logger.log(u"Error saving show info to the database: " + ex(e), logger.ERROR) logger.log(traceback.format_exc(), logger.DEBUG) logger.log(u"Finished update of " + self.show.name, logger.DEBUG) sickbeard.showQueueScheduler.action.refreshShow(self.show, self.force) self.finish() class QueueItemForceUpdate(QueueItemUpdate): def __init__(self, show=None): ShowQueueItem.__init__(self, ShowQueueActions.FORCEUPDATE, show) self.force = True class QueueItemRemove(ShowQueueItem): def __init__(self, show=None, full=False): ShowQueueItem.__init__(self, ShowQueueActions.REMOVE, show) # lets make sure this happens before any other high priority actions self.priority = generic_queue.QueuePriorities.HIGH + generic_queue.QueuePriorities.HIGH self.full = full def run(self): ShowQueueItem.run(self) logger.log(u"Removing %s" % self.show.name) self.show.deleteShow(full=self.full) if sickbeard.USE_TRAKT: try: sickbeard.traktCheckerScheduler.action.removeShowFromTraktLibrary(self.show) except Exception as e: logger.log(u"Unable to delete show from Trakt: %s. Error: %s" % (self.show.name, ex(e)),logger.WARNING) self.finish()
gpl-3.0
-8,123,828,560,539,287,000
38.36391
213
0.611147
false
inteos/IBAdmin
utils/Collect/Client.py
1
3095
# -*- coding: UTF-8 -*- # # Copyright (c) 2015-2019 by Inteos Sp. z o.o. # All rights reserved. See LICENSE file for details. # from __future__ import print_function import psycopg2 import psycopg2.extras import lib PARAMS = {} CLIENTS = [] STAT = {} NR = 0 def setparam(cur, param, types, descr, unit, chart, display, color, box): parid = lib.getsetparam(cur, param, types, descr, unit, chart, display, color, box) PARAMS[param] = parid lib.setstat(cur, parid) def clientlist(conn, fg): cur = conn.cursor(cursor_factory=psycopg2.extras.DictCursor) curparam = conn.cursor(cursor_factory=psycopg2.extras.DictCursor) cur.execute("select R.name as name from config_confcomponent C, config_confrtype T, config_confresource R where C.type='D' and C.compid=R.compid and T.typeid=R.type and T.name='Client';") for client in cur: name = client['name'] if name not in CLIENTS: CLIENTS.append(name) setparam(curparam, "bacula.client."+name+".status", 'N', "Status of bacula-fd agent service at "+name, "Status", 1, 6, '#001F3F', 'box-primary') global NR NR = cur.rowcount param = PARAMS["bacula.client.number"] lib.update_stat_n(cur, param, NR) if fg > 1: print(PARAMS) print(CLIENTS) cur.close() curparam.close() def checkclient(name): out = lib.bconsolecommand('.status client=\"'+name+'\" header') for line in out: if line.startswith('version='): STAT[name] = 0 return 1 STAT[name] = NR * 2 return 0 def init(conn, fg): cur = conn.cursor(cursor_factory=psycopg2.extras.DictCursor) # chart: 1 - lines, 2 - bars, 3 - area # display: # 1 - autoscale, integer, min zero # 2 - percent display # 3 - autoscale, integer # 4 - autoscale, decimal point # 5 - autoscale, decimal point, min zero # 6 - binary status display [online/offline] # unit, chart, display, color, box setparam(cur, "bacula.client.number", 'N', "Number of bacula-fd clients", 'Number', 1, 1, '#3c8dbc', 'box-info') if fg > 1: print (PARAMS) cur.close() def collect(conn, fg): clientlist(conn, fg) cur = conn.cursor(cursor_factory=psycopg2.extras.DictCursor) for client in CLIENTS: if STAT.get(client, 0) == 0: # last check was ok or never checked if fg > 1: print ("cheking ", client) out = checkclient(client) param = PARAMS["bacula.client."+client+".status"] lib.update_stat_n(cur, param, out) if out == 0: if fg > 1: print ("Timeout in checking client "+client+" !") # TODO zastanowić się jak rozwiązać problem przerywania testu dla działających klientów # CLIENTS.append(CLIENTS.pop(CLIENTS.index(client))) break else: STAT[client] -= 1 if fg > 1: print (STAT) cur.close()
agpl-3.0
6,708,109,047,721,927,000
31.505263
191
0.584845
false
DanielSBrown/osf.io
website/project/licenses/__init__.py
10
3353
import functools import json import os import warnings from modularodm import fields, Q from modularodm.exceptions import NoResultsFound from framework.mongo import ( ObjectId, StoredObject, utils as mongo_utils ) from website import settings def _serialize(fields, instance): return { field: getattr(instance, field) for field in fields } serialize_node_license = functools.partial(_serialize, ('id', 'name', 'text')) def serialize_node_license_record(node_license_record): if node_license_record is None: return {} ret = serialize_node_license(node_license_record.node_license) ret.update(_serialize(('year', 'copyright_holders'), node_license_record)) return ret @mongo_utils.unique_on(['id', '_id']) class NodeLicense(StoredObject): _id = fields.StringField(primary=True, default=lambda: str(ObjectId())) id = fields.StringField(required=True, unique=True, editable=False) name = fields.StringField(required=True, unique=True) text = fields.StringField(required=True) properties = fields.StringField(list=True) class NodeLicenseRecord(StoredObject): _id = fields.StringField(primary=True, default=lambda: str(ObjectId())) node_license = fields.ForeignField('nodelicense', required=True) # Deliberately left as a StringField to support year ranges (e.g. 2012-2015) year = fields.StringField() copyright_holders = fields.StringField(list=True) @property def name(self): return self.node_license.name if self.node_license else None @property def text(self): return self.node_license.text if self.node_license else None @property def id(self): return self.node_license.id if self.node_license else None def to_json(self): return serialize_node_license_record(self) def copy(self): copied = NodeLicenseRecord( node_license=self.node_license, year=self.year, copyright_holders=self.copyright_holders ) copied.save() return copied def ensure_licenses(warn=True): with open( os.path.join( settings.APP_PATH, 'node_modules', 'list-of-licenses', 'dist', 'list-of-licenses.json' ) ) as fp: licenses = json.loads(fp.read()) for id, info in licenses.items(): name = info['name'] text = info['text'] properties = info.get('properties', []) node_license = None try: node_license = NodeLicense.find_one( Q('id', 'eq', id) ) except NoResultsFound: if warn: warnings.warn( 'License {name} ({id}) not already in the database. Adding it now.'.format( name=name, id=id ) ) node_license = NodeLicense( id=id, name=name, text=text, properties=properties ) else: node_license.name = name node_license.text = text node_license.properties = properties node_license.save()
apache-2.0
-6,147,909,438,561,658,000
28.156522
99
0.581569
false
petewarden/tensorflow
tensorflow/compiler/tests/bucketize_op_test.py
14
3065
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for bucketize_op.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.compiler.tests import xla_test from tensorflow.python.framework import dtypes from tensorflow.python.framework import errors_impl from tensorflow.python.framework import test_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import math_ops from tensorflow.python.platform import test class BucketizationOpTest(xla_test.XLATestCase): def testInt(self): with self.session() as sess: p = array_ops.placeholder(dtypes.int32) with self.test_scope(): op = math_ops._bucketize(p, boundaries=[0, 3, 8, 11]) expected_out = [0, 1, 1, 2, 2, 3, 3, 4, 4] self.assertAllEqual(expected_out, sess.run(op, {p: [-5, 0, 2, 3, 5, 8, 10, 11, 12]})) def testFloat(self): with self.session() as sess: p = array_ops.placeholder(dtypes.float32) with self.test_scope(): op = math_ops._bucketize(p, boundaries=[0., 3., 8., 11.]) expected_out = [0, 1, 1, 2, 2, 3, 3, 4, 4] self.assertAllEqual( expected_out, sess.run(op, {p: [-5., 0., 2., 3., 5., 8., 10., 11., 12.]})) def test2DInput(self): with self.session() as sess: p = array_ops.placeholder(dtypes.float32) with self.test_scope(): op = math_ops._bucketize(p, boundaries=[0, 3, 8, 11]) expected_out = [[0, 1, 1, 2, 2], [3, 3, 4, 4, 1]] self.assertAllEqual( expected_out, sess.run(op, {p: [[-5, 0, 2, 3, 5], [8, 10, 11, 12, 0]]})) @test_util.disable_mlir_bridge("Error handling") def testInvalidBoundariesOrder(self): with self.session() as sess: p = array_ops.placeholder(dtypes.int32) with self.test_scope(): op = math_ops._bucketize(p, boundaries=[0, 8, 3, 11]) with self.assertRaisesRegex(errors_impl.InvalidArgumentError, "Expected sorted boundaries"): sess.run(op, {p: [-5, 0]}) def testBoundariesNotList(self): with self.session(): with self.assertRaisesRegex(TypeError, "Expected list.*"): p = array_ops.placeholder(dtypes.int32) with self.test_scope(): math_ops._bucketize(p, boundaries=0) if __name__ == "__main__": test.main()
apache-2.0
8,985,892,302,065,821,000
37.3125
80
0.62447
false
ISIFoundation/influenzanet-website
apps/accounts/forms.py
1
3653
from django import forms from django.utils.translation import ugettext_lazy as _ from django.contrib.auth.forms import UserCreationForm, UserChangeForm from django.conf import settings from django.contrib.auth.models import User from registration.forms import RegistrationForm from apps.reminder.models import UserReminderInfo attrs_dict = {'class': 'required'} class UnicodeRegistrationForm(RegistrationForm): username = forms.RegexField(regex=r'(?u)^[\w.@+-]+$', max_length=30, widget=forms.TextInput(attrs=attrs_dict), label=_("Username"), error_messages={'invalid': _("This value must contain only letters, numbers and underscores.")}) class UnicodeUserChangeForm(UserChangeForm): username = forms.RegexField(label=_("Username"), max_length=30, regex=r'(?u)^[\w.@+-]+$', help_text = _("Required. 30 characters or fewer. Letters, digits and @/./+/-/_ only."), error_messages = {'invalid': _("This value may contain only letters, numbers and @/./+/-/_ characters.")}) class UnicodeUserCreationForm(UserCreationForm): username = forms.RegexField(label=_("Username"), max_length=30, regex=r'(?u)^[\w.@+-]+$', help_text = _("Required. 30 characters or fewer. Letters, digits and @/./+/-/_ only."), error_messages = {'invalid': _("This value may contain only letters, numbers and @/./+/-/_ characters.")}) class EmailSettingsForm(forms.Form): email = forms.EmailField(label=_("Email")) send_reminders = forms.BooleanField(label=_("Send reminders"), help_text=_("Check this box if you wish to receive weekly reminders throughout the flu season"), required=False) language = forms.ChoiceField(label=_("Language"), choices=settings.LANGUAGES) def __init__(self, *args, **kwargs): self.instance = kwargs.pop('instance') self.reminder_info, _ = UserReminderInfo.objects.get_or_create(user=self.instance, defaults={'active': True, 'last_reminder': self.instance.date_joined}) initial = kwargs.pop('initial', {}) initial['email'] = self.instance.email initial['send_reminders'] = self.reminder_info.active initial['language'] = self.reminder_info.language if self.reminder_info.language else settings.LANGUAGE_CODE kwargs['initial'] = initial super(EmailSettingsForm, self).__init__(*args, **kwargs) if len(settings.LANGUAGES) == 1: del self.fields['language'] def clean_email(self): email = self.cleaned_data['email'] if User.objects.exclude(id=self.instance.id).filter(email=email).count(): raise forms.ValidationError(_("This email is already in use")) return email def save(self): if self.instance.email == self.instance.username: self.instance.username = self.cleaned_data['email'][:30] self.instance.email = self.cleaned_data['email'] self.reminder_info.active = self.cleaned_data['send_reminders'] if 'language' in self.cleaned_data: self.reminder_info.language = self.cleaned_data['language'] self.instance.save() self.reminder_info.save() class UsernameForm(forms.ModelForm): class Meta: model = User fields = ('username', ) def clean_username(self): value = self.cleaned_data['username'] if User.objects.exclude(pk=self.instance.pk).filter(username=value).count(): raise forms.ValidationError(_("A user with this username already exists")) return value
agpl-3.0
-828,040,422,963,893,800
43.54878
179
0.644128
false
breezjw/bigcouch
couchjs/scons/scons-local-2.0.1/SCons/Tool/g77.py
61
2486
"""engine.SCons.Tool.g77 Tool-specific initialization for g77. There normally shouldn't be any need to import this module directly. It will usually be imported through the generic SCons.Tool.Tool() selection method. """ # # Copyright (c) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 The SCons Foundation # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY # KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE # WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # __revision__ = "src/engine/SCons/Tool/g77.py 5134 2010/08/16 23:02:40 bdeegan" import SCons.Util from SCons.Tool.FortranCommon import add_all_to_env, add_f77_to_env compilers = ['g77', 'f77'] def generate(env): """Add Builders and construction variables for g77 to an Environment.""" add_all_to_env(env) add_f77_to_env(env) fcomp = env.Detect(compilers) or 'g77' if env['PLATFORM'] in ['cygwin', 'win32']: env['SHFORTRANFLAGS'] = SCons.Util.CLVar('$FORTRANFLAGS') env['SHF77FLAGS'] = SCons.Util.CLVar('$F77FLAGS') else: env['SHFORTRANFLAGS'] = SCons.Util.CLVar('$FORTRANFLAGS -fPIC') env['SHF77FLAGS'] = SCons.Util.CLVar('$F77FLAGS -fPIC') env['FORTRAN'] = fcomp env['SHFORTRAN'] = '$FORTRAN' env['F77'] = fcomp env['SHF77'] = '$F77' env['INCFORTRANPREFIX'] = "-I" env['INCFORTRANSUFFIX'] = "" env['INCF77PREFIX'] = "-I" env['INCF77SUFFIX'] = "" def exists(env): return env.Detect(compilers) # Local Variables: # tab-width:4 # indent-tabs-mode:nil # End: # vim: set expandtab tabstop=4 shiftwidth=4:
apache-2.0
7,687,149,388,932,123,000
33.054795
95
0.71078
false
childresslab/MicrocavityExp1
hardware/simple_data_acq.py
2
2043
# -*- coding: utf-8 -*- """ Simple data acquisition from serial port. Qudi is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Qudi is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Qudi. If not, see <http://www.gnu.org/licenses/>. Copyright (c) the Qudi Developers. See the COPYRIGHT.txt file at the top-level directory of this distribution and at <https://github.com/Ulm-IQO/qudi/> """ import visa from core.module import Base, ConfigOption from interface.simple_data_interface import SimpleDataInterface class SimpleAcq(Base, SimpleDataInterface): """ Read human readable numbers from serial port. """ _modclass = 'simple' _modtype = 'hardware' resource = ConfigOption('interface', 'ASRL1::INSTR', missing='warn') baudrate = ConfigOption('baudrate', 115200, missing='warn') def on_activate(self): """ Activate module. """ self.rm = visa.ResourceManager() self.log.debug('Resources: {0}'.format(self.rm.list_resources())) self.my_instrument = self.rm.open_resource(self.resource, baud_rate=self.baudrate) def on_deactivate(self): """ Deactivate module. """ self.my_instrument.close() self.rm.close() def getData(self): """ Read one value from serial port. @return int: vaue form serial port """ try: return int(self.my_instrument.read_raw().decode('utf-8').rstrip().split()[1]) except: return 0 def getChannels(self): """ Number of channels. @return int: number of channels """ return 1
gpl-3.0
5,258,174,774,416,298,000
30.430769
90
0.670093
false
duncanmmacleod/gwpy
gwpy/signal/spectral/_scipy.py
3
5371
# -*- coding: utf-8 -*- # Copyright (C) Duncan Macleod (2014-2020) # # This file is part of GWpy. # # GWpy is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # GWpy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GWpy. If not, see <http://www.gnu.org/licenses/>. """GWpy API to the scipy.signal FFT routines """ import numpy import scipy.signal from ...frequencyseries import FrequencySeries from ._utils import scale_timeseries_unit from . import _registry as fft_registry __author__ = 'Duncan Macleod <[email protected]>' # -- density scaling methods -------------------------------------------------- def _spectral_density(timeseries, segmentlength, noverlap=None, name=None, sdfunc=scipy.signal.welch, **kwargs): """Calculate a generic spectral density of this `TimeSeries` """ # compute spectral density freqs, psd_ = sdfunc( timeseries.value, noverlap=noverlap, fs=timeseries.sample_rate.decompose().value, nperseg=segmentlength, **kwargs ) # generate FrequencySeries and return unit = scale_timeseries_unit( timeseries.unit, kwargs.get('scaling', 'density'), ) return FrequencySeries( psd_, unit=unit, frequencies=freqs, name=(name or timeseries.name), epoch=timeseries.epoch, channel=timeseries.channel, ) def welch(timeseries, segmentlength, **kwargs): """Calculate a PSD using Welch's method """ kwargs.setdefault('average', 'mean') return _spectral_density(timeseries, segmentlength, **kwargs) def bartlett(timeseries, segmentlength, **kwargs): """Calculate a PSD using Bartlett's method """ kwargs.pop('noverlap', None) return _spectral_density(timeseries, segmentlength, noverlap=0, **kwargs) def median(timeseries, segmentlength, **kwargs): """Calculate a PSD using Welch's method with a median average """ kwargs.setdefault('average', 'median') return _spectral_density(timeseries, segmentlength, **kwargs) # register for func in (welch, bartlett, median): fft_registry.register_method(func, name=func.__name__) # DEPRECATED: fft_registry.register_method(func, name='scipy-{}'.format(func.__name__)) # -- others ------------------------------------------------------------------- def rayleigh(timeseries, segmentlength, noverlap=0, window='hann'): """Calculate a Rayleigh statistic spectrum Parameters ---------- timeseries : `~gwpy.timeseries.TimeSeries` input `TimeSeries` data. segmentlength : `int` number of samples in single average. noverlap : `int` number of samples to overlap between segments, passing `None` will choose based on the window method, default: ``0`` window : `str`, `numpy.ndarray`, optional window function to apply to ``timeseries`` prior to FFT, see :func:`scipy.signal.get_window` for details on acceptable formats Returns ------- spectrum : `~gwpy.frequencyseries.FrequencySeries` average power `FrequencySeries` """ stepsize = segmentlength - noverlap if noverlap: numsegs = 1 + int((timeseries.size - segmentlength) / float(noverlap)) else: numsegs = int(timeseries.size // segmentlength) tmpdata = numpy.ndarray((numsegs, int(segmentlength//2 + 1))) for i in range(numsegs): tmpdata[i, :] = welch( timeseries[i*stepsize:i*stepsize+segmentlength], segmentlength, window=window) std = tmpdata.std(axis=0) mean = tmpdata.mean(axis=0) return FrequencySeries(std/mean, unit='', copy=False, f0=0, epoch=timeseries.epoch, df=timeseries.sample_rate.value/segmentlength, channel=timeseries.channel, name='Rayleigh spectrum of %s' % timeseries.name) def csd(timeseries, other, segmentlength, noverlap=None, **kwargs): """Calculate the CSD of two `TimeSeries` using Welch's method Parameters ---------- timeseries : `~gwpy.timeseries.TimeSeries` time-series of data other : `~gwpy.timeseries.TimeSeries` time-series of data segmentlength : `int` number of samples in single average. noverlap : `int` number of samples to overlap between segments, defaults to 50%. **kwargs other keyword arguments are passed to :meth:`scipy.signal.csd` Returns ------- spectrum : `~gwpy.frequencyseries.FrequencySeries` average power `FrequencySeries` See also -------- scipy.signal.csd """ # calculate CSD kwargs.setdefault('y', other.value) return _spectral_density( timeseries, segmentlength, noverlap=noverlap, name=str(timeseries.name)+'---'+str(other.name), sdfunc=scipy.signal.csd, **kwargs)
gpl-3.0
7,788,211,428,837,832,000
30.409357
79
0.63936
false
spoki0/AI3
AI3/opencv/sources/modules/ts/misc/xls-report.py
1
15757
#!/usr/bin/env python """ This script can generate XLS reports from OpenCV tests' XML output files. To use it, first, create a directory for each machine you ran tests on. Each such directory will become a sheet in the report. Put each XML file into the corresponding directory. Then, create your configuration file(s). You can have a global configuration file (specified with the -c option), and per-sheet configuration files, which must be called sheet.conf and placed in the directory corresponding to the sheet. The settings in the per-sheet configuration file will override those in the global configuration file, if both are present. A configuration file must consist of a Python dictionary. The following keys will be recognized: * 'comparisons': [{'from': string, 'to': string}] List of configurations to compare performance between. For each item, the sheet will have a column showing speedup from configuration named 'from' to configuration named "to". * 'configuration_matchers': [{'properties': {string: object}, 'name': string}] Instructions for matching test run property sets to configuration names. For each found XML file: 1) All attributes of the root element starting with the prefix 'cv_' are placed in a dictionary, with the cv_ prefix stripped and the cv_module_name element deleted. 2) The first matcher for which the XML's file property set contains the same keys with equal values as its 'properties' dictionary is searched for. A missing property can be matched by using None as the value. Corollary 1: you should place more specific matchers before less specific ones. Corollary 2: an empty 'properties' dictionary matches every property set. 3) If a matching matcher is found, its 'name' string is presumed to be the name of the configuration the XML file corresponds to. A warning is printed if two different property sets match to the same configuration name. 4) If a such a matcher isn't found, if --include-unmatched was specified, the configuration name is assumed to be the relative path from the sheet's directory to the XML file's containing directory. If the XML file isinstance directly inside the sheet's directory, the configuration name is instead a dump of all its properties. If --include-unmatched wasn't specified, the XML file is ignored and a warning is printed. * 'configurations': [string] List of names for compile-time and runtime configurations of OpenCV. Each item will correspond to a column of the sheet. * 'module_colors': {string: string} Mapping from module name to color name. In the sheet, cells containing module names from this mapping will be colored with the corresponding color. You can find the list of available colors here: <http://www.simplistix.co.uk/presentations/python-excel.pdf>. * 'sheet_name': string Name for the sheet. If this parameter is missing, the name of sheet's directory will be used. * 'sheet_properties': [(string, string)] List of arbitrary (key, value) pairs that somehow describe the sheet. Will be dumped into the first row of the sheet in string form. Note that all keys are optional, although to get useful results, you'll want to specify at least 'configurations' and 'configuration_matchers'. Finally, run the script. Use the --help option for usage information. """ from __future__ import division import ast import errno import fnmatch import logging import numbers import os, os.path import re from argparse import ArgumentParser from glob import glob from itertools import ifilter import xlwt from testlog_parser import parseLogFile re_image_size = re.compile(r'^ \d+ x \d+$', re.VERBOSE) re_data_type = re.compile(r'^ (?: 8 | 16 | 32 | 64 ) [USF] C [1234] $', re.VERBOSE) time_style = xlwt.easyxf(num_format_str='#0.00') no_time_style = xlwt.easyxf('pattern: pattern solid, fore_color gray25') speedup_style = time_style good_speedup_style = xlwt.easyxf('font: color green', num_format_str='#0.00') bad_speedup_style = xlwt.easyxf('font: color red', num_format_str='#0.00') no_speedup_style = no_time_style error_speedup_style = xlwt.easyxf('pattern: pattern solid, fore_color orange') header_style = xlwt.easyxf('font: bold true; alignment: horizontal centre, vertical top, wrap True') subheader_style = xlwt.easyxf('alignment: horizontal centre, vertical top') class Collector(object): def __init__(self, config_match_func, include_unmatched): self.__config_cache = {} self.config_match_func = config_match_func self.include_unmatched = include_unmatched self.tests = {} self.extra_configurations = set() # Format a sorted sequence of pairs as if it was a dictionary. # We can't just use a dictionary instead, since we want to preserve the sorted order of the keys. @staticmethod def __format_config_cache_key(pairs, multiline=False): return ( ('{\n' if multiline else '{') + (',\n' if multiline else ', ').join( (' ' if multiline else '') + repr(k) + ': ' + repr(v) for (k, v) in pairs) + ('\n}\n' if multiline else '}') ) def collect_from(self, xml_path, default_configuration): run = parseLogFile(xml_path) module = run.properties['module_name'] properties = run.properties.copy() del properties['module_name'] props_key = tuple(sorted(properties.iteritems())) # dicts can't be keys if props_key in self.__config_cache: configuration = self.__config_cache[props_key] else: configuration = self.config_match_func(properties) if configuration is None: if self.include_unmatched: if default_configuration is not None: configuration = default_configuration else: configuration = Collector.__format_config_cache_key(props_key, multiline=True) self.extra_configurations.add(configuration) else: logging.warning('failed to match properties to a configuration: %s', Collector.__format_config_cache_key(props_key)) else: same_config_props = [it[0] for it in self.__config_cache.iteritems() if it[1] == configuration] if len(same_config_props) > 0: logging.warning('property set %s matches the same configuration %r as property set %s', Collector.__format_config_cache_key(props_key), configuration, Collector.__format_config_cache_key(same_config_props[0])) self.__config_cache[props_key] = configuration if configuration is None: return module_tests = self.tests.setdefault(module, {}) for test in run.tests: test_results = module_tests.setdefault((test.shortName(), test.param()), {}) new_result = test.get("gmean") if test.status == 'run' else test.status test_results[configuration] = min( test_results.get(configuration), new_result, key=lambda r: (1, r) if isinstance(r, numbers.Number) else (2,) if r is not None else (3,) ) # prefer lower result; prefer numbers to errors and errors to nothing def make_match_func(matchers): def match_func(properties): for matcher in matchers: if all(properties.get(name) == value for (name, value) in matcher['properties'].iteritems()): return matcher['name'] return None return match_func def main(): arg_parser = ArgumentParser(description='Build an XLS performance report.') arg_parser.add_argument('sheet_dirs', nargs='+', metavar='DIR', help='directory containing perf test logs') arg_parser.add_argument('-o', '--output', metavar='XLS', default='report.xls', help='name of output file') arg_parser.add_argument('-c', '--config', metavar='CONF', help='global configuration file') arg_parser.add_argument('--include-unmatched', action='store_true', help='include results from XML files that were not recognized by configuration matchers') arg_parser.add_argument('--show-times-per-pixel', action='store_true', help='for tests that have an image size parameter, show per-pixel time, as well as total time') args = arg_parser.parse_args() logging.basicConfig(format='%(levelname)s: %(message)s', level=logging.DEBUG) if args.config is not None: with open(args.config) as global_conf_file: global_conf = ast.literal_eval(global_conf_file.read()) else: global_conf = {} wb = xlwt.Workbook() for sheet_path in args.sheet_dirs: try: with open(os.path.join(sheet_path, 'sheet.conf')) as sheet_conf_file: sheet_conf = ast.literal_eval(sheet_conf_file.read()) except IOError as ioe: if ioe.errno != errno.ENOENT: raise sheet_conf = {} logging.debug('no sheet.conf for %s', sheet_path) sheet_conf = dict(global_conf.items() + sheet_conf.items()) config_names = sheet_conf.get('configurations', []) config_matchers = sheet_conf.get('configuration_matchers', []) collector = Collector(make_match_func(config_matchers), args.include_unmatched) for root, _, filenames in os.walk(sheet_path): logging.info('looking in %s', root) for filename in fnmatch.filter(filenames, '*.xml'): if os.path.normpath(sheet_path) == os.path.normpath(root): default_conf = None else: default_conf = os.path.relpath(root, sheet_path) collector.collect_from(os.path.join(root, filename), default_conf) config_names.extend(sorted(collector.extra_configurations - set(config_names))) sheet = wb.add_sheet(sheet_conf.get('sheet_name', os.path.basename(os.path.abspath(sheet_path)))) sheet_properties = sheet_conf.get('sheet_properties', []) sheet.write(0, 0, 'Properties:') sheet.write(0, 1, 'N/A' if len(sheet_properties) == 0 else ' '.join(str(k) + '=' + repr(v) for (k, v) in sheet_properties)) sheet.row(2).height = 800 sheet.panes_frozen = True sheet.remove_splits = True sheet_comparisons = sheet_conf.get('comparisons', []) row = 2 col = 0 for (w, caption) in [ (2500, 'Module'), (10000, 'Test'), (2000, 'Image\nwidth'), (2000, 'Image\nheight'), (2000, 'Data\ntype'), (7500, 'Other parameters')]: sheet.col(col).width = w if args.show_times_per_pixel: sheet.write_merge(row, row + 1, col, col, caption, header_style) else: sheet.write(row, col, caption, header_style) col += 1 for config_name in config_names: if args.show_times_per_pixel: sheet.col(col).width = 3000 sheet.col(col + 1).width = 3000 sheet.write_merge(row, row, col, col + 1, config_name, header_style) sheet.write(row + 1, col, 'total, ms', subheader_style) sheet.write(row + 1, col + 1, 'per pixel, ns', subheader_style) col += 2 else: sheet.col(col).width = 4000 sheet.write(row, col, config_name, header_style) col += 1 col += 1 # blank column between configurations and comparisons for comp in sheet_comparisons: sheet.col(col).width = 4000 caption = comp['to'] + '\nvs\n' + comp['from'] if args.show_times_per_pixel: sheet.write_merge(row, row + 1, col, col, caption, header_style) else: sheet.write(row, col, caption, header_style) col += 1 row += 2 if args.show_times_per_pixel else 1 sheet.horz_split_pos = row sheet.horz_split_first_visible = row module_colors = sheet_conf.get('module_colors', {}) module_styles = {module: xlwt.easyxf('pattern: pattern solid, fore_color {}'.format(color)) for module, color in module_colors.iteritems()} for module, tests in sorted(collector.tests.iteritems()): for ((test, param), configs) in sorted(tests.iteritems()): sheet.write(row, 0, module, module_styles.get(module, xlwt.Style.default_style)) sheet.write(row, 1, test) param_list = param[1:-1].split(', ') if param.startswith('(') and param.endswith(')') else [param] image_size = next(ifilter(re_image_size.match, param_list), None) if image_size is not None: (image_width, image_height) = map(int, image_size.split('x', 1)) sheet.write(row, 2, image_width) sheet.write(row, 3, image_height) del param_list[param_list.index(image_size)] data_type = next(ifilter(re_data_type.match, param_list), None) if data_type is not None: sheet.write(row, 4, data_type) del param_list[param_list.index(data_type)] sheet.row(row).write(5, ' | '.join(param_list)) col = 6 for c in config_names: if c in configs: sheet.write(row, col, configs[c], time_style) else: sheet.write(row, col, None, no_time_style) col += 1 if args.show_times_per_pixel: sheet.write(row, col, xlwt.Formula('{0} * 1000000 / ({1} * {2})'.format( xlwt.Utils.rowcol_to_cell(row, col - 1), xlwt.Utils.rowcol_to_cell(row, 2), xlwt.Utils.rowcol_to_cell(row, 3) )), time_style ) col += 1 col += 1 # blank column for comp in sheet_comparisons: cmp_from = configs.get(comp["from"]) cmp_to = configs.get(comp["to"]) if isinstance(cmp_from, numbers.Number) and isinstance(cmp_to, numbers.Number): try: speedup = cmp_from / cmp_to sheet.write(row, col, speedup, good_speedup_style if speedup > 1.1 else bad_speedup_style if speedup < 0.9 else speedup_style) except ArithmeticError as e: sheet.write(row, col, None, error_speedup_style) else: sheet.write(row, col, None, no_speedup_style) col += 1 row += 1 if row % 1000 == 0: sheet.flush_row_data() wb.save(args.output) if __name__ == '__main__': main()
mit
-4,614,468,257,560,552,000
41.471698
114
0.584566
false
zaheerm/gst-python
testsuite/test_buffer.py
3
5921
# -*- Mode: Python -*- # vi:si:et:sw=4:sts=4:ts=4 # # gst-python - Python bindings for GStreamer # Copyright (C) 2002 David I. Lehn # Copyright (C) 2004 Johan Dahlin # Copyright (C) 2005 Edward Hervey # # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2.1 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this library; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA import sys import gc from common import gobject, gst, unittest, TestCase class BufferTest(TestCase): def testBufferBuffer(self): buf = gst.Buffer('test') assert str(buffer(buf)) == 'test' def testBufferStr(self): buffer = gst.Buffer('test') assert str(buffer) == 'test' def testBufferAlloc(self): bla = 'mooooooo' buffer = gst.Buffer(bla + '12345') gc.collect () assert str(buffer) == 'mooooooo12345' def testBufferBadConstructor(self): self.assertRaises(TypeError, gst.Buffer, 'test', 0) def testBufferStrNull(self): test_string = 't\0e\0s\0t\0' buffer = gst.Buffer(test_string) assert str(buffer) == test_string def testBufferSize(self): test_string = 'a little string' buffer = gst.Buffer(test_string) assert len(buffer) == len(test_string) assert hasattr(buffer, 'size') assert buffer.size == len(buffer) def testBufferCreateSub(self): s = '' for i in range(64): s += '%02d' % i buffer = gst.Buffer(s) self.assertEquals(len(buffer), 128) sub = buffer.create_sub(16, 16) self.assertEquals(sub.size, 16) self.assertEquals(sub.data, buffer.data[16:32]) self.assertEquals(sub.offset, gst.CLOCK_TIME_NONE) def testBufferMerge(self): buffer1 = gst.Buffer('foo') buffer2 = gst.Buffer('bar') merged_buffer = buffer1.merge(buffer2) assert str(merged_buffer) == 'foobar' def testBufferJoin(self): buffer1 = gst.Buffer('foo') buffer2 = gst.Buffer('bar') joined_buffer = buffer1.merge(buffer2) assert str(joined_buffer) == 'foobar' def testBufferSpan(self): buffer1 = gst.Buffer('foo') buffer2 = gst.Buffer('bar') spaned_buffer = buffer1.span(0L, buffer2, 6L) assert str(spaned_buffer) == 'foobar' def testBufferCopyOnWrite(self): s='test_vector' buffer = gst.Buffer(s) sub = buffer.create_sub(0, buffer.size) self.assertEquals(sub.size, buffer.size) out = sub.copy_on_write () self.assertEquals(out.size, sub.size) assert str(out) == str(buffer) out[5] = 'w' assert str(out) == 'test_wector' def testBufferFlagIsSet(self): buffer = gst.Buffer() # Off by default assert not buffer.flag_is_set(gst.BUFFER_FLAG_READONLY) # Try switching on and off buffer.flag_set(gst.BUFFER_FLAG_READONLY) assert buffer.flag_is_set(gst.BUFFER_FLAG_READONLY) buffer.flag_unset(gst.BUFFER_FLAG_READONLY) assert not buffer.flag_is_set(gst.BUFFER_FLAG_READONLY) # Try switching on and off buffer.flag_set(gst.BUFFER_FLAG_IN_CAPS) assert buffer.flag_is_set(gst.BUFFER_FLAG_IN_CAPS) buffer.flag_unset(gst.BUFFER_FLAG_IN_CAPS) assert not buffer.flag_is_set(gst.BUFFER_FLAG_IN_CAPS) def testAttrFlags(self): buffer = gst.Buffer() assert hasattr(buffer, "flags") assert isinstance(buffer.flags, int) def testAttrTimestamp(self): buffer = gst.Buffer() assert hasattr(buffer, "timestamp") assert isinstance(buffer.timestamp, long) assert buffer.timestamp == gst.CLOCK_TIME_NONE buffer.timestamp = 0 assert buffer.timestamp == 0 buffer.timestamp = 2**64 - 1 assert buffer.timestamp == 2**64 - 1 def testAttrDuration(self): buffer = gst.Buffer() assert hasattr(buffer, "duration") assert isinstance(buffer.duration, long) assert buffer.duration == gst.CLOCK_TIME_NONE buffer.duration = 0 assert buffer.duration == 0 buffer.duration = 2**64 - 1 assert buffer.duration == 2**64 - 1 def testAttrOffset(self): buffer = gst.Buffer() assert hasattr(buffer, "offset") assert isinstance(buffer.offset, long) assert buffer.offset == gst.CLOCK_TIME_NONE buffer.offset = 0 assert buffer.offset == 0 buffer.offset = 2**64 - 1 assert buffer.offset == 2**64 - 1 def testAttrOffset_end(self): buffer = gst.Buffer() assert hasattr(buffer, "offset_end") assert isinstance(buffer.offset_end, long) assert buffer.offset_end == gst.CLOCK_TIME_NONE buffer.offset_end = 0 assert buffer.offset_end == 0 buffer.offset_end = 2**64 - 1 assert buffer.offset_end == 2**64 - 1 def testBufferCaps(self): buffer = gst.Buffer() caps = gst.caps_from_string('foo/blah') gst.info("before settings caps") buffer.set_caps(caps) gst.info("after settings caps") c = buffer.get_caps() gst.info("after getting caps") self.assertEquals(caps, c) if __name__ == "__main__": unittest.main()
lgpl-2.1
-7,369,971,035,358,484,000
32.264045
74
0.619828
false
canfar/cadcstats
svc_plots/condor.py
1
26090
#!/Users/will/anaconda3/bin/python from elasticsearch import Elasticsearch, TransportError from elasticsearch.helpers import scan from elasticsearch_xpack import XPackClient import requests import pandas as pd import numpy as np import re from ipaddress import IPv4Address as ipv4, AddressValueError import time from bokeh.plotting import figure, output_file, show, save from bokeh.models import FuncTickFormatter, FixedTicker, NumeralTickFormatter, Div, Title, LinearAxis, Range1d from bokeh.charts import Bar, Donut from bokeh.layouts import gridplot, column, row es = 'http://users:[email protected]:9200' class Init(): def __init__(self, url = None, timeout = 120): self.timeout = timeout if not url: self.url = es else: self.url = url if not requests.get(self.url): print("Connection incorrect!") exit(0) def connect(self): return Elasticsearch(self.url, timeout = self.timeout) # Number of Batch Jobs Restarts def fig1(conn, idx): query = { "query" : { "match_all" : {} }, "aggs" : { "numres_peryr" : { "date_histogram" : { "field" : "@timestamp", "interval" : "year", "format" : "yyyy" }, "aggs" : { "res_ranges" : { "range" : { "field" : "NumJobStarts", # ranges are [from, to) "ranges" : [ {"to" : 1}, {"from" : 1, "to" : 2}, {"from" : 2, "to" : 6}, {"from" : 6} ] } } } } } } res = conn.search(index = idx, body = query) df = pd.DataFrame() for _ in res["aggregations"]["numres_peryr"]["buckets"]: yr = _["key_as_string"] events = [__["doc_count"] for __ in _["res_ranges"]["buckets"]] df = df.append(pd.DataFrame([events], columns = ["Never", "Once", "2-5", ">5"], index = [yr])) p = figure(plot_width = 1200, toolbar_location = "above") clr = ["blue", "purple", "orange", "green"] x = np.array([_ for _ in range(len(df))]) for i, col in enumerate(df.columns): p.vbar(x = x + i/5 - 0.3, top = np.sqrt(df[col]), bottom = 0, width = 0.15, legend = col, color = clr[i]) d = dict(zip(x, df.index)) p.xaxis[0].ticker = FixedTicker(ticks = x) p.xaxis[0].formatter = FuncTickFormatter(code = """dic = """ + str(d) + """ if (tick in dic) { return dic[tick] } else { return '' }""") y = np.array([0.1, 0.5, 1, 2, 4]) p.yaxis[0].ticker = FixedTicker(ticks = np.sqrt(y * 1e6)) p.yaxis[0].formatter = FuncTickFormatter(code = """return (tick**2 / 1e6).toLocaleString("en-US", { minimumFractionDigits: 1 })""") p.yaxis.axis_label = "Number of jobs (millions)" return column(Div(text = "<h1>Batch Processing Job Restarts</h1>", width = 600), p) # histogram of job duration vs machine duration def fig2(conn, idx): query = { "query" : { "bool" : { "must" : [ {"term" : {"JobStatus.keyword" : "Completed"}} ] } }, "aggs" : { "jobdur_ranges" : { "range" : { "field" : "JobDuration", # ranges are [from, to) "ranges" : [ {"to" : 10}, {"from" : 10, "to" : 60}, {"from" : 60, "to" : 600}, {"from" : 600, "to" : 3600}, {"from" : 3600, "to" : 18000}, {"from" : 18000, "to" : 36000}, {"from" : 36000, "to" : 180000}, {"from" : 180000, "to" : 252000}, {"from" : 252000} ] } }, "machdur_ranges" : { "range" : { "script" : { "lang" : "painless", "inline" : "doc['CompletionDate'].value - doc['QDate'].value" }, # ranges are [from, to) "ranges" : [ {"to" : 10}, {"from" : 10, "to" : 60}, {"from" : 60, "to" : 600}, {"from" : 600, "to" : 3600}, {"from" : 3600, "to" : 18000}, {"from" : 18000, "to" : 36000}, {"from" : 36000, "to" : 180000}, {"from" : 180000, "to" : 252000}, {"from" : 252000} ] } } } } res = conn.search(index = idx, body = query) df = pd.DataFrame() cols = ["<10s", "10s~1m", "1m~10m", "10m~1h", "1h~5h", "5h~10h", "10h~50h", "50h~70h", ">70h"] for i in ["jobdur_ranges", "machdur_ranges"]: df = df.append(pd.DataFrame([[_["doc_count"] for _ in res["aggregations"][i]["buckets"]]], columns = cols, index = [i])) df = df.T p = figure(plot_width = 1200, toolbar_location = "above") clr = ["blue", "purple", "orange", "green"] x = np.array([_ for _ in range(len(df))]) for i, col in enumerate(df.columns): p.vbar(x = x + i/5 - 0.10, top = np.sqrt(df[col]), bottom = 0, width = 0.2, color = clr[i], legend = "Machine" if col == "jobdur_ranges" else "User") d = dict(zip(x, df.index)) p.xaxis[0].ticker = FixedTicker(ticks = x) p.xaxis[0].formatter = FuncTickFormatter(code = """dic = """ + str(d) + """ if (tick in dic) { return dic[tick] } else { return '' }""") y = np.array([0.1, 0.5, 1, 2, 4]) p.yaxis[0].ticker = FixedTicker(ticks = np.sqrt(y * 1e6)) p.yaxis[0].formatter = FuncTickFormatter(code = """return (tick**2 / 1e6).toLocaleString("en-US", { minimumFractionDigits: 1 })""") p.yaxis.axis_label = "Number of jobs (millions)" return column(Div(text = "<h1>Batch Processing Jobs: Machine and User Duration</h1>", width = 1200), p) # Median of Machine and User Batch Job Duration def fig3(conn, idx): query = { "query" : { "bool" : { "must" : [ {"term" : {"JobStatus.keyword" : "Completed"}} ] } }, "aggs" : { "dur_peryr" : { "date_histogram" : { "field" : "@timestamp", "interval" : "year", "format" : "yyyy" }, "aggs" : { "jobdur_outlier" : { "percentiles" : { "field" : "JobDuration" } }, "machdur_outlier" : { "percentiles" : { "script" : { "lang" : "painless", "inline" : "doc['CompletionDate'].value - doc['QDate'].value" } } } } } } } res = conn.search(index = idx, body = query) df = pd.DataFrame() for _ in res["aggregations"]["dur_peryr"]["buckets"]: yr = _["key_as_string"] machdur_med = _["machdur_outlier"]["values"]["50.0"] jobdur_med = _["jobdur_outlier"]["values"]["50.0"] df = df.append(pd.DataFrame([[jobdur_med / 60, machdur_med / 60]], columns = ["jobdur_med", "machdur_med"], index = [yr])) p = figure(plot_width = 1200, toolbar_location = "above") clr = ["blue", "purple", "orange", "green"] x = np.array([_ for _ in range(len(df))]) for i, col in enumerate(df.columns): p.vbar(x = x + i/5 - 0.10, top = np.sqrt(df[col]), bottom = 0, width = 0.2, color = clr[i], legend = "Machine" if col == "jobdur_med" else "User") d = dict(zip(x, df.index)) p.xaxis[0].ticker = FixedTicker(ticks = x) p.xaxis[0].formatter = FuncTickFormatter(code = """dic = """ + str(d) + """ if (tick in dic) { return dic[tick] } else { return '' }""") y = np.array([5, 30, 100, 400, 1600]) p.yaxis[0].ticker = FixedTicker(ticks = np.sqrt(y)) p.yaxis[0].formatter = FuncTickFormatter(code = """return (tick**2).toLocaleString("en-US", { minimumFractionDigits: 0 })""") p.yaxis.axis_label = "Median of Duration (Mins)" return column(Div(text = "<h1>Median of Machine and User Batch Job Duration</h1>", width = 1200), p) # Histogram of User Job Duration / Machine Job Duration Ratio def fig4(conn, idx): query = { "query" : { "bool" : { "must" : [ {"term" : {"JobStatus.keyword" : "Completed"}} ] } }, "aggs": { "ratio" : { "histogram" : { "field" : "JobDuration", "interval" : 0.001, "script" : "_value / (doc['CompletionDate'].value - doc['QDate'].value)" } } } } res = conn.search(index = idx, body = query) df = pd.DataFrame() for _ in res["aggregations"]["ratio"]["buckets"]: df = df.append(pd.DataFrame([[_["doc_count"]]], columns = ["ratio"], index = ['{:.3f}'.format(_["key"])])) p = figure(plot_width = 1200, toolbar_location = "above") p.vbar(x = list(map(float, df.index.values)), top = df["ratio"], bottom = 0, width = 0.001) p.xaxis[0].formatter = NumeralTickFormatter(format = "0.00%") p.yaxis.axis_label = "Number of Events" return column(Div(text = "<h1>Histogram of Machine Job Duration / User Job Duration Ratio</h1>", width = 1200), p) # Number of Batch Processing Users def fig5(conn, idx): query = { "query" : { "match_all" : {} }, "aggs" : { "usr_peryr" : { "date_histogram" : { "field" : "@timestamp", "interval" : "year", "format" : "yyyy" }, "aggs" : { "unique_users" : { "cardinality" : { "field": "Owner.keyword" } } } } } } res = conn.search(index = idx, body = query) df = pd.DataFrame() for _ in res["aggregations"]["usr_peryr"]["buckets"]: yr = _["key_as_string"] val = _["unique_users"]["value"] df = df.append(pd.DataFrame([[val]], columns = ["uniq_usr"], index = [yr])) p = figure(plot_width = 1200, toolbar_location = "above") x = [_ for _ in range(len(df))] p.vbar(x = x, top = df["uniq_usr"], bottom = 0, width = 0.8) d = dict(zip(x, df.index)) p.xaxis[0].ticker = FixedTicker(ticks = x) p.xaxis[0].formatter = FuncTickFormatter(code = """dic = """ + str(d) + """ if (tick in dic) { return dic[tick] } else { return '' }""") p.yaxis[0].axis_label = "Number of Users" p.xaxis[0].axis_label = "Year" return column(Div(text = "<h1>Number of Batch Processing Users</h1>", width = 1200), p) # Request Ram/Dsk vs VM Ram/Dsk per VM Flavor def fig6(conn, idx): query = { "query" : { "bool" : { "must_not" : [ { "term": { "VMInstanceType.keyword" : "c4.med"} }, { "term": { "VMInstanceType.keyword" : "12345678-6341-470e-92b7-5142014e7c5e"}}, { "term": { "VMInstanceType.keyword" : "5c1ed3eb-6341-470e-92b7-5142014e7c5e"}} ] } }, "aggs" : { "grpby_vm" : { "terms" : { "field" : "VMInstanceType.keyword", "size" : 100 }, "aggs" : { "avg_dskreq" : { "avg": { "field" : "RequestDisk" } }, "avg_ramreq" : { "avg": { "field" : "RequestMemory" } }, "dskspec" : { "avg": { "field" : "VMSpec.DISK" } }, "ramspec" : { "avg": { "field" : "VMSpec.RAM" } } } } } } res = conn.search(index = idx, body = query) df = pd.DataFrame() for _ in res["aggregations"]["grpby_vm"]["buckets"]: vm = _["key"] avg_dskreq = _["avg_dskreq"]["value"] avg_ramreq = _["avg_ramreq"]["value"] dskspec = _["dskspec"]["value"] ramspec = _["ramspec"]["value"] df = df.append(pd.DataFrame([[vm, avg_dskreq / 1024, avg_ramreq, dskspec, ramspec]], columns = ["vm", "avg_dskreq", "avg_ramreq", "dskspec", "ramspec"])) VMAlias = { "c16.med":"13efd2a1-2fd8-48c4-822f-ce9bdc0e0004", "c2.med":"23090fc1-bdf7-433e-9804-a7ec3d11de08", "p8-12gb":"2cb70964-721d-47ff-badb-b702898b6fc2", "c4.hi":"5112ed51-d263-4cc7-8b0f-7ef4782f783c", "c2.low":"6c1ed3eb-6341-470e-92b7-5142014e7c5e", "c8.med":"72009191-d893-4a07-871c-7f6e50b4e110", "c4.low":"8061864c-722b-4f79-83af-91c3a835bd48", "p8-6gb":"848b71a2-ae6b-4fcf-bba4-b7b0fccff5cf", "c8.low":"8953676d-def7-4290-b239-4a14311fbb69", "c8.hi":"a55036b9-f40c-4781-a293-789647c063d7", "c16.hi":"d816ae8b-ab7d-403d-ae5f-f457b775903d", "p1-0.75gb-tobedeleted":"f9f6fbd7-a0af-4604-8911-041ea6cbbbe4" } df = df.replace({"vm": VMAlias}) df = df.set_index("vm") df = df.groupby(df.index).mean().sort_values(by = "ramspec") y = np.array([_ for _ in range(len(df))]) clr = ["purple", "blue", "green" , "orange"] w = 0.4 p = figure(plot_width = 1200, toolbar_location = "above") for i, c in enumerate(["ramspec", "avg_ramreq"]): p.hbar(y = y - w * (i - 1 / 2) , right = df[c] / 1024, left = 0, height = w, color = clr[i], legend = "Requested Memory" if i == 1 else "VM Memory") p.xaxis[0].axis_label = "GB" d = dict(zip(y, df.index)) p.yaxis[0].ticker = FixedTicker(ticks = y) p.yaxis[0].formatter = FuncTickFormatter(code = """dic = """ + str(d) + """ if (tick in dic) { return dic[tick] } else { return '' }""") p.yaxis[0].axis_label = "VM UUID" p.legend.location = "bottom_right" df = df.sort_values(by = "dskspec") p2 = figure(plot_width = 1200, toolbar_location = "above") for i, c in enumerate(["dskspec", "avg_dskreq"]): p2.hbar(y = y - w * (i - 1 / 2) , right = df[c], left = 0, height = w, color = clr[i], legend = "Requested Disk Size" if i == 1 else "VM Disk Size") p2.xaxis[0].axis_label = "GB" d = dict(zip(y, df.index)) p2.yaxis[0].ticker = FixedTicker(ticks = y) p2.yaxis[0].formatter = FuncTickFormatter(code = """dic = """ + str(d) + """ if (tick in dic) { return dic[tick] } else { return '' }""") p2.yaxis[0].axis_label = "VM UUID" p2.legend.location = "bottom_right" return column(Div(text = "<h1>Average Memory Requested For Batch VMS</h1>", width = 1200), p, Div(text = "<h1>Average Disk Requested For Batch VMS</h1>", width = 1200), p2) # Number of Jobs Completed, Disk Usage, Memory Usage per VM Ins per Year def fig7(conn, idx): query = { "query" : { "bool" : { "must" : [ { "term": { "JobStatus.keyword" : "Completed"} } ] } }, "aggs" : { "peryr" : { "date_histogram" : { "field" : "@timestamp", "interval" : "year", "format" : "yyyy" }, "aggs" : { "tot_ram" : { "sum" : { "field" : "MemoryUsage" } }, "tot_dsk" : { "sum" : { "field" : "DiskUsage" } }, "vm_ins" : { "cardinality" : { "field" : "VMInstanceName.keyword" } } } } } } res = conn.search(index = idx, body = query) df = pd.DataFrame() for _ in res["aggregations"]["peryr"]["buckets"]: yr = _["key_as_string"] num_jobs = _["doc_count"] jobs_per_ins = _["doc_count"] / _["vm_ins"]["value"] ram_per_ins = _["tot_ram"]["value"] / _["vm_ins"]["value"] / 1024 dsk_per_ins = _["tot_dsk"]["value"] / _["vm_ins"]["value"] / 1024 df = df.append(pd.DataFrame([[num_jobs, jobs_per_ins, ram_per_ins, dsk_per_ins]], columns = ["num_jobs", "jobs", "ram", "dsk"], index = [yr])) plts = [Div(text = "<h1>Basic Stats</h1>", width = 1200)] clr = ["blue", "purple", "orange", "green"] ylabs = ["", "", "GB", "GB"] ttl = ["Number of Jobs Completed", "Disk Usage", "Memory Usage"] x = [_ for _ in range(len(df))] for i in range(len(df.columns)): p = figure(plot_width = 800, toolbar_location = "above") p.vbar(x = x, top = df.ix[:,i], bottom = 0, width = 0.8, color = clr[i]) if i == 0: p.title.text = "Number of Jobs per Year" else: p.title.text = "{} per VM Instance".format(ttl[i - 1]) p.yaxis[0].axis_label = ylabs[i] d = dict(zip(x, df.index)) p.xaxis[0].ticker = FixedTicker(ticks = x) p.xaxis[0].formatter = FuncTickFormatter(code = """dic = """ + str(d) + """ if (tick in dic) { return dic[tick] } else { return '' }""") plts.append(p) return column(plts) def fig8(conn, idx): reses = [] for _ in [("lt", "RequestMemory"),("gte", "VMSpec.RAM")]: query = { "query" : { "bool" : { "must" : [ { "term": { "JobStatus.keyword" : "Completed"} }, { "range": { "@timestamp": { _[0]: "2015-01-01" }}} ] } }, "aggs" : { "peryr" : { "date_histogram" : { "field" : "@timestamp", "interval" : "year", "format" : "yyyy" }, "aggs" : { "med_reqmem" : { "percentiles" : { "field": "{}".format(_[1]) } }, "med_ratio" : { "percentiles" : { "script" : { "lang" : "painless", "inline" : "doc['MemoryUsage'].value / doc['{}'].value".format(_[1]) } } } } } } } res = conn.search(index = idx, body = query) reses.append(res) df = pd.DataFrame() for __ in reses: for _ in __["aggregations"]["peryr"]["buckets"]: yr = _["key_as_string"] med_ratio = _["med_ratio"]["values"]["50.0"] med_reqmem = _["med_reqmem"]["values"]["50.0"] df = df.append(pd.DataFrame([[med_reqmem / 1024, med_ratio]], columns = ["med_mem", "med_ratio"], index = [yr])) plts = [] clr = ["blue", "purple", "orange", "green"] ylabs = ["GB", ""] ttl = ["Requested Memory", "Memory Usage / Requested Memory Ratio"] x = [_ for _ in range(len(df))] for i in range(len(df.columns)): p = figure(plot_width = 800, toolbar_location = "above", y_axis_type = "log") if i == 1: p.y_range = Range1d(0.001, 1.1) p.vbar(x = x, top = df.ix[:,i], bottom = 0, width = 0.8, color = clr[i]) p.title.text = "Median of {} for Batch Jobs".format(ttl[i]) p.yaxis[0].axis_label = ylabs[i] d = dict(zip(x, df.index)) p.xaxis[0].ticker = FixedTicker(ticks = x) p.xaxis[0].formatter = FuncTickFormatter(code = """dic = """ + str(d) + """ if (tick in dic) { return dic[tick] } else { return '' }""") plts.append(p) return column(plts) def fig9(conn, idx): reses = [] for _ in [("lt", "RequestMemory"),("gte", "VMSpec.RAM")]: query = { "query" : { "bool" : { "must" : [ { "term": { "JobStatus.keyword" : "Completed"} }, { "range": { "@timestamp": { _[0]: "2015-01-01" }}} ] } }, "aggs" : { "per_proj" : { "terms" : { "field" : "Project.keyword", "size" : 100 }, "aggs" : { "memusg" : { "avg" : { "field": "MemoryUsage" } }, "reqmem" : { "avg" : { "field" : "{}".format(_[1]) } } } } } } res = conn.search(index = idx, body = query) reses.append(res) df = pd.DataFrame() for __ in reses: for _ in __["aggregations"]["per_proj"]["buckets"]: proj = _["key"] reqmem = _["reqmem"]["value"] memusg = _["memusg"]["value"] df = df.append(pd.DataFrame([[proj, reqmem / 1024, memusg / 1024]], columns = ["proj", "reqmem", "memusg"])) df = df.groupby("proj").sum().sort_values("reqmem") y = np.array([_ for _ in range(len(df))]) clr = ["purple", "orange"] w = 0.4 p = figure(plot_width = 800, toolbar_location = "above") for i, c in enumerate(["reqmem", "memusg"]): p.hbar(y = y - w * (i - 1 / 2) , right = df[c], left = 0, height = w, color = clr[i], legend = "Requested Memory" if i == 0 else "Memory Usage") p.xaxis[0].axis_label = "GB" d = dict(zip(y, df.index)) p.yaxis[0].ticker = FixedTicker(ticks = y) p.yaxis[0].formatter = FuncTickFormatter(code = """dic = """ + str(d) + """ if (tick in dic) { return dic[tick] } else { return '' }""") p.yaxis[0].axis_label = "Projects" p.legend.location = "bottom_right" return column(Div(text = "<h1>Average Memory Usage & Requested Memory for Batch VMs</h1>", width = 1200), p) def fig10(conn): df = pd.DataFrame() for idx in ["logs-tomcat", "logs-condor"]: query = { "size" : 0, "query" : { "bool" : { "must" : [ { "term" : { "service" : "proc_ws" } }, { "term" : { "method" : "post" } } ] } }, "aggs" : { "permo" : { "date_histogram" : { "field" : "@timestamp", "interval" : "month", "format" : "yyyy-MM" }, "aggs" : { "unique_user" : { "cardinality" : { "field": "user.keyword" } } } } } } if idx == "logs-condor": query["query"] = { "match_all" : {} } query["aggs"]["permo"]["aggs"]["unique_user"]["cardinality"]["field"] = "Owner.keyword" res = conn.search(index = idx, body = query) for _ in res["aggregations"]["permo"]["buckets"]: df = df.append(pd.DataFrame([[_["unique_user"]["value"]]], columns = [idx], index = [_["key_as_string"]])) df = df.groupby(df.index).sum().dropna() df.columns = ["HTCondor", "Web Service"] x = np.array([_ for _ in range(len(df))]) p = figure(plot_width = 800, toolbar_location = "above") p.vbar(x = x - 0.2, top = df["HTCondor"], bottom = 0, width = 0.4, legend = "HTCondor", color = "purple") p.vbar(x = x + 0.2, top = df["Web Service"], bottom = 0, width = 0.4, legend = "Web Service", color = "blue") p.legend.location = "top_right" d = dict(zip(x, df.index)) p.xaxis[0].ticker = FixedTicker(ticks = x) p.xaxis[0].formatter = FuncTickFormatter(code = """dic = """ + str(d) + """ if (tick in dic) { return dic[tick] } else { return '' }""") p.xaxis.major_label_orientation = np.pi / 4 p.title.text = "Users Submitting Jobs by Web Service and Directly by HTCondor" return p def fig11(conn): df = pd.DataFrame() for m in ["post", "get"]: query = { "size" : 0, "query" : { "bool" : { "must" : [ { "term" : { "service" : "proc_ws" } }, { "term" : { "method" : m } } ] } }, "aggs" : { "permo" : { "date_histogram" : { "field" : "@timestamp", "interval" : "month", "format" : "yyyy-MM" } } } } res = conn.search(index = "logs-tomcat", body = query) for _ in res["aggregations"]["permo"]["buckets"]: df = df.append(pd.DataFrame([[_["doc_count"]]], columns = [m], index = [_["key_as_string"]])) df = df.groupby(df.index).sum().dropna() df.columns = ["Job Submission", "Job Status"] x = np.array([_ for _ in range(len(df))]) p = figure(plot_width = 800, toolbar_location = "above") p.vbar(x = x - 0.2, top = df["Job Submission"], bottom = 0, width = 0.4, legend = "Job Submission", color = "purple") p.vbar(x = x + 0.2, top = df["Job Status"], bottom = 0, width = 0.4, legend = "Job Status", color = "blue") p.legend.location = "top_right" d = dict(zip(x, df.index)) p.xaxis[0].ticker = FixedTicker(ticks = x) p.xaxis[0].formatter = FuncTickFormatter(code = """dic = """ + str(d) + """ if (tick in dic) { return dic[tick] } else { return '' }""") p.xaxis.major_label_orientation = np.pi / 4 p.title.text = "Requests for Job Queue Status and Job Submission" return p def fig12(conn): df = pd.DataFrame() for m in ["post", "get"]: query = { "size" : 0, "query" : { "bool" : { "must" : [ { "term" : { "service" : "proc_ws" } }, { "term" : { "method" : m } } ] } }, "aggs" : { "dur_hist" : { "histogram" : { "field" : "time", "interval" : 100, "extended_bounds" : { "min" : 0, "max" : 40000 } } } } } res = conn.search(index = "logs-tomcat", body = query) for _ in res["aggregations"]["dur_hist"]["buckets"]: df = df.append(pd.DataFrame([[_["doc_count"]]], columns = [m], index = [_["key"]])) df = df.groupby(df.index).sum().dropna() df.columns = ["Job Submission", "Job Status"] x = np.array([_ for _ in range(len(df))]) p = figure(plot_width = 1200, toolbar_location = "above", y_axis_type = "log") p.vbar(x = x - 0.2, top = df["Job Submission"], bottom = 0, width = 0.4, legend = "Job Submission", color = "purple") p.vbar(x = x + 0.2, top = df["Job Status"], bottom = 0, width = 0.4, legend = "Job Status", color = "blue") p.legend.location = "top_right" p.title.text = "Web Service Requests for Job Status and Job Submission" return p def fig13(conn): df = pd.DataFrame() query = { "size" : 0, "query" : { "bool" : { "must" : [ { "term" : { "service" : "proc_ws" } }, { "term" : { "method" : "post" } } ], "must_not" : { "exists" : { "field" : "message" } } } }, "aggs" : { "permo" : { "date_histogram" : { "field" : "@timestamp", "interval" : "month", "format" : "yyyy-MM" } } } } res = conn.search(index = "logs-tomcat", body = query) for _ in res["aggregations"]["permo"]["buckets"]: df = df.append(pd.DataFrame([[_["doc_count"]]], columns = ["proc_ws"], index = [_["key_as_string"]])) query = { "size" : 0, "query" : { "bool" : { "must" : [ { "range" : { "ClusterId" : { "gte" : 0 } } }, { "range" : { "ProcId" : { "gte" : 0 } } } ] } }, "aggs" : { "permo" : { "date_histogram" : { "field" : "@timestamp", "interval" : "month", "format" : "yyyy-MM" }, "aggs" : { "uniq_clusterid" : { "cardinality" : { "field" : "ClusterId" } } } } } } res = conn.search(index = "logs-condor", body = query) for _ in res["aggregations"]["permo"]["buckets"]: df = df.append(pd.DataFrame([[_["uniq_clusterid"]["value"]]], columns = ["condor"], index = [_["key_as_string"]])) df = df.groupby(df.index).sum() df = df[df.index < "2017-01"] df["ratio"] = df["proc_ws"] / df["condor"] df = df.dropna(how = "any") p1 = figure(width = 800, title = "Average Ratio of Web Service submissions over HTCondor Submissions") x = [_ for _ in range(len(df))] p1.vbar(x = x, top = df["ratio"], bottom = 0, width = 0.8) d = dict(zip(x, df.index)) p1.xaxis[0].ticker = FixedTicker(ticks = x) p1.xaxis[0].formatter = FuncTickFormatter(code = """dic = """ + str(d) + """ if (tick in dic) { return dic[tick] } else { return '' }""") p1.yaxis[0].axis_label = "Ratio" p1.xaxis.major_label_orientation = np.pi / 4 return p1 if __name__ == "__main__": conn = Init(timeout = 300).connect() #fig1("logs-condor", conn) #fig2("logs-condor", conn) #fig3("logs-condor", conn) #fig4("logs-condor", conn) #fig5("logs-condor", conn) #fig6("logs-condor", conn) #fig7("logs-condor", conn) #fig8("logs-condor", conn) #fig9("logs-condor", conn) #fig10(conn) #fig11(conn) #fig12(conn) fig13(conn) #test()
mit
2,742,119,125,383,871,000
27.420479
174
0.524645
false
ramnes/qtile
libqtile/widget/spacer.py
2
2695
# Copyright (c) 2008, 2010 Aldo Cortesi # Copyright (c) 2011 Mounier Florian # Copyright (c) 2012 Tim Neumann # Copyright (c) 2012 Craig Barnes # Copyright (c) 2014 Sean Vig # Copyright (c) 2014 Adi Sieker # Copyright (c) 2014 Tycho Andersen # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. from libqtile import bar from libqtile.log_utils import logger from libqtile.widget import base class Spacer(base._Widget): """Just an empty space on the bar Often used with length equal to bar.STRETCH to push bar widgets to the right or bottom edge of the screen. Parameters ========== length : Length of the widget. Can be either ``bar.STRETCH`` or a length in pixels. width : DEPRECATED, same as ``length``. """ orientations = base.ORIENTATION_BOTH defaults = [ ("background", None, "Widget background color") ] def __init__(self, length=bar.STRETCH, width=None, **config): """ """ # 'width' was replaced by 'length' since the widget can be installed in # vertical bars if width is not None: logger.warning('width kwarg or positional argument is ' 'deprecated. Please use length.') length = width base._Widget.__init__(self, length, **config) self.add_defaults(Spacer.defaults) def draw(self): if self.length > 0: self.drawer.clear(self.background or self.bar.background) if self.bar.horizontal: self.drawer.draw(offsetx=self.offset, width=self.length) else: self.drawer.draw(offsety=self.offset, height=self.length)
mit
-4,544,435,534,959,907,000
37.5
79
0.682004
false
desmovalvo/virtualsib-part2bis
test/sp2b/python/query.py
1
9410
#!/usr/bin/python # requirements import sys import pygal import getopt import timeit from SIBLib import * # Queries q1 = """PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> PREFIX dc: <http://purl.org/dc/elements/1.1/> PREFIX dcterms: <http://purl.org/dc/terms/> PREFIX bench: <http://localhost/vocabulary/bench/> PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> SELECT ?yr WHERE { ?journal rdf:type bench:Journal . ?journal dc:title "Journal 1 (1940)"^^xsd:string . ?journal dcterms:issued ?yr }""" q2 = """PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> PREFIX swrc: <http://swrc.ontoware.org/ontology#> PREFIX foaf: <http://xmlns.com/foaf/0.1/> PREFIX bench: <http://localhost/vocabulary/bench/> PREFIX dc: <http://purl.org/dc/elements/1.1/> PREFIX dcterms: <http://purl.org/dc/terms/> SELECT ?inproc ?author ?booktitle ?title ?proc ?ee ?page ?url ?yr ?abstract WHERE { ?inproc rdf:type bench:Inproceedings . ?inproc dc:creator ?author . ?inproc bench:booktitle ?booktitle . ?inproc dc:title ?title . ?inproc dcterms:partOf ?proc . ?inproc rdfs:seeAlso ?ee . ?inproc swrc:pages ?page . ?inproc foaf:homepage ?url . ?inproc dcterms:issued ?yr OPTIONAL { ?inproc bench:abstract ?abstract } } ORDER BY ?yr""" q3a = """PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> PREFIX bench: <http://localhost/vocabulary/bench/> PREFIX swrc: <http://swrc.ontoware.org/ontology#> SELECT ?article WHERE { ?article rdf:type bench:Article . ?article ?property ?value FILTER (?property=swrc:pages) }""" q3b = """PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> PREFIX bench: <http://localhost/vocabulary/bench/> PREFIX swrc: <http://swrc.ontoware.org/ontology#> SELECT ?article WHERE { ?article rdf:type bench:Article . ?article ?property ?value FILTER (?property=swrc:month) }""" q3c = """PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> PREFIX swrc: <http://swrc.ontoware.org/ontology#> PREFIX bench: <http://localhost/vocabulary/bench/> SELECT ?article WHERE { ?article rdf:type bench:Article . ?article ?property ?value FILTER (?property=swrc:isbn) }""" q4 = """PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> PREFIX bench: <http://localhost/vocabulary/bench/> PREFIX dc: <http://purl.org/dc/elements/1.1/> PREFIX dcterms: <http://purl.org/dc/terms/> PREFIX foaf: <http://xmlns.com/foaf/0.1/> PREFIX swrc: <http://swrc.ontoware.org/ontology#> SELECT DISTINCT ?name1 ?name2 WHERE { ?article1 rdf:type bench:Article . ?article2 rdf:type bench:Article . ?article1 dc:creator ?author1 . ?author1 foaf:name ?name1 . ?article2 dc:creator ?author2 . ?author2 foaf:name ?name2 . ?article1 swrc:journal ?journal . ?article2 swrc:journal ?journal FILTER (?name1<?name2) }""" q5a = """PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> PREFIX foaf: <http://xmlns.com/foaf/0.1/> PREFIX bench: <http://localhost/vocabulary/bench/> PREFIX dc: <http://purl.org/dc/elements/1.1/> SELECT DISTINCT ?person ?name WHERE { ?article rdf:type bench:Article . ?article dc:creator ?person . ?inproc rdf:type bench:Inproceedings . ?inproc dc:creator ?person2 . ?person foaf:name ?name . ?person2 foaf:name ?name2 FILTER (?name=?name2) }""" q5b = """PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> PREFIX foaf: <http://xmlns.com/foaf/0.1/> PREFIX bench: <http://localhost/vocabulary/bench/> PREFIX dc: <http://purl.org/dc/elements/1.1/> SELECT DISTINCT ?person ?name WHERE { ?article rdf:type bench:Article . ?article dc:creator ?person . ?inproc rdf:type bench:Inproceedings . ?inproc dc:creator ?person . ?person foaf:name ?name }""" q6 = """PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> PREFIX foaf: <http://xmlns.com/foaf/0.1/> PREFIX dc: <http://purl.org/dc/elements/1.1/> PREFIX dcterms: <http://purl.org/dc/terms/> SELECT ?yr ?name ?document WHERE { ?class rdfs:subClassOf foaf:Document . ?document rdf:type ?class . ?document dcterms:issued ?yr . ?document dc:creator ?author . ?author foaf:name ?name OPTIONAL { ?class2 rdfs:subClassOf foaf:Document . ?document2 rdf:type ?class2 . ?document2 dcterms:issued ?yr2 . ?document2 dc:creator ?author2 FILTER (?author=?author2 && ?yr2<?yr) } FILTER (!bound(?author2)) }""" q7 = """PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> PREFIX foaf: <http://xmlns.com/foaf/0.1/> PREFIX dc: <http://purl.org/dc/elements/1.1/> PREFIX dcterms: <http://purl.org/dc/terms/> SELECT DISTINCT ?title WHERE { ?class rdfs:subClassOf foaf:Document . ?doc rdf:type ?class . ?doc dc:title ?title . ?bag2 ?member2 ?doc . ?doc2 dcterms:references ?bag2 OPTIONAL { ?class3 rdfs:subClassOf foaf:Document . ?doc3 rdf:type ?class3 . ?doc3 dcterms:references ?bag3 . ?bag3 ?member3 ?doc OPTIONAL { ?class4 rdfs:subClassOf foaf:Document . ?doc4 rdf:type ?class4 . ?doc4 dcterms:references ?bag4 . ?bag4 ?member4 ?doc3 } FILTER (!bound(?doc4)) } FILTER (!bound(?doc3)) }""" q8 = """PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> PREFIX foaf: <http://xmlns.com/foaf/0.1/> PREFIX dc: <http://purl.org/dc/elements/1.1/> SELECT DISTINCT ?name WHERE { ?erdoes rdf:type foaf:Person . ?erdoes foaf:name "Paul Erdoes"^^xsd:string . { ?document dc:creator ?erdoes . ?document dc:creator ?author . ?document2 dc:creator ?author . ?document2 dc:creator ?author2 . ?author2 foaf:name ?name FILTER (?author!=?erdoes && ?document2!=?document && ?author2!=?erdoes && ?author2!=?author) } UNION { ?document dc:creator ?erdoes. ?document dc:creator ?author. ?author foaf:name ?name FILTER (?author!=?erdoes) } }""" q9 = """PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> PREFIX foaf: <http://xmlns.com/foaf/0.1/> SELECT DISTINCT ?predicate WHERE { { ?person rdf:type foaf:Person . ?subject ?predicate ?person } UNION { ?person rdf:type foaf:Person . ?person ?predicate ?object } }""" q10 = """PREFIX person: <http://localhost/persons/> SELECT ?subject ?predicate WHERE { ?subject ?predicate person:Paul_Erdoes }""" q11 = """PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> SELECT ?ee WHERE { ?publication rdfs:seeAlso ?ee } ORDER BY ?ee LIMIT 10 OFFSET 50""" short_queries = [q1, q3b, q8, q9, q10, q11] long_queries = [q2, q3a, q4, q5a, q5b, q6] queries = long_queries # read the parameters try: opts, args = getopt.getopt(sys.argv[1:], "r:v:i:", ["realsib=", "virtual_sib", "iterations="]) for opt, arg in opts: if opt in ("-r", "--realsib"): realsib_ip = arg.split(":")[0] realsib_port = int(arg.split(":")[1]) elif opt in ("-v", "--vsib"): vsib_ip = arg.split(":")[0] vsib_port = int(arg.split(":")[1]) elif opt in ("-i", "--iterations"): iterations = int(arg) else: print "Unrecognized option " + str(opt) if not(realsib_ip and realsib_port and vsib_ip and vsib_port and iterations): print 'Usage: python sp2b-query-test.py -r realsib_ip:port -v vsib_ip:port -i iterations' sys.exit() except getopt.GetoptError: print 'Usage: python sp2b-query-test.py -r realsib_ip:port -v vsib_ip:port -i iterations' sys.exit() print "ready to begin" ################ Measures ########## kp_list = [] # Connection to real sib kp0 = SibLib(realsib_ip, realsib_port) kp_list.append(kp0) print "connected to real sib" # Connection to virtual sib kp1 = SibLib(vsib_ip, vsib_port) kp_list.append(kp1) print "connected to virtual sib" global_results = [] for kp in kp_list: kp_results = [] for q in queries: print "query " + str(queries.index(q)) # calculate results for query q iteration_results = [] for i in xrange(iterations): print "* iteration " + str(i) end = timeit.timeit(lambda: kp.execute_sparql_query(q), number=1) iteration_results.append(end) iteration_results.sort() if len(iteration_results)%2 == 0: median = (iteration_results[len(iteration_results)/2] + iteration_results[len(iteration_results)/2-1]) / 2 else: median = iteration_results[len(iteration_results)/2] kp_results.append(round(median * 1000, 2)) global_results.append(kp_results) ################ Measures ########## # Creating the graph print "Drawing the graph..." bar_chart = pygal.Bar(human_readable=True, x_title='Triples inserted at once', y_title='Time (in milliseconds)', x_label_rotation = 60) bar_chart.title = 'Insertion times increasing the number of triples' # adding results bar_chart.add('Real SIB', global_results[0]) bar_chart.add('Virtual SIB', global_results[1]) # saving the graph filename_template = """sp2b-query-test_%siter.svg""" filename = filename_template % (iterations) bar_chart.render_to_file(filename)
lgpl-3.0
-6,130,149,182,655,621,000
27.953846
135
0.643464
false
etingof/pyasn1
tests/type/test_useful.py
2
4718
# # This file is part of pyasn1 software. # # Copyright (c) 2005-2020, Ilya Etingof <[email protected]> # License: http://snmplabs.com/pyasn1/license.html # import datetime import pickle import sys from copy import deepcopy import unittest from tests.base import BaseTestCase from pyasn1.type import useful class FixedOffset(datetime.tzinfo): def __init__(self, offset, name): self.__offset = datetime.timedelta(minutes=offset) self.__name = name def utcoffset(self, dt): return self.__offset def tzname(self, dt): return self.__name def dst(self, dt): return datetime.timedelta(0) UTC = FixedOffset(0, 'UTC') UTC2 = FixedOffset(120, 'UTC') class ObjectDescriptorTestCase(BaseTestCase): pass class GeneralizedTimeTestCase(BaseTestCase): def testFromDateTime(self): assert useful.GeneralizedTime.fromDateTime(datetime.datetime(2017, 7, 11, 0, 1, 2, 3000, tzinfo=UTC)) == '20170711000102.3Z' def testToDateTime0(self): assert datetime.datetime(2017, 7, 11, 0, 1, 2) == useful.GeneralizedTime('20170711000102').asDateTime def testToDateTime1(self): assert datetime.datetime(2017, 7, 11, 0, 1, 2, tzinfo=UTC) == useful.GeneralizedTime('20170711000102Z').asDateTime def testToDateTime2(self): assert datetime.datetime(2017, 7, 11, 0, 1, 2, 3000, tzinfo=UTC) == useful.GeneralizedTime('20170711000102.3Z').asDateTime def testToDateTime3(self): assert datetime.datetime(2017, 7, 11, 0, 1, 2, 3000, tzinfo=UTC) == useful.GeneralizedTime('20170711000102,3Z').asDateTime def testToDateTime4(self): assert datetime.datetime(2017, 7, 11, 0, 1, 2, 3000, tzinfo=UTC) == useful.GeneralizedTime('20170711000102.3+0000').asDateTime def testToDateTime5(self): assert datetime.datetime(2017, 7, 11, 0, 1, 2, 3000, tzinfo=UTC2) == useful.GeneralizedTime('20170711000102.3+0200').asDateTime def testToDateTime6(self): assert datetime.datetime(2017, 7, 11, 0, 1, 2, 3000, tzinfo=UTC2) == useful.GeneralizedTime('20170711000102.3+02').asDateTime def testToDateTime7(self): assert datetime.datetime(2017, 7, 11, 0, 1) == useful.GeneralizedTime('201707110001').asDateTime def testToDateTime8(self): assert datetime.datetime(2017, 7, 11, 0) == useful.GeneralizedTime('2017071100').asDateTime def testCopy(self): dt = useful.GeneralizedTime("20170916234254+0130").asDateTime assert dt == deepcopy(dt) class GeneralizedTimePicklingTestCase(unittest.TestCase): def testSchemaPickling(self): old_asn1 = useful.GeneralizedTime() serialised = pickle.dumps(old_asn1) assert serialised new_asn1 = pickle.loads(serialised) assert type(new_asn1) == useful.GeneralizedTime assert old_asn1.isSameTypeWith(new_asn1) def testValuePickling(self): old_asn1 = useful.GeneralizedTime("20170916234254+0130") serialised = pickle.dumps(old_asn1) assert serialised new_asn1 = pickle.loads(serialised) assert new_asn1 == old_asn1 class UTCTimeTestCase(BaseTestCase): def testFromDateTime(self): assert useful.UTCTime.fromDateTime(datetime.datetime(2017, 7, 11, 0, 1, 2, tzinfo=UTC)) == '170711000102Z' def testToDateTime0(self): assert datetime.datetime(2017, 7, 11, 0, 1, 2) == useful.UTCTime('170711000102').asDateTime def testToDateTime1(self): assert datetime.datetime(2017, 7, 11, 0, 1, 2, tzinfo=UTC) == useful.UTCTime('170711000102Z').asDateTime def testToDateTime2(self): assert datetime.datetime(2017, 7, 11, 0, 1, 2, tzinfo=UTC) == useful.UTCTime('170711000102+0000').asDateTime def testToDateTime3(self): assert datetime.datetime(2017, 7, 11, 0, 1, 2, tzinfo=UTC2) == useful.UTCTime('170711000102+0200').asDateTime def testToDateTime4(self): assert datetime.datetime(2017, 7, 11, 0, 1) == useful.UTCTime('1707110001').asDateTime class UTCTimePicklingTestCase(unittest.TestCase): def testSchemaPickling(self): old_asn1 = useful.UTCTime() serialised = pickle.dumps(old_asn1) assert serialised new_asn1 = pickle.loads(serialised) assert type(new_asn1) == useful.UTCTime assert old_asn1.isSameTypeWith(new_asn1) def testValuePickling(self): old_asn1 = useful.UTCTime("170711000102") serialised = pickle.dumps(old_asn1) assert serialised new_asn1 = pickle.loads(serialised) assert new_asn1 == old_asn1 suite = unittest.TestLoader().loadTestsFromModule(sys.modules[__name__]) if __name__ == '__main__': unittest.TextTestRunner(verbosity=2).run(suite)
bsd-2-clause
-5,369,962,743,174,861,000
33.188406
135
0.688215
false
nathanielvarona/airflow
tests/providers/jenkins/operators/test_jenkins_job_trigger.py
3
12070
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import unittest from unittest.mock import Mock, patch import jenkins import pytest from parameterized import parameterized from airflow.exceptions import AirflowException from airflow.providers.jenkins.hooks.jenkins import JenkinsHook from airflow.providers.jenkins.operators.jenkins_job_trigger import JenkinsJobTriggerOperator class TestJenkinsOperator(unittest.TestCase): @parameterized.expand( [ ( "dict params", {'a_param': 'blip', 'another_param': '42'}, ), ( "string params", '{"second_param": "beep", "third_param": "153"}', ), ( "list params", ['final_one', 'bop', 'real_final', 'eggs'], ), ] ) def test_execute(self, _, parameters): jenkins_mock = Mock(spec=jenkins.Jenkins, auth='secret') jenkins_mock.get_build_info.return_value = { 'result': 'SUCCESS', 'url': 'http://aaa.fake-url.com/congratulation/its-a-job', } jenkins_mock.build_job_url.return_value = 'http://www.jenkins.url/somewhere/in/the/universe' hook_mock = Mock(spec=JenkinsHook) hook_mock.get_jenkins_server.return_value = jenkins_mock with patch.object(JenkinsJobTriggerOperator, "get_hook") as get_hook_mocked, patch( 'airflow.providers.jenkins.operators.jenkins_job_trigger.jenkins_request_with_headers' ) as mock_make_request: mock_make_request.side_effect = [ {'body': '', 'headers': {'Location': 'http://what-a-strange.url/18'}}, {'body': '{"executable":{"number":"1"}}', 'headers': {}}, ] get_hook_mocked.return_value = hook_mock operator = JenkinsJobTriggerOperator( dag=None, jenkins_connection_id="fake_jenkins_connection", # The hook is mocked, this connection won't be used task_id="operator_test", job_name="a_job_on_jenkins", parameters=parameters, sleep_time=1, ) operator.execute(None) assert jenkins_mock.get_build_info.call_count == 1 jenkins_mock.get_build_info.assert_called_once_with(name='a_job_on_jenkins', number='1') @parameterized.expand( [ ( "dict params", {'a_param': 'blip', 'another_param': '42'}, ), ( "string params", '{"second_param": "beep", "third_param": "153"}', ), ( "list params", ['final_one', 'bop', 'real_final', 'eggs'], ), ] ) def test_execute_job_polling_loop(self, _, parameters): jenkins_mock = Mock(spec=jenkins.Jenkins, auth='secret') jenkins_mock.get_job_info.return_value = {'nextBuildNumber': '1'} jenkins_mock.get_build_info.side_effect = [ {'result': None}, {'result': 'SUCCESS', 'url': 'http://aaa.fake-url.com/congratulation/its-a-job'}, ] jenkins_mock.build_job_url.return_value = 'http://www.jenkins.url/somewhere/in/the/universe' hook_mock = Mock(spec=JenkinsHook) hook_mock.get_jenkins_server.return_value = jenkins_mock with patch.object(JenkinsJobTriggerOperator, "get_hook") as get_hook_mocked, patch( 'airflow.providers.jenkins.operators.jenkins_job_trigger.jenkins_request_with_headers' ) as mock_make_request: mock_make_request.side_effect = [ {'body': '', 'headers': {'Location': 'http://what-a-strange.url/18'}}, {'body': '{"executable":{"number":"1"}}', 'headers': {}}, ] get_hook_mocked.return_value = hook_mock operator = JenkinsJobTriggerOperator( dag=None, task_id="operator_test", job_name="a_job_on_jenkins", jenkins_connection_id="fake_jenkins_connection", # The hook is mocked, this connection won't be used parameters=parameters, sleep_time=1, ) operator.execute(None) assert jenkins_mock.get_build_info.call_count == 2 @parameterized.expand( [ ( "dict params", {'a_param': 'blip', 'another_param': '42'}, ), ( "string params", '{"second_param": "beep", "third_param": "153"}', ), ( "list params", ['final_one', 'bop', 'real_final', 'eggs'], ), ] ) def test_execute_job_failure(self, _, parameters): jenkins_mock = Mock(spec=jenkins.Jenkins, auth='secret') jenkins_mock.get_job_info.return_value = {'nextBuildNumber': '1'} jenkins_mock.get_build_info.return_value = { 'result': 'FAILURE', 'url': 'http://aaa.fake-url.com/congratulation/its-a-job', } jenkins_mock.build_job_url.return_value = 'http://www.jenkins.url/somewhere/in/the/universe' hook_mock = Mock(spec=JenkinsHook) hook_mock.get_jenkins_server.return_value = jenkins_mock with patch.object(JenkinsJobTriggerOperator, "get_hook") as get_hook_mocked, patch( 'airflow.providers.jenkins.operators.jenkins_job_trigger.jenkins_request_with_headers' ) as mock_make_request: mock_make_request.side_effect = [ {'body': '', 'headers': {'Location': 'http://what-a-strange.url/18'}}, {'body': '{"executable":{"number":"1"}}', 'headers': {}}, ] get_hook_mocked.return_value = hook_mock operator = JenkinsJobTriggerOperator( dag=None, task_id="operator_test", job_name="a_job_on_jenkins", parameters=parameters, jenkins_connection_id="fake_jenkins_connection", # The hook is mocked, this connection won't be used sleep_time=1, ) with pytest.raises(AirflowException): operator.execute(None) @parameterized.expand( [ ( 'SUCCESS', ['SUCCESS', 'UNSTABLE'], ), ( 'UNSTABLE', ['SUCCESS', 'UNSTABLE'], ), ( 'UNSTABLE', ['UNSTABLE'], ), ( 'SUCCESS', None, ), ] ) def test_allowed_jenkins_states(self, state, allowed_jenkins_states): jenkins_mock = Mock(spec=jenkins.Jenkins, auth='secret') jenkins_mock.get_job_info.return_value = {'nextBuildNumber': '1'} jenkins_mock.get_build_info.return_value = { 'result': state, 'url': 'http://aaa.fake-url.com/congratulation/its-a-job', } jenkins_mock.build_job_url.return_value = 'http://www.jenkins.url/somewhere/in/the/universe' hook_mock = Mock(spec=JenkinsHook) hook_mock.get_jenkins_server.return_value = jenkins_mock with patch.object(JenkinsJobTriggerOperator, "get_hook") as get_hook_mocked, patch( 'airflow.providers.jenkins.operators.jenkins_job_trigger.jenkins_request_with_headers' ) as mock_make_request: mock_make_request.side_effect = [ {'body': '', 'headers': {'Location': 'http://what-a-strange.url/18'}}, {'body': '{"executable":{"number":"1"}}', 'headers': {}}, ] get_hook_mocked.return_value = hook_mock operator = JenkinsJobTriggerOperator( dag=None, task_id="operator_test", job_name="a_job_on_jenkins", jenkins_connection_id="fake_jenkins_connection", allowed_jenkins_states=allowed_jenkins_states, # The hook is mocked, this connection won't be used sleep_time=1, ) try: operator.execute(None) except AirflowException: pytest.fail(f'Job failed with state={state} while allowed states={allowed_jenkins_states}') @parameterized.expand( [ ( 'FAILURE', ['SUCCESS', 'UNSTABLE'], ), ( 'UNSTABLE', ['SUCCESS'], ), ( 'SUCCESS', ['UNSTABLE'], ), ( 'FAILURE', None, ), ( 'UNSTABLE', None, ), ] ) def test_allowed_jenkins_states_failure(self, state, allowed_jenkins_states): jenkins_mock = Mock(spec=jenkins.Jenkins, auth='secret') jenkins_mock.get_job_info.return_value = {'nextBuildNumber': '1'} jenkins_mock.get_build_info.return_value = { 'result': state, 'url': 'http://aaa.fake-url.com/congratulation/its-a-job', } jenkins_mock.build_job_url.return_value = 'http://www.jenkins.url/somewhere/in/the/universe' hook_mock = Mock(spec=JenkinsHook) hook_mock.get_jenkins_server.return_value = jenkins_mock with patch.object(JenkinsJobTriggerOperator, "get_hook") as get_hook_mocked, patch( 'airflow.providers.jenkins.operators.jenkins_job_trigger.jenkins_request_with_headers' ) as mock_make_request: mock_make_request.side_effect = [ {'body': '', 'headers': {'Location': 'http://what-a-strange.url/18'}}, {'body': '{"executable":{"number":"1"}}', 'headers': {}}, ] get_hook_mocked.return_value = hook_mock operator = JenkinsJobTriggerOperator( dag=None, task_id="operator_test", job_name="a_job_on_jenkins", jenkins_connection_id="fake_jenkins_connection", allowed_jenkins_states=allowed_jenkins_states, # The hook is mocked, this connection won't be used sleep_time=1, ) with pytest.raises(AirflowException): operator.execute(None) def test_build_job_request_settings(self): jenkins_mock = Mock(spec=jenkins.Jenkins, auth='secret', timeout=2) jenkins_mock.build_job_url.return_value = 'http://apache.org' with patch( 'airflow.providers.jenkins.operators.jenkins_job_trigger.jenkins_request_with_headers' ) as mock_make_request: operator = JenkinsJobTriggerOperator( dag=None, task_id="build_job_test", job_name="a_job_on_jenkins", jenkins_connection_id="fake_jenkins_connection", ) operator.build_job(jenkins_mock) mock_request = mock_make_request.call_args_list[0][0][1] assert mock_request.method == 'POST' assert mock_request.url == 'http://apache.org'
apache-2.0
-7,008,159,877,831,536,000
38.061489
107
0.544656
false
sorenk/ansible
test/units/module_utils/urls/test_open_url.py
12
9742
# -*- coding: utf-8 -*- # (c) 2018 Matt Martz <[email protected]> # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import absolute_import, division, print_function __metaclass__ = type import datetime import os from ansible.module_utils.urls import open_url, urllib_request, HAS_SSLCONTEXT, cookiejar, ConnectionError, RequestWithMethod from ansible.module_utils.urls import SSLValidationHandler, HTTPSClientAuthHandler, RedirectHandlerFactory import pytest if HAS_SSLCONTEXT: import ssl @pytest.fixture def urlopen_mock(mocker): return mocker.patch('ansible.module_utils.urls.urllib_request.urlopen') @pytest.fixture def install_opener_mock(mocker): return mocker.patch('ansible.module_utils.urls.urllib_request.install_opener') def test_open_url(urlopen_mock, install_opener_mock): r = open_url('https://ansible.com/') args = urlopen_mock.call_args[0] assert args[1] is None # data, this is handled in the Request not urlopen assert args[2] == 10 # timeout req = args[0] assert req.headers == {} assert req.data is None assert req.get_method() == 'GET' opener = install_opener_mock.call_args[0][0] handlers = opener.handlers expected_handlers = ( SSLValidationHandler, RedirectHandlerFactory(), # factory, get handler ) found_handlers = [] for handler in handlers: if isinstance(handler, SSLValidationHandler) or handler.__class__.__name__ == 'RedirectHandler': found_handlers.append(handler) assert len(found_handlers) == 2 def test_open_url_http(urlopen_mock, install_opener_mock): r = open_url('http://ansible.com/') args = urlopen_mock.call_args[0] opener = install_opener_mock.call_args[0][0] handlers = opener.handlers found_handlers = [] for handler in handlers: if isinstance(handler, SSLValidationHandler): found_handlers.append(handler) assert len(found_handlers) == 0 def test_open_url_ftp(urlopen_mock, install_opener_mock, mocker): mocker.patch('ansible.module_utils.urls.ParseResultDottedDict.as_list', side_effect=AssertionError) # Using ftp scheme should prevent the AssertionError side effect to fire r = open_url('ftp://[email protected]/') def test_open_url_headers(urlopen_mock, install_opener_mock): r = open_url('http://ansible.com/', headers={'Foo': 'bar'}) args = urlopen_mock.call_args[0] req = args[0] assert req.headers == {'Foo': 'bar'} def test_open_url_username(urlopen_mock, install_opener_mock): r = open_url('http://ansible.com/', url_username='user') opener = install_opener_mock.call_args[0][0] handlers = opener.handlers expected_handlers = ( urllib_request.HTTPBasicAuthHandler, urllib_request.HTTPDigestAuthHandler, ) found_handlers = [] for handler in handlers: if isinstance(handler, expected_handlers): found_handlers.append(handler) assert len(found_handlers) == 2 assert found_handlers[0].passwd.passwd[None] == {(('ansible.com', '/'),): ('user', None)} def test_open_url_username_in_url(urlopen_mock, install_opener_mock): r = open_url('http://[email protected]/') opener = install_opener_mock.call_args[0][0] handlers = opener.handlers expected_handlers = ( urllib_request.HTTPBasicAuthHandler, urllib_request.HTTPDigestAuthHandler, ) found_handlers = [] for handler in handlers: if isinstance(handler, expected_handlers): found_handlers.append(handler) assert found_handlers[0].passwd.passwd[None] == {(('ansible.com', '/'),): ('user2', '')} def test_open_url_username_force_basic(urlopen_mock, install_opener_mock): r = open_url('http://ansible.com/', url_username='user', url_password='passwd', force_basic_auth=True) opener = install_opener_mock.call_args[0][0] handlers = opener.handlers expected_handlers = ( urllib_request.HTTPBasicAuthHandler, urllib_request.HTTPDigestAuthHandler, ) found_handlers = [] for handler in handlers: if isinstance(handler, expected_handlers): found_handlers.append(handler) assert len(found_handlers) == 0 args = urlopen_mock.call_args[0] req = args[0] assert req.headers.get('Authorization') == b'Basic dXNlcjpwYXNzd2Q=' def test_open_url_auth_in_netloc(urlopen_mock, install_opener_mock): r = open_url('http://user:[email protected]/') args = urlopen_mock.call_args[0] req = args[0] assert req.get_full_url() == 'http://ansible.com/' opener = install_opener_mock.call_args[0][0] handlers = opener.handlers expected_handlers = ( urllib_request.HTTPBasicAuthHandler, urllib_request.HTTPDigestAuthHandler, ) found_handlers = [] for handler in handlers: if isinstance(handler, expected_handlers): found_handlers.append(handler) assert len(found_handlers) == 2 def test_open_url_netrc(urlopen_mock, install_opener_mock, monkeypatch): here = os.path.dirname(__file__) monkeypatch.setenv('NETRC', os.path.join(here, 'fixtures/netrc')) r = open_url('http://ansible.com/') args = urlopen_mock.call_args[0] req = args[0] assert req.headers.get('Authorization') == b'Basic dXNlcjpwYXNzd2Q=' r = open_url('http://foo.ansible.com/') args = urlopen_mock.call_args[0] req = args[0] assert 'Authorization' not in req.headers monkeypatch.setenv('NETRC', os.path.join(here, 'fixtures/netrc.nonexistant')) r = open_url('http://ansible.com/') args = urlopen_mock.call_args[0] req = args[0] assert 'Authorization' not in req.headers def test_open_url_no_proxy(urlopen_mock, install_opener_mock, mocker): build_opener_mock = mocker.patch('ansible.module_utils.urls.urllib_request.build_opener') r = open_url('http://ansible.com/', use_proxy=False) handlers = build_opener_mock.call_args[0] found_handlers = [] for handler in handlers: if isinstance(handler, urllib_request.ProxyHandler): found_handlers.append(handler) assert len(found_handlers) == 1 @pytest.mark.skipif(not HAS_SSLCONTEXT, reason="requires SSLContext") def test_open_url_no_validate_certs(urlopen_mock, install_opener_mock): r = open_url('https://ansible.com/', validate_certs=False) opener = install_opener_mock.call_args[0][0] handlers = opener.handlers ssl_handler = None for handler in handlers: if isinstance(handler, HTTPSClientAuthHandler): ssl_handler = handler break assert ssl_handler is not None context = ssl_handler._context assert context.protocol == ssl.PROTOCOL_SSLv23 assert context.options & ssl.OP_NO_SSLv2 assert context.options & ssl.OP_NO_SSLv3 assert context.verify_mode == ssl.CERT_NONE assert context.check_hostname is False def test_open_url_client_cert(urlopen_mock, install_opener_mock): here = os.path.dirname(__file__) client_cert = os.path.join(here, 'fixtures/client.pem') client_key = os.path.join(here, 'fixtures/client.key') r = open_url('https://ansible.com/', client_cert=client_cert, client_key=client_key) opener = install_opener_mock.call_args[0][0] handlers = opener.handlers ssl_handler = None for handler in handlers: if isinstance(handler, HTTPSClientAuthHandler): ssl_handler = handler break assert ssl_handler is not None assert ssl_handler.client_cert == client_cert assert ssl_handler.client_key == client_key https_connection = ssl_handler._build_https_connection('ansible.com') assert https_connection.key_file == client_key assert https_connection.cert_file == client_cert def test_open_url_cookies(urlopen_mock, install_opener_mock): r = open_url('https://ansible.com/', cookies=cookiejar.CookieJar()) opener = install_opener_mock.call_args[0][0] handlers = opener.handlers cookies_handler = None for handler in handlers: if isinstance(handler, urllib_request.HTTPCookieProcessor): cookies_handler = handler break assert cookies_handler is not None def test_open_url_invalid_method(urlopen_mock, install_opener_mock): with pytest.raises(ConnectionError): r = open_url('https://ansible.com/', method='BOGUS') def test_open_url_custom_method(urlopen_mock, install_opener_mock): r = open_url('https://ansible.com/', method='DELETE') args = urlopen_mock.call_args[0] req = args[0] assert isinstance(req, RequestWithMethod) def test_open_url_user_agent(urlopen_mock, install_opener_mock): r = open_url('https://ansible.com/', http_agent='ansible-tests') args = urlopen_mock.call_args[0] req = args[0] assert req.headers.get('User-agent') == 'ansible-tests' def test_open_url_force(urlopen_mock, install_opener_mock): r = open_url('https://ansible.com/', force=True, last_mod_time=datetime.datetime.now()) args = urlopen_mock.call_args[0] req = args[0] assert req.headers.get('Cache-control') == 'no-cache' assert 'If-modified-since' not in req.headers def test_open_url_last_mod(urlopen_mock, install_opener_mock): now = datetime.datetime.now() r = open_url('https://ansible.com/', last_mod_time=now) args = urlopen_mock.call_args[0] req = args[0] assert req.headers.get('If-modified-since') == now.strftime('%a, %d %b %Y %H:%M:%S +0000') def test_open_url_headers_not_dict(urlopen_mock, install_opener_mock): with pytest.raises(ValueError): r = open_url('https://ansible.com/', headers=['bob'])
gpl-3.0
6,766,792,710,714,387,000
30.025478
125
0.675221
false
jenrik/guake
src/guake/about.py
15
1602
# -*- coding: utf-8; -*- """ Copyright (C) 2007-2012 Lincoln de Sousa <[email protected]> Copyright (C) 2007 Gabriel Falcão <[email protected]> This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA """ from __future__ import absolute_import import gtk from guake.common import _ from guake.common import gladefile from guake.common import pixmapfile from guake.globals import VERSION from guake.simplegladeapp import SimpleGladeApp class AboutDialog(SimpleGladeApp): """The About Guake dialog class """ def __init__(self): super(AboutDialog, self).__init__(gladefile('about.glade'), root='aboutdialog') dialog = self.get_widget('aboutdialog') # images ipath = pixmapfile('guake-notification.png') img = gtk.gdk.pixbuf_new_from_file(ipath) dialog.set_property('logo', img) dialog.set_name(_('Guake Terminal')) dialog.set_version(VERSION)
gpl-2.0
-3,269,167,323,656,883,700
32.354167
67
0.715178
false
redhatrises/freeipa
ipaserver/install/plugins/update_nis.py
4
3156
# # Copyright (C) 2015 FreeIPA Contributors see COPYING for license # from ipalib.plugable import Registry from ipalib import errors from ipalib import Updater from ipaplatform.paths import paths from ipapython.dn import DN from ipaserver.install import sysupgrade from ipaserver.install.ldapupdate import LDAPUpdate register = Registry() @register() class update_nis_configuration(Updater): """Update NIS configuration NIS configuration can be updated only if NIS Server was configured via ipa-nis-manage command. """ def __recover_from_missing_maps(self, ldap): # https://fedorahosted.org/freeipa/ticket/5507 # if all following DNs are missing, but 'NIS Server' container exists # we are experiencig bug and maps should be fixed if sysupgrade.get_upgrade_state('nis', 'done_recover_from_missing_maps'): # this recover must be done only once, a user may deleted some # maps, we do not want to restore them again return self.log.debug("Recovering from missing NIS maps bug") suffix = "cn=NIS Server,cn=plugins,cn=config" domain = self.api.env.domain missing_dn_list = [ DN(nis_map.format(domain=domain, suffix=suffix)) for nis_map in [ "nis-domain={domain}+nis-map=passwd.byname,{suffix}", "nis-domain={domain}+nis-map=passwd.byuid,{suffix}", "nis-domain={domain}+nis-map=group.byname,{suffix}", "nis-domain={domain}+nis-map=group.bygid,{suffix}", "nis-domain={domain}+nis-map=netid.byname,{suffix}", "nis-domain={domain}+nis-map=netgroup,{suffix}", ] ] for dn in missing_dn_list: try: ldap.get_entry(dn, attrs_list=['cn']) except errors.NotFound: pass else: # bug is not effective, at least one of 'possible missing' # maps was detected return sysupgrade.set_upgrade_state('nis', 'done_recover_from_missing_maps', True) # bug is effective run update to recreate missing maps ld = LDAPUpdate(sub_dict={}, ldapi=True) ld.update([paths.NIS_ULDIF]) def execute(self, **options): ldap = self.api.Backend.ldap2 dn = DN(('cn', 'NIS Server'), ('cn', 'plugins'), ('cn', 'config')) try: ldap.get_entry(dn, attrs_list=['cn']) except errors.NotFound: # NIS is not configured on system, do not execute update self.log.debug("Skipping NIS update, NIS Server is not configured") # container does not exist, bug #5507 is not effective sysupgrade.set_upgrade_state( 'nis', 'done_recover_from_missing_maps', True) else: self.__recover_from_missing_maps(ldap) self.log.debug("Executing NIS Server update") ld = LDAPUpdate(sub_dict={}, ldapi=True) ld.update([paths.NIS_UPDATE_ULDIF]) return False, ()
gpl-3.0
3,364,193,865,065,096,700
35.697674
79
0.590938
false
tanglei528/horizon
openstack_dashboard/dashboards/project/networks/ports/tabs.py
8
1493
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright 2012 NEC Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from django.core.urlresolvers import reverse from django.utils.translation import ugettext_lazy as _ from horizon import exceptions from horizon import tabs from openstack_dashboard import api class OverviewTab(tabs.Tab): name = _("Overview") slug = "overview" template_name = "project/networks/ports/_detail_overview.html" def get_context_data(self, request): port_id = self.tab_group.kwargs['port_id'] try: port = api.neutron.port_get(self.request, port_id) except Exception: redirect = reverse('horizon:project:networks:index') msg = _('Unable to retrieve port details.') exceptions.handle(request, msg, redirect=redirect) return {'port': port} class PortDetailTabs(tabs.TabGroup): slug = "port_details" tabs = (OverviewTab,)
apache-2.0
6,224,038,831,314,055,000
32.931818
78
0.697254
false
TintypeMolly/Yuzuki
resource/reply.py
2
3281
# -*- coding: utf-8 -*- import json from exception import BadRequest, Unauthorized from helper.model_control import get_article, get_reply_page, get_reply,\ delete_reply, edit_reply, create_reply from helper.permission import is_anybody, can_comment, is_author_or_admin,\ is_author from helper.resource import YuzukiResource, need_anybody_permission from helper.slack import post_messages_to_subscribers class ReplyParent(YuzukiResource): isLeaf = False def __init__(self): YuzukiResource.__init__(self) self.putChild("view", ReplyView()) self.putChild("write", ReplyWrite()) self.putChild("delete", ReplyDelete()) self.putChild("edit", ReplyEdit()) class ReplyView(YuzukiResource): def render_GET(self, request): article_id = request.get_argument("article_id") page = request.get_argument_int("page", 1) article = get_article(request, article_id) if article.board.name == "notice" or (is_anybody(request)): replies = get_reply_page(request, article, page) return json.dumps([reply.to_dict() for reply in replies]) else: raise Unauthorized() class ReplyWrite(YuzukiResource): @need_anybody_permission def render_POST(self, request): article_id = request.get_argument("article_id") article = get_article(request, article_id) if not can_comment(request, article.board): raise Unauthorized() content = request.get_argument("content") # no empty reply if content.strip(): reply = create_reply(request, article, content) request.dbsession.add(reply) request.dbsession.commit() page = request.get_argument("page", None) redirect = "/article/view?id=%s" % article.uid if page: redirect += "&page=%s" % page post_messages_to_subscribers(request, article.subscribing_users, u"구독하고 있는 글에 새 댓글이 등록되었습니다.", reply.user, article.subject, content, redirect) request.redirect(redirect) return "success" else: raise BadRequest() class ReplyDelete(YuzukiResource): @need_anybody_permission def render_DELETE(self, request): reply_id = request.get_argument("id") reply = get_reply(request, reply_id) if is_author_or_admin(request, reply): delete_reply(request, reply) request.dbsession.commit() return "success" else: raise Unauthorized() class ReplyEdit(YuzukiResource): @need_anybody_permission def render_POST(self, request): reply_id = request.get_argument("id") reply = get_reply(request, reply_id) if is_author(request, reply): content = request.get_argument("content") if content.strip(): edit_reply(request, reply, content) request.dbsession.commit() return "reply edit success" else: raise BadRequest() else: raise Unauthorized()
mit
-9,149,046,863,757,112,000
35.033333
76
0.595128
false
daltonmaag/robofab
Scripts/RoboFabIntro/intro_FoundrySettings.py
9
2906
#FLM: RoboFab Intro, FoundrySettings.plist # # # demo FoundrySettings.plist # # # Setting all the data strings in the FontLab font header can be a repetitive and # tedious exercise. RoboFab to the rescue! RoboFab features some nifty tools # that help automate this process. These tools read a .plist file that you are free # to edit to include your own standard settings. Currently, the .plist file contains # these bits of data. We reserve the right to add more in the future. # -copyright # -trademark # -license # -licenseurl # -notice # -ttvendor # -vendorurl # -designer # -designerurl # # The foundry settings tools parse this .plist file into a python dictionary that # can be used to apply the data to fonts. It's really easy to use. Let's check it out! from robofab.world import CurrentFont from robofab.tools.toolsFL import makeDataFolder # all the foundry settings tools live here: from robofab.tools.toolsAll import readFoundrySettings, getFoundrySetting, setFoundrySetting import time import os # You will need a font open in fontlab for this demo font = CurrentFont() # We need to know where the .plist file lives. In the FontLab environment # it can live in the "RoboFab Data" folder with its friends. makeDataFolder() # will make the data folder if it doesn't exist and it will return the path settingsPath = os.path.join(makeDataFolder(), 'FoundrySettings.plist') # Now, let's load those settings up # readFoundrySettings(path) will return the data from the .plist as dictionary mySettings = readFoundrySettings(settingsPath) # Let's get the current year so that the year string is always up to date font.info.year = time.gmtime(time.time())[0] # Apply those settings that we just loaded font.info.copyright = mySettings['copyright'] font.info.trademark = mySettings['trademark'] font.info.openTypeNameLicense = mySettings['license'] font.info.openTypeNameLicenseURL = mySettings['licenseurl'] font.info.openTypeNameDescription = mySettings['notice'] font.info.openTypeOS2VendorID = mySettings['ttvendor'] font.info.openTypeNameManufacturerURL = mySettings['vendorurl'] font.info.openTypeNameDesigner = mySettings['designer'] font.info.openTypeNameDesignerURL = mySettings['designerurl'] # and call the update method font.update() # But, Prof. RoboFab, what if I want to change the settings in the .plist file? # Good question. You can always edit the .plist data by hand, or you can # do it via a script. It would go a little something like this: setFoundrySetting('trademark', 'This font is a trademark of Me, Myself and I', settingsPath) # If you are on OSX, and you have the Apple developers tools installed, you # can also edit it with /Developer/Applications/Property List Editor. # And to read only only one setting from the file you can use this handly little method. font.info.trademark = getFoundrySetting('trademark', settingsPath) font.update() # It's that easy!
bsd-3-clause
-2,668,712,273,434,922,000
37.746667
92
0.775981
false
krkhan/azure-linux-extensions
VMEncryption/main/BackupLogger.py
8
1482
#!/usr/bin/env python # # VM Backup extension # # Copyright 2015 Microsoft Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import time import datetime import traceback import urlparse import httplib import os import string class BackupLogger(object): def __init__(self, hutil): self.hutil = hutil self.current_process_id = os.getpid() """description of class""" def log(self, msg, level='Info'): log_msg = "{0}: [{1}] {2}".format(self.current_process_id, level, msg) log_msg = filter(lambda c: c in string.printable, log_msg) log_msg = log_msg.encode('ascii', 'ignore') self.hutil.log(log_msg) self.log_to_console(log_msg) def log_to_console(self, msg): try: with open('/dev/console', 'w') as f: msg = filter(lambda c: c in string.printable, msg) f.write('[AzureDiskEncryption] ' + msg + '\n') except IOError as e: pass
apache-2.0
2,927,821,668,167,324,700
31.173913
78
0.659459
false
tst-ahernandez/earthenterprise
earth_enterprise/src/google/protobuf-py/google/protobuf/internal/type_checkers.py
9
12112
# Protocol Buffers - Google's data interchange format # Copyright 2008 Google Inc. All rights reserved. # http://code.google.com/p/protobuf/ # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Provides type checking routines. This module defines type checking utilities in the forms of dictionaries: VALUE_CHECKERS: A dictionary of field types and a value validation object. TYPE_TO_BYTE_SIZE_FN: A dictionary with field types and a size computing function. TYPE_TO_SERIALIZE_METHOD: A dictionary with field types and serialization function. FIELD_TYPE_TO_WIRE_TYPE: A dictionary with field typed and their coresponding wire types. TYPE_TO_DESERIALIZE_METHOD: A dictionary with field types and deserialization function. """ from google.protobuf.internal import decoder from google.protobuf.internal import encoder from google.protobuf.internal import wire_format from google.protobuf import descriptor _FieldDescriptor = descriptor.FieldDescriptor def GetTypeChecker(cpp_type, field_type): """Returns a type checker for a message field of the specified types. Args: cpp_type: C++ type of the field (see descriptor.py). field_type: Protocol message field type (see descriptor.py). Returns: An instance of TypeChecker which can be used to verify the types of values assigned to a field of the specified type. """ if (cpp_type == _FieldDescriptor.CPPTYPE_STRING and field_type == _FieldDescriptor.TYPE_STRING): return UnicodeValueChecker() return _VALUE_CHECKERS[cpp_type] # None of the typecheckers below make any attempt to guard against people # subclassing builtin types and doing weird things. We're not trying to # protect against malicious clients here, just people accidentally shooting # themselves in the foot in obvious ways. class TypeChecker(object): """Type checker used to catch type errors as early as possible when the client is setting scalar fields in protocol messages. """ def __init__(self, *acceptable_types): self._acceptable_types = acceptable_types def CheckValue(self, proposed_value): if not isinstance(proposed_value, self._acceptable_types): message = ('%.1024r has type %s, but expected one of: %s' % (proposed_value, type(proposed_value), self._acceptable_types)) raise TypeError(message) # IntValueChecker and its subclasses perform integer type-checks # and bounds-checks. class IntValueChecker(object): """Checker used for integer fields. Performs type-check and range check.""" def CheckValue(self, proposed_value): if not isinstance(proposed_value, (int, long)): message = ('%.1024r has type %s, but expected one of: %s' % (proposed_value, type(proposed_value), (int, long))) raise TypeError(message) if not self._MIN <= proposed_value <= self._MAX: raise ValueError('Value out of range: %d' % proposed_value) class UnicodeValueChecker(object): """Checker used for string fields.""" def CheckValue(self, proposed_value): if not isinstance(proposed_value, (str, unicode)): message = ('%.1024r has type %s, but expected one of: %s' % (proposed_value, type(proposed_value), (str, unicode))) raise TypeError(message) # If the value is of type 'str' make sure that it is in 7-bit ASCII # encoding. if isinstance(proposed_value, str): try: unicode(proposed_value, 'ascii') except UnicodeDecodeError: raise ValueError('%.1024r has type str, but isn\'t in 7-bit ASCII ' 'encoding. Non-ASCII strings must be converted to ' 'unicode objects before being added.' % (proposed_value)) class Int32ValueChecker(IntValueChecker): # We're sure to use ints instead of longs here since comparison may be more # efficient. _MIN = -2147483648 _MAX = 2147483647 class Uint32ValueChecker(IntValueChecker): _MIN = 0 _MAX = (1 << 32) - 1 class Int64ValueChecker(IntValueChecker): _MIN = -(1 << 63) _MAX = (1 << 63) - 1 class Uint64ValueChecker(IntValueChecker): _MIN = 0 _MAX = (1 << 64) - 1 # Type-checkers for all scalar CPPTYPEs. _VALUE_CHECKERS = { _FieldDescriptor.CPPTYPE_INT32: Int32ValueChecker(), _FieldDescriptor.CPPTYPE_INT64: Int64ValueChecker(), _FieldDescriptor.CPPTYPE_UINT32: Uint32ValueChecker(), _FieldDescriptor.CPPTYPE_UINT64: Uint64ValueChecker(), _FieldDescriptor.CPPTYPE_DOUBLE: TypeChecker( float, int, long), _FieldDescriptor.CPPTYPE_FLOAT: TypeChecker( float, int, long), _FieldDescriptor.CPPTYPE_BOOL: TypeChecker(bool, int), _FieldDescriptor.CPPTYPE_ENUM: Int32ValueChecker(), _FieldDescriptor.CPPTYPE_STRING: TypeChecker(str), } # Map from field type to a function F, such that F(field_num, value) # gives the total byte size for a value of the given type. This # byte size includes tag information and any other additional space # associated with serializing "value". TYPE_TO_BYTE_SIZE_FN = { _FieldDescriptor.TYPE_DOUBLE: wire_format.DoubleByteSize, _FieldDescriptor.TYPE_FLOAT: wire_format.FloatByteSize, _FieldDescriptor.TYPE_INT64: wire_format.Int64ByteSize, _FieldDescriptor.TYPE_UINT64: wire_format.UInt64ByteSize, _FieldDescriptor.TYPE_INT32: wire_format.Int32ByteSize, _FieldDescriptor.TYPE_FIXED64: wire_format.Fixed64ByteSize, _FieldDescriptor.TYPE_FIXED32: wire_format.Fixed32ByteSize, _FieldDescriptor.TYPE_BOOL: wire_format.BoolByteSize, _FieldDescriptor.TYPE_STRING: wire_format.StringByteSize, _FieldDescriptor.TYPE_GROUP: wire_format.GroupByteSize, _FieldDescriptor.TYPE_MESSAGE: wire_format.MessageByteSize, _FieldDescriptor.TYPE_BYTES: wire_format.BytesByteSize, _FieldDescriptor.TYPE_UINT32: wire_format.UInt32ByteSize, _FieldDescriptor.TYPE_ENUM: wire_format.EnumByteSize, _FieldDescriptor.TYPE_SFIXED32: wire_format.SFixed32ByteSize, _FieldDescriptor.TYPE_SFIXED64: wire_format.SFixed64ByteSize, _FieldDescriptor.TYPE_SINT32: wire_format.SInt32ByteSize, _FieldDescriptor.TYPE_SINT64: wire_format.SInt64ByteSize } # Maps from field types to encoder constructors. TYPE_TO_ENCODER = { _FieldDescriptor.TYPE_DOUBLE: encoder.DoubleEncoder, _FieldDescriptor.TYPE_FLOAT: encoder.FloatEncoder, _FieldDescriptor.TYPE_INT64: encoder.Int64Encoder, _FieldDescriptor.TYPE_UINT64: encoder.UInt64Encoder, _FieldDescriptor.TYPE_INT32: encoder.Int32Encoder, _FieldDescriptor.TYPE_FIXED64: encoder.Fixed64Encoder, _FieldDescriptor.TYPE_FIXED32: encoder.Fixed32Encoder, _FieldDescriptor.TYPE_BOOL: encoder.BoolEncoder, _FieldDescriptor.TYPE_STRING: encoder.StringEncoder, _FieldDescriptor.TYPE_GROUP: encoder.GroupEncoder, _FieldDescriptor.TYPE_MESSAGE: encoder.MessageEncoder, _FieldDescriptor.TYPE_BYTES: encoder.BytesEncoder, _FieldDescriptor.TYPE_UINT32: encoder.UInt32Encoder, _FieldDescriptor.TYPE_ENUM: encoder.EnumEncoder, _FieldDescriptor.TYPE_SFIXED32: encoder.SFixed32Encoder, _FieldDescriptor.TYPE_SFIXED64: encoder.SFixed64Encoder, _FieldDescriptor.TYPE_SINT32: encoder.SInt32Encoder, _FieldDescriptor.TYPE_SINT64: encoder.SInt64Encoder, } # Maps from field types to sizer constructors. TYPE_TO_SIZER = { _FieldDescriptor.TYPE_DOUBLE: encoder.DoubleSizer, _FieldDescriptor.TYPE_FLOAT: encoder.FloatSizer, _FieldDescriptor.TYPE_INT64: encoder.Int64Sizer, _FieldDescriptor.TYPE_UINT64: encoder.UInt64Sizer, _FieldDescriptor.TYPE_INT32: encoder.Int32Sizer, _FieldDescriptor.TYPE_FIXED64: encoder.Fixed64Sizer, _FieldDescriptor.TYPE_FIXED32: encoder.Fixed32Sizer, _FieldDescriptor.TYPE_BOOL: encoder.BoolSizer, _FieldDescriptor.TYPE_STRING: encoder.StringSizer, _FieldDescriptor.TYPE_GROUP: encoder.GroupSizer, _FieldDescriptor.TYPE_MESSAGE: encoder.MessageSizer, _FieldDescriptor.TYPE_BYTES: encoder.BytesSizer, _FieldDescriptor.TYPE_UINT32: encoder.UInt32Sizer, _FieldDescriptor.TYPE_ENUM: encoder.EnumSizer, _FieldDescriptor.TYPE_SFIXED32: encoder.SFixed32Sizer, _FieldDescriptor.TYPE_SFIXED64: encoder.SFixed64Sizer, _FieldDescriptor.TYPE_SINT32: encoder.SInt32Sizer, _FieldDescriptor.TYPE_SINT64: encoder.SInt64Sizer, } # Maps from field type to a decoder constructor. TYPE_TO_DECODER = { _FieldDescriptor.TYPE_DOUBLE: decoder.DoubleDecoder, _FieldDescriptor.TYPE_FLOAT: decoder.FloatDecoder, _FieldDescriptor.TYPE_INT64: decoder.Int64Decoder, _FieldDescriptor.TYPE_UINT64: decoder.UInt64Decoder, _FieldDescriptor.TYPE_INT32: decoder.Int32Decoder, _FieldDescriptor.TYPE_FIXED64: decoder.Fixed64Decoder, _FieldDescriptor.TYPE_FIXED32: decoder.Fixed32Decoder, _FieldDescriptor.TYPE_BOOL: decoder.BoolDecoder, _FieldDescriptor.TYPE_STRING: decoder.StringDecoder, _FieldDescriptor.TYPE_GROUP: decoder.GroupDecoder, _FieldDescriptor.TYPE_MESSAGE: decoder.MessageDecoder, _FieldDescriptor.TYPE_BYTES: decoder.BytesDecoder, _FieldDescriptor.TYPE_UINT32: decoder.UInt32Decoder, _FieldDescriptor.TYPE_ENUM: decoder.EnumDecoder, _FieldDescriptor.TYPE_SFIXED32: decoder.SFixed32Decoder, _FieldDescriptor.TYPE_SFIXED64: decoder.SFixed64Decoder, _FieldDescriptor.TYPE_SINT32: decoder.SInt32Decoder, _FieldDescriptor.TYPE_SINT64: decoder.SInt64Decoder, } # Maps from field type to expected wiretype. FIELD_TYPE_TO_WIRE_TYPE = { _FieldDescriptor.TYPE_DOUBLE: wire_format.WIRETYPE_FIXED64, _FieldDescriptor.TYPE_FLOAT: wire_format.WIRETYPE_FIXED32, _FieldDescriptor.TYPE_INT64: wire_format.WIRETYPE_VARINT, _FieldDescriptor.TYPE_UINT64: wire_format.WIRETYPE_VARINT, _FieldDescriptor.TYPE_INT32: wire_format.WIRETYPE_VARINT, _FieldDescriptor.TYPE_FIXED64: wire_format.WIRETYPE_FIXED64, _FieldDescriptor.TYPE_FIXED32: wire_format.WIRETYPE_FIXED32, _FieldDescriptor.TYPE_BOOL: wire_format.WIRETYPE_VARINT, _FieldDescriptor.TYPE_STRING: wire_format.WIRETYPE_LENGTH_DELIMITED, _FieldDescriptor.TYPE_GROUP: wire_format.WIRETYPE_START_GROUP, _FieldDescriptor.TYPE_MESSAGE: wire_format.WIRETYPE_LENGTH_DELIMITED, _FieldDescriptor.TYPE_BYTES: wire_format.WIRETYPE_LENGTH_DELIMITED, _FieldDescriptor.TYPE_UINT32: wire_format.WIRETYPE_VARINT, _FieldDescriptor.TYPE_ENUM: wire_format.WIRETYPE_VARINT, _FieldDescriptor.TYPE_SFIXED32: wire_format.WIRETYPE_FIXED32, _FieldDescriptor.TYPE_SFIXED64: wire_format.WIRETYPE_FIXED64, _FieldDescriptor.TYPE_SINT32: wire_format.WIRETYPE_VARINT, _FieldDescriptor.TYPE_SINT64: wire_format.WIRETYPE_VARINT, }
apache-2.0
4,025,457,730,975,738,000
41.498246
80
0.748844
false
ProstoMaxim/incubator-airflow
airflow/ti_deps/deps/valid_state_dep.py
44
2218
# -*- coding: utf-8 -*- # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from airflow.exceptions import AirflowException from airflow.ti_deps.deps.base_ti_dep import BaseTIDep from airflow.utils.db import provide_session class ValidStateDep(BaseTIDep): NAME = "Task Instance State" IGNOREABLE = True """ Ensures that the task instance's state is in a given set of valid states. :param valid_states: A list of valid states that a task instance can have to meet this dependency. :type valid_states: set(str) :return: whether or not the task instance's state is valid """ def __init__(self, valid_states): super(ValidStateDep, self).__init__() if not valid_states: raise AirflowException( 'ValidStatesDep received an empty set of valid states.') self._valid_states = valid_states def __eq__(self, other): return type(self) == type(other) and self._valid_states == other._valid_states def __hash__(self): return hash((type(self), tuple(self._valid_states))) @provide_session def _get_dep_statuses(self, ti, session, dep_context): if dep_context.ignore_ti_state: yield self._passing_status( reason="Context specified that state should be ignored.") return if ti.state in self._valid_states: yield self._passing_status(reason="Task state {} was valid.".format(ti.state)) return yield self._failing_status( reason="Task is in the '{0}' state which is not a valid state for " "execution. The task must be cleared in order to be run.".format( ti.state))
apache-2.0
-4,903,598,234,940,261,000
36.59322
90
0.658702
false
mattvonrocketstein/smash
smashlib/ipy3x/core/inputsplitter.py
1
24256
"""Input handling and transformation machinery. The first class in this module, :class:`InputSplitter`, is designed to tell when input from a line-oriented frontend is complete and should be executed, and when the user should be prompted for another line of code instead. The name 'input splitter' is largely for historical reasons. A companion, :class:`IPythonInputSplitter`, provides the same functionality but with full support for the extended IPython syntax (magics, system calls, etc). The code to actually do these transformations is in :mod:`IPython.core.inputtransformer`. :class:`IPythonInputSplitter` feeds the raw code to the transformers in order and stores the results. For more details, see the class docstrings below. """ # Copyright (c) IPython Development Team. # Distributed under the terms of the Modified BSD License. import ast import codeop import re import sys import warnings from IPython.utils.py3compat import cast_unicode from IPython.core.inputtransformer import (leading_indent, classic_prompt, ipy_prompt, strip_encoding_cookie, cellmagic, assemble_logical_lines, help_end, escaped_commands, assign_from_magic, assign_from_system, assemble_python_lines, ) # These are available in this module for backwards compatibility. from IPython.core.inputtransformer import (ESC_SHELL, ESC_SH_CAP, ESC_HELP, ESC_HELP2, ESC_MAGIC, ESC_MAGIC2, ESC_QUOTE, ESC_QUOTE2, ESC_PAREN, ESC_SEQUENCES) #----------------------------------------------------------------------------- # Utilities #----------------------------------------------------------------------------- # FIXME: These are general-purpose utilities that later can be moved to the # general ward. Kept here for now because we're being very strict about test # coverage with this code, and this lets us ensure that we keep 100% coverage # while developing. # compiled regexps for autoindent management dedent_re = re.compile('|'.join([ r'^\s+raise(\s.*)?$', # raise statement (+ space + other stuff, maybe) r'^\s+raise\([^\)]*\).*$', # wacky raise with immediate open paren r'^\s+return(\s.*)?$', # normal return (+ space + other stuff, maybe) r'^\s+return\([^\)]*\).*$', # wacky return with immediate open paren r'^\s+pass\s*$', # pass (optionally followed by trailing spaces) r'^\s+break\s*$', # break (optionally followed by trailing spaces) r'^\s+continue\s*$', # continue (optionally followed by trailing spaces) ])) ini_spaces_re = re.compile(r'^([ \t\r\f\v]+)') # regexp to match pure comment lines so we don't accidentally insert 'if 1:' # before pure comments comment_line_re = re.compile('^\s*\#') def num_ini_spaces(s): """Return the number of initial spaces in a string. Note that tabs are counted as a single space. For now, we do *not* support mixing of tabs and spaces in the user's input. Parameters ---------- s : string Returns ------- n : int """ ini_spaces = ini_spaces_re.match(s) if ini_spaces: return ini_spaces.end() else: return 0 def last_blank(src): """Determine if the input source ends in a blank. A blank is either a newline or a line consisting of whitespace. Parameters ---------- src : string A single or multiline string. """ if not src: return False ll = src.splitlines()[-1] return (ll == '') or ll.isspace() last_two_blanks_re = re.compile(r'\n\s*\n\s*$', re.MULTILINE) last_two_blanks_re2 = re.compile(r'.+\n\s*\n\s+$', re.MULTILINE) def last_two_blanks(src): """Determine if the input source ends in two blanks. A blank is either a newline or a line consisting of whitespace. Parameters ---------- src : string A single or multiline string. """ if not src: return False # The logic here is tricky: I couldn't get a regexp to work and pass all # the tests, so I took a different approach: split the source by lines, # grab the last two and prepend '###\n' as a stand-in for whatever was in # the body before the last two lines. Then, with that structure, it's # possible to analyze with two regexps. Not the most elegant solution, but # it works. If anyone tries to change this logic, make sure to validate # the whole test suite first! new_src = '\n'.join(['###\n'] + src.splitlines()[-2:]) return (bool(last_two_blanks_re.match(new_src)) or bool(last_two_blanks_re2.match(new_src))) def remove_comments(src): """Remove all comments from input source. Note: comments are NOT recognized inside of strings! Parameters ---------- src : string A single or multiline input string. Returns ------- String with all Python comments removed. """ return re.sub('#.*', '', src) def get_input_encoding(): """Return the default standard input encoding. If sys.stdin has no encoding, 'ascii' is returned.""" # There are strange environments for which sys.stdin.encoding is None. We # ensure that a valid encoding is returned. encoding = getattr(sys.stdin, 'encoding', None) if encoding is None: encoding = 'ascii' return encoding #----------------------------------------------------------------------------- # Classes and functions for normal Python syntax handling #----------------------------------------------------------------------------- class InputSplitter(object): r"""An object that can accumulate lines of Python source before execution. This object is designed to be fed python source line-by-line, using :meth:`push`. It will return on each push whether the currently pushed code could be executed already. In addition, it provides a method called :meth:`push_accepts_more` that can be used to query whether more input can be pushed into a single interactive block. This is a simple example of how an interactive terminal-based client can use this tool:: isp = InputSplitter() while isp.push_accepts_more(): indent = ' '*isp.indent_spaces prompt = '>>> ' + indent line = indent + raw_input(prompt) isp.push(line) print 'Input source was:\n', isp.source_reset(), """ # Number of spaces of indentation computed from input that has been pushed # so far. This is the attributes callers should query to get the current # indentation level, in order to provide auto-indent facilities. indent_spaces = 0 # String, indicating the default input encoding. It is computed by default # at initialization time via get_input_encoding(), but it can be reset by a # client with specific knowledge of the encoding. encoding = '' # String where the current full source input is stored, properly encoded. # Reading this attribute is the normal way of querying the currently pushed # source code, that has been properly encoded. source = '' # Code object corresponding to the current source. It is automatically # synced to the source, so it can be queried at any time to obtain the code # object; it will be None if the source doesn't compile to valid Python. code = None # Private attributes # List with lines of input accumulated so far _buffer = None # Command compiler _compile = None # Mark when input has changed indentation all the way back to flush-left _full_dedent = False # Boolean indicating whether the current block is complete _is_complete = None # Boolean indicating whether the current block has an unrecoverable syntax # error _is_invalid = False def __init__(self): """Create a new InputSplitter instance. """ self._buffer = [] self._compile = codeop.CommandCompiler() self.encoding = get_input_encoding() def reset(self): """Reset the input buffer and associated state.""" self.indent_spaces = 0 self._buffer[:] = [] self.source = '' self.code = None self._is_complete = False self._is_invalid = False self._full_dedent = False def source_reset(self): """Return the input source and perform a full reset. """ out = self.source self.reset() return out def check_complete(self, source): """Return whether a block of code is ready to execute, or should be continued This is a non-stateful API, and will reset the state of this InputSplitter. Parameters ---------- source : string Python input code, which can be multiline. Returns ------- status : str One of 'complete', 'incomplete', or 'invalid' if source is not a prefix of valid code. indent_spaces : int or None The number of spaces by which to indent the next line of code. If status is not 'incomplete', this is None. """ self.reset() try: self.push(source) except SyntaxError: # Transformers in IPythonInputSplitter can raise SyntaxError, # which push() will not catch. return 'invalid', None else: if self._is_invalid: return 'invalid', None elif self.push_accepts_more(): return 'incomplete', self.indent_spaces else: return 'complete', None finally: self.reset() def push(self, lines): """Push one or more lines of input. This stores the given lines and returns a status code indicating whether the code forms a complete Python block or not. Any exceptions generated in compilation are swallowed, but if an exception was produced, the method returns True. Parameters ---------- lines : string One or more lines of Python input. Returns ------- is_complete : boolean True if the current input source (the result of the current input plus prior inputs) forms a complete Python execution block. Note that this value is also stored as a private attribute (``_is_complete``), so it can be queried at any time. """ self._store(lines) source = self.source # Before calling _compile(), reset the code object to None so that if an # exception is raised in compilation, we don't mislead by having # inconsistent code/source attributes. self.code, self._is_complete = None, None self._is_invalid = False # Honor termination lines properly if source.endswith('\\\n'): return False self._update_indent(lines) try: with warnings.catch_warnings(): warnings.simplefilter('error', SyntaxWarning) self.code = self._compile(source, symbol="exec") # Invalid syntax can produce any of a number of different errors from # inside the compiler, so we have to catch them all. Syntax errors # immediately produce a 'ready' block, so the invalid Python can be # sent to the kernel for evaluation with possible ipython # special-syntax conversion. except (SyntaxError, OverflowError, ValueError, TypeError, MemoryError, SyntaxWarning): self._is_complete = True self._is_invalid = True else: # Compilation didn't produce any exceptions (though it may not have # given a complete code object) self._is_complete = self.code is not None return self._is_complete def push_accepts_more(self): """Return whether a block of interactive input can accept more input. This method is meant to be used by line-oriented frontends, who need to guess whether a block is complete or not based solely on prior and current input lines. The InputSplitter considers it has a complete interactive block and will not accept more input when either: * A SyntaxError is raised * The code is complete and consists of a single line or a single non-compound statement * The code is complete and has a blank line at the end If the current input produces a syntax error, this method immediately returns False but does *not* raise the syntax error exception, as typically clients will want to send invalid syntax to an execution backend which might convert the invalid syntax into valid Python via one of the dynamic IPython mechanisms. """ # With incomplete input, unconditionally accept more # A syntax error also sets _is_complete to True - see push() if not self._is_complete: # print("Not complete") # debug return True # The user can make any (complete) input execute by leaving a blank # line last_line = self.source.splitlines()[-1] if (not last_line) or last_line.isspace(): # print("Blank line") # debug return False # If there's just a single line or AST node, and we're flush left, as is # the case after a simple statement such as 'a=1', we want to execute it # straight away. if self.indent_spaces == 0: if len(self.source.splitlines()) <= 1: return False try: code_ast = ast.parse(u''.join(self._buffer)) except Exception: # print("Can't parse AST") # debug return False else: if len(code_ast.body) == 1 and \ not hasattr(code_ast.body[0], 'body'): # print("Simple statement") # debug return False # General fallback - accept more code return True #------------------------------------------------------------------------ # Private interface #------------------------------------------------------------------------ def _find_indent(self, line): """Compute the new indentation level for a single line. Parameters ---------- line : str A single new line of non-whitespace, non-comment Python input. Returns ------- indent_spaces : int New value for the indent level (it may be equal to self.indent_spaces if indentation doesn't change. full_dedent : boolean Whether the new line causes a full flush-left dedent. """ indent_spaces = self.indent_spaces full_dedent = self._full_dedent inisp = num_ini_spaces(line) if inisp < indent_spaces: indent_spaces = inisp if indent_spaces <= 0: # print 'Full dedent in text',self.source # dbg full_dedent = True if line.rstrip()[-1] == ':': indent_spaces += 4 elif dedent_re.match(line): indent_spaces -= 4 if indent_spaces <= 0: full_dedent = True # Safety if indent_spaces < 0: indent_spaces = 0 # print 'safety' # dbg return indent_spaces, full_dedent def _update_indent(self, lines): for line in remove_comments(lines).splitlines(): if line and not line.isspace(): self.indent_spaces, self._full_dedent = self._find_indent(line) def _store(self, lines, buffer=None, store='source'): """Store one or more lines of input. If input lines are not newline-terminated, a newline is automatically appended.""" if buffer is None: buffer = self._buffer if lines.endswith('\n'): buffer.append(lines) else: buffer.append(lines + '\n') setattr(self, store, self._set_source(buffer)) def _set_source(self, buffer): return u''.join(buffer) class IPythonInputSplitter(InputSplitter): """An input splitter that recognizes all of IPython's special syntax.""" # String with raw, untransformed input. source_raw = '' # Flag to track when a transformer has stored input that it hasn't given # back yet. transformer_accumulating = False # Flag to track when assemble_python_lines has stored input that it hasn't # given back yet. within_python_line = False # Private attributes # List with lines of raw input accumulated so far. _buffer_raw = None def __init__(self, line_input_checker=True, physical_line_transforms=None, logical_line_transforms=None, python_line_transforms=None): super(IPythonInputSplitter, self).__init__() self._buffer_raw = [] self._validate = True if physical_line_transforms is not None: self.physical_line_transforms = physical_line_transforms else: self.physical_line_transforms = [ leading_indent(), classic_prompt(), ipy_prompt(), strip_encoding_cookie(), cellmagic(end_on_blank_line=line_input_checker), ] self.assemble_logical_lines = assemble_logical_lines() if logical_line_transforms is not None: self.logical_line_transforms = logical_line_transforms else: self.logical_line_transforms = [ help_end(), escaped_commands(), assign_from_magic(), assign_from_system(), ] self.assemble_python_lines = assemble_python_lines() if python_line_transforms is not None: self.python_line_transforms = python_line_transforms else: # We don't use any of these at present self.python_line_transforms = [] @property def transforms(self): "Quick access to all transformers." return self.physical_line_transforms + \ [self.assemble_logical_lines] + self.logical_line_transforms + \ [self.assemble_python_lines] + self.python_line_transforms @property def transforms_in_use(self): """Transformers, excluding logical line transformers if we're in a Python line.""" t = self.physical_line_transforms[:] if not self.within_python_line: t += [self.assemble_logical_lines] + self.logical_line_transforms return t + [self.assemble_python_lines] + self.python_line_transforms def reset(self): """Reset the input buffer and associated state.""" super(IPythonInputSplitter, self).reset() self._buffer_raw[:] = [] self.source_raw = '' self.transformer_accumulating = False self.within_python_line = False for t in self.transforms: try: t.reset() except SyntaxError: # Nothing that calls reset() expects to handle transformer # errors pass def flush_transformers(self): def _flush(transform, outs): """yield transformed lines always strings, never None transform: the current transform outs: an iterable of previously transformed inputs. Each may be multiline, which will be passed one line at a time to transform. """ for out in outs: for line in out.splitlines(): # push one line at a time tmp = transform.push(line) if tmp is not None: yield tmp # reset the transform tmp = transform.reset() if tmp is not None: yield tmp out = [] for t in self.transforms_in_use: out = _flush(t, out) out = list(out) if out: self._store('\n'.join(out)) def raw_reset(self): """Return raw input only and perform a full reset. """ out = self.source_raw self.reset() return out def source_reset(self): try: self.flush_transformers() return self.source finally: self.reset() def push_accepts_more(self): if self.transformer_accumulating: return True else: return super(IPythonInputSplitter, self).push_accepts_more() def transform_cell(self, cell): """Process and translate a cell of input. """ self.reset() try: self.push(cell) self.flush_transformers() return self.source finally: self.reset() def push(self, lines): """Push one or more lines of IPython input. This stores the given lines and returns a status code indicating whether the code forms a complete Python block or not, after processing all input lines for special IPython syntax. Any exceptions generated in compilation are swallowed, but if an exception was produced, the method returns True. Parameters ---------- lines : string One or more lines of Python input. Returns ------- is_complete : boolean True if the current input source (the result of the current input plus prior inputs) forms a complete Python execution block. Note that this value is also stored as a private attribute (_is_complete), so it can be queried at any time. """ # We must ensure all input is pure unicode lines = cast_unicode(lines, self.encoding) # ''.splitlines() --> [], but we need to push the empty line to transformers lines_list = lines.splitlines() if not lines_list: lines_list = [''] # Store raw source before applying any transformations to it. Note # that this must be done *after* the reset() call that would otherwise # flush the buffer. self._store(lines, self._buffer_raw, 'source_raw') for line in lines_list: out = self.push_line(line) return out def push_line(self, line): buf = self._buffer def _accumulating(dbg): # print(dbg) self.transformer_accumulating = True return False for transformer in self.physical_line_transforms: line = transformer.push(line) if line is None: return _accumulating(transformer) if not self.within_python_line: line = self.assemble_logical_lines.push(line) if line is None: return _accumulating('acc logical line') for transformer in self.logical_line_transforms: line = transformer.push(line) if line is None: return _accumulating(transformer) line = self.assemble_python_lines.push(line) if line is None: self.within_python_line = True return _accumulating('acc python line') else: self.within_python_line = False for transformer in self.python_line_transforms: line = transformer.push(line) if line is None: return _accumulating(transformer) # print("transformers clear") #debug self.transformer_accumulating = False return super(IPythonInputSplitter, self).push(line)
mit
4,596,734,243,576,576,500
34.10275
91
0.583155
false
galaxy001/monkey-videos
build/build.py
6
1309
#!/usr/bin/env python3 import os handlers = [ '56.js', 'acfun.js', 'bilibili.js', 'cntv.js', 'funshion.js', 'ifeng.js', 'iqiyi.js', 'letv.js', 'justing.js', 'ku6.js', 'netease.js', 'pps.js', 'sina.js', 'sohu.js', 'tucao.js', 'tudou.js', 'wasu.js', 'weiqitv.js', 'youku.js', 'youtube.js', ] def build(): def write_includes(): for handler in handlers: name = os.path.splitext(handler)[0] header_path = os.path.join('../', name, header) out.write(open(header_path).read()) def write_handlers(): for handler in handlers: name = os.path.splitext(handler)[0] handler_path = os.path.join('../', name, handler) print(handler_path) out.write(open(handler_path).read()) header = 'header.js' input_path = 'monkey-videos.js' output_path = '../monkey-videos.user.js' with open(input_path) as fh, open(output_path, 'w') as out: for line in fh: if line.startswith('IMPORT_INCLUDES'): write_includes() elif line.startswith('IMPORT_HANDLERS'): write_handlers() else: out.write(line) if __name__ == '__main__': build()
gpl-3.0
6,570,973,924,532,993,000
21.964912
63
0.514133
false
nishantjr/pjproject
tests/pjsua/mod_media_playrec.py
40
2921
# $Id$ # PLAYFILE -> RECFILE: # Input file is played and is recorded to output, then compare them. # Useful to tes clock rates compatibility and resample quality # null-audio # port 1: wav file input xxxxxx.clock_rate.wav, e.g: test1.8.wav # port 2: wav file ouput xxxxxx.clock_rate.wav, e.g: res1.8.wav # wav input must be more than 3 seconds long import time import imp import sys import re import subprocess import inc_const as const from inc_cfg import * # Load configuration cfg_file = imp.load_source("cfg_file", ARGS[1]) # WAV similarity calculator COMPARE_WAV_EXE = "" if sys.platform.find("win32")!=-1: COMPARE_WAV_EXE = "tools/cmp_wav.exe" G_INUNIX = False else: COMPARE_WAV_EXE = "tools/cmp_wav" G_INUNIX = True # Threshold to declare degradation is too high when result is lower than this value COMPARE_THRESHOLD = 2 # COMPARE params input_filename = "" # Input filename output_filename = "" # Output filename # Test body function def test_func(t): global input_filename global output_filename endpt = t.process[0] # Get input file name input_filename = re.compile(const.MEDIA_PLAY_FILE).search(endpt.inst_param.arg).group(1) endpt.trace("Input file = " + input_filename) # Get output file name output_filename = re.compile(const.MEDIA_REC_FILE).search(endpt.inst_param.arg).group(1) endpt.trace("Output file = " + output_filename) # Find appropriate clock rate for the input file clock_rate = re.compile(".+(\.\d+\.wav)$").match(output_filename).group(1) if (clock_rate==None): endpt.trace("Cannot compare input & output, incorrect output filename format") return input_filename = re.sub("\.\d+\.wav$", clock_rate, input_filename) endpt.trace("WAV file to be compared with output = " + input_filename) # Connect input-output file endpt.sync_stdout() endpt.send("cc 1 2") endpt.expect(const.MEDIA_CONN_PORT_SUCCESS) # Wait time.sleep(3) endpt.sync_stdout() # Disconnect input-output file endpt.send("cd 1 2") endpt.expect(const.MEDIA_DISCONN_PORT_SUCCESS) # Post body function def post_func(t): global input_filename global output_filename endpt = t.process[0] # Check WAV similarity fullcmd = COMPARE_WAV_EXE + " " + input_filename + " " + output_filename + " " + "3000" endpt.trace("Popen " + fullcmd) cmp_proc = subprocess.Popen(fullcmd, shell=G_INUNIX, stdout=subprocess.PIPE, universal_newlines=True) # Parse similarity ouput line = cmp_proc.stdout.readline() mo_sim_val = re.match(".+=\s+(\d+)", line) if (mo_sim_val == None): raise TestError("Error comparing WAV files") return # Evaluate the similarity value sim_val = mo_sim_val.group(1) if (sim_val >= COMPARE_THRESHOLD): endpt.trace("WAV similarity = " + sim_val) else: raise TestError("WAV degraded heavily, similarity = " + sim_val) # Here where it all comes together test = cfg_file.test_param test.test_func = test_func test.post_func = post_func
gpl-2.0
-6,874,661,052,290,806,000
26.046296
102
0.709688
false
anusornc/vitess
py/vtdb/vtdb_logger.py
7
3102
# Copyright 2014, Google Inc. All rights reserved. # Use of this source code is governed by a BSD-style license that can # be found in the LICENSE file. import logging # VtdbLogger's methods are called whenever something worth noting happens. # The default behavior of the class is to log using the logging module. # Registering a new implementation allows the client code to report the # conditions to any custom reporting mechanism. # # We use this in the following cases: # - error reporting (an exception happened) # - performance logging (calls to other services took that long) class VtdbLogger(object): # # topology callbacks # # topo_keyspace_fetch is called when we successfully get a SrvKeyspace object. def topo_keyspace_fetch(self, keyspace_name, topo_rtt): logging.info("Fetched keyspace %s from topo_client in %f secs", keyspace_name, topo_rtt) # topo_empty_keyspace_list is called when we get an empty list of # keyspaces from topo server. def topo_empty_keyspace_list(self): logging.warning('topo_empty_keyspace_list') # topo_bad_keyspace_data is called if we generated an exception # when reading a keyspace. This is within an exception handler. def topo_bad_keyspace_data(self, keyspace_name): logging.exception('error getting or parsing keyspace data for %s', keyspace_name) # topo_zkocc_error is called whenever we get a zkocc.ZkOccError # when trying to resolve an endpoint. def topo_zkocc_error(self, message, db_key, e): logging.warning('topo_zkocc_error: %s for %s: %s', message, db_key, e) # topo_exception is called whenever we get an exception when trying # to resolve an endpoint (that is not a zkocc.ZkOccError, these get # handled by topo_zkocc_error). def topo_exception(self, message, db_key, e): logging.warning('topo_exception: %s for %s: %s', message, db_key, e) # # vtclient callbacks # # Integrity Error is called when mysql throws an IntegrityError on a query. # This is thrown by both vtclient and vtgatev2. def integrity_error(self, e): logging.warning('integrity_error: %s', e) # vtclient_exception is called when a FatalError is raised by # vtclient (that error is sent back to the application, the retries # happen at a lower level). e can be one of # dbexceptions.{RetryError, FatalError, TxPoolFull} # or a more generic dbexceptions.OperationalError def vtclient_exception(self, keyspace_name, shard_name, db_type, e): logging.warning('vtclient_exception for %s.%s.%s: %s', keyspace_name, shard_name, db_type, e) # # vtgatev2 callbacks # # vtgatev2_exception is called when we get an exception talking to vtgate. def vtgatev2_exception(self, e): logging.warning('vtgatev2_exception: %s', e) def log_private_data(self, private_data): logging.info("Additional exception data %s", private_data) # registration mechanism for VtdbLogger __vtdb_logger = VtdbLogger() def register_vtdb_logger(logger): global __vtdb_logger __vtdb_logger = logger def get_logger(): return __vtdb_logger
bsd-3-clause
8,214,899,324,859,678,000
34.25
92
0.720503
false
shiminasai/ciat_plataforma
guias_cacao/migrations/0009_auto__add_actividadescierre__add_cierremanejo2__add_cierreplaga2__add_.py
3
113662
# -*- coding: utf-8 -*- from south.utils import datetime_utils as datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding model 'ActividadesCierre' db.create_table(u'guias_cacao_actividadescierre', ( (u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('nombre', self.gf('django.db.models.fields.CharField')(max_length=250)), )) db.send_create_signal(u'guias_cacao', ['ActividadesCierre']) # Adding model 'CierreManejo2' db.create_table(u'guias_cacao_cierremanejo2', ( (u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('campo1', self.gf('multiselectfield.db.fields.MultiSelectField')(max_length=11)), ('campo2', self.gf('multiselectfield.db.fields.MultiSelectField')(max_length=13)), ('campo3', self.gf('multiselectfield.db.fields.MultiSelectField')(max_length=13)), ('ficha', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['guias_cacao.FichaCierre'])), )) db.send_create_signal(u'guias_cacao', ['CierreManejo2']) # Adding model 'CierrePlaga2' db.create_table(u'guias_cacao_cierreplaga2', ( (u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('tema', self.gf('django.db.models.fields.IntegerField')()), ('monilla', self.gf('multiselectfield.db.fields.MultiSelectField')(max_length=9)), ('mazorca', self.gf('multiselectfield.db.fields.MultiSelectField')(max_length=9)), ('zompopos', self.gf('multiselectfield.db.fields.MultiSelectField')(max_length=9)), ('ficha', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['guias_cacao.FichaCierre'])), )) db.send_create_signal(u'guias_cacao', ['CierrePlaga2']) # Adding model 'CierreManejo1' db.create_table(u'guias_cacao_cierremanejo1', ( (u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('campo1', self.gf('multiselectfield.db.fields.MultiSelectField')(max_length=11)), ('campo2', self.gf('multiselectfield.db.fields.MultiSelectField')(max_length=13)), ('campo3', self.gf('multiselectfield.db.fields.MultiSelectField')(max_length=13)), ('ficha', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['guias_cacao.FichaCierre'])), )) db.send_create_signal(u'guias_cacao', ['CierreManejo1']) # Adding model 'CierreManejo6' db.create_table(u'guias_cacao_cierremanejo6', ( (u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('campo1', self.gf('multiselectfield.db.fields.MultiSelectField')(max_length=11)), ('campo2', self.gf('multiselectfield.db.fields.MultiSelectField')(max_length=13)), ('campo3', self.gf('multiselectfield.db.fields.MultiSelectField')(max_length=13)), ('ficha', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['guias_cacao.FichaCierre'])), )) db.send_create_signal(u'guias_cacao', ['CierreManejo6']) # Adding model 'CierreManejo7' db.create_table(u'guias_cacao_cierremanejo7', ( (u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('campo1', self.gf('multiselectfield.db.fields.MultiSelectField')(max_length=9)), ('campo2', self.gf('multiselectfield.db.fields.MultiSelectField')(max_length=13)), ('campo3', self.gf('multiselectfield.db.fields.MultiSelectField')(max_length=13)), ('ficha', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['guias_cacao.FichaCierre'])), )) db.send_create_signal(u'guias_cacao', ['CierreManejo7']) # Adding model 'CierreManejo4' db.create_table(u'guias_cacao_cierremanejo4', ( (u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('campo1', self.gf('multiselectfield.db.fields.MultiSelectField')(max_length=11)), ('campo2', self.gf('multiselectfield.db.fields.MultiSelectField')(max_length=15)), ('campo3', self.gf('multiselectfield.db.fields.MultiSelectField')(max_length=15)), ('ficha', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['guias_cacao.FichaCierre'])), )) db.send_create_signal(u'guias_cacao', ['CierreManejo4']) # Adding model 'CierreManejo5' db.create_table(u'guias_cacao_cierremanejo5', ( (u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('campo1', self.gf('multiselectfield.db.fields.MultiSelectField')(max_length=11)), ('campo2', self.gf('multiselectfield.db.fields.MultiSelectField')(max_length=13)), ('campo3', self.gf('multiselectfield.db.fields.MultiSelectField')(max_length=13)), ('ficha', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['guias_cacao.FichaCierre'])), )) db.send_create_signal(u'guias_cacao', ['CierreManejo5']) # Adding model 'CierreConocimiento1' db.create_table(u'guias_cacao_cierreconocimiento1', ( (u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('tema', self.gf('django.db.models.fields.IntegerField')()), ('criollas', self.gf('django.db.models.fields.IntegerField')()), ('forastero', self.gf('django.db.models.fields.IntegerField')()), ('trinitaria', self.gf('django.db.models.fields.IntegerField')()), ('hibridos', self.gf('django.db.models.fields.IntegerField')()), ('clones', self.gf('django.db.models.fields.IntegerField')()), ('ficha', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['guias_cacao.FichaCierre'])), )) db.send_create_signal(u'guias_cacao', ['CierreConocimiento1']) # Adding model 'CierreConocimiento3' db.create_table(u'guias_cacao_cierreconocimiento3', ( (u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('tema', self.gf('django.db.models.fields.IntegerField')()), ('criollas', self.gf('multiselectfield.db.fields.MultiSelectField')(max_length=9)), ('forastero', self.gf('multiselectfield.db.fields.MultiSelectField')(max_length=9)), ('trinitaria', self.gf('multiselectfield.db.fields.MultiSelectField')(max_length=9)), ('hibridos', self.gf('multiselectfield.db.fields.MultiSelectField')(max_length=9)), ('clones', self.gf('multiselectfield.db.fields.MultiSelectField')(max_length=9)), ('ficha', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['guias_cacao.FichaCierre'])), )) db.send_create_signal(u'guias_cacao', ['CierreConocimiento3']) # Adding model 'CierreConocimiento2' db.create_table(u'guias_cacao_cierreconocimiento2', ( (u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('tema', self.gf('django.db.models.fields.IntegerField')()), ('criollas', self.gf('multiselectfield.db.fields.MultiSelectField')(max_length=9)), ('forastero', self.gf('multiselectfield.db.fields.MultiSelectField')(max_length=9)), ('trinitaria', self.gf('multiselectfield.db.fields.MultiSelectField')(max_length=9)), ('hibridos', self.gf('multiselectfield.db.fields.MultiSelectField')(max_length=9)), ('clones', self.gf('multiselectfield.db.fields.MultiSelectField')(max_length=9)), ('ficha', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['guias_cacao.FichaCierre'])), )) db.send_create_signal(u'guias_cacao', ['CierreConocimiento2']) # Adding model 'CierrePlaga3' db.create_table(u'guias_cacao_cierreplaga3', ( (u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('tema', self.gf('django.db.models.fields.IntegerField')()), ('monilla', self.gf('multiselectfield.db.fields.MultiSelectField')(max_length=3)), ('mazorca', self.gf('multiselectfield.db.fields.MultiSelectField')(max_length=3)), ('zompopos', self.gf('multiselectfield.db.fields.MultiSelectField')(max_length=3)), ('ficha', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['guias_cacao.FichaCierre'])), )) db.send_create_signal(u'guias_cacao', ['CierrePlaga3']) # Adding model 'CierrePlaga1' db.create_table(u'guias_cacao_cierreplaga1', ( (u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('tema', self.gf('django.db.models.fields.IntegerField')()), ('monilla', self.gf('django.db.models.fields.FloatField')()), ('mazorca', self.gf('django.db.models.fields.FloatField')()), ('zompopos', self.gf('django.db.models.fields.FloatField')()), ('ficha', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['guias_cacao.FichaCierre'])), )) db.send_create_signal(u'guias_cacao', ['CierrePlaga1']) # Adding model 'CierreSuelo3' db.create_table(u'guias_cacao_cierresuelo3', ( (u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('tema', self.gf('django.db.models.fields.IntegerField')()), ('abono', self.gf('multiselectfield.db.fields.MultiSelectField')(max_length=9)), ('hojarasca', self.gf('multiselectfield.db.fields.MultiSelectField')(max_length=9)), ('organico', self.gf('multiselectfield.db.fields.MultiSelectField')(max_length=9)), ('ficha', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['guias_cacao.FichaCierre'])), )) db.send_create_signal(u'guias_cacao', ['CierreSuelo3']) # Adding model 'CierreSuelo2' db.create_table(u'guias_cacao_cierresuelo2', ( (u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('tema', self.gf('django.db.models.fields.IntegerField')()), ('abono', self.gf('multiselectfield.db.fields.MultiSelectField')(max_length=9)), ('hojarasca', self.gf('multiselectfield.db.fields.MultiSelectField')(max_length=9)), ('organico', self.gf('multiselectfield.db.fields.MultiSelectField')(max_length=9)), ('ficha', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['guias_cacao.FichaCierre'])), )) db.send_create_signal(u'guias_cacao', ['CierreSuelo2']) # Adding model 'CierreSuelo1' db.create_table(u'guias_cacao_cierresuelo1', ( (u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('tema', self.gf('django.db.models.fields.IntegerField')()), ('abono', self.gf('multiselectfield.db.fields.MultiSelectField')(max_length=9)), ('hojarasca', self.gf('multiselectfield.db.fields.MultiSelectField')(max_length=9)), ('organico', self.gf('multiselectfield.db.fields.MultiSelectField')(max_length=9)), ('ficha', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['guias_cacao.FichaCierre'])), )) db.send_create_signal(u'guias_cacao', ['CierreSuelo1']) # Adding model 'ManejosCierre' db.create_table(u'guias_cacao_manejoscierre', ( (u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('nombre', self.gf('django.db.models.fields.CharField')(max_length=250)), )) db.send_create_signal(u'guias_cacao', ['ManejosCierre']) # Adding model 'CierreCosto1' db.create_table(u'guias_cacao_cierrecosto1', ( (u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('costo', self.gf('django.db.models.fields.FloatField')()), ('area', self.gf('django.db.models.fields.FloatField')()), ('tipo', self.gf('multiselectfield.db.fields.MultiSelectField')(max_length=9)), ('ficha', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['guias_cacao.FichaCierre'])), )) db.send_create_signal(u'guias_cacao', ['CierreCosto1']) # Adding model 'CierreManejo' db.create_table(u'guias_cacao_cierremanejo', ( (u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('manejo', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['guias_cacao.ManejosCierre'])), ('reposo', self.gf('django.db.models.fields.IntegerField')()), ('crecimiento', self.gf('django.db.models.fields.IntegerField')()), ('floracion', self.gf('django.db.models.fields.IntegerField')()), ('cosecha', self.gf('django.db.models.fields.IntegerField')()), ('ficha', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['guias_cacao.FichaCierre'])), )) db.send_create_signal(u'guias_cacao', ['CierreManejo']) # Adding model 'CierreActividad' db.create_table(u'guias_cacao_cierreactividad', ( (u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('actividad', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['guias_cacao.ActividadesCierre'])), ('meses', self.gf('multiselectfield.db.fields.MultiSelectField')(max_length=23)), ('familiar', self.gf('django.db.models.fields.FloatField')()), ('contratada', self.gf('django.db.models.fields.FloatField')()), ('insumo', self.gf('django.db.models.fields.CharField')(max_length=250)), ('costo', self.gf('django.db.models.fields.FloatField')()), ('ficha', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['guias_cacao.FichaCierre'])), )) db.send_create_signal(u'guias_cacao', ['CierreActividad']) # Adding model 'CierreCicloTrabajo' db.create_table(u'guias_cacao_cierreciclotrabajo', ( (u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('pregunta1', self.gf('django.db.models.fields.IntegerField')()), ('pregunta2', self.gf('django.db.models.fields.IntegerField')()), ('pregunta3', self.gf('django.db.models.fields.IntegerField')()), ('pregunta4', self.gf('django.db.models.fields.IntegerField')()), ('pregunta5', self.gf('django.db.models.fields.IntegerField')()), ('pregunta6', self.gf('django.db.models.fields.IntegerField')()), ('pregunta7', self.gf('django.db.models.fields.IntegerField')()), ('pregunta8', self.gf('django.db.models.fields.IntegerField')()), ('pregunta9', self.gf('django.db.models.fields.TextField')()), ('ficha', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['guias_cacao.FichaCierre'])), )) db.send_create_signal(u'guias_cacao', ['CierreCicloTrabajo']) # Adding model 'FichaCierre' db.create_table(u'guias_cacao_fichacierre', ( (u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('productor', self.gf('django.db.models.fields.related.ForeignKey')(related_name='persona_productor_cierre', to=orm['mapeo.Persona'])), ('tecnico', self.gf('django.db.models.fields.related.ForeignKey')(related_name='persona_tecnico_cierre', to=orm['mapeo.Persona'])), ('fecha_visita', self.gf('django.db.models.fields.DateField')()), )) db.send_create_signal(u'guias_cacao', ['FichaCierre']) # Adding model 'CierreManejo3' db.create_table(u'guias_cacao_cierremanejo3', ( (u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('campo1', self.gf('multiselectfield.db.fields.MultiSelectField')(max_length=11)), ('campo2', self.gf('multiselectfield.db.fields.MultiSelectField')(max_length=13)), ('campo3', self.gf('multiselectfield.db.fields.MultiSelectField')(max_length=13)), ('ficha', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['guias_cacao.FichaCierre'])), )) db.send_create_signal(u'guias_cacao', ['CierreManejo3']) def backwards(self, orm): # Deleting model 'ActividadesCierre' db.delete_table(u'guias_cacao_actividadescierre') # Deleting model 'CierreManejo2' db.delete_table(u'guias_cacao_cierremanejo2') # Deleting model 'CierrePlaga2' db.delete_table(u'guias_cacao_cierreplaga2') # Deleting model 'CierreManejo1' db.delete_table(u'guias_cacao_cierremanejo1') # Deleting model 'CierreManejo6' db.delete_table(u'guias_cacao_cierremanejo6') # Deleting model 'CierreManejo7' db.delete_table(u'guias_cacao_cierremanejo7') # Deleting model 'CierreManejo4' db.delete_table(u'guias_cacao_cierremanejo4') # Deleting model 'CierreManejo5' db.delete_table(u'guias_cacao_cierremanejo5') # Deleting model 'CierreConocimiento1' db.delete_table(u'guias_cacao_cierreconocimiento1') # Deleting model 'CierreConocimiento3' db.delete_table(u'guias_cacao_cierreconocimiento3') # Deleting model 'CierreConocimiento2' db.delete_table(u'guias_cacao_cierreconocimiento2') # Deleting model 'CierrePlaga3' db.delete_table(u'guias_cacao_cierreplaga3') # Deleting model 'CierrePlaga1' db.delete_table(u'guias_cacao_cierreplaga1') # Deleting model 'CierreSuelo3' db.delete_table(u'guias_cacao_cierresuelo3') # Deleting model 'CierreSuelo2' db.delete_table(u'guias_cacao_cierresuelo2') # Deleting model 'CierreSuelo1' db.delete_table(u'guias_cacao_cierresuelo1') # Deleting model 'ManejosCierre' db.delete_table(u'guias_cacao_manejoscierre') # Deleting model 'CierreCosto1' db.delete_table(u'guias_cacao_cierrecosto1') # Deleting model 'CierreManejo' db.delete_table(u'guias_cacao_cierremanejo') # Deleting model 'CierreActividad' db.delete_table(u'guias_cacao_cierreactividad') # Deleting model 'CierreCicloTrabajo' db.delete_table(u'guias_cacao_cierreciclotrabajo') # Deleting model 'FichaCierre' db.delete_table(u'guias_cacao_fichacierre') # Deleting model 'CierreManejo3' db.delete_table(u'guias_cacao_cierremanejo3') models = { u'guias_cacao.accionesenfermedad': { 'Meta': {'object_name': 'AccionesEnfermedad'}, 'cuantas_veces': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaPlaga']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'meses': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '23'}), 'plagas_acciones': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'realiza_manejo': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}) }, u'guias_cacao.accionessombra': { 'Meta': {'object_name': 'AccionesSombra'}, 'accion': ('django.db.models.fields.IntegerField', [], {}), 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaSombra']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}) }, u'guias_cacao.actividadescierre': { 'Meta': {'object_name': 'ActividadesCierre'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'nombre': ('django.db.models.fields.CharField', [], {'max_length': '250'}) }, u'guias_cacao.analisispoda': { 'Meta': {'object_name': 'AnalisisPoda'}, 'campo1': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '15'}), 'campo2': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '11'}), 'campo3': ('django.db.models.fields.IntegerField', [], {}), 'campo4': ('django.db.models.fields.IntegerField', [], {}), 'campo5': ('django.db.models.fields.IntegerField', [], {}), 'campo6': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '23'}), 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaPoda']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}) }, u'guias_cacao.analisissombra': { 'Meta': {'object_name': 'AnalisisSombra'}, 'Problema': ('django.db.models.fields.IntegerField', [], {}), 'arreglo': ('django.db.models.fields.IntegerField', [], {}), 'calidad_hojarasca': ('django.db.models.fields.IntegerField', [], {}), 'competencia': ('django.db.models.fields.IntegerField', [], {}), 'densidad': ('django.db.models.fields.IntegerField', [], {}), 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaSombra']"}), 'forma_copa': ('django.db.models.fields.IntegerField', [], {}), 'hojarasca': ('django.db.models.fields.IntegerField', [], {}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}) }, u'guias_cacao.aumentarsombra': { 'Meta': {'object_name': 'AumentarSombra'}, 'cambiando': ('django.db.models.fields.IntegerField', [], {}), 'cambiando_cuales': ('django.db.models.fields.CharField', [], {'max_length': '350'}), 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaSombra']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'que_parte': ('django.db.models.fields.CharField', [], {'max_length': '250'}), 'sembrando': ('django.db.models.fields.IntegerField', [], {}), 'sembrando_cuales': ('django.db.models.fields.CharField', [], {'max_length': '350'}), 'todo': ('django.db.models.fields.IntegerField', [], {}) }, u'guias_cacao.cierreactividad': { 'Meta': {'object_name': 'CierreActividad'}, 'actividad': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.ActividadesCierre']"}), 'contratada': ('django.db.models.fields.FloatField', [], {}), 'costo': ('django.db.models.fields.FloatField', [], {}), 'familiar': ('django.db.models.fields.FloatField', [], {}), 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaCierre']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'insumo': ('django.db.models.fields.CharField', [], {'max_length': '250'}), 'meses': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '23'}) }, u'guias_cacao.cierreciclotrabajo': { 'Meta': {'object_name': 'CierreCicloTrabajo'}, 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaCierre']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'pregunta1': ('django.db.models.fields.IntegerField', [], {}), 'pregunta2': ('django.db.models.fields.IntegerField', [], {}), 'pregunta3': ('django.db.models.fields.IntegerField', [], {}), 'pregunta4': ('django.db.models.fields.IntegerField', [], {}), 'pregunta5': ('django.db.models.fields.IntegerField', [], {}), 'pregunta6': ('django.db.models.fields.IntegerField', [], {}), 'pregunta7': ('django.db.models.fields.IntegerField', [], {}), 'pregunta8': ('django.db.models.fields.IntegerField', [], {}), 'pregunta9': ('django.db.models.fields.TextField', [], {}) }, u'guias_cacao.cierreconocimiento1': { 'Meta': {'object_name': 'CierreConocimiento1'}, 'clones': ('django.db.models.fields.IntegerField', [], {}), 'criollas': ('django.db.models.fields.IntegerField', [], {}), 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaCierre']"}), 'forastero': ('django.db.models.fields.IntegerField', [], {}), 'hibridos': ('django.db.models.fields.IntegerField', [], {}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'tema': ('django.db.models.fields.IntegerField', [], {}), 'trinitaria': ('django.db.models.fields.IntegerField', [], {}) }, u'guias_cacao.cierreconocimiento2': { 'Meta': {'object_name': 'CierreConocimiento2'}, 'clones': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '9'}), 'criollas': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '9'}), 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaCierre']"}), 'forastero': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '9'}), 'hibridos': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '9'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'tema': ('django.db.models.fields.IntegerField', [], {}), 'trinitaria': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '9'}) }, u'guias_cacao.cierreconocimiento3': { 'Meta': {'object_name': 'CierreConocimiento3'}, 'clones': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '9'}), 'criollas': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '9'}), 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaCierre']"}), 'forastero': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '9'}), 'hibridos': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '9'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'tema': ('django.db.models.fields.IntegerField', [], {}), 'trinitaria': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '9'}) }, u'guias_cacao.cierrecosto1': { 'Meta': {'object_name': 'CierreCosto1'}, 'area': ('django.db.models.fields.FloatField', [], {}), 'costo': ('django.db.models.fields.FloatField', [], {}), 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaCierre']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'tipo': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '9'}) }, u'guias_cacao.cierremanejo': { 'Meta': {'object_name': 'CierreManejo'}, 'cosecha': ('django.db.models.fields.IntegerField', [], {}), 'crecimiento': ('django.db.models.fields.IntegerField', [], {}), 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaCierre']"}), 'floracion': ('django.db.models.fields.IntegerField', [], {}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'manejo': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.ManejosCierre']"}), 'reposo': ('django.db.models.fields.IntegerField', [], {}) }, u'guias_cacao.cierremanejo1': { 'Meta': {'object_name': 'CierreManejo1'}, 'campo1': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '11'}), 'campo2': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '13'}), 'campo3': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '13'}), 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaCierre']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}) }, u'guias_cacao.cierremanejo2': { 'Meta': {'object_name': 'CierreManejo2'}, 'campo1': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '11'}), 'campo2': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '13'}), 'campo3': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '13'}), 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaCierre']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}) }, u'guias_cacao.cierremanejo3': { 'Meta': {'object_name': 'CierreManejo3'}, 'campo1': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '11'}), 'campo2': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '13'}), 'campo3': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '13'}), 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaCierre']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}) }, u'guias_cacao.cierremanejo4': { 'Meta': {'object_name': 'CierreManejo4'}, 'campo1': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '11'}), 'campo2': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '15'}), 'campo3': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '15'}), 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaCierre']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}) }, u'guias_cacao.cierremanejo5': { 'Meta': {'object_name': 'CierreManejo5'}, 'campo1': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '11'}), 'campo2': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '13'}), 'campo3': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '13'}), 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaCierre']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}) }, u'guias_cacao.cierremanejo6': { 'Meta': {'object_name': 'CierreManejo6'}, 'campo1': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '11'}), 'campo2': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '13'}), 'campo3': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '13'}), 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaCierre']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}) }, u'guias_cacao.cierremanejo7': { 'Meta': {'object_name': 'CierreManejo7'}, 'campo1': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '9'}), 'campo2': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '13'}), 'campo3': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '13'}), 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaCierre']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}) }, u'guias_cacao.cierreplaga1': { 'Meta': {'object_name': 'CierrePlaga1'}, 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaCierre']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'mazorca': ('django.db.models.fields.FloatField', [], {}), 'monilla': ('django.db.models.fields.FloatField', [], {}), 'tema': ('django.db.models.fields.IntegerField', [], {}), 'zompopos': ('django.db.models.fields.FloatField', [], {}) }, u'guias_cacao.cierreplaga2': { 'Meta': {'object_name': 'CierrePlaga2'}, 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaCierre']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'mazorca': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '9'}), 'monilla': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '9'}), 'tema': ('django.db.models.fields.IntegerField', [], {}), 'zompopos': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '9'}) }, u'guias_cacao.cierreplaga3': { 'Meta': {'object_name': 'CierrePlaga3'}, 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaCierre']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'mazorca': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '3'}), 'monilla': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '3'}), 'tema': ('django.db.models.fields.IntegerField', [], {}), 'zompopos': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '3'}) }, u'guias_cacao.cierresuelo1': { 'Meta': {'object_name': 'CierreSuelo1'}, 'abono': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '9'}), 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaCierre']"}), 'hojarasca': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '9'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'organico': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '9'}), 'tema': ('django.db.models.fields.IntegerField', [], {}) }, u'guias_cacao.cierresuelo2': { 'Meta': {'object_name': 'CierreSuelo2'}, 'abono': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '9'}), 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaCierre']"}), 'hojarasca': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '9'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'organico': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '9'}), 'tema': ('django.db.models.fields.IntegerField', [], {}) }, u'guias_cacao.cierresuelo3': { 'Meta': {'object_name': 'CierreSuelo3'}, 'abono': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '9'}), 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaCierre']"}), 'hojarasca': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '9'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'organico': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '9'}), 'tema': ('django.db.models.fields.IntegerField', [], {}) }, u'guias_cacao.cobertura1': { 'Meta': {'object_name': 'Cobertura1'}, 'cobertura': ('django.db.models.fields.FloatField', [], {}), 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaSombra']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}) }, u'guias_cacao.cobertura2': { 'Meta': {'object_name': 'Cobertura2'}, 'cobertura': ('django.db.models.fields.FloatField', [], {}), 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaSombra']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}) }, u'guias_cacao.cobertura3': { 'Meta': {'object_name': 'Cobertura3'}, 'cobertura': ('django.db.models.fields.FloatField', [], {}), 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaSombra']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}) }, u'guias_cacao.cosechaanalisis': { 'Meta': {'object_name': 'CosechaAnalisis'}, 'analisis1': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '11'}), 'analisis2': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '5'}), 'analisis3': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '13'}), 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaCosecha']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}) }, u'guias_cacao.cosechaareaplantas': { 'Meta': {'object_name': 'CosechaAreaPlantas'}, 'area': ('django.db.models.fields.FloatField', [], {}), 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaCosecha']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'plantas': ('django.db.models.fields.FloatField', [], {}) }, u'guias_cacao.cosechaconversacion1': { 'Meta': {'object_name': 'CosechaConversacion1'}, 'conversacion1': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '7'}), 'conversacion2': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '7'}), 'conversacion3': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '13'}), 'conversacion4': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '7'}), 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaCosecha']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}) }, u'guias_cacao.cosechaconversacion2': { 'Meta': {'object_name': 'CosechaConversacion2'}, 'conversacion5': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '9'}), 'conversacion6': ('django.db.models.fields.FloatField', [], {}), 'conversacion7': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '5'}), 'conversacion8': ('django.db.models.fields.IntegerField', [], {}), 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaCosecha']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}) }, u'guias_cacao.cosechamesescosecha': { 'Meta': {'object_name': 'CosechaMesesCosecha'}, 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaCosecha']"}), 'floracion': ('django.db.models.fields.IntegerField', [], {}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'mes': ('django.db.models.fields.IntegerField', [], {}) }, u'guias_cacao.cosechamesesfloracion': { 'Meta': {'object_name': 'CosechaMesesFloracion'}, 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaCosecha']"}), 'floracion': ('django.db.models.fields.IntegerField', [], {}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'mes': ('django.db.models.fields.IntegerField', [], {}) }, u'guias_cacao.cosechapunto1': { 'Meta': {'object_name': 'CosechaPunto1'}, 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaCosecha']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'mazorcas': ('django.db.models.fields.IntegerField', [], {}), 'planta_1': ('django.db.models.fields.FloatField', [], {}), 'planta_10': ('django.db.models.fields.FloatField', [], {}), 'planta_2': ('django.db.models.fields.FloatField', [], {}), 'planta_3': ('django.db.models.fields.FloatField', [], {}), 'planta_4': ('django.db.models.fields.FloatField', [], {}), 'planta_5': ('django.db.models.fields.FloatField', [], {}), 'planta_6': ('django.db.models.fields.FloatField', [], {}), 'planta_7': ('django.db.models.fields.FloatField', [], {}), 'planta_8': ('django.db.models.fields.FloatField', [], {}), 'planta_9': ('django.db.models.fields.FloatField', [], {}) }, u'guias_cacao.cosechapunto2': { 'Meta': {'object_name': 'CosechaPunto2'}, 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaCosecha']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'mazorcas': ('django.db.models.fields.IntegerField', [], {}), 'planta_1': ('django.db.models.fields.FloatField', [], {}), 'planta_10': ('django.db.models.fields.FloatField', [], {}), 'planta_2': ('django.db.models.fields.FloatField', [], {}), 'planta_3': ('django.db.models.fields.FloatField', [], {}), 'planta_4': ('django.db.models.fields.FloatField', [], {}), 'planta_5': ('django.db.models.fields.FloatField', [], {}), 'planta_6': ('django.db.models.fields.FloatField', [], {}), 'planta_7': ('django.db.models.fields.FloatField', [], {}), 'planta_8': ('django.db.models.fields.FloatField', [], {}), 'planta_9': ('django.db.models.fields.FloatField', [], {}) }, u'guias_cacao.cosechapunto3': { 'Meta': {'object_name': 'CosechaPunto3'}, 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaCosecha']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'mazorcas': ('django.db.models.fields.IntegerField', [], {}), 'planta_1': ('django.db.models.fields.FloatField', [], {}), 'planta_10': ('django.db.models.fields.FloatField', [], {}), 'planta_2': ('django.db.models.fields.FloatField', [], {}), 'planta_3': ('django.db.models.fields.FloatField', [], {}), 'planta_4': ('django.db.models.fields.FloatField', [], {}), 'planta_5': ('django.db.models.fields.FloatField', [], {}), 'planta_6': ('django.db.models.fields.FloatField', [], {}), 'planta_7': ('django.db.models.fields.FloatField', [], {}), 'planta_8': ('django.db.models.fields.FloatField', [], {}), 'planta_9': ('django.db.models.fields.FloatField', [], {}) }, u'guias_cacao.datosanalisis': { 'Meta': {'object_name': 'DatosAnalisis'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'unidad': ('django.db.models.fields.CharField', [], {'max_length': '250'}), 'valor_critico': ('django.db.models.fields.FloatField', [], {}), 'variable': ('django.db.models.fields.CharField', [], {'max_length': '250'}) }, u'guias_cacao.especies': { 'Meta': {'object_name': 'Especies'}, 'foto': (u'sorl.thumbnail.fields.ImageField', [], {'max_length': '100', 'null': 'True', 'blank': 'True'}), 'g_altura': ('django.db.models.fields.FloatField', [], {'null': 'True', 'blank': 'True'}), 'g_ancho': ('django.db.models.fields.FloatField', [], {'null': 'True', 'blank': 'True'}), 'g_diametro': ('django.db.models.fields.FloatField', [], {'null': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'm_altura': ('django.db.models.fields.FloatField', [], {'null': 'True', 'blank': 'True'}), 'm_ancho': ('django.db.models.fields.FloatField', [], {'null': 'True', 'blank': 'True'}), 'm_diametro': ('django.db.models.fields.FloatField', [], {'null': 'True', 'blank': 'True'}), 'nombre': ('django.db.models.fields.CharField', [], {'max_length': '250'}), 'nombre_cientifico': ('django.db.models.fields.CharField', [], {'max_length': '250', 'null': 'True', 'blank': 'True'}), 'p_altura': ('django.db.models.fields.FloatField', [], {'null': 'True', 'blank': 'True'}), 'p_ancho': ('django.db.models.fields.FloatField', [], {'null': 'True', 'blank': 'True'}), 'p_diametro': ('django.db.models.fields.FloatField', [], {'null': 'True', 'blank': 'True'}), 'tipo': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'tipo_uso': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '9', 'null': 'True', 'blank': 'True'}) }, u'guias_cacao.fichacierre': { 'Meta': {'object_name': 'FichaCierre'}, 'fecha_visita': ('django.db.models.fields.DateField', [], {}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'productor': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'persona_productor_cierre'", 'to': u"orm['mapeo.Persona']"}), 'tecnico': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'persona_tecnico_cierre'", 'to': u"orm['mapeo.Persona']"}) }, u'guias_cacao.fichacosecha': { 'Meta': {'object_name': 'FichaCosecha'}, 'fecha_visita': ('django.db.models.fields.DateField', [], {}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'productor': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'persona_productor_cosecha'", 'to': u"orm['mapeo.Persona']"}), 'tecnico': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'persona_tecnico_cosecha'", 'to': u"orm['mapeo.Persona']"}) }, u'guias_cacao.fichapiso': { 'Meta': {'object_name': 'FichaPiso'}, 'fecha_visita': ('django.db.models.fields.DateField', [], {}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'productor': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'persona_productor_piso'", 'to': u"orm['mapeo.Persona']"}), 'tecnico': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'persona_tecnico_piso'", 'to': u"orm['mapeo.Persona']"}) }, u'guias_cacao.fichaplaga': { 'Meta': {'object_name': 'FichaPlaga'}, 'fecha_visita': ('django.db.models.fields.DateField', [], {}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'productor': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'persona_productor_plaga'", 'to': u"orm['mapeo.Persona']"}), 'tecnico': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'persona_tecnico_plaga'", 'to': u"orm['mapeo.Persona']"}) }, u'guias_cacao.fichapoda': { 'Meta': {'object_name': 'FichaPoda'}, 'fecha_visita': ('django.db.models.fields.DateField', [], {}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'productor': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'setproductor'", 'to': u"orm['mapeo.Persona']"}), 'tecnico': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'settecnico'", 'to': u"orm['mapeo.Persona']"}) }, u'guias_cacao.fichasaf': { 'Meta': {'object_name': 'FichaSaf'}, 'fecha_visita': ('django.db.models.fields.DateField', [], {}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'productor': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'persona_productor_saf'", 'to': u"orm['mapeo.Persona']"}), 'tecnico': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'persona_tecnico_saf'", 'to': u"orm['mapeo.Persona']"}) }, u'guias_cacao.fichasombra': { 'Meta': {'object_name': 'FichaSombra'}, 'fecha_visita': ('django.db.models.fields.DateField', [], {}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'productor': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'persona_productor'", 'to': u"orm['mapeo.Persona']"}), 'tecnico': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'persona_tecnico'", 'to': u"orm['mapeo.Persona']"}) }, u'guias_cacao.fichasuelo': { 'Meta': {'object_name': 'FichaSuelo'}, 'fecha_visita': ('django.db.models.fields.DateField', [], {}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'productor': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'persona_productor_suelo'", 'to': u"orm['mapeo.Persona']"}), 'tecnico': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'persona_tecnico_suelo'", 'to': u"orm['mapeo.Persona']"}) }, u'guias_cacao.fichavivero': { 'Meta': {'object_name': 'FichaVivero'}, 'fecha_visita': ('django.db.models.fields.DateField', [], {}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'productor': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'persona_productor_vivero'", 'to': u"orm['mapeo.Persona']"}), 'tecnico': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'persona_tecnico_vivero'", 'to': u"orm['mapeo.Persona']"}) }, u'guias_cacao.foto1': { 'Meta': {'object_name': 'Foto1'}, 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaSombra']"}), 'foto': (u'sorl.thumbnail.fields.ImageField', [], {'max_length': '100'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}) }, u'guias_cacao.foto2': { 'Meta': {'object_name': 'Foto2'}, 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaSombra']"}), 'foto': (u'sorl.thumbnail.fields.ImageField', [], {'max_length': '100'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}) }, u'guias_cacao.foto3': { 'Meta': {'object_name': 'Foto3'}, 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaSombra']"}), 'foto': (u'sorl.thumbnail.fields.ImageField', [], {'max_length': '100'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}) }, u'guias_cacao.manejopoda': { 'Meta': {'object_name': 'ManejoPoda'}, 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaPoda']"}), 'formacion': ('django.db.models.fields.IntegerField', [], {}), 'herramientas': ('django.db.models.fields.IntegerField', [], {}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}) }, u'guias_cacao.manejoscierre': { 'Meta': {'object_name': 'ManejosCierre'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'nombre': ('django.db.models.fields.CharField', [], {'max_length': '250'}) }, u'guias_cacao.manejosombra': { 'Meta': {'object_name': 'ManejoSombra'}, 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaSombra']"}), 'formacion': ('django.db.models.fields.IntegerField', [], {}), 'herramientas': ('django.db.models.fields.IntegerField', [], {}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}) }, u'guias_cacao.observacionpunto1': { 'Meta': {'object_name': 'ObservacionPunto1'}, 'cinco': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'cuatro': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'dies': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'dos': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaPlaga']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'nueve': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'ocho': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'planta': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'seis': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'siete': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'tres': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'uno': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}) }, u'guias_cacao.observacionpunto1nivel': { 'Meta': {'object_name': 'ObservacionPunto1Nivel'}, 'cinco': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'cuatro': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'dies': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'dos': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaPlaga']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'nueve': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'ocho': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'planta': ('django.db.models.fields.IntegerField', [], {}), 'seis': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'siete': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'tres': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'uno': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}) }, u'guias_cacao.observacionpunto2': { 'Meta': {'object_name': 'ObservacionPunto2'}, 'cinco': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'cuatro': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'dies': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'dos': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaPlaga']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'nueve': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'ocho': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'planta': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'seis': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'siete': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'tres': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'uno': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}) }, u'guias_cacao.observacionpunto2nivel': { 'Meta': {'object_name': 'ObservacionPunto2Nivel'}, 'cinco': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'cuatro': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'dies': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'dos': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaPlaga']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'nueve': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'ocho': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'planta': ('django.db.models.fields.IntegerField', [], {}), 'seis': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'siete': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'tres': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'uno': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}) }, u'guias_cacao.observacionpunto3': { 'Meta': {'object_name': 'ObservacionPunto3'}, 'cinco': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'cuatro': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'dies': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'dos': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaPlaga']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'nueve': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'ocho': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'planta': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'seis': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'siete': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'tres': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'uno': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}) }, u'guias_cacao.observacionpunto3nivel': { 'Meta': {'object_name': 'ObservacionPunto3Nivel'}, 'cinco': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'cuatro': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'dies': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'dos': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaPlaga']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'nueve': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'ocho': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'planta': ('django.db.models.fields.IntegerField', [], {}), 'seis': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'siete': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'tres': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'uno': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}) }, u'guias_cacao.orientacion': { 'Meta': {'object_name': 'Orientacion'}, 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaPlaga']"}), 'fuentes': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '11'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}) }, u'guias_cacao.pisopunto1': { 'Meta': {'object_name': 'PisoPunto1'}, 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaPiso']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'punto1': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '13'}), 'punto2': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '13'}) }, u'guias_cacao.pisopunto10': { 'Meta': {'object_name': 'PisoPunto10'}, 'equipo': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '15'}), 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaPiso']"}), 'formacion': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}) }, u'guias_cacao.pisopunto3': { 'Meta': {'object_name': 'PisoPunto3'}, 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaPiso']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'manejo': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'meses': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '23'}), 'realiza': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'veces': ('django.db.models.fields.FloatField', [], {}) }, u'guias_cacao.pisopunto4': { 'Meta': {'object_name': 'PisoPunto4'}, 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaPiso']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'manejo': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '11'}) }, u'guias_cacao.pisopunto5': { 'Meta': {'object_name': 'PisoPunto5'}, 'conteo': ('django.db.models.fields.FloatField', [], {}), 'estado': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaPiso']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}) }, u'guias_cacao.pisopunto6': { 'Meta': {'object_name': 'PisoPunto6'}, 'estado': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaPiso']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'maleza': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '11'}), 'manejo': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '5'}) }, u'guias_cacao.pisopunto7': { 'Meta': {'object_name': 'PisoPunto7'}, 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaPiso']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'manejo': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '11'}), 'sombra': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '7'}), 'suelo': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '11'}) }, u'guias_cacao.pisopunto8': { 'Meta': {'object_name': 'PisoPunto8'}, 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaPiso']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'meses': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '23'}), 'parte': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'piso': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}) }, u'guias_cacao.plagasenfermedad': { 'Meta': {'object_name': 'PlagasEnfermedad'}, 'dano': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaPlaga']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'plagas': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'promedio': ('django.db.models.fields.FloatField', [], {}), 'visto': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}) }, u'guias_cacao.problemasprincipales': { 'Meta': {'object_name': 'ProblemasPrincipales'}, 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaPlaga']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'observadas': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '27'}), 'principales': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '27'}), 'situacion': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}) }, u'guias_cacao.productosvivero': { 'Meta': {'object_name': 'ProductosVivero'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'nombre': ('django.db.models.fields.CharField', [], {'max_length': '250'}) }, u'guias_cacao.punto1': { 'Meta': {'object_name': 'Punto1'}, 'especie': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.Especies']"}), 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaSombra']"}), 'grande': ('django.db.models.fields.FloatField', [], {}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'mediana': ('django.db.models.fields.FloatField', [], {}), 'pequena': ('django.db.models.fields.FloatField', [], {}), 'tipo': ('django.db.models.fields.IntegerField', [], {}), 'tipo_de_copa': ('django.db.models.fields.IntegerField', [], {}), 'uso': ('django.db.models.fields.IntegerField', [], {}) }, u'guias_cacao.punto1a': { 'Meta': {'object_name': 'Punto1A'}, 'cinco': ('django.db.models.fields.FloatField', [], {}), 'cuatro': ('django.db.models.fields.FloatField', [], {}), 'diez': ('django.db.models.fields.FloatField', [], {'null': 'True', 'blank': 'True'}), 'dos': ('django.db.models.fields.FloatField', [], {}), 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaPoda']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'nueve': ('django.db.models.fields.FloatField', [], {}), 'ocho': ('django.db.models.fields.FloatField', [], {}), 'plantas': ('django.db.models.fields.IntegerField', [], {}), 'seis': ('django.db.models.fields.FloatField', [], {}), 'siete': ('django.db.models.fields.FloatField', [], {}), 'tres': ('django.db.models.fields.FloatField', [], {}), 'uno': ('django.db.models.fields.FloatField', [], {}) }, u'guias_cacao.punto1b': { 'Meta': {'object_name': 'Punto1B'}, 'cinco': ('django.db.models.fields.IntegerField', [], {}), 'cuatro': ('django.db.models.fields.IntegerField', [], {}), 'diez': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'dos': ('django.db.models.fields.IntegerField', [], {}), 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaPoda']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'nueve': ('django.db.models.fields.IntegerField', [], {}), 'ocho': ('django.db.models.fields.IntegerField', [], {}), 'plantas': ('django.db.models.fields.IntegerField', [], {}), 'seis': ('django.db.models.fields.IntegerField', [], {}), 'siete': ('django.db.models.fields.IntegerField', [], {}), 'tres': ('django.db.models.fields.IntegerField', [], {}), 'uno': ('django.db.models.fields.IntegerField', [], {}) }, u'guias_cacao.punto1c': { 'Meta': {'object_name': 'Punto1C'}, 'cinco': ('django.db.models.fields.IntegerField', [], {}), 'cuatro': ('django.db.models.fields.IntegerField', [], {}), 'diez': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'dos': ('django.db.models.fields.IntegerField', [], {}), 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaPoda']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'nueve': ('django.db.models.fields.IntegerField', [], {}), 'ocho': ('django.db.models.fields.IntegerField', [], {}), 'plantas': ('django.db.models.fields.IntegerField', [], {}), 'seis': ('django.db.models.fields.IntegerField', [], {}), 'siete': ('django.db.models.fields.IntegerField', [], {}), 'tres': ('django.db.models.fields.IntegerField', [], {}), 'uno': ('django.db.models.fields.IntegerField', [], {}) }, u'guias_cacao.punto1suelo': { 'Meta': {'object_name': 'Punto1Suelo'}, 'abonos': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '13'}), 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaSuelo']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'limitante': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '15'}), 'orientacion': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '15'}), 'uso_parcela': ('django.db.models.fields.IntegerField', [], {}) }, u'guias_cacao.punto2': { 'Meta': {'object_name': 'Punto2'}, 'especie': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.Especies']"}), 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaSombra']"}), 'grande': ('django.db.models.fields.FloatField', [], {}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'mediana': ('django.db.models.fields.FloatField', [], {}), 'pequena': ('django.db.models.fields.FloatField', [], {}), 'tipo': ('django.db.models.fields.IntegerField', [], {}), 'tipo_de_copa': ('django.db.models.fields.IntegerField', [], {}), 'uso': ('django.db.models.fields.IntegerField', [], {}) }, u'guias_cacao.punto2a': { 'Meta': {'object_name': 'Punto2A'}, 'cinco': ('django.db.models.fields.FloatField', [], {}), 'cuatro': ('django.db.models.fields.FloatField', [], {}), 'diez': ('django.db.models.fields.FloatField', [], {'null': 'True', 'blank': 'True'}), 'dos': ('django.db.models.fields.FloatField', [], {}), 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaPoda']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'nueve': ('django.db.models.fields.FloatField', [], {}), 'ocho': ('django.db.models.fields.FloatField', [], {}), 'plantas': ('django.db.models.fields.IntegerField', [], {}), 'seis': ('django.db.models.fields.FloatField', [], {}), 'siete': ('django.db.models.fields.FloatField', [], {}), 'tres': ('django.db.models.fields.FloatField', [], {}), 'uno': ('django.db.models.fields.FloatField', [], {}) }, u'guias_cacao.punto2asuelo': { 'Meta': {'object_name': 'Punto2ASuelo'}, 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaSuelo']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'opcion': ('django.db.models.fields.IntegerField', [], {}), 'respuesta': ('django.db.models.fields.IntegerField', [], {}) }, u'guias_cacao.punto2b': { 'Meta': {'object_name': 'Punto2B'}, 'cinco': ('django.db.models.fields.IntegerField', [], {}), 'cuatro': ('django.db.models.fields.IntegerField', [], {}), 'diez': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'dos': ('django.db.models.fields.IntegerField', [], {}), 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaPoda']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'nueve': ('django.db.models.fields.IntegerField', [], {}), 'ocho': ('django.db.models.fields.IntegerField', [], {}), 'plantas': ('django.db.models.fields.IntegerField', [], {}), 'seis': ('django.db.models.fields.IntegerField', [], {}), 'siete': ('django.db.models.fields.IntegerField', [], {}), 'tres': ('django.db.models.fields.IntegerField', [], {}), 'uno': ('django.db.models.fields.IntegerField', [], {}) }, u'guias_cacao.punto2bsuelo': { 'Meta': {'object_name': 'Punto2BSuelo'}, 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaSuelo']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'opcion': ('django.db.models.fields.IntegerField', [], {}), 'respuesta': ('django.db.models.fields.IntegerField', [], {}) }, u'guias_cacao.punto2c': { 'Meta': {'object_name': 'Punto2C'}, 'cinco': ('django.db.models.fields.IntegerField', [], {}), 'cuatro': ('django.db.models.fields.IntegerField', [], {}), 'diez': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'dos': ('django.db.models.fields.IntegerField', [], {}), 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaPoda']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'nueve': ('django.db.models.fields.IntegerField', [], {}), 'ocho': ('django.db.models.fields.IntegerField', [], {}), 'plantas': ('django.db.models.fields.IntegerField', [], {}), 'seis': ('django.db.models.fields.IntegerField', [], {}), 'siete': ('django.db.models.fields.IntegerField', [], {}), 'tres': ('django.db.models.fields.IntegerField', [], {}), 'uno': ('django.db.models.fields.IntegerField', [], {}) }, u'guias_cacao.punto3': { 'Meta': {'object_name': 'Punto3'}, 'especie': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.Especies']"}), 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaSombra']"}), 'grande': ('django.db.models.fields.FloatField', [], {}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'mediana': ('django.db.models.fields.FloatField', [], {}), 'pequena': ('django.db.models.fields.FloatField', [], {}), 'tipo': ('django.db.models.fields.IntegerField', [], {}), 'tipo_de_copa': ('django.db.models.fields.IntegerField', [], {}), 'uso': ('django.db.models.fields.IntegerField', [], {}) }, u'guias_cacao.punto3a': { 'Meta': {'object_name': 'Punto3A'}, 'cinco': ('django.db.models.fields.FloatField', [], {}), 'cuatro': ('django.db.models.fields.FloatField', [], {}), 'diez': ('django.db.models.fields.FloatField', [], {'null': 'True', 'blank': 'True'}), 'dos': ('django.db.models.fields.FloatField', [], {}), 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaPoda']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'nueve': ('django.db.models.fields.FloatField', [], {}), 'ocho': ('django.db.models.fields.FloatField', [], {}), 'plantas': ('django.db.models.fields.IntegerField', [], {}), 'seis': ('django.db.models.fields.FloatField', [], {}), 'siete': ('django.db.models.fields.FloatField', [], {}), 'tres': ('django.db.models.fields.FloatField', [], {}), 'uno': ('django.db.models.fields.FloatField', [], {}) }, u'guias_cacao.punto3b': { 'Meta': {'object_name': 'Punto3B'}, 'cinco': ('django.db.models.fields.IntegerField', [], {}), 'cuatro': ('django.db.models.fields.IntegerField', [], {}), 'diez': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'dos': ('django.db.models.fields.IntegerField', [], {}), 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaPoda']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'nueve': ('django.db.models.fields.IntegerField', [], {}), 'ocho': ('django.db.models.fields.IntegerField', [], {}), 'plantas': ('django.db.models.fields.IntegerField', [], {}), 'seis': ('django.db.models.fields.IntegerField', [], {}), 'siete': ('django.db.models.fields.IntegerField', [], {}), 'tres': ('django.db.models.fields.IntegerField', [], {}), 'uno': ('django.db.models.fields.IntegerField', [], {}) }, u'guias_cacao.punto3c': { 'Meta': {'object_name': 'Punto3C'}, 'cinco': ('django.db.models.fields.IntegerField', [], {}), 'cuatro': ('django.db.models.fields.IntegerField', [], {}), 'diez': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'dos': ('django.db.models.fields.IntegerField', [], {}), 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaPoda']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'nueve': ('django.db.models.fields.IntegerField', [], {}), 'ocho': ('django.db.models.fields.IntegerField', [], {}), 'plantas': ('django.db.models.fields.IntegerField', [], {}), 'seis': ('django.db.models.fields.IntegerField', [], {}), 'siete': ('django.db.models.fields.IntegerField', [], {}), 'tres': ('django.db.models.fields.IntegerField', [], {}), 'uno': ('django.db.models.fields.IntegerField', [], {}) }, u'guias_cacao.punto3suelopunto1': { 'Meta': {'object_name': 'Punto3SueloPunto1'}, 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaSuelo']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'opcion': ('django.db.models.fields.IntegerField', [], {}), 'respuesta': ('django.db.models.fields.IntegerField', [], {}) }, u'guias_cacao.punto3suelopunto2': { 'Meta': {'object_name': 'Punto3SueloPunto2'}, 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaSuelo']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'opcion': ('django.db.models.fields.IntegerField', [], {}), 'respuesta': ('django.db.models.fields.IntegerField', [], {}) }, u'guias_cacao.punto3suelopunto3': { 'Meta': {'object_name': 'Punto3SueloPunto3'}, 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaSuelo']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'opcion': ('django.db.models.fields.IntegerField', [], {}), 'respuesta': ('django.db.models.fields.IntegerField', [], {}) }, u'guias_cacao.punto4suelo': { 'Meta': {'object_name': 'Punto4Suelo'}, 'area': ('django.db.models.fields.FloatField', [], {}), 'densidad': ('django.db.models.fields.FloatField', [], {}), 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaSuelo']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}) }, u'guias_cacao.punto4suelocosecha': { 'Meta': {'object_name': 'Punto4SueloCosecha'}, 'cantidad': ('django.db.models.fields.FloatField', [], {}), 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaSuelo']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'producto': ('django.db.models.fields.IntegerField', [], {}) }, u'guias_cacao.punto4suelosi': { 'Meta': {'object_name': 'Punto4SueloSI'}, 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaSuelo']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'opcion': ('django.db.models.fields.IntegerField', [], {}) }, u'guias_cacao.punto5sueloabonos': { 'Meta': {'object_name': 'Punto5SueloAbonos'}, 'cantidad': ('django.db.models.fields.FloatField', [], {}), 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaSuelo']"}), 'frecuencia': ('django.db.models.fields.FloatField', [], {}), 'humedad': ('django.db.models.fields.FloatField', [], {}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'meses': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '23'}), 'tipo': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.TipoFertilizantes']"}), 'unidad': ('django.db.models.fields.IntegerField', [], {}) }, u'guias_cacao.punto6analisissuelo': { 'Meta': {'object_name': 'Punto6AnalisisSuelo'}, 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaSuelo']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'valor': ('django.db.models.fields.FloatField', [], {}), 'variable': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.DatosAnalisis']"}) }, u'guias_cacao.punto6plagas': { 'Meta': {'object_name': 'Punto6Plagas'}, 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaPlaga']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'manejo': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '15'}), 'observaciones': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '15'}), 'sombra': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}) }, u'guias_cacao.punto7plagas': { 'Meta': {'object_name': 'Punto7Plagas'}, 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaPlaga']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'manejo': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'meses': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '23'}), 'parte': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}) }, u'guias_cacao.punto7tiposuelo': { 'Meta': {'object_name': 'Punto7TipoSuelo'}, 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaSuelo']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'opcion': ('django.db.models.fields.IntegerField', [], {}) }, u'guias_cacao.punto8suelopropuesta': { 'Meta': {'object_name': 'Punto8SueloPropuesta'}, 'cantidad': ('django.db.models.fields.FloatField', [], {}), 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaSuelo']"}), 'frecuencia': ('django.db.models.fields.FloatField', [], {}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'meses': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '23'}), 'tipo': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.TipoFertilizantes']"}), 'unidad': ('django.db.models.fields.IntegerField', [], {}) }, u'guias_cacao.punto8y9plagas': { 'Meta': {'object_name': 'Punto8y9Plagas'}, 'equipos': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '15'}), 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaPlaga']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'opcion': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}) }, u'guias_cacao.punto9desbalance': { 'Meta': {'object_name': 'Punto9Desbalance'}, 'acciones': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '1'}), 'donde': ('django.db.models.fields.IntegerField', [], {}), 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaSuelo']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'limitaciones': ('django.db.models.fields.IntegerField', [], {}) }, u'guias_cacao.punto9drenaje': { 'Meta': {'object_name': 'Punto9Drenaje'}, 'acciones': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '5'}), 'donde': ('django.db.models.fields.IntegerField', [], {}), 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaSuelo']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'limitaciones': ('django.db.models.fields.IntegerField', [], {}) }, u'guias_cacao.punto9enfermedades': { 'Meta': {'object_name': 'Punto9Enfermedades'}, 'acciones': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '5'}), 'donde': ('django.db.models.fields.IntegerField', [], {}), 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaSuelo']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'limitaciones': ('django.db.models.fields.IntegerField', [], {}) }, u'guias_cacao.punto9erosion': { 'Meta': {'object_name': 'Punto9Erosion'}, 'acciones': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '9'}), 'donde': ('django.db.models.fields.IntegerField', [], {}), 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaSuelo']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'limitaciones': ('django.db.models.fields.IntegerField', [], {}) }, u'guias_cacao.punto9exceso': { 'Meta': {'object_name': 'Punto9Exceso'}, 'acciones': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '1'}), 'donde': ('django.db.models.fields.IntegerField', [], {}), 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaSuelo']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'limitaciones': ('django.db.models.fields.IntegerField', [], {}) }, u'guias_cacao.punto9nutrientes': { 'Meta': {'object_name': 'Punto9Nutrientes'}, 'acciones': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '3'}), 'donde': ('django.db.models.fields.IntegerField', [], {}), 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaSuelo']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'limitaciones': ('django.db.models.fields.IntegerField', [], {}) }, u'guias_cacao.puntoasuelo': { 'Meta': {'object_name': 'PuntoASuelo'}, 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaSuelo']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'opcion': ('django.db.models.fields.IntegerField', [], {}), 'respuesta': ('django.db.models.fields.IntegerField', [], {}) }, u'guias_cacao.puntobsuelo': { 'Meta': {'object_name': 'PuntoBSuelo'}, 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaSuelo']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'opcion': ('django.db.models.fields.IntegerField', [], {}), 'respuesta': ('django.db.models.fields.IntegerField', [], {}) }, u'guias_cacao.reducirsombra': { 'Meta': {'object_name': 'ReducirSombra'}, 'eliminando': ('django.db.models.fields.IntegerField', [], {}), 'eliminando_cuales': ('django.db.models.fields.CharField', [], {'max_length': '350'}), 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaSombra']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'poda': ('django.db.models.fields.IntegerField', [], {}), 'poda_cuales': ('django.db.models.fields.CharField', [], {'max_length': '350'}), 'que_parte': ('django.db.models.fields.CharField', [], {'max_length': '250'}), 'todo': ('django.db.models.fields.IntegerField', [], {}) }, u'guias_cacao.safconversacion1': { 'Meta': {'object_name': 'SafConversacion1'}, 'conversacion1': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '7'}), 'conversacion2': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '15'}), 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaSaf']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}) }, u'guias_cacao.safconversacion2': { 'Meta': {'object_name': 'SafConversacion2'}, 'conversacion3': ('django.db.models.fields.IntegerField', [], {}), 'conversacion4': ('django.db.models.fields.IntegerField', [], {}), 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaSaf']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}) }, u'guias_cacao.safconversacion3': { 'Meta': {'object_name': 'SafConversacion3'}, 'conversacion3': ('django.db.models.fields.IntegerField', [], {}), 'conversacion4': ('django.db.models.fields.IntegerField', [], {}), 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaSaf']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}) }, u'guias_cacao.safconversacion4': { 'Meta': {'object_name': 'SafConversacion4'}, 'conversacion5': ('django.db.models.fields.IntegerField', [], {}), 'conversacion6': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '23'}), 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaSaf']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}) }, u'guias_cacao.safconversacion5': { 'Meta': {'object_name': 'SafConversacion5'}, 'conversacion7': ('django.db.models.fields.IntegerField', [], {}), 'conversacion8': ('django.db.models.fields.IntegerField', [], {}), 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaSaf']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}) }, u'guias_cacao.safconversacion6': { 'Meta': {'object_name': 'SafConversacion6'}, 'conversacion10': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '11'}), 'conversacion11': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '15'}), 'conversacion9': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '13'}), 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaSaf']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}) }, u'guias_cacao.safconversacion7': { 'Meta': {'object_name': 'SafConversacion7'}, 'conversacion12': ('django.db.models.fields.IntegerField', [], {}), 'conversacion13': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '23'}), 'conversacion14': ('django.db.models.fields.IntegerField', [], {}), 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaSaf']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}) }, u'guias_cacao.safconversacion8': { 'Meta': {'object_name': 'SafConversacion8'}, 'conversacion15': ('django.db.models.fields.IntegerField', [], {}), 'conversacion16': ('django.db.models.fields.IntegerField', [], {}), 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaSaf']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}) }, u'guias_cacao.safconversacion9': { 'Meta': {'object_name': 'SafConversacion9'}, 'conversacion17': ('django.db.models.fields.IntegerField', [], {}), 'conversacion18': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '11'}), 'conversacion19': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '13'}), 'conversacion20': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '13'}), 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaSaf']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}) }, u'guias_cacao.safobservaciones': { 'Meta': {'object_name': 'SafObservaciones'}, 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaSaf']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'observacion1': ('django.db.models.fields.IntegerField', [], {}), 'observacion2': ('django.db.models.fields.FloatField', [], {}), 'observacion3': ('django.db.models.fields.FloatField', [], {}), 'observacion4': ('django.db.models.fields.FloatField', [], {}), 'observacion5': ('django.db.models.fields.FloatField', [], {}) }, u'guias_cacao.safobservaciones2': { 'Meta': {'object_name': 'SafObservaciones2'}, 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaSaf']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'observacion1': ('django.db.models.fields.IntegerField', [], {}), 'observacion2': ('django.db.models.fields.IntegerField', [], {}), 'observacion3': ('django.db.models.fields.IntegerField', [], {}), 'observacion4': ('django.db.models.fields.IntegerField', [], {}), 'observacion5': ('django.db.models.fields.IntegerField', [], {}) }, u'guias_cacao.safobservaciones3': { 'Meta': {'object_name': 'SafObservaciones3'}, 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaSaf']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'observacion6': ('django.db.models.fields.IntegerField', [], {}), 'observacion7': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '11'}) }, u'guias_cacao.safobservaciones4': { 'Meta': {'object_name': 'SafObservaciones4'}, 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaSaf']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'observacion10': ('django.db.models.fields.IntegerField', [], {}), 'observacion11': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '11'}), 'observacion8': ('django.db.models.fields.IntegerField', [], {}), 'observacion9': ('django.db.models.fields.IntegerField', [], {}) }, u'guias_cacao.safobservacionpunto1': { 'Meta': {'object_name': 'SafObservacionPunto1'}, 'cantidad': ('django.db.models.fields.FloatField', [], {}), 'especies': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.Especies']"}), 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaSaf']"}), 'frutas': ('django.db.models.fields.FloatField', [], {}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'lena': ('django.db.models.fields.FloatField', [], {}), 'madera': ('django.db.models.fields.FloatField', [], {}), 'nutrientes': ('django.db.models.fields.FloatField', [], {}), 'sombra': ('django.db.models.fields.FloatField', [], {}) }, u'guias_cacao.safobservacionpunto2': { 'Meta': {'object_name': 'SafObservacionPunto2'}, 'cantidad': ('django.db.models.fields.FloatField', [], {}), 'especies': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.Especies']"}), 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaSaf']"}), 'frutas': ('django.db.models.fields.FloatField', [], {}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'lena': ('django.db.models.fields.FloatField', [], {}), 'madera': ('django.db.models.fields.FloatField', [], {}), 'nutrientes': ('django.db.models.fields.FloatField', [], {}), 'sombra': ('django.db.models.fields.FloatField', [], {}) }, u'guias_cacao.safobservacionpunto3': { 'Meta': {'object_name': 'SafObservacionPunto3'}, 'cantidad': ('django.db.models.fields.FloatField', [], {}), 'especies': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.Especies']"}), 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaSaf']"}), 'frutas': ('django.db.models.fields.FloatField', [], {}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'lena': ('django.db.models.fields.FloatField', [], {}), 'madera': ('django.db.models.fields.FloatField', [], {}), 'nutrientes': ('django.db.models.fields.FloatField', [], {}), 'sombra': ('django.db.models.fields.FloatField', [], {}) }, u'guias_cacao.tipofertilizantes': { 'Meta': {'object_name': 'TipoFertilizantes'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'nombre': ('django.db.models.fields.CharField', [], {'max_length': '250'}) }, u'guias_cacao.viveroconversacion2': { 'Meta': {'object_name': 'ViveroConversacion2'}, 'conversacion10': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '5'}), 'conversacion11': ('django.db.models.fields.FloatField', [], {'null': 'True'}), 'conversacion12': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '5'}), 'conversacion7': ('django.db.models.fields.IntegerField', [], {}), 'conversacion8': ('django.db.models.fields.IntegerField', [], {}), 'conversacion9': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '11'}), 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaVivero']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}) }, u'guias_cacao.vivieroanalisissituacion': { 'Meta': {'object_name': 'VivieroAnalisisSituacion'}, 'analisis1': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '5'}), 'analisis2': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '11'}), 'analisis3': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '15'}), 'analisis4': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '11'}), 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaVivero']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}) }, u'guias_cacao.vivieroconversacion': { 'Meta': {'object_name': 'VivieroConversacion'}, 'conversacion1': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '23'}), 'conversacion2': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '7'}), 'conversacion3': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '13'}), 'conversacion4': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '11'}), 'conversacion5': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '9'}), 'conversacion6': ('django.db.models.fields.IntegerField', [], {}), 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaVivero']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}) }, u'guias_cacao.vivieroobservacion1': { 'Meta': {'object_name': 'VivieroObservacion1'}, 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaVivero']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'observacion1': ('django.db.models.fields.FloatField', [], {}), 'observacion2': ('django.db.models.fields.FloatField', [], {}), 'observacion3': ('django.db.models.fields.IntegerField', [], {}) }, u'guias_cacao.vivieroobservacion2': { 'Meta': {'object_name': 'VivieroObservacion2'}, 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaVivero']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'observacion3': ('django.db.models.fields.IntegerField', [], {}), 'planta_1': ('django.db.models.fields.IntegerField', [], {}), 'planta_10': ('django.db.models.fields.IntegerField', [], {}), 'planta_2': ('django.db.models.fields.IntegerField', [], {}), 'planta_3': ('django.db.models.fields.IntegerField', [], {}), 'planta_4': ('django.db.models.fields.IntegerField', [], {}), 'planta_5': ('django.db.models.fields.IntegerField', [], {}), 'planta_6': ('django.db.models.fields.IntegerField', [], {}), 'planta_7': ('django.db.models.fields.IntegerField', [], {}), 'planta_8': ('django.db.models.fields.IntegerField', [], {}), 'planta_9': ('django.db.models.fields.IntegerField', [], {}) }, u'guias_cacao.vivieroobservacionproductos': { 'Meta': {'object_name': 'VivieroObservacionProductos'}, 'cantidad': ('django.db.models.fields.FloatField', [], {}), 'ficha': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.FichaVivero']"}), 'frecuencia': ('django.db.models.fields.FloatField', [], {}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'producto': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['guias_cacao.ProductosVivero']"}), 'unidad': ('django.db.models.fields.IntegerField', [], {}) }, u'lugar.comunidad': { 'Meta': {'ordering': "['nombre']", 'object_name': 'Comunidad'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'latitud': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '8', 'decimal_places': '5', 'blank': 'True'}), 'longitud': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '8', 'decimal_places': '5', 'blank': 'True'}), 'municipio': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['lugar.Municipio']"}), 'nombre': ('django.db.models.fields.CharField', [], {'max_length': '40'}) }, u'lugar.departamento': { 'Meta': {'ordering': "['nombre']", 'object_name': 'Departamento'}, 'extension': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '10', 'decimal_places': '2', 'blank': 'True'}), 'id': ('django.db.models.fields.IntegerField', [], {'primary_key': 'True'}), 'latitud': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '8', 'decimal_places': '5', 'blank': 'True'}), 'longitud': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '8', 'decimal_places': '5', 'blank': 'True'}), 'nombre': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}), 'pais': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['lugar.Pais']"}), 'slug': ('django.db.models.fields.SlugField', [], {'max_length': '50', 'unique': 'True', 'null': 'True'}) }, u'lugar.municipio': { 'Meta': {'ordering': "['departamento__nombre', 'nombre']", 'object_name': 'Municipio'}, 'departamento': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['lugar.Departamento']"}), 'extension': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '10', 'decimal_places': '2', 'blank': 'True'}), 'id': ('django.db.models.fields.IntegerField', [], {'primary_key': 'True'}), 'latitud': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '8', 'decimal_places': '5', 'blank': 'True'}), 'longitud': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '8', 'decimal_places': '5', 'blank': 'True'}), 'nombre': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}), 'slug': ('django.db.models.fields.SlugField', [], {'max_length': '50', 'unique': 'True', 'null': 'True'}) }, u'lugar.pais': { 'Meta': {'object_name': 'Pais'}, 'codigo': ('django.db.models.fields.CharField', [], {'max_length': '2'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'nombre': ('django.db.models.fields.CharField', [], {'max_length': '200'}) }, u'mapeo.persona': { 'Meta': {'object_name': 'Persona'}, 'cedula': ('django.db.models.fields.CharField', [], {'max_length': '200', 'null': 'True', 'blank': 'True'}), 'comunidad': ('smart_selects.db_fields.ChainedForeignKey', [], {'to': u"orm['lugar.Comunidad']"}), 'departamento': ('smart_selects.db_fields.ChainedForeignKey', [], {'to': u"orm['lugar.Departamento']"}), 'edad': ('django.db.models.fields.IntegerField', [], {}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'municipio': ('smart_selects.db_fields.ChainedForeignKey', [], {'to': u"orm['lugar.Municipio']"}), 'nombre': ('django.db.models.fields.CharField', [], {'max_length': '200'}), 'pais': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['lugar.Pais']"}), 'sexo': ('django.db.models.fields.IntegerField', [], {}), 'tipo_persona': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}) } } complete_apps = ['guias_cacao']
mit
-1,066,311,567,676,605,200
68.903444
156
0.560064
false
flixcloud/flix_cloud-python
FlixCloud.py
1
13916
""" FlixCloud API Python Library Version: 0.2 Author: Pawel Markowski <[email protected]> """ import xml.dom.minidom import httplib def xml_str(doc, tag, parentTag=None, debug=False): """Returns string from xml document from tag (and parentTag)""" if parentTag: try: el = doc.getElementsByTagName(parentTag)[0] except IndexError: if debug: print 'No such parent tag: %s' % parentTag return None doc = el try: result = doc.getElementsByTagName(tag)[0].firstChild.data.strip() except IndexError: if debug: print 'No such tag: %s' % tag return None return result def xml_int(doc, tag, parentTag=None, debug=False): """Returns int from xml document from tag (and parentTag).""" if parentTag: try: el = doc.getElementsByTagName(parentTag)[0] except IndexError: if debug: print 'No such parent tag: %s' % parentTag return None doc = el try: result = int(doc.getElementsByTagName(tag)[0].firstChild.data) except IndexError: if debug: print 'No such tag: %s' % tag return None return result class Job: """FlixCloud Job.""" def __init__(self, api_key, params=None): #API url: https://www.flixcloud.com/jobs self.api_base_url = 'www.flixcloud.com' self.api_req_url = '/jobs' self.api_key = api_key self.recipe_id = None self.recipe_name = None self.input = None self.output = None self.watermark = None self.notification_url = None self.result = {} self.errors = [] if params: if 'recipe_id' in params: self.recipe_id = str(params['recipe_id']) elif 'recipe_name' in params: self.recipe_name = params['recipe_name'] if 'input_url' in params: self.set_input(params['input_url'], params.get('input_user', None), params.get('input_password', None)) if 'output_url' in params: self.set_output(params['output_url'], params.get('output_user', None), params.get('output_password', None)) if 'watermark_url' in params: self.set_watermark(params['watermark_url'], params.get('watermark_user', None), params.get('watermark_password', None)) if 'notification_url' in params: self.set_notification_url(params['notification_url']) if 'send' in params: if params['send']: self.send() def set_input(self, url, user=None, password=None): """Sets input file data.""" self.input = JobInputFile(url, user, password) def set_output(self, url, user=None, password=None): """Sets output file data.""" self.output = JobOutputFile(url, user, password) def set_watermark(self, url, user=None, password=None): """Sets watermark file data.""" self.watermark = JobWatermarkFile(url, user, password) def set_notification_url(self, notify_url): """Sets the notification url""" self.notification_url = notify_url def validate(self): """Checks if data are correct and ready to send.""" if not (self.recipe_id or self.recipe_name): self.errors.append('Either recipe_id or recipe_name is required.') if not self.api_key: self.errors.append('API key is required.') if not (self.input and self.output): self.errors.append('Input and output files are required.') #Validate files: for jobFile in (self.input, self.output, self.watermark): if jobFile: if not jobFile.valid(): self.errors.extend(jobFile.errors) if self.errors == []: return True else: return False def get_job_xml(self): """Create xml for FlixCloud job request.""" doc = xml.dom.minidom.Document() api_req = doc.createElement('api-request') doc.appendChild(api_req) api_key = doc.createElement('api-key') api_key.appendChild(doc.createTextNode(self.api_key)) api_req.appendChild(api_key) if self.recipe_id: recipe_id = doc.createElement('recipe-id') recipe_id.appendChild(doc.createTextNode(str(self.recipe_id))) api_req.appendChild(recipe_id) elif self.recipe_name: recipe_name = doc.createElement('recipe-name') recipe_name.appendChild(doc.createTextNode(self.recipe_name)) api_req.appendChild(recipe_name) if self.notification_url: notify_url = doc.createElement('notification-url') notify_url.appendChild(doc.createTextNode(self.notification_url)) api_req.appendChild(notify_url) #file-locations node file_locations = doc.createElement('file-locations') #input node if self.input: input = doc.createElement('input') input_url = doc.createElement('url') input_url.appendChild(doc.createTextNode(self.input.url)) input.appendChild(input_url) if self.input.user and self.input.password: input_parameters = doc.createElement('parameters') input_user = doc.createElement('user') input_user.appendChild(doc.createTextNode(self.input.user)) input_password = doc.createElement('password') input_password.appendChild( doc.createTextNode(self.input.password)) input_parameters.appendChild(input_user) input_parameters.appendChild(input_password) input.appendChild(input_parameters) file_locations.appendChild(input) #output node if self.output: output = doc.createElement('output') output_url = doc.createElement('url') output_url.appendChild(doc.createTextNode(self.output.url)) output.appendChild(output_url) if self.output.user and self.output.password: output_parameters = doc.createElement('parameters') output_user = doc.createElement('user') output_user.appendChild(doc.createTextNode(self.output.user)) output_password = doc.createElement('password') output_password.appendChild( doc.createTextNode(self.output.password)) output_parameters.appendChild(output_user) output_parameters.appendChild(output_password) output.appendChild(output_parameters) file_locations.appendChild(output) #watermark node if self.watermark: watermark = doc.createElement('watermark') watermark_url = doc.createElement('url') watermark_url.appendChild(doc.createTextNode(self.watermark.url)) watermark.appendChild(watermark_url) if self.watermark.user and self.watermark.password: watermark_parameters = doc.createElement('parameters') watermark_user = doc.createElement('user') watermark_user.appendChild( doc.createTextNode(self.watermark.user)) watermark_password = doc.createElement('password') watermark_password.appendChild( doc.createTextNode(self.watermark.password)) watermark_parameters.appendChild(watermark_user) watermark_parameters.appendChild(watermark_password) watermark.appendChild(watermark_parameters) file_locations.appendChild(watermark) api_req.appendChild(file_locations) return doc.toprettyxml(encoding='UTF-8', indent=' ') def send(self): """Send FlixCloud job request.""" self.success = False if not self.validate(): print self.errors return False self.final_xml = self.get_job_xml() #HTTPS connection headers = {'Accept' : 'text/xml', 'Content-type' : 'application/xml'} conn = httplib.HTTPSConnection(host=self.api_base_url) #Send job request try: conn.request('POST', self.api_req_url, self.final_xml, headers) except Exception, e: self.errors.append('Connection error: %' % e.__str__()) return False response = conn.getresponse() self.result['code'] = response.status self.result['reason'] = response.reason self.result['data'] = response.read() self.result['xml'] = xml.dom.minidom.parseString(self.result['data']) if response.status == 201: #Success self.success = True self.set_job_data() return True else: #Failure self.errors.append('Send error: %s, %s' % (self.result['code'], self.result['reason']) ) for error in self.result['xml'].getElementsByTagName('error'): self.errors.append(error.firstChild.data) return False def set_job_data(self): """Sets job's data if job was succesfully registered.""" self.id = xml_int(self.result['xml'], 'id') self.initialized_job_at = xml_str(self.result['xml'], 'initialized-job-at') class JobFile: """Base class for files (input, output, watermark objects).""" def __init__(self, url, user=None, password=None): self.name = 'Base' self.url = url self.user = user self.password = password self.errors = [] #From notification: self.width = None self.height = None self.size = None self.duration = None self.cost = None def valid(self): """Checks if file object is valid for use.""" if not self.url: self.errors.append('%s: Url is required.' % self.name) if (self.user and not self.password) \ or (self.password and not self.user): self.errors.append('%s: Both user & password are required.' % self.name) if self.errors == []: return True else: return False class JobInputFile(JobFile): """Input file data.""" def __init__(self, *args, **kwargs): JobFile.__init__(self, *args, **kwargs) self.name = 'Input' class JobOutputFile(JobFile): """Output file data.""" def __init__(self, *args, **kwargs): JobFile.__init__(self, *args, **kwargs) self.name = 'Output' class JobWatermarkFile(JobFile): """Watermark file data.""" def __init__(self, *args, **kwargs): JobFile.__init__(self, *args, **kwargs) self.name = 'Watermark' class JobNotification: """Notification about registered job.""" def __init__(self, msg): #job self.id = None self.finished_job_at = None self.initialized_job_at = None self.recipe_id = None self.recipe_name = None self.state = None self.error_message = None #files self.input_media_file = None self.output_media_file = None self.watermark = None self.xml_msg = msg self.parse_msg() def parse_msg(self): """Parses xml notification and sets parameters.""" doc = xml.dom.minidom.parseString(self.xml_msg) self.id = xml_int(doc, 'id') self.initialized_job_at = xml_str(doc, 'initialized-job-at') self.finished_job_at = xml_str(doc, 'finished-job-at') self.recipe_id = xml_int(doc, 'recipe-id') self.recipe_name = xml_str(doc, 'recipe-name') self.state = xml_str(doc, 'state') self.error_message = xml_str(doc, 'error-message') #files data try: input_xml = doc.getElementsByTagName('input-media-file')[0] self.input_media_file = JobInputFile(xml_str(input_xml, 'url')) self.set_file_params(self.input_media_file, input_xml) except IndexError: print 'No input file defined.' try: output_xml = doc.getElementsByTagName('output-media-file')[0] self.output_media_file = JobOutputFile(xml_str(output_xml, 'url')) self.set_file_params(self.output_media_file, output_xml) except IndexError: print 'No output file defined.' try: watermark_xml = doc.getElementsByTagName('watermark-file')[0] self.watermark_file = JobWatermarkFile( xml_str(watermark_xml, 'url')) self.set_file_params(self.watermark_file, watermark_xml) except IndexError: print 'No watermark file defined.' def set_file_params(self, file, xml_doc): """Sets parameters for file according to received notification.""" file.width = xml_int(xml_doc, 'width') file.height = xml_int(xml_doc, 'height') file.size = xml_int(xml_doc, 'size') file.duration = xml_int(xml_doc, 'duration') file.cost = xml_int(xml_doc, 'cost') def state(self): """Returns jobs state according to received notification.""" return self.state
mit
-7,951,541,377,709,118,000
34.958656
80
0.56374
false
ellipsis14/dolfin-adjoint
dolfin_adjoint/adjglobals.py
1
3176
import coeffstore import expressions import caching import libadjoint from dolfin_adjoint import backend if backend.__name__ == "dolfin": import lusolver # Create the adjointer, the central object that records the forward solve # as it happens. adjointer = libadjoint.Adjointer() mem_checkpoints = set() disk_checkpoints = set() adj_variables = coeffstore.CoeffStore() def adj_start_timestep(time=0.0): '''Dolfin does not supply us with information about timesteps, and so more information is required from the user for certain features. This function should be called at the start of the time loop with the initial time (defaults to 0). See also: :py:func:`dolfin_adjoint.adj_inc_timestep` ''' if not backend.parameters["adjoint"]["stop_annotating"]: adjointer.time.start(time) def adj_inc_timestep(time=None, finished=False): '''Dolfin does not supply us with information about timesteps, and so more information is required from the user for certain features. This function should be called at the end of the time loop with two arguments: - :py:data:`time` -- the time at the end of the timestep just computed - :py:data:`finished` -- whether this is the final timestep. With this information, complex functional expressions using the :py:class:`Functional` class can be used. The finished argument is necessary because the final step of a functional integration must perform additional calculations. See also: :py:func:`dolfin_adjoint.adj_start_timestep` ''' if not backend.parameters["adjoint"]["stop_annotating"]: adj_variables.increment_timestep() if time is not None: adjointer.time.next(time) if finished: adjointer.time.finish() # A dictionary that saves the functionspaces of all checkpoint variables that have been saved to disk checkpoint_fs = {} function_names = set() def adj_check_checkpoints(): adjointer.check_checkpoints() def adj_reset_cache(): if backend.parameters["adjoint"]["debug_cache"]: backend.info_blue("Resetting solver cache") caching.assembled_fwd_forms.clear() caching.assembled_adj_forms.clear() caching.lu_solvers.clear() caching.localsolvers.clear() caching.pis_fwd_to_tlm.clear() caching.pis_fwd_to_adj.clear() if backend.__name__ == "dolfin": lusolver.lu_solvers = [None] * len(lusolver.lu_solvers) lusolver.adj_lu_solvers = [None] * len(lusolver.adj_lu_solvers) def adj_html(*args, **kwargs): '''This routine dumps the current state of the adjglobals.adjointer to a HTML visualisation. Use it like: - adj_html("forward.html", "forward") # for the equations recorded on the forward run - adj_html("adjoint.html", "adjoint") # for the equations to be assembled on the adjoint run ''' return adjointer.to_html(*args, **kwargs) def adj_reset(): '''Forget all annotation, and reset the entire dolfin-adjoint state.''' adjointer.reset() expressions.expression_attrs.clear() adj_variables.__init__() function_names.__init__() adj_reset_cache() backend.parameters["adjoint"]["stop_annotating"] = False # Map from FunctionSpace to LUSolver that has factorised the fsp mass matrix fsp_lu = {}
lgpl-3.0
133,383,022,570,906,910
31.742268
101
0.729534
false
michele-mada/cv-eyetracking-project-2017
py_eyetracker_v1.0/utils/histogram/iif.py
1
1085
from math import exp, sqrt import numpy as np from utils.histogram.cl_run_iif import CL_IIF, CL_IIF_BINID from utils.histogram.lsh import num_bins def illumination_invariant_features_hybrid(image, histogram, k=0.1, debug_ax=None): width, height, nbins = np.shape(histogram) fast_binid = CL_IIF_BINID() fast_binid.load_program() bp_mtx = fast_binid.compute(image, nbins) b_mtx = np.ndarray((1,1, nbins)) b_mtx[0, 0,:] = np.arange(0, nbins) b_mtx = np.tile(b_mtx, (width, height, 1)) # contruct pixel intensity matrix i_mtx = np.repeat(image[:, :, np.newaxis], nbins, axis=2) i_mtx *= 255 i_mtx = k * i_mtx i_mtx[i_mtx < k] = k # compute illumination invariant features X = -((b_mtx - bp_mtx) ** 2) / (2 * (i_mtx ** 2)) e_mtx = np.exp(X) Ip_mtx = e_mtx * histogram feature_img = np.sum(Ip_mtx, 2) return feature_img fast_iif = CL_IIF(num_bins=num_bins) fast_iif.load_program() def illumination_invariant_features_cl(image, histogram, k=0.1, debug_ax=None): return fast_iif.compute(image, histogram, k)
mit
-2,282,565,088,396,295,200
28.351351
83
0.645161
false
yterauchi/primecloud-controller
auto-tool/auto-cli/lib/common/CommonUtils.py
5
15572
# -*- coding: utf-8 -*- import subprocess import sys import re import os import json import glob import socket from urlparse import urlparse from ArgumentManager import ArgumentManager from db.MysqlConnector import MysqlConnector from ast import literal_eval from sqlalchemy.sql.expression import and_ def checkDbConnection(): #DB接続テスト conn = MysqlConnector() try: sql = "SELECT 1 FROM dual" result = conn.selectOne(sql) return True except Exception as e: return {'result':'1','message':"PCCデータベースへの接続に失敗しました。処理を終了します。"} def getPlatformTypeByName(platformName): conn = MysqlConnector() try: table = conn.getTable("PLATFORM") except Exception as e: return None plData = conn.selectOne(table.select(table.c.PLATFORM_NAME==platformName)) if plData != None: return plData["PLATFORM_TYPE"] else: return None def getPlatformTypeByNo(platformNo): conn = MysqlConnector() try: table = conn.getTable("PLATFORM") except Exception as e: return None plData = conn.selectOne(table.select(table.c.PLATFORM_NO==platformNo)) if plData != None: return plData["PLATFORM_TYPE"] else: return None def getPlatformDataByName(platformName): conn = MysqlConnector() try: table = conn.getTable("PLATFORM") except Exception as e: return None plData = conn.selectOne(table.select(table.c.PLATFORM_NAME==platformName)) if plData != None: return plData else: return None def getPlatformDataByNo(platformNo): conn = MysqlConnector() try: table = conn.getTable("PLATFORM") except Exception as e: return None plData = conn.selectOne(table.select(table.c.PLATFORM_NO==platformNo)) if plData != None: return plData else: return None def getPlatformDataByIaas(iaasName): conn = MysqlConnector() try: table = conn.getTable("PLATFORM") except Exception as e: return None plData = conn.select(table.select(table.c.PLATFORM_TYPE==iaasName)) if plData != None: return plData else: return None def getImageDataByNo(imageNo): conn = MysqlConnector() try: table = conn.getTable("IMAGE") except Exception as e: return None imageData = conn.selectOne(table.select(table.c.IMAGE_NO==imageNo)) if imageData != None: return imageData else: return None def getImageDataByName(imageName): conn = MysqlConnector() try: table = conn.getTable("IMAGE") except Exception as e: return None imageData = conn.select(table.select(table.c.IMAGE_NAME==imageName)) if len(imageData) != 0: return imageData else: return None def getImageDataByNameAndPlatformNo(imageName, platformNo): conn = MysqlConnector() try: table = conn.getTable("IMAGE") except Exception as e: return None imageData = conn.selectOne(table.select(and_(table.c.IMAGE_NAME==imageName, table.c.PLATFORM_NO==platformNo))) if imageData != None: return imageData else: return None def getComponentTypeNoByName(serviceName): conn = MysqlConnector() try: table = conn.getTable("COMPONENT_TYPE") except Exception as e: return None compTypeData = conn.selectOne(table.select(table.c.COMPONENT_TYPE_NAME==serviceName)) if compTypeData != None: return str(compTypeData["COMPONENT_TYPE_NO"]) else: return None def getComponentTypeNameByNo(serviceNo): conn = MysqlConnector() try: table = conn.getTable("COMPONENT_TYPE") except Exception as e: return None compTypeData = conn.selectOne(table.select(table.c.COMPONENT_TYPE_NO==serviceNo)) if compTypeData != None: return compTypeData["COMPONENT_TYPE_NAME"] else: return None def getComponentTypeDataByName(serviceName): conn = MysqlConnector() try: table = conn.getTable("COMPONENT_TYPE") except Exception as e: return None compTypeData = conn.selectOne(table.select(table.c.COMPONENT_TYPE_NAME==serviceName)) if compTypeData != None: return compTypeData else: return None def getSelectablePlatformNameList(): conn = MysqlConnector() tablePlatform = conn.getTable("PLATFORM") platformData = conn.select(tablePlatform.select(tablePlatform.c.SELECTABLE=="1")) #platformNameList作成 platformNameList = [] for i in range(len(platformData)): platformNameList.append(str(platformData[i]["PLATFORM_NAME"])) return platformNameList def getSelectableImageNoList(): conn = MysqlConnector() tableImage = conn.getTable("IMAGE") imageData = conn.select(tableImage.select(tableImage.c.SELECTABLE=="1")) #imageNameList作成 imageNameList = [] for i in range(len(imageData)): imageNameList.append(str(imageData[i]["IMAGE_NO"])) return imageNameList def getSelectableStatus(selectable): if 0 == selectable: return "Disable" elif 1 == selectable: return "Enable" else: return False def getMif(moduleName): #パス設定 mifPath = "/opt/adc/pccrepo/" + moduleName + "/" + moduleName + ".json" #ファイル存在チェック if False == os.path.exists(mifPath): return None else: mifJsonFile = open(mifPath, 'r') mif = mifJsonFile.read() return json.loads(mif) def checkArguments(method, paramDict): result = checkRequiredArgs(method, paramDict) if result != True: return result + "が指定されていません。正しい値を指定して下さい。" result = checkSupportedArgs(method, paramDict) if result != True: return "コマンドがサポートしない引数:" + result + " が指定されています。正しい値を指定して下さい。" result = checkLengthArgs(paramDict) if result != True: return result[0] + "は" + str(result[1]) + "桁以内で入力して下さい。" result = checkFormatArgs(paramDict) if result != True: if "halfAlpha" == result[1]: return result[0] + "は半角英数記号で入力して下さい。" elif "number" == result[1]: return result[0] + "は数字で入力して下さい。" elif "url" == result[1]: return result[0] + "はURL形式(http://host:port/path または https://host:port/path)で入力して下さい。" elif "boolean" == result[1]: return result[0] + "は0または1で入力して下さい。" return True def checkRequiredArgs(method, paramDict): argObjList = ArgumentManager.PlatformArgsList argDict = None for argObj in argObjList: if method == argObj["method"]: argDict = argObj break reqList = argDict["required"] for reqObj in reqList: if reqObj not in paramDict: return reqObj elif isBlank(paramDict[reqObj]): return reqObj return True def checkSupportedArgs(method, paramDict): argObjList = ArgumentManager.PlatformArgsList argDict = None for argObj in argObjList: if method == argObj["method"]: argDict = argObj break reqList = argDict["required"] optList = argDict["optional"] for key in paramDict.keys(): if key not in reqList: if key not in optList: return key return True def checkLengthArgs(paramDict): argFormatList = ArgumentManager.PlatformArgsFormat for key in paramDict.keys(): for argFormatDict in argFormatList: if key == argFormatDict["argument"]: value = paramDict[key] length = argFormatDict["length"] if not isBlank(value) and length != None : if len(unicode(value)) > argFormatDict["length"]: return [key, argFormatDict["length"]] return True def checkFormatArgs(paramDict): argFormatList = ArgumentManager.PlatformArgsFormat for key in paramDict.keys(): for argFormatDict in argFormatList: if key == argFormatDict["argument"]: value = paramDict[key] format = argFormatDict["format"] if not isBlank(value) and format != None : if "halfAlpha" == format: if not isHalfAlpha(value): return [key, "halfAlpha"] elif "number" == format: if not isNumber(value): return [key, "number"] elif "url" == format: if not isUrl(value): return [key, "url"] elif "boolean" == format: if not isBoolean(value): return [key, "boolean"] return True def checkIaasName(paramDict): if "iaasName" not in paramDict: return "iaasNameが指定されていません。正しい値を指定して下さい。" iaasName = paramDict['iaasName'] if isBlank(iaasName): return "iaasNameが指定されていません。正しい値を指定して下さい。" elif not isSupportedIaas(iaasName): return "iaasName:" + iaasName + "はPCCのサポート対象外です。" else: return True def isBlank(value): if value == None: return True elif len(value.strip()) == 0: return True else: return False def isHalfAlpha(value): regexp = re.compile(r'^[a-zA-Z0-9!-/:-@\[-`{-~]+$') if regexp.search(value) == None: return False elif range != None: return True return resultDic def isNumber(value): regexp = re.compile(r'^[0-9]+$') if regexp.search(value) == None: return False else: return True def isUrl(value): url = urlparse(value) if isBlank(url.scheme): return False elif "http" != url.scheme and "https" != url.scheme: return False elif isBlank(url.netloc): return False else: return True def isBoolean(value): if "0" == value or "1" == value: return True else: return False def isSupportedIaas(value): conn = MysqlConnector() try: table = conn.getTable("IAAS_INFO") except Exception as e: return False iaasNameData = conn.selectOne(table.select(table.c.IAAS_NAME==value)) if iaasNameData != None: return True else: return False def getSplittedUrl(value): url = urlparse(value) scheme = url.scheme host = url.netloc.strip(':' + str(url.port)) port = url.port path = url.path return {'scheme':scheme, 'host':host, 'port':port, 'path':path} def getConnector(): befFile = open("/opt/adc/conf/config.properties", "r") user = None pswd = None url = None dbname = None lines = befFile.readlines() for line in lines: if "db.url" in line: connText = line.split("=")[1].strip().rstrip("\n").replace("jdbc:", "") url = urlparse(connText) scheme = url.scheme host = url.netloc.strip(':' + str(url.port)) port = url.port path = url.path def getConnectZabbixApi(): url = readZabbixProperties("zaburl") user = readZabbixProperties("zabuser") pswd = readZabbixProperties("zabpswd") #取得に失敗した場合はNoneを返却 if url is None or user is None or pswd is None: return None #curlコマンド発行 param = '{"jsonrpc":"2.0", "method":"user.login", "params":{"user":"' + user + '", "password":"' + pswd + '"}, "auth":null, "id":0}' ret = subprocess.Popen('curl -s -H "Accept: application/json" -H "Content-type: application/json" ' + url + "api_jsonrpc.php -i -X POST -d '" + param + "'", stdout=subprocess.PIPE, shell=True) retJson = None while True: line = ret.stdout.readline() if not line: break elif (line.startswith('{') and line.endswith('}')) or (line.startswith('[') and line.endswith(']')): retJson = line.rstrip() break if retJson is None: return None retDic = json.loads(retJson) if isinstance(retDic,list): retDic = retDic[0] if retDic.has_key("error"): return None elif retDic.has_key("result"): return retDic["result"] else: return None def getZabbixTemplate(auth, templateName): #zabbix URL取得 url = readZabbixProperties("zaburl") #curlコマンド発行 param = '{"jsonrpc": "2.0","method": "template.get","params": {"output": "extend","filter": {"host": "' + templateName + '"}},"auth": "' + auth + '","id": 2}' ret = subprocess.Popen('curl -s -H "Accept: application/json" -H "Content-type: application/json" ' + url + "api_jsonrpc.php -i -X POST -d '" + param + "'", stdout=subprocess.PIPE, shell=True) retJson = None while True: line = ret.stdout.readline() if not line: break elif (line.startswith('{') and line.endswith('}')) or (line.startswith('[') and line.endswith(']')): retJson = line.rstrip() break if retJson is None: return None retDic = json.loads(retJson) if isinstance(retDic,list): retDic = retDic[0] if retDic.has_key("error"): return False elif retDic.has_key("result") and len(retDic["result"]) > 0: return True else: return False def createZabbixTemplate(auth, templateName): #zabbix URL取得 url = readZabbixProperties("zaburl") #curlコマンド発行 param = '{"jsonrpc": "2.0","method": "template.create","params": {"host": "' + templateName + '","groups": [{"groupid": "1"}]},"auth": "' + auth + '","id": 1}' ret = subprocess.Popen('curl -s -H "Accept: application/json" -H "Content-type: application/json" ' + url + "api_jsonrpc.php -i -X POST -d '" + param + "'", stdout=subprocess.PIPE, shell=True) retJson = None while True: line = ret.stdout.readline() if not line: break elif (line.startswith('{') and line.endswith('}')) or (line.startswith('[') and line.endswith(']')): retJson = line.rstrip() break if retJson is None: return None retDic = json.loads(retJson) if isinstance(retDic,list): retDic = retDic[0] if retDic.has_key("error"): return "zabbixテンプレート:" + templateName + "の登録に失敗しました。" elif retDic.has_key("result"): return True else: return False def readZabbixProperties(name): confFile = open("/opt/adc/conf/config.properties", "r") lines = confFile.readlines() for line in lines: if "zaburl" == name and "zabbix.url" in line: return line.split("=")[1].strip().rstrip("\n") elif "zabuser" == name and "zabbix.username" in line: return line.split("=")[1].strip().rstrip("\n") elif "zabpswd" == name and "zabbix.password" in line: return line.split("=")[1].strip().rstrip("\n") return None if __name__ == '__main__': print(checkDbConnection())
gpl-2.0
-4,635,138,895,080,776,000
28.388235
197
0.602682
false
Jeff-Tian/mybnb
Python27/Lib/bsddb/test/test_sequence.py
3
5410
import unittest import os from test_all import db, test_support, get_new_environment_path, get_new_database_path class DBSequenceTest(unittest.TestCase): def setUp(self): self.int_32_max = 0x100000000 self.homeDir = get_new_environment_path() self.filename = "test" self.dbenv = db.DBEnv() self.dbenv.open(self.homeDir, db.DB_CREATE | db.DB_INIT_MPOOL, 0666) self.d = db.DB(self.dbenv) self.d.open(self.filename, db.DB_BTREE, db.DB_CREATE, 0666) def tearDown(self): if hasattr(self, 'seq'): self.seq.close() del self.seq if hasattr(self, 'd'): self.d.close() del self.d if hasattr(self, 'dbenv'): self.dbenv.close() del self.dbenv test_support.rmtree(self.homeDir) def test_get(self): self.seq = db.DBSequence(self.d, flags=0) start_value = 10 * self.int_32_max self.assertEqual(0xA00000000, start_value) self.assertEqual(None, self.seq.initial_value(start_value)) self.assertEqual(None, self.seq.open(key='id', txn=None, flags=db.DB_CREATE)) self.assertEqual(start_value, self.seq.get(5)) self.assertEqual(start_value + 5, self.seq.get()) def test_remove(self): self.seq = db.DBSequence(self.d, flags=0) self.assertEqual(None, self.seq.open(key='foo', txn=None, flags=db.DB_CREATE)) self.assertEqual(None, self.seq.remove(txn=None, flags=0)) del self.seq def test_get_key(self): self.seq = db.DBSequence(self.d, flags=0) key = 'foo' self.assertEqual(None, self.seq.open(key=key, txn=None, flags=db.DB_CREATE)) self.assertEqual(key, self.seq.get_key()) def test_get_dbp(self): self.seq = db.DBSequence(self.d, flags=0) self.assertEqual(None, self.seq.open(key='foo', txn=None, flags=db.DB_CREATE)) self.assertEqual(self.d, self.seq.get_dbp()) def test_cachesize(self): self.seq = db.DBSequence(self.d, flags=0) cashe_size = 10 self.assertEqual(None, self.seq.set_cachesize(cashe_size)) self.assertEqual(None, self.seq.open(key='foo', txn=None, flags=db.DB_CREATE)) self.assertEqual(cashe_size, self.seq.get_cachesize()) def test_flags(self): self.seq = db.DBSequence(self.d, flags=0) flag = db.DB_SEQ_WRAP; self.assertEqual(None, self.seq.set_flags(flag)) self.assertEqual(None, self.seq.open(key='foo', txn=None, flags=db.DB_CREATE)) self.assertEqual(flag, self.seq.get_flags() & flag) def test_range(self): self.seq = db.DBSequence(self.d, flags=0) seq_range = (10 * self.int_32_max, 11 * self.int_32_max - 1) self.assertEqual(None, self.seq.set_range(seq_range)) self.seq.initial_value(seq_range[0]) self.assertEqual(None, self.seq.open(key='foo', txn=None, flags=db.DB_CREATE)) self.assertEqual(seq_range, self.seq.get_range()) def test_stat(self): self.seq = db.DBSequence(self.d, flags=0) self.assertEqual(None, self.seq.open(key='foo', txn=None, flags=db.DB_CREATE)) stat = self.seq.stat() for param in ('nowait', 'min', 'max', 'value', 'current', 'flags', 'cache_size', 'last_value', 'wait'): self.assertTrue(param in stat, "parameter %s isn't in stat info" % param) if db.version() >= (4,7) : # This code checks a crash solved in Berkeley DB 4.7 def test_stat_crash(self) : d=db.DB() d.open(None,dbtype=db.DB_HASH,flags=db.DB_CREATE) # In RAM seq = db.DBSequence(d, flags=0) self.assertRaises(db.DBNotFoundError, seq.open, key='id', txn=None, flags=0) self.assertRaises(db.DBInvalidArgError, seq.stat) d.close() def test_64bits(self) : # We don't use both extremes because they are problematic value_plus=(1L<<63)-2 self.assertEqual(9223372036854775806L,value_plus) value_minus=(-1L<<63)+1 # Two complement self.assertEqual(-9223372036854775807L,value_minus) self.seq = db.DBSequence(self.d, flags=0) self.assertEqual(None, self.seq.initial_value(value_plus-1)) self.assertEqual(None, self.seq.open(key='id', txn=None, flags=db.DB_CREATE)) self.assertEqual(value_plus-1, self.seq.get(1)) self.assertEqual(value_plus, self.seq.get(1)) self.seq.remove(txn=None, flags=0) self.seq = db.DBSequence(self.d, flags=0) self.assertEqual(None, self.seq.initial_value(value_minus)) self.assertEqual(None, self.seq.open(key='id', txn=None, flags=db.DB_CREATE)) self.assertEqual(value_minus, self.seq.get(1)) self.assertEqual(value_minus+1, self.seq.get(1)) def test_multiple_close(self): self.seq = db.DBSequence(self.d) self.seq.close() # You can close a Sequence multiple times self.seq.close() self.seq.close() def test_suite(): suite = unittest.TestSuite() suite.addTest(unittest.makeSuite(DBSequenceTest)) return suite if __name__ == '__main__': unittest.main(defaultTest='test_suite')
apache-2.0
-9,132,995,850,701,812,000
37.779412
86
0.597412
false
rimbalinux/MSISDNArea
django/contrib/sessions/middleware.py
3
1931
import time from django.conf import settings from django.utils.cache import patch_vary_headers from django.utils.http import cookie_date from django.utils.importlib import import_module class SessionMiddleware(object): def process_request(self, request): engine = import_module(settings.SESSION_ENGINE) session_key = request.COOKIES.get(settings.SESSION_COOKIE_NAME, None) request.session = engine.SessionStore(session_key) def process_response(self, request, response): """ If request.session was modified, or if the configuration is to save the session every time, save the changes and set a session cookie. """ try: accessed = request.session.accessed modified = request.session.modified except AttributeError: pass else: if accessed: patch_vary_headers(response, ('Cookie',)) if modified or settings.SESSION_SAVE_EVERY_REQUEST: if request.session.get_expire_at_browser_close(): max_age = None expires = None else: max_age = request.session.get_expiry_age() expires_time = time.time() + max_age expires = cookie_date(expires_time) # Save the session data and refresh the client cookie. request.session.save() response.set_cookie(settings.SESSION_COOKIE_NAME, request.session.session_key, max_age=max_age, expires=expires, domain=settings.SESSION_COOKIE_DOMAIN, path=settings.SESSION_COOKIE_PATH, secure=settings.SESSION_COOKIE_SECURE or None, httponly=settings.SESSION_COOKIE_HTTPONLY or None) return response
bsd-3-clause
7,323,104,570,838,352,000
42.906977
79
0.584671
false
MartinHjelmare/home-assistant
homeassistant/components/google_assistant/trait.py
1
42398
"""Implement the Google Smart Home traits.""" import logging from homeassistant.components import ( binary_sensor, camera, cover, group, fan, input_boolean, media_player, light, lock, scene, script, switch, vacuum, ) from homeassistant.components.climate import const as climate from homeassistant.const import ( ATTR_ENTITY_ID, ATTR_DEVICE_CLASS, SERVICE_TURN_OFF, SERVICE_TURN_ON, STATE_LOCKED, STATE_OFF, STATE_ON, TEMP_CELSIUS, TEMP_FAHRENHEIT, ATTR_SUPPORTED_FEATURES, ATTR_TEMPERATURE, ATTR_ASSUMED_STATE, STATE_UNKNOWN, ) from homeassistant.core import DOMAIN as HA_DOMAIN from homeassistant.util import color as color_util, temperature as temp_util from .const import ( ERR_VALUE_OUT_OF_RANGE, ERR_NOT_SUPPORTED, ERR_FUNCTION_NOT_SUPPORTED, ERR_CHALLENGE_NOT_SETUP, CHALLENGE_ACK_NEEDED, CHALLENGE_PIN_NEEDED, CHALLENGE_FAILED_PIN_NEEDED, ) from .error import SmartHomeError, ChallengeNeeded _LOGGER = logging.getLogger(__name__) PREFIX_TRAITS = 'action.devices.traits.' TRAIT_CAMERA_STREAM = PREFIX_TRAITS + 'CameraStream' TRAIT_ONOFF = PREFIX_TRAITS + 'OnOff' TRAIT_DOCK = PREFIX_TRAITS + 'Dock' TRAIT_STARTSTOP = PREFIX_TRAITS + 'StartStop' TRAIT_BRIGHTNESS = PREFIX_TRAITS + 'Brightness' TRAIT_COLOR_SETTING = PREFIX_TRAITS + 'ColorSetting' TRAIT_SCENE = PREFIX_TRAITS + 'Scene' TRAIT_TEMPERATURE_SETTING = PREFIX_TRAITS + 'TemperatureSetting' TRAIT_LOCKUNLOCK = PREFIX_TRAITS + 'LockUnlock' TRAIT_FANSPEED = PREFIX_TRAITS + 'FanSpeed' TRAIT_MODES = PREFIX_TRAITS + 'Modes' TRAIT_OPENCLOSE = PREFIX_TRAITS + 'OpenClose' TRAIT_VOLUME = PREFIX_TRAITS + 'Volume' PREFIX_COMMANDS = 'action.devices.commands.' COMMAND_ONOFF = PREFIX_COMMANDS + 'OnOff' COMMAND_GET_CAMERA_STREAM = PREFIX_COMMANDS + 'GetCameraStream' COMMAND_DOCK = PREFIX_COMMANDS + 'Dock' COMMAND_STARTSTOP = PREFIX_COMMANDS + 'StartStop' COMMAND_PAUSEUNPAUSE = PREFIX_COMMANDS + 'PauseUnpause' COMMAND_BRIGHTNESS_ABSOLUTE = PREFIX_COMMANDS + 'BrightnessAbsolute' COMMAND_COLOR_ABSOLUTE = PREFIX_COMMANDS + 'ColorAbsolute' COMMAND_ACTIVATE_SCENE = PREFIX_COMMANDS + 'ActivateScene' COMMAND_THERMOSTAT_TEMPERATURE_SETPOINT = ( PREFIX_COMMANDS + 'ThermostatTemperatureSetpoint') COMMAND_THERMOSTAT_TEMPERATURE_SET_RANGE = ( PREFIX_COMMANDS + 'ThermostatTemperatureSetRange') COMMAND_THERMOSTAT_SET_MODE = PREFIX_COMMANDS + 'ThermostatSetMode' COMMAND_LOCKUNLOCK = PREFIX_COMMANDS + 'LockUnlock' COMMAND_FANSPEED = PREFIX_COMMANDS + 'SetFanSpeed' COMMAND_MODES = PREFIX_COMMANDS + 'SetModes' COMMAND_OPENCLOSE = PREFIX_COMMANDS + 'OpenClose' COMMAND_SET_VOLUME = PREFIX_COMMANDS + 'setVolume' COMMAND_VOLUME_RELATIVE = PREFIX_COMMANDS + 'volumeRelative' TRAITS = [] def register_trait(trait): """Decorate a function to register a trait.""" TRAITS.append(trait) return trait def _google_temp_unit(units): """Return Google temperature unit.""" if units == TEMP_FAHRENHEIT: return 'F' return 'C' class _Trait: """Represents a Trait inside Google Assistant skill.""" commands = [] def __init__(self, hass, state, config): """Initialize a trait for a state.""" self.hass = hass self.state = state self.config = config def sync_attributes(self): """Return attributes for a sync request.""" raise NotImplementedError def query_attributes(self): """Return the attributes of this trait for this entity.""" raise NotImplementedError def can_execute(self, command, params): """Test if command can be executed.""" return command in self.commands async def execute(self, command, data, params, challenge): """Execute a trait command.""" raise NotImplementedError @register_trait class BrightnessTrait(_Trait): """Trait to control brightness of a device. https://developers.google.com/actions/smarthome/traits/brightness """ name = TRAIT_BRIGHTNESS commands = [ COMMAND_BRIGHTNESS_ABSOLUTE ] @staticmethod def supported(domain, features, device_class): """Test if state is supported.""" if domain == light.DOMAIN: return features & light.SUPPORT_BRIGHTNESS return False def sync_attributes(self): """Return brightness attributes for a sync request.""" return {} def query_attributes(self): """Return brightness query attributes.""" domain = self.state.domain response = {} if domain == light.DOMAIN: brightness = self.state.attributes.get(light.ATTR_BRIGHTNESS) if brightness is not None: response['brightness'] = int(100 * (brightness / 255)) return response async def execute(self, command, data, params, challenge): """Execute a brightness command.""" domain = self.state.domain if domain == light.DOMAIN: await self.hass.services.async_call( light.DOMAIN, light.SERVICE_TURN_ON, { ATTR_ENTITY_ID: self.state.entity_id, light.ATTR_BRIGHTNESS_PCT: params['brightness'] }, blocking=True, context=data.context) @register_trait class CameraStreamTrait(_Trait): """Trait to stream from cameras. https://developers.google.com/actions/smarthome/traits/camerastream """ name = TRAIT_CAMERA_STREAM commands = [ COMMAND_GET_CAMERA_STREAM ] stream_info = None @staticmethod def supported(domain, features, device_class): """Test if state is supported.""" if domain == camera.DOMAIN: return features & camera.SUPPORT_STREAM return False def sync_attributes(self): """Return stream attributes for a sync request.""" return { 'cameraStreamSupportedProtocols': [ "hls", ], 'cameraStreamNeedAuthToken': False, 'cameraStreamNeedDrmEncryption': False, } def query_attributes(self): """Return camera stream attributes.""" return self.stream_info or {} async def execute(self, command, data, params, challenge): """Execute a get camera stream command.""" url = await self.hass.components.camera.async_request_stream( self.state.entity_id, 'hls') self.stream_info = { 'cameraStreamAccessUrl': self.hass.config.api.base_url + url } @register_trait class OnOffTrait(_Trait): """Trait to offer basic on and off functionality. https://developers.google.com/actions/smarthome/traits/onoff """ name = TRAIT_ONOFF commands = [ COMMAND_ONOFF ] @staticmethod def supported(domain, features, device_class): """Test if state is supported.""" return domain in ( group.DOMAIN, input_boolean.DOMAIN, switch.DOMAIN, fan.DOMAIN, light.DOMAIN, media_player.DOMAIN, ) def sync_attributes(self): """Return OnOff attributes for a sync request.""" return {} def query_attributes(self): """Return OnOff query attributes.""" return {'on': self.state.state != STATE_OFF} async def execute(self, command, data, params, challenge): """Execute an OnOff command.""" domain = self.state.domain if domain == group.DOMAIN: service_domain = HA_DOMAIN service = SERVICE_TURN_ON if params['on'] else SERVICE_TURN_OFF else: service_domain = domain service = SERVICE_TURN_ON if params['on'] else SERVICE_TURN_OFF await self.hass.services.async_call(service_domain, service, { ATTR_ENTITY_ID: self.state.entity_id }, blocking=True, context=data.context) @register_trait class ColorSettingTrait(_Trait): """Trait to offer color temperature functionality. https://developers.google.com/actions/smarthome/traits/colortemperature """ name = TRAIT_COLOR_SETTING commands = [ COMMAND_COLOR_ABSOLUTE ] @staticmethod def supported(domain, features, device_class): """Test if state is supported.""" if domain != light.DOMAIN: return False return (features & light.SUPPORT_COLOR_TEMP or features & light.SUPPORT_COLOR) def sync_attributes(self): """Return color temperature attributes for a sync request.""" attrs = self.state.attributes features = attrs.get(ATTR_SUPPORTED_FEATURES, 0) response = {} if features & light.SUPPORT_COLOR: response['colorModel'] = 'hsv' if features & light.SUPPORT_COLOR_TEMP: # Max Kelvin is Min Mireds K = 1000000 / mireds # Min Kevin is Max Mireds K = 1000000 / mireds response['colorTemperatureRange'] = { 'temperatureMaxK': color_util.color_temperature_mired_to_kelvin( attrs.get(light.ATTR_MIN_MIREDS)), 'temperatureMinK': color_util.color_temperature_mired_to_kelvin( attrs.get(light.ATTR_MAX_MIREDS)), } return response def query_attributes(self): """Return color temperature query attributes.""" features = self.state.attributes.get(ATTR_SUPPORTED_FEATURES, 0) color = {} if features & light.SUPPORT_COLOR: color_hs = self.state.attributes.get(light.ATTR_HS_COLOR) brightness = self.state.attributes.get(light.ATTR_BRIGHTNESS, 1) if color_hs is not None: color['spectrumHsv'] = { 'hue': color_hs[0], 'saturation': color_hs[1]/100, 'value': brightness/255, } if features & light.SUPPORT_COLOR_TEMP: temp = self.state.attributes.get(light.ATTR_COLOR_TEMP) # Some faulty integrations might put 0 in here, raising exception. if temp == 0: _LOGGER.warning('Entity %s has incorrect color temperature %s', self.state.entity_id, temp) elif temp is not None: color['temperatureK'] = \ color_util.color_temperature_mired_to_kelvin(temp) response = {} if color: response['color'] = color return response async def execute(self, command, data, params, challenge): """Execute a color temperature command.""" if 'temperature' in params['color']: temp = color_util.color_temperature_kelvin_to_mired( params['color']['temperature']) min_temp = self.state.attributes[light.ATTR_MIN_MIREDS] max_temp = self.state.attributes[light.ATTR_MAX_MIREDS] if temp < min_temp or temp > max_temp: raise SmartHomeError( ERR_VALUE_OUT_OF_RANGE, "Temperature should be between {} and {}".format(min_temp, max_temp)) await self.hass.services.async_call( light.DOMAIN, SERVICE_TURN_ON, { ATTR_ENTITY_ID: self.state.entity_id, light.ATTR_COLOR_TEMP: temp, }, blocking=True, context=data.context) elif 'spectrumRGB' in params['color']: # Convert integer to hex format and left pad with 0's till length 6 hex_value = "{0:06x}".format(params['color']['spectrumRGB']) color = color_util.color_RGB_to_hs( *color_util.rgb_hex_to_rgb_list(hex_value)) await self.hass.services.async_call( light.DOMAIN, SERVICE_TURN_ON, { ATTR_ENTITY_ID: self.state.entity_id, light.ATTR_HS_COLOR: color }, blocking=True, context=data.context) elif 'spectrumHSV' in params['color']: color = params['color']['spectrumHSV'] saturation = color['saturation'] * 100 brightness = color['value'] * 255 await self.hass.services.async_call( light.DOMAIN, SERVICE_TURN_ON, { ATTR_ENTITY_ID: self.state.entity_id, light.ATTR_HS_COLOR: [color['hue'], saturation], light.ATTR_BRIGHTNESS: brightness }, blocking=True, context=data.context) @register_trait class SceneTrait(_Trait): """Trait to offer scene functionality. https://developers.google.com/actions/smarthome/traits/scene """ name = TRAIT_SCENE commands = [ COMMAND_ACTIVATE_SCENE ] @staticmethod def supported(domain, features, device_class): """Test if state is supported.""" return domain in (scene.DOMAIN, script.DOMAIN) def sync_attributes(self): """Return scene attributes for a sync request.""" # Neither supported domain can support sceneReversible return {} def query_attributes(self): """Return scene query attributes.""" return {} async def execute(self, command, data, params, challenge): """Execute a scene command.""" # Don't block for scripts as they can be slow. await self.hass.services.async_call( self.state.domain, SERVICE_TURN_ON, { ATTR_ENTITY_ID: self.state.entity_id }, blocking=self.state.domain != script.DOMAIN, context=data.context) @register_trait class DockTrait(_Trait): """Trait to offer dock functionality. https://developers.google.com/actions/smarthome/traits/dock """ name = TRAIT_DOCK commands = [ COMMAND_DOCK ] @staticmethod def supported(domain, features, device_class): """Test if state is supported.""" return domain == vacuum.DOMAIN def sync_attributes(self): """Return dock attributes for a sync request.""" return {} def query_attributes(self): """Return dock query attributes.""" return {'isDocked': self.state.state == vacuum.STATE_DOCKED} async def execute(self, command, data, params, challenge): """Execute a dock command.""" await self.hass.services.async_call( self.state.domain, vacuum.SERVICE_RETURN_TO_BASE, { ATTR_ENTITY_ID: self.state.entity_id }, blocking=True, context=data.context) @register_trait class StartStopTrait(_Trait): """Trait to offer StartStop functionality. https://developers.google.com/actions/smarthome/traits/startstop """ name = TRAIT_STARTSTOP commands = [ COMMAND_STARTSTOP, COMMAND_PAUSEUNPAUSE ] @staticmethod def supported(domain, features, device_class): """Test if state is supported.""" return domain == vacuum.DOMAIN def sync_attributes(self): """Return StartStop attributes for a sync request.""" return {'pausable': self.state.attributes.get(ATTR_SUPPORTED_FEATURES, 0) & vacuum.SUPPORT_PAUSE != 0} def query_attributes(self): """Return StartStop query attributes.""" return { 'isRunning': self.state.state == vacuum.STATE_CLEANING, 'isPaused': self.state.state == vacuum.STATE_PAUSED, } async def execute(self, command, data, params, challenge): """Execute a StartStop command.""" if command == COMMAND_STARTSTOP: if params['start']: await self.hass.services.async_call( self.state.domain, vacuum.SERVICE_START, { ATTR_ENTITY_ID: self.state.entity_id }, blocking=True, context=data.context) else: await self.hass.services.async_call( self.state.domain, vacuum.SERVICE_STOP, { ATTR_ENTITY_ID: self.state.entity_id }, blocking=True, context=data.context) elif command == COMMAND_PAUSEUNPAUSE: if params['pause']: await self.hass.services.async_call( self.state.domain, vacuum.SERVICE_PAUSE, { ATTR_ENTITY_ID: self.state.entity_id }, blocking=True, context=data.context) else: await self.hass.services.async_call( self.state.domain, vacuum.SERVICE_START, { ATTR_ENTITY_ID: self.state.entity_id }, blocking=True, context=data.context) @register_trait class TemperatureSettingTrait(_Trait): """Trait to offer handling both temperature point and modes functionality. https://developers.google.com/actions/smarthome/traits/temperaturesetting """ name = TRAIT_TEMPERATURE_SETTING commands = [ COMMAND_THERMOSTAT_TEMPERATURE_SETPOINT, COMMAND_THERMOSTAT_TEMPERATURE_SET_RANGE, COMMAND_THERMOSTAT_SET_MODE, ] # We do not support "on" as we are unable to know how to restore # the last mode. hass_to_google = { climate.STATE_HEAT: 'heat', climate.STATE_COOL: 'cool', STATE_OFF: 'off', climate.STATE_AUTO: 'heatcool', climate.STATE_FAN_ONLY: 'fan-only', climate.STATE_DRY: 'dry', climate.STATE_ECO: 'eco' } google_to_hass = {value: key for key, value in hass_to_google.items()} @staticmethod def supported(domain, features, device_class): """Test if state is supported.""" if domain != climate.DOMAIN: return False return features & climate.SUPPORT_OPERATION_MODE def sync_attributes(self): """Return temperature point and modes attributes for a sync request.""" modes = [] supported = self.state.attributes.get(ATTR_SUPPORTED_FEATURES) if supported & climate.SUPPORT_ON_OFF != 0: modes.append(STATE_OFF) modes.append(STATE_ON) if supported & climate.SUPPORT_OPERATION_MODE != 0: for mode in self.state.attributes.get(climate.ATTR_OPERATION_LIST, []): google_mode = self.hass_to_google.get(mode) if google_mode and google_mode not in modes: modes.append(google_mode) return { 'availableThermostatModes': ','.join(modes), 'thermostatTemperatureUnit': _google_temp_unit( self.hass.config.units.temperature_unit) } def query_attributes(self): """Return temperature point and modes query attributes.""" attrs = self.state.attributes response = {} operation = attrs.get(climate.ATTR_OPERATION_MODE) supported = self.state.attributes.get(ATTR_SUPPORTED_FEATURES) if (supported & climate.SUPPORT_ON_OFF and self.state.state == STATE_OFF): response['thermostatMode'] = 'off' elif (supported & climate.SUPPORT_OPERATION_MODE and operation in self.hass_to_google): response['thermostatMode'] = self.hass_to_google[operation] elif supported & climate.SUPPORT_ON_OFF: response['thermostatMode'] = 'on' unit = self.hass.config.units.temperature_unit current_temp = attrs.get(climate.ATTR_CURRENT_TEMPERATURE) if current_temp is not None: response['thermostatTemperatureAmbient'] = \ round(temp_util.convert(current_temp, unit, TEMP_CELSIUS), 1) current_humidity = attrs.get(climate.ATTR_CURRENT_HUMIDITY) if current_humidity is not None: response['thermostatHumidityAmbient'] = current_humidity if operation == climate.STATE_AUTO: if (supported & climate.SUPPORT_TARGET_TEMPERATURE_HIGH and supported & climate.SUPPORT_TARGET_TEMPERATURE_LOW): response['thermostatTemperatureSetpointHigh'] = \ round(temp_util.convert( attrs[climate.ATTR_TARGET_TEMP_HIGH], unit, TEMP_CELSIUS), 1) response['thermostatTemperatureSetpointLow'] = \ round(temp_util.convert( attrs[climate.ATTR_TARGET_TEMP_LOW], unit, TEMP_CELSIUS), 1) else: target_temp = attrs.get(ATTR_TEMPERATURE) if target_temp is not None: target_temp = round( temp_util.convert(target_temp, unit, TEMP_CELSIUS), 1) response['thermostatTemperatureSetpointHigh'] = target_temp response['thermostatTemperatureSetpointLow'] = target_temp else: target_temp = attrs.get(ATTR_TEMPERATURE) if target_temp is not None: response['thermostatTemperatureSetpoint'] = round( temp_util.convert(target_temp, unit, TEMP_CELSIUS), 1) return response async def execute(self, command, data, params, challenge): """Execute a temperature point or mode command.""" # All sent in temperatures are always in Celsius unit = self.hass.config.units.temperature_unit min_temp = self.state.attributes[climate.ATTR_MIN_TEMP] max_temp = self.state.attributes[climate.ATTR_MAX_TEMP] if command == COMMAND_THERMOSTAT_TEMPERATURE_SETPOINT: temp = temp_util.convert( params['thermostatTemperatureSetpoint'], TEMP_CELSIUS, unit) if unit == TEMP_FAHRENHEIT: temp = round(temp) if temp < min_temp or temp > max_temp: raise SmartHomeError( ERR_VALUE_OUT_OF_RANGE, "Temperature should be between {} and {}".format(min_temp, max_temp)) await self.hass.services.async_call( climate.DOMAIN, climate.SERVICE_SET_TEMPERATURE, { ATTR_ENTITY_ID: self.state.entity_id, ATTR_TEMPERATURE: temp }, blocking=True, context=data.context) elif command == COMMAND_THERMOSTAT_TEMPERATURE_SET_RANGE: temp_high = temp_util.convert( params['thermostatTemperatureSetpointHigh'], TEMP_CELSIUS, unit) if unit == TEMP_FAHRENHEIT: temp_high = round(temp_high) if temp_high < min_temp or temp_high > max_temp: raise SmartHomeError( ERR_VALUE_OUT_OF_RANGE, "Upper bound for temperature range should be between " "{} and {}".format(min_temp, max_temp)) temp_low = temp_util.convert( params['thermostatTemperatureSetpointLow'], TEMP_CELSIUS, unit) if unit == TEMP_FAHRENHEIT: temp_low = round(temp_low) if temp_low < min_temp or temp_low > max_temp: raise SmartHomeError( ERR_VALUE_OUT_OF_RANGE, "Lower bound for temperature range should be between " "{} and {}".format(min_temp, max_temp)) supported = self.state.attributes.get(ATTR_SUPPORTED_FEATURES) svc_data = { ATTR_ENTITY_ID: self.state.entity_id, } if(supported & climate.SUPPORT_TARGET_TEMPERATURE_HIGH and supported & climate.SUPPORT_TARGET_TEMPERATURE_LOW): svc_data[climate.ATTR_TARGET_TEMP_HIGH] = temp_high svc_data[climate.ATTR_TARGET_TEMP_LOW] = temp_low else: svc_data[ATTR_TEMPERATURE] = (temp_high + temp_low) / 2 await self.hass.services.async_call( climate.DOMAIN, climate.SERVICE_SET_TEMPERATURE, svc_data, blocking=True, context=data.context) elif command == COMMAND_THERMOSTAT_SET_MODE: target_mode = params['thermostatMode'] supported = self.state.attributes.get(ATTR_SUPPORTED_FEATURES) if (target_mode in [STATE_ON, STATE_OFF] and supported & climate.SUPPORT_ON_OFF): await self.hass.services.async_call( climate.DOMAIN, (SERVICE_TURN_ON if target_mode == STATE_ON else SERVICE_TURN_OFF), {ATTR_ENTITY_ID: self.state.entity_id}, blocking=True, context=data.context) elif supported & climate.SUPPORT_OPERATION_MODE: await self.hass.services.async_call( climate.DOMAIN, climate.SERVICE_SET_OPERATION_MODE, { ATTR_ENTITY_ID: self.state.entity_id, climate.ATTR_OPERATION_MODE: self.google_to_hass[target_mode], }, blocking=True, context=data.context) @register_trait class LockUnlockTrait(_Trait): """Trait to lock or unlock a lock. https://developers.google.com/actions/smarthome/traits/lockunlock """ name = TRAIT_LOCKUNLOCK commands = [ COMMAND_LOCKUNLOCK ] @staticmethod def supported(domain, features, device_class): """Test if state is supported.""" return domain == lock.DOMAIN def sync_attributes(self): """Return LockUnlock attributes for a sync request.""" return {} def query_attributes(self): """Return LockUnlock query attributes.""" return {'isLocked': self.state.state == STATE_LOCKED} async def execute(self, command, data, params, challenge): """Execute an LockUnlock command.""" _verify_pin_challenge(data, challenge) if params['lock']: service = lock.SERVICE_LOCK else: service = lock.SERVICE_UNLOCK await self.hass.services.async_call(lock.DOMAIN, service, { ATTR_ENTITY_ID: self.state.entity_id }, blocking=True, context=data.context) @register_trait class FanSpeedTrait(_Trait): """Trait to control speed of Fan. https://developers.google.com/actions/smarthome/traits/fanspeed """ name = TRAIT_FANSPEED commands = [ COMMAND_FANSPEED ] speed_synonyms = { fan.SPEED_OFF: ['stop', 'off'], fan.SPEED_LOW: ['slow', 'low', 'slowest', 'lowest'], fan.SPEED_MEDIUM: ['medium', 'mid', 'middle'], fan.SPEED_HIGH: [ 'high', 'max', 'fast', 'highest', 'fastest', 'maximum' ] } @staticmethod def supported(domain, features, device_class): """Test if state is supported.""" if domain != fan.DOMAIN: return False return features & fan.SUPPORT_SET_SPEED def sync_attributes(self): """Return speed point and modes attributes for a sync request.""" modes = self.state.attributes.get(fan.ATTR_SPEED_LIST, []) speeds = [] for mode in modes: if mode not in self.speed_synonyms: continue speed = { "speed_name": mode, "speed_values": [{ "speed_synonym": self.speed_synonyms.get(mode), "lang": 'en' }] } speeds.append(speed) return { 'availableFanSpeeds': { 'speeds': speeds, 'ordered': True }, "reversible": bool(self.state.attributes.get( ATTR_SUPPORTED_FEATURES, 0) & fan.SUPPORT_DIRECTION) } def query_attributes(self): """Return speed point and modes query attributes.""" attrs = self.state.attributes response = {} speed = attrs.get(fan.ATTR_SPEED) if speed is not None: response['on'] = speed != fan.SPEED_OFF response['online'] = True response['currentFanSpeedSetting'] = speed return response async def execute(self, command, data, params, challenge): """Execute an SetFanSpeed command.""" await self.hass.services.async_call( fan.DOMAIN, fan.SERVICE_SET_SPEED, { ATTR_ENTITY_ID: self.state.entity_id, fan.ATTR_SPEED: params['fanSpeed'] }, blocking=True, context=data.context) @register_trait class ModesTrait(_Trait): """Trait to set modes. https://developers.google.com/actions/smarthome/traits/modes """ name = TRAIT_MODES commands = [ COMMAND_MODES ] # Google requires specific mode names and settings. Here is the full list. # https://developers.google.com/actions/reference/smarthome/traits/modes # All settings are mapped here as of 2018-11-28 and can be used for other # entity types. HA_TO_GOOGLE = { media_player.ATTR_INPUT_SOURCE: "input source", } SUPPORTED_MODE_SETTINGS = { 'xsmall': [ 'xsmall', 'extra small', 'min', 'minimum', 'tiny', 'xs'], 'small': ['small', 'half'], 'large': ['large', 'big', 'full'], 'xlarge': ['extra large', 'xlarge', 'xl'], 'Cool': ['cool', 'rapid cool', 'rapid cooling'], 'Heat': ['heat'], 'Low': ['low'], 'Medium': ['medium', 'med', 'mid', 'half'], 'High': ['high'], 'Auto': ['auto', 'automatic'], 'Bake': ['bake'], 'Roast': ['roast'], 'Convection Bake': ['convection bake', 'convect bake'], 'Convection Roast': ['convection roast', 'convect roast'], 'Favorite': ['favorite'], 'Broil': ['broil'], 'Warm': ['warm'], 'Off': ['off'], 'On': ['on'], 'Normal': [ 'normal', 'normal mode', 'normal setting', 'standard', 'schedule', 'original', 'default', 'old settings' ], 'None': ['none'], 'Tap Cold': ['tap cold'], 'Cold Warm': ['cold warm'], 'Hot': ['hot'], 'Extra Hot': ['extra hot'], 'Eco': ['eco'], 'Wool': ['wool', 'fleece'], 'Turbo': ['turbo'], 'Rinse': ['rinse', 'rinsing', 'rinse wash'], 'Away': ['away', 'holiday'], 'maximum': ['maximum'], 'media player': ['media player'], 'chromecast': ['chromecast'], 'tv': [ 'tv', 'television', 'tv position', 'television position', 'watching tv', 'watching tv position', 'entertainment', 'entertainment position' ], 'am fm': ['am fm', 'am radio', 'fm radio'], 'internet radio': ['internet radio'], 'satellite': ['satellite'], 'game console': ['game console'], 'antifrost': ['antifrost', 'anti-frost'], 'boost': ['boost'], 'Clock': ['clock'], 'Message': ['message'], 'Messages': ['messages'], 'News': ['news'], 'Disco': ['disco'], 'antifreeze': ['antifreeze', 'anti-freeze', 'anti freeze'], 'balanced': ['balanced', 'normal'], 'swing': ['swing'], 'media': ['media', 'media mode'], 'panic': ['panic'], 'ring': ['ring'], 'frozen': ['frozen', 'rapid frozen', 'rapid freeze'], 'cotton': ['cotton', 'cottons'], 'blend': ['blend', 'mix'], 'baby wash': ['baby wash'], 'synthetics': ['synthetic', 'synthetics', 'compose'], 'hygiene': ['hygiene', 'sterilization'], 'smart': ['smart', 'intelligent', 'intelligence'], 'comfortable': ['comfortable', 'comfort'], 'manual': ['manual'], 'energy saving': ['energy saving'], 'sleep': ['sleep'], 'quick wash': ['quick wash', 'fast wash'], 'cold': ['cold'], 'airsupply': ['airsupply', 'air supply'], 'dehumidification': ['dehumidication', 'dehumidify'], 'game': ['game', 'game mode'] } @staticmethod def supported(domain, features, device_class): """Test if state is supported.""" if domain != media_player.DOMAIN: return False return features & media_player.SUPPORT_SELECT_SOURCE def sync_attributes(self): """Return mode attributes for a sync request.""" sources_list = self.state.attributes.get( media_player.ATTR_INPUT_SOURCE_LIST, []) modes = [] sources = {} if sources_list: sources = { "name": self.HA_TO_GOOGLE.get(media_player.ATTR_INPUT_SOURCE), "name_values": [{ "name_synonym": ['input source'], "lang": "en" }], "settings": [], "ordered": False } for source in sources_list: if source in self.SUPPORTED_MODE_SETTINGS: src = source synonyms = self.SUPPORTED_MODE_SETTINGS.get(src) elif source.lower() in self.SUPPORTED_MODE_SETTINGS: src = source.lower() synonyms = self.SUPPORTED_MODE_SETTINGS.get(src) else: continue sources['settings'].append( { "setting_name": src, "setting_values": [{ "setting_synonym": synonyms, "lang": "en" }] } ) if sources: modes.append(sources) payload = {'availableModes': modes} return payload def query_attributes(self): """Return current modes.""" attrs = self.state.attributes response = {} mode_settings = {} if attrs.get(media_player.ATTR_INPUT_SOURCE_LIST): mode_settings.update({ media_player.ATTR_INPUT_SOURCE: attrs.get( media_player.ATTR_INPUT_SOURCE) }) if mode_settings: response['on'] = self.state.state != STATE_OFF response['online'] = True response['currentModeSettings'] = mode_settings return response async def execute(self, command, data, params, challenge): """Execute an SetModes command.""" settings = params.get('updateModeSettings') requested_source = settings.get( self.HA_TO_GOOGLE.get(media_player.ATTR_INPUT_SOURCE)) if requested_source: for src in self.state.attributes.get( media_player.ATTR_INPUT_SOURCE_LIST): if src.lower() == requested_source.lower(): source = src await self.hass.services.async_call( media_player.DOMAIN, media_player.SERVICE_SELECT_SOURCE, { ATTR_ENTITY_ID: self.state.entity_id, media_player.ATTR_INPUT_SOURCE: source }, blocking=True, context=data.context) @register_trait class OpenCloseTrait(_Trait): """Trait to open and close a cover. https://developers.google.com/actions/smarthome/traits/openclose """ name = TRAIT_OPENCLOSE commands = [ COMMAND_OPENCLOSE ] @staticmethod def supported(domain, features, device_class): """Test if state is supported.""" if domain == cover.DOMAIN: return True return domain == binary_sensor.DOMAIN and device_class in ( binary_sensor.DEVICE_CLASS_DOOR, binary_sensor.DEVICE_CLASS_GARAGE_DOOR, binary_sensor.DEVICE_CLASS_LOCK, binary_sensor.DEVICE_CLASS_OPENING, binary_sensor.DEVICE_CLASS_WINDOW, ) def sync_attributes(self): """Return opening direction.""" attrs = {} if self.state.domain == binary_sensor.DOMAIN: attrs['queryOnlyOpenClose'] = True return attrs def query_attributes(self): """Return state query attributes.""" domain = self.state.domain response = {} if domain == cover.DOMAIN: # When it's an assumed state, we will always report it as 50% # Google will not issue an open command if the assumed state is # open, even if that is currently incorrect. if self.state.attributes.get(ATTR_ASSUMED_STATE): raise SmartHomeError( ERR_NOT_SUPPORTED, 'Querying state is not supported') if self.state.state == STATE_UNKNOWN: raise SmartHomeError( ERR_NOT_SUPPORTED, 'Querying state is not supported') position = self.state.attributes.get( cover.ATTR_CURRENT_POSITION ) if position is not None: response['openPercent'] = position elif self.state.state != cover.STATE_CLOSED: response['openPercent'] = 100 else: response['openPercent'] = 0 elif domain == binary_sensor.DOMAIN: if self.state.state == STATE_ON: response['openPercent'] = 100 else: response['openPercent'] = 0 return response async def execute(self, command, data, params, challenge): """Execute an Open, close, Set position command.""" domain = self.state.domain if domain == cover.DOMAIN: if self.state.attributes.get(ATTR_DEVICE_CLASS) in ( cover.DEVICE_CLASS_DOOR, cover.DEVICE_CLASS_GARAGE ): _verify_pin_challenge(data, challenge) position = self.state.attributes.get(cover.ATTR_CURRENT_POSITION) if params['openPercent'] == 0: await self.hass.services.async_call( cover.DOMAIN, cover.SERVICE_CLOSE_COVER, { ATTR_ENTITY_ID: self.state.entity_id }, blocking=True, context=data.context) elif params['openPercent'] == 100: await self.hass.services.async_call( cover.DOMAIN, cover.SERVICE_OPEN_COVER, { ATTR_ENTITY_ID: self.state.entity_id }, blocking=True, context=data.context) elif position is not None: await self.hass.services.async_call( cover.DOMAIN, cover.SERVICE_SET_COVER_POSITION, { ATTR_ENTITY_ID: self.state.entity_id, cover.ATTR_POSITION: params['openPercent'] }, blocking=True, context=data.context) else: raise SmartHomeError( ERR_FUNCTION_NOT_SUPPORTED, 'Setting a position is not supported') @register_trait class VolumeTrait(_Trait): """Trait to control brightness of a device. https://developers.google.com/actions/smarthome/traits/volume """ name = TRAIT_VOLUME commands = [ COMMAND_SET_VOLUME, COMMAND_VOLUME_RELATIVE, ] @staticmethod def supported(domain, features, device_class): """Test if state is supported.""" if domain == media_player.DOMAIN: return features & media_player.SUPPORT_VOLUME_SET return False def sync_attributes(self): """Return brightness attributes for a sync request.""" return {} def query_attributes(self): """Return brightness query attributes.""" response = {} level = self.state.attributes.get( media_player.ATTR_MEDIA_VOLUME_LEVEL) muted = self.state.attributes.get( media_player.ATTR_MEDIA_VOLUME_MUTED) if level is not None: # Convert 0.0-1.0 to 0-100 response['currentVolume'] = int(level * 100) response['isMuted'] = bool(muted) return response async def _execute_set_volume(self, data, params): level = params['volumeLevel'] await self.hass.services.async_call( media_player.DOMAIN, media_player.SERVICE_VOLUME_SET, { ATTR_ENTITY_ID: self.state.entity_id, media_player.ATTR_MEDIA_VOLUME_LEVEL: level / 100 }, blocking=True, context=data.context) async def _execute_volume_relative(self, data, params): # This could also support up/down commands using relativeSteps relative = params['volumeRelativeLevel'] current = self.state.attributes.get( media_player.ATTR_MEDIA_VOLUME_LEVEL) await self.hass.services.async_call( media_player.DOMAIN, media_player.SERVICE_VOLUME_SET, { ATTR_ENTITY_ID: self.state.entity_id, media_player.ATTR_MEDIA_VOLUME_LEVEL: current + relative / 100 }, blocking=True, context=data.context) async def execute(self, command, data, params, challenge): """Execute a brightness command.""" if command == COMMAND_SET_VOLUME: await self._execute_set_volume(data, params) elif command == COMMAND_VOLUME_RELATIVE: await self._execute_volume_relative(data, params) else: raise SmartHomeError( ERR_NOT_SUPPORTED, 'Command not supported') def _verify_pin_challenge(data, challenge): """Verify a pin challenge.""" if not data.config.secure_devices_pin: raise SmartHomeError( ERR_CHALLENGE_NOT_SETUP, 'Challenge is not set up') if not challenge: raise ChallengeNeeded(CHALLENGE_PIN_NEEDED) pin = challenge.get('pin') if pin != data.config.secure_devices_pin: raise ChallengeNeeded(CHALLENGE_FAILED_PIN_NEEDED) def _verify_ack_challenge(data, challenge): """Verify a pin challenge.""" if not challenge or not challenge.get('ack'): raise ChallengeNeeded(CHALLENGE_ACK_NEEDED)
apache-2.0
-8,771,102,119,974,407,000
33.895473
79
0.573329
false
konradcybulski/GameTheory1041
Python_Resources/InstanceVariables.py
1
1919
""" @author Konrad Cybulski @since 14/09/2016 @modified 14/09/2016 """ import numpy as np class InstanceVariables: def __init__(self, runs, generations, population_size, mutation_rate, execution_error, reputation_assignment_error, private_assessment_error, reputation_update_rate, socialnorm, cost, benefit): self.runs = runs self.generations = generations self.population_size = population_size self.mutation_rate = mutation_rate self.execution_error = execution_error self.reputation_assignment_error = reputation_assignment_error self.assessment_error = private_assessment_error self.reputation_update_rate = reputation_update_rate self.socialnorm = np.array(socialnorm) # matrix determining the reputation dynamic with # regard to the action taken and the reputation # of the other agent self.cost = cost # cost defining the payoff matrix cost self.benefit = benefit # benefit defined as the payoff matrix benefit # Population and reputation arrays self.population = np.zeros(population_size, dtype=int) # vector of all individual strategies # population[k] : strategy of individual k # population[k] = 0, 1, 2 or 3 self.reputation = np.zeros(population_size, dtype=int) # vector of all individual public reputations # reputation[k] : public reputation of individual k # reputation[k] = 0 or 1 # Cooperation Tracking self.coop_index_sum = float(0) self.interaction_count = float(0) self.track_cooperation = False def increment_coop_index(self, coop_index): self.coop_index_sum += float(coop_index) self.interaction_count += 1.0 def get_average_coop_index(self): return float(self.coop_index_sum)/float(self.interaction_count)
gpl-3.0
5,178,484,987,363,511,000
41.644444
109
0.665451
false
ProfessorX/Config
.PyCharm30/system/python_stubs/-1247971765/_operator.py
1
11985
# encoding: utf-8 # module _operator # from (built-in) # by generator 1.135 """ Operator interface. This module exports a set of functions implemented in C corresponding to the intrinsic operators of Python. For example, operator.add(x, y) is equivalent to the expression x+y. The function names are those used for special methods; variants without leading and trailing '__' are also provided for convenience. """ # no imports # functions def abs(a): # real signature unknown; restored from __doc__ """ abs(a) -- Same as abs(a). """ pass def add(a, b): # real signature unknown; restored from __doc__ """ add(a, b) -- Same as a + b. """ pass def and_(a, b): # real signature unknown; restored from __doc__ """ and_(a, b) -- Same as a & b. """ pass def concat(a, b): # real signature unknown; restored from __doc__ """ concat(a, b) -- Same as a + b, for a and b sequences. """ pass def contains(a, b): # real signature unknown; restored from __doc__ """ contains(a, b) -- Same as b in a (note reversed operands). """ pass def countOf(a, b): # real signature unknown; restored from __doc__ """ countOf(a, b) -- Return the number of times b occurs in a. """ pass def delitem(a, b): # real signature unknown; restored from __doc__ """ delitem(a, b) -- Same as del a[b]. """ pass def eq(a, b): # real signature unknown; restored from __doc__ """ eq(a, b) -- Same as a==b. """ pass def floordiv(a, b): # real signature unknown; restored from __doc__ """ floordiv(a, b) -- Same as a // b. """ pass def ge(a, b): # real signature unknown; restored from __doc__ """ ge(a, b) -- Same as a>=b. """ pass def getitem(a, b): # real signature unknown; restored from __doc__ """ getitem(a, b) -- Same as a[b]. """ pass def gt(a, b): # real signature unknown; restored from __doc__ """ gt(a, b) -- Same as a>b. """ pass def iadd(a, b): # real signature unknown; restored from __doc__ """ a = iadd(a, b) -- Same as a += b. """ pass def iand(a, b): # real signature unknown; restored from __doc__ """ a = iand(a, b) -- Same as a &= b. """ pass def iconcat(a, b): # real signature unknown; restored from __doc__ """ a = iconcat(a, b) -- Same as a += b, for a and b sequences. """ pass def ifloordiv(a, b): # real signature unknown; restored from __doc__ """ a = ifloordiv(a, b) -- Same as a //= b. """ pass def ilshift(a, b): # real signature unknown; restored from __doc__ """ a = ilshift(a, b) -- Same as a <<= b. """ pass def imod(a, b): # real signature unknown; restored from __doc__ """ a = imod(a, b) -- Same as a %= b. """ pass def imul(a, b): # real signature unknown; restored from __doc__ """ a = imul(a, b) -- Same as a *= b. """ pass def index(a): # real signature unknown; restored from __doc__ """ index(a) -- Same as a.__index__() """ pass def indexOf(a, b): # real signature unknown; restored from __doc__ """ indexOf(a, b) -- Return the first index of b in a. """ pass def inv(a): # real signature unknown; restored from __doc__ """ inv(a) -- Same as ~a. """ pass def invert(a): # real signature unknown; restored from __doc__ """ invert(a) -- Same as ~a. """ pass def ior(a, b): # real signature unknown; restored from __doc__ """ a = ior(a, b) -- Same as a |= b. """ pass def ipow(a, b): # real signature unknown; restored from __doc__ """ a = ipow(a, b) -- Same as a **= b. """ pass def irshift(a, b): # real signature unknown; restored from __doc__ """ a = irshift(a, b) -- Same as a >>= b. """ pass def isub(a, b): # real signature unknown; restored from __doc__ """ a = isub(a, b) -- Same as a -= b. """ pass def is_(a, b): # real signature unknown; restored from __doc__ """ is_(a, b) -- Same as a is b. """ pass def is_not(a, b): # real signature unknown; restored from __doc__ """ is_not(a, b) -- Same as a is not b. """ pass def itruediv(a, b): # real signature unknown; restored from __doc__ """ a = itruediv(a, b) -- Same as a /= b """ pass def ixor(a, b): # real signature unknown; restored from __doc__ """ a = ixor(a, b) -- Same as a ^= b. """ pass def le(a, b): # real signature unknown; restored from __doc__ """ le(a, b) -- Same as a<=b. """ pass def length_hint(obj, default=0): # real signature unknown; restored from __doc__ """ length_hint(obj, default=0) -> int Return an estimate of the number of items in obj. This is useful for presizing containers when building from an iterable. If the object supports len(), the result will be exact. Otherwise, it may over- or under-estimate by an arbitrary amount. The result will be an integer >= 0. """ return 0 def lshift(a, b): # real signature unknown; restored from __doc__ """ lshift(a, b) -- Same as a << b. """ pass def lt(a, b): # real signature unknown; restored from __doc__ """ lt(a, b) -- Same as a<b. """ pass def mod(a, b): # real signature unknown; restored from __doc__ """ mod(a, b) -- Same as a % b. """ pass def mul(a, b): # real signature unknown; restored from __doc__ """ mul(a, b) -- Same as a * b. """ pass def ne(a, b): # real signature unknown; restored from __doc__ """ ne(a, b) -- Same as a!=b. """ pass def neg(a): # real signature unknown; restored from __doc__ """ neg(a) -- Same as -a. """ pass def not_(a): # real signature unknown; restored from __doc__ """ not_(a) -- Same as not a. """ pass def or_(a, b): # real signature unknown; restored from __doc__ """ or_(a, b) -- Same as a | b. """ pass def pos(a): # real signature unknown; restored from __doc__ """ pos(a) -- Same as +a. """ pass def pow(a, b): # real signature unknown; restored from __doc__ """ pow(a, b) -- Same as a ** b. """ pass def rshift(a, b): # real signature unknown; restored from __doc__ """ rshift(a, b) -- Same as a >> b. """ pass def setitem(a, b, c): # real signature unknown; restored from __doc__ """ setitem(a, b, c) -- Same as a[b] = c. """ pass def sub(a, b): # real signature unknown; restored from __doc__ """ sub(a, b) -- Same as a - b. """ pass def truediv(a, b): # real signature unknown; restored from __doc__ """ truediv(a, b) -- Same as a / b. """ pass def truth(a): # real signature unknown; restored from __doc__ """ truth(a) -- Return True if a is true, False otherwise. """ pass def xor(a, b): # real signature unknown; restored from __doc__ """ xor(a, b) -- Same as a ^ b. """ pass def _compare_digest(*args, **kwargs): # real signature unknown """ compare_digest(a, b) -> bool Return 'a == b'. This function uses an approach designed to prevent timing analysis, making it appropriate for cryptography. a and b must both be of the same type: either str (ASCII only), or any type that supports the buffer protocol (e.g. bytes). Note: If a and b are of different lengths, or if an error occurs, a timing attack could theoretically reveal information about the types and lengths of a and b--but not their values. """ pass # classes from .object import object class attrgetter(object): """ attrgetter(attr, ...) --> attrgetter object Return a callable object that fetches the given attribute(s) from its operand. After f = attrgetter('name'), the call f(r) returns r.name. After g = attrgetter('name', 'date'), the call g(r) returns (r.name, r.date). After h = attrgetter('name.first', 'name.last'), the call h(r) returns (r.name.first, r.name.last). """ def __call__(self, *args, **kwargs): # real signature unknown """ Call self as a function. """ pass def __getattribute__(self, *args, **kwargs): # real signature unknown """ Return getattr(self, name). """ pass def __init__(self, attr, *more): # real signature unknown; restored from __doc__ pass @staticmethod # known case of __new__ def __new__(*args, **kwargs): # real signature unknown """ Create and return a new object. See help(type) for accurate signature. """ pass from .object import object class itemgetter(object): """ itemgetter(item, ...) --> itemgetter object Return a callable object that fetches the given item(s) from its operand. After f = itemgetter(2), the call f(r) returns r[2]. After g = itemgetter(2, 5, 3), the call g(r) returns (r[2], r[5], r[3]) """ def __call__(self, *args, **kwargs): # real signature unknown """ Call self as a function. """ pass def __getattribute__(self, *args, **kwargs): # real signature unknown """ Return getattr(self, name). """ pass def __init__(self, item, *more): # real signature unknown; restored from __doc__ pass @staticmethod # known case of __new__ def __new__(*args, **kwargs): # real signature unknown """ Create and return a new object. See help(type) for accurate signature. """ pass from .object import object class methodcaller(object): """ methodcaller(name, ...) --> methodcaller object Return a callable object that calls the given method on its operand. After f = methodcaller('name'), the call f(r) returns r.name(). After g = methodcaller('name', 'date', foo=1), the call g(r) returns r.name('date', foo=1). """ def __call__(self, *args, **kwargs): # real signature unknown """ Call self as a function. """ pass def __getattribute__(self, *args, **kwargs): # real signature unknown """ Return getattr(self, name). """ pass def __init__(self, name, *more): # real signature unknown; restored from __doc__ pass @staticmethod # known case of __new__ def __new__(*args, **kwargs): # real signature unknown """ Create and return a new object. See help(type) for accurate signature. """ pass from .object import object class __loader__(object): """ Meta path import for built-in modules. All methods are either class or static methods to avoid the need to instantiate the class. """ @classmethod def find_module(cls, *args, **kwargs): # real signature unknown """ Find the built-in module. If 'path' is ever specified then the search is considered a failure. This method is deprecated. Use find_spec() instead. """ pass @classmethod def find_spec(cls, *args, **kwargs): # real signature unknown pass @classmethod def get_code(cls, *args, **kwargs): # real signature unknown """ Return None as built-in modules do not have code objects. """ pass @classmethod def get_source(cls, *args, **kwargs): # real signature unknown """ Return None as built-in modules do not have source code. """ pass @classmethod def is_package(cls, *args, **kwargs): # real signature unknown """ Return False as built-in modules are never packages. """ pass @classmethod def load_module(cls, *args, **kwargs): # real signature unknown """ Load a built-in module. """ pass def module_repr(module): # reliably restored by inspect """ Return repr for the module. The method is deprecated. The import machinery does the job itself. """ pass def __init__(self, *args, **kwargs): # real signature unknown pass __weakref__ = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """list of weak references to the object (if defined)""" __dict__ = None # (!) real value is '' # variables with complex values __spec__ = None # (!) real value is ''
gpl-2.0
-966,062,011,599,680,600
29.809769
101
0.585982
false
ZhangAustin/deepy
deepy/layers/recurrent.py
3
6446
#!/usr/bin/env python # -*- coding: utf-8 -*- from . import NeuralLayer from deepy.utils import build_activation, FLOATX import numpy as np import theano import theano.tensor as T from collections import OrderedDict OUTPUT_TYPES = ["sequence", "one"] INPUT_TYPES = ["sequence", "one"] class RNN(NeuralLayer): """ Recurrent neural network layer. """ def __init__(self, hidden_size, input_type="sequence", output_type="sequence", vector_core=None, hidden_activation="tanh", hidden_init=None, input_init=None, steps=None, persistent_state=False, reset_state_for_input=None, batch_size=None, go_backwards=False, mask=None, second_input_size=None, second_input=None): super(RNN, self).__init__("rnn") self._hidden_size = hidden_size self.output_dim = self._hidden_size self._input_type = input_type self._output_type = output_type self._hidden_activation = hidden_activation self._hidden_init = hidden_init self._vector_core = vector_core self._input_init = input_init self.persistent_state = persistent_state self.reset_state_for_input = reset_state_for_input self.batch_size = batch_size self._steps = steps self._go_backwards = go_backwards self._mask = mask.dimshuffle((1,0)) if mask else None self._second_input_size = second_input_size self._second_input = second_input self._sequence_map = OrderedDict() if input_type not in INPUT_TYPES: raise Exception("Input type of RNN is wrong: %s" % input_type) if output_type not in OUTPUT_TYPES: raise Exception("Output type of RNN is wrong: %s" % output_type) if self.persistent_state and not self.batch_size: raise Exception("Batch size must be set for persistent state mode") if mask and input_type == "one": raise Exception("Mask only works with sequence input") def _hidden_preact(self, h): return T.dot(h, self.W_h) if not self._vector_core else h * self.W_h def step(self, *vars): # Parse sequence sequence_map = dict(zip(self._sequence_map.keys(), vars[:len(self._sequence_map)])) if self._input_type == "sequence": x = sequence_map["x"] h = vars[-1] # Reset part of the state on condition if self.reset_state_for_input != None: h = h * T.neq(x[:, self.reset_state_for_input], 1).dimshuffle(0, 'x') # RNN core step z = x + self._hidden_preact(h) + self.B_h else: h = vars[-1] z = self._hidden_preact(h) + self.B_h # Second input if "second_input" in sequence_map: z += sequence_map["second_input"] new_h = self._hidden_act(z) # Apply mask if "mask" in sequence_map: mask = sequence_map["mask"].dimshuffle(0, 'x') new_h = mask * new_h + (1 - mask) * h return new_h def produce_input_sequences(self, x, mask=None, second_input=None): self._sequence_map.clear() if self._input_type == "sequence": self._sequence_map["x"] = T.dot(x, self.W_i) # Mask if mask: # (batch) self._sequence_map["mask"] = mask elif self._mask: # (time, batch) self._sequence_map["mask"] = self._mask # Second input if second_input: self._sequence_map["second_input"] = T.dot(second_input, self.W_i2) elif self._second_input: self._sequence_map["second_input"] = T.dot(self._second_input, self.W_i2) return self._sequence_map.values() def produce_initial_states(self, x): h0 = T.alloc(np.cast[FLOATX](0.), x.shape[0], self._hidden_size) if self._input_type == "sequence": if self.persistent_state: h0 = self.state else: h0 = x return [h0] def output(self, x): if self._input_type == "sequence": # Move middle dimension to left-most position # (sequence, batch, value) sequences = self.produce_input_sequences(x.dimshuffle((1,0,2))) else: sequences = self.produce_input_sequences(None) step_outputs = self.produce_initial_states(x) hiddens, _ = theano.scan(self.step, sequences=sequences, outputs_info=step_outputs, n_steps=self._steps, go_backwards=self._go_backwards) # Save persistent state if self.persistent_state: self.register_updates((self.state, hiddens[-1])) if self._output_type == "one": return hiddens[-1] elif self._output_type == "sequence": return hiddens.dimshuffle((1,0,2)) def setup(self): if self._input_type == "one" and self.input_dim != self._hidden_size: raise Exception("For RNN receives one vector as input, " "the hidden size should be same as last output dimension.") self._setup_params() self._setup_functions() def _setup_functions(self): self._hidden_act = build_activation(self._hidden_activation) def _setup_params(self): if not self._vector_core: self.W_h = self.create_weight(self._hidden_size, self._hidden_size, suffix="h", initializer=self._hidden_init) else: self.W_h = self.create_bias(self._hidden_size, suffix="h") self.W_h.set_value(self.W_h.get_value() + self._vector_core) self.B_h = self.create_bias(self._hidden_size, suffix="h") self.register_parameters(self.W_h, self.B_h) if self.persistent_state: self.state = self.create_matrix(self.batch_size, self._hidden_size, "rnn_state") self.register_free_parameters(self.state) else: self.state = None if self._input_type == "sequence": self.W_i = self.create_weight(self.input_dim, self._hidden_size, suffix="i", initializer=self._input_init) self.register_parameters(self.W_i) if self._second_input_size: self.W_i2 = self.create_weight(self._second_input_size, self._hidden_size, suffix="i2", initializer=self._input_init) self.register_parameters(self.W_i2)
mit
2,185,468,890,153,826,000
40.057325
129
0.581601
false
ChristosChristofidis/twitter_nlp
python/chunk_tagger_stdin.py
9
2094
#!/usr/bin/python import sys import os import re import subprocess import time from signal import * #BASE_DIR = '/home/aritter/twitter_nlp' #BASE_DIR = os.environ['HOME'] + '/twitter_nlp' #BASE_DIR = '/homes/gws/aritter/twitter_nlp' BASE_DIR = 'twitter_nlp.jar' if os.environ.has_key('TWITTER_NLP'): BASE_DIR = os.environ['TWITTER_NLP'] sys.path.append('%s/python' % (BASE_DIR)) import chunking_features _MODEL_FP = ('%s/models/chunk/200Kptb_14Ktwit.model' % (BASE_DIR)) _CLUSTERS = '%s/data/brown_clusters/60K_clusters.txt' % (BASE_DIR) class ChunkTagger: def __init__(self): self.GetTagger() self.nTagged = 0 def GetTagger(self): self.tagger = subprocess.Popen('java -Xmx400m -cp %s/mallet-2.0.6/lib/mallet-deps.jar:%s/mallet-2.0.6/class cc.mallet.fst.SimpleTaggerStdin --model-file %s' % (BASE_DIR, BASE_DIR, _MODEL_FP), shell=True, stdin=subprocess.PIPE, stdout=subprocess.PIPE) def TagSentence(self, word_pos): #if self.nTagged % 1000 == 0: if self.nTagged % 500 == 0: self.tagger.stdin.close() self.tagger.stdout.close() #self.tagger.kill() os.kill(self.tagger.pid, SIGTERM) #Need to do this for python 2.4 self.tagger.wait() self.GetTagger() feat_list = [] for i in range(len(word_pos)): features = chunking_features.nltk_features(word_pos, i) features.extend(chunking_features.turian_features(word_pos, i)) feat_list.append(features) # Create string to feed into Mallet feat_list_str = [] for word_feats in feat_list: feat_list_str.append(' '.join(word_feats)) self.tagger.stdin.write(("\t".join(feat_list_str) + "\n").encode('utf8')) chunks = [] for i in range(len(feat_list)): chunks.append(self.tagger.stdout.readline().rstrip('\n').strip(' ')) self.nTagged += 1 return chunks
gpl-3.0
879,652,631,219,626,800
31.215385
199
0.579274
false
DennyZhang/devops_public
python/java_tool/java_analyze.py
3
6390
#!/usr/bin/python ##------------------------------------------------------------------- ## File : java_analyze.py ## Description : ## -- ## Created : <2017-01-25> ## Updated: Time-stamp: <2017-07-18 10:18:59> ##------------------------------------------------------------------- import sys, os import argparse import requests, json ################################################################################ # Common functions def analyze_gc_logfile(gc_logfile, apikey): print("Call rest api to parse gc log: http://www.gceasy.io.") headers = {'content-type': 'application/json', 'Accept-Charset': 'UTF-8'} url = "http://api.gceasy.io/analyzeGC?apiKey=%s" % (apikey) res = requests.post(url, data=open(gc_logfile, "r"), headers=headers) if res.status_code != 200: print("ERROR: http response is not 200 OK. status_code: %d. content: %s..." \ % (res.status_code, res.content[0:40])) return False content = res.content l = json.loads(content) print("graphURL: %s" % (l["graphURL"])) if '"isProblem":true' in content: print("ERROR: problem is found.") return False return True def analyze_jstack_logfile(jstack_logfile, apikey, min_runnable_percentage): print("Call rest api to parse java jstack log: http://www.fastthread.io.") headers = {'content-type': 'application/json', 'Accept-Charset': 'UTF-8'} url = "http://api.fastthread.io/fastthread-api?apiKey=%s" % (apikey) res = requests.post(url, data=open(jstack_logfile, "r"), headers=headers) if res.status_code != 200: print("ERROR: http response is not 200 OK. status_code: %d. content: %s..." \ % (res.status_code, res.content[0:40])) return False content = res.content l = json.loads(content) threadstate = l["threadDumpReport"][0]["threadState"] threadcount_runnable = int(threadstate[0]["threadCount"]) threadcount_waiting = int(threadstate[1]["threadCount"]) threadcount_timed_waiting = int(threadstate[2]["threadCount"]) threadcount_blocked = int(threadstate[3]["threadCount"]) print("%d threads in RUNNABLE, %d in WAITING, %d in TIMED_WAITING, %d in BLOCKED." \ % (threadcount_runnable, threadcount_waiting, threadcount_timed_waiting, threadcount_blocked)) print("graphURL: %s" % (l["graphURL"])) threadcount_total = threadcount_runnable + threadcount_waiting + \ threadcount_timed_waiting + threadcount_blocked if (float(threadcount_runnable)/threadcount_total) < min_runnable_percentage: print("ERROR: only %s threads are in RUNNABLE state. Less than %s." % \ ("{0:.2f}%".format(float(threadcount_runnable)*100/threadcount_total), \ "{0:.2f}%".format(min_runnable_percentage*100))) return False return True ################################################################################ ## Generate gc log: start java program with -Xloggc enabled ## Generate java jstack log: jstack -l $java_pid ## ## Sample: Run with environment variables. ## ## # analyze gc logfile: ## export JAVA_ANALYZE_ACTION="analyze_gc_logfile" ## export JAVA_ANALYZE_LOGFILE="/tmp/gc.log" ## export JAVA_ANALYZE_APIKEY="29792f0d-5d5f-43ad-9358..." ## curl -L https://raw.githubusercontent.com/.../java_analyze.py | bash ## ## # analyze jstack logfile: ## export JAVA_ANALYZE_ACTION="analyze_jstack_logfile" ## export JAVA_ANALYZE_LOGFILE="/tmp/jstack.log" ## export JAVA_ANALYZE_APIKEY="29792f0d-5d5f-43ad-9358..." ## curl -L https://raw.githubusercontent.com/.../java_analyze.py | bash ## ## Sample: Run with argument parameters. ## python ./java_analyze.py --action analyze_gc_logfile \\ ## --logfile /tmp/gc.log --apikey "29792f0d..." ## python ./java_analyze.py --action analyze_jstack_logfile \ ## --logfile /tmp/jstack.log --apikey "29792f0d..." ## if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--action', default='', required=False, \ help="Supported action: analyze_gc_logfile or analyze_jstack_logfile", \ type=str) parser.add_argument('--logfile', default='', required=False, \ help="Critical log file to parse", type=str) parser.add_argument('--apikey', default='', required=False, \ help="API key to call gceasy.io and fastthread.io", \ type=str) parser.add_argument('--minrunnable', default=0.40, required=False, \ help="If too many threads are not in RUNNABLE state, we raise alerts", \ type=float) l = parser.parse_args() action = l.action logfile = l.logfile apikey = l.apikey # Get parameters via environment variables, if missing if action == "" or action is None: action = os.environ.get('JAVA_ANALYZE_ACTION') if logfile == "" or logfile is None: logfile = os.environ.get('JAVA_ANALYZE_LOGFILE') if apikey == "" or apikey is None: apikey = os.environ.get('JAVA_ANALYZE_APIKEY') # input parameters check if action == "" or action is None: print("ERROR: mandatory parameter of action is not given.") sys.exit(1) if logfile == "" or logfile is None: print("ERROR: mandatory parameter of logfile is not given.") sys.exit(1) if apikey == "" or apikey is None: print("ERROR: mandatory parameter of apikey is not given.") sys.exit(1) ############################################################################ # main logic if action == "analyze_gc_logfile": if analyze_gc_logfile(logfile, apikey) is False: print("ERROR: problems are detected in gc log(%s)." % (logfile)) sys.exit(1) else: print("OK: no problem found when parsing gc log(%s)." % (logfile)) elif action == "analyze_jstack_logfile": if analyze_jstack_logfile(logfile, apikey, l.minrunnable) is False: print("ERROR: problems are detected in jstack log(%s)." % (logfile)) sys.exit(1) else: print("OK: no problem found when parsing jstack log(%s)." % (logfile)) else: print("ERROR: not supported action(%s)." % (action)) sys.exit(1) ## File : java_analyze.py ends
mit
-6,139,812,882,418,273,000
42.175676
104
0.586228
false
tcpcloud/openvstorage
ovs/extensions/storage/volatile/dummystore.py
1
3090
# Copyright 2014 Open vStorage NV # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Dummy volatile module """ import time import json class DummyVolatileStore(object): """ This is a dummy volatile store that makes use of a local json file """ _path = '/run/dummyvolatile.json' _storage = {} _timeout = {} @staticmethod def clean(): """ Empties the store """ import os try: os.remove(DummyVolatileStore._path) except OSError: pass def _read(self): """ Reads the local json file """ try: f = open(self._path, 'r') data = json.loads(f.read()) f.close() except IOError: data = {'t': {}, 's': {}} return data def get(self, key, default=None): """ Retrieves a certain value for a given key """ data = self._read() if key in data['t'] and data['t'][key] > time.time(): value = data['s'].get(key) if 'ovs_primarykeys_' in key: value[0] = set(value[0]) return value return default def set(self, key, value, timeout=99999999): """ Sets the value for a key to a given value """ if 'ovs_primarykeys_' in key: value[0] = list(value[0]) data = self._read() data['s'][key] = value data['t'][key] = time.time() + timeout self._save(data) def add(self, key, value, timeout=99999999): """ Adds a given key to the store, expecting the key does not exists yet """ data = self._read() if key not in data['s']: self.set(key, value, timeout) return True else: return False def delete(self, key): """ Deletes a given key from the store """ data = self._read() if key in data['s']: del data['s'][key] del data['t'][key] self._save(data) def incr(self, key, delta=1): """ Increments the value of the key, expecting it exists """ data = self._read() if key in data['s']: data['s'][key] += delta self._save(data) return True return False def _save(self, data): """ Saves the local json file """ rawdata = json.dumps(data, sort_keys=True, indent=2) f = open(self._path, 'w+') f.write(rawdata) f.close()
apache-2.0
2,469,989,809,427,970,600
25.637931
76
0.530744
false
dchaplinsky/declarations.com.ua
declarations_site/spotter/management/commands/runsearchtasks.py
1
2812
import logging from time import time from threading import Lock, get_ident from concurrent.futures import ThreadPoolExecutor from django.core.management.base import BaseCommand from spotter.models import SearchTask from spotter.utils import do_search, create_report, create_notify logger = logging.getLogger(__name__) class DummyLock(object): """Dummy lock object for single thread mode""" def acquire(self): pass def release(self): pass class Command(BaseCommand): help = 'Run registered search tasks and send notifications' def add_arguments(self, parser): parser.add_argument( '--concurrency', action='store', dest='concurrency', type=int, default=0, help='Run concurrently in N threads', ) def handle(self, *args, **options): if 'verbosity' in options: verbosity = int(options['verbosity']) levels = (logging.ERROR, logging.WARNING, logging.INFO, logging.DEBUG) logging.basicConfig(format='%(message)s', level=levels[verbosity]) concurrency = int(options.get('concurrency', 0)) self.lock = Lock() if concurrency else DummyLock() self.counters = {'success': 0, 'failed': 0, 'emails': 0} start_time = time() query = SearchTask.objects.filter(is_enabled=True, is_deleted=False, user__is_active=True) if concurrency: with ThreadPoolExecutor(max_workers=concurrency) as executor: executor.map(self.run_search_task, query) else: for task in query: self.run_search_task(task) self.counters['worktime'] = int(time() - start_time) logger.info("Total {success} success {failed} failed {emails} emails sent in {worktime} sec." .format(**self.counters)) def inc_counter(self, counter_name): self.lock.acquire() try: self.counters[counter_name] += 1 finally: self.lock.release() def run_search_task(self, task): try: thread_id = get_ident() logger.info("Thread-%d Process %s %s", thread_id, task.user, task.query) search = do_search(task) report = create_report(task, search) logger.info("Thread-%d Found %d new %d", thread_id, report.found_total, report.found_new) if report.found_new: notify = create_notify(task, report) logger.info("Thread-%d Send notify %s %s", thread_id, notify.email, notify.error) self.inc_counter('emails') self.inc_counter('success') except Exception as e: logger.exception("Thread-%d run_search_task(%d) %s", thread_id, task.id, str(e)) self.inc_counter('failed')
mit
-3,874,970,097,778,877,400
34.594937
101
0.610242
false
nyalldawson/QGIS
tests/src/python/test_qgsprojectbadlayers.py
15
15588
# -*- coding: utf-8 -*- """QGIS Unit tests for QgsProject bad layers handling. .. note:: This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. """ from builtins import chr from builtins import range __author__ = 'Alessandro Pasotti' __date__ = '20/10/2018' __copyright__ = 'Copyright 2018, The QGIS Project' import os import filecmp import qgis # NOQA from qgis.core import (QgsProject, QgsVectorLayer, QgsCoordinateTransform, QgsMapSettings, QgsRasterLayer, QgsMapLayer, QgsRectangle, QgsDataProvider, QgsReadWriteContext, QgsCoordinateReferenceSystem, ) from qgis.gui import (QgsLayerTreeMapCanvasBridge, QgsMapCanvas) from qgis.PyQt.QtGui import QFont, QColor from qgis.PyQt.QtTest import QSignalSpy from qgis.PyQt.QtCore import QT_VERSION_STR, QTemporaryDir, QSize from qgis.PyQt.QtXml import QDomDocument, QDomNode from qgis.testing import start_app, unittest from utilities import (unitTestDataPath, renderMapToImage) from shutil import copyfile app = start_app() TEST_DATA_DIR = unitTestDataPath() class TestQgsProjectBadLayers(unittest.TestCase): def setUp(self): p = QgsProject.instance() p.removeAllMapLayers() @classmethod def getBaseMapSettings(cls): """ :rtype: QgsMapSettings """ ms = QgsMapSettings() crs = QgsCoordinateReferenceSystem('epsg:4326') ms.setBackgroundColor(QColor(152, 219, 249)) ms.setOutputSize(QSize(420, 280)) ms.setOutputDpi(72) ms.setFlag(QgsMapSettings.Antialiasing, True) ms.setFlag(QgsMapSettings.UseAdvancedEffects, False) ms.setFlag(QgsMapSettings.ForceVectorOutput, False) # no caching? ms.setDestinationCrs(crs) return ms def _change_data_source(self, layer, datasource, provider_key): """Due to the fact that a project r/w context is not available inside the map layers classes, the original style and subset string restore happens in app, this function replicates app behavior""" options = QgsDataProvider.ProviderOptions() subset_string = '' if not layer.isValid(): try: subset_string = layer.dataProvider().subsetString() except: pass layer.setDataSource(datasource, layer.name(), provider_key, options) if subset_string: layer.setSubsetString(subset_string) self.assertTrue(layer.originalXmlProperties(), layer.name()) context = QgsReadWriteContext() context.setPathResolver(QgsProject.instance().pathResolver()) errorMsg = '' doc = QDomDocument() self.assertTrue(doc.setContent(layer.originalXmlProperties())) layer_node = QDomNode(doc.firstChild()) self.assertTrue(layer.readSymbology(layer_node, errorMsg, context)) def test_project_roundtrip(self): """Tests that a project with bad layers can be saved and restored""" p = QgsProject.instance() temp_dir = QTemporaryDir() for ext in ('shp', 'dbf', 'shx', 'prj'): copyfile(os.path.join(TEST_DATA_DIR, 'lines.%s' % ext), os.path.join(temp_dir.path(), 'lines.%s' % ext)) copyfile(os.path.join(TEST_DATA_DIR, 'raster', 'band1_byte_ct_epsg4326.tif'), os.path.join(temp_dir.path(), 'band1_byte_ct_epsg4326.tif')) copyfile(os.path.join(TEST_DATA_DIR, 'raster', 'band1_byte_ct_epsg4326.tif'), os.path.join(temp_dir.path(), 'band1_byte_ct_epsg4326_copy.tif')) l = QgsVectorLayer(os.path.join(temp_dir.path(), 'lines.shp'), 'lines', 'ogr') self.assertTrue(l.isValid()) rl = QgsRasterLayer(os.path.join(temp_dir.path(), 'band1_byte_ct_epsg4326.tif'), 'raster', 'gdal') self.assertTrue(rl.isValid()) rl_copy = QgsRasterLayer(os.path.join(temp_dir.path(), 'band1_byte_ct_epsg4326_copy.tif'), 'raster_copy', 'gdal') self.assertTrue(rl_copy.isValid()) self.assertTrue(p.addMapLayers([l, rl, rl_copy])) # Save project project_path = os.path.join(temp_dir.path(), 'project.qgs') self.assertTrue(p.write(project_path)) # Re-load the project, checking for the XML properties p.removeAllMapLayers() self.assertTrue(p.read(project_path)) vector = list(p.mapLayersByName('lines'))[0] raster = list(p.mapLayersByName('raster'))[0] raster_copy = list(p.mapLayersByName('raster_copy'))[0] self.assertTrue(vector.originalXmlProperties() != '') self.assertTrue(raster.originalXmlProperties() != '') self.assertTrue(raster_copy.originalXmlProperties() != '') # Test setter raster.setOriginalXmlProperties('pippo') self.assertEqual(raster.originalXmlProperties(), 'pippo') # Now create and invalid project: bad_project_path = os.path.join(temp_dir.path(), 'project_bad.qgs') with open(project_path, 'r') as infile: with open(bad_project_path, 'w+') as outfile: outfile.write(infile.read().replace('./lines.shp', './lines-BAD_SOURCE.shp').replace('band1_byte_ct_epsg4326_copy.tif', 'band1_byte_ct_epsg4326_copy-BAD_SOURCE.tif')) # Load the bad project p.removeAllMapLayers() self.assertTrue(p.read(bad_project_path)) # Check layer is invalid vector = list(p.mapLayersByName('lines'))[0] raster = list(p.mapLayersByName('raster'))[0] raster_copy = list(p.mapLayersByName('raster_copy'))[0] self.assertIsNotNone(vector.dataProvider()) self.assertIsNotNone(raster.dataProvider()) self.assertIsNotNone(raster_copy.dataProvider()) self.assertFalse(vector.isValid()) self.assertFalse(raster_copy.isValid()) # Try a getFeatures self.assertEqual([f for f in vector.getFeatures()], []) self.assertTrue(raster.isValid()) self.assertEqual(vector.providerType(), 'ogr') # Save the project bad_project_path2 = os.path.join(temp_dir.path(), 'project_bad2.qgs') p.write(bad_project_path2) # Re-save the project, with fixed paths good_project_path = os.path.join(temp_dir.path(), 'project_good.qgs') with open(bad_project_path2, 'r') as infile: with open(good_project_path, 'w+') as outfile: outfile.write(infile.read().replace('./lines-BAD_SOURCE.shp', './lines.shp').replace('band1_byte_ct_epsg4326_copy-BAD_SOURCE.tif', 'band1_byte_ct_epsg4326_copy.tif')) # Load the good project p.removeAllMapLayers() self.assertTrue(p.read(good_project_path)) # Check layer is valid vector = list(p.mapLayersByName('lines'))[0] raster = list(p.mapLayersByName('raster'))[0] raster_copy = list(p.mapLayersByName('raster_copy'))[0] self.assertTrue(vector.isValid()) self.assertTrue(raster.isValid()) self.assertTrue(raster_copy.isValid()) def test_project_relations(self): """Tests that a project with bad layers and relations can be saved with relations""" temp_dir = QTemporaryDir() p = QgsProject.instance() for ext in ('qgs', 'gpkg'): copyfile(os.path.join(TEST_DATA_DIR, 'projects', 'relation_reference_test.%s' % ext), os.path.join(temp_dir.path(), 'relation_reference_test.%s' % ext)) # Load the good project project_path = os.path.join(temp_dir.path(), 'relation_reference_test.qgs') p.removeAllMapLayers() self.assertTrue(p.read(project_path)) point_a = list(p.mapLayersByName('point_a'))[0] point_b = list(p.mapLayersByName('point_b'))[0] point_a_source = point_a.publicSource() point_b_source = point_b.publicSource() self.assertTrue(point_a.isValid()) self.assertTrue(point_b.isValid()) # Check relations def _check_relations(): relation = list(p.relationManager().relations().values())[0] self.assertTrue(relation.isValid()) self.assertEqual(relation.referencedLayer().id(), point_b.id()) self.assertEqual(relation.referencingLayer().id(), point_a.id()) _check_relations() # Now build a bad project bad_project_path = os.path.join(temp_dir.path(), 'relation_reference_test_bad.qgs') with open(project_path, 'r') as infile: with open(bad_project_path, 'w+') as outfile: outfile.write(infile.read().replace('./relation_reference_test.gpkg', './relation_reference_test-BAD_SOURCE.gpkg')) # Load the bad project p.removeAllMapLayers() self.assertTrue(p.read(bad_project_path)) point_a = list(p.mapLayersByName('point_a'))[0] point_b = list(p.mapLayersByName('point_b'))[0] self.assertFalse(point_a.isValid()) self.assertFalse(point_b.isValid()) # This fails because relations are not valid anymore with self.assertRaises(AssertionError): _check_relations() # Changing data source, relations should be restored: point_a.setDataSource(point_a_source, 'point_a', 'ogr') point_b.setDataSource(point_b_source, 'point_b', 'ogr') self.assertTrue(point_a.isValid()) self.assertTrue(point_b.isValid()) # Check if relations were restored _check_relations() # Reload the bad project p.removeAllMapLayers() self.assertTrue(p.read(bad_project_path)) point_a = list(p.mapLayersByName('point_a'))[0] point_b = list(p.mapLayersByName('point_b'))[0] self.assertFalse(point_a.isValid()) self.assertFalse(point_b.isValid()) # This fails because relations are not valid anymore with self.assertRaises(AssertionError): _check_relations() # Save the bad project bad_project_path2 = os.path.join(temp_dir.path(), 'relation_reference_test_bad2.qgs') p.write(bad_project_path2) # Now fix the bad project bad_project_path_fixed = os.path.join(temp_dir.path(), 'relation_reference_test_bad_fixed.qgs') with open(bad_project_path2, 'r') as infile: with open(bad_project_path_fixed, 'w+') as outfile: outfile.write(infile.read().replace('./relation_reference_test-BAD_SOURCE.gpkg', './relation_reference_test.gpkg')) # Load the fixed project p.removeAllMapLayers() self.assertTrue(p.read(bad_project_path_fixed)) point_a = list(p.mapLayersByName('point_a'))[0] point_b = list(p.mapLayersByName('point_b'))[0] point_a_source = point_a.publicSource() point_b_source = point_b.publicSource() self.assertTrue(point_a.isValid()) self.assertTrue(point_b.isValid()) _check_relations() def testStyles(self): """Test that styles for rasters and vectors are kept when setDataSource is called""" temp_dir = QTemporaryDir() p = QgsProject.instance() for f in ( 'bad_layer_raster_test.tfw', 'bad_layer_raster_test.tiff', 'bad_layer_raster_test.tiff.aux.xml', 'bad_layers_test.gpkg', 'good_layers_test.qgs'): copyfile(os.path.join(TEST_DATA_DIR, 'projects', f), os.path.join(temp_dir.path(), f)) project_path = os.path.join(temp_dir.path(), 'good_layers_test.qgs') p = QgsProject().instance() p.removeAllMapLayers() self.assertTrue(p.read(project_path)) self.assertEqual(p.count(), 4) ms = self.getBaseMapSettings() point_a_copy = list(p.mapLayersByName('point_a copy'))[0] point_a = list(p.mapLayersByName('point_a'))[0] point_b = list(p.mapLayersByName('point_b'))[0] raster = list(p.mapLayersByName('bad_layer_raster_test'))[0] self.assertTrue(point_a_copy.isValid()) self.assertTrue(point_a.isValid()) self.assertTrue(point_b.isValid()) self.assertTrue(raster.isValid()) ms.setExtent(QgsRectangle(2.81861, 41.98138, 2.81952, 41.9816)) ms.setLayers([point_a_copy, point_a, point_b, raster]) image = renderMapToImage(ms) self.assertTrue(image.save(os.path.join(temp_dir.path(), 'expected.png'), 'PNG')) point_a_source = point_a.publicSource() point_b_source = point_b.publicSource() raster_source = raster.publicSource() self._change_data_source(point_a, point_a_source, 'ogr') # Attention: we are not passing the subset string here: self._change_data_source(point_a_copy, point_a_source, 'ogr') self._change_data_source(point_b, point_b_source, 'ogr') self._change_data_source(raster, raster_source, 'gdal') self.assertTrue(image.save(os.path.join(temp_dir.path(), 'actual.png'), 'PNG')) self.assertTrue(filecmp.cmp(os.path.join(temp_dir.path(), 'actual.png'), os.path.join(temp_dir.path(), 'expected.png')), False) # Now build a bad project p.removeAllMapLayers() bad_project_path = os.path.join(temp_dir.path(), 'bad_layers_test.qgs') with open(project_path, 'r') as infile: with open(bad_project_path, 'w+') as outfile: outfile.write(infile.read().replace('./bad_layers_test.', './bad_layers_test-BAD_SOURCE.').replace('bad_layer_raster_test.tiff', 'bad_layer_raster_test-BAD_SOURCE.tiff')) p.removeAllMapLayers() self.assertTrue(p.read(bad_project_path)) self.assertEqual(p.count(), 4) point_a_copy = list(p.mapLayersByName('point_a copy'))[0] point_a = list(p.mapLayersByName('point_a'))[0] point_b = list(p.mapLayersByName('point_b'))[0] raster = list(p.mapLayersByName('bad_layer_raster_test'))[0] self.assertFalse(point_a.isValid()) self.assertFalse(point_a_copy.isValid()) self.assertFalse(point_b.isValid()) self.assertFalse(raster.isValid()) ms.setLayers([point_a_copy, point_a, point_b, raster]) image = renderMapToImage(ms) self.assertTrue(image.save(os.path.join(temp_dir.path(), 'bad.png'), 'PNG')) self.assertFalse(filecmp.cmp(os.path.join(temp_dir.path(), 'bad.png'), os.path.join(temp_dir.path(), 'expected.png')), False) self._change_data_source(point_a, point_a_source, 'ogr') # We are not passing the subset string!! self._change_data_source(point_a_copy, point_a_source, 'ogr') self._change_data_source(point_b, point_b_source, 'ogr') self._change_data_source(raster, raster_source, 'gdal') self.assertTrue(point_a.isValid()) self.assertTrue(point_a_copy.isValid()) self.assertTrue(point_b.isValid()) self.assertTrue(raster.isValid()) ms.setLayers([point_a_copy, point_a, point_b, raster]) image = renderMapToImage(ms) self.assertTrue(image.save(os.path.join(temp_dir.path(), 'actual_fixed.png'), 'PNG')) self.assertTrue(filecmp.cmp(os.path.join(temp_dir.path(), 'actual_fixed.png'), os.path.join(temp_dir.path(), 'expected.png')), False) if __name__ == '__main__': unittest.main()
gpl-2.0
3,818,613,502,525,002,000
43.664756
186
0.629779
false
TNT-Samuel/Coding-Projects
DNS Server/Source - Copy/Lib/site-packages/dask/array/tests/test_array_core.py
2
110011
from __future__ import absolute_import, division, print_function import copy import pytest np = pytest.importorskip('numpy') import os import sys import time from distutils.version import LooseVersion import operator from operator import add, sub, getitem from threading import Lock import warnings from toolz import merge, countby, concat from toolz.curried import identity import dask import dask.array as da from dask.base import tokenize, compute_as_if_collection from dask.delayed import Delayed, delayed from dask.utils import ignoring, tmpfile, tmpdir, key_split from dask.utils_test import inc, dec from dask.array import chunk from dask.array.core import (getem, getter, top, dotmany, concatenate3, broadcast_dimensions, Array, stack, concatenate, from_array, elemwise, broadcast_shapes, broadcast_to, blockdims_from_blockshape, store, optimize, from_func, normalize_chunks, broadcast_chunks, atop, from_delayed, concatenate_axes, common_blockdim) from dask.array.utils import assert_eq, same_keys # temporary until numpy functions migrated try: from numpy import nancumsum, nancumprod except ImportError: # pragma: no cover import dask.array.numpy_compat as npcompat nancumsum = npcompat.nancumsum nancumprod = npcompat.nancumprod def test_getem(): sol = {('X', 0, 0): (getter, 'X', (slice(0, 2), slice(0, 3))), ('X', 1, 0): (getter, 'X', (slice(2, 4), slice(0, 3))), ('X', 1, 1): (getter, 'X', (slice(2, 4), slice(3, 6))), ('X', 0, 1): (getter, 'X', (slice(0, 2), slice(3, 6)))} assert getem('X', (2, 3), shape=(4, 6)) == sol def test_top(): assert top(inc, 'z', 'ij', 'x', 'ij', numblocks={'x': (2, 2)}) == \ {('z', 0, 0): (inc, ('x', 0, 0)), ('z', 0, 1): (inc, ('x', 0, 1)), ('z', 1, 0): (inc, ('x', 1, 0)), ('z', 1, 1): (inc, ('x', 1, 1))} assert top(add, 'z', 'ij', 'x', 'ij', 'y', 'ij', numblocks={'x': (2, 2), 'y': (2, 2)}) == \ {('z', 0, 0): (add, ('x', 0, 0), ('y', 0, 0)), ('z', 0, 1): (add, ('x', 0, 1), ('y', 0, 1)), ('z', 1, 0): (add, ('x', 1, 0), ('y', 1, 0)), ('z', 1, 1): (add, ('x', 1, 1), ('y', 1, 1))} assert top(dotmany, 'z', 'ik', 'x', 'ij', 'y', 'jk', numblocks={'x': (2, 2), 'y': (2, 2)}) == \ {('z', 0, 0): (dotmany, [('x', 0, 0), ('x', 0, 1)], [('y', 0, 0), ('y', 1, 0)]), ('z', 0, 1): (dotmany, [('x', 0, 0), ('x', 0, 1)], [('y', 0, 1), ('y', 1, 1)]), ('z', 1, 0): (dotmany, [('x', 1, 0), ('x', 1, 1)], [('y', 0, 0), ('y', 1, 0)]), ('z', 1, 1): (dotmany, [('x', 1, 0), ('x', 1, 1)], [('y', 0, 1), ('y', 1, 1)])} assert top(identity, 'z', '', 'x', 'ij', numblocks={'x': (2, 2)}) ==\ {('z',): (identity, [[('x', 0, 0), ('x', 0, 1)], [('x', 1, 0), ('x', 1, 1)]])} def test_top_supports_broadcasting_rules(): assert top(add, 'z', 'ij', 'x', 'ij', 'y', 'ij', numblocks={'x': (1, 2), 'y': (2, 1)}) == \ {('z', 0, 0): (add, ('x', 0, 0), ('y', 0, 0)), ('z', 0, 1): (add, ('x', 0, 1), ('y', 0, 0)), ('z', 1, 0): (add, ('x', 0, 0), ('y', 1, 0)), ('z', 1, 1): (add, ('x', 0, 1), ('y', 1, 0))} def test_top_literals(): assert top(add, 'z', 'ij', 'x', 'ij', 123, None, numblocks={'x': (2, 2)}) == \ {('z', 0, 0): (add, ('x', 0, 0), 123), ('z', 0, 1): (add, ('x', 0, 1), 123), ('z', 1, 0): (add, ('x', 1, 0), 123), ('z', 1, 1): (add, ('x', 1, 1), 123)} def test_atop_literals(): x = da.ones((10, 10), chunks=(5, 5)) z = atop(add, 'ij', x, 'ij', 100, None, dtype=x.dtype) assert_eq(z, x + 100) z = atop(lambda x, y, z: x * y + z, 'ij', 2, None, x, 'ij', 100, None, dtype=x.dtype) assert_eq(z, 2 * x + 100) z = atop(getitem, 'ij', x, 'ij', slice(None), None, dtype=x.dtype) assert_eq(z, x) def test_concatenate3_on_scalars(): assert_eq(concatenate3([1, 2]), np.array([1, 2])) def test_chunked_dot_product(): x = np.arange(400).reshape((20, 20)) o = np.ones((20, 20)) d = {'x': x, 'o': o} getx = getem('x', (5, 5), shape=(20, 20)) geto = getem('o', (5, 5), shape=(20, 20)) result = top(dotmany, 'out', 'ik', 'x', 'ij', 'o', 'jk', numblocks={'x': (4, 4), 'o': (4, 4)}) dsk = merge(d, getx, geto, result) out = dask.get(dsk, [[('out', i, j) for j in range(4)] for i in range(4)]) assert_eq(np.dot(x, o), concatenate3(out)) def test_chunked_transpose_plus_one(): x = np.arange(400).reshape((20, 20)) d = {'x': x} getx = getem('x', (5, 5), shape=(20, 20)) f = lambda x: x.T + 1 comp = top(f, 'out', 'ij', 'x', 'ji', numblocks={'x': (4, 4)}) dsk = merge(d, getx, comp) out = dask.get(dsk, [[('out', i, j) for j in range(4)] for i in range(4)]) assert_eq(concatenate3(out), x.T + 1) def test_broadcast_dimensions_works_with_singleton_dimensions(): argpairs = [('x', 'i')] numblocks = {'x': ((1,),)} assert broadcast_dimensions(argpairs, numblocks) == {'i': (1,)} def test_broadcast_dimensions(): argpairs = [('x', 'ij'), ('y', 'ij')] d = {'x': ('Hello', 1), 'y': (1, (2, 3))} assert broadcast_dimensions(argpairs, d) == {'i': 'Hello', 'j': (2, 3)} def test_Array(): shape = (1000, 1000) chunks = (100, 100) name = 'x' dsk = merge({name: 'some-array'}, getem(name, chunks, shape=shape)) a = Array(dsk, name, chunks, shape=shape, dtype='f8') assert a.numblocks == (10, 10) assert a.__dask_keys__() == [[('x', i, j) for j in range(10)] for i in range(10)] assert a.chunks == ((100,) * 10, (100,) * 10) assert a.shape == shape assert len(a) == shape[0] def test_uneven_chunks(): a = Array({}, 'x', chunks=(3, 3), shape=(10, 10), dtype='f8') assert a.chunks == ((3, 3, 3, 1), (3, 3, 3, 1)) def test_numblocks_suppoorts_singleton_block_dims(): shape = (100, 10) chunks = (10, 10) name = 'x' dsk = merge({name: 'some-array'}, getem(name, shape=shape, chunks=chunks)) a = Array(dsk, name, chunks, shape=shape, dtype='f8') assert set(concat(a.__dask_keys__())) == {('x', i, 0) for i in range(10)} def test_keys(): dsk = dict((('x', i, j), ()) for i in range(5) for j in range(6)) dx = Array(dsk, 'x', chunks=(10, 10), shape=(50, 60), dtype='f8') assert dx.__dask_keys__() == [[(dx.name, i, j) for j in range(6)] for i in range(5)] # Cache works assert dx.__dask_keys__() is dx.__dask_keys__() # Test mutating names clears key cache dx.dask = {('y', i, j): () for i in range(5) for j in range(6)} dx.name = 'y' assert dx.__dask_keys__() == [[(dx.name, i, j) for j in range(6)] for i in range(5)] d = Array({}, 'x', (), shape=(), dtype='f8') assert d.__dask_keys__() == [('x',)] def test_Array_computation(): a = Array({('x', 0, 0): np.eye(3)}, 'x', shape=(3, 3), chunks=(3, 3), dtype='f8') assert_eq(np.array(a), np.eye(3)) assert isinstance(a.compute(), np.ndarray) assert float(a[0, 0]) == 1 @pytest.mark.skipif(LooseVersion(np.__version__) < '1.14.0', reason="NumPy doesn't have `np.linalg._umath_linalg` yet") @pytest.mark.xfail(reason="Protect from `np.linalg._umath_linalg.inv` breaking") def test_Array_numpy_gufunc_call__array_ufunc__01(): x = da.random.normal(size=(3, 10, 10), chunks=(2, 10, 10)) nx = x.compute() ny = np.linalg._umath_linalg.inv(nx) y = np.linalg._umath_linalg.inv(x, output_dtypes=float) vy = y.compute() assert_eq(ny, vy) @pytest.mark.skipif(LooseVersion(np.__version__) < '1.14.0', reason="NumPy doesn't have `np.linalg._umath_linalg` yet") @pytest.mark.xfail(reason="Protect from `np.linalg._umath_linalg.eig` breaking") def test_Array_numpy_gufunc_call__array_ufunc__02(): x = da.random.normal(size=(3, 10, 10), chunks=(2, 10, 10)) nx = x.compute() nw, nv = np.linalg._umath_linalg.eig(nx) w, v = np.linalg._umath_linalg.eig(x, output_dtypes=(float, float)) vw = w.compute() vv = v.compute() assert_eq(nw, vw) assert_eq(nv, vv) def test_stack(): a, b, c = [Array(getem(name, chunks=(2, 3), shape=(4, 6)), name, chunks=(2, 3), dtype='f8', shape=(4, 6)) for name in 'ABC'] s = stack([a, b, c], axis=0) colon = slice(None, None, None) assert s.shape == (3, 4, 6) assert s.chunks == ((1, 1, 1), (2, 2), (3, 3)) assert s.chunksize == (1, 2, 3) assert s.dask[(s.name, 0, 1, 0)] == (getitem, ('A', 1, 0), (None, colon, colon)) assert s.dask[(s.name, 2, 1, 0)] == (getitem, ('C', 1, 0), (None, colon, colon)) assert same_keys(s, stack([a, b, c], axis=0)) s2 = stack([a, b, c], axis=1) assert s2.shape == (4, 3, 6) assert s2.chunks == ((2, 2), (1, 1, 1), (3, 3)) assert s2.chunksize == (2, 1, 3) assert s2.dask[(s2.name, 0, 1, 0)] == (getitem, ('B', 0, 0), (colon, None, colon)) assert s2.dask[(s2.name, 1, 1, 0)] == (getitem, ('B', 1, 0), (colon, None, colon)) assert same_keys(s2, stack([a, b, c], axis=1)) s2 = stack([a, b, c], axis=2) assert s2.shape == (4, 6, 3) assert s2.chunks == ((2, 2), (3, 3), (1, 1, 1)) assert s2.chunksize == (2, 3, 1) assert s2.dask[(s2.name, 0, 1, 0)] == (getitem, ('A', 0, 1), (colon, colon, None)) assert s2.dask[(s2.name, 1, 1, 2)] == (getitem, ('C', 1, 1), (colon, colon, None)) assert same_keys(s2, stack([a, b, c], axis=2)) pytest.raises(ValueError, lambda: stack([a, b, c], axis=3)) assert set(b.dask.keys()).issubset(s2.dask.keys()) assert stack([a, b, c], axis=-1).chunks == stack([a, b, c], axis=2).chunks def test_short_stack(): x = np.array([1]) d = da.from_array(x, chunks=(1,)) s = da.stack([d]) assert s.shape == (1, 1) chunks = compute_as_if_collection(Array, s.dask, s.__dask_keys__()) assert chunks[0][0].shape == (1, 1) def test_stack_scalars(): d = da.arange(4, chunks=2) s = da.stack([d.mean(), d.sum()]) assert s.compute().tolist() == [np.arange(4).mean(), np.arange(4).sum()] def test_stack_promote_type(): i = np.arange(10, dtype='i4') f = np.arange(10, dtype='f4') di = da.from_array(i, chunks=5) df = da.from_array(f, chunks=5) res = da.stack([di, df]) assert_eq(res, np.stack([i, f])) def test_stack_rechunk(): x = da.random.random(10, chunks=5) y = da.random.random(10, chunks=4) z = da.stack([x, y], axis=0) assert z.shape == (2, 10) assert z.chunks == ((1, 1), (4, 1, 3, 2)) assert_eq(z, np.stack([x.compute(), y.compute()], axis=0)) def test_concatenate(): a, b, c = [Array(getem(name, chunks=(2, 3), shape=(4, 6)), name, chunks=(2, 3), dtype='f8', shape=(4, 6)) for name in 'ABC'] x = concatenate([a, b, c], axis=0) assert x.shape == (12, 6) assert x.chunks == ((2, 2, 2, 2, 2, 2), (3, 3)) assert x.dask[(x.name, 0, 1)] == ('A', 0, 1) assert x.dask[(x.name, 5, 0)] == ('C', 1, 0) assert same_keys(x, concatenate([a, b, c], axis=0)) y = concatenate([a, b, c], axis=1) assert y.shape == (4, 18) assert y.chunks == ((2, 2), (3, 3, 3, 3, 3, 3)) assert y.dask[(y.name, 1, 0)] == ('A', 1, 0) assert y.dask[(y.name, 1, 5)] == ('C', 1, 1) assert same_keys(y, concatenate([a, b, c], axis=1)) assert set(b.dask.keys()).issubset(y.dask.keys()) z = concatenate([a], axis=0) assert z.shape == a.shape assert z.chunks == a.chunks assert z.dask == a.dask assert z is a assert (concatenate([a, b, c], axis=-1).chunks == concatenate([a, b, c], axis=1).chunks) pytest.raises(ValueError, lambda: concatenate([a, b, c], axis=2)) @pytest.mark.parametrize('dtypes', [(('>f8', '>f8'), '>f8'), (('<f4', '<f8'), '<f8')]) def test_concatenate_types(dtypes): dts_in, dt_out = dtypes arrs = [np.zeros(4, dtype=dt) for dt in dts_in] darrs = [from_array(arr, chunks=(2,)) for arr in arrs] x = concatenate(darrs, axis=0) assert x.dtype == dt_out def test_concatenate_unknown_axes(): dd = pytest.importorskip('dask.dataframe') pd = pytest.importorskip('pandas') a_df = pd.DataFrame({'x': np.arange(12)}) b_df = pd.DataFrame({'y': np.arange(12) * 10}) a_ddf = dd.from_pandas(a_df, sort=False, npartitions=3) b_ddf = dd.from_pandas(b_df, sort=False, npartitions=3) a_x = a_ddf.values b_x = b_ddf.values assert np.isnan(a_x.shape[0]) assert np.isnan(b_x.shape[0]) da.concatenate([a_x, b_x], axis=0) # works fine with pytest.raises(ValueError) as exc_info: da.concatenate([a_x, b_x], axis=1) # unknown chunks assert 'nan' in str(exc_info.value) assert 'allow_unknown_chunksize' in str(exc_info.value) c_x = da.concatenate([a_x, b_x], axis=1, allow_unknown_chunksizes=True) # unknown chunks assert_eq(c_x, np.concatenate([a_df.values, b_df.values], axis=1)) def test_concatenate_rechunk(): x = da.random.random((6, 6), chunks=(3, 3)) y = da.random.random((6, 6), chunks=(2, 2)) z = da.concatenate([x, y], axis=0) assert z.shape == (12, 6) assert z.chunks == ((3, 3, 2, 2, 2), (2, 1, 1, 2)) assert_eq(z, np.concatenate([x.compute(), y.compute()], axis=0)) z = da.concatenate([x, y], axis=1) assert z.shape == (6, 12) assert z.chunks == ((2, 1, 1, 2), (3, 3, 2, 2, 2)) assert_eq(z, np.concatenate([x.compute(), y.compute()], axis=1)) def test_concatenate_fixlen_strings(): x = np.array(['a', 'b', 'c']) y = np.array(['aa', 'bb', 'cc']) a = da.from_array(x, chunks=(2,)) b = da.from_array(y, chunks=(2,)) assert_eq(np.concatenate([x, y]), da.concatenate([a, b])) @pytest.mark.skipif(LooseVersion(np.__version__) < '1.13.0', reason="NumPy doesn't support `block` yet") def test_block_simple_row_wise(): a1 = np.ones((2, 2)) a2 = 2 * a1 d1 = da.asarray(a1) d2 = da.asarray(a2) expected = np.block([a1, a2]) result = da.block([d1, d2]) assert_eq(expected, result) @pytest.mark.skipif(LooseVersion(np.__version__) < '1.13.0', reason="NumPy doesn't support `block` yet") def test_block_simple_column_wise(): a1 = np.ones((2, 2)) a2 = 2 * a1 d1 = da.asarray(a1) d2 = da.asarray(a2) expected = np.block([[a1], [a2]]) result = da.block([[d1], [d2]]) assert_eq(expected, result) @pytest.mark.skipif(LooseVersion(np.__version__) < '1.13.0', reason="NumPy doesn't support `block` yet") def test_block_with_1d_arrays_row_wise(): # # # 1-D vectors are treated as row arrays a1 = np.array([1, 2, 3]) a2 = np.array([2, 3, 4]) d1 = da.asarray(a1) d2 = da.asarray(a2) expected = np.block([a1, a2]) result = da.block([d1, d2]) assert_eq(expected, result) @pytest.mark.skipif(LooseVersion(np.__version__) < '1.13.0', reason="NumPy doesn't support `block` yet") def test_block_with_1d_arrays_multiple_rows(): a1 = np.array([1, 2, 3]) a2 = np.array([2, 3, 4]) d1 = da.asarray(a1) d2 = da.asarray(a2) expected = np.block([[a1, a2], [a1, a2]]) result = da.block([[d1, d2], [d1, d2]]) assert_eq(expected, result) @pytest.mark.skipif(LooseVersion(np.__version__) < '1.13.0', reason="NumPy doesn't support `block` yet") def test_block_with_1d_arrays_column_wise(): # # # 1-D vectors are treated as row arrays a1 = np.array([1, 2, 3]) a2 = np.array([2, 3, 4]) d1 = da.asarray(a1) d2 = da.asarray(a2) expected = np.block([[a1], [a2]]) result = da.block([[d1], [d2]]) assert_eq(expected, result) @pytest.mark.skipif(LooseVersion(np.__version__) < '1.13.0', reason="NumPy doesn't support `block` yet") def test_block_mixed_1d_and_2d(): a1 = np.ones((2, 2)) a2 = np.array([2, 2]) d1 = da.asarray(a1) d2 = da.asarray(a2) expected = np.block([[d1], [d2]]) result = da.block([[a1], [a2]]) assert_eq(expected, result) @pytest.mark.skipif(LooseVersion(np.__version__) < '1.13.0', reason="NumPy doesn't support `block` yet") def test_block_complicated(): # a bit more complicated a1 = np.array([[1, 1, 1]]) a2 = np.array([[2, 2, 2]]) a3 = np.array([[3, 3, 3, 3, 3, 3]]) a4 = np.array([4, 4, 4, 4, 4, 4]) a5 = np.array(5) a6 = np.array([6, 6, 6, 6, 6]) a7 = np.zeros((2, 6)) d1 = da.asarray(a1) d2 = da.asarray(a2) d3 = da.asarray(a3) d4 = da.asarray(a4) d5 = da.asarray(a5) d6 = da.asarray(a6) d7 = da.asarray(a7) expected = np.block([[a1, a2], [a3], [a4], [a5, a6], [a7]]) result = da.block([[d1, d2], [d3], [d4], [d5, d6], [d7]]) assert_eq(expected, result) @pytest.mark.skipif(LooseVersion(np.__version__) < '1.13.0', reason="NumPy doesn't support `block` yet") def test_block_nested(): a1 = np.array([1, 1, 1]) a2 = np.array([[2, 2, 2], [2, 2, 2], [2, 2, 2]]) a3 = np.array([3, 3, 3]) a4 = np.array([4, 4, 4]) a5 = np.array(5) a6 = np.array([6, 6, 6, 6, 6]) a7 = np.zeros((2, 6)) d1 = da.asarray(a1) d2 = da.asarray(a2) d3 = da.asarray(a3) d4 = da.asarray(a4) d5 = da.asarray(a5) d6 = da.asarray(a6) d7 = da.asarray(a7) expected = np.block([ [ np.block([ [a1], [a3], [a4] ]), a2 ], [a5, a6], [a7] ]) result = da.block([ [ da.block([ [d1], [d3], [d4] ]), d2 ], [d5, d6], [d7] ]) assert_eq(expected, result) @pytest.mark.skipif(LooseVersion(np.__version__) < '1.13.0', reason="NumPy doesn't support `block` yet") def test_block_3d(): a000 = np.ones((2, 2, 2), int) * 1 a100 = np.ones((3, 2, 2), int) * 2 a010 = np.ones((2, 3, 2), int) * 3 a001 = np.ones((2, 2, 3), int) * 4 a011 = np.ones((2, 3, 3), int) * 5 a101 = np.ones((3, 2, 3), int) * 6 a110 = np.ones((3, 3, 2), int) * 7 a111 = np.ones((3, 3, 3), int) * 8 d000 = da.asarray(a000) d100 = da.asarray(a100) d010 = da.asarray(a010) d001 = da.asarray(a001) d011 = da.asarray(a011) d101 = da.asarray(a101) d110 = da.asarray(a110) d111 = da.asarray(a111) expected = np.block([ [ [a000, a001], [a010, a011], ], [ [a100, a101], [a110, a111], ] ]) result = da.block([ [ [d000, d001], [d010, d011], ], [ [d100, d101], [d110, d111], ] ]) assert_eq(expected, result) def test_block_with_mismatched_shape(): a = np.array([0, 0]) b = np.eye(2) for arrays in [[a, b], [b, a]]: with pytest.raises(ValueError): da.block(arrays) @pytest.mark.skipif(LooseVersion(np.__version__) < '1.13.0', reason="NumPy doesn't support `block` yet") def test_block_no_lists(): assert_eq(da.block(1), np.block(1)) assert_eq(da.block(np.eye(3)), np.block(np.eye(3))) def test_block_invalid_nesting(): for arrays in [ [1, [2]], [1, []], [[1], 2], [[], 2], [ [[1], [2]], [[3, 4]], [5] # missing brackets ], ]: with pytest.raises(ValueError) as e: da.block(arrays) e.match(r'depths are mismatched') def test_block_empty_lists(): for arrays in [ [], [[]], [[1], []], ]: with pytest.raises(ValueError) as e: da.block(arrays) e.match(r'empty') def test_block_tuple(): for arrays in [ ([1, 2], [3, 4]), [(1, 2), (3, 4)], ]: with pytest.raises(TypeError) as e: da.block(arrays) e.match(r'tuple') def test_binops(): a = Array(dict((('a', i), np.array([0])) for i in range(3)), 'a', chunks=((1, 1, 1),), dtype='i8') b = Array(dict((('b', i), np.array([0])) for i in range(3)), 'b', chunks=((1, 1, 1),), dtype='i8') result = elemwise(add, a, b, name='c') assert result.dask == merge(a.dask, b.dask, dict((('c', i), (add, ('a', i), ('b', i))) for i in range(3))) result = elemwise(pow, a, 2, name='c') assert "'a', 0" in str(result.dask[('c', 0)]) assert "2" in str(result.dask[('c', 0)]) def test_broadcast_shapes(): assert () == broadcast_shapes() assert (2, 5) == broadcast_shapes((2, 5)) assert (0, 5) == broadcast_shapes((0, 1), (1, 5)) assert np.allclose( (2, np.nan), broadcast_shapes((1, np.nan), (2, 1)), equal_nan=True ) assert np.allclose( (2, np.nan), broadcast_shapes((2, 1), (1, np.nan)), equal_nan=True ) assert (3, 4, 5) == broadcast_shapes((3, 4, 5), (4, 1), ()) assert (3, 4) == broadcast_shapes((3, 1), (1, 4), (4,)) assert (5, 6, 7, 3, 4) == broadcast_shapes((3, 1), (), (5, 6, 7, 1, 4)) pytest.raises(ValueError, lambda: broadcast_shapes((3,), (3, 4))) pytest.raises(ValueError, lambda: broadcast_shapes((2, 3), (2, 3, 1))) pytest.raises(ValueError, lambda: broadcast_shapes((2, 3), (1, np.nan))) def test_elemwise_on_scalars(): x = np.arange(10, dtype=np.int64) a = from_array(x, chunks=(5,)) assert len(a.__dask_keys__()) == 2 assert_eq(a.sum()**2, x.sum()**2) y = np.arange(10, dtype=np.int32) b = from_array(y, chunks=(5,)) result = a.sum() * b # Dask 0-d arrays do not behave like numpy scalars for type promotion assert result.dtype == np.int64 assert result.compute().dtype == np.int64 assert (x.sum() * y).dtype == np.int32 assert_eq((x.sum() * y).astype(np.int64), result) def test_elemwise_with_ndarrays(): x = np.arange(3) y = np.arange(12).reshape(4, 3) a = from_array(x, chunks=(3,)) b = from_array(y, chunks=(2, 3)) assert_eq(x + a, 2 * x) assert_eq(a + x, 2 * x) assert_eq(x + b, x + y) assert_eq(b + x, x + y) assert_eq(a + y, x + y) assert_eq(y + a, x + y) # Error on shape mismatch pytest.raises(ValueError, lambda: a + y.T) pytest.raises(ValueError, lambda: a + np.arange(2)) def test_elemwise_differently_chunked(): x = np.arange(3) y = np.arange(12).reshape(4, 3) a = from_array(x, chunks=(3,)) b = from_array(y, chunks=(2, 2)) assert_eq(a + b, x + y) assert_eq(b + a, x + y) def test_elemwise_dtype(): values = [ da.from_array(np.ones(5, np.float32), chunks=3), da.from_array(np.ones(5, np.int16), chunks=3), da.from_array(np.ones(5, np.int64), chunks=3), da.from_array(np.ones((), np.float64), chunks=()) * 1e200, np.ones(5, np.float32), 1, 1.0, 1e200, np.int64(1), np.ones((), np.int64), ] for x in values: for y in values: assert da.maximum(x, y).dtype == da.result_type(x, y) def test_operators(): x = np.arange(10) y = np.arange(10).reshape((10, 1)) a = from_array(x, chunks=(5,)) b = from_array(y, chunks=(5, 1)) c = a + 1 assert_eq(c, x + 1) c = a + b assert_eq(c, x + x.reshape((10, 1))) expr = (3 / a * b)**2 > 5 with pytest.warns(None): # ZeroDivisionWarning assert_eq(expr, (3 / x * y)**2 > 5) with pytest.warns(None): # OverflowWarning c = da.exp(a) assert_eq(c, np.exp(x)) assert_eq(abs(-a), a) assert_eq(a, +x) def test_operator_dtype_promotion(): x = np.arange(10, dtype=np.float32) y = np.array([1]) a = from_array(x, chunks=(5,)) assert_eq(x + 1, a + 1) # still float32 assert_eq(x + 1e50, a + 1e50) # now float64 assert_eq(x + y, a + y) # also float64 def test_field_access(): x = np.array([(1, 1.0), (2, 2.0)], dtype=[('a', 'i4'), ('b', 'f4')]) y = from_array(x, chunks=(1,)) assert_eq(y['a'], x['a']) assert_eq(y[['b', 'a']], x[['b', 'a']]) assert same_keys(y[['b', 'a']], y[['b', 'a']]) def test_field_access_with_shape(): dtype = [('col1', ('f4', (3, 2))), ('col2', ('f4', 3))] data = np.ones((100, 50), dtype=dtype) x = da.from_array(data, 10) assert_eq(x['col1'], data['col1']) assert_eq(x[['col1']], data[['col1']]) assert_eq(x['col2'], data['col2']) assert_eq(x[['col1', 'col2']], data[['col1', 'col2']]) @pytest.mark.skipif(sys.version_info < (3, 5), reason="Matrix multiplication operator only after Py3.5") def test_matmul(): x = np.random.random((5, 5)) y = np.random.random((5, 2)) a = from_array(x, chunks=(1, 5)) b = from_array(y, chunks=(5, 1)) assert_eq(operator.matmul(a, b), a.dot(b)) assert_eq(operator.matmul(a, b), operator.matmul(x, y)) assert_eq(operator.matmul(a, y), operator.matmul(x, b)) list_vec = list(range(1, 6)) assert_eq(operator.matmul(list_vec, b), operator.matmul(list_vec, y)) assert_eq(operator.matmul(x, list_vec), operator.matmul(a, list_vec)) z = np.random.random((5, 5, 5)) c = from_array(z, chunks=(1, 5, 1)) assert_eq(operator.matmul(a, z), operator.matmul(x, c)) assert_eq(operator.matmul(z, a), operator.matmul(c, x)) def test_T(): x = np.arange(400).reshape((20, 20)) a = from_array(x, chunks=(5, 5)) assert_eq(x.T, a.T) def test_norm(): a = np.arange(200, dtype='f8').reshape((20, 10)) a = a + (a.max() - a) * 1j b = from_array(a, chunks=(5, 5)) # TODO: Deprecated method, remove test when method removed with pytest.warns(UserWarning): assert_eq(b.vnorm(), np.linalg.norm(a)) assert_eq(b.vnorm(ord=1), np.linalg.norm(a.flatten(), ord=1)) assert_eq(b.vnorm(ord=4, axis=0), np.linalg.norm(a, ord=4, axis=0)) assert b.vnorm(ord=4, axis=0, keepdims=True).ndim == b.ndim split_every = {0: 3, 1: 3} assert_eq(b.vnorm(ord=1, axis=0, split_every=split_every), np.linalg.norm(a, ord=1, axis=0)) assert_eq(b.vnorm(ord=np.inf, axis=0, split_every=split_every), np.linalg.norm(a, ord=np.inf, axis=0)) assert_eq(b.vnorm(ord=np.inf, split_every=split_every), np.linalg.norm(a.flatten(), ord=np.inf)) def test_broadcast_to(): x = np.random.randint(10, size=(5, 1, 6)) a = from_array(x, chunks=(3, 1, 3)) for shape in [a.shape, (5, 0, 6), (5, 4, 6), (2, 5, 1, 6), (3, 4, 5, 4, 6)]: xb = chunk.broadcast_to(x, shape) ab = broadcast_to(a, shape) assert_eq(xb, ab) if a.shape == ab.shape: assert a is ab pytest.raises(ValueError, lambda: broadcast_to(a, (2, 1, 6))) pytest.raises(ValueError, lambda: broadcast_to(a, (3,))) def test_broadcast_to_array(): x = np.random.randint(10, size=(5, 1, 6)) for shape in [(5, 0, 6), (5, 4, 6), (2, 5, 1, 6), (3, 4, 5, 4, 6)]: a = np.broadcast_to(x, shape) d = broadcast_to(x, shape) assert_eq(a, d) def test_broadcast_to_scalar(): x = 5 for shape in [tuple(), (0,), (2, 3), (5, 4, 6), (2, 5, 1, 6), (3, 4, 5, 4, 6)]: a = np.broadcast_to(x, shape) d = broadcast_to(x, shape) assert_eq(a, d) def test_broadcast_to_chunks(): x = np.random.randint(10, size=(5, 1, 6)) a = from_array(x, chunks=(3, 1, 3)) for shape, chunks, expected_chunks in [ ((5, 3, 6), (3, -1, 3), ((3, 2), (3,), (3, 3))), ((5, 3, 6), (3, 1, 3), ((3, 2), (1, 1, 1,), (3, 3))), ((2, 5, 3, 6), (1, 3, 1, 3), ((1, 1), (3, 2), (1, 1, 1,), (3, 3)))]: xb = chunk.broadcast_to(x, shape) ab = broadcast_to(a, shape, chunks=chunks) assert_eq(xb, ab) assert ab.chunks == expected_chunks with pytest.raises(ValueError): broadcast_to(a, a.shape, chunks=((2, 3), (1,), (3, 3))) with pytest.raises(ValueError): broadcast_to(a, a.shape, chunks=((3, 2), (3,), (3, 3))) with pytest.raises(ValueError): broadcast_to(a, (5, 2, 6), chunks=((3, 2), (3,), (3, 3))) def test_broadcast_arrays(): # Calling `broadcast_arrays` with no arguments only works in NumPy 1.13.0+. if LooseVersion(np.__version__) >= LooseVersion("1.13.0"): assert np.broadcast_arrays() == da.broadcast_arrays() a = np.arange(4) d_a = da.from_array(a, chunks=tuple(s // 2 for s in a.shape)) a_0 = np.arange(4)[None, :] a_1 = np.arange(4)[:, None] d_a_0 = d_a[None, :] d_a_1 = d_a[:, None] a_r = np.broadcast_arrays(a_0, a_1) d_r = da.broadcast_arrays(d_a_0, d_a_1) assert isinstance(d_r, list) assert len(a_r) == len(d_r) for e_a_r, e_d_r in zip(a_r, d_r): assert_eq(e_a_r, e_d_r) @pytest.mark.parametrize('u_shape, v_shape', [ [tuple(), (2, 3)], [(1,), (2, 3)], [(1, 1), (2, 3)], [(0, 3), (1, 3)], [(2, 0), (2, 1)], [(1, 0), (2, 1)], [(0, 1), (1, 3)], ]) def test_broadcast_operator(u_shape, v_shape): u = np.random.random(u_shape) v = np.random.random(v_shape) d_u = from_array(u, chunks=1) d_v = from_array(v, chunks=1) w = u * v d_w = d_u * d_v assert_eq(w, d_w) @pytest.mark.parametrize('original_shape,new_shape,chunks', [ ((10,), (10,), (3, 3, 4)), ((10,), (10, 1, 1), 5), ((10,), (1, 10,), 5), ((24,), (2, 3, 4), 12), ((1, 24,), (2, 3, 4), 12), ((2, 3, 4), (24,), (1, 3, 4)), ((2, 3, 4), (24,), 4), ((2, 3, 4), (24, 1), 4), ((2, 3, 4), (1, 24), 4), ((4, 4, 1), (4, 4), 2), ((4, 4), (4, 4, 1), 2), ((1, 4, 4), (4, 4), 2), ((1, 4, 4), (4, 4, 1), 2), ((1, 4, 4), (1, 1, 4, 4), 2), ((4, 4), (1, 4, 4, 1), 2), ((4, 4), (1, 4, 4), 2), ((2, 3), (2, 3), (1, 2)), ((2, 3), (3, 2), 3), ((4, 2, 3), (4, 6), 4), ((3, 4, 5, 6), (3, 4, 5, 6), (2, 3, 4, 5)), ((), (1,), 1), ((1,), (), 1), ((24,), (3, 8), 24), ((24,), (4, 6), 6), ((24,), (4, 3, 2), 6), ((24,), (4, 6, 1), 6), ((24,), (4, 6), (6, 12, 6)), ((64, 4), (8, 8, 4), (16, 2)), ((4, 64), (4, 8, 4, 2), (2, 16)), ((4, 8, 4, 2), (2, 1, 2, 32, 2), (2, 4, 2, 2)), ((4, 1, 4), (4, 4), (2, 1, 2)), ((0, 10), (0, 5, 2), (5, 5)), ((5, 0, 2), (0, 10), (5, 2, 2)), ((0,), (2, 0, 2), (4,)), ((2, 0, 2), (0,), (4, 4, 4)), ]) def test_reshape(original_shape, new_shape, chunks): x = np.random.randint(10, size=original_shape) a = from_array(x, chunks=chunks) xr = x.reshape(new_shape) ar = a.reshape(new_shape) if a.shape == new_shape: assert a is ar assert_eq(xr, ar) def test_reshape_exceptions(): x = np.random.randint(10, size=(5,)) a = from_array(x, chunks=(2,)) with pytest.raises(ValueError): da.reshape(a, (100,)) def test_reshape_splat(): x = da.ones((5, 5), chunks=(2, 2)) assert_eq(x.reshape((25,)), x.reshape(25)) def test_reshape_fails_for_dask_only(): cases = [ ((3, 4), (4, 3), 2), ] for original_shape, new_shape, chunks in cases: x = np.random.randint(10, size=original_shape) a = from_array(x, chunks=chunks) assert x.reshape(new_shape).shape == new_shape with pytest.raises(ValueError): da.reshape(a, new_shape) def test_reshape_unknown_dimensions(): for original_shape in [(24,), (2, 12), (2, 3, 4)]: for new_shape in [(-1,), (2, -1), (-1, 3, 4)]: x = np.random.randint(10, size=original_shape) a = from_array(x, 24) assert_eq(x.reshape(new_shape), a.reshape(new_shape)) pytest.raises(ValueError, lambda: da.reshape(a, (-1, -1))) def test_full(): d = da.full((3, 4), 2, chunks=((2, 1), (2, 2))) assert d.chunks == ((2, 1), (2, 2)) assert_eq(d, np.full((3, 4), 2)) def test_map_blocks(): x = np.arange(400).reshape((20, 20)) d = from_array(x, chunks=(7, 7)) e = d.map_blocks(inc, dtype=d.dtype) assert d.chunks == e.chunks assert_eq(e, x + 1) e = d.map_blocks(inc, name='increment') assert e.name.startswith('increment-') assert d.map_blocks(inc, name='foo').name != d.map_blocks(dec, name='foo').name d = from_array(x, chunks=(10, 10)) e = d.map_blocks(lambda x: x[::2, ::2], chunks=(5, 5), dtype=d.dtype) assert e.chunks == ((5, 5), (5, 5)) assert_eq(e, x[::2, ::2]) d = from_array(x, chunks=(8, 8)) e = d.map_blocks(lambda x: x[::2, ::2], chunks=((4, 4, 2), (4, 4, 2)), dtype=d.dtype) assert_eq(e, x[::2, ::2]) def test_map_blocks2(): x = np.arange(10, dtype='i8') d = from_array(x, chunks=(2,)) def func(block, block_id=None, c=0): return np.ones_like(block) * sum(block_id) + c out = d.map_blocks(func, dtype='i8') expected = np.array([0, 0, 1, 1, 2, 2, 3, 3, 4, 4], dtype='i8') assert_eq(out, expected) assert same_keys(d.map_blocks(func, dtype='i8'), out) out = d.map_blocks(func, dtype='i8', c=1) expected = expected + 1 assert_eq(out, expected) assert same_keys(d.map_blocks(func, dtype='i8', c=1), out) def test_map_blocks_block_info(): x = da.arange(50, chunks=10) def func(a, b, c, block_info=None): for idx in [0, 2]: # positions in args assert block_info[idx]['shape'] == (50,) assert block_info[idx]['num-chunks'] == (5,) start, stop = block_info[idx]['array-location'][0] assert stop - start == 10 assert 0 <= start <= 40 assert 10 <= stop <= 50 assert 0 <= block_info[idx]['chunk-location'][0] <= 4 return a + b + c z = da.map_blocks(func, x, 100, x + 1, dtype=x.dtype) assert_eq(z, x + x + 1 + 100) def test_map_blocks_with_constants(): d = da.arange(10, chunks=3) e = d.map_blocks(add, 100, dtype=d.dtype) assert_eq(e, np.arange(10) + 100) assert_eq(da.map_blocks(sub, d, 10, dtype=d.dtype), np.arange(10) - 10) assert_eq(da.map_blocks(sub, 10, d, dtype=d.dtype), 10 - np.arange(10)) def test_map_blocks_with_kwargs(): d = da.arange(10, chunks=5) result = d.map_blocks(np.max, axis=0, keepdims=True, dtype=d.dtype, chunks=(1,)) assert_eq(result, np.array([4, 9])) def test_map_blocks_with_chunks(): dx = da.ones((5, 3), chunks=(2, 2)) dy = da.ones((5, 3), chunks=(2, 2)) dz = da.map_blocks(np.add, dx, dy, chunks=dx.chunks) assert_eq(dz, np.ones((5, 3)) * 2) def test_map_blocks_dtype_inference(): x = np.arange(50).reshape((5, 10)) y = np.arange(10) dx = da.from_array(x, chunks=5) dy = da.from_array(y, chunks=5) def foo(x, *args, **kwargs): cast = kwargs.pop('cast', 'i8') return (x + sum(args)).astype(cast) assert_eq(dx.map_blocks(foo, dy, 1), foo(dx, dy, 1)) assert_eq(dx.map_blocks(foo, dy, 1, cast='f8'), foo(dx, dy, 1, cast='f8')) assert_eq(dx.map_blocks(foo, dy, 1, cast='f8', dtype='f8'), foo(dx, dy, 1, cast='f8', dtype='f8')) def foo(x): raise RuntimeError("Woops") try: dx.map_blocks(foo) except Exception as e: assert e.args[0].startswith("`dtype` inference failed") assert "Please specify the dtype explicitly" in e.args[0] assert 'RuntimeError' in e.args[0] else: assert False, "Should have errored" def test_from_function_requires_block_args(): x = np.arange(10) pytest.raises(Exception, lambda: from_array(x)) def test_repr(): d = da.ones((4, 4), chunks=(2, 2)) assert key_split(d.name) in repr(d) assert str(d.shape) in repr(d) assert str(d.dtype) in repr(d) d = da.ones((4000, 4), chunks=(4, 2)) assert len(str(d)) < 1000 def test_slicing_with_ellipsis(): x = np.arange(256).reshape((4, 4, 4, 4)) d = da.from_array(x, chunks=((2, 2, 2, 2))) assert_eq(d[..., 1], x[..., 1]) assert_eq(d[0, ..., 1], x[0, ..., 1]) def test_slicing_with_ndarray(): x = np.arange(64).reshape((8, 8)) d = da.from_array(x, chunks=((4, 4))) assert_eq(d[np.arange(8)], x) assert_eq(d[np.ones(8, dtype=bool)], x) assert_eq(d[np.array([1])], x[[1]]) assert_eq(d[np.array([True, False, True] + [False] * 5)], x[[0, 2]]) def test_dtype(): d = da.ones((4, 4), chunks=(2, 2)) assert d.dtype == d.compute().dtype assert (d * 1.0).dtype == (d + 1.0).compute().dtype assert d.sum().dtype == d.sum().compute().dtype # no shape def test_blockdims_from_blockshape(): assert blockdims_from_blockshape((10, 10), (4, 3)) == ((4, 4, 2), (3, 3, 3, 1)) pytest.raises(TypeError, lambda: blockdims_from_blockshape((10,), None)) assert blockdims_from_blockshape((1e2, 3), [1e1, 3]) == ((10, ) * 10, (3, )) assert blockdims_from_blockshape((np.int8(10), ), (5, )) == ((5, 5), ) def test_coerce(): d0 = da.from_array(np.array(1), chunks=(1,)) d1 = da.from_array(np.array([1]), chunks=(1,)) with dask.config.set(scheduler='sync'): for d in d0, d1: assert bool(d) is True assert int(d) == 1 assert float(d) == 1.0 assert complex(d) == complex(1) a2 = np.arange(2) d2 = da.from_array(a2, chunks=(2,)) for func in (int, float, complex): pytest.raises(TypeError, lambda :func(d2)) def test_bool(): arr = np.arange(100).reshape((10,10)) darr = da.from_array(arr, chunks=(10,10)) with pytest.raises(ValueError): bool(darr) bool(darr == darr) def test_store_kwargs(): d = da.ones((10, 10), chunks=(2, 2)) a = d + 1 called = [False] def get_func(*args, **kwargs): assert kwargs.pop("foo") == "test kwarg" r = dask.get(*args, **kwargs) called[0] = True return r called[0] = False at = np.zeros(shape=(10, 10)) store([a], [at], get=get_func, foo="test kwarg") assert called[0] called[0] = False at = np.zeros(shape=(10, 10)) a.store(at, get=get_func, foo="test kwarg") assert called[0] called[0] = False at = np.zeros(shape=(10, 10)) store([a], [at], get=get_func, return_store=True, foo="test kwarg") assert called[0] def test_store_delayed_target(): from dask.delayed import delayed d = da.ones((4, 4), chunks=(2, 2)) a, b = d + 1, d + 2 # empty buffers to be used as targets targs = {} def make_target(key): a = np.empty((4, 4)) targs[key] = a return a # delayed calls to these targets atd = delayed(make_target)('at') btd = delayed(make_target)('bt') # test not keeping result st = store([a, b], [atd, btd]) at = targs['at'] bt = targs['bt'] assert st is None assert_eq(at, a) assert_eq(bt, b) # test keeping result for st_compute in [False, True]: targs.clear() st = store([a, b], [atd, btd], return_stored=True, compute=st_compute) if st_compute: assert all( not any(dask.core.get_deps(e.dask)[0].values()) for e in st ) st = dask.compute(*st) at = targs['at'] bt = targs['bt'] assert st is not None assert isinstance(st, tuple) assert all([isinstance(v, np.ndarray) for v in st]) assert_eq(at, a) assert_eq(bt, b) assert_eq(st[0], a) assert_eq(st[1], b) pytest.raises(ValueError, lambda: store([a], [at, bt])) pytest.raises(ValueError, lambda: store(at, at)) pytest.raises(ValueError, lambda: store([at, bt], [at, bt])) def test_store(): d = da.ones((4, 4), chunks=(2, 2)) a, b = d + 1, d + 2 at = np.empty(shape=(4, 4)) bt = np.empty(shape=(4, 4)) st = store([a, b], [at, bt]) assert st is None assert (at == 2).all() assert (bt == 3).all() pytest.raises(ValueError, lambda: store([a], [at, bt])) pytest.raises(ValueError, lambda: store(at, at)) pytest.raises(ValueError, lambda: store([at, bt], [at, bt])) def test_store_regions(): d = da.ones((4, 4, 4), dtype=int, chunks=(2, 2, 2)) a, b = d + 1, d + 2 a = a[:, 1:, :].astype(float) region = (slice(None, None, 2), slice(None), [1, 2, 4, 5]) # Single region: at = np.zeros(shape=(8, 3, 6)) bt = np.zeros(shape=(8, 4, 6)) v = store([a, b], [at, bt], regions=region, compute=False) assert isinstance(v, Delayed) assert (at == 0).all() and (bt[region] == 0).all() assert all([ev is None for ev in v.compute()]) assert (at[region] == 2).all() and (bt[region] == 3).all() assert not (bt == 3).all() and not ( bt == 0 ).all() assert not (at == 2).all() and not ( at == 0 ).all() # Multiple regions: at = np.zeros(shape=(8, 3, 6)) bt = np.zeros(shape=(8, 4, 6)) v = store([a, b], [at, bt], regions=[region, region], compute=False) assert isinstance(v, Delayed) assert (at == 0).all() and (bt[region] == 0).all() assert all([ev is None for ev in v.compute()]) assert (at[region] == 2).all() and (bt[region] == 3).all() assert not (bt == 3).all() and not ( bt == 0 ).all() assert not (at == 2).all() and not ( at == 0 ).all() # Single region (keep result): for st_compute in [False, True]: at = np.zeros(shape=(8, 3, 6)) bt = np.zeros(shape=(8, 4, 6)) v = store( [a, b], [at, bt], regions=region, compute=st_compute, return_stored=True ) assert isinstance(v, tuple) assert all([isinstance(e, da.Array) for e in v]) if st_compute: assert all( not any(dask.core.get_deps(e.dask)[0].values()) for e in v ) else: assert (at == 0).all() and (bt[region] == 0).all() ar, br = v assert ar.dtype == a.dtype assert br.dtype == b.dtype assert ar.shape == a.shape assert br.shape == b.shape assert ar.chunks == a.chunks assert br.chunks == b.chunks ar, br = da.compute(ar, br) assert (at[region] == 2).all() and (bt[region] == 3).all() assert not (bt == 3).all() and not ( bt == 0 ).all() assert not (at == 2).all() and not ( at == 0 ).all() assert (br == 3).all() assert (ar == 2).all() # Multiple regions (keep result): for st_compute in [False, True]: at = np.zeros(shape=(8, 3, 6)) bt = np.zeros(shape=(8, 4, 6)) v = store( [a, b], [at, bt], regions=[region, region], compute=st_compute, return_stored=True ) assert isinstance(v, tuple) assert all([isinstance(e, da.Array) for e in v]) if st_compute: assert all( not any(dask.core.get_deps(e.dask)[0].values()) for e in v ) else: assert (at == 0).all() and (bt[region] == 0).all() ar, br = v assert ar.dtype == a.dtype assert br.dtype == b.dtype assert ar.shape == a.shape assert br.shape == b.shape assert ar.chunks == a.chunks assert br.chunks == b.chunks ar, br = da.compute(ar, br) assert (at[region] == 2).all() and (bt[region] == 3).all() assert not (bt == 3).all() and not ( bt == 0 ).all() assert not (at == 2).all() and not ( at == 0 ).all() assert (br == 3).all() assert (ar == 2).all() def test_store_compute_false(): d = da.ones((4, 4), chunks=(2, 2)) a, b = d + 1, d + 2 at = np.zeros(shape=(4, 4)) bt = np.zeros(shape=(4, 4)) v = store([a, b], [at, bt], compute=False) assert isinstance(v, Delayed) assert (at == 0).all() and (bt == 0).all() assert all([ev is None for ev in v.compute()]) assert (at == 2).all() and (bt == 3).all() at = np.zeros(shape=(4, 4)) bt = np.zeros(shape=(4, 4)) dat, dbt = store([a, b], [at, bt], compute=False, return_stored=True) assert isinstance(dat, Array) and isinstance(dbt, Array) assert (at == 0).all() and (bt == 0).all() assert (dat.compute() == at).all() and (dbt.compute() == bt).all() assert (at == 2).all() and (bt == 3).all() def test_store_nocompute_regions(): x = da.ones(10, chunks=1) y = np.zeros((2, 10)) d1 = da.store(x, y, regions=(0,), compute=False) d2 = da.store(x, y, regions=(1,), compute=False) assert d1.key != d2.key class ThreadSafetyError(Exception): pass class NonthreadSafeStore(object): def __init__(self): self.in_use = False def __setitem__(self, key, value): if self.in_use: raise ThreadSafetyError() self.in_use = True time.sleep(0.001) self.in_use = False class ThreadSafeStore(object): def __init__(self): self.concurrent_uses = 0 self.max_concurrent_uses = 0 def __setitem__(self, key, value): self.concurrent_uses += 1 self.max_concurrent_uses = max(self.concurrent_uses, self.max_concurrent_uses) time.sleep(0.01) self.concurrent_uses -= 1 class CounterLock(object): def __init__(self, *args, **kwargs): self.lock = Lock(*args, **kwargs) self.acquire_count = 0 self.release_count = 0 def acquire(self, *args, **kwargs): self.acquire_count += 1 return self.lock.acquire(*args, **kwargs) def release(self, *args, **kwargs): self.release_count += 1 return self.lock.release(*args, **kwargs) def test_store_locks(): _Lock = type(Lock()) d = da.ones((10, 10), chunks=(2, 2)) a, b = d + 1, d + 2 at = np.zeros(shape=(10, 10)) bt = np.zeros(shape=(10, 10)) lock = Lock() v = store([a, b], [at, bt], compute=False, lock=lock) assert isinstance(v, Delayed) dsk = v.dask locks = set(vv for v in dsk.values() for vv in v if isinstance(vv, _Lock)) assert locks == set([lock]) # Ensure same lock applies over multiple stores at = NonthreadSafeStore() v = store([a, b], [at, at], lock=lock, scheduler='threads', num_workers=10) assert v is None # Don't assume thread safety by default at = NonthreadSafeStore() assert store(a, at, scheduler='threads', num_workers=10) is None assert a.store(at, scheduler='threads', num_workers=10) is None # Ensure locks can be removed at = ThreadSafeStore() for i in range(10): st = a.store(at, lock=False, scheduler='threads', num_workers=10) assert st is None if at.max_concurrent_uses > 1: break if i == 9: assert False # Verify number of lock calls nchunks = np.sum([np.prod([len(c) for c in e.chunks]) for e in [a, b]]) for c in (False, True): at = np.zeros(shape=(10, 10)) bt = np.zeros(shape=(10, 10)) lock = CounterLock() v = store([a, b], [at, bt], lock=lock, compute=c, return_stored=True) assert all(isinstance(e, Array) for e in v) da.compute(v) # When `return_stored=True` and `compute=False`, # the lock should be acquired only once for store and load steps # as they are fused together into one step. assert lock.acquire_count == lock.release_count if c: assert lock.acquire_count == 2 * nchunks else: assert lock.acquire_count == nchunks def test_store_method_return(): d = da.ones((10, 10), chunks=(2, 2)) a = d + 1 for compute in [False, True]: for return_stored in [False, True]: at = np.zeros(shape=(10, 10)) r = a.store( at, scheduler='threads', compute=compute, return_stored=return_stored ) if return_stored: assert isinstance(r, Array) elif compute: assert r is None else: assert isinstance(r, Delayed) @pytest.mark.xfail(reason="can't lock with multiprocessing") def test_store_multiprocessing_lock(): d = da.ones((10, 10), chunks=(2, 2)) a = d + 1 at = np.zeros(shape=(10, 10)) st = a.store(at, scheduler='processes', num_workers=10) assert st is None def test_to_hdf5(): h5py = pytest.importorskip('h5py') x = da.ones((4, 4), chunks=(2, 2)) y = da.ones(4, chunks=2, dtype='i4') with tmpfile('.hdf5') as fn: x.to_hdf5(fn, '/x') with h5py.File(fn) as f: d = f['/x'] assert_eq(d[:], x) assert d.chunks == (2, 2) with tmpfile('.hdf5') as fn: x.to_hdf5(fn, '/x', chunks=None) with h5py.File(fn) as f: d = f['/x'] assert_eq(d[:], x) assert d.chunks is None with tmpfile('.hdf5') as fn: x.to_hdf5(fn, '/x', chunks=(1, 1)) with h5py.File(fn) as f: d = f['/x'] assert_eq(d[:], x) assert d.chunks == (1, 1) with tmpfile('.hdf5') as fn: da.to_hdf5(fn, {'/x': x, '/y': y}) with h5py.File(fn) as f: assert_eq(f['/x'][:], x) assert f['/x'].chunks == (2, 2) assert_eq(f['/y'][:], y) assert f['/y'].chunks == (2,) def test_to_dask_dataframe(): dd = pytest.importorskip('dask.dataframe') a = da.ones((4,), chunks=(2,)) d = a.to_dask_dataframe() assert isinstance(d, dd.Series) a = da.ones((4, 4), chunks=(2, 2)) d = a.to_dask_dataframe() assert isinstance(d, dd.DataFrame) def test_np_array_with_zero_dimensions(): d = da.ones((4, 4), chunks=(2, 2)) assert_eq(np.array(d.sum()), np.array(d.compute().sum())) def test_dtype_complex(): x = np.arange(24).reshape((4, 6)).astype('f4') y = np.arange(24).reshape((4, 6)).astype('i8') z = np.arange(24).reshape((4, 6)).astype('i2') a = da.from_array(x, chunks=(2, 3)) b = da.from_array(y, chunks=(2, 3)) c = da.from_array(z, chunks=(2, 3)) def assert_eq(a, b): return (isinstance(a, np.dtype) and isinstance(b, np.dtype) and str(a) == str(b)) assert_eq(a.dtype, x.dtype) assert_eq(b.dtype, y.dtype) assert_eq((a + 1).dtype, (x + 1).dtype) assert_eq((a + b).dtype, (x + y).dtype) assert_eq(a.T.dtype, x.T.dtype) assert_eq(a[:3].dtype, x[:3].dtype) assert_eq((a.dot(b.T)).dtype, (x.dot(y.T)).dtype) assert_eq(stack([a, b]).dtype, np.vstack([x, y]).dtype) assert_eq(concatenate([a, b]).dtype, np.concatenate([x, y]).dtype) assert_eq(b.std().dtype, y.std().dtype) assert_eq(c.sum().dtype, z.sum().dtype) assert_eq(a.min().dtype, a.min().dtype) assert_eq(b.std().dtype, b.std().dtype) assert_eq(a.argmin(axis=0).dtype, a.argmin(axis=0).dtype) assert_eq(da.sin(c).dtype, np.sin(z).dtype) assert_eq(da.exp(b).dtype, np.exp(y).dtype) assert_eq(da.floor(a).dtype, np.floor(x).dtype) assert_eq(da.isnan(b).dtype, np.isnan(y).dtype) with ignoring(ImportError): assert da.isnull(b).dtype == 'bool' assert da.notnull(b).dtype == 'bool' x = np.array([('a', 1)], dtype=[('text', 'S1'), ('numbers', 'i4')]) d = da.from_array(x, chunks=(1,)) assert_eq(d['text'].dtype, x['text'].dtype) assert_eq(d[['numbers', 'text']].dtype, x[['numbers', 'text']].dtype) def test_astype(): x = np.ones((5, 5), dtype='f8') d = da.from_array(x, chunks=(2,2)) assert d.astype('i8').dtype == 'i8' assert_eq(d.astype('i8'), x.astype('i8')) assert same_keys(d.astype('i8'), d.astype('i8')) with pytest.raises(TypeError): d.astype('i8', casting='safe') with pytest.raises(TypeError): d.astype('i8', not_a_real_kwarg='foo') # smoketest with kwargs assert_eq(d.astype('i8', copy=False), x.astype('i8', copy=False)) # Check it's a noop assert d.astype('f8') is d def test_arithmetic(): x = np.arange(5).astype('f4') + 2 y = np.arange(5).astype('i8') + 2 z = np.arange(5).astype('i4') + 2 a = da.from_array(x, chunks=(2,)) b = da.from_array(y, chunks=(2,)) c = da.from_array(z, chunks=(2,)) assert_eq(a + b, x + y) assert_eq(a * b, x * y) assert_eq(a - b, x - y) assert_eq(a / b, x / y) assert_eq(b & b, y & y) assert_eq(b | b, y | y) assert_eq(b ^ b, y ^ y) assert_eq(a // b, x // y) assert_eq(a ** b, x ** y) assert_eq(a % b, x % y) assert_eq(a > b, x > y) assert_eq(a < b, x < y) assert_eq(a >= b, x >= y) assert_eq(a <= b, x <= y) assert_eq(a == b, x == y) assert_eq(a != b, x != y) assert_eq(a + 2, x + 2) assert_eq(a * 2, x * 2) assert_eq(a - 2, x - 2) assert_eq(a / 2, x / 2) assert_eq(b & True, y & True) assert_eq(b | True, y | True) assert_eq(b ^ True, y ^ True) assert_eq(a // 2, x // 2) assert_eq(a ** 2, x ** 2) assert_eq(a % 2, x % 2) assert_eq(a > 2, x > 2) assert_eq(a < 2, x < 2) assert_eq(a >= 2, x >= 2) assert_eq(a <= 2, x <= 2) assert_eq(a == 2, x == 2) assert_eq(a != 2, x != 2) assert_eq(2 + b, 2 + y) assert_eq(2 * b, 2 * y) assert_eq(2 - b, 2 - y) assert_eq(2 / b, 2 / y) assert_eq(True & b, True & y) assert_eq(True | b, True | y) assert_eq(True ^ b, True ^ y) assert_eq(2 // b, 2 // y) assert_eq(2 ** b, 2 ** y) assert_eq(2 % b, 2 % y) assert_eq(2 > b, 2 > y) assert_eq(2 < b, 2 < y) assert_eq(2 >= b, 2 >= y) assert_eq(2 <= b, 2 <= y) assert_eq(2 == b, 2 == y) assert_eq(2 != b, 2 != y) assert_eq(-a, -x) assert_eq(abs(a), abs(x)) assert_eq(~(a == b), ~(x == y)) assert_eq(~(a == b), ~(x == y)) assert_eq(da.logaddexp(a, b), np.logaddexp(x, y)) assert_eq(da.logaddexp2(a, b), np.logaddexp2(x, y)) with pytest.warns(None): # Overflow warning assert_eq(da.exp(b), np.exp(y)) assert_eq(da.log(a), np.log(x)) assert_eq(da.log10(a), np.log10(x)) assert_eq(da.log1p(a), np.log1p(x)) with pytest.warns(None): # Overflow warning assert_eq(da.expm1(b), np.expm1(y)) assert_eq(da.sqrt(a), np.sqrt(x)) assert_eq(da.square(a), np.square(x)) assert_eq(da.sin(a), np.sin(x)) assert_eq(da.cos(b), np.cos(y)) assert_eq(da.tan(a), np.tan(x)) assert_eq(da.arcsin(b / 10), np.arcsin(y / 10)) assert_eq(da.arccos(b / 10), np.arccos(y / 10)) assert_eq(da.arctan(b / 10), np.arctan(y / 10)) assert_eq(da.arctan2(b * 10, a), np.arctan2(y * 10, x)) assert_eq(da.hypot(b, a), np.hypot(y, x)) assert_eq(da.sinh(a), np.sinh(x)) with pytest.warns(None): # Overflow warning assert_eq(da.cosh(b), np.cosh(y)) assert_eq(da.tanh(a), np.tanh(x)) assert_eq(da.arcsinh(b * 10), np.arcsinh(y * 10)) assert_eq(da.arccosh(b * 10), np.arccosh(y * 10)) assert_eq(da.arctanh(b / 10), np.arctanh(y / 10)) assert_eq(da.deg2rad(a), np.deg2rad(x)) assert_eq(da.rad2deg(a), np.rad2deg(x)) assert_eq(da.logical_and(a < 1, b < 4), np.logical_and(x < 1, y < 4)) assert_eq(da.logical_or(a < 1, b < 4), np.logical_or(x < 1, y < 4)) assert_eq(da.logical_xor(a < 1, b < 4), np.logical_xor(x < 1, y < 4)) assert_eq(da.logical_not(a < 1), np.logical_not(x < 1)) assert_eq(da.maximum(a, 5 - a), np.maximum(a, 5 - a)) assert_eq(da.minimum(a, 5 - a), np.minimum(a, 5 - a)) assert_eq(da.fmax(a, 5 - a), np.fmax(a, 5 - a)) assert_eq(da.fmin(a, 5 - a), np.fmin(a, 5 - a)) assert_eq(da.isreal(a + 1j * b), np.isreal(x + 1j * y)) assert_eq(da.iscomplex(a + 1j * b), np.iscomplex(x + 1j * y)) assert_eq(da.isfinite(a), np.isfinite(x)) assert_eq(da.isinf(a), np.isinf(x)) assert_eq(da.isnan(a), np.isnan(x)) assert_eq(da.signbit(a - 3), np.signbit(x - 3)) assert_eq(da.copysign(a - 3, b), np.copysign(x - 3, y)) assert_eq(da.nextafter(a - 3, b), np.nextafter(x - 3, y)) with pytest.warns(None): # overflow warning assert_eq(da.ldexp(c, c), np.ldexp(z, z)) assert_eq(da.fmod(a * 12, b), np.fmod(x * 12, y)) assert_eq(da.floor(a * 0.5), np.floor(x * 0.5)) assert_eq(da.ceil(a), np.ceil(x)) assert_eq(da.trunc(a / 2), np.trunc(x / 2)) assert_eq(da.degrees(b), np.degrees(y)) assert_eq(da.radians(a), np.radians(x)) assert_eq(da.rint(a + 0.3), np.rint(x + 0.3)) assert_eq(da.fix(a - 2.5), np.fix(x - 2.5)) assert_eq(da.angle(a + 1j), np.angle(x + 1j)) assert_eq(da.real(a + 1j), np.real(x + 1j)) assert_eq((a + 1j).real, np.real(x + 1j)) assert_eq(da.imag(a + 1j), np.imag(x + 1j)) assert_eq((a + 1j).imag, np.imag(x + 1j)) assert_eq(da.conj(a + 1j * b), np.conj(x + 1j * y)) assert_eq((a + 1j * b).conj(), (x + 1j * y).conj()) assert_eq(da.clip(b, 1, 4), np.clip(y, 1, 4)) assert_eq(b.clip(1, 4), y.clip(1, 4)) assert_eq(da.fabs(b), np.fabs(y)) assert_eq(da.sign(b - 2), np.sign(y - 2)) assert_eq(da.absolute(b - 2), np.absolute(y - 2)) assert_eq(da.absolute(b - 2 + 1j), np.absolute(y - 2 + 1j)) l1, l2 = da.frexp(a) r1, r2 = np.frexp(x) assert_eq(l1, r1) assert_eq(l2, r2) l1, l2 = da.modf(a) r1, r2 = np.modf(x) assert_eq(l1, r1) assert_eq(l2, r2) assert_eq(da.around(a, -1), np.around(x, -1)) def test_elemwise_consistent_names(): a = da.from_array(np.arange(5, dtype='f4'), chunks=(2,)) b = da.from_array(np.arange(5, dtype='f4'), chunks=(2,)) assert same_keys(a + b, a + b) assert same_keys(a + 2, a + 2) assert same_keys(da.exp(a), da.exp(a)) assert same_keys(da.exp(a, dtype='f8'), da.exp(a, dtype='f8')) assert same_keys(da.maximum(a, b), da.maximum(a, b)) def test_optimize(): x = np.arange(5).astype('f4') a = da.from_array(x, chunks=(2,)) expr = a[1:4] + 1 result = optimize(expr.dask, expr.__dask_keys__()) assert isinstance(result, dict) assert all(key in result for key in expr.__dask_keys__()) def test_slicing_with_non_ndarrays(): class ARangeSlice(object): def __init__(self, start, stop): self.start = start self.stop = stop def __array__(self): return np.arange(self.start, self.stop) class ARangeSlicable(object): dtype = np.dtype('i8') def __init__(self, n): self.n = n @property def shape(self): return (self.n,) def __getitem__(self, key): return ARangeSlice(key[0].start, key[0].stop) x = da.from_array(ARangeSlicable(10), chunks=(4,)) assert_eq((x + 1).sum(), (np.arange(10, dtype=x.dtype) + 1).sum()) def test_getter(): assert type(getter(np.matrix([[1]]), 0)) is np.ndarray assert type(getter(np.matrix([[1]]), 0, asarray=False)) is np.matrix assert_eq(getter([1, 2, 3, 4, 5], slice(1, 4)), np.array([2, 3, 4])) assert_eq(getter(np.arange(5), (None, slice(None, None))), np.arange(5)[None, :]) def test_size(): x = da.ones((10, 2), chunks=(3, 1)) assert x.size == np.array(x).size assert isinstance(x.size, int) def test_nbytes(): x = da.ones((10, 2), chunks=(3, 1)) assert x.nbytes == np.array(x).nbytes def test_itemsize(): x = da.ones((10, 2), chunks=(3, 1)) assert x.itemsize == 8 def test_Array_normalizes_dtype(): x = da.ones((3,), chunks=(1,), dtype=int) assert isinstance(x.dtype, np.dtype) def test_from_array_with_lock(): x = np.arange(10) d = da.from_array(x, chunks=5, lock=True) tasks = [v for k, v in d.dask.items() if k[0] == d.name] assert hasattr(tasks[0][4], 'acquire') assert len(set(task[4] for task in tasks)) == 1 assert_eq(d, x) lock = Lock() e = da.from_array(x, chunks=5, lock=lock) f = da.from_array(x, chunks=5, lock=lock) assert_eq(e + f, x + x) class MyArray(object): def __init__(self, x): self.x = x self.dtype = x.dtype self.shape = x.shape self.ndim = len(x.shape) def __getitem__(self, i): return self.x[i] @pytest.mark.parametrize('x,chunks', [ (np.arange(25).reshape((5, 5)), (5, 5)), (np.arange(25).reshape((5, 5)), -1), (np.array([[1]]), 1), (np.array(1), 1), ]) def test_from_array_tasks_always_call_getter(x, chunks): dx = da.from_array(MyArray(x), chunks=chunks, asarray=False) assert_eq(x, dx) def test_from_array_ndarray_onechunk(): """ndarray with a single chunk produces a minimal single key dict """ x = np.array([[1, 2], [3, 4]]) dx = da.from_array(x, chunks=-1) assert_eq(x, dx) assert len(dx.dask) == 1 assert dx.dask[dx.name, 0, 0] is x def test_from_array_ndarray_getitem(): """For ndarray, don't use getter / getter_nofancy; use the cleaner operator.getitem""" x = np.array([[1, 2], [3, 4]]) dx = da.from_array(x, chunks=(1, 2)) assert_eq(x, dx) assert dx.dask[dx.name, 0, 0][0] == operator.getitem @pytest.mark.parametrize( 'x', [[1, 2], (1, 2), memoryview(b'abc')] + ([buffer(b'abc')] if sys.version_info[0] == 2 else [])) # noqa: F821 def test_from_array_list(x): """Lists, tuples, and memoryviews are automatically converted to ndarray """ dx = da.from_array(x, chunks=-1) assert_eq(np.array(x), dx) assert isinstance(dx.dask[dx.name, 0], np.ndarray) dx = da.from_array(x, chunks=1) assert_eq(np.array(x), dx) assert dx.dask[dx.name, 0][0] == operator.getitem assert isinstance(dx.dask[dx.name.replace('array', 'array-original')], np.ndarray) @pytest.mark.parametrize( 'type_', [t for t in np.ScalarType if t not in [memoryview] + ([buffer] if sys.version_info[0] == 2 else [])]) # noqa: F821 def test_from_array_scalar(type_): """Python and numpy scalars are automatically converted to ndarray """ if type_ == np.datetime64: x = np.datetime64('2000-01-01') else: x = type_(1) dx = da.from_array(x, chunks=-1) assert_eq(np.array(x), dx) assert isinstance(dx.dask[dx.name, ], np.ndarray) @pytest.mark.parametrize('asarray,cls', [ (True, np.ndarray), (False, np.matrix), ]) def test_from_array_no_asarray(asarray, cls): def assert_chunks_are_of_type(x): chunks = compute_as_if_collection(Array, x.dask, x.__dask_keys__()) for c in concat(chunks): assert type(c) is cls x = np.matrix(np.arange(100).reshape((10, 10))) dx = da.from_array(x, chunks=(5, 5), asarray=asarray) assert_chunks_are_of_type(dx) assert_chunks_are_of_type(dx[0:5]) assert_chunks_are_of_type(dx[0:5][:, 0]) def test_from_array_getitem(): x = np.arange(10) def my_getitem(x, ind): return x[ind] y = da.from_array(x, chunks=(5,), getitem=my_getitem) for k, v in y.dask.items(): if isinstance(v, tuple): assert v[0] is my_getitem assert_eq(x, y) def test_from_array_minus_one(): x = np.arange(10) y = da.from_array(x, -1) assert y.chunks == ((10,),) assert_eq(x, y) def test_from_array_copy(): # Regression test for https://github.com/dask/dask/issues/3751 x = np.arange(10) y = da.from_array(x, -1) assert y.npartitions == 1 y_c = y.copy() assert y is not y_c assert y.compute() is not y_c.compute() def test_asarray(): assert_eq(da.asarray([1, 2, 3]), np.asarray([1, 2, 3])) x = da.asarray([1, 2, 3]) assert da.asarray(x) is x def test_asarray_h5py(): h5py = pytest.importorskip('h5py') with tmpfile('.hdf5') as fn: with h5py.File(fn) as f: d = f.create_dataset('/x', shape=(2, 2), dtype=float) x = da.asarray(d) assert d in x.dask.values() assert not any(isinstance(v, np.ndarray) for v in x.dask.values()) def test_asanyarray(): x = np.matrix([1, 2, 3]) dx = da.asanyarray(x) assert dx.numblocks == (1, 1) chunks = compute_as_if_collection(Array, dx.dask, dx.__dask_keys__()) assert isinstance(chunks[0][0], np.matrix) assert da.asanyarray(dx) is dx def test_from_func(): x = np.arange(10) f = lambda n: n * x d = from_func(f, (10,), x.dtype, kwargs={'n': 2}) assert d.shape == x.shape assert d.dtype == x.dtype assert_eq(d.compute(), 2 * x) assert same_keys(d, from_func(f, (10,), x.dtype, kwargs={'n': 2})) def test_concatenate3_2(): x = np.array([1, 2]) assert_eq(concatenate3([x, x, x]), np.array([1, 2, 1, 2, 1, 2])) x = np.array([[1, 2]]) assert (concatenate3([[x, x, x], [x, x, x]]) == np.array([[1, 2, 1, 2, 1, 2], [1, 2, 1, 2, 1, 2]])).all() assert (concatenate3([[x, x], [x, x], [x, x]]) == np.array([[1, 2, 1, 2], [1, 2, 1, 2], [1, 2, 1, 2]])).all() x = np.arange(12).reshape((2, 2, 3)) assert_eq(concatenate3([[[x, x, x], [x, x, x]], [[x, x, x], [x, x, x]]]), np.array([[[ 0, 1, 2, 0, 1, 2, 0, 1, 2], [ 3, 4, 5, 3, 4, 5, 3, 4, 5], [ 0, 1, 2, 0, 1, 2, 0, 1, 2], [ 3, 4, 5, 3, 4, 5, 3, 4, 5]], [[ 6, 7, 8, 6, 7, 8, 6, 7, 8], [ 9, 10, 11, 9, 10, 11, 9, 10, 11], [ 6, 7, 8, 6, 7, 8, 6, 7, 8], [ 9, 10, 11, 9, 10, 11, 9, 10, 11]], [[ 0, 1, 2, 0, 1, 2, 0, 1, 2], [ 3, 4, 5, 3, 4, 5, 3, 4, 5], [ 0, 1, 2, 0, 1, 2, 0, 1, 2], [ 3, 4, 5, 3, 4, 5, 3, 4, 5]], [[ 6, 7, 8, 6, 7, 8, 6, 7, 8], [ 9, 10, 11, 9, 10, 11, 9, 10, 11], [ 6, 7, 8, 6, 7, 8, 6, 7, 8], [ 9, 10, 11, 9, 10, 11, 9, 10, 11]]])) def test_map_blocks3(): x = np.arange(10) y = np.arange(10) * 2 d = da.from_array(x, chunks=5) e = da.from_array(y, chunks=5) assert_eq(da.core.map_blocks(lambda a, b: a + 2 * b, d, e, dtype=d.dtype), x + 2 * y) z = np.arange(100).reshape((10, 10)) f = da.from_array(z, chunks=5) func = lambda a, b: a + 2 * b res = da.core.map_blocks(func, d, f, dtype=d.dtype) assert_eq(res, x + 2 * z) assert same_keys(da.core.map_blocks(func, d, f, dtype=d.dtype), res) assert_eq(da.map_blocks(func, f, d, dtype=d.dtype), z + 2 * x) def test_from_array_with_missing_chunks(): x = np.random.randn(2, 4, 3) d = da.from_array(x, chunks=(None, 2, None)) assert d.chunks == da.from_array(x, chunks=(2, 2, 3)).chunks def test_normalize_chunks(): assert normalize_chunks(3, (4, 6)) == ((3, 1), (3, 3)) assert normalize_chunks(((3, 3), (8,)), (6, 8)) == ((3, 3), (8, )) assert normalize_chunks((4, 5), (9,)) == ((4, 5), ) assert normalize_chunks((4, 5), (9, 9)) == ((4, 4, 1), (5, 4)) assert normalize_chunks(-1, (5, 5)) == ((5,), (5, )) assert normalize_chunks((3, -1), (5, 5)) == ((3, 2), (5, )) assert normalize_chunks({0: 3}, (5, 5)) == ((3, 2), (5,)) assert normalize_chunks([[2, 2], [3, 3]]) == ((2, 2), (3, 3)) assert normalize_chunks(10, (30, 5)), ((10, 10, 10), (5,)) assert normalize_chunks((), (0, 0)), ((0,), (0,)) assert normalize_chunks(-1, (0, 3)), ((0,), (3,)) assert normalize_chunks("auto", shape=(20,), limit=5, dtype='uint8') == \ ((5, 5, 5, 5),) with pytest.raises(ValueError): normalize_chunks(((10,), ), (11, )) with pytest.raises(ValueError): normalize_chunks(((5, ), (5, )), (5, )) def test_align_chunks_to_previous_chunks(): chunks = normalize_chunks('auto', shape=(2000,), previous_chunks=(512,), limit='600 B', dtype=np.uint8) assert chunks == ((512, 512, 512, 2000 - 512 * 3),) chunks = normalize_chunks('auto', shape=(2000,), previous_chunks=(128,), limit='600 B', dtype=np.uint8) assert chunks == ((512, 512, 512, 2000 - 512 * 3),) chunks = normalize_chunks('auto', shape=(2000,), previous_chunks=(512,), limit='1200 B', dtype=np.uint8) assert chunks == ((1024, 2000 - 1024),) chunks = normalize_chunks('auto', shape=(3, 10211, 10376), previous_chunks=(1, 512, 512), limit='1MiB', dtype=np.float32) assert chunks[0] == (1, 1, 1) assert all(c % 512 == 0 for c in chunks[1][:-1]) assert all(c % 512 == 0 for c in chunks[2][:-1]) def test_raise_on_no_chunks(): x = da.ones(6, chunks=3) try: Array(x.dask, x.name, chunks=None, dtype=x.dtype, shape=None) assert False except ValueError as e: assert "dask.pydata.org" in str(e) pytest.raises(ValueError, lambda: da.ones(6)) def test_chunks_is_immutable(): x = da.ones(6, chunks=3) try: x.chunks = 2 assert False except TypeError as e: assert 'rechunk(2)' in str(e) def test_raise_on_bad_kwargs(): x = da.ones(5, chunks=3) try: da.minimum(x, foo=None) except TypeError as e: assert 'minimum' in str(e) assert 'foo' in str(e) def test_long_slice(): x = np.arange(10000) d = da.from_array(x, chunks=1) assert_eq(d[8000:8200], x[8000:8200]) def test_h5py_newaxis(): h5py = pytest.importorskip('h5py') with tmpfile('h5') as fn: with h5py.File(fn) as f: x = f.create_dataset('/x', shape=(10, 10), dtype='f8') d = da.from_array(x, chunks=(5, 5)) assert d[None, :, :].compute(scheduler='sync').shape == (1, 10, 10) assert d[:, None, :].compute(scheduler='sync').shape == (10, 1, 10) assert d[:, :, None].compute(scheduler='sync').shape == (10, 10, 1) assert same_keys(d[:, :, None], d[:, :, None]) def test_ellipsis_slicing(): assert_eq(da.ones(4, chunks=2)[...], np.ones(4)) def test_point_slicing(): x = np.arange(56).reshape((7, 8)) d = da.from_array(x, chunks=(3, 4)) result = d.vindex[[1, 2, 5, 5], [3, 1, 6, 1]] assert_eq(result, x[[1, 2, 5, 5], [3, 1, 6, 1]]) result = d.vindex[[0, 1, 6, 0], [0, 1, 0, 7]] assert_eq(result, x[[0, 1, 6, 0], [0, 1, 0, 7]]) assert same_keys(result, d.vindex[[0, 1, 6, 0], [0, 1, 0, 7]]) def test_point_slicing_with_full_slice(): from dask.array.core import _vindex_transpose, _get_axis x = np.arange(4 * 5 * 6 * 7).reshape((4, 5, 6, 7)) d = da.from_array(x, chunks=(2, 3, 3, 4)) inds = [[[1, 2, 3], None, [3, 2, 1], [5, 3, 4]], [[1, 2, 3], None, [4, 3, 2], None], [[1, 2, 3], [3, 2, 1]], [[1, 2, 3], [3, 2, 1], [3, 2, 1], [5, 3, 4]], [[], [], [], None], [np.array([1, 2, 3]), None, np.array([4, 3, 2]), None], [None, None, [1, 2, 3], [4, 3, 2]], [None, [0, 2, 3], None, [0, 3, 2]]] for ind in inds: slc = [i if isinstance(i, (np.ndarray, list)) else slice(None, None) for i in ind] result = d.vindex[tuple(slc)] # Rotate the expected result accordingly axis = _get_axis(ind) expected = _vindex_transpose(x[tuple(slc)], axis) assert_eq(result, expected) # Always have the first axis be the length of the points k = len(next(i for i in ind if isinstance(i, (np.ndarray, list)))) assert result.shape[0] == k def test_slice_with_floats(): d = da.ones((5,), chunks=(3,)) with pytest.raises(IndexError): d[1.5] with pytest.raises(IndexError): d[0:1.5] with pytest.raises(IndexError): d[[1, 1.5]] def test_slice_with_integer_types(): x = np.arange(10) dx = da.from_array(x, chunks=5) inds = np.array([0, 3, 6], dtype='u8') assert_eq(dx[inds], x[inds]) assert_eq(dx[inds.astype('u4')], x[inds.astype('u4')]) inds = np.array([0, 3, 6], dtype=np.int64) assert_eq(dx[inds], x[inds]) assert_eq(dx[inds.astype('u4')], x[inds.astype('u4')]) def test_index_with_integer_types(): x = np.arange(10) dx = da.from_array(x, chunks=5) inds = int(3) assert_eq(dx[inds], x[inds]) inds = np.int64(3) assert_eq(dx[inds], x[inds]) def test_vindex_basic(): x = np.arange(56).reshape((7, 8)) d = da.from_array(x, chunks=(3, 4)) # cases where basic and advanced indexing coincide result = d.vindex[0] assert_eq(result, x[0]) result = d.vindex[0, 1] assert_eq(result, x[0, 1]) result = d.vindex[[0, 1], ::-1] # slices last assert_eq(result, x[:2, ::-1]) def test_vindex_nd(): x = np.arange(56).reshape((7, 8)) d = da.from_array(x, chunks=(3, 4)) result = d.vindex[[[0, 1], [6, 0]], [[0, 1], [0, 7]]] assert_eq(result, x[[[0, 1], [6, 0]], [[0, 1], [0, 7]]]) result = d.vindex[np.arange(7)[:, None], np.arange(8)[None, :]] assert_eq(result, x) result = d.vindex[np.arange(7)[None, :], np.arange(8)[:, None]] assert_eq(result, x.T) def test_vindex_negative(): x = np.arange(10) d = da.from_array(x, chunks=(5, 5)) result = d.vindex[np.array([0, -1])] assert_eq(result, x[np.array([0, -1])]) def test_vindex_errors(): d = da.ones((5, 5, 5), chunks=(3, 3, 3)) pytest.raises(IndexError, lambda: d.vindex[np.newaxis]) pytest.raises(IndexError, lambda: d.vindex[[1, 2], [1, 2, 3]]) pytest.raises(IndexError, lambda: d.vindex[[True] * 5]) pytest.raises(IndexError, lambda: d.vindex[[0], [5]]) pytest.raises(IndexError, lambda: d.vindex[[0], [-6]]) def test_vindex_merge(): from dask.array.core import _vindex_merge locations = [1], [2, 0] values = [np.array([[1, 2, 3]]), np.array([[10, 20, 30], [40, 50, 60]])] assert (_vindex_merge(locations, values) == np.array([[40, 50, 60], [1, 2, 3], [10, 20, 30]])).all() def test_vindex_identity(): rng = da.random.RandomState(42) a, b = 10, 20 x = rng.random(a, chunks=a // 2) assert x is x.vindex[:] assert x is x.vindex[:a] pytest.raises(IndexError, lambda: x.vindex[:a - 1]) pytest.raises(IndexError, lambda: x.vindex[1:]) pytest.raises(IndexError, lambda: x.vindex[0:a:2]) x = rng.random((a, b), chunks=(a // 2, b // 2)) assert x is x.vindex[:, :] assert x is x.vindex[:a, :b] pytest.raises(IndexError, lambda: x.vindex[:, :b - 1]) pytest.raises(IndexError, lambda: x.vindex[:, 1:]) pytest.raises(IndexError, lambda: x.vindex[:, 0:b:2]) def test_empty_array(): assert_eq(np.arange(0), da.arange(0, chunks=5)) def test_memmap(): with tmpfile('npy') as fn_1: with tmpfile('npy') as fn_2: try: x = da.arange(100, chunks=15) target = np.memmap(fn_1, shape=x.shape, mode='w+', dtype=x.dtype) x.store(target) assert_eq(target, x) np.save(fn_2, target) assert_eq(np.load(fn_2, mmap_mode='r'), x) finally: target._mmap.close() def test_to_npy_stack(): x = np.arange(5 * 10 * 10).reshape((5, 10, 10)) d = da.from_array(x, chunks=(2, 4, 4)) with tmpdir() as dirname: stackdir = os.path.join(dirname, 'test') da.to_npy_stack(stackdir, d, axis=0) assert os.path.exists(os.path.join(stackdir, '0.npy')) assert (np.load(os.path.join(stackdir, '1.npy')) == x[2:4]).all() e = da.from_npy_stack(stackdir) assert_eq(d, e) def test_view(): x = np.arange(56).reshape((7, 8)) d = da.from_array(x, chunks=(2, 3)) assert_eq(x.view('i4'), d.view('i4')) assert_eq(x.view('i2'), d.view('i2')) assert all(isinstance(s, int) for s in d.shape) x = np.arange(8, dtype='i1') d = da.from_array(x, chunks=(4,)) assert_eq(x.view('i4'), d.view('i4')) with pytest.raises(ValueError): x = np.arange(8, dtype='i1') d = da.from_array(x, chunks=(3,)) d.view('i4') with pytest.raises(ValueError): d.view('i4', order='asdf') def test_view_fortran(): x = np.asfortranarray(np.arange(64).reshape((8, 8))) d = da.from_array(x, chunks=(2, 3)) assert_eq(x.T.view('i4').T, d.view('i4', order='F')) assert_eq(x.T.view('i2').T, d.view('i2', order='F')) def test_h5py_tokenize(): h5py = pytest.importorskip('h5py') with tmpfile('hdf5') as fn1: with tmpfile('hdf5') as fn2: f = h5py.File(fn1) g = h5py.File(fn2) f['x'] = np.arange(10).astype(float) g['x'] = np.ones(10).astype(float) x1 = f['x'] x2 = g['x'] assert tokenize(x1) != tokenize(x2) def test_map_blocks_with_changed_dimension(): x = np.arange(56).reshape((7, 8)) d = da.from_array(x, chunks=(7, 4)) e = d.map_blocks(lambda b: b.sum(axis=0), chunks=(4,), drop_axis=0, dtype=d.dtype) assert e.chunks == ((4, 4),) assert_eq(e, x.sum(axis=0)) # Provided chunks have wrong shape with pytest.raises(ValueError): d.map_blocks(lambda b: b.sum(axis=0), chunks=(7, 4), drop_axis=0) with pytest.raises(ValueError): d.map_blocks(lambda b: b.sum(axis=0), chunks=((4, 4, 4),), drop_axis=0) # Can't drop axis with more than 1 block with pytest.raises(ValueError): d.map_blocks(lambda b: b.sum(axis=1), drop_axis=1, dtype=d.dtype) # Adding axis with a gap with pytest.raises(ValueError): d.map_blocks(lambda b: b, new_axis=(3, 4)) d = da.from_array(x, chunks=(4, 8)) e = d.map_blocks(lambda b: b.sum(axis=1), drop_axis=1, dtype=d.dtype) assert e.chunks == ((4, 3),) assert_eq(e, x.sum(axis=1)) x = np.arange(64).reshape((8, 8)) d = da.from_array(x, chunks=(4, 4)) e = d.map_blocks(lambda b: b[None, :, :, None], chunks=(1, 4, 4, 1), new_axis=[0, 3], dtype=d.dtype) assert e.chunks == ((1,), (4, 4), (4, 4), (1,)) assert_eq(e, x[None, :, :, None]) e = d.map_blocks(lambda b: b[None, :, :, None], new_axis=[0, 3], dtype=d.dtype) assert e.chunks == ((1,), (4, 4), (4, 4), (1,)) assert_eq(e, x[None, :, :, None]) # Both new_axis and drop_axis d = da.from_array(x, chunks=(8, 4)) e = d.map_blocks(lambda b: b.sum(axis=0)[:, None, None], drop_axis=0, new_axis=(1, 2), dtype=d.dtype) assert e.chunks == ((4, 4), (1,), (1,)) assert_eq(e, x.sum(axis=0)[:, None, None]) d = da.from_array(x, chunks=(4, 8)) e = d.map_blocks(lambda b: b.sum(axis=1)[:, None, None], drop_axis=1, new_axis=(1, 2), dtype=d.dtype) assert e.chunks == ((4, 4), (1,), (1,)) assert_eq(e, x.sum(axis=1)[:, None, None]) def test_broadcast_chunks(): assert broadcast_chunks() == () assert broadcast_chunks(((2, 3),)) == ((2, 3),) assert broadcast_chunks(((5, 5),), ((5, 5),)) == ((5, 5),) a = ((10, 10, 10), (5, 5),) b = ((5, 5),) assert broadcast_chunks(a, b) == ((10, 10, 10), (5, 5),) assert broadcast_chunks(b, a) == ((10, 10, 10), (5, 5),) a = ((10, 10, 10), (5, 5),) b = ((1,), (5, 5),) assert broadcast_chunks(a, b) == ((10, 10, 10), (5, 5),) a = ((10, 10, 10), (5, 5),) b = ((3, 3,), (5, 5),) with pytest.raises(ValueError): broadcast_chunks(a, b) a = ((1,), (5, 5),) b = ((1,), (5, 5),) assert broadcast_chunks(a, b) == a a = ((1,), (np.nan, np.nan, np.nan),) b = ((3, 3), (1,),) r = broadcast_chunks(a, b) assert r[0] == b[0] and np.allclose(r[1], a[1], equal_nan=True) a = ((3, 3), (1,),) b = ((1,), (np.nan, np.nan, np.nan),) r = broadcast_chunks(a, b) assert r[0] == a[0] and np.allclose(r[1], b[1], equal_nan=True) a = ((3, 3,), (5, 5),) b = ((1,), (np.nan, np.nan, np.nan),) with pytest.raises(ValueError): broadcast_chunks(a, b) def test_chunks_error(): x = np.ones((10, 10)) with pytest.raises(ValueError): da.from_array(x, chunks=(5,)) def test_array_compute_forward_kwargs(): x = da.arange(10, chunks=2).sum() x.compute(bogus_keyword=10) def test_dont_fuse_outputs(): dsk = {('x', 0): np.array([1, 2]), ('x', 1): (inc, ('x', 0))} a = da.Array(dsk, 'x', chunks=(2,), shape=(4,), dtype=np.array([1]).dtype) assert_eq(a, np.array([1, 2, 2, 3], dtype=a.dtype)) def test_dont_dealias_outputs(): dsk = {('x', 0, 0): np.ones((2, 2)), ('x', 0, 1): np.ones((2, 2)), ('x', 1, 0): np.ones((2, 2)), ('x', 1, 1): ('x', 0, 0)} a = da.Array(dsk, 'x', chunks=(2, 2), shape=(4, 4), dtype=np.ones(1).dtype) assert_eq(a, np.ones((4, 4))) def test_timedelta_op(): x = np.array([np.timedelta64(10, 'h')]) y = np.timedelta64(1, 'h') a = da.from_array(x, chunks=(1,)) / y assert a.compute() == x / y def test_to_delayed(): x = da.random.random((4, 4), chunks=(2, 2)) y = x + 10 [[a, b], [c, d]] = y.to_delayed() assert_eq(a.compute(), y[:2, :2]) s = 2 x = da.from_array(np.array(s), chunks=0) a = x.to_delayed()[tuple()] assert a.compute() == s def test_to_delayed_optimize_graph(): x = da.ones((4, 4), chunks=(2, 2)) y = x[1:][1:][1:][:, 1:][:, 1:][:, 1:] # optimizations d = y.to_delayed().flatten().tolist()[0] assert len([k for k in d.dask if k[0].startswith('getitem')]) == 1 # no optimizations d2 = y.to_delayed(optimize_graph=False).flatten().tolist()[0] assert dict(d2.dask) == dict(y.dask) assert (d.compute() == d2.compute()).all() def test_cumulative(): x = da.arange(20, chunks=5) assert_eq(x.cumsum(axis=0), np.arange(20).cumsum()) assert_eq(x.cumprod(axis=0), np.arange(20).cumprod()) assert_eq(da.nancumsum(x, axis=0), nancumsum(np.arange(20))) assert_eq(da.nancumprod(x, axis=0), nancumprod(np.arange(20))) a = np.random.random((20)) rs = np.random.RandomState(0) a[rs.rand(*a.shape) < 0.5] = np.nan x = da.from_array(a, chunks=5) assert_eq(da.nancumsum(x, axis=0), nancumsum(a)) assert_eq(da.nancumprod(x, axis=0), nancumprod(a)) a = np.random.random((20, 24)) x = da.from_array(a, chunks=(6, 5)) assert_eq(x.cumsum(axis=0), a.cumsum(axis=0)) assert_eq(x.cumsum(axis=1), a.cumsum(axis=1)) assert_eq(x.cumprod(axis=0), a.cumprod(axis=0)) assert_eq(x.cumprod(axis=1), a.cumprod(axis=1)) assert_eq(da.nancumsum(x, axis=0), nancumsum(a, axis=0)) assert_eq(da.nancumsum(x, axis=1), nancumsum(a, axis=1)) assert_eq(da.nancumprod(x, axis=0), nancumprod(a, axis=0)) assert_eq(da.nancumprod(x, axis=1), nancumprod(a, axis=1)) a = np.random.random((20, 24)) rs = np.random.RandomState(0) a[rs.rand(*a.shape) < 0.5] = np.nan x = da.from_array(a, chunks=(6, 5)) assert_eq(da.nancumsum(x, axis=0), nancumsum(a, axis=0)) assert_eq(da.nancumsum(x, axis=1), nancumsum(a, axis=1)) assert_eq(da.nancumprod(x, axis=0), nancumprod(a, axis=0)) assert_eq(da.nancumprod(x, axis=1), nancumprod(a, axis=1)) a = np.random.random((20, 24, 13)) x = da.from_array(a, chunks=(6, 5, 4)) for axis in [0, 1, 2, -1, -2, -3]: assert_eq(x.cumsum(axis=axis), a.cumsum(axis=axis)) assert_eq(x.cumprod(axis=axis), a.cumprod(axis=axis)) assert_eq(da.nancumsum(x, axis=axis), nancumsum(a, axis=axis)) assert_eq(da.nancumprod(x, axis=axis), nancumprod(a, axis=axis)) a = np.random.random((20, 24, 13)) rs = np.random.RandomState(0) a[rs.rand(*a.shape) < 0.5] = np.nan x = da.from_array(a, chunks=(6, 5, 4)) for axis in [0, 1, 2, -1, -2, -3]: assert_eq(da.nancumsum(x, axis=axis), nancumsum(a, axis=axis)) assert_eq(da.nancumprod(x, axis=axis), nancumprod(a, axis=axis)) with pytest.raises(ValueError): x.cumsum(axis=3) with pytest.raises(ValueError): x.cumsum(axis=-4) def test_atop_names(): x = da.ones(5, chunks=(2,)) y = atop(add, 'i', x, 'i', dtype=x.dtype) assert y.name.startswith('add') def test_atop_new_axes(): def f(x): return x[:, None] * np.ones((1, 7)) x = da.ones(5, chunks=2) y = atop(f, 'aq', x, 'a', new_axes={'q': 7}, concatenate=True, dtype=x.dtype) assert y.chunks == ((2, 2, 1), (7,)) assert_eq(y, np.ones((5, 7))) def f(x): return x[None, :] * np.ones((7, 1)) x = da.ones(5, chunks=2) y = atop(f, 'qa', x, 'a', new_axes={'q': 7}, concatenate=True, dtype=x.dtype) assert y.chunks == ((7,), (2, 2, 1)) assert_eq(y, np.ones((7, 5))) def f(x): y = x.sum(axis=1) return y[:, None] * np.ones((1, 5)) x = da.ones((4, 6), chunks=(2, 2)) y = atop(f, 'aq', x, 'ab', new_axes={'q': 5}, concatenate=True, dtype=x.dtype) assert y.chunks == ((2, 2), (5,)) assert_eq(y, np.ones((4, 5)) * 6) def test_atop_kwargs(): def f(a, b=0): return a + b x = da.ones(5, chunks=(2,)) y = atop(f, 'i', x, 'i', b=10, dtype=x.dtype) assert_eq(y, np.ones(5) + 10) def test_atop_chunks(): x = da.ones((5, 5), chunks=((2, 1, 2), (3, 2))) def double(a, axis=0): return np.concatenate([a, a], axis=axis) y = atop(double, 'ij', x, 'ij', adjust_chunks={'i': lambda n: 2 * n}, axis=0, dtype=x.dtype) assert y.chunks == ((4, 2, 4), (3, 2)) assert_eq(y, np.ones((10, 5))) y = atop(double, 'ij', x, 'ij', adjust_chunks={'j': lambda n: 2 * n}, axis=1, dtype=x.dtype) assert y.chunks == ((2, 1, 2), (6, 4)) assert_eq(y, np.ones((5, 10))) x = da.ones((10, 10), chunks=(5, 5)) y = atop(double, 'ij', x, 'ij', axis=0, adjust_chunks={'i': 10}, dtype=x.dtype) assert y.chunks == ((10, 10), (5, 5)) assert_eq(y, np.ones((20, 10))) y = atop(double, 'ij', x, 'ij', axis=0, adjust_chunks={'i': (10, 10)}, dtype=x.dtype) assert y.chunks == ((10, 10), (5, 5)) assert_eq(y, np.ones((20, 10))) def test_atop_raises_on_incorrect_indices(): x = da.arange(5, chunks=3) with pytest.raises(ValueError) as info: da.atop(lambda x: x, 'ii', x, 'ii', dtype=int) assert 'ii' in str(info.value) assert '1' in str(info.value) def test_from_delayed(): v = delayed(np.ones)((5, 3)) x = from_delayed(v, shape=(5, 3), dtype=np.ones(0).dtype) assert isinstance(x, Array) assert_eq(x, np.ones((5, 3))) def test_A_property(): x = da.ones(5, chunks=(2,)) assert x.A is x def test_copy_mutate(): x = da.arange(5, chunks=(2,)) y = x.copy() memo = {} y2 = copy.deepcopy(x, memo=memo) x[x % 2 == 0] = -1 xx = np.arange(5) xx[xx % 2 == 0] = -1 assert_eq(x, xx) assert_eq(y, np.arange(5)) assert_eq(y2, np.arange(5)) assert memo[id(x)] is y2 def test_npartitions(): assert da.ones(5, chunks=(2,)).npartitions == 3 assert da.ones((5, 5), chunks=(2, 3)).npartitions == 6 def test_astype_gh1151(): a = np.arange(5).astype(np.int32) b = da.from_array(a, (1,)) assert_eq(a.astype(np.int16), b.astype(np.int16)) def test_elemwise_name(): assert (da.ones(5, chunks=2) + 1).name.startswith('add-') def test_map_blocks_name(): assert da.ones(5, chunks=2).map_blocks(inc).name.startswith('inc-') def test_from_array_names(): pytest.importorskip('distributed') x = np.ones(10) d = da.from_array(x, chunks=2) names = countby(key_split, d.dask) assert set(names.values()) == set([1, 5]) def test_array_picklable(): from pickle import loads, dumps a = da.arange(100, chunks=25) a2 = loads(dumps(a)) assert_eq(a, a2) def test_from_array_raises_on_bad_chunks(): x = np.ones(10) with pytest.raises(ValueError): da.from_array(x, chunks=(5, 5, 5)) # with pytest.raises(ValueError): # da.from_array(x, chunks=100) with pytest.raises(ValueError): da.from_array(x, chunks=((5, 5, 5),)) def test_concatenate_axes(): x = np.ones((2, 2, 2)) assert_eq(concatenate_axes([x, x], axes=[0]), np.ones((4, 2, 2))) assert_eq(concatenate_axes([x, x, x], axes=[0]), np.ones((6, 2, 2))) assert_eq(concatenate_axes([x, x], axes=[1]), np.ones((2, 4, 2))) assert_eq(concatenate_axes([[x, x], [x, x]], axes=[0, 1]), np.ones((4, 4, 2))) assert_eq(concatenate_axes([[x, x], [x, x]], axes=[0, 2]), np.ones((4, 2, 4))) assert_eq(concatenate_axes([[x, x, x], [x, x, x]], axes=[1, 2]), np.ones((2, 4, 6))) with pytest.raises(ValueError): concatenate_axes([[x, x], [x, x]], axes=[0]) # not all nested lists accounted for with pytest.raises(ValueError): concatenate_axes([x, x], axes=[0, 1, 2, 3]) # too many axes def test_atop_concatenate(): x = da.ones((4, 4, 4), chunks=(2, 2, 2)) y = da.ones((4, 4), chunks=(2, 2)) def f(a, b): assert isinstance(a, np.ndarray) assert isinstance(b, np.ndarray) assert a.shape == (2, 4, 4) assert b.shape == (4, 4) return (a + b).sum(axis=(1, 2)) z = atop(f, 'i', x, 'ijk', y, 'jk', concatenate=True, dtype=x.dtype) assert_eq(z, np.ones(4) * 32) z = atop(add, 'ij', y, 'ij', y, 'ij', concatenate=True, dtype=x.dtype) assert_eq(z, np.ones((4, 4)) * 2) def f(a, b, c): assert isinstance(a, np.ndarray) assert isinstance(b, np.ndarray) assert isinstance(c, np.ndarray) assert a.shape == (4, 2, 4) assert b.shape == (4, 4) assert c.shape == (4, 2) return np.ones(5) z = atop(f, 'j', x, 'ijk', y, 'ki', y, 'ij', concatenate=True, dtype=x.dtype) assert_eq(z, np.ones(10), check_shape=False) def test_common_blockdim(): assert common_blockdim([(5,), (5,)]) == (5,) assert common_blockdim([(5,), (2, 3,)]) == (2, 3) assert common_blockdim([(5, 5), (2, 3, 5)]) == (2, 3, 5) assert common_blockdim([(5, 5), (2, 3, 5)]) == (2, 3, 5) assert common_blockdim([(5, 2, 3), (2, 3, 5)]) == (2, 3, 2, 3) assert common_blockdim([(1, 2), (2, 1)]) == (1, 1, 1) assert common_blockdim([(1, 2, 2), (2, 1, 2), (2, 2, 1)]) == (1, 1, 1, 1, 1) def test_uneven_chunks_that_fit_neatly(): x = da.arange(10, chunks=((5, 5),)) y = da.ones(10, chunks=((5, 2, 3),)) assert_eq(x + y, np.arange(10) + np.ones(10)) z = x + y assert z.chunks == ((5, 2, 3),) def test_elemwise_uneven_chunks(): x = da.arange(10, chunks=((4, 6),)) y = da.ones(10, chunks=((6, 4),)) assert_eq(x + y, np.arange(10) + np.ones(10)) z = x + y assert z.chunks == ((4, 2, 4),) x = da.random.random((10, 10), chunks=((4, 6), (5, 2, 3))) y = da.random.random((4, 10, 10), chunks=((2, 2), (6, 4), (2, 3, 5))) z = x + y assert_eq(x + y, x.compute() + y.compute()) assert z.chunks == ((2, 2), (4, 2, 4), (2, 3, 2, 3)) def test_uneven_chunks_atop(): x = da.random.random((10, 10), chunks=((2, 3, 2, 3), (5, 5))) y = da.random.random((10, 10), chunks=((4, 4, 2), (4, 2, 4))) z = atop(np.dot, 'ik', x, 'ij', y, 'jk', dtype=x.dtype, concatenate=True) assert z.chunks == (x.chunks[0], y.chunks[1]) assert_eq(z, x.compute().dot(y)) def test_warn_bad_rechunking(): x = da.ones((20, 20), chunks=(20, 1)) y = da.ones((20, 20), chunks=(1, 20)) with warnings.catch_warnings(record=True) as record: x + y assert record assert '20' in record[0].message.args[0] def test_optimize_fuse_keys(): x = da.ones(10, chunks=(5,)) y = x + 1 z = y + 1 dsk = z.__dask_optimize__(z.dask, z.__dask_keys__()) assert not set(y.dask) & set(dsk) dsk = z.__dask_optimize__(z.dask, z.__dask_keys__(), fuse_keys=y.__dask_keys__()) assert all(k in dsk for k in y.__dask_keys__()) def test_concatenate_stack_dont_warn(): with warnings.catch_warnings(record=True) as record: da.concatenate([da.ones(2, chunks=1)] * 62) assert not record with warnings.catch_warnings(record=True) as record: da.stack([da.ones(2, chunks=1)] * 62) assert not record def test_map_blocks_delayed(): x = da.ones((10, 10), chunks=(5, 5)) y = np.ones((5, 5)) z = x.map_blocks(add, y, dtype=x.dtype) yy = delayed(y) zz = x.map_blocks(add, yy, dtype=x.dtype) assert_eq(z, zz) assert yy.key in zz.dask def test_no_chunks(): X = np.arange(11) dsk = {('x', 0): np.arange(5), ('x', 1): np.arange(5, 11)} x = Array(dsk, 'x', ((np.nan, np.nan,),), np.arange(1).dtype) assert_eq(x + 1, X + 1) assert_eq(x.sum(), X.sum()) assert_eq((x + 1).std(), (X + 1).std()) assert_eq((x + x).std(), (X + X).std()) assert_eq((x + x).std(keepdims=True), (X + X).std(keepdims=True)) def test_no_chunks_2d(): X = np.arange(24).reshape((4, 6)) x = da.from_array(X, chunks=(2, 2)) x._chunks = ((np.nan, np.nan), (np.nan, np.nan, np.nan)) with pytest.warns(None): # zero division warning assert_eq(da.log(x), np.log(X)) assert_eq(x.T, X.T) assert_eq(x.sum(axis=0, keepdims=True), X.sum(axis=0, keepdims=True)) assert_eq(x.sum(axis=1, keepdims=True), X.sum(axis=1, keepdims=True)) assert_eq(x.dot(x.T + 1), X.dot(X.T + 1)) def test_no_chunks_yes_chunks(): X = np.arange(24).reshape((4, 6)) x = da.from_array(X, chunks=(2, 2)) x._chunks = ((2, 2), (np.nan, np.nan, np.nan)) assert (x + 1).chunks == ((2, 2), (np.nan, np.nan, np.nan)) assert (x.T).chunks == ((np.nan, np.nan, np.nan), (2, 2)) assert (x.dot(x.T)).chunks == ((2, 2), (2, 2)) def test_raise_informative_errors_no_chunks(): X = np.arange(10) a = da.from_array(X, chunks=(5, 5)) a._chunks = ((np.nan, np.nan),) b = da.from_array(X, chunks=(4, 4, 2)) b._chunks = ((np.nan, np.nan, np.nan),) for op in [lambda: a + b, lambda: a[1], lambda: a[::2], lambda: a[-5], lambda: a.rechunk(3), lambda: a.reshape(2, 5)]: with pytest.raises(ValueError) as e: op() if 'chunk' not in str(e) or 'unknown' not in str(e): op() def test_no_chunks_slicing_2d(): X = np.arange(24).reshape((4, 6)) x = da.from_array(X, chunks=(2, 2)) x._chunks = ((2, 2), (np.nan, np.nan, np.nan)) assert_eq(x[0], X[0]) for op in [lambda: x[:, 4], lambda: x[:, ::2], lambda: x[0, 2:4]]: with pytest.raises(ValueError) as e: op() assert 'chunk' in str(e) and 'unknown' in str(e) def test_index_array_with_array_1d(): x = np.arange(10) dx = da.from_array(x, chunks=(5,)) dx._chunks = ((np.nan, np.nan),) assert_eq(x[x > 6], dx[dx > 6]) assert_eq(x[x % 2 == 0], dx[dx % 2 == 0]) dy = da.ones(11, chunks=(3,)) with pytest.raises(ValueError): dx[dy > 5] def test_index_array_with_array_2d(): x = np.arange(24).reshape((4, 6)) dx = da.from_array(x, chunks=(2, 2)) dx._chunks = ((2, 2), (np.nan, np.nan, np.nan)) assert (sorted(x[x % 2 == 0].tolist()) == sorted(dx[dx % 2 == 0].compute().tolist())) assert (sorted(x[x > 6].tolist()) == sorted(dx[dx > 6].compute().tolist())) @pytest.mark.xfail(reason='Chunking does not align well') def test_index_array_with_array_3d_2d(): x = np.arange(4**3).reshape((4, 4, 4)) dx = da.from_array(x, chunks=(2, 2, 2)) ind = np.random.random((4, 4)) > 0.5 ind = np.arange(4 ** 2).reshape((4, 4)) % 2 == 0 dind = da.from_array(ind, (2, 2)) assert_eq(x[ind], dx[dind]) assert_eq(x[:, ind], dx[:, dind]) def test_setitem_1d(): x = np.arange(10) dx = da.from_array(x.copy(), chunks=(5,)) x[x > 6] = -1 x[x % 2 == 0] = -2 dx[dx > 6] = -1 dx[dx % 2 == 0] = -2 assert_eq(x, dx) def test_setitem_2d(): x = np.arange(24).reshape((4, 6)) dx = da.from_array(x.copy(), chunks=(2, 2)) x[x > 6] = -1 x[x % 2 == 0] = -2 dx[dx > 6] = -1 dx[dx % 2 == 0] = -2 assert_eq(x, dx) @pytest.mark.skipif(np.__version__ >= '1.13.0', reason='boolean slicing rules changed') def test_setitem_mixed_d(): x = np.arange(24).reshape((4, 6)) dx = da.from_array(x, chunks=(2, 2)) x[x[0, None] > 2] = -1 dx[dx[0, None] > 2] = -1 assert_eq(x, dx) x[x[None, 0] > 2] = -1 dx[dx[None, 0] > 2] = -1 assert_eq(x, dx) def test_setitem_errs(): x = da.ones((4, 4), chunks=(2, 2)) with pytest.raises(ValueError): x[x > 1] = x def test_zero_slice_dtypes(): x = da.arange(5, chunks=1) y = x[[]] assert y.dtype == x.dtype assert y.shape == (0,) assert_eq(x[[]], np.arange(5)[[]]) def test_zero_sized_array_rechunk(): x = da.arange(5, chunks=1)[:0] y = da.atop(identity, 'i', x, 'i', dtype=x.dtype) assert_eq(x, y) def test_atop_zero_shape(): da.atop(lambda x: x, 'i', da.arange(10, chunks=10), 'i', da.from_array(np.ones((0, 2)), ((0,), 2)), 'ab', da.from_array(np.ones((0,)), ((0,),)), 'a', dtype='float64') def test_atop_zero_shape_new_axes(): da.atop(lambda x: np.ones(42), 'i', da.from_array(np.ones((0, 2)), ((0,), 2)), 'ab', da.from_array(np.ones((0,)), ((0,),)), 'a', dtype='float64', new_axes={'i': 42}) def test_broadcast_against_zero_shape(): assert_eq(da.arange(1, chunks=1)[:0] + 0, np.arange(1)[:0] + 0) assert_eq(da.arange(1, chunks=1)[:0] + 0.1, np.arange(1)[:0] + 0.1) assert_eq(da.ones((5, 5), chunks=(2, 3))[:0] + 0, np.ones((5, 5))[:0] + 0) assert_eq(da.ones((5, 5), chunks=(2, 3))[:0] + 0.1, np.ones((5, 5))[:0] + 0.1) assert_eq(da.ones((5, 5), chunks=(2, 3))[:, :0] + 0, np.ones((5, 5))[:, :0] + 0) assert_eq(da.ones((5, 5), chunks=(2, 3))[:, :0] + 0.1, np.ones((5, 5))[:, :0] + 0.1) def test_from_array_name(): x = np.array([1, 2, 3, 4, 5]) chunks = x.shape # Default is tokenize the array dx = da.from_array(x, chunks=chunks) hashed_name = dx.name assert da.from_array(x, chunks=chunks).name == hashed_name # Specify name directly assert da.from_array(x, chunks=chunks, name='x').name == 'x' # False gives a random name dx2 = da.from_array(x, chunks=chunks, name=False) dx3 = da.from_array(x, chunks=chunks, name=False) assert dx2.name != hashed_name assert dx3.name != hashed_name assert dx2.name != dx3.name def test_concatenate_errs(): with pytest.raises(ValueError) as e: da.concatenate([da.zeros((2, 1), chunks=(2, 1)), da.zeros((2, 3), chunks=(2, 3))]) assert 'shape' in str(e).lower() assert '(2, 1)' in str(e) with pytest.raises(ValueError): da.concatenate([da.zeros((1, 2), chunks=(1, 2)), da.zeros((3, 2), chunks=(3, 2))], axis=1) def test_stack_errs(): with pytest.raises(ValueError) as e: da.stack([da.zeros((2,), chunks=(2))] * 10 + [da.zeros((3,), chunks=(3))] * 10) assert 'shape' in str(e.value).lower() assert '(2,)' in str(e.value) assert len(str(e.value)) < 105 def test_atop_with_numpy_arrays(): x = np.ones(10) y = da.ones(10, chunks=(5,)) assert_eq(x + y, x + x) s = da.sum(x) assert any(x is v for v in s.dask.values()) @pytest.mark.parametrize('chunks', (100, 6)) @pytest.mark.parametrize('other', [[0, 0, 1], [2, 1, 3], (0, 0, 1)]) def test_elemwise_with_lists(chunks, other): x = np.arange(12).reshape((4, 3)) d = da.arange(12, chunks=chunks).reshape((4, 3)) x2 = np.vstack([x[:, 0], x[:, 1], x[:, 2]]).T d2 = da.vstack([d[:, 0], d[:, 1], d[:, 2]]).T assert_eq(x2, d2) x3 = x2 * other d3 = d2 * other assert_eq(x3, d3) def test_constructor_plugin(): L = [] L2 = [] with dask.config.set(array_plugins=[L.append, L2.append]): x = da.ones(10, chunks=5) y = x + 1 assert L == L2 == [x, y] with dask.config.set(array_plugins=[lambda x: x.compute()]): x = da.ones(10, chunks=5) y = x + 1 assert isinstance(y, np.ndarray) assert len(L) == 2 def test_no_warnings_on_metadata(): x = da.ones(5, chunks=3) with warnings.catch_warnings(record=True) as record: da.arccos(x) assert not record def test_delayed_array_key_hygeine(): a = da.zeros((1,), chunks=(1,)) d = delayed(identity)(a) b = da.from_delayed(d, shape=a.shape, dtype=a.dtype) assert_eq(a, b) def test_empty_chunks_in_array_len(): x = da.ones((), chunks=()) with pytest.raises(TypeError) as exc_info: len(x) err_msg = 'len() of unsized object' assert err_msg in str(exc_info.value) @pytest.mark.parametrize('dtype', [None, [('a', 'f4'), ('b', object)]]) def test_meta(dtype): a = da.zeros((1,), chunks=(1,)) assert a._meta.dtype == a.dtype assert isinstance(a._meta, np.ndarray) assert a.nbytes < 1000 @pytest.mark.parametrize('shape,limit,expected', [ (100, 10, (10,) * 10), (20, 10, (10, 10)), (20, 5, (5, 5, 5, 5)), (24, 5, (4, 4, 4, 4, 4, 4)), # common factor is close, use it (23, 5, (5, 5, 5, 5, 3)), # relatively prime, don't use 1s (1000, 167, (125,) * 8), # find close value ]) def test_normalize_chunks_auto_1d(shape, limit, expected): result = normalize_chunks('auto', (shape,), limit=limit * 8, dtype=np.float64) assert result == (expected,) @pytest.mark.parametrize('shape,chunks,limit,expected', [ ((20, 20), ('auto', 2), 20, ((10, 10), (2,) * 10)), ((20, 20), ('auto', (2, 2, 2, 2, 2, 5, 5)), 20, ((4, 4, 4, 4, 4), (2, 2, 2, 2, 2, 5, 5))), ((1, 20), 'auto', 10, ((1,), (10, 10))), ]) def test_normalize_chunks_auto_2d(shape, chunks, limit, expected): result = normalize_chunks(chunks, shape, limit=limit, dtype='uint8') assert result == expected def test_normalize_chunks_auto_3d(): result = normalize_chunks(('auto', 'auto', 2), (20, 20, 20), limit=200, dtype='uint8') expected = ((10, 10), (10, 10), (2,) * 10) assert result == expected result = normalize_chunks('auto', (20, 20, 20), limit=8, dtype='uint8') expected = ((2,) * 10,) * 3 assert result == expected def test_constructors_chunks_dict(): x = da.ones((20, 20), chunks={0: 10, 1: 5}) assert x.chunks == ((10, 10), (5, 5, 5, 5)) x = da.ones((20, 20), chunks={0: 10, 1: "auto"}) assert x.chunks == ((10, 10), (20,)) def test_from_array_chunks_dict(): with dask.config.set({'array.chunk-size': '128kiB'}): x = np.empty((100, 100, 100)) y = da.from_array(x, chunks={0: 10, 1: -1, 2: 'auto'}) z = da.from_array(x, chunks=(10, 100, 10)) assert y.chunks == z.chunks @pytest.mark.parametrize('dtype', [object, [('a', object), ('b', int)]]) def test_normalize_chunks_object_dtype(dtype): x = np.array(['a', 'abc'], dtype=object) with pytest.raises(NotImplementedError): da.from_array(x, chunks='auto') def test_normalize_chunks_tuples_of_tuples(): result = normalize_chunks(((2, 3, 5), 'auto'), (10, 10), limit=10, dtype=np.uint8) expected = ((2, 3, 5), (2, 2, 2, 2, 2)) assert result == expected def test_normalize_chunks_nan(): with pytest.raises(ValueError) as info: normalize_chunks('auto', (np.nan,), limit=10, dtype=np.uint8) assert "auto" in str(info.value) with pytest.raises(ValueError) as info: normalize_chunks(((np.nan, np.nan), 'auto'), (10, 10), limit=10, dtype=np.uint8) assert "auto" in str(info.value) def test_zarr_roundtrip(): pytest.importorskip('zarr') with tmpdir() as d: a = da.zeros((3, 3), chunks=(1, 1)) a.to_zarr(d) a2 = da.from_zarr(d) assert_eq(a, a2) assert a2.chunks == a.chunks @pytest.mark.parametrize('compute', [False, True]) def test_zarr_return_stored(compute): pytest.importorskip('zarr') with tmpdir() as d: a = da.zeros((3, 3), chunks=(1, 1)) a2 = a.to_zarr(d, compute=compute, return_stored=True) assert isinstance(a2, Array) assert_eq(a, a2) assert a2.chunks == a.chunks def test_zarr_existing_array(): zarr = pytest.importorskip('zarr') c = (1, 1) a = da.ones((3, 3), chunks=c) z = zarr.zeros_like(a, chunks=c) a.to_zarr(z) a2 = da.from_zarr(z) assert_eq(a, a2) assert a2.chunks == a.chunks def test_read_zarr_chunks(): pytest.importorskip('zarr') a = da.zeros((9, ), chunks=(3, )) with tmpdir() as d: a.to_zarr(d) arr = da.from_zarr(d, chunks=(5, )) assert arr.chunks == ((5, 4), ) def test_zarr_pass_mapper(): pytest.importorskip('zarr') import zarr.storage with tmpdir() as d: mapper = zarr.storage.DirectoryStore(d) a = da.zeros((3, 3), chunks=(1, 1)) a.to_zarr(mapper) a2 = da.from_zarr(mapper) assert_eq(a, a2) assert a2.chunks == a.chunks def test_zarr_group(): zarr = pytest.importorskip('zarr') with tmpdir() as d: a = da.zeros((3, 3), chunks=(1, 1)) a.to_zarr(d, component='test') with pytest.raises((OSError, ValueError)): a.to_zarr(d, component='test', overwrite=False) a.to_zarr(d, component='test', overwrite=True) # second time is fine, group exists a.to_zarr(d, component='test2', overwrite=False) a.to_zarr(d, component='nested/test', overwrite=False) group = zarr.open_group(d, mode='r') assert list(group) == ['nested', 'test', 'test2'] assert 'test' in group['nested'] a2 = da.from_zarr(d, component='test') assert_eq(a, a2) assert a2.chunks == a.chunks @pytest.mark.parametrize('data', [[( ), True], [((1, ),), True], [((1, 1, 1),), True], [((1, ), (1, )), True], [((2, 2, 1), ), True], [((2, 2, 3), ), False], [((1, 1, 1), (2, 2, 3)), False], [((1, 2, 1), ), False] ]) def test_regular_chunks(data): chunkset, expected = data assert da.core._check_regular_chunks(chunkset) == expected def test_zarr_nocompute(): pytest.importorskip('zarr') with tmpdir() as d: a = da.zeros((3, 3), chunks=(1, 1)) out = a.to_zarr(d, compute=False) assert isinstance(out, Delayed) dask.compute(out) a2 = da.from_zarr(d) assert_eq(a, a2) assert a2.chunks == a.chunks def test_blocks_indexer(): x = da.arange(10, chunks=2) assert isinstance(x.blocks[0], da.Array) assert_eq(x.blocks[0], x[:2]) assert_eq(x.blocks[-1], x[-2:]) assert_eq(x.blocks[:3], x[:6]) assert_eq(x.blocks[[0, 1, 2]], x[:6]) assert_eq(x.blocks[[3, 0, 2]], np.array([6, 7, 0, 1, 4, 5])) x = da.random.random((20, 20), chunks=(4, 5)) assert_eq(x.blocks[0], x[:4]) assert_eq(x.blocks[0, :3], x[:4, :15]) assert_eq(x.blocks[:, :3], x[:, :15]) x = da.ones((40, 40, 40), chunks=(10, 10, 10)) assert_eq(x.blocks[0, :, 0], np.ones((10, 40, 10))) x = da.ones((2, 2), chunks=1) with pytest.raises(ValueError): x.blocks[[0, 1], [0, 1]] with pytest.raises(ValueError): x.blocks[np.array([0, 1]), [0, 1]] with pytest.raises(ValueError) as info: x.blocks[np.array([0, 1]), np.array([0, 1])] assert "list" in str(info.value) with pytest.raises(ValueError) as info: x.blocks[None, :, :] assert "newaxis" in str(info.value) and "not supported" in str(info.value) with pytest.raises(IndexError) as info: x.blocks[100, 100] def test_dask_array_holds_scipy_sparse_containers(): sparse = pytest.importorskip('scipy.sparse') x = da.random.random((1000, 10), chunks=(100, 10)) x[x < 0.9] = 0 y = x.map_blocks(sparse.csr_matrix) vs = y.to_delayed().flatten().tolist() values = dask.compute(*vs, scheduler='single-threaded') assert all(isinstance(v, sparse.csr_matrix) for v in values)
gpl-3.0
8,126,485,098,563,362,000
29.306061
94
0.520393
false
TaskEvolution/Task-Coach-Evolution
taskcoach/tests/unittests/thirdPartySoftwareTests/APSchedulerTest.py
1
1826
''' Task Coach - Your friendly task manager Copyright (C) 2004-2013 Task Coach developers <[email protected]> Task Coach is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Task Coach is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. ''' from taskcoachlib.domain import date from taskcoachlib.thirdparty import apscheduler import test class APSchedulerTest(test.TestCase): def setUp(self): super(APSchedulerTest, self).setUp() self.jobCalled = 0 self.scheduler = apscheduler.scheduler.Scheduler() self.scheduler.start() def job(self): self.jobCalled += 1 def testScheduleJob(self): self.scheduler.add_date_job(self.job, date.Now() + date.TimeDelta(microseconds=650), misfire_grace_time=0) while self.jobCalled == 0: pass self.assertEqual(1, self.jobCalled) def testScheduleJobInThePastRaisesValueError(self): self.assertRaises(ValueError, lambda: self.scheduler.add_date_job(self.job, date.Now() - date.TimeDelta(microseconds=500))) def testScheduleJobWithInterval(self): self.scheduler.add_interval_job(self.job, seconds=0.01) while self.jobCalled < 2: pass self.assertEqual(2, self.jobCalled) self.scheduler.unschedule_func(self.job)
gpl-3.0
-2,661,469,799,451,025,000
36.265306
119
0.708105
false
clouserw/zamboni
sites/stage/settings_mkt.py
1
5626
"""private_mkt will be populated from puppet and placed in this directory""" from mkt.settings import * # noqa from settings_base import * # noqa import private_mkt DOMAIN = 'marketplace.allizom.org' SERVER_EMAIL = '[email protected]' DOMAIN = "marketplace.allizom.org" SITE_URL = 'https://marketplace.allizom.org' BROWSERID_AUDIENCES = [SITE_URL] STATIC_URL = os.getenv('CUSTOM_CDN', 'https://marketplace-cdn.allizom.org/') LOCAL_MIRROR_URL = '%s_files' % STATIC_URL CSP_SCRIPT_SRC = CSP_SCRIPT_SRC + (STATIC_URL[:-1],) ADDON_ICON_URL = 'img/uploads/addon_icons/%s/%s-%s.png?modified=%s' PREVIEW_THUMBNAIL_URL = 'img/uploads/previews/thumbs/%s/%d.png?modified=%d' PREVIEW_FULL_URL = 'img/uploads/previews/full/%s/%d.%s?modified=%d' SESSION_COOKIE_SECURE = True SESSION_COOKIE_DOMAIN = ".%s" % DOMAIN MEDIA_URL = STATIC_URL + 'media/' CACHE_PREFIX = 'stage.mkt.%s' % CACHE_PREFIX CACHE_MIDDLEWARE_KEY_PREFIX = CACHE_PREFIX CACHES['default']['KEY_PREFIX'] = CACHE_PREFIX CACHE_MACHINE_ENABLED = False LOG_LEVEL = logging.DEBUG # The django statsd client to use, see django-statsd for more. # STATSD_CLIENT = 'django_statsd.clients.moz_heka' SYSLOG_TAG = "http_app_mkt_stage" SYSLOG_TAG2 = "http_app_mkt_stage_timer" SYSLOG_CSP = "http_app_mkt_stage_csp" STATSD_PREFIX = 'marketplace-stage' # Celery BROKER_URL = private_mkt.BROKER_URL CELERY_ALWAYS_EAGER = False CELERY_IGNORE_RESULT = True CELERY_DISABLE_RATE_LIMITS = True CELERYD_PREFETCH_MULTIPLIER = 1 WEBAPPS_RECEIPT_KEY = private_mkt.WEBAPPS_RECEIPT_KEY WEBAPPS_RECEIPT_URL = private_mkt.WEBAPPS_RECEIPT_URL WEBAPPS_UNIQUE_BY_DOMAIN = True SENTRY_DSN = private_mkt.SENTRY_DSN SOLITUDE_HOSTS = ('https://payments.allizom.org',) SOLITUDE_OAUTH = {'key': private_mkt.SOLITUDE_OAUTH_KEY, 'secret': private_mkt.SOLITUDE_OAUTH_SECRET} WEBAPPS_PUBLIC_KEY_DIRECTORY = NETAPP_STORAGE + '/public_keys' PRODUCT_ICON_PATH = NETAPP_STORAGE + '/product-icons' DUMPED_APPS_PATH = NETAPP_STORAGE + '/dumped-apps' DUMPED_USERS_PATH = NETAPP_STORAGE + '/dumped-users' GOOGLE_ANALYTICS_DOMAIN = 'marketplace.firefox.com' VALIDATOR_TIMEOUT = 180 VALIDATOR_IAF_URLS = ['https://marketplace.firefox.com', 'https://marketplace.allizom.org', 'https://marketplace-dev.allizom.org', 'https://marketplace-altdev.allizom.org'] if getattr(private_mkt, 'LOAD_TESTING', False): # mock the authentication and use django_fakeauth for this AUTHENTICATION_BACKENDS = ( ('django_fakeauth.FakeAuthBackend',) + AUTHENTICATION_BACKENDS) MIDDLEWARE_CLASSES.insert( MIDDLEWARE_CLASSES.index('mkt.access.middleware.ACLMiddleware'), 'django_fakeauth.FakeAuthMiddleware') FAKEAUTH_TOKEN = private_mkt.FAKEAUTH_TOKEN # we are also creating access tokens for OAuth, here are the keys and # secrets used for them API_PASSWORD = getattr(private_mkt, 'API_PASSWORD', FAKEAUTH_TOKEN) AMO_LANGUAGES = AMO_LANGUAGES + ('dbg', 'rtl', 'ar', 'ee', 'ff', 'ha', 'ig', 'ln', 'sw', 'tl', 'wo', 'yo') LANGUAGES = lazy(langs, dict)(AMO_LANGUAGES) LANGUAGE_URL_MAP = dict([(i.lower(), i) for i in AMO_LANGUAGES]) # Bug 748403 SIGNING_SERVER = private_mkt.SIGNING_SERVER SIGNING_SERVER_ACTIVE = True SIGNING_VALID_ISSUERS = ['marketplace-cdn.allizom.org'] # Bug 793876 SIGNED_APPS_KEY = private_mkt.SIGNED_APPS_KEY SIGNED_APPS_SERVER_ACTIVE = True SIGNED_APPS_SERVER = private_mkt.SIGNED_APPS_SERVER SIGNED_APPS_REVIEWER_SERVER_ACTIVE = True SIGNED_APPS_REVIEWER_SERVER = private_mkt.SIGNED_APPS_REVIEWER_SERVER # See mkt/settings.py for more info. APP_PURCHASE_KEY = DOMAIN APP_PURCHASE_AUD = DOMAIN APP_PURCHASE_TYP = 'mozilla-stage/payments/pay/v1' APP_PURCHASE_SECRET = private_mkt.APP_PURCHASE_SECRET MONOLITH_PASSWORD = private_mkt.MONOLITH_PASSWORD # This is mainly for Marionette tests. WEBAPP_MANIFEST_NAME = 'Marketplace Stage' ENABLE_API_ERROR_SERVICE = True NEWRELIC_INI = '/etc/newrelic.d/marketplace.allizom.org.ini' ES_DEFAULT_NUM_REPLICAS = 2 ES_USE_PLUGINS = True BANGO_BASE_PORTAL_URL = 'https://mozilla.bango.com/login/al.aspx?' ALLOWED_CLIENTS_EMAIL_API = private_mkt.ALLOWED_CLIENTS_EMAIL_API POSTFIX_AUTH_TOKEN = private_mkt.POSTFIX_AUTH_TOKEN POSTFIX_DOMAIN = DOMAIN MONOLITH_INDEX = 'mktstage-time_*' # IARC content ratings. IARC_ENV = 'test' IARC_MOCK = False IARC_PASSWORD = private_mkt.IARC_PASSWORD IARC_PLATFORM = 'Firefox' IARC_SERVICE_ENDPOINT = 'https://www.globalratings.com/IARCDEMOService/IARCServices.svc' # noqa IARC_STOREFRONT_ID = 4 IARC_SUBMISSION_ENDPOINT = 'https://www.globalratings.com/IARCDEMORating/Submission.aspx' # noqa IARC_ALLOW_CERT_REUSE = True PRE_GENERATE_APKS = True PRE_GENERATE_APK_URL = \ 'https://apk-controller.stage.mozaws.net/application.apk' BOKU_SIGNUP_URL = 'https://merchants.boku.com/signup/signup_business?params=jEHWaTM7zm5cbPpheT2iS4xB1mkzO85uxVAo7rs7LVgy5JYGMWnUYDvxyEk8lxalP1pJZFv5d9oI%0A9bcXqxv0MQ%3D%3D' # noqa FXA_AUTH_DOMAIN = 'api.accounts.firefox.com' FXA_OAUTH_URL = 'https://oauth.accounts.firefox.com' FXA_CLIENT_ID = getattr(private_mkt, 'FXA_CLIENT_ID', '') FXA_CLIENT_SECRET = getattr(private_mkt, 'FXA_CLIENT_SECRET', '') FXA_SECRETS = { FXA_CLIENT_ID: FXA_CLIENT_SECRET, } DEFAULT_PAYMENT_PROVIDER = 'bango' PAYMENT_PROVIDERS = ['bango', 'boku'] RECOMMENDATIONS_API_URL = 'https://recommend.allizom.org' RECOMMENDATIONS_ENABLED = True QA_APP_ID = 500427 DEV_PAY_PROVIDERS = { APP_PURCHASE_TYP: SITE_URL + '/mozpay/?req={jwt}', } # Bug 1145338 IAF_OVERRIDE_APPS = private_mkt.IAF_OVERRIDE_APPS
bsd-3-clause
5,491,280,167,152,898,000
31.709302
180
0.724849
false
h4ck3rm1k3/pywikibot-core
pywikibot/xmlreader.py
3
6434
# -*- coding: utf-8 -*- """ XML reading module. Each XmlEntry object represents a page, as read from an XML source The XmlDump class reads a pages_current XML dump (like the ones offered on https://dumps.wikimedia.org/backup-index.html) and offers a generator over XmlEntry objects which can be used by other bots. """ # # (C) Pywikibot team, 2005-2013 # # Distributed under the terms of the MIT license. # from __future__ import absolute_import, unicode_literals __version__ = '$Id$' # import re import threading from xml.etree.cElementTree import iterparse import xml.sax from pywikibot.tools import open_archive def parseRestrictions(restrictions): """ Parse the characters within a restrictions tag. Returns strings representing user groups allowed to edit and to move a page, where None means there are no restrictions. """ if not restrictions: return None, None editRestriction = None moveRestriction = None editLockMatch = re.search('edit=([^:]*)', restrictions) if editLockMatch: editRestriction = editLockMatch.group(1) moveLockMatch = re.search('move=([^:]*)', restrictions) if moveLockMatch: moveRestriction = moveLockMatch.group(1) if restrictions == 'sysop': editRestriction = 'sysop' moveRestriction = 'sysop' return editRestriction, moveRestriction class XmlEntry(object): """Represent a page.""" def __init__(self, title, ns, id, text, username, ipedit, timestamp, editRestriction, moveRestriction, revisionid, comment, redirect): """Constructor.""" # TODO: there are more tags we can read. self.title = title self.ns = ns self.id = id self.text = text self.username = username.strip() self.ipedit = ipedit self.timestamp = timestamp self.editRestriction = editRestriction self.moveRestriction = moveRestriction self.revisionid = revisionid self.comment = comment self.isredirect = redirect class XmlParserThread(threading.Thread): """ XML parser that will run as a single thread. This allows the XmlDump generator to yield pages before the parser has finished reading the entire dump. There surely are more elegant ways to do this. """ def __init__(self, filename, handler): """Constructor.""" threading.Thread.__init__(self) self.filename = filename self.handler = handler def run(self): """Parse the file in a single thread.""" xml.sax.parse(self.filename, self.handler) class XmlDump(object): """ Represents an XML dump file. Reads the local file at initialization, parses it, and offers access to the resulting XmlEntries via a generator. @param allrevisions: boolean If True, parse all revisions instead of only the latest one. Default: False. """ def __init__(self, filename, allrevisions=False): """Constructor.""" self.filename = filename if allrevisions: self._parse = self._parse_all else: self._parse = self._parse_only_latest def parse(self): """Generator using cElementTree iterparse function.""" with open_archive(self.filename) as source: # iterparse's event must be a str but they are unicode with # unicode_literals in Python 2 context = iterparse(source, events=(str('start'), str('end'), str('start-ns'))) self.root = None for event, elem in context: if event == "start-ns" and elem[0] == "": self.uri = elem[1] continue if event == "start" and self.root is None: self.root = elem continue for rev in self._parse(event, elem): yield rev def _parse_only_latest(self, event, elem): """Parser that yields only the latest revision.""" if event == "end" and elem.tag == "{%s}page" % self.uri: self._headers(elem) revision = elem.find("{%s}revision" % self.uri) yield self._create_revision(revision) elem.clear() self.root.clear() def _parse_all(self, event, elem): """Parser that yields all revisions.""" if event == "start" and elem.tag == "{%s}page" % self.uri: self._headers(elem) if event == "end" and elem.tag == "{%s}revision" % self.uri: yield self._create_revision(elem) elem.clear() self.root.clear() def _headers(self, elem): """Extract headers from XML chunk.""" self.title = elem.findtext("{%s}title" % self.uri) self.ns = elem.findtext("{%s}ns" % self.uri) self.pageid = elem.findtext("{%s}id" % self.uri) self.restrictions = elem.findtext("{%s}restrictions" % self.uri) self.isredirect = elem.findtext("{%s}redirect" % self.uri) is not None self.editRestriction, self.moveRestriction = parseRestrictions( self.restrictions) def _create_revision(self, revision): """Create a Single revision.""" revisionid = revision.findtext("{%s}id" % self.uri) timestamp = revision.findtext("{%s}timestamp" % self.uri) comment = revision.findtext("{%s}comment" % self.uri) contributor = revision.find("{%s}contributor" % self.uri) ipeditor = contributor.findtext("{%s}ip" % self.uri) username = ipeditor or contributor.findtext("{%s}username" % self.uri) # could get comment, minor as well text = revision.findtext("{%s}text" % self.uri) return XmlEntry(title=self.title, ns=self.ns, id=self.pageid, text=text or u'', username=username or u'', # username might be deleted ipedit=bool(ipeditor), timestamp=timestamp, editRestriction=self.editRestriction, moveRestriction=self.moveRestriction, revisionid=revisionid, comment=comment, redirect=self.isredirect )
mit
6,881,866,051,588,237,000
32.863158
78
0.587193
false
ooici/marine-integrations
mi/dataset/driver/mflm/dosta/driver.py
1
6129
""" @package mi.dataset.driver.mflm.dosta.driver @file marine-integrations/mi/dataset/driver/mflm/dosta/driver.py @author Emily Hahn @brief Driver for the mflm_dosta Release notes: initial release """ __author__ = 'Emily Hahn' __license__ = 'Apache 2.0' import string from mi.core.common import BaseEnum from mi.core.exceptions import ConfigurationException from mi.core.log import get_logger ; log = get_logger() from mi.dataset.harvester import SingleFileHarvester, SingleDirectoryHarvester from mi.dataset.dataset_driver import HarvesterType, DataSetDriverConfigKeys from mi.dataset.driver.sio_mule.sio_mule_driver import SioMuleDataSetDriver from mi.dataset.parser.dostad import \ DostadParser, \ DostadRecoveredParser, \ StateKey, \ METADATA_PARTICLE_CLASS_KEY, \ DATA_PARTICLE_CLASS_KEY, \ DostadParserRecoveredDataParticle, \ DostadParserTelemeteredDataParticle, \ DostadParserRecoveredMetadataDataParticle, \ DostadParserTelemeteredMetadataDataParticle class DataTypeKey(BaseEnum): """ These are the possible harvester/parser pairs for this driver """ DOSTA_ABCDJM_SIO_TELEMETERED = 'dosta_abcdjm_sio_telemetered' DOSTA_ABCDJM_SIO_RECOVERED = 'dosta_abcdjm_sio_recovered' class MflmDOSTADDataSetDriver(SioMuleDataSetDriver): @classmethod def stream_config(cls): # Fill in below with particle stream return [DostadParserRecoveredDataParticle.type(), DostadParserTelemeteredDataParticle.type(), DostadParserRecoveredMetadataDataParticle.type(), DostadParserTelemeteredMetadataDataParticle.type()] def __init__(self, config, memento, data_callback, state_callback, event_callback, exception_callback): # link the data keys to the harvester type, multiple or single file harvester harvester_type = { DataTypeKey.DOSTA_ABCDJM_SIO_TELEMETERED: HarvesterType.SINGLE_FILE, DataTypeKey.DOSTA_ABCDJM_SIO_RECOVERED: HarvesterType.SINGLE_DIRECTORY } super(MflmDOSTADDataSetDriver, self).__init__(config, memento, data_callback, state_callback, event_callback, exception_callback, DataTypeKey.list(), harvester_type=harvester_type) def _build_parser(self, parser_state, stream_in, data_key=None): """ Build and return the parser """ config = self._parser_config.get(data_key) # # If the key is DOSTA_ABCDJM_SIO_RECOVERED, build the WFP parser. # if data_key == DataTypeKey.DOSTA_ABCDJM_SIO_RECOVERED: config.update({ DataSetDriverConfigKeys.PARTICLE_MODULE: 'mi.dataset.parser.dostad', DataSetDriverConfigKeys.PARTICLE_CLASS: None, DataSetDriverConfigKeys.PARTICLE_CLASSES_DICT: { METADATA_PARTICLE_CLASS_KEY: DostadParserRecoveredMetadataDataParticle, DATA_PARTICLE_CLASS_KEY: DostadParserRecoveredDataParticle } }) parser = DostadRecoveredParser( config, parser_state, stream_in, lambda state, ingested: self._save_parser_state(state, data_key, ingested), self._data_callback, self._sample_exception_callback) return parser # # If the key is DOSTA_ABCDJM_SIO_TELEMETERED, build the WFP SIO Mule parser. # elif data_key == DataTypeKey.DOSTA_ABCDJM_SIO_TELEMETERED: config.update({ DataSetDriverConfigKeys.PARTICLE_MODULE: 'mi.dataset.parser.dostad', DataSetDriverConfigKeys.PARTICLE_CLASS: None, DataSetDriverConfigKeys.PARTICLE_CLASSES_DICT: { METADATA_PARTICLE_CLASS_KEY: DostadParserTelemeteredMetadataDataParticle, DATA_PARTICLE_CLASS_KEY: DostadParserTelemeteredDataParticle } }) parser = DostadParser( config, parser_state, stream_in, lambda state: self._save_parser_state(state, data_key), self._data_callback, self._sample_exception_callback) return parser # # If the key is one that we're not expecting, don't build any parser. # else: raise ConfigurationException("Invalid data_key supplied to build parser") def _build_harvester(self, driver_state): """ Build the harvester @param driver_state The starting driver state """ self._harvester = [] if DataTypeKey.DOSTA_ABCDJM_SIO_TELEMETERED in self._harvester_config: telemetered_harvester = SingleFileHarvester( self._harvester_config.get(DataTypeKey.DOSTA_ABCDJM_SIO_TELEMETERED), driver_state[DataTypeKey.DOSTA_ABCDJM_SIO_TELEMETERED], lambda file_state: self._file_changed_callback(file_state, DataTypeKey.DOSTA_ABCDJM_SIO_TELEMETERED), self._exception_callback ) self._harvester.append(telemetered_harvester) else: log.warn('No configuration for telemetered harvester, not building') if DataTypeKey.DOSTA_ABCDJM_SIO_RECOVERED in self._harvester_config: recovered_harvester = SingleDirectoryHarvester( self._harvester_config.get(DataTypeKey.DOSTA_ABCDJM_SIO_RECOVERED), driver_state[DataTypeKey.DOSTA_ABCDJM_SIO_RECOVERED], lambda filename: self._new_file_callback(filename, DataTypeKey.DOSTA_ABCDJM_SIO_RECOVERED), lambda modified: self._modified_file_callback(modified, DataTypeKey.DOSTA_ABCDJM_SIO_RECOVERED), self._exception_callback ) self._harvester.append(recovered_harvester) else: log.warn('No configuration for recovered harvester, not building') return self._harvester
bsd-2-clause
1,925,026,545,317,230,000
38.541935
117
0.640561
false
r-mibu/ceilometer
ceilometer/tests/network/services/test_vpnaas.py
11
7391
# # Copyright 2014 Cisco Systems,Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import mock from oslo_context import context from oslotest import base from oslotest import mockpatch from ceilometer.agent import manager from ceilometer.agent import plugin_base from ceilometer.network.services import discovery from ceilometer.network.services import vpnaas class _BaseTestVPNPollster(base.BaseTestCase): @mock.patch('ceilometer.pipeline.setup_pipeline', mock.MagicMock()) def setUp(self): super(_BaseTestVPNPollster, self).setUp() self.addCleanup(mock.patch.stopall) self.context = context.get_admin_context() self.manager = manager.AgentManager() plugin_base._get_keystone = mock.Mock() plugin_base._get_keystone.service_catalog.get_endpoints = ( mock.MagicMock(return_value={'network': mock.ANY})) class TestVPNServicesPollster(_BaseTestVPNPollster): def setUp(self): super(TestVPNServicesPollster, self).setUp() self.pollster = vpnaas.VPNServicesPollster() fake_vpn = self.fake_get_vpn_service() self.useFixture(mockpatch.Patch('ceilometer.neutron_client.Client.' 'vpn_get_all', return_value=fake_vpn)) @staticmethod def fake_get_vpn_service(): return [{'status': 'ACTIVE', 'name': 'myvpn', 'description': '', 'admin_state_up': True, 'id': 'fdde3d818-fdcb-fg4b-de7f-6750dc8a9d7a', 'subnet_id': 'bbe3d818-bdcb-4e4b-b47f-5650dc8a9d7a', 'tenant_id': 'a4eb9f4938bb418bbc4f8eb31802fefa', 'router_id': 'ade3d818-fdcb-fg4b-de7f-6750dc8a9d7a'}, {'status': 'INACTIVE', 'name': 'myvpn', 'description': '', 'admin_state_up': True, 'id': 'cdde3d818-fdcb-fg4b-de7f-6750dc8a9d7a', 'subnet_id': 'bbe3d818-bdcb-4e4b-b47f-5650dc8a9d7a', 'tenant_id': 'a4eb9f4938bb418bbc4f8eb31802fefa', 'router_id': 'ade3d818-fdcb-fg4b-de7f-6750dc8a9d7a'}, {'status': 'PENDING_CREATE', 'name': 'myvpn', 'description': '', 'id': 'bdde3d818-fdcb-fg4b-de7f-6750dc8a9d7a', 'admin_state_up': True, 'subnet_id': 'bbe3d818-bdcb-4e4b-b47f-5650dc8a9d7a', 'tenant_id': 'a4eb9f4938bb418bbc4f8eb31802fefa', 'router_id': 'ade3d818-fdcb-fg4b-de7f-6750dc8a9d7a'}, {'status': 'error', 'name': 'myvpn', 'description': '', 'id': 'edde3d818-fdcb-fg4b-de7f-6750dc8a9d7a', 'admin_state_up': False, 'subnet_id': 'bbe3d818-bdcb-4e4b-b47f-5650dc8a9d7a', 'tenant_id': 'a4eb9f4938bb418bbc4f8eb31802fefa', 'router_id': 'ade3d818-fdcb-fg4b-de7f-6750dc8a9d7a'}, ] def test_vpn_get_samples(self): samples = list(self.pollster.get_samples( self.manager, {}, resources=self.fake_get_vpn_service())) self.assertEqual(3, len(samples)) for field in self.pollster.FIELDS: self.assertEqual(self.fake_get_vpn_service()[0][field], samples[0].resource_metadata[field]) def test_vpn_volume(self): samples = list(self.pollster.get_samples( self.manager, {}, resources=self.fake_get_vpn_service())) self.assertEqual(1, samples[0].volume) self.assertEqual(0, samples[1].volume) self.assertEqual(2, samples[2].volume) def test_get_vpn_meter_names(self): samples = list(self.pollster.get_samples( self.manager, {}, resources=self.fake_get_vpn_service())) self.assertEqual(set(['network.services.vpn']), set([s.name for s in samples])) def test_vpn_discovery(self): discovered_vpns = discovery.VPNServicesDiscovery().discover( self.manager) self.assertEqual(3, len(discovered_vpns)) for vpn in self.fake_get_vpn_service(): if vpn['status'] == 'error': self.assertNotIn(vpn, discovered_vpns) else: self.assertIn(vpn, discovered_vpns) class TestIPSecConnectionsPollster(_BaseTestVPNPollster): def setUp(self): super(TestIPSecConnectionsPollster, self).setUp() self.pollster = vpnaas.IPSecConnectionsPollster() fake_conns = self.fake_get_ipsec_connections() self.useFixture(mockpatch.Patch('ceilometer.neutron_client.Client.' 'ipsec_site_connections_get_all', return_value=fake_conns)) @staticmethod def fake_get_ipsec_connections(): return [{'name': 'connection1', 'description': 'Remote-connection1', 'peer_address': '192.168.1.10', 'peer_id': '192.168.1.10', 'peer_cidrs': ['192.168.2.0/24', '192.168.3.0/24'], 'mtu': 1500, 'psk': 'abcd', 'initiator': 'bi-directional', 'dpd': { 'action': 'hold', 'interval': 30, 'timeout': 120}, 'ikepolicy_id': 'ade3d818-fdcb-fg4b-de7f-4550dc8a9d7a', 'ipsecpolicy_id': 'fce3d818-fdcb-fg4b-de7f-7850dc8a9d7a', 'vpnservice_id': 'dce3d818-fdcb-fg4b-de7f-5650dc8a9d7a', 'admin_state_up': True, 'tenant_id': 'abe3d818-fdcb-fg4b-de7f-6650dc8a9d7a', 'id': 'fdfbcec-fdcb-fg4b-de7f-6650dc8a9d7a'} ] def test_conns_get_samples(self): samples = list(self.pollster.get_samples( self.manager, {}, resources=self.fake_get_ipsec_connections())) self.assertEqual(1, len(samples)) for field in self.pollster.FIELDS: self.assertEqual(self.fake_get_ipsec_connections()[0][field], samples[0].resource_metadata[field]) def test_get_conns_meter_names(self): samples = list(self.pollster.get_samples( self.manager, {}, resources=self.fake_get_ipsec_connections())) self.assertEqual(set(['network.services.vpn.connections']), set([s.name for s in samples])) def test_conns_discovery(self): discovered_conns = discovery.IPSecConnectionsDiscovery().discover( self.manager) self.assertEqual(1, len(discovered_conns)) self.assertEqual(self.fake_get_ipsec_connections(), discovered_conns)
apache-2.0
5,796,234,400,559,251,000
41.234286
77
0.575159
false
secynic/nfsinkhole
nfsinkhole/iptables.py
1
13411
# Copyright (c) 2016-2017 Philip Hane # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. from .exceptions import (IPTablesError, IPTablesExists, IPTablesNotExists, SubprocessError) from .utils import popen_wrapper import logging log = logging.getLogger(__name__) class IPTablesSinkhole: """ The class for managing sinkhole configuration within iptables. Args: interface: The secondary network interface dedicated to sinkhole traffic. Warning: Do not accidentally set this to your primary interface. It will drop all traffic, and kill your remote access. interface_addr: The IP address assigned to interface. log_prefix: Prefix for syslog messages. protocol: The protocol(s) to log (all traffic will still be dropped). Accepts a comma separated string of protocols (tcp,udp,udplite,icmp,esp,ah,sctp) or all. dport: The destination port(s) to log (for applicable protocols). Range should be in the format startport:endport or 0,1,2,3,n.. hashlimit: Set the hashlimit rate. Hashlimit is used to tune the amount of events logged. See the iptables-extensions docs: http://ipset.netfilter.org/iptables-extensions.man.html hashlimitmode: Set the hashlimit mode, a comma separated string of options (srcip,srcport,dstip,dstport). More options here results in more logs generated. hashlimitburst: Maximum initial number of packets to match. hashlimitexpire: Number of milliseconds to keep entries in the hash table. srcexclude: Exclude a comma separated string of source IPs/CIDRs from logging. """ def __init__(self, interface=None, interface_addr=None, log_prefix='"[nfsinkhole] "', protocol='all', dport='0:65535', hashlimit='1/h', hashlimitmode='srcip,dstip,dstport', hashlimitburst='1', hashlimitexpire='1800000', srcexclude='127.0.0.1' ): # TODO: add arg checks across all classes self.interface = interface self.interface_addr = interface_addr self.log_prefix = log_prefix self.protocol = protocol self.dport = dport self.hashlimit = hashlimit self.hashlimitmode = hashlimitmode self.hashlimitburst = hashlimitburst self.hashlimitexpire = hashlimitexpire self.srcexclude = srcexclude def list_existing_rules(self, filter_io_drop=False): """ The function for retrieving current iptables rules related to nfsinkhole. Args: filter_io_drop: Boolean for only showing the DROP rules for INPUT and OUTPUT. These are not shown by default. This exists to avoid allowing packets on the interface if the service is down. If installed, the interface always drops all traffic regardless of the service state. Returns: List: Matching sinkhole lines returned by iptables -S. Raises: IPTablesError: A Linux process had an error (stderr). """ # Get list summary of iptables rules cmd = ['iptables', '-S'] existing = [] # Get all of the iptables rules try: out, err = popen_wrapper(cmd, sudo=True) except OSError as e: # pragma: no cover raise IPTablesError('Error encountered when running process "{0}":' '\n{1}'.format(' '.join(cmd), e)) # If any errors, iterate them and write to log, then raise # IPTablesError. if err: # pragma: no cover arr = err.splitlines() raise IPTablesError('Error encountered when running process "{0}":' '\n{1}'.format(' '.join(cmd), '\n'.join(arr))) # Iterate the iptables rules, only grabbing nfsinkhole related rules. arr = out.splitlines() for line in arr: tmp_line = line.decode('ascii', 'ignore') if ('SINKHOLE' in tmp_line ) or filter_io_drop and tmp_line.strip() in [ '-A INPUT -i {0} -j DROP'.format(self.interface), '-A OUTPUT -o {0} -j DROP'.format(self.interface) ]: existing.append(tmp_line.strip()) return existing def create_rules(self): """ The function for writing iptables rules related to nfsinkhole. """ log.info('Checking for existing iptables rules.') existing = self.list_existing_rules() # Existing sinkhole related iptables lines found, can't create. if len(existing) > 0: raise IPTablesExists('Existing iptables rules found for ' 'nfsinkhole:\n{0}' ''.format('\n'.join(existing))) log.info('Writing iptables config') # Create a new iptables chain for logging tmp_arr = ['iptables', '-N', 'SINKHOLE'] log.info('Writing: {0}'.format(' '.join(tmp_arr))) popen_wrapper(cmd_arr=tmp_arr, raise_err=True, sudo=True) # Exclude IPs/CIDRs from logging (scanners, monitoring, pen-testers, # etc): for addr in self.srcexclude.split(','): tmp_arr = [ 'iptables', '-A', 'SINKHOLE', '-s', addr, '-j', 'RETURN' ] log.info('Writing: {0}'.format(' '.join(tmp_arr))) popen_wrapper(cmd_arr=tmp_arr, raise_err=True, sudo=True) # Tell the chain to log and use the prefix self.log_prefix: tmp_arr = [ 'iptables', '-A', 'SINKHOLE', '-j', 'LOG', '--log-prefix', self.log_prefix ] log.info('Writing: {0}'.format(' '.join(tmp_arr))) popen_wrapper(cmd_arr=tmp_arr, raise_err=True, sudo=True) # Tell the chain to also log to netfilter (for packet capture): tmp_arr = ['iptables', '-A', 'SINKHOLE', '-j', 'NFLOG'] log.info('Writing: {0}'.format(' '.join(tmp_arr))) popen_wrapper(cmd_arr=tmp_arr, raise_err=True, sudo=True) # Tell the chain to trigger on hashlimit and protocol/port settings tmp_arr = [ 'iptables', '-i', self.interface, '-d', self.interface_addr, '-j', 'SINKHOLE', '-m', 'hashlimit', '--hashlimit', self.hashlimit, '--hashlimit-burst', self.hashlimitburst, '--hashlimit-mode', self.hashlimitmode, '--hashlimit-name', 'sinkhole', '--hashlimit-htable-expire', self.hashlimitexpire, '-I', 'INPUT', '1' ] # if --protocol filtered, set mode to multiport with protocol, and # set destination port if provided and applicable to the protocol(s) if self.protocol != 'all': tmp_arr += ['-m', 'multiport', '--protocol', self.protocol] if self.dport != '0:65535': tmp_arr += ['--dport', self.dport] log.info('Writing: {0}'.format(' '.join(tmp_arr))) popen_wrapper(cmd_arr=tmp_arr, raise_err=True, sudo=True) def create_drop_rule(self): """ The function for writing the iptables DROP rule for the interface. """ log.info('Checking for existing iptables DROP rules.') existing = self.list_existing_rules(filter_io_drop=True) # Existing sinkhole related iptables lines found, can't create. if len(existing) > 0: for line in existing: if line in ( '-A INPUT -i {0} -j DROP'.format(self.interface), '-A OUTPUT -o {0} -j DROP'.format(self.interface) ): raise IPTablesExists('Existing iptables DROP rules found ' 'for nfsinkhole:\n{0}' ''.format(line)) log.info('Writing iptables DROP config') # Create rules to drop all I/O traffic: tmp_arr = [ 'iptables', '-i', self.interface, '-j', 'DROP', '-I', 'INPUT', '1' ] log.info('Writing: {0}'.format(' '.join(tmp_arr))) popen_wrapper(cmd_arr=tmp_arr, raise_err=True, sudo=True) tmp_arr = [ 'iptables', '-o', self.interface, '-j', 'DROP', '-I', 'OUTPUT', '1' ] log.info('Writing: {0}'.format(' '.join(tmp_arr))) # TODO: replicate exception handling to other subprocess calls try: popen_wrapper(cmd_arr=tmp_arr, raise_err=True, sudo=True) except SubprocessError as e: # pragma: no cover raise IPTablesError(e) def delete_rules(self): """ The function for deleting iptables rules related to nfsinkhole. """ log.info('Checking for existing iptables rules.') existing = self.list_existing_rules() # No sinkhole related iptables lines found. if len(existing) == 0: raise IPTablesNotExists('No existing rules found.') log.info('Deleting iptables config (only what was created)') # Iterate all of the active sinkhole related iptables lines flush = False for line in existing: if '-A SINKHOLE' in line or line == '-N SINKHOLE': # Don't try to delete the SINKHOLE chain yet, it needs to be # empty. Set flush to clear it after this loop. flush = True elif line not in ( '-A INPUT -i {0} -j DROP'.format(self.interface), '-A OUTPUT -o {0} -j DROP'.format(self.interface) ): # Delete a single line (not the SINKHOLE chain itself). stmt = line.replace('-A', '-D').strip().split(' ') tmp_arr = ['iptables'] + stmt log.info('Deleting: {0}'.format(' '.join(tmp_arr))) popen_wrapper(cmd_arr=tmp_arr, raise_err=True, sudo=True) # The SINKHOLE chain was detected. Remove it. if flush: # All lines in the SINKHOLE chain should have been flushed already, # but run a flush to be sure. tmp_arr = ['iptables', '-F', 'SINKHOLE'] log.info('Flushing: {0}'.format(' '.join(tmp_arr))) popen_wrapper(cmd_arr=tmp_arr, raise_err=True, sudo=True) # Now that the SINKHOLE chain has been flushed, we can delete it. tmp_arr = ['iptables', '-X', 'SINKHOLE'] log.info('Deleting: {0}'.format(' '.join(tmp_arr))) popen_wrapper(cmd_arr=tmp_arr, raise_err=True, sudo=True) # Return a list of matching lines. return len(existing) def delete_drop_rule(self): """ The function for deleting the iptables DROP rule for the interface. """ log.info('Checking for existing iptables DROP rules.') existing = self.list_existing_rules(filter_io_drop=True) # No sinkhole related iptables lines found. if len(existing) == 0: raise IPTablesNotExists('No existing rules found.') log.info('Deleting iptables DROP config.') count = 0 for line in existing: if line in ( '-A INPUT -i {0} -j DROP'.format(self.interface), '-A OUTPUT -o {0} -j DROP'.format(self.interface) ): count += 1 # Delete a single line (not the SINKHOLE chain itself). stmt = line.replace('-A', '-D').split(' ') tmp_arr = ['iptables'] + stmt log.info('Deleting: {0}'.format(' '.join(tmp_arr))) popen_wrapper(cmd_arr=tmp_arr, raise_err=True, sudo=True) # Return the number of matching lines. return count
bsd-2-clause
5,636,203,261,590,857,000
36.356546
79
0.575498
false
JPJPJPOPOP/zulip
zerver/webhooks/helloworld/tests.py
37
1526
# -*- coding: utf-8 -*- from typing import Text from zerver.lib.test_classes import WebhookTestCase class HelloWorldHookTests(WebhookTestCase): STREAM_NAME = 'test' URL_TEMPLATE = "/api/v1/external/helloworld?&api_key={api_key}" FIXTURE_DIR_NAME = 'hello' # Note: Include a test function per each distinct message condition your integration supports def test_hello_message(self): # type: () -> None expected_subject = u"Hello World" expected_message = u"Hello! I am happy to be here! :smile:\nThe Wikipedia featured article for today is **[Marilyn Monroe](https://en.wikipedia.org/wiki/Marilyn_Monroe)**" # use fixture named helloworld_hello self.send_and_test_stream_message('hello', expected_subject, expected_message, content_type="application/x-www-form-urlencoded") def test_goodbye_message(self): # type: () -> None expected_subject = u"Hello World" expected_message = u"Hello! I am happy to be here! :smile:\nThe Wikipedia featured article for today is **[Goodbye](https://en.wikipedia.org/wiki/Goodbye)**" # use fixture named helloworld_goodbye self.send_and_test_stream_message('goodbye', expected_subject, expected_message, content_type="application/x-www-form-urlencoded") def get_body(self, fixture_name): # type: (Text) -> Text return self.fixture_data("helloworld", fixture_name, file_type="json")
apache-2.0
-4,778,303,683,667,878,000
48.225806
179
0.651376
false
akash1808/nova
nova/tests/unit/virt/test_block_device.py
11
36872
# All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import contextlib import mock from oslo_serialization import jsonutils import six from nova import block_device from nova import context from nova import exception from nova import test from nova.tests.unit import fake_instance from nova.tests.unit import matchers from nova.virt import block_device as driver_block_device from nova.virt import driver from nova.volume import cinder from nova.volume import encryptors class TestDriverBlockDevice(test.NoDBTestCase): driver_classes = { 'swap': driver_block_device.DriverSwapBlockDevice, 'ephemeral': driver_block_device.DriverEphemeralBlockDevice, 'volume': driver_block_device.DriverVolumeBlockDevice, 'snapshot': driver_block_device.DriverSnapshotBlockDevice, 'image': driver_block_device.DriverImageBlockDevice, 'blank': driver_block_device.DriverBlankBlockDevice } swap_bdm = block_device.BlockDeviceDict( {'id': 1, 'instance_uuid': 'fake-instance', 'device_name': '/dev/sdb1', 'source_type': 'blank', 'destination_type': 'local', 'delete_on_termination': True, 'guest_format': 'swap', 'disk_bus': 'scsi', 'volume_size': 2, 'boot_index': -1}) swap_driver_bdm = { 'device_name': '/dev/sdb1', 'swap_size': 2, 'disk_bus': 'scsi'} swap_legacy_driver_bdm = { 'device_name': '/dev/sdb1', 'swap_size': 2} ephemeral_bdm = block_device.BlockDeviceDict( {'id': 2, 'instance_uuid': 'fake-instance', 'device_name': '/dev/sdc1', 'source_type': 'blank', 'destination_type': 'local', 'disk_bus': 'scsi', 'device_type': 'disk', 'volume_size': 4, 'guest_format': 'ext4', 'delete_on_termination': True, 'boot_index': -1}) ephemeral_driver_bdm = { 'device_name': '/dev/sdc1', 'size': 4, 'device_type': 'disk', 'guest_format': 'ext4', 'disk_bus': 'scsi'} ephemeral_legacy_driver_bdm = { 'device_name': '/dev/sdc1', 'size': 4, 'virtual_name': 'ephemeral0', 'num': 0} volume_bdm = block_device.BlockDeviceDict( {'id': 3, 'instance_uuid': 'fake-instance', 'device_name': '/dev/sda1', 'source_type': 'volume', 'disk_bus': 'scsi', 'device_type': 'disk', 'volume_size': 8, 'destination_type': 'volume', 'volume_id': 'fake-volume-id-1', 'guest_format': 'ext4', 'connection_info': '{"fake": "connection_info"}', 'delete_on_termination': False, 'boot_index': 0}) volume_driver_bdm = { 'mount_device': '/dev/sda1', 'connection_info': {"fake": "connection_info"}, 'delete_on_termination': False, 'disk_bus': 'scsi', 'device_type': 'disk', 'guest_format': 'ext4', 'boot_index': 0} volume_legacy_driver_bdm = { 'mount_device': '/dev/sda1', 'connection_info': {"fake": "connection_info"}, 'delete_on_termination': False} snapshot_bdm = block_device.BlockDeviceDict( {'id': 4, 'instance_uuid': 'fake-instance', 'device_name': '/dev/sda2', 'delete_on_termination': True, 'volume_size': 3, 'disk_bus': 'scsi', 'device_type': 'disk', 'source_type': 'snapshot', 'destination_type': 'volume', 'connection_info': '{"fake": "connection_info"}', 'snapshot_id': 'fake-snapshot-id-1', 'volume_id': 'fake-volume-id-2', 'boot_index': -1}) snapshot_driver_bdm = { 'mount_device': '/dev/sda2', 'connection_info': {"fake": "connection_info"}, 'delete_on_termination': True, 'disk_bus': 'scsi', 'device_type': 'disk', 'guest_format': None, 'boot_index': -1} snapshot_legacy_driver_bdm = { 'mount_device': '/dev/sda2', 'connection_info': {"fake": "connection_info"}, 'delete_on_termination': True} image_bdm = block_device.BlockDeviceDict( {'id': 5, 'instance_uuid': 'fake-instance', 'device_name': '/dev/sda2', 'delete_on_termination': True, 'volume_size': 1, 'disk_bus': 'scsi', 'device_type': 'disk', 'source_type': 'image', 'destination_type': 'volume', 'connection_info': '{"fake": "connection_info"}', 'image_id': 'fake-image-id-1', 'volume_id': 'fake-volume-id-2', 'boot_index': -1}) image_driver_bdm = { 'mount_device': '/dev/sda2', 'connection_info': {"fake": "connection_info"}, 'delete_on_termination': True, 'disk_bus': 'scsi', 'device_type': 'disk', 'guest_format': None, 'boot_index': -1} image_legacy_driver_bdm = { 'mount_device': '/dev/sda2', 'connection_info': {"fake": "connection_info"}, 'delete_on_termination': True} blank_bdm = block_device.BlockDeviceDict( {'id': 6, 'instance_uuid': 'fake-instance', 'device_name': '/dev/sda2', 'delete_on_termination': True, 'volume_size': 3, 'disk_bus': 'scsi', 'device_type': 'disk', 'source_type': 'blank', 'destination_type': 'volume', 'connection_info': '{"fake": "connection_info"}', 'snapshot_id': 'fake-snapshot-id-1', 'volume_id': 'fake-volume-id-2', 'boot_index': -1}) blank_driver_bdm = { 'mount_device': '/dev/sda2', 'connection_info': {"fake": "connection_info"}, 'delete_on_termination': True, 'disk_bus': 'scsi', 'device_type': 'disk', 'guest_format': None, 'boot_index': -1} blank_legacy_driver_bdm = { 'mount_device': '/dev/sda2', 'connection_info': {"fake": "connection_info"}, 'delete_on_termination': True} def setUp(self): super(TestDriverBlockDevice, self).setUp() self.volume_api = self.mox.CreateMock(cinder.API) self.virt_driver = self.mox.CreateMock(driver.ComputeDriver) self.context = context.RequestContext('fake_user', 'fake_project') def test_no_device_raises(self): for name, cls in self.driver_classes.items(): self.assertRaises(driver_block_device._NotTransformable, cls, {'no_device': True}) def _test_driver_device(self, name): db_bdm = getattr(self, "%s_bdm" % name) test_bdm = self.driver_classes[name](db_bdm) self.assertThat(test_bdm, matchers.DictMatches( getattr(self, "%s_driver_bdm" % name))) for k, v in six.iteritems(db_bdm): field_val = getattr(test_bdm._bdm_obj, k) if isinstance(field_val, bool): v = bool(v) self.assertEqual(field_val, v) self.assertThat(test_bdm.legacy(), matchers.DictMatches( getattr(self, "%s_legacy_driver_bdm" % name))) # Test passthru attributes for passthru in test_bdm._proxy_as_attr: self.assertEqual(getattr(test_bdm, passthru), getattr(test_bdm._bdm_obj, passthru)) # Make sure that all others raise _invalidType for other_name, cls in six.iteritems(self.driver_classes): if other_name == name: continue self.assertRaises(driver_block_device._InvalidType, cls, getattr(self, '%s_bdm' % name)) # Test the save method with mock.patch.object(test_bdm._bdm_obj, 'save') as save_mock: for fld, alias in six.iteritems(test_bdm._update_on_save): test_bdm[alias or fld] = 'fake_changed_value' test_bdm.save() for fld, alias in six.iteritems(test_bdm._update_on_save): self.assertEqual(test_bdm[alias or fld], getattr(test_bdm._bdm_obj, fld)) save_mock.assert_called_once_with() def check_save(): self.assertEqual(set([]), test_bdm._bdm_obj.obj_what_changed()) # Test that nothing is set on the object if there are no actual changes test_bdm._bdm_obj.obj_reset_changes() with mock.patch.object(test_bdm._bdm_obj, 'save') as save_mock: save_mock.side_effect = check_save test_bdm.save() def _test_driver_default_size(self, name): size = 'swap_size' if name == 'swap' else 'size' no_size_bdm = getattr(self, "%s_bdm" % name).copy() no_size_bdm['volume_size'] = None driver_bdm = self.driver_classes[name](no_size_bdm) self.assertEqual(driver_bdm[size], 0) del no_size_bdm['volume_size'] driver_bdm = self.driver_classes[name](no_size_bdm) self.assertEqual(driver_bdm[size], 0) def test_driver_swap_block_device(self): self._test_driver_device("swap") def test_driver_swap_default_size(self): self._test_driver_default_size('swap') def test_driver_ephemeral_block_device(self): self._test_driver_device("ephemeral") def test_driver_ephemeral_default_size(self): self._test_driver_default_size('ephemeral') def test_driver_volume_block_device(self): self._test_driver_device("volume") test_bdm = self.driver_classes['volume']( self.volume_bdm) self.assertEqual(test_bdm['connection_info'], jsonutils.loads(test_bdm._bdm_obj.connection_info)) self.assertEqual(test_bdm._bdm_obj.id, 3) self.assertEqual(test_bdm.volume_id, 'fake-volume-id-1') self.assertEqual(test_bdm.volume_size, 8) def test_driver_snapshot_block_device(self): self._test_driver_device("snapshot") test_bdm = self.driver_classes['snapshot']( self.snapshot_bdm) self.assertEqual(test_bdm._bdm_obj.id, 4) self.assertEqual(test_bdm.snapshot_id, 'fake-snapshot-id-1') self.assertEqual(test_bdm.volume_id, 'fake-volume-id-2') self.assertEqual(test_bdm.volume_size, 3) def test_driver_image_block_device(self): self._test_driver_device('image') test_bdm = self.driver_classes['image']( self.image_bdm) self.assertEqual(test_bdm._bdm_obj.id, 5) self.assertEqual(test_bdm.image_id, 'fake-image-id-1') self.assertEqual(test_bdm.volume_size, 1) def test_driver_image_block_device_destination_local(self): self._test_driver_device('image') bdm = self.image_bdm.copy() bdm['destination_type'] = 'local' self.assertRaises(driver_block_device._InvalidType, self.driver_classes['image'], bdm) def test_driver_blank_block_device(self): self._test_driver_device('blank') test_bdm = self.driver_classes['blank']( self.blank_bdm) self.assertEqual(6, test_bdm._bdm_obj.id) self.assertEqual('fake-volume-id-2', test_bdm.volume_id) self.assertEqual(3, test_bdm.volume_size) def _test_call_wait_func(self, delete_on_termination, delete_fail=False): test_bdm = self.driver_classes['volume'](self.volume_bdm) test_bdm['delete_on_termination'] = delete_on_termination with mock.patch.object(self.volume_api, 'delete') as vol_delete: wait_func = mock.MagicMock() mock_exception = exception.VolumeNotCreated(volume_id='fake-id', seconds=1, attempts=1, volume_status='error') wait_func.side_effect = mock_exception if delete_on_termination and delete_fail: vol_delete.side_effect = Exception() self.assertRaises(exception.VolumeNotCreated, test_bdm._call_wait_func, context=self.context, wait_func=wait_func, volume_api=self.volume_api, volume_id='fake-id') self.assertEqual(delete_on_termination, vol_delete.called) def test_call_wait_delete_volume(self): self._test_call_wait_func(True) def test_call_wait_delete_volume_fail(self): self._test_call_wait_func(True, True) def test_call_wait_no_delete_volume(self): self._test_call_wait_func(False) def _test_volume_attach(self, driver_bdm, bdm_dict, fake_volume, check_attach=True, fail_check_attach=False, driver_attach=False, fail_driver_attach=False, volume_attach=True, fail_volume_attach=False, access_mode='rw'): elevated_context = self.context.elevated() self.stubs.Set(self.context, 'elevated', lambda: elevated_context) self.mox.StubOutWithMock(driver_bdm._bdm_obj, 'save') self.mox.StubOutWithMock(encryptors, 'get_encryption_metadata') instance_detail = {'id': '123', 'uuid': 'fake_uuid'} instance = fake_instance.fake_instance_obj(self.context, **instance_detail) connector = {'ip': 'fake_ip', 'host': 'fake_host'} connection_info = {'data': {'access_mode': access_mode}} expected_conn_info = {'data': {'access_mode': access_mode}, 'serial': fake_volume['id']} enc_data = {'fake': 'enc_data'} self.volume_api.get(self.context, fake_volume['id']).AndReturn(fake_volume) if check_attach: if not fail_check_attach: self.volume_api.check_attach(self.context, fake_volume, instance=instance).AndReturn(None) else: self.volume_api.check_attach(self.context, fake_volume, instance=instance).AndRaise( test.TestingException) driver_bdm._bdm_obj.save().AndReturn(None) return instance, expected_conn_info self.virt_driver.get_volume_connector(instance).AndReturn(connector) self.volume_api.initialize_connection( elevated_context, fake_volume['id'], connector).AndReturn(connection_info) if driver_attach: encryptors.get_encryption_metadata( elevated_context, self.volume_api, fake_volume['id'], connection_info).AndReturn(enc_data) if not fail_driver_attach: self.virt_driver.attach_volume( elevated_context, expected_conn_info, instance, bdm_dict['device_name'], disk_bus=bdm_dict['disk_bus'], device_type=bdm_dict['device_type'], encryption=enc_data).AndReturn(None) else: self.virt_driver.attach_volume( elevated_context, expected_conn_info, instance, bdm_dict['device_name'], disk_bus=bdm_dict['disk_bus'], device_type=bdm_dict['device_type'], encryption=enc_data).AndRaise(test.TestingException) self.volume_api.terminate_connection( elevated_context, fake_volume['id'], connector).AndReturn(None) driver_bdm._bdm_obj.save().AndReturn(None) return instance, expected_conn_info if volume_attach: driver_bdm._bdm_obj.save().AndReturn(None) if not fail_volume_attach: self.volume_api.attach(elevated_context, fake_volume['id'], 'fake_uuid', bdm_dict['device_name'], mode=access_mode).AndReturn(None) else: self.volume_api.attach(elevated_context, fake_volume['id'], 'fake_uuid', bdm_dict['device_name'], mode=access_mode).AndRaise( test.TestingException) driver_bdm._bdm_obj.save().AndReturn(None) return instance, expected_conn_info def test_volume_attach(self): test_bdm = self.driver_classes['volume']( self.volume_bdm) volume = {'id': 'fake-volume-id-1', 'attach_status': 'detached'} instance, expected_conn_info = self._test_volume_attach( test_bdm, self.volume_bdm, volume) self.mox.ReplayAll() test_bdm.attach(self.context, instance, self.volume_api, self.virt_driver) self.assertThat(test_bdm['connection_info'], matchers.DictMatches(expected_conn_info)) def test_volume_attach_ro(self): test_bdm = self.driver_classes['volume'](self.volume_bdm) volume = {'id': 'fake-volume-id-1', 'attach_status': 'detached'} instance, expected_conn_info = self._test_volume_attach( test_bdm, self.volume_bdm, volume, access_mode='ro') self.mox.ReplayAll() test_bdm.attach(self.context, instance, self.volume_api, self.virt_driver) self.assertThat(test_bdm['connection_info'], matchers.DictMatches(expected_conn_info)) def test_volume_attach_check_attach_fails(self): test_bdm = self.driver_classes['volume']( self.volume_bdm) volume = {'id': 'fake-volume-id-1'} instance, _ = self._test_volume_attach( test_bdm, self.volume_bdm, volume, fail_check_attach=True) self.mox.ReplayAll() self.assertRaises(test.TestingException, test_bdm.attach, self.context, instance, self.volume_api, self.virt_driver) def test_volume_no_volume_attach(self): test_bdm = self.driver_classes['volume']( self.volume_bdm) volume = {'id': 'fake-volume-id-1', 'attach_status': 'detached'} instance, expected_conn_info = self._test_volume_attach( test_bdm, self.volume_bdm, volume, check_attach=False, driver_attach=False) self.mox.ReplayAll() test_bdm.attach(self.context, instance, self.volume_api, self.virt_driver, do_check_attach=False, do_driver_attach=False) self.assertThat(test_bdm['connection_info'], matchers.DictMatches(expected_conn_info)) def test_volume_attach_no_check_driver_attach(self): test_bdm = self.driver_classes['volume']( self.volume_bdm) volume = {'id': 'fake-volume-id-1', 'attach_status': 'detached'} instance, expected_conn_info = self._test_volume_attach( test_bdm, self.volume_bdm, volume, check_attach=False, driver_attach=True) self.mox.ReplayAll() test_bdm.attach(self.context, instance, self.volume_api, self.virt_driver, do_check_attach=False, do_driver_attach=True) self.assertThat(test_bdm['connection_info'], matchers.DictMatches(expected_conn_info)) def test_volume_attach_driver_attach_fails(self): test_bdm = self.driver_classes['volume']( self.volume_bdm) volume = {'id': 'fake-volume-id-1'} instance, _ = self._test_volume_attach( test_bdm, self.volume_bdm, volume, driver_attach=True, fail_driver_attach=True) self.mox.ReplayAll() self.assertRaises(test.TestingException, test_bdm.attach, self.context, instance, self.volume_api, self.virt_driver, do_driver_attach=True) def test_volume_attach_volume_attach_fails(self): test_bdm = self.driver_classes['volume']( self.volume_bdm) volume = {'id': 'fake-volume-id-1', 'attach_status': 'detached'} instance, _ = self._test_volume_attach( test_bdm, self.volume_bdm, volume, driver_attach=True, fail_volume_attach=True) self.mox.ReplayAll() self.assertRaises(test.TestingException, test_bdm.attach, self.context, instance, self.volume_api, self.virt_driver, do_driver_attach=True) def test_refresh_connection(self): test_bdm = self.driver_classes['snapshot']( self.snapshot_bdm) instance = {'id': 'fake_id', 'uuid': 'fake_uuid'} connector = {'ip': 'fake_ip', 'host': 'fake_host'} connection_info = {'data': {'multipath_id': 'fake_multipath_id'}} expected_conn_info = {'data': {'multipath_id': 'fake_multipath_id'}, 'serial': 'fake-volume-id-2'} self.mox.StubOutWithMock(test_bdm._bdm_obj, 'save') self.virt_driver.get_volume_connector(instance).AndReturn(connector) self.volume_api.initialize_connection( self.context, test_bdm.volume_id, connector).AndReturn(connection_info) test_bdm._bdm_obj.save().AndReturn(None) self.mox.ReplayAll() test_bdm.refresh_connection_info(self.context, instance, self.volume_api, self.virt_driver) self.assertThat(test_bdm['connection_info'], matchers.DictMatches(expected_conn_info)) def test_snapshot_attach_no_volume(self): no_volume_snapshot = self.snapshot_bdm.copy() no_volume_snapshot['volume_id'] = None test_bdm = self.driver_classes['snapshot'](no_volume_snapshot) snapshot = {'id': 'fake-volume-id-1', 'attach_status': 'detached'} volume = {'id': 'fake-volume-id-2', 'attach_status': 'detached'} wait_func = self.mox.CreateMockAnything() self.volume_api.get_snapshot(self.context, 'fake-snapshot-id-1').AndReturn(snapshot) self.volume_api.create(self.context, 3, '', '', snapshot, availability_zone=None).AndReturn(volume) wait_func(self.context, 'fake-volume-id-2').AndReturn(None) instance, expected_conn_info = self._test_volume_attach( test_bdm, no_volume_snapshot, volume) self.mox.ReplayAll() test_bdm.attach(self.context, instance, self.volume_api, self.virt_driver, wait_func) self.assertEqual(test_bdm.volume_id, 'fake-volume-id-2') def test_snapshot_attach_fail_volume(self): fail_volume_snapshot = self.snapshot_bdm.copy() fail_volume_snapshot['volume_id'] = None test_bdm = self.driver_classes['snapshot'](fail_volume_snapshot) snapshot = {'id': 'fake-volume-id-1', 'attach_status': 'detached'} volume = {'id': 'fake-volume-id-2', 'attach_status': 'detached'} instance = fake_instance.fake_instance_obj(mock.sentinel.ctx, **{'uuid': 'fake-uuid'}) with contextlib.nested( mock.patch.object(self.volume_api, 'get_snapshot', return_value=snapshot), mock.patch.object(self.volume_api, 'create', return_value=volume), mock.patch.object(self.volume_api, 'delete'), ) as (vol_get_snap, vol_create, vol_delete): wait_func = mock.MagicMock() mock_exception = exception.VolumeNotCreated(volume_id=volume['id'], seconds=1, attempts=1, volume_status='error') wait_func.side_effect = mock_exception self.assertRaises(exception.VolumeNotCreated, test_bdm.attach, context=self.context, instance=instance, volume_api=self.volume_api, virt_driver=self.virt_driver, wait_func=wait_func) vol_get_snap.assert_called_once_with( self.context, 'fake-snapshot-id-1') vol_create.assert_called_once_with( self.context, 3, '', '', snapshot, availability_zone=None) vol_delete.assert_called_once_with(self.context, volume['id']) def test_snapshot_attach_volume(self): test_bdm = self.driver_classes['snapshot']( self.snapshot_bdm) instance = {'id': 'fake_id', 'uuid': 'fake_uuid'} volume_class = self.driver_classes['volume'] self.mox.StubOutWithMock(volume_class, 'attach') # Make sure theses are not called self.mox.StubOutWithMock(self.volume_api, 'get_snapshot') self.mox.StubOutWithMock(self.volume_api, 'create') volume_class.attach(self.context, instance, self.volume_api, self.virt_driver, do_check_attach=True ).AndReturn(None) self.mox.ReplayAll() test_bdm.attach(self.context, instance, self.volume_api, self.virt_driver) self.assertEqual(test_bdm.volume_id, 'fake-volume-id-2') def test_image_attach_no_volume(self): no_volume_image = self.image_bdm.copy() no_volume_image['volume_id'] = None test_bdm = self.driver_classes['image'](no_volume_image) image = {'id': 'fake-image-id-1'} volume = {'id': 'fake-volume-id-2', 'attach_status': 'detached'} wait_func = self.mox.CreateMockAnything() self.volume_api.create(self.context, 1, '', '', image_id=image['id'], availability_zone=None).AndReturn(volume) wait_func(self.context, 'fake-volume-id-2').AndReturn(None) instance, expected_conn_info = self._test_volume_attach( test_bdm, no_volume_image, volume) self.mox.ReplayAll() test_bdm.attach(self.context, instance, self.volume_api, self.virt_driver, wait_func) self.assertEqual(test_bdm.volume_id, 'fake-volume-id-2') def test_image_attach_fail_volume(self): fail_volume_image = self.image_bdm.copy() fail_volume_image['volume_id'] = None test_bdm = self.driver_classes['image'](fail_volume_image) image = {'id': 'fake-image-id-1'} volume = {'id': 'fake-volume-id-2', 'attach_status': 'detached'} instance = fake_instance.fake_instance_obj(mock.sentinel.ctx, **{'uuid': 'fake-uuid'}) with contextlib.nested( mock.patch.object(self.volume_api, 'create', return_value=volume), mock.patch.object(self.volume_api, 'delete'), ) as (vol_create, vol_delete): wait_func = mock.MagicMock() mock_exception = exception.VolumeNotCreated(volume_id=volume['id'], seconds=1, attempts=1, volume_status='error') wait_func.side_effect = mock_exception self.assertRaises(exception.VolumeNotCreated, test_bdm.attach, context=self.context, instance=instance, volume_api=self.volume_api, virt_driver=self.virt_driver, wait_func=wait_func) vol_create.assert_called_once_with( self.context, 1, '', '', image_id=image['id'], availability_zone=None) vol_delete.assert_called_once_with(self.context, volume['id']) def test_image_attach_volume(self): test_bdm = self.driver_classes['image']( self.image_bdm) instance = {'id': 'fake_id', 'uuid': 'fake_uuid'} volume_class = self.driver_classes['volume'] self.mox.StubOutWithMock(volume_class, 'attach') # Make sure theses are not called self.mox.StubOutWithMock(self.volume_api, 'get_snapshot') self.mox.StubOutWithMock(self.volume_api, 'create') volume_class.attach(self.context, instance, self.volume_api, self.virt_driver, do_check_attach=True ).AndReturn(None) self.mox.ReplayAll() test_bdm.attach(self.context, instance, self.volume_api, self.virt_driver) self.assertEqual(test_bdm.volume_id, 'fake-volume-id-2') def test_blank_attach_fail_volume(self): no_blank_volume = self.blank_bdm.copy() no_blank_volume['volume_id'] = None test_bdm = self.driver_classes['blank'](no_blank_volume) instance = fake_instance.fake_instance_obj(mock.sentinel.ctx, **{'uuid': 'fake-uuid'}) volume = {'id': 'fake-volume-id-2', 'display_name': 'fake-uuid-blank-vol'} with contextlib.nested( mock.patch.object(self.volume_api, 'create', return_value=volume), mock.patch.object(self.volume_api, 'delete'), ) as (vol_create, vol_delete): wait_func = mock.MagicMock() mock_exception = exception.VolumeNotCreated(volume_id=volume['id'], seconds=1, attempts=1, volume_status='error') wait_func.side_effect = mock_exception self.assertRaises(exception.VolumeNotCreated, test_bdm.attach, context=self.context, instance=instance, volume_api=self.volume_api, virt_driver=self.virt_driver, wait_func=wait_func) vol_create.assert_called_once_with( self.context, test_bdm.volume_size, 'fake-uuid-blank-vol', '', availability_zone=instance.availability_zone) vol_delete.assert_called_once_with( self.context, volume['id']) def test_blank_attach_volume(self): no_blank_volume = self.blank_bdm.copy() no_blank_volume['volume_id'] = None test_bdm = self.driver_classes['blank'](no_blank_volume) instance = fake_instance.fake_instance_obj(mock.sentinel.ctx, **{'uuid': 'fake-uuid'}) volume_class = self.driver_classes['volume'] volume = {'id': 'fake-volume-id-2', 'display_name': 'fake-uuid-blank-vol'} with contextlib.nested( mock.patch.object(self.volume_api, 'create', return_value=volume), mock.patch.object(volume_class, 'attach') ) as (vol_create, vol_attach): test_bdm.attach(self.context, instance, self.volume_api, self.virt_driver) vol_create.assert_called_once_with( self.context, test_bdm.volume_size, 'fake-uuid-blank-vol', '', availability_zone=instance.availability_zone) vol_attach.assert_called_once_with(self.context, instance, self.volume_api, self.virt_driver, do_check_attach=True) self.assertEqual('fake-volume-id-2', test_bdm.volume_id) def test_convert_block_devices(self): converted = driver_block_device._convert_block_devices( self.driver_classes['volume'], [self.volume_bdm, self.ephemeral_bdm]) self.assertEqual(converted, [self.volume_driver_bdm]) def test_convert_all_volumes(self): converted = driver_block_device.convert_all_volumes() self.assertEqual([], converted) converted = driver_block_device.convert_all_volumes( self.volume_bdm, self.ephemeral_bdm, self.image_bdm, self.blank_bdm, self.snapshot_bdm) self.assertEqual(converted, [self.volume_driver_bdm, self.image_driver_bdm, self.blank_driver_bdm, self.snapshot_driver_bdm]) def test_convert_volume(self): self.assertIsNone(driver_block_device.convert_volume(self.swap_bdm)) self.assertEqual(self.volume_driver_bdm, driver_block_device.convert_volume(self.volume_bdm)) self.assertEqual(self.snapshot_driver_bdm, driver_block_device.convert_volume(self.snapshot_bdm)) def test_legacy_block_devices(self): test_snapshot = self.driver_classes['snapshot']( self.snapshot_bdm) block_device_mapping = [test_snapshot, test_snapshot] legacy_bdm = driver_block_device.legacy_block_devices( block_device_mapping) self.assertEqual(legacy_bdm, [self.snapshot_legacy_driver_bdm, self.snapshot_legacy_driver_bdm]) # Test that the ephemerals work as expected test_ephemerals = [self.driver_classes['ephemeral']( self.ephemeral_bdm) for _ in range(2)] expected = [self.ephemeral_legacy_driver_bdm.copy() for _ in range(2)] expected[0]['virtual_name'] = 'ephemeral0' expected[0]['num'] = 0 expected[1]['virtual_name'] = 'ephemeral1' expected[1]['num'] = 1 legacy_ephemerals = driver_block_device.legacy_block_devices( test_ephemerals) self.assertEqual(expected, legacy_ephemerals) def test_get_swap(self): swap = [self.swap_driver_bdm] legacy_swap = [self.swap_legacy_driver_bdm] no_swap = [self.volume_driver_bdm] self.assertEqual(swap[0], driver_block_device.get_swap(swap)) self.assertEqual(legacy_swap[0], driver_block_device.get_swap(legacy_swap)) self.assertIsNone(driver_block_device.get_swap(no_swap)) self.assertIsNone(driver_block_device.get_swap([])) def test_is_implemented(self): for bdm in (self.image_bdm, self.volume_bdm, self.swap_bdm, self.ephemeral_bdm, self.snapshot_bdm): self.assertTrue(driver_block_device.is_implemented(bdm)) local_image = self.image_bdm.copy() local_image['destination_type'] = 'local' self.assertFalse(driver_block_device.is_implemented(local_image)) def test_is_block_device_mapping(self): test_swap = self.driver_classes['swap'](self.swap_bdm) test_ephemeral = self.driver_classes['ephemeral'](self.ephemeral_bdm) test_image = self.driver_classes['image'](self.image_bdm) test_snapshot = self.driver_classes['snapshot'](self.snapshot_bdm) test_volume = self.driver_classes['volume'](self.volume_bdm) test_blank = self.driver_classes['blank'](self.blank_bdm) for bdm in (test_image, test_snapshot, test_volume, test_blank): self.assertTrue(driver_block_device.is_block_device_mapping( bdm._bdm_obj)) for bdm in (test_swap, test_ephemeral): self.assertFalse(driver_block_device.is_block_device_mapping( bdm._bdm_obj))
apache-2.0
6,771,117,812,992,498,000
41.381609
79
0.554649
false
ngokevin/zamboni
mkt/downloads/views.py
1
1434
from django import http from django.shortcuts import get_object_or_404 import commonware.log import amo from amo.utils import HttpResponseSendFile from mkt.access import acl from mkt.files.models import File from mkt.site.decorators import allow_cross_site_request from mkt.webapps.models import Webapp log = commonware.log.getLogger('z.downloads') @allow_cross_site_request def download_file(request, file_id, type=None): file = get_object_or_404(File, pk=file_id) webapp = get_object_or_404(Webapp, pk=file.version.addon_id, is_packaged=True) if webapp.is_disabled or file.status == amo.STATUS_DISABLED: if not acl.check_addon_ownership(request, webapp, viewer=True, ignore_disabled=True): raise http.Http404() # We treat blocked files like public files so users get the update. if file.status in [amo.STATUS_PUBLIC, amo.STATUS_BLOCKED]: path = webapp.sign_if_packaged(file.version_id) else: # This is someone asking for an unsigned packaged app. if not acl.check_addon_ownership(request, webapp, dev=True): raise http.Http404() path = file.file_path log.info('Downloading package: %s from %s' % (webapp.id, path)) return HttpResponseSendFile(request, path, content_type='application/zip', etag=file.hash.split(':')[-1])
bsd-3-clause
-5,565,101,115,594,177,000
33.97561
78
0.663877
false
ghchinoy/tensorflow
tensorflow/python/keras/layers/noise.py
7
6944
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Layers that operate regularization via the addition of noise. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.python.keras import backend as K from tensorflow.python.keras.engine.base_layer import Layer from tensorflow.python.keras.utils import tf_utils from tensorflow.python.ops import array_ops from tensorflow.python.ops import math_ops from tensorflow.python.util.tf_export import keras_export @keras_export('keras.layers.GaussianNoise') class GaussianNoise(Layer): """Apply additive zero-centered Gaussian noise. This is useful to mitigate overfitting (you could see it as a form of random data augmentation). Gaussian Noise (GS) is a natural choice as corruption process for real valued inputs. As it is a regularization layer, it is only active at training time. Arguments: stddev: Float, standard deviation of the noise distribution. Call arguments: inputs: Input tensor (of any rank). training: Python boolean indicating whether the layer should behave in training mode (adding noise) or in inference mode (doing nothing). Input shape: Arbitrary. Use the keyword argument `input_shape` (tuple of integers, does not include the samples axis) when using this layer as the first layer in a model. Output shape: Same shape as input. """ def __init__(self, stddev, **kwargs): super(GaussianNoise, self).__init__(**kwargs) self.supports_masking = True self.stddev = stddev def call(self, inputs, training=None): def noised(): return inputs + K.random_normal( shape=array_ops.shape(inputs), mean=0., stddev=self.stddev) return K.in_train_phase(noised, inputs, training=training) def get_config(self): config = {'stddev': self.stddev} base_config = super(GaussianNoise, self).get_config() return dict(list(base_config.items()) + list(config.items())) @tf_utils.shape_type_conversion def compute_output_shape(self, input_shape): return input_shape @keras_export('keras.layers.GaussianDropout') class GaussianDropout(Layer): """Apply multiplicative 1-centered Gaussian noise. As it is a regularization layer, it is only active at training time. Arguments: rate: Float, drop probability (as with `Dropout`). The multiplicative noise will have standard deviation `sqrt(rate / (1 - rate))`. Call arguments: inputs: Input tensor (of any rank). training: Python boolean indicating whether the layer should behave in training mode (adding dropout) or in inference mode (doing nothing). Input shape: Arbitrary. Use the keyword argument `input_shape` (tuple of integers, does not include the samples axis) when using this layer as the first layer in a model. Output shape: Same shape as input. """ def __init__(self, rate, **kwargs): super(GaussianDropout, self).__init__(**kwargs) self.supports_masking = True self.rate = rate def call(self, inputs, training=None): if 0 < self.rate < 1: def noised(): stddev = np.sqrt(self.rate / (1.0 - self.rate)) return inputs * K.random_normal( shape=array_ops.shape(inputs), mean=1.0, stddev=stddev) return K.in_train_phase(noised, inputs, training=training) return inputs def get_config(self): config = {'rate': self.rate} base_config = super(GaussianDropout, self).get_config() return dict(list(base_config.items()) + list(config.items())) @tf_utils.shape_type_conversion def compute_output_shape(self, input_shape): return input_shape @keras_export('keras.layers.AlphaDropout') class AlphaDropout(Layer): """Applies Alpha Dropout to the input. Alpha Dropout is a `Dropout` that keeps mean and variance of inputs to their original values, in order to ensure the self-normalizing property even after this dropout. Alpha Dropout fits well to Scaled Exponential Linear Units by randomly setting activations to the negative saturation value. Arguments: rate: float, drop probability (as with `Dropout`). The multiplicative noise will have standard deviation `sqrt(rate / (1 - rate))`. seed: A Python integer to use as random seed. Call arguments: inputs: Input tensor (of any rank). training: Python boolean indicating whether the layer should behave in training mode (adding dropout) or in inference mode (doing nothing). Input shape: Arbitrary. Use the keyword argument `input_shape` (tuple of integers, does not include the samples axis) when using this layer as the first layer in a model. Output shape: Same shape as input. """ def __init__(self, rate, noise_shape=None, seed=None, **kwargs): super(AlphaDropout, self).__init__(**kwargs) self.rate = rate self.noise_shape = noise_shape self.seed = seed self.supports_masking = True def _get_noise_shape(self, inputs): return self.noise_shape if self.noise_shape else array_ops.shape(inputs) def call(self, inputs, training=None): if 0. < self.rate < 1.: noise_shape = self._get_noise_shape(inputs) def dropped_inputs(inputs=inputs, rate=self.rate, seed=self.seed): # pylint: disable=missing-docstring alpha = 1.6732632423543772848170429916717 scale = 1.0507009873554804934193349852946 alpha_p = -alpha * scale kept_idx = math_ops.greater_equal( K.random_uniform(noise_shape, seed=seed), rate) kept_idx = math_ops.cast(kept_idx, K.floatx()) # Get affine transformation params a = ((1 - rate) * (1 + rate * alpha_p**2))**-0.5 b = -a * alpha_p * rate # Apply mask x = inputs * kept_idx + alpha_p * (1 - kept_idx) # Do affine transformation return a * x + b return K.in_train_phase(dropped_inputs, inputs, training=training) return inputs def get_config(self): config = {'rate': self.rate} base_config = super(AlphaDropout, self).get_config() return dict(list(base_config.items()) + list(config.items())) @tf_utils.shape_type_conversion def compute_output_shape(self, input_shape): return input_shape
apache-2.0
1,387,097,785,866,963,700
32.708738
109
0.691388
false
jyeatman/dipy
doc/examples/sfm_reconst.py
9
5785
""" .. _sfm-reconst: ============================================== Reconstruction with the Sparse Fascicle Model ============================================== In this example, we will use the Sparse Fascicle Model [Rokem2014]_, to reconstruct the fiber orientation distribution function (fODF) in every voxel. First, we import the modules we will use in this example: """ import dipy.reconst.sfm as sfm import dipy.data as dpd import dipy.reconst.peaks as dpp from dipy.viz import fvtk """ For the purpose of this example, we will use the Stanford HARDI dataset (150 directions, single b-value of 2000 s/mm$^2$) that can be automatically downloaded. If you have not yet downloaded this data-set in one of the other examples, you will need to be connected to the internet the first time you run this example. The data will be stored for subsequent runs, and for use with other examples. """ from dipy.data import read_stanford_hardi img, gtab = read_stanford_hardi() data = img.get_data() """ Reconstruction of the fiber ODF in each voxel guides subsequent tracking steps. Here, the model is the Sparse Fascicle Model, described in [Rokem2014]_. This model reconstructs the diffusion signal as a combination of the signals from different fascicles. This model can be written as: .. math:: y = X\beta Where $y$ is the signal and $\beta$ are weights on different points in the sphere. The columns of the design matrix, $X$ are the signals in each point in the measurement that would be predicted if there was a fascicle oriented in the direction represented by that column. Typically, the signal used for this kernel will be a prolate tensor with axial diffusivity 3-5 times higher than its radial diffusivity. The exact numbers can also be estimated from examining parts of the brain in which there is known to be only one fascicle (e.g. in corpus callosum). Sparsity constraints on the fiber ODF ($\beta$) are set through the Elastic Net algorihtm [Zou2005]_. Elastic Net optimizes the following cost function: .. math:: \sum_{i=1}^{n}{(y_i - \hat{y}_i)^2} + \alpha (\lambda \sum_{j=1}^{m}{w_j}+(1-\lambda) \sum_{j=1}^{m}{w^2_j} where $\hat{y}$ is the signal predicted for a particular setting of $\beta$, such that the left part of this expression is the squared loss function; $\alpha$ is a parameter that sets the balance between the squared loss on the data, and the regularization constraints. The regularization parameter $\lambda$ sets the `l1_ratio`, which controls the balance between L1-sparsity (low sum of weights), and low L2-sparsity (low sum-of-squares of the weights). Just like constrained spherical deconvolution (see :ref:`reconst-csd`), the SFM requires the definition of a response function. We'll take advantage of the automated algorithm in the :mod:`csdeconv` module to find this response function: """ from dipy.reconst.csdeconv import auto_response response, ratio = auto_response(gtab, data, roi_radius=10, fa_thr=0.7) """ The ``response`` return value contains two entries. The first is an array with the eigenvalues of the response function and the second is the average S0 for this response. It is a very good practice to always validate the result of auto_response. For, this purpose we can print it and have a look at its values. """ print(response) """ (array([ 0.0014, 0.00029, 0.00029]), 416.206) We initialize an SFM model object, using these values. We will use the default sphere (362 vertices, symmetrically distributed on the surface of the sphere), as a set of putative fascicle directions that are considered in the model """ sphere = dpd.get_sphere() sf_model = sfm.SparseFascicleModel(gtab, sphere=sphere, l1_ratio=0.5, alpha=0.001, response=response[0]) """ For the purpose of the example, we will consider a small volume of data containing parts of the corpus callosum and of the centrum semiovale """ data_small = data[20:50, 55:85, 38:39] """ Fitting the model to this small volume of data, we calculate the ODF of this model on the sphere, and plot it. """ sf_fit = sf_model.fit(data_small) sf_odf = sf_fit.odf(sphere) fodf_spheres = fvtk.sphere_funcs(sf_odf, sphere, scale=1.3, norm=True) ren = fvtk.ren() fvtk.add(ren, fodf_spheres) print('Saving illustration as sf_odfs.png') fvtk.record(ren, out_path='sf_odfs.png', size=(1000, 1000)) """ We can extract the peaks from the ODF, and plot these as well """ sf_peaks = dpp.peaks_from_model(sf_model, data_small, sphere, relative_peak_threshold=.5, min_separation_angle=25, return_sh=False) fvtk.clear(ren) fodf_peaks = fvtk.peaks(sf_peaks.peak_dirs, sf_peaks.peak_values, scale=1.3) fvtk.add(ren, fodf_peaks) print('Saving illustration as sf_peaks.png') fvtk.record(ren, out_path='sf_peaks.png', size=(1000, 1000)) """ Finally, we plot both the peaks and the ODFs, overlayed: """ fodf_spheres.GetProperty().SetOpacity(0.4) fvtk.add(ren, fodf_spheres) print('Saving illustration as sf_both.png') fvtk.record(ren, out_path='sf_both.png', size=(1000, 1000)) """ .. figure:: sf_both.png :align: center **SFM Peaks and ODFs**. To see how to use this information in tracking, proceed to :ref:`sfm-track`. References ---------- .. [Rokem2014] Ariel Rokem, Jason D. Yeatman, Franco Pestilli, Kendrick N. Kay, Aviv Mezer, Stefan van der Walt, Brian A. Wandell (2014). Evaluating the accuracy of diffusion MRI models in white matter. http://arxiv.org/abs/1411.0721 .. [Zou2005] Zou H, Hastie T (2005). Regularization and variable selection via the elastic net. J R Stat Soc B:301-320 """
bsd-3-clause
176,874,845,774,013,950
32.439306
111
0.700605
false
agoraplex/platform
docs/conf.py
1
9043
# -*- coding: utf-8 -*- # # Agoraplex Platform documentation build configuration file, created by # sphinx-quickstart2 on Fri Jan 11 20:37:25 2013. # # This file is execfile()d with the current directory set to its containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys, os import agoraplex.themes.sphinx # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. sys.path.insert(0, os.path.abspath('..')) sys.path.insert(0, os.path.abspath('.')) # -- General configuration ----------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = ['sphinx.ext.autodoc', 'sphinx.ext.intersphinx', 'sphinx.ext.todo', 'sphinx.ext.coverage', 'sphinx.ext.viewcode', 'agoraplex.themes.sphinx.roles',] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'Agoraplex Platform' copyright = u'2013, Tripp Lilley' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = '0.0.0' # The full version, including alpha/beta/rc tags. release = '0.0.0' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['_build'] # The reST default role (used for this markup: `text`) to use for all documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # -- Options for HTML output --------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'agoraplex' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. html_theme_options = { 'github_url': 'https://github.com/agoraplex/platform', } # Add any paths that contain custom themes here, relative to this directory. html_theme_path = agoraplex.themes.sphinx.get_html_theme_path() # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'AgoraplexPlatformdoc' # -- Options for LaTeX output -------------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass [howto/manual]). latex_documents = [ ('index', 'AgoraplexPlatform.tex', u'Agoraplex Platform Documentation', u'Tripp Lilley', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output -------------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'agoraplexplatform', u'Agoraplex Platform Documentation', [u'Tripp Lilley'], 1) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ------------------------------------------------ # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ('index', 'AgoraplexPlatform', u'Agoraplex Platform Documentation', u'Tripp Lilley', 'AgoraplexPlatform', 'The Agoraplex Platform.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote' intersphinx_mapping = { # Python SDK docs 'python' : ( 'http://docs.python.org/2/', None ), } def map_rtfd_subprojects (url, project, subprojects): """ Generic helper to map Intersphinx inventories for several ReadTheDocs.org sub-projects. **TODO:** move this into our shared Sphinx helpers """ def urlfor (subproject, lang='en', version='latest', project=project): return rtfd % locals() return dict((subproject, (urlfor(subproject), None)) for subproject in subprojects) rtfd = 'http://docs.agoraplex.net/projects/%(subproject)s/%(lang)s/%(version)s' # Intersphinx the Agoraplex platform docs project = 'agoraplex' subprojects = ('anodi', 'predicates',) intersphinx_mapping.update(map_rtfd_subprojects(rtfd, project, subprojects)) autodoc_default_flags = ['members', 'undoc-members'] add_module_names = False
bsd-3-clause
-5,002,838,928,667,051,000
31.883636
126
0.704744
false
ABcDexter/python-weka-wrapper
python/weka/core/converters.py
2
11100
# This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # converters.py # Copyright (C) 2014-2015 Fracpete (pythonwekawrapper at gmail dot com) import javabridge from weka.core.classes import OptionHandler from weka.core.capabilities import Capabilities from weka.core.dataset import Instances, Instance, Attribute import numpy class Loader(OptionHandler): """ Wrapper class for Loaders. """ def __init__(self, classname="weka.core.converters.ArffLoader", jobject=None, options=None): """ Initializes the specified loader either using the classname or the JB_Object. :param classname: the classname of the loader :type classname: str :param jobject: the JB_Object to use :type jobject: JB_Object :param options: the list of commandline options to set :type options: list """ if jobject is None: jobject = Loader.new_instance(classname) self.enforce_type(jobject, "weka.core.converters.Loader") super(Loader, self).__init__(jobject=jobject, options=options) self.incremental = False self.structure = None def __iter__(self): """ Returns an iterator in case the loader was instantiated in incremental mode, otherwise an Exception is raised. :return: the iterator :rtype: IncrementalLoaderIterator """ if not self.incremental: raise Exception("Not in incremental mode, cannot iterate!") return IncrementalLoaderIterator(self, self.structure) def load_file(self, dfile, incremental=False): """ Loads the specified file and returns the Instances object. In case of incremental loading, only the structure. :param dfile: the file to load :type dfile: str :param incremental: whether to load the dataset incrementally :type incremental: bool :return: the full dataset or the header (if incremental) :rtype: Instances """ self.enforce_type(self.jobject, "weka.core.converters.FileSourcedConverter") self.incremental = incremental if not javabridge.is_instance_of(dfile, "Ljava/io/File;"): dfile = javabridge.make_instance( "Ljava/io/File;", "(Ljava/lang/String;)V", javabridge.get_env().new_string_utf(str(dfile))) javabridge.call(self.jobject, "reset", "()V") javabridge.call(self.jobject, "setFile", "(Ljava/io/File;)V", dfile) if incremental: self.structure = Instances(javabridge.call(self.jobject, "getStructure", "()Lweka/core/Instances;")) return self.structure else: return Instances(javabridge.call(self.jobject, "getDataSet", "()Lweka/core/Instances;")) def load_url(self, url, incremental=False): """ Loads the specified URL and returns the Instances object. In case of incremental loading, only the structure. :param url: the URL to load the data from :type url: str :param incremental: whether to load the dataset incrementally :type incremental: bool :return: the full dataset or the header (if incremental) :rtype: Instances """ self.enforce_type(self.jobject, "weka.core.converters.URLSourcedLoader") self.incremental = incremental javabridge.call(self.jobject, "reset", "()V") javabridge.call(self.jobject, "setURL", "(Ljava/lang/String;)V", str(url)) if incremental: self.structure = Instances(javabridge.call(self.jobject, "getStructure", "()Lweka/core/Instances;")) return self.structure else: return Instances(javabridge.call(self.jobject, "getDataSet", "()Lweka/core/Instances;")) class IncrementalLoaderIterator(object): """ Iterator for dataset rows when loarding incrementally. """ def __init__(self, loader, structure): """ :param loader: the loader instance to use for loading the data incrementally :type loader: Loader :param structure: the dataset structure :type structure: Instances """ self.loader = loader self.structure = structure def __iter__(self): """ Returns itself. """ return self def next(self): """ Reads the next dataset row. :return: the next row :rtype: Instance """ result = javabridge.call( self.loader.jobject, "getNextInstance", "(Lweka/core/Instances;)Lweka/core/Instance;", self.structure.jobject) if result is None: raise StopIteration() else: return Instance(result) class TextDirectoryLoader(OptionHandler): """ Wrapper class for TextDirectoryLoader. """ def __init__(self, jobject=None, options=None): """ Initializes the text directory loader either using a new instance or the JB_Object. :param jobject: the JB_Object to use :type jobject: JB_Object :param options: the list of commandline options to set :type options: list """ if jobject is None: jobject = TextDirectoryLoader.new_instance("weka.core.converters.TextDirectoryLoader") self.enforce_type(jobject, "weka.core.converters.TextDirectoryLoader") super(TextDirectoryLoader, self).__init__(jobject=jobject, options=options) def load(self): """ Loads the text files from the specified directory and returns the Instances object. In case of incremental loading, only the structure. :return: the full dataset or the header (if incremental) :rtype: Instances """ javabridge.call(self.jobject, "reset", "()V") return Instances(javabridge.call(self.jobject, "getDataSet", "()Lweka/core/Instances;")) class Saver(OptionHandler): """ Wrapper class for Savers. """ def __init__(self, classname="weka.core.converters.ArffSaver", jobject=None, options=None): """ Initializes the specified saver either using the classname or the provided JB_Object. :param classname: the classname of the saver :type classname: str :param jobject: the JB_Object to use :type jobject: JB_Object :param options: the list of commandline options to use :type options: list """ if jobject is None: jobject = Saver.new_instance(classname) self.enforce_type(jobject, "weka.core.converters.Saver") super(Saver, self).__init__(jobject=jobject, options=options) def capabilities(self): """ Returns the capabilities of the saver. :return: the capabilities :rtype: Capabilities """ return Capabilities(javabridge.call(self.jobject, "getCapabilities", "()Lweka/core/Capabilities;")) def save_file(self, data, dfile): """ Saves the Instances object in the specified file. :param data: the data to save :type data: Instances :param dfile: the file to save the data to :type dfile: str """ self.enforce_type(self.jobject, "weka.core.converters.FileSourcedConverter") if not javabridge.is_instance_of(dfile, "Ljava/io/File;"): dfile = javabridge.make_instance( "Ljava/io/File;", "(Ljava/lang/String;)V", javabridge.get_env().new_string_utf(str(dfile))) javabridge.call(self.jobject, "setFile", "(Ljava/io/File;)V", dfile) javabridge.call(self.jobject, "setInstances", "(Lweka/core/Instances;)V", data.jobject) javabridge.call(self.jobject, "writeBatch", "()V") def loader_for_file(filename): """ Returns a Loader that can load the specified file, based on the file extension. None if failed to determine. :param filename: the filename to get the loader for :type filename: str :return: the assoicated loader instance or None if none found :rtype: Loader """ loader = javabridge.static_call( "weka/core/converters/ConverterUtils", "getLoaderForFile", "(Ljava/lang/String;)Lweka/core/converters/AbstractFileLoader;", filename) if loader is None: return None else: return Loader(jobject=loader) def saver_for_file(filename): """ Returns a Saver that can load the specified file, based on the file extension. None if failed to determine. :param filename: the filename to get the saver for :type filename: str :return: the associated saver instance or None if none found :rtype: Saver """ saver = javabridge.static_call( "weka/core/converters/ConverterUtils", "getSaverForFile", "(Ljava/lang/String;)Lweka/core/converters/AbstractFileSaver;", filename) if saver is None: return None else: return Saver(jobject=saver) def ndarray_to_instances(array, relation, att_template="Att-#", att_list=None): """ Converts the numpy matrix into an Instances object and returns it. :param array: the numpy ndarray to convert :type array: numpy.darray :param relation: the name of the dataset :type relation: str :param att_template: the prefix to use for the attribute names, "#" is the 1-based index, "!" is the 0-based index, "@" the relation name :type att_template: str :param att_list: the list of attribute names to use :type att_list: list :return: the generated instances object :rtype: Instances """ if len(numpy.shape(array)) != 2: raise Exception("Number of array dimensions must be 2!") rows, cols = numpy.shape(array) # header atts = [] if att_list is not None: if len(att_list) != cols: raise Exception( "Number columns and provided attribute names differ: " + str(cols) + " != " + len(att_list)) for name in att_list: att = Attribute.create_numeric(name) atts.append(att) else: for i in xrange(cols): name = att_template.replace("#", str(i+1)).replace("!", str(i)).replace("@", relation) att = Attribute.create_numeric(name) atts.append(att) result = Instances.create_instances(relation, atts, rows) # data for i in xrange(rows): inst = Instance.create_instance(array[i]) result.add_instance(inst) return result
gpl-3.0
-3,305,952,681,374,735,000
37.811189
112
0.642252
false
dawran6/zulip
contrib_bots/bots/googlesearch/googlesearch.py
8
2823
# See zulip/contrib_bots/lib/readme.md for instructions on running this code. from __future__ import print_function import logging import http.client from six.moves.urllib.request import urlopen # Uses the Google search engine bindings # pip install --upgrade google from google import search def get_google_result(search_keywords): if search_keywords == 'help': help_message = "To use this bot start message with @google \ followed by what you want to search for. If \ found, Zulip will return the first search result \ on Google. An example message that could be sent is:\ '@google zulip' or '@google how to create a chatbot'." return help_message else: try: urls = search(search_keywords, stop=20) urlopen('http://216.58.192.142', timeout=1) except http.client.RemoteDisconnected as er: logging.exception(er) return 'Error: No internet connection. {}.'.format(er) except Exception as e: logging.exception(e) return 'Error: Search failed. {}.'.format(e) if not urls: return 'No URLs returned by google.' url = next(urls) return 'Success: {}'.format(url) class GoogleSearchHandler(object): ''' This plugin allows users to enter a search term in Zulip and get the top URL sent back to the context (stream or private) in which it was called. It looks for messages starting with @google. ''' def usage(self): return ''' This plugin will allow users to search for a given search term on Google from Zulip. Use '@google help' to get more information on the bot usage. Users should preface messages with @google. ''' def handle_message(self, message, client, state_handler): original_content = message['content'] original_sender = message['sender_email'] result = get_google_result(original_content) if message['type'] == 'private': client.send_message(dict( type='private', to=original_sender, content=result, )) else: client.send_message(dict( type=message['type'], to=message['display_recipient'], subject=message['subject'], content=result, )) handler_class = GoogleSearchHandler def test(): try: urlopen('http://216.58.192.142', timeout=1) print('Success') return True except http.client.RemoteDisconnected as e: print('Error: {}'.format(e)) return False if __name__ == '__main__': test()
apache-2.0
-3,737,393,330,933,600,000
31.825581
78
0.581651
false
kaifabian/lana-dashboard
lana_dashboard/lana_data/models/autonomous_system.py
1
1459
from django.db import models from django.db.models import Q from django.utils.translation import ugettext_lazy as _, ungettext_lazy from lana_dashboard.lana_data.models.institution import Institution class AutonomousSystem(models.Model): as_number = models.BigIntegerField(unique=True, verbose_name=_("AS Number")) comment = models.CharField(max_length=255, blank=True, null=True, verbose_name=_("Comment")) location_lat = models.FloatField(blank=True, null=True, verbose_name=_("Latitude")) location_lng = models.FloatField(blank=True, null=True, verbose_name=_("Longitude")) private = models.BooleanField(default=False, verbose_name=_("Private")) institution = models.ForeignKey(Institution, related_name='autonomous_systems', verbose_name=_("Institution")) class Meta: ordering = ['as_number'] verbose_name = ungettext_lazy("Autonomous System", "Autonomous Systems", 1) verbose_name_plural = ungettext_lazy("Autonomous System", "Autonomous Systems", 2) @classmethod def get_view_qs(cls, user): return cls.objects.filter(Q(private=False) | Q(institution__owners=user)).distinct('as_number') @property def has_geo(self): return self.location_lat is not None and self.location_lng is not None def __str__(self): return "AS{}".format(self.as_number) def can_view(self, user): return not self.private or self.institution.owners.filter(id=user.id).exists() def can_edit(self, user): return self.institution.can_edit(user)
agpl-3.0
-8,018,120,222,579,425,000
38.432432
111
0.747772
false
sgiavasis/C-PAC
CPAC/GUI/interface/windows/config_window.py
1
38458
import wx from CPAC.GUI.interface.utils.constants import substitution_map import pkg_resources as p from CPAC.GUI.interface.pages import WorkflowConfig, Motion, AnatomicalPreprocessing, \ DerivativesConfig, Segmentation, Registration, FunctionalPreProcessing,\ MotionOptions, Scrubbing, AnatToFuncRegistration, FuncToMNIRegistration,\ VMHC, VMHCSettings, ReHo, ReHoSettings, \ SCA, SCASettings, MultipleRegressionSCA,\ Settings, ComputerSettings, DirectorySettings, \ Nuisance, NuisanceCorrection, MedianAngleCorrection,\ CentralitySettings, Centrality,\ ALFF, ALFFSettings,\ Smoothing, SmoothingSettings,\ Filtering, FilteringSettings,\ TimeSeries, ROITimeseries, VOXELTimeseries, \ SpatialRegression, GenerateSeeds, VerticesTimeSeries,\ GroupAnalysis, GPASettings, BASCSettings,\ BASC, CWAS, CWASSettings,\ DualRegression, DualRegressionOptions, TimeSeriesOptions ID_SUBMIT = 6 class Mybook(wx.Treebook): def __init__(self, parent): wx.Treebook.__init__(self, parent, wx.ID_ANY, style= wx.BK_DEFAULT) self.page_list = [] # create the page windows as children of the notebook page1 = Settings(self) page2 = ComputerSettings(self) page3 = DirectorySettings(self) page4 = WorkflowConfig(self) page47 = DerivativesConfig(self) page5 = AnatomicalPreprocessing(self) page6 = Registration(self, 1) page7 = Segmentation(self, 2) page8 = FunctionalPreProcessing(self) page9 = TimeSeriesOptions(self) page10 = AnatToFuncRegistration(self, 5) page11 = FuncToMNIRegistration(self, 6) page12 = Nuisance(self) page13 = NuisanceCorrection(self, 7) page14 = MedianAngleCorrection(self, 8) page15 = Filtering(self) page16 = FilteringSettings(self, 9) page17 = Motion(self) page18 = MotionOptions(self) page19 = Scrubbing(self, 4) page20 = TimeSeries(self) page21 = GenerateSeeds(self) page22 = ROITimeseries(self) page23 = VOXELTimeseries(self) page24 = VerticesTimeSeries(self) page25 = SpatialRegression(self) page26 = SCA(self) page27 = SCASettings(self) page28 = MultipleRegressionSCA(self) page29 = DualRegression(self) page30 = DualRegressionOptions(self) page31 = VMHC(self) page32 = VMHCSettings(self) page33 = ALFF(self) page34 = ALFFSettings(self) page35 = ReHo(self) page36 = ReHoSettings(self) page37 = Centrality(self) page38 = CentralitySettings(self) page39 = Smoothing(self) page40 = SmoothingSettings(self) page41 = BASC(self) page42 = BASCSettings(self) page43 = CWAS(self) page44 = CWASSettings(self) page45 = GroupAnalysis(self) page46 = GPASettings(self) # add the pages to the notebook with the label to show on the tab self.AddPage(page1, "Environment Setup", wx.ID_ANY) self.AddSubPage(page2, "Computer Settings", wx.ID_ANY) self.AddSubPage(page3, "Output Settings", wx.ID_ANY) self.AddSubPage(page4, "Preprocessing Workflow Options", wx.ID_ANY) self.AddSubPage(page47, "Derivatives Settings", wx.ID_ANY) self.AddPage(page5, "Anatomical Preprocessing", wx.ID_ANY) self.AddSubPage(page6, "Anatomical Registration", wx.ID_ANY) self.AddSubPage(page7, "Tissue Segmentation", wx.ID_ANY) self.AddPage(page8, "Functional Preprocessing", wx.ID_ANY) self.AddSubPage(page9, "Time Series Options", wx.ID_ANY) self.AddSubPage(page10, "Functional to Anatomical Registration", wx.ID_ANY) self.AddSubPage(page11, "Functional to MNI Registration", wx.ID_ANY) self.AddPage(page12, "Nuisance", wx.ID_ANY) self.AddSubPage(page13, "Nuisance Correction", wx.ID_ANY) self.AddSubPage(page14, "Median Angle Correction", wx.ID_ANY) self.AddPage(page15, "Temporal Filtering", wx.ID_ANY) self.AddSubPage(page16, "Temporal Filtering Options", wx.ID_ANY) self.AddPage(page17, "Motion Correction", wx.ID_ANY) self.AddSubPage(page18, "Motion Correction Options", wx.ID_ANY) self.AddSubPage(page19, "Scrubbing Options", wx.ID_ANY) self.AddPage(page20, "Time Series Extraction (TSE)", wx.ID_ANY) self.AddSubPage(page21, "Define New Seeds", wx.ID_ANY) self.AddSubPage(page22, "ROI Average TSE", wx.ID_ANY) self.AddSubPage(page23, "ROI Voxelwise TSE", wx.ID_ANY) self.AddSubPage(page24, "Surface Vertices TSE", wx.ID_ANY) self.AddSubPage(page25, "Spatial Regression", wx.ID_ANY) self.AddPage(page26, "Seed-based Correlation Analysis (SCA)", wx.ID_ANY) self.AddSubPage(page27, "SCA Options", wx.ID_ANY) self.AddSubPage(page28, "Mutiple Regression SCA Options", wx.ID_ANY) self.AddPage(page29, "Dual Regression", wx.ID_ANY) self.AddSubPage(page30, "Dual Regression Options", wx.ID_ANY) self.AddPage(page31, "Voxel-mirrored Homotopic Connectivity", wx.ID_ANY) self.AddSubPage(page32, "VMHC Settings", wx.ID_ANY) self.AddPage(page33, "ALFF and f/ALFF", wx.ID_ANY) self.AddSubPage(page34, "ALFF and f/ALFF Options", wx.ID_ANY) self.AddPage(page35, "Regional Homogeneity (ReHo)", wx.ID_ANY) self.AddSubPage(page36, "ReHo Options", wx.ID_ANY) self.AddPage(page37, "Network Centrality", wx.ID_ANY) self.AddSubPage(page38, "Network Centrality Options", wx.ID_ANY) self.AddPage(page39, "Spatial Smoothing", wx.ID_ANY) self.AddSubPage(page40, "Spatial Smoothing Options", wx.ID_ANY) self.AddPage(page41, "Bootstrap Analysis of Stable Clusters", wx.ID_ANY) self.AddSubPage(page42, "BASC Settings", wx.ID_ANY) self.AddPage(page43, "CWAS", wx.ID_ANY) self.AddSubPage(page44, "CWAS Settings", wx.ID_ANY) self.AddPage(page45, "Group Analysis", wx.ID_ANY) self.AddSubPage(page46, "Group Analysis Settings", wx.ID_ANY) self.Bind(wx.EVT_TREEBOOK_PAGE_CHANGED, self.OnPageChanged) self.Bind(wx.EVT_TREEBOOK_PAGE_CHANGING, self.OnPageChanging) # This is a workaround for a sizing bug on Mac... wx.FutureCall(100, self.AdjustSize) self.SetSelection(1) self.Refresh() def OnPageChanged(self, event): old = event.GetOldSelection() new = event.GetSelection() sel = self.GetSelection() event.Skip() def OnPageChanging(self, event): old = event.GetOldSelection() new = event.GetSelection() sel = self.GetSelection() event.Skip() def AdjustSize(self): self.GetTreeCtrl().InvalidateBestSize() self.SendSizeEvent() def get_page_list(self): return self.page_list def get_page(self, index): return self.page_list[index] class MainFrame(wx.Frame): def __init__(self, parent, option='save', path="", pipeline_id=""): wx.Frame.__init__( self, parent=parent, title="CPAC Pipeline Configuration", size=(1200, 520)) # Here we create a panel and a notebook on the panel self.p = wx.Panel(self) self.nb = Mybook(self.p) self.path = path self.pipeline_id = pipeline_id self.option = option self.parent = parent btnPanel = wx.Panel(self.p, -1) hbox = wx.BoxSizer(wx.HORIZONTAL) submit = wx.Button(btnPanel, wx.ID_SAVE, "Save", ( 280, 10), wx.DefaultSize, 0) hbox.Add(submit, 0.6, wx.ALIGN_RIGHT | wx.ALL, 5) self.Bind(wx.EVT_BUTTON, self.submit_item, id=wx.ID_SAVE) testConfig = wx.Button(btnPanel, wx.ID_PREVIEW, "Test Configuration", ( 350, 10), wx.DefaultSize, 0) hbox.Add(testConfig, 0, wx.ALIGN_RIGHT | wx.ALL, 5) self.Bind(wx.EVT_BUTTON, self.testConfig, id=wx.ID_PREVIEW) cancel = wx.Button(btnPanel, wx.ID_CANCEL, "Cancel", ( 220, 10), wx.DefaultSize, 0) self.Bind(wx.EVT_BUTTON, self.cancel, id=wx.ID_CANCEL) hbox.Add(cancel, 0, wx.ALIGN_RIGHT | wx.ALL, 5) btnPanel.SetSizer(hbox) # finally, put the notebook in a sizer for the panel to manage # the layout sizer = wx.BoxSizer(wx.VERTICAL) sizer.Add(self.nb, 1, wx.EXPAND) sizer.Add(btnPanel, 0.6, wx.EXPAND | wx.RIGHT, 20) self.p.SetSizer(sizer) self.Layout() self.Show() if option == 'edit' or option == 'load': self.load() def load(self): import yaml try: config_file_map = yaml.load(open(self.path, 'r')) except: raise Exception("Error importing file - %s , Make" " sure it is in correct yaml format") #for config in config_file_map: # print "\n\n config: ", config, " selection: ", config_file_map[config] for page in self.nb.get_page_list(): ctrl_list = page.page.get_ctrl_list() for ctrl in ctrl_list: name = ctrl.get_name() val = config_file_map.get(str(name)) #print "loading ctrl ->", name, "->", val sample_list = ctrl.get_values() #print "sample_list -->", sample_list s_map = dict((v, k) for k, v in substitution_map.iteritems()) if val: if isinstance(val, list): if ctrl.get_datatype() == 8: value = [] for item in val: data = "" for k, v in item.iteritems(): if v == 1 and k in sample_list: if data: data = data + "," + k else: data = k value.append(data) elif ctrl.get_datatype() == 6: value = [] for v in val: value.append(str(v)) elif ctrl.get_datatype() == 3: value = [sample_list[i] for i, x in enumerate(val) if x == True] elif ctrl.get_datatype() == 4: if 1 in val and 0 in val: val = [10] if 'ANTS' in val and 'FSL' in val: val = [11] if '3dAutoMask' in val and 'BET' in val: val = [12] value = [s_map.get(item) for item in val if s_map.get(item) != None] if not value: value = [ str(item) for item in val] elif ctrl.get_datatype() == 5 and ctrl.get_type() == 6: value = [sample_list[v] for v in val] else: value = None for v in val: if value: value = value + "," + str(v) else: value = str(v) else: if ctrl.get_datatype() == 2 and ctrl.get_type() == 0 and\ str(val) not in sample_list: value = sample_list[val] else: value = str(val) else: value = "" #print "setting value in ctrl -->", value #print "type -->", type(value) ctrl.set_value(value) def testConfig(self, event): ''' This function runs when the user clicks the "Test Configuration" button in the pipeline configuration window. It prompts the user for a sample subject list (i.e. one that they will be using with the config they are building). Then it builds the pipeline but does not run it. It then reports whether or not the config will run or not depending on if the pipeline gets built successfully. ''' import os import yaml from CPAC.utils import Configuration from CPAC.pipeline.cpac_pipeline import prep_workflow from CPAC.pipeline.cpac_runner import build_strategies def display(win, msg, changeBg=True): wx.MessageBox(msg, "Error") if changeBg: win.SetBackgroundColour("pink") win.SetFocus() win.Refresh() # Collect a sample subject list and parse it in testDlg0 = wx.MessageDialog( self, 'This tool will run a quick check on the current pipeline configuration.' \ ' Click OK to provide a subject list you will be using with this setup.', 'Subject List', wx.OK | wx.ICON_INFORMATION) testDlg0.ShowModal() testDlg0.Destroy() dlg = wx.FileDialog( self, message="Choose the CPAC Subject list file", defaultDir=os.getcwd(), defaultFile="CPAC_subject_list.yml", wildcard="YAML files(*.yaml, *.yml)|*.yaml;*.yml", style=wx.OPEN | wx.CHANGE_DIR) if dlg.ShowModal() == wx.ID_OK: subListPath = dlg.GetPath() sublist = yaml.load(open(os.path.realpath(subListPath), 'r')) # Check to ensure the user is providing an actual subject # list and not some other kind of file try: subInfo = sublist[0] except: errDlg4 = wx.MessageDialog( self, 'ERROR: Subject list file not in proper format - check if you' \ ' loaded the correct file? \n\n' \ 'Error name: config_window_0001', 'Subject List Error', wx.OK | wx.ICON_ERROR) errDlg4.ShowModal() errDlg4.Destroy() raise Exception # Another check to ensure the actual subject list was generated # properly and that it will work if 'subject_id' not in subInfo: errDlg3 = wx.MessageDialog( self, 'ERROR: Subject list file not in proper format - check if you' \ ' loaded the correct file? \n\n' \ 'Error name: config_window_0002', 'Subject List Error', wx.OK | wx.ICON_ERROR) errDlg3.ShowModal() errDlg3.Destroy() raise Exception # Following code reads in the parameters and selections from the # pipeline configuration window and populate the config_list config_list = [] wf_counter = [] #print "self.nb.get_page_list()", self.nb.get_page_list() for page in self.nb.get_page_list(): #print "page ----> ", page switch = page.page.get_switch() #print "switch ---->", switch ctrl_list = page.page.get_ctrl_list() validate = False if switch: switch_val = str(switch.get_selection()).lower() #print "switch_val ---->", switch_val if switch_val == 'on' or switch_val == 'true' or switch_val == '1': validate = True wf_counter.append(page.get_counter()) for ctrl in ctrl_list: #validating if (switch == None or validate) and ctrl.get_validation(): win = ctrl.get_ctrl() #print "validating ctrl-->", ctrl.get_name() #print "ctrl.get_selection()", ctrl.get_selection() #print "type(ctrl.get_selection())", type(ctrl.get_selection()) if isinstance(ctrl.get_selection(), list): value = ctrl.get_selection() if not value: display( win, "%s field is empty or the items are not checked!" % ctrl.get_name(), False) return else: value = str(ctrl.get_selection()) if len(value) == 0: display(win, "%s field is empty!" % ctrl.get_name()) return if '/' in value and '$' not in value and not isinstance(value, list): if not os.path.exists(ctrl.get_selection()) and value != 'On/Off': display( win, "%s field contains incorrect path. Please update the path!" % ctrl.get_name()) return config_list.append(ctrl) # Get the user's CPAC output directory for use in this script for config in config_list: #print config.get_name(), " ", config.get_selection() if config.get_name() == 'outputDirectory': outDir = config.get_selection() # Write out a pipeline_config file, read it in and then delete it # (Will revise the data structure of the config files later so this # can just pass the data structure instead of doing it this way) try: self.write(outDir + 'testConfig.yml', config_list) c = Configuration(yaml.load(open(os.path.realpath(outDir + 'testConfig.yml'), 'r'))) os.remove(outDir + 'testConfig.yml') except: errDlg2 = wx.MessageDialog( self, 'A problem occurred with preparing the pipeline test run. \n\n' \ 'Please ensure you have rights access to the directories you' \ ' have chosen for the CPAC working, crash, and output folders.', 'Test Configuration Error', wx.OK | wx.ICON_ERROR) errDlg2.ShowModal() errDlg2.Destroy() if (1 in c.runNuisance) or (c.Corrections != None): strategies = sorted(build_strategies(c)) else: strategies = None # Run the actual pipeline building prep and see if it works or not testDlg1 = wx.MessageDialog( self, 'Click OK to run the test. This should take only a few seconds.', 'Running Test', wx.OK | wx.ICON_INFORMATION) testDlg1.ShowModal() # Check file paths first # Just getting proper names of config file parameters try: params_file = open(p.resource_filename('CPAC', 'GUI/resources/config_parameters.txt'), "r") except: print "Error: Could not open configuration parameter file.", "\n" raise Exception paramInfo = params_file.read().split('\n') paramList = [] for param in paramInfo: if param != '': paramList.append(param.split(',')) # function for file path checking def testFile(filepath, paramName): try: if filepath != None: fileTest = open(filepath) fileTest.close() except: testDlg1.Destroy() for param in paramList: if param[0] == paramName: paramTitle = param[1] paramGroup = param[2] break errDlgFileTest = wx.MessageDialog( self, 'Error reading file - either it does not exist or you' \ ' do not have read access. \n\n' \ 'Parameter: %s \n' \ 'In tab: %s \n\n' \ 'Path: %s' % (paramTitle, paramGroup, filepath), 'Pipeline Not Ready', wx.OK | wx.ICON_ERROR) errDlgFileTest.ShowModal() errDlgFileTest.Destroy() testFile(c.standardResolutionBrainAnat,'standardResolutionBrainAnat') testFile(c.standardAnat,'standardAnat') testFile(c.PRIOR_WHITE,'PRIOR_WHITE') testFile(c.PRIOR_GRAY,'PRIOR_GRAY') testFile(c.PRIOR_CSF,'PRIOR_CSF') testFile(c.standardResolutionBrain,'standardResolutionBrain') testFile(c.standard,'standard') testFile(c.identityMatrix,'identityMatrix') testFile(c.boundaryBasedRegistrationSchedule,'boundaryBasedRegistrationSchedule') testFile(c.harvardOxfordMask,'harvardOxfordMask') testFile(c.seedSpecificationFile,'seedSpecificationFile') testFile(c.roiSpecificationFile,'roiSpecificationFile') testFile(c.roiSpecificationFileForSCA,'roiSpecificationFileForSCA') testFile(c.maskSpecificationFile,'maskSpecificationFile') testFile(c.maskSpecificationFileForSCA,'maskSpecificationFileForSCA') testFile(c.spatialPatternMaps,'spatialPatternMaps') testFile(c.brainSymmetric,'brainSymmetric') testFile(c.symmStandard,'symmStandard') testFile(c.twommBrainMaskDiluted,'twommBrainMaskDiluted') testFile(c.configFileTwomm,'configFileTwomm') testFile(c.templateSpecificationFile,'templateSpecificationFile') testFile(c.bascAffinityThresholdFile,'bascAffinityThresholdFile') testFile(c.cwasROIFile,'cwasROIFile') testFile(c.cwasRegressorFile,'cwasRegressorFile') try: # Run the pipeline building prep_workflow(sublist[0], c, strategies, 0) except: testDlg1.Destroy() errDlg1 = wx.MessageDialog( self, 'There are issues with the current configuration which need to be' \ ' resolved - please check to make sure the options you are running' \ ' have the proper pre-requisites selected.', 'Pipeline Not Ready', wx.OK | wx.ICON_ERROR) errDlg1.ShowModal() errDlg1.Destroy() else: testDlg1.Destroy() okDlg1 = wx.MessageDialog( self, 'The current configuration will run successfully. You can safely' \ ' save and run this setup!', 'Pipeline Ready', wx.OK | wx.ICON_INFORMATION) okDlg1.ShowModal() okDlg1.Destroy() def submit_item(self, event): import os import linecache def display(win, msg, changeBg=True): wx.MessageBox(msg, "Error") if changeBg: win.SetBackgroundColour("pink") win.SetFocus() win.Refresh() config_list = [] hash_val = 0 wf_counter = [] #print "self.nb.get_page_list()", self.nb.get_page_list() for page in self.nb.get_page_list(): #print "page ----> ", page switch = page.page.get_switch() #print "switch ---->", switch ctrl_list = page.page.get_ctrl_list() validate = False if switch: switch_val = str(switch.get_selection()).lower() #print "switch_val ---->", switch_val if switch_val == 'on' or switch_val == 'true' or switch_val == '1': validate = True wf_counter.append(page.get_counter()) for ctrl in ctrl_list: #validating if (switch == None or validate) and ctrl.get_validation(): win = ctrl.get_ctrl() #print "validating ctrl-->", ctrl.get_name() #print "ctrl.get_selection()", ctrl.get_selection() #print "type(ctrl.get_selection())", type(ctrl.get_selection()) if isinstance(ctrl.get_selection(), list): value = ctrl.get_selection() if not value: display( win, "%s field is empty or the items are not checked!" % ctrl.get_name(), False) return else: value = str(ctrl.get_selection()) if len(value) == 0: display(win, "%s field is empty!" % ctrl.get_name()) return if '/' in value and '$' not in value and not isinstance(value, list): if not os.path.exists(ctrl.get_selection()) and value != 'On/Off': display( win, "%s field contains incorrect path. Please update the path!" % ctrl.get_name()) return config_list.append(ctrl) # Get the user's CPAC pipeline name for use in this script for config in config_list: if config.get_name() == 'pipelineName': pipeline_name = config.get_selection() if len(pipeline_name) == 0: noNameDlg = wx.MessageDialog( self, 'Please enter a pipeline name.', 'Error!', wx.OK | wx.ICON_ERROR) noNameDlg.ShowModal() noNameDlg.Destroy() return dlg = wx.FileDialog( self, message="Save CPAC configuration file as ...", defaultDir=os.getcwd(), defaultFile=("pipeline_config_%s" % pipeline_name), wildcard="YAML files(*.yaml, *.yml)|*.yaml;*.yml", style=wx.SAVE) dlg.SetFilterIndex(2) if dlg.ShowModal() == wx.ID_OK: self.path = dlg.GetPath() # Strips any user-input file extension and enforces .yml as # the extension self.path = os.path.splitext(self.path)[0] + '.yml' self.write(self.path, config_list) dlg.Destroy() if self.option != 'edit': # this runs if you hit 'Save' from within the pipeline config # editor AND the editor was opened from the main window by # clicking 'New' instead of 'Edit' ### this is the old code for generating random city names ### to name pipeline configs. remove at some point? #for counter in wf_counter: # if counter != 0: # hash_val += 2 ** counter #print "wf_counter -- ", wf_counter #print "hashval --> ", hash_val #pipeline_id = linecache.getline(p.resource_filename('CPAC', \ # 'GUI/resources/pipeline_names.py'), hash_val) print "pipeline_id ==", pipeline_name if os.path.exists(self.path): self.update_listbox(pipeline_name) else: # this runs if you hit 'Save' from within the pipeline config # editor AND the editor was opened from the main window by # clicking 'Edit' instead of 'New' pipeline_map = self.parent.get_pipeline_map() if pipeline_map.get(pipeline_name) != None: # this runs if you hit Edit, change your pipeline config # file BUT keep the Pipeline Name the same and save it pipeline_map[pipeline_name] = self.path else: # this runs if you hit Edit, change your pipeline config # AND also change the Pipeline Name and save it with the # new path - this adds the new pipeline to the listbox on # the main CPAC window pipeline_map[pipeline_name] = self.path self.Parent.listbox.Append(pipeline_name) self.SetFocus() self.Close() def cancel(self, event): self.Close() def update_listbox(self, value): if len(value) > 0: self.pipeline_id = value pipeline_map = self.parent.get_pipeline_map() if pipeline_map.get(self.pipeline_id) == None: pipeline_map[self.pipeline_id] = self.path self.Parent.listbox.Append(self.pipeline_id) else: dlg2 = wx.MessageDialog( self, 'Pipeline already exists. Please enter a new name', 'Error!', wx.OK | wx.ICON_ERROR) dlg2.ShowModal() dlg2.Destroy() ''' def update_listbox(self, value): while True: dlg = wx.TextEntryDialog( self, 'Please enter a unique pipeline id for the configuration', 'Pipeline Id', value.strip()) dlg.SetValue(str(value.strip())) dlg.Restore() if dlg.ShowModal() == wx.ID_OK: if len(dlg.GetValue()) > 0: self.pipeline_id = dlg.GetValue() pipeline_map = self.parent.get_pipeline_map() if pipeline_map.get(self.pipeline_id) == None: pipeline_map[self.pipeline_id] = self.path self.Parent.listbox.Append(self.pipeline_id) dlg.Destroy() break else: dlg2 = wx.MessageDialog( self, 'Pipeline already exist. Please enter a new name', 'Error!', wx.OK | wx.ICON_ERROR) dlg2.ShowModal() dlg2.Destroy() ''' def write(self, path, config_list): import ast try: f = open(path, 'w') for item in config_list: label = item.get_name() value = item.get_selection() dtype = item.get_datatype() type = item.get_type() ''' print "LABEL: ", label print "VALUE: ", value print "DTYPE: ", dtype print "TYPE: ", type print "" ''' sample_list = item.get_values() comment = item.get_help() #print "*****label : type : value -->", label, " : ", dtype, " : ", value for line in comment.split("\n"): if line: print>>f, "#", line # prints setting names and values (ex. " runAnatomicalProcessing: [1] ") into the # pipeline_config file, using a different set of code depending on the data type # parameters that are strings (ex. " False " or a path) if dtype == 0 or dtype == 1: print >>f, label, ": ", str(value) print >>f,"\n" # parameters that are integers elif dtype == 2: if type == 0: value = sample_list.index(value) else: if substitution_map.get(value) != None: value = substitution_map.get(value) elif value != 'None': value = ast.literal_eval(str(value)) print >>f, label, ": ", value print >>f,"\n" # parameters that are lists (ex. " [False, False] ") elif dtype == 3: map = ast.literal_eval(str(value)) values = [] for x in range(0, len(map.keys())): values.append(False) for k, v in map.iteritems(): item, idx = k values[idx] = v print>>f, label, ": ", values print>>f,"\n" # parameters that are switches (ex. [0] or [1] ) elif dtype == 4: values=[] if isinstance(value, list): value = ast.literal_eval(str(value)) else: value = str(value).split(",") for val in value: val = val.strip() sval = substitution_map.get(val) if sval != None: values.append(sval) else: values.append(val) if values == [10]: values = [1,0] elif values == [11]: values = ['ANTS','FSL'] elif values == [12]: values = ['3dAutoMask','BET'] print>>f, label, ": ", values print>>f,"\n" # parameters that are bracketed numbers (int or float) elif dtype == 5: ''' print "1: ", ast.literal_eval(value) print "2: ", ast.literal_eval(str(value)) print "3: ", value print "4: ", str(value) print "5: ", [value] print "6: ", list(value) print "7: ", [sample_list.index(val) for val in value] ''' ''' if isinstance(value, list): value = ast.literal_eval(str(value)) else: value = str(value) ''' ''' if isinstance(value, tuple): value = list(value) elif isinstance(value, list): value = [sample_list.index(val) for val in value] else: value = [value] ''' ### parse user input ### can't use internal function type() here??? if value.find(',') != -1: lvalue = value.split(',') elif value.find(';') != -1: lvalue = value.split(';') elif value.find(':') != -1: lvalue = value.split(':') else: lvalue = [value] #print 'split value: ', lvalue if value.find('.') != -1: lvalue = [float(item) for item in lvalue] elif len(value) > 0: lvalue = [int(item) for item in lvalue] else: lvalue = 0 #print 'final value: ', lvalue """ if len(value) > 1: value = float(value) elif len(value) == 1: value = int(value) else: value = 0 valueList = [] valueList.append(value) """ print>>f, label, ":", lvalue ### print>>f, "\n" # parameters that are ? (bandpass filter specs) elif dtype == 6: values = [] for val in ast.literal_eval(str(value)): values.append(ast.literal_eval(val)) print>>f, label, ":", values print>>f, "\n" # parameters that are whole words elif dtype == 8: print>>f, label,":" value = ast.literal_eval(str(value)) for val in value: val = val.split(',') f.write(" - ") flag = 0 for sample in sample_list: if flag == 0: space = "" flag = 1 else: space = " " if sample in val: print>>f, space, sample, ": ", 1 else: print>>f, space, sample, ": ", 0 print >>f, "\n" else: value = ast.literal_eval(str(value)) print>>f, label, ":", value print>>f, "\n" f.close() except Exception, e: print e print "Error Writing the pipeline configuration file %s" % path raise Exception
bsd-3-clause
7,788,789,616,095,713,000
36.337864
129
0.483228
false
mweisman/QGIS
python/plugins/processing/admintools/AdminToolsAlgorithmProvider.py
4
2875
# -*- coding: utf-8 -*- """ *************************************************************************** AdminToolsAlgorithmProvider.py --------------------- Date : October 2012 Copyright : (C) 2012 by Victor Olaya Email : volayaf at gmail dot com *************************************************************************** * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * *************************************************************************** """ __author__ = 'Victor Olaya' __date__ = 'October 2012' __copyright__ = '(C) 2012, Victor Olaya' # This will get replaced with a git SHA1 when you do a git archive __revision__ = '$Format:%H$' import os from PyQt4 import QtGui from processing.core.AlgorithmProvider import AlgorithmProvider from processing.admintools.PostGISExecuteSQL import PostGISExecuteSQL from processing.admintools.ImportIntoPostGIS import ImportIntoPostGIS from processing.admintools.ImportVectorIntoGeoServer import \ ImportVectorIntoGeoServer from processing.admintools.CreateWorkspace import CreateWorkspace from processing.admintools.ImportRasterIntoGeoServer import \ ImportRasterIntoGeoServer from processing.admintools.DeleteWorkspace import DeleteWorkspace from processing.admintools.DeleteDatastore import DeleteDatastore from processing.admintools.CreateStyleGeoServer import CreateStyleGeoServer class AdminToolsAlgorithmProvider(AlgorithmProvider): def __init__(self): AlgorithmProvider.__init__(self) self.alglist = [ ImportVectorIntoGeoServer(), ImportRasterIntoGeoServer(), CreateWorkspace(), DeleteWorkspace(), DeleteDatastore(), CreateStyleGeoServer(), ] try: self.alglist.append(ImportIntoPostGIS()) self.alglist.append(PostGISExecuteSQL()) except: pass def initializeSettings(self): AlgorithmProvider.initializeSettings(self) def unload(self): AlgorithmProvider.unload(self) def getName(self): return 'gspg' def getDescription(self): return 'GeoServer/PostGIS tools' def getIcon(self): return QtGui.QIcon(os.path.dirname(__file__) + '/../images/database.png') def _loadAlgorithms(self): self.algs = self.alglist def supportsNonFileBasedOutput(self): return False
gpl-2.0
-8,173,116,093,009,160,000
33.638554
75
0.577739
false
uwescience/raco
examples/sp2bench/sp2bench_rdf_brackets.py
1
8029
from emitcode import emitCode import raco.algebra as algebra from raco.language import CCAlgebra, GrappaAlgebra import logging logging.basicConfig(level=logging.DEBUG) LOG = logging.getLogger(__name__) tr = "sp2bench_1m" queries = {} queries['Q1'] = """A(yr) :- %(tr)s(journal, '<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>', '<http://localhost/vocabulary/bench/Journal>'), %(tr)s(journal, '<http://purl.org/dc/elements/1.1/title>', '\\"Journal 1 (1940)\\"^^<http://www.w3.org/2001/XMLSchema#string>'), %(tr)s(journal, '<http://purl.org/dc/terms/issued>', yr)""" #"""A(inproc, author, booktitle, title, proc, ee, page, url, yr, abstract) :- %(tr)s(inproc, '<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>', '<http://localhost/vocabulary/bench/Inproceedings>'), queries['Q2'] = """A(inproc, author, booktitle, title, proc, ee, page, url, yr) :- %(tr)s(inproc, '<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>', '<http://localhost/vocabulary/bench/Inproceedings>'), %(tr)s(inproc, '<http://purl.org/dc/elements/1.1/creator>', author), %(tr)s(inproc, '<http://localhost/vocabulary/bench/booktitle>', booktitle), %(tr)s(inproc, '<http://purl.org/dc/elements/1.1/title>', title), %(tr)s(inproc, '<http://purl.org/dc/terms/partOf>', proc), %(tr)s(inproc, '<http://www.w3.org/2000/01/rdf-schema#seeAlso>', ee), %(tr)s(inproc, '<http://swrc.ontoware.org/ontology#pages>', page), %(tr)s(inproc, '<http://xmlns.com/foaf/0.1/homepage>', url), %(tr)s(inproc, '<http://purl.org/dc/terms/issued>', yr)""" # TODO: make abstract optional (can do this with a union) # TODO: order by yr queries['Q3a'] = """A(article) :- %(tr)s(article, '<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>', '<http://localhost/vocabulary/bench/Article>'), %(tr)s(article, property, value), property = '<http://swrc.ontoware.org/ontology#pages>'""" queries['Q3b'] = """A(article) :- %(tr)s(article, '<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>', '<http://localhost/vocabulary/bench/Article>'), %(tr)s(article, property, value), property = '<http://swrc.ontoware.org/ontology#month>'""" queries['Q3c'] = """A(article) :- %(tr)s(article, '<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>', '<http://localhost/vocabulary/bench/Article>'), %(tr)s(article, property, value), property = '<http://swrc.ontoware.org/ontology#isbn>'""" #queries['Q4'] = """A(name1, name2) :- %(tr)s(article1, '<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>', '<http://localhost/vocabulary/bench/Article>'), queries['Q4'] = """A(name1, name2) :- %(tr)s(article1, '<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>', '<http://localhost/vocabulary/bench/Article>'), %(tr)s(article2, '<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>', '<http://localhost/vocabulary/bench/Article>'), %(tr)s(article1, '<http://purl.org/dc/elements/1.1/creator>', author1), %(tr)s(author1, '<http://xmlns.com/foaf/0.1/name>', name1), %(tr)s(article2, '<http://purl.org/dc/elements/1.1/creator>', author2), %(tr)s(author2, '<http://xmlns.com/foaf/0.1/name>', name2), %(tr)s(article1, '<http://swrc.ontoware.org/ontology#journal>', journal), %(tr)s(article2, '<http://swrc.ontoware.org/ontology#journal>', journal)""" # TODO: name1<name2 condition (not supported # TODO be sure DISTINCT # syntactically join with equality; #queries['Q5a'] = """A(person, name) :- %(tr)s(article, '<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>', '<http://localhost/vocabulary/bench/Article>'), queries['Q5a'] = """A(person, name) :- %(tr)s(article, '<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>', '<http://localhost/vocabulary/bench/Article>'), %(tr)s(article, '<http://purl.org/dc/elements/1.1/creator>', person), %(tr)s(inproc, '<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>', '<http://localhost/vocabulary/bench/Inproceedings>'), %(tr)s(inproc, '<http://purl.org/dc/elements/1.1/creator>', person2), %(tr)s(person, '<http://xmlns.com/foaf/0.1/name>', name), %(tr)s(person2, '<http://xmlns.com/foaf/0.1/name>', name2), name = name2""" # syntactically join with naming #TODO: include q5b after issue #104 is addressed #queries['Q5b'] = """A(person, name) :- %(tr)s(article, '<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>', '<http://localhost/vocabulary/bench/Article>'), queries['Q5b'] = """A(person, name) :- %(tr)s(article, '<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>', '<http://localhost/vocabulary/bench/Article>'), %(tr)s(article, '<http://purl.org/dc/elements/1.1/creator>', person), %(tr)s(inproc, '<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>', '<http://localhost/vocabulary/bench/Inproceedings>'), %(tr)s(inproc, '<http://purl.org/dc/elements/1.1/creator>', person), %(tr)s(person, '<http://xmlns.com/foaf/0.1/name>', name)""" # TODO: Q6 requires negation # TODO: Q7 requires double negation #TODO: enable Q8, after dealing with HashJoin( $0 != $7 ) type of cases #queries['Q8'] = """Erdoes(erdoes) :- %(tr)s(erdoes, '<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>', '<http://xmlns.com/foaf/0.1/Person>'), _ = """Erdoes(erdoes) :- %(tr)s(erdoes, '<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>', '<http://xmlns.com/foaf/0.1/Person>'), %(tr)s(erdoes, '<http://xmlns.com/foaf/0.1/name>', '\\"Paul Erdoes\\"^^<http://www.w3.org/2001/XMLSchema#string>') A(name) :- Erdoes(erdoes), %(tr)s(doc, '<http://purl.org/dc/elements/1.1/creator>', erdoes), %(tr)s(doc, '<http://purl.org/dc/elements/1.1/creator>', author), %(tr)s(doc2, '<http://purl.org/dc/elements/1.1/creator>', author), %(tr)s(doc2, '<http://purl.org/dc/elements/1.1/creator>', author2), %(tr)s(author2, '<http://xmlns.com/foaf/0.1/name>', name), author != erdoes, doc2 != doc, author2 != erdoes, author2 != author A(name) :- Erdoes(erdoes), %(tr)s(doc, '<http://purl.org/dc/elements/1.1/creator>', erdoes), %(tr)s(doc, '<http://purl.org/dc/elements/1.1/creator>', author), %(tr)s(author, '<http://xmlns.com/foaf/0.1/name>', name), author != erdoes""" #TODO be sure DISTINCT queries['Q9'] = """A(predicate) :- %(tr)s(person, '<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>', '<http://xmlns.com/foaf/0.1/Person>'), %(tr)s(subject, predicate, person) A(predicate) :- %(tr)s(person, '<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>', '<http://xmlns.com/foaf/0.1/Person>'), %(tr)s(person, predicate, object)""" #TODO be sure DISTINT queries['Q10'] = """A(subj, pred) :- %(tr)s(subj, pred, '<http://localhost/persons/Paul_Erdoes>')""" queries['Q11'] = """A(ee) :- %(tr)s(publication, '<http://www.w3.org/2000/01/rdf-schema#seeAlso>', ee)""" #TODO order by, limit, offset alg = CCAlgebra prefix="" import sys if len(sys.argv) > 1: if sys.argv[1] == "grappa" or sys.argv[1] == "g": print "using grappa" alg = GrappaAlgebra prefix="grappa" plan = None if len(sys.argv) > 2: plan = sys.argv[2] for name, query in queries.iteritems(): query = query % locals() lst = [] if prefix: lst.append(prefix) if plan: lst.append(plan) if name: lst.append(name) emitCode(query, "_".join(lst), alg, plan)
bsd-3-clause
6,690,524,987,756,424,000
60.290076
204
0.567318
false
valdecdev/odoo
addons/fetchmail/fetchmail.py
1
14764
# -*- coding: utf-8 -*- # Part of Odoo. See LICENSE file for full copyright and licensing details. import logging import time from imaplib import IMAP4 from imaplib import IMAP4_SSL from poplib import POP3 from poplib import POP3_SSL try: import cStringIO as StringIO except ImportError: import StringIO import zipfile import base64 from openerp import addons from openerp.osv import fields, osv from openerp import tools, api from openerp.tools.translate import _ from openerp.exceptions import UserError _logger = logging.getLogger(__name__) MAX_POP_MESSAGES = 50 class fetchmail_server(osv.osv): """Incoming POP/IMAP mail server account""" _name = 'fetchmail.server' _description = "POP/IMAP Server" _order = 'priority' _columns = { 'name':fields.char('Name', required=True, readonly=False), 'active':fields.boolean('Active', required=False), 'state':fields.selection([ ('draft', 'Not Confirmed'), ('done', 'Confirmed'), ], 'Status', select=True, readonly=True, copy=False), 'server' : fields.char('Server Name', readonly=True, help="Hostname or IP of the mail server", states={'draft':[('readonly', False)]}), 'port' : fields.integer('Port', readonly=True, states={'draft':[('readonly', False)]}), 'type':fields.selection([ ('pop', 'POP Server'), ('imap', 'IMAP Server'), ('local', 'Local Server'), ], 'Server Type', select=True, required=True, readonly=False), 'is_ssl':fields.boolean('SSL/TLS', help="Connections are encrypted with SSL/TLS through a dedicated port (default: IMAPS=993, POP3S=995)"), 'attach':fields.boolean('Keep Attachments', help="Whether attachments should be downloaded. " "If not enabled, incoming emails will be stripped of any attachments before being processed"), 'original':fields.boolean('Keep Original', help="Whether a full original copy of each email should be kept for reference" "and attached to each processed message. This will usually double the size of your message database."), 'date': fields.datetime('Last Fetch Date', readonly=True), 'user' : fields.char('Username', readonly=True, states={'draft':[('readonly', False)]}), 'password' : fields.char('Password', readonly=True, states={'draft':[('readonly', False)]}), 'action_id':fields.many2one('ir.actions.server', 'Server Action', help="Optional custom server action to trigger for each incoming mail, " "on the record that was created or updated by this mail"), 'object_id': fields.many2one('ir.model', "Create a New Record", help="Process each incoming mail as part of a conversation " "corresponding to this document type. This will create " "new documents for new conversations, or attach follow-up " "emails to the existing conversations (documents)."), 'priority': fields.integer('Server Priority', readonly=True, states={'draft':[('readonly', False)]}, help="Defines the order of processing, " "lower values mean higher priority"), 'message_ids': fields.one2many('mail.mail', 'fetchmail_server_id', 'Messages', readonly=True), 'configuration' : fields.text('Configuration', readonly=True), 'script' : fields.char('Script', readonly=True), } _defaults = { 'state': "draft", 'type': "pop", 'active': True, 'priority': 5, 'attach': True, 'script': '/mail/static/scripts/openerp_mailgate.py', } def onchange_server_type(self, cr, uid, ids, server_type=False, ssl=False, object_id=False): port = 0 values = {} if server_type == 'pop': port = ssl and 995 or 110 elif server_type == 'imap': port = ssl and 993 or 143 else: values['server'] = '' values['port'] = port conf = { 'dbname' : cr.dbname, 'uid' : uid, 'model' : 'MODELNAME', } if object_id: m = self.pool.get('ir.model') r = m.read(cr,uid,[object_id],['model']) conf['model']=r[0]['model'] values['configuration'] = """Use the below script with the following command line options with your Mail Transport Agent (MTA) openerp_mailgate.py --host=HOSTNAME --port=PORT -u %(uid)d -p PASSWORD -d %(dbname)s Example configuration for the postfix mta running locally: /etc/postfix/virtual_aliases: @youdomain openerp_mailgate@localhost /etc/aliases: openerp_mailgate: "|/path/to/openerp-mailgate.py --host=localhost -u %(uid)d -p PASSWORD -d %(dbname)s" """ % conf return {'value':values} def set_draft(self, cr, uid, ids, context=None): self.write(cr, uid, ids , {'state':'draft'}) return True @api.cr_uid_ids_context def connect(self, cr, uid, server_id, context=None): if isinstance(server_id, (list,tuple)): server_id = server_id[0] server = self.browse(cr, uid, server_id, context) if server.type == 'imap': if server.is_ssl: connection = IMAP4_SSL(server.server, int(server.port)) else: connection = IMAP4(server.server, int(server.port)) connection.login(server.user, server.password) elif server.type == 'pop': if server.is_ssl: connection = POP3_SSL(server.server, int(server.port)) else: connection = POP3(server.server, int(server.port)) #TODO: use this to remove only unread messages #connection.user("recent:"+server.user) connection.user(server.user) connection.pass_(server.password) return connection def button_confirm_login(self, cr, uid, ids, context=None): if context is None: context = {} for server in self.browse(cr, uid, ids, context=context): try: connection = server.connect() server.write({'state':'done'}) except Exception, e: _logger.info("Failed to connect to %s server %s.", server.type, server.name, exc_info=True) raise UserError(_("Connection test failed: %s") % tools.ustr(e)) finally: try: if connection: if server.type == 'imap': connection.close() elif server.type == 'pop': connection.quit() except Exception: # ignored, just a consequence of the previous exception pass return True def _fetch_mails(self, cr, uid, ids=False, context=None): if not ids: ids = self.search(cr, uid, [('state','=','done'),('type','in',['pop','imap'])]) return self.fetch_mail(cr, uid, ids, context=context) def fetch_mail(self, cr, uid, ids, context=None): """WARNING: meant for cron usage only - will commit() after each email!""" context = dict(context or {}) context['fetchmail_cron_running'] = True mail_thread = self.pool.get('mail.thread') action_pool = self.pool.get('ir.actions.server') for server in self.browse(cr, uid, ids, context=context): _logger.info('start checking for new emails on %s server %s', server.type, server.name) context.update({'fetchmail_server_id': server.id, 'server_type': server.type}) count, failed = 0, 0 imap_server = False pop_server = False if server.type == 'imap': try: imap_server = server.connect() imap_server.select() result, data = imap_server.search(None, '(UNSEEN)') for num in data[0].split(): res_id = None result, data = imap_server.fetch(num, '(RFC822)') imap_server.store(num, '-FLAGS', '\\Seen') try: res_id = mail_thread.message_process(cr, uid, server.object_id.model, data[0][1], save_original=server.original, strip_attachments=(not server.attach), context=context) except Exception: _logger.info('Failed to process mail from %s server %s.', server.type, server.name, exc_info=True) failed += 1 if res_id and server.action_id: action_pool.run(cr, uid, [server.action_id.id], {'active_id': res_id, 'active_ids': [res_id], 'active_model': context.get("thread_model", server.object_id.model)}) imap_server.store(num, '+FLAGS', '\\Seen') cr.commit() count += 1 _logger.info("Fetched %d email(s) on %s server %s; %d succeeded, %d failed.", count, server.type, server.name, (count - failed), failed) except Exception: _logger.info("General failure when trying to fetch mail from %s server %s.", server.type, server.name, exc_info=True) finally: if imap_server: imap_server.close() imap_server.logout() elif server.type == 'pop': try: while True: pop_server = server.connect() (numMsgs, totalSize) = pop_server.stat() pop_server.list() for num in range(1, min(MAX_POP_MESSAGES, numMsgs) + 1): (header, msges, octets) = pop_server.retr(num) msg = '\n'.join(msges) res_id = None try: res_id = mail_thread.message_process(cr, uid, server.object_id.model, msg, save_original=server.original, strip_attachments=(not server.attach), context=context) pop_server.dele(num) except Exception: _logger.info('Failed to process mail from %s server %s.', server.type, server.name, exc_info=True) failed += 1 if res_id and server.action_id: action_pool.run(cr, uid, [server.action_id.id], {'active_id': res_id, 'active_ids': [res_id], 'active_model': context.get("thread_model", server.object_id.model)}) cr.commit() if numMsgs < MAX_POP_MESSAGES: break pop_server.quit() _logger.info("Fetched %d email(s) on %s server %s; %d succeeded, %d failed.", numMsgs, server.type, server.name, (numMsgs - failed), failed) except Exception: _logger.info("General failure when trying to fetch mail from %s server %s.", server.type, server.name, exc_info=True) finally: if pop_server: pop_server.quit() server.write({'date': time.strftime(tools.DEFAULT_SERVER_DATETIME_FORMAT)}) return True def _update_cron(self, cr, uid, context=None): if context and context.get('fetchmail_cron_running'): return try: cron = self.pool['ir.model.data'].get_object( cr, uid, 'fetchmail', 'ir_cron_mail_gateway_action', context=context) except ValueError: # Nevermind if default cron cannot be found return # Enabled/Disable cron based on the number of 'done' server of type pop or imap cron.toggle(model=self._name, domain=[('state','=','done'), ('type','in',['pop','imap'])]) def create(self, cr, uid, values, context=None): res = super(fetchmail_server, self).create(cr, uid, values, context=context) self._update_cron(cr, uid, context=context) return res def write(self, cr, uid, ids, values, context=None): res = super(fetchmail_server, self).write(cr, uid, ids, values, context=context) self._update_cron(cr, uid, context=context) return res def unlink(self, cr, uid, ids, context=None): res = super(fetchmail_server, self).unlink(cr, uid, ids, context=context) self._update_cron(cr, uid, context=context) return res class mail_mail(osv.osv): _inherit = "mail.mail" _columns = { 'fetchmail_server_id': fields.many2one('fetchmail.server', "Inbound Mail Server", readonly=True, select=True, oldname='server_id'), } def create(self, cr, uid, values, context=None): if context is None: context = {} fetchmail_server_id = context.get('fetchmail_server_id') if fetchmail_server_id: values['fetchmail_server_id'] = fetchmail_server_id res = super(mail_mail, self).create(cr, uid, values, context=context) return res def write(self, cr, uid, ids, values, context=None): if context is None: context = {} fetchmail_server_id = context.get('fetchmail_server_id') if fetchmail_server_id: values['fetchmail_server_id'] = fetchmail_server_id res = super(mail_mail, self).write(cr, uid, ids, values, context=context) return res
agpl-3.0
7,128,425,773,505,944,000
48.878378
195
0.519236
false
yamt/tempest
tempest/api/orchestration/stacks/test_neutron_resources.py
5
8944
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import logging import netaddr from tempest_lib.common.utils import data_utils from tempest.api.orchestration import base from tempest import clients from tempest import config from tempest import exceptions from tempest import test CONF = config.CONF LOG = logging.getLogger(__name__) class NeutronResourcesTestJSON(base.BaseOrchestrationTest): @classmethod def skip_checks(cls): super(NeutronResourcesTestJSON, cls).skip_checks() if not CONF.service_available.neutron: raise cls.skipException("Neutron support is required") @classmethod def setup_credentials(cls): super(NeutronResourcesTestJSON, cls).setup_credentials() cls.os = clients.Manager() @classmethod def setup_clients(cls): super(NeutronResourcesTestJSON, cls).setup_clients() cls.network_client = cls.os.network_client @classmethod def resource_setup(cls): super(NeutronResourcesTestJSON, cls).resource_setup() cls.neutron_basic_template = cls.load_template('neutron_basic') cls.stack_name = data_utils.rand_name('heat') template = cls.read_template('neutron_basic') cls.keypair_name = (CONF.orchestration.keypair_name or cls._create_keypair()['name']) cls.external_network_id = CONF.network.public_network_id tenant_cidr = netaddr.IPNetwork(CONF.network.tenant_network_cidr) mask_bits = CONF.network.tenant_network_mask_bits cls.subnet_cidr = tenant_cidr.subnet(mask_bits).next() # create the stack cls.stack_identifier = cls.create_stack( cls.stack_name, template, parameters={ 'KeyName': cls.keypair_name, 'InstanceType': CONF.orchestration.instance_type, 'ImageId': CONF.compute.image_ref, 'ExternalNetworkId': cls.external_network_id, 'timeout': CONF.orchestration.build_timeout, 'DNSServers': CONF.network.dns_servers, 'SubNetCidr': str(cls.subnet_cidr) }) cls.stack_id = cls.stack_identifier.split('/')[1] try: cls.client.wait_for_stack_status(cls.stack_id, 'CREATE_COMPLETE') resources = cls.client.list_resources(cls.stack_identifier) except exceptions.TimeoutException as e: if CONF.compute_feature_enabled.console_output: # attempt to log the server console to help with debugging # the cause of the server not signalling the waitcondition # to heat. body = cls.client.show_resource(cls.stack_identifier, 'Server') server_id = body['physical_resource_id'] LOG.debug('Console output for %s', server_id) output = cls.servers_client.get_console_output( server_id, None).data LOG.debug(output) raise e cls.test_resources = {} for resource in resources: cls.test_resources[resource['logical_resource_id']] = resource @test.idempotent_id('f9e2664c-bc44-4eef-98b6-495e4f9d74b3') def test_created_resources(self): """Verifies created neutron resources.""" resources = [('Network', self.neutron_basic_template['resources'][ 'Network']['type']), ('Subnet', self.neutron_basic_template['resources'][ 'Subnet']['type']), ('RouterInterface', self.neutron_basic_template[ 'resources']['RouterInterface']['type']), ('Server', self.neutron_basic_template['resources'][ 'Server']['type'])] for resource_name, resource_type in resources: resource = self.test_resources.get(resource_name, None) self.assertIsInstance(resource, dict) self.assertEqual(resource_name, resource['logical_resource_id']) self.assertEqual(resource_type, resource['resource_type']) self.assertEqual('CREATE_COMPLETE', resource['resource_status']) @test.idempotent_id('c572b915-edb1-4e90-b196-c7199a6848c0') @test.services('network') def test_created_network(self): """Verifies created network.""" network_id = self.test_resources.get('Network')['physical_resource_id'] body = self.network_client.show_network(network_id) network = body['network'] self.assertIsInstance(network, dict) self.assertEqual(network_id, network['id']) self.assertEqual(self.neutron_basic_template['resources'][ 'Network']['properties']['name'], network['name']) @test.idempotent_id('e8f84b96-f9d7-4684-ad5f-340203e9f2c2') @test.services('network') def test_created_subnet(self): """Verifies created subnet.""" subnet_id = self.test_resources.get('Subnet')['physical_resource_id'] body = self.network_client.show_subnet(subnet_id) subnet = body['subnet'] network_id = self.test_resources.get('Network')['physical_resource_id'] self.assertEqual(subnet_id, subnet['id']) self.assertEqual(network_id, subnet['network_id']) self.assertEqual(self.neutron_basic_template['resources'][ 'Subnet']['properties']['name'], subnet['name']) self.assertEqual(sorted(CONF.network.dns_servers), sorted(subnet['dns_nameservers'])) self.assertEqual(self.neutron_basic_template['resources'][ 'Subnet']['properties']['ip_version'], subnet['ip_version']) self.assertEqual(str(self.subnet_cidr), subnet['cidr']) @test.idempotent_id('96af4c7f-5069-44bc-bdcf-c0390f8a67d1') @test.services('network') def test_created_router(self): """Verifies created router.""" router_id = self.test_resources.get('Router')['physical_resource_id'] body = self.network_client.show_router(router_id) router = body['router'] self.assertEqual(self.neutron_basic_template['resources'][ 'Router']['properties']['name'], router['name']) self.assertEqual(self.external_network_id, router['external_gateway_info']['network_id']) self.assertEqual(True, router['admin_state_up']) @test.idempotent_id('89f605bd-153e-43ee-a0ed-9919b63423c5') @test.services('network') def test_created_router_interface(self): """Verifies created router interface.""" router_id = self.test_resources.get('Router')['physical_resource_id'] network_id = self.test_resources.get('Network')['physical_resource_id'] subnet_id = self.test_resources.get('Subnet')['physical_resource_id'] body = self.network_client.list_ports() ports = body['ports'] router_ports = filter(lambda port: port['device_id'] == router_id, ports) created_network_ports = filter(lambda port: port['network_id'] == network_id, router_ports) self.assertEqual(1, len(created_network_ports)) router_interface = created_network_ports[0] fixed_ips = router_interface['fixed_ips'] subnet_fixed_ips = filter(lambda port: port['subnet_id'] == subnet_id, fixed_ips) self.assertEqual(1, len(subnet_fixed_ips)) router_interface_ip = subnet_fixed_ips[0]['ip_address'] self.assertEqual(str(self.subnet_cidr.iter_hosts().next()), router_interface_ip) @test.idempotent_id('75d85316-4ac2-4c0e-a1a9-edd2148fc10e') @test.services('compute', 'network') def test_created_server(self): """Verifies created sever.""" server_id = self.test_resources.get('Server')['physical_resource_id'] server = self.servers_client.get_server(server_id) self.assertEqual(self.keypair_name, server['key_name']) self.assertEqual('ACTIVE', server['status']) network = server['addresses'][self.neutron_basic_template['resources'][ 'Network']['properties']['name']][0] self.assertEqual(4, network['version']) self.assertIn(netaddr.IPAddress(network['addr']), self.subnet_cidr)
apache-2.0
9,194,123,329,594,989,000
45.583333
79
0.621758
false
hasecbinusr/pysal
pysal/spreg/diagnostics_sp.py
9
22185
""" Spatial diagnostics module """ __author__ = "Luc Anselin [email protected], Daniel Arribas-Bel [email protected]" from utils import spdot from scipy.stats.stats import chisqprob from scipy.stats import norm import numpy as np import numpy.linalg as la __all__ = ['LMtests', 'MoranRes', 'AKtest'] class LMtests: """ Lagrange Multiplier tests. Implemented as presented in Anselin et al. (1996) [Anselin1996a]_ ... Attributes ---------- ols : OLS OLS regression object w : W Spatial weights instance tests : list Lists of strings with the tests desired to be performed. Values may be: * 'all': runs all the options (default) * 'lme': LM error test * 'rlme': Robust LM error test * 'lml' : LM lag test * 'rlml': Robust LM lag test Parameters ---------- lme : tuple (Only if 'lme' or 'all' was in tests). Pair of statistic and p-value for the LM error test. lml : tuple (Only if 'lml' or 'all' was in tests). Pair of statistic and p-value for the LM lag test. rlme : tuple (Only if 'rlme' or 'all' was in tests). Pair of statistic and p-value for the Robust LM error test. rlml : tuple (Only if 'rlml' or 'all' was in tests). Pair of statistic and p-value for the Robust LM lag test. sarma : tuple (Only if 'rlml' or 'all' was in tests). Pair of statistic and p-value for the SARMA test. Examples -------- >>> import numpy as np >>> import pysal >>> from ols import OLS Open the csv file to access the data for analysis >>> csv = pysal.open(pysal.examples.get_path('columbus.dbf'),'r') Pull out from the csv the files we need ('HOVAL' as dependent as well as 'INC' and 'CRIME' as independent) and directly transform them into nx1 and nx2 arrays, respectively >>> y = np.array([csv.by_col('HOVAL')]).T >>> x = np.array([csv.by_col('INC'), csv.by_col('CRIME')]).T Create the weights object from existing .gal file >>> w = pysal.open(pysal.examples.get_path('columbus.gal'), 'r').read() Row-standardize the weight object (not required although desirable in some cases) >>> w.transform='r' Run an OLS regression >>> ols = OLS(y, x) Run all the LM tests in the residuals. These diagnostics test for the presence of remaining spatial autocorrelation in the residuals of an OLS model and give indication about the type of spatial model. There are five types: presence of a spatial lag model (simple and robust version), presence of a spatial error model (simple and robust version) and joint presence of both a spatial lag as well as a spatial error model. >>> lms = pysal.spreg.diagnostics_sp.LMtests(ols, w) LM error test: >>> print round(lms.lme[0],4), round(lms.lme[1],4) 3.0971 0.0784 LM lag test: >>> print round(lms.lml[0],4), round(lms.lml[1],4) 0.9816 0.3218 Robust LM error test: >>> print round(lms.rlme[0],4), round(lms.rlme[1],4) 3.2092 0.0732 Robust LM lag test: >>> print round(lms.rlml[0],4), round(lms.rlml[1],4) 1.0936 0.2957 LM SARMA test: >>> print round(lms.sarma[0],4), round(lms.sarma[1],4) 4.1907 0.123 """ def __init__(self, ols, w, tests=['all']): cache = spDcache(ols, w) if tests == ['all']: tests = ['lme', 'lml', 'rlme', 'rlml', 'sarma'] if 'lme' in tests: self.lme = lmErr(ols, w, cache) if 'lml' in tests: self.lml = lmLag(ols, w, cache) if 'rlme' in tests: self.rlme = rlmErr(ols, w, cache) if 'rlml' in tests: self.rlml = rlmLag(ols, w, cache) if 'sarma' in tests: self.sarma = lmSarma(ols, w, cache) class MoranRes: """ Moran's I for spatial autocorrelation in residuals from OLS regression ... Parameters ---------- ols : OLS OLS regression object w : W Spatial weights instance z : boolean If set to True computes attributes eI, vI and zI. Due to computational burden of vI, defaults to False. Attributes ---------- I : float Moran's I statistic eI : float Moran's I expectation vI : float Moran's I variance zI : float Moran's I standardized value Examples -------- >>> import numpy as np >>> import pysal >>> from ols import OLS Open the csv file to access the data for analysis >>> csv = pysal.open(pysal.examples.get_path('columbus.dbf'),'r') Pull out from the csv the files we need ('HOVAL' as dependent as well as 'INC' and 'CRIME' as independent) and directly transform them into nx1 and nx2 arrays, respectively >>> y = np.array([csv.by_col('HOVAL')]).T >>> x = np.array([csv.by_col('INC'), csv.by_col('CRIME')]).T Create the weights object from existing .gal file >>> w = pysal.open(pysal.examples.get_path('columbus.gal'), 'r').read() Row-standardize the weight object (not required although desirable in some cases) >>> w.transform='r' Run an OLS regression >>> ols = OLS(y, x) Run Moran's I test for residual spatial autocorrelation in an OLS model. This computes the traditional statistic applying a correction in the expectation and variance to account for the fact it comes from residuals instead of an independent variable >>> m = pysal.spreg.diagnostics_sp.MoranRes(ols, w, z=True) Value of the Moran's I statistic: >>> print round(m.I,4) 0.1713 Value of the Moran's I expectation: >>> print round(m.eI,4) -0.0345 Value of the Moran's I variance: >>> print round(m.vI,4) 0.0081 Value of the Moran's I standardized value. This is distributed as a standard Normal(0, 1) >>> print round(m.zI,4) 2.2827 P-value of the standardized Moran's I value (z): >>> print round(m.p_norm,4) 0.0224 """ def __init__(self, ols, w, z=False): cache = spDcache(ols, w) self.I = get_mI(ols, w, cache) if z: self.eI = get_eI(ols, w, cache) self.vI = get_vI(ols, w, self.eI, cache) self.zI, self.p_norm = get_zI(self.I, self.eI, self.vI) class AKtest: """ Moran's I test of spatial autocorrelation for IV estimation. Implemented following the original reference Anselin and Kelejian (1997) [Anselin1997]_ ... Parameters ---------- iv : TSLS Regression object from TSLS class w : W Spatial weights instance case : string Flag for special cases (default to 'nosp'): * 'nosp': Only NO spatial end. reg. * 'gen': General case (spatial lag + end. reg.) Attributes ---------- mi : float Moran's I statistic for IV residuals ak : float Square of corrected Moran's I for residuals:: .. math:: ak = \dfrac{N \times I^*}{\phi^2} Note: if case='nosp' then it simplifies to the LMerror p : float P-value of the test Examples -------- We first need to import the needed modules. Numpy is needed to convert the data we read into arrays that ``spreg`` understands and ``pysal`` to perform all the analysis. The TSLS is required to run the model on which we will perform the tests. >>> import numpy as np >>> import pysal >>> from twosls import TSLS >>> from twosls_sp import GM_Lag Open data on Columbus neighborhood crime (49 areas) using pysal.open(). This is the DBF associated with the Columbus shapefile. Note that pysal.open() also reads data in CSV format; since the actual class requires data to be passed in as numpy arrays, the user can read their data in using any method. >>> db = pysal.open(pysal.examples.get_path("columbus.dbf"),'r') Before being able to apply the diagnostics, we have to run a model and, for that, we need the input variables. Extract the CRIME column (crime rates) from the DBF file and make it the dependent variable for the regression. Note that PySAL requires this to be an numpy array of shape (n, 1) as opposed to the also common shape of (n, ) that other packages accept. >>> y = np.array(db.by_col("CRIME")) >>> y = np.reshape(y, (49,1)) Extract INC (income) vector from the DBF to be used as independent variables in the regression. Note that PySAL requires this to be an nxj numpy array, where j is the number of independent variables (not including a constant). By default this model adds a vector of ones to the independent variables passed in, but this can be overridden by passing constant=False. >>> X = [] >>> X.append(db.by_col("INC")) >>> X = np.array(X).T In this case, we consider HOVAL (home value) as an endogenous regressor, so we acknowledge that by reading it in a different category. >>> yd = [] >>> yd.append(db.by_col("HOVAL")) >>> yd = np.array(yd).T In order to properly account for the endogeneity, we have to pass in the instruments. Let us consider DISCBD (distance to the CBD) is a good one: >>> q = [] >>> q.append(db.by_col("DISCBD")) >>> q = np.array(q).T Now we are good to run the model. It is an easy one line task. >>> reg = TSLS(y, X, yd, q=q) Now we are concerned with whether our non-spatial model presents spatial autocorrelation in the residuals. To assess this possibility, we can run the Anselin-Kelejian test, which is a version of the classical LM error test adapted for the case of residuals from an instrumental variables (IV) regression. First we need an extra object, the weights matrix, which includes the spatial configuration of the observations into the error component of the model. To do that, we can open an already existing gal file or create a new one. In this case, we will create one from ``columbus.shp``. >>> w = pysal.rook_from_shapefile(pysal.examples.get_path("columbus.shp")) Unless there is a good reason not to do it, the weights have to be row-standardized so every row of the matrix sums to one. Among other things, this allows to interpret the spatial lag of a variable as the average value of the neighboring observations. In PySAL, this can be easily performed in the following way: >>> w.transform = 'r' We are good to run the test. It is a very simple task: >>> ak = AKtest(reg, w) And explore the information obtained: >>> print('AK test: %f\tP-value: %f'%(ak.ak, ak.p)) AK test: 4.642895 P-value: 0.031182 The test also accomodates the case when the residuals come from an IV regression that includes a spatial lag of the dependent variable. The only requirement needed is to modify the ``case`` parameter when we call ``AKtest``. First, let us run a spatial lag model: >>> reg_lag = GM_Lag(y, X, yd, q=q, w=w) And now we can run the AK test and obtain similar information as in the non-spatial model. >>> ak_sp = AKtest(reg, w, case='gen') >>> print('AK test: %f\tP-value: %f'%(ak_sp.ak, ak_sp.p)) AK test: 1.157593 P-value: 0.281965 """ def __init__(self, iv, w, case='nosp'): if case == 'gen': cache = spDcache(iv, w) self.mi, self.ak, self.p = akTest(iv, w, cache) elif case == 'nosp': cache = spDcache(iv, w) self.mi = get_mI(iv, w, cache) self.ak, self.p = lmErr(iv, w, cache) else: print """\n Fix the optional argument 'case' to match the requirements: * 'gen': General case (spatial lag + end. reg.) * 'nosp': No spatial end. reg. \n""" class spDcache: """ Helper class to compute reusable pieces in the spatial diagnostics module ... Parameters ---------- reg : OLS_dev, TSLS_dev, STSLS_dev Instance from a regression class w : W Spatial weights instance Attributes ---------- j : array 1x1 array with the result from: .. math:: J = \dfrac{1}{[(WX\beta)' M (WX\beta) + T \sigma^2]} wu : array nx1 array with spatial lag of the residuals utwuDs : array 1x1 array with the result from: .. math:: utwuDs = \dfrac{u' W u}{\tilde{\sigma^2}} utwyDs : array 1x1 array with the result from: .. math:: utwyDs = \dfrac{u' W y}{\tilde{\sigma^2}} t : array 1x1 array with the result from : .. math:: T = tr[(W' + W) W] trA : float Trace of A as in Cliff & Ord (1981) """ def __init__(self, reg, w): self.reg = reg self.w = w self._cache = {} @property def j(self): if 'j' not in self._cache: wxb = self.w.sparse * self.reg.predy wxb2 = np.dot(wxb.T, wxb) xwxb = spdot(self.reg.x.T, wxb) num1 = wxb2 - np.dot(xwxb.T, np.dot(self.reg.xtxi, xwxb)) num = num1 + (self.t * self.reg.sig2n) den = self.reg.n * self.reg.sig2n self._cache['j'] = num / den return self._cache['j'] @property def wu(self): if 'wu' not in self._cache: self._cache['wu'] = self.w.sparse * self.reg.u return self._cache['wu'] @property def utwuDs(self): if 'utwuDs' not in self._cache: res = np.dot(self.reg.u.T, self.wu) / self.reg.sig2n self._cache['utwuDs'] = res return self._cache['utwuDs'] @property def utwyDs(self): if 'utwyDs' not in self._cache: res = np.dot(self.reg.u.T, self.w.sparse * self.reg.y) self._cache['utwyDs'] = res / self.reg.sig2n return self._cache['utwyDs'] @property def t(self): if 't' not in self._cache: prod = (self.w.sparse.T + self.w.sparse) * self.w.sparse self._cache['t'] = np.sum(prod.diagonal()) return self._cache['t'] @property def trA(self): if 'trA' not in self._cache: xtwx = spdot(self.reg.x.T, spdot(self.w.sparse, self.reg.x)) mw = np.dot(self.reg.xtxi, xtwx) self._cache['trA'] = np.sum(mw.diagonal()) return self._cache['trA'] @property def AB(self): """ Computes A and B matrices as in Cliff-Ord 1981, p. 203 """ if 'AB' not in self._cache: U = (self.w.sparse + self.w.sparse.T) / 2. z = spdot(U, self.reg.x, array_out=False) c1 = spdot(self.reg.x.T, z, array_out=False) c2 = spdot(z.T, z, array_out=False) G = self.reg.xtxi A = spdot(G, c1) B = spdot(G, c2) self._cache['AB'] = [A, B] return self._cache['AB'] def lmErr(reg, w, spDcache): """ LM error test. Implemented as presented in eq. (9) of Anselin et al. (1996) [Anselin1996a]_ ... Attributes ---------- reg : OLS_dev, TSLS_dev, STSLS_dev Instance from a regression class w : W Spatial weights instance spDcache : spDcache Instance of spDcache class Returns ------- lme : tuple Pair of statistic and p-value for the LM error test. """ lm = spDcache.utwuDs ** 2 / spDcache.t pval = chisqprob(lm, 1) return (lm[0][0], pval[0][0]) def lmLag(ols, w, spDcache): """ LM lag test. Implemented as presented in eq. (13) of Anselin et al. (1996) [Anselin1996a]_ ... Attributes ---------- ols : OLS_dev Instance from an OLS_dev regression w : W Spatial weights instance spDcache : spDcache Instance of spDcache class Returns ------- lml : tuple Pair of statistic and p-value for the LM lag test. """ lm = spDcache.utwyDs ** 2 / (ols.n * spDcache.j) pval = chisqprob(lm, 1) return (lm[0][0], pval[0][0]) def rlmErr(ols, w, spDcache): """ Robust LM error test. Implemented as presented in eq. (8) of Anselin et al. (1996) [Anselin1996a]_ NOTE: eq. (8) has an errata, the power -1 in the denominator should be inside the square bracket. ... Attributes ---------- ols : OLS_dev Instance from an OLS_dev regression w : W Spatial weights instance spDcache : spDcache Instance of spDcache class Returns ------- rlme : tuple Pair of statistic and p-value for the Robust LM error test. """ nj = ols.n * spDcache.j num = (spDcache.utwuDs - (spDcache.t * spDcache.utwyDs) / nj) ** 2 den = spDcache.t * (1. - (spDcache.t / nj)) lm = num / den pval = chisqprob(lm, 1) return (lm[0][0], pval[0][0]) def rlmLag(ols, w, spDcache): """ Robust LM lag test. Implemented as presented in eq. (12) of Anselin et al. (1996) [Anselin1996a]_ ... Attributes ---------- ols : OLS_dev Instance from an OLS_dev regression w : W Spatial weights instance spDcache : spDcache Instance of spDcache class Returns ------- rlml : tuple Pair of statistic and p-value for the Robust LM lag test. """ lm = (spDcache.utwyDs - spDcache.utwuDs) ** 2 / \ ((ols.n * spDcache.j) - spDcache.t) pval = chisqprob(lm, 1) return (lm[0][0], pval[0][0]) def lmSarma(ols, w, spDcache): """ LM error test. Implemented as presented in eq. (15) of Anselin et al. (1996) [Anselin1996a]_ ... Attributes ---------- ols : OLS_dev Instance from an OLS_dev regression w : W Spatial weights instance spDcache : spDcache Instance of spDcache class Returns ------- sarma : tuple Pair of statistic and p-value for the LM sarma test. """ first = (spDcache.utwyDs - spDcache.utwuDs) ** 2 / \ (w.n * spDcache.j - spDcache.t) secnd = spDcache.utwuDs ** 2 / spDcache.t lm = first + secnd pval = chisqprob(lm, 2) return (lm[0][0], pval[0][0]) def get_mI(reg, w, spDcache): """ Moran's I statistic of spatial autocorrelation as showed in Cliff & Ord (1981) [Cliff1981]_, p. 201-203 ... Attributes ---------- reg : OLS_dev, TSLS_dev, STSLS_dev Instance from a regression class w : W Spatial weights instance spDcache : spDcache Instance of spDcache class Returns ------- moran : float Statistic Moran's I test. """ mi = (w.n * np.dot(reg.u.T, spDcache.wu)) / (w.s0 * reg.utu) return mi[0][0] def get_vI(ols, w, ei, spDcache): """ Moran's I variance coded as in Cliff & Ord 1981 (p. 201-203) and R's spdep """ A = spDcache.AB[0] trA2 = np.dot(A, A) trA2 = np.sum(trA2.diagonal()) B = spDcache.AB[1] trB = np.sum(B.diagonal()) * 4. vi = (w.n ** 2 / (w.s0 ** 2 * (w.n - ols.k) * (w.n - ols.k + 2.))) * \ (w.s1 + 2. * trA2 - trB - ((2. * (spDcache.trA ** 2)) / (w.n - ols.k))) return vi def get_eI(ols, w, spDcache): """ Moran's I expectation using matrix M """ return - (w.n * spDcache.trA) / (w.s0 * (w.n - ols.k)) def get_zI(I, ei, vi): """ Standardized I Returns two-sided p-values as provided in the GeoDa family """ z = abs((I - ei) / np.sqrt(vi)) pval = norm.sf(z) * 2. return (z, pval) def akTest(iv, w, spDcache): """ Computes AK-test for the general case (end. reg. + sp. lag) ... Parameters ---------- iv : STSLS_dev Instance from spatial 2SLS regression w : W Spatial weights instance spDcache : spDcache Instance of spDcache class Attributes ---------- mi : float Moran's I statistic for IV residuals ak : float Square of corrected Moran's I for residuals:: .. math:: ak = \dfrac{N \times I^*}{\phi^2} p : float P-value of the test ToDo: * Code in as Nancy * Compare both """ mi = get_mI(iv, w, spDcache) # Phi2 etwz = spdot(iv.u.T, spdot(w.sparse, iv.z)) a = np.dot(etwz, np.dot(iv.varb, etwz.T)) s12 = (w.s0 / w.n) ** 2 phi2 = (spDcache.t + (4.0 / iv.sig2n) * a) / (s12 * w.n) ak = w.n * mi ** 2 / phi2 pval = chisqprob(ak, 1) return (mi, ak[0][0], pval[0][0]) def _test(): import doctest doctest.testmod() if __name__ == '__main__': _test()
bsd-3-clause
-4,186,144,807,814,660,600
27.333333
121
0.543791
false
SivilTaram/edx-platform
common/lib/xmodule/xmodule/seq_module.py
30
12026
""" xModule implementation of a learning sequence """ # pylint: disable=abstract-method import json import logging import warnings from lxml import etree from xblock.core import XBlock from xblock.fields import Integer, Scope, Boolean from xblock.fragment import Fragment from pkg_resources import resource_string from .exceptions import NotFoundError from .fields import Date from .mako_module import MakoModuleDescriptor from .progress import Progress from .x_module import XModule, STUDENT_VIEW from .xml_module import XmlDescriptor log = logging.getLogger(__name__) # HACK: This shouldn't be hard-coded to two types # OBSOLETE: This obsoletes 'type' class_priority = ['video', 'problem'] # Make '_' a no-op so we can scrape strings _ = lambda text: text class SequenceFields(object): has_children = True # NOTE: Position is 1-indexed. This is silly, but there are now student # positions saved on prod, so it's not easy to fix. position = Integer(help="Last tab viewed in this sequence", scope=Scope.user_state) due = Date( display_name=_("Due Date"), help=_("Enter the date by which problems are due."), scope=Scope.settings, ) # Entrance Exam flag -- see cms/contentstore/views/entrance_exam.py for usage is_entrance_exam = Boolean( display_name=_("Is Entrance Exam"), help=_( "Tag this course module as an Entrance Exam. " "Note, you must enable Entrance Exams for this course setting to take effect." ), default=False, scope=Scope.content, ) class ProctoringFields(object): """ Fields that are specific to Proctored or Timed Exams """ is_time_limited = Boolean( display_name=_("Is Time Limited"), help=_( "This setting indicates whether students have a limited time" " to view or interact with this courseware component." ), default=False, scope=Scope.settings, ) default_time_limit_minutes = Integer( display_name=_("Time Limit in Minutes"), help=_( "The number of minutes available to students for viewing or interacting with this courseware component." ), default=None, scope=Scope.settings, ) is_proctored_enabled = Boolean( display_name=_("Is Proctoring Enabled"), help=_( "This setting indicates whether this exam is a proctored exam." ), default=False, scope=Scope.settings, ) is_practice_exam = Boolean( display_name=_("Is Practice Exam"), help=_( "This setting indicates whether this exam is for testing purposes only. Practice exams are not verified." ), default=False, scope=Scope.settings, ) @XBlock.wants('proctoring') @XBlock.wants('credit') class SequenceModule(SequenceFields, ProctoringFields, XModule): ''' Layout module which lays out content in a temporal sequence ''' js = { 'coffee': [resource_string(__name__, 'js/src/sequence/display.coffee')], 'js': [resource_string(__name__, 'js/src/sequence/display/jquery.sequence.js')], } css = { 'scss': [resource_string(__name__, 'css/sequence/display.scss')], } js_module_name = "Sequence" def __init__(self, *args, **kwargs): super(SequenceModule, self).__init__(*args, **kwargs) # If position is specified in system, then use that instead. position = getattr(self.system, 'position', None) if position is not None: try: self.position = int(self.system.position) except (ValueError, TypeError): # Check for https://openedx.atlassian.net/browse/LMS-6496 warnings.warn( "Sequential position cannot be converted to an integer: {pos!r}".format( pos=self.system.position, ), RuntimeWarning, ) def get_progress(self): ''' Return the total progress, adding total done and total available. (assumes that each submodule uses the same "units" for progress.) ''' # TODO: Cache progress or children array? children = self.get_children() progresses = [child.get_progress() for child in children] progress = reduce(Progress.add_counts, progresses, None) return progress def handle_ajax(self, dispatch, data): # TODO: bounds checking ''' get = request.POST instance ''' if dispatch == 'goto_position': # set position to default value if either 'position' argument not # found in request or it is a non-positive integer position = data.get('position', u'1') if position.isdigit() and int(position) > 0: self.position = int(position) else: self.position = 1 return json.dumps({'success': True}) raise NotFoundError('Unexpected dispatch type') def student_view(self, context): # If we're rendering this sequence, but no position is set yet, # default the position to the first element if self.position is None: self.position = 1 ## Returns a set of all types of all sub-children contents = [] fragment = Fragment() # Is this sequential part of a timed or proctored exam? if self.is_time_limited: view_html = self._time_limited_student_view(context) # Do we have an alternate rendering # from the edx_proctoring subsystem? if view_html: fragment.add_content(view_html) return fragment for child in self.get_display_items(): progress = child.get_progress() rendered_child = child.render(STUDENT_VIEW, context) fragment.add_frag_resources(rendered_child) titles = child.get_content_titles() childinfo = { 'content': rendered_child.content, 'title': "\n".join(titles), 'page_title': titles[0] if titles else '', 'progress_status': Progress.to_js_status_str(progress), 'progress_detail': Progress.to_js_detail_str(progress), 'type': child.get_icon_class(), 'id': child.scope_ids.usage_id.to_deprecated_string(), } if childinfo['title'] == '': childinfo['title'] = child.display_name_with_default contents.append(childinfo) params = {'items': contents, 'element_id': self.location.html_id(), 'item_id': self.location.to_deprecated_string(), 'position': self.position, 'tag': self.location.category, 'ajax_url': self.system.ajax_url, } fragment.add_content(self.system.render_template("seq_module.html", params)) return fragment def _time_limited_student_view(self, context): """ Delegated rendering of a student view when in a time limited view. This ultimately calls down into edx_proctoring pip installed djangoapp """ # None = no overridden view rendering view_html = None proctoring_service = self.runtime.service(self, 'proctoring') credit_service = self.runtime.service(self, 'credit') # Is the feature turned on and do we have all required services # Also, the ENABLE_PROCTORED_EXAMS feature flag must be set to # True and the Sequence in question, should have the # fields set to indicate this is a timed/proctored exam feature_enabled = ( proctoring_service and credit_service and proctoring_service.is_feature_enabled() ) if feature_enabled: user_id = self.runtime.user_id user_role_in_course = 'staff' if self.runtime.user_is_staff else 'student' course_id = self.runtime.course_id content_id = self.location context = { 'display_name': self.display_name, 'default_time_limit_mins': ( self.default_time_limit_minutes if self.default_time_limit_minutes else 0 ), 'is_practice_exam': self.is_practice_exam } # inject the user's credit requirements and fulfillments if credit_service: credit_state = credit_service.get_credit_state(user_id, course_id) if credit_state: context.update({ 'credit_state': credit_state }) # See if the edx-proctoring subsystem wants to present # a special view to the student rather # than the actual sequence content # # This will return None if there is no # overridden view to display given the # current state of the user view_html = proctoring_service.get_student_view( user_id=user_id, course_id=course_id, content_id=content_id, context=context, user_role=user_role_in_course ) return view_html def get_icon_class(self): child_classes = set(child.get_icon_class() for child in self.get_children()) new_class = 'other' for c in class_priority: if c in child_classes: new_class = c return new_class class SequenceDescriptor(SequenceFields, ProctoringFields, MakoModuleDescriptor, XmlDescriptor): """ A Sequences Descriptor object """ mako_template = 'widgets/sequence-edit.html' module_class = SequenceModule show_in_read_only_mode = True js = { 'coffee': [resource_string(__name__, 'js/src/sequence/edit.coffee')], } js_module_name = "SequenceDescriptor" @classmethod def definition_from_xml(cls, xml_object, system): children = [] for child in xml_object: try: child_block = system.process_xml(etree.tostring(child, encoding='unicode')) children.append(child_block.scope_ids.usage_id) except Exception as e: log.exception("Unable to load child when parsing Sequence. Continuing...") if system.error_tracker is not None: system.error_tracker(u"ERROR: {0}".format(e)) continue return {}, children def definition_to_xml(self, resource_fs): xml_object = etree.Element('sequential') for child in self.get_children(): self.runtime.add_block_as_child_node(child, xml_object) return xml_object @property def non_editable_metadata_fields(self): """ `is_entrance_exam` should not be editable in the Studio settings editor. """ non_editable_fields = super(SequenceDescriptor, self).non_editable_metadata_fields non_editable_fields.append(self.fields['is_entrance_exam']) return non_editable_fields def index_dictionary(self): """ Return dictionary prepared with module content and type for indexing. """ # return key/value fields in a Python dict object # values may be numeric / string or dict # default implementation is an empty dict xblock_body = super(SequenceDescriptor, self).index_dictionary() html_body = { "display_name": self.display_name, } if "content" in xblock_body: xblock_body["content"].update(html_body) else: xblock_body["content"] = html_body xblock_body["content_type"] = "Sequence" return xblock_body
agpl-3.0
-7,704,655,475,082,857,000
34.370588
117
0.591385
false
evolvIQ/iqserialization
PerformanceTest/generate-test-data.py
1
2026
import json,xmlrpclib import random import sys def random_object(maxdepth=1): choices = [random_double, random_int, random_bool, random_string, lambda:None] if maxdepth > 0: for i in range(1,4): choices.append(lambda:random_object(maxdepth-i)) return random.choice(choices)() def random_int(): return random.randint(-1000, 1000) def random_bool(): return bool(random.randint(0,1)) def random_double(): return random.gauss(0,1e9) def gen_random_string(prefer_ascii): s = [] for _ in range(random.randint(1,100)): if not prefer_ascii and random.randint(0,2) == 0 or prefer_ascii and random.randint(0,200) == 0: s.append(chr(random.randint(0,255))) else: s.append(chr(random.randint(ord('a'),ord('z')))) return ''.join(s).decode('latin1') strings = None string_pool = False def random_string(prefer_ascii=False): if string_pool: global strings, astrings if strings is None: strings = [[gen_random_string(False) for _ in range(200)], [gen_random_string(True) for _ in range(200)]] return random.choice(strings[prefer_ascii]) else: return gen_random_string(prefer_ascii) if __name__ == '__main__': minlen = 10*1024*1024 if len(sys.argv) > 1: minlen = int(sys.argv[1]) ct = 0 jsonf = file("test.json","w") xmlrpcf = file("test.xmlrpc","w") print >>jsonf, '{', print >>xmlrpcf, '<params><param><value><struct>', while ct < minlen: if ct > 0: print >>jsonf, ',' else: print >>jsonf k,v = (json.dumps(random_string(True)), json.dumps(random_object(10))) s = '%s : %s' % (k,v) ct += len(s) print >>jsonf, s, xk = xmlrpclib.dumps(({k:v},)).split('<struct>',1)[1].rsplit('</struct>',1)[0].strip() print >>xmlrpcf, xk print >>jsonf, '}' print >>xmlrpcf, '</struct></value></param></params>',
apache-2.0
-2,748,689,251,981,267,500
30.184615
104
0.568115
false
leeseuljeong/leeseulstack_neutron
neutron/db/migration/alembic_migrations/versions/1fcfc149aca4_agents_unique_by_type_and_host.py
17
1377
# Copyright 2013 OpenStack Foundation # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # """Add a unique constraint on (agent_type, host) columns to prevent a race condition when an agent entry is 'upserted'. Revision ID: 1fcfc149aca4 Revises: e197124d4b9 Create Date: 2013-11-27 18:35:28.148680 """ revision = '1fcfc149aca4' down_revision = 'e197124d4b9' from alembic import op from neutron.db import migration TABLE_NAME = 'agents' UC_NAME = 'uniq_agents0agent_type0host' def upgrade(): if not migration.schema_has_table(TABLE_NAME): # Assume that, in the database we are migrating from, the # configured plugin did not create the agents table. return op.create_unique_constraint( name=UC_NAME, source=TABLE_NAME, local_cols=['agent_type', 'host'] ) def downgrade(): pass
apache-2.0
374,444,057,740,654,400
25.480769
78
0.705156
false
NMGRL/pychron
pychron/applications/pydiode.py
2
1412
# =============================================================================== # Copyright 2013 Jake Ross # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # =============================================================================== # ============= enthought library imports ======================= from __future__ import absolute_import from pyface.tasks.task_window_layout import TaskWindowLayout from pychron.applications.pychron_application import PychronApplication # ============= standard library imports ======================== # ============= local library imports ========================== class PyDiode(PychronApplication): id = 'pychron.diode.application' name = 'pyDiode' shortname = 'diode' default_layout = [ TaskWindowLayout('tasks.hardware'), TaskWindowLayout('pychron.fusions.diode')] # ============= EOF =============================================
apache-2.0
4,916,240,546,597,766,000
39.342857
81
0.572946
false
klmitch/appathy
appathy/types.py
1
5024
# Copyright (C) 2012 by Kevin L. Mitchell <[email protected]> # # This program is free software: you can redistribute it and/or # modify it under the terms of the GNU General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see # <http://www.gnu.org/licenses/>. import functools import inspect class Translators(object): """ Represent a set of translators. A translator is a serializer or deserializer, corresponding to a particular return type. """ def __init__(self, method, attr_name): """ Initialize a set of translators. The translators for a given method are derived from the class of the method, updated with translators set on the method itself. The `attr_name` parameter specifies the attribute containing the translation table. """ # Build up the translators self.translators = getattr(method.im_self, attr_name, {}).copy() self.translators.update(getattr(method, attr_name, {})) def __call__(self, content_type): """ Select the translator corresponding to the given content type. """ # Get the type name type_name = media_types[content_type] # Select the translator to use xlator = self.translators[type_name] # If it's a class, instantiate it if inspect.isclass(xlator): return xlator(type_name, content_type) # It's a function; partialize and return it return functools.partial(xlator, type_name, content_type) def get_types(self): """ Retrieve a set of all recognized content types for this translator object. """ # Convert translators into a set of content types content_types = set() for name in self.translators: content_types |= type_names[name] return content_types def _translators(attr, kwargs): """ Decorator which associates a set of translators (serializers or deserializers) with a given method. The `attr` parameter identifies which attribute is being updated. """ # Add translators to a function or class def decorator(func): # Make sure we have the attribute try: xlators = getattr(func, attr) except AttributeError: xlators = {} setattr(func, attr, xlators) xlators.update(kwargs) return func return decorator def serializers(**kwargs): """ Decorator which binds a set of serializers with a method. The key of each keyword argument is interpreted as a short name for the content type (bind short names to content types using register_types()), and the value is a callable. If the callable is a class, it will be instantiated with two arguments: the short type name and the content type. It must define a __call__() method taking one argument: the object to serialize. The class may also define an optional attach() method, which allows serializers for extensions to be attached to the primary serializer. If the callable is a function, it will be called with three arguments: the short type name, the content type, and the object to serialize. """ return _translators('_wsgi_serializers', kwargs) def deserializers(**kwargs): """ Decorator which binds a set of deserializers with a method. The key of each keyword argument is interpreted as a short name for the content type (bind short names to content types using register_types()), and the value is a callable. If the callable is a class, it will be instantiated with two arguments: the short type name and the content type. It must define a __call__() method taking one argument: the string to deserialize. The class may also define an optional attach() method, which allows deserializers for extensions to be attached to the primary deserializer. If the callable is a function, it will be called with three arguments: the short type name, the content type, and the string to deserialize. """ return _translators('_wsgi_deserializers', kwargs) media_types = {} type_names = {} def register_types(name, *types): """ Register a short name for one or more content types. """ type_names.setdefault(name, set()) for t in types: # Redirecting the type if t in media_types: type_names[media_types[t]].discard(t) # Save the mapping media_types[t] = name type_names[name].add(t)
gpl-3.0
806,268,398,094,400,000
31.623377
72
0.669586
false
MisterPup/OpenStack-Neat-Ceilometer
tests/locals/overload/mhod/test_multisize_estimation.py
5
35207
# Copyright 2012 Anton Beloglazov # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from mocktest import * from pyqcy import * from collections import deque from copy import deepcopy import re import neat.locals.overload.mhod.multisize_estimation as m import logging logging.disable(logging.CRITICAL) def c(data): return deepcopy(data) class Multisize(TestCase): def test_mean(self): self.assertEqual(m.mean([], 100), 0.0) self.assertEqual(m.mean([0], 100), 0.0) self.assertEqual(m.mean([0, 0], 100), 0.0) self.assertEqual(m.mean([1, 1], 100), 0.02) self.assertEqual(m.mean([0, 1], 100), 0.01) self.assertEqual(m.mean([1, 2, 3, 4, 5], 100), 0.15) def test_variance(self): self.assertEqual(m.variance([], 100), 0.0) self.assertEqual(m.variance([0], 100), 0.0) self.assertEqual(m.variance([0, 0], 100), 0.0) self.assertAlmostEqual(m.variance([1, 1], 100), 0.0194020202) self.assertAlmostEqual(m.variance([0, 1], 100), 0.0099010101) self.assertAlmostEqual(m.variance([1, 2, 3, 4, 5], 100), 0.511237373) self.assertAlmostEqual(m.variance([0, 0, 0, 1], 100), 0.0099030303) def test_acceptable_variance(self): self.assertAlmostEqual(m.acceptable_variance(0.2, 5), 0.032, 3) self.assertAlmostEqual(m.acceptable_variance(0.6, 15), 0.016, 3) def test_estimate_probability(self): self.assertEqual( m.estimate_probability([0, 0, 1, 1, 0, 0, 0, 0, 0, 0], 100, 0), 0.08) self.assertEqual( m.estimate_probability([0, 0, 1, 1, 0, 0, 0, 0, 0, 0], 100, 1), 0.02) self.assertEqual( m.estimate_probability([1, 1, 0, 0, 1, 1, 1, 1, 1, 1], 200, 0), 0.01) self.assertEqual( m.estimate_probability([1, 1, 0, 0, 1, 1, 1, 1, 1, 1], 200, 1), 0.04) def test_update_request_windows(self): max_window_size = 4 windows = [deque([0, 0], max_window_size), deque([1, 1], max_window_size)] self.assertEqual(m.update_request_windows(c(windows), 0, 0), [deque([0, 0, 0]), deque([1, 1])]) self.assertEqual(m.update_request_windows(c(windows), 0, 1), [deque([0, 0, 1]), deque([1, 1])]) self.assertEqual(m.update_request_windows(c(windows), 1, 0), [deque([0, 0]), deque([1, 1, 0])]) self.assertEqual(m.update_request_windows(c(windows), 1, 1), [deque([0, 0]), deque([1, 1, 1])]) max_window_size = 2 windows = [deque([0, 0], max_window_size), deque([1, 1], max_window_size)] self.assertEqual(m.update_request_windows(c(windows), 0, 0), [deque([0, 0]), deque([1, 1])]) self.assertEqual(m.update_request_windows(c(windows), 0, 1), [deque([0, 1]), deque([1, 1])]) self.assertEqual(m.update_request_windows(c(windows), 1, 0), [deque([0, 0]), deque([1, 0])]) self.assertEqual(m.update_request_windows(c(windows), 1, 1), [deque([0, 0]), deque([1, 1])]) max_window_size = 4 windows = [deque([0, 0], max_window_size), deque([1, 1], max_window_size), deque([2, 2], max_window_size)] self.assertEqual(m.update_request_windows(c(windows), 0, 0), [deque([0, 0, 0]), deque([1, 1]), deque([2, 2])]) self.assertEqual(m.update_request_windows(c(windows), 0, 1), [deque([0, 0, 1]), deque([1, 1]), deque([2, 2])]) self.assertEqual(m.update_request_windows(c(windows), 0, 2), [deque([0, 0, 2]), deque([1, 1]), deque([2, 2])]) self.assertEqual(m.update_request_windows(c(windows), 1, 0), [deque([0, 0]), deque([1, 1, 0]), deque([2, 2])]) self.assertEqual(m.update_request_windows(c(windows), 1, 1), [deque([0, 0]), deque([1, 1, 1]), deque([2, 2])]) self.assertEqual(m.update_request_windows(c(windows), 1, 2), [deque([0, 0]), deque([1, 1, 2]), deque([2, 2])]) self.assertEqual(m.update_request_windows(c(windows), 2, 0), [deque([0, 0]), deque([1, 1]), deque([2, 2, 0])]) self.assertEqual(m.update_request_windows(c(windows), 2, 1), [deque([0, 0]), deque([1, 1]), deque([2, 2, 1])]) self.assertEqual(m.update_request_windows(c(windows), 2, 2), [deque([0, 0]), deque([1, 1]), deque([2, 2, 2])]) max_window_size = 2 windows = [deque([0, 0], max_window_size), deque([1, 1], max_window_size), deque([2, 2], max_window_size)] self.assertEqual(m.update_request_windows(c(windows), 0, 0), [deque([0, 0]), deque([1, 1]), deque([2, 2])]) self.assertEqual(m.update_request_windows(c(windows), 0, 1), [deque([0, 1]), deque([1, 1]), deque([2, 2])]) self.assertEqual(m.update_request_windows(c(windows), 0, 2), [deque([0, 2]), deque([1, 1]), deque([2, 2])]) self.assertEqual(m.update_request_windows(c(windows), 1, 0), [deque([0, 0]), deque([1, 0]), deque([2, 2])]) self.assertEqual(m.update_request_windows(c(windows), 1, 1), [deque([0, 0]), deque([1, 1]), deque([2, 2])]) self.assertEqual(m.update_request_windows(c(windows), 1, 2), [deque([0, 0]), deque([1, 2]), deque([2, 2])]) self.assertEqual(m.update_request_windows(c(windows), 2, 0), [deque([0, 0]), deque([1, 1]), deque([2, 0])]) self.assertEqual(m.update_request_windows(c(windows), 2, 1), [deque([0, 0]), deque([1, 1]), deque([2, 1])]) self.assertEqual(m.update_request_windows(c(windows), 2, 2), [deque([0, 0]), deque([1, 1]), deque([2, 2])]) def test_update_estimate_windows(self): req_win = [deque([1, 0, 0, 0]), deque([1, 0, 1, 0])] est_win = [[{2: deque([0, 0], 2), 4: deque([0, 0], 4)}, {2: deque([0, 0], 2), 4: deque([0, 0], 4)}], [{2: deque([0, 0], 2), 4: deque([0, 0], 4)}, {2: deque([0, 0], 2), 4: deque([0, 0], 4)}]] self.assertEqual( m.update_estimate_windows(c(est_win), c(req_win), 0), [[{2: deque([0, 1.0]), 4: deque([0, 0, 0.75])}, {2: deque([0, 0.0]), 4: deque([0, 0, 0.25])}], [{2: deque([0, 0]), 4: deque([0, 0])}, {2: deque([0, 0]), 4: deque([0, 0])}]]) self.assertEqual( m.update_estimate_windows(c(est_win), c(req_win), 1), [[{2: deque([0, 0]), 4: deque([0, 0])}, {2: deque([0, 0]), 4: deque([0, 0])}], [{2: deque([0, 0.5]), 4: deque([0, 0, 0.5])}, {2: deque([0, 0.5]), 4: deque([0, 0, 0.5])}]]) req_win = [deque([1, 0, 2, 0]), deque([1, 0, 1, 0]), deque([2, 2, 1, 0])] est_win = [[{2: deque([0, 0], 2), 4: deque([0, 0], 4)}, {2: deque([0, 0], 2), 4: deque([0, 0], 4)}, {2: deque([0, 0], 2), 4: deque([0, 0], 4)}], [{2: deque([0, 0], 2), 4: deque([0, 0], 4)}, {2: deque([0, 0], 2), 4: deque([0, 0], 4)}, {2: deque([0, 0], 2), 4: deque([0, 0], 4)}], [{2: deque([0, 0], 2), 4: deque([0, 0], 4)}, {2: deque([0, 0], 2), 4: deque([0, 0], 4)}, {2: deque([0, 0], 2), 4: deque([0, 0], 4)}]] self.assertEqual( m.update_estimate_windows(c(est_win), c(req_win), 0), [[{2: deque([0, 0.5]), 4: deque([0, 0, 0.5])}, {2: deque([0, 0.0]), 4: deque([0, 0, 0.25])}, {2: deque([0, 0.5]), 4: deque([0, 0, 0.25])}], [{2: deque([0, 0]), 4: deque([0, 0])}, {2: deque([0, 0]), 4: deque([0, 0])}, {2: deque([0, 0]), 4: deque([0, 0])}], [{2: deque([0, 0]), 4: deque([0, 0])}, {2: deque([0, 0]), 4: deque([0, 0])}, {2: deque([0, 0]), 4: deque([0, 0])}]]) self.assertEqual( m.update_estimate_windows(c(est_win), c(req_win), 1), [[{2: deque([0, 0]), 4: deque([0, 0])}, {2: deque([0, 0]), 4: deque([0, 0])}, {2: deque([0, 0]), 4: deque([0, 0])}], [{2: deque([0, 0.5]), 4: deque([0, 0, 0.5])}, {2: deque([0, 0.5]), 4: deque([0, 0, 0.5])}, {2: deque([0, 0.0]), 4: deque([0, 0, 0.0])}], [{2: deque([0, 0]), 4: deque([0, 0])}, {2: deque([0, 0]), 4: deque([0, 0])}, {2: deque([0, 0]), 4: deque([0, 0])}]]) self.assertEqual( m.update_estimate_windows(c(est_win), c(req_win), 2), [[{2: deque([0, 0]), 4: deque([0, 0])}, {2: deque([0, 0]), 4: deque([0, 0])}, {2: deque([0, 0]), 4: deque([0, 0])}], [{2: deque([0, 0]), 4: deque([0, 0])}, {2: deque([0, 0]), 4: deque([0, 0])}, {2: deque([0, 0]), 4: deque([0, 0])}], [{2: deque([0, 0.5]), 4: deque([0, 0, 0.25])}, {2: deque([0, 0.5]), 4: deque([0, 0, 0.25])}, {2: deque([0, 0.0]), 4: deque([0, 0, 0.5])}]]) def test_update_variances(self): est_win = [[{2: deque([0, 0.5], 2), 4: deque([1, 0, 0, 0], 4)}, {2: deque([1.0, 0.5], 2), 4: deque([0, 1, 1, 1], 4)}], [{2: deque([0.5, 0.25], 2), 4: deque([0.25, 0.25, 0.5, 0.5], 4)}, {2: deque([0.5, 0.75], 2), 4: deque([0.75, 0.75, 0.5, 0.5], 4)}]] variances = [[{2: 0, 4: 0}, {2: 0, 4: 0}], [{2: 0, 4: 0}, {2: 0, 4: 0}]] self.assertEqual(m.update_variances(c(variances), c(est_win), 0), [[{2: 0.125, 4: 0.25}, {2: 0.125, 4: 0.25}], [{2: 0, 4: 0}, {2: 0, 4: 0}]]) self.assertEqual(m.update_variances(c(variances), c(est_win), 1), [[{2: 0, 4: 0}, {2: 0, 4: 0}], [{2: 0.03125, 4: 0.020833333333333332}, {2: 0.03125, 4: 0.020833333333333332}]]) self.assertEqual(m.update_variances( m.update_variances(c(variances), c(est_win), 0), c(est_win), 0), [[{2: 0.125, 4: 0.25}, {2: 0.125, 4: 0.25}], [{2: 0, 4: 0}, {2: 0, 4: 0}]]) est_win = [[{2: deque([0, 0], 2), 4: deque([1, 0, 0, 0], 4)}, {2: deque([1, 1], 2), 4: deque([0, 0, 1, 1], 4)}, {2: deque([0, 0], 2), 4: deque([0, 1, 0, 0], 4)}], [{2: deque([0.5, 0.25], 2), 4: deque([0.25, 0.05, 0.5, 0.25], 4)}, {2: deque([0.25, 0.5], 2), 4: deque([0.4, 0.55, 0.25, 0.5], 4)}, {2: deque([0.25, 0.25], 2), 4: deque([0.35, 0.4, 0.25, 0.25], 4)}], [{2: deque([1, 0], 2), 4: deque([1, 0, 1, 0], 4)}, {2: deque([0, 1], 2), 4: deque([0, 0, 0, 1], 4)}, {2: deque([0, 0], 2), 4: deque([0, 1, 0, 0], 4)}]] variances = [[{2: 0, 4: 0}, {2: 0, 4: 0}, {2: 0, 4: 0}], [{2: 0, 4: 0}, {2: 0, 4: 0}, {2: 0, 4: 0}], [{2: 0, 4: 0}, {2: 0, 4: 0}, {2: 0, 4: 0}]] self.assertEqual(m.update_variances(c(variances), c(est_win), 0), [[{2: 0.0, 4: 0.25}, {2: 0.0, 4: 0.3333333333333333}, {2: 0.0, 4: 0.25}], [{2: 0, 4: 0}, {2: 0, 4: 0}, {2: 0, 4: 0}], [{2: 0, 4: 0}, {2: 0, 4: 0}, {2: 0, 4: 0}]]) self.assertEqual(m.update_variances(c(variances), c(est_win), 1), [[{2: 0, 4: 0}, {2: 0, 4: 0}, {2: 0, 4: 0}], [{2: 0.03125, 4: 0.03395833333333333}, {2: 0.03125, 4: 0.0175}, {2: 0.0, 4: 0.005625000000000001}], [{2: 0, 4: 0}, {2: 0, 4: 0}, {2: 0, 4: 0}]]) self.assertEqual(m.update_variances(c(variances), c(est_win), 2), [[{2: 0, 4: 0}, {2: 0, 4: 0}, {2: 0, 4: 0}], [{2: 0, 4: 0}, {2: 0, 4: 0}, {2: 0, 4: 0}], [{2: 0.5, 4: 0.3333333333333333}, {2: 0.5, 4: 0.25}, {2: 0.0, 4: 0.25}]]) def test_update_acceptable_variances(self): est_win = [[{2: deque([0, 0.5], 2), 4: deque([1, 0, 0, 0], 4)}, {2: deque([1.0, 0.5], 2), 4: deque([0, 1, 1, 1], 4)}], [{2: deque([0.5, 0.25], 2), 4: deque([0.25, 0.25, 0.5, 0.5], 4)}, {2: deque([0.5, 0.75], 2), 4: deque([0.75, 0.75, 0.5, 0.5], 4)}]] acc_variances = [[{2: 0, 4: 0}, {2: 0, 4: 0}], [{2: 0, 4: 0}, {2: 0, 4: 0}]] self.assertEqual(m.update_acceptable_variances(c(acc_variances), c(est_win), 0), [[{2: 0.125, 4: 0.0}, {2: 0.125, 4: 0.0}], [{2: 0, 4: 0}, {2: 0, 4: 0}]]) self.assertEqual(m.update_acceptable_variances(c(acc_variances), c(est_win), 1), [[{2: 0, 4: 0}, {2: 0, 4: 0}], [{2: 0.09375, 4: 0.0625}, {2: 0.09375, 4: 0.0625}]]) self.assertEqual(m.update_acceptable_variances( m.update_acceptable_variances( c(acc_variances), c(est_win), 0), c(est_win), 0), [[{2: 0.125, 4: 0.0}, {2: 0.125, 4: 0.0}], [{2: 0, 4: 0}, {2: 0, 4: 0}]]) est_win = [[{2: deque([0, 0], 2), 4: deque([1, 0, 0, 0], 4)}, {2: deque([1, 1], 2), 4: deque([0, 0, 1, 1], 4)}, {2: deque([0, 0], 2), 4: deque([0, 1, 0, 0], 4)}], [{2: deque([0.5, 0.25], 2), 4: deque([0.25, 0.05, 0.5, 0.25], 4)}, {2: deque([0.25, 0.5], 2), 4: deque([0.4, 0.55, 0.25, 0.5], 4)}, {2: deque([0.25, 0.25], 2), 4: deque([0.35, 0.4, 0.25, 0.25], 4)}], [{2: deque([1, 0], 2), 4: deque([1, 0, 1, 0], 4)}, {2: deque([0, 1], 2), 4: deque([0, 0, 0, 1], 4)}, {2: deque([0, 0], 2), 4: deque([0, 1, 0, 0], 4)}]] acc_variances = [[{2: 0, 4: 0}, {2: 0, 4: 0}, {2: 0, 4: 0}], [{2: 0, 4: 0}, {2: 0, 4: 0}, {2: 0, 4: 0}], [{2: 0, 4: 0}, {2: 0, 4: 0}, {2: 0, 4: 0}]] self.assertEqual(m.update_acceptable_variances(c(acc_variances), c(est_win), 0), [[{2: 0.0, 4: 0.0}, {2: 0.0, 4: 0.0}, {2: 0.0, 4: 0.0}], [{2: 0, 4: 0}, {2: 0, 4: 0}, {2: 0, 4: 0}], [{2: 0, 4: 0}, {2: 0, 4: 0}, {2: 0, 4: 0}]]) self.assertEqual(m.update_acceptable_variances(c(acc_variances), c(est_win), 1), [[{2: 0, 4: 0}, {2: 0, 4: 0}, {2: 0, 4: 0}], [{2: 0.09375, 4: 0.046875}, {2: 0.125, 4: 0.0625}, {2: 0.09375, 4: 0.046875}], [{2: 0, 4: 0}, {2: 0, 4: 0}, {2: 0, 4: 0}]]) self.assertEqual(m.update_acceptable_variances(c(acc_variances), c(est_win), 2), [[{2: 0, 4: 0}, {2: 0, 4: 0}, {2: 0, 4: 0}], [{2: 0, 4: 0}, {2: 0, 4: 0}, {2: 0, 4: 0}], [{2: 0.0, 4: 0.0}, {2: 0.0, 4: 0.0}, {2: 0.0, 4: 0.0}]]) def test_select_window(self): variances = [[{2: 0.2, 4: 0.9}, {2: 0.2, 4: 0.6}], [{2: 0.2, 4: 0}, {2: 0.2, 4: 0.8}]] acc_variances = [[{2: 0.1, 4: 0.5}, {2: 0.4, 4: 0.5}], [{2: 0.4, 4: 0.5}, {2: 0.1, 4: 0.5}]] window_sizes = [2, 4] self.assertEqual( m.select_window(variances, acc_variances, window_sizes), [[2, 2], [4, 2]]) variances = [[{2: 0, 4: 0.9}, {2: 0, 4: 0}], [{2: 0, 4: 0}, {2: 0, 4: 0.8}]] acc_variances = [[{2: 0.5, 4: 0.5}, {2: 0.6, 4: 0.5}], [{2: 0.7, 4: 0.5}, {2: 0.4, 4: 0.5}]] window_sizes = [2, 4] self.assertEqual( m.select_window(variances, acc_variances, window_sizes), [[2, 4], [4, 2]]) variances = [[{2: 0, 4: 0.9}, {2: 0, 4: 0}, {2: 0, 4: 1.0}], [{2: 0, 4: 0}, {2: 0, 4: 0.8}, {2: 0, 4: 0}], [{2: 0, 4: 0}, {2: 0, 4: 0.8}, {2: 0.5, 4: 0}]] acc_variances = [[{2: 0.5, 4: 0.9}, {2: 0.6, 4: 0.9}, {2: 0.6, 4: 0.9}], [{2: 0.7, 4: 0.9}, {2: 0.4, 4: 0.9}, {2: 0.4, 4: 0.9}], [{2: 0.7, 4: 0.9}, {2: 0.4, 4: 0.5}, {2: 0.4, 4: 0.9}]] window_sizes = [2, 4] self.assertEqual( m.select_window(variances, acc_variances, window_sizes), [[4, 4, 2], [4, 4, 4], [4, 2, 2]]) def test_select_best_estimates(self): est_win = [[{2: deque([0, 0], 2), 4: deque([1, 0, 0, 0], 4)}, {2: deque([1, 1], 2), 4: deque([0, 0, 1, 1], 4)}, {2: deque([0, 0], 2), 4: deque([0, 1, 0, 0], 4)}], [{2: deque([0.5, 0.25], 2), 4: deque([0.25, 0.05, 0.5, 0.25], 4)}, {2: deque([0.25, 0.5], 2), 4: deque([0.4, 0.55, 0.25, 0.6], 4)}, {2: deque([0.25, 0.25], 2), 4: deque([0.35, 0.4, 0.25, 0.15], 4)}], [{2: deque([1, 0], 2), 4: deque([1, 0, 1, 0], 4)}, {2: deque([0, 1], 2), 4: deque([0, 0, 0, 0.2], 4)}, {2: deque([0, 0], 2), 4: deque([0, 1, 0, 0], 4)}]] selected_windows1 = [[2, 4, 2], [2, 2, 4], [4, 2, 2]] selected_windows2 = [[4, 4, 4], [2, 2, 2], [2, 4, 2]] self.assertEqual( m.select_best_estimates(c(est_win), selected_windows1), [[0, 1, 0], [0.25, 0.5, 0.15], [0, 1, 0]]) self.assertEqual( m.select_best_estimates(c(est_win), selected_windows2), [[0, 1, 0], [0.25, 0.5, 0.25], [0, 0.2, 0]]) est_win = [[{2: deque(), 4: deque()}, {2: deque(), 4: deque()}], [{2: deque(), 4: deque()}, {2: deque(), 4: deque()}]] self.assertEqual( m.select_best_estimates(c(est_win), [[2, 4], [4, 2]]), [[0.0, 0.0], [0.0, 0.0]]) self.assertEqual( m.select_best_estimates(c(est_win), [[2, 2], [4, 4]]), [[0.0, 0.0], [0.0, 0.0]]) def test_init_request_windows(self): structure = m.init_request_windows(1, 4) self.assertEqual(structure, [deque()]) self.assertEqual(deque_maxlen(structure[0]), 4) structure = m.init_request_windows(2, 4) self.assertEqual(structure, [deque(), deque()]) self.assertEqual(deque_maxlen(structure[0]), 4) self.assertEqual(deque_maxlen(structure[1]), 4) structure = m.init_request_windows(3, 4) self.assertEqual(structure, [deque(), deque(), deque()]) self.assertEqual(deque_maxlen(structure[0]), 4) self.assertEqual(deque_maxlen(structure[1]), 4) self.assertEqual(deque_maxlen(structure[2]), 4) def test_init_variances(self): self.assertEqual(m.init_variances([2, 4], 1), [[{2: 1.0, 4: 1.0}]]) self.assertEqual(m.init_variances([2, 4], 2), [[{2: 1.0, 4: 1.0}, {2: 1.0, 4: 1.0}], [{2: 1.0, 4: 1.0}, {2: 1.0, 4: 1.0}]]) self.assertEqual(m.init_variances([2, 4], 3), [[{2: 1.0, 4: 1.0}, {2: 1.0, 4: 1.0}, {2: 1.0, 4: 1.0}], [{2: 1.0, 4: 1.0}, {2: 1.0, 4: 1.0}, {2: 1.0, 4: 1.0}], [{2: 1.0, 4: 1.0}, {2: 1.0, 4: 1.0}, {2: 1.0, 4: 1.0}]]) def test_init_3_level_structure(self): structure = m.init_deque_structure([2, 4], 1) self.assertEqual(structure, [[{2: deque(), 4: deque()}]]) self.assertEqual(deque_maxlen(structure[0][0][2]), 2) self.assertEqual(deque_maxlen(structure[0][0][4]), 4) structure = m.init_deque_structure([2, 4], 2) self.assertEqual(structure, [[{2: deque(), 4: deque()}, {2: deque(), 4: deque()}], [{2: deque(), 4: deque()}, {2: deque(), 4: deque()}]]) self.assertEqual(deque_maxlen(structure[0][0][2]), 2) self.assertEqual(deque_maxlen(structure[0][0][4]), 4) self.assertEqual(deque_maxlen(structure[0][1][2]), 2) self.assertEqual(deque_maxlen(structure[0][1][4]), 4) self.assertEqual(deque_maxlen(structure[1][0][2]), 2) self.assertEqual(deque_maxlen(structure[1][0][4]), 4) self.assertEqual(deque_maxlen(structure[1][1][2]), 2) self.assertEqual(deque_maxlen(structure[1][1][4]), 4) structure = m.init_deque_structure([2, 4], 3) self.assertEqual(structure, [[{2: deque(), 4: deque()}, {2: deque(), 4: deque()}, {2: deque(), 4: deque()}], [{2: deque(), 4: deque()}, {2: deque(), 4: deque()}, {2: deque(), 4: deque()}], [{2: deque(), 4: deque()}, {2: deque(), 4: deque()}, {2: deque(), 4: deque()}]]) self.assertEqual(deque_maxlen(structure[0][0][2]), 2) self.assertEqual(deque_maxlen(structure[0][0][4]), 4) self.assertEqual(deque_maxlen(structure[0][1][2]), 2) self.assertEqual(deque_maxlen(structure[0][1][4]), 4) self.assertEqual(deque_maxlen(structure[0][2][2]), 2) self.assertEqual(deque_maxlen(structure[0][2][4]), 4) self.assertEqual(deque_maxlen(structure[1][0][2]), 2) self.assertEqual(deque_maxlen(structure[1][0][4]), 4) self.assertEqual(deque_maxlen(structure[1][1][2]), 2) self.assertEqual(deque_maxlen(structure[1][1][4]), 4) self.assertEqual(deque_maxlen(structure[1][2][2]), 2) self.assertEqual(deque_maxlen(structure[1][2][4]), 4) self.assertEqual(deque_maxlen(structure[2][0][2]), 2) self.assertEqual(deque_maxlen(structure[2][0][4]), 4) self.assertEqual(deque_maxlen(structure[2][1][2]), 2) self.assertEqual(deque_maxlen(structure[2][1][4]), 4) self.assertEqual(deque_maxlen(structure[2][2][2]), 2) self.assertEqual(deque_maxlen(structure[2][2][4]), 4) def test_init_selected_window_sizes(self): self.assertEqual( m.init_selected_window_sizes([2, 4], 1), [[2]]) self.assertEqual( m.init_selected_window_sizes([2, 4], 2), [[2, 2], [2, 2]]) self.assertEqual( m.init_selected_window_sizes([2, 4], 3), [[2, 2, 2], [2, 2, 2], [2, 2, 2]]) def deque_maxlen(coll): return int(re.sub("\)$", "", re.sub(".*=", "", coll.__repr__())))
apache-2.0
8,894,116,129,880,409,000
39.607843
77
0.292158
false
arakcheev/python-data-plotter
parkerWind/old/wind.py
1
1123
import math import params MASS = params.STAR_MASS accuracy = params.accuracy # Radius in cm def sonic_radius(t): return 2.0e11 * 2e6 / t * MASS # Sound speed in km/s def sound_speed(t): return 180 * math.sqrt(t / 2.0e6) def right_part(r, t): rs = sonic_radius(t) return 4.0 * math.log(1.0 * r / rs) + 4.0 * rs / r - 3 def left_part(u, t): a0 = sound_speed(t) a0srq = a0 * a0 uu = 1.0 * u * u / a0srq return uu - math.log(uu) def get(r, t): rp = right_part(r, t) rs = sonic_radius(t) cs = sound_speed(t) if r < rs: left = 0.1 right = cs else: left = cs right = 1000 def eq(u): return left_part(u, t) - rp middle = (left + right) / 2 err = eq(middle) index = 0 while math.fabs(err) > accuracy: if eq(left) * eq(middle) < 0: right = middle else: left = middle middle = 1.0 * (left + right) / 2.0 err = eq(middle) index += 1 if index == 1000: break return middle def getsgs(r, t): return get(r, t) * 1e5
mit
-659,596,711,728,893,400
16.276923
58
0.508459
false
congma/pypar
examples/MPIMapReducer.py
2
6166
""" MapReduce-over-MPI sample Run as (as exsample) mpirun -np 2 python MPIMapReducer.py (perhaps try number of processors more than 2) GPC JAN 2013 """ import sys try: import numpy except: raise Exception, 'Module numpy must be present to run pypar' try: import pypar except: raise Exception, 'Module pypar must be present to run parallel' import logging LOGFMT = 'pid: %(process)d - %(asctime)s - %(levelname)s:%(message)s' logging.basicConfig(format=LOGFMT, level=logging.INFO) class MPIMapReducer(): def __init__(self, aWorkList): self.WORKTAG = 1 self.DIETAG = 2 self.MPI_myid = pypar.rank() self.MPI_numproc = pypar.size() self.MPI_node = pypar.get_processor_name() self.works = aWorkList self.numWorks = len(self.works) self.reduceFunction = None self.mapFunction = None self.result = None if self.MPI_numproc < 2: pypar.finalize() if self.MPI_myid == 0: raise Exception, 'ERROR: Number of processors must be greater than 2.' def master(self): self.numCompleted = 0 self.mapList = list() logging.info('[MASTER]: started processor %d of %d on node %s: number of works: %d'%(self.MPI_myid, self.MPI_numproc, self.MPI_node, self.numWorks)) # start slaves distributing the first work slot rounder = 0 if self.MPI_numproc <= self.numWorks: rounder = 1 for i in range(min(self.MPI_numproc, self.numWorks)-rounder): work = self.works[i] pypar.send(work, destination=i+1, tag=self.WORKTAG) logging.debug('[MASTER]: sent work "%s" to node %d' %(work, i+1)) # dispatch the remaining work slots on dynamic load-balancing policy # the quicker to do the job, the more jobs it takes for work in self.works[self.MPI_numproc-1:]: result, status = pypar.receive(source=pypar.any_source, tag=self.WORKTAG, return_status=True) logging.debug('[MASTER]: received result "%s" from node %d'%(result, status.source)) self.mapList.append(result) self.numCompleted += 1 logging.debug('[MASTER]: done : %d' %self.numCompleted) pypar.send(work, destination=status.source, tag=self.WORKTAG) logging.debug('[MASTER]: sent work "%s" to node %d' %(work, status.source)) # all works have been dispatched out logging.debug('[MASTER]: toDo : %d' %self.numWorks) logging.debug('[MASTER]: done : %d' %self.numCompleted) # I've still to take into the remaining completions while (self.numCompleted < self.numWorks): result, status = pypar.receive(source=pypar.any_source, tag=self.WORKTAG, return_status=True) logging.debug('[MASTER]: received (final) result "%s" from node %d'%(result, status.source)) self.mapList.append(result) self.numCompleted += 1 logging.debug('[MASTER]: %d completed' %self.numCompleted) logging.debug('[MASTER]: about to terminate slaves') # Tell slaves to stop working for i in range(1, self.MPI_numproc): pypar.send('#', destination=i, tag=self.DIETAG) logging.debug('[MASTER]: sent termination signal to node %d' %(i, )) # call the reduce function logging.info('[MASTER]: about to run reduce') res = self.reduceFunction(self.mapList) return res def slave(self): logging.debug('[SLAVE %d]: started processor %d of %d on node %s'%(self.MPI_myid, self.MPI_myid, self.MPI_numproc, self.MPI_node)) while True: inputMsg, status = pypar.receive(source=0, tag=pypar.any_tag, return_status=True) logging.debug('[SLAVE %d]: received work "%s" with tag %d from node %d' %(self.MPI_myid, inputMsg, status.tag, status.source)) if (status.tag == self.DIETAG): logging.debug('[SLAVE %d]: received termination from node %d'%(self.MPI_myid, 0)) return else: logging.debug('[SLAVE %d]: received work "%s" to map' %(self.MPI_myid, inputMsg)) resultMsg = self.mapFunction(inputMsg) pypar.send(resultMsg, destination=0, tag=self.WORKTAG) logging.debug('[SLAVE %d]: sent result "%s" to node %d'%(self.MPI_myid, resultMsg, 0)) def setReduce(self, aFunction): self.reduceFunction = aFunction def setMap(self, aFunction): self.mapFunction = aFunction def runMapReduce(self): if self.MPI_myid == 0: self.result = self.master() else: self.slave() pypar.finalize() logging.debug('[PROCESS %d]: MPI environment finalized.'%(self.MPI_myid, )) return def getResult(self): if self.MPI_myid == 0: return self.result else: logging.debug('[SLAVE %d]: ending.'%(self.MPI_myid, )) sys.exit(0) if __name__ == '__main__': def mapFn(anInput): return 'X' + anInput def reduceFn(aList): return ''.join(aList) workList = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j']*10 logging.debug('starting mpimapreducer with %d works.'%(len(workList),)) m2r = MPIMapReducer(workList) m2r.setMap(mapFn) m2r.setReduce(reduceFn) # here's the beef m2r.runMapReduce() lenmr = len(m2r.getResult()) print "MAPREDUCE :", lenmr logging.debug('ended mpimapreduce') logging.info('starting sequential evaluation') lenseq = len(''.join('X' + item for item in workList)) print "SEQUENTIAL:", lenseq logging.info('ending sequential evaluation') # the result must be the same assert lenmr == lenseq
gpl-3.0
8,002,693,074,652,983,000
33.066298
156
0.570224
false
gojira/tensorflow
tensorflow/contrib/opt/python/training/adamax_test.py
13
14685
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for AdaMax.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.opt.python.training import adamax from tensorflow.python.client import session from tensorflow.python.eager import context from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import test_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import resource_variable_ops from tensorflow.python.ops import variables from tensorflow.python.platform import test def adamax_update_numpy(param, g_t, t, m, v, alpha=0.001, beta1=0.9, beta2=0.999, epsilon=1e-8): m_t = beta1 * m + (1 - beta1) * g_t v_t = np.maximum(beta2 * v, np.abs(g_t)) param_t = param - (alpha / (1 - beta1**t)) * (m_t / (v_t + epsilon)) return param_t, m_t, v_t def adamax_sparse_update_numpy(param, indices, g_t, t, m, v, alpha=0.001, beta1=0.9, beta2=0.999, epsilon=1e-8): m_t, v_t, param_t = np.copy(m), np.copy(v), np.copy(param) m_t_slice = beta1 * m[indices] + (1 - beta1) * g_t v_t_slice = np.maximum(beta2 * v[indices], np.abs(g_t)) param_t_slice = param[indices] - ((alpha / (1 - beta1**t)) * (m_t_slice / (v_t_slice + epsilon))) m_t[indices] = m_t_slice v_t[indices] = v_t_slice param_t[indices] = param_t_slice return param_t, m_t, v_t class AdaMaxOptimizerTest(test.TestCase): def doTestSparse(self, use_resource=False): for dtype in [dtypes.half, dtypes.float32, dtypes.float64]: with self.test_session(): # Initialize variables for numpy implementation. zero_slots = lambda: np.zeros((3), dtype=dtype.as_numpy_dtype) m0, v0, m1, v1 = zero_slots(), zero_slots(), zero_slots(), zero_slots() var0_np = np.array([1.0, 2.0, 3.0], dtype=dtype.as_numpy_dtype) grads0_np = np.array([0.1, 0.1], dtype=dtype.as_numpy_dtype) var1_np = np.array([4.0, 5.0, 6.0], dtype=dtype.as_numpy_dtype) grads1_np = np.array([0.01, 0.01], dtype=dtype.as_numpy_dtype) if use_resource: var0 = resource_variable_ops.ResourceVariable(var0_np) var1 = resource_variable_ops.ResourceVariable(var1_np) else: var0 = variables.Variable(var0_np) var1 = variables.Variable(var1_np) grads0_np_indices = np.array([0, 1], dtype=np.int32) grads0 = ops.IndexedSlices( constant_op.constant(grads0_np), constant_op.constant(grads0_np_indices), constant_op.constant([2])) grads1_np_indices = np.array([2, 1], dtype=np.int32) grads1 = ops.IndexedSlices( constant_op.constant(grads1_np), constant_op.constant(grads1_np_indices), constant_op.constant([2])) opt = adamax.AdaMaxOptimizer() update = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) variables.global_variables_initializer().run() # Fetch params to validate initial values self.assertAllClose([1.0, 2.0, 3.0], var0.eval()) self.assertAllClose([4.0, 5.0, 6.0], var1.eval()) beta1_power = opt._get_beta_accumulators() # Run 3 steps of AdaMax for t in range(1, 4): self.assertAllCloseAccordingToType(0.9**t, beta1_power.eval()) update.run() var0_np, m0, v0 = adamax_sparse_update_numpy( var0_np, grads0_np_indices, grads0_np, t, m0, v0) var1_np, m1, v1 = adamax_sparse_update_numpy( var1_np, grads1_np_indices, grads1_np, t, m1, v1) # Validate updated params self.assertAllCloseAccordingToType(var0_np, var0.eval()) self.assertAllCloseAccordingToType(var1_np, var1.eval()) def testSparse(self): self.doTestSparse(use_resource=False) def testResourceSparse(self): self.doTestSparse(use_resource=True) def testSparseDevicePlacement(self): for index_dtype in [dtypes.int32, dtypes.int64]: with self.test_session(force_gpu=test.is_gpu_available()): # If a GPU is available, tests that all optimizer ops can be placed on # it (i.e. they have GPU kernels). var = variables.Variable([[1.0], [2.0]]) indices = constant_op.constant([0, 1], dtype=index_dtype) gathered_sum = math_ops.reduce_sum(array_ops.gather(var, indices)) optimizer = adamax.AdaMaxOptimizer(3.0) minimize_op = optimizer.minimize(gathered_sum) variables.global_variables_initializer().run() minimize_op.run() def testSparseRepeatedIndices(self): for dtype in [dtypes.half, dtypes.float32, dtypes.float64]: with self.test_session(): repeated_index_update_var = variables.Variable( [[1.0], [2.0]], dtype=dtype) aggregated_update_var = variables.Variable( [[1.0], [2.0]], dtype=dtype) grad_repeated_index = ops.IndexedSlices( constant_op.constant( [0.1, 0.1], shape=[2, 1], dtype=dtype), constant_op.constant([1, 1]), constant_op.constant([2, 1])) grad_aggregated = ops.IndexedSlices( constant_op.constant( [0.2], shape=[1, 1], dtype=dtype), constant_op.constant([1]), constant_op.constant([2, 1])) repeated_update = adamax.AdaMaxOptimizer().apply_gradients( [(grad_repeated_index, repeated_index_update_var)]) aggregated_update = adamax.AdaMaxOptimizer().apply_gradients( [(grad_aggregated, aggregated_update_var)]) variables.global_variables_initializer().run() self.assertAllClose(aggregated_update_var.eval(), repeated_index_update_var.eval()) for _ in range(3): repeated_update.run() aggregated_update.run() self.assertAllClose(aggregated_update_var.eval(), repeated_index_update_var.eval()) def doTestBasic(self, use_resource=False): for i, dtype in enumerate([dtypes.half, dtypes.float32, dtypes.float64]): with self.test_session(graph=ops.Graph()): # Initialize variables for numpy implementation. m0, v0, m1, v1 = 0.0, 0.0, 0.0, 0.0 var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype) grads0_np = np.array([0.1, 0.1], dtype=dtype.as_numpy_dtype) var1_np = np.array([3.0, 4.0], dtype=dtype.as_numpy_dtype) grads1_np = np.array([0.01, 0.01], dtype=dtype.as_numpy_dtype) if use_resource: var0 = resource_variable_ops.ResourceVariable( var0_np, name="var0_%d" % i) var1 = resource_variable_ops.ResourceVariable( var1_np, name="var1_%d" % i) else: var0 = variables.Variable(var0_np) var1 = variables.Variable(var1_np) grads0 = constant_op.constant(grads0_np) grads1 = constant_op.constant(grads1_np) opt = adamax.AdaMaxOptimizer() update = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) opt_variables = opt.variables() beta1_power = opt._get_beta_accumulators() self.assertTrue(beta1_power is not None) self.assertIn(beta1_power, opt_variables) if not context.executing_eagerly(): with ops.Graph().as_default(): # Shouldn't return non-slot variables from other graphs. self.assertEqual(0, len(opt.variables())) self.evaluate(variables.global_variables_initializer()) # Fetch params to validate initial values self.assertAllClose([1.0, 2.0], self.evaluate(var0)) self.assertAllClose([3.0, 4.0], self.evaluate(var1)) beta1_power = opt._get_beta_accumulators() # Run 3 steps of AdaMax for t in range(1, 4): if not context.executing_eagerly(): self.evaluate(update) elif t > 1: opt.apply_gradients(zip([grads0, grads1], [var0, var1])) self.assertAllCloseAccordingToType(0.9**(t + 1), self.evaluate(beta1_power)) var0_np, m0, v0 = adamax_update_numpy(var0_np, grads0_np, t, m0, v0) var1_np, m1, v1 = adamax_update_numpy(var1_np, grads1_np, t, m1, v1) # Validate updated params self.assertAllCloseAccordingToType(var0_np, self.evaluate(var0), rtol=1e-2) self.assertAllCloseAccordingToType(var1_np, self.evaluate(var1), rtol=1e-2) if use_resource: self.assertEqual("var0_%d/AdaMax:0" % (i,), opt.get_slot(var=var0, name="m").name) def testBasic(self): with self.test_session(): self.doTestBasic(use_resource=False) @test_util.run_in_graph_and_eager_modes(reset_test=True) def testResourceBasic(self): self.doTestBasic(use_resource=True) def testTensorLearningRate(self): for dtype in [dtypes.half, dtypes.float32, dtypes.float64]: with self.test_session(): # Initialize variables for numpy implementation. m0, v0, m1, v1 = 0.0, 0.0, 0.0, 0.0 var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype) grads0_np = np.array([0.1, 0.1], dtype=dtype.as_numpy_dtype) var1_np = np.array([3.0, 4.0], dtype=dtype.as_numpy_dtype) grads1_np = np.array([0.01, 0.01], dtype=dtype.as_numpy_dtype) var0 = variables.Variable(var0_np) var1 = variables.Variable(var1_np) grads0 = constant_op.constant(grads0_np) grads1 = constant_op.constant(grads1_np) opt = adamax.AdaMaxOptimizer(constant_op.constant(0.001)) update = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) variables.global_variables_initializer().run() # Fetch params to validate initial values self.assertAllClose([1.0, 2.0], var0.eval()) self.assertAllClose([3.0, 4.0], var1.eval()) beta1_power = opt._get_beta_accumulators() # Run 3 steps of AdaMax for t in range(1, 4): self.assertAllCloseAccordingToType(0.9**t, beta1_power.eval()) update.run() var0_np, m0, v0 = adamax_update_numpy(var0_np, grads0_np, t, m0, v0) var1_np, m1, v1 = adamax_update_numpy(var1_np, grads1_np, t, m1, v1) # Validate updated params self.assertAllCloseAccordingToType(var0_np, var0.eval()) self.assertAllCloseAccordingToType(var1_np, var1.eval()) def testSharing(self): for dtype in [dtypes.half, dtypes.float32, dtypes.float64]: with self.test_session(): # Initialize variables for numpy implementation. m0, v0, m1, v1 = 0.0, 0.0, 0.0, 0.0 var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype) grads0_np = np.array([0.1, 0.1], dtype=dtype.as_numpy_dtype) var1_np = np.array([3.0, 4.0], dtype=dtype.as_numpy_dtype) grads1_np = np.array([0.01, 0.01], dtype=dtype.as_numpy_dtype) var0 = variables.Variable(var0_np) var1 = variables.Variable(var1_np) grads0 = constant_op.constant(grads0_np) grads1 = constant_op.constant(grads1_np) opt = adamax.AdaMaxOptimizer() update1 = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) update2 = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) variables.global_variables_initializer().run() beta1_power = opt._get_beta_accumulators() # Fetch params to validate initial values self.assertAllClose([1.0, 2.0], var0.eval()) self.assertAllClose([3.0, 4.0], var1.eval()) # Run 3 steps of intertwined AdaMax1 and AdaMax2. for t in range(1, 4): self.assertAllCloseAccordingToType(0.9**t, beta1_power.eval()) if t % 2 == 0: update1.run() else: update2.run() var0_np, m0, v0 = adamax_update_numpy(var0_np, grads0_np, t, m0, v0) var1_np, m1, v1 = adamax_update_numpy(var1_np, grads1_np, t, m1, v1) # Validate updated params self.assertAllCloseAccordingToType(var0_np, var0.eval()) self.assertAllCloseAccordingToType(var1_np, var1.eval()) def testTwoSessions(self): optimizer = adamax.AdaMaxOptimizer() g = ops.Graph() with g.as_default(): with session.Session(): var0 = variables.Variable(np.array([1.0, 2.0]), name="v0") grads0 = constant_op.constant(np.array([0.1, 0.1])) optimizer.apply_gradients([(grads0, var0)]) gg = ops.Graph() with gg.as_default(): with session.Session(): var0 = variables.Variable(np.array([1.0, 2.0]), name="v0") grads0 = constant_op.constant(np.array([0.1, 0.1])) # If the optimizer saves any state not keyed by graph the following line # fails. optimizer.apply_gradients([(grads0, var0)]) def testSlotsUniqueEager(self): with context.eager_mode(): v1 = resource_variable_ops.ResourceVariable(1.) v2 = resource_variable_ops.ResourceVariable(1.) opt = adamax.AdaMaxOptimizer(1.) opt.minimize(lambda: v1 + v2) # There should be two non-slot variables, and two unique slot variables # for v1 and v2 respectively. self.assertEqual(5, len(set(opt.variables()))) if __name__ == "__main__": test.main()
apache-2.0
-4,885,842,497,378,936,000
40.957143
80
0.598434
false
nekulin/arangodb
3rdParty/V8-4.3.61/third_party/python_26/Lib/idlelib/CallTips.py
50
7587
"""CallTips.py - An IDLE Extension to Jog Your Memory Call Tips are floating windows which display function, class, and method parameter and docstring information when you type an opening parenthesis, and which disappear when you type a closing parenthesis. """ import re import sys import types import CallTipWindow from HyperParser import HyperParser import __main__ class CallTips: menudefs = [ ('edit', [ ("Show call tip", "<<force-open-calltip>>"), ]) ] def __init__(self, editwin=None): if editwin is None: # subprocess and test self.editwin = None return self.editwin = editwin self.text = editwin.text self.calltip = None self._make_calltip_window = self._make_tk_calltip_window def close(self): self._make_calltip_window = None def _make_tk_calltip_window(self): # See __init__ for usage return CallTipWindow.CallTip(self.text) def _remove_calltip_window(self, event=None): if self.calltip: self.calltip.hidetip() self.calltip = None def force_open_calltip_event(self, event): """Happens when the user really wants to open a CallTip, even if a function call is needed. """ self.open_calltip(True) def try_open_calltip_event(self, event): """Happens when it would be nice to open a CallTip, but not really neccesary, for example after an opening bracket, so function calls won't be made. """ self.open_calltip(False) def refresh_calltip_event(self, event): """If there is already a calltip window, check if it is still needed, and if so, reload it. """ if self.calltip and self.calltip.is_active(): self.open_calltip(False) def open_calltip(self, evalfuncs): self._remove_calltip_window() hp = HyperParser(self.editwin, "insert") sur_paren = hp.get_surrounding_brackets('(') if not sur_paren: return hp.set_index(sur_paren[0]) name = hp.get_expression() if not name or (not evalfuncs and name.find('(') != -1): return arg_text = self.fetch_tip(name) if not arg_text: return self.calltip = self._make_calltip_window() self.calltip.showtip(arg_text, sur_paren[0], sur_paren[1]) def fetch_tip(self, name): """Return the argument list and docstring of a function or class If there is a Python subprocess, get the calltip there. Otherwise, either fetch_tip() is running in the subprocess itself or it was called in an IDLE EditorWindow before any script had been run. The subprocess environment is that of the most recently run script. If two unrelated modules are being edited some calltips in the current module may be inoperative if the module was not the last to run. To find methods, fetch_tip must be fed a fully qualified name. """ try: rpcclt = self.editwin.flist.pyshell.interp.rpcclt except: rpcclt = None if rpcclt: return rpcclt.remotecall("exec", "get_the_calltip", (name,), {}) else: entity = self.get_entity(name) return get_arg_text(entity) def get_entity(self, name): "Lookup name in a namespace spanning sys.modules and __main.dict__" if name: namespace = sys.modules.copy() namespace.update(__main__.__dict__) try: return eval(name, namespace) except (NameError, AttributeError): return None def _find_constructor(class_ob): # Given a class object, return a function object used for the # constructor (ie, __init__() ) or None if we can't find one. try: return class_ob.__init__.im_func except AttributeError: for base in class_ob.__bases__: rc = _find_constructor(base) if rc is not None: return rc return None def get_arg_text(ob): """Get a string describing the arguments for the given object""" arg_text = "" if ob is not None: arg_offset = 0 if type(ob) in (types.ClassType, types.TypeType): # Look for the highest __init__ in the class chain. fob = _find_constructor(ob) if fob is None: fob = lambda: None else: arg_offset = 1 elif type(ob)==types.MethodType: # bit of a hack for methods - turn it into a function # but we drop the "self" param. fob = ob.im_func arg_offset = 1 else: fob = ob # Try to build one for Python defined functions if type(fob) in [types.FunctionType, types.LambdaType]: argcount = fob.func_code.co_argcount real_args = fob.func_code.co_varnames[arg_offset:argcount] defaults = fob.func_defaults or [] defaults = list(map(lambda name: "=%s" % repr(name), defaults)) defaults = [""] * (len(real_args) - len(defaults)) + defaults items = map(lambda arg, dflt: arg + dflt, real_args, defaults) if fob.func_code.co_flags & 0x4: items.append("...") if fob.func_code.co_flags & 0x8: items.append("***") arg_text = ", ".join(items) arg_text = "(%s)" % re.sub("\.\d+", "<tuple>", arg_text) # See if we can use the docstring doc = getattr(ob, "__doc__", "") if doc: doc = doc.lstrip() pos = doc.find("\n") if pos < 0 or pos > 70: pos = 70 if arg_text: arg_text += "\n" arg_text += doc[:pos] return arg_text ################################################# # # Test code # if __name__=='__main__': def t1(): "()" def t2(a, b=None): "(a, b=None)" def t3(a, *args): "(a, ...)" def t4(*args): "(...)" def t5(a, *args): "(a, ...)" def t6(a, b=None, *args, **kw): "(a, b=None, ..., ***)" def t7((a, b), c, (d, e)): "(<tuple>, c, <tuple>)" class TC(object): "(ai=None, ...)" def __init__(self, ai=None, *b): "(ai=None, ...)" def t1(self): "()" def t2(self, ai, b=None): "(ai, b=None)" def t3(self, ai, *args): "(ai, ...)" def t4(self, *args): "(...)" def t5(self, ai, *args): "(ai, ...)" def t6(self, ai, b=None, *args, **kw): "(ai, b=None, ..., ***)" def t7(self, (ai, b), c, (d, e)): "(<tuple>, c, <tuple>)" def test(tests): ct = CallTips() failed=[] for t in tests: expected = t.__doc__ + "\n" + t.__doc__ name = t.__name__ # exercise fetch_tip(), not just get_arg_text() try: qualified_name = "%s.%s" % (t.im_class.__name__, name) except AttributeError: qualified_name = name arg_text = ct.fetch_tip(qualified_name) if arg_text != expected: failed.append(t) fmt = "%s - expected %s, but got %s" print fmt % (t.__name__, expected, get_arg_text(t)) print "%d of %d tests failed" % (len(failed), len(tests)) tc = TC() tests = (t1, t2, t3, t4, t5, t6, t7, TC, tc.t1, tc.t2, tc.t3, tc.t4, tc.t5, tc.t6, tc.t7) test(tests)
apache-2.0
-1,792,947,935,949,947,100
33.330317
79
0.534599
false
Hasimir/brython
scripts/make_VFS.py
1
2495
# -*- coding: utf-8 -*- import json import os import re import python_minifier def process(filename, exclude_dirs=['test','site-packages']): """Process a VFS filename for Brython.""" print("Generating {}".format(filename)) nb = 0 nb_err = 0 main_root = os.path.dirname(filename) VFS = {} for stdlib_dir in ("libs", "Lib"): for root, _dir, files in os.walk(os.path.join(main_root, stdlib_dir)): flag = False root_elts = root.split(os.sep) for exclude in exclude_dirs: if exclude in root_elts: flag = True continue if flag: continue # skip these modules if '__pycache__' in root: continue nb += 1 for _file in files: ext = os.path.splitext(_file)[1] if ext not in ('.js', '.py'): continue if re.match(r'^module\d+\..*$', _file): continue nb += 1 file_name = os.path.join(root, _file) with open(file_name, encoding='utf-8') as f: data = f.read() if ext == '.py': data = python_minifier.minify(data, preserve_lines=True) vfs_path = os.path.join(root, _file).replace(main_root, '') vfs_path = vfs_path.replace("\\", "/") if vfs_path.startswith('/libs/crypto_js/rollups/'): if _file not in ('md5.js', 'sha1.js', 'sha3.js', 'sha224.js', 'sha384.js', 'sha512.js'): continue mod_name = vfs_path[len(stdlib_dir) + 2:].replace('/', '.') mod_name, ext = os.path.splitext(mod_name) is_package = mod_name.endswith('__init__') if is_package: mod_name = mod_name[:-9] VFS[mod_name] = [ext, data, 1] else: VFS[mod_name] = [ext, data] print("adding {}".format(mod_name)) print('{} files, {} errors'.format(nb, nb_err)) with open(filename, "w") as out: out.write('__BRYTHON__.use_VFS = true;\n') out.write('__BRYTHON__.VFS={}\n\n'.format(json.dumps(VFS))) if __name__ == '__main__': main_root = os.path.join(os.path.dirname(os.getcwd()), 'www', 'src') process(os.path.join(main_root, "py_VFS.js"))
bsd-3-clause
192,025,640,154,851,200
33.652778
78
0.467735
false