markdown
stringlengths
0
37k
code
stringlengths
1
33.3k
path
stringlengths
8
215
repo_name
stringlengths
6
77
license
stringclasses
15 values
Finally, a task that rewards the agent for running down the corridor at a specific velocity is instantiated as a composer.Environment.
#@title The `RunThroughCorridor` environment env = composer.Environment( task=task, time_limit=10, random_state=np.random.RandomState(42), strip_singleton_obs_buffer_dim=True, ) env.reset() pixels = [] for camera_id in range(3): pixels.append(env.physics.render(camera_id=camera_id, width=240)) PIL.Image.fromarray(np.hstack(pixels))
tutorial.ipynb
deepmind/dm_control
apache-2.0
Multi-Agent Soccer Building on Composer and Locomotion libraries, the Multi-agent soccer environments, introduced in this paper, follow a consistent task structure of Walkers, Arena, and Task where instead of a single walker, we inject multiple walkers that can interact with each other physically in the same scene. The code snippet below shows how to instantiate a 2-vs-2 Multi-agent Soccer environment with the simple, 5 degree-of-freedom BoxHead walker type.
#@title 2-v-2 `Boxhead` soccer random_state = np.random.RandomState(42) env = soccer.load( team_size=2, time_limit=45., random_state=random_state, disable_walker_contacts=False, walker_type=soccer.WalkerType.BOXHEAD, ) env.reset() pixels = [] # Select a random subset of 6 cameras (soccer envs have lots of cameras) cameras = random_state.choice(env.physics.model.ncam, 6, replace=False) for camera_id in cameras: pixels.append(env.physics.render(camera_id=camera_id, width=240)) image = np.vstack((np.hstack(pixels[:3]), np.hstack(pixels[3:]))) PIL.Image.fromarray(image)
tutorial.ipynb
deepmind/dm_control
apache-2.0
It can trivially be replaced by e.g. the WalkerType.ANT walker:
#@title 3-v-3 `Ant` soccer random_state = np.random.RandomState(42) env = soccer.load( team_size=3, time_limit=45., random_state=random_state, disable_walker_contacts=False, walker_type=soccer.WalkerType.ANT, ) env.reset() pixels = [] cameras = random_state.choice(env.physics.model.ncam, 6, replace=False) for camera_id in cameras: pixels.append(env.physics.render(camera_id=camera_id, width=240)) image = np.vstack((np.hstack(pixels[:3]), np.hstack(pixels[3:]))) PIL.Image.fromarray(image)
tutorial.ipynb
deepmind/dm_control
apache-2.0
Manipulation The manipulation module provides a robotic arm, a set of simple objects, and tools for building reward functions for manipulation tasks.
#@title Listing all `manipulation` tasks{vertical-output: true} # `ALL` is a tuple containing the names of all of the environments in the suite. print('\n'.join(manipulation.ALL)) #@title Listing `manipulation` tasks that use vision{vertical-output: true} print('\n'.join(manipulation.get_environments_by_tag('vision'))) #@title Loading and simulating a `manipulation` task{vertical-output: true} env = manipulation.load('stack_2_of_3_bricks_random_order_vision', seed=42) action_spec = env.action_spec() def sample_random_action(): return env.random_state.uniform( low=action_spec.minimum, high=action_spec.maximum, ).astype(action_spec.dtype, copy=False) # Step the environment through a full episode using random actions and record # the camera observations. frames = [] timestep = env.reset() frames.append(timestep.observation['front_close']) while not timestep.last(): timestep = env.step(sample_random_action()) frames.append(timestep.observation['front_close']) all_frames = np.concatenate(frames, axis=0) display_video(all_frames, 30)
tutorial.ipynb
deepmind/dm_control
apache-2.0
Model Selection As in Durbin and Koopman, we force a number of the values to be missing.
# Get the basic series dta_full = df.dinternet[1:].values dta_miss = dta_full.copy() # Remove datapoints missing = np.r_[6,16,26,36,46,56,66,72,73,74,75,76,86,96]-1 dta_miss[missing] = np.nan
examples/notebooks/statespace_sarimax_internet.ipynb
huongttlan/statsmodels
bsd-3-clause
Then we can consider model selection using the Akaike information criteria (AIC), but running the model for each variant and selecting the model with the lowest AIC value. There are a couple of things to note here: When running such a large batch of models, particularly when the autoregressive and moving average orders become large, there is the possibility of poor maximum likelihood convergence. Below we ignore the warnings since this example is illustrative. We use the option enforce_invertibility=False, which allows the moving average polynomial to be non-invertible, so that more of the models are estimable. Several of the models do not produce good results, and their AIC value is set to NaN. This is not surprising, as Durbin and Koopman note numerical problems with the high order models.
import warnings aic_full = pd.DataFrame(np.zeros((6,6), dtype=float)) aic_miss = pd.DataFrame(np.zeros((6,6), dtype=float)) warnings.simplefilter('ignore') # Iterate over all ARMA(p,q) models with p,q in [0,6] for p in range(6): for q in range(6): if p == 0 and q == 0: continue # Estimate the model with no missing datapoints mod = sm.tsa.statespace.SARIMAX(dta_full, order=(p,0,q), enforce_invertibility=False) try: res = mod.fit() aic_full.iloc[p,q] = res.aic except: aic_full.iloc[p,q] = np.nan # Estimate the model with missing datapoints mod = sm.tsa.statespace.SARIMAX(dta_miss, order=(p,0,q), enforce_invertibility=False) try: res = mod.fit() aic_miss.iloc[p,q] = res.aic except: aic_miss.iloc[p,q] = np.nan
examples/notebooks/statespace_sarimax_internet.ipynb
huongttlan/statsmodels
bsd-3-clause
For the models estimated over the full (non-missing) dataset, the AIC chooses ARMA(1,1) or ARMA(3,0). Durbin and Koopman suggest the ARMA(1,1) specification is better due to parsimony. $$ \text{Replication of:}\ \textbf{Table 8.1} ~~ \text{AIC for different ARMA models.}\ \newcommand{\r}[1]{{\color{red}{#1}}} \begin{array}{lrrrrrr} \hline q & 0 & 1 & 2 & 3 & 4 & 5 \ \hline p & {} & {} & {} & {} & {} & {} \ 0 & 0.00 & 549.81 & 519.87 & 520.27 & 519.38 & 518.86 \ 1 & 529.24 & \r{514.30} & 516.25 & 514.58 & 515.10 & 516.28 \ 2 & 522.18 & 516.29 & 517.16 & 515.77 & 513.24 & 514.73 \ 3 & \r{511.99} & 513.94 & 515.92 & 512.06 & 513.72 & 514.50 \ 4 & 513.93 & 512.89 & nan & nan & 514.81 & 516.08 \ 5 & 515.86 & 517.64 & nan & nan & nan & nan \ \hline \end{array} $$ For the models estimated over missing dataset, the AIC chooses ARMA(1,1) $$ \text{Replication of:}\ \textbf{Table 8.2} ~~ \text{AIC for different ARMA models with missing observations.}\ \begin{array}{lrrrrrr} \hline q & 0 & 1 & 2 & 3 & 4 & 5 \ \hline p & {} & {} & {} & {} & {} & {} \ 0 & 0.00 & 488.93 & 464.01 & 463.86 & 462.63 & 463.62 \ 1 & 468.01 & \r{457.54} & 459.35 & 458.66 & 459.15 & 461.01 \ 2 & 469.68 & nan & 460.48 & 459.43 & 459.23 & 460.47 \ 3 & 467.10 & 458.44 & 459.64 & 456.66 & 459.54 & 460.05 \ 4 & 469.00 & 459.52 & nan & 463.04 & 459.35 & 460.96 \ 5 & 471.32 & 461.26 & nan & nan & 461.00 & 462.97 \ \hline \end{array} $$ Note: the AIC values are calculated differently than in Durbin and Koopman, but show overall similar trends. Postestimation Using the ARMA(1,1) specification selected above, we perform in-sample prediction and out-of-sample forecasting.
# Statespace mod = sm.tsa.statespace.SARIMAX(dta_miss, order=(1,0,1)) res = mod.fit() print(res.summary()) # In-sample one-step-ahead predictions predict_res = res.predict(full_results=True) predict = predict_res.forecasts cov = predict_res.forecasts_error_cov predict_idx = np.arange(len(predict[0])) # 95% confidence intervals critical_value = norm.ppf(1 - 0.05 / 2.) std_errors = np.sqrt(cov.diagonal().T) ci = np.c_[ (predict - critical_value*std_errors)[:, :, None], (predict + critical_value*std_errors)[:, :, None], ][0].T # Out-of-sample forecasts and confidence intervals nforecast = 20 forecast = res.forecast(nforecast) forcast_idx = len(dta_full) + np.arange(nforecast) # Graph fig, ax = plt.subplots(figsize=(12,6)) ax.xaxis.grid() ax.plot(predict_idx, dta_miss, 'k.') # Plot ax.plot(predict_idx, predict[0], 'gray'); ax.fill_between(predict_idx, ci[0], ci[1], alpha=0.1) ax.plot(forcast_idx[-20:], forecast[0], 'k--', linestyle='--', linewidth=2) ax.set(title='Figure 8.9 - Internet series');
examples/notebooks/statespace_sarimax_internet.ipynb
huongttlan/statsmodels
bsd-3-clause
We'll work in our test directory, where ActivitySim has saved the estimation data bundles.
os.chdir('test')
activitysim/examples/example_estimation/notebooks/07_mand_tour_freq.ipynb
UDST/activitysim
bsd-3-clause
Load data and prep model for estimation
modelname = "mandatory_tour_frequency" from activitysim.estimation.larch import component_model model, data = component_model(modelname, return_data=True)
activitysim/examples/example_estimation/notebooks/07_mand_tour_freq.ipynb
UDST/activitysim
bsd-3-clause
Review data loaded from the EDB The next step is to read the EDB, including the coefficients, model settings, utilities specification, and chooser and alternative data. Coefficients
data.coefficients
activitysim/examples/example_estimation/notebooks/07_mand_tour_freq.ipynb
UDST/activitysim
bsd-3-clause
Utility specification
data.spec
activitysim/examples/example_estimation/notebooks/07_mand_tour_freq.ipynb
UDST/activitysim
bsd-3-clause
Chooser data
data.chooser_data
activitysim/examples/example_estimation/notebooks/07_mand_tour_freq.ipynb
UDST/activitysim
bsd-3-clause
Estimate With the model setup for estimation, the next step is to estimate the model coefficients. Make sure to use a sufficiently large enough household sample and set of zones to avoid an over-specified model, which does not have a numerically stable likelihood maximizing solution. Larch has a built-in estimation methods including BHHH, and also offers access to more advanced general purpose non-linear optimizers in the scipy package, including SLSQP, which allows for bounds and constraints on parameters. BHHH is the default and typically runs faster, but does not follow constraints on parameters.
model.estimate()
activitysim/examples/example_estimation/notebooks/07_mand_tour_freq.ipynb
UDST/activitysim
bsd-3-clause
Estimated coefficients
model.parameter_summary()
activitysim/examples/example_estimation/notebooks/07_mand_tour_freq.ipynb
UDST/activitysim
bsd-3-clause
Output Estimation Results
from activitysim.estimation.larch import update_coefficients result_dir = data.edb_directory/"estimated" update_coefficients( model, data, result_dir, output_file=f"{modelname}_coefficients_revised.csv", );
activitysim/examples/example_estimation/notebooks/07_mand_tour_freq.ipynb
UDST/activitysim
bsd-3-clause
Write the model estimation report, including coefficient t-statistic and log likelihood
model.to_xlsx( result_dir/f"{modelname}_model_estimation.xlsx", data_statistics=False, )
activitysim/examples/example_estimation/notebooks/07_mand_tour_freq.ipynb
UDST/activitysim
bsd-3-clause
Next Steps The final step is to either manually or automatically copy the *_coefficients_revised.csv file to the configs folder, rename it to *_coefficients.csv, and run ActivitySim in simulation mode.
pd.read_csv(result_dir/f"{modelname}_coefficients_revised.csv")
activitysim/examples/example_estimation/notebooks/07_mand_tour_freq.ipynb
UDST/activitysim
bsd-3-clause
Import the required libraries and define constants
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns from google.cloud import bigquery from google.cloud.bigquery import Client DATASET = "[your-bigquery-dataset-id]" # set the BigQuery dataset-id TRAINING_DATA_TABLE = "[your-bigquery-table-id-to-store-the-training-data]" # set the BigQuery table-id to store the training data
notebooks/community/managed_notebooks/pricing_optimization/pricing-optimization.ipynb
GoogleCloudPlatform/vertex-ai-samples
apache-2.0
Create a BigQuery dataset <a name="section-5"></a> @bigquery -- create a dataset in BigQuery CREATE SCHEMA pricing_optimization OPTIONS( location="us" ) Load the dataset from Cloud Storage <a name="section-6"></a>
DATA_LOCATION = "gs://cloud-samples-data/ai-platform-unified/datasets/tabular/cdm_pricing_large_table.csv" df = pd.read_csv(DATA_LOCATION) print(df.shape) df.head()
notebooks/community/managed_notebooks/pricing_optimization/pricing-optimization.ipynb
GoogleCloudPlatform/vertex-ai-samples
apache-2.0
You will build a forecast model on this data and thus determine the best price for a product. For this type of model, you will not be using many fields: only the sales and price related ones. For the current execrcise, focus on the following fields: Product_ID Customer_Hierarchy Fiscal_Date List_Price_Converged Invoiced_quantity_in_Pieces Net_Sales Data Analysis <a name="section-7"></a> First, explore the data and distributions. Select the required columns from the dataframe.
id_col = "Product_ID" date_col = "Fiscal_Date" categ_cols = ["Customer_Hierarchy"] num_cols = ["List_Price_Converged", "Invoiced_quantity_in_Pieces", "Net_Sales"] df = df[[id_col, date_col] + categ_cols + num_cols].copy() df.head()
notebooks/community/managed_notebooks/pricing_optimization/pricing-optimization.ipynb
GoogleCloudPlatform/vertex-ai-samples
apache-2.0
Check the column types and null values in the dataframe.
df.info()
notebooks/community/managed_notebooks/pricing_optimization/pricing-optimization.ipynb
GoogleCloudPlatform/vertex-ai-samples
apache-2.0
This data description reveals that there are no null values in the data. Also, the field Fiscal_Date which is a date field is loaded as an object type. Change the type of the date field to datetime.
df["Fiscal_Date"] = pd.to_datetime(df["Fiscal_Date"], infer_datetime_format=True)
notebooks/community/managed_notebooks/pricing_optimization/pricing-optimization.ipynb
GoogleCloudPlatform/vertex-ai-samples
apache-2.0
Plot the distributions for the categorical fields.
for i in categ_cols: df[i].value_counts(normalize=True).plot(kind="bar") plt.title(i) plt.show()
notebooks/community/managed_notebooks/pricing_optimization/pricing-optimization.ipynb
GoogleCloudPlatform/vertex-ai-samples
apache-2.0
Plot the distributions for the numerical fields.
for i in num_cols: _, ax = plt.subplots(1, 2, figsize=(10, 4)) df[i].plot(kind="box", ax=ax[0]) df[i].plot(kind="hist", ax=ax[1]) ax[0].set_title(i + "-Boxplot") ax[1].set_title(i + "-Histogram") plt.show()
notebooks/community/managed_notebooks/pricing_optimization/pricing-optimization.ipynb
GoogleCloudPlatform/vertex-ai-samples
apache-2.0
Check the maximum date and minimum date in Fiscal_Date column.
print(df["Fiscal_Date"].max()) print(df["Fiscal_Date"].min())
notebooks/community/managed_notebooks/pricing_optimization/pricing-optimization.ipynb
GoogleCloudPlatform/vertex-ai-samples
apache-2.0
Check the product distribution across each category.
grp_cols = ["Customer_Hierarchy", "Product_ID"] grp_df = df[grp_cols].groupby(by=grp_cols).count().reset_index() grp_df.groupby("Customer_Hierarchy").nunique()
notebooks/community/managed_notebooks/pricing_optimization/pricing-optimization.ipynb
GoogleCloudPlatform/vertex-ai-samples
apache-2.0
Check the percentage changes in the orders based on the percentage changes in the price.
# aggregate the data df_aggr = ( df.groupby(["Product_ID", "List_Price_Converged"]) .agg({"Fiscal_Date": min, "Invoiced_quantity_in_Pieces": sum, "Net_Sales": sum}) .reset_index() ) # rename the aggregated columns df_aggr.rename( columns={ "Fiscal_Date": "First_price_date", "Invoiced_quantity_in_Pieces": "Total_ordered_pieces", "Net_Sales": "Total_net_sales", }, inplace=True, ) # sort values chronologically df_aggr.sort_values(by=["Product_ID", "First_price_date"], inplace=True) df_aggr.reset_index(drop=True, inplace=True) # add columns for previous values df_aggr["Previous_List"] = df_aggr.groupby(["Product_ID"])[ "List_Price_Converged" ].shift() df_aggr["Previous_Total_ordered_pieces"] = df_aggr.groupby(["Product_ID"])[ "Total_ordered_pieces" ].shift() # average price change across sku's df_aggr["price_change_perc"] = ( (df_aggr["List_Price_Converged"] - df_aggr["Previous_List"]) / df_aggr["Previous_List"].fillna(0) * 100 ) df_aggr["order_change_perc"] = ( (df_aggr["Total_ordered_pieces"] - df_aggr["Previous_Total_ordered_pieces"]) / df_aggr["Previous_Total_ordered_pieces"].fillna(0) * 100 ) # plot a scatterplot to visualize the changes sns.scatterplot( x="price_change_perc", y="order_change_perc", data=df_aggr, hue="Product_ID", legend=False, ) plt.title("Percentage of change in price vs order") plt.show()
notebooks/community/managed_notebooks/pricing_optimization/pricing-optimization.ipynb
GoogleCloudPlatform/vertex-ai-samples
apache-2.0
For most of the products, the percentage change in orders are high where the percentage changes in the prices are low. This suggests that too much change in the prices can affect the number of orders. Note: There seem to be some outliers in the data as percentage changes greater than 800 are found. In the current exercise, do not take any manual measures to deal with outliers as you will create a BigQuery ML timeseries model that already deals with outliers. Preprocess the data for training <a name="section-8"></a> Check which Product_ID's have the maximum orders.
df_orders = df.groupby(["Product_ID", "Customer_Hierarchy"], as_index=False)[ "Invoiced_quantity_in_Pieces" ].sum() df_orders.loc[ df_orders.groupby("Customer_Hierarchy")["Invoiced_quantity_in_Pieces"].idxmax() ]
notebooks/community/managed_notebooks/pricing_optimization/pricing-optimization.ipynb
GoogleCloudPlatform/vertex-ai-samples
apache-2.0
From the above result, you can infer the following: Under the Food category, SKU 62 has the maximum orders. Under the Manufacturing category, SKU 17 has the maximum orders. Under the Paper category, SKU 107 has the maximum orders. Under the Publishing category, SKU 8 has the maximum orders. Under the Utilities category, SKU 140 has the maximum orders. Given that there are too many ids and only a few records for most of them, consider only the above Product_IDs for which there are a maximum number of orders. Note: The Invoiced_quantity_in_Pieces field seems to be a float type rather than an int type as it should be. This could be because the data itself might be averaged in the first place. Check the various prices available for these Product_IDs.
df_type_food = df[(df["Product_ID"] == "SKU 62") & (df["Customer_Hierarchy"] == "Food")] print("Food :") print(df_type_food["List_Price_Converged"].value_counts()) df_type_manuf = df[ (df["Product_ID"] == "SKU 17") & (df["Customer_Hierarchy"] == "Manufacturing") ] print("Manufacturing :") print(df_type_manuf["List_Price_Converged"].value_counts()) df_type_paper = df[ (df["Product_ID"] == "SKU 107") & (df["Customer_Hierarchy"] == "Paper") ] print("Paper :") print(df_type_paper["List_Price_Converged"].value_counts()) df_type_pub = df[ (df["Product_ID"] == "SKU 8") & (df["Customer_Hierarchy"] == "Publishing") ] print("Publishing :") print(df_type_pub["List_Price_Converged"].value_counts()) df_type_util = df[ (df["Product_ID"] == "SKU 140") & (df["Customer_Hierarchy"] == "Utilities") ] print("Utilities :") print(df_type_util["List_Price_Converged"].value_counts())
notebooks/community/managed_notebooks/pricing_optimization/pricing-optimization.ipynb
GoogleCloudPlatform/vertex-ai-samples
apache-2.0
In the publishing category, Product_ID SKU 8 and SKU 17 are less than or equal to two different prices in the entire data and so you will exclude them and consider the rest for building the forecast model. The idea here is to train a forecast model on the timeseries data for products with different prices. Join the data for all the Product_IDs into one dataframe and remove duplicate records.
df_final = pd.concat([df_type_food, df_type_paper, df_type_util]) df_final = ( df_final[ [ "Product_ID", "Fiscal_Date", "Customer_Hierarchy", "List_Price_Converged", "Invoiced_quantity_in_Pieces", ] ] .drop_duplicates() .reset_index(drop=True) ) df_final.head()
notebooks/community/managed_notebooks/pricing_optimization/pricing-optimization.ipynb
GoogleCloudPlatform/vertex-ai-samples
apache-2.0
Save the data to a BigQuery table.
bq_client = bigquery.Client(project=PROJECT_ID) job_config = bigquery.LoadJobConfig( # Specify a (partial) schema. All columns are always written to the # table. The schema is used to assist in data type definitions. schema=[ bigquery.SchemaField("Product_ID", bigquery.enums.SqlTypeNames.STRING), bigquery.SchemaField("Fiscal_Date", bigquery.enums.SqlTypeNames.DATE), bigquery.SchemaField("List_Price_Converged", bigquery.enums.SqlTypeNames.FLOAT), bigquery.SchemaField( "Invoiced_quantity_in_Pieces", bigquery.enums.SqlTypeNames.FLOAT ), ], # Optionally, set the write disposition. BigQuery appends loaded rows # to an existing table by default, but with WRITE_TRUNCATE write # disposition it replaces the table with the loaded data. write_disposition="WRITE_TRUNCATE", ) # save the dataframe to a table in the created dataset job = bq_client.load_table_from_dataframe( df_final, "{}.{}.{}".format(PROJECT_ID, DATASET, TRAINING_DATA_TABLE), job_config=job_config, ) # Make an API request. job.result() # Wait for the job to complete.
notebooks/community/managed_notebooks/pricing_optimization/pricing-optimization.ipynb
GoogleCloudPlatform/vertex-ai-samples
apache-2.0
Train the model using BigQuery ML <a name="section-9"></a> Train an Arima-Plus model on the data using BigQuery ML. @bigquery create or replace model pricing_optimization.bqml_arima options (model_type = 'ARIMA_PLUS', time_series_timestamp_col = 'Fiscal_Date', time_series_data_col = 'Invoiced_quantity_in_Pieces', time_series_id_col = 'ID' ) as select Fiscal_Date, Concat(Product_ID,"_" ,Cast(List_Price_Converged as string)) as ID, Invoiced_quantity_in_Pieces from pricing_optimization.TRAINING_DATA Generate forecasts from the model <a name="section-10"></a> Predict the sales for the next 30 days for each id and save to a dataframe.
client = Client() query = ''' DECLARE HORIZON STRING DEFAULT "30"; #number of values to forecast DECLARE CONFIDENCE_LEVEL STRING DEFAULT "0.90"; ## required confidence level EXECUTE IMMEDIATE format(""" SELECT * FROM ML.FORECAST(MODEL pricing_optimization.bqml_arima, STRUCT(%s AS horizon, %s AS confidence_level) ) """,HORIZON,CONFIDENCE_LEVEL)''' job = client.query(query) dfforecast = job.to_dataframe() dfforecast.head()
notebooks/community/managed_notebooks/pricing_optimization/pricing-optimization.ipynb
GoogleCloudPlatform/vertex-ai-samples
apache-2.0
Interpret the results to choose the best price <a name="section-11"></a> Calculate average forecast values for the forecast duration.
dfforecast_avg = ( dfforecast[["ID", "forecast_value"]].groupby("ID", as_index=False).mean() )
notebooks/community/managed_notebooks/pricing_optimization/pricing-optimization.ipynb
GoogleCloudPlatform/vertex-ai-samples
apache-2.0
Extract the ID and Price fields from the ID field.
dfforecast_avg["Product_ID"] = dfforecast_avg["ID"].apply(lambda x: x.split("_")[0]) dfforecast_avg["Price"] = dfforecast_avg["ID"].apply(lambda x: x.split("_")[1])
notebooks/community/managed_notebooks/pricing_optimization/pricing-optimization.ipynb
GoogleCloudPlatform/vertex-ai-samples
apache-2.0
Plot the average forecasted sales vs. the price of the product.
for i in dfforecast_avg["Product_ID"].unique(): dfforecast_avg[dfforecast_avg["Product_ID"] == i].set_index("Price").sort_values( "forecast_value" ).plot(kind="bar") plt.title("Price vs. Average Sales for " + i) plt.show()
notebooks/community/managed_notebooks/pricing_optimization/pricing-optimization.ipynb
GoogleCloudPlatform/vertex-ai-samples
apache-2.0
Based on the plots for price vs. the average forecasted orders, it can be said that to use the maximum orders, each of the considered Product_IDs can follow the below prices: SKU 107's price range can be from 4.44 - 4.73 units SKU 140's price can be 1.95 units SKU 62's price can be 4.23 units Clean Up <a name="section-12"></a> To clean up all Google Cloud resources used in this project, you can delete the Google Cloud project you used for the tutorial. Otherwise, you can delete the individual resources you created in this tutorial. The following code deletes the entire dataset.
# Construct a BigQuery client object. client = bigquery.Client() # TODO(developer): Set model_id to the ID of the model to fetch. dataset_id = "{PROJECT}.{DATASET}".format(PROJECT=PROJECT_ID, DATASET=DATASET) # Use the delete_contents parameter to delete a dataset and its contents. # Use the not_found_ok parameter to not receive an error if the dataset has already been deleted. client.delete_dataset( dataset_id, delete_contents=True, not_found_ok=True ) # Make an API request. print("Deleted dataset '{}'.".format(dataset_id))
notebooks/community/managed_notebooks/pricing_optimization/pricing-optimization.ipynb
GoogleCloudPlatform/vertex-ai-samples
apache-2.0
Explain the predictions made by the model using GradientExplainer
import shap # since we have two inputs we pass a list of inputs to the explainer explainer = shap.GradientExplainer(model, [x_train, x_train]) # we explain the model's predictions on the first three samples of the test set shap_values = explainer.shap_values([x_test[:3], x_test[:3]]) # since the model has 10 outputs we get a list of 10 explanations (one for each output) print(len(shap_values)) # since the model has 2 inputs we get a list of 2 explanations (one for each input) for each output print(len(shap_values[0])) # here we plot the explanations for all classes for the first input (this is the feed forward input) shap.image_plot([shap_values[i][0] for i in range(10)], x_test[:3]) # here we plot the explanations for all classes for the second input (this is the conv-net input) shap.image_plot([shap_values[i][1] for i in range(10)], x_test[:3])
notebooks/image_examples/image_classification/Multi-input Gradient Explainer MNIST Example.ipynb
slundberg/shap
mit
Estimating the sampling error By setting return_variances=True we get an estimate of how accurate our explanations are. We can see that the default number of samples (200) that were used provide fairly low variance estimates (compared to the magnitude of the shap_values above). Note that you can always use the nsamples parameter to control how many samples are used.
# get the variance of our estimates shap_values, shap_values_var = explainer.shap_values([x_test[:3], x_test[:3]], return_variances=True) # here we plot the explanations for all classes for the first input (this is the feed forward input) shap.image_plot([shap_values_var[i][0] for i in range(10)], x_test[:3])
notebooks/image_examples/image_classification/Multi-input Gradient Explainer MNIST Example.ipynb
slundberg/shap
mit
Document Table of Contents 1. Key Properties 2. Key Properties --&gt; Software Properties 3. Key Properties --&gt; Timestep Framework 4. Key Properties --&gt; Timestep Framework --&gt; Split Operator Order 5. Key Properties --&gt; Tuning Applied 6. Grid 7. Grid --&gt; Resolution 8. Transport 9. Emissions Concentrations 10. Emissions Concentrations --&gt; Surface Emissions 11. Emissions Concentrations --&gt; Atmospheric Emissions 12. Emissions Concentrations --&gt; Concentrations 13. Gas Phase Chemistry 14. Stratospheric Heterogeneous Chemistry 15. Tropospheric Heterogeneous Chemistry 16. Photo Chemistry 17. Photo Chemistry --&gt; Photolysis 1. Key Properties Key properties of the atmospheric chemistry 1.1. Model Overview Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Overview of atmospheric chemistry model.
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.model_overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s)
notebooks/cccma/cmip6/models/canesm5/atmoschem.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
1.2. Model Name Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Name of atmospheric chemistry model code.
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.model_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s)
notebooks/cccma/cmip6/models/canesm5/atmoschem.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
1.3. Chemistry Scheme Scope Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Atmospheric domains covered by the atmospheric chemistry model
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.chemistry_scheme_scope') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "troposhere" # "stratosphere" # "mesosphere" # "mesosphere" # "whole atmosphere" # "Other: [Please specify]" # TODO - please enter value(s)
notebooks/cccma/cmip6/models/canesm5/atmoschem.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
1.4. Basic Approximations Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Basic approximations made in the atmospheric chemistry model
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.basic_approximations') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s)
notebooks/cccma/cmip6/models/canesm5/atmoschem.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
1.5. Prognostic Variables Form Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Form of prognostic variables in the atmospheric chemistry component.
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.prognostic_variables_form') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "3D mass/mixing ratio for gas" # "Other: [Please specify]" # TODO - please enter value(s)
notebooks/cccma/cmip6/models/canesm5/atmoschem.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
1.6. Number Of Tracers Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Number of advected tracers in the atmospheric chemistry model
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.number_of_tracers') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s)
notebooks/cccma/cmip6/models/canesm5/atmoschem.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
1.7. Family Approach Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Atmospheric chemistry calculations (not advection) generalized into families of species?
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.family_approach') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s)
notebooks/cccma/cmip6/models/canesm5/atmoschem.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
1.8. Coupling With Chemical Reactivity Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Atmospheric chemistry transport scheme turbulence is couple with chemical reactivity?
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.coupling_with_chemical_reactivity') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s)
notebooks/cccma/cmip6/models/canesm5/atmoschem.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
2. Key Properties --&gt; Software Properties Software properties of aerosol code 2.1. Repository Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Location of code for this component.
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.software_properties.repository') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s)
notebooks/cccma/cmip6/models/canesm5/atmoschem.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
2.2. Code Version Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Code version identifier.
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.software_properties.code_version') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s)
notebooks/cccma/cmip6/models/canesm5/atmoschem.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
2.3. Code Languages Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N Code language(s).
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.software_properties.code_languages') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s)
notebooks/cccma/cmip6/models/canesm5/atmoschem.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
3. Key Properties --&gt; Timestep Framework Timestepping in the atmospheric chemistry model 3.1. Method Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Mathematical method deployed to solve the evolution of a given variable
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Operator splitting" # "Integrated" # "Other: [Please specify]" # TODO - please enter value(s)
notebooks/cccma/cmip6/models/canesm5/atmoschem.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
3.2. Split Operator Advection Timestep Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Timestep for chemical species advection (in seconds)
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.split_operator_advection_timestep') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s)
notebooks/cccma/cmip6/models/canesm5/atmoschem.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
3.3. Split Operator Physical Timestep Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Timestep for physics (in seconds).
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.split_operator_physical_timestep') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s)
notebooks/cccma/cmip6/models/canesm5/atmoschem.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
3.4. Split Operator Chemistry Timestep Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Timestep for chemistry (in seconds).
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.split_operator_chemistry_timestep') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s)
notebooks/cccma/cmip6/models/canesm5/atmoschem.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
3.5. Split Operator Alternate Order Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 ?
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.split_operator_alternate_order') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s)
notebooks/cccma/cmip6/models/canesm5/atmoschem.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
3.6. Integrated Timestep Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Timestep for the atmospheric chemistry model (in seconds)
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.integrated_timestep') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s)
notebooks/cccma/cmip6/models/canesm5/atmoschem.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
3.7. Integrated Scheme Type Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Specify the type of timestep scheme
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.integrated_scheme_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Explicit" # "Implicit" # "Semi-implicit" # "Semi-analytic" # "Impact solver" # "Back Euler" # "Newton Raphson" # "Rosenbrock" # "Other: [Please specify]" # TODO - please enter value(s)
notebooks/cccma/cmip6/models/canesm5/atmoschem.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
4. Key Properties --&gt; Timestep Framework --&gt; Split Operator Order ** 4.1. Turbulence Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Call order for turbulence scheme. This should be an integer greater than zero, and may be the same value as for another process if they are calculated at the same time.
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.split_operator_order.turbulence') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s)
notebooks/cccma/cmip6/models/canesm5/atmoschem.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
4.2. Convection Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Call order for convection scheme This should be an integer greater than zero, and may be the same value as for another process if they are calculated at the same time.
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.split_operator_order.convection') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s)
notebooks/cccma/cmip6/models/canesm5/atmoschem.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
4.3. Precipitation Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Call order for precipitation scheme. This should be an integer greater than zero, and may be the same value as for another process if they are calculated at the same time.
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.split_operator_order.precipitation') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s)
notebooks/cccma/cmip6/models/canesm5/atmoschem.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
4.4. Emissions Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Call order for emissions scheme. This should be an integer greater than zero, and may be the same value as for another process if they are calculated at the same time.
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.split_operator_order.emissions') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s)
notebooks/cccma/cmip6/models/canesm5/atmoschem.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
4.5. Deposition Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Call order for deposition scheme. This should be an integer greater than zero, and may be the same value as for another process if they are calculated at the same time.
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.split_operator_order.deposition') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s)
notebooks/cccma/cmip6/models/canesm5/atmoschem.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
4.6. Gas Phase Chemistry Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Call order for gas phase chemistry scheme. This should be an integer greater than zero, and may be the same value as for another process if they are calculated at the same time.
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.split_operator_order.gas_phase_chemistry') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s)
notebooks/cccma/cmip6/models/canesm5/atmoschem.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
4.7. Tropospheric Heterogeneous Phase Chemistry Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Call order for tropospheric heterogeneous phase chemistry scheme. This should be an integer greater than zero, and may be the same value as for another process if they are calculated at the same time.
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.split_operator_order.tropospheric_heterogeneous_phase_chemistry') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s)
notebooks/cccma/cmip6/models/canesm5/atmoschem.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
4.8. Stratospheric Heterogeneous Phase Chemistry Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Call order for stratospheric heterogeneous phase chemistry scheme. This should be an integer greater than zero, and may be the same value as for another process if they are calculated at the same time.
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.split_operator_order.stratospheric_heterogeneous_phase_chemistry') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s)
notebooks/cccma/cmip6/models/canesm5/atmoschem.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
4.9. Photo Chemistry Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Call order for photo chemistry scheme. This should be an integer greater than zero, and may be the same value as for another process if they are calculated at the same time.
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.split_operator_order.photo_chemistry') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s)
notebooks/cccma/cmip6/models/canesm5/atmoschem.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
4.10. Aerosols Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Call order for aerosols scheme. This should be an integer greater than zero, and may be the same value as for another process if they are calculated at the same time.
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.split_operator_order.aerosols') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s)
notebooks/cccma/cmip6/models/canesm5/atmoschem.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
5. Key Properties --&gt; Tuning Applied Tuning methodology for atmospheric chemistry component 5.1. Description Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 General overview description of tuning: explain and motivate the main targets and metrics retained. &amp;Document the relative weight given to climate performance metrics versus process oriented metrics, &amp;and on the possible conflicts with parameterization level tuning. In particular describe any struggle &amp;with a parameter value that required pushing it to its limits to solve a particular model deficiency.
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.tuning_applied.description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s)
notebooks/cccma/cmip6/models/canesm5/atmoschem.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
5.2. Global Mean Metrics Used Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N List set of metrics of the global mean state used in tuning model/component
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.tuning_applied.global_mean_metrics_used') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s)
notebooks/cccma/cmip6/models/canesm5/atmoschem.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
5.3. Regional Metrics Used Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N List of regional metrics of mean state used in tuning model/component
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.tuning_applied.regional_metrics_used') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s)
notebooks/cccma/cmip6/models/canesm5/atmoschem.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
5.4. Trend Metrics Used Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N List observed trend metrics used in tuning model/component
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.tuning_applied.trend_metrics_used') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s)
notebooks/cccma/cmip6/models/canesm5/atmoschem.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
6. Grid Atmospheric chemistry grid 6.1. Overview Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe the general structure of the atmopsheric chemistry grid
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.grid.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s)
notebooks/cccma/cmip6/models/canesm5/atmoschem.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
6.2. Matches Atmosphere Grid Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 * Does the atmospheric chemistry grid match the atmosphere grid?*
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.grid.matches_atmosphere_grid') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s)
notebooks/cccma/cmip6/models/canesm5/atmoschem.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
7. Grid --&gt; Resolution Resolution in the atmospheric chemistry grid 7.1. Name Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 This is a string usually used by the modelling group to describe the resolution of this grid, e.g. ORCA025, N512L180, T512L70 etc.
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.grid.resolution.name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s)
notebooks/cccma/cmip6/models/canesm5/atmoschem.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
7.2. Canonical Horizontal Resolution Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Expression quoted for gross comparisons of resolution, eg. 50km or 0.1 degrees etc.
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.grid.resolution.canonical_horizontal_resolution') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s)
notebooks/cccma/cmip6/models/canesm5/atmoschem.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
7.3. Number Of Horizontal Gridpoints Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Total number of horizontal (XY) points (or degrees of freedom) on computational grid.
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.grid.resolution.number_of_horizontal_gridpoints') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s)
notebooks/cccma/cmip6/models/canesm5/atmoschem.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
7.4. Number Of Vertical Levels Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Number of vertical levels resolved on computational grid.
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.grid.resolution.number_of_vertical_levels') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s)
notebooks/cccma/cmip6/models/canesm5/atmoschem.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
7.5. Is Adaptive Grid Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Default is False. Set true if grid resolution changes during execution.
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.grid.resolution.is_adaptive_grid') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s)
notebooks/cccma/cmip6/models/canesm5/atmoschem.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
8. Transport Atmospheric chemistry transport 8.1. Overview Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 General overview of transport implementation
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.transport.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s)
notebooks/cccma/cmip6/models/canesm5/atmoschem.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
8.2. Use Atmospheric Transport Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Is transport handled by the atmosphere, rather than within atmospheric cehmistry?
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.transport.use_atmospheric_transport') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s)
notebooks/cccma/cmip6/models/canesm5/atmoschem.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
8.3. Transport Details Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 If transport is handled within the atmospheric chemistry scheme, describe it.
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.transport.transport_details') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s)
notebooks/cccma/cmip6/models/canesm5/atmoschem.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
9. Emissions Concentrations Atmospheric chemistry emissions 9.1. Overview Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Overview atmospheric chemistry emissions
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.emissions_concentrations.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s)
notebooks/cccma/cmip6/models/canesm5/atmoschem.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
10. Emissions Concentrations --&gt; Surface Emissions ** 10.1. Sources Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N Sources of the chemical species emitted at the surface that are taken into account in the emissions scheme
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.emissions_concentrations.surface_emissions.sources') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Vegetation" # "Soil" # "Sea surface" # "Anthropogenic" # "Biomass burning" # "Other: [Please specify]" # TODO - please enter value(s)
notebooks/cccma/cmip6/models/canesm5/atmoschem.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
10.2. Method Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N Methods used to define chemical species emitted directly into model layers above the surface (several methods allowed because the different species may not use the same method).
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.emissions_concentrations.surface_emissions.method') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Climatology" # "Spatially uniform mixing ratio" # "Spatially uniform concentration" # "Interactive" # "Other: [Please specify]" # TODO - please enter value(s)
notebooks/cccma/cmip6/models/canesm5/atmoschem.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
10.3. Prescribed Climatology Emitted Species Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 List of chemical species emitted at the surface and prescribed via a climatology, and the nature of the climatology (E.g. CO (monthly), C2H6 (constant))
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.emissions_concentrations.surface_emissions.prescribed_climatology_emitted_species') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s)
notebooks/cccma/cmip6/models/canesm5/atmoschem.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
10.4. Prescribed Spatially Uniform Emitted Species Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 List of chemical species emitted at the surface and prescribed as spatially uniform
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.emissions_concentrations.surface_emissions.prescribed_spatially_uniform_emitted_species') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s)
notebooks/cccma/cmip6/models/canesm5/atmoschem.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
10.5. Interactive Emitted Species Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 List of chemical species emitted at the surface and specified via an interactive method
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.emissions_concentrations.surface_emissions.interactive_emitted_species') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s)
notebooks/cccma/cmip6/models/canesm5/atmoschem.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
10.6. Other Emitted Species Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 List of chemical species emitted at the surface and specified via any other method
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.emissions_concentrations.surface_emissions.other_emitted_species') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s)
notebooks/cccma/cmip6/models/canesm5/atmoschem.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
11. Emissions Concentrations --&gt; Atmospheric Emissions TO DO 11.1. Sources Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N Sources of chemical species emitted in the atmosphere that are taken into account in the emissions scheme.
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.emissions_concentrations.atmospheric_emissions.sources') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Aircraft" # "Biomass burning" # "Lightning" # "Volcanos" # "Other: [Please specify]" # TODO - please enter value(s)
notebooks/cccma/cmip6/models/canesm5/atmoschem.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
11.2. Method Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N Methods used to define the chemical species emitted in the atmosphere (several methods allowed because the different species may not use the same method).
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.emissions_concentrations.atmospheric_emissions.method') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Climatology" # "Spatially uniform mixing ratio" # "Spatially uniform concentration" # "Interactive" # "Other: [Please specify]" # TODO - please enter value(s)
notebooks/cccma/cmip6/models/canesm5/atmoschem.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
11.3. Prescribed Climatology Emitted Species Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 List of chemical species emitted in the atmosphere and prescribed via a climatology (E.g. CO (monthly), C2H6 (constant))
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.emissions_concentrations.atmospheric_emissions.prescribed_climatology_emitted_species') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s)
notebooks/cccma/cmip6/models/canesm5/atmoschem.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
11.4. Prescribed Spatially Uniform Emitted Species Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 List of chemical species emitted in the atmosphere and prescribed as spatially uniform
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.emissions_concentrations.atmospheric_emissions.prescribed_spatially_uniform_emitted_species') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s)
notebooks/cccma/cmip6/models/canesm5/atmoschem.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
11.5. Interactive Emitted Species Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 List of chemical species emitted in the atmosphere and specified via an interactive method
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.emissions_concentrations.atmospheric_emissions.interactive_emitted_species') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s)
notebooks/cccma/cmip6/models/canesm5/atmoschem.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
11.6. Other Emitted Species Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 List of chemical species emitted in the atmosphere and specified via an &quot;other method&quot;
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.emissions_concentrations.atmospheric_emissions.other_emitted_species') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s)
notebooks/cccma/cmip6/models/canesm5/atmoschem.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
12. Emissions Concentrations --&gt; Concentrations TO DO 12.1. Prescribed Lower Boundary Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 List of species prescribed at the lower boundary.
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.emissions_concentrations.concentrations.prescribed_lower_boundary') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s)
notebooks/cccma/cmip6/models/canesm5/atmoschem.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
12.2. Prescribed Upper Boundary Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 List of species prescribed at the upper boundary.
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.emissions_concentrations.concentrations.prescribed_upper_boundary') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s)
notebooks/cccma/cmip6/models/canesm5/atmoschem.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
13. Gas Phase Chemistry Atmospheric chemistry transport 13.1. Overview Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Overview gas phase atmospheric chemistry
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.gas_phase_chemistry.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s)
notebooks/cccma/cmip6/models/canesm5/atmoschem.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
13.2. Species Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N Species included in the gas phase chemistry scheme.
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.gas_phase_chemistry.species') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "HOx" # "NOy" # "Ox" # "Cly" # "HSOx" # "Bry" # "VOCs" # "isoprene" # "H2O" # "Other: [Please specify]" # TODO - please enter value(s)
notebooks/cccma/cmip6/models/canesm5/atmoschem.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
13.3. Number Of Bimolecular Reactions Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 The number of bi-molecular reactions in the gas phase chemistry scheme.
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.gas_phase_chemistry.number_of_bimolecular_reactions') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s)
notebooks/cccma/cmip6/models/canesm5/atmoschem.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
13.4. Number Of Termolecular Reactions Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 The number of ter-molecular reactions in the gas phase chemistry scheme.
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.gas_phase_chemistry.number_of_termolecular_reactions') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s)
notebooks/cccma/cmip6/models/canesm5/atmoschem.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
13.5. Number Of Tropospheric Heterogenous Reactions Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 The number of reactions in the tropospheric heterogeneous chemistry scheme.
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.gas_phase_chemistry.number_of_tropospheric_heterogenous_reactions') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s)
notebooks/cccma/cmip6/models/canesm5/atmoschem.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0