repo_name
stringlengths
6
92
path
stringlengths
7
220
copies
stringclasses
78 values
size
stringlengths
2
9
content
stringlengths
15
1.05M
license
stringclasses
15 values
ES-DOC/esdoc-jupyterhub
notebooks/mohc/cmip6/models/hadgem3-gc31-mh/ocean.ipynb
1
164421
{ "nbformat_minor": 0, "nbformat": 4, "cells": [ { "source": [ "# ES-DOC CMIP6 Model Properties - Ocean \n", "**MIP Era**: CMIP6 \n", "**Institute**: MOHC \n", "**Source ID**: HADGEM3-GC31-MH \n", "**Topic**: Ocean \n", "**Sub-Topics**: Timestepping Framework, Advection, Lateral Physics, Vertical Physics, Uplow Boundaries, Boundary Forcing. \n", "**Properties**: 133 (101 required) \n", "**Model descriptions**: [Model description details](https://specializations.es-doc.org/cmip6/ocean?client=jupyter-notebook) \n", "**Initialized From**: -- \n", "\n", "**Notebook Help**: [Goto notebook help page](https://es-doc.org/cmip6-models-documenting-with-ipython) \n", "**Notebook Initialised**: 2018-02-15 16:54:14" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### Document Setup \n", "**IMPORTANT: to be executed each time you run the notebook** " ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# DO NOT EDIT ! \n", "from pyesdoc.ipython.model_topic import NotebookOutput \n", "\n", "# DO NOT EDIT ! \n", "DOC = NotebookOutput('cmip6', 'mohc', 'hadgem3-gc31-mh', 'ocean')" ], "outputs": [], "metadata": {} }, { "source": [ "### Document Authors \n", "*Set document authors*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# Set as follows: DOC.set_author(\"name\", \"email\") \n", "# TODO - please enter value(s)" ], "outputs": [], "metadata": {} }, { "source": [ "### Document Contributors \n", "*Specify document contributors* " ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# Set as follows: DOC.set_contributor(\"name\", \"email\") \n", "# TODO - please enter value(s)" ], "outputs": [], "metadata": {} }, { "source": [ "### Document Publication \n", "*Specify document publication status* " ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# Set publication status: \n", "# 0=do not publish, 1=publish. \n", "DOC.set_publication_status(0)" ], "outputs": [], "metadata": {} }, { "source": [ "### Document Table of Contents \n", "[1. Key Properties](#1.-Key-Properties) \n", "[2. Key Properties --> Seawater Properties](#2.-Key-Properties--->-Seawater-Properties) \n", "[3. Key Properties --> Bathymetry](#3.-Key-Properties--->-Bathymetry) \n", "[4. Key Properties --> Nonoceanic Waters](#4.-Key-Properties--->-Nonoceanic-Waters) \n", "[5. Key Properties --> Software Properties](#5.-Key-Properties--->-Software-Properties) \n", "[6. Key Properties --> Resolution](#6.-Key-Properties--->-Resolution) \n", "[7. Key Properties --> Tuning Applied](#7.-Key-Properties--->-Tuning-Applied) \n", "[8. Key Properties --> Conservation](#8.-Key-Properties--->-Conservation) \n", "[9. Grid](#9.-Grid) \n", "[10. Grid --> Discretisation --> Vertical](#10.-Grid--->-Discretisation--->-Vertical) \n", "[11. Grid --> Discretisation --> Horizontal](#11.-Grid--->-Discretisation--->-Horizontal) \n", "[12. Timestepping Framework](#12.-Timestepping-Framework) \n", "[13. Timestepping Framework --> Tracers](#13.-Timestepping-Framework--->-Tracers) \n", "[14. Timestepping Framework --> Baroclinic Dynamics](#14.-Timestepping-Framework--->-Baroclinic-Dynamics) \n", "[15. Timestepping Framework --> Barotropic](#15.-Timestepping-Framework--->-Barotropic) \n", "[16. Timestepping Framework --> Vertical Physics](#16.-Timestepping-Framework--->-Vertical-Physics) \n", "[17. Advection](#17.-Advection) \n", "[18. Advection --> Momentum](#18.-Advection--->-Momentum) \n", "[19. Advection --> Lateral Tracers](#19.-Advection--->-Lateral-Tracers) \n", "[20. Advection --> Vertical Tracers](#20.-Advection--->-Vertical-Tracers) \n", "[21. Lateral Physics](#21.-Lateral-Physics) \n", "[22. Lateral Physics --> Momentum --> Operator](#22.-Lateral-Physics--->-Momentum--->-Operator) \n", "[23. Lateral Physics --> Momentum --> Eddy Viscosity Coeff](#23.-Lateral-Physics--->-Momentum--->-Eddy-Viscosity-Coeff) \n", "[24. Lateral Physics --> Tracers](#24.-Lateral-Physics--->-Tracers) \n", "[25. Lateral Physics --> Tracers --> Operator](#25.-Lateral-Physics--->-Tracers--->-Operator) \n", "[26. Lateral Physics --> Tracers --> Eddy Diffusity Coeff](#26.-Lateral-Physics--->-Tracers--->-Eddy-Diffusity-Coeff) \n", "[27. Lateral Physics --> Tracers --> Eddy Induced Velocity](#27.-Lateral-Physics--->-Tracers--->-Eddy-Induced-Velocity) \n", "[28. Vertical Physics](#28.-Vertical-Physics) \n", "[29. Vertical Physics --> Boundary Layer Mixing --> Details](#29.-Vertical-Physics--->-Boundary-Layer-Mixing--->-Details) \n", "[30. Vertical Physics --> Boundary Layer Mixing --> Tracers](#30.-Vertical-Physics--->-Boundary-Layer-Mixing--->-Tracers) \n", "[31. Vertical Physics --> Boundary Layer Mixing --> Momentum](#31.-Vertical-Physics--->-Boundary-Layer-Mixing--->-Momentum) \n", "[32. Vertical Physics --> Interior Mixing --> Details](#32.-Vertical-Physics--->-Interior-Mixing--->-Details) \n", "[33. Vertical Physics --> Interior Mixing --> Tracers](#33.-Vertical-Physics--->-Interior-Mixing--->-Tracers) \n", "[34. Vertical Physics --> Interior Mixing --> Momentum](#34.-Vertical-Physics--->-Interior-Mixing--->-Momentum) \n", "[35. Uplow Boundaries --> Free Surface](#35.-Uplow-Boundaries--->-Free-Surface) \n", "[36. Uplow Boundaries --> Bottom Boundary Layer](#36.-Uplow-Boundaries--->-Bottom-Boundary-Layer) \n", "[37. Boundary Forcing](#37.-Boundary-Forcing) \n", "[38. Boundary Forcing --> Momentum --> Bottom Friction](#38.-Boundary-Forcing--->-Momentum--->-Bottom-Friction) \n", "[39. Boundary Forcing --> Momentum --> Lateral Friction](#39.-Boundary-Forcing--->-Momentum--->-Lateral-Friction) \n", "[40. Boundary Forcing --> Tracers --> Sunlight Penetration](#40.-Boundary-Forcing--->-Tracers--->-Sunlight-Penetration) \n", "[41. Boundary Forcing --> Tracers --> Fresh Water Forcing](#41.-Boundary-Forcing--->-Tracers--->-Fresh-Water-Forcing) \n", "\n" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "# 1. Key Properties \n", "*Ocean key properties*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 1.1. Model Overview\n", "**Is Required:** TRUE    **Type:** STRING    **Cardinality:** 1.1\n", "### *Overview of ocean model.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.model_overview') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 1.2. Model Name\n", "**Is Required:** TRUE    **Type:** STRING    **Cardinality:** 1.1\n", "### *Name of ocean model code (NEMO 3.6, MOM 5.0,...)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.model_name') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 1.3. Model Family\n", "**Is Required:** TRUE    **Type:** ENUM    **Cardinality:** 1.1\n", "### *Type of ocean model.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.model_family') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"OGCM\" \n", "# \"slab ocean\" \n", "# \"mixed layer ocean\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 1.4. Basic Approximations\n", "**Is Required:** TRUE    **Type:** ENUM    **Cardinality:** 1.N\n", "### *Basic approximations made in the ocean.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.basic_approximations') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Primitive equations\" \n", "# \"Non-hydrostatic\" \n", "# \"Boussinesq\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 1.5. Prognostic Variables\n", "**Is Required:** TRUE    **Type:** ENUM    **Cardinality:** 1.N\n", "### *List of prognostic variables in the ocean component.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.prognostic_variables') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Potential temperature\" \n", "# \"Conservative temperature\" \n", "# \"Salinity\" \n", "# \"U-velocity\" \n", "# \"V-velocity\" \n", "# \"W-velocity\" \n", "# \"SSH\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 2. Key Properties --> Seawater Properties \n", "*Physical properties of seawater in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 2.1. Eos Type\n", "**Is Required:** TRUE    **Type:** ENUM    **Cardinality:** 1.1\n", "### *Type of EOS for sea water*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.seawater_properties.eos_type') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Linear\" \n", "# \"Wright, 1997\" \n", "# \"Mc Dougall et al.\" \n", "# \"Jackett et al. 2006\" \n", "# \"TEOS 2010\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 2.2. Eos Functional Temp\n", "**Is Required:** TRUE    **Type:** ENUM    **Cardinality:** 1.1\n", "### *Temperature used in EOS for sea water*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.seawater_properties.eos_functional_temp') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Potential temperature\" \n", "# \"Conservative temperature\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 2.3. Eos Functional Salt\n", "**Is Required:** TRUE    **Type:** ENUM    **Cardinality:** 1.1\n", "### *Salinity used in EOS for sea water*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.seawater_properties.eos_functional_salt') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Practical salinity Sp\" \n", "# \"Absolute salinity Sa\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 2.4. Eos Functional Depth\n", "**Is Required:** TRUE    **Type:** ENUM    **Cardinality:** 1.1\n", "### *Depth or pressure used in EOS for sea water ?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.seawater_properties.eos_functional_depth') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Pressure (dbars)\" \n", "# \"Depth (meters)\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 2.5. Ocean Freezing Point\n", "**Is Required:** TRUE    **Type:** ENUM    **Cardinality:** 1.1\n", "### *Equation used to compute the freezing point (in deg C) of seawater, as a function of salinity and pressure*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.seawater_properties.ocean_freezing_point') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"TEOS 2010\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 2.6. Ocean Specific Heat\n", "**Is Required:** TRUE    **Type:** FLOAT    **Cardinality:** 1.1\n", "### *Specific heat in ocean (cpocean) in J/(kg K)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.seawater_properties.ocean_specific_heat') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 2.7. Ocean Reference Density\n", "**Is Required:** TRUE    **Type:** FLOAT    **Cardinality:** 1.1\n", "### *Boussinesq reference density (rhozero) in kg / m3*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.seawater_properties.ocean_reference_density') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 3. Key Properties --> Bathymetry \n", "*Properties of bathymetry in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 3.1. Reference Dates\n", "**Is Required:** TRUE    **Type:** ENUM    **Cardinality:** 1.1\n", "### *Reference date of bathymetry*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.bathymetry.reference_dates') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Present day\" \n", "# \"21000 years BP\" \n", "# \"6000 years BP\" \n", "# \"LGM\" \n", "# \"Pliocene\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 3.2. Type\n", "**Is Required:** TRUE    **Type:** BOOLEAN    **Cardinality:** 1.1\n", "### *Is the bathymetry fixed in time in the ocean ?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.bathymetry.type') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 3.3. Ocean Smoothing\n", "**Is Required:** TRUE    **Type:** STRING    **Cardinality:** 1.1\n", "### *Describe any smoothing or hand editing of bathymetry in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.bathymetry.ocean_smoothing') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 3.4. Source\n", "**Is Required:** TRUE    **Type:** STRING    **Cardinality:** 1.1\n", "### *Describe source of bathymetry in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.bathymetry.source') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 4. Key Properties --> Nonoceanic Waters \n", "*Non oceanic waters treatement in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 4.1. Isolated Seas\n", "**Is Required:** FALSE    **Type:** STRING    **Cardinality:** 0.1\n", "### *Describe if/how isolated seas is performed*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.nonoceanic_waters.isolated_seas') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 4.2. River Mouth\n", "**Is Required:** FALSE    **Type:** STRING    **Cardinality:** 0.1\n", "### *Describe if/how river mouth mixing or estuaries specific treatment is performed*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.nonoceanic_waters.river_mouth') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 5. Key Properties --> Software Properties \n", "*Software properties of ocean code*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 5.1. Repository\n", "**Is Required:** FALSE    **Type:** STRING    **Cardinality:** 0.1\n", "### *Location of code for this component.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.software_properties.repository') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 5.2. Code Version\n", "**Is Required:** FALSE    **Type:** STRING    **Cardinality:** 0.1\n", "### *Code version identifier.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.software_properties.code_version') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 5.3. Code Languages\n", "**Is Required:** FALSE    **Type:** STRING    **Cardinality:** 0.N\n", "### *Code language(s).*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.software_properties.code_languages') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 6. Key Properties --> Resolution \n", "*Resolution in the ocean grid*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 6.1. Name\n", "**Is Required:** TRUE    **Type:** STRING    **Cardinality:** 1.1\n", "### *This is a string usually used by the modelling group to describe the resolution of this grid, e.g. ORCA025, N512L180, T512L70 etc.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.resolution.name') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 6.2. Canonical Horizontal Resolution\n", "**Is Required:** TRUE    **Type:** STRING    **Cardinality:** 1.1\n", "### *Expression quoted for gross comparisons of resolution, eg. 50km or 0.1 degrees etc.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.resolution.canonical_horizontal_resolution') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 6.3. Range Horizontal Resolution\n", "**Is Required:** TRUE    **Type:** STRING    **Cardinality:** 1.1\n", "### *Range of horizontal resolution with spatial details, eg. 50(Equator)-100km or 0.1-0.5 degrees etc.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.resolution.range_horizontal_resolution') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 6.4. Number Of Horizontal Gridpoints\n", "**Is Required:** TRUE    **Type:** INTEGER    **Cardinality:** 1.1\n", "### *Total number of horizontal (XY) points (or degrees of freedom) on computational grid.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.resolution.number_of_horizontal_gridpoints') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 6.5. Number Of Vertical Levels\n", "**Is Required:** TRUE    **Type:** INTEGER    **Cardinality:** 1.1\n", "### *Number of vertical levels resolved on computational grid.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.resolution.number_of_vertical_levels') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 6.6. Is Adaptive Grid\n", "**Is Required:** TRUE    **Type:** BOOLEAN    **Cardinality:** 1.1\n", "### *Default is False. Set true if grid resolution changes during execution.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.resolution.is_adaptive_grid') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 6.7. Thickness Level 1\n", "**Is Required:** TRUE    **Type:** FLOAT    **Cardinality:** 1.1\n", "### *Thickness of first surface ocean level (in meters)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.resolution.thickness_level_1') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 7. Key Properties --> Tuning Applied \n", "*Tuning methodology for ocean component*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 7.1. Description\n", "**Is Required:** TRUE    **Type:** STRING    **Cardinality:** 1.1\n", "### *General overview description of tuning: explain and motivate the main targets and metrics retained. &Document the relative weight given to climate performance metrics versus process oriented metrics, &and on the possible conflicts with parameterization level tuning. In particular describe any struggle &with a parameter value that required pushing it to its limits to solve a particular model deficiency.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.tuning_applied.description') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 7.2. Global Mean Metrics Used\n", "**Is Required:** FALSE    **Type:** STRING    **Cardinality:** 0.N\n", "### *List set of metrics of the global mean state used in tuning model/component*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.tuning_applied.global_mean_metrics_used') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 7.3. Regional Metrics Used\n", "**Is Required:** FALSE    **Type:** STRING    **Cardinality:** 0.N\n", "### *List of regional metrics of mean state (e.g THC, AABW, regional means etc) used in tuning model/component*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.tuning_applied.regional_metrics_used') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 7.4. Trend Metrics Used\n", "**Is Required:** FALSE    **Type:** STRING    **Cardinality:** 0.N\n", "### *List observed trend metrics used in tuning model/component*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.tuning_applied.trend_metrics_used') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 8. Key Properties --> Conservation \n", "*Conservation in the ocean component*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 8.1. Description\n", "**Is Required:** TRUE    **Type:** STRING    **Cardinality:** 1.1\n", "### *Brief description of conservation methodology*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.conservation.description') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 8.2. Scheme\n", "**Is Required:** TRUE    **Type:** ENUM    **Cardinality:** 1.N\n", "### *Properties conserved in the ocean by the numerical schemes*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.conservation.scheme') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Energy\" \n", "# \"Enstrophy\" \n", "# \"Salt\" \n", "# \"Volume of ocean\" \n", "# \"Momentum\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 8.3. Consistency Properties\n", "**Is Required:** FALSE    **Type:** STRING    **Cardinality:** 0.1\n", "### *Any additional consistency properties (energy conversion, pressure gradient discretisation, ...)?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.conservation.consistency_properties') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 8.4. Corrected Conserved Prognostic Variables\n", "**Is Required:** FALSE    **Type:** STRING    **Cardinality:** 0.1\n", "### *Set of variables which are conserved by *more* than the numerical scheme alone.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.conservation.corrected_conserved_prognostic_variables') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 8.5. Was Flux Correction Used\n", "**Is Required:** FALSE    **Type:** BOOLEAN    **Cardinality:** 0.1\n", "### *Does conservation involve flux correction ?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.conservation.was_flux_correction_used') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 9. Grid \n", "*Ocean grid*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 9.1. Overview\n", "**Is Required:** TRUE    **Type:** STRING    **Cardinality:** 1.1\n", "### *Overview of grid in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.grid.overview') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 10. Grid --> Discretisation --> Vertical \n", "*Properties of vertical discretisation in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 10.1. Coordinates\n", "**Is Required:** TRUE    **Type:** ENUM    **Cardinality:** 1.1\n", "### *Type of vertical coordinates in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.grid.discretisation.vertical.coordinates') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Z-coordinate\" \n", "# \"Z*-coordinate\" \n", "# \"S-coordinate\" \n", "# \"Isopycnic - sigma 0\" \n", "# \"Isopycnic - sigma 2\" \n", "# \"Isopycnic - sigma 4\" \n", "# \"Isopycnic - other\" \n", "# \"Hybrid / Z+S\" \n", "# \"Hybrid / Z+isopycnic\" \n", "# \"Hybrid / other\" \n", "# \"Pressure referenced (P)\" \n", "# \"P*\" \n", "# \"Z**\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 10.2. Partial Steps\n", "**Is Required:** TRUE    **Type:** BOOLEAN    **Cardinality:** 1.1\n", "### *Using partial steps with Z or Z* vertical coordinate in ocean ?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.grid.discretisation.vertical.partial_steps') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 11. Grid --> Discretisation --> Horizontal \n", "*Type of horizontal discretisation scheme in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 11.1. Type\n", "**Is Required:** TRUE    **Type:** ENUM    **Cardinality:** 1.1\n", "### *Horizontal grid type*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.grid.discretisation.horizontal.type') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Lat-lon\" \n", "# \"Rotated north pole\" \n", "# \"Two north poles (ORCA-style)\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 11.2. Staggering\n", "**Is Required:** FALSE    **Type:** ENUM    **Cardinality:** 0.1\n", "### *Horizontal grid staggering type*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.grid.discretisation.horizontal.staggering') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Arakawa B-grid\" \n", "# \"Arakawa C-grid\" \n", "# \"Arakawa E-grid\" \n", "# \"N/a\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 11.3. Scheme\n", "**Is Required:** TRUE    **Type:** ENUM    **Cardinality:** 1.1\n", "### *Horizontal discretisation scheme in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.grid.discretisation.horizontal.scheme') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Finite difference\" \n", "# \"Finite volumes\" \n", "# \"Finite elements\" \n", "# \"Unstructured grid\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 12. Timestepping Framework \n", "*Ocean Timestepping Framework*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 12.1. Overview\n", "**Is Required:** TRUE    **Type:** STRING    **Cardinality:** 1.1\n", "### *Overview of time stepping in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.timestepping_framework.overview') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 12.2. Diurnal Cycle\n", "**Is Required:** TRUE    **Type:** ENUM    **Cardinality:** 1.1\n", "### *Diurnal cycle type*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.timestepping_framework.diurnal_cycle') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"None\" \n", "# \"Via coupling\" \n", "# \"Specific treatment\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 13. Timestepping Framework --> Tracers \n", "*Properties of tracers time stepping in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 13.1. Scheme\n", "**Is Required:** TRUE    **Type:** ENUM    **Cardinality:** 1.1\n", "### *Tracers time stepping scheme*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.timestepping_framework.tracers.scheme') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Leap-frog + Asselin filter\" \n", "# \"Leap-frog + Periodic Euler\" \n", "# \"Predictor-corrector\" \n", "# \"Runge-Kutta 2\" \n", "# \"AM3-LF\" \n", "# \"Forward-backward\" \n", "# \"Forward operator\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 13.2. Time Step\n", "**Is Required:** TRUE    **Type:** INTEGER    **Cardinality:** 1.1\n", "### *Tracers time step (in seconds)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.timestepping_framework.tracers.time_step') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 14. Timestepping Framework --> Baroclinic Dynamics \n", "*Baroclinic dynamics in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 14.1. Type\n", "**Is Required:** TRUE    **Type:** ENUM    **Cardinality:** 1.1\n", "### *Baroclinic dynamics type*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.timestepping_framework.baroclinic_dynamics.type') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Preconditioned conjugate gradient\" \n", "# \"Sub cyling\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 14.2. Scheme\n", "**Is Required:** TRUE    **Type:** ENUM    **Cardinality:** 1.1\n", "### *Baroclinic dynamics scheme*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.timestepping_framework.baroclinic_dynamics.scheme') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Leap-frog + Asselin filter\" \n", "# \"Leap-frog + Periodic Euler\" \n", "# \"Predictor-corrector\" \n", "# \"Runge-Kutta 2\" \n", "# \"AM3-LF\" \n", "# \"Forward-backward\" \n", "# \"Forward operator\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 14.3. Time Step\n", "**Is Required:** FALSE    **Type:** INTEGER    **Cardinality:** 0.1\n", "### *Baroclinic time step (in seconds)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.timestepping_framework.baroclinic_dynamics.time_step') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 15. Timestepping Framework --> Barotropic \n", "*Barotropic time stepping in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 15.1. Splitting\n", "**Is Required:** TRUE    **Type:** ENUM    **Cardinality:** 1.1\n", "### *Time splitting method*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.timestepping_framework.barotropic.splitting') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"None\" \n", "# \"split explicit\" \n", "# \"implicit\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 15.2. Time Step\n", "**Is Required:** FALSE    **Type:** INTEGER    **Cardinality:** 0.1\n", "### *Barotropic time step (in seconds)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.timestepping_framework.barotropic.time_step') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 16. Timestepping Framework --> Vertical Physics \n", "*Vertical physics time stepping in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 16.1. Method\n", "**Is Required:** TRUE    **Type:** STRING    **Cardinality:** 1.1\n", "### *Details of vertical time stepping in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.timestepping_framework.vertical_physics.method') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 17. Advection \n", "*Ocean advection*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 17.1. Overview\n", "**Is Required:** TRUE    **Type:** STRING    **Cardinality:** 1.1\n", "### *Overview of advection in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.advection.overview') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 18. Advection --> Momentum \n", "*Properties of lateral momemtum advection scheme in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 18.1. Type\n", "**Is Required:** TRUE    **Type:** ENUM    **Cardinality:** 1.1\n", "### *Type of lateral momemtum advection scheme in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.advection.momentum.type') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Flux form\" \n", "# \"Vector form\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 18.2. Scheme Name\n", "**Is Required:** TRUE    **Type:** STRING    **Cardinality:** 1.1\n", "### *Name of ocean momemtum advection scheme*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.advection.momentum.scheme_name') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 18.3. ALE\n", "**Is Required:** FALSE    **Type:** BOOLEAN    **Cardinality:** 0.1\n", "### *Using ALE for vertical advection ? (if vertical coordinates are sigma)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.advection.momentum.ALE') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 19. Advection --> Lateral Tracers \n", "*Properties of lateral tracer advection scheme in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 19.1. Order\n", "**Is Required:** TRUE    **Type:** INTEGER    **Cardinality:** 1.1\n", "### *Order of lateral tracer advection scheme in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.advection.lateral_tracers.order') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 19.2. Flux Limiter\n", "**Is Required:** TRUE    **Type:** BOOLEAN    **Cardinality:** 1.1\n", "### *Monotonic flux limiter for lateral tracer advection scheme in ocean ?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.advection.lateral_tracers.flux_limiter') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 19.3. Effective Order\n", "**Is Required:** TRUE    **Type:** FLOAT    **Cardinality:** 1.1\n", "### *Effective order of limited lateral tracer advection scheme in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.advection.lateral_tracers.effective_order') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 19.4. Name\n", "**Is Required:** TRUE    **Type:** STRING    **Cardinality:** 1.1\n", "### *Descriptive text for lateral tracer advection scheme in ocean (e.g. MUSCL, PPM-H5, PRATHER,...)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.advection.lateral_tracers.name') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 19.5. Passive Tracers\n", "**Is Required:** FALSE    **Type:** ENUM    **Cardinality:** 0.N\n", "### *Passive tracers advected*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.advection.lateral_tracers.passive_tracers') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Ideal age\" \n", "# \"CFC 11\" \n", "# \"CFC 12\" \n", "# \"SF6\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 19.6. Passive Tracers Advection\n", "**Is Required:** FALSE    **Type:** STRING    **Cardinality:** 0.1\n", "### *Is advection of passive tracers different than active ? if so, describe.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.advection.lateral_tracers.passive_tracers_advection') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 20. Advection --> Vertical Tracers \n", "*Properties of vertical tracer advection scheme in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 20.1. Name\n", "**Is Required:** TRUE    **Type:** STRING    **Cardinality:** 1.1\n", "### *Descriptive text for vertical tracer advection scheme in ocean (e.g. MUSCL, PPM-H5, PRATHER,...)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.advection.vertical_tracers.name') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 20.2. Flux Limiter\n", "**Is Required:** TRUE    **Type:** BOOLEAN    **Cardinality:** 1.1\n", "### *Monotonic flux limiter for vertical tracer advection scheme in ocean ?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.advection.vertical_tracers.flux_limiter') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 21. Lateral Physics \n", "*Ocean lateral physics*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 21.1. Overview\n", "**Is Required:** TRUE    **Type:** STRING    **Cardinality:** 1.1\n", "### *Overview of lateral physics in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.lateral_physics.overview') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 21.2. Scheme\n", "**Is Required:** TRUE    **Type:** ENUM    **Cardinality:** 1.1\n", "### *Type of transient eddy representation in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.lateral_physics.scheme') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"None\" \n", "# \"Eddy active\" \n", "# \"Eddy admitting\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 22. Lateral Physics --> Momentum --> Operator \n", "*Properties of lateral physics operator for momentum in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 22.1. Direction\n", "**Is Required:** TRUE    **Type:** ENUM    **Cardinality:** 1.1\n", "### *Direction of lateral physics momemtum scheme in the ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.lateral_physics.momentum.operator.direction') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Horizontal\" \n", "# \"Isopycnal\" \n", "# \"Isoneutral\" \n", "# \"Geopotential\" \n", "# \"Iso-level\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 22.2. Order\n", "**Is Required:** TRUE    **Type:** ENUM    **Cardinality:** 1.1\n", "### *Order of lateral physics momemtum scheme in the ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.lateral_physics.momentum.operator.order') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Harmonic\" \n", "# \"Bi-harmonic\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 22.3. Discretisation\n", "**Is Required:** TRUE    **Type:** ENUM    **Cardinality:** 1.1\n", "### *Discretisation of lateral physics momemtum scheme in the ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.lateral_physics.momentum.operator.discretisation') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Second order\" \n", "# \"Higher order\" \n", "# \"Flux limiter\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 23. Lateral Physics --> Momentum --> Eddy Viscosity Coeff \n", "*Properties of eddy viscosity coeff in lateral physics momemtum scheme in the ocean*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 23.1. Type\n", "**Is Required:** TRUE    **Type:** ENUM    **Cardinality:** 1.1\n", "### *Lateral physics momemtum eddy viscosity coeff type in the ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.lateral_physics.momentum.eddy_viscosity_coeff.type') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Constant\" \n", "# \"Space varying\" \n", "# \"Time + space varying (Smagorinsky)\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 23.2. Constant Coefficient\n", "**Is Required:** FALSE    **Type:** INTEGER    **Cardinality:** 0.1\n", "### *If constant, value of eddy viscosity coeff in lateral physics momemtum scheme (in m2/s)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.lateral_physics.momentum.eddy_viscosity_coeff.constant_coefficient') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 23.3. Variable Coefficient\n", "**Is Required:** FALSE    **Type:** STRING    **Cardinality:** 0.1\n", "### *If space-varying, describe variations of eddy viscosity coeff in lateral physics momemtum scheme*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.lateral_physics.momentum.eddy_viscosity_coeff.variable_coefficient') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 23.4. Coeff Background\n", "**Is Required:** TRUE    **Type:** STRING    **Cardinality:** 1.1\n", "### *Describe background eddy viscosity coeff in lateral physics momemtum scheme (give values in m2/s)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.lateral_physics.momentum.eddy_viscosity_coeff.coeff_background') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 23.5. Coeff Backscatter\n", "**Is Required:** TRUE    **Type:** BOOLEAN    **Cardinality:** 1.1\n", "### *Is there backscatter in eddy viscosity coeff in lateral physics momemtum scheme ?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.lateral_physics.momentum.eddy_viscosity_coeff.coeff_backscatter') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 24. Lateral Physics --> Tracers \n", "*Properties of lateral physics for tracers in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 24.1. Mesoscale Closure\n", "**Is Required:** TRUE    **Type:** BOOLEAN    **Cardinality:** 1.1\n", "### *Is there a mesoscale closure in the lateral physics tracers scheme ?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.lateral_physics.tracers.mesoscale_closure') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 24.2. Submesoscale Mixing\n", "**Is Required:** TRUE    **Type:** BOOLEAN    **Cardinality:** 1.1\n", "### *Is there a submesoscale mixing parameterisation (i.e Fox-Kemper) in the lateral physics tracers scheme ?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.lateral_physics.tracers.submesoscale_mixing') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 25. Lateral Physics --> Tracers --> Operator \n", "*Properties of lateral physics operator for tracers in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 25.1. Direction\n", "**Is Required:** TRUE    **Type:** ENUM    **Cardinality:** 1.1\n", "### *Direction of lateral physics tracers scheme in the ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.lateral_physics.tracers.operator.direction') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Horizontal\" \n", "# \"Isopycnal\" \n", "# \"Isoneutral\" \n", "# \"Geopotential\" \n", "# \"Iso-level\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 25.2. Order\n", "**Is Required:** TRUE    **Type:** ENUM    **Cardinality:** 1.1\n", "### *Order of lateral physics tracers scheme in the ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.lateral_physics.tracers.operator.order') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Harmonic\" \n", "# \"Bi-harmonic\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 25.3. Discretisation\n", "**Is Required:** TRUE    **Type:** ENUM    **Cardinality:** 1.1\n", "### *Discretisation of lateral physics tracers scheme in the ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.lateral_physics.tracers.operator.discretisation') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Second order\" \n", "# \"Higher order\" \n", "# \"Flux limiter\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 26. Lateral Physics --> Tracers --> Eddy Diffusity Coeff \n", "*Properties of eddy diffusity coeff in lateral physics tracers scheme in the ocean*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 26.1. Type\n", "**Is Required:** TRUE    **Type:** ENUM    **Cardinality:** 1.1\n", "### *Lateral physics tracers eddy diffusity coeff type in the ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.lateral_physics.tracers.eddy_diffusity_coeff.type') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Constant\" \n", "# \"Space varying\" \n", "# \"Time + space varying (Smagorinsky)\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 26.2. Constant Coefficient\n", "**Is Required:** FALSE    **Type:** INTEGER    **Cardinality:** 0.1\n", "### *If constant, value of eddy diffusity coeff in lateral physics tracers scheme (in m2/s)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.lateral_physics.tracers.eddy_diffusity_coeff.constant_coefficient') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 26.3. Variable Coefficient\n", "**Is Required:** FALSE    **Type:** STRING    **Cardinality:** 0.1\n", "### *If space-varying, describe variations of eddy diffusity coeff in lateral physics tracers scheme*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.lateral_physics.tracers.eddy_diffusity_coeff.variable_coefficient') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 26.4. Coeff Background\n", "**Is Required:** TRUE    **Type:** INTEGER    **Cardinality:** 1.1\n", "### *Describe background eddy diffusity coeff in lateral physics tracers scheme (give values in m2/s)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.lateral_physics.tracers.eddy_diffusity_coeff.coeff_background') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 26.5. Coeff Backscatter\n", "**Is Required:** TRUE    **Type:** BOOLEAN    **Cardinality:** 1.1\n", "### *Is there backscatter in eddy diffusity coeff in lateral physics tracers scheme ?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.lateral_physics.tracers.eddy_diffusity_coeff.coeff_backscatter') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 27. Lateral Physics --> Tracers --> Eddy Induced Velocity \n", "*Properties of eddy induced velocity (EIV) in lateral physics tracers scheme in the ocean*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 27.1. Type\n", "**Is Required:** TRUE    **Type:** ENUM    **Cardinality:** 1.1\n", "### *Type of EIV in lateral physics tracers in the ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.lateral_physics.tracers.eddy_induced_velocity.type') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"GM\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 27.2. Constant Val\n", "**Is Required:** FALSE    **Type:** INTEGER    **Cardinality:** 0.1\n", "### *If EIV scheme for tracers is constant, specify coefficient value (M2/s)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.lateral_physics.tracers.eddy_induced_velocity.constant_val') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 27.3. Flux Type\n", "**Is Required:** TRUE    **Type:** STRING    **Cardinality:** 1.1\n", "### *Type of EIV flux (advective or skew)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.lateral_physics.tracers.eddy_induced_velocity.flux_type') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 27.4. Added Diffusivity\n", "**Is Required:** TRUE    **Type:** STRING    **Cardinality:** 1.1\n", "### *Type of EIV added diffusivity (constant, flow dependent or none)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.lateral_physics.tracers.eddy_induced_velocity.added_diffusivity') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 28. Vertical Physics \n", "*Ocean Vertical Physics*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 28.1. Overview\n", "**Is Required:** TRUE    **Type:** STRING    **Cardinality:** 1.1\n", "### *Overview of vertical physics in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.vertical_physics.overview') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 29. Vertical Physics --> Boundary Layer Mixing --> Details \n", "*Properties of vertical physics in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 29.1. Langmuir Cells Mixing\n", "**Is Required:** TRUE    **Type:** BOOLEAN    **Cardinality:** 1.1\n", "### *Is there Langmuir cells mixing in upper ocean ?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.vertical_physics.boundary_layer_mixing.details.langmuir_cells_mixing') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 30. Vertical Physics --> Boundary Layer Mixing --> Tracers \n", "*Properties of boundary layer (BL) mixing on tracers in the ocean *" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 30.1. Type\n", "**Is Required:** TRUE    **Type:** ENUM    **Cardinality:** 1.1\n", "### *Type of boundary layer mixing for tracers in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.vertical_physics.boundary_layer_mixing.tracers.type') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Constant value\" \n", "# \"Turbulent closure - TKE\" \n", "# \"Turbulent closure - KPP\" \n", "# \"Turbulent closure - Mellor-Yamada\" \n", "# \"Turbulent closure - Bulk Mixed Layer\" \n", "# \"Richardson number dependent - PP\" \n", "# \"Richardson number dependent - KT\" \n", "# \"Imbeded as isopycnic vertical coordinate\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 30.2. Closure Order\n", "**Is Required:** FALSE    **Type:** FLOAT    **Cardinality:** 0.1\n", "### *If turbulent BL mixing of tracers, specific order of closure (0, 1, 2.5, 3)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.vertical_physics.boundary_layer_mixing.tracers.closure_order') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 30.3. Constant\n", "**Is Required:** FALSE    **Type:** INTEGER    **Cardinality:** 0.1\n", "### *If constant BL mixing of tracers, specific coefficient (m2/s)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.vertical_physics.boundary_layer_mixing.tracers.constant') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 30.4. Background\n", "**Is Required:** TRUE    **Type:** STRING    **Cardinality:** 1.1\n", "### *Background BL mixing of tracers coefficient, (schema and value in m2/s - may by none)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.vertical_physics.boundary_layer_mixing.tracers.background') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 31. Vertical Physics --> Boundary Layer Mixing --> Momentum \n", "*Properties of boundary layer (BL) mixing on momentum in the ocean *" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 31.1. Type\n", "**Is Required:** TRUE    **Type:** ENUM    **Cardinality:** 1.1\n", "### *Type of boundary layer mixing for momentum in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.vertical_physics.boundary_layer_mixing.momentum.type') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Constant value\" \n", "# \"Turbulent closure - TKE\" \n", "# \"Turbulent closure - KPP\" \n", "# \"Turbulent closure - Mellor-Yamada\" \n", "# \"Turbulent closure - Bulk Mixed Layer\" \n", "# \"Richardson number dependent - PP\" \n", "# \"Richardson number dependent - KT\" \n", "# \"Imbeded as isopycnic vertical coordinate\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 31.2. Closure Order\n", "**Is Required:** FALSE    **Type:** FLOAT    **Cardinality:** 0.1\n", "### *If turbulent BL mixing of momentum, specific order of closure (0, 1, 2.5, 3)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.vertical_physics.boundary_layer_mixing.momentum.closure_order') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 31.3. Constant\n", "**Is Required:** FALSE    **Type:** INTEGER    **Cardinality:** 0.1\n", "### *If constant BL mixing of momentum, specific coefficient (m2/s)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.vertical_physics.boundary_layer_mixing.momentum.constant') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 31.4. Background\n", "**Is Required:** TRUE    **Type:** STRING    **Cardinality:** 1.1\n", "### *Background BL mixing of momentum coefficient, (schema and value in m2/s - may by none)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.vertical_physics.boundary_layer_mixing.momentum.background') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 32. Vertical Physics --> Interior Mixing --> Details \n", "*Properties of interior mixing in the ocean *" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 32.1. Convection Type\n", "**Is Required:** TRUE    **Type:** ENUM    **Cardinality:** 1.1\n", "### *Type of vertical convection in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.vertical_physics.interior_mixing.details.convection_type') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Non-penetrative convective adjustment\" \n", "# \"Enhanced vertical diffusion\" \n", "# \"Included in turbulence closure\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 32.2. Tide Induced Mixing\n", "**Is Required:** TRUE    **Type:** STRING    **Cardinality:** 1.1\n", "### *Describe how tide induced mixing is modelled (barotropic, baroclinic, none)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.vertical_physics.interior_mixing.details.tide_induced_mixing') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 32.3. Double Diffusion\n", "**Is Required:** TRUE    **Type:** BOOLEAN    **Cardinality:** 1.1\n", "### *Is there double diffusion*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.vertical_physics.interior_mixing.details.double_diffusion') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 32.4. Shear Mixing\n", "**Is Required:** TRUE    **Type:** BOOLEAN    **Cardinality:** 1.1\n", "### *Is there interior shear mixing*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.vertical_physics.interior_mixing.details.shear_mixing') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 33. Vertical Physics --> Interior Mixing --> Tracers \n", "*Properties of interior mixing on tracers in the ocean *" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 33.1. Type\n", "**Is Required:** TRUE    **Type:** ENUM    **Cardinality:** 1.1\n", "### *Type of interior mixing for tracers in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.vertical_physics.interior_mixing.tracers.type') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Constant value\" \n", "# \"Turbulent closure / TKE\" \n", "# \"Turbulent closure - Mellor-Yamada\" \n", "# \"Richardson number dependent - PP\" \n", "# \"Richardson number dependent - KT\" \n", "# \"Imbeded as isopycnic vertical coordinate\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 33.2. Constant\n", "**Is Required:** FALSE    **Type:** INTEGER    **Cardinality:** 0.1\n", "### *If constant interior mixing of tracers, specific coefficient (m2/s)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.vertical_physics.interior_mixing.tracers.constant') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 33.3. Profile\n", "**Is Required:** TRUE    **Type:** STRING    **Cardinality:** 1.1\n", "### *Is the background interior mixing using a vertical profile for tracers (i.e is NOT constant) ?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.vertical_physics.interior_mixing.tracers.profile') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 33.4. Background\n", "**Is Required:** TRUE    **Type:** STRING    **Cardinality:** 1.1\n", "### *Background interior mixing of tracers coefficient, (schema and value in m2/s - may by none)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.vertical_physics.interior_mixing.tracers.background') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 34. Vertical Physics --> Interior Mixing --> Momentum \n", "*Properties of interior mixing on momentum in the ocean *" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 34.1. Type\n", "**Is Required:** TRUE    **Type:** ENUM    **Cardinality:** 1.1\n", "### *Type of interior mixing for momentum in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.vertical_physics.interior_mixing.momentum.type') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Constant value\" \n", "# \"Turbulent closure / TKE\" \n", "# \"Turbulent closure - Mellor-Yamada\" \n", "# \"Richardson number dependent - PP\" \n", "# \"Richardson number dependent - KT\" \n", "# \"Imbeded as isopycnic vertical coordinate\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 34.2. Constant\n", "**Is Required:** FALSE    **Type:** INTEGER    **Cardinality:** 0.1\n", "### *If constant interior mixing of momentum, specific coefficient (m2/s)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.vertical_physics.interior_mixing.momentum.constant') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 34.3. Profile\n", "**Is Required:** TRUE    **Type:** STRING    **Cardinality:** 1.1\n", "### *Is the background interior mixing using a vertical profile for momentum (i.e is NOT constant) ?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.vertical_physics.interior_mixing.momentum.profile') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 34.4. Background\n", "**Is Required:** TRUE    **Type:** STRING    **Cardinality:** 1.1\n", "### *Background interior mixing of momentum coefficient, (schema and value in m2/s - may by none)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.vertical_physics.interior_mixing.momentum.background') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 35. Uplow Boundaries --> Free Surface \n", "*Properties of free surface in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 35.1. Overview\n", "**Is Required:** TRUE    **Type:** STRING    **Cardinality:** 1.1\n", "### *Overview of free surface in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.uplow_boundaries.free_surface.overview') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 35.2. Scheme\n", "**Is Required:** TRUE    **Type:** ENUM    **Cardinality:** 1.1\n", "### *Free surface scheme in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.uplow_boundaries.free_surface.scheme') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Linear implicit\" \n", "# \"Linear filtered\" \n", "# \"Linear semi-explicit\" \n", "# \"Non-linear implicit\" \n", "# \"Non-linear filtered\" \n", "# \"Non-linear semi-explicit\" \n", "# \"Fully explicit\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 35.3. Embeded Seaice\n", "**Is Required:** TRUE    **Type:** BOOLEAN    **Cardinality:** 1.1\n", "### *Is the sea-ice embeded in the ocean model (instead of levitating) ?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.uplow_boundaries.free_surface.embeded_seaice') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 36. Uplow Boundaries --> Bottom Boundary Layer \n", "*Properties of bottom boundary layer in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 36.1. Overview\n", "**Is Required:** TRUE    **Type:** STRING    **Cardinality:** 1.1\n", "### *Overview of bottom boundary layer in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.uplow_boundaries.bottom_boundary_layer.overview') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 36.2. Type Of Bbl\n", "**Is Required:** TRUE    **Type:** ENUM    **Cardinality:** 1.1\n", "### *Type of bottom boundary layer in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.uplow_boundaries.bottom_boundary_layer.type_of_bbl') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Diffusive\" \n", "# \"Acvective\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 36.3. Lateral Mixing Coef\n", "**Is Required:** FALSE    **Type:** INTEGER    **Cardinality:** 0.1\n", "### *If bottom BL is diffusive, specify value of lateral mixing coefficient (in m2/s)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.uplow_boundaries.bottom_boundary_layer.lateral_mixing_coef') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 36.4. Sill Overflow\n", "**Is Required:** TRUE    **Type:** STRING    **Cardinality:** 1.1\n", "### *Describe any specific treatment of sill overflows*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.uplow_boundaries.bottom_boundary_layer.sill_overflow') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 37. Boundary Forcing \n", "*Ocean boundary forcing*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 37.1. Overview\n", "**Is Required:** TRUE    **Type:** STRING    **Cardinality:** 1.1\n", "### *Overview of boundary forcing in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.boundary_forcing.overview') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 37.2. Surface Pressure\n", "**Is Required:** TRUE    **Type:** STRING    **Cardinality:** 1.1\n", "### *Describe how surface pressure is transmitted to ocean (via sea-ice, nothing specific,...)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.boundary_forcing.surface_pressure') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 37.3. Momentum Flux Correction\n", "**Is Required:** FALSE    **Type:** STRING    **Cardinality:** 0.1\n", "### *Describe any type of ocean surface momentum flux correction and, if applicable, how it is applied and where.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.boundary_forcing.momentum_flux_correction') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 37.4. Tracers Flux Correction\n", "**Is Required:** FALSE    **Type:** STRING    **Cardinality:** 0.1\n", "### *Describe any type of ocean surface tracers flux correction and, if applicable, how it is applied and where.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.boundary_forcing.tracers_flux_correction') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 37.5. Wave Effects\n", "**Is Required:** TRUE    **Type:** STRING    **Cardinality:** 1.1\n", "### *Describe if/how wave effects are modelled at ocean surface.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.boundary_forcing.wave_effects') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 37.6. River Runoff Budget\n", "**Is Required:** TRUE    **Type:** STRING    **Cardinality:** 1.1\n", "### *Describe how river runoff from land surface is routed to ocean and any global adjustment done.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.boundary_forcing.river_runoff_budget') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 37.7. Geothermal Heating\n", "**Is Required:** TRUE    **Type:** STRING    **Cardinality:** 1.1\n", "### *Describe if/how geothermal heating is present at ocean bottom.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.boundary_forcing.geothermal_heating') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 38. Boundary Forcing --> Momentum --> Bottom Friction \n", "*Properties of momentum bottom friction in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 38.1. Type\n", "**Is Required:** TRUE    **Type:** ENUM    **Cardinality:** 1.1\n", "### *Type of momentum bottom friction in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.boundary_forcing.momentum.bottom_friction.type') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Linear\" \n", "# \"Non-linear\" \n", "# \"Non-linear (drag function of speed of tides)\" \n", "# \"Constant drag coefficient\" \n", "# \"None\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 39. Boundary Forcing --> Momentum --> Lateral Friction \n", "*Properties of momentum lateral friction in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 39.1. Type\n", "**Is Required:** TRUE    **Type:** ENUM    **Cardinality:** 1.1\n", "### *Type of momentum lateral friction in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.boundary_forcing.momentum.lateral_friction.type') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"None\" \n", "# \"Free-slip\" \n", "# \"No-slip\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 40. Boundary Forcing --> Tracers --> Sunlight Penetration \n", "*Properties of sunlight penetration scheme in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 40.1. Scheme\n", "**Is Required:** TRUE    **Type:** ENUM    **Cardinality:** 1.1\n", "### *Type of sunlight penetration scheme in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.boundary_forcing.tracers.sunlight_penetration.scheme') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"1 extinction depth\" \n", "# \"2 extinction depth\" \n", "# \"3 extinction depth\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 40.2. Ocean Colour\n", "**Is Required:** TRUE    **Type:** BOOLEAN    **Cardinality:** 1.1\n", "### *Is the ocean sunlight penetration scheme ocean colour dependent ?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.boundary_forcing.tracers.sunlight_penetration.ocean_colour') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 40.3. Extinction Depth\n", "**Is Required:** FALSE    **Type:** STRING    **Cardinality:** 0.1\n", "### *Describe and list extinctions depths for sunlight penetration scheme (if applicable).*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.boundary_forcing.tracers.sunlight_penetration.extinction_depth') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 41. Boundary Forcing --> Tracers --> Fresh Water Forcing \n", "*Properties of surface fresh water forcing in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 41.1. From Atmopshere\n", "**Is Required:** TRUE    **Type:** ENUM    **Cardinality:** 1.1\n", "### *Type of surface fresh water forcing from atmos in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.boundary_forcing.tracers.fresh_water_forcing.from_atmopshere') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Freshwater flux\" \n", "# \"Virtual salt flux\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 41.2. From Sea Ice\n", "**Is Required:** TRUE    **Type:** ENUM    **Cardinality:** 1.1\n", "### *Type of surface fresh water forcing from sea-ice in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.boundary_forcing.tracers.fresh_water_forcing.from_sea_ice') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Freshwater flux\" \n", "# \"Virtual salt flux\" \n", "# \"Real salt flux\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 41.3. Forced Mode Restoring\n", "**Is Required:** TRUE    **Type:** STRING    **Cardinality:** 1.1\n", "### *Type of surface salinity restoring in forced mode (OMIP)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.boundary_forcing.tracers.fresh_water_forcing.forced_mode_restoring') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### \u00a92017 [ES-DOC](https://es-doc.org) \n" ], "cell_type": "markdown", "metadata": {} } ], "metadata": { "kernelspec": { "display_name": "Python 2", "name": "python2", "language": "python" }, "language_info": { "mimetype": "text/x-python", "nbconvert_exporter": "python", "name": "python", "file_extension": ".py", "version": "2.7.10", "pygments_lexer": "ipython2", "codemirror_mode": { "version": 2, "name": "ipython" } } } }
gpl-3.0
greenelab/GCB535
22_Prelab_Pharmacology/Prelab_pharmacology.ipynb
1
2760
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Pre-lab: Bioinformatics in Pharmacology" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## I. Recorded Lecture" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Head to Canvas and review the slides and watch the recorded lecture \"Bioinformatics in Pharmacology\" (recorded by John Hogenesch). Then, answer the following questions. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Q1. What gene has the most publications associated with it (as of 2007)? Do most genes have a lot of publications assoicated with them? Why do you think that is?" ] }, { "cell_type": "raw", "metadata": { "collapsed": true }, "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Q2. Describe two genetics-based strategies that could be used to identify new, potential therapeutic drug targets for disease." ] }, { "cell_type": "raw", "metadata": {}, "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Q3. What is the Z' factor? In what context is it utilized, and how?" ] }, { "cell_type": "raw", "metadata": {}, "source": [] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "## II. Cell-based screening" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "For our activity for this unit, we have decided to focus on the analysis of data from high-throughput cell screening data. In industry, this is routinely done, for drug discovery, target identification, lead compound optimization, assay development, and more. On Canvas, we have provided you two papers (as some brief overview) to describe the process, features, misconceptions, and examples. See Szymański et al (2012) and Macarron et al (2011). \n", "\n", "However, the analysis of these data requires data management and analytical processing at large input: hundreds, perhaps thousands of plates to analyze, and something that you can not readily do in excel, even though many of the calculations are relatively straight forward." ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.10" }, "name": "Online_database_in_class.ipynb" }, "nbformat": 4, "nbformat_minor": 0 }
bsd-3-clause
rjenc29/numerical
notebooks/principal_component_analysis.ipynb
1
348979
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Principal Component Analysis" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**TL;DR** This notebook provides an overview of Principal Component Analysis and its application." ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from sklearn.datasets import load_iris\n", "import pandas as pd\n", "import numpy as np\n", "from sklearn.preprocessing import StandardScaler\n", "from sklearn.decomposition import PCA\n", "from pprint import pprint\n", "import matplotlib.pyplot as plt\n", "import matplotlib\n", "%matplotlib inline\n", "import ipywidgets as widgets\n", "from scipy.optimize import fmin\n", "\n", "import seaborn as sns\n", "sns.set()\n", "\n", "matplotlib.rcParams['figure.figsize'] = (16, 8)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Principal Component Analysis is fuundamentally a mechanism to reduce the dimensionality of large datasets will minimising loss of information. There are a number of applications of PCA by extension - classification / noise filtration / visualisation and more.\n", "\n", "> To build an intuition for how / why PCA works, we're going to use the IRIS dataset, which comprises a collection of measurements of petal and sepal widths and lengths along with which category each measured plant belongs to.\n", "\n", "> There are many excellent tutorials on applying PCA to the IRIS dataset an unsupervised classification model; we're going to instead use the data to try to build some intuition about how and why PCA works.\n", "\n", "Let's take a look at the data." ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": true }, "outputs": [], "source": [ "data_set = load_iris()\n", "data = data_set.data\n", "target = data_set.target" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style>\n", " .dataframe thead tr:only-child th {\n", " text-align: right;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: left;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>sepal length (cm)</th>\n", " <th>sepal width (cm)</th>\n", " <th>petal length (cm)</th>\n", " <th>petal width (cm)</th>\n", " <th>species</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>5.1</td>\n", " <td>3.5</td>\n", " <td>1.4</td>\n", " <td>0.2</td>\n", " <td>setosa</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>4.9</td>\n", " <td>3.0</td>\n", " <td>1.4</td>\n", " <td>0.2</td>\n", " <td>setosa</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>4.7</td>\n", " <td>3.2</td>\n", " <td>1.3</td>\n", " <td>0.2</td>\n", " <td>setosa</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>4.6</td>\n", " <td>3.1</td>\n", " <td>1.5</td>\n", " <td>0.2</td>\n", " <td>setosa</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>5.0</td>\n", " <td>3.6</td>\n", " <td>1.4</td>\n", " <td>0.2</td>\n", " <td>setosa</td>\n", " </tr>\n", " <tr>\n", " <th>5</th>\n", " <td>5.4</td>\n", " <td>3.9</td>\n", " <td>1.7</td>\n", " <td>0.4</td>\n", " <td>setosa</td>\n", " </tr>\n", " <tr>\n", " <th>6</th>\n", " <td>4.6</td>\n", " <td>3.4</td>\n", " <td>1.4</td>\n", " <td>0.3</td>\n", " <td>setosa</td>\n", " </tr>\n", " <tr>\n", " <th>7</th>\n", " <td>5.0</td>\n", " <td>3.4</td>\n", " <td>1.5</td>\n", " <td>0.2</td>\n", " <td>setosa</td>\n", " </tr>\n", " <tr>\n", " <th>8</th>\n", " <td>4.4</td>\n", " <td>2.9</td>\n", " <td>1.4</td>\n", " <td>0.2</td>\n", " <td>setosa</td>\n", " </tr>\n", " <tr>\n", " <th>9</th>\n", " <td>4.9</td>\n", " <td>3.1</td>\n", " <td>1.5</td>\n", " <td>0.1</td>\n", " <td>setosa</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " sepal length (cm) sepal width (cm) petal length (cm) petal width (cm) \\\n", "0 5.1 3.5 1.4 0.2 \n", "1 4.9 3.0 1.4 0.2 \n", "2 4.7 3.2 1.3 0.2 \n", "3 4.6 3.1 1.5 0.2 \n", "4 5.0 3.6 1.4 0.2 \n", "5 5.4 3.9 1.7 0.4 \n", "6 4.6 3.4 1.4 0.3 \n", "7 5.0 3.4 1.5 0.2 \n", "8 4.4 2.9 1.4 0.2 \n", "9 4.9 3.1 1.5 0.1 \n", "\n", " species \n", "0 setosa \n", "1 setosa \n", "2 setosa \n", "3 setosa \n", "4 setosa \n", "5 setosa \n", "6 setosa \n", "7 setosa \n", "8 setosa \n", "9 setosa " ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df = pd.DataFrame(np.array(data), columns=data_set.feature_names)\n", "df['species'] = data_set.target_names[target]\n", "df.head(10)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Data pre-processing: de-meaning" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The first step we're going to take is to pre-process the data by making it mean-centred. We'll come back to why this is necessary (and it is) but for now, let's look at how to achieve it and verify that doesn't affect the variance of our dataset in any way." ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style>\n", " .dataframe thead tr:only-child th {\n", " text-align: right;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: left;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>sepal length (cm)</th>\n", " <th>sepal width (cm)</th>\n", " <th>petal length (cm)</th>\n", " <th>petal width (cm)</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>-0.743333</td>\n", " <td>0.446</td>\n", " <td>-2.358667</td>\n", " <td>-0.998667</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>-0.943333</td>\n", " <td>-0.054</td>\n", " <td>-2.358667</td>\n", " <td>-0.998667</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>-1.143333</td>\n", " <td>0.146</td>\n", " <td>-2.458667</td>\n", " <td>-0.998667</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>-1.243333</td>\n", " <td>0.046</td>\n", " <td>-2.258667</td>\n", " <td>-0.998667</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>-0.843333</td>\n", " <td>0.546</td>\n", " <td>-2.358667</td>\n", " <td>-0.998667</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " sepal length (cm) sepal width (cm) petal length (cm) petal width (cm)\n", "0 -0.743333 0.446 -2.358667 -0.998667\n", "1 -0.943333 -0.054 -2.358667 -0.998667\n", "2 -1.143333 0.146 -2.458667 -0.998667\n", "3 -1.243333 0.046 -2.258667 -0.998667\n", "4 -0.843333 0.546 -2.358667 -0.998667" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "def demean(series):\n", " return series - series.mean()\n", "\n", "demeaned_df = df[data_set.feature_names].apply(demean)\n", "demeaned_df.head()" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "sepal length (cm) 0.685694\n", "sepal width (cm) 0.188004\n", "petal length (cm) 3.113179\n", "petal width (cm) 0.582414\n", "dtype: float64" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.var()" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "sepal length (cm) 0.685694\n", "sepal width (cm) 0.188004\n", "petal length (cm) 3.113179\n", "petal width (cm) 0.582414\n", "dtype: float64" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "demeaned_df.var()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Visualising the input data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "It's much easier to build an intuition for PCA when working with 2 dimensions. So we'll extract the petal measurements from the mean-centred data and plot one against the other." ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "<matplotlib.text.Text at 0x11015c828>" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeQAAAHiCAYAAAA597/kAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xt4nHWd///Xfd8zk5lk0jYtSQ/0QKlALdiyCFjxBwii\nIoqKLIe1Flm+FwjLScFSwQIVy6EgFwqVoywLLC6Cclylu5xWVqBVuRaUgxwqPdMmTZOmk0kyM/d9\n//6YZJpJZjKT0+STyfNxXbvSyX34fJI2r7nved/vj+X7vi8AADCi7JEeAAAAIJABADACgQwAgAEI\nZAAADEAgAwBgAAIZAAADjEggNzY26uijj9a6detG4vQAABin5IGcTCZ11VVXKRwOl/rUAAAYq+SB\nvHLlSp1++umqq6sr9akBADBWSQP5scce08SJE3XkkUcWvQ+NxAAAY4FVytaZixYtkmVZsixL77zz\njvbZZx/dcccdqq2t7XO/hobdJRph6dTWVjOvUaZc51au85LKd27Ma/Spra0uuE2gBOPIeOihhzL/\nvXjxYi1fvrxgGAMAMBbw2BMAAAYo6RVydw8++OBInRoAAONwhQwAgAEIZAAADEAgAwBgAAIZAAAD\nEMgAABiAQAYAwAAEMgAABiCQAQAwAIEMAIABCGQAAAxAIAMAYAACGQAAAxDIAAAYgEAGAMAABDIA\nAAYgkAEAMACBDACAAQhkAAAMQCADAGAAAhkAAAMQyAAAGIBABgDAAAQyAAAGIJABADAAgQwAgAEI\nZAAADEAgAwBgAAIZAAADEMgAABiAQAYAwAAEMgAABiCQAQAwAIEMAIABCGQAAAxAIAMAYAACGQAA\nAxDIAAAYgEAGAMAABDIAAAYgkAEAMACBDACAAQhkAAAMQCADAGAAAhkAAAMQyAAAGIBABgDAAAQy\nAAAGCJT6hK7ratmyZfrwww9lWZZ+9KMfaf/99y/1MAAAMErJr5BffPFFSdLDDz+s7373u7rllltK\nPQQAAIxj+b7vl/qkqVRKgUBAjz/+uNasWaOVK1eWeggAABil5LesJSkQCGjp0qV69tlndeuttxbc\nvqFhdwlGVVq1tdXMa5Qp17mV67yk8p0b8xp9amurC24zYkVdK1eu1H/913/pyiuvVDweH6lhAABg\nhJIH8hNPPKG77rpLkhSJRGRZlmybYm8AwNhW8lvWX/jCF3T55Zdr0aJFSqVSuuKKKxQOh0s9DAAA\njFLyQK6srNTPfvazUp8WAACjca8YAAADEMgAABiAQAYAwAAEMgAABiCQAQAwAIEMAIABCGQAAAxA\nIAMAYAACGQAAAxDIAAAYgEAGAMAABDIAAAYgkAEAMACBDACAAQhkAAAMQCADAGAAAhkAAAMQyAAA\nGIBABgDAAAQyAAAGIJABADAAgQwAgAEIZAAADEAgAwBgAAIZAAADEMgAABiAQAYAwAAEMgAABiCQ\nAQAwAIEMAIABCGQAAAxAIAMAYAACGQAAAxDIAAAYgEAGAMAABDIAAAYgkAEAMACBDACAAQhkAAAM\nQCADAGAAAhkAAAMQyAAAGIBABgDAAAQyAAAGIJABADAAgQwAgAECpTxZMpnUFVdcoS1btiiRSOi8\n887T5z73uVIOAQAAI5U0kJ966ilNmDBBN910k5qbm/X1r3+dQAYAQCUO5OOPP15f/OIXJUm+78tx\nnFKeHgAAY1m+7/ulPmksFtN5552nU089VSeeeGKpTw8AgHFKeoUsSR999JHOP/98ffOb3yw6jBsa\ndg/zqEqvtraaeY0y5Tq3cp2XVL5zY16jT21tdcFtShrIO3bs0FlnnaWrrrpKn/70p0t5agAAjFbS\nx57uvPNOtbS06Pbbb9fixYu1ePFitbe3l3IIAAAYqaRXyMuWLdOyZctKeUoAAEYFGoMAAGAAAhkA\nAAMQyAAAGIBABgDAAAQyAAAGIJABADAAgQwAgAEIZAAADEAgAwBgAAIZAAADEMgAABiAQAYAwAAE\nMgAABiCQAQAwAIEMAIABCGQAAAxAIAMAYAACGQAAAxDIAAAYgEAGAMAABDIAAAYgkAEAMACBDACA\nAQhkAAAMQCADAGAAAhkAAAMQyAAAGIBABgDAAAQyAAAGIJABwHAp11NLPKGU6w3Z/oM9JoZeYKQH\nAADIzfN9vb1+p+p3tinlewpYtuomRnT0pOiA96+tCUuy1NCUfcx5+0yUbVnDOyH0iStkADDU2+t3\nqr65TbZjKRRwZDuW6pvb9Mb79QPe/411jfrLuh29jvn2+p3DPBsUQiADgIFSrqf6nW29rlpty9LW\nHa0FbzXn2t/1fMXakorFk/I8P+uY9TvbuH09wghkADBQvCOllJ87IF3XV1si1e/9k0lXnufL9X0l\nU9lfS/lewWNieBHIANCHUhY/tSdS2tIYU3sipcqKgAJW7l/RjmMpEuq7BCjX/sGgI9u25FiWgoHs\nrwUsu+AxMbz47gNADvkKqoaj+CnleVq9ZoM21ceUcj0FHFsz6qKaOblaO1ras87n+b6m7VWlgNP3\n9VTASY+3vnnPbWvHthSNBGVJsu3sY9ZNjBQ8JoYX330AyCFfQdVwFD+tXrNBmxtichxbFaGAHMfW\n5oaYNmxrUd2EiDzXVyLlynN91U2IaMF+dUUdd94+E3vtv2DOJM2fs1evY87bZ+KQzwv9wxUyAPSQ\nKYhyehdU1e9sU2qmN2RXk+2JlDbVp8M461y2rc0Nrfr8YTM1d2aN2hIpRUIBBRw76+q2L7Zl6aDZ\nk5Sa6WXt3zXHnq9hZPFTAIAe+iqoGurip8bd7Xk/n065nppiHQo4tqojoQEHZ679B3tMDD1+EgDQ\nQ/eCKNfz1d6Rktv5mFBX8VOx3a8KFYVNqg7nDcWAY6smWtGvwrJitx1tnbpG23gHglvWANBDwEl3\ntHpjXaNibelndu3Ogqj5+07U3zY29eh+FZHkq6Gpvd8dscKhgGbURbW5ISbb3hPMnudpel1UH2zZ\nVVSnrmKL0EpZrDYURtt4B4MrZADIyZIlyersn2H5kiVpw/ZYr2Kvv6zboTfWNQ64I9bxC2dpem1U\nruupI5GS63qaXhvVrMnRojt1FVuEVspitaEw2sY7GFwhA0APKddTQ1Ob9q6NyvPSTTSCAVu+pPc2\nNumAmTXpdJbkeb5i8aR8K31727GtTEcsy1fm6lrKXxQWsG195YjZak+k1BTrUE20QgHH1kuvb81Z\nWLZ1R6umjA9nFWgVU4RWymK1oTDaxjtY5TMTABgi3Yu6bNtSRSjdUCOZdJVyvawuV4mUJ9f3O4Pb\nlTTwjljhUEBTJ1YpHAr0q1NXsUVopSxWGwqjbbyDxRUyAPSQr0tWMOgo4NhZXa5CAVuOZcm3pGDA\nyWxn25YsXwPuiNWfTl19bdv9fMVuZ4rRNt7B4goZAHro6nLl+X7W65YlzaiLZm5XS+kr6GhlUNFI\nUI6d3RErWhnsV0es7pXE+cbQ1alLUlHbdj9fsduVSqHKadPGO9xG5O3FG2+8oZ/85Cd68MEHR+L0\nAFDQvH0mSjmqe+cumKa/bciusp4/Zy/1rLJeMGeS8lVZ95SvknjurBpJ6lXR7fm+Xnp9a8Ftc50v\n37xK2amrP+s8mzDeUil5IN9zzz166qmnFIlESn1qAChaX12u+tP9qpiOWFmVxErf9q5vbst5rr9t\nbNL2ncVtm+t8fc2rVPLN94336zV9YqVx4y2Vks9q5syZuu2220p9WgAYkHwdrYrtflWoI1Zf6x53\nrVHcdQxJRW9bzOITI9Gpa6DrPI+FzmIlv0L+4he/qM2bN/drn9ra6mEazchiXqNPuc6tXOclmT+3\nXbEORSpDCgWdXl9LJF1VRcMaF63I2laSqqPhPrc1VX/mO9aMihK1hobdIz2EIVdbW828RplynVu5\nzksyY24p11O8o3N9425Xd12vhwK22uIJdTiWPM9XIuUpFEgvIOG5vlpj7WqNtWdtGxof0e5Ye9Z5\nem7b83wjLdd8e6qsDKk11q6OtsQIjHB4FfPGcFQEMgCMNn0VavUsCmvtSGhXLKnWtqRc35djpSu3\nP7HvpF5tOuMdSUW9il7nqq2J9NrWhBaTub4P8Y6kIuE9Veld2xWzznM5I5ABYBjkK1xa/1GLKiPB\nrNebYwk17W5XKBiQfMm3JF/Shm0tqqoMZW0bCQcVb0/Kc/2s4PV9X/XN7b2Lvdbv1EGzJ43I90DK\n/X2IhANqa0+qsiKYNYcF+9WpsTE2YmMdaSMSyNOnT9cjjzwyEqcGgGGXr+WjfGlTfUz7d2u96Xq+\nWttTqggEtO+08XI9T8GAI0vSuxubtP/MUNZzz45tqTIc1Py5NUq6XqY5Rr42myPZYjLf98GxbVVW\nBHXEJ6Zk5tCfdZ7L1di9NwAAwyRfy8dEyutsvelmXuveZtPzfIVDATm2lXPbLq7rK+l6mapjU1tM\nFhpX9zmAW9YAMOTytXwMBezO1pt7KozztdnMtW2XgbbOLDVTx2Uq3pYAGHPytWzM9Xp/tu2Sr+Wj\nOltvWj1uQedqs5lrWyl38dNItZgcbOtLSX3uP9bw9gTAmNGfyufamoh6tsPMt22uaub+tN7M12Yz\n17b5ip9K2WIy3/cxV0V3rnHV1oTl++rV/jNX68yxxPL9nm/hzDPSzxEOBxOejxwO5TovqXznVq7z\nknrP7c0PG9MVv1b24zbxtmS68rnb61saYvIlTa+NFtzW833VTYjkrGbO1zqzP202e77e18+smFad\ng5Xv+5jve9BzXH/b2JRz//1nTezVOrNcFPMcMresAYwJ+Vo2dlU+d7808TxfsXhSsbakXG/PF/zO\nbdXjMqZ768qeBtt6s6/XcxnuFpPFtPrsa1xS/vaffbXOHAsIZABjQn8qnxMpL1P13LMiOr1t7+OM\nZDVzKQ22oruv/V3XHxPfw3wIZABjQjGVz67nq70jJce25FhWZ5GVpV2xDiVTnoJBp3Pb3scJWLaC\njj1qipQKFWTlM9jK6b7271k9PtaM3ZkDGFO6Kn57fnYpS5peW6WPGlsVa0vK83zZtqWOREot8Q7V\nN8Yz7SwnjAtp9tRxWY06pHRzj7aOpF756zaj2lbm0p+CrFzyfR+Lrejua/+x3jpz7M4cwJgzb5+J\nqpsQkef6SqRceW66EGnWlHGyJFmdnw1bfvpxnETSk+zOK2XbUrzdld9ZvNT9GG3tSUXCgXR7yIAj\n27FU39ymt9fvHNH55pLVynKAY833fSy2ojvf/gv2qxvotMoCV8gAxoxci91L6cdv9q6Ndn5mnL6F\nu60prmAwoL0mhOV76duptmVpS0NcXzhslubOrFFbIqWgY+uVv27r1fZxpNtW5pKvlWV/x5rr+9if\nOebbn9aZADDGdK9E7l5kZNuWKkKO2hIpeZ4vv/P/ggE7c3s15XpqinVkjpFIeUa2rcxlqFtsDrai\ne7grwkebglfIra2tWrt2rTZs2CDLsjRr1iwdccQRqqgYmwtIAygvuYqMouF01yzLsuTYvR9BqolW\n9Ll/ZlvD2kOOprGORXnflrS1temmm27SSSedpMcff1zbtm1TQ0ODnnjiCZ144om66aab1NraWsqx\nAkC/xdoSendzk2LdFr1vT6S0pTGm9kQqZ3vHQMBWTTSkUCB9VZxMpReA8DxPM+qiCncLroG2rew+\nhi79qXweyLaSBjTWgVZko3/yvh1asmSJTj31VF166aWye7xD9DxPL774opYsWaLbb7992AcJAP2V\ncF397OHX9N7GJrmuL8extHdtlSbXRLSlIa6Um/68dEZdVF/41ExJyqo8PvrgvfWnv9Vrc0Mss/+M\n2j3bdteftpUpz9PqNRu0qT6WGcP0uqhmTY5qR3NHwcpnz/f1f+9u13sf7ixq254V1bU1YdWOj/Rq\n05lrrIOtyEb/5G2d6fu+rALf8GK2GQrl2NavXNsVluu8pPKdW7nO697/fEvbm9qyOm3tbGmX41ja\nf0ZN5jXP8zS9NqqvHDE7Z3tHz/XV2pFSVUW6irrY9pD5rjb/85UPtbkhlnWh09TSrnDY0YI5tXvG\nlacV5ZsfNqot5au1taOobfO1uOwqSutrrANpkTkY5fp3USqudWbeK+SuoN25c6d++9vfateuXVlf\nv+CCC0oSxgDQX7G2hDY1xBSuCMr10p22PN9X0k1XUSdTXqa5h23b2lSfvnUcDgVUHQllVSPbAUvj\nA6HMsfuqRu7eHjKX9kRKm+pjcrrt6/u+EklP7UlXiZSnUNe4clQ+d41r/PhI1nH72jZfRfXcmTV9\njnWoKrJRvILfzbPPPltvv/12KcYCAENiS2OrXDf75l/K9STfl+/7au9I9vpaU2zPFedQVyN3adzd\nnmMZR1+e0m0629oT2V/rca7+jGs4W1yaVj1eLooqqbv++uuHexwA0EvK9RTvSKWrg/txNbb3pCo5\nPa7sAo4tWZYsSeGKYK+v1UQrMucLBexhqUaeVB3OsXCEJVuWZEuRcPYVa89z9adKejhbXFKRPTwK\nfkePO+44Pfroo1q4cKEcx8m8Pm3atGEdGICxa7DFRNFISDNqo9re1JZ5zbYsBR1LTo9e1J7naXpd\nVB9s2ZV1vnhHUpFwUI7d//aQ+YRDAc2oi2Z9hmxZlkJBW+Gwk7ldne9cXRXdbanCVdLD2eJyMN8D\n5FcwkHfv3q27775bNTV7iiAsy9Lzzz8/rAMDMHZltXdU+kKgvrlNWr+z6GKixV+aq1//z7qsKut5\ns2tyVlnPnBztdb5IOKC29qQqK4IFq5H74/iFs3pVWc+bPTFvlXVP8/aZqK1NbXqvpb2obYut/s5l\nsPujfwoG8n//93/r1VdfVTgcLsV4AIxxQ1VMFHIcXXz6J/XhxkZta4prSk2lop1FTO2JlJpiHaqJ\nVijg2Hrp9a29zufYtiorgjriE1OUdL1+t4fMJ2Db+soRs7PG0PVcczFV2rZl6R8OmKwp48NFbTsc\nLS4xPAoG8owZM7Rr1y4CGUBJdBUTdV2pdtdVTNRXdXBP0UhIH+uxfTgU0NSJ6V9/LfFEn+dLul6/\nzles7mPoUqhKuxTbDsf+KE7BQLYsS1/+8pe13377KRgMZp49fuCBB0oxPgBjTPdiIs/zM48C2bbV\nZzHRQAvAChUvda1x3N/jDreBzhfmKhjI5557binGAQCS0ldjtTUR/WXdDsXiycxaxNHKoObP2atX\n+PRVAFbs+XIVL7mep7aOlHFrHPenUxdGl4Jvq2bNmqXf//73OvzwwzV16lT9+te/1r777luKsQEY\ns3z5kvzOfPEtye98vafhWt+3rT2lSDho3BrHb6/fqY8a48aNC4NXMJC///3va8aMGZKkyZMn69BD\nD9Vll1027AMDMDalXE8NTe2aXhvVftMnaN9p47Tf9AmaXhtVQ1N2Y41MAZiVuwCsa23jQrqKl446\neJo+feAUHfGJKaqsyH7kqftxR2qRhULzZfGH0a1gIO/atUunn366JCkUCunUU09VU1PTsA8MwNjU\nvUOUY1sKhwKZYOx3N6r2ZM6v5WP6Gsd0zypvBQM5HA7r97//febPr776qiKRSB97AMDADWk3qnAw\n59eGcgylZOq4MDQK/vSuueYaff/738/cpp46dapuuummYR8YgNFvIJXA3Yus4u1J1TfFVVdTqcpw\nMNMhqvtxu7b1fSmZdBUMOrKs9Lq/3TtyddeeSKlxd7smVYez1jYu9rgjVdXcn05dGH0KBvLcuXP1\nn//5n2pqalIwGFQ0Gi3FuACMYoNtfbnP3tV6cPXf1BTrkO9LliXVRCv0w7MOTS8J2O24e02oUGtb\nUpu7db6aURfV3AW92/vmWou4az3k9zY29zhuWK1tCW2uby143FLqT6cujC5510O+6KKLdNppp+kz\nn/lMzh3/53/+R7/5zW902223DesAJdZDHk3KdV5S+c5tOOY12HV0l//rWjU0t8myrUzvA9/zFY0E\n9cWFs7KOu7khJkvS1ElVe5ZVtKS6CREdc/g+WXPLtRax53kKOrZm7z2+6OMOx1rA/VFbW62Ptu0q\nu+5Z5fpvTBrkesjXX3+9Vq1apRUrVmju3LmaMmWKHMfRli1b9Oabb+q4445jFSgAvQy29eWOXXHV\n72rLrBncte665VhqinWotS2l6sr0Z8Ou5yvWlpTlS5okVYT2dNvqWWWday3iNEubGmKaNWWc7IBV\n1HFNWAuY7lnlJ28gV1VVaenSpTr//PO1Zs0abdiwQbZt6+CDD9a1116rysrKUo4TwCgx2NaX721u\nkjz1Kjn108sZa0dTTNWV6cVukklXnpe+yZdMeVnB2bPKumst4p6B7HqeXNdXa0dK4wOh4o7bz/ad\nQDEKfoYcjUZ13HHHlWIsAAwzkKKsgVYCdxVazayrzvn8h5Vezlh71UTler6SSVe2k26paXV+8NYc\n61A0HFSgcz3jSDio1li74h0pja8M5ZyDY9tyHEtVFXvGFQw6meP2LAwbzmpm2mGObdTIA+hlMEVZ\n/V1HN1ehVcixlUhlX816rqcJVSHtau3Qlh0xeZ4v27bUkUipJdahbU3xzGs10ZCO+oe99ea6hqwW\nk6GArUTKzVrbXfI1ozaadYvdsS1FI0FZkuwhXA85n8EWwaE88BYMQC+DbUeZqxVl3YTclcCr12zQ\n5ob0Z7sVoYAcx9bH9h6nUMBO305OeXI9T7UTIjr1uP1kSZkrYsuXWmIJdaQ8WZYl27JkWZbiHSn9\n+e3tvVpMzpo6TqGAI9f11JFIyXU9Ta+NavGX5vYa74I5kzR/zl5FzWGwhqL9J0a/oq6Q4/G4du3a\npe4F2dOmjWzpP4DhMRTrERe7jm6+QqtQKKgDZtboxM/M0pYdrZozbbwmRMN66fWt2rs2Ks/zMwVb\n25riCgUD2mt8WL7vy+msoN68o1UH9nheN+DYmj11vA6fV6fdbcmstYjzjbeYNYoHY6jWf8boVzCQ\nV61apXvvvVc1NTWZ1yzL0vPPPz+sAwMwMoZyPeJClcD5Cq0kdb7u6FMfnyope91i27ZUEXLUHOtI\n36a2JN/3FQykx5xMuXJdX/G2hHoeOuV78iVNnVhV1HiHu5p5qNd/xuhVMJAfe+wxvfDCC1mBDKB8\nlbI946TqcN6rv4BjqyZa0ee4ouFguvjKsjJXxtKeQq3KSEgdHYlhncNg0Q4TXQreB6mrq1N1deEH\nmgGYJ+V66SvLfqwC1FWU5fm52zO2J1J6d3OTYm3ZQdeeSGlLY0zt3RY4yPVa99claUZdVJ7ndd6G\nTj9u5HmeZtRFFXDszPi7j8vzfLUn3EwBVyhgZRVfdRVqBQLZt4FNbDFZ6Ptt0lgxvPK+9Vq1apUk\nady4cTrttNN01FFHZVUmXnDBBcM/OgADMtiq3Xn7TJR67D9pfIXWvLVNv/6fD+S6vhzH0ozaqP7p\ni/vrhT9tzqqSnl5XJd+XtjRkt5087vAZeu6Pm7K3ra2SY1vasqM1c9zptVHNqKvSS69vzRr//jMn\naP1HLVn7z542Tr7va0tDvFc7zPpdHaOixWSu77epY8Xwyds6syuQ8yllIJdjK7VybRFXrvOSRtfc\n+tO6sq95dS9ouv+Zd3K2nfR9acqkyqzXN9W3yPItTZ9cnbVtLJ5UtDKYte3OlnZVhh3NmzVJrR0p\nVVUEtL0pLl/S9No9vfM931e8LanKSDC94EPKVTDQueDDhIg+tvd4NcU6sgq1RluLyWILyEbT38X+\nKNd5SYNsndkVuI8//rhOOumkrK899NBDgxwagOEylFW7XQVNsbaENjXEsj6nTbNUvyu9GlPXl1Ku\nr7YOT/LTXbC69vElbd0Z18ciEzKflXm+r0TKU6LFlS9pfFVInucrFk/Kt9ItLLvWQvZ9aVN9TAfM\nrJFjW3K6fbZav7NNc2fWFF2oZarRNFYMvbyB/G//9m+KxWJ6+OGHtWXLlszrruvq6aef1qJFi0oy\nQAD9MxxVu1saO28n98jjpOtJntLHzLSdTGUekUwkXEXC6Z06Eq58z1cylVLA6exF7fryfV+e76ut\nPalgtEKJlCfX96XOq+Cu4E0mXaVcr1cry8HMCzBJ3rfJs2bNyvl6KBTSDTfcMGwDAjA4Q1m121UU\nNnlCRI7TdaXqK+V66ceMHFuylXXMYDAgy7JkyVIg4CiZ8uT5vipCjizbUjCwZ1vH6ayQtiyFQgG1\nd6TSV79Wukir6zGm9HEdBRw75xrHActWsFsBGDAa5f2Xecwxx+iYY47Rl770Jc2ZM6eUYwIwCP1t\nXZlLrqKwqoqAdrS0y/UkX346cG2pdlxY3e9kBxxLkZCttoSrxpb2zPKJoYCtaRMrZVu+pPS4bMtS\nKGAp5fpav60l0/oykUqppjqcuV0tpftYz6iLdu2a4Xqe2jpSeuWv2yiIwqiWN5CPPfbYzLJnuQyk\nMYjneVq+fLneffddhUIhrVixIu+VOICBG2zVblYrx85b35MnVappd4dcP13IZVm+opGQTjhilrY2\nxLMqn2dOqVZrW1ItsaQ835djSZVhR0fNn6bNDa1Z2+41PqKKoKN4e/rRKMuXJlZHND4alOf6WeOf\nu2Ca/rahKWtebR0pRTqfR+4aa31zm7R+pybXjRuebzAwDPIG8oMPPijf9/Xzn/9cM2bM0De+8Q05\njqOnn35amzdvHtDJnnvuOSUSCf3qV7/S66+/rhtuuEF33HHHgAcPILdiW1fmkqsozPV8xTtczZoy\nTjMnRxVrT2lcZSjdLaslqeM/NUsp11NTrEPVkaD++Ha9bMdSMpVeAjESDioYsLWzJZF32652mMFA\negUnz/V1xCemKOl6WePvPq+gY+uVv27r8QzyngK27ushA6bLG8h77723JOndd9/V9ddfn3n9rLPO\n0je+8Y0Bney1117TkUceKUk6+OCD9eabbxa1XzHl4qMR8xp9ynVu3ee1K9ahSGVIoeCez2/bOpIK\nBdO/LsZVR1S3155fHYmkq6poWOOiFZqR2b85a/+Bbjt+fKXGdevW1VOusXbfv609OSZ+ZuWkXOdV\njKKqO9asWaOFCxdKkn7/+9/3WLqseLFYTNHonucKHcdRKpVSIND3MMrxubRyfd6uXOclle/ces4r\n5Xpqiyf+KqZGAAAfU0lEQVTU0eMKOZFMyfKljo6kksk9nbc811drrF0dnZ27cu0/FNvmUmj/SDg4\nJn5m5aJc5yUN8jnkLitWrNDSpUvV0NAg3/e1995768YbbxzQgKLRqFpbWzN/9jyvYBgDo9VoWmy+\n51i7isLkS4mUp1DALnp94P4UlQ22AK3Q/rkqsgFTFUzDefPm6emnn1ZTU5Msy9KECRMGfLJDDjlE\nL774ok444QS9/vrr2n///Qd8LMBUo2mxec/39X/vbtd7H+4s2KJyem2VZk0Zpx3NhVtR9qeobLAF\naLSdRLnIG8hXXnmlfvzjH2vx4sU5q60feOCBfp/s85//vF5++WWdfvrp8n1f1113Xb+PAZguV4Vy\nV9Vvz7aVI+3t9TvVlvJ7jXX9Ry2qjAS1/8yarBaVtm3pqIOnFSwU609R2WAK0IZif8AUeQP5tNNO\nkyRdeOGFQ3Yy27Z1zTXXDNnxANOMpsXmu8Y6fnwk+wudLSr376NF5VCthzzQbYdjf2Ck5Q3kgw46\nSJL0i1/8ItMkZMqUKSUbGDAajabF5rvG2lMi5XW2qHSzwlgybw5AOSn4Vv3888/Xjh07dOGFF+qk\nk07SLbfcojfeeKMUYwNGnaFsW5lvLeHBbtvVDjMUsHOONRSwO1tU9n5T0VeLyoGsvQxgj4K/HRYs\nWKAFCxZo0aJFWr16te68807de++9RT9DDIwlQ9G2MuV5Wr1mQ1ZB1Yy6qI5fOEuBHqst9WfbXMVm\n8Y6kol6P53w7W1T2LB1xPV9tHcleLSrnzqrp1T3L1CI2wGQFA/lHP/qRXnvtNTmOo8MOO0xXX321\nDj/88FKMDRiVBlv1u3rNBm1uiMlxbDmdAb65IabVazboK0fMHvC2uYrNIuGg4u3JIltUJhUJB3q1\nqOwqABsNRWyAyQoGcktLi3zf1+zZszVnzhztu+++qq4eu51UgEIGU/XbnkhpU30sE66ZY9q2NtWn\nb0mHO29792fbfMVmjm2pMhzU/Lk1A2pR2X2N4u6LPphYxAaYrmAg33zzzZKkdevW6dVXX9W5556r\neDyu//3f/x32wQGj2UCqfht3tyvler1CVlKm//PUiYF+b9tXsZnr+kq6Xs6xds2hJZ7IuT9rFAND\np2Ag//3vf9err76qV199Ve+8844WLFigo48+uhRjA8acSdXhvFeUAcdWTbe+zv3Ztq9iM8exChab\n5du/0BrF/SliA8a6gv9aLr74Yh1zzDE688wzdcghh8i2uf0EDJdwKKAZdVFtbohl/VvzPE8z6qKZ\nW9D93bavYrNpe1UNuEVlvjWK+1PEBiCtYCA//fTTpRgHgE7HL5yVt3J6MNvmKzZbsF+dGhtjBceV\nb/9cBWC0rgT6j/tJgGECtq2vHDFb7YmUmmIdqolWZF3tDnTbfMVmPQu18umrWI3WlcDgEciAocKh\nQKYoayi3Ha4WlbSuBAYn77/gP/3pT33ueNhhhw35YAAAGKvyBvKtt96adyfLsga02hMAAMgtbyA/\n+OCDpRwHAABjWsEPnf785z/r3nvvVTwel+/78jxPW7du1QsvvFCK8QEAMCYULIVctmyZjjvuOLmu\nq0WLFmnWrFk67rjjSjE2AADGjIKBHA6HdfLJJ+vwww/XuHHjtGLFioIFXwAAoH8KBnJFRYWam5s1\ne/ZsvfHGG7IsS/F4vBRjAwBgzCgYyGeeeaa+973v6ZhjjtETTzyhL3/5yzrooINKMTYAAMaMgkVd\nRxxxhI4//nhZlqXHHntM69evZ/lFAACGWN4r5I8++khbt27VokWLtG3bNm3dulXNzc2qrq7W2Wef\nXcoxAgBQ9vpsDLJ27VrV19dr0aJFe3YIBPTZz362FGMDAGDMyBvI119/vSTp7rvv1jnnnFOyAQEA\nMBYVVdR15513aunSpYrFYlq1apUSiUQpxgbDpFxPLfGEUq430kMBgLJTMJCvueYaxeNxvfXWW3Ic\nRxs3btQPf/jDUowNhvB8X29+2KiXXt+qNW9v00uvb9WbHzbK8/2RHhoAlI2CgfzWW2/pkksuUSAQ\nUCQS0cqVK/XOO++UYmwwxNvrd6q+uU22YykUcGQ7luqb2/T2+p0jPTQAKBsFA9myLCUSCVlWehHz\npqamzH+j/KVcT/U722T3+JnblqX6nW3cvgaAIVIwkM844wz98z//sxoaGnTttdfq5JNP1re//e1S\njA0GiHeklPJzh27K99SWSJV4RABQngo2Bvn617+ugw46SGvXrpXnebrjjjs0d+7cUowNBqisCChg\n5X7fFrBsBR1bLfFEejun4Ps7AEAeBQM5mUzqD3/4g9asWaNAIKCKigodcMAB3LYeIwKOrbqJkfRn\nyN1+5q7nq60jqVf+uk0p31PASm939KToCI4WAEavgoG8bNkytbe369RTT5XneXryySf1/vvvU2k9\nhszbZ6K0fmf6M+PO8G3rSCoSDsi2LYXkSJLqm9v0xvv1mj6xcoRHDACjT8FAfuONN7R69erMn489\n9lh95StfGdZBwSy2Zemg2ZOUmpn+zDjo2Hrlr9tk270LvbbuaNWU8WFuXwNAPxX8rTl16lRt2LAh\n8+cdO3Zo8uTJwzoomCng2KqOhJRIeXkLvVzXp9ALAAag4BVyKpXS1772NR166KEKBAJ67bXXVFtb\nqzPOOEOS9MADDwz7IGGWvgq9HMdSJFTwrxUAoIeCvzkvvPDCrD+fddZZwzYYDK+U6ynekSpYER1r\nS2hLY6v2nlSlaCSUc/+uQi/5UiLlKRSwJUuatldV3mMXe34AGIsKBvLhhx9einFgGHm+n+621a0o\nq25iRPP2mZhVOZ1wXT34zN+0qSEm1/XlOJZm1Ea16PgD9MGmXVn77zUhrNZ4QpsbWpVyPQUcWzPq\novrEnFo1NbUO6PwAMJZxb3EMyGp92a0iWut36qDZkzLbPfjM37S5ISbHttV1Abu5IaZVj/5Fh8yt\ny9r/r39vlC9p/5k1SqZcBQOOLEv667qGXlXWxZ4fAMYy7huWuWJbX8baEtrUEJNtZ/+VsCxbW3fG\nlUzuKeLyPF+xeFKxtqQkKRwKyLGtTJV193aatN4EgOIQyGWu2NaXWxpb5bq9V2/yfF++52tXvCPz\nWiLlyfV9eZ6vZMrN2r5nlTWtNwGgOARymeteEZ1Iedq1u12JVDogA5Yt1/X07uYmja8MynHSV7G+\n0p24fKWvZC3b0vjKiswxQwFbjmXJti3Ztq32jpRcLx3mPausC7XepCIbANL4bVjmAo6tvSZU6MXX\nt6h5d0Ke58u2LY2vCiqZdPXSX7ZkCrja2pPyJfmy5PuSZaUDedrESgWDe0LVti1VRQJq3N2uv2/d\nlTlmNBLUUYdMz6qgztd60/N91U2MUG0NAJ0I5DFgw/aY2ttd2bIkW7Jl6cOtu2XZ0qRxkUwBly+p\nvcNVMOjI931ZlqXx1UEdd+h0BQJOVpX0+Gj6irm1LX3L2fIlS5L83lXTuVpvdlVZAwDSCOQy155I\naXN9TDXjwvJ9X67ry/N9bWuOy3Iteb4v20pfEfuyFAw6OnrB3upIJlVdFVY45GhnS0JHHTxNc2fW\nZLXOrK4MdX6O7CkYsGXblrbtbNW0muzWmT1bb0ZCPIcMAD3xW7HMNe5uz1QyW5alQMBOF1J5vuT7\nma+li7ck3/fVnkqptqZK4VD6EaWu4qtcrTNt21JFyMn0te6rdWbX/oQxAPTGb8YyN6m690IPVRVB\nybYky8p8LV28lQ7t7gVcUu/iK1pnAsDQI5BHiZTrqSWeKOq53fZESlsaY2pPpBQOBTSjLirP85RI\nutrZ0ibP9xUJOgo6UiLpakdzqzqSKdmWVBMNqSPh6p31jWqJJbKKr3bsiuuVt7aoOdauuokReb4v\n1/MzVdae7xdsnVnsHABgrBmRS5lnn31Wq1ev1s033zwSpx9V+tN2MuV5Wr1mgzbVx7LaWf5/h0zV\n9fe9pqZYR6Z6OlrhaFfc1a7W9O3l3W1tkqTW1g59+FFMvqQ/a4eqKwP6wVmHaPm/rlX9rjbJk2RL\ndeMjWvCxidq2s53WmQAwBEoeyCtWrNAf/vAHffzjHy/1qUel/rSdXL1mQ7r1pWPL6bxK3dwQ0/X3\nvaaU62lcZUiu58uxLe3cnZCUroz2u/1vPJl+zrjr1Xh7SstW/VEVoc5jdl78ftTYqt3xhL58xOxM\nUZdonQkAA1byW9aHHHKIli9fXurTjkr9aTvZnkhpU33v1pdJz1NTrEOWbcuy00Vd3ffzlb5i7t6j\ny/W89IuWJCt9UdyTZdva3ZZUa3sqU9RF60wAGLhhu0J+9NFHdf/992e9dt111+mEE07Q2rVr+3Ws\n2trqoRyaMQrNa1esQ5HKkEJBp9fXEklXVdGwxnU+D7xpe4ucgKNwj4KqlniH1HmbuuuqOd6tDaa0\n5+q4i+dJgUBn167OvHQ9T4FAehy+L1npp47V2pbQtLo98+g5rv7MYTQYq38XR7NynRvzKj/DFsin\nnHKKTjnllCE5VkPD7iE5jklqa6sLzivlemqLJ9Th9P6c1XN9tcba1RprV7wjXZDlply1+9n9qCtC\njmSlQ9TtvBoNBgNqS+55NKlnB2tLUirlZiqv5UqObcvrdmy/c6+qSEi7Y+2Z1ysrQ2qNtaujLVH0\nHLq2NV0xP7PRqFznJZXv3JjX6FPMGw2eTzFYX20na2si+tvGpqxCqVDAVsL15HS7bR20bdVEK5Ry\nPVmdV8jBoCOpWyD3SGSv8/+5vaJ6D9/zVB0JqroymDWunlXWtM4EgOLw29Bw8/aZqLoJEXmur0TK\nlef6qpsQkeTvKZQKOLIdS7OmVivkpBeM6Eik5LqeptdGdeX/O0xTJ1XJ9XylUp5cz9e0SRUKFFng\n/LGplaqdEJHreXJTnlzP09RJVfrWF/bvNa4F+9UVPQdaZwLAHpbv97w+Mk853sLo762ZlLun7aQk\nvfT6Vtl5bgMfPq9Ou9uSqolWZH2m3Bxr18b63Zo2qUp/+WCnbMdSU3ObNtTvUt34Kr389jbZtq2A\nbSmRTKkiGJATsOV6vq769qFKuZ7Wbd2lOdPGa6/xlb3GFXDsPufVc9vRplxvp5XrvKTynRvzGn24\nZV1GutpOSko31/C9zCNE3aV8T76kqROren1tQjSsCdFw1v41EyKqmRDRpu0t6X7Wfvrz4srOc0mS\n7/naWL9b8/etzQRxrnH1Zw4AgGyj7zIFg15jONf+E8dXpp90sqSeh7ZsSzPrxm7lIwCUAoE8CnUV\nSnk9Pm0otlAq1/5V4YDGV4V6VXh5rqdpEys1IRoeugkAAHohkEepwRZK5dr/1GM+plmTq7OKv6ZO\nqtIFp8wf5tkAAPgMeZQa7BrD+fY/eL+6TPHXzLpqrowBoEQI5FFusIVSufbvKv4CAJQOt6wBADAA\ngQwAgAEIZAAADEAgAwBgAAIZAAADEMgAABiAQAYAwAAEMgAABiCQAQAwAIEMAIABCGQAAAxAIAMA\nYAACGQAAAxDIAAAYgEAGAMAABDIAAAYgkAEAMACBDACAAQhkAAAMQCADAGAAAhkAAAMQyAAAGIBA\nBgDAAAQyAAAGIJABADAAgQwAgAEIZAAADEAgAwBgAAIZAAADEMgAABiAQAYAwAAEMgAABiCQAQAw\nAIEMAIABCGQAAAxAIAMAYAACGQAAAxDIAAAYgEAGAMAABDIAAAYIlPJku3fv1pIlSxSLxZRMJvWD\nH/xA//AP/1DKIQAAYKSSBvJ9992nhQsX6swzz9Tf//53XXrppXr88cdLOQQAAIxU0kA+88wzFQqF\nJEmu66qioqKUpwcAwFiW7/v+cBz40Ucf1f3335/12nXXXaf58+eroaFBZ599tq644godfvjhw3F6\nAABGlWEL5HzeffddXXLJJbrssst09NFHF7VPQ8PuYR5V6dXWVjOvUaZc51au85LKd27Ma/Spra0u\nuE1Jb1l/8MEHuvjii/XTn/5Uc+fOLeWpAQAwWkkD+eabb1YikdC1114rSYpGo7rjjjtKOQQAAIxU\n0kAmfAEAyI3GIAAAGIBABgDAAAQyAAAGIJABADAAgQwAgAEIZAAADEAgAwBgAAIZAAADEMgAABiA\nQAYAwAAEMgAABiCQAQAwAIEMAIABCGQAAAxAIAMAYAACGQAAAxDIAAAYgEAGAMAABDIAAAYgkAEA\nMACBDACAAQhkAAAMQCADAGAAAhkAAAMQyAAAGIBABgDAAAQyAAAGIJABADAAgQwAgAEIZAAADEAg\nAwBgAAIZAAADEMgAABiAQAYAwAAEMgAABiCQAQAwAIEMAIABCGQAAAxAIAMAYAACGQAAAxDIAAAY\ngEAGAMAABDIAAAYgkAEAMACBDACAAQhkAAAMQCADAGCAQClPFo/Hdemll6qlpUXBYFArV67U5MmT\nSzkEAACMVNIr5EceeUQHHnigHnroIX31q1/VPffcU8rTAwBgLMv3fb+UJ3RdV47jaNWqVfI8Txdd\ndFEpTw8AgJGG7Zb1o48+qvvvvz/rteuuu07z58/XGWecoffee0/33XdfUcdqaNg9HEMcUbW11cxr\nlCnXuZXrvKTynRvzGn1qa6sLbjNsgXzKKafolFNOyfm1Bx54QOvWrdN3vvMdPffcc8M1BAAARo2S\nfoZ811136YknnpAkVVVVyXGcUp4eAABjlbTK+uSTT9bSpUv1m9/8Rq7r6rrrrivl6QEAMFZJA3mv\nvfbSvffeW8pTAgAwKtAYBAAAAxDIAAAYgEAGAMAABDIAAAYgkAEAMACBDACAAQhkAAAMQCADAGAA\nAhkAAAMQyAAAGIBABgDAAAQyAAAGIJABADAAgQwAgAEIZAAADEAgAwBgAAIZAAADEMgAABiAQAYA\nwAAEMgAABiCQAQAwAIEMAIABCGQAAAxAIAMAYAACGQAAAxDIAAAYgEAGAMAABDIAAAYgkAEAMACB\nDACAAQhkAAAMQCADAGAAAhkAAAMQyAAAGIBABgDAAAQyAAAGIJABADAAgQwAgAEIZAAADEAgAwBg\nAAIZAAADEMgAABiAQAYAwAAEMgAABiCQAQAwAIEMAIABRiSQ161bp09+8pPq6OgYidMDAGCckgdy\nLBbTypUrFQqFSn1qAACMVdJA9n1fV155pS655BJFIpFSnhoAAKMFhuvAjz76qO6///6s16ZNm6YT\nTjhBc+fO7dexamurh3JoxmBeo0+5zq1c5yWV79yYV/mxfN/3S3Wyz3/+85oyZYok6fXXX9f8+fP1\n0EMPler0AAAYq6SB3N2xxx6rZ555RhUVFSNxegAAjMJjTwAAGGDErpABAMAeXCEDAGAAAhkAAAMQ\nyAAAGGDUBHK5tduMx+M677zztGjRIp155pnavn37SA9pSOzevVvnnnuuvvWtb+m0007T//3f/430\nkIbcs88+q0svvXSkhzFonufpqquu0mmnnabFixdrw4YNIz2kIfXGG29o8eLFIz2MIZNMJrVkyRJ9\n85vf1D/+4z/q+eefH+khDRnXdXX55Zfr9NNP1z/90z/pvffeG+khDanGxkYdffTRWrduXZ/bjYpA\nLsd2m4888ogOPPBAPfTQQ/rqV7+qe+65Z6SHNCTuu+8+LVy4UP/+7/+u66+/Xtdcc81ID2lIrVix\nQjfffLM8zxvpoQzac889p0QioV/96le69NJLdcMNN4z0kIbMPffco2XLlpXNG3hJeuqppzRhwgT9\n8pe/1C9+8Qv9+Mc/HukhDZkXX3xRkvTwww/ru9/9rm655ZYRHtHQSSaTuuqqqxQOhwtua3wgl2u7\nzTPPPFPnnXeeJGnr1q0aN27cCI9oaJx55pk6/fTTJaXf9Zbbc+aHHHKIli9fPtLDGBKvvfaajjzy\nSEnSwQcfrDfffHOERzR0Zs6cqdtuu22khzGkjj/+eF188cWS0r8XHccZ4RENneOOOy7zBqOcfh9K\n0sqVK3X66aerrq6u4LbD1jpzIIay3aZJcs3ruuuu0/z583XGGWfovffe03333TdCoxu4vubV0NCg\nJUuW6Iorrhih0Q1OvrmdcMIJWrt27QiNamjFYjFFo9HMnx3HUSqVUiBg1K+FAfniF7+ozZs3j/Qw\nhlRVVZWk9M/toosu0ne/+90RHtHQCgQCWrp0qZ599lndeuutIz2cIfHYY49p4sSJOvLII3X33XcX\n3N7455DHQrvNdevW6Tvf+Y6ee+65kR7KkHj33Xd1ySWX6LLLLtPRRx890sMZcmvXrtXDDz886m+r\nXX/99VqwYIFOOOEESdJRRx2ll156aYRHNXQ2b96sSy65RI888shID2XIfPTRRzr//PMznyOXo4aG\nBp166qn67W9/q8rKypEezqAsWrRIlmXJsiy988472meffXTHHXeotrY25/bGvxV+9tlnM/997LHH\n6l//9V9HcDRD56677tLkyZP19a9/XVVVVWVz++mDDz7QxRdfrJ/+9Kej+q7GWHDIIYfoxRdf1Akn\nnKDXX39d+++//0gPCX3YsWOHzjrrLF111VX69Kc/PdLDGVJPPPGEtm/fru985zuKRCKyLEu2bfwn\nqgV1v3hcvHixli9fnjeMpVEQyOXq5JNP1tKlS/Wb3/xGruvquuuuG+khDYmbb75ZiURC1157rSQp\nGo3qjjvuGOFRIZfPf/7zevnll3X66afL9/2y+TtYru688061tLTo9ttv1+233y4pXbxWTLGQ6b7w\nhS/o8ssv16JFi5RKpXTFFVeUxbz6y/hb1gAAjAWj/54AAABlgEAGAMAABDIAAAYgkAEAMACBDACA\nAQhkwDCXX365tmzZ0uc2ixcv7tUxbO3atUO+mMKmTZsy3db6c/ylS5cOesGUlStX6u233x7UMYDR\nhEAGDLN27VqZ8jTi1q1btWnTpn7t8+KLL6qurk6TJ08e1LnPPvtsno3GmEJjEGAYrV27VrfddpsC\ngYA++ugjzZ8/X9dee61CoZCeeOIJ3X///fI8TwceeKCuvvpq3X///aqvr9c555yjhx56SGvWrNF9\n992n9vZ2dXR0aMWKFTrssMMKnnfDhg1avny5mpubFQ6HdeWVV2revHn6wQ9+oGg0qrfeekvbt2/X\n+eefr5NPPlm7d+/WZZddpo0bN2rGjBnatm2bVq1apRUrVmjz5s360Y9+pOOPP147d+7U2WefrY0b\nN2r27Nm69dZbe63C9otf/CKzyldzc7N++MMf6u9//7tCoZB+8IMf6NOf/rQ+85nP6JhjjtGf//xn\n1dbW6pvf/KYefPBBbdu2TTfccIMOP/xwTZw4URMnTtSaNWu0cOHCYfn5ACbhChkYZn/5y1901VVX\nafXq1ero6NBDDz2k999/X4888ogefvhhPfnkk5o0aZLuvfdenXPOOaqrq9Pdd9+t8ePH6+GHH9ad\nd96pp556Smeffbbuvffeos65dOlSLVmyRI8//rh+/OMf63vf+17ma9u2bdMvf/lL3XHHHbrxxhsl\nST//+c81e/Zs/fa3v9X555+vd999V5K0bNkyHXTQQbr66qslpa+Yr7rqKj3zzDPasWOHXnnllazz\nNjc3a/369ZozZ44k6Wc/+5lmzpypZ555RjfeeKN++tOfSkq3gfzsZz+r1atXS0ovBfnLX/5SF154\nYdaiHoceeqheeOGFgXzbgVGHK2RgmB122GHad999JUlf+9rX9MgjjygYDGrDhg069dRTJaXXTJ03\nb17WfrZt6+c//7leeOEFffjhh/rjH/9YVH/f1tZWvfnmm7r88sszr8XjcTU1NUmSPvOZz8iyLO2/\n//5qbm6WJL388sv6yU9+Ikn6xCc+oQMOOCDnsefOnasZM2ZIkubMmZM5ZpeNGzdmLTP3pz/9KXPc\nAw44QL/61a8yXzvqqKMkSXvvvbc++clPSkqv7tbS0pLZZtq0aXr55ZcLzhkoBwQyMMy6LxzStY6t\n67r60pe+pGXLlklKh6jruln7tba26uSTT9bXvvY1HXbYYTrggAOKWunM8zyFQiE9+eSTmde2bdum\nCRMmSFJmjWrLsrLGWMzn1t2XZrQsq9c+tm1nzbfnUo7r1q3T7NmzJSnrVne+xVWCwWDWOIFyxi1r\nYJi99tpr2r59uzzP0xNPPKGjjjpKn/rUp/Tss8+qsbFRvu9r+fLlmVu1XYG9fv162batc889VwsX\nLtRLL73UK7Rzqa6u1j777JMJ5JdfflmLFi3qc58jjjhCTz/9tKT08pnvv/++LMvKrJFcrOnTp2vb\ntm2ZPx966KH63e9+JykdxmeffXa/Anbz5s2aNWtW0dsDoxmBDAyzuro6XXbZZTrhhBM0efJknXLK\nKZo7d64uuOACffvb39aXv/xleZ6nc845R5L02c9+Vuecc46qq6v18Y9/XF/60pd00kknqbKyUlu3\nbi3qnDfddJN+/etf68QTT9TNN9+sW265pc8g/Jd/+Rdt3LhRJ554om699VbttddeCofDmjNnjnbv\n3q0lS5YUdd4JEyZo5syZ+uCDDyRJF110kdavX6+vfvWrWrJkiW688cZ+BfLatWv1uc99rujtgdGM\n1Z6AYbR27VqtWrVKDz744EgPpU9PPvmkpk+frk9+8pPaunWrvvWtb+m5554b0Jq0zz//vP785z9r\n6dKlgxpTY2OjLrjgAv3Hf/zHoI4DjBZ8hgxA++67r66++mp5nifbtnXNNdcMeIH4z33uc/rd736n\n7du3D+pZ5LvuuivTlAQYC7hCBgDAAHyGDACAAQhkAAAMQCADAGAAAhkAAAMQyAAAGOD/B7+8Gb3n\ngdG5AAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x11012b390>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "axes = plt.gca()\n", "axes.set_ylim([-4, 4])\n", "axes.set_xlim([-4, 4])\n", "plt.gca().set_aspect('equal', adjustable='box')\n", "p_x = demeaned_df['petal length (cm)']\n", "p_y = demeaned_df['petal width (cm)']\n", "plt.scatter(p_x, p_y, alpha = 0.4, s=50)\n", "plt.xlabel('petal length (cm)')\n", "plt.ylabel('petal width (cm)')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Fitting a line (hyperplane) to the input data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "There would appear to be an approximately linear relationship between petal length and width, which is intuitively reasonable.\n", "\n", "In the plot below, we additionally draw perpendicular lines (in green) from each data point back to the hyperplane." ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def plot_line(angle_in_degrees):\n", "\n", " # original data\n", " plt.scatter(p_x, p_y, alpha = 0.4, s=50)\n", " \n", " # our current fitted line\n", " m = np.tan(np.pi * angle_in_degrees / 360) \n", " x = np.linspace(-4, 4, 3)\n", " y = m * x\n", " plt.plot(x, y, 'r--')\n", "\n", " # perpendicular lines between the original data and the\n", " # current fitted line\n", " p_x_line = (p_x + m * p_y) / (m*m + 1)\n", " p_y_line = m * p_x_line\n", " for idx in range(len(p_x)):\n", " plt.plot([p_x[idx], p_x_line[idx]], [p_y[idx], p_y_line[idx]], color='g', alpha=0.1)\n", " \n", " # average sq distance from origin of perp line intercepts\n", " # i.e. the points where the green line touches the dashed red line\n", " var = np.mean(np.power(p_x_line, 2) + np.power(p_y_line, 2))\n", " \n", " plt.gca().set_aspect('equal', adjustable='box')\n", " axes = plt.gca()\n", " axes.set_ylim([-4, 4])\n", " axes.set_xlim([-4, 4]) \n", " \n", " plt.title('Variance {0:.4f}'.format(var))\n", " \n", " plt.xlabel('petal length (cm)')\n", " plt.ylabel('petal width (cm)')\n", " \n", " plt.show()" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeQAAAHtCAYAAADIoQ0xAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3WmcXFWd//HPuWvtVV29JCF7WERZRMAREEQUAQcQZGQR\nDI4bqDigDqh/QAMjoLig4IYgLigICMigiIIOKOKCjiOIrNm3Xmvfb93l/6DSRTrpJN0h6e50fu9H\npPreqnOqXy9+fe4553tUEAQBQgghhJhU2mQ3QAghhBBSkIUQQogpQQqyEEIIMQVIQRZCCCGmACnI\nQgghxBQgBVkIIYSYAozJboAQ09HixYs58sgjOf/880e8/t3vfpcnnniCG2+8cczvdf311zN//nxO\nPfXUHd3MMSmVSlx22WUsX74c3/c59dRTOe+88za7rl6vc+WVV/L000/j+z4HHnggS5YsIRQK8dRT\nT3HNNddQq9XwfZ/3v//9nHLKKdx000088MAD7ffIZrNUKhX+9re/sXbtWpYsWcL69euJRCK8733v\n41//9V8nsutCTKxACLHDPfjgg8Fxxx232evHH3988Nhjj01Ci7bfZz/72eCqq64KgiAIKpVKcMwx\nxwR/+9vfNrvuuuuuCy655JLA87zAdd3gYx/7WPDVr3418H0/OProo4PHH388CIIg6O3tDQ477LBg\nxYoVI+4vFArBcccdFzz66KNBEATBOeecE9xwww1BEARBqVQK3v72twfPPvvsTuypEJNLRshC7ATH\nHnssV199NX/961859NBDAXjiiScIgoDXv/71+L7PNddcw5NPPkmlUiEIAq666ioOOeQQPvWpT5HP\n51mzZg1vfOMbyWQy7L333rzvfe/j7rvv5s4776TZbFIoFPjABz7A2Wefzb333svDDz+MpmmsWrUK\n0zS59tpr2WeffRgcHGTJkiUsX74cTdM466yzOPfccymVSlx99dW88MILNJtNDj/8cD7xiU9gGCP/\nt3DZZZfheR4Ag4ODOI5DPB7frM+vfe1rmT17NprWmgl75StfydKlS3EchwsuuIAjjjgCgJkzZ9LR\n0UFfXx8LFixo33/ttddy1FFHcfTRRwPwz3/+k89//vMAxGIxXve61/Hwww+z77777thflhBThMwh\nC7ETGIbBmWeeyd13391+7c477+Tss89GKcWTTz7JwMAAd955J7/4xS94+9vfzs0339y+tl6v88AD\nD3DJJZe0X6tUKvzkJz/hpptu4r777uMrX/kKX/ziF9s//8tf/sKnP/1pfv7zn3PwwQdzyy23AHDl\nlVeyYMECfvnLX3LnnXdy1113sWrVKq655hr2228/7r33Xu677z5yuRzf+973NuuLUgrDMLj44os5\n6aST+Jd/+RcWLly42XVHHnlk+/V169bxgx/8gBNOOAHbtjn99NNHfA/VapWDDjqo/dqLL77Ir3/9\nay666KL2awceeCD33nsvQRCQzWb53e9+x+Dg4Lh+D0LsSmSELMROcsYZZ3DiiSdSLpdxXZff//73\nXHHFFQC85jWvIZlMcscdd7BmzRr+/Oc/E41G2/cecsghm71fNBrlxhtv5Le//S0rV67kueeeo1qt\ntn++3377MXPmTABe9apX8fDDDwPwhz/8oV3Y4/E4P//5zwF49NFH+cc//tH+o6Fer2+1P1/60pe4\n8sorufDCC/nGN77BhRdeOOp1Tz/9NB/5yEd417vexTHHHDPiZzfddBO33nor3/nOdwiFQu3Xb731\nVt71rneNGHlfe+21fO5zn+Ntb3sbs2fP5o1vfOM22yjErkwKshA7SU9PD0cccQS/+MUvqFarHH/8\n8e2C8+ijj3L11Vfznve8hze/+c0sWrSI+++/v31vJBLZ7P36+vo488wzOeOMMzjkkEM44YQTeOSR\nR9o/37jAKaUINsTUG4aBUqr9szVr1tDR0YHv+1x//fXsueeeABSLxRHXDXvsscfYZ599mDFjBtFo\nlBNPPJGHHnpo1D4/8MADXHnllXz605/m5JNPbr/uOA6f+tSnWLp0KXfccQdz5sxp/8zzPB566CHu\nueeeEe9Vr9f53Oc+1/4ulixZwqJFi0b9XCGmA3lkLcROdPbZZ/Ozn/2M++67j3POOaf9+uOPP84x\nxxzD2WefzQEHHMCvf/3r9jztljz99NOk02k+/OEPc9RRR7WL8bbuO/zww9vFrlQq8e53v5uVK1dy\n5JFH8v3vf58gCHAchw996EP86Ec/2uz+Bx98kG984xvt6x588EEOO+ywza775S9/yVVXXcUtt9wy\nohgDXHjhhZTL5c2KMcALL7xAIpHY7PWvfe1r/PjHPwZgxYoV/OY3v+G4447bal+F2JXJCFmIneh1\nr3sdV111Fclkkle84hXt18866ywuvvhiTj75ZHRd59BDD+Whhx7C9/0tvtfrX/967r77bk444QTC\n4TAHHngg6XSaVatWbbUNn/nMZ7jiiis4+eSTCYKA888/n/3335/LLruMq6++mpNPPplms8kRRxzB\n+9///s3u/9SnPsWSJUs4+eSTUUrx5je/mXPPPRdobckCuOiii7juuusIgoDLL7+8fe/BBx/MSSed\nxCOPPMKCBQt45zvf2f7ZxRdfzFFHHcXKlSuZPXv2Zp/7iU98gksuuYT77rsPXdf53Oc+x6xZs7ba\nVyF2ZSoI5PhFIYQQYrLJI2shhBBiCpCCLIQQQkwBk1KQM5kMRx99NMuWLZuMjxdCCCGmnAkvyM1m\nk8985jMjtmgIIYQQu7sJL8jXXnstZ511Fj09PRP90UIIIcSUNaEF+d577yWdTnPUUUeN+R5ZBC6E\nEGJ3MKHbns455xyUUiilePbZZ1mwYAHf+ta36O7u3up9g4OlCWrhxOnujku/djHTtW/TtV8wffsm\n/dr1dHdvfiDLpiY0GOS2225r//fixYu54oortlmMhRBCiN2BbHsSQgghpoBJi8784Q9/OFkfLYQQ\nQkw5MkIWQgghpgApyEIIIcQUIAVZCCGEmAKkIAshhBBTgBRkIYQQYgqQgiyEEEJMAVKQhRBCiClA\nCrIQQggxBUhBFkIIIaYAKchCCCHEFCAFWQghhJgCpCALIYQQU4AUZCGEEGIn0Z9/Dv2Zf47p2kk7\n7UkIIYSYzoy/PkHy7HcQhMLQu36b18sIWQghhNjBzP95mNQ73oYqlahc+pkx3SMFWQghhNiB7Hvu\nIvmuM8H3KX7/dhpnnTOm++SRtRBCCLGjBAH2f99LEIlS/NGdNA87Ysy3SkEWQgghdhSlKN74XfS1\na/D2ecW4bpVH1kIIIcTL4XnEPvlxrPt/2vp3JDLuYgxSkIUQQojt12iQOO89hL/3HSLf+hr4/na/\nlTyyFkIIIbaDKpdIvPscrMcexTniSIq3/hi07R/nyghZCCGEGCc1NETytJOwHnuUxltPonDHvQSJ\n5Mt6TynIQgghxDjFrrwc8+//R+2ccyneciuEQi/7PeWRtRBCCDFO5as+j7v/AdTO+zAotUPeU0bI\nQgghxBgYf/kz5u8eBSBIpqidf8EOK8YgI2QhhBBim6zfPETivYsJLJvsX58iSKZ2+GfICFkIIYTY\nCvvuO0ksPguCgNLXv71TijFIQRZCCCG2KHzzt0h8+AMEkSj5u/4b5/i37rTPkkfWQgghxChC372Z\n2GWfxJsxk8Id9+Ltt/9O/TwZIQshhBCjcE48GeeNbyL/84d2ejEGGSELIYQQL2k00Fevwtt7H/wZ\nMyncdd+EfbSMkIUQQghAlYokz34HqZOPQ1uxfMI/XwqyEEKI3Z4aHCT59pOwHvstzcNejz9rjwlv\ngxRkIYQQuzVt9SpSJx+H+dTfW1GY3/nBDonCHHc7JvwThRBCiClCf+5ZUicdh7F8GdWL/pPydV8D\nY3KWV8miLiGEELutwLLA9yn/1zXUPviRSW2LFGQhhBC7n0YDbBt/0Z7k/vDXl3104o4gj6yFEELs\nVuyf3EH6yNeirV8HMCWKMUhBFkIIsRsJf/sbJC44D5XLtQvyVCGPrIUQQkx/QUDkc58l+tUvTVgU\n5nhJQRZCCDG9eR6xT3yc8A+/h7twEYW77sOfv2CyW7UZeWQthBBiWtNWrcS+7x6aBx5E/ucPT8li\nDDJCFkIIMc35i/akcM/9eHvuRRBPTHZztkhGyEIIIaYdNThI/IPvRWUzALgHHTylizFIQRZCCDHN\naKtWkjrpLYTuvZvQbT+c7OaMmRRkIYQQ04b+zD9bUZgrllO96D+pfeSiyW7SmE34HLLneVx++eWs\nWLECpRRXXnkl++yzz0Q3QwghxDRj/PlPJN91BlohPyWiMMdrwkfIjzzyCAB33HEHH/3oR/nKV74y\n0U0QQggxzahSkeTiM1DlEsWv3bjLFWOYhBHyscceyxvf+EYA1q9fTyIxtSfZhRBCTH1BPEHp+m+B\noeO85YTJbs52UUEQBJPxwZ/85Cd5+OGHueGGGzjyyCMnowlCCCF2dbfdBqecArHYZLfkZZu0ggww\nODjIGWecwQMPPEAkEtnKdaUJbNXE6O6OS792MdO1b9O1XzB9+yb9AoKA6DX/ReT6L1M/452Uvv7t\nndu4l6m7O77NayZ8Dvm+++7j299ufXHhcBilFJomi72FEEKMkesS+88LiVz/ZdxFe1L5xKWT3aId\nYsLnkI877jj+3//7f5xzzjm4rsull15KKBSa6GYIIYTYFdXrJD74Puxf/IzmgQdR+PE9BN3dk92q\nHWLCC3IkEuH666+f6I8VQgixqwsCkovPxPrtIzhHvoHiD26f8ulb4yFZ1kIIIXYNStF4+zsI4gmK\n37wZptnTVZm8FUIIMaVp69eB4wBQP3sxxVtunXbFGKQgCyGEmML0Z/5J6vhjiH/kPBjeFKTU5DZq\nJ5GCLIQQYkoy/vRHUqe8Fb2/D/eQ107bQjxM5pCFEEJMOdZDD5J4/7vBdSl+4yYap5812U3a6WSE\nLIQQYkqx77ydxLvPBqUo3vrj3aIYg4yQhRBCTDHa4CBBLE7hR3fhvu6wyW7OhJGCLIQQYvIFAfg+\nALWPXET99LMIZsyY5EZNLHlkLYQQYnJtiMLkwgvbK6l3t2IMMkIWQggxmTaKwuTgg6FSmRYnN20P\nKchCCCEmhSoVSZz7TqzHH8M56misn98Pjem9tWlr5JG1EEKICacGBkieeiLW44/ROOkUCrffDYnp\nk0u9PaQgCyGEmHChO27D/MeT1Ba/h+LN3wfbnuwmTTp5ZC2EEGLC1f7jo3iL9sQ58eRpn8A1VjJC\nFkIIMSGMP/2R8Ne+2vqHUjgnvU2K8UZkhCyEEGKn2zgK0znxJLxFe012k6YcGSELIYTYqUZEYf7w\nDinGWyAFWQghxE4T/tbXSfzHBwnicfJ334/z5uMmu0lTljyyFkIIsVNYP/tvYksuxZu1B4U7f4q3\n7ysnu0lTmoyQhRBC7BTOW0+k+oEPkv/5Q1KMx0AKshBCiB2nVsP69a9a/20YVK7+Av7ceZPbpl2E\nFGQhhBA7hCoWSJ51GolzzsD87SOT3ZxdjswhCyGEeNnUwADJs07DfPopGiefSvOwIya7SbscGSEL\nIYR4WbSVK+g46S2YTz9F7dz3UrzpexKFuR1khCyEEGK76cuXknzbW9EH+ql8/BNUP3mZpG9tJynI\nQgghtps3azbe3vtQu+jj1D7wocluzi5NCrIQQohxUwMDBD09EA5TuPt+0PXJbtIuT+aQhRBCjIt9\nx210vvYAzEd+03pBivEOIQVZCCHEmIW/cQOJCz9EEAoRxOOT3ZxpRR5ZCyGE2LYgIPrZJUS+/tVW\nFOZd9+G9Yt/JbtW0IgVZCCHE1rkusYsvInz7D3H32pvCXffhz5k72a2aduSRtRBCiK1StSrmk3+n\nedBryN//KynGO4mMkIUQQowuCEApgniC/J0/hUiYICbzxjuLjJCFEEJsRvX3kzr5eIz//QsAQU+P\nFOOdTAqyEEKIEbQVy1tRmE/8CfuBn012c3Yb8shaCCFEm/70P0id+Xa0wYGXojDFhJCCLIQQAgDz\nT38g8a4z0YoFStd8gfr7PzjZTdqtSEEWQggBnkfskx9HVSsUb7yFxmmnT3aLdjtSkIUQQoCuU/jB\nj9FXLKd5zJsnuzW7JVnUJYQQu7Hwzd9Cf+F5APwFC6UYTyIpyEIIsTsKAqJXXE7ssk8S/+gFrT3H\nYlLJI2shhNjduC7xj/8HoTtuw91rb4o3fQ+UmuxW7fakIAshxO6kViNx3r9j/+pBmq85mMLt9xB0\ndk52qwTyyFoIIXYr8f/4IPavHsR5wzEU7vmZFOMpREbIQgixG6l+9GKCeJzy578Mtj3ZzREbkYIs\nhBDTnLZiORm/jD5nPon9D6D8la9PdpPEKCa0IDebTS699FLWrVuH4zh86EMf4s1vliX2Qgixs+j/\neIrUWafR7IkxePdPUUoRtxKT3SwxigktyPfffz+pVIovfvGL5PN5Tj31VCnIQgixk5h/+D2JxWeh\nyiXCH/tP9HCMSrOCUhoxMzbZzRObmNCCfMIJJ3D88ccDEAQBuq5P5McLIcRuw3rwARLn/Tt4HqVv\nfQfntNNJ+x6ZeoayU0JDI2JGJruZYiMTuso6Go0Si8Uol8tceOGFfPSjH53IjxdCiN2CfdePSbzn\nnFYc5o/uaudS65pOOpRGKY2iU6Du1ie5pWJjKggmNp6lt7eXCy64gLPPPpt3vOMdE/nRQgixe3js\nMXjnO+Gee+B1r9vsx47nkKlmAOiMdGLp1kS3UIxiQgvy0NAQixcv5jOf+QyHH374mO8bHCztxFZN\nju7uuPRrFzNd+zZd+wXTt2+j9isIUJUyQSze+ne9DqHQFt+j4TXI1bMoFOlQJ6Zu7sQWj810/X1B\nq2/bMqGPrG+88UaKxSLf/OY3Wbx4MYsXL6Zel0cmQgjxsrgu8Qs/RPLfTkaVNxS0rRRjAFu3Sdop\nAgKyjSye701AQ8XWTOiirssvv5zLL798Ij9SCCGmt1oN7YPvovC7h0m84jXgOGO+NWyE8QOfklMk\nU8/QFe5CUxLgOFnkmxdCiF2UKuRJnXEq0YcfpnbEESz/4fdxU6lxvUfUjBIzY/iBR7aexQ/8ndRa\nsS1SkIUQYhek9feRettbMf/8RzjxNIJv34YfCW1XUY1ZcSJGBNdvkqvnmOC1vmIDKchCCLEL0v/5\nNPoLz1H79/dRuvEWYrFOomYUL3DJ1rPjLqoJO0lID9H0HfKN3E5qtdgaybIWQohdyHChbb7pWPIP\nPYq7/4Hts4zjVgI/8Km5NXKNLB12GjWOc46Tdgq/kaXhNSg08iTt8T3+Fi+PjJCFEGIXoT3+W9Zf\ncCq9QysJggD3gFe3i/GwpJ3C1m0cb/wjXaUUHXYaQzOpuTVKTnFHNl9sgxRkIYTYBVgPPkDynf+G\n+fvf0ffE/zBUG9ritSm7A1Oz2iPd8VBKkQ6l0ZVBpVmh3Cy/3KaLMZKCLIQQU1zo9h+SeM856JpJ\n+rrbMA/9F/qqveTq2VGvV0rREepoj3TLzvjCNjSlkQ6l0ZRO2SlRbVZ3RDfENkhBFkKIKcz82peJ\nf/QCglSK/L0/wzj2X1mQWoCGxrryOoqNwqj3DRdVXRmUm2Uqzcq4PldyryeeFGQhhJiq/v4Xql+9\nkqEFs8jf/yvcgw8FIGbFmBOfiwLWlNZQdkZ/rDxclJXSKDlFam5tXB9vaAYddgcKRaGRx/HGHjoi\nxk8KshBCTFHBqw+l8V9foO/2H5ObP3PEz5J2kj1iswnwWV1aRa05erHVNZ203SrKhUaehtcYVxss\n3SIV6iAgINfI0fSa290fsXVSkIUQYiqpVvG/+WW8poNSisjZ56HPnkfVrW42F9wRSjMjMhPPd1lV\nWrnFx8qmbrZHuvl6btwj3XbudeBL7vVOJAVZCCGmCFXIEz/zVLwvX0nlBzfg+d7IBVajzAV3R3ro\nifTQ9BxWF1ducQRr6Vb7MIlcI4fru+NqW9gIE7cSraIsEZs7hRRkIYSYAlRfL87px1J78k+YbzmZ\n6r+d3i58m80Fb/J4uicyk3Soi7pXZ3Vx5RaLbcgIkbCS7aI63pHucO71cBqYFOUdSwqyEEJMMm35\nMrS3v4X82hfoXXwm+etuIBrtwAvcdra0oRmtuWAUuXpuxFywUopZsVmk7DQVt8Ka4uotFtuIGSFm\nxbf7MAnJvd55pCALIcQkUkNDdJx0HPEVq7He+xGGPvYxSm6ZIAja2dK5Riub2tRNOkLpUeeCNaUx\nJz6HhJWk1Cyyrrx2i8U2ZsZedu61rduSe72DSUEWQohJFHR1UT/nXOrXfJnQx5aQCqUoNysUnAK6\n0tsxmMOJW5Zu0RHuGHUuWFMac+PziJgx8o0cvZX1Wyy2cStB2Ai3RrqN8RfllN2BpW9fGpgYnRRk\nIYSYBMY/noQNRbBy2RLq7/0Atm6TCnWQsBKUGiUKTgFTszA1i7pXb4eAbG0uWNd05sfnEzIiZGpD\n9Ff7t1hsN8693p6ITcm93rGkIAshxAQL3XYrqbccTeS6L2z2s7ARbhVlO0HBKVJo5AkZIXRljNj6\ntLW5YFM3mR+fj63ZDFb7x5R7vXHBHyvJvd6xpCALIcRECQKcG66hdtlHcDuSOG86dtTLomaUlJ0i\nYcYpOkWKjQJRM/rS1ientfVpa3PBtmEzL7EAQzPGnHs92l7nbZHc6x1HCrIQQkwE38dc8kkaX/88\na/fs4cWf3I5z0Gu2eHnMipO0k0TMKIVGnmKjQNyMb0jcKrRjMLc2Fxw2w8yNz5fc612EFGQhhNjZ\nXJfQhedTve1G1LxFNL/xPQZmJhmqDW11MVXCTpK0EoSMCAUnT7FZJGEmUCiKjUJ769PW5oIl93rX\nIQVZCCF2Nl1HN0zU/q+m8oPbsWcvxNQMhmqDZOuZrRblpJ0iYcexNJtCI0+pWSJpJwHI11/Klt7a\nXLDkXu8apCALIcROEtRqrZGiUlS+dAPabb9AT/egazoxM4amNAarA+TrW97LO7yaOW4n0JVOsVGg\n3Cy3YiwJyDayuL67zbngTXOvG+7oxVZyryePFGQhhNgJvLWrWXrma1l389WtLUGGgRaLtxdAaZpO\nzIgRAIO1ga2ucB5ezZywkkBAod6aQ46biRFbn8aTe72quEJyr6cYKchCCLGD6cuX0vfvx/JUYzXP\n9T3JuvK69pagjedqdU0nZsVwA4/+av9WVzgP35ewUzS9JkWnQMOvEzVjI7Y+bWsuWHKvpy4pyEII\nsQMZ/3iS1EnHs/C5PrqOO52+007kxcwLrC+ta28JGs6l1pSGrnQSVoKG16C/2rfVFc7Dq5k7wh00\nvAYlp4Tnu0SMyBZzrzde/AUTn3vdXgEuudfbJAVZCCF2EPPxx0ie8q+ozBDaZ6/jVR/6HDOjsxiq\nD7I09yK95fXtLUHDudS60ttFuerW6K/0bXWFs6EZdEY6SVkpqs2XErK2lHsNbDH3Om4ldnru9fAK\ncMm93jYpyEIIsQP4gU/o1u+iGnVKN32P+nveT3ekh4NmHEx3uJv+Wh8v5F6gr9LXLo7Dc7VKKQzN\nJGEmqTTLDFT6t7rCuZVnnSZpJyg55XbutaVbm+Veb2kuWHKvpx4pyEII8TKVnBJri2tY/YVryP/3\ngzROOa39s1mxPXh1z0F02Gn6yr0szb5Af6WvvaBqeK5WUwpDN0hYKYpOgYFK/1ZXONu6TUcoTdJO\ntnOvLc0eV+61oRmb5V5vieRe73xSkIUQYnsFAfb1X6L/3pvpraynQIPMAftsdtncxHz27zqQRCjJ\n2spqlmZfZLA60C6Ow3O1utIwNIO4lSDfyDFQ7d/qCudNc6+LTuFl514PVge3+HmSe71zGZPdACGE\n2CX5PtEllxL59jeZv+9cqkcdSX+lF00pNKURtxIjLt+rYy88v8lTQ0+xprwS0zTRNZ3uSA+a0oiZ\nMYLA37CoyyJqtB4la0qn0+6m0QyI2AaGPnIcFTWjBIFPEAQUGgUUiqSdotwsU26WUUrD1sL4TQtb\nC9Pwa+TqORJmiprjEbGNdu71yuJy+qq9GJrenn/e2PBe52w9S9Wtttptxcf8lQ2vAM/UM5SdEhoa\nETOyXV//dCQFWQghxqvZpPmx9+H+9324r9gX68f30p3U6K/201vpQ1MaakOR3djeHa+g4Ts8O/Q0\nKwvL0dBRSqMr3NUu4n7gU3Nr2KaNF3g8sWwZXrWPqJHG0gx60mGO7hz5vq3Rr49PQKGRbxflglPg\nL0tXUS9baMrCUBrhmEPdy1Es9hLS45iaTk86zKsWpJkbn8+q4krWlde1FpptSATb2HBRHaoNtQt+\n1IyO+asbXimeqWcoOgU0pREyQtv3e5hm5JG1EEKMR7WK/Z6zyD1yHytftx+rf3Inwew5zIzOojPU\niaWZ9Fb6KNTzm518pGkar+rcj3069kULdFYUlrIyv4JM7aX4zOG5Wl3prOlzKJWh5OepB0WUBgP5\nGk++OLBZs0bLvV633iVTbFALSijNQ9MVy1Y3eXF1GU9r0lQVNF0xkK/xzMqs5F5PMinIQggxDu7n\nL8f4n4dJHnQk2a/cQJ/d3DBSVMyOz6EjnMZQGr3lPvKN3GYnHxmawQE9r2avjr0IfMWywousKa4e\ncTxiyu5ABQbZgkPECGMog6pXouzmUcD6oQqut/k2pY1zr7PVLKsyQ8SM1iPlmlfG8wPKtSZ+PYwW\nGDh+A9d30JRiIFvD9fwx515vvNd5e3OvN14BLrnXUpCFEGJMgiBgTXEVz7/3dNZcdD7uTbfRlZ7b\nCvSo9FJttuZU58bmkrJTaCqgvzIwah60oRkc2PMaFiYX0fQcluVfYG1pdXv1slIKW8UBDaV04mYH\nMT1OM2hS8Yp4XkDN2Xyx18a5104Tis0Cda9KVE8S0WM0mx6+H+ADIRLE9AS6MgFwA7/9nuPKvQ6l\ntzv3OmSE2rnXuUZut8+9loIshBBb4Xo+tX8+i//Iwzh+k2bYZv17z6UY1IhbCTpDnVTdGn2VXupu\nHV3TmZuYT8JO4gVN+mp95OrZzUaAISPEa2YczLzEAqpulRfyL7I8s5Ln+3qpOy6xkEXK7EBDwwtc\nTC2EoUxdXKZsAAAgAElEQVQcv0E9KBO2Rl8CNLyaeUY8jY6i4pWo+1V0ZWKaOpqm0JXCMnUsPYRS\nCqA1v7zRe0507rUfeGRqmd06YlMWdQkhxCj8IOCZlVnqf36CI5d8kHC1zj/u+jnhV8SpuTVy9SwK\nRcruwA98svUM/ZU+ZsZmYeutVcteYTklp8hgdRClNDpDneia3v6MiBXhkBmvpel5PPjU//Kb0lq6\n9UWk7VnsNbOHeTPiBIWAipun5leIaDH8wCeVhLpXIaaPvsJZUxrdkS7md+dYmemj6pZQQMxIEQub\nKEDT1Ii+9qTDm63g7onMxPV9MvVBVhdXMj+5EEPbvGyEjBCJIEnRKZCtZzfr57ZEzSh+4OH6LoV6\nhc5QZ/sPhd2JjJCFEGIUz6zM4vzPw6S//G76yPHE+R8nG5pFbsgmbIRxvCb5Ro5is0g61EnSTlFy\nigxU+ml6TSzdYn5iAVEzTtWtkKkOjpoHHbfjZFd341aTOKpMjtWUgyGW9w+xqq/IrI44EZWk6fpU\nmmVmd3RwwKIZo57mtDFd0zls7z2Zn56B49YpNIqUnAKv3rOTA/fswvcCHNfD9wJ6Uq1V1puayNzr\nuJUgYka2Ow1sOpARshBCbML1fLyf3c1e3/wEfTH41QUfRv3L0aSDJtWSyZ6zEwzRT73ZaG8z6gp3\n4xOQb+RQmsbMyExCRoh5iXmsKq6k2Chu2A6lNhyR2BoP1R2XbE5nvr0/qxtPUfazDDqr0SyNFQOK\nt7x2HvvO66BQ66buFzF0jWQ4QUaVKTmt9wwb4VH7Yekmh++zJ3vOTtBfHiIdjtAZMUnYydajeMcl\nbG2+t3ljw7nXXuBSclq513Pic9vt39jGe6mHR8rjGemmQikG9NZhGPlGbtS90NOZjJCFEGIT/k/v\nYc+vX0I2bvP8+VdQOfhNVNwyeWeIhu9gqxg94RlYhkW1WaXYKFBpVugJ9xA1Y+TrWQY2JHFFzShz\nY3OJWjFyjRy5WnbEyUeZUh3X84mbaeba+5EyZqJQDLlryTcGGCiUMHSNzliMzkiagIBio0jCTIx6\nmtOmLN2iO9rFrEQXNa9GwSlQdlrvGQ9bWy3GwyT3emLICFkIITbi+R5Dh+yDWvQq/nHueQzOnY/p\nRVCGT8krEAQK25xLWKUoUMclQ6VZQlMK34eIStNULrl6Bg2NdKiLwAsxM7wHvawjUx9C13Q0pegI\npemMh9pFMWF2EzU6GGiupOD2kg/W4qg8NSdC01VEbIuElcQPPErNCgmrNW+br7dGk5Zu4Xo+1YY7\nItVrOPd6OM1LQ8P3Ad8eNf1rNMO51ysKy8nWMujKYGZ05qjXJu0UfuC3i2oq1DHm7394pXimnqHm\n1tqBKaP1a7qRgiyEEAC+T27p32HeAuyZc3jqy99h1aos2YECnlckpMexbZ/k7Cp/XPoibiWGG/hU\nXBctXMEL8jjVELYWI6RZBOEKL/oF/Fo/USOFqenY0TDRDo/B6gCa0tGURtJOMbcnxtrBMpqmoSuD\nLmMevu+ixwv8Yfk/CLsZ4mYrdKQnHeaQAzvJBK1ozLiVaC+m6u9TZPJN3MDHUFo7gUtTqp177QU+\nf1uxmlrZImIkiOiREddtjambzE8sYGVhOYPVfnSl0x3pHvXalN2K2BzOvR4t9WtLhh/rZ2oZSk6Z\n51blKRW1Ufs1nUzPPzOEEGI8mk3iHzmf5uKTWPf0Y0CAoVutWEeioDQcv4KpLIZyLisyvZT9HLZh\n0BHqYv16WLqmRM0v4aoqge7Tu95k2doSZT+LE5RQGjRqYYq5MGEjTH+ll0KjQMkpcsJh85nTHcPz\nfBqOixYYvHrmfrxyxgLWF/P0O6uoBXnQAgbyNZatqrbPKK65NeJmgudWZ1k21Auaj2XoIxK4hkXN\nKH39AdWKTj0o0QhKeKq52XVbM5x7rWsGfdXeEYEmGxvOvTY0c8RBF2M1nAa2dG2RVdkhXBpb7Nd0\nISNkIcTurVIh8f5zsX/zMHNeezBDHZ2sLqwhl7fZozOO2+HhOFEcrYoiYH2fz+yZJoVmFg2NqJ5C\nOXHwG/iBT7lZxPcVlXqA5icIfIecO4TSNGJGkmY5SsesGD6DI3KvTzpiIXXHJVdu0BGzMXSNh/5X\nI23VyTuD9NfWoNBImp2sH6owM9nZzr32/IBKUQMVUGrmiZsdaEp7KYFrno+ha7ieT7moEzeTKBeq\nbhGFImGmR1y3LWEzzLwJyL0OAkWjHMJQdcpekbjSMDVrs35NF9OnJ0IIMV7ZDLVz3krw6MM4bzoW\n564HmDf3IBpNn77GWkxlYmgaYdsmbXXhNF3qbgUjCKGhqPkVco08oBNRaUIqhq4ZlBtFKm6RINCI\naGkIAmpuhapbxiMgaXaPmnsdsgxmpaOELINqw8XQQsyJLCJpdVL1KgzW11Fs5nDd1grp4dzrQq2C\nEzQJaRE8PFz/pcSsjRO4qg0XN/CJGHEiRhxLD+MGLmU3T8N3Rk3/2pKJyL2uNlwCWn/IKFp7r0fr\n13QhBVkIsVvSetcTOu14Msv+zjNnvIWB7/4AolFiVoy90wvRFAw5vYT0KAmrg7jZQTrcDbqHpxxS\nZhdhLQpaEycoY+kWMyOzmWnPIRlK0aRGkwoRM8TM0DwszabuV3H9GhHb3GbudcQ2MJRGxIizILov\nM+w5NPw6g431VP1CO1UrZXeQCEXwgiYQkDBSmJrdfp+NE7iG3xMgZiTptGaQNNP4BNS8IpYxvjnZ\njXOv15RWjyn3elurwjc23F5Ds0iYaaLGS0dabposNh1IQRZC7J4ch3CmQPJt7yJ36eWsqq9vx0N2\nRtPsO2MhTd9joL6WIPBRSpG00uzdPZsmDcpeAVsLY+kmVsjDsB1M3SBkRElYKdKRJJpdpxa0Ro5x\nMwWBIhL3cPz6qLnXQ9UMQ6Uyrtd6FNuTDuMHAbYeZkZ4LkmzNVImlKPQyFOsOnh+QHe0k5kdMape\nlWbQbO/93TSBa+P3BDA0C1sPY2sR0kmLYjM/7kCP4dxr12+OKfcaaOdeu55PseqMelDGpu3VlYGm\n9FH7NV3oV1xxxRUT/aFPPvkkl1xyCaeddtqYrq9Wp9/RXNGoLf3axUzXvk3XfsHoffOaDsVmEa2j\ni+bpZ2Oe9A485VNyilTdGkkr2QrD6ExTqboMlHMUnSJRLcmszhhHHbCAUrXBYDlHzW0Q01PMmREh\nldCo1TyCQMdUFgtnJUjHbYbKeRzfw1Yh5nWmWTA7TMOrY2gmlm4RtxJUmlX+ubqXZ1b1sy5To2/A\noeb47Du/g1rDpVxt4gUQ0WLEoooaBZ5aOkBfpknfgEO14XLAwpnkq2XylQquH2Aqi56O1mrkjcM5\nulJhqvXWezZ9HxUoZncm2Wdukqbv4HhNwkZ4XIEerXnhgKJToNIsk7CSo0Zn6pqOoRlU3SpPrexj\n6eoKawcrrOkvU2k0mT8rSa028vc1WntH69dUF43a27xmwsf7N998M/fffz/h8OjJMkIIsbOoxx4h\nctnFDN3ybRqz59LZ1YmhacyK7oHne+QbOVaXVjE/sQBNabzhlfuycI8oa0t9pEI1XpGeh6ZpvGHf\nfdmzGKe3PEhP1GBWbCalZgnHbWKrGB2ROIauUWwUWFRNkKsVmRG1mRFrjRCz9Uwr4Ut1YOs25Wyc\nRs3E0ytU/Rx2YNCXa43+9l/YiTvvpVStJ5eHWFpcRtkfQHd1QobJwIb8jCP22YuByiBVx2FGrIO4\nvfkCKk2pzd5zeKSZrwfUvTq5RpYOe3wFb9Pc6wXJRaMW5ZARYn2fz0ChiqEaJMyO1iKtDec8z0lH\nxtze6WbCezVv3jy+9rWvTfTHCiF2c/79d+O/9zRKAyuJLl1BEPhk61k830NTGrNjc4ibCUpOkbWl\nte1Ht3OTc5mT6KEZNFhRXI7v+xiawaz4LPZIdFNxi2TqQ8SMGKZh4GlVPFqPvhN2knQ4RWc0ScUr\nkm1kUUq1gzLy9Rw1p0G+4DMzPI+wFsHx65SbBSpugb5Mpf34Oh62ACgUA/aILiCmJyk0s+ScAVy/\nwUC2BkHrUIl4yKbqlrY6VztaUlfSTmHpFo7njDsla9Pc69XFVaM+/nY9n2IBYkYMH5+yWwRahXdL\n5zxvqb3TzYSPkI8//njWrl07rnu6u0c/0WRXJ/3a9UzXvk3XfkGrb+63v8UjX/ww0W6buV/9LqE3\nHENiQzyjpjl0RrrQlEZXd4zl2eWUm2Ucu8icxByUUnR378+y7DIKjQJVK8vCjoUAdLkx1hbXUnJK\n6OEme0Zmk6/ngSbJSAJLt+gKYmRrUfL1PI7noIUdeiJddHpRcvUc5WoFK6SRtJNEo3uTafS3Cplq\n4FIhErVJxkMAFMoNwhELy9DZs3sfMvU+mr5Dwyhga91EYyESMZsuL0ammhnRjjF/X0GcTC2D4zlY\npk8yNPZAD4Curhgr8yspNArUrBzzkvNG5F4P9yFphqm5IQICIkarf07Ta/dhd7RLLFEbHBzfhvJd\nQXd3XPq1i5mufZuu/QLo7opRuWwJ4c9/ls69Eyz/7OUU581i1mABXTcwlYHjl8lq1Q1bcxQxr4vB\nYoEXc6so5GrMiM4CIOZ3MVAqsDy3lkKuxuz4XABMN06jXOTF3Gry4Vo7OSuTbR0jSKBRqQfUAyi7\ndfK5dWTsCkmrg2zFpe5XGChlSDlpCDSMZpp6UKDqFyn7DmszvVTKHdQcD8vQqFUdrGQYv26QCGaS\ncwYYqmapKIdcoZtK2aLacNF0jbL7UjtGOzZxS/zAJF8rkgnKxKwqMTM2ru894qcZKBdZlltDPldj\nj+hsPD+g2nDbfWjoCmg90i7RWl0eiVhUynUatem3pmEsf/TuEgVZCCG2x/ql/4f67lexZ89hzvfu\nYShRJdfIoSuNnsgMlK4wlUnTd9rzpq14yIWsKC5nYEPEZXekB03TWJBcyPLCMjL1DVnOsVmEjTAz\norPoLa9nqDaEUhoJK0m+kecPLyzFKYfxUWiAHfPo6g7432WrqFf6COsJ3KBOuVGnP7sOnCgBrXlb\nZevMnqX4+4o11Ct9hPQEhtKoNprE/NYIUlcGKasLN/CwQg5/XPoCfjVBgIahNBJJ2GNmMO4ziof3\nDmfqGcpOCQ2NiBnZ9o0bbJx7PVQdYumaIl410Y6+rDaahEMm+iZnMu/RFZ3Wj6S3ZfftuRBiWnN9\nl+VWlb9cv4TnfnI7au9X8sr0fsTNOLlGjqHaIH7g4QWtOeGN501tw2Z+vBUP2V/ta8dDGprBouSe\nGJrFQK2fweog0FplPDM6E1M3GaoNUnWrrF3fZKBQpeIXMHSFYeg0qiH+9nSZgWKZelDGoUTEjFKv\nGmTLFapBkSAI0DSDiJ4in9PoLRSoBxWaVNB0RThkUq032+cZa4HJPt3ziBpRVmX6KboZDB00XVEs\nwbped7vOKNY1vR3oUXQKI/ZIj8Vw7vWavjpLh9ZR8jLt6MtwyKC2UR+Gz2R+9d494/qM6WZSCvKc\nOXO46667JuOjhRDTXaVC7BMfw8zkWNSxCG+fV7A0VGKoOkTIDLF/14GEjAiZeoZMdRAfjyAAQ5nt\ngxDgpXhIhcb68joKG15vFeVF6Mqgt7KuXaxjVpwZkRnoSqOv3E9vtkhEj+LhUXbzrUKLTi6rE9ES\nNP0GVa9CsVnAb4aImhHmzggzYwbsPSfF3K4khbxJREtQ96pU3RJVt4yuKSIhkyMOmMnh+83kDQft\nwYELZxLUk4SMCCU3T6GZwQ98NKUoFTVsLYwXuCOOfRyLjQM9Co38mAM9hunKRK93YWgGOWeQUrP1\nB4+uaUTskX3Yf2EnmrbrbGPaGWSELISYNlQuS+r0Uwh//xYiX/8qs+KzWJBchBd4vJh7nnw9R9gM\ns3/X/ti6zWB9iFwtixe4oEBDbx2E0GyFecSsGHPjcwmAtRvFQ4aMEAsTraK8prSaotNaKZy0U3SH\ne6g7LhlnkAAfWwvhBi4+Ho7rE/gaIZUgaiQJAp9qo1VsTWJomOiGh1IBjuuDb2CrGBEjQYBP3a9S\n96p4XkDT89urjqsNF01ZpK0eTN3G8ertPwLcwMcgQtgItx/Nj6com7o5YlX4cHjKWFQbLrpm0WPP\nBqVRcYvt+Es38Ef0QUhBFkJME1rvelKnvBXzr09Q/7czqFx+BUopZsfmMC++AMd3eCH7HKVGkbgV\n51Xp/dCUzkCtn0Ijj+s3NxzIoFN2SlSbVaC1dWl2bDY+PmtKq9rxkBEr0tqvjMbqwsp2se4IpZmb\n3AMF5JxBFBopswtdGViGhqFrhK0QKauLbns2tmXhqjoeNdKhNEmzteJ7+NqoFSFt9dBl74GGRtUr\n49IYERs5HDEZ0iPMCs0nZqbaGdU6irBlkLCS2Lq9XVuabN0mYScJCMg2srj+2DKkh9sVNqLMCS8i\npEeoehUaXm1aRl++XFKQhRC7vMbzT7LunDfQWPYs1fM+ROkbN4FpAq39sfMS85gTm0vVq/J87nkK\n9RJaEGWf5L6Aoq/SR9kpU3cbVOsevk973tT1fHQ/Rpc9A9d3WV1sxUO6no/vWsyKzMHHZ1VxJXW3\njlKKnmgXe3bvQdNvknMGcfwN868K5vbEUKq1cErXdFJWB/GQjRFq4gS1l7YIbXKtpnRiRhICiCWa\nuMFLK5E3jpjUlEbUSGApi4bvEI47GLrW2v9sd2Bq1ohH82MVNsLErcSI/dvjib40NJO4mUJDUXKL\npJKtfm7t/t2NCsbz7GKSTMctGdN1q8l07RdM377t8v1yHIaO25+/00f6lHN55QVfIGy1VgRv3DfP\n93gx9wJ/XPY8bs1mVmgvIkYYPVykGVnP+oEaeiONoduEtBDJhA4ENCohlDLQURjREol0g96BJka9\nG5SOoTSsWI1YRxlLt9kruReWYeH6Hr9//nmWD67HUDY9oVnM6epg3/kdPLcq1zo+cMOq43TSoNDM\nM5ivEtJjRPQIPenwqNd2pHT2e2WMXK5CRyjd3mPsBwHPrMy2r9VRhOINFs6OEDUjJO3UhutaBdX1\nm8TMGDFrfHvQy06JolNi2doSjXIYn9ZBDz3pVpyltkm616btInCxonVA4VRsUEb7/qMPnU8mM/qp\nUbu6sWx7koI8SXb5/wluwXTtF0zfvu3K/Rp+dKo9/Av+uvZx1hx1KPMS8zig69WEjNBmffv7sj7+\nb/0/KbgZkmaaOeFF6JrF6twqcqzD1HR6QnMwNItMpkmTJrM6I8SNDgzNxPN91hXX4uglInqEmeF5\naEpvjQBDZVJddSzNZq+OvTE0A8/3WFdaT29pgM5IijmJ2YQ2hGC43sgoyKbXZKAySL3pMjPeTdR6\nKV5402vjHSYvrl2NUtpme4w3vlbXFJl6ZrPi6/kemXoGP/CIW4lxnVEM8KcXVrA2l8PSLOJGCqVU\n68CHVJj9F3aO/rvaqF1PrehjeaYPQ2nEjBSGZuIHAfvMT28WnTldjKUgyyNrIcQuqfTwT/nbit8x\nUO7HO/at7L94CV2hNGuLq3lm6OnNFh+5nk827zInspCEmaLYzNDfWIvnu1QLcWbYc3EDl1yjn6bX\nJF+rUG8oXD+gsiHeERSlXISYnqTu18g2Btqrmd1qjA6rE8dvsLywDN/30TWdPeKzmJ3soeaV6a/2\n43itR82bRkGauklXtJNYyKLcLIxo/6bXhowQSTs14vHxaNcqpUiH0ujKoNwsU2m2FlRtvKVpvGcU\nu55PtWQS0kO4QZO635pr15RqjYK3EX0JkC/4JIwkPi99t9uKztwdSEEWQuxyQj/4Ls3/eDf1r17F\ns7l/km1ksQyLg2YcSsLqYGVxOS9knx2x+KjacHEDH1O3mRveiy57Fo7fYF15DU3PpcOYxazQAjTN\nbK8mdrw6mm8R0lujtmazNb+c1GeQMjtBKcpu68hCN/BJWTPosDuou7URudc9kRkk7RTFRp6Bav8W\nF0XZut0qtGNYPBU2wsSs+Db3GA+HfGhKH1F8t/eM4uHvMaonCOtRTPVSLKcbtEbBY7nf0kPEjGT7\nuwXwvGCb909nUpCFELuOIEBddzXapR9lkdZB8oz34XhNnh96hmw9S8yMcdCMg4iZCV7Mv8DzQ8+3\nR4/DK34BTN1mVnghUT2Oq2qUgwEMQ6PLnk2cHpQGDUqAT9NvUK54NF0f09QxdA3bNEjbMwjrkQ2r\nmQvoKExdI2nMIqzHqTTLrCmtBsDSLXoiM4hZrVCSgUr/iFHtxkJGiISVHHX0u6mYGSNqRvECl2x9\ny9uZdE2nw+5AKY1CI99erFZrBMTMVlb18BnF2zL8PSqlCOtRDM1s/2wsK6c3/j1Ymo2tv/RoXtfV\nbr3yelLOQx6v6XhW63Q9g3a69gumb992mX75PtFPfwr35uspLtiD0u33MuvVbyLn5Cg4eSrNKhEz\nSjrcSdxKMFQdJNscwm+2TlfSNY1Ko0m53kQphVKKiBGj7tfw9RqDxQr5nKJW1SlU65SdCtlKiYHB\nJmuzBfoGHMq1JvNnxrFMHaUUlmbj+U3qnkO5Xieb81k9WKKY1cnXCxghB893SdhJDM0gZIRouHWK\nzRIKiJiRUY84NPVWkWt4DRpeY7PziTf+ndm6jRd4OF6Dpu8Q0kc/y1jXdCzNotqs8dSKPpauKrN2\nqErvQJ1mE6KxgIbfIKSHRhwGsSlNUyO+x/avJwjo6QgzM731+eit3b9gjySp6NgPwtiVjOU8ZBkh\nCyF2CfGLPkzk5huJLdiX8q13UZjTQ8Nv8Jqeg+mw0+TqGVYUlpGr5+iJ9HBA96sxdZNnsk+zprSa\nIAh41YI0PalwO7IRX2P/GXuxqKebqleg5A0SBAEpvQe3YeO4HnWtTIBHXStSrjkEGxYvDb9HWCXw\nHIVuedSCEpahY5g6utPDuj6HTD1DX7kXoJ17HdJDDNWGGKoNbXFUG7PiRIzImBK2knaqvcc438ht\n8TpLt+jtCxgs1qgGRXQ9QNMV+ZLP+j5/TKNyYLPvcTj68lUL0mP4TW75/t09OnP3fTYghNhlrC+v\nwz98X1614l8o/fAuUskEmXqGolMgZXdwUPfB/O/gX+mv9GFqJkrBHrHZJFI2v83/kacHn8JUFrNi\nszY77B6g/29V5nTWaLgOcc0jaaVYn5mBbwZEYi667xO1LAzVYM1AmeNeO59953VQc1xMXePxp6AS\n5Gn4dTRPJ6xHsXQTGjPQgjIDtX50zaA70k3UjDIjOoPeSi9DtUF0pbdPmtpUwk7iBz51r94+/GK0\n6wBSdge5RpaG16DQyLe3OW3M9XzyBZ+4kaDilSg18yTMNJrSKBYCwnOi1LxK6zCKcOcWR8qaUpt9\nj+NJ29rS/RKdKYQQU5TK56DeCtXIvuWN/N8PvomXTGFoRmtOdEPGsqZrHNT9GpJ2itWlVawtraXQ\nyLMovYh90vviBx5PDf2dgcoAMHIlcrXhgtLpsedi6Sa+XidTywGKuD8TizCWoRPSovh4lNwc2VK9\n/R6O6+MRtLbvKKMVw9nugMaM8LzNcq/jVqKdez1Q+//s3WecXVd97//PWrucfXqZplEbFRdZFjY4\nYINDiYkDxjbFcF1uHPofwg023IQE/2+AG4qDcRxCEkwJgZDgkAsBbBOH4ASMKQbbF4x7kSWrjabP\n6XW3te+DoxlprDIjWXW03q+XHszR3uf81pmyzt77t79rYvbxfcnGctiGPW/ClhCCfKyAKS3aQZuG\nt/etbDMNVTEjTsJIEaFQUfdoOIgUMnJmr0kvJPf62d3fB+u57r/YzHuE3Gw2uf/++9m+fTtCCIaG\nhjj//POJxU7OBaQ1TTs65OgI2SsvIzzlNPjyP+GGLnWvxvb6NlZn12AbNjknT6VTptIpU3B62NB7\nFo9MPsj26lZsYdPfyXJK7hQC5bGpspGHp3/Ni8zzyDu7T63ONBlJI8ayxFoaQQU38ghEm5iRpN8e\nmj1yi5QilC2E1SKKkt3r0DP7C0HGmnvK1hSSfCJFMraGLdXNDNd3YEiTjJ0hG8sRqpCJ1jiT7UkM\naezzqHZmoi11SrMJW33s+57Wmduciu0iDb+BEHLOPcZ7NlQ5RmJOh/NMQ5ZpZAhVuKCjcu3w2u/H\nkna7zU033cRll13Gbbfdxvj4OFNTU9x+++289rWv5aabbqLZbB7NWjVNO0kYmzcRvOm3qW9/imD5\nMhCCofQqklaKuldjuLYd2DtjORPLcGb/WSSsBJsqTzNWG2OyUUa0BhmIraTpN3lo8kEm60VGig06\nXrBX7GTKzGGbFolEgDC6R+d+EKJURIwkQ30FhBHOXqvdc/89qSiivxDHNCQJO8Gq7Jo5udcdL6DV\ntMmYPahIMdEcp9Ku7jNKUghB3sljCLO7+IXX2G9s5cxtTnveYzyzLTBvrTD3mnTVrcwbkakdHvtN\n6rrmmmu44ooreOlLX4qUc+dtpRR333033/nOd/j85z9/xIs8UVOEDuRETkc6kMU6Lli8YzvexmU+\n9Guy//1NVFpFin/0R/D77yO364hWKcXm6iY6QZveeB9LU8sAaPpN6l4NKQx6nB4mWxM8NPkwdz+8\nFXd6CXHy2NImygwTxadxG0mWGOtIWClW9Kd41XkreXpHZTbeURJhxJs8uGmSUkkilI1hCFb0pfi9\ni07vBncoj4SZ2HWdd2485P6iJCudClurW7nv0Un8WgER2RhSkCm4JDNtGg1B1u4jZab2uX+oQqbb\n04xWmoyPhBgytt/X8kOfYqfIUztKuI1u/KcpJH15BxBMlQ9caxRFTLeLPL59kkZNYBvJA0ZkHg7H\n28/i4fScojOjKJr3NMVCtjkcFuM3aLH+4C3WccHiHdvxNK7g7jsJr3kbS0ptWjf+NaOXvw5feSSt\nJGk7091GBWwub8JTLgPJQQYSA0A3Y7nhNzClRcEp8Onb7mJj+SkCAvpYS8IoUKq7lI3NZPMt0mYv\ny+31mNgs70tx6fmr58Q7PrZtki3TY4ShQoQpcvEE0hC7uonz+8yDfnbE5b78n5/+micntmBJmx5z\nBRCX2v0AACAASURBVKa0KVVbBHaVZcvAkQl67AFMGdtnFOXDz0ww3i7RbHVImVlsGdtvbOWDz4yx\nZXocKSBt5jClPbvtTFPagWp9ZMsUW6bHUITEjSRxIzlvROZzcTz9LB5uC5mQ93sNeWaiLZVKfO97\n36NanbsyyDXXXKOvK2iadtioSLHtqXvw0i7T1/8lg294K3mg2C7S9JsIIUlZKUxpsia7ls3VzUw0\nx7ClRd4p7EqtUrSCFjsrEzQqaQr2Sqbd7VTFOCKyCEKbVLCGBCPUw2lK3k567JUMT3ZPITu2STpu\nz8ZsZqwcdVFBmB1MMwXAZKnNupX5fV6r3TMecl86XkClZJE1+6mpKeqqSE4swQ8g8JPEhUlbVakF\nFbJWgckSBCvV7IQZhIpixSeXztNqjdEKath23+7YymdtW66EpK0sjaBKK2yQkYXZbdetzB+w1iBU\nTJfdXTGjZdphk5h0uktWPuu1tMNj3nfzXe96F0888cTRqEXTtJNVFCEQpN9yLc3PfYXh885kZ30n\nwGzs455rFNumzZrsGgxhMlzfQaXT7T7OxLI4hsNwsUorrJGXy+mTp9DLGoJQ4UU1RCTojU5nibUW\nJUPK4Qhu4FFu7I6OnOlGNqVN2syTMHcf3czEQ+7rWu18ivVuQlba7CFvDJKUeYIwQhFBJImFWfrt\nZRhC0ggqdEJ3TpTk7rqsXXVl9qrr2dvaMkbGzBE3Uvvddl9m9pfCIGPlSRpppDAWvL928BZ0H/IN\nN9xwpOvQNO1kFEVM/dX/YltxM2s+/AV6472o01/MtupWxpojEEmyZh8ZO0fVL1PzqkghcUwHx3QY\nyqxiW3ULO+s7MKVJyk6RjeVY2eOC8Qxu1CBl9AFgKJeqmMKjQcLpIWeuoRpO0lRl6tE46cSZ3YUT\n3ADblLPdyHtGQ8LceEhDGhRiBUpuqXv7lZDEjP3fgdKTdmaPKhNGN7IyEhESARKS8Ti2KbFUjEZQ\npRPWsPb4K71nl/SB6tp7W/uA2+7LnvtLYcyJuFzI/trBmzc6s1QqsW3bNjKZDM1mk3q9Tr1eJ50+\nuDU0n4sTItbvIJ0wcYUHabGOCxbv2I7ZuJQi9aEPUvvnL7LFLDO54XR6CyvIOXmkMHhg6zae2DHO\nyHSbUlEQBIJUErzQxTIsTGliGza2EaPilal5NVJmCtu0yThJnhyepNZuEUURhrAxhInnK6QVkMsY\nWCJGTCYJQo9MXtHy2uzYGTA81WRksknL9TEMOad5aV/xkDORlJ2gQyfoYBs2hjT2OWTTkEyUWlSb\n7uwlPyEEfhCSSlos6+0exRrChEiQyQgyaTkbZzkTO+mrCN/fnaa1r7qOZMTlQvY/FIv1dwwWFp05\n70ecer3Ol770JfL5/OxjQgjuuuuu51adpmknL89Dvv/txL9zB0Prz2DkE9ez2ajw0MSvOWfghRSn\nLCy/h5BRasEkjmlDLU8USZYNitn7ji3DIufkiFjJcH0H2+rbOCV7CrZp8/uXnMc/3fUAm0eK+GGE\nYyY4a/Ug2Yxi69Q0Fb9E2sxz5uBa7HSZ4XKRjBXSGxtECkHcMWl3fBIxa69u5GezDZtsLEfFLVN2\ny3utUbyni148xJ33bWd4snvrkmlI1q8uMDSQYrrizr7Wip4CQ8tsmn5jTnLW+lUFRsttnq515q1r\n/aoC7Kf7eyGe6/7awdlvl/WMCy+8kH//93/HcZyjVdNeFmPX3WLtJlys44LFO7ajPq5mk4evvZhf\nFh/k1fZ6Vv799+mkEjw6/TDba9vocfrpTCzHMAxK7gRT7k7iZpr+2HKSMsuLNuRpBjWEkHMmvqnW\nFGPNEWwZ45T8qd3lBXsSPLDpacbLDU7pX0Jfuhu8MdkoMVYt05dO0Zfo5ccPDTPl7aSj2uSsHvJ2\nP0IIVBhx/vOW4IdqQfGQLb+167R69/ar/R0pQ7fBq9xwyadiOLtO/+6rS7vu1Wj6TUxp0eP0IISg\nry/N2Hh1wbGVC+n+PpL7L9Ri/R2DhXVZz/vOrlixYq8Oa03TtEPlfOsbrPrZgwSnruW7H3gTG9UU\nMTPGmT3PYzC5jJHaGJvqjyKAfKyfvthyRCQpeuPU/Cooi7Sd2WshhL5EH73xPjzlsqX6DEopDGmw\nIreENYN5QtmmE3SDPvpTBYZ6CkhDMVqbQkWCfmc5cSOBH3k0g+7fvCBS+KFacLxjwkosaI1iAMc2\nGSwkZydj2HeUZNrOEDfjBMqn7O5eYvFgYid1xOWJYd5T1kIILrnkEk499VQsy5q99/hrX/va0ahP\n07RFZFt1K1z2Sk6JfY6X/dYGfjD6I/5r6/dJGkmWZZdxVt/ZeIHHlpFNbKk/warkmWSNpSSNJtPe\nKGVvHCVWkrbSRJGi4Tcou2UKTgGlICX7cE2PelBla20LfX1nz+ZelzszjVeF2VPMyi0RmB1c1SBj\n5VjiDNEIKniRRzOoERdpLENSa3ndJqcFTEgpK0UUKZr+rkUadh3VPhfZWA4VKdzQpeKW6Scz24C2\n0Lq049+8E/J73vOeo1GHpmmLmLHpaez/uhN+73XUvApbLnk5Z6RX0BYBPxv5Kd/b+l3eeNrl9Cb6\nOGfJOWwZr/D4zi3snGjSb56OZRhgp+gf9Bht7sA21szed9zwm9z79DN06g4hEaaw8GOKgf46Wytb\nydA/J/e63CnNXn/OxwpEUYlMRtBo1EhZGVJmjnpQoRW0aPkBv3iUAyZa7UvazqAiRTtoH7Y86Fys\nG0bSDjr89NFNjI0EB12Xdnyb92PV0NAQP/nJTzj33HMZHBzk29/+NmvWrDkatWmatggYv/4Vude+\nitTHPsyqLZMkrBQVt8xYc5TfGHgh5/afSzNscfvm2yi1i2RiWU7PPo+YTFIMR5gMthBGiqSZoxDr\nJVABO2rbcAOXTCzL9tEOY5U67aiGZUikITDcXsYmQ6pudb+514EKZjOiz1jZSyoV0fIa+KEiITL4\nbgSWj0cL2zSQhmCy0uaJbftfmWlPz86Dfq5mat2ys8H2qSLuIdalHb/mnZD/+I//mBUrVgAwMDDA\nC1/4Qj74wQ8e8cI0TTvxRXf/J49d+xo2U6L2V5+FF5zLUHoIx4hTbE8z0ZrgN1e8jPX59dT8Gv/2\nzO1UmjXcpsN5y36Dlb09GOkpkj1llvelCJopcnYPrnLZXt9O23Np1Sxi0saLPFphtyHINAysdj8W\nMcpumdHGCABxM77X9WcpJL3xHtYP9XLWuhTPPz3DS89aSn+yD0satMImbtgN/ZhNxFrgIgu5WB5L\n2rOrND1XSkGn4WBJk3bYpBO2Dqku7fg074RcrVa56qqrALBtmyuuuIJyuXzEC9M07cRm/9tt5H/v\nKkQQ8tgnPsjG176cKIqwDIuhzCpiMsZUa4Kp1hSvXnMxa7JrKbllvrPpO3RCl6zdyynpDThWjGlv\nJ+OtYUIislYfPfFeOkGLTcUt+FGway1iC1d1Ztf3VQKWJVdhyxjT7SkmWhMAJK0kKSuFikLKbhkV\ndZu/Ck4ByzRRsk2900IhSFs5JIJ2uHtlu4NJqZo5qjWltWuVpufWQdxyAxSQtvNIBJ1DrEs7Ps07\nITuOw09+8pPZr++9917i8fgB9tA07WSn7rmbxLvfihFLsOrGf0Gc/wq2VbcwuisOM2bGWJlZhSFN\nxltjlDslLhm6lFWpFVS8KX5Z+gFhFFCI9bMufQ6OEWfC20HFGycRsxhMLiUTyxGKDmVvnIiItJkj\nbeZm4x1NIUkn4qzJrsWUNhPN7usApOw0CTPR7VzulImiqHubVKyAQODRIIoCDGGSsQqkzOzs2A42\npWomYtMQJg2/QdM/9GVrZ9KzDGHsqmv3+sk6PevEN++E/PGPf5ybbrqJ8847j/POO48bb7yRj33s\nY0ejNk3TTkCdoMNTp/XyzFsvZ/zbt+Od+0rOyG/AkCbPVDcz3hwDIG7FWZkeQiIZaYzQVi1eu+aN\nDKYGaclx7p++i3q7Q7Eo6ZVrQEla5ijT7UmUgqwcIGWniCU9pjqjhCoi9CWhimbX97VMuc/c644X\nUG8YoCx85c2ubSwwkKqbQOWkXLzQI4okgS/mPO/BdjUfSu71vsxdu9mYjc881Lq048u8wSAzyuUy\nlmWRSqXm3/gwW4w3ii/WG+AX67hg8Y7tsI1LKaxf3EPrJS9hZ30nD20bxm/FSVs9xKSNnWzjJ4Yx\npcGZhQ0UEt3l+6pulZ31HYBgKLMKKST//MTX+c7PH8ZqrmRJdE43vzrZ5jWvtpgqdsioVSTMHAKF\nZ02wZWqaZtUhEfVgmQYr+lNc9OIhBgeys2NreA02lzfzi0fH8GoFjMjBkIJCT8j5z+9jdNynVe+m\ncqnIw064jE43qZQsIiUxDTn7vKY8tInPD31KbokoUuSdwgFzr/f7NkdRN6lra2nRdVkv1t8xeI7B\nIO973/v4+c9/Pvt1Pp+fMxn/+Mc/5tprr32OJWqatih4HpPvv5LRd12Kc+f3KU3btFoGLVWlpcog\nFV47jmguIYxCnig9Ts2tAZCNZVmaWkaEYkd9OwLB5vuGiDoOTWsrZesJLEsSdpL8x392KDY6jHQ2\n4UctLNNieiKF15H09Sv6l4ScvjJPIm7x1Pa5vS4pO8XTGwXj5SbVaBxhBpimQblkcNvd29hZLtOJ\nmtimgWPF2brTp9byWDooOGV5Zr/PezC6t1rlEXTjP73w4HObpRC84PQBXv78pbzkzCW8/PlL2bC6\n54SfjLUD3Id8ww03cPPNN3P99dezbt06lixZgmEYjIyM8Nhjj3HhhRfqVaA0TYNGg+w7fo+dT/6I\n0XNPZ/L0XsqVkJ5YPyVvkoZfxZI2KTOHamVYO5hkS/0ZHpt+hLP6nk/KTpF3CgQqYLw5xsOjT1Ft\nwQrjFezgbsriKRLkyBpDuM0UedFPNdrBjtZGVsbX0e5ExMJ+TFGnTZlm6JC2ckyW2vjB7q7jjhdQ\nLEkK1lLK4RjlYIQ+czVCSEpFg+X9ko5oYYYmhojhuyZBaKFQ+LJJXHbz/J/rWsAHk3t9IPOtvayd\nePb7E5VMJrnuuuv41re+xSWXXEJvby89PT1ccsklfPe73+W66647JqevNU07fohSkdzlr8P+8Y84\n5azfQXz002yNqoy0txOTcQp2PwkzTRAFNIIqvgopxAYZSq3CDV2emH6Mtt+9ntqX6Kc/0c+msWma\nagKHJMt5CXH6uo1WqkkUgWomGYwPIYRkpLkDN2gjhU3eWErMiOMpl3bY7HYdd/zZWmfWIk4YWXJy\nCZZ0kFISKoVSAhmmsIWNFBLfD1EqwhQJzCiOKXZPmIejm9kxHTJ2dq/4T+3kNu/HslQqxYUXXng0\natE07ThzoHhGMTFB8S2vorhjKyuuuJLOZz7P80SIN/YrnvZ2EuuYDDgrcJwEjaCKp1yI6sTtFayJ\nr8GPPEYbIzw+/Qhn959DGAr8doozBlfwH3I7DSZIsYTVvBKPGkq6hCKkr7CGhJ2HMEYlmqCiRukV\nK4gZWQJ3gMhs0A6bOEDcsWg2OrTcgGxidxZz0syRpNuhbEiJYQjSTgzT7N5BIqwIKQUigkwsjZS7\nTwcfrm7mhJVAoWh49dnVnJRCx2GexHSPvKZpe1FRxBP7WXZv5lpllMthFvqZ+M0XUb7mg6w2DBxp\ncVb/2WydqDJWG8YUFr3OIEkjQ6gqZDKSZlAja+Q4NXcaSoWMNEb54o/uRDSWEymJlJA0sjSDKk2j\nOynbpGmHFZJJxUS9RDBto5RBUzm0/SqbapuYLHcAA4Qilmxz3pkWv9q4gx3Du8dgmxIvCDGMPVdh\niljRl0IauyddQwpScQsBcybjw93NPJN7Xfca/GLjZtxGfFf85+Jp1NIWTn8E0zRtL09sKzFZaSMN\nsVc8Y3tqlEq7DLEYmX/8d8z3/S+aYZPh+g4A0rE0F69/CT2pOCPNLUw0x4gUrOldwplD/bSDNnWv\nhpSS0wtn8NRmj23FcabDbViWwDJNzlq6hriZwlUN6sEkoVIsy/bz+pedgqda+GF31aaM0UPUTtIO\nPKpiFKIIQ5pEXoJHNhXZPDFOILzZMQwNZrBNgzBUuF5AGCqW96V482vW0Z+Lo8IILwhRYcTZa3s4\na23vnMf6c4d/LeC0nWHHqMt4tUErqs7Gf+o4zJPPgo6QW60W1WqVPe+QWrp06RErStO0YycIFZOl\n7mTsKReJxJQWUgjED+9i8h/ez/D//4es/e03M5gaZMhazZbqM1S9CiP1YZalV1BIFLjkeS/h4clH\n8IMKG/qH6E/3oiJFsV2k6TcRQmJGDtS6qzk1VJEpz6TPXoUTczhnxem84GzYNl3krOUrWNe/hh8/\nNMzSHp9AKWI42DLGeLmP0FI4SRdDFOm3hwAYKQaEq6AdVJFmDlN2T1mvHsxy7vp+6m1/zlrEG1b3\nEKzce93fI70WcBAqWnULR8a6q0yFNVJmdncc5nNoINNOLPNOyDfffDNf+cpXyOfzs48JIbjrrruO\naGGaph0bLbe7ipCNQSuoE6FImzlW/fSHnPsX11GJw4iveLr8FKY06Ev0syrbnZSLnSKGMFmSGqQn\n3sv6nvVsLD/B09UncewYmViGglOg2CnS8Oo0Gi2iSLLEPpURbyOtqEJb1UjILJGSrMgM0ZdL4IYt\ntlVGiJC7VmMqI4RH2zVQKiIZ9WGKMoFsofCJlAHKRAZxIjw85WHKbkdyECkiYLCQ3Gvs++pcPtLd\nzDPvd9LMooIKnnJRkUIKOdtAprupTw7zTsi33norP/rRj+ZMyJqmLV4z8YwACTNNI6givncz/f/0\n9ygrCf/4DU79jTN4ovg4T5aexBQm+XiBNdm1PF1+msn2BIY06Uv0sSS1BF+5PFPt3ub0/L5zSNiJ\n2UnZtF0i6WPKOMvsM3BVjRCftqphyxT9mRRCxtlW3ULDL9L0Bfl4H1mrF+jmVUspEELSZ68gwMWU\nNooIwxDkkmliHROxx9W54y1icub9FkKQNnNEdCdjOP5q1Y6sec+D9Pf3k07PnzCiadrxJwgVtZZ3\nUKsA7RnPaAub3/jm18n9x9/zy7Up7vjsZ6i98CWUShbLnNVEUcjjxceoe3WCAGJBP0EAY80Ryp0S\nHS9A+j0MOMtxQ5dHi4/Q9tsEAbQbFkIICgWFF7pIDKwog1QWnurQ0xNhGhLXEyxNriRm2YhEnapX\nhkjg+d1O6HzKxjYFUgps6ewaRbdRyzQFUhizaxEfjxGTe77fQojZLO7jsVbtyNrvR6+bb74ZgEwm\nw5VXXsnLX/7yOZ2J11xzzZGvTtO0Q7KQLukDWb+qANtKTI+WWH3vPQx6S/jOtR/gwVaD279+Jwn6\nMQxBIhdw9tkBX7r7PzEaKzGIoYSPmZlCRSME9QJmlMA0JDIdsWpNjS/efSdWcxWRkiADcvkIlxoT\nRQuUgZQGhZ4YvQXJnb/aiG0kMYUklUmzajDgF4/sxK3WMEl2rwkvzRBFESNTLYJQzUZcvuq8lUxW\nXZ6udfZ6D443M+/3vr5f2slj3nMhZ5111tGoQ9O0w2hOlzTdD9KTlTZsK7Fhdc+8+0shWLM8Tr4n\nydS/fJ285VD81QjF2q8RYhhTxEjJAu1Klu/dtQMrXcExPAatdcSNBM9sjVGLxljS45E3l2PIBEGt\njx/97GkCu0LSDBi0T8MQDtt2VpF2wNnrMkiVJuM4jJUaPD1cYaDHwRQG0kjSaEimxwSOY+LE2uTN\nHJlYBiGgPxfnVS8aotxw5zRqveD0AZZknSPalHU4SCH221SmnTz2OyHPHAHfdtttXHbZZXP+7+tf\n//qRrUrTtEM20yUdyZCyVyJuJHGM5MK7dhsNMu99N/yP91J/3lqCviTlKMl0aScD8hSmos2Uoq3E\nwxRCWHiNHvLZGM1okmKwg0K0itB3sKI+AlWnGozh2GsRUuLWB0j2CVqqQtEfpmCuIAotOg0LRYQd\nc5EyTqsdEpEgUhEtmpjCQmBRLAmWDi6hFIzTiKZI4mCLGJOlNutW5hfcqHW8OpFq1Q6//U7I//iP\n/0ij0eAb3/gGIyMjs4+HYcgdd9zB1VdffVQK1DTt4Mx07ZpIBJJW2EQgiRnx+bt2p6dpv/P1xH79\nKOlkEvezN1PplHlqfAQv8InbWfrCU2hRwjBsXD9EKkkqXEYsFiNCUfNKhJGBRZKUSmCY3VhI1wsR\nStDLKprGOIawafhVlLKROIjAwY7ZeIEijCJA4ogEQvpIYeJ5IUGocESePlvQDOo0d93SpCJDdyNr\nJ7z9fkweGhra5+O2bfOpT33qiBWkadpzM9O1K4UkbeWQCJphHU+5B+zalTuHib3xVdQ2P8qWyy9m\n9KZPYWAhwwS9GYfAqKOiEEdmyDJEFEVYhgQJScem11pOxujFMAWeaAARKTtHnB5UFBGzDYQUxGyH\nfns1SSMLRogrGkgg7aQhsDGkwBDdJi3HipEw00ghsSwD05BYpiRl5SjEBoiARlCFKMQy5EE3sGna\n8WS/R8gXXHABF1xwAa95zWtYu3btYXkxpRQf/ehH2bhxI7Ztc/311+934tc07dDMdO1OVtoYwpy9\nb7fuV1ndM7DP09Vy41Nkr3wDxugoqT94J1v+4G08vGULtDOYMk6ofOK2pFifxowyCCQCgSmhL+Mw\nszxwTCaIzIiY1cT1a0xXu+v9CiGwTcnSQgIpIkDgyBQRCsOo4okaW8cSRFH3NiYvCMinu+sVzxAC\nVvSnYNdDlrRJGRmqfoUpd5p7HpEohG6I0k5Y+52QX/nKV87eKrAvhxIM8sMf/hDP8/jmN7/JQw89\nxKc+9Sm+8IUvHPTzaJp2YHt27apIkhBZnLTL4BKBH/pYhjW7baQUox95J7XWKD0f+Sjxa/4nxac2\nMl6ZwjE9eowB4naC5T29VBqjuKqGHWUwhCQVt7n4/CFGp1oMTzYIQoVlxFk10EO11aDVqmJFaUwp\nSTgGLz9rKTunmru3lUn6MxHSDHG9OrZIIyIopONkUxYqjOZ0Ha87eylPbS/v0Y0cQ/oOdsylqaqk\nrXz3WvmuBraB/swx/C5o2sHZ74R8yy23EEURn/vc51ixYgVvfOMbMQyDO+64g507dx7Siz3wwAO8\n7GUvA+D5z38+jz322KFVrWnaAe2ra9ePXKpuhZJbmrsGrxB0PvYpyg/+gvJrL2dJGBE0E2TtPHW/\nTNmfJhv1Efox1gz00dez697gzAAx26BS87novCGCUFFuuKTjFv/3iUlaqkrL7xB6Br2pHixTUqp5\ne217/+MTNKMqXuhhRgaZWAYpBSqMOP95S/BDNafreM9xWYbkF4+CS4t22KQRVEib+dkGtj3XQ9a0\n491+J+Rly5YBsHHjRm644YbZx9/xjnfwxje+8ZBerNFozFlD2TAMgiDANA9891Vf3+IMJtHjOvGc\n6GNrekmqbhUpPLLfuxPrjDMRfWfxgpe+imfWr6XpN6lRIpFwyJjLKboWnnLxwybSFKStHL1ZA2EG\n5Ow4Ukg8PySZcsikYqwAqg2XeKJCxhyg7lcIo4B8LAGwz20Tye62Nb+MQJC147PbZrMJMqnYfsfT\nfS2brBWn6Vu4qkPStjGEgeeHtDv+Cf892x89rsVnQZls9913Hy9+8YsB+MlPfvKspcsWLpVK0Ww2\nZ79WSs07GQNMTdUP6fWOZ319aT2uE8xiGZvrgfdPNzPxN9fT37+WgQefolxukw77mKrVmPZ2MlaN\n6IkP4EQFzMin6lWoujWSIosZ9iIUNH0PABVGNBsd3Hb36yBUtFseriEQxDGiiLrfOeC20hAYJImi\niLq37233Zc/XAhszsmj5PuCjwoi4Yy2K79mzLZafxWdbrOOChX3QmHc2vP7667nuuuuYmpoiiiKW\nLVvGX/zFXxxSQeeccw533303F198MQ899BCnnXbaIT2Ppp0IglAdf4vNRxH9f/1Zws9+irHlBaZv\n/Etsv0YQGrTdiGXJlQxH25HxKcquSdYqEAYGKTNNwmkiaIIoIA4Q77hnU5kU4oCxlQez7b7Mt79l\nHifvu6YtwLwT8vr167njjjsol8sIIcjlcof8Yr/zO7/Dz3/+c6666iqiKOKTn/zkIT+Xph2vnmts\n5REThqT+9E+If/XLhCtX0fP125gazPGrjcPs3NkhZqQwhSSdSbFmqc89j4ywtVrHIoVpSAYKeQo9\nUK2XiRtZbGnut5v5YKIgn2tspI6d1BYLEe25yPEePvKRj/CJT3yCN7/5zfvstv7a1752xIubsRhP\nYSzWUzOLdVyw8LE9trXY7fIlQtA9alNRd3H7hcRWHinJP/0TEl/+O4L1G6h+81bUwBIe3TLNRLtI\nrdnCkQkSZgoVRRQbFRpiAhVFFIwlZJwcQkAqFbJ0wCQIBUvT/djzXHI6mLWEn+u6w/vaf7H+POpx\nnXie0ynrK6+8EoBrr7328FWkaYvcTGylNAQ1v4yKFBkrjxTGMV9svvOWd2DsHKb+2S8SZXMEoWKq\n3CGbKdBsunRUC1vFkJhMFyOWLR2k5I3SoEQyimNLh0bNILEsgWd0qPtVCkbhgLdHHkwU5HONjdSx\nk9qJbr8T8oYNGwD48pe/PBsSsmTJkqNWmKadiGZiK20MbBmjFTap+xXSVp4gio56vKMoFqlVx+gs\nGaBw2mmEX/vGXrXOJHp5qoMhTFxfEYQKmwx9sWW0wwaNsEZaSKLIwBJJpIRO2KHilsk7+tSwph0O\n835Uf+9738v09DTXXnstl112GZ/5zGd4+OGHj0ZtmnbCmYmtBHCMJI6MExLSCKoYiINabL7jBYwU\nG3S84JC2lTuHyb3u1RTe/LuoSpGy2z1in1kj2TblbK1SGDhGcjZRqxtRaZC0MuTsXgTQCCoQde/9\nFWECiYUbdu9thkNbe1nTtN3m/etw9tlnc/bZZ3P11Vdz55138sUvfpGvfOUrOtRD0/bh2V2/CTON\nChSdsENvzpsTBbk/gVLced/22TSrmfV9L3rxEKaUC9r20kKH3FVvxBgdwf6D9xEvLKERtLj3qLOz\ngwAAIABJREFU6Wfo1B1CIkwhabk+KfWs+3x3RVTOnIk2pU3SzFL1Kky5RX72iCRCYiCIpdqsWqZ4\nanuFZt08vprYNO0EM+8R8sc+9jFe97rX8c53vpNt27bxZ3/2Z9x7771HozZNOyGtX1WgPxdHhRFe\nEBInzWAuw6pl8dmjyQO5877t7JxqYBiSmG1iGJKdUw3uvG/7grZV999P+pJXYYyO0Pjfn6D50evJ\nODm2j3YYq9RpRzVs00Aagrhj0er4s7WqsNt8dtGLh+aMwYxsZOBgxyRNVcU0wDAlnZbDT389xnC5\nhEdr9nknK22e2FY6Em+vpi1a8x4h12o1oihi9erVrF27ljVr1pBOn7xJKpo2n33FVhpSUOqU6IQd\n6l6NtL3vjOWOFzA82Z1gO6pBW9VJyz5MaTI82T0l7ew67b3ntq2wihd1OHvjVq743J9i+h6lT3+W\n8M1vBXbdE12ziEkbL/JoBXUSZhpDChKOxVnr8guKqPQwZ6+LZ6wCAkm5ZDI4CK2wiRQmtowtfO1l\nTdNmzTshf/rTnwbgmWee4d577+U973kPrVaLn/3sZ0e8OE07kT276zfv5Cm2izT9JkJIUlZqr32K\n9Q5BqDAMia9cWqpKoDx6zBWz+c+DBXOvbb2oQ1OVGYu1CEyLb739f/O8S/4bg7uet+UGhESkzByN\noIJi93XeMIzwQ7XPZrOZMdRaHkGkcMwkEeCGbSIifF+hlMARaXwaRNHu55137WVN0+aYd0LesmUL\n9957L/feey9PPvkkZ599Nq94xSuORm2atqhIISk4BYqdIg2vjkSSsBJztulJO7NHlGmzBz/o0FZ1\nyuEoOWMp+T1ynffcNh9mCKTH8MohPnfjrbTtOC/fY9uZZjMhBGkrP+c1DWP+ZrM9m9XiRpK4kQTA\nsgSmIXEsm4Sce4/1gdZe1jRtb/P+trz//e/nggsu4G1vexvnnHMOUurTT5p2qAxpzE7KNa+KFBLH\ndGb/37FNVvSn2DnVQEpJTg6iIkU7rDOYr86erp7dti/J2q/8Dac98nP++U8+R9tJ0DFhRV9qzrbP\nbjaboaKIpb3Jg46onPHsNYr3fN6FRF9qmrbbvBPyHXfccTTq0LSThilN8rE85U6JqltBiDwxY/fR\n7EUvHprTOZ0Vg/T1FDl7fZLRxghLU92V2AhDrrj9syT//auUepciq2WiWGK2I/vZ9hcxefap/RSL\njXnr3t/+e69RrKMrNe1Q6PNJmnYM2IZNzslT6ZSpdMoUnB4swwLAlJJLz19NxwsoN1zyqRimCZvL\nm5huT2FIkwEjR/qa38f57q0E6zfQvuVfuTCZJ5+KzTky3tO+ms1MQyIXcCvWgfYH9vu4pmkLp39r\nNO0YiRkxMrEsERElt0Sg5gaAOLbJYCGJY5uY0mRNdi2mtJmcegb/rW/A+e6teC8+n8p3/wN7xfLZ\nbecz06h1qJPm/vZ/rs+raSe7/f72/vKXvzzgji960YsOezGadrKJm3FUpKh7NUqdEj1OD4bc93rj\ntmmzJruG7Q99i4mn7iV/0UU0/u6fIB4/ylVrmnYk7HdC/tu//dv97iSEOKqrPWnaYpa0kkSRouE3\nKLtlCk4BKfZ9lOmYDkOvuBz3c/00zvttmGe1JU3TThz7/W2+5ZZbjmYdmnZSS9lpVKRoBS3Kne6k\nvOcqSsbGp0h85ibqf/05HMfB+c1XH8NqNU07Eub9eP2rX/2Kr3zlK7RaLaIoQinF6OgoP/rRj45G\nfZp20sjEsqhIza6ilIvlEUJg/ur/kr36cmS5jPu6y/AuvvRYl6pp2hEwb/fFhz/8YS688ELCMOTq\nq69maGiICy+88GjUpmknnWwsh23YuKFLzati/eiH5P7b6xC1GrW//YKejDVtEZt3QnYchze96U2c\ne+65ZDIZrr/++nkbvjRNOzRCCPKxApa0Cf/tXxHvuByUovbVr+NedfWxLk/TtCNo3gk5FotRqVRY\nvXo1Dz/8MEIIWq3W0ahN005KQgh6R4vkrvsT2ukE1X+9He+ii491WZqmHWHzTshve9vb+MM//EMu\nuOACbr/9di655BI2bNhwNGrTtJNWtPY04h/7G6x/+T7+i88/1uVomnYUzNvUdf7553PRRRchhODW\nW29l27ZtevlFTTsSwhDn61+j87tvBtPEffPbjnVFmqYdRfs9Qh4bG2N0dJSrr76a8fFxRkdHqVQq\npNNp3vWudx3NGjVt8XNdMu9+O+k/fj+Jv/n0sa5G07Rj4IDBIPfffz+Tk5NcffXuZhLTNPmt3/qt\no1Gbpp0URKNO5q1XY//sx3gv+U3a73rPsS5J07RjYL8T8g033ADAl770Jd797ncftYI07WQipqfJ\n/u6bsB56EPeiS6j93T/oKExNO0ktqKnri1/8Itdddx2NRoObb74Zz/OORm3acSYIFbWWRxCqY13K\n4tBokHvdq7EeepD2776Z2j/coidjTTuJzdvU9fGPf5xCocDjjz+OYRjs2LGDD33oQ9x0001Hoz7t\nOKCiiCf2sQ7u+lWFOYvVawcpleomb/k+zQ9/FPR7qWkntXmPkB9//HH+6I/+CNM0icfj3HjjjTz5\n5JNHozbtOPHEthKTlTbSENimgTQEk5U2T2wrHevSTkjGls0QRQC0rvsQzY98TE/GmqbNPyELIfA8\nbzbovlwuzwm91xa3IFRMltpIIaj5JRpBFeguVj9ZauvT1wfJvuu/yL/ypSRu+ET3Af27pGnaLvNO\nyG95y1t4+9vfztTUFH/+53/Om970Jt761rcejdq040DLDQii7qQrkXjKpRnUAAgiRdsLjmV5J5TY\nt79J5s1XgVIEv6HXE9c0ba55ryG/4Q1vYMOGDdx///0opfjCF77AunXrjkZt2nEgETMxd63NmzSz\nqKCMqzqIQOKIJJYhqbW87nbGvJ/vTlrxv/8CqQ9dh8pkqf3zN3X6lqZpe5l3QvZ9n3vuuYf77rsP\n0zSJxWKcfvrp+rT1ScI0ug1ck5XuaeuUmaPul2kGTVp+wC8eZU6j1yt6Use65ONLFJG48XqSf3UT\nYf8A1W/eRnimjp7VNG1v807IH/7wh+l0OlxxxRUopfjud7/Lpk2b+NCHPnQ06tOOA+tXFWC2yzoi\nKbM02lPYsQ4+MWJm91adyUqbhzdNsryQOMYVH1/kdJFw1Woq/3o7atXqY12OpmnHqXkn5Icffpg7\n77xz9utXvvKVXHqpXpP1ZCKFYMPqHoKV3WvGliH52SMRTVWhFpSJqTZpM48UgtHpJkuyjj59HQRg\nmiAEjRs/jahWiAo9x7oqTdOOY/P+1RwcHGT79u2zX09PTzMwMHBEi9KOT6YhScdtvEARIUmZWQLl\nU3QnqPpFAMIwOukbvUSjTvbKy4h//rPdBwxDT8aaps1r3iPkIAh4/etfzwtf+EJM0+SBBx6gr6+P\nt7zlLQB87WtfO+JFaseXmUYvKQ167CWMd7ZT9qeQGCxJDBC35/2xWrTE9DTZ//4mrIcfJEpnaL/n\nvSBP8rMFmqYtyLx/Oa+99to5X7/jHe84YsVoR1YQKlpuMG9HdKPtMVJssqwnSSpu73P/mUYvU9hk\n5CDlYIQpb4xTMj37fe6Fvv6JSg7vIHvFGzCf2Uz76rfQuOmv9WSsadqCzTshn3vuuUejDu0IWmj0\npReG3PL9pxieahCGEYYhWNGX4uqLTmfzcHXO/r05h2bLY+dUkyBUBCSIZaukCy3qXp20nT7o1z+R\nGU89SfaKN2CMj9G69g91FKamaQft5D23eBKZib4UEmxhAN2OaLaV2LB697XNW77/FDunGhhSQhRi\nSMnOqQY3f+sRzlnXP2f/R7cUiYDTVubx/ADb6qEZZnh6R5HBfIehzCqSVnLO60tDYEUSIcQ+X/9E\nFv/7L2CMj9H46J/T/oNr599B0zTtWfT5tEVuJvpSRT5lf4p22AT2jr5stD2GpxpIKWmEU+yMHqAW\nTiCEZLTUwvcVVb9IzS8ThopGy6fR9umETTqijMInY+VQnSyu7zFc204n6MyJ3mwFdar+NIHyF130\nZuOTN1H9P9/Wk7GmaYdMT8iL3Ez0pRQmBgbtsEknbAFzoy9Hik3CsLvggU0KgUk52k4tKBKpiGrL\nxZI2QeRTcssESqFURBR2j5gbQYVAeaSMPGmrB1/57Khto9puz0ZvmtJGEdEIKoRRcMJHb8a+/U1i\n3/yXXV/E8H77Vce2IE3TTmh6Ql7kZjuihSQmMjQaHlW3hhd2MIUkDBUbd5bJJiwMo3vN0zLiFKI1\ngEFFbKMja2QTMRJGGlvYCBng00BKgW3GMMIkgYq6C0+IkKHsMnrjfXTCDlPuTgTdCdmWMRJGCkVE\n3a8giU7Yjuz4lz5P5g/eRerP/hRRrx3rcjRNWwROzL+G2oKZhqQ3F+Puh0ao1D38MMCTZdLxEmaY\n5KePjMw2cLU7PhEQIYiiBA4rqLCFWGoEN1pNTGS7edZUsGJNqs0KW0ZBqYgAhRFrMbQsh5SwJDlI\noALKbonQqSO8Pkxp4hgJIiKaQQMn5Z54TchRROKGT5D867+cjcKM0pljXZWmaYvAifbnUDsE2yca\ndDohEoFlWCTIMDzRZFtpEkSIbRkYUhIBHTdEqQilFLEoy/L4Gp5/aoGK3EzTq+OHioTIkEvGSSUj\nvF3XpGPCIS6TKKUodUpERCxLLycTy7Gk30DZJYIgxAtCYiRYns+zZnmKcqdMtGtt4ONeGJL64//Z\nnYxXrabyvR/oXGpN0w4bfYS8yHW8gJ2TDdIpk1o4STzKYYgU49UmfthgMtiMI9LkjOVECCzL4KVn\nDVBza/SlCyRiqxlvDNPbW8c2JlmXPZtMPMk9j0Qk4xXcoE0UuvQlBjAMSb3u4mY9Sp0SPU4PK1Ir\nUCpADjTIWFCwB0jELExDUumU6YQdKm6ZvFM41m/V/G68kfgtX8XfcBbVb9xK1N9/rCvSNG0R0UfI\ni1yx3u10VgS0oxo1xqh3WhjKwooSNMIyk9HTFP0dRAqiKKLlu6QzEl/UUZGi4CylL76MAI+trSdp\nuB0UgrSVIxIRLVGmEkwSRRExkUIom0D5lN0SUkhWZlYRN+LU/BJNVcSQ3WvV2VgO27BxQ5eqWznG\n79QCXHstrf/v96ne/j09GWuadtjpCXmR60l3F3qwpUNW9hPg0zEnUTLEFHGWGKcjMSiymYYYRwhB\nbyqDI+OEhDSCKgaCM/vWsTS5lKbfYHPtcYSKMIRJb2wQW9jU/DIVbwrDEAyke4gZMbzQo+pWMKXJ\nyswqYobDdHuKqdYkAEII8rECprRoB23q3vHXHCWmp7F+9pPuF+k0zU/eRJTJHtuiNE1blI7JhPyD\nH/yAD3zgA8fipU9YQaiotbwF3bfb8QJGig06XoBjm6zoT6GUwo6yhK0kgfLwrUkMI8CKstjN1QSB\nYpqNmE4d1wvZvtPDbUk85eGkXQwp6DVXMToaMV6dpmZtxQ8CBCYZMYjApORPE0+1MQ1JLpbHkjad\nsEPNrRIzYyxLrqTjRYw2xii2p4HupFxwChjCpOk3afiNI/1WLpjcsZ3ca19F9urLMTZvOtblaJq2\nyB31a8jXX38999xzD2ecccbRfukT0sHETgZKced92xmebBCECtOQrOhP8dJzBrnhqw9QbrhEkU1L\n+JixFmOdERLNQSR5ovYQdfNpnmo/wMg9LjYZICKW6PA/rsrwv/7hLmo1k1BJKnInyZTHC1Y2Mdsr\nu6fERRI7WyLT41LulMg7BfJOnlKnRMNv8tSOCo2aQSNwKLojbMvUecXpG8jH80ghKTgFip0iDa+O\nRJKwju2aysaTT5C98rJuFOb7P0C49pRjWo+maYvfUT9CPuecc/joRz96tF/2hLVn7KVhREijGzv5\nxLbSXtveed92dk41iITCMBWG0Y2+vOGrDxCECjvRIhW3GEysoNNyCOlQYSMdKqRYQiZYQycKqJpP\n0DCHsU2DoONw01cfY7JapSOnESb0yNOoVUx+vmkTiZ4ia5ened6qQVZmVvHMzgqjjRFqbm12ot28\ns8aOUpFO1CRlJxhILKNUd/np049T9+oAGNKg4BQQQlLzqnSCztF+q2eZ999H7nUXdaMwP/5Jmh/6\nM51LrWnaEXfEJuRvfetbXHrppXP+PfLII1x88cUI/cdtQfaMnWyHTap+CS/s7DN2suMFDE92oy+r\n4ThTwTY6qoWvFOWGS0uWGRMPUTSeIAgVcQYwIocd5g940ryFCuOkWEYqXEFZbONp8S2GxS8QQmBG\nKQQGO/gp2/gvFC55uRavbbCltpnhzuP4UYeklSLq5AlCxXB9B02/iVLgNhxMISl5E0x1RrFkjP74\nUorVNtsq22j63VunTGmSj+URCKpuBS/0jvp7bv3iHnJXvB7RqFP77Bdpv+eao16DpmknpyN2yvry\nyy/n8ssvPyzP1deXnn+jE9B846o2XOIJG9syiCuDmq8Aj5gVh9AimXLIpGIADE/UMEwDxzbpsfqY\n9nbSYgLVKUAEDlkc0rSYxvOfIMFpJKJBcupUpo2H2WLcyhnhVWSiIbygRssaY5R7kSpGHy/AVEky\n5nIqbGdH9HOW8gryrEUEJepimmK0g9XxdaAynDIwQCWcpCGncazlpJIJMoZDyZXU/SqeVaU3NoBp\nCSwnomFOsySXw7EcAHqDFKV2CfDIJTJYhnWEvxN7OP+FcPrp8IlPkLn00r3++2T9WTyRLdax6XEt\nPifEfchTU/VjXcJh19eXnndcQahotzzcXZGWKIdGUKFBh6TI0Wx0aDY6tNwAKSAMQjpRBMRIqF7K\n4RihMYEScQzS9LOBER6kZU3g+RY5VrNS/Q6eaFGVm9jEtzk1vIL+6HmEYZtR+XNGzJ+AH2Ol3MBg\n9CJ8OjQZZ4R7WMJLWF94PqP+Y2wpbcbtRJzWu45Y2IvlpplojjFNg1rdIWY7WCoNXovJ1hRt0ydr\n9pHGZnJ6imr5UVZn185Ovn5gUHUrFEtNepweTHlkf1Tl+BhqySDgwJ0/7q5j/Kzvz0K+ZyeixTou\nWLxj0+M68Szkg4a+7ek4ZhrdBi61K8nKkjZJM0sYRfy/9u48vor63v/4a2bOmbMv2SEL+yoFZVNc\nAIvVKipqtUJFKvVXXKpVqxcRF6SouPR6tWrFtRQFRagbrcV70drrLV6wWhERZAkkIWQhCclZc/bz\n+yOYKxVkS3KWfJ6Ph48HxEnm8zmZx3kzM9/zGZM9zJcVDXy4oYZ1m+v4ePNedINKPNF2GduquXCp\nhahKHNW2j3gigkExU8RwTAYLfkMVfqpRMTAgfiG2eG9C6j7K1VW0EqEwPpb82GhiRKg2vE8Tu1DR\n6MUZmMklQD0ey6cUOnIYYB+OxWCjOlhOTN9LkjgFlgLyLQXEiRK3NBFNRDGoOm69EItmxxttwWgN\nUGQrbJ97XeGtIJZoe9iExWDBoTtJJtsmfyWSnfRUqGQS68IF5JxxMtqmL9q+lnHzPIUQ2UCbn4IV\nVqWlpZx77rlHvH0w2PX3EjubzWY6or7y3RaCoRj+YJRoIoEBA0U5NsLxVmpaPJgNZgyahqIqOG1G\n/IEosXiCaCyOSbXQI8/CD07Lp7x2L+GQjpYwYVJyUUyNeBINKAkLJlzkJAfjYRetWi2BZDVOhpBD\nH6LJCIq9hlZDNeZYT/S4EzM9MFhb6Nc/jqfVQ4l1EHbVhWLy4yxoRYlruExunLqTeDKOZgrhDQVQ\nIhaSSQ1dMeF0KBQVqaiKQoG1kFgihi/qpTXWilN3oSoquqYDEI6HCccjmA3mjl1/EI9jn/0rrM89\nTby4hNCVV5F0uw+5+ZH+zjJNtvYF2dub9JV5bDbTYbfJiEvW3ZmqKHyvbx6xXm2PKvz66Uj/9WmA\nJGFqWyvI03tiNlgxaBp9e7o4+YRCfK1RcuwmzLqB3d5KfnKukUTECK35lBY4+HBTEVsC/6DZvwdL\n0MLQgiEomy9hq7qSVr2SrdEXOMU4i+HaJLYlo+T33kO+6RPOLpjB2L4nY9LH89r2V/GE6oi7vuLC\nfj+goTWfXeGv2NS4CU0x0NvVh562YmKJOGpRMzZDjHxTCTaTTigRpM5fS2NrI6qiUWwvIZ6M4414\n2O3bTS9nL1RFxa47SCQTBGNBmkPN+1did0Aoh0I4r/85pndWER1+Ip5XX5fpW0KIlJJrcxnCoKk4\nLDoGTSUYjmFQLZhUM9FEhL3hasLxto8JxZIJkkDPXBvm/eFd5uyNQ3ei6lFcBQF0owG7KY/BztFY\nrAZiuTuoi+zGlsxhUPIydNVGwFzFP7UXSRCjX+IHlJlOwBNv5GP/66haCIfFwcUDfoRdt7HNs5EN\ne/9JT3sxI4pGYFSNfNG4kT3ePQCU2ktxGB0EYj48sb1oqoLdaKfIVoRRNdDY2kBLuIVSexl2ox1v\npIUaf037QyecJhdmra3XlnDzcb+Wis+L64rLML2zisjp42UUphAiLUggZ6Cvn3FsN7pw6wXEkzH2\nhncTjYcxKOpBnzHc29EHm9GOL+KlKbwHg6KSb+7BUOdYUKA2uQG/0oBLyWekcgUmcmihks9Ziqaq\nXDvq/zHYPZTd/iqe/eIp/BE/+dZ8LugzBaNmYu2ev/Flwyb65vRlSO4QVFQ2NW2kPlCPqqiUOXtj\nNVhpCe+jNtAWtg7dSaG1qO1jXK31+KLe9rnX+0KN1AVq20O5I+deK14v2s5ywpMvbDszlscnCiHS\nQEruIR+tbLyncDz3SlRVIRCO4g9F254vrEAw5qc1HqRPfgHFed9ezacoCm7djTfqbds2EiEZM+PU\nczCi0xSvpcZXiTGeg9vQEyelNLAZT2IPisHHNaddytC8E9jevIMK3072eKsZVTCGHFsOLpObnZ6d\n7PRsp9jVgxJLHxLJOE2tDTS2NuLW3dhNDhy6E1/Ehz/iA5LYdQdmgwUVlUDUTzDWilkzkWfJxxdt\n205BwabbURQFs2YhHA8TiYdJksSkHf6ezAGSSVAUkk4n4QsvJnTFDND1I/72bL2/la19Qfb2Jn1l\nniO5hyyBnCLHe+B9vdgrEIyhYYZkHJMtSllPMy5T26Kof6UoCi6TG0/Yg9ESIRpNEo/o2Aw5KElw\n5PppDNdDxIU90QOzUoRP3YY5twlvxMP40okMyR/ClsYv2ekrpz5Qx4i8kyi0F+HQ7Oz0llPlqyDX\nUED/3IGEYmGaQnvZF95HniUPq9GG3WjHF/Xhi3jRVA2r0YbZYAEU/FE/rdEgVqOVHFMu3ogXf9SH\npmhYjda2UDaYCcXChONhUJT2hV+Ho23+EtcVlxGZcCZJdw5Jp/OoV1Nn65tFtvYF2dub9JV5JJDT\n2PEeeIqiUJhjpazITs88G8N6FWO3q/ijXsLxME6T66CLn1RFxam78ES86JYw/Xvm0rcoj5P7DcJi\nAWuOn96lcSYOHs7MCWdwUll/Pqlfz/aWrYRirUzsNYl+rgFsatzILu8uvBEPJxaNJN9agEE1UB2s\nZFvTDvo4+9HL0ZtgLEhDqAFPyEOeJQ+b0YbVYMMb8eKLeNFVHYvRgsVgIZkEX9RLOBbCptvb//Hg\nj/owaeb2VdZmzUwoHiIcD6Eq2mEHhxjWr8N9+cUYqiqIDxtObPiJx/SaZ+ubRbb2Bdnbm/SVeSSQ\n01hHHXiqqmAyamiqisPoIBRrxRf1EolHcerOg4aypmo4dAct4Ra80RacJhtW3UKpoxfesJfGSD3o\nHoYWDqZ/zgAsmo0Nez9lS/NmjIqJ08vOoNTSiy8aN7LTU0441sqwguH0tBVjthr4au92KjwVDHAN\npJezN96Ih4bWvQSifnL2h7LZYMEbbgtls2bBbDBjMViIJxP764/gNDlxGB20RDz4Il6sBiu6pqMq\nKibNROv+UDaoxkMODtHXvItrxlSU1lZ8Tz5DeNr0Y36ts/XNIlv7guztTfrKPBLIaawzDjxVUXHo\nTgJRP76ol0Qygd3oOGgoG1QDVoMVT7gFb8SD1WhD13RKbWXsCzVRE6ylKdhAH1c/huQOJZpIsKnx\nC75s3EiOnse4slPJteSzuXEjO5p3oKAwKG8wQ4sHsrelmd2+Sqp8FQzOG0qJo5SW1hb2ttYTjoXI\nMedi1+2YVB1PxIs34sVmtGEymLAYLMSScbxhD9FkDLfZjcVgxrM/lG1GO0bN2PY5ZVUnFGsLZV3T\n0VTtgB5NK17Fee3VoGl4Fy8lMuWS43p9s/XNIlv7guztTfrKPBLIaayzDryvQ/lfF08djK7p6JqJ\nlkgz3ogXu8GOyWiit6MPtcEaaoO1eMMt9Hb15cTCk/CFvWxp3syGxs8otpYxrmQcNqONL5o2Ud68\nDYtmY3jJUAoNxTS3NlHtr6bav5thOcPpYevBvnAz9cE64vFYeyhrGPBG286UHboTXdOxaJa2QSFh\nD7FEjDxzPkZVxxvxEIj4sesODKoBTW27XN0aayUUD2NSTe2hrHhacE3/MRh1PK++QXTCmcf92mbr\nm0W29gXZ25v0lXkkkNNYZx54mqoddPHUwZgNZnRNpyXcjDfqw6W7MBqM9Hb2YY9vNzXBWlpjIXo5\nezGqxxjqA3VsbfqKzxv/yRD3EMYWj0PHwKamL9nR8hUlrmLy9R70cw+gzl/LHv8e6oN1DM09gUJb\nEU2hBmoDtSiKSo4pB4fJgYKCL+LFH/G1hbJBx2KwEE1E8YRbiCfj5FsLUBQVX8RLIOrHqbvQVG1/\nMBsIxVoJxUNYNEvbgjazmehpZxCaMZP4yFEd8rpm65tFtvYF2dub9JV5JJDTWGcfeAbVgM1gb7/U\na1SNWAyWg25rMVhQFQ1vpAVvxIvbnIOu6ZTZerHbV8WeQDWJRIJSRylje5xCRUs55S3lfLb3n4zK\nG83I4tHEEzG27NvM9uZt9DSXUmTvwcCcQVR5d1ET2MO+0F6GF56ES89hX+s+6gJ70FUdp8mFY/80\nLm/USyAWxGVyYdSMmDQzkUQEb8QLySQFlgKSJPFGvASiwfbV5EbViKKohMN+lCceQh/otQcWAAAg\nAElEQVQwDMXuINGzmGRBxw38yNY3i2ztC7K3N+kr80ggp7GuOPCMmhGLwYon7GlfPGUyHPygsBlt\nxJNxfFEvvqiPHFMuJqOJEnspld4Kdvt3Y1SN9LQXc2rJ6Wxp3MQuz042NPyTUbljGFNyMqFYK9s9\nW9nU8CUDnAPJt+XT19GfXZ6d1ARq8IW9fK9gBE6zk32tTezx78ZkMOE25eDYP/faF/EQjLXi0l3o\nmo5JMxGJh/BGvG0ry61FRBNR/P869zqawHHTL1DeeBVj/V6S503p8NczW98ssrUvyN7epK/MI4Gc\nxrrqwNM1HbNmwhPxtC+eOtRndx26k0g8jD/qIxAL4NbdWIwW8s0F7PZVssdXhd1gp8jeg5F5Y/ii\naQMVvgq+bNrIhF6TGJY3nJDiZ9PeTWzft41h+cPJteZS5uzNTs9O9viriSfiDMkbitVopSHYSG2g\nFqvRimv/mXIoHsYf8RLev8pa13SMWtviLV/Eh6poFFmLCMfDbR+RikdwRcA9YxqO995HGTee6G+f\nA5O5w1/LbH2zyNa+IHt7k74yjwRyGuvKA89kMB+weMpudBzys7suk5tgLIg/6qM13kqOue0+b645\nj12ecqp8lThNOZS4ShidN5ZPGz6hwlfBloZNnFl2FmcMGMf2ul2Ue3ewY99WRuSeRJ4tjzJHL3Y0\nb6fKW4FB0RmcNxhdM9HU2jYi02lyYdftOHVn+0e3ookYTt2JSTNh1IwEowEC0QCaaqDQUkhrLIi/\nvgLrNTPJW/cpkQsuIvDiUrDZO+V1zNY3i2ztC7K3N+kr80ggp7GuPvCsRuu3Fk8d6rO7Lt1FIBbA\nH/URiYfbHqVocuEwOqnyVVLlrSTfnE+xq4QR+Sfyce16Kn27KPfs4vyh59LXOpjKlgp2ecvZ6dnB\nyKLR5Jhz6GnuyVctX1Hl3YnD6GRg7iA0RaWptYm9wXocuhOH7sBh2v/RrYiXZDKJ3Whv+0eFohGM\nBfDH/OiakUJzAerPpxGs2ortkqsIPvnMUY3CPFrZ+maRrX1B9vYmfWUeCeQ0looDz2qwfmvx1KFG\nbH4999of9RFPxnHoTnItuRgVE9X+Kqp8VZQ6yih2FDPQOYh/1P+DXd4d1PlrOb1o4iHnXueYctrn\nXhdYi+ifM+A75177Il6+/uiWSTOjKt+Ye20wk18yBHtuMYkFjxz1KMyjla1vFtnaF2Rvb9JX5pFA\nTmOpOPAUpe2xh7FEDF/E27546nBzr31RL6qiYTPaKLS1rVre46+m2rebEnspvd196G3vzSe169nW\nspXmYMsRzb3e6SmnyNLjO+dee/eHskE1tM+9Nmz8HK8xTtSo4RoyGnX8JOiIZyQfRra+WWRrX5C9\nvUlfmUcCOY2l6sBTFAX7AYunDj/3uiXiwRtpaRvaYbDQ015MOB5ij7+aGn8NvR196JPTlyJbDz5r\n+ISvmja3z70us/Rmc/OXB517Xe4pp8K767vnXhutB8y9dn3wN3rMuBLrV9sxXf4z9EOsGu8M2fpm\nka19Qfb2Jn1lHgnkNJbKA09RlKOae20z2PBEPLSEm9sf8tA299pDbbCG+kAt/dwD6JfTn0JbLuuq\n17GleTNm1cIZvSdQaunFxsbPvzX3Op6IU+mr+M6513ajvX3udehPyym85WbMipH4gt+gDRzapa9b\ntr5ZZGtfkL29SV+ZRwI5jaX6wDuauddGzXjEc6/H9huJx9fKpsYv+KLh8/a513mWgm/NvS5zluGP\nBo9o7rXrD0uIP3Y/MYcD5aW3iI6f2OWvWap/Z50lW/uC7O1N+so8EshpLB0OvOOZe+3cP+LyX+de\nn9BzMANtQ9vnXn9+iLnXdqODvu6+9HH2Oezc65KnnqPHgw9jcxehLH2b5MjRXftC7ZcOv7POkK19\nQfb2Jn1lHgnkNJYuB97Xc6+/Xjx1pHOvPRHvQedeJ5QoBXrP9rnXX31j7vWYnqdg2j/3envzFvLN\nBZQ6yw4791oPRyncXk3rH9+BgYO7+BX6P+nyO+to2doXZG9v0lfmkUBOY+l04LWtYD5w8ZT5O+Ze\noyj49k/++te513tDtbSGIwefe50/5oC519uav6LM3vtbc6+bw818zzEQl2JnX9QL/QeSe91dkJfX\nxa/MgdLpd9aRsrUvyN7epK/MI4GcxtLtwNM1vX3x1OHmXtuN9kPOva4N7aZ83672uden9DyVr5q+\n/Nbca1/Ux/bmrXzVvIUhuSeQa8n9v7nXTeVw31xGr/6YntNvodTdG8Vw8CEmXSndfmcdJVv7guzt\nTfrKPEcSyJ07SUFkFIfuoNReSoIku31VBKKBQ25bbC8hx5RDKNbKLu9OEokEbrObcweei1kz8c+6\nj9mxbxtW3crto+9iYM5A9gSqeeiTBQSiAS4bOJWTi09jX6iRZz/7HXX+OuxmO1Ncp1P4+5f4Yt8W\nPAbQurB/IYRIJQlkcQCX2U2xtYQECaq8FYRioUNuW+bs3b5Su9JXAUBPR0/OLJuEoih8VLuWnS07\nyXfmc8/YBfRy9Ganbxf3f3Qv8UScKwZfyYi8kdS11vLshqdo2f5P+v94GjPereP7Qy5EeX4ZmLru\nc8ZCCJFKEsjiW/KseRRZexBLxKj07CIcCx9y296OPlgNNnwRL7u9lQCUOso4o+RMEsk4/1P9N+q8\ntRS5ezB33D0UWnqwqWkjD378AJqmcdXwqxnsHkp19Ub+cN+5JHbtxHTTbAY8tBQ0OT8WQnQfEsji\noAosBeRbCggnwlT6KoklYgfdTlVV+rj6YjZYaA43U+OtAaB/zgBO7nEaiWScv1a/R1NrE/3c/bl9\nzFzcpjw+3buexz7+DXaDnauH/5z+LRq7jCGq5s8leMc9XTIKUwgh0oks6kqRdF+8cDRzr1VFbZ97\nHVGDREKJA+ZeV/t3H3Tu9XbvNjwhD+NLJzJixGTGlUwg/5KfdnWrRyzdf2fHKlv7guztTfrKPLKo\nSxwXRVEotpfgNLkJRH3s9u0mkUwcdFuDaqCfqz8G1UBtYA/NoX0AjCwazQl5J+CP+ni/cg2BcICx\nJadw4+hfYWpo4b/++ls+qHwft9lNz3FndWV7QgiRViSQxXdSFZUyexkOowNvpIU9/j0kk8mDbqsb\ndAbkDEBTDOz2VeGNeAEYV3w6/V0D8ERaeL/qP4nGo5z7503c+tIOeu9qondADkMhhJB3QnFYmqpR\n5uyN1WClOdREXaD2kKFs1a30dvZBRaXKU4E/4gfgjOIJlNl7sbe1gb8/chXmBXdxcaAni25ez6AR\nZ3dlO0IIkZYkkMURMagGejv7YtLMNLY2sDdYd8ht7bqdUkcvEiSo3P/RKYPBwKSeZ9Jn+SoaPvwz\nXw3vRcs7a4gP6donNgkhRLqSQBZHzKi1za02qDp7g3tpam085LZus5sSeynxZIydnp1EYhFsq//M\nJS/+D6dYBpP30hoSZb26sHohhEhvqZ9HKDKK2WCml7MXld4KagM1aIqG25xz0G3zLPnEknHqA7Xs\n9JQzYMpFKM2P0ufyaSTtB3+qlBBCdFdyhiyOms1oo8zRCwWVPf5qvGHvIbft4YPSN1YTSYTxRwOE\nrp4lYSyEEAchgSyOyZHMvVZ37STngrMZfM+DDNtYi9vsTkGlQgiRGSSQxTH7rrnX2qYvyLngHLTK\nCgK33o426dwUViqEEOlPAlkcl2/Ova7yVhCOhTGu+wj3xZNRG/bif+BhgnfcLaMwhRDiMGRRlzhu\nBZYC4okYDa172bVuNf2nTkOJxvEueoHwpZenujwhhMgIEsjiuCmKQg9bT+LJOMG+FqouO5/8yVcQ\nOeucVJcmhBAZQwJZdAjj559RfOJJqLYIoYefIWIwp7okIYTIKHIPWRyfZBLbgnnknHMmltdXUmAr\nwCxhLIQQR03OkMWxi8Ww33YTlleXEus/gOgpp6a6IiGEyFgSyOLYtLbivPZnmN79C9GTRuJ55XWS\n+fmprkoIITKWBLI4aorPi/PKqej/u5bI+DPxLlkm07eEEOI4yT1kcdSSJjOYTIQvvBjPKysljIUQ\nogN06Rmyz+dj9uzZ+P1+otEod9xxByNHjuzKEsTxaG0FiwV0Hc8fXgGTCTQt1VUJIURW6NIz5MWL\nFzNu3DiWLl3Kgw8+yIIFC7py9+I4aJu+IHfcSPTV77R9wWqVMBZCiA7UpWfIM2fORNd1AOLxOCaT\nqSt3L46Rcd1HOK+ciur1oNbWpLocIYTISkoymUx2xg9euXIlS5YsOeBrCxcuZMSIETQ0NDBr1izu\nvPNOTj755M7Yvegoq1bB1KkQi8FLL8FPfpLqioQQIit1WiAfytatW7n11lu5/fbbmThx4hF9T0OD\nr5Or6noFBY6078u0fBmOX90IJhOe3y8lOukHh/2eTOjrWGVrb9naF2Rvb9JX5ikoOPzi1y69ZL1j\nxw5uvvlmHn/8cYYMGdKVuxZHKxbDsuT3JJ1OPMtWEhsjVzKEEKIzdWkgP/roo0QiER544AEA7HY7\nixYt6soSxJEyGPAsW4Ha2Eh80OBUVyOEEFmvSwNZwjfNxWLY584mfMmlRE87g2RuHvHcvFRXJYQQ\n3YJM6hJtvjEKU9u1E8+pp4OipLoqIYToNiSQBYqnBeeMaejrPiIy4ft4/7BUwlgIIbqYjM7s5pT6\netwXn4++7iNCF/0Iz7IVMgpTCCFSQAK5m3Pc9ksMX35B68z/h++ZF9vGYQohhOhycsm6m/M//B9E\nTxtP6/U3ymVqIYRIITlD7oaM/7sWwxefA5AoKaX1F7+UMBZCiBSTQO5m9NXv4Lr8YpwzpkEolOpy\nhBBC7CeB3I2YXl2K82fTQdPwPfYUmM2pLkkIIcR+EsjdhOXJx3He/AuSLhctr/+J6PfPSnVJQggh\nvkEWdXUDlif+A/v984kXl+BZ8ZaMwhRCiDQkZ8jdQOS8C4ieciotf/4vCWMhhEhTcoacrYJB1H1N\nJErLiA8cRMuqd2UltRBCpDE5Q85CiqcF99RLcF98Psrevfu/KGEshBDpTAI5y6j1dbinnIdx/f8S\nHTWKpNud6pKEEEIcAQnkLKLuLMd9/jkYtnxJ689+jm/Ri6DrqS5LCCHEEZB7yFlC+2Ij7mk/Qm3Y\nS2D2XIL/dodcphZCiAwigZwllGgEQiF8Dz1K6OpZqS5HCCHEUZJAznSxGBgMxEaNYd/Hn5PMy0t1\nRUIIIY6B3EPOYOZXXsb9w++jtDQDSBgLIUQGk0DORMkklicew3HLDWh7dqNWV6e6IiGEEMdJLlln\nmkQC26/vwbroSeIlpXhee1OmbwkhRBaQQM4k0SiOW3+J+bVXiA0ajOe1N0mUlKa6KiGEEB1ALlln\nEMPmTZjeWEl09BhaVr0rYSyEEFlEzpAzSOzEkXhee5PoSaPAbk91OUIIITqQnCGnObWuFvutv4Rg\nEIDoGRMkjIUQIgtJIKcxbecO3Becg2XpEsx/fC3V5QghhOhEEshpyvDF57gv+CFaVSWB2XMJzZiZ\n6pKEEEJ0IrmHnIaMa/8H54xpKAG/jMIUQohuQgI5zSj19biuuAxiMXzPLSZ80Y9SXZIQQoguIIGc\nZpJFRfgfeIR4aRnRMyeluhwhhBBdRO4hp4NkEtPbb0A0CkDoyqskjIUQopuRQE61RALbvXfhnDUT\n2wO/TnU1QgghUkQuWadSNIrjlhswr1xObNBgWmddl+qKhBBCpIgEcqoEgzhnXoFpzX8SHT0Gz7KV\nJHPl8YlCCNFdSSCnQjQK55yHae1aImdOwvP7pTJ9SwghujkJ5FQwGuGHPyRU2APfk8+Crqe6IiGE\nECkmgdyF1LpaEoVFoKpw99349nrb/iyEEKLbkzToIoaNG8iZdAa2+Xe3fUFRJIyFEEK0k0ToAsa/\nf4jr4vNRmhqJ9+2X6nKEEEKkIblk3cn0P6/Ced3VkEzKKEwhhBCHJGfIncj88h9w/vynYDDieeWP\nEsZCCCEOSc6QO5H21WaSbjeeV18nNnJ0qssRQgiRxuQMuaMlk23/AYH7HqL5/b9LGAshhDgsCeSO\nFI3iuPFaLE8+1vZ3VSVRUpramoQQQmQECeSOsn8Upnnlckyr34FIJNUVCSGEyCASyB1AaWnG/eOL\nMK35TyLfP4uWP66S6VtCCCGOSpcu6goGg9x22214vV6MRiMPP/wwRUVFXVlCh1PranFNvQTDls2E\nfnQZvieekTAWQghx1Lr0DHnFihUMGzaMZcuWMWXKFJ5//vmu3H2nsDz9JIYtmwn+/Fp8T78gYSyE\nEOKYdOkZ8syZM4nH4wDU1NTgdDq7cvedInD3fGIjTiR86eVt4zCFEEKIY6Akk/s/o9PBVq5cyZIl\nSw742sKFCxkxYgQ//elP2bZtG4sXL2bo0KGdsfvO9cEHUFkJM2emuhIhhBBZotMC+XDKy8u59tpr\nee+99w67bUODrwsqOjLtozA1jaaPN5I8xnvgBQWOtOqro2RrX5C9vWVrX5C9vUlfmaegwHHYbbr0\nHvKzzz7LW2+9BYDNZkPTtK7c/XH7ehRm0qjjeWn5MYexEEII8a+69B7ypZdeypw5c3j99deJx+Ms\nXLiwK3d/7JJJrL99FNvCBSTy8tpGYZ40KtVVCSGEyCJdGsj5+fm8+OKLXbnLDmFe9hK2hQuIl5bh\nWfEW8QEDU12SEEKILCODQY5A6JLLCE2bTss7aySMhRBCdAoJ5EMJBDCu+6jtzzYbvicWkehZnNqa\nhBBCZC0J5INQmvfh/vFFuC6bguHzz1JdjhBCiG5AAvlfqLU1uC86D+MnHxO+4CJiJ3wv1SUJIYTo\nBiSQv0Er3477gnMwfLWF4Kzr8D39PBiNqS5LCCFEN9Clq6zTmbb5S9yXXYja2Ehg7j0Eb/k3GYUp\nhBCiy0gg75fo2ZNEQRGBOXcTuurqVJcjhBCim+n2gaw07yOZk0syJ5fmNf8tT2sSQgiREt36HrL5\npcXknnwSho0b2r4gYSyEECJFumcgJ5NYH/sNjn+7GYwGSM3zNYQQQoh23e+SdSKBbd5crM8tIl7W\nC8+KN4n3l+lbQgghUqt7BXI0iuOm6zG/voLYkKF4XntTpm8JIYRIC93qkrWybx/G9f9LdOwptLy9\nWsJYCCFE2uhWZ8jJoiJa3nyHRH4B2GypLkcIIYRol/VnyGrNHlw/ugCtfDsAid59JIyFEEKknawO\nZG1H2yhM/e8fYlr1VqrLEUIIIQ4pawPZsOGfuC88B616N4E757WNwhRCCCHSVFbeQzZ++DecV12B\n0hrE9+gThGbMTHVJQgghxHfKvkAOhXDcdD1KNIL3hZeIXDAl1RUJIYQQh5V9gWw2413yCorXS3T8\nxFRXI4QQQhyR7LiHnExieX4Ram0NALETR0oYCyGEyCiZH8iJBLa7bsd+1xzss29JdTVCCCHEMcns\nS9aRCI6brsP8xh+JDRmK/zePp7oiIYQQ4phkbiAHAriuvhL9g/eJjj0Fz9LXSObkproqIYQQ4phk\n5iXrZBLXz6ajf/A+4R+cQ8vKtyWMhRBCZLTMPENWFIK//BXxklL8jzwGRmOqKxJCCCGOS0YFsla+\nnURuHsmcXKLjJ8pKaiGEEFkjYy5ZGz77FPcF5+C6cirEYqkuRwghhOhQGRHIxv/+APclF6A0NxOa\nNh0MGXViL4QQQhxW+ifbypW4pk8HRZFRmEIIIbJW+gfy1KkkrTa8L70q94yFEEJkrfQP5KIiPC+/\nRuzEkamuRAghhOg06R/IO3YQCyZSXYUQQgjRqdJ/UZfNluoKhBBCiE6X/oEshBBCdAMSyEIIIUQa\nkEAWQggh0oAEshBCCJEGJJCFEEKINCCBLIQQQqQBCWQhhBAiDUggCyGEEGlAAlkIIYRIAxLIQggh\nRBqQQBZCCCHSgASyEEIIkQYkkIUQQog0kJJALi8vZ/To0YTD4VTsXgghhEg7XR7Ifr+fhx9+GF3X\nu3rXQgghRNrq0kBOJpPcc8893HrrrVgslq7ctRBCCJHWDJ31g1euXMmSJUsO+FpxcTGTJ09myJAh\nR/WzCgocHVla2pC+Mk+29patfUH29iZ9ZR8lmUwmu2pnZ599Nj169ABgw4YNjBgxgmXLlnXV7oUQ\nQoi01aWB/E2TJk1i9erVmEymVOxeCCGESCvysSchhBAiDaTsDFkIIYQQ/0fOkIUQQog0IIEshBBC\npIGMCeRsm+4VDAa5/vrrmT59OjNnzqS+vj7VJXUIn8/Hddddx5VXXsnUqVP57LPPUl1Sh1uzZg23\n3XZbqss4bolEgnnz5jF16lRmzJhBZWVlqkvqUJ9//jkzZsxIdRkdJhqNMnv2bK644gouu+wy3n//\n/VSX1GHi8Thz585l2rRp/OQnP2Hbtm2pLqlDNTU1MXHiRMrLy79zu4wI5Gyc7rVixQqGDRvGsmXL\nmDJlCs8//3yqS+oQixcvZty4cSxdupQHH3yQBQsWpLqkDnX//ffz6KOPkkgkUl3KcXvvvfeIRCK8\n9tpr3HbbbTz00EOpLqnDPP/889x9991Z8w94gFWrVuF2u3nllVd44YUXuO+++1JdUof54IMPAFi+\nfDm33HILjz32WIor6jjRaJR58+ZhNpsPu23aB3K2TveaOXMm119/PQA1NTU4nc4UV9QxZs6cybRp\n04C2f/Vm28faRo0axfz581NdRof49NNPGT9+PAAnnXQSmzZtSnFFHadXr148+eSTqS6jQ5177rnc\nfPPNQNv7oqZpKa6o4/zgBz9o/wdGNr0fAjz88MNMmzaNwsLCw27baZO6jkVHTvdKJwfra+HChYwY\nMYKf/vSnbNu2jcWLF6eoumP3XX01NDQwe/Zs7rzzzhRVd3wO1dvkyZNZv359iqrqWH6/H7vd3v53\nTdOIxWIYDGn1tnBMfvjDH1JdXZ3qMjqUzWYD2n5vN910E7fcckuKK+pYBoOBOXPmsGbNGp544olU\nl9Mh3njjDXJzcxk/fjzPPffcYbdP+489dYfpXuXl5Vx77bW89957qS6lQ2zdupVbb72V22+/nYkT\nJ6a6nA63fv16li9fnvGX1R588EFOPPFEJk+eDMCECRP48MMPU1xVx6murubWW29lxYoVqS6lw9TW\n1nLDDTe030fORg0NDVx++eW88847WK3WVJdzXKZPn46iKCiKwpYtW+jTpw+LFi2ioKDgoNun/T+F\n16xZ0/7nSZMm8fvf/z6F1XScZ599lqKiIi6++GJsNlvWXH7asWMHN998M48//nhGX9XoDkaNGsUH\nH3zA5MmT2bBhA4MGDUp1SeI7NDY2cvXVVzNv3jxOPfXUVJfTod566y3q6+u59tprsVgsKIqCqqb9\nHdXD+ubJ44wZM5g/f/4hwxgyIJCz1aWXXsqcOXN4/fXXicfjLFy4MNUldYhHH32USCTCAw88AIDd\nbmfRokUprkoczNlnn83atWuZNm0ayWQya47BbPXMM8/g9Xp5+umnefrpp4G2xWtHslgo3Z1zzjnM\nnTuX6dOnE4vFuPPOO7Oir6OV9peshRBCiO4g868JCCGEEFlAAlkIIYRIAxLIQgghRBqQQBZCCCHS\ngASyEEIIkQYkkIVIM3PnzmXPnj3fuc2MGTO+NTFs/fr1Hf4whd27d7dPWzuanz9nzpzjfmDKww8/\nzObNm4/rZwiRSSSQhUgz69evJ10+jVhTU8Pu3buP6ns++OADCgsLKSoqOq59z5o1Sz4bLboVGQwi\nRCdav349Tz75JAaDgdraWkaMGMEDDzyAruu89dZbLFmyhEQiwbBhw7j33ntZsmQJe/fu5ZprrmHZ\nsmWsW7eOxYsXEwqFCIfD3H///YwdO/aw+62srGT+/Pm0tLRgNpu55557OOGEE7jjjjuw2+18+eWX\n1NfXc8MNN3DppZfi8/m4/fbbqaqqoqysjLq6Op566inuv/9+qqur+fWvf825557Lvn37mDVrFlVV\nVfTt25cnnnjiW09he+GFF9qf8tXS0sJdd93Fzp070XWdO+64g1NPPZXTTz+d73//+3zyyScUFBRw\nxRVX8PLLL1NXV8dDDz3EySefTG5uLrm5uaxbt45x48Z1yu9HiHQiZ8hCdLKNGzcyb9483n33XcLh\nMMuWLWP79u2sWLGC5cuX8/bbb5OXl8eLL77INddcQ2FhIc899xwul4vly5fzzDPPsGrVKmbNmsWL\nL754RPucM2cOs2fP5s033+S+++7jV7/6Vfv/q6ur45VXXmHRokU88sgjAPzud7+jb9++vPPOO9xw\nww1s3boVgLvvvpvvfe973HvvvUDbGfO8efNYvXo1jY2NfPTRRwfst6WlhYqKCvr37w/Ab3/7W3r1\n6sXq1at55JFHePzxx4G2MZBnnnkm7777LtD2KMhXXnmFX/7ylwc81GPMmDH89a9/PZaXXYiMI2fI\nQnSysWPH0q9fPwAuuugiVqxYgdFopLKykssvvxxoe2bqCSeccMD3qarK7373O/7617+ya9cuPv74\n4yOa7xsIBNi0aRNz585t/1owGKS5uRmA008/HUVRGDRoEC0tLQCsXbuWf//3fwdg+PDhDB48+KA/\ne8iQIZSVlQHQv3//9p/5taqqqgMeM/ePf/yj/ecOHjyY1157rf3/TZgwAYCSkhJGjx4NtD3dzev1\ntm9TXFzM2rVrD9uzENlAAlmITvbNB4d8/RzbeDzOeeedx9133w20hWg8Hj/g+wKBAJdeeikXXXQR\nY8eOZfDgwUf0pLNEIoGu67z99tvtX6urq8PtdgO0P6NaUZQDajyS+9bffDSjoijf+h5VVQ/o918f\n5VheXk7fvn0BDrjUfaiHqxiNxgPqFCKbySVrITrZp59+Sn19PYlEgrfeeosJEyZwyimnsGbNGpqa\nmkgmk8yfP7/9Uu3XgV1RUYGqqlx33XWMGzeODz/88FuhfTAOh4M+ffq0B/LatWuZPn36d37Paaed\nxp/+9Ceg7fGZ27dvR1GU9mckH6nS0lLq6ura/z5mzBj+8pe/AG1hPGvWrKMK2DtyprcAAAF9SURB\nVOrqanr37n3E2wuRySSQhehkhYWF3H777UyePJmioiJ+/OMfM2TIEG688Uauuuoqzj//fBKJBNdc\ncw0AZ555Jtdccw0Oh4OhQ4dy3nnncckll2C1WqmpqTmiff7mN7/hj3/8IxdeeCGPPvoojz322HcG\n4S9+8Quqqqq48MILeeKJJ8jPz8dsNtO/f398Ph+zZ88+ov263W569erFjh07ALjpppuoqKhgypQp\nzJ49m0ceeeSoAnn9+vWcddZZR7y9EJlMnvYkRCdav349Tz31FC+//HKqS/lOb7/9NqWlpYwePZqa\nmhquvPJK3nvvvWN6Ju3777/PJ598wpw5c46rpqamJm688UZeffXV4/o5QmQKuYcshKBfv37ce++9\nJBIJVFVlwYIFx/yA+LPOOou//OUv1NfXH9dnkZ999tn2oSRCdAdyhiyEEEKkAbmHLIQQQqQBCWQh\nhBAiDUggCyGEEGlAAlkIIYRIAxLIQgghRBqQQBZCCCHSwP8HLzRD6zArRrIAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x11272b240>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plot_line(85) #static plot for arbitrarty slope angle" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We introduced a quantity called **variance**:\n", "\n", "> ```python\n", "> var = np.mean(np.power(p_x_line, 2) + np.power(p_y_line, 2))\n", "> ```" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "If we define variance in the general sense for a discrete dataset as:" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$ Var(x) = \\frac{1}{n} \\sum_{n=1}^{n} (x_i−\\mu)^2 $$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Noting that $\\mu$ is zero for our de-meaned data set, and that - by Pythogoras - our $x_i$ values are the hypotenuse lengths of triangles with sides p_x_line and p_y_line, we have:" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$ Var(x) = \\frac{1}{n} \\sum_{n=1}^{n} (x_i-0)^2 $$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$ Var(x) = \\frac{1}{n} \\sum_{n=1}^{n} (x_i)^2 $$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$ Var(x) = \\frac{1}{n} \\sum_{n=1}^{n} ((p.x.line_i)^2 + (p.y.line_i)^2)$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Interactively changing the orientation of the hyperplane" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We could try to fit a stright line through the data as a means of generalising the petal width / length relationship. There are clearly inifinitely many solutions, but certain solutions have interesting properties.\n", "\n", "> Try changing the slope of the line in the interactive plot below. As you change the angle of the line:\n", "\n", "> 1. Make a note of the plot title (variance)\n", "> 2. Take a look at the green lines" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeQAAAHtCAYAAADIoQ0xAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3WmcXFWd//HPuWvtVV29JCF7WERZRMAREEQUAQcQZGQR\nDI4bqDigDqh/QAMjoLig4IYgLigICMigiIIOKOKCjiOIrNm3Xmvfb93l/6DSRTrpJN0h6e50fu9H\npPreqnOqXy9+fe4553tUEAQBQgghhJhU2mQ3QAghhBBSkIUQQogpQQqyEEIIMQVIQRZCCCGmACnI\nQgghxBQgBVkIIYSYAozJboAQ09HixYs58sgjOf/880e8/t3vfpcnnniCG2+8cczvdf311zN//nxO\nPfXUHd3MMSmVSlx22WUsX74c3/c59dRTOe+88za7rl6vc+WVV/L000/j+z4HHnggS5YsIRQK8dRT\nT3HNNddQq9XwfZ/3v//9nHLKKdx000088MAD7ffIZrNUKhX+9re/sXbtWpYsWcL69euJRCK8733v\n41//9V8nsutCTKxACLHDPfjgg8Fxxx232evHH3988Nhjj01Ci7bfZz/72eCqq64KgiAIKpVKcMwx\nxwR/+9vfNrvuuuuuCy655JLA87zAdd3gYx/7WPDVr3418H0/OProo4PHH388CIIg6O3tDQ477LBg\nxYoVI+4vFArBcccdFzz66KNBEATBOeecE9xwww1BEARBqVQK3v72twfPPvvsTuypEJNLRshC7ATH\nHnssV199NX/961859NBDAXjiiScIgoDXv/71+L7PNddcw5NPPkmlUiEIAq666ioOOeQQPvWpT5HP\n51mzZg1vfOMbyWQy7L333rzvfe/j7rvv5s4776TZbFIoFPjABz7A2Wefzb333svDDz+MpmmsWrUK\n0zS59tpr2WeffRgcHGTJkiUsX74cTdM466yzOPfccymVSlx99dW88MILNJtNDj/8cD7xiU9gGCP/\nt3DZZZfheR4Ag4ODOI5DPB7frM+vfe1rmT17NprWmgl75StfydKlS3EchwsuuIAjjjgCgJkzZ9LR\n0UFfXx8LFixo33/ttddy1FFHcfTRRwPwz3/+k89//vMAxGIxXve61/Hwww+z77777thflhBThMwh\nC7ETGIbBmWeeyd13391+7c477+Tss89GKcWTTz7JwMAAd955J7/4xS94+9vfzs0339y+tl6v88AD\nD3DJJZe0X6tUKvzkJz/hpptu4r777uMrX/kKX/ziF9s//8tf/sKnP/1pfv7zn3PwwQdzyy23AHDl\nlVeyYMECfvnLX3LnnXdy1113sWrVKq655hr2228/7r33Xu677z5yuRzf+973NuuLUgrDMLj44os5\n6aST+Jd/+RcWLly42XVHHnlk+/V169bxgx/8gBNOOAHbtjn99NNHfA/VapWDDjqo/dqLL77Ir3/9\nay666KL2awceeCD33nsvQRCQzWb53e9+x+Dg4Lh+D0LsSmSELMROcsYZZ3DiiSdSLpdxXZff//73\nXHHFFQC85jWvIZlMcscdd7BmzRr+/Oc/E41G2/cecsghm71fNBrlxhtv5Le//S0rV67kueeeo1qt\ntn++3377MXPmTABe9apX8fDDDwPwhz/8oV3Y4/E4P//5zwF49NFH+cc//tH+o6Fer2+1P1/60pe4\n8sorufDCC/nGN77BhRdeOOp1Tz/9NB/5yEd417vexTHHHDPiZzfddBO33nor3/nOdwiFQu3Xb731\nVt71rneNGHlfe+21fO5zn+Ntb3sbs2fP5o1vfOM22yjErkwKshA7SU9PD0cccQS/+MUvqFarHH/8\n8e2C8+ijj3L11Vfznve8hze/+c0sWrSI+++/v31vJBLZ7P36+vo488wzOeOMMzjkkEM44YQTeOSR\nR9o/37jAKaUINsTUG4aBUqr9szVr1tDR0YHv+1x//fXsueeeABSLxRHXDXvsscfYZ599mDFjBtFo\nlBNPPJGHHnpo1D4/8MADXHnllXz605/m5JNPbr/uOA6f+tSnWLp0KXfccQdz5sxp/8zzPB566CHu\nueeeEe9Vr9f53Oc+1/4ulixZwqJFi0b9XCGmA3lkLcROdPbZZ/Ozn/2M++67j3POOaf9+uOPP84x\nxxzD2WefzQEHHMCvf/3r9jztljz99NOk02k+/OEPc9RRR7WL8bbuO/zww9vFrlQq8e53v5uVK1dy\n5JFH8v3vf58gCHAchw996EP86Ec/2uz+Bx98kG984xvt6x588EEOO+ywza775S9/yVVXXcUtt9wy\nohgDXHjhhZTL5c2KMcALL7xAIpHY7PWvfe1r/PjHPwZgxYoV/OY3v+G4447bal+F2JXJCFmIneh1\nr3sdV111Fclkkle84hXt18866ywuvvhiTj75ZHRd59BDD+Whhx7C9/0tvtfrX/967r77bk444QTC\n4TAHHngg6XSaVatWbbUNn/nMZ7jiiis4+eSTCYKA888/n/3335/LLruMq6++mpNPPplms8kRRxzB\n+9///s3u/9SnPsWSJUs4+eSTUUrx5je/mXPPPRdobckCuOiii7juuusIgoDLL7+8fe/BBx/MSSed\nxCOPPMKCBQt45zvf2f7ZxRdfzFFHHcXKlSuZPXv2Zp/7iU98gksuuYT77rsPXdf53Oc+x6xZs7ba\nVyF2ZSoI5PhFIYQQYrLJI2shhBBiCpCCLIQQQkwBk1KQM5kMRx99NMuWLZuMjxdCCCGmnAkvyM1m\nk8985jMjtmgIIYQQu7sJL8jXXnstZ511Fj09PRP90UIIIcSUNaEF+d577yWdTnPUUUeN+R5ZBC6E\nEGJ3MKHbns455xyUUiilePbZZ1mwYAHf+ta36O7u3up9g4OlCWrhxOnujku/djHTtW/TtV8wffsm\n/dr1dHdvfiDLpiY0GOS2225r//fixYu54oortlmMhRBCiN2BbHsSQgghpoBJi8784Q9/OFkfLYQQ\nQkw5MkIWQgghpgApyEIIIcQUIAVZCCGEmAKkIAshhBBTgBRkIYQQYgqQgiyEEEJMAVKQhRBCiClA\nCrIQQggxBUhBFkIIIaYAKchCCCHEFCAFWQghhJgCpCALIYQQU4AUZCGEEGIn0Z9/Dv2Zf47p2kk7\n7UkIIYSYzoy/PkHy7HcQhMLQu36b18sIWQghhNjBzP95mNQ73oYqlahc+pkx3SMFWQghhNiB7Hvu\nIvmuM8H3KX7/dhpnnTOm++SRtRBCCLGjBAH2f99LEIlS/NGdNA87Ysy3SkEWQgghdhSlKN74XfS1\na/D2ecW4bpVH1kIIIcTL4XnEPvlxrPt/2vp3JDLuYgxSkIUQQojt12iQOO89hL/3HSLf+hr4/na/\nlTyyFkIIIbaDKpdIvPscrMcexTniSIq3/hi07R/nyghZCCGEGCc1NETytJOwHnuUxltPonDHvQSJ\n5Mt6TynIQgghxDjFrrwc8+//R+2ccyneciuEQi/7PeWRtRBCCDFO5as+j7v/AdTO+zAotUPeU0bI\nQgghxBgYf/kz5u8eBSBIpqidf8EOK8YgI2QhhBBim6zfPETivYsJLJvsX58iSKZ2+GfICFkIIYTY\nCvvuO0ksPguCgNLXv71TijFIQRZCCCG2KHzzt0h8+AMEkSj5u/4b5/i37rTPkkfWQgghxChC372Z\n2GWfxJsxk8Id9+Ltt/9O/TwZIQshhBCjcE48GeeNbyL/84d2ejEGGSELIYQQL2k00Fevwtt7H/wZ\nMyncdd+EfbSMkIUQQghAlYokz34HqZOPQ1uxfMI/XwqyEEKI3Z4aHCT59pOwHvstzcNejz9rjwlv\ngxRkIYQQuzVt9SpSJx+H+dTfW1GY3/nBDonCHHc7JvwThRBCiClCf+5ZUicdh7F8GdWL/pPydV8D\nY3KWV8miLiGEELutwLLA9yn/1zXUPviRSW2LFGQhhBC7n0YDbBt/0Z7k/vDXl3104o4gj6yFEELs\nVuyf3EH6yNeirV8HMCWKMUhBFkIIsRsJf/sbJC44D5XLtQvyVCGPrIUQQkx/QUDkc58l+tUvTVgU\n5nhJQRZCCDG9eR6xT3yc8A+/h7twEYW77sOfv2CyW7UZeWQthBBiWtNWrcS+7x6aBx5E/ucPT8li\nDDJCFkIIMc35i/akcM/9eHvuRRBPTHZztkhGyEIIIaYdNThI/IPvRWUzALgHHTylizFIQRZCCDHN\naKtWkjrpLYTuvZvQbT+c7OaMmRRkIYQQ04b+zD9bUZgrllO96D+pfeSiyW7SmE34HLLneVx++eWs\nWLECpRRXXnkl++yzz0Q3QwghxDRj/PlPJN91BlohPyWiMMdrwkfIjzzyCAB33HEHH/3oR/nKV74y\n0U0QQggxzahSkeTiM1DlEsWv3bjLFWOYhBHyscceyxvf+EYA1q9fTyIxtSfZhRBCTH1BPEHp+m+B\noeO85YTJbs52UUEQBJPxwZ/85Cd5+OGHueGGGzjyyCMnowlCCCF2dbfdBqecArHYZLfkZZu0ggww\nODjIGWecwQMPPEAkEtnKdaUJbNXE6O6OS792MdO1b9O1XzB9+yb9AoKA6DX/ReT6L1M/452Uvv7t\nndu4l6m7O77NayZ8Dvm+++7j299ufXHhcBilFJomi72FEEKMkesS+88LiVz/ZdxFe1L5xKWT3aId\nYsLnkI877jj+3//7f5xzzjm4rsull15KKBSa6GYIIYTYFdXrJD74Puxf/IzmgQdR+PE9BN3dk92q\nHWLCC3IkEuH666+f6I8VQgixqwsCkovPxPrtIzhHvoHiD26f8ulb4yFZ1kIIIXYNStF4+zsI4gmK\n37wZptnTVZm8FUIIMaVp69eB4wBQP3sxxVtunXbFGKQgCyGEmML0Z/5J6vhjiH/kPBjeFKTU5DZq\nJ5GCLIQQYkoy/vRHUqe8Fb2/D/eQ107bQjxM5pCFEEJMOdZDD5J4/7vBdSl+4yYap5812U3a6WSE\nLIQQYkqx77ydxLvPBqUo3vrj3aIYg4yQhRBCTDHa4CBBLE7hR3fhvu6wyW7OhJGCLIQQYvIFAfg+\nALWPXET99LMIZsyY5EZNLHlkLYQQYnJtiMLkwgvbK6l3t2IMMkIWQggxmTaKwuTgg6FSmRYnN20P\nKchCCCEmhSoVSZz7TqzHH8M56misn98Pjem9tWlr5JG1EEKICacGBkieeiLW44/ROOkUCrffDYnp\nk0u9PaQgCyGEmHChO27D/MeT1Ba/h+LN3wfbnuwmTTp5ZC2EEGLC1f7jo3iL9sQ58eRpn8A1VjJC\nFkIIMSGMP/2R8Ne+2vqHUjgnvU2K8UZkhCyEEGKn2zgK0znxJLxFe012k6YcGSELIYTYqUZEYf7w\nDinGWyAFWQghxE4T/tbXSfzHBwnicfJ334/z5uMmu0lTljyyFkIIsVNYP/tvYksuxZu1B4U7f4q3\n7ysnu0lTmoyQhRBC7BTOW0+k+oEPkv/5Q1KMx0AKshBCiB2nVsP69a9a/20YVK7+Av7ceZPbpl2E\nFGQhhBA7hCoWSJ51GolzzsD87SOT3ZxdjswhCyGEeNnUwADJs07DfPopGiefSvOwIya7SbscGSEL\nIYR4WbSVK+g46S2YTz9F7dz3UrzpexKFuR1khCyEEGK76cuXknzbW9EH+ql8/BNUP3mZpG9tJynI\nQgghtps3azbe3vtQu+jj1D7wocluzi5NCrIQQohxUwMDBD09EA5TuPt+0PXJbtIuT+aQhRBCjIt9\nx210vvYAzEd+03pBivEOIQVZCCHEmIW/cQOJCz9EEAoRxOOT3ZxpRR5ZCyGE2LYgIPrZJUS+/tVW\nFOZd9+G9Yt/JbtW0IgVZCCHE1rkusYsvInz7D3H32pvCXffhz5k72a2aduSRtRBCiK1StSrmk3+n\nedBryN//KynGO4mMkIUQQowuCEApgniC/J0/hUiYICbzxjuLjJCFEEJsRvX3kzr5eIz//QsAQU+P\nFOOdTAqyEEKIEbQVy1tRmE/8CfuBn012c3Yb8shaCCFEm/70P0id+Xa0wYGXojDFhJCCLIQQAgDz\nT38g8a4z0YoFStd8gfr7PzjZTdqtSEEWQggBnkfskx9HVSsUb7yFxmmnT3aLdjtSkIUQQoCuU/jB\nj9FXLKd5zJsnuzW7JVnUJYQQu7Hwzd9Cf+F5APwFC6UYTyIpyEIIsTsKAqJXXE7ssk8S/+gFrT3H\nYlLJI2shhNjduC7xj/8HoTtuw91rb4o3fQ+UmuxW7fakIAshxO6kViNx3r9j/+pBmq85mMLt9xB0\ndk52qwTyyFoIIXYr8f/4IPavHsR5wzEU7vmZFOMpREbIQgixG6l+9GKCeJzy578Mtj3ZzREbkYIs\nhBDTnLZiORm/jD5nPon9D6D8la9PdpPEKCa0IDebTS699FLWrVuH4zh86EMf4s1vliX2Qgixs+j/\neIrUWafR7IkxePdPUUoRtxKT3SwxigktyPfffz+pVIovfvGL5PN5Tj31VCnIQgixk5h/+D2JxWeh\nyiXCH/tP9HCMSrOCUhoxMzbZzRObmNCCfMIJJ3D88ccDEAQBuq5P5McLIcRuw3rwARLn/Tt4HqVv\nfQfntNNJ+x6ZeoayU0JDI2JGJruZYiMTuso6Go0Si8Uol8tceOGFfPSjH53IjxdCiN2CfdePSbzn\nnFYc5o/uaudS65pOOpRGKY2iU6Du1ie5pWJjKggmNp6lt7eXCy64gLPPPpt3vOMdE/nRQgixe3js\nMXjnO+Gee+B1r9vsx47nkKlmAOiMdGLp1kS3UIxiQgvy0NAQixcv5jOf+QyHH374mO8bHCztxFZN\nju7uuPRrFzNd+zZd+wXTt2+j9isIUJUyQSze+ne9DqHQFt+j4TXI1bMoFOlQJ6Zu7sQWj810/X1B\nq2/bMqGPrG+88UaKxSLf/OY3Wbx4MYsXL6Zel0cmQgjxsrgu8Qs/RPLfTkaVNxS0rRRjAFu3Sdop\nAgKyjSye701AQ8XWTOiirssvv5zLL798Ij9SCCGmt1oN7YPvovC7h0m84jXgOGO+NWyE8QOfklMk\nU8/QFe5CUxLgOFnkmxdCiF2UKuRJnXEq0YcfpnbEESz/4fdxU6lxvUfUjBIzY/iBR7aexQ/8ndRa\nsS1SkIUQYhek9feRettbMf/8RzjxNIJv34YfCW1XUY1ZcSJGBNdvkqvnmOC1vmIDKchCCLEL0v/5\nNPoLz1H79/dRuvEWYrFOomYUL3DJ1rPjLqoJO0lID9H0HfKN3E5qtdgaybIWQohdyHChbb7pWPIP\nPYq7/4Hts4zjVgI/8Km5NXKNLB12GjWOc46Tdgq/kaXhNSg08iTt8T3+Fi+PjJCFEGIXoT3+W9Zf\ncCq9QysJggD3gFe3i/GwpJ3C1m0cb/wjXaUUHXYaQzOpuTVKTnFHNl9sgxRkIYTYBVgPPkDynf+G\n+fvf0ffE/zBUG9ritSm7A1Oz2iPd8VBKkQ6l0ZVBpVmh3Cy/3KaLMZKCLIQQU1zo9h+SeM856JpJ\n+rrbMA/9F/qqveTq2VGvV0rREepoj3TLzvjCNjSlkQ6l0ZRO2SlRbVZ3RDfENkhBFkKIKcz82peJ\nf/QCglSK/L0/wzj2X1mQWoCGxrryOoqNwqj3DRdVXRmUm2Uqzcq4PldyryeeFGQhhJiq/v4Xql+9\nkqEFs8jf/yvcgw8FIGbFmBOfiwLWlNZQdkZ/rDxclJXSKDlFam5tXB9vaAYddgcKRaGRx/HGHjoi\nxk8KshBCTFHBqw+l8V9foO/2H5ObP3PEz5J2kj1iswnwWV1aRa05erHVNZ203SrKhUaehtcYVxss\n3SIV6iAgINfI0fSa290fsXVSkIUQYiqpVvG/+WW8poNSisjZ56HPnkfVrW42F9wRSjMjMhPPd1lV\nWrnFx8qmbrZHuvl6btwj3XbudeBL7vVOJAVZCCGmCFXIEz/zVLwvX0nlBzfg+d7IBVajzAV3R3ro\nifTQ9BxWF1ducQRr6Vb7MIlcI4fru+NqW9gIE7cSraIsEZs7hRRkIYSYAlRfL87px1J78k+YbzmZ\n6r+d3i58m80Fb/J4uicyk3Soi7pXZ3Vx5RaLbcgIkbCS7aI63pHucO71cBqYFOUdSwqyEEJMMm35\nMrS3v4X82hfoXXwm+etuIBrtwAvcdra0oRmtuWAUuXpuxFywUopZsVmk7DQVt8Ka4uotFtuIGSFm\nxbf7MAnJvd55pCALIcQkUkNDdJx0HPEVq7He+xGGPvYxSm6ZIAja2dK5Riub2tRNOkLpUeeCNaUx\nJz6HhJWk1Cyyrrx2i8U2ZsZedu61rduSe72DSUEWQohJFHR1UT/nXOrXfJnQx5aQCqUoNysUnAK6\n0tsxmMOJW5Zu0RHuGHUuWFMac+PziJgx8o0cvZX1Wyy2cStB2Ai3RrqN8RfllN2BpW9fGpgYnRRk\nIYSYBMY/noQNRbBy2RLq7/0Atm6TCnWQsBKUGiUKTgFTszA1i7pXb4eAbG0uWNd05sfnEzIiZGpD\n9Ff7t1hsN8693p6ITcm93rGkIAshxAQL3XYrqbccTeS6L2z2s7ARbhVlO0HBKVJo5AkZIXRljNj6\ntLW5YFM3mR+fj63ZDFb7x5R7vXHBHyvJvd6xpCALIcRECQKcG66hdtlHcDuSOG86dtTLomaUlJ0i\nYcYpOkWKjQJRM/rS1ientfVpa3PBtmEzL7EAQzPGnHs92l7nbZHc6x1HCrIQQkwE38dc8kkaX/88\na/fs4cWf3I5z0Gu2eHnMipO0k0TMKIVGnmKjQNyMb0jcKrRjMLc2Fxw2w8yNz5fc612EFGQhhNjZ\nXJfQhedTve1G1LxFNL/xPQZmJhmqDW11MVXCTpK0EoSMCAUnT7FZJGEmUCiKjUJ769PW5oIl93rX\nIQVZCCF2Nl1HN0zU/q+m8oPbsWcvxNQMhmqDZOuZrRblpJ0iYcexNJtCI0+pWSJpJwHI11/Klt7a\nXLDkXu8apCALIcROEtRqrZGiUlS+dAPabb9AT/egazoxM4amNAarA+TrW97LO7yaOW4n0JVOsVGg\n3Cy3YiwJyDayuL67zbngTXOvG+7oxVZyryePFGQhhNgJvLWrWXrma1l389WtLUGGgRaLtxdAaZpO\nzIgRAIO1ga2ucB5ezZywkkBAod6aQ46biRFbn8aTe72quEJyr6cYKchCCLGD6cuX0vfvx/JUYzXP\n9T3JuvK69pagjedqdU0nZsVwA4/+av9WVzgP35ewUzS9JkWnQMOvEzVjI7Y+bWsuWHKvpy4pyEII\nsQMZ/3iS1EnHs/C5PrqOO52+007kxcwLrC+ta28JGs6l1pSGrnQSVoKG16C/2rfVFc7Dq5k7wh00\nvAYlp4Tnu0SMyBZzrzde/AUTn3vdXgEuudfbJAVZCCF2EPPxx0ie8q+ozBDaZ6/jVR/6HDOjsxiq\nD7I09yK95fXtLUHDudS60ttFuerW6K/0bXWFs6EZdEY6SVkpqs2XErK2lHsNbDH3Om4ldnru9fAK\ncMm93jYpyEIIsQP4gU/o1u+iGnVKN32P+nveT3ekh4NmHEx3uJv+Wh8v5F6gr9LXLo7Dc7VKKQzN\nJGEmqTTLDFT6t7rCuZVnnSZpJyg55XbutaVbm+Veb2kuWHKvpx4pyEII8TKVnBJri2tY/YVryP/3\ngzROOa39s1mxPXh1z0F02Gn6yr0szb5Af6WvvaBqeK5WUwpDN0hYKYpOgYFK/1ZXONu6TUcoTdJO\ntnOvLc0eV+61oRmb5V5vieRe73xSkIUQYnsFAfb1X6L/3pvpraynQIPMAftsdtncxHz27zqQRCjJ\n2spqlmZfZLA60C6Ow3O1utIwNIO4lSDfyDFQ7d/qCudNc6+LTuFl514PVge3+HmSe71zGZPdACGE\n2CX5PtEllxL59jeZv+9cqkcdSX+lF00pNKURtxIjLt+rYy88v8lTQ0+xprwS0zTRNZ3uSA+a0oiZ\nMYLA37CoyyJqtB4la0qn0+6m0QyI2AaGPnIcFTWjBIFPEAQUGgUUiqSdotwsU26WUUrD1sL4TQtb\nC9Pwa+TqORJmiprjEbGNdu71yuJy+qq9GJrenn/e2PBe52w9S9Wtttptxcf8lQ2vAM/UM5SdEhoa\nETOyXV//dCQFWQghxqvZpPmx9+H+9324r9gX68f30p3U6K/201vpQ1MaakOR3djeHa+g4Ts8O/Q0\nKwvL0dBRSqMr3NUu4n7gU3Nr2KaNF3g8sWwZXrWPqJHG0gx60mGO7hz5vq3Rr49PQKGRbxflglPg\nL0tXUS9baMrCUBrhmEPdy1Es9hLS45iaTk86zKsWpJkbn8+q4krWlde1FpptSATb2HBRHaoNtQt+\n1IyO+asbXimeqWcoOgU0pREyQtv3e5hm5JG1EEKMR7WK/Z6zyD1yHytftx+rf3Inwew5zIzOojPU\niaWZ9Fb6KNTzm518pGkar+rcj3069kULdFYUlrIyv4JM7aX4zOG5Wl3prOlzKJWh5OepB0WUBgP5\nGk++OLBZs0bLvV633iVTbFALSijNQ9MVy1Y3eXF1GU9r0lQVNF0xkK/xzMqs5F5PMinIQggxDu7n\nL8f4n4dJHnQk2a/cQJ/d3DBSVMyOz6EjnMZQGr3lPvKN3GYnHxmawQE9r2avjr0IfMWywousKa4e\ncTxiyu5ABQbZgkPECGMog6pXouzmUcD6oQqut/k2pY1zr7PVLKsyQ8SM1iPlmlfG8wPKtSZ+PYwW\nGDh+A9d30JRiIFvD9fwx515vvNd5e3OvN14BLrnXUpCFEGJMgiBgTXEVz7/3dNZcdD7uTbfRlZ7b\nCvSo9FJttuZU58bmkrJTaCqgvzIwah60oRkc2PMaFiYX0fQcluVfYG1pdXv1slIKW8UBDaV04mYH\nMT1OM2hS8Yp4XkDN2Xyx18a5104Tis0Cda9KVE8S0WM0mx6+H+ADIRLE9AS6MgFwA7/9nuPKvQ6l\ntzv3OmSE2rnXuUZut8+9loIshBBb4Xo+tX8+i//Iwzh+k2bYZv17z6UY1IhbCTpDnVTdGn2VXupu\nHV3TmZuYT8JO4gVN+mp95OrZzUaAISPEa2YczLzEAqpulRfyL7I8s5Ln+3qpOy6xkEXK7EBDwwtc\nTC2EoUxdXKZsAAAgAElEQVQcv0E9KBO2Rl8CNLyaeUY8jY6i4pWo+1V0ZWKaOpqm0JXCMnUsPYRS\nCqA1v7zRe0507rUfeGRqmd06YlMWdQkhxCj8IOCZlVnqf36CI5d8kHC1zj/u+jnhV8SpuTVy9SwK\nRcruwA98svUM/ZU+ZsZmYeutVcteYTklp8hgdRClNDpDneia3v6MiBXhkBmvpel5PPjU//Kb0lq6\n9UWk7VnsNbOHeTPiBIWAipun5leIaDH8wCeVhLpXIaaPvsJZUxrdkS7md+dYmemj6pZQQMxIEQub\nKEDT1Ii+9qTDm63g7onMxPV9MvVBVhdXMj+5EEPbvGyEjBCJIEnRKZCtZzfr57ZEzSh+4OH6LoV6\nhc5QZ/sPhd2JjJCFEGIUz6zM4vzPw6S//G76yPHE+R8nG5pFbsgmbIRxvCb5Ro5is0g61EnSTlFy\nigxU+ml6TSzdYn5iAVEzTtWtkKkOjpoHHbfjZFd341aTOKpMjtWUgyGW9w+xqq/IrI44EZWk6fpU\nmmVmd3RwwKIZo57mtDFd0zls7z2Zn56B49YpNIqUnAKv3rOTA/fswvcCHNfD9wJ6Uq1V1puayNzr\nuJUgYka2Ow1sOpARshBCbML1fLyf3c1e3/wEfTH41QUfRv3L0aSDJtWSyZ6zEwzRT73ZaG8z6gp3\n4xOQb+RQmsbMyExCRoh5iXmsKq6k2Chu2A6lNhyR2BoP1R2XbE5nvr0/qxtPUfazDDqr0SyNFQOK\nt7x2HvvO66BQ66buFzF0jWQ4QUaVKTmt9wwb4VH7Yekmh++zJ3vOTtBfHiIdjtAZMUnYydajeMcl\nbG2+t3ljw7nXXuBSclq513Pic9vt39jGe6mHR8rjGemmQikG9NZhGPlGbtS90NOZjJCFEGIT/k/v\nYc+vX0I2bvP8+VdQOfhNVNwyeWeIhu9gqxg94RlYhkW1WaXYKFBpVugJ9xA1Y+TrWQY2JHFFzShz\nY3OJWjFyjRy5WnbEyUeZUh3X84mbaeba+5EyZqJQDLlryTcGGCiUMHSNzliMzkiagIBio0jCTIx6\nmtOmLN2iO9rFrEQXNa9GwSlQdlrvGQ9bWy3GwyT3emLICFkIITbi+R5Dh+yDWvQq/nHueQzOnY/p\nRVCGT8krEAQK25xLWKUoUMclQ6VZQlMK34eIStNULrl6Bg2NdKiLwAsxM7wHvawjUx9C13Q0pegI\npemMh9pFMWF2EzU6GGiupOD2kg/W4qg8NSdC01VEbIuElcQPPErNCgmrNW+br7dGk5Zu4Xo+1YY7\nItVrOPd6OM1LQ8P3Ad8eNf1rNMO51ysKy8nWMujKYGZ05qjXJu0UfuC3i2oq1DHm7394pXimnqHm\n1tqBKaP1a7qRgiyEEAC+T27p32HeAuyZc3jqy99h1aos2YECnlckpMexbZ/k7Cp/XPoibiWGG/hU\nXBctXMEL8jjVELYWI6RZBOEKL/oF/Fo/USOFqenY0TDRDo/B6gCa0tGURtJOMbcnxtrBMpqmoSuD\nLmMevu+ixwv8Yfk/CLsZ4mYrdKQnHeaQAzvJBK1ozLiVaC+m6u9TZPJN3MDHUFo7gUtTqp177QU+\nf1uxmlrZImIkiOiREddtjambzE8sYGVhOYPVfnSl0x3pHvXalN2K2BzOvR4t9WtLhh/rZ2oZSk6Z\n51blKRW1Ufs1nUzPPzOEEGI8mk3iHzmf5uKTWPf0Y0CAoVutWEeioDQcv4KpLIZyLisyvZT9HLZh\n0BHqYv16WLqmRM0v4aoqge7Tu95k2doSZT+LE5RQGjRqYYq5MGEjTH+ll0KjQMkpcsJh85nTHcPz\nfBqOixYYvHrmfrxyxgLWF/P0O6uoBXnQAgbyNZatqrbPKK65NeJmgudWZ1k21Auaj2XoIxK4hkXN\nKH39AdWKTj0o0QhKeKq52XVbM5x7rWsGfdXeEYEmGxvOvTY0c8RBF2M1nAa2dG2RVdkhXBpb7Nd0\nISNkIcTurVIh8f5zsX/zMHNeezBDHZ2sLqwhl7fZozOO2+HhOFEcrYoiYH2fz+yZJoVmFg2NqJ5C\nOXHwG/iBT7lZxPcVlXqA5icIfIecO4TSNGJGkmY5SsesGD6DI3KvTzpiIXXHJVdu0BGzMXSNh/5X\nI23VyTuD9NfWoNBImp2sH6owM9nZzr32/IBKUQMVUGrmiZsdaEp7KYFrno+ha7ieT7moEzeTKBeq\nbhGFImGmR1y3LWEzzLwJyL0OAkWjHMJQdcpekbjSMDVrs35NF9OnJ0IIMV7ZDLVz3krw6MM4bzoW\n564HmDf3IBpNn77GWkxlYmgaYdsmbXXhNF3qbgUjCKGhqPkVco08oBNRaUIqhq4ZlBtFKm6RINCI\naGkIAmpuhapbxiMgaXaPmnsdsgxmpaOELINqw8XQQsyJLCJpdVL1KgzW11Fs5nDd1grp4dzrQq2C\nEzQJaRE8PFz/pcSsjRO4qg0XN/CJGHEiRhxLD+MGLmU3T8N3Rk3/2pKJyL2uNlwCWn/IKFp7r0fr\n13QhBVkIsVvSetcTOu14Msv+zjNnvIWB7/4AolFiVoy90wvRFAw5vYT0KAmrg7jZQTrcDbqHpxxS\nZhdhLQpaEycoY+kWMyOzmWnPIRlK0aRGkwoRM8TM0DwszabuV3H9GhHb3GbudcQ2MJRGxIizILov\nM+w5NPw6g431VP1CO1UrZXeQCEXwgiYQkDBSmJrdfp+NE7iG3xMgZiTptGaQNNP4BNS8IpYxvjnZ\njXOv15RWjyn3elurwjc23F5Ds0iYaaLGS0dabposNh1IQRZC7J4ch3CmQPJt7yJ36eWsqq9vx0N2\nRtPsO2MhTd9joL6WIPBRSpG00uzdPZsmDcpeAVsLY+kmVsjDsB1M3SBkRElYKdKRJJpdpxa0Ro5x\nMwWBIhL3cPz6qLnXQ9UMQ6Uyrtd6FNuTDuMHAbYeZkZ4LkmzNVImlKPQyFOsOnh+QHe0k5kdMape\nlWbQbO/93TSBa+P3BDA0C1sPY2sR0kmLYjM/7kCP4dxr12+OKfcaaOdeu55PseqMelDGpu3VlYGm\n9FH7NV3oV1xxxRUT/aFPPvkkl1xyCaeddtqYrq9Wp9/RXNGoLf3axUzXvk3XfsHoffOaDsVmEa2j\ni+bpZ2Oe9A485VNyilTdGkkr2QrD6ExTqboMlHMUnSJRLcmszhhHHbCAUrXBYDlHzW0Q01PMmREh\nldCo1TyCQMdUFgtnJUjHbYbKeRzfw1Yh5nWmWTA7TMOrY2gmlm4RtxJUmlX+ubqXZ1b1sy5To2/A\noeb47Du/g1rDpVxt4gUQ0WLEoooaBZ5aOkBfpknfgEO14XLAwpnkq2XylQquH2Aqi56O1mrkjcM5\nulJhqvXWezZ9HxUoZncm2Wdukqbv4HhNwkZ4XIEerXnhgKJToNIsk7CSo0Zn6pqOoRlU3SpPrexj\n6eoKawcrrOkvU2k0mT8rSa028vc1WntH69dUF43a27xmwsf7N998M/fffz/h8OjJMkIIsbOoxx4h\nctnFDN3ybRqz59LZ1YmhacyK7oHne+QbOVaXVjE/sQBNabzhlfuycI8oa0t9pEI1XpGeh6ZpvGHf\nfdmzGKe3PEhP1GBWbCalZgnHbWKrGB2ROIauUWwUWFRNkKsVmRG1mRFrjRCz9Uwr4Ut1YOs25Wyc\nRs3E0ytU/Rx2YNCXa43+9l/YiTvvpVStJ5eHWFpcRtkfQHd1QobJwIb8jCP22YuByiBVx2FGrIO4\nvfkCKk2pzd5zeKSZrwfUvTq5RpYOe3wFb9Pc6wXJRaMW5ZARYn2fz0ChiqEaJMyO1iKtDec8z0lH\nxtze6WbCezVv3jy+9rWvTfTHCiF2c/79d+O/9zRKAyuJLl1BEPhk61k830NTGrNjc4ibCUpOkbWl\nte1Ht3OTc5mT6KEZNFhRXI7v+xiawaz4LPZIdFNxi2TqQ8SMGKZh4GlVPFqPvhN2knQ4RWc0ScUr\nkm1kUUq1gzLy9Rw1p0G+4DMzPI+wFsHx65SbBSpugb5Mpf34Oh62ACgUA/aILiCmJyk0s+ScAVy/\nwUC2BkHrUIl4yKbqlrY6VztaUlfSTmHpFo7njDsla9Pc69XFVaM+/nY9n2IBYkYMH5+yWwRahXdL\n5zxvqb3TzYSPkI8//njWrl07rnu6u0c/0WRXJ/3a9UzXvk3XfkGrb+63v8UjX/ww0W6buV/9LqE3\nHENiQzyjpjl0RrrQlEZXd4zl2eWUm2Ucu8icxByUUnR378+y7DIKjQJVK8vCjoUAdLkx1hbXUnJK\n6OEme0Zmk6/ngSbJSAJLt+gKYmRrUfL1PI7noIUdeiJddHpRcvUc5WoFK6SRtJNEo3uTafS3Cplq\n4FIhErVJxkMAFMoNwhELy9DZs3sfMvU+mr5Dwyhga91EYyESMZsuL0ammhnRjjF/X0GcTC2D4zlY\npk8yNPZAD4Curhgr8yspNArUrBzzkvNG5F4P9yFphqm5IQICIkarf07Ta/dhd7RLLFEbHBzfhvJd\nQXd3XPq1i5mufZuu/QLo7opRuWwJ4c9/ls69Eyz/7OUU581i1mABXTcwlYHjl8lq1Q1bcxQxr4vB\nYoEXc6so5GrMiM4CIOZ3MVAqsDy3lkKuxuz4XABMN06jXOTF3Gry4Vo7OSuTbR0jSKBRqQfUAyi7\ndfK5dWTsCkmrg2zFpe5XGChlSDlpCDSMZpp6UKDqFyn7DmszvVTKHdQcD8vQqFUdrGQYv26QCGaS\ncwYYqmapKIdcoZtK2aLacNF0jbL7UjtGOzZxS/zAJF8rkgnKxKwqMTM2ru894qcZKBdZlltDPldj\nj+hsPD+g2nDbfWjoCmg90i7RWl0eiVhUynUatem3pmEsf/TuEgVZCCG2x/ql/4f67lexZ89hzvfu\nYShRJdfIoSuNnsgMlK4wlUnTd9rzpq14yIWsKC5nYEPEZXekB03TWJBcyPLCMjL1DVnOsVmEjTAz\norPoLa9nqDaEUhoJK0m+kecPLyzFKYfxUWiAHfPo6g7432WrqFf6COsJ3KBOuVGnP7sOnCgBrXlb\nZevMnqX4+4o11Ct9hPQEhtKoNprE/NYIUlcGKasLN/CwQg5/XPoCfjVBgIahNBJJ2GNmMO4ziof3\nDmfqGcpOCQ2NiBnZ9o0bbJx7PVQdYumaIl410Y6+rDaahEMm+iZnMu/RFZ3Wj6S3ZfftuRBiWnN9\nl+VWlb9cv4TnfnI7au9X8sr0fsTNOLlGjqHaIH7g4QWtOeGN501tw2Z+vBUP2V/ta8dDGprBouSe\nGJrFQK2fweog0FplPDM6E1M3GaoNUnWrrF3fZKBQpeIXMHSFYeg0qiH+9nSZgWKZelDGoUTEjFKv\nGmTLFapBkSAI0DSDiJ4in9PoLRSoBxWaVNB0RThkUq032+cZa4HJPt3ziBpRVmX6KboZDB00XVEs\nwbped7vOKNY1vR3oUXQKI/ZIj8Vw7vWavjpLh9ZR8jLt6MtwyKC2UR+Gz2R+9d494/qM6WZSCvKc\nOXO46667JuOjhRDTXaVC7BMfw8zkWNSxCG+fV7A0VGKoOkTIDLF/14GEjAiZeoZMdRAfjyAAQ5nt\ngxDgpXhIhcb68joKG15vFeVF6Mqgt7KuXaxjVpwZkRnoSqOv3E9vtkhEj+LhUXbzrUKLTi6rE9ES\nNP0GVa9CsVnAb4aImhHmzggzYwbsPSfF3K4khbxJREtQ96pU3RJVt4yuKSIhkyMOmMnh+83kDQft\nwYELZxLUk4SMCCU3T6GZwQ98NKUoFTVsLYwXuCOOfRyLjQM9Co38mAM9hunKRK93YWgGOWeQUrP1\nB4+uaUTskX3Yf2EnmrbrbGPaGWSELISYNlQuS+r0Uwh//xYiX/8qs+KzWJBchBd4vJh7nnw9R9gM\ns3/X/ti6zWB9iFwtixe4oEBDbx2E0GyFecSsGHPjcwmAtRvFQ4aMEAsTraK8prSaotNaKZy0U3SH\ne6g7LhlnkAAfWwvhBi4+Ho7rE/gaIZUgaiQJAp9qo1VsTWJomOiGh1IBjuuDb2CrGBEjQYBP3a9S\n96p4XkDT89urjqsNF01ZpK0eTN3G8ertPwLcwMcgQtgItx/Nj6com7o5YlX4cHjKWFQbLrpm0WPP\nBqVRcYvt+Es38Ef0QUhBFkJME1rvelKnvBXzr09Q/7czqFx+BUopZsfmMC++AMd3eCH7HKVGkbgV\n51Xp/dCUzkCtn0Ijj+s3NxzIoFN2SlSbVaC1dWl2bDY+PmtKq9rxkBEr0tqvjMbqwsp2se4IpZmb\n3AMF5JxBFBopswtdGViGhqFrhK0QKauLbns2tmXhqjoeNdKhNEmzteJ7+NqoFSFt9dBl74GGRtUr\n49IYERs5HDEZ0iPMCs0nZqbaGdU6irBlkLCS2Lq9XVuabN0mYScJCMg2srj+2DKkh9sVNqLMCS8i\npEeoehUaXm1aRl++XFKQhRC7vMbzT7LunDfQWPYs1fM+ROkbN4FpAq39sfMS85gTm0vVq/J87nkK\n9RJaEGWf5L6Aoq/SR9kpU3cbVOsevk973tT1fHQ/Rpc9A9d3WV1sxUO6no/vWsyKzMHHZ1VxJXW3\njlKKnmgXe3bvQdNvknMGcfwN868K5vbEUKq1cErXdFJWB/GQjRFq4gS1l7YIbXKtpnRiRhICiCWa\nuMFLK5E3jpjUlEbUSGApi4bvEI47GLrW2v9sd2Bq1ohH82MVNsLErcSI/dvjib40NJO4mUJDUXKL\npJKtfm7t/t2NCsbz7GKSTMctGdN1q8l07RdM377t8v1yHIaO25+/00f6lHN55QVfIGy1VgRv3DfP\n93gx9wJ/XPY8bs1mVmgvIkYYPVykGVnP+oEaeiONoduEtBDJhA4ENCohlDLQURjREol0g96BJka9\nG5SOoTSsWI1YRxlLt9kruReWYeH6Hr9//nmWD67HUDY9oVnM6epg3/kdPLcq1zo+cMOq43TSoNDM\nM5ivEtJjRPQIPenwqNd2pHT2e2WMXK5CRyjd3mPsBwHPrMy2r9VRhOINFs6OEDUjJO3UhutaBdX1\nm8TMGDFrfHvQy06JolNi2doSjXIYn9ZBDz3pVpyltkm616btInCxonVA4VRsUEb7/qMPnU8mM/qp\nUbu6sWx7koI8SXb5/wluwXTtF0zfvu3K/Rp+dKo9/Av+uvZx1hx1KPMS8zig69WEjNBmffv7sj7+\nb/0/KbgZkmaaOeFF6JrF6twqcqzD1HR6QnMwNItMpkmTJrM6I8SNDgzNxPN91hXX4uglInqEmeF5\naEpvjQBDZVJddSzNZq+OvTE0A8/3WFdaT29pgM5IijmJ2YQ2hGC43sgoyKbXZKAySL3pMjPeTdR6\nKV5402vjHSYvrl2NUtpme4w3vlbXFJl6ZrPi6/kemXoGP/CIW4lxnVEM8KcXVrA2l8PSLOJGCqVU\n68CHVJj9F3aO/rvaqF1PrehjeaYPQ2nEjBSGZuIHAfvMT28WnTldjKUgyyNrIcQuqfTwT/nbit8x\nUO7HO/at7L94CV2hNGuLq3lm6OnNFh+5nk827zInspCEmaLYzNDfWIvnu1QLcWbYc3EDl1yjn6bX\nJF+rUG8oXD+gsiHeERSlXISYnqTu18g2Btqrmd1qjA6rE8dvsLywDN/30TWdPeKzmJ3soeaV6a/2\n43itR82bRkGauklXtJNYyKLcLIxo/6bXhowQSTs14vHxaNcqpUiH0ujKoNwsU2m2FlRtvKVpvGcU\nu55PtWQS0kO4QZO635pr15RqjYK3EX0JkC/4JIwkPi99t9uKztwdSEEWQuxyQj/4Ls3/eDf1r17F\ns7l/km1ksQyLg2YcSsLqYGVxOS9knx2x+KjacHEDH1O3mRveiy57Fo7fYF15DU3PpcOYxazQAjTN\nbK8mdrw6mm8R0lujtmazNb+c1GeQMjtBKcpu68hCN/BJWTPosDuou7URudc9kRkk7RTFRp6Bav8W\nF0XZut0qtGNYPBU2wsSs+Db3GA+HfGhKH1F8t/eM4uHvMaonCOtRTPVSLKcbtEbBY7nf0kPEjGT7\nuwXwvGCb909nUpCFELuOIEBddzXapR9lkdZB8oz34XhNnh96hmw9S8yMcdCMg4iZCV7Mv8DzQ8+3\nR4/DK34BTN1mVnghUT2Oq2qUgwEMQ6PLnk2cHpQGDUqAT9NvUK54NF0f09QxdA3bNEjbMwjrkQ2r\nmQvoKExdI2nMIqzHqTTLrCmtBsDSLXoiM4hZrVCSgUr/iFHtxkJGiISVHHX0u6mYGSNqRvECl2x9\ny9uZdE2nw+5AKY1CI99erFZrBMTMVlb18BnF2zL8PSqlCOtRDM1s/2wsK6c3/j1Ymo2tv/RoXtfV\nbr3yelLOQx6v6XhW63Q9g3a69gumb992mX75PtFPfwr35uspLtiD0u33MuvVbyLn5Cg4eSrNKhEz\nSjrcSdxKMFQdJNscwm+2TlfSNY1Ko0m53kQphVKKiBGj7tfw9RqDxQr5nKJW1SlU65SdCtlKiYHB\nJmuzBfoGHMq1JvNnxrFMHaUUlmbj+U3qnkO5Xieb81k9WKKY1cnXCxghB893SdhJDM0gZIRouHWK\nzRIKiJiRUY84NPVWkWt4DRpeY7PziTf+ndm6jRd4OF6Dpu8Q0kc/y1jXdCzNotqs8dSKPpauKrN2\nqErvQJ1mE6KxgIbfIKSHRhwGsSlNUyO+x/avJwjo6QgzM731+eit3b9gjySp6NgPwtiVjOU8ZBkh\nCyF2CfGLPkzk5huJLdiX8q13UZjTQ8Nv8Jqeg+mw0+TqGVYUlpGr5+iJ9HBA96sxdZNnsk+zprSa\nIAh41YI0PalwO7IRX2P/GXuxqKebqleg5A0SBAEpvQe3YeO4HnWtTIBHXStSrjkEGxYvDb9HWCXw\nHIVuedSCEpahY5g6utPDuj6HTD1DX7kXoJ17HdJDDNWGGKoNbXFUG7PiRIzImBK2knaqvcc438ht\n8TpLt+jtCxgs1qgGRXQ9QNMV+ZLP+j5/TKNyYLPvcTj68lUL0mP4TW75/t09OnP3fTYghNhlrC+v\nwz98X1614l8o/fAuUskEmXqGolMgZXdwUPfB/O/gX+mv9GFqJkrBHrHZJFI2v83/kacHn8JUFrNi\nszY77B6g/29V5nTWaLgOcc0jaaVYn5mBbwZEYi667xO1LAzVYM1AmeNeO59953VQc1xMXePxp6AS\n5Gn4dTRPJ6xHsXQTGjPQgjIDtX50zaA70k3UjDIjOoPeSi9DtUF0pbdPmtpUwk7iBz51r94+/GK0\n6wBSdge5RpaG16DQyLe3OW3M9XzyBZ+4kaDilSg18yTMNJrSKBYCwnOi1LxK6zCKcOcWR8qaUpt9\nj+NJ29rS/RKdKYQQU5TK56DeCtXIvuWN/N8PvomXTGFoRmtOdEPGsqZrHNT9GpJ2itWlVawtraXQ\nyLMovYh90vviBx5PDf2dgcoAMHIlcrXhgtLpsedi6Sa+XidTywGKuD8TizCWoRPSovh4lNwc2VK9\n/R6O6+MRtLbvKKMVw9nugMaM8LzNcq/jVqKdez1Q+//s3WecXVd97//PWrucfXqZplEbFRdZFjY4\nYINDiYkDxjbFcF1uHPofwg023IQE/2+AG4qDcRxCEkwJgZDgkAsBbBOH4ASMKQbbF4x7kSWrjabP\n6XW3te+DoxlprDIjWXW03q+XHszR3uf81pmyzt77t79rYvbxfcnGctiGPW/ClhCCfKyAKS3aQZuG\nt/etbDMNVTEjTsJIEaFQUfdoOIgUMnJmr0kvJPf62d3fB+u57r/YzHuE3Gw2uf/++9m+fTtCCIaG\nhjj//POJxU7OBaQ1TTs65OgI2SsvIzzlNPjyP+GGLnWvxvb6NlZn12AbNjknT6VTptIpU3B62NB7\nFo9MPsj26lZsYdPfyXJK7hQC5bGpspGHp3/Ni8zzyDu7T63ONBlJI8ayxFoaQQU38ghEm5iRpN8e\nmj1yi5QilC2E1SKKkt3r0DP7C0HGmnvK1hSSfCJFMraGLdXNDNd3YEiTjJ0hG8sRqpCJ1jiT7UkM\naezzqHZmoi11SrMJW33s+57Wmduciu0iDb+BEHLOPcZ7NlQ5RmJOh/NMQ5ZpZAhVuKCjcu3w2u/H\nkna7zU033cRll13Gbbfdxvj4OFNTU9x+++289rWv5aabbqLZbB7NWjVNO0kYmzcRvOm3qW9/imD5\nMhCCofQqklaKuldjuLYd2DtjORPLcGb/WSSsBJsqTzNWG2OyUUa0BhmIraTpN3lo8kEm60VGig06\nXrBX7GTKzGGbFolEgDC6R+d+EKJURIwkQ30FhBHOXqvdc/89qSiivxDHNCQJO8Gq7Jo5udcdL6DV\ntMmYPahIMdEcp9Ku7jNKUghB3sljCLO7+IXX2G9s5cxtTnveYzyzLTBvrTD3mnTVrcwbkakdHvtN\n6rrmmmu44ooreOlLX4qUc+dtpRR333033/nOd/j85z9/xIs8UVOEDuRETkc6kMU6Lli8YzvexmU+\n9Guy//1NVFpFin/0R/D77yO364hWKcXm6iY6QZveeB9LU8sAaPpN6l4NKQx6nB4mWxM8NPkwdz+8\nFXd6CXHy2NImygwTxadxG0mWGOtIWClW9Kd41XkreXpHZTbeURJhxJs8uGmSUkkilI1hCFb0pfi9\ni07vBncoj4SZ2HWdd2485P6iJCudClurW7nv0Un8WgER2RhSkCm4JDNtGg1B1u4jZab2uX+oQqbb\n04xWmoyPhBgytt/X8kOfYqfIUztKuI1u/KcpJH15BxBMlQ9caxRFTLeLPL59kkZNYBvJA0ZkHg7H\n28/i4fScojOjKJr3NMVCtjkcFuM3aLH+4C3WccHiHdvxNK7g7jsJr3kbS0ptWjf+NaOXvw5feSSt\nJGk7091GBWwub8JTLgPJQQYSA0A3Y7nhNzClRcEp8Onb7mJj+SkCAvpYS8IoUKq7lI3NZPMt0mYv\ny+31mNgs70tx6fmr58Q7PrZtki3TY4ShQoQpcvEE0hC7uonz+8yDfnbE5b78n5/+micntmBJmx5z\nBRCX2v0AACAASURBVKa0KVVbBHaVZcvAkQl67AFMGdtnFOXDz0ww3i7RbHVImVlsGdtvbOWDz4yx\nZXocKSBt5jClPbvtTFPagWp9ZMsUW6bHUITEjSRxIzlvROZzcTz9LB5uC5mQ93sNeWaiLZVKfO97\n36NanbsyyDXXXKOvK2iadtioSLHtqXvw0i7T1/8lg294K3mg2C7S9JsIIUlZKUxpsia7ls3VzUw0\nx7ClRd4p7EqtUrSCFjsrEzQqaQr2Sqbd7VTFOCKyCEKbVLCGBCPUw2lK3k567JUMT3ZPITu2STpu\nz8ZsZqwcdVFBmB1MMwXAZKnNupX5fV6r3TMecl86XkClZJE1+6mpKeqqSE4swQ8g8JPEhUlbVakF\nFbJWgckSBCvV7IQZhIpixSeXztNqjdEKath23+7YymdtW66EpK0sjaBKK2yQkYXZbdetzB+w1iBU\nTJfdXTGjZdphk5h0uktWPuu1tMNj3nfzXe96F0888cTRqEXTtJNVFCEQpN9yLc3PfYXh885kZ30n\nwGzs455rFNumzZrsGgxhMlzfQaXT7T7OxLI4hsNwsUorrJGXy+mTp9DLGoJQ4UU1RCTojU5nibUW\nJUPK4Qhu4FFu7I6OnOlGNqVN2syTMHcf3czEQ+7rWu18ivVuQlba7CFvDJKUeYIwQhFBJImFWfrt\nZRhC0ggqdEJ3TpTk7rqsXXVl9qrr2dvaMkbGzBE3Uvvddl9m9pfCIGPlSRpppDAWvL928BZ0H/IN\nN9xwpOvQNO1kFEVM/dX/YltxM2s+/AV6472o01/MtupWxpojEEmyZh8ZO0fVL1PzqkghcUwHx3QY\nyqxiW3ULO+s7MKVJyk6RjeVY2eOC8Qxu1CBl9AFgKJeqmMKjQcLpIWeuoRpO0lRl6tE46cSZ3YUT\n3ADblLPdyHtGQ8LceEhDGhRiBUpuqXv7lZDEjP3fgdKTdmaPKhNGN7IyEhESARKS8Ti2KbFUjEZQ\npRPWsPb4K71nl/SB6tp7W/uA2+7LnvtLYcyJuFzI/trBmzc6s1QqsW3bNjKZDM1mk3q9Tr1eJ50+\nuDU0n4sTItbvIJ0wcYUHabGOCxbv2I7ZuJQi9aEPUvvnL7LFLDO54XR6CyvIOXmkMHhg6zae2DHO\nyHSbUlEQBIJUErzQxTIsTGliGza2EaPilal5NVJmCtu0yThJnhyepNZuEUURhrAxhInnK6QVkMsY\nWCJGTCYJQo9MXtHy2uzYGTA81WRksknL9TEMOad5aV/xkDORlJ2gQyfoYBs2hjT2OWTTkEyUWlSb\n7uwlPyEEfhCSSlos6+0exRrChEiQyQgyaTkbZzkTO+mrCN/fnaa1r7qOZMTlQvY/FIv1dwwWFp05\n70ecer3Ol770JfL5/OxjQgjuuuuu51adpmknL89Dvv/txL9zB0Prz2DkE9ez2ajw0MSvOWfghRSn\nLCy/h5BRasEkjmlDLU8USZYNitn7ji3DIufkiFjJcH0H2+rbOCV7CrZp8/uXnMc/3fUAm0eK+GGE\nYyY4a/Ug2Yxi69Q0Fb9E2sxz5uBa7HSZ4XKRjBXSGxtECkHcMWl3fBIxa69u5GezDZtsLEfFLVN2\ny3utUbyni148xJ33bWd4snvrkmlI1q8uMDSQYrrizr7Wip4CQ8tsmn5jTnLW+lUFRsttnq515q1r\n/aoC7Kf7eyGe6/7awdlvl/WMCy+8kH//93/HcZyjVdNeFmPX3WLtJlys44LFO7ajPq5mk4evvZhf\nFh/k1fZ6Vv799+mkEjw6/TDba9vocfrpTCzHMAxK7gRT7k7iZpr+2HKSMsuLNuRpBjWEkHMmvqnW\nFGPNEWwZ45T8qd3lBXsSPLDpacbLDU7pX0Jfuhu8MdkoMVYt05dO0Zfo5ccPDTPl7aSj2uSsHvJ2\nP0IIVBhx/vOW4IdqQfGQLb+167R69/ar/R0pQ7fBq9xwyadiOLtO/+6rS7vu1Wj6TUxp0eP0IISg\nry/N2Hh1wbGVC+n+PpL7L9Ri/R2DhXVZz/vOrlixYq8Oa03TtEPlfOsbrPrZgwSnruW7H3gTG9UU\nMTPGmT3PYzC5jJHaGJvqjyKAfKyfvthyRCQpeuPU/Cooi7Sd2WshhL5EH73xPjzlsqX6DEopDGmw\nIreENYN5QtmmE3SDPvpTBYZ6CkhDMVqbQkWCfmc5cSOBH3k0g+7fvCBS+KFacLxjwkosaI1iAMc2\nGSwkZydj2HeUZNrOEDfjBMqn7O5eYvFgYid1xOWJYd5T1kIILrnkEk499VQsy5q99/hrX/va0ahP\n07RFZFt1K1z2Sk6JfY6X/dYGfjD6I/5r6/dJGkmWZZdxVt/ZeIHHlpFNbKk/warkmWSNpSSNJtPe\nKGVvHCVWkrbSRJGi4Tcou2UKTgGlICX7cE2PelBla20LfX1nz+ZelzszjVeF2VPMyi0RmB1c1SBj\n5VjiDNEIKniRRzOoERdpLENSa3ndJqcFTEgpK0UUKZr+rkUadh3VPhfZWA4VKdzQpeKW6Scz24C2\n0Lq049+8E/J73vOeo1GHpmmLmLHpaez/uhN+73XUvApbLnk5Z6RX0BYBPxv5Kd/b+l3eeNrl9Cb6\nOGfJOWwZr/D4zi3snGjSb56OZRhgp+gf9Bht7sA21szed9zwm9z79DN06g4hEaaw8GOKgf46Wytb\nydA/J/e63CnNXn/OxwpEUYlMRtBo1EhZGVJmjnpQoRW0aPkBv3iUAyZa7UvazqAiRTtoH7Y86Fys\nG0bSDjr89NFNjI0EB12Xdnyb92PV0NAQP/nJTzj33HMZHBzk29/+NmvWrDkatWmatggYv/4Vude+\nitTHPsyqLZMkrBQVt8xYc5TfGHgh5/afSzNscfvm2yi1i2RiWU7PPo+YTFIMR5gMthBGiqSZoxDr\nJVABO2rbcAOXTCzL9tEOY5U67aiGZUikITDcXsYmQ6pudb+514EKZjOiz1jZSyoV0fIa+KEiITL4\nbgSWj0cL2zSQhmCy0uaJbftfmWlPz86Dfq5mat2ys8H2qSLuIdalHb/mnZD/+I//mBUrVgAwMDDA\nC1/4Qj74wQ8e8cI0TTvxRXf/J49d+xo2U6L2V5+FF5zLUHoIx4hTbE8z0ZrgN1e8jPX59dT8Gv/2\nzO1UmjXcpsN5y36Dlb09GOkpkj1llvelCJopcnYPrnLZXt9O23Np1Sxi0saLPFphtyHINAysdj8W\nMcpumdHGCABxM77X9WcpJL3xHtYP9XLWuhTPPz3DS89aSn+yD0satMImbtgN/ZhNxFrgIgu5WB5L\n2rOrND1XSkGn4WBJk3bYpBO2Dqku7fg074RcrVa56qqrALBtmyuuuIJyuXzEC9M07cRm/9tt5H/v\nKkQQ8tgnPsjG176cKIqwDIuhzCpiMsZUa4Kp1hSvXnMxa7JrKbllvrPpO3RCl6zdyynpDThWjGlv\nJ+OtYUIislYfPfFeOkGLTcUt+FGway1iC1d1Ztf3VQKWJVdhyxjT7SkmWhMAJK0kKSuFikLKbhkV\ndZu/Ck4ByzRRsk2900IhSFs5JIJ2uHtlu4NJqZo5qjWltWuVpufWQdxyAxSQtvNIBJ1DrEs7Ps07\nITuOw09+8pPZr++9917i8fgB9tA07WSn7rmbxLvfihFLsOrGf0Gc/wq2VbcwuisOM2bGWJlZhSFN\nxltjlDslLhm6lFWpFVS8KX5Z+gFhFFCI9bMufQ6OEWfC20HFGycRsxhMLiUTyxGKDmVvnIiItJkj\nbeZm4x1NIUkn4qzJrsWUNhPN7usApOw0CTPR7VzulImiqHubVKyAQODRIIoCDGGSsQqkzOzs2A42\npWomYtMQJg2/QdM/9GVrZ9KzDGHsqmv3+sk6PevEN++E/PGPf5ybbrqJ8847j/POO48bb7yRj33s\nY0ejNk3TTkCdoMNTp/XyzFsvZ/zbt+Od+0rOyG/AkCbPVDcz3hwDIG7FWZkeQiIZaYzQVi1eu+aN\nDKYGaclx7p++i3q7Q7Eo6ZVrQEla5ijT7UmUgqwcIGWniCU9pjqjhCoi9CWhimbX97VMuc/c644X\nUG8YoCx85c2ubSwwkKqbQOWkXLzQI4okgS/mPO/BdjUfSu71vsxdu9mYjc881Lq048u8wSAzyuUy\nlmWRSqXm3/gwW4w3ii/WG+AX67hg8Y7tsI1LKaxf3EPrJS9hZ30nD20bxm/FSVs9xKSNnWzjJ4Yx\npcGZhQ0UEt3l+6pulZ31HYBgKLMKKST//MTX+c7PH8ZqrmRJdE43vzrZ5jWvtpgqdsioVSTMHAKF\nZ02wZWqaZtUhEfVgmQYr+lNc9OIhBgeys2NreA02lzfzi0fH8GoFjMjBkIJCT8j5z+9jdNynVe+m\ncqnIw064jE43qZQsIiUxDTn7vKY8tInPD31KbokoUuSdwgFzr/f7NkdRN6lra2nRdVkv1t8xeI7B\nIO973/v4+c9/Pvt1Pp+fMxn/+Mc/5tprr32OJWqatih4HpPvv5LRd12Kc+f3KU3btFoGLVWlpcog\nFV47jmguIYxCnig9Ts2tAZCNZVmaWkaEYkd9OwLB5vuGiDoOTWsrZesJLEsSdpL8x392KDY6jHQ2\n4UctLNNieiKF15H09Sv6l4ScvjJPIm7x1Pa5vS4pO8XTGwXj5SbVaBxhBpimQblkcNvd29hZLtOJ\nmtimgWPF2brTp9byWDooOGV5Zr/PezC6t1rlEXTjP73w4HObpRC84PQBXv78pbzkzCW8/PlL2bC6\n54SfjLUD3Id8ww03cPPNN3P99dezbt06lixZgmEYjIyM8Nhjj3HhhRfqVaA0TYNGg+w7fo+dT/6I\n0XNPZ/L0XsqVkJ5YPyVvkoZfxZI2KTOHamVYO5hkS/0ZHpt+hLP6nk/KTpF3CgQqYLw5xsOjT1Ft\nwQrjFezgbsriKRLkyBpDuM0UedFPNdrBjtZGVsbX0e5ExMJ+TFGnTZlm6JC2ckyW2vjB7q7jjhdQ\nLEkK1lLK4RjlYIQ+czVCSEpFg+X9ko5oYYYmhojhuyZBaKFQ+LJJXHbz/J/rWsAHk3t9IPOtvayd\nePb7E5VMJrnuuuv41re+xSWXXEJvby89PT1ccsklfPe73+W66647JqevNU07fohSkdzlr8P+8Y84\n5azfQXz002yNqoy0txOTcQp2PwkzTRAFNIIqvgopxAYZSq3CDV2emH6Mtt+9ntqX6Kc/0c+msWma\nagKHJMt5CXH6uo1WqkkUgWomGYwPIYRkpLkDN2gjhU3eWErMiOMpl3bY7HYdd/zZWmfWIk4YWXJy\nCZZ0kFISKoVSAhmmsIWNFBLfD1EqwhQJzCiOKXZPmIejm9kxHTJ2dq/4T+3kNu/HslQqxYUXXng0\natE07ThzoHhGMTFB8S2vorhjKyuuuJLOZz7P80SIN/YrnvZ2EuuYDDgrcJwEjaCKp1yI6sTtFayJ\nr8GPPEYbIzw+/Qhn959DGAr8doozBlfwH3I7DSZIsYTVvBKPGkq6hCKkr7CGhJ2HMEYlmqCiRukV\nK4gZWQJ3gMhs0A6bOEDcsWg2OrTcgGxidxZz0syRpNuhbEiJYQjSTgzT7N5BIqwIKQUigkwsjZS7\nTwcfrm7mhJVAoWh49dnVnJRCx2GexHSPvKZpe1FRxBP7WXZv5lpllMthFvqZ+M0XUb7mg6w2DBxp\ncVb/2WydqDJWG8YUFr3OIEkjQ6gqZDKSZlAja+Q4NXcaSoWMNEb54o/uRDSWEymJlJA0sjSDKk2j\nOynbpGmHFZJJxUS9RDBto5RBUzm0/SqbapuYLHcAA4Qilmxz3pkWv9q4gx3Du8dgmxIvCDGMPVdh\niljRl0IauyddQwpScQsBcybjw93NPJN7Xfca/GLjZtxGfFf85+Jp1NIWTn8E0zRtL09sKzFZaSMN\nsVc8Y3tqlEq7DLEYmX/8d8z3/S+aYZPh+g4A0rE0F69/CT2pOCPNLUw0x4gUrOldwplD/bSDNnWv\nhpSS0wtn8NRmj23FcabDbViWwDJNzlq6hriZwlUN6sEkoVIsy/bz+pedgqda+GF31aaM0UPUTtIO\nPKpiFKIIQ5pEXoJHNhXZPDFOILzZMQwNZrBNgzBUuF5AGCqW96V482vW0Z+Lo8IILwhRYcTZa3s4\na23vnMf6c4d/LeC0nWHHqMt4tUErqs7Gf+o4zJPPgo6QW60W1WqVPe+QWrp06RErStO0YycIFZOl\n7mTsKReJxJQWUgjED+9i8h/ez/D//4es/e03M5gaZMhazZbqM1S9CiP1YZalV1BIFLjkeS/h4clH\n8IMKG/qH6E/3oiJFsV2k6TcRQmJGDtS6qzk1VJEpz6TPXoUTczhnxem84GzYNl3krOUrWNe/hh8/\nNMzSHp9AKWI42DLGeLmP0FI4SRdDFOm3hwAYKQaEq6AdVJFmDlN2T1mvHsxy7vp+6m1/zlrEG1b3\nEKzce93fI70WcBAqWnULR8a6q0yFNVJmdncc5nNoINNOLPNOyDfffDNf+cpXyOfzs48JIbjrrruO\naGGaph0bLbe7ipCNQSuoE6FImzlW/fSHnPsX11GJw4iveLr8FKY06Ev0syrbnZSLnSKGMFmSGqQn\n3sv6nvVsLD/B09UncewYmViGglOg2CnS8Oo0Gi2iSLLEPpURbyOtqEJb1UjILJGSrMgM0ZdL4IYt\ntlVGiJC7VmMqI4RH2zVQKiIZ9WGKMoFsofCJlAHKRAZxIjw85WHKbkdyECkiYLCQ3Gvs++pcPtLd\nzDPvd9LMooIKnnJRkUIKOdtAprupTw7zTsi33norP/rRj+ZMyJqmLV4z8YwACTNNI6givncz/f/0\n9ygrCf/4DU79jTN4ovg4T5aexBQm+XiBNdm1PF1+msn2BIY06Uv0sSS1BF+5PFPt3ub0/L5zSNiJ\n2UnZtF0i6WPKOMvsM3BVjRCftqphyxT9mRRCxtlW3ULDL9L0Bfl4H1mrF+jmVUspEELSZ68gwMWU\nNooIwxDkkmliHROxx9W54y1icub9FkKQNnNEdCdjOP5q1Y6sec+D9Pf3k07PnzCiadrxJwgVtZZ3\nUKsA7RnPaAub3/jm18n9x9/zy7Up7vjsZ6i98CWUShbLnNVEUcjjxceoe3WCAGJBP0EAY80Ryp0S\nHS9A+j0MOMtxQ5dHi4/Q9tsEAbQbFkIICgWFF7pIDKwog1QWnurQ0xNhGhLXEyxNriRm2YhEnapX\nhkjg+d1O6HzKxjYFUgps6ewaRbdRyzQFUhizaxEfjxGTe77fQojZLO7jsVbtyNrvR6+bb74ZgEwm\nw5VXXsnLX/7yOZ2J11xzzZGvTtO0Q7KQLukDWb+qANtKTI+WWH3vPQx6S/jOtR/gwVaD279+Jwn6\nMQxBIhdw9tkBX7r7PzEaKzGIoYSPmZlCRSME9QJmlMA0JDIdsWpNjS/efSdWcxWRkiADcvkIlxoT\nRQuUgZQGhZ4YvQXJnb/aiG0kMYUklUmzajDgF4/sxK3WMEl2rwkvzRBFESNTLYJQzUZcvuq8lUxW\nXZ6udfZ6D443M+/3vr5f2slj3nMhZ5111tGoQ9O0w2hOlzTdD9KTlTZsK7Fhdc+8+0shWLM8Tr4n\nydS/fJ285VD81QjF2q8RYhhTxEjJAu1Klu/dtQMrXcExPAatdcSNBM9sjVGLxljS45E3l2PIBEGt\njx/97GkCu0LSDBi0T8MQDtt2VpF2wNnrMkiVJuM4jJUaPD1cYaDHwRQG0kjSaEimxwSOY+LE2uTN\nHJlYBiGgPxfnVS8aotxw5zRqveD0AZZknSPalHU4SCH221SmnTz2OyHPHAHfdtttXHbZZXP+7+tf\n//qRrUrTtEM20yUdyZCyVyJuJHGM5MK7dhsNMu99N/yP91J/3lqCviTlKMl0aScD8hSmos2Uoq3E\nwxRCWHiNHvLZGM1okmKwg0K0itB3sKI+AlWnGozh2GsRUuLWB0j2CVqqQtEfpmCuIAotOg0LRYQd\nc5EyTqsdEpEgUhEtmpjCQmBRLAmWDi6hFIzTiKZI4mCLGJOlNutW5hfcqHW8OpFq1Q6//U7I//iP\n/0ij0eAb3/gGIyMjs4+HYcgdd9zB1VdffVQK1DTt4Mx07ZpIBJJW2EQgiRnx+bt2p6dpv/P1xH79\nKOlkEvezN1PplHlqfAQv8InbWfrCU2hRwjBsXD9EKkkqXEYsFiNCUfNKhJGBRZKUSmCY3VhI1wsR\nStDLKprGOIawafhVlLKROIjAwY7ZeIEijCJA4ogEQvpIYeJ5IUGocESePlvQDOo0d93SpCJDdyNr\nJ7z9fkweGhra5+O2bfOpT33qiBWkadpzM9O1K4UkbeWQCJphHU+5B+zalTuHib3xVdQ2P8qWyy9m\n9KZPYWAhwwS9GYfAqKOiEEdmyDJEFEVYhgQJScem11pOxujFMAWeaAARKTtHnB5UFBGzDYQUxGyH\nfns1SSMLRogrGkgg7aQhsDGkwBDdJi3HipEw00ghsSwD05BYpiRl5SjEBoiARlCFKMQy5EE3sGna\n8WS/R8gXXHABF1xwAa95zWtYu3btYXkxpRQf/ehH2bhxI7Ztc/311+934tc07dDMdO1OVtoYwpy9\nb7fuV1ndM7DP09Vy41Nkr3wDxugoqT94J1v+4G08vGULtDOYMk6ofOK2pFifxowyCCQCgSmhL+Mw\nszxwTCaIzIiY1cT1a0xXu+v9CiGwTcnSQgIpIkDgyBQRCsOo4okaW8cSRFH3NiYvCMinu+sVzxAC\nVvSnYNdDlrRJGRmqfoUpd5p7HpEohG6I0k5Y+52QX/nKV87eKrAvhxIM8sMf/hDP8/jmN7/JQw89\nxKc+9Sm+8IUvHPTzaJp2YHt27apIkhBZnLTL4BKBH/pYhjW7baQUox95J7XWKD0f+Sjxa/4nxac2\nMl6ZwjE9eowB4naC5T29VBqjuKqGHWUwhCQVt7n4/CFGp1oMTzYIQoVlxFk10EO11aDVqmJFaUwp\nSTgGLz9rKTunmru3lUn6MxHSDHG9OrZIIyIopONkUxYqjOZ0Ha87eylPbS/v0Y0cQ/oOdsylqaqk\nrXz3WvmuBraB/swx/C5o2sHZ74R8yy23EEURn/vc51ixYgVvfOMbMQyDO+64g507dx7Siz3wwAO8\n7GUvA+D5z38+jz322KFVrWnaAe2ra9ePXKpuhZJbmrsGrxB0PvYpyg/+gvJrL2dJGBE0E2TtPHW/\nTNmfJhv1Efox1gz00dez697gzAAx26BS87novCGCUFFuuKTjFv/3iUlaqkrL7xB6Br2pHixTUqp5\ne217/+MTNKMqXuhhRgaZWAYpBSqMOP95S/BDNafreM9xWYbkF4+CS4t22KQRVEib+dkGtj3XQ9a0\n491+J+Rly5YBsHHjRm644YbZx9/xjnfwxje+8ZBerNFozFlD2TAMgiDANA9891Vf3+IMJtHjOvGc\n6GNrekmqbhUpPLLfuxPrjDMRfWfxgpe+imfWr6XpN6lRIpFwyJjLKboWnnLxwybSFKStHL1ZA2EG\n5Ow4Ukg8PySZcsikYqwAqg2XeKJCxhyg7lcIo4B8LAGwz20Tye62Nb+MQJC147PbZrMJMqnYfsfT\nfS2brBWn6Vu4qkPStjGEgeeHtDv+Cf892x89rsVnQZls9913Hy9+8YsB+MlPfvKspcsWLpVK0Ww2\nZ79WSs07GQNMTdUP6fWOZ319aT2uE8xiGZvrgfdPNzPxN9fT37+WgQefolxukw77mKrVmPZ2MlaN\n6IkP4EQFzMin6lWoujWSIosZ9iIUNH0PABVGNBsd3Hb36yBUtFseriEQxDGiiLrfOeC20hAYJImi\niLq37233Zc/XAhszsmj5PuCjwoi4Yy2K79mzLZafxWdbrOOChX3QmHc2vP7667nuuuuYmpoiiiKW\nLVvGX/zFXxxSQeeccw533303F198MQ899BCnnXbaIT2Ppp0IglAdf4vNRxH9f/1Zws9+irHlBaZv\n/Etsv0YQGrTdiGXJlQxH25HxKcquSdYqEAYGKTNNwmkiaIIoIA4Q77hnU5kU4oCxlQez7b7Mt79l\nHifvu6YtwLwT8vr167njjjsol8sIIcjlcof8Yr/zO7/Dz3/+c6666iqiKOKTn/zkIT+Xph2vnmts\n5REThqT+9E+If/XLhCtX0fP125gazPGrjcPs3NkhZqQwhSSdSbFmqc89j4ywtVrHIoVpSAYKeQo9\nUK2XiRtZbGnut5v5YKIgn2tspI6d1BYLEe25yPEePvKRj/CJT3yCN7/5zfvstv7a1752xIubsRhP\nYSzWUzOLdVyw8LE9trXY7fIlQtA9alNRd3H7hcRWHinJP/0TEl/+O4L1G6h+81bUwBIe3TLNRLtI\nrdnCkQkSZgoVRRQbFRpiAhVFFIwlZJwcQkAqFbJ0wCQIBUvT/djzXHI6mLWEn+u6w/vaf7H+POpx\nnXie0ynrK6+8EoBrr7328FWkaYvcTGylNAQ1v4yKFBkrjxTGMV9svvOWd2DsHKb+2S8SZXMEoWKq\n3CGbKdBsunRUC1vFkJhMFyOWLR2k5I3SoEQyimNLh0bNILEsgWd0qPtVCkbhgLdHHkwU5HONjdSx\nk9qJbr8T8oYNGwD48pe/PBsSsmTJkqNWmKadiGZiK20MbBmjFTap+xXSVp4gio56vKMoFqlVx+gs\nGaBw2mmEX/vGXrXOJHp5qoMhTFxfEYQKmwx9sWW0wwaNsEZaSKLIwBJJpIRO2KHilsk7+tSwph0O\n835Uf+9738v09DTXXnstl112GZ/5zGd4+OGHj0ZtmnbCmYmtBHCMJI6MExLSCKoYiINabL7jBYwU\nG3S84JC2lTuHyb3u1RTe/LuoSpGy2z1in1kj2TblbK1SGDhGcjZRqxtRaZC0MuTsXgTQCCoQde/9\nFWECiYUbdu9thkNbe1nTtN3m/etw9tlnc/bZZ3P11Vdz55138sUvfpGvfOUrOtRD0/bh2V2/CTON\nChSdsENvzpsTBbk/gVLced/22TSrmfV9L3rxEKaUC9r20kKH3FVvxBgdwf6D9xEvLKERtLj3qLOz\ngwAAIABJREFU6Wfo1B1CIkwhabk+KfWs+3x3RVTOnIk2pU3SzFL1Kky5RX72iCRCYiCIpdqsWqZ4\nanuFZt08vprYNO0EM+8R8sc+9jFe97rX8c53vpNt27bxZ3/2Z9x7771HozZNOyGtX1WgPxdHhRFe\nEBInzWAuw6pl8dmjyQO5877t7JxqYBiSmG1iGJKdUw3uvG/7grZV999P+pJXYYyO0Pjfn6D50evJ\nODm2j3YYq9RpRzVs00Aagrhj0er4s7WqsNt8dtGLh+aMwYxsZOBgxyRNVcU0wDAlnZbDT389xnC5\nhEdr9nknK22e2FY6Em+vpi1a8x4h12o1oihi9erVrF27ljVr1pBOn7xJKpo2n33FVhpSUOqU6IQd\n6l6NtL3vjOWOFzA82Z1gO6pBW9VJyz5MaTI82T0l7ew67b3ntq2wihd1OHvjVq743J9i+h6lT3+W\n8M1vBXbdE12ziEkbL/JoBXUSZhpDChKOxVnr8guKqPQwZ6+LZ6wCAkm5ZDI4CK2wiRQmtowtfO1l\nTdNmzTshf/rTnwbgmWee4d577+U973kPrVaLn/3sZ0e8OE07kT276zfv5Cm2izT9JkJIUlZqr32K\n9Q5BqDAMia9cWqpKoDx6zBWz+c+DBXOvbb2oQ1OVGYu1CEyLb739f/O8S/4bg7uet+UGhESkzByN\noIJi93XeMIzwQ7XPZrOZMdRaHkGkcMwkEeCGbSIifF+hlMARaXwaRNHu55137WVN0+aYd0LesmUL\n9957L/feey9PPvkkZ599Nq94xSuORm2atqhIISk4BYqdIg2vjkSSsBJztulJO7NHlGmzBz/o0FZ1\nyuEoOWMp+T1ynffcNh9mCKTH8MohPnfjrbTtOC/fY9uZZjMhBGkrP+c1DWP+ZrM9m9XiRpK4kQTA\nsgSmIXEsm4Sce4/1gdZe1jRtb/P+trz//e/nggsu4G1vexvnnHMOUurTT5p2qAxpzE7KNa+KFBLH\ndGb/37FNVvSn2DnVQEpJTg6iIkU7rDOYr86erp7dti/J2q/8Dac98nP++U8+R9tJ0DFhRV9qzrbP\nbjaboaKIpb3Jg46onPHsNYr3fN6FRF9qmrbbvBPyHXfccTTq0LSThilN8rE85U6JqltBiDwxY/fR\n7EUvHprTOZ0Vg/T1FDl7fZLRxghLU92V2AhDrrj9syT//auUepciq2WiWGK2I/vZ9hcxefap/RSL\njXnr3t/+e69RrKMrNe1Q6PNJmnYM2IZNzslT6ZSpdMoUnB4swwLAlJJLz19NxwsoN1zyqRimCZvL\nm5huT2FIkwEjR/qa38f57q0E6zfQvuVfuTCZJ5+KzTky3tO+ms1MQyIXcCvWgfYH9vu4pmkLp39r\nNO0YiRkxMrEsERElt0Sg5gaAOLbJYCGJY5uY0mRNdi2mtJmcegb/rW/A+e6teC8+n8p3/wN7xfLZ\nbecz06h1qJPm/vZ/rs+raSe7/f72/vKXvzzgji960YsOezGadrKJm3FUpKh7NUqdEj1OD4bc93rj\ntmmzJruG7Q99i4mn7iV/0UU0/u6fIB4/ylVrmnYk7HdC/tu//dv97iSEOKqrPWnaYpa0kkSRouE3\nKLtlCk4BKfZ9lOmYDkOvuBz3c/00zvttmGe1JU3TThz7/W2+5ZZbjmYdmnZSS9lpVKRoBS3Kne6k\nvOcqSsbGp0h85ibqf/05HMfB+c1XH8NqNU07Eub9eP2rX/2Kr3zlK7RaLaIoQinF6OgoP/rRj45G\nfZp20sjEsqhIza6ilIvlEUJg/ur/kr36cmS5jPu6y/AuvvRYl6pp2hEwb/fFhz/8YS688ELCMOTq\nq69maGiICy+88GjUpmknnWwsh23YuKFLzati/eiH5P7b6xC1GrW//YKejDVtEZt3QnYchze96U2c\ne+65ZDIZrr/++nkbvjRNOzRCCPKxApa0Cf/tXxHvuByUovbVr+NedfWxLk/TtCNo3gk5FotRqVRY\nvXo1Dz/8MEIIWq3W0ahN005KQgh6R4vkrvsT2ukE1X+9He+ii491WZqmHWHzTshve9vb+MM//EMu\nuOACbr/9di655BI2bNhwNGrTtJNWtPY04h/7G6x/+T7+i88/1uVomnYUzNvUdf7553PRRRchhODW\nW29l27ZtevlFTTsSwhDn61+j87tvBtPEffPbjnVFmqYdRfs9Qh4bG2N0dJSrr76a8fFxRkdHqVQq\npNNp3vWudx3NGjVt8XNdMu9+O+k/fj+Jv/n0sa5G07Rj4IDBIPfffz+Tk5NcffXuZhLTNPmt3/qt\no1Gbpp0URKNO5q1XY//sx3gv+U3a73rPsS5J07RjYL8T8g033ADAl770Jd797ncftYI07WQipqfJ\n/u6bsB56EPeiS6j93T/oKExNO0ktqKnri1/8Itdddx2NRoObb74Zz/OORm3acSYIFbWWRxCqY13K\n4tBokHvdq7EeepD2776Z2j/coidjTTuJzdvU9fGPf5xCocDjjz+OYRjs2LGDD33oQ9x0001Hoz7t\nOKCiiCf2sQ7u+lWFOYvVawcpleomb/k+zQ9/FPR7qWkntXmPkB9//HH+6I/+CNM0icfj3HjjjTz5\n5JNHozbtOPHEthKTlTbSENimgTQEk5U2T2wrHevSTkjGls0QRQC0rvsQzY98TE/GmqbNPyELIfA8\nbzbovlwuzwm91xa3IFRMltpIIaj5JRpBFeguVj9ZauvT1wfJvuu/yL/ypSRu+ET3Af27pGnaLvNO\nyG95y1t4+9vfztTUFH/+53/Om970Jt761rcejdq040DLDQii7qQrkXjKpRnUAAgiRdsLjmV5J5TY\nt79J5s1XgVIEv6HXE9c0ba55ryG/4Q1vYMOGDdx///0opfjCF77AunXrjkZt2nEgETMxd63NmzSz\nqKCMqzqIQOKIJJYhqbW87nbGvJ/vTlrxv/8CqQ9dh8pkqf3zN3X6lqZpe5l3QvZ9n3vuuYf77rsP\n0zSJxWKcfvrp+rT1ScI0ug1ck5XuaeuUmaPul2kGTVp+wC8eZU6j1yt6Use65ONLFJG48XqSf3UT\nYf8A1W/eRnimjp7VNG1v807IH/7wh+l0OlxxxRUopfjud7/Lpk2b+NCHPnQ06tOOA+tXFWC2yzoi\nKbM02lPYsQ4+MWJm91adyUqbhzdNsryQOMYVH1/kdJFw1Woq/3o7atXqY12OpmnHqXkn5Icffpg7\n77xz9utXvvKVXHqpXpP1ZCKFYMPqHoKV3WvGliH52SMRTVWhFpSJqTZpM48UgtHpJkuyjj59HQRg\nmiAEjRs/jahWiAo9x7oqTdOOY/P+1RwcHGT79u2zX09PTzMwMHBEi9KOT6YhScdtvEARIUmZWQLl\nU3QnqPpFAMIwOukbvUSjTvbKy4h//rPdBwxDT8aaps1r3iPkIAh4/etfzwtf+EJM0+SBBx6gr6+P\nt7zlLQB87WtfO+JFaseXmUYvKQ167CWMd7ZT9qeQGCxJDBC35/2xWrTE9DTZ//4mrIcfJEpnaL/n\nvSBP8rMFmqYtyLx/Oa+99to5X7/jHe84YsVoR1YQKlpuMG9HdKPtMVJssqwnSSpu73P/mUYvU9hk\n5CDlYIQpb4xTMj37fe6Fvv6JSg7vIHvFGzCf2Uz76rfQuOmv9WSsadqCzTshn3vuuUejDu0IWmj0\npReG3PL9pxieahCGEYYhWNGX4uqLTmfzcHXO/r05h2bLY+dUkyBUBCSIZaukCy3qXp20nT7o1z+R\nGU89SfaKN2CMj9G69g91FKamaQft5D23eBKZib4UEmxhAN2OaLaV2LB697XNW77/FDunGhhSQhRi\nSMnOqQY3f+sRzlnXP2f/R7cUiYDTVubx/ADb6qEZZnh6R5HBfIehzCqSVnLO60tDYEUSIcQ+X/9E\nFv/7L2CMj9H46J/T/oNr599B0zTtWfT5tEVuJvpSRT5lf4p22AT2jr5stD2GpxpIKWmEU+yMHqAW\nTiCEZLTUwvcVVb9IzS8ThopGy6fR9umETTqijMInY+VQnSyu7zFc204n6MyJ3mwFdar+NIHyF130\nZuOTN1H9P9/Wk7GmaYdMT8iL3Ez0pRQmBgbtsEknbAFzoy9Hik3CsLvggU0KgUk52k4tKBKpiGrL\nxZI2QeRTcssESqFURBR2j5gbQYVAeaSMPGmrB1/57Khto9puz0ZvmtJGEdEIKoRRcMJHb8a+/U1i\n3/yXXV/E8H77Vce2IE3TTmh6Ql7kZjuihSQmMjQaHlW3hhd2MIUkDBUbd5bJJiwMo3vN0zLiFKI1\ngEFFbKMja2QTMRJGGlvYCBng00BKgW3GMMIkgYq6C0+IkKHsMnrjfXTCDlPuTgTdCdmWMRJGCkVE\n3a8giU7Yjuz4lz5P5g/eRerP/hRRrx3rcjRNWwROzL+G2oKZhqQ3F+Puh0ao1D38MMCTZdLxEmaY\n5KePjMw2cLU7PhEQIYiiBA4rqLCFWGoEN1pNTGS7edZUsGJNqs0KW0ZBqYgAhRFrMbQsh5SwJDlI\noALKbonQqSO8Pkxp4hgJIiKaQQMn5Z54TchRROKGT5D867+cjcKM0pljXZWmaYvAifbnUDsE2yca\ndDohEoFlWCTIMDzRZFtpEkSIbRkYUhIBHTdEqQilFLEoy/L4Gp5/aoGK3EzTq+OHioTIkEvGSSUj\nvF3XpGPCIS6TKKUodUpERCxLLycTy7Gk30DZJYIgxAtCYiRYns+zZnmKcqdMtGtt4ONeGJL64//Z\nnYxXrabyvR/oXGpN0w4bfYS8yHW8gJ2TDdIpk1o4STzKYYgU49UmfthgMtiMI9LkjOVECCzL4KVn\nDVBza/SlCyRiqxlvDNPbW8c2JlmXPZtMPMk9j0Qk4xXcoE0UuvQlBjAMSb3u4mY9Sp0SPU4PK1Ir\nUCpADjTIWFCwB0jELExDUumU6YQdKm6ZvFM41m/V/G68kfgtX8XfcBbVb9xK1N9/rCvSNG0R0UfI\ni1yx3u10VgS0oxo1xqh3WhjKwooSNMIyk9HTFP0dRAqiKKLlu6QzEl/UUZGi4CylL76MAI+trSdp\nuB0UgrSVIxIRLVGmEkwSRRExkUIom0D5lN0SUkhWZlYRN+LU/BJNVcSQ3WvV2VgO27BxQ5eqWznG\n79QCXHstrf/v96ne/j09GWuadtjpCXmR60l3F3qwpUNW9hPg0zEnUTLEFHGWGKcjMSiymYYYRwhB\nbyqDI+OEhDSCKgaCM/vWsTS5lKbfYHPtcYSKMIRJb2wQW9jU/DIVbwrDEAyke4gZMbzQo+pWMKXJ\nyswqYobDdHuKqdYkAEII8rECprRoB23q3vHXHCWmp7F+9pPuF+k0zU/eRJTJHtuiNE1blI7JhPyD\nH/yAD3zgA8fipU9YQaiotbwF3bfb8QJGig06XoBjm6zoT6GUwo6yhK0kgfLwrUkMI8CKstjN1QSB\nYpqNmE4d1wvZvtPDbUk85eGkXQwp6DVXMToaMV6dpmZtxQ8CBCYZMYjApORPE0+1MQ1JLpbHkjad\nsEPNrRIzYyxLrqTjRYw2xii2p4HupFxwChjCpOk3afiNI/1WLpjcsZ3ca19F9urLMTZvOtblaJq2\nyB31a8jXX38999xzD2ecccbRfukT0sHETgZKced92xmebBCECtOQrOhP8dJzBrnhqw9QbrhEkU1L\n+JixFmOdERLNQSR5ovYQdfNpnmo/wMg9LjYZICKW6PA/rsrwv/7hLmo1k1BJKnInyZTHC1Y2Mdsr\nu6fERRI7WyLT41LulMg7BfJOnlKnRMNv8tSOCo2aQSNwKLojbMvUecXpG8jH80ghKTgFip0iDa+O\nRJKwju2aysaTT5C98rJuFOb7P0C49pRjWo+maYvfUT9CPuecc/joRz96tF/2hLVn7KVhREijGzv5\nxLbSXtveed92dk41iITCMBWG0Y2+vOGrDxCECjvRIhW3GEysoNNyCOlQYSMdKqRYQiZYQycKqJpP\n0DCHsU2DoONw01cfY7JapSOnESb0yNOoVUx+vmkTiZ4ia5ened6qQVZmVvHMzgqjjRFqbm12ot28\ns8aOUpFO1CRlJxhILKNUd/np049T9+oAGNKg4BQQQlLzqnSCztF+q2eZ999H7nUXdaMwP/5Jmh/6\nM51LrWnaEXfEJuRvfetbXHrppXP+PfLII1x88cUI/cdtQfaMnWyHTap+CS/s7DN2suMFDE92oy+r\n4ThTwTY6qoWvFOWGS0uWGRMPUTSeIAgVcQYwIocd5g940ryFCuOkWEYqXEFZbONp8S2GxS8QQmBG\nKQQGO/gp2/gvFC55uRavbbCltpnhzuP4UYeklSLq5AlCxXB9B02/iVLgNhxMISl5E0x1RrFkjP74\nUorVNtsq22j63VunTGmSj+URCKpuBS/0jvp7bv3iHnJXvB7RqFP77Bdpv+eao16DpmknpyN2yvry\nyy/n8ssvPyzP1deXnn+jE9B846o2XOIJG9syiCuDmq8Aj5gVh9AimXLIpGIADE/UMEwDxzbpsfqY\n9nbSYgLVKUAEDlkc0rSYxvOfIMFpJKJBcupUpo2H2WLcyhnhVWSiIbygRssaY5R7kSpGHy/AVEky\n5nIqbGdH9HOW8gryrEUEJepimmK0g9XxdaAynDIwQCWcpCGncazlpJIJMoZDyZXU/SqeVaU3NoBp\nCSwnomFOsySXw7EcAHqDFKV2CfDIJTJYhnWEvxN7OP+FcPrp8IlPkLn00r3++2T9WTyRLdax6XEt\nPifEfchTU/VjXcJh19eXnndcQahotzzcXZGWKIdGUKFBh6TI0Wx0aDY6tNwAKSAMQjpRBMRIqF7K\n4RihMYEScQzS9LOBER6kZU3g+RY5VrNS/Q6eaFGVm9jEtzk1vIL+6HmEYZtR+XNGzJ+AH2Ol3MBg\n9CJ8OjQZZ4R7WMJLWF94PqP+Y2wpbcbtRJzWu45Y2IvlpplojjFNg1rdIWY7WCoNXovJ1hRt0ydr\n9pHGZnJ6imr5UVZn185Ovn5gUHUrFEtNepweTHlkf1Tl+BhqySDgwJ0/7q5j/Kzvz0K+ZyeixTou\nWLxj0+M68Szkg4a+7ek4ZhrdBi61K8nKkjZJM0sYRfy/9u48vor63v/4a2bOmbMv2SEL+yoFZVNc\nAIvVKipqtUJFKvVXXKpVqxcRF6SouPR6tWrFtRQFRagbrcV70drrLV6wWhERZAkkIWQhCclZc/bz\n+yOYKxVkS3KWfJ6Ph48HxEnm8zmZx3kzM9/zGZM9zJcVDXy4oYZ1m+v4ePNedINKPNF2GduquXCp\nhahKHNW2j3gigkExU8RwTAYLfkMVfqpRMTAgfiG2eG9C6j7K1VW0EqEwPpb82GhiRKg2vE8Tu1DR\n6MUZmMklQD0ey6cUOnIYYB+OxWCjOlhOTN9LkjgFlgLyLQXEiRK3NBFNRDGoOm69EItmxxttwWgN\nUGQrbJ97XeGtIJZoe9iExWDBoTtJJtsmfyWSnfRUqGQS68IF5JxxMtqmL9q+lnHzPIUQ2UCbn4IV\nVqWlpZx77rlHvH0w2PX3EjubzWY6or7y3RaCoRj+YJRoIoEBA0U5NsLxVmpaPJgNZgyahqIqOG1G\n/IEosXiCaCyOSbXQI8/CD07Lp7x2L+GQjpYwYVJyUUyNeBINKAkLJlzkJAfjYRetWi2BZDVOhpBD\nH6LJCIq9hlZDNeZYT/S4EzM9MFhb6Nc/jqfVQ4l1EHbVhWLy4yxoRYlruExunLqTeDKOZgrhDQVQ\nIhaSSQ1dMeF0KBQVqaiKQoG1kFgihi/qpTXWilN3oSoquqYDEI6HCccjmA3mjl1/EI9jn/0rrM89\nTby4hNCVV5F0uw+5+ZH+zjJNtvYF2dub9JV5bDbTYbfJiEvW3ZmqKHyvbx6xXm2PKvz66Uj/9WmA\nJGFqWyvI03tiNlgxaBp9e7o4+YRCfK1RcuwmzLqB3d5KfnKukUTECK35lBY4+HBTEVsC/6DZvwdL\n0MLQgiEomy9hq7qSVr2SrdEXOMU4i+HaJLYlo+T33kO+6RPOLpjB2L4nY9LH89r2V/GE6oi7vuLC\nfj+goTWfXeGv2NS4CU0x0NvVh562YmKJOGpRMzZDjHxTCTaTTigRpM5fS2NrI6qiUWwvIZ6M4414\n2O3bTS9nL1RFxa47SCQTBGNBmkPN+1did0Aoh0I4r/85pndWER1+Ip5XX5fpW0KIlJJrcxnCoKk4\nLDoGTSUYjmFQLZhUM9FEhL3hasLxto8JxZIJkkDPXBvm/eFd5uyNQ3ei6lFcBQF0owG7KY/BztFY\nrAZiuTuoi+zGlsxhUPIydNVGwFzFP7UXSRCjX+IHlJlOwBNv5GP/66haCIfFwcUDfoRdt7HNs5EN\ne/9JT3sxI4pGYFSNfNG4kT3ePQCU2ktxGB0EYj48sb1oqoLdaKfIVoRRNdDY2kBLuIVSexl2ox1v\npIUaf037QyecJhdmra3XlnDzcb+Wis+L64rLML2zisjp42UUphAiLUggZ6Cvn3FsN7pw6wXEkzH2\nhncTjYcxKOpBnzHc29EHm9GOL+KlKbwHg6KSb+7BUOdYUKA2uQG/0oBLyWekcgUmcmihks9Ziqaq\nXDvq/zHYPZTd/iqe/eIp/BE/+dZ8LugzBaNmYu2ev/Flwyb65vRlSO4QVFQ2NW2kPlCPqqiUOXtj\nNVhpCe+jNtAWtg7dSaG1qO1jXK31+KLe9rnX+0KN1AVq20O5I+deK14v2s5ywpMvbDszlscnCiHS\nQEruIR+tbLyncDz3SlRVIRCO4g9F254vrEAw5qc1HqRPfgHFed9ezacoCm7djTfqbds2EiEZM+PU\nczCi0xSvpcZXiTGeg9vQEyelNLAZT2IPisHHNaddytC8E9jevIMK3072eKsZVTCGHFsOLpObnZ6d\n7PRsp9jVgxJLHxLJOE2tDTS2NuLW3dhNDhy6E1/Ehz/iA5LYdQdmgwUVlUDUTzDWilkzkWfJxxdt\n205BwabbURQFs2YhHA8TiYdJksSkHf6ezAGSSVAUkk4n4QsvJnTFDND1I/72bL2/la19Qfb2Jn1l\nniO5hyyBnCLHe+B9vdgrEIyhYYZkHJMtSllPMy5T26Kof6UoCi6TG0/Yg9ESIRpNEo/o2Aw5KElw\n5PppDNdDxIU90QOzUoRP3YY5twlvxMP40okMyR/ClsYv2ekrpz5Qx4i8kyi0F+HQ7Oz0llPlqyDX\nUED/3IGEYmGaQnvZF95HniUPq9GG3WjHF/Xhi3jRVA2r0YbZYAEU/FE/rdEgVqOVHFMu3ogXf9SH\npmhYjda2UDaYCcXChONhUJT2hV+Ho23+EtcVlxGZcCZJdw5Jp/OoV1Nn65tFtvYF2dub9JV5JJDT\n2PEeeIqiUJhjpazITs88G8N6FWO3q/ijXsLxME6T66CLn1RFxam78ES86JYw/Xvm0rcoj5P7DcJi\nAWuOn96lcSYOHs7MCWdwUll/Pqlfz/aWrYRirUzsNYl+rgFsatzILu8uvBEPJxaNJN9agEE1UB2s\nZFvTDvo4+9HL0ZtgLEhDqAFPyEOeJQ+b0YbVYMMb8eKLeNFVHYvRgsVgIZkEX9RLOBbCptvb//Hg\nj/owaeb2VdZmzUwoHiIcD6Eq2mEHhxjWr8N9+cUYqiqIDxtObPiJx/SaZ+ubRbb2Bdnbm/SVeSSQ\n01hHHXiqqmAyamiqisPoIBRrxRf1EolHcerOg4aypmo4dAct4Ra80RacJhtW3UKpoxfesJfGSD3o\nHoYWDqZ/zgAsmo0Nez9lS/NmjIqJ08vOoNTSiy8aN7LTU0441sqwguH0tBVjthr4au92KjwVDHAN\npJezN96Ih4bWvQSifnL2h7LZYMEbbgtls2bBbDBjMViIJxP764/gNDlxGB20RDz4Il6sBiu6pqMq\nKibNROv+UDaoxkMODtHXvItrxlSU1lZ8Tz5DeNr0Y36ts/XNIlv7guztTfrKPBLIaawzDjxVUXHo\nTgJRP76ol0Qygd3oOGgoG1QDVoMVT7gFb8SD1WhD13RKbWXsCzVRE6ylKdhAH1c/huQOJZpIsKnx\nC75s3EiOnse4slPJteSzuXEjO5p3oKAwKG8wQ4sHsrelmd2+Sqp8FQzOG0qJo5SW1hb2ttYTjoXI\nMedi1+2YVB1PxIs34sVmtGEymLAYLMSScbxhD9FkDLfZjcVgxrM/lG1GO0bN2PY5ZVUnFGsLZV3T\n0VTtgB5NK17Fee3VoGl4Fy8lMuWS43p9s/XNIlv7guztTfrKPBLIaayzDryvQ/lfF08djK7p6JqJ\nlkgz3ogXu8GOyWiit6MPtcEaaoO1eMMt9Hb15cTCk/CFvWxp3syGxs8otpYxrmQcNqONL5o2Ud68\nDYtmY3jJUAoNxTS3NlHtr6bav5thOcPpYevBvnAz9cE64vFYeyhrGPBG286UHboTXdOxaJa2QSFh\nD7FEjDxzPkZVxxvxEIj4sesODKoBTW27XN0aayUUD2NSTe2hrHhacE3/MRh1PK++QXTCmcf92mbr\nm0W29gXZ25v0lXkkkNNYZx54mqoddPHUwZgNZnRNpyXcjDfqw6W7MBqM9Hb2YY9vNzXBWlpjIXo5\nezGqxxjqA3VsbfqKzxv/yRD3EMYWj0PHwKamL9nR8hUlrmLy9R70cw+gzl/LHv8e6oN1DM09gUJb\nEU2hBmoDtSiKSo4pB4fJgYKCL+LFH/G1hbJBx2KwEE1E8YRbiCfj5FsLUBQVX8RLIOrHqbvQVG1/\nMBsIxVoJxUNYNEvbgjazmehpZxCaMZP4yFEd8rpm65tFtvYF2dub9JV5JJDTWGcfeAbVgM1gb7/U\na1SNWAyWg25rMVhQFQ1vpAVvxIvbnIOu6ZTZerHbV8WeQDWJRIJSRylje5xCRUs55S3lfLb3n4zK\nG83I4tHEEzG27NvM9uZt9DSXUmTvwcCcQVR5d1ET2MO+0F6GF56ES89hX+s+6gJ70FUdp8mFY/80\nLm/USyAWxGVyYdSMmDQzkUQEb8QLySQFlgKSJPFGvASiwfbV5EbViKKohMN+lCceQh/otQcWAAAg\nAElEQVQwDMXuINGzmGRBxw38yNY3i2ztC7K3N+kr80ggp7GuOPCMmhGLwYon7GlfPGUyHPygsBlt\nxJNxfFEvvqiPHFMuJqOJEnspld4Kdvt3Y1SN9LQXc2rJ6Wxp3MQuz042NPyTUbljGFNyMqFYK9s9\nW9nU8CUDnAPJt+XT19GfXZ6d1ARq8IW9fK9gBE6zk32tTezx78ZkMOE25eDYP/faF/EQjLXi0l3o\nmo5JMxGJh/BGvG0ry61FRBNR/P869zqawHHTL1DeeBVj/V6S503p8NczW98ssrUvyN7epK/MI4Gc\nxrrqwNM1HbNmwhPxtC+eOtRndx26k0g8jD/qIxAL4NbdWIwW8s0F7PZVssdXhd1gp8jeg5F5Y/ii\naQMVvgq+bNrIhF6TGJY3nJDiZ9PeTWzft41h+cPJteZS5uzNTs9O9viriSfiDMkbitVopSHYSG2g\nFqvRimv/mXIoHsYf8RLev8pa13SMWtviLV/Eh6poFFmLCMfDbR+RikdwRcA9YxqO995HGTee6G+f\nA5O5w1/LbH2zyNa+IHt7k74yjwRyGuvKA89kMB+weMpudBzys7suk5tgLIg/6qM13kqOue0+b645\nj12ecqp8lThNOZS4ShidN5ZPGz6hwlfBloZNnFl2FmcMGMf2ul2Ue3ewY99WRuSeRJ4tjzJHL3Y0\nb6fKW4FB0RmcNxhdM9HU2jYi02lyYdftOHVn+0e3ookYTt2JSTNh1IwEowEC0QCaaqDQUkhrLIi/\nvgLrNTPJW/cpkQsuIvDiUrDZO+V1zNY3i2ztC7K3N+kr80ggp7GuPvCsRuu3Fk8d6rO7Lt1FIBbA\nH/URiYfbHqVocuEwOqnyVVLlrSTfnE+xq4QR+Sfyce16Kn27KPfs4vyh59LXOpjKlgp2ecvZ6dnB\nyKLR5Jhz6GnuyVctX1Hl3YnD6GRg7iA0RaWptYm9wXocuhOH7sBh2v/RrYiXZDKJ3Whv+0eFohGM\nBfDH/OiakUJzAerPpxGs2ortkqsIPvnMUY3CPFrZ+maRrX1B9vYmfWUeCeQ0looDz2qwfmvx1KFG\nbH4999of9RFPxnHoTnItuRgVE9X+Kqp8VZQ6yih2FDPQOYh/1P+DXd4d1PlrOb1o4iHnXueYctrn\nXhdYi+ifM+A75177Il6+/uiWSTOjKt+Ye20wk18yBHtuMYkFjxz1KMyjla1vFtnaF2Rvb9JX5pFA\nTmOpOPAUpe2xh7FEDF/E27546nBzr31RL6qiYTPaKLS1rVre46+m2rebEnspvd196G3vzSe169nW\nspXmYMsRzb3e6SmnyNLjO+dee/eHskE1tM+9Nmz8HK8xTtSo4RoyGnX8JOiIZyQfRra+WWRrX5C9\nvUlfmUcCOY2l6sBTFAX7AYunDj/3uiXiwRtpaRvaYbDQ015MOB5ij7+aGn8NvR196JPTlyJbDz5r\n+ISvmja3z70us/Rmc/OXB517Xe4pp8K767vnXhutB8y9dn3wN3rMuBLrV9sxXf4z9EOsGu8M2fpm\nka19Qfb2Jn1lHgnkNJbKA09RlKOae20z2PBEPLSEm9sf8tA299pDbbCG+kAt/dwD6JfTn0JbLuuq\n17GleTNm1cIZvSdQaunFxsbPvzX3Op6IU+mr+M6513ajvX3udehPyym85WbMipH4gt+gDRzapa9b\ntr5ZZGtfkL29SV+ZRwI5jaX6wDuauddGzXjEc6/H9huJx9fKpsYv+KLh8/a513mWgm/NvS5zluGP\nBo9o7rXrD0uIP3Y/MYcD5aW3iI6f2OWvWap/Z50lW/uC7O1N+so8EshpLB0OvOOZe+3cP+LyX+de\nn9BzMANtQ9vnXn9+iLnXdqODvu6+9HH2Oezc65KnnqPHgw9jcxehLH2b5MjRXftC7ZcOv7POkK19\nQfb2Jn1lHgnkNJYuB97Xc6+/Xjx1pHOvPRHvQedeJ5QoBXrP9rnXX31j7vWYnqdg2j/3envzFvLN\nBZQ6yw4791oPRyncXk3rH9+BgYO7+BX6P+nyO+to2doXZG9v0lfmkUBOY+l04LWtYD5w8ZT5O+Ze\noyj49k/++te513tDtbSGIwefe50/5oC519uav6LM3vtbc6+bw818zzEQl2JnX9QL/QeSe91dkJfX\nxa/MgdLpd9aRsrUvyN7epK/MI4GcxtLtwNM1vX3x1OHmXtuN9kPOva4N7aZ83672uden9DyVr5q+\n/Nbca1/Ux/bmrXzVvIUhuSeQa8n9v7nXTeVw31xGr/6YntNvodTdG8Vw8CEmXSndfmcdJVv7guzt\nTfrKPEcSyJ07SUFkFIfuoNReSoIku31VBKKBQ25bbC8hx5RDKNbKLu9OEokEbrObcweei1kz8c+6\nj9mxbxtW3crto+9iYM5A9gSqeeiTBQSiAS4bOJWTi09jX6iRZz/7HXX+OuxmO1Ncp1P4+5f4Yt8W\nPAbQurB/IYRIJQlkcQCX2U2xtYQECaq8FYRioUNuW+bs3b5Su9JXAUBPR0/OLJuEoih8VLuWnS07\nyXfmc8/YBfRy9Ganbxf3f3Qv8UScKwZfyYi8kdS11vLshqdo2f5P+v94GjPereP7Qy5EeX4ZmLru\nc8ZCCJFKEsjiW/KseRRZexBLxKj07CIcCx9y296OPlgNNnwRL7u9lQCUOso4o+RMEsk4/1P9N+q8\ntRS5ezB33D0UWnqwqWkjD378AJqmcdXwqxnsHkp19Ub+cN+5JHbtxHTTbAY8tBQ0OT8WQnQfEsji\noAosBeRbCggnwlT6KoklYgfdTlVV+rj6YjZYaA43U+OtAaB/zgBO7nEaiWScv1a/R1NrE/3c/bl9\nzFzcpjw+3buexz7+DXaDnauH/5z+LRq7jCGq5s8leMc9XTIKUwgh0oks6kqRdF+8cDRzr1VFbZ97\nHVGDREKJA+ZeV/t3H3Tu9XbvNjwhD+NLJzJixGTGlUwg/5KfdnWrRyzdf2fHKlv7guztTfrKPLKo\nSxwXRVEotpfgNLkJRH3s9u0mkUwcdFuDaqCfqz8G1UBtYA/NoX0AjCwazQl5J+CP+ni/cg2BcICx\nJadw4+hfYWpo4b/++ls+qHwft9lNz3FndWV7QgiRViSQxXdSFZUyexkOowNvpIU9/j0kk8mDbqsb\ndAbkDEBTDOz2VeGNeAEYV3w6/V0D8ERaeL/qP4nGo5z7503c+tIOeu9qondADkMhhJB3QnFYmqpR\n5uyN1WClOdREXaD2kKFs1a30dvZBRaXKU4E/4gfgjOIJlNl7sbe1gb8/chXmBXdxcaAni25ez6AR\nZ3dlO0IIkZYkkMURMagGejv7YtLMNLY2sDdYd8ht7bqdUkcvEiSo3P/RKYPBwKSeZ9Jn+SoaPvwz\nXw3vRcs7a4gP6donNgkhRLqSQBZHzKi1za02qDp7g3tpam085LZus5sSeynxZIydnp1EYhFsq//M\nJS/+D6dYBpP30hoSZb26sHohhEhvqZ9HKDKK2WCml7MXld4KagM1aIqG25xz0G3zLPnEknHqA7Xs\n9JQzYMpFKM2P0ufyaSTtB3+qlBBCdFdyhiyOms1oo8zRCwWVPf5qvGHvIbft4YPSN1YTSYTxRwOE\nrp4lYSyEEAchgSyOyZHMvVZ37STngrMZfM+DDNtYi9vsTkGlQgiRGSSQxTH7rrnX2qYvyLngHLTK\nCgK33o426dwUViqEEOlPAlkcl2/Ova7yVhCOhTGu+wj3xZNRG/bif+BhgnfcLaMwhRDiMGRRlzhu\nBZYC4okYDa172bVuNf2nTkOJxvEueoHwpZenujwhhMgIEsjiuCmKQg9bT+LJOMG+FqouO5/8yVcQ\nOeucVJcmhBAZQwJZdAjj559RfOJJqLYIoYefIWIwp7okIYTIKHIPWRyfZBLbgnnknHMmltdXUmAr\nwCxhLIQQR03OkMWxi8Ww33YTlleXEus/gOgpp6a6IiGEyFgSyOLYtLbivPZnmN79C9GTRuJ55XWS\n+fmprkoIITKWBLI4aorPi/PKqej/u5bI+DPxLlkm07eEEOI4yT1kcdSSJjOYTIQvvBjPKysljIUQ\nogN06Rmyz+dj9uzZ+P1+otEod9xxByNHjuzKEsTxaG0FiwV0Hc8fXgGTCTQt1VUJIURW6NIz5MWL\nFzNu3DiWLl3Kgw8+yIIFC7py9+I4aJu+IHfcSPTV77R9wWqVMBZCiA7UpWfIM2fORNd1AOLxOCaT\nqSt3L46Rcd1HOK+ciur1oNbWpLocIYTISkoymUx2xg9euXIlS5YsOeBrCxcuZMSIETQ0NDBr1izu\nvPNOTj755M7Yvegoq1bB1KkQi8FLL8FPfpLqioQQIit1WiAfytatW7n11lu5/fbbmThx4hF9T0OD\nr5Or6noFBY6078u0fBmOX90IJhOe3y8lOukHh/2eTOjrWGVrb9naF2Rvb9JX5ikoOPzi1y69ZL1j\nxw5uvvlmHn/8cYYMGdKVuxZHKxbDsuT3JJ1OPMtWEhsjVzKEEKIzdWkgP/roo0QiER544AEA7HY7\nixYt6soSxJEyGPAsW4Ha2Eh80OBUVyOEEFmvSwNZwjfNxWLY584mfMmlRE87g2RuHvHcvFRXJYQQ\n3YJM6hJtvjEKU9u1E8+pp4OipLoqIYToNiSQBYqnBeeMaejrPiIy4ft4/7BUwlgIIbqYjM7s5pT6\netwXn4++7iNCF/0Iz7IVMgpTCCFSQAK5m3Pc9ksMX35B68z/h++ZF9vGYQohhOhycsm6m/M//B9E\nTxtP6/U3ymVqIYRIITlD7oaM/7sWwxefA5AoKaX1F7+UMBZCiBSTQO5m9NXv4Lr8YpwzpkEolOpy\nhBBC7CeB3I2YXl2K82fTQdPwPfYUmM2pLkkIIcR+EsjdhOXJx3He/AuSLhctr/+J6PfPSnVJQggh\nvkEWdXUDlif+A/v984kXl+BZ8ZaMwhRCiDQkZ8jdQOS8C4ieciotf/4vCWMhhEhTcoacrYJB1H1N\nJErLiA8cRMuqd2UltRBCpDE5Q85CiqcF99RLcF98Psrevfu/KGEshBDpTAI5y6j1dbinnIdx/f8S\nHTWKpNud6pKEEEIcAQnkLKLuLMd9/jkYtnxJ689+jm/Ri6DrqS5LCCHEEZB7yFlC+2Ij7mk/Qm3Y\nS2D2XIL/dodcphZCiAwigZwllGgEQiF8Dz1K6OpZqS5HCCHEUZJAznSxGBgMxEaNYd/Hn5PMy0t1\nRUIIIY6B3EPOYOZXXsb9w++jtDQDSBgLIUQGk0DORMkklicew3HLDWh7dqNWV6e6IiGEEMdJLlln\nmkQC26/vwbroSeIlpXhee1OmbwkhRBaQQM4k0SiOW3+J+bVXiA0ajOe1N0mUlKa6KiGEEB1ALlln\nEMPmTZjeWEl09BhaVr0rYSyEEFlEzpAzSOzEkXhee5PoSaPAbk91OUIIITqQnCGnObWuFvutv4Rg\nEIDoGRMkjIUQIgtJIKcxbecO3Becg2XpEsx/fC3V5QghhOhEEshpyvDF57gv+CFaVSWB2XMJzZiZ\n6pKEEEJ0IrmHnIaMa/8H54xpKAG/jMIUQohuQgI5zSj19biuuAxiMXzPLSZ80Y9SXZIQQoguIIGc\nZpJFRfgfeIR4aRnRMyeluhwhhBBdRO4hp4NkEtPbb0A0CkDoyqskjIUQopuRQE61RALbvXfhnDUT\n2wO/TnU1QgghUkQuWadSNIrjlhswr1xObNBgWmddl+qKhBBCpIgEcqoEgzhnXoFpzX8SHT0Gz7KV\nJHPl8YlCCNFdSSCnQjQK55yHae1aImdOwvP7pTJ9SwghujkJ5FQwGuGHPyRU2APfk8+Crqe6IiGE\nECkmgdyF1LpaEoVFoKpw99349nrb/iyEEKLbkzToIoaNG8iZdAa2+Xe3fUFRJIyFEEK0k0ToAsa/\nf4jr4vNRmhqJ9+2X6nKEEEKkIblk3cn0P6/Ced3VkEzKKEwhhBCHJGfIncj88h9w/vynYDDieeWP\nEsZCCCEOSc6QO5H21WaSbjeeV18nNnJ0qssRQgiRxuQMuaMlk23/AYH7HqL5/b9LGAshhDgsCeSO\nFI3iuPFaLE8+1vZ3VSVRUpramoQQQmQECeSOsn8Upnnlckyr34FIJNUVCSGEyCASyB1AaWnG/eOL\nMK35TyLfP4uWP66S6VtCCCGOSpcu6goGg9x22214vV6MRiMPP/wwRUVFXVlCh1PranFNvQTDls2E\nfnQZvieekTAWQghx1Lr0DHnFihUMGzaMZcuWMWXKFJ5//vmu3H2nsDz9JIYtmwn+/Fp8T78gYSyE\nEOKYdOkZ8syZM4nH4wDU1NTgdDq7cvedInD3fGIjTiR86eVt4zCFEEKIY6Akk/s/o9PBVq5cyZIl\nSw742sKFCxkxYgQ//elP2bZtG4sXL2bo0KGdsfvO9cEHUFkJM2emuhIhhBBZotMC+XDKy8u59tpr\nee+99w67bUODrwsqOjLtozA1jaaPN5I8xnvgBQWOtOqro2RrX5C9vWVrX5C9vUlfmaegwHHYbbr0\nHvKzzz7LW2+9BYDNZkPTtK7c/XH7ehRm0qjjeWn5MYexEEII8a+69B7ypZdeypw5c3j99deJx+Ms\nXLiwK3d/7JJJrL99FNvCBSTy8tpGYZ40KtVVCSGEyCJdGsj5+fm8+OKLXbnLDmFe9hK2hQuIl5bh\nWfEW8QEDU12SEEKILCODQY5A6JLLCE2bTss7aySMhRBCdAoJ5EMJBDCu+6jtzzYbvicWkehZnNqa\nhBBCZC0J5INQmvfh/vFFuC6bguHzz1JdjhBCiG5AAvlfqLU1uC86D+MnHxO+4CJiJ3wv1SUJIYTo\nBiSQv0Er3477gnMwfLWF4Kzr8D39PBiNqS5LCCFEN9Clq6zTmbb5S9yXXYja2Ehg7j0Eb/k3GYUp\nhBCiy0gg75fo2ZNEQRGBOXcTuurqVJcjhBCim+n2gaw07yOZk0syJ5fmNf8tT2sSQgiREt36HrL5\npcXknnwSho0b2r4gYSyEECJFumcgJ5NYH/sNjn+7GYwGSM3zNYQQQoh23e+SdSKBbd5crM8tIl7W\nC8+KN4n3l+lbQgghUqt7BXI0iuOm6zG/voLYkKF4XntTpm8JIYRIC93qkrWybx/G9f9LdOwptLy9\nWsJYCCFE2uhWZ8jJoiJa3nyHRH4B2GypLkcIIYRol/VnyGrNHlw/ugCtfDsAid59JIyFEEKknawO\nZG1H2yhM/e8fYlr1VqrLEUIIIQ4pawPZsOGfuC88B616N4E757WNwhRCCCHSVFbeQzZ++DecV12B\n0hrE9+gThGbMTHVJQgghxHfKvkAOhXDcdD1KNIL3hZeIXDAl1RUJIYQQh5V9gWw2413yCorXS3T8\nxFRXI4QQQhyR7LiHnExieX4Ram0NALETR0oYCyGEyCiZH8iJBLa7bsd+1xzss29JdTVCCCHEMcns\nS9aRCI6brsP8xh+JDRmK/zePp7oiIYQQ4phkbiAHAriuvhL9g/eJjj0Fz9LXSObkproqIYQQ4phk\n5iXrZBLXz6ajf/A+4R+cQ8vKtyWMhRBCZLTMPENWFIK//BXxklL8jzwGRmOqKxJCCCGOS0YFsla+\nnURuHsmcXKLjJ8pKaiGEEFkjYy5ZGz77FPcF5+C6cirEYqkuRwghhOhQGRHIxv/+APclF6A0NxOa\nNh0MGXViL4QQQhxW+ifbypW4pk8HRZFRmEIIIbJW+gfy1KkkrTa8L70q94yFEEJkrfQP5KIiPC+/\nRuzEkamuRAghhOg06R/IO3YQCyZSXYUQQgjRqdJ/UZfNluoKhBBCiE6X/oEshBBCdAMSyEIIIUQa\nkEAWQggh0oAEshBCCJEGJJCFEEKINCCBLIQQQqQBCWQhhBAiDUggCyGEEGlAAlkIIYRIAxLIQggh\nRBqQQBZCCCHSgASyEEIIkQYkkIUQQog0kJJALi8vZ/To0YTD4VTsXgghhEg7XR7Ifr+fhx9+GF3X\nu3rXQgghRNrq0kBOJpPcc8893HrrrVgslq7ctRBCCJHWDJ31g1euXMmSJUsO+FpxcTGTJ09myJAh\nR/WzCgocHVla2pC+Mk+29patfUH29iZ9ZR8lmUwmu2pnZ599Nj169ABgw4YNjBgxgmXLlnXV7oUQ\nQoi01aWB/E2TJk1i9erVmEymVOxeCCGESCvysSchhBAiDaTsDFkIIYQQ/0fOkIUQQog0IIEshBBC\npIGMCeRsm+4VDAa5/vrrmT59OjNnzqS+vj7VJXUIn8/Hddddx5VXXsnUqVP57LPPUl1Sh1uzZg23\n3XZbqss4bolEgnnz5jF16lRmzJhBZWVlqkvqUJ9//jkzZsxIdRkdJhqNMnv2bK644gouu+wy3n//\n/VSX1GHi8Thz585l2rRp/OQnP2Hbtm2pLqlDNTU1MXHiRMrLy79zu4wI5Gyc7rVixQqGDRvGsmXL\nmDJlCs8//3yqS+oQixcvZty4cSxdupQHH3yQBQsWpLqkDnX//ffz6KOPkkgkUl3KcXvvvfeIRCK8\n9tpr3HbbbTz00EOpLqnDPP/889x9991Z8w94gFWrVuF2u3nllVd44YUXuO+++1JdUof54IMPAFi+\nfDm33HILjz32WIor6jjRaJR58+ZhNpsPu23aB3K2TveaOXMm119/PQA1NTU4nc4UV9QxZs6cybRp\n04C2f/Vm28faRo0axfz581NdRof49NNPGT9+PAAnnXQSmzZtSnFFHadXr148+eSTqS6jQ5177rnc\nfPPNQNv7oqZpKa6o4/zgBz9o/wdGNr0fAjz88MNMmzaNwsLCw27baZO6jkVHTvdKJwfra+HChYwY\nMYKf/vSnbNu2jcWLF6eoumP3XX01NDQwe/Zs7rzzzhRVd3wO1dvkyZNZv359iqrqWH6/H7vd3v53\nTdOIxWIYDGn1tnBMfvjDH1JdXZ3qMjqUzWYD2n5vN910E7fcckuKK+pYBoOBOXPmsGbNGp544olU\nl9Mh3njjDXJzcxk/fjzPPffcYbdP+489dYfpXuXl5Vx77bW89957qS6lQ2zdupVbb72V22+/nYkT\nJ6a6nA63fv16li9fnvGX1R588EFOPPFEJk+eDMCECRP48MMPU1xVx6murubWW29lxYoVqS6lw9TW\n1nLDDTe030fORg0NDVx++eW88847WK3WVJdzXKZPn46iKCiKwpYtW+jTpw+LFi2ioKDgoNun/T+F\n16xZ0/7nSZMm8fvf/z6F1XScZ599lqKiIi6++GJsNlvWXH7asWMHN998M48//nhGX9XoDkaNGsUH\nH3zA5MmT2bBhA4MGDUp1SeI7NDY2cvXVVzNv3jxOPfXUVJfTod566y3q6+u59tprsVgsKIqCqqb9\nHdXD+ubJ44wZM5g/f/4hwxgyIJCz1aWXXsqcOXN4/fXXicfjLFy4MNUldYhHH32USCTCAw88AIDd\nbmfRokUprkoczNlnn83atWuZNm0ayWQya47BbPXMM8/g9Xp5+umnefrpp4G2xWtHslgo3Z1zzjnM\nnTuX6dOnE4vFuPPOO7Oir6OV9peshRBCiO4g868JCCGEEFlAAlkIIYRIAxLIQgghRBqQQBZCCCHS\ngASyEEIIkQYkkIVIM3PnzmXPnj3fuc2MGTO+NTFs/fr1Hf4whd27d7dPWzuanz9nzpzjfmDKww8/\nzObNm4/rZwiRSSSQhUgz69evJ10+jVhTU8Pu3buP6ns++OADCgsLKSoqOq59z5o1Sz4bLboVGQwi\nRCdav349Tz75JAaDgdraWkaMGMEDDzyAruu89dZbLFmyhEQiwbBhw7j33ntZsmQJe/fu5ZprrmHZ\nsmWsW7eOxYsXEwqFCIfD3H///YwdO/aw+62srGT+/Pm0tLRgNpu55557OOGEE7jjjjuw2+18+eWX\n1NfXc8MNN3DppZfi8/m4/fbbqaqqoqysjLq6Op566inuv/9+qqur+fWvf825557Lvn37mDVrFlVV\nVfTt25cnnnjiW09he+GFF9qf8tXS0sJdd93Fzp070XWdO+64g1NPPZXTTz+d73//+3zyyScUFBRw\nxRVX8PLLL1NXV8dDDz3EySefTG5uLrm5uaxbt45x48Z1yu9HiHQiZ8hCdLKNGzcyb9483n33XcLh\nMMuWLWP79u2sWLGC5cuX8/bbb5OXl8eLL77INddcQ2FhIc899xwul4vly5fzzDPPsGrVKmbNmsWL\nL754RPucM2cOs2fP5s033+S+++7jV7/6Vfv/q6ur45VXXmHRokU88sgjAPzud7+jb9++vPPOO9xw\nww1s3boVgLvvvpvvfe973HvvvUDbGfO8efNYvXo1jY2NfPTRRwfst6WlhYqKCvr37w/Ab3/7W3r1\n6sXq1at55JFHePzxx4G2MZBnnnkm7777LtD2KMhXXnmFX/7ylwc81GPMmDH89a9/PZaXXYiMI2fI\nQnSysWPH0q9fPwAuuugiVqxYgdFopLKykssvvxxoe2bqCSeccMD3qarK7373O/7617+ya9cuPv74\n4yOa7xsIBNi0aRNz585t/1owGKS5uRmA008/HUVRGDRoEC0tLQCsXbuWf//3fwdg+PDhDB48+KA/\ne8iQIZSVlQHQv3//9p/5taqqqgMeM/ePf/yj/ecOHjyY1157rf3/TZgwAYCSkhJGjx4NtD3dzev1\ntm9TXFzM2rVrD9uzENlAAlmITvbNB4d8/RzbeDzOeeedx9133w20hWg8Hj/g+wKBAJdeeikXXXQR\nY8eOZfDgwUf0pLNEIoGu67z99tvtX6urq8PtdgO0P6NaUZQDajyS+9bffDSjoijf+h5VVQ/o918f\n5VheXk7fvn0BDrjUfaiHqxiNxgPqFCKbySVrITrZp59+Sn19PYlEgrfeeosJEyZwyimnsGbNGpqa\nmkgmk8yfP7/9Uu3XgV1RUYGqqlx33XWMGzeODz/88FuhfTAOh4M+ffq0B/LatWuZPn36d37Paaed\nxp/+9Ceg7fGZ27dvR1GU9mckH6nS0lLq6ura/z5mzBj+8pe/AG1hPGvWrKMK2DtyprcAAAF9SURB\nVOrqanr37n3E2wuRySSQhehkhYWF3H777UyePJmioiJ+/OMfM2TIEG688Uauuuoqzj//fBKJBNdc\ncw0AZ555Jtdccw0Oh4OhQ4dy3nnncckll2C1WqmpqTmiff7mN7/hj3/8IxdeeCGPPvoojz322HcG\n4S9+8Quqqqq48MILeeKJJ8jPz8dsNtO/f398Ph+zZ88+ov263W569erFjh07ALjpppuoqKhgypQp\nzJ49m0ceeeSoAnn9+vWcddZZR7y9EJlMnvYkRCdav349Tz31FC+//HKqS/lOb7/9NqWlpYwePZqa\nmhquvPJK3nvvvWN6Ju3777/PJ598wpw5c46rpqamJm688UZeffXV4/o5QmQKuYcshKBfv37ce++9\nJBIJVFVlwYIFx/yA+LPOOou//OUv1NfXH9dnkZ999tn2oSRCdAdyhiyEEEKkAbmHLIQQQqQBCWQh\nhBAiDUggCyGEEGlAAlkIIYRIAxLIQgghRBqQQBZCCCHSwP8HLzRD6zArRrIAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x11359b898>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "<function __main__.plot_line>" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "widgets.interact(plot_line,\n", " angle_in_degrees=widgets.FloatSlider(min=0, max=360, step=1, value=85))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "As you vary the slope of the line, you should find that maximal variance is found at about 45 degrees.\n", "\n", "Minimal variance is around 225 degrees - i.e. a line which is orthogonal to the line of maximum variance. \n", "\n", "The values were about 3.63 and 0.036 respectively.\n", "\n", "Fast-forwarding a little, these are the 'explained variances' which a fitted PCA model returns.\n", "\n", "> ```python\n", "> petal_data = demeaned_df[['petal length (cm)', 'petal width (cm)']].values\n", "> pca = PCA().fit(petal_data)\n", "> pca.explained_variance_\n", ">\n", "> array([ 3.63497866, 0.03597779])\n", "> ``` \n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Programattically changing the orientation of the hyperplane" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let us programmatically vary the slope of the line and build a plot explained variance as a funtion of angle.\n" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def get_variance(angle_in_degrees):\n", " \n", " x = p_x\n", " y = p_y\n", "\n", " # our current fitted line\n", " m = np.tan(np.pi * angle_in_degrees / 360) \n", " y = m * x\n", " \n", " # perpendicular lines between the original data and the\n", " # current fitted line\n", " p_x_line = (p_x + m * p_y) / (m*m + 1)\n", " p_y_line = m * p_x_line\n", " \n", " # average sq distance from origin of perp line intercepts\n", " # i.e. the points where the green line touches the dashed red line\n", " var = np.mean(np.power(p_x_line, 2) + np.power(p_y_line, 2))\n", " \n", " return var" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "<matplotlib.text.Text at 0x113549128>" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA64AAAHfCAYAAABQ54U/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4lfX9//HXOdl7JwTCCIGQxQZBUdkIMmQpirMutM4O\n2+rXLvvtz1pprQsZrqpYVFS2AiKoILJXEkggZAEhi6yTnZz79wf90toKAc3JfZLzfFyXVy84J+e8\nknejeeW+P5+PxTAMQwAAAAAAOCmr2QEAAAAAALgQiisAAAAAwKlRXAEAAAAATo3iCgAAAABwahRX\nAAAAAIBTo7gCAAAAAJyau9kBLlZTU7PKymrMjoE2EhLiy7xdCPN2LczbtTBv18K8XQvzdi1tMe+I\niIDzPtZurri6u7uZHQFtiHm7FubtWpi3a2HeroV5uxbm7VrMnne7Ka4AAAAAANdEcQUAAAAAODWK\nKwAAAADAqVFcAQAAAABOjeIKAAAAAHBqFFcAAAAAgFOjuAIAAAAAnBrFFQAAAABc2DfffK2VKz8y\nO8YFuZsdAAAAAABgnuHDrzA7QosorgAAAADgAO9/fky7jhS16msOTYjUDWN6nffxJ554TNdff6MG\nDhysI0fS9fLLzys4OEQ2W5VKSoo1c+YNmjFjth588F6FhISqsrJS48dPUH5+vu6//yEtXPiSjhxJ\nV2VlhXr1itcTT/xWr722SGVlxSooKFJhYYEeeuinGjbscm3b9pXeeGOJDMNQfHyCHnvscR04sE+L\nFy+Qm5ubOnfuol/84n/k7v7DayfFFQAAAAA6iKlTp+uTT9Zo4MDBWrt2tQYNGqKePeM0cuQYlZQU\n68EH79WMGbMlSePGXaORI0dr3brVkqTqapsCAgL0t78tkN1u16233qDi4rPF29PTU3/5ywvatesb\n/eMfSzV48FA999yftWTJ3xUSEqqlS/+uoqJCPfPMH/XKK68qJCRUS5a8onXrVmvatBk/+POiuAIA\nAACAA9wwptcFr446wrBhl2vBgudVWVmhgwf3af78F7Rw4Uv64ovN8vX1U1NT07nnduvW/Vsf6+Xl\nrbKyMv32t0/I19dXtbW1556fmJgoSYqM7KSGhnpVVJQrICBAISGhkqSbb75dZWVnVFpaol//+leS\npPr6eg0dOqxVPi+KKwAAAAB0EFarVaNHj9P8+X/SVVeN0rJl7yglpZ9mzJitvXt3a/v2rd967r/7\n5pttKioq1FNPPa2ysjJ9+eVmGYYhSbJYLN96bkhIqGw2myorKxQYGKS//e1ZTZgwSZGRkfrTn/4q\nf39/bd36hXx8fFvl86K4AgAAAEAHMnnyNN1ww3VatuxjFRSc0nPP/VmbNm2Qv7+/3Nzc1NDQ8J0f\nl5iYrDfffE0PPHCPLBaLOnfuopKS4u98rtVq1U9/+ks99tijslqtio/vo8TEZD3yyM/12GOPyDAM\n+fr66de//n2rfE4W4/8qdDtQXFxldgS0kYiIAObtQpi3a2HeroV5uxbm7VqYt2tpi3lHRASc9zHO\ncQUAAAAAODVuFUarsxuGGhvtqm9sVkNjs+qb7DIMQxadvTfeYpGsFos8Pdzk4+UmLw+3/7pnHgAA\nAAD+D8UVF80wDFXXNamorFZFZTUqLq9Vma1BldX/9k9Ng+oami/pdS0WycfTXT5ebgr081Swv5c6\nRwbIy82ikAAvRYb4qFOorwJ8PR30mQEAAABwZhRXfKe6hiadKKpWflGV8opsyi+y6XRpjWrqm77z\n+VaLRQG+HooI9pGvl7s8Pdzk5WGVp4ebPD3cZLVIhiEZOluA7XZD9Y3NqmtoVk19k+rqm1RT36T8\nIpuyC6q072jJf72Hn7e7OoX5qlOor7pFBqh7pwB1jwqQl6ebg78aAAAAAMxEcYUMw1Bxea2OnqjQ\n0RPlOnqiQqdLa/Tvu3a5WS2KDPFRfNdgRQT7KDLERxHBPgoN9FKgn6f8fTxkbYXbfQ3DkK22URYP\ndx3PK1NZVZ0Ky2p1urRGBWdqlH2qSlknK7VNpyWdvVrbOcxPPToFqFdMkBK6hSgyxIdbjwEAAIAO\nhOLqoips9UrNPqNDx0uVkVeuiup/bYnt5emmPt2C1TUyQN2i/NU10l+dw/3k7ub4vbwsFosCfD0V\nEREgf4//fr+mZruKymqVW1il3NNVyimoVG6RTSdLqrUt9WyZDfb3VJ9uIerTLVh9Y8MUFuTt8NwA\nAAAAHIfi6iLshqGskxU6mFWqQ1mlyiuynXssyM9TQxIi1TsmSPExwYqJ9JOb1Tk3nHZ3s6pzuJ86\nh/vp8uROkiS73VBBabUy88t1JK9cGXll2pFeqB3phZKkmAg/9e8Vrv5x4erZOVBWK1djAQAAgPaE\n4tqB2e2Gjp4o1+6MYu3JKFK57exVVXc3i5J6hKhvzzCl9AxT5zDfdn1rrdVqUZcIf3WJ8NfoQTEy\nDEMFpTU6nFumg1mlOpxbphPbc7V2e678fTw0KD5Cw5Ki1KdrMCUWAAAAaAcorh2MYRjKK7Rp66EC\n7T5SdO4WYD9vd13ZL1qD4iOU2C2kQ29oZLFYzl2VHTs4RvUNzUrPPaMDx0p14FiJvjxwSl8eOKUg\nP08NTYjUZUlRiusc2K7LOwAAANCRUVw7iMrqBn2TdlpbD53WieKztwH7+3ho5IDOGtInUn26BbfJ\nGlVn5OXppoG9IzSwd4TsdkMZ+eXaebhQu48U6bM9J/TZnhPqFOqrq/t31hUpnRTox7E7AAAAgDOh\nuLZjhmEoI69cm/ae0P6jJWq2G3KzWjQ4PkIj+kUrJTbUZcvq+VitFiV2D1Fi9xDdPD5e6Tll2p52\nWnsyivX+5mP68IssDegVrqv6d1ZKz9BW2SkZAAAAwA9DcW2H6hqatD2tUJ/vOaGTJdWSpK6R/rqy\nX7SGJ0UpwJcrhhfD3c2qfnFh6hcXJltto3akF+qL/ae0J7NYezKLFRXio3FDumpE307y9uRbBQAA\nADALP423I2VV9dqwK09fHjil2vpmuVktGpYUpbGDY1ij+QP5+3ho7OAYjRnURTmnq7R570l9k16o\npRsz9dGXx3V1/2iNHRSj8GAfs6MCAAAALofi2g4UlFbr0x15+jr1tJrthoL8PXXN0G66ekBnBft7\nmR2vQ7FYLIqNDlTs5EDNHhWnLftPavPek1q/M18bduVrWFKUJl/eQ13C/cyOCgAAALgMhxXX5uZm\nPfnkk8rOzpbFYtHvf/97xcfHn3v8zTff1AcffKDQ0FBJ0u9//3v17NnTUXHapdzTVVqzPUd7M4pl\nSIoK9dW1w7ppeHInebizdtXRAv08NW1ErCYN665dRwr16Y48fZNWqG/SCjU4PkJTruih7p0CzI4J\nAAAAdHgOK66bN2+WJC1btkw7duzQc889p1deeeXc46mpqXrmmWeUkpLiqAjt1olim1Z+la09mcWS\npB6dAnTt8O4aFB/BuaMm8HC36oqUaA1P7qQDx0q05uucc+tg+8WFafpVserRKdDsmAAAAECH5bDi\nOm7cOI0aNUqSdOrUKQUGfvsH+7S0NC1evFjFxcUaNWqU5s2b56go7cbpMzVatTVbO9ILZUiK6xyo\n6Vf1VFKPENavOgGrxaKBvSM0oFe40nPKtPrrHB3MKtXBrFIN6ROhGVf3VHQYtxADAAAArc2ha1zd\n3d31y1/+Uhs3btQLL7zwrccmT56suXPnyt/fXw8++KA2b96s0aNHOzKO06qw1evjr7K19WCB7Iah\nblH+mnFVT/WLC6OwOiGLxaLk2FAlx4YqPeeMPvziuHZnnL0CO6JvtK4bEauwIG+zYwIAAAAdhsUw\nDMPRb1JcXKwbbrhBa9eula+vrwzDkM1mU0DA2fWBS5cuVXl5uR544AFHR3EqdQ1NWvlFlpZ/flR1\nDc3qGuWvWyYm6vK+0RTWdsQwDH2TWqC3Pzms/EKbPNytmj4yTrPH9Javt4fZ8QAAAIB2z2FXXFes\nWKHCwkLNmzdPPj4+slgsslrPbihks9k0ZcoUrVu3Tr6+vtqxY4dmzZrV4msWF1c5Km6bshuGtqee\n1kdfHldZVb0CfT10w+heuqp/tNysVpWU2MyOaLqIiIB2Ne9enQL029uHanva2bl+sOmoNnyTq1kj\n43RF306y8ouIC2pv88YPw7xdC/N2LczbtTBv19IW846IOP/Gpw674lpTU6PHH39cJSUlampq0j33\n3KPa2lrV1NRozpw5WrFihd5++215enrq8ssv18MPP9zia3aEb4zsgkq9syFT2QWV8nC3asLQrrp2\neHf5eHEy0b9rz/8irG9o1ic7cvXpjjw1NNnVvVOA5o7rrd4xwWZHc1rted64dMzbtTBv18K8XQvz\ndi0dtrg6Qnv+xrDVNuqjL4/ri30nZUgalhSl2SPjWAt5Hh3hX4RnKuu0fEuWvkkvlCSN6NtJ14/u\npUBfT5OTOZ+OMG9cPObtWpi3a2HeroV5uxaziyuX+RzMbhjadrBAH2zJkq22UdFhvrplQh8ldg8x\nOxocLDTQW/dOS9aYwTF6Z32Gth06rf1HS3T96F66sl80tw8DAAAAF4ni6kCnz9TozXWHlXmiQl4e\nbrp+dJzGD+kqdzer2dHQhnp1CdKv7xiiz/ec1EdfHdebnxzR1oMFuu2aPoqJ9Dc7HgAAAOD0KK4O\n0NRs1/qdeVq5NUdNzXYN7B2um8fHKzSQ24JdlZvVqvFDu2pIQqT+semodh8p0u/f3KVrh3fX1BE9\n+GUGAAAAcAEU11aWe7pKb6w7rLwimwL9PHXL+HgNSYg0OxacREiAl348PUUHs0r11vojWv11jvYe\nLdad1yYqNjrQ7HgAAACAU6K4tpKmZrtWbcvRuu25shuGruwbrRvG9JK/D+d44r/1iwvTH+4apg82\nH9OW/af0x7f2aOKwbrruyh7ycHczOx4AAADgVCiureBksU1L1qQrr9CmsEBv3TEpQcmxoWbHgpPz\n8XLXbRMTNDQhUm98ckTrvsnVvqPFundqsrp3Ov+OagAAAICrobj+AHbD0Iad+froy+Nqarbryn7R\numlsb85kxSVJ7BGqp+66TB9uOa5Ne0/of9/arelXxWrSsO6yWtl5GAAAAKBhfU+lFXV6dU26MvLL\nFejrodsnJWtg7wizY6Gd8vZ0180T4jWgd7heW5uuD784rkNZpbp7SpLCg33MjgcAAACYiq1Mv4fd\nR4r029d3KiO/XIPiI/TU3cMorWgVybGheuquYRrSJ0KZJyr0m9d36uvUArNjAQAAAKbiiuslaGhs\n1rJNR7Vl/yl5ult1x6QEXdUvWhYLt3Oi9fj7eOj+6Sn6OvW0lm7M1KtrDis9p0y3TIiXtyffsgAA\nAHA9/BR8kU4W27RwZZpOllQrJsJf912XrM7hfmbHQgdlsVg0om+0encN1qKVqfo69bSyCyp133Up\n6hrpb3Y8AAAAoE1xq/BF+OrAKT319906WVKtMYO66Ne3D6a0ok1EBvvo8VsGa8LQrioordH/vrVb\nW/aflGEYZkcDAAAA2gxXXC+gobFZ72zM1NaDBfL1cte9U5M1uA9rWdG23N2sunFsbyV0C9Fra9P1\n1qcZOpJbptsnJrCDNQAAAFwCP/WeR1F5rRZ8dEh5RTZ1jwrQj2ekKILdXWGiAb3D9bsfXaZFq9K0\n83CR8otsenBmX0WHcfUfAAAAHRu3Cn+H/UdL9NQbu5RXZNPV/TvriVsHUVrhFMKCvPWLuQM1bkiM\nCkpr9Ie/79aejGKzYwEAAAAORXH9N3bD0IqvjuuFDw+qsdmuO69N1B2TEuTh7mZ2NOAcdzer5o6L\n171Tk2S3G3r540NaviVLdjvrXgEAANAxcavwP9XWN2nJ6nTtP1ai8CBvPTizr7pFBZgdCziv4cmd\n1CXCXy9/dEjrvslVzumzuw77+3iYHQ0AAABoVVxxlVRYVqM/vr1H+4+VKLF7iH5zx1BKK9qFrpH+\n+s0dQ9Q/LkzpOWX637d261RJtdmxAAAAgFbl8sU19Xip/vDm2R/2xw/pqp/O6c8VK7Qrvt4eemhW\nP107vLuKymr1x7d362BWidmxAAAAgFbj0sX1s935eu6DA2poatad1ybqpnG95WZ16S8J2imr1aLZ\no+J0z9QkNTYZev6Dg/p0Rx7nvQIAAKBDcMk1rna7oWWbjuqzPScU6Oeph2b2VVyXILNjAT/Y5cmd\n1CnUVy98eFDvbz6mkyU23T4xQe5u/EIGAAAA7ZfL/TRb19Cklz46pM/2nFCXcD89edtgSis6lNjo\nQP3m9qGKjQ7QtkOn9dz7B1RT12h2LAAAAOB7c6niWlZVrz8t3av9x0qU3CNEj98yWOFBnM+Kjick\nwEu/mDtIA3uH63BumZ5+Z69KK+rMjgUAAAB8Ly5TXPOLbPrft3Yrr9Cmq/tH65Hr+8vX2yXvlIaL\n8PJw0wMz+mrc4BidLKnW/761W7mnq8yOBQAAAFwylyiuh46X6v+9s0dlVfWaPSqONX9wGVarRXPH\nx+vGsb1VWd2gPy3dy47DAAAAaHc6fHvbsv+knv/goJqbDd0/PUXXDu8ui8VidiygTU0Y2lU/npEi\nu2HoheWHtGXfSbMjAQAAABetwxZXwzC0amu23vo0Q77e7vrF3IEamhBpdizANIP7ROoXNw2Ur7e7\n3lqfoQ+2HJOd43IAAADQDnTI4mo3DL278ahWbM1WeJC3/ufWwerFzsGA4roE6cnbBisqxEeffJOn\n19ceVrPdbnYsAAAA4II6XHFtarZr8ao0bdp7Ql0i/PT4LYMVFeprdizAaUSG+Op/bhui2OhAfZ16\nWi9/lKrGpmazYwEAAADn1aGKa11Dk55fflA7DxepV0yQfnXzIIUEeJkdC3A6/j4eeuymAUrqEaL9\nx0r01/cOqLa+yexYAAAAwHfqMMXVVtuo+cv2Ky37jPrFhelncwbIz9vD7FiA0/L2dNcjs/trcJ8I\nZeSX68/v7lNlTYPZsQAAAID/0iGK65nKOj39zh4dP1WpK1I66cGZfeXl4WZ2LMDpebhbdf91Kbqq\nX7RyC6v0p3f2qrSizuxYAAAAwLe0++J6+kyN/t87e1RQWqMJQ7vqzsmJnNEKXAKr1aI7JiVo0rBu\n//b9VG12LAAAAOCcdt3wTpZU65mle3Wmsl6zRvbUnDG9ZOWMVuCSWSwWXT+6l2aPilNZVb2efmev\nck5Xmh0LAAAAkNSOi2teYZWeWbpXFdUNunl8vCZf3kMWSivwg1w7vLtun9hH1XWNevYf+5R1ssLs\nSAAAAED7LK7ZBZV69h/7VF3bqNsm9tHYwTFmRwI6jJEDumjetGTVN9j1l/f2KzO/3OxIAAAAcHHt\nrrgeO1mh+cv2qaa+SXdOTtSoAV3MjgR0OJclRum+65LV2GTXc+8fUEZemdmRAAAA4MLaVXHNyCvT\nX97br/oGu+6dmqwRfaPNjgR0WEMSIvXj6Slqaj5bXtNzzpgdCQAAAC6q3RTX/ZlFeu79A2pqsuv+\n6ckalhRldiSgwxsYH6EHZvaV3TD0/PKDSj1eanYkAAAAuKB2U1yfem2H7IahB2b21eA+kWbHAVzG\ngF7hemhWPxmG9MKHB3Uwq8TsSAAAAOhgdqQXXvDxdlNcrVaLHp7dTwN6hZsdBXA5fXuG6ZHr+8lq\nsejFDw9pX2ax2ZEAAADQQXy6I0+LVqVd8Dntpri+9dtrlBIbZnYMwGUl9wjVo9f3l5ubRQtWpGrf\nUcorAAAAfphPd+Tp/c3HFBLgdcHntZvi6uvtYXYEwOUldA/RT28YIDc3i15ZkapDrHkFAADA97Rh\nV/650vqLuQMv+Nx2U1wBOIf4rsF6ZFY/WSwWvfTRIXYbBgAAwCXbvO+klm06qiB/T/3ipoGKCvG9\n4PMprgAuWWKPUD00s68Mw9ALHx5UZn652ZEAAADQTmw7VKC312cowNdDj904UFGhFy6tEsUVwPeU\n0jNMP57eV83Nhp774ICyTlaYHQkAAABObufhQr2+7rD8vN318xsHqnO430V9HMUVwPc2oHe45k1L\nVmOjXX99/4ByTleaHQkAAABOam9msRavSpe3p5t+duMAdY30v+iPdVhxbW5u1uOPP64bb7xRN910\nkzIzM7/1+Oeff65Zs2Zpzpw5ev/99x0VA4CDDUmI1N1TE1VX36S/LNuv/CKb2ZEAAADgZA5mleqV\nFanycLfqJ9cPUI9OgZf08Q4rrps3b5YkLVu2TI8++qiee+65c481Njbq6aef1uuvv663335b7733\nnkpKShwVBYCDDU/qpB9dm6jquibNX7ZPJ0uqzY4EAAAAJ3E454xe/viQrFaLHpndT71igi75NRxW\nXMeNG6c//OEPkqRTp04pMPBfjTorK0vdunVTUFCQPD09NXjwYO3atctRUQC0gSv7Reu2iX1UVdOo\nvyzbp5LyWrMjAQAAwGRHT5Tr+Q8PyjAMPTSzrxK6h3yv13Fv5VzffnF3d/3yl7/Uxo0b9cILL5z7\ne5vNpoCAgHN/9vPzk83W8u2FEREBLT4HHQfzbn+uH58gD093vbYqTc8tP6hnHrxSIQHeF/WxzNu1\nMG/XwrxdC/N2LczbtVzqvI+frNDzyw+qudnQ47cP1bCU6O/93g4trpL0zDPP6Oc//7luuOEGrV27\nVr6+vvL391d19b9uJayurv5WkT2f4uIqR0aFE4mICGDe7dSIpCgVlti05utc/c+Cbfrl3IHy9fa4\n4Mcwb9fCvF0L83YtzNu1MG/XcqnzLiyr0dPv7FVtXZPumZaknlH+LX78hYqxw24VXrFihRYtWiRJ\n8vHxkcVikdV69u3i4uKUm5ur8vJyNTQ0aPfu3Ro4cKCjogBoYzOu6qlRA7sov8im55cfVH1js9mR\nAAAA0EbKqur1l2X7VVndoJsnxGt4Uqcf/JoOu+I6YcIEPf7447r55pvV1NSkJ554Qhs3blRNTY3m\nzJmjX/3qV7rrrrtkGIZmzZqlqKgoR0UB0MYsFotuGR+vmrpG7TxcpFdWpOrBmX3l7sYJXAAAAB2Z\nrbZRf31/v0oq6jT9qliNGRTTKq/rsOLq6+ur559//ryPjxkzRmPGjHHU2wMwmdVq0d1TklRT36SD\nWaV6be1h3TM1SVaLxexoAAAAcID6hmY9v/yAThZXa9zgGE29okervTaXPwA4jLubVQ/M6KteMUHa\nkV6opRszZRiG2bEAAADQypqa7Xp5xSFlnazU8OQo3TiutyyteMGC4grAobw83PTo7H6KifDX5r0n\n9fFX2WZHAgAAQCuy2w29uiZdqcfPqF9cmO68NrHV77KjuAJwOF9vD/1sTn9FBvtozdc52rTnhNmR\nAAAA0AoMw9DSzzK183CResUE6f7pKQ7Z14TiCqBNBPl76Wc3DlCgn6fe3ZipPRnFZkcCAADAD7Tm\n6xxt3ntSMRH+enR2P3l5uDnkfSiuANpMRLCPfnJ9f3l6umnRqjRl5pebHQkAAADf09aDBfr4q2yF\nBXrrp3P6y9fbw2HvRXEF0Ka6dwrQAzNSZBiGXvzwoE6VVJsdCQAAAJco9Xip/v7pEfl5u+unc/or\n2N/Loe9HcQXQ5lJiw3THpARV1zXpuff3q7Si1uxIAAAAuEi5p6v08sepslotenh2P0WH+Tn8PSmu\nAEwxom+0Zo3sqdLKev1uyTeqqWsyOxIAAABaUFxeq+c+OKCGxmbdOzVZvWOC2+R9Ka4ATHPt8O4a\nPbCLcgoq9dJHB9XYZDc7EgAAAM7DVtuo594/oMrqBs0dH6/BfSLa7L0prgBMY7FYdPP4eA1P6aQj\neeV6fd1h2Q3D7FgAAAD4D/WNzXp++QGdPlOjScO6aezgmDZ9f4orAFNZrRb9/JYh6tUlSDvSC7V8\nS5bZkQAAAPBv7HZD89/ZrayTlRqeHKVZo+LaPAPFFYDpvDzc9PDsfooK9dWnO/K0Zf9JsyMBAADg\nn/6x6ai+ST2txO4huvPaRFktljbPQHEF4BT8fTz0k+v7yd/HQ++sz1RqdqnZkQAAAFzext352rTn\nxD+PNOwrdzdzKiTFFYDTiAzx1UOz+spqtWjBx6k6UWwzOxIAAIDL2n+sRMs2HVWQn6d+c/dw+Xq7\nm5aF4grAqfSOCdZdkxNV19Cs5z84oHJbvdmRAAAAXE7u6SotWpkmDzerHp7dT5EhvqbmobgCcDrD\nkqI08+qzZ7y+sPyg6huazY4EAADgMsqq6vX88rNntd4zNVmx0YFmR6K4AnBOky/vriv7RivndJUW\nr06T3c4xOQAAAI5W19Ck55cfULmtQbNHx7XpWa0XQnEF4JQsFotum9hHid1DtO9oid7ffMzsSAAA\nAB2a3W5o8ap05RXadHX/zpp4WTezI51DcQXgtNzdrHpgRoqiw3y1YVe+Nu89YXYkAACADmvZ50e1\n/1iJknuE6JYJ8bKYcOzN+VBcATg1X28PPXp9fwX4emjpxqNKyz5jdiQAAIAOZ9OeE/ps9wl1DvfT\n/dPNO/bmfJwrDQB8h4hgHz00q5+sVmnBilQVlFabHQkAAKDDSM0u1bufZSrQ10OPzu5n6rE350Nx\nBdAu9OoSpDsmJai2vkkvLD8oW22j2ZEAAADavdNnarRwRZrcrFY9NKufwoN9zI70nSiuANqNK1Ki\nNWl4NxWW1eqVFalqarabHQkAAKDdqqlr1PPLD6qmvkl3TOqjuC5BZkc6L4orgHZl1sg4DegVrsO5\nZfrHpqNmxwEAAGiXmu12LVyZpsIzNZo4rJuuSIk2O9IFUVwBtCtWi0X3TE1STISfNu89qc/ZaRgA\nAOCSfbA5S6nZZ9QvLkyzR8aZHadFFFcA7Y6Pl7sent1PAb4eenfjUaXnsNMwAADAxfrqwClt2JWv\n6DBfzZuWLKvVeY69OR+KK4B2KTzIRw/O7CurVXplRaoKz9SYHQkAAMDpZeaX6631GfLzPnshwMfL\n+XYQ/i4UVwDtVu+YYN0+MUHVdU362/KDqq5jp2EAAIDzKamo1csfH5JhSD+enqKoEF+zI100iiuA\ndm1E32hNHNZNhWdqtHhVuux2w+xIAAAATqeuoUkvfnhIVTWNumlcbyX2CDU70iWhuAJo92aPjFPf\nnmE6dLxymS3aAAAgAElEQVRUH3913Ow4AAAATsVuGHptzWHlF9k0akBnjRnUxexIl4ziCqDds1ot\nmjctSVEhPlq7PVc7DxeaHQkAAMBprNqarT2ZxUroFqy54+NlsTj/Zkz/ieIKoEPw9fbQg7P6ycvT\nTa+vO/sbRQAAAFe360iRVm3LUXiQt+6fniJ3t/ZZAdtnagD4Dl3C/XTPlCQ1NNr14ocHZatlsyYA\nAOC68gqr9NqadHl5uumR2f0U4OtpdqTvjeIKoEMZFB+haSN6qKSiTgtXpqrZbjc7EgAAQJuz1Tbq\npY8OqaHJrnunJKlLhL/ZkX4QiiuADmfalbEa0Ctc6TllWr4ly+w4AAAAbcpuN7RoVZpKKuo0bUQP\nDYyPMDvSD0ZxBdDhWC0W3TM1SdFhvlq/M1/b006bHQkAAKDNfPTlcaVln1G/uDBNuzLW7DitguIK\noEPy8XLXQ7P6ycfLTW9+ckS5p6vMjgQAAOBwu48Uad03uYoM8dG9U5NkbYc7CH8XiiuADqtTqK/u\nnZqspia7XvzooCqrG8yOBAAA4DAni216be1heXm46aGZfeXr7WF2pFZDcQXQofXvFa4ZV/fUmcp6\nvbIiVU3NbNYEAAA6npq6Rr340SHVNzbrrsmJ7X4zpv9EcQXQ4U2+vLuG9IlQRn653vv8mNlxAAAA\nWpXdMLR4dbqKymp17fDuGpIQaXakVkdxBdDhWSwW3Tk5UV0i/LRpzwltO1RgdiQAAIBWs2prtg5m\nlSo5NlQzr+5pdhyHoLgCcAnenu56aGZf+Xi56631GcorZLMmAADQ/u3LLNaqbTkKD/LWvGnJslo7\nxmZM/4niCsBlRIb46p6pSWpssuuljw6puq7R7EgAAADfW0FptZasSZenu1UPzuwrf5+OsxnTf6K4\nAnApA3qFa8oVPVRSUaclq9NlNwyzIwEAAFyy2vomvfTRIdU1NOuOSQnqFhVgdiSHorgCcDnTr4xV\ncmyoDmaVas3XOWbHAQAAuCSGYei1tYdVUFqjCUO7anhyJ7MjORzFFYDLsVotmjctWWGBXlr5VbYO\nHS81OxIAAMBF+3RHnvZmFiuhW7CuHx1ndpw2QXEF4JL8fTz04xl95eZm0eJVaSoprzU7EgAAQIuO\n5JZp+RdZCvb31LzrUuRmdY1K55DPsrGxUY899pjmzp2r2bNna9OmTd96/M0339TkyZN166236tZb\nb9Xx48cdEQMALig2OlA3j49XdV2TXl6RqsamZrMjAQAAnFe5rV4LV6XJarHo/ukpCvLzNDtSm3F3\nxIuuWrVKwcHBevbZZ1VeXq7p06dr7Nix5x5PTU3VM888o5SUFEe8PQBctKv7d1bWyUptPVSgpRsz\ndcekRLMjAQAA/JemZrteWZGqyuoG3Ti2t3rHBJsdqU05pLhOnDhR11xzjaSzC4fd3Ny+9XhaWpoW\nL16s4uJijRo1SvPmzXNEDABokcVi0S0T4pVXVKUvDxSoZ+cgXd2/s9mxAAAAvuXDL7J09ESFhiRE\navyQGLPjtDmLYTjuLAibzab7779fN9xwg6ZOnXru71966SXNnTtX/v7+evDBB3XTTTdp9OjRjooB\nAC06XVqtnzz3heobm/XnB69Sr66u9VtMAADgvL4+eEpP/32XukT466+PXi1f7457Xuv5OKy4FhQU\n6IEHHji3zvX/GIYhm82mgICz5wwtXbpU5eXleuCBB1p8zeLiKkdEhROKiAhg3i7EWeZ9MKtUz39w\nQKGB3vrtj4Z26EO8zeQs80bbYN6uhXm7FubdNk6fqdFTb+6S3TD069uGqEuEvyk52mLeERHnP4vW\nIZszlZSU6M4779Rjjz32rdIqnb0KO2XKFFVXV8swDO3YsYO1rgCcQr+4ME0d0UOllXVavCpNdrvD\nbkgBAABoUX1Ds17++JDqGpp1x8QE00qrM3DIGteFCxeqsrJSCxYs0IIFCyRJ119/vWprazVnzhz9\n5Cc/0W233SZPT09dfvnlGjlypCNiAMAlm3ZlrLILqnToeKnWfJ2jaVfGmh0JAAC4IMMw9Nb6IzpZ\nXK0xg7poeHInsyOZyqFrXFsbtyK4Dm49cS3ONm9bbaN+/8ZOnams189uHKCkHqFmR+pQnG3ecCzm\n7VqYt2th3o61ed9Jvb0+Q7HRgfrVzYPk4W7uea0d8lZhAGjP/H08dN/0FFmtFi1elaayqnqzIwEA\nABeSXVCpf3yWKX8fD/14eorppdUZ8BUAgO8Q1zlIN4zppcqaRi1amapmu93sSAAAwAXYahu14OND\nam42dO+0JIUFeZsdySlQXAHgPMYNjtHgPhHKPFGhj7/MNjsOAADo4OyGoSWr01VaWa/rroxVSmyY\n2ZGcBsUVAM7DYrHoR5MSFRnio3Xf5Gr/sRKzIwEAgA7sk29ydeh4qVJiQzVlRA+z4zgViisAXICv\nt7t+PD1F7m5WvbYmXSUVtWZHAgAAHVBmfrk+/jJbIQFeuntqkqwWi9mRnArFFQBa0C0qQDeP763q\nuia9siJNTc2sdwUAAK2nsqZBC1emSpLmTUtWoK+nyYmcD8UVAC7C1f076/LkTsouqNT7m4+ZHQcA\nAHQQdsPQq6vTVW5r0IyrYxXfNdjsSE6J4goAF8Fisei2a/qoc7ifPtt9QruPFJkdCQAAdADrtucq\nNfuM+vYM06Th3c2O47QorgBwkbw83XT/9BR5elj1+rrDKiyrMTsSAABoxzLyyvTxV8fPrmudksi6\n1guguALAJegS7qfbr0lQXUOzXvk4VQ2NzWZHAgAA7VBldYMWrUqTRRbdd12yAljXekEUVwC4RJen\ndNLIAZ2VV2TTu58dNTsOAABoZ+yGoSVrzq5rnTWyp3rHsK61JRRXAPge5o7rrW6R/vrywCltTztt\ndhwAANCOrN2eq7TsM+oXF6ZrhnUzO067QHEFgO/Bw91N989Ikbenm95an6HTZ1jvCgAAWpaRV6YV\n/1zXetdk1rVeLIorAHxPUSG+un1iguobmrVwRaoam1jvCgAAzq+yukELWdf6vVBcAeAHGJYUpav7\nn13v+v7nWWbHAQAATspuN7RkdZoqbA2aNYp1rZeK4goAP9BN43qrS4SfNu09oT0ZnO8KAAD+29rt\nOUrLKTu7rvUy1rVeKoorAPxAXh5uuu+6/zvf9YiKy2vNjgQAAJzIkdwyrdiardBAL909JYl1rd8D\nxRUAWkGXcD/dPD5etfVNWrgyTU3NdrMjAQAAJ1Dxz/NarRaL7rsuRf4+HmZHapcorgDQSq7sG63L\nk6OUXVCpj744bnYcAABgsnPrWqsbNGtknHp1CTI7UrtFcQWAVmKxWHTLhD6KCvXVpzvzdOBYidmR\nAACAidZ9k6v0nDL1jwvThMu6mh2nXaO4AkAr8vFy1/3XJcvdzarX1h7Wmco6syMBAAATZJ2s0Iqv\nss+e18q61h+M4goAraxbVIBuGttLttpGLV6VpmY7610BAHAlNXVNWrQqTYZh6J4pSaxrbQUUVwBw\ngFEDu2hInwhlnqjQyq05ZscBAABtxDAMvbX+iEoq6jT5iu5K6B5idqQOgeIKAA5gsVh0x6QEhQd5\na+3XOUrPOWN2JAAA0Aa2HTqtnYeLFNclUNNGxJodp8OguAKAg/h6e+j+6SmyWi1avDpdFdUNZkcC\nAAAOdPpMjZZuzJSPl5vmTT275wVaB19JAHCg2OhAzR4Vp8rqBi1ZnSa7YZgdCQAAOEBjk12LVqap\nvrFZt09MUHiwj9mROhSKKwA42IShXdU/LkzpOWVatz3X7DgAAMABPvoyS7mFVbqyb7QuS4wyO06H\nQ3EFAAezWCy6a0qSQgK89PFXx5WZX252JAAA0IoOHS/V+p35igr11dzxvc2O0yFRXAGgDfj7eGje\ntGRJ0uLVabLVNpqcCAAAtIaK6ga9tiZdblaL7puWLG9Pd7MjdUgUVwBoI/Fdg3XdlbE6U1mvv39y\nRAbrXQEAaNfshqHX1qarsqZRs0fFqXunALMjdVgUVwBoQ1Mu76E+XYO1J7NYW/afMjsOAAD4ATbu\nylfq8TNK6Rmq8UO7mh2nQ6O4AkAbslotumdqkvy83bVs01GdKLaZHQkAAHwPuaertHxLlgL9PHXX\n5CRZLRazI3VoFFcAaGOhgd6689rEc9vmNzQ2mx0JAABcgrqGJi1cmapmu6G7JycqyM/T7EgdHsUV\nAEwwMD5CYwZ10cmSar33+TGz4wAAgEvw7sajKiyr1TWXdVVKzzCz47gEiisAmGTOmF6KifDT5n0n\ntSejyOw4AADgIuxIL9TWQwXq3ilAs0bGmR3HZVBcAcAkHu5umnddijzdrXpj3RGVVtSZHQkAAFxA\ncXmt3lp/RF4ebrpvWrLc3ahTbYWvNACYqEu4n24a11s19U1asjpNzXa72ZEAAMB3aGq2a/GqNNXW\nN+uWCfGKCvU1O5JLobgCgMmu7t9ZQ/pEKPNEhdZ8nWt2HAAA8B1WbctW1qlKDUuK0hUpncyO43Io\nrgBgMovFotsnJSgs0EurtmUrI6/M7EgAAODfHM4t09qvcxUe5K1bJ/SRhaNv2hzFFQCcgJ+3h+ZN\nS5FFFi1enS5bbaPZkQAAgCRbbaNeXZMui8WiedOS5evtbnYkl0RxBQAn0SsmSNdd2UNlVfV685Mj\nMgzD7EgAALg0wzD0xrrDKquq14yrYxXXJcjsSC6L4goATmTy5T3Up2uw9mYWa8v+U2bHAQDApW3e\nd1L7jpYooVuwJg3rbnYcl0ZxBQAnYrVadM/UJPl5u2vZpqM6UWwzOxIAAC7pRJFNyzYdk7+Ph+6Z\nmiyrlXWtZqK4AoCTCQ301p3XJqqxya5FK9NU39hsdiQAAFxKQ2OzFq1KU1OzXT+6NkEhAV5mR3J5\nFFcAcEID4yM0dlCMTpZU673Pj5kdBwAAl/Le58d0sqRaYwZ10cDeEWbHgSiuAOC0bhgTp5gIP23Z\nd1J7MorMjgMAgEvYk1GszftOKibCTzeM7mV2HPwTxRUAnJSHu5vmXZciT3er3lh3RKUVdWZHAgCg\nQztTWac3PzksD3fr2f8Ge7iZHQn/5JDi2tjYqMcee0xz587V7NmztWnTpm89/vnnn2vWrFmaM2eO\n3n//fUdEAIAOoUu4n24a11s19U1avDpNzXa72ZEAAOiQ7HZDS1anq7quSTeN7a0u4X5mR8K/ccjp\nuatWrVJwcLCeffZZlZeXa/r06Ro7dqyks6X26aef1vLly+Xj46ObbrpJY8aMUXh4uCOiAEC7d3X/\nzkrLKdPuI0VavS1H06/qaXYkAAA6nLXbc5SRX67B8REaOaCz2XHwHxxyxXXixIl65JFHJJ09tNfN\n7V+X2LOystStWzcFBQXJ09NTgwcP1q5duxwRAwA6BIvFojsm9lFYoJdWf52jzPxysyMBANChHDtR\noZVbcxQS4KXbJyXIYuHoG2dzUVdca2pqlJeXpz59+qi2tla+vr4XfL6f39nL6jabTQ8//LAeffTR\nc4/ZbDYFBAR867k228WdUxgREdDyk9BhMG/Xwrxb9ovbhurxl7fq1bWH9eLPRsnf19PsSN8b83Yt\nzNu1MG/X0hHmbatt1Ktrt0sy9Itbhyi2W6jZkZyWmfNusbhu375dv/nNb9Tc3Kxly5Zp2rRpmj9/\nvq688soLflxBQYEeeOABzZ07V1OnTj339/7+/qqurj735+rq6m8V2QspLq66qOeh/YuICGDeLoR5\nX5wIf09NGxGrFVuzNf+d3frx9JR2+Rth5u1amLdrYd6upSPM2zAMLVqVpqKyWk0b0UNRgV7t/nNy\nlLaY94WKcYu3Cv/1r3/Vu+++q8DAQEVGRuqdd97Rn//85wt+TElJie6880499thjmj179rcei4uL\nU25ursrLy9XQ0KDdu3dr4MCBF/mpAIBrm3JFD8XHBGlPRrG+PHDK7DgAALRrWw8WaOfhIvWKCdLU\nET3MjoMLaPGKq91uV0TEvw7d7dWr5bOMFi5cqMrKSi1YsEALFiyQJF1//fWqra3VnDlz9Ktf/Up3\n3XWXDMPQrFmzFBUV9QM+BQBwHVarRfdMTdZvX9+pf3x2VL1jgtWZXQ8BALhkBaXVWvpZpny83HXv\n1CS5WTkp1Jm1WFw7deqkzZs3y2KxqLKyUkuXLlXnzhfeZevJJ5/Uk08+ed7Hx4wZozFjxlx6WgCA\nwoK8dcekBC1YkaqFK9P069sHy8Odc+YAALhYjU12LVqZpoZGu+6fnqTwIB+zI6EFLf5a4amnntLq\n1atVUFCg8ePH6/Dhw3rqqafaIhsA4DyGJERq5IDOOlFs0webs8yOAwBAu/LhF1nKK7Lp6v7RGpoQ\naXYcXIQWr7iGhYXp7rvv1l//+ldVVVUpNTVVkZEMFwDMduPY3srML9dne04oOTZU/XtxHjYAAC05\nmFWqDbvyFR3mq5vGxpsdBxepxSuu8+fP1/z58yVJtbW1WrBggV588UWHBwMAXJiXh5vmTUuWu5tV\nr609rHJbvdmRAABwahW2er22Nl3ubhbNm5YsL0+W2rQXLRbXLVu2aMmSJZKkyMhIvfHGG9qwYYPD\ngwEAWtYtKkA3jI47ewbdmnTZDcPsSAAAOCW7YejVNemqqmnU9aN6qVtU+z+D1pW0WFybmppUV1d3\n7s+NjY0ODQQAuDRjB8eof1yY0nPKtH5HntlxAABwSht25istp0z94sI0bkiM2XFwiVpc43rjjTdq\n5syZ53YB/vLLL3XzzTc7PBgA4OJYLBb9aHKifvv6Tn305XEldA9RbHSg2bEAAHAa2QWV+vCLLAX5\neerOaxNlsVjMjoRL1OIV1zvuuEPPPvusIiIiFB0drWeffVZz585ti2wAgIsU6Oupe6YkyW43tGhl\nmmrrm8yOBACAU6itb9KiVWlqthu6e0qSAv08zY6E7+GibhU+c+aMQkNDFRgYqMzMTK1YsaItsgEA\nLkFSj1BNHN5NReW1emdDptlxAABwCu9uzFRRWa0mDeum5NhQs+Pge2rxVuGf/exnOnXqlOLi4r51\nSX369OkODQYAuHQzruqpI7ll2p52Wik9Q3V5ciezIwEAYJpv0k5rW+pp9egUoBlX9zQ7Dn6AFotr\nRkaGPvnkE+4DB4B2wN3NqnnTkvXbN3bp7fUZiuscqMgQX7NjAQDQ5orKa/XW+gx5ebpp3nVnj49D\n+9Xi9OLi4lRcXNwWWQAArSAyxFe3TeijuoZmLVqVrqZmu9mRAABoU03Ndi1amaa6hmbdOiFeUfwS\nt91r8YprXV2dJk6cqPj4eHl6/msh81tvveXQYACA7+/ylE5KzS7V9rRCrfgqW7NHxZkdCQCANrNy\na7ayCyp1eXKUrkiJNjsOWkGLxXXevHltkQMA0MpumdBHx05W6JNvcpXcI0SJPdiQAgDQ8R3OOaN1\n23MVEeytWyb0MTsOWkmLtwpfdtll8vf3l9VqlcVikd1uV14eB9wDgLPz8XLXvGkpslotWrwmXVU1\nDWZHAgDAoapqGrR4TbqsVovmTUuRj1eL1+nQTrQ4yV/+8pfat2+fKioq1LNnTx05ckSDBg3S7Nmz\n2yIfAOAH6Nk5UDOu7qnlW7L0xrojemhWXzbbAwB0SIZh6I11R1Rha9DsUXHq2TnQ7EhoRS1ecd21\na5fWrl2ra665Rn/4wx/0/vvvq6GB39oDQHsxcVg3JXYP0f5jJfp870mz4wAA4BCf7z2p/cdKlNQj\nRBOHdTM7DlpZi8U1MjJSHh4eiouLU0ZGhnr37q3q6uq2yAYAaAVWi0V3T0mSv4+H3vv8mPKLbGZH\nAgCgVeUX2fTe58fk7+Ohu6ckycrdRR1Oi8U1KipKixYt0sCBA7Vs2TKtXbtWNTU1bZENANBKQgK8\ndOfkRDU127VwZarqG5vNjgQAQKuob2zWwpWpamq2667JiQr29zI7EhygxeL6xz/+UTExMerXr58m\nTJigNWvW6He/+10bRAMAtKYBvcI1dnCMCkpr9N6mo2bHAQCgVby36agKSms0bnCM+vcKNzsOHOS8\nmzMVFxcrIiJClZWVGjhwoE6dOqWxY8dq7NixbZkPANCKbhgdp4y8cm3Zf0rJsaEa3CfS7EgAAHxv\nezKKtGX/KXWN9Nf1ozmzvCM7b3F98skntWjRIt1yyy2yWCwyDONb/7tp06a2zAkAaAUe7m6ad12y\n/vDmLr35yRHFRgcqNNDb7FgAAFyy0oo6vbHuiDzdrZo3LVke7m5mR4IDnbe4Llq0SJL061//WqNH\nj26zQAAAx+oS7qcbx/XWW59maPHqdP3ipoGyWtnEAgDQftjthpasTlNNfZNun9hHncP9zI4EB2tx\njev8+fPbIgcAoA2N7N9Zg+MjlJlfrjXbc8yOAwDAJVnzdY4yT1RoSJ8IXd2/s9lx0AbOe8X1/3Tt\n2lWPP/64+vfvL2/vf91ONn36dIcGAwA4jsVi0e2TEnS8oFKrtuYoqXuoesUEmR0LAIAWZeaXa+W2\nbIUFeun2SQmycPSNS2jximtISIgk6cCBA9qxY8e5fwAA7Zu/j4funZokQ4YWrUpTTV2j2ZEAALig\n6rpGLVmdJkm6Z2qy/Lw9TE6EttLiFdenn376v/6urq7OIWEAAG2rT7cQTb2ih1Zty9HfP83Qfdcl\n85trAIBTMgxDf//kiEor63XdlbGK7xpsdiS0oRaL6/r16/Xyyy+rpqZGhmHIbrerrq5O27dvb4t8\nAAAHmzqih9Jzy7TrSJFSYkN1FWuFAABO6KuDBdqdUaz4mCBNuaK72XHQxlq8VfjZZ5/VE088obi4\nOM2fP18zZ87UpEmT2iIbAKANuFmtundqkny83LX0s0wVlFabHQkAgG85VVKtdz/LlK+Xu+6Zmiw3\na4s1Bh1MixMPDAzU8OHD1b9/f1VVVemhhx7S/v372yIbAKCNhAf56I5JCWpotGvRqjQ1NtnNjgQA\ngCSpsalZi1alqaHRrjsmJSgsiPPHXVGLxdXb21vZ2dmKi4vTzp071dDQoKqqqrbIBgBoQ0MTInVV\nv2jlFdr04RdZZscBAECS9MGWLOUX2TRyQGcNSYg0Ow5M0mJx/clPfqK//e1vGj16tLZv364RI0Zo\n3LhxbZENANDG5o6LV6dQX23Yla9Dx0vNjgMAcHEHjpXos90nFB3mqxvH9jY7DkzU4uZMf/rTn1Rf\nX68333xTL730knx9fRUUxFl/ANAReXm6ad60ZP3x7d16bU26fn/nZQry9zI7FgDABZXb6vXa2sNy\nd7PqvutS5OXhZnYkmKjFK64ffvihXn75ZTU2Nuree+/Vgw8+qA8++KAtsgEATNC9U4Bmj+qlyppG\nvbr2sOyGYXYkAICLsRuGXl2TLltto+aM6aWukf5mR4LJLmo7ru7du+tHP/qR7r33XlVXV2vJkiWO\nzgUAMNH4ITHq2zNMadlntGFnvtlxAAAuZv2OPKXnlGlAr3CNGdTF7DhwAi0W1w0bNujhhx/Wtdde\nqz179ujJJ5/Uhg0b2iIbAMAkFotFd01OVKCfpz78Iks5pyvNjgQAcBHHT1Xqoy+PK8jfUz+6NkEW\ni8XsSHACLRbX1atXa9q0adq4caN+97vfadCgQW2RCwBgskA/T909JVHNdkOLVqaprqHJ7EgAgA6u\ntr5Ji1elyW43dO+UJAX4epodCU6ixeL64osvaty4cfLw8GiLPAAAJ5ISG6aJl3VTYVmtlm7MNDsO\nAKCDe2dDhorKazVpeHcl9gg1Ow6cyEWtcQUAuK6ZI3uqe6cAbTt0WjvSC82OAwDooLYdKtD2tEL1\n7Byo6VfFmh0HTobiCgC4IHc3q+6bliwvDze9tf6IistrzY4EAOhgTp+p0TsbMuXjdfZYNnc3agq+\njf9HAABaFBXqq1smxKu2vlmLV6WpqdludiQAQAfR2GTXwpWpqm9s1u0TExQR7GN2JDghiisA4KJc\nkdJJw5KilHWqUqu2ZZsdBwDQQXz4RZbyCm26ql+0LkuMMjsOnBTFFQBwUSwWi26d0EfhQd5a+3Wu\njuSWmR0JANDOHcwq0YZd+YoO89XccfFmx4ETo7gCAC6ar7e75k1LlsVi0ZI16bLVNpodCQDQTpVV\n1evVNYfl7mbVvGnJ/7+9+46vsrDbP36dkT0hCQQICSGMQAKE4QBFRkVUwlZALTjQoj601aqt7WOt\nrTxu669atWKdVAUEGVHcolhQRiBABpsEEkhCyDzZJ+f+/YFNSwUF5eQ+Oefzfr14wVl3LvI9d5Ir\n91KAv83sSPBgFFcAwFlJ6hahKSMTVVHTqFfW5MkwDLMjAQDaGZfL0N+/+QXozLG9FN85zOxI8HAU\nVwDAWbvywgQlx0dq294yfb6tyOw4AIB25v2NBcorqFBar2iNHdLN7DhoByiuAICzZrVadMvEFIUE\n2rX4s30qPOYwOxIAoJ3YV1SlFesOqkNYgG6a0E8Wi8XsSGgHKK4AgB+kQ1iAbrqyn5qdLr2wOkdN\nzS1mRwIAeLi6hma9sCpHhgz9bGJ/hQb5mR0J7YRbi+v27ds1e/bsb93/6quvasKECZo9e7Zmz56t\nAwcOuDMGAMBNBveJ0Zgh3VR0rFZL1u4zOw4AwIMZhqFXP9it49UNmjiih/rGdzA7EtoRu7sW/OKL\nL2r16tUKCvr2BYSzs7P16KOPKjU11V0fHgDQRmaO6aU9hyu1dmuRUnt01OA+MWZHAgB4oC93HNWW\nXaXqHRehiRf1MDsO2hm3bXGNj4/XM888c8rHcnJytHDhQl1zzTV64YUX3BUBANAG/P1smjcpRX52\nq15ek6eKmkazIwEAPExRWa3e/HiPQgLt+tnEFNmsHLGIs+O2La7jx49XYWHhKR+bMGGCrr32WoWG\nhmr+/Plau3atxowZ873LjInhNNm+hHn7FubdvsXEhOnmyal6fvkOvfbhbv1p3gjZrKc/2Qbz9i3M\n27cwb99yJvNubG7Rn17boianS3f/dKiSe7FnTntl5vrttuJ6OoZh6Prrr1dY2In/9KhRo5Sbm3tG\nxd8Io+EAACAASURBVPXYsRp3x4OHiIkJY94+hHl7h2G9ojS4d7S27S3T6xnZSh/R45TPY96+hXn7\nFubtW8503os+2q38o9UaM7ibesXyHmmv2mL9/q5i3Obb6B0Oh9LT01VbWyvDMLRx40aOdQUAL2Cx\nWHTjlf3UISxAK788qP1FVWZHAgCYbOueY1q7tUjdYkI0c2wvs+OgHWuz4pqRkaElS5YoLCxMd955\np+bMmaNrr71WvXr10qhRo9oqBgDAjUKD/HRLen8ZhqEXVueorsFpdiQAgEnKqxv0ypo8+dutunVS\nivz9bGZHQjtmMQzDMDvEmWK3At/Brka+hXl7n3fW7de7Gwp0Qf/O+tnE/iddXJ55+xbm7VuYt2/5\nrnm3uFx6/M1t2lNYpTmX99XotG5tnA7nms/tKgwA8H6TLkpUUtdwbcwt0YbsYrPjAADaWMb6fO0p\nrNKw5E4aNair2XHgBSiuAIBzzm6z6meTUhQUYNM/PtqjkvI6syMBANrI7kMVytiQr6jwQN1wed+T\n9roBfiiKKwDALWIigzR7fF81Nrfob6tz5GxxmR0JAOBm1XVNemF1jiyyaN6kFAUH+pkdCV6C4goA\ncJsL+8fqogGxKiiu0fIv9psdBwDgRi7D0N8zclXpaNL0UT3VKy7C7EjwIhRXAIBbXTeujzp3DNaH\nmw4ra1+Z2XEAAG7y/tcFyj5YrgE9ozT+gniz48DLUFwBAG4V6G/XbZNTZLdZ9dK7uTpWUW92JADA\nOba3sFIr1h1UZKi/5qb3k5XjWnGOUVwBAG4X3zlM147rrdoGpx7/xxaOdwUAL+Kob9bfVuXIkKF5\nk1IUHuxvdiR4IYorAKBNjBrUVef366S8/HKtWHfA7DgAgHPAMAy99G6uKmoaNWVkT/WN72B2JHgp\niisAoE1YLBZdf3myukSH6P2Nh7RjP8e7AkB79+Gmw9q+/7hSenTQhOEJZseBF6O4AgDaTFCAXb+Z\nPUx2m1V/fzdP5dUNZkcCAPxAuwvKtfyL/YoI8dfNE1M4rhVuRXEFALSppLhIXfOTXnLUN+uF1Tlq\ncXG8KwC0N7UNzXps0Ra5XIZ+NrG/IkI4rhXuRXEFALS50YO7aVhyJ+0trNLKLw+aHQcAcBYMw9DL\n7+WptKJeEy/qoX49OpodCT6A4goAaHMWi0U3XJ6sTpFBeu+rAmUfOG52JADAGfoks1Db9pZpYK9o\nTboo0ew48BEUVwCAKYID7bptSqrsNosWZpw4IyUAwLMdPFqtpZ/tU1iwn+66bqisVo5rRduguAIA\nTJMQG6aZY3tzvCsAtAN1DU79bVW2XC5Dt0zsr47hgWZHgg+huAIATDV2SDcN7ROjPYcrteqf+WbH\nAQCcgmEYevWDXTpW2aArhycoNTHK7EjwMRRXAICpLBaLbrwyWdERgXpvQ75yDpabHQkA8F8+31ak\nLbtK1ScuQlNGclwr2h7FFQBguuBAP902JVVWq0ULM3JU6eB4VwDwFIdKavTWp/sUGuSnn01Kkc1K\nhUDb410HAPAIiV3CNWNML9XUNWvh6hy5XIbZkQDA59U1OPXcymw5W1y6Ob0fx7XCNBRXAIDHuHRY\nnAb3jtauQ5VavZ7ruwKAmQzD0CtrTlyv9coLEzQwKdrsSPBhFFcAgMewWCy6aUI/RUcEKmM9x7sC\ngJk+3lKozD3H1Ld7pKZewnGtMBfFFQDgUUL+43jXF1bnqLy6wexIAOBz9hVV6e21+xQe4q95kzmu\nFebjHQgA8DiJXcJ1zaUnru/6/KoTx1YBANpGTV2Tnl+ZLZdh6NZJKYoMDTA7EkBxBQB4pjGDu+nC\n/p21v6hab6/db3YcAPAJLpehhRm5qqhp1LRLeio5oYPZkQBJFFcAgIeyWCyac3lfdYkK1sdbDmvL\nrlKzIwGA13v3m+tpD0yK0hUXJpgdB2hFcQUAeKxAf7v+Z+oABfjZ9PKaPBWX15kdCQC8Vk5+uVb9\n86CiwgN1c3p/WS0WsyMBrSiuAACP1jU6RNdf3lcNTS16dsVONTa3mB0JALxORU2jFq7OkdVq0W1T\nUhUa5Gd2JOAkFFcAgMe7MCVWY4Z0U9GxWi36cLcMwzA7EgB4DWeLS8+vylZNXbNm/aS3enYNNzsS\n8C0UVwBAuzBrbG8ldgnThuxifbnjqNlxAMBrLP9iv/YVVun8fp00dkg3s+MAp0RxBQC0C352q26b\nkqqQQLv+8dEeFRTXmB0JANq9zN3H9OGmw4rtGKzrL0+WheNa4aEorgCAdiM6Iki3TOwvZ4tLz67Y\nqdqGZrMjAUC7VVpRp5fX5MrfbtXtU1MVFGA3OxJwWhRXAEC7MjApWukjElRW1aCX3s3jeFcA+AEa\nm1v07Ips1Te2aPb4voqLCTU7EvCdKK4AgHZnysU91S+hg7L2lemDjYfMjgMA7YphGHr9g106XOrQ\n6MHddNGALmZHAr4XxRUA0O5YrRbNm5SiyFB/Lftiv/Lyy82OBADtxmdbi/RVTol6dg3XNT/pbXYc\n4IxQXAEA7VJ4iL9unzJAVotFz6/KUXl1g9mRAMDj7S2s1OJP9yo82E+3T0mVn506gPaBdyoAoN3q\nFRehay7tLUd9s55dsVPNzhazIwGAx6pyNOq5ldkyDOnWyanqGB5odiTgjFFcAQDt2pjB3XRRaqwO\nHq3RGx/vMTsOAHgkZ4tLz6/MVpWjSVeNTlJyQgezIwFnheIKAGjXLBaLZo/vq/jOoVq3/ai+yCoy\nOxIAeJyla/dpT2GVzkvupPHndzc7DnDWKK4AgHbP38+m+VMHKCTQrjc+3qP9R6rMjgQAHuPr3GJ9\nsqVQXaNDdOOVybJYLGZHAs4axRUA4BWiI4N06+RUtbgMPbciW1W1TWZHAgDTHS516NU1uxTob9P/\nTE1VoL/d7EjAD0JxBQB4jZTEjpp2SU9V1DTqbyuz1eJymR0JAExT19CsZ9/ZqSanSzen91eXqBCz\nIwE/GMUVAOBVrrwwQUP6xGj34Uq9vXa/2XEAwBQuw9CLGbkqrazXhOEnvi4C7RnFFQDgVSwWi+ZO\n6KcuUcH6aPNhbcorMTsSALS5d9fna/v+40rp0UFTR/Y0Ow7wo1FcAQBeJyjArvnTBijQ36aX1+Sp\n8JjD7EgA0GZ27C/Tqn8eVFR4gH42KUVWKydjQvtHcQUAeKUuUSGaO6G/mppd+us7O1XX0Gx2JABw\nu6PHa/XC6lzZbFb9z7QBCgv2NzsScE5QXAEAXmto3xhNGJ6g0op6LczIlctlmB0JANymrsGpZ5bv\nVH2jUzdekaweseFmRwLOGYorAMCrTR3ZU6mJHbVj/3Gt+PKA2XEAwC1cLkMLM3JUXF6n8ed31/DU\nWLMjAeeUW4vr9u3bNXv27G/d/9lnn2n69OmaOXOmli5d6s4IAAAfZ7VaNG9yijp3CNJ7XxVoYy4n\nawLgfVZ8eUA79h9XSmJHXTU6yew4wDnntuL64osv6r777lNjY+NJ9zc3N+vhhx/Wyy+/rEWLFmnJ\nkiUqKytzVwwAABQS6KefTx+oQH+bXlmTp/ziarMjAcA5symvRO99VaBOHYJ06+QU2azsVAnv47Z3\ndXx8vJ555plv3b9//37Fx8crIiJC/v7+Gjp0qDZv3uyuGAAASJK6Rodo3qQUNTtdemb5TlU5Gr//\nRQDg4Q6V1Ojl9/IU4G/Tz6cPVEign9mRALewu2vB48ePV2Fh4bfudzgcCgsLa70dEhIih+PMLlMQ\nExP2/U+C12DevoV5+xaz5n1pTJgq6pr1+po8LXw3T/932wj52W2mZPElrN++hXm3nSpHo55dma0m\np0v33Xi+0vq1/XGtzNu3mDlvtxXX0wkNDVVtbW3r7dra2pOK7Hc5dqzGXbHgYWJiwpi3D2HevsXs\neY8aEKvd+eXamFuip97I1A1XJMti4RqH7mL2vNG2mHfbcba49MTiLB2rqNeUkYnq2Tm0zT/3zNu3\ntMW8v6sYt/kO8ElJSSooKFBlZaWampq0ZcsWDR48uK1jAAB8lMVi0Q1XJCuhc5i+3HFUn2Z+e+8g\nAPB0b326V3sOV2po3xilj+hhdhzA7dqsuGZkZGjJkiXy8/PTvffeq7lz52rWrFmaPn26Onfu3FYx\nAABQgJ9NP58+QOEh/lr86T7l5pebHQkAztgXWUVau7VIcTEhmjuhn6zsNQIfYDEMo91cjZ1dEXwH\nu574FubtWzxp3nsLK/XYm9sU6G/T7284T50ig8yO5HU8ad5wP+btfv/5dev+G85TjIlft5i3b/G5\nXYUBAPAUveMiNXt8X9U2OPXMsh2qb3SaHQkATqu8ukHPrsiWYUi3T0k1tbQCbY3iCgDwaZcM6qqf\nDI1TUVmt/v5urlztZ0ckAD6kocmpp5ftUHVtk2b+pJf69ehodiSgTVFcAQA+b+bYXuqX0EHb9pZp\n5ZcHzI4DACdxGYZezMjVoVKHRqV11aVD48yOBLQ5iisAwOfZbVbdNiVVMZGBendDgb7KLjY7EgC0\nWv7Ffm3bW6Z+CR103bg+XMILPoniCgCApNAgP/3yqkEKCrDrlffztLew0uxIAKB/7jiq978+pM4d\ngnTblFTZbfz4Dt/EOx8AgG90jQ7R7VNT5XJJzyzfqdLKerMjAfBhew5X6rUPdikk0K5fXj1IoUF+\nZkcCTENxBQDgP6T06KjrLusjR32z/vL2dtU1cKZhAG2vtKJOf31np6QTZxCO7RhsciLAXBRXAAD+\ny5jB3TRuWHcdPV6n51dlq8XlMjsSAB9S1+DUX5btkKO+Wddd1oczCAOiuAIAcEozx/bSoKQo5Rws\n15sf75XBZXIAtIEWl0vPr8rW0eN1Gjesu0andTM7EuARKK4AAJyC1WrRzyalKC4mVGu3FemTzEKz\nIwHwcoZhaPEn+5RzsFwDk6I0c2wvsyMBHoPiCgDAaQQF2PXLqwYqPMRfiz/dq+37ysyOBMCLfbz5\nsD7dWqhuMSGaNylFViuXvQH+heIKAMB3iIoI1C+mD5TdZtXfVufoUEmN2ZEAeKHM3aVa8tk+RYT6\n645vLs0F4N8orgAAfI+eXcN1S3p/NTa16P+9vV3l1Q1mRwLgRfYXVWlhRq78/Wy646pBiooINDsS\n4HEorgAAnIFhyZ00Y0wvVTqa9BSXyQFwjpRW1Onp5TvkbHHptikpSogNMzsS4JEorgAAnKHx53fX\nT4bEqehYrZ5dsVPOFi6TA+CHc9Q366m3d6imrlk/vayvBiZFmx0J8FgUVwAAzpDFYtE1l/ZWWq9o\n5RVU6NX3d3GZHAA/SLOzRc8s36GS8jpdcUG8xgzmsjfAd6G4AgBwFqxWi+ZNTlFil3BtyC7Wqn8e\nNDsSgHbGZRh66b087S2s0nnJnTR9dJLZkQCPR3EFAOAsBfjZ9MurBio6IlCr1+fry+1HzI4EoB1Z\nse6ANuWVqldchG5O7yerhcveAN+H4goAwA8QHuKvO2cMUkigXa99sFvZB46bHQlAO7B2W5He+6pA\nnTsE6RfTB8rPbjM7EtAuUFwBAPiBukSF6OfTB8pqtejZldlc4xXAd9qyq1T/+HC3woP9dOeMQQoN\n8jM7EtBuUFwBAPgR+nSP1C0TT1zj9aml21VaWW92JAAeaPehCi3MyJG/v013zBikTh2CzY4EtCsU\nVwAAfqTzkjvpmp/0VlVtk/68JEvVtU1mRwLgQQ6XOvT08h0yDGn+1AHqERtudiSg3aG4AgBwDow7\nr7smDE9QaUW9nlq6XfWNTrMjAfAAZZX1+vPSLNU3tmhuej+lJHY0OxLQLlFcAQA4R6Zd0lMjB3ZR\nQUmN/vrOTjU7XWZHAmCimromPbl0u6ocTZo1tpcu7B9rdiSg3aK4AgBwjlgsFs25vK8G945WXkGF\nXnw3Vy6XYXYsACZobGrR/3t7h0rK63T5BfG67Px4syMB7RrFFQCAc8hmtWrepBT1iYvQll2levOT\nPTIMyivgS5wtLj23MlsHj1ZreEqsrhqdZHYkoN2juAIAcI75+9n0i6sGKi4mRJ9tLVLGhnyzIwFo\nIy7D0CtrdmnngeNK7dlRN16ZLKvFYnYsoN2juAIA4AbBgX66c0aaoiMCtfLLg/p8W5HZkQC4mWEY\nevPjPfoqp1iJXcJ1+5RU2W38uA2cC6xJAAC4SYewAP1qZprCgv206MPd2pRXYnYkAG604ssD+mxr\nkbrFhOjOGYMU6G83OxLgNSiuAAC4UWzHYP1qRpoCA2x6MSNXWXvLzI4EwA3e31igdzcUqFNkkO6a\nmabQID+zIwFeheIKAICbJcSG6Y6rB8lms+i5ldnKzS83OxKAc+jzbUV6e+1+dQgL0N2z0hQZGmB2\nJMDrUFwBAGgDveMi9fPpAyUZenr5Du0rrDI7EoBz4OvcYi36cLfCgv1096w0RUcGmR0J8EoUVwAA\n2khKj466bXKqnE5DT729XQXFNWZHAvAjZO0t098z8hQYYNevZqSpS1SI2ZEAr0VxBQCgDQ3uE6Ob\nJ/ZTQ6NTTy7JUlFZrdmRAPwAefnlem5ltux2i+64eqASYsPMjgR4NYorAABt7ML+sbr+imQ56pv1\n5OJtKq2sNzsSgLOwr7BKTy/fKcnQ/GkD1Dsu0uxIgNejuAIAYIJLBnXVrJ/0VqWjSU+8tU3l1Q1m\nRwJwBvYXVenPS7PU7HRp3qRUpSZGmR0J8AkUVwAATHLZed01ZWSiyqoa9Nhb21RR02h2JADf4cCR\nav15aZaaml2aNzlFQ/vGmB0J8BkUVwAATDRxRA+lj0hQaUW9HntzK+UV8FD5xdV6ckmWGppadMvE\n/jovuZPZkQCfQnEFAMBEFotFU0f21IThCSqhvAIeqaC4Rk8uzlJDk1M3p/fXBf07mx0J8DkUVwAA\nTGaxWDTtkv8or+w2DHiMQyU1emLxNtU1OHXTlf00PCXW7EiAT6K4AgDgAf5VXq+8MEEl5XWUV8AD\nFJY69MTiLNU1OHXDlcm6aEAXsyMBPoviCgCAh7BYLJo+qqeuuDC+tbxWOiivgBmKjjn0+OJtctQ3\n6/orkjVyYFezIwE+jeIKAIAHsVgsumpUkq644Jvy+iblFWhrh0pq9Oib21RT16w54/vqkkGUVsBs\nFFcAADyMxWLRVaOTdPkF8Sr+pryy2zDQNg4cqdZjb25TbX2z5lzeV6MHdzM7EgBRXAEA8EgWi0VX\njz6x5bW4vE4P/yNTxyrrzY4FeLU9hyv1xOJtqm9yam56P41Oo7QCnoLiCgCAh/rXltcpIxNVVtWg\nR97YqqPHa82OBXil3Pxy/XlplpqdLt06OVUjUjkRE+BJKK4AAHgwi8WiSRclaubYXqqoadQjb2zV\noZIas2MBXmXH/jL9v7d3yOUy9D9TB+i85E5mRwLwX9xWXF0ul+6//37NnDlTs2fPVkFBwUmPv/rq\nq5owYYJmz56t2bNn68CBA+6KAgBAuzf+/HjNGd9XjrpmPfbmNu0vqjI7EuAVMneX6pnlO2W1SL+8\napDSekebHQnAKdjdteBPPvlETU1NWrJkibKysvTII4/o+eefb308Oztbjz76qFJTU90VAQAArzJ6\ncDcF+Nn00nt5emJJln45faCSEzqYHQtot77OLdbfM/Lk52fVHVcNVN941ifAU7lti2tmZqZGjhwp\nSUpLS1N2dvZJj+fk5GjhwoW65ppr9MILL7grBgAAXmV4aqxum5Iqp9Olp97erh37j5sdCWiXPs0s\n1IurcxXgb9PdM9MorYCHc9sWV4fDodDQ0NbbNptNTqdTdvuJDzlhwgRde+21Cg0N1fz587V27VqN\nGTPmO5cZExPmrrjwQMzbtzBv38K8f5zLY8IUEx2ih17ZpL++s0O/umaoRnrwJTuYt2/x9HkbhqE3\nPtylJR/vUWRYgB64+UIlxUWaHavd8vR549wyc95uK66hoaGqrf33mQ9dLldraTUMQ9dff73Cwk78\nx0eNGqXc3NzvLa7HjnEyCl8RExPGvH0I8/YtzPvciI8K1p0zBukvy3bo8X9s0eGjVRp3XnezY30L\n8/Ytnj5vl8vQoo9264usI4qJDNRdM9MUHmDz6MyezNPnjXOrLeb9XcXYbbsKDxkyROvWrZMkZWVl\nqU+fPq2PORwOpaenq7a2VoZhaOPGjRzrCgDAWeob30H3XjdE4SH+euvTvXp77T65DMPsWIBHana2\n6LmV2foi64jiO4fqd7OHqVOHYLNjAThDbtviOm7cOK1fv16zZs2SYRh66KGHlJGRobq6Os2cOVN3\n3nmn5syZI39/fw0fPlyjRo1yVxQAALxWfOcw/e/soXpy6Xa9v/GQKh1NuvHKZNltXPEO+Je6hmY9\nvXyn9hyuVHJ8pH4+faCCAtz2YzAAN7AYRvv51Sy7IvgOdj3xLczbtzBv96ipa9Jflu3QgSPVSk3s\nqNunpirQ3/wfzJm3b/HEeVc6GvXnJdtVeMyhYX1jdMvE/vKz28yO5RU8cd5wH6/dVRgAALSdsGB/\n3TNrsAYmRSn7YLkefXObqmqbzI4FmKq4vE4PLcpU4TGHxgzuplsnp1JagXaK4goAgJcI8Ldp/rQB\nunhAFxUU1+jhRZkqqagzOxZgit2HKvR/r29RWVWDJl+cqJ9e1kdWq8XsWAB+IIorAABexG6z6sYr\nk5U+IkGllfX6v9cztedwpdmxgDa1fudRPbE4Sw1NLbrxymRNvjhRFgulFWjPKK4AAHgZi8WiaZck\nac74vqprcOqJxdu0fudRs2MBbucyDL2zbr9eei9PAX42/WpmmkYO7Gp2LADngPlnbQAAAG4xenA3\nxXQI0nMrsvXSe3kqLq/T1Et6ysqWJ3ihpuYWvbwmT5vyStUpMki/vHqgukSFmB0LwDnCFlcAALxY\nSo+Oum/OUHWKDNJ7XxXo+RXZamxqMTsWcE5V1zbp8be2aVNeqXrFReh/5wyltAJehuIKAICX6xIV\novuuH6a+3SOVueeYHnljqypqGs2OBZwTRWW1WvD6Fu0/Uq0LUzrrnlmDFRbsb3YsAOcYxRUAAB8Q\nGuSnu2alaeTALiooqdGDr21WfnG12bGAHyVrb1nrmYOnXJyoW9L7y8/Oj7eAN2LNBgDAR9htVt1w\nRbJmjOmlKkeTHvnHVn2dW2x2LOCsuQxDq9cf1NPLd8jlMvSzSf01iTMHA16NkzMBAOBDLBaLLr8g\nXrEdg7UwI0cLV+cq/2iNrh6TJJuV32fD89U3OvX3d3O1bW+ZosIDNX/aACXEhpkdC4Cb8R0KAAAf\nlNY7Wr+/fpi6RAXro82H9eTiLFXXNpkdC/hOJeV1+r9Fmdq2t0zJ8ZG6/4ZhlFbAR1BcAQDwUV2i\nQnTfnGEa0idGuw5V6o+vbtbBoxz3Cs+UufuY/vTaZh0pq9W4Yd1116w0TsIE+BCKKwAAPiwowK7b\np6Zq2iU9VVnTqIf/kam1WwtlGIbZ0QBJkrPFpcWf7tWzK3aqpcXQzen9dM2lvdm1HfAxHOMKAICP\ns1osSh/RQz1iw7QwI1eLPtqj3Ycrdf3lyQoK4EcFmKeiplHPr8rWvsIqxXYM1u1TUxUXE2p2LAAm\n4LsRAACQJKX2jNIDN56nv63K0aa8UuUX1+j2KamK78wxhGh7OQfLtTAjRzV1zTq/Xyd+kQL4OPax\nAAAArTqGB+rX1w7WFRfGq7SiXgtez9Tn24rYdRhtxtni0ttr9+nPS7JU1+DUdeP6aN6kFEor4OP4\nCgAAAE5it1l19ehe6ts9Ui9m5Or1D3cr+2C5brgiWaFBfmbHgxcrqajTC6tylF9co04dgjRvUooS\nu4SbHQuAB6C4AgCAUxqYFK0/3nS+XszI1dY9x3TgSJXmpvdXSo+OZkeDlzEMQxuyi/WPj/eosalF\nF6XG6tpxfdjKCqAVuwoDAIDT6hgeqHuuGazpo3qqpq5ZTy7O0pLP9qrZ6TI7GryEo75ZCzNy9dJ7\nebJI+tnE/pqb3p/SCuAkfEUAAADfyWq1aMLwHkpJ7KgXVufqw02HlZtfobkT+nHiJvwoO/aX6ZX3\nd6nK0aSkruG6ZVKKOkUGmR0LgAeiuAIAgDPSIzZcD9xwnhZ/tldfZB3Rg69t0cQRPXTl8ATZbezE\nhTNX3+jUks/2at32o7JZLZo+qqcuvyCea7MCOC2KKwAAOGMB/jZdf3myBveO0Wsf7NLKfx7U1r3H\nNHdCf3XvxPU18f3yCir0ypo8lVU1qHunUN2cznsHwPejuAIAgLM2MClKD849X4s/26d/7jiqP726\nma2v+E61Dc1a8s37xWKR0kckaNJFibxfAJwRiisAAPhBggP9dNOV/TSsb6fWra+bdpVqzvi+6tM9\n0ux48BCGYWjzrlK9+cleVdc2KS4mVDdemcxlbgCcFYorAAD4UU5sfb1Ay9ft1+dbi/TIG1t1yaAu\nump0L8WYHQ6mKq9u0KIPd2v7/uPys1s1fVRPjT8/nq2sAM4axRUAAPxowYF2zb6sr0akxOq1D3Zr\n3faj2ra3TLdMGaCU7hGyWCxmR0Qbana69NHmQ8rYkK+mZpeS4yN1/eXJ6twx2OxoANopiisAADhn\nkrpF6P4bhunjLYe16suD+vObW9UrLkLXXdpHCbFcOscX7DxwXG9+vEclFfUKC/bTT8f11UUDYvnl\nBYAfheIKAADOKbvNqisuSNB5fTtpxfp8fbXzxMmbRg7qommXJCk8xN/siHCD0sp6vZCRq405xbJY\npEuHxmnKyEQFB/qZHQ2AF6C4AgAAt4iODNLvbjhf6zYX6M1PT1yzc/OuY5p0UQ+NHRInPzvHOXoD\nR32z3t2Qr08zC9XiMtSne6SuG9eHS9wAOKcorgAAwK369eioB248T59vO6KVXx7Qks/26ZMthZoy\nMlHDU2JltbILaXvU7GzRp5lFendDvuoanYqOCNSNE1OU3C2c3YIBnHMUVwAA4HY2q1U/GRqnC/p3\n1ntfndg699J7efpw0yFNH5WkgUlRlJ12osXl0tc5JVr55UEdr25QSKBdM8f20tghceraJULHPETE\nrgAAE4ZJREFUjtWYHRGAF6K4AgCANhMa5KeZY3vr0qHdtfKfB7RhZ7H+smyHesdFaPLFieqX0IEC\n66FcLkMbc0u0ev1BlVTUy26zaPz53ZU+oodCOI4VgJtRXAEAQJuLigjU3An9Nf78eL3zxQFl7SvT\nE4uzlNQtXJMuSlRqYkcKrIdwuQxt2lWijPX5Onq8TjarRaPTumrC8B6Kigg0Ox4AH0FxBQAApomL\nCdUvrhqo/OJqZazP17a9ZXpq6XYldglT+ogeGtQrWlYKrCmanS1an12sDzceUklFvawWiy4Z1EXp\nw3soOjLI7HgAfAzFFQAAmK5HbLh+Pn2gDpXUKGNDvjJ3H9Mzy3eqc8dgXTYsTiMGdFGAn83smD6h\ntqFZa7cW6ZPMQlXXNslus2jkwC6aMKKHOlFYAZiE4goAADxGfOcw/c/UASo85tBHmw7r69xiLfpo\nj95Zd0BjhnTT2CFxigwNMDumVyo65tDabUVav7NYjc0tCgqw64oL43Xp0O7qEMbnHIC5KK4AAMDj\nxMWE6qYJ/TR9VE99urVIn28r0rsbCvT+14eU1itao9K6qn9iR3Yj/pGcLS5t3XNMa7cWaffhSklS\nh7AATb44UaPSuioogB8VAXgGvhoBAACPFREaoGmX9NSE4Qn6KrtYa7cVKXPPMWXuOaboiEBdMqir\nLhrQhS2CZ6nomEMbsou1IbtYVbVNkqSUHh00enCc0npHyWa1mpwQAE5GcQUAAB4vwM+m0YO7aVRa\nVx08WqMvsoq0Ma9E76w7oBVfHlByfAddmNJZQ/t0UnAgP96cSnVtkzbmlmhDdrEKSk5cazU4wK5x\nw7przJBuiu0YbHJCADg9vrIDAIB2w2KxqGfXcPXsGq5ZP+mtr3NL9FV2sfIKKpRXUKFFH+7RoKQo\nndevkwb0jPL5XV0rHY3atrdMW3eXKq+gUi7DkNViUVqvaI1IjdWgXlHys3PSKwCez7e/mgMAgHYr\nKMCuMYO7aczgbjpWWa+NuSX6OrekdVdim9Wi5IQOSusVrbRe0T5xzVHDMHT0eJ127D+urXuOaX9R\nlYxvHusRG6bhKbG6oH9nhYf4m5oTAM4WxRUAALR7MZFBSh/RQxOGJ+hwqUPb9pYpa2+Zcg6WK+dg\nud74eI+6xYSoX3wH9UvooL7xkQoO9DM79jlRU9ek3PwK5eSf+L9W1DRKkiwWqU/3SA3pG6MhvWN8\norgD8F4UVwAA4DUsFoviO4cpvnOYJl+cqPLqBmXtO1Fi9xyuVNGxWn2SWSiLRUroHKY+3SOV2CVc\niV3DFRMRKIuHn6XYZRgqKa/TvsIq7Suq0v4j1TpSVtv6eGiQn87v10kpPTpqUK9otqwC8BoUVwAA\n4LU6hgdq7JA4jR0Sp2anSweOVLUeD3vgSLXyi2tanxsa5KfELuHq3ilUXaOD1TU6RF06hijA35xj\nQOsbnTpSVqvCYw4Vln7z9zGHahucrc8J8LOpX0IH9e/RQSmJHRXfOYxLBAHwShRXAADgE/zsVvWN\n76C+8R00ZaTU2NSigpKabwpstQ4cqdbOA8e188Dxk14XFR6omMhAdQwPVMfwAHUMO/F3WLC/ggPt\nCgn0U1CA7YwvIeMyDNU1OFVT16SauuZv/jSprKpBZVX1J/6urFd1XfNJr7NI6tQhSAOTotSrW4SS\nukWoW0wIl64B4BMorgAAwCcF+NvUp3uk+nSPbL2vuq5JR47V6ujxWh0pq9OR4yf+vetQ5fcuL9Df\nJj+7VVarRTarRVbLib9bXIaanS41OV1qdrrkbHF953JsVouiIgK/2fIbqriYEMV1ClXXKPO2/gKA\n2SiuAAAA3wgP9ld4gr+SEzqcdH+z06UKR6MqqhtUXt2o8poG1dQ1q67RqboGp+oamlXb4JSzxSWX\ny1DLN3+anS7ZbRYFBtgVFmyVn/3En5BAu8KC/RUW7KewID+FBvt9s2U3SJGhAbJa2d0XAP6T24qr\ny+XSAw88oN27d8vf318LFixQQkJC6+OfffaZnn32Wdntdk2fPl0zZsxwVxQAAIAfxc9uVafIIHWK\nDDI7CgD4JLcdFPHJJ5+oqalJS5Ys0V133aVHHnmk9bHm5mY9/PDDevnll7Vo0SItWbJEZWVl7ooC\nAAAAAGjH3FZcMzMzNXLkSElSWlqasrOzWx/bv3+/4uPjFRERIX9/fw0dOlSbN292VxQAAAAAQDvm\ntl2FHQ6HQkNDW2/bbDY5nU7Z7XY5HA6FhYW1PhYSEiKHw/G9y4yJCfve58B7MG/fwrx9C/P2Lczb\ntzBv38K8fYuZ83ZbcQ0NDVVt7b8viO1yuWS320/5WG1t7UlF9nSOHav53ufAO8TEhDFvH8K8fQvz\n9i3M27cwb9/CvH1LW8z7u4qx23YVHjJkiNatWydJysrKUp8+fVofS0pKUkFBgSorK9XU1KQtW7Zo\n8ODB7ooCAAAAAGjH3LbFddy4cVq/fr1mzZolwzD00EMPKSMjQ3V1dZo5c6buvfdezZ07V4ZhaPr0\n6ercubO7ogAAAAAA2jGLYRiG2SHOFLsi+A52PfEtzNu3MG/fwrx9C/P2Lczbt3jtrsIAAAAAAJwL\nFFcAAAAAgEejuAIAAAAAPBrFFQAAAADg0SiuAAAAAACPRnEFAAAAAHg0iisAAAAAwKNRXAEAAAAA\nHo3iCgAAAADwaBRXAAAAAIBHo7gCAAAAADyaxTAMw+wQAAAAAACcDltcAQAAAAAejeIKAAAAAPBo\nFFcAAAAAgEejuAIAAAAAPBrFFQAAAADg0SiuAAAAAACPZjc7wPdxuVx64IEHtHv3bvn7+2vBggVK\nSEgwOxbOsalTpyo0NFSSFBcXp1tvvVX33nuvLBaLevfurT/84Q+yWvk9S3u3fft2PfHEE1q0aJEK\nCgpOOeOlS5dq8eLFstvtuu222zRmzBizY+MH+s955+bmat68eerRo4ck6ZprrtGVV17JvL1Ac3Oz\nfve736moqEhNTU267bbb1KtXL9ZvL3WqeXfp0oX120u1tLTovvvu08GDB2WxWPTHP/5RAQEBrN9e\n6lTzdjqdnrN+Gx7uww8/NH7zm98YhmEY27ZtM2699VaTE+Fca2hoMCZPnnzSffPmzTO+/vprwzAM\n4/e//73x0UcfmREN59DChQuN9PR04+qrrzYM49QzLi0tNdLT043Gxkajurq69d9of/573kuXLjVe\neumlk57DvL3DsmXLjAULFhiGYRgVFRXGqFGjWL+92KnmzfrtvT7++GPj3nvvNQzDML7++mvj1ltv\nZf32Yqeatyet3x6/CSszM1MjR46UJKWlpSk7O9vkRDjXdu3apfr6et10002aM2eOsrKylJOTo/PP\nP1+SdMkll2jDhg0mp8SPFR8fr2eeeab19qlmvGPHDg0ePFj+/v4KCwtTfHy8du3aZVZk/Aj/Pe/s\n7Gx9/vnnuu666/S73/1ODoeDeXuJyy+/XL/85S8lSYZhyGazsX57sVPNm/Xbe1166aV68MEHJUlH\njhxReHg467cXO9W8PWn99vji6nA4WnchlSSbzSan02liIpxrgYGBmjt3rl566SX98Y9/1N133y3D\nMGSxWCRJISEhqqmpMTklfqzx48fLbv/30QmnmrHD4VBYWFjrc0JCQuRwONo8K368/573wIED9etf\n/1pvvPGGunfvrmeffZZ5e4mQkBCFhobK4XDoF7/4he644w7Wby92qnmzfns3u92u3/zmN3rwwQc1\nceJE1m8v99/z9qT12+OLa2hoqGpra1tvu1yuk34YQvuXmJioSZMmyWKxKDExUZGRkTp+/Hjr47W1\ntQoPDzcxIdzhP49Z/teM/3t9r62tPekLI9qvcePGKTU1tfXfubm5zNuLHD16VHPmzNHkyZM1ceJE\n1m8v99/zZv32fo8++qg+/PBD/f73v1djY2Pr/azf3uk/533xxRd7zPrt8cV1yJAhWrdunSQpKytL\nffr0MTkRzrVly5bpkUcekSSVlJTI4XDooosu0saNGyVJ69at07Bhw8yMCDfo37//t2Y8cOBAZWZm\nqrGxUTU1Ndq/fz/rvJeYO3euduzYIUn66quvlJKSwry9RFlZmW666Sbdc889uuqqqySxfnuzU82b\n9dt7rVy5Ui+88IIkKSgoSBaLRampqazfXupU854/f77HrN8WwzAMt3+UH+FfZxXes2ePDMPQQw89\npKSkJLNj4RxqamrSb3/7Wx05ckQWi0V33323OnTooN///vdqbm5Wz549tWDBAtlsNrOj4kcqLCzU\nr371Ky1dulQHDx485YyXLl2qJUuWyDAMzZs3T+PHjzc7Nn6g/5x3Tk6OHnzwQfn5+Sk6OloPPvig\nQkNDmbcXWLBggd5//3317Nmz9b7//d//1YIFC1i/vdCp5n3HHXfo8ccfZ/32QnV1dfrtb3+rsrIy\nOZ1O3XLLLUpKSuL7t5c61by7dOniMd+/Pb64AgAAAAB8m8fvKgwAAAAA8G0UVwAAAACAR6O4AgAA\nAAA8GsUVAAAAAODRKK4AAAAAAI9GcQUA4EcaO3asCgsLz/j5LS0tmj9/vurr67/1WN++fc9ltB/t\n17/+tUpKSiRJxcXF+s1vfmNyIgCAL6K4AgDQxt566y1dfPHFCgoKMjvK97rlllv00EMPSZJiY2MV\nFRWlL774wuRUAABfYzc7AAAAZnA6nXrggQe0d+9elZWVKTExUX/9619VVlam+fPnq3fv3srLy1NU\nVJT+8pe/KDIyUmvWrNHTTz+toKAg9e/fXy0tLXrkkUdal9nS0qLHHntMmzZtUktLi6ZNm6Ybbrjh\npI9rGIYWLVqkZcuWSZIKCwt1zz33qK6uToMGDWp9Xm1trf70pz9p7969amlp0S233KL09HQ1Nzfr\nD3/4gzIzM9W5c2dZLBbdfvvtkqTHH39cLpdLvXv31v3333/K158uY3Fxse6++27V1dXJarXqvvvu\nU1pamnr37q2ioiIdOnRI8fHxmjJliv70pz9p1KhR7h8SAADfYIsrAMAnbdu2TX5+flqyZIk+/vhj\nNTY2tm5J3LVrl2688Ua9++67Cg8PV0ZGhsrLy/XQQw/ptdde0/Lly1VVVfWtZS5dulSStGLFCi1b\ntkyffvqptmzZctJzdu3apbCwMIWFhUmSHnzwQU2bNk2rVq3SkCFDWp/3/PPPKyUlRe+8847eeOMN\n/e1vf9Phw4e1ePFi1dfX64MPPtDDDz+snTt3tr4mPz9fr732mh599NHTvv50GZctW6bRo0frnXfe\n0T333KPMzMzW5Q4dOlRr166VJPXp00f79u075f8fAAB3YYsrAMAnnXfeeYqMjNQbb7yhAwcOKD8/\nX3V1dZKkqKgo9e/fX5LUu3dvVVVVacuWLRo8eLA6d+4sSZoyZYo++eSTk5b51VdfKS8vT19//bUk\nqa6uTrt379awYcNan5Ofn6/Y2NjW25s2bdKTTz4pSZo0aZLuu+8+SdKGDRvU0NCg5cuXty5r7969\nWr9+vWbMmCGLxaJu3bpp+PDhrctKTExsLcSne/3pMg4fPlw///nPlZeXp1GjRumnP/1p63K7du2q\ngoKC1tuxsbE6dOiQBgwY8MM++QAAnCWKKwDAJ3366ad6+umnNWfOHE2bNk0VFRUyDEOSFBAQ0Po8\ni8UiwzBktVrlcrm+c5ktLS265557dNlll0mSysvLFRwcfNJzrFarbDbbSff96+NaLBZZLBZJksvl\n0uOPP66UlBRJUllZmSIiIrR8+fLT5ggMDGz993e9/lQZAwMD9d577+nzzz/XmjVrtGLFCr3yyiuS\nJLvdLqv13ztp/fdtAADcje86AACf9NVXX+mKK67Q9OnTFR0drc2bN6ulpeW0zx8yZIh27typ0tJS\nGYahNWvWtJbMf7nwwgu1dOlSNTc3q7a2Vtdee622b99+0nPi4+N15MiR1tsjRozQ6tWrJUkfffSR\nmpqaWpf11ltvSZJKS0s1adIkHT16VCNGjNCaNWtkGIZKSkq0adOmb+X4rtefLuNjjz2mVatWaerU\nqbr//vuVm5vbuqzCwkLFx8e33i4uLlZcXNwZfZ4BADgX2OIKAPBJV199te6++2598MEH8vf3V1pa\n2nde0qZjx4667777dNNNN8nf319xcXEKDw8/6TmzZs1SQUGBpk6dKqfTqWnTpumCCy446TnJycmq\nqKhQTU2NwsLCdP/99+uee+7R4sWLNWDAAIWEhEiS5s+frwceeKD1hEr33HOP4uPjNWPGDO3atUsT\nJ05UTEyMunbtqsDAwG9dWud0rz9dxvj4eN11111asWKFbDab/vCHP7Qua/PmzXrqqackSXv27FFi\nYqIiIiJ+1OcfAICzYTH+tX8SAAA4rYqKCi1atEjz58+X1WrVggULlJCQoNmzZ5/1sl5//XVZrdaT\njiM9U59//rkMw9CYMWNUU1OjKVOmaPny5YqMjDzrZZ2JXbt26bnnntPTTz8tSXrooYc0YsQIjR49\n2i0fDwCAU2FXYQAAzkBkZKSqq6uVnp6uiRMnyuFwaMaMGT9oWddcc43Wr1//ra2kZyIpKUkLFy7U\n5MmT9dOf/lS/+MUv3FZaJenFF1/UvffeK0k6evSojh8/TmkFALQ5trgCAAAAADwaW1wBAAAAAB6N\n4goAAAAA8GgUVwAAAACAR6O4AgAAAAA8GsUVAAAAAODRKK4AAAAAAI/2/wHKyHRHgr0sFQAAAABJ\nRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x112780550>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "df = pd.DataFrame({'angle': range(361)})\n", "df['variance'] = df.angle.apply(get_variance)\n", "df = df.set_index('angle')\n", "df.plot()\n", "plt.xlabel('angle (degrees))')\n", "plt.ylabel('variance')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can use a solver to find the maxima and minima, which should correspond with our previous findings." ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Optimization terminated successfully.\n", " Current function value: -3.634979\n", " Iterations: 18\n", " Function evaluations: 36\n", "\n", "Variance: 3.63498 obtained at angle: 45.693 degrees\n" ] } ], "source": [ "angle = fmin(lambda a: -1 * get_variance(a), 50)\n", "var = get_variance(angle)\n", "print('\\nVariance: {0:.5f} obtained at angle: {1:.3f} degrees'.format(var, angle[0]))" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Optimization terminated successfully.\n", " Current function value: 0.035978\n", " Iterations: 20\n", " Function evaluations: 40\n", "\n", "Variance: 0.03598 obtained at angle: 225.693 degrees\n" ] } ], "source": [ "angle = fmin(get_variance, 200) \n", "var = get_variance(angle)\n", "print('\\nVariance: {0:.5f} obtained at angle: {1:.3f} degrees'.format(var, angle[0]))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Solving analytically" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "> In some ways, PCA provides us with an analytic mechanism for doing exactly what we did above.\n", "\n", "The above procedure is perfectly valid and tractible for problems with 2 dimensions and small amounts of data. But there are a number of analytic solutions to the problem which scale well and the above is intended just for building intuition.\n", "\n", "What we've discovered so far is that (for our petal dataset) there exists exactly one axis which, when data points are projected onto it, exhibits maximal variance. This is in fact our first Principal Component.\n", "\n", "So we need an analytic approach to decompose the covariance of our data points and recover the principal axes." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The elements of a covariance matrix are given by:" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$ \\sigma_{jk} = \\frac{1}{n-1} \\sum_{n=1}^{n} (x_{ij}−\\overline{x}_j)(x_{ik}−\\overline{x}_k) $$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In matrix notation:" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$ cov = \\frac{1}{n-1} ((X−\\overline{x})^T(X−\\overline{x})) $$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "As we've already de-meaned our data, our covariance matrix is given by:" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array([[ 3.11317942, 1.29638747],\n", " [ 1.29638747, 0.58241432]])" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "petal_data = demeaned_df[['petal length (cm)', 'petal width (cm)']].values\n", "\n", "n = len(petal_data)\n", "cov = 1 / (n - 1) * petal_data.T @ petal_data\n", "cov" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can obtain this using numpy directly:" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array([[ 3.11317942, 1.29638747],\n", " [ 1.29638747, 0.58241432]])" ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cov = np.cov(petal_data.T)\n", "cov" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**TODO** : add stuff about maximising variance in matrix form" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The eigenvalues and corresponding vectors (organised in ascending eigenvalue order):" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": true }, "outputs": [], "source": [ "eigenvalues, eigenvectors = np.linalg.eigh(cov)" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array([ 0.03621925, 3.65937449])" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "eigenvalues" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array([[ 0.38826694, -0.92154695],\n", " [-0.92154695, -0.38826694]])" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "eigenvectors" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The eigenvalues look very close to the variance minimum and maximum we found earlier. In fact, they're very closely related - the returned eigenvalues are just scaled differently.\n", "\n", "Recall that we previously wrote down:\n", "\n", "> ```python\n", "> petal_data = demeaned_df[['petal length (cm)', 'petal width (cm)']].values\n", "> pca = PCA().fit(petal_data)\n", "> pca.explained_variance_\n", ">\n", "> array([ 3.63497866, 0.03597779])\n", "> ``` " ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array([ 3.63497866, 0.03597779])" ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" } ], "source": [ "n # number of data points\n", "factor = (n - 1) /n\n", "(factor * eigenvalues)[::-1] # apply factor and flip the order" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Interpretation of eigenvectors" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "So what can we make of the eigenvectors?\n", "\n", "The eigenvector corresponding to the largest eigenvalue is:" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array([-0.92154695, -0.38826694])" ] }, "execution_count": 23, "metadata": {}, "output_type": "execute_result" } ], "source": [ "eigenvectors[:, -1]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "If we plot this over out original data, we can visualise this as the first principal component - i.e. the axis which explains maximal variance." ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "<matplotlib.text.Text at 0x11276e6d8>" ] }, "execution_count": 24, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeQAAAHiCAYAAAA597/kAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl8XHW5x/HPWWbN2rRJm0IXugKyVKSUFtlKQSiyyyK9\nILS2wAWuXje8iqiIInq91wUUCgUEUVBBoKBcKZRVqICWtVQodKF7kzTb7Oec+8c000y2SdJkMkm/\n79fLl3TyO+c8v2maJ+fM83t+hud5HiIiIjKgzIEOQERERJSQRURECoISsoiISAFQQhYRESkASsgi\nIiIFQAlZRESkAAxIQq6pqeHYY49lzZo1A3F5ERGRgpP3hJxMJrnuuusIBoP5vrSIiEjByntCvumm\nm7jggguoqqrK96VFREQKVl4T8kMPPURFRQVHH310t49RIzEREdkbGPlsnTlv3jwMw8AwDFatWsX4\n8eP51a9+RWVlZZfHbd/emKcI86eyskTzGmSG6tyG6rxg6M5N8xp8KitLco6x8xBHxn333Zf574su\nuojvfOc7OZOxiIjI3kDLnkRERApAXu+QW7v33nsH6tIiIiIFR3fIIiIiBUAJWUREpAAoIYuIiBQA\nJWQREZECoIQsIiJSAJSQRURECoASsoiISAFQQhYRESkASsgiIiIFQAlZRESkACghi4iIFAAlZBER\nkQKghCwiIlIAlJBFREQKgBKyiIhIAVBCFhERKQBKyCIiIgVACVlERKQAKCGLiIgUACVkERGRAqCE\nLCIiUgCUkEVERAqAErKIiEgBUEIWEREpAErIIiIiBUAJWUREpAAoIYuIiBQAJWQREZECoIQsIiJS\nAJSQRURECoASsoiISAFQQhYRESkASsgiIiIFQAlZRESkACghi4iIFAAlZBERkQKghCwiIlIAlJBF\nREQKgBKyiIhIAVBCFhERKQBKyCIiIgVACVlERKQAKCGLiIgUACVkERGRAqCELCIiUgCUkEVERAqA\nErKIiEgBsPN9QcdxuPbaa/nwww8xDIPvfve7TJkyJd9hiIiIFJS83yEvX74cgPvvv58vfvGL/O//\n/m++QxARESk4hud5Xr4vmkqlsG2bP/3pT7z88svcdNNN+Q5BRESkoOT9kTWAbdtcc801PPnkk/z8\n5z/POX779sY8RJVflZUlmtcgM1TnNlTnBUN3bprX4FNZWZJzzIAVdd1000383//9H9/61reIRCID\nFYaIiEhByHtCfvjhh7ntttsACIVCGIaBaarYW0RE9m55f2R90kkn8V//9V/MmzePVCrFN77xDYLB\nYL7DEBERKSh5T8jhcJif/exn+b6siIhIQdOzYhERkQKghCwiIlIAlJBFREQKgBKyiIhIAVBCFhER\nKQBKyCIiIgVACVlERKQAKCGLiIgUACVkERGRAqCELCIiUgCUkEVERAqAErKIiEgBUEIWEREpAErI\nIiIiBUAJWUREpAAoIYuIiBQAJWQREZECoIQsIiJSAJSQRURECoASsoiISAFQQhYRESkASsgiIiIF\nQAlZRESkACghi4iIFAAlZBERkQKghCwiIlIAlJBFREQKgBKyiIhIAVBCFhERKQBKyCIiIgVACVlE\nRKQAKCGLiIgUACVkERGRAqCELCIiUgCUkEVERAqAErKIiEgBUEIWEREpAErIIiIiBUAJWUREpAAo\nIYuIiBQAJWQREZECoIQsIiJSAJSQRURECoASsoiISAFQQhYRESkASsgiIiIFwM7nxZLJJN/4xjfY\nuHEjiUSCK664ghNOOCGfIYiIiBSkvCbkRx99lPLycn784x+zc+dOzjzzTCVkERER8pyQTz75ZD71\nqU8B4HkelmXl8/IiIiIFy/A8z8v3RZuamrjiiis477zzOO200/J9eRERkYKT1ztkgM2bN3PllVdy\n4YUXdjsZb9/e2M9R5V9lZYnmNcgM1bkN1XnB0J2b5jX4VFaW5ByT14S8Y8cO5s+fz3XXXcfMmTPz\neWkREZGCltdlT7feeisNDQ388pe/5KKLLuKiiy4iFovlMwQREZGClNc75GuvvZZrr702n5cUEREZ\nFNQYREREpAAoIYuIiBQAJWQREZECoIQsIiJSAJSQRURECoASsoiISAFQQhYRESkASsgiIiIFQAlZ\nRESkACghi4iIFAAlZBERkQKghCwiItLX4nF8zy7v0SFKyCIiIn3E3LSR8A+/x/CPH0j5uWdgrXmv\n28fmdbcnERGRIcfz8P3tBUJLFuP/y2MYjoNbVk7kiqvxioq7fRolZBERkT1g1NVSdsHZGPE4yYMO\nIbZgEbGzPgPhcI/Oo4QsIiLSA9aa9wjedQfJWUeTmPtpvIrhNN1wE6n9DyR1xAwwjF6dVwlZREQk\nF8fBv+yvhJbchv+ZpwGIr19PYu6nAYh9bv4eX0IJWUREpAuBB35L0Y9vxFq/DoDEkbOIzV9IfO5p\nfXodJWQREZE2jG3b8Kqq0v/d1Ii5fRvRiy4heulCnIMO7pdrKiGLiIgAJBIEHnuE0JLFWO+tpmbl\nuxAOE7vg34ifcx5e+bB+vbwSsoiI7NXMzZsI/vpOQvfejbl9G55hkDjhRMy6WtxwGIqK8Cjq9ziU\nkEVEZK9lffA+w46anrV2OHrJAtz9JuQ9FiVkERHZezQ1EXzw9ySPOhpn0mSc/SYSP+szJGd9ktjZ\n5/Z47XBfUkIWEZEhz/rgfYJ33UHwd/dhNtQTvfTzNN30P2AYNP7y9oEOD1BCFhGRIcz39DLCi3+J\n/+llADhVI2m+7N+JXXzpAEfWnhKyiIgMLZ6X6ZYVePxR/E8vIzljJtEFi9Jrh/3+AQ6wY0rIIiIy\nJNhvvk7wztux1n5I/Z8eByBy9X8SveTzOAcfMsDR5aaELCIig1ciQeDxRwktWYzv7y8D4Iwbj1Fb\ng1cxHHf8fgMcYPcpIYuIyKBkv/5PSuedh7VtKwDxE04ktmARidkngmkOcHQ9p4QsIlLgHNclkXTx\n+0ysXiSajo7f03MOCM/Dt+IlkgcdAsXFpCZOhkCAyGVXErt0Ac6ESQMd4R5RQhYRKVCu57F6fR1b\naiIkHRefZTJqeJjhw7u36X1Hx4+sCAEGW2uzzzl17DDMXm4b2O+amwk+9AdCSxZjv/MWjT/+aXp3\npeJiav/+OljWQEfYJ5SQRUQK1Or1dWyuiWCaBn4znXQ210R4a80OqsuDvTp+5fs7ABg9ojjrnAAH\njKvoj2n0mvnBGkJ3LyH4u99g1u/EsyxiZ5xN6pBDdw8aIskYlJBFRAqS47ps2ZVMWzNNg4+2NVFV\n6u/yUXNHx7uuR2MkCYDnehi7vmaaBltqIkwZU15Qj69Lr7oM36t/x62sovnL1xC7+FLc6tEDHVa/\nUUIWESlAiaRL0nEzd7GtJZ3057+hQOfJs6PjU66L43oYGKQcD1+rZJ1yvZzn7E/Gzjq493bCW3YQ\n+ep/AdD81f/CrKsl/ukzCnbtcF9SQhYR6UI+i58SqRRNkRTFYRu/z8RndXw9n2Xi93UdS0fH22bL\nHDxsy2jzNSPnOfuD9dabhO66neAfH4BolFBFBZH/+BIEAiSPPyHv8QwkJWQRkQ50VlDVH8VPKddl\n2SsbWLu5kaTj4LMsxleXsG9VMdvqou0eO+9bVZzzlwPLTMe7udVja9M0KAmnf+wbbc5ZPTyc18fV\n9sp/UHTdN/C//DcAnLHjsa6+ktrTz4VAIG9xFBIlZBGRDnRWUAV9X/y07JUNrN3SgGmZBKz0j+W1\nWxrwPI/x1aVsqYmQcj1s06B6eJiDJo6gpqYp53mnjh0GkHX8tEkjaKmybn3OlrH9ydi+HW/ECDAM\nvGAI34qXSBx/AtEFi0iccBKVo8rxtjf2exyFSglZRKSNrgqq+rr4KZFKsXZzI2abx8umabJuSxMn\nHL4vU8aUZz02bxtXZ0zD4IBxFe2OB5g6tv1r/cLzsFe8TOjO2wg89ig7H/kLqekzcPY/gNp/vI27\nz779d+1BRglZRKSNrgqq+rr4qSmSIuk4mTvj7Gu5NEVSVJQG9+h6lmm2O76j1/pUJLJ77fDbbwKQ\nOuBAjGg0M0TJOJsSsohIG60LolzXI+W62LvuTFuKn7rb/SpXUVhx2MbXyVpa2zQpDts9Kizr7th+\nLVZzXSqOm4m19kM8yyJ+2plEFywiOfOozC5MPTUoO4v1kBKyiEgblpnuaLXy/R00RlI4rotlmpSE\nbQ6dOJx/bdjZpvtVGPDYWhvtcUcsv20zvrok/Rlyq0Tjui7jq0tZs7GhW526uluE1i/Faq6Lf/ky\ncBwSJ50Cpkl03sUY0Qixi+fjjt6nd+ftr3gLlBKyiEiHWn7Yp9ftggfAhm3N+H1Wm+5X24Hs7lc9\n6Yg1Z/qYTJV1y934+OpSxlQVdbtTV3eL0PqyWM2o30nwd78heNcd2B9+QGrSZBInngyGQfQLX+7R\nuTqTz+K6gaaELCLShuO6bK2NMHpEMZ7rkXLS63Y94F/rdzJ1bHlmrNeq+5Xrepim0eOOWLZpcvKM\ncVnrkC3T5LmVm7rVqau7RWh9VaxmvfcvQrfeQvDBBzAiEbxgkOhn/43Y/IW9fiTdkXwW1xUCJWQR\nkTZaF3UZppHpaJVMOSRdN6vLVcrxdnW/Shdh+U2r1x2x/LZNRWn6x3I0nup2p67uFqHtUbGa52WS\nrf3WG4TuvQtn7Diil3ye2IX/hlcxvIt3tHfyWVxXCJSQRUTa6KxLlm2a+Ewzq8uVbRlYuxKuvetu\nrS86YvWkU1dXY1tfr7vjWjO2biV0710EH/gtdU8sxxs+nPipp1P/mwdInHBSv27u0Jt4B7OhNRsR\nkT7Q0uXKdb12XxtfXULrVw3ToCTsoyTsa9cRqyTsa9cRa1QXHbEc1yUa311E1lEMLZ26gG6NbX29\n7o5rWTtccvl8hh92IEU/+gFGbS32W2+kv+73p4u39jAZt55vR7od7xAxIHfIr7/+Ov/93//Nvffe\nOxCXFxHJqaMuV9XDw0weU857u6qsd3e/qqSlyro3HbE6qySePKa8XQyjKsK4nsdzKzflHNvR9Tqb\nV2ZcNEr5aZ/C98ZKAFL7H0B0/iJinzkfiru3D3MuPdnnOWe8Q4jheV77XwH70e23386jjz5KKBTi\n97//fbeO2T4EW6lVVpZoXoPMUJ3bUJ0X9M3cOlv/2lfrkAFWravN6jkNu/tLHzCuIusc/9qwk6a4\nS3MknnNsd9ch+9avw3BSOBMnA1A671wIBNNrh2d9sk8Ltbqa7wETRnS6z/NgX4dcWVmSc0zeZzV2\n7Fh+8Ytf5PuyIiK9ku5oZbdLAh293t3XWstVSdzySDoUSD/Q7O7YnJtPAKUvPsOwiy+gYsY0wjfe\nkPlawz3303DnvSSPOrrPk3GufZ67enzdnXkNZnl/ZP2pT32Kjz76qEfHdOc3i8FI8xp8hurchuq8\noPDnFoklCYR8BHztfxzHkw6lZWHCQV/WWICS4mCXYzu1cyfcfTfccgu8/376tRkzCF5wLsE8vFc9\nme/eZlBUWQ/Fx2lD9THhUJ0XDN25DdV5QWHMLdcjb8uCeDRJIp7KWvNsmAae69FQH6GhnqyxAZ9N\nY1Ms6zptx3b2aDd84/cp+t//xgsEiF8wj+j8haSmHZb+Yj++Vx3Nt62icICG+gjNjUPvLrg7vxgO\nioQsIjLYdFWo9V6b1pvxZIqahjhN0SSO62Htqtw+ZOKIdm0640kHx8l+rOu6HqMqwu3GVpf5OPjt\nvxH8y+M03rIYTJPYxfPxikuJXXgR3vC+XzvcnfchnnTw2RaWlf0Zcnf2eR7KlJBFRPpBZy0f121p\nbNd6s6YhRl1jHJ9t0fqT1Q1bGwn47ayxPtsikXLTd9Otqo49z2NzTTS95GpnLRP+/Acm/Pn3hHds\nBSC6YBGpw4/A3Wdfold/cUDfB59tkkw5mIbVq32eh6oBScj77rtvtyusRUQGm84Klwxg7eZGprRq\nvem6Hk3RFD7bYtLoMhw8bNPEAFav35k1FsCyDAI+iyOmDsdxyDTHeG7lJoJNO5l2yw8Y8/z/YaaS\nJMNFvHf6PMq/+gWYun9/T7udzt4HyzIxDYOjDhmVmUNP9nkeqnSHLCLSxzpr+ZhyPJKOk2mxCWS1\n2XQ98PvSryeTbruxLZKOi+OQrryORolF4yQdF7OohMo3X6Vp9FjeP/1C1s05g6g/xCfHVxPKz9Sz\n5Gp9mZmDAErIIiJ9rtPWm5aBz7IyLTah8zabHY1t4bNMQps3UHTPXQTv+zXNl12J77gL8UyDp3/6\nW6KVo3b3nXa9AWsxube1vtxTSsgistfZ02YfXb0Ou1s+tm1+4ZFuvdlaS5tNIKvNZkdjcV0qX/sb\nhz31R0qW/xXD83BHjMAIhzPXi1ZVtxqebhjSX4VSuZp1dPY+tMQF6fafg7XZR19TQhaRvUZPKp9H\nVoRpaYeZa+yoXa0czVZNNHrWerPjNpttx864+btM/HO6/ib5icOJzl9E/PSzIBBg6q6mi/loMdnZ\n+9j2PejsfRhVEcLzaNf+s6PWmXuTvLfO7I2BXkfYHwphfWR/GKrzgqE7t6E6L2g/t85aNiaSTqby\nucWmHelq39EjinOObd26sq09uRu3Vr2Db8VLNF98KYmkS/FLzxF+8PcEv/xFto/vuEgrHy0mc7X6\nzBXXvzbs7HHrzMGuIFtniogMhFyVz615rkdjJEljJNlup6G1mxtpWwvcunVlWz1uvWlB6PGllJ11\nKhXHHknx17+Mb+NHhAI2znGzafzFrTB9eqfz7O8Wk91p9dlVXNB5+8+uWmfuDfTIWkT2Cj2qfHa8\nXZXPtKuITrouKcfD1yahpFyPRNIlFOhdIjR21hG66w6Cv74Ta9PGdMzHHE90wSLc0fv06pz9IVfl\ndK73oKvjk467R+/hYKeELCJ7he5UPruuR8p1sQwDa1fCNVyIRJMEfOkxPtPMqobOnMc0sKweFim1\nfGJoGBixGOEf34i3a5el6KULcaZM3aM5d6W3j7b3tHK6q+N9lrlXV14rIYvIXqGryudxo4rZUttM\nYySV2TEpnnRoao6zpTaSaWc5vDTAxH3K8CDrsbXjeCRTDi++sSVnkRMA0SiBRx4itGQxkS9fQ+Lk\nubijqqn/zQOkps/AKyntt/ehJwVZHclVOZ1zl6kujlfrTBGRvURnlc+O61HXFAfSDTrAozmSJJZ0\n8dkWmGAaBs2xFHjpxNP6HMmUg882Mdq0yQSyipzM9esI/fpOgvf9GrO2Fs80sd9+k8TJcwFIzj6x\n39+Dzlp6to21K529j92t6O7seLXOFBHZS5iGwQHjKpgypjzzuBbSy29GjyjO7LaEkV7uZFsWleVB\nXA8s08AwDNZtaeaEw8dkzmFZ8OIbW7LWEMPuIqcpY8qxTJPi//oKwbvuwHBd3OHDiXzhy0Q/Nx93\n3zF5m3+ugqyWWHPp6H3syZ1tZ8erdaaIyF4mXfGbTiDReCpTZGSYBj7TIBJN4rguppluZ2m3+swz\n5bo0RVJUlAYJBcys41uzm5sIf/g+iY+NIhQwcfYZQ+qQQ4kuuIz4GWdDMP/Le/a0IKut1u9jb+zp\n8UNNzoTc3NzMihUrWLduHYZhMG7cOGbNmkUgEMhHfCIi/aqjIqOA38rc8Vlt7tps06Q4bHd6fOna\n95j46G8Z99SjpIIh6j+zCrCJXnEV0au+0H8T6Qa1sixsnSbkaDTKzTffzJNPPsnUqVMZPXo0tm3z\nz3/+kxtvvJETTzyRf//3f6eoqCif8YqI9Eg0kaSuIc6w0gAhvw+ARCpFUyRFcdjGb9vtiowsy6Si\nNEBzLAlAynGxTAPP8xhfXYrf3v2j0zJNRpX5MR9/nClLf0vV6ysAaK4cxbZzL6LYcXYNzL4rbRsD\n9Kzyubdje1OQlY9mI9JFQv7qV7/Keeedx5e//GXMNn8BruuyfPlyvvrVr/LLX/6y34MUEemphONw\nyx9fZ9UHO0g5LrZlMn5UMZXDQqzf0kzScfBZFuOrS5h9+L5AdpHRsdNG84/V21m7pRHH8bAsg/2q\nSzNjWzto0yoqbkjf/W45dAZrTp+HM3cuUydUZjZ5aJFyXZa9soG1mxuzYhhTVcS2uljOymfX83jj\nve28+8GObo1tW1E9siLEqIpwuzadHRVk7WlFtvRMp60zPc/DyPGGd2dMXxiKbf2GarvCoTovGLpz\nG6rzuueJd/loexNOq05btQ0x/LbBxH13Jx/XdRk/qpSTZ4zrsL2j53nEEw4Bv4VhpJPXwTUfEFqy\nmOavfB13vwngeYR/9AMip59FdMKULu8kn1ixjrVbGrJudOoaYxQFbQ6aMKJVXB23oly1rpamuEtz\nJN6tsZ3dDXenIKs3LTL3xFD9XoTutc7s9A65JdHW1tby+OOPU19fn/X1q666Ki/JWESkp6KJJB9u\naiAQtHHc9CNjz0tXUCdTLk7KxbLTScg0TdZubiSRSuG37XQBVlY1skE4ZGIm4ox55i9MeuQ+hr33\nFgDOpMlE/vOrYBhErvkmQJf7DidSKdZubsRs9Tmu56WLqWKJOKmUi52Jq33lc0tcpaXZV+lqbFcV\n1V3tRdxXFdnSfTmLuhYuXMiUKVPYZ5/Cad0mItKVuoY4Kdeldemp43q4ngceJJIOIbujyun0j8S2\n1cgH3nMzkx69j0DDTlzTJHLSXBILLyN5zHE9iqspkiLpOASs3T96XTf9aNh1PeIpJ5OQ03FlVz63\nxNWRzsb2R4vLPW0TKh3r1rKnG2+8sb/jEBFpp7fFRMNKA1lLlSBdLW0aBh4efl+bJUq7KqdbrmeZ\nHkVN9SSHpR/LFm9aD8C753+e9085n8NPnt6ru8PisI2vTXGXuavpCCYE7LZxZVc+96RKuj9bXKoi\nu3/kTMhz5szhD3/4A0ceeSRWq2+k0aNH92tgIrL32tNiopDfx37VpXy0fXfXJ8MwsC0Dv21mHlfD\nrs+Qq0tZs7GBHeu3MebJh5n6+P0cWT6cZ370ayzL4PXLvsarX/oeKdvfrfaQnfHbNuOrS7I+QzaM\ndHIrCtpZd8cdVT63tJ1simffJXc1tj9aXO7JeyCdy5mQGxsbWbx4McOG7S6CMAyDp556ql8DE5G9\nV1+0d7zgxMk8/MI6Vq3ZgeN5WIbBtEnDM1XWKdfFNk3GV5cytXkzw66/kZnLHsYXjeD4fNRO/hip\nWAwzFKSppKLH7SE7M2f6mEyVdUsMh04ckamyzlX5PHXsMLbWx3n3g+6Nhb5vcbmn74F0rNMq6xZz\n5szhscceIzgAXWVaDMWqu6FaTThU5wVDd26FNi/HdXlu5aZ2rSghvU/xMdNGd/vurLKyhPUba7tc\nh1y09BHKL7sUgMiIkaz59AV8eMpniA8bged6HHXIKByHPl+DuyfrkCsrS9iytb5f1iz3x/HdVWjf\ni31pj6qsW4wZM4b6+voBTcgisvfo62KikN9HaIQv82djxw7K7r8P/+cvA9umcdaxRA47irWnnsem\nWbPxWhVcpVwPx6HLauTe8tt2poisRU9aSfbX2P44Xron53eZYRiceuqpTJ48GZ/Pl1l7fM899+Qj\nPhHZy7QuJmrZ7MG2DAzT6LKYKNddnP3P1wgtWUzg4QcxEgncykri51+Ir7KC535we4d35L3a4zhP\n1D1r6MmZkC+//PJ8xCEiAqTvxkZWhFn5/nYaI8nMXsQlYR/TJlW2Sz5dFYDhugR+/ztCdy7G94/X\nAEhNnERs/kISp5yauV5HxUuO45JMud3f4zhPetKpSwaXnL9WjRs3jmeffZYjjjiC6upq/vjHPzJh\nwoR8xCYie63dpS1GJ6+3aCkAM0wDvy+9Y9PmHc2sXl8HhkH4lp9j//MfxE+ey87fP0zdi68SXXgF\nXmlZ5hxTxw6jengYz003Dmn5f59tZZ+3JpI+7wBavb6Oj7Y1FVxcsudy3iF/5Stf4dRT079Jjhw5\nksMPP5yvfe1r3Hnnnf0enIjsfRzXZWttlNEjinFdL1OJbJoGW2ujTB3rdtyNyvOoXLmCSY/eR/Oo\nfXl94ddwXI/G//k5bmUV7thxnV6z7f683d3jON960qlLBp+cCbm+vp4LLrgAAL/fz3nnncfvfve7\nfg9MRPZOrYu6Wi97go67UXmNjUx6dimTHv0dpevXALDt0BmkHJd40iH1iendvnZL8VJnexx3FEM+\n9aRTlww+ORNyMBjk2Wef5dhjjwXgpZdeIhTqqluriEjv9aRDVOnSBzn7K1/EF2nGtX2sm30a759x\nIbX7H4rtQcBn0dzPMeRTocYlfSNnQr7++uv5yle+wte+9jUAqqur+fGPf9zvgYnI4NebSuDWRVbx\nlEN9Q5yy0gAB26K6PEDwpReJzTyKRNLFmDgZt7iEN85dwAcnf4bmsgps0wSPdDepTpJXR2uA28bb\nEgOQeWwODGiXqp506pLBJ2dC3n///Xnssceoq6vD5/NRXFycj7hEZBDb09aXY6qL+c1fV7NjZwzX\n8yiLNnLGe8uZ+fZf8W38iL/e8iDbx0/FZ1Ux8k/Psb42nt5fuH4nPtNkfHUJk8eUtztvZ3sRzz58\nX9Z8VJ8Vb9WwEIlkirWbm0i6bpfnzaeedOqSwaXThPwf//EfnH/++Rx11FEAWa0zAZ555hkefPBB\nfvGLX/RvhCIy6Oxp68uf3v86OxvjTN2xhk+9+hiz3nkev5Mk7gvw/qnnkywuzWwQsXJdemvYqWPL\nM2uWPeC9DTupHlmWdd5lr2xI95G2zMyOS2u3NHD/k++xb1VxVryvr9nR6Xn7Yy/g7jINg0MmV1JV\n6tc65CGm04R84403cvPNN3PDDTew//77M2rUKCzLYuPGjbz11lvMmTNHu0CJSDt7uo9ufSTO5poI\nISfBt+77JuFElM0Vo/nrJ07lyf2P46QTDiYUTnfecl2PxkgSgOoK8O36DNUg3X/ZaVUA1dFexJBu\nfvThpgb2qSyiZZFVrvMWQjWzumcNPZ0m5KKiIq655hquvPJKXn75ZdatW4dpmkybNo3vf//7hMPh\nfMYpIoNEb1tfmhs/InjPnWwfMR7XHUvcH+Q3cxawo6yKN/ebhotJPJFiZ3Mik5BTrovjehgYpBwP\nX6tfAlJdn5/IAAAgAElEQVSuRzzpZP7c0V7EkN4n2XE94gmHcMjs1nlVzSz9IednyMXFxcyZMycf\nsYhIgelNUVaPKoE9D9+LzxNashj/E49jOA7jjjwK8/ivA/D0x0/ODDVIP64tL/Jn1iebGLvi8sDw\niESTBPwWlmVimwYBn0XDrjmEgla7vYghvU+yZRkE/Lu/Zptm5ry2lX2n35/VzGqHuXfr+47pIjLo\n7UlRVnf30fU/vpSiH34Pe/W7AGwZM5mXjjuHd484idCOGJF4KqtK2nVchpcFqIvEadzRjOOmG4TE\nkymamhNsrY1mXqsoDXDstNG8/UFNVovJcNCmOZbI2tvd8zz2qy7FaDUv0zQoCad/PBpdzKGv7GkR\nnAwNSsgi0s6eFmV1to/u/sWtWmI21GN9sIYPjzmFZ2aewabJh8Cu5DN+lM3aLU1EEw6e62GYBtUj\nipg7axzvrq0D0o+TwaMpkiSWdLAtK/MLQHMsyT9Wb+fAiemE2jKH0SOK2LQDIrFU1n7IrausW+Kd\nNmkEYLC1tv/3Au6L/Z9l8OtWQo5EItTX19N66+TRo0f3W1AiMnD2tCgL2rSijCUpefZJin54B/ar\nr1C78h280jLiZ32G5mOP5zd/r8Ns81jY7/cxaZ9yzpk9kR21UUZXFVEc9PHcyk2MHlGc2QUKw2Nr\nbRTbsqgaFsT10o+gAdZubmT/CSOyzmvbJmOqijnyoJFEY07WOuTWrTNbPzKeOrb9a32pL95vGRpy\nJuSbb76ZJUuWZC17MgyDp556ql8DE5GB0Vf7ERu1NRTfdy+hu+/A2rA+fe5Zn8TcsR2ntAyCQRqK\nh5N0drQrtEpfy8XC4IDx6TvE1u0sDdPAZxpEokkc18U0DVwP7F2PuFNOuigrlkh1OAc8g4rS9nu8\nd1S53N/VzH29/7MMXjkT8kMPPcTTTz/dbh2yiAxNfdGe0dyymYojDsWIxfDCYaIXzyc6fyHOgR/L\nGlcctjsstEpfy6Q4vPtHVEdxBfxW5u7RanWH2VKoFfTbRKOJXs0hX9QOU1rkTMhVVVWUlJTkIxYR\n6WN72rqyo6KsRMqhriHCsNIAIX96+RHxONYjD1G/31T8Hz8E/6hq4mecTezAj7H9tPMIjxqe1aKy\ndevK8dUlrN3SgGEYmb2PPc9jfHUplpne6KEl/pa4DMg066goDdAcS2YVZbUUarUtiCrEFpPdLYKT\noa/ThHzzzTcDUFpayvnnn88xxxyTVZl41VVX9X90ItIre1q121FRVlV5kFdWbeX3T79PynGxLZOD\nA1Eu+GA5/nvuJrSzlnUzTuaxBdcxrroI5n2ddVuaSK7Ygs/azvjqEo77xD4889rGrNaVY0cVEfJb\nrN3ShON4WJbBftWl7FsZ5rmVm7Lin7hvGeu2NGYdP3GfUvA81m1pbleoVdOYHBQtJjsrgivEWKX/\n5LxDPuSQQ/IRh4j0oT2t2m27P7DfZ3LfX//Fh5sbME2T/de9w3HPP8jBb7+I5bpEwyW89KkL+cfx\nZ2NaBi+/tRUP2LeqJKtF5W1/2knAb2a1rnzzg1qKgjafPKSaeMIh4LfYWhfhjQ9qGT2iOCv+dVsa\n8fsspowtb7fhwwmHj2m3YcQhk8sHRYvJjt7vQo1V+k+nCbnlDvhPf/oTZ511VtbX7rvvvv6NSkR6\nrS+rdjP7AyeSfLixHtNOH3fom88z7c3n2TB6Io9Nm0vdKWfi7ere5zoezXEHA3BdF7PVtdZvbWLy\nvrv7S3teumgploiDB+GQD69V20rX9bLmsXZzI1PHlmctZYLd7Sy7W6hVqAZTrNL3Ok3Id999N01N\nTdx///1s3Lgx87rjOCxdupR58+blJUAR6Zm+rtq13n+P0C9/yReff5mfX/kzMAyeOfocVh58DO+N\nOYDtO2NMNf207JKedF3cXUskUykPv5/MfzueS9J1Cez6+MtxPVzPw3UhnnQI2yYpx9vVtjJdad0y\nj5SbPrZtK8vezkuk0HSakMeNG8fbb7/d7nW/388Pf/jDfg1KRHqvT6p2HQf/sr8SXHIbgWeeTp+3\nZDjl9dupK6ukpqyK2vIqLHY13mh1Tp9pYhrpth2WaZByXCzTwLYNLMPE1+qO2TKN9GfapofPMkmk\nHCzDyFRM263G2mb62LatLFvmZVlkFYCJDDadJuTjjz+e448/nlNOOYWJEyfmMyYR2QN7WrVr/Ws1\nZZ89J7N2eNvHPsH7Z1zIX0Z+nI31cdxIEhdvVx9pGFURpnWdmGkZhAMW8USKHQ3p/YxNI520x1QV\ngeHRsquSYRj4bQPXhQ+2NGZaXyZTDsNKAu0eu4+vLmH30WmO45JMubz4xpZ2BWwig0mnCXn27NlZ\nywja6k1jENd1+c53vsPq1avx+/3ccMMNjBs3rsfnEZGu9bRq135jJc648Xhl5TjjxpN0XNaeci5r\nTr+Q+on7AzBsayPbm1NE4w5eurcGZUUBTpk1li07oqzd3JgptJo4upT6SIK6xgSuC5geRUGbYw4d\nzaYdkayx1cOLME2D5lgq0w5zWEmQ4aWBdEeuVvFPHlPOext2Zs0rmXLx2VbW58otBWwjq0r7/b0W\n6SudJuR7770Xz/O45ZZbGDNmDGeffTaWZbF06VI++uijXl1s2bJlJBIJHnjgAVauXMkPf/hDfvWr\nX/U6eBHpWLeqdhMJAo89AvcsYdjf/kbTd39A9IqrcHw+lt7+Z/D5MkNd1yMST7FvVTHjq0uJxVOE\ngzY+26KuPsGJ08fguC5NkRShoMXLb23FMA2clEs86RDwWVi2SU19vNOxLe0wbcvI/PmoQ0bhOGTF\n33pelgUvvrElawMI2F3A1no/ZJFC12lC3meffQBYvXo1N954Y+b1+fPnc/bZZ/fqYq+99hpHH300\nANOmTeOtt97q1nGVlUOzMYnmNfgMiblt3Ai33QaLF8PWrenX5s6l+NhZFFeWEIkl8ReHCPhaNfJI\nOti2jWFAaXGQEcN2F4zFkw6lZWHCwXQCj8SSBEK1Wcf3duywYcWZsR1JH+/r9Ph40hkaf2cd0LyG\nnm5tLvHyyy9z5JFHAvDss89mNQjpiaamJoqLizN/tiyLVCqFbXcdxvbtjb26XiGrrCzRvAaZoTK3\nsnkX4X92OW5ZObHLryL85S+wvWxk+ovb05/jxqNJEvHdfaBd1yOVcgCPWDRBPN6qK5br0VAfobkx\nfQfb0fF9MbYjuY4P+Kwh8XfW1lD5XmxrqM4LuveLRs6EfMMNN3DNNdewfft2PM9jn3324Uc/+lGv\nAiouLqa5uTnzZ9d1cyZjkcGqIDabb24m+McHMDdvJPL1bwEQ+Y8vET/9LGJnnwtFRYQrS3C21mfF\n2lGLyu7uD9yTorI9LkDLdXwn1eYihShnNjzwwANZunQpdXV1GIZBeXl5ry922GGHsXz5cubOncvK\nlSuZMmVKr88lUqgKYbN564P3Cd51B8Hf3YfZUJ/e4OHKL+CVlJI8+liSRx+bifWN97bz7gc7crao\nHDeqmDEjS9heF81ZKNaTorI9bRuptpMyVHSakL/1rW/xve99j4suuqjDaut77rmnxxc78cQTefHF\nF7ngggvwPI8f/OAHPT6HSKEbyM3mrXdXUfydb+J/ehkATtVImhddQeziS/FK2lccr15fR1PcbVeh\n3FmLSss0OGba6Jx3/j1pBbmnbSPVdlKGik4T8vnnnw/A1Vdf3WcXM02T66+/vs/OJ1JoBmKzeWNn\nHV5pGZgmXiiEb/lTJI84kuiCRcRPPZ1Mq6xOYi0tDWWfj3SLyiljy7N+qYDdLSpDge591NSTVpB7\n2jZSbSdlsOv0X9VBBx0EwB133JFpEjJq1Ki8BSYyGOVzs3nrzTcI3bmY4IO/p/6e+0keNxt33Hhq\nV6zEHb9ft2NtF6fjkXScrLaV/TUHEdkt56+5V155Jc899xxXX301qVSKY445htmzZ3PooYfmIz6R\nQaUvN5tvvWdwZi/hRILA448SWrIY399fBsAZNx6nqYnahlh6bI5k3FJsZll0GKttGfgsK6ttZes5\ndNaisiCK2EQGMcPzdnWBz6G2tpYnnniCW2+9ldra2m6vIe4LQ7EMfqiW9w/VeUH357ZqXW2nVb/d\n+Qw55bose2VDVkHV+OoS5hy+LyM+dTy+N1YCkJg9h6ZLF/Lnkql8uC2SPXb6mHYJtaNis3jSoaI8\nTCSayIo1kXTw+6ysOTiORzKVbvLRugCsdfesgSpi68xQ/X7UvAafPln29N3vfpfXXnsNy7KYPn06\n3/72tzniiCP6JECRoWhPq36XvbKBtVsaME2DSWveIhhpZLVxFMte/YizzjmP5MxZxC79PM6ESTyx\nYl16bKv9hdduaWDZKxs4eUZ2W9qOis18tkUi5XazRaWDzzY7LQAbiCI2kaEkZ0JuaGjA8zz2228/\nJk6cyIQJEygp2Xs7qYjksidVv4lUio1rt3HYK09y+NN/ZORH77Nz+CjeP2QWazc3Ur/w8szj60Qq\nxdrNjZhtHjubpsnazY0kUqnM2M6KzSzLIOCzOGLq8F61qITdexRnx9B/RWwiQ1XOhPyTn/wEgDVr\n1vDSSy9x+eWXE4lEeP755/s9OJHBrKdVv+aG9YRuuZkv/O43hKJNuKbFO9NP4NXjz8EzTFJOuv9z\nRWn6n21TJEXScTJ3xq2l3OyxXRWbJR0Xx6HDyumWOUTjqQ6P1x7FIn0nZ0L+4IMPeOmll3jppZdY\ntWoVhx56KMcee2w+YhMZ+jyPlr0L7VVvU3bnrTSVVvD8nPn889gzaBxWlRlqmybF4d3/ZIvDNr5O\n2ti2HdtVsZnPMnMWm3V2fK49intSxCayt8uZkL/whS9w/PHHc8kll3DYYYdh6vGTyB4zdtYR/N19\nBO+9i/oHl+JWjyZxwknUL7mXx4Z9jA9qoln/1lzXZXx16e5qa8Bv24yvLtn1eXPXY7tqMblvVXGv\nW1RCx3sUd7f1pYjsljMhL126NB9xiOwVrLfezKwdNqJRvGAQ+5//IFE9GiyLxGlnMNt1cXdVWbd0\nyRpfXcqc6WPanW/O9DGZiuxcYzsrNjto4ghqappyxt7Z8R0VgKl1pUjPaWcHkXxIpSj7zOn4//YC\nAM7Y8UQv/Tyxz87DqxieNdQ2TU6eMa7jdcht9GRsZ8Vmbe94O9NVsZpaV4rsOSVkkX5ibt2C0diI\nM2ky2DZexXASx59AdMEiEiecBDm2MfXbdqYoK5eejO2vFpVqXSmyZzr9F/zKK690eeD06dP7PBiR\nQc/zsFe8TOjO2wg89iiJ42bT8Ns/AtBw253g8w1wgCJSqDpNyD//+c87PcgwjF7t9iQyZEUiBB/6\nA6Eli7HffhOA1AEHkjj51N1jlIxFpAudJuR77703n3GIDGqhO26j+IZv41kW8dPOJLpgEcmZR2WW\nNImI5JLzQ6dXX32VJUuWEIlE8DwP13XZtGkTTz/9dD7iEyk8rot/+TICD/2Rxp/eAj4fsc/+G0ak\nmdjFl+KO3megIxSRQShnBca1117LnDlzcByHefPmMW7cOObMmZOP2EQKS10doVtvZtjMwyj77GcI\n/uF+fC88B4BXWUnk69cqGYtIr+W8Qw4Gg5xzzjls3LiR0tJSbrjhBs4+++x8xCZSEIymRoq+fS08\n+ADFkQheIED0s/9GbP5CUod+fKDDE5EhImdCDgQC7Ny5k/3224/XX3+dmTNnEolE8hGbyMBJJjHi\nMbziErxwEb4XnoWqKpouXkDswn9rt3ZYRGRP5Xxkfckll/Cf//mfHH/88Tz88MOceuqpHHTQQfmI\nTSTvjK1bCf/3D6n4xEGEf5reWAXTpP4Pj8D77xO96gtKxiLSL3LeIc+aNYuTTz4ZwzB46KGHWLt2\nrbZflKHF87D/voLQXYsJLH0EI5nELSnF8/szQ9yx43I28hAR2ROdJuTNmzfjeR6LFi3i9ttvx/M8\nAEpKSli4cCFPPPFE3oIU6U9F3/s24Zt/CkBq/wOIzl9E7DPnQ3HxAEcmInuTLhuDrFixgm3btjFv\n3rzdB9g2xx13XD5iE+kX5toP8T+7nNjn5gMQP+kUrLUfptcOz/qk1g6LyIDoNCHfeOONACxevJhF\nixblLSCRfuG6+J55itCSxfiX/RXD80jO+iTO5CmkjpxJw5EzBzpCEdnLdauo69Zbb+Waa66hqamJ\nm2++mUQikY/YpMA4rks0nsJx3YEOpfuamgjddgvDZh5G+QXnEHjy/0gddjgNv7wdZ+y4gY5ORCQj\nZ1HX9ddfT0VFBW+//TaWZbF+/Xq++c1v8uMf/zgf8UkBcD2P1evr2FITIem4+Kz0ZvVTxw7DLNTH\nu54HhoGRiFP0/e+C5xG7YB7R+QtJTTtsoKMTEWkn5x3y22+/zZe+9CVs2yYUCnHTTTexatWqfMQm\nBWL1+jo210QwTAO/z8IwDTbXRFi9vm6gQ8uWTOJf+jBlZ84l8Kf0DktexXAaltxDzcp3afz5r5SM\nRaRg5bxDNgyDRCKBsetOqK6uLvPfMvQ5rsuWmki7TexN02BLTYQpY8oHfDN6Y+tWQr+5m+Cv78Ta\nshmA1CHTiJ99LgCJE08eyPBERLolZ0K++OKLufTSS9m+fTvf//73WbZsGVdeeWU+YpMCkEi6JB0X\nv9l+DW7K9Ugk3QHdlD584/WEb/5Zeu1wcQmRz19G7NKFOJOnDFhMIiK9kTMhn3nmmRx00EGsWLEC\n13X51a9+xf7775+P2KQA+H0mPqvjhGubBpYF0XgKv8/Mz51yNIr97jukPv4JANyqUTj7TSA6fxHx\n8y7AK1bTGhEZnHIm5GQyyQsvvMDLL7+MbdsEAgGmTp2qx9Z7CctMF3BtbvPY2nE8kimHF9/YklXo\nNXx4/zTTMNetJXT3EoK/vQdcj5rX34VwmNjn5hObv1Brh0Vk0MuZkK+99lpisRjnnXceruvyyCOP\n8N577/HNb34zH/FJAZg6dhgAW2oipFwP2zRIphx8tpku9Nr1OHtzTYS31uygujzYNxd2XXzPLid0\n52L8f30Cw/Nwhw8n+rlLMZIJPMJg5/wWFhEZFHL+NHv99dez2mTOnj2bT3/60/0alBQW0zA4YFwF\nU8aUk0i6WBa8+MYWjA4KvT7a1kRVqb9PHl/bb6yk/PyzAEge9on0Y+nTz4JgHyV8EZECkvOnZnV1\nNevWrcv8eceOHYwcObJfg5LCZJkmoYCN40DS6bg5SNJxSSR71zjEWvUOxV/9T6x308vqUod+nOYv\nfY26J55m5xPLiZ/3WSVjERmyct4hp1IpzjjjDA4//HBs2+a1116jsrKSiy++GIB77rmn34OUwtJV\noZfPMvH7enB3nErh/8vj6cfSLz4PgFdSQvN114NhEPn6tX0RsohIwcuZkK+++uqsP8+fP7/fgpH+\n5bjpu9dcFdHRRJK6hjjDSgOE/L4Oj28p9DKAlONhWwYesG9Vcafnbnv90K03E7r1FqxNGwFIHH0c\n0QWLSJykdcMisvfJmZCPOOKIfMQh/ai7rS8TjsP9T77Hh5sbSDkutmWyX3Up582ZxIcbG7KOrxwW\nIp5IsW5LE0nHwWdZjK8u4cD9hlNX19zx9Xc0Q0M9lJUzaniYw9/7F0Z9PdH5C4nOX4QzZWq+3xoR\nkYJheC0bHRew7dsbBzqEPldZWZK3ea1aV9tu2ZLrelQPD3PAuIrMa/c88S4fbq7HbHWH67ou5cVB\nDp44POv4TTuaABhVUUTKdbF3HXPAhBHtqqxXr96E708PMnnpb/FMi6d/8QCu6zGWZiZPrsYrKe2X\nefe1fP6d5dNQnRcM3blpXoNPZWXuHgkD2/NQ+l2u1pctOzdFE0k+3NSQlYzT40zWb23CaVXE5bke\njZEkjZEkAH7bwjSNTJV1yznN9esIXX8d0089khn/802GrVlFbHglViyKaRpsoIhUUf+sWxYRGWy0\niHOI627ry7qGOCnXxW9lj3M9D9dzicRSlPnSX0s5Ho7rpT8/drPP3VJlXfriU5RdeC6G6xIrHcaq\nCxax5tPnE60a3eH1RUT2dkrIQ1zriuhUyiWecgjYFrZtYpsGjueyaUcTwaCN3apy2vU8TMNI/880\nCQd3f6vYloG1647bxCCRcghGI+z39KNsP+N8/D6T5IxZJI86hsi557Ns/JF4HSxXsk2jZxXZIiJD\nmBLyEGeZJlXDgiz/50ZqGhI4rotlmpQX+3Adj+de35Qp4IonHVKOg4fRsp0wlmkwtqoIq1WyNkyD\n4pCPusYY9a++ziee/iOHvPQEgXiEDZWlWNMuh6Ii6h98FICqLj7DHuidokRECoUS8l5gw7ZmmmMp\nTAMwTUwD1m5qBAMqSoOZR86O4xBPuNg+C9f1ME2DirCP2Yftg21bu1tnGjDt7ReZ8MhvGPv2qwDU\nV4zk1TMvoeykU2l7L9xR683qXVXeIiKSpoQ8xCVSKdZubmRYSRDP83Bd8DyXrbURMAw8z8tsFOJ6\nBj6fxfHTRpNyPMIBG5/fYkd9nGOmjWbKvmUkUh6WBYEv3c2IVSvZOm0Gq0+9kK2zjgefj3o3wIhd\nd+Et2rbezNvOUCIig4gS8hDXFEmRdBwClo1h7NouMerSstrNcdNNPVzPw/PSnx2nHI+ykkDmHGWr\nXqfk9u9ilpXS9MOfEI2neHXhNVBSTOO4SVnXaynq6qhQK916U4lYRKQjSshDXHHYxtemctrvt9J3\nxUar4izDwDDS/x8O2piJOGOe+QuTHr2Pin+9BUDy4EPBTd/hNhx4aLvNJaAXrTNFRARQQh40utv2\nEtKPqZsiKYrDNn7bZnx1CWu3NOC6HrGkQ9BnURS0SaRcUimHSNIl7DOxLIOysJ+qF5/iqJ9fR6ip\nHtc02XHsidhXXcWOw2eyaf1ORlcVZVpnAlmNQXrSOlNERHYbkIT85JNP8sQTT/CTn/xkIC4/qHS3\n7SWkE+OyVzawdnNjVjvLIw8dyfNvbGLHzlhmOVNZ2KSh2aG+OQmex8hN7/Lu6P2JRGM8tMliuuPx\n5+ln87dZp3HJFz7FHQ+tYvM/VmSKvUYND/HxicP5aHuUpOviM83crTO7MQcRkb1V3hPyDTfcwAsv\nvMABBxyQ70sPSqvX12WWDLVUQ7fcmbZuewmkk/GWBkzLJGCl/2rXbmng+Tc2EYunKAn7MsuZdjQm\nCMUjnPDOcua+/hfG1H7EVy/4Ie+O3p9E1VgW/vvdOJaN67pc98u/47NNTMvMLF3auK2JhsYEc2eO\nz9pc4p0Pa9q3zuzBHERE9lZ5T8iHHXYYc+bM4YEHHsj3pQedXG0vp4wpzzz6bammNttsi+i6Ljt2\nxigt8oMBBlC1eS3nvrSU2e88TTgZI2nZLD/gWJoCRZnrYu/61jAg5YCPNgyThkiSWCxFKOxrGcpH\n25qoKvVn4urJHERE9mb9lpD/8Ic/8Otf/zrrtR/84AfMnTuXFStW9Ohc3WnKPRjlmlckliQQ8hHw\ntf9riicdSsvChIPpZLhjZwTTMggGslNnfdLB3bW0ybQMrFSSb/36GkqiDWwvHs6DR5zDkwefyM5w\nOa13GTEyj5IN2PWVlsfLngcGBi4uCc+jqnj3HXHbuHoyh8Fgb/1eHMyG6tw0r6Gn3xLyueeey7nn\nntsn5xqKu390Z1cTx3WJR5Mk4ql2X/Ncj4b6CA316X7VGB6u4xGLJ7PGlTTV8pkVD9I8YhQvTZuN\nY1jcf8IlbDdCrJh4BK5pYRjpJLv73OA6bjoXt0rTbqtBHh4GBn7DoLEplnm9KBygoT5Cc+PuO+Rc\nc2gZW+iG6k40Q3VeMHTnpnkNPt35RUNV1gXMMs1MNXPbtpOjKsL8a8POrEKpcNCmOZbEskyqP3yH\nw5/+Iwf+fRl2KsmH1RN5adpsAF6cfgo19fHM+dpuwOkCrrP7xQ7TpedSGvZnHle3xNW2yrqrOah1\npojIbkrIBa6ztpOe57G5JppVKDV6RBjf8qeZ+Ydb2WftOwDU7zOe1KJF/Kbo47gN4HoupmEytjLI\nppoYKbfTS2dMGVNMwjHYXBPBcz0M02DfqhJOnzWOmoZEVlwHTRxBTU1Tt+ag1pkiIrsNSEKeMWMG\nM2bMGIhLDzodtZ0EeG7lpswdp93cSKqoBNu2GO1LMnrdKhpPOJn45xfiHX8CmCaXA02xBNtqowwv\nD/KPd7djmAb1zXG21UYoLfXz3D82Y5oGPtPAcT0s08CyTbbWJfnu56fjuB6btjUzuqqIsnC6k1fb\ntcVti7c6m4PujEVEsukOeZBo3XYyGk+RTDns8/arTHr0Pka9+iKP37uMRHkF6448gXEv/hP/pAnt\nzlEc9FM82p8+ftceyWVFAcqKAuyoi6aLvzwD0zKxWn1nuJ7LttooE0aXUTY+kHXOnrTDVOtMEZHO\nKSEPMkZTI+X3/5ZP3/orytZ/AEDdpAMJ1WwjUV6B5fdjTRjd5Tla75HcoiTky7TPbNurwzRMqipC\nfToPERHJpoQ8iBg766j4xMGYjQ24to+1x3+aNWfOo3b/Q8Ewul0o1VGhVSBoM6zYT0MkkTXWdVzG\njiylOOjvt3mJiIgScmFzHPxP/h/u6NGkDpmGVz6M+Gln4I4dR2Te51gf81FTE0l3yjLpUaFUR4VW\n58+exNP/2Mj6rc27i79GlnLZWR/rz1mKiAhKyAXJqKkheN89hH69BGvDeuKfPoOGO+8FoOmnt2TG\nHQC9LpTqrNDq4ImVmeKvqoqQ7oxFRPJECbmA2G++Tmjxrwg8/CBGPI4XDhP93AKi8xd2esyeFkp1\ndHxL8ZeIiOSPEvJAa9ntAfA/9gjBB35LasJEYvMXEjv/Qryy8gEOUERE8kEJeaBs2ED4f36O/4Xn\n2PnYX8E0iV26kOSMWSSPmw1apysisldRQs4nz8P34vOEliyGJx6nyHFwhw3D+mANzqTJuKOqcUdV\nD3SUIiIyAJSQ88Rcv46yeedir343/cLHP07DJQuJn3kOhLTGV0Rkb6eE3I+s99/DHVaBN3w47uh9\nMAT5MvcAABHQSURBVOJxYmefS3TBIoadcgLxHU25TyIiInsFfVDZ1xwH/xN/puzcM6iY9QlCd9+R\nft22qX3hFRpvXUJq+oz27bBERGSvpjvkPmLU1hC8715Cd9+BtWE9AImZR5E6dNruQX4tJRIRkY4p\nIfeRki/9B4E/L02vHb7oUqLzF+J87KCBDktERAYJJeTeiMcJLH0Y61+riXzjOgAil19F8siZxC6Y\nh1eufX5FRKRnlJB7wNy0keA9dxK6527MHdvxbJvoon/HGzGC1JEzSR05c6BDFBGRQUoJuRvMtR9S\n/L1v4//zUgzHwS0rJ3LF1UQvWYA3YsRAhyciIkOAEnJnmprS64MtC0Ih/H95DGf/A4l+/jJiZ30G\nwuGBjlBERIYQJeQ2rDXvEbzrDoK/u4/Gm28jccqpuCNHUffcCpyJk7RcSURE+oUSMqTXDj/1V0JL\nFuNf/lT6pZGjMJp3N+5wJk0eqOhERGQvoIQMlJ13Fv7nnwEgceQsYgsWEZ97Gvh8AxuYiIjsNfbK\nhGy/sRLzo49IzP00APG5p+KMH0/00oU4Bx08wNGJiMjeaO9JyIkEgaUPE7rzdnyvrMAdUUnNCSdC\nIEBswWUDHZ2IiOzlhnxCNrZuJXTX7YTuvRtz+zY8wyA+5yRiCxbpkbSIiBSMIZ+Q7X+9S9H//Ci9\ndvjyq4hesgB3wsSBDktERCTL0ErIzc0EH/w9obvuoH7JPbgTJpL85DE03LqE+Mmnau2wiIgUrCGR\nkK0P3s+sHTYb6vFsG98rK4hPmAiGQfzscwc6RBERkS4N7oTseZR+7kICTzwOgFM1kuZFVxC7+FLc\nUdUDHJyIiEj3DbqEbNTVYtbUpBt1GAZecTHJGTOJtqwd1p7DIiIyCA2ahGy/+TrBO28n+ODvSR52\nOPUP/xmAxp/eoiQsIiKDXuEn5Pvvp/x/f4bv7y8D4IwbT+KkU8B1wTSVjEVEZEgo/IT82c/iA+In\nnEhs/kIS/9/evcdUXcd/HH8dULxBORNopublNyUtKm9hzkuapTS1RiqJGGsDNU0NBogpkhcUi2ne\n8BojwxAz0eZlA3Vzo0npsmY1L5giIYQWE3V5OYffHyx+8csU5XC+H47Px196+J7zeX+z8eScw/l+\nhg6v3oEJAAA3Yn6QY2L0x9gw2bv8j9WTAADQYMwP8scfy15eafUUAAA0KA+rBwAAAAQZAAAjEGQA\nAAxAkAEAMABBBgDAAAQZAAADEGQAAAxAkAEAMABBBgDAAAQZAAADEGQAAAxAkAEAMIBLN5eorKxU\nbGysrl69qlu3bmn27Nl6/vnnXTkCAABGcmmQ09PTFRQUpIiICJ09e1YxMTHauXOnK0cAAMBILg1y\nRESEvLy8JEl2u13NmjVz5fIAABjLVlVVVdUQD7x9+3ZlZGTUui05OVmBgYEqLy9XZGSk5syZo379\n+jXE8gAANCoNFuT/cvLkSUVHRysuLk6DBw+u033KyysbeCrX8/X14bwaGXc9N3c9L8l9z43zanx8\nfX3ueYxLX7I+c+aMZs6cqRUrViggIMCVSwMAYDSXBjk1NVU3b97U4sWLJUne3t5KS0tz5QgAABjJ\npUEmvgAA3BkXBgEAwAAEGQAAAxBkAAAMQJABADAAQQYAwAAEGQAAAxBkAAAMQJABADAAQQYAwAAE\nGQAAAxBkAAAMQJABADAAQQYAwAAEGQAAAxBkAAAMQJABADAAQQYAwAAEGQAAAxBkAAAMQJABADAA\nQQYAwAAEGQAAAxBkAAAMQJABADAAQQYAwAAEGQAAAxBkAAAMQJABADAAQQYAwAAEGQAAAxBkAAAM\nQJABADAAQQYAwAAEGQAAAxBkAAAMQJABADAAQQYAwAAEGQAAAxBkAAAMQJABADAAQQYAwAAEGQAA\nAxBkAAAMQJABADAAQQYAwAAEGQAAAxBkAAAM0MSVi12/fl0xMTG6cuWKmjZtqpSUFPn7+7tyBAAA\njOTSZ8jZ2dnq2bOnMjMzNXr0aG3cuNGVywMAYCxbVVVVlSsXtNvt8vT01OrVq+VwODRjxgxXLg8A\ngJEa7CXr7du3KyMjo9ZtycnJCgwM1KRJk3Tq1Cmlp6fX6bHKyysbYkRL+fr6cF6NjLuem7uel+S+\n58Z5NT6+vj73PKbBgjx27FiNHTv2jl/77LPPVFhYqMmTJysvL6+hRgAAoNFw6XvI69evV05OjiSp\nVatW8vT0dOXyAAAYy6W/ZR0SEqL4+Hjt2LFDdrtdycnJrlweAABjuTTIbdu21ebNm125JAAAjQIX\nBgEAwAAEGQAAAxBkAAAMQJABADAAQQYAwAAEGQAAAxBkAAAMQJABADAAQQYAwAAEGQAAAxBkAAAM\nQJABADAAQQYAwAAEGQAAAxBkAAAMQJABADAAQQYAwAAEGQAAAxBkAAAMQJABADAAQQYAwAAEGQAA\nAxBkAAAMQJABADAAQQYAwAAEGQAAAxBkAAAMQJABADAAQQYAwAAEGQAAAxBkAAAMQJABADAAQQYA\nwAAEGQAAAxBkAAAMQJABADAAQQYAwAAEGQAAAxBkAAAMQJABADAAQQYAwAAEGQAAAxBkAAAMQJAB\nADAAQQYAwAAEGQAAA1gS5MLCQvXu3Vs3btywYnkAAIzj8iBfvXpVKSkp8vLycvXSAAAYy6VBrqqq\n0rx58xQdHa0WLVq4cmkAAIzWpKEeePv27crIyKh1W7t27RQcHKyAgID7eixfXx9njmYMzqvxcddz\nc9fzktz33Dgv92OrqqqqctViw4cP1+OPPy5JOn78uAIDA5WZmemq5QEAMJZLg/xPQ4cO1b59+9Ss\nWTMrlgcAwCh87AkAAANY9gwZAAD8H54hAwBgAIIMAIABCDIAAAZoNEF2t8ttXr9+XVOnTlVYWJgi\nIiJUVlZm9UhOUVlZqSlTpmjixIkaP368vv/+e6tHcrrc3FzFxMRYPUa9ORwOJSYmavz48QoPD9f5\n8+etHsmpfvjhB4WHh1s9htPcunVLsbGxmjBhgt58800dOHDA6pGcxm63KyEhQaGhoXrrrbd06tQp\nq0dyqsuXL2vw4MEqLCy863GNIsjueLnN7Oxs9ezZU5mZmRo9erQ2btxo9UhOkZ6erqCgIH3++eda\nsmSJFixYYPVITrVo0SKlpqbK4XBYPUq95eXl6ebNm9q2bZtiYmK0dOlSq0dymo0bN2ru3Llu8wO8\nJO3evVutW7fW1q1btWnTJi1cuNDqkZzm0KFDkqSsrCzNmjVLy5cvt3gi57l165YSExPVvHnzex5r\nfJDd9XKbERERmjp1qiSppKREjzzyiMUTOUdERIRCQ0MlVf/U626fM+/Vq5eSkpKsHsMpjh07poED\nB0qSnnvuOZ04ccLiiZynY8eOWrVqldVjONWIESM0c+ZMSdXfFz09PS2eyHlefvnlmh8w3On7oSSl\npKQoNDRUfn5+9zy2wS6d+SCceblNk9zpvJKTkxUYGKhJkybp1KlTSk9Pt2i6B3e38yovL1dsbKzm\nzJlj0XT181/nFhwcrIKCAoumcq6rV6/K29u75u+enp66ffu2mjQx6tvCA3n11VdVXFxs9RhO1apV\nK0nV/24zZszQrFmzLJ7IuZo0aaL4+Hjl5uZq5cqVVo/jFF999ZXatGmjgQMHasOGDfc83vjPIT8M\nl9ssLCzU5MmTlZeXZ/UoTnHy5ElFR0crLi5OgwcPtnocpysoKFBWVlajf1ltyZIlevbZZxUcHCxJ\nGjRokA4fPmzxVM5TXFys6OhoZWdnWz2K01y8eFHTpk2reR/ZHZWXl2vcuHHas2ePWrZsafU49RIW\nFiabzSabzaZffvlFnTp1Ulpamnx9fe94vPE/Cufm5tb8eejQofr0008tnMZ51q9fL39/f73++utq\n1aqV27z8dObMGc2cOVMrVqxo1K9qPAx69eqlQ4cOKTg4WMePH1e3bt2sHgl3cenSJb3zzjtKTExU\n//79rR7HqXJyclRWVqbJkyerRYsWstls8vAw/h3Ve/rnk8fw8HAlJSX9Z4ylRhBkdxUSEqL4+Hjt\n2LFDdrtdycnJVo/kFKmpqbp586YWL14sSfL29lZaWprFU+FOhg8frvz8fIWGhqqqqspt/h90V+vW\nrdOVK1e0du1arV27VlL1L6/V5ZeFTPfKK68oISFBYWFhun37tubMmeMW53W/jH/JGgCAh0Hjf00A\nAAA3QJABADAAQQYAwAAEGQAAAxBkAAAMQJABwyQkJOi333676zHh4eH/umJYQUGB0zdTuHDhQs3V\n1u7n8ePj4+u9YUpKSop+/vnnej0G0JgQZMAwBQUFMuXTiCUlJbpw4cJ93efQoUPy8/OTv79/vdaO\njIzks9F4qHBhEKABFRQUaNWqVWrSpIkuXryowMBALV68WF5eXsrJyVFGRoYcDod69uyp+fPnKyMj\nQ7///ruioqKUmZmpI0eOKD09XX/99Zdu3LihRYsWqW/fvvdc9/z580pKSlJFRYWaN2+uefPmqUeP\nHpo9e7a8vb31008/qaysTNOmTVNISIgqKysVFxenoqIidejQQaWlpVq9erUWLVqk4uJiffjhhxox\nYoT++OMPRUZGqqioSJ07d9bKlSv/tQvbpk2banb5qqio0AcffKCzZ8/Ky8tLs2fPVv/+/TVgwAC9\n9NJLOnr0qHx9fTVhwgRt2bJFpaWlWrp0qfr166c2bdqoTZs2OnLkiIKCghrk3wcwCc+QgQb2448/\nKjExUfv379eNGzeUmZmp06dPKzs7W1lZWdq1a5cee+wxbd68WVFRUfLz89OGDRv06KOPKisrS+vW\nrdPu3bsVGRmpzZs312nN+Ph4xcbGaufOnVq4cKHef//9mq+VlpZq69atSktL07JlyyRJa9asUefO\nnbVnzx5NmzZNJ0+elCTNnTtXTz/9tObPny+p+hlzYmKi9u3bp0uXLumbb76ptW5FRYXOnTunrl27\nSpI++eQTdezYUfv27dOyZcu0YsUKSdWXgRwyZIj2798vqXoryK1bt+q9996rtalHnz59dPDgwQf5\nzw40OjxDBhpY37591aVLF0nSmDFjlJ2draZNm+r8+fMaN26cpOo9U3v06FHrfh4eHlqzZo0OHjyo\nX3/9Vd9++22dru977do1nThxQgkJCTW3Xb9+XX/++ackacCAAbLZbOrWrZsqKiokSfn5+fr4448l\nSc8884y6d+9+x8cOCAhQhw4dJEldu3atecy/FRUV1dpm7rvvvqt53O7du2vbtm01Xxs0aJAk6Ykn\nnlDv3r0lVe/uduXKlZpj2rVrp/z8/HueM+AOCDLQwP65ccjf+9ja7XaNHDlSc+fOlVQdUbvdXut+\n165dU0hIiMaMGaO+ffuqe/fuddrpzOFwyMvLS7t27aq5rbS0VK1bt5akmj2qbTZbrRnr8r71P7dm\ntNls/7qPh4dHrfP9/1s5FhYWqnPnzpJU66Xu/9pcpWnTprXmBNwZL1kDDezYsWMqKyuTw+FQTk6O\nBg0apBdeeEG5ubm6fPmyqqqqlJSUVPNS7d/BPnfunDw8PDRlyhQFBQXp8OHD/4r2nfj4+KhTp041\nQc7Pz1dYWNhd7/Piiy/q66+/llS9febp06dls9lq9kiuq/bt26u0tLTm73369NHevXslVcc4MjLy\nvgJbXFysJ598ss7HA40ZQQYamJ+fn+Li4hQcHCx/f3+NHTtWAQEBmj59ut5++2299tprcjgcioqK\nkiQNGTJEUVFR8vHx0VNPPaWRI0fqjTfeUMuWLVVSUlKnNT/66CN9+eWXGjVqlFJTU7V8+fK7hvDd\nd99VUVGRRo0apZUrV6pt27Zq3ry5unbtqsrKSsXGxtZp3datW6tjx446c+aMJGnGjBk6d+6cRo8e\nrdjYWC1btuy+glxQUKBhw4bV+XigMWO3J6ABFRQUaPXq1dqyZYvVo9zVrl271L59e/Xu3VslJSWa\nOHGi8vLyHmhP2gMHDujo0aOKj4+v10yXL1/W9OnT9cUXX9TrcYDGgveQAahLly6aP3++HA6HPDw8\ntGDBggfeIH7YsGHau3evysrK6vVZ5PXr19dclAR4GPAMGQAAA/AeMgAABiDIAAAYgCADAGAAggwA\ngAEIMgAABvhfZmPU2wJpNnYAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x1135444a8>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.scatter(p_x, p_y, alpha=0.4)\n", "\n", "# slope\n", "m = eigenvectors[:, -1][1]/eigenvectors[:, -1][0]\n", "\n", "e_x = np.linspace(-4, 4, 3)\n", "e_y = m * e_x\n", "\n", "plt.plot(e_x, e_y, 'r--')\n", "\n", "plt.gca().set_aspect('equal', adjustable='box')\n", "axes = plt.gca()\n", "axes.set_ylim([-4, 4])\n", "axes.set_xlim([-4, 4]) \n", "\n", "plt.xlabel('petal length (cm)')\n", "plt.ylabel('petal width (cm)')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can check the angle implied by the first Principal Component against the value we solved for previously." ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Angle implied by first eigenvector: 45.693 degrees\n" ] } ], "source": [ "angle = np.arctan(eigenvectors[:, -1][1]/eigenvectors[:, -1][0])*360/np.pi\n", "print('Angle implied by first eigenvector: {0:.3f} degrees'.format(angle))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can trivially add the second eigenvector, which is orthogonal to the first and in fact the only other Principal Component that our two dimensional data has.\n", "\n", "This gives us a new coordinate system whereby the axes are orthogonal to eath other and the variance of the data is maximal on the first axis." ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "<matplotlib.text.Text at 0x1127a15c0>" ] }, "execution_count": 26, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeQAAAHiCAYAAAA597/kAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl8HXW9//HXzJw1e5OmbdqmLXSjiFCg7LK0FEGQTRSQ\nTSgWRcDtivzU6gVEgYve64KgIAXhouy7yr4JAgLScoGydadNuiRptrPO8vvjNGlOlp4kTU4m6fv5\nePgQTr4z8/mehHzynfOZz9fwPM9DREREhpQ51AGIiIiIErKIiIgvKCGLiIj4gBKyiIiIDyghi4iI\n+IASsoiIiA8MSUKuq6vj8MMPZ/ny5UNxeREREd/Je0JOp9P85Cc/IRKJ5PvSIiIivpX3hHzttddy\n+umnM2bMmHxfWkRExLfympAfeOABysvLOfTQQ3t9jBqJiYjIzsDIZ+vMM888E8MwMAyDZcuWMWXK\nFG688UYqKyu3e9ymTc15ijB/KiuLNa9hZqTObaTOC0bu3DSv4aeysjjnmEAe4mh35513tv/z2Wef\nzeWXX54zGYuIiOwM9NiTiIiID+R1hdzRHXfcMVSXFhER8R2tkEVERHxACVlERMQHlJBFRER8QAlZ\nRETEB5SQRUREfEAJWURExAeUkEVERHxACVlERMQHlJBFRER8QAlZRETEB5SQRUREfEAJWURExAeU\nkEVERHxACVlERMQHlJBFRER8QAlZRETEB5SQRUREfEAJWURExAeUkEVERHxACVlERMQHlJBFRER8\nQAlZRETEB5SQRUREfEAJWURExAeUkEVERHxACVlERMQHlJBFRER8QAlZRETEB5SQRUREfEAJWURE\nxAeUkEVERHxACVlERMQHlJBFRER8QAlZRETEB5SQRUREfEAJWURExAeUkEVERHxACVlERMQHlJBF\nRER8QAlZRETEB5SQRUREfEAJWURExAeUkEVERHxACVlERMQHlJBFRER8QAlZRETEB5SQRUREfCCQ\n7ws6jsOiRYtYuXIlhmFwxRVXMGPGjHyHISIi4it5XyE/99xzANx11118+9vf5n/+53/yHYKIiIjv\nGJ7nefm+qG3bBAIBHnzwQV599VWuvfbafIcgIiLiK3m/ZQ0QCAS47LLLeOqpp/jNb36Tc/ymTc15\niCq/KiuLNa9hZqTObaTOC0bu3DSv4aeysjjnmCEr6rr22mt54okn+PGPf0wsFhuqMERERHwh7wn5\noYce4g9/+AMA0WgUwzAwTRV7i4jIzi3vt6w/+9nP8oMf/IAzzzwT27b54Q9/SCQSyXcYIiIivpL3\nhFxQUMCvf/3rfF9WRETE13SvWERExAeUkEVERHxACVlERMQHlJBFRER8QAlZRETEB5SQRUREfEAJ\nWURExAeUkEVERHxACVlERMQHlJBFRER8QAlZRETEB5SQRUREfEAJWURExAeUkEVERHxACVlERMQH\nlJBFRER8QAlZRETEB5SQRUREfEAJWURExAeUkEVERHxACVlERMQHlJBFRER8QAlZRETEB5SQRURE\nfEAJWURExAeUkEVERHxACVlERMQHlJBFRER8QAlZRETEB5SQRUREfEAJWURExAeUkEVERHxACVlE\nRMQHlJBFRER8QAlZRETEB5SQRUREfEAJWURExAeUkEVERHxACVlERMQHlJBFRER8QAlZRETEB5SQ\nRUREfEAJWURExAeUkEVERHxACVlERMQHlJBFRER8IJDPi6XTaX74wx+ybt06UqkUF154IUceeWQ+\nQxAREfGlvCbkRx55hLKyMq677jq2bNnCSSedpIQsIiJCnhPyMcccw9FHHw2A53lYlpXPy4uIiPiW\n4Xmel++LtrS0cOGFF3Lqqady/PHH5/vyIiIivpPXFTJATU0NF110EWeccUavk/GmTc2DHFX+VVYW\na17DzEid20idF4zcuWlew09lZXHOMXlNyJs3b2bBggX85Cc/4aCDDsrnpUVERHwtr489/f73v6ep\nqYkbbriBs88+m7PPPptEIpHPEERERHwpryvkRYsWsWjRonxeUkREZFhQYxAREREfUEIWERHxASVk\nERERH1BCFhER8QElZBERER9QQhYREfEBJWQREREfUEIWERHxASVkERERH1BCFhER8QElZBERER9Q\nQhYREfEBJWQREREfUEIWERHxASVkERERH1BCFhER8QElZBERER9QQhYREfEBJWQREREfUEIWERHx\nASVkERERH1BCFhER8QElZBERER9QQhYREfEBJWQREREfUEIWERHxASVkERERH1BCFhER8QElZBER\nER9QQhYR8TnHdYknbRzXHbDjd/ScMvACQx2AiIh0z/U8PljTQG1djLTjErRMxlUUUFFR1O/jx5ZH\nAYMN9dnnnDlpFKZhDO6EZLuUkEVEfOqDNQ3U1MUwTYOQaQFQUxfjneWbqSqL9Ov4JR9vBmD86KKs\ncwLMmlw+GNOQXtItaxERH3Jcl9qtybQj0zT4ZGNLzlvN3R3vuh7NsTTNsTSe62Wds7YuptvXQ0wJ\nWUTEh1Jpl7TTfYJMOy6p9PaTZ3fH266L43q4LtiO1+lrXs5zDiajqRE8L/fAEUwJWURkO/JZ/JSy\nbeqbEqRsm1DQJGh1/ys6aJmEgtv/9d3d8QHTxDJNTBMCltHpa0bOcw6WwKuvUPHpGfDaa0Nyfb/Q\nZ8giIt3oqaBqMIqfbNfl6dfXsqqmmbTjELQsplQVM3FMERsb4l1uO08cU4Rlbj95WmYm3poOt61N\n06C4IPNr3+h0zqqKgpznHDCpFOG/PUrqyKPwikuw95qNPXM3gnV1MDU/IfiRVsgiIt1oK4gyTINQ\n0MIwDWrqYnywpmHAr/X062tZVduEaRmEQwFMy2BVbRNrNzRTVVGA53qkbRdva+LcY+roXp135qRR\nXY6fPW00s6dVdjnnzEmjBnxenZkbaim47mrK992DkgvOI3zPXzJfiEbZ8uQLcNxxgx6Dn2mFLCLS\nyfYKqmrrYsyoLhuw1WTKtllV04zZ6fayaZqsrm3hyDkTmVFdRirtEgq23XLu3QrdNAxmTS7vcjzA\nzEldXxssgddeJbr4D4QffRjDtnFLSol97Ruk5s4f1OsON0rIIiKdtBVEtT0W1FFb8VM0PDBJrCVm\nk3YcwlbXX8e269ISsykviezQ9SzT7HJ8d68NlqKr/pPga69gz9qd+IILSJxyKhT17lnqnYkSsohI\nJx0LolzXw3ZdAltXpm3FT47rdllh9va1jooKAgStrokfMkVYRQWBnOfoqLdj+3LOvjBXriB62y3g\nOrT+9BoAWhZdgeHYpA86BPr5+ftgxesnSsgiIp1YZqaj1ZKPN9Mcy1RYW6ZJcUGAvaZW8OHaLZ26\nXxUAHhvq433uiBUKBJhSVZz5DLlDonFdlylVJSxf19SrTl29LUIblGI11yX03NNEbrmJ0DNPYXge\nTvUkWn/yUwgGsQ84sH/nHax4fUoJWUSkW22/7D0MDCDzjOzaja2Eglan7lebgOzuV33piDV/v+r2\nKuu21fiUqhKqxxT2ulNXT129Ol+vt+N6K/jyPyj67iUEVq4AID1nf+LnX0Dy8ydCMNjn83U20PH6\nmRKyiEgnjuuyoT7G+NFFeK6H7XgELAMP+HDNFmZOKmsf623tfgWZ29umabR3xGr7utHhsaPuisIC\npskxB0wmZdu0xGyKCgJYpsmLS9b32KlrTEko67Z4b4rQBqpYzfrgfZwZM8EwcMeNw6qtIf7ls0gs\nWIi91969fJdzy2dxnR+MnJmIiAyQjl2uDNMgGDQxTAPbdUm7blaXK9vxtna/ynzWDP3viBUKBCgv\niRAKBPrUqWt7Yzter7fjur9omvDDD1B6wjGUH7o/wVf/CYAzdTp1735My69vGNBkvMPxDkNaIYuI\ndNJTl6yAaRI0zawuVwHLwNq6ggtsXa21dcQCr98dsfrSqWt7Yzter7fjOjI2bCB6x61Ebr8Vq7YG\ngNQR8/DC4fYxXlFxzvn0R3/iHc6UkEVEOumuy1WbKVXFeGz7hNkwDYoLMp+V7mhHrM6VxN3F0Nap\nCyCetHOO7Xi93o7bFpDDqM8ejlWzHre4hNjCr5M4byHOtOm9fCe3L1fldJ/jHeaGJCEvXbqUX/zi\nF9xxxx1DcXkRkZzaOlfV1sWwXY+AaVBVUcD06jI+2lpl3fb67GmVtFVZb3ttNG1V1h2P764jVk+V\nxNOry7rEMK68ANfzeHHJ+pxju7teT/OaOWkUxGJEHrwPr6CA5MlfBMsi9q3/AMMg+aXTBmwl3Jd9\nnrcb7whjeF5+t9e4+eabeeSRR4hGo9xzzz29OmbTpuZBjir/KiuLNa9hZqTObaTOCwZmbj2t4gbq\nOWSAZavre1wFzppcnnWOD9duoSXp0hpL5hzb2+eQg2tWE73tFiJ/vh1zyxbsadNpePmNfj8znEtP\n85216+ge93ke7s8hV1bm/mMm77OaNGkSv/3tb/N9WRGRfsl0tAp0SQLdvd7b1zrKVUnc9gx0NJy5\nodnbsb3ZfKL43SWMOud0yg+YTcENv4FAkNbvXkrjfY8MWjLu7z7PvZ3XcJb3W9ZHH300n3zySZ+O\n6c1fFsOR5jX8jNS5jdR5gf/nFkukCUeDhINdfx0n0w4lpQUURIJZYwGKiyLbHdujZBLaCrJaG+DJ\nx+HAA+HiizG/+EUKw2EKd3xaPerLfHc2w6KoayTeThuptwlH6rxg5M5tpM4L/DG3XLe8LQuS8TSp\npJ31zLNhGniuR1NjjKZGssaGgwGaWxJZ1+k8tvP1rPfeJbr4ZsKPPED9S2/gjRkDB80l8PSL2HvO\nzgxqSgGpQX0fOs63s8KCME2NMVqbR94quDd/GA6LhCwiMtxsr1Dro06tN5Npm7qmJC3xNI7rYW2t\n3N5z6ugubTqTaQen07O5rusxrrygy9iq0iCffvefFCy+mdA/XwLAmViNtWol9pgxEAhsS8Z5fB+S\naYdgwMKyulaPj+Rb0rkoIYuIDIKeWj6urm3u0nqzrilBQ3OSYMCi4yerazc0Z/ZH7jA2GLBIbd3H\nuGPVsed51NTF28da8Rj7nDCPwk21AKQOn0v8/K+ROupo6GEzi3y9D8GASdp2MA0raw57TB1NXV1L\n3mLzmyFJyBMnTux1hbWIyHDTU+GSAayqaWZGh9abruvRErcJBiymjS/FwSNgmhjAB2u2ZI0FsCyD\ncNBi/5kVOA7tzTFefGsdoz9YihOO0jh1N5xoAZv3mMP64lLKLv0WzNxtsKfdRU/vg2WZmIbBIXuO\na59DX/Z5Hqm0QhYRGWA97adsOx5px8F2t32trc2mgYHrQSiYeT2ddruMbZN2XByHTOV1PI557z0c\neeONVCx/j3UHH8k/L78egH/94DrStstnplQRzcO8O8u1r3T7HARQQhYRGXA9tt60DIKW1d5iE3pu\ns9nd2DZByyS6fg2Ft9+aeXa4oQHXNPnkkPl8fOJZ2dccwhaTO1vryx2lhCwiO50dbfaxvdeh55aP\nHpnWmx311Gazu7Gwrfip4KabKPjdr3FHj6b129/jnSNPZlVwVF5bTO5o60vIbv+5s1NCFpGdRl8q\nn8eWF9DWDjPX2HFbWzmaHZpp9K31ZvdtNtvG1q3ZQPWTDzHx9Rf48IY72GPqaBq+sgBnl11JnnAy\nhMNM8TySW+c22C0me3ofO78HPb0P48qjeB5d2n921zpzZ5L31pn9MdTPEQ4GPzwfORhG6rxg5M5t\npM4Lus6tp5aNqbTTXvncZv3mTLXv+NFFOcd2bF3Z2Y6sxq1l72WeHb73LsxYK14oxJa/Pc2oIw/t\n8XuWjxaTuVp95orrw7Vb+tw6c7jzZetMEZGhkKvyuSPP9WiOpWmOpXHd7DXLqppmOtcCd2xd2Vl/\nWm8GNm2i9OTjKD/8QKJ/ugWvvJyWRZdTt+T9nM8ND3aLyd60+txeXNBz+8/ttc7cGeiWtYjsFPpU\n+ex4Wyuf6VIRnXZdbMcj2Cmh2K5HKu0SDfcvERqbNkHAwhtVjjd6NNbataQOm0t8wUJSnz0GAv74\ndZ2rcjrXe7C949OOu0Pv4XC3c85aRHY6val8dl2PlO1gGmCZBqZpYLgQi6dxbJeAaRI0zaxq6Pbz\nmAaWlSlS6vUqz/MIvPEvir+xkIq9ZxH9ww2Z1y2LhudeovG+h0kd+/lBScaO6/Yt1q12tHJ6e8cH\nLXOnrrz2x59cIiKDbHuVz5PHFVFb30pzzG7fMSmZdmhpTVJbH2tvZ1lREmbqhFI8yLpt7Tgeadvh\n5bdrcxY5ARCPE374AaK33ERw6VsA2NNn4Ow6dVtcxSWD8j70pSCrO7kqp3uzy1RPx6t1pojITqKn\nymfH9WhoSQKZBh3g0RpLk0i7BAMWmGAaBq0JG7xM4ul4jrTtEAyYGJ3aZALdFjkV/8c3idx3N55p\nkjz2eOILFpI+9PBB2/Kwo55aevYUa3d6eh97W9Hd0/FqnSkiw1bg1VcIPfsUsR/+ZKhDGRZMw2DW\n5HJmVJe1V/xC5vGb8aOL2ndbwsg87hSwLCrLIrhe5ha2YRisrm3lyDnV7eewLHj57dqsZ4hhW5HT\njImlRP7xAsG33iT2nUsBSJxzHu6EicS/sgB3YnXe5p+rIGtGdVmvVqjdvY99Wdn2dLxaZ4rIsFXw\nu18RfuLvpD53HPbe+w51OMNGpuI3k0DiSbu9yMgwDYKmkfnM2HUxzUw7y0CHzzxt16UlZlNeEiEa\nNrOO7yjQ2kL1Ew9ScdG9BJd/hGcYJE79Mu6EiaQPPJj0gQfndc6w4wVZnXV8H/tjR48faXIm5NbW\nVl577TVWr16NYRhMnjyZgw8+mHDbBtciMmTiCy4g/MTfiS6+mebfKiH3R3dFRuGQ1b7iszqt2gKm\nSVFBoMfjI3UbmfXn3zP56YcJxmN4oRCJU79MfMFC3AkTB3EmuamVpb/1+O7H43Guu+46Tj75ZB58\n8EFqa2vZtGkTDz30EMcffzzXXXcdra2t+YxVRDpJHz4Xe+o0wg/dj1FXN9Th+FI8lWb95hbiqXT7\naynbpr4pQcq224uMOj5vbFkm5SVhwqHMr0jbcfE8D9d1mVJVTKhD1bNlmowrDeGlbQA802KXx+8j\nVVTCym9cSt2S92m+/g/Y+8zJiqtjDG36Uvncn7FAl7nC1v2Ut1OQ1d+KbOmbHlfIl156Kaeeeir/\n8R//gdnpm+S6Ls899xyXXnopN9xww6AHKSI9ME0S532VokX/j8idtxP/5neGOiLfSDkOv7tvKctW\nbMZ2XAKWyZRxRVSOirKmtpW04xC0LKZUFTNvTmbl2rHI6PDZ4/n3B5tYVduM43hYlsEuVSXtYyHz\n7HD0zj9xyG238MG3FvHOXofTUjyKZ395J+H99mHmrpV4RufnlV2efn0tq2qas2KoHlPIxoZEzspn\n1/N4+6NNvL9ic6/Gdq6oHlseZVx5QZc2nd0VZO1oRbb0TY+tMz3Pw8jxhvdmzEAYiW39Rmq7wpE6\nL/Dv3IzGLVTsNQu3vJz619/u8+bzfp3Xjrr98ff5ZFMLTofVYH1TglDAYOrEbcnHdV2mjCvhmAMm\nd9ve0fM8kimHcMjCMDLJ69N1K4jechPhhx/ASKVwC4toXfSftJ63MGeR0+OvrWZVbVPWQqehOUFh\nJMAeu47uEFf3rSiXra6nJenSGkv2amxPjyf1piCrPy0yd8RI/VmE3rXO7HGF3JZo6+vr+etf/0pj\nY2PW1y+++OK8JGMR2T6vtIzYBRdiuC4kElBYONQhDbl4Ks3K9U2EIwEc1wEyCwjb8UjbLo7tYgUy\nScg0TVbVNJOybUKBANGw2aka2aAgui1hTfnehYx64e8A2NOmEz//ApKnfhmvuAQLtt+lyrZZVdOM\n2eFzXM/LFFMlUkls2yXQHlfXyue2uEpKsnc33t7Y7VVUb28v4oGqyJbey1nUtXDhQmbMmMGECRPy\nEY+I9IMee8rW0JTEdl06lp46rofreeBBKu0QDXRXOZ35ldixGrlgwzqK165kw5zPALBx1t6MDhuk\nFn6N9GFH9OnZ4ZaYTdpxCFvbfvW6bubWsOt6JG2nPSFn4squfG6Lqzs9jR2MFpc72iZUuterx56u\nvvrqwY5DRAaC60IsBkUjYxu7/u5cNKoknPWoEmxthWkYeHiEgp0eUdpaOd12Pcv0mLD0VaY/+hfG\nv/YcqeJSHrvzOdxQmBUnncXE2d/v1+qwqCBAsNNHCubWpiOYEA50jiu78rkvVdKD2eJSFdmDI2dC\nnj9/Pvfeey8HHnggVocfpPHjxw9qYCLSN+bKFZSe/gXS8+bTcvUvhjqcHbKjxUTRUJBdqkr4ZNO2\nrk+GYRCwDEIBs/12NWz9DLmqhOXrmti8dhPVTz7IzL/exRFrVwBQP/1TfHziWXiG0ev2kD0JBQJM\nqSrO+gzZMDLJrTASyFodd3ettorwlmT2Knl7YwejxeWOvAfSs5wJubm5mZtuuolRo7YVQRiGwTPP\nPDOogYlI37gTqzESCcJ3/ZnWH/5k0Hoh58NAtHc8/ajpPPTSapYt34zjeViGwexpFe1V1rab2Sxi\nSlUJ1WMKqamLMWbl++z3+5/jBIOsmnc8y449neZPzcb26HN7yJ7M36+6vcq6LYa9po5ur7LOVfk8\nc9IoNjQmeX9F78bCwLe43NH3QLrXY5V1m/nz5/PYY48RiQzdptEjsepupFYTjtR5wfCYW8F//xeF\n11xF89W/IHH+Bb06xm/zclyXF5es79KKEjL7FB82e3yvV2eVlcWsWVdPQ1OSUSVhoqEgkCmuamlK\nMPrlpym67RaePef7tEzeFTyPXR+7i3WfOYrkqNF4rsche47DcejzbfNcUrZNS8ymqCDQ/lxzb2/R\nV1YWU7uhsde38/t763+gju8tv/0sDqTeVFnnfGerq6u7VFiLiD/FzzoXLxgkeuvNsP2/tX2rN4VL\nfRENBRk/uqg9GRubN1P6u18z7cj9qTj/HML/eIHKN/6RGWwYrDj+yyRHjW6/nuNANBwY8EQUCgQo\nL4l0aTLS22sN1tjBOF56J+cta8MwOO6445g+fTrBYLD92ePbb789H/GJSB94Y8aQPOFkIvffQ/Cl\nFzM7CA0zHYuJ2jZ7CFgGhmlst5ioN6u4ou99m8hd/4uRSuEVFBI/93xaz/0qKxKldPfJdMc9jgd7\nddhX+Vq1Sv7kTMhf//rX8xGHiAyQ+PkXELn/HsL33T0sE7JlmowtL2DJx5tojqXb9yIuLggye1pl\nl+SzvQIwEgnMNatxJ00GwEglcaonkViwkMRpZ+CVlAIwrpsGGI7jkrbd3u9xnCd96dQlw0vOP6sm\nT57MCy+8wP77709VVRX33Xcfu+66az5iE5F+sPfdjy133U/LL3491KHsgG23240eXm/TVgBmmAah\nYGbHpsZlH5O87AdQXU3JNxa2j2352bU0vPwG8YUXtidjyBQvVVUU4LmZxiFt/x8MWFnnramL8cGa\nhkGYb+99sKaBTza2+C4u2XE5V8jf+973OO644wAYO3Ysc+bM4fvf/z6LFy8e9OBEpB8Mg/S8o4Y6\nin5zXJcN9XHGjy7Cdb32SmTTNNhQH2fmJLf7blSeR+WS15j2yJ1MeOVZDNfFKy8nvf+BYNsQCPRY\ned55f96cexwPUZeqvnTqkuEn53eusbGR008/HYBQKMSpp55KQ4P+EhPxO2PTJqK/+Z9MO81hpGNR\nl2kahAJW+63kzkVdHcdOfuohjrjsPCa+/DRbdt2NV799FfGPV9L6kysh0Lut39uKlxyHAS0sGygD\nXfAm/pLzpzQSifDCCy9w+OGZz6JeeeUVotFojqNEZKgV3PhbCq7/Fe7YsSRPO2Oow+m13naIsj76\nkIrbbyXyuQW4wQLWHXIUK99+nRXHnUr9bnvhebBfSRGt9X3fJtavXar8GpcMjJzfvSuvvJLrrruO\nAw44gAMOOIBrr72WK664Ih+xicgOiJ97Pp5hEF1805DF0J99dDvuTxxP2dRubiWesjN79paFiT7x\nd0q+eALlh8yh8A+/Y4+3nsN1PVLRQv757Z+yeeZeuF5m31+rh+TV3V7EHeOFbfsGu65Hynba/3l7\n+wYPtu72bobc+xnL8JBzhbzbbrvx2GOP0dDQQDAYpGiE9MgVGencSZNJHf05wo//jcC/38DeZ07+\nrr2DrS+rq4r43yc/YPOWBK7nEfBcvvzOYxz07lMEP1kLQO2n92PFCWeQ/uyxpOpTmf2FXZegaTKl\nqpjp1WVdztvTXsTz5kxk+SeNWfGOGRUllbZZVdOS87z51JdOXTK89JiQv/nNb3LaaadxyCGHAGS1\nzgR4/vnnuf/++/ntb387uBGKSL/FF1xA+PG/EV18M815TMg72vryV3ctZUtzkojp4FhB8Ez2XvIC\nTsMmVh93GstPOIOmXWYAsH51EwAzJ5W1P7PsAR+t3ULV2NKs8z79+tpMH2nLbN9xaVVtE3c99RET\nxxRlxbt0+eYezzsYewH3lmkY7Dm9kjElIT2HPML0mJCvvvpqrr/+eq666ip22203xo0bh2VZrFu3\njnfeeYf58+drFygRn0sfdgT2tOmEH7qflst/hjd69KBfc0f30W1saGLaC3/l4jf/yspxU1n8uW+A\nYfC7E/+DDZEyPjtvD6IFma5bruvRHEsDUFUOwa2foRpk+i87HQqgutuLGDLNj1aub2JCZSFtD1nl\nOq8fqpkzBWhKxCNJjwm5sLCQyy67jIsuuohXX32V1atXY5oms2fP5mc/+xkFBQX5jFNE+sM0iZ//\nNULPPInZtAUnDwm5v/vomus+IXL7Ykpvu5VLGupwMdhYNjbTAtQw+GT0JJIpmy2tqfaEbLsujuth\nYGA7HsEOfwTYrkcy7bT/e3d7EUNmn2TH9UimHAqiZq/Oq72AZTDk/Ay5qKiI+fPn5yMWERkEiQUL\ne73RRGf9ac/Yn0rgyG23UPSD72E4Dk5pGQ8f8AWennMsm8rGtY8xjMzt2rLCUPvzySbG1rg8MDxi\n8TThkIVlmQRMg3DQomnrHKIRq8texJDZJ9myDMKhbV8LmGb7eQNW9kp/MKuZ1Q5z59a7h/NEZPjq\nWETlONBFnszLAAAgAElEQVRNUupsR4qyerWPbksL4aefIHnSKdiuy/ORauaMn8qrR3yB9/f/LO9v\nThBL2nSM1HVcKkrDNMSSNG9uxXEzDUKSaZuW1hQb6uPtr5WXhDl89njeXVGX1WKyIBKgNZHK2tvd\n8zx2qSrB6DAv0zQoLsj8ejR6msMA2tEiOBkZlJBFdgapFCVfW4DR2kLjPQ/lHL6jRVk97aO7e2oz\nBT+6hshdf8ZsbqJh0mQeT1eyKlrF25f/qf34KeMCrKptIZ5y8FwPwzSoGl3IsQdP5v1VDUDmdjJ4\ntMTSJNIOAWtbA5HWRJp/f7CJ3admEmrbHMaPLmT9Zogl7Kz9kDtWWbfFO3vaaMBgQ/3g7wU8EPs/\ny/DXq4Qci8VobGyk49bJ48ePH7SgRGSAhUIYjVsIvfQi1ocf4MyY2ePQHS3Kgk6tKBNpil94isKr\nbyb0wnOZa4yrovXCi0mMn8CqV+u6FFqFQkGmTSjjlHlT2VwfZ/yYQooiQV5csp7xo4vad4HC8NhQ\nHydgWYwZFcH1MregAVbVNLPbrtmfmQcCJtVjijhwj7HEE07WXsQdW2d2vGU8c1LX1wbSQLzfMjLk\nTMjXX389t9xyS9ZjT4Zh8MwzzwxqYCIysOILLiD00otEF99EyzW/7HFcf4uyumOZJlHPpvSSCzGb\nGkkddAjx8y8g9bnPQzBIU1OCtLOxS6FV5louFgazpmRWiPGk3R6XYRoETYNYPI3jupimgetBYGti\nt51MUVYiZXdzXg88g/KSSPfxdprbYFczD+T7LcNbzoT8wAMP8Oyzz3Z5DllEhpfUMcfijJ9A+O6/\n0Pqj/+xxo4Udbc8YWPoWkcU3kz7wYJJfPgsKC2n+79/gTJuBs/unssYWFQS6LbTKXMukqGDbr6ju\n4gqHrPbVo9VhhdlWqBUJBYjHU32eQz6pHaa0yfmdHjNmDMXFxfmIRUQGWFbrykCAxLnnY7a2EL7n\nLz0ek6s9Y8p2WL+5hXgqve2LySTWPX+h6LNzGXXU4UT/8r+E//Zoe4vKlmOPz0rGba8DTKkqxnVd\nPM/DdjL/77ouU6qKsUyzPf6OcXmuRzrtYhoG5SVhwiEzqyirrVCrc0GUH1tMqh2mtOlxhXz99dcD\nUFJSwmmnncZhhx2WVZl48cUXD350ItIvPVXt7nbGORT84hqit99KYsEF2RXYHXRXlDWmLMLryzZw\nz7MfYzsuActkl6oSzt34CgVXXUF0Sz2uYfDhpw9mzSlnsX72wax+7P2sFpVH7DuB599cl9W6ctK4\nQqIhi1W1LTiOh2UZ7FJVwsTKAl5csj4r/qkTS1ld25x1/NQJJeB5rK5t7VKoVdecHhYtJnsqgvNj\nrDJ4ct6y3nPPPfMRh4gMoB6rdisKCN/4R+w5+/eYjKHr/sChoMmdT37IypomTMNgwpYaNlVOZGVN\nI39dWsuXUmleOfoM/j33C2ypnMC6jc14yzYycUxxVovKPzy4hXDIzGpd+X8r6imMBPjMnlUkUw7h\nkMWGhhhvr6hn/OiirPhX1zYTClrMmFTWnnwBqioKOHJONS0xO6tQa8/pZcOixWR377dfY5XB02NC\nblsBP/jgg5x88slZX7vzzjsHNyoR6becVbvHndDrX/ZtBU3xVJp1Kzdw6NJnOPTlhxhdX8OPF91N\nLFrE3yfuxyfXPoS3tXuf63i0Jh0MwHVdzA7XWrOhhekTt/WX9rxM0VIilQQPCqJBvA5tK13Xy5rH\nqppmZk4qy3qUCba1s+xtoZZfDadYZeD1mJBvu+02WlpauOuuu1i3bl37647j8Oijj3LmmWfmJUAR\n6ZteVe0GPELPPIm9x55Qudt2z2ct/4joDTfys3v+TDQZwzEt3trzcMKpOM3hQmwjQMwM0bZLetp1\ncbc+ImnbHqEQ7f/seC5p1yW89eMvx/VwPQ/XhWTaoSBgYjve1raVmUrrtnnYbubYzq0ss+alZCbD\nWI8JefLkybz77rtdXg+FQlxzzTWDGpSI9F9vqnbDD91PydfPJ/bN78Kve34EyluzmlEHz8HwPBqL\nK3ju8C/x8v7H0lhcgWGAxdbGGx0qgYOmiWlk2nZYpoHtuFimQSBgYBkmwQ4rZss0MoVXpkfQMknZ\nDpZhtFdMBzqMDZiZYzu3smybl2VlHo3S7V4ZrgyvY7ePbixfvpypU6fmK55ubdrUPKTXHwyVlcWa\n1zAznOa2bHV9j60rZ00uh0SCitmZlbG5bh2bmjO3iI2GeiJ//l+SBx/Cu+W7UFsXY48/XMuWWXvy\n97F7s64xieuCi7e1jzQURkNUlkWybk1/srGZZMqmqCCM63mYxtY/BAIWkbCVNbahKY7repSXFrRX\nU6dtm1HFYSZUFmfFn0o7hIJW1rwcxyVtu4SDVpe2k2PHlAyb71lfDKefxb4YqfOCzNxy6XGFPG/e\nvKzHCDrrT2MQ13W5/PLL+eCDDwiFQlx11VVMnjy5z+cRke3LWbUbiZA48ysU/PZ/4O67CVRPJXLL\nTUQeuBcjkaD12C9Q882rME2Ddy/8fwCM2tDMplabeNLBy/TWoLQwzOcOnkTt5jiraprbC62mji+h\nMZaioTmF6wKmR2EkwGF7jWf95ljW2KqKQkzToDVht7fDHFUcoaIknOnI1SH+6dVlfLR2S9a80rZL\nMGBlfa7c1nZy7Jjun7UW8aMeE/Idd9yB53n87ne/o7q6mi984QtYlsWjjz7KJ5980q+LPf3006RS\nKe6++26WLFnCNddcw4033tjv4EWke72p2o1/ZQHR63+FcdFFjGptBcCZsgut532Vf+4+r8vqOpa0\nmTimiClVJSSSNgWRAMGARUNjiqP2q8ZxXVpiNtGIxavvbMAwDRzbJZl2CActrIBJXWOyx7Ft7TAD\nltH+74fsOQ7HISv+jvOyLHj57dqsDSBgWwFbx/2QRfyux4Q8YcIEAD744AOuvvrq9tcXLFjAF77w\nhX5d7M033+TQQw8FYPbs2bzzzju9Oq43S/3hSPMafkbE3FIpCIWgcg+YOhU+/hgOPhgWLcI6+mgC\nKQfzX6spDm779ZBKOwQCAQwDSooijB61rWAsmXYoKS2gIJLZoziWSBOO1hMOdv310texo0YVtY/t\nTub4YI/HJ9POyPiedUPzGnl6tbnEq6++yoEHHgjACy+8kNUgpC9aWlooKipq/3fLsrBtm0Bg+2GM\nxM8URupnJSN1XjDM5+Z5BF95mcjimwl89AENz78ChkHo+4sovfyHNH7jW6TmfAbqMtsaJuNpUslt\nfaBd18O2HcAjEU+RTHboiuV6NDXGaG3OrGC7O34gxnYn1/HhoDV8v2fbMax/FrdjpM4LdvAz5DZX\nXXUVl112GZs2bcLzPCZMmMB//dd/9SugoqIiWrfeGoPMZ8q5krHIcOWLzeZbW4ncdzfRxTcRWPYe\nAPanPo2xcSPe2LGkTjwZFpxFfHMLqQ4Vym37GRvQfhu5t/sD92o/5H6M7U7O43uoNhfxo5zZcPfd\nd+fRRx+loaEBwzAoKyvr98X22WcfnnvuOY499liWLFnCjBkz+n0uEb/yy2bz1jv/R9lJx2I2NeIF\nAiRO+gLxBV/DPuDA9i5dLvD2inreX7E5Z4vKyeOKqB5bzKaGeM72jn1pBbmjbSPVdlJGih4T8o9/\n/GN++tOfcvbZZ3dbbX377bf3+WJHHXUUL7/8Mqeffjqe5/Hzn/+8z+cQ8bsh22zecQg98yTpfffH\nq6jAmbkbzi67Ej/qaBLnnIc7rqrbWFuSLjPvv5WJLz7Bc7+6c7stKi3T4LDZ43Ou/PvSCnJH20aq\n7aSMFD0m5NNOOw2ASy65ZMAuZpomV1555YCdT8RvhmKz+bZnh6O3/hFrzSpaFl1O/JvfhWCQLU8+\n32PP6rZYS0qiFG5YR8UHbzP+lWf55OCjWFXTzIxJZVl/VMC2FpXRcO8+aupLK8gdbRuptpMy3PX4\nX9Uee+wBwB//+Efmzp3L3LlzGTduXN4CExmO8rnZvPV/bxNdfBOR++/BSCTwolHiZ32F1Pyjtw3a\nzi3ytlgBPj7hDKY98memPfxnVh0wn7TjZLWtHKw5iMg2Of/Mveiii3jxxRe55JJLsG2bww47jHnz\n5rHXXnvlIz6RYWUgN5tP2XaX3Ys6KrrqPwk99wzO5Cm0fGUBG084jYLxld2O7ait2MyyaI+1edJU\nNux9IGPfepXytR8TtCqz2lZ2nENPLSp9UcQmMozlbJ3Zpr6+nscff5zf//731NfX9/oZ4oEwEsvg\nR2p5/0idF/R+bjnbVuZguy5Pv742q6BqVijO0W8/QaChnpZr/xuAwBv/wqur42/FM1m5MZa17/D8\n/aq7JNTuis2SaYfysgJi8RTjX36aQ664hI8/fzqvfO1H3bSo9EjbTpcWlR27Zw1lEVt3RurPo+Y1\n/PTmsaecCfmKK67gzTffxLIs9ttvPw444AD2339/iovz9/D2SPwGjdQfvJE6L+j93Domvraq374k\nqMdfW82q2sy+w9UfLWXOs/cx89/PYzkObkUFdW+8A4WF2WM7JF/XdZkyroRjDshuS9vdHwqO4xGO\nBEkn0zjpNCcsOJpISxObli7jw0Yvaw7JtEMwYGY9StRTf+m+/AEymEbqz6PmNfwMyHPITU1NeJ7H\nLrvswtSpU9l1113zmoxFhpsdqfpN2TarapqZsOZ9jrvtasZ+8jEAGyZO5fUjTmGfyy8huDUZt401\nO90iN02TVTXNpGy7/fZ1T8VmlmUQDlrsP7MCx4HUNf9FuqQUq7SMWWVGzhaVsG2P4uwYBq+ITWSk\nypmQf/nLzNZsy5cv55VXXuHrX/86sViMf/zjH4MenMhw1teqX3PlClpGjSPtOLSUVlBRu4b39juS\nN+aewtoZs0nZLtMJ07bmbInZpB2HsNX1P2N7a6/o8pLM17ZXbJZ2XBwHouEA9vEndTuHeNLu9njt\nUSwycHIm5BUrVvDKK6/wyiuvsGzZMvbaay8OP/zwfMQmMvK5LqFnnyJyy02En3kK7467CVrVNJeP\n5Vf/8xjJgm13owKmSVHBtv9kiwoCBHtoY9t57PaKzYKW2aXYzFy9CiOVwpk+Y7vH59qjuC9FbCI7\nu5wJ+Vvf+hZz587l3HPPZZ999sn6rEpE+sfY0kDkL3cSvfVmrFUrAUjvdwCBoiKmlBWzqrYpKxm7\nrsuUqpKsCupQIMCUquLuP0PuNHZ7LSYnjinKbme54mNGHbQvqaM/R9Ptd233eIApVcV4QMdXe9v6\nUkS2yZmQH3300XzEIbLz8DzKjp1P4OOP8CIR4meeQ2LBQuxPZx4lnN+hyrqtS9aUqhLm71fd5VTz\n96vu9dieWkzuMXU0dXUt7eOcXadh770PoSf+jrlmNe6kyds9vrs9itW6UqTvtLODyGBLpwn/9RFI\npUie+mUwDOIXXoLR1ETiy2filVdkDQ+YJsccMDnnc8h9HdtTsVnnFS9AfMEFlFz8NaJ/Wkzrj6/Y\n7vGAWleKDIBeP4c8lEZiGfxILe8fqfOCvs/N3FBL5PZbidx+K9aGWpyq8dT/+13o5/alg6XbeSUS\nVOw9CzyPureWQTQ6NMHtoJH686h5DT879NjT66+/vt0D99tvv75HJLITsN57l4Jf/4Lwow9j2DZu\nSSmxr32DxLnn+y4Z9ygSIXHWuRT8+peEH36A5OlnDnVEIiNejwn5N7/5TY8HGYbRr92eREasdBqC\nQQDM2hoiD96PPWt34gsuIHHKqVBUNMQB9l38KwuI/uF3WGtWD3UoIjuFHhPyHXfckc84RIYlc+UK\norfdQuSeP9Pw5Au41ZNIHzGPhkefxN7/gO1u7uB37sRq6t79GK+4ZKhDEdkp5CzqeuONN7jllluI\nxWJ4nofruqxfv55nn302H/GJ+I/rEnz+GaK33ETo6ScxPA93dCXW8o9xqyeBaWIfcOBQRzkglIxF\n8idnKeSiRYuYP38+juNw5plnMnnyZObPn5+P2ET8J51m1OEHUnb6KYSfegJ73/1ouvGP1L31Hukj\n5g11dIMi+OLzlJ56EsbGjUMdisiIljMhRyIRTjnlFPbff39KSkq46qqrchZ8iYwk1rvvEPi/pZl/\nCQax996X+JfPouGpF9jyt6dJnnIqhMNDG+Qgsj76kNDzzxL939uGOhSRES1nQg6Hw2zZsoVddtmF\npUuXYhgGsVgsH7GJDJ10mvDDD1B6wjGUzz2Ywit/0v6l5l/fQMuvb8Dea+8hDDB/kqd9GbeomMif\nFoNtD3U4IiNWzoR87rnn8p3vfIe5c+fy0EMPcdxxx7HHHnvkIzaRvDM2bKDgF9dQvs+nKFl4LqFX\n/0nqiHnEv/r1DoOGb6FWf3hFxSRP+zJWzXpCf//rUIcjMmLlLOo6+OCDOeaYYzAMgwceeIBVq1Zp\n+0UZsSL33kXhf/0ct7iE2AUXkjjvqzhTpw91WEMuft5CorfcRHTxTaSOP3GowxEZkXpcIdfU1LB+\n/XrOPPNMamtrWb9+PVu2bKG4uJiFCxfmM0aRwRGLEbnzdkpPPQlSKQASZ5xF87X/Td3S92m96lol\n462cGTNJHXoEoZf/gbXsvaEOR2RE2m5jkNdee42NGzdy5pnbuvQEAgGOOOKIfMQmMijMVSszzw7/\n+XbMLVvwLIvgm6+TPugQvPIKEud9dahD9KXYN79Dav5nccePH+pQREakHhPy1VdfDcBNN93EBRdc\nkLeARAaL0biF4osuIPTUE1ufHR5N63e+R+KcBbgTJg51eL6XPnwu6cPnDnUYIiNWr4q6fv/733PZ\nZZfR0tLC9ddfT2rr7T3ZuTiuSzxp47juUIfSa0bjFoy6OgC8klKsVSux95lD0w03U/fWMmI/+ImS\ncV8lk1gffzTUUYiMODmLuq688krKy8t59913sSyLNWvW8KMf/YjrrrsuH/GJD7iexwdrGqiti5F2\nXIJWZrP6mZNGYfq04th6712ii28mct9dxL9yPq1X/AwMgy2PPYlXpn16+y2dpvygffBCIRr++SZo\nm0WRAZPzv6Z3332X7373uwQCAaLRKNdeey3Lli3LR2ziEx+saaCmLoZhGoSCFoZpUFMX44M1DUMd\nWrZ0mtCjD1F60rGUH3EQ0dsX41aMxpk8pX2IkvEOCgZJH3IogRXLCT6v9rkiAylnQjYMg1QqhbF1\nJdTQ0ND+zzLyOa5LbV2syyb2pmlQWxfz1e3roh//P0rPP4fQP18idfhcGm+/i/p/LSWxQE8FDKT4\n+ZmakuitNw9xJCIjS85b1ueccw7nnXcemzZt4mc/+xlPP/00F110UT5iEx9IpV3SjkvI7LqPr+16\npNIu0fAQ3Lb0PAJv/IvQP14g9t3vA5A47Qw80yRx3kKc6TPyH9NOwp69D+l99iX05OOYq1fhdrgD\nISL9lzMhn3TSSeyxxx689tpruK7LjTfeyG677ZaP2MQHQkGToNV9wg2YBpYF8aRNKGhi5ePzxHic\n8EP3E73lJoJvLwEg+fkTcWbMxN57X+y99x38GIT4ggsoufhrRG+7hdb//OlQhyMyIuRMyOl0mpde\neolXX32VQCBAOBxm5syZum29k7DMTAFXTafb1o7jkbYdXn67NqvQq6KiaFDiMOrrKPjtrzLPDjc0\n4JkmyeNOIH7+BVoND4HkCSfjXv4jAm+9CZ6307UTFRkMORPyokWLSCQSnHrqqbiuy8MPP8xHH33E\nj370o3zEJz4wc1KmEKq2LobtegRMg7TtEAyYmUKvrbeza+pivLN8M1VlkYG5sOtm/hcIgGURvfVm\nvIICWr/9PRLnnIc7sXpgriN9F4nQ8MTzme+BkrHIgMiZkJcuXcrjjz/e/u/z5s3j85///KAGJf5i\nGgazJpczo7qMVNrFsuDlt2sxuin0+mRjC2NKQjt0+9poaiRy151EFt9M7DuXkjztDLzSMrbc9wj2\np/ca0VsdDidu9aShDkFkRMn5W7OqqorVq1e3//vmzZsZO3bsoAYl/mSZJtFwAMeBtNN9dXXacUml\n+1d5bS17j6JLv0PFnrtRtOj/Ya37BGv9uvav23P2VzL2GXPtGgquvhLzk7VDHYrIsJdzhWzbNiee\neCJz5swhEAjw5ptvUllZyTnnnAPA7bffPuhBir9sr9AraJmEgn1fHRdd+h2if7oFAGdiNfHvXkri\njHPwRo/eoVhl8MW/8U280rKhDkNk2MuZkC+55JKsf1+wYMGgBSODy3Ezq9dcFdHxVJqGpiSjSsJE\nQ8Fuj28r9DIA2/EIWAYeMHFMUY/n7nh8YPNmAu+8TXrefADsPfciddhc4gsWkvrsMZnPjcX3dNta\nZODk/K23//775yMOGUS9bX2ZchzueuojVtY0YTsuActkl6oSTp0/jZXrmrKOrxwVJZmyWV3bQtpx\nCFoWU6qK2X2XChoaWru//uZWSt5bwqzH/sKYfzwB0Sj1S5fhFRWTOOsrJM4+N8/vjIiIf2gZshNo\na31pdqqIBpg1ubx9XCYZN2KaZvu4lTWN/OHBd/n01Iqs499evhmAGZPKsF2XwNZV8Xsr67pUWX/0\nYQ3hB+9n/qN/pvyjdwFoqt6VDaefS1lbwxFV6orITk4JeYTL1fpyRnUZlmkST6VZub4Js9Nnw6Zp\nsmZDC7tPGYW5NXl6rkdzLA3AuHIIBbZ18epcZe24LrEl7/DZ//4Rnmmy7uAj+fjEM9k4+0A8Dw6L\nROjaA0xEZOejhDzC9bb1ZUNTEtt1CVnZ41zPw/VcYgmb0mDma7bj4bhe5vNjN/vcadvBfOYZSu64\nhdilPyA+41Ns2nU3/n3RItYfNJf4mG2b29tbK7KHpPWmiIjPKCGPcB0rom3bJWk7hAMWgYBJwDRw\nPJf1m1uIRAIEOqyOXc/DNIzM/0yTgsi2H5WAZWBtXXGbGKRsh0g8xq7PPMz0x/5C0ZoVmevtOZvQ\npz5N0DJZfuKZXWILmEa/KrJFREYiJeQRzjJNxoyK8Nxb66hrSuG4LpZpUlYUxHU8Xly6vr2AK5l2\nsB0HD6O9G6JlGkwaU4jVIVkbpkFRNEhDc4Ll65s44r7fsd9zDxBOxnCDIRJfOp34+Rdg7zMHC7pt\nvem6HlUVBfnpfy0iMgwoIe8E1m5spTVhYxqAaWIasGp9MxhQXhJpv+XsOA7JlEsgaOG6HqZpUF4Q\nZN4+EwgErPbWmUHPoTrRAMVltMRtQok4icJi3jjpXEq/dRFjp2W3tOyu9WbV1ipvERHJUEIe4VK2\nzaqaZkYVR/A8D9cFz3PZUB8Dw8DzvPaNQlzPIBi0mDt7PLbjURAOEAxZbG5Mctjs8ewWSRO6408U\n3bGY5oISnr7hATwPVn/jUlYX/icEgzS6YUZvXYW36dx6M287Q4mIDCNKyCNcS8wm7TiErQCGsXW7\nxLiL53kAOG6mqYfreXhe5rNj2/EoLd7WorJ02VKKb76CgkcfxEilcAuL2LTPYZjpFG4oDGWl7WPT\n2ynUyrTeVCIWEemOEvIIV1QQINipcjoUsjKrYqNDcZZhYBiZ/+9YwDX+pac45MpvAmBPm078/AuI\nffE0lixv6bK5BPS/daaIyM5OvzmHCcd1iSdtHDf3xg0p26a+KUHKtgkFAkypKsZ1XWzboSWewvM8\nCiMBgpaBbTs0xlKk0zaWZTAt3cCnbv0VG1bW0BpLUbPvZ9h49IlsufdhVj31Mm8d+SWag1HGVRTg\nuh6u65GynfZ/ztU6s7dzEBHZ2QzJCvmpp57i8ccf55e//OVQXH5Y6W3bS8g8E/z062tZVdOc1c7y\nwL3G8o+317N5S6L9cabSApOmVofG1jR4HhPXvs3n3/obB6x4HdNz+We9yYN7H0tZUYiZN97IHx9Y\nRs2/X2sv9hpXEWXvqRV8silO2nUJmmbu1pm9mIOIyM4q7wn5qquu4qWXXmLWrFn5vvSw1Nu2l0Am\nGddmum2Frcy3dlVtE/94ez2JpE1xQbD9cabNzSnwPI5b+neOW/I3qus/AeCjsVN5fN/P8/JuhxKw\nTJpaU/zkhn8RDJiYltn+6NK6jS00Nac49qApWZtLdNc6sy9zEBHZWeU9Ie+zzz7Mnz+fu+++O9+X\nHnZ62/YStlVTd2596boum7ckKCkMgQEG4KZSmS8aBp/54GXGNdby3KzDeWz2cXw4bjqWZWx77tgA\n24EgnRgmTbE0iYRNtCDYNrTb1pm9nYOIyM5s0BLyvffey5/+9Kes137+859z7LHH8tprr/XpXJWV\nxQMZmm/kmlcskSYcDRIOdv02JdMOJaUFFEQyyXDzlhimZRAJZ6fOxrSD63lYrsveH/+Lea8+zKai\nCn4xP7Ot5o3zv05zQTFbomV4HY4z2m8lG7D1K223lz0PDAxcXFKex5iibSviznH1ZQ7Dwc76szic\njdS5aV4jz6Al5C996Ut86UtfGpBzbdrUPCDn8ZPKyuKc83Jcl2Q8TSppd/ma53o0NcZoasz0q8bw\ncB2PRDKdNa64pZ5T/nU/n1v6BKMbNwKwZNq+GJ6LZ5isqajGMDJJdtu5wXXcTC7ukKbdDoM8PAwM\nQoZBc0ui/fXCgjBNjTFam7etkHPNoW2s3/XmezYcjdR5wcidm+Y1/PTmDw099uRjlmn22HZyXHkB\nH67dklUoVRAJ0JpIt99u3v21Jzl+8c8I2CkSwQjP7Hccz+x/POvHTMZrTLafr2MyBnAB19n2Yrfp\n0nMpKQi1365ui6tzlfX25qDWmSIi2ygh+1xPbSc9z6OmLp5VKDWxxCL6+rMs3eNQbM9j3aRZtI6b\ngL1wITcU7s1HTeB6LqYDkyojrK9LYPfiCaQZ1UWkHIOauhie62GYBhPHFHPCwZOpa0plxbXH1NHU\n1bX0ag5qnSkiso3heZ3XR/4zEm9h9PXWjOO67W0nAV5csr69MUd043qmPnY3u/z9PiKN9Wy49xG2\n7H0gRQWBzHaKWz/7bUmk2Fgfp6Iswr/f34RhGjS2JtlYH6OkJMSL/67BNA2CpoHjelimgRUwcR24\n4kVaQuYAABG/SURBVKv74bge6ze2Mn5MIaUF4S5xWaa53Xl1HjvcjNTbaSN1XjBy56Z5DT+6ZT2C\ndGw7GU/apG2HCe++wbRH7mTCK89iuC7J4lLe++ICSifvQnlJpMs5iiIhisaHMsdv3SO5tDBMaWGY\nzQ1xXM/D8AxMy8Tq8JPhei4b6+PsOr6U0inhrHP2pR2mWmeKiPRMCXkYCgVNwq7DgVd/j8iWOhqm\n7c5HJ53F2sM/hxMMc9ik8TmPD3Z6PKo4Gmxvn9m5V4dpmIwpjw70NEREpAMl5GHC+uhDootvwp45\ni8S55zOmqow3L/4xicqx1O+2FxhGrwuluiu0CkcCjCoK0RRLZY11HZdJY0soioQGbW4iIqJe1v7m\nOIT+/ldKv3gi5YfMIXrLTYQfuBfIFEo5J55E3cy9SDse3tZk3NtCqZmTRmWKw1yPtO3iuR6nzZvG\n1PGluA7YtovrwKSxJXzt5E8N5ixFRAStkH0r/PADFF7xY6xP1gKQOvgzxM+/gNQxxwE7vsdwT8d/\nemple/HXmPKoVsYiInmihOwj5prVuJMmA+AFgpj19cS/cj7xBQtxZu3e7TE7WijV3fFtxV8iIpI/\nSshDLZkk/MiDRBffRODtpdT9+z28sWNJHf056pYuwystG+oIRUQkD5SQh8ratRT892+I/u9tmJs3\n4xkGqaOOxmxpwhk7FgIBJWMRkZ2IEvIQMOrqYM8ZFKbTuGVlxC76FvGvLMCdsstQhyYiIkNECXkI\neBUV8K1v0TxxFxInnQIFBUMdkoiIDDEl5KFy3XUkRmiLOBER6Ts9hywiIuIDSsgiIiI+oIQsIiLi\nA0rIIiIiPqCELCIi4gNKyCIiIj6ghCwiIuIDSsgiIiI+oIQsIiLiA0rIIiIiPqCELCIi4gNKyCIi\nIj6ghCwiIuIDSsgiIiI+oIQsIiLiA0rIIiIiPqCELCIi4gNKyCIiIj6ghCwiIuIDSsgiIiI+oIQs\nIiLiA0rIIiIiPqCELCIi4gNKyCIiIj6ghCwiIuIDSsgiIiI+oIQsIiLiA0rIIiIiPqCELCIi4gNK\nyCIiIj6ghCwiIuIDSsgiIiI+oIQsIiLiA0rIIiIiPqCELCL/v727j6m6/P84/jqAeAflTKCZmjeb\nkhaVd2HOmzRLaWqNVBIx1gZqmhoMEFMkb1AspnmHtzEyDDETbd5soG5uNE/psmY1bzBFQggtJury\n5pzz/YPFL36Zoh7OuTg+H3/p4XPO9b6y8eScw/l8ABjAx5WLVVdXKyEhQVeuXNHNmzc1a9YsPf/8\n864cAQAAI7k0yFlZWQoNDVV0dLTOnDmj+Ph47dixw5UjAABgJJcGOTo6Wr6+vpIkm82mpk2bunJ5\nAACMZXE4HI6GeOBt27YpOzu7zm1paWkKCQlRZWWlYmJiNHv2bPXt27chlgcAoFFpsCD/lxMnTigu\nLk6JiYkaNGhQve5TWVndwFO5XkCAP/tqZDx1b566L8lz98a+Gp+AAP+7HuPSl6xPnz6tGTNmaPny\n5QoODnbl0gAAGM2lQc7IyNCNGze0aNEiSZKfn58yMzNdOQIAAEZyaZCJLwAAt8eJQQAAMABBBgDA\nAAQZAAADEGQAAAxAkAEAMABBBgDAAAQZAAADEGQAAAxAkAEAMABBBgDAAAQZAAADEGQAAAxAkAEA\nMABBBgDAAAQZAAADEGQAAAxAkAEAMABBBgDAAAQZAAADEGQAAAxAkAEAMABBBgDAAAQZAAADEGQA\nAAxAkAEAMABBBgDAAAQZAAADEGQAAAxAkAEAMABBBgDAAAQZAAADEGQAAAxAkAEAMABBBgDAAAQZ\nAAADEGQAAAxAkAEAMABBBgDAAAQZAAADEGQAAAxAkAEAMABBBgDAAAQZAAADEGQAAAxAkAEAMABB\nBgDAAAQZAAAD+LhysWvXrik+Pl6XL19WkyZNlJ6erqCgIFeOAACAkVz6DDkvL089evRQTk6ORo0a\npQ0bNrhyeQAAjGVxOBwOVy5os9nk7e2tVatWyW63a/r06a5cHgAAIzXYS9bbtm1TdnZ2ndvS0tIU\nEhKiiRMn6uTJk8rKyqrXY1VWVjfEiG4VEODPvhoZT92bp+5L8ty9sa/GJyDA/67HNFiQx4wZozFj\nxtz2a5999pmKi4s1adIkFRYWNtQIAAA0Gi59D3ndunXKz8+XJLVs2VLe3t6uXB4AAGO59Lesw8PD\nlZSUpO3bt8tmsyktLc2VywMAYCyXBrlNmzbatGmTK5cEAKBR4MQgAAAYgCADAGAAggwAgAEIMgAA\nBiDIAAAYgCADAGAAggwAgAEIMgAABiDIAAAYgCADAGAAggwAgAEIMgAABiDIAAAYgCADAGAAggwA\ngAEIMgAABiDIAAAYgCADAGAAggwAgAEIMgAABiDIAAAYgCADAGAAggwAgAEIMgAABiDIAAAYgCAD\nAGAAggwAgAEIMgAABiDIAAAYgCADAGAAggwAgAEIMgAABiDIAAAYgCADAGAAggwAgAEIMgAABiDI\nAAAYgCADAGAAggwAgAEIMgAABiDIAAAYgCADAGAAggwAgAEIMgAABiDIAAAYgCADAGAAtwS5uLhY\nvXr10vXr192xPAAAxnF5kK9cuaL09HT5+vq6emkAAIzl0iA7HA7NnTtXcXFxat68uSuXBgDAaD4N\n9cDbtm1TdnZ2ndvatm2rsLAwBQcH39NjBQT4O3M0Y7CvxsdT9+ap+5I8d2/sy/NYHA6Hw1WLDRs2\nTI8//rgk6dixYwoJCVFOTo6rlgcAwFguDfI/DRkyRHv37lXTpk3dsTwAAEbhY08AABjAbc+QAQDA\n/+EZMgAABiDIAAAYgCADAGCARhNkTzvd5rVr1zRlyhRFRkYqOjpaFRUV7h7JKaqrqzV58mRNmDBB\n48aN0/fff+/ukZyuoKBA8fHx7h7jgdntdqWkpGjcuHGKiorSuXPn3D2SU/3www+Kiopy9xhOc/Pm\nTSUkJGj8+PF68803tX//fneP5DQ2m03JycmKiIjQW2+9pZMnT7p7JKe6dOmSBg0apOLi4jse1yiC\n7Imn28zLy1OPHj2Uk5OjUaNGacOGDe4eySmysrIUGhqqzz//XIsXL9b8+fPdPZJTLVy4UBkZGbLb\n7e4e5YEVFhbqxo0b2rp1q+Lj47VkyRJ3j+Q0GzZs0Jw5czzmB3hJ2rVrl1q1aqUtW7Zo48aNWrBg\ngbtHcpqDBw9KknJzczVz5kwtW7bMzRM5z82bN5WSkqJmzZrd9Vjjg+ypp9uMjo7WlClTJEllZWV6\n5JFH3DyRc0RHRysiIkJSzU+9nvY58549eyo1NdXdYzjF0aNHNWDAAEnSc889p+PHj7t5Iufp0KGD\nVq5c6e4xnGr48OGaMWOGpJrvi97e3m6eyHlefvnl2h8wPOn7oSSlp6crIiJCgYGBdz22wU6deT+c\nebpNk9xuX2lpaQoJCdHEiRN18uRJZWVluWm6+3enfVVWViohIUGzZ89203QP5r/2FhYWJqvV6qap\nnOvKlSvy8/Or/bu3t7du3bolHx+jvi3cl1dffVWlpaXuHsOpWrZsKanm32369OmaOXOmmydyLh8f\nHyUlJamgoEArVqxw9zhO8dVXX6l169YaMGCA1q9ff9fjjf8c8sNwus3i4mJNmjRJhYWF7h7FKU6c\nOKG4uDglJiZq0KBB7h7H6axWq3Jzcxv9y2qLFy/Ws88+q7CwMEnSwIEDdejQITdP5TylpaWKi4tT\nXl6eu0dxmgsXLmjq1Km17yN7osrKSo0dO1a7d+9WixYt3D3OA4mMjJTFYpHFYtEvv/yijh07KjMz\nUwEBAbc93vgfhQsKCmr/PGTIEH366adunMZ51q1bp6CgIL3++utq2bKlx7z8dPr0ac2YMUPLly9v\n1K9qPAx69uypgwcPKiwsTMeOHVPXrl3dPRLu4OLFi3rnnXeUkpKifv36uXscp8rPz1dFRYUmTZqk\n5s2by2KxyMvL+HdU7+qfTx6joqKUmpr6nzGWGkGQPVV4eLiSkpK0fft22Ww2paWluXskp8jIyNCN\nGze0aNEiSZKfn58yMzPdPBVuZ9iwYSoqKlJERIQcDofH/D/oqdauXavLly9rzZo1WrNmjaSaX16r\nzy8Lme6VV15RcnKyIiMjdevWLc2ePdsj9nWvjH/JGgCAh0Hjf00AAAAPQJABADAAQQYAwAAEGQAA\nAxBkAAAMQJABwyQnJ+u333674zFRUVH/OmOY1Wp1+sUUzp8/X3u2tXt5/KSkpAe+YEp6erp+/vnn\nB3oMoDEhyIBhrFarTPk0YllZmc6fP39P9zl48KACAwMVFBT0QGvHxMTw2Wg8VDgxCNCArFarVq5c\nKR8fH124cEEhISFatGiRfH19lZ+fr+zsbNntdvXo0UPz5s1Tdna2fv/9d8XGxionJ0eHDx9WVlaW\n/vrrL12/fl0LFy5Unz597rruuXPnlJqaqqqqKjVr1kxz585V9+7dNWvWLPn5+emnn35SRUWFpk6d\nqvDwcFVXVysxMVElJSVq3769ysvLtWrVKi1cuFClpaX68MMPNXz4cP3xxx+KiYlRSUmJOnXqpBUr\nVvzrKmwbN26svcpXVVWVPvjgA505c0a+vr6aNWuW+vXrp/79++ull17SkSNHFBAQoPHjx2vz5s0q\nLy/XkiVL1LdvX7Vu3VqtW7fW4cOHFRoa2iD/PoBJeIYMNLAff/xRKSkp2rdvn65fv66cnBydOnVK\neXl5ys3N1c6dO/XYY49p06ZNio2NVWBgoNavX69HH31Uubm5Wrt2rXbt2qWYmBht2rSpXmsmJSUp\nISFBO3bs0IIFC/T+++/Xfq28vFxbtmxRZmamli5dKklavXq1OnXqpN27d2vq1Kk6ceKEJGnOnDl6\n+umnNW/ePEk1z5hTUlK0d+9eXbx4Ud98802ddauqqnT27Fl16dJFkvTJJ5+oQ4cO2rt3r5YuXarl\ny5dLqjkN5ODBg7Vv3z5JNZeC3LJli9577706F/Xo3bu3Dhw4cD//2YFGh2fIQAPr06ePOnfuLEka\nPXq08vLy1KRJE507d05jx46VVHPN1O7du9e5n5eXl1avXq0DBw7o119/1bfffluv8/tevXpVx48f\nV3Jycu1t165d059//ilJ6t+/vywWi7p27aqqqipJUlFRkT7++GNJ0jPPPKNu3brd9rGDg4PVvn17\nSVKXLl1qH/NvJSUldS4z991339U+brdu3bR169barw0cOFCS9MQTT6hXr16Saq7udvny5dpj2rZt\nq6KiorvuGfAEBBloYP+8cMjf17G12WwaMWKE5syZI6kmojabrc79rl69qvDwcI0ePVp9+vRRt27d\n6nWlM7vdLl9fX+3cubP2tvLycrVq1UqSaq9RbbFY6sxYn/et/3lpRovF8q/7eHl51dnv/7+UY3Fx\nsTp16iRJdV7q/q+LqzRp0qTOnIAn4yVroIEdPXpUFRUVstvtys/P18CBA/XCCy+ooKBAly5dksPh\nUGpqau1LtX8H++zZs/Ly8tLkyZMVGhqqQ4cO/Svat+Pv76+OHTvWBrmoqEiRkZF3vM+LL76or7/+\nWlLN5TNPnToli8VSe43k+mrXrp3Ky8tr/967d2/t2bNHUk2MY2Ji7imwpaWlevLJJ+t9PNCYEWSg\ngQUGBioxMVFhYWEKCgrSmDFjFBwcrGnTpuntt9/Wa6+9JrvdrtjYWEnS4MGDFRsbK39/fz311FMa\nMWKE3njjDbVo0UJlZWX1WvOjjz7Sl19+qZEjRyojI0PLli27YwjfffddlZSUaOTIkVqxYoXatGmj\nZs2aqUuXLqqurlZCQkK91m3VqpU6dOig06dPS5KmT5+us2fPatSoUUpISNDSpUvvKchWq1VDhw6t\n9/FAY8bVnoAGZLVatWrVKm3evNndo9zRzp071a5dO/Xq1UtlZWWaMGGCCgsL7+uatPv379eRI0eU\nlJT0QDNdunRJ06ZN0xdffPFAjwM0FryHDECdO3fWvHnzZLfb5eXlpfnz59/3BeKHDh2qPXv2qKKi\n4oE+i7xu3brak5IADwOeIQMAYADeQwYAwAAEGQAAAxBkAAAMQJABADAAQQYAwAD/A6LfRDpIj6OB\nAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x11276e048>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.scatter(p_x, p_y, alpha=0.4)\n", "\n", "# slope\n", "m1 = eigenvectors[:, -1][1]/eigenvectors[:, -1][0]\n", "m2 = eigenvectors[:, 0][1]/eigenvectors[:, 0][0]\n", "\n", "e_x1 = np.linspace(-3, 3, 3)\n", "e_y1 = m1 * e_x1\n", "\n", "e_x2 = np.linspace(-0.3, 0.3, 3)\n", "e_y2 = m2 * e_x2\n", "\n", "plt.plot(e_x1, e_y1, 'r--')\n", "plt.plot(e_x2, e_y2, 'r--')\n", "\n", "plt.gca().set_aspect('equal', adjustable='box')\n", "axes = plt.gca()\n", "axes.set_ylim([-4, 4])\n", "axes.set_xlim([-4, 4]) \n", "\n", "plt.xlabel('petal length (cm)')\n", "plt.ylabel('petal width (cm)')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can use the eigenvectors to transform our original data into our new coordinate space:" ] }, { "cell_type": "code", "execution_count": 27, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style>\n", " .dataframe thead tr:only-child th {\n", " text-align: right;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: left;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>pc2</th>\n", " <th>pc1</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>0.004526</td>\n", " <td>2.561371</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>0.004526</td>\n", " <td>2.561371</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>-0.034301</td>\n", " <td>2.653526</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>0.043353</td>\n", " <td>2.469217</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>0.004526</td>\n", " <td>2.561371</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " pc2 pc1\n", "0 0.004526 2.561371\n", "1 0.004526 2.561371\n", "2 -0.034301 2.653526\n", "3 0.043353 2.469217\n", "4 0.004526 2.561371" ] }, "execution_count": 27, "metadata": {}, "output_type": "execute_result" } ], "source": [ "transformed_data = petal_data @ eigenvectors\n", "df_trans = pd.DataFrame(transformed_data, columns=['pc2', 'pc1'])\n", "df_trans.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "These new features are in fact just linear combinations of our original features. \n", "\n", "We can show this as follows. Recall our original data (demeaned):" ] }, { "cell_type": "code", "execution_count": 28, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style>\n", " .dataframe thead tr:only-child th {\n", " text-align: right;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: left;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>petal length (cm)</th>\n", " <th>petal width (cm)</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>-2.358667</td>\n", " <td>-0.998667</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>-2.358667</td>\n", " <td>-0.998667</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>-2.458667</td>\n", " <td>-0.998667</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>-2.258667</td>\n", " <td>-0.998667</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>-2.358667</td>\n", " <td>-0.998667</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " petal length (cm) petal width (cm)\n", "0 -2.358667 -0.998667\n", "1 -2.358667 -0.998667\n", "2 -2.458667 -0.998667\n", "3 -2.258667 -0.998667\n", "4 -2.358667 -0.998667" ] }, "execution_count": 28, "metadata": {}, "output_type": "execute_result" } ], "source": [ "petal_df = demeaned_df[['petal length (cm)', 'petal width (cm)']].copy()\n", "petal_df.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The eigenvector corresponding to the largest eigenvalue was:" ] }, { "cell_type": "code", "execution_count": 29, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array([-0.92154695, -0.38826694])" ] }, "execution_count": 29, "metadata": {}, "output_type": "execute_result" } ], "source": [ "eigenvectors[:, -1]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "So instead of recording petal width and length, suppose we had recorded a quantity:\n", "(-0.9215469 multiplied by length) + (-0.3882669 multiplied by width)" ] }, { "cell_type": "code", "execution_count": 30, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style>\n", " .dataframe thead tr:only-child th {\n", " text-align: right;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: left;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>petal length (cm)</th>\n", " <th>petal width (cm)</th>\n", " <th>new_qty</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>-2.358667</td>\n", " <td>-0.998667</td>\n", " <td>2.561371</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>-2.358667</td>\n", " <td>-0.998667</td>\n", " <td>2.561371</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>-2.458667</td>\n", " <td>-0.998667</td>\n", " <td>2.653526</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>-2.258667</td>\n", " <td>-0.998667</td>\n", " <td>2.469217</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>-2.358667</td>\n", " <td>-0.998667</td>\n", " <td>2.561371</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " petal length (cm) petal width (cm) new_qty\n", "0 -2.358667 -0.998667 2.561371\n", "1 -2.358667 -0.998667 2.561371\n", "2 -2.458667 -0.998667 2.653526\n", "3 -2.258667 -0.998667 2.469217\n", "4 -2.358667 -0.998667 2.561371" ] }, "execution_count": 30, "metadata": {}, "output_type": "execute_result" } ], "source": [ "petal_df['new_qty'] = -0.92154695 * petal_df['petal length (cm)'] - 0.38826694 * petal_df['petal width (cm)']\n", "petal_df.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "As follows, we can prove that **pc1** data exactly tallies with **new_qty**" ] }, { "cell_type": "code", "execution_count": 31, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "True" ] }, "execution_count": 31, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.allclose(df_trans.pc1, petal_df.new_qty)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The 'new_qty' is often called a 'score' and it would be normal to call the transformed values 'scores' - i.e. the values which each data point corresponds to in the new Principal Component space." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Interpretation of eigenvalues" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "So what this means is that if we'd recorded the synthetic quantity (-0.9215469 multiplied by length) + (-0.3882669 multiplied by width), then we'd have **one** collection of data points which almost completely represents the information / variance of the original data which comprised **two** features (length and width). These values would be the PC1 scores.\n", "\n", "So what fraction of total variance would we retain?\n", "\n", "The answer is given by the scaled eigenvalues." ] }, { "cell_type": "code", "execution_count": 32, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array([ 0.03597779, 3.63497866])" ] }, "execution_count": 32, "metadata": {}, "output_type": "execute_result" } ], "source": [ "scaled_eigenvalues = eigenvalues * (n - 1) / n\n", "scaled_eigenvalues" ] }, { "cell_type": "code", "execution_count": 33, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array([ 0.00980066, 0.99019934])" ] }, "execution_count": 33, "metadata": {}, "output_type": "execute_result" } ], "source": [ "scaled_eigenvalues / sum(scaled_eigenvalues)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This means that using PC1 alone explains 99% of the variance of our original data." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Uncorrelated nature of principal components" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "One other fact to note is that the transformed data for PC1 and PC2 are uncorrelated (as a consequence of the orthoginal nature of the axes). This should feel intuitively reasonable as moving along one axis does not impact the value on the other." ] }, { "cell_type": "code", "execution_count": 34, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array([[ 1., 0.],\n", " [ 0., 1.]])" ] }, "execution_count": 34, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.around(np.corrcoef(transformed_data.T), 3)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Using sklearn" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "So let's revisit sklearn PCA and see how we'd use it to recover the above results." ] }, { "cell_type": "code", "execution_count": 35, "metadata": { "collapsed": true }, "outputs": [], "source": [ "petal_data = demeaned_df[['petal length (cm)', 'petal width (cm)']].values\n", "pca = PCA().fit(petal_data)" ] }, { "cell_type": "code", "execution_count": 36, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array([ 3.63497866, 0.03597779])" ] }, "execution_count": 36, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pca.explained_variance_" ] }, { "cell_type": "code", "execution_count": 37, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array([ 0.99019934, 0.00980066])" ] }, "execution_count": 37, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pca.explained_variance_ratio_" ] }, { "cell_type": "code", "execution_count": 38, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array([[ 0.92154695, 0.38826694],\n", " [-0.38826694, 0.92154695]])" ] }, "execution_count": 38, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pca.components_" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Note that the transformed values have a flipped sign compared to the results we manually derived above. It doesn't really have any statistical significance and doesn't affect variance. It would be trivial to add a conditioning step to determine a sign which matches sklearn. " ] }, { "cell_type": "code", "execution_count": 39, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style>\n", " .dataframe thead tr:only-child th {\n", " text-align: right;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: left;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>pc1</th>\n", " <th>pc2</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>-2.561371</td>\n", " <td>-0.004526</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>-2.561371</td>\n", " <td>-0.004526</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>-2.653526</td>\n", " <td>0.034301</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>-2.469217</td>\n", " <td>-0.043353</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>-2.561371</td>\n", " <td>-0.004526</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " pc1 pc2\n", "0 -2.561371 -0.004526\n", "1 -2.561371 -0.004526\n", "2 -2.653526 0.034301\n", "3 -2.469217 -0.043353\n", "4 -2.561371 -0.004526" ] }, "execution_count": 39, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pd.DataFrame(pca.transform(petal_data), columns=['pc1', 'pc2']).head()" ] }, { "cell_type": "code", "execution_count": 40, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array([[ 3.11317942, 1.29638747],\n", " [ 1.29638747, 0.58241432]])" ] }, "execution_count": 40, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pca.get_covariance() * n / (n - 1) # rescaled" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The power of the sklearn model is that we can very simply reduce down to our desired number of dimesions." ] }, { "cell_type": "code", "execution_count": 41, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style>\n", " .dataframe thead tr:only-child th {\n", " text-align: right;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: left;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>pc1</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>-2.561371</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>-2.561371</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>-2.653526</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>-2.469217</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>-2.561371</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " pc1\n", "0 -2.561371\n", "1 -2.561371\n", "2 -2.653526\n", "3 -2.469217\n", "4 -2.561371" ] }, "execution_count": 41, "metadata": {}, "output_type": "execute_result" } ], "source": [ "petal_data = demeaned_df[['petal length (cm)', 'petal width (cm)']].values\n", "pca = PCA(n_components=1)\n", "one_dimensional = pd.DataFrame(pca.fit_transform(petal_data), columns=['pc1'])\n", "one_dimensional.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The following plot shows the data points transformed into PC1 and then mapped back into the original coordinate system. \n", "\n", "Recalling the interactive chart above, the green dots repesent the projection of each blue data point onto the PC1 best fit line. The difference between the green and blue dots gives an indication of the amount of information / variance which is lost by reducing to one dimension." ] }, { "cell_type": "code", "execution_count": 42, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "<matplotlib.text.Text at 0x1132bbfd0>" ] }, "execution_count": 42, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeQAAAHiCAYAAAA597/kAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xt0Hed93vvv+87M3hsbFwIgARAkwYsokZKsSDqubNlO\nbFmO3Lh2mrrJiexTHbuus5KV1HGvcbyaKqnjKlHcNKurthI7ad2LdHzq1K3t2k2WU/luK5KOaluS\npci68k6AxI0A9n1m3vf8sYFNXLkBkgA3wOezFtciN2b2vLNJ4sE785vfa7z3HhEREbmi7JUegIiI\niCiQRUREWoICWUREpAUokEVERFqAAllERKQFKJBFRERawBUJ5PHxce644w5efvnlK3F4ERGRlrPh\ngRzHMb/1W79FLpfb6EOLiIi0rA0P5I997GO8+93vpr+/f6MPLSIi0rI2NJA///nP09vbyxvf+MZV\n76NGYiIicjUwG9k685577sEYgzGG5557jv379/PJT36Svr6+C+43OjqzQSPcOH19nTqvTWarnttW\nPS/Yuuem89p8+vo6m24TbsA4Gj7zmc80fv+e97yHj3zkI03DWERE5Gqgx55ERERawIbOkOd76KGH\nrtShRUREWo5myCIiIi1AgSwiItICFMgiIiItQIEsIiLSAhTIIiIiLUCBLCIi0gIUyCIiIi1AgSwi\nItICFMgiIiItQIEsIiLSAhTIIiIiLUCBLCIi0gIUyCIiIi1AgSwiItICFMgiIiItQIEsIiLSAhTI\nIiIiLUCBLCIi0gIUyCIiIi1AgSwiItICFMgiIiItQIEsIiLSAhTIIiIiLUCBLCIi0gIUyCIiIi1A\ngSwiItICFMgiIiItQIEsIiLSAhTIIiIiLUCBLCIi0gIUyCIiIi1AgSwiItICFMgiIiItQIEsIiLS\nAhTIIiIiLUCBLCIi0gIUyCIiIi1AgSwiItICFMgiIiItQIEsIiLSAhTIIiIiLUCBLCIi0gIUyCIi\nIi1AgSwiItICFMgiIiItQIEsIiLSAhTIIiIiLSDc6AOmacq9997LkSNHMMbw27/92xw6dGijhyEi\nItJSNnyG/I1vfAOAz372s/yjf/SP+Df/5t9s9BBERERajvHe+40+aJIkhGHIF77wBR577DE+9rGP\nbfQQREREWsqGX7IGCMOQD3/4wzz88MN8/OMfb7r96OjMBoxqY/X1deq8Npmtem5b9bxg656bzmvz\n6evrbLrNFSvq+tjHPsZf/MVf8Ju/+ZuUSqUrNQwREZGWsOGB/MUvfpE//uM/BqCtrQ1jDNaq2FtE\nRK5uG37J+q//9b/OP/tn/4x77rmHJEn4jd/4DXK53EYPQ0REpKVseCDn83n+7b/9txt9WBERkZam\na8UiIiItQIEsIiLSAhTIIiIiLUCBLCIi0gIUyCIiIi1AgSwiItICFMgiIiItQIEsIiLSAhTIIiIi\nLUCBLCIi0gIUyCIiIi1AgSwiItICFMgiIiItQIEsIiLSAhTIIiIiLUCBLCIi0gIUyCIiIi1AgSwi\nItICFMgiIiItQIEsIiLSAhTIIiIiLUCBLCIi0gIUyCIiIi1AgSwiItICFMgiIiItQIEsIiLSAhTI\nIiIiLUCBLCIi0gIUyCIiIi1AgSwiItICFMgiIiItQIEsIiLSAhTIIiIiLUCBLCIi0gIUyCIiIi1A\ngSwiItICFMgiIiItQIEsIiLSAhTIIiIiLUCBLCIi0gIUyCIiIi1AgSwiItICFMgiIiItQIEsIiLS\nAhTIIiIiLUCBLCIi0gLCjTxYHMf8xm/8BqdOnaJWq/Erv/Ir/ORP/uRGDkFERKQlbWggf+lLX6K7\nu5vf//3f59y5c7zzne9UIIuIiLDBgfy2t72Nn/qpnwLAe08QBBt5eBERkZZlvPd+ow9aKBT4lV/5\nFe6++27+5t/8mxt9eBERkZazoTNkgOHhYT7wgQ/wd/7O31l1GI+OzqzzqDZeX1+nzmuT2arntlXP\nC7buuem8Np++vs6m22xoII+NjfH+97+f3/qt3+L1r3/9Rh5aRESkpW3oY0+f+tSnmJ6e5o/+6I94\nz3vew3ve8x4qlcpGDkFERKQlbegM+d577+Xee+/dyEOKiIhsCmoMIiIi0gIUyCIiIi1AgSwiItIC\nFMgiIiItQIEsIiLSAhTIIiIiLUCBLCIi0gIUyCIiIi1AgSwiItICFMgiIiItQIEsIiLSAhTIIiIi\nLUCBLCIi0gIUyCIiIi1AgSwiItICFMgiIiItQIEsIiLSAhTIIiIiLUCBLCIi0gIUyCIiIi1AgSwi\nItICFMgiIiItQIEsIiLSAhTIIiIiLUCBLCIi0gIUyCIiIi1AgSwiItICFMgiIiItQIEsIiLSAhTI\nIiItLnWOcjUhde6y7X+p77neUpdSTiqkLr3SQ9kw4ZUegIiILM95z/PHJxkZLxGnjiiw7NyeZ/v2\njovef6C3DTCcmVj4nof39mCNWd8TWtWYHS9OHuFM6SypSwhsyEC+n+t6DmDN1p5DKpBFRFrU88cn\nGR4vYa0hYwMAhsdLPPPyGIPduYva/8mXxgDYtaNjwXsC3LCvdz1OY03qYXwGayw2iAA4UzoDwOHe\ng1dyaOtua/+4ISKySaXOMTIbpvNZazh5ttD0UvNy+zvnmSnFzJRivPML3nNkvHTFL1+nLuVM6eyS\nmbA1dnbGvLUvXyuQRURaUC12xOnyARmnjlp84fBcbv/EOVLncQ6S1C/6mm/6nuutmtZIXbLs11Kf\nUHPxBo9oYymQRUQuYCOLn2pJwsR0hVqSkIksUbD8t+gosGSiC3/7Xm7/0FoCa7EWwsAs+ppp+p6X\nYjVFWtkgQ2CXv5MamJCMjdZreC1B95BFRJaxUkHVehQ/Jc7x1SdOcHR4hjhNiYKA/YOd7Onv4Oxk\necll5z39HQT2wuEZ2Pp4h+ddtrbW0Jmvf9s3i95zcHu+6XtejLUUaQU2YCDf37iHPP89BvIDBLP3\nvLcqBbKIyDJWKqiCy1/89NUnTnB0ZBobWLJB/dvy0ZFpvPfsH+xiZLxE4jyhNQxuz3PTwR2Mjxea\nvu/hvT0AC/a/9dodzFVZz3/PuW0vp9SlPDv+AhOVcUIbrqpI67qeA7PbnCX1CYEJGcgPNF7fyhTI\nIiKLXKigamS8xKGh7ss2m6wlCUeHZ7CLLi9bazk2UuAnb9vDoaFuarEjE81dcl7dDN0aww37epfs\nD3B479LXLofUpVTSKsenT3KmNMqLky8TBiGdUQcD+T6MMY0irWu79y+Z9VpjOdx7kGu791NzMRkb\nbfmZ8RwFsojIInMFUZllgmCu+Kkte3lCrFBKiNO0MTNeeCxHoZTQ25W7pOMF1i7Zf7nXLsX8S9PD\nhRGKcYl8ph1jDAbDTK0+o9/Z3g+cL9JqWyFsAxus+LWtSkVdIiKLzC+Ics5TS1Lc7GNCc8VPq+1+\n1aworCMfEgXLB09oLR35cE2FZavd9nIXq809PwyeUlLGWkspLlCMywAYUw9l5+vHW2uRVqt3Frsc\nNEMWEVkksPWOVk++NMZMqR4CgbV05kNuObidF06cW9T9Kg94zkyU19wRKxOG7B/srN9Dnnfp2DnH\n/sEuXj41vapOXastQluPYrX5zw/HaUzqU0ITYk2AweO8wxqL82m9ytqy6iKtjSyuu9I0QxYRWdbc\nN3uPwQD1GfKJs0WGx0sYa8hEAcYannxplCdfGlv02hhPvjS64LXh8RLPH59ccqS7XjPE/p1duNRT\ni1Nc6tm/s4uh/vYlx5rr1LXYXBFas+Otdrv5mj2yVHNx4/nhwAYLgjYf5WmP2vHe4wFj7JqKtC5m\nvJuVZsgiIoukznFmosSuHR1450lSTxgYPPDC8XMc3tvd2NbPdr+C+uVta02jI9bc1828x46WKwoL\nreVtt++jliQUSgkd+ZDAWr795OkVO3X1d2Ua77HaIrS1Fqut9pGleuFVPU6ssXRGHczUChhjCEzA\nYPsAzju253q5cfuhVRdpbWRxXSvYOmciInKZzO9yZawhiizGGhLniJ1b0OUqSf1s9ytPMnt/82I7\nYmXCkN6uHJkwXFOnrgttO/94q91ubkb8/MRLs88EG6IgwhrDmdIZXpw8smDfueeH5+4PD+T76Mx0\n4HxKW9QGwGD7Tl614/CaKqZXO96tQjNkEZFFVuqSFVpLZO2CLldhYAhmZ3Dh7GxtriMW+IvuiLWW\nTl0X2nb+8ZptF4bw/MTLnCmdJU5rHJs5ybZMF/3tO2Yv27PiI0uLnx/uz/fxqu03sLdrN7kge1GP\nLq32vLYKBbKIyCLLdbmas3+ws34vdPbPxho68/Vq4UvtiJU6t+DZ4OXGMNepC6BcTZpuO/94y22X\nuIRSWmB3bxcvnTvCaHm0vtKSsTjvmK7NADDQ3nd+nMs8snQxzw8vPt/FVnteW8UVCeSnnnqKf/2v\n/zUPPfTQlTi8iEhTy3W5Gtye57qhbl6crbI+3/2qj7kq64vpiLVSJfF1Q91LxrCzN4/znm8/ebrp\ntssdb+7Pp0cL/Kj8fc6mR/FBzDNjIYzBoe5rGGjvbxRnGQzTtRn68jsaVc0XemRpNc8Pr2Wd55X+\nHtajs9iVtuGB/O/+3b/jS1/6Em1tbRt9aBGRVbtQl6uVu18tnfGtpiNWszad84/1wolznB4t1quO\nm2y73PHmzuuk/yHV0dPkvcGYHN47pmsFXjh3BIxhZ3t/ozjL4Uh9ijXhZekrvZZ1ni/097DVbPhZ\n7d27l0984hMbfVgRkYtS72gVLgmB5V5f7WvzNasknnsGui1bnz+tdtv5x1v82FItqXF85gQxCWa2\nWrre0tJQTkpMVadng7denGUwOOdw3l9yX+mLXee52ee4FWz4DPmnfuqnOHny5Jr26evrXKfRXFk6\nr81nq57bVj0vaP1zK1Vism0R2Wjpt+NqnNK1LU8+Fy3YFqCzI3fBbQHiNObpM88xVpwgcSmZIGKw\na4CBrh0QpgSBWTDTbSNLOalC6Ghrj8gEER2de9jZ0c+12/fPLo94ae0s13K+V5tNUdQ1OjpzpYdw\n2fX1deq8Npmtem5b9bygNc5tpcKludeDAKrlmFo1WfDMs7EG7zzTUyWmp1iwbTYKmSlUFhxnbtvJ\nyZSZSoWR8in+avJFzlUmFyzuMD1zlLHsFCQBLvW49Hyzj5CIkBSXGKZnSkQ2w0C+nwG7i+K5hCLJ\nJX8O8893sfZ8lumpEsWZrTcLXs0PhpsikEVENpsLFWq9uKj1ZjVOGJ+uUijHpM4TzFZu33xwx5I2\nndU4JV30bG6Spmzrgi89+wijU+eYcpPEvgKZmMHOniWLO4xXzzHUuYdCrUAlrWFmi7W8rz8v/BO7\nbmf/tr2XZaWl5T6HapwShQFBsLR6fCtfkm5GgSwisg5WKlw6NjJDJgoWvD4+XWFypkoUBsy/s3ri\nzAzZTLhg2ygMqCUO7zxx6hhPTnDKPMf46TNU04SIkMBEdNhtFCslRoDBrt7G4g79+R2kPuUNu27D\nYPir8ecoJiWMsWzP9fLG3bdzuPfaBZ24LvfnEIWWOEmxJriodZ63qisSyHv27OG//tf/eiUOLSKy\n7lYqXDLA0eEZDs1rvemcp1BOiMKAa3dtI8UTWosBnj9+bsG2AEFgyEYBf+1QN381+gKvjL5IUimQ\nOEdgLCkpVV8BVy+EKlbLSxZ3CGxIW9jGW/ffwR17Xs90XCBjQtoz7Zd17eGVPocgsFhj+PGbd5Km\nrHmd561KM2QRkctspfWUk9QTpymJO/+1uTabBoPzkInqr8exW7Ct846UGJfC6cLLjB1POT5zjJPF\nUwQmxHmPnV172AA1KnT4bdR8jSR1ZEJbX33JGAby/Y3gzYQZdoS9G/o51M/bk6Y0qsdFgSwictmt\n2HozMERB0GixCSu32Zzb1uA5WX2Z6XiCcXeaQjoJxrMtbidJk3qY2xRPyvlv6RbvHZHNgjFYa0hc\nQnemi8H2wUt6bGktrrbWl5dKgSwiV51mlc/zX1/LtnNWavnoqbfenG+5NpvOOypphcz2szxe/A4l\nP0PZlfCkWCy5MEPiEipJlZqvEto81hq8A2MgNAGWALxhoKOfa7uH2J7r5frea4mCy/dI0aW2voSF\n7T+vdgpkEblqrKXyeaA3z1w7zGbb7pxt5TjXWhLW2nqz3mZzZLzIcO0EZ9MjlMw4VVuklFYwLsKR\nYoDUJGBDYheTjbJUq1VSl5KNMpBaqkkMWLqC7dzWfxs/fvB62sLcZb03vNLnuPgzWOlz2Nnbhvcs\naf+5XOvMq4nx3vvmm11ZV/o5wvXQCs9Hroetel6wdc9tq54XLD23545NLDtbq8Vpo/J5zumxerXv\nrh0dTbedm/HdsG/pvdjmzyF7aq4GBo6dO8EPR39EMS0wVp5gJi5QSaoYD4lPCIOQxCVkwojQZOiM\n2inWSmSCiLKr0h62kQ/bONh5kLv2v5F8Zn1aFK/0Oa70GSz+HF44cW7Z/W+4ZseS1plbhZ5DFhGZ\ntZbKZ+88M6UYqAfF/H2ODs9weFHl81zrykND3Su02Fx6OdYYOFY8wtOjf8VEZRIDlJMyYOnI5HGk\nje2cd3j87HgNznuMqfd57si089cGbmF7rpehzt10ZTrIhJmL/Ziaatbqc7nPAM5/Ds1aZ/Z3Za7a\ny9cKZBG5Kqyp8jn1s5XPLKmIjp0jST3RokBJnKcWu2XDd8E4khrFpMTJmWEeHX6Cyco5mI3bUlzC\nmHqVtKX+THJgArwBi8c7T2ADIhsS2ZDUOXbkehjq3MN1PQcu27PDFxx/k8rpZp/BhfaPU7eqz3Cr\nUiCLyFVhNZXPzvnZ53kNwWzgGgelckw2qm8TWbugGrrxPtYQBCsXKSUu4WvHvsOR6aM45zlbHiV2\nMV2ZLoyxGDweTzWNqaQVckGOSlKpLwHkwZoIbzzOp3RmO+jL7mBP+y7u3PsTZMPsmj+PZgVZK7nU\nyukL7R8F9qquvFYgi8hV4UKVz/t2djAyUWSmlDRWTKrGKYVilZGJUqOd5fauLAd3b8PDgo5aaeqJ\nk5RHnh5ZUKR07Z4uqmmVxKf8v899jtOFYfzsc8L1y9MGmGFbtgswRDaimsQkPqU9kwcD5ypTBKGl\nK9vJYPsgr+q9npv3X0ttmou6NL2Wgqy1fI5z95CbhfuF9lfrTBGRq8RKlc+p80wWqtCIS0+xFFOJ\nHVEYgK3fry1WEvD14Jn/HnGSEoUWYw2hMcS+yg+Gj/HtsVPYqMJIaZSJ8gSZIEMmiPDek/p6P+qa\nq+G9xxhDLszifEouyOK8pz3KM5gf4FDPQa7p2U97mCewAX3tnYyWLq4Qr9nay5fyOc69frH7q3Wm\niMhVYrnF7qH++M2uHR2N1ZYw9cedwiCgrzuH8xBYgzGGYyNFfvK2ocZ7BAE88vQIGDhTO8ZkMsZM\nOk4hncZUDXt6eygn9faVNRdjjCGyIcZYUpfifP0ydGBCvIeebDd37Xsz+7qGwEBbcPkeWbrYgqzV\nfI5rmdmutL9aZ4qIXGXmVz6Xq0mjyMhYQ2QNpXJM6hzW1ttZhvPueSbOUSgl9HblaMtaytWEShzz\nSvJ9zsYniX2Vqq/gSQlNlslKfV9rDN57EpcQ2ZCMjah5j2WuGUhKW5Dlxu03cMP2Q+tSoHWpBVmL\nrVRBvlH7bzVNA7lYLPL4449z7NgxjDHs27ePN7zhDWSzay8iEBFpNcsVGWUzQWPGFyyatYXW0jHb\nWct5x9HCEZ6rPc5IfBRvHNYHeBwpKfgqxbhIYCyBjYjTGjDbQzqI8B4OdO3lQM8QASF7OndzuPfg\nulVLq5Vla1sxkMvlMg888AAPP/wwhw8fZteuXYRhyA9+8APuv/9+3vrWt/L3//7fp729fSPHKyKy\nJuVazOR0lZ6uLG2ZetvIWpJQKCV05EMyYbikyCgILL1dWYqV+rPISeoIrCH1MYMDGVIfU04Sjk4d\n50xpFKIqLnYYDCkpnvrvMZ7YJbRHbThfr6Kmcf/YsDu/m//7xrsJg4CMjQBDtebIRDS9BLyWKun5\n215MQdbFVmTL2qwYyB/60Ie4++67+af/9J9iF/0FOOf4xje+wYc+9CH+6I/+aN0HKSKyVrU05Q//\n21M898oYSeoIA8v+nR309bRxfKRInKZEQcD+wU7ectseYGGR0R237uL7z49ydGSGWhpT7X6RbFeR\nYuT5+A++Slemi0wQ0Z7pIN8WEFQNzgHGYDwYLHPfOvvyO6A0QWRD8lEb5UIIxR6oXs9nTh1h/2An\nQ/3tnJ2sNK18dt7z9Iuj/OiVsVVtu7iieqC3jZ29ec5MNC/IutSKbFmbFVtnzlX9XchqtrkctmJb\nv63arnCrnhds3XPbquf14Fd+xMnRAqk7/y1uYrpCJjQc3HM+fJxz7N/Zxdtu37dgJvij4xOcGDvH\neDzCS5WnqPgCziQEQcC2XB7nUzyws72P6VqR6eo0sZvt7uUdoQ2pJFWyQZahzl30ZLdxfe8hXngx\nZWQ0JrTnH1manKnQngu56Zod88a1fCvK545NUKg6iqXqqrZdaTa8moKsi2mReSm26r9FuMTWmXNB\nOzExwZ/92Z8xNTW14Ou/+qu/uiFhLCKyVuVazJHT02RzIamrt6D0vl5BHSeONHEE4WyxlbUcHZ6h\nliRkwpBsBp4be4HvnnqBs+lJymmBsi8SmADnU9IkoJJackGOmXiG+lwYujKdTNdmiGcrqduCHLvz\nO3nt4G1c23uAtiBH6jzfPfsjwuB8GHtfL6aq1KokiSNsjGtp5fNclXRX18Ie1Rfa9kIV1Rdai/hy\nVWTL6jUt6vrFX/xFDh06xO7duzdiPCIil2xyukriHPNLT1Pncd6Dh1qc0hYurJyeKlYJc0W+c+Iv\nOV04y6naBGVmsAT1vtIePPVnh2MXkwtyBCYgTmPyUZ6OTAemaCnGRTI2w97O3dzcdxOHeq9pFGlN\nFSrEaUo2OP+t17n6pWHnPNUkbQRyfVwLK5/nqqSXs9K269Hi8mIqsqW5VT32dP/996/3OERElrjY\nYqKeruyCR5WgXi1tTb1BZSY6HzIpMVPhcf7bK99juDRCIS4R2ZDYewx2dpEHD7Nh7HHUc93TFrTR\nk+2mkBTpy21nZ76fnuw2DnTvpz1sW/L8cEc+JAoWvmZnm45gIRsu/Nriyue1VEmvZ4tLVWSvj6aB\nfNddd/G5z32O173udQTz/iHt2rVrXQcmIlevSy0mastEHBjs4uTo+a5PxhjCwJAJLUFoSUkYDZ9l\n2pwmzRQYm0xIZ5tiOpeQkBASEpkMxlscvr7gg3EYA3jP9rbt7Ozop6+tj/3bhsjY6IJNPDJhyP7B\nTo6OTDeKZY2ph1t7LlwwO16u8nmu7WShunCWfKFt16PF5Wr2l7VrGsgzMzP8yZ/8CT0954sgjDF8\n7WtfW9eBicjV63K0d3z3W6/ji989xnMvj5F6T2AMP3ZtJ/nOhGMTxxiPXiIOCtgwxhMD9ZC2GAwh\nFkOKI/CegAhwhEGAIyE0Id25bq7rvoaB/MCaVlq66zVDfPWJExwdniFxjtBabjm4o1Fl3azy+fDe\nHs5MVfnRK6vbFi5/i8vV7i9r0zSQ/9f/+l88+uij5HJbc9FoEWktl6uYKBMEfOD/vIXjpyYYmyzx\n9dG/4GThJOW0jOvx+DRhR66LYuyYiR0WCLA4HK7R0xraMxkSUnbkdtCZ7WRnvp+3DP0E1gZNZ8TL\nCa3lbbfvW/IsNMD1+5pforfGcPN1ffR3ZVa17Xq0uJT10TSQh4aGmJqaUiCLyIa43MVEUWj47PGH\nOFM8CwZSn2JNQOxipmrThKbeLMTPC+H6YogGgyEbZBhs6+G67mvY3bnrsnXSyoQhvV0LvwWvpZXk\nem27HvvL6jQNZGMM73jHO7juuuuIoqjx7PGDDz64EeMTkavM/GKiucUewsDUV1K6QDFR6hzlWgw2\npS3MNmauDx/9FiOls7P3bD3eQeoTAGppTFs2RxAHpKRYAgLql6gNhi67nZ++5g72tA/RmWsjE0Yb\n8hmshrpnbT1NA/mXf/mXN2IcIiJAfTY20JvnyZdGmSnFjbWIO/MRt17btyR8nPf86NgET408z2Q6\nhjXQ25Hn5j376ey+gVemjoD3jQWM6zVhFnyC847IRuSDdkppEYcnJENH0MWOYC/77S1MnMpyJj1H\nFEy3RJeqtXTqks2laSDv27ePBx98kA996EOcOHGCT3ziE/z6r//6RoxNRK5a57trmRVeB6glNZ48\neoonhp9kyp8FDIENKE+34U94grYUg53XxMhgjMU7hzGWwAQExtKRy9KedLLN7WRXeJjOqJM0NURh\nfQWoiy0sWw/PH5+kUHUtNy65dE0D+dd+7dd4xzveAcDAwAC33XYbv/7rv85/+A//Yd0HJyJXn9Q5\nzkyU2bWjA+d8oxLZWsOZiTLX7ompuiqPnf4ex6aP88LYSaqUCAnJ2Q4iIjyO4RmYLHaRDTO0h+0U\n4yLGWgJjSS2QJgx29PPXBm6lK9PFTTsOE9nMgjWOTYt1qVpLpy7ZfJoG8tTUFO9+97sByGQy3H33\n3fyX//Jf1n1gInJ1ml/UNf+xp9SlnCi/xPSRZzlVOMV0PE3qPAk1DOBIqPoixuWpWHDOUE0cuzoG\ncc5xsjBMMSk26mD2dO7il25+Hx1RfkGl9Nwax63YpWotnbpk82kayLlcjm9961vccccdADz66KO0\ntbU12UtE5OLML+oqxSXOubMUawWOJT+k5AtkRwKqaYVskGu0s5ybx6Y+xltIfI0MWcLQ8Jahn+A7\npx4nCAIqcRWP45ptB3jr/jsI7fLfAlu1S1Wrjksuj6aB/NGPfpRf+7Vfa9w3Hhwc5Pd///fXfWAi\nsvldTCVwYC3buyL+9Pj/wxRjeJfC7K4hEak3pN5TjitYYzHW4J2tt7TE4339KeJsLmB/zx6yQZa7\n9r2JWlKjmJRoD/OAZbqQ0JGn8Qzw4vHOdakCGpfNgSvapWotnbpk82kayNdffz3/83/+TyYnJ4mi\niI6Ojo0Yl4hsYhfb+jJ1KTUX82fjn+VcMorDMXs9GgskNsYkhhSPARKfkPERhoA0rTf0qCYp2TDk\npoGD3DStmAi7AAAgAElEQVRwmPGxIgCZMIO1YaNL1uL1kF8+ObVgvP09bdTihKPDBWLniKxl/2An\n1w11b8hnuJK1dOqSzWXFQP4H/+Af8K53vYsf//EfB1jQOhPgm9/8Jv/9v/93PvGJT6zvCEVk01lr\n68tKUuGZseeZrk1TjkucnDoNeKxhYZm1g9Smsw086qGcOogIyAQQkqEz6KE3GGDI3LykgcdXnzhR\n7yMd2MaKS0dHpvnswy+yp79jwXifenkMgMN7uxvPQnvgxRPnrmg181o6dcnmsmIg33///TzwwAPc\nd999XH/99ezcuZMgCDh16hTPPPMMd911l1aBEpEl1tL6sppU+fqJ7/Kj8RcppyUCG2JcvYEHc2Hs\naYSym/1tMHsN2+MhjfBYesIedmT20B32MRANcWaiTDqvAKqWJBwdnsEuugdrjOHI6Wl297U3DuSc\nZ6YUAzDYC9HsvVkDLVPNrO5ZW8+Kgdze3s6HP/xhPvCBD/DYY49x7NgxrLXceuut/M7v/A75fH4j\nxykim8RqWl+GYcpzEy/x6On/j4nKBMWkRGQzBCZkulTCMXvb2C95C+a+mCXH9mA3menrichyTc82\nclGmMSuOU0c1Thu7FUrJkrWIob5Ocuo81VpKvs3OjtORunrzzCT1RPN+uFA1s6yXpveQOzo6uOuu\nuzZiLCLSYi6mKGu5SmDnHVVXJnYxL03N8KNzLzNRHudE4VS90tlDnNZIU0e+LcdkxUA4L43n/dYG\nIW2mnT3hYQ5lX82RqQLgiWxEpZKSzUAQWEJryEYB07Pn0JYLlqxFDPV1koPAkM2c/1po5863fql6\nvvWsZlY7zKtb00AWkavPpaxHPH8dXWPgTO04L1d/SDGdwtsa338pQybI0JvrxntI0oRirYZPLd7H\nFPGQtuHTBJOpnX/j1GBLu9i/7SC50h5wAUdsgWqcUCjW6peonSOwlt6uLHfcuotnXxlf0GIynwsp\nVmoL1nb33nNgsGteN6/65fXOfP3b4/zmIOtVzXyp6z/L1qBAFpElLnU94sN7e0hcwvdHfsixyvNU\nKZKNIhKTkPiEUqWEx2ONoVxNSVNXL9QyBjxkwyzx+AFcMYNPLabWRn9vL+943bW8cGyKGWLqd4c9\nhVJMJU4Jg6Bx37pYifn+86PceJAFLSZ37Wjn9BiUKknjUab9g10LqqznKpdvvXYHYDgzsf5rAV+O\n9Z9l81tVIJdKJaampvD+/HWjXbt2rdugROTKudT1iKtJla8f/y4ni6cZ4QxTdppckCUTRcTJbJ2W\n8ZSTEm1BG9PpDIYAS4gnweHI+k4GO3fz3p9+PROTVXb1t9ORi/j2k6fZtaOjsQoUxnNmokwYBPT3\n5HC+fgka4OjwDNdfs2PB2MLQMtTfwetuGqBcSResRbzSur+H967vWsCXa/1n2fyaBvIDDzzApz/9\n6QWPPRlj+NrXvrauAxORK+Ni1iOuJTVm4gIjxbM8cvoJxspjWGOpuRg81NIaBZi9/Grq/aSdpyu3\njXFXxdkqeEPkOuj0u+hLXkWaGCITcMP++gxxfjtLYw2RNZTKMalzWGtwHsLZe9dJWi/KqtSSZc8B\nb+jtWrrG+3KVy+tdzXy513+WzatpIH/+85/n61//+pLnkEVka1pLe8bEJXzzxF9yfOYEk5Vz1NKY\nmVqRbdkOjDE4X++ehbHUXI2OsJ3EJ0Q2IjABuSgi6zuJkn7a3QBdbg8B9TWHjfV05M9/i1puXNlM\n0Jg9BvNmmHOFWrlMSLlcW7BPq7WYVDtMmdM0kPv7++ns7NyIsYjIZXaxrSvnirLsooKmgd4cZ4sT\nnJmcYm9fP98/+wOOT5/AGEPi6vdlK2kFU4Nt2S4yQYZyUsG7esetyEbgDc6nbM/2cc22/UTTntL4\nNgITkjqPtx7vPfsHuwhsfaGHufE3isWg0ayjtytLsRIvKMqaK9RaXBDVii0mL/R5t9pYZX2tGMgP\nPPAAAF1dXbzrXe/iTW9604LKxF/91V9d/9GJyEW51KrducKluSKnwEAxOMl/fP6blH2pfiP42YAo\nsLxq5wHOTJSZrJbrVdPWU3QVXC1DnDgSQgwOH6akPiWtRATFPcTVg7xwIse+nZ2MZsocHSmQpp4g\nMBwY7GJPX55vP3l6wfgP7tnGsZGZBa0vD+7uAu85NlJcUqg1PhNvihaTiz/vVh6rrJ+mM+Sbb755\nI8YhIpfRpVbtWmM4NLSNocEcSeL582Nf4dGTT9bv9RKAt2AhpsIPT79Ch+nDGFP/5UPipEqa1MiG\nERlyRL6dTHkbuYlr2B7lCW0GMvVj/fCVCdpzIT9x8yDVWko2E3BmssTTr0ywa0fHgvEfG5khEwUc\n2tu9ZMGHn7xtiEIpWVCodfN13ZuixaQ1ZsWiMrl6rBjIczPgL3zhC/ztv/23F3ztM5/5zPqOSkQu\n2qVW7cZpzHMTLzFWHiNxMa9MneDUzGmcj8HMXiUzKXPtLVNTxXtPQIbU1AhpI0lTnPM4EgKfod31\n05sc5uWRAtftiRrH8r5etFSpVcFDvi3Cz2tb6ZxfcB5Hh2c4vLd7waNMcL6d5WoLtVrVZhqrXH4r\nBvJ/+k//iUKhwGc/+1lOnTrVeD1NU7785S9zzz33bMgARWRtLrZq13nHi5NHeGr0WU7OnCT2CREB\nY5VJKkkVjAPm3tOA8eAMHldfdcnU1yeuUYFKN7a0g972HrYHewmIqCUpqXfEzpGdvf2VOo/zHueg\nGqfkQ0uS+tm2lfUWlnPnkbj6votbWTY7L5HNYsV/vfv27Vv29Uwmw+/93u+t24BE5NKspWo3dSml\nuEzqUl6cPMJwcYThwjCxSzAYyq5a//3iVZeAej/LEONCAoLGbLg7PkDmzP9BduoatvsD+DTAe08Y\n1h93iubNzgNrsMZgLUSBpZakWDP7ujWNS9L1sdf3XdzKcu68gqD+aFTq3JKvi2wGK86Q77zzTu68\n807+xt/4Gxw8eHAjxyQil2A1Vbtzs+EzpbPkzgWUijFjpTG6c92U0zLWBJRrCbU4JXYpFjvbT9rV\n7x833tSQq+5ir3kdzsaEZLGEpNEM1VrC2HQF5+sduTKRZai/vT6znk13YwyZ0OAcvDIy02h9GScp\nPZ3ZJZfd9w92zl/8CYA0dcSJ45GnR5YUsIlsJisG8lve8pYFjxEsdjGNQZxzfOQjH+H5558nk8lw\n3333rTgTF5GL16xqtx7GZ7DGkg0zFKlxrjpN4hI8hnItIU4c1liC2W8TgcmQph5MArPLHrZVB/m/\nbnwno5M1jg7PzBZaeQ7u6mKqVGNypoZzgPW050LedMsuTo+V5m1rGdzejrWGYiVprHPc05lje1e2\n3pFr3vivG+rmxRPnFpxXnDiiMFhwX3mugG2gv2ujP3qRi7ZiID/00EN47/nDP/xDhoaG+Nmf/VmC\nIODLX/4yJ0+evKiDffWrX6VWq/Gnf/qnPPnkk/ze7/0en/zkJy968CKyvMVVu0HgqbkapaRExkSc\nKZ1tLFMIEJiAwAaUkgq5IEuxVGj8QJ6zeZxzpM7QRjf5KCTnO7mx83Y629qZLqS89TVDpM5RKCW0\n5QIee+YMxhrSpL4EYjYKCELL+FR1xW3n2mGGgWn8+cdv3kmasqDqeOF5wSNPjyxYAALOF7DNXw9Z\npNWtGMi7d+8G4Pnnn+f+++9vvP7+97+fn/3Zn72og33ve9/jjW98IwC33norzzzzzKr26+vbmo1J\ndF6bz2Y7N+cdz5x9nu+ffoaJ0iQe2JbtxOPZ172n8Uzytq42Bsx2xosTDLUPMlM6TmpivPO0hW10\n2R3E53ppp5dX9e8in802jlGNU7q25cnn6tXTpUpMtm2CbLT028tat+3p6Whsu5z6/tGK+1fjdNP9\nna2WzmvrWdXiEo899hive93rAPjWt761oEHIWhQKBTo6Ohp/DoKAJEkIwwsPY3R05qKO18r6+jp1\nXpvMZjy35yde5unRZynE52e849UpZmrTpFUYaO+jszPHzEyFTrooUqUn6KGdaWq+Qmgjuk0fnbaX\nc3FnvfK56piJK41jeOeZnipRnKnPYFPnqJZjatWlfaQvZdvlNNs/GwWb7u9sNTbjv8XV2KrnBav7\nQaNpIN933318+MMfZnR0FO89u3fv5l/9q391UQPq6OigWCw2/uycaxrGIpvVlV5sPnUpw8WRBWEM\nYK3FYzlXmaIvX18NyXlPnKTctP0GDvVcww53LWfGq2BSfBqSCQNcvv5/t9n6wGtpBXmpbSOb7r9C\ntblIK2qahjfeeCNf/vKXmZycxBhDd3f3RR/s1a9+Nd/4xjd4+9vfzpNPPsmhQ4cu+r1EWtVGLjZf\nS2oUkxLtYZ5MmFn4NRdTTas47wjMwqtaHZk8uSBLLa1xdKTC6FiZNtONGc9BYYob9vYzfPYkR4fL\njRaV+3Z2MDTQyehkuWl7x7W0grzUtpFqOylbxYqB/Ju/+Zv8y3/5L3nPe96zbLX1gw8+uOaDvfWt\nb+WRRx7h3e9+N957fvd3f3fN7yHS6jZisfn5qyzFaUwUROztHOLNQ28gtPX/1hkbkQ2yC4q35gQm\nYHfnLrYn1zHtYjrbXGO7C7WoDKzhTbfuajrzX0sryEttG6m2k7JVrBjI73rXuwD44Ac/eNkOZq3l\nox/96GV7P5FWs1GLzX/zxF9yfPoE1lqyYb3A6vj0Cb554i+5a9+bAAhswGD7TkZL4wsuW3vv6Yza\nGcj3M3KsRldXG7E5f0/YUG9ReWhv94IfKuB8i8q27OpuNa2lFeSlto1U20nZ7Fb8X3XTTTcB8O//\n/b9vNAnZuXPnhg1MZDPaiMXma0mN4zP1MJ7PWsvxmRPUklrj8vV1PQfwOH449hznqlMYoDvTxU07\nXsVQ+15OpCNLx5l64jRd0Lbycp+DiCzV9MfcD3zgA3z729/mgx/8IEmS8KY3vYm3vOUt3HLLLRsx\nPpFN5XIuNl+olRidnqGvq5OOTL7xejEpEadxY2YMc0VZDk9CMSk1Atkay/W913Fd9zWUkwoYyJgM\naVpvNbncWMPAEAXBgraV889hrkXl4kvDV7qITWSzaxrIt9xyC7fccgv33HMPX/nKV/jUpz7Fpz/9\n6VU/QyxyNbkci81XkhqffvTPOVU4RUpKQMDujt38wuvfTi7M0B7miYL6s7nee4bHSxTLMc57DJ5H\nyuO87fauBYEa2IB8lJ8tNptsFJtV43RJ8wxPvUXlYmlar8Re3KJyfves9S5iE9nKmn53+O3f/m1+\n5md+hl/4hV/g6NGj/It/8S949NFHN2JsIpvS4b09DG7P493srHU2jFdb9fvpR/+ck6VTGBsQ2gzG\nBpwsneLTj/45AJkww97OIZxz9TCuxGAMxkKePk6eLfHVJ04sed+5YjNjDZmo3moyCgNqs2OcP9a7\nXjO05BziJCUK7YL9h8frx1r8vsPjJZ4/PnlZP1eRra7pDHl6ehrvPQcOHODgwYNcc801dHZevZ1U\nRJq5lKrfQq3EqcIp7KJ7t5aAU4VTFGolOjJ53jz0Br529Du8dPKv8NZhvCXv+9iR3IC1lqPDM9SS\nhMzsc/4rFZsFgSEbBbz28PaLalEJ59coXjDey1zEJnI1aBrIf/AHfwDAyy+/zKOPPsov//IvUyqV\n+M53vrPugxPZzC6m6nd0eoaUlJClRWEpKaPTM3TsyBPakNfseD0/+kEXQSZtrLI0J5ntFd3bVX/t\nQsVmcepIU5atnJ47h3I1WXZ/rVEscvk0DeRXXnmFRx99lEcffZTnnnuOW265hTvuuGMjxiaypaQu\npeZiMjYiWCYYAfq6OgmWCWOAgIC+rvNXpzryYf0546ULFRNaS0f+/H/vCxWbRYFtWmy20v7N1ihe\nSxGbyNWuaSD/w3/4D7nzzjt53/vex6tf/eolj1qIyIXNX3s4dQmBDRnI93Ndz4ElTTs6Mnl2d+zm\nZOkUdl4wO1L2dOxeUG2dCUP2D3ZydGR6wf9L5xz7B7sal6vhwsVme/o7LrpFJSy/RvFaithEpK5p\nIH/5y1/eiHGIbFnz1x62s9XRZ0pnADjce3DJ9r/w+rcvqbLeM1tlvdhdrxniq0+cWLC+8P7BLu56\nzdCSbVdqMXnTwR2MjxeansdK+y+3RrFaV4qsnVZ2EFlHqUuXrD0M9eeDz5TOcm33/iWXr3Nhhg+8\n8Z0rPoc8X2gtb7t9H7UkoVBK6MiHC2bGC4+5fLHZ4hnvSi5UrKbWlSKXToEsso5qLiZ1SWNmPF/q\nE2oupm2F+8kdmTwdO5YP4sUyYdgo4GpmvVpUqnWlyKVZ8X/wE088ccEdX/Oa11z2wYhsNfUCruX/\nmwUmJGOXBrWIXJ1WDOSPf/zjK+5kjLmo1Z5ErjaBDRjI9zfuIc9x3jGQH1ix2lpErj4rBvJDDz20\nkeMQ2bKu6zkAUK+y9gmBCRnIDzReFxGBVdxD/t//+3/z6U9/mlKphPce5xynT5/m61//+kaMT2TT\ns8ZyuPcg13bvb/ocsohcvZpWYNx7773cddddpGnKPffcw759+7jrrrs2YmwiW0pgA9rCnMJYRJbV\nNJBzuRw/93M/x2tf+1q6urq47777mhZ8iYiIyNo0DeRsNsu5c+c4cOAATz31FMYYSqXSRoxNRETk\nqtE0kN/3vvfxj//xP+bOO+/ki1/8Iu94xzu46aabNmJsIiIiV42mRV1veMMbeNvb3oYxhs9//vMc\nPXpUyy+KiIhcZivOkIeHhzl9+jT33HMPIyMjnD59mnPnztHZ2ckv/uIvbuQYRUREtrwLNgZ5/PHH\nOXv2LPfcc8/5HcKQN7/5zRsxNhERkavGioF8//33A/Anf/In/NIv/dKGDUhERORqtKqirk996lN8\n+MMfplAo8MADD1Cr1TZibNJiUucoVxNS5670UEREtpymgfzRj36UUqnEs88+SxAEHD9+nH/+z//5\nRoxNWoTznueOTfDtJ0/znadP8+0nT/PcsQmc91d6aCIiW0bTQH722Wf5J//knxCGIW1tbXzsYx/j\nueee24ixSYt4/vgkw+MljDVkogBjDcPjJZ4/PnmlhyYismU0DWRjDLVaDWPqi5hPTk42fi9bX+oc\nI+OlJYvYW2sYGS/p8rWIyGXSNJDf+9738vf+3t9jdHSU3/md3+Hnfu7n+Lt/9+9uxNikBdRiR5wu\nH7qJ89RiBbKIyOXQtDHIO9/5Tm666SYef/xxnHN88pOf5Prrr9+IsUkLyESWKFj+57bQGoIAytWE\nTGQJbNOf70REZAVNAzmOY7773e/y2GOPEYYh2WyWw4cP67L1VSKwlp3b8wwvumydpp44SXnk6RHi\n1BEF9e22b++4gqMVEdm8mgbyvffeS6VS4e6778Y5x//4H/+DF198UZXWV5HDe3sAGBkvkThPaA1x\nkhKFtl7oNbuc4PB4iWdeHmOwO3clhysisik1DeSnnnqKr3zlK40/v+Utb+Gnf/qn13VQ0lqsMdyw\nr5dDQ93UYkcQwCNPj2CWKfQ6ebZAf1dGl69FRNao6XfNwcFBjh071vjz2NgYAwMD6zooaU2BtbRl\nQ9KUFQu94tSp0EtE5CI0nSEnScLf+lt/i9tuu40wDPne975HX18f733vewF48MEH132Q0louVOgV\nBZZMtPzXUpdSczEZGxHMXuYWEZG6poH8wQ9+cMGf3//+96/bYGR9pa4+e21WEV2uxUxOV+npytKW\niZbdf67QywBJ6gkDgwf29HcseW/nHS9OHmG4eIZqHJONIgbbB7iu5wDW6NK2iAisIpBf+9rXbsQ4\nZB0573n++CQj46UFFdGH9/Zg51XL19KUzz78IkeGp0lSRxhYDgx2cfdd13Lk1PSC/ft62qjWEo6N\nFIjTlCgI2D/YyY0HtjM5WQTOz4iPnDvGD0+foFCs98EOrOVMewmP5/rea6/UxyIi0lKaBrJsfnOt\nL+2iimiAG/b1Nrarh/EU1trGdkeGp/jjLzzLjx3cvmD/p18eA+DQ3m4S5whnZ8XPvHKW7g7D8emT\njJbHidMaPxx5GR/n6Ap7CWcvdc8UE54+eZTrug/o8rWICArkLa9Z68tDQ90E1lKuxRw5PY1ddG/Y\nWsvxMwVu3N+DnQ1O7zwzpRiAnb0QBoaaqzCenOLkK1Wi9gLluMy2bBfbMl2UqwnWlJhJDV1B/REq\na+BcoUw5qdKRyW/AJyEi0toUyFvcXOvLzDKz0LnWl21Zy+R0lcQ5MsHC7Zz3OO8oVRK2RfWvJakn\ndR7wnKoc5aw/wlQ8RuITsmGWThfRk9/GdG2GOEnx3oA1VH0JRzeW+g8H3gfgNDsWEQEF8pY3vyI6\nSRzVJCUbBoShJbSG1DtOjxXI5cLG5WSoB7E1pv7LWvK58/9UrPU4W2UsfJ7h6igJVWJqhATEDqbi\nMmE1oCvbScmVaAvyVH0Zj8eTAiHeO7rDngVFYyIiVzMF8hYXWEt/T45v/OAU49O1RlFVd0eESz3f\nfup0o4CrGqckaYrH4D0YA4E1DPYbxtwpumrbKTDOcHyE4fxpym4aEo/xERiHM54oCkh9Qjkp05np\nwOPY2bGDkcIEVV+cDXpPu+3hxwYOqYGIiMgsBfJV4MTZIsVKgjWAtVgDR0/PgIHerlzjcnaaplRr\njjAKcM6T2gR2P8KJfInjRQ9AQEgvgwTWYbGkxEAMGMCS+pSMDUl9iqO+za7tXVgb4kttdAU7ydqI\nXTs6Gi05RUREgbzl1ZKEo8Mz9HTm8N7jHHjvODNRAmPw3jcWCnHe4KMyN94YkXXbeIIvkFADwMze\n901JmLLDZHwHYRBgfIqj3vLNGojTlM5MG21BG3hoy7RhjOHWPQe4Zts+kgStDCUisgwF8hZXKCXE\naUo2CDFmdrnEssP7+ow3dfWmHhVfpTT0MGTLfH+Fzpee+j4VVyUgT2gCUixmdiYcEJD6lNBm2N21\ni5u238Dert3kgmzj0aZINVwiIstSIG9xHfmQaFHldCYT1GfFxhDbKYq5McpdT8IF66v8vN95AgzW\n1Heo+QpgCIjoifp5697X86odh4kCFWyJiKyWAnmTWG3bS6hfpi6UEjryIZkwZP9gJ0dHpnHOU4lT\nMpGHjmn8nr9kKkxhuaWt565Dz/KLvrw928tMUsZ5yNPGtrCXwWgfbz58G3t6l18TeS3nICJytbki\ngfzwww/zla98hT/4gz+4EoffVFbb9hIgcY6vPnGCo8MzC9pZvu6WAb7z9GnGzk3gBo8QhOcI9k3j\nlslEC7i5S9ZuNpNt/fezL2FrAaeKJbo7MgSVdrK1nbT7PewY7ObHDg40WmdezDmIiFytNjyQ77vv\nPr773e9yww03bPShN6XVtr0E6mE8Uu+2lQ3qf7VHR6b5xtPHKWx/nHDvONgUALdCDi6+fewA0nrB\nFh5sHMKLd1JKU0xbxNtfex3OmcbiEn91ZJzB7txFn4OIyNVqw68bvvrVr+YjH/nIRh92U2rW9jJ1\n5+NzrprazrsU7EiouALnuv8S2s6B8YBZ/hL1CnwKxAFUMzAxCC++FUsWfI5CwVKrOqLIYqzBWsPJ\ns4UF41rLOYiIXM3WbYb8uc99jv/8n//zgtd+93d/l7e//e08/vjja3qvvr7Oyzm0ltHsvEqVmGxb\nRDZa+tdUjVO6tuXJ5+qFU2PnStjAkMtGOBwjPEPBjFFOyhg7AQT1QF7LFeIY/Mg1JHGebGGAMMyD\nod40BIPDUfOe/o7zM+LF41rLOWwGV+u/xc1sq56bzmvrWbdA/vmf/3l+/ud//rK81+jozGV5n1bS\n19fZ9LxS56iWY2rVZMnXvPNMT5WYnqr3q8Z4XOqpVGPOhs9SsmMYbwnwGOOBFPDgVzFDduBqIbzw\nRnwa4VILGYvzCyutDYaMMcwUKo3X2/NZpqdKFGfsqs9hbttWt5q/s81oq54XbN1z03ltPqv5QUNV\n1i0ssPXip+FFl3yd8+zszfPCiXOcHitQSWvkggz5XMhMpUwpGsVQv1drbDS7mIOtX39eKYw9eAe+\nmiGd2YE78SqYfY9l49I7uvIZ2vLnZ7fOefb0dyyooL7QOQxuz6vaWkRklgK5xc21lxwZL5E4T2gN\nA705qmmZH40epcQ0qU8JXEBb9zYy5zJ4Uryrt8jc1taGMR3M1Ar1Si5nwTis9aQJuGoW4hzuzE5c\ndQfUskBmwRgODXVQSw3D4yW88xhr2NPfyc+8YR/j07XGuAa357np4A7GxwtNz2FwtspaRETqrkgg\n33777dx+++1X4tCbjjWGG/b1cmiom0ot4XjxGGdKx/neiZeIqdJm2ukIejAYyv4cHds6uaa9F+cg\nCi3WGPrT/bw8dZRSXCayGSL7/7d357FRVQ0fx38z0w5doVbaKkJleR6poFVBECQsgijUABpEUEQb\n85ZFFBRSCggFEcqiBGRfbSoWsbgAhiUBJSHBWIXXJS5hKbLU0lLQvhQqXebO+0elj31AKDKdOTN8\nP39Je+eec4T02zvLPQ45qyLVLuphVVTa9XtJlRrdFaI9/3tS9lCbgu02uSy3HHabHEF2Ff1eqdf/\np4NcllsFp86rSWy4GoU1kHTpZ4v/+81b/70GPocMAJfHFbKfcNjtyi87oeI/iuVyWSp3l8tht+sP\nd5nkkiKDomWz2XXWVar4iFt18nxhzWd8gxxB+ndUS8WFxaht4wSFBzXSNz/9n5zBDilEiomUTv/+\nhyy3Wza3TXaHXY6//Muw3JZO/faHWjZppEbNG1wyr9AGdYvrtRwLADcafjr6CZflUlHZKdltdslu\n6eK9s2w2my64y+R2W3/+2aXOTToqvmEzWW5LFa5yWW5L8Q2b6dEWPdW8UbyiQyNr9ki+KDI0WHab\nTX/eUbMWu82u2OhQbywTAG5YXCH7iQqrUi6rSnZHsILtwQoLcepCuUs2m2TJLUuWbG67oiJCFekM\n08O3d1NFVYXOV5UpPChMzqD/vC58uTdaNQgJ0k0RTp0tq6g1ruWyFB/XUBEhtV9XBgB4FlfIfsJp\nD8Kt6sEAAA/jSURBVJbDXv37k91mU9OomxXSwFF9oeyWbG67IsODlNi0ec3OSs4gp24KiaoV44ta\nx9+kW28Ok9tyq7LKkttya3DPf6lVk0ayXFJVlSXLJcXHNdSIJ9p6c6kAcEPiCtlPOOwOxYXFqqis\nSHabXXHhjWWTVFJ+ViH2EN3WMEq3hsfp3ze1qNP5/u6NVne3itG5CxU69dsfio0O5coYALyEIPuR\ni7EtKjsll7tKMWGN1ebm1opv2LTWnsPX4nJvtIoIcSqiCSEGAG8iyH7EbrOrdXQr/SuquSqsyj+f\nxr72CAMAzEOQ/ZDD7lAoIQaAgMKbugAAMABBBgDAAAQZAAADEGQAAAxAkAEAMABBBgDAAAQZAAAD\nEGQAAAxAkAEAMABBBgDAAAQZAAADEGQAAAxAkAEAMABBBgDAAAQZAAADEGQAAAxAkAEAMABBBgDA\nAAQZAAADEGQAAAxAkAEAMABBBgDAAAQZAAADEGQAAAxAkAEAMABBBgDAAAQZAAADEGQAAAxAkAEA\nMABBBgDAAAQZAAADEGQAAAxAkAEAMABBBgDAAAQZAAADEGQAAAxAkAEAMABBBgDAAEHeHKy0tFSp\nqak6d+6cKisrNXHiRN13333enAIAAEbyapAzMzPVqVMnJScn68iRIxo/frw++eQTb04BAAAjeTXI\nycnJcjqdkiSXy6UGDRp4c3gAAIxlc7vd7vo48caNG5WVlVXraxkZGUpMTFRxcbFSUlI0efJkdezY\nsT6GBwDAr9RbkP/OgQMHNG7cOE2YMEHdu3ev02OKi0vreVbeFxMTybr8TKCuLVDXJQXu2liX/4mJ\nibzqMV59yvrw4cMaO3asFi5cqISEBG8ODQCA0bwa5Pnz56uiokKzZs2SJEVERGj58uXenAIAAEby\napCJLwAAl8eNQQAAMABBBgDAAAQZAAADEGQAAAxAkAEAMABBBgDAAAQZAAADEGQAAAxAkAEAMABB\nBgDAAAQZAAADEGQAAAxAkAEAMABBBgDAAAQZAAADEGQAAAxAkAEAMABBBgDAAAQZAAADEGQAAAxA\nkAEAMABBBgDAAAQZAAADEGQAAAxAkAEAMABBBgDAAAQZAAADEGQAAAxAkAEAMABBBgDAAAQZAAAD\nEGQAAAxAkAEAMABBBgDAAAQZAAADEGQAAAxAkAEAMABBBgDAAAQZAAADEGQAAAxAkAEAMABBBgDA\nAAQZAAADEGQAAAxAkAEAMABBBgDAAAQZAAADBHlzsLKyMo0fP15nz55VcHCw5s6dq7i4OG9OAQAA\nI3n1CjknJ0dt27ZVdna2+vfvr9WrV3tzeAAAjGVzu91ubw7ocrnkcDi0ZMkSWZalMWPGeHN4AACM\nVG9PWW/cuFFZWVm1vpaRkaHExEQ999xzOnjwoDIzM+t0ruLi0vqYok/FxESyLj8TqGsL1HVJgbs2\n1uV/YmIir3pMvQV50KBBGjRo0GW/9+677yovL08jRozQrl276msKAAD4Da++hrxy5Upt2rRJkhQe\nHi6Hw+HN4QEAMJZX32U9cOBApaWl6aOPPpLL5VJGRoY3hwcAwFheDXLjxo21du1abw4JAIBf4MYg\nAAAYgCADAGAAggwAgAEIMgAABiDIAAAYgCADAGAAggwAgAEIMgAABiDIAAAYgCADAGAAggwAgAEI\nMgAABiDIAAAYgCADAGAAggwAgAEIMgAABiDIAAAYgCADAGAAggwAgAEIMgAABiDIAAAYgCADAGAA\nggwAgAEIMgAABiDIAAAYgCADAGAAggwAgAEIMgAABiDIAAAYgCADAGAAggwAgAEIMgAABiDIAAAY\ngCADAGAAggwAgAEIMgAABiDIAAAYgCADAGAAggwAgAEIMgAABiDIAAAYgCADAGAAggwAgAEIMgAA\nBiDIAAAYgCADAGAAnwQ5Ly9P7du3V3l5uS+GBwDAOF4P8rlz5zR37lw5nU5vDw0AgLG8GmS3262p\nU6dq3LhxCg0N9ebQAAAYLai+Trxx40ZlZWXV+lqTJk2UlJSkhISEazpXTEykJ6dmDNblfwJ1bYG6\nLilw18a6Ao/N7Xa7vTVY7969dcstt0iSvv32WyUmJio7O9tbwwMAYCyvBvmvevbsqe3bt6tBgwa+\nGB4AAKPwsScAAAzgsytkAADwH1whAwBgAIIMAIABCDIAAAbwmyAH2u02y8rKNGrUKA0dOlTJyckq\nKiry9ZQ8orS0VCNHjtSzzz6rwYMH65tvvvH1lDxu586dGj9+vK+ncd0sy1J6eroGDx6sYcOG6dix\nY76ekkd99913GjZsmK+n4TGVlZVKTU3VM888oyeffFKfffaZr6fkMS6XS5MmTdKQIUP09NNP6+DB\ng76ekkedOXNG3bt3V15e3hWP84sgB+LtNnNyctS2bVtlZ2erf//+Wr16ta+n5BGZmZnq1KmT3nvv\nPc2ePVszZszw9ZQ8aubMmZo/f74sy/L1VK7brl27VFFRoQ8++EDjx4/XnDlzfD0lj1m9erWmTJkS\nML/AS9KWLVsUFRWl9evXa82aNXrjjTd8PSWP2b17tyRpw4YNeuWVV7RgwQIfz8hzKisrlZ6erpCQ\nkKsea3yQA/V2m8nJyRo1apQkqaCgQA0bNvTxjDwjOTlZQ4YMkVT9W2+gfc68Xbt2mj59uq+n4RH7\n9+9X165dJUn33nuvfvjhBx/PyHPi4+O1ePFiX0/Do/r06aOxY8dKqv656HA4fDwjz3n44YdrfsEI\npJ+HkjR37lwNGTJEsbGxVz223m6d+U948nabJrncujIyMpSYmKjnnntOBw8eVGZmpo9m989daV3F\nxcVKTU3V5MmTfTS76/N3a0tKSlJubq6PZuVZ586dU0RERM2fHQ6HqqqqFBRk1I+Ff+TRRx9Vfn6+\nr6fhUeHh4ZKq/97GjBmjV155xccz8qygoCClpaVp586dWrRoka+n4xEff/yxoqOj1bVrV61ateqq\nxxv/OeQb4XabeXl5GjFihHbt2uXrqXjEgQMHNG7cOE2YMEHdu3f39XQ8Ljc3Vxs2bPD7p9Vmz56t\ne+65R0lJSZKkbt26ac+ePT6elefk5+dr3LhxysnJ8fVUPObkyZMaPXp0zevIgai4uFhPPfWUtm7d\nqrCwMF9P57oMHTpUNptNNptNP//8s5o3b67ly5crJibmsscb/6vwzp07a/67Z8+eeuedd3w4G89Z\nuXKl4uLi9Pjjjys8PDxgnn46fPiwxo4dq4ULF/r1sxo3gnbt2mn37t1KSkrSt99+qzvuuMPXU8IV\nnD59Wi+88ILS09PVuXNnX0/HozZt2qSioiKNGDFCoaGhstlsstuNf0X1qv568Ths2DBNnz79b2Ms\n+UGQA9XAgQOVlpamjz76SC6XSxkZGb6ekkfMnz9fFRUVmjVrliQpIiJCy5cv9/GscDm9e/fW3r17\nNWTIELnd7oD5NxioVqxYobNnz2rZsmVatmyZpOo3r9XlzUKme+SRRzRp0iQNHTpUVVVVmjx5ckCs\n61oZ/5Q1AAA3Av9/TgAAgABAkAEAMABBBgDAAAQZAAADEGQAAAxAkAHDTJo0Sb/++usVjxk2bNgl\ndwzLzc31+GYKJ06cqLnb2rWcPy0t7bo3TJk7d65++umn6zoH4E8IMmCY3NxcmfJpxIKCAp04ceKa\nHrN7927FxsYqLi7uusZOSUnhs9G4oXBjEKAe5ebmavHixQoKCtLJkyeVmJioWbNmyel0atOmTcrK\nypJlWWrbtq2mTZumrKwsnTp1SsOHD1d2dra+/PJLZWZm6sKFCyovL9fMmTPVoUOHq4577NgxTZ8+\nXSUlJQoJCdHUqVPVpk0bTZw4UREREfrxxx9VVFSk0aNHa+DAgSotLdWECRN0/PhxNWvWTIWFhVqy\nZIlmzpyp/Px8vf766+rTp49+++03paSk6Pjx42rRooUWLVp0yS5sa9asqdnlq6SkRK+99pqOHDki\np9OpiRMnqnPnzurSpYseeugh7du3TzExMXrmmWe0bt06FRYWas6cOerYsaOio6MVHR2tL7/8Up06\ndaqXvx/AJFwhA/Xs+++/V3p6unbs2KHy8nJlZ2fr0KFDysnJ0YYNG7R582bdfPPNWrt2rYYPH67Y\n2FitWrVKjRo10oYNG7RixQpt2bJFKSkpWrt2bZ3GTEtLU2pqqj755BO98cYbevXVV2u+V1hYqPXr\n12v58uWaN2+eJGnp0qVq0aKFtm7dqtGjR+vAgQOSpClTpuiuu+7StGnTJFVfMaenp2v79u06ffq0\nvvjii1rjlpSU6OjRo2rVqpUk6e2331Z8fLy2b9+uefPmaeHChZKqbwPZo0cP7dixQ1L1VpDr16/X\nyy+/XGtTj/vvv1+ff/75P/nfDvgdrpCBetahQwe1bNlSkjRgwADl5OQoODhYx44d01NPPSWpes/U\nNm3a1Hqc3W7X0qVL9fnnn+uXX37RV199Vaf7+54/f14//PCDJk2aVPO1srIy/f7775KkLl26yGaz\n6Y477lBJSYkkae/evXrrrbckSXfffbdat2592XMnJCSoWbNmkqRWrVrVnPOi48eP19pm7uuvv645\nb+vWrfXBBx/UfK9bt26SpNtuu03t27eXVL2729mzZ2uOadKkifbu3XvVNQOBgCAD9eyvG4dc3MfW\n5XKpb9++mjJliqTqiLpcrlqPO3/+vAYOHKgBAwaoQ4cOat26dZ12OrMsS06nU5s3b675WmFhoaKi\noiSpZo9qm81Wa451ed36r1sz2my2Sx5jt9trrfe/t3LMy8tTixYtJKnWU91/t7lKcHBwrXkCgYyn\nrIF6tn//fhUVFcmyLG3atEndunXTAw88oJ07d+rMmTNyu92aPn16zVO1F4N99OhR2e12jRw5Up06\nddKePXsuifblREZGqnnz5jVB3rt3r4YOHXrFxzz44IP69NNPJVVvn3no0CHZbLaaPZLrqmnTpios\nLKz58/33369t27ZJqo5xSkrKNQU2Pz9ft99+e52PB/wZQQbqWWxsrCZMmKCkpCTFxcVp0KBBSkhI\n0EsvvaTnn39ejz32mCzL0vDhwyVJPXr00PDhwxUZGak777xTffv21RNPPKGwsDAVFBTUacw333xT\nH374ofr166f58+drwYIFVwzhiy++qOPHj6tfv35atGiRGjdurJCQELVq1UqlpaVKTU2t07hRUVGK\nj4/X4cOHJUljxozR0aNH1b9/f6WmpmrevHnXFOTc3Fz16tWrzscD/ozdnoB6lJubqyVLlmjdunW+\nnsoVbd68WU2bNlX79u1VUFCgZ599Vrt27fpHe9J+9tln2rdvn9LS0q5rTmfOnNFLL72k999//7rO\nA/gLXkMGoJYtW2ratGmyLEt2u10zZsz4xxvE9+rVS9u2bVNRUdF1fRZ55cqVNTclAW4EXCEDAGAA\nXkMGAMAABBkAAAMQZAAADECQAQAwAEEGAMAA/w+wdpf5qlbCzwAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x1127aac50>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "trans_data = pca.inverse_transform(one_dimensional.values)\n", "x = trans_data[:, 0]\n", "y = trans_data[:, 1]\n", "\n", "plt.scatter(p_x, p_y, alpha=0.4)\n", "\n", "plt.scatter(x, y, alpha=0.4)\n", "\n", "plt.gca().set_aspect('equal', adjustable='box')\n", "axes = plt.gca()\n", "axes.set_ylim([-4, 4])\n", "axes.set_xlim([-4, 4]) \n", "\n", "plt.xlabel('petal length (cm)')\n", "plt.ylabel('petal width (cm)')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Effect of including a feature with zero variance" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "PCA is a variance explanation technique. What would happen if we added a feature which had zero variance? Let's say we added a feature called 'animal, vegetable, mineral' which we one-hot encode into three columns: [animal, vegetable, mineral]." ] }, { "cell_type": "code", "execution_count": 43, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style>\n", " .dataframe thead tr:only-child th {\n", " text-align: right;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: left;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>petal length (cm)</th>\n", " <th>petal width (cm)</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>-2.358667</td>\n", " <td>-0.998667</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>-2.358667</td>\n", " <td>-0.998667</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>-2.458667</td>\n", " <td>-0.998667</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>-2.258667</td>\n", " <td>-0.998667</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>-2.358667</td>\n", " <td>-0.998667</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " petal length (cm) petal width (cm)\n", "0 -2.358667 -0.998667\n", "1 -2.358667 -0.998667\n", "2 -2.458667 -0.998667\n", "3 -2.258667 -0.998667\n", "4 -2.358667 -0.998667" ] }, "execution_count": 43, "metadata": {}, "output_type": "execute_result" } ], "source": [ "petal_df = demeaned_df[['petal length (cm)', 'petal width (cm)']].copy()\n", "petal_df.head()" ] }, { "cell_type": "code", "execution_count": 44, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style>\n", " .dataframe thead tr:only-child th {\n", " text-align: right;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: left;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>petal length (cm)</th>\n", " <th>petal width (cm)</th>\n", " <th>animal</th>\n", " <th>vegetable</th>\n", " <th>mineral</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>-2.358667</td>\n", " <td>-0.998667</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>-2.358667</td>\n", " <td>-0.998667</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>-2.458667</td>\n", " <td>-0.998667</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>-2.258667</td>\n", " <td>-0.998667</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>-2.358667</td>\n", " <td>-0.998667</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " petal length (cm) petal width (cm) animal vegetable mineral\n", "0 -2.358667 -0.998667 0 1 0\n", "1 -2.358667 -0.998667 0 1 0\n", "2 -2.458667 -0.998667 0 1 0\n", "3 -2.258667 -0.998667 0 1 0\n", "4 -2.358667 -0.998667 0 1 0" ] }, "execution_count": 44, "metadata": {}, "output_type": "execute_result" } ], "source": [ "petal_df['animal'] = 0\n", "petal_df['vegetable'] = 1\n", "petal_df['mineral'] = 0\n", "petal_df.head()" ] }, { "cell_type": "code", "execution_count": 45, "metadata": { "collapsed": true }, "outputs": [], "source": [ "pca = PCA().fit(petal_df.values)" ] }, { "cell_type": "code", "execution_count": 46, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array([ 0.99019934, 0.00980066, 0. , 0. , 0. ])" ] }, "execution_count": 46, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pca.explained_variance_ratio_" ] }, { "cell_type": "code", "execution_count": 47, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array([ 3.63497866, 0.03597779, 0. , 0. , 0. ])" ] }, "execution_count": 47, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pca.explained_variance_" ] }, { "cell_type": "code", "execution_count": 48, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array([[ 0.92154695, 0.38826694, 0. , 0. , 0. ],\n", " [-0.38826694, 0.92154695, 0. , 0. , 0. ],\n", " [ 0. , 0. , 0. , 0. , 1. ],\n", " [ 0. , 0. , 0. , 1. , 0. ],\n", " [ 0. , 0. , 1. , 0. , 0. ]])" ] }, "execution_count": 48, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pca.components_" ] }, { "cell_type": "code", "execution_count": 49, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style>\n", " .dataframe thead tr:only-child th {\n", " text-align: right;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: left;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>pc1</th>\n", " <th>pc2</th>\n", " <th>pc3</th>\n", " <th>pc4</th>\n", " <th>pc5</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>-2.561371</td>\n", " <td>-0.004526</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>-2.561371</td>\n", " <td>-0.004526</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>-2.653526</td>\n", " <td>0.034301</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>-2.469217</td>\n", " <td>-0.043353</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>-2.561371</td>\n", " <td>-0.004526</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " pc1 pc2 pc3 pc4 pc5\n", "0 -2.561371 -0.004526 0.0 0.0 0.0\n", "1 -2.561371 -0.004526 0.0 0.0 0.0\n", "2 -2.653526 0.034301 0.0 0.0 0.0\n", "3 -2.469217 -0.043353 0.0 0.0 0.0\n", "4 -2.561371 -0.004526 0.0 0.0 0.0" ] }, "execution_count": 49, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pd.DataFrame(pca.transform(petal_df.values), columns=['pc1', 'pc2', 'pc3', 'pc4', 'pc5']).head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "As you might expect, the features which have no variance are not useful in explaining the variance of the dataset, so PC1 and PC2 are unchanged." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Effect of including a features with different scales" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "What would happen if the dimensions we'd recorded had different scales? So let's say we recorded petal width in meters and petal length in milimeters." ] }, { "cell_type": "code", "execution_count": 50, "metadata": { "collapsed": true }, "outputs": [], "source": [ "petal_data = demeaned_df[['petal length (cm)', 'petal width (cm)']].copy()" ] }, { "cell_type": "code", "execution_count": 51, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style>\n", " .dataframe thead tr:only-child th {\n", " text-align: right;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: left;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>petal length (cm)</th>\n", " <th>petal width (cm)</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>-2.358667</td>\n", " <td>-0.998667</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>-2.358667</td>\n", " <td>-0.998667</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>-2.458667</td>\n", " <td>-0.998667</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>-2.258667</td>\n", " <td>-0.998667</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>-2.358667</td>\n", " <td>-0.998667</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " petal length (cm) petal width (cm)\n", "0 -2.358667 -0.998667\n", "1 -2.358667 -0.998667\n", "2 -2.458667 -0.998667\n", "3 -2.258667 -0.998667\n", "4 -2.358667 -0.998667" ] }, "execution_count": 51, "metadata": {}, "output_type": "execute_result" } ], "source": [ "petal_data.head()" ] }, { "cell_type": "code", "execution_count": 52, "metadata": { "collapsed": true }, "outputs": [], "source": [ "petal_data['petal length (mm)'] = petal_data['petal length (cm)'] * 10\n", "petal_data['petal width (m)'] = petal_data['petal width (cm)'] /100\n", "del petal_data['petal length (cm)']\n", "del petal_data['petal width (cm)']" ] }, { "cell_type": "code", "execution_count": 53, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style>\n", " .dataframe thead tr:only-child th {\n", " text-align: right;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: left;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>petal length (mm)</th>\n", " <th>petal width (m)</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>-23.586667</td>\n", " <td>-0.009987</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>-23.586667</td>\n", " <td>-0.009987</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>-24.586667</td>\n", " <td>-0.009987</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>-22.586667</td>\n", " <td>-0.009987</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>-23.586667</td>\n", " <td>-0.009987</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " petal length (mm) petal width (m)\n", "0 -23.586667 -0.009987\n", "1 -23.586667 -0.009987\n", "2 -24.586667 -0.009987\n", "3 -22.586667 -0.009987\n", "4 -23.586667 -0.009987" ] }, "execution_count": 53, "metadata": {}, "output_type": "execute_result" } ], "source": [ "petal_data.head()" ] }, { "cell_type": "code", "execution_count": 54, "metadata": { "collapsed": true }, "outputs": [], "source": [ "pca = PCA().fit(petal_data)" ] }, { "cell_type": "code", "execution_count": 55, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array([ 3.09242543e+02, 4.22899390e-06])" ] }, "execution_count": 55, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pca.explained_variance_" ] }, { "cell_type": "code", "execution_count": 56, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array([ 9.99999986e-01, 1.36753301e-08])" ] }, "execution_count": 56, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pca.explained_variance_ratio_" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "So, perhaps unsurprisingly as PCA 'works' by explaining the variance in the data, the enormously different scales of the inputs means that one feature dominates the other. This is perhaps something to bear in mind when working with cross-sectional data where features use very different scales." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Data pre-conditioning by z-scoring" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "So what can we do about it? One option is to z-score." ] }, { "cell_type": "code", "execution_count": 57, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style>\n", " .dataframe thead tr:only-child th {\n", " text-align: right;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: left;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>petal length</th>\n", " <th>petal width</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>-1.336794</td>\n", " <td>-1.308593</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>-1.336794</td>\n", " <td>-1.308593</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>-1.393470</td>\n", " <td>-1.308593</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>-1.280118</td>\n", " <td>-1.308593</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>-1.336794</td>\n", " <td>-1.308593</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " petal length petal width\n", "0 -1.336794 -1.308593\n", "1 -1.336794 -1.308593\n", "2 -1.393470 -1.308593\n", "3 -1.280118 -1.308593\n", "4 -1.336794 -1.308593" ] }, "execution_count": 57, "metadata": {}, "output_type": "execute_result" } ], "source": [ "def zscore(series):\n", " return (series - series.mean()) / series.std()\n", "\n", "petal_data_std = petal_data.apply(zscore)\n", "petal_data_std.columns = ['petal length', 'petal width']\n", "petal_data_std.head()" ] }, { "cell_type": "code", "execution_count": 58, "metadata": { "collapsed": true }, "outputs": [], "source": [ "pca = PCA().fit(petal_data_std)" ] }, { "cell_type": "code", "execution_count": 59, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array([ 1.94967205, 0.03699462])" ] }, "execution_count": 59, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pca.explained_variance_" ] }, { "cell_type": "code", "execution_count": 60, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array([ 0.98137855, 0.01862145])" ] }, "execution_count": 60, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pca.explained_variance_ratio_" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "There are many ways of normalising data; z-scoring is just one. So should features *always* be scaled before fitting a PCA model? That's a matter of some debate; a valid counter argument is that it can artificially 'inflate' the contribution of an otherwise relatively unimportant feature. In any event, it makes sense to be explicit about what preconditioning (if any) you've decided to use and why." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "A corrollary of z-scoring is that it makes the covariance matrix and correlation matrix equal." ] }, { "cell_type": "code", "execution_count": 61, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array([[ 1. , 0.9627571],\n", " [ 0.9627571, 1. ]])" ] }, "execution_count": 61, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.cov(petal_data_std.T)" ] }, { "cell_type": "code", "execution_count": 62, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array([[ 1. , 0.9627571],\n", " [ 0.9627571, 1. ]])" ] }, "execution_count": 62, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.corrcoef(petal_data_std.T)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This should come as no great suprise as the act of z-scoring is to rescale by feature standard deviation and by definition:" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$ cor(X, Y) = \\frac{cov(X, Y)}{\\sigma_X \\sigma_Y}$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We've hithero chosen to decompose the data's covariance matrix but it may be valid to instead decompose the correlation matrix (e.g. where data scaling is a significant factor). In the event that input features are preconditioned using z-scoring then it makes no difference." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Effect of including a feature which is perfectly correlated with some other feature" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "What happens if we introduce a feature which is perfectly correlated with some other feature?" ] }, { "cell_type": "code", "execution_count": 63, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style>\n", " .dataframe thead tr:only-child th {\n", " text-align: right;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: left;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>petal length (cm)</th>\n", " <th>petal width (cm)</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>-2.358667</td>\n", " <td>-0.998667</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>-2.358667</td>\n", " <td>-0.998667</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>-2.458667</td>\n", " <td>-0.998667</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>-2.258667</td>\n", " <td>-0.998667</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>-2.358667</td>\n", " <td>-0.998667</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " petal length (cm) petal width (cm)\n", "0 -2.358667 -0.998667\n", "1 -2.358667 -0.998667\n", "2 -2.458667 -0.998667\n", "3 -2.258667 -0.998667\n", "4 -2.358667 -0.998667" ] }, "execution_count": 63, "metadata": {}, "output_type": "execute_result" } ], "source": [ "petal_df = petal_df[['petal length (cm)', 'petal width (cm)']].copy()\n", "petal_df.head()" ] }, { "cell_type": "code", "execution_count": 64, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style>\n", " .dataframe thead tr:only-child th {\n", " text-align: right;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: left;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>petal length (cm)</th>\n", " <th>petal width (cm)</th>\n", " <th>length_times_factor</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>-2.358667</td>\n", " <td>-0.998667</td>\n", " <td>-1.886933</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>-2.358667</td>\n", " <td>-0.998667</td>\n", " <td>-1.886933</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>-2.458667</td>\n", " <td>-0.998667</td>\n", " <td>-1.966933</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>-2.258667</td>\n", " <td>-0.998667</td>\n", " <td>-1.806933</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>-2.358667</td>\n", " <td>-0.998667</td>\n", " <td>-1.886933</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " petal length (cm) petal width (cm) length_times_factor\n", "0 -2.358667 -0.998667 -1.886933\n", "1 -2.358667 -0.998667 -1.886933\n", "2 -2.458667 -0.998667 -1.966933\n", "3 -2.258667 -0.998667 -1.806933\n", "4 -2.358667 -0.998667 -1.886933" ] }, "execution_count": 64, "metadata": {}, "output_type": "execute_result" } ], "source": [ "petal_df['length_times_factor'] = petal_df['petal length (cm)'] * 0.8\n", "petal_df.head()" ] }, { "cell_type": "code", "execution_count": 65, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style>\n", " .dataframe thead tr:only-child th {\n", " text-align: right;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: left;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>petal length (cm)</th>\n", " <th>petal width (cm)</th>\n", " <th>length_times_factor</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>petal length (cm)</th>\n", " <td>1.000000</td>\n", " <td>0.962757</td>\n", " <td>1.000000</td>\n", " </tr>\n", " <tr>\n", " <th>petal width (cm)</th>\n", " <td>0.962757</td>\n", " <td>1.000000</td>\n", " <td>0.962757</td>\n", " </tr>\n", " <tr>\n", " <th>length_times_factor</th>\n", " <td>1.000000</td>\n", " <td>0.962757</td>\n", " <td>1.000000</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " petal length (cm) petal width (cm) length_times_factor\n", "petal length (cm) 1.000000 0.962757 1.000000\n", "petal width (cm) 0.962757 1.000000 0.962757\n", "length_times_factor 1.000000 0.962757 1.000000" ] }, "execution_count": 65, "metadata": {}, "output_type": "execute_result" } ], "source": [ "petal_df.corr()" ] }, { "cell_type": "code", "execution_count": 66, "metadata": { "collapsed": true }, "outputs": [], "source": [ "pca = PCA().fit(petal_df.values)" ] }, { "cell_type": "code", "execution_count": 67, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array([ 9.93235835e-01, 6.76416520e-03, 7.80531918e-33])" ] }, "execution_count": 67, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pca.explained_variance_ratio_" ] }, { "cell_type": "code", "execution_count": 68, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array([ 5.61189011e+00, 3.82182664e-02, 4.41008993e-32])" ] }, "execution_count": 68, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pca.explained_variance_" ] }, { "cell_type": "code", "execution_count": 69, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array([[ 7.42055371e-01, 3.11352335e-01, 5.93644296e-01],\n", " [ -2.43125327e-01, 9.50294546e-01, -1.94500262e-01],\n", " [ 6.24695048e-01, -1.11022302e-16, -7.80868809e-01]])" ] }, "execution_count": 69, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pca.components_" ] }, { "cell_type": "code", "execution_count": 70, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style>\n", " .dataframe thead tr:only-child th {\n", " text-align: right;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: left;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>pc1</th>\n", " <th>pc2</th>\n", " <th>pc3</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>-3.181366</td>\n", " <td>-0.008567</td>\n", " <td>0.0</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>-3.181366</td>\n", " <td>-0.008567</td>\n", " <td>0.0</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>-3.303063</td>\n", " <td>0.031306</td>\n", " <td>0.0</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>-3.059669</td>\n", " <td>-0.048439</td>\n", " <td>0.0</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>-3.181366</td>\n", " <td>-0.008567</td>\n", " <td>0.0</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " pc1 pc2 pc3\n", "0 -3.181366 -0.008567 0.0\n", "1 -3.181366 -0.008567 0.0\n", "2 -3.303063 0.031306 0.0\n", "3 -3.059669 -0.048439 0.0\n", "4 -3.181366 -0.008567 0.0" ] }, "execution_count": 70, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df = pd.DataFrame(pca.transform(petal_df.values), columns=['pc1', 'pc2', 'pc3']).head()\n", "df" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "So what's happening here is that we end up with a third principal component which is not useful at all in explaining variance. \n", "\n", "Indeed, the linear combination of features is zero (i.e. all the scores are zero). Here's ehat happens when we apply the factors to the first data point." ] }, { "cell_type": "code", "execution_count": 71, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array([ 6.24695048e-01, -1.11022302e-16, -7.80868809e-01])" ] }, "execution_count": 71, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pca.components_[-1]" ] }, { "cell_type": "code", "execution_count": 72, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "-2.2204460492503131e-16" ] }, "execution_count": 72, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sum(pca.components_[-1] * petal_df.values[0])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "And note that if we sum pc3, it's approximately zero." ] }, { "cell_type": "code", "execution_count": 73, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "0.0" ] }, "execution_count": 73, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.pc3.sum()" ] } ], "metadata": { "kernelspec": { "display_name": "Python [default]", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.2" } }, "nbformat": 4, "nbformat_minor": 2 }
mit
hunterherrin/phys202-2015-work
assignments/assignment04/TheoryAndPracticeEx01.ipynb
1
128737
{ "cells": [ { "cell_type": "markdown", "metadata": { "nbgrader": {} }, "source": [ "# Theory and Practice of Visualization Exercise 1" ] }, { "cell_type": "markdown", "metadata": { "nbgrader": {} }, "source": [ "## Imports" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true, "nbgrader": {} }, "outputs": [], "source": [ "from IPython.display import Image" ] }, { "cell_type": "markdown", "metadata": { "nbgrader": {} }, "source": [ "## Graphical excellence and integrity" ] }, { "cell_type": "markdown", "metadata": { "nbgrader": {} }, "source": [ "Find a data-focused visualization on one of the following websites that is a *positive* example of the principles that Tufte describes in *The Visual Display of Quantitative Information*.\n", "\n", "* [Vox](http://www.vox.com/)\n", "* [Upshot](http://www.nytimes.com/upshot/)\n", "* [538](http://fivethirtyeight.com/)\n", "* [BuzzFeed](http://www.buzzfeed.com/)\n", "\n", "Upload the image for the visualization to this directory and display the image inline in this notebook." ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false, "deletable": false, "nbgrader": { "checksum": "9c86bcce96065a2133bab497403e3291", "grade": true, "grade_id": "theorypracticeex01a", "points": 2 } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAGRCAYAAAC5ac09AAAAAXNSR0IArs4c6QAAAAZiS0dEAP8A\n/wD/oL2nkwAAAAlwSFlzAAAWJQAAFiUBSVIk8AAAgABJREFUeNrs/Xl8XFd234t+9xlqBKowjyRB\ngiQ4z5REtQZKaqul1tSD7Xan7badl9hx8snLvcm9Tj7vPr+kk9tO4vheT7EdO91t33ZraHWLGlsT\nKUoiKYrzPAIkQADEPI9VqKpzzn5/VJ3DqkKBBEiAhMjz46c+PFU4wz57r7332mut/VtCSilx4cKF\nCxcuXLhwMWtQ3Cpw4cKFCxcuXLiYXbgKlgsXLly4cOHCxSxDc6vAhQsXLlzYkFJiWZbzXVVV57ui\nKFiWhaIoSCmRUqIoyXW6ZVnYESfpf0//LoRACJFxD8uyUFXVOVcIMakMdjns59jPvN41iqJkPMuy\nrEnPz35fIYRzrn3v7Pe3f7ffPT3KJv08IYQrTPc4hBuD5cKFCxcurgdbOUr/DsxYich1n9upiEyn\n3Nnn2GW82Xd2ce9C/d73vve9ueiAN9N5pnv+XHXK293Z7yRm413nS33NZjnu1DtNp/+kf7/eYD/f\n5Th9wvqit9vdOCacO3eODz/8kEuXLnHq1CmWL1/OxYsX6ezspKKigk8++YSamhp6e3s5duwYixcv\nBuDTTz9lz549NDQ0sHDhQk6ePMnHH3/M8ePH8fv9XLhwgby8PDRN4+LFi5SVldHS0sKpU6dYvHgx\nly5dYmxsjIKCAs6ePeuU4cyZM7S2tlJTU4Oqqnz22WcUFBTg9XppaWnBNE0CgQD9/f28/fbbXLx4\nkSNHjhAOh/F4POzfv58lS5Zw5MgRpJSEw2E+//xziouL0XWd1tZW3n77bU6ePImu65SVlXHmzBne\neOMN+vr6WL58Ofv372dsbIyysjIuXbqEaZpcuHCBqqoq2traGB8fRwjBSy+9xJkzZygvLycvL8+V\ny3scsxaDlUuIZipY0z1/rgT2XuoIs/Gu86W+ZrMcd+qdptN/slfUU5V1vsuxXb67od3uRhQUFGAY\nBu+//z6LFy9GCMEPfvAD/vqv/xqAAwcO8NJLL/Hqq6/S29vryORf/dVfUVVVxdjYGD/4wQ948cUX\nycvLY8uWLei6zh//8R/zN3/zN0QiEX7xi18A8Pbbb/P9738fSCpoR48eBSAcDmMYBu+++y5r1qzh\n4MGDvPvuu5w5c4aPPvqIUCgEwPHjx2lpaQFA0zQqKirYsWMHiqJQXl7Oe++9xx/8wR8wPDxMNBrl\nj//4j/noo4/49NNPCQQCAHzyyScMDAywceNG/vzP/5yjR4/y13/912zatIndu3ezc+dO3nnnHf73\n//1/xzAM9u7dy6VLl3jllVcAOHnyJBcvXuRv//ZvKSgoID8/n3379jn14uLexaxZsEZGRjBNE13X\nATAMg9HRUTwej+PzzvaXpwufEILx8XESiQQejyfn+QCJRIJ4PO48xxZi+2MPtPb1U5l506+zMT4+\njsfjmXS/XPfPfm6uc9M7WK4Ve/Y513tm9rnZ907HVHWXfu7ExASGYaBp2nXbJlfb2RgeHkbX9ZzX\nTDW4pL+THRNxvWflenZ6nViWRSQSQdO0nO2ffZ/rldE0TSKRCLquT3mv9HrMVWe53itX26aXSwhB\nJBLJiP8wDIOJiQk8Hk9GfSuKgqZpdHV1YVkWXq930jtEo1GnPnLV41TvkKufpJcxV5/KltfryaN9\nj7GxMVRVdeo6W5ankoup5AMgEomgKIoTV+Ni5rDrPBQKEQ6H6e7u5tvf/jb19fWYpkl+fj7l5eW8\n8MILfP/736eiooLf+Z3fceKZPvjgAx588EF6e3uJRqMYhsHw8DDl5eUsW7aMsbExhoaGiEajBINB\namtrOXfuHCtXrkTXdSYmJtA0jZUrVxIOhwmHw/T29vKNb3yDzZs386Mf/YgjR47wr//1vyY/Px+A\n5uZmCgsLKS8vx+PxsGTJEs6cOcO3vvUtioqKeOONN9i+fTsdHR189atf5dSpU/zsZz/jT/7kTxzZ\na2hooLW1leHhYTRNQ9d1KisreeaZZygrK2P37t2sXLmS4uJizp8/T3l5Ofn5+TQ3N/PEE09w5coV\n/H4/sViMI0eOsG7dOp5++mk3DsvF7FmwXnnlFV5++WXne1NTE3/6p39KT0+P03nTBS77O8Dp06c5\nffr0tcKl/p4+oF69epXdu3c7A3f6vbIDL9MDENOfa3/sc2zl7u2338YwjEn3S/+ePSDZv+c6N9c7\nZ1+ffk72M7Lva58zVf3ZE1X687Pf2a6zAwcOsH///kl1neve2feD5ES+a9cuhoeHJ72HXQ4hBKdP\nn6a+vn7SvezjbCUl/Vm53sW+79mzZ2lqasIwDF588UXi8XjG/bKvS2+n7HsdOnSIwcFB+vr6+OlP\nf5pRz9llSLccZR+nv9dUspZtfbL/37VrF62trc71vb29vPvuu04Z7HMGBwe5ePEiO3bscKwHQgiO\nHj1Kd3c3kUiEn/3sZ5P6z3TeIVc/SW+nXH0qW+5zTSjpvw8ODvLzn/+czs5OXnvtNRKJRMa16UHT\n1ytD9rjwwQcfcPHixYxxwcXNw17IApw7d47z589z8eJFPv/8cwDy8/NJJBIZMiOlZPfu3cTjcf7x\nP/7HTExM4PP5nEWClJJvfetb7NixA8MwaGlp4cSJEzQ3N/PRRx8BZCycE4kEhmEASYvWqlWrqKio\noKqqynl29qLBsizi8TiqqtLW1kZjYyMtLS1OuaWU+Hw+RkZGMsbMQCBAbW0tmqYxMDCQUQ5VVRkd\nHeVb3/oW9fX1nD17Fo/Hg2mazjkjIyP85m/+Js888wxvvfUW//W//ldXFl3M3i5CIQRtbW309PQ4\nPmxbACORCMePH0dRFNavX4+Uks7OTsda5fV6GRkZIRgMUlBQAEB9fT2dnZ3U1dWxYMECurq6aG5u\ndhS2dAwODnLu3Dl8Ph8bNmwgkUhw8uRJADZt2oRhGPT397N48WJaWlrw+/0YhkF3dzejo6OsXLmS\nUCjkdMyOjg4aGhooLCxkw4YNDA4Ocv78eTRNY8OGDfh8PqdTXblyhbGxMYLBIBs3bqS/v58LFy6g\n6zqrV6+ms7OT8vJywuEw9fX1VFdXk5eXh2maNDY2Eo1GiUQiLFy4kNbWVvLy8li/fj2jo6OcPXsW\nVVXZtGkTY2NjDA8PMzIyQk1NDX19fbS0tLB48WKWLl2aYVk4f/48fX19LF68mEWLFtHc3OwoIMuW\nLQOSCpI9OJ04cYKRkRFnAGtsbOTq1assXLiQpUuXOvEXtbW11NTUOBPesmXL8Pv9NDU1MTIywujo\nKMuWLaOyshIhBGNjYxw+fBifz8eCBQsYHByksbGRkpISli5dyoULF1izZg2RSISenh7q6uo4fvw4\no6OjrF+/nsLCQi5cuEBXVxeLFy9myZIlCCEYHR1l//79FBQU4PF4MAyDEydOALB+/Xr8fj8nT550\n2rasrIyGhgYikQiRSIR169YRCoUQQjAyMsLRo0cZGhqitraWiYkJjh07hmEYbNq0CY/Hw6lTpxgc\nHGT9+vWMjY2haRpVVVV0dHSgqirl5eUMDAzQ09PDypUruXLlCpWVlcTjcQYHBykoKODMmTN4vV42\nb97MwMAAkUiEmpoaGhsbqaqqctoiGo1y8uRJhoaGnEnExooVK5BSsm/fPoqKili0aBEAsViMY8eO\n0dHRwZo1a0gkEhw7dgzTNFm7di15eXmcPXuW3t5e6urqnIF/4cKF9PT0YJomlZWVTExMcPXqVZYv\nX05LSwt5eXkEAgHa29tZtGgRx48fx7IsNm/ejGEY9PT0MDw8TF1dHX19fVy+fHmSPMZiMc6cOcP4\n+Dhr165FURTi8TiWZZFIJJz+dunSJcfS0djYyIoVK2htbcXv9xMKhWhubmbRokWcOXOGWCzGhg0b\nCIVCNDQ0MDg46MiPi9mBZVnEYjFnfPjt3/5tOjs7eeedd2htbeWf/tN/yieffMLf/M3f8Hu/93vO\n+b/5m7/pyOXg4CCPP/44eXl5XL58maGhIdavX8+KFStoaGjANE2effZZVqxYwV/8xV84lttQKMTS\npUtRFIVIJOKUqbCwkGAwOGneST+2xx2fz8d7773H008/zZe//GX+5E/+hD/+4z+moqKCf/Nv/g1/\n+Id/yF/8xV84fU7XdRYvXsybb77JAw88wI4dO6itreX111/n4Ycf5uLFi4TDYb7xjW/wR3/0R/zu\n7/4uw8PD7NmzhwMHDvDcc8/xf//f/zcPPPAA999/v+PqdHFvY1ZchFJKLly4gKIo+Hw+gsEgJ06c\noLy8nIULF3Lw4EGEEAwMDNDS0kJ+fj4/+clPKC8vp6+vj/fee88JeDQMg3g8zr59+1i9ejU7d+6k\nuLiY9957j1AoxMjICKqqsnLlSkdR+Id/+AdKSkqor69ndHSUkydPYpomY2NjnDlzBo/Hw7Fjx1i3\nbh0ffvghiUSChoYGx9y7a9culi9fTnt7O6WlpbzzzjusXr2a06dPMzY2xp49ewgGg0QiEQzDoKys\nDIArV67w+uuvs2bNGvbt24fP5+PixYvouk57ezutra1cuXKFSCRCVVUVb731Fps3b0bTNEzT5O/+\n7u/QNI2hoSE+++wzFi9ezMcff0xVVRU7d+7E6/XS399PfX09uq7z05/+lOLiYgYHBzl16hSrV69m\n9+7dlJSUUFhYCCRjEg4ePMiSJUv48MMPqa2t5f333+fKlSvU1NRQXFwMQGNjI16vl87OTq5cucLC\nhQvZt28fUkp27drFypUrnUFxz549rFy5kjNnzlBXV4eqqpimyVtvvUVdXR1vvfUWkUgEKSUHDhzg\nvvvuQwhBPB6nvr6e/Px8SkpK2LlzJ0uWLOHTTz+lsLCQxsZGmpqaqK+vp7CwkPr6etrb2ykrK2Pv\n3r1IKTl8+DC1tbVOsK2maRiGwcWLF8nLy2PRokUcO3aM0tJSmpqaGBsbY3x8nPr6ekKhEB999BGr\nV6/mxRdfpKioiKamJjo7O1m1ahWQdGWfP3+e0tJSiouLOXr0KNXV1Zw5cwafz8fVq1e5cOECNTU1\nfPzxx4yOjtLU1MSaNWv42c9+RllZGSUlJfT29vL666+zdu1afvSjH1FdXU1nZyetra0cPXqUUChE\ne3s7bW1tjI2NOcrlm2++STAYZHx8nKKiIj766CMMw0BRFMbGxti4caOjrLz99tsUFxczNDQEwOrV\nq50t5OfOnaOgoICKigpOnDhBSUkJly9fpq+vz1HAVq9ezSeffML4+Djnz59nw4YNvPXWWwSDQSoq\nKkgkErzyyissW7aMl19+GU3TSCQS1NfXO9Yh0zQ5ffo0BQUFvPzyy5SUlDA8PMzBgwdZvXo1H3/8\ncYY8Hjp0iJaWFqct6urqaGxspLa2lqtXr1JVVcWOHTtYvHgxhw4dwrIsPv/8c6qrq/nFL37B+Pg4\nuq5z5swZmpqaiEQi+P1+jh07hhCCX/ziFyxbtozm5maWLl1KWVmZG1h8C7DrzePxUF1dTXl5OQUF\nBWzcuJGlS5cSDAaprq7m0Ucfpa6ujkQiwdKlSxFCUFJSwpIlS5ywkOLiYrq7u2lvb6e8vJz169dT\nUlLC+vXrWbBgAdXV1WzevJmqqipqamqorq5GCEFvby/FxcUsWrSIsrIyKisrAQgEAixYsIDi4mLH\nmnnu3DlCoRCVlZVOu5eVlVFdXe0saIqKipxF37PPPsuyZcsIBoMUFhbi9XopKCigr6+P1tZWnnzy\nSR5++GEWLFjA4cOH2bRpE8888wzBYJDy8nKWLFnCsmXLqKuro6amhuPHj7Nx40YefvhhSktLOXz4\nMF6vl3/yT/4Jfr9/khLo4t7CrFiwhBAYhsGGDRu4evUqExMTVFRUEI/HMQyDbdu2ceLECYaGhvD7\n/USjUerq6ti+fTufffYZdXV1PProo+zcuRNVVbly5QqapjEyMoLX62X//v2Ew2GeeOIJmpqaOHv2\nrPPczs5ONE1j+/btbN++nb6+Pn7yk5/wz//5P8fj8fDKK6841jEAn8+Hruvous6WLVvYtm0bzc3N\ndHZ24vf7uXTpkhM/pqoqnZ2dFBQU0NjYyJYtW1i+fHmGYllbW8vmzZudSfPpp5/m0KFDjI6OkpeX\nx9atWzl06BB+v5+qqiq8Xi+QXCGWlZXx7LPP0traiq7rbNu2jatXr9LY2Eg8Hufxxx9nYmKCHTt2\nOJaCJ598kldffRXTNBkZGUHXdcc6B3DmzBkeeOABNm7cSFtbG2fOnKGoqIjHH3+cwsJCJ17CtiQ0\nNTURDAYZGxtzrAq6rtPY2MiDDz7otOHVq1fZtm2bYzoXQjjxV4FAgIceeoiysjIniDUYDJKXl0dF\nRQUFBQVUV1fzwAMPcPXqVSdu6pvf/Cb/8T/+R5YuXcr69ev5wQ9+QGlpKRMTE0SjUSdOrK2tjS99\n6Ut4vV4syyIYDFJZWUl5eTklJSV4vV6eeOIJLl++zPnz53nssccYHBx0rKTDw8MsXLiQJ554gqNH\nj1JfX+8oC8FgkLKyMurq6vB4PITDYR5++GFUVWVoaIiuri4nXsiW63PnznHq1CmEEI5VadGiRVRW\nVnL06FEKCwsdOSouLkZRFB577DG6u7t599138fl8ToCtz+dDVVVHKR8fH+c73/kOIyMj7Ny5M2OA\nVhSFoqIiiouL8Xq96LqOYRh4PB5KS0tZvnw5xcXF5OXl8fjjj3P8+HEaGhqor69HURSGhoYwDIPS\n0lI6Oztpbm5GSuksVvx+PwsWLODYsWMUFBTQ39/P0NAQZWVlHDp0iPXr15NIJIhEIoyOjrJmzRqe\neOIJXnnlFaSUjI2NTZLHDRs2YFkWHR0dJBIJJiYmHPeex+PhwoULFBUVcf/992OaJk1NTSxfvpxT\np04RCAQYHh7mwoULVFRUcPz4cerq6piYmMCyLE6cOMHatWvZsmULLS0tkyx+Lm4e4XCYDRs2ALB1\n61bHwvroo486Y195eTkVFRXONdu3b8+4x6OPPuqcn47CwkKKioqc+0gpWbt2LQD3339/xrmbNm1y\njpcuXeoc25xYq1atcgLe7X6ydetWANauXevcf/Xq1axevdr5nl6uxYsXO/Jql2nDhg3O+9vf7eMH\nHnjAub9dboDly5dnzA/pZXJxb2LWYrDi8TgLFixgYmKCI0eO8OCDDzoT9ltvvUVJSQnbt293OkZ6\nALH9m92JLcuipKSEdevW8fDDD7NixQrGx8edv6VDVVXHlD02NsbVq1cBHEuYHUdg/28PwpZlOS7M\niYkJVFV1YpTy8vJYu3Yt9913H5s3b+aRRx7h8ccf5/z587z//vsZHdG+hx2U/Oabb1JZWcn27dsx\nDMOZvOzVUDrsIO10dx3gWGnseIL0uDBIKgZFRUWsX7+ehx56yDHJ2/WR/s7pCtGkxk8FVFdXV7Nx\n40a+9KUvsWTJEp566ikWLVrEq6++SjQa5Zd/+ZcpLi7m1Vdfpa+vL6Otst8jO6bHVtg6Ojr4xS9+\nwQMPPMDatWsRQjA4OEg4HCYWiznvuGDBAjZs2MAjjzzCsmXL+PKXv0xJSQkvvfQSbW1tTh3Y72g/\nyzRNLMtC13Vef/11hoaGePLJJwkEApMCzrNj6ew4oOx6si11FRUVbNiwgYceeoh169ZRVlbGrl27\nMtyt9mD/+eef88gjj9Dc3Mzw8DBLly514j0SiYQzwGfLI+AE19uuklzxG/b12X+z3z/9HaSUzjuU\nlpayYcMGHn74YdasWUNNTQ1vvfUW5eXleL3ejHc4cOAAW7duZWJigo6ODmpra4nH4yxbtowtW7bw\n6KOPomnX1maWZREOh1m3bt0keXzjjTcYGhriK1/5iqNUptexbSWz+6GiKNTV1fH555+zatUq/H4/\nDQ0NLFu2jImJCWpqati0aRMPPfQQfr+fiYmJjDZwMTtIl7Fsgk77e/Z4nC2T9phgy2b2udmbFdLP\nzyXnuTZSrFixwrFwZZcpvT9kj0/Z900vZ/r59jXZ90p/P/t7+n3c3YMuYBYVrEQiQSgUYtGiRYRC\nIYqLi52dUbqu09zczIEDB4hEIpim6QQvSimdY0hOnBs2bODKlSvs2bOHffv2sWDBArxeLz/5yU/4\n+OOPMxSxqqoqioqKePnll/nJT36CaZps3LiR1157jRdffJHS0lJWrlxJS0sLO3bs4OLFi6iqiqZp\nHD9+nJdeegld11m4cCFDQ0Ns2LCBWCzGp59+yv79++np6WHXrl2O66+0tNQpq8fjobOzkzfeeIOz\nZ8/ywAMPIKWkpaWFgwcPEo1GAVi4cKGjyKTD7rz2MSTjacrKyliyZAk//elPef311x2Ttj0pP/TQ\nQ3R0dDhltBVM+29HjhzhzTffpK+vj02bNjntkD34KYrCQw89xMmTJ9mzZw8nT56kvb2dnTt3Mjw8\n7Li+PvzwQ8bHxyksLMwwe9uDpF12IUTGOwGEQiE+//xz2tvb8Xq9HDt2jAsXLjA4OMiOHTv45je/\nSXFxMR9++CGbNm3i6NGjfPrpp5w7d44rV67w6aefOtw4eXl5zn3D4TD79+/nypUrGUHUpmni8/no\n7+/ns88+Y3R0lFgs5pQxvbw2fD4fO3fudILG0yeArVu3cu7cOfbs2ePEVaxcuZJoNMrmzZuTnSil\nsFVWVqLrOmvWrCEQCFBQUEBVVRWFhYW88sorvPfee6xZs4bFixfT0NDAjh07uHr1Kl6vl2g0SmVl\nJdXV1fzwhz/kvffec5QHW97tcudSvAKBALt376alpSVDwUokEmzbto3Gxkb27dvH559/TiwWY926\ndXR2drJ69eqMyamqqgq/3+/smgqHw1RUVLBq1Sr27t3L3r17qa+vdxQ3SFoqent7+eSTTybJo23R\nstsifYKORCJs2rQJy7L4+c9/zoULF3jwwQeprKwkPz+f2tpaCgsLCYfDlJeXs3btWvbv389nn33G\niRMn2LJlC01NTbz++us0NTVlBCa7uDXk2rRhH2dvtEn/W8bkoiioqoqqqjmvy97EkH5+9qYe+7pc\nm3qylZn0cqff317IZ5dVCJFRzuyy56qD9HPS3yu9/C5czBqTe29vL4WFhcRiMeLxOIWFhfT19REO\nh0kkEly5coWSkhJUVXVWnsXFxYyOjpJIJCgqKnIG4HA4TE9PD93d3SxcuJCCggIikQitra3OJB8K\nhRyfeyKRcFxdCxYsQEpJU1MTkDT/2oG0kUiEUChEYWEhr732GgUFBaxatYrS0lKCwSB9fX2UlJQw\nNjZGc3MzBQUFLFiwgPHxcZqbm8nLy6OmpsZRTs6dO8f+/ft58skn8fl8VFZWMjw8zNWrVykrK3Mo\nED766CMWLlzIQw89lJEiwn5eLBYjGo1SWFhIf38/wWAQj8dDY2MjqqpSW1tLJBIhGo06MVT9/f10\ndHRQWVlJSUlJRlt0d3fT29tLTU0N+fn59PX1UVhYmDHAjI6OOluy29vbGRwcdM7v7u6mu7ubmpoa\nwuEw7e3tDAwMsHjxYmd7NEBfXx8FBQUMDQ0RCoXQNM15p3RLU3NzM5WVlUSjUQYGBqioqCAajSKE\noKKigomJCfr6+qiurqatrY2RkRFqa2vx+/20tbUxNDTklM1uc/u+paWlGIbh1GMsFiMUCnHp0iX8\nfj9+vx+fz0c8HqeoqIjx8XFisRhFRUXOvSKRCG1tbZSXlxOPxyktLWVsbAwpJfn5+U792IG3n3zy\nCRMTE3z961+fROcwNDREUVGREytoK8ZXrlzB5/M5mwTa2towDIP8/Hzy8vKYmJjA7/ejqiqXL18m\nPz/fUdLS6zsUChGNRlEUJaM+otEoV69epaSkBCmls8CJRCKUlJQ4bbpo0SLy8vL4/PPPaW5u5jd/\n8zcn9eWBgQGKiooct3EoFMKyLK5cuYJhGCxfvtxxFdqxVoODg7S1tTnymN5OV65cIRAIEAgEnBCB\n/Px8hoeHKS0tJRqN0tTU5Lh87TIUFhYSiUSc8cRevESjUWpra/F6vfT19TEwMODwD9kLABcuXLi4\n05iXqXJmmpbhegzXU/H87Nu3j/Lycurq6jLyUuW631RluXr1Kk1NTWzfvn3K5+zevZtIJMKzzz47\nI46eG5VhunVxo5XUje51vXq/lTbN9YzpMpXfCVm0/79w4QKnTp3i+eefJxgMzriO70QAdvY7tLa2\n8tlnn/HMM89QUFBwy+9wK201k/q402lWXLhw4WImmDUFaypSz6lIJ7MTZeYibnQKmUXkaP+Wfb/0\n36f6ns1DNFW50/mUct1vqmfnInPMVUfZz0u/fipy0Knqc6q6uN49s/+eq66maotc5b+eAnGj509V\nF/bvUzGX36iubvSsqe51I9maTj+YrjzmaqOp5PxGKWauJzPXk5fp9OWp3mE68pgev5L9runWvxv1\ny+nU4xcFtzrs3vE3FQKQX+Q3mKN2vfVqvRXZmGqcnek9XMxSN7ndFqz5lL/udgiTu8q+u3C3JHx1\nE9e6cOHCxdxiVmgapkpDk8vqEI/HGRsbw+Px4PP5nPQ6Np8PTA6WjEajeDweJ04lFos5ZJ+QubMj\n+9psC8j4+Dh+vz9j5ZxupUqfeKLRKD6fz9ltl31/O7WKHXydbfWyr5mYmMDr9RKJRJxt+fbz7d2H\ndmJQu46EEE7aHvv90pnq7efY5+q6PmUd2GUdHR3NeFev15vxnOx6yG6/qayA6c/NrsNcFsFYLIai\nKM6uufT75Zr4pzon/Tx7A0D6rsns505VtmxZyLa4ZL+/YRhOMH2usk31/jc6B5KbHGzahunKdK77\npfc3u17SrcbXs5qmy5uN9MD67P6QLpvZda8oCqZpkkgknLQ+93o6GzMRJx4dv2mXqub1oUgTy4in\nLEkzugFC86BqKjIxMfPrkzdBaAEEEqR1U9ejeq8d3yyElnG15NYsSEKAZVg3fQ9FFRgJ66YtSEIR\nKAJiUYObXfd4vBrRyMRNz+OarhHMd+MYZwu3rGDZg/Mnn3zCkiVLWLx48aTJOn0g2bFjh8OBc999\n93Hy5Em2bNnCwoULc06ypmny85//nMcff5wzZ87wpS99iR07dvCrv/qrTqD79Z6X7XbYvXs3X/7y\nlx1erOud++qrr/LMM89QXl6es2wjIyPs3r2bb3zjG5N2jqSX6Z133uHxxx/ns88+cwjp7ElpdHTU\nuYe96+XAgQNIKXn88ccz0pCkl9Ge4A4fPoymaWzbti3ZyXNMxjbJ66uvvupMuF6vl7q6OiKRCF/7\n2tcmnX+95MPZrpsb7fTJrrtPPvmE6upqFi1axPnz5x1Kj+s9N1c6F7imFB0+fBiPx8P999+fU0Ga\n6r3Sv+faNZVdl4qicPnyZc6ePcuv/uqvZpw/lVKaq/y5FEhFUdi9ezd5eXkOp9BU7Xm9+01VL1Mp\nYbnckbl2hE31PV02c/XBlpYWPvvss5wB9fcSLNNAUTXOfPQqb/7hPyVQUIJlGtO+XlFVxgd7eeg3\n/i3liSauHnwDT14hcprpWISikBgfonTL11ixcQ1D+/4cJVgC1gwoLhQVKzpE8Vf/C3myC2uoJaUs\nTVOpEAokxhGrfwM8AYgOgKLOdNJBqB7Msm0YlkBKC13XGBiMMTAURVPFjJUkKSVFBQFOH2sjGkmg\nKNPXcIQAw7CoW1XGrndOMjQYQdOUaZdBCIjHTSoWFLCgOMzf/Z+7CYa9WKacUfk9Hg9f/2fr+W//\n23/HNGamOyuKwvhohC2PruV/7vpD1/MyS7glBctuBDvdiL1DzGZQX7RoUUbajHPnztHc3Mxzzz2H\nqqqEQiFnKzoklQXASVFiw17VL126FFVVHb6czs5ORkZGqKur48iRI056E9uyYHMtnT59mqqqKpYv\nX+6Q1bW0tBCLxejt7WXz5s34/X4uXrzI4OAgRUVFDtu6ne7j8OHD5Ofns2HDBkfwvF4vy5cvJx6P\n097eTiQSIRaLsWnTJjRN49y5c4yPjzs70latWkV/fz+JRIKqqioGBgbo6Ohw2NF7enq4cuUK7e3t\nVFdXMzg4SDwep7y8nIaGBpYsWeKkUgmFQmzcuNHhj4Ika7au62zYsGES/1VRURH/8l/+S3bv3o1h\nGDz11FM0NTWxf/9+zp49SyQScVjm7TRFGzZscHZv2aSuo6OjTlqSsrIyRkZGOHXqFAUFBaxbt46u\nri7Gxsbo6elh0aJFLFiwgL6+Ps6dO0c4HGbjxo1YlkU0GuXYsWPU19cTCAQoLS2lqqqK/v5+RkZG\nWLJkifPchoYGOjo6WL9+PQUFBbS3tzvKgs25ZKdfOnr0KAsWLKCiooLR0VFOnTpFKBRi/fr1dHd3\nMzY2Rn9/P+FwmBUrVtDY2MiiRYscMtW6ujqamppoaWlh3bp1GTviJiYmuHDhAu3t7Q5FQU9PD+fP\nn3dS+bS0tDA6Ouqk1gmHw3R1dXHhwgUWLlzosI7H4/GMeuzp6aG1tZXu7m7HIprdnnY57PpcuHCh\nw4geiUTo7++nurqampqaDCqT/v5+jh8/TjgcZunSpUQiEU6dOoXf72ft2rW0trayePFiBgcHicVi\nVFVVcfHiRZYuXYqu68RiMYfIc2JigqVLl3L27FkWLFhATU0Nly9fZunSpYyOjtLf309tbS0tLS00\nNTVx//33o6oq4+PjnD59OoO08V6FEZtgfDAO9M1QwdIYHzSIR8YwEsPEhmNg9SGnqSAJRSUxZmCM\nD2PFxzHG+1GTZpsZzMQqVmQQaUTBGkfGRxCqjxkpWPExMBOpTwzkDKchKVMhXBIpU5ZlKTEtiWFI\n55SZzmWWlCRiBvGYMXMFK2FhmhbRSILIWBxNn6GCFTOZiCaITxgM949jmhaWac2o/B6vQSyWYGBw\nGNOcWZSboiqMmeOMjIy5WtEsYlZs9ekJW9vb2/n5z39OIpHg3XffdRiv4Rq3kJ07rrOzE4/Hg6Io\nvPvuu3R1ddHV1cWbb76ZITg2eebhw4eJx+MOz9F7771HIBDg/fffp729nf7+ft54442U0Ca3iL/2\n2msYhsGxY8doa2vj9OnTjI6O8vrrr3P+/HnOnj3LgQMHOHPmDHv37kUIwcsvv0xfX5/jlvz5z39O\nNBqlvr6ejz/+2Cnb2NgYR44cYXx8nFdffZWWlhb279/PoUOHOHnyJDt37mRgYIDx8XEUReHIkSM0\nNjbyzjvvALBnzx7q6+s5c+YMvb29vPrqq05+N5/Px7Fjx2hoaACSiX77+/t5//33MQyDzz//nIMH\nDzpb+99++23a2toc9na7vq914mQb2O5YSPI/9fT00N7ezmeffcbJkyc5efIk+/btQ1EUduzYkcGh\ndfjwYXbv3s3AwAA7duxwrGKJRIITJ05w+vRpLly4wNtvv01fXx8///nPGRwc5IMPPgBg//79nDhx\nAr/f75BpappGR0cHr732GgBHjhyhpaXFKfPRo0f56KOPSCQSTv288cYb7Nq1KyNPmaqqtLe3093d\nzUsvvUR3dzc7duxgaGiIQ4cOsXfvXhobG3nttdcYHBzkrbfeoqWlhT179jA+Ps7g4CCffvopV65c\nYdeuXQgh+PTTTx0XrGVZvPTSS1y8eJHh4WEn08Abb7yBx+Nh165dXLp0ic8++4zDhw/T0dHBW2+9\nRU9PD++88w5+v59PP/2Uy5cvs3//fj7++GM6Ojqcunr55Zcd5dTv9/PBBx/Q0dFBe3s7x48fd+qj\nv7+fn/70p0xMTPCLX/yCq1evcvz4cT744AOnzu0sBHZ7X7p0ic7OTn7+85/T19fHm2++SXd3N8eP\nH+ejjz5i7969tLa2cvz4cXbu3Mng4KCj3EEyl+grr7xCQ0MDR44c4ac//SmDg4O88cYbdHd38+mn\nn5JIJGhra+PQoUNcunSJt99+m/HxcV5++WXGx8cZHh6mo6OD3bt3c/DgwUnyeS9BKAqqBqqmz/ij\naUlLFqqG0EBo+gw/JK9VVISqIlQNoeoz/iAUQAOhkyrI9D+KltQqbvWTrmAwO7dLT4Y+4w8CVb35\nj6IIhCLQdPWmP4oQ6EJDR0v+P5MPOppQ77XuOH8VLNvtU1xcTFFRERs3bqS7u5twOMxXvvIVHn74\nYUdBAKitrXVSMNjxP6qqMjIyQnNzMz6fD7/fT2dnp8Pcng5N05yYjh//+MfU1tZSWVnprMZ9Ph9D\nQ0MOwaeiKHi9Xnp7e1m9erWT1sFOU/P1r3+dr3zlK4yOjjI8PEw4HKa6upri4mJnld3V1UV/fz+B\nQMAhTE1/f5vrqrS0lOeff56HH36Y1tZWLl26xNNPP83TTz9NeXm5w8y9adMmAoEAFy9exDRN7rvv\nPlRV5cKFCxQUFPD888+zdetWTNPE4/E4jNlerxdN01i7dq1jWRseHnaUn0AgQH9/PyUlJU66hhvt\nNEskEpSVlfHUU0/xpS99ie7ubk6ePEkgEEDTNCYmJhgYGMhQYh555BFeeOEFwuEw77zzDuPj43i9\nXjweD11dXU4qiRdeeAGPx8PQ0BAbN250WOWHhoaQUuL3+1mzZg1lZWV89atfRQjB6dOnGRgYYN26\ndc4z6+vreeKJJ3jyyScJh8OcPn2a8vJyvv3tb7Ny5Upnkk4kEmzcuJFnn32WoqIidu7ciWVZPPfc\nczzzzDO0t7c71sWnnnrKsSDa7OKQJI61089Eo1G2bt3qWFLb2toYHR3l13/913nsscfw+/00NjYy\nMTGBx+NBVVUuXbpEIBDgscce49d+7deYmJjgvffec2RR13WuXr2Krus89NBDfOMb3yAQCHDw4EHK\ny8t5/vnnWb16NYlEgkAgwMDAAKWlpQ4ZqK2AFhcX89RTT3H//fdz4sQJVFXlvvvu44UXXsDv99Pf\n3++cH4/H2bJlC88++ywlJSWcPXuWsbExvv71r/PNb36T/v5+ysvLuXDhAqOjoxiGwcGDB6mtrc2Q\nm8LCQr7xjW+wadMmli5dyvPPP+/kIbTjBxVFwe/3c/jwYbZu3cpzzz3Hr/7qrzp56Z5++mk2bdrk\nZFu4d3HN8jLzT8o6I+W1oKMZfW7mmhwfACFTqs3NfO42rdkeX2+xWm9aLtLlQyK5iWtTculi9qDN\n1o3sGJr0YNdsP65twbL/Tw/g9ng8rF27lmAwSF1dnZOzz1YU0uNEbLb3y5cvs2bNGjweD6tWrSIc\nDrNs2TJnUlQUhaeeeoru7m4++ugjJ99grmD8oqIiDh06xIcffsjzzz/vuBnt7O5r164lHo9nsFTn\ngqIoaJqWc7usaZoEAgFqamp48803efDBBwmFQk5y32xW93SGe4Dh4WH279/P888/j67rDuFkLBbj\nkUceYdGiRRw4cIArV67w3e9+F8MwJrFbTxWDZDMQm6ZJbW0tGzZsoLKy0iE2tesq/Z0Mw3BSpCxZ\nsoRgMMjBgwedDQh+v5+enh5OnTrFN77xDYdQ035uIpFw3rWuro6PP/7YyadnxxDZcXjpZbAVoWyk\ns7WnpwxKv9YR/FQbxeNxR0mLx+OUlZXx/PPPc+XKFV588UV+67d+i4ULF2bIsq3gGobhJLEtLy8n\nGAyya9eujLq1c/+tX7/eYUm30y3ZCno2B1s8HudLX/oS5eXlHDp0iHPnzvE7v/M7jnylu/+yaUSu\nxyJts2VnM72vW7eOH//4x2zevJnq6mqOHj3K7/3e7+WsN/s+2XVo9+v0VCPp507FqH1vQqSsJmJG\ncS7J81PWFiGSk3oOa851bpB5zRTWoBvfw9YmBKkbzujd70qKBplZPTdTpSJVNelWsRlJlUiTK2Za\nhqQFzg27ml3MmoLl9XrZt28fDz30EKdOnWL37t1cuHCBxx57LOM80zSdnUdSSmKxmJMK4/PPPycU\nCjEwMMCv/dqvOdfY1p/0vE9PP/007733HgcPHmTlypUcOnSIwsJCenp6nGtHRkZ488032bBhA+Fw\nmHA4zMjIyKT0PKZp0tHR4bBjHz16FK/Xi2EYLFiwgIaGBvbv308ikcDn87Fw4cKMa+2JCq4pkUuX\nLmXXrl10dHTQ1tbmxHQZhsH69ev54IMPnDyF0WiUVatWceLECXbu3El9fT2bNm2isLCQvXv3MjIy\n4qRxMU2T5uZmzp49y5IlS5wdbW+//TahUIi8vDxCoRCHDh2ipaWFb33rWxkTpJ0rCzLTxtjtsnHj\nRg4ePIhlWdTX1/PNb37TYcdWFIVDhw7R2trK2NgYv/Irv8Irr7zCoUOHGBgYYPny5RkpVAzDIJFI\nYFkWjY2NHD9+nBUrVjjPCwaDNDY2OmSthw4dctIJ2WW2U7TY8V+PPfYYH3300aTBR1VVTp48SSKR\nYHx8nK997Wu8++67jvt4zZo1zo5NuJYj0e/38+677zoK1MWLFzl27BirVq2isLDQsXAtXLiQQCDg\nuER1Xefhhx/m4MGDHD58mKamJjZv3oyiKHz++eecOHGCQCDAk08+yc9//nOOHz9OU1MTGzduzNil\nNz4+zgMPPMDrr7/Ohx9+yIULF9i0aRPvv/8+Pp/PYXS3cf/99/PSSy+xc+dOLl68yK/8yq9w6NCh\njB2O6e2dngNufHychQsX0t3dzZtvvsnQ0BDl5eUsWLAARVEoLS0lPz+fc+fOUVpamqFU2vKdLjPx\neNzpJ++++y69vb0UFxezdetWPvjgA8bGxuju7mbDhg0ZcnavugadNjFNEjFIxGIzjMEyicfANAyk\nkcCKgxWPzygGy4qDNBJIM4FMmMhEbMYxWMlrTJAGWPGUu3AGMVhmIrn7MP0zE6Rb0ezbOj9bSKnc\nVAxWsr+AZc3sYiGS10gpSRgW8YQ1ox2NQkAiYWEYFpYpiafiwGYagwUKpmURk3FMUgbG6TarVIgR\nIy4NXMweZo0Ha3R0lJaWFmprazEMg0uXLlFRUZGRf880Tfr6+igvL2dwcBCfz+dQFAghqK+vd5ST\n9JQXdoqQ0dFRwuEwAwMDFBcXYxgG/f39lJWV0dDQgGEYLFu2jEAg4EwO/f39XLlyxcnz1t/fTygU\nYmRkhOLiYmKxGBMTE7z88sssXbqUNWvWsGPHDjZt2sSmTZucCeTSpUt4PB6WLVvmuO0Mw2BoaIhw\nOMzg4CBlZWWMj487aYCampqcFC1FRUUMDQ1RUFDgBLTbk5jtCurr66O9vZ2SkhLC4TB5eXk0NDSg\nKAqhUIiSkhL6+vro6Ohw0vuk5/lqaGjA6/WyYsUKJwdfeu5Eu53sFDnxeJyRkRFKSkoYHx93LFIt\nLS309fU5ueBsZeDNN98kPz+fhQsXUl5eTjgcZnR0lMbGRoLBIMuXL2d4eBhVVcnLy6Onp8dJmdTT\n00N5eblDkWGnkbl06RKKopBIJNi/fz+//uu/nkHBAXD16lV6enpYtmwZoVCI/v5+iouLM5SsSCTC\nwMCAk9InFAoRiURoaGggLy+PZcuWOcp1OBymv7+fvLw8LMvi8uXLhMNhgsEgxcXFXLlyxVEY01My\nRSIRmpqayMvLo6CggIKCAke+ysrKWLRoEf/wD//A4sWLHcUlGAw655SWllJTU0NfX5+TOqa3t5fS\n0lIGBwe5evUqxcXFFBYWoigKFy9exO/3s2zZMlRVdcoxPDxMY2MjlZWVVFZWMjAwgMfjceq8oKDA\nseKOjo4CkJ+f77SHlNK5t53+Z2BgwInns2XChmEY9PX1UVFRwfj4OKZpEgqFnFRJdpL1wsJCgsEg\nhYWFdHV10dnZybJly/D5fE7/GB0dxTTNjBRA9wykBCEYH+xloO0yiqbPLBpbCCwjQX5pNbqcID46\ngFA0pu9yE0jLQM8rwhcMYIx0IBSdmbnskkHxWmENKgkwYjdBFWFBoNTmReCmLFpCIPX8a95KITAM\niWFYN22F0TSFyFhsxgqW3bT+gM7QwPhNlUFKie7R8OgaPVeHUTQxY0+qEIKiigDtzZ0z98KmKCry\nwgGWrq659/rmHGHOiUanu93zVraFzsYzmpubOX36NKZpUllZydatW9E07QtJyDjbdWn/dvToUSoq\nKpx8j7daL/Z9u7u7+eCDD3jooYdYtmzZrKSWuR1pVXJxSe3du5eVK1dSVlY2JafXVPX7RZCP+XB/\nFy5cuPgiYFZT5QA3TMuRnSYjezLNRUR4o2umIqhML1d62aaT3iX79+vd/0Zlyn52rntPlWbnemlr\nssszVdqhG7XbTNOq3CilUa66nk6ZbyRbueox+7zrEZJOt2w3Ilq90bk3SjU03TqfihtsOu81nbZO\nf9Z00x1NJfvTkds7mY9xXkFKpLwFN6lIi6i+uRuk6v8WWTlvldXzljH7MnRLrwTI9DqVN1PEW0t1\nIwRI69Ze4l4nAp5NzMtkz3cC2YHv0xWymSSivhvqaC7e5YuaT+5ub28X8xvpCnguZv25fK6N9MwA\nU5EBz2Vfm4o89060xfXq5HZkMLhZeXDHrLnDrFuw0jvXdJPDpl83ncSu11vR57rf9e5/o2TGU91n\nKiGdykoyVQLg6ylm13uPqep8uu1xvXLmus9MrHTTKfd02nCqds+VmiV7kJmuLEz1/XrlmI6cTPV+\n2UnOs++fnZVgOn3qenLp4u7EjSzqd7Jcd+L581lJuB1lm4k85EohZpqmE1sM1xRGe0e2vUs4PQ1c\nLk+BjanSy91rmNU3nyr3Wvrfs89Np18YGhritddec3Ys5UpPc71UKtmfXNe89957tLe3TxLAXHnd\nPvvsM86fPz/pvHSB7urq4rPPPsupoIyMjPDpp5/mfP+uri7efffdjHtNVaZc9ZVexx999BGnT592\nrrdJJa+XKib7+HqdM9e7pf92vfpubGzkvffem1LBhCQB6cDAAENDQ7zzzjvXLffw8HAGzUF2mT/4\n4AO6u7snlSdXO1/ve66t0tm/2QPIkSNH+Pzzz3O2c3ZdfvLJJ5w7d47jx49z8uRJZ7Vp//2DDz6g\nra3NuY9NLJqd/ie9/UdGRtixY8ckWg8XdydsmpCdO3fy8ccfI6Xkv/23/8ZLL72EEIK33nrL4UKb\nTQeFfa+jR4/y+7//+/zn//yfSSQSHDlyhO9973t0dnbS1tbG7t27Z/3ZucrR3d3Nf/pP/4nvf//7\nzi7r2+2QSR/Dfv/3f5/vf//7xGIxLl68yL//9/+ehoYGh3x7rspnKzu/+MUvHBLrP//zP+cf/uEf\nEELw3nvv0dPTkzEOpdO1/P3f/71Tvu7ubnbu3OkoRTalir0xKZ3Wx76Hvckq/QNkHN+rUL/3ve99\nbzZulEgkuHLlCpFIhHA4jJSS1tZWZ5ddIpFgeHgYv9/P8PAwiUSCeDxOX18fnZ2dBINBEokEBw8e\n5P777ycWi3Hp0iVM0yQ/P594PE5jYyNjY2OEQqGMJL9DQ0N0d3c7HFXNzc0O+eXAwABXrlxBURQC\ngQAHDhygqqqKcDhMR0cH4XDYGRj8fr/Dv2VzGBUUFDgpd7q6ulBV1dnlZucNPHPmDKtWrULXdRob\nGxkdHaWgoICGhgb27NlDTU0N+fn5TiqUwsJChoeHOX/+PBs3bnTuZcMO/G5tbUXTNIc8cnR0lM7O\nTof0dHh4mJ6eHk6cOEE4HHboIwYGBjh+/LiTbicUCjmphbq6ugiFQoyPjxOLxfB4PAwODuL3+xkd\nHSWRSGSkKWppaaG7u5tQKMTw8LDD8zUwMIAQgtHRUZqamhzKAzvVTWdnJ8XFxXR2dtLU1OSkKNI0\njb6+PidBdTQa5e2338bn8+H1ejl37hzFxcUOgaWiKA7VRTAYdBJTFxQUMDw8zPDwMIBT5kQiQUlJ\nCRMTE06beb1evF4vIyMjNDU1ARAMBolEIly5coVYLObsLB0dHXUoO8bGxmhvbyc/P9/Z+dnS0uIk\nKk+Xk7y8PAoLC7ly5QqDg4OEw+GMNh0eHqa3t5dTp04RCARYsmSJoywFAgEsy3Lqt6ysDI/H4zDz\nX7x4kW3btjE+Ps7ly5cxDIP8/HxM06StrY2Ojg7q6+vZvHmzyzF1l8O2cPb39/Mf/sN/YNWqVUSj\nUc6fP49lWbS3t2MYBlu3bp0Ty4m9oPvyl79MT08PJ0+epLu7m0gkwujoKA0NDaxbt87hz5sLy41t\nSfnBD37A6tWrKSoq4vPPP2fbtm13xJIlhOD999/nySefpK+vj97eXnp6ehyS6tbWVtatW0d5efms\n14ktD52dnfxf/9f/xZIlSwgEAhw5coTOzk76+vqYmJhg27ZtTr0NDQ3x//w//w/d3d0Eg0F++MMf\n8tRTT7FgwQLGxsYYHBxkbGyMjz/+mIMHD7Jp0yYaGhr48Y9/TCgUwrIs/u7v/o5YLEZhYSG/+MUv\nOHjwICMjI+zatYtgMEg4HObVV1/lypUr1NbW3rPj0qwoWFJKXnzxRfr6+jh9+rRDuXDmzBlaW1vp\n6enB7/fz4YcfsnHjRj788EMGBwdpampi3759mKbJgQMHWLx4Ma2traxYsYI333wTVVU5cuQIuq5z\n+PBh+vv7aWpqcnL5QdIS9MMf/hCAvXv30tTURFdXF42NjSxYsIDXXnsNr9fL7t27qa2tpaOjg+rq\nanbv3u0oCHv37sXj8bB//37q6uqcyfrgwYN4vV5OnjzJnj17nJyENt+RnfJncHCQmpoaPv30U9ra\n2rh8+TIDAwMYhkFTUxPV1dU0NjZy/vx5RkZGOHHiBIsXL6atrc1hLU+3ojQ1NbFr1y58Ph8fffQR\ny5Yt47XXXqO5uZmOjg4aGhqorKzkxz/+sTPJLlu2zKmTaDTqWFQOHDjgKDq7du1ifHycU6dOEY1G\nuXjxImVlZfzZn/0ZW7ZsYc+ePXg8HmeL/r59+2hoaCAajXLp0iUaGxsZGhqipqaG119/HcMw+Oyz\nz/D7/Rw4cIDq6mp27NhBa2srra2t9PX1UVJSwuDgIPX19QwPD1NTU+NQYtg0BSdPnsTr9VJUVMSJ\nEyewLIu9e/eSn5/P0NAQ+/btQ9d1ZxfjyZMnKS4u5kc/+hHd3d3U1NQ4+ft2795NdXU1b731Fpcv\nX6azs5P6+noWL17Miy++iJSS/fv3U1RUxAcffEA0GuXQoUP4fD4uX77MW2+9hRCCXbt2MTo6ytmz\nZ4lGo/h8Pt555x0CgQD79++ntrbWUbJOnDjB6Ogozc3NTlqa4eFhJ0/i4OAgf/d3f+ekk1mxYgXd\n3d309PRw6NAhli9fTldXF3v37mVwcJDS0lKOHj3K0aNHiUajxGIxVqxYwRtvvIHP5+Pw4cMUFBRw\n9OhRTp48STQaZWxsjK1bt7oBqncx0nNi/uVf/iVf+tKX8Pv9bN++ndbWVjweD729vWzfvt1ZFMy2\nIgE4pLkffvghy5cv5/7772d4eNjJJLFx40YnU8dcwF6Y7N69m69//essX76cPXv2sH379juiXAEO\nSe8nn3zCsmXL2LRpE319fYyPj1NSUsLmzZvx+XxzovCapsmPfvQjHn/8cXRdZ9u2bXR2dlJUVER3\ndzfbt2+nsLDQqbe//Mu/ZOXKlTQ1NTlt9sADD5Cfn09XVxdnz5510q0lEgnq6+s5evQo999/P62t\nrbz33nts27aNY8eO0dzczMGDB9myZQtvvfUW69evZ9euXbS0tDA+Ps758+cZHR1l9erVDtfivYRb\nelvb3NnU1MTw8DDf+ta3+I3f+A3y8vI4efIkX/va1/jlX/5lrly5Qm9vb4Z1yE55s3nzZl544QWH\njDI/P5+zZ8/S09NDZWUlqqo6SZNjsRhr1qzJSOORSCRYsmQJL7zwAkVFRaxevZrvfOc7RKNRdF1n\n06ZNqKrqWCP8fj8/+9nPiMfjbNu2jQMHDpCXl0dZWRm9vb0ZqXBsUkTLsrjvvvv45je/ia7rjI0l\nE2JqmkZdXR0LFiyguLiY3t5evv3tb/PCCy9w/vx5ysvLKS8vd9KLLFq0CMuyGBoaIhaLTcmqXlpa\nypo1azBNk5GREfr7+/H5fDzzzDN89atfJR6Pc+jQISoqKnj22WdZunRpBmt5IpFw0u488MADTid4\n5JFH+OY3v8nIyAiGYTAyMsKFCxecxNSjo6MsWLAASCbYPnbsGMXFxZSWltLW1kZlZSWNjY1cvHjR\n4XcSQjiJlc+dO0cwGOSZZ57h6aefpre317Eqbtq0iYsXL1JfX09+fj4lJSVYlkVVVRXFxcVs2bKF\nkpISCgoKeO6551i3bh3Nzc1OkuKysjL6+voc3izbivPrv/7rlJeXZxBt2iu1L3/5y3zjG98gEolw\n+PBhFixYwLPPPstv/dZv0dfXRzwe57nnnuPRRx/l7NmzxGIxtmzZwgsvvIDP5+ORRx7h2WefZXBw\nkM8//5xAIEBFRQXRaDQjBZRNIBuJRBgfH6eurs4hkQU4ffo0JSUlPP/88w7haSwWo6ioiJKSEs6f\nP09LS4vDdzU8PEx9fT2/8iu/wpNPPkkwGOT06dMMDQ1RUVGB3+/n0KFDXL16la9//et89atfxev1\nZsRNuLj7YLfrnj17HAvJu+++S0dHB9/97nedcfXNN9/kJz/5CTA3+R6FEPzt3/4tixYt4oUXXmDZ\nsmVs2LDBsaz9j//xP2htbZ0zWbTvaZom0WiUwcHBOy77iqLw93//91RWVrJ9+3YqKip45JFHUFWV\nwcFB/vZv/9bJKTpbbWLf5/PPP6e5uZnm5mbefvttmpqa+Pa3v83ExAQ+n4+dO3fy4x//2FFuhoeH\nefDBB1mxYgWDg4NUVFQ4C1RbCQsGg2zfvp1NmzbR1taGx+Nh+/btrFmzhmg0ymOPPeYYLB544AHu\nv/9+VqxYwYMPPuikTauqquIrX/kKS5YsyZjf7iXMioKVnpIlEAhkpMVIzx+YHvSWfo79v2VZqKrK\nxMSEY2Z84IEHeOihh3j22WdZtWoVx48fz4h3gWvuIVVVnYnG7/dz7tw5Tp06xfLly1mwYIFDFrlo\n0SLGxsbo6+tD0zSKiooIh8M8//zzjoKRXk7b/5z+LBuJRMIpux0kaAcF2rFkkLSGRSIRtm7dSjgc\nzhmMbdfPiRMnuHz5MuvXr3f4lNJ93l6vF9M0HYU1vT5t2O2RHpSYHsRYUlJCXl4ex48f59lnn2Xv\n3r0UFxcTDAadwcs0TUpLSyktLeXxxx9n48aNJBIJPv30U9avX49lWZSUlJCfn89XvvIVR3mwffX2\n/4ZhUFtbi2mafPLJJxm5Bm05si14dv3a5bfLEAqFHDO2HYNi52dMdwvkigvQdd1Jx2S3oWmaGQmR\n7XZOP8duR1VVicViFBcXk5+fz2OPPea4PO1nmqbJU089xQMPPMD58+d57733nPY0DGNSW9nBpVu2\nbOHkyZO0tLSwcuXKDCb29HqMxWLk5eWRn5/P1q1bue+++zBN0yl7+srQDXa/SwfrVBs//vjj/Nmf\n/Rnr1q1j06ZNVFVV8cMf/pBFixaxYsUKLl++PGexPgB/+Id/yI9+9CMaGhp45513GBsbY+fOnfzG\nb/wGXV1d9Pb23haX0GOPPcYf/dEf8V/+y3/hy1/+csacdLtg18n/8X/8H/zVX/0V9fX17Nq1Cykl\nb7zxBl/72tfo7e11wkvmQh62bdvGn/7pn7J582Y2b95MbW0tP/3pT1mxYoWzsE1X6jZu3Mi/+3f/\njrfffpuHHnqIkZGRjLHYzppiE2mvXr0ar9fL7/7u7/LZZ5+xYsUK/sk/+SccP36cbdu20d/fj2EY\nxONx5//777+fvXv38sknn+RMa3av4JZS5dgD+ZIlS5BS8v777zM4OEh1dTVLlizhgw8+QNM0CgsL\nqampYffu3Xz88cecPHmS7du3o2kaZ8+eZWJigng8zqJFi2hoaOChhx7i/PnzXL16ldbWVsrLy+nq\n6mLhwoUOs7YNexUDMDEx4Sg18XicwcFBotEo/f39tLe3OxPYQw89xOXLl3nnnXdYtmwZly5doqys\njBMnTvDVr37VuXc8Hsc0TWKxmGMhikajGc/3+Xw0NDSwbds2dF3nvffeY2RkhEWLFlFRUUFXVxdH\njx51EgtfunSJ/v5+R4Cj0ShvvPEGzz77LOFwGEi6lOLxOO3t7XR2dmKaJhMTExlBzRs3buTtt99m\n3759jqsvvdNHIhEgaYnSdZ1169axd+9eOjo6iMVirF69mr6+PizLYsuWLXzwwQcO67udM3Hp0qU0\nNDSwZMkSLl68yIoVK1i0aBGfffYZS5YscdyrCxcu5Ny5c2zbti0jL10sFsOyLMbHx1FVlVWrVrFv\n374M5cQeKI4cOeLke7TLrSgKy5Yto76+nlAoxLlz59iyZYuTP9B+x3T3qv3MiYkJR4kdGRnh4Ycf\n5t133yUUCnH+/Hm2bt2KYRjs2bOH+vp61q9fT19fn1Mm+96WZRGPx1m/fj179+6lqqqK06dP88QT\nTzjnJhIJDMPgww8/xOv1Omzz9gC4YsUKDh06xJ49ezhz5gzbt293UvpUV1fT1dXF8uXLCQaDTuxZ\nZWUl77zzDsFgkL6+Pp544gnq6+vp7u6msbGRpUuXUlBQwDvvvENhYSGjo6OMj4/z93//9zz77LMO\nGayrbN19sBcBDz74IFu2bAGSykZNTQ2WZREMBjNCD2Z7Qv+1X/s1nn32WWec0zSN7373uxQWFvJb\nv/VbjIyMUF1dPWfyZ5dj+/bt5OXloWkaGzZsyPjb7YL9vN/+7d/m137t1xgeHmbp0qUkEgm++93v\nUlFRwXe+8x0GBgbYsGHDnNA12ArMxo0bnVRkjz76qLM4l1Kyfv165/xf/uVfprq6moKCAlauXOnk\nUQVYsGABzz33HFJK8vLynDRaQgjWrFnD5s2bCQQC1NXVUVtbS1lZGWvXrqWoqIjf+I3foLCwkN/5\nnd+hurqaUCiEz+dzZPFeDF+4ZZqG9PQdJ0+eJBgMsnXrVuLxOEePHnUmcNuiNDg4SFFRkRMHFY1G\nWbJkCYsXL6asrIxLly6xatUquru7OX36NMXFxWzatIne3l5Onz5Nfn4+mzdvdoRqdHSU3t5eamtr\nuXTpEoWFhRQXF3P58mWWLl3qxKjY1odEIkFRURFer5fz58+zevVqLl68SHd3N3V1dSxevNh5p6tX\nr5KXl8fo6Cher5fy8nIuXbrE4sWLnefH43GOHDlCZWUlVVVVTtzWli1b8Hg8nD592nFjnjx5ktLS\nUvx+P0VFRYyOjlJSUsKLL77Id7/7XSfnnH1PVVUJhUJOaiFb2Juamhwfup2ipLq62gksHRsbo7W1\nldWrV9Pd3Y1lWVRWVjrxYhs3bqSoqIi+vj5GR0dZsmQJTU1NVFVVOUmu7WTMx44dY3x8nHXr1lFW\nVsbQ0BC9vb0sX74cgAsXLnD16lUWL15MXV0dFy9edKxVXV1dznOWLl3Kxx9/zPj4OM8//3zGNt/e\n3l7Onz/PsmXLmJiYYOnSpbS3t2NZFgsXLuTYsWMMDAywevVqysvLaW1tpaKigtbW1gxXHOCkkGlr\na6O6uhqfz8fFixdZs2YNbW1tXLhwgZqaGurq6ujp6eHMmTMUFRWxadMmZ1NBVVWVU55EIkFPTw9L\nlizh7NmztLe3s3Tp0gzG+Y6ODoQQ5Ofnc/jwYXw+H1u2bMHr9TrnXL58mba2NoqKili4cCETExOO\ne/XKlSv4fD4qKyu5fPmy4xo/fPgwwWCQYDDIypUraWtr4/z5845LdXx8nKNHjxIIBCgoKGDhwoWc\nPn2aFStWOBtNXAXr7sRUWQKyf7uT5bkdz5zP5LW3s05mIg83Iue+Xl1Pl8zaHXuSmBOi0emSb+7Z\ns4eysjJWrVo15+R41xOYOykItqty8eLFt20wmstrprrHgQMHaGpq4vnnn8/I73enMNNUOvcqv5CL\n+YupOOrmeizNRfCZPp7eDlJNG/OFayndBXen6mQm8pDNYzUdXr9sItNc75n+v8uDNctEo+nkZbmE\nfyohTOcgSieRzCZDy75/tjDkavTsZ6YfZz9ruqlRcsVO5WLQTX/nqa6datLMVe7sDpOrPtPbIpuM\nMxeXUq6OlKscua7J9ff0zjxdEsxs1uNcHTvXwDXVwJHNXjxdmcp+ZvZvN5KT6w0q2ZNStkxNNTDa\nuFH5c9W/CxcuXLi4c7ijqXLcVfm9VQ9fxMTZLly4cOHCxc3AzUXowoULFy5cuHAxy3B9CS5cuHDh\nwoULF7MMV8Fy4cKFCxcuXLiYZbgKlgsXLly4cOHCxSzDVbBcuHDhwoULFy5mGa6C5cKFCxcuXLhw\nMctwFSwXLly4cOHChYtZhqtguXDhwoULFy5czDJcBcuFCxcuXLhw4WKW4SpYLly4cOHChQsXswxX\nwXLhwoULFy5cuJhluAqWCxcuXLhw4cLFLMNVsFy4cOHChQsXLmYZroLlwoULFy5cuHAxy3AVLBcu\nXLhw4cKFi1mGq2C5cOHChQsXLlzMMlwFy4ULFy5cuHDhYpbhKlguXLhw4cKFCxezDFfBcuHChQsX\nLly4mGW4CpYLFy5cuHDhwsUsw1WwXLhw4cKFCxcuZhmugnUXQEoJQHt7OwMDAxm/uZjber906ZJb\n13Mkz01NTUSjUbdCbgHRaJSmpiZ3THBl3MUdgJBur7trkEgkUBQFVVXdyrhNiMfjeDwetyLmqG51\nXUcI4VbGTUJKSSKRcGXUlXEXdwCuguXChQsXLly4uOshpcxQZtO/26pQLmU3+7rpwnUR3iVCA9Db\n28vIyIhbIbex3tva2lzXyxzJc0dHB7FYzK2QW0AsFqOjoyOjXl24Mn6vIltJEkIgpXQUqKmUqJu1\nMM6JBStbK5zqGOxCZx+7uBnBicViKIqCruvuYHqbEIvF8Hq9bkXMgTxPTEyg6zqK4q4DbxaWZZFI\nJPD5fO6YcGOpu8nrrjeXTX0sBExMxNJkXN5CGWavTOm/36zlJmeJpqkXzOR4ps8fHh4mPz8fVVUZ\nHR2lp6eHRYsWoes6fX19jI2NsXjx4oznjI2N0dXVxeLFi9E0bWYS5boIXbhw4cKFCxd3I2xF6cyZ\nM5w7d45vfvObGIbBxx9/TDAYRFVVVqxYwdGjR/F4PHg8HrZv3w7A0NAQe/bsIRwOYxgGv/RLvzSj\nZ2uz8QKmaWJZFrquk0gYxGNxPB4vlmVhmAa65kEiMRJxdD0ZbJkw4qiKnjzHiKOqSS0+kYiDpSBQ\nsGQCIVQECqZloAiBIlRMaSRNexZY0gBAIJCpf4pUkEI6vwNYWCgpj6h9LGXyWBXZv0ukkBnni9S/\n9PtIkqZFRShIZGY5pEQVKhaW87slraQZ0l4dIK8Z7ERmWYVMmivTn2dKE0UomeWQyd89Hg/dXd3o\nXp3CgkJMw3QWJxl1Q+6yKtl1MNXvuepGJt9JCpnzHeznKSiY0nTqwCmHTL5P9u9IAeJauadqRwDT\nMlEV9brnZLfdpDogU26mrLNUHQgp6OjooLKqEgUFS0pQctRNVjtO2b6WhaJk1c00j5PyYaGigLhx\nHUwl48nFq0TcrIxbFkIRk/pdel1etx2liUCgazqtba2UFJfg9/oxLMORxQy5Edf6pv0MYQkn+GHW\nZDxH/0//fZKMA0KoyLS6uV47ZtfNVHKT81hak9/Bkgg1adUe6B+gakEVpmFO2Y6TfpepMk2jbqY6\nRoIilBvWWfbYeK3/kzGGkapNXfGAkFjSRBFaqu8YqIqWqg8DRWjJ8V0mUr+nzSdSYGE4c4slDYQi\n0D06hpmcW1RFxTRNpLTQND15jIWm2scSTdWwLAvLMlFVHSnt41SZzASKoiNE8lhVdYDUfKehaTot\nLc2Ulpbi9weIx2OoqoaiKE45FKFimgmEoiTLZCXLpCo6lkyVT9VTv0tURXPKoak6lrQwTQNN8wAy\noxyTy6Sj6xoJI4GWKkc8EUdVVVRFJWEkEEKgqRqJRAKhJI8N00BaEl3XJx9Lia4ly2eaJh7dk6EX\ngCSRrhekHcfiMTy6xylHepk0VUXJLpORQCDw+b1Y1jWdxLZ21dbW0t7eDkBbWxslJSVs27aN999/\nn71797Jhwwbq6up48803GR0dJT8/n6tXr5Kfn89jjz3GBx98QF9fHyUlJdO2os2KgjU+Ps7ERIyy\nslLqz3dy7NAlqqsXEI1GGB0bpqS4HNM0GRjspbioFClhaLgfaXpovtzN8GgPobxidN3L0FAvXSeH\nMSIwYQ7jUQNoipdoYhhV0fCoeUQTQ+iaj+jICFc7T4Ei0PFhEEdioUsvhkgkj/FhYWAQx4MfCzPt\n2CIhY3iEL9m4TKDjAymJiyg6PhRU4kygoWcdaySYQEiBJrzJYxQ0PMlySAtdpJUJH4aMIYVMK1MC\nXSaPTWHgwYdEJsshvSDEtTIBMRnBI+wyRdHwIKRKgii64sWIm5hKAl3zoFoaCRHLLJNdjuxjaaIL\nX1bdmBgyjkf4r5WJpJvBEDGnTHEiaNKbrA+RXk9RVKmjCj2jbhJyAiGyyiS9yeNU3aT/bgkTgwQe\nrpVPx5/smGl1E5dRPMKfrCcieMisp+zjBNfqxmlHPBlyM1WdmTKBKRJ48BONRVC9Al36kFgYIu6U\nKcEEmvQihCBOJE2e7LrRMsskJxBCvVYmFDR0DG5UJq/TXjp+pLjWjjKrnq7JOMREej0l205IhYSI\n3bSMJ2QMsmTcgw8TA5MsGccLZMv4ODp+VEVjLDaETwugKZ6knOG5ViYUNKnnlHFNejGz2/EWZVzH\nh0BNtmm6jKOjki3jUQQqmsjudzEkMnfbZcu49IEgd9ullUlBJS6jaMKTNS4oGCIOFkhDoHgBi1SZ\nctWNf7KMk8Aj/E75knVjZdRNejveWMa1zHpKOzZlHCky5VrLGscNGUf3ella8yCmjBM3I/i1AiQm\n0fgIfk8YgGhiGL8eBgnjiX78egGqohNNDOFRA6jCQ9Qcxqv60VQv49EhCisLWP7gMoaH+9E0nYA/\nn0h0BMNIEMovTh6bBqG8IiLREUzTID9YSCwxQXRijHB+CfHUcSivGMsyGR0fJBQsBAEjY4OE8goB\nhcHhLkJ5xXh0Lz197YTyC/F6AwyP9OL35+PVfYyOD6KqOgFfPiNj/WiaJ1WmUQwz4ZRjWmWKjhLK\nL7lWprwiQDplEkKhf7CLwnAJazcuZyw6QF4ghM/np7evi7y8MAFfgP7BXnRNJxwqpG+gB13TCYUK\nGRkdIpGIU1JUxtDIIIaRoKSojOGRQRJGgqLCUqITEcbGhiktqWBiIprUC4rKMS2T/sFeSopKAUFf\nfzfFRWUoikJH11VKi8vxenz09HUSyi9wypSfF8bnCzCQVqb+wR6QKl9+agOBfIvR0QhlZaWOMmRb\nq4QQmKaJrieVS1VVSSQSznefz8fZs2eTir0Q+P3JecXr9WKa5ox0o1lzEdovceFMFxfOdqPrAikF\nipJc1QIoioJlWUgJHo9GT9cgly+2o2k6lmU6q9KGPS2MD0VRtaQ2nr5Kl6lljaqoDA130NF9DgXV\n+X3S0meGloCZHN+Mj3suy5Sxeryp8t0b9TSbZUrKnuXW0xyUSSVpHZNIt55uskzCthA5v93OMiXv\nNZ16Sv6zMicnFMeSmrReWQS8YRYt3Dz5eUJJmysU514KSpqFNWW1tCySp8qktTchKVoYovahaiwT\nhJhJHHHWs2dwLJF4NI9j6ck85+bjk7KfpwgFaxplEgJWrV9EMM/vKBLJOVsm21Ek48SktBBCTR3b\nzxZIaabOyT62krXv6AK59YLJx6qjF6SXY6oyKYpKPG7ywMM1VC8smGRlGh0d5cMPP3Tcf4cPH2bD\nhg2cOHGCRYsWMTQ0RHV1NWfPnuWZZ55BSklnZyfHjx/nwQcf5MCBAzz33HMzojyZFQtWsmGvCSbS\nQgg9rTHsxrcmCYWqCoSwUFUBAqQpUTUFTVNRNEBmB7gmO5WqCDRVRUVFEdPhfbq5oL/rH99yrc1a\nmQQKBnEEAu2WmvXurqfZK1MSCeLo6G49zXqZBAYxVDQEqltPN1kmmbI/aXjmcT1JvN58NM2TsVU+\nHo8Qj0edCdySBqpQ0DQl7a4i7VjJeaylbZaXEjx5Xnwhb/JZAixDklcSQFEESJkK9L52XyWj7JOP\npZTJa2d4LITC6PgAPl8gZWS4dk76M67V3g3KkVbW7Oep0yiTqipOsP3kOVtAmjJ77ThtDhLKFMe5\n5v/pHJs5y3H9MsmMtk734nV2dlJcXExHRwcbNmygtraWixcvct9991FRUcGJEydoa2vjkUceweNJ\nyuLixYuJxWKcP3+ebdu2Ob9PN8h+1hQs+3mWKW8oCBldSyY/md/ltd+nsK/Zf0/GEMD0dh/KOTie\njYH11o9l2sQkb7l8d289zfYu1fSVultPs1kmCZPq1q2nmY8L3OKYMNf1JJBYFBfXEC6oxDQTAGia\nTnfXJbr7GtHQU2M9SCky54sZPFkIgZkwyasJsPi+aoy4cW2ilDI1d2XOR9Nt4ew5bLrHqqqBVEgZ\nbZjKnzTd1pNTleladd/4OKt9ZnO0nP3jrPtLnHbM1oHq6uqoq6tzvq9atYpVq1al6kqyadOmzLul\nbrBixQpWrFgx6ffpQGO2cSvtIe1aETO4wIVdF2qqOaVbL7cNGp5Jrg0Xbt3OFyQt2vO7HiUyFZRs\nYFnJTUuWJbCkiYWJhYIELEwk5i0/zzIllmFiGVbmZHmbydSllAT8IaxUgPpcwXanXb8sgAp385ya\nzXeVXue5vqdfl+v36UCb/ZeY/rmmaV0TbJlaYcQNpGUxvfcQzu6Sex0CkXIRKihobp3cJiSDnt00\nJHMh0QkmUNEdN5CLmUMiMZhAwztPx4RkeIOS2nl3zSUEmuol6ClAScaKIKWFxxOY7PuZwbNAoHs0\n29jPnRQtIQQjoykXoTp33IV+vwdVVzOaP5ebSygChLhrZ45sItFcpKNTXXezmHUFayZFGRuJJvsK\nAktKFE0QGYoxMRZPNvY0WtoOgL3XFQo77sCti9vcad1kCHMm0W7dzqaMzp8xIds6oGs+/P6QEwwN\nYFkmBQWVFBRU5rrBTT0LQNUU8ssDzrxzp6FpWjL4Xt58HV7/PFiyvJK8/IATPA7Xj4qT1hdn/sgw\nQAoQSkpRzPVeKQuWXX/pSuatkphO2b53snJM08ro9wJSOzwkQpuOguUqEul1oZLaWODWy22Djidt\n16aL2a/bG7s3XEwNgYKOOm9kVGJhSivju5Bq6ji78Lc20UkpMRNmemVgGdJRZmZ/y8vMyxf0hzEt\nY8bWK8OYnlvRqcKs/+8Gm7CUEtPMdN8ZhjVlveSyYNkKVUNDA6qqous6wWCQsbExampqblnhmn0X\n4QzODQS9DPYlrxIkfcXePC8ev04iZkzjxVwXYXpNGCluJ9dFePsQI5riAXIx2xIdZyK1i9C1ZN0s\nJCZxjHnhIpRY+LwhQuFyhx4AJIrQrpHcztazLIk3qFO0OJz5u5R4AlpyEX+HtQwhFIZG+/B7g2ja\n9F2EUkrKKwvx+T0Z19jp57LfS/dozo7Ju0auLYkv6CFU6E+zSkEiYeHz684Yko5oNMr58+dJJBIs\nWbKE1tZWxsbGWLduHZFIBCEEhYWFXLp0idbWVkKhEIWFhbekZM2+i3AG5fAHvMnA/9RSQloSb56O\n7tOIRw3ENPQE10XowoULF/MbQghMaeH351NevhQjxcBtwzQNZmsMF8JerHuoXFU6SXGxDOsL5QbL\nhpRQWlFAQWEehnHjeGXTtO6qPJRCgGlJ/EGd8gVhpw4Eyd+9AT2rvpIK0pUrV2hsbGT58uX09/fT\n3d3NsmXLOHbsGCUlJei6Tnd3N0VFRcTjccLhsCO7N4s7GuQ+qdFTPFiWmewA0rrW56byq7pI1SXS\nWaW6LsLbUdvJOrbZt5Pi61paZrOOk3XrughvVkKdoO4UW/xUEHMU7Z25czFJx2BZJoaRmKRg3Wrc\nS7rCJFOLdcu0MOKJSXPSLT9LklNhUWY4R0lpUZBf4rgIbXqiG8GyJIZhEk8YmNNQsMSdNtXdQltO\nIbDIFK2GYVjXFCwBhimnvL6qqoqxsTEGBwfJz8+noqKClStX0tzcTCQSoaCgAFVV8fl8hEIhFEWZ\nfy7CmcAJchdpnFcCFm2pwDKumTSFIrh6opvocAxFE+54O4XUmSRSTlN3op+rOrYwCOWVU1JSg2ka\nGDKGrvixzASdXfUYZtzd9TZLSBBHQXXr8yZktDBcTWHhAgwzhikNPIov58JLCIXe3ibGIv2zGlog\nhKCqcg267nOUESllikzUShFazsrrYiUsKlaVEK7Kw0pYzq50RU8yic+WfiEEGIZFUXE+1YtKMqxH\nlpS0NHYRm0jMIABdMB4dxqP7kFJQvaiEgqK8aSlNPr8XpJyxUjefYVmSQJ6HsgXhyQpsVsCclKDp\nSYZ6W5RsJWsqDA0NEY1GicVi5OXl0dXVxQcffJDKBenHspJy6ff7aWpqYuHChRQXF39xXYSJhJHq\nz+mMrIJAoT+jMoUiUHXlmi/RRa5xJrVidHcSziZkmgVFiCSbtKZ7CeYVYxhxYuY4Pj0f04gnFwqY\nkKbgiju9F/wLLNFJeVbv+Zq4sYxesxTZMqp7fATzikgkoiSsGD4tL4eCJVEUjYGB1qTcCuUmXUm5\nxhsFvz+MxxtMi7eyd3LdWsB9uoVCCIFlSnwhD/llwSzyULDMW3xWRn0k07toHo1QYR6JxLVnWVZy\nEk6ysU///olEAk31IKXAH/ASKszDSNw4/thOOTfvZHHapN+TRUhaEkUV5IW8Ke6uGz8rt7zmpl9Y\nvHgx4XCYQCDA8PAwo6OjPPjgg3i93oz21jSNX/qlX3J+/8K6CBVF5Jx7LCMrJ5XrHrxxvSMdPibX\nRTh70FQPiri2RFJNDUUomGYcKQ18ah4yRZCoqV6QmTtVTMtw8mm5mJlE6/hcotFpQFd9GdvNVTO5\nMcA04wB41SCmlchdy1KiKjoeJeDwTd1onMm2KOZa9iYVPQvLMnIoVDc/ngsBekB3FvJCgOZRQIIZ\nN7ESEiHkbDwqWbcezbG2CQGqpqJpCkbCxDSuPcuyJLpHx2fKjPnqRtaPskAllmWSMAykBDPrvter\nh/kIVVOSae8mydnkMmf/ZmkSVVMxDTl9RV/kltKpUFhYCEAoFGLTpk0EAoGcbRQKhWalPu4oD5Zk\n8tZJuxNPuqmc6nk5rr+LAvpmUvMmhusinEVILCoqVhDMK0oxTAtH5pKcMgoxcxxd8aGqHhYs2pAh\ng6qq09vTSP9gM4rQmZdLznkMw3URTu7lWRxSmuZhUc3mJFFnFuO0ZSUnqpgVQVd85BpEpZSUli2l\npKx21stqx7BMZ1a4oZUgRbHgL/BS+1D15D8rAsu0ELM89NXWVZKX70+mXxHpdWtlWKpUVbBsZVWO\n+p1CGZLJMo+Pj+H1+dCUJPlp9n3nj9zd6IRk+5QtyidUHEgpiTf3LMmt7ni88cU+nw+fzzelAjxb\nfFh3KAYr2dFNwyIRT2QQgCWFVcmhdGUfJ5M+GiRQspIW3ouDsusinBsoqpacvNISwJJmBrekkXFu\negdVtLTV7xegRYQQGTEdUsoMU71QRJpyaV8DQlEcV4yiKtd1ywhFoNhuFTk5IFUIgaIqSEtiWJku\nQvt3KZNWAplVNmTmwJg+piiKQCjJ69PL/8WCxEiTtySHlHJNRnMku5NILGlcV/6Eqs7NaDmDBYVp\nmNcPbhZJz4ZpaqlwkZt+1Aw6RFLmVFVFYE2KAcqGqiq5bzJVlj+hYEkDRQhUTZmWW+xOwFbUrz92\nJOdzhEBVlVRC5psW89vTm66jRM3WxoA7koswaT6WFJeG8Pk9mYO6JenvHcnwb9sNeO0RSeXK6w1S\nVrRs0qpuZLjrngs2dl2Esy/IEkkiHp2ckTwNfi2MJU1b+NJ7L06GWr4AyhWCmIwRNWNoaBgYePHg\nx+e4heIygSlN/CK18kOQkAYxM0pQBADJmDmODx9Kjr4ngLgVZ4I4FhZ+fHjFNS4fRQhiMs6YEcGP\nj6AIYKbqViIZNcfxCS8aKhNWDB09tZwQxKw4AvDiISaT7jAPerLsQjAh44wbEXx48eP7YvZv1UNR\nBrN5kkMKKSFnvrnk3/1a6JqM5rz5HebHsiSFC/LxhbzINEuRtCa723SfhjSZ9bBGRRGTFByR6rhO\nN74RZZDM3XJTn29RVFCKaZnzVrmSliSY7yWQ772hkiWlxOPVsEzp1N2d6i3TGvNug5919l2E04yX\nkpakpCxMaXlBxu+WlIwMR4jHjQylatKmAmnh8+cTCBZMauTI2ACGGYN5liJirpHcii1cl8rNS29G\n55MSEokJktbS3GZyw4olJ7kb3FeQneNrfqUuicsEK1ctZc3WOob6RygozufyuVZOH7+IV/EQs2Is\nXrKAwtIwJw6dx6voxK0E5eWlLF29iM8/OY6mKTy+fRtnDjUwNjaejF2T155hSIOly2pYubEWX9DL\nyc8vcOlSMz7hRQARGaVmUTVPfuMRju47w/HjZ8hTghiWhc/r4eHHtnLmZD193YOsX7+C1sZOIuNR\nDAxWrqolkTBouHyF5bWLsUyLlpYOvIqHiBVlxapaHn9mG8f3n+XYwbN4hGeehxKIjGOJga77KC9f\nNunM63FISSwMKzENGb1zrymlpGhRmKKaMEbcvO7EJ6WcFKM7G1BUZVKspMz+Imb71QXRiQiaps9L\nKgWbbyq/wEfZgjBG4sZWqelYu25v37mzmHVvr7SSjWJlfXLBMEwSCSPjYxrTDwiWUjqcKukfmbuL\n3NUQqRgsC9NVsG5GbpNT0aQPNwg2jRnj1+3mEivHfedX0LtQBAkMauqq+cb/60n+4w//F775T59i\n5cZaEhiomkKUGL/3//sO//2t/0DA60v16eQW+D974w947LkHeOE3n+Sf/cE/YnhsNEO5gqSFIMIE\nv/LPvsq//bPfZcO2lfyP9/8TX3p0MxMyxoSMcd+2Dbxy8M9Z/+AK/uKNf8/z33mcEWsMiSRclM//\n+OA/8W//+HcZI8K/+s+/TVVNGSYmY0T43T/4Nr/8T5+mk16e/c5jfPmbXyJClAkrxtb71/FXb3+P\nmpXV/PGr/x++8vVHGJMRFHX+xirmkkVTGjnHu+uNCVKaxMzI/B4TJBgJEyNuYMTt/3N/MlLfzGYR\nZNJ1nP2ZS2VBKILRsWEM05g3Clb2vG1JiWlYGAnL4Zy63md+LFrmz7w/i8uapICESwLUrCxB15IJ\nLIUiiEUT9Fwdvn72aplcRYyORIhNxCfxe0wlf7kEU2QkXro3lKxrRKOui3Cmcisx8ftClJbWTko9\n4fH4kXLqVXXAU5hz23kyENYkHK7E7y/I2OVlGHG6uhqQc+HruAlYpkWe8PPuW5/yyccH+bt3/iu/\n+60/YKhnhLCSRzQ+weLKBSyorSA6PsG2r2zivXc+pchTQFPXVf7Pf/mX/Me/+V/o6x7k93/jv2Ji\n4hUerKx6sbDQPRpH9pzh+//ir3np4J84SpKJxT/6F8/xydsH+Ue/97/y+7/9O/zO//oddr18EIME\nXr+HhjPN3PfoOr68/UuMDI+mcSklc4pJS6aUimvHcRIsX7cYr8/Ln/7bv+NH/+VnDA+M4sM7j2Ox\nBJXlq/B4fGnymKRUmMlELJEoQiegF9wyNcKcjVuWRPdrBAr9SIs7wutkWZK8gJfaFVWT4sC8viRv\n11x0U8uyKC2pmHNFbtpSJwSVNWF0r5bGXQYer5riLvtCDOjzCrNuN/b5NUKFfjRVJDuMKhhXxQ1N\nrMkdhWAkDAzDnERENzP5uzcVDOm6CKdZT+m7rcCSJqrmJT9UlrFbMCl31+ftMa34lO6XZExCEK8v\nL+15SjKuSyTd4ZmOIHEH6wR8eCjwhFA1jQIlnxgxEIIoMdZvW8HIwBgtDe089twDvPvOJ1imSYGS\nz09f/AX//A++Q1NDK8cvnKNCK8UwjEnPUFGIjE3wrd97hjVbllFUVsCZww3oaGhAUVkBr/7Pd6mg\nlEsXmwmX5ZOfH6R3tB+PV6ejpYcje07x//7edxnoHXEUJIFtzTZQEI4V3MKiQAnx1k8+4sEnN/Fp\n90s0nr/K//ar/4WBoWE0oc6LiS17QSSEIC+vGI83MEn2Zkr5YbOnzycXYcYiJhVnpXtvX1ukczWJ\n1M49TVMpKgpNUrrnlm9KMDERnXMX4bQZDwQEQ168AT2TGd/6ou3Mv4tdhJYpsRISy0hS2VtGKuXN\ndAUoB23D/Kqy+SpSrotw2kIvVFRFR1V0FKGj4knxBiX5rNI/N1r5X89FCCClmXXPRFKhU3S0VBns\njxB3dokokU7eMtO0HJJVFZWnf+VRSqqKKK0sYvPDqwlpeUgJA9Yw/+4//jNGBsdZu7mOp3/pUYaM\nYdQcy10Ti7x8P2+9+BErV36Ffe8e4R///i8TJUacOAM9Qzz4xCZ66GfFyiX0dw0yMjqKiophmBSV\nhHn5v7+DRPLY8/czOjyOgoJEous6heVhxohQVFnoTCpxK8Hqjcv44X/9GTWe7XQ0d/Ov/+gfM05k\n9tjEb7HnqllyoCoalpwsi0nlf2ZjwnxzEQoh0HQ146NqSsrieHugqgqapjofXVNTlmUzh8trDseh\n2+QiVFWBqt34o2jJnbnO/J36fPFoj+5KF+G1DpROXm1JiS+g4wvoRMfjN28CFiCUTD3tZklj70a4\nLsLpCZGFQUXZMsLhSkwzkeG6SypTM5t0p3IRZghuejtJ0DQvNYs3Z7Seomj0dF9mcLh9VlOWzLz/\n2jQpyQl6woyxtGYRW7ev49tf+l9pbW3nneM/4JGv3Mcb7+3ksfse4Dv/4nmeW/c7fPn5L/Hv//u/\n5OS68yQMAyWLGVxBIRqJ8dXvbOfNvL9hyyPr+KN/9Td40FFQeOWvf8F/f+s/8E7p/2TTw2v4b//m\nfxIjjk4yeauqqcRicf7s//tj/vb976OqKhYSLx7e/+ke/vDH/xsfFP89a7Ys4199/f8kiJ8ECRYu\nreR7P/hXfPCzfdTUVfP3f/waOvodmDjEJFnMDxRTWb16kgypijZtDqnrjQnzxUUohMCImxTVhFi4\nqRwjnhkwLVTltmxmlJZkyYoK8guCyWD5NG6r5Lb921cnc+IiFJO/Vy0pxBf0TCvBtaoqs8BDdacx\nfwov5Cy1rL3Lqqd3nL6BCJomnA4jFEHLxT4iYzEUNXcuweTEozDQN8KlC20Zq0uhCBo+aWGsN5LM\nL5V23+xdi1JKWpuPMxEfRaByL2lg0mEIcy1YuaVdYMkE1ZVrKSyqnpRw9ma6giVNFKHeRFFERssp\nikZXRz39Qy2oQr8jq0ZJMk1EzfJqWi+1kzBMJBb5+UGql1bQcPoKpmWydFUNkZEore0dLF64AG+e\nTsOFZjyqh3VblnPlQhujo7l2EZpUVJaweEU1Xp+Hjqu9XDh3GR8ehBBE5ARLli7kwe2bOH/yEieO\nnyMgAljSwuv1sKC2gub6duJWnKUrauhu7SMSnUBFIUac9ZtXsHrTco4fOEf9+SZ8IrngiMgoa9ev\nYNMDq2g4e4XDB0479BO3ExZp2evtvJaBMmpqNqf41G5NFqdqUymtm5LR2e16AiNuULK0kMVbKyft\nFrxd8m5ZklXraggVBifl/LsTfc4wEqiqNisWrFypY4SAxStLCeR5pp1+5osKO9lzdUWIcMg7Ncnr\n7SzTbCtY3b1j9A9EMxUsAS31fUTGprZgSZnUnkeGx7l0oW1SvqmOsz1MDMcRqWTPQgji0QTRkXhW\nJ7FobT6RUrDunai8ZEBvFAUVDY9rxZqiB1oyQVXFagqKFmAaiVsc2CRj8X7yPMXc2qoppWB11jMw\n1HpHWd8lkhgJvOiOom5hESOBX3gRUjAhYihSSXJOEcMSEj8+LCwicgIfHlSUSRIogDgGceJYSDzo\n+MQ1fh1FUZiQMSIyig8fqmKhWjoqmlMGWxmbkDE8aWUUQhCVE0wQwy98+PFiOfxaChEZZYIYXjwE\nhd/52+2sWZ83P5XsWDpjlc8forSsdk4md4HAkHEmEiPkeUvvqBXLtmCV1Iap2Vo5yYJ1u2BZkpVr\nF+VUsG53P1MVjY7OFooKS/F6/bfWPjKZpsYX0Cf9qXRBCK9Pv+sznMxHBWsOUuWInL86bsPMhXtG\n5ViWRTDPh8/nYXxswlHGpJRUryu7RkCXyqTd3zzMlcMdCC19S7gg98OyHniXQaZyt9nHLtLlIf1Y\nYfZCDwV5ntJZlKs7L7cCQUDxZQT7KkIhqPixUnFZfuFLMYRbeITH6bsAeWogdV4uGQWPouMVHueH\n9OdYloVX8eBXkoOj/Teb6NSveB0md1/q2Lm3lAQUP0Hhn8RAb0mLgOJL/Y1Z3j04Td4/JGXlyyel\nXUqW3ZqLhgQkmtDJ85YAM1cmbnU+znABChy38zVpmPvZL/ud5wvdVDIjgkllxcIbJ8CeZpqa/HwP\nC5YVT7JUyXnBTTX3kCnP5nxKXTz7yZ6nIrwzk0KQ7rUTipgs8FP0AMuUGRVpCjmFTzmZGsLCyHAR\nujn67kXIDM4pgcAikUwxMotPmC2XrMRMya3I6EcKt9e9M0kBkWSkv0n/e3JySO+n11cWpCWvuwCQ\nlsScagyxZM7jKcud8bdcTOez02bTWdBILCxpIqWVmkzndhawDJmRLud6MppT1UmlibkVmIn0lEoC\nM2Gm5OP2zIBSgmlak+RASjlvgigsy7q+FV1KbrhxNKVgWWZyYSHnKSv8rdXTjd8pudCT88rNeVv2\n7kopKV2QT7GRdy2oUBEMdI0xPhpLWqpkktJhbDRKbCIx2ZWYI3hvqj+UlS9HOqvEpPtldKyPwaG2\nOxpAPJcQCBLEEChoqRQh9zIkFrrmp6xs6SRZ9PnzsSxzFuIeJNHEMAE9zK1NGskA+3C4ioC/MC3w\nXiEej9Db23TPtV/S5T2Bhj5vF0YSi6KChZOsUjljIaXE6wnMvXKVytlXuCBE8aIwsdgE0YlRQnkl\nKYqHyYvaDFeKBKEKosMxuusHbrqoQggWbCjDk7blX1oST1DHMqw5J9aUlsQf9FK1sGTSu/oCXixL\n3nFrlqIo9PZ2EQoV4PFMTkWTHKt0iivzJ79flvvL9urcjcoVQHGhF13P2giRY2UgpcTntcfPO1/u\n2+QihLyQn3TrsKIJRgeiTsJFy46rihsYCWPyFmqRa4CbXMtCCPLzS64NdqmM84YRZyBlJr8braV3\nPhehzCkNd+ZZSQuQqumECipyJIY1Z8lkLiYrV/LmqkBKid8fIhAocG6kKBrRyDC9vZe5zgrjrkTS\n5e2dd6XKlDGLQKCAUEHltOL5rFmTu6mLJRBIQxIo8FG4OIQRCwBF01ZopARVVxjpHKP74sD0u3T2\nxKdCQXU+3nzPpPyC6d6IuYAQYEqJx6NRUhaeVOfzhdjTsiyKikqdHYzZ9Swt0HSVcHFgenOWlPM2\np+EttScQ8Ot4vdPYaSolmjZ/xsbb5iLMMNVKkCnG5eyqsDOLZw8IuQRHTNHjk7m57PqWDpmky6Y1\nh50gxy6luQqqzf2sTBeQSCY5w8yRSmSuVs9CYdKySVpy2gZTKa00IslkjJNpGan3Fdd9Xxe3W8YF\nQqbayEhgmYkbLpnnTO5UkUE3ICwFy7IwYmZaMPn1np22SJWpdGeGTG4oyrYQTCHPImtSE4rASFio\ncStDwYLbY1lwyGcTxuQ1zzzM++fUS1rZkuNJ0tUqp3v9F65PTe88y7KwTDktBUsqCqjz4/3mwEUo\nplWRk4RJJJWwvJCfNZtqJ3WIyxfbGB+NJuMCbpCFM1dKnruduuD2uQizJnokqqKzYMFadN3ruECk\ntGhrO0s8EZlVF49EUl21Gp8vP5VqBhRFo7enicGRjpQL2C6nmJPBVIhrMVLRxAg+LYTm0Vh8X6Xj\nErFN9t31/fRcHkTVp8fzc628SQXR6w2yZMn9GTWgKBpdXQ2MjPXkcHnfHUrXnXcRpgWhY+H1BKmu\nXjtJnhRVS6ZSugOkpdKSeAI6S7ZVo2iZ9DeKqiDNZDxqJDJKOL/kOgsekXEopUWg0MeKx2syz1IE\nzYc7GB+YSD6PpDsyVBZk4eaKSe4pzauClNwW/txce1mSHWrejvyKotDb10U4VIiq6pRWhwgX+ZPx\nc2kKM+LuMw1ICWXFPnzTsUoh8Y6eQxkeJVOYslPhCbASiOK1oFdyuzZSXA9z4CKcYS3nEDqvL1P9\nFEKgiBQ9Azc3hdzta/3b5SJMBo3LjOcqKOi6F90TSCk9CtIynUTHs8lHJpFouhePN+AwWyuKjlAV\nLBKOC3gukypLKZ1gbq/IxzIspGrhDeroAR1pJgO5NY+KqqspMb85yRVCoHv8Ge+vKhpCEZjO+959\nGzmSLkIPd2KAlFhpfUg4Sb89Hv9kC+Wdoj5Im4C9eXrSipWlZ0sp0VSd/GDhzMqZiodVg5lb/oUi\nUvGyqUTf9rmagjdPz1AM7H5yuwbe9J1yIhWHZqW8F7PtDczFN3W9/ptrjZdM7WRSEC5JbgAwTDRd\nxePVMdQ7z891K2PjdOtQ0zV0jzYNyhSJYk0gjHEQ14uhFmDFEdKcN/Vx21yEM+0sGZiFOcN1Ds4O\nfJ48FCVdYZIoip7qNHaMSVK58nvzURV1VlPAODF7lulMGlKa6JqPgKcARUl2QCktPJ7gHAwg4PFp\n6P6k4qQoCqZpJQNM5bWB3k44LNPq6eafaWX2MGnh0f0E094XBJaVIB6P3jXSLlJpcG4vJB7dj6p6\nnDazZel27P6bQTGd/mCZMrk1fYqqUhV1UuLtaT1iuvE8ttxbd4YBXMpkUmbdWcwkQ0r8fu+cKFea\nrqQSIN9AfgUk4iaJbNZ6Ab5AcjGsKMlEyqZpoSgiuRNWfnG3KOm6Mq1sLVKCMMaQseko4alwCKHa\nrq8pRwzE/Fpg3rYg93kyHn1hMFPX1u1wEUopqaxaSSBQMEVS5HRyWIWqBWvmpi0d3piUm8IyKSxa\nQFHxwpznzmabmAmDcFUBC7dUYEwYjI4PEsovBMS1SSarXUSO/Jo3X66kcllSuoSS0iXOaKWoOqMj\nPVxtO5Vi7ZZzUge3sQfMqotwev1JYEmD4uIaCosWToqrmo/1mLQSyRS1x+R3NowEoxOjhPKKb9na\nJlLUDbY8C9JSo92hsdHOIVi9qITSigKMxNwxxDthLOEA1UuKMK5DVGpnJuluG6K3YySZgibFnKGo\nggVLi/B4PXR2tlNYUITH603GGVlf3DQ1liUpDHnJz9NvHGwvFPT+o4jhgRtYpa71zfmmPE0Hd9SC\ndQ9wn900TGkwc7VQIrEwiM/wqun1aYl1zTojp5N24fY28O16nrRk0g0oJX5fXjKZ+RRtZZkWRtzM\nLJ9Isi7P1rtKKVMB1yYmiRwB/+oXMAZRoqYxtd8qLJm0ql4fSXegJZNybs0jvqSblRFFUZMyequu\nzJQ4mUZSntWU/BkJK5nT77a9E5hGGredEBgJ0+E/ui1jgOSGY2DSO5q0LpoJKxV0b895SWXLtEzC\noYJkTk3rzuaKvFGdT6deLUtioWIJHUvcWMGSQkn177vXv6TdyYf7gjojg2J6aoSY8R9u4qz5AYGg\nrGQpuu6b0YAhsnh4ZjRiTFPFSpZpHrlK7kDrpNeZR/el7fxLO0sILFMSrs7Hm+dxcmbaOdk6L/RP\n2l110yUSAilNfN58qsvXTVrh9/e3EouPfeHis1TUWbDEJpWmcH45+fmlDhfUlBIuJf5AOBm4/oXa\nlpXbR6gIBXUKGZ3p7S1LUlZXRFFNyKkbKSW6X78tlhcpJV6vnoPbSpKXn8w0MF/aTIgkOXao0I/H\np2X1yaQVK8nVFcQyzXlrZZZSEgzoBP3aDQ0iEoWg0YE2MIy8YdytQBiRlFXq7rW03FEXocej2S1z\no5Zj6sXn9JSDL1CYIAiFcLgC7wxWnkIoTBijKELDo/insVq/OZjW/B0Mbl/7gB09OzTc67gIJ51p\nSQJFPvJKrgWpC0UQjyToqh9ITgizxQIvJbrHR5FvQcbvilAYHu5O5ea82S0idwKz4yK0NwH4AwUU\nFS+clOA7F5I8SfPXopCjqnK2q+0ijIyNEsovnhUrVrgqLydR6VxbsWyWbk3XKK0snNxm5vzgtsru\nk/48D4H8yXxuyZgrha6OdgoKCvF4vfOu/AKwJHi9KqGQB9OS188HoOhofYOI8TZQ9BuPNcpk+pm7\nDXfYRSivm58wo6XF1B0vV4fPOQbNW4hJL2sYCVQjMYNBUSBkcvdlworNXUm/iGQrt/zO6bKWlhBT\nQCCQf13psozkXkrnXkoy6a19r2w25lvqe1JiZPF+CaGkBu7pdLT5hFt1EV6juxAILNMkkUhgmjdW\nsOazjIusoUI4OvNk5dlxEfrzZk1hNBNm7rFnrq1X6TKeMG5vm6UxpyBAzuBR1hR5AG3FP1xQiKZp\n8zO+z/7fSu6aTm7auc7ZloUUGkLVQUxDwboHePzujIswZT4NhnzUri7LrHJL0nFliHgsayDM2oVh\nmRZ5ZUFWPL4kc2uwJWk91snEaDxr6/J8SwCddF0E/YVUVK6aNADquheQMxo4NCW58+netjDdmlxm\ny+iijRXklQSSK/TUHKboSjKuQgi8uh/TMqa+ZTbJowTdp7H04YXpGzFRNIWui30MtAxPmzMr9/Mm\ny3dF5Yq0HZcSVdUZHmqnt78JVejzVl5UtGnFTWW/f1X1GjxOWppkHaiqjpTm5AwRXwSxFMlYp8IF\n+VStLUvJ3rXXF4qYsg0VRUFTry+jtyZfd6I+bl8ZKhcX4gvqGZtXFEVgmtNPnj11ILwkEAhimsa8\n6INCQGmRLy0ljUQKHc9EC3pPKzJbaZqk0wuEFUu5/b5AFuA5xB11ESqawKvrWVKX9E9neP5S7MLZ\n52keFT2dM0uANCVCFU5m7WunW0gMZNbW7zsbl5KkOPD58nLsypuZgAqhEE0MowoNjxb8Yrk45gNk\nZkJxO4GqJ6gRKPBgpE1qNh0DSPqGOigIlc5I7oUQ+EOetLZOpifRPOqcbPzwpPNoSYmm6Yxr3nm9\nfhQIYoyj470Oj5rMoYAJvN5AGq3Ctff+4q6YhTPeBQo8KQvoNXmbKvWMEIKEEWc8MkxhqOymqBru\naJdMTyQuprYGzSU8Xg2fP2tX3CwE0yf7oUZr6xWKi0vx+/1zFuieu6gip+ane3Q8nmsKFooHNZaA\nxChC8dy4D4m7O2h9prizPFhZgioEGEaOrapT7NCUUiKzFmbZqRzs3RuqouPT8lMrWelcbxgTd3D1\nIJz0KLc8AUiJpniTnFOuBWumQptU9gOejJ+Tg6rATEikITNdAynLVMCbd1NuLMvIHLAtIa+5zGf7\n9bIUDSmteZ8MXKZchFMTtCYXJ5rmyepR4to73mWLDMuSSZezAUJkDXK5hwQUoeLzBr5wyd+lBF3X\n0HQ14/19Ps/tLUeKemW2kygnufwsQqHwnLsIdU3Jmj9TjOfWBNl5fIWR2sBkK1hCB8sARUvyULlu\nvxlh/vBgpbK4T4wniE8Y0zcDZ096k8lgsCyD/FAp+aHSzN+NBK0tx4knohlkmHMp7OmpUIS0+ZHs\ngt/87Cqx8Kh+JNK1Xs2oPZJKfX55HrUPVk9io06GFlhTkt0GAmFMM3EzHWXSd4dfaNY4s27cV2/X\ns25ucPLkdBEKITCkQUGomsrKlRg54qruxj7geJuFnGYSN4mqquh6KCM/6/zsh1ncVgmDsspiqmtK\nJ3FbzeVYkKvS56pHWJZFYVExRiIxp/2utNiblig5GYyujl9FGzo3ORh9aArJEyqu22/m0OZbgWx+\nkYwOZbtvZlHY7bsb0sQggZDXZlAFZU5chxILMzXwC5KpTixpzko6ByFUJowxFKGiK94v3Ir1ziMj\nYniyoEyBkdE+goHwLcpFEpaRTNCbYdmdBc6sXO8qZYovLcuKrDJfdvYIEkxcJ9BdJhdF99KmC2WG\n5MNCYJgJJsaHyQuG53VspmmYaaluBImEgWXJ28bfJqXEzOVqvYX0bDeCqqp0d3USyg+hezy37nYk\nN/u+VLSkBcr2kij6NK1R2SOUi5li/qTKEck4K49PQ/eoTsyLlKCqgvyQn7HRaIqxWF5fDqbRJ6WU\nCEWhrGRJWvxTctfN8HAP49FBlFnLoSewMAn6CwkhVvctAACAAElEQVSHyxwuHimTvFJJ3/stDiRS\noojZTUtzr0Ck6u9mtFxN1W/9+SI5MIar8/Hk6dc4s1KUDn2NQ7P3rqk0Q4FAIdWlqzPlRUr6B65i\nmPF5QEwqp1zkJD2pCrGJsWntCvziI5lTLxExsMzpb3yx60nT5t06OqucktLKQoJ5PifWSVpJbivz\nNnBbSSnxBz2EiwKTlBzNo8yZYiqlxOPxzEqicCnB61HIC+qTZixvtAUtOoFDsiAURGJ0hkqWi5vB\nvEqVI6XE40363Y246VgUhBD4g9Mg3UzngJxOWYVCYVG1c2Ey8NBDLBZhLNqHELMTdJxUFE18vnxK\nSmsxjHgGUd8tkwDiughvre5I4/uYWYPftIswuwyWJFQeIFwZdAqlaArjA1H6Lg/NqlFJSgufL59A\nluVNSsnQcBeGGSPpE72zg+9ULkJb+YrHI1iWiarOz23usy2fRsyYITntF8NFKKWksDifkrIwhnHN\nHWhZ1qzHPmXDJgT1+nVKKvMdT4mNJCfa3Dx7Nl2EUkp0TaEg7Mkqr0Tr7UTEBjNT0gjlC5l65ouG\neZfseaoUBDaRXObfb51/xTCMjGcn/58NpvIc72CZGEZ8EtnhbKzQXBfhTGQsx/eb3GMwGy7CazIu\nkTZhowTFsjATZm5et1s2eFoYhpmj71lMZva9ExYi20WoOUmfM0uRtqvzXpHRGTbFF8JFmHof0zAx\nEkZGfr/bYZlMOSWRMm2D1Sz2s+vhVlyE2b1BCrAQmNZk2dGEBoonh8XKnSPmGrOuYCmzLJFCCEzT\npLA4n3V5S9PchgqDA6O0tfROzt49A8qr7E6cDDJWb6HDWnj0AFVVq7P+IFE1D5a05oaLx3URTkOY\nwEpYVK4poaA6/xqfUIrbyjKtGesSs+EizCmPKTn35nmpe2xhhgwrmqDjXB/DnWOTObPkTTwr7Xt1\n9doM/ihF0Rjov8rgSDsKGrdvUE5aqZIhARYV5SsJBMKZdCZCJPvSXWa9EkKw+L4KPOn8SxKENjPh\n/CK4CKUl8Xh08vL9yV2Pyp1x91qWlZO0ek7f/QYuQinB51UoKshighcK2vAFlMRQhlVKmAK9b/IL\nCDOaejHXs3G7MSc9zw5nSR/3pi+4k52MUoLu0fB4dee7pilEo7HUyJMZ/S7NVDLedI+PYEY7E5O8\nWdYMObOSeRUVRcWfw6pxzUIwB3WOdF2EN27WpNIS9BAs8mfwCUl5c1uxA4E5dL+klKlAoT+jL2i6\ngqqrWIYkqV/Imcv4FPD58zPkVdN0hoe7sTBRRGY8ylxzyGmkiHMx8fqC+LMVLOS8TpJ7s22OAv4C\nH948T6ZL0N7ROoObzTsXYdamCmlJ0EHVbl88ULalyO77t1tNl5ZFYWERhmFkcn6lYFnJjRw+v575\nN6HgGYsijLFMt58EmchlRVBwuanuDGbfgqUIPLqCmiL7tGGa1g0F2PaHyxyMBekToJRgibTBJuvG\nHr+eDAZVrlkDrERqh5a4UedLcmZ51UAGZxZSkjDiNxwEBHZclXGdM2YfAkHcTNJNaEJ3XYQ3kDHL\nsLAMa8psAdNFJDKC1xuYuwJn53mTYCLRPCq+fM81C5ZI7UKcMG9JxDLkVkpMU6AoKl41iKKkW7Ak\nicTcpWQCMIindjUm3euWZUwi5L1bJw4zkZTPSTFXM3rdpPV/IjaOzxucFy5CRVUyuK2SG33sGLrb\nE/en6WqGpczSJJqu3HaPmVAUBgcH8PsDaJqGIjIteMm5SCLjkewLsaRAQcmqMzGFfLhzwZ3CrClY\n9jwVytfx+8Sk7OGdPRFisevwmcjkrqnoeIx4zJhkKpaTx47Jo03qHjX3V2Z0YM2j0ts4xNUT3Sm2\n7KmZjy3LoLBoQSr4/drvphGnufn4pF1LMoOSJpmoStwJNlshsKSZtCm4i5WMtkuXQyf/31Ru5BnC\nMBN4M/rAdHd4zcSXl3lsWZKKVcVUrCp2ZFDVFYY7xmg+1IGSNVnMbGLNzEllWWbO/mAYcVqaj2Fa\nRobNeTYmcaf/pDqXkLZde5YabV4LbJos3eLripQl3jAM8N6JvnfthZLcVibFpXksWVaZEcwO10/3\nM5uQlqSypoBgyDspoP12K6BCCOLxOD6fD0tCSaGH/DybNV6C0FBi/Xj6T+caQNyYqi8A5sBFKCb5\nsoW48e5CO19pkl3dnBTLJYS4ZpFKv8q2dqW7I9VMDi2h2sHw0xPAbAVJCJFaNSQwSSCkyFH45AtY\nGOjy9pvjpTTxaXmuizCrXYy05LRCgBGf3Z1JofwSZxehYUy/3lX11txr2TKuaMnVqxE3UWRmNgNF\nU24ptiRXfxAITGlgykRG3xa3zCEnMVP9R0VDShML896xyN5EMPvUY4JEU3VC+UV3xEWY3h+SaXuS\nrjBFVRCWdcfoNYQiMhdadwCWJTFNg7KyCgzDSCqciopQ9RRLf1LBEopCiro/+y3ujf7wBccc0DRY\nOTr6jVcHdvC6x6tRWhmatMsuMh4jMhqb3ClFDvbRbKVecks5kpIpJxSKCmuQ0sy4j2WZKEqmyVvT\nPEhp3daAc4Hiuggz2ixpuSxZWpDhKpamxBvyIGeJxDASGcbj9aMIhbKKQnRPJmWAZckMa6zNHN/f\nM3xrK+b0BYVM5U0M6FSuKclYiAghGGwbIT6eyLFAudm6BaGoFBfWZCjzQgjGxvqZiI3elJIlkeiq\nh/xQOYpQSFhRVMUDUqT61K1lO/hCILVYnBkdw9Q3u5MuwrLyAnTvtTALy5IE83yYd1C5gqlzN962\nJhYQzvegaSpDQ0PkBQOoWgCPMYAyMn5tXBICYURBUd30Z19QzL4FK4cgTHd3hrQkHr9G+aJwxu00\nXaG/c5SxoQk0XUzi+cipZOUs180KqUQoKqVlS3P+Ldd2xdngtpppr3VdhHZdgDRB9+tUry+b3GKm\nnOQeuFkYZgKP9KNqKgtqSvH69OtOZEIIYrEEg30jqS3pYnbe15L4Q14C6e+bsmxFBqPERuMoqpil\ncTpJyJvZH5I7Dq3280RjwyhCnbFrUmKiewKUV9QhEEyYo+iKH0VoWJZx71hmRdLKwi1nd7hzLkIh\nBNU1pfgDngzqg2R86p1VFu7UTsX0uikMe/B4VIw4hEMaHp8fpf8CymhbVvoaO02Niy8iZl/BEiKp\ncWcNGNOezWRmIlwpSe7nmw1qqluEZc2EUPL2FtZ1EeasFMyElVNEZwvh/z97fx41TZPdhYG/GxGZ\nWduz7+/y7d1fr6hbrZbUaqklEJIHhBEebDgaYLCPYDzAHAzG5+Dx4YDwYFvj8Qx4DsaDZ8zAGBuD\nWAcEEgiGRWrUcndLLXW3uvtrfeu7P/tWS2ZG3PkjMqsya3meWjKrsuqtOKfeN5966qmMjLg34sb9\n3fu7q9sIApv8oLVBGJpbDSwd8e3YLKF0vyYxuJgZJkgXkWamHIkSg7TiggcQg442Z/H3eqJqIUL2\nZ6/8WYjjMIZFhnM1LETYL4MNmNwQ0VojCHsh+alSIXTdO0/i0r561gc5YRAMBPwQ2N07QKg1Ak1w\noaIyNl31AZexVXPbMjSwrCdH1h+Arh6mrHACA+GLYJT7Qoi9Qtnv536esVGZBifV7OIu8kuIcMC4\n5Dxl19fncN3yCPdjOI7E+z90L7UgC0F48vAEJ8cXkFKMbRT1Q9DzG4J+ihrTXkzynTbGq6Wvochd\nCG43Noy7H91BZaPUW1C8T1Ne5AGcaPJuhwiNYdx9YRtr67U2D5wQhKvLJh6882zi5xZkM75nMd6l\nqoPdu710OW5ZwTBnqhgEYGuzBKeNsNgYKll/ANl4mKZTAOCeSUhBOLu4QqVSQkk5QHAVUSosD8iL\n0rIzsCKkjHQdonUESLe9yhIMiO8AVEF/SG0IAe6zc7WZ3ZEO6h3sBVhgo4MIoWlBkgKUC7DBc+XI\n6uI8Y8OZeG5u8kYxGPXGJRynhFHCg0gQVtariXtYXreTo0sY3cVthcm5rdhw58W3922yZSDSR+Iu\nzqxhB4fb8hzoJqRSEJDFPTAMEV+KiBqkslHGyn61Q3B7QzPaZAIRGtZotOooezUYdH0nWUb/SrWE\nta1qlBBCkEp0Cgf3GOw0gp5Mz7JqGzXxeDNDSoHamteXX2rSse15XCKUSgquKzp9ES5U4EM2TgBy\nkbypaQGkBC4On6C0vQ5R9sBmykyny5Z7y87AajuTRGStq/ZiyfH7GD9ItR9uL4SA46oeZnQ9EKZZ\nXOFlNig7a0AEERIJqPKQJ/9B09I/vGz4Yczj74f5LFmYWXmTxy5IJW+ESg72X0AQBnAcOZJ06S5u\nq5Dt5uV4Ckp1PFjMnP7sqDrJgPQknIqCUCJJY9V3bENfT7T5SFJwqNTFmQVoM1q9NWaDmrsFw6bQ\n3lihCELdLmfWuGUY34BDA75NWDLKInSUi621fWgTQhBBOum+Gmn7pQMDHbJFG9j213FVTz/6ra1E\nlOK2it8jmt6RVkpK7QNG2GxFrfsYUxOOLREgu9YEAgDtg8OEsUcaxhgIcoCuKggkADbAiy+/AA51\n5K1cog6L1nLIIozrEcbeK40Gr6DJVYgxXJ8U8f5cnTVBRO2EQK0N1jaq+Oi3vtqzqHzjK++hft3q\n2Rj7BdsvQnJGzDdjOOLoMgRvzcWrn773fEv3hNQEYaixf3cLd+5vpWqkJVsQ+HAcFwAiaG9YKpB0\nP5kNDu5vYf/eZiSYlpTx6rKBb3zl3bG9WMYw7n987/adLjJKv/mv3oNfHyfj0HJmbe28iM3tF7qe\nVeDBe1/CdeN0pHI7oWmBSGaS7Zm9zhFCX2PrpQ3c/ehOqirAoCaksOTIU0Q8jTEITQAiiUrNw+sf\nfqG3X4KsIRD1i9mgulLGhz/+cs/nvvmrD3Bxdg2p7Id1aLC2uYJXXr/TcwiWUuRerDmW2737a1jb\nrkL301PKcjwZKzUHO5ul9POygXf2RVB43VVE2URB6qavDDWv63CUmnng/bLl06ZQpMqWaTWGQEhT\nHLS5SIYU7OjrUn+vVHq1Yu6Tfk8EY9iezilNaCelmHvHVhhYj1UrrEOQgmQPWhtIZ9iVvItILLM2\n6feO8vf9PzuRAc0MQYCKPBTdGygz4/z8Apubu9b4n9BaF4La8UbMgFTCyueE7ARSidvHixDx70w4\n4yTT+0uUXThqHBURoRXW4ckKRFFjCiMiVOnYeKnbDKxpH+ZsHdcQjeYlqpUNEKgty91y3Pu36Pms\nNcTYBq7Ha09oYJihlOop4zMNWghqy5iIsmS79pQcukBCgJQDMsmYBA3AABwCSBKADoBUo/k5Pr3A\n1sYqSp5bzGLcyzZRy9zA4p7sB4JEiFrJ2Ireid+HmhEEwwW9O55E4wo9+0K/ulIpMmoQ2DC8qoON\neyup4rjMQP2kMVTQaVEbEWF1rwqhCIQaAMBobQvFDq2veSk2T/HvOfu+E0Eqmciy6r3Hzs4BtNaZ\nLY6d0kxxxtPkstm/awOMUcpg3Lq+WoeBrYAw1Jd3akNW1HonpquYygfliIFZeLNucRbh2so2gtBm\nZpoROKi6ZdoYYGW1Yo2ZyONiDKO2UoYxZiYGQjuNKibXzbELFM05wiZE/bLrXhwZWZSS45u+i43B\n3bu7YG2WxtWCthwgQuoysSRcXONgU8O4a5GFTxCCcHkV4NlR40aFZwYkEaorHs6P6z3ff4PWtSXZ\nhAarezWsHXQK2cYu/m/883fQCvxMeGem0rpKO0hH4oVP7KNU9RBEzyFIAWxmzjczz42jmKhyxb3x\nc81mow0R5jLdRNMhZWSLbIhYDzJxalr+uFbjEq1WHQTZK8QpwU6/r9kvFkSY1D1ikCSUVtwbnmn2\nzbBBGAbtsZ+UBuTeSzt94yxmtdZQW3insiqAyYFsPYY6+ToMnPRuRLILHrxdt5v15hIiXOA2FYjQ\n5hEqmLbr1C6mjOHLN/DEWR8MDpOZWVER3TmyQeJA2eQzGWFgAss1U7++glIOyl418zTk57XdJHfM\njIvLM2xu7ORmBDHbeMNe+gUxVwlHfGu5G1tmyrCOnq9gECFHmX2d7sIEyUNMsVjmY49OqIM2RNgN\n4Y3TbAYed0/dVFvSmItjdDHN5Y4o4qrqjiccIYkjkvHjswtsrS8hwkVtORhYfYSEJNTVmykuEEEG\ngb8PRmUobqxRhG/gIYK6lQTzYYREgZwrOxVsv7qegjSJAOlKaKNRq1nOF8NmaVxlJc23kIbubO9n\nsnH1m3Nmhuc5eO0Dd1O/EoLw9NEpLs6vIaTI9JBAgjI0FWz9K0d5uHPw4T5j211OiiGlA7A1pyxE\nOPssQjYMp6yw/8G9VPA/M1teK80zLf3Ss1Zog42tFWzvrkVktja4Pk7CmLivM3pUZpvZuH2wknoG\nZqBUURH8OYV+tP8dH5NsQ4QHOz0H52WbUC5jfqICnHlUfk+ZFknRfIpk4B8hhNYrANVA0ODbMGui\nqKZh5wA1SJmG43/ittJ24/dFWCyTMT8Eggk1ymsetl5eR9gKU32MOXM6LNpL62q8Me+N57tNFrTW\nOXqvGNIR2N7tKh2lBM5OrsCnFqbK0gAxUTwIZ6QPtrivg7X1/WH/om2wGuiZwYNtWSAbt6Rcia0X\n13pUizXnnyk3QiNQOy5qd38DQRCm5lDr+SXHi8umre9Uen9nphcH14YlM2g61BBL7quuAabx/47y\nStgar+UQ5D7o4VWXiEYZU0NoBcN6paQiSEWpIPVJFjeiKFPLkemTqZn9oimVSHipOs+sfQ0dcCrj\ni8AQUuHy6gRKOiiXataLtWwjyALZjL1Es6f/wTF/zIyjk6fY3tzLzyhnm6nVuWfy/+zvKZSEciVI\ndmISJ9cHhjHhCJ+3TO6N4ByeqkJOGSIkkeBUogiOlcKWXerDlF84WYYlNtWa0Wi2cHl51va0zvte\nzl2l1FIPndO6QJ1a8ZCgTMaQIxqWx4+eYXtzbQkRpiY4GCDVtxH6EhC2UCSG7Zx4sPqOXJ+fbxco\nilzeK+tlVFdK7T8VknBx2sDTd896OXuGKSwdCfjLn7rb2UiYoVyJx189wuE3T6Fc2RXzNJ1JIUF4\n6dsPUFr1wImixCQIJuzw1SQf2BiNaiUBES7bcGNNEZfPRg2vvH7QE6yrpITR/TcmIsrXuEr0sftn\nInvoyJLXjYjw8nfeSegDoFyBx796jGdvnEQZc5OsDMM3BqPsrMIeH/JTvG4+MhMa7H9wB1svracZ\n16lvWbnCyHC3bIDsGLqOg63NnQiOnUcF7bqe8hzsbHnwEuzsTA6chgtcTmZcE1mI8M7eViYUL8Vv\nfPvvhQNcPwU/+GyfOJ9+lkU31Yyw5YYqd0GrL6MIGKHCnDQhEh4GtgzKKirpQKPOZWJ+nFJnCJgZ\nylMgQdARcWBS8IWaAkNgdDunpOBUlA3Mp87vlqecfIZcSILruT1EhUUdb61Nu7RJ3EcimjgbqUcf\nXAmpYm9WsdzvmYxj0Bu4LpWAW1E95KFFggKTLenhJCLLU8U894ECzJxyRhjD9sCZUzN9dF1KB9JR\nkY5ZI0D4WdSJfJ4aAULdNtmWxokB+NepWsbD30YAfiOiyyhGy5kHK3uFi24SxWLxwPkc+jtN2kNl\nQgOv6mD1oJbmzDKMxllrahtuvJj0qwfWb9SFWEKEEwpum3dq2ClmZhwdP8X21t7U4vYoum+l6mF9\ns2brxkWUEkEQonHtT3SyTutDd/3CKcJ0INRzhgiJCLWdSscDHpdYKikLQxlLx1DkRkRYXa+05Y/I\nGlxeyQEAhGGAi4sz7OzklIyRlzoy4HoKjidTZaPc6LmybkIQSk4vCasIzyGaJlXAmdpFmSd7PiEF\nHi48REiWmunqCDd7oNgaYc1T+/847mISE89L1i13HqzZLTyjwycxdcPWy+vYfmU9MW+EoBniaz/z\nNkLfTLSZDvOnNHLNzyVEOO4cJCGVtr4PW5eY6HbjKuu641Fa+sG9bdy5v92Wa6UEjg8v8Y2vvAuh\nxNyXgGIwSs5qtJ5kwTDf9f2GoUoSr3zX3R7ok02UOFJwDwUzw3EUXv/Q/bah3fkdEIYajuNic3Nn\nroyrNmy/vYLde2tRpYr03GXZDDMqnsLeTrnLyGE4R18G+aepDHiLF0tMcuBYDIiQ+79FiR9IAa0r\n8Dv/dPgFbmIjqTiKO1OI0LDNeOleQieFObQ2CEOT+p5R4JPujBSiAYGVo4qjGYKQjwEyFFfhWDBA\nphhNa07BamFobKo9j47aC3Fz/UEbIN6r/5PKeJI9nDnyeC4YbEHtAvEZzHmY5m9iwxDKwIQMQ13e\n8DkbQ20YZAZ79G+T0YJOPthgBC/+KLqTHitjGMakM9Q7/RAJz0j2YziXc9PuvNN/4pJeKVKAdKxX\nauaVRabfpsODNeBjq14TjlcCIUSyRMbVVQuBGaWwRrod3N1MFecVgnBx3sDJ0cXwG1tXcCUJmiB9\n1Bpote0yNu6tpHis4tNYKlCfYAPsDYZcWCxEeHZxCEe5qFbWYExxcOgiNWMYWzurWFktt41dZobr\nOdAjZlkxMx49fhcH+/f7erHYMKqrHmrr5YRBZ0/nJ0+vM19Y46LfWa/XIuaMm2IjErhqHaLkrEKR\nO74XK9K9tYMqVnarnaQRhs2UJAAFhwFvXacGTDiRQKvVwMnpIe4cvAhtwkIWzr5pXcsaGmYGPE+i\nVlGpA4qjBnFR5RMozcwQSuLX3nqIg90tVCol8Nx4GaPai89+GQj99L4oFJDMGCYCtB+N4bSeb4Fp\nGoYVRgaj5voorbsAC3QwGo1Wswm/NVw6bLf4ExF2DjY6ceGRG50eHOPo2RmkVGNtbMwMmHFJ5Qis\nNSobJex/aLuHx6pfM+Eo9akIxhhUK2sgoqVxNWiUiMBsSRh3DzYQBp154DHKfRARdnYO+s4lEaDZ\nGlg7d1bbBj8RIfBDnB5ew4TZpvnHJ/MkrUcWzTBPfc1iNig76yASE22yse6t3alh7/WtHt3TgZlf\nODWKvSPRf4yYDRzHxfbWHozRc2ZcJctEZTNBFMmy5whsrHtpfTcBzEBjKp/4PxiDewc7cJQskHE1\n6Pm74iq0Bh9/DQibaUiv7xAOEeSe+zPMps0QIrSVzy1JZtJVYxe8SYZIhzqxyFiszRgz8bCTIPsa\nJ7OICGyAsKWHiuMafeNlONIGAy8zDQePEWDJQcMwRBims8TGia0reSVorQequTGMMNTQIbcNLB0a\nEAiiK44zi3kTfWoXTvq9s1qupHA62VsTPQDBhBzpXheH3IJnggkhoNRgGS1KI1CqOgVF8RFZLmXJ\nokamK1yDDAOiH5VQfgLCDHglzxpXRVmz2fTqG4muzLzIGyVd+/lhYqam+nwL7cEacgBIQPincE9+\nITUgDALrlwEqDTVQfcvGdq2akxbMjYsqv/Jddztywpa24eGvPMPFk6tUxmH3HDMzhCCs7lkG4jwg\nFyEErq7PIKWDklcFLwPdewWkbdBQWyYmlYtnh49vrkUYxdJ1jCmGcgTuvbbVNX+Eo8eXOD+pQ8jR\ngu8oYhuvrZTxwW95Ke2xF4S33niCq8v62GV1SBAg+ihbjuuYzSI8gycro2cR9plzNrGBW6CyNpPK\ns4iztrlvchERwQ98XF6eRV6s4q0JcYLGnZc3egL1haSBHHRjDx8RyiWZkN0oMzA8hXP5jR5jgdoe\nmoyhStg1++GjZ9jayLsW4TDfa2E/fvgLgH+ZDuIXEjB9DC8dIC6HtWz920w9WDAtkG72nehhOXeG\nPWMwT4bmEwHlNS+9MLgCQlJESNjFmdXFCh7HVeW1KbFheG7lOSGtG74lC/TGpLXtCZlUgomwurLe\ngRlNR8aIbPBxbNBxohgUEaFUdVJCLBRBObaywTiZuHEZEcctpd6P+eOYx2ex0qEtKG5uk/Es5RkM\nT1ZAJEeGCG1CSieJwYQaPMclYlJrWBeNRqdgfe/sMjOUVFiprY0Mf+f3DOgpWM8QKNfcVPWA+MN5\nLGVSduuXpRIg/7wrWxC5sctS9HxbG6twlMp3zRZqiGcgGyLVOgVaXeMQZ1z1/IksqKYsMEQ42mKY\nTskkMDQ7MJgsBbb/nSaPQEhlEjKgwfCqLmpbZQhHtK09DhnNK7/3701+WV4MhqPcJUSYXFcEoVIt\nd2QgCjBXSkanrskno1QqR/UIAbfidLwjMaeSIyOjqWu+TFqWWHfK34w7e5w5Ea2N5XIrTlrGYe/T\nvPRz9WJJ4Y4FEZbXPIiIHJXIxlmpksqtvNA0mjWgFUolleKFchzV9oz21wHRltHZP4T1VilPpqsF\nOALGsPXy8nTGMn2raC0g1QfuypfXsVQpWeM/zzW7eR6Vn6EbdR0cAhAAOWkPFt0wocXUlsL0pAA8\nWAluEWg0eR0+l4b+lnH4riZ4uNS1MQb7H9rC/oe22o8iFKFx1sIb/+K9nr/Nsw7l8wQRDgPxGMMo\nlT184KMv9P29zgB6SEKEUknce2UTjtd7Gh3WsG6XwJmWPA/RHxMabL20hq2XOwWnSRCCRoiv/7N3\noIN8il2PCxESEV785AFKa25PFQQTzme5GBu3F2J9dxWvvH4HYZ8x7ycjRYIIiYBQG6yulXH35XSW\nd+chptUbvuU1nR4IIfDwYcYQYfd3MIMffQ5oHPV65wZonp2Yed4/lkHuNwqeMb3n+HbgY0p2GDo0\n4C7qBSHEBPVzxuhwl96yAUI/fWJsc2vl5cF6jiBCWyKm30QkvEfaIAzzPbUTEVZW1rPR64hA1CZo\ndMeiFICduI+c53u78SFCAuz+8Jw7cpMQYVHL/OTduqFRm/SkrJcmFmRyEsbHdNxouUCEJAApu4XA\n3o1p8TM6CtgKVCrHCoJDPjZWAIhOkDsR0GppNJq6U8jUAF7Jwc6d1XRWHwMXJ/XeE9I0hCuK91Oe\nxP4HtnoUW3kyc9K8zugZOI4XEVAurvdKCMLOva0ePrOYniD5s+vmf36olKsIgqAte2PLjQGqqx4E\nrbU50YgIYaBxflIv3kQQcg8WV8KLqhKM6BNfZFtixGcTQqBcriAMwwUelP4y4ChCZcXtGj6CGzyF\nCJqdoBESifI3PMU+MkrVMjjUkwstCRucfvGgV2DCZr7wSeEUZAkRDhgaAU/Usb0GsFOyWQ0gSEE4\nu/BRb4QQZL/fCqeLyorXI7T1q5b1cqSr9k5neqMSHHd/3U7P70xocjtJEknUGxeQQsF1ywtpZDEz\npFK4//IulJK3n/oYOceeMI6Pn2J1dSOag8mebXWjjLXNSvs9IQj1a7+YBlbOhccJhEZ4AUeUIIaC\nNhJ/W6xyZFkPzAhrAiEIApyfn2Btbeu5yixmMBxHYmvD6xEOdfgeqNkFmRFNPWibBOHZ02Osr1Th\nus74+mQLGwKNE/CjX+gtlCycBVeKbgVZQoQD1QKQ0IZ66DhiwySdZMIIwz4uYO7JEbHQI/eWQ8jl\nEM69EKG9F+U6dkJIkLCnMO6LR/bHKLu9PynF7RcQNChIaNjPjnkvjgoyh0EYZRgNQeNBebAwx6NI\nUMrNLHyjXe4m7rsg6Ayy3+KyOlnLfp7izAAEqcjLwAOfq788F2tVy3JMRp4jQVDKwSxO9RxlxKYe\nYEqctTHBfU/2JDGYFEg4fWKSps2mC3iOk67i0fdJ+ugAJegR4j8XCnBKvc/13CU9LTQP1kRkCAAA\n5+Jr6exCYrRaL0bcWKZHznq/Jk0eqbXB+kYNH/zoCz1V59996ykCP8x8I5421w6zQblUBTMQBAG2\nd9ewu7/eJwahd8yMMTZuLfU57vscxnAPPGcM98TIxRltPZ+NFl2i8e5FRJBRX6fOZ0SA0YyVtRK2\n9mswhuG6+/B933Jdycnj33oLUU/2jMYw7r24g/27W+012RaGvsCTRydQ4xSGjpOucj4weLIKZt0b\ndkCACQzW7qxg930bqdJTQFRmasHqMlocGQlKhmHWBBuDVVrdQBD6mPaA7L+wDjeR9NHJGJx1skFs\nsMwWTmLDWNtaAwdhYt3oquPXPLUlabqVVEjApMk/2fgAJLDkQCxMm1mpnBukDsI/6fpGgzA8AKiM\nYZivuje5uNacV+7g8bbIr4Z4+xmMZiTtC5pB7bVJmyCJq+sLKKUgyUW56mF9e6VvxtGg5WaUpWnc\nz2ZxLzNFTiMrStzuj9EGTklhZaOMMNA4OTnC5ua25VvKuKQMdTowUautVjq1L6PU/uvrVsIDxKN3\njK2xmZeiEAiN4ByO7IUICQQ2jNKKi7W7Kz3lb2x1iPnS375rWCLBul1KpR1Lc/u4xxDh2fkJ1seA\nCPsdFoY1qokItbVSysCKxTkPaDmhplYG4uHrhsZIoCgZciQFnj0+wvpqDBEm+8vWIxW2wBcPhoP4\nZgBzFrMtNESYRTZEd7dMxJEyfKp2v8UiyWMVlyxxPafnb8JQZwLNTLMxGFJKiEgRw0AjDExUomWx\nXMTTPP1KRZBxZg4BUjJEJDtGM5R0wSZK7si4X5zRwyZl2cI2OuEdG7+IshW1nIrhAhDiBoiQCCY0\nML6GCbpKTy2A58p1VdurTASEjkzEHQ7/gCQIzpgQoeOqHvELg+FrpOrQwPQropzD/EhBKW83M6AE\nQGEj/ewkClSWhuG5CYhQtwATexojA0u3AOmNumo8521Z7HnEAYpduZN9d3qxYEgp8OoH7ibknaEc\nhXd/7QmePjqBctRcUB7EG2WlXAMzEAYBri8bYGMgnpfYxszH1G4Qm3ur2D5Y6YGhjGGQIGxt78D3\nW7n3pUdDeLy/J7Ks8iurFTiOmpAPbEYQYXcXihXXmok+v/r6XZSr6YLEsQd12PlqQ4RrmwiC1kiD\nRES4+8pmygNFRHjvm0eoX/l9oPs+MjeleTGGsbnuYaXmRONl4TXhn8A9+ZU+A2PSRJqzaBEr/9rm\nKjgIwBDgwy8DZ29GNf44LeNL8ui5bIXjwRqg7tAsI6K8dKFWmmD3IbLxKMkFyVECJGiuzgFhGEJA\n4PLyGFIqOKoE33++0rLzaBzJiFACjK6NLYI6Hj58D9vbOzmRbVpZDgPTs1EJIcY3jBiQMv77MQ8u\njJG9KaM9O6ERnMGR5f5ZhMwQiua7ruANTbkKSom+MZRDjyERgsDH6dkRNjd2RiMaZYaQBOFQO6Sn\nx0uYYGPv9vjbOp+YFq0URJcHC0QQxAmPUF/tml2TLkhKPHl2jI3VKrxKGWw0oP10AHsR+jp3bZFL\n5WQeYGdrE9bcFpSzAUIIREHSQcBoNXXveNIo/U1fz1tsLBFha2cNjuPg6lpAKQeuU4bjLrH4ieTY\nSlmn1M0MLG6ODKGN3WrXnAP1Sx9+a4zkDLawUbPpR96rMaW9zVuYI3vuDQ9BgtC6CqFDs5BGFhuD\nPgnRU5I7hnKVNVgMd5Xm62WQd1yJykq5R0aJxIzRGoKtUl64ybWeKmLg5BTQVaBRBoJrGx7DS4Nq\n0vWhKC17D1abX6E7Q2N8oWE22CxfQ69X2icSIQgXVwGeNcPeKoMTjG9cwkAUqGTJ4HFhSCXx4it7\n8EoOhLhrY82MNULnLY6saDpKBLjeYBUhIty9ez83iNBudBJ3Xt5I9UsowoNvnqDZCKAUjSSXDJuZ\nWb9qIgw1nHFh8Jw3fwaj7Kx3IMKubH+ShMZ5E9rXkI6YawSlL7yWgdFqExpc7GwfDA8RRqS3bklB\nOV1cc4Q0pQABrBmlioN7r272eNuMnmZd1JtK3xTIYLEV58GPPw8OG9jzPPBhaAl1ybHZgcs4qkkH\nuTA9yd7AImGJzbrJznh8tlpbGUkihARBwhbSIRhkTyJJsLQFlgk+HdBZiJIlfVoYajjGweXlGaSU\ncF0PzIt5sp92u01ij48PsbKymmsfdFeR8Uk9rTZZafLi5/lKF6Glr6HIAZGECXU6q04z2Jv/jYiZ\no2zMxJNnpLdEhFCHuL6+RLW6MpKxwwN45ow2qdqaJup/GHIPifJUlx+SUQmcTgxWock1pQOCwflF\niEpJwlHOc1vOKAetKkxPsjOwYoKl83fAD/8V4FQTfBwM2vkI4K5YQ2ukpdkSw0n/BOL0i20jTZCB\n8lcA2slsQGPOrM2dNVRqpR7OrAdvH2ZSJDj7xYWivocgQRBCzLSw68LpKg8SeYbvtwYTtWY3vT0/\nZ7QFT/aneT4zAGNCsFSAYex/YAuV9VIq2YAE2XjJOd2XjGFUayUc3NvqMWZ6vEfjiq9hBGGALIKh\n2DC2Dlawvl1tT30MEYJ5dusiScjr9+AEF9As2iTAMKMF9k93XWEQGK0gRNmdNZS6bHm1DD1YkYQ0\nT4DTbwLuaseY4hDYeA3w1qL3RlUgAoVXoOAifgOEEMLsgbHXjstK9oT7bIzDLADMjNpKCSur5cTf\nEQI/xMN3jlA4l3PUP2M01tc2Lbu96QObLtsQcz/gZxo87gcHd+H7/pQnfHI6X2aeoG4ocg9ytxDh\nGhgaOtRY3a9hdb8KHSQOOGwzPedHvtIJOsYYuJ7Czt56z4FIazOx4WghQgfbm7u3Eo12x6LGEHl3\nH1bWyn0KRHAvY3qe45iSZQYTQfgnoPAJBJxEsbZi80IZw9jdroJDMxfZ6vPTFhIi7BTOhHQB6QAs\nO7eZOC1WJJSF2spDfQweIQSUI3qK/w67CGjNSJLRWVe7LvBhyJbJubq+gJQqggiXCjuyMqguNvsY\nCrlhKI+Pj3KHCHsnfDJRtGVoaDIjPMWjlYdiRBChcEAg6EAj9HXawALmCgaXUnQqJpD1wgsiBGHY\nB16b/LmGhQiJbN/iZoghZP+4tn5xnRmFjA0/jqJPVpNwAHJht7QZlr8ZQb6JCOfnTVQ8BUfNrye2\neG2hebDQCRJhACYEyptAaT2i9p90a0he92cavvPyeqorUgmcHV7j2YNzyCFKg3QHmVIEwRGh/Up+\nfy7qRyN8LupDGIZtuHBpYA070DYYt7rq4c5LGz3jJqRIxZykxZwR+H7uEGFuS1AGtQjz0gcCYDiM\nlihqy3U7/b9A8jNMd4xhvPjqAVbWqpZpPvojQRR5i3LyBBpGeANEyIax+8IaVjfKNhYsPicP6M8s\nx54ZcB2B3Z1yCq9gcuBdSKBpIlLl+Vj7iAA/0Ci7EjbbcblmL1qbAtFoxEgrFGACZHvUscHu3V4s\nx1UppVRKWMNqIu22LMZhV1q4EPlw8QwDEdh6a6YNEa6tbUSeumX81UjSGtEhuCXVQyh6k6FKRNjb\nP0AQBFPvdCYQIU8GEXY8SonDSBQXNWljMMpqFQwDjQLGPUZt2Ew5W7dSoVRyojVkOBmbaAwjiHBz\nc8cevvpPI5Qj4XhORHmRf78mkQoiwFG9QYmCGFy86I0bn8UYxs5WFayXEGG27XkqlUNk6f7DljWy\nMrTSCRoE0zOgedS+IkFY36qlFiEiwvVVI5di0SurlSjQNf1clDwys/WwxJwzzVYTggSUmg8G+iK0\ndmlVY7OhGKPVE7y+uoLreVPv9CTiZiFCMb7MRlxaawfVdNA5AY1zH34jyEQfQtOCiMICiphhxcyo\n1ErwPCe95kQez1SIgmFQO/mEpwYHGWPg+y24jtc35o6ivjEbyy5eaG21R2lj+sg/iTkyrmyICxGh\n2QjgKLKezGXLSjML05OcPVhs46Za50DzDKjupr1Yk1BRQ8CjBgQ0OGcyOeaorM777yTes56xN371\nAY4PLyCl6DLsxp9kIsKLr+6jWisNFTfGxoBAqNev4DguHGdlaWDdOL5pcU1CXSNxSjHj9OwEu7v7\n04UIM2DHHtWQ7NEHR+DFT95JqaRwBN774hM8e+MUyp0spoRAaOk6PFkFkUQRXFjdTOYcMu7c28L2\n7hrC8Pai6jzlYHAiQhAGuLw6x/bWnjXy+pEyz9HmbrvbJ1SE58lrb/tMBJxcNrG14qHkKlssftky\nkpJitCkVeyZAuYDyACM6A2DCCRXDcrJw132F6FfsOYMn6+MZ01oj8IMU5GKDRifIXqHO/YYylIig\njcbG+vYSIhyiaZ2eKx0a6HjjGwFmICLcuXsfOpyvskRtr0UGaftJteeY9TuD9Y3BqDjrANh6jWc8\nZsxIwWyx3BhjwOBCHmiYGa7jYmd7H1pbHrGwK0jdmJgx1taoLJKpZde/9M+GBSDclKS0Oa/mrAyH\nMYw7OzWwMUvjKlvJKUxPplOLkAh89BVbHoAjSI9D0PprQHnL0jiMpBm2fA45VWytVLtyjIHzSx+h\nSS8WWR/SbJo1Y/dgA6vr1QRnFsFvBXjy8GTI78kmIJ2I4PtN0BIivFn1DGN9u4JyzWsbCMwMJy5q\nO6KcNOrXcF1vjkaAYAyjUi1BKVloOdHGb0OEM5UZZrieg/07uz3xedVaCUYXN8khhggd5UK5Art7\na13PBngVt793a6ZjDlQrDsqlTpgEg6DQgjr/SpdIC5B/PvsCzqNqIhGazXAJES5wm0KQe/Te2dsd\nQ4jIFrWs7FrYMAxH3tgYDOGUsLZaShlozMBVPUCou4OV81gEGBubK53FNYqJur5qDG9gRfW+Jos3\nZkiSuF5ChDePdVRarbZawuZuLRVsPA58w8w4PZ0BRDjhGDAzSmUHUoqhoK2Z9LMbIpxdR8CGoZTE\n/t3NnrHSBQ5QTkKEmxu7kEpia6/W8zljivUMNoOUUS5JrK950MaScoIUyG9CPnu7zx/JYjO3D9DF\nJUSYlwQVo00JIoTlxkoOAFHHrTvuILKxKc/cCXQfVCA1rz0kDNPEqcJQtGn1GRkerGiTiAdhCRGO\nIplaM4LQ9GRNjSojRIQ7d+5D6/mCCIFkDd8CGldRamfV3QBg56kdtjnVPnTmmQCEQS8XXpEN6yRE\nGARWRsM+xKxFewROyKgx3IGzKSq6noIIu/9qjnRwCRHmLEGzb2p6z9yHJntsoWKABIR/Avf4c6kB\nZRBIvwJQaSoD3a+6vFdy8YGPvtjzubfeeITr61ZE7WBjOGqrZbz4yl6P98T1nJE8KkSEIGiBiCAy\nztZctEbUn8NpnNZs1OG47tysH3HCxtVFHaEfQqiMy3RQ4jVKnwkwIaO6UcK9j+0BBGgdQggJIoJb\nUSn+qEz7m2jGGNy5t4Ot3dWUAS4yop+YdrN1VX0IUm3Zn5c22Ks2b2sb9/2ZiNBqhXAkLevGLmib\nEkQ46KOTpNYSYAKQ9nveJ8SEpumsPmPsK6m3IodFUwhCtVbqelSKNhENUgIMiuoaEmor5R5unFGM\nK7tpKpydP4HrlrC+thl5VWartGx6w6hHSYAb9NlR5iw1jtT5OYuRYWY8evQAL7z48tSzCCfiwSJC\nGGgYZsgouHnisUjMuQkYhhIbJA07ZwyhBCobHoQQODp5jJXaBlzHswziOeyrRicrNthDj+cp1FZK\nCIM0fGrmqBivHXuBVquJk9NDHOy9MH+ebR705hwRXlFXuR6yyAtH69iDoyscbJZRLTlzJV8FH/TC\n9CR7A4tH2D5ZT7hoUh/cPX18tpu0jaGo1jwI1dmdmBl+M8wlPqtbWYiBcrkENmQ3G7KLu1dyEUa1\nqMbtR1zoeWtzDwBsxlABhMwrKwjZW36GuqoV2+fuDRS23EG9HsJWIxhyXIBK1U3dyxiGkBRxik2o\nxkR46eVXpx+/kgUPlhCZGoUUTY5TUqhtlzqescgz1boasl4jM0xo6UXXa7tWngOTmzhXquWU8Wfl\nQ0CHDDYA0xxuehyRh7oS5eoKNrZW23UPmefHi8X9JRfzw3pOlv8xuEJHgAkwoY0z04xXD1anTt+x\n+G2RIcKhtTerU8htdW+sINfWS6itl1LdDEODd75+hKAV5u6BYGa89Or+wN9NTeUpv5lI34dw5+VN\neBWnJ51/IHxEveOSYgknQuBrvPO1Z9CabyzRwobhVhy88Pp23/4NKn8zajPGzMy93w/iHFaU7DRQ\nH4h7XCvf6tnu+zax+77N9k2EIjTOWnjjX707ZN8oRVOSWwkZZjiuwusfvtebdRsVYp7HeulEloph\na6uG3Xtr7RjReYSgqC2pyfI3BnNhXDEDyrXZ809/xdIUcRd/F9FM14/FbQsd5D7iajDDsZiw3G1h\n5p2ZoZTCyckhHMdFrbYGY3Tfz+rQDOhYtovWwHgVGn5cBi08WnNvgHpXySJG/id1ZsaTJ4+wv39n\n6hCh0dwOWO4k5w4XJ2RPzwZBlL2bNC6kFBP3refnkYYmjk8RuLg6RKW8Cke5uRxCCNF4zaOXaoh5\nIEEIfB+npyc4uHMXRuvCuq+SHpyYAochAHIsPxdFfFftYs7z4oYz6BiFnJJyKQjvPbvG9loJ5WUW\n4UK22UKExuR0GOGMP1fsZiFCjbU16zkYZFwREbb2Vno2YWO4J0amQ8Q5BGzXpzQIYGGoLPFXhu3n\n1l6ahoKIcHXRQLPeKdFC6ORR5LWnENFMjCs2wMp6GY4j23NBRGg1A1yeNW7sD0Wn5upKCfde3E3N\nOzNw/Owse+qGSDZ4WK8hAwyDlepmroXLOaoHJ2X2B4yZrgfRXBrDcFwPu3v7kUeumEYJEbC26qa4\noBiEMl1BXD5MHIMJZHzMD0QYVTLpM+6EKItwqxrRxyyNq8zGfMD+N4s2W4iQ4oWtXyj0pEtMlp9b\nALFjhlQCO/dWIRX1eKvzGApbCDdb3RGSsHNvJf2eIpi3DRpXPkT0bPEjLaL3nZmxulXG2nY5+hmQ\ninBx3MDFScMe9G8Yd2MYK6sVrK1Xe773/PQKQaCzHbe4HmjB1JIQEzwu1uZmvbeUgNiKLMuAlITN\n9RKESCq1C3n+HsTZ1yJahkQcQQHIZwePfNd1VONx2TKR6iE/WZyKBNPjwUq29oFE2gLQqdPVdOtK\nccSzgi7em3myvUaBCE3I7RNuaj7yWANyGkMTco+4seb2XDKj/X/e4z4TiDB+3sQYGHQ8icPMJTMj\nDLnnvWnLbXLfbOsiYojwCJXySiYQYd+yK4ZzVoCZrgpzBRHa+UgqtYFgAsgFyEFf46VojVS6j6QG\njncHIrxaQoSpMRxEWTGEjpIAhChUwafZxGCxFT4+/DJw+ka7FhZMCFR3QXvfkruRxWzTZO+8stlZ\nvCNvyMnTa5wf1VMZh8WWSQsRrq5uABgMEbbldIQ4qGI+cPraMGNjr4raRjm1nomceYtmAhEOmq+R\nY536rf1TikmMMgsPPriF1YMaTJwlGBWMtvppsFLdmBgijJNZ9u9sYHtvPRW7F8esLWbVAwvJOq5b\neIgQ6OefSBy4+6IcRXsAA370C4B/1SnZQwQEdUA6PV6sGCI82KpAEC2NK2aQVGhdHuP0rS+BRD92\ngFvGSEiY+gnWX/i3ULmPQtSmnB0PFhHQOgOaXeVz5OSkjUOzuRNQqbmpv1OOwOVJA8YYCBap7yl6\ntocUMlV4Nl2cupgFabNRTkvM6pV6f5V3+rOU6maDdsrjMOkXcE7dSnkUCWBtUFp1sbJbQejrVLmp\nmJtKCgkz8UGLAGZ4ZRerGzWEQTpj2Oj5r3rQrdf2504MpRCyODKKrtKxcZwkKI1ikEiEkBS9Rf1s\nHAHNM6QwehI3lvCRUqQ9uXPerG6Ns08ySCiYMEDj7AmEcEafeyFh6scwgZ9YeWbbZhjkjsiFmhBS\nYQdp0iYlwYFITbMZwDViNKe6rokhhIBXUpCqY2AxR6UyCtgYDCUUTs6OLERYXYFhA9dVqWeTar5q\ndY0mdtzf6Un53vPx4wfFqUVY4CBmt+Kk5sSEDDBB+wYmiLLEEr8nEji/OkaltAKlnAkPB9abo0MN\nHabvtQgxeo6rEl45QErL9WYLwPs4PzvB3v6dyMia7QMTEZRMJ1ZISYBugdoYIQMUACaYrwkiBxBO\n2sAasMnHEOHDo+sFqkVI0IEPo330wAw9cSlWxzletCMPlglbEI4HGqeupFAg5RQqK3iGQe79hG9y\nVzARsLtdAquyJTKFJfa8uAxwdNrshY26atEZY7CxV8X6bjX1fhgYvPONw2iBvuERZiLWBMMG1UoN\nQghobeCVFV54fy8HlBC0uDGXU16LiQgbG5sF8mxOBqXZum8muz0topPwqi7e930v9P5aEIw2fQ/4\nzAblUg1CyAw8r7Y8EBGBiBeGdyjm8nrx9e2ezF7LSq+hHIW19TgMYrbPbQxjpaaws1XuqrAg4Jx/\nGbL5pCveinFrxsbsBr/Pz92vm5cqNozNFQ9KieIYV+P2gxlCOTh558u4Onwboof3a+Ao9OgqRV7n\n0ftgOuFGBWmqMD2JCrwCkWt47IEikFSAcgAW9mdBgBweCiCRjkUhskWcOYyCxHv4l4qgFwzXtfUX\nY3JBIQewii5bZq1cqUKHBSn2zIX4ir663c97etsa6jolsDHZAJcLmjBMZPW8h/+MYy+JhFNxCyOj\n1shNnsNtrBLBAByX9+JiTxqJLqSF7F4zYncZQKnkgHOjKxrj0ZQaLxIzJlZlAw5DME1A0UPTYhHI\nv+UAEY4Z08AAIICwYcsLjIPBRk00DoHWOeKYEkkM4bvDF4Dm3h8JhNXtcoqVnAi4vvSnwgR/c3c7\nEKHruCiXa5YjCcsM4VzHnRmPHr5XKIhw3G7EFRqpI/AZj9WojyJwfmGzCCeHCKeamDxlGcRAhwkR\nwW+1cFYgiLB3HqOSaTrmtyq4JUzCBrJfP03HVrGxSVpDZqS2IcLDqwJBhIz60UOYoJUyckhIC+Wl\nA5LRJuWL/paEgg6aICmRrMgwxckpnLLnABGOG+fD9lTQPLO1m0qbbYgvNXi3fo2BuvxGW8gZBIEA\nwtwF0/tACEZP44z4lw5eWE+/pwjvvXECvxG0+ZdmovNdEKHRBqWqCxICJjQLyQVVhEZE2FgvEEQY\nURHQeDGmUVadKARPNrNBuZwVRBiVvllI9y13qhb0oFaWvqUoECHifiYtQhIg3YAIL6O9o8BzZANZ\ngesn4Pd+DlBe2ugQauj9j6L5mQ5EOAx1EoG1xtnbX4J/fQ4SyUD9AZBdH5kjIUFCzmgeIxmn4sQa\nz4YH66a/JWG9V8IBOJGRYPTw302yVwoyGHTTXVPPTPq82TRjGMwGjmM9dH4riDxtS/dV3q1aqyEI\nggV5GoYxJjJG0jUgZ2FEek4ZhvXIBlYyYzZmrrc/zvdJg7k3M/i2LFkhJSquhzAMZtBf7jMvFCU3\nJbPs1HzNTWqPGp+fixkolR2w5lyhBmss3fopG50jHZBy0gbWKLb5TL1wg4jLZ9eKE4PVHiCAH38+\nHdzIBrT/ccBbT+D0N85yz8+U26BbI3BWUyoEYe/+GkpVD08ePYLneVhb34eQUVmbpfcqt8bMeOut\nX8Pdu/eLAxFO9OeEl9+3396048zTw8dnOH52DqHE1NYuQQIn509QrayNRDRqDGPvYAMb2yuWgiGq\ntVgquTBaz2eAe1ywfq2Erf1aT92+QWwGQgg0Gg0cHx/i/v0XEYbTDWXY3izBaWdiM5gU3PAY6ugr\n4NT6Hm+K8zI33RxdY6wdsBDh248usLteRsXLDyI8feuX4F9fpD1Lfb1SjNBvREHmprfDyzZymx0P\n1kDJM8DVk/SMsgF2PxIJxZhfm5Pytk/LTL0Qdc6NI1intlZCqeJgj7ahpIRX9mBCvYy/yrkREdbW\n1osFEU6ogWvrtZRsK0fh8qwOZpvdw1NaaRmMkleBIDm0HFNkTFVrJWxuraRqKg7j7SmsnCHOGJRY\n3Sgj7IL9k1Qz3WuTUgqrq2swxkxVTomASlnBcToGFoQLceWDGk9AqfI36GJBL3rLINvdqivWay6U\nFDfr1STzxozG+TO0Lo5t8hff7vGc31N5u0BaYXpUMIgwnmWn6ysLWs8pis2SSvSwvg9a9PJoRjOC\nlkatsgpmg7AV9mYVLVsubWtrG77vL8zzhGHn5GrrBxprmEy7FBAzKuVVGDMaREgAtGaEoUGY4Lxa\nBE8uM0OH3JPJPGg/iQ2sjc0t+K3W1A8CxnAUvgDEMRU0b+Vvcp7PtbUyODSDZZwZRg8L7/YNxIMQ\nCqIb9hvcqTke0ej5FzrIPRvRS4wZAToAXz4A1Q7G9iRnDuJFvEG7d9ewc2e187YgtBoB3vvm8Y2P\nlXWTjsTJsa1FWK3VojiaZctVSpnx+PFDbG5uFwQizOArqPfnmVQCIsLF5QlKpQqUHC2LMO7zrPqe\n+xwPeUgnsrUIj4+PsL29M6M1IUm4ORpXVEG0vOs6u34LIjw9usJ61YPrdCVzMIOkg+b5Uxx943ND\nTnj/rhkdWuLORU2l7Z6rAil98SDCQU1PFqTJiNjcu5yxYsLJkCq92glBCH3q68HKrTZe5G9Wjgsp\n5eKWxClYIyK4rlcgiHCxxlcpBYIY6VDNSAZXz1NcT04yKgRc1819TTB9au2BZCK5iK3XqkAZXkM1\nkQjAZ46Y2mUmX80APEdG60f/LD02GtpvTmQ00LyN+WQSXyidn22pnOElBHCrGGcHiYdaSULNcSAS\n7zIDLT+cqMvdf2uMXdRW1noL4zXqvi0RkuH8x7fX2mB1dc1ChGG4MGzVRW+FggjzmvMZGG7jQIRx\nTKJSskv7n882LYhQCELZTW8lBEAEpxDatAlzQAoUXs6XW7F+BOgWEtXIo3qDkyd8DAURgqLCx8v1\n/Pb2PECElANDIUlQdd8OHPUhqrvtKwyjUlNw18uAke2/MYbx6IlG0MMVRRN01waj3nvfVtewEN7+\n2jPUr/xer9koikr9h1uqJUQ47VY4iDAvL8UAuC1Pp8i4EKGUApWVkg3Kn+c9qTvGaoyD+TQgQsOM\niquwt1vugrgMnMMvgsLrLq8VRR6g+YAH+fEXgPph5MlKMMyLyUv43AgRdunZ8rw83HwtebDGXnBk\nIvg9mUJzewkIa9cKaEgQEgYWGAYKBqZrPTMTx2xxd8ZSlGptQga6smWHDUhnZsu9mlA8E9fEYMwU\nIuyXoSUWPNC+cBBhjnNrC51TSrakzHchGwci7Fod5nfMwzQVgwmt7o/6bNOACC0s24cSikTnNa9N\nRDxdPTURJx/PWyHCZRtV2rHkwRpr3Ah4+ktp5lw2YKcC2v11tygwg4WCaB3BO/5CavAZwAFpsOqc\nTARCnJp9XPImBIbh3BpSmZixe28NOuEtI0FoXvk4enx5q5FljOXB2dyt9vDgSEdA6xCrq6tg5qlD\nhETA9lYJSnaoKpiB0/NWlMm1uCq9ubWNoEAQIWX6dbYY89bOKqq1UlumiAhhqPHeW09trGEO8ztu\nFqExBvXrFkoVb669WPsvrsFxVfvZ48LOZoRi3G2IcGPTymiug7GgBkI7AzL7jZuZsbZaAmu+QcaX\nXIbz3OYkyJ3AV4+RctGyBpwasPtR3F7/iUC6Dgqven5To07NJMv0E+CK18FMyPpcUVstpTjqhCII\nIvDjyxtHLeb38coKa9tVhEE3D46BEAKXFxeQUsIrlTI6sdKAFYdSPwkCqhWVIBW0Btb5hY9FP5md\nHB9hZWV1pn1oh3QnS+VkNOwxr1RtpZyQR4LvB3jw9jMwDCgHnSci1BsXcFQJ4qbSG90Jx5oR+GEc\nZYl59GcREVbWy3DLTsoTzsy9nvFbvicMQ1xeXmBlZTVnzzb1+XnedH+6skJEOL9oouI5cAaWWqPo\noLC0sm5vSx6s8Zt00orAGpDuCF8g+mZ/mFTPCRKcGymp1iY1TAyCMf3vRgnDj8jCbWyAMDApL5j9\nvd1V45ItRDTyYtpXf5N45A1LEsH2rcN503E0Tjt2Z6rqzAzfb818AaSEzJCklOwAGGlT7i+3nNIU\nIoIO84/xC8MQShnQDWSjQlJKhiUny/rML2GiDg100Bv8PKqYsTHwfX+sNWHEG6UVuyC1D0d7hrBn\nHvLW21agowSBwXUYaRngPsKILnmwxhR+vvnn4b6k75R0f0YgnwkalmOICLj7yga8Ujq4lwSBjYEQ\nvU+hwxCb29tgM1oWoWHG9kYJtXKiVAMJUHAF5+xX+owOJeLTCOAQxtuGkR8GJ4pzEwF7O+U0JYYg\nXF75ODltLUR8FhHh4ODu7LMIo/i+Ss3Fqx/aTf9KEB69eYLrK3/sMbei1Kc2YY5TyMxYXdnsCxHG\nEOXu/jruvbSbYmwHbGyY1nNe5DyO1Z1gKbKwoou9/YOcsghtApLwT+EevQlGemEi489B/FWUGXj5\nCPz4F3pjrcIWkFPxYsOM3e3azVmExXLIzInuLHmwMtKNvCxVi4lzF2dWHl4KZkCb9NJERFCuglNS\nPd6HQYoopcTl+fnoECHbDETlOVFsV5ROTRIONW+ZTwIQwIgQfndxbgBKmfbCFNfeEiI6STNyH9tp\ntOMCQITtMRQEx1M977Xj+7JGbXLOIrwJImRmSCVRKrsIgq4DBWOuuOC6E0SyIkidDkRoD1kU1oEu\nA2t+gtsJMAHQuurNDqT8LBwiwvl542aIMJLlJUQ47IK05MHKbjClgzywfiUFSkpCwnTgQgb8IEOD\nLuq2lIRqzU0FuVMUrMyGh1sUeQKIkAgUXAPN60SImwDC654Taf+HEGATgvzTCFJMxGepamqRZbZe\nLM+TaW8KA0Fo5g46LApE2N2nnjVnTttNEGFcn8+YKC5pTvcfIQmlitOtkvYJM5i76UCEsbttXrMF\no8BFIftQSOSnQMNChEsX1igjuuTBykgnDOCt2TgsE2QihBR97eqqQnWlDBjL4hsHzz540oA22UVo\nGcMoVV289MHd3sdjHslIGg8itN4qdfV1OPVDGKguegoa4u8lRHAO9/hzPe/7m58EO7W2wBvDqJYl\napVqSly0Zjx6UkcwZxmHhYEIF7DdBBFGEjZ36El3/UAL63q499p2X0/1pAZR/hDh3ApXWpLaHBPT\nLeEzFES4bKNMLG7iwUqF23QdOJK6MeznhmnzE+Q+pfsRGEwSmpz2SZIIMMQAGrks6Fko17AQYRqO\niEoHSfuck21XfbKISEVFXZOeLQPuOmEwWwZ8Y7greJ8Kb3AVCSJcpDZ0FuEcNa0TZFERt5WJUvTz\n2GCnm0U4R006HWuX2R7SpTP1pNOhIMJlG7ENNpC7jaNBxtKwnxumZWdgMXc8dMztzIckfDLJ9a3j\nedvHhrlf7JFpPIETXIFgED8UsQT4AMwis00/q7GJF84gDMAASn3gAAvPATub5TbtAxHBQMJtCCBE\n6v3J+kRgNpCXb0RBo9E4sobxtqErd0EcRp+zAry14cFEfx9/T70R4roe9JwucpWnEWU+8P3C9Gnw\nPcaXub5qTkCKMiUnGU9ChNb4Tst7uu7gbPRu2LljBrb3V+CVVSLT1nJbxaEAefTJGIMg8MeStaHX\nHuqWjVnI+JDXQoKPvgpunIJEoqRScG0XSExHnkAEQWmIkNkk9qKoaAmNO05pGzKL60xMhDz7xGlY\nnaMPW0P2HD/3cz8Hx3FgjMHHPvYxfPOb38Tl5SVWV1fxnd/5nRBCQGuNL37xi3jw4AFee+01fOAD\nH8BnP/tZNJtN1Go1fOpTn4IQw0Ph2RlY8RMLglAyMlYAISU4oicQasC1E11z9L7pujYASYrgVQYp\nAjiy+EXEFKwNIIXtR6jT10LYfoTa9k9KsNZRP1TnWkqwBkRwDmkuoj4xSApbYof3oJQLYzSMMVDK\nEgFqrVPXUsr26XHQtRACUsrUtY76oZTqe+04DrTWbQJBY0y7H1prbGxsQgiBMAzbn4n7JISAUhLV\nqoTjWOhT6wBCeXDYAV+aaGzU7eOUvHYce81s3zcGMAyhJKj5xLqmlLTCHzQgHQ8sFUwQpMZjddVL\njI2EUoQwrOMatrZcEGQzTsnrSeYuVsa9/TswRheiT93yFIYhBAhSyrYpJG/pE3O6T1KqKNZJt68B\nAyIRFZHVoIj+hFlH71GUUWr7YYz1YHauASnVgGvH6hcbrK1uQ+sQzDr6jAFgIISy1CRA9J0MYwyE\nsOOhdXjDdSxDIYjGl6dhxsleS4AIoR9gbbOC2noZgR9AJObOxmJmtxbE10IIlEollEple+CJvjer\n9Ymi6zjTkRwF9F0L4ut4LWC7XievB63d46zj/danaE1iFsD5uxCNJ2AowLDdW0iAWab3GUHRuXDw\nNURijxtxvzOasbsTQYSaIZSwULGxsXkkbF8k2f1VM0NGybth9H6/awEb2xtGyVNSEnSEXKgB1050\nzdH7xjBM93Vkv2hOXxemT8LaH+1M9oRdUiqV8PGPfxxnZ2f41V/9VRhjcHp6ihdffBE7Oztto+ni\n4gLX19f47u/+bnz+85+H4zg4OjrC+9//fmxtbY1kXAEZRSVeX1/j7PQUAOD7IZ6d1CGEgB8YHJ7W\no8wx4Onxdftvnh5ft51eD55eIggNhCAcntThB13XSuD0ooWrRgDhCJxcNKNrievrOk5Pz0GuwvVV\nHacn5yDXwfVVA2cnFyBHwfcDHB6egJToXAsBZsbTp8edPj09bp9yHjw6QaAJ5JRweHyJILQbweHh\nM/h+C8pxcHp6gqurKziui9PTE1xfXcFxHFxfXeH09ASO6+Kqz7VyHPi+j6PDZ1BKta9F1KfDZ0/b\nfTp89rR9+nn44D0EkWFydPgMvu9DKYWjw2cIwxBhEOLZ0yeo16/hOF19ur7C2ekJlFS4OD/H0eGh\nvT67wPHxKUg5o48TAQ/ee2KzuKTA4eEJfD8Aqeg6BMgr4+y8YT1RpSqOj09xdXkB11G4vLzA8fER\nXNfB+fkFDg+PoJSDi4sLHB4eQ0o7NocZjpPv+5nNnZQSZ6cnhepTcpyklDDMODk9ROSfxfHJITji\nTXv69BHCMIAQAienRwgCH0Ko9rVSCheXZ2g0ruE4Di4uT9FoXENKB81WHfXGhb1fUEejeQklHfh+\nA43mJYRQ0DrA1fUpBIn2NZEAg3F5ddIep+T12cVTGBNCConTsycIwhaEkLi6PrUHAqHQaF7A9xuQ\nUuHi4gz1+jWUctBoXOPi8hSO0+/6DEopBIGPk9MjCGGvT0+P2nN3fHLY7sfxyWE0YmOOU/MaynFQ\nb1zj4uIMjuvi4uICR4eHIFI4P7M6KEhmvhbE8nR+doqLi3OEgY/zs1MrWxmuT9zuk93IblwL/ADk\nKJydXOD6qgFyHZzG147C9VUDpycX7bU7eT32Op5cn5TA4TPbD+GW8ezCwGcHolTGaR24anJ6b1EC\nV40AJxdNCKf3+vSiBaGiPe7E7nEj73eK8PDxBVqtEEIRDk8a8H0NIQkn501c1X04EjhtMK5aBo4g\nXLUYpw2GK9H32hGAr4HDKw2VuBZkbdlnlx1uw2eXug3+PDjTCCI79/BKw9fWYImvHRH3w94vvnYE\nCtQng6uWgZKEhgFOz87aHkPXdXFwcIDT01N8x3d8B9bW1gAA5+fn+OY3v4mLiws8fvwYlUoF3/d9\n34dSqQRjDCqVitXpiwu88cYbI9fzzMSDpZQC2JJ+CkHwHBszIYjgqU4GUMntEH2WXGkhKQBlV9kC\nyGxrM8XFkO21dfM5SkBJAgzDlQJKCODyMeTJUzg6BM6qkI0GHAOg9v1QTkRCatj2ybUYe+fadqrk\ndchKS57bhqjKJTe6t4bnOlBC4778MtYqlyi7ZTjCxU75HEd4Ddqsw1EKUsl2+jhgM3iUlFHwfPpa\nCAHXteU8ktcA4Lpeu09xrTtmRqlUal+7rtde8BzXhVIK5+dn0FrDcVwYNuk+SQdEGur48yjXL+CE\nBhIrKNcbMFwHUIIQesRxAsplL5o7huc6NjuQEV0DMAaOknbuQCiZU8iTX4BsllGpNxCGASRtwXFe\nBhy3feqXAgg0ZzpO7Wtj4CjH1m2Mr0eaO1uD0BiD8/NTrK6ut2V8dn0aME7MuP/qLkqlKoiA6+sy\nVlZXcH7UwPlZvEEBjuNa7xNz+zr2jkhhvURKOdG1geu6+NC3vIKSV4Hvt2CMRqVSw1u/9gCHT09h\nS3wQpHQsdW90HTOpKeUk1o/OtaM8xPGAftBCqVRre7bi8ZNCAVHcklQq4rjkyFtkY/n6XdtNV8Bx\n3Ag6EFCO24a5XKcj467jIq7l4HpeW95vGyetDaorFdx7ZQueV0arVYXWdmxC3YriD61uCrJQem4y\n7roIwxCnpyeo1mqIWcGzXZ9cEAUAGJUb1wK7djuOgpISMAauo6AiL5aK+oSoH73X46zjSKzjprMm\nsYGnBATZ4E9HUmdvidcq5mjNkoDpd21lQBCi/Q4j7XcUyXi9FWLdGEAoNJ58HfWLxyiVPVzWfUgh\nUHYAVwoIYUmDlGgPB+SAa0GAG5Uta19HLh1XdbA1V3WqlZSc6Jrt52PjJ742kYdIis61EvZvi9In\nRxAQGbdKpPWZiHB8fIzz83PcvXsX9Xodn/nMZ7C6uoq/+Tf/JsrlMprNJqpVq68/+7M/i49//OPY\n3t7G93zP92BjYwN/9+/+XZydnWFzc3No2Js4q8hHNtbN+rX/CXjzH4BVLYISqJ0hY4ky+1xLsu7W\n+P2IJ6n7uu26bbtxTZvF3F5HqbYvfD9Q3bK0AdrOKAmK3LiJawAkRf9rFbmfOXrfGBAbIFoc7Owy\nHgav4yzYhisNDCOCC0QESVhobtB1DDMRUfs6hj36Xceu+XgzsVAFtz+T/E5j2MJ9zNY9LxQcCvAi\nfR5KGnDKBS8yHCduw6rW3R1pGsfXZGVF27EkMAxLhHufBlQFOgwghISUhKOjOs4uWlBKZjZOHUhH\nRjBO+vqm+eo3d8pxwMYUqk8946Q6EJwgAZLA0aNLPHvvEiQ42kQlmE3XtYmu+/fJbuoxLGjF6O03\nnuHJw2OICMYXRDBsY/A617Yf/a9ldG3acCFHrODx6VEIgcAPcXB/C6+9fhe+HyZgy8HjZIxuQ5v2\nmtrX9ntl32spY2iud5yM0TDatGHYMAixslHFi69vQ7O24x33IxqnvNeCpDzFm0u8zN8mQ6P0icCA\n9FAxz3BPfR2sHKvXSf0fuBZEa2m8LgiKU4qjsI/uazPe+uS4nVAPIcAg8Fv/BFR/CiYVvd9nb4k3\n0JsgwogepL3HJa9v2+8iKJBcC3mScHDyjc/i4vGbIOlCiDiTlCClACcMFUJ7ue5/HUXORKhl+xqw\nw9/vWkXXHL1vuq4NoqUbiWW8YH1SUiKsn2D73/krqH3sRwATAkK116tf/MVfxOXlJT7zmc/gnXfe\nwZe//GVsbGzg6uoKv+E3/Abrib64wE/8xE9gc3MTr732GoQQeOutt7C1tYWLiwv8wA/8wIxisGL/\np7GZMTEhbjIzzOgB1+Htn2mnMVPymixXU1S5ncFAXCojxvyjE5UJIwMseQ3AJFigU9cJ8sL4fYYA\nh7HiCZAOIQnwPAEBA3v+k1HBZdNe2DgRvJ28jukUugs0D7oOgmDgZ4QQaEWp2Eo5EMRwzGVMVWUF\n04QgR7YVl4SKI4VjYqFMxil1TfYkGs8dDNsOCdHOkCYpwf4VOAwQzSJYACL6vdZh+/Q96TjFLOTx\nZt19fdN8Ja/jzaZ+fRV5Mmbfp4HylLw3h5CwPGTahJDtTb/z+c71zX2Kx8BmhlovBLOJ6hMqMLht\nXCF1DZgEZ1r6Oi6wLtDyG5BCRTItoCLvBRHguBKuqxBq3Q4Ovm2cYhkypjNO8fXgMQDCMBj4Gakk\n3LJq53EoV0A6BB1q60FLULHHRmTea0FSnkxE2+K6bnbyFL8PQIdhO9CEA51Y029bCyi9LsRUCdHa\n03s9xvrEGubquE09Y4DI+6jt1iBu2FsiaCnGq/peo2uPG3G/IwE06771oAnAQABCtQ/GiGzOuMJG\ne5huuwYQmt5r3HAd3PKZ9tLd57oofdJM7RjRaGoiY85O9Pvf//729YsvvohqtYrLy0vcvXvXonCR\nR/aHfuiHAAC+7+Pu3bs4ODjA2dkZvvVbv3XkGKzsg9y7Uuuzur7Bsuu9bitARxFSFDREE1ynbcrN\ndQ/r5QrAlouLCPB9g0dPG0MMGWVyHZ/qry4v4LounNUyHHOOl5yvDL73EKmsWfZv4JwRABPAPf3F\nxG8JAiGEeQEQ9wGEU+jTOGcKxunpCXZ39wvRp2Hvx4ZRrrlwHAmjOyfvyfqUlKgk+W8X+dOQ10SE\nRvMKlfIKyEjsvbCBO/e3e8riGG1G7u+4c0SUvg5DxtpmGfsvrEcHqvznbtRrHYY4PztpJ2OMkpY2\nydo4WxmHZWS/OgTe/Rep2rKxqUIZUn+Ms68xLKR4ctnC5ooL5aK9Z3EGXFyUw/XE45R7n+IxE30/\nV61WUz9vb29je3s7lYlcKpWwv7+f+tzm5iY2NzfHeub5qUU4SpMuoDxYgqe2C8y6DDNtbBVZRBwq\n0ZGDKewpfwEgt/p7sVt/a3vHehaMhjM3ZSoGN5sdxpabbArjOM64Hxzca0NJ89NimIMyLW1OPT+N\nv0kwG6zVtsBgBEE4+9rBDIQ6WfDaFl43BWaRZ7bxY3v7d0c2rhaj8YjvT3HtgF3f7mxX21nzPfXD\nli0Xneime+k+AAwiGh3noDDHpXIGiS0DF28DjcMOZX7M+l7Z6SnnMpnyCojWEcgE7e8lMByjsLqy\n1vMXjUaIMEMm+O4Wp06DFBw0ke32Od1ZBBglV2JVuRAQnXeZUW+EhSHlS0JGczO+RAhaYeT9yVD1\nb/hprLE12tZSJILjys4hZsqNGZBKYG2tknrfGFtgm01xKxB0w6DLVqymtelIdM4F1Be/JZwpgz4x\nhGe1mESjSSGZZWMGP/1SgjGZbEX0nQ+Dagc2sDuzI7uAvH43YVTawqfCXcPO7nf1DMvDx3UErTAX\nqEopB4fPnsD1XNRWt1HCFQAD7il/Mx+NDVCtKZRWyyn4NQwZjeZ1IVipmRlPnjzC/v6dudnAOEoY\nadYD6NBAOSIzYzVLDxaRwMXVEarlVQih4JXcmc6z40ocvLzRs3TE9RCL2IgEWq0mTk+OcXDnLozW\ns1+fl83KDQApCA+fXWN71UPZQSK0ZdnGH1UqVJHxBSiV06fJxGLcJkCV+dyLVGJnIRudTQq6y4iO\ncfc8lreYRHFzaxuAJTiE6I9Dz02jONmoU16EKP65IF0kmivjKqmi7S53h3sU5FGYDVZrG7CB9jx9\nj2UyTDDKMNPJqNvkcBXWe2XpNHb39m2CwtK4KkxrQ4RbVbShwaUHK4NRnV4tyWHaYsZgda/GuZ4M\nuoLsCSBdh3f8Cz2f21n5IPRGDRTDiURotkIcn/pjr32CCNtbJShFNjMGDBYOvLoD1IsbH7Jss2k2\n491gZb2M8ofclHwwA4/ePh3by5rnsjYtMTaGsX2wgrXNcjsBALBevwUIa1zwlkjtK9hGWyQZX7bp\ntRwMrOddTCzPEwXnXbpv4K4T2HWBKBXdpsoDQGv8cSPAdQjlsotHjx7D81xsbO2Cm0tvc95tHiFC\n23FAOcLGNaWeB23C33HEMdOMIxI4vzxEtbwGISLOlymoLgC4nkK55kKH6diqokKBN43hcwMRUsRH\nEws4SfsqrgpCCsJ7z67aECEvIcIMRrVTKqcILYcgd1OYh+sd/GkqfNfQEgNhE6B628Bqs7BNKBDM\nQBCE2NratrWfQg25yHDAZOE92XVjXiFCxPRCvQXBs9MwnrB/Bqu1TbQhwmksmlGX4+xVNgyeYzV6\nfiDCKM7W+J3FQSggqBe5xz0QIS0hwgxGlQtlg2RuYLHRHXK4cVfsvBaCYftEWWUZpptz/pWUMBBC\nKLMB0PtBSGc3jr6hdLvHF6H1c/Uvj3jFbtQmukyr3vDz1k6jjrQk3nc4/64v29wtEQxIB/z488DZ\nr9n4Wy5gUOGyTUMYoilfYA8WCQVSLqDcsS1JY8Ls6R6ERJvN7bYJMDofK5h1QhQIBA0GQ8OJDKpO\nvwQMht5SSEI5Hh4+eoyS52Jjq4K5PnrHukISoLhOXbTLEgNoFKOL8woR3jLsY+s+bKmoMNDt8Ymb\nlMMFMFnmft0DETJPj3BkURw9eUCEJgVjMQwYLApw6OHQrttCz4WBtYQIc5P6Qs15hgaWlYzW1QmC\nZ2+CvPWEQUGpzyQXAO4yZIgESqs7IOVkY2RFZXTQugBOfg0wQac/7To8ifuwAcobljcrcyOLuq4E\nHARYF89AMKnPXZtVGAwRe8IM0TqECQ32qgyCD75sQupr2JiEOdVYIlB4CdF42IZUCYAwBHC5IF2c\nX4jwdgkdebrAzKjWStjZX2+TwRIRwlDj4uz6dlVlQDkSq6srAAGb27U20Z+KSjzlOtTcuxzMc8sD\nIix7Ck5cqNeWH0bZKGDWqAzJ6PnmQxdjiPBgq2J7vIQIMxrVBYUI48Xv+ug9nH3l5yCr2+BbmNN7\n3f4MIomDb/l+uM4GuF2XbKKeRWUTnoAvH94yPxbLpzvfDpS3LK6f44rOEPDoGnfl13ref4c/iiY7\nN3JYMQjEAZzzr8KhBlioCAY10YIzr2lPNkhVNJ5ANB4l5IVB8AD+WGH4vaRUc8jkfuPIj92MYewe\nrGPvzkZH9STh+qqJr/zS2zfChES27E25XMFrH7xr3xMiOtVzVFcv5/mm1H8L0WyhZpmJjDIDG+se\nqmUV1cdjgBSo4YJPYmRgRjo5p94fKYVlco8eYenBmkgIsLA8WPGiREJAKAekHJChof8uHiAiCRIC\nJASQZPA2E0ofiduzSohsheGpThCBu6aBQTBMt56kOxFKElAlHB6ewXMdrK3VwHoBNn2SAGTqiRmq\nXZ+6e+qmrs7MePz4AXZ395dM2VGznFWdyRFMCEMzZOyjneMwNBBC4OjwMVZX1uE4+ZGMJov7xsV+\nk9GM8zyrRAS/1cLZmLUI+85vRKzaMbAYYuZ1jOLZmp/WJho9usbmiouymr9nKO7ILjIPVuxBGTvI\n3eD4174ASqRmMxtsvvxxuNX1yCs2rjLzcJ+ZJashLBi2venBqPIt7k4CsYK8JMBorK1ULDRjiprJ\nOdm4MAAJH/ubAkZVOuWJCDg799FoTrckCBFhY2NzcYyrWGdp0nFJfiWjXHFRqni4vmpCSLpRDbn9\n94zVlbWoyj3n8qhKCey/sp7uEwOOJ20NzHkPY2SGchTW1jcjo3fyBxJ9p69/CMhU27yVq4I15jdX\nPDiR/C0hwixGtVgth1I5k3l/mBmti+OUkcNswC+E+dKhdz9D+5XcLaZhuNgNrlRSYMe5pXYigQxA\nVwTWDLfk2VJBC2Ng9Xtig7ILsOtEgfw2Y+3yKrC2wZR1rFypQodhIcdqxIHt6xmcWJoZUEp2Yqhu\nAXYpsQ6USmUYY3Iqi8QgAVRXPUiZ9hb3o7CY1yaERLni5iyjiVJhU+ErE+l7z2koBAMolZw22rAM\ncs9iRJc8WLfrj+zqltE9wfA5aq8NhA+ugdBP7NgEKG96oqJ9MDVv9WCBA4AZpCSeHZ4kIMJFNbIE\nDKgdmxONwkwCk5kZjx6+tzAQYT5lnCJeKT1CFiADQgocHj3Byso6XMfNx+BhwIQGBLGQmf15QIS3\nDmj+SgeEDaRcjiawGYTzxfVrIcLDqwREuPRgTSjxeA5K5WQgIcnVjgisNeonD1He2M936GJOleOv\nAydvpN9XHuil7+/lWcl8Y7VM8O7pl0bot02/XlupRhDhoh6DGCw8sCxFhie1JU7K6a9MRISN9QWB\nCCNsjkS2XmIhCPXrFurXTQg5ZGHpKCNxpbYGJVW+3qQFhmVsEfhsIcIYQZ7+ChMlKzVOwO/88z6/\nNoBw5iYFlJjBmrFZc+G01+wiFLDvryJzIvGF69Gc1CKMYa8pzTRreyJKKa8EhNtrYHFenFmjuPQJ\nbBhuOYIIQ7OYmwZ3nrd3BGbTqrUagiAozPBwH+M6pkyYWb94nL9hlMsVaK1zNrAWG5URUqLiegjD\n0WW0O2vz5rDa2IDLuSIlM6D9Xo2fs0OOUJbfr+x5gNaAdEAkZi6MUlLPWmqY54i6ZAkRjjVoNqtw\nWrPcfaoVVrEvH9pTVJIwp7wBOOUcTk7DCwkzIJTAyfE5XEehVqssZhxWe0h6x3oW+s/MePrkMTY2\ntwrhxZKC4JV6M2Vb/vAUB3nBhKP/jcDxySGqlRU4jpOLkcWR8lAhCD/yGHdCEPg4OT7C1vaO5cIa\nsglBKJd6a1VKSeC+ozUNv1YUZDnvVbeZUT95DAGDw0uN1TLBcx3ooBntczPqFoDLqyC1VjADJU/C\n88QcGFnPQamc3ISfB1VIn8LGRjYuix/8bPq+xge98L3Axstd8VpT6leie2CG4yhIKReHKbHfCnCD\nak1dnYnguG4hjCtjGJWSwv5uJUqh78jG46d11JuhLeRcsHm76Y8c5VjIMq/5iwZokT1YRAKOO1oM\nm2FGyZHY26n0zsqsvRnzvrYRwegAR9/4ebDfwoUP+A5BCYCFBInZrd9sGO89rKPZMtaOJSAMGffu\nlHGwV0YYFj2zdoF5sHIfOCJAOCCRZCSecsaccJKaYvslnOjFqX5hyuSTrA1qazXAMDgMF7iwazz2\nxWhbW9vwfb8wy4t154+/QMeFjlNHBaKpixOzwdrqBkIdZuK96jYMOOJzWmTrKo7B2tjcgt9qDX0Q\nSGZyjq6XyzS4oUZKOjBKY7skERgrmzShnFujaDJFFYIgBLUNLCE674mupHpTyFjfhQ9yzz7Pm6RC\n6+IYR7/6c1E2IYFNiNL6Hlb2X7EFpqey6XYVHSYJPvk6cPmg45ZkA7hV0M5HpydSDAglcXJ09nxA\nhH25mqZvdFmi0YfY3NyevReLblpcht9Yd++tpeK4hCCcH9dxcdYYP5aL4lI6w4+rlBJHJ88ygQiN\nYaxulLG6WUk9GxWAvilXkSBC4Ps4Pj7C9ogQ4XhDkvNAxiRpowhTMWfG6hYYTy40VjyCqyasA0pA\nvaFxeNzqeZ+IeoyhQUMY6jQ8KATh9DxAo6lTnxeCcGevBCmK5AFe8mCNKTwC/vUZWpcnbekwESS3\ncvBalEU3i/kk4PppAvMlwIRAeROYooE1XYhwQNbVNBY8Tj7woF9Oc/oJrusVI4uQ4wWmnxdh2KLh\nwOpmKTWlSgk0Gz5wylFdwDG6FnmLbjOSYi9TXH8wC4gwrpFYqbnY2KkgDE36FK4X2+NCQsB1R6e5\nGH3UpxDkHvOxzH0IRPwMBFda8tZJho3Zxl+2fIPjk1bPQWiU/NHYe5XUn0YjRL2OrnWBcLBbKpjT\ncsmDNb5ukQAp2Zn1aPHIgnl6so6pxP0JgOiCEqckWtOCCE3Qq1HDlCHKZKxjEWMwJbw1MzzQzgoi\n7IHtInf+xNMbpk+wGjyxShMRlJI3b/LRSVtKEd07W4jQGIYOGaY7jmSBkfRxIcLxlXMJD44kk8zY\nrHQgwkmGnmENNSlpoqzh/jQNlFpbYoOueG3JgzXpihH9b8vJ+FdnMDoAkZzhoHYbGzxG1U6aeFim\nAhGSAD/6eaB+HGVTwhpctTuge5+y3jvkG5SsDePxszp0V7Hn2J091ZmfEUTIDGyue6hVVcr1H3tr\nMlXfCQ+ExjC8koMPfsuLw90+8l5JkR1E2PMszwmZ4yQQ4WRCk5mkd13zQs2dIMKTyxgipEwOiXlU\nY0DXd8ZOxH5pZzMmhCncHM9JkHufgSTY2CtmWxO6KGMbxwkM68VijsrhjN9iiNB1FFTeEGHQBIK6\nfT6C5aTRPuwkTGd4w5ChwSkDaxYo3awgQnuCtG767j2ziOiJHSdnhOdjMBiOcnPNInwe2jAQoR3v\nTjPMqUzU4bQSyNyLRTIRchIlFLUP04shF64km92bkXE1taEh68WSgnqSR2a7Bi06RDgVS8diQkK5\nETlbgXYViuKwrp4MmPyuo4AqAaXViZ+BtUF1tZo/0Wi86MULH0lLimqCqQi2AEOSwRRpZ29sm1vb\nCGYAEcYn1XkJRxnVA8XMWF1dh84IIlyYgtwjjqFSChsbm1ZGB4yB68hUJQRmwHNHOTDlkC1ABPiX\ngF+PT5A2HKN1XhDNn7wZZmxUJEKTjVFCmN7QMANX10GqjiczUCpJOBl548YbgUXnwZoKL5VdPJzK\nKkjK3pijmS2mUeHR4Br8zj+7fQHRPrD2suXSYn+isSMpcHVxDSUlSqWMardxv2Dp3kxKNC+sV8ut\n3VKcetLRJUgEUOTDZw9UADPr5PgIKyurhVHoRWlEhIuLM3ilUiblckjQc1fmjYgQhiEuLy+wsrLa\ndwyZgY01D7Wa6svc3vsHOu1VyiPmhRmQLvjkDeDwy7YGLCe8ZPNONBo1QYTTukE55sGadNjif3IW\n9Li+6JvvXqfeCzXj5ftVbG140JpnsCUvebAyHUwiAjklEAWpGTQ6mP3RntTtUkomk+DwOPPKD8LO\nd0/8/AQot+stcYOmPH8BrswM32+BmZ9LD0nOCoQg9OEaD5DL0RhbRo2B7/vt2LZB68fQ3lBSnfjL\n2KtEcXWLrAPdRdf3o3PfBWm+ZngK0Zo9X31PEhcT2SARKQlKUfu9uOmpZesuepD7NNxzDBBJBPUL\nnL/1yxE3Vmema7svQjjejI0sHu4zbCYWCCKAQ42N7fVssgiJgLAFHP9q9y+AsBmdEOIFVQNOCZBe\nO/U4z2YgowB3YNbeKyLCwcHdwhCNFkGiM7sXa2xv7maWRbiw1Q1ufGSG47rY2z+4MYuQh55Zgmg+\nBoXNzvpCAiK4SqwJmSoYcvOSzXblsIw+zNhfySCLsHvIZiJrNsno7DxAq9WhZGEGHEXY3HCnM64F\n0/XsDSwxjeMmg4RA6+oUzfPD9PskUV7fhXTLYM43q23CR4j+jyG17uC8EXlrpMDl+RWUlChPBBFG\nsF/YAD/5xT7z6yTirwAYAzg1QJUBMxnMebv6MEIoaHYKUz3u+DmCCKeZiE8kcH5xCq9UzgQiNIaf\nOx/rMBChnVca9gsh6w8gmodprxLR7R77oaSr62exGFBgb7MpeIIIJxlChECMZsxK3oDTMx8n7Kf0\nrlJWUzKwngeIcIoBZkQC5HipASaS81cmhnVv7NIIQhJDhEEQtuurTWTFx6SVyut/s9Tnojmf0rxT\ndJotQh4RMyPw/dwhQrrl56k971TvRgjDAK4pjQURxvNBZDey5y8CK5ZRg+AWiHCkJhxAuNnDdklP\nfpxZzbOU9uk0XyOCCDNSsBkPVzJZAgAME+LE9vy35eeCB2vqK0j3G3MCB7CNZWicgN/8JwmhsB4k\nuvsdUdC4uVWD2hDh1tqYWYQ38M3cOpbTrzdSlCWXiLC3f4AgCHITbccR2Nkq9TyzlDRCLbDJ2dCn\nPerMBpubO9Baj2wYHLy0Aa+U5s6SkmC0WewSnT1jyHAcFzu7+wjDYEj9v+l9TkRSZ7SRReEI/PBf\nA2Ey05GsR1w6CwjvEogImhm7KxI6wyzCWR8kBm/Hi0OtMUrLoVTOLAcxdlnPi2s5WkSazfQzxIHv\nwrUUCB0K84GeIhICrYYtk+CoESGVHr4ZFdEv3JKlF9e/o8gty/kXuC5aNMb11RVcz8vtaQX1T5kf\nbUEef8QItpyMMQZkRE89svw0g9Bo1KGUM5J3kIhQrrpwyypVdxA58fN0No/efhShGa3RarXgeV7E\nUTREpmD7IVT3IpOx9jGAaN1oHPUhKl6cjMHu52ZmEAh1n6FEVC4ng9EsWsINR5VW4goNKdnMvFj0\nc1EqZ5bbX/GC3Ibqc2ohi6kPzgGjE0Wk2QaTO5We52NmkJQ4v7yG5zpYW3MAPYJ3w78CdAttFysp\noHVxu6Bycs55WqNVqMXj9OwEu7v7uS5qsxJnKw0Mx1Uo1zwISSkUx28G+d1bEC6vzrGysg7XGSWm\n0BqDbDhtYOXUHCV6QoWYgSCcPRcPESEIQ5yfnWJv/8CSEbuyp68k+vAWsQaFl92TkvEhKuGtIifu\ndJ8FZjGbIOCsbrBeIXgZcEfNwNE8lAyyAa7rYc/vPFdkfEhblsrJuSVgtn55x8NugoMknaZREgIA\na/DDz6bvG7aA7Q+B7ny7vU6lyBI41NjZ2bQndW2GfLaIHfnZL4PP3wKk2/X7YZ43YdSOO95z2ogI\nd+7ehw7DBX1A671a36lgfaeSeu4w0Hjrq896+G6yasYY7GzvW2OpoAcmyyHlolZz2qdxIkKzGeLJ\nYaMA/WO4nof9O3cRBAFKrsTBXmXgZ9trAikI/wzO6Rf7C0UupckWLVMwISQD3tPMuLMmoWfOfp7j\nEkKAHxh8862rHnl77eUaalUnQ09WsqJAMdr8x2D1aUK5IMcDGdkebDbaltYZRiikAvVkQzJMGEzx\nKbor0t4sNCQIreYQEGEycD0i9LMn0zFcq22IUFpG+m42d5M9H1nR1qFG/Rqu6xWsV+lmDMNoTlUz\nIio6uzmh2WyMDBEC2ZUeWYRmjIUIHWfcLK4pysgCnsd69hKreDFTA+pBthDhcxrqVNg2p6VybtJQ\nxtXTtyFOn7R5mdhoeLV1lNZ3IyNrMFkmCYnWxSGaFyeRYnD7/erOC7MtLD0AihsOIiQbz3X89URc\nlzWO2L+0KdGjPhYjYq6/sozLXXxkWH2hj1ds8hkuSmNmnJ7mDxFO2qpVB64rO9RFBLR8g2ZTT+Z9\novyIG8SYECEbhu9ruCU1Fa9Ake04W+zZQoS7ewdj9HWaMk0LZhzEe8kRmhfHib2EwCYEa215o64W\nGyKcrvIkYpUL0hYsyN1uemfvfaWzqRPBBC2s3fsgypt3wFrfZF+BhML10QOcvfMrbbJSZgPpllDZ\nugtScnarKvX3Mg0FERIBYQB+/AVboic5T3FQ+zgWFkmgeQZ++Lmu9xWovAvIEoDs+MiKtKHNA0TI\nDKyvuqnxk4Jwdt5CoxFC0ASMYjlaMGNBhBGk6TcCYK0UBfzmLAOFnfleiNApNCU+L5bnJdpL6icP\ncfrWl3qIr4VywSDcWROZQYRz58HKvJ/PBQ/W7LdAkSzxEhklJAcYEN0rMAFCORBOCcJxIwOLIR2v\n497tK9VTkMYbgsmHgggp4rbqfo6Jj06iizMrMryeA1f1vECEqZ8TUz7RzFOe1KNjQITx+hr1a4mU\nJCBC1x1xphhLvGlUke3KsiSAZHov6Qyvlc+6b6AkjQwR9mxbNPD8XdzhogFb6thLypIHazqte4b6\nBWAzg6TC+XtfRfP0KUhZvhUiQtC6hhDSspRH02YCH0df+1xisbeu3rUXPoTS2g5Yd5enoXyeixmg\n7ixCAklxexbhSEXHJhnzmLqh4xbP5BYgKIRQFECzM3NFyhIiZAZKnsDGmpcaSqJ8+u25ElKM673i\n3PoWNzF2FuF05787W9AWwp0to3anL2mIMM79ublfBLABqwogPMC0kOuuzcbGb5Y2gKvHNulmHgPo\n2OD0zV9C0LgCxWmlRAi79pJuWTlrMNYrGAkiJAIeP23iOvJAx01rk/q5yI2I8PBJE0q22s9tDKNa\nUTjYKy1M0H8OEGEReUs46hd1TbKAf32G+smj9AlDCFDXczAzmmdPUlJuQh8rB6+0jbPkysXGZP8M\nQlo4z+h0FiEMWGvsbG/ckkXYRSKa43BHrsDsxQsGAjqOZsAsj2y2FuE9GDN56jozQ0qBStmB6UPD\nkXWTkmx6/lgZPBGfvsnPS2SMwfbWnqVbuOH5U78j2yduS0e2/eu6FZg7RWyTkliUvcEYhuN62N0/\ngA41lJQDjKteNwLLEpgkKHdLMcpkVl5nbZq7zdWy5DfPn8K/PgeJZBkh0TG4uueHgYM10TbIR7nf\n1XWIy6sgTXNABDFHHqzr6zDZdYRRRvL4VQeeCx6s4gSYpRaQbniNLFs0iECO2zGSgIHSTsrpEWYd\n+gjqF+AwaC9ERALSLWf8CGRjp1oX6RgqIlsHEGTjy3BTdhil5TDvloMsMCixbc5ekbQOMw1wN8xT\n8dZMeh+K5IxzhOK01jeOrRAEqdJxRUYxhBDIAyJUSqRDFw23S4MUbV8jIigVZVCzgXAkpBJ9PVhk\ngijxJa1p0wt9MB2S0Tn2XJB0QMpJG1i36FioR7dfCQwpCCJ6zWtL9p0ASIEJSzotebBm17rhMSJo\nv4mgfmHLC5ghJqYbQyeJ83e/gvN3v9oRfRPCra5j98OfybbvwgEuH4CvHqXfVx5w/3shyqt49uQZ\nSp6LtfUVWxYk/SXTq+1FSCya0b0zuK8t9uwiYK8QxZ6ZGU+ePML+/p3JjSwCvCjTL2/7iojQbGlo\nzYVdoIUQODx6gtWVdbiul1p0iQAdGqxt1bB3fw065B503ujsPLXMgOsI7O2We+tCUjrGjdkm5M4S\nqTGGsb7qYGujhOt6A8fHp7h//z7CMOzql01GkVdfh2w+isg+E8JndP6IBAkgaAD145z4tXJT/t6f\nU3vMzc/BACQBjy40NisCnjM8RLjoDCTjUyoWb2QWMwarz8CTVIDjWSqgZGTdhLuZSWWQWQPL6Jyy\nytikmZSZASNAygGTg929PSDKCiPVZdRMqZRNb8t2pylaFmEmxtVIi0g249c+Z4w5pu2yHDn10xiD\nzY2dgSdaRuzBEmD0qTGYsaAQ2ezL4fvf24FpGLPxHYS0REulUgl3796xmdCyv7FEJrCcddQ9cNOy\nEtmubXPijCESNps8MU5sxEj9J9gz/d7KeIcqs2hWVszSQbb+ak9iztD1GhcdIiygFUlCIqif4+rR\nNxLB6BEfiQkny4bqPjrnvktS+pIZOHsbUJ6Np6H4E13PRAToAMC0FrJ8XLXLnKZsxm/SeCGKZIpn\nmK3HzFNDBHiET0pJWFlxen7TbGqEYb7UEd0G9HCTGW9KM9QuIpveWnAFJxIImpdoXhym43TZ2IM1\nTSeIbNGKZFjomhAEBofHzR75Xa05ULcmAiwhwpnMHAmJxvkz1E8f9/xaSCcfkkgeghIii7E2IcyT\nL0BKwtPjOkquxHrNgx4UgCycKc1RPgt2kcz3TCHCeWw5Ypk3QYQddSremDPb+oS7W+Ue1X/0pI4g\nDG1IwhS0TwhCo9HE8fFxAiIssJwWXYWYQUqheX6Iw699tpfbSjo9yVEDvwrjQ4SL2gQBjabB2+/V\ne3Tn/a+swHHULfFZz0OQe0ER4l63bkdpMl8giNIB8fGttM5lfEi6MAB2NtcAACZmSBiwSMxzK9Ia\nPAlE2BPCYeZwanKcjNsgwqKLcjfEMYvqPcYwXNfF/v7+rQkDhWhzQbvFIBIQyrN8i11xuaOoziQQ\n4aI2IkAJ6nlvOMfgkgdrxrrBuX8/kYD2Gzj6+s/3/G7thQ/BKa/cUq5n/OcSgiKum0L5eRZapKRU\nI9M0CCJsbLipDY9hq8sXtbBxv0Y559RLKRO0C/1la7kv3ax1NptQQWtd8B7PW42XbDgFVUSRtZTj\nxOjyrL8gu/ac8GBNc50gmMDH1bO3u+bcYOXOa5bLyphMmdSZAakIz04a8ByJtZqbYYXyiQckW+Ur\n1ELAePz4wUhEo8w2AHml6oC6TmqcUcmMYcYvWXd+3Fv2CzzNykkihMDR8dMbiUaJKLdYFC6ozN3W\n1+R8CiI0Wi2cnBzj7t27kRdL5KqfYz/BHAW5ZyUUgoDH59nVIlz0RgKgLuaf9Jg9F6VyisiDNW1J\noHS5HlgDy+gQxm+mWN+JhM1wnOx2YMNYrbq2tlwhNHXxg9yJCBsbmyNDL8wMbRhyBtBAVkHuAKAc\nAUFpOgRbO3DyfhrDWKmtQUl1A0SYj0Eaxy917oN2zUaa8HvzaKKPoUlkuc4cR2FzczOqy0ggDhJC\nxwDp6dG33DQyJOYiyL09uBn0kxlYLxOUoJGJRp+3iE9jGEHAPXQt6czcJUT4/LQujSEQjr/5hc4J\nkggcBihv7GPrfZ+02YwTqA0z4HkyOgwu9lGoSItLuVItdLHnPAYxZp2//76t1PtCEJ49uMDZcd3S\nBEwkhoxSqdwp9ty9jlLnc9mqLWN9zcNqze1h1C/aphYX7t7fKfdQQMT8XFJKuK6DIGQIfQ3n9Eu9\naxPr2XNQFdVi6I6xyrDUGAOouNkVe17Uxgy8+7CRku1QM7bWXdzdL7cZ4IvYcoAIl4n0g5r2G6lx\nMqEPJ2h2ImDHHLpiQoT5ZRFyQU5wzIxHD98buRZhHLQ5i0W17bswDMMM4vS2OnQtMwIcV6W+WEiC\nkCIqZDsZFWycRRhDhDpR/okIMKFVGMo4LZ5hywgph3rKx006X5lPN3d4g/oVzCUSaLVsFuHdey+A\nAw0K6/0FciYalfCkGV1II4uk6ug2M6BckJCZKK8g4NG5HgMi5MXjwbql+X5a/8OQEYbdsPJzUSpn\naYoPVNZkah8RiJQ1FdhMZJgWEyKMBT7bvggwBDQ05MzVaGyIEDHsNH2fQcwl6SiBakX1GFTNlh6e\nUbqnZmL8dJPz7HdDhOWqC8cVqcKwridhTLan15haLo+a6LnIK0eeqj6Fu5kNlFLY3NyAYWO95xkZ\nBxmOtq1ZqsqAfxnFzxRnD/Evj6H9ZvtERMqJ6g3KyaduTIjQQtiFGaLpSEq65GLn51T1OztHXKAw\npeenVE4hGvf/2VbOTY/dyHE9BYIIOVoBhJOpTDAIEgEU+fDZAxUgaGMciHDWRYENM8plhUpFdckQ\n48Hj+oRkmFnNRwci1Npg994qamsl67miTn8XHQ6/dbTj4rgDfm8hwiqC0FbxLFzEPhtAlYDSOtA6\niwzAwnQOJ2/9EpoXRzZONrKCiCgTL9awEGH37wyWfozkGCZDCu3BiNq/m7U18pyn/M1ePEgIkGs5\nVYTTeY2yw8WZaYcnDVxc+cWpL7fgcHEMEd7kMWRmGNP9Kkr/+5RQG1+UUxeTznwMEQaBH3ll7cGB\nufPKRyMxlczEaTQhBFqtFt577wGkjA2XIu7MVOC1gmwiUuKV1bYdQ4StGw40RIBSlHo5SiRH7rlt\nQlDP2CjVSfgowtg8N0SjhWsRw7xfv8DJG/9LV3YEYfXgfRBuaahdr3AQYYxDtfmhsjpLMDQkNBxQ\nAc4nRISN9cEQITNQKSuUyyo1jZZeoIhL4wSxbZS+mJjKJoIIpVRTZbuKIcLc1CLrZeQG/TKmGyJs\nP2GBZE4AugW0LqJ6qYVTidzabRAhEdBsGZyctnre9wN9o+dykZstqE64rod498F1p66qUAiuAniN\nECsohgdryYM1S90lgbB5jfP3vpYUH5CQqO28AOlVwDxcdiEbwPOsG7sQsEm7MHV2Ik4ADBQ0q8Kc\n3Kq1GoIgGLAQMEqewsaa17d4aeHkERg/aLyPB2syhxijXK5Aaw2tzTTLDi+MBwuIIcIagtBkZPpm\nPCIkgNAH/KvCxV/lPVwMoOIJ6D58cgybcOIHGk+etXpkUgh6rvPJKCqrc13vGJ8kNPxL4AWfZ6dw\nXS17a2jJgzWioFAKGuxAhMMvNgwLEZ6eN3BVLwpEGGdzcEbfY1/xJlEIpi9mPH3yeAyIcPHPnRPP\nOgmcnBwiDIM2B9W0pHauZucGaJcI8P0Wnjx5DCmLWI8lwcpGBYi9yhQzv70JAp5davjhYKOecDMM\n9jy3fvCpUlmk2GTXljxYRWjcxRvdVu7htCiZGaZkkdzs4zppCeAQunIfuvoiEHnxbHougCMGFWCz\nICI4rrs4hZ6zYNHk7ILclXLaMMhURzhHiHDc5zCGUa042FzvLXydlj8GyIG8fgeq/i7IEGr1azjy\nHUtwvGxdc80gqdA8e4qTt74E6krPC5vX9r0c1hsG4EqCuNGqj0pF8dKiGjB9qQEt2hliCREWto2m\nUMYwajVb3T2ZaTVPz9CjObIEdlYBDux3EcDEYLoqjCZtbW3D9/2FkDieJMksa4iQDdZWN6C1Rphj\nHb2eDK08ISG2399TrGZINZGS4HmixwPaowpEINMC/HM4ysP6qgNuntkA7UIeBmZbKoeIYLQP/+oE\nJFRKcq3BlU/HDAObFYHA3JRFSNa4WtpXo0xoYbqSvTVUlBSpuW880ieFJJycNXB17VsW7UL0f4Ld\nitCJ4+p6FQXGsbUIH94MEc6Z1I29NlG2z00kcXTyDH7o55q44boCntd5lTwJKfOpC+c4AiUvfT/H\nGX4JtrQUw6BYNraJpIMgMHj25BSk3EJn6kHMzvNu4+4ESKieV56WjSTgyYWGfyMtSnFZyosoRpGi\nFKZLSyb3URSRpzgMg1bQPl8cQ4TuLCHCnmJoWdju1PXq1aWZ6jMRXNe7ESKcJ23IhBQ9qovXj1l8\nlH4QMVzHhRQUZfFnXDScASX7l5mxv+fM77e14QHw2u8Jsm0h+E4AAGO8SURBVJlQT48aw68XQ8+R\n9QoRiSj5peAH31lT93F8IJxeLTsG4CqyZL83eLCKkA03F42TSlKMtozBGmWwFPWf1D5vaz2ZkpJy\nQMoFmY6LmtmATX+4xBhGrRpBhNMOomYGdJAeFMpxQS+QW2hzaxvBEiJs64ExBjrUADqs69ZBMbzB\nrbUBDKNaXbUQYaBHCUkcQckKcB6kPD5KUTwKQzkKa6VVsB8We5eeJUQ4o0c2DGxUBEJzSy3CpYU1\nHxPapy15sIZ9KmY8O2r1IKBCUMqgYQYcRdhYd8eXDgYun7wJ4XjtYHc2IbyVLZQ39vsWhhaCcHnd\ngpICZVf1FKrNb2AM4FRBay/0Pkc7nmHs0N7+8hQlRBVBj06Oj7Cysrow2jAJRMgGqK6UIKVoe5yI\ngDAwOD+pD/1VG9s1OK7CxcU5VsoVSCmhHNFT7CCLpcpy6swHM/bwPKEceRIFgiBE/aKJtZVqgUpo\n9WlC2gyWGSj1rEZFEHBaNyg7BNUFPFBCH+dFPmfelhDhnM4bAaEGHj1t9pQR6fbYG8OolNUEBpb1\nVJ0//HpHUIhgghbW7n8Ala27NhuIuhYIAvzQ9O9UngNjtC1zcfBJwARIdcyEE0ITAwJMC2JcMTN8\nvwVmHghhzZs2TLI2MTNWt8pY2y53nl8QWtc+Lk7rQ303EbB1UEO56kE8a2FltQbXdaFDk4+BUET2\ngsFdHVK3OycQZkarFQCrBX/QGUKYNMP7+iHDU5HgJ6aHE/pozMIXxchIhhKLSEHastjzKIMlqV3B\nPvm4yZ8NAXLyOqAQMjE1caFRIdFvdSUARjM218szyiJkwPi9BlZOnShMqVoiHBzcbWcR9pAFPoen\nTu6CO0hY2Rx20pgB1ozQD7Gzs48wDKADs4RIblKnVLxjRN5JBDYGjuth92Ab3AoKPIY8XZd0spJC\n5MKkGWS/awb2V+UtWYTLNro4LXmwCj4//T0Sg7J2ku9lxk/Xb7e+4YuFIFxeTRkiZFiCwNYFENRt\n0dYc78tsU9WVIvh+MbJrTo6PUK2tQEqBrQ0PSqUz0KSkuSEWpayywSmtS27JgVd2UL++mQSXDaNU\ndaBcCQjC6ekxyuUKlFITe6+oCCWkJpybIDBdsmTpGNT5V7uqJhBIN0HCsRDh+RXWVgsKEbIBVAUo\nbwFXj6IC8Tn1kxlCObg+fojz974KoZz2CdkErYiSYXpjJAg4GQARds/9ss1nW/JgDSHUNGIwLA1Q\nCuYsOtXH8ItuOnWIMHbnad/CgVExmzyPokTJci6zXXmYGS2/hSpWQASUPQmlRJfBXQzW+SFnc9jE\n1ZG+VEiCiHeQG2STYYPhSRAIBN/3UfJKGc5X+rod01TADaz3fEW9DDi2CCmEf9KnLBUBQoKNQcsP\n2l7wQkqdUIBy0cb+8+wmCZigiebpk0SMqx1LixBMr90EEXbLwtLIGmVgFxkiNLowDzdu05oRhJya\nrzAcUusj5umW3xtT4Cgx4WbV34s1U4iQ2QaoTsmw5tgKKIQedyBCZuvyFzzH7v6IuoA5LafG8Pge\nUYr+XpuRNk9jNPb2DxAGQSaeF0EEmcgCjr2hRW1KUar0tqWVGKBjFPM1pRndmRmO6xQfImQzPf5E\nZrDRIMcFxR4sYJQMgszacBAhA7RMIxx2rWkrS1H0OPuHnF8PFrNd2J4e+nh62OqBe4y5HZYSBLRa\nBm+8edXz3a++VEW1oiaEjPq7GGYCEcapY9464NTaJW1yu1tk6IaaC1OeJoYI09vhnK5PBOzulNPy\nLAgnpy2cXbTGqnFJgtCqB2g1gpH+nkjg9CQbiNAYxvqqwnqfottF9AwQgN3tMlxH3L5XtNfbPgcv\nIgRhiPrFdXEhQpJA0ADqh9ZQzLOPZBOIGqePrc3Cs62tMhxEuGRyH7otebDmoxlmaMMgk9a/UaZN\n9ylnMZkqR0HuyoXo8hmbKKswmHoWYSTVMYY6LWaIguwTNovQR3WBZL+HLzYLrqgxuBuJCIHvo1Qq\nZfZcVATeqyH1SgzV19sHlQ2jFQQFr2JtpsSDZQehKIYmAfA1w1M0h1XGi60/RWk5ZBHOf6kcIpqo\nMOugOeYJPFckJIL6Oa4evRHRNFiNJKFQ3tiHgcTGWnm6RKNx8BdHC2Tmkj3gTEeWpG/mHJFE2Ns/\nQBBYklXmpSt/oDKMGANkjMHO7j60DjPZEHl6BN3ZSP4wfY0ObUzCemR6viOCCPe2wEGRCz2LKfFg\nWf2cdqzVQBlnYHdFQt8CES7jr0ZYZ+ziUZguLSHCvjKdz0o8DsQS94eERPPsGRonT1LvC8fD/rd8\nP9zyCppNH0IIOIrAU/VgCfvqCbTNSmO6x6M4Zsz19RUcx5Y/KQpsWVClGm3miVC/vobjqCi7a0JJ\nik9M88J5NYwoRY4PuuFQa7RB0PJR8twCZ1HyFD1YGFgNY+pzDKDeMlCSMHhroGWQ+6hLjCiODSLy\ne8r5aEJQz6uwGyWJqIRO8qXaM3lR99FohcuNfgp6zMwwxuDk+NiWMFoS2dwwYNar2v0auFRENCnn\n5ycIwwWXZ7aQVeqVkQc6jsE6Pr1oJ98sW3EaEXDWYIRm6aXKWqeK0p7rGCxmxsMnTfi+aQs4EdBs\nGQiRvRcoE+iub665JWfc2ahkd5+h+gK0WaNzgQgHl8qZ1W7BzCiXFFZrDpiBO/vvhw7DThjaIu5i\nE2a+Klfizkub6a8kwsmzSzSufFDP8Z1gjMH+nXswWi8sRMhguK7E3na5d8hpiPWnzVzdP0KameF5\nLu7e3QWHutjgNYkpUGZwNLbFgQjvrEnoPpnHlLhYGl/DylDxujRXEGGW3FJEgDbA2ZmPVsLAsr+j\nXITaesd6n2Oy/SOKKyCg6YcQlDNE2B31H8MTWUOEHMvSgALbM9Jfw4DrSKysuNDalsop1yxEOC+E\nomPNxQTiIqRIlc+JubEuzxu4umhBRYeZdlJXxHXWqNctREiLCRHGVBG1mtPzu8GylFyoIv2Ye4gQ\ndu3IY4OkLm4wIjAXCCL0+0OEnLhYQoQjrlMFGqzsraGcgtyZgVBz6qX15AuGlNTzymt+tOHeZ8hk\nU7blHi6upwARSgeQrn0JF5BeoqhzhotPVEdNd0NLM9wkOvXB4v4YHB4eQWuzuMZVRs2E3Hlp+z8R\noJSAVNR+iXY5KsL52QnCYPEh777w6SAJ5CDx8u3/A3UoggjP5gEizGGOmWFCv+vVKhCP3hIizEWE\nFhsiHE1SbvWCR9xUx8ctPHzcaHNTMQOuS3jlpVrPAjzKQXVaVChEwLvv1TtQJKzBtbri4MX71Yk2\naALA2mBnvQwLr+RVasKA7n4KqGwmmNsRF5xDVoskw24OF5cBji6uIZDm1zKzVqA2nEy4f/8+tJ5/\nct1pjVlyDnfvrmHnzmqPnlhyUoO9/bvL+LZYI8iBaDyCuvgqQF3lZAbA822I8GAHrE3x81uzggiZ\nQdJB8/wpjr7xuZ4vNToESTXzjdgwcLAmYMzzWbc0F/npt9jMsM00BovIMizfoiuQwp6+gpBT5TyE\niILUxzD/2/EyU5yLUHexw0derInlKioiZzS3vzs/ifFs7bBUYed8rFTDiLyU6XIzRTntMYAgCCAK\nlLUyT80yq/ev+QkAWo/nvbKhiZyQowUopksE4hCkW4DoDiijGwdDh2asNXI6GpRYPzJOQGY20H6z\nZ8GgAmW6h3oJ/2WvK8Xpysx4sOLipfWW6a6g1a16kILQbGkIEf2eOr+7uAyG8mD1e8+Y7DJ2hn3m\n5HWbTHDS1Z8ZJAQOT65QchXWa54lSs3jIUyYI+9V75wlPX5FadzBCvHo0SPcvXt3mbk5yTj2+YWQ\nEo8fPcTG5hY8rwQeIfTAdQQcJVKQrqPEfHvCmMHkWObzIbWBiNBs+Tg6Oce9O7sw2hRsM49WZaHs\nwc0PorgyzuzbLcVH8XSTAUgCHl1obFYEPGdQ3OyyVM5IEw4sebBir9RlPcTb714PxQ9FsBQKyTi2\nMGS89e71ILUdqgmimS061gsXB15OYBARWYhwrQwiCxHm9kgzOP0Vjb6oLa5ES+Mqlwm3WYS7e/tR\nNt3wC6ZhC7uvrbopqHzGVVGyWC3AqhwZWMM9CDPDcx3c2dsCm6IZV3EnDaDKQGkTaJ1bwlHOasRQ\n2GLeccLM3oq8Jft4WSpntAlHoXiwVH5PefunCNbAmcR9Pehv504eJ1oIlgD+suUomgOqA4xNnJuz\nHqUyEhdnFtAp6LyA+r40IJYtM1Upjn6ImTzcUpna4xDDFuPbmBHTrxQ4PG/gou6nPH2Zt6myIHPi\n3wLpb0LWHz58uNBB2MyMcllhe7OMrY1S+7Wx7uXnEWGGEALPnj6B7/sjxcwIop4i7YvRBMi0IiqU\nIVcGIrT8AI+eHoOEKOiYCEC3AP9yIJ/XRK2gew3DesKfXmr44U1ZhMsMw5HneqGzCIep87R0uLTl\nYXJZ4AhGYeysVyxEmGcpmanW8aLOOBVyAhcfImQGyiWFSjn12AhDxuVVkI9xOQFESAJwnOFhtOKv\nEJ0HIx0ZWEPChMWHCKMyW6EPtC4zjb9K3mLeIcIlD9YIcw0sOEQ4zGKYkbB0n2y7F2J7auvCCsiW\nwrELjrh18W7fIyquzIkAOhIixQjX2WzI3jvy9vS7DwkJGANmGzdiOCYMtRuK6I6ITw5akpaaou8J\nQ/tO4p75aOXzZR13D2FqWp6T0eCuLDxbbLugT86LUnSbE2spR7QoWLCdljr/k7RrF2X87TOvCN+1\n2XfvN0L0vpecYyFunfL2PhQdtJPfl9wjOZHtbfcH2P2MKDrspzNTSVDP/kkxn1qX/vfuxZ09yu6F\nNilq1APTWOK0LJWTTQsbPjhyobIBpCc7hWGZEdZbICUgHNk+yRg/BDNDlVyETR9CCpCSAyaFEbZa\nNmlOA0IJqJJqC2LYsL+ziTACwpWRDmmETR+q5Eapwj6kmx5q/7oJIQXqDeBrb1xa5QhDGK2hSi5e\nvl+B50owEzhogHUAEhJsNEh5IOUBbKDrJ3j21Z+FUgJPjs5RqtSw4hrUDl7H2r3XYcJgjhfl2UKE\nzMD2ZgmlxJzH658x1qB++PDhMtA9h4EfN4vQMNBqmUh35tX8ZTinXwKF1+kNmg1Aw5P6Fj+LMGNl\nTV4XgfiXGaZ10TFgAAi3gtgSEGA8PDzD1loVJVfZQwsROKiDmYBSFaZxZtf8AWTOzAwd7UNsAOkS\nhKsi+5yh/Vb7PC7czl6ofR9GM1TZgQm01Tm3k2DAMAjrIaSrQBH5LwjQgTX023tq1MKmDzZsUV4D\nCFdCKgkTaoTNAE7ZhdGM0PehSgr5EMsWTyyz96UNo8E8+T1YB/jwv/fj+PSf+il88j/66/iuH/sp\nrNz/EEwQGRRC4mN/6C9i/5O/BboRgKSDsB7g1d/6R/DKD/0hXD9p4aUf+P146d/4Awgb3XEe1mIT\nTgkf/dH/Gp/+sZ/Gp/7k38POt3wftO9HAubhY3/wv8N3/dg/wvf8+L/Aq//mH4YJApggwOYHPo1P\n/JG/DECivHkXr/+OP5HM7QeI8LE/8Bew/8nfAr/uI9ACjYsmai9/B1757T+G5lULzAIkJIx/hdon\nfi/2f/SnsfM7/jL2f98/RvXDvw3m+hjO3oew+Vv+b9BBE42LY7z4m/8EVrbvo3l+BKMD5FR7Yori\nSVO/Y3dTiuA6BEd1XkpG/SLCnTt3nl/jKq8FLQERuq470ok3Lpg8743Ceu9Lt0abnggiPChyFmG7\nmYkUnYQESafzUhGlxSxEgQhsQojqFnZ/91/H3u/6G9j93T+Bnd/5V0CqbCk3TAiU1vGR3/c/oLz9\nAnTYAkiAwxY2fuA/ReX1/xWCs6e4/zv+LHY//lugm37HeRDfQ4fwVrfxiT/6P+DTf/qn8W1/7C9j\n5YUP2YN6GKC6/wq+/T/+W/jUn/pJfM9/8c/xwvf9HuiW3aNe+sHfj1/3+/4s/IsAe5/4N/DiD/wo\nwkbnEK/cCr7tj/wVrNz/MHQrAEmFsB7gxd/4o7j/vb8LYd1+Nt6LP/Ajfwqf/tM/hW/7Y38N3/1/\n+hnsfPTXo3nmY+/bfgi/7vf/3xE2fKhSDR//Q/8dKjsvdfbpnMa/KG1uSuV0rRwg6eDp5/8+Lt77\nMso7L+Cdf/IXEVweQygF3fSx/son8OJv/N/hpR/8A9FTWuv68p1fxms//Mfx2g//Lrz/t/8nOP3G\nZ3uZByKSOumUsfXB78FbP/Xf4PAXfwof/4N/CeXte9CtAMqrYfP178K7/+y/xxt/+z/H8dd/DqQk\njAa89X3c/97fixe//0chvRXc+c5/G8wWktR+iMruK3jpB/8A7n/v77XWvhAwIbBy/0PY+/hv6pT0\nYwZJF8GTL6Px9Z9E6ZXvQ+Nr/xD+06+CvBUEh99A+X0/gOqHfxtqH/sRrH74t8CcvQPhVpYelexE\nzZ4OB2SnOY6zHKScmpRqZDkmomJmN47aSPR5jfFcRJCqGMWNb+no+MYQEYLmFVoXh2hdHqF1dYTW\nxSGCxsVsTmfMNiwkaOLqC/8fkFuBKG/i6ot/FVEhTnDQQPm134Dar/sdqH7ot4KDJkgocNCEvnyK\nje//E9j49X8Mcv/bcPb1fwnR5ZElEEzIKG3exdYHvwff+Nv/GViH+LY/+j/bg3kAVHZfxvqrn8Q3\n/86P482f/HM4e/MLEEqADbD5we/BKz/0R7D7sU+jsvsqtj/y62F8gKSCbhnsfuw34d73/m+x960/\nBBOi/Z0b7/9OrL388YhnOiprJRWefuEf4OrRN7D+yifw9j/5i2gcvgNVBk7f+BwOvv2HsfOxH8AL\n3/+jKK3v4erRNyFcN3so7/mACKcTYEZC4NHP/yxIlFDaOMDbP/13UN52QUrB1EPsf/K34et/48ew\n+YFPY/XFD+Hy3a/CqVbw6Od/Bmuv/gV86x/+q/jFP//v4firX4S7VgL3lDuxWDHrEBa9tlg1ItZ0\nZutWXX/1k7h88Kt49ks/A+k6CI2GdMs4/JV/ijuf/ncQNi7RunhmTx9EMD5w/zO/B2/9oz+P2p3X\nsfbia7h++mYEc2oLBVqGPMuNpTw03/ksguM3sPrt/z6uful/hL46hKxsQl8f4+Tv/1Fs/bb/BtK0\n8Kt/7T+AOT3G6motm1N8z4K+NNrS6yjjvffew8HBwdKgzXZkIYTE0ycPsb6+CdfzhpZnIQDPnXNS\n0azWyAgiPD67wN39HRhT8HI543SOGUI6OH/vq7h88iaEk9y4aXZ6SQIcNnD1hb+F8ivfB1Iern7x\n/wtne88+KAmUX/t+PPhXfwmbH/xhqM//ZRj/GqK8gfOf/bNw734cG7/5v8LX/4uPoXl+BlX2UvG/\nncc3MIEPsIniqUR7LE3oA2BsffgzOHvj8zj75pfhrJRhggZ00MThL/8TvO9//X/E6Tf+NcL6RTsm\nSzjAvc/8Hrz5k38Oux//Tfi1v/9f2X2QABO02t5QAtkQHaHw7Iufh7tyB6svfgve+qmfQGldwSmX\ncf34Kb76V/8TfOx//9/Cvz7F//J/+R0RaT911efIZNmIBb8wIj3TcPtJhd+pAqpSgZAu3FVLVcBa\nQ3oCe9/6Q9j60Gew/uonsPXBX4+wCXtyACCUCwCQjnfzFLOBcDy8/9/+k7j7Xb8Tv/wX/300nr0H\n4USnCQKkW4byKh0vGAOqVMXJ1/41Hv/838EHfuRPWwWwVhlIARuvfwob7/sObH7gu7D3iR+Gbpm2\n7caGETYBbl0DsK4TcmsQ5U1ACIjKJsgpWRd0ZQP1r/9DhCdvov7O5yDf/ElU17ZgtM5gIWWb3dP9\nWm5cKfnd2tpaGlfZjyyYGWvrm1COGmgsMfcvlLyU0Hh8GI5S2FpftevIYisjiETXa8ZPTAKi4oKc\nEkiVICrKerbCJpzNl+G98Cms7txHaf8jUFuvgsNm1GcCicgzLlVbJ/qoCViHcGqb+NDv/i/hbezj\ni//1/8bGbMUp6iSgvCqE47V3ezaAW93Aw5/7G2gcP8Brv+2Pw78+tXkGYQvlrXtYf+2TWH3xo1i5\n/0Gs3P9IVHLIjrMJQwQNQPudQuOqAqiyBxIS3iogHAWjQ7irLh78y/8R/tUJjn75/4fLd9+CKpfz\nC3QHChWLNRuIMJKVVmsSTiVq34qkE1VuEdCtANsf+m6YoIE3f/LP4fEv/D3sfuwHIT0guLrE3U/9\nIPa+7d/EL/0/fh8++Lt/HJuvfxRhs9nLtRPBkLrVwC/8+A/hX/zHvwFPvvCPIUsu2GgIIWF0iAf/\n6q/i2S//Y1T3X0mcMAjuyjre/Mk/B+nVUN17OQp8b2HnW74X5a0X8Mbf/s/w4Gf/Gg6+89+CUB3o\nyV3ZwNYHP4Lyi98Bkh7a2URsQNK1wZuJExrrEKZ+grB+gpJDcFLx+mNKGjMgPWD3w8DuRxKvj9qS\nFlMokzMvrVqtPr8PT/mtZcyMcqUCMYAWhNl6qjbWPayvdV5rq15B6+6NPrZZNCEFSpXSHHj0JhMm\nooKynRttvUpSta/Zv0b5te+HvnyC4It/EeHTX0HtW38P2Gjo5hnWvvs/gCiv4/yf/Rnc+Z3/T3ir\nK/2TldjGAjdPH+Gzf/rX41//2G/F+Vu/AuF6NvTE8WCCJt766b+A+uHbqN19GRxao4iUA+E4+Mbf\n/DNQpRWoUtXSrzQ07n3md6Nx9C6++Xf/S9SfvY27n/6d0K0YvBGo7L6A7Y++jtWXPtLpSrT1CceN\nQirsGyQktA9cP34DrfPHEcNITrJIXZ0pQMvewBqSB4sANJp6fI4PtjFVwfUprh59re1BMiGw8uJH\n8fQX/xHe/Id/H1//n/8MSEqUNnZgAmD/238Yb/3Uf4tv/MR/j3f/6f8Ldz/9I+Cwt38ggtEBLt/7\nFTADTlVClV2bKUES2m+gdfIQH/l3/xy+7T/8Cdz99I/ABD6EBJqnj9A8eYjWGfCVv/If4eLdLwMg\nGA1svPptePTZn8Cv/eTfw5v/4M9DN69R2roDAGgePwDrAB/50T+P7R/8k6DSOtiE9tSjA7Qe/RKg\n/c6ARUagf/QG6OoxjhoCFw0D2WaPGGdgqV2+gvY/Adr/1s7r4BOAUyuUAM+yMTPefffd5xeOyo1v\nzRKNPnn0AH6r1b/WKDNKJYXtzRI2NzxsJV5SLgDRaCYIP6HV8vHwoQ1RKPaQTBbkzsYUkJHY1lkM\nT99BePxrNhOQDSAV5MZLuPrcX8DXfvpv4dnP/DikUwaEhCyto/TSp3H2z38cJz/zn0KFZ9j95G+H\nbukuygWrCLpVx+W7vwKQhLPiQnr2EE4SaJ09QXB9im/9w/8TPv5/+CvY+/hvgvZDCAVcPfgawsYl\nzt98gG/+3f8zWufPAFiIXZaq+Mbf/M/x1k/9Y3z9r/9pSK8K6dmcgYt3v4Ta3Q/iY3/wL+GV3/yH\nEZN4kQSC6xNcvP2l9DwyQ0ig/vRN+JeH0T6d00QVkAeLOKvdwYSAUDj5R38c5//y/wpR3elwt/SR\nOyUJb793jeNTfyLmZbY4AUjKlLKxMZCeja0yoQ+hnIgKwRp10lUI6y1Iz7GUugNoGkyoIZQa8MhB\nW5iIbNafvb+OThcOdCsAYCCiYGg2BqwNZKkUZXuE0e84+p2GkMD7XqmhXCmls4+1b13HlC6PzdoH\nESFgBSEIwvhYf+EjWH/xoxaHH8mCJYBDoLQBeuk39lu181+XQBAIcaRfwKG5D4kQswA4mIH93TIq\nJTWQ96nVasHzvIKt7DkvGgSEmvHoSb1vCZ1s7kFotVpwlEpnT8W6Zxhrqy62N0u59WF2zcA9+oVe\nmoZxvskwgjBEyXOLeRAgAQR18Js/DegxMsuYIZSLo298rk8MViEeEDCBPbMLu85b9CUEgeFTCco0\nIWAA6drx0K1oj/JwdnSKt5/cYHsyg3Vosyb7/M6EYduNktqjdGhhValgfJuhSFK2IUCAoFwXoe+D\nwCClontp652KYrBIdvbGeN/tt19yGAKC2vfPZaSlgn/RwLf9h/9v3P++f9eOi5wtE9Vs7h55g6tV\nhZMzfyJ9ICIgmvyOzlphsQHq6CgdM0gKiIhoVJY9S3B1A4uucJyBCjtImUmoTsCgGykVc2/fiOzv\n499J+zuy1hm6qSwt91X3/RikXDADJWF/FxiB5sUhjAnHM4gKFiw4Ox4shu9rVMpqYCdqtRqCICjQ\ngr4YjZlRqVShdfgceggpW4jQK4ODsKATbQCnDJS3gMuHADnja3whkWHrxaIUXTtbY4YJFRFCC6dD\n3mlJpGIlgPBqIL4cvBYTgQYZlUQDs/VIOXaYmSFdr0NCygwh7f5ldAgRc0TGe5RSoHYV7a7vjI20\nfvdznET17fyGumgtBx4sMfRAyKzu3k+4uonnUr/ijnLfppU3Le4Df5eIk4pz/Pv+XVfOPyPBtDv8\n/ZgZihgndcZViyEFoINJA9KpMCvWtHrRTcVwG18hM+PRo0fPJ0TIHYb3PIorCyFw+OwJgsB/PpMI\nMhhMIkLgB3j29BhUWOoKttiTjAyrMbvJXECI8Kb5ZEAQ49mVsbUIU51PVOpgvt17P84elWBa5549\nKrl/8cC/G/d+ubcCrRfZe7CGKQZMHTFattF1pt9wMgBHWKPVQv8ubilydVsPCjBD02NyJyI4Tlox\nDTOkGBx8S0RwXfe5NACIAMfpLSCsNWcC2TEzHNcdqdDzwg1wFl8jCF7be1DIB7UoQkyMPK7zKir9\nMk+NAbiSIG6pubVMUh5elAAApjgxwtkbWM/rgpiHAvbxCgxSNs3AWpnATGj5BuW1bQgSltG9p65h\nkbUjvp6eB80YRrUisbdT6euNuqnu3vb29nMHETIDQhAOdiup9wURjk6aOL/0Jyb7NMZgY3MLYRA8\ntx7CyeeJoZTC2lYJ3AqKaYBEMVhoHEcJUhMcCOdMTAwDmxWBwPCS/SZLnSmQDSJmOhDLNrBJGZVl\nSbykpIHDqQRwdGVw2WJIiuLAHA/CcTuviP+rkM0EXS8fxmjLa9TFc1QYfY5qES5JLfOQf4mnTx4j\n8J9TiDCD1oYIHx+B5GIffOeR/UwS8ORCW4jwBhFfLi+jCn5xupJDkPsyhT+Ldnrm49oJU1B4qSRR\nrcher1b0e0eSjWsTAq2rE1w9+oateRWBiCQUypt3ige7kICp3AEnCtkyDFyzgTV2QEhkiDKj3ggL\nsegQETzPWxoAOTRmtvBrgVKu57GRIHiuMx+7dFRQeMwnnT8ZB+AqsrxtS4gwA2GPB3aRS+UsIcLJ\nFY+Bx0+bbTkhAsKQsbdT+v+39+ZRcl3V/e/n3KHGrp5bPWqWJVmyBluSLXmQbWETxsfwTF7s+Lfy\nEuBlZUHIj1+AELPgR0gMC0JCEljJCi/ww4/hLcj7EYz5sQDbcmQNyJJsybLVakm2rLHnueaqe+95\nf1Tdq+rq6la3uiT1cL5rlfrU1a1799lnn3322fucfYhUhLBKzHjcEKEjwXJ0EgOXifddLHimg+EP\n0lLdiDD0WSSEuUWuVuUapBEak2MriCRUYLC7fEim4rPGa7QQQ4Q3Ags+RFgWPTIHQoSFWGCGxFRD\nhNecK3LBCbwrR/P6sGelDMsBXR8bHjQMMWH+tDEhwtSVEOGY8OCsDxFa48KEMh8iLP7MlmiAChFe\nT/kfGyJULJ4+FlKIcE7KeHGIUBQcd1vwUZgm5vdhzwrXQ0bkJHZFcYjQ23snxz5gVhsCwv1n7mgU\nIQSBQECFCK+L/F8JEUopqa/14/ePPZdQ08Q8TDJaZhnVBH7//A8RijkcIhQiFybs7EkyPJpF164k\nbXAcqYysOQwVIpxDmKyf2RIqg7mZvjXBqRPiqk+ZrbWbvairq1MhwusA6TjU1NRi2RaO7WCaGgGf\nNm5H5/z1bJUn1YVhGFTV+JEZa5Z3sZmduyTn4PFdjoSakIZl55bop9M28bg17mQTbdbmMJulmNch\nwmnkwVKYHiYbTHQBo0lJIiOZqD/euKxS11K56XSg2UP2wMCAEszr0DZC0xgaGsTKWrkQoVM6Eez8\n5aMowyMElmUxMjQ6ixONutBmeNjz3MuDpQkYSjhknXw4UBO5o86KPgpTFYL831mkGG5OJneFmQlQ\nEfJnU5O1Jbaj7NcbBSklqVRKrcG6HqIuBJlMJu+ZEAtMqMsnT9KRpNPZBbCYZ+7lwRJAxsot3VA6\nu5zdZj5ncp8GI9Talel3yImuWw7UV2j5XYRzMEQ4DbJmas+4R7y4cPK7eK6SUHk8yULQ2tqqQoQl\n+vZMYds2jU3N2JaFbdtzmyfX0hlkubLhmyxqrp+luwgLjwyzZxginHuTHFtCU6VO1pa5I7nUPK1s\n3We24DrsInSmzIBsVuXMmhZrrxIiHLlKiDD/lNkpoFNQkO52ZU279vFHAgG/QWWFSSSc+1RW+Aj6\n9WtKVtjf368E8zrIjqZpDA0OkM1m8wflLjQ+zlw1eyHCgZFZGiLMT2k0I3fgs7z2Ve5zNUQ4WBAi\nVG6sMogTzPOjcrSpHfYsgETC9gZNFWWZgvxMFiIEsgXRFDnBA6a02+a6t4UY/32K3kxdz2W0t6wp\nHNRdqmqOpLLCpLLSN2YHmpTTnwVLKfNhLKm8sWWXdUE2kyEQCADGwht8yqQQpSNJZ7PTd8/esHo6\nYATBXwOp4dxxOddAp5yrIUJb4jfyuyDVGDhDWcr/nUXJictvYE1DMczF4w1ma0e1JNSGcrtPZvXO\ndenkwgHFvULeuFXuUlKWY3eEELS0tKgQ4ZjmLc3X6S7WdRyHhkVN2LaFM4tmpHOqLdwQYWMdMmvN\nbmIX4PzEkbAooucOSFdDYTkFf9aQcnPWYOU7UzCgMyyyynKfqtxM8n+agFQ299eYaEOOnOFpFDNt\ndGnh+Gpxgi0grSuUCA2pTS1Xj+NIHNuZUS3KKW6xWAy/36+Ek9yEKRw2MU3dc0i62fdHopnpSYsQ\nJBJxTNPgZh2ZOh/g2A7ZdIaA3zdL1ylpYKUhPZILiy6gsUAAibSDoQtMFSIsD0NnGW5OHqz8QO/3\n6+7XudF+JRrwRuosMTE70QVE0w4+XVAVENgTWVg3kdtCOkizEiuyDOFYY2vkWFelTQiwbbDs8byf\nToSuXP1QSsnAwADNzc0qRJhvj2BAJxQ0xrRLOuMwGs1MWfJyIVeN4aEhqmtqME1lwF5TfxOCrJVl\nYGiU1uaGWbhbTebGCycDmXh+7Fg4FpYQMJyUVAdzCUeVo2Hm4uQxdpbgOoQIp77Ifa7t/MiU8LLr\nGtyo9aOTZXK3HGio0JCSCYyrm99/JQKkjbCzILOMNXWmzkRDH390ijONNVTl4oMQgiVLlmBZszz8\nciPbuKgdhMiFDacDQ88NtIsXt2HbNo7jsBDXuc+8LSR+v4/W1kVIy56FE3xx5a/QczkUxcyeNJfg\nSGip0rGcfIhQzdHKI07zO0Q4GxZRl7lGArI2nOwRXgoE16hZ2SCpC0+cGuFGKYGphAhvfv+VVw7Y\nktP3iUuZW+Te3BQsqrtgcDjNyGhmSmt9ysmHeDyuQoTlkg4pCfgNFjXkjh9Kp9IYph9N09CEUPnG\nrgGzP0RYoBtu2q9vDgSQyORChLoyrsooQvM5k/s0BWwuwZLjPyJv0EzlI64TvyQ5wyqadkhmr5am\nYTZwfWY0aPmzuwo/NyezRC5EqAb+8kITAj2fyd2xbQxdV0y5ll4mBFnLYmBoFISY5UbIzI7KmYvb\n0N0QoWXnQ7dKjZSJsbOHlJsaIrTsuSVRGmOPI9YExNMwIHJhueKAV3HtKnyTLECfgQ6ZXojwZvJc\nXLczTuR1unfS2qgQ4XWD4zgsXrzYCxEuOJRhkJj9IcJCaDM77Fmbe3mwVIjwOvWZeZ0Ha4qL3AHi\ncywPVjGJmoDOEcHlkSn8VsJtzZKIP9exrqUvTbZ2b26FCCm7nSeu071XgwoRXh8IIYjH45imiTaL\n8trcyK5SDsypEOFMM7nPwTxYY0KEyoNVnj4zi/TFTaNEMDePNxjHQJHbwTeVz/WUq6mHCGeLarkx\ncPNdFX7KlX9NhQivkzzLnIE1ODiIZVkL08AqRy9zQ4TDcyFEuBDbpyhEqFAezCJBN25K7fI7gtw8\nWHN5fJLTuG/mZ+hNyE5sB+rDGpIy7CK8br39xoUIpcztNqyp8o277vfpZTGKhBBeGEthCjI1RZYL\nkQsRtrW14TjOAg0RzrwTeiHC5gak7czyQVzMLEQo5t6B4I6E5ioN20GFCMskQnnJnzUk3dQQoZsH\na6Fgpp6lq+lc17ASV5O/KbbPzFH8IHcLprgBIUKJrmtUV40P3xUf9jwTZLNZ5WG5TjK1oHlbLgGV\nEtty0GZ9njZnwYUI4UpOP7XIvRyynv87i2T95hz27HapBXY+wEyrKye5rmswGHeIpSX6bBmThAHC\nLPj4AJ0bo0lyIZGSIcKyjV2Szs5OFSKcSmtoAq3oMxlfdV2nu7ubdDqtDNhr5bkQpDNZunoGEJo2\nuyMFCyyLu7usoydqk7HlbLIJ5gFzF3oerDzicSvnFZ7nhz0Lct6loaSgKjizmVapCJsQuRBhXTg3\nENkT2bg37Mh2CcIgW3sHUvcXEazls7Zffzqu9xuEELS2tqos7leRV8PUaGkMjePdwFCKWDw7ztgS\nQmDbtpchX+0ivFbeS/w+k5bGOmQ+WevsExAHzBAE62H0Ym4idg0KUtyIDl/m5nUkNEZ0r5/M5xDh\njd10NZ8zuU+DBbYzN9261ypg9sy84GhCYOjC24znwp6Ga+zGiZ5A6gGk7htrYMmJutvMhMlhrEdU\nSonjKMNnNkAAhiHGyTIl2kx5Awv7yQKpqNBAM/B2Espresrc59k8bnOjhBPaca5Tled1HqwFtsh9\nqtAEVPivTaCkBE0TRONZLnbFx53BV1ftJ+DX6Rm18RmC6qAo7cXKD2BXlT+Rf6l0pramriSc3Blj\nmu+6uyellFQEDXQhPMNTyvGD+vV47+XLl5UXa4oyPFY6JBVhA9PQxrSZaebkTdd1Ll68SF1dHcFg\ncOF5scTMw6JCCFLpDP2DI7S1LMKxZ6MXSwM7DenRGYQJc2dXziUPkHt+bOeoTU1IwzRErsnnmRoR\nInfEXHEqIymhvgKCZhmHB3VUToF0sXAWubve35Dv2tf/CAGplEMikR4jpIYhqKnyYzuS2lBOydjO\nzJrHi9vOVMnfIDmXEgIBnWBwvDhfz3V+QghaWlqUcXWNbRYKmoRDlGwz27ZpampC07SFGSKUM6+z\nGyJsnrUhwrz3yspAJjqDw54FUjpzygNUKkQoHeadF8tNgn1peKzwORKqgpKwCWVbMLIgDnuepgJY\nSJhpdYUY65VxUxG4V3StPOkg5ipvb4Y8maap0jTMoP9P1mSmaeI4jgobzlBp6LqGtGejkVp42LMG\ncuH1I0PPTYjns4QLxocIHXld8k3nMIuYeVN3Ec5FQbnZcBe5ex/cXYSC/phDNCXVwaE3rC0kFy9e\nVAbAdeCrpmlcunRJ7SKcAYQQpNMZLnf15XYRKpbMKmgCukYcMtZcSA49wz5d4lN+gS982yxp4/I/\ncf6G/WargnLdzZGAIGiKq6SDUNZX2fguBHV1dSpEeB34KqWktrYWwzAWZoiwDJBSYhoGddWVIGd7\ntnB5k39/M9oHqoO5jUvK+C2jCE1RH7sT46tNkKd6XyncHA+WcPmgBqbydVZJwBCY+uT5slQ2u/Ii\nHA4rJlwneQ6Hw+j6wkpG7KFMqlHTNQKhwBzwss4s+bBg7mVyl0DIp6GJeZ6mQdzgZVGTyHpxP7As\nq6QdUryjeaL7rtr/yiksheVSC/qn0sflBOVy03ct5Zlm23WKMq3PhKbi5+qaoC/uMJqayN0srsQU\nmdgal95WaZlbOFpCMK9eFvmynHrDT9pfZNnL5enHkvPnz88ammYjn67l3W6i0QsXLpBKpdA0bUHx\nKddftPH9f5o0eSHCy70ITUyb3uvOpzHXp7Yip/RzJbJgQ85EY850x6Kp82n6ZTfR6OURe2yIsEyG\niLwO5WuhYbJnlbIpy0lT4X2WZbFnzx5eeOEFDhw4gGVZvPLKKzz99NOcO3cOwPOUHzx4kN27d7Nv\n3z7S6TRHjx7l6aef5o033ph2vy+bgSUKOrWhCY95RsGCILfsLnpzCTUKdtgaYnzZFUb3hJXCshC5\n75OW88+iqMwkZbPg3WPo0ArresUyn6zs0mFoua25Us6MJsg9x32HqQukhAqfIOwTHq16wbs1kTPC\ncrMJgZZfES+EQBQwKnddgqahGeYVQTGM0mXT9AjRDMPLGisMA0RuYNQNwxskdV33ypqmoev6pGUh\nBKZpjil7/Jig7PP5vDCTaZoly4V0XAtNRp4HDQ0Ns4am2cina6FJ0zRs26axsRGfz4fjOAuKT4Zh\neAu+NUOfRr8b2wfRBD6fSV11BISG8Pq2yO+ImaQsRO5ZeWU6Yf+fLk26huey0XWvLITM0zdWJ43T\nTy4/8mWZV7KGcLw0WoVjjlmwCcjdECSLyoV6cpzOvErZfd9k4x0laNLITYzrw8LT326WBrcpbsZ4\nV84xWOPKeOfy1qVJKxrLykmTe6coMIYSiQTRaJS2tjY2b95Md3c3AwMDvP3tb+fw4cOMjo6iaRqJ\nRIK+vj5aW1vZvHkzly5d4uLFi7zjHe/g+PHjJBIJr8/fMAMrHo8zNDwMQMYW9MUcdA0yNvTFbK8/\n9UZtz4LviTqeAdITl1hOjkGDKUm2qGwIGE1DMgumdqVsaLm/o+nc9VJlQ0DWyT1Ly5eH8mUJDKSu\nMGogJT2rtyeRo0kvoimWASvfAZJZSFu5e9yyJnJ/k9nc9bQFiTytiSyMZnJH2cyEJk3AUAqydu4d\nfTGbtCWp8GvEM5JoWuLTYSgpiaUlpi6IpyVDCQdDF8SSWQZHU2imRiyZZWg0jWZoZLIOfUNJNF0n\nm8nS1zeYP2JD0tMz4NHU0zOQHwzg0sVuslkLoWv09Q2SyWQRhk5f7yCZTAbTNBkYGCAajeLz+caU\no9EoAwMDE5ZN0ySdTtPd3Y1hGGQyGbq7u73Bq6ury6Opq6vLG6DOnTtHJpPBMAy6u7vHlNPpdFlp\nMk1z1tE0G/k0HZqy2Sy6rhONRrFte8yxOfOdT+lMhu6eHjTduIZ+V1A2DYYGR0kkUwSqIgwODhOP\nJRGmQTyWZGhwFOEzx5WHB0cRpkHG7f+GdqV8TbpgLE3Dg6M5OnwmQ0MjHk3FOmlC/TSYQNNEXlcl\n0DWBdCQ9I7bnteiN2p6hcWnYJuvk7Lq+mE3Gzulit2xqV/TkGJ2pQSwtGUrmrpcqmwVjnDHJeMcE\nNOXGE4nlSDQNhlOSbJ6+mzXelXUMtvI0abmkorFMjg5b5squYTSYLBNNGZkrmwYZYHh42AvrmaZJ\nKBSit7eXl156ic7OTpqamohEIgSDQc6fP8+FCxdIJpNUVFQwMDDAyy+/TG9vL42NjYTDYerr64lG\no9OyjcqSpsEwDHB8OWvUH8ZnGkhhoOngMx1k3u3j8zk5F5AEv0+SsSVoBgEfaIYADfymLFn2mXnL\nuKCMBoYBmsxdL1UmP0nyI0EXaAJ8blnm3iHyJrTflGj5csBXRIcQCF1gGrmJl9DAcGca+pWypueY\n6sj8dbesgWFITOMKHTOhyWfm6EAX+EwD0zToTThkbY2akIYjBIYhc55CoaEbAt0wAA3D3TMrBYaR\nrwwCTdPw+4x82cDv8+X9rIKA3+/NDAJ+P0LkzjYLBgNowm1TH5qWWwTm9/u8HEY+00TPL1Y2TdNb\nuOx6gUqV3VmCpmn4/X5vsHPLAH7/lYOc/X6/95tQKOQNmoXX/X6/d93n86Hr+oxochyHixcvUl1d\nPYaOm0nTbOTTdGlyPeG9vb34fD4CgcCC4ZNbJpubfU6932kgxZWyk+uDWcum53IvlRX5hGMyr68R\n4EgMvVSZvC7wgRQF5enqgvE0maaJoevgSHymL/dOaee9dk5eP+V1Ukn9ZILQ0DTwmyYSDVy9lTRA\nM/D5hLdrMuB3cmWRG4s0fWzZETm9rGuM1ZlaroyTu65PUPbGOKFNPN6RKxfTpOkwkLDwVeoITcsZ\nBoZE6uLmj3dlGoPdDPu6ITBF7t2aABOJ0HJjpN9XHppMQ8fxgTCD6IDp812JsAnBtm3biEQi/Pzn\nPx+TWqdwQhcKhbj99tuprq5m7969jI6OEggEABgZGRmjI6YCIcu0kEA6FkIzGPrVEwz/+isQ8iMc\nC00T3lEuer4sAb8h6Bmweeu8xDSupM3XxNgY9Zhy3lhx3bN5T7Z31p9Wouzm2xBifJn8c0uV9byl\n7Yb20hYcvZz/f3nFHUoBHROV3WRrm1ugMpDzPLnuzGuhqfC6rsO6W3R8Pkhmct4qXcvdN4ZPSAx/\nkKbN70D3+QGJtGXO/S5A5gkRmobMZiBUj7b63V7+HFGQS2dM2dCRtp1zz+ta7jmOA4ZJpvYubL0i\np7AA284pUiml55kQQmBZ1oRlTdPQNG1M2e0cuq6XLBuGgW3bXrjGcRxvUCssu3TMhKZMJkMoFJpV\nNM1GPl0LTYXPK6ZvPvLJtiyEpqFrAr37RYQVRxhmrn9Npd9JWdAHJcLQsG2HTDpDMBTwrnvKx7bz\nax6KyzlXgdBE7n2ioDxdXVBEkxeCdPJuJTRIx+DNX4Bj5XVmXieV0k9CjCk7toNu+hjo2M/w5bPo\nppHzkjju8pMrY46uidxh7wVlhyt6snBscSYYT8aVwRvjREG5cLwrLhuawMqXLVuiabmJ+1vnHfoG\n5JXI6U0Y7yjnGEyuiaNpON5VMCbmPY3rm6A6mBeHMtBk6DrpqM2OL/6/tN33e0jbAi3Xz/r7+9m7\nd6+3cWbHjh3s2bMH27apqanhnnvuAaCvr489e/ZQXV2Nbdts376d/fv3A1BZWcm9997rTc5usIFl\nIzSdxKlfkTz9G4Q/fGVHofu3YCGiEIJEPM3QyNjV+bmF1SLXkShYEJ5//ph3ynznp/D3+U5dlDun\nkCnec6VEuscsFFyX+SNiClloO5KuUYEz5m252ahW4l1uHa9cg0UVNkGfVrTg8Up9S9VhLA+cvPK5\nUg9dQH2dD93QMfJrOizbQWDnlFeBtafpBpWtqxGaiZTOlXcWHIkjASEdMIPI2jVebSUSd9WCLOBB\n7ltuZjuGVgR2eDFofubzzsXCgVih/LxdmIlGJUb8AjiZEn1NTLEsPZ0rDB2ZzRY8v9TS4omWG5fq\n/xS870rPH08H464XbYHK6R07A/0n83pITEiDqy9F/tB6NzQpNINYz5ukY8MIzSgYxXO69YoOzD/K\nscenE/LeLRijtPPrUcfdO25rXP5eoZV+rhTjd34JgWkYWLYNSAYHkySScszh5+5GI1G4iJ9cHUqN\nhyLf5rKw5eT4MQ4pkaK4VcbeO5bnRdfyXoZiQ6PwXtcAyli5sZOC9zkSGsM2Qb/mGYJX6ls8/peu\nw7ixU2jY6QRLH/ooVctvz42XBW2XSqWIx+PU1NSgaRqZTIZYLEZNTU3+3TkPcjabZWRkhOrqagzD\nIJvNEo1Gqa6unnZOvrIZWAo3Ux3nBG4klsQ0dEIBn2LKjeC7lPT19dHQ0KBSjlwH9Pf3U1VVNWbB\nucL0kM1ajIyOUl9Xq5gxCzEwEqMyHMQ0Fmg6kpuAUg6Qye71HDPT8Fy5KP9ROdKZcjb3uXYC+kxJ\nvW5DcM43jSEz6NLINetEyRmnc77gjI2G+W10CCEIBALKuLpOcNc4LUyUQzHm13qaRhmfeb2qK8vw\n+znmKxACkyxCmjkHmDN/fR2ypHReJ7Zq+oRjV7GRNJHR5F6fiXEFyoOloKCgoKCgoFB2qEO+5hgK\nM8y65VLfizPRKsyc36V4XrhGSPF7Zrwt5uFEvFe8npqMuuViGb0aHydMQjzBvTNti4XclkqO5zeU\nB2uOdUYVjpo9/L6ae1mhfO0AKF5fR3meTJYLeV88XFytTQp/X2qoKfXc4nsLv19Lf1RQuFlQHqw5\nBMuyOHz4MP39/QD09PSwf/9+BgcHATh9+jRHjx7l/PnzdHd3c+HCBUDNkq4FrrLu7OzkyJEjQC4b\n8IkTJzh27Bjd3d0IITh27BinTp0CoL29nVQqpZT8FHgLuUXsBw8eJJPJAJBMJjl79qx3ZEVHRwev\nvPKKd/+xY8c4ceKE93+ZTGZB89rlS3t7Ox0dHR4PDx06NOb7wYMHOX/+PEIIotEoBw4coKenh3g8\nTnt7OzDWcBkcHCSb33XorkOxbZv+/v4x61KEEHR1ddHb2zuGnuJ1K4X3F38fGRnhjTfeGHNtonvH\n71gb661X/U5htkH/4he/+EXFhtkPx3HYvXs3/f39xONxAF577TWqq6s5c+YMkUiEEydOUFNTQ2Vl\nJX19fcRiMRoaGkgkEtNOkLaQ4SrrS5cuceTIEYaHh9E0jeHhYS5dukRNTQ3V1dWcPHmSkZERBgdz\nWesvXbpEY2MjqVQK0zQX8ALtq/N2eHiYAwcOMDIyQjqdprGxkRdffJGOjg42bdpEe3u7N0Ho7++n\nt7eXkZERRkdHicfj9Pb20tzcTDweX5C8dvl48uRJ7wgPTdN488030XWdrq4ubNvm9OnTGIbB+fPn\nqaio4NixY4TDYd566y0cx+Hy5cssX76cwcFBQqEQUkpefPFFhBBUV1dz6dIlNE0jmUyyb98+mpqa\nsCyLnp4eqqqqvCz39fX1udQ7iQQ9PT3e5g+XDp/P57WdZVkMDg56B+gmk0nC4bCn2yoqKojFYvT2\n9npG9MDAAKlUyktEC2ONsFgs5iWKVMaWwmyBoVgwN2DbNkNDQwSDQdatW0dtbS0tLS0IIXj22WcZ\nHh4mk8kwPDxMZWUlwWCQWCzG/v37ue222wDlQp8uYrEY8XicJUuWsGbNGn7729+SSqUYHh6mvr6e\n7u5udu7cyejoKK+//jqRSIQzZ86QzWa5++67FQMnQTKZJB6Ps2jRIm699VZ0XefOO+9kz549SCnp\n7u5m8+bN1NXV8fzzzwPwwAMPEI/Hefnll4lEIpw+fZqRkRHuv//+BcvH0dFRLMti6dKlLF++nLa2\nNvx+P0eOHPG8Vjt37uTkyZMcPHiQSCTC1q1bOX78OBcuXCASiXDo0CEqKyupq6sjm82STqeJxWIc\nOHAAKSUnT56ksbERx3EYGBigq6uLaDTK5cuXqaur82hJp9Ps3bsX0zQ5c+YMNTU19Pf3k06nWb16\nNYcPH2b9+vVcuHCB6upq4vE4S5cuxbIsDh48SDKZBGD58uWcO3eO6upqLl68SCAQQNd1b/Lo8/lI\npVKcPHnSS/I6PDzM2bNn+eAHP0hVVZXSdQqzAmqKPUdgmibve9/7CAaD7N27l/7+fkzTZP/+/Sxb\ntozVq1ezc+dOtm7dyokTJ0ilUrS3t5NOp6mrq1MKZxpw13ysXbuWu+++m87OTg4cOMDGjRt529ve\nxrJlyzh8+LB3qK+maRiGQTQa5ejRo7S2tgIqNDsZb5ubm7n33nsZGBjgwIEDnpfDvcc9DBnweOxe\nNwyDeDzOb3/7WxobG6d1+Op84+Ndd93FrbfeyqlTp3jllVfw+/20t7czMjLC7bffjmVZAN7B0i5P\n3UOlL1++zOnTp1myZAmQO9i6paWFJUuWkEwm2blzJ7W1tUSjUZYsWcLixYsxTZOamhqy2awXzoVc\naDGRSNDU1OQdC1RTU4Ou64yOjrJkyRI2bdpEMBjk7rvv9rzrrpF0xx13sHLlSqLRKNlsFtM0Wbt2\nLevXrx/ngdd1nYaGBhYtWkRjY6PnVXaPNVG6TmE2QIUI5wgSiQQHDhzA5/ORyWQIBALs27ePaDTK\nihUrvFO/bdv2zk9yZ53ZbFYZWdOAy6eOjg7eeustAoEAjuMwNDRELBZjcHCQYDBIKBTi8uXLdHV1\nUV9fTyKRYPPmzbS3t7Ny5UpvMFMYz9tLly5x+vRpQqEQqVSKJUuWcPnyZU6dOkVbWxuWZfHWW28x\nMDCAruv4/X66u7u5fPkyFRUVWJbF7bffTnt7O8uXL19wyUhdPr766qv09vYSDocB6O3t5dChQyxf\nvpyqqio6OztJpVK89dZbbNq0yTus+sKFCzQ2NgKwbt06Tpw4wcqVK4HcWk7LsojH417Ir62tzVu3\ndfbsWRobGxkdHaWiogKAhoYGAM6dO0dDQwO2bXPy5EmampoYHR3F7/eTyWRYtmwZHR0dns4CvDCh\na8hZlkVfXx/d3d00NTV5ob+zZ8/S3NxMOBxG0zSqqqqoqqqioqKC6upqVq5c6RlYCgqzAcrAmiNw\n15lcuHCBdevW0dTUhBCClpYW0uk0bW1tZDIZRkdH2bhxI7W1tdTU1HhhxEgkAqiZ3VTg8igSiTAy\nMkIsFuPuu++murqa/v5+DMNg48aNtLS0MDg4SHV1NevWrSMUCrF48WKCwSDBYFBlIJ+Et6FQiGg0\nSn9/P3fddReRSITe3l7P+3HLLbd43o3NmzfT2trKwMAA4XCYDRs2EAwGWbx4MZWVlfj9fs/7tdB4\nGQ6H6ezsxDRNtm7dSjabpa2tDYBgMMjKlSvp7Oykra2NlStXUlNTQ3d3NytWrGDZsmVEIhEWL16M\npmlUVlaiaRrBYJB0Os26devo6emhpaWF1atXk81m8fv9tLW1kUqlWL58ObW1tVRWVnoHcldUVNDb\n28uSJUtYtWoV0WiUpqYmWltbqa2tpaKiglAoRFVVFYFAgNraWqqrq6mrq/MMpmQyyfDwMOvWrePY\nsWMsWbIEx3FYsWIFra2t3rqrQq+lruveAdoKCrOmj6o0DXMLmUwG0zSnrEiU12pmcBwHy7IW5AB+\nI3jremOvBUq2r+gEN3Q6H/iVTqc9L1pVVRUrVqxQnUVhTkIZWHMIkyVlvJriVANReXhezM/iPD+F\nfxWmzlshhLeep9hDoXg9PfmcKGfURPmlXN67OzEnylc12VAxUZ6sYlqK226idxQfZ6L0mMJchDKw\n5hjU4K2g5FlhvsNxnHG5sRQU5hqUgaWgoKCgoKCgUGaoNA0KCgoKCgoKCmWGMrAUFBQUFBQUFMoM\nZWApKCgoKCgoKJQZysBSUFBQUFBQUCgzlIGloKCgoKCgoFBmKANLQUFBQUFBQaHMUAaWgoKCgoKC\ngkKZoQwsBQUFBQUFBYUyQxlYCgoKCgoKCgplhjKwFBQUFBQUFBTKDGVgKSgoKCgoKCiUGcrAUlBQ\nUFBQUFAoM5SBpaCgoKCgoKBQZigDS0FBQUFBQUGhzFAGloKCgoKCgoJCmaEMLAUFBQUFBQWFMkMZ\nWAoKCgoKCgoKZYYysBQUFBQUFBQUygxlYCkoKCgoKCgolBnKwFJQUFBQUFBQKDOUgaWgoKCgoKCg\nUGYoA0tBQUFBQUFBocxQBpaCgoKCgoKCQplhKBYoKCjMJUgp530dhRCqoZVM3BSZcKTkRkuflKBp\n80/mhVwIkqmgoKCgoKAwayElzLd5hfJgKSgo3DRIKac1M08kEkSjUTRtfq9uqKurm/d1LJdMZDIZ\nhoaG5jW/HMehpqYGn8933fm+59WzfPfXR3IWz2Rw22gGPhohBFnLZufGFfxf775r3rWbMrAUFBRK\nYroD3bXAff7V3uX+fzQaxTRNwuEwjuPMO34bhkFvby/pdJpgMLigZW6qMpFIJJBSUlVVhWVZ8yq8\n6srE4OAgiUQCn893Xfql+8yuwSif+b9/yWA0iWno40KvglwoTyCwHAcB6JqGLZ0J7Sz3Hikldomb\nhBAcaD9PY00F779nPbYj0edJuLBsBlahsivsIJqm4TgOQgiEEGMazC1LKdF1fdzz3N+45UJBcJ8t\npfTK7u/cdxZiKteK6S5VN/d3xXS6dSl8Zin63O/F73TLhfcX16Ww3qV4VYonpfhTWIfiuhW3UXF9\ni2FZVk6QDKPk95sJx3FwHGdKtEgpsSwL0zTJZrMYhjGmbSzLQtO0Kc2Sr1UBXm1wKbxmWRa6rk/5\nPVJKstkspmlO+TflUOKT8cK2beLxOH6/H7/fP6XnaZpGMBic8v1zCS6vplq3dDqNaZpjdEthG98I\nA3km8j4RotEouq4TCoWmLKfBYBCfzzct+Z5LMnG9jW03PNc3HCeeylIbCeKUMoYQxFJpbNsmHPDj\nSIdYMkNF0IfPNHL0us/M/3UcSTSRxmfqRIL+ceOLrmtYls2rZ7t4/z3r879UBtYYlBp4XEEvHOiL\nDYqJOmkpQ6HwPYUKpPh3E9Ez1WvFHXSiQbXQcClFQyn6ir+Xench34rfX2rQLaah8BmF5VLG2VTq\nP1nHP3z4MD6fjy1btgDw+uuvk0ql2L59u2cgzlQJT/W3hca3EIKenh7OnTvHjh07rvqbgYEBjh49\nygMPPMDu3bu58847qamp8f7/wIEDLFmyhGXLll2VnqnOwCfje6m+UVi33/72t6xdu5aGhoZx9S71\n7lQqxQsvvMB9991HJBK5Km3ZbJbTp0+zZs2aqxqokxmDE11PJBLs37+fTCaDZVls2rRpSrxVuILD\nhw/j9/vZtm0bABcuXODMmTM89NBDU+7HM+1/U/U4TaVdbdvm4MGDDA4OYts2K1asYOPGjaqhbyB0\nTaAJsB053nslBKlslnduW8Pb7ljFmsUNZLM2F3pHeOrZI7z6ZhfhgA/LdpCAoWlkLIu6yjCff/xt\nHDl1if/Yf4KQ3xxjvAkkEolZ5GSZD5iRgVWoLL/1rW/R2dlJLBZj7dq13HrrrZw+fZrHHnuMv/3b\nv+Vtb3sb73znO/nOd77Dpk2biEaj/Md//AeGYbB9+3be//73e7OPgwcP8sMf/pBPf/rTLFmyhH/8\nx39k+fLlPPjgg3zpS1/ijTfe4MMf/jDvec97+M1vfsORI0d44oknOHHiBL/85S/5vd/7Pb797W8z\nMjICwHvf+14efvhhTpw4wd/93d8RjUb5kz/5E7Zs2cI//MM/MDQ0RCwWY82aNaxfv55XX32VT33q\nU5imSU9PD9/85jeJx+NEo1HWrFnDpz/9ac942L17N9/61rdoamric5/7HPX19XzhC19g48aN/P7v\n/z4//vGPiUajfOQjHwHge9/7Hvv27aO1tZW+vj7Wrl1LOBzG7/fz+OOP88tf/pKOjg7e85738O1v\nf5u//Mu/JBaL8eSTT9LT08Pjjz/Ohz70oTFC/9RTT/HjH/+Y+++/n7/4i7/ghz/8IefPn+eJJ55g\n3759vPDCC3z+859HSsmTTz5JU1MTH/nIR7h48SLf/va3GR0dxbZtHn30USoqKvinf/onmpqaSKVS\nmKbJE088QWVlZUklmU6nxxhplmWRzWY92uLxuOd1yGazaJqGruvYto0QAk3TyGaz6Lo+zquWzWax\nbZtQKEQqlUJKSTAYHOOZKiy775NSUlFRgW3bOI6DlJJ4PE44HC6p5NPpNMlk0qvLli1bqKioAHLr\nOyBnoNi2PWYwcN33Lq1uHWKxGKZp4vf7x3jGXP4UGixSSo8XyWTSm7UnEgmCwaDnpYrH4ziO49Hl\n8sYta5qGYRgkk0ls2/buKzS+MpmMpzQL+eTyJBaLoWkaoVCI0dFRTp8+TVtbG1VVVd6zXPqFEB5/\nTdMklUqRzWa95xXTLITwwje6rnPkyBECgQAPP/wwZ86c4dixYyxbtkwZV9PQu2vWrGH37t2sXr2a\nqqoqjh8/zm233ebJRDKZJBwOe/3NlVe3T2iahm3b3l9XRt13xGIxfD4ffr/fk7VUKoVhGGO8bNFo\nFL/fj8/nw3GcMc8qlJdYLIau6543RkrphXyDwSCnTp1iaGiI9773vfT397N7925WrFhBRUWFMrxv\nlGxxxfNUCF3TGI4n+aPf2cZnH32AZDrLMwdPYjsO79q2lr2vvcWhjktImcHQNTRNEEumkUBVKMD7\n71mPaWj8ZM9xRMA3ft2WnJ87QcviwbJtm2eeeYbW1lbWrVtHTU0NHR0dPP/887z3ve/l6aef5tCh\nQ+zatYsjR44QCoUYHBxk9+7dvPe97+Vzn/scR48e5Stf+QoA69ev5+DBg/zgBz9g165dfOc73+H7\n3/8+H/3oR+nv72f79u18+tOfprm5mc7OTn7605/yxBNP0N3dzXPPPcc73/lO/uf//J/87u/+LrFY\njM985jN8/etf56/+6q/Ytm0bra2tPP3006xatYqnn36aLVu2sGTJEqqrqzl9+jTPPPMMn/zkJzFN\nk2g0yk9+8hMefPBBFi9e7CkHTdM4ePAgn/jEJ3jXu97Fm2++yR//8R/zrW99i927d/Pzn/+cBx54\ngI6ODtrb2z0Dq6KiAsMw+OlPf8qtt95KfX09zz77LJFIhMcff5w33niD3bt3s337dn72s5/xX/7L\nf+HJJ58kEolwzz338OMf/5gHH3yQ+vp6AP7t3/6Nf/iHf+B3f/d3eeqppxBCMDo6yp49e3jiiSe4\nePEiv/jFL/j85z/PqVOn+B//439QXV3Nhz70IdLpND/5yU949NFHicVifOITn+Av/uIvaGpqYvfu\n3VRUVPDwww9P2vaucnYHT9dYANi/f7834C9fvhyfz8elS5e477772L9/P7W1tdx2223s3buXrVu3\nUllZCcDFixd57bXXqKysJJFIUFFRgWVZjIyMsHXrVoQQdHR0sGvXLrq6ujhx4gQPP/wwR48epb+/\nH9u2aW1tpaWlhb6+Pvbt20csFqO+vp5t27Z5yjqbzbJv3z6PfncgOnbsGNu3b6ezs5NXX32Vmpoa\nhoeHPcNICEF/fz+HDx/m4YcfxufzsXfvXjZv3kxHRwepVIpkMsmqVatYunQp//mf/8lDDz2E4zjs\n37+fHTt2EAgEgJwBt3v3bvx+vxeG9Pl8Xr3vvfdeDh486A12uq5z9913I4TwJgCvvPKKJ2vd3d34\nfD5CoRBbt24t2V6HDx9mdHTUGyi3b9/OoUOHSCQSZDIZFi1aRCaTwbZtTpw4we23304wGERKyfPP\nP8/mzZtpamri2LFjVFVVIaXk/Pnz3mB811138fLLLzM4OIjf70cIwY4dO9i3b58nJxs2bPDa2w11\nKUwNrsHc0NBAS0sL7e3tVFdX4/f7Wb58uScT7sTk/vvv59KlS/T29nL33XfT1dVFd3c3K1euZP/+\n/ei6TktLi+ctsm2bl156Cdu2GR4e5tZbb8W2bTo6Oqirq2NwcJCtW7eyaNEi9uzZg6ZppFIpNmzY\nQCQS4aWXXuLtb387mUyGffv2sWPHDk6cOEEsFiOdTtPS0sLatWs5cOAAuq6TTCZZvXo1K1asoK2t\nzZMJdzKmcLPlDbK2TV1lmP/jwU0AfPybT/Obl88Q9Bn8/b/vRdME4YDJH71jG4/s3IDP0HnulTN8\n7ScvkszkJtzJtMVCS1lQlm0XmqYRCAS44447eOyxx/jwhz9MJBIhHA4jpWT58uVEo1H+8R//kdra\nWk/prlmzhq985St89rOf5ac//Slnz54FIBKJ8Fd/9Vf87Gc/45Of/CQf+9jHMAyDl19+mb//+7/n\nb/7mb7jlllv48Y9/jM/n8xS1ruueARMOh9m+fTv33nsvUkoGBwcZGBhgdHSU++67j89//vMEAgEC\ngQDr1q3j3e9+Nx/96EeJRCLe7L/wmXfddRcf+chH+NjHPuZ5WJ555hna2tr42te+xle/+lUuXrzI\nkSNHWLZsGaZp8rWvfQ3DMIhEIkDOM/PII4/w1a9+lcrKSj7+8Y/z2GOPUVlZSWdnJy+88AIdHR3U\n1NSgaRrV1dVkMhn6+/uJx+Ns2rSJL3/5y9TX13vW/r//+7/z6KOP8oUvfIF/+Zd/4d5778U0TWzb\n5te//rVnIAA899xz3H///VRXV7N//37C4TDBYJDt27ezc+dOYrEYt956K08++SSrV6/mwQcf5DOf\n+QzhcNhT7MUwDIOuri727NnDf/7nf3Lx4kWCwSCdnZ0MDQ3xtre9jR07dtDR0YFpmgwPD3tt0d3d\nTW9vLwCVlZUeXzOZDLqus3PnTlpbWxkZGeGBBx6gpaWFrq4uzxvjDga2bdPV1cX58+d54IEHuPfe\ne8lms6RSKc+A2LJlC52dnWNmSW+++SZDQ0M89NBDbNy40QtJJxIJEokEx48fZ82aNdx3333U1NR4\ns3gpJYsWLUJKSX9/P93d3Z4xPjAwwK5du7jzzjs5deoUw8PDWJblvTedTo/jYSKRYM2aNdx7772M\njIywZs0aHnjgAQYGBhgaGqKmpobNmzezbNkyLl68yPDwMH6/n97eXl566SW2bNlCOp3mzJkzbNiw\ngY0bN/LWW2/R19c3Luxo2zbV1dVs3ryZFStW0NPTQ1dXF2fPnmXVqlXcddddtLW1ccstt+Dz+di6\ndatnXGmaRk1NDRcvXgSgt7cXv9/Pa6+9xi233MIdd9zB+fPnuXTpEnV1dR7NnZ2dDA8Pk06naWxs\n5J577qG+vp5AIMDx48c5deoUd955p8dbhanj9ttvp6enh+PHj3PHHXcA8PLLL9PY2Mj9999PKBSi\nvb3d61dun8lkMjiOQzKZZNOmTaxdu9Z7ZjQa5dy5c2zYsIE777yTRYsWEY/Hqamp4d5772XZsmW8\n8cYbtLe3k8lkePDBB7n11ls5fPgwsVjMk3d3TVg0GuXMmTNj5Ov1118nHo+zbds22traOHToEKZp\nUllZydmzZ9m7dy933HGHJ3vKe3XzIBCksxbLGqtZ3lTDi6+9xYET52mtqyQUMElmsvSPJPg/f2cr\nn/jAPRx7s5Of7nud33twM3/56INEkzmdl0hnZrTjcC6iLAaW4zj4fD5+9atf8d//+3/3wkKO45BK\npVi8eDFf+tKX+MlPfsLevXsJhUJeJwe8tRfxeNxTAO9617tYt24dFRUV/PEf/zGDg4NUVlZ6nptw\nOEw8HiebzXqdzzRNpJReyOh73/sen/70p/ngBz/Ihz70If75n/+ZaDTKn/7pn/KHf/iHnD59mmAw\nyIsvvshTTz3leV+KF9VrmsaPfvQjvvGNb5DJZLz/i0ajVFdXAzkDIRwOk06nkVLymc98htdee42n\nn37aM1BcZLNZzwCAnIHa09PDs88+y9mzZ71QWSqVor6+nm984xtomsaf//mf84d/+Ie8+uqrHp2O\n49Dc3AzAjh07uPvuu7Esi0Qiwe7du+no6MDn82HbNvv376eurg5d13n22WdJpVL4fD6+973v8ed/\n/uc8/vjjbNiwwWtTN9Q3GSzLoqWlhQcffJBdu3bR1taG4zgMDQ3R0NCApmlUVVV5PKivr+fkyZM0\nNTVhmiZnzpyhoaHB47X71+WrYRheiMo0TW9GW7juzDAM4vE4kUgEn89HOBxmy5YtCCGIRCLe79wd\nOC5GR0c949Pn842Ro2QyieM4nry54T6XPiEEq1at4q233uLy5cu0tbWRTqe9+2tqajy6XLkExs3I\npZT4fD5qamq8AcYtu+FBIQQvv/wyvb29BAIBb/Bqb2/HsiwCgQDDw8MIIbh8+TIdHR0sW7as5JZu\nV26OHDlCX18fmqZ5/Dpy5Ah79+715LKwTVwsXbqUgYEBzp07R21trefV6+vr48SJEyxdutTb4ffK\nK694NLt9sqWlhUAg4Hk93njjDR544IExa8kUpjDo5b1YFRUVtLS00NTURH19PZlMZowcNjY2esZU\nYd9x9XNFRQXNzc1jZKW6upoNGzbwwgsvcPToUdLpNEIIrw83NzeTTCbp7e31+m5jYyM+n490Oj3G\n0wu5CbMrX/v27SORSJBOp9F1nddee43R0VFuueUWT9bOnDnDPffcw4oVK5RMzBbIK+2ZyVrouiCZ\nyfK+u9fxw798lG1r2tixbim27fDX33+ev///9tI5MMo7tq2msbqCZDpLOmPPv0RXV0FZDCxd14nH\n43z4wx/mhz/8IeFw2FsXomka0WiUd7/73dxzzz2cOnXKG6wMI7fr4Lvf/S6LFi1i+fLlY5T6okWL\nWL16NQANDQ2MjIywb98+AN544w3Wr19POBymu7vbm8Enk0l0XSeTyfDXf/3X3HfffYyMjBCPx9m/\nfz/f+ta3+NGPfkRHRwcnTpxACMGHP/xh/umf/gld173ZVywW89aYZDIZPvvZz/L1r3/dW8MAsGbN\nGk6fPo2Uktdff52BgQFaW1uJRqNs2bKFxx57jHPnznkKp3CQddeiQM6DsWPHDr785S/zvve9j2Qy\n6RkO0WiUffv28ZWvfIXf/OY39Pf3ezNSTdOor6/n17/+NQDf+c53+G//7b9hGAbNzc189atf5bHH\nHsNxHM6dO8fZs2fp7OxECEF7ezt9fX1IKfnSl77Ezp076e/vH6PAp7qw3F175NbJcRyqqqoYHBwE\ncut9RkdHqauro6amhjNnzrBy5UrC4TDnzp1jyZIlYxQyXFmH5RrM7jXXuHC9Sel0bkdLIBDw1hU5\njsOxY8fGGQrFxkIwGCQWi437f8dxCAQC3roRuLI7shCtra309/fT2dnJ4sWL0XWd4eFhAJLJJNls\nFr/f7/WFTCYzZkJQSFtxHd0BcWBggOPHj3P//fezceNGr10sy2Lr1q0sX76cQ4cO4ff70XWdTZs2\nsX37dlpaWsatqXFTALS3t7Nr1y42bdrkrduqqqri/e9/P+vXr+fQoUPe5KeY1sbGRvx+P4cOHaKl\npYVQKIRlWaxdu5a77rqLZcuWEY1GOXr06Diai9tA0zS2bt3qGblqIL12/euGnE3TxDRNRkdHARgc\nHPTWQLky7PaTwh3Dhe2SSCRoaGjgAx/4AK2trbz00kveZA5gYGDAmxS48j44OEgmk/F24bprCt1J\ntitf69at48iRI7ldaOEwW7duZdOmTVRWVnq69bbbbqOlpUXJxCyBBExDp3c4xlA0yd3rl7GiuY7z\nPUPcuqSRTSubaWuoyskIuUzwUkpsx0HXNNKWxcGTFzh1qQ9D05ALKFBYtl2E7m4gF4UeKrfD/dmf\n/RnPPfccyWSSQCDA66+/zkMPPYSmaXzhC1+goqJijPcolUp5g+TatWv52Mc+xte+9jX+9V//lebm\nZh555BGklDQ1NfE7v/M7RKNR/ut//a8Eg0Hi8ThCCB555BE+9alP8a53vYv9+/fzv/7X/yIUCvHO\nd76TXbt28f3vf58vfvGLfOlLX2LNmjXccccdXLp0iQ984ANkMhn+6I/+yFMaLlzvySOPPMKePXvY\ntWsXiUSCj3zkI2zevJmRkRHS6TR/8Ad/wA9+8AOi0eg4fqXTaU9hWZZFMpn0rrv8cr1cL730Ek89\n9RT19fWsX7+enTt3es/51Kc+xZ/92Z/x8MMPE4/H+cY3vsEvfvEL73mpVAohBM888wy33XYb3/3u\ndzl58iSPPfaYt35CSskjjzzCxz/+cT7xiU+wcuVKbw3O1VCoeAtloa2tjfb2dn79619j2zYtLS0E\ng0Gqq6uJRCLU1NSQTCbp7Oz0QqhjOnWB4i8suyGueDzOc88954Xcmpubqaur4ze/+Y23PiUYDI6p\nQ2G6C4CVK1dy7tw57zfu/1mWRTAYZOXKlRw5coTz588zMDDAihUrvHuklFRWVo7xtLW2tvLmm2/y\n/PPPE4/HWbJkCa2trRw/fpxnn30W0zRLGmqlUpe44bxgMEg4HObAgQOekeauYwoGg9x+++38/Oc/\nJ5VK0dDQwC9/+UsikQipVGqMnLjPC4fDBAIB9u7dm9sVlEphWRavvvoqwWAQy7JYvHixZ/Ts3buX\ne+65x/NCaZpGY2MjfX19ntdi8eLFvPDCC0QiEZLJJFu2bCESiXjre1wjuBgDAwMcPnyY6urqCTdR\nKFwd7sJyt503bNjAq6++Sl9fH9FolPvuu89r4xdeeIFYLOaFuItTwLhy8tJLL1FbW0ssFmP58uVI\nKTl9+jSJRIL+/n62bdtGQ0MDu3fv9uR97dq1NDc3c/z4cX71q195axodx+Hw4cOEw2Esy6K1tZVV\nq1axd+9edu/eTSaTIRKJsGLFCpLJJIcPH2br1q20tbUpmZgFkFLiM3Uu9Y3w89+28wdv38I3P/6/\n8c2fHaCtoSo/3jvsfe0cO9Yt5ZP/+32c6xlicUM1z/z2JNFEhtrKEE21kQXHu7IclSOlpKOjg4aG\nBs813dvby8jICIsXL+by5cusWLECIQRvvvkmtbW1OI7DhQsXMAyDlStXEgqFxm03v3DhAo7jsGzZ\nMu89J0+eZGhoiI0bN3oDc39/Px0dHdTX17N27VrPm7Vq1Sp0Xae9vZ0VK1YQCAQ4duwYjuOwefNm\nDMPgzJkznrETDoepqamhq6vLU1zNzc2eZ8pd0FtIYywW4/jx40QiETZs2IBlWZw5c4alS5cSCoU4\nf/48juN4SsodwE+dOsXixYuprKzk3LlzCCFYunQp3d3dxGIxWltbeeONN1i9ejW6rvPqq6+SSqW4\n7bbbPDpcxdjV1cWZM2dYtmwZS5Ys4eLFi57C6+/v97IcB4NBWlpaPGXp9/tJpVIsXboUwzBob29n\n2bJlVFVV8eabbxIIBGhtbZ1UyUWjUYQQ3rq1RCKBbdtEIhGy2Sy9vb3ous6iRYu8sIQbzstms6TT\n6TFr3gBv0K+oqCCZTGJZFpFIhEQi4YU1RkZGiMViVFVVYds2VVW5GVR3dzeQM7gsyyKVShGJRLAs\ni1gs5hlELpLJJAMDA4TDYQzDoKKigtHRUSoqKtB1nd7eXhzHIRQKjcnXlM1micViHD58mFtuucXz\nvqbTafr6+vD5fNTX16NpGolEgoGBAaqqqrxdeoU7JkdHR6msrPQ2KLhrCkdGRqiqqiKVStHX1+fR\n7nrFfD4fPp/PawPXm2vbNosWLRoT9nHfU1VVRSKRYHBwkOrqaq9ujuPQ29uLaZpeW8ViMUZGRmhq\nakLXdS+M/9prrwF46S+klPT29noL5P1+/5g6uzRnMhmCwaDn0c1kMoyMjFBbW3vVxcyuDPb19VFR\nUTEvk3Beax0Ld4S6zxgdHWVoaIi6ujqvfw0MDJDJZLx29/v9xONxr40K4RpSfr+fxsZGjhw5Qjab\nZdWqVWiaRl1dndeGPT09hEIh71osFmNoaIja2lpPF7j9olC+UqkUvb29BINBL9Ro2zZDQ0NEIpGr\n5gNz6+ruFi/Uz/NNJq53HR1HommC18/18OiTP8Kfz2nlGQrgpVb4o3ds44P33UZdZYhYMsNIPMWX\nf7Sbgycv8MRju3jP9rVoQuPAiXN84anfUBkK8P989vf4xcF2vv6TF4mE/DjOlWfrmsZQNLeG63O/\nv8vzfCkD6xqFpXQDO1dN4licV2lMRSbIxVLsCi+8r/D7tdan8BnFdbge77ja98n4ONM8Nder7Wfr\n+ybL7xSNRjl8+DANDQ3eurX5UOerPefw4cNYlsUdd9zhhfonS4ha7ropA2v67VeOHHSnT59GCOGt\nlSr1vOm8pxw0KgOrfHANrBN5A8tXZGDBFSMrkc4S9JsEfbklCPFUBiFAE4JkxiIS9CMEXnJRXdNI\npi0MXeAz9HEBQl3TGIrlDazH5peBVdZM7sVJLYszkpdaQA54+ZBKCZf7/8C4rOaFzymVobzwnW4o\nrPj3V8tkPlFC08L/K/XuwudPlH291P2l+FaK7sloKJXJvZj24uzvhXwq1Z6TKYDCNpqKITud4zAK\n7yl81mQGdvH3q2VHL9WmpU4eKORHJBJh165d0+JJMa1X40dxvUvRWPy+yYz6yZ431bZzk1pO9tup\n0Fyq7grXhuJ2KiW3peRksmzvxe3nroUtNR+fqrwXy8hU9IPCjYUjJZbjENK0kpncdaCmwsB2JJms\nBUIQ8Ble8nWfaWDZDkioDLsbciAS8uXbdvw7DV0DyRiv1nzBdcvkXiojeXH5ap2o1P9PlHl8suzr\nhTvOppKlvZQhNRmNU3n3ZPUo5kkx36aT/b34+0S/nSwD/WR0T5dXpd49Ucbyq71jKr+b7P1Xo+Va\n6Cs1GExHfiZ7X6l6T/U3U+XjtdB9rXWe6rWr8Xu+Y7p1nIlcT1UWpvOumfxWycTNqaPL8sWLqlm6\nqJqTF/py3qbJDhgsPBRHlnhY4fXi83MKLkvANHUe3Lwyf23+GNc3NESooKCgcC1wjbrBwUEv6ep8\nVF3uxoPW1laVfHWKiMfj9PX1eSlM5qtMNDQ0jEv5cz362IXeYY6cvnRj6gZYjmR5Uw1bV7fNv7ZT\nBpaCgsJcwlR2t85lTLRkQmFiuEsxlEzMHO7Bzzca8zE0rAwsBQUFBQUFBeBKHqsbCYFA0+bfujtl\nYCkoKCgoKCgolBnKD62goKCgoKCgUGYoA0tBQUFBQUFBocz4/wGPXcKwnJ/OwgAAACV0RVh0ZGF0\nZTpjcmVhdGUAMjAxNS0wNC0xNVQwOToyNjoyNi0wNDowMI9ONtsAAAAldEVYdGRhdGU6bW9kaWZ5\nADIwMTUtMDQtMTVUMDk6MjY6MjYtMDQ6MDD+E45nAAAANnRFWHRpY2M6bmFtZQBJRUMgNjE5NjYt\nMi4xIERlZmF1bHQgUkdCIGNvbG91ciBzcGFjZSAtIHNSR0LmBz2nAAAATHRFWHRzb2Z0d2FyZQBJ\nbWFnZU1hZ2ljayA2LjguOC05IFE4IHg4Nl82NCAyMDE0LTAzLTI4IGh0dHA6Ly93d3cuaW1hZ2Vt\nYWdpY2sub3JnawbImwAAABh0RVh0VGh1bWI6OkRvY3VtZW50OjpQYWdlcwAxp/+7LwAAABl0RVh0\nVGh1bWI6OkltYWdlOjpIZWlnaHQAMTM4MvbsK1sAAAAYdEVYdFRodW1iOjpJbWFnZTo6V2lkdGgA\nMTk4NAdR16EAAAAZdEVYdFRodW1iOjpNaW1ldHlwZQBpbWFnZS9wbmc/slZOAAAAD3RFWHRUaHVt\nYjo6U2l6ZQAwQkKUoj7sAAAATHRFWHRUaHVtYjo6VVJJAGZpbGU6Ly9tcHI6bWFycmlhZ2UtcGVu\nYWx0eS1jb3VwbGVzLWluY29tZS0xNDI5MDM4MTY5NzcxLW9yaWdpbmFsVS56CwAAAABJRU5ErkJg\ngg==\n", "text/plain": [ "<IPython.core.display.Image object>" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "\n", "Image(filename='myfileupload.png')" ] }, { "cell_type": "markdown", "metadata": { "nbgrader": {} }, "source": [ "Describe in detail the ways in which the visualization exhibits graphical *integrity* and *excellence*:" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true, "deletable": false, "nbgrader": { "checksum": "80145499593a6a8f756ab550388d18ea", "grade": true, "grade_id": "theorypracticeex01b", "points": 8, "solution": true } }, "source": [ "YOUR ANSWER HERE\n", "\n", "I found this graph to be extremely good. To start off with, there is a key and short synopsis for what the graph is showing. colors are used very well to distinguis between information. Text boxes are placed where necessary, and only necessary labels are shown.\n", "\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.4.0" } }, "nbformat": 4, "nbformat_minor": 0 }
mit
dsacademybr/PythonFundamentos
Cap04/Notebooks/DSA-Python-Cap04-06-Reduce.ipynb
1
48784
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# <font color='blue'>Data Science Academy - Python Fundamentos - Capítulo 4</font>\n", "\n", "## Download: http://github.com/dsacademybr" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Versão da Linguagem Python Usada Neste Jupyter Notebook: 3.8.8\n" ] } ], "source": [ "# Versão da Linguagem Python\n", "from platform import python_version\n", "print('Versão da Linguagem Python Usada Neste Jupyter Notebook:', python_version())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Reduce" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "# Importando a função reduce do módulo functools\n", "from functools import reduce" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "# Criando uma lista\n", "lista = [47,11,42,13]" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[47, 11, 42, 13]" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "lista" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "# Função \n", "def soma(a,b):\n", " x = a + b\n", " return x" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "113" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Usando reduce com uma função e uma lista. A função vai retornar o valor máximo\n", "reduce(soma, lista)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAADOCAIAAACy8C5XAAAAAXNSR0IArs4c6QAAAHhlWElmTU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUAAAABAAAARgEoAAMAAAABAAIAAIdpAAQAAAABAAAATgAAAAAAAABgAAAAAQAAAGAAAAABAAOgAQADAAAAAQABAACgAgAEAAAAAQAAAXygAwAEAAAAAQAAAM4AAAAA1+3hhAAAAAlwSFlzAAAOxAAADsQBlSsOGwAAAgFpVFh0WE1MOmNvbS5hZG9iZS54bXAAAAAAADx4OnhtcG1ldGEgeG1sbnM6eD0iYWRvYmU6bnM6bWV0YS8iIHg6eG1wdGs9IlhNUCBDb3JlIDUuNC4wIj4KICAgPHJkZjpSREYgeG1sbnM6cmRmPSJodHRwOi8vd3d3LnczLm9yZy8xOTk5LzAyLzIyLXJkZi1zeW50YXgtbnMjIj4KICAgICAgPHJkZjpEZXNjcmlwdGlvbiByZGY6YWJvdXQ9IiIKICAgICAgICAgICAgeG1sbnM6cGhvdG9zaG9wPSJodHRwOi8vbnMuYWRvYmUuY29tL3Bob3Rvc2hvcC8xLjAvIgogICAgICAgICAgICB4bWxuczpkYz0iaHR0cDovL3B1cmwub3JnL2RjL2VsZW1lbnRzLzEuMS8iPgogICAgICAgICA8cGhvdG9zaG9wOkRhdGVDcmVhdGVkPjIwMTctMDAtMDVUMjA6MjI6MzYtMDc6MDA8L3Bob3Rvc2hvcDpEYXRlQ3JlYXRlZD4KICAgICAgICAgPGRjOnN1YmplY3Q+CiAgICAgICAgICAgIDxyZGY6QmFnLz4KICAgICAgICAgPC9kYzpzdWJqZWN0PgogICAgICA8L3JkZjpEZXNjcmlwdGlvbj4KICAgPC9yZGY6UkRGPgo8L3g6eG1wbWV0YT4KuhvBZgAAQABJREFUeAHsnQeAXUXVx2977+1udtM7HenV0JuoFEFAQBCwoFIEVBDhs3yKShGwUSyfoIKoCAoCIiBF6VKlhBIInSQkpG9Isu29d+v3O3Peu/uyySbZsNl9m33DcjNv7ty5M/85858zZ8q1wyixbcuxLVwSWfj5V/6xi8aX42onXMrO+GMn5LdteeYq/qTkjyVe4nCJTZqWFeC3o4xcbbkbOnKNTfwsPvGLcyxJp+RPJOU4sRxHrpIdc9cy4ZYtMct+8a5NZ3JkSpSYEpWKlVhJbNlSUAoWxklk21LGiP+kLKa8cm9Z9ExIOR0pRVFxkIcs25V3JQYDqsLhz7w3NK/0DPKlZzszBTJlzIjAjyR2NbcOyOFzJemqcXGkdRo6VC2FTci0YxuxM3n05ZqoXJgALbXB2bbM3Vhkg5LiykgKAipRdkRF2LGJr+hZdmeasZFAp3TbSLiRKDAjO1SopOkGJm3BzTZIqiSrfFqmviTe2nGmuFo4smLeYfKsb9MApEwaBDnnt2lN5byYYqs4aJAKaykFaYmWyoO2L3O3lICd555vZNgzZTRpgapIqWMwN2DwTtOijYRrDrUWHDJDbSqVyIu6dVr1cpv4parnHxGFtetW+YLISOfazcT7SR24tIoNXzi2KyykYvt+ki0/C+OUveV/qZRV1UsUR47JlkYU0awyR9s2NetANzgIAteLeeyamraE7nHTPBgCLOWC3NCF9GKWeispskpSCAHVSg7jCBHsrbSXSQfW4o+3xTEeZFrfvEwcfpADrtReqDoAsVevKsm9pGjbsDsl8KIocl0tiqSUWNrniN82fbiViO6jTnsAJVbtT1UnSgyz2qYFhrb0S8KCXE3mLJqnFEneUsokXsJsremKntn2Q8lPvemxTa5MOpV911rCXbK7Gi6JQ9txwjD0PLodISGlHS2Xdqiqo5X0kco+vNT/dPZO2pOUdTopb2L6pZKmg5DhXFPTUhclhnMS0aqkBzMwiTeKyRUM2NmlSGhVOCNs5Zxobeqvit44sTplTPU+ZIdYjtF0fCOTWfNsSRzK6cm/RkxEnCwrb/z1oUho4hmcS+1WI0kcOmZk3nG5kSiSYRK4DkIo8cvyLDFL+n7noxLY626ZElX8oJXCpxoQS6OQ6hbe8SRDmimVMY1Dl53mTXVkbb5lxVdbrVyLpoXmhGcgG3mqaBpqzgQkjhnNaPTya4gjo6L0DaKlJLbBVvTYVTmJoZGNRwq2qkd6dp8X8EeqknDpT38sm47cKoUHgeAGb+I8wJXnejlXknRvOCFsMul58A6eFMleSNugoZCUYaNyKnEo39R/eSV1byVhJDyYxNKb9EI2ejsJMqs1q4ipv89yKgiKK8kaHpwCVbrGDLREae3tcr/f9Mi05hD9AsaJDXBOST94v4mvwfMwjlAe6JmcCKY4rc5VJWdHCfoKT+TDOHTtRnm4bNqRZ8udb5pOaMZ4bmT4zzWj4qjT7pN4neM9rTfbtMbYk/45NuxbNNch5X5aXmJSjwxzeuVhuonf7lhOFGWF15dxnaP0vqIjpXrD4qWCUe+oElIuLAK08xJW2mNoP6MybRAraTqml9a0VO3Laj2plmdLMRWl0khblUOj7SdmXG1LJ2xicVHtQG0cJpTqogGXrA9YhKR77AKdidefFy23YJAYHQ3xAwPHNeFqs1OEFYKSBEp836BqLDr4DIrmbsnmEhekWI7o5qpHhwYfLxEEbGOJKAuXeYHROku6qhhvkD+p34jMyL+Sfpnjtd7NGzv7d+73vlPNDiurJF2StM63BGHseWI1EcQMPlLbnfk0OTQ510dVX9NrCdSSXcygpAhHkkJkxMQzQynbkXZtJXVcytYxCSjJm8CLXiODqcSgISqXBSOQMbKm9WPid3PReNJDeo4H4yiDor91E7/nwcv1YtrNdPY1vNU4U+umls3bBVYYJzGaZM9f2wdPkGt9Cx7l+1586TKw8SLFqPzG5V+k8SMdgpVva99Y/lUV/2KMQNjUGiG0bTh3NVTynmW+hJYKmRG47p6X3sI4PwrIFgCWA7p7ot/CgQrGIZNa15KPTl+v5UqkuvTXSWZdUtc4KvNq2aEeeaxLtO5+epptx65DQOlQsQI8cP/1c+bM8bylPGNrz1N6Wng0MBYZLzbEaIteExo7tm9sDY2B4VrTg6nmEngxWczGErOk3Fi8NMmaZyPzrFC3GCuEIzuKzn4f3W/cxrui3cjkFVRqzE62K8JRpn4jKKtbRkm8N13pveSB7DDMLkn4Sy/d9+yzz7r1gls2FDuLZ7qJ0GQ2Mr0Kwx7CHe1wTZ58A2RluM7C0OfgEu3/zZgZnMFNNRcvEV0vMcB5kfRafpzdYostdtrjSPoq+Rn5ntsg1cmPanIO9hqBTfKEbJO/pYtn3nrrrXV1CwhxYsFNbYKJIzJTCjF9b2L0mpyRE99uMCm0cVUMA0c07rpQ9B1tALaZ5QziIYSAJPVUHwhW+azEqffFjwbq+/6uH/n8Zh/YnIzR81Gj0ihUCyCGOFMZa1nH0Tfx4rKHzJn3mhBpnhjpLFf6HZE5Lm3XXX9d1p5HfE/1Qal5mdkSV3rWjDBMSKwl0rZpNHQTz2ooCg4Fzwcft6Q1Sx4Ct8grM4YB1CbLrChx1MLoRC721g232H/vvfcO0VMdMRyhLXhGnjXl7q4lQ7Jjx2INdbKzZi047bSDjz/+c0EghVmedCJDOk4F6ShxFLsnHdLJRL50aozlxJmZC7+NIgWxjE6jMOBqw2dJsrQtfmXqy3+748lsNpsY87atpmsDnEEVQVEVfdWKXHfF7nl4Z/Wnz5JbDPBGANzA90848bD99/9o7C0iwqpIJ03DYkwrPyrIqJJ0ItvnLZiEMXaCFf6Q2XneG/mRoEZw5Bjc8oE3efLkK/5wx3oT11NcfBJysG9Xl9Mpc6rQoCdlP+c7p48cOXLMGJmyXTPSCY2gFw3p1EdmyK/zI3BvFPvREEjEj0XeskWmSuJ2twPcsgXBMw79jo6OV2daN954Q8ZpIGM4QzoiY+aXhBindFBBCuUbvfhvWcI1yU6pU7ik8WCwM0tbrvvrlS+88MKO24wgqi6SUDtzz0lHhlHFjOAG6QgmTFrFcWDnBUURQDRAEbUkFEH0kUdcwKRV/PyrrVdcccWYiesTJWPAWhYxLUXXq8ikcKclY0UrKTpO+zaTFh553MhsZhahjiU9CRRmrqbnsRoSlkJgWeA9dj0ZDN0lZmK/YAaihMjdOCrabn1khYz0MG5aPpM7SSEukFsnny0WfUuaDbHqwzDA7BOGUTFgjUU0a8H67S0vYMsTw5nMYpRKoZVhssFFK76zSsrha/nfkkTIe7VThF4kf3RBiTVhw/ajPz1pSMNtBJR7HtMaTAkMgZJtMwVp+szYTCRA2QyJvTCmsxCgADZukyvEBXr0zLYT5emlnY5iC+jFRbASPLkWAy9koqroBkG4uG2E09LRGAfZGGxFC6jjveS0ylhHSmYcfaaF5Nr22IkLP/GJ3Tfa5DmCPSNvMlErTmrZYVo1g9onFBBbmB8IxABG42glxKglkYXexySLmGXo3xuwoTOlg2TaQTuyWugQOouLABYlhQZkrBghcqEf0dEGxcKY1lar8GCjUR4bxFIhyZj65THVIFQGl+UDbvalk5KSG9FWYtX6GxqKBxyw80EHP0M21BqFOoc/Vu6RdXJ0aLRc5jFRUcQ6iPCJVlP+V+xZIJspYJHJGUGJI8HK8jOQTp4piTByA65B6Gfo5KIC16iAkhAGVr6pUPCjZHjOnp9JJihk8uxq6IM9F8k4sRn4yBIs7JWisvIiY0ZywzjwbCZrM0lccNxMMfIzrhf4edd14g7RdPKWXywWskEjhYn8DtSbpEABcNKQiqFHHHRdgiX3wjda2/prYF+RAPqLJPQdUUBhlgCgKGAgpjpHNJI4hFPswLcyuSQqBMZMlAQ4PypYvl9E/qnsxGeGPkhQLGk8kA5V4HuQDoGEkIJU/4CCTRRgst2dYw6BLionBBTKCkzUGjMsUuGGg52MkA4sIeRPJ01iST6fx2sX2xAnK24EQ/rqkGnRPB1biGSCl5AO7OP7QExkngI2I87dZWWAhTNMRGPBaOK4IAYhMXSFeQCK0bzAZbsZCDxgICXTNWZRZZyAWNhRBBAmQUHGFrJW0ono/ECvkEib9YIcyEVmqNtT1OgSTK+itpvIs6MhMIqbBJ5l5gKMMCSxmZ+idsmyE1NZTNcEVmEINoVCR4c38d0Fs9/O2eOHbbCLNZ/epOiMf/fdWVNHZZjcYWgQ+MVcMIpS7ZgEjjMsS4moaDtEW5NXYViMQ3LhMm1As/EX2NEis9ZZ5EwakcmDjlFLtvpS/yO9n7D82nSlly/zis5+2Ii65sFx3XmuO7/U5+iIujSuNjmErNHfPOwLzlyrznPcN6ygubl5olUcN3r8hhbDtChxvciN37Wa0Hpe8VtwW3bkGXoMj/OO5RWKSRAmGSSE/omeByWHrjuyIaYkDPygLYrzAXNV/PW8K1mmfH3wQ2HVFUaQToThq0Nea2rWUWk0q2Njx3dyGVvoxqsz86ShvTTjZm4L4kKxuMcQu9HKjMZqEyX5jAyOniiGHfkiixiGNg3dJV9v+QXfbkfEfPSeGCuCHcVuIc5FiTeiFap2lnrz3bDdjoeXli9LJoS4lm1IImmJWc+ytvm8lH6FzJclXKVO8ldydt7EEumSSRdcWcfBK8vRMaQ6yFuyxKonZIaVvNfy3qKW9i3X33IHZ74QtDF01InCWXzUbVzcstjxh9fXj96uvqNQKDS250Wp6qhPwkwU2LC1V3TtyBaVMIzsYrtTLMbRUFm4V2qPBjfJxyrcmogno0qSl/X1dCB1ddPenX755Te8alunffnQXTef4NpYd6LLf/GXyQ0y+Q4acGgDrcWzvrn/3ltssWWhIEvg6WNoNgntRbposSiFMrwSjxgxyl2f9DxaAasoyIC4Tdfhe15myisvPvjQg6+1R/MXWMfvv+nhh3yCPhpKAgx6kvuevP/FKS+8tiRZ2Gz98Mjdm5qaeEr0nYTxNmNq0XcYwkLiOHRG9YHbKlSGKkYore7l80jLYIJJ1GpaVshaOM9zczPeefviP93vF+2fHL/HB7eZZLnSdft+4YYb/nrT9CWFvAxPN/vA8G33PxqBYs1foVCUTo0VTCJggendAE/sFKEl4ifvNUqOsM0AEThAo50sj1gpBAgALcDWYbf5rddd99fXOtrenR1nG6zvnfN1TPWoObQtZGZJYenNN99048yEYWY2tkYMz52wyza77ba7H4g5B5YBJCyHYCUjGmm0BjYZrRjdPFUOiU381WDlMulURkWJkS5aa0I4XjVZ6UKFAWCSxI2KLJ6xYL0oOeXxh1+uszKt9rzchrZVNI0it2iR3TjEGrde/dBADFT3tgxp72hjXp7WEmdchCAMKEbi+eh3tsNMC4+hZdMNRY6ZGiNjhrwFQuWgiiyW+oE0gkRay061KjMi7sxYee8PUDHcNmYog1qaF/0l+WQEhZBkMk3YI2556MGpU+P2Da1my5ofxO3WEFBAI8w4mfeWLL7tnueXLrXmjLPaslZL4AVukww9wwz6bsRYIbSDAGGSgTWVTrtxija2IP7YcWTL3BAGeHlvGa++RCktePcetYKqSOmuKJE3zIUiJ5Yl1ijLzFXFRtdmHUdihR1WUIeRKifD+RnWuItvv/pZP+f4xbYwl1jDw3g+Q/gzH3757ilL9hxmjR3jLuhwn3p+yecKt33pS1/a6+05bpF+P7D8xCnm4Z5MMYtZaBHjVCxGhbq4ADPR3HJMpQloxjJSkn/JDU5tmuovNxn9tZaupcoz8rO8tBvNAnsNHboM1cVJLS9jC0Ptga+zWdrr5Ckv/vvhFuSNuAxmFnpNMq73C17Wp8h3vzb/moeSkZvYEzfIRIv89xYUT75v6kkb7Ha+8HjQYfQBODsiNVSeKPRleBXJMvww9hMms5iflhzIqH51KGcNzIwULINkm4kU3vXEgw9MmTJv9Bgrj4qKMxaKTCZzyikHFbbdcMNhGzZZ7W1h21O/+Qcdyrhx42BWFF4ZoYmCgzjhwdIhNh3G2FAojsZJGYTETWGgTynTwHd01/mk6NneKad+mRmTmQ0jzz33cnpuDPCg4jC2SuKRw4d/7cwvsRPl/kWLrvn9rfQcELTparCYSYePH5hhZ7A24TJuxxncOoGib6hS085ycgmP4LqrXpUol3kV2hQavuc99sKjL70Uj95+bPOs2cgGg0lgoXk89siTm2025pxTT2x0h7yTz1999VWvvrlo+rRpu5rZPfABMVIQBYdezGDGxYRUckp3GamKcKNKdIvVCrKIUhBHu+6024UXja7baIefXX3J6/Mwm9jMfLouggcYwdbbbP2Nb2TW33b7BquhznLvvPvOpx+c8tabbzqbj2HuSmRNRI5ZZvQFR2AT7NAPVNNZwTtXGZQqFGaNr5ONscJIBTOAEjuO9pLKZFLrwlLZKN/h1tMAvNsc78In3trNcw7d+8CLZ98byLJjuDBpys/62Pbr5SM/WPiKH7nzXn9txuzZO0zaaeNsfbG1kLChCmsxjSWKi3FWrIhRxlAn4uCGhToraJTeRtqNvBGrE0Kpu5BK5SnB3pd9uGnP2qhLip/mxaw/SjA6QMOsdarT9a/lfGr/o79QS4sNKL1B26Ts8DDbMDLf8YElVnvCbBND1Xp2+7v5pVhn9hnK/Ev0amHx2A6Zu2FGvK2YYQOaFyzGYOyHOQagcSCigAFehgbFemQIq33sZ6UNiiv3Pfrm6rpKnZasALo+O87FYjTUnIsuaWKUlkVk2Q+YYMuhf4qKmaaZzbO/e+czzqYNZ+y58bWvzfbsJizJDjbGKLnqoN3Hjx+/XvNMBGpBw5hsYYmXwQbtZv06KD5xc4zkk6Io6gUZLNAY6eqwiIEn4y6SgIEK6DqOWaKha23L9kSxZpZWCUvu16rT0i8v2xUhnZ0LORHGFAsOOTQaEJKIn2EjspCx2hmfTLCs8RuND6zWLRcVXjVrbm0P+3HoFcDB3T4qbL/B+pMXtN73nzsf87JvvPHmTvXW0VttvKglH0V1kc+egqwvA383W2Bkg8OeGGR91yl6TuhghtSldLRRMV1XjAPIxgpdz3VFSC+HiBSxbN97/4MtS61jPnPg6DFjSnIur4zMdADrSuh+EYDkpZemYEXdeaedoiBP9TM5B1Oi4shdLvwjjUd0NnPVgaJoaortSrrBFRapSgNjX2Y6Eezylg6mCfDq8j00GjPDIhAU+U+6ZUynAgvzfbkkAbchpm+h7kU3FFWRmxLBkjUH8oNHQLtKi7+ibJHZ7lWc0gMUFSuhFTIO57CV4r/+de+SluLJJ39+XF0HA1oi0RciO4jcdtttJ5avIssy4jtuv2PatHj9rcdPnDix8NocsSGaaXI3oglhgWe1TmjUbfRHsZeZvptGahp2TzSJFRWrj8JW3i6ARsshLRALjgxZsa8n7O8UxIzJQkst4pTEc+c23/qPN18fl9Tn7CP23GPUqDFWy0xjPZRN4ELRIn5qP8Qf+8VY0Eb8jDOZWV3l2hzJwWOaQbmq8QKP6Xl0fqG0/1t6dXFxXGQZYfO8v02eO3rLjb6w6z6PPfc4qwOCyO0gc2h0Seh6rrNYNva+kM08MM/f204OyIX5pZBhvR/kpY1gFqR3Yem5WaRDCI2HvgiCZrUk63fNEQ3K7jLU1sIhfSYHypXd9QkmSi9fDECKkumJS/NoBiXpD+kZ5SAb3qoxtT9Xv+Q2dnLUdMZh2hcrfJSz3aKXlW3QNn17Jil0MDXF2hzkPyOygcKY4T0djp13nWEFn+WfYTQEngJlaiOMcpB0IrO+ougy9RsHedgekyov1nOOJC/lijXe6riwrNSsOYFulHFsslwSsLIGZGAzBgv281AO+iysMPHTHeF1z3fssumIo7bc+Yk3n22Lk3l2tMTyxvo0DKcuaWfB0ot14+++666/PT9r4mZjrtp3T3/aax3eiEIhn/EdVpQFcZH2A1ggVt9eZwdOAa4uIrwuf5bR7hWm0gJUkxNWBUmg+vVaBVhqB1NuA9pSOrMIuoxJTa5ZLYgaHmWYzpEzH2RqEPshS21cbIUozwXZSnrA0NEfOvczk5fMveOO//zuyf9OH9p0QX0TlkPPZ8ZKjPC0zaKx5MDwNPKiTXPn5SxWRE5lZknb5OoAo3ldnZilOIY4pWy33np3y9L8iGHDr7r+qocefhBb+IMPP/Tqq69KjxvH7e3txPGD4qxZs+bMtbbdZhMepJOBO03HIh0z/5s+W4jTOBksyg0xHGuT6UHGqjyqrGczHSk1nJHJYOZkWNKO/dnJG4upAa0D/kAZws+/2iaFaAS6gBWVBiWByDjRbsrO2CjowKrfrVK3WbYINB4WE0izcJ2/3/L3tnarsbHh93dc88gjj+Tq7Ef+88jL70ylm9Ved/78+ddf/5cHH5gxacdtPvvZzxKONIm8sQxOBE60HBVCwc34pBM3Arfsawf8L0Y6GDAgBcgHLU+sgYyn2E7NXA9LK6Afx+HKSnpQMtLFSpZovfUmfuqYA9xM5sUXXigWi7KOSZxEBLqyUyuPaNlrBp1X4m9d2kH3Td1aMjvi6DodM8TRJQyOLVYe1ulIw3Cbpky1Ns0nrfe/+BcWzVKmoZmpU96YufGYsRsNz/kLaFlwKBR766x3ZoxOfjB2mxHzIzoW2esQNMEqboF1OpgmKErisgySKTG4mP0elJPlTKydg3bMfJmu0NH1L/3XzVSyc7l3EcmUcNRK2XXrtvOnayXU/lW2hUkcGIfFSFi9WG7SiiaIYchxmE5BOWywsktkmwvmoDY6p6URq5lY6o59FJMEg3WvELosOcj4eaHnyGOZFHYxphMSnVQIXBPChIQjK5thHjWPSPbK/bP6q+4qSIIcfyUkzRyCbGrkt1F/EqtOzOZuh2t706a8Z7dbM5+Y/XYwe+ZwO1dvPfVK+7Z7FtzGIUnev94e+ufbb1u0ONjniH2/uenwzJJZdzRnx43bYIu5M0jQDQqymimuk7No6Ns5NSeE4hHCbOIHTuwjlzL31+lUu9G6llBZO9gXcFZKWqXfvN1YOUvTyfjt8gkDav000SEXorJi0hh2RMtx3EZ++JbnZ50gTz/X4FtQceCJ/NW9O2QMODQ2t9K9Be1Doo5CbOcid4jt57DKJqHYfdBqmCqVSUXWzPusmuJQAEwkLhu2PGbAhDfoHSr0Qclst271daJSEtiPMxmPKcxrrvz2NGsMr2q2Wh595tELb3zoC1/44g4bNpB1qo7FRZafxf/2tLeHDLGGDx9Oh4JhQmiVBkPmZVQFvwh/moLR8WCtEGaFPrvN7wC+YagJKo39hc1LWltb3zRzxIsXL3lt2mt+6yIWAdZ5cbGYnzt/KejNb14C6cyfP2/IkCFxW9jY2Ih2BDIKkVhyaDBi2RHu5oqjpxrA8HSTdfBCZthnQzmvvvSngcXeKpgnf+3Ul6699tbPfvbAnSZNan/31cWLF196zS2yPGeLzbbYfPO570559tln7n3H/tjHPrZZU1b6PzFJwNnSS6u8mfkXVRtL8rY6NqZusll1waIe0iNmsiyyWNq2dPbs2cHwEYsWyYLcqa9PHdfeikStP1S2ef/kp7/IZqyjd96DMixstx544MloRBaVh54PTdzIleiI0uGZNsuI3sihkT1ZmNNjTQDSUcRTTiUJ/PSVZj5LE4xlS5jqRCwgJzdNTPJaxa1ZZRIEZ/zvX1nk9oF667FfXvuRwyax6zTJZ+vYlOQlS5qXNkzzD9xrq+E+ZmVRXFjB5dqZ9va2xMlR+XaR1UcUTOTB0BBFYw+qSy+H8lTuVySH5bmDNJ/LjP8le2vLdcGn9BoFRtQxHMNaJ8Bcx5/qOAbD8g6syKCHkYuNIMb2eclf//z00/HcOitXl9z7yOx7H7kBQjnt1INOHrvhwoULv3fzvxYvxnzKOjjrjuem28/P2KCQHHPswTtEdazjdgIxwrOGFKFi3tOwD30RZyzS92SZlpGqM5mrtH6VMl0N/2hfrWtYTX4YYpppF6nZ0kkuJcudKGxq2YnZf2Vnx8ZvZZ1MSxx95StXPRPG63vWv35734iWwsd22eyp1/47rJ0+3Joz5a0/P/fWTSTm2KOwGBZakvr1YJkwzy6/UCoIrsbuGFnZYgPaDtsXWansIYpG2TbYLS9jK5aBPoJTRa2EicmJmT9lSsK0U5lZ0xpX2dPzua2oHntx4jQQ9+G3pl500X1zhlpDGhLHt/70k7//ybU22WjUHace29bWOn7TiZOfnfP1W55kso81zKNG2eePWX/SyLFxCxskoHjZKcCCbxQE5qqiELVaBlZBAJWzjJ7VO4i9ZKDcFFaNSo81HRjHczLFRPa2ZNhCFEfnn/8/Haw8R+EKo60LeXrpOpkTL7JmqKGh4StfOQ42jRbThxdtGVGzKFCGYwGzvKEsShdRMHMK0mcbR/w1oM9Vl7VfY1BLHNYhm1ys8Mtf/vIJJ+TfzY2guHUFxqGc/9GWyWTzC6T/Oe3Uz6L7dsTswIKC24gzpsVBuywuYtU5pjxQAnVlatEWWbyCgogcgFu/FnEtvVwogEJz5fB0nxF5Yl94wVEveushgY0dfn19/dLWd7bbfttv7bAfGk2eDTpFtheLpA1phbgzhUVmE6ORLuaJZYRqVofRhMBWhvXmPNO1lPu1lyxtZBXNxKzq8mz3gx/c8corJ84b0ciaL6/YBG7M39Gpt7W9i+ztt/9+u+/RviCQTZ4RZmPb3q4lL23WLDg2+gDSJkoBpiFQZb0YP1TXxn68BgVkDs30MJ3PIs+NUTIktJpIzjHrRNGz8CuPcoqQxR5OehxmkjpY4Vi3Y9gcMwnuZxgSYgpiWc27C+pGjBgfFt4hZx9pgZiSpVK5bjZ2/Q6mD5jUtOVohjCqyzfYkVeQbfIuXQ68k49zRVmWKl2VTMOXlbcS3VcWcQVBlbd7x7+il1T0hKWX0BcwGzfOCsdyFJqEaRTt1cVkxYZfapo946g70Y4O81bFHdqXUs3tGDmZ1WJJRFt7e441oMW92xs7OlD0sPExK8MOWKg667fk65OGYoDJq4gEUPFiasZAJoNtT0YMHGjE2b4ooGX7iKm0Uv6q6R8DTUnexJ84Wf5isz+IyTqTVQlHu+HqoItwzovo+m5UKGAZ9sLMSG/I3n4zCwWZAQ5bmzs4qyDK7hO1yL6AdjbBBkGhnqVgTvIeshc4w9j/mTNUg1WDfs4KmeljtzS6dtQejcyHBeyKnQtlTQVqBitrv9JvMrlWLsu+V8VIX2SwEstSKSN2zJ542VQlTjYcoduJHkTxJICJYZm7kMgb5+0NGmK/vZWeqT1ZDGGMbBkC3WAMxM611Zz6JGkK3ffEJJKXAZcva5fCNjbJMkTjuAjU96KMrNj0x2reIES/RtA44YDZEVo8kYz+VRJ6XrgKV1mqVUTV2zLjm8nALfmgwPyLaiU0JBiENY60IsaBV199zY033kT74RGjiclIjVsoO9ksi04wRNFZ64QLnXdp7ooIQsGlBY+dLLha2ar6SGJ2M2dcm16ClbXSoigvV0UA9FiSQ/3SZlCJCKTP0QjEYY2ySAnHVSpMBjTptNVUYZZRAF3Vw7AmGWTqiiE5/SzMw4oSwNErcAAGKYISUgcS/JS5KuMQTm4hn7QlHknlTe8aScMLzDwFU8tsD25N8lelzygRSAtlKxpFVbVIFiKbjpxwsKLZ8hMMaJuEoP4QEw+kIzwvs4bScvkHpx6ugpuZDyRwDUovwysexLxrHvaYgl8wd/S82SML/kaEMNtUkajUYsRJDExNFWVdUB4CRNf3OecX/pMlbW4HYpEcc+S5Dz744P/+8IUjjjh8QqNNj90OKbF9yJiJ2goym26O1uEEJVpakXkxys+QjRSaWwpzmhEfGqihaQolosY/AqKSvIwhxWlIj3lTH16Ta+m98kb1QiXSEqgVx17UPGr6NPY/b2VSFjxlBUPqpGZZcS3L/DgOUJ5qpVg8L9sRKTj+QtuobCbT0Qb1xJl2xhEcBjKCW2hD9Cq2LBJkVXMbd7EHgqeY4GWUCjfF7UXn3cW5AhqlGfCnr602D1kVaa6otCWLG2dMZyvnemSV8kmGzeow3TnNWi9KiniCAyuJeTzyOeNplMeee2EdaU55n0Fo7JmDPjId0kgWM98CHwcbcXU4i4EOz1BS0eDm+szXsO1T1iJwhkih4CzowCBUp+fUsI9N9PVlem9Tj2qHKsnA2sNVZaYCoNKrVOrkSnmY8C4U2OHY+vrrmxECOaQZKp3shwJCqy5KGaUfYyEfc9IB0uLJiCSQk3FyMrZAzWN5E+PzJsTJknE6llaaax0kBJJJh0gXDZWYrJ2X+EJDHE0DEzmzFi3tsL1GfbfWnc44p7lZkYdVVYl+c4aehIPmNtp4w6233vpXv/pVrm4u8ctkpI8a0pFeIcFqQxD7HvDbUQPZ04ntjO/V1dUtbfc492/LLbf4+c9/veXEhh122KFoqsotGCCko+LQ5zq6oKzHbkZq2UMQKbu0pijzP9/4Ri4nDUwmLgz4wGdWWK+oBP0UJgUnd5guQQk7l20fcMABV111VX3DLJMjIZ3ykkYTYFTffCy7zDOxTb03YOqzrHsemLrvvpsBl3TgAaZizt4UNBqYDmcS0PTtBTmhivM266nnLPYNmaFUIjboyA4M1gxmjzjyyPXXX19eht7LSQBie1/rTURe1xNH0RQ6fQhN5cgjj7z66quHDn/LhCBRGApEDSxtfBHJxz7O1kUOmxIJdBJzjGbRGtLYeOc9z2677cTx642hIWUYLkVhU8BekKSl9IUaMeF7rL7AiVaOEVl62aw54JW2iJ+1CHSKJ510EojxUx056PxRDuzff2kmDCfJg6BnsnrggQdecMEPp739EoHkVnAzjtEOTmUPIy/kwmPIKhN/qDmBj30QM6IcfTv9lZfHjBnTNHIs8fVjmXIUDSqFYX4mLfDnYgZfuqYB04CcK4jCiQSyhZCU99//4LHjxxMobyxbQuT1K3XQmOzcTSzO/WMyu87L0CP7rhRPz9MxtnEdrcm4t2Q40vNrVTgkCzidyDEkUWJdk/XLr7gSsD5x9KETxk2sI/cUnvrnZebIRTFx0PUZmNhsLyacREb1USINkiSBFyxNcQRT3V2i6190JFme1eJmnzpwk/Yjm29Zp6+zeyLE6hQBAwDYiQCXjmsxa7aUCt56dfo111zz6eM/t8MOW7NT1zwoMRkoc6WpcBV7n3zHQPTNjMxWcFfiiA80zFUajqwTYv4gyTuMfFltIimYlTxRVvNWilk9/5g8m33DIgCiyRs1mHoXcTIlk4LqHCp7tNBuKKXYGYFAnGP99orfeU3DTzjhOGmLBKMa0ZkbKimtwzQ4lLQAc2o1y72JaZtzeXxZUGvl6L5J2mH9Duf7SohqWIKf1JpJuw+/KEtPy3tLNbucbqVyxV2jKwgQ1DJXBgUyXCnFF+lgqJ2SgJoWCQRajkEWK0fOu+ueu2a8Muv0s76m34Ewpw3TfaIBQNDS6m0919ycaqTNXhNUTcoLmdfi3Gk5Gpm7cuguioc0YH6vwlEjkunY4pgoxk1UOUhD9OTOCIEx5kkN4yrYnx3tJmGpEmUbOfpQzuziWEEJoAfThuHb1osvvnzTbTcyL3PeN78NOyauNAwlHTmug2xC0oR7sjTLjjsEPbtEOjJmp7+WkpjKMHmoBtLR/JjVELCf6BrMFZirYKXCUW4dEiKKB4UxhgYE4rzzLhg/avynPvWpceuNIlhJh3E0bK9ilDEH/6rMr5J0SF9fyVotvHIKBvYgWXJHAtptSJRqckz7y9wC+cSZjJllS6azKeXTBHdIp8o24iW2i7pnFHkY2LHO+e73dt9990OOPpzIHAwjcmIkfgWko8lxLB11tjzpFDvkOFRDzWVDLBXJKXUib1VFOjRKlSuAMZgZTa1MOqaUhiJNa1X7nkKrLVQfxmYIxV/80wvr6urPPvVbbC+RcwPpxoywmkNN6cG0XUv6qgHxT6mWoDlTLywy4C7yxrMi3+Wr8a7iIpqntIXS95VMpk3JVJdB1UoTUIVNySS25Zy3DBQAQZTOFURDQcobDEvI96pQU7A2edEQ6IIof/jTH596/LH/+7//q6tjF7WkapREUeewZJm3sFeWr+LKG7HpcFcZGiMSQpDRH6YVKuloUc2Da/Vi8mqA1SpXuoGXpbWAAKGoY6a77syHiar51Oex9dMzMK5Ek/zeRRdM+uAHjzjiCA+rnjA8SclmaX2c+sXDsUNcKTuufEOq2azU1vXjcgun8WkeGHiSjPQYrum8SlLSVzBpZlZ5FSIUy6aUBfGQvSCQJLSrT+o/FRKodjFOyyZOzHoBkUjvhz/84dabbnXMZ4+zXekaMc+AJPMpAmEpIUlfPyugFsBQT+cxAyv9ZrxUnEQSmccruWKvuYxMc2kDKwmd+S6FrW2hlL55di1cypqOqbZSDuU1ogaYtTBMtACZyIx26yYOc0g4KXN5Eg7pEVTlcDgZZCOfIqVGNm655e633n7mu+d8T/iDKQtwZYBSIh1JgTrCsTuQq37rhcN0Jcg4DJL8y7lXKv74S6QWkHppE4HG7O5qKK2MIy+T4ZH5Sbchz5RvGa/80IDy3Yrb5dgkAOOw/Io8yXwNo7SMsMYJJ5ywwYTxF1xwwQEHHPzhD3+Yc+AFB2GtUiKIoMQHXVIABFQfc0uQkmx1Flte1d+ObKO1MZVLRpAA4UhTzebfFWUOxgnDl6e89Je//OWDe+x61FFHgSGzT/pZD3lA4SC1MsgrSgX8FS6Vx2Wi2DKFDE3JpBcZkotovdXlqFL+tK7BkF/SNsqlqpS3ChgwTFAgTJScPd/6m19dOWLECGEcaAhDPKN3lCBiS1OU6zIu1Q6WvSED0vLLqEfOmpX7Yvkxm3aXSaIqfmj2Wd2WkXlP6aqlt0HoTHm10CKCFaiJKLJ7mtUoGbESsjIg52Xvuec/Tz311KWX/wBdQ44zR7vmTE+DnnnapGCEq4xcGmw8wnZyW/JDi5Q+V5AUnoJxViCVyz5ufomm0xlMLQoRmBCWLuIqvlyOzUdCWJAoTq0Y4mOVJ1ctNk+Tnqpq5kMQMKWM3nOMqHlTxp43f949d/7ztddeu+inP+OcYE6LZEBRYp9SJ2iyhAIFYAlflZCuiMYp64NwZq+JjvP0jRK4dp0hO/NK7TO1R1FbEtO4LPgTg0qpEkrUaDNVACZGClTfYVXa3//+99dee4Oz7MatN16YVOhFJIdeiBVc4i+DqBJGiG+w5ZQj/AIxGJpIpQgmfknvAy9WUHH6jnRe0pwJJ1pfoSQZXB1HYSVzSCmkiIKig/D0yYphuxFq8DFImkpgYgUdZ+d9djvooIMIgF7ltB1ZY2PERcxg4CMn8pRKbURGpUV1aWOBWAZVvWuAZQZSFixYnMUsWqnJkwqdfoGrTwaq5oXL5L/8Q7QVJErahaollFRjpwUuoZeiyXQVe/Y44ViGVEx7/OfBh/957+0X/PCC+rohIh2m8EwNkiZwEiL0gzOqTlz6JZxSYhMNN/2qGH+AW46JkE9NGP1LTPhUraaxkqvUKFHTGJIgr6gISW+VPCLIK0s3vWkaijzEA9IgEKIkHj9u/Eknn8yOGLr61954HcYxMy16X15NNH27XEUPl6fMB+0lqepxmklhHOldS4itBLfzzjvv+eef//73vz9hgjAODcbUtIBTWToCwQAWXrGT5tot/NzSE/a04leWzopT74tQI/2iJOJR9Hhrt+UVYTC5ApDY+slPfsIHBQ856BCKCYDc4K7oKIKaCBkhXfApPS4MZdjLJFZ50Vqg4siPJOex1qzMOJXx+tuvOdSCInHMX5CjtHQryJ25J4yDPs7plI7z8AMPMSt9yc8uaahrAC2aVfqUkallG3U5acF1pQ7GIVdceZEK3kqjy82V8ssqn+5hhMo2uWjRIoZaTM+feOKJrGSHxan1yqtGphga2MNX9VF0qdGKzjrNKpkn53qdNm3aRRdddNxxx0G1BFY+UunvoxxX8WsUjUro1E+WmXA544wzPvShD33hC19IJ4+ruCh9lzWFCMHjlbSg9GfqJ5zAZ5555rrrrsOiil8zt5oEsTZK0qeko+WvLPOf/vSnF198kRHHtttu26XFVpZWoawMqR5/mrc0/+rRJvTPf/7z3//+99lnn73JJpsgB5Usk8avnrJUSU5SlIBI28b3vvc9KHvfffdVKgfJKslqNWQjlUA8uBQc/MAlJz28/TZ08+Mf/3jYsGEEkud+ZBx5u2ai77FDsCg5AC1YsOBHP/rR+PHjv/3tb6dwcCuVvL7P2+q8sUv2tIK54iiUEgobOzfddNOzzjqLtX+kqYFd4qzOuwZDnBQcbQ+gRKnVz3FcKDgHH3wwIarmcFdvDQZkVl5GxY04lYgpPorVf/7zn5///Oc33HCDjifArf+hI3/95Wi3ON7O9Y9//ON3v/vd9957j5/giNNw9fRXDlf+Xs28xjFZljxT01znzZuH+sZeEP0py8xNOLfSEhGS+jWRQX5VPBUThYtR1fHHH3///feDTCVclcgPctAUqBQQ0KuEcerUqV/5yleAKI1QDXD1m6ZTyd8KxMMPP8wZlFgK6dk0RCm5/4m5Mq9lP7Wreiwe6TuMBQc/Jp5bb72VL9t//OMf33PPPdNo+lz6kwLySDmx2r+dCChENBLGBeeff/7+++/PwIqfqe2s0t/52OD2LS9OwKijqv/5n//ZaKONELZU9vodqn4jHRhajiaoMLgCCpshb7vttvvuu+/aa69VaDRav8O0fAa6VHP6k6Ei+1k+/elPswKb5kEZ0yKkcfDg0lHY8okPwpC0SeABN6ZdvvjFL55++um77rprJVZptEEI0QqLDDiEa5+nzEIIBM1pcMccc8ztt9+OHUdBqx7o+s0gR2vsAhaNkIaKOs1ED5vZXnrpJUYlGk2RXSHo/RWoWUL/1wxQ34wNL7nkEjJ8yimncMYoIdQ90bQIRMOPo+65RWHxq67UX0WoqvcCBexMlhSZb3zjGyyq2G233RQrDU+vVZXz/s0M+ODIA3LFFaFC6pqbm+HrO+64Qy3HqbApwv2bYd7eb5qOAgRewKSoEaKg0EpBjYkttqEjfGxbr872qXq+diAPPfTQ3XffDVcyFiC3lRnWCIRoMdWjgXrtdyGohgykUHDaMSsM2LKP5ThtTjSbNEKKZDVku9/zoLCACTlRuJiZYQnlqaeeyukO6d20ifV7hiUDZLfaHEiRJYb0Tz/9NML35ptvpjmknatf46ThK/+ZRlszT/pSHq98ERSpIayA+PrXv45Cqz+JUxltzV66rj6lyHTBB4TTEJYXPPHEE1r8NHBdRaNH5UrRSD3p44SolOI59thjX3nllfRWFXr6U9PpjnRpzDokAUFGWEw877PPPlhJGLOAIJwNvuiQ3GLkr4loOH5uEYGOsbvEexquKZMTTVNrl/fiISne9Z3vfAcl9pxzztGUia/hPX3R4ImvkGotU18AC4wE4qeWmfVDx+EnCFPLgweWlZc0lcC0dSiMeuVZImASPfnkk+n/9tprr5Wn1s93yXRVObAjP5VXfjLUAkrm/zScEPQgzXaXmOmzere3rqlSownqT74siLGTeXECyQ850fDeeum6mg7kokXDA2jqsIgxImClKD+5q4FpzHUVip6WKxWw1EMKipLaIp599lmFrqcp92X8atR0lLa7aCtvvPEGR15tvPHGKD5EoG/kClLq0Ufwpz8J6RVHFZIOmcHDFfWK7hfPH/7wB5TYM888k69l8xPXK68bDIlordFUUkUGP7scYPA99thDca68OxgwWWUZU1EHH5VzDUmvX/va1w455BAWavR6E1hl3noaoeqaCiAqrFoSfmrIBz7wgZ/+9Kcs7eV0S72l0TQCITR7QnA9hWDl8VM2UY8OrE477TQ+MHDppZduuOGGjAS1mnk1mVl5arW7ChFYwThaWVw56gT65lAu7iqY3NUOvIaYIgAsCh0eHOCkyOBn+oLjmSAdbqEEKbBphGrzVJ2mo2JX2dGlggiUtPzJkyfDPqyzZCcOP0E5rQzATSP3ItD6Xk359ddf50CcnXbaiTomXFsO2aCm06nxXnz1OpyU4snXx9n3S21uv/32WumVtbkOF7+nRVO4gEg7P+Udrvxkrgq+luM+ypbHnibex/GrjnS0/ApfSj0gjgNfDV+yZMmdd97JphIOQicOrZ1wKgCXCi7+XoSSt5MgpqW33noLY+d2222nIZXVrCG9+NJ1MilFiSsOwycb07761a9C4sra4EmpqWju9m4Nrktgpu2CQjHZx5iUpW34AU0bghJT1Ra56kgnbcappwt2afisWbM+8pGPsDGHVd4pyundLk+t8U9NkOq88sorZ86ciZJVWeWEa8q0kFo7WR2QFTEllMMPP/wXv/gFe2IVuhTA1NPrtbk6OazOOCluCo4KIYzD4TAY4MlzKqjVL4pVRzqgV1HrxuRUYScxx+bJfWns5jizr3/tLI7FYG3C8OHDMeYSjopDf8mVP37yt7yRl/kT/fBOKSnzyjRmmoh5MH5nxozrr7upqanpzLNON7f0SwaqSZmz1jSHpaPsZUN5zXXhC5oKIanleMaMGZy08PnPf57FELQf+oyaXpPKDECBRgpIiqR6lH2I/Jvf/IYZK3gHfxo5TaSaPQOVdMBUz3zjBLlHHnmMI9Gw3nPIkxJNyj6V0CuVEIKhjROa4Z0VijrRcBiF9e69/76HY0a/dsY3tt12a84Uhc4w4JgD5HUJSY10KjFexq99cmWQNqe2trZzzz2XWcgtt9xS7y4fs/KpQeVPoUjJRQlFwzWQK3o3qzTYzKnhAwui6iOdktZQCaPqPpUaUPku/af5JBi95Vlnn73D9tufdupp5Xtyzqkccw+DGI8e9Yjms3y3IHUJXcn3CWRtIefAq/p64403Pv3Mk+edd+6woaNMfUuHrN9XSt+CR7OsIVU3HViZ0b71V/bYBj15PbvVPve5z0E6O+64o4I8EJvN2gNSMUm1G30RP/Ege3jQFpnKYM3axRdfDHSpYWHtZanXUx7gbcQwBaBwRP4V//dr5rNPOvmkd2a+o0qQkosyDt9+1NNeCcRmySNakXpNmwRVqKe9YuNkXhyz0eWXXTZs6DBEQauc+MsP1nq9VtaBBLU9AJpiq3Uxe/bsz3zmM9jFYBzKqIEK7DpQ5F4pgo5AlUqALkVPBNPMVfE11P/+978cZsAtBbBX3tuniZhyVdGFtS7p3zLZSkNTD+ta9Q9eYRcUX70J4rffnHbWmWdfd+31mgoheObOnse1mPc7kzaJ6F0N5OMwfqEoX70OoykvvPjVL39l8jPP8pPT7nkJH27mqm+GgCRjaTa6eJbJ9OD9oSjB7woBP9mIyJAKHoe4+am3uJbwHLxQdS25AgJK6Q38OMLvueeeCy+8kHAWqaZ3B5yH0UZ1ucomvEzOKm+ov5JxTAjUw1++vXDz32751FHH+IUAqvj3PffyRePWpW1CE3x/i1aQPm48oR8tmLdwWGPT5Zdexq1fXP7zr3/tzPlz58E+/FG3yji8jU+x8QQOCaiRzjK1080PAQrUo4i94/vttx/2Y0JSJtKHNE43CQz2YMBRfgFD9sGeeOKJuuFGQRug0FUd6ZQac0nYlFdo+OmfhpjbhjK4wCTGW3pUqeGdd2ftstuu995/34T11+ODJV8/+6xiAHuUiINHhH8MiURJeOBBB/CBknETxn7p1JMvvPiHqDVhHBBu9JtikhSDgKu+mucKhJT+Kl9cijDY24mWn/aAo6lAMUuXLoVxGLHyk7vpVeMQgqeGmiKgjKyAcNWfIMaQSlds48elMA5E3AY86SjjyOdgDfUojwSQRpIU/OIOH9zRfETM8rKZm265uYJoRMw12s1/v0m+ro4d2bZGjh6+uGUxXMOfkk5UopgS48Si+pQZB0+NdLqR+pRQMHlyoBSLKomYBqaNqpunB3uwck16ZRsnG54BRUMUHcVwICJVfaSTKhTiEVfZroUMzMhGyYVbK3TUB73Bk08+iXlMLXOY3DgNf8qUKcQ3/YQ8p9XGwRSVVjTd39BZo1h1+GNPuzAWY61yhsyLoS7+SoSU+JHcHnSuE6tlaYXw9vZ29spx0hB+dYMOnR4WGJT0CaPQSBOYO3fuYYcdBpLKOERQTYdbaeQevqSfow+k2Sud19YJK2CrZIoufrXzf/Ob3xw6dCgx2SfBlS2arEbr6Cgw/aS1RTTO+kP553FmB4i81VZbcWoPtVs5L0D/ot+q5xvJ+hVaFKkubxy0PwEWrMATBwi0B4WOK62FI0f54tLIkSP5qW7QArWaBQclYoIqAol79913P/nJT3LwKFud0+5T46xmgtUYjeJVmSvrDctpOqmOowOfMMrH3WsWtIHW1lZ0+z/+8Y9MmnC+t6L/5S9/lcWB2mlwpLEGQj3n/eDcR//zSL69A80qKGKRLl+NPQkFxug6qtSIRqN/qoWVlLEqw7EvswPa6eswfEI9nPvBaRXvvPNOGp72z2lIzbM8AkLeZVMO3xRhKyw2+C7RiNAlZGD9HDDDq5RxwFtJB8bB4GLqqLMO9CdXFXGtHpoBhy6zQZwVIhtuuPGNN95EJdEqYCI+Mc5JPayRVeJgusrYc8pjKGE1mTWHcbgqHQYJs2KFGulUCjpoK+A61QLdf/azn6WXJk56qzJ+zb9KBPjuNoo5KwyIqaji6SLtq0ykOiNU34rk7tRBhlNmRCWDLLO4uBSx+wMtsd2giOpaPh2NceXnnDnzJkwY39GR9zIO6wlZf0xSRGY3liSOemveZXY8QMq6Vln+Yb0yKm4QWuZLFvJ+mxGXODPais2uq4E0YDV5f38XmgEJMBDgqiIOibOu8m9/+xtfbeWujqqY6NXPnL6/t637T8PRgKlfGUQT32STTQjRgRXwUv4BP7ayLLN1aKBUpW0tXrhk+vTprllVjDEBY43vaLNfpgxaPVQeNYRfq42rGncI5BgXeg/LZhOWh3ZjKrLiQ+PsrZBjNKSO4TTGYk7GDLM9OXdq51124QSl2um9irjSDX7wBExmqdg4zufb+YaHRgB/4IVxgC6NrLdq1y4IgBX8gobINk5OyVHGSUEzUtrliQH5s+pIJ7ECgLQtc+K6UW1KuNrvBX7hltvPoxMYMWaRMEhmEYKeTUS4tT6UazQ+Ifx0HJclr57H96ekQ4ZHbJsz1RknhdQljYR1JBzUyy1GVTgMxWZkJgmGBR/uyQQZSCeQg0p929vs2Wee+fwXLj/wsMOsuFGeKuk1YvyTSffSRTyDygEdOuPLL7982WWXcSiXfjUIBLTB1OhmdYRBpReR/tnPfvaDH/xgm222QchTxlmdFAZKnKojnZUARwUgvp/4xCdGjVsMKWRzSyAIL8qt8BEioNIj/dRiZc2ZQRMakHS/VCrPQj2sW2NXqKz1jCyuqLF8fFx2f2Li4U7MWp24WCzE9qaLmpvRkmTQVXMGAZoKDjAZVbHR/6GHHlJgCCEcP1fw12uNfbqTGsWKu9jC+NabfrJKR1WKIVcg7eLn50B0VUc6quNom0bbMJhKJhNrJJNOttWaxEsac5OpAbGkoGg45rDYpF5imhN2LKsdrx+OyjVkwnixl+NcQXhH0jBn7PBAkkGTChkqZyK/yDpzhwXHUZNVLLiek4RtVpDxWLJciGzmxqMci2qdIMrIKMzJ+jMCp97izzij3JA30cuMSGjwunmlYeCUwSvpgxDmWRhV/etf/yKC0g1XnIGl81rJ/usmRqtdKgWK6CDJFWRYusFRFZwMxUmAirOCnMbUtBXV1X5PNbBl2IgAAD4dSURBVEasOtLpLZBk6ITd1/Fso+PbVjZOChigYQ4PrkKRcdlP7nr1TVbQlrPttpaA6iwW8q7jQmPoO3Ysy0/QhowTD5oWEoDrrUwOrHSERQyPaDsh82BCb/zcc8/xbQysnhhuiMBoFPAHVtH6PreKJO+FbnQBB6eacQYgex0IFLtBtnQaHDEV577P5Fp64zogHMb6U9KJCgamIVyfaJnz7W9f/9xwG57IZK2oaO07ou5H3/3JLpZ8WWlBZvSspbO+/I8nX3/t3foR3tFHHX36sBGcozO8pRUhKLRlkqSBwRUqTuxzZY5eliPHLtRD2qJfraX6qPJklXOBCAzxwzgMNumfH3744ZSL00FBlZel37NnujGZ6wCxb33rW7vssgvfbidXCBwGMvAEZ34qzv2e217MwDpAOitGQ5gisUaMGDp0OIuSQz5VNRyrjSX7NrEgP/vGM5dd9siMic56G47qKBauuvrGsRuNPeqoI5EAsd3EWR63xI5TdGLpZ2AcrMkWW0Cx+gxWB9HQDIBIPcDy1FNPXXHFFf/85z9pJ2g3ykTaVAYrSKtbbrBSdgZGzMZbbLEFh6uDLRSjeiIRSIu7657aOEBJR3UNqRUrEUNy3u7gWp+IjsOoiKvjMU6yjthp62MOPG4i59VZ/jbhgow1nz1YVj7//QeeX7S+ddNBH2atYHO+cMONf7vunQWZlujzQQ7FKA6KLNnxizkrrIvDgug4mJVDy44sOxykOg6Q0iS40gy40jamT59+8803//a3v21sbNTWonSjlEScmlsJAqkW87//+78siOfDVSmb81Sq5ijj8FPBX0mCA+jWACWd1UX48cefvv+B/zZ1WJMmjb74sINGjxyZ8fMMo4cMaVjU3JrN5hobh3To1qFE1pL47S1UMEZkbDpWzHR7gJ7DFVMQnbllywJ/7q/u69eteMi9ajQUi6+P8RH32267ja1qaSm1bdCc1JOG1zzLI6DUzBJ5Pr/DJ6uQKxQfoNNwJSBgJFBvLZ/CwA2pctJZtVrh20XQr4/NwmRH1vg4ifiHhnF90VrSHm803skF1uTnm/d+55Yfnf+jo91pshTi0AMv//lfDrnt4WFNk4tWuKTg/HKXHScFRZQc6jjwPTv04qjN4oCvsCEMXCu044DRBTvKTZbgHZ24Grg1v0Y5pw3QEh544IEbbrjhvvvuo4XgaCHqNMka46wOtPALI1NwY45cqRzBIxCXEtDqpDMQ41Q56aw5pONGjv/SyTu1f2C7bcdt1Wh13PnknZfe/OI/7r7tk/tth+ZCU8lmrMgP2ZxYCDsynqPNqVhExSnaYSNLAZnpov2Y1YORxew54yuZ3xy8mo62jUcfffTee+9l7zh1QwtRitEr6BCy5nU2mJ5ksg/QGFtxVXMYEqgAwESVSKThlYED2j+QSEcro0uVeLLvybGw34iT4oR2K1PjY+L42L12c+LAit/GzDNu4vgfTpw+edECu709E8VfvePeuU7yt7122Gyzzaa3dPzjH3dd9MyU4zbZ6tSoPmNlO4ocbeHFeRdbMtNeTuSyZSIO3dizg2AZgZBXr3MuVV60ZLQKPHS/tA3GU3xblQ/+6C4H5RruaqUo43SpoHUOnp4VSCHiilN8QPKWW24ZPXr0F77whS7QadLrPHEPmDaD5NMYtPK4VtS8o595kBDC5R5bHmRZDToLfbE8Ytts78QyXJerZ1qKPeULFy4aNWroJpt8gIdGjx6z6aYbMOZiJ3qhkC9wPHsCudCvh+JntY9slZCfOBKWFy3bF0nIOuQQeogDtCkTMOLHwTgcinbTTTfxNYKGhgYt7rIVsQ5B0HtFAToSUx1Q4WIhJasoTzjhBFQYBRnZI87gAXPAaDrUnRH+0sVIhWg3TujCKZa7WKrWbuLqRlknsT9+/V2jx4zZfZtt6urqF+YXPPXca6PnFA/5yPiYtYFudiuvYe7bLT9d/91x48Y2h0ueWLx4o6XW9iwgxFTKAck+Kbuh7RbjxA1YN5Gw+Ypv2PCRrST0WPkj29DNHJnJRnqRVjrQdR9EX5UaqAc/cPMT/1133fX444+zCJB2kir863yfnFbt+/HQV+kACrj+/Oc/P/PMM5zxRILKOHhYlcNV0X4/Lxoozw4Y0gFQ7TQqkBV9RxhHXGnUw/pj25U9DIQ/+MCUFx59iYNy8i6DqmT/vbfZa889C7NeQQiOO+7YK3/zx/sfeKouF7c4duhbh+41acyYMf7cmYiC2nGCwBXNSvQbnEzc8MNYdswL19ELINNCKBw40EgU88cee4zO+dJLL63cyTl4Gsn7qWplcK4w9SOPPMJaSsxhSjeVlI10Kezv510D5dmBRDpIeer4Xjk8w5ArcfNgbbObCh2j9DXxhsRy7zv+6Je2fu7WV99obV1an8vss/feHxq+ece06VEQeY53WPv8g4858Man5syZO3uol/vgXjtuXt9UmD3PjRqCAh97cGRtjs84K7F8dmPFSZhhXzojLebOl63aATM+XTbb3f6iyBBNZRtgDydWT0w5KelX8lG3CdVuGATgGiDlyhZ8vj7++9//XgmIm4CsOmMXol/nkRtIpENlUD3qLDl5K2ZYBe+UKsk0F/x6vJoTO9vvtPOI3ffBvkP9drS15Rd0aItigoqKp+V85CMfFgnww7a2Vr+1gBA4sVgxglCmgYks63RCtsYQJhOZLNdBCyJcjEclDWtdkxAKrjgLkkmCgsOo6u677xYIyqtI1rUyr/3ycMAQrP2nP/0pl5O1rCqHqtqk/E5gpe6z9jPVb28YYKSjFSZ1ho7DAmG0m3go19gpYmRxLNF60EgSm+95tuKv7ygw+e12xHWs+As7oI+gMIQ1x3m/DtIZ2jKTtlSMgmEkWGjMWXXFljY5IcznnJ0oKWK+oc+PZOqKT30yz85CfzVhS8tcFyw4QNTFaXvQ/pkdVf/4xz9YTkKg9slEVjUHDxClgV0Sqf1MEQA6PlnFyeoMTmEcBU2ZnVtEqxxVpdimj6+TngFDOka9ECWGaqNzoDIS2cuZsNhGlBLXJ8RhuhzKsDjOOMmYRVay3Ma0E67CE2b+SzQaxxMyItQ40kTHYddV1vUCDDyWHNyFMYhpBd7AU8zk8FooiAFW+aF1818A1IZx7bXXYoPAcszPtKjcxQEvVyUmPOndmmd5BGbOnHnllVf++te/5gtIiBGgcU01GkVPAcevP5dPZB0LqVLSKQtyp8XEQZGxo/qGA3/7u5cbhgyFDjIZmda1E3PSoC0EkiRoMSUnPMHgy5xlTRvhZ5KwryrrOtliEeKAvzKeV0865pY+1UAs2yYR9BqPVencdSw2f4aem+ULNl4u1xzt8OktNmPdoGXeKNNYnUbsztwOLCkBgbQZAAQNgz2cHJp5zTXXSOkqGoO2irRtpJ6BVd61kVsVoBRGhXTatGls5oRx+LaaMguvTuOk6A02hVF6rbVRB72eJjO5VFJHxxLOOuIjENQcAyPe4qGiVDgtDte0aituitd1ckbTceiC/v73v3MS7ZIlnEAoiRhBYXRVmiTGw6ldcSinmrI6hx9Yekh5wsQNJCFznHt6XqkJkctAcYa1M6rFpEKvTeWqq64CHFoLwwEhXDnUtTaSWq2KBS7ABC5Ae/rpp0ESAZs4caLCqPCuVkLrdKQq1HRWbCtBnaciGhqG8sc3OaADWEKqJi4dAN5ZTSj8XZi0YgjA8IwtD1zHT9g2SUZttdU+zM5svMlGZumNSQMSNooWIymmjC2H/RCYjY0mZfYZlTUbo9eUVbLOtw8Qn64NSelGaQVixdgJ41x44YVCslixzPR5Gm2AFK5/skmHBFDghmOhKQspseMMHz4cflcYU9JJPf2T0f5+axVqOismHW0V7EqAMjBiMj4yf1xKJ4f2DEkEhEGX2Sh02qlf3nfffTl6eeiwJtYyC5vp9JTxdJKOUI+hMwioTEM9e2k1xZbiG1pBJcSvzYBdDhyR85Of/ETvkl/CuXanNlZTgfo5L5U8wseqOLyVg0c5lAuQazB2qZuqJR3Np9EmKrNcohoZEpZYw+ga+NNYWs0aov70lvGg5chgQTVeQjipi1nhv/zlL1/96lcnTdqZR/QpbXhMlJt+XnKCYKV3Nc3Ot+rvshZU/lXV/1a2EwqLjsPHJE8//XSUIFhG6aZLeau6PFWQOUB78803MeLwZU4+50COVNjSrPETbFXA0sDB5hl4pFNSRqgoVT16OMDhk63ab6fSgKAov6DsnH761w455BDSTu9CNYa/OgVlmba6nLz0MDvLPd9XAVpAUzR55a233spiHJau0R4oYBeuqUCjr/I30N4DaGSZz4rwBR7Obx07dqxiyFWlS6/E0ZiDWXlcTpXo/8omS+lfZ260qrC2lGaNZDGyNHBVfVbnyket5LtWpg9Xg5+miVioLnPnnXe/+OKLmDNmzJihL0ZQMEkzVCcOC3c0kBQIVT856PKn4dV/NUU22qJtX3/99awlYa6KYpJzCogHS0RaCo2c/qx5uiAgUuI4LS0t559//gEHHDBu3DgQU0kjpkqLYqs/udUlhUH1swo1nW7xT/tbUXbUusIaQfPZmc6N5t0+Xb5hZsH4gShUyoEaqgmcMmUKi1MYjXO6kkZQhjHtkW6KNrnMs+V0B9i/afEZV86bN49vLRGigZSaRduco8hPSpWiNMBK2FfZVZToxtg4jo6z8847q6DSpSnvcFVgNYR86c++ymDVvWdAkI6alhW7tdVFlHUXobN8R8A2GfbmXXzxxV5G9OHKrqlSYnQiP61VE7PqJgQrJV79aRH4mOScOXN+/vOf15glrcSVe1LoVCr4iYOj+dAgdhzOHtWQSoFZeYKD8O7aasMDDkq4xqwMpBey6uszZ5115pFHHnnMMcdwiIwKkA436NBonwgWBaRD07bKT0RQpbDaCk7eyKTmTTOsIfhZKdvU1HT55Zdr/qst59WZH61xxZMr0CEedE6f/OQnd9xxR5UKQpAT/NytzlL0b64GnKbzvuEqf36824QQFCw4rPLyvPa2NjZYDx06lK+gcQK5TrHrSTrQjP7UhT8VqVUpjyvXkE/1/O53v2tvbz/rrLOUUmkkupakoiA174oRSLFS6vn2t7/NV4CPP/54HVUpwvqkMtSKUxnEoVXaQvqlRuAR3oskcZWmyK6KxsZzzz13n332Oemkk5599lmNIHkrr/GRmKwbYpRleja5VWUu7Wy1XPrzm9/8JgU888wzudJUtBVphCrLfjVmByOxYsUVO87BBx8M45BRsFV4uUI3OP1ZjWXo1zzVcOmE36g4pZ/qV7MxQTTLT33qU6eccspHP/pRLKypUqDCpxLWmVCV+cikqjPwCx7MVdgg0HG0SZB5zW8arcqyX13ZASWtbjxMOHDUMcNw/LhUKsix8k51Zb1qclPTdDqrotz6kBgxJ+P0igAhTxymzR5ILCBPPPEEtxAybcNpo+VnZ1rV5INoKAIZJqscW0c+sXpqq+AKn5JZ/VlNua7evGhFs7SCZaWHH344GQVYJCRdZKBgAnj1lqFfc1aFmo5WVV+zISMkpEQXpOChoeqV8VMqQ8gWe2ouu+yy7bbb7nOf+xw/1U4ISRnJE7Zit1a1udQGwVBx/fXXR18j57ScdPVNGqHacl61+YG1GVUdeuih5BAklda58hOxAV4cYsNPPFVbiv7KWI10UuSX6ZdSidHhufIOUZWJsImMGjXqxBNPHDd+PF/OymQY5Mv6HVx1ihj5Z/Nha2srm57TsqRlTMslBai5lSKAAHCw2cKFC5lbgGW68HWKLWlU+lea5KC7WYWkMzDqgEEWWwd23313ptXJsQpfWTmSIlT6+0b+0jemHt6Lo22w/5AjXbB60vGmdwcG0P2XSwUqxRAP6PEhBxasf/e73+WM+lRb1Fv9l9MB9uYa6ax5hTGkZ6j19ttvYyjhU1Ap7yCauDTdVDTTkLXhUblPCSU9ToGc0ELYCsSIALuDZrLWSFa/CtLqA9vrrrtu+vTp7HXg8RRh/JXVvfopD9qYNdJZw6rXdotEPvfcc1iXv/71r++xxx5pm9e7XAnRGVYd8K/hy1bvMW0elQo/GWBh/qRJkz7/+c/TMMgMKeHBrV6SgzdWWpUpBGyI5egl1m2BMHWqGCrmy0dOn6p5lkegRjrLY9KDEJU2PhmKNsEKsc985jOyhtA0aW7hKqdRe5Du+45KYyAbqGDrrbfeUUcdhR9HflJjZx+Q4PsuRH8moFihznDQB2ByDCDbYlFsqdC0TtOuBWz7M68D7d010lnzGkt1CoSPVO4xDt5hs2ilXHK3D1q4NhKaB+/SNnDGGWfssssurFsjM5pDLWqthax+lStufECGzzlwthlr03k2rfc0HaLVUE3RWKWnRjqrhGgVEbS1qyBynArLfI844giO5lFdAwogAkn0Ae/wFqRf88NZXEcfffT++++vzSZtEss3mFUUb7DeBjcctXb//ffz+fYbb7wRDBVbhYS7eLoEDla0elbuGun0DK/K2KnYEYg4asPmihmFqaLjjjtuq6220nC9Vfns2vBDc9gaWG38y1/+kgzoepw0k5U5rGw8ayMn60aaQPfaa6/x2S/sOJxRD2iqM1KbqUZZQ3IN6rpGOmsAmjyCRCqVpB5NSKXwlVdewQQwYsSIb33rW4T3gWiSDc0JOs7HPvYxXZvfRb3SbGg0zW3t2h0CYMXJSiw7Zi8+h3Kl0BE/7UJSJPugfrvL50AMr5FOL9da5fiFWa3HHnsMzTw9EAsxhQhUJUlFlhykUpt6NFvpzxVG1nSIyV2uNAYsSoyqsBwTgtZT+ZQmWLt2QaALRAo4gUyNM+VH9Wl8sE3roksKtZ89RaBGOj1FbNXxkU6klng0ez6u8Ne//vXjH/84q+YJSSkp5R0CtedMGSR9QSrlmloaE0/aVPDgIDJGVaw25tg6DnbRB5dPME255qlEALioAoWRcH5ylOKPf/xjTslh+ZXOjtfArETsffprpPM+AVzB44ivCrFeOTr3z3/+M7o6ijrzr0ISFfNZ+JV0NCH9CTfBIzgCK6lH/cTHQ0zaQxqBhUL77bcf+w95Vt+iCVYmriG1axcE0irQCXI+icHSbc5U3HLLLfUWhJ7qqjU8u6C3Jj+BteZ6FwEYQR3JQgGa+NSpU9FBnn/+eX5yl54zfWn6E08aX++m0biVxk89GsgjzJcxp0s4zYZrl0TS+DXP8ggohumV78eyjXPRokUpjDUwlwftfYbUNJ01YeqVP4MEo6TolZjUEFd6SL6GrmtnvvjFL+q2CVVV9K7GJJpq8ulTlSmQpkYmGt0vkymwDMZOZujT77oRIX01/ppbOQLgrJgTjaMUzz777O985zubbLJJOlFFuLYx6rQ2yFo5mKt5t69PkFjNbA3oaEgnYqq8owVRBmGLIJ95Yexz3nnnscIVseYuEs9V2UQ9MBE/9RENIQ6OLpc01U8EFH7ufv/73//gBz8I42h84hBINK60EK41t3IEwBMwFXM+305/sPnmmyvjpA8SB0jBNu0k0ls1zxogUNN01gC0lT1C41c5JpISRGVs7Srnzp3LUhr2i/IZBiULfUR5iqsmwoOphwdV9AmkkSitMC8Of7G1Sl+Rvjp9bxqzMg81fyUCQARusAkfWcRyDIOnd4FRIa0pOCkmveKpaTq9AuMyiSCjkAIOqeUGYs0V8eWKcOOZMGHCj370Iz4egMESs6VGYzPh66+/jp/4GkJ8ktIUeJBAZnBZ+ANbMVJj1zgDAf0CAWkqKxGZaDh9ijzgqbmVIABEAM5mEdSc7bffXtHTqzIOz2qt4dFKXElqtVurg0BN01kdlHoQB2qBXuxYFBM5R5CPAupmwAg6sIqWn3E8q/RlY/+Fyc/efue9EydOPPSoT/HJpJENTY88+siosY18vtThODBMznaOd2sCdhh96+yzL/317z517LEf2mUrPpV9wKHyBeTYykXm84N8cdBLZHhVtGXgJk/WXAUCkIuysHIHFaQqDEdV7LrrrtiP9WcareLRmrc3EaiRTm+iSVqiz+D0k1i2KBqQTsLnjENbPK6xBEcSbjsBtOL7CTrOCad9Zd7cudDKXnvu9egT98tdk1JsieEG0hFtqaO9oanRNyF777LVY08/bdkyEWY5DcThfpREOfOUb0iHJ+VmTdcBHaOkSDdQNuprCFcWUh577LEsqlSuqTGOgLWWXU0kexng0ComFl8BZxjlxHYhtvPoHnwG2fJCyw0cdJ/ETvhojWv5vmvZ2Wwux6dE582aYYXFxIkef+bxyy79pW1laCYxX0COLIeHeTS09j78QL+OhELPjh9/dsrnjj8p6XDtRBgnjCMvSHKhA93kbS8bJFlIKCk6drGXizdgk4NxNO/qUfZhrHrYYYfBOEwCqhJUG5D2QQ3XSKeXQXatTkgZ79jmp6o//Kw0CmSzGIytt9966+STTqIliLgbIzTmTNYxoxwRaFQlIa3HHn70qUeftEJIx2YwtcUWW3A4PFnnB1fPkVWC8jamrvjfNQ2M1E3HLrdqzig74I8ug8Pzq1/9CrPxySefrNOCIMTwinBcDa21isAyzWCtvmmQJO6LmmNlY1QVCMCn2Ye2h4FG2ccOA7ikgN5iJfXCD8mSlvZp06bdeMNtt976j7lvvRFZUdHyxk2YMHv6Ww7LcFwnTiwviFj+d/d9dzF4GjqyASP0Zw7/4sgxw4uG33KhjOBC1CZeaD6ewy9WH9pupz1okIC/msWEVn76059ij2fuTykGesfDdTVTqEV7PwjUSOf9oLeCZ4sYizHixtLgE6uAHMe2EFASi1HZiYSSip5YdtT+EltGSUky3J3+0quPP/741Tfc8MQTT+6/717/vv/+IoqNZb341LOHHXpYa7Hl4osuOvWrJ9dn6pxA0i9mxJRTZ5bjRCYZc0Ez8rlrOVlsOm6n4iVhg9mh4KBOckXHYTzFJz3wMzOlmCjpaJzBjFIflL1GOr0NMqwSW0lGdBuGPjJmgnHwYJqBP+wQ/d5OsmJUNvqPLVPqzFVxuB+mZXaECk3YQfCrv/1+9z12332LHcjfL350GYtlz/nRD/Gj1nDNJEIrJGRIyY2T2MX8I+2mISWaKCzwOXbGXsSsOUWAkdRNN93EWfrf+973Ks03KdfgAcWUiWq4rQ0EaqTT26gaJQNDcGtrfs68eRyfDIug7+REuYEWOljtaify9RKGTsi3Y/tcPVhKCMVG3J2g6DpOWxPBSa5VNKO2RW18zqHFHCLlJ0VSq4uKbIOwG3KMEbJeHXHcqEiDsbOj6cM9V7azZ7yYY5sto2cRoebAk2NG+IAMOk66J1ZU0bIGBESVTFRDbC0hUOsGexvYrHSVkd3+699dMn/Wpbkc4yZIR9QYjJiRI+toEtsNwyiXNOF3rAKrCDs8qCR283XZbKY9LkA9HmoM81dhe11dQ1HW+DAwkIGb5xfQZYpJAyFBJIRlB7zRjkIIi9kqFCm88uzkaRMuOP/8jx/0pd4uYbWnJ5iIVikOP1f9+cgjj9x1113s+IdZKsOVaGp0YwDri0uNdHofZbQY5rrRaM499wcc5Q2nSID53nDsyvxIlMhclRfWS/NIREMJG8QwUx8NQXNJ6mTxsR3ICsKME/p+MbLr6Jljv5UJdisoskLWL2RFV4pQd/x6N9va2pbEHn7Hj4OAje2x67nX3Dp/8dKlvV+86k5RIC0rL/j1J1m+7777+E4eZxtp9kFP975Vd2nWzdzVSKe36zVxPDcbhX4uNzQqPuJ5E6EJmyEVmo3rRs4CuuD6aCiWGT+LnceqwwfnWNmk6NuuU4eNmKU8GHyyZv7LCrMyeEIxYnlOttDu4/P9wAr5tl/AXFWhkO+IMgypsvliHDLEyhFuFVzLy8QFu94uWUl7u5DVmx4MLkPUil3+cBCHGbECk922SkPkHsbRUVX1lmTdzVmNdHq/bsVUXNoU7mImTsSIk1iZDPvEIQEmxaGTsFBo9vNvvvnGDlttNZwPm9A/52TxMXuosA37gd/R3k4ijRmWD2YS2MV8UpL+mbEVraWtpaVYLNhxwme2UHC4awygCYoS1pyssRkV0ZDKo4zeL2S1ppjagOEdoIBcZs6ceeKJJ7L0qVK1gX2IUK2FWMfzVSOdXq7gAM6go/VbslZbwXJjj2U0bZ7lFKyFXsbNREk4b8FH//v8zHdmzZzVMXp404PbbBdbjaPDNgwPkZNnhvz/5hT/dO0Nc95hsY2zwTajv3Tyl07P+ig0TjIHbvp3OPIft91z/9SlDMyCkdZue0y6cML2cNGwqAVmi9zGIHIYYnE8RiayMpExX/dyEas9OUgZttUB1JNPPskXBydPnkym0QcZpeLhLqSDJx18VXuR1q381ci+l+uT0RPinPaiouiYRcJ1Vo5BES9btOi9yc+8MXbc2A3WG+9l64wy4tDtcst1Ms3Nzddcc2NHu3XGmZ/+/BcOWDBv4WWXXdLSskTbCRPnt9x8y8tTl+y+57bHffoTI0Y2/PfJF1566SWMx7wIlYeRF34cnbxRiwYj6Sj46DVz587FiMM3ZMAWfqnUdAzsJQNzL0tALblVIVDTdFaFUA/vu8w0OcwuoeDUNaDdo3dAKawAjL0GVgC6zvpb79584c7ZTO6Tf7hp1qzmxiTnWoHt5mPZsGm/+cYbzc32988744yRQWw1jSvu+vdbn/71s88f9PGDN1yQn7Wg/Z73ook7bnb9zrsUCsUPf+ijV1xx131NLcnWQ/fuyNtxNogLftF3kgZRqljMbM4J62EJBnb0VHl59913OZHrhhtu4BNg8C/DLr0q3ag2pP6BXeABmPuaptPLlSa7pWQvgsxPoXSIXzZsmk1TWFg4rMJD/l2sx8xqY6BBJ8lYGf7F1uO6mddff2P0GHviyAl+XGAottkHNiN/8xbMY2jArFRz86IoCDfffDPGU5DOyJEjhw23F7+3OAh83kUUwnl1GDAcy6PsDNpGNWfOHD61evvtt7O+CRAE8PKSP0DHT+0MWnB6WeJ7nlxN0+k5Zit/QpYds6U8xowZZNHpZS7cs1h2UyTckZ1ZjpuwI9OzomF23BI7aDQhTMWiZHZdNbdjUGadceDkPRoGx/Ky0i9q8x3mpvwCduZs3htuD2vxO3w7aGjvmOglb0Z8fyZpszIs2sn5LO2xWa3D9nMrdpk6X3lmB/TdVKlRj16hktmzZ19wwQV8dKyxsRGKAUSKmVKM/hzQBR/oma9pOn1Wg4aNzE4r2/Fi9nWabc10wqE5CoNpcUZhuZwYOFGWGAswP4UP9Qi1SabJ2WxVxGaTBKGcTJjPF6A1FCQ0Gm4ZTchcwoD/2PGJUYd2yK111cEjoETptJj6E5bhs87nnHPORhttpEoN13UVgQFarhrp9HbF0cwTVBfP54RANjckWZkij1F4srbVwHiLo3R8dmK5LL9pra+z88w7WaOZ8jZ2zuLQeqdl8ZD2whCnWPSCcL7fvjBwcvXMmsduuzMkyGbqih3FBXFHJpcMm+W57zhWk5fYfpsc4wOP+ZmkkCmiVjHzLoQD063LDqJRXUbZB/7lE/Lsq4JxKDbUDKfjWbfJd8BVcI10+qjKOHmCGW3V7THisKkzl80EYcwnIhh1qULiR/52223furT1maefztSzXjl+6qmnyd/48eNYgBMH4cgRoxrq66ZMeXHJkiWZjPfWW28tWWoxiPBcvo4is1boOFzFw+xVeWTRRyXs29fAIzjwxOGBXBYuXAjd8NFB2XEmC5fEdoOHCOnYqm/zWHvbihGo2XRWjMuahxrdwk2CDMMgtli52IlllMTO8BCLTFAMFy6YdOcLUZzMfK817zgf++3vHNc7Y5ed9tttv238t7cYt9nGG79015033/LiaLgjM2dx04SmkzbZxp+/pBjUNzZM3LshM21Gy37uIw4bK1oK1rjcl+rGbzDfj6J2qMYO6xhZFXR3e+A7sYy81kmnPKLGcmgFzyWXXIKaw2nHLBzg+zzQkA6suKq+s07iMBALVdN0+rbW7GTq1JdnTF+wYEFzEIe0jeZFS/A/+tjjzF4x/4Ta8pnPfHr8hNx7ixcvbWlZb731TjnlSxh3+MOsgxHn0MMOW39iHRuy/ILsC91x0k6bbLIpTc6sy0HBwcpTujKfRWvs2+L13dugEhxLb1SRwY7DtxxgHHIAqtzCAzHhQElVnr7LXO1NK0WgpumsFJ6e39SBEsf2ycl9EbacgKNuSMaO4qybbXczW3/s6Ld3mC79cLaeqW5WBDIZPjLXlOmYxjZOQk6ty3368MPmtMioYQJnHTe/E7XbrPdh8j2fL+78TjRp0sFnLc7DOw2cU9rmJMX2DJPkYRPdve3LVFguMKdVGftRz0swMJ5I+bRQKJx77rl84/TAAw+Ea2AZCqC6D5SkIRo4MAo2CHJZI50+qmQ6XCv0s96QIAnGjp/I9FRowyhYltmS5bsFWWXDgcc0D47g4cr2dFFf8ku4eEyF+0GA6Ue+HiHHWejwwS6IXhOHsrM8COUT5k4g015oPZyNwcTOOtzDUzQc5HLppZfut99+lYyjFKOMo9wE9aQk1Uf1XXtN9wjUSKd7bNboDv0sU9VOwqnr2TAabjvj/r+9M4+xq7jy8F3efa9fd9uNweAGDGaZ2E5MwDFMIJBhwiIRIEoyBIRAgITFLpAstiQj+AOCEINGE8IQBGJJ0ICiOEagYJYMASZBwygx6zgYE2yPMZsX6Lj7ud9y1/mqzuvr2zaO3U6/tu91VcJ9devWesr161PnnDoVRUNKphDqv8CJh5/RYcvHFKcco9KOvVYTW5yWz6lxZD5aBxxWUHfjeAdHOXVn7yZOc9grlKtRjYOdWC6rxeaSBr743SBMEJVRkHO3OXLqmgv44D+jipPUEBVWIXZXjFdwhAhzQlz4F3BkwYIFc+bMOf3000knEaDJTloKNGkk+9XEdxUFRk3SrupEkdpFmMBlnNw3hb7p3Xff/eCDD7zuGECpcAbLwueEeraUV50YaGE1ua06RfyggggmgdeJsBYEWKKG31UqeUFiDQ4OubEbBkHV6qrX67ZX5XrPkpZN2yHsTNQKymy1KjG2PK2WFzca9WqE28F4wwYcZSi/GHkPgjIABxGFuBqDiN92220oqubPny8pIA7UUPhuwu5NgfZx2927k7nqnbZEqzvD77zzzqo3V3CsObKVe3ZcdTEMrqziqfzlJElXWCded7S/HG1Qw+EI0pWFDZbMVvLiiy/2738gV5U3hwGmWDn1InC0ynHwSMo+ypI4eIV6WHkaTKpRlTpRYPGkBLflduE3I/9B0ETtH3VgQFzUc/jhh3NPHqOGvBIknv/hFnwEBnTGe4JRUjsWxxbQRlX1TXhxUsdIDd6HlvC8vrm9WIGO5QAToJD6KvZ86rQWIQnha779nX+68847j577FUSj7Txqr4VLduWIkAs+iQe2j9EyFSlH71GZ5YdTDLxUkUvVUzgFFsjy6KOPchwfkxwgSIDG8DhqrnMSDOiM90TBrbBT0je/lOJhVXvco57b4vo1wqgMbZAQyEGgA5zgZNC68rLLZn3pyLPPPnt6fz9GxpHnq7/qujpEy5RSl3kqo1swCAYJ0RGnvFCY2WXwjU/KNVhBAsjCSH75y1+++uqrHK2SUTFo0kWaIwBUkNEWdxgGdMZ7bpF1It3lmKY659lgk/PXQQeMIqeCkS1AB6kxaVrm9tprbz3wwAOnnnDS2ed9L/EwNcYlIE7YcQwG6nDPhMYtzA2RerghFQbqVmKrTA2Akq6B1/wGMAWOhv5DJZzjVKtVfFYIxSQ9v0PbM3tuQGec553D3apG9Ffq1AP3brIBwMfFyC5H44PydAHro0XLskUCL0jRAh8L/zvEHTwDxnGAExgr6tIX1Cy4YQG68J/eeZfeOqn86nA69aB8p7i6Routlm4R/BppktvTVaZChFdeeQU51/e//31xAMiYGGYWd7Z4LcSgCzgIAzrjPKl4xlESFu6z4ho9DUCAjtr7aLiRvVMWdJSlDhilt2OO5llADwJiHgL+K0CxCn5HUWu58XPPPfdfT//2vPPOO+a44/VXC9EOJ9Z17apYbPNCRjBOeX3n1r/SNvd1qv68BPZNv/71r5988sn7778/a3BM/4XlIWIQJy+zaUAnLzPV7ufatWvvu+8+MOWmm27iCRilZv4sPxFqpKKNNJKjQUqfswhC/KmnnnrjjTe4epyBMMzs1xwNzXRVKFAc3nsPmdH+/n7g5vjjj0cd/v777wvipAtV/uzLsswX4tBbCe1/lxpPSeF1+fLl3JN33XXXEZcBZrdUe8i8F2mYhtPJ2WyyDvk7z9obGhpCnko444wzMAIswB9/gRhBTGAFqxx0Upg7XXPNNTge5bIdSSnASHP2b268u2tAZ7wp2uH60v2U/M3n5NHg4OCFF144c+ZMPpHIcmVZ0oucsgOCKTzBIK6Oeeihh+655x51wemIzDiNdJjSpvpOUcCATqco27l6WY3CDrD82F5x7cGNN944d+5c1DrCCwgwybNz3ehEzTI0qXnlypW33347XnLwP89ISUxhNJutE90wdXaUAgZ0OkrejlS+9ZIjhWMBoAw7EZYoreaOHWAI0mfwFOiEfbvyyivvvfdehgPWCIBKHnO6qiP/qiawUgM6E0js8W4qRRaBod/85jdLliw55JBD0KmLgFm2YOPdbEfqkyFQNYizbNky4OaGG2449NBDSWEUMpA0TxrpSFdMpR2mgAGdDhO4Y9UL4sh+ShYhKRxA505LtMss2hSSOtaFca4Yj0JIjrlABtU4jNu0adMEa2Qg8mSktCrp49y8qW6iKGBU5hNF6fFuRwQccuYoXYQcEbj00ku/9a1vXXzxxchEWKhps+xQ0rhEZAGniVu8pumdiEjH0u7RNIGxcMb1xz/+MSKqfffdl0FJBhmpPEkkdKJLps4Jo4DhdCaM1J1tiEXLEk13VWvWrOG4FmpmpDw8RSZCBlm0ZJalSzqLeYKXcdq6UIReCaDgewhjnKuvvvrEE0/kUxZxOks7U/vEUsCAzsTSu8OtsUNJzyUBKM8++ywWLtdff/2sWbNoWZZ3CkCy1EknBdzhVT51uI+jqhcAol2ctNJPQGf27Nm8ki5M3Kjc5qUQFDCgU4hpVK4t2swL4xHsIIU4t0GhSkehzt3evGaZmpTxmWASSMd4pjCH42fu5DzrrLOwtE4ZnF3VvQmmxh7YnJHpFGTSQRNZrinikELYb7/9Hn74YbZdiGY5NsFSJwNj3npJI5MWOOgoRWhCOgbiEKdjtVoNxDnmmGOOO+64FHGkD+TsaGdM5buEAobT2SVk73ijsrZpRtRbLOY333zziSeeOOCAA6644gq+suZJ5EmeNNLxbukGaB3gY/dEhP0gqvHvfve7J5100sS0blrZ5RQwoLPLp2CcO5DCDfWmcSK8stQffPDB119//e677xaf7cIWySeYjnHuyudVJwAnT3ZVXFl1yimnnHzyyakInEJptz+vApOWewoY0Mn9FKYDkJUs+MLGJF26aURyPv300y+99NKZZ555wgkniG+aVLaSVtW5iHSP+ukh2FepVC6//HJpbuv+k1l4sc71x9Q88RQwoDPxNN8FLWaXOmubW42ff/55WB48DbP4SZFnyuxkcUrKkmFM/RYEkSIpP8VrWjOWRNgTITwmxSDLmGib98wGdPI+g2PoP0DACgdZBAVeeOEFLPEw58FHj2BKFh3SeAoTY2hJZ6Ugv1m0EiRCjsMxTlTjII7UmUWosbZi8ueOAgZ0cjdlY+5wdvGnUCLr/OOPP77jjju4su6iiy5CsiscRxZlJL5zoCBtSQ3pcQ16z3UO69atQ4UPHpGHRrPANObhmQJ5o4BRmedtxsbe3+ySFnktS10SUWbdddddfX19l1xyyXvvvUfd8gmkAGhACrLtHOJQQ3azBqJJzVzjhV8urqyiZlLIQ4TMYx+WKZFXCpj5zuvM7WC/U8iQhS1YI2VZ88LakPiXv/zl5ptvZsvDKQRJl5yUIpJWsoONSjZKUZbAq3A6WAxxJPWqq64ihZoJAoKSZ0yVm8z5pYDhdPI7dzvUc9Yza5usavXr9S+vsuAFF4hPmTIFB31AwLXXXjswMEB6WoqyOyHozeIUcTidl19++e2338ZLjvSEOqVaXqWtHRqPyZR/Cpj5zv8cbm8EgiyCOOTllacseCIpuEgEaHjmmWfmzZt3zjnnwPLItojMafHttbb5u+ye5PmrX/0KPT3yo8mTJ9OQMFNpHzaXMbE9gAIGdIo/ySxy4SaIpOtcIIZ0YUnkKbTA5TsnRXEJxm6IFCm+02SiOJbQ2ENjBwiESW1pndl2d7oJUzBfFDDbq3zN1870VpgUniniUAuvBCKSmP0EM3Luueeef/75HIZKnfIAE1wFg7abIiAFr0TkSURC+kqEW/EWLlwIR8O949yTJ1dWkU0alSev2XbbtZifolPAcDpFn+Exjg+8ABGEAfnss8+4jGF4ePiHP/whLkSxYOaeP5TrAhmpFlxepQhPGgRKDj74YDzG/+AHP0A1Nn/+fJxyjbEjJnthKWBAp7BTOy4D43jUihUr0DdxQh0nW+ALwmCuuxHEkSbAKQJAI7hDIucbRClOOl7EeE1zCkKNS99MJTmlgAGdnE5cx7sNXgjbgkoL1ECrxV6JVnFdDNcD/yLablIEcdIOgUfiSAx8IVDJLbfcgj6eCEXSbCayx1LAyHT22Kn//IGDIIALAbwgBzCxaNGiBQsWkAIvQyLGxHgF4xMgokAlIyqiLEIfzP+kaoGtb37zm/jKobhBnM+n+J6XakBnz5vz7Y0YdCAAGQAKyLLPPvsgx5kxYwZxEimNVuvxxx+X/ZSkgCl85ROe1fkkLRx99NFowVBdcfExmUmUPPLVPPdYCpjt1R479X9t4II48iQfEfBi6dKlokdfvXo1sh5OM+B6GWAiA18FVhYvXoyBD4mPPfYY3jNwndFqtfBfsUWFf61t863oFDCgU/QZ3qnxZeFGYEWqkXSumnjkkUcQLeMSjHTZOsknDI6nTp166623Zktly+5Ud0yhQlHAgE6hpvPzBhOqxKSUfkrsBvEwqiLV/eSD19auXVuNlbDGd1R64irXxXbkscOKYp/0eimEiyn7SspjJ+p8pptEZc/bGEVIcCpdignqjsr8kAMmaPqsGQqGIiU2dv0G+X23TB4v6qX+wGlRW1esoCqyvAP2379vxlfZmHVZygLItjyeltqooXhv/+gX8ygOBQzoFGcutzGSzwedxKquXT8w/4KTvvzlI70WmBBHZZ8aAoUhccXtASxafoP9Uc1uABPVCLs+J/TVKSonDkEpUskTWQpWukMPoQ5iZwCr6eoWfZ94OfJJbyQqZynoBmd8h/1WsxyyHXPD2OXO8p/8x8vTpk02oLON6Stg8uY/gAUcnBmSooCa4sRWXIOdKGmunVR5WjZsysa//zqHy090raVRFJZKfmRFnlVpcxqAiDMFjiS09iF72Wqi1rLdHrZTieUmVhxZsWvZLZXfqrZ9U7RUzWE3+KQ/OvXWIEDTHXnNRrNOAepsKYQrBX0cNx8OD/nFL37htgaqVq+VKB4nUQIieBz1IDvPkryoBBMKQgEDOgWZyLEOA9RwXYfrX+BHYGRi2wFxbBApasGVqHXveEHks0MiEegBMDhGEUcKVmLQy3GAgyAJ2REl6n8xEOFHildyfRdexg4cUK1ZjoPAH6yFcRIHiRuid/d9NFxOqwEY1aPJABAdQFI91v6b/PmlgAGd/M7dDvW8vZw1pyMsBPhAcJyKHZQrLqxEmPibvHI1TpTlnu+UHdsBPICZD92+Tf6ml15ffdRRR55aHXItAKgB9Azak1zLWWZFteHan5Yu/drXvna082mUhCGckFsaYjtVSt4qVWt+88MG/EtpViXyvNKMD2sAW+hXq3Z3EpfqjboCq2ZcsvlH2DYaFEaHdIJOVxETCkYBAzoFm9AxDwcD4krJtWLfcQAItldq/a8b2vDs04tfWjm8erU9ECW33z7DqSpWqITwOQxXf7Z64cLH/7A2GRiwAt869thjXcduhaHrVuBiYJGWLFny779f/uFH8YBneZ791cnJySedcNjk6b6vpMWNVssJFIMDK8SrZqzG3G1TIL8UMMaB+Z27Hes5zEObfyAS8382T9q2hg1TyJvneGir+L9ibthqqc1T2Ajj1/40HFWcOcdUP93b+mTyVCccLlkwQKXAdtYO1N5+L+mfXj7oUKs2zVrjeE4t6WlVkqFmxbdCr3vRM8usWnLu6f/wwD8ecccRB/22NOm2V//s190kKNf9MLScQX+T78YtO/CRTdtRjDxa902Lk2K1WdP7tbYaa8cGanLlhQKG08nLTI1/P5UeykGeHFW6XCVVSVj5is1BzjJ97+k/+tFlG5z9Xn7j5UXLf49toJLnxmHilJEEHfXFo+65e846q/zIwp+/8dpa1TPH8RtKjcUWqzZYu/G681YH/b29PTM3fjg8XN//ldfXrVvLfspVh0KRR8MTlRAk+4HScBGAwfEfnqlxd6WAAZ3ddWbGqV+2pUS/idi/aO1Vqg5CCxWiM3LLGOeAGnAXuk3scLy+cKAvSabB02z6GOud0Ek06CBpbqGXmhZ/6jpeKanPaNa8pl3y3XqAMj2J+C9x92rUERLP8Fb9z3/+4YKPm4ODG0vD1qmnnIyhTito2n4Zjgp5tBtXosBLwkpidVO7tC2WOSXNf7d7M050MNXsPhQwoLP7zMXu0pPQisoclbLV0kfi0+VpVbfuHTov4UniJCzb3X4QlFxlFYh0htNXZAnCiP/gdxqhPzCwwatM9Upeb6/X090dtlBehXbk8IPynVKiumJrt7uM3PRjQihgQGdCyLwLG4mVHY0IcSxbm+3pzrDQY9uP3WbsthKnYcN5KJhxnGBT2euy4h6iMDaWN9kOrKodxFjqYOJnOVESuU6X7zdCq1mK7eHEqsEyxYnfbHaFvSVUYXFvGLT6rEmnz/vOqX5jaKj2z6vee3Hx4q+fcEbflKkHDG1UMhw/BnWssOlELcdqIEgaoZARMo5Qori/Zo6LO7c7NzJP6bAs7cwY8xyskF1bcSIImXllF+XYLvY3YRhw5hNdFkAF3xIG2ka5gWLKbzV98ITP5AGkJk3qnfOlOXAzK1a8FwURifBB8EKBrzgiw+Xs3CzlupThdHI9fTvQedkOyTNzAosEJ+5x4i4nrmB6oxTXSHaQBCs1UrzRch23vN6qfrRvfz12unomrbJ6sNOZUfqQ7dOnXk+XN+UTq7qy98CgtMrt7VlvH9ZsNqYPfdT0w3en9C5f/s6Ug47cq7+vNLih1Wy+/dabCJkP65rWMwhCcalxGARdUQiEVeKg6iBvQtikLYnafwOxOVTcmVKoY+2sn+ZRHAoY0CnOXI7LSFBiYVuDTeDPfv6zpQPBcCPp6bX/5d/+9dlG7YuzD7n5298AnVa+v2LRosXLYmdoMGGr9JO7737x4/Vz5829YOYX8Bn4xz8u+d3vlrt9/wuXNCVu1uv2ih5r0l7duEmGtYHFiZQdIdyOEu3A6Rg7nXGZuBxVYkAnR5O1U1211dGEBImM4h1EdDKyp7YDTHJsZRQToCx3dU4n4cRCa+Nnwao/B+s4WFW2vhAnJb+2JnJqy9a0vtHs6up6f83GVf9n1brUufLDsPJZvX41jXyw+nuHzQZMvn7wDP/Alf+90W+1rEHbqVRK51rWV/7uiL2RLbP7SmB2kDx7YRirwxGpMEcPbkRjpf5Zju6r/mwehaCAAZ1CTOM4DsJGXBwftP/0O++85hMHfTZ2e1Vgybcix3K7htfAqsybN3f27FmfaCcYKMthWEqtEgxLsH4IhRTMzmmnnXaQXW40mmHcDVMzs1XDFjmsweOg4oopECsuJwJzMNIZx76bqnJBAQM6uZimv6WTiseRoI1tRuzw4qCsTPmQBJdaNiouHOIkxOGHOMewbzLE74GW1nbFHApFO6VyY0Ech+4B0SYg46AGCvUoaSCjQTCsxMYcSCelb1OJhKMBo9iJfUTOuOUphaHdDFtK89W0vNiuh77aXqFOi2wv3mQlDVxt0Mmsls3W5+NH+m5+i0MBAzrFmcuxjgQuo1TS7rXwamG1yvA1HIxQuCOrXwufgRugImIv5AAr7ImQAkeBjgdKb+VEFZ46wL6oFHxeaFZGczS6VKzASIlxCE6C8ivAuQVxTqWrU+xtpBlr903+vFLAgE5eZ26H+601QeJVp11G8y+2Z5d6P1t/yNI3u4JQ+fpzlEkgfv2GyaUsckAe7G84oAXSYMgXak/JgA6IwpktkiLl78tXCnIyCTAp0JH0sKnBh7PqUQXDZ51ObcqMkJOhCJmQ+DQSf0N9UuThf6csnnS0dl4xWyYUmAIGdAo8udsZ2tSp+1x44YUDAwOJNQS7UUKijEkx+5+RgIxZnYzSwYqV+JlsygmpPqIFNJHi9uLeVJ/Q5EebK+vjo+jjlRdB4upkBPClgnKEKnUr4XWS+M5e3KLV398/sq0aadj8FpoCxl1poaeXwW0tqBV9VlwGAXDdBZuibHbwiBzgbtSR41nAiKYLn9LNz1baJJ0VZZRQcMtdUvu8hP6Y1qHMoKVi5XeZF6AHLxeeN+JPJ9tbw+8IZQv3NJxO4aZ0xwYE4qirqDTnokrAj+BVZySMHPve/rrfEmtGatgMVmmKjsDiaEtEXbMu7HkcPdedGZ3TvBWVAobTKerMjh7XKA5is20MyIPgF+tjcreiVtn10F2NLrkdAUu2YgqOsEiU2uJL+536kTfLOfLAj70yEKRlTNJqxma6LeXZojfmNf8UMKCT/znckRFkEUCbCLKvgc/gkCdMjdpnKZBQYJQFHZHAONtgd9oCmszWaXRHNkObpLe7oG6GUCJqaVR9MqAzmnCFfzPbq8JPseiqBAL0dGtZjFgnO4r/AHIEbhQsyI0RQpQ22mQBK0Ot9hZsG1/VSdDRYQS7UIPRZmnklUyb4Smrw8Jxj65gy3pG12re8kcBM6P5mzPTY0OBXFPAcDq5nr7tdz7RFjq22BZneQdRU+kK2jskSdG6rZF6s3+TsvGR7+p3M58ykrqtnDpdczijVFsZy+M226TzqENhhK04ppFWzG9eKbCtfx95HY/pt6GAocBuTgEjSN7NJ+hv7l5W5iKnzNscTVZiouPa/G8r5dU2OyAVZ0Qz28yZ/SCl2rY9+kOb2dYfhAOSOo1MJ0u3IsUNp1Ok2TRjMRTIAQX+Hwa1wA0kByyGAAAAAElFTkSuQmCC\n", "text/plain": [ "<IPython.core.display.Image object>" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from IPython.display import Image\n", "Image('arquivos/reduce.png')" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "# Criando uma lista\n", "lst = [47, 11, 42, 13]" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "113" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Usando a função reduce() com lambda\n", "reduce(lambda x,y: x+y, lst)" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "# Podemos atribuir a expressão lambda a uma variável\n", "max_find2 = lambda a,b: a if (a > b) else b" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "function" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "type (max_find2)" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "47" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Reduzindo a lista até o valor máximo, através da função criada com a expressão lambda\n", "reduce(max_find2, lst)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Fim" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Obrigado\n", "\n", "### Visite o Blog da Data Science Academy - <a href=\"http://blog.dsacademy.com.br\">Blog DSA</a>" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.8" } }, "nbformat": 4, "nbformat_minor": 1 }
gpl-3.0
dariox2/CADL
session-4/.ipynb_checkpoints/lecture-4-checkpoint.ipynb
1
24522911
null
apache-2.0
michaelaye/pyciss
tests/test_meta.ipynb
1
7378
{ "cells": [ { "cell_type": "markdown", "metadata": { "toc": true }, "source": [ "<h1>Table of Contents<span class=\"tocSkip\"></span></h1>\n", "<div class=\"toc\"><ul class=\"toc-item\"></ul></div>" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "from pyciss import meta" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "# test_get_meta_df\n", "df = meta.get_meta_df()\n", "assert df.index[0] == \"N1467345444\"\n", "assert df.iloc[-1]['is_lit'] == False" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "# test_get_order\n", "# This fishes out the resonance order from the identifier string\n", "# The order is defined as the delta between 1st and 2nd number.\n", "in_ = \"Mimas 4:1\"\n", "expected = 3\n", "assert meta.get_order(in_) == expected" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "# test_get_resonances\n", "# test if the reading of resonance file works\n", "df = meta.get_resonances()\n", "assert df.iloc[0]['name'] == 'Titan 2:0'\n", "assert df.iloc[-1]['order'] == 3" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# test_get_prime_resonances\n", "# test if this filters for prime resonances (order = 1)\n", "df = meta.get_prime_resonances()\n", "assert meta.get_order(df.iloc[0]['name']) == 1\n", "assert meta.get_order(df.iloc[-1]['name']) == 1" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "# test_get_janus_epimetheus_resonances\n", "# read higher precision Janus and Epimetheus resonance file\n", "df = meta.get_janus_epimetheus_resonances()\n", "assert df.iloc[0]['name'] == 'Janus1 2:1'\n", "assert df.iloc[-1]['name'] == 'Epimetheus2 15:13'" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>moon</th>\n", " <th>reson</th>\n", " <th>radius</th>\n", " <th>order</th>\n", " <th>name</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>Janus1</td>\n", " <td>2:1</td>\n", " <td>96235.150437</td>\n", " <td>1</td>\n", " <td>Janus1 2:1</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>Janus1</td>\n", " <td>3:1</td>\n", " <td>74051.968798</td>\n", " <td>2</td>\n", " <td>Janus1 3:1</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>Janus1</td>\n", " <td>3:2</td>\n", " <td>115943.966750</td>\n", " <td>1</td>\n", " <td>Janus1 3:2</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>Janus1</td>\n", " <td>4:2</td>\n", " <td>95979.967411</td>\n", " <td>2</td>\n", " <td>Janus1 4:2</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>Janus1</td>\n", " <td>4:3</td>\n", " <td>125250.859597</td>\n", " <td>1</td>\n", " <td>Janus1 4:3</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " moon reson radius order name\n", "0 Janus1 2:1 96235.150437 1 Janus1 2:1\n", "1 Janus1 3:1 74051.968798 2 Janus1 3:1\n", "2 Janus1 3:2 115943.966750 1 Janus1 3:2\n", "3 Janus1 4:2 95979.967411 2 Janus1 4:2\n", "4 Janus1 4:3 125250.859597 1 Janus1 4:3" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.head()" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "# test_get_prime_jan_epi\n", "# read and filter for prime resonances of Janus and Epimetheus\n", "df = meta.get_prime_jan_epi()\n", "assert df.iloc[0]['name'] == 'Janus1 2:1'\n", "assert df.iloc[-1]['name'] == 'Epimetheus2 7:6'" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# test_get_all_resonances\n", "# read all moon resonances and merge them into one\n", "df = meta.get_all_resonances()\n", "assert df.iloc[0]['name'] == 'Titan 1:0'\n", "assert df.iloc[-1]['name'] == 'Mimas 3:2'" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import pkg_resources as pr" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'/Users/klay6683/Dropbox/src/pyciss/pyciss/data/soliton_prediction_parameters.csv'" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pr.resource_filename('pyciss', 'data/soliton_prediction_parameters.csv')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python [conda env:py36]", "language": "python", "name": "conda-env-py36-py" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.6" }, "toc": { "base_numbering": 1, "nav_menu": {}, "number_sections": true, "sideBar": true, "skip_h1_title": false, "title_cell": "Table of Contents", "title_sidebar": "Contents", "toc_cell": true, "toc_position": {}, "toc_section_display": true, "toc_window_display": false }, "varInspector": { "cols": { "lenName": 16, "lenType": 16, "lenVar": 40 }, "kernels_config": { "python": { "delete_cmd_postfix": "", "delete_cmd_prefix": "del ", "library": "var_list.py", "varRefreshCmd": "print(var_dic_list())" }, "r": { "delete_cmd_postfix": ") ", "delete_cmd_prefix": "rm(", "library": "var_list.r", "varRefreshCmd": "cat(var_dic_list()) " } }, "types_to_exclude": [ "module", "function", "builtin_function_or_method", "instance", "_Feature" ], "window_display": false } }, "nbformat": 4, "nbformat_minor": 1 }
isc
gditzler/bio-course-materials
notebooks/BioPython-Tutorial.ipynb
1
90117
{ "metadata": { "name": "", "signature": "sha256:ede1c12fc8215f0f83917bb17886f782c3f80dc807173e5ce1fe9ec075ca496a" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# What is BioPython \n", "\n", "[BioPython](http://biopython.org/wiki/Main_Page) is a set of free Python modules for working with genomic data, as well as other tools that are commonly used for sequence analysis, such as [BLAST](http://blast.ncbi.nlm.nih.gov/Blast.cgi) and [Clustalw](http://www.ebi.ac.uk/Tools/msa/clustalw2/). Or as the BioPython developers put it \n", "\n", ">Basically, the goal of Biopython is to make it as easy as possible to use Python for bioinformatics by creating high-quality, reusable modules and classes. Biopython features include parsers for various Bioinformatics file formats (BLAST, Clustalw, FASTA, Genbank,...), access to online services (NCBI, Expasy,...), interfaces to common and not-so-common programs (Clustalw, DSSP, MSMS...), a standard sequence class, various clustering modules, a KD tree data structure etc. and even documentation. \n", "\n", "In terms of getting help, BioPython has a very large [cookbook](http://biopython.org/DIST/docs/tutorial/Tutorial.html) full of examples, and as always, [Google](http://google.com) is your best friend. This *very* brief tutorial covers some of the basic bioinformatics tools that will be useful throughout the course. \n", "\n", "\n", "## BioPython and Support from External Tools\n", "\n", "Biopython includes support for interfacing with or parsing the output from a number of third party command line tools. These tools are not required to install Biopython, but may be of interest. This includes:\n", "\n", "* NCBI Standalone BLAST, which can used with the Bio.Blast module and parsed with the Bio.SearchIO module.\n", "* EMBOSS tools, which can be invoked using the Bio.Emboss module. The Bio.AlignIO module can also parse some alignment formats output by the EMBOSS suite.\n", "* ClustalW, which can be parsed using Bio.AlignIO and invoked using the Bio.Align.Applications module.\n", "* SIMCOAL2 and FDist tools for population genetics can be used via the Bio.PopGen module.\n", "* Bill Pearson\u2019s FASTA tools output can be parsed using the Bio.AlignIO and Bio.SearchIO module.\n", "* Wise2 includes the useful tool dnal.\n", "\n", "See also the listing on http://biopython.org/wiki/Download which should include URLs for these tools, and may also be more up to date.\n", "\n", "If everything has been installed correctly, you should be able to import the module and print out the version that you have installed. Note that I am using version 1.64 and I cannot guarantee that the code below will work with different versions of BioPython. " ] }, { "cell_type": "code", "collapsed": false, "input": [ "import Bio as bio\n", "print \"BioPython Version: \"+str(bio.__version__)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "BioPython Version: 1.64\n" ] } ], "prompt_number": 1 }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Getting Started with Python\n", "\n", "If you are new, or uncomfortable with Python, you are encouraged to watch the videos below. \n", "\n", "<a href=\"https://www.youtube.com/watch?v=tKTZoB2Vjuk\n", "\" target=\"_blank\"><img src=\"https://i.ytimg.com/vi_webp/tKTZoB2Vjuk/mqdefault.webp\" \n", "alt=\"IMAGE ALT TEXT HERE\" width=\"240\" height=\"180\" border=\"10\" /></a>\n", "\n", "<a href=\"https://www.youtube.com/watch?v=EPYupizJYQI\n", "\" target=\"_blank\"><img src=\"https://i.ytimg.com/vi_webp/EPYupizJYQI/mqdefault.webp\" \n", "alt=\"IMAGE ALT TEXT HERE\" width=\"240\" height=\"180\" border=\"10\" /></a>" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Basic Sequence Tools\n", "\n", "Sequences in bioinformatics can simply be interpreted as being strings. BioPython represents sequences with the `Seq` object, which contains properties beyond that of a simple string object. For example, the *Alphabet* of the sequence can be specified (and also obtained). More about the `Seq` class can be found on BioPython's [API](http://biopython.org/DIST/docs/api/Bio.Seq.Seq-class.html). It is possible to convert the sequence to a string using Python's built in `str` command (e.g., `str(my_sequence)`). Some useful methods of `Seq` object include:\n", "\n", "* `find`: Find method, like that of a python string\n", "* `startswith`: Does the Seq start with the given prefix? \n", "* `endswith`: Does the Seq end with the given suffix? \n", "* `complement`: Returns the complement sequence \n", "* `reverse_complement`: Returns the reverse complement sequence. \n", "* `transcribe`: Returns the RNA sequence from a DNA sequence \n", "* `back_transcribe`: Returns the DNA sequence from a RNA sequence \n", "* `translate`: Turns a nucleotide sequence into a protein sequence. \n", "\n", "Now let us look at a few simple sequence operations. " ] }, { "cell_type": "code", "collapsed": false, "input": [ "from Bio.Seq import Seq \n", "\n", "# working with sequences \n", "my_seq = Seq(\"AGTACACTGGT\") \n", "print \"sequence: AGTACACTGGT\" \n", "print \"complement: \" + my_seq.complement() \n", "print \"reverse complement: \" + my_seq.reverse_complement()\n", "print \"transcribe: \" + my_seq.transcribe() # my_rna = my_seq.transcribe()\n", "print \"my_seq[2:4]: \" + my_seq[2:4]\n", "my_rna = my_seq.transcribe()\n", "my_dna = my_rna.back_transcribe() " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "sequence: AGTACACTGGT\n", "complement: TCATGTGACCA\n", "reverse complement: ACCAGTGTACT\n", "transcribe: AGUACACUGGU\n", "my_seq[2:4]: TA\n" ] } ], "prompt_number": 2 }, { "cell_type": "markdown", "metadata": {}, "source": [ "In the above example, we converted a simple string in Python to a sequence object, which allowed used to directly call built in functions of the `Seq` class. We could call these methods directly as well (e.g., `transcribe(\"AGTACACTGGT\")`). Also, we did not specify an Alphabet. BioPython provides generic alphabets in `Bio.Alphabet`. Specifying an alphabet can be useful for catching errors in a sequence, or specifying a particular type of sequence. " ] }, { "cell_type": "code", "collapsed": false, "input": [ "from Bio.Alphabet import generic_rna,generic_dna \n", "messenger_rna = Seq(\"AUGGCCAUUGUAAUGGGCCGCUGAAAGGGUGCCCGAUAG\", generic_rna) \n", "messenger_rna.translate() " ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 3, "text": [ "Seq('MAIVMGR*KGAR*', HasStopCodon(ExtendedIUPACProtein(), '*'))" ] } ], "prompt_number": 3 }, { "cell_type": "markdown", "metadata": {}, "source": [ "GC content is a commonly used statistic to quantify a sequence. It is measured as the percentage of nucleotides from either guanine or cytosine. More formally, the GC-content of a sequence is given by: \n", "$$\n", " \\textrm{GC-content} = 100\\times\\frac{N_G + N_C}{N_G + N_C + N_A + N_T}\n", "$$\n", "where $N_G$, $N_C$, $N_A$, and $N_T$ are the counts for the nucleotides *G*, *C*, *A* and *T*, respectively. BioPython allows you to perform this calcuation using either `GC` or `GC123`. Note that `GC` simply calculates the GC-content; however, `CG123` calculates total GC-content plus first, second and third positions' GC-content. Let us also take a moment to examine how to create plots with IPython and Python. If you're using the Python interpreter than you must use `from matplotlib.pylab import *`. " ] }, { "cell_type": "code", "collapsed": false, "input": [ "from Bio.Seq import Seq \n", "from Bio.SeqUtils import GC123,GC,GC_skew\n", "seq = \"ataccaggctgaggcccattaatgatgcaatttgctgggcttctctattttctccgtgcttccatcctcttctccgtcggcggggagaagtgaaatgccgtggagatgggcggcggcggcggcgacggcggcgacgagaaagctcaccgggatctctcagtcgcgagtttcagtagcctttaccggccgtcttctctaccgctcgttcggaagcgactccagtgaaagccgcaagaggtcactgccacggggggtcgtatcgatcggggccatcagccttgctggaggtctcgtgctcagcgccgtcaacgacctcgccatcttcaatggatgcacaacgaaggcaattgagcatgctgctgacaaccctgctgttgtggaagcaattggagtgcctatagtcagaggaccgtggtatgatgcttctcttgaggtgggccatcgacggcggtctgtgtcatgcacattccctgtatctgggccacatgggtcaggatttctccagattaaggcaacccgagatggagaggatggtctgctttcgtttctgcggcatcacgactggaagatcctattgctggaggctcatcttgaagcaccatcagatgatgaggaccagagaaagctggttaaggtgaatcttgcaagcagtggccgtggggaagatggggatccagagagtggttaatcttttgtactgaattccatggtgagtggaagatcgtgtcatctgaatggactccaaatattaaatgacatggagatctagggaagcaaaaaaaaaaaaaaaa\"\n", "print GC123(seq)\n", "print GC(seq)\n", "\n", "plot(GC_skew(seq, window=100),c=\"r\")\n", "xlabel(\"Window\")\n", "ylabel(\"(G-C)/(G+C)\")\n", "title(\"GC-skew\")" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(52.97092288242731, 51.89393939393939, 57.57575757575758, 49.42965779467681)\n", "52.9709228824\n" ] }, { "metadata": {}, "output_type": "pyout", "prompt_number": 4, "text": [ "<matplotlib.text.Text at 0x10c62c7d0>" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEVCAYAAAD6u3K7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X1czXf/B/DXUTERQpKKUBTDSiKmcpsxd8OU3bjJ3TYb\ndm0Xrm2Xuxm5bJddswvbNcb8pDCiEZJIRe5tmDDZQbIak+ju9P398Zmz0olz6pzzPTev5+PhsU59\n+37fjPPu8/58Pu+PQpIkCURERI+pIXcARERkmpggiIhIIyYIIiLSiAmCiIg0YoIgIiKNmCCIiEgj\nJggiI5g3bx5ee+01ucMg0gkTBFm1TZs2oWvXrqhbty6cnZ3RrVs3rFy5Uv319PR0DBw4EI6OjmjU\nqBG6du2Kb7/9VufnKBQKPUZNZBxMEGS1Pv30U8yYMQOzZs1CdnY2srOzsWrVKqSkpKCoqAhpaWno\n06cPevXqhStXriA3NxcrV65EfHy8zs/iflQyR0wQZJX++OMPzJ07FytXrsRLL72EOnXqAACee+45\nbNiwATVr1sT777+PcePG4f3330fDhg0BAH5+fti0aVOl942MjISbmxvq1asHb29vJCYmVrimuLgY\n4eHhGDlyJIqLi3Hz5k2MGDECTZo0QatWrfDFF18AAAoKClC7dm38/vvvAIBFixbBzs4O9+/fBwB8\n9NFHmDlzpl7/XIjKYoIgq5SWlobCwkIMHTpU49cfPHiAI0eOYOTIkVrf8+LFi/jyyy9x/Phx3Lt3\nD3v37oWHh0e5awoKCjBs2DDUrl0bmzdvho2NDQYPHgxfX1/cvHkT+/fvx/Lly7F3714888wzCAgI\nQFJSEgDg4MGD8PDwwOHDh9WvQ0JCqvLbJ9IKEwRZpZycHDRu3Bg1avz1T6B79+5wdHSEvb09jh8/\njtLSUri4uGh9TxsbGxQWFuLcuXMoLi5G8+bN0apVKwBiDuLevXsIDQ2Fl5cX1qxZA4VCgWPHjiEn\nJwcffvghbG1t0bJlS0ycOFE9SgkODsbBgwehUqnw448/4p133sHBgwdRUFCA48ePIygoSL9/MERl\nMEGQVWrUqBFycnJQWlqq/lxqairu3LmDRo0aIT8/HzVq1EBWVlal93jhhRfg4OAABwcHREVFwdPT\nE8uXL8e8efPg7OyM8PBw9fdLkoQjR47gp59+wqxZs9T3uHbtGm7evAlHR0f1r8WLF+P27dsARIJI\nSkrCyZMn0aFDB/Tt2xcHDx7E0aNH4enpCUdHRwP9CRExQZCVCgwMRK1atbB9+3aNX7e3t0dgYCC2\nbNlS6T12796NvLw85OXlITw8HAAQHh6O5ORkXLt2DQqFolwy6N+/P2bPno0+ffqoE0Dz5s3RsmVL\n3LlzR/3r3r17iIuLU8d58eJFbNu2DSEhIfDx8cGvv/6KXbt2sbxEBscEQVapQYMGmDt3Lt58801s\n3boVeXl5KC0txenTp5Gfnw+FQoGlS5fi22+/xbJly5CbmwsAOHPmjDoZPC4jIwOJiYkoLCxErVq1\n8Mwzz8DGxqbcNe+//z7GjBmDPn36IDc3F126dIGDgwOWLl2Khw8fQqVS4aeffsLx48cBiETVuXNn\nfPnllwgODgYgSmGrVq1SvyYyFCYIslrvv/8+PvvsMyxduhRNmzZF06ZNMXXqVCxduhSBgYEIDAxE\nYmIiEhMT0bp1azRq1AhTpkzBoEGDNN6vsLAQc+bMgZOTE1xcXJCTk4PFixcDEHMQj/ZCfPjhhxg2\nbBj69u2LvLw8xMXF4fTp02jVqhWcnJwwefJk3Lt3T33f4OBglJSUICAgQP36/v37nH8gg1PwwCAi\nItJE1hFEfHw8vL294eXlhcjIyApfT0pKQv369eHr6wtfX198/PHHMkRJRGSdbOV6sEqlwrRp05CQ\nkABXV1d06dIFQ4YMgY+PT7nrgoODsWPHDpmiJCKyXrKNINLT0+Hp6QkPDw/Y2dkhLCwMsbGxFa5j\nBYyISB6yjSBu3LgBd3d39Ws3NzccPXq03DUKhQKpqano1KkTXF1dsWzZMrRr167CNUREpBttfviW\nbQShzRu7n58flEolzpw5g7fffhvDhg3TeJ0kSWb5a+7cubLHwPjlj4Pxm98vc45dkrSvysiWIFxd\nXaFUKtWvlUol3Nzcyl3j4OAAe3t7AGLXanFxsbpxGRERGZZsCcLf3x+XLl1CZmYmioqKEB0djSFD\nhpS7Jjs7W53t0tPTIUmSuqsmEREZlmxzELa2tlixYgVCQ0OhUqkQEREBHx8frF69GgAwZcoUbNmy\nBStXroStrS3s7e2f2GbZHJl7qwTGLy/GLx9zjl0XZr9RTqFQ6FRTIyKydtq+b7LVBhERacQEQURE\nGjFBEBGRRkwQRESkERMEERFpxARBREQaMUEQEZFGTBBERKQREwQREWnEBEFEVBVJSYCFd3FggiAi\n0tW5c0CvXsB//iN3JAbFBEFEpKvNm4ERI4BFi4C0NLmjMRg26yMi0oUkAe3bA2vXAtnZwLRpwIkT\ngJOT3JFpTdv3TdnafRMRmaWffgIePAACAgCFAkhNBV59Fdi1C7CxkTs6vWKJiYhIFzExwMsvi+QA\nAB9/DBQUiP9aGJaYiIi0JUmAtzfwf/8H+Pv/9fmsLKBzZ+Dbb4H+/WULT1s8D4KISN/OnAGKi0Uy\nKMvFBdi4EXj9dUCplCc2A2CCICLS1uPlpbJCQoAZM4DRo0USsQAsMRERaUOSAC8vscTV11fzNaWl\nwNCh4rrPPjNufDpgiYmISJ9OnhQjh+eeq/yaGjWAdeuAbduArVuNF5uBMEEQEWnjSeWlsho2FKOM\nqVOBS5eME5uBsMRERPQ0kgS0agXExgIdO2r3PStXAqtWiZ3W9vaGjU9HLDEREenL8eNArVpAhw7a\nf8/UqcCzz4qd1maKCYKI6Gmio7UrL5WlUACrVwNHjgBr1hguNgNiiYmI6EkkCWjRAti9W/Rg0tWF\nC0BQELBv35MnuI2IJSYiIn04ehRwcKhacgAAHx/g88+BkSOBP/7Qb2wGxgRBRPQkj8pL1TFmDBAa\nCowfb1aHDLHERERUmdJSoHlzUR7y8anevQoLgeefB8LDgXff1U98VWTyJab4+Hh4e3vDy8sLkZGR\nlV537Ngx2Nra4vvvvzdidEREEEtUGzasfnIAxCqozZuByEggJaX69zMCWRKESqXCtGnTEB8fj/Pn\nzyMqKgoXLlzQeN2sWbMwYMAAjhKIyPj0UV4qy8NDrGgKCwNu39bffQ1ElgSRnp4OT09PeHh4wM7O\nDmFhYYiNja1w3RdffIGRI0fCyYxOaiIiC6FSAVu26DdBAMCgQaLr6yuviGeYMFlOlLtx4wbc3d3V\nr93c3HD06NEK18TGxiIxMRHHjh2D4gnrj+fNm6f+OCQkBCEhIfoOmYisTUoK4OwMtGmj/3vPnw/0\n6wcsWCA+NrCkpCQkJSXp/H2yJIgnvdk/MmPGDCxZskQ9mfKkElPZBEFEpBePei8Zgq0tEBUlzpUI\nDAQGDDDMc/70+A/O87VMSrIkCFdXVyjLHKqhVCrh5uZW7poTJ04gLCwMAJCTk4Pdu3fDzs4OQ4YM\nMWqsRGSFHpWXDh823DOaNhVJ4uWXgfR0sVrKxMiSIPz9/XHp0iVkZmaiWbNmiI6ORlRUVLlrfvnl\nF/XH48ePx+DBg5kciMg4Dh0CXF0BT0/DPicoSCx5ffll8cyaNQ37PB3JMklta2uLFStWIDQ0FO3a\ntcPo0aPh4+OD1atXY/Xq1XKERET0l5gYcTKcMbz3npjreP994zxPB9woR0RUVkkJ0KyZaLHRsqVx\nnnnnjpiPiIwERo0y+ONMfqMcEZFJSkoS+xWMlRwAwNFRzHm8+SZw8aLxnvsUTBBERGUZs7xUlp8f\nsGiRaOr34IHxn68BS0xERI8UF4vy0vHjosW3sUkSMHasOEvi2291O39CBywxERHpKjFRrFySIzkA\nIiGsXAmcOAF88408MZQhyzJXIiKTZMjNcdqqUwfYulV0fu3cGfD1lS0UlpiIiACgqAhwcQHOnAEe\n27gri+ho4B//EKOJBg30emuWmIiIdJGQINp6m0JyAMRE+cCBwLhxsh0yxARBRASYRnnpccuWAVlZ\nwKefyvJ4lpiIiAoLRXnpp5/EKiZTcu0aEBAg9kn07KmXW7LERESkrb17gQ4dTC85AGJF1bffiqNK\ns7ON+mgmCCIiUywvlfXCC8D48cCYMUY9ZIglJiKybgUForx04YJowW2qVCqgf3+ge3dg4cJq3Yol\nJiIibcTHi70GppwcAMDGRpwf8e23wO7dRnkkEwQRWTdTLy+V1aSJSBLjxonJawNjiYmIrNfDh6K8\nlJEh3nzNxaefisR26BBQq5bO384SExHR0+zeDXTpYl7JARCn0DVrJg4bMiAmCCKyXtHR5lNeKkuh\nANauFQlu0ybDPYYlJiKySvn54tzpy5eBxo3ljqZqTp0SK5sOHRJtQrTEEhMR0ZPs2gV062a+yQEQ\nq68WLxaHDOXn6/32TBBEZJ3Mtbz0uIgIMY8ydarem/qxxERE1uf+fVFeunoVaNhQ7miq78EDMRqa\nNg2YPPmpl2v7vskDg4jI+sTFAT16WEZyAAB7e9HM79EhQ5076+W2LDERkfWJjhbnLViSNm2AL78E\nRo0C7tzRyy1ZYiIi63LvHuDuLnYi6/mkNpMwYwbwyy/A9u1ADc1jAK5iIiLSZOdOICjIMpMDACxd\nCvz2mzhsqJo4B0FE1iUmxvLKS2XVrCl+j126AF27AsHBVb4VS0xEZD3u3hUH8CiVQL16ckdjWHv2\nABMmACdOVOhUyxITEdHjduwAevWy/OQAAKGhwMSJ4iS6kpIq3ULWBBEfHw9vb294eXkhMjKywtdj\nY2PRqVMn+Pr6onPnzkhMTJQhSiKyGJZeXnrcP/8J2NqK/1aBbCUmlUqFtm3bIiEhAa6urujSpQui\noqLgU6afSH5+PurUqQMA+PHHHzF8+HBcvny53H1YYiIirdy5A3h4ANevAw4OckdjPL/9Bvj5AatW\nAYMGATCDElN6ejo8PT3h4eEBOzs7hIWFITY2ttw1j5IDANy/fx+NzblnChHJa/t2oG9f60oOAODk\nJDq+TpgAZGbq9K2yrWK6ceMG3N3d1a/d3Nxw9OjRCtdt374dc+bMQVZWFvbu3avxXvPmzVN/HBIS\ngpCQEH2HS0TmLiZGnMRmhZKKi5Hk6yt2j0+YoPX3yZYgFAqFVtcNGzYMw4YNQ3JyMl577TVcvHix\nwjVlEwQRUQW5uUBqqmhHYYVCQkIQEhwsur7+/jvma/l9spWYXF1doVQq1a+VSiXc3Nwqvb5nz54o\nKSlBbm6uMcIjIkuybZtY1VOmbG11FApgzRqgkkqMJrIlCH9/f1y6dAmZmZkoKipCdHQ0hgwZUu6a\nK1euqCdSTp48CQBo1KiR0WMlIjMXE2MZrb2rq359nUZRspWYbG1tsWLFCoSGhkKlUiEiIgI+Pj5Y\nvXo1AGDKlCnYunUr1q9fDzs7O9StWxebDHi0HhFZqN9+A9LTxSQ1AZ06aX0pd1ITkWVbvRpISgKi\nouSOxGSY/DJXIiKjYHmpyjiCICLLlZ0NeHsDN28CtWvLHY3J4AiCiGjrVrF7mMmhSpggiMhysbxU\nLVqVmC5cuIDMzEzUqFEDLVq0gLe3tzFi0wpLTESkUVYW0L69+G+tWnJHY1K0fd+sdJnr1atX8e9/\n/xu7du2Cq6srmjVrBkmSkJWVhevXr+PFF1/EzJkz4eHhoc+4iYj0Y8sWYPBgJodqqHQE8fLLL2PS\npEkICQmBnZ1dua8VFxfjwIED+N///oeYmBijBFoZjiCISKOePYHZs9UdTOkv2r5vchUTEVmeGzeA\njh1FealmTbmjMTnVXsX03XffYf369Ro/v3HjxupFR0RkSFu2AEOHMjlUU6UjiICAAOzfvx8Oj/VO\nv3//PoKCgtS9keTGEQQRVdC9uzhFbcAAuSMxSdUeQRQXF1dIDgBQt25dFBcXVy86IiJD+fVXICMD\n6NNH7kjMXqUJoqCgAPfv36/w+by8PCYIIjJdW7YAw4YBjy2uId1VmiAiIiIwatQoZJY5ou7q1asY\nPXo0IiIijBEbEZHuoqOB0aPljsIiVLoP4r333kPdunURHByMvLw8AKK8NGfOHLzxxhtGC5CISGuZ\nmcAvvwC9eskdiUXQapnrvXv3AAD16tUzeEC64iQ1Ean961/A5cuixTdVSq/N+urVq4ejR49WOygi\nIoNieUmvtN4o5+vri1OnThk6Hp1xBEFEAIArV8Ty1hs3AFvZDss0C2z3TUTWZfNmYMQIJgc9euKf\n5Pjx49Uf//rrr+rXCoUCa9asMWxkRES6iIkBPvtM7igsyhMTxNixY9VDkcOHD2PcuHGQJAkKhcJY\n8RERPd2lS6LvUs+eckdiUZ6YIEJCQtQfP1rySkRkcmJigJEjARsbuSOxKFrPQdRiT3UiMlU8Oc4g\n2O6biMzbzz+LvktKJVCD6260Ue0T5R5348YNqFQqAICLi0uFQ4SIiGQREwOMGsXkYACVjiA++eQT\nFBcXY+7cuQCA5s2bo379+igqKsK4ceMwZ84cowZaGY4giKzcs88CX30l9kCQVqp9opyvry+Sk5NR\nt25d9etTp05BpVIhKCgIKSkp+o24ipggiKzYuXPizIdr1ziC0IFeNso9Sg4AMH36dACAjY0NHj58\nWM3wiIj04NHkNJODQVT6p5qfn4+ioiL163HjxgEACgsL1d1diYhkI0lcvWRglSaIkSNHYurUqcjP\nz1d/7v79+5gyZQpGjhypl4fHx8fD29sbXl5eiIyMrPD1//u//0OnTp3QsWNH9OjRA2fPntXLc4nI\nAvz0E/DwIRAQIHckFqvSBLFgwQI0adIELVq0gJ+fH/z8/ODh4QFnZ2csXLiw2g9WqVSYNm0a4uPj\ncf78eURFReHChQvlrmnVqhUOHTqEs2fP4qOPPsLkyZOr/VwishDR0WL0wM4OBvPUfRAPHjzA5cuX\nAQCenp6wt7fXy4PT0tIwf/58xMfHAwCWLFkCAJg9e7bG6+/cuYMOHTrg+vXr5T7PSWoiKyRJQNu2\nwMaNgL+/3NGYnWrvg0hKSkJISAjs7e3RsWNHjdccOHAAvap4ctONGzfg7u6ufu3m5vbEMye++eYb\nDBw4UOPX5s2bp/44JCSkXIsQIrJAZ84AKhXQubPckZiFpKQkJCUl6fx9lSaIuLg4/P3vf0ffvn3h\n7+8PFxcXlJaW4tatWzh+/DgSEhLQq1evKicIXRr+HThwAGvWrKl0aW3ZBEFEVoDlJZ08/oPz/Pnz\ntfq+ShPEsmXLkJeXh9jYWOzbtw/Xrl0DALRo0QLPP/88Pvjgg3LLYHXl6uoKpVKpfq1UKuHm5lbh\nurNnz2LSpEmIj4+Ho6NjlZ9HRBbi0eqlLVvkjsTiVToHkZaWhm7duhmstXdJSQnatm2L/fv3o1mz\nZggICEBUVBR8fHzU1/z666/o3bs3NmzYgG7dumn+DXAOgsi6nDgBhIUBGRkcQVRRtecg1q1bhzff\nfBNt2rTBCy+8gAEDBqBp06Z6C9DW1hYrVqxAaGgoVCoVIiIi4OPjg9V/HjY+ZcoULFiwAHfu3MEb\nb7wBALCzs0N6erreYiAiM8TyktE8dRXThQsXsHv3buzduxd3795F7969MWDAAPTo0QM2JtB7nSMI\nIisiSUDLlsCOHUAli2fo6ardi0mTBw8e4MCBA9i9ezfS0tJw4sSJagWpD0wQRFYkPR14/XXgwgWO\nIKpBrwkiPz8fSqUSCoUCbm5uqFOnjl6C1AcmCCIr8t57gL09sGCB3JGYtWoniLy8PHz99dfYtGkT\ncnJy4OzsDEmSkJ2djUaNGuGVV17BpEmTqrWSSR+YIIisRGkp4OEB7N4NtG8vdzRmrdrdXIcNGwYH\nBwfs3LkTv/zyC9LS0nDkyBFcvXoVcXFxqFOnDoYOHarXoImIKnX0KODgwORgRDxylIjMw8yZQIMG\nwJ+HmFHVVXsEER8fj82bN1f4/JYtW7Bv377qRUdEpIvSUmDzZrb2NrIndnMNDg6u8Png4GB89NFH\nBg2KiKic1FSgYUOgzEZaMrxKE0RhYSGaNGlS4fNOTk7lzoggIjI4Hgwki0p3Uufl5aG4uBh2dnbl\nPl9cXIyCggKDB0ZEBEB0bd28GTh4UO5IrE6lI4iXXnoJkydPxv3799Wfy8vLw5QpU/DSSy8ZJTgi\nIhw+DDRtCrRpI3ckVqfSBLFw4UI4OzvDw8NDfaJcy5Yt4eTkhI8//tiYMRKRNWN5STY6nSjn5eWF\n2rVrGyUwbXGZK5EFU6kAV1cgJQVo3VruaCxGtZe5PvLoRLmOHTti+vTpegmOiEgrBw8Cbm5MDjJ5\naoIo69ixY4aKg4ioIpaXZFXpKiZNNC17JSIyiJIS4PvvRYsNkoVOI4g9e/YYKg4i0pWlz70dOCCa\n87VsKXckVqvSBJGcnIx169apX48YMQK9evVCr169kJiYaJTgiKgSxcVA9+5Ajx6Apf57jIkBRo+W\nOwqrVmmCmDt3Lvz9/dWvMzIysGzZMsyfPx+RkZFGCY6IKjF/vmhc98YbwJQpQK9eYr+ApSguBrZt\nA0aOlDsSq1Zpgrh37x7al2mr6+npic6dOyMoKAh5eXlGCY6INEhOBr75Bli7Fnj1VXG62muviY8H\nDAAsYTHJ/v2AlxfQooXckVi1ShPE3bt3y73etm2b+uPs7GzDRURElfvjD5EMvvpK7C4GAFtbYMIE\nICMDGDoUGD4cGDIEOH1a3lirg+Ulk1BpgvD29kZcXFyFz+/cuRPe3t4GDYqIKvHWW8ALLwCDB1f8\nWs2aouR06RLQu7e4btQo4Px548dZHUVFQGwsy0smoNKd1JcuXcKgQYPQo0cP+Pn5QZIknDx5Eikp\nKYiLi0Pbtm2NHatG3ElNVmPjRnEW88mT4lzmp8nPB778Eli2DOjfXxy04+Vl+Dira9cu4JNPLGtO\nxcRUeye1p6cnzp49i+effx5Xr17FtWvXEBQUhLNnz6qTA9+YiYwkMxOYPl0kCW2SAwDUqQP8/e/A\n5cuAtzcQGChKUZmZhoy0+qKjuTnORFQ6gggODsaLL76IoUOHos1jXRQvXryI7du344cffsChQ4eM\nEmhlOIIgi6dSiVVKL74o3vCr6s4d4LPPgP/+V7wBf/CBaGNhSgoLxdzKuXNAs2ZyR2Oxqj2C2Lt3\nLxo1aoS33noLLi4uaNOmDby8vODi4oJp06bB2dkZCQkJeg2aiDSIjARsbIC//a1693F0BBYuBC5e\nBBwcgI4dxajk1i39xKkPe/eKuJgcTMJTu7kCgEqlQk5ODgCgcePGsLGxMXhg2uIIgizasWPAoEHA\niROAu7t+733rFrBkCbB+PTBxohidNG6s32fo6tVXRSnsrbfkjcPCafu+qVWCMGVMEGSx7t8H/PyA\njz82bE3++nVg0SKxtPSNN8RIxdHRcM+rzMOHgIsL8PPPfy3hJYPQW7tvokrl5AC3b8sdheWaOVO0\n0zD0hK2bG7BypRilZGWJlU4LFwL37hn2uY/bs0ckRCYHk8EEQdp7+BDYtw+YNQvo3Fn06H/uOeDq\nVbkjszzbtokeS//5j/Ge6eEhdminpYl5Ck9PMf+Rn2+c53P1ksmRNUHEx8fD29sbXl5eGvs7/fzz\nzwgMDMQzzzyDTz/9VIYIrZxKJWrgixcDffoATZqIdfj29uKNKydHrIQZOFCskCH9uHkTmDoV2LAB\nqFfP+M/38hLPTkoSowpPT2D5cqCgwHDPfPAA2L0bGDHCcM8gnck2B6FSqdC2bVskJCTA1dUVXbp0\nQVRUFHx8fNTX/Pbbb7h27Rq2b98OR0dH/E3DKg7OQeiRJIk18wkJ4teBA2I1Sd++4ldwsFj98rh3\n3xVtHeLjxW5eqrrSUtFPqUcPsbHNFJw+LWI5cUL8QBARof//z1u3AqtWiREqGZy275s6HRikT+np\n6fD09ISHhwcAICwsDLGxseUShJOTE5ycnPDDDz888V7z5s1TfxwSEoKQkBADRGyhsrNFKeNRUlCp\nRDIYPhxYsUJMGj7Nv/4lfvKbMgVYswZQKAwft6X6/HMxOf3BB3JH8pfnnhOtL44dA/75T1F2+ugj\n4PXXATs7/TyDJ8cZVFJSEpKSknT+PtlGEFu2bMGePXvw9ddfAwA2bNiAo0eP4osvvqhw7fz581G3\nbl2OIPQhPx84dOivhHDtGhAS8tcooW3bqr3B5+eLEcbw4ab15mZOzp4VpbyjR4FWreSOpnIpKSJB\nKJViZBEeLvZpVFV+vhipXrki/zJbK2HyIwgFf8o0jpIS8ZPfo4Rw4gTg7y+SwerV4mNbPfw1qFMH\n2LkT6NZNvLmFh1f/ntbk4UNgzBjRN8mUkwPw1yFFiYkiUXzyCTBvnmiuV6MK05o//CD2PjA5mBzZ\nEoSrqyuUSqX6tVKphJupbfs3R5IkVqAkJIh67sGDoqd+377A7NlAz55A3bqGebaLCxAXJ34KdncH\nnn/eMM+xRLNnA+3bi7KNuejdW7QA2bNHJIpFi8QihiFDdBuFsrxksmQrMZWUlKBt27bYv38/mjVr\nhoCAgAqT1I/MmzcPDg4OLDFVJitLHLDyaJRQowbQr59ICr17A87Oxo1nzx5g7FjRjdPT07jPNkfx\n8cDkycCZM/JsUNMHSRIjyI8+EhPYCxaIyfanJYq8PLEP4+pVoGFD48RK2r9vSjLatWuX1KZNG6l1\n69bSJ598IkmSJK1atUpatWqVJEmSlJWVJbm5uUn16tWTGjRoILm7u0t5eXnl7iHzb0Ee9+5J0s6d\nkjR9uiS1by9Jjo6S9NJLkvTf/0pSRoYklZbKHaEkrV4tSW3aSFJOjtyRmLbbtyWpWTNJSkyUOxL9\nUKkkKSZGknx8JKl7d0nav//J12/cKEkDBxonNlLT9n2TrTbMQXGxmLh8NEI4fRro2vWviWU/v+pN\nEhrK3/8u4t67F6hVS+5oTI8kiRPgfHzEyiBLolIBUVHi7Gw3N7EzW1PJcfhwYNgwMeIko2EvJnMm\nSaLd8aMKZswSAAASm0lEQVSEkJwsdi0/Khv16KH9mQByKi0VteXatUVDOC5MKG/1anF0aFqa5e4f\nKSkR/+8XLBBnUixYAAQEiK/duyfmqq5dAxo0kDdOK8MEYW6uXy8/j/DMM+XnEcx1hceDB2Iic+BA\n09n4ZQp+/ln8RH34sHjjtHRFRWKPzMcfixHvggXATz+J9ho7d8odndVhgjAHOTli6L13r2h616fP\nX2UjU1/qqIvsbLH8deFC0c7Z2hUViWWdkyaJlhrWpKBAjJyWLBGl0+XL+XdCBkwQpi4zEwgNFaOE\nCRPEbtWqrCE3F+fPiw15W7YAQUFyRyOv2bPFn0dsrPWW3fLzxfLW0aPNo1xqYZggTNmZM+IQmFmz\ngLffljsa40lIAF55Rezk/vNcc6uTlCQ2xJ0+LZofEsmA50GYqsREMWr497+tKzkAonT2ySciOf55\nQqFVuXNHbIRbs4bJgcwCRxDGFB0tkkJMjCi3WKt//EPs8N6/X0zGWwNJAsLCxKZFY57xQKQBS0ym\n5vPPRZ+dH34Qh7Jbs9JS0atJoQA2brTsuZdH1q8Hli4VfbFq15Y7GrJyTBCmorQUmDMH2LFDtFRo\n0ULuiEzDw4di1Vbv3mLpoyX75RexsXH/fv5wQCbB5Lu5WoWiInG4ypUrYr17o0ZyR2Q6atcWq3i6\ndRObAMePlzsiwygpEcs4//EPJgcyO0wQhpKXJ9ofP/OMWL3DpXwVOTmJkltwsBhZ9e4td0T6t2iR\naIU+fbrckRDpzAqKvzLIzha7h1u0EEcpMjlUzttbTN6HhQEXLsgdjX6lpQErVwLr1lnHPAtZHP6t\n1bcrV0SvpBdfFDtG9XEYj6ULCRHHlg4aJJKrJcjLE6WllSvFaWlEZoiT1Pp0/Lg4LGXuXHE+M+nm\nn/8UbUcOHDD/lT7jx4sfDv48UpfIlHAVk7Ht2QO89pp4Qxg6VO5ozJMkiZ+6i4pE2clcyzKbN4tz\nuU+eNNzpfUTVwARhTN99B7z3HvD996K8RFVXWPhXS/MlS+SORndKpTjnOy4O6NJF7miINOIyV2OQ\nJLH5bcUKURZp107uiMxfrVrA9u2i22nr1qLjqbkoLRUH37zzDpMDWQQmiKoqLQXefVdsfkpNBVxd\n5Y7IcjRqJJa/9uwJeHiI3lXm4NNPRQvr2bPljoRIL1hiqorCQtF07dYtsdmLp2EZRnIyMGKEaHD4\n7LNyR/NkJ08CAwaIVhrcLU8mjt1cDeWPP4AXXhBn7u7Zw+RgSD17igNlXnxRJGNT9eCBaGO+fDmT\nA1kUJghdZGWJXb/t2olVNtbSiVROY8aIdiWDB4s3YlP03ntA584iViILwhKTti5eFCWEyZNFjdla\nTwKTgyQB48aJzWebNwM2NnJH9Je4OGDaNHEIVP36ckdDpBUuc9WnI0eAYcPEsstx4wz7LNKsqEgc\n0ernJyaDTUF2tjgqNiZGlMOIzATnIPQlLk6UN9asYXKQU82aoq/VDz8A//2v3NGIUc348aL8xeRA\nForLXJ/km2+ADz8Ub0oBAXJHQw0biv8Xzz8vlr8OHChfLF9+KY5NnTtXvhiIDIwlJk0kSbRpXrNG\nHPLTpo1+70/Vk5oq2pkkJACdOhn/+efOiQaDqamAl5fxn09UTSwxVZVKBbz5pihnpKYyOZii7t3F\n7vXBg4EbN4z77MJCsVppyRImB7J4LDGV9fChWM9+7x5w8CBQr57cEVFlRo8WR3kOHgwcOmS8pngf\nfCBagEyYYJznEclIthFEfHw8vL294eXlhcjISI3XvPPOO/Dy8kKnTp1w6tQpwwZ05w7Qv7/Y27Br\nF5ODOZg9G/D1BcLDxcjP0BISgE2bRMdeLnMmKyBLglCpVJg2bRri4+Nx/vx5REVF4cJjp4nt2rUL\nly9fxqVLl/DVV1/hjTfeMFxASqWY+AwIADZsECtmyPQpFMCqVWLk9+67hn1Wbq5YxbZ2Lc8WJ6sh\nS4JIT0+Hp6cnPDw8YGdnh7CwMMTGxpa7ZseOHRg7diwAoGvXrrh79y6yDXHa2LlzorX0hAlifb25\nnkFgrezsgC1bgH37gP/8xzDPkCTRVXb0aPNpHEikB7LMQdy4cQPu7u7q125ubjh69OhTr7l+/Tqc\nnZ0r3G/evHnqj0NCQhASEqJdIMnJwMiRwGefibkHMk8NGojlrz16AC1binkJfVqzRhwlGxWl3/sS\nGUlSUhKSkpJ0/j5ZEoRCy/rt48uwKvu+sglCa99/D0ydCmzcKA6oIfPWsiWwbZto7Ldnj9hxrQ+X\nLom5jqQkcVYFkRl6/Afn+fPna/V9stRTXF1doVQq1a+VSiXc3NyeeM3169fhqq8zF1auBN5+W+xx\nYHKwHF27ijmJIUPEvFJ1FReLkeXcuUD79tW/H5GZkSVB+Pv749KlS8jMzERRURGio6MxZMiQctcM\nGTIE69evBwAcOXIEDRo00Fhe0okkAR99BPz736K8pK+fMsl0jBgBTJ8uRhJ5edW714IFQOPGwFtv\n6Sc2IjMjS4nJ1tYWK1asQGhoKFQqFSIiIuDj44PVq1cDAKZMmYKBAwdi165d8PT0RJ06dbB27drq\nPbSkBJgyBfjxRyAlBXBy0sPvhEzSe+8Bly+LSeUdOwDbKvw1P3wY+N//gFOnuKSVrJZ1tNrIzxdv\nFqWlovOmsTZVkXyKi8UoonVr0TdJlzf5P/4QXVq/+ELcg8jCsNXGIzk5QJ8+olQQG8vkYC3s7MTZ\nEYcPi5KiLt56S5wayORAVs6yW21kZoozBEaMEM33WCqwLvXqiXbtgYFildPw4U//no0bgRMnxC8i\nK2e5JaYzZ4BBg8QSxWnTjB8YmY4TJ8RpgLt2AV26VH7dtWvi6/HxXMBAFs26S0yJiWLH6/LlTA4k\nzov+3//EqYDXrmm+RqUCXntNTHAzORABsMQSU3S02OMQEyN69hMB4vyIq1fFqDIlpeL50ZGRYrXT\ne+/JEx+RCbKsEtPnnwPLlom2Cx07yhsYmR5JEj88ZGSIvyN2duLzx46JCenjx4Ey7V2ILJW2JSbL\nSBAqFTBnjljzvmcP0Ly53GGRqSopEaOJZs2Ar74SS6D9/MQihlGj5I6OyCisK0G8+qpoprZzJ1sx\n09Pl5QE9e4qT4S5fFnsmqrsRk8iMaJsgLGMO4t49cZiLvb3ckZA5cHD4a/lrzZrA6dNyR0Rkkixj\nBFFcXLV2CmTdLl8W8xI8W5qsjHWVmMz7t0BEZFTWvQ+CiIiqjQmCiIg0YoIgIiKNmCCIiEgjJggi\nItKICYKIiDRigiAiIo2YIIiISCMmCCIi0ogJgoiINGKCICIijZggiIhIIyYIIiLSiAmCiIg0YoIg\nIiKNmCCIiEgjJggZJSUlyR1CtTB+eTF++Zhz7LqQJUH8/vvv6NevH9q0aYP+/fvj7t27Gq+bMGEC\nnJ2d0aFDByNHaBzm/peM8cuL8cvHnGPXhSwJYsmSJejXrx8yMjLQp08fLFmyRON148ePR3x8vJGj\nIyIiQKYEsWPHDowdOxYAMHbsWGzfvl3jdT179oSjo6MxQyMioj8pJG1OrtYzR0dH3LlzBwAgSRIa\nNmyofv24zMxMDB48GD/++KPGrysUCoPFSURkqbR567c11MP79euHW7duVfj8okWLyr1WKBTVepOX\nIb8REVkFgyWIffv2Vfo1Z2dn3Lp1C02bNkVWVhaaNGliqDCIiKiKZJmDGDJkCNatWwcAWLduHYYN\nGyZHGERE9ASyJIjZs2dj3759aNOmDRITEzF79mwAwM2bNzFo0CD1deHh4ejevTsyMjLg7u6OtWvX\nyhEuEZFVkmWSWl/i4+MxY8YMqFQqTJw4EbNmzZI7JK1NmDABP/zwA5o0aVLpBLypUiqVeP3113H7\n9m0oFApMnjwZ77zzjtxhaa2goADBwcEoLCxEUVERhg4disWLF8sdls5UKhX8/f3h5uaGnTt3yh2O\nTjw8PFCvXj3Y2NjAzs4O6enpcoektbt372LixIk4d+4cFAoF1qxZg27duskdllYuXryIsLAw9etf\nfvkFCxcurPzfr2SmSkpKpNatW0tXr16VioqKpE6dOknnz5+XOyytHTp0SDp58qT07LPPyh2KzrKy\nsqRTp05JkiRJeXl5Ups2bczqz16SJCk/P1+SJEkqLi6WunbtKiUnJ8scke4+/fRTacyYMdLgwYPl\nDkVnHh4eUm5urtxhVMnrr78uffPNN5Ikib8/d+/elTmiqlGpVFLTpk2lX3/9tdJrzLbVRnp6Ojw9\nPeHh4QE7OzuEhYUhNjZW7rC0Zs57PJo2bYrnnnsOAFC3bl34+Pjg5s2bMkelG3t7ewBAUVERVCoV\nGjZsKHNEurl+/Tp27dqFiRMnmu1KPnOM+48//kBycjImTJgAALC1tUX9+vVljqpqEhIS0Lp1a7i7\nu1d6jdkmiBs3bpT7jbm5ueHGjRsyRmSdMjMzcerUKXTt2lXuUHRSWlqK5557Ds7OzujVqxfatWsn\nd0g6mTlzJv71r3+hRg3z/CesUCjQt29f+Pv74+uvv5Y7HK1dvXoVTk5OGD9+PPz8/DBp0iQ8ePBA\n7rCqZNOmTRgzZswTrzHPv13gBjlTcP/+fYwcORKff/456tatK3c4OqlRowZOnz6N69ev49ChQ2bV\nWycuLg5NmjSBr6+vWf4UDgApKSk4deoUdu/ejS+//BLJyclyh6SVkpISnDx5Em+++SZOnjyJOnXq\nVNoqyJQVFRVh586dGDVq1BOvM9sE4erqCqVSqX6tVCrh5uYmY0TWpbi4GCNGjMCrr75q1suU69ev\nj0GDBuH48eNyh6K11NRU7NixAy1btkR4eDgSExPx+uuvyx2WTlxcXAAATk5OGD58uNlMUru5ucHN\nzQ1dunQBAIwcORInT56UOSrd7d69G507d4aTk9MTrzPbBOHv749Lly4hMzMTRUVFiI6OxpAhQ+QO\nyypIkoSIiAi0a9cOM2bMkDscneXk5Kg7CD98+BD79u2Dr6+vzFFp75NPPoFSqcTVq1exadMm9O7d\nG+vXr5c7LK09ePAAeXl5AID8/Hzs3bvXbDo2N23aFO7u7sjIyAAg6vjt27eXOSrdRUVFITw8/KnX\nGWwntaHZ2tpixYoVCA0NhUqlQkREBHx8fOQOS2vh4eE4ePAgcnNz4e7ujgULFmD8+PFyh6WVlJQU\nbNiwAR07dlS/sS5evBgDBgyQOTLtZGVlYezYsSgtLUVpaSlee+019OnTR+6wqszcyq3Z2dkYPnw4\nAFGyeeWVV9C/f3+Zo9LeF198gVdeeQVFRUVo3bq12e3Pys/PR0JCglZzP2a9D4KIiAzHbEtMRERk\nWEwQRESkERMEERFpxARBREQaMUEQlTFz5kx8/vnn6tehoaGYNGmS+vXf/vY3LFy4EJGRkTrdd9y4\ncdi6dave4iQyBiYIojKef/55pKamAhDtOHJzc3H+/Hn119PS0hAaGqpz5+DqnpxIJAcmCKIyAgMD\nkZaWBgA4d+4cnn32WTg4OODu3bsoLCzEhQsXcObMGbz99tsAxMhg+vTp6NGjB1q3bq0eJUiShGnT\npsHb2xv9+vXD7du31W0x9u/fDz8/P3Ts2BEREREoKirCsWPHMGLECABAbGws7O3tUVJSgoKCArRu\n3VqGPwkiJgiicpo1awZbW1solUqkpaUhMDAQAQEBSEtLw/Hjx9GhQwfUrFmz3PfcunULKSkpiIuL\nUx9+tW3bNmRkZODChQtYv349UlNToVAoUFBQgPHjxyMmJgZnz55FSUkJVq5cCT8/P5w+fRoAkJyc\njA4dOiA9PR1Hjx41m7MGyPIwQRA9pnv37khNTUVqaioCAwMRGBiI1NRUpKWloUePHuWuVSgU6l5U\nPj4+yM7OBgAcOnQIY8aMgUKhgIuLC3r37g1AHNjSsmVLeHp6AgDGjh2LQ4cOwcbGBq1bt8bPP/+M\nY8eO4d1338WhQ4dw+PBh9OzZ04i/e6K/MEEQPaZHjx5ISUnBjz/+iA4dOqBbt27qhNG9e/cK15cd\nUTwqIykUCo2dVh+fhyh7TVBQEHbt2gU7Ozv06dMHycnJTBAkKyYIosd0794dcXFxaNSoERQKBRwd\nHXH37l31CEKb7jRBQUGIjo5GaWkpsrKycODAAQBA27ZtkZmZiStXrgAAvvvuO4SEhAAQh0gtX74c\n3bt3R+PGjZGbm4uMjAyzbAZHlsFsm/URGcqzzz6L3NxcvPrqq+rPdezYEQ8ePEDDhg0rrEjS9PHw\n4cORmJiIdu3aoXnz5uqRR61atbB27VqMGjUKJSUlCAgIwNSpUwEAAQEBuH37NoKCggAAnTp1Upes\niOTAZn1ERKQRS0xERKQREwQREWnEBEFERBoxQRARkUZMEEREpBETBBERafT/ZIJbtET24SEAAAAA\nSUVORK5CYII=\n", "text": [ "<matplotlib.figure.Figure at 0x10a7c4b50>" ] } ], "prompt_number": 4 }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can also go directly from DNA to amino acids using the `translate` command." ] }, { "cell_type": "code", "collapsed": false, "input": [ "print \"translate: \" + Seq(seq).translate() # my_rna = my_seq.transcribe()" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "translate: IPG*GPLMMQFAGLLYFLRASILFSVGGEK*NAVEMGGGGGDGGDEKAHRDLSVASFSSLYRPSSLPLVRKRLQ*KPQEVTATGGRIDRGHQPCWRSRAQRRQRPRHLQWMHNEGN*ACC*QPCCCGSNWSAYSQRTVV*CFS*GGPSTAVCVMHIPCIWATWVRISPD*GNPRWRGWSAFVSAASRLEDPIAGGSS*STIR**GPEKAG*GESCKQWPWGRWGSREWLIFCTEFHGEWKIVSSEWTPNIK*HGDLGKQKKKK\n" ] } ], "prompt_number": 6 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Refer to the documentation and [cookbook](http://biopython.org/DIST/docs/tutorial/Tutorial.html#sec17) for BioPython to view more of the sequence tools. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Basic FileIO\n", "\n", "Different tools in bioinformatics use different standards for containing thier data. For example, GenBank, Fasta, and Biom are all file formats used to storge biological data. BioPython contains several builtin modules for interfacing with theses different file formats using the `SeqIO` class. In this section, we examine converting between file formats as well as manipulating the variables in the `SeqIO` class. \n", "\n", "Let us take a moment to talk about the `SeqRecord` object in BioPython. We learned that sequences in BioPython are stored in a a `Seq` object, which contained some handy functions such as `translation`. We can create a more detailed record that contains a seqence ID, name, the raw sequence, etc. Such a more detailed stucture can be found in the `SeqRecord` class. `SeqRecord` contains a sequence (as a `Seq` object) with identifiers (ID and name), description and optionally annotation and sub-features. The `SeqIO` system will only return `SeqRecord` objects.\n", "\n", "**Quick Python Note**\n", "```python\n", "A = []\n", "for x in range(5):\n", " A.append(x**2)\n", " \n", "B = [x**2 for x in range(5)]\n", "# A and B are are identical (I use this condensed notation) \n", "```\n", "\n", "`SeqIO` contains a `parse` function that can readily handle GenBank and Fasta formats. We have a fasta file in `../data` that looks like:\n", "```\n", ">gi|2765658|emb|Z78533.1|CIZ78533 C.irapeanum 5.8S rRNA gene and ITS1 and ITS2 DNA\n", "CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGATGAGACCGTGGAATAAACGATCGAGTG\n", "AATCCGGAGGACCGGTGTACTCAGCTCACCGGGGGCATTGCTCCCGTGGTGACCCTGATTTGTTGTTGGG\n", "CCGCCTCGGGAGCGTCCATGGCGGGTTTGAACCTCTAGCCCGGCGCAGTTTGGGCGCCAAGCCATATGAA\n", "...\n", "\n", ">gi|2765657|emb|Z78532.1|CCZ78532 C.californicum 5.8S rRNA gene and ITS1 and ITS2 DNA\n", "CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGACAACAGAATATATGATCGAGTG\n", "AATCTGGAGGACCTGTGGTAACTCAGCTCGTCGTGGCACTGCTTTTGTCGTGACCCTGCTTTGTTGTTGG\n", "...\n", "```\n", "which contains 94 sequences, or *records*. We can read in the iterable set of sequence records into a dictionary with the key being the `id` and the value being the sequence. In code this translates to: " ] }, { "cell_type": "code", "collapsed": false, "input": [ "from Bio import SeqIO\n", "\n", "# we can parse the fasta file and read the sequences in by looping over \n", "# the iterator returned by SeqIO.parse()\n", "sequences = {} # empty dictionary \n", "for seq_record in SeqIO.parse(\"../data/ls_orchid.fasta\", \"fasta\"):\n", " sequences[seq_record.id] = seq_record.seq\n", "\n", "# an alternative way to do this can be done with one line of code\n", "sequences2 = {s.id:s.seq for s in SeqIO.parse(\"../data/ls_orchid.fasta\", \"fasta\")}\n", "\n", "print sequences2.keys()[0]\n", "print sequences2[sequences2.keys()[0]] # print the first sequence " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "gi|2765596|emb|Z78471.1|PDZ78471\n", "CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGATCACATAATAATTGATCGAGTTAATCTAGAGGATCGGTTTACTTTGGTCACCCATGGGCATCTGCTCTTACAGTGACCTGGATTTGCCATCGAGCCTCCTTGGGAGCTGTCTTGCTGGCGATCTAAATCGTTGCCCGACGCAGCCTTGCGTCAAGTCACCCCGACACATAATGGAAGGGGGCGGCATGCTGCCTTGACCCTTCCCCAAATTAATTTTTTGACAACTCTCAACATCGGATATCTCGGCTCTTGCATCGATGAAGAACGCAGCGAAATGCGATAAATGGTGTGAATTGCAGAATCCCGTGAACCATCGAGTCTTTGAACGCAAGTTGCGCCCGAGGCCATCAGGCCAAGGGCACGCCTGCTTGGGCATTGCGAGTCATATCTCTCCCTTAATGAGGCTGTCCATACATACTGTTCAGCCAGTGCGGATGTGAGTTTGGCCCCTTGTTCTTTAGTACGGGGGGTCTAAAAGCTGCATGGGCTTTTGCTGGTCCTAAATACGGCAAGAGGTGGACAAAGTATGCTACAACAAAATTGTAGTGCGAATGCCCCGGGTTGTCGTATTAGATGGGCCAGCATAATTTAAAGACCCTTTTGAACCCCATTAGAGGCCCATCAACCCTGATCAGTTGATGGCCATTTGGTTGCGACCCCAAGTCAGGTGAGGCAACCCGCTGAGTTTAAGC\n" ] } ], "prompt_number": 7 }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can also read in Genbank files as well." ] }, { "cell_type": "code", "collapsed": false, "input": [ "# simple conversion from GB to a fasta file\n", "records = SeqIO.parse(\"../data/ls_orchid_full.gbk\", \"genbank\")\n", "count = SeqIO.write(records, \"../data/my_example.fasta\", \"fasta\")\n", "\n", "# read in the sequences from the GB file. note that this is nearly identical to when we \n", "# performed this task with the fasta file in the previous code block\n", "sequences = {s.id:s.seq for s in SeqIO.parse(\"../data/ls_orchid_full.gbk\", \"genbank\")}\n", "\n", "record = SeqIO.read(\"../data/ls_orchid.gbk\", 'genbank')\n", "print \"locus = \" + record.name\n", "print \"definition = \" + record.description\n", "print \"version = \" + record.id\n", "print \"seq = \" + record.seq " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "locus = Z78533\n", "definition = C.irapeanum 5.8S rRNA gene and ITS1 and ITS2 DNA.\n", "version = Z78533.1\n", "seq = CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGATGAGACCGTGGAATAAACGATCGAGTGAATCCGGAGGACCGGTGTACTCAGCTCACCGGGGGCATTGCTCCCGTGGTGACCCTGATTTGTTGTTGGGCCGCCTCGGGAGCGTCCATGGCGGGTTTGAACCTCTAGCCCGGCGCAGTTTGGGCGCCAAGCCATATGAAAGCATCACCGGCGAATGGCATTGTCTTCCCCAAAACCCGGAGCGGCGGCGTGCTGTCGCGTGCCCAATGAATTTTGATGACTCTCGCAAACGGGAATCTTGGCTCTTTGCATCGGATGGAAGGACGCAGCGAAATGCGATAAGTGGTGTGAATTGCAAGATCCCGTGAACCATCGAGTCTTTTGAACGCAAGTTGCGCCCGAGGCCATCAGGCTAAGGGCACGCCTGCTTGGGCGTCGCGCTTCGTCTCTCTCCTGCCAATGCTTGCCCGGCATACAGCCAGGCCGGCGTGGTGCGGATGTGAAAGATTGGCCCCTTGTGCCTAGGTGCGGCGGGTCCAAGAGCTGGTGTTTTGATGGCCCGGAACCCGGCAAGAGGTGGACGGATGCTGGCAGCAGCTGCCGTGCGAATCCCCCATGTTGTCGTGCTTGTCGGACAGGCAGGAGAACCCTTCCGAACCCCAATGGAGGGCGGTTGACCGCCATTCGGATGTGACCCCAGGTCAGGCGGGGGCACCCGCTGAGTTTACGC\n" ] } ], "prompt_number": 9 }, { "cell_type": "code", "collapsed": false, "input": [ "%%bash \n", "cat ../data/my_example.fasta | head -20" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ ">Z78533.1 C.irapeanum 5.8S rRNA gene and ITS1 and ITS2 DNA.\n", "CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGATGAGACCGTGGAATAAA\n", "CGATCGAGTGAATCCGGAGGACCGGTGTACTCAGCTCACCGGGGGCATTGCTCCCGTGGT\n", "GACCCTGATTTGTTGTTGGGCCGCCTCGGGAGCGTCCATGGCGGGTTTGAACCTCTAGCC\n", "CGGCGCAGTTTGGGCGCCAAGCCATATGAAAGCATCACCGGCGAATGGCATTGTCTTCCC\n", "CAAAACCCGGAGCGGCGGCGTGCTGTCGCGTGCCCAATGAATTTTGATGACTCTCGCAAA\n", "CGGGAATCTTGGCTCTTTGCATCGGATGGAAGGACGCAGCGAAATGCGATAAGTGGTGTG\n", "AATTGCAAGATCCCGTGAACCATCGAGTCTTTTGAACGCAAGTTGCGCCCGAGGCCATCA\n", "GGCTAAGGGCACGCCTGCTTGGGCGTCGCGCTTCGTCTCTCTCCTGCCAATGCTTGCCCG\n", "GCATACAGCCAGGCCGGCGTGGTGCGGATGTGAAAGATTGGCCCCTTGTGCCTAGGTGCG\n", "GCGGGTCCAAGAGCTGGTGTTTTGATGGCCCGGAACCCGGCAAGAGGTGGACGGATGCTG\n", "GCAGCAGCTGCCGTGCGAATCCCCCATGTTGTCGTGCTTGTCGGACAGGCAGGAGAACCC\n", "TTCCGAACCCCAATGGAGGGCGGTTGACCGCCATTCGGATGTGACCCCAGGTCAGGCGGG\n", "GGCACCCGCTGAGTTTACGC\n", ">Z78532.1 C.californicum 5.8S rRNA gene and ITS1 and ITS2 DNA.\n", "CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGACAACAGAATATA\n", "TGATCGAGTGAATCTGGAGGACCTGTGGTAACTCAGCTCGTCGTGGCACTGCTTTTGTCG\n", "TGACCCTGCTTTGTTGTTGGGCCTCCTCAAGAGCTTTCATGGCAGGTTTGAACTTTAGTA\n", "CGGTGCAGTTTGCGCCAAGTCATATAAAGCATCACTGATGAATGACATTATTGTCAGAAA\n", "AAATCAGAGGGGCAGTATGCTACTGAGCATGCCAGTGAATTTTTATGACTCTCGCAACGG\n" ] } ], "prompt_number": 10 }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Accessing the Entrez Database\n", "\n", "We can also search...." ] }, { "cell_type": "code", "collapsed": false, "input": [ "from Bio import Entrez \n", "from Bio.SeqRecord import SeqRecord\n", "\n", "terms = [\"cytochrome oxidase i AND viridiplantae[Organism] and 450:2000[Sequence Length]\",\n", " \"cytochrome oxidase i AND fungi[Organism] and 450:2000[Sequence Length]\",\n", " \"cytochrome oxidase i AND animalia[Organism] and 450:2000[Sequence Length]\"\n", " ]\n", "Entrez.email = \"[email protected]\" # you should put your email in here!" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 11 }, { "cell_type": "code", "collapsed": false, "input": [ "top_records = []\n", "for term in terms: # I could do this in 1 line if I wanted to!\n", " handle = Entrez.esearch(db=\"nucleotide\", term=term)\n", " top_records.append(Entrez.read(handle)[\"IdList\"][0])\n", "\n", "handle = Entrez.efetch(db=\"nucleotide\", id=\",\".join(top_records), rettype=\"gb\", retmode=\"xml\")\n", "genbank_records = Entrez.read(handle)\n", "print \"First Genbank record keys: \" + str(genbank_records[0].keys())\n", "print \"\" \n", "print \"First Genbank sequence (\" + genbank_records[0][\"GBSeq_primary-accession\"] + \"): \" + genbank_records[0][\"GBSeq_sequence\"]" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "First Genbank record keys: [u'GBSeq_moltype', u'GBSeq_source', u'GBSeq_sequence', u'GBSeq_primary-accession', u'GBSeq_definition', u'GBSeq_accession-version', u'GBSeq_topology', u'GBSeq_length', u'GBSeq_feature-table', u'GBSeq_create-date', u'GBSeq_other-seqids', u'GBSeq_division', u'GBSeq_taxonomy', u'GBSeq_comment', u'GBSeq_references', u'GBSeq_update-date', u'GBSeq_organism', u'GBSeq_locus', u'GBSeq_keywords', u'GBSeq_strandedness']\n", "\n", "First Genbank sequence (KC016094): ctttattcccacattagataccagaatagttattgcacgtatgtgtaacgccagtatattaattgcgaaggttgctaagctaatcctaatcaggcaacgagtctttcaggagttctggacacctacgggagttgaggaagtaatcatggctgaacaaagggaggaatgttgccaataaggtctctgtctgctgtatgcatatggctatccttctttctctgggatgcgggatacgtttcactgtccatgaaggaagaaaccactcgaccaagggagaggtggtttgcccggcatggtactgattgttaacgagattgattattcacgctctgcttattgagatcttgggtttcttccccagtatattaattgccggattttccggtgttttacttagctgaacagcactagctccttctctcatgccaaatccaagtcatttagcctagatagcacggggaagaggatcagaccattcattaactccgctaattcaagttctgttcactctcgctacgcacctgagaactataagaaaataattcgctacctcccgctcacaattaatatactggcgccttgttctccacgccattcattcccctggtaaataattctacgagatcgatgtgttaagcatagtgtctctgtctccaaatccgtatcaaccactgcgactctcgctaggatttctattctgaactaatatactgggagctgcgatattgagaatgtgagtcttgctgcaaagcagatgaactacctaactaaactaagggaaggggaagaagggtcaaacacctgacatgactaagcgctagggagactcgctacgcacctgcaccctctgctgcttaccaaattcttagggccgtggtgaactggtcgtcctataccttctgcctatctcatgtgtgtggaaccaggtctttttcggttccagcttaactttcagtaggggtgagaaacgccaacctcccctgttgcctattagtaagcggccccaatagtattactcaaacccagtataaacagaaatataaaaaatagaaaaatatagcaaatataaaaaataaaaaactctgagaactacctaactaaagaagaatagtgctttttctatgattattcagctagtaggcgtggagagctttttgcggggaaacttgcaagtcaagtttggggggaggcgggcgtcgacccaaccttatgagtattcagactataacagtttcgatgaccagtcactcacttttgacagttatatgattccataggatgatccagaattgggtcaatcatgtttattagaagtggacaatagagtggctgtaccagccaaaactcatgtatgtatgattgtaacacccgctgatgtacctcatagttgggctgtaccttctt\n" ] } ], "prompt_number": 12 }, { "cell_type": "code", "collapsed": false, "input": [ "fasta_records = []\n", "for record in genbank_records:\n", " seq_record = SeqRecord(Seq(record[\"GBSeq_sequence\"]), id=record[\"GBSeq_primary-accession\"], description=record[\"GBSeq_definition\"])\n", " fasta_records.append(seq_record)" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 13 }, { "cell_type": "code", "collapsed": false, "input": [ "with open(\"../data/my_seqs.fa\",\"w\") as fasta_file:\n", " SeqIO.write(fasta_records, fasta_file, \"fasta\")" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 14 }, { "cell_type": "code", "collapsed": false, "input": [ "%%bash \n", "cat ../data/my_seqs.fa" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ ">KC016094 UNVERIFIED: Allium sphaerocephalon cytochrome oxidase subunit 2-like (cox2) gene, partial sequence; mitochondrial\n", "ctttattcccacattagataccagaatagttattgcacgtatgtgtaacgccagtatatt\n", "aattgcgaaggttgctaagctaatcctaatcaggcaacgagtctttcaggagttctggac\n", "acctacgggagttgaggaagtaatcatggctgaacaaagggaggaatgttgccaataagg\n", "tctctgtctgctgtatgcatatggctatccttctttctctgggatgcgggatacgtttca\n", "ctgtccatgaaggaagaaaccactcgaccaagggagaggtggtttgcccggcatggtact\n", "gattgttaacgagattgattattcacgctctgcttattgagatcttgggtttcttcccca\n", "gtatattaattgccggattttccggtgttttacttagctgaacagcactagctccttctc\n", "tcatgccaaatccaagtcatttagcctagatagcacggggaagaggatcagaccattcat\n", "taactccgctaattcaagttctgttcactctcgctacgcacctgagaactataagaaaat\n", "aattcgctacctcccgctcacaattaatatactggcgccttgttctccacgccattcatt\n", "cccctggtaaataattctacgagatcgatgtgttaagcatagtgtctctgtctccaaatc\n", "cgtatcaaccactgcgactctcgctaggatttctattctgaactaatatactgggagctg\n", "cgatattgagaatgtgagtcttgctgcaaagcagatgaactacctaactaaactaaggga\n", "aggggaagaagggtcaaacacctgacatgactaagcgctagggagactcgctacgcacct\n", "gcaccctctgctgcttaccaaattcttagggccgtggtgaactggtcgtcctataccttc\n", "tgcctatctcatgtgtgtggaaccaggtctttttcggttccagcttaactttcagtaggg\n", "gtgagaaacgccaacctcccctgttgcctattagtaagcggccccaatagtattactcaa\n", "acccagtataaacagaaatataaaaaatagaaaaatatagcaaatataaaaaataaaaaa\n", "ctctgagaactacctaactaaagaagaatagtgctttttctatgattattcagctagtag\n", "gcgtggagagctttttgcggggaaacttgcaagtcaagtttggggggaggcgggcgtcga\n", "cccaaccttatgagtattcagactataacagtttcgatgaccagtcactcacttttgaca\n", "gttatatgattccataggatgatccagaattgggtcaatcatgtttattagaagtggaca\n", "atagagtggctgtaccagccaaaactcatgtatgtatgattgtaacacccgctgatgtac\n", "ctcatagttgggctgtaccttctt\n", ">KF528054 Uredo rolliniae isolate 189 cytochrome oxidase subunit 3 gene, partial cds; mitochondrial\n", "gtagagggtggtggttatggggtagcactaggttttgtaagcacagtaggtgtaataagt\n", "ctatgatttagggatgtaagtgcagaggggtcgctaggggggtatcatacgtttgatgtt\n", "caacgttctctaaatatgggggtagtactatttattgtaagtgagatctttatttttgta\n", "tcaattttttgagcttattttcattcagctctaagtcctacggtagagctaggttctcag\n", "tggccggcaccaggtgtagagccactgaatgcatttgagattccacttctaaatacgatt\n", "ctgcttctaacctcagcgagctcactaacttatgcacaccatgctctaattaatgggaat\n", "aggaagtcatgtctaattggttttgcggtgactctagcactggcagtaacttttacaggg\n", "tttcaagcactagagtatattgaggcaccttttacaatttcagatggggcatttggtagt\n", "acttttttctttagtacaggttctcatgggatgcacgtaattattgggacgatttttcta\n", "acagtagcactagctcgaattattagttaccaactaacagaccaccaccatctaggtttt\n", "gaggctgcagcactgtattgacattttgttgatgttgtttga\n", ">KF802856 Aspidiotus nerii isolate D0530E cytochrome oxidase subunit 1 (CO1) and cytochrome oxidase subunit 2 (CO2) genes, partial cds; mitochondrial\n", "aataatttatcaactttaggatcaataataacaattatatttatttttatatttttttat\n", "tcaattattgaacttttaatttcaaaacgaaaaattattattattattaaatctaataat\n", "aatgaatgaaaaaataatttaccaactctttctcattcaaatattgaaaataattttata\n", "ttcaataaaaattaaattatatcatgaataaacctaaattttcaaaaccctaattcaatc\n", "aatataattaaaattagaatatttcataattttatattaattattttaattaatattatt\n", "ataattttaattttaataattaatttttcttttattaataaatttaataataaaataatt\n", "ttacaaaatcaaaaattagaaatcttatgaacaattattcccataattatcattattata\n", "attagaataatttcaattaatttattattttcaaataatgaaataaaaaataatatttta\n", "aatattaaaatcattggtaatcaatgattttgaaattatgaatactcattatttaacaaa\n", "aactttaattcatatttattaataaataataattttaatttttttatattagaaacagat\n", "aataattttattattccttttaattatcaattaatacttattttttcatctttagatgtt\n", "attcattcttgaaccattccatcaataaatattaaaatag\n" ] } ], "prompt_number": 15 }, { "cell_type": "markdown", "metadata": {}, "source": [ "# BLAST\n", "\n", "BLAST can be run with BioPython either from using the command line tools -- provided they are installed -- or through the web. In this section, we use the `qblast` from the `Bio.Blast.NCBIWWW` module to call the online version of BLAST. Note that the results would be the same if we were to use the command line tools. As pointed out from the `qblast` documentation, there are three required arguments:\n", "\n", "* The first argument is the blast program to use for the search, as a lower case string. The options and descriptions of the programs are available at <http://www.ncbi.nlm.nih.gov/BLAST/blast_program.shtml>. Currently `qblast` only works with blastn, blastp, blastx, tblast and tblastx.\n", "* The second argument specifies the database in which to perform the search. Again, the options for this are available on the NCBI web pages at <http://www.ncbi.nlm.nih.gov/BLAST/blast_databases.shtml>. \n", "* The third argument is a string containing your query sequence. This can either be the sequence itself, the sequence in fasta format, or an identifier like a GI number. \n", "\n", "The default output format for `qblast` is XML; however, we shall use other methods in BioPython to convert the results in the XML file to a more interpretable and managable output. " ] }, { "cell_type": "code", "collapsed": false, "input": [ "from Bio.Blast import NCBIWWW, NCBIXML\n", "\n", "E_VALUE_THRESH = 0.01\n", "s_len = 100\n", "\n", "# search against the nucleotide database (nt) using BLASTN, and you know the GI number \n", "result_handle = NCBIWWW.qblast(\"blastn\", \"nt\", \"8332116\") # 449020131, 8332116\n", "blast_records = NCBIXML.read(result_handle) \n", "\n", "for alignment in blast_records.alignments[:5]:\n", " for hsp in alignment.hsps: \n", " if hsp.expect < E_VALUE_THRESH: \n", " print \"****Alignment****\"\n", " print \"sequence:\", alignment.title \n", " print \"length:\", alignment.length \n", " print \"e value:\", hsp.expect \n", " print hsp.query[0:s_len] + \"...\" \n", " print hsp.match[0:s_len] + \"...\" \n", " print hsp.sbjct[0:s_len] + \"...\" \n", " " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "****Alignment****\n", "sequence: gi|568824607|ref|XM_006466626.1| PREDICTED: Citrus sinensis cold-regulated 413 plasma membrane protein 2-like (LOC102620025), transcript variant X5, mRNA\n", "length: 878\n", "e value: 4.20976e-99\n", "AAATGGGGAGAGAAATGAAGTACTTGGCCATGAAAACTGATCAATTGGCCGTGGCTAATATGATCGATTCCGATATCAATGAGCTTAAAATGGCAACAAT...\n", "||||||||||| |||| || ||||| |||||||||||| | || | || | ||||| || ||| ||||||||||||| || || ||| ...\n", "AAATGGGGAGAT---TGAATTATTTGGCTATGAAAACTGATGATCAGGTTGCAGCAGAGTTGATCAGCTCTGATTTCAATGAGCTTAAGATTGCTGCAAA...\n", "****Alignment****\n", "sequence: gi|568824605|ref|XM_006466625.1| PREDICTED: Citrus sinensis cold-regulated 413 plasma membrane protein 2-like (LOC102620025), transcript variant X4, mRNA\n", "length: 911\n", "e value: 4.20976e-99\n", "AAATGGGGAGAGAAATGAAGTACTTGGCCATGAAAACTGATCAATTGGCCGTGGCTAATATGATCGATTCCGATATCAATGAGCTTAAAATGGCAACAAT...\n", "||||||||||| |||| || ||||| |||||||||||| | || | || | ||||| || ||| ||||||||||||| || || ||| ...\n", "AAATGGGGAGAT---TGAATTATTTGGCTATGAAAACTGATGATCAGGTTGCAGCAGAGTTGATCAGCTCTGATTTCAATGAGCTTAAGATTGCTGCAAA...\n", "****Alignment****\n", "sequence: gi|568824603|ref|XM_006466624.1| PREDICTED: Citrus sinensis cold-regulated 413 plasma membrane protein 2-like (LOC102620025), transcript variant X3, mRNA\n", "length: 894\n", "e value: 4.20976e-99\n", "AAATGGGGAGAGAAATGAAGTACTTGGCCATGAAAACTGATCAATTGGCCGTGGCTAATATGATCGATTCCGATATCAATGAGCTTAAAATGGCAACAAT...\n", "||||||||||| |||| || ||||| |||||||||||| | || | || | ||||| || ||| ||||||||||||| || || ||| ...\n", "AAATGGGGAGAT---TGAATTATTTGGCTATGAAAACTGATGATCAGGTTGCAGCAGAGTTGATCAGCTCTGATTTCAATGAGCTTAAGATTGCTGCAAA...\n", "****Alignment****\n", "sequence: gi|568824601|ref|XM_006466623.1| PREDICTED: Citrus sinensis cold-regulated 413 plasma membrane protein 2-like (LOC102620025), transcript variant X2, mRNA\n", "length: 922\n", "e value: 4.20976e-99\n", "AAATGGGGAGAGAAATGAAGTACTTGGCCATGAAAACTGATCAATTGGCCGTGGCTAATATGATCGATTCCGATATCAATGAGCTTAAAATGGCAACAAT...\n", "||||||||||| |||| || ||||| |||||||||||| | || | || | ||||| || ||| ||||||||||||| || || ||| ...\n", "AAATGGGGAGAT---TGAATTATTTGGCTATGAAAACTGATGATCAGGTTGCAGCAGAGTTGATCAGCTCTGATTTCAATGAGCTTAAGATTGCTGCAAA...\n", "****Alignment****\n", "sequence: gi|568824599|ref|XM_006466622.1| PREDICTED: Citrus sinensis cold-regulated 413 plasma membrane protein 2-like (LOC102620025), transcript variant X1, mRNA\n", "length: 966\n", "e value: 4.20976e-99\n", "AAATGGGGAGAGAAATGAAGTACTTGGCCATGAAAACTGATCAATTGGCCGTGGCTAATATGATCGATTCCGATATCAATGAGCTTAAAATGGCAACAAT...\n", "||||||||||| |||| || ||||| |||||||||||| | || | || | ||||| || ||| ||||||||||||| || || ||| ...\n", "AAATGGGGAGAT---TGAATTATTTGGCTATGAAAACTGATGATCAGGTTGCAGCAGAGTTGATCAGCTCTGATTTCAATGAGCTTAAGATTGCTGCAAA...\n" ] } ], "prompt_number": 16 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Similarly, we can directly BLAST our sequence if we have it in the Python environment. BioPython is smart enough to pick up on how the third argument should be interpreted for BLASTing. " ] }, { "cell_type": "code", "collapsed": false, "input": [ "seq = \"ataccaggctgaggcccattaatgatgcaatttgctgggcttctctattttctccgtgcttccatcctcttctccgtcggcggggagaagtgaaatgccgtggagatgggcggcggcggcggcgacggcggcgacgagaaagctcaccgggatctctcagtcgcgagtttcagtagcctttaccggccgtcttctctaccgctcgttcggaagcgactccagtgaaagccgcaagaggtcactgccacggggggtcgtatcgatcggggccatcagccttgctggaggtctcgtgctcagcgccgtcaacgacctcgccatcttcaatggatgcacaacgaaggcaattgagcatgctgctgacaaccctgctgttgtggaagcaattggagtgcctatagtcagaggaccgtggtatgatgcttctcttgaggtgggccatcgacggcggtctgtgtcatgcacattccctgtatctgggccacatgggtcaggatttctccagattaaggcaacccgagatggagaggatggtctgctttcgtttctgcggcatcacgactggaagatcctattgctggaggctcatcttgaagcaccatcagatgatgaggaccagagaaagctggttaaggtgaatcttgcaagcagtggccgtggggaagatggggatccagagagtggttaatcttttgtactgaattccatggtgagtggaagatcgtgtcatctgaatggactccaaatattaaatgacatggagatctagggaagcaaaaaaaaaaaaaaaa \"\n", "result_handle = NCBIWWW.qblast(\"blastn\", \"nt\", seq) \n", "blast_records = NCBIXML.read(result_handle) \n", "\n", "for alignment in blast_records.alignments[:5]:\n", " for hsp in alignment.hsps: \n", " if hsp.expect < E_VALUE_THRESH: \n", " print \"****Alignment****\"\n", " print \"sequence:\", alignment.title \n", " print \"length:\", alignment.length \n", " print \"e value:\", hsp.expect \n", " print hsp.query[0:s_len] + \"...\" \n", " print hsp.match[0:s_len] + \"...\" \n", " print hsp.sbjct[0:s_len] + \"...\" \n", " " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "****Alignment****\n", "sequence: gi|226505045|ref|NM_001150016.1| Zea mays uncharacterized LOC100276165 (LOC100276165), mRNA >gi|195621403|gb|EU960414.1| Zea mays clone 224719 hypothetical protein mRNA, complete cds\n", "length: 791\n", "e value: 0.0\n", "ATACCAGGCTGAGGCCCATTAATGATGCAATTTGCTGGGCTTCTCTATTTTCTCCGTGCTTCCATCCTCTTCTCCGTCGGCGGGGAGAAGTGAAATGCCG...\n", "||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||...\n", "ATACCAGGCTGAGGCCCATTAATGATGCAATTTGCTGGGCTTCTCTATTTTCTCCGTGCTTCCATCCTCTTCTCCGTCGGCGGGGAGAAGTGAAATGCCG...\n", "****Alignment****\n", "sequence: gi|242044007|ref|XM_002459830.1| Sorghum bicolor hypothetical protein, mRNA\n", "length: 582\n", "e value: 0.0\n", "CGGCGGCGACGAGAAAGCTCACCGGGATCTCTCAGTCGCGAGTTTCAGTAGCCTTTACCGGCCGTCTTCTCTACCGCTCGTTCGGAAGCGACTCCAGTGA...\n", "|||||||| ||||||||||| |||| || | |||| ||| | ||| ||||||||||||| ||||||||||||||||||||||||||||||||| | ...\n", "CGGCGGCGGCGAGAAAGCTCGCCGGAATGCCCCAGTTGCGCACTCCAGGAGCCTTTACCGGCGGTCTTCTCTACCGCTCGTTCGGAAGCGACTCCATCGG...\n", "****Alignment****\n", "sequence: gi|514727640|ref|XM_004956214.1| PREDICTED: Setaria italica serine/threonine-protein kinase PBS1-like (LOC101783701), mRNA\n", "length: 2391\n", "e value: 7.92359e-113\n", "GCTCAGCGCCGTCAACGACCTCGCCATCTTCAATGGATGCACAACGAAGGCAATTGAGCATGCTGCTGACAACCCTGCTGTTGTGGAAGCAATTGGAGTG...\n", "|||||||||||| |||||||||||||||||| ||||||| ||||| |||||||||||| | || ||||||||||| ||||| |||||||||||||||...\n", "GCTCAGCGCCGTTAACGACCTCGCCATCTTCCATGGATGTACAACTAAGGCAATTGAGAAGGCGGCTGACAACCCAAAGGTTGTCGAAGCAATTGGAGTG...\n", "****Alignment****\n", "sequence: gi|357160261|ref|XM_003578660.1| PREDICTED: Brachypodium distachyon uncharacterized LOC100836817 (LOC100836817), mRNA\n", "length: 933\n", "e value: 1.43388e-90\n", "AAGAGGTCACTGCCACGGGGGGTCGTATCGATCGGGGCCATCAGCCTTGCTGGAGGTCTCGTGCTCAGCGCCGTCAACGACCTCGCCATCTTCAATGGAT...\n", "|||||||| | | |||| ||||| | ||||| || | ||||||||| ||||| || ||| ||||| ||| |||||||||||||||||||| ||||||...\n", "AAGAGGTCGCCGGTACGGAGGGTCCTGTCGATTGGTGTCATCAGCCTCGCTGGTGGAGTCGCCCTCAGTGCCCTCAACGACCTCGCCATCTTCCATGGAT...\n", "****Alignment****\n", "sequence: gi|149391396|gb|EF576128.1| Oryza sativa (indica cultivar-group) clone V-E12 unknown mRNA\n", "length: 752\n", "e value: 1.2578e-78\n", "AAGAGGTCACTGCCACGGGGGGTCGTATCGATCGGGGCCATCAGCCTTGCTGGAGGTCTCGTGCTCAGCGCCGTCAACGACCTCGCCATCTTCAATGGAT...\n", "|||||||||| | ||| || |||| ||||| |||| |||||| | ||||| || ||| ||| |||||| |||||||||| || || ||| ||||||...\n", "AAGAGGTCACGGATCCGGAGGATCGTGTCGATTGGGGTTATCAGCATCGCTGGCGGCGTCGCGCTTAGCGCCCTCAACGACCTTGCTATATTCCATGGAT...\n" ] } ], "prompt_number": 17 }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Phylogenetic Trees" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from Bio import Phylo \n", "tree = Phylo.read(\"../data/simple.dnd\", \"newick\")\n", "print tree\n", "Phylo.draw_ascii(tree)\n", "tree.rooted = True \n", "Phylo.draw(tree) " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Tree(rooted=False, weight=1.0)\n", " Clade(branch_length=1.0)\n", " Clade(branch_length=1.0)\n", " Clade(branch_length=1.0)\n", " Clade(branch_length=1.0, name='A')\n", " Clade(branch_length=1.0, name='B')\n", " Clade(branch_length=1.0)\n", " Clade(branch_length=1.0, name='C')\n", " Clade(branch_length=1.0, name='D')\n", " Clade(branch_length=1.0)\n", " Clade(branch_length=1.0, name='E')\n", " Clade(branch_length=1.0, name='F')\n", " Clade(branch_length=1.0, name='G')\n", " __________________ A\n", " __________________|\n", " | |__________________ B\n", " __________________|\n", " | | __________________ C\n", " | |__________________|\n", "___________________| |__________________ D\n", " |\n", " | __________________ E\n", " | |\n", " |__________________|__________________ F\n", " |\n", " |__________________ G\n", "\n" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAXUAAAEICAYAAACgQWTXAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGfdJREFUeJzt3X9w0+UBx/FPmlaRXxWUX2JnsQVsoCWBSkXpkSKIv8oJ\noq7IuYrdGNMJbrrpDs86nYxTDsFfE7kxOZVy9cesrmOoIyIUV1FwDrYhkCK/BqICbWmFNt/9wZFR\nhdqyJE/75P264y5Jv/k+n+TaTx+eJk9cjuM4AgBYIcF0AABA5FDqAGARSh0ALEKpA4BFKHUAsEhi\nrAd0uVyxHhIArNCSFysamak7jtOqfw888ECr72PTv3h//DwHPP54f/yO0/JXnrP8AgAWodQBwCLt\notT9fr/pCEbF++OXeA54/H7TEdoNl9OaxZpIDOhytWp9CADQ8u5sFzN1AEDLUOoAYBFKHQAsQqkD\ngEUodQCwCKUOABah1AHAIpQ6AFiEUgcAi1DqAGARSh0ALEKpA4BFKHUAsAilDgAWiXipT506Vb16\n9VJmZmakTw0ATWzYsEEJCQn6y1/+YjpKmxHxUr/11lu1fPnySJ8WAL5l6dKluvbaa7V06VLTUdqM\nxEifMDc3V1VVVZE+LQA04TiOXn31Vb377ru65JJL9PXXX+vMM880Hcu4iJd6SxQXF4cv+/1+PqoK\naIGFCxcqFAqZjmHMyJEjNXjw4PD1iooKpaWl6bzzzpPf79ef/vQnTZw40WDCyAoEAgoEAq2+X1Q+\nzq6qqkr5+fn65JNPvj0gH2cHtNqCBQv00ksvyev1mo5iTEFBgUaNGhW+fscdd8jn8+m2227TG2+8\noSVLlqi0tNRgwuhqaXdS6kA7MHv2bB06dEizZ882HaVNaGxs1Pnnn6+kpCS53W45jqMvv/xSu3fv\nVufOnU3Hiwo+oxSAtd555x15vV599tlnCgaDqqqq0sSJE/Xaa6+ZjmZcxEu9oKBAl156qTZv3qyU\nlBQtXrw40kMAiHMlJSWaMGFCk9uuv/56lZSUGErUdkRl+aXZAVl+AVqN5Rew/AIAcYhSBwCLUOoA\nYBFKHQAsQqkDgEUodQCwCKUOABah1AHAIpQ6AFjEyNa7QGs9++yzKi0tldvtNh3FiG3btn3rbfHA\nyVDqaBfmzJmjWbNmqW/fvqajGLFs2TIlJPAfa3w3Sh3tgtvtVm5urvr37286ihEfffSRDh06ZDoG\n2gF+9QOARSh1ALAIpQ4AFqHUAcAilDoAWIRSBwCLUOoAYBFKHQAsQqkDgEUiXuo7duxQXl6eBg0a\npMGDB2vBggWRHgIAlJqaqqysLPl8PmVlZamsrMx0pDYh4tsEJCUlad68efJ6vaqpqdGwYcM0duxY\nZWRkRHooAHHM5XIpEAioe/fu2rx5s6644gqNHz/edCzjIl7qvXv3Vu/evSVJnTt3VkZGhnbv3t2k\n1IuLi8OX/X6//H5/pGMA1mloaFBdXZ3pGMYkJSUpMbFpZTmOI0k6ePCgunfvbiJW1AQCAQUCgVbf\nz+Ucf1aioKqqSqNGjdLGjRvVuXPnYwO6XIrikLBU//79VV5eHrcbeq1du1ZjxoxRKBQyHcWYxx9/\nXNOmTQtfT01NVdeuXeU4jrZt26bS0lJdffXVBhNGV0u7M2q7NNbU1GjSpEmaP39+uNABnJ4RI0ao\ntrbWdIw25cTll23btunyyy/XP/7xD3Xq1Ml0NKOi8uqXo0eP6vrrr9eUKVN03XXXRWMIAAi78MIL\n1atXL/3zn/80HcW4iJe64zi67bbb5PF4NHPmzEifHgDCji9H7Nu3T8FgUBdccIHhROZFfPllzZo1\neuGFF8IvNZKk2bNn68orr4z0UADiXF5entxut44ePao5c+aoR48epiMZF/FSHzlyZFz/MQdAbASD\nQdMR2iTeUQoAFqHUAcAilDoAWIRSBwCLUOoAYBFKHQAsQqkDgEUodQCwSNQ29EJkvfPOO9q7d6/p\nGMbU19ebjgC0C5R6O/DBBx/oZz/7mQYNGmQ6ijFff/216QhAu0CptwN1dXVKTk7WSy+9ZDqKMfG6\njzrQWqypA4BFKHUAsAilDgAWodQBwCKUOgBYhFIHAItQ6gBgEUodACxCqQOARSJe6vX19crJyZHX\n65XH49F9990X6SEAQDU1NZo2bZrS09OVnZ2tvLw8VVZWmo5lXMS3CejQoYNWrlypjh07qqGhQSNH\njtTq1as1cuTISA8FII4VFRUpLS1NW7ZskSRVVVVp06ZNhlOZF5W9Xzp27ChJOnLkiBobG9W9e/do\nDAMgTm3dulWVlZVaunRp+LbU1FSlpqaaC9VGRKXUQ6GQhg4dqq1bt2r69OnyeDxNvl5cXBy+7Pf7\n5ff7oxEDsMbnn3+uH/3oR0pMjN89+IqKijRu3DhJ0saNG+X1euVyuQynip5AIKBAINDq+0XlOyQh\nIUEbNmzQwYMHNW7cOAUCgSbFfWKpA/huixYtksvl0o033mg6ijFpaWnhyzaX+XHfnPA++OCDLbpf\nVH/tJycn65prrtG6deuYjQP/p4EDB+qGG24wHaNN8Hg8+vjjjxUKhZSQwIv4ThTxZ2P//v06cOCA\npGP7gL/11lvy+XyRHgZAHEtLS1N2drYeeOCB8G1VVVUqLy83mKptiHip79mzR6NHj5bX61VOTo7y\n8/N1+eWXR3oYAHFu0aJF2rt3r9LT05WZmalbb71VvXr1Mh3LuIgvv2RmZuqjjz6K9GkBoIkuXbpo\n4cKFpmO0OSxGAYBFKHUAsAilDgAWodQBwCKUOgBYhFIHAItQ6gBgEUodACxCqQOAReJ3H0+0K5dc\ncokuuuiiuNid72RCoZDuvvtu0zHQDlDqaBeef/55LV682HQMY+bMmaOamhrTMdAOUOpoFxISEuJ6\ni9V4fuxoHb5TAMAilDoAWIRSBwCLtGhNfd++faqvrw9f/973vhe1QACA09fsTL2srEz9+/dXv379\nNGrUKKWmpuqqq66KVTYAQCs1W+qzZs3S2rVrNWDAAAWDQb3zzjvKycmJVTYAQCs1W+pJSUk699xz\nFQqF1NjYqLy8PK1bty5W2QAArdTsmnq3bt1UXV2t3Nxc3XzzzerZs6c6d+4cq2wAgFZqdqb++uuv\nq2PHjpo3b56uvPJKpaen64033vjOkzY2Nsrn8yk/Pz9iQQHgRKmpqcrKylJWVpYGDRqk+++/X19/\n/bXpWMY1W+rbt2+X2+1WUlKSCgsLdeedd+qTTz75zpPOnz9fHo8nbvfpABB9LpdLgUBAf//731VZ\nWalt27Zp2rRppmMZ12yp33jjjZozZ44cx9Hhw4f105/+VPfee2+zJ9y5c6fKy8tVVFQkx3EiGhYA\nTqZTp0763e9+pz/+8Y86cOCA6ThGNbum/re//U2//OUvNWLECNXU1Gjy5MmqqKho9oR33XWXHn30\nUR06dOiUxxQXF4cv+/1++f3+VoUG4tHWrVtbtPxpq8zMTKWmpp7y6126dFG/fv306aef6uKLL45d\nsCgJBAIKBAKtvl+zpZ6YmKizzjpLdXV1qq+v14UXXtjsxkJvvvmmevbsKZ/P12yYE0sdwHcrLCzU\nu+++q4ULF5qOYsyPf/zjZktdklWrA9+c8D744IMtul+zpT58+HCNHz9e69at0/79+zVt2jS98sor\nKi0tPenxFRUVKisrU3l5uerr63Xo0CHdcsstWrJkScsfCYBv6dOnj5YvX246RptWXV2tqqoqDRgw\nwHQUo5pdU1+0aJEeeughJSUlqU+fPiorK2v2FS2PPPKIduzYoWAwqJKSEo0ePZpCBxA1x2fmNTU1\n+slPfqIJEyYoOTnZcCqzmp2pH1+XOnHvl1GjRrX45Lz6BUA05eXlyXEchUIhTZw4Uffff7/pSMY1\nW+plZWX6+c9/rt27d6tnz57avn27MjIytHHjxu888ahRo1r1CwAAWiMYDJqO0Cax9wsAWIS9XwDA\nIu1i75ft27fL4/HEfNy2orGxUQMHDjQdA0A70GypZ2Vlhfd+efHFF3Xw4EEjn2iekpKiffv2xXzc\ntmL16tX6zW9+YzoGgHag2VJfuXKl3G633G63CgsLJR17V1esJSQkqFOnTjEft60466yzTEcA0E6c\ntNSfeeYZPf3009q6dWuTEq+urtZll10Ws3AAgNY5aalPnjxZV111le69997whl7Ssb0VzjnnnJgG\nBAC03ElLPTk5WcnJySopKYl1HgDA/6HZlzQCANoXSh0ALEKpA4BFKHUAsAilDgAWodQBwCKUOgBY\nhFIHAItQ6gBgEUodACxCqQOARSh1ALAIpQ4AFmn2QzJOV2pqqrp27Sq3262kpCRVVlZGYxggrp34\ncyZJo0aN0uOPP244FUyLSqm7XC4FAgF17949GqcHIH7OcHJRW345/sEaAKKHnzN8U9Rm6mPGjJHb\n7da0adP0wx/+sMnXi4uLw5f9fr/8fn80YsAit99+u1588UUlJMTvn4H27NmjM888M3zdcRzl5eWF\nl18KCws1Y8YMU/EQYYFAQIFAoNX3czlR+FW/Z88e9enTR59//rnGjh2rJ554Qrm5uccGdLmYXbTS\nqlWrNGvWLK1atcp0FGPS09O1dOlSpaWlmY5iTLdu3eRyucLX+/Xrpw8//JDllzjR0u6Myky9T58+\nkqQePXpowoQJqqysDJc6cDpcLpfOPvtsCgz4DhH/v+zhw4dVXV0tSaqtrdWKFSuUmZkZ6WEAiDV1\nfFvEZ+p79+7VhAkTJEkNDQ26+eabdcUVV0R6GABSkzX1IUOG6A9/+IPZQDAu4qXer18/bdiwIdKn\nBfANwWDQdAS0QfH7UgIAsBClDgAWodQBwCKUOgBYhFIHAItQ6gBgEUodACxCqQOARSh1ALAIpQ4A\nFqHUAcAilDoAWIRSBwCLUOoAYBFKHQAsQqkDgEUodQCwCKUOABah1AHAIpQ6AFgk4qV+4MABTZo0\nSRkZGfJ4PHr//fcjPQQASampqcrKypLP55PP5+NnDZKkxEifcMaMGbr66qv18ssvq6GhQbW1tZEe\nAoAkl8ulQCCg7t27m46CNiSipX7w4EG99957ev7554+dPDFRycnJkRwCwAkcxzEdAW1MREs9GAyq\nR48euvXWW/Xxxx9r2LBhmj9/vjp27NjkuOLi4vBlv98vv98fyRjWcbvd+uKLLzRz5kzTUYz58ssv\n9fDDD6tbt26moxjz2GOPKTHxfz+yjuMoLy9PbrdbHTp00Nq1aw2mQ6QFAgEFAoFW38/lRPBX/bp1\n6zRixAhVVFTo4osv1syZM9W1a1f9+te//t+ALhezi9Pw8ssva+fOnaZjGDN79mwVFRWpR48epqMY\nc8cddzQp9X79+unDDz9k+SVOtLQ7I1rq//nPfzRixAgFg0FJ0urVq/Xb3/5Wb775ZquDASfq37+/\nysvL1b9/f9NR2gxKPb60tDsj+uqX3r17KyUlRZs3b5Ykvf322xo0aFAkhwAANCPir3554okndPPN\nN+vIkSNKS0vT4sWLIz0EAB2buQHfFPFSHzJkiD744INInxbAN2zbts10BLRBvKMUACxCqQOARSh1\nALAIpQ4AFqHUAcAilDoAWIRSBwCLUOoAYBFKHQAsQqkDgEUodQCwCKUOABah1AHAIpQ6AFiEUgcA\ni1DqAGARSh0ALEKpA4BFKHUAsAilDgAWiXip//vf/5bP5wv/S05O1oIFCyI9DBD3ampqNH36dKWn\np2vYsGHKzs7WokWLTMeCYYmRPuHAgQO1fv16SVIoFFLfvn01YcKESA8DxL2ioiKlp6dry5YtkqT9\n+/fr97//veFUMC3ipX6it99+W2lpaUpJSYnmMEDc2bp1qz744AOVlJSEbzv33HP1i1/8wmAqtAVR\nLfWSkhJNnjz5W7cXFxeHL/v9fvn9/mjGgAVCoZA2btyo6upq01GM8Xq9Skg4tmK6ceNGDRkyxHAi\nRFMgEFAgEGj1/VyO4ziRjyMdOXJEffv21aZNm9SjR4//DehyKUpDwmKPPPKIli1bJrfbbTqKMe+/\n/77OOOMMSdIbb7yhxYsX69VXX5V07PkpLS3Vvn37tGvXLpMxESUt7c6olfrrr7+uZ555RsuXLz+t\nYABObcuWLRo3bpy2bNkil8sVvr1Lly5x/b8Zm7W0O6P2ksalS5eqoKAgWqcH4lp6erqys7M1a9Ys\nhUIhSVJ9fT0TJkRnpl5bW6sLLrhAwWBQXbp0aTogM3UgIqqrq3XPPfdoxYoVOuecc3TWWWepoKBA\n06dPNx0NUWB8+eWUA1LqANBqxpdfAACxR6kDgEUodQCwCKUOABah1AHAIpQ6AFiEUgcAi1DqAGAR\nSh0ALEKpA4BFKHUAsAilDgAWodQBwCKUOgBYpF2U+ul8Tp9N4v3xSzwHPP6A6QjtBqXeDsT745d4\nDnj8AdMR2o12UeoAgJah1AHAIkY+zg4A0HotqevEGORogs8nBYDoYfkFACxCqQOARSh1ALBImy/1\n5cuX66KLLlL//v01Z84c03FiburUqerVq5cyMzNNRzFix44dysvL06BBgzR48GAtWLDAdKSYqq+v\nV05Ojrxerzwej+677z7TkYxobGyUz+dTfn6+6ShGpKamKisrSz6fT8OHD2/+YKcNa2hocNLS0pxg\nMOgcOXLEGTJkiLNp0ybTsWJq1apVzkcffeQMHjzYdBQj9uzZ46xfv95xHMeprq52BgwYEHffA7W1\ntY7jOM7Ro0ednJwc57333jOcKPbmzp3rTJ482cnPzzcdxYjU1FTniy++aNGxbXqmXllZqfT0dKWm\npiopKUnf//739frrr5uOFVO5ubnq1q2b6RjG9O7dW16vV5LUuXNnZWRkaPfu3YZTxVbHjh0lSUeO\nHFFjY6O6d+9uOFFs7dy5U+Xl5SoqKorrV8+19LG36VLftWuXUlJSwtfPP/987dq1y2AimFRVVaX1\n69crJyfHdJSYCoVC8nq96tWrl/Ly8uTxeExHiqm77rpLjz76qBIS2nRdRZXL5dKYMWOUnZ2t5557\nrtlj2/SzxBuVcFxNTY0mTZqk+fPnq3PnzqbjxFRCQoI2bNignTt3atWqVXG1D8qbb76pnj17yufz\nxfUsfc2aNVq/fr3+/Oc/66mnntJ77713ymPbdKn37dtXO3bsCF/fsWOHzj//fIOJYMLRo0d1/fXX\na8qUKbruuutMxzEmOTlZ11xzjdatW2c6SsxUVFSorKxM/fr1U0FBgf7617/qlltuMR0r5vr06SNJ\n6tGjhyZMmKDKyspTHtumSz07O1uffvqpqqqqdOTIES1btkzjx483HQsx5DiObrvtNnk8Hs2cOdN0\nnJjbv3+/Dhw4IEmqq6vTW2+9JZ/PZzhV7DzyyCPasWOHgsGgSkpKNHr0aC1ZssR0rJg6fPiwqqur\nJUm1tbVasWJFs6+Ga9OlnpiYqCeffFLjxo2Tx+PRTTfdpIyMDNOxYqqgoECXXnqpNm/erJSUFC1e\nvNh0pJhas2aNXnjhBa1cuVI+n08+n0/Lly83HStm9uzZo9GjR8vr9SonJ0f5+fm6/PLLTccyJh6X\nZPfu3avc3Nzw98C1116rK6644pTHx3xDLwBA9LTpmToAoHUodQCwCKUOABah1AHAIpQ6jKuqqor5\nhmV+v18ffvhhs8dEK9e7776rtWvXhq8XFhbqlVdeifg4iE+UOtqNUCgUsXOZfGncypUrVVFR0Say\nwD6UOtqEhoYGTZkyRR6PRzfccIPq6uokHdty9N5779WwYcNUWlqqRYsWafjw4fJ6vZo0aVL4uMLC\nQs2YMUOXXXaZ0tLSmsx858yZo6ysLHm9Xv3qV78K315aWqqcnBwNHDhQq1evbjZfY2Oj7rnnHg0f\nPlxDhgzRwoULJUmBQEB+v1833HCDMjIyNGXKlPB9ysvLlZGRoezsbN15553Kz8/X9u3b9eyzz2re\nvHkaOnRoeNxVq1adNDvQalHbKxJooWAw6LhcLqeiosJxHMeZOnWq89hjjzmOc2zL0UcffTR87Inb\nj86aNct54oknHMdxnB/84AfOjTfe6DiO42zatMlJT093HMdxysvLnUsvvdSpq6tzHMdxvvrqK8dx\nHMfv9zt33313+JgxY8acNNfxLY+fffZZ5+GHH3Ycx3Hq6+ud7OxsJxgMOitXrnSSk5OdXbt2OaFQ\nyBkxYoSzZs0ap66uzklJSXGqqqocx3GcgoKC8LaxxcXFzty5c8PjnCo7cDqYqaNNSElJ0YgRIyRJ\nU6ZMaTJzvummm8KXP/nkE+Xm5iorK0svvviiNm3aJOnYEsbxfWEyMjK0d+9eSdLbb7+tqVOnqkOH\nDpKks88+O3yuiRMnSpKGDh2qqqqqZvOtWLFCS5Yskc/n0yWXXKIvv/xSW7Zskcvl0vDhw3XeeefJ\n5XLJ6/UqGAzqX//6ly688EJdcMEFko69M9g54X1+J14+VXbgdCSaDgBITdeVHcdpcr1Tp07hy4WF\nhSorK1NmZqaef/75JjsWnnHGGU3Ocfy8zineNH3mmWdKktxutxoaGr4z45NPPqmxY8c2uS0QCITP\nc+K5vrlOfqoMzWUHTgczdbQJn332md5//31J0ksvvaTc3NyTHldTU6PevXvr6NGjeuGFF77zj4xj\nx47V4sWLw2vvX3311WnlGzdunJ5++ulw+W/evFmHDx8+6bEul0sDBw7Utm3btH37dknSsmXLwlm7\ndOkS3qAJiDRKHcYdL8GnnnpKHo9HBw8e1PTp08NfO9FDDz2knJwcjRw58lubu5147PHL48aN0/jx\n45WdnS2fz6e5c+eeMkNztxcVFcnj8Wjo0KHKzMzU9OnTwzPyk923Q4cOevrpp3XllVcqOztbXbt2\nVdeuXSVJ+fn5eu2115r8ofRk2YHTwYZeQJTU1taGl45uv/12DRgwQDNmzDCcCrZjpg5EyXPPPSef\nz6dBgwbp0KFDmjZtmulIiAPM1AHAIszUAcAilDoAWIRSBwCLUOoAYBFKHQAsQqkDgEX+C7zBNF6f\nIQ4DAAAAAElFTkSuQmCC\n", "text": [ "<matplotlib.figure.Figure at 0x10a743810>" ] } ], "prompt_number": 18 }, { "cell_type": "code", "collapsed": false, "input": [ "from Bio.Phylo.PhyloXML import Phylogeny \n", "tree = tree.as_phyloxml() \n", "tree = Phylogeny.from_tree(tree)\n", "tree.root.color = (128, 128, 128) \n", "mrca = tree.common_ancestor({\"name\": \"E\"}, {\"name\": \"F\"}) \n", "mrca.color = \"salmon\" \n", "tree.clade[0, 1].color = \"blue\" \n", "Phylo.draw(tree, branch_labels=lambda c: c.branch_length) \n", "Phylo.draw(tree) " ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAXUAAAEICAYAAACgQWTXAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAH6dJREFUeJzt3X1UlGXCP/DvzYAp8iYKokkOQQqjvIwirAQ6+AZaeELJ\n8uUhNMrH2tXatqw97ok2f7Y+1im17M0ny7XNjlYbtqwa6YQBSZqSSS0pg6Kwmom8CfEy9+8PHydG\nYQJ35r5mbr6fczxnhpm5r+/NgS+XFzfXSLIsyyAiIlVwEx2AiIjsh6VORKQiLHUiIhVhqRMRqQhL\nnYhIRdyVHlCSJKWHJCJShZ5crChkpi7Lcq/+Pf30071+jZr+9fXz5+eA59/Xz1+We37lOZdfiIhU\nhKVORKQiLlHqBoNBdASh+vr5A/wc8PwNoiO4DEnuzWKNPQaUpF6tDxERUc+70yVm6kRE1DMsdSIi\nFWGpExGpCEudiEhFWOpERCrCUiciUhGWOhGRirDUiYhUhKVORKQiLHUiIhVhqRMRqQhLnYis1NfX\nIy4uDt7e3igrK7vu8ZUrV2LSpEnIzMxEe3u7gIRkC0udiKx4enoiLy8PGRkZ120gVVpaiurqahQU\nFCA8PBw7d+4UlJK6w1InIivu7u4YMmRIl48VFxcjJSUFAJCamorCwkIlo1EP2L3UlyxZgqFDhyIy\nMtLehyYiwWpra+Ht7Q0A8PHxwcWLF4XmOXr0KNzc3LBnzx6hOZyJ3Ut98eLF2L17t70PS0QCXPtG\n8X5+fqivrwcA1NXVwd/fX0Qsi/feew933nkn3nvvPaE5nIndSz0pKQmDBg2y92GJSIBr19QTEhKQ\nn58PANizZw8SExNFxAJwJduHH36I1157Dfv27cPPP/8sLIszcRcxaE5OjuW2wWDgW1UR9cDhw4cV\ne9ewFStW4IcffsDXX3+N9PR0lJeX4+GHH8ZNN90EWZYxbtw4BAUFYcqUKTh06JAimW655RYEBgZa\n7hcVFSE0NBTDhw+HwWDAP/7xD8yZM0eRLEowGo0wGo29fp1D3s6usrISaWlpOHbs2PUD8u3siHrt\n4MGDOHbsGIKCgkRHEWbs2LHQarWW+7/97W+h1+tx//33Y9euXdi6dSt27NghLqCD9bQ7WepELuDA\ngQNobW3F1KlTRUdxCh0dHRgxYgQ8PDyg0WggyzIuXryI6upqeHl5iY7nEHyPUiJSrc8++wwxMTE4\nffo0TCYTKisrMWfOHHz00Ueiowln91KfP38+EhISUF5ejuDgYGzZssXeQxBRH7d9+3akp6dbfWzu\n3LnYvn27oETOwyHLLzYH5PILUa9x+YW4/EJE1Aex1ImIVISlTkSkIix1ok647Sy5OpY6USfcdpZc\nHUudqBNuO0uujqVO1EPOtu0sUVdY6kTdcPZtZ4m6wlIn6oYzbztL1B0hW+8S9dbhw4dx/PhxuLk5\nfh7y/PPP4/Tp0ygsLERycjJOnTqFefPmoV+/fvjpp58QHh6OIUOG4IEHHsC2bdscnge4svQTHh6u\nyFjk2rhNALmE9evXIykpCT4+PqKjCPHtt9/Cy8sL06ZNEx2FBOlpd3KmTi7Bzc0NI0eOxODBg0VH\nEaKmpgatra2iY5AL4Jo6EZGKsNSJiFSEpU5EpCIsdSIiFWGpExGpCEudiEhFWOpEZIXbD7s2ljoR\nWeH2w66NpU5EVrj9sGuze6lXVVUhOTkZY8aMwdixY7FhwwZ7D0FEgjjT9sNarRZRUVHQ6/WIiopC\nbm6usCzOxO7bBHh4eODFF19ETEwMGhsbMX78eEyfPh0RERH2HoqIHMyZtx+WJAlGoxH+/v4oLy/H\njBkzMHv2bGF5nIXdSz0oKAhBQUEAAC8vL0RERKC6utqq1HNyciy3DQYDDAaDvWMQqU5HRwfa2toU\nG89sNqOtrc1qzLi4OLz00ku49957kZeXh4kTJyqWSaPRXLdL59U1f9E/YBzBaDTCaDT2+nUO3aWx\nsrISkydPxvHjx+Hl5XVlQO7SSDdg48aNWLBgQZ/d0Kuqqgp//etfFfve2bp1K2pqajBo0CBMmDAB\nNTU1mD59Ojw8PLB7925UVVXBz88Pc+bMgUajUSRTSkoKYmNjLfe1Wi18fHwgyzIqKiqwY8cOzJo1\nS5EsIvS0Ox1W6o2NjTAYDFi1ahXuuuuuXgcj6qyvlzpdLyQkBIcPH4a/vz8qKiowdepUfPvttxg4\ncKDoaA7R0+50yNUvbW1tmDt3LhYtWmRV6EREjnDrrbdi6NCh+O6770RHEc7upS7LMu6//37odDo8\n8sgj9j48EZHF1Znr+fPnYTKZMHLkSMGJxLP7L0oLCwuxbds2y6VGAPDcc88hNTXV3kMRUR+XnJwM\njUaDtrY2rF27FgEBAaIjCWf3Uk9MTITZbLb3YYmIrJhMJtERnBL/opSISEVY6kREKsJSJyvcoY/I\ntbHUyQp36CNybSx1ssId+ohcG0udesyZdugjoq6x1KlbzrxDHxF1jaVO3bp2TT0hIQH5+fkAgD17\n9iAxMVFELCKywe5/fESOUVFRgaamJkXGeuihh1BeXo6jR48iIyMD33//PVasWIGbbroJbm5uGD9+\nPIYPH46ZM2fi2LFjimTilTZEPePQrXe7HJC7NPba2bNnkZubi8DAQNFRhKmoqMCSJUu4SyP1WT3t\nTs7UXUB7ezv69++PuXPnio4izMaNG0VHIHIJXFMnIlIRljoRkYqw1ImIVISlTkSkIix1IiIVYakT\nEakIS52IrHD7ZdfGUiciK9x+2bWx1InICrdfdm12L/WWlhbEx8cjJiYGOp0OTz31lL2HICJBnGn7\n5cbGRixduhRhYWGIjY1FcnIySkpKhOVxFnbfJqB///7Yv38/PD090d7ejsTERHzxxRfc0Y/IBTnz\n9svZ2dkIDQ3FiRMnAACVlZVd/g6gr3HI8ounpycAoLW1FR0dHdx3m8hFOev2yydPnkRJSQlWr15t\n+ZhWq8WsWbOE5HEmDtnQy2w2Y9y4cTh58iSWLVsGnU5n9XhOTo7ltsFggMFgcEQMItX48UfgwQcB\nd4W24Pvii1m4dKkUu3aVIyTkQdTVHcXYsc9Bo4nGN98MRUDAJHh6jkRs7BNQ6nel2dnA/y3n4/jx\n44iJibnufxJqYjQaYTQae/06h3yJuLm54ejRo6irq0NKSgqMRqNVcXcudSL6dZs3A5IEzJunzHjz\n5uVd85H7Oj32P8qEuEZo6C+31VzmV1074X3mmWd69DqH/tz39fXFHXfcgUOHDnE2TvQfGj0auPtu\n0Smcg06nQ2lpKcxmM9zceBFfZ3b/bFy4cAGXLl0CADQ3N+PTTz+FXq+39zBE1IeFhoYiNjYWTz/9\ntOVjlZWVyMu79n8YfY/dS72mpgZTpkxBTEwM4uPjkZaWhqlTp9p7GCLq4zZv3oxz584hLCwMkZGR\nWLx4MYYOHSo6lnB2X36JjIzE119/be/DEhFZ8fb2xhtvvCE6htPhYhQRkYqw1ImIVISlTkSkIix1\nok647Sy5OpY6USfcdpZcHUudqBNuO0uujqVO1EPOtO0sUXdY6kTdcOZtZ4m6w1In6oazbjtLZItC\nG3kS/Wfc3GKh1Q5Ac7Pjx+romAWgFG+/XQ5JehDAUUjSc5CkaJjNQ7F16yRI0khI0hNYuNDxeQDA\nbAb+8AdlxiLXxlInl7Bs2UQsXarUaN1vOwuI2XZ27VqgsVHI0ORiWOrkEtzcrvzrq/ryuVPv8EuF\niEhFWOpERCrCUiciUpEeramfP38eLS0tlvu33HKLwwIREdGNszlTz83NxW233YaQkBBMnjwZWq0W\nM2fOVCobERH1ks1SX7VqFYqLizFq1CiYTCZ89tlniI+PVyobEQnAnSpdm81S9/DwwJAhQ2A2m9HR\n0YHk5GQcOnRIqWxEJAB3qnRtNkt90KBBaGhoQFJSEhYuXIjly5fDy8tLqWxEJAB3qnRtNkv9448/\nhqenJ1588UWkpqYiLCwMu3bt+tWDdnR0QK/XIy0tzW5BiUg8Z9qpUqvVIioqClFRURgzZgz+9Kc/\n4eeffxaWx1nYLPVTp05Bo9HAw8MDWVlZWL58OY4dO/arB12/fj10Ot11u9wRkWtx5p0qJUmC0WjE\nN998g5KSElRUVGCpcntJOC2bpT5v3jysXbsWsizj8uXL+N3vfocnn3zS5gHPnDmDvLw8ZGdnX7ce\nR0SuxVV2qhw4cCBee+01/P3vf8elS5dExxHK5nXqBw8exMqVKzFx4kQ0NjZiwYIFKCoqsnnARx99\nFOvWrbP8NO9KTk6O5bbBYIDBYOhVaKK+6ORJoAern3bxzDOzYDKV4uDBcsyY8SBMpqPIzHwO/fpF\no7FxKMaOnYSAgJHQ6Z5QLFNkJKDVdv+4t7c3QkJC8MMPP2DChAnKhHIgo9EIo9HY69fZLHV3d3cM\nGDAAzc3NaGlpwa233go3GzsLffLJJwgMDIRer7cZpnOpE9Gvy8oCPv8ceOMNZcYbNiwPw4ZduX3y\nJADch7ffvvro/yAk5Mqt//1fZfIAwH//t+1SB67/n4Uru3bC+8wzz/TodTZLPS4uDrNnz8ahQ4dw\n4cIFLF26FB988AF27NjR5fOLioqQm5uLvLw8tLS0oL6+HpmZmdi6dWvPz0Sw+vp6TJs2Dd999x0O\nHjwInU5n9fjKlStRXFwMrVaLt956C+7u3OiSHG/YMGD3btEpnFtDQwMqKysxatQo0VGEsrmmvnnz\nZjz77LPw8PDAsGHDkJuba/OKljVr1qCqqgomkwnbt2/HlClTXKrQAV6jS+RKrn6PNjY24qGHHkJ6\nejp8fX0FpxLLZqlfXZc6f/48Tp8+jdOnT2Py5Mk9PrgrXv3Ca3SJXEdycjIiIyMRHx8PrVaL119/\nXXQk4WyuHeTm5uKxxx5DdXU1AgMDcerUKUREROD48eO/euDJkyf36geAK6itrcWw/1toFH2NLlFf\nZzKZREdwStz7xQZnvkaXiKgr3PvFBle5RpeI6Cqbyy/X7v0SGBgoZO+XS5cuYdOmTYqN98477+Df\n//439u3bhwkTJqCmpgYzZsyAh4cHTCYTQkJC4Ofnhzlz5mDNmjUOz2M2m7td5yci6kySbVzY+fvf\n/x7r1q2D2WzGu+++i7q6OpSWluKtt9668QElqdfXksqyjLa2thse09WdPn0aBw4cwOLFi0VHISJB\netqdNmfq+/fvh0ajgUajQVZWFgAgMjLSLgF7Q5Ik9OvXT/FxnYWHh4foCETkIros9VdffRWbNm3C\nyZMnrUq8oaEBt99+u2LhiIiod7os9QULFmDmzJl48sknLRt6AVf2Vhg8eLCiAYmIqOe6LHVfX1/4\n+vpi+/btSuchIqL/gM1LGomIyLWw1ImIVISlTkSkIix1IiIVYakTEakIS52ISEVY6kREKsJSJyJS\nEZY6EZGKsNSJiFSEpU7USX19PeLi4uDt7Y2ysrLrHl+5ciUmTZqEzMxMtLe3C0hIZBtLnagTT09P\n5OXlISMj47q9q0tLS1FdXY2CggKEh4dj586dglISdY+lTtSJu7t7t+8yVVxcjJSUFABAamoqCgsL\nlYxG1CM23yTjRmm1Wvj4+ECj0cDDwwMlJSWOGIZIUbW1tRg2bBgAwMfHBxcvXhSap/P3GQBMnjwZ\nL730ktBMJJ5DSl2SJBiNRvj7+zvi8ESKkCTJ6r6fnx/q6+sBAHV1dcK/vvl9Rl1x2PJLb9+HlMjZ\nXPs1nJCQgPz8fADAnj17kJiYKCKWFX6f0bUcNlOfNm0aNBoNli5digceeMDq8ZycHMttg8EAg8Hg\niBikIu3/+BDyscPANbNnR5i9ZTu+qTmHf+3PR3acHqU157A6JRk6D3cEVJYjKeQW3DLIF49mpKFt\n7TGH57nK/bEcSO6/fMvKsozk5GTL8ktWVhZWrFihWB5yLKPRCKPR2OvXSbIDftTX1NRg2LBh+PHH\nHzF9+nRs3LgRSUlJVwbs4Tti0y9OnTqFffv2YfHixaKjCNO2YQ00c/8Lkn8ffjvF/gOsloRCQkJw\n+PBhLr/0ET3tTofM1K/+MikgIADp6ekoKSmxlDrRDZEkSP37QxrgKToJkVOz+5r65cuX0dDQAABo\namrC3r17ERkZae9hiAhcU6fr2X2mfu7cOaSnpwMA2tvbsXDhQsyYMcPewxARYLWmHh0djbffflts\nIBLO7qUeEhKCo0eP2vuwRHQNk8kkOgI5If5FKRGRirDUiYhUhKVORKQiLHUiIhVhqRMRqQhLnYhI\nRVjqREQqwlInIlIRljoRkYqw1ImIVISlTkSkIix1IiIVYakTEakIS52ISEVY6kREKsJSJyJSEZY6\nEZGKsNTJSn19PeLi4uDt7Y2ysrLrHl+5ciUmTZqEzMxMtLe3C0joWH39/Mn1sdTJiqenJ/Ly8pCR\nkXHdmxqXlpaiuroaBQUFCA8Px86dOwWldJy+fv7k+ljqZMXd3R1Dhgzp8rHi4mKkpKQAAFJTU1FY\nWKhkNEX09fMn12f3Ur906RIyMjIQEREBnU6HL7/80t5DkCC1tbXw9vYGAPj4+ODixYuCEynL2c5f\nq9UiKioKer0eer2e32sEAHC39wFXrFiBWbNmYefOnWhvb0dTU5O9hyCFSJJkdd/Pzw/19fUAgLq6\nOvj7+4uIpRhnP39JkmA0GoXnIOdi15l6XV0dDhw4gCVLlgC48l9ZX19few5BCrp2TTkhIQH5+fkA\ngD179iAxMVFELMW4wvlfm5HIrjN1k8mEgIAALF68GKWlpRg/fjzWr18PT09Pq+fl5ORYbhsMBhgM\nBnvGUB1JkuDR3ISO3X9XZLw7//QsvjFVorzkS2TPnIHSkyb8v8WLMLZfPwRersekyDG4JTAAj0X/\nTrFMaL6MjgP5kPoPcPhQTnn+ANxmpEFy01juy7KM5ORkaDQa9O/fH8XFxYplIcczGo0wGo29fp0k\n2/FH/aFDhzBx4kQUFRVhwoQJeOSRR+Dj44M///nPvwwoSZxd3ABzWSnk+jrRMYQxH/gM0rh4SAO9\nREcRxi3udqtSDwkJweHDh7n80kf0tDvtOlMfMWIERowYgQkTJgAAMjIy8Je//MWeQ/RZbrpo0RGE\nMn9VCE3MBEiDA0RHIXJqdl1TDwoKQnBwMMrLywEA+fn5GDNmjD2HICIiG+x+9cvGjRuxcOFCtLa2\nIjQ0FFu2bLH3EESE66/OIQIcUOrR0dH46quv7H1YIrpGRUWF6AjkhPgXpUREKsJSJyJSEZY6EZGK\nsNSJiFSEpU5EpCIsdSIiFWGpExGpCEudiEhFWOpERCrCUiciUhGWOhGRirDUiYhUhKVORKQiLHUi\nIhVhqRMRqQhLnYhIRVjqREQqwlIn6qS+vh5xcXHw9vZGWVnZdY+vXLkSkyZNQmZmJtrb2wUkJLKN\npU7UiaenJ/Ly8pCRkQFZlq0eKy0tRXV1NQoKChAeHo6dO3cKSknUPZY6USfu7u4YMmRIl48VFxcj\nJSUFAJCamorCwkIloxH1iN1L/V//+hf0er3ln6+vLzZs2GDvYYgUV1tbC29vbwCAj48PLl68KDRP\nY2Mjli1bhrCwMIwfPx6xsbHYvHmz0Ewknru9Dzh69GgcOXIEAGA2m3HzzTcjPT3d3sMQOZwkSVb3\n/fz8UF9fDwCoq6uDv7+/iFgW2dnZCAsLw4kTJwAAFy5cwFtvvSU0E4nn0OWX/Px8hIaGIjg42JHD\nEDnEtWvqCQkJyM/PBwDs2bMHiYmJImIBAE6ePImvvvoKq1evtnxsyJAheOKJJ4RlIudg95l6Z9u3\nb8eCBQuu+3hOTo7ltsFggMFgcGQMUgPZDPnHfwOtPzt8qDsWZaK0rAzlx7/FAwsXoPR4GdY8tRJR\ngYMx1MsTk34Tj5EjRuDx/1oAueaMw/NYBA2HJF2Zhx0/fhzR0dHKjU2KMxqNMBqNvX6dJF87HbGT\n1tZW3HzzzSgrK0NAQMAvA0rSdTMgol/TcSAf5m+PAm5993f77tnLIWmuzMN27dqFLVu24MMPPwQA\nrFmzBjt27MD58+dx9uxZkTHJQXranQ4r9Y8//hivvvoqdu/efUPBiKh7J06cQEpKCk6cOGG19u/t\n7Y2GhgaBychRetqdDpv2vPfee5g/f76jDk/Up4WFhSE2NharVq2C2WwGALS0tHDCRI6ZqTc1NWHk\nyJEwmUyWS8AsA3KmTmQXDQ0NePzxx7F3714MHjwYAwYMwPz587Fs2TLR0cgBhC+/dDsgS52IqNeE\nL78QEZHyWOpERCrCUiciUhGWOhGRirDUiYhUhKVORKQiLHUiIhVhqRMRqQhLnYhIRVjqREQqwlIn\nIlIRljoRkYqw1ImIVISlTkSkIi5R6jfyPn1q0tfPH+DngOdvFB3BZbDUXUBfP3+AnwOev1F0BJfh\nEqVOREQ9w1InIlIRIW9nR0REvdeTunZXIIcVvj8pEZHjcPmFiEhFWOpERCrCUiciUhGnL/Xdu3cj\nPDwct912G9auXSs6juKWLFmCoUOHIjIyUnQUIaqqqpCcnIwxY8Zg7Nix2LBhg+hIimppaUF8fDxi\nYmKg0+nw1FNPiY4kREdHB/R6PdLS0kRHEUKr1SIqKgp6vR5xcXG2nyw7sfb2djk0NFQ2mUxya2ur\nHB0dLZeVlYmOpaiCggL566+/lseOHSs6ihA1NTXykSNHZFmW5YaGBnnUqFF97mugqalJlmVZbmtr\nk+Pj4+UDBw4ITqS8F154QV6wYIGclpYmOooQWq1W/umnn3r0XKeeqZeUlCAsLAxarRYeHh649957\n8fHHH4uOpaikpCQMGjRIdAxhgoKCEBMTAwDw8vJCREQEqqurBadSlqenJwCgtbUVHR0d8Pf3F5xI\nWWfOnEFeXh6ys7P79NVzPT13py71s2fPIjg42HJ/xIgROHv2rMBEJFJlZSWOHDmC+Ph40VEUZTab\nERMTg6FDhyI5ORk6nU50JEU9+uijWLduHdzcnLquHEqSJEybNg2xsbF48803bT7XqT9L/EMluqqx\nsREZGRlYv349vLy8RMdRlJubG44ePYozZ86goKCgT+2D8sknnyAwMBB6vb5Pz9ILCwtx5MgR/POf\n/8Qrr7yCAwcOdPtcpy71m2++GVVVVZb7VVVVGDFihMBEJEJbWxvmzp2LRYsW4a677hIdRxhfX1/c\ncccdOHTokOgoiikqKkJubi5CQkIwf/587Nu3D5mZmaJjKW7YsGEAgICAAKSnp6OkpKTb5zp1qcfG\nxuKHH35AZWUlWltb8f7772P27NmiY5GCZFnG/fffD51Oh0ceeUR0HMVduHABly5dAgA0Nzfj008/\nhV6vF5xKOWvWrEFVVRVMJhO2b9+OKVOmYOvWraJjKery5ctoaGgAADQ1NWHv3r02r4Zz6lJ3d3fH\nyy+/jJSUFOh0Otxzzz2IiIgQHUtR8+fPR0JCAsrLyxEcHIwtW7aIjqSowsJCbNu2Dfv374der4de\nr8fu3btFx1JMTU0NpkyZgpiYGMTHxyMtLQ1Tp04VHUuYvrgke+7cOSQlJVm+Bu68807MmDGj2+cr\nvqEXERE5jlPP1ImIqHdY6kREKsJSJyJSEZY6EZGKsNRJuMrKSsU3LDMYDDh8+LDN5zgq1+eff47i\n4mLL/aysLHzwwQd2H4f6JpY6uQyz2Wy3Y4m8NG7//v0oKipyiiykPix1cgrt7e1YtGgRdDod7r77\nbjQ3NwO4suXok08+ifHjx2PHjh3YvHkz4uLiEBMTg4yMDMvzsrKysGLFCtx+++0IDQ21mvmuXbsW\nUVFRiImJwR//+EfLx3fs2IH4+HiMHj0aX3zxhc18HR0dePzxxxEXF4fo6Gi88cYbAACj0QiDwYC7\n774bERERWLRokeU1eXl5iIiIQGxsLJYvX460tDScOnUKr7/+Ol588UWMGzfOMm5BQUGX2Yl6zWF7\nRRL1kMlkkiVJkouKimRZluUlS5bIzz//vCzLV7YcXbduneW5nbcfXbVqlbxx40ZZlmX5vvvuk+fN\nmyfLsiyXlZXJYWFhsizLcl5enpyQkCA3NzfLsizLtbW1sizLssFgkP/whz9YnjNt2rQuc13d8vj1\n11+XV69eLcuyLLe0tMixsbGyyWSS9+/fL/v6+spnz56VzWazPHHiRLmwsFBubm6Wg4OD5crKSlmW\nZXn+/PmWbWNzcnLkF154wTJOd9mJbgRn6uQUgoODMXHiRADAokWLrGbO99xzj+X2sWPHkJSUhKio\nKLz77rsoKysDcGUJ4+q+MBERETh37hwAID8/H0uWLEH//v0BAH5+fpZjzZkzBwAwbtw4VFZW2sy3\nd+9ebN26FXq9Hr/5zW9w8eJFnDhxApIkIS4uDsOHD4ckSYiJiYHJZML333+PW2+9FSNHjgRw5S+D\n5U5/59f5dnfZiW6Eu+gARID1urIsy1b3Bw4caLmdlZWF3NxcREZG4p133rHasbBfv35Wx7h6XLmb\nP5q+6aabAAAajQbt7e2/mvHll1/G9OnTrT5mNBotx+l8rGvXybvLYCs70Y3gTJ2cwunTp/Hll18C\nAP72t78hKSmpy+c1NjYiKCgIbW1t2LZt26/+knH69OnYsmWLZe29trb2hvKlpKRg06ZNlvIvLy/H\n5cuXu3yuJEkYPXo0KioqcOrUKQDA+++/b8nq7e1t2aCJyN5Y6iTc1RJ85ZVXoNPpUFdXh2XLllke\n6+zZZ59FfHw8EhMTr9vcrfNzr95OSUnB7NmzERsbC71ejxdeeKHbDLY+np2dDZ1Oh3HjxiEyMhLL\nli2zzMi7em3//v2xadMmpKamIjY2Fj4+PvDx8QEApKWl4aOPPrL6RWlX2YluBDf0InKQpqYmy9LR\nww8/jFGjRmHFihWCU5HacaZO5CBvvvkm9Ho9xowZg/r6eixdulR0JOoDOFMnIlIRztSJiFSEpU5E\npCIsdSIiFWGpExGpCEudiEhFWOpERCry/wEL4LwNRD4DlwAAAABJRU5ErkJggg==\n", "text": [ "<matplotlib.figure.Figure at 0x10d8fc8d0>" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAXUAAAEICAYAAACgQWTXAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGddJREFUeJzt3X9wlNXB9vHrTogGCKQGgaBEFhPBLCRkIRBRMmxAiL/C\nyA+1IK8NSB8e+kN0qq06OsbHDi1jHQsoVmVKpVriULVGSxFRVpGoEQSL0BaBDUbgRakCSUgMyd7v\nH7xsiUJMeHZzkrPfz0xmdjf33ufaneTK4bB71nFd1xUAwApxpgMAACKHUgcAi1DqAGARSh0ALEKp\nA4BFurT3gI7jtPeQAGCF1rxY0chM3XXdNn098MADbb6PTV+x/vh5Dnj8sf74Xbf1rzxn+QUALEKp\nA4BFOkWp+/1+0xGMivXHL/Ec8Pj9piN0Go7blsWaSAzoOG1aHwIAtL47O8VMHQDQOpQ6AFiEUgcA\ni1DqAGARSh0ALEKpA4BFKHUAsAilDgAWodQBwCKUOgBYhFIHAItQ6gBgEUodACxCqQOARSJe6rNn\nz1bfvn2VlZUV6VMDQDNbt25VXFycXnvtNdNROoyIl/qsWbO0Zs2aSJ8WAL5l5cqVuu6667Ry5UrT\nUTqMLpE+YX5+viorKyN9WgBoxnVdvfjii3rrrbd02WWX6euvv9a5555rOpZxES/11igpKQlf9vv9\nfFQV0AqbN2+O6U8Nu+iii9SnT5/w9fLycqWnp+uCCy6Q3+/XX//6V02ZMsVgwsgKBAIKBAJtvl9U\nPs6usrJSRUVF2rZt27cH5OPsgDZ7//33tW3bNqWmppqOYszQoUPl8XjC13/yk5/I5/Pp1ltv1Suv\nvKIVK1Zo1apV5gJGWWu7k1IHOoENGzaooaFB48ePNx2lQ2hqalL//v2VkJCg+Ph4ua6rL7/8Uvv3\n71dSUpLpeFHBZ5QCsNYbb7yhnJwcffrppwoGg6qsrNSUKVP00ksvmY5mXMRLffr06br88su1c+dO\npaWlafny5ZEeAkCMKy0t1eTJk5vdNnXqVJWWlhpK1HFEZfmlxQFZfgHajOUXsPwCADGIUgcAi1Dq\nAGARSh0ALEKpA4BFKHUAsAilDgAWodQBwCKUOgBYxMjWu0Bbbd68Wdu3b1dcXGzOQ7766itdeuml\npmOgE6DU0Sm88847ys/PV8+ePU1HMeLjjz+W4zimY6AToNTRKcTFxWnAgAHq1auX6ShGHDhwQA0N\nDaZjoBOIzX/LAoClKHUAsAilDgAWodQBwCKUOgBYhFIHAItQ6gBgEUodACxCqQOARSJe6lVVVSoo\nKNCQIUM0dOhQLV68ONJDAIA8Ho+ys7Pl8/mUnZ2tsrIy05E6hIhvE5CQkKBHH31UOTk5qqmp0YgR\nIzRhwgRlZmZGeigAMcxxHAUCAaWkpGjnzp2aOHGiJk2aZDqWcREv9dTUVKWmpkqSkpKSlJmZqf37\n9zcr9ZKSkvBlv98vv98f6RiAdZqamnT8+HHTMYyJj4//1i6drutKko4cOaKUlBQTsaImEAgoEAi0\n+X6Oe/JZiYLKykqNHTtW27dvV1JS0okBHUdRHBKWWrJkiWbMmBGzG3pVVVXpj3/8Y0z/7hQWFio3\nNzd83ePxqGfPnnJdV3v27NGqVat0zTXXGEwYXa3tzqjt0lhTU6Np06Zp0aJF4UIHcHbS0tJ07733\nmo7RoZy6/LJnzx6NHz9eH3/8sbp37246mlFRefXL8ePHNXXqVM2cOVPXX399NIYAgLCLL75Yffv2\n1T/+8Q/TUYyLeKm7rqtbb71VXq9Xt99+e6RPDwBhJ5cjPv/8cwWDQQ0YMMBwIvMivvyyceNGPfvs\ns+GXGknSr371K1111VWRHgpAjCsoKFB8fLyOHz+uhQsXqnfv3qYjGRfxUh8zZoxCoVCkTwsAzQSD\nQdMROiTeUQoAFqHUAcAilDoAWIRSBwCLUOoAYBFKHQAsQqkDgEUodQCwSNQ29EJk7dmzR7W1taZj\nGNPY2Gg6AtApUOqdwL59+/Taa6+pT58+pqMYQ6kDrUOpdwKNjY1KTEzU1KlTTUcxZsmSJaYjAJ0C\na+oAYBFKHQAsQqkDgEUodQCwCKUOABah1AHAIpQ6AFiEUgcAi1DqAGCRiJd6fX298vLylJOTI6/X\nq3vuuSfSQwCAampqNHfuXGVkZCg3N1cFBQWqqKgwHcu4iG8TkJiYqPXr16tbt25qbGzUmDFj9M47\n72jMmDGRHgpADJszZ47S09O1a9cuSVJlZaV27NhhOJV5Udn7pVu3bpKkhoYGNTU1KSUlJRrDAIhR\nu3fvVkVFhVauXBm+zePxyOPxmAvVQUSl1EOhkIYPH67du3dr3rx58nq9zb5fUlISvuz3++X3+6MR\nA7DGF19I//VfUpcY3oJvzhypsPDE5e3btysnJ0eO45gNFUWBQECBQKDN94vKj0hcXJy2bt2qI0eO\nqLCwUIFAoFlxn1rqAL7bsmWS40g33mg6iTnp6f+5bHOZn/TNCe+DDz7YqvtF9e9+cnKyrr32Wm3a\ntInZOPC/NHiwdMMNplN0DF6vVx999JFCoZDi4ngR36ki/mwcOnRIhw8fliTV1dXp9ddfl8/ni/Qw\nAGJYenq6cnNz9cADD4Rvq6ys1OrVqw2m6hgiXuoHDhzQuHHjlJOTo7y8PBUVFWn8+PGRHgZAjFu2\nbJkOHjyojIwMZWVladasWerbt6/pWMZFfPklKytLH374YaRPCwDN9OjRQ0899ZTpGB0Oi1EAYBFK\nHQAsQqkDgEUodQCwCKUOABah1AHAIpQ6AFiEUgcAi1DqAGCRGN7IE51JXFyuPJ6uqqszncSMUEi6\n807TKdAZUOroFObNG625c02nMGfhQqmmxnQKdAaUOjqFuLgTX7Eqlh872oYfFQCwCKUOABah1AHA\nIq1aU//8889VX18fvn7RRRdFLRAA4Oy1OFMvKyvTJZdcooEDB2rs2LHyeDy6+uqr2ysbAKCNWiz1\n++67T++++64GDRqkYDCoN954Q3l5ee2VDQDQRi2WekJCgs4//3yFQiE1NTWpoKBAmzZtaq9sAIA2\nanFN/bzzzlN1dbXy8/N18803q0+fPkpKSmqvbACANmpxpv7yyy+rW7duevTRR3XVVVcpIyNDr7zy\nyneetKmpST6fT0VFRRELCgCn8ng8ys7OVnZ2toYMGaL7779fX3/9telYxrVY6nv37lV8fLwSEhJU\nXFys2267Tdu2bfvOky5atEher1eO40QsKACcynEcBQIB/f3vf1dFRYX27NmjubG8l8T/12Kp33jj\njVq4cKFc19WxY8f005/+VHfffXeLJ/zss8+0evVqzZkzR67rRjQsAJxO9+7d9bvf/U5/+ctfdPjw\nYdNxjGpxTf3999/XL37xC40ePVo1NTWaMWOGysvLWzzhHXfcoYcfflhHjx494zElJSXhy36/X36/\nv02hgVi0e7fUitVPa2VlSR7Pmb/fo0cPDRw4UJ988olGjhzZbrmiJRAIKBAItPl+LZZ6ly5d1LVr\nV9XV1am+vl4XX3yx4lrYWejVV19Vnz595PP5WgxzaqkD+G7FxdJbb0lPPWU6iTn//d8tl7okq1YH\nvjnhffDBB1t1vxZLfdSoUZo0aZI2bdqkQ4cOae7cuXrhhRe0atWq0x5fXl6usrIyrV69WvX19Tp6\n9KhuueUWrVixovWPBMC39OsnrVljOkXHVl1drcrKSg0aNMh0FKNaXFNftmyZHnroISUkJKhfv34q\nKytr8RUtCxYsUFVVlYLBoEpLSzVu3DgKHUDUnJyZ19TU6Ec/+pEmT56s5ORkw6nManGmfnJd6tS9\nX8aOHdvqk/PqFwDRVFBQINd1FQqFNGXKFN1///2mIxnXYqmXlZXpZz/7mfbv368+ffpo7969yszM\n1Pbt27/zxGPHjm3THwAAaItgMGg6QofE3i8AYBH2fgEAi3SKvV8OHz6spUuXtvu4HUUoFNL5559v\nOgaATqDFUs/Ozg7v/fLcc8/pyJEjqjHwkebJycm68847233cjuLTTz/Vhg0bTMcA0Am0WOrr169X\nfHy84uPjVVxcLEnKyspqj1zNOI6jc845p93H7SgSEhJMRwDQSZy21J944gktXbpUu3fvblbi1dXV\nuuKKK9otHACgbU5b6jNmzNDVV1+tu+++O7yhl3Rib4VevXq1a0AAQOudttSTk5OVnJys0tLS9s4D\nAPhfaPEljQCAzoVSBwCLUOoAYBFKHQAsQqkDgEUodQCwCKUOABah1AHAIpQ6AFiEUgcAi1DqAGAR\nSh0ALEKpA4BFWvyQjLPl8XjUs2dPxcfHKyEhQRUVFdEYBohpp/6eSdLYsWP129/+1nAqmBaVUncc\nR4FAQCkpKdE4PQDxe4bTi9ryy8kP1gAQPfye4ZuiNlO/8sorFR8fr7lz5+qHP/xhs++XlJSEL/v9\nfvn9/mjEgEUa//qi3G2bJccxHcWYLj8rkdPlP7+yruuqoKAgvPxSXFys+fPnm4qHCAsEAgoEAm2+\nn+NG4U/9gQMH1K9fP33xxReaMGGClixZovz8/BMDOg6zizbau3ev3nzzTc2aNct0FGOOL16g+Kn/\nR05KDH+cYmJXOaf8URs4cKA2b97M8kuMaG13RmWm3q9fP0lS7969NXnyZFVUVIRLHTgrjiMnMVFO\n126mkwAdWsTX1I8dO6bq6mpJUm1trdauXausrKxIDwNArKnj2yI+Uz948KAmT54sSWpsbNTNN9+s\niRMnRnoYAFKzNfVhw4bpD3/4g9lAMC7ipT5w4EBt3bo10qcF8A3BYNB0BHRAvKMUACxCqQOARSh1\nALAIpQ4AFqHUAcAilDoAWIRSBwCLUOoAYBFKHQAsQqkDgEUodQCwCKUOABah1AHAIpQ6AFiEUgcA\ni1DqAGARSh0ALEKpA4BFKHUAsAilDgAWiXipHz58WNOmTVNmZqa8Xq/ee++9SA8BQJLH41F2drZ8\nPp98Ph+/a5AkdYn0CefPn69rrrlGf/7zn9XY2Kja2tpIDwFAkuM4CgQCSklJMR0FHUhES/3IkSPa\nsGGDnnnmmRMn79JFycnJkRwCwClc1zUdAR1MREs9GAyqd+/emjVrlj766CONGDFCixYtUrdu3Zod\nV1JSEr7s9/vl9/sjGcM6juMooa5WTWv+YjqKOXXH1LRhnZzErqaTGBM3sUhOXHz4uuu6KigoUHx8\nvBITE/Xuu+8aTIdICwQCCgQCbb6f40bwT/2mTZs0evRolZeXa+TIkbr99tvVs2dP/c///M9/BnQc\nZhdnIbTjI7lHj5iOYUxowxtyhufJ6Z5kOooxcaOuaFbqAwcO1ObNm1l+iRGt7c6IztT79++v/v37\na+TIkZKkadOm6de//nUkh4hZcd5hpiMYFfpgo+JzRsrp1dt0FKBDi+irX1JTU5WWlqadO3dKktat\nW6chQ4ZEcggAQAsi/uqXJUuW6Oabb1ZDQ4PS09O1fPnySA8BQCf+OQ58U8RLfdiwYfrggw8ifVoA\n37Bnzx7TEdAB8Y5SALAIpQ4AFqHUAcAilDoAWIRSBwCLUOoAYBFKHQAsQqkDgEUodQCwCKUOABah\n1AHAIpQ6AFiEUgcAi1DqAGARSh0ALEKpA4BFKHUAsAilDgAWodQBwCKUOgBYJOKl/q9//Us+ny/8\nlZycrMWLF0d6GCDm1dTUaN68ecrIyNCIESOUm5urZcuWmY4Fw7pE+oSDBw/Wli1bJEmhUEgXXnih\nJk+eHOlhgJg3Z84cZWRkaNeuXZKkQ4cO6fe//73hVDAt4qV+qnXr1ik9PV1paWnRHAaIObt379YH\nH3yg0tLS8G3nn3++fv7znxtMhY4gqqVeWlqqGTNmfOv2kpKS8GW/3y+/3x/NGLCBG5L7xf+VGr42\nncSc1AvkOCdWTLdv365hw4YZDoRoCgQCCgQCbb6f47quG/k4UkNDgy688ELt2LFDvXv3/s+AjqMo\nDQmLNW1Yp9DHW6W42P2//S5zbpMTf2Ie9sorr2j58uV68cUXJUkLFizQqlWr9Pnnn2vfvn0mYyJK\nWtudUSv1l19+WU888YTWrFlzVsEAnNmuXbtUWFioXbt2yXGc8O09evRQdXW1wWSIltZ2Z9SmPStX\nrtT06dOjdXogpmVkZCg3N1f33XefQqGQJKm+vp4JE6IzU6+trdWAAQMUDAbVo0eP5gMyUwciorq6\nWnfddZfWrl2rXr16qWvXrpo+fbrmzZtnOhqiwPjyyxkHpNQBoM2ML78AANofpQ4AFqHUAcAilDoA\nWIRSBwCLUOoAYBFKHQAsQqkDgEUodQCwCKUOABah1AHAIpQ6AFiEUgcAi1DqAGCRTlHqZ/M5fTaJ\n9ccv8Rzw+AOmI3QalHonEOuPX+I54PEHTEfoNDpFqQMAWodSBwCLGPk4OwBA27Wmrru0Q45m+HxS\nAIgell8AwCKUOgBYhFIHAIt0+FJfs2aNLr30Ul1yySVauHCh6Tjtbvbs2erbt6+ysrJMRzGiqqpK\nBQUFGjJkiIYOHarFixebjtSu6uvrlZeXp5ycHHm9Xt1zzz2mIxnR1NQkn8+noqIi01GM8Hg8ys7O\nls/n06hRo1o+2O3AGhsb3fT0dDcYDLoNDQ3usGHD3B07dpiO1a7efvtt98MPP3SHDh1qOooRBw4c\ncLds2eK6rutWV1e7gwYNirmfgdraWtd1Xff48eNuXl6eu2HDBsOJ2t8jjzzizpgxwy0qKjIdxQiP\nx+P++9//btWxHXqmXlFRoYyMDHk8HiUkJOj73/++Xn75ZdOx2lV+fr7OO+880zGMSU1NVU5OjiQp\nKSlJmZmZ2r9/v+FU7atbt26SpIaGBjU1NSklJcVwovb12WefafXq1ZozZ05Mv3qutY+9Q5f6vn37\nlJaWFr7ev39/7du3z2AimFRZWaktW7YoLy/PdJR2FQqFlJOTo759+6qgoEBer9d0pHZ1xx136OGH\nH1ZcXIeuq6hyHEdXXnmlcnNz9fTTT7d4bId+lnijEk6qqanRtGnTtGjRIiUlJZmO067i4uK0detW\nffbZZ3r77bdjah+UV199VX369JHP54vpWfrGjRu1ZcsW/e1vf9Pjjz+uDRs2nPHYDl3qF154oaqq\nqsLXq6qq1L9/f4OJYMLx48c1depUzZw5U9dff73pOMYkJyfr2muv1aZNm0xHaTfl5eUqKyvTwIED\nNX36dL355pu65ZZbTMdqd/369ZMk9e7dW5MnT1ZFRcUZj+3QpZ6bm6tPPvlElZWVamho0PPPP69J\nkyaZjoV25Lqubr31Vnm9Xt1+++2m47S7Q4cO6fDhw5Kkuro6vf766/L5fIZTtZ8FCxaoqqpKwWBQ\npaWlGjdunFasWGE6Vrs6duyYqqurJUm1tbVau3Zti6+G69Cl3qVLFz322GMqLCyU1+vVTTfdpMzM\nTNOx2tX06dN1+eWXa+fOnUpLS9Py5ctNR2pXGzdu1LPPPqv169fL5/PJ5/NpzZo1pmO1mwMHDmjc\nuHHKyclRXl6eioqKNH78eNOxjInFJdmDBw8qPz8//DNw3XXXaeLEiWc8vt039AIARE+HnqkDANqG\nUgcAi1DqAGARSh0ALEKpw7jKysp237DM7/dr8+bNLR4TrVxvvfWW3n333fD14uJivfDCCxEfB7GJ\nUkenEQqFInYuky+NW79+vcrLyztEFtiHUkeH0NjYqJkzZ8rr9eqGG25QXV2dpBNbjt59990aMWKE\nVq1apWXLlmnUqFHKycnRtGnTwscVFxdr/vz5uuKKK5Sent5s5rtw4UJlZ2crJydH9957b/j2VatW\nKS8vT4MHD9Y777zTYr6mpibdddddGjVqlIYNG6annnpKkhQIBOT3+3XDDTcoMzNTM2fODN9n9erV\nyszMVG5urm677TYVFRVp7969evLJJ/Xoo49q+PDh4XHffvvt02YH2ixqe0UCrRQMBl3Hcdzy8nLX\ndV139uzZ7m9+8xvXdU9sOfrwww+Hjz11+9H77rvPXbJkieu6rvuDH/zAvfHGG13Xdd0dO3a4GRkZ\nruu67urVq93LL7/craurc13Xdb/66ivXdV3X7/e7d955Z/iYK6+88rS5Tm55/OSTT7q//OUvXdd1\n3fr6ejc3N9cNBoPu+vXr3eTkZHffvn1uKBRyR48e7W7cuNGtq6tz09LS3MrKStd1XXf69OnhbWNL\nSkrcRx55JDzOmbIDZ4OZOjqEtLQ0jR49WpI0c+bMZjPnm266KXx527Ztys/PV3Z2tp577jnt2LFD\n0okljJP7wmRmZurgwYOSpHXr1mn27NlKTEyUJH3ve98Ln2vKlCmSpOHDh6uysrLFfGvXrtWKFSvk\n8/l02WWX6csvv9SuXbvkOI5GjRqlCy64QI7jKCcnR8FgUP/85z918cUXa8CAAZJOvDPYPeV9fqde\nPlN24Gx0MR0AkJqvK7uu2+x69+7dw5eLi4tVVlamrKwsPfPMM812LDznnHOanePked0zvGn63HPP\nlSTFx8ersbHxOzM+9thjmjBhQrPbAoFA+Dynnuub6+RnytBSduBsMFNHh/Dpp5/qvffekyT96U9/\nUn5+/mmPq6mpUWpqqo4fP65nn332O/+TccKECVq+fHl47f2rr746q3yFhYVaunRpuPx37typY8eO\nnfZYx3E0ePBg7dmzR3v37pUkPf/88+GsPXr0CG/QBEQapQ7jTpbg448/Lq/XqyNHjmjevHnh753q\noYceUl5ensaMGfOtzd1OPfbk5cLCQk2aNEm5ubny+Xx65JFHzpihpdvnzJkjr9er4cOHKysrS/Pm\nzQvPyE9338TERC1dulRXXXWVcnNz1bNnT/Xs2VOSVFRUpJdeeqnZf5SeLjtwNtjQC4iS2tra8NLR\nj3/8Yw0aNEjz5883nAq2Y6YORMnTTz8tn8+nIUOG6OjRo5o7d67pSIgBzNQBwCLM1AHAIpQ6AFiE\nUgcAi1DqAGARSh0ALEKpA4BF/h/vkBIjN7MZ3gAAAABJRU5ErkJggg==\n", "text": [ "<matplotlib.figure.Figure at 0x10d8e8790>" ] } ], "prompt_number": 19 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }
gpl-3.0
brianray/puppy_dec_2015
.ipynb_checkpoints/Feature Engineering for Text Data-checkpoint.ipynb
1
118308
{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import graphlab as gl" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false, "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "{\"votes\": {\"funny\": 0, \"useful\": 5, \"cool\": 2}, \"user_id\": \"rLtl8ZkDX5vH5nAx9C3q5Q\", \"review_id\": \"fWKvX83p0-ka4JS3dc6E5A\", \"stars\": 5, \"date\": \"2011-01-26\", \"text\": \"My wife took me here on my birthday for breakfast and it was excellent. The weather was perfect which made sitting outside overlooking their grounds an absolute pleasure. Our waitress was excellent and our food arrived quickly on the semi-busy Saturday morning. It looked like the place fills up pretty quickly so the earlier you get here the better.\\n\\nDo yourself a favor and get their Bloody Mary. It was phenomenal and simply the best I've ever had. I'm pretty sure they only use ingredients from their garden and blend them fresh when you order it. It was amazing.\\n\\nWhile EVERYTHING on the menu looks excellent, I had the white truffle scrambled eggs vegetable skillet and it was tasty and delicious. It came with 2 pieces of their griddled bread with was amazing and it absolutely made the meal complete. It was the best \\\"toast\\\" I've ever had.\\n\\nAnyway, I can't wait to go back!\", \"type\": \"review\", \"business_id\": \"9yKzy9PApeiPPOUJEtnvkg\"}\r\n", "{\"votes\": {\"funny\": 0, \"useful\": 0, \"cool\": 0}, \"user_id\": \"0a2KyEL0d3Yb1V6aivbIuQ\", \"review_id\": \"IjZ33sJrzXqU-0X6U8NwyA\", \"stars\": 5, \"date\": \"2011-07-27\", \"text\": \"I have no idea why some people give bad reviews about this place. It goes to show you, you can please everyone. They are probably griping about something that their own fault...there are many people like that.\\n\\nIn any case, my friend and I arrived at about 5:50 PM this past Sunday. It was pretty crowded, more than I thought for a Sunday evening and thought we would have to wait forever to get a seat but they said we'll be seated when the girl comes back from seating someone else. We were seated at 5:52 and the waiter came and got our drink orders. Everyone was very pleasant from the host that seated us to the waiter to the server. The prices were very good as well. We placed our orders once we decided what we wanted at 6:02. We shared the baked spaghetti calzone and the small \\\"Here's The Beef\\\" pizza so we can both try them. The calzone was huge and we got the smallest one (personal) and got the small 11\\\" pizza. Both were awesome! My friend liked the pizza better and I liked the calzone better. The calzone does have a sweetish sauce but that's how I like my sauce!\\n\\nWe had to box part of the pizza to take it home and we were out the door by 6:42. So, everything was great and not like these bad reviewers. That goes to show you that you have to try these things yourself because all these bad reviewers have some serious issues.\", \"type\": \"review\", \"business_id\": \"ZRJwVLyzEJq1VAihDhYiow\"}\r\n" ] } ], "source": [ "!head -n 2 ../data/yelp/yelp_training_set_review.json" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# SFrame -- Scalable Dataframe\n", "\n", "### Powerful unstructured data processing: read straight up json" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "[INFO] This commercial license of GraphLab Create is assigned to [email protected].\n", "\n", "[INFO] Start server at: ipc:///tmp/graphlab_server-32308 - Server binary: /Users/alicez/.graphlab/anaconda/lib/python2.7/site-packages/graphlab/unity_server - Server log: /tmp/graphlab_server_1443536133.log\n", "[INFO] GraphLab Server Version: 1.6.1\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "PROGRESS: Finished parsing file /Users/alicez/Documents/training/Strata NYC 2015/data/yelp/yelp_training_set_review.json\n", "PROGRESS: Parsing completed. Parsed 100 lines in 0.864794 secs.\n", "------------------------------------------------------\n", "Inferred types from first line of file as \n", "column_type_hints=[dict]\n", "If parsing fails due to incorrect types, you can correct\n", "the inferred type list above and pass it to read_csv in\n", "the column_type_hints argument\n", "------------------------------------------------------\n", "PROGRESS: Read 55824 lines. Lines per second: 32872.1\n", "PROGRESS: Finished parsing file /Users/alicez/Documents/training/Strata NYC 2015/data/yelp/yelp_training_set_review.json\n", "PROGRESS: Parsing completed. Parsed 229907 lines in 4.42562 secs.\n" ] }, { "data": { "text/html": [ "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\"><table frame=\"box\" rules=\"cols\">\n", " <tr>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">X1</th>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">{'votes': {'funny': 0,<br>'useful': 5, 'cool': 2}, ...</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">{'votes': {'funny': 0,<br>'useful': 0, 'cool': 0}, ...</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">{'votes': {'funny': 0,<br>'useful': 1, 'cool': 0}, ...</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">{'votes': {'funny': 0,<br>'useful': 2, 'cool': 1}, ...</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">{'votes': {'funny': 0,<br>'useful': 0, 'cool': 0}, ...</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">{'votes': {'funny': 1,<br>'useful': 3, 'cool': 4}, ...</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">{'votes': {'funny': 4,<br>'useful': 7, 'cool': 7}, ...</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">{'votes': {'funny': 0,<br>'useful': 1, 'cool': 0}, ...</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">{'votes': {'funny': 0,<br>'useful': 0, 'cool': 0}, ...</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">{'votes': {'funny': 0,<br>'useful': 1, 'cool': 0}, ...</td>\n", " </tr>\n", "</table>\n", "[229907 rows x 1 columns]<br/>Note: Only the head of the SFrame is printed.<br/>You can use print_rows(num_rows=m, num_columns=n) to print more rows and columns.\n", "</div>" ], "text/plain": [ "Columns:\n", "\tX1\tdict\n", "\n", "Rows: 229907\n", "\n", "Data:\n", "+-------------------------------+\n", "| X1 |\n", "+-------------------------------+\n", "| {'votes': {'funny': 0, 'us... |\n", "| {'votes': {'funny': 0, 'us... |\n", "| {'votes': {'funny': 0, 'us... |\n", "| {'votes': {'funny': 0, 'us... |\n", "| {'votes': {'funny': 0, 'us... |\n", "| {'votes': {'funny': 1, 'us... |\n", "| {'votes': {'funny': 4, 'us... |\n", "| {'votes': {'funny': 0, 'us... |\n", "| {'votes': {'funny': 0, 'us... |\n", "| {'votes': {'funny': 0, 'us... |\n", "+-------------------------------+\n", "[229907 rows x 1 columns]\n", "Note: Only the head of the SFrame is printed.\n", "You can use print_rows(num_rows=m, num_columns=n) to print more rows and columns." ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "reviews = gl.SFrame.read_csv('../data/yelp/yelp_training_set_review.json', header=False)\n", "reviews" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "{'X1': {'business_id': '9yKzy9PApeiPPOUJEtnvkg',\n", " 'date': '2011-01-26',\n", " 'review_id': 'fWKvX83p0-ka4JS3dc6E5A',\n", " 'stars': 5,\n", " 'text': 'My wife took me here on my birthday for breakfast and it was excellent. The weather was perfect which made sitting outside overlooking their grounds an absolute pleasure. Our waitress was excellent and our food arrived quickly on the semi-busy Saturday morning. It looked like the place fills up pretty quickly so the earlier you get here the better.\\n\\nDo yourself a favor and get their Bloody Mary. It was phenomenal and simply the best I\\'ve ever had. I\\'m pretty sure they only use ingredients from their garden and blend them fresh when you order it. It was amazing.\\n\\nWhile EVERYTHING on the menu looks excellent, I had the white truffle scrambled eggs vegetable skillet and it was tasty and delicious. It came with 2 pieces of their griddled bread with was amazing and it absolutely made the meal complete. It was the best \"toast\" I\\'ve ever had.\\n\\nAnyway, I can\\'t wait to go back!',\n", " 'type': 'review',\n", " 'user_id': 'rLtl8ZkDX5vH5nAx9C3q5Q',\n", " 'votes': {'cool': 2, 'funny': 0, 'useful': 5}}}" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "reviews[0]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Unpack to extract structure" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\"><table frame=\"box\" rules=\"cols\">\n", " <tr>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">business_id</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">date</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">review_id</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">stars</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">text</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">type</th>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">9yKzy9PApeiPPOUJEtnvkg</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2011-01-26</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">fWKvX83p0-ka4JS3dc6E5A</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">5</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">My wife took me here on<br>my birthday for break ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">review</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">ZRJwVLyzEJq1VAihDhYiow</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2011-07-27</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">IjZ33sJrzXqU-0X6U8NwyA</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">5</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">I have no idea why some<br>people give bad reviews ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">review</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">6oRAC4uyJCsJl1X0WZpVSA</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2012-06-14</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">IESLBzqUCLdSzSqm0eCSxQ</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">4</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">love the gyro plate. Rice<br>is so good and I also ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">review</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">_1QQZuf4zZOyFCvXc0o6Vg</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2010-05-27</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">G-WvGaISbqqaMHlNnByodA</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">5</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Rosie, Dakota, and I LOVE<br>Chaparral Dog Park!!! ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">review</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">6ozycU1RpktNG2-1BroVtw</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2012-01-05</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1uJFq2r5QfJG_6ExMRCaGw</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">5</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">General Manager Scott<br>Petello is a good egg!!! ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">review</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">-yxfBYGB6SEqszmxJxd97A</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2007-12-13</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">m2CKSsepBCoRYWxiRUsxAg</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">4</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Quiessence is, simply<br>put, beautiful. Full ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">review</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">zp713qNhx8d9KCJJnrw1xA</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2010-02-12</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">riFQ3vxNpP4rWLk_CSri2A</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">5</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Drop what you're doing<br>and drive here. After I ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">review</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">hW0Ne_HTHEAgGF1rAdmR-g</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2012-07-12</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">JL7GXJ9u4YMx7Rzs05NfiQ</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">4</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Luckily, I didn't have to<br>travel far to make my ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">review</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">wNUea3IXZWD63bbOQaOH-g</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2012-08-17</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">XtnfnYmnJYi71yIuGsXIUA</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">4</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Definitely come for Happy<br>hour! Prices are amaz ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">review</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">nMHhuYan8e3cONo3PornJA</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2010-08-11</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">jJAIXA46pU1swYyRCdfXtQ</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">5</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Nobuo shows his unique<br>talents with everything ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">review</td>\n", " </tr>\n", "</table>\n", "<table frame=\"box\" rules=\"cols\">\n", " <tr>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">user_id</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">votes</th>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">rLtl8ZkDX5vH5nAx9C3q5Q</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">{'funny': 0, 'useful': 5,<br>'cool': 2} ...</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0a2KyEL0d3Yb1V6aivbIuQ</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">{'funny': 0, 'useful': 0,<br>'cool': 0} ...</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0hT2KtfLiobPvh6cDC8JQg</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">{'funny': 0, 'useful': 1,<br>'cool': 0} ...</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">uZetl9T0NcROGOyFfughhg</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">{'funny': 0, 'useful': 2,<br>'cool': 1} ...</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">vYmM4KTsC8ZfQBg-j5MWkw</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">{'funny': 0, 'useful': 0,<br>'cool': 0} ...</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">sqYN3lNgvPbPCTRsMFu27g</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">{'funny': 1, 'useful': 3,<br>'cool': 4} ...</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">wFweIWhv2fREZV_dYkz_1g</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">{'funny': 4, 'useful': 7,<br>'cool': 7} ...</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1ieuYcKS7zeAv_U15AB13A</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">{'funny': 0, 'useful': 1,<br>'cool': 0} ...</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Vh_DlizgGhSqQh4qfZ2h6A</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">{'funny': 0, 'useful': 0,<br>'cool': 0} ...</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">sUNkXg8-KFtCMQDV6zRzQg</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">{'funny': 0, 'useful': 1,<br>'cool': 0} ...</td>\n", " </tr>\n", "</table>\n", "[229907 rows x 8 columns]<br/>Note: Only the head of the SFrame is printed.<br/>You can use print_rows(num_rows=m, num_columns=n) to print more rows and columns.\n", "</div>" ], "text/plain": [ "Columns:\n", "\tbusiness_id\tstr\n", "\tdate\tstr\n", "\treview_id\tstr\n", "\tstars\tint\n", "\ttext\tstr\n", "\ttype\tstr\n", "\tuser_id\tstr\n", "\tvotes\tdict\n", "\n", "Rows: 229907\n", "\n", "Data:\n", "+------------------------+------------+------------------------+-------+\n", "| business_id | date | review_id | stars |\n", "+------------------------+------------+------------------------+-------+\n", "| 9yKzy9PApeiPPOUJEtnvkg | 2011-01-26 | fWKvX83p0-ka4JS3dc6E5A | 5 |\n", "| ZRJwVLyzEJq1VAihDhYiow | 2011-07-27 | IjZ33sJrzXqU-0X6U8NwyA | 5 |\n", "| 6oRAC4uyJCsJl1X0WZpVSA | 2012-06-14 | IESLBzqUCLdSzSqm0eCSxQ | 4 |\n", "| _1QQZuf4zZOyFCvXc0o6Vg | 2010-05-27 | G-WvGaISbqqaMHlNnByodA | 5 |\n", "| 6ozycU1RpktNG2-1BroVtw | 2012-01-05 | 1uJFq2r5QfJG_6ExMRCaGw | 5 |\n", "| -yxfBYGB6SEqszmxJxd97A | 2007-12-13 | m2CKSsepBCoRYWxiRUsxAg | 4 |\n", "| zp713qNhx8d9KCJJnrw1xA | 2010-02-12 | riFQ3vxNpP4rWLk_CSri2A | 5 |\n", "| hW0Ne_HTHEAgGF1rAdmR-g | 2012-07-12 | JL7GXJ9u4YMx7Rzs05NfiQ | 4 |\n", "| wNUea3IXZWD63bbOQaOH-g | 2012-08-17 | XtnfnYmnJYi71yIuGsXIUA | 4 |\n", "| nMHhuYan8e3cONo3PornJA | 2010-08-11 | jJAIXA46pU1swYyRCdfXtQ | 5 |\n", "+------------------------+------------+------------------------+-------+\n", "+-------------------------------+--------+------------------------+\n", "| text | type | user_id |\n", "+-------------------------------+--------+------------------------+\n", "| My wife took me here on my... | review | rLtl8ZkDX5vH5nAx9C3q5Q |\n", "| I have no idea why some pe... | review | 0a2KyEL0d3Yb1V6aivbIuQ |\n", "| love the gyro plate. Rice ... | review | 0hT2KtfLiobPvh6cDC8JQg |\n", "| Rosie, Dakota, and I LOVE ... | review | uZetl9T0NcROGOyFfughhg |\n", "| General Manager Scott Pete... | review | vYmM4KTsC8ZfQBg-j5MWkw |\n", "| Quiessence is, simply put,... | review | sqYN3lNgvPbPCTRsMFu27g |\n", "| Drop what you're doing and... | review | wFweIWhv2fREZV_dYkz_1g |\n", "| Luckily, I didn't have to ... | review | 1ieuYcKS7zeAv_U15AB13A |\n", "| Definitely come for Happy ... | review | Vh_DlizgGhSqQh4qfZ2h6A |\n", "| Nobuo shows his unique tal... | review | sUNkXg8-KFtCMQDV6zRzQg |\n", "+-------------------------------+--------+------------------------+\n", "+-------------------------------+\n", "| votes |\n", "+-------------------------------+\n", "| {'funny': 0, 'useful': 5, ... |\n", "| {'funny': 0, 'useful': 0, ... |\n", "| {'funny': 0, 'useful': 1, ... |\n", "| {'funny': 0, 'useful': 2, ... |\n", "| {'funny': 0, 'useful': 0, ... |\n", "| {'funny': 1, 'useful': 3, ... |\n", "| {'funny': 4, 'useful': 7, ... |\n", "| {'funny': 0, 'useful': 1, ... |\n", "| {'funny': 0, 'useful': 0, ... |\n", "| {'funny': 0, 'useful': 1, ... |\n", "+-------------------------------+\n", "[229907 rows x 8 columns]\n", "Note: Only the head of the SFrame is printed.\n", "You can use print_rows(num_rows=m, num_columns=n) to print more rows and columns." ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "reviews=reviews.unpack('X1','')\n", "reviews" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Votes are still crammed in a dictionary. Let's unpack it." ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\"><table frame=\"box\" rules=\"cols\">\n", " <tr>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">business_id</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">date</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">review_id</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">stars</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">text</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">type</th>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">9yKzy9PApeiPPOUJEtnvkg</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2011-01-26</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">fWKvX83p0-ka4JS3dc6E5A</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">5</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">My wife took me here on<br>my birthday for break ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">review</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">ZRJwVLyzEJq1VAihDhYiow</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2011-07-27</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">IjZ33sJrzXqU-0X6U8NwyA</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">5</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">I have no idea why some<br>people give bad reviews ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">review</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">6oRAC4uyJCsJl1X0WZpVSA</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2012-06-14</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">IESLBzqUCLdSzSqm0eCSxQ</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">4</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">love the gyro plate. Rice<br>is so good and I also ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">review</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">_1QQZuf4zZOyFCvXc0o6Vg</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2010-05-27</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">G-WvGaISbqqaMHlNnByodA</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">5</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Rosie, Dakota, and I LOVE<br>Chaparral Dog Park!!! ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">review</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">6ozycU1RpktNG2-1BroVtw</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2012-01-05</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1uJFq2r5QfJG_6ExMRCaGw</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">5</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">General Manager Scott<br>Petello is a good egg!!! ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">review</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">-yxfBYGB6SEqszmxJxd97A</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2007-12-13</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">m2CKSsepBCoRYWxiRUsxAg</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">4</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Quiessence is, simply<br>put, beautiful. Full ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">review</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">zp713qNhx8d9KCJJnrw1xA</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2010-02-12</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">riFQ3vxNpP4rWLk_CSri2A</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">5</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Drop what you're doing<br>and drive here. After I ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">review</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">hW0Ne_HTHEAgGF1rAdmR-g</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2012-07-12</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">JL7GXJ9u4YMx7Rzs05NfiQ</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">4</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Luckily, I didn't have to<br>travel far to make my ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">review</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">wNUea3IXZWD63bbOQaOH-g</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2012-08-17</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">XtnfnYmnJYi71yIuGsXIUA</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">4</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Definitely come for Happy<br>hour! Prices are amaz ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">review</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">nMHhuYan8e3cONo3PornJA</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2010-08-11</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">jJAIXA46pU1swYyRCdfXtQ</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">5</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Nobuo shows his unique<br>talents with everything ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">review</td>\n", " </tr>\n", "</table>\n", "<table frame=\"box\" rules=\"cols\">\n", " <tr>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">user_id</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">cool</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">funny</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">useful</th>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">rLtl8ZkDX5vH5nAx9C3q5Q</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">5</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0a2KyEL0d3Yb1V6aivbIuQ</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0hT2KtfLiobPvh6cDC8JQg</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">uZetl9T0NcROGOyFfughhg</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">vYmM4KTsC8ZfQBg-j5MWkw</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">sqYN3lNgvPbPCTRsMFu27g</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">4</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">3</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">wFweIWhv2fREZV_dYkz_1g</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">7</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">4</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">7</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1ieuYcKS7zeAv_U15AB13A</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Vh_DlizgGhSqQh4qfZ2h6A</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">sUNkXg8-KFtCMQDV6zRzQg</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1</td>\n", " </tr>\n", "</table>\n", "[229907 rows x 10 columns]<br/>Note: Only the head of the SFrame is printed.<br/>You can use print_rows(num_rows=m, num_columns=n) to print more rows and columns.\n", "</div>" ], "text/plain": [ "Columns:\n", "\tbusiness_id\tstr\n", "\tdate\tstr\n", "\treview_id\tstr\n", "\tstars\tint\n", "\ttext\tstr\n", "\ttype\tstr\n", "\tuser_id\tstr\n", "\tcool\tint\n", "\tfunny\tint\n", "\tuseful\tint\n", "\n", "Rows: 229907\n", "\n", "Data:\n", "+------------------------+------------+------------------------+-------+\n", "| business_id | date | review_id | stars |\n", "+------------------------+------------+------------------------+-------+\n", "| 9yKzy9PApeiPPOUJEtnvkg | 2011-01-26 | fWKvX83p0-ka4JS3dc6E5A | 5 |\n", "| ZRJwVLyzEJq1VAihDhYiow | 2011-07-27 | IjZ33sJrzXqU-0X6U8NwyA | 5 |\n", "| 6oRAC4uyJCsJl1X0WZpVSA | 2012-06-14 | IESLBzqUCLdSzSqm0eCSxQ | 4 |\n", "| _1QQZuf4zZOyFCvXc0o6Vg | 2010-05-27 | G-WvGaISbqqaMHlNnByodA | 5 |\n", "| 6ozycU1RpktNG2-1BroVtw | 2012-01-05 | 1uJFq2r5QfJG_6ExMRCaGw | 5 |\n", "| -yxfBYGB6SEqszmxJxd97A | 2007-12-13 | m2CKSsepBCoRYWxiRUsxAg | 4 |\n", "| zp713qNhx8d9KCJJnrw1xA | 2010-02-12 | riFQ3vxNpP4rWLk_CSri2A | 5 |\n", "| hW0Ne_HTHEAgGF1rAdmR-g | 2012-07-12 | JL7GXJ9u4YMx7Rzs05NfiQ | 4 |\n", "| wNUea3IXZWD63bbOQaOH-g | 2012-08-17 | XtnfnYmnJYi71yIuGsXIUA | 4 |\n", "| nMHhuYan8e3cONo3PornJA | 2010-08-11 | jJAIXA46pU1swYyRCdfXtQ | 5 |\n", "+------------------------+------------+------------------------+-------+\n", "+-------------------------------+--------+------------------------+------+-------+\n", "| text | type | user_id | cool | funny |\n", "+-------------------------------+--------+------------------------+------+-------+\n", "| My wife took me here on my... | review | rLtl8ZkDX5vH5nAx9C3q5Q | 2 | 0 |\n", "| I have no idea why some pe... | review | 0a2KyEL0d3Yb1V6aivbIuQ | 0 | 0 |\n", "| love the gyro plate. Rice ... | review | 0hT2KtfLiobPvh6cDC8JQg | 0 | 0 |\n", "| Rosie, Dakota, and I LOVE ... | review | uZetl9T0NcROGOyFfughhg | 1 | 0 |\n", "| General Manager Scott Pete... | review | vYmM4KTsC8ZfQBg-j5MWkw | 0 | 0 |\n", "| Quiessence is, simply put,... | review | sqYN3lNgvPbPCTRsMFu27g | 4 | 1 |\n", "| Drop what you're doing and... | review | wFweIWhv2fREZV_dYkz_1g | 7 | 4 |\n", "| Luckily, I didn't have to ... | review | 1ieuYcKS7zeAv_U15AB13A | 0 | 0 |\n", "| Definitely come for Happy ... | review | Vh_DlizgGhSqQh4qfZ2h6A | 0 | 0 |\n", "| Nobuo shows his unique tal... | review | sUNkXg8-KFtCMQDV6zRzQg | 0 | 0 |\n", "+-------------------------------+--------+------------------------+------+-------+\n", "+--------+\n", "| useful |\n", "+--------+\n", "| 5 |\n", "| 0 |\n", "| 1 |\n", "| 2 |\n", "| 0 |\n", "| 3 |\n", "| 7 |\n", "| 1 |\n", "| 0 |\n", "| 1 |\n", "+--------+\n", "[229907 rows x 10 columns]\n", "Note: Only the head of the SFrame is printed.\n", "You can use print_rows(num_rows=m, num_columns=n) to print more rows and columns." ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "reviews = reviews.unpack('votes', '')\n", "reviews" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Quick data visualization" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Canvas is accessible via web browser at the URL: http://localhost:59655/index.html\n", "Opening Canvas in default web browser.\n" ] } ], "source": [ "reviews.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Represent datetime" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [], "source": [ "reviews['date'] = reviews['date'].str_to_datetime(str_format='%Y-%m-%d')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Munge votes and add a new column" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false, "scrolled": true }, "outputs": [ { "data": { "text/html": [ "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\"><table frame=\"box\" rules=\"cols\">\n", " <tr>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">business_id</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">date</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">review_id</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">stars</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">text</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">type</th>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">9yKzy9PApeiPPOUJEtnvkg</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2011-01-26 00:00:00</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">fWKvX83p0-ka4JS3dc6E5A</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">5</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">My wife took me here on<br>my birthday for break ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">review</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">ZRJwVLyzEJq1VAihDhYiow</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2011-07-27 00:00:00</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">IjZ33sJrzXqU-0X6U8NwyA</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">5</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">I have no idea why some<br>people give bad reviews ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">review</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">6oRAC4uyJCsJl1X0WZpVSA</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2012-06-14 00:00:00</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">IESLBzqUCLdSzSqm0eCSxQ</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">4</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">love the gyro plate. Rice<br>is so good and I also ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">review</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">_1QQZuf4zZOyFCvXc0o6Vg</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2010-05-27 00:00:00</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">G-WvGaISbqqaMHlNnByodA</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">5</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Rosie, Dakota, and I LOVE<br>Chaparral Dog Park!!! ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">review</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">6ozycU1RpktNG2-1BroVtw</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2012-01-05 00:00:00</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1uJFq2r5QfJG_6ExMRCaGw</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">5</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">General Manager Scott<br>Petello is a good egg!!! ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">review</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">-yxfBYGB6SEqszmxJxd97A</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2007-12-13 00:00:00</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">m2CKSsepBCoRYWxiRUsxAg</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">4</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Quiessence is, simply<br>put, beautiful. Full ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">review</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">zp713qNhx8d9KCJJnrw1xA</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2010-02-12 00:00:00</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">riFQ3vxNpP4rWLk_CSri2A</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">5</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Drop what you're doing<br>and drive here. After I ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">review</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">hW0Ne_HTHEAgGF1rAdmR-g</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2012-07-12 00:00:00</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">JL7GXJ9u4YMx7Rzs05NfiQ</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">4</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Luckily, I didn't have to<br>travel far to make my ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">review</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">wNUea3IXZWD63bbOQaOH-g</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2012-08-17 00:00:00</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">XtnfnYmnJYi71yIuGsXIUA</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">4</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Definitely come for Happy<br>hour! Prices are amaz ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">review</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">nMHhuYan8e3cONo3PornJA</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2010-08-11 00:00:00</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">jJAIXA46pU1swYyRCdfXtQ</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">5</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Nobuo shows his unique<br>talents with everything ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">review</td>\n", " </tr>\n", "</table>\n", "<table frame=\"box\" rules=\"cols\">\n", " <tr>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">user_id</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">cool</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">funny</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">useful</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">total_votes</th>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">rLtl8ZkDX5vH5nAx9C3q5Q</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">5</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">7</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0a2KyEL0d3Yb1V6aivbIuQ</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0hT2KtfLiobPvh6cDC8JQg</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">uZetl9T0NcROGOyFfughhg</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">3</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">vYmM4KTsC8ZfQBg-j5MWkw</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">sqYN3lNgvPbPCTRsMFu27g</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">4</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">3</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">8</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">wFweIWhv2fREZV_dYkz_1g</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">7</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">4</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">7</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">18</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1ieuYcKS7zeAv_U15AB13A</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Vh_DlizgGhSqQh4qfZ2h6A</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">sUNkXg8-KFtCMQDV6zRzQg</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1</td>\n", " </tr>\n", "</table>\n", "[229907 rows x 11 columns]<br/>Note: Only the head of the SFrame is printed.<br/>You can use print_rows(num_rows=m, num_columns=n) to print more rows and columns.\n", "</div>" ], "text/plain": [ "Columns:\n", "\tbusiness_id\tstr\n", "\tdate\tdatetime\n", "\treview_id\tstr\n", "\tstars\tint\n", "\ttext\tstr\n", "\ttype\tstr\n", "\tuser_id\tstr\n", "\tcool\tint\n", "\tfunny\tint\n", "\tuseful\tint\n", "\ttotal_votes\tint\n", "\n", "Rows: 229907\n", "\n", "Data:\n", "+------------------------+---------------------+------------------------+-------+\n", "| business_id | date | review_id | stars |\n", "+------------------------+---------------------+------------------------+-------+\n", "| 9yKzy9PApeiPPOUJEtnvkg | 2011-01-26 00:00:00 | fWKvX83p0-ka4JS3dc6E5A | 5 |\n", "| ZRJwVLyzEJq1VAihDhYiow | 2011-07-27 00:00:00 | IjZ33sJrzXqU-0X6U8NwyA | 5 |\n", "| 6oRAC4uyJCsJl1X0WZpVSA | 2012-06-14 00:00:00 | IESLBzqUCLdSzSqm0eCSxQ | 4 |\n", "| _1QQZuf4zZOyFCvXc0o6Vg | 2010-05-27 00:00:00 | G-WvGaISbqqaMHlNnByodA | 5 |\n", "| 6ozycU1RpktNG2-1BroVtw | 2012-01-05 00:00:00 | 1uJFq2r5QfJG_6ExMRCaGw | 5 |\n", "| -yxfBYGB6SEqszmxJxd97A | 2007-12-13 00:00:00 | m2CKSsepBCoRYWxiRUsxAg | 4 |\n", "| zp713qNhx8d9KCJJnrw1xA | 2010-02-12 00:00:00 | riFQ3vxNpP4rWLk_CSri2A | 5 |\n", "| hW0Ne_HTHEAgGF1rAdmR-g | 2012-07-12 00:00:00 | JL7GXJ9u4YMx7Rzs05NfiQ | 4 |\n", "| wNUea3IXZWD63bbOQaOH-g | 2012-08-17 00:00:00 | XtnfnYmnJYi71yIuGsXIUA | 4 |\n", "| nMHhuYan8e3cONo3PornJA | 2010-08-11 00:00:00 | jJAIXA46pU1swYyRCdfXtQ | 5 |\n", "+------------------------+---------------------+------------------------+-------+\n", "+-------------------------------+--------+------------------------+------+-------+\n", "| text | type | user_id | cool | funny |\n", "+-------------------------------+--------+------------------------+------+-------+\n", "| My wife took me here on my... | review | rLtl8ZkDX5vH5nAx9C3q5Q | 2 | 0 |\n", "| I have no idea why some pe... | review | 0a2KyEL0d3Yb1V6aivbIuQ | 0 | 0 |\n", "| love the gyro plate. Rice ... | review | 0hT2KtfLiobPvh6cDC8JQg | 0 | 0 |\n", "| Rosie, Dakota, and I LOVE ... | review | uZetl9T0NcROGOyFfughhg | 1 | 0 |\n", "| General Manager Scott Pete... | review | vYmM4KTsC8ZfQBg-j5MWkw | 0 | 0 |\n", "| Quiessence is, simply put,... | review | sqYN3lNgvPbPCTRsMFu27g | 4 | 1 |\n", "| Drop what you're doing and... | review | wFweIWhv2fREZV_dYkz_1g | 7 | 4 |\n", "| Luckily, I didn't have to ... | review | 1ieuYcKS7zeAv_U15AB13A | 0 | 0 |\n", "| Definitely come for Happy ... | review | Vh_DlizgGhSqQh4qfZ2h6A | 0 | 0 |\n", "| Nobuo shows his unique tal... | review | sUNkXg8-KFtCMQDV6zRzQg | 0 | 0 |\n", "+-------------------------------+--------+------------------------+------+-------+\n", "+--------+-------------+\n", "| useful | total_votes |\n", "+--------+-------------+\n", "| 5 | 7 |\n", "| 0 | 0 |\n", "| 1 | 1 |\n", "| 2 | 3 |\n", "| 0 | 0 |\n", "| 3 | 8 |\n", "| 7 | 18 |\n", "| 1 | 1 |\n", "| 0 | 0 |\n", "| 1 | 1 |\n", "+--------+-------------+\n", "[229907 rows x 11 columns]\n", "Note: Only the head of the SFrame is printed.\n", "You can use print_rows(num_rows=m, num_columns=n) to print more rows and columns." ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "reviews['total_votes'] = reviews['funny'] + reviews['cool'] + reviews['useful']\n", "reviews" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Filter rows to remove reviews with no votes" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "dtype: int\n", "Rows: 229907\n", "[1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, ... ]" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "reviews['total_votes'] > 0" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\"><table frame=\"box\" rules=\"cols\">\n", " <tr>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">business_id</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">date</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">review_id</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">stars</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">text</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">type</th>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">9yKzy9PApeiPPOUJEtnvkg</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2011-01-26 00:00:00</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">fWKvX83p0-ka4JS3dc6E5A</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">5</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">My wife took me here on<br>my birthday for break ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">review</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">6oRAC4uyJCsJl1X0WZpVSA</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2012-06-14 00:00:00</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">IESLBzqUCLdSzSqm0eCSxQ</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">4</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">love the gyro plate. Rice<br>is so good and I also ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">review</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">_1QQZuf4zZOyFCvXc0o6Vg</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2010-05-27 00:00:00</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">G-WvGaISbqqaMHlNnByodA</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">5</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Rosie, Dakota, and I LOVE<br>Chaparral Dog Park!!! ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">review</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">-yxfBYGB6SEqszmxJxd97A</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2007-12-13 00:00:00</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">m2CKSsepBCoRYWxiRUsxAg</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">4</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Quiessence is, simply<br>put, beautiful. Full ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">review</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">zp713qNhx8d9KCJJnrw1xA</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2010-02-12 00:00:00</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">riFQ3vxNpP4rWLk_CSri2A</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">5</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Drop what you're doing<br>and drive here. After I ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">review</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">hW0Ne_HTHEAgGF1rAdmR-g</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2012-07-12 00:00:00</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">JL7GXJ9u4YMx7Rzs05NfiQ</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">4</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Luckily, I didn't have to<br>travel far to make my ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">review</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">nMHhuYan8e3cONo3PornJA</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2010-08-11 00:00:00</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">jJAIXA46pU1swYyRCdfXtQ</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">5</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Nobuo shows his unique<br>talents with everything ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">review</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">AsSCv0q_BWqIe3mX2JqsOQ</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2010-06-16 00:00:00</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">E11jzpKz9Kw5K7fuARWfRw</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">5</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">The oldish man who owns<br>the store is as sweet as ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">review</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">e9nN4XxjdHj4qtKCOPq_vg</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2011-10-21 00:00:00</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">3rPt0LxF7rgmEUrznoH22w</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">5</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Wonderful Vietnamese<br>sandwich shoppe. Their ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">review</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">h53YuCiIDfEFSJCQpk8v1g</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2010-01-11 00:00:00</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">cGnKNX3I9rthE0-TH24-qA</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">5</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">They have a limited time<br>thing going on right now ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">review</td>\n", " </tr>\n", "</table>\n", "<table frame=\"box\" rules=\"cols\">\n", " <tr>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">user_id</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">cool</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">funny</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">useful</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">total_votes</th>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">rLtl8ZkDX5vH5nAx9C3q5Q</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">5</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">7</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0hT2KtfLiobPvh6cDC8JQg</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">uZetl9T0NcROGOyFfughhg</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">3</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">sqYN3lNgvPbPCTRsMFu27g</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">4</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">3</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">8</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">wFweIWhv2fREZV_dYkz_1g</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">7</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">4</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">7</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">18</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1ieuYcKS7zeAv_U15AB13A</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">sUNkXg8-KFtCMQDV6zRzQg</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">-OMlS6yWkYjVldNhC31wYg</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">3</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">5</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">C1rHp3dmepNea7XiouwB6Q</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">UPtysDF6cUDUxq2KY-6Dcg</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">3</td>\n", " </tr>\n", "</table>\n", "[? rows x 11 columns]<br/>Note: Only the head of the SFrame is printed. This SFrame is lazily evaluated.<br/>You can use len(sf) to force materialization.\n", "</div>" ], "text/plain": [ "Columns:\n", "\tbusiness_id\tstr\n", "\tdate\tdatetime\n", "\treview_id\tstr\n", "\tstars\tint\n", "\ttext\tstr\n", "\ttype\tstr\n", "\tuser_id\tstr\n", "\tcool\tint\n", "\tfunny\tint\n", "\tuseful\tint\n", "\ttotal_votes\tint\n", "\n", "Rows: Unknown\n", "\n", "Data:\n", "+------------------------+---------------------+------------------------+-------+\n", "| business_id | date | review_id | stars |\n", "+------------------------+---------------------+------------------------+-------+\n", "| 9yKzy9PApeiPPOUJEtnvkg | 2011-01-26 00:00:00 | fWKvX83p0-ka4JS3dc6E5A | 5 |\n", "| 6oRAC4uyJCsJl1X0WZpVSA | 2012-06-14 00:00:00 | IESLBzqUCLdSzSqm0eCSxQ | 4 |\n", "| _1QQZuf4zZOyFCvXc0o6Vg | 2010-05-27 00:00:00 | G-WvGaISbqqaMHlNnByodA | 5 |\n", "| -yxfBYGB6SEqszmxJxd97A | 2007-12-13 00:00:00 | m2CKSsepBCoRYWxiRUsxAg | 4 |\n", "| zp713qNhx8d9KCJJnrw1xA | 2010-02-12 00:00:00 | riFQ3vxNpP4rWLk_CSri2A | 5 |\n", "| hW0Ne_HTHEAgGF1rAdmR-g | 2012-07-12 00:00:00 | JL7GXJ9u4YMx7Rzs05NfiQ | 4 |\n", "| nMHhuYan8e3cONo3PornJA | 2010-08-11 00:00:00 | jJAIXA46pU1swYyRCdfXtQ | 5 |\n", "| AsSCv0q_BWqIe3mX2JqsOQ | 2010-06-16 00:00:00 | E11jzpKz9Kw5K7fuARWfRw | 5 |\n", "| e9nN4XxjdHj4qtKCOPq_vg | 2011-10-21 00:00:00 | 3rPt0LxF7rgmEUrznoH22w | 5 |\n", "| h53YuCiIDfEFSJCQpk8v1g | 2010-01-11 00:00:00 | cGnKNX3I9rthE0-TH24-qA | 5 |\n", "+------------------------+---------------------+------------------------+-------+\n", "+-------------------------------+--------+------------------------+------+-------+\n", "| text | type | user_id | cool | funny |\n", "+-------------------------------+--------+------------------------+------+-------+\n", "| My wife took me here on my... | review | rLtl8ZkDX5vH5nAx9C3q5Q | 2 | 0 |\n", "| love the gyro plate. Rice ... | review | 0hT2KtfLiobPvh6cDC8JQg | 0 | 0 |\n", "| Rosie, Dakota, and I LOVE ... | review | uZetl9T0NcROGOyFfughhg | 1 | 0 |\n", "| Quiessence is, simply put,... | review | sqYN3lNgvPbPCTRsMFu27g | 4 | 1 |\n", "| Drop what you're doing and... | review | wFweIWhv2fREZV_dYkz_1g | 7 | 4 |\n", "| Luckily, I didn't have to ... | review | 1ieuYcKS7zeAv_U15AB13A | 0 | 0 |\n", "| Nobuo shows his unique tal... | review | sUNkXg8-KFtCMQDV6zRzQg | 0 | 0 |\n", "| The oldish man who owns th... | review | -OMlS6yWkYjVldNhC31wYg | 1 | 1 |\n", "| Wonderful Vietnamese sandw... | review | C1rHp3dmepNea7XiouwB6Q | 1 | 0 |\n", "| They have a limited time t... | review | UPtysDF6cUDUxq2KY-6Dcg | 1 | 0 |\n", "+-------------------------------+--------+------------------------+------+-------+\n", "+--------+-------------+\n", "| useful | total_votes |\n", "+--------+-------------+\n", "| 5 | 7 |\n", "| 1 | 1 |\n", "| 2 | 3 |\n", "| 3 | 8 |\n", "| 7 | 18 |\n", "| 1 | 1 |\n", "| 1 | 1 |\n", "| 3 | 5 |\n", "| 1 | 2 |\n", "| 2 | 3 |\n", "+--------+-------------+\n", "[? rows x 11 columns]\n", "Note: Only the head of the SFrame is printed. This SFrame is lazily evaluated.\n", "You can use len(sf) to force materialization." ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "reviews = reviews[reviews['total_votes'] > 0]\n", "reviews" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "147084" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "reviews.num_rows()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Classification task\n", "\n", "### Predict which reviews will be voted \"funny,\" based on review text.\n", "\n", "#### First, the labels. Reviews with at least one vote for \"funny\" is funny." ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [], "source": [ "reviews['funny'] = reviews['funny'] > 0" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\"><table frame=\"box\" rules=\"cols\">\n", " <tr>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">text</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">funny</th>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">My wife took me here on<br>my birthday for break ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">love the gyro plate. Rice<br>is so good and I also ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Rosie, Dakota, and I LOVE<br>Chaparral Dog Park!!! ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Quiessence is, simply<br>put, beautiful. Full ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Drop what you're doing<br>and drive here. After I ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Luckily, I didn't have to<br>travel far to make my ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Nobuo shows his unique<br>talents with everything ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">The oldish man who owns<br>the store is as sweet as ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Wonderful Vietnamese<br>sandwich shoppe. Their ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">They have a limited time<br>thing going on right now ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " </tr>\n", "</table>\n", "[147084 rows x 2 columns]<br/>Note: Only the head of the SFrame is printed.<br/>You can use print_rows(num_rows=m, num_columns=n) to print more rows and columns.\n", "</div>" ], "text/plain": [ "Columns:\n", "\ttext\tstr\n", "\tfunny\tint\n", "\n", "Rows: 147084\n", "\n", "Data:\n", "+-------------------------------+-------+\n", "| text | funny |\n", "+-------------------------------+-------+\n", "| My wife took me here on my... | 0 |\n", "| love the gyro plate. Rice ... | 0 |\n", "| Rosie, Dakota, and I LOVE ... | 0 |\n", "| Quiessence is, simply put,... | 1 |\n", "| Drop what you're doing and... | 1 |\n", "| Luckily, I didn't have to ... | 0 |\n", "| Nobuo shows his unique tal... | 0 |\n", "| The oldish man who owns th... | 1 |\n", "| Wonderful Vietnamese sandw... | 0 |\n", "| They have a limited time t... | 0 |\n", "+-------------------------------+-------+\n", "[147084 rows x 2 columns]\n", "Note: Only the head of the SFrame is printed.\n", "You can use print_rows(num_rows=m, num_columns=n) to print more rows and columns." ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "reviews = reviews[['text','funny']]\n", "reviews" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### To save time, take just a small subset" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": true }, "outputs": [], "source": [ "reviews = reviews[:10000]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Create bag-of-words representation of text" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": false }, "outputs": [], "source": [ "word_delims = [\"\\r\", \"\\v\", \"\\n\", \"\\f\", \"\\t\", \" \", \n", " '~', '`', '!', '@', '#', '$', '%', '^', '&', '*', '-', '_', '+', '=', \n", " ',', '.', ';', ':', '\\\"', '?', '|', '\\\\', '/', \n", " '<', '>', '(', ')', '[', ']', '{', '}']\n", "\n", "reviews['bow'] = gl.text_analytics.count_words(reviews['text'], delimiters=word_delims)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Create tf-idf representation of the bag of words" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": true }, "outputs": [], "source": [ "reviews['tf_idf'] = gl.text_analytics.tf_idf(reviews['bow'])" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": false }, "outputs": [], "source": [ "reviews['tf_idf'] = reviews['tf_idf'].apply(lambda x: x['docs'])" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\"><table frame=\"box\" rules=\"cols\">\n", " <tr>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">text</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">funny</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">bow</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">tf_idf</th>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">My wife took me here on<br>my birthday for break ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">{'anyway': 1, 'looks': 1,<br>'go': 1, 'toast': 1, ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">{'anyway':<br>3.564893474332945, ...</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">love the gyro plate. Rice<br>is so good and I also ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">{'and': 1, 'plate': 1,<br>'selection': 1, 'love': ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">{'and':<br>0.08621169681906551, ...</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Rosie, Dakota, and I LOVE<br>Chaparral Dog Park!!! ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">{'and': 8, 'does': 1,<br>'all': 1, 'surrounded': ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">{'and':<br>0.6896935745525241, ...</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Quiessence is, simply<br>put, beautiful. Full ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">{'45': 1, 'seated': 1,<br>'just': 1, 'bring': 1, ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">{'just':<br>1.0552654841647438, ...</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Drop what you're doing<br>and drive here. After I ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">{'cute': 1, 'condesa': 1,<br>'desolate': 1, 'mexic ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">{'cute':<br>3.575550768806933, ...</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Luckily, I didn't have to<br>travel far to make my ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">{'and': 2, 'presence': 1,<br>\"didn't\": 1, 'as': 1, ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">{'and':<br>0.17242339363813103, ...</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Nobuo shows his unique<br>talents with everything ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">{'and': 1, 'pork': 1,<br>'features': 1, 'go': 1, ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">{'and':<br>0.08621169681906551, ...</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">The oldish man who owns<br>the store is as sweet as ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">{'and': 1, 'cookies': 2,<br>'sweet': 1, 'is': 1, ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">{'and':<br>0.08621169681906551, ...</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Wonderful Vietnamese<br>sandwich shoppe. Their ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">{'selection': 1, 'have':<br>2, 'baguettes': 1, ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">{'selection':<br>2.6882475738060303, ...</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">They have a limited time<br>thing going on right now ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">{'and': 1, 'limited': 1,<br>'all': 1, 'on': 1, ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">{'and':<br>0.08621169681906551, ...</td>\n", " </tr>\n", "</table>\n", "[10000 rows x 4 columns]<br/>Note: Only the head of the SFrame is printed.<br/>You can use print_rows(num_rows=m, num_columns=n) to print more rows and columns.\n", "</div>" ], "text/plain": [ "Columns:\n", "\ttext\tstr\n", "\tfunny\tint\n", "\tbow\tdict\n", "\ttf_idf\tdict\n", "\n", "Rows: 10000\n", "\n", "Data:\n", "+-------------------------------+-------+-------------------------------+\n", "| text | funny | bow |\n", "+-------------------------------+-------+-------------------------------+\n", "| My wife took me here on my... | 0 | {'anyway': 1, 'looks': 1, ... |\n", "| love the gyro plate. Rice ... | 0 | {'and': 1, 'plate': 1, 'se... |\n", "| Rosie, Dakota, and I LOVE ... | 0 | {'and': 8, 'does': 1, 'all... |\n", "| Quiessence is, simply put,... | 1 | {'45': 1, 'seated': 1, 'ju... |\n", "| Drop what you're doing and... | 1 | {'cute': 1, 'condesa': 1, ... |\n", "| Luckily, I didn't have to ... | 0 | {'and': 2, 'presence': 1, ... |\n", "| Nobuo shows his unique tal... | 0 | {'and': 1, 'pork': 1, 'fea... |\n", "| The oldish man who owns th... | 1 | {'and': 1, 'cookies': 2, '... |\n", "| Wonderful Vietnamese sandw... | 0 | {'selection': 1, 'have': 2... |\n", "| They have a limited time t... | 0 | {'and': 1, 'limited': 1, '... |\n", "+-------------------------------+-------+-------------------------------+\n", "+-------------------------------+\n", "| tf_idf |\n", "+-------------------------------+\n", "| {'anyway': 3.5648934743329... |\n", "| {'and': 0.0862116968190655... |\n", "| {'and': 0.6896935745525241... |\n", "| {'just': 1.055265484164743... |\n", "| {'cute': 3.575550768806933... |\n", "| {'and': 0.1724233936381310... |\n", "| {'and': 0.0862116968190655... |\n", "| {'and': 0.0862116968190655... |\n", "| {'selection': 2.6882475738... |\n", "| {'and': 0.0862116968190655... |\n", "+-------------------------------+\n", "[10000 rows x 4 columns]\n", "Note: Only the head of the SFrame is printed.\n", "You can use print_rows(num_rows=m, num_columns=n) to print more rows and columns." ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "reviews" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Create a train-test split\n", "\n", "#### Returns immediately because SFrame operations are lazily evaluated." ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "collapsed": true }, "outputs": [], "source": [ "train_sf, test_sf = reviews.random_split(0.8)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Train classifiers on bow and tf-idf" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Dictionaries are automatically interpreted as sparse features. \n", "\n", "Not demonstrated here, but any string/categorical columns are automatically interpreted as sparse features as well." ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "PROGRESS: Logistic regression:\n", "PROGRESS: --------------------------------------------------------\n", "PROGRESS: Number of examples : 8039\n", "PROGRESS: Number of classes : 2\n", "PROGRESS: Number of feature columns : 1\n", "PROGRESS: Number of unpacked features : 30218\n", "PROGRESS: Number of coefficients : 30219\n", "PROGRESS: Starting L-BFGS\n", "PROGRESS: --------------------------------------------------------\n", "PROGRESS: +-----------+----------+-----------+--------------+-------------------+\n", "PROGRESS: | Iteration | Passes | Step size | Elapsed Time | Training-accuracy |\n", "PROGRESS: +-----------+----------+-----------+--------------+-------------------+\n", "PROGRESS: | 1 | 6 | 0.000002 | 1.235960 | 0.480781 |\n", "PROGRESS: | 2 | 9 | 5.000000 | 1.387001 | 0.574450 |\n", "PROGRESS: | 3 | 10 | 5.000000 | 1.453472 | 0.506779 |\n", "PROGRESS: | 4 | 11 | 5.000000 | 1.527113 | 0.593233 |\n", "PROGRESS: | 5 | 12 | 5.000000 | 1.606156 | 0.484389 |\n", "PROGRESS: | 6 | 14 | 1.000000 | 1.753020 | 0.567110 |\n", "PROGRESS: +-----------+----------+-----------+--------------+-------------------+\n" ] } ], "source": [ "m1 = gl.logistic_classifier.create(train_sf, \n", " 'funny', \n", " features=['bow'], \n", " validation_set=None, \n", " feature_rescaling=False)" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "PROGRESS: Logistic regression:\n", "PROGRESS: --------------------------------------------------------\n", "PROGRESS: Number of examples : 8039\n", "PROGRESS: Number of classes : 2\n", "PROGRESS: Number of feature columns : 1\n", "PROGRESS: Number of unpacked features : 30218\n", "PROGRESS: Number of coefficients : 30219\n", "PROGRESS: Starting L-BFGS\n", "PROGRESS: --------------------------------------------------------\n", "PROGRESS: +-----------+----------+-----------+--------------+-------------------+\n", "PROGRESS: | Iteration | Passes | Step size | Elapsed Time | Training-accuracy |\n", "PROGRESS: +-----------+----------+-----------+--------------+-------------------+\n", "PROGRESS: | 1 | 6 | 0.000009 | 0.375903 | 0.483891 |\n", "PROGRESS: | 2 | 10 | 21.000000 | 0.716405 | 0.709790 |\n", "PROGRESS: | 3 | 11 | 21.000000 | 0.942466 | 0.624083 |\n", "PROGRESS: | 4 | 17 | 1.294279 | 1.391701 | 0.750591 |\n", "PROGRESS: | 5 | 18 | 1.294279 | 1.503106 | 0.500684 |\n", "PROGRESS: | 6 | 20 | 1.000000 | 1.689104 | 0.770121 |\n", "PROGRESS: | 10 | 24 | 1.000000 | 2.161948 | 0.872621 |\n", "PROGRESS: +-----------+----------+-----------+--------------+-------------------+\n" ] } ], "source": [ "m2 = gl.logistic_classifier.create(train_sf, \n", " 'funny', \n", " features=['tf_idf'], \n", " validation_set=None, \n", " feature_rescaling=False)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Evaluate on validation set and compare performance" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "{'accuracy': 0.6017338092809791, 'confusion_matrix': Columns:\n", " \ttarget_label\tint\n", " \tpredicted_label\tint\n", " \tcount\tint\n", " \n", " Rows: 4\n", " \n", " Data:\n", " +--------------+-----------------+-------+\n", " | target_label | predicted_label | count |\n", " +--------------+-----------------+-------+\n", " | 0 | 1 | 380 |\n", " | 0 | 0 | 685 |\n", " | 1 | 0 | 401 |\n", " | 1 | 1 | 495 |\n", " +--------------+-----------------+-------+\n", " [4 rows x 3 columns]}" ] }, "execution_count": 23, "metadata": {}, "output_type": "execute_result" } ], "source": [ "m1_res = m1.evaluate(test_sf)\n", "m1_res" ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "{'accuracy': 0.6078531361550229, 'confusion_matrix': Columns:\n", " \ttarget_label\tint\n", " \tpredicted_label\tint\n", " \tcount\tint\n", " \n", " Rows: 4\n", " \n", " Data:\n", " +--------------+-----------------+-------+\n", " | target_label | predicted_label | count |\n", " +--------------+-----------------+-------+\n", " | 0 | 0 | 722 |\n", " | 0 | 1 | 343 |\n", " | 1 | 0 | 426 |\n", " | 1 | 1 | 470 |\n", " +--------------+-----------------+-------+\n", " [4 rows x 3 columns]}" ] }, "execution_count": 24, "metadata": {}, "output_type": "execute_result" } ], "source": [ "m2_res = m2.evaluate(test_sf)\n", "m2_res" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Baseline accuracy (what if we classify everything as the majority class)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Percentage of 'funny' reviews:" ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "0.45690973992860784" ] }, "execution_count": 25, "metadata": {}, "output_type": "execute_result" } ], "source": [ "float(test_sf['funny'].sum())/test_sf.num_rows()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Percentage of not funny reviews:" ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "0.5430902600713922" ] }, "execution_count": 26, "metadata": {}, "output_type": "execute_result" } ], "source": [ "1.0 - float(test_sf['funny'].sum())/test_sf.num_rows()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.10" } }, "nbformat": 4, "nbformat_minor": 0 }
apache-2.0
Cyb3rWard0g/HELK
docker/helk-jupyter/notebooks/sigma/win_alert_ad_user_backdoors.ipynb
1
4512
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Active Directory User Backdoors\n", "Detects scenarios where one can control another users or computers account without having to use their credentials." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Rule Content\n", "```\n", "- title: Active Directory User Backdoors\n", " id: 300bac00-e041-4ee2-9c36-e262656a6ecc\n", " description: Detects scenarios where one can control another users or computers\n", " account without having to use their credentials.\n", " references:\n", " - https://msdn.microsoft.com/en-us/library/cc220234.aspx\n", " - https://adsecurity.org/?p=3466\n", " - https://www.harmj0y.net/blog/redteaming/another-word-on-delegation/\n", " author: '@neu5ron'\n", " tags:\n", " - attack.t1098\n", " - attack.credential_access\n", " - attack.persistence\n", " logsource:\n", " product: windows\n", " service: security\n", " definition1: 'Requirements: Audit Policy : Account Management > Audit User Account\n", " Management, Group Policy : Computer Configuration\\Windows Settings\\Security\n", " Settings\\Advanced Audit Policy Configuration\\Audit Policies\\Account Management\\Audit\n", " User Account Management'\n", " definition2: 'Requirements: Audit Policy : DS Access > Audit Directory Service\n", " Changes, Group Policy : Computer Configuration\\Windows Settings\\Security Settings\\Advanced\n", " Audit Policy Configuration\\Audit Policies\\DS Access\\Audit Directory Service\n", " Changes'\n", " category: null\n", " detection:\n", " selection1:\n", " EventID: 4738\n", " filter1:\n", " AllowedToDelegateTo: null\n", " filter2:\n", " AllowedToDelegateTo: '-'\n", " selection2:\n", " EventID: 5136\n", " AttributeLDAPDisplayName: msDS-AllowedToDelegateTo\n", " selection3:\n", " EventID: 5136\n", " ObjectClass: user\n", " AttributeLDAPDisplayName: servicePrincipalName\n", " selection4:\n", " EventID: 5136\n", " AttributeLDAPDisplayName: msDS-AllowedToActOnBehalfOfOtherIdentity\n", " condition: (selection1 and not 1 of filter*) or selection2 or selection3 or selection4\n", " falsepositives:\n", " - Unknown\n", " level: high\n", "\n", "```" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Querying Elasticsearch" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Import Libraries" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from elasticsearch import Elasticsearch\n", "from elasticsearch_dsl import Search\n", "import pandas as pd" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Initialize Elasticsearch client" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "es = Elasticsearch(['http://helk-elasticsearch:9200'])\n", "searchContext = Search(using=es, index='logs-endpoint-winevent-security-*', doc_type='doc')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Run Elasticsearch Query" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "s = searchContext.query('query_string', query='((((event_id:\"4738\" AND (NOT ((NOT _exists_:user_attribute_allowed_todelegate) OR (user_attribute_allowed_todelegate:\"\\-\")))) OR (event_id:\"5136\" AND dsobject_attribute_name:\"msDS\\-AllowedToDelegateTo\")) OR (event_id:\"5136\" AND dsobject_class:\"user\" AND dsobject_attribute_name:\"servicePrincipalName\")) OR (event_id:\"5136\" AND dsobject_attribute_name:\"msDS\\-AllowedToActOnBehalfOfOtherIdentity\"))')\n", "response = s.execute()\n", "if response.success():\n", " df = pd.DataFrame((d.to_dict() for d in s.scan()))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Show Results" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "df.head()" ] } ], "metadata": {}, "nbformat": 4, "nbformat_minor": 4 }
gpl-3.0
jallen2/Research-Trend
.ipynb_checkpoints/ClemsonDTM_Data_Mining-checkpoint.ipynb
1
7572
{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "Number of Topics: 55\n", "done\n" ] } ], "source": [ "from bs4 import BeautifulSoup\n", "from gensim import corpora\n", "from pprint import pprint \n", "from collections import defaultdict\n", "import glob \n", "\n", "\n", "#Array storage for Award IDs and Abstracts \n", "awardabs_ar=[]\n", "aID_ar=[]\n", "doct_div2 = []\n", "doc_div = []\n", " \n", "for items in glob.glob(\"201*/*.xml\"): #Iterate through all xml files in the directory/file name given\n", " \n", " #Open files\n", " item = open(items)\n", " \n", " #Store Data\n", " xml = item.read()\n", " \n", " #Convert data to text \n", " soup = BeautifulSoup(xml,'xml')\n", " \n", " #store the current name of the institution \n", " clemson = soup.Name.string\n", " \n", " #Check if the name matches Clemson University \n", " #if clemson==\"Clemson University\":\n", " #Add award ID \n", " ID = soup.AwardID.string\n", " aID_ar.append(ID)\n", " \n", " #filter data if not None Type, Error checking \n", " if soup.AbstractNarration.string is not None: \n", " abst = soup.AbstractNarration.string\n", " #Adds abstracts to its list \n", " awardabs_ar.append(abst)\n", " \n", " #Determine the number of topics if not None Type, error checking \n", " if soup.Directorate.LongName.string is not None:\n", " doct = soup.Directorate.LongName.string\n", " if soup.Division.LongName.string is not None:\n", " div = soup.Division.LongName.string\n", " #concatenate Directorate and Divison names for testing \n", " test = doct + \"\\t\" + div\n", " \n", " #All Directorates and Divisions stored \n", " doc_div.append(test)\n", " \n", " #No duplicate Directorate and Division combinations \n", " if test not in doct_div2:\n", " doct_div2.append(test)\n", "\n", "topic = len(doct_div2)\n", "print(\"\\nNumber of Topics:\", topic)\n", "\n", "#All Abstracts \n", "file=open(\"cu_tigers.txt\",\"w\") \n", "for lines in awardabs_ar:\n", " file.write(lines)\n", " file.write('\\n')\n", "file.close()\n", "\n", "#All Xml Award IDs \n", "file2=open(\"cu_IDs.txt\",\"w\") \n", "for lines in aID_ar:\n", " file2.write(lines)\n", " file2.write('\\n')\n", "file2.close()\n", "\n", "#No Dublicate Directorates and Division Combos \n", "file3=open(\"cu_doc_div2.txt\",\"w\") \n", "for lines in doct_div2:\n", " file3.write(lines)\n", " file3.write('\\n')\n", "file3.close()\n", "\n", "#All Directorates and Divisions \n", "file4=open(\"cu_doc_div.txt\",\"w\") \n", "for lines in doc_div:\n", " file4.write(lines)\n", " file4.write('\\n')\n", "file4.close()\n", "\n", "print(\"done\")" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "Number of Topics: 25\n", "done\n" ] } ], "source": [ "from bs4 import BeautifulSoup\n", "from gensim import corpora\n", "from pprint import pprint \n", "from collections import defaultdict\n", "import glob \n", "\n", "\n", "#Array storage for Award IDs and Abstracts \n", "awardabs_ar=[]\n", "aID_ar=[]\n", "doct_div2 = []\n", "doc_div = []\n", " \n", "for items in glob.glob(\"201*/*.xml\"): #Iterate through all xml files in the directory/file name given\n", " \n", " #Open files\n", " item = open(items)\n", " \n", " #Store Data\n", " xml = item.read()\n", " \n", " #Convert data to text \n", " soup = BeautifulSoup(xml,'xml')\n", " \n", " #store the current name of the institution \n", " clemson = soup.Name.string\n", " \n", " #Check if the name matches Clemson University \n", " if clemson==\"Clemson University\":\n", " #Add award ID \n", " ID = soup.AwardID.string\n", " aID_ar.append(ID)\n", " \n", " #filter data if not None Type, Error checking \n", " if soup.AbstractNarration.string is not None: \n", " abst = soup.AbstractNarration.string\n", " #Adds abstracts to its list \n", " awardabs_ar.append(abst)\n", " \n", " #Determine the number of topics if not None Type, error checking \n", " if soup.Directorate.LongName.string is not None:\n", " doct = soup.Directorate.LongName.string\n", " if soup.Division.LongName.string is not None:\n", " div = soup.Division.LongName.string\n", " #concatenate Directorate and Divison names for testing \n", " test = doct + \" \" + div\n", " \n", " #All Directorates and Divisions stored \n", " doc_div.append(test)\n", " \n", " #No duplicate Directorate and Division combinations \n", " if test not in doct_div2:\n", " doct_div2.append(test)\n", "\n", "topic = len(doct_div2)\n", "print(\"\\nNumber of Topics:\", topic)\n", "\n", "#All Abstracts \n", "file=open(\"cu_tigers.txt\",\"w\") \n", "for lines in awardabs_ar:\n", " file.write(lines)\n", " file.write('\\n')\n", "file.close()\n", "\n", "#All Xml Award IDs \n", "file2=open(\"cu_IDs.txt\",\"w\") \n", "for lines in aID_ar:\n", " file2.write(lines)\n", " file2.write('\\n')\n", "file2.close()\n", "\n", "#No Dublicate Directorates and Division Combos \n", "file3=open(\"cu_doc_div2.txt\",\"w\") \n", "for lines in doct_div2:\n", " file3.write(lines)\n", " file3.write('\\n')\n", "file3.close()\n", "\n", "#All Directorates and Divisions \n", "file4=open(\"cu_doc_div.txt\",\"w\") \n", "for lines in doc_div:\n", " file4.write(lines)\n", " file4.write('\\n')\n", "file4.close()\n", "\n", "#Total Topic count\n", "file5=open(\"TotalTopicCount.txt\",\"w\")\n", "file5.write(str(topic))\n", "file5.close()\n", "\n", "print(\"done\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Anaconda 2.5.0 (Python 3)", "language": "python", "name": "anaconda_2.5.0_python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.2" } }, "nbformat": 4, "nbformat_minor": 1 }
mit
sserkez/ocelot
test/workshop/3_space_charge.ipynb
1
84570
{ "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.2" }, "name": "", "signature": "sha256:430512a24c8fb14242d6c68a3b3fa21e026963f41f0acde27971315914942cc1" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "*This notebook was created by [Sergey Tomin](http://www.xfel.eu/organization/staff/tomin_sergey/) for Workshop: [Designing future X-ray FELs](http://www.xrayfels.co.uk/). Source and license info is on [GitHub](https://github.com/iagapov/ocelot/tree/dev/docs). August 2016.*" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Tutorial N3. Space Charge.\n", "*Second order tracking with space charge effect of the 200k particles.*\n", "\n", "As an example, we will use lattice file (converted to Ocelot format) of the European XFEL Injector. \n", "\n", "The space charge forces are calculated by solving the Poisson equation in the bunch frame. \n", "Then the Lorentz transformed electromagnetic field is applied as a kick in the laboratory frame.\n", "For the solution of the Poisson equation we use an integral representation of the electrostatic potential by convolution of the free-space Green's function with the charge distribution. The convolution equation is solved with the help of the Fast Fourier Transform (FFT). The same algorithm for solution of the 3D Poisson equation is used, for example, in [ASTRA](http://www.desy.de/~mpyflo/).\n", "\n", "#### This example will cover the following topics:\n", "* Initialization of the Space Charge objects and the places of their applying\n", "* tracking of second order with space charge effect.\n", "\n", "#### Requirements \n", "* injector_lattice.py - input file, the The European XFEL Injector lattice.\n", "* beam_6MeV.ast - input file, initial beam distribution in ASTRA format (was obtained from s2e simulation performed with ASTRA)." ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Import of modules" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# the output of plotting commands is displayed inline within frontends, \n", "# directly below the code cell that produced it\n", "%matplotlib inline\n", "\n", "from time import time \n", "\n", "# this python library provides generic shallow (copy) and deep copy (deepcopy) operations \n", "from copy import deepcopy\n", "\n", "# import from Ocelot main modules and functions\n", "from ocelot import *\n", "\n", "# import from Ocelot graphical modules\n", "from ocelot.gui.accelerator import *\n", "\n", "# import injector lattice\n", "from ocelot.test.workshop.injector_lattice import *\n", "\n", "# load beam distribution\n", "# this function convert Astra beam distribution to Ocelot format - ParticleArray. ParticleArray is designed for tracking.\n", "# in order to work with converters we have to import specific module from ocelot.adaptors\n", "from ocelot.adaptors.astra2ocelot import *" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "initializing ocelot...\n" ] } ], "prompt_number": 1 }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Change RF parameters for the comparison with ASTRA" ] }, { "cell_type": "code", "collapsed": false, "input": [ "phi1=18.7268\n", "V1=18.50662e-3/np.cos(phi1*pi/180)\n", "\n", "C_A1_1_1_I1.v = V1; C_A1_1_1_I1.phi = phi1\n", "C_A1_1_2_I1.v = V1; C_A1_1_2_I1.phi = phi1\n", "C_A1_1_3_I1.v = V1; C_A1_1_3_I1.phi = phi1\n", "C_A1_1_4_I1.v = V1; C_A1_1_4_I1.phi = phi1\n", "C_A1_1_5_I1.v = V1; C_A1_1_5_I1.phi = phi1\n", "C_A1_1_6_I1.v = V1; C_A1_1_6_I1.phi = phi1\n", "C_A1_1_7_I1.v = V1; C_A1_1_7_I1.phi = phi1\n", "C_A1_1_8_I1.v = V1; C_A1_1_8_I1.phi = phi1\n", "\n", "phi13=180\n", "V13=-20.2E-3/8/np.cos(phi13*pi/180)\n", "\n", "C3_AH1_1_1_I1.v=V13; C3_AH1_1_1_I1.phi=phi13\n", "C3_AH1_1_2_I1.v=V13; C3_AH1_1_2_I1.phi=phi13\n", "C3_AH1_1_3_I1.v=V13; C3_AH1_1_3_I1.phi=phi13\n", "C3_AH1_1_4_I1.v=V13; C3_AH1_1_4_I1.phi=phi13\n", "C3_AH1_1_5_I1.v=V13; C3_AH1_1_5_I1.phi=phi13\n", "C3_AH1_1_6_I1.v=V13; C3_AH1_1_6_I1.phi=phi13\n", "C3_AH1_1_7_I1.v=V13; C3_AH1_1_7_I1.phi=phi13\n", "C3_AH1_1_8_I1.v=V13; C3_AH1_1_8_I1.phi=phi13" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 2 }, { "cell_type": "code", "collapsed": false, "input": [ "p_array_init = astraBeam2particleArray(filename='beam_6MeV.ast')" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "('Astra to Ocelot: charge = ', 2.5000000000000012e-10)\n", "('Astra to Ocelot: particles number = ', 200000)\n", "('Astra to Ocelot: energy = ', 0.0065579389982232342)" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "('Astra to Ocelot: s pos = ', 3.2000000000000002)\n" ] } ], "prompt_number": 3 }, { "cell_type": "code", "collapsed": true, "input": [ "# initialization of tracking method\n", "method = MethodTM()\n", "\n", "# for second order tracking we have to choose SecondTM \n", "method.global_method = SecondTM\n", "\n", "# for first order tracking uncomment next line\n", "# method.global_method = TransferMap\n", "\n", "# we will start simulation from point 3.2 from the gun. For this purpose marker was created (start_sim=Marker()) \n", "# and placed in 3.2 m after gun \n", "# Q_38_I1 is quadrupole between RF cavities 1.3 GHz and 3.9 GHz\n", "# C3_AH1_1_8_I1 is the last section of the 3.9 GHz cavity\n", "lat = MagneticLattice(cell, start=start_sim, stop=Q_38_I1, method=method)" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 4 }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Initializing SpaceCharge" ] }, { "cell_type": "code", "collapsed": false, "input": [ "sc1 = SpaceCharge()\n", "sc1.nmesh_xyz = [63, 63, 63]\n", "sc1.low_order_kick = False\n", "sc1.step = 1\n", "\n", "sc5 = SpaceCharge()\n", "sc5.nmesh_xyz = [63, 63, 63]\n", "sc5.step = 5\n", "sc5.low_order_kick = False" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 5 }, { "cell_type": "code", "collapsed": false, "input": [ "navi = Navigator(lat)\n", "\n", "# add physics processes from the first element to the last of the lattice\n", "navi.add_physics_proc(sc1, lat.sequence[0], C_A1_1_2_I1)\n", "navi.add_physics_proc(sc5, C_A1_1_2_I1, lat.sequence[-1])\n", "\n", "# definiing of unit step in [m]\n", "navi.unit_step = 0.02\n", "\n", "# deep copy of the initial beam distribution \n", "p_array = deepcopy(p_array_init)\n", "start = time()\n", "tws_track, p_array = track(lat, p_array, navi)\n", "\n", "print(\"time exec: \", time() - start, \"sec\")" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 0.02 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 0.04 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 0.06 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 0.08 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 0.1 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 0.12 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 0.14 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 0.16 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 0.18 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 0.2 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 0.22 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 0.24 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 0.26 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 0.28 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 0.3 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 0.32 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 0.34 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 0.36 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 0.38 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 0.4 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 0.42 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 0.44 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 0.46 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 0.48 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 0.5 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 0.52 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 0.54 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 0.56 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 0.58 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 0.6 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 0.62 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 0.64 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 0.66 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 0.68 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 0.7 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 0.72 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 0.74 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 0.76 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 0.78 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 0.8 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 0.82 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 0.84 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 0.86 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 0.88 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 0.9 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 0.92 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 0.94 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 0.96 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 0.98 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 1.0 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 1.02 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 1.04 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 1.06 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 1.08 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 1.1 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 1.12 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 1.14 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 1.16 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 1.18 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 1.2 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 1.22 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 1.24 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 1.26 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 1.28 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 1.3 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 1.32 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 1.34 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 1.36 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 1.38 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 1.4 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 1.42 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 1.44 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 1.46 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 1.48 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 1.5 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 1.52 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 1.54 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 1.56 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 1.58 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 1.6 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 1.62 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 1.64 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 1.66 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 1.68 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 1.7 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 1.72 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 1.82 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 1.92 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 2.02 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 2.12 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 2.22 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 2.32 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 2.42 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 2.52 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 2.62 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 2.72 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 2.82 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 2.92 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 3.02 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 3.12 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 3.22 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 3.32 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 3.42 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 3.52 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 3.62 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 3.72 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 3.82 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 3.92 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 4.02 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 4.12 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 4.22 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 4.32 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 4.42 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 4.52 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 4.62 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 4.72 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 4.82 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 4.92 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 5.02 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 5.12 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 5.22 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 5.32 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 5.42 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 5.52 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 5.62 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 5.72 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 5.82 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 5.92 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 6.02 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 6.12 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 6.22 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 6.32 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 6.42 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 6.52 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 6.62 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 6.72 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 6.82 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 6.92 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 7.02 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 7.12 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 7.22 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 7.32 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 7.42 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 7.52 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 7.62 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 7.72 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 7.82 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 7.92 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 8.02 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 8.12 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 8.22 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 8.32 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 8.42 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 8.52 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 8.62 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 8.72 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 8.82 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 8.92 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 9.02 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 9.12 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 9.22 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 9.32 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 9.42 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 9.52 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 9.62 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 9.72 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 9.82 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 9.92 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 10.02 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 10.12 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 10.22 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 10.32 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 10.42 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 10.52 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 10.62 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 10.72 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 10.82 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 10.92 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 11.02 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 11.12 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 11.22 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 11.32 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 11.42 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 11.52 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 11.62 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 11.72 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 11.82 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 11.92 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 12.02 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 12.12 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 12.22 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 12.32 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 12.42 / 12.6974 : applied: SpaceCharge" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\r", "z = 12.6974 / 12.6974 : applied: " ] }, { "output_type": "stream", "stream": "stdout", "text": [ "('time exec: ', 222.24300003051758, 'sec')\n" ] } ], "prompt_number": 6 }, { "cell_type": "code", "collapsed": false, "input": [ "# you can change top_plot argument, for example top_plot=[\"alpha_x\", \"alpha_y\"]\n", "plot_opt_func(lat, tws_track, top_plot=[\"E\"], fig_name=0, legend=False)\n", "plt.show()" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEeCAYAAADfIYGoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8VdW5//HPQ+YQQkgICRkMYYggDggKwaFY64ADOBS1\ntFa01mtv672093rV9vbXubW17atKvVqnOlSrDA51wFoUURnCjAPzEEISOElISJgy5/n9sU/IQEJO\nkjPl5Hm/XufF2efss/eziPLN2mfttURVMcYYY4LNgEAXYIwxxnTEAsoYY0xQsoAyxhgTlCygjDHG\nBCULKGOMMUHJAsoYY0xQ8ltAich0EdkmIjtF5P4O3h8rIqtEpEZE/rvdewkiskhEtorIFhHJ9Vfd\nxhhjAiPcHycRkTDgUeAyoBhYKyJvqurWVruVA/8BXN/BIR4BFqvqLBEJBwb6umZjjDGB5a8e1GRg\nl6ruVdV64BXgutY7qGqZqq4D6lu/LiKDgYtV9a/u/RpUtcpPdRtjjAkQfwVUOlDYarvI/ZonsoEy\nEXlWRDaIyFMiEuv1Co0xxgQVv1ziA3ozn1I4MBG4R1XXisjDwAPAT1rvNHPmTN23b9+J7dTUVFJT\nU3tx2uCUnp5OcXFxoMvwOWtnaLF2hg5vtNHlcuFyuU5sf/rpp6iqtN/PXwFVDGS22s7E6UV5oggo\nUtW17u1FOAHVxr59+9i0aVOviuwL5s6dy3PPPRfoMnzO2hlarJ2hwxdtFDkpmwD/BdQ6YIyIjAD2\nA7cAszvZt02lquoSkUIRyVHVHTgDLTb7sFZjjAl6FRXw5puweTOUlcHBg1Bb6/vzNjTA5Zf7/jzg\np4BS1QYRuQd4DwgDnlHVrSJyt/v9J0QkFVgLxANNIjIXOENVj+KM7ntJRCKB3cAd/qjbGGOCSUUF\nvPEGLFgAH3zghIW/nXMOfPqpf87lrx4Uqvou8G67155o9dxF28uArff7FDj/VMcPxe+bOpKb2z9u\nAbN2hhZrZ891FkphYU5P5stfhpQUSEqCWD8MH/vss1x+/3vvHvOKKzp+3W8B5WsWUKHF2hlarJ3d\nU17uhNLChR2H0s03w/XXw9ChXjldt4wenUt2tn/OFTIBZYwxfdmpQumKK+CmmwIXSoFiAWWMMQFi\noXRqFlDGGONHzaG0YAEsXWqhdCoWUMYYcwo1NTWUlJRQVVVFfX39Kfd1uVxUVFSc9HpVFaxcCZ98\nAhs3QlOT8/qQIXDuuXDxxTB1KiQkOK8XFDiPYNRZG1uLiIhg8ODBpKSkEB0d3eNzWUAZY0wnampq\n2LFjB8OGDWPs2LFERkaecv/i4mLS051Z3Cor4cMP4f33Ye1aaGx09hkxAs4/3xnscMklLaHUV7Ru\nY2fq6uqoqKhgx44d5OTk9DikLKCMMaYTJSUlDBs2zONRwrW18PrrJ4dSWBjk5vbdUOquyMjIE39n\nJSUlZGVl9eg4FlDGGNOBsjJ49dUqYmLG4nI529rBrKINDVBd7TzOPtuZ3QGcUJo6FS67rH+EUkcS\nExPZtm1bjz9vAWWMMW5lZU4PaOFC5/JcQkI9WVmnvqzX2tlnWyi1FhkZSUMvpruwgDLG9GvtQ6n5\nslx4OEycCDNmQHo6pKY6vaL2BgxwZnBonsXBXzex9hXaUbfTQxZQxph+51ShNH16y1Dv/HyYNMnz\n44b4Sht+ZwFljOkXPA2lxMSWz+TnB6ZW47CAMsaErK5C6eab4brr2oaSCR5+DSgRmQ48jLPkxtOq\n+rt2748FngXOBf5XVf/ofj0TeAEYhrM675OqOs+ftRtj+obSUnjtNSeUli1ruSk2PByuusrpKVko\n9Q1+CygRCQMexVlwsBhYKyJvqurWVruV46z9dH27j9cDP1DVTSISB6wXkSXtPmuM6adcrpZQ+vjj\nllCKiIArr7RQ6q6PPvqI//u//+Ptt9+msbGRG264gYiICAAOHz5MSUkJa9eu5bbbbuPZZ5/1WR3+\n7EFNBnap6l4AEXkFuA44ETKqWgaUicg1rT/oXivK5X5+VES2AmmtP2uM6V8OHGgbSs2DxSIiWnpK\nM2c60wmZ7pk2bRrTpk0jIyODKVOm8Morr5x4r3kmiccff5xiH48K8WdApQOFrbaLgCndPYh72fhz\ngdVeqcoY02fs3w+vvuqE0vLlLaEUGen0lGbNckKpv99/5A3btm1j//79XHnllR2+f/nll/Phhx/6\ntAZ/BlTPB8O7uS/vLQLmupeCPyEsLIy5c+ee2M7NzQ3JRdIqKyvJ7wdDi6ydoaWjdh4/DkVFzuU5\nlwtqak59jNpap9ekCiNHQk4OjBoF48c7z6OinP0OHXIe3uByubrVSzhy5IjPexX+8tprrwFw9tln\nn2jThx9+yKhRowDYv38/w4YN67K9LpfrpJ99Xl4eeXl5Xdbgz4Aqpu2S7pk4vSiPiEgE8Crwoqq+\n0f79xsZGHnnkkV4XGezy8/PJ7gd3Alo7Q0tzOzsbwOCpqKiWy3fXXgvx8T4p94SKioouJ0ZtTcSH\nxbTTi/tfPbJhwwZGjx594hf9yspKXn75ZZ588knS09M9/ntxuVwn/TeenZ3N7NmzT2zPm9fxmDd/\nBtQ6YIz7Et1+4BZgdif7tvkxi4gAzwBbVPVhH9ZojPGy0lJYvx7uvBM++qjtAIZp05wbYSdMcGZq\nONU/8GFhzswOgwb5p+7+TFVZtmwZycnJ3HHHHRw7doylS5dy6aWX+rUOvwWUqjaIyD3AezjDzJ9R\n1a0icrf7/SdEJBVYC8QDTSIyFzgDmADcCnwmIhvdh/yhqv7TX/UbYzzX3FNasMAJpW9+07kPqfUA\nhuuuC73vioqKul6Koi/47LPPqKio4LHHHuPmm28GYNGiRZSVlfm1Dr/eB6Wq7wLvtnvtiVbPXbS9\nDNhsOTDAt9UZY3qjpKTl8l37nlJODjz/vA1g6CuWLl0KwJe+9KUTrw0YMKBND+rRRx/lnnvu8Wkd\nNpOEMabHThVKV1/dMtT70CGbRLUvWbp0KaNHj26zDtaNN94IOMPM16xZQ6IfbiqzgDLGdIunodS6\np+StUXXG9xobG/n4449PXNrr6P0//OEPvPTSSz6vpcuAEpHHgL+r6nKfV2OMCUrNobRgQduZGiIj\n4YorOg4l0zetXbuWI0eOcPHFF5/03vHjx3nggQcYM2bMiZklfMmTHtQO4PcikgbMB15W1Y1dfMYY\n08d1FUo33+yE0uDBga3TeMemTZt48MEHWbduHSLC888/z5IlSwBoaGigtLSUdevWUV1dze7du/1S\nU5cB5R7W/bB7ePjXgL+KSCzwd5yw2uHTCo0xfqEK27bBkiXODODtQ6l5TjsLpdA0YcIE5s+f3+V+\nzVMd+YPH30G559D7LfBbETkXZ9bxn+AMGTfGBJmKCmc6oI8/ho0bW5aa6Igq7N7ddsE9CyUTaB4H\nlIiEA1fj9KK+AnwI/NRHdRljesDlapmrrvUEqp4aNgwuu8xZK8lCyQSaJ4MkrsAJpWuANcDLwL+1\nnwvPGBMYnYVSZCTk5jqzNeTmQmzsqY8zdCiccQYMsDsOTZDwpAf1AE4o3auqFT6uxxjjgeZQWrAA\nPvnk5Fm9b74ZZsywHpDp2zwZJHEpgIgMEJFvAtmq+gsROQ1IVdU1vi7SGOPM5N3cU2ofStOnO98V\nWSiZUNKdG3UfA5qAS4FfAEfdr53ng7qMMVgomf6tOwE1RVXPbZ6sVVUr3EtgGGO8qDmUFiw4eVE+\nCyXT10gv1iDpTkDViciJIeUikozTo/KIiEwHHsYZlv60qv6ug33mAVcBx4Hbm28IFpEf4sxm3gR8\nDtyhqrXdqN2YoHaqlWItlAInIiKCuro6IiMjA11Kn1RXV0d4eM9n1OvOJ/8MvA4ME5HfALOAH3vy\nQXewPQpchrNw4VoReVNVt7ba52pgtKqOEZEpwONArvsG4buAcapaKyLzcUYVPt+N2o0JOvv3w5o1\nMGdOx6HUPNDB14vymc4NHjyYioqKNpOmGs9VVFQwuBe/VXXnRt0XRWQ9zj1QANer6hYPPz4Z2OW+\n2RcReQW4Dtjaap+ZuENHVVeLSIKIpACHgXogVkQagVickDOmT2logM2bnQlWFy1yQum225zvlqKi\n2vaULJSCQ0pKCjt2OJPlJCYmWk/KQ3V1dVRUVFBaWkpOTk6Pj9Otvpe7x7O1yx1Plg4UttouAqZ4\nsE+6qm4QkT8C+4Bq4D1Vfb8HNRjjVceOweLFzrRAxV38ylRbC1984XymWVQUjB0LL75ooRSsoqOj\nycnJoaSkhG3bttHQ0ICe4u5nl8uFy+XyY4X+11UbRYTw8HAGDx5MTk4O0dHRPT6XJzfqXg9kqOqj\n7u01QLL77ftUdaEH5/H0fvaTvk0TkVHA94ERQBWwUES+oaq+n+vdmHaOHoW333Z6QIsXQ3V19z6f\nnQ1TpsC11zqhVF5u6yQFu+joaLKysjzaNz8/n+wQ/4H6s42e9KDuw/nOp1kkztDygcBzgCcBVUzb\nlXIzcXpIp9onw/3aJcBKVS0HEJHXgAuANgEVFhbG3LlzT2zn5uaSm5vrQWl9S2VlJfn5+YEuw+eC\nqZ21tbBjB2zZArt2OZfq4uKc74gyMpzZF9LSTn0MEUhKgoEDW14rLw+udvqStTN0eKONeXl55OXl\ndb2jqp7yAaxrt/1oq+eru/q8e79wYDdOLygS2IQz6KH1PlcDi93Pc4E89/MJwBdADE4P63nge+3P\nMWfOHO0P9uzZE+gS/CLQ7Tx0SPWFF1RnzFCNjFR1hjA4jwsvVP3Tn1QLCnp/nkC301+snaHDF210\noujk7PCkBzWkXaC1XoQ+GQ+oaoOI3AO8hzPM/BlV3Soid7vff0JVF4vI1SKyCzgG3OF+b5OIvACs\nwxlmvgF40pPzGtMdFRXw5pvOUO8lS6C+3nldBL70JZg1C268Efy00oAx/Z4nAbVaRP5NVduEgoh8\nB1jt6YlU9V3g3XavPdFu+x46oKoPAQ95ei5jPHXwIPzjH04offCBc/kOnAlTv/xlJ5RuuAGGDw9s\nncb0R54E1A+AN0Tk6zi9F4CJQDRwva8KM8ZXysqckXeLFsHSpS3rJIWFOUtNzJoF118PKSmBrdOY\n/s6TyWJLROQCnDn4xuOMyHtbVZf6ujhjvKV5+fJFi2DZspaVYsPCnOXLb7oJrrsOkj26aG2M8QeP\n7oNyf4n1gfthTJ+wf39LKLVeJykiwlmSYtYsJ5SSkgJbpzGmYz2fJMmYIFNf7yxb/t57TiitWNF2\n+qArrnBCaeZMGDLk1McyxgSeBZQJWkVFLZfkamud74oaG53Lc42NbZczLy937lFqHnkHLdMHzZpl\nE60a0xf1OKBEZDhQoTaruPGi5lAqL4df/ar7n8/KgvPOg69+1ZmtYdAg79dojPGP3vSgXgRGicgi\nVb3XWwWZ/qc5lBYsgFWrnNfmzIHoaLj6aud7oqFDnQENYWHOEPDmP5vFxUFOTtuZGowxfZsnc/E9\nA7yFM2vEAREZBNSo6ldEZAAwztdFmtBTWOiE0sKFLaEELaE0axY8+qgTPMaY/smTHpRLVd9otV0H\nfEVExuAsofFuJ58zpo1ThdI11zhDva+5xgml/HwLJ2P6O08CKh9ARK4BzgDWAO8D/wKW0m52CGNa\n6yyUYmKcnlLrUDLGmNY8CSgBUNV3ROTLwHZAVLVJRBb5tDrTJzWH0oIF0HrC4uZQuvlm508LJWPM\nqXgSUL8RkUuAFTjrMZWqqvs+fLq5Go4JVacKpebLdxZKxpju8CSgfowzKWwuznIZq91Lr38KJALP\n+Kw6E9T27Wu5fNdZKF1zjY2sM8b0jCdz8TXPOL4J+AuAeyTf+cDczj7XnohMBx7GWW7jaVX9XQf7\nzAOuAo4Dt6vqxlbvheEsuVGkqjM8Pa/xHlUoKHCmD+oslJov31koGWN6q0f3QanqEWCpiBzxZH93\nuDwKXIazSu5aEXlTVbe22udqYLSqjhGRKcDjOL22ZnOBLYDdeuklzWGzbZtzY2x5OdTVnbxfYyOU\nljpz29W2ui07Jsa5Gbb58p2FkjHGm3o11ZGqrvVw18k4Q9L3AojIK8B1wNZW+8zEWS0XVV0tIgki\nkuKeTT0DZ8XdXwP/1Zua+7uCgpbLcqs9Xs2rRUICXH65hZIxxvf8NRdfOlDYarsImOLBPulACfAn\n4H+AeB/WGLKaQ2nBAlizpuX12Fjnsty0ac4yE0lJzj1J7Yk4Mzmkp1sgGWP8x18BpV3vAriHtLfe\nFpFrcUYObnSPJuxQWFgYc+e2fCWWm5tLbm5uZ7v3WZWVleTn53e5X1UVbNkCmzdDcbHz2rhxcPbZ\nzpRA48fD6NHO0hOeKi3tYdE94Gk7+zprZ2jpD+30Rhvz8vLIa/0ldif8FVDFQGar7UycHtKp9slw\nv/ZVYKb7O6poIF5EXlDV21p/uLGxkUceecTrhQeb/Px8srOzO3yvoMC5dLdw4ck9pebviq66qm/0\ngk7VzlBi7Qwt/aGd3mhjdnY2s2fPPrE9b968DvfzV0CtA8aIyAhgP3ALMLvdPm8C9wCviEguUKmq\nLuBH7gciMg24t3049Wd797Z8p9RZKF19tbNtjDF9iV8CSlUbROQe4D2cYebPqOpWEbnb/f4TqrpY\nRK4WkV3AMeCOzg7nj5qDWXMoLVgAa1sNU7FQMsaEEr8tWOieVPbddq890W77ni6O8RHwkferC357\n9zq9pMpK+M1vWl5vDqWbb3Yu31koGWNCha2oG8SaQ2nhwpae0pw5TgjNmNHynZKFkjEmFFlABZmO\nQgmcgQ3NPaXHHrNQMsaEPgsoH2q+/+if/4Rjx7re//BhZ1h4s9ahNH26E0r5+RZOxpj+wQLKy3o7\nU0NHoWSMMf2RBZQXnOr+o2uuga9+FTIzO/98s4gIOOusjmdzMMaY/sYCqoc8uf+or9wUa4wxwcgC\nqhs6G8Bg9x8ZY4z3WUB1IT+/JZTWrWt5vfm7IhvqbYwxvmEB1YGuQskGMBhjjO9ZQLnt2dMSSuvX\nt7w+cGDLTbEWSsYY4z/9OqB273YCadGijkOpuacUExO4Go0xpr/qdwG1c2fL6LuNG1tej4tr21Oy\nUDLGmMAKqYDqan3CqirYtq1le9CgllC68koLJWOMCSYBCSgR+StwDc5KuWe5X0sE5gNZwF7gZlWt\ndL/3Q+BbQCPwn6r6r/bHdLlcHs3cEB8PM2c6oXTFFX3vpti8vLyQXxANrJ2hxtoZOvzZxgF+OcvJ\nngWmt3vtAWCJquYAH7i3EZEzcBY4PMP9mcdE5KS6XS4Xq1ZxyseaNc6y5X/7mxNSfS2cAI+WSQ4F\n1s7QYu0MHf5sY0B6UKr6iXt13dZmAtPcz58HluGE1HXAy6paD+x1L2g4GTjpb6mrS3zGGGP6jkD1\noDqSoqol7uclQIr7eRpQ1Gq/IiDdn4UZY4zxP1ENzArq7h7UW62+gzqkqkNavV+hqoki8mcgT1Vf\ncr/+NLBYVV9rfbyZM2fqvn37TmynpqaSmprq+4b4WXp6OsXFxYEuw+esnaHF2hk6vNFGl8uFy+U6\nsf3pp5+iqtJ+v2AaxVciIqmq6hKR4UCp+/VioPVc4Bnu19rYt28fmzZt8kOZgTV37lyee+65QJfh\nc9bO0GLtDB2+aKPISdkEBNclvjeBOe7nc4A3Wr3+NRGJFJFsYAywpoPPG2OMCSGBGmb+Ms6AiKEi\nUgj8BPgtsEBE7sQ9zBxAVbeIyAJgC9AAfFcDdV3SGGOM3wRqFN/sTt66rJP9fwP85lTHDMXvmzqS\n20+GKlo7Q4u1M3T4s43BdImvVyygQou1M7RYO0OHBZQxxph+oba28/csoIwxxgTE0qUwZkzn71tA\nGWOM8auGBvjJT+Cyy6CwsPP9guk+KGOMCQrV1dUUFxdz/PhxGhoa8HTgsMvloqKiwsfVBVZXbRQR\nwsPDiY2NJT09nZh2y0QUF8PXvw4ffwwi8P/+H/zylx0fywLKGGNaqaiooKioiOHDh5OVlUVERITH\nny0uLiY9PbRnYvOkjfX19VRWVrJz504yMjJITEwE4J13YM4cKC+H1FR46SW49FILKGOM8YjL5WLk\nyJHExcUFupQ+KyIiguTkZGJiYti3bx9xcYn86Efwxz867195JbzwAgwbdurjWEAZY0wrNTU1Fk5e\nEhcXR35+DbffDmvXQlgY/OY3cO+9MMCDERAWUMYY04pNVOM9mzfDv/+7UlgIp50Gr7wCU6d6/nkb\nxWeMMcYnnnwSjh+Ha6+FTZu6F05gAWWMMcYHDhyAFSsgIgKefRaGDOn6M+1ZQBljjPG6N94AVbjo\nIhg6tGfHsIAyxhjjVQ0N8I9/OM+vvrrnx7FBEsYYY04oLS3l6aefBqCuro6qqioeeuihbt0Ptnw5\nlJXBiBFw1lk9r8UCyhhjDAD5+fksXLiQ+++/n7CwMABmzZrFX//6V+6++26Pj/Paa86fN9zgzBbR\nU3aJzxhjDPX19bz11lvcd999J8IJYPv27QwcONDj4xw4ACtXOoMjrrmmdzVZQBljjGH+/Pnceuut\nJ70WHh7OTTfd5PFxmgdHfOUrPRu511rQXeITkR8CtwJNwOfAHcBAYD6QhXs5eFWtDFSNxhgTasrL\ny0lMTOSpp55i+/btrFmzhj179vDZZ58RFRXl0THq652AArjxxt7XFFQ9KBEZAdwFTFTVs4Aw4GvA\nA8ASVc0BPnBvG2NMwIm0PDIy0ttse/vhK0VFRScmgE1NTSUiIoIJEyZQU1PDI4884vFxli+Hgwed\nwRETJ/a+rmDrQR0G6oFYEWkEYoH9wA+Bae59ngeWYSFljDFe8cknnzB9+nQAZsyYwYwZMwAIDw/n\n9ddf5+c//7lHx/HW4IhmQdWDUtUK4I/APpxgqlTVJUCKqpa4dysBUgJUojHGtKHa8igqKm6z7e2H\nrxw5coQhHXxhVFVV5fHchPv3w6pVzuCIa6/1Tl1B1YMSkVHA94ERQBWwUETafGunqioiJ/2NhYWF\nMXfu3BPbubm55Obm+rbgAKisrCQ/Pz/QZfictTO09KV2ulwuiouLe/TZI0eO9PizgVRWVtZh3cuX\nL+eCCy5o815nbVy3zhm1N3o0HDvmPMD5+2z/s8/LyyMvL6/LuoIqoIDzgJWqWg4gIq8BUwGXiKSq\nqktEhgOl7T/Y2NjYrWulfVV+fj7Z2dmBLsPnrJ2hpS+1s6KioseLDvbFBQsLCws7bPOyZcsoKiri\nZz/7WZv3OmpjfT089pjz/dNTT0Hrt10u10k/++zsbGbPnn1ie968eR3WFmwBtQ34fyISA9QAlwFr\ngGPAHOB37j/fCFiFxhgTQlasWEF1dTUlJSWkpDjfnhQXF3PXXXfx4osvkpWVBcAHH3xAaWkp77//\nPldccQWbN29m5MiR3H777Xz8ccvgiHPP9V5tQRVQqvqpiLwArMMZZr4BeBIYBCwQkTtxDzMPWJHG\nGBNCqqqq+MMf/sCDDz6IqiIiuFwuFi5cyIQJEwDnEmB1dTWzZ8/m9ddfp7GxkbFjxzJ48GAAFixw\njjVrlndHGwZVQAGo6kPAQ+1ersDpTRljjPGi2tpaYmNj+eUvf9npPnFxcVzjnhbi888/58knnyQh\nIQGAnTud759iY8E9+M9rgmoUnzHGGP8pLCwkNTW1y/1iYmIQEcrKyhAREhISUFWOHz9+ovd0zTUQ\nF+fd+oKuB2WMMcY/li1bxiWXXNLlfm+88QbHjh2joaGBsWPHArB48WLGjj2fxYtjAbjlFu/XZz0o\nY4zppwoKCsjMzOxyv/LycjZv3kxUVBTx8fE899xzhIeHs2rVMGpqYMoU8MUgTetBGWNMP/XjH//Y\no/3uvPPOE88vvvhi0tPTaWxsmW/PF70nsB6UMcaYHli5EoqKIC3NWdbdFyygjDHGdNv8+c6fN90E\nrZaP8ioLKGOMMd2yd68z715UFFx3ne/OYwFljDGmWxYudP686ipw36vrExZQxhhjPFZfD2+95Tz3\n1eCIZhZQxhhjPLZzpzNT+bnnQk6Ob89lAWWMMcYjqvDFF85zX/eewALKGGOMh1asgMpKGDYMPJiA\notcsoIwxxnjkb39z/pw921k519csoIwxxnRpyxZn1vLISLjhBv+c0wLKGGNMl5p7T+PGwaBB/jmn\nBZQxxphTKi6G99+H8HA480z/nTfoAkpEEkRkkYhsFZEtIjJFRBJFZImI7BCRf4lIQqDrNMaY/uLv\nf4emJrjyShg40H/nDcbZzB8BFqvqLBEJBwYC/wssUdWHROR+4AH3wxhjjBeVlpby9NNPA1BXV0dp\naRUbNz4ERPDNb/q3lqAKKBEZDFysqnMAVLUBqBKRmcA0927PA8uwgDLGGK/Kz89n4cKF3H///YS5\nZ4A977xZlJb+lZkz72bMGOdyn78E2yW+bKBMRJ4VkQ0i8pSIDARSVLXEvU8JkBK4Eo0xJvTU19fz\n1ltvcd99950Ip9pa2L59OwMGDPR77wmCL6DCgYnAY6o6EThGu56SqiqgAajNGGNC1vz587n11lvb\nvPajH82nsTGcKVNuYvJk/9fUrUt8InI+8CNgRKvPqqqe7aV6ioAiVV3r3l4E/BBwiUiqqrpEZDhQ\n2v6DYWFhzJ0798R2bm4uubm5XioreFRWVpKfnx/oMnzO2hla+lI7XS4Xxd24jpWekdHy3BcFtVJc\nVOSzY+/evZvq6moeeugh9uzZw8aNm9i+vYB77lnCtdceZP9+Z78jR4506+/H5XKd9LPPy8sjLy+v\ny8929zuol4B7gS+Apm5+tkvuACoUkRxV3QFcBmx2P+YAv3P/+Ub7zzY2NvLII494u6Sgk5+fT3Z2\ndqDL8DlrZ2jpS+2sqKggPd3XUdMzvqqrqKiI8ePHk56ezrhx4zh06BAZGZNZv34Xr7++kF//+ucn\nZo4oLi7uVh0ul+ukn312djazZ88+sT1v3rwOP9vdgCpT1Te7+Znu+g/gJRGJBHYDdwBhwAIRuRPY\nC9zs4xqMMcYz2vKNQ3f/8Q4Wn3zyCdOnTwdgxowZXHvtDL79bUhKCqe29nUiIn4ekLq6G1A/F5Fn\ngPeBOvft7nn2AAAemklEQVRrqqqveasgVf0UOL+Dty7z1jmMMca0OHLkCEOGDDmxvW4dbNoEAwZU\nMWhQ4L7y725AzQFOd3+u9SU+rwWUMcYY/6qvr2+z/dRTzp8ieVx66aUBqMjR3YA6DxjrHklnjDGm\njyssLGTPnj0nttevdx6NjcuoqtrLvffeG7DaujvMfCVwhi8KMcYY438rVqygurqakhLnVtOnn4a6\numIOHLiLF198kaysLI4fP87jjz/O1772NRoaGgC46667+Oyzz3xaW3d7UFOBTSKSD9S6X/PmMHNj\njDF+VFVVxR/+8AcefPBBXC7l7bcFcPHqqwu56KIJALzzzjt861vfYt68eScuB/7rX//qdPSdt3Q3\noKb7pApjjDEBUVtbS2xsLL/85S/53vcgLQ2+/W246KKWfa666iq2bNnCqFGjiImJIT8/n6SkJGJi\nYnxaW7cCSlX3+qgOY4wxflZYWEhqaioAn38OeXkQGwtf/3rb/eLi4njnnXeYOXMmACtXruSCCy7w\neX3BNtWRMcYYP1m2bBlTp04FnO+eAG65BQYPPnnf0tJSsrKyAHj//fdPfM6XLKCMMaafKigoIDMz\nk82bYflyiImBb3yj431nz57N4sWLWbRoEa+++qpfAqpXy22458WrUNXaLnc2xhgTVH784x8DLb2n\nm26CVvfrtjF16lSmTp3KqlWrSEpKYuTIkT6vr7c9qBeB7SLyB28UY4wxxr+2bYOPP4boaDpdUmPF\nihVcdpkzmc8TTzzBT37yE7/U1qselKp+RUQGAOO8VI8xxhg/euIJ589ZsyAxseN90tLSuOKKK3js\nsccYNWoUd9xxh19q88aKujcCH3nhOMYYY/xo0yan9xQTA7fd1vl+2dnZ3HfffQDdWmqjt7wxSGId\ncK2I/FZEpnjheMYYY3xMFf78Z+f5N74BSUmBracj3gioGwABtnnpeMYYY3xs+XKnB5WQ0Pl3T4Hm\njUt8n+CscBuFM5nsKi8c0xhjjI80NsKjjzrPv/UtiIsLbD2d6XWPR1XXqeo+IBb7LsoYY4Le22/D\nrl2QmuoMjghW3rwklwQc9+LxjDHGeNm+ffAH941B3/seREUFtp5T6XVAicgdIhIG7FHVSi/UhIiE\nichGEXnLvZ0oIktEZIeI/EtEErxxHmOM6U9qa+GBB+D4cbjiCrjqKt+fU0R6/Flv9KAigXOADC8c\nq9lcYAvQvDDiA8ASVc0BPnBvG2OM10VERFBXVxfoMnzikUdg+3bIyID//V/oRXZ4pK6ujvDwng91\n8EZA7QPSgIu9cCxEJAO4GngaZ3QgwEzgeffz54HrvXEuY4xpb/DgwVRUVAS6DK9qaoJnn4X58yE8\nHB580D8DIyoqKhjc0cyzHvIo2kTkO8AUoAh4ErgFqADeAApwhpif1uMq2voT8D9AfKvXUlS1xP28\nBEjx0rmMMaaNlJQUduzYAUBiYiKRkZEBrqh3Dh2Cn/wEVq50tu+9F87w8brodXV1VFRUUFpaSk5O\nTo+P42nfq0BV/yIio4A/As8Ao4DngF+oahPwWI+rcBORa4FSVd0oIpd0tI+qqohoR+8ZY0xvRUdH\nk5OTQ0lJCdu2baOhoQFVz/7JcblcuFwuH1fYsZoaOFpZz/GSoxwvOULB/gi2Fg1i1WexVFYNID4e\n/ud/YORIWL++5+fpqo0iQnh4OIMHDyYnJ4fo6Ogen8vTgIoRkQGqultEPlPV99yFPI7zfdG6HlfQ\n1gXATBG5GogG4kXkb0CJiKSqqss9g3pp+w+GhYUxd+7cE9u5ubnk5uZ6qazgUVlZSX5+fqDL8Dlr\nZ2jpq+0cNGhQt/YfMGAACQm9G8NVWws1h+upraqm7nA1jUdqaDxaTdOxavR4NVJTzYDaasLqqglv\nqCayoZqopmqGUk0aLd+dXQAwGJouHkBB7DiSZ19OXEbPL7c187SNTU1NHDhwoMP38vLyyMvL6/IY\n4slvBiISjfM9UL6qrm333o2q+lqXB+kmEZkG3KuqM0TkIaBcVX8nIg8ACaraZqDE7bffrs8995y3\nywg6+fn5ZGdnB7oMn7N2hpb+2s7qajhYWM2hnWUcyy/j+L6D1BWX0VRahhw8SPihMqKPlBFbfZC4\nugoGN1aQSAVR9GyQRgNhVIUlcixyCDFhdcQ3VBBVc9h5Mzoa7rvPGcbXi6XaffGzFBFU9aQhGx71\noFS1BlggIsPdvRsBwoARwGZvFtr+1O4/f+s+/53AXuBmH57TGGNOogqVh5SKPZVU7SrjaMFBagrL\naDhQhpYeZEB5GVFfyWD/C0uIqykjob6MJD1IJsfI7Oa5qiWGw+FO0NTEJFIbl0hDfCKakIgkJRI+\nLJHI1ERi0hMZmJlIfNYQotMSCY8fRJIIbabVKyx0gumVV+AXv4AVK+Cdd4L7Bii3bo3/U9UDwIk+\nm/t+pHPdodWkqv/0VmGq+hHumSlUtQK4zFvHNsYYVagoa+Tg9nKqdpRwvKCM2qIyGl1lcPAgYRVl\nRB0uI+b4QeJryxjSUEYS5QyhodNj5k+eQ/bhd9u8VksklRHJHIlKpnrgUOoGJ9OYmAzJQwlPTSY6\nM5nY04YSl5VE/IhEIlOGEBMTQ8/7OO1kZsLLL8N3v+usSPjBB/D1r7cM6QtivV0PqhL40Eu1GGNM\nrzQ1QUVpA+XbD1K5vYRje0qoKyyhab+LAWUlRB4qIfZICfHVJSQ2lJBMGUk0descRySeyshkjsUM\npSYumfqEZDRpKJKSTEPuGOrOmkVcdjLxo5KJGzGUqPhBpIgEfujxxRfDe+/BtGnw2mvwne/AU0/5\n/maoXgju+DTGGKCuDkp2H6X8iwMc3r6f6t0HaCzcj5QcIKr8AAOPuIivKSGpoYShHGQong/0PTQg\nkaqoFI4NHEZNfDKNCUPR5GTCUpOJShtKzGnJDBqVTMLoZKLSkhgUFUVnQyeC/ru2c85xLu9dfjk8\n84wzpO9HPwp0VZ2ygDLGBEyHwVO0nwEH9hNZcYBBh/eTUHOAlMb9ZHLEo+9ymhAqwoZSGZXCsbgU\nahNSaByagqSmEpGZwsDsFAaNTmHI2BSiM5MZEhnJEJ+3NIhceCEsWAAzZjg3SF1yCVxwQaCr6pAF\nlDHG6+rrwbWrJXjq4w6z9Z3X2wTPkJr9DGs84HHw1BBFeWQahwcO5/iQNBqGDkfS04jMGk5sdgrx\nOakMGZtCVEYyieHhdLJ6uQG49lrnpqjf/x5mz3YWhhoSfDFtAWWM6ZaGBid8yjYUcnhLETU7C2na\nV0SEq5DYQ0UkHisktaGITKpOBE/+nDlkv/98h8erJpqKyOFUDUyjeshwGpLTkLThRI5IY+CYNIac\nMZwh49OITkogXYR0/zU1tP3qV7BsGaxdC3fdBQsXBt33URZQxpgTmprAtfsYpesLqdpcRM2uQpoK\nWoXP0UJSGorIoLLL2aGriaY8Ko3DscOpHDKe0in/eaLHM3BMGglnpJE4fjgxFjyBERnpDD2fMAFe\nfRWefBLuvjvQVbVhAWVMP1JXqxR/XkHZugKOfFFA/a4CpLCA2NIChhwuILWugDTKSeviODVEURqV\nyeFBGRwfmklTWgbhIzKJzclgyNmZDJ2QQUxqEhnu38jz8/PJ/lMQDx7or0aOhCeecIadf//7zvdT\nZ54Z6KpOsIAyJoQcqWykeN0BKjYWcGxLAQ17Cggv3sfA8gKSjhaQ3lBANsc4VVTUEklZZAaVgzKp\nHppJY1oGYSMyGXh6JglnZjD03EyihydxWpBdDjI9NHs2LFniTHf+ta/BmjUQGxvoqgALKGP6lGOH\nG9m3soiDq3dzfMtedG8BkQcKGHSogOTjBaQ1FTGW+lMe47DEUxaTxeEhp1GbmoVkZRF9ehYJ52Qx\n7PwsYkakkDFggFcXeDNB7s9/dqY737wZ/uu/4C9/CXRFgAWUMUGnwlVH0fK9VKzZRc2W3QzYs4uB\nrt2kHN5FZmM+47qYp60sLIXygadxNCmL+rQswrKziD0ji8QJTgDFD01os5aNMQwc6HwfNWWKc8lv\n2jSnZxVgFlDG+JkqlOw5xv5PdlN1vJjtry4ivGA38aW7SDm2m4ymfSSeYnaD0vDhlA0axbFh2TRm\nZBExOou48VkMnZRF0oRMkmNjSPZje0yImDAB/vQn+N734NvfhrPOCvj3URZQxvhAYyMUf16Ba/ku\nDm/aTeO2XUQU7ibh4C7Sju8mFRepuIdfL207/LqRARRHjuBgwmiqh4+CMaOJPWsUybmjGZY7kmHx\nAxkWmGaZUPfv/w6rVsGLL8JXv+p8H9WLFXF7ywLKmB5qqFcK15fi+ngHRzftomnnbqKLd5FYsZuM\n2l2cRmWny0zXEsn+6JG4BuXgmjyXsJxRDDxnNCkXjCJp0gjSoyJt2LXxPxHnEt9nnzmPO+5whqAH\naECMBZQxp6AKB7YfZv+yHVSt20nDlh1E7dtBUvkOTqvZQTaHOx0Rd1TiOBA7iqqho6k/bRThY0cz\neOIoUi4czeAz0skOC4Ngn7vN9D+xsU4onXcevP46/PKXzpRIAWABZQxw+GAde9/fRUXeDmo/30FE\n/g4SSneQfnwHaVrS6X1BVTKY/YNO58iw0TRmjybqjFEMPm80wy8cRdyIYYyxodimLxo92lmi45pr\n4Kc/hfHjnUt+fmYBZfqVo4fq2fPeTso/3kz9ps3E7NlMSvlmsht2cnYn6/xUE01x7BgOJedQPyKH\nyDNzGDJ5DMOn5TD4tKEMthAyoeiqq+Chh5w5+267zQmtc87xawkWUCYkHatqIH/JLsqWOUEUvWcz\nKQc3k12/g7M7uE+oCWFf5CgOJp1OTWYOYeNyiD8vh+HTckgYn87oAQMC0ApjAuy//xs+/xxeeAFm\nzoS8PL+ePqgCSkQygReAYTjLvT+pqvNEJBGYD2ThXvLdvVii6eeqjzayZ8luypZtpm7jZqJ2byal\nbDPZ9ds5s5P7hYoisilJHk/NqPFEnTue5EvGk/6VsZwWH9vpoAZj+qXmQRM7dzqj+669Fv7+d7+d\nPqgCCqgHfqCqm0QkDlgvIkuAO4AlqvqQiNwPPOB+mH6irqaJPR/kU/LBF9RucIJoWOlmsuu2MZ7a\nDj9THJFFydDx1IwcT8S540meNp6My8eRMXigzZJgjKeio+Ef/4CpU2HDBmcAxX33+WW5+KAKKFV1\nAS7386MishVIB2YC09y7PQ8swwIqJDU1KvvWuCjcvodd332d8O1fMPTAF4ys2cxYjjO2g8/sD8+k\nJGk8x7PHEzFhPEPdQZSeNMiGahvjDcnJsHixE1I7dsB//Ac89pjPh58HVUC1JiIjgHOB1UCKqpa4\n3yoBUgJUlvESVSjdUcm+dzdTteILZPPnJBR9QdaRLxhBOTpnDtn/bHsDa0lYGgcSx3Ns5JlEnDOe\nxIvHk3nlGaQlx3c5+7YxppdycuDNN51JZf/yFxg2DH7+c5+eUlTVpyfoCfflvY+AX6rqGyJySFWH\ntHq/QlXbLJh55513alxc3Int3NxccnNz/Vazv1RWVpKQkBDoMrpFFaoKD3N4+wEa9h0gsuIA8dUl\nxGtVh/vXSjQHJ02hqegYkpJCzGnJxI8eRkR8jJ8r972++PPsCWtn6KjcvZuEl15y/se+6iqYPLnb\nx8jLyyOv1YCLefPmoaondceCLqBEJAJ4G3hXVR92v7YNuERVXSIyHPhQVdtc7bn99tv1ueee83u9\n/pYf5Dd2NjUq+R/to/it9dSu2kD8jvWMrFxPspadtG810ewbeAaH0s+k6YwzGXTBWWRMP5MhZ6aT\nv3dvULfTW4L95+kt1s7QkZ+fT/ayZfCtbzkvvPACfPObvTqmiHQYUEF1iU9EBHgG2NIcTm5vAnOA\n37n/fCMA5Zl2GhuU/A/3sv+t9dStWk/8rg2MqlzPKMoZ1W7fQzKEgqSJHDt9EtEXTCTt6gmkXjSa\n08PDAlK7MaYX7rgDKirg3nvh9tud1XlvucXrpwmqgAIuBG4FPhORje7Xfgj8FlggInfiHmYemPL6\nr8YGZfeSPRx4ez31q9czeNcGRlZtYDQVjG6376EBiRQkTeLo6ZOIuWgSp90wieTzRzDEbmg1JnT8\n93/DkSPO91Df+IYzqs/Ls00EVUCp6nKgszsiL/NnLf1ZQ10Tu9/bhWvxBupXr2fI7vWMOryBHKrI\nabfvwQHJ7Bs6iePjJhF70UQyr59E8qTTLIyM6Q9++lNoaIBf/9pZjXf+fLjxRq8dPqgCyvhffW0T\nu9/dgWvxehrXbGDInvWMOrKR0znM6e32LRuQwr7kSVSfMYnYL00i6/qJDD0ng6EWRsb0TyLOZLIN\nDfC738HNN8Pzzzs9Ki+wgOpH6qob2b14OyWL19O0dj1D8jcw+uhGxnL0pPuLXGFpFA1zwijuSxPJ\nunESyWem2UJ4xpi2RODBB51LfL/+tTNg4uhRuPvuXh/aAipENTUqez/eR9Grq6lfsYbE3WsYc2QD\n4zjGuHb7HgjLoChlEjXjJzHokklk3TCR1HGppAakcmNMnyMCv/oVDBoEDzwA3/kOHDoE99/fq5t5\nLaBCRNmOQ+x+ZS1Hl64hbvNqRpavYaSWMrLdfkXhWRSnTqLuzInEXzKJETdOZPiYYQwPSNXGmJBy\n//1OSN1zD/zwh7BvH8yb1+NpkSyg+qC66ka2L/yMsjdWEL5hNenFaxjVsOOky28VksSeYVOoPnMy\ng74ymZG3nE/GyKE2D50xxne++11nlolbb4XHH4fCQmcJ+R4sHW8B1QccPnCM7S+s5vDi5USfIST9\n5fecxZE2+1QTza74iVSOmUzkxVPI/Opkhl+QzXkDbACDMcbPZs2C1FS47jp4+20YM8YZjn7XXd3q\nTVlABaH9G1zkv7iCuqXLSd65grHHN3A+jQDkZ88hniMURIyiOOtCNHcqw66dzMjrzuKs6IgAV26M\nMW4XXeQs0XHHHbBypdOz+vOf4fe/h6uv9ui7KQuoAGtqaGL34u0UL1jBgFUryNy3nOyGXW0mP20g\njK0DJ3Hw9IuQC68g/t4HyTpzOFkBq9oYYzyQkwPLlztLdNx/P2zd6qwp9ZWvwB//2OUKvRZQfnZo\nbxW7XlrNkSV5xH2xijHlqxnDIca02ucIcexMyuXoORcx+JqLGHPrFMYNcybCzc/PJynbhjQYY/oI\nEeeS34wZzhIdv/gFfPABnHuuM03Sr37V6UctoHyosb6JXW9t5cAbeQzIW8XwglWMqtvK+bSdoNcV\nlsbetAupn3IRqbMuYuT1ZzMxyn40xpgQEhUFP/gB3Habc3Pv//2fs3TH/PmdfsT+FfSi8p0V7Hpp\nNcc+yCN+Sx6jK1ZzOlVtZmSoJZKdgyZSkTOVqGm5ZH1tKqnnZ9o9R8aY/iEpCR5+GL73Peey3+uv\nd7qrBVQPNdQ0sPONzZT+YxUD1uSRVpjHqPrtJLXbrzgsk8K0XOomTWXojKmMvulczhwUFZCajTEm\naIwZA6+9BitWOAMqOmAB5aHSL0rZ8/c8qpeuImFbHmOq1p40K0M10eyMn8Sh06cS8+Vcsm6eQvqk\nDFt23BhjOnPhhZ2+ZQHVgbqjdexc9Cllb+URvj6P04pXcVpDPsPa7bcvfCRFGbk0np9L8sypjLrh\nbM4eGBmQmo0xJtRYQAEH1u8n/+8rqfsojyE78sg5sp7x1LTZ5ygD2TlkMofH5RJ7aS4jv57LaeOG\ncVqAajbGmFDX7wKqqaGJPYu3sX/BcgasXE5W4SdkNuw9aS663ZFjOXBaLjoll9Trcxk5Yzzn2sg6\nY4zxm5D/F7fuaB3bX1pH+T+WE7NhOWNKVzBa264CW0U8u5JyOXLmVAZdnsvor09mVHbiScuWG2OM\n8Z8+E1AiMh14GAgDnlbV37V+3+VyoU2Ka30xRYs/49iSlSR88QmnV63hrHaX6w4MSGdPxsU0uO87\nGn39mUyKDPNfY3ohLy+P7OzsQJfhc9bO0GLtDB3+bGNny6sHFREJAx4FpgNnALNFpM2yRi6Xi6rw\nRIZPzuT8n13DJSt+zYSqj4mhhp1R4/l47L+x/O6/UfjJXlLrC7mw4GWmLfgep998DmF9JJzA+Y+j\nP7B2hhZrZ+jwZxv7Sg9qMrBLVfcCiMgrwHXA1tY7JWgl5ZLEvvizqMo5n5jLL2L0nAsZk5PUZioh\nY4wxwa+vBFQ6UNhquwiY0n6nko37GXZ2Kkm2xIQxxvR5fSWgtKsdIiMjST03ravd+rzzzz8f6cUS\nyn2FtTO0WDtDhz/b2Ce+gwKKgcxW25k4vagT6urqUNWQf0ydOjXgNVg7rZ3Wzv7bTl+0sTN9JaDW\nAWNEZISIRAK3AG8GuCZjjDE+1Ccu8alqg4jcA7yHM8z8GVXd2sXHjDHG9GF9IqAAVPVd4N3O3k9N\n7R8LVuTm5ga6BL+wdoYWa2fo8Gcb+8olvi5ZQIUWa2dosXaGDgsoY4wx/V6fucRnjDGmD+rFkHTr\nQRljjAlKFlDGGGOCkgWUMcaYoGQBZYwxJihZQBljjAlKFlDGGGOCUr8bZv7IoUcCdu65Q+Z2uU9X\n9aXUpPDmId9MQ+iN+rylo3YGU30d6Ul9vvx5thfIvz9P2hkKP9/VNav99vNsz5P6+pp+F1AAc9/9\nvt/P+chVD3u876nqyx80h+yNz3ujpDa8VZ+3tG9nsNXXXk/r89XPs71A//111c5A19eVUKqvL7FL\nfMYYY4KSBZQxxvR3fxfnEWTHs4AyxhgTlPrld1DGGGPg8unTAVhyW4AL6YQFlDHG9FMR0dGBLuGU\n7BKfMcaYoGQBZYwxJiiFVECJCCLCJZdccuJ5+0egvPvbdzutyeqz+qw+q88X9dHFY+fKlbz7j38A\n8LNX8aiNP//5z7v8t/Znr4J8g17/nYRUQKkqqsqyZctOPG//CJSrHriq05qsPqvP6rP6fFFfV8YM\nG8ZV110HwM++ikdt/OlPf9rlv7U/+yroS87x8OTRiZAKKGOMMaHDAsoYY0xQsoAyxph+qr6sjPqa\nmkCX0SkLKGOM6aeWlJay5J//DHQZnbKAMsYYE5RsJgljjOnvvu7lEYheOl6/DKhgXzvlVPWluFJ4\nM/VcP1ZzMn/8/fWmnX3p5xsMP8/2fPH358129qWfr+kdCeTYfW+6/fbb9bnnngt0GT6Xn59PdnZ2\noMvwOWtnaLF2BognN8p2MwN80UYRQVVPKta+gzLGGBOUQiagXC5XoEvwi7y8vECX4BfWztBi7Qwd\n/myjBVQf0x/+BwBrZ6ixdoYOCyhjjDH9ngWUMcaYoBQyo/hEJDQaYowx/VBHo/hCJqCMMcaEFrvE\nZ4wxJihZQBljjAlKFlDGGGOCUkgElIhMF5FtIrJTRO4PdD2+ICKZIvKhiGwWkS9E5D8DXZOviEiY\niGwUkbcCXYuviEiCiCwSka0iskVEcgNdky+IyA/d/81+LiJ/F5GoQNfkDSLyVxEpEZHPW72WKCJL\nRGSHiPxLRBICWaM3dNLO37v/u/1URF4TkcG+On+fDygRCQMeBaYDZwCzRWRcYKvyiXrgB6o6HsgF\nvhei7QSYC2wBQnkEzyPAYlUdB5wNbA1wPV4nIiOAu4CJqnoWEAZ8LZA1edGzOP/mtPYAsERVc4AP\n3Nt9XUft/BcwXlXPAXYAP/TVyft8QAGTgV2quldV64FXgOsCXJPXqapLVTe5nx/F+QctLbBVeZ+I\nZABXA08DHsx02fe4f+O8WFX/CqCqDapaFeCyfOEwzi9WsSISDsQCxYEtyTtU9RPgULuXZwLPu58/\nD1zv16J8oKN2quoSVW1yb64GMnx1/lAIqHSgsNV2kfu1kOX+zfRcnP84Qs2fgP8BmrrasQ/LBspE\n5FkR2SAiT4lIbKCL8jZVrQD+COwD9gOVqvp+YKvyqRRVLXE/LwFSAlmMn3wLWOyrg4dCQIXyZaCT\niEgcsAiY6+5JhQwRuRYoVdWNhGjvyS0cmAg8pqoTgWOExuWgNkRkFPB9YARObz9ORL4R0KL8RJ0b\nTEP63yYR+V+gTlX/7qtzhEJAFQOZrbYzcXpRIUdEIoBXgRdV9Y1A1+MDFwAzRSQfeBm4VEReCHBN\nvlAEFKnqWvf2IpzACjXnAStVtVxVG4DXcH7GoapERFIBRGQ4UBrgenxGRG7HuRTv0184QiGg1gFj\nRGSEiEQCtwBvBrgmrxMRAZ4BtqhqSC7Zqao/UtVMVc3G+TJ9qareFui6vE1VXUChiOS4X7oM2BzA\nknxlG5ArIjHu/34vwxn8EqreBOa4n88BQvGXSERkOs5l+OtUtcaX5+rzAeX+zewe4D2c//jnq2rI\njYgCLgRuBb7sHoK90f0fSigL5Usk/wG8JCKf4ozi+02A6/E6Vf0UeAHnl8jP3C8/GbiKvEdEXgZW\nAqeLSKGI3AH8FrhcRHYAl7q3+7QO2vkt4M9AHLDE/e/QYz47v83FZ4wxJhj1+R6UMcaY0GQBZYwx\nJihZQBljjAlKFlDGGGOCkgWUMcaYoGQBZYwxJihZQBljjAlK/x9h6Zfz9JgNcgAAAABJRU5ErkJg\ngg==\n", "text": [ "<matplotlib.figure.Figure at 0xf40ad50>" ] } ], "prompt_number": 8 }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Comparison with ASTRA\n", "Beam tracking with ASTRA was performed by Igor Zagorodnov (DESY). " ] }, { "cell_type": "code", "collapsed": false, "input": [ "sa, bx_sc, by_sc, bx_wo_sc, by_wo_sc = np.loadtxt(\"astra_sim.txt\", usecols=(0, 1, 2, 3, 4), unpack=True)\n", "\n", "s = [tw.s for tw in tws_track]\n", "bx = [tw.beta_x for tw in tws_track]\n", "by = [tw.beta_y for tw in tws_track]\n", "ax = plot_API(lat, legend=False)\n", "ax.plot(s, bx, \"r\", label=\"Ocelot, bx\")\n", "ax.plot(sa-3.2, bx_sc, \"b-\",label=\"ASTRA, bx\")\n", "ax.plot(s, by, \"r\", label=\"Ocelot, by\")\n", "ax.plot(sa-3.2, by_sc, \"b-\",label=\"ASTRA, by\")\n", "ax.legend()\n", "plt.show()" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAZgAAAEWCAYAAABbgYH9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtYVNX6wPHvGvCK3AVERfKamhqWGabmFTM1MU3LUiG1\nU1lmZZZ5fqblpewcO3axOh1L8X40PWmlpUczM6W0DPMWqaCggAoiKHdYvz82zgGvMDDMxffzPPM8\ns/fs2ft9GZ131tp7r6W01gghhBCVzWTrAIQQQjgnKTBCCCGsQgqMEEIIq5ACI4QQwiqkwAghhLAK\nKTBCCCGs4roFRin1mVIqRSn1e4l1PkqpzUqpWKXUJqWUV4nXXlVK/amUOqyU6mPNwIUQQti3G7Vg\nFgJ9L1s3GdistW4BbCleRinVGngYaF38ng+VUtJCEkKIm9R1C4DW+gfg3GWrBwJRxc+jgEHFz8OB\nFVrrfK11PHAE6Fh5oQohhHAklrQwArTWKcXPU4CA4uf1gcQS2yUCDSoQmxBCCAdWoS4sbYwzc72x\nZmQcGiGEuEm5WvCeFKVUPa11slIqEDhdvP4kEFRiu4bF60oZOHCgPnHihHm5Xr161KtXz4Iw7EeD\nBg04efKKVB2Ws+UDzpeTs+UDzpeTM+STnJxMcnKyeTkmJgattSrzDrTW130AtwC/l1h+G3il+Plk\n4K3i562B34DqQGPgKKAu39/tt9+unc1zzz1n6xAqlbPlo7Xz5eRs+WjtfDk5Wz5aGz1W+gY1o+Tj\nui0YpdQKoBtQVymVALwGvAWsUkqNAeKBYcWF6qBSahVwECgAxhUHJIQQ4iZ03QKjtR5+jZd6X2P7\n2cDsigYlhBDC8VX5fSqOfr7lakJDQ20dQqVytnzA+XJytnzA+XJytnwsIQWmEjjbPyRnywecLydn\nywecLydny8cSllxFJoQQFlOq7BchCdupjFPoUmCEEFVOrv+xb5X1I0DGChNCCGEVUmCEEEJYhRQY\nIYQQViEFRgghqkhkZCRTp051uH1bSgqMEEJcZtGiRbRt2xY3NzcCAwMZN24c58+fr/B+lVJlPoFu\nMpk4duyYVfZdVaTACCFECXPnzmXy5MnMnTuXjIwMoqOjOX78OGFhYeTn51d4/+W5gq68V9vZ29V5\nUmCEEKJYRkYG06dP54MPPqBPnz64uLgQHBzMqlWriI+PZ+nSpQAUFhYye/ZsmjVrhoeHBx06dCAx\n0ZgO6/Dhw4SFheHr60vLli1ZvXr1NY/3r3/9i+bNm+Pr60t4eDhJSUkA3HvvvQDcfvvtuLu7X3cf\nJZ09e5Y+ffrg4eFB9+7duTRy/c6dO/Hz8zPHGBMTg4+PD7GxsZb9ocpICowQQhTbuXMnOTk5DB48\nuNR6Nzc3+vXrx+bNmwF45513WLlyJRs3biQjI4OFCxdSu3ZtLl68SFhYGCNGjODMmTOsXLmScePG\ncejQoSuOtXXrVqZMmcLq1atJSkoiODiYRx55BIDt27cDsG/fPjIzMxk6dOgNY9das2zZMl577TXO\nnj1LSEgIjz32GAD33HMPTz75JBEREWRnZzNixAhmzpxJixYtKvT3uhEpMEIIUezs2bPUrVsXk+nK\nr8Z69eqRmpoKwIIFC5g1axbNmzcHoG3btvj4+PDVV1/RuHFjIiIiMJlMhISEMHjw4FItkEvnSZYt\nW8aYMWMICQmhevXqvPnmm+zatYuS82WV14ABA+jSpQvVq1dn1qxZ7Nq1yzwnzfTp0zl//jwdO3Yk\nKCiIcePGWXycspICI4SwP0pVzqOc6taty9mzZykqKrritaSkJOrWrQtAYmIiTZs2vWKb48eP89NP\nP+Ht7W1+LF++nJSUlCu2vdRqucTNzQ1fX1+LJylTStGwYcNS+/Px8eHUqVMAuLq6EhERwYEDB5g4\ncaJFxygvKTBCCPujdeU8yqlTp07UqFGDNWvWlFp/4cIFvvnmG3r16gVAUFAQR44cueL9jRo1olu3\nbpw7d878yMzMZP78+VdsW79+feLj483LFy9eJDU1lQYNGpQ77ksSEhJKxZyWlkb9+vUBOHnyJG+8\n8QajR4/mxRdfJC8vz+LjlJUUGCGEKObp6cm0adMYP3483377Lfn5+cTHxzNs2DCCgoIYOXIkAGPH\njmXq1KkcOXIErTX79u0jLS2NAQMGEBsby9KlS8nPzyc/P5/du3dz+PBh4H8zCAMMHz6chQsXEhMT\nQ25uLlOmTCE0NJRGjRoBEBAQwNGjR0vFZzKZzOdnLqe1ZsOGDfz444/k5eUxdepUOnXqRIMGDdBa\nExkZydixY1mwYAGBgYFVc89Meaa/rIxHREREpU3faS+OHTtm6xAqlbPlo7Xz5eTI+RhfO/bt008/\n1W3atNG1atXSAQEB+qmnntLp6enm1wsLC/XMmTN148aNtbu7u+7YsaM+efKk1lrrP/74Q/fv31/7\n+flpX19f3atXLx0TE6O11joyMlJPnTrVvJ+PP/5YN23aVPv4+OgHHnjAvI9LrwUGBmovLy+9evVq\nfeLECe3h4aHT0tKuGnNkZKR++umndVhYmK5Tp47u1q2bjo+P11prPW/ePB0SEqLz8/O11lqfOnVK\n+/n56R07dlx1X9f6jCjnlMlKV/F105GRkXrRokVVekxri4uLo3HjxrYOo9I4Wz7gfDk5cj5KKbu7\nX8MRLFu2jIMHDzJr1iyrH+tan1Hx+jKf3JLh+oUQwgFcuuTYkcg5GCGEEFYhBUYIIYRVSIERQghh\nFVJghBBCWIUUGCGEEFYhBUYIIYRVSIERQghhFVJghBDCCcTHx2Myma46UKetSIERQoir6N69Oz4+\nPlcMCpmYmMiQIUPw8/PDy8uLtm3bEhUVxY4dO3B3d8fd3Z06depgMpnMyx4eHiQkJNC9e3dq1aqF\nu7s7devWJTw83DwJ2CVaa5o0acJtt91WlelahRQYIYS4THx8PD///DP+/v6sX7++1GsjR44kODiY\nEydOkJaWxpIlSwgICKBLly5kZmaSmZnJgQMHADh//jyZmZlkZGQQFBSEUor58+eTmZnJ0aNHycnJ\n4cUXXyy1/+3bt5Obm8uZM2fYs2dPleVsDVJghBDiMosXL6Z3796MHDmSqKioUq/t2bOHyMhIatWq\nZZ5UrG/fvqW2KctYa56enoSHh5uL0SVRUVEMGTKE8PDwK45dFp9++ikNGjSgfv36zJ0717y+f//+\nvPTSS+blRx55hDFjxpR7/+UhY5EJIcRlFi9ezOuvv07Hjh15/fXXOX36NP7+/gCEhoYybtw4xo8f\nT6dOnczD65fVpeKTmprK2rVrufvuu82vZWVlsWbNGjZs2EBWVhaPPvoo77zzDtWqVSvz/rdt28aR\nI0c4evQoPXv2JCQkhF69evHZZ5/Rrl07+vfvz6lTp9izZw8xMTHlir28pAUjhBAl7Nixg5MnTzJw\n4ECaN29O69atWb58ufn11atX07VrV2bMmEGTJk1o3759mbuytNY899xzeHl54efnx4ULF0pNRrZ2\n7Vo8PDzo3LkzPXv2BODrr78uV/zTpk2jVq1atGnThscff5wVK1YAxvwyH330EaNGjeL5559n8eLF\nuLm5lWvf5WVxgVFKvaqUOqCU+l0ptVwpVUMp5aOU2qyUilVKbVJKeVVmsEKIm4ONZkwGjC6qPn36\n4O7uDsDQoUNLdVV5eXnx5ptvsn//flJSUggJCWHQoEFlzEvx/vvvk56ezr59+zh+/DgbNmwodezB\ngwcD4OLiwqBBg8rdTRYUFGR+3qhRI/OUyQADBgygsLCQli1bcs8995Rrv5awqMAopW4BngDu0Fq3\nBVyAR4DJwGatdQtgS/GyEEKUi41mTCY7O5tVq1axdetWAgMDCQwMZO7cucTExLBv374rtvf19WXi\nxImcOnWKc+fOlTE3I7A2bdowY8YMJk+ejNaaxMREtm7dSlRUlPnYq1atYsOGDaSmppY5hxMnTpR6\nXnIK5r/+9a+0bt2apKQkVq5cWeZ9WsrSFkwGkA/UVkq5ArWBU8BA4FK5jQLKVtaFEMIOfPHFF7i6\nunLo0CFiYmKIiYnh0KFDdO3alcWLFwPwyiuvcODAAQoKCsjMzOSjjz6iefPmeHt7l/t4ERERZGVl\nsWrVKpYsWULLli2JjY01Hzs2NpaGDRuau7mmT59Ojx49rrvPmTNnkp2dzYEDB1i0aBEPP/wwYFyd\ntmjRIpYsWcKiRYsYP358qdaNNVhUYLTWacBc4ARGYUnXWm8GArTWKcWbpQABlRKlEEJUgcWLFzN6\n9GgaNmyIv78//v7+BAQE8Oyzz7J8+XIKCwvJzs7mwQcfxNvbm6ZNm5KQkHDFpcxgdIddTcn11apV\nY8KECcyZM4clS5Ywbtw483EvHfupp54yF7eEhAS6dOlyzfiVUnTr1o1mzZrRu3dvJk2aRO/evcnI\nyCAiIoL58+cTGBhIly5dGDNmDKNHj67gX+z6LJoyWSnVFPgS6AqcB1YDa4D3tdbeJbZL01r7lHzv\nmDFjdJ06dczLoaGhhIaGWha9nUhPT8fLy3lONzlbPuB8OTlyPk2aNJEpky3Uvn17tm7dalFrqTyU\nUhw7dozo6Giio6PN6997771yTZlsaYF5GAjTWo8tXh4JhAI9gR5a62SlVCDwnda6Zcn3RkZG6kWL\nFpX7mPbMkedHvxpnywecLydHzuda870L+3Gtz6h4fZkLjKXnYA4DoUqpWspo7/UGDmK0aiKKt4kA\nvrBw/0IIIRycRTdaaq1jlFKLgT1AEfAr8AngDqxSSo0B4oFhlRSnEEIIB2Pxnfxa67eBty9bnYbR\nmhFCCHGTkzv5hRBCWIUUGCGEEFYhBUYIIYRVSIERQghhFVJghBCiikRGRjJ16lSH27elpMAIIcRl\nFi1aRNu2bXFzcyMwMJBx48Zx/vz5Cu9XKXXNIWQuZzKZOHbsmFX2XVWkwAghRAlz585l8uTJzJ07\nl4yMDKKjozl+/DhhYWHk5+dXeP/lGcWgvCMe2NsICVJghBCiWEZGBtOnT+eDDz6gT58+uLi4EBwc\nzKpVq4iPj2fp0qUAFBYWMnv2bJo1a4aHhwcdOnQgMTERgMOHDxMWFoavry8tW7Zk9erV1zzev/71\nL5o3b46vry/h4eEkJSUBcO+99wJw++234+7uft19lHT27Fn69OmDh4cH3bt3Nw/d/8wzz5SaLhlg\n4MCBzJs3r3x/oHKSAiOEEMV27txJTk6OedKvS9zc3OjXrx+bN28G4J133mHlypVs3LiRjIwMFi5c\nSO3atbl48SJhYWGMGDGCM2fOsHLlSsaNG8ehQ4euONbWrVuZMmUKq1evJikpieDgYB555BHAGFof\nYN++fWRmZjJ06NAbxq61ZtmyZbz22mucPXuWkJAQHnvsMcA4P7NixQpzC+fs2bNs2bLF/Lq1SIER\nQohiZ8+epW7duphMV3411qtXzzzx14IFC5g1axbNmzcHoG3btvj4+PDVV1/RuHFjIiIiMJlMhISE\nMHjw4FItkEvnSZYtW8aYMWMICQmhevXqvPnmm+zatavUhGHlNWDAALp06UL16tWZNWsWu3bt4uTJ\nk9x11114enqyZcsWAFauXEmPHj3w8/Oz+FhlIQVGCGF/bDRnct26dTl79ixFRUVXvJaUlETdunUB\nSExMpGnTpldsc/z4cX766Se8vb3Nj+XLl5OSknLFtpdaLZe4ubnh6+vLyZMnyx03GIWrYcOGpfbn\n4+NjnlRs1KhR5i6+pUuXMnLkSIuOUx5SYIQQ9sdGcyZ36tSJGjVqsGbNmlLrL1y4wDfffEOvXr0A\nY977I0eOXPH+Ro0a0a1bN86dO2d+ZGZmMn/+/Cu2rV+/PvHx8eblixcvkpqaWmqK4/JKSEgoFXNa\nWhr169cHYMSIEaxbt46YmBgOHz7MoEHWn3BYCowQQhTz9PRk2rRpjB8/nm+//Zb8/Hzi4+MZNmwY\nQUFB5l/9Y8eOZerUqRw5cgStNfv27SMtLY0BAwYQGxvL0qVLyc/PJz8/n927d3P48GHAOE9y6TzI\n8OHDWbhwITExMeTm5jJlyhRCQ0Np1KgRAAEBARw9erRUfCaTyXx+5nJaazZs2MCPP/5IXl4eU6dO\npVOnTuaC1bBhQzp06MCoUaN46KGHqFGjhlX+hqXitfoRhBDCgUyaNInZs2fz0ksv4enpSWhoKMHB\nwWzZsoVq1aoB8OKLLzJs2DD69OmDp6cnTzzxBDk5OdSpU4dNmzaxcuVKGjRoQGBgIK+++ip5eXlA\n6XtVevXqxYwZMxgyZAj169cnLi6OlStXmuOYPn06EREReHt78/nnn5OQkIC7uztt27a9atxKKR57\n7DFef/11fH192bt3r7lL7JKIiAh+//33KukeAwtntKwImdHS/jlbPuB8OTlyPjKjpWWWLVvGwYMH\nmTVrlsX7+OGHHxgxYgTHjx+/7naVNaOlxfPBCCGEqDoVvaQ4Pz+fefPm8cQTT1RSRDcmXWRCCOHk\nDh06hLe3NykpKTz//PNVdlxpwQghhJNr1aoVFy5cqPLjSgtGCCGEVUiBEUIIYRVSYIQQQliFFBgh\nhBBWIQVGCCGEVUiBEUIIJxAfH4/JZLrqQJ22IgVGCCGuonv37vj4+JiHebkkMTGRIUOG4Ofnh5eX\nF23btiUqKoodO3bg7u6Ou7s7derUwWQymZc9PDxISEige/fu1KpVC3d3d+rWrUt4eLh5orJLtNY0\nadKE2267rSrTtQopMEIIcZn4+Hh+/vln/P39Wb9+fanXRo4cSXBwMCdOnCAtLY0lS5YQEBBAly5d\nyMzMJDMzkwMHDgBw/vx5MjMzycjIICgoCKUU8+fPJzMzk6NHj5KTk8OLL75Yav/bt28nNzeXM2fO\nsGfPnirL2RqkwAghxGUWL15M7969GTlyJFFRUaVe27NnD5GRkdSqVcs8qVjfvn1LbVOWsdY8PT0J\nDw83F6NLoqKiGDJkCOHh4Vccuyw+/fRTGjRoQP369Zk7dy4AycnJuLm5kZaWZt7u119/xd/fn8LC\nwnIfo6ykwAghxGUWL17Mww8/zLBhw/j22285ffq0+bXQ0FDGjRvHv//9b4tmn7xUfFJTU1m7di13\n3323+bWsrCzWrFljPvbKlSvJz88v1/63bdvGkSNH2LRpE3PmzGHLli3Uq1eP7t27s2rVKvN2S5Ys\nYfjw4bi4uJQ7h7KSAiOEECXs2LGDkydPMnDgQJo3b07r1q1Zvny5+fXVq1fTtWtXZsyYQZMmTWjf\nvn2Zu7K01jz33HN4eXnh5+fHhQsXSk1GtnbtWjw8POjcuTM9e/YE4Ouvvy5X/NOmTaNWrVq0adOG\nxx9/nBUrVgClZ7QsLCxk5cqVVh+2XwqMEMLu2GjGZMDoourTpw/u7u4ADB06tFRXlZeXF2+++Sb7\n9+8nJSWFkJCQMs8OqZTi/fffJz09nX379nH8+HE2bNhQ6tiDBw8GwMXFhUGDBpW7mywoKMj8vFGj\nRuYpk8PDwzl48CDx8fFs3rwZT09POnToUK59l5cMdimEsDu2mi4mOzubVatWUVRURGBgIAC5ubnm\ngtCuXbtS2/v6+jJx4kSioqI4d+4c3t7eNzzGpS6yNm3aMGPGDCZPnszgwYM5efIkW7duZffu3eau\nrKysLHJyckhNTcXX17dMOZw4cYJbb73V/PzSjJY1a9Zk6NChLF26lMOHDzNq1Kiy/VEqwOIWjFLK\nSyn1uVLqkFLqoFLqbqWUj1Jqs1IqVim1SSnlVZnBCiGENX3xxRe4urpy6NAhYmJiiImJ4dChQ3Tt\n2pXFixcD8Morr3DgwAEKCgrIzMzko48+onnz5mUqLpeLiIggKyuLVatWsWTJElq2bElsbKz52LGx\nsTRs2NDczTV9+nR69Ohx3X3OnDmT7OxsDhw4wKJFi3j44YfNr40aNYqFCxeyfv36KpnVsiJdZO8C\nG7TWrYB2wGFgMrBZa90C2FK8LIQQDmHx4sWMHj2ahg0b4u/vj7+/PwEBATz77LMsX76cwsJCsrOz\nefDBB/H29qZp06YkJCRccSkzYJ4a+Xrrq1WrxoQJE5gzZw5Llixh3Lhx5uNeOvZTTz1lLm4JCQl0\n6dLlmvErpejWrRvNmjWjd+/eTJo0id69e5tf79y5MyaTiTvvvLNUV5q1WDRlslLKE9irtW5y2frD\nQDetdYpSqh6wTWvdsuQ2MmWy/XO2fMD5cnLkfGTKZMu1b9+erVu3WtRauqR37948+uijjB49+prb\n2HrK5MbAGaXUQuB24BfgeSBAa51SvE0KEGDh/oUQQlxm7969FXr/7t27+fXXX1m3bl0lRXR9lnaR\nuQJ3AB9qre8ALnJZd5g2yp/8TBFCCDsQERFBWFgY8+bNw83NrUqOaWkLJhFI1FrvLl7+HHgVSFZK\n1dNaJyulAoHTl7/RxcWFCRMmmJdDQ0MJDQ21MAz7kJ6eTlxcnK3DqDTOlg84X07Olo+wvvJe7hwX\nF0d0dDTR0dEWH9OiczAASqntwFitdaxSajpQu/ilVK31HKXUZMBLa12qZSPnYOyfs+UDzpeTI+cj\n52Dsn63PwQCMB5YppaoDR4HHARdglVJqDBAPDKvA/oUQQjgwiwuM1joGuOsqL/W+yjohhBA3GRkq\nRgghhFXIUDFCiCp3rZsQhXORAiOEqFLXOsHvsBcuTJoEbm4wfXqp1Q6bTyWSLjIhhKiIjRuhXz9b\nR2GXpMAIIYSljh+HlBSw8rD3jkoKjBBCWGrjRujbF0zyVXo18lcRQghLSffYdUmBEUIIS+Tmwnff\nQZ8+to7EbkmBEUIIS2zfDm3aQBlnmrwZSYERQghLbNwI999v6yjsmhQYIYSwxIYNcv7lBqTACCFE\neR07Bunp0L69rSOxa1JghBCivOTy5DKRv44QQpSXdI+ViRQYIYQoj+xs+OEHCAuzdSR2TwqMEEKU\nx/ffw+23g7e3rSOxe1JghBCiPKR7rMykwAghRHnI8DBlJgVGCCHK6s8/ISsL2rWzdSQOQQqMEEKU\n1ZdfGq0XmZGzTKTACCFEWX3xBQwaZOsoHIYUGCGEKIszZyAmBnr1snUkDkMKjBBClMVXXxn3vtSs\naetIHIYUGCGEKAvpHis3KTBCCHEjWVnG5GJyeXK5SIERQogb2bQJ7roLfHxsHYlDkQIjhBA3sm4d\nhIfbOgqHIwVGCCGuJzvbuP9FCky5SYERQojrWb4cQkMhONjWkTgcKTBCCHEtWsO778Jzz9k6Eock\nBUYIIa7l++8hP1/mfrFQhQqMUspFKbVXKfVl8bKPUmqzUipWKbVJKeVVOWEKIYQNvPee0XqRsccs\nUtEWzATgIKCLlycDm7XWLYAtxctCCOF44uONFszIkbaOxGFZXGCUUg2BfsAC4FJ5HwhEFT+PAuS2\nVyGE49Eapk2Dxx+HOnVsHY3Dcq3Ae/8BTAI8SqwL0FqnFD9PAQIqsH8hhLCNBQtg9274+WdbR+LQ\nLGrBKKUGAKe11nv5X+ulFK215n9dZ0II4Rh274YpU+A//5HWSwVZ2oK5BxiolOoH1AQ8lFJLgBSl\nVD2tdbJSKhA4ffkbXVxcmDBhgnk5NDSU0NBQC8OwD+np6cTFxdk6jErjbPmA8+XkbPmA7XLKyYG0\nNMg8X8Stpj+NKZEXL4bq1aEC8TjDZxQdHU10dLTF71dGQ8NySqluwEta6weUUm8DqVrrOUqpyYCX\n1rrUif7IyEi9aNGiCh3T3sTFxdG4cWNbh1FpnC0fcL6cnC0fsF5OBQVw/rwxnFhaGvxnTSEpx3M5\nl5JLdhbka1eyqUVz/uTXlsOp+dTjUOJHsKWc8TNSSqG1LvMldRU5B1PSpSr1FrBKKTUGiAeGVdL+\nhRDiCnl5cOECbN4MKSmw/3fNwX35kJFBUmIBqRdq4kIh5/CmJjn4kEYYm7mXOIJcThHkcY5bAnII\nCK5JdFFHatZsCDNmQNOmMGCArdNzeBUuMFrr74Hvi5+nAb0ruk8hhAAoKoKEBNi7F/bsgX37IPlU\nIWmnckg/W0BhgSZbG0XEnUy8OEczjtKYODq75BHifZRG9XLxauRF/fZ+eIe2gva9oEEDcHEpdSzj\nVspX4Kef4IEH4LPPpMhUUGW1YIQQotwKCiA2FnbuBJMJZs6Eo0fhSGwhOedzuZBlIpea1OYi1cnn\nNg7Qmj8JIoFG1ZJoXDedgAauNLm9Dm53toI774TbuoJnBQrD3Xcbs1cOGGCMQ9ZbfjNbSgqMEMJq\ntDa6rqKjjSt+9+837l9MTtZkpGsK8o3e9bqmNEaMSuPXqPM01Ak8TTQ+Kp2GtVNpH5iEVxNf6rRr\nAh06QKceEBRkVCRr6dgRoqJg3Dg4cACqVbPesZyYFBghRIVdvGi0PH7+2TiZfugQZF3UnE0u4EK2\nC7VMOTQwJdNMHaVP0X5aF/7OrRymSbWT1PPORTVsQFzrR/j7G7lGC+LOibaf3KtvX2jUCD79FJ56\nyraxOCgpMEKIMtHaaIns2wcxMcbzlGTNubQi8nI1hbhSm4vcajpCYNFpbmcvt3GQwbW/wcOvptHq\nuPVWaN8eOj0LrVtDzZr/O0BcHNjTVVdKwZw5xvmYESPknhgLSIERQpgVFEBhISxcaBSS06dhxw44\nf16jc/Mp0goNtDLF0oqD3FOUQn++JqhaCjV9atO0mULd1troYuo6CJpOvOJkukO5807o3h3+8Q+Y\nOtXW0TgcKTBC3ISKioxCMn++cV7k3DnjSq3jxzUUFVFd5VOLHG5VsUTq7wjW8TQ1xdPa5xT1b6mB\nqdWtxpdv167Q5gmoUcPWKVnPzJlGwRw3Dnx9bR2NQ5ECI4QTS0qCrVth+3ajWys+3rjZMD9fY6KI\nWqZcfNQ5gnQCDxT9zF38RDOXeNrUTaFOi/oQEgLdukH3sTfvl2uTJtC/v3Eu5uWXbR2NQ5ECI4QT\nyMoyLqr6+GP497/h2DFITYXCQk1t13xuqZlEO9MBhhXsokPRD7TlN866BtLQL5dazYOMQtK9O3Qb\nYfuT6/Zo/Hh46CGY6OBdflVMCowQDiYrC7ZtM0YzycqCH3+EnByjRVLblEu/Ot/zcMEOOurvaUMM\nHqY88PQzlEagAAAXe0lEQVQz7k5v3x66Pw/duuHt7W3rVBxHhw4QGAhffgmDZBaSspICI4SdKiqC\npUuNwX1TU40xGPPyNNlZmrGRBfy84Qzt1H7m6PUEEU8zlzha1E2jRvNg4/xIz5fh3nvBSyaWrRTj\nx8P770uBKQcpMELYmNbwyy/w3XdGIYmKgjNnwKQ0urAIT1MGgSTxglpD/YLjtOIQgTXa8Um7n+D2\n241zJPe9bPzCFtZzqYvswAG47TZbR+MQpMAIUcX27IHsbJg0ybg5sbDQuIpLUYSXKYNBNTbSWv9G\ns8I/6FPje2o38oM2baBzZ+j7ArRqRdzx4/Z1z8jNoHp1ePJJ+OAD+OgjW0fjEKTACGEl58/DunXw\n3/8a420VFMCvv8KlKTLa1/6DsMKDtM3/hbH8k9o1inAL9oM77oD77oMHXr55r9yyV08+adwg+uab\n0vVYBlJghKgEFy4Y4yNu2GC0UOLjjVZKzRpFNHM/TVOOUJRxgTdMH9Kq8Hc8aubhG+RunCvp0wce\niJWrtxxBYCDcf79xJ+oLL9g6GrsnBUYIC/z2mzH+4V/+YtxfcvEiVK9WRDOPM3St8TMz3dbTvWA9\nPrmnwVQLgoPhvjvhvqEwIArkCi7HNX48jBxpXMZnzQE3nYAUGCFuICkJliwxblhMSTEKitbGOZMu\n7jF8XGMhvfK+IDA/AbJqgV/xVVx95xpDvktXinMJDTU+040bjRswxTVJgRGiBK3hm2+McbiWLYM/\n/jBuVtRFmqBqyTTRx1ji8gl3F+zEo2Y+/g3djHsk+r4F/fpJMbkZKPW/S5alwFyXFBhxU4uLMyYu\n3L4dzp6FQ4c0WkN1lU//2t8xTn3NLYV/cJ/LVlT9hsYJ+H794MF5cs7kZvbww8awMX/8YYwQLa5K\nCoy4aRQWGi2TTZtgwQJITDTG5FJFRTSvcZxmhX8wn7/Rht/x9K1GtTa3GrMZDn0Wmjc3frkKAcY0\nA08+CfPmySXL1yEFRjit7Gzjiq5ly4yrfWfPBtBUUwV0d/+F4fxA+8KdPOj6FTQINkYGHj4ZevWS\n8abEjT3zDLRsCW+8AX5+to7GLkmBEU4jNtbo7vr+e+OO+JMnIStL41XtIk+OOsMnNf/BoJwV1K5W\ngFujhtCjB4ycAh3WSutElF9AAAwdasx5MH26raOxS1JghMM6etQoKBs2wOHDkJMDvl4FdPY6QOeM\nXwjI+5NnmEetai7E+z9H44keELHT6O4SojJMnGiM9/byy1C7tq2jsTtSYITDyMszeiMuFZTsbE1d\nj3y6ef3Gq74ruP/sEtzTUwEvaNfOuER4xDHj5jh7m45XOIdbb4VOnWDRImNCMlGKFBhh19atM0bl\nSEqC1FSNqTCf+31/ZnKdFdyfvxz3zPNQ08+47+TBN+GRR8Dd3dZhi5vJSy9BZKRx162rfKWWJH8N\nYTcyM+HQIXj7bWP8rowMjQlNB/c/uC9/Dy1zfuM5/R6uqh507wRDP4GBA517ul5h/zp3hnr14PPP\njR84wkwKjLCZ7GxjsqwffoDNm2HXLg0o6rqcY3ztKO5U39OuaB9NPPKM/8QjRsD9b8sVXsK+KAVT\npsDkyTBsmAwfU4IUGFGlDh6Ev//dOCUSHW3MxOjjmkFL/uAb03S6FW2lWoA/Ll06wWOPGzc1SreD\nsHf33w//93/GiKcDB9o6Grsh/3OF1S1YYJwDTUqC+HiNZ/VsmqsjPF/wLTN4FVdPL+NKnFF/gf7r\njFEkhXAkl1oxs2bBAw/IZe/FpC0nrOKjj4yLttzd4cm/aC7uP0anpDWs1MNIK/Dkp6aP8eaUC7im\nnDLGaFm71piKVoqLcFSDB0NGhjEqqgCkBSMqQV4eZGXB2LHGtL8ZGRoKC+njvouwvPX00V/T2vU0\n9OhqXGnTd5X8whPOx2SCV1+F11+Hnj1tHY1dkAIjLJKYaAzD9MUXcOyYMUujr+t5nq61mNDCzdyu\nfieokbvxq+6ZbeDvb+uQhbC+Rx+FmTONVkyTJraOxuYsKjBKqSBgMeAPaOATrfV7Sikf4N9AMBAP\nDNNap1dSrMKGtIZt24wRyr//HtLSNIHuF3iw9iaeqP0OAReP4e0ONe+9G554yjg5L60UcbNxdYVp\n0+C112DpUltHY3OWnoPJB17QWt8GhALPKKVaAZOBzVrrFsCW4mXhoPLzjWGWOnY0Bo/t3UuTsO0I\n05jOGVMAp7K8mV93GiEv9iIw+TdqpiUZTZr+/aW4iJvXI4/AuXPGWEY3OYtaMFrrZCC5+PkFpdQh\noAEwEOhWvFkUsA0pMg4lOdm4N+WNN+DzzzU6J49+7j8ww2U+PfO+pJryhC5d4C8LjUsz5Zp/IUpz\ncTEGv/zuO2Nk7pv4x1aFvx2UUrcA7YGfgACtdUrxSylAQEX3L6zv11/h2Wehe3doUF+z9b9F/Lrk\nAH+9OIX0IndWBU7gvoltqJaUaAxTvG6d0UqR4iLE1T30EBQUwJdf2joSm6rQSX6lVB1gDTBBa52p\nSlRqrbVWSukKxiesZMsWY9DI7dvhlz1FeJoucLf6if/q2dxSvTmNex03JlQalCOFRIjyMpmM1ssL\nLxg/xm7S0SeU1pbVAKVUNeArYKPWel7xusNAd611slIqEPhOa92y5PvGjBmj69SpY14ODQ0lNDTU\n0vjtQnp6Ol4OMBf7sWNGa+V0CqSe1bipizQigS56O/XcLxrD2IeGkl6tmkPkUx6O8hmVlbPlA86X\nU3p6Ol5ffAEhIcbDAUVHRxMdHW1efu+999Bal7nPz6ICo4ymShSQqrV+ocT6t4vXzVFKTQa8tNal\nzsFERkbqRYsWlfuY9iwuLo7GdjoU/DffGEOznDihiTtSSGPTccIKv+Fp0z9p00bB8OHGMOMeHub3\n2HM+lnK2nJwtH3C+nOLi4micnGyMTxYbC7Vq2TqkClNKlavAWNpF1hkYAexTSu0tXvcq8BawSik1\nhuLLlC3cv6iATZvggw/g8GGjqDRziadvwUaeNn1MqzvrwHPPwfDfpOtLCGvr1Ak6dDD+Q06aZOto\nqpylV5Ht4NoXCPS2PBxhqd9+g7/9Dfbtg4P7iwhyOUm/oq+ZxNs0budttFIi9920fcFC2Mzs2cZY\ne48/DnXr2jqaKiV38juwzEx46y3jRP2PO4rwVukM4gv+w2yata5tnKT/yx8yvpcQttSqlXFvzGuv\nwYcf2jqaKiUFxsGcPw9z5sD+/fDVl0W4qwt05Qd+41XatSyAMWPg2QMyCZcQ9mT6dKPQPP00tG1r\n62iqjBQYB1BQYIxO/OGHEPtHEY1cTtGs8DA/8hodmqRR7fGR8EI01K5t61CFEFfj62u0YF54wZhd\n7ya5+VIKjJ3SGv7zH+O8yi+7C/HU54kwLeYr/T5Ng7Qxu+Okb2X+eSEcxVNPGb8U160zpqa4CUiB\nsTM//2yM9r1tSwEqL5ehLmt5r/A9OjRMQT06HCbvAW9vW4cphCgvV1djtNjRoyEsDNzcbB2R1cl1\nqnYgNRWWLYMA33y63p2Ly7dfsza3P+kBt7LwmV+4K/krVMIJ4+SLFBchHFfPntC5M8yYYetIqoS0\nYGyksNAYeHjqq3kc/VNTmyz+yiye9F2D+0P3wf99Cg0b2jpMIURlmzvXONE/ciTcdputo7EqKTBV\n7OhReP7ZfLZ+m0+RVozjQ+6puZchQ03GScBmf7d1iEIIa6pXz7iq7OmnjcmVnPiEv3SRVYHERHh2\nXCGN3U7Tplk2hd9sYp7rS1wcEsHc33ozJHspLF4MzZrZOlQhRFV46inIzYVPPrF1JFYlLRgrycuD\nJUvgrVfOkZLqQhv286jpe57rGUPAzAnQ6ea64UoIUYKLCyxcCN26Qd++EBxs64isQgpMJTt/Hobe\nd57fd+egigoZyHqeaP49d858EIZOdurmsBCiHFq3hokTYexYYwBBJ/xukC6ySqA1vPhcAXd6H8XL\nC7J++p2368wgcdoCPs6O5M7YFcaIqk74D0gIUQEvvQTp6fDPf9o6EquQFkwFbNkC77x6muDW2WyI\nSuQxl9V8MSiR+nMn4dLkA1uHJ4Swd66uxvnXHj3A09OYPsOJSIEpp6IieO+dApbNjufQuXr0ZTv9\nO57m5XcbcMtzk2+8AyGEKKlVK2P4mL59ITvbuBHTSUiBKaMjR+CjvyaycJUbtbnIw6avmN4lm/6r\nHycuO5tbnGiiJCFEFWvbFr77Dnr3hqwsePZZW0dUKaTAXEdRESz4uIB//t8J/jjnzx0c42Wvnbwy\nPxg1fML/zqnExdk2UCGE42vRwph7o1cvuHgRXnnF1hFVmBSYq0hKgr9GnmTTfxWuRXlEmpayakAq\nTT+ZDIH32jo8IYSzuuUWo8hcaslMn+7QFwdJgSlWVARR8zNZ+Fo8v6UHcy+/MsdvKw//vQOuI6c6\n9IcshHAgDRoYd/iHhRktmb/9zWG/f276AhN3tIjpD+1nW4wXShfxULWtfPxIOq3njwefB2wdnhDi\nZuTvb5yT6dsXnnkGPvgATI53V4njRVwJCgth4ZQ/CffYSvtm58n47ShvtljI0V1n+HveBFqvmAY+\nPrYOUwhxM/Pxgf/+15hIMC/P1tFY5KZqwRyPOcd/ntjA33Z3pzbQrVYym17aTMc5D4HpQVuHJ4QQ\npXl4wN8ddwBcpy8w+blF7H1jPePmBHO4sDkNuIu/tNnJa1t7oPwetXV4QgjhtJy2wFzcfYAn+57g\nh7TWJPIAI7y+4ttlefj2uxtoYevwhBDC6TlVgSm6kMWLoT/y/UE/EnRDmpmy+Owv0fSc/xDKNdzW\n4QkhxE3F4QuM1vDRmN2sX36BtNzaXKQBT7bbSftp9ek86C5MprtsHaIQQtyUHLbA7FqTyJIJv5B6\nKo9d+m6GeB/A58G7ePLd1vj7t7Z1eEIIcdNzqAJz/mw+y0dtIPn7WN7LGks3VxfyG7RgzYoA7uoS\naevwhBBClGD3BaaoCPZ9tpuEOSsYfeRVgmjExWrtePetLEa9MsDW4QkhhLgG+y0weXnsH/cB4Z+G\nk04TMnmLV/rtZ8bXd9g6MiGEEGVgdwXmyPqDRAzL5s/cIAqIpG9gDEtjvFB1q6OUFBchhHAUdjFU\nTGF+EQvC1zPA9Rs6hNenEcf5etrP/GORD0sTe2Dy83XUsd6EEOKmZdMWTPTCg3w88U++OxdCTW6l\nZ/3DbFtwkZD7BwMgFxgLIYTjqvQCo5TqC8wDXIAFWus5l2/zZMB/2HM6mHiC6Vb9GH9//CBDPrkP\nk+utlR2OEEIIG6nULjKllAvwAdAXaA0MV0q1KrlNcnIyp8/X4LHO8Rz9o5C1uQMY+tn9mFztorfO\nItHR0bYOoVI5Wz7gfDk5Wz7gfDk5Wz6WqOxv9Y7AEa11vNY6H1gJlBqjJTk5mf/k9OPFHYPxauFf\nyYe3DWf7h+Rs+YDz5eRs+YDz5eRs+ViisgtMAyChxHJi8TohhBA3mcouMLqS9yeEEMJBVfZJ/pNA\nUInlIIxWjFn16tVRTnbN8V133eVUOTlbPuB8OTlbPuB8OTlbPpao7BbMHqC5UuoWpVR14GFgfckN\n8vLy0Fo71aNTp042j0HyublycrZ8nDEnZ8tH6/J3UFVqC0ZrXaCUehb4FuMy5U+11ocq8xhCCCEc\nQ6XfB6O13ghsrOz9CiGE07pRV5oFrQd7UOU3n9SrV6+qD2l1oaGhtg6hUjlbPuB8OTlbPuB8OTlb\nPpaQAlMJnO0fkrPlA86Xk7PlA86Xk7PlYwnHvX1eCCGEXZMCI4QQwiqkwAghhLAKKTBCCCGsQgqM\nEEIIq5ACI4QQwiqkwAghhLAKm06ZfC3vnnu3So83wXvCdV+/UTwBOQGsP7f+uttUZTwVdbV8bB3T\n5cobT2V/RhWNp6LKko+jfWY/5fxk1c/ocjeKR1ScXRYYgAkbn6+S47x7/7wybXe9eOLcI2i8N8pu\n4qmoy/Oxh5hKsiSeyvyMKiOeirpRPs7wmVlTWeMRFSNdZEIIIaxCCowQQgirkAIjhBDlsVwZD3vZ\njx2TAiOEEMIq7PYkvxBC2JOwvn0B2DzKxoE4ECkwQghRBtVq1rR1CA5HusiEEEJYhRQYIYQQViEF\nRgghhFVIgRFCCGEVUmCEEEJYhU0KjFIKpRTdu3c3Py/5qEob39p41RgkHvuNSeJxvJgcIR5u8Phz\n5042rlsHwPQ13DCf119//brfddPXgHoMm/z7qCo2KTBaa7TWbNu2zfy85KMq3T/5/qvGIPHYb0wS\nj+PF5Ajx3Ehzf3/uDw8HYPoQbpjPtGnTrvtdN30I6GXGfrjRw0FJF5kQQgirkAIjhBDCKqTACCGE\nsAopMEIIIaxCCowQQpRB/pkz5Ofk2DoMhyIFRgghymDz6dNs/uYbW4fhUKTACCGEsAoZrl8IIcrj\n0Uq6L6Wy9mPHpAUjhBDCKqTACCGEsAq77SJ79/55tg6hlOvFE5AcwPp67aswGuv+fSzNx54/M1t8\nRperzL9PZeVjz5+ZcAI3Gk+nsh/33XefdjbLly+3dQiVytny0dr5cnK2fLS2g5xuPCJYuXZn83ys\nwCgZZf++r/IusuTk5Ko+pNVFR0fbOoRK5Wz5gPPl5Gz5gPPl5Gz5WELOwQghhLAKKTBCCCGsQukq\nnmtAKeX8F38LIYST0lqXeYa0Ki8wQgghbg7SRSaEEMIqpMAIIYSwiiotMEqpvkqpw0qpP5VSr1Tl\nsa1BKRWklPpOKXVAKbVfKfWcrWOqDEopF6XUXqXUl7aOpaKUUl5Kqc+VUoeUUgeVUqG2jqmilFKv\nFv+b+10ptVwpVcPWMZWHUuozpVSKUur3Eut8lFKblVKxSqlNSikvW8ZYXtfI6W/F/+5ilFJrlVKe\ntoyxPK6WT4nXJiqlipRSPjfaT5UVGKWUC/AB0BdoDQxXSrWqquNbST7wgtb6NiAUeMYJcgKYABwE\nnOEE3bvABq11K6AdcMjG8VSIUuoW4AngDq11W8AFeMSWMVlgIcb3QEmTgc1a6xbAluJlR3K1nDYB\nt2mtbwdigVerPCrLXS0flFJBQBhwvCw7qcoWTEfgiNY6XmudD6wEwqvw+JVOa52stf6t+PkFjC+v\n+raNqmKUUg2BfsACoMxXi9ij4l+MXbXWnwForQu01udtHFZFZWD8sKmtlHIFagMnbRtS+WitfwDO\nXbZ6IBBV/DwKGFSlQVXQ1XLSWm/WWhcVL/4ENKzywCx0jc8I4B3g5bLupyoLTAMgocRyYvE6p1D8\ny7I9xj8kR/YPYBJQdKMNHUBj4IxSaqFS6lel1L+UUrVtHVRFaK3TgLnACeAUkK61/q9to6oUAVrr\nlOLnKUCALYOxgtHABlsHURFKqXAgUWu9r6zvqcoC4wzdLVellKoDfA5MKG7JOCSl1ADgtNZ6Lw7e\neinmCtwBfKi1vgO4iON1vZSilGoKPA/cgtFarqOUesymQVWyS2Ne2TqOyqKU+iuQp7VebutYLFX8\nw2wKMK3k6hu9ryoLzEkgqMRyEEYrxqEppaoBa4ClWusvbB1PBd0DDFRKxQErgJ5KqcU2jqkiEjF+\nce0uXv4co+A4sg7ATq11qta6AFiL8bk5uhSlVD0ApVQgcNrG8VQKpVQkRpezo/8IaIrxoyam+Puh\nIfCLUsr/em+qygKzB2iulLpFKVUdeBhYX4XHr3RKKQV8ChzUWjv8OONa6yla6yCtdWOME8dbtdaj\nbB2XpbTWyUCCUqpF8arewAEbhlQZDgOhSqlaxf/+emNckOHo1gMRxc8jAEf/sYZSqi9Gd3O41jrH\n1vFUhNb6d611gNa6cfH3QyLGhSbX/SFQZQWm+NfWs8C3GP8h/q21dugreoDOwAigR/FlvXuL/1E5\nC2fophgPLFNKxWBcRTbbxvFUiNY6BliM8YPtUl/4J7aLqPyUUiuAncCtSqkEpdTjwFtAmFIqFuhZ\nvOwwrpLTaOB9oA6wufi74UObBlkOJfJpUeIzKqlM3w0yVIwQQgirkDv5hRBCWIUUGCGEEFYhBUYI\nIYRVSIERQghhFVJghBBCWIUUGCGEEFYhBUYIIYRVSIERQghhFf8PrIdChszobhIAAAAASUVORK5C\nYII=\n", "text": [ "<matplotlib.figure.Figure at 0x12033f30>" ] } ], "prompt_number": 9 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }
gpl-3.0
python-visualization/folium_contrib
notebooks/GoogleEarthEngine_layer.ipynb
1
13592
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Google Earth Engine Tile Layers in Folium" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.2.1\n" ] } ], "source": [ "import ee\n", "import folium\n", "\n", "ee.Initialize()\n", "print(folium.__version__)" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def folium_gee_map(image,vis_params=None,folium_kwargs={}):\n", " \"\"\"\n", " Function to view Google Earth Engine tile layer as a Folium map.\n", " \n", " Parameters\n", " ----------\n", " image : Google Earth Engine Image.\n", " vis_params : Dict with visualization parameters.\n", " folium_kwargs : Keyword args for Folium Map.\n", " \"\"\"\n", " \n", " # Get the MapID and Token after applying parameters\n", " image_info = image.getMapId(vis_params)\n", " mapid = image_info['mapid']\n", " token = image_info['token']\n", " folium_kwargs['attr'] = ('Map Data &copy; <a href=\"https://earthengine.google.com/\">Google Earth Engine</a> ')\n", " folium_kwargs['tiles'] = \"https://earthengine.googleapis.com/map/%s/{z}/{x}/{y}?token=%s\"%(mapid,token)\n", " \n", " return folium.Map(**folium_kwargs)\n", "\n", "def folium_gee_layer(folium_map,image,vis_params=None,folium_kwargs={}):\n", " \"\"\"\n", " Function to add Google Earch Engine tile layer as a Folium layer.\n", " \n", " Parameters\n", " ----------\n", " folium_map : Folium map to add tile to.\n", " image : Google Earth Engine Image.\n", " vis_params : Dict with visualization parameters.\n", " folium_kwargs : Keyword args for Folium Map.\n", " \"\"\"\n", " \n", " # Get the MapID and Token after applying parameters\n", " image_info = image.getMapId(vis_params)\n", " mapid = image_info['mapid']\n", " token = image_info['token']\n", " folium_kwargs['attr'] = ('Map Data &copy; <a href=\"https://earthengine.google.com/\">Google Earth Engine</a> ')\n", " folium_kwargs['tiles'] = \"https://earthengine.googleapis.com/map/%s/{z}/{x}/{y}?token=%s\"%(mapid,token)\n", " \n", " layer = folium.TileLayer(**folium_kwargs)\n", " layer.add_to(folium_map)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div style=\"width:100%;\"><div style=\"position:relative;width:100%;height:0;padding-bottom:60%;\"><iframe src=\"data:text/html;base64,CiAgICAgICAgPCFET0NUWVBFIGh0bWw+CiAgICAgICAgPGhlYWQ+CiAgICAgICAgICAgIAogICAgICAgIAogICAgICAgICAgICA8bWV0YSBodHRwLWVxdWl2PSJjb250ZW50LXR5cGUiIGNvbnRlbnQ9InRleHQvaHRtbDsgY2hhcnNldD1VVEYtOCIgLz4KICAgICAgICAKICAgICAgICAgICAgCiAgICAgICAgCiAgICAgICAgICAgIDxzY3JpcHQgc3JjPSJodHRwczovL2NkbmpzLmNsb3VkZmxhcmUuY29tL2FqYXgvbGlicy9sZWFmbGV0LzAuNy4zL2xlYWZsZXQuanMiPjwvc2NyaXB0PgogICAgICAgIAogICAgICAgIAogICAgICAgIAogICAgICAgICAgICAKICAgICAgICAKICAgICAgICAgICAgPHNjcmlwdCBzcmM9Imh0dHBzOi8vYWpheC5nb29nbGVhcGlzLmNvbS9hamF4L2xpYnMvanF1ZXJ5LzEuMTEuMS9qcXVlcnkubWluLmpzIj48L3NjcmlwdD4KICAgICAgICAKICAgICAgICAKICAgICAgICAKICAgICAgICAgICAgCiAgICAgICAgCiAgICAgICAgICAgIDxzY3JpcHQgc3JjPSJodHRwczovL21heGNkbi5ib290c3RyYXBjZG4uY29tL2Jvb3RzdHJhcC8zLjIuMC9qcy9ib290c3RyYXAubWluLmpzIj48L3NjcmlwdD4KICAgICAgICAKICAgICAgICAKICAgICAgICAKICAgICAgICAgICAgCiAgICAgICAgCiAgICAgICAgICAgIDxzY3JpcHQgc3JjPSJodHRwczovL2NkbmpzLmNsb3VkZmxhcmUuY29tL2FqYXgvbGlicy9MZWFmbGV0LmF3ZXNvbWUtbWFya2Vycy8yLjAuMi9sZWFmbGV0LmF3ZXNvbWUtbWFya2Vycy5taW4uanMiPjwvc2NyaXB0PgogICAgICAgIAogICAgICAgIAogICAgICAgIAogICAgICAgICAgICAKICAgICAgICAKICAgICAgICAgICAgPHNjcmlwdCBzcmM9Imh0dHBzOi8vY2RuanMuY2xvdWRmbGFyZS5jb20vYWpheC9saWJzL2xlYWZsZXQubWFya2VyY2x1c3Rlci8wLjQuMC9sZWFmbGV0Lm1hcmtlcmNsdXN0ZXItc3JjLmpzIj48L3NjcmlwdD4KICAgICAgICAKICAgICAgICAKICAgICAgICAKICAgICAgICAgICAgCiAgICAgICAgCiAgICAgICAgICAgIDxzY3JpcHQgc3JjPSJodHRwczovL2NkbmpzLmNsb3VkZmxhcmUuY29tL2FqYXgvbGlicy9sZWFmbGV0Lm1hcmtlcmNsdXN0ZXIvMC40LjAvbGVhZmxldC5tYXJrZXJjbHVzdGVyLmpzIj48L3NjcmlwdD4KICAgICAgICAKICAgICAgICAKICAgICAgICAKICAgICAgICAgICAgCiAgICAgICAgCiAgICAgICAgICAgIDxsaW5rIHJlbD0ic3R5bGVzaGVldCIgaHJlZj0iaHR0cHM6Ly9jZG5qcy5jbG91ZGZsYXJlLmNvbS9hamF4L2xpYnMvbGVhZmxldC8wLjcuMy9sZWFmbGV0LmNzcyIgLz4KICAgICAgICAKICAgICAgICAKICAgICAgICAKICAgICAgICAgICAgCiAgICAgICAgCiAgICAgICAgICAgIDxsaW5rIHJlbD0ic3R5bGVzaGVldCIgaHJlZj0iaHR0cHM6Ly9tYXhjZG4uYm9vdHN0cmFwY2RuLmNvbS9ib290c3RyYXAvMy4yLjAvY3NzL2Jvb3RzdHJhcC5taW4uY3NzIiAvPgogICAgICAgIAogICAgICAgIAogICAgICAgIAogICAgICAgICAgICAKICAgICAgICAKICAgICAgICAgICAgPGxpbmsgcmVsPSJzdHlsZXNoZWV0IiBocmVmPSJodHRwczovL21heGNkbi5ib290c3RyYXBjZG4uY29tL2Jvb3RzdHJhcC8zLjIuMC9jc3MvYm9vdHN0cmFwLXRoZW1lLm1pbi5jc3MiIC8+CiAgICAgICAgCiAgICAgICAgCiAgICAgICAgCiAgICAgICAgICAgIAogICAgICAgIAogICAgICAgICAgICA8bGluayByZWw9InN0eWxlc2hlZXQiIGhyZWY9Imh0dHBzOi8vbWF4Y2RuLmJvb3RzdHJhcGNkbi5jb20vZm9udC1hd2Vzb21lLzQuMS4wL2Nzcy9mb250LWF3ZXNvbWUubWluLmNzcyIgLz4KICAgICAgICAKICAgICAgICAKICAgICAgICAKICAgICAgICAgICAgCiAgICAgICAgCiAgICAgICAgICAgIDxsaW5rIHJlbD0ic3R5bGVzaGVldCIgaHJlZj0iaHR0cHM6Ly9jZG5qcy5jbG91ZGZsYXJlLmNvbS9hamF4L2xpYnMvTGVhZmxldC5hd2Vzb21lLW1hcmtlcnMvMi4wLjIvbGVhZmxldC5hd2Vzb21lLW1hcmtlcnMuY3NzIiAvPgogICAgICAgIAogICAgICAgIAogICAgICAgIAogICAgICAgICAgICAKICAgICAgICAKICAgICAgICAgICAgPGxpbmsgcmVsPSJzdHlsZXNoZWV0IiBocmVmPSJodHRwczovL2NkbmpzLmNsb3VkZmxhcmUuY29tL2FqYXgvbGlicy9sZWFmbGV0Lm1hcmtlcmNsdXN0ZXIvMC40LjAvTWFya2VyQ2x1c3Rlci5EZWZhdWx0LmNzcyIgLz4KICAgICAgICAKICAgICAgICAKICAgICAgICAKICAgICAgICAgICAgCiAgICAgICAgCiAgICAgICAgICAgIDxsaW5rIHJlbD0ic3R5bGVzaGVldCIgaHJlZj0iaHR0cHM6Ly9jZG5qcy5jbG91ZGZsYXJlLmNvbS9hamF4L2xpYnMvbGVhZmxldC5tYXJrZXJjbHVzdGVyLzAuNC4wL01hcmtlckNsdXN0ZXIuY3NzIiAvPgogICAgICAgIAogICAgICAgIAogICAgICAgIAogICAgICAgICAgICAKICAgICAgICAKICAgICAgICAgICAgPGxpbmsgcmVsPSJzdHlsZXNoZWV0IiBocmVmPSJodHRwczovL3Jhdy5naXRodWJ1c2VyY29udGVudC5jb20vcHl0aG9uLXZpc3VhbGl6YXRpb24vZm9saXVtL21hc3Rlci9mb2xpdW0vdGVtcGxhdGVzL2xlYWZsZXQuYXdlc29tZS5yb3RhdGUuY3NzIiAvPgogICAgICAgIAogICAgICAgIAogICAgICAgIAogICAgICAgICAgICAKICAgICAgICAgICAgPHN0eWxlPgoKICAgICAgICAgICAgaHRtbCwgYm9keSB7CiAgICAgICAgICAgICAgICB3aWR0aDogMTAwJTsKICAgICAgICAgICAgICAgIGhlaWdodDogMTAwJTsKICAgICAgICAgICAgICAgIG1hcmdpbjogMDsKICAgICAgICAgICAgICAgIHBhZGRpbmc6IDA7CiAgICAgICAgICAgICAgICB9CgogICAgICAgICAgICAjbWFwIHsKICAgICAgICAgICAgICAgIHBvc2l0aW9uOmFic29sdXRlOwogICAgICAgICAgICAgICAgdG9wOjA7CiAgICAgICAgICAgICAgICBib3R0b206MDsKICAgICAgICAgICAgICAgIHJpZ2h0OjA7CiAgICAgICAgICAgICAgICBsZWZ0OjA7CiAgICAgICAgICAgICAgICB9CiAgICAgICAgICAgIDwvc3R5bGU+CiAgICAgICAgICAgIAogICAgICAgIAogICAgICAgICAgICAKICAgICAgICAgICAgPHN0eWxlPiAjbWFwXzAzNDc1MTE5N2VlNDQzZWM4YWE5ZmJmMmU2Yzg2MGZhIHsKICAgICAgICAgICAgICAgIHBvc2l0aW9uIDogcmVsYXRpdmU7CiAgICAgICAgICAgICAgICB3aWR0aCA6IDEwMC4wJTsKICAgICAgICAgICAgICAgIGhlaWdodDogMTAwLjAlOwogICAgICAgICAgICAgICAgbGVmdDogMC4wJTsKICAgICAgICAgICAgICAgIHRvcDogMC4wJTsKICAgICAgICAgICAgICAgIH0KICAgICAgICAgICAgPC9zdHlsZT4KICAgICAgICAKICAgICAgICAKICAgICAgICAKICAgICAgICA8L2hlYWQ+CiAgICAgICAgPGJvZHk+CiAgICAgICAgICAgIAogICAgICAgIAogICAgICAgICAgICAKICAgICAgICAgICAgPGRpdiBjbGFzcz0iZm9saXVtLW1hcCIgaWQ9Im1hcF8wMzQ3NTExOTdlZTQ0M2VjOGFhOWZiZjJlNmM4NjBmYSIgPjwvZGl2PgogICAgICAgIAogICAgICAgIAogICAgICAgIAogICAgICAgIDwvYm9keT4KICAgICAgICA8c2NyaXB0PgogICAgICAgICAgICAKICAgICAgICAKICAgICAgICAgICAgCgogICAgICAgICAgICB2YXIgc291dGhXZXN0ID0gTC5sYXRMbmcoLTkwLCAtMTgwKTsKICAgICAgICAgICAgdmFyIG5vcnRoRWFzdCA9IEwubGF0TG5nKDkwLCAxODApOwogICAgICAgICAgICB2YXIgYm91bmRzID0gTC5sYXRMbmdCb3VuZHMoc291dGhXZXN0LCBub3J0aEVhc3QpOwoKICAgICAgICAgICAgdmFyIG1hcF8wMzQ3NTExOTdlZTQ0M2VjOGFhOWZiZjJlNmM4NjBmYSA9IEwubWFwKCdtYXBfMDM0NzUxMTk3ZWU0NDNlYzhhYTlmYmYyZTZjODYwZmEnLCB7CiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBjZW50ZXI6WzM5LjQ5NTE1OSwtMTA3LjM2ODkyMzddLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgem9vbTogMTAsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBtYXhCb3VuZHM6IGJvdW5kcywKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGxheWVyczogW10sCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBjcnM6IEwuQ1JTLkVQU0czODU3CiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgfSk7CiAgICAgICAgICAgIAogICAgICAgIAogICAgICAgIAogICAgICAgICAgICAKICAgICAgICAgICAgdmFyIHRpbGVfbGF5ZXJfMWY2YjU2ODc5ZmQ0NGYxOGIyZDIyZWE3N2I0ZDk2YjMgPSBMLnRpbGVMYXllcigKICAgICAgICAgICAgICAgICdodHRwczovL3tzfS50aWxlLm9wZW5zdHJlZXRtYXAub3JnL3t6fS97eH0ve3l9LnBuZycsCiAgICAgICAgICAgICAgICB7CiAgICAgICAgICAgICAgICAgICAgbWF4Wm9vbTogMTgsCiAgICAgICAgICAgICAgICAgICAgbWluWm9vbTogMSwKICAgICAgICAgICAgICAgICAgICBhdHRyaWJ1dGlvbjogJ0RhdGEgYnkgPGEgaHJlZj0iaHR0cDovL29wZW5zdHJlZXRtYXAub3JnIj5PcGVuU3RyZWV0TWFwPC9hPiwgdW5kZXIgPGEgaHJlZj0iaHR0cDovL3d3dy5vcGVuc3RyZWV0bWFwLm9yZy9jb3B5cmlnaHQiPk9EYkw8L2E+LicsCiAgICAgICAgICAgICAgICAgICAgZGV0ZWN0UmV0aW5hOiBmYWxzZQogICAgICAgICAgICAgICAgICAgIH0KICAgICAgICAgICAgICAgICkuYWRkVG8obWFwXzAzNDc1MTE5N2VlNDQzZWM4YWE5ZmJmMmU2Yzg2MGZhKTsKCiAgICAgICAgCiAgICAgICAgCiAgICAgICAgICAgIAogICAgICAgICAgICB2YXIgdGlsZV9sYXllcl81YTU2NmQ0YjAwNWI0OGVhODEzNmYwNDE3YjliNjZjOSA9IEwudGlsZUxheWVyKAogICAgICAgICAgICAgICAgJ2h0dHBzOi8vZWFydGhlbmdpbmUuZ29vZ2xlYXBpcy5jb20vbWFwLzYzYThkMTlmMmM1YTQ0YTg5YzZiNTYyZDQ1ZDA1OTA1L3t6fS97eH0ve3l9P3Rva2VuPTNmOTFlOGU3ZGQ3MDZlNDE0MjAyZTNmNmRlZTQ4MjIyJywKICAgICAgICAgICAgICAgIHsKICAgICAgICAgICAgICAgICAgICBtYXhab29tOiAxOCwKICAgICAgICAgICAgICAgICAgICBtaW5ab29tOiAxLAogICAgICAgICAgICAgICAgICAgIGF0dHJpYnV0aW9uOiAnTWFwIERhdGEgJmNvcHk7IDxhIGhyZWY9Imh0dHBzOi8vZWFydGhlbmdpbmUuZ29vZ2xlLmNvbS8iPkdvb2dsZSBFYXJ0aCBFbmdpbmU8L2E+ICcsCiAgICAgICAgICAgICAgICAgICAgZGV0ZWN0UmV0aW5hOiBmYWxzZQogICAgICAgICAgICAgICAgICAgIH0KICAgICAgICAgICAgICAgICkuYWRkVG8obWFwXzAzNDc1MTE5N2VlNDQzZWM4YWE5ZmJmMmU2Yzg2MGZhKTsKCiAgICAgICAgCiAgICAgICAgCiAgICAgICAgICAgIAogICAgICAgICAgICB2YXIgdGlsZV9sYXllcl8wMTJjNWU4YTM0ZmI0MDVkYmI1OTdkMmQ2ZTI5OTU2MyA9IEwudGlsZUxheWVyKAogICAgICAgICAgICAgICAgJ2h0dHBzOi8vZWFydGhlbmdpbmUuZ29vZ2xlYXBpcy5jb20vbWFwL2Q3NzllNjdkNjM3MGUxOTU1OWVkZWEwMzc3YjgwOTk1L3t6fS97eH0ve3l9P3Rva2VuPWYyMjhjZTUwY2Q1NmU5YjU1NGIyYWVhNDQ4NmY1YWZlJywKICAgICAgICAgICAgICAgIHsKICAgICAgICAgICAgICAgICAgICBtYXhab29tOiAxOCwKICAgICAgICAgICAgICAgICAgICBtaW5ab29tOiAxLAogICAgICAgICAgICAgICAgICAgIGF0dHJpYnV0aW9uOiAnTWFwIERhdGEgJmNvcHk7IDxhIGhyZWY9Imh0dHBzOi8vZWFydGhlbmdpbmUuZ29vZ2xlLmNvbS8iPkdvb2dsZSBFYXJ0aCBFbmdpbmU8L2E+ICcsCiAgICAgICAgICAgICAgICAgICAgZGV0ZWN0UmV0aW5hOiBmYWxzZQogICAgICAgICAgICAgICAgICAgIH0KICAgICAgICAgICAgICAgICkuYWRkVG8obWFwXzAzNDc1MTE5N2VlNDQzZWM4YWE5ZmJmMmU2Yzg2MGZhKTsKCiAgICAgICAgCiAgICAgICAgCiAgICAgICAgICAgIAogICAgICAgICAgICB2YXIgbGF5ZXJfY29udHJvbF81MDFhMjk1Mzk1MjM0NDg3YTM0OTg4ZmYzNzNhMTM0ZiA9IHsKICAgICAgICAgICAgICAgIGJhc2VfbGF5ZXJzIDogeyAib3BlbnN0cmVldG1hcCIgOiB0aWxlX2xheWVyXzFmNmI1Njg3OWZkNDRmMThiMmQyMmVhNzdiNGQ5NmIzLCB9LAogICAgICAgICAgICAgICAgb3ZlcmxheXMgOiB7ICJTUlRNIiA6IHRpbGVfbGF5ZXJfNWE1NjZkNGIwMDViNDhlYTgxMzZmMDQxN2I5YjY2YzksIlZpc3VhbCIgOiB0aWxlX2xheWVyXzAxMmM1ZThhMzRmYjQwNWRiYjU5N2QyZDZlMjk5NTYzLCB9CiAgICAgICAgICAgICAgICB9OwogICAgICAgICAgICBMLmNvbnRyb2wubGF5ZXJzKAogICAgICAgICAgICAgICAgbGF5ZXJfY29udHJvbF81MDFhMjk1Mzk1MjM0NDg3YTM0OTg4ZmYzNzNhMTM0Zi5iYXNlX2xheWVycywKICAgICAgICAgICAgICAgIGxheWVyX2NvbnRyb2xfNTAxYTI5NTM5NTIzNDQ4N2EzNDk4OGZmMzczYTEzNGYub3ZlcmxheXMKICAgICAgICAgICAgICAgICkuYWRkVG8obWFwXzAzNDc1MTE5N2VlNDQzZWM4YWE5ZmJmMmU2Yzg2MGZhKTsKICAgICAgICAKICAgICAgICAKICAgICAgICAKICAgICAgICA8L3NjcmlwdD4KICAgICAgICA=\" style=\"position:absolute;width:100%;height:100%;left:0;top:0;\"></iframe></div></div>" ], "text/plain": [ "<folium.folium.Map at 0x7f7efab16160>" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Get an area to look at\n", "lat = 39.495159\n", "lon = -107.3689237\n", "zoom_start=10\n", "\n", "# Open Street Map Base\n", "m = folium.Map(location=[lat, lon], tiles=\"OpenStreetMap\", zoom_start=zoom_start)\n", "\n", "# Add GEE Terrain Layer\n", "image = ee.Image('srtm90_v4')\n", "vis_params = {'min':0.0, 'max':3000, 'palette':'00FFFF,0000FF'}\n", "folium_gee_layer(m,image,vis_params=vis_params,folium_kwargs={'overlay':True,'name':'SRTM'})\n", "\n", "# Create a reference to the image collection\n", "l8 = ee.ImageCollection('LANDSAT/LC8_L1T_TOA')\n", "# Filter the collection down to a two week period\n", "filtered = l8.filterDate('2013-05-01', '2013-05-15');\n", "# Use the mosaic reducer, to select the most recent pixel in areas of overlap\n", "l8_image = filtered.median()\n", "l8_vis_params = {'min': 0, 'max':0.3, 'bands':'B4,B3,B2'}\n", "folium_gee_layer(m,l8_image,l8_vis_params,folium_kwargs={'overlay':True,'name':'Visual'})\n", "m.add_child(folium.LayerControl())\n", "m" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.2" } }, "nbformat": 4, "nbformat_minor": 1 }
bsd-3-clause
mitkovetta/nfbia15-deep-learning
examples/mnist_cifar/Using Theano and Lasagne to classify MNIST and CIFAR.ipynb
1
1434758
null
mit
jieshen-sjtu/caffe-for-DDNet
examples/selective_search_demo.ipynb
3
412090
{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "This approach follows ideas described in Ross Girshick, Jeff Donahue, Trevor Darrell, Jitendra Malik. *Rich feature hierarchies for accurate object detection and semantic segmentation*. [Arxiv 2013](http://arxiv.org/abs/1311.2524).\n", "\n", "First of all, we'll need a little [Python script](https://github.com/sergeyk/selective_search_ijcv_with_python) to run the Matlab Selective Search code.\n", "\n", "Let's run detection on an image of a couple of cats frolicking (one of the ImageNet detection challenge pictures), which we will download from the web. You'll need a prototxt specifying the network, and a trained model.\n", "\n", "We will use `models/imagenet.prototxt` and the caffe_reference_imagenet_model which you can download by `models/get_caffe_reference_imagenet_model.sh`. The learned model should be at `models/caffe_reference_imagenet_model`." ] }, { "cell_type": "code", "collapsed": false, "input": [ "!mkdir _temp\n", "!curl http://farm1.static.flickr.com/220/512450093_7717fb8ce8.jpg > _temp/cat.jpg\n", "!echo `pwd`/_temp/cat.jpg > _temp/cat.txt\n", "!python ../python/caffe/detection/detector.py --crop_mode=selective_search --pretrained_model=../models/caffe_reference_imagenet_model --model_def=../models/imagenet.prototxt _temp/cat.txt _temp/cat.h5" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Running this outputs a DataFrame with the filenames, selected windows, and their ImageNet scores to an HDF5 file.\n", "(We only ran on one image, so the filenames will all be the same.)" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import pandas as pd\n", "\n", "df = pd.read_hdf('_temp/cat.h5', 'df')\n", "print(df.shape)\n", "print(df.iloc[0])" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(223, 5)\n", "feat [6.90396e-06, 1.27811e-06, 1.82159e-06, 1.1020...\n", "ymin 0\n", "xmin 0\n", "ymax 500\n", "xmax 496\n", "Name: /Users/karayev/work/caffe-bvlc/examples/_temp/cat.jpg, dtype: object\n" ] } ], "prompt_number": 2 }, { "cell_type": "markdown", "metadata": {}, "source": [ "In general, `detector.py` is most efficient when running on a lot of images: it first extracts window proposals for all of them, batches the windows for efficient GPU processing, and then outputs the results.\n", "Simply list an image per line in the `images_file`, and it will process all of them.\n", "\n", "Although this guide gives an example of ImageNet detection, `detector.py` is clever enough to adapt to different Caffe models\u2019 input dimensions, batch size, and output categories.\n", "Refer to `python detector.py --help` and the `images_dim` and `images_mean_file` parameters to describe your data set.\n", "No need for hardcoding.\n", "\n", "Anyway, let's now load ImageNet class names and make a DataFrame of the features. Note you'll need the auxiliary ilsvrc2012 data fetched by `data/ilsvrc12/get_ilsvrc12_aux.sh`." ] }, { "cell_type": "code", "collapsed": false, "input": [ "with open('../data/ilsvrc12/synset_words.txt') as f:\n", " labels_df = pd.DataFrame([\n", " {\n", " 'synset_id': l.strip().split(' ')[0],\n", " 'name': ' '.join(l.strip().split(' ')[1:]).split(',')[0]\n", " }\n", " for l in f.readlines()\n", " ])\n", "labels_df.sort('synset_id')\n", "feats_df = pd.DataFrame(np.vstack(df.feat.values), columns=labels_df['name'])\n", "print(feats_df.iloc[0])" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "name\n", "tench 0.000007\n", "goldfish 0.000001\n", "great white shark 0.000002\n", "tiger shark 0.000001\n", "hammerhead 0.000007\n", "electric ray 0.000004\n", "stingray 0.000007\n", "cock 0.000060\n", "hen 0.003055\n", "ostrich 0.000010\n", "brambling 0.000004\n", "goldfinch 0.000001\n", "house finch 0.000004\n", "junco 0.000002\n", "indigo bunting 0.000001\n", "...\n", "daisy 0.000002\n", "yellow lady's slipper 0.000002\n", "corn 0.000020\n", "acorn 0.000011\n", "hip 0.000003\n", "buckeye 0.000010\n", "coral fungus 0.000005\n", "agaric 0.000019\n", "gyromitra 0.000039\n", "stinkhorn 0.000002\n", "earthstar 0.000025\n", "hen-of-the-woods 0.000035\n", "bolete 0.000037\n", "ear 0.000008\n", "toilet tissue 0.000019\n", "Name: 0, Length: 1000, dtype: float32\n" ] } ], "prompt_number": 3 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's look at the activations." ] }, { "cell_type": "code", "collapsed": false, "input": [ "gray()\n", "matshow(feats_df.values)\n", "xlabel('Classes')\n", "ylabel('Windows')" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 4, "text": [ "<matplotlib.text.Text at 0x107290150>" ] }, { "metadata": {}, "output_type": "display_data", "text": [ "<matplotlib.figure.Figure at 0x106877510>" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAA7wAAADyCAYAAABu+cm2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnX2wXVV5/797n/d7z7n35ib3JckNiSQhLyQQEBFfEBGD\ngyMRxAroaCaoVWgt+NI6tmNH+xsLtLZWWt/GqUrpDOCMhaCVNMWKoKApbyKElhgS8p6Qe5P7nnvu\nPWf//kjXzjrr7Je191777ZznM3MnOefsvdaz115vz1rPeh7NMAwDBEEQBEEQBEEQBNFi6HELQBAE\nQRAEQRAEQRBhQAovQRAEQRAEQRAE0ZKQwksQBEEQBEEQBEG0JKTwEgRBEARBEARBEC0JKbwEQRAE\nQRAEQRBES0IKL0EQBEEQBEEQBNGSpErh3bZtG1avXo2VK1fizjvvjFscgrBl//79uPzyy3Huuedi\n3bp1uOuuuwAAIyMj2LhxI8455xxceeWVOHnypHnP7bffjpUrV2L16tXYvn17XKITRBO1Wg0XXHAB\nrr76agBUj4l0cvLkSbz//e/HmjVrsHbtWvzmN7+hukykkttvvx3nnnsu1q9fjw9+8IOYmZmhukwk\nnptuugkDAwNYv369+Z2fevv0009j/fr1WLlyJW699VapvFOj8NZqNfzxH/8xtm3bhp07d+Lee+/F\nSy+9FLdYBGFJLpfD1772Nbz44ov49a9/jW984xt46aWXcMcdd2Djxo14+eWXccUVV+COO+4AAOzc\nuRP3338/du7ciW3btuGWW25BvV6P+SkI4jRf//rXsXbtWmiaBgBUj4lUcuutt+Ld7343XnrpJTz/\n/PNYvXo11WUidezduxff/e538cwzz+B3v/sdarUa7rvvPqrLROLZsmULtm3b1vCdl3prGAYA4Oab\nb8Y///M/Y9euXdi1a1dTmlakRuHdsWMHVqxYgWXLliGXy+GGG27A1q1b4xaLICwZHBzEhg0bAADl\nchlr1qzBwYMH8dBDD2Hz5s0AgM2bN+PBBx8EAGzduhU33ngjcrkcli1bhhUrVmDHjh2xyU8QjAMH\nDuCnP/0pPvaxj5mDDdVjIm2Mjo7i8ccfx0033QQAyGaz6O7uprpMpI6uri7kcjlMTU1hbm4OU1NT\nWLRoEdVlIvFceumlmDdvXsN3Xurtb37zGxw+fBjj4+O4+OKLAQAf+chHzHucSI3Ce/DgQSxZssT8\nPDQ0hIMHD8YoEUHIsXfvXjz77LN44xvfiKNHj2JgYAAAMDAwgKNHjwIADh06hKGhIfMeqt9EUvj0\npz+Nv/3bv4WunxkuqB4TaWPPnj3o6+vDli1bcOGFF+LjH/84JicnqS4TqaO3txef/exncdZZZ2HR\nokXo6enBxo0bqS4TqcRrvRW/X7x4sVR9To3Cy0zpCCJNTExM4LrrrsPXv/51VCqVht80TXOs11Tn\nibj5yU9+gv7+flxwwQXm7q4I1WMiDczNzeGZZ57BLbfcgmeeeQadnZ2m6RyD6jKRBnbv3o1/+Id/\nwN69e3Ho0CFMTEzgX//1XxuuobpMpBG3ehuE1Ci8ixcvxv79+83P+/fvb9DwCSJpzM7O4rrrrsOH\nP/xhXHPNNQBOr14dOXIEAHD48GH09/cDaK7fBw4cwOLFi6MXmiA4nnjiCTz00EN43etehxtvvBH/\n9V//hQ9/+MNUj4nUMTQ0hKGhIbzhDW8AALz//e/HM888g8HBQarLRKp46qmn8OY3vxnz589HNpvF\n+973Pjz55JNUl4lU4mU+MTQ0hMWLF+PAgQMN38vU59QovBdddBF27dqFvXv3olqt4v7778emTZvi\nFosgLDEMAx/96Eexdu1a3Hbbbeb3mzZtwt133w0AuPvuu01FeNOmTbjvvvtQrVaxZ88e7Nq1yzyf\nQBBx8dd//dfYv38/9uzZg/vuuw/veMc7cM8991A9JlLH4OAglixZgpdffhkA8Mgjj+Dcc8/F1Vdf\nTXWZSBWrV6/Gr3/9a0xPT8MwDDzyyCNYu3Yt1WUilXidTwwODqKrqwu/+c1vYBgG7rnnHvMeR4wU\n8dOf/tQ455xzjOXLlxt//dd/Hbc4BGHL448/bmiaZpx//vnGhg0bjA0bNhgPP/ywMTw8bFxxxRXG\nypUrjY0bNxonTpww7/nKV75iLF++3Fi1apWxbdu2GKUniGYeffRR4+qrrzYMw6B6TKSS5557zrjo\noouM8847z7j22muNkydPUl0mUsmdd95prF271li3bp3xkY98xKhWq1SXicRzww03GAsXLjRyuZwx\nNDRkfO973/NVb5966ilj3bp1xvLly41PfepTUnlrhmFzMIsgCIIgCIIgCIIgUkxqTJoJgiAIgiAI\ngiAIwguJU3i3bduG1atXY+XKlbjzzjvjFocgCIIgCIIgCIJIKYkyaa7Vali1ahUeeeQRLF68GG94\nwxtw7733Ys2aNXGLRhAEQRAEQRAEQaSMRO3w7tixAytWrMCyZcuQy+Vwww03YOvWrXGLRRAEQRAE\nQRAEQaSQRCm8Bw8exJIlS8zPQ0NDOHjwYIwSEQRBEARBEARBEGklG7cAPJqmKbmGIAiCIAiCIAiC\nSC+qTt4maod38eLF2L9/v/l5//79GBoailEiop2Ja3Elk8kEuj+MhSNd16Hr3rqLfD5v+1s2e3qt\n7Utf+hL6+vosr9E0DZdccknDd+K1TnkQBEEQBEEQRKKcVs3NzWHVqlX42c9+hkWLFuHiiy9uclpF\nO7wE0R5UKhWMjo66KtqZTAa1Wi0iqezRNE3ZSiRBEARBEES705I7vNlsFv/0T/+Ed73rXVi7di2u\nv/568tDsA1oUIFqBQqGA3/72t+ZnsV6zz2QFQhAEQRAEQdiRqB1eGUiZI6KiWCzi1KlTke/c6bqO\ner0eWX5+kJExm82iVqs5lt1XvvIVfPGLX7RNa8uWLfj+978fSFbiDJ2dnZicnIxbDIIgCIIgCFdU\nzb9J4SUIIpH09fXhhRdewMDAAAB7JburqwtjY2NRi0cQBEEQBEGESEuaNBNEEERnT1aLI4VCAeVy\nGZqmNZwNzeVyUnlommbmk81mzc+6rpvfs3z5a+3k6e/vt/yNl4//jU87n8+bMvBY3VcoFJrS5//P\nPjNnUoCz8ywZx1qLFi3CunXrGtKXRdM0DA8PY+nSpeZ3drvA4+PjntIOC69OvQgiTmjxmCDaC358\nJ4h2g3Z4CYJIJKVSCWNjY66LEbTDSxAEQRAE0XrQDi9BCHR0dDR87uzsbFKWFi5cKB3K5uyzz1Ym\nm1f4hR1+N5XfqV23bh1yuZztIpDVznCQ63hkVorf/va3m/L6Waianp6W2nlPirLr9oy0WEckCaqP\nBNFekBUS0c7QDi9BBCCJDqaSEqbHCuYArK+vD8ePH8e5556LLVu24LOf/SyA04r03NyceX2hUMDM\nzIzt5+7uboyOjkb3ACmDQiURBEEQBJFWyGmVh+v9PqKbMiMqFiwv5t2X/47/N5vNYnZ21syjUCiY\n1xuGgUwmg3q93nCfF/h7+LTCJEg5s3daKpUwNTWVaIWNUIdTnfFan9j1rO74rUOyCxiiYm4lMzu7\nHNaCCH+e2y0P2fIkBTl6qMwJgkgK8+bNw4kTJ2KVIY4+Ma39MJsHBJE9n8+jWq0GloXXfewol8tm\npAhR3xFh8ywyaZYkSEG5TSLFCTXLi3/h7Dv+X6bssjymp6dhGIZ5DR/KxY/8/D1uYWFUESQP9uxT\nU1MAmss1LmRNn1WTVCsGr6bPVg61eAzDwK233mrpAIst9vy///f/pGTj2w7/r1dklVNR2eVl4D+H\nufvP2o1MHvwCmMx1RHRQmRMEkRTiVnaBePrEtPbDvO7gFxXKLgBXZRcAJiYmbPUdEat5VhBaXuEl\nCL9YeTuOgiQqvH48LctYFuzdu9fxXNHChQs95UkQBEEQBEEQPC1v0px0stms5QqHKvMKv+nwpp1h\nmHqIZtf5fB7T09NmKB/VKztEMmCmxuw9s7ov1jEn02Kn+sinH4dJFNC4Uhz0SIITpVIJ1WrVcZeX\nlWM+n8fc3Jx5Het32P/r9br5W8qGBIIgUkrcZqRx559EqExaD7d3msvlGixP/aZdKpUwPT0NAFiy\nZAn279/vmpeu69B1vWHOL8pLZ3hTRFo7ELszyq2C3fNYfa/rOorFImZmZjydr+av0XUd+XzeVPJE\npX7BggWYnZ3F6OgoyuUypqenMW/ePBw/fhyAvTMqds5BVBKtlEYV75Cd9xDPp9uh6zpyuVyDs6mw\nYM+clDNATnIwWWXOGzMFtVKpYHx8HIZhIJfL2Z5vabW2ShAEQRBE+0FneFNEWieedmeUWwW757H6\nvl6vY2pqyvP5av6aer2OU6dOYXZ21nIH+/jx46bH4YmJCdRqNVPZBezPpbK0ROXWatdPxTtk5z1k\ny6Fer/tSdnVdx9e+9rWGzzxs8esLX/hCQ14yMoWBVZ5OcjBZZc4bM8V2bGzMTHN2dtZTHSYIgiAI\ngmhHaIeXcCWJoXcIb6h+h7K724C18vXWt74Vv/zlL9HZ2YkPfvCD+O53vwsAWLRoEQ4dOmSmL5q/\niPlaeUuOE5U7qyremeh9kdoyQRAEQRBpgXZ4icholwmyuJiSzWYb/o2KcrmsPM2g7zCTySCXy5mf\n7Rae+LLK5XK2ZffLX/4SAHDDDTfg7rvvNr8/dOgQgDNemt///vc33CfmmyRlF1C7s6qi3YneF2nB\nkCAIWai/IAiiVSCFl2hL+PAszIGSqKwwZcpJqcrlck2TgqCThMsuuwzZbBZLliwBAPNfq7T5WKxh\nUqvVmsJpWeXLm+eyEFyZTMYsY5F7773X1iW+YRjYvn17w3eiAs3S5mWhSZo9KTPoIQgiRqi/IIhk\n4BZS0I2oN26CoGkaCoWC8nRJ4SXaAiellO0mqko7aBrPP/98w+4ef/7VKtar1feqZHHDKV+m/Gqa\nBl3XLa91i//mdi6Z78TDKAuVOIVfCgvxXRaLxchlIAiCIAhZWm3RWsXz9PT0hCYD+y2OOYqdHLxF\noSpI4SUsibvihwH/TOKurZ35qNuqGPPYzKftZ8eXV9JyuRzq9Tpee+01AMDY2Jhrenbvy09HG0Rh\n5PNjZcpC3ljJwpRhO6anpx2VtKGhIVc5osbueYKu0PpBLAe30AO5XK4l2z6RTtzacatNjAmCiGfR\nOul9SVD5nMZ+PkRonDA56vU6JicnladPTqsIgkgkuVwOR48eRW9vr+N1y5Ytw969e6MRiiAIgiAI\ngogEclpFECET105XpVJRnmaQc8aaptk6oBLLiP/c0dHhuvO8YsUK2x3cer2Oe+65x1Xuffv2OT8A\nQRAEQRAE0bbQDi/hSqFQ8BVHlSDsmDdvHk6cOIFMJoO3vOUteOyxxwAAXV1dGBsbsw2fI4b9EcMW\nMdiZ4Si7N13XoWlag+Ouvr4+0zRdBk3TkM1moes61qxZg+eeey5QqCOx7VqlRaGKCIIgCIJIIqrm\ncaTwJgA24RQnoypjenqlUqlgfHwcmUzGPKfqRJyyqiCJk37ZMk1j2Xd2dmJycrJJSWTPwv4V34uo\nyPb392N0dBRzc3MNimYcZSK2lTDaNR93WNd187Oo3LM8Ojo6MD09bf4mli+Tu1arQdM0lMtljI+P\nN/yexvpFuEPvtfWgd0oQ/gi77fBjd1j4ncfabRwEyd+uPK3mQ5qmNcgtLtSTSXMLwV60nQfeOBgf\nHwdw2tOujBxpH2STpuwC8mWaxrJnDgnq9XpTKCP2r6Zp+Iu/+IuG+8TFl2PHjuH2229vSINPJ0rE\nthJGu+YHzHq9jmq1arkgxT5PTU01/GblyZqVnWEYZru3uodoLei9th70TgnCH2G3nbCVXcD/PFaF\nsivmb1eeVnMVUe6wLEpph1cRSVpZVSELW6kJy5y5o6MDU1NTlr997nOfw1e/+lXleaaBJNUjO1St\nVDo9q9ffWH1lJtFRrKaKiDu8vb29GBkZUWY9wPo+ln6xWDTbZtLrDEEQBEEklbCP7qVhbhcUmWf0\nUw5k0mzzW8oeh4gIP3VD5p5isYi5uTmsW7cOzz33nOmkyc2swwlmYuqXKM5pyiiUvb29mJqawqlT\np5p+K5fLmJiYQGdnJ97znvfg/vvvt0zXLZ+kmaKr6oNUKsnUJxIEQRAEkUZI4SUIoqXJ5XJ48cUX\ncc455zhed9FFF+Gpp56KSCqCIAiCIAgiCkjhJQiCIJrgd4eZiTeDnY0mCIIgCIJIOuS0KgL8xmHN\nZDLS6Wqa1hSHNI0T0qAya5pmlotb+RGEHX7aLF93ZesxH5OY3WN1b5ixnJmHazE+Mm8KzZRdJofV\ns6axvyEIgggK9X3NrFixIm4RCA/ouo6uri7Xa5zqetB5Cku7UCiY39nN48vlckOe5XK56dqw5ia0\nw5swknzmLsmyhU07P7tKZMPd+C1vduY36DloP2QyGWiaZp457u7uxvT0NOr1etM5ZK/PxxaEeI+G\nW7ZswUsvvYQdO3YEPu9rFUOYIAiCIAgiTsikuUWQjVXlN02/zm94hSEMZU+UkY8jymIAE61HPp9H\ntVqFrusoFAqYnp5u+J3Vi2KxaOnsCrCu0+w+lj5bMYxSgctkMg0KqVV8OVHeIBSLRWQyGVOpZrD2\nxGSq1Wro7OzE1NSUeV0+n8fs7Cw0TUNvby8mJycxOzuLer2eKCdgBEG0LrSQTLQLcdZ1t7xVycbr\nDXa6h1Ve4gaFeA0pvDGQy+VgGIa5W6O6AqtKT0U6vALBYqVms1ll8boIwqmeskDoXuoy2wWt1WpN\n3rKjoFAoYG5uzuy4Ozs7USwWMT4+jmq12nCt1x1o3uSIPVOxWERXVxdmZmYwOjpq/s4r2qz8RGVc\n13VTBj7tqEM5EQRBEARB2EEKr8s1KXssAOmVmyBUo+s6Ojs78e///u9429veZn5npcBu2LABzz33\nXNQiuhKHWTVBEARBEESrQE6rHEir0phWudMO2xETF1PY51wuF6k8fX19KJVKlr8lxaTfTg4ZB1C8\ng4KlS5c27DB2dXUhm82iXq9jfHwcl19+uflbvV5vctBULpexa9euhvw6Ojo8Pk04qFR2WZnJOJfo\n6ekx/88cRDB4pxJOyF6XBJLSJoh0EqZjOaIZaq9EHLR7vcvn83GLIE1Y76old3ijgt+RLZVKTecR\nvSLuYPEmh+IZPSdTTea4RxW080zwqDhf7nS+FTitqNXrdXR2duK1115rupeZ6dZqtQZT5jjZsGED\nDhw4gOPHjwMALr/8cvz85z+3vJbaFEEQBEEQhDNk0kwQREuTyWRw5MgR9PX1OV63fPly7N69OyKp\nCIIgCIIgiCggk2YiVLyYUPpBNE3licok1cuzRbXQEnYMYhXPEcTEmz2fpmnme7Z6DyxETn9/v2X+\nfPzZffv2mWkwc94kLIwx+exM5VVgV4et8rDLN5vNmr85tcsokDGVJ9JN0t5l0uQJgl37bZVnbJXn\nSBthz0vagVWrVsUtQugk/XhIsqUjYsPKy63Kyuxkcj01NeUpLT+dsWhOa3e+gT1zVIYQtVoNxWIR\nmqahWCwCUDvIq3gOJ0/dbnWEd1k/NTWFbDZrKRMfq1dMf3Z21vSWXqlUUKvVTI/EJ0+e9Po4SmHe\nj4Ezz8qHCOL/ZdcD8u9YvM6unNj3/FlcZgYuMjc313A0I85BK2UGR6kmat8EDJXv2M7XgRdaqc7Z\nHetolWdsledIG1EfF0qTDwlZmK8Rv8gsRjuN3U5zDDYWdHd3exeMw29UDFG2TCaDzs7OQLJY5hOX\nSfOyZcvQ1dWFTCaDXC6HHTt2YGRkBNdffz1effVVLFu2DD/84Q8bHLAA4a7wuZ2rYxUurLBESYKV\nM3tGwzCUnw0mCDvYOXWvYYlyuZwZh7der0faPsV40rlcDtlsFtVqtSnGXCaT8dyWxHPPHR0dZp80\nNjbWcMaZtVV2Pa+Es/xZrGO2m87+JYh2opXHcYIgiLSTepNmTdPw6KOP4tlnn8WOHTsAAHfccQc2\nbtyIl19+GVdccQXuuOOOSGWyCobMMzc3JzVJtdot5BV1fqVG07SmVeokmO2wiTuvNDg9u4pdIV7J\nJtobptR56egMwzB3n2u1midFmSFrLcC3cXa/qGDPzs5ienq6SYnkY3l7gY+jCwDT09MYGxvD5OSk\n+Tv7l+2Cs+tZLG0+/8nJSbNP438nooX6u3ghZbd9SboJZhwsXbo0bhEID2QyGcujXzy6rjuOM6p2\n1Pn5k11+7Cgbu7azs7Np3mUXOSUosbZ2caB56KGHsHnzZgDA5s2b8eCDD8YhlonbBNBuoKxWq47X\n8pNdwzCavDuncQD2a8rAw0/Y/cIGMCtzCD/mHjIDotsZTa9pdHV1OV4rppekCfO8efMANMoYRL58\nPo+PfvSjrvkx/NQd/h5ZpY9v42KeAwMDnmXwA8vXSeZKpdKwg8Wfj1fR3ojgUPkTRDyomLe0Gq++\n+mrcIhAW2M2jarUajh075nivm7XbzMyM4/1ieEM7+LmIXX7syCK7dnJy0nJTgLeWU0VsJs1nn302\nuru7kclk8IlPfAIf//jHMW/ePJw4cQLA6Qfu7e01P5sCJ2hyr4pcLtdwLjIJJla5XK7hbJ9q+DBO\nYpglFSGeiPbk7LPPxiuvvOK7DSWh7TnBt5Vly5bh4MGDZjtlfSMfsokhPpddWKikPz9BEARBEMkj\nrPlD6k2af/WrX+HZZ5/Fww8/jG984xt4/PHHG34PYzs7qYhOgJIw4WQmkWHBK7TipDtsZdduh1T8\nnplZROU1mrF69epE1X3WFq12bUVTFN4RTqlUcjWVWbVqleMO+JYtWxo+23l0ZrzyyisA/LehJLQ9\nJ/i2snfv3oZ2yq+I8s7B2G/AGSc/onk0I+nPTxBEdCRpHCIIItkkff4Qm8K7cOFCAEBfXx+uvfZa\n7NixAwMDAzhy5AgA4PDhw6526QThBTZ453K5BsWMKWWiF7y4TD6vvPLKBll4Jc/qrEMYWHn95cvB\nrmwqlYr5/9nZ2SbLBZG9e/c6mpX96Ec/apJDJOmdbJyIZc6/H4IgCIIgiHYgFoV3amoK4+PjAE7b\nb2/fvh3r16/Hpk2bcPfddwMA7r77blxzzTWuaUURWkEm1qWsjbsV7BnEuJ3MMY74jG67ZuL1QRwz\nhKFQuaUZliMJphjNzMw0KGKnTp0C0Hz2miliUZtX33XXXQ3y8Qqh1VmHMJBRbkXZAGBkZMT8P3OG\nZJUmC98zMzNjWR9Y3R8bG7OVi78vCeear7rqqobzu+z/KmRxSsPJ0ZZYX9zO+hAEQTBoMZFoF8J2\nYBaWriIzv3Bzxhml8zaZcghLnljO8O7ZswfXXnstgNOT4g996EP4whe+gJGREXzgAx/Avn37YglL\nRJxBPFfbCjg9k91v4llIq/vY+Ul2v9V5SS/NbMWKFdi9e7cZYiefzzco41bp2ckZ9ZlMq3Lk26wo\nSz6fb1KMeYrFInK5nLlAJp53P+ecc7Br166mdOM8i2pXl0TZ45DFLbRYPp9HrVYjj81EInBrx3Tm\nPH3QOyOSSJj1UkXavI+jsHCb78aFqvcSm9Mqv0Sl8PqJAyqLmGZnZycmJyfN75mCw2SQUT7jHkS8\nKMhuk+6kNjpCPX6cJ/G/8bFnxR1k2frI2p9bvm4EXegIAxkZ+GvsFizifg6CIAjVFAoFVw+17Ua7\n9vdhK7xAeBYTy5cvx+7duxvGb6vnsZsn6bqOXC4XuC10dXU1WeVZkclkTM/R2Wy2IYwk/5npCqTw\nEgTR0uTzeQwPD5vnTu0GpAULFuD48eNRi0cQBEEQBEGESOq9NBPJptUchrktlLAzo0mAnV8Q/21F\nnN5LtVptcLJk1ekNDg6mRtllsaGdzh4z3M7cyOJ1gfADH/gABgcHleRNEGFDC+Dpg94ZkUTCrpei\nU1SvRNFuent7Q88jTmiHNwTczCnFnSrRxDdJJiWysniR2e1aMmkm/NLb29vgOEsGvr75aXt2ZtV+\n03OC71tKpRJOnTplmoSz8+RWsvAmREyubDaL2dnZRPU3BEEQUUFzjWb6+/vb0rlhWsdBTdPQ39+P\no0ePOl7j9Gz8sa4gyMylmC8T9nt3dzfGxsYc5aMd3oTBK+JuZwfFlyden4RG53Wlx4vMbtfG4Swr\nKQspSZHDCRU7zkGek7+X7Zqy1VOm7GYyGek8+AmPn7Znd09nZ6e6syf/9yz8M4kerplCy39XKBRM\nJVmUhQ067H1qmoYFCxYokbdVSUP7JLzRSu+0la2BwqDVHHOqoB2V3SgIy0uzYRh47bXXAPhv/04+\ndfxiN/eZm5trUIbHxsYa5iCZTAZdXV0Agu+Ki1DvmACSOOCyg+dhmfqyCm3FypUrQ8nTiSQsMqQF\nFZMqGUdKbmiaZq5K1mo1aJqG8847TzoP1ei6bim3ivbNnoWfoDGFWnxOXumtVqvm7q+Vt2zx3uHh\n4VDkbxWon2g9WumdkgLnjVZ690Qwwg5xGoZSyWDt3q79u9VzVY7bZEMkiWEv2aYD+z/TP1SXGZk0\nu+TlJySClRdi/lr+d03T0NHR0WBOwJsmpoWgYYx4b71kZkT4JYhJspf74wgxJMLv+oY50U2rqVda\noPIliHigttdMFOFvCHVomoZyuWyGbrS7xmmeoGrOXSqVMD09beZp52R0eHjYlKezsxPVarVhPsXk\n1TStwYNzUGiH1wG3Qnbasne6lv9d1/Um23m2I6MCvwsEvNMcmTSCTLh1XUc+nw8tDBSRHFi9Yqa0\nVqa6Vp/9pC+bhrjaKIOVsiu7K62Kjo4Oc3HMKg/eXLlcLje06VwuZ5ZRoVBAPp9HJpOx7HeoPYYL\nlS/RrnjtD8naJHxI2Q2HsOquYRiOyi7DaY4eRN/gn4v//5IlSyyvHxkZgWEYpjxTU1OWY2C9Xle+\n8UUKL4dYIdk5QLvKYPd9oVCwnMCzP950olarYWBgoOHaXC5n+6K9TOQB/5Mpr058vHiVFeWv1+vm\neUQWe4toTXjTFf5cqZVZrh/8KK9eF3cAoFgsul5j1VaDKjd8nzMzMwPDMJpMsfgy5QcVvk9hCrth\nGKhWq6iQz0fPAAAgAElEQVRWq7YrqTTJbE3ovRJx47U/pMWh8CmXy3GLEAth94dhxvgN2xzbCf65\nTp06Zf5/3759ltczWVl5W1nE8hZ3KiGFl0OskGwCaLcyYvc9m4iKabM/cXdI9K7mZCoZlakzHyhb\n5hyvl5UYNzPxuE1FifBg9aqrq8tcTJo3b575O1vssFtMEhdDOjo6zHR5k52wnVbxHTtDVHANw0Cp\nVLK8X3QWZfUbHx6IXcP3OXNzc6jX66hWqw1psN1b4MwuMFPq+VBXhUIBANDT09OUDw9NMlsTeq8E\nQYhMTEzELUIspLU/lJHb7RpVc24ZS0/xvLCbvqMSUnhtsDO19HKvLGziKXt/FJ4Y+YpWrVYtr1G9\n+sIvChCtCe+Zjy0m8SZUbKXPruMUVwKnpqbMdPm6Mzc3J12PVLUn0ROyruumfCL8QprV4li9XseR\nI0cavrOCX5hizM7Omp+npqZQr9fNQYV3bsGU9pMnTzY8A5O91UjTjqYoa9TvI8yyCsuxGxHv7pzs\nOwyyG2W3gOgXsV3JtLOlS5cqlcEOO6s5KxllLI7sSGrbizom7Pz58wOnUSqVbCMdiPN8kSCWjWE6\nxPKC7DglOq6yg0XhUEXrzWoUwSqnyjAldogNze08Y5STn02bNtn+5lcxdetg2a4dkUyiGCCd8mC/\n8e1AbBNeZFTl8Kmjo6Npp5X/VyWadjqOrmEYUv0Bf42VmbXVMQO769NKmhbS3ELXRZ1/2Gmn6d0k\nGSvLk6jw4//Aa9/CHOKoQmxXMu3s1VdfVSqDHXZWc1YyBnnv4nuL0zyWh4UYjArmGTgI09PTOH78\nuOVvbuN0EKU1if2nXdtmjqhkUBEbuCFv8tJMqICcTRFEPPhte+w+arsEQbQjy5cvx+7du+MWI1EE\njbhBRM/AwACOHj1qafHF6OrqMmPesvfLxv5MJtNkoRYWLP9ly5Zh7969WLp0KUZGRjAxMWHKn8vl\nGizTVMlFCm8CSOKEs7e3N/IVNkYcHa7VwXkiPJgbfLbqKfu+xQ69q6vLNNvl00jCoF2pVKS8J1ph\n1yeIz2WltPL/LxQKpomznUMq/uzzZZddhscffzz2siMIwjtJnEuIpEFGov3I5/O2x/dUwBTOJKJq\nvlQsFqWsDWRDvrL0SOGNKK8gOyeyiA3N6f6kDhZeGozdM7DvkxDjlEgnfjpuP21KjKUdR5tkq7KZ\nTMZ1sUZcwdU0zVx0CDuOL0EQRBJJ6nwqTgYHBxv8RxDJRtM09Pf3Nzm/5XFT5lUpvPy8yC5Npviz\n+cf8+fMxNjbWMOcX76U4vApws6nnY1Va4fV7u3y9HFaXefF8/n7P+/IeZGXS8FIh3RzwtKtb/HaA\nvWPei7KVcw6nMFdWcd9YO2WOLsIO3WXl2blUKjWFOPLbR9ghtkXeI7OTMyBxh5d38uXWX7SiVQ1B\nEAQpu83YnUElkolhGK6xk912rr2EFXWCV1LtFGgx4sSJEyeaFuzDWoBva4XXqlD5yZ0XT688bpNG\nJwcy7Ds/E2Ur+32/FYf3ICuThorYuUx+1QfVieTA6iYf89XKgYGTUwOrWLtMeRseHvYsk10cXqe2\nZuUtdGZmRjrEkao4w7Ozsw2xje2ut2rD7D5eZqvraFLYmtBCBtHuUBtoRrVnXCJcZKwUonJ0K5PP\nvHnzGnSczs5OW0e9quUmk2YiccR5/lI8y9vd3Y3R0VFLM2urjkb8Ttd16LrekCZLi5l0OJFEk6tC\nodAUS43H6blKpRKmp6ehaRo6OzvNmH+6rjftQjLrAjEtfmFH13WUy2VMTk5G5nTBDrbow9611Tl4\nPiaunwU11jZYvejp6cHQ0BBeeOEF2+v5RQEn2efm5hJZ3wiCIAiCaE/oDG8L4XWSGYVCyGQql8tS\ngchVynThhRfimWeeUZJW2kiCsyU3kiyjnTIex7n4sJVH3vEXO8vLFlfYQg3LP5/Po1armYsHuq6j\nu7sbJ0+exPz583H8+PFEv1eCIAiCIJpxO6Mr6yQqCsS8ZPImhZf7HPYjyEwEg3h4Y+mL+YgTWoab\nEmrnyTUtpE1ewh9sp9vqfcvsfvMkQVm77bbb8Mgjj5i7rVHV4yQ8O0EQBEGklbDH0bAigcjMM5hl\nXdjIyOJ1bgeQwmsJefcl/OJXOWE7Z4VCAVNTU4HSYsi6dk8i/LM7LQKxndh8Po9PfepT+Lu/+zsA\njYOOruu46KKL8NRTT5lmvKJH4SS3eT8rmQRBEARBEO2G3RyJFN4IcFvxsfvdaiWHf5H8Cod4lpF9\nB6TLWUzQ1THxXCbtWBF+8KNU2sWwdcLKdNrqXtV1WexHZMMSOZ03T5K5UztC5UsQ8UBtr5kkx4sl\nmtF1Hfl83nGTxMpHCo+fXVcr+HmRXdvq7u7G2NiYuXlRKBQwNzfXkD+v5znJ7ZW29dJsZRrN/wHu\nHo7tfnerOOJ9XjyjhhHqxAkrb7RW5HI56TTtPK+xZ1bh8ZloT/y0Ab4+ynassrvKbGc6TLyGKhM/\n04QvXqj8CSIeqO01U6lU4haB8EC9Xnc9ThlVPZdRmnlHmsBp3YHXH5gvEkC93LTDm1BUrTz6TYc3\nqw1jx5WXi1VuphywHStafW09KpUKJiYmoGkaurq6TMdKbIWRvXPmdEnEznMz60RzuRyq1arrimYY\n8PXYDvZ8Tm1K5hoAWLBgATKZDI4dO9ZkOg2goVxLpRJmZmbM9PjyLhaLMAwDc3Nz0HXdty8CgiAI\ngiDaE3Fer0pvIJNmRWml7PEjQ9bcMWj6VixevBgHDx5UnieRLFR7TtY0DT/84Q/xB3/wByrECw1N\n05DNZgOfPc7n85idnbUsJ5nyY9eoMmciCIIgCIJQCZk0/x+yJrdWyAZrLhaLocrB4nKKpr7ss6jk\nu5n8svQYfhYJ+DONYeBU9ocPHw4lTyI5MKUPsDZx92rWznZ0mbIbhyXIJz/5SSxdutT8zJ5BlMUw\nDCWOtqrVKgzDsCwrmQGCXeOk7NLxAoIgCKLVsTtql/T0ZeY6YT+bl3xE/SRK2nqH1y590bmU190m\ntx0Tfqtf1W4PS0vclY1qFzuot1zeVDXNXooJNfitt8xhnJf7/eQlOp5jimetVmtoezIOpbxg5bRK\n9Fztdh9BEARB/aIVQ0NDOHDgQNxiEJJomobu7m6cPHnS8Rqneq7Kyksm9FJvby9GRkbMPCuVCk6d\nOtWgP4jy0g5vSKgoZDelXHQYMzg42PC7kwMoJ6dVTF6VzyC7MhR0Us/LKbOjTrQ2QettWG2XYeXo\nql6vN+WrOu4eL5+u69A0TcphnNiO2QKT+JvV87eL3wSCIIh2Z3x8PG4RYiGt45xhGJicnAyURpS7\nrsxHCFukF5VdIDwnW7TDS1jS2dlpNqIonFbxDob87qwTyaejowNTU1PIZDIol8sYHx83rRLYbqVh\nGOjp6bFcsRSdVvFWDQDMEF9JdVrFX+vmtMqt/i9duhSnTp2SclpVKBQwOzvbEOOYj5fMlHVyWkUQ\nBEEQhFfswq8GhZxWJRivCmI+n2+YZDpNdFnaSVMGZUwZZAlqHk0QXvBzBCBJsaL9yhK2YzqCIIgk\nQ31fM8uXL8fu3bvjFoOQRNM0FAoFy2OArH6zjQY7VM3fZdrThRdeiGeeecZUiM8++2zs27evIf+w\nTJpbSuGlzisc3BqLKsJ8f1Q3kgXbwdV1HQMDA6ajMrb4Y6fEiauGdue941BImVmQjHyAfZ3UNA35\nfB5vetOb8OijjzpeawX/7MViETMzM0076HyatMBEEARBEEQSieUMb61Ww9jYmJKMw4AUmnCYnp52\nvUaFN9c4319QL3bt5s1WpryczoNms1kzFu/rX/968/dCoQDgtOILNJ4t4c+dMuxMZnK5XOTWIPV6\nvUEeXdcxMzNje71dfWdenB977DHzu4GBAU9yMJgiy76zWjVVfc6YINJEGqzGCIIg7IjKC3MUhNkf\nu5bSjTfeiLGxMUxOTmL9+vVYs2YN/uZv/iY0gVoBN+VHrJzd3d0Nn+N0283gnVbJKKIq43gypUcl\nbs8QdDew3ZQGmfKyKnP23fHjx2EYBk6ePImf/OQn5u/MYQbbFeXrlVU4H/HzvHnzAJwJ2SMD38EG\n6Wytwg/5pV6vN5TxkSNHADT2HcViEZlMpiG8E5OBObdjXqPFBQBmBiUuItDkn2g3aKG8fUnCXCtp\n9PX1xS0C4ZGenp5A97MNhqDIKN7MySabaxSLxSZHvmHhKt3OnTvR1dWFBx98EFdddRX27t2Le+65\nJzSBWgE35UdUFkZHRxs+q1Qe/cJ7nvVyvQqcdsVUYjW57+zsbPi8YMECANaDgJXnWzFNXdfR29sL\n4MzgyhR6mcFWVUfEyxgUt5jTHR0dtr+xjlnTNJTLZfP7QqFg2VnKyMsrbSdOnADgrT6qPCsiKqRW\n6WUyGeRyOcuFMS8e3tmiAPPyznuJFh12zc7ONj3nzMwMDMMwHcSR2T9BEO1EEuZaSeO1116LWwTC\nIyMjI4HuV+WoUkZfYJsUbK5x6tSpyOYdrgrv3NwcZmdn8eCDD+Lqq6+OxVSQiB42GZd91yrrBFMy\nw8aqkYnu3Y8fPw7AehAQG7eVV+B6vW52RmxwZQq9zGCr2mOuio7FzcTd6bw387xsGAYmJibM72dm\nZhrK00t4IcMwzPOpn/vc5wDEs3Iv7sralZOTKbGX91OpVJDNZnHw4EHzO36Hl0f8nMlkzMWUzs5O\ns+7a3U8QBEEQBJFWXBXeT3ziE1i2bBkmJibwtre9DXv37m0ywW0VstmsuUPjdcLnZhbJdlCsfuvr\n61NiVsmbNjohKgNWysHc3JwnObq6uqSv1XXdMdZuO4dFIUXjNH4Uc8Mw8J3vfMfzffwuutWuq9/z\nMeycsvhO6/W6ZydRuq4jk8k0KNSTk5NN1hB8qC8eK3NrTdOQyWTMnWJ+h5d2eol2QSaONUG0C2Tm\nHQ6tdM7WDj/zV7Fc+KNZqvHspdkwDMzNzcU2SLSCQiCaDvb19TXsILp5mI3C9DDq8Ed8PoVCITKz\nZiJ9OIXT8VNf/YQlUpW3V8Q4d1bOqKyQ9VpNZs3OhFE+VOaEKuzaeVLrmFe5VHvf7+rqSrQj1jhQ\nGWIyTYTdRsIsVxZJxSnyg9OzlUolJabF5XK5wXLPLi/e+s0qugWLxsH+jcxL8/Lly/GhD30I3/72\nt/Hiiy9C0zRpZfemm27CwMAA1q9fb343MjKCjRs34pxzzsGVV15pmjgCwO23346VK1di9erV2L59\nu4/H8UZYyrPXlRzxZfKmhSJRKfy8AiBDULn4MmiHlTDCP067kH7qoZ/O1GoV3EoBjgK7/pjfXRZX\nTXVdN3egaUVfnjAmRElURIh0YqcMJrWOeZVLdag5t8l5O8J8jrQbYbeRMBcRmFWk3TO4zalVKZW8\n5Zrd/Eecb1j5OmHtXHV7d9UsXnzxRfzhH/4hhoeH8bnPfQ7Lly/HNddcI5X4li1bsG3btobv7rjj\nDmzcuBEvv/wyrrjiCtxxxx0ATjvHuv/++7Fz505s27YNt9xyS+hxNN1esN8Jq9t94gsXHRPlcjlH\n2aIYvLyaNqqY3LM0oo6fSrQOfuoOPxjI1ncZJTHsdsqe1W4g5c+UiwNavV7H3Nyc6bSKv0ekFaxq\niGbSutBB9dEeKhsiKHZx46OE6rE8uq6bDkDtyo1Za9oR5UJupVJpWIxn8xCGGGlCJa4KbzabRS6X\nQyaTga7r6Ovrk44Jeemll5phQhgPPfQQNm/eDADYvHkzHnzwQQDA1q1bceONNyKXy2HZsmVYsWIF\nduzY4fV5lBLWhFWclIsmNW6T9jBt3EVkdvNZiBNZ7GT36hmaIFTAe5WWbVdWJvdRWCaInpatHKUR\nhAxp9VBL9d0eKhsiKEkwZ6Z6LI9hGBgYGGgyW+Z9EpVKJccyrdVqSuYvMnWH7QKzuZaoY4TpR8Q5\nYCxOn3FYv349PvOZz+BjH/tYYA+6R48eNRXmgYEBHD16FABw6NAhXHLJJeZ1Q0NDDd5Ho0CsMH5t\n+t0UNjEPcfLsVGmcJrhOZxv9IuNAStwl8gNbzanX68hkMp6d+hCthd86nM/nUa1WPd3Pe+aWvYc/\nS8byymQyDe2Tr9Oq4J8rl8uZ7S7MCQJNPgiCaEWob2uGnQcl0sOBAwea6jKvR7j5xNE0TckCqK7r\nZjpOczD+2CaLGMHLyNKJ3KT53nvvxaWXXopvfvObuOGGG/CXf/mXeOSRR5Rk7rZl7XUXM6iJltVZ\nWhXpOP1uGIYy5S5OD6tePCtbycdCywDJMKmJE7Eee4nNGjdew9pomoZKpdJ0P1Mgr732WtNcx2oF\nkp1DZbidZbEi6KIWH2ZI13XTi30ul1PeYfOyzs7OmqGQ+LLh608ul2uILX3ZZZfZpp2kekQQBBE2\npPA2w0IxEunAMIymcJoibsqsKmsfXpexa1usfrG50ejoqKnssjlIWNZHrgrve9/7Xnz1q1/Fd77z\nHbz73e/GD37wA7znPe/xneHAwACOHDkCADh8+DD6+/sBAIsXL8b+/fvN6w4cOIDFixd7SttrIYXm\n+trF4ZT4+/z586XlCsOu3QlZMwcviw1u5dPT0yOdVisi1mMvCyhx43XRxTAMjI+PN90PnC6HBx54\nwHQsYqU8iuc//Jjl8PcEqe/M0mF0dBRAOOG1+LbDYqKL4Yr4+jM7O4vJyUnk83lomoZf/OIXAM6Y\nO2maRk7i2hRa4CDaHer7muGP+BDpQPQDJOJWz0ulkhI5ZNqTuIFRKBQaNjoA7xsn0vK5XXDddddh\n+fLl+JM/+RNMTU3hnnvuwYkTJ3xnuGnTJtx9990AgLvvvtt0gLVp0ybcd999qFar2LNnD3bt2oWL\nL77Ydz5x4rSNb/X78PCw1P3stygVHNm8vCw22Hmh5k01ieQSpBOSjTftJw9N0/Bv//Zvnu/nlUXZ\nHVmr+i7m6bSwYxXvVwYr5Z6XxS7PmZmZhnvZQgHfnyRp4YQIH3rfRLtD/kKaIXPm9OG2uO5Wz/kw\nQUGQaU/iBoY4NwFCtFY1XNixY4cxNzfndpklN9xwg7Fw4UIjl8sZQ0NDxve+9z1jeHjYuOKKK4yV\nK1caGzduNE6cOGFe/5WvfMVYvny5sWrVKmPbtm2WaQJoqT9N04xsNtv0ndP1uVwuMvlWr14dyjPH\nXe70R39R/WUymdhlCPKn63rsMtAf/dGf+1/a+xr6i/8vn8/HLkMcf11dXaGmXyqVQklXZnyOas7N\ny2Knp3jRX5jcqtD+T4m0pVqt4lvf+hYee+wxAMDb3/52fPKTn4xtFy4qM6woA7XHHXzdCiYTcwIU\nRtp2DA4Ommbv7UaU9c4vYuBwL7BA4oCzgymncmD1X9d1c4eSBXXP5XKxOTzj5QFOxzMcGRlpuk40\n3wkK30Z5x3V8Xiw/Q9ghrtfrZtnx91vJnPR6GQVR9L0E4ZdCoeDqoIYgnKA+Ln24ORpze6f8HCBs\nRFms5hbiNarmHq4mzTfffDOeeeYZ/NEf/RFuueUWPP3007j55puVZN6qeHUytHDhwobPTudho1T4\nAUgrD17CErlV3sHBQem0Wo00KBVBzF9481snB1NO5cAHJWfXsc6affbSTmTNrO3u4eXi5bY7+iEq\nnl7gz8jkcjnbgYH9y2QSz9awM72appmLl1HH6UsjNBEkkgwpu96gc+zNUF8fDmHWNbcjhW7vNJPJ\nKJFP5gyv1TVi3n7mcTK47vCed955eP75512/iwqZAggSXiiOnYwwV9SsdpNknpG/Rmb1R0W5hRFW\niUgm/O5usVg0lWi2A2y3U8vvEAMwrxN3MsvlMqampiJVULLZLGq1WkNnvXjxYhw4cMB3eqzdsf/L\n9BX8NYVCwSxnFnyeycfvlIshlgiCIFqdOC2CCG/Q2GSPjNVdUsqPycHaXrFYRLVatZ2fABHu8Gaz\nWfz+9783P+/evdu3w5WoEAvHS2GpKNig4ZTc7vfiWdBqN8nLM8qaOqhYiWFyrVy5MnBaRLLhd3f5\nMFRMmbWrc7VarcFcV3SDXywWAZyOrSur7Kry1GnVrg4cOOC7bfBlwMe2Y2SzWWQymab+g1demUMI\nFr6JH0wIgiDamajMONMEG0OTRhKUtaTCdDInR5lO5efFQlNGDidY/WJtj9/A4DcLwtiscN3h/dnP\nfoYtW7bgda97HQBg7969+P73v493vOMdyoWRIUyzgLhWQGRs2p2uD5O///u/x2c+8xmlabo9n9f3\nkJSVK6K9sauHbudr/OYFhD8JYGbPZMpLEMlHtIAhCK+06xneMPzV8MQ5T40qb77u2NUjPxajqmR3\nVXgB4NSpU/jf//1faJqGVatWKVsN8AOduSCcYAN+Pp/H3Nyc1EICi0Ua1kTBa2fT2dnZEEhc7CDE\njiRJZlleTG8ZTteWSiUsXLgQr7zyiuXvSXLSwpTDcrmMsbExpYOMl0Ui/v+LFi3C8ePHzYH8qquu\nwn/8x39YmjDTwhFBEARBEHFgNwcJXeH90Y9+1OTxk+d973ufEgG80ooKr6iwqN4B9QNTQmRXjFWe\nk16+fDl2794tLSsRLUFWgMNSsFhafnY4wmpPYaQrmiWz/lk8/8KuZbBy4cuevcdCoYBTp07Rbm5M\n0EIDoQra4fUGtb1m2nWHN2zCLNcNGzbgueee8523qn5DJh1RFifZWPtU1UZtDa5//OMfQ9M0HDt2\nDE888YRpwvzzn/8cb37zm2NTeMNE1WTcbceNrxSapqFSqTSEL3HabWSTUiBcc0ZWAWUqsKZp5qRZ\nBX6d/BDREKTTDsNMhU/LT6ddLpcxPj4OIFgfILaVMBR7Ph3xPTid1eeVXfYbk5W1W7uBhSaF4UJl\nS6iClF1vUN/WTD6fVzaXSxNh14UwHdMODw83yZ/P5zE7O2v6NnE6VsUiOUSx0FGpVDA2Nmbmm8vl\nmqz02LOotrx0NWneuHEj/uVf/sUMnXP48GFs3rwZ27dvVyaEF1pxh9drRYsyDm8cA0J3dzdGR0cj\nzZOQJ0j9Y4tBuq6bHZ3VoopTvePrZiaTwdzcnNm5x7lDKcbhLZfLmJiYCD1ftgjG8ub7SCYTK3cr\nE3/eZN5ugYsmhqcJe9eeIIIQVZ9DhE9cfU2Sjki1EmHO2+fNm2cbBlEGVbLJpONnNzkyL8379+9v\niIs6MDCAffv2KcmcOI3o2cxNqY9icsTyYDE6VeLmIZat/hDJJEjHyAbSer1urupZdX5OdZz9ZhiG\nqahVq1UYhhGrKZYYhzeqiSd7br5c2F+tVkO9Xjfd/ov3AdbeoHlIITtDGOVAZUuoohU2BESv82GS\n5PKKq69pV8/V+Xw+1PTDim6TyWRcN4g6Ozsdf1c1b+L1BTtfT+VyueGzrutNi/S9vb0A1LdPV4X3\nne98J971rnfhBz/4Ab7//e/j3e9+NzZu3KhUiCSS5LAdUQ4I/GKHEyor5tDQkLK0iPYgSP1TVXfF\nPoN9VtmXiOdyxe9kZePv4Y9JEASRXpLiwC8IUZpl02JTM2FscqSBsHe1w1pIqNVqlnMMfkyXidGr\nGru+yG0+ZBhGaBaeribNhmHggQcewGOPPQZN0/C2t70N1157bSjCyEATM0IGK++9TjtVdmYWMiYa\nqp2MibInwYmZLD09PTh58qSnUDxO8uu6jvnz5+O1116zvPa9730vtm7dGlxwBbC+KZfLoVqtRmYa\npmka8vm8WWf4utzf34+JiQmcOnUK9XodlUoFExMTiakvBEEkF3JgRBBE3EQalihJtKLCK8b/cju/\nyAahJL06lUqXGJaHIMJElWdnKy/JUZzBkpmUZrPZJi/N7Lxz2PEHCWeStGBFpBvy0uyNUqnkuvvV\nbhSLxbZ0WhU2YfbzV111FR5++GHb393CNxYKBczNzUXSdzC/IgCafIgwRB9CkZ3h/dGPfoSVK1ei\nq6sLlUoFlUoFXV1dSjInTuPF5JGdy4tqgiTa29vhRR6356UBiIgSP528TH2P6gyWTD5WXpqZkuym\n7Cb5eEcrEJey24qLx+1OX19f3CIEJkqTWlLsmmkFs3g/FIvFUNO3O9MalEwm46jsAu5ndGdmZpQo\nu3zbtWvHlUqlQYm1cljKykr12Og6k/mzP/szPPTQQxgbG8P4+DjGx8fJqZBixNUNt5ccxUSFnQ8M\nY+fHLrYz49JLL1WeZ1pwOmuZFFSdl2UdolV6Mnnw13R0dEDXdU/nWlWTz+cbHFNUKhXl52PF8/tu\nacuEMLM6F8xDJo2tSRL7FiIYw8PDcYsQmCg9BNNiUzPtam0S9jgX9RleHhnP3Kqxa8ei9aZVOEW2\nEBW506rBwUGsWbNGaaZEI147mDB3XNiEnTX+MDzXuT3vk08+KZUOUyaSPHh4xS22ahIIIhN/L+sQ\n/e5a8tdMTU2hXq+bq4VxlNvMzEzDoDY3NwfDMJQ6mWPPx/oAN3Mf9pusDFaDfpTtq5Xasl+i2lGP\nayGD3nF4hL1LFQWVSkVJOl7aEVmxnKFd2+fq1atDTX/ZsmWOvwepg259uZuyrWKRifkSYdg9jxfF\nX/mRMLczvLfeeiuOHDmCa665xnwYTdPwvve9T6kgskQ9+fLjLMjtHA1/5o5t3/OmNWk80xXUuQV/\nptDKpp8gZPDTdvh7ZO/nHVLFFbM6k8mgXq9LxR6WiWvs514iOFS+BBEP1Paa6e/vx7Fjx+IWg5BE\ndFppBTs369VpqxcZDMOQOhM/MDCAY8eOmfOWjo4O1Go1U36mC7A5lUp/Ra6BoUZHR1EqlbB9+/aG\n7+NSeMOEN/9jBe5UUVRMcg3DwLnnnounn37a/E7XdcfKF2UnPTg4iCNHjjheo2kaisViIK+8fBl7\nXdSgQYtg+KkHzKuyeL/TIg6/IsruEdstW7gJawFH1W622/1ugykRDOq7CFW0gsPHKMfzOE2ak9ru\nWUSEdiPsjZaw3rlThAs2f3GzBAt6fpelLVN+IyMjDfKIegP/W+Q7vEkjqh3eKD2Xem0IUXpiXLBg\nAT2G7vwAACAASURBVI4fP+56nZdncOtYFi9ejIMHD0rLSERLkIFBdjfVLVQR29nklU3xu6gRFeRy\nuYyJiYnQZPJiVeFWnk4DYpInZwRBnKEVPK5HOb+hvq2Zdg1FFXZdCDP97u5ux9i1bu9UVZuT2eEV\nI0aIsvHWnqq9NNvu8N555534/Oc/j0996lNNv2mahrvuukuJAH6IopMqlUqJVXijDDswPj7ueo1q\n+Q8dOiSdVtJohwE0yCqo6ClY5jqxQ+RXLVl589/FhTigsGMKYckkMylhA5l4bIJH5hxwO9TrJCHW\n+XadhLqhol62Ut1esmQJdu/eHVr6KmKLu5V3oVCQthYLSrFYjCUqRBLrnDiWqpLRKR23cDlRoup9\n2D1vFO/br+LKfI3I3msXllFGZxLziPI4la3CW61WsWPHDpx33nkNB5HdPOxGQRQVJ0pP1F1dXTh5\n8qT52e0lRzn5yWazUh2Sl4rpdl0mk0ntGd6kDWKtgFNdV1HefttTFHF3g8IGF6c27CZzEp+r1RHr\nIym71qiol61Ut8MKfcJQ4dzGrbyjVEDjCoEoU+ei7ndZXkuXLsWrr76qLG+ndJKi7ALqyjuO/mTh\nwoUYHR1tUCb553GTyev44nTE0w3R54jT8UbV456twnvy5EncdttteOmll7B+/Xq85S1vwZvf/Ga8\n5S1vQW9vr1IhkkiUpg12QZed7g8bJoPMgKB6EYQ8JrYuYZv3+nVaxf/f78KN+DlsSwxZZ1m8J3Mr\nBZ1X+K2U/1ZSCJJIlCacRDOttKCzZ8+euEUITJQ7Pq307lXh5rOlVQm7HoS5UVUul5u+8/I8Kiw3\nADkFlXdKBViPf2E5AnU9wzszM4OnnnoKTz75JJ544gk8+eST6OnpwUsvvaRMCC/E4aXZrtBVeWku\nl8sNpsNuZ+qSiAovb4B30wqCCIrYHmXandU55qgnT6zNkJdmgiAI79BRgWbczoMSyULTNHR0dDg6\nq3PTKYI67GJzBBnFeWBgAEePHjXn+aVSCYbRGHuX1wFU6kKuW2nT09MYGxvD6OgoRkdHsWjRIlxy\nySVKMk8yrII4Kdj8S+DNvtlOkx3idv6qVaua0o1yh9cpvXnz5inNyy4//pk7OzuV50kQdsieK+aR\nGRxKpZJvmWRgbYZZROi63vB/4MxqajabbWp37Lswgs4TBBE9/DwkrUS5qUHKbjPtquyGXe/Cslw0\nDMNyzsw/D9Nn7Ah6hJClLZPO8PAwgDMWcKdOnWrwL2IYBubm5kLZ9LPd4f34xz+OnTt3olKp4OKL\nL8ab3vQmXHLJJaEoQF6I+vxw0LieMr8Xi0VPcXij3AGWWQFlDVnV4EFxeImoYKuJVvXNqV5rmpao\n8GFOWJkzi79bOaCQlT0pz5lWrMov7j5QlYlbnKSlXqrcZWyFsEROxN0ugOjqlZd8VNYhFoc3Le1H\nFSqeN5PJ2MaNDdOawGpXXoyIAXibA/hB9jimjFUacMbrc+g7vPv27cPMzAwGBwexePFiLF68GD09\nPUoyTQNssutl0sdwu0f83esiQhTKLnueTCbjeq3XRuy20tXf3+8pPSKd+F28crrPa5qGYdgqrfV6\n3bFui/eJ9TqMxTk+zXw+b+7eul1fKBRs2x0/CLkNjFa026RINVblF/ekPu3KLuBv7I4DlZPguJww\nRYXqduFn1y2q/s5LPirrEIvD2079OqDmeflwO2Gk7wU+v0wmI+WcMmwMw0A2m20KQyTCLFVU92eO\nZ3jr9TpefPFF8/zu7373O8yfPx+XXHIJ/uqv/kqpILLEPTiFgbia3u5n6lohliCRHsKw4ogSGVmc\nVpfpzHy8JKkuEekmSWFe0gCLlU6cIQm76K1ImDu8N998M771rW81fMePK279AlNCozDxFy1UZZxW\nqRofXZ1WAcD+/fvxxBNP4Fe/+hV+8pOfYHh4ODY7/zicVnn93a1ii/d1dHQ0xJ1LkiMF2cmYCplZ\nXj09PQ1hmghCFtZ5Bo0pJ5uPWzqqlRm+nbEA7m6m1W6y+XHaRaQfetdEu5OkuVZSaNdFk7T2h5qm\nIZ/PY2ZmxrcjXWY6HBSZdLq7u82wr+z88fT0tOWuLzN9Dt2k+etf/zquv/56nHXWWbjsssvw4x//\nGGvWrMEDDzyAkZERJZknHa+myQy3DlS8T1xNk/G4GjbM1EfGpBlQGw+RBiD/JN0Cgpnf8qa4Ylgg\n8Ts7RKcMwBlTGC87ln7qrlX6YjqFQsHxzIwf+LbBZGBO8jKZjKV5cjabRS6Xaypn/nfxCEPS61Fc\nhG2mHiVpnNwRznR1dcUtQqjIzkdkoblGM+3a90cRligMDMMw5z12z+A2H+J9CAVBJp3x8fGGXdvJ\nyUnLUIiROq369Kc/jbe+9a1405vehEWLFinNNAjt2hijJk6z4kql0hCmiSBk0DQNt912G772ta8l\neuVe13Xkcjlfq+j8Cm5HRwdqtZplOjKO7zRNQ61Wa3CaZ7XrSxAEQRAEEQeRmjQniVZQeMXJqGhu\nIOvpLCmvju0sqTr3QWcKiSjhF3f4tuek9LEdUi9HFwjCiihM4b3STgsecZe1yvxbfbFYXIgPWnZJ\nrudx1Ut2rjnudpFG4iqzdevW4YUXXrD93S2yS9RemoEz+ouVPhPWGd5w9tgJT3R0dDR8dlPqk9YR\n1Wo1pU4OkjoAEa2JXX3ze6RB9neCsIPqTnTEXdYq8291Z4/iPCNo2cX97p2Ia3OHOVBNctmEgYry\nllX2VHP++ec75ucWh5dZdUWFKIvdZ9VlRgpvDIgVy+3li9Tr9Ugrpxv8eUAVtFtHS8QL1TciLuzC\nSiWpfyeIsPA6b3AKwdZqxLXwXywWY8k3bsKeB4SZvtPZfRnrS5mwRTL42QSIcv5Fo2oIuDlWEDt5\nsRNnB9Dt7pUN2hwVfkK6ONGuHS4RD7xyIRtPW9UA4RUrB19e7yOSg2EYlpORqMJD2JGk8YWQJ207\nvF77UNXPp9oJViuQhLZP45U3Hn/8cQDW8xeZ3dve3l5lJs1u5PN504cIcDosa1SQwhsCbudPxQkO\nc9HNcHJmE4bnMifC2Glwk78dXeIT8cG3V9nBPq44hXzb8dIP0C52conr3SRhYkuopZ12QFVAbaAZ\nPkRmXNB45Y3Pf/7zAOzLza08T548GbpJN2NmZqYh1JCTvqS6fZLCa0OUK0ytMEipVIzFM81E6+B3\nh1I2LZX10Ek+FgbI6fqw27WqHV4yn5Unrp0H2okKDyeLqrSRtrZs1Z7c+t0gaYskWeGNuq+hXdVw\nCbN8v/GNbwS6f25uLrIdXrGPYmEV+TS8hKf0Qrp6x5BRVbhe0xE7XadBK5PJoFAoRNY5yU7avQwc\nboNyoVCQTotIF353KHms6k8Qz+V2E163tMSVSbFNsjahsq1amV/7SZ9PRxxwRGgidIYodh6sypu8\n1odH2syAnUibdZTXM32qrVriWiCQ6VOj3uVk+XV2dkaaLxGcZ5991vF3N7PhwcFBJXLImCfn8/kG\npbZUKjX8zrwzAylTeG+66SYMDAxg/fr15ndf+tKXMDQ0hAsuuAAXXHABHn74YfO322+/HStXrsTq\n1auxffv2MEWzxOtk3O5leO2oRPNIJ+WRxd2U9Qbnt8KwHYVqtSo1KHh5ZnGCnclkGvKYnp4GQBPt\nVqRcLpu7o319feZZDrGD6+npsbyfv9aqvbJ6m8lkpHfF/ARdt6rvmqY11GPerb7VtXY4/cb3Dblc\nDsVisel6viyz2Sw0TUNnZ2eDbCyUmK7r6OnpQWdnp3m2RuZZifCg8iaIaIhrhzfJbVw8YkeoIcx3\n7rbQ5baod/jwYSVy8LqMnd5w6tSphqOZ09PTTWXD2qXq9hlqHN7HH38c5XIZH/nIR/C73/0OAPDl\nL38ZlUoFn/nMZxqu3blzJz74wQ/iv//7v3Hw4EG8853vxMsvv9xUaK2oBHmNOxtlWKI44tRRHF4i\nSpIW5itq2v35CaJVYDFUCTmo72smybGJCWvuv/9+XH/99ba/p72epyIO76WXXop58+Y1fW8l/Nat\nW3HjjTcil8th2bJlWLFiBXbs2BGmeIQEshVNpWnQ4sWLlaVFJBeVi1csrajOw1vJznZN+c9h5uvF\n7MdJllZcREwTcZU/vffWw4+1SjuTtjPPUUBHysIhzP721ltvDXR/pVJRIofMnIdZpbHycKpvqTJp\ntuMf//Efcf755+OjH/0oTp48CQA4dOgQhoaGzGuGhoZw8ODBOMSLfCIg2r0nYSLCZJCdtHtZgXF7\nvuHhYem0iPSicsWRpdXf3+/5Xj/tzUp23vMgEM65S36CxkyQmZIvmobzn0UTb13X0dHRYXkPES1x\nrbynecWfsIYso7xBO5nNxBWBIG7CHvvC7G9HRkYC3T87O6tEDtn2xJs0W/kQYXMV1WUWucJ78803\nY8+ePXjuueewcOFCfPazn7W9Nq7JV9gTAfG5xEl6Ejxy8jG8wkrbDnaGlyC8cujQIc/3+F3lF9ux\nWK/D6L/4CS1z788GK34QYf9nn6vValP4pampKRiGYQ5STiHPSBE+TVTlYHcuOypaIXJAnHh5Xyp3\nGflNg7QSZV2Pa9FH5p1H7T2clTsbJ8J4D0keR1TIFtfznXXWWU3fefHlU61WI5NdVK5nZ2eb2mFY\nC3eRK7z9/f3mTsLHPvYx02x58eLF2L9/v3ndgQMHYjVtDdPURXy54oFxtxW2KCqm1zxUhgtYsGCB\np7yJ9MDvJrKFHa/hhZxCWfhpG3471ygUXCeCTqqtrDhUOeJrVaIqBzGfqMu/XXd5VOHViaMq/Cz4\nJY0o63pcCorMO4/ae7i4yRHHZkecqGiHcT3fypUrm77z6oQ3LtmtLMvCapeRK7y8cvfAAw+YHpw3\nbdqE++67D9VqFXv27MGuXbtw8cUXhyqLrDfUsPFqThCFbDKKB48XmXi341akLbRCuxGkM+IHU6Zo\nWnXMTvXJLpSFpmn45je/6VlGVR29SrN+GTo7O5usQVh7Fdutk6foJE9CCIKQh0yavUF9XzNUJumD\nj3Zjhds7VaVTyNQdsY+ysiwLqw6Gard044034he/+AWOHz+OJUuW4Mtf/jIeffRRPPfcc9A0Da97\n3evwne98BwCwdu1afOADH8DatWuRzWbxzW9+M/TVNyfPZV69mgXxgpbL5ZTZ0HuFTYzFCu+1AWSz\nWU+7Ak5ltWTJEoyOjnrKv1UI6k0vCm98mUzG9w4QL59qWQ3DwKc//Wll6QWlWCxamuezFc2gzz45\nOQnDMKDrekNa/PldphDrum6aDvEOvur1OsrlMk6ePNkgUxI9dabd0ySRTFqpXiWx3Xqlld4HQUSB\nW7tPUpvyIotquUMNSxQGUZ6hCqtoxLQLhULDrqabIs4muFEMbDIDqJ3S7BcKS0REBYtVyxac+LaX\nzWZRq9Vsd0fdFP8kDTJEcrHqY+NWXOLOv51Q2U9UKhWMj48rSSsKvD57O80N4ho/zjrrLOzbt4/G\nLx+o3ETzwqJFixyPM7hZc6mSzW3c4BfnZTY+WHqpCEtEWCO+PHHS7PRy2fZ/VJMRGZPmer3uycGC\nm1Ou7u5u6bSI6InboY3VeV1WT73K5mRKMzc3Z9sWDcNoarfiYlxnZ6cnWZxwOqPMt1Gr65hSL6bn\ndGwhyc5FWg2rvjxuZTPu/KMkbieRKifBaXP46PXZ20XZBeIzLWa+dEjZ9Y7b3D0sgnppFiPF+MVt\n3OAdZDL4CBKapiGfz6Onp0cqPa+QwpsAvL7UKDoiNgmWHWC8xP9zS7NdzZmB4IpGFIpK3HH6rJxq\nsDbkZ0KkahIltsupqSkl6fJpi6bLwBm3/nwcYDHcEA9bUdV13RxggNNtnrX7MPuYNCvTYciexFig\naX5HXmkn5T7tqK6X7VTPiXgJs6699a1vdb3GaUyP6kil1W5urVZr8OdSrVbNcLWqSd5ImxCi7Ai9\n7EqxCWrY8rFJQByu6aN2x58kgioaUSyGTE5O+r6Xn9zz8WO9YKXIBYnb5kfh4M/H8t95CQUQFNHZ\nV61WM9stbwZUr9cbdqPZ98xcmy1W1ev1SCb/ad45aDfPpe1A3OWvsp8olUrK0moH4n73TsS1EFap\nVADQYkCaeP755x1/d6tLqqxcZOoMW2hnOLVB1W2AFF4bolz19epRdmZmJvSOmt89Uo2b7F52i4l0\nwdcnpoR5rctWu51Bdmn9OODivUzz36mSSRUy4ZqsTKK9ELdJaJSEYc7v5EFb/BzVJDTJioBq4q6/\nKss67j4nbbFM4wx96UZclgdjY2MA2qsPSDvXXnutZXgfhlu/UK/XlfSDbnXG6nenI1Wq6yApvDao\nsmmXIe5BygnZFRaVcXg7Ojqk0yLSRdg7oH7SDC3mW8Qr9FbP4TRgeL3ejiT3X6qJKz5tmLExrUii\nmXVYpNmkWWzDcbdFFfUzSkUryXGL44rrzto+7fCmh5GREcvwPgwnZRg4/c5V9B0ydUZ0QuUWplQl\n7TOqeYT32qoaMc2+vj7H30WimIzITLD87jq4DWhBTGaJZGMVczes9GWxa0+i6Y1I0iYEXh1m8CbP\nInE9W5h9W5Qe/r0g88xRv4/+/v7Q0k5Tu/GLl3ocZHGd93QKnA6FJkPS3oEsquX28+6jKrtyuRxJ\nPgxWFsykWbYuqSauuqki31wuZ5tOmAs5P/7xjx1/d1KGgfD8mIjYLbJHFYeXwhJxFItF05zWLiYl\n/3/e+Uu9Xm/4TYxLa3UNS4OFRbGLZevVZbjb9eLvVtezFSG3hkIQccLXXT5UkN/Y1nwfoIJSqYRq\ntdowoPgJAaDruvls7F4WooOFT2Lp8uXAfycqtqVSCTMzM9A0rWnAo5AUyYNCBYVDO4W6IRrxO060\nMu3a94fdv7Zbuco+r9V1LHyRassm2uHlOHXqlKVCzTcC/v/iDonV+UTxPuZRlU+DrQaze8TVYavK\n4IRXO3q73Z96vS59Zs3LKrXbokVXV5d0WkR7Y+W4CfDmdZB39BJE2bWq19PT002DqJ/Ou16vY3Z2\ntqHtM0WWKcHMVIhdy39ntaDFZLOa7LfTwBw3sou4qidjad3lU00rKbvtZIquglZ696qYN29e3CLE\nQtiLiWGOqb29vQD8W6s57Ux7gdcD7J63UChA0zRT1s7Ozga5w+zDqHcUiGOiJ3YwbmFfolzll83L\ni4LhVsbMaQKRTJIyUVZ1BlVV7Eox7yCeo+3gJ2hMmWWDmVVsXfF79ht/bsZqsSpKb9MyJEEGIBw5\n4hhz0rDbkJR3nibOOuusuEVIFSpjpbcKJ06ciFuEVBF3P6VpGvr7+5HL5UwrUuBMtJNMJmPOFeyc\nIYqL6X6R0QOY012mW0xMTDRtKornfFVBCm8MiC9yeHi44XOSgsfLKrwqV2Xi7kAIZ5IyUVYlR1he\nWqPaPeB3cUWrE/adlZUKu9ZqkAr7rLVXkiADkBw5gpKG50iDjEnj2LFjcYuQKqrVatwiJA6yEvBG\n3P2UYRi44YYbzHGcje+sbtdqNfOd2ll3Wh1r8oPM3F2cb7HjWk7XqILO8BKWhH2uqVAoYGZmxvK3\nzs5OclzVovA7S3Zn1luFOM+HsV1dtptbLpcxMTFheVaXP7uUz+dRrVZjH8TbCavd1o6ODkxNTUWe\nbzvSSv1QK5zzZn2QFUHqbJLOalPbaz8+/OEP45577olbjFAJq16rSpMU3gQgOsrx6nQqTMipA0HI\n0aqTmFaYRBNEO+C0kJxErJTQOPrRVlr0CEra6pAqFixYgOPHj4eStqZpKJfLGB8fd7zGb5QJq/E5\njnGbX6i1ex4/bY2cVoVMlIq16CjHT/DmsEibsut2MN+OoGY8Kk0w/IQjSEIoK7dYb/w17OxUPp/H\nggULzN+ZkzR2LjWTyWBoaMj8XXyO+fPnJ8YEi7VLu/cXR1gcqzO8Xoly0Ez6gmbS5SPSi4q6lQZF\nhfdRkhSHeaTsnsFvHUp73xiWsgucrtNOyi67xg+iI1z++yipVCoNVkl2zxNnW6MdXod84tpFTdIO\nryxeZErj8xGtS9rrm+j13QrecYXV/cyhBX+mxy10GUEQyYJ2Kr2RJDPnpEBlkj4++clP4tvf/rbt\n727vNMrxXdx5ttqJFuWhHd4Wwmvg+Sh3tGQXGLxUSJo4E0kiLAcJYaUrIjqsssLJ66FVrLuoAsFH\niYrF0rTvYiSBpFhkJAWVdYq3hkkrTvVDdfuLqy7KPIdsSEjV8FZW7YSK542y7vL8z//8j+Pvbru9\nqmSTmfOIcwkr2fiFd5W0V41OCOJL9LKaxu6NauIlU4F1XVfaOUelKBDRk8RwN3ZyOMknYyYctSmw\nXaw9v8/XaqhQ2sNQ/JPY34X5/pN2HryV6nraQvp5NcVUrYTFdWRLph+Ja5e1u7sbQGsscnohzXF4\nd+zY4XqNUz+n6tn9pBNl/0sKrw1hrm6JFZ8FjWY4VQCZ3RyVyMT1q9frSs2ovJ5hbbeVyLhR1UH5\nXQ21WvTxK5NhGLaTHqc2ZtUGy+Vyw8LP2Wef7UsmWdgzZzIZM/SQlcx8rF7xez4dq98Aal88YZRF\nEs0H22myG/ezqsyfxd5MC3ZHLOxIYltpNViYzLjbRdSo6NudFL4wFTvRD5BIlDqDG2I5u82zlOat\nNLUWIsqO9ciRIw2f3VZJolwhf+WVVyLLi+F1lTppOwatTpBOiL/X6b3JdIKqznj42QG1YmJiomHh\nJ+y2w55Zpq+q1WquJs12tIrTqrAnNH6xeuaOjg7Xa2R+84uYv0q8WCGozicKvOarcoefdwiliqDl\n6PV+p3a6cOHCQGm7IZNeGGVshZdxqVgshpZfXETVTzBUKFfFYtHW2jHMheOo22gQarWadH6qzfpJ\n4XXBT0Vwu0cc4MQzvGncUVEpc1JWoohwScp7tqu7bo7V3EjK86WJMMssTQtjYgzeKFfBrfJXiZ0V\nQhT5RIHXfFUuru/fv19ZWoyg5aiyPA4fPhwobRFx7iWTXlSesO36KysZ3Xb4ZEjaeBVVP6Ey7VOn\nTtlaO4a5ifbFL34x0P2qFEuZMtR13XSSyT6L+bM5mWoHfOnTrFoAseLLHOLmScpKHC+Hyslk0jpe\norXxU99k7klKOyVOk9SFRKu6JMoatexR70Yk9d2kjUqlElveUezaeD3u5CaTOBeTqYfnnnuuJxn8\nYieL1felUsl3PkF8yoSJuJsfNj09PYHTyGazTUcUGW7HDYL0gV/+8pd93wuoO8su0wfU63XzGBb7\nLCq2TJ8IUq+toFHGhbAmwzziIOVm4hTl5MApr7AU0yQ6cSEIr5DCmyzStMMryhq17GHmZzVupOnd\nJJk4x07Z+YDbro2TYjAxMSEtj0yoFVH5lqmHL774orQMQbCT3UrG6elp5fnEjbibHzajo6OB05ib\nm8PIyIjlb2E6uezq6mpKn/+8fPlyx/t1XVfSd8goqNlstiksUVSQwmtDlJNVsYG4rbDZdVAqZWaV\n30tsXVmYF0A7vDZ8Fc9t19hp56EZleFdNE1z7WidwnYVCgUpj8kysqiATyuI0yo7mbyGMPN6DkrF\nWTCCIOJhfHw8bhFccTsDW61WleQjM3dJcsxiL/M8WlwNjqqxz+5dhHn2e3R0tMFMGGisP7t373ZN\nQ8XOvmyb4xe1rGLwsudQbbFCs3kbkrrqBXg72xEU2TS95O22kub1OWQ9PYbl/dFqZU3Gg7Dd925K\ntqrQM35xej+dnZ2WMvBlwq+8G4bhWvbnn3++7W8bNmwI7IFQpQmXYRhYtWoVAOD3v/99w29e3oWd\nB2WvpkeZTMaTV8RsNksWFkRqoIl+I3GF2fFCVGdgZWgVy4Ikz1fTgopz0ID9u4giZJjfesDaQZAN\nHk3TpC0NnPoAfj537Ngx3/JYoRkpaylRDXC6rkfWGXZ1dTU0hmw227DyKJrmlMtlT6Y9QVi0aBEO\nHTqkNE0ZU6M40yPSAf/eg7RXVfVHlCGTySTmPJRb+TiVAbWvMyTpnRLJJa428/rXvx5PP/10oDSi\nlN0qryjnXkkmrr4ml8uFtnDipW5F3YZKpVIg03A3wqzXSWkzvBx278+PrKrqAe3w2hBl5RE9Yopm\nNuLLjkLZZbb4sucovO5eOZ03GBoakk6LpUekg3w+b8aE7ejoaNoNZ7/J7DKKnv6AM6bpmUxGuk6q\nXnxhqHSpb+foxy2WMfOAaBWHl8E7kAgzHE0rQMpu6xG1FYxKxPb/wgsvBE4zyvHUqyfedjpiFFdf\nE2a+XupW1PM6VTu8doQZI1t1+B6/2JlU88g4abRKTwXt03skGK/nSKLY5fba+L12TmID5e8PMyRG\n0kmDiZ7Xc6Q8s7OzqNfrMAwDMzMzTebI7DenQZcptdlsFoZhQNd183pmUu0UdzYsmOwMlavkdo5+\n7Bbm2Ooq84DoNolhA47VCneU5ZiG+q+adnxmQg1i+0/ymVRZgoaDI4JhVf7tcMwl7HHuuuuuCy1t\nVefeo8CL00LV76RtTZrdzCWYOUkUZhXM8Q5TMlmebOuf/cu+z+fzZgUXy0O1rB0dHbYKaKFQwMzM\njLkjJzvYkokkAZypu3xdYHXdyZzLqm0GMelh9TgoYdZrq+dju+NhW6NQe20/wnznrV6fvD6fSjPP\nMEwbk/S+kiCLeOQsCagsFzYexm0mG3X+vb29th6WZclms7Estrc6ZNIcELcCZJPtKCruzMxMw44q\nH5+K/5d9z6/msB2yoI577HDabWVKgmEYngaAuDqDKFcp28n0yiv8e7DyLKhpWoOyK8bj49vmwMCA\n+X+r9GVQ5UQlTLNgq4Gf7eDKEGShkAbvM0SxwxSmF1bZthGkPbkRprfSJKDC6aLfa8MYd1S3f7cQ\nKE7mmV5k8VIWXup4VKbGdm3ezjGkKth4mIQzoVEyb948x99lyrhWq/ke/9NuvTB//vy4RXCFZuU2\nRFn5vOYVhWxssAhjAHWTP0g4FyeiPBPTyoNFkAkwr8yyiY2VF2H+O/EcOctf13UcO3YMmUzGZ3Dy\nuQAAF7ZJREFUDCnAzJvjMMHK5XLQNM1cJGIDQFhhj9g5ZZXp00KNM1Eo/17PNXrBTx+out8M+6xc\nO5OGcaderzvWKVX1TaYsWN/pJc+oFgDt8pmcnGz6TuV7T4riFXVd9hsOVMTq/QDx+sdwmw+pGPeH\nh4fR1dXlep1MXqJvFlXQ7MaGJO9qJFk2GaycVvGkYdBuZ4JMSFgHxjumEtNzM8/iLR+YAs0sDNhv\ncTj8mJ2dbZCbnXVW2V75tOysUPjBgjmtKpVKDYMH3/5yuZz5G5M5LsU3rh3UOKG4mvHSSucTmcWL\nSFLrk5VcUZ7hTftcKgzatUz27t0bOI0gDtfCLHe3+ZCqObdMHHCZvEQrV1WQwmtDlAOE6AQoCYMT\nq2hhTQacGverr74aSp5E/PBKmtVOj4x5vujkCkhm/EnVMeSscNoNZE6t5ubmMDU11TB4iM612G9J\nNWdT2ScGmVhE1TfbLWIQ6klaXQ/C5z//ecvvk6rEWJkvOzlFTOpzhEFci45J8fgbNWH3sWFGVwnT\nA3QrQQqvDVF2rOKA65Z3EC+5soTd+J3Sv/DCC0PNmwhGUJNmMR2r9JzqBzNfZiZCmqaZ38W5W1Mu\nlxvyZ2etwjJpZp+dnpld73QNH7IobsXKSyiDOIgrhE1Snr8V8Vq2cbcRJ/78z/88bhE8YbVQGeXi\nZVL6PSviWohp19BrYc8d3JTSIHXQzUuzW9pRLnJ4MWlWnncoqbYAcXaAbnlHeY4sjE5A13XHZ/jt\nb3/rOT0iOoIMiHzdFp2x8TjVD7YzzIfQCbIzqar+TE9PN+TP0g3LpJl9Zqbd/Hlevpxl+hOWrl2M\nvCgW2dJAVJNQu3eWxIm5V9L+DMpDZSgsj1aIo62qr5Hp1+NaSJJ553H1uWE6lUty21fRdth82eo5\nw1zICTpPV7XIIdPm4myXpCnYEGVHKHo4dss7Spf4YTgYcZs0en0+Pj22iqZpWtOAYdcpOHmNVLHy\n5bWTX716teM9okxJNGexk180q5UJp2CXFnNulc/nHRU2N1QpMWI4gtHR0YbfVSwe2Z15Y4tIhmGg\nWCyacrzxjW8EcOYZS6VS0y67lVx9fX3m/+v1eiJNxluZpO90B6EVnkElKsvj+PHjytIKi3K57Pi7\nqr7GS78edZ2UyS+uPjdMp3JJbvsy50/dcIruEuZGVlCHW1E6RfQyv1e9mdW2cXgJgoiebDZrni2t\nVCoYHx9viIPLFh90XTe/E+Pt8sptpVLBxMREQ4cthjmKikwm0xAq6L3vfS+2bt0aSd58GfFxvPP5\nvBkqYWxsDIC7Y41WOtNIEO3EwoULm7zaEwRBhE0mkwnNHD7xcXj379+Pyy+/HOeeey7WrVuHu+66\nCwAwMjKCjRs34pxzzsGVV16JkydPmvfcfvvtWLlyJVavXo3t27eHJZoUSdw1i4MwFhhUm0nznilZ\nKBir9+dntcivWRF/n9e65GZSZOXkzO7ZojrTKltOc3NzpkLFVlT5OLhsN5FXdhctWtTwO2+COz4+\nbpl3WHGpnajVaqjX6+a7+M///E9labNd/cHBQcvf+WflnVbNzs5idnYWo6OjZpnIeEhvV8clBJFm\n0qDsrlixIm4RCCJyWn2zrlarJf8ZjZA4fPiw8eyzzxqGYRjj4+PGOeecY+zcudP40z/9U+POO+80\nDMMw7rjjDuPzn/+8YRiG8eKLLxrnn3++Ua1WjT179hjLly83arVaU7oAlPxpmqYsLZWyWP0/k8lE\nJouu646fwyp//nOQ5/XzXp3usfstn89bfp/NZg0AxtDQkC+ZnMrFLW+Z90l/4f2J76pYLHp+/25p\nW6WVpL6s1f+i6g+j+EtrvSkUCkrT6+zsDFxuSSnL/v7+UNOP4jlVvd/u7u7Y30fS/jo6OmKXIal/\nYdftKOfxcf3x46Pf8tR13cjlcg3fqSK0Hd7BwUFs2LABwOkzG2vWrMHBgwfx0EMPYfPmzQCAzZs3\n48EHHwQAbN26FTfeeCNyuRyWLVuGFStWYMeOHWGJ5/vcYBiUSiXz/4bFTk2UXvPYDg97ftmdHq/l\nJZa/2/vwm27Qe+x+s/OKx84nHDhwwJdMMuXi5pGPp13MU5Owsii+K7a7rqJuG5wZt1u+Ik4WAFbX\nynwXFu3qgC6O8UhVn+uVoM/CW4SowOtZST9tMCrOP//8UNNX/ZxWdWHJkiVK0mZHOJJIXOPV1NRU\nLPmmARbpISxaKd63FWKd9ttXhOkzJJLZxf9v79xC66i+P/6dkzRp0pySaq4keGukoD3pqSlRKKZe\nUCyFUlsUEYqtxj4UkYLggz5JFR/Vp1rEhyhKUUHwRfGCQtEqXkJSBUNojUlaG2tbm4vahpP5P+S3\nz386ndue2XtmzpzvBw4k58zMXnvPmj17rb322hMTExgeHsbtt9+OmZmZcghqe3s7ZmZmAACnT59G\nd3d3+Zzu7m6cOnUqDvEcifMFZl/E7Tfoi2NQKOrvtMBcdrN4QnQT5WXiFo4t+5yJtccCnck/ZDAt\n64qDHBvkO13odNCoGGTqkC+IXDruQVLOhah1UT1wlHEgpp1vvvkm0fKjOr4B4MSJE6rECUwaHKZx\nEKSeOvuFoO2cxP3wS6YWBDe5/XYmiVqm39aOfn3mTTfdFFkO0zQDbb1kdyx43WvVuqj9jTc/P49d\nu3bhtddeQz6fv+I36zYaTlRLJ2R/4foNquKYtROK6/Sg6B6wyNbPer2wD4/bedbZ9yCkeV8/VVjX\nTKvAL4rAa31wTU0NDMOItH7EzZsoq4diDa89OkLoUBI6IauP+Xw+s7qbVqecXa64tpap1OiPat0n\nNAjW7OpJoOIZS8IRE3ffEKW8KP1zkHJ19gtB651EX61i9tvN6AvSpmH13jRNxz7R2oZ+febJkydD\nlW2ltbW1PJby2lnDPhHgda9V66LWnmVxcRG7du3C7t27sWPHDgDLg+UzZ84AWE6w0NbWBgDo6urC\n1NRU+dzp6Wl0dXXpFI94IIxwHaEFUVOoe10v7MPjdp51r9cgeIWeZgURlaEKvzT1XjootgISnzCo\nNvCEHCL0UuhQEjohq49zc3OJ6q5OY7tSQsqCRtWEIcygSkUCR6v8dse3LlS0WZhrCCecbpwcvZOT\nk9rLVYGXHqpyaOjqx9xkV22ou/VXLS0tnsfmcjkp/XOTW1aHVet83I4PP/mDJObM5XLYu3ev429Z\n2trPqa3Onj3ruS1TGtCmUaZp4oknnsAtt9yCAwcOlL/fvn07hoaGAABDQ0NlQ3j79u04cuQILl++\njN9++w3j4+Po7+/XJZ4vWZ3lCEol1d8qq8hwrGpwK9vpClms5yX94lCN16y3157GAnv9/OrrtS5t\n9erV5XLDorpzFvXXYWC5tZXb90KGoEaL7GDJq+ww6HxRqhhIx/FsOg2MVLVLGI+5ipBfq/xxrSNU\nMWAO0+72/bi9iCKjk6NXNiLJD9m+OihxRBfItIVMvdxkV10nt/7q7NmznseKnQyC4ia3rO67HR80\nAi+oXLrwyw3gZrBa67S0tITDhw+Hek5U7IwQl5PA6V7LjHcSG+OGzXblx9GjR03DMMwNGzaYxWLR\nLBaL5scff2yeO3fOvPfee82bb77ZvO+++8wLFy6Uz3nppZfMtWvXmuvWrTM/+eQTx+siBZnIkv7E\nmRGSWX75sX/8dCJo1mtxHT999spKLbJip/GjMkuz38cti7NhGGYulyvLEpc8qj9p6YfCtp1Mhs6G\nhgZl5ar4WHVHxSefz6f6XlXyZ+vWrYnLUIn3LcpOCn4f+7Ofy+UC9Wdh20H2vGp8TnS1g7iG07jE\n7/ppeccl2X5uH1UY/zMiK4a0z34RQiqLXC5XsesZs4ZhGFIzCzL3rqamJpb1nzr0qba21jf0Xxc3\n3HADJiYmpM9zk3nVqlVYWFhQIJk8svoVRzkqZBI6F5eOR2XNmjW4cOGC9Hlx3T8vVq5c6ZiQ0O17\nJ4L0EY2NjY7REHV1dVdFXbS1teHPP/8E8P9j5LD653T9OPG6xzrf1X7PThDdy+fz6Orqwq+//ipd\nfhp0O62oapfq3AMiYexGuz3cMA1ZmgVJJtohJChRdEaVvukK/6smZF9sMoOfuJwasuUE0ZO4jV1r\neF0YYxdwlzlqSHOali+kBaFzKjLNxoGXsRtnvxmmLLfQV5ms/FH6IqfQ2r/++qv8t+mRzyLIDhtJ\nO3+9nlGdsvmt0Q3Sd5RKJYyPjzv+5tdvhe2bDMPANddc4/i9wC/cuKmpSclz5xeWLRIVBy1L9bIw\nGrwJYFdsv/+TxEuBwz4glZ7cgKghLRmtVT5vMi+ZOInqEEj6HpF4SXrQ60WaZRPI9Ckqk2ulqc8J\ni1d7qG5XcT2ZexDX+Mwr062dKNvO2dGZJT7N7xGRDyQK//333xU7NVjxq3uUtvGbkffTj3/++UeJ\nXvvVwTRNqZnsisrSnBSVNispwiiEcWlXBvu1db7w7cajV2a5sA+I6hdGJQyAyDJOXlQZbzSwHBFR\nV1cHwzDKSbKi6JQq/bF35M8884yS6/rhtY9wY2Mj6uvrkc/nXRNXGYaBa6+91tWw9ZoxqCTSWoc0\nypWGrUmqBRVtLdr04sWLka+VNKp0T0bP0qiTSYX9z87OXvWdKkdKGttZIELCoyAShjnVU/XuJNbz\n5ufnPa/nd21Vz1yQTNQyZanWF67hDVCe8kb3WTPhVabxv02mZTJBqpTV7RhAYZw911RmFqs+qXy2\nwl5LPE9O4Zdis3in6wrj0K6nVjnSpMdcH5RenPQk6fuVJt3NOirvdVNTk+PgNyukYY1yXM+mTF1V\nynT99dfj999/r7o+QEUb1tbWYmlpKfZ2W716taOjQuBXtyjjJ+t5fjpTU1MjlUVcta1Dg5dkiiST\nu1iptpeFTmSSgaSJpI0WK2mSpZJJqh15/0gQxsbGsG7dOm3XryQ9rCRZswzHQtWBzueNSauqmDiM\n/iQdC0E2+HYjDcYuwDBrN3p6egAsOybE34ZhYMWKFVft15fL5dDQ0HCFsSu+FzqSy+XQ0dGRinXc\n9fX1V6x5X7NmjeNxKtfEtrS0oK2tzfOYIGXl83kAy3WgU9GdpAbQHLiTIOg0doHK0sNKkjXLcCxU\nHVTC88YZ3hQgmwY+Ds+l8MqtWLEiUFy+SmTrR09u5WAN0woSsmW/t8IoFokhmpubcfHiRdTW1vpu\nHK+bpLZ3sDoH/v33X5RKpXI/mcvlUFdXh1KpFEgW4WDg8+RM0n1N0uWTdHPHHXfg22+/TVqMSFSD\njlfrrGcaQtKTQqdeZ12fGNKcIWSNyjjDdpN4+VTDC4+kh/r6ekdjWde6F5IMwiGQdrzWjuvEqs9W\nZ41qPU9q0Bvn8yozAFXxPhfl5fN5zM3NuR4n2iDNfZdfDhMdcstcN6r+Bs150t7ejpmZmau+d9It\nqw5FnTBIellYEvcfUFPvlpYWLCwshHIaR9GrtIxVVMshjmdIc4rxC6+0Z7yz753nZ9THOVjwkiWL\nzgdSfXhtcu+WnZK6rwed7Zp0BEBQnJJ6xKFv9uQjuojr/WVvs7QaeEnAtriSODM6C4eDH+fPn3f8\n3smRYn1eZeWzHy+uldQ7LindVNHnzc3NYXFxMVQdovSLTvvwyuC3f65KZJZ0Kd/CVOnVCAD/NQv2\n3+3Z1YLsZRUXXnVJ+wJ1QoLg9qLxyraYla160obONq3k+xW37NaZjrS1W319faDjkpQ7aNmGYShx\nAIh+KqmtbFTi1XZp0EUVoaNBriFTV5XLzlQvYQtjtMjsQawKFbPapmkmEr3ip09+7fbkk0/G4uAQ\nW0jS4K0i7MpnV9Ysx+ITkjZo1FYHUZLhVRurVq0q/63a+x91JiXoTH1SiexyuZzUQC2sXlrLEHVt\naGgIdK6Otomjve0RN1EHxGHOV7UnrR9ueuEkc19fn7JyxX7tqt59stcRYaxO7azTKJMxxNyoq6sL\n7JCzE6Xsv//+O/S5AHDo0CEpJ50bftcQToWgZakef9Hg1YCf4tp/T0OGWUKqEcMwXAf0fgNXhjVX\nFmnJ4G4njXpkHbSpbre4nEhJOY5lHGWmaYaW01qG+Ntv+zZxnI57EEd7p2GslLT+OpU/NjamrNyV\nK1cCCNYv6ey7nGZKdfeVUe9tlHW4UcoW98yKta382k3GiWOVU/Z+CCdO0PPCOg/cSL73yCB+imv/\nXXYRd01NTSoHSYRUIl4zWG7rTURmZFI5VNL9SqJ/t5ZpHbSpliWpd1dc5brNTrmhQi5xjaDOdh1t\nEUf7qg4XjTOCR7Z9Vq9eHfg69q37oiDaJMh14o6ASnvEVVIZqJ2iXmQMUxVOtyCI9gl6nupdLipn\nBJBhZBMmlEql1D/4hFQCpmm6hkiKmRqnZy2ptTokPJV0v5Lo361lzs/Px16+buJqU8MwpAaQKtfw\nBs3/oWM2No72tTsSopYZxjgMW6bseW5hqk4yd3R0hJLJCWFkBNERHU6OJDI0i+tH5brrrnNdVqDT\nIRTVoI0rTF/2/ql2UtPgJYRUNW6dMNfwZou0ruF10rGkI3isiWvCDobc6hBX3ZKa0ZetX1g5nUIW\n48y2akem3mF1QNY5oCMBaGNjo/Q5dlmC1N+trk7ntre3h5LJCZklDDrfj07ODZ3PtN/ypSD3bHp6\n2jUM16+totQtqtMsruU+YWeEVUGDNwXIdv5JD4YIyRJuLxq/l1xcXlFC4u7zrbqtekYrLgM/yfdk\nUllI8/l8oPKyMobwMxJ0GGRxbW/m5qBzqtPk5KSycmXW8Ookbmezih1JFhcXPffB9oLO9atRvpzG\nrLBWLhaLGBkZSVoMQgghhBBCCCEa2LJlC7766isl16o4g5cQQgghhBBCCAkCQ5oJIYQQQgghhGQS\nGryEEEIIIYQQQjIJDV5CCCGEEEIIIZmEBi8hhBCiiTNnzuCRRx5BT08PNm3ahG3btmF8fByFQiFp\n0QghhJCqILlN2wghhJAMY5omHnzwQezduxdHjhwBABw/fhwzMzMJS0YIIYRUD5zhJYQQQjTw5Zdf\noq6uDvv27St/VygU0N3dXf5/YmICAwMD6OvrQ19fH44dOwYA+OOPPzAwMICNGzeiUCjg66+/xtLS\nEvbs2YNCoYDe3l68+uqrAIATJ05g69at2LRpEwYGBjA2NgYAeP/991EoFFAsFrFly5YYa04IIYSk\nB87wEkIIIRr4+eef0dfX53lMe3s7PvvsM9TX12N8fByPPvoovv/+e7z77rt44IEH8Nxzz8E0TSws\nLGB4eBinT5/G8ePHAQCzs7MAgH379uHw4cPo6enBd999h/379+OLL77AwYMH8emnn6Kzs7N8LCGE\nEFJt0OAlhBBCNGAYhu8xly9fxlNPPYWRkRHU1NRgfHwcANDf34/HH38ci4uL2LFjBzZs2IC1a9fi\n5MmTePrpp7Ft2zbcf//9mJ+fx7Fjx/DQQw9dcU0A2Lx5Mx577DE8/PDD2Llzp55KEkIIISmHIc2E\nEEKIBm699Vb8+OOPnse88sor6OzsxOjoKH744QdcunQJAHDnnXfi6NGj6Orqwp49e/D222+jubkZ\nIyMjuOuuu/D6669jcHAQpmmiubkZw8PD5c8vv/wCADh06BBefPFFTE1Noa+vD+fPn9deZ0IIISRt\n0OAlhBBCNHDPPffg0qVLeOONN8rfjY6OYmpqqvz/7OwsOjo6AABvvfUWSqUSAGBychKtra0YHBzE\n4OAgfvrpJ5w7dw6lUgk7d+7EwYMHMTw8jHw+jxtvvBEffPABgOVEWaOjowCW1/b29/fjhRdeQGtr\nK6anp+OqOiGEEJIaaPASQgghmvjwww/x+eefo6enB+vXr8fzzz+Pzs7Ocrjz/v37MTQ0hGKxiLGx\nMTQ1NQFYTnhVLBZx22234b333sOBAwdw6tQp3H333di4cSN2796Nl19+GQDwzjvv4M0330SxWMT6\n9evx0UcfAQCeffZZ9Pb2olAoYPPmzejt7U2mEQghhJAEMUzTNJMWghBCCCGEEEIIUQ1neAkhhBBC\nCCGEZBIavIQQQgghhBBCMgkNXkIIIYQQQgghmYQGLyGEEEIIIYSQTEKDlxBCCCGEEEJIJqHBSwgh\nhBBCCCEkk9DgJYQQQgghhBCSSWjwEkIIIYQQQgjJJP8Hgfqfgw/roP8AAAAASUVORK5CYII=\n", "text": [ "<matplotlib.figure.Figure at 0x106877590>" ] } ], "prompt_number": 4 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now let's take max across all windows and plot the top classes." ] }, { "cell_type": "code", "collapsed": false, "input": [ "max_s = feats_df.max(0)\n", "max_s.sort(ascending=False)\n", "print(max_s[:10])" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "name\n", "proboscis monkey 0.923392\n", "tiger cat 0.918685\n", "milk can 0.783663\n", "American black bear 0.637560\n", "broccoli 0.612832\n", "tiger 0.515798\n", "platypus 0.514660\n", "dhole 0.509583\n", "lion 0.496187\n", "dingo 0.482885\n", "dtype: float32\n" ] } ], "prompt_number": 5 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Okay, there are indeed cats in there (and some nonsense).\n", "Picking good localizations is work in progress; manually, we see that the third and thirteenth top detections correspond to the two cats." ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Find, print, and display max detection.\n", "window_order = pd.Series(feats_df.values.max(1)).order(ascending=False)\n", "\n", "i = window_order.index[3]\n", "j = window_order.index[13]\n", "\n", "# Show top predictions for top detection.\n", "f = pd.Series(df['feat'].iloc[i], index=labels_df['name'])\n", "print('Top detection:')\n", "print(f.order(ascending=False)[:5])\n", "print('')\n", "\n", "# Show top predictions for 10th top detection.\n", "f = pd.Series(df['feat'].iloc[j], index=labels_df['name'])\n", "print('10th detection:')\n", "print(f.order(ascending=False)[:5])\n", "\n", "# Show top detection in red, 10th top detection in blue.\n", "im = imread('_temp/cat.jpg')\n", "imshow(im)\n", "currentAxis = plt.gca()\n", "\n", "det = df.iloc[i]\n", "coords = (det['xmin'], det['ymin']), det['xmax'] - det['xmin'], det['ymax'] - det['ymin']\n", "currentAxis.add_patch(Rectangle(*coords, fill=False, edgecolor='r', linewidth=5))\n", "\n", "det = df.iloc[j]\n", "coords = (det['xmin'], det['ymin']), det['xmax'] - det['xmin'], det['ymax'] - det['ymin']\n", "currentAxis.add_patch(Rectangle(*coords, fill=False, edgecolor='b', linewidth=5))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Top detection:\n", "name\n", "tiger cat 0.882021\n", "tiger 0.075015\n", "tabby 0.024404\n", "lynx 0.012947\n", "Egyptian cat 0.004409\n", "dtype: float32\n", "\n", "10th detection:\n", "name\n", "tiger cat 0.681169\n", "Pembroke 0.063924\n", "dingo 0.050501\n", "golden retriever 0.027614\n", "tabby 0.021413\n", "dtype: float32\n" ] }, { "metadata": {}, "output_type": "pyout", "prompt_number": 6, "text": [ "<matplotlib.patches.Rectangle at 0x108516c90>" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAQEAAAEACAYAAACzsMNYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3VnodPl95/f32bfa1/++/5+ln02tXtQtuSV1S7Jka+RF\n40k8MTYhhswMA4EQBnITsC99EwIxJIGQEJiM7BnDeBl7ZEebW62W1N1Pdz/9bP9n+e9b7VWn6uxr\nLhoGgjVhLtpqgf6vu1MU51dQv9+nvud7focS8jzPuXDhws8t8eP+ABcuXPh4XYTAhQs/5y5C4MKF\nn3MXIXDhws+5ixC4cOHn3EUIXLjwc+7vJQS++c1vcuXKFba3t/mDP/iDv48hLly48BERPup9Amma\ncvnyZb71rW+xuLjICy+8wDe+8Q2uXr36UQ5z4cKFj8hHXgm89dZbbG1tsba2hqIo/OZv/iZ/9md/\n9lEPc+HChY/IRx4Cp6enLC8v/4fjpaUlTk9PP+phLly48BH5yENAEISP+pQXLlz4eyR/1CdcXFzk\n+Pj4PxwfHx+ztLT0/3mPVdbwptFHPfSFCxf+fxTrKtNB+Hde/8gbg0mScPnyZb797W+zsLDAiy++\n+Hcag4IgsP3VMqpS5OH3zhANGcmREHKZerNCWBkzjX0aCyqxlOJMYvSCQUkSMAyd8dCmWW0gIPLk\nTh/Rh/WbywRlF8+bknVlUh/iJESWJfIgo1iu4OQ+SDl5FJB5EsFUQFATzIrFyLZpNDVUVcfxZxSr\nEsWaTLVRZXJi8/QHHmalQBJlqKKMH4WIao5VLDA4HyEVcxRdIJNziotF8j2Y9FwMSaXaLjLyp4hl\ngXJVIjzP0U0LezwlDjOsggqCQeiH6EZOuWTgSzZCQUW3VGb5kHJtkRwXT5Z49sYLlJKE4913WN26\nTJZpJElCqWwi5ApWISYKcv7mX/2QL/zWV5GLZQbDEwQxZf+9c3b+/VNEXSDRU0q1CrWlBkEUUrYU\n1lpzvP/G+zhuTL1Rx53ZTGyHVrtJTEYepGShTKR4FBYFgnGOfZYgOAGtKxu44xlimlEuSfTOxoSJ\nSi4kvPham53zLpsbl0DUsKMOip6gizV2vr1LOtMInYhKXcGZhsi6yvqVNodHZ9QX2/zaf/l1ZlmI\nF0SE00ecHe+ytHCNIA7JspRiqUSS+wTTExZW1/nr77yJMsqwIolZpnDjlVtEuc3U6+OHKY/fnOCH\nEe3rJdafK/L4zhG6p/PyC9cIgpzd/UcsNDxeeumL/PG/foNGq8SDOwP0aomta2vsvLtL6EdkfYHm\nzRJlqcbgbII9tpFTheHpBEkAraijVg1qyxaxaZOKEbkgURBTxFwgVTV0Q8fMNNwwZ7VmMJj1Gcx8\nnGlK/62MV377BYb+Pr7vogs6C8urHB/P0IQJcp5Sr7X50Q8fo9UllldKtMp1BFmnVp5j59FThHDG\nXFvhz/+nY37Scv/IKwFZlvnDP/xDvvzlL5OmKb/7u7/7E+8M5KnMyB9x6aUaQSZRLjfpPZ2Q2g7z\nK0sUIocwccmCGakj4fshplVkZkc4/ZSka6PoEmvrTQ4e9DF0C8eOmO1LFJAQ9Zg8g8gTECMFX4pA\nixEyEScSiKYBVc0k8QWkYUpJUklnGVnZp10p4kU+plYlC2IMypQLGnbooebgBQGqqiMkMv44wpLL\n6BK060U6syGyaGB7Q3RVIokiJuMZaZZSLJWZDCakMwWUhHK9QhrmTM9nKJWANPGIEh134pIoKWVL\nYzSYUp4rELhTGq0mwZHN995/k1Jd4bWvXaFzekbRqlFtNvCTGMfpk44DVD2lUl+mP/bZfedHGKpL\nrVhlvllFfGGe+x+cIeQi432HaBDSfq5BELp88M4Oc1sbaIaG7QyIVZmaWaCxaHH3TpeCHnH15jrr\nN5/he2//mIkbopoWkqQQ9LskqEhCgmGWmXgJy5crJHLMuRNg7+d4+Dx9/JDF52ukus/kzEPIJQpV\nFceegWQR5in1oooQ+FgNEXU95v/4H/9XxmcxtetVVtYWaFQaTHsnmOU6nfEIq6LjugOKcwscd12e\nu/RZzm7vkKQ2c7VF7rz1NtZ8QLW+xGSc8Atf+xwVE77/o+9z/P4I3YfPfvYzeIQcPLlLXdYZdlLe\neTJmbmuJ/u6Y6Y6AuiTzwd4BetGkULDoRT1SV8TJfDwnQMg/DGRZFdEUgzTM8Y49xoc2m19sYpUl\nRkOPSFe4cmmVw909gklCsamxZDVx3R4j12Vta4uGVKS3MuRwb4ehPcEom8xvrTLxXdzomNQMuHX5\nBb75R++hJEV+57/+Dd7+4Ds8fXxOHMToBYdf+52vIycWZ+O7wPHfXbD8PVQC/ykEQWD1SxWarQrO\nbIY7SbD7AcWCQUxGuSWRenB+NEWWTdSCQJZ5SJlMmib4XoIhK4iijCabDE6nCHmGUjJIwxQhS1m+\n2ib0YmZDhygI0TQTx/cQNIFyS2U2cJFSCV03cSKX9nadMPMRhZQsiFAlk2kUoko6wsxn+DTBLJhE\nXoIAJFmKqEoIgkAcpmiqSJblNNt1PHGG0/UxKSCKApPpFEGTqC1WSLOQOFLJFZfWfIVcjfDtmNzT\nmQ6HLN5qUixodI4nZHmELIFRMRl4E+Y25xhOhoiZQnu+imOfowsq9UadK1evkAswHB0gqhlR4vHu\nn9kYSxqKnFJfKHJ2MkbOJH71l3+dP/3Gn+O7Eme7DpurK5hLBlOvhz/yqS/WiZIYz3GYRjbNlQov\nP/ca9vkZUeRTLhU4HpxyPO0wOg8p6zKSazHatxFyGcOQqdYMzIpGtzfCz2I2NhfRkyrTwRmrN1bo\nOuf0dwaMRiFVq4Fvu6RJxvxSGd+PEHMQJChvVqgulHnvx/dZqK9ydtpnYaOJXBX56q//EkcHT/nx\n99/gE8/d4GTwlJWN62hmi+nhkMPbd/FnNp5gkCgBpTmVyMuYnKYkscD1V65SrIh0Dp5g6jorm2t8\n89/d5tJWGU0MEDUDoVLj8PGA0QMb/zQlBartKuaajuDByZ1TREtESmTiIEYtGgh5ShbF5JmKIApI\nSo6oCCy9PIdc9hmPAwqFjPW1Ovu7x1TKNcIwRZMUBodDVjauYtRN1KhPmiUEqUSc5giKTiZmTKc2\nh48cotTny19+AX/mYGhV0OHO2zu0jTIP3z7AnQkkBZl8TgYtJPqW9xMrgY8tBBa/YJAkEWZBYnok\nE/QFVq+3kNoxUpJh923SRMJ1UlRDJHQylFxA1Q263SGmrKOIComfEbsCeZIgWDKSmiGJGYGUYGo6\nUpay8Yl13rl9n2JSQBBTMjlBVGVUQUEpyKSkzFyHxlwFNxmhqSqzXkQaC5SrBqoioiZFHn1wxmtf\nfIXX//qHiKJEHEZoioqQ5uQZxFnO9RtLxMqIrWev8O//6DaGAjEZpljEjWKENMW4pOHlHu1lk0JJ\nZjwI6byVsPYJE6EU4vcz3AlokghhjkiGUJEYCy6tuoYiykSRQKVQYOvSMrVGke75OYvLVWbTE5zY\nQ5brnDwMMVsmm0sb/OC7b3Lr2jbtSo2/+PPvMrds8t53ZgiJjBDLNC+XWL3W5sG9R+SBTOQ7VPQC\nxibELZFLtWfpT59QrzToHHVQpJxJbpO7KbVmkZ3XxxQGVQQrRTAF9KqCj0OpUGTQcVExEKKUtfk6\nqa7x8GCHulZn2J1gSCqVskGSZjgzh2q1yXgyxCrLbL1wiTwL6HsD7v9oQLPSYGGzwSjqsHlpi+l4\nn7znMToP+cSr64xzEJUi3Z0RTSmne9TBFlPUkoxcKJEgMnkcYQkWY6+Lcb3AL776PP2zU9RCBUXQ\nefNvv097HpTiPE/2j8hmFnknolItMh7ZCAURIZVIghQ5EBEUCKYhAhKSpiIjkEYZSZYwv1xk0Buz\nca3Fw86ApVtFijUfbwq3nrmFG055unvM6uoS7sRFdU0UqcQkjrmyLZOmE056NoqmoekVbHeMkAtY\nloGm6XhBgut7lMo1JE3l/OCUx292yQY5YqQh6C66ZjANI+Je8hNDQPq93/u93/tph8Dv//7vI9UK\nFLQCkSsiCjGCEhLHImcPB3Qfe9izjCCERquKIJpk8oz5NZ3WXJNg5uLNQoRIQMhz0jhFUEDWZCQp\nhQw0WSNKEiwzZfO5NkdHHdIoxtAEkjgjT3MiWyBKbPwog1DGswNacy06+wFiCgVLQi2piOWM2DSp\nb8k0mjWe3D6iYBRAEIlcH0kSiGPQ5ITTswm/9E9e4+7wLraXYKkG5YUqBSsg9ASEXMEJHAqJgCv4\nFM0KkilSX9PojaekJymhk6ArComXk8UZpAKB7XPzyjWO3/MZnM/QTYE4t5FVjdGgy42btzD0JoPz\nAbbTQ1FlFheuImQ6RUunavaoFQxCCYqrLXbuH2AGGoETgBRx9YUlFEukc9qlVamSRD6aoXG+5+Ad\npRirEsORzf7TAapcI+g7xKnCOAnIehmD/Rg/TUgjKDREJr5DsVJFrxYYnExYW62jqyUyMeDg6R6a\noOJ7CfPVFsP+BNcJyQOfrbUVkHLiLCEn5vHTQ77whc+QuhKGbxMHCXv7fcqNBhvXlrHKBWxnxHOv\nPMvAcylXLPI8RhEkSqUadpIwC31KFZOKWWY2i8nSHLtnI+saK2qdH3/3A649u4rPCMNQ2dha4r3H\n+0R5TOarZFGAqomUjALoArNZgOBLSIaAKEuIuUgQZgiShFUsMJtOiElpbQgsbFTZuFJhlvaoL6nc\nePZFxBQ0VAxdJBIG6JaEqZsQyOw9PMFaqFJoiAxHfWKhQ6rkKGpGNHUQ85w8k3j69JSnOwPWt5co\nSxbf+r9uM9v3OLw9RBV0sixmflNj49IGx50zbr58nbOHXX7Scv/IewL/qfREJZmFOGGIqeiookYw\n88ljCVnMEMYykidy0hvSuiwQznIenk8wDR9VNZFVgWAWYGg66DFiKmPkEnEQIEgioeciWCLtzRpy\nFmAmIus35ugORiQjgciN0RKR+UqTh4djhCBm/aqBmE4wtJx8ZjCdBdRkGS92EQsjZAGeDu/z8tfX\nqZWW+d6f/BhLU3BDmYIlYdUtPvfFRSbTAzRZ5RdeqXH/b3qMzmd4JwKKZFDQcwjLeMGY1RsNJsGE\nqR9TMmFjsUV3YiNICVk/JE5AUFTUXCDODHTRZHmlCkUTNwpZmr9CnoSUF+pMZi5hMGZ+boXR4wlS\nUuONt9/g1icrDG2VeitClHTIypTOC5y++xb1us5zL60xyaekqkcSRUw7GfMlnY2bzyEYCnLnkIIk\nIoxmGFpEab5O4odQynGmLjIKi+trZNMO0swjzgQURaSo6fhun0SfcumTLdx+AFFKTg6xgiprlEsF\nkiACAXRLYalZ5bR3hmIZ6FKKH2SsbC0yNBMq63XevZ9TXjD53Gs3eHiyy+s//h6f//zLbHxim7Fz\nTLFiUa5XMDKJVstEx+D23bvUyhW6uxPk9TKapdA/H1GsGBhSmYMHB4S5SDZL0JolHD/FH3lo0wpe\nJ2N2PqW2XiWrpJzuDCm0ihi6ilhMEaSchlqnfzxEkUFEIotTipUKcezz6V/6DFHeYxYmKJKOPU7p\nHJ+y92SfZ57ZpFCp8/CDXYqWjjMZoIgGqzfWmOYuxXKTUnMRMVlkqSQz6p6TGi7hQERQLcpimbmN\nAq43IZxFzLVbdI/H6JJOlgi0tkq4qstUG7L5mQUy0/6PrsWPrRLIIxHdlEmCjCQAKRPJExEikSzK\nEHKJKAlRdJUkzFhZaRPZIWrVQNEFNAMCL8TQFTIkZCsntzL8JOYf/dNXSbSYoTNDa+TEQZ8XX3sJ\no7bEw3uHOKMQWZGIkpwvfv06fpaALKBaEmarxHDikUrQXC0S5x6aZOCdpZipiKJbOJGLk4iUFItp\nP0TQY4IYkKHyjIFoycSJDSIMnRxByJhr1hmOpoRxBpoGToaUGWTTlGqziBVnnB172KchqqAQ+iZq\nJeaf/Ivf5L27u6xeW+LcHyBUBJYWltADmR/9+WMW5hrMtwvM/CmBPwFi8kxByhXW1xaIpgFpUOXk\nLOLO+x3Gwxnf+8sf06iXqM9VKM5bmPMmggWTiU2lpJErAuV2GVEVONg9RDJ9zu0ZS+0Shm6yOL/C\n6emMad+hbMicPJhiD31efO0Go8mQST8n9mMCPyVVYqyKwXgQMjybkE0zshiyRMDQReI4oly1aNZb\njNKI3/7nv01lUaN9pcjJ6YylZ9pkekzRrPLB93e49Ow6e4enBI7L1voildIiWeahGR65LHDWd0lD\nCUOQePNv3iCTJT7zy89zdniOohcY+iNKhQKkImImM544fOJLc3jLpwiCSJbK1MolgjOR3qNzBFmh\npFuMRx6ZL1BvNXCDGXpFR9cturs2cRih6yaSKhPHKWkaQC4SSz65njJNQ9Syhhf6uL0JrWqdsT3j\n6dEu5VqL0+MpC3Nt+r0uoRfjxw4ze4g3GqEwpd89I/Yd1KBK73RCe6kGBREvCfDDHsd7AaaeUVlU\nieQMJ3fZurLE0/d6RH5Oa76FWdY5eqv/EyuBjy0EMGKkTEE0FPIsIw5iNFknjBLIIVNyjKJGvWni\nTH1C3ycPMzw/IZyG6JKMIRWotwt0+mNyJOqLMrqZsvXMVXy9g1DJmCvXKDcXOehOePvNB+AklCoa\nSjnhs68ukjHhyqc+g1Uuc9w5ojubYBV0RDWm13HJ8pwsSRFygzQXyEgomiZ1tcGDd/ZplSwc3+HG\ns+uYjQrHO4fIxSn7xxHzlTbbly5z590TBKBSruJMXWLXR1QkjFzCbFZgBvYwx9kPUQUJQQBvHEMu\nsPWpZWqXDD545wnZLMCZ2OjmgKvrBToHI268XCeKZZbm2/SHp9hjn4X6GvfvPaVVmaO9scrV+c/z\n//zFX/KLX/4sf/V/voOhGlSrErPJkGHX594PDunsDCmbClZR4snjLo2WiKw4JHFAKgRcu7ROpVTl\nzA5QBIEbl1aZXyyjyDLHtyfkiYZ2KSZxDexDj2q7RuNSCT+JEFQJ8CmVFfJQIk8kwshHU3W0osF4\n4nJ40mEy9Hnv3kNuvHqNyMiZf26BzvkhpUqDdBJw+M4RTz/o4XbBFCPOdibs751TWjAYDs9wJiEz\nD6qVNvONy8hKhig5VFebHJ2dcGl5iYXVNi++fIN33r/Lq7/yPNef3+D+e2eIqswHP+qyvrmMoAmc\nnR8gZDlGucZkNCO2M2RE7KFNlieolkYSRQRhimHo6Cb43oe/BEZJAkXACQPGYsjAnyKJoCkKihhj\nmQXSVGI6zsl9CN0Ye+RR1gvoRsTScpP1tWX8cRdFVXBCn/WVWzx+coq10GR/0CUUQdAFbCfk0to8\nW1vr3N/bI5UV1q8tYpVM+oc2GgrVisn+7iHuUfKzFQJWoUyWZJi+QTwLEQUZL4jJyVAkBb2kk8YR\nk+kUs6QTOiFkKZKbIcc6qZswc2d89ms3wJpCnlOfr+IGEdvXLjPxJ7j9PpKiczA45dEP+2gRSMAz\n11fIjJye30NuNhnbCfcf3CPPIwoNDc2KMQsWllxhcuYgCipZmmMWc0ZTF91SKNVNsiBnNAh54R+s\nENccFrcaDLMY5IB5s0YyqvPG377LjRvLnNzx8GwPWVIo6CZxHFEqFjh53MGd+KR2TLO1gBtMCaKE\n3/hnv8gXvrRN/+wtaotNdu8NEX2Hz796jbTs0s8cRmLG9uUCVlzh8d1HuJFL93CC052QpRKd2ZDa\n6gr3n/4lz32xxA++O2B25qPLOfE0JZjk+LOYK9vLLH1ijpEXsX80oDnfxCgWcIIpZiWg1qohayb9\n4YTxaETf7SA3dXqzKaEisbK1xP7jIyQzRa4rLC8v4Hkj7MhBk/QPQzoXkAUBQ4VgCs9cvoRnx4z9\nLiAy35zjxvVFJCPm/v3H1OYtqo0ygjDGWirxZ//7G8ixSUmWsYoWm58wOT4M8L2Q1pUFBE2h3mgj\nmwrnnQGXL68wv1DjdHhK/3TC1nqdlc1tCmUZx+1z2p+wc/8UZV6mfKWGJYQsrC1hKCpeHFKaK6JZ\nFieHA3TdJAwzksDH0EwkRSZxI6JxiCzrGKpCGEX4iQ9iQrlYZmtpjlGvS3N1AcPS0UQNghwFk8Fk\ngKJo2P0pvfseqyttSlUFsyhTKlWI85AHjx5QUAR2bjvoQpXH758x64Aqldh/cEJsq9TbBfb3hkhK\nQq/fob68BIqAXJTw4oAg99FMsIoywVBkeub/bIVAuSQiknD1apmuOyGXcwRBJ0sS4iRBEkGUJEQh\nI/BiLLNIluVIoooXxCiqTp6LPPMLq7iah2SlVBp1jLLO+WCPsd1HTcrc+atzWnqLaJYieCLROGJ5\n7TLbt64yTX1CMcQwdDrHXRw/RVBDhGmR7vtT5kolpsMpmqahKgGZkHP91nX2nh5TrNZY2ihjySpu\nFtIXPcKZR5TZyIpIruqIlsHSjXk0rUyjUsYOOpTrIlkY44YRpYJBlGVIkoygqtiTEe25CvWSSF8Z\n4fhdKmsljjvnvPraazS3y0xdm5NOzNLyKtuLq/jTKZNuTmm+jpsnlGsNiqUag/EpMVOskk9lTsEf\npbz+jQFKkqNLGlGaEwkCL778Sd5/uoO1YpIq4McRZkEkUxMSOWUazggy2HvsMN0f4Q8iJFGg0+2R\nODJnj8ac752z9swi0WyAKMnYvTFRkiNlFvZkjIiCpOUsLjYhzlGaEvtHx3iBT+AkZJnMYGzT6Y4o\nzddoXSpxdP6Qx0+OICpjjaY8/Z5LsaJx+eU1zDnQSyqHj2zUTKa/08cNEipWgb2dR+iKSK0lUW4U\nePLokJO9LsVGSiSnvPnGHSpzZU7vT7mx2aR7dETNWkI2fOSsRpQOmLkuJw/7nN6Z0rKquMMJUiig\n5DlICcUKoGYg6mSpx8yPKCtF5l5o85mv3MSe2Vy6YhIZOcdnE/LUp7c/wp35hImPFyeUrTKpHSIr\nOfNVjd23e6xebiDLElHqIAgapUyhrTWIbYnTpxNsJ2Rgj9AqCrX5MrsHx+gKiFqOrKp85bOf5emT\n93C8CVkYU6uYzC3NoyoGe2+fkrj5z1Zj8JOvFGiuzFGoFdj9zpQ4zlEVk9O3bGRBwndS1EKA0TBo\nl0rMjn2SIKNarfDczWWMtsHxoM95v4cf5lSacwz7PdLQpVZuoRY/vG5SCxJ797sYBYlqrYTYLrCz\ndxt94RaNQo3D4R77O/fweykbm20CzYNYRZUEfu03f5nb995jcLLL7iOBpfUahmpx/dqzPDi7i1nc\nRmoV6fpd8qlDbBhsL6yze7xHbc0iTQP6gwRn2uHF66+QmPOUzRwhzrj3XoAWfthI0osGkRDQnKsR\n5QELy3Msbl+i2jKYBB1KJBwe3GV145N8cPsJZ4cDLCxatZAoSJEBx0/IMwNrvspCcwW1mTJ1jjF1\nE6cv8ua/6yHlGUIqk+ciceLTbFWhmfHC529y5B4SJRFGUaG5WGPqTXEdl6JVhihjbV7ieE+jJGm0\nF9vYkx6hL1EWLdKCSVExGQoa+SCmVmoQZzEj10G1KqC5XH92gzS2aZQLTEWd2lyd8a7N7t0xy6tl\nht0ha9tLqGrO+QfHLG23SXKZw++NWP3cCrUKjG0PbUWl2Zjj4OAcSRVQ4wQvTLhuzDPc6fIPv/qf\nk+owiU/YP9jjq1/9Oj94/QesrGxSrtfod12iMOLKDY0gtbG7Ome9D/jUa1vY0wPCRKAxv4i11CLv\nnPDq19b51p/MGAURiDrXP1Ujbfd5/y8TrLqAOCejH2jU1wvsvnlOY9vimc9t8sYPvs/W0gY3WmWE\nXKSwpTJNR4zDmNksYubFjL2Ita0Ko+mE7UsN3ERHyBxsp0+jusro3RE5ASdnCXlVYa6kYWg5Eztl\nuG+jV1RaLchygcVGFVESMIwyUpZx65mbfPdP32HKkOk4Igr+42vxYwuBtJkxSu/jKp8hsHKuL22z\nc+cRoiRQb2iIusDyM8u0VirsPu0yOEsJZYXOYIIgxHz6xVfgks5Zb5eJ02cymzHozZibK+GLLmW9\nQOiJSKmKhkE8DjgdT6gsy5hzYM8OSeOQRklGW1YRKjWOn/ZZv9LEmG/SeTzBSRwky2f7F9Y49x7T\n3Z2w89abSLFE+1qN8+MT+tOIPPRQDYFAAD/I8acp3YMOYztmNk65+dwSB8f3mU6G6GIJJ5kxHLmU\na1Xm1wqcd4foWhG9IRAFInu7p/z4zi7NtRZTb0K9pNNoFQnlB2zeuEpprkd7boHpuIsQq+QCREHE\n+uoib99/nygKiVKHMFcRACUO+JVff4bu04jv/OsPIBOQNJGgYjASx3hxjyzxKBg6w5nP8GxMEnxY\nMRhSkdODIUJVQ9AknCAgfzIgSGJMSWbWdVBTgePBmMXVFg5TQjeh0+thFTQEKUG3VCwEBpHHyB8i\nqQX0XKWxoaLULfzUJZ5kdEcDsjykNbeALlhc/dxzPPM5DzFO+Eqjxrf+7Y84e9Th4NEUIxFZqDYQ\nizCwJ3z6K19kljj87VtvceX6TXJZx3VjvnP0QxrNBqmk8q/+lz+hsi0gaAmlhoYV1xhunLHRNFHS\nMyrShNy0WGnLnPp98qJLKozY+JTP0TegWhFYW2mQ1XTcm30WLs2RCSLvx094/qvL2P6I3qN9StdU\nNlfqWGKEM42ZX9liMpshSBq9fo+V+U1mgy43X2whixJn/gzMjP7BETev3CCZhNz/To9WqcZZOGb9\n2TIjPyKJfKZjGSHL8cceqDmf/+V/TNC7jz3qsX/+PkZd4sbmFnv3jlEVAUM28cYf9pp80p+4Fj+2\ny4GtV6+hzFz2Tjqsr18hjGyWbixgaTI3X1pn/7TH9vNLDFOXR+92ECYKSi6SCgJSIvDBW485fnDC\npO9RsHImxwFqLnLt+jZngwHkGSXZJEtF9Ao4kcfmMy1yIyJXI6yihZ/52EHMyE0QUoWSIrC5vcB0\n1qW8LmHoGl7isnv/mMGJRGOzThKFaLmC6zhAhKGahP2Y1dUlDEPkdOhBDNWKQeZn5DGMewNmwRR3\nmNM98hj0I0RXQWsWCcsul59fpzvp0F4qkWYZvh1j+Sm4KbkLQVfh/LRHxdBYWJ/Dnjr0TrvEYczK\n4jrDc5vIkz14AAAgAElEQVStK2vsHj9lY2sFIXNxxwNWFhbYe9JlHOdU59ZZurrENPDoDWw0Cfz+\nBKvgMbNnmKaEKAqEbkbFKGLvhZQkkbygYugWmafhTwMkTUQKJDoHNvEkBC+hVG6h5DmRJGD3Apzx\njLk5i9JcHeSM+mKBSJax7QnLSxv4swBRETAsDUHNiLOYV154geOnp4yHAYsL8zzZOeHHtz/gyb1T\nDg8GbN6cY/nKEmCzurVFqTyH1QChkJEoLtWlBb79ne9x88oNFEUhjBPa7UXMosLB2RM6gx71doli\ntcDR4BRZKlOy2lSbcyzML5AEM1x/Sn1xES/LWd++ydb1KqfHd5iMS/yz3/8koeMiKR6RECBmMWGe\nML+yzOZWi4lzgDD2WFtcZxwfYcgqh+8PqFXr2EN4/TvvsbHapqYVcGcOS6tVyi2TR4dHGEUTSYC9\nc5tf+YcvUjA8JCsjq6V8/ldvMhr3ifnwmZVCJlM0mmiyRJoGOHGHUrsEYUR3eMr88hJFs877d+6g\niSa9A5tZz4NQIk3Tn62ewNq1Gpgt/Cwnz0IO9w5I45zlrQWGs3Nmrk+hWsA7Txl9YCMiEDghSp7h\nBBLVWhHPcVEdgSzKseoqipSSxR5ZIuLaAbFvs3VtjbUr67S3W0Ryn0JFQpRlHDfArFYZj20sRaak\nycjlGUEyxfNz6uV5irrKn/7L9wnHAu1KkWpdpT8ZceMXPkmxpDA8GzIbhnjTjJkb40wkZjMfb+Az\nPfGI+yJW0aC9UaHcXiScJGR+RmNNxg1jFE2j1KzT6Y/Y3Gix2++Q2CBNBIx6k/5ggmoomAspr/6D\nT2EZRXr9LpHv8vTBCZ98/hN0uuc43hg3DFlaXmE8m2AaAs6wi+rPaPpVTneH3L29y7gTIZoyekll\n/soil55fR6vrCIZEo1VCM3OKpSJTL6F3YhOGKVZDxXUj6vN1rCWT3tmUdJKgZTKCIDG/OcfEnmDW\nitQbDXwnYhr4fPm/+BI7ox3qy0skYow9DEmzHGc2pt/3cP2AqeOCImKYBv3xAK1dACFF8lNce0ZB\nK9E/H/Lf/Iv/jiiOOTk/otGeZzA64/7+W2g1jXKzwuUr29z+4T3sgzHOeIBZkRD0mL69z9A5x5+G\naJjMghGyYmAYVRTKGFaZ0/4Bh8e7aKZFs9DG7844Oc34q2++xeVPzTE5tVnYrvHue32evfUyWQI+\nMaWqxMz1KJdLOIwZhEfkqsS7d4Ysba6hJAma67P/yOXosUPs+ZSshChw2NubYTYH7OwMiW0VAo3O\n2ZSNW4tIeLjyQ/RqgtGoU6hrpDOf46dDpmGAn/jUyga77434p//Dr+AKMQ93j1lYWSHycupKmwf3\nDzh5N6P3wCX2U9IwxdBMojD62QqBzedraIZOf/wUz4b55iZ7P7LZubuLQEae5xiWSMMsMjlOWL28\nyIu/8Swnj89JZzHrc/O49gQElSyRGe4mpK7A8tU1ZCVmoVwhDQWK7Qo9O+De67s0GwW0sopAhmYU\niOKAOPSplnWqpRIfvDtlZX4RrRiztrjOn/zR65QMmcxRcQcOk6FLuVqkPz6lMW8hGT7t+TqVukl1\n3iRXYpRcII0iLFNFLwrMRhlxqLF+7SqqJOIHPl4WUl228A2XIAsxLYWT0ZAiKq2KRL0JJyc+qiGS\nBDkBOW4UMY4OWG3UuP/OISvzRRRNIYhdPM+h0SjQ6Z6TCT5Z2mGxrTNJQK6UeXDU57NfeoG3v/mQ\n7vs9DEUCd0r/7Jx6q0YuRHheSBxHuFmEoheZPLJR0QhTl0SJybUQkhzBUHEGUwxVRimoZCTkQoyT\neJx0zhFNgXLbYmGzzGzax3Uc/JnHqGuThhm6IRH5MpqiEocZAiKmVObgaY/MTlHtFCXRib2MlY02\n+qLMX/zLv8QqCmglAS+ZoVkSmZRgWBopHpNxBymEW2sbDM5OaTV0bHfAMOxjagUWpHWe7hyjlwUk\nJKaDKcdHx3TOuniujaZqhJ5L6AcQ+rQbyzy+c07BClmr1fFmPpKoIygpU/eUnjdgEhRZu3KZIIfb\nbz+mZlq0y5tEEx1ZKvL4/h5qWqLb9ZG0GKVYwKpXOD6bsnHLIhMlPD/HtCSWFlp40YyTh2M+desS\nXuSQRBZa1UJXLU7fGxKMI/Smhlo1iYWIZ15uUi/MuP/GfW5evszhkz10XQNdY3N1k9t/fRfFFz7c\nPatr5HJK7P/kW4Qf27MDL//WKnpVJwki0lSl1pjju//b69x6aY3Vm23u7z3FFxyuzF+hd+YiGlCa\nq9Kw5vjr//tvWdRMBv0hvpmycrnFdBSQyRFaXaGxrtCeL5GHMvceHKApBcbdgHJDYG5lCVII/YTp\ndMj8XJPusEuz0aL3eMB4OGV+u4BlNQhzmZMnPYJRjm+7VBdMAikmklLKZYlGvYCaGgwGYwzLYDCz\nUW2ROM9BFFGNCvaRhzv0IIX2dolc9jk/D9BNkFWRhc0KhXKdd97cYW2ziFkJEWWDwz8FqZwTOj6F\nikV5Xkafj7FEg3JBpVIqsD8eUKu3eXjnASurazTn2szcEbVazsnxCbK8yvtvPeLFT93i9T+9g2xL\nfOblFzg9PWR1tcZ7O7tceuUymZ5zOjhAyBOK1TKqo3Pn2ydsfKpJFNqMnYB6fYvu+/8z0/NPk2fa\nT3vKXPhICD9bDxBd+0dLeFGPpdYqllHmtLvP9lKVqKQi5SFJoHKwf8RCucbi3BIDx2EaJ1g1C78b\nc+fbO/zSV7YJihmqnjJ1p8xCkUev9/nCf7bIyHcYdh3mmusgaByfdsjljCiJyDMZVS1y9PiIWkFG\nFFOKjTIV3SK0A2RF4WAQkUYZvXs2z7/2DKncJRbgyeMejXmTnJyCpNM9nVHQC4xGPvMLEp0zh43N\nBRQVek7A+eMJaldHUiSCOGbteoPRaMjoPEQTNJRShBfofOVXP8Hds/eJCUgFiaXxCnv7Z+SBTJb6\nxEGGXFf52n/1EkEyIhNDRk5Eo17n0f2nJH7Oxvo6s8ghy0IKBRNBFhgd+rzzb09Zqre48cIGJ/td\nTg9PkVTQSzLjOKC8ZiKaEbbtIwgw28soyxZzLzXIZgKj0wGDJ39M6v7yT3uqXPhI/YyFwM3f2iSI\nRjSrJqomoukqml7jgzvv8+lPPctkNCQMp5x2JnzmpVcY2A6PHj/BqCWEYYiqlJD8nO1PrnJy/B6m\nVcMOE6zYQMhy3NhHU2vcvXdArVFFEWO8ICLLBKazEFESaFTKyEkKkkgk+/izjLmGwdLSGvYs5d53\n9yAQSQ2FhfUCku7jhT6O54MAVatCq9Xi9W8/RpMNLCun0DQIs4TAD8iBatHA6Tr45wKXrl2hOz5E\nTsAeBCS+gG4YJJnEdDihuqZjFiGNVeyDgELJQpNUeoMJRc1i8XKDKy81SdWIOB8xnAxQBRM501AF\ng+5kiBt6bGyuM3UdxFRCFcHwCwToRGnK9/74bQRJYG61StHUsKMRYR5gVUxqtTZJFHJ8v0/VKjHF\nRopMlIJM5+4p5PpPe6pc+Ej9jIXA1//7z/L07AjPP0VRBdqNVfpOwDMLc3TOTylVTeI0IUFib/eQ\n5eU1zs/6IH+473w4nrK51SYWbdoFA2fiMwkT5lp18jwhzWWiAGI/I4k8Bv0AzciRBA2QiaMIXZPR\nLQVkgZE9ZnWxBlnA4Qk4JxGyneNHkCcCZlUjrgW0W0WcqUcwjTHKKpVmmTDMSL0Ae+RTatSZOTZ5\nouAeR9QaEmIzBFfEKLRoLNY4P94hcTRmkxQSE286RcxSippJlrgkqUQmyqiSDITEqYDoKWRSxD/+\nb5+jM4gZ2h3qSzqzacDxXoflxRUEKSMRRCRBwrUdEGBiu2xvLZNrEgcHfcZ7DtVSkShJCAYexUqJ\n2WiKY3toskUSxWiGguNGtOea9IddgjQj7CQ/7Wly4SP3k0PgY/sHop3dB6RZQrM+R6nUojsYEicj\n9k7uUWqbPD0bcPvBOYfDCYWFCqfTPkargFYSUK2EYkXCMFR0quy8O0ZIVVpmBbtjQyJBkqHKGpIi\nUm02EJUM15GJQpHEDgi7CVKkYtshk0mG74AzTXE8kfnlJo1mGXskoko6iiQjRiIr5VW2VlaZ9VPi\nQMZzBYbnGcnMxD83mJ7mROOQ2MuQ4hyroGAPob+bEkY509GESddlbfsKeUUiqWVk1pSN63M01ouk\nUk4ia2iajqpCLoUoBRXF1EgqLr/6zz9JZ9bh8f4OQZJzdDQmQ2Vta4XO+AgvDyi26wR5hhNmHJwO\nKDdrHE9mnHcn1Oplnnl+ndPeiJc+fQvEnN7xEH8Ssb64Rs2sUDGKhG5CsWDR6w6JQqg1Sh/XNLnw\nU/CxbRbaml8j12MG43Oa7TlOz/osLVSZzSYcHHZpWWuUVIk7dx9QXM4paEUe3z5HbcgoRsoz1+YQ\nMvB9j9ZykUBUKLfraPUqYRCiKSpJEJBkLocdh0j8cHulKqm4kYAkyRBLiJLO2e6QklFmdzcn9mII\nT6guqFx/cY4nD7rISLjTgJ3bB1jGNkQyRl0FQyZ1U47vHSN6KpapEw1SyosVnLFHJkZUl0wkQUdV\nBPSSiBeNcaIIqxqhlS1mJwH92YCKrqNf15nue8SDHFmVQFUwZZnCkk6iWUxjmUf3bebqc1SbJcaT\nHtPulFJNpVQVkdWUwfAQBImVrQrt9RJ2xyWTVPI8x5+kPHz6hFJJwfbOMGoJ5VadK1tX+It/811u\n3bjMk/vnNGt1HC+EXEHRcm6+2OL83t/9Dhe+ZFItlwgDmE0HqKqCkypIXk5kR1TnyvQfDzHrRdJA\nwA8iDE1HFSSmsxnLt4oIUs75XYdwlmMqIMk6XhhgWRZ5qjBz+nztd17m8fApuZThjR0qept7f3uC\nZEo0tgpsv7CCOxsx6A4oWgXyCFrlBocnxzTX1/Fjh4g+DhHkIlealzBEg8PBfapFA0kvgVxkPAzo\nd2yW5ov/L3Nv9qvrfd33fZ55fudh73fPZ5/5kBQpkiIpUpSoaLCtTE4cKKmv4hYGio5A0YsiveuF\ngaJBAaMXRZMaRYOgiWq3cWPFji1ZEymJM8+8z9n77Hl85/d95rkXJwKKiqjaoqi0/oDn5vv7rmf9\n1m+t75ezw11G5yWCCdeeqSIICoqsQpEThDG2YuK5CSIyE9djcuySUlJvmQhaRJYbLNarZLJAc6UK\naUn/5IKlziq20+H4YpvB+YDeSgNB1Lnz9j4btU3ufLxF46rK2rUNBk9GFBncvHWJZs/hZPKQ8aSP\nLMlkQsnq0hWqSpMP331AMknR6ilyvSQONE7vzJASBaSEyfb/tajvL60S+OF7H5KVKjefWSOMXUSx\nJI5TWu0utdoKulqn3lzlxq3rKEGNs4dTDFOht9SkVrE53BvzwcdHbFy+SqPXodHUmcz38IM5/jxm\ncjpjNItx5xmdukVV08AvONoaIxQS43iMp4RohoTTqBGGM3QnwnJg/WoPu1HFz4bYtk5ZCoipgpQI\nPH7/CCnXMBwTxAK14bC4vIIiisRJRjyLCM5DHMEidWF0EnL+ZMbe7RHBXMWoGZyOL5AVgbpmk6XQ\nW2kxmvhcnI3JjIKikvBv/Qe/wfprl7gYTjk5Dzjbc/nRH94muRB4/OEh82MXZh7Z2MfRbZrNNggx\nvhdzcHjO7t4hW/dOSYOUIvZI/ZCVhS5Vo8aV5y5xMT/k1qsrbL6yytsP3+bv/YdfZMI+N76wROe5\nOhf+HD8OufaZNqXy6f8KMdUYHwbMTzykSKFt91BjiYV2lUoNEj9CSmWiWYiU5jiqSOzOEeWMjes9\nojRF1xPSaUkWZTQqNYgSTMNiPvEYDfvYdR1MkVJKyYIER9V48O4puV9gFRKjRy7f+0e38Y4K6maX\n0dinu9bDbFlcefYa82CIOz6mTDOWnSXa5iKP94+YljnVhkEojilFmXCe4B3OcPcv8HaGOHqNX/+t\nz3H5yioH23OiiUDkZ6SJRLO2TP90ztHBkN29C3K5oLXYJkpykjKBTMG/SDi8GJJFEt/7X+6SxCov\nff5N/GyKpEVUKhW8IGNwIaBLdcJ+SsuxackG+YnIve/tk/RD4mnET378CX/2L98hFeu89NpbfPWr\nfwtJcFANCzcdsrKqcf1zHV74/DN89bWvcbo7RDUEaqs2Ra34hVz8pfUEXvndLuOJh2KUZIlAq92h\nfzZiPgwIBgW1bo3hhYsuSeRTgVRIWbzVYO1SjTt751hyChSMJjFLmzpFnLKwWGU2e7qQsrZyhe//\n8XtYnoZTs3jpzUs8ONpify/m+tVNknSAphlkqsTFYUhwnGI6MqadIWoiqQ+OKrN9d4BYaliKgxeO\nQBJRNR1n06Rsykx3xqi+RjxLKNIUUSiQHZMiK6jVDWJ/TuyLFKVAUYvp3qowTnwoc5bbVXJkpltj\nOj2beZry6uvPcPf2Fp+5eY23d3cZ/zAgmSWIiowol1SbMvWuyunJlL/zjdd5fLSDWEvxcg9NVxn0\nMwxVpVKrU2+sEIciffcEsSjY+eEx/lHGb/57b7B9+lMiZF648SrDyZwsGXL6pI/hVBlOXfrbAV9+\n803UasnB+T6ffGv/53BsXXWQKmA64A5k/PkUu9Yg9hNUWcZNYgxRJQ8jFFvA8xMWVmuMJlMUUwex\npCrWmZ9MiScxC0sO4SzDl0te+NwG60s3+J/+6b/g5ldaDIIJSqoxP4hQBRXDNtFMkf5ggj9Oaa10\nqDRskvoMu6bSbTa4d/sBtm2BFNNodlhsrTKbhWztbJEVJa1FEcOGmrGBKpu886f3cMSUSl2mt7nA\nw51Tep02ZZnjugFxmbGwskxeCCiCiGFYhPOA935yH6UUWb7cYjyds9yrEYQRkiFSpBr97Sm5koAg\n0lmUUWsyS50OH77zhMXlNQLfJzmJadkN5u6U6TRCFEuWllY49U+J4wQj1HDFiBtf6aEJCXMvwWlo\nNCo2J7sjFEvl+q3r3H9vm73tPkkOX/ria9z55A6nP5j+jHm/Wo3B6usatZoFekCeCYiCgOtmZIHA\nc1euoNkW4Uxg+4MHiKVM6EaQAnZB7bWM7kIHIzY4GB6SpzmaKVEmCrZRYTSc0Vuqc3h/Tn4gEgQh\nSZ7yyt+8weHRhOkjj3AeoAoy1oJCqYikeUyZC6AKdNcsZtMIKY8htBgf+2ilQ1LOUFQT8gKrZeMK\nASYqURiQegUyEmJWkik5RQGbz3dxB1PceYrdUhEd0NrgBhn+NEFKFdY66xD6WJZCHAoM0j7PvdFG\nEFM+uj1AeFInmIxQLRPJKFG0iNe//jxJ5rHc2ODB9m2i0ifCxbQqaMICQZDhx1PywiTODObRGRXb\nhKMcAgGlluI0YoxaG810iPKUVrNJOI94/8e3KXKFlStdDk7GvPXmW2hqzj/5Bz9vJbd6vUppZxgt\nkfkko2JVCIoEUZDRBJ3ZOEQSMxS1YHWjzt1PBpg1DUUpESSD0A2IBhFSJFDVHXRFJCwLnv+NWzz8\n8DHH2y5CkiFXCtpXavhejBAWlIi0my0Gwz7Vjo1maTTaSwz9C9ASosKnYivMpx5ZAFZVRsYmy3Im\n0xm2aSLIIr2VOlE0Js2eVnZnR2PyswCtorCyssDpZESayyDERLEPCIRxQZhmrC61nkrPz2PGwwRv\nHJEqBc0VA9uUiIISJJnQlahi4l8EaJJC87kEdBBLndSLGXsui90O7k7O7ofnXH/lCvWFFoOzc877\nFyxedVB0C2Eu8epXn+Nssk06HeDHPoJssLJ8GduqcHhyyCyI2Ll3zKWNDTKr5JWXXqK/d8E/+8//\n9c+Y96uVBFZ/s8pG7zrnwyOyJAVJpBTAC31WlpbYf9gnOIkovARDNIj8GCVVCEjY/EqTw90BhDL1\nF3NaFQdFkDh84uGfZDTqGs1ljfFJyng7pixkhLKgKApKAYpEQLd10jTEqqmoUkEhidQX2xyeHKMg\nsXl9ncOLA0QhJ71QyWclaZwgShKSJFIKEplQIBk5olMi5zJFAqat0VmtEqQuelXhbGeMZsjkWYJZ\n0TBqFVLV5+xBAMOCUjaoLapkXk6zYfPiVzbZmz9hjsvFD0OyoYk/8Vi/tMTJYEBvTaZ7q0pzscts\nOCIjxg1cKBMa9R5ZouIFCX7ikeYq7cYmuwdbLC20sNCI0hhFLLCqJcfn5yysLOONfOqtZU4PH6OI\nOmkWUWnWGLtzKBWWFpt85x/e/jkcpabEcy+vsHazydnwmPPhhNlEwFRNgnGEO0ip9mQKOWF9xUY3\nmtx8/hJ/+r++izdJkEUZyoKmZeMOxjQ7dS6/dpn7HzzmYjtELgyELCIrc7QlgUIpEZScmlmlnCuc\nj6Y4SwZmV8ap1tGkpzMfYenjhxPKsKBdbxN6BbJqgJgzc2eUZUmlUSMXUyQFBhd9VFVHRYdBRlqI\nzKOEJI0JoxTTVqnXNeIyJhMySqlEEQXa1Qp1p8oHbx/Q6dkEcgliRunmSAlUez1E0SA5ztl77wn2\nksNXfvdl7u58yOmDAEFNaPdsGo0GxqzCzjsXSG0FZVOkiD0qFZ0g8MmEAlOtEI8KCjPk+etd0jLB\nclqM+zPC0KXWqGPX2jSdRS7OLnhyckJlUWJ9aYn/8d/9zs+Y9/+P78D/3ajoIo/u3CUpCxRHpLPQ\nQtIs4rOYBw93EXwJWZBRlRqJH0IpIGigCTlHH0xQBYVX31xhVss4PwmZ7k4R0BDLnCjMKMIaVcfh\nvDxCLyGJQKSEUkbVJQrH59bNDW6/fYAuKmSlT71lsrTS4uLxhJ2PDsCG5rLOxVGAlDtkWYapqiR5\nhCgkIEvESUJFsJA1gdxIECsCQTnDz33mEw3XT2itqEyONS6eBORximGX1FoObivCG2fMZyGmrXBw\nUjL7iydMZn1yNeOyukBrc4WPPv4Yp1Yj3D/FqS8w6nvMwm2qDRV3mmFJdabBhHq3SkJO1a5yd3dI\noUJeuihiSRD5NBYreMMLzHYVahLn+wnWaM40Udn76CGqUGDbBXPf4+RizKuvPIM/S0ky/1Mx1Gol\nlY7NwmqVtesO/80//AF1WyObZ1iGjnJFotVr0+gqRJ5Pq9Hj5OiYuqngneWsXW3g5lPiyEVbFGhd\nrvLDn9xD8RJsw8Zuq5zue0RRTu9yh9lkjCY0mJymzM+GLF1tI4oSL9x8gZnnEsRjVAWCaURZFliO\nw95pHydyKLMAoS5SCiJFlnB+ekEoZqiKQs2ps9hu0bYWub3zMZ4fEJUJnWt1giJGBKazCLEEqwW6\nZjIZx/hlgkLOq29c47i/R5zJ3Lx8i7tv30OIVAZPLgj6AkIMZkUjmeZ88MP3kRse159fphRkHrxz\niLCeUWgeURYQzHKaukUmz8nzGb12l6a+xIcf30UVZZotC4UqH7+zg1NTufbqJaTwgvHZBYZS4e7+\nBzScDrcu91CrJoOL/i/k4i+tMTgaeXhhiKrldC2Bhlyy4qis1GrcWl3mjVc3wUgp9Zg0TxEKyPMS\nEQMhExBkieNhSsW6wvHtIcG0IPR8yiTDElQO7vQ52DpFMzQyChSlQJBFUBJyYpSKybicsPpZB60J\nQqKzc3vK0W0XRbFY6nbxzhLO7hQoOWRJgGkpKIqKVCqopolVMei0O/huhF+EVNo2vpKyP5uBJVNk\nGY1KlekgIprmtGo9bM3EPcuYPHEpRgUaGZpccmX1MmoeEB2NkGYgHWqcjWfcO7jDb/y9L9JeK/na\nX7uKaRmc7wTU5QoOJsE4RamIOFWd46NDoijg0e4TMqUkmvl0rTrDvTn7H5/gzQLUWoP5xOfB2/vc\nWm5hKQ5tRSOceghJijdyWV5YpOLoHO4POD0dMDp3PxXDv/3bX2cczpgEU7bvH/HrX36JeA6OXiEU\nfFqLBlIxxypV5KLEdUd879tPOLrrYmVVDj/us/9+QN1sU19p8WDnFKKYsoBCK7E3BTo367z6d14g\ndEvcnRL/NKCmGBiqwcX+GH8Q8b/94z/j+3/0NpWqTCHPqToqSZQxGvnMLzJm4zmSIhOGPmWWoqsa\nuqRi+wrZWYx/kfBwa5fv/PAvQc3RVJ12o4ViW7QbTcSxTCWsEs4SeotL9JpthFxEk566YZ0P+xTo\nZIHI/v0Lbjx/C0+NeeErmxh1EQcVu2LSWbVZvtKg7jiYeomlWkhFhqxNqdV1pqHPxnKX+ftz/I91\nvMc650cRYz/k1q0raJWSl179DCfhiO7VCkfnu2w/ekxdAEMRObg4BV3hX/6rn7J7PMCdZ4zHo1/I\nxV9aEgiGJe1KAx0VVXXYujPi7vuPGZxfUMg5Y3dCWY+RHAFZENENDUkWEQQB07BQFY2DxwPe/+MP\nKIMCXVKoKDqGrOEGEboloWoyhq4gSyLkCpIsois6rY0GuRLgVB20dkHjlsYrv73Am3/zCmWcMHfn\nnJz2UWUVtZSJA5lSFImThDiMyMiRTR2z4hAmKbqhUrMckrDEwaYl1GixRHAmYrcNoiGUXok/9UES\nMEwTRTUpCmg4DsGZyu2fbLHUXiQvJWTRRtIURMHEzxNm8THXn1tFNCOqNbh1q0eUJJxcjHDDiEk/\nY+v2nK29iFhR+OKrryEkEisLXQxdptoxEXWBoojQioz5yZiKIDEdzjgdnRP6Hp2FKqpe0uxWmXpj\nAk/g7HjGYncNSbA/FcNc01naXOLH7z7B83JOD56Q+Rnn/SHXb65hCAk7H0345E+PSSYpWTjh7/79\nb5K5IqokoCsVzMJhb+scIRMI/AwlUKgaTcxOipu6UBkxmm0x3h7SalfRaxntZ1ScZYnmep3CyqhV\nHb729VeZTuaUqUgYQk21qZoVnrl1hd6VLpkaYugmpqWRFzGRF5G4JVKiMT9xMQoTu6GTVwWSMmcy\nmSNFIXWnThrlzCdTNGTKUOSDH++RjUUKX0Mxdc6mY5I8pAxims2Cg6PHtJZ1Hr1/QDTPyc0CQZYI\nZiM+/BcHLPc6TIZ9/OCEa883qHdqjL0ZV7/YIfQHFH1w0hrSiYaVVMmLgFwuWN1c5cfvfszZ2YDT\n/gmfgQIAACAASURBVDlCoTCJ4C+OH+HJIYYhsv3wkG/89bfY++QCuZRR1V9c7P/SrgOO0MA7nwEl\nqijjdNq4wxFJnJKpfbr1BYqpTBgVoCgUQJ7n5EVBPI6RFAlJlIgnAaZmQFYiagqqJhKLCRkpoqAQ\nzHzEUkZUJURDIg8KWo02zarF6PCcWqVC6BZsnc8Y7R+iSSaFkHLpyipPdg4QyxTbVPFnIVJZkssZ\nkizgzmYEkQZlSUlJVGaEUYroSxRFiqskxEWMutojcvtokgJJjlfkRGGAIzsoqYKa6ohpjqrqTLwC\nWTJwPY/qgg2iCrHM/funCGrJ9asbvPveFoEYIksloVdSr9XpP4qJzhQ2bizxZHfM8cG7mLbCxWSE\npuncfO4yZ0djjvcveOWldZxbFVZWV3n7/UfEqULsu5QF5DnMz6fYhk0wjuitdXm8/QS5In0qhnsH\ndzk6Pscw4e7Hh/z7v/N3GR39GZMgIklFyjRndcVEjHXKSGTvcci7f/I/owoCmmmQzCMCP+XZz9UZ\nn/lIoYo3zyhjF/+0YNWo0O41mEynvPxmk/2BT2e5wtQdYa4pCApwoaMK8OF3H7H82RZ+OSIdg9Gs\nICgaaZohaiW6IDGdzZENi6SICKIMVdcxTAk5lRgMZzSXZAQth1rOC9dWidIQMQsYRz6LlyxkBMb9\nABkHQ1LxpnNiUopcwh0LaLJCmPjoQhVbVzhLp9gLFmoqUoxCuo0FitMBf/nfnRDmKU6zoLosoOAz\nGcRPV7NXF3CnE2RCXny9zaOTYx7dy9i4WiVJRFRdZdLPiLySfBBz4zmD1F6lTHy8uU8Rxzz+6MdI\nocT2gx3CcvwLufhLqwTEuGR1rYWpWUwOAqL+HE22MESd9c4m09M52TSncHMyAZIipShyJEFALKGM\nCyhAkIGyRJN00jTHjSNKSkzdRhREKjUDVZeQNYVIjMmVmNOTfTQjo1bTefLJhMGDOckxqLlJoUK1\nVcfNfEpVJQpyVEFGkWSQDOpLBuZCgd2QUFXQVZnczwhGCUoiUxYFmqpjGTpyBmd3LzClCiAT+CGy\nJFGvaDR7JpKZ4XoT4iwkTQLC1KOQMwohxTBEwsil0dForz2Vl/7u9z7GqNeYhAmg0u01EHKJpfUV\nMiFi6s8I3IAEAX+aUtEbPNk+wB+7WIZOGoMfBIy9gO/+8C4HWzGzwZx55CKQMp+kNOw6dd2iu6gy\nL8dcfr5NrfLpI8NSIXL90iZGqvLq6zf48e33uPy5FqkZMfJ2GQUR2kKGsy6BAqN+hJnLlIL4b5qr\nGaWRQEVgMPZZatVpd6uIik7d0hhshfR3zrHtiJE/xKpGZJLH9ZuXcFOXOAtpahYnDwdIVWj3DGpy\nBcXPmQ89jIpOIaRE0RhJTqi0DOoLNZy2Q3etjVUVsKsyK1c7LF616a1eYuPaNa6/uMbx9AgvnPDJ\nezu0FzXQCkpdwp25SGRQcdG6Kbajs9DTWbpZxejkOIsdFm9UsVeq3PzCNWxHYrQ9xp14TCcJXpAT\nzzJMsUI8iljorCEJIptrK3ifhNz79j7e7hwviOk+16N7xUJKcyhyCnFEkvURJI8iyzGvC8zNAFkS\nGboF8yBmecOmc1nhxS82iYYThGn1F3Px/1Nm/z+Ik70B5/s++OD1XWYHcy4ORkyfRMwOJNrOJaRY\nInLjpx3NUkCUJPLiqUSSrEjIqkAp5YhSQVomKI5GIRbohkYQBkRRSBiGlOSU5QzdlPnqb73BK1/9\nLJEyQ69pfOmtFxCTpwfSruiojRI3mTFhip945FpBa6OGvayy9vxTDUKhJZPJkGYpWZwh5yJSDknw\n1EjDDwKmE5d2u0WUpkhiQhLGXH9tnSxPkY2c7mUde0NBWlQxF8BuadhdDakeU+kJPPuFSzz3hUs8\n94U2jaU6blAgSza3PzhgvbKCVOpMhy6KbmJ2FFZfWsFZMVFsFYGcleVViqzgi198i95Kh2bbpN2x\nsKxllnuvoLGMZZiIaYGWS1QaFt1FCaOSIioJr7x2k4pTEiYjNnq9T8XwxRe+RFEKCJrFD/71Nrom\n43RrvP7Wy9SqVWo1B3cqMjzx2d4Z0FzR6K61sG3IMw9Vhu6qxPgip64aFElBHE9R7AjRiums1Fls\nXuFwS6PCBmpZJ4ksfvDdeyx1eiwudHC6DtWlGovP1biz/xBZgWq1yngy4c6dB8SBx9raEvV6EwmN\n3e0j/FnC7CzEnScYVoWHd08p/BLXCzkZDEmFErvm0Nu8xF//5ltE5LhhgBv7CIJGOo/RayqZWDDd\n9XD0TUzDwTIr3H94yOOdY25v3eXk6Bi8mCxJUDWdssiwdQVBh4QYyTJRtQVSt8J7/2wbAg05K8mB\na59d4zyac+PKy5h+DW9YYFgtVhur6LJJq1NnaWMVzc6Zh1MWVptYNZ1MEDkbF5zu2uz9ZM5w++et\nyP/P8Ut7ItQWZRTBJPFDhEJ4+o4tPc14qSiSlj4yGmkqkoYpQpkhlAKiICEKEpquomoyc3+Gqkrk\noojdcZAcgdlwjm6plHmCVGjMjzyeefFZjr1d4iyhzDPWnjWxRZvZbsbOoxGKLJBIEnYTSrHEtDRU\nU0WUDfIwQVQlTicXVFoWZaITbnsIqYAi2qSzhDhJEChJswjHMhFUkB2JQoJaWyPLEy4/v8DWnRPG\nJxGL1zQENUYsJaqNHpMzD2dBRVcLkixEMm2arS5xOCKLYw6e+GxuXkaONN751vt8429fYXfSZ5IG\n+LGIO0hor9apdlqE7px2xcDQZQSpwKk0mc1cJu4UI9Lwph6ZrjMaTai3FJptlTwrqZg2/YsB6+ub\nqJLOPO4TZRFZIvGj/3bv53A0Nw1ufanL5uVlHKHGH//zP0eWDPx5QimmfOFL18nShPd/vIvTqWAq\nFcZnfYpYQJNBk2T0qsjDB3OqpomqlKALLFzX6Y88hFhgelZgmQ5RGBHlEZWahWyLFE5BtStQs9pk\nRYyKjFIKiEXB6ZMJjbUOs9CntdBBKGLmwxnbd/ss9iRqrQquX3B+PkVTRMpcQihEQjGlsurQ6VS4\nOBjRa9cx21UkMefwdBe9MDl6b8LGUpvqahddM/nw+w8pVZG5P6NaNRHVAsQSvVuSBjKmrzM69qk6\nGv44wKlYJIVMWKZkBFRXLBY2oFuxicc6b//pLl/7G69xPHnA2uUm4/tzPvrzCb3PLZOrEf3zPgsL\nTSbpnC987RlExcMNXHzPQ1MN7t/3MAwFcZJQnpSMghTv8GeJ4Fdsgejzv/UZ9IaMVhpYiobrewRh\niGloFFKIplikmUSRpZiajiyZlIKEqmnIkkBRFMiigG0bKI5KSoLWlFCqApqlM536ZIVAlGaIeons\nuNitiPVNk+VFnXRUEo0EVpbXqbfq5IKArEr4sxx/BkVc0u/PyKSEUi8QpJz1XhNmBYOHY4r504GP\nIgM/9CjIyMnQNANEiUzPuPn6JkItg3pI7YqJL0yxl3JeeKvD4vICZWmSliKH5/votsiw7zIajTFa\nBqIhIRQhoRtyftJnfXMZAZFITnj2Gy3m4hinJqJbOoYusdBysEqZMsgJw4hqq05aRmxs9jAtCcvQ\noCh56fU6l58VsaslK2tV2h2HdqtLlonEccilzTWSrOB8fIzTKCk1mLvBp2J47eoiWiFwuL3HO3/5\nDokrIAQFz11e4/MvXSEuQxIh5JlXb3D5Ro+ocNErOoouopoiZlVDkMDUVeyGQpCkrF9dYh7PnjpP\nJTLtdos0mlPvmDRbVQQhwvd8qnWNdF6wd+8J5/sDYu9pM1irVbn+xrNEec75/pjtO3skkYxl1lnc\nrFNZbKI0KjQ3F0j0AsnRMesVZpOQjcUruEOXdmWR4kxg98ennD3exTucIIxU/FNYXKwznPrcvX2f\nT969h1DmZEFMw3LI/ZRypuMdpRRDDSn3Cc0J9VsJuSGg1EVGM4/BaEhJgShLxH6OmIu42ZxEnfDC\nX+mRqB61ukI88rl7f8hL31zB0UWmj3yM2GKyP6Uumjz46SFG0UExbWazjCjwuHrNIct9Ai3l2pdv\n0F41fyEXf2lJIBNyGkt1tLZCUAbcfHWN5kqTVPD5zd9+lTJPSZIYIReIC59cTBBElTRPSIuQJE0w\nDJUgCQmEFKNjgp0hWQmiFpNHJUVeEmch1z/bojSGqKbMaDRDdySySOHovs/3//g2z9y6Tn2xipCI\nOEqFbq2NJtcRQ4Hjj0dE85Rxf8bZ1gSDkk7TBjGjKGN0U8KydCgLqnUHyRBQ6wLrLy9yEh3SWa+R\nFhF7xzNm3pyoLEiElJ3DI2xbIc5ylldb2JKJFVcJjyUqahvLsvH9gJwUQVaZxC7vfv8+H/7ZQx58\nOMCwKpzN5vTWWiy26xCnKKLMZNAnCUKOjk/JVRkvyth6dJfJ/Jxeu8FolqM3lohSD1GO8Nw5WSqx\nsLSCYVdx/ZRSyBBUkTzVqFfavPLyW5+KYZTOUUUFKZdY6NW49nIHc6FAbUtI1QzVUPDzgO71Gpla\n4PpzhscuQpKThDlpmTOJEjaeb5PrMYYN7nDGYDsnd0sUTUeyStx+hjuaYxsqZktHNkq8aUo4SKga\nVWqiwTObq1Q0h/PDJzzZvUOtorK02GVzc439w10m4ymObXB24WJXFxmPXRrtJrVOm06rjRDCYOuc\n4lTgnX/+IbNTjyIoeW7hVY7uzzjfcpEFg9ZaDy9IyOOSaBZRpDnEBZtXNjCaAkYzZmmly3QQMNgV\nmZzAoC8iOxFyAy49v8Tzb9zEtBUc0URMBSqOjp9l7PWntC83qK2Z2Is29cUlbrzVpnFLxNpwSQuP\nYp6xsLLE9WcuU9cc7vzkMfd/dEzdqtKqrxCHGXGU0eg6jJIRQvXTm7r/x/ilJQEJlak3JUpzLj27\nhNCG1197iWdf7pGzzV/7t18kT6HIFGpLBpdeahMTYEgalYqO5ZQUQoJdVah2ZUorw49mxH7A8mqT\nl9+6hKA+9bufhVMivySaJSx06njTkF6vzujYRcgVvvcnPyF1BcJpRBblTC5mjC5ccFWc1CA+KZAS\nic5qE1Ev0OolhqPgxyHr19apLlYRVYkkip7ePXWB+3cOiKYBo3MXW22zvtzi4jhhPs45G/sIWk5W\nBjTbCmkW8+F7e4T9KYkbEvef6v/1Z6cESYnTcNg7OCbNYtQ8JzwUmfVLFtotpDSi17F4/vUbLG62\nmfpz1i8t4YUeg5HL9u4umzcuo1c1VF3lJ9875A//6QfsHozxCp80T9g72Ofh9haIElGS4McF5xdj\nth70+ejtXf77//KPPhXDx1tT4sIkkwVSLWf1ZhWxk7P+0mUens5Z33yBSrNBnM2Zn/SRM41mXcSb\np2R5gdnUqDQMxvMROTJBlDMe+BRziWggEk5DZuMxGyur5NOSfJ4iTgVyryA4CRDFjKTMuHzrEjv7\nF3z4zm06ikolEYmiCdW2znQ6ZG15Fc00sAybLAjY+ukW0cCjVjq0rQaW5uBYGpogkg0TsnnGP/iv\n/iNa1yv88Ds/IJyFSJKI642ZuBesX2+QRE+dssq8RC5EtrceYTYs6ldspoy49rk1musSq5ccrlzv\nMApCJEklFxPiMCDyfcoypxBSFCugSH1aWo9HWwdMgjE4FR7tP2B5dZGPfnrIJHH5xu++yCQO6D1j\nMYkv+PzXXubGcxu89OxNltobRJFAFOV023X804Kde4fAL9aB+KUJjabdEFkXmD2ccfnzC+imxJOP\n+thOjVIr+OndJzhGC70OlQrUL1k899Iz9PenzNMICo1ClEmEBDdK0A2DplOhSArOLuYIFIi5SDyP\nEXORQklYWjOQCalWLUTdJyhCDK1JGHiEQYahy+RlSRo/HU6SRYEkjKGU8cKI1mqNohRY6K4gKQpZ\nmSKpAuPhiNAVKZKSLA+YuT6bVxap1msgx0zmY0yzpMxSNEVgeWEDXdE4OZ0jiSWCqNNo1YmVOe1b\nOiEBttSAWOPicIqQF1hyjZphksxSLt+8yY0vL7N3eoFuKsxjn35/giRnLC7WMTSZ2HdZXWzSrtt8\nsrvH2emAuinwyvOL9C41uIjmJFlOiYw/B8OEJ1vnUKaoaomIhqYZLC5cIwg9vOP/9Odw/LW//x36\n4zPqLQOjFNk7H9Gr21wMLmgv9egPDzFVidHBKTvv+KiZzMyV6NZqxGWGoGVEs5LzxxFiluPYNfxp\nhK3USOIYSVRYXOlwvH1IrVYjShN8P6C5UmfxSosSGE8CBCVh5+EZNze7FGlJZanN0WhAfzJCStOn\n48xuwPLCEqcPRhTjlPnQZXTssnnpKrsPdhkdz0mzHA0BxVQ5HY147csvsfXJI+xmizBPkM0cWc5I\nS5+G08R1YwxbwTAlYjmnsmiBIjKLIirVALVeYf/ehKrVIhsmDE8yvEFI5mcUSU6eZFz5+hIrvSb+\nhcb975/TW6gQZiecH08w2xVa9R4r3VU+ub/L4dmAhZsSup3zyfenHOzv0b5cAVnl8OgRZZaglirL\nnUXUQmc+D7j24lX23vndnzHvV0ttWKqLLFVNXnnrGQ76j54+wTU8al2HRCjQxS4Xhxds3FojLn1M\nS0ayI4psyo23Oki6wHw8p9nu4LoBUZASeTGSoJD6KYaYU1ElDMlCKFUO9l2abQPDzCmlAK+MyFSL\naCoSuymUJSICtmUhKCJQkFMgqQpZBO1qk+H5iLbd4f77e1hdES/yScQZoqhD+VTIJAsTqi2Hydhn\nNgoIxzHZvECPTYRA4GbvJu/9+SPyIKHTbTE4dImGOWma0Vqu4HkBQzchGaXgKShTARmYej51o443\n8/HGLn7k0ltf52J8So5CvbHI+dkJJRm1ik7gTdjYaBG5MwajGbokYasi7YaBYFfptm4xOBowmgTE\n5BSJgCzI9HqLxFGCLBs0myv4gY+kpPQf/Mc/f3hq/wVhNME7iagqNSYjl1IuyMOSoycndFYXyIIM\nJYdrLy7iCj6v/5XPc/u7D2m0ZRoLKWrWIIsSRLFAlGEyKoiCGCHPCf2EIpMQkpIwCRB1ieXVFQJx\nRBCHjA8jlleqZEqMZiVkoUJr5RKzQkBMHIKLEXkpUigClmFytnuKLToohYJRV6m0YW9rD6HMaSzp\nxGLKm3/1DQ7Ojmk5NRJlyuu/VuXlL18iUwSmExeEAkW28UcBim3Ru9REaonMs5BKW6XIYxQZLEPA\n1gSWNhzUSCAaxf9mM9UgjWNEROI4QZdsPvjBIaNJiKYrtBZkrq6ZHO3C4kINxVCRJQFUaDY1jrY9\nvAQWVxU++8Z1xrMZM3+AqWvkcY6mWezsnLP35Iw4zQiSOfPH/9nPmPerpTa8+kUDxhndZx0Ozl2K\nmUahpqhCDaUA7yJGEBIEK6N6zaJuSmiaTN1wGM8V9rbOsCSJUiopC5Esg/FwhKSWtOot/OmMqqNy\ndhygKRXCWUQm59RXRJ75bJeDkyEn2zHlTEBBpkwECglEUaCQMlRVwTA1PD8kcnMUQUWRJaIooLLQ\npHXDYTw+ZGl9ld27hzCzCMYzskjghTdXebRzhBAo5FFCtWqRRjkIIoVQEngJl272kByJ/XuHNJtV\nzBUZo1eQ+DD3E0QkjEygmMXMAg+r5kAmICoKi5UOewentK5WyZWAvBAp8pxbN2/wwZ2f8uUvv8Xe\nzj5p6hLHIdMwpFGvocRPK47H98842Y5ZulZBacNkFmLKOtEwQkxgOJqxeWmVrYdHVEwJuSJw8s7P\njw4rjkFr0WJyMaPWqlKpmqy+2uVia5siy1G6FpZuMPZmiFrJ9c2XeedPHuLuTXju9Tqbn0lRlQmy\naKDpVfKkwz/+rz9CLxyyLECUFKxKhTh4+pde6LbpD/ooFRWtITCdBXzmKwu4wRRvIrDudJjOU05H\nHn4/xdZKrCUNrV6hade588Fdao02wcCl2tGwKxKjyQTFMmiv2JycDnnjyy8RBR4GNe7v3WN9scnZ\nccDxozFOq0KaFWR5QHKRYi/UkS2NgdtHNUUqDZWyKJFymeN7Y6zQxEtC1KqKVpZ4kwxV1KEoCNwY\nTZbJMplSLaltGLzx1WdJ9T4dLeT80ETVUxJBYf9gQmnlKJlGHofIukxlqYMia3ijEbZW5XB4hGyL\nmHJOmZhkc5mLi3OspsbOH01+xrxfrS3C69+oYDcbaLLA+XjAZC8nGSaIgkKtU2M2nVCWMs+/coWj\n2R6C5CPIKt16l+OdOVIhkggJnu8jCjmqrDEPUyqWjSKXWKaOKoiUnsaju4eoik4pPLX7zqQSp6GT\n+CGKrJFHkM4zZEMmzwsqbQdFkpnOp9imxWzuIZQSy8vLnE4O6fVqHG6Pef7X1smrIu//D1uokYRi\nqGi6g1ELSTIN4oz5eM5Cs0WhpiRJRpikzOcpWkUALUdJFbSWzuoNE5SArXshy90a/Sce3Z7O3/jm\nZ/jeBzuEMxd/XlB6AVWxzuOtMWpLArUklwrWNitkpCRFjKZqmLpOGIW4XkTsiwiBSHgAqSZhtg3i\naYRlC5gdDTcMEchplFXicczYjRH0p/sItQp46Yz9n/z83fKF37jO2ckeQV9AN1UanSqDcZ+6pWJ2\nDB4/HnNlZQFMF6Ou4Y5STj+KMGSZvJXw+a+bNKUOna5CEHqo4hglX+ftPz/n3j0XQU2oWBU0xULW\nVHafHCNZsLTeZMCYr33pBk9GJ5w+CZmdibxyfYXzkxNCCTSlyc7DXVorFleevc7H795m4/Iyy+sr\nhIGPm0xJ8TBqBnHqIYoltXoLUYB0FlCkGZJgkSQzWt02P/onp+RlhGorFLIAWUr3RYf96ZCNhRUM\nucbdd+/Q6Ip4Ukmt0sB/mJDNYwohQ1F0bLtGWZSkUUw8CykSETErkYUSX0/BkHnzb32GzrrI0c4O\nghsx8XNWrl7jL777Cd/4xldRRdjb26LSqnF+dEiju0FexHhJRlgMWGktPHWcDkqQwRu53PvW2c+Y\n9/9ui/B3fud3+Pa3v02n0+Hu3bsAjMdjvvnNb3JwcMD6+jrf+ta3qNVqAPze7/0ef/AHf4AkSfz+\n7/8+X/va1z71u/0zAaQCV8uodVvokkD1ksXjO7tIrkBVtcCs8OD2PaSaiNPSOJ+HbGws0F2r8PjB\nI5QyQ5EENLVCWULHMrFqFicHY/x+xHzsoasymqOhKAWW0SCJSso0IxkGKLpO5BZPTTVEkdCLECWR\n8ekUQSwRUegPJ+imSi6mjKcjLEtEElOSuCDPErJCQhRFLn22yfbekHZFZzB1CTKPhWaVXqVF/3yA\nFRmUskiRZ8hVAasj8eu/+RxemNGs1zkdbjPzbBYdlbwP6TRlexJyfHTM5uYCCCt48yHCOOd0e4Bh\nFChCk1u3LpGox+TikFq9xczNSAqRKI4x9AqO00IuZOYXHnOmfP4r1xiGMz782CVzS4pAQ4815EJE\n0XRKU6OY92naDc5PB/gXJt7s089GZoTUViosb6pMhlNQPYpDBUXTkGMFK5dQChG9XuF8esGLr3+G\n6egB7aoI9Qp37o5563MScVHhfFTy6L5Kf77F4Dylt1El8ST0hkLSFzg83EdRNEShQFtRWLar7E0O\n6A9cbKeFkguIeQlJTC7nuEnK+mYdWdfZ+vgxpqky6k9YWu1Q6HOiYsJgNkcJSnRNRpNsPtl9wsbG\nIvgRlm4yGY452I75d/6TF/ief0KRSCRJjq4p2Ct1NCmj45gcHh3R1WZc2+gxTV26tkGn26BzucO3\n/9GP0CSBtMiYxVPIJaIgQi4lxLwkKVNsWcVMdCRN4e0/vEv9xRbPvLjOaPIAU+d/Z+69YnRLrzO9\nZ+fw5/xXrlNVJ6fuPn06iU02ySYljoZEm6RptDwSHXRhGPDMlQkBvvBYMGDJNwYMWDBmrAsCwpjS\nDGYkihqKIimz1WTndHKoqlO56s9p5+yLIxEjswUCGhjUAvbN3hvfzYu19trf9673RUlkhInI6z96\nl8vX52gtNog9h1Nn1shCke0HAQVNobMZ03M3kVQJMolEi4iSj/cf/A/j53YCr7/+Ovl8nt/4jd/4\naRH4xje+Qb1e5xvf+Aa/+7u/y3g85nd+53e4e/cuv/Zrv8a7777L0dERL7/8Mg8fPkQU//YhhCAI\nVM6UIPZZu77KeDrDH8VYjoUwkxAziAnJwoQXPnWVh51d0DwyQ8cehpiaSRzZCBlkoUA4g8hNiayY\ny0+eY2e7gzf1ibwIvSCSKALleQ3PCcn8hPnFZbbvPEI1VQI7RooFEAVEJEQJElKiLEOTFMIgQFVF\nREUGRC4+s0xouqAa7J/cI180kAQDRfJRamUe/NEx119Y5cA6Jo00hFhEFiIkR6PbC7h44RyueUK3\nO8E0FJ754iqu7zEbHVJprGNNJe784CH2roCbRBRLElc/N0++JOB5E/BTth8GKIZMJgskRGycXUAQ\nBsSxQOCq9LsO9do8nWGPtY0lZk6HVIkp1yvoeoWtzR1mboTkQ9APSYcqpXKBJIkQJRHfC5i5NjlD\nZnoQUSrIdI5/litw+nMtBr0ZaimlmMsznkzJjhRaDZPeNKTaDCg1K/TjCWEQc+mZFuWywea9PoEL\nC/kKqdxj76bJaDfGH0QIasILn36K7vgQOwwJ7ID+oymakiMRfPSCwdNfusLAPmZlvs3hsIdrB3T3\nT3iqscjO9jEWKkghZi4jSQzmlpawLIeTkw7PfeZJesEh/fEEA4O5UpV7Nx9RKBYQkUHOMOeLNGtt\ntm/scPDBkBdf/gw3v/9XjJ0IZMhSkS/9N9dJHZ8ff/cmvpHQuqqRN0yCiUgWKPS2Rvjd8LE8nSIS\nzwJ0o8hoOEHJGSiGRGRHaKpKNHPIV8vYmUXoRJQuFXHFGavNEufPbPDadz9ieBjxqf/sKbr2AbIC\nuiThJDGjhxGz7QBTFIjchCRMKZcLqIUMuQ2e4rH3vb/B7u9JFnrxxRepVCp/6963v/1tvv71rwPw\n9a9/nT/+4z8G4E/+5E949dVXURSF1dVVNjY2eOeddz52XdlMCGYRBx91sLvJY4+3TkLiCIiIkEUk\n9gAAIABJREFUSIKCYigMhj3sXkwyU2jKDfxegD/wyayMKARrJpDXSkgUSCPYunfEbDhFSFJKlTxJ\nmCFkKdYsRFEUkhR8JSS/oLFxfR5kiLIUVZERZRlFUZBkBb2UI19UQU0JSSlWitRWTPrhmFnmMBju\noyt5Yl/ELKS06otYmxZCoPDRO/vMhjJjy8WJHOrzJU6mMxIFNk/u8vCNPllHxbcT/vyPHiJkeTTV\nwJl08NMRpYKJ47gIaUyuoONPMtwwolqpoMgqmSSycLrCwukclBJQFfZPbMazhEFvQrPawnUSqtU6\njucSA1Eocrwz46M3NgkdgZwo0d2ycPspSiow7VoIGTiOw3g4ZW49h9ZSWH0hxxO/evpjMezfcylk\nKjmhytLcIu2lGuWLEvmlHLl8TJyBl4a0lyuc3mgwHowIw5hirUJzpYGniwj1ZS48scDaNRmpIHDt\nlQ28ssXh7oyD2yMmx+HjQSEEREPmq//s0xj5kDSLOBkMGJ9MyQKRSTfDkHW8acLc0iJPX7+OkjO5\n9tIl8m2Zi0+u015s8M6PbxM5MZEr4Uxc7t3YhVjEnSZMJiHjY5+j+2P+n3//Np2DLlKQ8s53XkeU\nRFQpY21hldW5GqFmozZg0k/QLZNC3KL/MGOyG9O7N0GOFVQkQhd0pUyWKNi2gyILGLqJUVUQjQRB\nBgGB0PcJZqCmBt6xB0OJOBL44V9+wPmnT/PqP3sFs1FEynQCP6A/sPC6EmE/oVyUWTxVJxQj3Cym\nP53h4aNWZFJV+Hkp/vfjCXS7XVqtFgCtVotutwvA8fExi4uLP31vcXGRo6Ojj11D0QTqiwVkRUA2\nJC5eucrCcgMv9vDcmDQQyBcLTHyLzM8Y7rl0dkbUqgUkMcOxM1I/ZW7eZOlsnUvP1dHnJIxcSqvW\nQDZkRA2QBLJEJp1mNEpNcnWV2fgECgk3PtgGQURWZaLEJ8o8gihg9UwLoyww8z0kXaDcKJHqMfW1\nIlJNo2rm0XSDzBfp7wMdA3uQEfoiogRSZGIdwny+jpRIfPjuAE2XOHe1RbVmUMgLyJLH6kaNT/3S\nZfodh+6OzWQ0JG8LyLGKJIlUqwUmE5+bNw6wvYQbd3bIG1Wef+EcpYqMYUpoukznpIOpVbCmIYVy\nkbubexSrJWaexdRzyBcrKKJMyaxidQOsfY/h1oySkaNU1EDJUHIS65dOUW3nWblQRjN15jaq2EWf\nR4OPF6aQYmhU5+ltjXn9D2+x9b0+pm9iHU/BTZlfWkUtSUy9MblWSHPRpDudkqQR7sxiMhkzO464\n/+iArOqhnU7IihH7R31mvQBNVCFUSGKJhfUKG59c4L2tt7h7cAfbGmAoOpfPX6Ag6pyZK2LN+mSy\nyNqpFTwizp49jSQm6LmEo/E+ainlwlMVFloVakaMoiS01xepzy8gyRK+71EpVZn1ZrRqJZbmG2hF\nmUKzTCaLaIpOriJx5tocnjvD8X2+9OqnmfRttn98gjBQ8QY2Uioy6TvEWkIQCEyOBoSxjyAAgoDt\nj6jMFXHkAFt0KM+b2K5H7AT4YkDYizBEGUXIOH1uCb2p8v7mG8i6yHgwRpU8Nk630YYpsWsT6zEu\nx1z91WVe+PJlLry4yOKlOomgEAo/X2j0P5osJAgCgvB3V5u/65lzkDHqO0yHM+yDGR/+6Q3mF+ET\nr5wGQ0BORCb9CeWmgSXYSDkFyYCpN8PIGRTnDGIBBMVn6D+kuTzjlV8/x3jm4HpTnMjDjTwE8bEU\nlJrpbH64QzRICHoCkqfTVNtILsiCQJZAY65CoSHy9GdbDJwhqp5g5nKomkDsRtx7c4f+ww7DAxt3\nEKCKJguNErd/MuLuG4/41AvXcd2YJAjRlZijvQFx5FOpaKRiDMoUz00YBwmy1OCNb+9z74NbROMx\n1VyZrfclbr/TwRRz6HkJy56REpKvaPT6FoViia1He2xub+J5NnEAzVqbucYa5fIcy+1lfN/mK69+\nFjueIJkplbpGp7+HqUaEQYdfeukqnhNRqzQotIrUN5oUTleJTAVbGFJbVyjNi8zP57j72iHazCAb\nfyyE2I7PR289IBo/3hHXI5XB2zZpFwoVjTfe3GQws2nO6QhahJGXmY0jHHuKIcvIE597398nnGTs\nHQTk1wQ6xwccvzlEVUUyQSEJXeZXF9ncOWLrwQFhlPz1vEUNdIVpHNCddkkQcSWDZ//xM1jCkIQJ\nTjxkYh8zHB8SKTZKQybNCbhCgpTTqbfLHHf32dnZZzqxkDKRqW9RbBQebzpHY6auz3RoM504uL7H\nzbuPeP/wNm98b4/Ntw754b96i0SEQlHFrATMRhGqKXP55WXarRrFggpChiyoRH7EfHuJ2nyZ3c4+\nxTmD2mKBMBQRkfjKb36OxlmRq59eoFot0B2OWb90GsvqsNSocffD95j0LEgk3vqzR/THfebO57n2\n3Dr/+MtfojhnMHdJJykOaCzXwVIYvhUC//yvr4+Pv5eeQKvVotPp0G63OTk5odlsArCwsMDBwcFP\n3zs8PGRhYeFj18gVUox6nnNXLvH2j+8wPhmysXGOzQOXxkKRUr5A3+shlxUwJLJxhjQzcY8mqLmE\n0rpAXMrw45BSXsWyEnTD55nPzHNw2+KXrl/ng/du4fcj0jTFti0kUcKbxaRKiuFJqFWBer5JXsmx\n9WiL9WsrbO8+pONvc/pZkxV5lXdeu880lknijLwpoWYybmKBnWN/b4iYRYhohGOB//t//0skIyMG\nmnMFBCEmjKCzO2XhqsL94ymNYoPiTGCWTDBqOp07EsMtB0SoNEvYU49AiChVdYrlJrOwhxPGCCjM\nzy1hGxMs30PWSgiKTObHjMf7HO4PEZyEU+tz7O5vYpgqtXyV6aiPlgmYWp6NjUucnMxw7YDJcIZL\ngF/TKFTL1NYUjKLM8W6Hp548xfvv3SMhplTMUaotsvmjn8VQygQ03SQIAyJAURUEXSESfWRD4fpz\nbaZiHzmFklHFG08pCCXscMbOoEddrLBwTkCr+JhZGdkMOOw4PP+fnyU8yrj3xiGhmDB/yWT56nX2\nb+4hjUtEDNg/GlGsJYhCzKDrsFov47oOjw53kMt5ioZEIMUoaYQsyXhxjGGoTKchspKQLy4S2GOe\nefIy777xgNXTdWazGdVahYdbe+TlPMVCDv18nsGmR5YYvPJffwZLnTCcHZFEHo8+GrL2xDLayggx\nH2PbeV58psGdHx6wdKUAcsL+wx5mTiOaumgFjf29A05dmScLY2I3xo8dpoOU+cUSu/1jigt5rGLI\n6ecXkVlAwUEVIBUsIt/mC7+6wt6ew9y5IpWcShjMCNQhD09uUNBl1DBhfn6J936wxfhBgKKoxD8t\nAP/Tx+bi36sT+NKXvsQ3v/lNAL75zW/yyiuv/PT+t771LcIwZGdnh83NTZ555pmPXcOsVTDqJYaR\nQ+t0FTUvECoJK1dqrF2qo9ZSGisFoiTlylOnUGXo7Hap5PLIQOILbFyYQ6spRHLGQd9lf7cL4pgr\nv7KIsRKi1iVc38VzQxRFAgFkWUUWNdIswws9tJpIUJiy/ESLTHVYu7jEQX9Au91gInUpnTI4c63J\n57/8HC99+Tpf+SdPMT9XZWV1DlUTCBwJRUoplQxkWUCWDGI5JDUDpu4MP3RZPttELORRPR1r4pBp\nIWreRMubBFmEF0QIqUCWyRRyf22ZHkYghTSadarlApVM5967DxBUkWItT5Kp3N8+Zjy0UUSDolwk\nHMkcPupy+4MdhrvH3HnjAD9QyBSd4/6MW7ceMh72uXDxFKao0TYfz7QHI58wcTgYn0A5Zfekw6nT\nT/DS53+ZnYdDjo63PxbDTBBICUnjFBkQhYxUTBEUGVHReeT4RCWd0SzPcc/ke9/x2LZCegOZilkg\nN+/QuhKwer6AY7mUTZEr10rE+V386j6VNZHlJ6qM4ilmBTI1Y2x1MU2VRrNAHHoEtk+9VKJg5ghd\nF0KBNI6Z2BZZDE6QkkkaeU1hOh2gaiqTic1kMkYR8/RHx7RWIJCn2JmLmI9YPlWk0hbwY4/mkkam\nQJJ6bI0ecuT0sdwpfmJBMaX+hEggpYz38jz60ZiEjNUXiozdIbvvj5ElhXDiotdUDFlEUeHwYRe3\nF+H0Q/xegpIJ9IZDJt4Jo6HN+NDlzZ/cZvP+CcNhD5mEYb9DUTe4+cGE/UcuTjQlzmc0Fxr0+icI\nwggnsHmwvc/tW5sMDh3mTlf4zf/hkz83n39uJ/Dqq6/y2muvMRgMWFpa4rd/+7f5rd/6Lb72ta/x\n+7//+z89IgS4cOECX/va17hw4QKyLPN7v/d7f+fvQGOtzdFwFzNVMfIxT3yhxfbmlFA/wR3rHN4Z\nUl3UmMkB5YbB/PkG+x8MkBQIHB+7A7N3HOrLBrbnkTNEwshAkQ2KrXkOOmP6E5tIylAyiQzhcYtJ\nQr6SR9ZFrNhh7AwJCFhZq4GsImQespdjrjDH3uQuhYpGsV1CLSs4sz3cSOPqUyt0Oses2S3coYRZ\nidi5P0Q0JHK6gh9nJGGCYkpUmyV27w6pCCW8TkSpkieQBZYWy8hKjt3wIWQSQRDgWBbnzpxiMpgR\nD0NkLcOxZhRKZRq6yd5OF+X4GL1kMHGP8QOZ2EqIhy72LEDNJEaDhOaShhQpzNeqtOY32D26Q6kk\nImQ2oqfx/of7KKKIkmh4toziRlTP55HlDNeFSRLy8NYDwiFICqyvN3nwMRimUYIsKqh6yrmrF7i3\ndZdSDmIhxbVDov6EWVfj+MhCymbIaZ7x/pRCQcYpyuhnUxTJgrLA9ZdWibw+WZiRSRrWgkMxpzGL\nHis133jwAcYphaX5OaIkQNAiZl6CKIHvW+iVIqVcgZPekMX5dfRSBdcf4IcCYRBS1EVWKwuoSoG5\nQpWj42NOZidokomZy1Et5EmcHjkpB9qMMJYY7IoMU58sJ/LJF58lKE4IsoDhLCDNYmRZZjxykASd\n/p5NLoa9tydU5wUO9i2KDZGzXzURp20e/OEJoRRSrZaQNZmpb2EWC1hHAZIQM3+qgRsOSKcCqZ+S\n5TLW1hvYoxFeGBGN85w+d46f/PA2speRL5fpzzzWVjaQRIlQsBlOUhzb5/BRzNNfWKIyL/PR6OOQ\n+9vxCyMLnf5igfbyEpNhB1C5v9kl2s9oXDRRBBF7FLLUWGAa9Ei1jO7NgHrBQFIkRmObWjtHKgcs\nnF3FmY6RE59Z7PLEs+d5eP8R506fIQ19imaFf/0HbxLNMlrVCiICncmYUrnMcDTBqIksrdWIxSma\nOs/SqYTNhwc89dw1hsMeYqwSxxm1Yp0gGKJqMmkWcXA45mA3II4h9VKYaUROQhqBrIZkaUQkpCh1\ngXiY0Wg0mToz1FpMa7GKPbRJApW4FzMb2ximRppmrG3U8DyfWnGOmWwR+ja7D8Z84pPnubP3AElu\n8MJLZ7i9c5f7N0dolsiTT11mc+8eZaOML3nIgoCiGZy9cJWt/YcU6hAnAxTdIIoV5msNsmzGze8P\nkRKTSAzIyi5SUaBQKpIJKSXX4O3vHvL8L6+jzQf86P/c+xkcP/FfXWPQPyYn5LB7GhtXIxaumuzc\n77B9a8CVq2t8tH2IIZrMtVpEich0FtJ9uIsYmoRixNnPRDSbNXQjxPYsAg/qlSb7hyOGU4OcUGXv\nwRahDa4PT3x6mYyEzft9dBMyP6Zt5FkqFtm638NoV5jbmKfYmGP/0TYf3bjPqbM1Fk5V6fdt2nMN\neoMhh8c9xCijWDJwPZeCIvP0tec57h5xcLRNoTJHpdrA7vvcvbnH1YtLDJMBIjH2OCTKYmpqg87e\niIXVEvdvTiikMq4f4pLQOJVj5UyFSeoibuc5vnOIEIkIioRZVAnFmCiKidQUOUtotAr0bI+yVCBV\nLMwzBT719Avcvn0L2RBZWzzFX3zrXdJQQI1SPDGi+VyZRqPIUnWOk84+1eUWqlbg6O4uI8tFrIFZ\nNHjrf976m8z7h8UYXPtHImmqUiwX0PUCvcGE8CDCsRNSKSFX0fHtkOaKSawpDO6OkEMVIRcgyxI5\ntYRruZgqdIcep58qUGzqGPkik+mY7tGQhQWTMEzIFaosVDb4i3/3LkmQIqYgKwLoOZAtUjkiSw2W\nzsyjFY4p58tIRpmTfo/QcVlbWiVLYezYOI6HKsLqwnlSocSffPc7LBg19u5OUCIRQhkEH1HUaC7l\ncMIYdzbFbBQQ9IRcGZ69WuXH73U4/iDCEGRCMnRFIpeTkbWE5cUl7nx0jLmgY5gCy8US+rqJnXm8\n/e1HZP5jCy1RlGgVGnT9EVeurTPpjRnYFmEQkCFiO6BXMupLKXEcYVQKiLJIrWzgeR4P3hjTKjSx\ngoDEjSi3c0hVAJskgHa+SeRPEHSZ1//g5GdwfOnrVfLFiNlM5PV/7bL6ZEbpWo6MEHWUIkcwklMk\nQaVVauPHCYfdPnqSw9sfIyQCT38l4+57Cgf3Qs5eKzC/XMc0DA5vOtx47RgFAcGQmL9QYeCOOH1p\nja2HW+TzOq47IwsUTEVlo13gg3e6zJ1vIpkSnaMeoiCDLHPuqQ364wPK5QYnB0eMffexLFyUEowD\n5mqLyBpMwgmqKWNoCqpRZjB0yBcEpgcDnjp/mds3blOcr2A5M3QTTFPEsXzExESWZMZDj3q9iiXM\nsHoB5ZbB+DhjfMtGRidJfMxcDt0QkFWR4WzG6vNzxGmE6Ok8+Ms9VEUkv6Ahrqq4AwezIPLyF54l\nZ+q8+a136W1NsTONK8+dpi/tMdfWKOQKCHbEw9mIo57H0nyTfKGCmIZMHZvNP/iPZAz+/xXN1jon\nm118VyTIPAhihAykIKI0XyU1Z5TLCp7qkoYSKRqZkmIW64T+lM7xGMlXEEsh115aRW9lJE6A7zvc\n3R7SXMphSzGZGlOribz2zpsEgoIhyRimyGxko6Yic6fnaG7kqc2X+Pa/eJszV1fR6xXcYIaWpZw/\nu8btrUf4AaQh+HGKKKTs3H8LAoFyDO2LCYMDnaAbkuGQFzRCEfqHEwRRZWGxhlLxGExitEQFEWZj\nDS0TiYQIU8kRZh62E3OqXmb/sENKShi5JDMQawVULcXzB8wvaQy7IXGUw3NGTAf7LJ2ucHi4w3Qc\noJgmqmYy7k/J16C2ZDxWunUC2vkGt+5sks2LlIo1nn3pAoGdEu2NmBwljBOXxPIplAwmzoREEJEz\nGSX8eNZZ+1yCP0148cI1Pvz2GyidMslOzOLlBtt3ehQlkepim6lv4cQ+iR2xVKqRRjZuMyWnlHjz\n30bInkEjjUl2c/z49UNMQ2PUsykU8jhpgGj5jAcOfiZx7+0j1s7Os723z8pck0f3+6xdXSJULK59\nap1pFjIcOWh5g3zJJBY9jntbzHoh+x9OMWQFUVKxopgkjSgmJY73hiRiilCV0asBQiVl+0ePUDIV\n8/Jjq6+TfYuTuymdrSHzFysEjkCYKnQ7Q6RiBOaUC+vrTKc9EDJarTK7DwfUq3P0ExtBdhB1kzCN\ncCc+RkFDUjWONgfIVYH0xKJSLCCkGTIxzpZH3ihCzkWWI3zZ4/mvXOZf/o+vU6nnefITl/nx+/sY\nqsrBg2PWT6/wdGOZXLKDKJrcf3ObJ146y3JFY/Pn5OIvbIpw4tlYeyFh5NI/cnBGEb4XIRs6keNh\nagqW5GCoCrqkUqyUcDyHSLCRIg1/6qMqKWY9R7cfIMYGxwcTwmxGrqQTpwlCqDHfMCiqJYS0wbA/\noFmvMrRm6KZCFkW8+PmrPJjcJ3Qc8i0Nxczo9HoISPRORqRSQr5aQxcbON0peT2HqRmsLSxQr+U4\nfVolv7KCpFSZ7p1w9doGjjUmVXREXUIvSfi4XPpMC7NaYHg0oH1pwuAQvviVCygFjd07A/67f/7L\nvP3aJsvNGqPpmE+9/Dwe4LsOghAhlFXkvEgwc1i62GZvq4MaiTz7mcvMcLDdiIsXVnGYUJurEXQT\nBFGisJzDUDPm5orsHHcp5UtMOym6mOfWzQOmQ5tGS2M8G2NWUvItBce2iCUJWVcgFmmoLfbu/Lc/\ng6Na/F8oaMtsHsyQy0XcyEJQTe7fOyENVcqKhNEqgy4Q+BapkJImFqV8ndFJQHfLIpkm6HkdNwzx\nsimyJiOrJtbEozWXR9EUqusVbMsm82MWl1tMvQ5GPsewGxClGZeeXmHgDjjo9ZAViVqtgaZA4HkE\ns4jZUcxy+RSOPaVYKeHaDqVKGRERLVWIZxFqplFp5kiFhOpyxsxJqDd13MghlUzuv3mI7CoQCowe\nWVhHIaMjB11VaayLZH7CwZszRvcS3EGKYyeYFYg1n7OXztJqNQmzENe2KeRzaIZGzlDIQvDcgLyY\nB11CFBQCEso1mVj10MoppVqOJHTQ9CILl5tcuL5MkDgstYsMByfMrdSpL6+xf9jh8HgfJ/SZv1Ch\nUDZwYp+jN/7p32Tex04R/sJERZZWasytllg930AvawSphCbrFJQC+VyB4VGGLhYZ9X3iUEAQPTQt\nRpdyKKbA8qV5WueKVJtFCkWJzdsneAMfQy8zmQQEhxF6nLG3aRGlKo67x2dfuYiyCFktY+lag1iO\nKRQFAjsjMeDUaot8SSRKpxwfdgkzhVu3BwyOfd74/l3sUcxgMKJYVlEKCl3XIjBqDCchpZbDr/zm\nefLrY17+Lz/HS1/8FEpRRqlliBWZg5MhRtVBzwvsdOHKpze4Ndjno7cPuXh+g53uNlJNRmlHNM+b\neOYIpdLjzMUSE2eCoGqIYoqxIDI2Jpy6soIfpbz+g5scvDdicNfi7jtjOu8HPHr7CC8MaG00sCYz\nHDdg6qU8f+U6e+9MyPoFvAOJZy+fZW29Tmcwpn66SWeYMp5ESHkJs6ygGiJ4Aj/59/c+FsNzV+cw\ndJe3/2iHyYcHXHthFW9mE/czPFvBVHL0bjxiutWl2w+wZh5RbHLzzT28XkYa5dB0jXKuCqmIgsm0\nHxF7KfXlEstPrNA+N4eojUCOOHN5kdNXyrQXKpy70OTai00q9RyP7h6w1FqgqOfI1aoU5nXkUky+\nVESIIhInZWq51BdqdPwhQklk5A4oGAaz2QxZhNgLmZ24BEcQnJTJZSqeJ2CoCok0otw2iJMIQciQ\nZQlZEBGSjJdeuIbXkQhHAnlVQZACimaGmPkEnojsa3x48y7yokv9apWnPn8BR7KRyykLGy0SMWJO\nbxI61uP9hHiGMS8jNQM+99Wn+OrXvkAmysSpwslBj739B7hBn759hB1ENBaaTL0Zd27f4FHvIe3l\nKqfOVmlWytzd2uTO/Z/Vhvz/xi+sCOwPekyyMZt3BkRDEKIUe+DSOeo+/jpVSyhoZLbJ4KHD5NGE\nxdIpgpmNIAnIpoCbuXSnhzQbEpVCzMrSIpKgkvgCOVkk8Sza8w12Hm5Tn8tzfLyPIPo8/fQCouKi\nlwX+9E/folapIqRFtg96+G7IP/r8F0mTBG/m0DTzHNw4ppEzMEyDLFMZDG1m9pSVlUXev3OX0fgI\nyYCOY2PUT7MzGPHH3/4zJidTvK4LlsjhBwkpIVlTIBA0Pvxom4Ig8IlXFrm3u4Wb9Fh/0sQVekj1\nkPduPmA6dQnjjHxLY2IPee/dEyoNjbNrcxzd65JTZKpmlSwUyOs6sTVCV1KyKGFutU5neIAztbCc\nkEf3Z/yb/+t1qvkK45M+fmBzc+sBR9YuWjtmoaXyiedOE01i1MhkehCAI6LnfKo17eNBzHloizHr\nn9WhBtsnXaaeTdUooskJ9siipc9zfA+KvsnRjQj6EmeW63iziDj28YWAiT0kyly8GaiiQhx7eJnP\n1v4uk2CCYGggyYSZRK1Yp1Fu43gBogSDLZu63OLhm4+YjRzCyGFr/x5oIqurbcI4pdCUGSZHqFUJ\nVYb1jXlyhsrxSRdDy+GmEUk+QTcUsiwmGMSYpogQZDh7Okc/SbGPInRDJ0kyJFkkij0UGb7zJ3+F\nMlCxehmOEWDWDOSigZ4r4h0ljB9k1PQiPe8YR+zQDbd5/ktXWb4+x73xfRrnFHqzASM7JstCaosl\nym2DsAxvbt7i//ijP6MzGXH//g6yInJ2+RKO5bF/f58fff8j7t06RFdLnFu/jGApLM+3eXL1KucX\nztIWcuRT/efm4i+sCDz1xBzVdoFSu0wUgCxIiIKIkAokTsbRTo9iVoNJghqpxJbCvY8ecXn9DHbH\nZdybUmnlSRKVwXFE5Co8enTA0a0xV1dXEKopUq3A2LFJ9IjJdIZhFFHVBBmZM2vPUGo3eeblJynq\nJnLio6Qep1eXuf/hhzxxfoN0AsP9GUWtgaJCHGcYeoHRzGfruMPD/W2WlxZJfJXByKYzGfNgd4+3\nvvsOBUVF0ABVpdYS0XMiFXWD5aVVdj6Kmd7M+OjdKYE+4tl/UqQ/jB47zdZkpLzBuTPzXD11Hjyw\nxxnJNGS5pbP9IGG4KyGLKmEs4vvOY0EUUUGWFNZPrXHq9BKJGDA5jilrRWQkdCFDQyL2PBYWGhTN\nAupMpuEt0/1BwubbLnff36NcKNFul3ni7AKjPY8g0lh8sv6xGCryjDSccuFZgeXnJDJzQHPBpLPv\n4B8mnBx6DIYDJGSsvZQrKyss1NsM+x5ZAlpN5amvPkGWixEDHVOVIJKwrYiiUSKXmQjTCPdEw5AM\nrIHNH/6LH+ONXSQpYm/3iEozT+BNWW7NE0xzpBZoiMipxvf/7B1EFFIxQDIl9EKJajNPltnMzRXA\nF4htl1w5j6RKhGmEJCo4YcRoluIHIpIC1bhILhORRAGRjMAPAYkoTDBlgyRNUcKEtUurJEsxbilh\nNAhJg4xIc1DPwpWLa5yqFqjWTNRCyurqEpqhcbBjEwQpxbxEFkEqKox7FtZDGXcfJA2KuRoXLpzH\nDlL2+12OuiOq9RLnL7SJg5S93Q6WNeD5a1f54Xfu88N33+Vb/+57zKZw+fzHz338h/GLMx+RU85e\naXPqahPZTIAMRZVRFBlBFBAzkc03t5BSGXIpRtNk8cIcDw4fsP5kEbVhgz7jyRdWKbdKYv4RAAAg\nAElEQVTz5JoSTz1znmiacvOdPYrFOoOhQxQIpIlCLGmIeo4wfawXf9DZorFS4u7WHZxghG+dkMYO\nu50OcSqzsnEWWRfA13DGDoZUxBByTMc+pl5leamFINnMZgPiwMYdWxAIlPSU+dMCL34lz5nP5qk/\nGXPuk03q50TiLMR1RjSVHEZBYeNKjt7AJk5THMsjV9bQiyUCcULrnMjO8B71hSora4uYegExMyip\nJe5/fwtx5qCIMr4XYJo6gZ8xGgWEoYumRWhSQjmfIw10MkEljFIEOcHIZRh50MQIRTW4ffOAa2cX\nuXRqDmcaYlkpfqBw48Me861lAi9i6nt/B4YlQlFi2PUxciqFfJ7RfoQCxHEImoms56iuKLiRw/0P\nj+lNjymdXsbcMJh7PsexvY3l+0iqRJCkiKqAEEF/e0D3wQC/nzDcHDJ+OOPoow5BP+S1P94kH83j\nnqhMuxZFtc7JcUTipZhphbrcJpyE1Bo67cUiyytNKhWR/miTYknHcUKCMGXxbANfi4kCHwEBLwhQ\nFQUpA9lIyUwPL54RKCFuCm5ikyYxKiqSoCEaYC6ITGIbPxS484M98lED0xOppgFzF0o0L+eZjCds\nPhyiSzGuOyOOXFxnzOpai1xZRq4mqOXH47/D4yHjE5/wJKF3x+HT556js33I/tYB1tjFNA3OXrqA\n7SfYgcP6uTOUKlUwEnY7d7n4fIFiLePTn7/KC58+gx/+A/YirNRbvPbjR6Sih1bSMAwDTVPQtcdH\nX5EcggShEJDKMZHg0x91GdsCZy+dZWF9kTRTOTjcpbVisnq2hoNF7UKJT37+E/RPbEIvYzy2CfyA\nQqXG2+9voeplOt0hU3uGPRpRyhVJ45jF5Q2UcoOx65Mv1vjLH73G5794nd/8719Bq+mksopRlECM\n6HeHFBKXM3MmphpSMjLm5vIsLpQpLdS58ImLjJIp5WqTXEHjpN/HjmfcengbQXE585zK5399lZnm\nsHZqmWqtjSLLCGlE6kPVLLG33aHRqLE52iYyE7SySn7BZORNsN0E3zVIohjD1AnCkCROEQWB4XhM\n5Eb4k4gk8djd6ZMFMqGX0mrViOPHas2W36d0TuCpX69SvO4yye/z7KvrsOLTtbtUlkr4yYCoF9C7\nP/tYDF+/ccjtHZ/pWGZquRzuuJhunnrL5PwnFfIbYJVsHDOAiwKxHmL3XBxjiLmWMMVHS32KFZXT\nzxVYuiwjmD4FWUVVROIkJIliSAQSUjT1cbtOJPKD79wgnyswf1bFM44IyyMWLucYeDtEcUJBLRF7\nEfu7Pcp1DcsOiJOEyWSAaSi0W2UKa3lKay3sKML1XRRFoz8YMulPKeaKtJpl4iGEaUzr6Qbzp+dI\nChKxHJNrF3nicxfQV1ICErI4Q0nB3fPw+gKjKKWgNhBcHf+RRv/A5db9CWEmM5pabHdP2Bscklsx\n+MJ/8Qnyy3niIMEwZZ68fI35Sy1yLROmIvE0xFRzNCoteoMBN+/cQdF0BC3HeDYgwkOSKmTRPLXi\nOWTNIMFlMBtxdNz5ubn4C+MJPP3VAo6kEgsGSuxxcNtB9kUWFmsEkc/+7hghhM/+2pPsHw2wumPc\nXgJCynTqsv5LZTLZw9AMuoMp7XYb27JQTAVdrTLu+0wHx9QaCiEZG8tnCAON4XBCwpD19RWszojL\n157m3/z5X7C0aCKlAg/u9Th9ZgM78DAMlSjpsv2az9PPXuHW4SO0LCCIY6p5nVhNWVxvY3Wm9A4S\n5GbI0qJJIkckokxgQbNeJYwSyCI01cB2xuRLAgIBwSAiV57nwXafcGzzxFMbTH2X7laXnGmgZCqx\nrnHnXhc1lLAeRRRUjciLSSUBQZSRxJRqrUznpIuhKihGzPlLq0z9GZJRYHNziOfaVGoGxXKR1mKR\nVJnR7adMT2Y884UV4twBTaONNRN4/60j5golmq0lfvjnH3B2tc2gN6O39bOF4PKrFTIx4/i2R+yI\nnF6tk4khST7Ek1x0WcR1BII0IzZDSqMFSknEvdkYvRmgGCpz5QokEZk0odEqMF/Z4N/+bzdIHZVG\ntcrMsQg8H1+OqNUqhAmIdszUn3LlpTVEJaZsSGAo9D2PqdsnTENKuSIXN84y7uyDEnDSE5iba9Mf\ndPBdn7X1ZW7ceIihtpGFBNsOyYIUbxQw64fkKwrnz2/w9vfvoOgqC883CcMO860VPvqrPZaf1ZlZ\nMcmhgXNioUsqkqjjJzaKLqLoMo7noyLiRAn/6T99gaPxPlY0xcyKSAKYhRLdwQn7JwHJtoDghpx+\n4TzqfJEgdvD9MQVdxnI86uUqnWGX4XiK7wQQKeQllevPLrO7s4shVxkMR6jFDCkvIkkp1VITXdT4\ns//17t9k3j8snkAwfKytZscTFC2l2FbwTwx2tgc88avzJMWQheVFJhxzeMOmbFSxhl3iKKTRLOLN\nbJIc2O6MxaV59o+OKZUKjCZjBMFGivKkgUpiyQiCykdvbVFv1BBNcJOMBzs7lFKJu+/dYqFc4WTH\nIhNjZFVn4vrsPzjB1DUyOaB5vsrecJOFqk6SKaSJzMnuAHM+x9HBDDEEMUmYy82ze3+fxdUiaSIR\nezFdf8xk5GKWNOrNENsGsxwhJD5mrchsOiOKQubnG+xt7jFLUkxT5GDTZ87UOOoPaC7UUYsBVU3m\naHNEqZ0nXywwPOojZDLdzuCxBkIuh+vZOLaAn6YUqiL1tYRUKNFqVbBmPkNvRDjzid2UvJjnR3+4\nza/8J4v80b98xPOfXeXlF69ztLXDZNilVNCpr2rEZkJv62cxPPhJQKtRRpxIpLOQ3cmYucsizYrB\niWOjiApiGNIqKtTaLWbEZHqV1tAmFSQkKaFd10gyASijGyl3D26w+JzOztsxoiYRjD0ySSSfN0nT\nmFiKkAs6WSIyt9Tk0fYmumBwcH/K3Jk6mZbH8meU8iabm48oVnUsJ6AxV0GTMoIoYujFtEXIV2UW\nG2X2trok4YySWaSgligZAoP+lNvvbyIpIookEE1h5AsE2THNazLDIKJQVqhUZLaHKqKgIBAROylJ\nFKFKCkQiUSyTr2vcfmPAOLDwRRcvcyjldU4tBhhamatXDaYtn3MXl/net17n8sITdEZbCInI5fWn\neHS4gxWOEWWRwA0xRZO5xVPcf30T9Ykqfn/AvQ+OWLxaQSmEXLl4iak9pnPQpTP7+TZkv7Ai0DsI\n8WwRAciZBuOZSxYPEGORe7d7LCynxKZPNJHQM+2xb70foWoSo76Nqank6hK6rjPasRDQSRIFQ6sQ\nzgJ8z6dUz+NOJ9R0kZjHFlWKJFE0S0zcMQvtBu7Mp1qrsL/f59LFFYYji/3dPoVURw9KCImP1wsx\nizGjvk0aZqSRRjpScGKfMB+hGTKmrmL1Q6paAbsfYfkO9XYBXddZW1kjFjN6wy2ODiYIsoGhiUT2\nDNDJGTmGwwkGMbopUCjqBI0YLdMpajqH73VY/mSD9vkSyAKiKDOdWAiqRuKGqKqMKIv4SYhi5Djp\nj2mvlZhYQ6oLOWIBLH/MNEpRpZR6pYydxiydK3FWlggcn+svtym3Ux6Nb1Je0klHGVIuZRo6iMbH\n/zWmWcpxd8LC4iKHbgc3suluFZGbFisrZVxCUGVMTUBUM8y8RLc3JpsU6Q6GzK0XOewdU2+WuX/L\notHIUVlcpPVLHqVGxO0/PUCRDcx8Ecu1mNgO17/8DOPJkLzls9ffJHQCtrouuUIZRTHRMwtFqUKm\nkcgC3fEUTTXxbA9bc0g0geWlOmoao2kitj2iP5yQ003STKbb63FpYwl7GCJLOokmoIoKwWiKrgv4\nY0j/X+beLNa27DrP++Zcc/V77fbs099zz23qVs9qWMViJ4pqaUuAG0FSIiEIBBt+CAL4IQYSwAby\nFiBPAYI8BQEc5SFCFMSIY9miDYmiJJoslopkFatu3b47955mn913q19zrjwcCTDAQuiHAMX5vJ7W\nwBjzn2P84/+FQQQl+Vzx8M6aqBGwnieY4sIkt64hXaVIy0bZFlIbbn/3CWHbxu60ePEXtvBtyZOb\nt7DtBLdr09vr8Sf/5gekC8NqcEJRCCbnK96Nb7IqYqoypev5OFlAe7tBM6iJLtvcXzxkPJoSKBvP\ns0iW8C/+8HtcubFFmQgm5z/dd+CzQwLa0Awa2MrBMjXLeIEKPMrSsH6QUm8JFs+eoIIO8jDjpatv\nkn8nJy9KVqsSs5ToEk7P19SWprHjkC1zHD8gHsRIx2H4cEnDcui8vsU8eUTYC6lExXI9YnejRbvt\ncJ7FHB0/4carfWpLIH2w0BQJ4KToRc724RYqyEiXC7IzTSsMWLPENw5qLVgOUibrlJ1LAefLFL9R\n0txrsF7FPJrO+MXdBs8GY2ajmKhjo0SbybMVysDz+9f4zg8+Ynu/yU63y3Q04fzWmvVM0bwkWM/m\nuD4MP5pyos/x+g4qEOy8sMPjvxpSKI0oNb2gwypLkGXBIqnYO+hQS8N0pZFOhV0LokCwmBbE5Rqz\nrpgMJHUEjq3xIsXjoyGtdoM4L9m/fJ1JdoQuK5q9T58OhGGIqG1Onw24+pLNW1+6Ql5vsQiOWKc5\ntWrQ2gNbpeSjnMG9kvHAIABHeozPVqiNDuezDOWFTJ5afPhvn3D5rZBrz7e58XrI7XcnrOMBQeLy\n5jeuscgfkTkZ0vMYn8b4wmPvah8dCnI1IluUOHZIkkiOHp5TYbjxskVGhSkkthRUImE0WuKFAaHd\n4o3Pt/nh9x9QhobmlsfKQKwFHd/F9iqC0KEShlbUIXdivB6UuiI/luhVCQ1wlI2RBpMZLKUwWlKr\nArvlkFoGdzelTgpIFLf/7ClyV2NPFeunOftfCpDKphU2ufylPp6KqZcrOl0XbXKELNjab+B7IQe+\ng9QCJRU7By56XZGsDAeX2gwWMRs7LntWyOThmDSt6XbbjH9KLn5mRWA9LylVTK4ndP2IL3/layTW\nGcvxmp2XAuLdCc+ezcgWOdGOwzP9hLgZ07EbuK0GaV5wcP0S096EXqfLagm1KVmO1iRDQ9ixONzZ\np8oM3/veI375N28wWZ6ztd1jfC+m197lfDhgla4JI03kh6zmUwZHC6R28K2Aus5I0pLjx6e0+4pm\nELJSUwqvQGQSx/JYjWJ0qbDqmvV0xosvHnI2eEhdwMvvvM4XG5JVscTC4Ho2AOV6xej78Is//zzv\n/cmPYemTlCD3WpT6nMkRXHvhkE8+esT2dp80LajyHGFJXMdhNlpTJEP2Dg44efwES0JWFAhTI5VN\nJ4hI65xwOwBPkU3HzCYZnukgEzgbzek1AuLFCtVqEOx1uXX0gBdevIprFGf3Z9x79wN0y9DqRrRa\nn65OsxzMsFyHIreoBEyrU9o7JWIl+OCbCYvRjHan5mtf3+Du+wWzhznd7SalqSnRVFXG7Cjgi/02\nw9ma07OMho5Y/Ujxox8N8dwWfsOjngkKS/Hev30EGyV04atffZsHxw8JtwNu3XmK8jR7V0McW3F+\nOqKqQg52n2OZTRkMZvz8Oz/Hv/j9b9F/roW/q6nKknS+5nDboxX1sDzFbFUStnKydMTB69vUscI5\n88hMRrJOOV/MufLSDov5lJd2D7mVD+h1I8bnM6QAx/GojcFogWPbaFPT3vT5wpe7PL4/QA/XjI7W\nRPhs+JeIxRF5KXny7Tmn7hInTHjt732ee4/GWCbkC2+/wdPHQ44nI1yvJNVD8qVhO9rn6ekRVS04\nuz9E2JLeK9v4dUqe5wyfTOh0OoiqIp2UPzUXP7PG4OYLfbJ1hq5qFBJpBAdvNZgvZ8hugbtpMzup\niBoKbI0vG6RzyehojPIc3L+unJ2uRV44nD5YU5YZjdAjryyavS7xbEArsCmtnNe//BzHw7u8/NJ1\n1nlFmpXMZ1PyYkWJRmuHfus6zx6csX5qqFYZWZqiLAfpKWqVIR1Dml+sRivTYD1cobSismoMJW9/\nZZ+1SVglU+rAo9nZou0IljJmMZ1iRMVWb5v12YrnvG2+++OnKOMQZ5o6TbnxTof+gc944PPRNx9g\n+YKdzT7DyQxXOFi+hbYKGl6T6WyNZ3us0xhhDJ1Oh8VsSZkXXPvyDvZexuhkhq4UjciQLCzKtMJx\nfLzaZ3I25bUbu2SVZmASUp1w6cou45M5Im4TZzNufLmJKROoc9775z/ZGGxdcdiwQw5fi3g0OubX\n/5NXeHb6lJu3EoZ3fRphjicc2j0fNXcZH8cM4yXSclEdgQxTog2bf3rjMl/70tf4J//sD7ljCdrb\nfUbHZ6xTSSQt0iqjoKLIarb3D3E3a+49OsLH4+V3Dmn2Fbfv3ufg8g6js3Ncmuzu7TI6n7NcFIxO\nz5GJwa4ixG7B3js9TgdjbJXh2jZ1anH68YXzdKMDjb5idVqjF5JimpMWFQ3fI3BchsmcF169xuDJ\nOcmqRGqFqCva7Q5pFpNXKQ4+TuCDk9Hat9n5ksBaG86PNW98/g3+6A9+QOOKzRvv7PIX/+MDkOD2\nBH5kYXdqvA2bzY0d6kphas28mDNfDS/Gmrs7pOucZrtPkQqubvb53l9+D7vtsyoMZm2IhEU8zqmx\nCHyHk4/mf5N5P1uuxJVTUVQpjlTUVYGwLY4fnLD9XIsgaqJnBscVuK5i2+9SxhlxNWf3RofWdovF\ntGA1KEhnCbPxElMnNFoWbhualwUbh5LOoQORxu9E3H34COHYnAxPKPOUvBRY0oXCouG28Rpb/OW/\n/Jhnf7FkdH/M9GxNmUqELcmynKyStDa2efXNV7FsQ2nWtA5CKrdAVrDbbzI7zjl/tKZVX0KfSu78\n6RHjj9boI4MeFHiFzfLJEnsquf1ggF5qRCXw84oNL8KyFPfjMSdPJzQaDpZwiA5dtq+3KcqcbF1R\nzAWDxxPIDFWWEVg2+7sb+KrGKsWFWu41m0W6okwNe90eRjiUsoaG4NoXNtj9nMNXf+Uac3vByWrE\nztYGnS2bQsyxOpppeQwCPrk5oL1zgAijT43h4csBTthkVo555SttHj8ruXVnxW7vEr/y64dUEqzQ\nIMuKziUPQ4UrGmAETl2zv32JbJBz2Nhkcjbhf/6f/huadcLJ0ZA0cUFLcmFzsLmLygW+bbOYjzm+\nM2K/u4Hlldj2BdW2Ydsc3TxF4VCEJc/WU+bZOeliSoCLayssNwcEg2cT7MpQzCFJaoRTs3HZxw9D\nLCGZnwqSE42ZGEypCCwXU8DwfE7HanJ685RiZZClwXYFaZaTphml0biuT5EZZsmU1qHPjc/voxLF\ns/mC597Z4o//1V+hZzmjs5REVdz4/B47r27zd/+LX2dcxmS6Yj4rMYXk8ZMjpGewHYsgaBAFFlIW\nNHsNMpNTiDnLesE7P/8i/baNrgp6rRZCBCwnFb3NNqL90zUGP7PnwPauxyRNqGJNKaE2Fa8dvsjR\n6RGL2mABQSB49mTFuEy4/kqXTadLUadkhWL22MaSmtDrsYjntPoBtShxfYiznE8+/oRWOyRZxlSm\n5rf/87/Dw4efMDsf4+13yOOMfA6f/CDHJJo4HeFLi0ZkkSYOe3uXQFTM4yXagrwomJxNmU7GqGbA\n9ksN4tkaj4j5cc5qbhieL8AI1ucn3Hhlk/5GQD5dIoxEOxa1kgSuxWxckI1ddKEoU0N3r4/dNhjX\nxjMWZ8MJtS64cu066SLm/HhB70qX86MRruVfCKOWmjBsslpPOTvJsS0Iex5xDGINMnfob7goYbM+\nrmhtXXxvspTxbMHj4QBT2lQlLIaLCy5EVqIsi96upt92OV6tmM6G1PrTm0s6WhO8KInLitv3Fkxm\nSzwXZt4CYZ/zjd97hf/jf/iAz3/JJa4XjNYpXm1hhxpXhZz8eIbvRoSuTbvTIDYTfv+//M/4rf/2\nf2Po+LiOS7qKOaaic7DNdDmivdPEDSXpOqZvtzFJzr07YxQuutTs7e1z59EjNAkmvmiWzeZLXMvF\nsiy0yLEyiTQ+dqGpcsFCGFynRrkprnKIBwWWFNQSlCVwHJssS/FceZH0iwLb9UBZmErT7DbxGwG2\nVqSLFVboEKo21y4/h+UXLJ+WmETyx//LPZi42L7AXqToO5Lx5gkvvfgK48U5YaemqCTGKqltzauf\nv8F4NSIMPU5Oz9CFYDqc4tgLWn3F9t42k9lTRMOnSFaowjAZz7DLkP5WE+XEKPPT7/nPDAmMp2Oc\nMCJNa4pEU5qaDz5+iCt8dkIfk5TERUGyUtSlIFstSZZDsrxiPJty+FIHr+8xLQsKV5DYGZVnyPIV\nvsq5fDmk2dc0+pKo6/B//l//mls/PMaZe3zy5w+4/8Nj7t0dYtU1rlKIvCZFMU8LKgzjyZhcZwh7\nzdaeT68Tkq9yHN/FDSXxfMH5oww9a5LlGbrKsK0S35W8/Y3nSTZi5JWEy7/gEPdyrl3dRVg2hbDo\nhIKszLB9QVzH2D2bem9FbKc8vj3i5ZcP+MVvfJXB2Sm7vT4HB10SsURLRZFX2LZNVV2s9wrpIIRF\na7vJi994np//3VcJwhCdlExna1brMYe7bdpui+mzFelSYykBtsIOXA4uXWY2WVCsbKqVRzq36G9t\nczqZIqTFZDqlt2l/agxTKRBbGfuvBOxeF9x4TdBqupRVzuZewKPbN/m5bwSQCibLOb/2jz5Pcb1k\n/6uCZZawWi3Zbhe4YXyB+uodxB78zt/7EmVSsF4llMaAJyiFxo4Us+ycaMOQpVN6UUQyzdnsBHQ6\nPp9760XeffcTmm6DYlFRVxVhq0HQdtCiBNvgKvCFolpk+EUTufTYCPo4ykGqkl5nA1mAqEEqgZGa\nUpdYyqbb28BoSbPZxFQarTWWlChfUKIRNtSB5PCtq4zmY7735x/S6LYgr8nvKhrzgPaB5G/9k1/l\nb//emzh7NR0VcfLkFt9+912EHbBYFxxe2+Pgeo/aKTBWxmgyIFsLqrym3wnY7kdIobH8hLJM+fYf\nD3j82FAazeZhl9rVpNWa6bimWPk/NRc/syIQrBtMjuagc6KmixdZWNpw/uMESwZ4mxGB7PLmWztY\n2Jyf2kwmEM8y+irARRDYNj426/MZxSilnKUIX5L5KVEvxFKSsKEImhD5ir3dPiawybHJlyX1Cna7\n+1BpuhtNIlVj+3Djc9eIyzWz6ZL5ueDk3or1UBPYEavBHJPmZBlc3m8xyU7wHQvluvheBzty+eEn\nd2hspyhVY9HFs9vcGywwukt7Z5sXvvaLVMZQlIb+5iWsxoJSuOSJ4fCGxdg+4v7xI5ZpyfHpMwpt\nONy/hI4rqsqQJAnKFqzXSyxl0LVmOIj53h9+wL//g0+Y50sIFBqHrHKJWm1GQ02zE7KceMzvhMw+\n1mzYPke3h3QaLYY3x4hTTVetqJYJb778OpuNiJNPUuJp51NjeDWwmD0qePjhClV4lFOfdiC5tB8i\nVMRsVvPko4LxuGA6MszWJ9x4OcL2bP7W771MZ8/BSTKs1gHT9QxbnuDR4x/89i/TMRphwJWCxTSh\nzDPmWU7wsseoKmk2NnBUyWqecz5ace2NFg9G99i+GmBJF4GFZQuSPEfYijK7QEfT4wqrCNG5Zp7O\nGA0XxOcp88crvHSbT94/oq4luhZEvTYqslGhpLfdQNcZi9WcxWJNjYTaoigMlvGYL86ZL1eYjuHI\n3OeL/3iTL/zOBvfuf4vjpyt0bVPaNfMnBd/6777L7KlPmgG24DwxfOHt67zx9iV+7x/8Lk13gzu3\nHpAsY+ZnS9aLir3dkDdf20IYsJSi39zi1vcnLOc1b351l0sv9wkaPvdvn7Gar1EixJSayeDT5eL/\nw/PZIYHjhF5zg6IQZIlmOU6oapeGE3Bl4zJ+ajN+uuDOdwYkukCnmmwimZ6UrNKSYTZiNJpxNpkQ\neAGVAKfpkVc1rpLExQpd5AShy8HBHr2+wgprCr+mkh5lYqMTQ7MriTZtdl7c4LnXtlEenAyeYrsC\n33NxaguKC5vz3rZNY98jVA2mD0uIal760guYymG9zojTNY2tkldf7+Gpi6Wi8eSc5WrCC9d6+J7h\nfHDGB9/9IVYNoesQ+BWzYUXoKJI8o4zBzUPGT84JLFiPEkRdI32B8GpqNM1WiOd5SAuMqRFCYGER\nuA3e/uqLnP5wwOq+xsNmeydgOH/G1r5Nb7fLYrxg9XCBmwfs9Vr0ty1qd43X9+hebXH/xxWP3y/5\nd3/wQ8qBQ6vlES9GnxpDJRRbAbQaAenS5dmDmMXSEER7vPf9Z6yeWMwfSep5G98GxxO02y22D/aY\nJymFEmyEPvliTpkl5IlA50tWi3P+q996mxdDjbowBUJXLs3Kobqbsro1pY5Lmo2I7f0eW9stqiKj\nNIbIbzMenNDpSVSQUckFNRlOo8bYGte5MJC2pSBsuRy8FFBmBdZasTia4FU+ldQIB6o6JwgtTA3T\n0YI4LtBaEIRNqqqirg1K2cTpHM+N6Pd2+Du/cZ3Pf95D6oL5PGVeKlpXFb/0n15hvcgxlktZxPz7\nP/o+6fmaJC55+fIVfC8EmXDzzl+wzJ6C8bGtJsI0iJpNXnnxNfLEYVnm3Lo1YR0b1NRm+qHmR386\noGXvk44doswj0C5GV0gNm92fYSTgeQ55vqLdEghVcHC9Tx2U1Erw7g/ex7MctkMHWdZ0wjaO8nEL\nj6jyqIegpw6VyRBWguMbvvDlN/CjBmmeU1sG3xVsbbfB0kyXY4KWh3Iqlosps/MF23sd+tdc3F1B\n78UIfzNmuDjBdl3yIkZYUNQxzZ2QxmZEVi558XNXef71KwzHK/o3LGIx56MPbiOsEs+v6W45/Mqv\nv44XrClWGW0/oiZj71KbZ/Mli3HMgXNw4S5sanwXNrohpsgwmaTX7DEeCE7vxPj9Jm5L0L8aUDsp\nVZJjKrBtiyB08YOLEZTWBq0NtalwBPzwW/dYPi6Jn1YcNF/mwXsLxMKHicOtPzulHlcoJInMGK6W\nWFuGxkGLSy84LKw5m5sB6XnGZtRjNV5x7WCL2XD6qTF8/MBjZbWwDCzOQdY1UUzbp3EAACAASURB\nVLPHrdt3cUKB05ZsXffYfs7CCza5e3vJ08cxT++PuPn9x+iJ4eBKD0RG2+viez7tqIEtNL/522/y\nj3/jC/zDV/f5xWsCZzzDyRTtVQtrojBpiWvZGJNR6iXP7oyoziSN0qVcWkwnGcqxqANBEko2n98h\nFim6FlRZjLQUTmRjN2FnJ6CSGm1DoTLcoMCNKtJqSpwmF76BwsVocB2P5XKF43hIaVHXNcJIikxz\nenbKD76VsdE6xDUSpSump5LJUDLXFV/5nT0UgtKtUJaN1bCojMTXimQ553y4IEtiRoM5cTrj7PQp\nFWtmoznf+e6PuHd7TL7Q7PZCypOC6dOSdKywlza3/90dipOCKgNbKWRtsOWFdd5PO59ZY7BWNYss\n4aWXX+Dhvcc4Gyn9Kza4C25sXWaZCmZHa0RdMXmyIHCDC0FPX9LyImovRXUtXL/E5BmPjj5mndbU\nGsrSphNss1jNGEwTqtpw9bDPfBXT2exivVogK4M2MFqO0KZi8CTBFYrujkuSh+hUIaoLltvxswW6\nFHzzj97j81/b5vprIYnJKdYKs1pSK5cbb+zQObD53//N99h9XrPT3mO1WvBoqYgqQSY1rnb45KNH\nXGvtcaxHWI7DcrkiyzQ6yyjEmp3NFrorMIuCaVyCL2kGPrZT8MbX+zy8PyUhptkIiJp9jo5OLsY+\ndU2uNI7ySbKKqNng3o/uU9dQBBpVGPzaJ0/W1KpG54Z4WeLuGkw6QEmfalnQ3tlknVSMxlPalwIq\nv8R1P30nfbbSiA8KtNRc3uhz72HMm29FhG2LaTZiOStJM0NSTDB1zmpgsAqXMpAUE5uyzrjW3WKe\n2himWOExjrQRUoJo8Eu/+XV+odTMz2f8xQc3+aP3H3H/eIHTsImiiDKJGT5eoPouXuDQ6ZXMkhHP\nv7HJaB2zzFPSRYbUFomb0tgM8D2X5WSJrw3XNl7kBzc/JLgqiXYaLAYZVVFhddq4fo6rIwanCY3Q\nYxWvqKmpqfA8G2WDqWuqKsMWDo4L2bqktdnj/uAEmVdYxuXgks/peykPPl7Q3nfpvODz+pc+xyQb\nkSdrrCLm9tNHJIni0o7PlcNrxMubBF7EbH5KUgq6rR5moRkM5+webqIszfF4QvfVTfa3Nnn/mzex\nVYQXCFzXIctn2LhMZ2v2tz+d6PUfns+MJ9DecsGzae012T70iMsxuUjo9EOyrOJkUOKlHp7bYHBn\nSssNWZ7N2TncZz1KyNWa8KWSVt/i8PB57t99wFZ3B9dxma8m1EVJFLkMZyuuXrnED28/ZLUy9DoR\nrXaf2fEKUS9xXEPUEjS9iEZ4yHvffoAocxwUJk/RQiADxSsv7LFyRhixZr4GrRpYgcXZB1M2troc\nH8947Yt7WLbHyfAuKgeZKWrfpWFr1usew2cTdlubyDwmWWjcpsTIkmDbp3QWGBlAZhFPY7r7WyTL\nGctJRm1Kdi9HLNcpUdXjyb0BFhaeiliv1whhocuKKIxIsjmuHVFqQU0NGNzAoS5XfPGdQ56Nzth4\nYZMBC4Q9p0xqrJHCijxmg5Q0kXiWJGy1aR8G6Kri0t4W/89//95PxNF/RcJS0jAusZPx8s83sb0S\noZpYts/D28c0hU/UCWh3N7n13Yc4ywaD1QhP+byy4/IPv3SdzdBis+thRyF+axO7vUMQNVDKoaxL\nbLeFLnIe3P2E3/+//5Lbt4ccHO6AtHn/7kN6V/YwVcppFhNdcpg/XWLmEqM0KhQXHhNxhu0pZoOc\na1e32L3cp6wtbt66xZVXthiORnhWhySOCcKA9XxF8ixHigbZdEW3s4E2FYvFgii6GJlKKYnXCZ5v\nkVYGJNRFzc/9zhu8+2fvUmU2b/ztPU7P1rAStG4IlvECV2q0HfHa3g3uPzpmdDZnd3+XODlntcro\nb7fJK8nsfIHRhvSsQucCq6rp7G2ALFk4c6JOj/XDGeWopnYUxqlo+BFh4HN89xxXOigbFoO/WQX/\nGVMbbu+GmLrGVJr+24paFhxcu8rTZ4/oNrokVcXkOMf2a8qVRiwr+k6Ts2cLfCURkaF93UEGgmVc\nkuQVde1QFxbaXPgUtrfACl06kct8nDIbGDzXJuj6KK/G6AxfKqYnMzyvQbO7RbJU3Hv3Ds3wQj5q\n+2CLSbZAFxWlVXHl8hZJkhPseJQyRZYesU7wVYvtnS63np2gxAgvVeRaglTooWI9LHjxnUOSeEyw\ndkhSQV4sGc0rGt2aVssmbkhafofzZ0Oi3gbpeEkyK8jWFUpp2p0WZS5JVjlSl3h+xHQ+xws8dFni\n2S5VVaGUS5aXlEWJsDSOE5AnCXvPb7B7tcVSLhlXE3obbZKZJp7kdLeahETc/+gIC2h1feJohfQE\n/a7Dh/989RNx3P37DioV+M0KK/MZrBKaG02KRU6NoJjWNExNjaJKJel6zUF/l7PFDArNf/0bL/L6\nlW06gYftNvD9HrbrUCNRVo20LDA1GgvbVhghyXTGR9/7gEJbHA3PORsWJErw4dldcrdBllmcP5tT\nCgvbr4k2XdrdkNVqzHa3z72/OuPqc9u4+x55VXA0OKPb95ieZzSdNuP5BLfhUE4hfqxxhYu0BFVV\n4boexmiUssnzDCkkVaWRoibH0Gq3CPyAg1cdvHabpyfHFCphd3Of48EpdajAJBhPgy05CLYuqOhx\nhclrlO+QphkSm+WwIBkL6pWm03SJs4yiqqmqCtt2cTZ99t/a5ei9p5TTAr/jEU+XIG10ZqiNjRIV\njguLwd8sEf2MbRG6u4blWYVTW4SmQeEV3Pz4Ps1uGwx0wy0m5gS91Mhc0Ar7nD5bsshBeIJWw6NY\nFhArdKkIApeN3Usc3TzDzWucXs3sOGXvimJ0lgEWYbPEVBV5Xl/YZlkS34lotCIaDcPJxwMqx0II\nC69sUjIjGWegGjhuSigajB8nqI2I5aMpuBD1NMtFwSyZQaLx2muKqc3ivAJHEF0S2E5Ic09i5JC8\nrFhXKw4PX+b+/RjL1TQIabgtlvOYRq/LsLFkODjn6vZV1jrj6OQEqTwm85Sw5bHd79DfbHLvwWPa\n/YiirNFFiW1bVFVFlqXUQiCVoBk1SSuN6Fj4W4q1XrGuM4SxGZ3OUbUhyyrmZxVJFdOwalw/YDIs\naIZt/EgTZ5++ibbTtxkPU3zXAquF/VHN4PaaTq9D72WbpR7RSlucnKWETZtGGNJu2ZwuCrpdn2uX\nN3FsmyRLCbQmng1RyqIVNbEcF6FcjOXghU0sJTDSwvYbvPlzX8GxfUStWS4WPHl8m/5HGR8+O2do\naS5/9VXef/djDl68TCJynj4d4knBwycjqlKCcfj424/ZeFHhtjSNIKCKBEmyxA0VOjM4ZYgMDKJW\nZFmCFJK8qOh1muRlgo/DYhHjeiGFrrACzctfeQ1/s2KV3SalQjQyup2ILFuQ+wX1MqPMKooCTCXR\nG2uIYyzA9V1UZeEiKGaS7KhClgaMYDBes3Npi1kyxZUKx5KUScL67owiS/BcHzKwtCLwQ4xbUwtB\nFSfU4qcvEH1mSGDn8yEyiVgcT1CWQ6oV11+O2Lx2iff+4vvsHGzx7NEE37ZQtSJZ5Qhj0X/OQ5sC\npQRCGSpdIR2HvKw4vPwCP/r2xzRdl/4rEVk0I3QjylVCtrRpNXvMlud0trsMh2PaUYde1EHWNSdH\nU06eTnnxC/skxwWTu2uaXZ/5fI4bNMhMTBj6UEv2X9pgWY3Is5IsL4mnBseyWC9KLn3dYNUKT7Z5\nepogPINf10TSpXJSGm2fcuIQtbpUuuD47phLUYtkXbIc1chejbfvIaqEfG6Rn9fMj+fossJ1fUqj\n0bXGcwVvfuFtPrn1MVIo1ss1USNCSsVsPqPSGtfx2N7pMV+mxGnM5uWIqK8Im4Lj0RS7EVCbFGUp\nGoHP8f0JvqVYT6G9sUEh11iWpN2J+PG//knBym/8s8s8OzrB9V3ufafAq1ocvhIwmc5xWjm/9vVf\n5Zv/8l3WZxqaJY6w6fsW42XM1197gd/9yjVWDx/QCxvoPMYLJI7jggTl+AjlU2HhOC5SKZQXETYj\nPC+gNBLlNamVQ1lVFGhO3v+AP/zWn/O002JqCh6cn1FVgmKsacgmg5MJjrC48WKXzp7D2lpxPjHI\nPGB7t818MiMvS4qVoZhrilmFEBZVUdBstciqkjxf0dvoUCQ5y+kaIW1anTZJESPsGq/nI4Il/rZH\nXpaYhaC9G/Hg1gjXNbQiC1O4HOzvMZlOWM+WJLXB6bgoy1COJNlZjtIX1uRUNsqukZ6FcAzKFeR5\nQWU0dSVReGR5jqMsai7yweKikFlGImzFev43KO5n7DnQfy0kn5aUeU2xlFCV1NoQXG1hG00mUxQQ\n2BGmzPBDySrL6FzysJ2I0WCKY2qUJxBWha5rirrB/HHKbr9NdMWmqOcUhUFoB5F6nNya0GgF2H7C\n9tUDlkWOsjXrZM36mU1nJ8RqL7CTba65u6jI4o//6Ls4nkPDU6R1TtN3uPL2JRZmwXxQEg9irl3b\n5dGHRwgbPvdLBzw6eszgHFptwWooqRaaw89FBH1NHUr6nS5VEVLXU4bnE9xJg9lRSlKB8myu3zjk\n4ZOHlDMoFzW9bpc0SVgu56SlxHYsGpGLUoKr1w65d+8eRoNSisVihe+HVJREYcQ6SaAW5EmOcgWl\nrLh2dRunITBhxaJc0tnsMTtfMj1a0292KPUFEcaRmmQiWK5zyuVP3ihv/6NdGp01D+7k7JlLqEaN\n8Soqv6BbO/Se2+XD9+9x/EFG2LLouTZFGnNpw+V3vvImzXhKJBTSMnQChXRciqLCsiTUEDQiUB6y\nqrBcH5SD1wjQBorCYIQgakZYMkC6LsY2yLXmj//ln/LH49vcJkXIDmf3xoQqwMdnlqfsbe5y++ZD\nXnnlgPu3npEnHrYrqKqMF165zt3HD6GU2DJA50uE9LFUTY4malkUeUnXb7JeJ1SlRV5XGF0QuE0S\nHXPplTYn5YgN2SJ7aLP7xmXOzu6zmKR0/Sbj4Qzl1BcKyy2LvVd3OU9PiQJBdmrjZ4rB3RlpygXX\nxQ+oZEWhS6pa099vs1wt0alEuBaNjQhVaGaDGa7r8vO//CU+vnebs3szuh2f8yd/Yyv9M/YcSJKS\nz31VMTyyuP7cDsZucHZzzNHJOZYd0vAVvV5AMo8ZTEuMr3juc3s8fHzGejShGzlsbinmOqW92WC5\nTMhnMTv7kp1rhkePRmBcamnhNxzQBZsHAbXU1I7Haj7GsW1KqXnu6mXKrZLzdUq+akAc88Dc442N\nN9i/2mO9XENVsLnVATtFG8lkGqOqkHJesjhb0+9tkLDg+F6MTBtc6XjMqxXXbrTIzg0bbZuknjM5\nT6myY7rdDRajBeNHNS/tNDlLUrA1zbDLkwdH9Jq7zJIlK6YM51Nc20FLC2XXKCVIkhQwfPjBTV5/\n/Q0++vFHlEXF1naP6WyJqTSxXqNrfbGubSkcH65e36QsYkpT0u00cHFZpyOarTat620W0ymtjYDx\nbEHpKizXQTwpPjWGWb3mcs9m0K94/P6AZifgymEXJ7rQcTh79IxVMcfUkqD2mNU1O7bFa06T610f\ny9tAWhV7e1dRIqIQoGuNKXPyIqMqEvJ4TZXO8KMW0mlQC/AbbXwfLGVjSkOaz9BS4gcRdS351b/7\nNfp/5fG/fud73MqnbPc2qXXN8fGQ2lMYURC2JVYLpONgZZraaFxbcf/OA7zABykAjakElqtxlY2N\nRVkanFCzMkuifpd0nBDPcix5YWBaobm8cRUnmXJ2J6dyU9bVKfM0xY8cFqscv5IYrVgnGXvbhzz6\n+CHOhg2mi23FTKY5xthEkY1tK+IkxRIWgRPgNlzW4yXUFoHyQdbUpBjfwo0C8kXBvU+O2PqcS+el\nHouhhif/37n4mRWB174o8NyKn/vGJRKrybfevY1NSfPQI41L2p2Q2soxjiBsSZqRx/nZjI1LHbpt\nh83apr8nWIcFp6MR6Jrehsd0lNNoWJhMYiqNlIKsWNPtdSmdnMV6jbIglhrqjMgJqUzKj28+pdtr\n0m4EFH7BptvmycmA4fmY0PXRlWC+XOA1NEoarDpFhTatvkOZp0ROCI5NFMGo0IxnM1Rb4YZN7jy4\nT60i9t7qkLpjTAC6qpFVm74qSBdLlANSNHhy9xQpHM7yezTbLTAKU9ckZYJlWVhWjVIKz2uwXM1R\nSvHxxx/z0gvPcef+HQyayoCpLIpS47kKIaDZCsn0mpOjIVJKWj2P+XRFa9MQ9XucPc3x3Aa1U5Nk\nht7uJutiSd2o8QaCTysDo5uS2Y9iai8kW2Z4JuEv7414+ZcOaG132G/0OHl4TtoWZA1BbzTnn/7W\n19nuRljS4LQVdQnT4TNqHBpRE5SHsFyEcjBGE/VcarZRro8REiElaaFJsgQF1LXBtW1QiiJPcZQP\nwuHNt75MuNHnT3/wHu89nFEdXGVd5mRlivHmvPxOn2wRU+iUsNFmtVzhKIcoDFnGK/yGh9A17Y0N\nkkKjBdhRyt4Vm2Vs0bZdnt5foi0Hx3WxlcLUEiEF3/pX73Fwo0mla66/7TKYjlGdnM2dJjIQzN5X\nlKuShvB4evcpQdtH6Jp1DaquaW82cDsBZ0eDv57+KKQtLwhKSY2uLtC0sWpsKSC2sVx14cw8GTI8\nmzLVho0bEi/46UD/MysCSlgEDUliYibjEleUBJFBqRovlOhqwXxdgVa4bkSZS4wF409W1KuKKT7T\ntct5mRD2LDzps5wVbF/rc7acsXXgU+YO54+WFyYT8wWtrSaO5aAtjVUrSAz1qqSya4QtifDRqc9i\nuGLvesjTR8/Q6UWDLQxCaBZIP8cYTTq/gNMlhlUVo1wbtxmQFkuuXtmkLCuG8Yrzk1N29/Ywy4rh\nvTm5U6IrgSVn+OYqBzs+g+EzpFWRLApMURM0BcI4VHmNVUssaWFkTaU11KB1ju1YQE1dGyxLcnzy\nhJdeeYEnR0+ImgFlXRBFTeLFElkLsnyN69hURY1yaupUIStJmefoOiVZrFkrTVaV+F4FKmOj6xAv\nUxrXN1ge/2QMdZWxHMJmP0L2Y1zLZm8vxGsbRoMTtvb6vPXcO/zZ7e8R6pLf+IU38MNtEldgLWvm\nqymOSNnfO2AyHjFZHBF2NrDb22A5xPmSJM7pdDpUdYXrNlHSphAFraBBlS2pyxStC5J1TCO8+B+1\nBseyuX71kP3tPq/fvc+jyZzTymaSFKhIEAguaNtbIVAx8xRSVghnTd02+F5FUVVomTPLwThNcsvF\nsTMOD9rMpzMuvRDR8RrcendOsk4wCPr7PcbVlJ7XYnIy4PafaXJV8OrXruOLkB/9yS2CjsFr9iiX\nKZqCdSx5+41r3K1uESgXlxAyBQOBTB2M1hfM0BqyVYq0L0hKtm9BDXUGs/M5UdjESCjihGJcI57b\nJ80WPz0X/3/P7v/Ic/e8YNeTeMsRC+Oy249IVlNee36Tm49iTqdLol6LjVaTJx/G2MbFkjZSF/S2\nu4xHM54+S1G+JKlLnDBis9Xi/NmE3k6bR+czXnhuC3exZnGaIUsI/IywY5Plkq39Hvd/8JR85iDj\nEnPu8uR8zLWre7ipoN3YYlLepL8dISuXvNDoYY3jRuiwYntrk9liQhB4hH2bMpyTJrDX2GSQjCjq\ninlZEnptVqspurb44uU9JmlKxpLXX2nw3W8e4VhdVlWFDGsOr7fxupuMT5acPFxhdE7b6TOZTVC2\nhS3ExWw6TXBcn/lihZQWrheCNNz8+A5vvXOVZbLgdFCQVimNXov5eI2RggpBVZY4doCoDXLho4od\nPvzxbV56dRu7H2GCmrPREU7kYkRJsxEQdnzu/vlPxlDGIUoIxuMzXvrKFudFjDEzViufyCuoVobT\no1Pe3P4KD06/y/NbHRobLR4fDXGVy+JpxvD2A37tN7cRymI2z6nqGV3fRXkRm5uXOH38MbMHUyzX\npdAlwgmQno/teSihWS3mdDobRL6HUjbSUuRZgXIMRlt4fpO3XnuL18oSR/LXyDAHqQi8CFOkFEWJ\nrjSWJZlOp0zGC3ReohyX1XpEWhiOj0+YiiZnTLg/PSG0Iipf88PvH/HS5edJ84xHz47obgdIZ8Ui\n1qTrnCCosOuAagmrMr0ovHOLvFxRZjkN26cW8Mn7d9GbNWKjwaPbc0jH6LpClzWe60Bd4QcB2pRI\nJKY2+L5LVhYYUyNrh2SZstXrMp0NufbSdYSbIf8jpgOfWRHoR4KO7IOdYSyPLF3jBpA5iuFsTei5\nyKJich6zHM9JtIXOQdowjGe0W13KKqOWFeWiYjwZwV6T2qTMh5LtZogSCQf7e9w/eYyyoRVtMF2s\nyZYx53lOVdV0vIDtzh5yZZFlKaF0mZYl+WLF3m6fssz+X/LeJNa267zz+61m96e/5/b39Q0fH9WR\nVFe2FFsl01VKAMEoFQx4YGjgSWXmkaEAGVQhQCyPDBuIpy4hRmADGdgGEjh2Iht2yS6zJFEiKXbv\n8TV877bnnnb33VoZnEfaCZ+KHhQiI/4mF1j7nn3OXnvvr/1//4/l2QpH+kg0WoHnBLx5+oiDT3Zp\nlyndHrQiIj5pOD9fktmG/rBH30kJ5ZCcgksHHu/89UOWWUNrLCd/kyIaF//2mNndCRtbWyxWMU7g\n0UjQruWFFz4JrcPf/tUSRyvKKqcxLY7jEMcxnufRti1JktDphni+y2s/eI/bz27iVhV1LkjjAttW\nCCRSrTkZoygiXqY4UpKtjvjCT13nrdcfwSQlMwVBxyEvDL3NLqWtefz40VPvYV3k9LsDvM4GqhsT\nTApG2yPeeX3GMIwIDr6H6Ybs3tzg+NSDpiApKy5evMl5o5B6i3msuTMruTSWuF6EqS1JvERUCV7H\nsLV7k8mjuwSDAd1OSGMkvh9gpERLsNqjaFriZYKSGY7jEvZ3sGGPuqowrUEKcBwHWkOa5FhriXoR\ndbueOaD1em+MbdnZ3+HS5Ws4rmK1mOM0ByRZyk994ibJIuaVd9+lv9AkPUlebPHQfcid0/tcvXmJ\nLWeHVZySzDLwG1RXge+zt3+RB995F3fscuMzB7zzw0cMRgFiq0d5HoOxWOmSPzSUraWLpFQ+eZHS\n6YRYDLa1pGmCbS1Grl382dkcpSVZUqGlQxC4zGZzRuNd0klOtw15950PT5P+f8tPTAlc3jrg5Owx\nneEW1hqEgK4XUduGjz9zmVe/d4cwUrjCZXy5z+q8wM4MWhnasqVMEtAe0oFmoekNFXVZ43oaU1UU\nrcedN2ZIH5qRw9Zmj6N5zOIoZ9QdUE8ztHEwpcW2DbPFCkvLaKPP6XuS8cYG3337NbTy6PRGrKYx\nrpIgFPPZkmsXLlPbY2QH/MGI2XJFrxuSJBadGqZ3E8qiYv9SwsaWJGsaPN9j7EYkaYapAsZdxdHR\nEd1Oh+UqpfYKOl5DlVl2dgfkYo5xJV7kkk4XuDKgNTVlXa9jwrZFOwohoKlqQJGlNa/+4Jwr17Yx\n85S4aEC5OBK0lFjTUhQFni9QjuT0MMb1fHZ3BixWOf3OFm5fUbQJ9aKComUsepw+5R5ubnY5n81p\nZY/RrSEfu50RdHxIc04eVpy0LQf7EYfpd/nKVz6DKFh7JNri+j6bqk/xPCzee5nd8Zi6LVicT9hw\nFU7rUFQJfmCJtvYw2iFXEjeIaKVDIwwW6I/3sFaiRMNieoyyBfn8PYokJAx8WulhtEtZVjjKo9cb\nrPstjF2Xl5Umy2KEbBFSYG1DUWTUVYvreRjpIDs9HOkwGnb5ma1NrsQLHjxe8Jd/cZerTs39rKHj\naOi6PLz3CMc4hDuarHHZGHU5mj5AbSvGVwbMslM2b4bkq5wqzhGOR+gGxJOES5f2KKuUuGkJXM0o\n6rNcpGgHev0u89kKoSUIg2gVdVEhHAdlNQIoihztSFpbUy9bDh9PEcWPGSH39+QnpgSkDTFOh0b5\n1OmKwA/pBBEidYmGkhvPXeTeO49I8pq2tdSVxXFcqirHZpK0qBlf32CenlFT0zQeXuNjTYKSDmAY\nhyG4Lc7I0t/SmGnM5njI6qhAoRAqoC4cykzhdhzirKKRDnFZ89ZbdzGx5TxbIcyKfreLwKC1S54J\n4vsnjNwBeTuBOsbULY00WF9RnFcoK+h0Q1wtSWQDlSWPM7qhR50q2jbh6sc/xhsPHjO+vsm9o/t4\nkct0EuO0mqYUJPMcN3KwbYWSEitACImWisALqaoCx5E4joO1sFqmSCmR2uHwaMm1K0PqFu7ePado\nSowbIIzAWolAYHyw1mVymnHp+Ysslo+wNmF5LtaUaW1LXypuPnPAjz6MGga3otPpUM5XvPNnCfKF\nbR79YMn8EF745LPsbPb5T0ff49NXr3BVG7TuMj8+ZOdal8jrklrQTsv4YA8jJfPz9yjKmihZMwDl\n7SlFHDDa3GW1mhP0utAKaqWQWqGUpGwF1mjCKCQabFE1ORQVtrGkaUZjEjobO2gvJI0zlvGCKAjo\n9QYooWhrcN2AqlzhKBdaixZPwDtaI50AMNRFQ5Zbgk7EBU8y8DSXRj1effse95YzHjRT+vsbvPmj\nlp1Bh7xZoELBqppwcG0Hqx3yakFjWxA13Z0eatNQzCXl1LK1M2Q2n+F6ElRLmubsXr/I+XRJGLnk\nZUbVtniRg+N65NMchca2FtdRNKbFWGhqy/Rkyf7uJn7ooLyKIvvPv4s/MZzAwacirnxiALTEWUmc\n52xs9ElXLXFqabOMKhVUywbdtBSVItpyWC1z7Pma0cVquPbJHe5Pzri8t8X8cI7nBsSTBYNej7xK\nCDY0MtR0Nz1MUzN5tyDULou4oC4UvdAldAak9RIrFS9++kXeee1N9rXmv79zxE8XNR890vH/f1IA\nf+Uo/sdrA6ZOwWuvJR/6n/E1By9wuf5Zi/QM4ahle18S5y1v/chhjy3yRvCVm9e4vbfBwcZlXv/e\nd2mNohEOpXFYLGMuD7pshpJ7r72K1ALtWA4ubjGdr1t0lRcQBAFWWrSr8a0kMgAAIABJREFUEXbN\n6Js3Bd1OlyCMCDub1GisqamLAm1rkniBReB4HXrRgLquKeqK0PPxHBdHrXMkXuCRP+kstHVDoJ01\nAMd1MULjug5SKsqqpG0rqjpG2Abl+CRlzcs/uMufvv4qwTPX+d++/Qr7ByNWy4R41aK1gNYifQfh\ntORNhXYivMBQnRucMuL8MKMfrUE/3aGD4wQs5ymXru3y+pt32OgNiLMVWzc3mZxOUHlAHTdQgjAG\n3/NJihykQGuFQNC2NdsXNmhlxdGd97tA/5FxDJL1eftvZrz27TmHb2Ro2eVkmpHXNXu7Q8JgxHxW\nc/VjEdFBiLetafwGZ8ND+AJHOXgi4M7Lx3zpc89z/NaMNK7XrpJ0WcxT2tKj725Rnkc8+H5MEddc\neGaD2q/5+Bcv0buoqbx2PRBTrttyHz54TBgG/Lv7p3z5n6gCAPCBl+qWf3eUk5RP5xh0I83uZQd/\nrLnyzAaf+fQtOjufYDnbZaPXsHdhCasjboU+2+4O57OCtGyZxwl5ktDRhmsHQ5QjmR0fcTI9pawK\nKtNStS1Rt4sxFpPFZKs5ebYevupHHcJOj2FvjGkhXk547/4rZOf3KKbnmLLgfDlH+h6u72DLjHQ5\nx9GS0PMx7bqxqqpzsmy5xh50BxgUdWNYrlZ4QYCQkqqqyPKCLMvwPHetSHKznm9ZG3zf44vPP8d/\n+y/+a0aHU758cB2VNpzeqxAzHy/tUi989vd26G0qxtshRZvR63n0GFDNKmRtWa0yqqpGa81suqAp\nW5bJnNEVn+CCJDzo4XciLIrCFriBxvMdHNcBAYEfoJV60jJmCfoBOrLgf/TwkY9UAo8ePeJLX/oS\nzz33HB/72Mf47d/+bQBmsxkvvfQSN2/e5Od//udZLBYffObXf/3XuXHjBrdu3eJP//RPn37iosAk\nDnWl6XY65OcVvbpHedzwoz97RHZscGpBUdWUMiNeFBTTlsgJ8PpQ6xZEy61bl3n5T17Fdz1cx0U2\nLVGgCDseUeSxnE+pi4LdC1uoQHF8co4OYVEeM7ocsfvcGOtZQq/LsDOiLSy2UXwu/ejN+6cgn0ty\nwltPP2ZqBxmF2NLB8/b53//Xx/zB/3Cfs7+o2NnYoun5/LMvbhO4DtZz1hRsoUdjHeKqZrqK+f73\nv8+9t3/E48NjDi5fIWshLy1J0WCsxA8iwt4up9MEtEsrIM8yptNzyrLAGIPFwdNd5mdzzs8esTg/\nQtcl1XIKVUlZZCzm55weHVIkS4QtqMqEZLUk6A1pWkORFfiehxUCLwqpmoaqNXT7A8IgoChLTk/X\nc/3SLKE2EpR+klNSXNze5F9/8fN86doeVyrNlY5i2OmxmJRYa5gc5tz965LzNwT7nU26bUiV5WBB\nKgEGtOuhHA8pLSgYbvVxIoPfDxBRg5EGYRRbgxFUYNoWlKRq1gNPAtfFFwKNxVce2aQkPvsvUB1w\nHIff/M3f5FOf+hRJkvDiiy/y0ksv8bu/+7u89NJL/Nqv/Rq/8Ru/wTe/+U2++c1v8sYbb/AHf/AH\nvPHGGxweHvJzP/dzvPPOO0j5/9Q3q6LGHcHQ8ajygrzWmKMY4zR0dyxed0kvdDk5KhChoOO6BEOP\nvJhz+dmIolGIucfydEVVKMJBSDeyRG5AmS2oigwdWJrK0Ou7zM5OcRKJV3VIswwZSyw5WllCGZE1\nDda0tKJCei7e//dR0j9K8Yylkh8OBQA2NiLqXODlz/D6yzFDcRPZSRletajBkot7B4SHGU3RsIhX\ntKZZW7IyRbsBR6fHjDf2mB095sJ4c90zoDVSO0xPT/HdDmGvS20Mfm+A60TEswVagQHSNMX1PKqm\nxbUS39eEXoe6KSnyis6gyyrOsQaU8pmvVgS+RxyXKCHwA3c9ZdjxsLYhyzJ838c2FVorHNdHSmgM\n+IFHXWcURYExgrIqQPooISmrHKsDtre36PcHlPmS6/MO//MPTrARjLY2mByfcPFgTBIXBJVCtZJm\n2VDmDVpLlNJYLJ675lMI+x7L5RLRDGjUujGslQsczxIXMU4kENUawlw1LY5WmNIgECilSNMEY1os\nH802/JGewM7ODp/61KcA6HQ6PPvssxweHvLHf/zHfP3rXwfg61//On/4h38IwB/90R/xS7/0SziO\nw+XLl7l+/Tovv/zyh877wvO38D1JXpeYqiEwLUHQEu0K9IWGclSgegnhdsN45FA0FdHA0jsQVN0K\nEWZ0L9Z0n2noXAcb5sTxCmMUZ5MF1gowiiwvqKoV/SBgI9piZ/sCw84+ohrhVFtM7mfMTzOauiXL\nCpIkI02Lj9y4f0qSnj59NLkxOYvTjFf/9jUevPkjjt97h8n8PhsHmk7kcP/oPcY6II5nlHWDads1\nsi7OWdx/xEA6mCSm4znUbc4yXtA0Da52OT4rmdYuExNQaM08q3j46IjJZEqSteRFS5a1KBXR7Q3p\nDnoUVU2eradPBcMRSrnUBnIDeB6bm1sIKfH8AKU1TbtuuInTGGMMSimMXTM1rVYrmrpEiHUOq65q\nhFh3mCohKPOCqiwBC44mzXMqa3ACl3/55S/w/MV9nu9GhJFlEU/Z3BhTJSVSGEQNjx4tWBQt3cEA\nrR2yrEI7DqZZU8b5kcOg42KSBY5MkF5JkmT0hx5OaNCepMhzLC1B+L4yc/ECHyMFnh/gOJLA/y9c\nHXjw4AGvvPIKn/vc5zg9PWV7exuA7e1tTk/XRaSjoyM+//nPf/CZg4MDDg8PP3Su177/Q67euMxJ\nPsN1BFXSoIcZ3kHDzFiwmk7PMOp5yNqj/zOC6TxjuRLY1nBpK2JZlqxMRf9Cn0C73Hur5eF7DxmP\nR0yXc8ZegBYeA6dHm1ecnc943MR0/JDatJRpglIBZWYIQ5+iyOl2uk9w+R+W27c/xtb2mCzNWCxW\ntG2LEII0SbG2wiLJm4RoO6K379Adutx5/RBquHZ1g65j6Lge775WcffohM6mS9W0bGxssXiUYssG\nrKFpW4RYIwLb1uB5Hk1T0zQ1SjkIIdYlQtNgjCEIAuq6RWtN27a0bY0xBsdxMAZEaxj2IvxOl0eH\nh3RCl/FoiKLk0tXr/Ie/eZlnPnaR06Mpjw8/bPVvhM9w9JT96Hb7qPkZs6Ti8nCTeWnZORB4/SlJ\nZtj2t6HeZlEs6Gc1uJrV2ZQmSej5PoGQYDKW8RllJekPhkzjCqkko8E+KtyiM9oHU1EnS3qRT6DH\nJMkEYS2dzoDFLMH3NRQ5yWxCdzRAaY+4WGHSDKkdwuEGYaeDaipcZVG+hzE+WioQgjwvMEBd1zhS\n4SmFFJKz02PCqIvULmVTUxQljuMgvAAFpHWD0QYtNEVR4DgejdZoYblx6wq33n2ToT7gtWnC4eMl\nZVZzYW+MqWG5LNj7+B7z6TH9QZ+qzojQ+DqgdSzhTsDRNOXWZz7Fo/ldZO1iTI3RDp6vkA1cu+Vz\n9HZKNV2DyJCSRbxCBxLRGiRqTY3+EfIPVgJJkvC1r32N3/qt3/qAWeV9ef+h/HHytGNNC6en5whH\nMjufM+h3ka5htWrxg5B01dDv9vG0QQUZ82lDfdon0nO2doecLpcEkc+g55EsU1pR0LtguPq5a7z1\nnXcItMJBYIQiW2Rs72+RsaRLh7KyNE21ppKWGhpLt9fH9X2SZLVWbmcfZmkNfYdhd8BqsUCqFkuF\n50a0rSKJBW1T4rUBctGSFxrbKeiUPZJFwVvnE569vc2yhdN0Rq/vUWUNnueyOltha0vdrDPSwqxJ\nLN4PoZqmAQRauwixzvCKJ+hBIdYPb9MYXNfFWosxAq01CIsjQUiH2oBnam7fvMbb794jiDyU9PnB\nq69waX+P2dkc33v6PdzfvPDU9XsPjrh6bY/epmE+FXhbC7ZvtOzuPse9BznnScPBrasU6kccT46o\ny5p4NqPf79B78gzVrUCkHv3RgDiOkVqQZinR+CJVNMTtbaC8lstbfUyR0bQ1fn+Apxrqtsb3Q6oW\n3K6P392mMhmZcWilASEQBrRaA63q5QwpWjqjLfyg84GrHAQeUjs0bYsRsIxjinhJp+PTmpLWCOq2\npbaWuqqwWIwFC+u2XgVl2xJJgZZQ0uB1uvyrn32Jf/9/fpvp2YqmsNy+fZnCJszO5xSyoazn9LY9\nFmcLahcyP2cYtPRHAWVRoN2Gv/3r77G7OaZdgFY+q7xFhSXGrSmEYfv6JR7NJmjHobWG4dYA5UiK\nKkVbRVOrH/tevi//ICVQ1zVf+9rX+OVf/mV+4Rd+AVhb/5OTE3Z2djg+PmZra2v9wOzv8+jR3yHM\nHj9+zP7+/ofOmSUVUlQ0pkZpgaM8zpdLnK7H7KymOYdSpHz6v+qwtAHFquDsrYJrN3YQmaJolrRF\ngWwdiliRy5a9Z/qcl1O6VzeQuaBaGFrh0YkcrHHwvYg0qcnz8glvv12PkfY8JucnSLnejh9XNd3c\n2ma2mNM0Nb7vsrm1x1tvvQ2tRmuBVB5NXbOKa9zCsJyWhJ0OV67f4OKoyyQ55ujkFLSHsgKvUeSx\nwTYN0locrWnqdo0Ldxza9u+s+99XpOpJjKi1Rgi7bvt117MB1t7Ck+NS01qDsA3WarIsR2lFNwop\nigrXsUihWSVLFJaDK9tw78MMQnk8fep+GOswmy1xIkW1GXPtWcg7LX/+ne+jckWxMBTXPs3RdMJ4\nvMlZviL0FZ7rYmxNXZQUds08lOQV8yzB9QIiz8MbRHibFyllhygK6fR2qeoCKSrqIkNjCGSLFBJt\nWqpVQiPOaNMSaSzCWqrWELprRaqkg+P71E2C1oYsW67BZa6LdlyoPdqmQT7ZZ8fVJElCPp2xsblH\nhSGrCrR28D0PU9cY00JrMULguC5VW6OjLpQ1aZ7hjbt8bNDlja7l7cWKtl2gO9B2WoZ+SF5nOFIw\nvjCkdzsi7AU8OjqmO3Q5O064uDdCtAHJrCZ0A4wpcUOHrDHk85J27nGkz8lsjhaazdsdVF+xvJvg\nag2VJJ0ugH/7n3m7/wE5AWstv/Irv8Lt27f51V/91Q/Wv/rVr/Ktb30LgG9961sfKIevfvWr/P7v\n/z5VVXH//n3u3LnDZz/72Q+dd+unDtj6zC5qCJeubNO0GbaxNFWP9sylPoZ62eF7/2FFfKpJHyu2\n+10O7y557TtTzMqnTDS2gk5PsLnfJTMVcRljnZrSpgwONqHjMVklFMZSliWOI9Gei+t7aMelNQaE\nRRChZMDm1gbns/mHfi+AVOC6mrIqONjfpdft4yi9dhGFIs8Kol5EGIWAwtE+RVrw+vd/wKOjYzrB\nBoHbhRwcq7CNRRvxpNYbYO3feVTGmA+svtbr7wBo2/aDNa01xoCU69BBKYHj6A/c1qqqEFJiBOR1\nRWsMnU6EdtblMaE0UnkUBXhun5PJ0zPJP3rlzaeuH7zQpdEp83jJx/95n09/+jrlfMD9NxvOE8OV\n24qjw+8S9UOsowgdl61+H9/VCAW1XcfkTtjFyB790T7aDbDCEPrrFvDR/h5ud4jxArzBJv7gIoT7\neJs38TdvIQeXUd3rJNZSI3F6m5Syg9FjRru3UZ0tkrwkyzOWWY7nhVRZTZuX0BpoDXVRU6QZy/kC\n07RoV1NZQWEMRsHp/BgwGGMwbfskwWkQwmBsg+d5+IGPsYamaqjKFh32kK7PJz75Ii9ujdncdFml\nKfMzSXrmEJ/WeL6H63pki5y3fvge3//Ou/S6HXxjMXFO5GhWZzNcDUpCXbXUVUmTFXTcAK+ReKVg\nHGgufWYLZ8dlOVsSbXgMBl2apqF7octaCfzbH/uOf6QS+M53vsPv/d7v8ed//uc8//zzPP/88/zJ\nn/wJ3/jGN/izP/szbt68ybe//W2+8Y1vAHD79m1+8Rd/kdu3b/OVr3yF3/md33lqODDqCibze/Qu\neiRRzM4nt5CRYHvbxeiS7RsdmijGGWnquuTC1W38PQ8T1nTdLuXbmvhVQ3rik9YGqwWO1LhaU6UN\nVdLyzmsPaNqGzNRMZuf4nktZrYdv1qakNTVB6FHXJb2+JIgMQlREnafvxXQ+QWiDsS293oB4tcJa\nSxj6tG3Jz/3cz0Jr6EYh129cZndvEyVhZ3uTh4+OePjghC988cuYoiFPK5rGIoSkLBrKskIp9YEX\n0ulEeJ73gTJ43/K/HyJIuW4tNcZgnlCPV1WF67qMRuthIVprlFq7g47jkGQ5pycTOlEHKwRGSowE\n7St05DKLPzx0FCCt26euL5M5bgdc1eHP/5cZ/9N/9xZ3/6pmWI7pVn2kG/HKu3fpXbiA9ENEEFIJ\nzTv3HjCdLzHSYzZd0baWtEiJuj3qusbVDrIqCQ0MwgghnCeKGqyR+KGPUg7Walw/Qvgumxdv07v4\nKXqXP8/WjX+Gu3GZ1PjklUXJdYwcdAdoP6CoalrT4rsBbdNSlQWmNYw3NijKnFW8RLsuSAchXbK8\nYDGbYVpD0zRkaY61T5SCaVFKIYSgLErqsiDwQ+K8xHd9ti7u0g0Ul3cCuqEmmawQWcnOeJc601SF\nIc5yPF+zeWnAdLUkr3N2diJMJqhzSdtKrLEoEaCEQ+AEdHt96rYlSw3OsEtZz0imx/iR5MbHrjG8\nErH3ScHlzzx9etTfl58YYnB83SXY84lNSlNBFDhsd0MqvaJYKerGsrGrSdIC1+mjdYuQQ976k4f0\nogGibtm/sksmllRBTWZShtseVhQM9SZv/NU50mj6/ZCjRws8LJsbPcJOj9PZOcr1cGtFXpX0ul22\n9yKqKieJc1pT8+7biw/97ms39rl16xnee/iYZ27eoixLzs+nLJfrrHYYhjRNw/b2NlVVrskxbcts\nOud8uqJIM9I8Z9jvsUpWCARNYz6w8k3b4LqaumqRUn/gCazj/AbX9RFCfuDyK6XI8/eTmOv4dh0i\nvE+M6dHv95nNZmAtrvYRVtDpu1hh6A07ZHVCp+PjRx3atOC7L9/70HV/4vZFXnvj4Yf344sR5bJm\nuWzodD36vT5HR1NuXNknszH4MZ+/dYmff+ZnObzzOqEbcHZyQpHExHFCHJf42qEsU249e5XecES6\nXDKIAmTUo3/lRbqXP01jBVXV0OuOqKoGKcUaHyAUQmuwFs/3sWUJoiE9P6JaHeHlSxybUKdTup5G\n0FDEMzwvxAsDysbQiQJa4VDkJY1pqcpqXTo0DW0Ly8UKrAAFytG0TcvG5gbCmnVOQUo8HeCFfVar\nc4LukCwr8R0XXNCy5d733uVbr/+QZeDy4O0l2azEH0bsXd/i+PQII1zcvsCYJSWaa8MtfvSfjoic\nIQpNnRc4Yc18YtjaGZFlK3Z3D3j3zbehCXD3BV/82g1OV2cs4xzbWmTdYtwK6Ti8/e/fV+7/yJiF\nQlchDYzDEWobbFIQq5z63MHfrOkPfGxtEH5A3VTUhSUtHnPhCz0evRLT8zzOFid4vgdFTc8ZUT6q\nKJuMVXbCznjEg7tTDvb2UM05g06HvqvouIKjoqKqBUq5VGXKeZkwGG0x3hsymS+5vDuCpyiBza0e\neZ7R6UQ8fPiAKIoQwiBVy8ef/RhnZxN2dnbIsowrV66wWi25e/cOIOh2Q8o8pdsNcV2H8WDMdDZD\nK4emWVcArLVYs/aa2rbF93201lhradv6iZXUeM76tlVVQafToapr6rqkbhuEXcepvuOihIS6xVMa\nqySuq1FakJUF3V5I2WZUpuJ8WaKTGG2fnkSaLJ7ek74pAqa1wfG8dZtunvHFLzxD0aaszlZ0h2Pe\nOcs4f+//4Lm9Ps39R9R5gxdopHKw1DTG4voBjttD4DDs9BGypb93GXpbNNpHSYEWNUVTILWkbsGY\nGsd1EVKghIPBop0Aky3wtcDKhio9oW1XhFrjeCGr4zPK5JxC+YTDMYO9A6TnfFAVyJYr5qsVdt4i\nnyjT9y29Ug5WKPzIp2rWMwiFUAReADZnPl+htaQ1hsgLKMslwmj8/girU7qO4vWTOY1quP7sLqvz\nmgdvHJIkFbs3NMO+Q14GbPiKpMzR3jrPtJqkdEYu0ahied6QpQm1qBiMOrjKAelSJgX37kxpexm5\nyNnwfUQguD8D1/74hP378pObReiNOXs3o3zcYmMHtengjz2ufn7A+FKfyXnFfF6ilURKj5PHNYHu\n0QjFxrDDYGtEWVlms5w8U5wdr0hmBa7xubC/y3KRo6XDxniAEZqsNkyXMUqXvPDcAb6CLEsJApfh\nqMtwsEEet+yMxyj59G3RjuDk9BHHJ4+YnB+RFzGWmtFGn8VyTqfTQSlFGIYopdDaYXt7l/39A8Yb\nG1y4eAHf91ACtrc22NvbAdakIFVVorSkNTWupwhCF7C0pqKuiyeup1lboLqhLkvC0CdNY5q6xGLo\nRj6dTohWAiEMbVMiRIuQFu/JQ9Xr9dbNQ61BCUmySsE4VFlNN+w99br94MfYirri2YNtruwM6Ac+\n+ztj0lXL/YcLwt4Grog4PIu5Pznl3sk5IgowSjCbrkjjnPFogOtLtvd3yesK6bq0QlE5ASLaQLgd\n6iJfN005DhbLMl6Q5SvSIsGsGRJQSiG1RCpobUmeLVhNz1FtBUWOY1pWp8dYaRGuxuv16G5sILXL\nIk5pDRRVhdSa3nCI1A5CSPK8JI5zrFXUT0IirTSBHz6B6wraFrQKqMqWMq+pAO15SFeiBBRFQdCJ\n6LuKyhVEGxGNqsiSJb4WXLy4STjQOMqhE1iqVYYUAg20hcDXita2bGxvYltBEIQYtyXLF7SNpalr\nbNswOV6RLSuu7O9yNl9xuqoY+y5m9dGYl5+YJxB1Fb0lhEKwupcRRgkXugf86O33eO76Lq6teP6z\nz/Do8B4P3luhIpeTxzHGtOy5fWpSjF8z6o1IFhVWFpSJQRMyMxXFQuBHCqeT4bgtaVXiOwFlWjLq\nB3QCl/Gli2zvjsiSGKU10/emDPoK6z59W9IsxvM1y8UKJTUnp4eEQcSLL75I20ju3r1Hmqa88MIL\nHB4e0u126ff7KCXXpT8hqJsG3bYgGjY2elRNRZqlhGFIXZf4QY+6aojjFNd1kVIhfZc0KfA8j7Iq\ncaTDYDAgLVKcJ9lv1/UJXRehFTeuXWHUH/LgwX3OF3OCbkDguGxubDE5n+JJxcX9A45OHrMz2iPJ\ncnbHl4hnT68CROHTa81yV/JuekrdQFdHPL7/iN5gk6DJSQ4LTvQp+1e3MHHFcbYksIog8qnrmn6/\ng3YVri45Ojvi8oV9lumKjhMyuHAJ0dsgayyiyKlNS+CH5HlOmiYURcrm5jZ13SBQYBvaOsOTmlWy\nwjcl40CynB7RcQTLrEQg0crF6Q4RXodZkmDjFM8PKK0lWa2ZlR2t6fV6xPGSpmnx3Ig8bZAKbJ3h\nSUmtJEVdorQmCALKsqSpBb1Rl8RWnJwXVM2MUTREmZphb8yFToetLMULQ47enuKIgKJuuHZpxEye\nM1uuuLi5QSktD18/xPEiwrHP4mjBzs4+j+/PsWbt+XiuYJHMsEIjhWTb76CUodtxeee1x7RpQHEm\nGN/q4O/D+Ue8iz8xJXA6OWZrf4M0sRgqyPu8ffcER0qQiuufuMBf/MfvsTPosD3sMk8T/A2fpmho\nqnWGVinDfDUjyyo6bkRVFzhWcnY2Ye/GHk6YIj3BM5/bZNy9QLEsiR+vEIzJyhNe+e5b+IHm0tUx\nyarEq1uC7R6r/OnEmt2hT1UZLt+4wNnkmDJrmS8XfP+HL/Px5z5DfzDkYH+PBw8esre3i+M4hGHI\nfD5HInj25jMcn5wQJ0uGwz7GgnBd7j18QFYURKHDYrHi8qWLbGxscnZ29gT806IduR48ahS+76Kk\nwVOKbuiDAEdpyjrDtYZ4NWNyPmE5jymfMM+0VQP2jKosuXnzJg8e3iMIHLCag6192qqmKJ9uNYR+\numfUvzRken5EriWRrWFlOY9z0rRmdEFz+Qt7CFxUtcGD/3iH3Y6hXC7Z6Pdo6hK3E1KtLEVVMssT\n9jpdZKfDIlNs2YCsqAg9sDakIaMsFkzO76G0R1WvWXaaNkCZGu0JCnJUcc7swQ8wyRkbvoehRXsO\n2vXwww5VXlA1LcYIpGU99rxqCLsRwlgaLL4XcHp2Tl21LOMZg34PrVyqKqGtA+q8QAesS4RKgJRY\naqxSeMpD9QSzyZTKSNxS0ihFWUy52lXciWO60YhluWT3YJdHJ4e0IQx7LpP5lHoVInEY7ilsm3Dx\nuQMevHdCZCK6IwekoT8IOHpjBo3AD/tkcQwPBKodM9Cb3H39DmEZsFQ16tpHJwZ/YuGA52rSrACh\nsFQsTxK6ZcS48MiPF5BVXBjtcf5uQ/JYMvBDlKkIXUGVWxzpMur3uHiwzd7eiN7Ipdv3CSOP4dAh\n6BcIv2Vljjgr5tzLXuWwuMe754949cEdvvzln2LvYEQQeFy5coHlKiHN14jBvYOng2Ncr0tpVrTO\nlNpkXHlmn7OzBOka7j96FyPrdentCYAnSRKWyyVSSpQQTCcT2rbFcXyq2lDVLfvbm4RScPXiDlK4\njIZDhJC8++67eJ5HGIZYa5FSIKWgN+jihx5e6BJ0PALfx3VdkJLRaEyn1+Px8THT+ZzWgqN9QNAA\ntbW4vkdrG4ajPt1Oh0j7VEnBdDql23t6OKC8p9uK0+NDRl2NVC16u+LjXx2xLCsaHNJVy+LwlEgo\nel2F1xkwaTSffelfgpak8xXHj49Ip0sC5WJqy6xosP1dwq1r1PhI21DVMUZMefT4TeLkBM9XaKel\nqlPibEWcLsizFdlyyvS9N0ke3yM9O0Y2LXFmyIqKIi8pKkOaVeRVjcWiHUEQBUilUNrFGEPdNoAk\nTjKSNHtC46axwpKXGQiIkxVgaZqWqNejbA1pW+FHHYz2acuGIl7iOy6eFyB0SVOV7I1HeKIFI1jl\nc7avjijtgrxIGI8jTAVbm5dJ4pIiFZi2Ihoo7h/eYzjurPta2gzVKmxcQ67pRx79oY/wO+QLxfFr\nCx6/8oiOinADl+WkRGf/iKcSDwZ9trY28QIwpcBrXbJpQuSMSE+VrWmkAAAgAElEQVQtk3cmzI+W\nXN3cYjlZsbEREU8N0mhcCVWWYauGMl4y6kiUTtBuTZzOiToRdZkRReveAT+s6XYtw13BhU/1maZz\nrl3cZ3dvhNQGqyt62x2M9vCjIcY8velimc+oTEbQFXiehxSWG89doEFy//Ae54vHpMWUTtcnCEJW\nqxVBEHzwV2m9bgQxhqKomJ7PmM0SgmDAdJrhumuKs9VqxWg0whjzhFnYfxIaSLKqJOx1SYsSIzSV\nsBRNzSJJmcUZp7MV4/EmoRfieS4bowH9fp9et0cUhQig3+uzWCw4m0yYzufEcUK326Wqnu4B9cfD\np687e8hFDz3v4BRd7r8pCR1Lb9dHEnH4ty2TOyuarOXTn/w0P/3CV3l8nBFubFEbjSgFfj9i69Iu\nG7tbKM/Haonx1hh+19UYUk6nd2jsirJZojQEfoe6bmjbiqJMyOuEJo+pju5QHb+DKmraokK6EPUi\nhLCoJ97M+/iJqm5IqpJGKVCC1hhcvbaaRZ5T1806UQuUZQkW6nqN4ozTAqE9hA5A+RSNQUiHvGyQ\njSVdxtR5hWxz6jhBmBrPEfi6xtQZWxc3UL6FtuLipSFNU1G1FeeTI4K+i79lGe938AKNaTS90Gc5\nidFGUpYrNvdGaF8zHHcp8nWIopA4SuG5DtQKqTSBG7B66+kQ+L8vP7FwwEHhKsnNa7to1VKVkvmk\n4HR1hj8CpKLnWRbzR3z2Zy7iCoftvTFu41CS4rsuyhpCNySeJvQHQzo7gnfuT0mbioPuCGNyPE8w\njDZRKKCldDPGVwa8c/yQpknwVU0QBri6wYs0jlSUxdPd4uP5YzZ6XUzdYZkkuLOcmgJpDJs7EWV9\nzp1HKf/iC/8Ns8Ucz/c5OTmhrmuWRc5yuaI/GPHo7HxNce16LIuEWnl0xhtkiykXL94kjEKMKUmS\nmMnkHGssZVkRRT7hlkdcxBhrSKsarQWj3gDXT5ACDApZG1ylQUuqJsNxvHVSbblAYTg+PmSZZIw3\nNrE4IAWzMqdqnl4tnhw/PaqczSpqWl78/G0WJ4+YHB9TaYUqLJv9McdxiTy/zHO3n+Mvv/MyXFW8\n8Mx1Loxu8r1cMZuccPszl9nb6PH2vTPq2vLo4Zt48ylhb0DtQEsKpcHxIiK/h5Ia6QqUVVArsB5u\nGDB9+3X8bMFyekLgSZJS4rQBeWGQ2qXIK1xtwNOoIKBpwJMB0gCsIcaVlXhhxOTNtzGmJSsrtBNQ\n1RVeqLFtS60bHHdNid5YS2sFdQG1L4lcjyxdgrJrmq+mIs4SdGNJK03ZRvhdTVFMcZRidBBiBdRJ\niq1adM+h69T4u0NcK5lOFly+FOBnBtdKrGmoscRxxs3bWxzdX5DnNZubI2aLFGkFVV2glUPVGIbO\nkDT5R6wEBhsXyeuYk8kE4VrOF+ckumEwGHHazrnU8/HwuHtoeC7sspoZtKMRWIZbIxbzY4Jeh0fv\nnTAYDEjynM5mn9FOl/vvTIkCTeC61FKwTKbsj7fIk5TRRp+5qfi/vv2XbIQBV29fYzo9QWDo9XpI\n2dCUT0fOjUc9ZGNo2govtMxWx7iuR5EX+G6PWq4ZXWazKY43II1X5HlOFEW8/aM3KfICDo+4dP0W\nSmlaYxBNS687JIw6bHQ7lMX6pR2NxoRRQJYWzM+n1G3Nm2+9yqi/x0l5RtTzmacZ+wdXyRYrOkGX\n1lYo1yNdxnS7PYrWkKYl1hQ0xnKwd8Dp0TGPTyfcun2L1WrGbDojDLtAjaR+6nUXZfrU9dKmtKbi\nlR++QlcrtrZHnOUTpIFKrfj6r/wbfvi3P+De3Yf8q5//Wb70hS8wHHXJ0ynPPneL05MjqvP7zA4f\nMtCK+WSB6kVMj98jSZaYKMD1FGjoi5D6CbZfliA9jQgcmlaibUITn7FcTAgCH+1YeoMxCgtSYGyL\nUgKsJUkzvLCHVC5NYzCtoGlLWtvg+SGLxRJrQQqJsOsKkmbdsTcaRCjXQQpJlmW0KMpmjVHoDvpk\nSbr2UKxBKM0qjhEGlOcRSI1wJbJt6fohQknOJit6wy6jwZBlPSVf1AyckCbPUXabsjhnMi25tDGi\nEjXbFw7Ii3N6Ycjpe0vysiVOc+r6CKUljnLJshrpSfr9LpPJZD067yPkJ6YEDk8PCboS2xE4wmEc\nRGxHHpt7EXutR5HnVA9iPv/T/zdz7xF0W3ae5z0755PDn9PN3ffe7otGA2jkUKIZTYIyZZflklPJ\nQaLNibPLVZTKA5fLHro8UckUnUqmTA1sUxRpAKIbAIlGNzrcvn375vDHk8POaW0PThcNs38QGqiq\nuWZnjfY6+6zvrPV97/e8Dd59/wHtmkd/rY1USoxHGWau49R06o0WJ4M569sWlRaydeCRKSFpmJEQ\noasKcq4SxAmKZDA88ylimZdv3iIeLXFViUjX2NjbYPx0zCJa4Nbsc5+51nCYj8bUazp+U0bCYjZf\nsr65znQSYJo2URoiiQrXcXn04Cmj4ZDD54dYdg3TMCiLHCoFXVeRJR0lyVHLEteyiJYpjuNQVYI8\nrxicjREC+v11Gq0a7U6D4fCMmu0wXU554eULnByOiFOBi4KpKeRRgqlbeE6DeDFB1XRM3UBRFRQN\nzLqLqyrU6jaD4VO2dvpMp3PkqmJjpwbPph9b94XrGzx5/+Pfx87GGqnICJczHMVhPA7ZdPvcevE6\nogoIjj7gX/sXvsiVy7s4UoVsluTxkjKrSKIAWUASLZjOTxCSu0JsFQV6VeLqBrJbR1csSrVElS2U\nSsfSXSpJRpJ1ZHQcReL09vdIh88wDYVKBbteR1UkkjSlSFJc10aInFxWqXV6aKYHZUW6XFAUqxyB\nrKpYlr2q8zsOp2FAJjIajomhaigCgsBHEwaWDI5eW10TZB3btEiihCzNVgKxTMY0DYqiJC9yDE1D\nT1JEsAR5ld/RDYtOuyJKExZxQrPR4vR4zGzqU7cUgtkZaSxz+UKH0+czXnn1FnffvsPlCw1cVN4d\nLPnya69BIfH6d3+AJGvIMji2happGIaJhIQk/3SewCcWBDIRUwUVhiljeiaj5RjHLVhOY9Igp79Z\n4+IrezwZDfnsZy6zmIYUIiYNFUy3RLddTk5GWPVNvCrH6GSUFqTljFZPQQiZKjVABaleYOg2z54P\nWWtugybxo/ff49bNCxSaQKkSwiRhMptx+eI+inZ+9Fz5BwhUSSJNY4RUgQGCkjIuyOWKRqcNpsrz\nkyOSJCYIAhzHxnE9qmpFgNFMk067RaPu0F3r8t47t6mEoNvtEfg+tmuu/Bq7a5iGCaJgOp2iyCr9\n1hqqoVEaFXERs3Vpg6cPD6kkQRCUKJXAMhX6203m2YJKzpDkEj8I6W210AoNk4rR6Bn1hk2Whyhm\niVuX2HmhDa8//di6C+njwimA0fQEt65S5Am206G153GhfolXblzj0uVLbNS6CEIWh3eIM4VKs0Dz\nqKSSYDEkDwSLJMSPElANJBQ8XafMJNSsQK5UFMfDVk3yqkI1DcpSQVdtlEpDoqQqBTVDoG22kRQN\njYIoCJDSBElSUDX1TxuyFM1CVU2k1QEBw9RWwaEoMXQLUax6AtqdBpPxEBQV8pI0LVa9D7aNY7tk\nQhAEAa1un0rWiNMMQzeQNJUk8SlFRlVZf5pbqsqKytbRA52tepPpIiSYLWg4TZZxRFkVdNfaBKMU\n3YxxNHjip3T2HGRNQ1dLWi3BRlvFsHNO/AS1qjC8iocPT9FMHUUzQS6pOTVC32c+G1KrWcTxX2Sd\ngF2ySAJU4RCHCpqicvY8Yu+KyfVXdnl4eMz4/oybN/c5fH5GkQnKDCg1dFmlQtDqe0TplPaWQq1t\nYZsqYbREVhQqIXNy5nOw2SHOM/wk4NKlyxRxjqwpGLaGJhtUeY5jdti9skM2f51FuKDVOf9urJk6\ncVaiGRLtXpswijBUiSovsUwLSYUyl3jvwx+x3XuB0A/IsnRFpSkSZODKtct4po6tKTiGgpzO+OrL\nl/nmX/nL/N1/8Ps8efiIvCw/akqqmM5nyBWIMqOsCtqtDvVeC3EkMfJPkaWI7laL0ckZF/Yvocsq\n3YZDjiDPA1RLIk0ydg62kMyYaHIK2oqc7HkGs/ES1zWhUTELP94+DWDX9HPnLVVHyyXajRYsUr7x\nlVf5/KtfpNPoQJ4jMp+8LIiWAcVyiVFvk8sLVKvHcnJGGClMxiH+PCCTZHr9dVRVh2pKlcaoeYIu\nVSgVKLKJqpmIXEFTNagEmlHHSEMkq45tKyRxTBzO0DQFRV1Zg616J0o0XafWbqFoDpIEYRiAJCMr\nEkoFVSWR5AllkeM2ahRFhlwJlnMf09YwdY84ScgQ2A0PVVYIwhCBjGW6ZB+VcvO8QJUUgiAgy1Zc\nhyiO8EkJqpJngymiymh6HZ49OkGpl9h2nfFsxOlkRsvTkR0TW8hoholc5dTrMotgQHe7QVrFLJOc\nzQseuitTqhlf/MbneOP7b1FruqhlxeUrBzx58oiiSDGNv8AlQruhY7gVmqKw8Me4bg0ShasXb/H2\ng6cMHiYIqYHZ7DLKE+ahT16V1Oo2Qi0ZzEaUUs7e1TqFNqWoEmRVoVZrommrTLpr64hcwVUa9Oot\nhkfHZEnEMgmoNEGOYBn6vPqF1wiWAWEQsrPXoyzPz5KLqqSQSiRNZTxbIDSFJM8xXQ8Zicl0RpDM\nEOQcnzxnOp3SarWQJAnHNdnb30GUGYYuqLkqriHjyBI1Q+J3f+e3sNySi1cPUGRtJYKhIktjLMuk\nv7bOtWtXCdMQkZV8/qXPc2X9KggJw9UwbJnJYkCwnHJ2dsbJyQlbuy1aXYeXX32B49ETnJrLF75x\ni0F6jNJRCUhor7lsbrZY327S+wgS82eHrJ1/pNzxuhy09vjU1k3+m//sv+TXvvYzdAwJsRwghVPC\n8JTJ4BhL1Xn44T3e/JMfcPet9/nw2QPuv/Mex6MBYZQwGMx4eH/A82cDgiilUgrKKqSaDGF4RpqF\nIEps1aVh1hCUNNwGshDk8ZiqiJjN5oxHQ5SPZNaVEFSloCwLTMdGMw3yvKQSq/KtbXm4jTa6XaOS\nNTRVQ9d1DFVFlRXGkylpkdFqtZCrFe5dtQysuothmti2gWFq+Euf8XhMmqakaY6mWpiGg6YYlKKi\nFCVJlLCcLEiikqBIV4rNNEFVBVXhkBYRT58M6XgmGAZGu4NcaoSTEE2q0CQFXVNI5Aq30yUtEtqX\n28RqQSJGNDYUEjGnSFPyPGA4OMWrORimTK3+Fzgn4PsFYaBhOxWe7WFIAk24/MHvvYlpCepejTSI\neXI0g7xCNwxMzWAZLPC6TYzUp0Th2fGAetPBVC10VWM8OqNSVKIow3ENgjwkWyT0+j30SkYuKgyl\nZP9yh/5unWih8ff/4W+ztb7J5WsHTKYhWXT+ScCrN5nOA4I4xGzalFJFw64jldDd7FKeChbBHEsy\nqcqE/YNdnj87ZHdvl9OT5yzmCr1eF9uQqNk6WRIyHwdMlAqJjN4lh/3dAx7de4KmqeRZQRYLltIC\nXVfxfYlWs0kUhHxw5wNefPEaZ2+esL9/kbOjM8oyw210aHXaPLr/gI3tNZ4tnqA4grXNLqpq8OHd\np9x86TKm6ZGEIZ6hMTge4nYcZOV8ZWD2E0REbavDlz79OV678QqupVPkEfm8IA6WFGlILGUgFB6/\nfwdFbTF8/hzTVYiie2RhRNMpySKBrDVw3ZzRdEguUixXxzAtknhJNi1QswyzVxGEFpplEYUhRZ6h\nqibJ5DF6PEGUJbbjkMQhiihJsgzHsjAMawWWyUtatkwYzKg1GxiWQ5IVSBoggaiqj8w/JUzTwdB0\nPNuiKBMsx0ExTEpVIpdAVRWKUqYMc+quR5wVRGGEEIJSUVBVkziOyaKUPE1xTBvd0NCFoGfJ1Mx1\nprMFmqRgNVWWYYVhlFy40OXxyZK7d55yYWcdP1uQZyGpKCnyGZKhkSLwGgaGoVJIPmgGdx/dZ+eg\nSx7oGLJDv9dmsVhiWAr2T5CC//j4xIKA1VA5GSd0e9uMx2PyLGX7xTqDIEXKc8rQx9Q0wqdDynnM\n+vo6mQqSpvH89BnNZptgsYRKZz4KsM0KVWi4Vg1Ft9DIiOOU0qjod9dIg5K1zhpBOEHWLR7eP0al\nQhMmO9sXUDUZr+ExHU5R9POPUHESo8oysiIT5yGKqZJnGZQJve4B49OKVr2DJXvcuHGLJw8P2dza\n5Pj4GMc0qHkujmWh6xKqKVAUAUWOKpXoMpgiJk/n/NV/+Z/nD/7wO8SxxM7uFrZtkmUhebZCo9ca\nDXpr63z3e6/T6nZ5dPcJlmFyZXeHeJzSW1tnMRjy6NEjmpdtHh69z7Urr3J8coqkqITLimAxx6nJ\nCEuivl1nNh5SifMbiMRPaDT96//KX6PnuVRpzPTsFJFG5EXOfHpEEk3JEpVFHDAcnTCeyNy7/YCv\n//KvMHp6hyDz8bIMfx6ComE5ErpUATmj4ZxKVMRZgl33yOYDNK1AJCFeq40iqRRJAYYAUTEazWg1\nG6RxRJbEmJqCpCrIhoFmGlSA+RE1ynFcKqlCCIGhr5qEPK9OmSdYloWqGWiGSd2r4xgacS5AldFt\nC8uxUC0DRVtpAoqiwDQMXMdFN/TV9dDQsXSVKFliqDp5mBBlKfNiiWorNNQWx4cnaIZGo9YgR9Dt\n2cShwv3HEypVsN6pQ5GQBTG5qZGaCp1eAyFgPp3ieCqmKjOdB+xc6hDPU7IyWp088oLpYk6z3WQ8\njuEnnOJ+fHxyOgFb4uLVNRazIZ7nkqUKURFBWaDKyqoxVpVIygRZmJweLXG6MmbDxq47FFKG7ZkU\nEaShTIXGKA/QdIm6q5HHEXWrjWbpzII5ipozXSZcuLDJYLRk78IGlmEwPVtyNljg2RaONWCze4l0\ncT5dF6nE1BU0U0M3ZGRVJY19DEPm+PQ5Bwf7TGYBDbvN2eEZvW6PIAyRqBicPKffX2N3e5utzSZ5\nEqHJBrmh8+5bP+TTr7zE5PA5RZqw2WvwC1//NO/fe8ab7z1EM9bQdXtVu45ikiQmDjNe+9xX+ODR\nOxilTE0zuH/3fb7x2W8QhWO8psXAFxR5RSEXPJs9YZFP6XdbzGb+ysOujFErB8222O/skcXn/2DU\nxfk/k+2GQzQdkcZzJsMhiT8nyxMWkxkyJanQOHn8AV7nBh+89W067TaHozOW4zNa/RqSlqMZMjXV\nRFCQ5Ct0l25ohMkCz/FYq9Vp9DdQDROjZqAZEKQp03CCyB382SmZlJNRgqFg686qW1KWqRSJrCgx\n5P+PtFQJiSRK0WRrBWGhAAkUVSVNUjRbIc8TvLpH03Poeh5RnBGEKWUQoxWCKJkgyzKmaVJzXIIo\n/IgUvNL2R364YkPKMqbnoJQV0zxDNW1Onp/i1OtkeY5T1xGmwmK5RJdVFFch13K6tk21WGJv9oir\nALUoGZ6NMU0V13JIqwg/nOJ5TYIwxA+X2I7LZJZRd2oMJwN0T0c2FAaj8+iQf+b9/lPu2X/m43Aw\n5ODiPqkvOJuM8DwL2zCpRhWqaiBrMnFZIIqcKJHZaFigyli2hS0JpospUqmilgqb3Q2iIMKsuTx7\nfsrNL75K3ix5686bdNdblFECcoGuKfjzKZOzOf31NdIoYL3XQs4NVEthujyhMhJi5fzjb71VJ00D\n5sEEzzLxfR9NUkhCQbEoWWQpGi5lJmObHnGysumajM+4du0FLl26QrvTRdF0XLvB4OyYt96+y8UL\nt/jw8RE7Gw1kpeLJw/fJsoJOa52vff4679x5zHia0u+1qCrxUbeiShSFNOw2ilCJFJ1EXuKHp5gN\nC6Muc/nFi8xY4OoZk/kxa/0GNRcGwyVyrlBzLKos5fR0ycI0cN3zTUb+87/5H/L7v/Px+dnhM5aL\nGUXuEy2HPHz7PSyvRhAkbK5tM5icIgqZ5WJAv2+ytt6k5shEhgaVQp5GWDUXqdRI0pi0KNH0CkXV\nMEyTv/wr30QTKomkrKCplYQQMr5WMpuPSKMYSddwOj0oV3kAVTXI0nRVgq0kMpEgsSr7KbqGpMrI\ncsViOcRCBsVCtQ0kSUeupD9VjHa6fSSREOYpkq5jKhrTyQRPV7FrNRR5VXmIy4Jut8NwOABJotVs\ng7JCuMlyTDFPeD4borkd8sDnF3/xL/En777NeqPHg3uPcFs1xrM5aSVxab9HNJFYxGO21js8eXpC\n58omTlxiqBbz8RhRxKQiYX5WcO3mBo5bQ4pyHF1HSyViP2FjfYvFcoxlQr3+09N+n9x1wPQ4Pjrh\n4t5FTMNmNDnjbLDg4u4uopA5Hh9iaxqyqbC73mKz3SWTUobTEe1GizLPCYKVT2FQRGiKjK0YXL20\ny3ffeIOa49Br1iBOaTXqGJZM4E8J4gWanhLlI5BlNL1ClAlBmCIqifFyiP4TSoSGYaFZOnGRstHd\nJl7GiKrCdl1ms4TJbE67sYakaKxtbTOdTJjNxhiWQZhk3H/0mHsPn1MUOfPxGXkaUckmtXZJs7VB\nQUGWS4SjOe1OgziYs73TJ796wNGRTxolKKr0EadeBlRcp0YlVJaDOS9cf5m0mnL6/ATZ0Gn3OxTT\nBFmpcDQDSzYIpwGIgma3yWA24NOfeoFweUzb62OY51+Dru9fPnf+7p0fstZrkQYZZ6dD5oMZ80hg\n2BqPjw9XeLCtbQI/QJFyTgdHWK6FXAkoKhazCRv7lxgOTihFiWW7SHLK1asvcWV/G0uS0R2XuuGu\n6MuKgiQJ7MAnp8l0sOC0gDgRlFmKZ5rkeYauaZimRRRFqIqEUFZaf1XViIMIzdDIkoS0TDFsD6Ns\nYdltNjstwihGlhLsRp1gmiErFoqqU8gl3fVNLMsijqOV27GsousGs/kE3VA/UmaWCFGiKSpC1UDV\nCKWSUSqhWx4fPnjEbDJD02Rcy6ZlNGisNTiZTJk98el3t+htW0TJEs3VeX73hN2dNRAqlbrqhnTd\nGut1G01kvPG99/nU1V0cy2BxMkQgkeUhjifTrRu0613efv3P34ufWBDY6G6iiIIyLPAsD2tNo9qQ\nePr0GM9psLe2RbPlcXTyjDAImUoVZsum7TYoRUG32aLM5xwNh6ybTfprO5wOj9i9tM3BXo+5P8M0\nPYpCxo9CsqJCU23q9SaVfMwi9dla32F8eMZWfxs5VchiibSQKavzFXJIFcOhz1q/Rpbl5HlBre5g\nKyaJJSEJlfX1Ndb6m9x5/x79Xo8nTx9x69ZNTo7HFKWEJGtIikmzq+NYKl/6ytd47+33+O4ff5ev\nfOoaqqzi1euYhobltBhNpmxubjAYJgTLjCwXPBk+RVFkWq02zWYTTdOQ1QPee/gmlTxke6eHois8\nOX6K4VlUcY5r28joNPstJFPDa7UxDY3lsc71ra/RbmzQaNSBNz+27GjwIfCzH5sv/YTD6WOEXDEY\nLpiGOVtbq74E1zKZLmY0WwZRUlDrtDkZjljGEWrdBkPH8xz8OMZ0bOrrPXbX1tnduYjrWvjHj1gs\n53hdCVXTybOCNEsJgxl+sMSQFVo6ZJ7JXJEwbZvIn1FkMUpcAmIlMZZVikKGSif2Q0SWkUUypuPg\nNtfRbBtN9bD0BpPpGFUuqfIUWdFQ7NWxvVRkQGExWxCFK68B17XxfZ8KSJKQeq22QsPnBbIqU8Qx\nkqKQSODLINXbLIIJ660ajYXFYjxHN22Onp5x44VrbLY7PLz3hF69zaMHd3FbDntbO0xnJ0j5jKvX\nrvKt7z/HclTCecDGuoEym3Fzq8u616FQcnTT4IWdHZIyo5SXbPY8/OVfYNnw1tomg6MToixBUiQ0\nWUNWJPb2dqmETBr7RFFMw22iGhKiTNFkQSpKSrFSZOlyRc/z2Gh0KNMMQ9ZZDmYkIsBSJBRTZTqY\n0XLqBPESt+UBOkJS2N7cIIkXqG7JJBwQxjKa4ZKmCdpP6JobHZ3RdG0sw2Q286GSSdKCIJrimg0c\na41avc3de/fJy5LZfMH6+i6TWUy7v0VRCubzBXGc0HA85kHM3/vt/4GL+7vcuvXCqvyoa2RpSZ5I\nWJZMo94kjWL6vSaj0RzXXTXEaJpGFEXMZjMajQb7uzsINefRyVsEZU62XNJb7xJECVlUEE0jfGnG\nxDTJyhyRJfzcF/5V/qVf+jfZaF1ESKyoRH/zNz+27sHdd8/9Po4OZ+QiwfenZFWF0eowjwpioaFI\nJmqjwTjKUL0GlaRgGypFw6FQFErLJC4TFrMxv/Zz32S71cPWZEQB0WKK7/sYlkmZZUyHT6mAogLT\nsDG0daoKkrIgDg0MS1CEJYqsEodziAOiMEazzZVDcZqTxyFZmLC+toZumciKRpRUVHGO1yjxg0Mq\nkZOVJbKhr/BzcUls6RRJRprlFHlBmqTUah5pmqFKEmWWUKvV0QyDJM1wTZuyEiRZiVRVhEnMKM5w\ntjx8f0KZr1yxpEpCKQSXX9hmsHyOJlV86etf5YM7j9Ew8QyPMknZ3d5hOZny4YP77B0c8PTJA7bW\nW1RColVrIucRs9kIyVCxLIWy8Gl16uiORTQb0GzWf+pe/MR0An/0/7yO2+jQ29hnNJkg5JSilImj\nFFVTceseWZZjGS6O0aTb2cPWeyySksdHA+ZRTCVUbly9QVEUWIZGUWREUUwWZlSlQjr2uX5wCUGJ\nhoGjWaShT17FRHmI26zjdRokakTppchehOwktDo/wYATHV03cJ0ak/EMSdLpNNdwDBddtrn+wqcY\nDuYURcmNGy8SBQsuX7xEo9amZq0kx9cuHCAVMXkZrHDXskoU+eiKypUbL6Nbdb71Rz/k5GTG4GyB\n7TQIwpiNzQ57FzbY2OzR6bYIowBJrkizmPliypMnj9hb38XSmki6wySJCETBeBIQLFNazTa9fpfZ\nbMxsHOJUff7qN/89GrU2lVRRUTL5CUmkx6fnv8OH4zOGcYpfycSKRmRojKqCslUnb9dJWi2Wtkne\nbSA2urgX9piaEJg5J+WEablAtnXWty+AkJhPRkwGh6ThBIlVrXcAACAASURBVBQJISriIGA2mrCc\nLUnSkiyFKCtQLBdMh1atS8Ps0mn3V5LgWg3FsSklnSjJqWSJqiqpWTbdtT6zOKYyTYRh4Oc+mqUg\naQJJBxQJ0zZw6x6655AVgjBJKUVFnqUoakWSBGiagm6a5AgUQ2G+8KkqCdO0WAbBykHIqyEqwSye\nY9ccnj68jSxA5IKm22ZnY5t2dx2lzDEUGadd5/bDd3CbFnXPo5ALIkVwNFoQZAovXL2GP51wde8A\nRVRs9A9YzFTyVMHQbQ4OLiDJCbW6RhotiBYBimxx592nP3UvfmJBICsTHj+4jz8Zsr29zWjmkxcp\nUlUhREmWp2iaQb3hUqaCxC+QYoeWs85Wf5c8qvC0BtPxHMW1eDY+IS58mm2b+TLA1AqaXZfJfEy/\nu4ZdUxFSxvHgFElUiLxiOBgRLhY4to0fzcnKlEqBo+HRuc/cX9+g5rUZjaa0222EXJJFAY7ssL/5\nMmlSUKQlVy9dwtQEv/bNf45mTWNzo80P3nidCxd2mM1GmIaCbZrMJwM67Rau6zKfLnnv3Q+4cHCV\njf0DfulXfonf/4P/i+PjQyjA1lRif0in2yTPUxzHwjBUtre3EFWJW7NYzBa8ev2zRGc+ddVC+AV7\nW/tsbu+SSwrTxQJTU7iwu0kpZcyXS2bTIdP5KccnD5gvz85dd/uVr507n9ZNAq0kqztYG+ukNZPU\n0Xi6HHFvfMSHzx8QqBk/+PBt2tsb/OjxXZ4vZ4yXKb3eLjcu3OLf/9d/A6VQKMqKIIgohaAsBEJe\nMRSjNMa0NLI8XbUAZyGSJBhPJ0ymM6oKTLsPah3N2aPWuoTmdTFqrZV2vixwm3VSqWJZZsiWTpkV\n6AL2ultk4ZjF8RPS8RGkS9IkJI4SDMskrUr86Rw/DEjTAkXRqNebhHFALgrcRgPZ0FaQF2WlZBRU\nWIZJJQoqMkI5ww/neK6Jaug8e/oMU7OwFAtPNilETq1RRxUyYbqklGMUs+T0+AhDsZlMQ66+eI3B\n8RnFMqBp19HQUYTKC1eu84XXvo6sOCz9gEbDodtr88pLt+g3+wSRxMblmz91L35i14GdrXWmwxkM\nY7rqNhcOXmIyOMGp2SRpQlLk1EybxTJGFDllKVBRWGt2iC0XWQieHZ7h1JqcjQ+p1+tkuk4UBuwc\n9PDjEH9wRqfTQ0iCOE0RimBjs8nxeES2CDFVjVaviW056IrHs6MTvFoD+XyVLLZZZzwdYRs2ZSnh\nmga67tAoe3hGnfFkjqmrUBSYmkIcLtHknHffu83+RpfXv/WP+OVf/Re5fv0qd2+/wwuXX+boeECa\nxkyCBYpW8Z3vf4df/OWf52/9p/8xv/7v/nV+9O77vPrFn+e/+lt/m7/2N/5t2g2XiwfbHB4PEaJg\nMh5jGSpRGKFogrMPj9juXGCRDbAVGceQaB6s8cfv/pBwFnNhZ52dzS6yrHJ8+j7lIsXTXWprbWI/\nOnfd7927f+78u4/PePXWZZZ+RFYkTJdzdNOg1mozX05w6y6KKlOrebz1ozf4zK1PM5ktsGUTJzP5\nma/9PI5sE5VLqipD0iQoC3TDIA5mZEWJqrnkQsXzXCrDJE9yiqwgzwSqoqLqLqUkU+tuo1cmleGR\nFDFFdgYoJHmCVpRolUCtJLI4Z+lnTNKcJ3GAZciYhoxhG0S6Ta1Zw9A9ZF2jkFYVGFnRkasSUzbR\nVBXX8ch/DIHuOCsWQ+D7NL0apcgJl0vG8xGhUlEogjQpycMx3VYHkZQkZcr+xT3mDwYr5yVdocgS\nRuMT6jWXm1deJAwDXrvyMs/uHpFnKS9fepnDw6eYkkYRZEz8IUdJQFWlCCoKWTDzJ4wnY4KgpEBn\neHR+YP/x8YkFgeHZgI31DeIs4fHhIbGf0ml6ZKJY3f+KgjTLkXUZ09Io8wzfP0UtUnTDptGoYx4c\nMFlG7O7sEoU+tmcyHT9Fki3QVfIoRVEVpuMhi3DOXmebxdxHETrd9R6TyZCJv2QyndNqrXFh54Db\nd+7y0o0XgI/r6OfLGRf3Dnj/g7ukZcSV3esMDgUKNuFiSbNmo6oWrqkRL+bE0zGpSMnTOYZk8MKV\ny/zgB99jMl9AkbC13sG2ZXTdprfWYTEbMp/N+J9+67f4K//Gv8PtJ8/Zv/45fuM3/iO2dYXdjW2e\nPrxPv7fOdBwgqKAuWC4XJHlGp9+m7nrMwjmy0ImrIYtoQs9do9dqUlh1DBPa7TZvvv0G/+e3/h43\nNq5z7/abdBptWpsHvHLOuzo6ffvcd/gzv/hVRqMRNz/zeQbD58hmRRTlaIaObXtkUY5Gjq5oSLqM\nP1vw2Us3+MGP3uSrX3wVS7XIwxSRh2RZQlGkiAr8WYCkOug1l7w00FQDFJ1S1sBZfS6zAstuIGku\nquWSljJyISHLJormkssqqmWhSyZJnCKUcoWlyyoM10UUOboq449nmBsdNNPGqTVQTJfKsFB1l/XN\nXZ4fP8fUDUSZk8UJUVGsmpEsDQWJqpKIgvBPr3ayqCiznPlsSFhmzKKUMFvZ3bU7PTyrg1RqzMIR\nE/+E7lqH09EYWZHpNJtEiwByiWgp8Kw2xbzESWrIks7JnQl202R3fR8KDX8WUhQKnttAMSJktaK3\nsc3Rs1PWd3oEfsmF3Ut8///48/fiJ9hFWDILlxiWRpqHVGlIMC0x6za2qlFoCpDjL0MqR8efz2h6\ndVSpoKNopIenfOnzr3H7yTHTbIrXq+EHAX11i6PxCbZtU5YySlrgKgrCssiXIVImUIoMfzLFkGQM\nFHKRkfkLmrUWv/ClL/Dg8ccZ+wCLxQnNhsFXvvx53nzjh6RBjioapHmGLKcg5dQdi/HJGbYJ88mC\nXJS0a20ePT7kc6+9gL0c01/vIPKU7Z119tU9ev01FElmtBjx4MN7yGXFj977kK3tDhv7l6h5Nj/z\njc8zn63+Nbpbu6xvbvD44UNUVebGjZsMJiM+uHuPOAlo1lukRcS4WFDrmwxnU7rNNrEaUoqI+/ce\n4dVq3Dl8m7dvf4+9vW0Wi1MOo/PX3e2fnyOxDYeam7OYz+g0ewxOxti2RxULNjub3P7gNrpiIHLY\n2NpgOV7w7W+/zpc/dYML2xukyQINmfHpEZYhQVUSpxWxMFCsNqXRBMVAFBWKvZI1C00j12xMRUfV\nTJK0QP4Iq10VMVoZUi4GFP4SXdexHAupAXJVohYlwSQgTlPqrkeS+PSu7KM7Bprl4dUbhFmJpYCp\nyax325iKipQJDE1jMh9jWSZlXqAaKvHSR9dNkD+iCpsmQRSRlzmarCLJNlsb+3Sqks29ff7JH36X\nNF7QbvaotVrEpU+ULlF0sBSZVqtJWmtwdDRkfb1DsKhgGbG93aXKDMJK5engKbqy4Oa1myDOaJsm\nhZJwPDrFViwef/AIxbDxHJfh03s8fvvOT92Ln1gQ2NzdJMsjVNNCXS6pdZtMjqbYzRrvvvcWm/tb\nKKbAMnUMw6aslZhOnfF8SbfeIh7P8HKDWlGi2W2CeMlat0O72+IH7/0xSRRxPD/CqNc4PZuzvr3G\nZDxBoaLX62E0PB49foyr6lRZiWXpZLMl41nGXncD+PiGGJz5NOsz3rn9Brde/gLjx3PWmxZFXkOV\nFXSlYDkbo1USo9MRtUYTW5ewbR3b1ln6A/rNDt/53nf59Ms3ufvwDpOzMY8ePMH3Q5Sazmc+/Tn2\nDnYQRczDB/fY6O3wn/zmf8CnLu/zD37v9zm4cosoz1jvrjOZzVguZjw7Oebs7BRFkWjU2/jxAkVz\nyZIKTTEYDY/Z31lnWSSUpaDZcOhvrvPW2yuLsFIGX8npe+frBJ49OT8zuFzG1FstHrx7l3a3y6//\nW7/O3/mtv8tmp49f+BzsX4JSMBoNyMIExXBpeRafuXELogVpoZBnJYphYqgV42FMlJWUkodcBqiZ\ngdFwUbweICEZJoWoqCqFqpBXuC8FyApUXaZQS/JkgZifUS7HTOKMiWXQWevS8DwUrcCuFWQxqLpC\nq9WhtbmLLJeUuSCJI+qajpqHpPOUIqvo1JpMpmOCOMOyLfqdLrIkEElKUeToSEiOtfKClCryokAp\nck4Dn4WckFo6s9GEw+cnNGs1+v0dhFxxOBjhtg3SMESRJBTFZDpeIGs6QqQsxxOqXKbb6vLB/Q/R\nJIfZ2Yhv/uqv8uzohEyAkGVyIYhFSru1S5pntPa6lFXJydEJvXaNhqPw+nf//L34iQWBIs2RFZWj\nowEX91s8efKEre4F3rt9h2svXOFkPMC1TSQSoiQDGZbJEK9eI5cqOleu8J23f4DtWOzvXuLpkxir\nkokGYz599RbvvP82/W6f+XwBkqDfWkNDZbGcraK2qFOvdLJZQNNzWczmfOraTZ4fDciT8wk7ly5t\nsgh8arUWb77xNl+9+XMcfzjmS19+lbOjY5bzmFTETJdzsmSJmauIrCAKclrtNWRFR6oKfuHrX0G3\nLRZRyPbuAabtEkUZP/vFzzDxR9x78gBZ17AUkz/+/rfZ2Ojyxu//76ztXKGmC2anh6zf2uHBkUlD\nbhGGIbVaA9s2uH37fTRDpebUcBIT1xCozRaL0Zh+v4W/9NFUlQ/feZ+DtX3qDZPZYkqRlgT5+dyA\ni5cunTuv6zqj0yFe3UWWBd/5J/+YL3zxC/zRP/q/0dsKWZzSajbIRc4iXFL3WvzSN38Jp+YyfnaP\nEsjjhESrkMWK9BMFEYquYxoOGDqlpEOpohg6kqJjGRqVLKHIMoqkUAmBpkqUQkVOQrJwgKgyRFUS\nJgFJMKOqBMFsicgTluMxa70+rUaTereJoii49T6aZhCHSySREYY+MgJNN3j5Uzf5w2/9Y1RDJY1S\n4jRaUYoVGdOwKCuFumtRFAWSBEs/XAW+2OfMH9K7uIPl6XTqbZbzgNPJMyRFprte42jwnCDy6ba6\nREnC/t5FBoMxrXYHkUi8eOMm0cSn2b1JlVVYN17kweP7RJmgIZpIjoqmq0iyx3w5Qig5abXk/t0H\nXLp4kbppczg4PPfd/fj4xKoD83mAVpast6xV9tvQaTVbdLstBmdnuI5JkiRkSYGmmsiySl6UeI7N\nIplx++hdlIZOQcHo7Jitbh9XUpCSjMGTQ0xMylyjXttgu7fH69/6Hu16m4PtA+xcQ54VbLp9+rU+\nRVLyuVc+zWg2o9ZqsPDPNyRNogkN22B3bZOe4/HhvbeoN/vcezwgzqHdX+PTr73C9oUt9i9eICsr\nclExXfjYnk5exDiOSVHGpFkMlcrNW6/wha98HdN2+Z///j9Eky1ee+Wz/OJf+lkMqUKTc4Q/ZW+9\nzbM77zD58F3K2SnDk7vIIqHZbNJqtXBdm+OTYzyvhqaqPH/8lH6njb9YkMZLHFsjDX1USnY3+1za\n28GUIJoumJ0OqVDY3No9d91ReL7gZHz2nOn4hFrH4/DskMF8wu/87v/KV776RU4HxxwNn/Hw+ENq\nPRvJUvmZL36J3U6PwA8QaUQ6PiEYDdEVg9PxgnFQUNlNSsMj1zwyyaJQbKqPlHdCkkGSkAF5ZeKG\nzMpZuSoSpPAMsRxCJYCPIK2aTjCbUyQZRVGSVtIKwVZWhEmByFPyeEkWp9h2E7exSWfjMu3Nizid\nbexWn7SCShRIVGRZhmGbWI6NVbORNIjjmIXvE0QRyzTmZDqi1m0j6xqLMMCu1VjGPvV2jXa/SVbG\npGmA561MTEQl6PX7VJIEikScJ0haidc0OB49x8+mGDWZpApJRIxTtzgZHqNZgml4yvHoIZWaYHkq\nT58/oL5WZxzNeO/hHcL4fH/JHx+fWBCQZcHNmy/hLwOKdEm74fD97/4REhW9XhfLdjAtB8NyODk5\nQ5HlFYJpcMbZ/JT2tsfAPyOQck7mZ/jRCr7x8vUbtOoWeztdDvZ3mE+XyJXKy9dv0Ky1SOOc3f46\noiioNRuUmoxsGZw8e4rVrLHwp3g149xnVmUo8pzJcIbIBEUqqCqDtFQZLSt++O4z7j8ckGQ600Ag\nOU3muczO5ets7mziNur4aYhiqOi6xe7ORd597wPmiyXXrr3A3/jbv8n/+Lvf5jf/i/+Ob//ed9jZ\nWKfIAkQwo8oSLmxucXh4xEuf/wpRmNLqrRHFKYZh0+9vsLW5Tb+/hm3ZtBt1Lh9cJZgWJEnAbDJj\nNh2TJQF33nsHU1Exkei4da4evMj+/gVGo/NPApP56Nx5DRm1kDg7O2NrexPd0djd3+K7P3idzY0d\nPvfZL7Pe36HIYK23zVb7AmQyWVkBFWUaE/oJRWFSlnX09j5G/ypKY5/SaCBpDpJuoRomKKuTQFXJ\niAqyoiAvWCkCK40gPmV0cocySsiSCl01kCQZCoFSVYT+DN/3UQ2TOCtQbRfUlf14OJ1QRnPkMkUS\nUEoyJQZCtqgUk97a7qo82GxTIFGWCmkJYZaRloL5bMZ4PGIymTLwJ0wTn0pTUSwTIQvG8xFRElBr\n1BiPx3Q6XcIwYrlYrCjUskKWpZyNhmimgWEZWJ7JO3d+hFAy4tzn2eApVsPErhnYnkEpJZzNT4hL\nn6CYcv/oQybhlKhMOTx5ztwPMDwX3T2/Pfz/txf/qXftP+Px5ddu8e57t6m0CtkyGC1HvPqZK2xv\n9sjTnCzMeHb/jHBW0G+1IROoeUWv36Pf7ePPYxxL5wuvXOfp4w9J8wWFFHP3/ru8cPkapmzzyoVr\nfP7WZ9neuMZ6cwet0giChLhMsWwFQ5Pothusr7XRmybDxRDNUFlG50fPmt3ENiy6zQ1cu4kiryOZ\nJUdPn+A5DooiczKYExUyYz8hjEM2el1evn6do9MZC98nB8o0p13zCKdn+LMRf/L911kup/z3//V/\nS+7PONjuMRlN+F9++39jPp5y5+5Tnj87Ri5g+ewIu7mF2thlNBmjmTpZIZBlhShKeOmll1ksQpbJ\ngsXZkjQStNe6rG81kWXISkElS9y99z6L4JS7D2+TJxn+6fBPkdt/djx//vTc+fWtTTTVRuQlJ8fH\nhJHP4PSEvas7NBtNxqMFjUaNrfUdLnQ3EFnJeDlAEgJJdSlKiSiakxU5lVtHs7uUkkWpaJSajWS6\n6JqOgoRcVRRZRpqmiBJkSUUzTRyvg2ywoisXgjQLqcoccjBkHVmRCNIlYRyQpglZFuGnCZpjochg\nGDaFpCIbBsgKSTQnXQwRWYypayiKYHPvIrosE2cCTJPTxQR/HpGlOVma4wcBcZ4z9qdEIkJtuDS7\nHVy3gWdqWJ5NmZcMxyMqIZBVBdt2qdm1FRrMVhkGc5T/l7g3CZIkO+/8fr4vEe6xZ+ReWVVZXdX7\nysbGJkASACmDCJIzNqAIIwXpMAdKJjMaD6QJMhlnTgAvOvBAHUakGaSZA6mLCEokB8QQANkE0Ct6\nqa7uWrOyMiNjX3zf3XWI5ghUJ9iU2cjwHV+Ye/jziPe5v2/5/9R1K7WmidStOpomk1YJD2bH1No6\nq8zHDZZUuDirM7IiZeEtyMQMzdaZrCYohkyz3cauN7l6+ChpfL5o7g/bjy0m8N3XXscUK3qdPqG/\noNNes+HyMMYSNaxmm6bYoKYqLFYT9i7uY+gGUZFy7/4dGjWL2+8c06hsvvjPfo133n4T35+ysdHl\nO9/4Nhv9LY4XJzTbm9y7d0JvZ4PxfIQsaWhytQZZSgKCDGGeU0oVNVvDTESaZh/4YMGQKFWsVg6W\nYdKw9iATMTQT225iNyw4FTkZDBGkilpNQ9NEBKDX6/FXf/1N4jDm8uElBFFkOlswX/ls9LZRZRPH\n8dkwLX7hv/41nn7yad65cwMMgziLebCYMPc90lRHweCVN97jwdzh+ttvc+niRZyly5NPPcWFC/vE\nccTBwR4v/t23OTy8hILI4P4xRqNGkqbkaYXSsFCtDkJNwsgjdrZsvvfaXWrG+c4v+RFqwy++8RJ2\nu0GjViNbhpAFbO/0ODq6h203OBscMV8Z7G5c40L3ColzBkVKgUgYZfiVjKppuE5AYbdJC8iLAkFU\nUcS1tsGayFxSVRVhGFJSISDSbNqYtoUoKgiRR5WlmLUaniASxxFJlFEWxZq5KK5lxpIkocjBqDeo\nSijUikISqcsqlCl54kMO7nJGs6MiGjZIArIiUxYlZVUhFCBJMkglYeixchdIZcUyjygVBZp11JrG\n37z6bXrtNqPBMaKqs7u9z2I+ptvbxHFGlEJGGK2Y+wGyorK9vU+RlBRliaJohJFPmsfU2hbxKsb1\nZlw97HL3+pBU9pBqOX48ZTgaUes0yLIYU1VI04ztzQPESmQ5PkMqz8fK/7D92JyA3bbxJh5bmkQU\n6XRUnW6/wc13J4iFjCTEdKwWTbtOnqRUKSzdFV4eoQoaYlJydf8hDKPNv/+Lv+OTL3yC6WxIt72D\n68LCD1A0nVde/R5b3T1KAjRdwRJs0sRBb9TxipBMzCmlAn/lIeQi9c4mUnX+E1FVVCyrjr8M2G52\nOHGPufiTF7l18y537tyl3Wkznc/odru47gxB0CjLin/3b/8dNctka3MPTa8xXsV4vsPR3Xts9lbI\ngohlN2nvHnDj6Iw3bx6xs9vlmaefJnSWXNvt02jU2L34JIlic2/h89Ybr7Ac3OPhK/usljPCKKAs\nS4bDEVGcsLd3gTxLMfUmjZ5FocX4qo6s6iSuT4XE2cSnrdd49/Z9JLvO1P2g0jBAq9s7d7yQKibu\nnCRwWU6n1NQ9Vp7P9t4OpZig1WU8J+ETn/8ZdjZ6LO5fx3c8xJpBkOcUkoW60SWQDco4RtA0BEkj\nLwXKvwd+pAWGaqyVQQFJktZkZllD13TiJCUJAwJ3TJQEFHmBUAhIyprTV6YB4lo6CFVVCaMIoRJI\nqgJD1BAFqMgI3JBMdrFqHfZ2N6kkkzhyiAWBssgohYo4XguKzhdrSXvShNlyQt2sIXTq2N0uyzQg\nzEJaG23CvKAydDb3L+DMPTb6G5ycnVJv1snDGFEV2Njqoik6VZUiKypVWaBqGkHoIykC0+EAQRWZ\nLuf0vCFKTUaQKlRVYTSes3dhnyjN2dvcZjVfUddtluMlqhSitDvUO+eDY37YfmzbgU3TZmtLozAg\nJqHXbzFY3CfXBUJF4+Xr73I6O2IZLFBNiaMHR2zs9Ll04QJiVbDd6bG5ua6jf/InnmHuB9idPpPp\nHM2wEMS1SMRDjz6CEzrcvnXEfLagrCJKTWHiLInTGE1WKMuSPMkIVg5u4BEn5wfCilAmDUSqxIBK\nRFFExpMRm1tbLJYr0jRdd/QJkCYZd+4eMxovqNldkiLnbDzmrevvEngp1996i2vXriDLa1LudDzi\n7vE9Tk/vkcYu/W6DTlNjMXlAXZEZ3z8lKCKG4QJDFCijtUbdcHDEyel9kiRgOp0iIEIlU+QwX/j0\nOpuMRjOy1KciA7Gk2WogSCXtThNR18jEjCyJ6HZ3zp331cPPnTt+cfcTbFtPsZgZ1OxrnE4NtnYO\n0eoSw+kDDHObX/nl3+TjH/llRElBECQ0QyPLBErNoLG9z7vDCZVsIVt9SlGlKjKqLKKIPebjU/LU\nIYkc4mCFOxsxPTslDF1anQayKFMWOaKgUSQ+jjsiSWI0zUAUBCRZwtRMxLKiykpUQUZXDdI4RZIV\nJESy0CP0XMQiIo4dppMBK8cjjDyyJEChxHeWnI3HjIYDJtMh88WE4WjEbDQlyzNCKacwBMbRFKUu\nEGUhkigRBxEte5OyVJl7PnGRorbrPPT4E7SaXYRKQxYVVFWjyCsqIWE5HzEcnuCsliRRzAuf+Bi2\namAoNaZjD0EpESWRoqgQUCkKKLOUJAjY3uhCmVG3bA6vXOJ49IDh6sNwpD/WsuEN7i986vUGqqGQ\ntATcVYBS1xEy+Oinr6KJAqoEySrl8mOHfOu7f0eZSTz5yKNMZkvKykAuMjSrw+nUIzx2abdN5qsZ\nvY1tBkdHNHWRTMzo7nRobnWZLodEscfK8zFrIoosYEgSUtsmUWSaHQt/eb7CjoTOUw8/xcvfvY2u\na+zv7fHg+IRubxN5KHH7zh0ODg5458ZbNBs1sqzAaLQ4OhshixKCWGGYCmen79HvWkhVxO7uDoqm\nUq/XePO1l9ja3uCRJ68hkPP9117hS7/6a3zz33+Dg8efolJMsiBmMR+h6Cofefg5BNGkfO8BpmmQ\nZiHj8Zhnn/0JhsMT7ty+zbVHd7mwt4dc8xjNZvQbLaJVwIZtI0olZ7PlGpCimfz0x38Nfv+3PzDv\n//43/0f+h9/64P34n/71/0aeF4RxTJanTCYT7hzfJkpmPPGQxBMPP8bB/uOESYRav4RqrViG98hF\nBcdPyaOQ0uySySZlXlAJAkWcUEYrBuN76KZF6s9Q9R7NdovB6Qlb2xe5dPgIVqtHGASUZUFBTuY6\nxIsAz/VRZANZWkuHVRTopU4YBKRZhayqa3CtIlIWKeF0ilFkVLqA1mjTbHeQak1ERSXPoSpEer0d\n4qTEd1bkcQx5RSVCFKeoLQO108XTK+beEn8eI0nrTMzGbp/BcMTlnT6lWDGaDKltdrl1/z7R1GV3\na5sHZwOiICaVCtRERDNUoiTDi2IWnkNVVTTtBp984gW+9e2/Ii9S2laf0XhAt98lDFMkWSWJMzK9\nIIwTyszHC+fIhkyr2/7QtfhjcwLz0IG6hm20iNyE2BWoUUcwJZLIZbFaMJsv2ev3WC0ctEadWq/B\nZnOf1994h6v7+6DqnA6HHNQ73Lh5B0EsmPsCw+l9rsgxD6b3cIsZvY7N6fwGkbSDpGhIkohpmpRl\nRLvR4OTBPURdRpYkRqcnVEX93GuOvCnDUwtJWu+9Wq0Wt2+9jt1ocvHiBbIs5e7tO+iqThxlNOwu\nZr3B/bd+gG3UkGQB596Ey/sX6XQbFEVKzTS5e+s2WRVxYaeDbgucnNyi2axj1DS+/8rLOIWAVEjU\nRYXR9JTjO8fkvoN4uIvjBKRxRM00UBSJNAswTI2NzU2WzpwgLRidrbj4UBO7IfDqq6/zL/+rL/Gd\nb/4HLFtH12SajR49+zG++C9+E/6LDzoByvMjzFVVcbLDjgAAIABJREFUosoyat0mzwta9QZXL15b\nk4wqBUHOyCuVIFvgCzZ0L+PNHSRVQC4UPDcilwz8vMIUS9I0J48dpqe3SaIl7nJKvWbR3jE5Hazo\nbWyye3CRZqdNVgnkpUCWlXi+x/xsQpklIIgsnRX1ep2iTBAECUUxEOWcoijI45TNg0OilY83uI/i\n+Kg1AVHWKcuCUpRQFBVkDYkKQdKQ5ZwyK1EFCSErUQSJPMnIyxJBKLn2Ez/BX7z+LayOjSka+K4D\nkoDdaDD3VizdKZevHnDv1m1MUWCynHGwZXF8/x1Us4Gm68RpSK6pjKYzVLmGF8Vc3t9jvlyxDHze\n+/N/y09/6gVe/PbfkI8HCFT4voNpNijLClUUGY7GlFSoikFSBJRkOIvzMzs/bD+27UC9piGGMRUl\nNVvF98/Y2tkgLzMsw2K316cm1cjigkbdIs1TwtzDjWYYdZHt3S7D8RGjOOGtWzepEo9nn36aum1j\n2nWGqzmPfex5Kl3i3uwYe0OnIkaWKuQio8hSRFHk7XffJS5L0iSjzCuqat2rcJ7Vai2iNMdq2MRp\nSpQk7B/scffOTdIkpr/RZWNjA88NmM9XxGnGvXv3kEqwGjaNusXzzzyL3WiiqQae5/Pyi3/N4Ogd\n1MgjCj28Vchq7nPv3il+lnO0HCMaNTqbe2iFxv7+FWRNQZIVFk7G7XvHPHL5MqPhEEmS2N7exvNd\narUa3U6PJM9woiXDyT2Oz+7w1Eee4P/4v/6EXMrwg5A4isiziDs3bxAH3rnzroTzhUZlcX2fBKFE\nlgUUWUFSK0RVQ9SgElSiPCBNS4LUJ6HGY899lr3Dj7Nz+AKXHvoYzdYOhtEgTAqqCobjM/wkZOpM\nCNKAZeLhRlNEVaVm9bh07XFERSUOHILQJQpc0sURZbkkyStKUaGoShaLBUkSIQglJWvgS5HlxHGM\nZqokK5c8rygkicalQ1q7D9Ho7WMYLcpCQshLqrIgyxOyfE0WJls3IEWeT5ml1HWJTsvg1bdfYrtl\nImUx4/EZO3u7QMmNG28iizCfTnAdH9VsUDfaWJrO0gvo71xCrZsoukKrZlHFKZcvXEARJPrtDnGa\nUImQ5wUX9/Z5953bdLrbPP7EkyRBgiqLlHmKXKk0GxtYrS79vT0mzox+b4MqSyl/BGT2H/yO/6QV\n+/+DuckKAYXV8gFipdKxOgwn4zU4NIjp2j0mmkdeFTQbG8yXC2y7Rpou6fR1gmBMp1djcDqkZdX5\niY8/w72j2+RCyu7ORd67d5PjezcJswCttk77dZomfrCg093HjVPc3KfV7RGGAZQCuSRgasY6+nuO\nlZKMLNVZOgGxH7C/r2BZNapKYD6fsbe/j2LWOT4bsPRdZGeFIFpcunSZSpCRhZwoLNGNgiBeUZFh\nt0y2thpkiY9Rq1HIMnmcUIoiiiwTRgUN22BwesrO/kMM7h3RbXYxNjdY+SE3b9/j8s9/CqTqP0bS\nVVHG1HQuXdznZPqA0rZQVAdCmeVqgqxomLU6juviJx6VWNBut1k6J5wnQSG+H5T7f1v695HnskIQ\n1sw/UWC9eIqcKM8IkxA/CshKmbqtk+Qphtmm2VaRJZUnnv4YuqmT5hlxHDKdD/j+97/Dmy//DY4z\nxjBlnACee+45XvjYZ6hklbk7X+v8hw7u8Vt4Z2+/j/taR/F1TcNPQ+KkBKlEkHUC3wO5hDIj81yC\nMEFKYuy2jWLVkRUdWWmQISBJElmWreXJZInje7cxJAmXirIoEAURQxJQVIGwilFEgyzOaTaaJKXE\nYLLmZEoJaLrEeBHw2MEzpPePkIScMorQdBEn9Yn9mDBNEWToNBvUMdE2FcbjOZkfU+QpG402eZZh\nt5u89+A93Bsezz//cV763uu0uhqqoTBZDhE1iVW44qFHrhG769RrVvwI0dwfsn/UCcRxzCc/+UmS\nZN3L/Yu/+It85StfYbFY8Cu/8iscHx9zcHDAn/zJn9BsNgH4yle+wh/90R8hSRK///u/z2c/+9lz\nz71arVAFlbm/QkXGXXqEQoKKSFNrMDoeEIcxD5ZLHr52jVXkIgglWZawchb4swU//9lPMZvNCKI5\nDwYOVrvDeLHi9MyhXrNx/CWdLZv5coLR7LDyXHRB48HRMVv7+yzuv8vZcE6na9FrtLl7+x5Sp4P3\nI6qsyqpCkgx0TcBfrbh79w6XLx+yv3+BmzdvUpQVp8Mh27ubCBSMRyM0RaLRsAkiH10VEAwRaS1w\ni9WyUTUDURTYsQ5w/JAiA1ExqCsyeZpi202yIEE1NV7822+zs7XDzuYmVrPG3aMHtPt92u02D+7f\nZ+542HWblbuiLEtqusHzT3+MP/veK1i1ElEQqbIC3w0ospggKultdPHckLIM+Ytv/O/8xjnznq8c\nOMc9PDgbIEkCmr4ueEEsKHIQKkiylKIqcX2fZqdDt29AllAVyfpgESRRQhLXC448R0Sh29jjFz77\nRX7pP/svCWIf3VCoqzVUyyRNYqI4QCwhS3PiwGN8/1UEd4K7mqKr5ho607DwgjlVmRF6CXq9ArGE\nSqASYT6d0drYIS8ytFodSVWJspgi8TAkiaLIEWSBVruJHwSMz46J45A4LdAliazKkesGkZlQ1sU1\ntaq3xd3RgosH+4wmQ8YnQza3uqSZSFYpDCe3EUuZ1AuQ8gpnGVJr1MgyB7thsvA8VmHI8dmKmmlg\nmTqNjR6LxYIyB0WWORtOCIuESoBXXrvOQ4eXuXd8nySdYdoaWZnguh6yZFDECv3eBU6G9/+xJQ58\niBPQdZ1vfetbmKZJnuf85E/+JC+++CJf//rX+cxnPsNv//Zv83u/93t89atf5atf/So3btzgj//4\nj7lx4waDwYBPf/rT3Lp1C1H84K7D1i2WU58gKDGbMhIFfp7SsXqQZDihQ29/g7cHU77z+ot0Nrsk\nEw9VrSi1CrKUB+MzSs0hySSCQiUpIwbzM8TCIEkrdg83KMuQTqe3fiVUNLKwoChiGqpGQzBpNgSK\nJGE6W2C3mxSySBCerzYciiX1TMQyG5xEIzY3N1itVlhmh36/z/e+910sq0ZkqDRtm/FgzGzqIIk6\nW3tNFoslAuAHJUZNRTIURLFCkEuWQYgbuvR7u0jU2L+wx4PTYxTTIo5SIm/FZr9GRQLoiELFD15/\nGVXSyDMBXbcpZisMQ0cUBfzQw97ZZTSYIjodxEZOs+4RhB4Xr17krR/cotOtM1m4xHlAJQj8+V//\nr+c6get3bgLPf2B8vlgiiiJVuQIEVFXBrmsEvosoS8RpTpyENA2VInLx45CqFBBYbyOqqkQQy3Wb\nbp5RFpBlOQISWs1AN2rU6w0MVNI4I49T4jAmSnKoSqIwJHbHiF6Ku5qitDcpZY2izJFklcgJiNOE\nJBOwOi28lQOZTBBn2P0+zfo2hlmHUkYpMuQiRqVCVhUkTUdQdVLdIpNFihKyIkOVFRqyRqSKSLsN\nojQlKGMudfu8dnSPfrxNCXT7OyAKeElIJVRkacxiUtK91GOezklLaBoWUb5AytdBxlQAo1WjZbUp\nEoe5N2YynHFwcJkwSUiTJVcvXuAHL99Baee8+Y7HxUv7LIIpUV6imjp2u0FOwTJzkNOUbv/89O4P\n24duB0xzTehN05SiKGi1Wnz961/nO9/5DgBf+tKX+NSnPsVXv/pV/vRP/5Rf/dVfRVEUDg4OODw8\n5OWXX+ajH/3oB87rz+fkMRg1ldNTh4cu7rB4MOfJn9pgNZ7S1rqcDIf8zKcfZ7Zccuv2mI4p0xRE\napJOJCe8d+sdup0uk+mM3f3LLFdTPvqR55CFOq+8eoPV0kfRIxodm7qt4M5nSKnKeLRkq/WAq3td\nbt25i92q4xYJ7tJBM/T3pbfP6R/ISzRDYzFdsdHrIAgCk8mEoiWyXM25cHABz1sxHA6ZTufoqk5V\nlu+DKTUuX7rG8fERmqoyHEwIAxvT1Oj3O+QV9Dp7tOw+88WCKMtoNNoEfkCFhFZfP20bdZvJcMKr\nr7zKdDDkv/tv/yWOG1JWFXXTwjANprMpURQxGU24fv0lNntPU5NF0vh1yjxh6swwN1qslj7NTY3Z\nQmN65nH1wvnwkbt3X+U8J3Drzg/Isxxd16hbNrpmMTyLME0TQRDwgpCaZXLr6C5pnNJq1JEkFQF5\nTf0pc6pqfX/yPEMSRYqyWCtI+x6qIhM5SxRDR1c00jQlSiPCKCV/X4NA0QRmZwvMmkzgrpA1g0qV\nqDXrIBUs7w8oCEGVSKWKUqhIwxCz3QJdoJAyksxFU2SKMsV1HaS0QFA0RMUEw0RDIYsyOnadPIuJ\npRSjZTFMFmCYCLKGl4Qoskgeh4hlRqfd4fjomK2DHSgBwaBSM2TDICoT9i9e5mQ0oJJVVkGMpqkE\nQYlcJGTEOJ5HnhY0bJM8iyjLgpqqMR0ec+mSSZXLhE7MKpgQpRGxIFJlEbpao2lbbGz3GB4NuLZ1\n8cOW+Ic7gbIseeaZZ7h79y6/8Ru/waOPPsp4PKb/Preu3+8zHo8BODs7+wcLfnd3l8FgcO5521aT\ncehj6CaFnTNbLriw2+HGW+/QbtsUaUGz1UGWVXb6u0jIZI4PsU9OxdPPP8Nbr79FKcrU2w0KBCoq\njo/vEvoZL7zwLAvfxY8clsGSohTQTRUqiSeeeoSje0dslltcunLIZD4jiXyqssK0TDz3/ABZv7eN\nVKgoikGeVpwOztja3GY4PEVV1iWm66i8g+eHUAhUwHg8ZmNrgzhKiOOMhmVg2xbO0mW5KHEdn90L\nu0hSTqjF9HobREmBqBhs7HYpcoHlbEmUZlx/8ftErosb+fzqv/hFqApc1+N0OELX1yyEyWhOHCXY\ndZu9vSuoiojrrNC1bc7cO3hVhSxb1DUJMQzxJxWKJPLOg/Nzyn/54r8B/psPjH/nla9Rr9WRsbCt\nDRTFZn/rgPlqHSOI0ogr9hPUTIG6WaMqCvIiRRRKqop1eq8oSJJ1W25VZZTlOooviTK5qhMnPoZp\nUFWQZSlpmpLnJUkeEftL0ixFNcBdpMSRj91ViOMMJIGcCqtVX+fgyxxZlkllGV3QCLIc09BJPQdN\nk/AiB1E26bZbiKaFrKiIeg0/qwiiFEXXELIEo64hGBKOEFNr1niwXCGWAkq/YK/RxNAUNNHAdefI\nis6Du6fINQVRsMnLMRgS9XaL1954G9WQ6W1u4zoLapqGVRMp4jVFaGtrh8HpA6xmA7WQWUYONdtE\noE1SwHK1QLNU0lKj3pJYOSta3Q2CIGLpLel3+ly+dpXR9MOzAx/qBERR5I033sBxHH7u536Ob33r\nW//gc0EQEITzA0d///l5FvsRnU4DJ/Qp8hxR1db8eUPCbrQ4eXBCGMTs9Td598YNunYDsQABCVEW\nWK4cfvJTn+H1119BkmVOx3fRFdAqi+1+k/v3b5GWJTv7O+RixtCZI0rQtSxEWebRp57AcRyGZxN2\ntnYIwpL9K4e8d/Q2wvkPRCy5Sylq2HWJLC6o19vcuHmbtlUnCDxqlsG7925i6BaKplFmJVVZIcsy\nge9j1UxM3eDozj0+/emfIUp8kizH81zSqMArVmz0tskLEUnVKKqSvKiIw5zBYIrnucxGM/Ik5Kln\nn6Rm1/HijNF0SqNhk2UpSZyu++uSmI2eiaoKvPvebVxvhaAFbG7vsaoGZEWOrBdUmYalZXi+SKNr\nAR+sGnTL8/UEUsnjrTs36LU7CPMKRVW4cbeiKkVESadr79Gt9+m22yR5QSVUpFmybvJDRBDWepJl\nWVIV1TpaX5QIlGRCSJD4SILIbJIgihJVVVCUBVmSkaQRcbhkWcB4dkpTbeASkS4X6FaNNMmpqgqz\nYRMFDkkaIGNQqzcI/YTZZETD3Meq22SRiySqCKVCFPqYRgNJr+HlGYWo4cxXIJYYpkmlVchbJlKV\nE4c5dW2tgSkBlmUxnc7Y7TaZxGMyWcCwVRbLiGI4RtNEbr33Nr6X0em1GU8myIqOH0VQFOiVzIXt\nawzOBkSz+9TtBpcvPcd3/vLPMDoNskWO1WlSVDmmqtLb6vDgwYQUjYbZgdQkiVPanR5JLpG7PnL+\nnxBD1mg0+NznPsdrr71Gv99nNBqxubnJcDhkY2MDgJ2dHU5O/p/+5dPTU3Z2zq9Ce+X7C0wzxfV8\n2n0N24owWk2CIuFockalSFiayWw4YqfZZjVf0FRMCkkmEwp0VWM0OyPNIrZbG/jOBFk2ESWQdJU7\nt45obrS5dfs2gljQ32ozno1ZRg5CS+LdeyMOD64g6QJhEqIqJnGco+sGOefXW3ebuwwGc5LER9NE\nRKmgvdFELHJmiynvHjlomooTL5EEhTRJ1wEzYHB2ymo5R9dNup1N3r1xiwsHu2xu9tnb3yPP83X+\nOStJy5xoOSNNU5aLJb4bEEUho+GYhiXy/EefwTDqOEHIdDqj1WwRhCFFUTKfLxCqgo9+5Hkm4xlB\nlOF6Iffu3MK0bHpbTZRCJUkS6l2bwI/ptnt0NjTunZwvsBrE5wdK54sR3V6LIndIk5im2SD0l4ii\nxlZ3h/fu/w2SKnFl/wm8VUhRCFy58hiKrJFlGaIo4vs+VVWR5zmiKCHIUFYJYeCtcexFgSbJUInI\nssRyNaMoM3TNBBUko49l7SKKEbXCIkkisjyiYu0whEokLwpUVaWkIAyXUClM5lMuXr5MIQtYbY2q\nyClLqIDV6BZ14SHkeofFeIFcSAh5QVGTiW1ASLG2WrQ0g92aRk1vEKUrbFEi9hJKNeXqxTZHpwsk\nSeLio9f42+++zONPXGKjf8DN+0fMFwtMTaGtimwdXqFMIuJSwk9CSrWgyGQWc5exfYeHrj5Jpop0\nOj3y3GN0NkKxmkzPprizlGefO0REZxn4NOwaRZGQpzm1uM7bL98C/tU/urb/UScwm82QZZlms0kU\nRfzVX/0Vv/u7v8vnP/95vva1r/E7v/M7fO1rX+OXfumXAPj85z/PF7/4RX7rt36LwWDA7du3ef75\nD+4lAT71zw9ZhT5pWCNZ+UhpRVZNsZsWs3lA394ijSsMQaZIMi5v71F4IU5WkiQes/mE1uYmaZUw\nODlGV1TiOEFBIoojLjy0y2Ll0+t0KfOYwI/pWW2SNCElwd5okBQxsq5SSgWoCUnsk2UhdqN57jWb\nso1ULbAMg0SRMUKJMBM4Ghxj6AqyLlMV1ZokW5goYkXgBQgi1C2DMIjodUTIBRAE8lzAXSWIYkYl\nVXjzJUvXo1azGU+mCKJAr9ujLGKK1OeJJ65x+bCPJmtQKZyenGLWTbI8I44j5sslTavF5tYGSRbh\nOh7zZcRyseQzn/0cDbtBqY0IxiNKTSQKA8Igxmxs8GA6oGHLwAfzyvXa+cGlIPAoshRFFlAVk/Fk\nTiFKUBXMHgyYrJZMb/wlx6s77Go9VK3J2QhcN0EzdDRVRaFOyRr9HadL4tQnSgNkpHWpcVmRSgJl\nuc5WKYoECBRlRlIm5IJOZVhEgUuQhNQsC8+dIisyaRwjSwqSKpNnBUVVIkkSQZJSFDmyYZKlAV6W\nYtVrZGFCs71BS9FYeSFq5RJ6IbIqc3BhF79KsK/aSDWZsT9nsRyTOT4bnT5JXNDt7VDVavQfeYS/\n+8Y3COKC7kYXpwjoHdgImslg6uB6PkGQrFkRYsbC9RgNHPobFoVmoSgq8fuU45PTUwzJwitzgtzl\nyvYeVBk13aBd32d/U0IWNE4mZzTbdYLMo900mT+YceW5A7Z2JN586V+9/4v96//vTmA4HPKlL32J\n8v3g1q//+q/zsz/7szz99NN84Qtf4A//8A//Y4oQ4JFHHuELX/gCjzzyCLIs8wd/8Ac/cjuwjBwk\nGeq6SM1uIlciOS4rt6Db6qEUIpIqopYahSgQuD6RG1BkGduXLxC4CxbHAx7ZPWQ+miBIMlqWUBYh\nQuYRuSWXLl9hMB6j1iTETCJPK4RKwfdSNFWhkGWipEDQFeqCzej4FF2ts/DP76s/OrtOiUIYe5RC\nwVPPPMzr77yKl2ooasnZoKDXMslUkThY73uVusTDTz9MnhYMTs4YTiZs9jo8fPAcXhhRSjKL5QTf\nd1jOpuxs7yDLOVevrQU+irzgwsFlTHMtrFIKGaP5nCyt2NjcJo0TFNlgMl4glBIXLhygqALz1Yq5\n73M2PKNVt+k1u+i2SikekjjXKcQzfETarR3izMVWKzY3TeCDisPLpXPu/cjzAtWAvIjxypiMgna9\nSymK3B8N0WoqeZHz9p03cLp9NMHAy6Y0DAvHr8irAlM2ESSdIM2ohBxJLsjTeN0rKEpAhSTIa8S4\nKOAECZVQIsUglBlJGqK2TeKqR61WI42WiHWJnHU8LiFHUVWCOMRQVLwqpTJV7p/c5XB4xHa9QcPU\n0ciphIy0zCgLBaPRxAsTBsM72G0IFjGlVlGIMXIkI5YlqmkSxBnDpUu73eVkMsLQFYbHc4q0ome2\ncecxlZijW21ORyO2NvbxvZgkKwmyGRda11guFtitBkKqIKkZmiQTSBWNZh25giLJadgGLcsgWM3Z\n7HQ4Pjtlc3MbQ9e5f3ZCmIQobokgVMRBTKfTIyl8lv8EUZF/1Ak8/vjjvP766x8Yb7fbfPOb3zz3\nmC9/+ct8+ctf/tAvHi4mbLQbKLpEUZrs7FxjMH2XDd1cM+KQcGYeCCW2ZqErdcLCpdnvkapQIrO7\n0cdbOWxt7KLIEqcnx8hKl3i+4tFnHmf+PtGnJuvMgxWqrNGw6oh5ShguQCkRRRFRzhHydW1/a6PH\nwwePwr/5Dx+45kqEuFhgtiT8yGMwv46gBsiWi+OmXHqiwXIaYfcFZE9GFg1mU4dCWfHcJx7l1v98\nB1Mz8TyHH/zgJTqdLtvqFleuXsbUJAS5QBIhTXLSpMQw6sxmc/I8Q5YthsMhFawbY0wVWZbo7+1z\nfHyCJElcunQZVVWJopjpdMl8MiKMXJ57+gVEqaBIUlZBRJUYRLGO3VeJowxRlGh1LYLo/Oqyfmfz\n3PEr1y6SxDGOuyAJIlBkgjLEkHWeffwq1996A1HS6G81iDMPL3aITz12Wl1W0yWSIpDnPrJaYxUm\nbG9dZDg5RVFkapbFhf0dZrMzyFNcL0SRdPb3LxCGEZPJjHanR6vTIY+iNQY8jkklBVGykSSVPA7R\nFJ0syVFsC1EAWSopk5JylhAEEZVZJw4DxHQdjNQlFSoZQVLWuoVJhKprjPIAZdMiIKFKMtIsRm/W\niWYZcRQhCQYU61qSt66/xk5HI3ITdrf7OGWy7g5UFaqiwNRUnnrqcVxnyGK0QBEkJAV2Nlq8cus2\n+7sd4mGCCHS6G0iCQmWoaJqON57T7/cwTYWFNyNJM4SsoNeso1omnuOTBQWyDvOZj2LUPnQt/hiB\npF3yQmNVJrTrdU5nt5DUmPF0jFVvsPIimnUbQ64T5wJ+6dI77FJD4c5yyuT0lDhf4IY+7XqDZBHR\n2uhw8cI1qrLg9OyYbr9NfWefs8UcUVIwjBpXr13j9v0HSEWCkKU0VJssScliGQGB5WTJ9bfPV2iV\n1Iws9HEDF6OuMxjfR1B1etstdi6KpInPpceaBIHH7XdifD9n87LJpcf7vPTS6+iqBpVDVSo8/5Hn\nEESJIHS5/+AOuizT7veI45ROpw1ihh84ZNm6am21WqEoClkuoqoS2zs9ihTu3LlDGCSoqs5iMefk\n9D6KXGMwOMVu6BxcfAxVkwgjlwfHx0ShiKq2+bUv/gJ/8qf/C1cfvsTb776KlED1I2Ihunw+oPVs\nOkSqCvr9LUY3b7G320NVDFajGWKW8dGnn+bt6+9BmFOrN+lZCr67ZB4vWeRL9rf3WEwc4tQlrhTS\n4YonHnuU0WRIo9lgOB2wdAfkUcYjDz+G54W8e/s6n/vFX+D7L36PJI/QLBXPm9JodzkbuVRGRU6J\n0TCw9Sak0FbquFnMcDqgEEq6jSYrZ8zZcMC2VWP/wkPomkycpHiJgGXoiIWMoUokiUdJjtnQCGop\nu1cuki8qju/fRJAFrJbGI5evMJ0uCPyIspTot5o0DZGZE3JwcZ+3712nZtYZrRbU+hq7Wz0Sd0WZ\npHihTxqmiLmEIahcvryJpqg8/cyT+G6AUglUVYofrVAFmeHZKaKc47oBiZQiCSobjQZu4HB/MuBj\nH3uBzIlYrcZIio3V2PjQtfhj6x0wDRVVVpAKlUpIyChwgwpBVPCDAEWRCIMYRy6YuzM2+n3uHp/y\n0ttvUFUR9pYNskytZlKvq6g1EbGsCCOH++PbJGXIeDHmZDKg2bHIxQrRUgg8l+cffRg3iulZTeLA\nRzfXQo0L1+PK5UMu75+vtffyuy8iGBGCnnAyv08lCjQbW8TBkqxcIdQjXr0x5I3rPiuvQtMlHn76\nMdzJKaXrUGuFKJZBWCWcjgdsb22zt3dIr3OBurWNOw/JI5gNF5yenhInCXGakhQJQZYxXYYsnAV+\nlPHW9Ttcf+82lVBRs+pYDZuyEkFQiJOAXq/NxYMrvPBTP40fJzh+hevLLBYeH3/uEzTUfX7+p7/A\ndD6HlspoWXH52qVz5z2YnO8UTVMnEysW7piLvT66UENMVURprYf3zvEtmns9dg52sGsiCBlJntHr\n99m/fMjEC7AbDeSqwlZF+jsNbt69SVWFzJcnpHlAt7ODoKpUVYWKzO7mBf76Wy+SigWFlDNfTchl\ngZP5EYkc0NzfptZpU2Q5tZpFo9PDz3NqdYM0iriwc5EyltCkOpNxjmzuEksZKRKiVsdUVQRJJNNk\nRk7AYuqiiAKRKRFRcePOXQbxgEjOOJ09QEkkQr/A8QIM1SAKfH7qySfY3tll+7DLfLngP//pX2az\nscnh3h6aKmHpKs5iiRuUyEIDXW2zc+kKyzgmWKaUpcTJ2Zgg8pmtHGbzGfEyJF0tefqZZxmOx0RZ\nBHmJZRoEYcFTTzzPo1euUpcltnptfDelKgSmgw8XGv3xcQcWDq3tPVbvA0aKIkIzBPwUDKVGmATI\neUHXrjGfOty48S6PP/sk711/F6NuUFXJGvC0wWk7AAAgAElEQVQ5W9JsqFx5+ArxTGS+9JEMFVFT\nCKMAXZdx5kO2NmySNGAyOsVzZxRFwdzz1rSacIFck9nc6+PEDqJ+vm8UzYKZP8SPXUpFIMsKBrdf\nxaorHN1PuProJfzZPXZ7DfzSoUoK4mDJD747RrEUFFkldkNMXeP09AxLv4GmGKRZRrfTRRZV/MBH\nVhSKXML3UopcBlQEUcINFqRFgZfFRGGEIkISRthWhyDwEUQBQawwTYV2u0VZprz33g3OzoacnAyo\nGXU++tFnObxygVKoOHlnil5ukgVDDq9tc/9kfu68e/3zuyoFATRNfL9eX2e+8CiIQChI0pS0hMHx\nCZfaHWQxJfTgc5/7Ai99929J84SHDw9ZODPGM5cqKWg0m0wmxySJiKarZFlOUfoYlokXR8RhTJVX\naKqC4yywm02SJGCxWPDcR57l7XfeZjKZQFFi63Vc1yPPV5SUZGHFzv4WvV6PaipgqhpFEdOsyVRZ\nAbKIrKhrPLukI6gqYegj1AXO0hmuFJEjUmQFwTShFFyKSmIwCsjDFa3NXR66dJmjm7e4d3aEl0c0\nGjVGszP+z2/8KbVml6KokIHhdEmFhJQKqDWdKPV4cPuUi5f3OZsOyPM6YlkQxTmO63PpoV1iN6ZM\nKt586wdg6Ah5jqZppGlJu93gu6/8DZcuHXD31juYdYu9/W3KskQ6J9D7gf/1P3XR/qe2SIFJsEKz\nanihw9ydE6YeolTRanZQayZGq8kyCNm9us/uvs3OoQ1WghcuQZTJqDi4eoVV4PD2e2+wSs8Iswlh\nsiBIHdrdBpKkIKNRlRKabiGpNWSxxsee/ymSosKPQzx/RZJF6A0dUYVW7/zX30qtKHVYxi5BnpCJ\nBaWeE1UlitrGblzg8PE+qRwi2yr6tsqqWPDEJx8nEQqSQqQqVYociiLDdV081yELYzRFQxJlBEEh\njjKqUuZsMMf3Ujw3YTZdkGcJy+GM6y+/zvjoAaPjAUEQMDg7RlYEJKmiXjPRNJ0kiSnLgtFozJtv\nvkGe5zz+xGM89sSjhGHAn//Fn7GYZdT1Ay50riJnJlJ6/t+hKs8fj9OQra0+SZqz8lfodYNedw/b\n2ERI6tRpsm2baGRQiMiCSsfqstXdYGdnE1NTiMKYTq9Pe7NLmga0m3Wa7SaiJNJotMnTjDCKifKU\njb1t0qrE7jTIqxxVU9B1Dc0QefnVVxEECVGU6HU31k1AeUaU+jjxCt1WySSXk+NbCEmIVmV0GjWS\n2CWLszU7sMoRWRd4FWJFrW7ipytoqNDUECSRmqGjGSJOoNDqbOOsDJrdGlG64s2bb/NgPqW9v4HR\n1lBqMrIuIWkSpmWSlSlB6KPV69TqTS5dvIiCAqkAWYmsaARBRJEXSBVURc6lhy6SFSWpLHDbmxGI\nGqIkoukyFy8fsr29xWI1ptXuoEs1NMVmufRwvDn3ju7Qbn+4stCP7U2g12pDXiAWBYIoUZYaxv/N\n3pvEypJn532/mOecM2/mne+7b6x6r+bqYrNJtkyyOWqiScmQKMADvNDCG8P2xvDCKwOGIcP2yhvD\nsiFI8sIWaMGQ4KbIpkh2kz0Vq+rVqzff+969N2/OmTHPEV5cyqDB12hTlvQki98qEEBknsiI82XE\nOef/fZaFZIoE4YpaFlEtjel8imHbaNsjwqwgrjOqoqStjbD6A5I4AM1iPZvT60os1xPe/eBDnj5/\nxmaZoyo2kipyev6E3miLPErYabcQyoTRzh6WZTKbzZBEET9Y4wgdDo/3gft/LGZPKAm9FUajweXF\nBsu2ODg4ZDoZk5YbyjplGV4ShRVqKfOjHx7w7W+dUGQr7GaNJlTkpsTyIiJMS2qhpKwyDKPFbL7k\n5OUphqEjSRK9fo8sy1Hkko+/8z3yoiQMPeqypiwq8rgCUcJxPESpRHFF8qzG1DOy/GpmfzafEwcR\nQRDwo1/+Mh98+C7Pnj3jN77+6ziGyQcffUQh1DjVOwStJwQWwB9/GlDVV6sv13WFqqmgiIRxgpK4\nCHlC4MUc7Qw5vXiMLts0Wh3KMqc12iFan1ORM19PKTKfInApBIX33v+QxWRBaenolkhVSyzmc4Zb\nPdZJxHK+wrIbvPn2XS7PLjjq3WA9n6B0RAzLYXt/wHKxQVFrAt8nTzO293d5fLLEbjZJ8pLrh+8z\n/uQlrdJAMEFSaqzWEL2MKPIEsRYoahlFsynLmtjzKR2FtZSRlBWqquJuXIo4RBEljkdvMGn8Okmd\nIYkCcRpiN00uFpc8Pz3hYG+HvKyQZI0gcen1Wly8fImlmEymM6hzGmaHLaFHVGacnJ3SGw149vyE\nd995g5cnJyhCyXLtgaWzf7z3f9u2b/e2CXwPQzOoUxHVNvn0wVO63RZNp41pqdh24+rYH4LXRgKp\nn7C/PSLKCtxFxJc/+pDPH9zH1jVKMSeva4Is5fqtW4xnFxRik0ZuIeo6PafHbOOx3+/x6OEDFKHi\n8GCPMIjp7e3xB5/cp9/bQagM8qwmExM0RWE6mdB2GswWJ+hawHwypVYaqJpC6EfYlkEUB5RC+sqY\nt1sDnjx9wmCrg2nqWKbO48fP2Bp2GZky8+kL7l67zf3wAbYBBQatLQt3lTAdl+wOZUxHRtiREPKa\nIHN58/g9zs8uefrsczqdDqdnY2RB4jvf/S7D4RajkUAYBeR5haZoRGWMoElkdYkmwGQyodlxSJMZ\nhu7w4sX4aiJPEgg9nxs3b7B3uMdf+It/nr/1P/8tdEnhR770I9y8foysawiqSJKl3J8/Jyhe3Rod\nDQ9fuV+sJKbnGxRRY7i7Q17UkGb0jjpErs/2/j5FUbAJPUIv5Z2f+nGC2CUXC2RTJaNg2G2QFxUn\nTz4nimMMRyOKamoE2u02bhBg6haFErGZr9hu7xAHOcPdXbIsRNcMBFvB9TZkcYBuWpSKgG03Gc8n\nDPZ28f0IUx2wvvTp6i3UKEe1Zaq6RlEMDENBEEVUUacSRFRdoRJkDNvEaLa5DKdUooqgqIiSxjpz\naQ57PFtNMQZNfG9Ju98nLTJ8f42mtrl+7ZjJ4kpvstNpcvL8kjzOeOutt/nke59i2AaaZZCkCXWW\nM9rbwR9ndDpt2i0HP4iwWx1OL6a0mw3WoY8qitSKQqnqHB7f5nvf/D6jvo6ht7lxcIeG1kTRK+I4\nYj6eYpomrvvqa/pH8dpIQBag3WhhlxK+F7CeegiCQZJXJHmAqlr0t3rMVwvcaE2tVDx4lFDVEpOl\ny/61a7iej2la5IHLejLH0m0Wqzl337rH8yen3L1zjOuGVFXK07Mv6Gz1WG9chp0u4xcJjcaQde6R\n5TGiKJBlKYZlstz8gFZZY4vyIOfl5TlUoEgiO9sjPN8jTVIs2+CD4xuIdUheRTx9+pLAj6hE2NnS\nqfICWTWJExfLMDBbAqVYc+v2bX7sx36crAiI44jNZo2m/QRf//pvcHE+pqoEEEpqUUXUVARZpM4B\nCvIsR5UkojgiTUsUVYZKQkRklSzY3d/n4PiYv/23/xfCKKVWKh49+oLZZMzKdWn1e3T7PUrVwdC6\nwB93sd2sX+1WvLO9CxTUcofxxRLfj9nuNVitF1iKTpCmtJot+lsDphOPk5fP0BRAzBmMenz/ex9z\nOOwh2iqr2Yp2t81ivuTu3XucvzinqAt2Dvap4pi97RHPnj5je6/Ps6df8OLlAwa9LeIyYTaeg1iz\nO9rn4uI5FQKIMgUViVhwcHhEV2mzfLzELGUcRyPPE2y7Q1WmoGo0u20EZHzXJwpCJMNif/+Q5bc8\nGsM2K3/J6dklkgztdpcsyYmkDaWQIks1G29BnBWYlklWpGRhQVlLxHnBJ/c/oeUMcRyD+/fvY7ea\nhHFITkWR1wz6PRrtDo1wibve4HkekqFw+vIMQ9MYDvsMWhbBxsewbPqtIeMvXjDotkgqj8NrAxbL\nS4SqRhNltnZ3WYynV+fVaPzQXHxtNYFGo8v5xRhFV+i2OzT0Bv1uH9OwrlRYuz1Cz0OWRRRVIStS\n9reH5HFIXiYE3pyW0yCLA6RKoK5kNkGIrlp4WcL28SG+GPDZ8+/x4uUTPnznfQ6297l78w2KUmTq\nucy9DetlyHLmUpUi3W4HUbqalHwVZpsTFLNG1CRkXSVLMrRKpKlbUKtUlch0fkGapNS5iFAHHO5v\nU8QKuVYhmBIvZhN277S4/U4bUZFYLCdcjM/57LOPWUwusRSNbrNFw3H42te+hqGb1FWJYlcIVkEu\nZchKSVXlqIZCKUiEaUJj4KA1dXKppNFrcf3Wda7fvMGdN+/S6414+vAls4s5rWaTu2/f4pd++ef4\n9/79v8qv/KVf4mtf+xpv3fgSSvHqWsiNm6/uGqwWiysp8DTi3Q/fotUzkSWZshIpJZmD/WvYVosg\nSOn2O8iGRJKklHlCFUYcbG8hVipVpRGUFWlc0m10WM6XOG0Ho+GwXi0QBYVPPvuYMNnwYnaK2XbY\nHQ05+eICU7dRZJGGaXIxHSMoChs/5PqdW0RxQrT0COYesZ9CnKAKgFijICBXIpezAF/sMos00lJl\n467Jooi6yJFLGVUyWYVrVq5LLUkIikxGzai7SxWmmHYDP4zJ0oy6KtG0mrSKSCkoq5LlYg3o5HXC\nxnOpqUjLGFnRqcoERSlRDIEgdjk+PmCzcdnfu06QFXR6HXa2h5xdjhFTAVvvkqYZy8kZRwcDVCVF\nVEs03WCymmF1G8RpwWrh0TcclEqgzF6tCvVH8dpIICOnlmumkzGiDGkWIZUVeZyiViZ1BbbdIY8q\nGo0BYqUxn89xbJ0088iLmMB3Cb2rybVSkOhsb3Pz7lsoDYexu+brv/uPufA2zKIFQeDirZZMLy/Y\nGfX4qa/9LNdvvUe7vU2jNaA16NDsddAMiyp6tRehJEskWUqr6RAXBbNlgGrAi+czmo7AoDdE1jTC\nLMYNfXr9AWG4ZrSn0LBkitTng/eu0W/2KeoKY5CxvW/y0Y+8i61rnJ2d8fTpE779+9/h9OkjsjTg\n3fffpVJz9m+McPoGx2+MEM0StZGjNxTSKmHhBkyma9IqZrjbRdJKkjzmJ3/m52m0Bnzj69+g023z\nC3/2F/jlX/mL3L17h08//ZjZxTkUKc+fPuQ7v/sZo/a9V5636726a5BlOYgilQhf/81/xMG1a2Rl\nwWg4Yrlc0u0OkESZRqODXAuYso4q1PTtLmWYUcU1Tq9HkhZstfrUVQ2iQBRGqJrOejnG91a0R1t0\nt4ag6ORFhWWbRNT0D7qs04gij5i4E86Xl0iaRZTWPPj8Ia3m1UIuTdNxZ0v2+lsYmo4sSpRFTmnI\njI7fRencJk8kVosVpdRD0kwEQQVFoWF1EUQNXTHpdDvYdvvKAk0QmM6muJsVaSWQVuA0ukiqiRsl\nVKJEq93GNA103SItKsI8Yf/6EW4YU4sKSVZTiAWXi5eUYsT/8Q/+IaplMdus6NodilTC0gRG3RZ5\n4nG0v8X+1i5BWnGxWmO1BswmG1abNYHv4voriiLBsQ1CzyPyPBTth6f4ayOB/rBLJeTkZYpp6mRZ\nSuQH9Fo99oZHbA8PWS03NJtt2q0tmnabPEvYGuxy/fguZQGL5YpbN+/RtPoc7+3jjVc8+eQB3/7G\nNzl/8RxvFdM0NcpcIJFz5I6BOWhSGiJPz5+zCVa0t9qM9ncRFYV2t0MpCSzyV9cENhsXQzUQKjjs\nbfHmwRGOqHK402FrYHL9aJvpbE5a5SRZhKLA7u4QsQ453Gty/XqXg8M2w5GGrEg8nZ7j+XPOz56y\nu7fNoL9FVV+tM0iDiG6zgWgIqJaN5wfsHw1ZeytUS74SpeiaICoIok4UlXhBhBstWYVn1EaAoCXE\nmcdsNaXRtHjv3XcQpZo09Wk5Bmno8/1vf4unDx/wZ776Hsd7x68878/v/8Er9yd5jCrJtGWdr7zx\nDvNn50iCjCCBrKj4bgyojMcTQjek5TRYrdc8fXmOn1dIpsXZ5ZyN56OKJpZhcXp6znBrj7oqafV0\ntvdHbLyQwdY+iqpT5CW7+wf4Rco82JBLOecXHm29g1XbKBS0mxpVnSFKIpZjsVwsUSsBuQJdlBHy\ngm6jg5gUiKTU1YZk9YjLJ7+NTEgpSfhpQVFXDPtbWLqJZbfI0piqSkjShDRNEWSZWtQQZR3TbqEY\nBrP1mqwQkFUdEYGyKKgp8EKfRrfLyfkZht0kzSpsp4uXzMmFmFLOePOdW9gti0a7iaaYdBsWdZkh\nIaCpEu5yxsnTZ1w7vkFW56SFzKB3wPn4gsFWlywPcb0V49mE3FLZVDnPL8Y/NBdfX4swihAFha2t\nEZKo0u/30VQVqoIkCXFXC1RRgLxEFyUi18fSGtw6foM0KfA3Pk3dotdvIRgagVBDU8cZNLl5+zpK\nWXNtZ0DPavDO23cxDI0iS1FUhcl6iZ+FeKmPoIhotkaYhKzXHkJZQfZq34Feb0C0CbA1nTBw8dwp\n/ibh1ht7DHYc3HSGIJYYikqr2UXVFXT9Sl49zSOyOqGUPEpxyTS6xFA0/HrJdPqIl+MTPvnkUy4n\nM6IgI4kjYn/G7jWVN780pFA8MH3e/XCPrb2C0aFKQczuPnz4pRGm7THoCgTRGMlKmARP+cb3/3ee\nTT/h2p0+771/i81ySR7XpGHF2dkZH3//Y1RF5Y1bt2l3h9jKqxdOSfqrR0/jZUSwiZhfrjCwaNKk\nqwyos5xrx0e8vLxk9+CQWqjotpucfPEJeeYiywWKLNBu95AkmfV6Qxy7CFLJ4dE2k+kFy8USQTB4\nfnrOcLtLEATohsFyvubJ40dUUkVR52wuN9y78y5ZphKnKfPpBlFQkCX1D2XxEoSipOc0qPKMssqx\n2jaVLFLVFacPvkfmzunaLXaO38OQZZA0nEaftFbZP3wXsbaZrF6gGiobb4OqGSwWc0RZBkXBaWmU\nVcX5eE5aidw8ehM5Slgtx1Bn2IbKoL3FdLxBlFSabRNJySnLkiiqyMuK+w8eEmc+gpQxmZ1QVx6q\nIoHQQG/02AQVfpAiFQnp4oLE80iCEEm+Mr3VLANRlSmQuJgukZ0mmSSxf/vmD83F10YCsgg7wxGX\nl2PWmwV+4GIYMjUFjqNTlAlv3n2TWihQNQnD1PHWLg8ffoYk5ty8eZ3t/R3CbE2r18J2bPZ3t7Es\ng1bDYHu3z/sf3CEvUt5+7xZZnpJEMb4X0Gt1CcKQoMqZhivc2KM37PHo6RNqQUAw1FfGbJoWYZJC\nVaKJGl/96s9z5+49wsxDUhzcMESocw72h9RkxNmGovZoNGRsQ0dTJMIgIIoyjEYTVRMZpx5iS2cV\nevyZn/oJjo/2ODzcY//WDlKvYO6+hKqkrmWaTpPJfIrrVjhdi0wKsHoGfrHB7GjUasW9e29gqDqH\n2wdoUsXzx39AsD5jMb/k1/7+r/F//qOvk1Ul3a0u/8ZP/jir9YLvfOdb/P2/9/f4/JM/3hYFaLdf\nJT8Ko0aTwk84vnGNuAwJiw22ZGDmJuPzM3a3ekSuh+suWLlLHjw5Zff6m2SIVKJELdbIgkjXdJAl\njaJSWM4DfC9EkU0Cf00YJ1yu58RVjdMf0hqMeH62YrFJGB4cEFHybPICzWzQb/eRZJ1mu4uu20ii\ngiJr2KqFVEmooowoXKkY1UKFY2jUssXtL/08B1/9y+ze+1mU9h6O1qE5Oubw9tf4ya/+2yRzjTu3\nbzA9n9EyWixnK/pbW+i6SRBGFHlOjUC33+LG7i7TySW1oSKqCmlZkNVX5mk3b93GMHVc/5Ial1qK\naLUtxmMPxzbJspSz8xMaDYOFt8aLXMyGTZSkWOYVqX30/o8SuwFbzR4qsNnMGO5uMVvPidKYXABR\nk6+Id9BnvXm1w/YfxWsjAU3QWUynyAooqkjTsWi1m6RphOetSOKAukqZzMesF3O2t0fYjsV48oKy\nTnB9l7PLlxiOQSZkIJVYtka375DmPq2OgSDl3L63z29/8zf58IMP6HS7yJJEXhXYtk3XdGiJOmUQ\nkbs+7995i/evf8i9vbdeGbMkSgjUNO0G/+Yv/hXWi4BpeIIoFyAbLDYuaZ5wfn6O03Coy5qtwQjD\ncNjuDnEMC0XSCSLI6pJaqen1GlAmvHXzNq2Gid20yYqQz5+c4IkBgsyVIaeoohgyTsdh/9ouklZj\nNEt2b/VQmjXNHY2k2pCXEUWWo8qg6wVhfE5hztF2alb5ivsPH+K024RhyOX0goODPXb2d7l+tP0D\nB0varVfvr02duM45m11SijX93Q65FjN/uKInbNHvNHn+/AtuHR1SAv3RiI0XoVkGcZ7j5ymSqqBl\nFUWaUJclsqyyt7fPYjVD1nSyrKZttrmxf4xay6zPx8jJmv2OQ7heMmp12e50CHwXy2qyO9rB2/gU\neUWS1EiCRhKkWKqNKuvIkoJQCxiKgqJJbB3eRDG6KMYOjdE9du79DP0bH9HuXsMwFGxR5m/8J/89\n64ciFAVxGNPUHZ6/eEav18G0DYq6YuOuCf2Q6WRJmZecX16yCSJa7RZnZ0sUVSQKM8I44vx8RlWD\nooiURYFhCyRZThCssW2DLIsR1Zq0SnETF89d02n3cJoO49Wc47ffIlY0Ckq2el1QK9wipZLFK53B\nbhOjbZKTILx6xOP/gddGAoIk0h60CLII19tQFjmPnj1hHYasg5CL6YTzi5eMtrdxNysiz0XXVTrt\nHq1mm36/j2UaqIqIINXkFKBKLN01jVYL09SpqpSiTjg8PuDj+99HU0UOt3cYiBqyH9O2LPzQQ5Vk\nOg2LYHyKmWb89Ft/7pUxR8mCN27eYKd3k4sXz+n1NATRpPArHNmhSgX8MkOSNfpOi+vXjlktPcIg\nRTVEDAvsnsDB9TZ6GTPsaLQsiYyMWkxYLsdEccjt23f46a/9JM1GC1VpUucid+/uICoynV6TZktn\na9RBVWWWF+dc3+ty1O0x7CjceeMYTa7pdVqkWc1mHbCz36XQVmTyhltvHfP13/gmqC0uZjNOnz1m\nOn5BUaQcHuy98rwN89WvA4pucHT7DqUIyBKT2Yr1ZsaHP3Ob8ycPGH9yjqxbREXMzmCHWjGZbFY0\nWwOaTpfML5BrjcTQkBURVRFYrl3Wyw2yLBGkOTv7gytruDzA0FTS5ZpBewtdb1JVJrJkEkcxh0f7\ndEd9REGm2+oSBQE7WweEXsaou41SCxRZjmVaSIKIWNfUQs3h8TFiBWJdIkkSum6jGi1qQURAQBQV\nBs6Q//hX/1sG1ttYdoM4jBAFuJhc0O628TcRDUchyxM8P6LbahFEBY3uFgvXZTAUuHX8DptgzHq9\n5OBgj2a7S1ZJZLVAd3vIZONSaAqZoJFkNZVS0xi2aPY7CKLAyYsTwjjkxfkzVssV82DKKjnjfP2Y\n08szFMNE0k0kXcXsWLhliKDUKNWrX23/KF7bnIBuZmSpyMHBAWEQkggVlaHQbreYL+aMrh3w8PkJ\nH779IeOXE/q3tlhvlpR1RafTAyDOfLz1hLal4McunhThBx5pomNb9pUwZeSTJgFFVuOFCY2+QxgF\nvPf+O3z22ec4skYuVjw+O6EhGXTDBfGz3+TnXhGzKsFmvuTwjbuUxYydrRGX0wlC7xoXL8aQ5fRb\nBtf2dlAlAd8Pqeqc5XpzpfZS5iRpjYjGqN0liGJaTZVMKDlzPyHPK0xzj9/6zje5dmNAY1Sz8hd8\n9Wd+gkenv8dqNYGihLqm1Wnj6wbDnS0SqSYh4I17NyiVgOt3B+xe22Hmb3jrg/cYnz/gjYM+thmw\n3DwjciuanUN6nRvotYDTbpEXFWcXJ6+8VlL6ar21v/NfPnvl/v/xn2z8b3/Cm+IP8d1/usP+GeFV\n/4sS8CHwe3+iT3r6R7a/8U8f0D93CHVd//BG4j/rLxUE/vp/t4PjHOJ6EbUiojomk8kleVHQb3co\nRBFLtthuDsgTKOuY+fKUwXCbJLsSpJzMTtE0meVyyvXDe6RRyf7+Hit/RZbGpGWAIsnEXkqUJHTb\nQ2ytRRlHRHGIJMvUtUCepchiRq+5xXy6QjIM/sZ/+Ce74P9/xn/9N/8t/qN/5+++7jD+FP+fIfCq\ndH993YFKZR2HDA+3EaQKRchpOApmWXHY7HC7vcee7ZAGc9JiflXI832SNMQL1sRJwt7OdZK4ZDTa\nZz6/pD9ocHF+hlgIaIpFnYo4apvMh/3+EXIlUJcRcRFT1gVyDUKaYooaVW5wcnlJoZb40avVhv91\nxWYzRZJe3Tb9U/yrj9f2OtBtHoEgsZquoKip0pSmaVFaKZsowDEgLzPWK5e0XmGaIxynC6VIt9Fm\nsZjzfLGg2WiSxhWG2eLxp0+RFYOiLCmyDaZh4a3WNBsOZZkTJ2vCJMHQDVRJIMsrWt0uYRiSVS69\nfoOzizF1rZLLAkrxL/wh6V865JJIUihcf/M+jz59/3WH86f454DXRgKKIrKaLTEMGVvTsByd8XTM\n9taIJKnx8iVJVKHYJvHGpSoqRDmkLASCTU6Z5twa7rI9PKBpD7lcX3Dt7hDJ6vJbH3+dwdYusqRd\nKfKoAlla0m52cf05s9kKq9EgjXzqGtYLj91rR9x/+tmVzFaU8MmhzAdPXz05+K8TxncOuTG4wV/6\na/8Nf/d/+g84efQOZfH/ouT8p/hXBq+tJvCf/s2fpWE0WPtLongDYsbG3WA2bFTLQpVF4iBFkTUC\ndwNChWO2UbQms/klolxTRCFvHO4z6h7wvScPcVeX6IaF4ajMFz4CMo1Wk0bLJg4WyJJAmdcMt/Y4\nOz+lomA1X3H9+m0ePT9j5k7YO+jTbTTR1gl/9X8Yc/ckRyn+Rf9Crx+FLDF785Df/+t/gaUUEFcr\nMjXFi12WmylHx/ts1i6BH6JoGk6jy3SyQjVlirDkjVu3OV09JggDyrxGlnWiIKPX7FMUGStvTaXI\nWLrOZHxBEidsdfo0nRYb18N2mpRCTV4lFGTIpUyZ1BRpTqvVwm40eH7yHMOQqOocy3AgFxCpqVUd\nvywJ1msOD444tLu0CpWGZlBEIbaqkxjd9U8AACAASURBVCUptmaRFwVxmiCrCrliMVluSAWD4fF7\ntNs7nL+8zzxckykBT6cP0doqi80S92KKoNS0Ow5hkaPoOnmRkZX51VRmkuGuE37ko4+YnL9AF1U2\nQYDd72DaAl1rxO/99u+yddimqHI81+X28Zs4TgvXXTA+O6Fpm/y5n/tl/sGv/0PKOsM0ZZabC/JS\n5nyxYdTpIgP97W0upxO8Iub24U1mp4+4cf02H9+/T7frEHgJjYbJ//qfTV5ZE3htJPBf/J1fQBU1\ncjIm05c4DQ1N1QmzlLXno0oi/d4WvhcRJiEIKaEf0+/vE0UhtZBS1AIHnQF5WCA3DcLYJU9TirzE\nsUxEQUOQFOaLKU5TpSxTZPFKXLMqQZU1ijIn8GOyrMRPlzR7Ojt7QxbrFf4qwFRUGrpJGsq02m2W\niwXIEo6qcdgd8Y1v/w77x9d5dHrBaGub2fkFo4MBlZhTS1eKO81Wn0cPH9LvtZDynM3lHFEyePvu\nu9y/fIyuK0TuCqc5QJYa5HmJ77uUZY5lWQThBsexuRxPsWyLXnebjXtJw5GpBAWj0WI5uaRMUqRc\nRm81UXSL9XTJaHuXlbek1+tgaSanX/wBH334VV56AX60RqollEpFylSESmO4dUWyhuyQejmqJGPZ\nCqopM/PHNAddnr94TrvXIQg21HWJJKvs7h3x8IvHHOzvsVpOMC2Ty9UCwzCIowhBFBFQQZDI4xzf\n9Wi0m7RaTV48O6HfbmFKJpSgqDKSIHGxuMTqO0zdFZZsICUVqqqhGjqaouL5Ee1Og8dPHmBbDfIo\nx7QMtnb2SXOBLI+pypKb/W26tU0ZBTiGiS5KqIpKVf4TJWyBoqpJqwpJgi8mY4TBiKwUmC1OqRsK\n4/k5hiMji1eCs9FYoHIELpcT3v/gHtPxBNuxWQUeuqmzWW2QKokqzxm0e6RFSqmAaphkeYBYGjQM\niUrOKcqSF6envP3WB1xOJtR1hiYJzGZj7h6/xXRxQaOrc3p6BoqMKMNiGVIVIlv9Bvvbuzx+/AC5\nJZNmBUKaoRoNDE2nKmH8cs4v/uIv8J//0q/9S1YYDAKKJCHYbGjaOtPzF7jTJW3FpG836VkNqiDm\nzuExDdNBlMByVEZbXUxVoWFYVFVGlstUms5kekbgrymqHMfSUBUZSQJJrJFkCLwNqiKSZjG1WNKw\ndYrIx1JkHFVDznIGTgt/6SFLJllcY+smugx5EiBRkIQBiiigCzLRPCCY+/z4hz9GmWZ8+b13aDsO\nu1v7FFGOJilogsr0tCBeiRy0b9DShjSaPQqtZhl5vJydoCglq9WVeGSah5SVjyiltDstTNNE1VSa\nzQ7L5YrBsIGqVWRZxHC4y3Q6RVHAdZfkVDjdLuswIKsKoGZwfZuTxQtuv3ObWTDndDOldTjgfPOU\nwD/HdRcUeYCqZ2h2hZ/NcYs1eZ3y/MUJd967x0q6ZCW4zKIZWRmxXm+QRYubx3cJ/Jgw8jBMk0eP\nHtHtdrGULqKo8+DZQxynQxKXVLVMUQCCjKYYqIqGqel0NIvCTxm1B5iVBmXNcrMgTWPWqzmiCE9f\nPKVj2SiImIqOqMiEWczp5CXr9YLI96Gs2N/ZwW7YiKLIejFnt9Nh8vIljqKRxRl1liMKMpZhkuVX\nakWVLIImgyxjGjqmWqHUGW1H4fTsYy7dTwnqS9buOXoDyiqj1RigpRpWT0cRK95+8wbf/9Z30GWF\nzXyNJmqUYXklzqpIGI7NOnSxuk0Mw8RdrcmzP5RrVwXKLKXlNDna32c2v0SWa8oqIU0LHNvh7Pw5\nHadB6AoEuUVYaFQodBwNP0pY+AFZrONPKoJ5ThrllLJCWFw5UYlI3HvrDZ4+efwDc/G1kYDnumTE\nCGWKgcaN4Rsc9o/JvBq1kFGRUASBp4++wNIEdFFGrES8zQzTkKnrBKXKQXLxggmiLCIKYIkiTd3B\nViyKJMbRFIJgwTo8Y+6e0GxqyDXkUUyn1aIp65Shy6Bv8fbxB+xuX8cUu0iZAElIlQoYWpvR7jaZ\nm5CHEenCRSlE1m5IGubkccBqeU5ZbPixL9/j1u4ODjqZF/DGdZvpycdIcsBy9gxVLilJee+jj1Bs\nGyH12O73KIqaWpNZeAvOzp/x5NEnUMboIrQ7Dr3eHrUogxjRaIkszp5w/eA6gqCR5AmW3aB0K778\n/o9iyjbjl5dMHj3ggzt3ODt9gWXYKCKUgsmj8zGbaEG3a+FtAqoqohR9esOr1ZutZo/dw338IqG1\nvc13P/0W6+gC1TLJ05h+u4u3DtFNG7s34GTygkIqmU+nTOcvCGOfsoaIjFzIGHTbqLqEotbEmYcX\nzdFMlSCKycuUOI/R2i0uvRmxsCISPZ4tzplvNvy7f/5XCc4uGD85pchjBMkiimtk22Rdhlws59ia\nweTF9Mp4Jk04mz7nuw9+h6pw8RczsjgnrhIcWyPJs6vFPaJMmVdURYmiKGRVhaI6mHafpmLRszSC\nYEGQZHRaNkohYggG4WZNZ7tHHOeMtkZsZlOuH99EqAQM1cDSnT9cCekhJBEyGY6lQ1mRJQldp0lL\ndRByn6IqcfOMmJxaklltQlRFwbZsSrHANNs4rRHXjt/GEDVMxeDuB19BUEeEmFxe1qRpycuLEyRH\n5Nb1bWzBYHwSE8UCURKSRCmXzx7Rab96XQi8RhK4uX+HhtJHo4UutZlfemR5haKp1LWAoTeQRB1F\nUMiiHE2xsZQm1CJFVaCIErZtIsoCiirimAZ5njPdrInLhEzI6Q46zGcLjnZv0JCvEU+b1LnFJryk\nFD1KMSKsIgY7WywmC7744j51WYKQ02xoiKKKqeuUec5muqBtNFFEC6vboW6o5GbN6fwUUReZLZec\nTc/57c9+n2f+hEUZIjWbTNyQTZYi6gp60+H0/ILeYB/P3XA5OcePC84mczS7SZVXpEGCrmvcOn6T\noqqYbk4JkiWKmVFUKaPta4RRjGaZ9DojDg+O2Nk5wnYsSiEjLVKC2OXt92+wc7xPnAeomkCSJQgy\nJHnI7nDEaLBP5KkMtw6YjFN8L0ISVLIwYXwxpddt4rtTTp48ZWe0gy46hOuay6nPi4sL7j/7lLm/\nYOVtqApI4hjZkHDjDYVQMeiNEIIKKawQC4EojimKmsnlEt3qICo6eV1RVTWyqOH5Ea3uDprZYeMn\n2I027V6PX/+t3+KnfvJX6PX3MPUReZZTlxWxnzHs7aAqFnku4dgdZpsNSZHjezEUImGU4schF9ML\ndMshKhVEzaQWZSRFoSgTBOFKal3XNKoiR5JF2p0uVSWQFAUZFWezS4oiJ/TWlEXGi2ePsMyKIFgg\nlAL+eoEo1n94H2qUUUjL0oljH0US2Rp2OXl6n2HPwm7I1EKI03bwXBdD08mjlDjwefzFCxAEVusl\naVbx9rvv0Oq0ePjFU5pGk2D+ksK94PGnnyIGGn/lZ3+cr977Mvu3b7J36w6bVEfrGexf75G5GVUt\nsloG3Lj3YzhK7wfm4uvTE9gsqCMXSShIvICP3n0fVTIQUXDsNmlSIks6qmYTujlCqkAqkgQJAFGS\nkKYRfuBSVQXeakW/1cFpNVAtjZOLp2yiDY2Wzmo6x1IcdBpEbord6uJnETkxolJwfv6Mhmbh6Aa9\nRpvVZsFyvSArIoIooPBCgpnLqigY3rpOpEoYgwZy2yARwWq1iYscxbBYhx6yIgAFSl3hqDqDVpek\nLHCDEFGV6LT7zOcLijKhFiHLYTDcRkag222y2xvRtiSalkJva8gyWBPWU6y2TV0K1GXC1rCHqVvM\nLxckUYogCLSbFqJQsL2zhR9vCKINTsOiLAqSJCUrIooypyxE3LWPqcLFs3MORz3aRgdDNmm3+gxH\nfaaLMxATBr0G/WaHzWwDaYJhCnR2bMabM/Ruk8nKR1FtqMDQBUohp6hhsvKpZZlVErNY+/TaIwQU\nNNVCUZukxZU7UI5IJsikZU1eS4haE6sxoDfcpxIUkgLuf/oQW3fIijU6Ch2rgyYZiIJCq9nGD1Ke\nnJ6gWwalWNHu9giiBFU12XgbwjSgqkUURUGUVWpRRlQN2p0uiqoiCDJFUaFqOmUBLbtLWYAgqNRS\nRVqVCIrM7HKMVBeoYs1qOqZpmZRxSZh4GKYCdU4RePQsg4amIAk1URIwW1ximjIvnz/CVGs8b0a/\n12I0GrGeL4n9ALGCr3z5Lb744gG6rhMkPk9OnxOkOWPvlAvvCU7L4uNvfo/rh/tUicvpyWO+/d3f\n4+mj73J++jl1fk7uxZgV3N7vEYYJpaKhmwIff++zH5iLr48EypyyKlkFLidnD1l556z9KZvNgjBw\nKauMIFhSxgm2ZaNoKmkWE3geZVlSiDVZHlPmOZIoUckCmyRCMwyenzxlb+eI+XzN2l2iKCJpMmN0\noBAl58jV1Zz4Jg6Zex5Ht95Baw/YlCmlKOBFEZrZR0InSzPcMiPWUwJ9yefnn1A74LOh0nwUU2Dj\n+9iNBkWeM+o1ydINcRpQFSl57aM2SsJoSp4HNJtN3HVOlqUUhUCzOaLb6/PoySMkWcSwDdaxyzzw\nCYqErApRlAKhFJCqnKTIkTWDs/mU6XpJ03FoOhZ5kmL0m0yDGWZDp9vqI0iwjn3cfIlipCgyNCwN\nQcvRLRVBq7n9pUPEnsWz8Qv8eEOWxqyna3rNHkJRY2smVqNNLZvcvPMmRzeuIcoC26MtHFlCEwuy\nPCCjZLba0B8N8IOAptOmrDS29q8xj1yCyKWqM2xHR1FFgtSnEGrKGFqKg+nYeIGHpCrkpYgbrBFl\nWK5n6Fs25+tLvLIkKOeUakiSbJDyksj1kRWZMAsRhJosSEnjEqFUkUsVSbiqA+mGRXtwgGn1MBQT\nMS1YjycIWYqQxYhiQSnkZGmEu1pxc3CAFlf0dAs5Kbk8O6fTG3D/yQM2xQJRFVkuF/R22vSbTYLA\n53xywXj2kqTwqYUUQavIEp/UdbEVHdO0WHlLcqHg5OyEjetiWzb+2qcsa4qy5qMvfQVZsFhNI/Y7\nI/qmzfHRAcs4QbJMdKVmd6tFb2uHhVQyrTMsU2ZnW6Fjaww7JmIWE8dzLEGBMONkMkWzf3Bb9/Wt\nItSb3LrxJYbtbW69+TZ+VlDJNe1+hySL8AKPJHeRNZlWs0WSBBwfb4NUcXF6yqDZRxGu2NbQKxqW\nTeCuyaOA4WCLh48e4TgWm8QlEDZkVkpQegxGA2pJQNEVTNPC0A0+f/AHrOJzmkOZgoCyKq4eD6sS\no9XEaFgs/AhR0pBEWCzmPHl5wSbzcNOAyWJDp9NC1UUWqxUINY1Gm4nncuGt2MQ+snTlHfDk8Rmd\nrkW706LX79J0THzPR6pFkjwjzTI6/Q5u5DNbu2h2CzfM0LQGRVxRpimqpjLsdxDUgqcvHxB4YwY9\nB0WScCyN5XxGnicYtYa/9HA0B1NUaelNLMNCruUr67FOmzSLWa2n7B8f8ejZEz558CnbB1ucnJ+w\n9ldkWYq7WrO7s0deXOk4vHx5hpTK3N69zVFnj4Ygkacx5laHj59/jFf7+MUaSRHJk5jBcEAURLiu\nS6fTYbUco+sqoqgTZwnrYI0oi3iRx2blopoqbuiTZDFOu4UfbHj3S+9i2Ba1JLJerxAQOTo+wmo4\ntAddnE6HKM1QdJPZbEm71cLs7fP2+3+ZX/1r/xXbN76C2d5BcbZojY6xd67T2L5B5G14+vu/DYsx\nVZEiUhGnAZogYiEyOXnJdrNFv9li1Oow6g5wpzFSLZAnKVWSIgkSy8sptmngRwmSpvFyPKYuJQ72\nr6FJOkUpoGsWm41P22mShynz2ZSearA97NNo2PTbDpcvXkJRce1wh6ODY9brFVUCYqFjSBary5LA\nLVhvYt44bvHhbZ3DLRXHsBgObuEYLUzTQSk6aKKKpUtcHx3S7XR/YC6+NhJ4efY59x/9DqUcExc+\nLzcvyeqE6fqSXMgopJS4iEGtKaqKLA158OR7pKWPqsgEsw1ipjM/X7O6XFFmPi3HRFdFjo4O2R7t\nUxY1nc4AVW7QaW2jaDbrICSra6I0Y71cUlY17V4HyRCJ8pjZes6wv8PZ2YJKEJEUGd00MS2bPBRo\nNDr0+232tvsoZZN7N3+ED957h6q8UgOWFAnHdtBVja1eFwWRMq+JooRWs8Ng0GN8cUFWRMSRTxbE\n7HT7vHnjFjICaZJg6joVJds7+zx5OiavdWpMSFUMWUamoCwTijqjpMLRTZaXY4rEp9NpoGoCcRRQ\nBDlfffsrOIJFz+kRexmL6YbVakOe5ghIaKpJXYiMFzO2dnfZO9rjs0efk5NTiSVxnGA7Nufn58iq\ngqRcuQFtwjEPX3zMIrigqEN+/qe/ipbHaKXK8c4R/UYfL5gSpy5RuKaoU46OjplMLglDl8V8jmk4\n6JZBu9fk8clD/i/m3uTZtu2q0/tWXe61dr33Ke6p7j23fIWuJIQgbQwiBcaZyAS2cdAg1CHsMD16\n+gtAEdgN3KBtBR3hCIeRQiEqJ8iZ6IGeJPT0ylufe6pdl6uulxuXJBt+L51hO0K5umuuEbEaY8Qc\nc47f92s4FlsvoNvr02g2aQ36KKZOJmZcz89Z+nNW/ooHDx6gaxovLy5IywLdtigFgfZwn7QWuXX3\ndeJA4Fc//0X+s+MTjoQAN91iCwKWriPqGqKqUYkaudMgXq74wZ99i3w9JxMKdE1CIUajAlkkFSVU\nQ0PKS5RcYq+1SxllFFGCXAusZnOG3T5lkiMqKh89P2O4d4ghGcwuZ6R+Sstpg6AgolBlFZokYskq\nO6aNlRVkwZaXL57ScV2qPKPX7/Fn3/xzTNOk23LZ322hihX/7X/9BYpswdF+g2IDenaCJt7EbewR\nxzFOs8lgKPLgQYfdwZA3T++Tbbb0ex/vLA0/SQeiumA2foHb6VBIBZpcE8Y+WZFjmg5RliLUCoIo\nMLk+B6kkiWtyAcgqQs+nrjWkxCYRRdIqQNcFyrLg2bMz/GBBw7FI0xTTtOjaLpvtilIRkDDRFANN\n0wm2OYOdHudXj4jjiGbLJfDWuG2Jpu2SZwUr3ycqU1p6AbXE9OoCVSxQbZdgc/mKJGTaiBXEVQi1\niFKXGIaOrQwospy1H+IvtzSbbaoqQ5dMbhwdcvniJYIkslguUVQDxbSYhzFeVpL7Id1WFy/2mM9H\nHPWG5EQI5avrS6GS2RscEkc+LadLXmZEUUZZQ+ylyJLGdHVJVUW09DbtnRZ5UeP5a4yGibddIOkK\nSDktS8XSDcaXM+xmA8s2WS5XtKwGvh/Q6rS5XozI2dBt68R1xfVywa3TN0m3K/7m//hbbFXFFF2y\nqOLl1YQsiTg5PeG1O/f43g9+wGg8wfN80iSh1999ZRNeJEh5jWFLWIZC7/SQxeyKvW6PzXaJocvU\ndYVumGhxheO0EWWFIAwY7N4gSjJazRaPHj+iKvrs9weoWo/X33gdqyhIL97jyvcxTAfJtChkg0rV\nkBUDuQyIxj6hZOH5ExYvLmnfM6glFdceQKZh2DppHSKWNobVpF1KeJ5Pr71LFG9ZL+doik4UBAh5\nSpbXqIhk4atW1dIsBKUCwDQN/CQgCCMcp4Hn+bxcjIiLFMU20ROJzXxG023RNNqcVY8xG7t88Py7\n1OIGy9R5OX1Oc8emyHUG/T1sq0EUJBRVgL/d0LRsZFHi2dNzksrl4cNbBJs5i+X/nSL9b5+f2E6g\n2epgmg51BXlaUJcVsgT9doeO3eKN1z6N3RxyPl3jJa9MFjRJw1ANeoMeqqWiCwKO5nDj9BTTbSGL\nKg2jiVRr7A1uQK6gSzpimRKHHmVeoNU2ciFjyBaGanL79JAsD6mqGrGqMTUTb53gqF3a1gA5lzga\n3GDgujRtBales9t3SKMKVTKJwpgoCpFl6RWAsoS23WF3Z8jaX5MkGYoqoysaDdvCNnUMU0dWdSRZ\nZXdnh3Dt0dddTro7aBlYlYyjtdjrHJBschqKQb/dIs4CVE0mTTOqHIS8IA08eu0eQqXRauwT+jK6\naCILOpJmMV6OQBXwgpBVMEHWUxy7SxUrtJtd8ugVeONwf5+iyHFbDbp9F1WV6PTbaJZGnCUEiU8t\nZdR1BXWNUEj0LAc1FdksPHZ2dtlEKZahsZxNuHWwy8nxkMvL53z3+//6le4+imm2Wmw3Cb4XImkS\nSZUQpjFus0WaJER+iKYoLJZjKiHFjxdswgWz9ZhKjpj7S7wootPvIikCzWYDVZZpORbz8QRJkumY\nNg1dRzcaSFYDwVIIwwXnH/0Di2fvkSwmjM+fMR2PsXWFRrPPxhe5Opvgr8YEgU+cROz39zCkFpOL\nBXeOTpnM5/i+h21rFEWObhiEQYiuaNiGhano3Gg5HLX7lOuIpuEQhhFZmfN3b/0Dvu+hywoCr3iV\nWRSTljlZliHWApouUdYxUegjCyX7Bzd49NFTJNWmLFREbIrcJQ51EAzCKEaWdRbXE9I4YjqacXJw\nm9l4Q2/Yodlt4qcJumnQH7Q/MRd/coakukOaVAiCgCzJSILMoNsjXvtEVzO8l1eIkc8b9+6TFgWX\nV9d4iw3JdsNmMcds2Fgdlf5Ao9/WkNOYIoxoGBpSWbHT3cUQXOpApfIVkkgh8qBvd7Brh3AREoQ+\nq+0EWao4PDhAVmTyKqckoEpi9Fyga7RoGS1u37iHWdj44y1aLXF4eMDB0Ql1JWAYxivfN0HhoNnn\nRv+QZ8+vGHYGWKaJ6dgokkan08E0TQqhwm42WARrPhidsc4iFv6K6XLB4fERpm2wu+PiuiKnp/s4\npvqPk4sWeVgg5CKUIg3TottsE2xWiFWNIahIZQJphVBW6K5OUmaUQo7halRKzWQyZ9jpYCsGuqCx\n19/HbTQ5Px/jeUtEqWY8HpHlCYvFBN1WkTWJVsd+5YuQhgi1gDfz6Td6yCHcP/kUy5UHRkkpFDx8\n7T57zRZKrVLVMlqjyTaMcW2by4sLTu/cpdHrcHn9gryIMJo2s7WHKMtIqowsq6R5xdVkzibMKQUd\npzWglmUQBc6nY6x2iziLEYScxXyEZRvs7+9R1tDrd2i5LrrWptE7otG9iWb30TWHPAU/yNHdJnVe\nM72av1KeihqXL0fImY4tG/irLUWakwYB/Y7Fi6c/RpYKTEvB6baIkzV5VmLobW4eP4BaRlUNZEGj\n1ehyY2ePPI2RFRmn2+X4dIihqOilxG57QBZEHB8cUpUlvV6XsirJKDFsFSFPuHzyA7J0jd7RqAoF\nS2tDqZAnAkVWsPZGRPGWs+dn7O/vIRYVD2494Mdvv49j9tgEGc1BD8O0ePTkKVbjP8KDwThJKAWB\nbRwRphmG1eC73/8+H7x8ztnogsvrS2S5YLH9gOENh72be7R3D7CaXdJ/hIWIjkJhx0z9EV7lI7Vq\ngszjYP8G3sLjeHhM2+iSbDPKpMJQGkxGHl7sI6oSSZyhK22EwqbOakxdpmmZnO7eQa5UIj9DEhU0\nU+N8dIYolty5/QaUOsEmx1/FOK7BarUkL2KshkpUyczCDREhF7MxqiRx0NxFlEPS1KffGxB4AduV\nz2w0od8ZIIgyeyen2JbL+fkVSVqjiBLPnjxiu12iaypxmOE0Wmi4mGqb05uvocgm680aRZWwLJXp\ndMHhwSlpETLoDjke3CRLY4q8IK8rBFHF7vR4cX1GKedUQs1sdIWj6TSNNpbYxtZUDg6HJGXOnTv3\n2XgeSRVjWjLHe3uIMsy8LY22C7WMaatcXD5D1VTu3L1LWZc8fvyEi9ElpqzTtZs0VQchirHdBr2d\nXZyeSybVNFyHe3cfsJ6vsXUDWZLodruMRyOOj2+hSRpJWLCZJESLjGyVI0Q5jqyxmixouU38yGcR\nLegdDEnLDE2E88fPqdKEIl0TBwHLxYY4zcjCnFzRKS0LbxswmUzYbhZMX87ZeDWRqPP2O+/z/vN3\nuB4/pZIyyrpgHURsoy1BmmG32iRRSqdrE4cbfH/Bd/7Vt1nOJgi1SBIVrDZbzs8nHO3fBKFktjin\nKCUMWyWVM8aLKVs/RFAkdNPm7OKSWhJpNptsgxVTb4bSspmuX0LpI6sVaVlRqjJZrWDpHcRE4+zi\nBaIF8zRhs9E52X+DBw9u44Upu+1jnr71EdnSp9PpEmxmn5iLPznzkVYDvWUTZglBGJIXNXuHRzQP\n+tCUaR3ucb3xWIdrbMNgu1xDLeC2dnHdXaTaIFpFuFYLoZBxnS6a3KDj9pjP57gNg8vzZ1DVuI0e\nzUaLTrdLb9hDFOHgcI9ev4VtG8hqRcPs4Eqn+BMDqZbZHQ7RNJnQCxhdXmJpr0aRV7M1umBx5/Ae\n4TZBAjTNJAoziqyk199h662RJZGTg1skSYof+zitBpqus1gsONg/oOm2iAIPXZXpdFq8OHtKmka4\nDZvVckpVV1imjVDDdrVFFQQ0UUU3FCzb4NnZU86unlKKNZVcU4oliikSZXPsto5AymJ2jVy5dO2b\nFLFAuIkog5Ret89qsSJLEnRVZDaaIFQF3Y5LVaZsvBWKqZIWIetogtOR2CQLfvTR+9SaQlEJZOTM\n1ltSYBlfESRrNquYooBSFFBlnRePHjEwHWo/pdmwMQyDnIyr8WOCzTWb+YwP3nsfx7IJgy2GY/PW\nD95mE8VstwGSqDLoDbj35uv093Yx7SbDnX1006DhWoxmU/rDPdIiJylzsjylRqDnGlTrS/LJM1aX\nj0mjFXldkBsaV9cXpGFIo9Vhk+Y8ny5ZAqEjMldlXqYBP1xc8Dwfs6zWKLrEdBUiaQo5EQvvmrl/\nzsvFEl+p2L9/itO26A7b5HXMJtzSaNrYrsX51TMGuy3EOuEzn7rDZHFOUoWoOty7f0ia+pwc72Nb\nJkWaMJnPKOQKtWeSCzretsJxDPI8ptnsECUZvcEOSVygKjJ3795jfD2jbzj81Bu3efnsH7h8/oL9\nXp8yL3j48C6UIfOrEQSfrIL7iR0M1kWCY+vIyoCiyOh1e5ihi5WtkJyIKFvRdhvMz9foOzG7Ozvk\nqYyfBdi2hqaKOIYLgYCrqyR5SvpTLQAAIABJREFUQaulo0kaoiwSBiGDHRdJlKmXORfXTzi98wBF\nMXEcF8/bIogVy80FlDV6rdLtulSlSCHF2LpCLMgsV2tcUaeqIQkKTvaPGM+29DuHzKdLDFUkz0WS\nJKQsa/Z7fa6vn9C0G+x0dsjDiHW4IElTXMshCONXwhZRwW22CEMfXVMwdZU0CJnMxyiWwWKxoGFb\nhFGCKinUeUkexVRlgWpopEmCoGkkRUaVVGyWIVUho1cScbwlLSJa3R0aDQcxr2hoLUzJ4vL8itP9\n+0RuhGaoCGXNcjvC1CxEAQRJYDafs3viEKQBJRVZXqKaCrGWYRttdvdvsV1vGQyHLLczjKGCIwyp\nS5UsKzk+POXqxSWKriHqCuvlmo5mksRbNtstpi7yc5/9OV6OFsxWE+IoRtV0lqsVneGQ6XSKpGjo\nuolpNMjygoW3xDI07FaXv3vrb/mFX/w8q82WII1o9TvkRYEgiOia9mrWYTKjoMLfrKgqiRwFURFJ\n0wJ/tkS1m7z77AXbxRrJVZH7Nu89Hr3iTUoCu5pOaUTkhYdpyNiGwyLbYigwX2w5PL5HlMZklYyg\ngNmw8IuQ7m6X+WaJLIKsVsxmL+nvtoizMZKSIUgOliGxWE3p9nqcPXvM3qDNfLVCCgr0tk6MzMnJ\nLXRV5Xo0RhQksuyVUCtaeURpxN7eHnmU8fD0NV48ecyLMkRVdVqdDkGW49oa6+01a8+j2e+wDsNP\nzMWf2E5g4a+ohQyBFLuh8OjRO2zDEG8b4gU1VZHjz9bc2b9Dui7YLnwUpSSOFxRVQhwGhEGCrJl8\n8P4j9vv7rGdbshBM1WU2XZNkGdPFGLdrc3r7hNDf4tg2tu2y2qzYhCuyPKWoK+LaIykn+PE5VCmC\nIHM+fo4kF0iCQJEK9Jp75JWEZhg8v36XQJgRJimO5ZLFCQISF9dnmKqFLTc5vzhn6a/wvIg0lFgu\npgxbNxHqCj8YURYRhVCzyWP8OkZtaeiuxs2TEzrtPlGSohsaru0w6Oww2Nmjriq8YEGlVEiKTFLV\nbPwYu9lhcLCPIjs42i6BVzNdjKiSLa6jIqsyhubQMJu8/9EHlJJElKQ8H11TKgpPx0+Yba9Y+xug\nYjGbMV9s0fQe621KlFRUgopltaiyAlGu2YpbUnNLmiZcjyZsNjMcp8HFxTlVnSOZFpM8ptlvIxoK\nT8+e8rnP/BQHR7d5/vKCMk446PWR5JrVdoWiysTbiJ/51M8gVhJpUrFabukN27RbDq6tM5+NePPT\nrzOeTnDtBlJdY6oWBwfHmK6FaNTMkjWxLBBEOUUK7z15wfsvH3M5vgYx5dnZI+Ks5ioIOU9zLqIM\nT8/YPdW5edLHMFQa7S5zf0taiBwMLLI4Yf/4iOX2lRFKDbh2F8+b0t9t8+zyJYop0+k0KKoASS/I\nyDBNi+VoSp5H1JuAW/sDonjLvdfuUicRtiqhiTXDlsvN4y4PX/80aq1yefk+eexhSUNKr+b+8T1M\n0yEoYgbDAZZqQl7zwQc/xssjasWh2etRiAkiFetoTaQKhEqN3DB4dPbiE3PxJ1YE3H6bZbKlkCty\ncjRN5uagj5XX7Dgd+maHfqfPfDkiLwW+8PO/zniyodvos9sdYMkq3U6bx2dPGe4OWS+WmIqJpTiU\nWYWuSkwnEwzdQhV11vM1TbNJHmakSYilWbTMAYP2CW57n01Wsg5iJF0jjkOuRmfIao1iqmx8H1lW\nsU2L7WpJVeQ0tAYN3aUudWpJZLC3T6PVZOatWYY+y43PxeUFjYaDrGhYtkkcynz6/i8hmRk5CbVU\nUNUJqpIgqinnk3MqRcALPY6Pjum6Lco0IcsSZqspHzz+ABCJw4y8qmk6He6e3CZYh6yXK8QyI1xu\nkAWZ5qCDWMkQ52yDLYv1GM3W8bY+dV2z9rakacxP/exP0x50EFyTrVDx9jtn7PfvYMk9FNUhTTN6\n/QGz+ZROq8VmtWIbrjh57S5PJ2fkSAycPi23iakojEZLXl5uyEWJZqeFqctIqkiQJByeHFACT58/\nZ+2vUKScxz/6EXJa4kgSx7tDvO2CzXaLYWj0+z16/S7eYoEk1OimhigLDIc9ri6v8bwVcbDFUG0k\nQWaxWpLVFZs45ioKKe02K1Hiqgz50J/y/uaaR/mW97ZjzjbnBKqHvicwvGlj6QaNhs3B0RDdMVis\n53zmp9/kxeWWk/1beKuAMNjSbBps/Bl5HjFfXJBmY6qqoum0qZKU3A+wBImh49DSDfpmi5bYAK9C\nw2J6tqRORa5eTsjCitXC4/z5JSd7NyllkaePrrh/9DpC6fL46RijofK5n3nAn/3v36RMKzqDLk3X\nBREUzeTG3g1sy6BhO4hUCCl4XkyZyRSRyC//zK8zMAbcu/fxGH34DywCZVny8OFDfvVXX6G4V6sV\nX/ziF7l9+za/9Eu/xGbz7+yPf//3f5/T01Pu3r3LX/7lX35izKTIyPKcNM8J0pTW7g4Xk3PclkNN\njlTpSKLM8GgHq2Wz9hLMpskmWHN+fk4tyGyCNa1+E0mXCcOQYXeH9WxNFieQiyioqIKKt/JwzCZS\nDZvVAqmCLE5RBInZaEyy8ug32pRxSdfpY1sueeFjNxrUsojddNh4S9IiZOMt0RyRJI25s/8Ghuqy\nDrfUiogXh4xWc2pNJhNLirKECsIoJstqkrTig6d/zXSRUNYVimmSxyWaaFKn0FRt9LSiXHr8/d/8\na8grJESKKkc0RXRHR9NtNpsAUdC5enHN/GzGQfcGnUYLsZbYbjxkRWK7WbPZehSiQkoFaslkfsVi\nPufmrZNXLUlV8Nf/6i/QVBlLsWnZbf7lL3+ByfUIFYlOs4XrmKRZyIO7p1RpTE1FZ6/Jdn3NUXuX\nnuIQTwOgYrIdc/PmATfvHOHuNNFsnY5pIesKhQiT+YzL8TV7BzsM+z3yKuWNT79GXPr0D4ZcTS74\n+V/4OZpNmyyPcBwL09S4fXiT01u3GC/mmJZJnuccHR+z9TZ0Om3abo/v/u3f8/BTbxL7IYc391AO\nVb794v/kukpwDm/g7A1ZqRXv+x5Zt8G6nOMOLT71c7fY1luCZIGo1JRVSBJ6dJpdRlcz/uV/+Qaz\n+QRVtYj8LVk85+SgDXHJXmeHtj1gvV5gCCKuqtOyHPrNDhfPXuJar6Yz94e3qAKZo9NPU6YSrtql\noXWpEwVTdrm5f5vJ2RxLzxm4BjebN9BTgf/qn//nGHlGMA64fXyLtulwcX5OGISEXkxZZ9huxsN7\nA6rcZ71dso5XhJ4PCZz2j7ECYLsg8s//vxWBP/zDP+T+/fsIwisIw1e/+lW++MUv8uTJE37xF3+R\nr371qwB8+OGH/Mmf/Akffvghf/7nf87v/M7vUFXVx8YMvCVuw0SQKwxTI88ydNMkSCMkXUHR4Gj/\nkNiP2R30iMuATqPJ8e4Jx4cnyA2NIIvQLQXXaWGYDqPpFFWXuX75jGFvwM7gBg27hSzqCJmMKlqE\nkcd6dUWr65KRkmUeZZXimjayqJCmNdPlhhwF1XChkAjCkKM7Jzw5f4psykxmIwQBOp0uq2BL8Y+J\nvvU8gk1E6Ef4UURr0OX51UuyPCGKTWRgtn7KJlgioFDHNa1GB9tok3gSci0TewmKqrO73ydNIrIw\npeU6GLKN56fEccSgN0BBwI98CqVgsRnjRz7T+YqO2+Pph0+AmtbugOezOfPVhjyvGY1fcPONY77x\n539HIedMwgW6pnJ9do2YZ8hCzuXojP3DIaYjEPpbAs9HkkQ2voeiqmiajKEahNs16SZgMZ5gNhyy\nNGUbicy2cwQtJ80SXrx8TpzFvLh+iWbbGI02eZ6jVhXJZgF5xMSbI5gysqXhxQFpkaPZMrPFOfPF\nJbJS8/LiCT9+94d4ScBsNWEyHxNnEaZpMZuP2AYjPvvGPaooZbGaUlCwWE/oHPZ47l2AXtDf2WG8\n9On3hiimjCfk1IrGdOGzezRk50YHu6Wx9tfoDZXXH7xBXec8/+gplm3SdAyEqsDAJvMFup0m/jKk\n8CrqUmI9H6FVEsurMa5poZoqgqQyW68QDRFFkxhdnnHY3SGYLHhjeMhnT99kz27jjWNcy8FfSGxX\nEavVC0J/jr/ecLN/EzGX6baP0OsW/eY++/0DTvYOObmxTxoFTC7PuXnYo9fWabsmn/r8a8hmymx2\nRZzGbFMPyf54bPx/UBG4urri29/+Nr/927/9T1SSb37zm3z5y18G4Mtf/jJ/+qd/CsA3vvENfvM3\nfxNFUTg6OuLWrVu8/fbbHxtXEyqSMAARRKFGLEoQSkzLIssK4jhlMl7jGC5lkrNdn0GZUQQx2TYi\njBIESWGxmCMhs7e3i2RIVGrB4HBAXNT4WcVouSKpc2RDZuVPkWQN2z1mMg6Ji5xEEgiyhKcvnrFz\nY5/ldo0gytw8eZNgk2KqDq7b5HoyQjZtsiqjLHJ0U+b9p99HM0Rabpsih7qS0SQdVVZRVIVN4HOy\nf5d265THZ8+Zrz0iocLu74Bs0mi0SMLklTZfNVAUl0ZzCHKTSgDNVmi0bCaTC0xNo+u61GKJrupU\nWYHp6lyMr0mrhOHOgNDbogkqnU6fy+mUNCtpOhZFGmMqLkVlMl5O+flfvsfuwR5JmVDUFbIoUYkl\nlVCiGDV+NiItl2hazY3hAENRWa9XlFnKajZDBcgFTo9vk5cxlmsjaxI3DnaRRJnQW1HECU2zxXzj\noaoyZZSy0+6hCTXBaom3WCEpIoamYzd0losplmGyXW14/913KaucrbemKDOenT+lBlrNJnmRsQnW\nKNo/aj80h/Figi4bZCE8fP2zZFFJXWrIssBnfu5NJMMgSzI+//BzxEHMwcERRtPijdfvkYcpSRQS\npR5etKIWCu7dvc8/fP8dTEuHFGYvZ6S+RxzE9LtNut02P/7huywmL5DrhDpXuHN4l9KrGbQ6zM5H\nGKZJIUgMdvcZTxfcufdpdjs9FqsZmizzg7fe5sMPHpOXKq/df8hiseazd34WWzQQipobg0MMtcd8\n5qHqGicnB7i2SsfRuRqfMVuPWK6mCJnI/t4p89mIKPLIi4xn5+9TKjGz1Zbr6SV+sCSPP5kW/f9Y\nBH73d3+XP/iDP0AU/93S6XTKYDAAYDAYMJ1OARiNRuzv7//Tuv39fa6vrz82ruU20XUbpVRJvIiq\nCLl1uEffdTgcntBx97hz+pCHD/8ZN4b3uXz5AqEqsSwLxdDxvA3t1oDDwyO80Ofl6AlJkfL05RMm\nwZZIysDRSJSauT/j+ewjkCJ2YpW9scBnekeIfopcv6rYuq7z4fvvoakyrmGx0xqyPzx5hcPKBYRa\nYdAZYukuum6z3iyRpAzLSLHNiMX0OTv9Fmkeo6gyqqoiIPMrP/MLxJHP7V2HXkNDIKUMA2zJJA9T\nvNUWf73mxs6QuqioKrBNizArSOscwcy59fobXI4WZEFJHmdEccxyveKgN2R8sabZ6fHOo/fp7XUR\nbZFCybn/+gPqJKWvD+lbTYJoSsNRkASJs+djzh9f0HX7tDpNaqOgEkWyqkbVNBqOBbxiKnjLOXGw\nRshiTEXCNhT8xZqjzhHjqymqpbMJl6zXMwxRYOg06RpNwvkShQBLr7hz0ifaLrl69oT55QXDbhPE\nCllvUgs1QbDBMFVUUaTKSnY6PRRJRtcNthuP4WCPNC5wnTYNp0XDaqBrBggifhCR+Cmj1RVPLz9A\nqgRM1ULTBMIwI/I2iBY4HYUdQ2e7SHj8dEZZV3Qdk91+m1s3DyiKFNPSmY03FKFIVqScTS4JM4lV\nmlIqMr/53/z3WPoxH/zoGkuzEeucycWSX//Sf4EsSNRCxiaNWEcxpSyw29tl4LZxFJ0iEmjbLsc7\nN9BFgzIXuH/nAbfunuJHzzHVnHgccMPZ4/pihpQXhMsZWb2iUDIkXcFbr0kmGxzRZDXfoBsOhuWQ\n5wL9/pCG5aBbBklaso0y1EbFKJq+kp8vP5ki+O+9IvzWt75Fv9/n4cOHfOc73/nYNYIg/FOb8Env\nP+75V//riDzPqaqK+292Obml8eLpU3SrzdXkIyyjwXh5xfzv1uiayGfe+CliP+by6glJXdIwWyxX\nc4rAo9dqvho9bbRp7B/i9nbR7B4eNUW8IqtzentdFvMlTm2weTmmW3bZ0QZETk6piFAm7OwNUQTQ\nFIn51QViLdNv7ZDkMWG4RdcMZssRjqGRZQWloPLo5TmI0BkMuZ5e8+nPfJqr0UuytKLrdvg33/0O\nLa1CaZqsNhmupqFXIlWUI8kWd47ucn1xxvVkhqIDRUUppjQaDRarGW6jwdnTS4rYZHCyx/cevc1r\nd+4R/uiCXBY4uttDsQVczea9D59i2S1ETcURBQRFAlPgxXSBIFfs9PokWUQlxCRZipIUGHKDGgFB\ng5U/Y9jtMhlN2d07QJRVXj5/yb17d9FaGgJQlwWNQQMhknBtk3QT41i3cO4MoC4JwojJfIpha9RC\nQkOv8aaXKKQUqsSgb7MOfVSngSQLxInA0D0g3G4RFJc4jVBVC1GMqRGoqoJ15HN8fMxqE5KlGXla\n4ugOlq5j9HRU3SJIFxh2zWIzwlKalFGOaQrIao0mFuyYfRgnHPdsnN0WslgzWo3otw3Or8+QVJtg\nvWbQ7/LO29/j7sObOPtH5Nuc8XzE4eGQ/+VP/mdOT0w0Aw729/HCc6JI5O//9i+olgVWu02uSwzu\nOAiyzfWjd+l1egycJmW85nK+wrRM+nt76KrNNgnQaoHQKynihFn0GFmzON45YrlZcvvuAc/PPiT2\nSzbzFd3uAFmqkYqUf/Gf/iKzYM6HH11j6gqevyGvCvzI4/DGHqPRhL3WPf7iW2+zWb06k/p/VQTe\neustvvnNb/Ltb3+bJEnwPI/f+q3fYjAYMJlMGA6HjMdj+v0+AHt7e1xeXv7T91dXV+zt7X1s7Nf/\nuYMsKRiKhiWJFElIWRQoWkyjYWMaLmVW4bg9smxD4IeMLs9oNky2QcjhwU3ee/4BB/0BaZSQhhle\nscC2YXw95fb9/wQpqnEMh9aOhW0oFKGM2tmnbPdI1JyL9x5z3D3EsnSuvBlFlFK6EvP1mKbbQ9ds\nkrhks50jKTKzVUgu13h+SMttEvsxmqrTaLWQKwVbN5iMxtiaRkNRqbMCwdGIK5nJdoFmWERVTSXI\niKqCLMn46y2funWPsb/ETz2iJEYQYDwe4zg2WVaQ5hV3X79FnIUcDnfIwhhzv0FQZhjdLts0QKpy\nmk0FWYX94yHBysdxHT5454rWgYCiSIyvr7DsBrIiYJga643HNNrQa3exuy55rRFvIpKkQBZ0nj19\nzv6NfWRETNXhB+/9mJOTPYLApxQEqjKF1CFb+dy5c4sf/PB7qLZNnoVE25IHd+5S1VuKqmA1q+gf\ntxjuWqw2W44PbyCrJt7TZwiKhiqbaIbBfDF/dXVaZyDLCFKBmVWU0ZaWLDMOffb2914BWWiQZwWT\n6SV2y+JytiJ2FO6f9CjigLOLJ6i2QafdJxfbjLYTjl4/xui1qY2E995/inrzBnM/5Hj/JoVu8Pq9\nN3kr+x5lXVFnAlsvoHe0y2yzREUlCTW26xBh36TfPWS7DakLcNoSmSyi2yWT6RSrGdDUXLwoIM48\nhoMdRPGVqa1u6Bi6Tku1+Oj9H1OXKnUlIBsAJVkYI+YFo6trGk6H3F8zmT7n9PYp4+kKXaj5xjf+\nN/ZPD1E1mSLP6XWH+EFCw+wjlgU9a4Dszvn8v7AR60MUVeF/+p1/+Nhc/Pe2A7/3e7/H5eUlZ2dn\nfP3rX+cLX/gCf/zHf8yXvvQlvva1rwHwta99jV/7tV8D4Etf+hJf//rXybKMs7Mznj59yuc+97mP\njd01+miVRpnUiJKBKOmYukGr2YYaJElgtpywWM7Jy5zNdoPtOIRRCYLA+0/eoS4TVrMZYg2iKBIE\nIXkpoKoa69kEV6rJ/TkKCePzK453TygpSFWf95cfwECkqCOKvEIqZXbaOyiCSnewixfHrLwtWZbQ\nbjlcXTzHNkTaZgtSEVIRXQFdrug0bLp2DxKFzCtQRYlWy8FuOnQGfZIkxJR1JEQ2my2KpiFpKoUk\nYThdXl7NXrnmagZWwyVJElRVRZZlVEVFN3QqOcFLNrRaPbaRh6CVJEnM7b0jWnqL2BO5efMExzVR\nNYH5fEaaZpyeDmk2HIrklXR4d/cIAYPYF9DVDrdObwElQpbz+s3X0GsbV2sipAJHwyN0UUXIS8LN\nmtfvnyLKKnGSsSq3eMmWYf8GbqvBaHaBF25QRYmD/gE3j26Qlh5hukEQUzpdA0ksubh8weHRHovl\nmCje0HUdiizH7bhUdc6DB3eQpQpJlGnYKkW5Jc7XbKMVUbbFsiy8jUccF3j+EsSMvARJbPDw9c+h\naRIbz6eoQTYl0BWKsuCH7/yQg7u3yMSM2fwKDYFBs8VHH1xxdHifxXxGJcgUlUCj72K0mkwnV2TR\nmsVkTiVo9IcDVLnBZx++hm2KBKsApbKpVAl7aGN3FVqtFpraJg4TdNsklzUmQcSL8QhFUdlOl7iq\nSrQZcfn8GVUGB4cntPo7SB2XRbAlzzKWFzMaskFV1fT3hiiKwnw2o9cZUqQSw+EeaVoxHvtUlcR4\nNEFXRCJvie95FOWKMN8iKDolBaL8/9Ow0L/d2n/lK1/hr/7qr7h9+zZ//dd/zVe+8hUA7t+/z2/8\nxm9w//59fuVXfoU/+qM/+sR2YGB16Ro9eo0BncYASW5wPpkzHi1I44zVakEUbVA0gfV2xWQ2Yr3a\nMOic0GofYze7qKpGnlZ4XsTezg12h0fIVR9TPMAxXeooRqVGqgQGVpdoE7BaTYm8NW6t0neGSGaT\nyWxF27CJywjbMclSaNhdmm6XVCipNYM7d18n9xP0Ana6A/IiA1QatovnrcmyiJZt8OaDT1PkCV4y\nxh022HghQq3S6+7iai5FlCNLCpZh0O80ycQExTF4+vwpRZFi6/Kr/8pzfM9ntZxTU7H2pyy8FY8u\nnyOYBloFQqhweXlBnSd0Ow7rdYbdcLm+GrM7HCJLIk4jo2U3ubl/F0OxyZOIXsthf3dAw7bJsgRL\nMwi3GyYXU8qkRqDA2yz58bs/pD9sE8Y5eVUQpjFFWaELNqPREqEGVUuZ+2M+OnuGaltIsoZQJ5RF\nRCnF2A0TQahRtRCJmKZtE4UhuqHjbTcIeU2YJKxTyGWVx+cvCMsQp9MnSDMKoDZFtuGWl4srFEHC\nMU2icI4XLqDO6Zl7xJMEu5CJZlssvWI6n7JYgSQ3kSSLg6Nj3vre2zSdBgYSwXhBcL2kLQuUccbu\nzhGNRo+qqugMexTriHCe4s8DpEKgSjOSKqKqRIJtyGo+I/IjbgyP2YQBXu7jRWsmswU3b96m3zwk\nymvOpxPsTgtJ0zgfX6A3bApBYTxfUUiwyTMSucId9jn/4DknB8cEScxP/+zP428C8jBls4wwdJs8\nLjnYucWbDz7P3ZufwtIcGrpCw7YRaoHQ97EsnThYvYLsrGPiTYZQwGo9/eS8/kn5DvzBH/8SVSay\n8WZohoxsK6RRiBgWSKqKl6QM+j0uL+bIaoFtNGg1HLTK4vHLRwhGhSyKNOwGoiDj2C3KomC92qIo\nFZ1uk7a9x2g2xrY1HKPBs+cv6e928YMVi+WS/Z1DTMWiSFKy2kcyNc4mL18JOzQLTTWIgwjXtlEk\nhTjNWE3n7O3tMvdmiKpIFEeohoZaGLh2i22wIRNXVLrCOvb4zI3PkG41now+xHVcqlpA1V9ND1q2\nwbCzy3Yd0W06PH78hPawRV5nTMZT3JZN02mQU1CUNapqkqQCTdsiDOacnpxw9vKCqs6oRJmqFhCq\nmiDZ0La6FElGVSXYbpc8KREVyMsVdVVjal0WcYRh2UyenGM2DQatPcpaBLEmi1Oy2KPIJbLCoxI3\nSJZMis782Zxf+83/jkfffw9DKRmvHyNIObbRJUtqFEXk/HzErddvsNqsECWRht6m1+3y7o/fpTvY\nIS9Kom1CUVQYbovn1yNajQ5hPEbXDLq9IXGekCYBGDLBwqdntJEVm1rw8P0tAhJNZxdXH7I/GPDs\n+WPKIsVuqlSGyHy5RdJ14ihCjFOyIGExW/Dzn/8ib33379Dtit3jGwiizI/eeZ+93X12dncZLyd8\n7s4Dvv+dfwOuhGZJ1ApIikVLc0n8lCDx6HY6nBzc4+1Hf4OMgqUb5HnCzXsPKNYRvXaLH7z7Lu1+\nHwObtquzmc3wC5+dwSHvffiMg1s3CKuUpmyyna1ptl1WyzUH+/c5e/YOki7jSRWdTpd+q03TaPDk\n/ScMBwMkQ2C+mVEWKbKm0mjYzMfXxElAVuUouoHjDCjjkkzZ8D/+D4//4/IdiJIEL/EoKo1SFNkm\nr5jt3eYAW2phaiKTlyNuH5+iKAaybJBEFZPVBNXUGLR2MY0Oaz8lKnLW3gJBgN3dHVzDQUgSQm/D\ng3v/jIW3Zbo5p9lxWS0DskSgYTlE0ZbNdsFqO8OLt7wYPaOQckq5IqszNv6GPM8Ra5E0SGgoOo2m\ny9nkmpXvo0oaVRLRMlwMuSZN1wRVQJqK7LVPIdHYTCdoSk2/Y9NvdbAUi9CL0DQNTVOpSKgEj9Vq\nRKdpo9QSmqiwN+xzY9gnDjaIYk6SeKxXE27s7rOZbVFrg3C7wBYFTHS0SqVjOaiChFHpiKXOTmuf\ntt2lbTURS/HVHEKSoWkGaR7jujbPn72k0egiVzI5OX6yZr0KMdU9TNMBISdNClynhWkZiGKN1dT5\n0fe+RbOV0TBKdEEj8WPqtESWakxT58GD28iJys3BAS1R4/TwDtOrGR23R9/togs6h/snXF1do4ol\nd4d7HAzbiIBl2AhIkJf0O23OHo2wVBtvG1CQUYrgmC3aWpMHxyck6ZrL2QUXozGa1aVWHa4mE6rS\nY7W4ZtDvkMol7f0ut9+4g2yLHJ/ucXSyR5qGSEqNZKpYbRPdMTGcDt5myX6viUZFnsW0GzauLrFc\nz4gqD6PZRXFbPLr+ALsSaTqCAAAgAElEQVRlIqka+/un3Lr7KV68POPi6gnvvvd9LFNGVyUkSeZ6\ndE6YXbPM1qzKDf2jLrmQIKrV/8Xcmyxbkp/Hnb+Y5zjzcOd7M/PmWBMKBYgACBIiRVGyNkpatKk3\n/RD9COQztRnFNsokkmBzAAkQLKAq58w7nzlOnJjn6EXWkli1dRf/21i7x2f++efOxfwt03t73Hor\nEjJiacW986fQ1oxGE/K0Ik8rFssNTr9LUhZoukNTS9imS1mKLJcRve4BaVLR640x9TG24bCezUnX\nvxmL3xoJhFGNbOkYvS6NpCBIKnlZQCugSgZhWoEmolkKjm1BI4OkIysKpuqiS1067oDxcIIsyFiW\niywIZEnGYHLMYh2TNwG311+jqDpxXqFbGmVd0u10SIuYIPVppRbV0PCDAFlQcbUetujSMfrQSmim\nRlhERHmMJKnEaUanO4RGx7E6dOw9bm5u8ZOQrCwwZROjtTFLi6G+z9Lz2ZULru5eU9cRht4yHlrY\npoasSsRVDGJOXkWcnU9oCAh3AbqmEMUxo/GEphbo9obIkk4WhIyGHVxnyM3tmrip0AcdBKkhySLS\npkCRTaRCp0WkpeL2+gpRltmGAaY9YrtJUGSdJik52hvTG1v0+33qKqcpMo6nEx48GFGUGd2hztHR\ngK7jUpcNUg3nDx8hlQploVEKH8JRHLNHd6CjaQKSqNJWOU/vP2a9XdBQEXghR3vHHPT3iHcxZVFz\ndX3L93/rc/KyxA8CJFXCMTuMOn1MTaHOMxzZ5CeffIJeg9ioKLKGWMqcjO/TdTr88pc/R9VAlUQ+\nevSYIk2oiwxREjBcE80UuZtf8vDhKY3agi7w6uprFAvqWmaz27FOtzz7/jOiuiDJE45P97m6vmJ2\ntyRLBJKwZLPaoqgKii6DqJLlDW/eXhBEGVlVotsOy+0SP1xyc3OLNZjiTA8ZjA5ZbXYUssKVNyM1\nFWpziJ8lKLaDKKvEcYJq6JTkeP6Ok6N9dluPLA/oWD2kJOZ40CePI8oioy4L/NTDjzxuZ5c8f/+W\nNC9wnA5RWjDa26eoW2pEVuslu8RjNP2XBXoA6Y//+I//+P8/6H94f/Inf8JP/vMj/GiDZEpkdYLA\nB8GvzSq8Tczk/ikdp48gKKwWlzw5/5woKridv2O6N2Gyd4C3XWGZBrQCttlBbVT6o0OCJiKtUnRT\nIoyWaJLNfO2R1jm9vkucLKiamNvViq47QFU0WgEOT+4ThjFhGLHxQ3RLJ05DNEX5EAYqGsiKhCBp\nCDIEwZrxaEIF5GWNICsku5D1cglCgTtqMB2H3S5H1XVsy+Xy3TsUTULVZNI8I8kKpFan7/RIkwK+\nMQMpso4kiaiqhSbLWKpFlRb0+wPSJEVSKjpdl9lijhf6ZGXFJvSJ04Je10EUBW531zRKxdKL0Tod\nGjIGnQFFUjHpTYm2AW1TUZQplSwSpTmTyYBG2vDy/c9QzAJDc2jwqFqfomgY9PvEXs6kP0XVNLbB\nFlFqmEzOCJMNYZ4jSQZFW5Hs5oRCjqGNyOMKqZUJPJ9dFPPw8WMk2aRsAo6OznA7DpIoIjQVp8dn\nrJdLTo9OEPIWUxVxNIej4T5FkWJJKlJb0Qo1iq6jqDKXFzeYpook1myDJYJUkub5B4KybWLfR2gb\n0izG1WzurhYIoo47sAmzhDBOWM/W1I2IYbp4t7eIssp4b4zTtVA1gc12Q1lJGLrL2ttycDDm669f\nMegdYJsum/U75KbB0Wxsc8DjB59jVxKW6tAoElKTUYoS9+8/YrVc8PDBJ4jCB8u7Yzs0isj0oE/b\ntkiiiiCLDKf7LK5mNOQ4HZO0SugNHQS5IatSWio0u4PpdNBNjazOWftL1l5G2VSMhgPqtiYTSn72\nZ0v+Jbh/a5PAo8f3WMdLiiai07VpagFJUTk8PmN8sM9ut6FpKqLIx3VGxFnEYOQynA6J8pCX75+j\nWyZ+EBAlCVVTYrlTbr0Zs90VYR1y69+yy3ySxGPaH5OVKavdikrQ8cOG73/vh7hWF9cdsYtz/CgE\nUaTXHaPrFgDdTpcgiNAMHT+OGB0cEJQZzqBPbzQkKSuKBsqmRTMM7t17wMH5Hu6+TFF7tHXFeDhm\n0NlHaGVG/SFJkBMEIaajM55M0FQFRVXYeD5tA5IsUpUVuqzjaAbe7R1CmdNkKXmVsUt98jZjvlzQ\nH45AlGlVhc02YLv1EWWJUqpYbQMMbcxnT39EXYCp2Swv5zw7/ZgybBEbhYPRAaP+mAf79zgZnWGq\nh+Rhh5PJb2GJx9RFw9XlmrQWMewhZSBy0B0hlyZd2+Zo/5Air0jThMdPnjHsjdFVG9twURQDx+hg\naBaOaePHAY+++ylaz2EXBliaSrL1aOIIV4E9w2Ji2rz+9Zdoosz1+ytsy6arjxh3B/jbObpQM+w7\neMs5bS186NtrCoZ7JlZXIG42HJ2NcHSNrt6lZ/Yha7l/eI4rdxBKCWSD+x99ijPosl1viNY71EZg\nMB7hTgdcvnyJORhw76PHpHXDJtySiy1hlHy4XAXKMmTr3fD5dx9wuH/Iw7NzOnafyeQQ07TY3++y\nuH3JfHaDRMOk30GXNSzdJgszmqLiT//bf6cVVIbDI8pGZjraw9Q04nDHNtyQlSV38wXH5yf0xmPW\n/obr5SW3mzm6brP0PUZHp0iiRtMUXN29IUp3TMb3kKigyVhtbjk6G9LpW78Ri9/aJPD0t2y6PRsZ\nkbaV2Cw35GWOIepUdYP2TWSXrEtIssViuaRtE/IyQVZ18rygyGLO791js15QZhW6qvJu+ZJGbmhp\nKBtQZQVD1ajqitaQUAyV3aZiMBxT5x/8Ba0sM5hMkDSH6+s7xpMBSZqRJDGaJpPGMWEQ0uuP6I/G\n1E3DZrnE26yZLda0ksD5/QfosspqtqI36BFEJXEs0rYGb9695uT+Q/I8pqpKJvsHCFJNmETc3Szp\ndwfIsozlmmS5R5GHyIJGsqtogUzICPOAIM5RdI3BeMLd4pa6LlnPF0yme1QAjcSj++fcvJpxdniO\npho0WYMpmXRsgyrKaYsWtTXpWSMEWaAoMhBllrd3PDw+ZXZxRVWmKG1F1zJQJJGTw/uEeUVcFAiJ\nzMDeIwwXRHlJnPtIisz0YMLd7S3b2ZKmkFjO7ph5S2zXhVYgDnMMU6MSK169eYlrOuithUrOzdV7\nREVCFCXeX14yOdxHlC1O9k4Rc1hsl3jhlqIF23HZ+Ut0VUGSVayuy+3sBsWQSPOIp+eP+elf/jV5\nU2A4DqrisF57mKaFOxjw61cvQGjYbDziXYAkNAgiqJaNphns/JDOoEN/oCFoNYUkoAwsBEnB0A0U\nSaNuJZI6QlZkdFuk1zNJdimb9YaybVF0iaJuGI6mVG1JGAcYtkGR54RBRLTNcByDjz/5iDJPifw1\niiEhaQJFXhPsPuQCSpKBIEApl3z58lfcv//db6ZKg8fHT/ny+Vc8ffYZqqKimSKr7R11C91eB0nS\naQSNdbgmiTKWd3f8+qfZv65JQBFEsiAj8BPKrKTr9tCULobmoqo6NBDEAYVQsInWyDpUTYOp98iT\nCkFRyKSKry+ek5BT2A1esyFPGuRSpQhqHh1/F92c4uUZsmNRVxKmNeHg8JDr2R27wKNuK8IkpW6g\nqUV63SlNa1AhEMQhYZggCx/MLNtNxHK+4O7mBte0sI0OoqCg6ypff/Ult3cXKHbLajlHqg2qXMPb\neAzGBrJQoaoaq9WW4WjKbDXHtvuMh0PCdEvepFzNLwkSHy/YMhi5KIZC3TTEYYohO1AJlImALPRp\nGoe0gCqUmGgH7GlHJNcR+BViDrPbayQagiSg1SV2RYxsGyRlhKa3qLKO4VhEScrGCxhODtj6G/zI\n5+j0AX6wwQ/X1AikYcnLN+8J2wi5D29Xv0LQJd5efk1aBRRiznK3YLHb0h8NEI0GSRVA0yjqmqKt\nSJuKq9kMTZbYm4wJQw+xlTiYnOMnBUnd8rMXL5G6Nr9+/hJFA0mpEOWSk+NDUi/k00cfM3S6zOcz\nusMRtVhxM39Jf+oSJit2oceLV19x/ugecRyh6BLr7Y7FxmfurXl7fYXbHVCWMvv7j2hVA703QrO6\ndNweTVHzu7/1I3qyiX+bIMQ6I93EKSzE9ANJnZ0f8fjZE3TT5NHTTwiSHUHiI5kybreHretI1ARB\nQBgnmN0+oqKx3WyQZA1Ls9kb7RH6O3beGsPQMFWV5WpBEpcosk1ViAi1TIuArEns4pCTkzNG3R66\nINKzBtzOrhkPhsThBsvRuLm7QVE1NNXgbn6LYTgYjstiG3G5WZC39W/E4rdGAvsHB2iGhqQINHVF\nIzTQtPjBhqaNqJuAhgLL6GLqBmVRIggSZZUxHNzDdQYEUUSFyN7JCZpm4nkxlmlTtRL3zp+y2gZ0\nemNawSBIS0yniywCbcbeXpfu0IW2ZjodfcPqDYZTI5IiSvDk4VMG9hhd6rDfvc/3Pvk3JEFMW+Sk\nWUrTtriOwdX1HcvlhpYGb5VSli1ZmuJaOqORQ8d0qcMCuRXodFwuLi5wXZskSVHVD9VcfhDRGQzI\nmpaD0/vMNyumR1PMrommG4iixueffx9F+RCK0u32sZ0Ox8dnvPjV17RNw8HBEU1Tszfa46h7gpyp\nHE1O2MU7HMcGUSbMMnqjA9a7Hf5mhyDCsD9AERWeX75iHd2xmF/w7vaCXRVydXfF+9sF508+xxR7\neNsIPw65ur0hzErSIiMrK7bRmscPf4hX1GySW8SOzMnZMXlVfnNKnHBwOuXd1TUSMrok8PblP/Lq\n/R2LdUiY56iayCePfpsffPwFbZTy1Ze/4GZzg6JryIpFON9RJDlV3RA2JderO0RNZRsFFK1AmCUE\naYhuOIxGY1RZZLtdcHhwwGDQJ9ltOex1+fThAxxF5qOnz9BUg08++ZjA8zg9OiHe+bRpwR/84Hf4\n5OEjiixBlgpGAwfLVNj6K7bbFU+ePUESW6qi5P31JZudjzPoUIgFQRExnPbwIo+Vv8AdOKxmc5RG\noIxTTqcHDPpDciqqCmRJ5+52SVuCWIr0nR51KWJZNnHkU5GhGjYX8/c8efoQoSq4mL2mEgP+/ud/\nSxpl+NsQXXc4OryPrQ9wbAdFVulYU6z+kM9+8L3fiMVvjQTyJMAxXKIwI4lzLMPBdDSWwYxWD0iS\nkH7PJct8SrFgF26pqwxBzJG1hhcvf8noYIwfb9ks5jydPuZ3nv0+3//oD+i4EyrVpTZ04rZGVHW6\nbgdTV/DCNdsiwDAkduGGbbZgG8zwvLc05Yy2XOKHlzRViq1rxLstz558yu3C58H5Q95dXCEJErmf\n8+ThM7KyRdMbvvPR95h0jzg9fIrQGuwd7rHdLZElkSSKEJuG7cbDdV2yMmfn5xRZSt1EJMkFZbaE\nqqQtJdbLLTerBRd3b5nNb+m4A2bzDYbZRTVaXnz9C+LApz8Y82Z9zce/9Tm7dM0yn1PLMr//O/+B\nT598woODY07HB/QkCyHK6Zodvvj0J1CbPLh/jqqoCDRoqkyQbRB0sDs9irri/NFTRNni+esFumHw\nWw8+58ga8f0nPyTxFabTfTqDMZnwQd2mlVh6S1qxAVViuDehaGvivGS1XREVHr/86h9Iq4S1t6Au\nYz7/zud03YqHzw5YXvtIRclf/umf8fUvXrOeb+k5+1i1y2y+xHVEVrM7tt6G/mjM69cvkVSdyfQB\n797d8ejxY/ZPzqhbhbv5Gj/0WXpbBEnicG/K5bu3aIrM189fcHv7K77++d+xuHiF3voE3hx/HfLk\n+BFtkfHko3v89Bd/zpdvf8Y23OF2+5huB8PsUGUVSbylqRtevH1H08rsje6RpTlZXqIoOnkTM/dj\nUCEpYkCkqQWiXczh3j5ff/UVCBK22+PNuyvevnmPLilcvLlgs14iCgpFIaDKKqtwSVVXHxKKvAWS\nVHN0NCVNQuIo4KOPPiaqUlzbJdzEbDcrBsMeq82coi04nBzw3fMvuHzx/Ddi8dvbDvynMVEUcXJ0\nn7Kq2WYpeVuSU5LkKR3dAQQkQWRdlZilyWgwJM43NKrH5GCfK29Of9BBwyT0Z1xu3rAtL+nv2Uyd\nLqQzhkaO1tZEfsDe5JjtLkQxFMosJy4ETu49Al2mkRt2ye5DIksGtmHT0VzkVqfIZYxBn6+e/4Kj\nyQcbriwJ5G1K0RYoRY+T0QFtmtC0KbphE+ceSAKO67KeexiOQ5wllHnOZrPm2ZNPuLt9g2tbFFX2\nYa0m6aR5SUODadqkmQ+VQBJVgEYjyeQxSLRM+g5NniFqIp6/RMhzBpMOVRohFSJhvGa9vKNj9RiO\nxmTFjiwLGDgDEBpmdxes1lcMxzaCCKJrcPX+iqKoqUWRJA/Jy4jHjx9xMDjly5//E7vS52b5EtkQ\nSHcJv/eHf8TOC6nLnNOjh9zNnmPoBqJgEccpaVqg6wpvXl9y7/hTXLvPzo/J8hzbNXj7/jmqoiPK\nJopaM+5OOD09J8w9ju+d8OUvvsLRdBIuGU4lrI7I1XrJwd4eN7dX7B2O6fX7aErLzfUbDF2jEVuS\nKmS43+Pi3YY/+N1/RxL57HYber0+x6enbFYhh51zHF0iSj2WK48/+sP/yOt/+lsmxzbv3r8jr1oE\n2WATzRkNp5RlSafbpUpyvNUat9cjTBP2+/soRYNpCrRCxnq1omlLzk6e0JYFVR6QZw1Of8Th/VMu\nry84f/wxm3CLJBmIisLAdpErgU8++5j3769w+n2G0yltlXI5v0CTTUzRJk5iwiQAoaJNYhy3SxjW\nnOwfEXgbHt5/xHK5hLZEEGoWG5+PPnrEVz/7K6a9Hn/9p6t/XZpAmuaUZYogFKw3t3j+HEmWWC1X\n5IXMOvKY+QviKkRrCzRVZhutQS3wwh3r3Yx+12Q0OGR6eI/+wUcMDk+581akGby6/jlL7yvevPln\nbm/ekFcFm/UG1zRo0pyuOWDUPSL0SupQY2AcotYOqtDBcSbczec0dYmpmJRJSs+QeTAecH56D1vr\n4FoWI7OPUVb83vd/gmONaSUVx+2RZBF1IWCpFsEqYG84wfe2KIKMaeh03S6Xby9I4xhdHeBafapS\nZDFb0ukMEESNJC0QWhFNNzE0DVvTqJOUSb+Hv94hSxZZBB17TDDPMQ2TtAxQZIm8ijEdE7NvoDop\nt/NXFEVC0Ra8X17y+t1zSjGjEBMKIWOxXRAufcadIYoioNsqjdCS56Bofb76+jllmSKWDboiMRkN\nUQ2F+c3XyFVNmSVsVld09T5yJeBoGo5p45oqVdyyP7zH2zdveP3mgp2X8tkX/4YwbqEa8Jf/8znv\nL+cMO3u8v7igs98ntQW21Yb73zlHmMpcLZds0oiw2TAa9SjqjCfPHpPlAVkeEIYxnc6IKIpw+zpZ\nXZHEKf/L7/+Q+e1bFK3m8PAQ29DJspCT41PqakPblBxNT/nBpz/m+S//CcVs+NWLX9G2oBsaQRQw\nm0XcLG6R9Ja3795xevqInrXPsDPAVGWyXcjdYo6gtqSlz2DoItUSmbdgdvEa0zHZhB55E/HV+1+R\n6yJRlaEpKh3b4nc/+/f4ixS5Z2K4Qw5OjpHlitXmhigMGI8PsKwu/dEUtzNEaAV8z6OoWwxR5ur5\nCzQkpLYhT0L2h/vEQYWQw+98+h3W7y+5f/8estX7jVj81kjgdrFmcrzHl6//ET9c0rdEvJsLHL2P\noXYQZRNN0diGO4SmRTEKWqVi62dIWBhGD1UwUEQdQZaJ4jlb7yWKDKZkEsYlqeDiVR1uty2j4TGK\non1ojBE1Qi+gI7vcG5/iihZiLHFgHaM0FtPxIYPhPlfzG0xLQStX7FsaZVyT+TvG1pCe0sFuDL54\n8D1ev/4ZReLh6D38TcDhcA+lkijjEllQ0RUbzVAoywxFUjgcHjO0e/T1PnUasVyuGHUmUEoMRJeO\n4DByJ3SMCY7SI/AiaAUkWeFu9YbptMf9g3PO9p/g0GfoThBaFanVKRoQTR0/ith4t7x+/SsEsSCI\nPQzLQZR0vCihEQSGeyOW6xl+uCbPYgzNwNUHVEHD0Bzy6PRjiiDDUGQsEY6Hh1QbBSUymAynDFyX\nIlgzsvrsdQ8oi5rl+paqScniHYvbOd7K4zuffQdJaFBUgdP7p3z95tekYc6Xf3fLcM/m+N4D0rJB\nLBSulxfUeUKY1Hz99i1RnSBZh/z6aw/J6FLWKWVZsl2vkai4vb3m8OiA8cGUhgpLlri/PyZY+qxm\nM3S5pq0zVusZdsdC12p24TUPPjrA0jRIRZJ4h901CasaRR/y4ME9vM0a3TbZPzj6cLa+3tC0DZud\nR2c6JC1SdNnAtDS65oDLV+9RxJbLu9foto7veYRBBE2JoFS0Us3W36EbJkmeYVomfdMhiLb8+Cc/\nwbJ6zC5vGHdHJH5CEaUE24CHRw9xVZeqqDANk6Zs6Xf6JGnAjb/i4fe+YLHdocoG0W5Lmkb0XZeu\n6bCdL3l4do/1ckeeFb8Ri98aCTz7+If8+sVb+r0Buqoi1iJHgwOkBMSqxnH6iJKO0Er46xRFUVku\nl2RJQxGXpHGEIhS0Zcv8esXVm0u2Gx9T7XI4nKLVkGyTD4WgaU5NRS3WjPpD+p0h49EEXdbRMNAl\ng5EzxhZ7jHoTsjBBakVkw+XNzUsOjo9oa5Np/wipVUnjFNuxaagJ05SsjJEVAVPXsBQNCtjr7zOw\nuvQdF9dxUVqTcXfCyeSMOikQWuhbE/yNj9PpUUUFmmZiShJdw6XNKq7eXUNZsDfep9MdMp/N2Owy\nRFnk57/4a2Z3LxDqENv+0MEopC11kxKUC8J8gaRK3+y1ZUI/5OXzV7RIuB2Hre+zC1KKgm++B7ju\nkNOjcxRRxVBUhFLA0BX29gZcvnmD73s8PntGsatQMckygduLO8I7n25RQbkky2SyBKJdTscZ0ev1\nif01Z3tDuqpCXUSU5Y5ar/mv/8d/Yu/JMZoBVr/D5fWG1tXJIgVb6PFkcg8xFbH1Hq4z5erKQ3Ni\nGjnCtg2apiRYB3z96xdc3tyR1ODFBaIsc3x2iJeuiRufLPOwHYnZ7IY0TTA6MlGbImkCe9MxRVUg\nCApxWqNqBu/fvCXPa3ZZSrfv8Pr5K4osYzAZs/CX9Ho2hmrQkXXKJObti1ccTw/YrFY0Tc2wP+Cr\nV2/IJAPF3MN0hoiahqJomIrJz//2H5gMp/g7n//+V/+NmpDri59Bu6Ulwffm+FHAm9sbXr+7RNIN\nLm/e8ebNG8zugNc3d8y2AR999gmVUCIocHs3o21FFt6c2fyW5WbDcrPiL/7ur3AHffwg+o1Y/NY0\ngX/3n59wcfcGoRXI85rN2kMsRfYPj1iub+l0XdpvGncHHY3tYo2uaqiaSyNU2K5Cr+fSBCLRKsJQ\nBRpJ5rB/zOzyko47QhZ06rJgPBphGDaO2aUtauRGomPYGKqNJsqIjYghqQytLpImU8QhJ0enmEqX\nLMmZdu5TCy3vL18QJxt6/S5+4n0TlppTVxJlWdAWObog4TgOS3+NqNSEoYfjWIitgC5LXLx6gaZ+\nSABWHY1GtOiM+jS1SFlX6KJMWaZkbUW/O0CRJDTJQJUUsiyjakrGkz02/pY0CynzBLfTxdBkOq5D\nkoZc3r7FchWq8kNxqakb1FVBpzekKUT2BiN0VSTLY0zNoOfsYRgG85lPv9Ml2NxgSiY9d5+Fd0te\nxRwfHZFnHyzJD84f8ebyPfPlEqlpqKIcIQow9m1Uy6WqGga9AR3LxTZ0VAWCZMXtasHZ/TN0S8A2\nDJarK/Yn+4ThhsHIwO0pTA7H2GKHy3/+ElFVKSsRmuzDebmhEWYhiAazzYzJUZdwsUWqJXrTfTpO\nn93GZ9gdcH15hSKp6KpOXTXkdUt3OsYLI7I2oaxhOOhRCgXz7Yb+eIre7XK7XUGZMz3eZxWFpHHC\nLk6wbAXT7OAYJnmc4+12JOGOumq4P94jzncohka0q1AaEaGGOBEZDoYsbuekUczE7lHGGf/h9/4j\nv37+K8I6oT/o0dUL/NUCWbZpgSiIOH36jOMHJzRiyi4O0C2D03vfbFtUk3sHD/jZ//wbsqyhaVS6\nrs3zV79mm2zJK5Fnn3zEi/df0hn0KeuGMIn58n9s/3VpAt1hj5ODe7jWhAeHH/Hs0Q85OXmCgMRw\nMqHMc9q8QhJFTEMgTn1USef86Wes/R3IAorc4f3bC6psR1lGGJJOsPU5OzrjdP8JD04+43D/KZbd\nh0ZGqEQM2aKtQNNskiggTWKKLCbeeuR5SLScUecZZZDSUVVO+8fsdhui4I5K8FH1lqV3TZTvCFMf\nw7ZRVY2KnLjaIaotaZXQCC07b4tt2dzd3LBc3+D5txiOCkKO45gkTcWzp89YLDdkWYilacRJTFU1\nyK1MmefQNAhVScfUsAyNR+f32XpLBtMxdSUyHp3Rdw8QMXn/5pKe2eHjJ98h3LWoUg/bPOD9u0s2\nmw1yK6OKNXWVoWkyQtlg6SaHe3tsNwEH+/vf1GlVXM8vUeQWRVEwbQfDHVCUUDYlM+8apUmZra6R\nOwZtT+GXzxdEhYuiKWgqaFpNml7hbRe4toti9nn66ad4TU2wixFVlelknzhNsCwDbzXH6OYIgYc3\nf83Z/X2saYfj83POH57g2AatUiPh4nQG1IpELZS0tJR5y9QeoBUyZqXz9qt3nE+fYikDwmVOkQk8\nOPuEzWXGg/0H2MKIYXePWpO4mi1oNYGXF2+YrW959uQxq2SGYrd0bIOTo3v8+Ec/oKpq4niHICjM\ngw1O32ZwtI8z6hEHAdtlSJHIGIpFndekVcX9vSG7uztOxgO6poMiKyhI/PT//h+8eX/N/vQIUa4o\nKolkLlAVMprWJalbkiDlL/78z2kSn2G3w27n84+/+AcsVWevN4Y4Z2gfcLj/CEqB1WqFoBjYdo/J\nwZRt5CFpKpIhMfc9WvH/RdDo/1fvy3c/Jwg8KEoOexO0WieLc5omw9RkijwjiSOSTcRyc0dv7OIY\nQ5rG4eTeIY7V50+WepYAACAASURBVObymsPjAzRTwbRNRsMhSZ7y/voKbzfH33lIgoyuatR5glCB\nLhn0uuMP6nWe4Kceu8InqnZE+Ya8DNEUiTje4G9n3Hlv2CTXLP05ttNHUlySrKYsa+pKxDQMun2T\ntPRZ5wsukxm7JiSvM0xLx1utOdg7BLHh9dU7Sqnl1eWMVhbJkpwouME1VFQRbF2n1+0x7I3Y6zj0\nZAGLHE2MKaodbZuiyjWWbhBstvzbH/82Sb6hlkKMrsPA3SP0QrpGj45uIlQCRwdP6Y2OcHs9FFEh\nTXc0bUIQ+LRiQluJ/OrLv0ekRRJL0iykUmX8JuDOv6TMd6iigR/u2DubEJLy8v0lbS3z9MF9jk8m\nPPjiMQ9/+Bm25JDvClTJpC4bBEnBtESub99SBAVVlnJ78SVFmiHWBVQFbb1FFhQEZMKoYLGeM5y6\nCKZAUZfIcsDV9Zd0OgYHg2PCYIWlSAh5SRbWfPr9H3/YgTcJRZajGiZt05BVGYKsofY6JG3Kyxcv\nePjglJvrS7oDC0FLuL56x/G9M4SixrVNTEklXO0w1D7X15ecTk7pmyZ//1e/QBdV4uUWS1JBzvDW\nN9RVidEbIA5dzMGQqhI4GN/j7T9HHE3OMJwpeVggGzbvv77E7Y7w0oi9+8ec3TuiCAuKHGYLH8Xs\n0NAwW83YPzumrUu+ePZd9ruH9GSdgWLy6aNn1EVBFsc4vSmdgwPODg8YWQ6WpjPojsgLkU8/f8bb\ni7eYVp9WkGlbkcne0W/E4rfnE8gLpt0xoiCQFAGVFHATvmO2vWY1n6OKAsUuY70IiDYFlmzx8YNP\nmL39ir4yoQlEDFmm13PQLJm2aVgtF3S7XVoNosIjybbomkQWpYw7BwycA4RSps4/iF2CJBFVJX4R\nE1YRbxeXJGVGlCQk8ZaqDJBEmTAMkUWZJheQJRVqBaV2kBuFuqzY+jtUzcGx99GtHmEW44Ur5t6M\nom346vU7yqSl43ZxrAEHD5+x2sVkWUZTlczmdxiWhttxcLsORRmx3cyRJYkyA1qByA84Pjomimq8\nbYCit6z9S8omZhUFvLl6idMVODs7Z3Z3idIaCLXIV//8d3Q1m5PRA8a9fcSmJU93zOZXFLXGsDfE\nkBz2RnvkUczx4TGOZrM/PqCuJGx7wtmDU6o2+XBS2zFBqunsTYi3KW9/9jXZassmCVDLlGB2SxGF\nhFGKHydEaUCY+/Rcm+tXd3x8NGXYt1Eai7IIyIqARsgxNAXXHrLzc2RZQWp1JuMxfjInzTxUqUYt\nKrRa/fDXzQrWm4ib5S276IZKWdIbyzx+8pjpwQl2v8/ecJ94V5KmEs+enJMXd/RGInfzN9zN36M4\nEGYFsiFg9wWW6xv8wOfe/ac0ucxs8ZqsCvnJH/42Rd2SJyWr2YphZ0SraDSqwuzuFnGvh74/YHh8\nwNHJE/7LH/1vaLWEWlXomsYuDvjRFz9g2ulzMD2kaVtUTaWpK3RFp2wEhoeHaJaOLgnIeYaRp9yb\nDqnyipW/xehoLNa3VE2OrEBZlXQsE1kEf+szGu/R0Tt4d1v+/C9+iun2kDWdIAhItwlV9C9H/8O3\nSAJjtw95gbe9YetdUpZrpvt7GNYYQXRI2pbhvUNGR6f0O094dPrb+IHPsN9l0h1yONmnLDI8b4FI\nTb/fY9DvUaYFcRmx9pfIWsPWm+PaNpZhkQc5tu6gyypVUdBUBUVTYrouZrfLq9trFMum35uy3mxY\nrJakSUaWVaRZQSM0GJaDoiocHIzZejdsN3doyoeKr0F3jFiI+CsPgZq6KTm+f4ZuOByffIJtHNI0\nFtbwkLpRmU5GLFYJmmzRtcZQyyRhxWh0QqtZSFaHg3uPqVFIooTBYMBoNGEyGWHqOn/z13/DaLCP\nZtvkRYGhamRJwLB3xKR7zPHkEY8ePsXz1oTBjml/RFvktFWG3bVwel1CL8HRdSbDEcvbOW1Zs0tL\nDKND6Cfkacbf/vSvCSOfxeqWq+tLOr0+haTQqBbbTCeKVIa9DrtoTcdQERqBqlaIU41WcEFRqdqQ\n8/sPWb9LqPKI1WyFXFn0HBuBmuvrOW9eXdI2ImWWkeY7FBGiVUYpdNlGIUvvHbKiYutdPnr4Eb3O\ngLZtWe9W7MIVVxcv2HorJnuHtMgojcSxPeG//uh/5/LFnLcX/8xme8Pjx48wtD7+tmC7uyBrQnxv\nxoOH99B0yJIt9+89ZW/8hPX6hp5j84Mf/ojx8QkYFo1u0bYC1CUHZ0fs/A+RYF3X4ubqBY7Uo2MY\ntFWNLKtYtk2l64RBws3zCzq6TRKnnD44h1ZCVnT2zk4pxJo4Cxg4JkXt8X7xFa3dssl3bLIQsWOw\no+Am3pDqO95dviTe5nz/O99j2N9jb3LGdlfy5NlnTA8O6Y+mrOZbTMPEi7a/EYvfmjD4O//lmMXd\nFUf3PmK9ndNWEoPuGMfeR9Itlt4VR84+XatHp+ewWq+Is4gojmnlmloqKOqGbbAlT1LassFUDKoW\nDN2mLnNc00WRVZRGo05TVrPnaLrIZrdhF+0I4jWy0KDJCnkWMRhOmRw/Zpe1JFFBHK7QZIWTgxNA\nopUgTSqKsiKpYpqmQmxq0tj7cPorqIRpgKyYDDoTDMsiiWuSKEVoBbK2QtSgqRNkWUCUTTq9LnWR\n0tYSXatD3bREcYpruKRJgqRoqJrCxvdRFZUwS4iTFV1nwJPzRyRbH0cWOeh06douy9ma8WDCerum\nalMsS+f25jWCEjOfvaM/6LGIQ7K6wVJV0iSAukFRbJ6ef4ev3r/g9NEZNwuPcXePNANRbdnu1nz0\n5CNKoWY0PWG22JCHN1j9LrouUVc5iqYi6jJmzyETGhpNIC4TEAVqUfigScgiMiNG0x5pnZO3EXd3\nazRDxtZdqjxj6+8Y9Ya8/OkL0l2BY30ofDWUKZrc40eff06wWbL1tgxdgySu6fcHuHYXTVJwUMmz\nO5pmxLCnMlu/5G7+munklKYRaaKKSa+HojSECdRNl1IukaSWe2fn3NxdoRg1a2/BdLzHYrmkzmqe\nnj1mvVzQNbuM+xOoW9JdSF4WHO/t8/zVa86m95hfX6O6Dev1Fb2JS1akOJaLXMPx4SnbKGQ8mfDi\n1UtUVaCuc3bBHVdX7+l3HYJgTSPJXN0uGA736A5cPH+L7VrUTU5RRsS7As2Y0jYFV6uvuNy8Zp2X\nfO9Hn/FPX/6cvekRF69fIikVo0kfRVL5xz+7/dclDKZRxF7vhDxoECqRtshospam2HK4N8Yy+5hW\nB0vvkKUNgqJSUoKYIwqw28VEUYoi69hOl1YQyeuaIkroql2EpGZ7c4EhScTZjCRdYloySbpAEItv\nLq1UBv0hQbJB0HIatSbMMibTY/7N938PUbTZP9gjKwoMyyAMCoRWYbp/SBiG5HmBaepEu5AyDQn9\nGVQFrmFgaRZllSJKMt//wRe4nSH9/gRBFLm4eosgCTRAkSTYhoIuSHg7H1XqoWsGZVPT704wDYtW\nUOlP97lZbTAVBaVxkVuN+fU1yS5ElGxqyWCXV4imRlSEVG1BKeS8ffc1tq1QCBJSp8Pl+g5RFOgY\nFsv5grwq0Lo2dqdLnKT0hha/+vWX2K5NWaccDg9RGpHD8R7rrUeWpgy7HSTB53j/kGG/IA12tG2G\nn4cY+wOWSUArQuL7pPGOOPCJ/QBRU4jqloV3AZJEK1vErUguFERVhGg1mL0OaS2zDjPOnp1zdNpH\nVTsorYhr2LiqwMWL5+TbFFN22cwSnMaimGXE84i2iilrj0Zc0XUlXrz6GlkqODm5hyTUjNUhvc6U\neOsT+1ukOqWuY8pKwgt9Xl79LZ9+/oyNv2S93ZDmLavtglpKeX35KyRDYhuGqJpG09Tc3d3yycNP\n8DcR5ycPqcUGc9AiGCrudIjZsTBVBT9Z09YFy/Udmi6TxxEn4xG6WNOQkEoxD56dkuQRcVYzGpxz\ncvAMsRUp8oqOa7PZBsxXdxRZRF7l/PiL/5UvPvu3bLOcSh8gagX/1//5pzzbP8dtbCIvRJNVHE2D\nKPuNWPzWSEDSFNqmpKl90l3FF5/9Lk2T0zQpF6+/YjoYkVcNkmqQVRXuoEuYh0iKSJJWlDn03Qmi\noNEgEucpQbSDtqbKIqRWxLJcfH/F7d0VUbZjF6UEUY5tD0iDhLbKycuM7c7jdnHBeOpiGfCPf/fn\nlOWW/ckBuqkRxj4de8rRwR6iJKNpBlVVMuwP8PyMhx//mNLokAkybnfAzt+SFGuKwsPQZO4uN5we\nHdEUFU0hMRk/RJcdyiRBbiXKsGW12iHXLY7Z+yBwyTZ5EZOm+YegC9mh4w7w/B22apNFIU3VcP7s\nU5JaohBtFkHOKsqZbz381EO1NARNRTNNwjwnrGuGhyfEYYIiCOiyQlM3yIpCvNugKzJC1XA46UOZ\nINUFebOk3zeQZYE8z9AkiTdvXmKoDrQKTaPQ7boYtoFmq8RJQpGlSHXJQa+LmtdkXogsiSBUOEOb\n3pHFrsw4GT0gv8pRKxOpkj+EnEoSx2dnnNx7jNsboEo6tmIx6vWI6xu8ZM0m3lG0EvvjE0bOiK5i\n/D/MvcmvJFl65fezeTbz2f2952+IOSIj56xKFtnF7uZQRLcEQd1LrmrPf4S10H9AQDstCGhBElpQ\nbKE5VpNMVuUcc8SbB5/d3G2eexEEIaGZggBCyP52BphdwBbn4N77fecc0qihOx4hOzXbZEkuFSy2\nf8fto12qyiTNE6qy4eRyQhAUaI7HalZhKBIqK96/t0cdRFiNQTyfcdQf8vjWHe4M7tA32nSsNpbX\nZulvefjoIWcnpwiNyHj/kIvzc2RVRhUl8rKm0+1xdn6G1x4SxQK2u0vL9NBdC7fbxnZ0smxDnYYk\nkc9g6JGmW64mlxSqgqCZFEWIIMPVYo7r9lmuU3rWDkos0pF63GrfZqSc8Td/+b9QKz79UQ+javho\nvINXVOTBkh//2m/QH4xZLjbs/GNY0D9X3xsJzLcb/HyLgIbrDfjmxXPyWkAVTRzDwZYVdEdkm8/w\nXIPlYkpVNQRhiG3apGnGdDLDX2yIswwBkaaChpL1xidMCmarBVfX1xiWiyS5HNx+TIrIydU5lRAi\nVhKG7rGzM6IoKhbXl/zVX/4pdkshqbaImkFZ5Yz2drHdHq7bppEF/HDLoD/C8zq8c/c9NmFMmqcY\nrkRJitfr0OsdstN+F7XWEMqK89NXuJbBu+98SL/t4pgqHcvAM0363R263V0cs0eRp4zH96lKlbwA\nBB1NsdEakXC1wnMHxFmAJKa0PJfVZonSlKiKSJbGb70AzR6226OoBBZBgp/JFIWOabTY+AG3Dm6x\nWfh4jkNdVESbJcvFGevNa8oypM4j1DSkqVM20ZIw2yLpGooMbcNi0GkRBQmqZ6IbHebLBdswpS4F\n8jTDdmyuJ5csl0vCNMF2LQRZICtiiiIhSVJcz+Hs5IL1zYwoDtC0FrrQYtQ6RK5EgtWUOL4ijlcU\nmw1JniDqBrUksN0mxEnMm29POD55w8VkglRXXExPSDKfbTQjihwyKWYd+wRxgOX0KLH4tU9/g7Mn\nz7l8dsKDB/dRJI1+x2R6+QpDEzFEl6ubG+K8pJFqkmzF0p9R1iVVLTDou1xePMXpmLw5fUlZZWR1\nwMH+kG3kEyT+23Qgq0KsRfb2dhn2RogyrKM11+tLgmROWm9QOhrT7RXfvHnO/dsfkG0TJEPAtTTm\nywW7ewfczKZ8/sVnyFpNVcbseUPGowe0OjL/+1//r/xyec3u/Q8YaRpikrF/cIggNQiGyPniFavV\nJXfffYxifDfUvzcS0GSNWpSxXI/bj95nfHAbU5KxFItuq0tdVZyfnZCla7bbFZZhYusmrt0hzzbY\nqky31WZnNKIsS+IkR9Ms+t0jZMmkad7ehnotF1EUiOOUy+spiApHt/f56snnDHZ7NEVNk1k49i5J\n0jDa2cN2HXw/YBsHVKKBqHrUNPirBYf7eyiiQBymDIcHTCczXEvE81TW8ymObqPhUMYKZSYjKyai\nLGAZJrpiUhclaRCwnK2QGoHV4pqXT59w//ZtijxHkoHaoEhKOtaQvfZ9OlYLuQTPlsmDFYfjHdbB\nmkkwYZMsWGcr/vN//j9xXZu6TklzkNQWlVihezaVpDI+vEPLbHNzPGWziVBVg6ZS6HRdEEC3LBbr\nOQgKa3+FIBegZsy314iqhqLJpHGCqjrMpzMMpUITRcRS4vDwDlEQ0dQ1WVFQliWO5xEnEb1Oi07L\nZtjvMRjsszc4JJdkovkax9EZ3t7B6pjIgoXbGWCZNi3V4skvvubrr56QNzlJU6FbBmJV4ZoW09k1\n63WIoTbsHz1CsRx03aQJa/KJRhmYWImJLpp43QF3bj/AFQ3aGPz8z/+csdvD07qYfZnp+oqikanq\nCkO3ufPgQ5JUYb4KyCn49sVXdPt90iRFRWZycUW83hCHPt2OA4KIbXks5gtcx8DUJCyvIUsrur0O\ncRSx8K+5WZyyTWdsoymXN2cEUUBebcmlDNttozcOo+EOi5MTYlZUWszF5ITxeI9bBzvs2wNIa+6+\n8z7hesH1esqirjkc3yeZbJFrmU6/w7beMo0XXAWnNHJCy+nw5osvubq4/k4sfm8kcDg4oO206OgW\n5WZJEyUMW10MTcJUVaRa5Gh0izqtUUSZNAwxJRGhLEhiH6HO0Q0LWVHY+gGHu7fp2COqUuBq8prb\ntw9QJBsqDc9oY5smrZ5HmAdczU84enCLIAuJgpQ7+3fZG9zC0HRMVYWqRJJUDNMizTK8Vo+Lqwtc\nr810MsFQddq2x+p6ymi4g7+aMTk/oWVbqHKNrgm0XIPx/j40DbIIcbLFMDWicEO0SXE0G6mRMDWH\n4XDA6etvUMuA1flTdl2XtiuwWs8pq4KNv2KbrBjvjkizOV99+w90u7uoWosXL69QVJcPP/yEly9e\nIwgigpgRxFOKssRwbRRbpcxD8mDDfn8HQ7bx3D4XFzdsg4A4jbm4mRAWGU0j4Zm7ZKFAU6kMhwck\nVcibq1cIkshmuyHPc5I4RDcMZFkmilL6ox0qQaChJo5jbMvGcC0s06UUanb2d5nOJvjLAI0+3VaX\noJqieRajwT5tr00YhZwcn6Agsjvs47keAhp22yNKYmzXJYgjPvz4Yw4O9pgvrnnvnY8wVY1212XU\n6rM3vM2HD/8VqzcznMJgennKfHZGmvqsgxtaA4O777+LZPe4uHzJcLfHePQAyxjQ6XZ48uUXfHLn\nA9qCjlw02K5KXIZcT2e0XI9hr8fOsI+ltnl09xN0WePug/vESUJZlgTRhqyq6LQPSaOEF6+eEqQB\naVxgWC283oBlUCLrHZLUYLku6XgdVqsbTNHkoLNPlmQEaQRiztHODsFiyWd//Ut6/R0+e/aEtRAw\nnV7RrCOMOKdl2sRxiiorNE1BLGWojk1VGbTUIwbGmEfvvP+dWPzeSMBCpuO2UAyNlALXNqmyBJqa\nLN2SRktsrSIJA1quzWo2o85L0nhNltaIoklSJHz+5S9xbY10s6JtOyTllt7AJa8Sur1DbH1Ex9mh\nrgSSLMTp2OR1SZpJdDr7tDt7SI1BW28hFQm6kFFufUZuD6WSMQQNf7Uizpdczc9R5JJgdUW0nFCE\nK3zfR2gk7hzeZX/8Doulj7+dsA4vmExPKbKQdLOlajLWmxnQMOgeoAg6ZVEzm235zV//n4i2MaII\npq0xmV3g9loopskqOSYs1+RawnoTE1Yioq5yc3mFXFa8d/8jZpdTIGXvYERdylR5RJ1XtNwhaZKx\n3S4IVhPWy2v2RkPKCGyly9HBHQShh6i5dAZ94qIkCmNGnX0e3v6IOlHZLmKWqxLJ6NId7GGZDqrm\n4fWH/P3nf0WQrciJaZQGxVSIs5iHjx69NUtFpmW0kSWJ169f4S9vEJuMf/fhj9kuNiSbkDt7D5ES\nmSoPCJZnRPEpp/PPsXoN7Z5Bx3NR5Iq8rvHTFMnSePb0lNXqitawz+TVMVKVskrnGLpMsprgT1+j\ndGryQkdXFZo6pBEbgjCga9lMwiVRMUPMdIpA4PTVKcPuEKoaz3M4Pv2arX9DkTboOJiSjSCVvDj7\nBaJUocoahiJSJiEH3X00QYe8ps4yvJZFJVjsjo64ujzGslzCOOHO0T0kUcRrd9nZGbPyN0yWF3i2\nzfX5CWZXIsqWaB0PVTIYjW8zW06ZLK5oFJWjdx5TVTVtVcCPJ7gtkceP72C6Jtlmjm0Z1LVII8j0\nR3sMO7vYuo07dhm9c5uri+fficXvrUX4P/6HR8ShTyXCfLNCFQWqumS+nRKXWySpoapqFFklTEIE\nBLI4R9ZMZNVmvHPEcjnHNFSqNMYwZAShQNFkup0daAxkSSfOAuIsJk5KnLZHkvsIlYxp2ORxzU7v\nENdskSQxohCThBtauk1dVOwOetSNwGh0QJZFRImPLul0Wj3KIsbQVG7deZeiyFkv12QZNAis4xWi\npVCmIrVQ0JCCoWN3e8R5hWba5PVbIdBwd49gm7LezJFlGVGxEOSG56+eY9niW8VcuEIUIC1qsrIm\nTzLERiIKt5iGQ7vTR5MVKGuCYI5lKEiSyGK5IksjsvhtbJdluYTbhCiLMQwdR7XZHR+ymJ6hmhKu\n28HQXFaLJYqiY1oaG3/Fg9v3KTcFOiJVnlOrFcvlnE5nh7KssAyDKAzIy4SGlDJOoajp2Db39x+y\nXKzIipqD0QHbxYZwvUKsGzTFYjK/QZQkwiAijwsUyaBobARBRkBk5Qf0R/sMhwNczePu/mNGzgB/\ntWawO+Tq7Ix7Dw7IhJImrHn59TFZXrBZZbR6Dtt0S1HXjNo9qrIhzEtqsUAUJSzdwDJMNMXk7PwE\nQag4vznFMEWMZsje3gOWmyllIxElKbppY5k6i8WMefAMBZXdwQ6Xr15xtLuPbbjMJxG3Du6zml7j\nmSbPXjzn9u07HJ8/QRTeCuLSdYgiS1zNbrBchfl8gS7a5HFJLTSYps1iscZ2u0R5hm31GXRM0nBC\nlvpMF9dogkBTCKiaQ1nXGKbBy8s3KC2DRqiZzSe0Wh1m02vC2Rm6XPOX/8f0n20R/r8Gkv7/Wf5i\njqDVxFlEUcSoRp8syimFiqpIqBqItwndbpdwE9Dv77BdxVimx2Yd4q8jWs5bB1/bPYBaYr6Y4LYF\nvOE+cVwiIBJGNYZj0h/tM/enFEWJKlp0Wz08a0jV/KOlWR5TZTJNZeHHIUIacrN4w7Az5vL4BaJS\ncHVzjjW2CYmpahnFMDh99YIwjtEli0FnnyCKKQSJtEyxTZ28KlitlhzsjojrEtmxiLKQQg8wRYXT\n629wtSG74ztoYk6ayZzPL2h3ZF6/eo6sS9x/8C5ZmVGkFXWYsLd7xNOvv2K8u0OVVyhqQYXAsD9k\nuZ7ir33COKIRVA5v3UFo9cnyhq7bxpIUyjIhjbYURcr12QRRroiTEFmsMTWPnfEulA3rjY8jGriV\nSaa1EKqMtIzJqpTRaAexMimEhGC9QFUl4m2K09botloEs4DI3/B08S2abhImIbUNVZHghxV+8PYs\n7LW6rFZziqJAbemYqsew3WIym+F0bAQxZ+B6HL/+nAf3H7G9mXBx8oa98RBBNhntlsyW19idATcn\nM26P7xMEMZm/Zj1fU1sGjnOLPFUwzR6rySV21yXKI5oyISsLilqglgV0vYWhlFSNRiOoPH/1hN3x\nmGWwpNcfMJtPqauMzXaObOhswiWvn31DuQl5PV9Sywa3bt0nD2puje/x+vUv+fUf/ZBpFGF3WuiG\nxux4ykcPPuB8MaE7OiAtfTx9yMM7H/Dmmy8YtvvEaY1iq5xdX7NzdAs1U0iqNX42I68F7PYI1XBo\naoEwit6OkScrUqEgibdoVFS1yMXlG7q2gyS+teb7rvrejgOdlodrdUnjCF2EPEvQTAWKCl2xERuN\njttFrSUUJOIoYTjoU6YJQ9ej5dhsEp/uYEAjGgz39zBcgyTO2PhLlotzJpMTmioj9kPSPERRZLru\nkHFnh+xmzeVXT2jKjKvpa1bXZxSblH5/n+7wPkmpsw595vMZhmEQhgm9zgC35dHp9Gl3d7mZLJGV\nHFUTEEsBA4F+e0CwWiKVGZ2Ox+V2RvfwDoblkaQFsqqyCUPiqqIRFFpe/639WAFlLNDv7nKw94ga\nj48//U1kq8Xn33yGqeySJypSJWPILq7T5d33fohhOIx6I4QGrm8m6LbHbB2h6W12RnskccTVzSWz\n6QUvXn/NVy9/wdnNKyarS1bBhLV/TY2A44xQJJntZsX51TnbOCZKa/b37tOUIpfXrxENhUazURUP\nU7FwNB1TNNgf3UHMDEb2GLWxSOIaU+3Q6u+QEhMnGwadAdE2AEliuvbRLR1RKnj96gVNWSIBiqDS\nclq03R0URSfNYx6//z6v3xxjtTVmmw1B6WMNHbxWF8fQENQG2bC5ub6kqWvqRuLe+Ii7t47YJAqa\n5iDmIl5rwLNnzzAkg6dfHRMkJX4V8OLcR7HadAe3eXm2Qs5hMDhgI+TETc7p+TFNVZGFMYNul7Ks\n8LwuSVgRBTBbbQmLhm0aM19f8+Kbz/Aci0ayMe0OSbwlKzfQiFQZtGyXv/3Lv0EtG4xSwBEdPMPj\n+vIJu0MPqZFwzTZllvP+o8fIpyHb1RJRKkFu0A0RIYbjZzN0zXl772PrTG4mfPLoV7jbv0/HGqEK\nyttMAgGslk0qld+Jxe+NBBYbnyhLKcqcrCiwTJPtcoGl6dSlyHITEGQxN4spURKxmM+5uZmyXi0x\nTYu6rqmLGKFKMdWCq+kzymbJcLhLWUKaZ8iKjGFamLaBKIjIkkSTF1iChiYrOK0WmvLWoVWUFDRZ\no6or0jIHCfJaIGreagu2aUzba1NVFXmeUdcilu2gmC5uq0e33+bs5DnT+QtG3Q4OFpKkMRo+oigb\nkrik2+mSJlvG+4co6og3ry4x5DY9b5e9nUMUyWC9mXJ2dspgeEDa5HQGtzncf0wSL8nLmFF3QLJN\n+PDxr/DkuBbngAAAIABJREFUyTOaJidKtohijWMbGHLDqNPG1DTqvKTjtOnZQ0adHdrtAYbXxrLb\n5EVDmjcMBnuIskEcpeiqQxbnDLw2nmUz6vVotVyOnzzn9nCfMi6wFBXPcKjKhjjx2WyuCNZr7h28\nQxVDHJZcXk5AqJGFkuGgj26qbII5o909bKvDo7t3UQWR6fQGRzM42Duk3+my1x6yWd4wW6zoD/tU\nTcZqe0ahg+KOyEU4v7rCchxmmwtW2yuKqmK1iUlL8IZjWoMjrsMNrttn6PQwEo3NxQWiUDIY3KLJ\nDW4N7hGvC/Japje4zYuXJ0hpyL1dh8yQKBuJtmez1x0zPZ/iqR5qo5BtcjpWnzyu0cQKXXfIG4vh\nzj2EWsfVbNqWS5pGvDh/Qlw1DLs7yLWMVjdspgvCJMLtD6iakixYYioaQi1Q1CVxA4cP7+IHU2rA\nEEW0aMvBcI+mlAmjCLlqcWvnMR89/pgiydjrD7k5v0RuZLJ1RrSI6LUGSHnGQbuFqIqsZkvqLPtO\nLH5vJLBzsM/VbI4kKXiOx2q7pm4KHNsi3QRUecF6s6GWVGynheNYeF2L4XAPxApVk7F1iTTcEG3X\n6KKJYw45PnmDaSookgpNTRCGvHz1GsOQoS5ZL5dkWYrnuaiqTLD1CbKYytGQ2iZxkxEXGRUCoq6g\n2Sa1ILJNU2RdQpUM4iDH1ofc2f8EqbLxZ2sWK5+gjigJWCwucY0WQpqgBymuXCEKNTeLN/jbS0Qa\nxr0x9+/eRSglbL0NhUqeVoSbDbcP7lHHNcl8y+ODd9gb3iEvSwxTphFi9vZcBBKEOuRmccxydU4W\nLVlPrynzCl23aNKCtusRrHxMVcOQVTq6hYmMo7q0Wl12Dw/JANfz6A09knxLp+1gqBp5mjK9viJJ\nQnodjyzMEBsZRdCJthlpmoJQYZoqdTVHU0RUU2N3eIQkiGzDNZPZDUm+wXIMNFPk7PQlmmqAUGIa\nYIoNYgNJEGDrDqen3yIwxzRqtn5BkYn4i4CO6/Ds9ILr2Zq0rnl9fkycR6yCFWGZ0BkN2R1/yMP3\nf4U4D3CGLoalMtrWeMuKlmPz8ttvuXN0yM7+gJan8+OPP0KroIyWvHv/gLJ6zc31c7ZhzCafEEeX\nvHrxDfE2xtYcXNVFrAU0WWC7XtG1b7PZRvjxkqtlwM3NGrmSCDcxl9PXtPo6Sb7k5fFrPr7/qxi1\nRNfr0O8POTy8w2w2py5rfP8SRW1od26xjkuevHyBaojYtsnVZMa8CbhcXIJkcbTzKRa7tO0dpLzB\n0W2ERkSoRPS6QqkChGrDzenn3Lujsri6wBV6KGaXyeS7TUW+NxKYnS94eOces+spjuORVTmKo3Ny\n9gbPMum2PFotj1qQ0HSTqsxYzM7Ii5DL6Ze8ePNXVMWK+fSE3b0Omb+myRq81og3r18jCzVN0aDI\nCrfv7PHll78kDEPavT6z1Zz5Zk3elKzjKT3PYrla8OLl07cSV1HBtDwESUfRG6o6ZOjaBFcn9B2L\nvu297SLUIWVV0Nrtspav8aslpSxjDFq89l8zmT9j7FkkfowghCiqjqN2Sf0t12+eIgsgyCJey0SS\nBDRVwdY92paBoTa0Whovn3+GWGWUeUG/02UyP+XZy5+z3rzCMUoUDbIsoSpi2rZGp9PDdDwOxvtQ\n1f8Ygd6BJocmxZYVqjIniVKGuyNEXcVSLaJFzGa6RBFrlotrjl8+wWuVXM2+pO5XiC2d/YM9tuEW\ny9aRZfntFrduyPIC1Rb46NPfJA4qLLNNXeoY1oCi1tmmUKkioi6z2MyZzCes/C2D9h57B4fUUoWm\niwiqSxLBcnVNI2eoukJTy3hyD6kqsR2Rg90+tmJQRDW6ouOZHVTBYDaZcnz+GapbUoQr3MsbPrBd\nNHJm1yuW2xV1E3Izf04jZVBBlon869/4LZKtSiF3qYwuO+MhVSKySGIOH99j//ERpQ7dfp+O3uNq\n7nP/7ockWYJuDRmNH1AR8eN/+1sUkkPrcJfPT/8a2RbJq4zhTodffP6fMN0RUVbhOkNkRWRnZ8Te\n/pC8LEjTjOurC/YGB4jIVKKEKsoM3DF3PvqQVldBq3Oe/fnfYik5z7/5K27techlwKjX4t0HdxHL\nnO1sweHeARkJmyLBGtjM8yU9z2Kvf/c7sfi9kcDRzi6TszNu7R2QbgLKMEVV3k7HrVYhrtlBFQ00\nTSSMAmbzObKiMoknfDV5hU9IVITIAqRp9FagUcvoksr+3kMU2SaKZ+T5HCp4fO8RSiMTbnM000Kz\nPHJJYB5OeTN/Q2fPxei6rDdrhHpLHNwQb5cojYoiFJRpioXD+bPPWF79DcHiGeur5xhyhSQLlE2D\n3bbR3A4pAoWoIOo2yBqoCkEQQiHRV0d0jDY3F6fklU9eFyy3azRX4mbxhCyb8c2TfyCM1mRJSZzE\nfPvNF0h1RR4V7I8fIUo2UZgRBjFiI5JUb1Nu/MUSVzbo2g5BFBDHMYoqMZ1OAAjDCFlT8bwWqiTz\n8ttnOKbF1ZsTgssJpiCzWfsIgoDndQmjEM2zkA2B2WrCV1/+kr3xLi9ePSPNQsoqRVUkbNvm+OUL\nvvq7/4sPH/xr9ro77A4tDkd3kco+rtFnMd0gCDLL+QzHsBn1RqzikCBYsAwmTNMVjWbR7R7QqA7X\n8wWW1wEF5tsZD3bv4C83TK5eEwRTZF3GtFziKCTYhOwd9kEVmW6XvFlv+UUa8b89+4LjqsLs9khj\nOJ9f4w1NympBHk/IlITPX/wCP1lw9u2E2zt3+bu/eIJp9Xnv/r+iqUSGgx7Rdsvx8StifLIk4/G9\nT9jf2Wc8tBiPXH791/4HvvnqJXsHI1bZArPjUKYldVlyuZrS3T1iNtuiZzLzmwmbcMp7jz/A9+ek\ncUASJLT0Hv5kSzgLKbcZhmngqBAnN9RRiJgXfPreeyxmN3zy3vtsFhOksmE7W5AWazKhQXFbTG8W\n9M0W+bymq4wpVm/FaZZuficWvz8BUZWj6gaKrLLxNyiihlQrSMrbvD7XaVOUOWWZIEsie7sjREEg\n2Ca4VgtZUFEkE9vroikO++MjyqxGEVVubs4IwxBZ1tANmyqNycIKQ7YxFQ0klVWw5fXlawoxJ6tD\nrq4vGAw6uF6PYWdEv7cDhcBmteDy7IxGComslLUWcJ2uOZseEyQx44N9bjav2L01xm3tUqYFmqDi\nmi5RMmG6PsftKTSCir+8Ity+4fz5Zxzs7rBaRGi6R9GUnE/OQCwwDIteZ4cyF9GVEZ41wNR1LN1A\nqCTyuEYUFIoqhbKh7ThESUyUJgiiAFVFtAlQNIWiyun3Rwx7HSRFQbcMyqIkz3JarkORF6gCyKqK\n23WRHZOMCllTaYQSVdRYX21Yni057I3ZBj7ffP1LTF1lsZhgOwarzYI4S0ljH52SaHtBmr4lsDCa\nM+yOkMUa191BlDQERUQVNbK8xmsNsKw2VWmw2BbERcDJzQmCUJM3Jb/46gv29o/Ii4yzV2+gKNDN\nHdLaYu/RHTIlZVktmBUz3lw+42J+htpx0Edtqv0O7R89RLnl0R62UA3w0yVFvWG9nvHVt08ZHY2I\nmwTTc9A1k2dPvuWDD26TJj7h1mcTzLm8mLD2fYq6AqXCcQVOT74gXG/IswDP0VC1mscfHCHICd22\nzq7bQUgK7g4foNdQlgsODvZ4+eUvaLdFhnt9VqslcRoi1Q26pPH4zgcUmxillum7PSJ/Q5GnyCRU\nUoGgNwiayGi0h1Lr6KpHExtUiUxVyhzeOUA0RMoqJFwXNKGNIRh0WyKOYkP636GfQCpcMT4ckeUN\nd48eMWztEoeAoLL1l+RRhGYI1GUMdUSeJ6RZTb/TxjUHKGYHQdU5vThltplxOj1hEc6Y+eeYpoSk\nlGyjCFECTWgxah1w6+GntLpdluff0EQblvMLprMN7zz4Ia7bIs9Sqqbm/Po1y80VtuewDiM01yQp\nM0oRjB0XsdtHbtl8/KP/yIuTY0IzZhWuEAsJWbKoUjAaA9s5YiuELGcZrurRNjps6oiz62/o6W0e\n99/jndH7GFqLTRYg2Dts6xKjbWJanbc7kDjm4Z2PaDt3qasKsc4okoykzPALnyxac9BxGXl9BNng\nenbBJoyIy4jWgceT118hqhGLzSVZ1XB2cc7J8y9Zzy7R5ZLF9AJ/MSVIt2RlimzovLp4iaTLXF4t\nsNwBq0VAx2txa3cfMW9oygan0+Yfvv0av0rJpJKzyRWrICDNZkg1JHlKGEVE9SlpXbAz6GF7Nrv7\nByhOF800OD9/ynK7YufWbeK8QjZUilxhcn7Bg6NDXFXHlD0suUOh1DQISJqGJhksX04pRIHdW7vs\njvv0un2iICZLU3RBY2+vjelZ1GJFLVWMRjt4msVkk3Mei7iDB9SxjitLvHnxglosSKuSTz7+mJ7d\nIoimZAncu32XR/cfc/fWbR7cv0chZJRSxv7dIYpgspmv+PLr/8Raes5N+Io6yXFEG0WqyIQlvf4Q\nBYGFf839Hz5mGYeYXpdci2l39sm2bW4d7jGdfU2nJSBKOXkZY0gyUXDOclFht3bJiNnmCXvtu1y/\neoVS1/R6Q/b3xm8NWJx7eFqPKo6YHy/pd8bUAsSbCuIMV7a/E4vf27DQv/sP+2RRjihWuJaKWKZI\njcT9+z8i3qZ4rsy2iNC1hsmLN3z00ce8vjql0z3CNlukcUkp2OyPH7CNCsIoRnd0ttGaIm9ospKH\nDx+wWq8YDw/o9PYI/Q1Pv/ovyIqIbFio9pC7d95FaSDcbKjIaUSJxWJGUkZklYRk2Vgth3WwwesO\nqHINRdOpCxOrr3F2fUxtQ7bOyAqZVnuMaXWZzwOkWmGnvUNT68i6RRgsmc7PGLgWQVpzfX1MVRW4\nxgDVMHCtDopacnr8Gs9uIakgiAJ1E6Ko4Ptr3JZOHId0+x5QIsgVyXaLbdqoisnx2SlVI2BYGrru\n8eLFCxxHx9A8bM1gMLSp6xLbaiFIkOc5rfaAUf9tpv3RnQfY7gDL67N/eJezi1OuLm9oqJENgZKa\n3m6PTRKyv3+EY7TeGopKBoNWh+vLM+qyoawqGkHienJKVizY7bS5evOcg51bpHlFWWSMBj1ubs5x\nPQnHMCmikCyIUGyTk9PntC2Xz//LZxyf3mB3NSRLII5WlEXGItyQFxD4IdH2ml6ny/HrU3YGu6yW\nZ+yOwNDfxqTrak0tpczjJW31kI7VRWgtaWpwDQtbbaFrFvv7Y5brNWWVoegSu+MDou2cwUBlMT8l\nLn2kqmFo9vGMAVnydoLV6XZ5evaMvcEBmtTCtE1Wq0tkWUdUFabTFYrVJ1ymjAePWc9fU+cxiuHy\n+M5ttosAy4Qk8ZH0iCCZkVUVrmuwSTMcq8d0MqMQBG7tdohmFxR5SV1VnJx8i24aXN9M6A1c6kbE\nMduslgk7u0ckccVsOWE+veHvf77678tPQFdtZK2g5RmE2yVF4dNkW0xFQZBKysKg09pn49c4vSOW\ns4wPDz/FEqHIIxxLY8froAoy4XqFUufUQUyy2rLb6aApCpG/wNZ1zq6/5Wb2gqqu+Ojej7i9+zHb\nyEdQK+qqxF+ekKRTbt1+RCO2UW0Ly3GRJAFXNkj8mI0foSoe0GYTJbz3o3/P3z/9O/r3dnj27bfE\n24hWt0dNQZyGvPPOe+RZyDZ661loKRYNNXVd4g12sV0Hp9WhaQI8x8WULJoqYb664Ee/+tuIkkwY\nBEDKYn3F2p/T63XYrNY0ZUkYxsRVTZkrWEqH9TIiyiLu3XuIaesIosr51YRf/zf/M2s/RtVyZpNX\nSGUNAizXK5oahqMd8jwjq0MEKWd1dYq49WmSDeeXL4nTOXcfDtjZb+OHW+yWSRxtqfyY1dmMlt5F\nKd96CuZJRMvRqIoCz+rz8P6Pca0hZQNP3vySsI4RDYlVcEl/0EFTeuRoIEhcn07ZLiMevnML1ZTo\n7exitce0x7foj3uEUcr5RY6ETFZmSFZBmq64vrnG0VzEUuVXPvmE1WJOu33EqgzZ4hPXPkG5IKmW\nuJZFJd7Q3a8pRY0iicgCeOedh8xma86vbgjDBFlskGUJUaqpcpnLyylpk+PXa9bFmm28Zb1OUWUV\nGZkdp8u97iFSVoIwIQyu2dvfBwmKokGQLHpuh/1+jyo4pt4KyLLIZP6UKNogCjKL6YI8K5GlgizN\nEEWT2SwgjkyyMuPw9gH2qOT56dec+Zd4ux2+ffMV3XGXF2evWQdb0jygzEKEMKEnC2TX19hpiSGq\nDI4G34nF/08kcHR0xPvvv89HH33Ep59+CsBqteInP/kJ9+/f53d+53fwff+f3v/93/997t27x8OH\nD/mzP/uzf3ZNAYkqSUk3PnG0oahqOt0+oX9Gx2vheS4tacCjo48YDfcxbQ+v62KYLTBlDM+jiEqq\nJKfrtQGRLAg56veZTq8Ikw0nl6eIkoDptAjiAlmumW/PKYUVyHC0OyLyp6zWIabe5+rsEqG6wVIU\niiDFtVw026EWFFquQ1WkdLwWBzs/4NXJEyzLYjKJ6Dk7eK7LZvKaeHODmm+J5qc8uvUIWzEp4g3N\ndkOTNpimRdmUpNUc1ShQNJvFckIex9Q0aLpBnMREcUQUBxRVTFlEJGnINlwhSQVex6UuVcJtjdfp\nkjQCGXAzn2K1bHYODlFUAyEpacIV4SZBNUZYwyNy3eDpm1N0WyeIQsIUnO6QQtRAVljFAUGTsfDn\ntFs2lm7Rdhwur0+wR22CZMvheMyws08eFpwff816O2NerPCLEkHrMx7fQ1dsWmaHtvcQz2tjWl1k\nzearJ98gCAYnNzecb66xW30OvYeomU7bHXJxsSVchBRhjJL7WHKJqhoYuk2/VbHeBm89JUtQFAPX\ntpjOfC5Ov8GfnKGTkcULciEnriLyjc/1bAKGheWZOG4XobYR4rezG5KgcHZ6wnsfPObRw0/x2gOS\n3EBsdKLVlLvjAYgWttcjCioO9u6xznNulm8oiGh1Wrw8e4al9bCNMUkVUJQbjq/PKcuCOssZtrqo\nBezu3UZQZVq2SRzGaKLJ3J8SFxGH4w/QVIfVJqU2FYJ8i1KqfPDwMfuDI1ZznzKsOX5+hr3/kEm2\n4N7D+yQVfPD4V7G0NmrSpryRMFEYHA5p7/QIo4iD/RGmG/3LSEAQBP7iL/6CL774gs8++wyAn/3s\nZ/zkJz/h5cuX/NZv/RY/+9nPAHj69Cl/+Id/yNOnT/nTP/1Tfu/3fo+6/m8vJSzdoSxSaEpcp41u\ntvjsi79nuZmh2QplLdLpdEnDAqkREOqEcLVCExrEDIooRpRKFFVgtrpG02Rs1aRr7rC394CLmzWN\nYHJzs2K9DhCoWG9mXEdzNgQURcZmtabjehR5ia72iaKQ6c0NdVnQ7/QItmtM2+To6CHbpUWeh0wn\nU7rekPnsNVEQ4lkmpmy9jZLOK8QaTs9fEwZXnB7/nOvrV6iiQhFtaZttOs4QBYX94SG6rFEUKVmx\nYjp/zmJ9QlFkrP0rDKNCFFOurs5B1BFVC83S2aYb/GhNq9/l/oN3CdIM1VXf9sV3d1AUl81my2q1\nYjYpqUVoDYZczVagmaxilfc//m2ySsGwbZaba+yOhEBDVQp0OkM8t4soS/ibNb1eHwDTMLBVHcvw\neHMyQZBrvO4QzehR6waFpiJ5FqrXQ9Fc9od7rM5OuHswJIhkpkHJr/343zO58hElE7FSsXWX/YND\nji8vieqE5azm9Picm+sNi9MQJakxxIJahJU/R9VtLMtGEjWoZG4uFmiii264bLOK15cToKLIfBpk\n4rBCRAJEkm1EuPIxRB2xAEfX6Pc6QEWZJpiU6KWPUTdoQkPLtEnCGkOxead7gBg3kEjE4Qajfc1o\nZ5ekDPmrnz+lzLZQbIjDS0zNIQ5ryjqjEWoqqWATTzB1h4vr58ThGj+NKLQSLI9JsAZLRWv3uNm8\npBYa6qrBVFTsXpuiXvOLv/079nqH6NWQ8dGH9PZlLmZb5sIlgllTljLv3vsBdmlSrEPWScHNxZbZ\nywlKWbNdvEYs/oUkANA0zf/j+U/+5E/46U9/CsBPf/pT/uiP/giAP/7jP+Z3f/d3URSFo6Mj7t69\n+0/E8X+vJCvenmsEaHl9tqucdncftz1CkB2Kes3av6JoJvT6fTabc9qdLpbusNt9SMfZZdA6QChN\n3nv4KzjOgLBsyEQbr7fHBx/9kP5wH0VzMI0WWRGB1GD2Wtz4N4x6A8SqpspzdFUkjBcYWo+2t89s\nHjMY3kMUJTabBVG84vos4fLK5/F773B59QRTtunaR/izGKlSaPKaqtapRImlv8CPQm4dfYCntZCb\nCkWW2envIWMQ+Bnr1ZqmltjbuUevs09RVWR5BXUbRbHJshpDb2Fbu7TaR5huB0ER0W2P0fiIrMqZ\nrq4oyDGNFr3OEUUmM5meI0oVhgEXJxuWyylx6lOUIZKYI5ciiZ/iB3PCIiWqMqaLSwzD4HD/DkmU\n4ftzPK+NZXq0vTZX0xmKJHP+6pTBcIf9Ww85uneHXn+X9z/8AZZqstvZ5WB0iCo0FErM37z4OZNy\nxfHNMQ/vfICj97g5XjByxqRRTlIUhGHM1ckZk+mE0Z07PP3qBsdy2RmOabdGfPXsjLiMORi7DDoD\n0iiGrcqDznu4cYd/+/GP2N/rYLcNakOjNRqgmjqa3rBZx6xnCetViCU5pGGJ72dsi4pZlDLdRCRp\nwXLhk+cly2DCdXBMJmbISkmV1gx7PebLc159+Tnpek5f7yKmCmFUk4uvWIZnHL/Z4Bx0WTVTImlB\nmBQcjB8ym92AEFCWM6L0NR3XgmzDdjqnjmPevP4KtZLpaB2qrc/V8d/gqDYt4xaD3hE7/btMlwGz\nacAHj95hszxnPBpz+9YnrGfP+fFHv0lcB2ziNVmxYrGZgFoidkU++Dc/pOuOWV1v8UOBRaCyiZ1/\nGQkIgsBv//Zv84Mf/IA/+IM/AGA6nTL8R8ui4XDIdDoF4Pr6mvF4/E/fjsdjrq6u/ps1s2TDaHhA\nq9WjKmoe3n7Mg4efUlUSiioSJyGrzWuGw0cUjYRl3UOqW6hYjIwBeqYilAWUOXmwoSlFHnzwEK2j\nkRcRSDllk7O3d4tOb8QmjKmEhjT0Uf/xnxRZYjG/puMN/ms7d/IbR5nGcfxbVV29uxe33e32vhDb\nOInaVqKx5oAQCokPEAGKFEGQL/wFcIgiTnAhdlgOcOAGfwBHhCAjohAlIiBGIUxEHJgE24n3bvdi\n91pd3fXMIYOHLAwENE5nUh+pDlUqdf1aqvdRvUsVbpcHpxcqlAk2B6laBl3d/TQHIpSK6xiVMrF4\nB9eu/oBbB80Cl6aBaRF2RQn4YoTDIQqbq/T1dVKVCj8tXiHi9xPQA2yUqoCOZnmIRnvJ5GqULJPF\ntVmSuSs4PG68vgCmFMnkk6BDrpShs6+DUKANyyHcWLyG3xshu55HE8GtKeiqRi6VJNwSpaO3F4db\nIxByYShVDMvAGXLhD/vp6R9E88SpNymYriJOf5ho1zCq7mLDyFAoZ5hduIQv6KC5NYKiq7h0J1Kp\nsfORnWhaiLbuXpaya4hiEvLHUB0myZWbHyJx1ATdW2Yt+wOLqet0Dj5K10APpigY5QpSNLlw8R9E\n4+2YgFKzKG5maIs0E+/qxON20draQUf8EfrCncR9PkYSg0TaWqgVVog0uYh4WmhSA6zOXmdzaZH5\nCz9glSp4vSoObQNdr5CvFsiVSqwtZ2kNtOF2BQj42rBUJ22d7WxW8xTUCtW6ha6GiARa0MVDyVAp\nmi7K+TyKpVMsZKjksqRTaxjOMpur6xjpPAHNRTQSo6JYVPUsTpcT6i46WrrpbhnE5wyQzK0T9HgR\nh4rmc6D4nfz9yt8wFIOkWWT+n1cIm134nX7MOoQjrVSqWQJhB1LKUsktUCgu41CrhAMuNrPrtATj\nbKTTlCs/USdCqZKiTx8le11joOcv+Jx+TJeGO+KjVtykrlTwdQZp7mpl58geepr3/Gr7/l1vEX75\n5ZfE43FSqRT79+9neHj4jiKhKMp/LSK3S6ZS+F1ONE2jMxogn8+C34/H5aNklHE4XKTXVxjq9lHC\nT6yrncXZOXp6e9koJmkJh8lsrNPSEsLCoK7USOVmMaplos0jaIoHp67gC7iZmfkRp1vD0qrkC0U6\nYhGoqWiajqqqaKqCUS5RNEo4nU7qNZN0ZplCoYS/KUgs2oWmrdHk9SDVGqnkCrpDJ5deo79/kI1M\nioJRoGJWMKSG26VTMQp4pE42v0Eo4CLo8xPwNFPxm1hqmXpdpWLUqJSuozjKBANtmDUHplnDkiLe\nQAuR5hiZ9AqiJTHdKt5QiLploSgqmqLi9zZRrZrU3FXmVi8TjrSwnFyk3RmnXqtjmiaWVSfSHCJf\n2KCu+cgXCkQjzXhcOg50/K5mCkWDslJHd3jxecNk0zkyG0lUpU7dqBJt7SbUEuPa8o+oAQeb5RxX\n58tYmkE6u05P36MsLxW4Oj9HvlLEF4gwPzeLd4cblBqWpeL3eemId2MUq0TCzWxmUigirM5fw+t2\n4/F4keIGj8bbyKUzhNq8ZKwNUC3aex5hcTGJ36PhDQUobVTZ3d9OtrCGarlRq2WCPif5cgmjrKFY\nGoUNBbPZRbmwSSZ7lWhPG6lkGsXnpWwYUBOKZg6fN4ym6eSLRRweH0bFYDk3SzGfRRWLSKidTLJK\nuClIqbBJvqJTTafxev20NAUJNwXRqirVWomCWSC7uYlTd9Pe1sGN6zeIx8O4pAWPw0ulIuz56x5y\nP65jWg6M7Cxt4VaqlQq6O0ByfZGe6DDJ0ixGuYbP78HpAdG8+PwBatYKm6sbdAW6Kd3IsFHI0tHd\nxfLqPAGHF6nWaQ3F/z27YdKihzEq4KjpuBzOX2/gco9ef/11efvtt2VoaEhWVlZERGR5eVmGhoZE\nRGRqakqmpqa2zp+YmJCvv/76lt9IJBIC2Ju92ds2bo8//vhd27Qit3f2b1MqlajX6zQ1NVEsFjlw\n4ABDFiZxAAAD8ElEQVSvvfYap06dIhKJcOzYMaanp8nlckxPTzMzM8ORI0f45ptvWFpa4sknn+Ta\ntWv/9UnBZrPdP7/ZHVhbW+O5554DoFar8eKLL3LgwAH27t3L4cOH+eCDD+jt7eWjjz4CYGRkhMOH\nDzMyMoLD4eD999+3C4DN1sB+80nAZrP9f9v2FYMnT55keHiYHTt2cOLEie2+/F299NJLxGIxdu/e\nvXXszy6G+l9bWFjgiSeeYOfOnezatYv33nuvoXNXKhXGx8cZHR1lZGSEV199taHz/lK9XmdsbIyD\nBw8CD0bme3KvA4N/Rq1Wk4GBAZmbm5NqtSqJREJmZma2M8JdnT17Vr799lvZtWvX1rGjR4/KiRMn\nRERkenpajh07JiIily9flkQiIdVqVebm5mRgYEDq9fq2Z15ZWZGLFy+KiEg+n5fBwUGZmZlp6NzF\nYlFEREzTlPHxcTl37lxD5/3ZO++8I0eOHJGDBw+KSOPfG/dqW4vA+fPnZWJiYmv/9pmE+2lubu6W\nIjA0NCSrq6sicrPB/Tz7cfz4cZment46b2JiQr766qvtDXsXzzzzjHz++ecPRO5isSh79+6V77//\nvuHzLiwsyL59++T06dPy9NNPi8iDd2/8lm3tDiwtLdHV1bW1/2sLiRrBn10MtZ3m5+e5ePEi4+Pj\nDZ3bsixGR0eJxWJbXZlGzgvwyiuv8NZbb6Gq/2kqjZ75Xm1rEXhQZwn+yGKo7VIoFDh06BDvvvsu\nTU23Lg1ttNyqqvLdd9+xuLjI2bNn+eKLL+7I00h5P/nkE6LRKGNjY3csm/9lpkbK/EdsaxHo6Ohg\nYWFha39hYeGWytlIYrEYq6s3P8u1srJCNHrzVczb/8Pi4iIdHR33JaNpmhw6dIjJyUmeffZZ4MHI\nHQwGeeqpp7hw4UJD5z1//jwff/wxfX19vPDCC5w+fZrJycmGzvyHbGffwzRN6e/vl7m5OTEMo2EG\nBkXuHBM4evToVv9uamrqjsEfwzBkdnZW+vv7xbKsbc9rWZZMTk7Kyy+/fMvxRs2dSqUkm82KiEip\nVJLHHntMTp061bB5b3fmzJmtMYEHJfPvta1FQETk008/lcHBQRkYGJDjx49v9+Xv6vnnn5d4PC66\nrktnZ6d8+OGHkk6nZd++fbJjxw7Zv3//1g0sIvLGG2/IwMCADA0NycmTJ+9L5nPnzomiKJJIJGR0\ndFRGR0fls88+a9jcly5dkrGxMUkkErJ792558803RUQaNu/tzpw5szU78KBk/r3sxUI220Puvn1e\nzGazNQa7CNhsDzm7CNhsDzm7CNhsDzm7CNhsDzm7CNhsDzm7CNhsDzm7CNhsD7l/Ad9ALJ9Y8ERC\nAAAAAElFTkSuQmCC\n", "text": [ "<matplotlib.figure.Figure at 0x10732eb10>" ] } ], "prompt_number": 6 }, { "cell_type": "markdown", "metadata": {}, "source": [ "That's cool. Both of these detections are tiger cats. Let's take all 'tiger cat' detections and NMS them to get rid of overlapping windows." ] }, { "cell_type": "code", "collapsed": false, "input": [ "def nms_detections(dets, overlap=0.5):\n", " \"\"\"\n", " Non-maximum suppression: Greedily select high-scoring detections and\n", " skip detections that are significantly covered by a previously\n", " selected detection.\n", "\n", " This version is translated from Matlab code by Tomasz Malisiewicz,\n", " who sped up Pedro Felzenszwalb's code.\n", "\n", " Parameters\n", " ----------\n", " dets: ndarray\n", " each row is ['xmin', 'ymin', 'xmax', 'ymax', 'score']\n", " overlap: float\n", " minimum overlap ratio (0.5 default)\n", "\n", " Output\n", " ------\n", " dets: ndarray\n", " remaining after suppression.\n", " \"\"\"\n", " if np.shape(dets)[0] < 1:\n", " return dets\n", "\n", " x1 = dets[:, 0]\n", " y1 = dets[:, 1]\n", " x2 = dets[:, 2]\n", " y2 = dets[:, 3]\n", "\n", " w = x2 - x1\n", " h = y2 - y1\n", " area = w * h\n", "\n", " s = dets[:, 4]\n", " ind = np.argsort(s)\n", "\n", " pick = []\n", " counter = 0\n", " while len(ind) > 0:\n", " last = len(ind) - 1\n", " i = ind[last]\n", " pick.append(i)\n", " counter += 1\n", "\n", " xx1 = np.maximum(x1[i], x1[ind[:last]])\n", " yy1 = np.maximum(y1[i], y1[ind[:last]])\n", " xx2 = np.minimum(x2[i], x2[ind[:last]])\n", " yy2 = np.minimum(y2[i], y2[ind[:last]])\n", "\n", " w = np.maximum(0., xx2 - xx1 + 1)\n", " h = np.maximum(0., yy2 - yy1 + 1)\n", "\n", " o = w * h / area[ind[:last]]\n", "\n", " to_delete = np.concatenate(\n", " (np.nonzero(o > overlap)[0], np.array([last])))\n", " ind = np.delete(ind, to_delete)\n", "\n", " return dets[pick, :]" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 7 }, { "cell_type": "code", "collapsed": false, "input": [ "scores = feats_df['tiger cat']\n", "windows = df[['xmin', 'ymin', 'xmax', 'ymax']].values\n", "dets = np.hstack((windows, scores[:, np.newaxis]))\n", "nms_dets = nms_detections(dets)" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 8 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Show top 3 NMS'd detections for 'tiger cat' in the image." ] }, { "cell_type": "code", "collapsed": false, "input": [ "imshow(im)\n", "currentAxis = plt.gca()\n", "colors = ['r', 'b', 'y']\n", "for c, det in zip(colors, nms_dets[:3]):\n", " currentAxis.add_patch(\n", " Rectangle((det[0], det[1]), det[2], det[3],\n", " fill=False, edgecolor=c, linewidth=5)\n", " )" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAQEAAAEACAYAAACzsMNYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3GeMbOl54Pf/yaFy7Oqcbw6TE2eGQaQokSJFaqVdSYsV\n7JW8a2HhBWzDgLGAYeqDYQjwh7VXwGKxNmxoLVMJEklJFsUlOQzDIWeGM3du7tv3du7qrhxPjv5A\nQ7DBobEGhhoJ7B9QH06hcN4XVc/z1FPveU8JaZqmnDlz5ieW+H5P4MyZM++vsyJw5sxPuLMicObM\nT7izInDmzE+4syJw5sxPuLMicObMT7gfSxH48pe/zIULF9jc3OS3f/u3fxxDnDlz5j0ivNf7BOI4\n5vz583z1q19lfn6ep59+ms9//vNcvHjxvRzmzJkz75H3vBN444032NjYYGVlBUVR+OVf/mW++MUv\nvtfDnDlz5j3ynheBZrPJ4uLiXx8vLCzQbDbf62HOnDnzHnnPi4AgCO/1Kc+cOfNjJL/XJ5yfn+fo\n6Oivj4+OjlhYWPh/vWZDENh5rwc+c+bM/6dcRWXS83/o+fd8YTCKIs6fP8/XvvY15ubmeOaZZ35o\nYVAQBP6u3bX0uf/78XfJ5/i7NefP8eOd72f+xZNMnC6uH7P92gjXD5i5kmf1yRzbNw/RHZ3nn76M\n56Xs7D1grurw3HMf5Q/+8FWq9Tz3bvbQS3k2Lq+w9fYOvhuQdAVq1/IUpDK9kxHj4Rg5Vug3R0gC\naDkdtWRQXswQmmNiMSAVJLJijJgKxKqGbuiYiYbtpyyXDXrTLr2pizWJ6b6R8NI/epq+u4fr2uiC\nztziMkdHUzRhhJzGVMozfO+722gVicWlPPVCBUHWKRcabD14hOBPacwofOlfHvFu6f6edwKyLPM7\nv/M7fPzjHyeOY37913/97MrAmb8VDo9vUaosMBpGvPipD1I04dvf+zZH7wzQXXj55Q/g4LP/8DYV\nWaffivn+wyGNjQW6O0MmWwLqgsyt3X30nEk2m6ETdIhtEStxcSwPIdWIoghZFdEUg9hPcY4chgdj\n1j9aI1OQGPQdAl3hwrllDnZ28UYRuZrGQqaGbXcY2DYrGxtUpRydpT4Hu1v0xyOMgsnsxjIj18YO\njohNj+vnn+bLv38DJcrxa//kF3nz1td5tH1K6IXoWYvP/NovIEcZToa3gaN3fV/e807gP8T/sxO4\n+OkK9ihi3PXIZQ1CEgp1idiB08MJsmyiZgWSxEFKZOI4wnUiDFlBFGU02aTXnCCkCUreIPZjhCRm\n8eIMvhMy7VsEno+mmViug6AJFOoq056NFEvouokV2MxsVvATF1GISbwAVTKZBD6qpCNMXfqPIsys\nSeBECECUxIiqhCAIhH6MpookSUptpoIjTrHaLiZZRFFgNJkgaBLl+SJx4hMGKqliU58tkqoB7jgk\ndXQm/T7z12vkshqtoxFJGiBLYBRNes6IxnqD/qiPmCjMzJawxqfogkqlWuHCxQukAvQH+4hqQhA5\nvP3FMcaChiLHVOZynBwPkROJn//EZ/nC57+Ea0uc7FisLy9hLhhMnA7uwKUyXyGIQhzLYhKMqS0V\nef7JjzA+PSEIXAr5LEe9JkeTFoNTn4IuI9kZBntjhFTGMGRKZQOzqNHuDHCTkLX1efSoxKR3wvLV\nJdrWKd2tHoOBTylTxR3bxFHC7EIB1w0QUxAkKKwXKc0VuPH6XeYqy5w0u8yt1ZBLIp/87M9yuP+I\n17/9Ko89eZXj3iOW1q6gmXX+l9/4vR+Ku6v/sELgJIyaMVEocOWli+SKIq39h5i6ztL6Cl/+87c4\nt1FAEz1EzUAoljnY7jG4N8ZtxsRAaaaEuaIjOHB8s4mYEZEimdALUXMGQhqTBCFpoiKIApKSIioC\nC883kAsuw6FHNpuwulJhb+eIYqGM78dokkLvoM/S2kWMiokadImTCC+WCOMUQdFJxITJZMzBA4sg\ndvn4x5/GnVoYWgl0uPnmFjNGgftv7mNPBaKsTNqQQfMJvuq8ayfwvheBtU+qTA5lvK7A8pU60kyI\nFCWMu2PiSMK2YlRDxLcSlFRA1Q3a7T6mrKOICpGbENoCaRQhZGQkNUESEzwpwtR0pCRm7bFVvv/W\nXXJRFkGMSeQIUZVRBQUlKxMTM7Utqo0idjRAU1WmnYA4FCiUDFRFRI1yPLh1wkc++hLf+qvvIooS\noR+gKSpCnJImECYpV64uECoDNh6/wF/+/lsYCoQkmGIOOwgR4hjjnIaTOswsmmTzMsOeT+uNiJXH\nTIS8j9tNsEegSSL4KSIJQlFiKNjUKxqKKBMEAsVslo1zi5SrOdqnp8wvlphOjrFCB1mucHzfx6yb\nrC+s8Z1XXuP65U1mimX+7Euv0Fg0ufH1KUIkI4QytfN5li/PcO/OA1JPJnAtinoWYx3Cusi58uN0\nJw+pFKu0DlsoUsooHZPaMeVajq1vDcn2SgiZGMEU0EsKLhb5bI5ey0bFQAhiVmYrxLrG/f0tKlqF\nfnuEIakUCwZRnGBNLUqlGsNRn0xBZuPpc6SJR9fpcfd7PWrFKnPrVQZBi/VzG0yGe6Qdh8Gpz2Mf\nXmWYgqjk+Kv/4fs/FHcXP9UgQmS0HZARMgydNsaVLD/94afonjRRs0UUQee1b36bmVlQcrM83Dsk\nmWZIWwHFUo7hYIyQFRFiiciLkT0RQQFv4iMgIWkqMgJxkBAlEbOLOXqdIWuX69xv9Vi4niNXdnEm\ncP3SdWx/wqOdI5aXF7BHNqptokh5RmHIhU2ZOB5x3BmjaBqaXmRsDxFSgUzGQNN0HC/Cdh3yhTKS\npnK632T7tTZJL0UMNATdRtcMJn5A2InetQi879uG/aGBosVoFZfhYMKjb51y92sdjh4FdNshhWIR\nRSkhZyMa5xSWz1eolHWCwCd0Qkhi0jREUFNkWUASE0ggIxgEfoSqRdSWZFQzxRcsFDUijRJiL8Lu\nRUx6fcYjh9RR6O5PKJkN+gcCqSeRM2QUU0IoJXhVkbWPlZFrEVEYYSg6mmYQOB5pGhOGCZoYcuud\nPZ76uRd4GDxCWpbQKya19RlK8z/oFmRJY3xiYQxh0JmQeBpm0WDjp3L0vCmTBwFON0AXRSI7JfIT\nYl/AaTo8PneZ0S2Dgxs2oRUymrbo9Hpsb22xee48+ewKvmUyHVlEkcX5K+coGHUkQeSxyzrlbIAj\nWFz76cc4ak+p5jSEyAfJYmm9gKwlpElIvZLF1CVkQ+T4pk3nFYeu3aQ/dPj+mzt4XpZxMyAcGfT9\nhO4jB7uX0I0nTKYBsp4wmIzQjQJKIYfnRszOZanWa3j47Gzdx4wVJmOb+VoDx/JpnYyxeyM2FhYw\ndBHdVInjiNe+8X3ObWwyl13m8qyJGrncefMRYpSnVC8zt7ZJUlT4wGefZZxAsZBBlYN3jbWykSVx\nQcmIDIY9JFlnflLiz/71NygYWcKkh6x5fPjjz3A8DmiPuyiYCLhoFTBMhVw9g+9FxFaKpIkIGQlR\nlIgFiVSSMDImtmvhJh6VtZSZDZNnP7ZIbPY5d1XliceeoJpdpJ6rEvkWsdCnsaijaqBLBnu7R3ha\nSHFO5KDVoe80ETI+ku7iTU5R4hAhhvt393n1lS103aSRqfHN//Vtbv3RNve+dIrsaghSSuO8xNWn\nL2KnDtdfvPQjc/A9XxP4/8ua+JiKjipqeFOXNJSQxQRhKCM5IsedPvXzAv405f7pCNNwUVUTWRXw\nph6GpoMeIsYyRioReh6CJOI7NkJGZGa9jJx4mJHI6tUG7d6AaCAQ2CFaJDJbrHH/YIjghaxeNBDj\nEYaWkk4NJlOPsizjhDZidoAswKP+XZ7/hVXK+UW+8cevk9EUbF8mm5HIVDJ88KPzjCb7aLLKiy+V\nufuVDoPTKc6xgCIZZPUU/AKON2T5apWRN2LihuRNWJuv0x6NEaSIpOsTRiAoKmoqECYGumiyuFSC\nnIkd+CzMXiCNfApzFUZTG98bMttYYrA9QorKvPrmq1x/okh/rFKpB4iSDkmB/GmW5ttvUKnoPPnc\nCqN0Qqw6REHApJUwm9dZu/YkgqEgtw7ISiLCYIqhBeRnK0SuD/kUa2IjozC/ukIyaSFNHcJEQFFE\ncpqOa3eJ9Annnqhjdz0IYlJSCBVUWaOQzxJ5AQigZxQWaiWanROUjIEuxbhewtLGPH0zorha4e27\nKYU5kw9+5Cr3j3f41uvf4EMfep61xzYZWkfkihkKlSJGIr1rrLnTBC2j0D0dkCsaGFKB/Xv7+KlI\nMo3QanksN8YdOGiTIk4rYXo6obxaIinGNLf6ZOs5DF1FzMUIUkpVrdA96qPIICKRhDG5YpEwdHnh\nZz9AkHaY+hGKpDMexrSOmuw+3OPSpXWyxQr3b+2Qy+hYox6KaLB8dYVJapMr1MjX5hGjeRbyMoP2\nKbFh4/dEBDVDQSzQWMtiOyP8aUBjpk77aIgu6SSRQH0jj63aTLQ+6x+YIzHHPzIH3/dOQPQkvHFC\n6gmIkYySqBCIgIDneciKxLSVstRokBM0tJyBkoFcTULQEhQdJFVFLkBY8HGVmM/85sucf3EBsmBJ\nDietXT7+qy+wcPUqIwvGY59UEnGEmCc+ssHGtTql5RyJqqAVi4RySpiJqJ0vEMkuOln8/RS5IyCH\nBh17xP6wy9K5BZB01FyMHcXYXsRE9vFkAVXx8YWIdEZHK0qsXK4SiC4jzyNEAEtj+kAk2ZOYMUoU\nApXDRwP6LZfEFvGCHGpB4Df/xS+RFDU2n1phd3JCWEuYXVpizqzz3d+/T9KVKKQao36f6bjNaNoj\na5YRQonnn7lKaqmE4xJb93W+8pUH3HjzHn/0h3/CzGyR2nwBqapSWa8iFw0mzpT1K0Vi3UfLg6In\n9PtDpmmfvU6fkpGhkFPZ2FjD9UycQUIWgXvfOaRzanHxxSsoBYFBJ8LuBti9FHvsEoohY9enedKh\n35wihDK+nSLEIVHsMztXYmFunn4q8I/+i9/gxU8/xVOfuYRYMplZLTOxuiiGjt0PmF1tsL2zhz9y\nWJ9dRAhypImImRcRzYi9k1OGfftdYy0WRIbWiEqjgJRRSMUUNxZ47KMztEoPcNM+UepTnSlQMxp4\nhxaSoKJ6CtNmQByLZIw8SZqi5gzMXJHj/T6uG6BpBoqhEIQRQeCSJiL3bm7TH9sMfRu1VoAstA4O\nmK/WOD3p8e3vfJdMpsrxkUcuU2I46NPvd7EmPfYfbnGwtY012GP3wW2mww6CnWHQtsjlVKpLeULR\nZzhssvuoj1r0WHrcRJ1P8cwp9cUK3W2fk4dTdDmPmc3+6Bz8MeX2fzBJUUEA1w2QBYWEFEEUSbQE\ns2RQa5hEfkzrsANBgtV2GB9PwU0pZ8vUZos4oYsXpORrIpV5AWSdwmrK/JMms/UKlYUL3D9s8+//\n/XdIvYRy3cSsp3z0s3PY3hEv/9yLPPmhJ7EJ2Wm2MEsKWiniqNlnaoXYUxdR1HA8CWfiYsg6FTnL\n/qMW1bIJScT1JxdZOLfI9reP6J7s82jHQYqLPP/iU4ymAuPAZXa5TiomeMMhiQTpMMQ0y6SnMv0j\nFfthjJrIxEGCN3HwhyIDZ8zzf/8ChydHuK0xvb1ThoPbbG7G1GsJi6sprhWyUJkl9BxOm31quTl2\nHpyAq7GweY1nr3ya3RsnfPgDz3DjL/ZQUcmaMOoc8+DGAd/4vZu8/vvbxO2QjCmyv3uCZ59A0qRc\nEYjxeOLSCrVSg6EXYzkTXnruEh/+qessLjTwWyE4GifxKVKmSDCKyeUqLF6ZQ1I17CBEznnU11Wk\njIgkq/iBRxiAns8wmnrc2nrE4aMe/9O//F3kWoG0mueZ/+hJJnEfUVCYdvtIdsKrf3yHk7csxH7A\n3a8c8JU//Db9kcPhUY/Twx6joY2sGO8aayvLJZ5+4hI/9wsvMxUmPPfZC/ziP/sIpwch00OD1/7y\nEFlQCeUER2uTn1MpzVYYDCyifoqUiDQfNgmtkCQU8ByXWEvQCyZ6LiUMfVIEjLyGnJU4aY540Byw\n2+4ynDgYGQM9D6opo8g6wcRkcuyT2gI791qY5DCNkI3lKo9dOYcphaQJuGHI/MJVDnsjjJUZbp82\n6XkeqSEwdkUuXZ7liReu0PenRCacf2YFtaCjaRpSICE4EQ9v/OidOdLnPve5z/2Y8vtH+q3f+q2/\nvh78PwoFwqmPKMg4XkhKgiIp6HmdOAwYTSaYeR3f8iGJkewEOdSJ7YipPeXlT12FzATSlMpsCdsL\n2Lx8npE7wu52kRSd/V6TB9/togUgAZeuLJEYKR23g1yrMRxH3L13hzQNyFY1tEyImc2QkYuMTixE\nQSWJU8xcymBio2cU8hWTxEsZ9Hye/rklwrLF/EaVfhKC7DFrlokGFV795ttcvbrI8U0HZ+wgSwpZ\n3SQMA/K5LMfbLeyRSzwOqdXnsL0JXhDxi7/50/zUxzbpnrxBeb7Gzp0+omvxoQ9fJi7YdBOLgZiw\neT5LJiyyffsBdmDTPhhhtUcksURr2qe8vMTdR3/Bkx/N851XekxPXHQ5JZzEeKMUdxpyYXORhcca\nDJyAvcMetdkaRi6L5U0wix7lehlZM+n2RwwHA7p2C7mm05lO8BWJpY0F9rYPkcwYuaKwuDiH4wwY\nBxaapNPqDklTAVkQMFTwJnDp/DmcccjQbQMis7UGV6/MIxkhd+9uU57NUKoWEIQhmYU8X/yfX0UO\nTfKyTCaXYf0xk6MDD9fxqV+YQ9AUKtUZZFPhtNXjn35/8ENx973/+EWyBRnL7tLsjti620SZlSlc\nKJMRfOZWFjAUFSf0yTdyaJkMxwc9dN3E9xMiz8XQTCRFJrIDgqGPLOsYqoIfBLiRC2JEIVdgY6HB\noNOmtjyHkdHRRA28FAWT3qiHomiMuxM6dx2Wl2bIlxTMnEw+XyRMfe49uEdWEdh6y0IXSmy/c8K0\nBaqUZ+/eMeFYpTKTZW+3j6REdLotKosLoAjIOQkn9PBSF82ETE7G64tMTlzeLd3f9zWBzYsqN3d8\nEkFGig2iwMOLAwQvRZRkNGTssUcukyMMPERVwnECTNNASgXkjEp2KQ/ZKflCDqWocOP+d3DDKWpa\n4q0/abJxeY5cOgIHfMtFims8/vgltk7eYRy4lDI+Uexjewmm56B5BfrbY9ZXTXphgpKKSIpHGEg8\n8fg1bt68Q6HUYOOZOqOCw3Ds0zd9vJMmojwBRFwFtHLME5+8iuSqXH+pyIOt22R1Ab/rEXkhCDFa\nRkMQBQRZotVqMjtfRJU83tm7QWcsMbdZZO/oEf/gH/80ncExo3aH1qnC5sV5Fp81sUcn9Ntjyovz\ntKw2s+t1DAz2Dx4Q+z7DzjtUFjXGXZ/73+xiJCBJKkEcE0gSzz77OK+98ybrawtIRQXJ00ALmUZj\nUiVh5HhoiUX/voM0sIjCFL0mceeNe5hKhcGpQ2L5bD69hD0+JFZVTvsHRJGAlGYZDnvIigJ6SnWu\nTNB1KVwUuL13F8GTCNwYSU7ZH53SbLdYujbHwrk8W9s3eOe+wkxhnoXBCcKxgtGQOf/UIl5qo2QF\n4qiPisydP7pHZtNAv2Kwe7BNsVx811g7me7yzhuPuPrkBulU4vHNCs37OyxsPIZoqghRDsfrMvUi\nOrsThg8jGrky/U4XPRB/cM0ydcllJXwSQtkgCm36U5GaXqD+wgyXLy9z740dFs9J2PkK+0dtzGLK\nac9FVgSMjEiQxuQzMqYgI9YicmLIg1e7PPGJFWQEgtCjkC1hJHB1IcdomDLcG+AkCX17il5WKcwa\n3L2zj66CE3gYqs5PPfcUX/rLP2UyiJAxmJ3NUMhXEUOR/kHrR+bg+14ELn58gZ2vTwjDFFUxab4x\nRhYkXCtGzXoYVYOZfJ7pkUvkJZRKRZ68togxY3DU63La7eD6KcVag363Q+zblAt11FwZsiJqVmL3\nbhsjK1Eq5xFnsmztvoU+d51qtsxBf5e9rTu4nZi19Rk8zYFQRZUEPvPLn+CtOzfoHe+w80BgYbWM\noWa4cvlx7p3cxsxtItVztN026cQiNAw251bZOdqlvJIhjj26vQhr0uKZKy8RmbMUzBQhTLhzw0Pz\nf7CQpOcMAsGj1igTpB5ziw3mN89RqhuMvBZ5Ig72b7O89gS33nrIyUGPDBnqZZ/Ai5EBy41IE4PM\nbIm52hJqLWZiHWHqJlZX5LU/7yClCUIsk6YiYeRSq5eglvD0h65xaB8QRAFGTqE2X2biTLAtm1ym\nAEHCyqzE0a5GXtKYmZ9hPOrguxIFMUOcNckpJn1BI+2FlPNVwiRkYFuomSJoNlceXyMOx1QLWSai\nTrlRYbgzZuf2kMXlAv12n5XNBVQ15fTWEQubM0SpzME3Bix/cIlyEYZjB21JpVZtsL9/iqQKqGGE\n40dcMWbpb7X5e5/8B8Q68L/97g/F2ubyC3TbNoEfcOGqhhePGbd1Tjq3ePYjG4wn+/iRQHV2nsxC\nnbR1zIc/tcpX/3jKwAtA1LnybJl4pss7fxGRqQiIDRl9X6OymmXntVOqmxkufXCdV7/zbTYW1rha\nLyCkItkNlUk8YOiHTKcBUydk6ASsbBQZTEZsnqtiRzpCYjG2ulRLywzeHpDicXwSkZYUGnkNQ0sZ\njWP6e2P0okq9DkkqMF8tIUoChlFAShKuX7rGK1/4PhP6TIYBgfejc/B9LwJtRcbLpFxZ2GTr5gNE\nSaBS1RB1gcVLi9SXiuw8atM7ifFlhVZvhCCEvPDMS3BO56Szw8jqMppO6XWmNBp5XNGmoGfxHREp\nVtEwCIcezeGI4qKM2YDx9IA49KnmZbRFFaFY5uhRl9ULNYzZGq3tEVZkIWVcNl9c4dTZpr0zYuuN\n15BCiZnLZU6PjulOAlLfQTUEPAFcL8WdxLT3WwzHIdNhzLUnF9g/ustk1EcX81jRlP7AplAuMbuS\n5bTdR9dy6FWBwBPZ3Wny+s0dait1Js6ISl6nWs/hy/dYv3qRfKPDTGOOybCNEKqkAgRewOryPG/e\nfYcg8AliCz9VEQAl9Pj0Zy/RfhTw9T+8BYmApIl4RYOBOMQJOySRQ9bQ6U9d+idDIi9FlzQMKUdz\nv49Q0hA0CcvzSB/28KIQU5KZti3UWOCoN2R+uY7FBN+OaHU6ZLIaghShZ1QyCPQCh4HbR1Kz6KlK\ndU1FqWRwY5twlNAe9EhSn3pjDl3IcPGDT3Lpgw5iGPEz1TJf/dPvcfKgxf6DCUYkMleqIuagNx7x\nws98lGlk8c033uDClWvvGmv/x7/+Y4qbAoIWka9qZMIy/bUT1momSnxCURqRmhmWZmSabpc0ZxML\nA9aedTn8PJSKAitLVZKyjn2ty9y5Bokg8k74kKc+ucjYHdB5sEf+ssr6UoWMGGBNQmaXNhhNpwiS\nRqfbYWl2nWmvzbVn6siixIk7BTOhu3/ItQtXiUY+d7/eoZ4vc+IPWX28wMANiAKXyVBGSFLcoQNq\nyoc+8St4nbuMBx32Tt/BqEhcXd9g984RqiJgyCbO0EcVJFzid31f3vc1gf9uZsTq6gX8YMzC1Tky\nmsy151bZa3bYfGqBfmzz4O0WwkhBSUViQUCKBG69sc3RvWNGXYdsJmV05KGmIpevbHLS60GakJdN\nklhEL4IVOKxfqpMaAakakMllcBOXsRcysCOEWCGvCKxvzjGZtimsShi6hhPZ7Nw9oncsUV2vEAU+\nWqpgWxYQYKgmfjdkeXkBwxBp9h0IoVQ0SNyENIRhp8fUm2D3U9qHDr1ugGgraLUcfsHm/FOrtEct\nZhbyxEmCOw7JuDHYMakNXlvhtNmhaGjMrTYYTyw6zTahH7I0v0r/dMzGhRV2jh6xtrGEkNjYwx5L\nc3PsPmwzDFNKjVUWLi4w8Rw6vTGaBG53RCbrMB1PMU0JURTw7YSikWO865OXRNKsiqFnSBwNd+Ih\naSKSJ9HaHxOOfHAi8oU6SpoSSALjjoc1nNJoZMg3KiAnVOazBLLMeDxicWENd+ohKgJGRkNQE8Ik\n5KWnn+boUZNh32N+bpaHW8e8/tYtHt5pcrDfY/1ag8ULC8CY5Y0N8oUGmSoI2YRIsSktzPG1r3+D\naxeuoigKn/n63R+Kuy/8/DlypSyHvSayVCCfmaFUazA3O0fkTbHdCZX5eZwkZXXzGhtXSjSPbjIa\n5vnN33oC37KRFIdA8BCTED+NmF1aZH2jzsjaRxg6rMyvMgwPMWSVg3d6lEsVxn341tdvsLY8Q1nL\nYk8tFpZLFOomDw4OMXImkgC7p2M+/feeIWs4SJmEpBzzoZ+/xmDYJSRBFWWyiUzOqKHJEnHsYYUt\n8jN58APa/SaziwvkzArv3LyJJpp09sdMOw74EnEcv+uawPteBP7tM7Okic/B7j5xmLK4MUd/esrU\ndsmWsjinMYNbY0QEPMtHSRMsT6JUzuFYNqolkAQpmYqKIsUkoUMSidhjj9Ads3F5hZULq8xs1gnk\nLtmihCjLWLaHWSoxHI7JKDJ5TUYuTPGiCY6bUinMktNVvvC/v4M/FJgp5ihVVLqjAVdffIJcXqF/\n0mfa93EmCVM7xBpJTKcuTs9lcuwQdkUyOYOZtSKFmXn8UUTiJlRXZGw/RNE08rUKre6A9bU6O90W\n0RikkYBRqdHtjVANBXMu5sM/9ywZI0en2yZwbR7dO+aJpx6j1T7FcobYvs/C4hLD6QjTELD6bVR3\nSs0t0dzpc/utHYatANGU0fMqsxfmOffUKlpFRzAkqvU8mpmSy+eYOBGd4zG+H5Opqth2QGW2QmbB\npHMyIR5FaImMIEjMrjcYjUeY5RyVahXXCph4Lh//1Y+xNdiisrhAJIaM+z5xkmJNh3S7DrbrMbFs\nUEQM06A77KHNZEGIkdwYezwlq+Xpnvb55//Vf0kQhhyfHlKdmaU3OOHu3htoZY1Crcj5C5u89d07\njPeHWMMeZlHiV777w/vk/9U1DVkxMIwSCgWMTIFmd5+Dox00M0MtO4PbnnLcTPg/v/wG559tMGqO\nmdss8/aNLo9ff54kApeQfEliajsUCnkshvT8Q1JV4u2bfRbWV1CiCM122Xtgc7htETou+UxE4Fns\n7k4xaz3Ifj3HAAAgAElEQVS2tvqEYxU8jdbJhLXr80g42PJ99FKEUa2QrWjEU5ejR30mvocbuZQL\nBjs3Bvyn/82nsYWQ+ztHzC0tETgpFWWGe3f3OX47oXPPJnRjYj/G0EwCP/jbuTDou6c4ozwr85e5\n/50Ttl/7PgtrGUQBPHtKvViklS0wu1Zn5bklvvnvvkPcDmlkSvijIaksE4wE+gcBRkFicWUBJelT\nUEuMRxaCJtIcDtl+9YD1izmUYgqig57J4XseMin5jELRzPD690Y89UQdpTJlaa7OH/y7r1MqyMQT\nidZOn15Hotgo8HD7JqtrM8xsaGhSEc9OEE2Zie2hWhKWl5LJqMgSTPoBMRpXPryKsqrRTI8ZOxa1\nCzmscMIg8skUNR50WuREjcqshFZPeHBviFlQibyE8Rhu3d5HyQ25vLTK994+ZX02jzXoEcUuQeJh\nZlL29x8gmylCOmJlxaQzSpByKp19n5d/9hm+8rs3CPshjfUi1tiivxuw8tgKpqownfikhLhpiFYs\nIfgpQirTPx5AVmQYpKgYFJbyDKcdMhkNQVNwPPsHOwSdAUdbJ2TyJrWVAn4ypqBLTAYnREHEqOui\nKjKlqoyYaKiCSOAGeFKCmTHZ2z0mI+po4wQkASXUWJytYCxI/Pf/9X/LSz/zGEZVZOB0MYoytbCI\naoCfDDhsnpLTRS4/fZn79+4iOe++MUYUIPYDpqMpvf4esqQhKj65nEGv28eTFPQwYLk6x+3vHbL3\n1g7r5TqjoU1e0+nbTSbRCV1nQJzWWLt8HS8IufG9Y1aWCsxUlpiWpnh9gwfbj2hIBcaTCZIekc0V\nCaUizWaLzceyxEmIIAWYpR/8nj8QLLZfP+a59RV6fok4VDAqKgIS46MQ3ZfRZ2VSTWYSWTz/D2fx\npw9ovXmfJ5+8zt7th+RKOaaJx2PXrnLzS3+OFkpEAqiGQSKFPzIH3/d7B17+jVXiWKVcbfDKv/kW\n159bYfnaDHd3H+EKFhdmL9A5sRENyDdKVDMN/ur3vsm8ZtLr9nHNmKXzdSYDj0QO0CoK1VWFmdk8\nqS9z594+mpJl2PYoVAUaSwsQg+9GTCZ9Zhs12v02tWqdznaPYX/C7GaWTKaKn8ocP+zgDVLcsU1p\nzsSTQgIpplCQqFayqLFBrzfEyBj0pmPUsUiYpiCKqEaR8aGD3XcghpnNPKnscnrqoZsgqyJz60Wy\nhQrff22LlfUcZtFHlA0OvgBSIcW3XLLFDIVZGX02JCMaFLIqxXyWvWGPcmWG+zfvsbS8Qq0xw9Qe\nUC6nHB8dI8vLvPPGA5559jrf+sJN5LHEB55/mmbzgOXlMje2djj30nkSPaXZ20dII3KlAqqlc/Nr\nx6w9WyPwxwwtj0plg/Y7/4rJ6QukifY3HTJn3hPC384biF7+TzbJGAWa7T02F0oEeRUp9Yk8lf29\nQ+YKZeYbC/Qsi0kYkSlncNshN7+2xc/+zCZeLkHVYyb2hKkv8uBbXX7q788zcC36bYtGbRUEjaNm\ni1ROCKKANJFR1RyH24eUszKiGJOrFijqGfyxh6wo7PcC4iChc2fMUx+5RCy3CQV4uN2hOmuSkpKV\ndNrNKVk9y2DgMjsn0TqxWFufQ1GhY3mcbo9Q2zqSIuGFIStXqgwGfQanPpqgoeQDHE/nZ37+MW6f\nvEOIRyxILAyX2N07IfVkktgl9BLkisqn/vFzeNGARPQZWAHVSoUHdx8RuSlrq6tMA4sk8clmTQRZ\nYHDg8v0/bbJQqXP16TWO99o0D5pIKuh5mWHoUVgxEc2A8dhFEGC6m1CQMzSeq5JMBQbNHr2Hf0Bs\nf+JvOlTOvKf+lhaBF//JPKomoukqml7m1s13eOHZxxkN+vj+hGZrxAeee4ne2OLB9kOMcoTv+6hK\nHslN2XximeOjG5iZMmM/IhMaCEmKHbpoapnbd/YpV0soYojjBSSJwGTqI0oC1WIBOYpBEglkF3ea\n0KgaLCysMJ7G3HllFzyR2FCYW80i6S6O72I5LghQyhSp1+t862vbaLJBJpOSrRn4SYTneqRAKWdg\ntS3cU4Fzly/QHh4gRzDueUSugG4YRInEpD+itKJj5iAOVcb7Htl8Bk1S6fRG5LQM8+erXHiuRqwG\nhOmA/qiHKpjIiYYqGLRHfWzfYW19lYltIcYSqgiGm8VDJ4hjvvEHbyJIAo3lEjlTYxwM8FOPTNGk\nXJ4hCnyO7nYpZfJMGCMFJkpWpnW7Can+Nx0qZ95Tf0uLwOYvKSiqwEx1ma7lcWmuQeu0Sb5kEsYR\nERK7OwcsLq5wetIFGZJIoD+csL4xQyiOmckaWCOXkR/RqFdI04g4lQk8CN2EKHDodT00I0USNEAm\nDAJ0TUbPKCALDMZDlufLkHgcHIN1HCCPU9wA0kjALGmEZY+Zeg5r4uBNQoyCSrFWwPcTYsdjPHDJ\nVytMrTFppGAfBZSrEmLNB1vEyNapzpc5PdoisjSmoxgiE2cyQUxicppJEtlEsUQiyqiSDPiEsYDo\nKCRSwK/850/S6oX0xy0qCzrTicfRbovF+SUEKSESRCRBwh5bIMBobLO5sUiqSezvdxnuWpTyOYIo\nwus55Ip5poMJ1thBkzNEQYhmKFh2wEyjRrffxosT/Fb0Nx0mZ95z714E3vd7B2qVBvl8nXavTxgN\n2D2+Q37G5NFJj7funXLQH5GdK9KcdDHqWbS8gJqJyBUlDENFp8TW20OEWKVuFhm3xhBJECWosoak\niJRqVUQlwbZkAl8kGnv47QgpUBmPfUajBNcCaxJjOSKzizWqtQLjgYgq6SiSjBiILBWW2VhaZtqN\nCT0ZxxbonyZEUxP31GDSTAmGPqGTIIUpmazCuA/dnRg/SJkMRozaNiubF0iLElE5IclMWLvSoLqa\nI5ZSIllD03RUFVLJR8mqKKZGVLT5+X/2BK1pi+29Lbwo5fBwSILKysYSreEhTuqRm6ngpQmWn7Df\n7FGolTkaTTltjyhXClx6apVmZ8BzL1wHMaVz1McdBazOr1A2ixSNHL4dkctm6LT7BD6Uq/n3O0zO\n/Bi971cHiH1qMw2aJ10W5kpMpyP2D9rUMyvkVYmbt++RW0zJajm23zpFrcooRsylyw2EBFzXob6Y\nwxMVCjMVtEoJ3/PRFJXI84gSm4OWRSCCqKWokoodCEiSDKGEKOmc7PTJGwV2dtIf/EeBf0xpTuXK\nMw0e3msjI2FPPLbe2idjbEIgY1RUMGRiO+bozhGio5IxdYJeTGG+iDV0SMSA0oKJJOioioCeF3GC\nIVYQkCkFaIUM02OP7rRHUdfRr+hM9hzCXoqsSqAqmLJMdkEn0jJMQpkHd8c0Kg1KtTzDUYdJe0K+\nrJIvichqTK9/AILE0kaRmdU845ZNIqmkaYo7irn/6CH5vMLYOcEoRxTqFS5sXODP/ugVrl89z8O7\np9TKFSzHh1RB0VKuPVPn9M4Pf3RzHzMpFfL4HkwnPVRVwYoVJCclGAeUGgW6233MSo7YE3C9AEPT\nUQWJyXTK4vUcgpRyetvCn6aYCkiyjuN7ZDIZ0lhhanX51K89z3b/EamU4AwtivoMd755jGRKVDey\nP9iyPB3Qa/fIZbKkAdz4/fYPzXftn+qQilyoncMQDQ56dynlDCQ9D3KOYd+j2xqzMJvj9HCXfitF\nMOH8lQKCoKDIKiQxjuuTVUysaYCIzHBqMTyeEpJSqpoImkcUG8yWCkSyQGWxAGFKp9lmvr5ENlfn\nuP2QbqvL3GIZQdS59eo+q8V1bt3YonxOZfn8Kt2dPkkEly6vUZnL0RzeZzDsIEsykZCyNL9JQanw\n1uv3CIYhWilELqX4jsbJrTFSoIAU4IURSk1m8ua7p+D73glcurKM608RxRTfD6nWZigWF9HVEqXK\nEhcvX0BxipzeH2GYCnPzFYr5LId7A75/44jVjXOU5+qUKzrDyR62M8Ge+AxPxvTHPtNJRL2UoaBp\nYCccbQ0QEomBP8BSXDRDIlcu4rpj9JxHJgcr5+bIlgvYUY9sVidNBcRQQQoEtt88Qoo1jJwJYoJa\nzjG7sIgiivhBhD/2cFouOSFDOIV+06W1M2bvZh9nomIUDU4GbWRFoKRliUKYW6zSH9q0TwdERkKS\nD/jV/+wTrDy/Rrs3otlyON2b8u0/vknQFth+65DJ8RTGFtHAJqdnqVRqIPjYls/BYYvdvUO27pwQ\nOiGJbxHaLouNGQpGkc1ra7Qnh1x+bpH1Z5d49f6r/Mo//yBD9rn40jz1ayXa9gTbdzl/vUaqvPt3\nhRhqDA4dJk0LyVOoZedQfYlGrUC+CIHtIYUy3thFCmNyqog/nSDKEasX5vDCEF0PCEcpkRdRzhfB\nCzCNDJOhRb/XIVvSwRRJpZDICcipGvdePyG2EzKJRP/BlFf+7U2so4SSOUN/YDOzPPeu813IzVMz\nZ9neP2KUxhTKBq44IBVl3EmAdThmut/GetQjpxf52V98ho3NJQ4eTvCGAp4dEQYSleICnZMJRwc9\ndvfaxHJCdbaGF8QEaQCRgt0OOGz3iDyJV/7kNoGv8tQLL2NHIyTNI5/PYzkR3baALpVwOyHVXJaq\nbBA3Re68sk/QcfFHHt997R2+/GffIRRLPPX8h/nYx34BScihGhmmYY/FJY0Lz9R5/IUrfOz5n+Zk\nt4dqCBSXsiTFhBc/+Rgr5ws/Mgff907gu2/dJQoEFhbm6Zz2ae42cboJxZkivfYUXZKIRwKiIFK6\nXGC2nOPWnk1GhmpB4WtffZ35dZ3ED2nMFhiPbZJUZnl9k2988Q0ylkZSDHnq5cvck7awXJ+59QbV\nUELTDCJVQrEEwkEZRZcxqxGJZhPZkBNzjIZdxFQjk8kRuR6uG6AmIrGbolQyjB51UG0NdCBMiIOE\n0IbB2KJcyuPbE/xIIRFVWkenzOTzOAE4tsdCbUpjM0N/64SV1SyTUOa5D1zh9s0t+s4+XfEYydCx\nTyxERUaUU3wzoTyX4cbtR/zSJz/A9tEjHLePZVloukpkhcwW8uSLJS6dW8R3RTrTJmKS8M0/fwP7\nKOLppzcZjX22j054/OISjz11jePePoop4isBvVEftQgfefkDqIWUg9b+u3523kmElIdMUWDa1bn/\n9i7ZYpnD9hhVNpkGPkbeIHY9kmyIZQc01or0hyPciQ9iimCV0PMRwjAiFX0URcJOfZ776DlW5i/y\n+d/7Ao92HzFwHJRQo33gUshoGDMlNFMk7g6JQoHhSUTs6Sglk9aw+67zrWZnGY9djict7ty4Q/X/\nYu69YjTNzju/35vTl2N9laurezrN9PQkzgxnSGooBq24QbLW4NIyQEhrGLBgQAYM+0Y3BnwhwjCw\ngC4Mw14LC6zXWHElW+QqjChRpEjOkJNDp+qurq6uXPXl73tzPL5oA8ZierTwXph6L9+Lgwf4n+c5\n5zzh/+/JWCUDU1JxLJsPD3YpyzJRGrBYW+CHr7/HYqdNr9bCHQfEo4yFlWWG44hKa5HuikM4D3j7\np7fQhMfy+S7j6ZzmYhW5HaFYMoEfY+c27/7Vx7z7/Zt0eiqnpwOWOh2CQUDVKLj94TZV2+bo4BSt\npuBPI3RZUGv3OPaPSaIEZWLw9h/exP3SGENKCLyE/f0dGpUSx4MZmhNSWWzzlz94E4SCJ3Kef/oJ\nPv4wYv9wm27H+VQf/LknBtd/zSTPJGRJwnUzskDi2oULGCWHcCax/e5tZKESuhGkQKmg9nJGd6GD\nFVvsDffJ0xzDVhCJRsmqMBrOWFyqs39rTr4nEwQhSZ7y4q9cZv9gwvSuRzgP0CUVZ0FDaDJpHiNy\nCXSJ7prDbBqh5DGEDuNDH0OUScQMTbchL3BaJVwpwEYnCgNSr0BFQc4EmZZTFLB5vYs7mOLOU0ot\nHbkMRhvcIMOfJiipxlpnHUIfx9GIQ4lB2ufaq20kOeX9jwZIO3WCyQjdsVEsgWZEvPLV6ySZx3Jj\ng9vbHxEJnwgX26lgSAsEQYYfT8kLmzizmEcnVEo2HOQQSGi1lHIjxqq1MewyUZ7SajYJ5xHvvPkR\nRa6xcqHL3tGY1z7/Goae8y9/55NScquXqohShtWSmU8yKk6FoEiQJRVDMpmNQxQ5Q9MLVjfq3Phw\ngF0z0DSBpFiEbkA0iFAiiapZxtRkQlFw/Zevcue9exxuu0hJhlopaF+o4XsxUlggkGk3WwyGfaqd\nEoZj0GgvMfTPwEiICp97//voE/Y+9Y0ek+mMkm0jqTKLK3WiaEyaPbrZnRyMyU8CjIrGysoCx5MR\naa6CFBPFPiARxgVhmrG61EKXVcJ5zHiY4I0jUq2guWJRshWiQICiEroKVWz8swBD0WheS8AEWZik\nXszYc+l1O7j3cx68d8qlFy9QX2gxODnltH9G74kymukgzRVe+vI1TibbpNMBfuwjqRYry+cpORX2\nj/aZBRH3bx5ybmODzBG8+Pzz9HfPaLZ1BsNjvv077///Qzn+//Uz1QZZkYIiU2+AZ/lEVsrWzXsE\nRxGFl2DJFqmfoqUagZ/R85rc/N4phCr15wpajQqapLB/7HF6NKBRN0isEL2AcRQCKoYs8/4f30dI\nUCQSdqlEmoaIFPQiQ1U06ktt9o8OGWx7bF5aZ/9sD9kKcCoG+SxGTmREnqIoMkE/QEgFkeUjlwWO\nrlIkYJdMOqtVgtRFrWZEo4RSTyXPQgzZwMgryGWf4CClGCY8OD2g1tPpn+Y0GyVe+9J1duc7zHEp\njjMy3yfyMxa6ZY4GAxbXNI76hzR7XW7s3SDT0//n/Q6qXHo0154mhFlGmke0G0tM9vrYehln0yBK\nYzS5wKkKDk9PWSgZeBMfVa9xfLBLb61DmkUYJZnWos6N7bdZ6jUfi93RwOPa+gprV5qcDA85HU7w\nJhK2bjMfD3EHKdVFlbBI8BK4/FyXK9fP8ef/11t4wxGqrKKUJJrdEu5ghN2s8/TL57n57kec7YSP\nyEnljMwVTM+mFJpAMnNqdhVv5jKbxxRlGbuSIPIzTEdFliUk8fhKhq4ZmKZBmmdUqjUGUw9F0xn0\nz9CnJjomsmoQezLvf3BMksaEUYpd0qnXTWIRI6QCw5QYT8a0qxW63SoH23t0l0oEqkCIjPlpgpJA\ndXGRSsMiOcwZ3jmktFTmhYsvcOP+exzfHiLpCe3FEkKTaS/WmO1mjKcebjOgKHssLZUJAh8vcbEr\nFf7iz35MYYdcv9TFMTWccovj41PCcJtao85ir8dTTzzL2ckZO0dHfHjnHdaXljiZnqCXtE/1wZ97\nTmBwNMaLfOyyQaXZQFNUbt95QOiHqJJCSauRRwUICckAw8w5eHeCPtH4/GdWWW2uMO8b7PzUI+sb\nyEIiCjOK0KJabpCIDEVkZFEBiYBIQdc1irLP1VfXmE0T3InEbOBD6rO00kKEcP/9PZIZOCWTOIkQ\nuU6WyaiKTppnFHkIZMRJjCZpaIaMWs2Q6wmBmOHnLv2Jj+snlFsyIjM42wnYeXPE4N2Qml1GaRlE\nRcZ8NgMrZu/I5a//cof3v9fn7g9dWmqLJzcvoiky5VqN0E8p11uM+jEPHmyTqR6uF+JIddJQp65X\nqeo6S502cRKRKQm5cNFkQRD5GHWDTJ6itSXoqJxGCe5oziRReP/9O4xHKX4YMJzOuXP7ARuLC3RK\nFZLs8XRdRk1Q6ZRYWK3y0quXOdxJUROJbJjhGCaNCybdCz2uvnQepVqmtbDI0cEhdVuDSGFtuUFj\nUSU2XIyeROtilR/99CbziUfJsmit68Rqhp9nNM/X0StQshtMjgv2t4e0W3Vs2eGZKy/Rri6iaiqm\nqSDix8/NziZzRC5TJDmnx2fsH/c5Op5g23VWeis8ef4a+UzCOw2IJgGtpQrNjRJOW2fqR8S+wDSh\nXrJJIxl/muC5OS+9ehG9lKCogqeeuIoUyki+yWDnjN039ji+d4hdMUimOe/+6B3yaM6l6ws8cfUc\nJ7cjJocZfuIRZQGD2ZjYDAmdOZP8jGbb4cryJUZHI5LEpWobaFS5+caM2z+bU+2co9RZYDyYkvsx\nN268SxbHXD2/yObiBuOzKctLK7izT58l/rkHAd3I6ToSDVWwUtZZqdW4urrMqy9tgpUizJg0T5EK\nyHOBjIWUPSLhOBymVJwLHH40JJgWhJ6PSDIcSWfv4z57W8cYlkFGgaYVSKoMWkJOjFaxGYsJq8+W\nMZogJSb3P5py8JGLpjksdbt4JwknHxdoOWRJgO1oaJqOIjR028apWHTaHXw3wi9CKu0SvpbycDYD\nR6XIMhqVKtNBRDTNadUWKRk27knGZMelGBUYZBiq4MLqefQ8IDoYocxA2Tc4Gc+4ufcxv/yNL9Be\nE3zlHzyB7Vic3g+oqxXK2ATjFK0iU66aHB7sE0UBdx/skGmCaObTdeoMd+c8/OAIbxag1xrMJz63\nf/KQq8stHK1MWzMIpx5SkuKNXJYXelTKJvsPBxwfDxiduo/F7td+/auMwxmTYMr2rQP+3hefJ55D\n2awQSj6tnoVSzHGEjloIXHfED/50h4MbLk5WZf+DPg/fCajbbeorLW7fP4YoRhRQGILSpkTnSp2X\n/uNnCF2Be1/gHwfUNAtLtzh7OMYfRHz3n7/OD//oJ1SqKoU6p1rWH2tvGPqILMXUDUxFp+RrZCcx\n/lnCna0H/NWP/hr0HEM3aTdaaCWHdqOJPFaphFXCWcJib4nFZhsplzEUk8loxumwT4FJFsg8vHXG\n5etX8fSYZ760iVWXKaNTqth0VkssX2hQL5exTYGjOyhFhmpMqdVNpqHPxnKX+Ttz/A9MvHsmpwcR\nYz/k6tULGBXB8y89zVE4ovtEhYPTB2zfvUddAkuT2Ts7BlPj3/7Zz3hwOMCdZ4zHI3bu7LO99fBT\nffDnHgRMdHS9zNbHI268c4/B6RmFmjN2J4h6jFKWUCUZ0zJQVBlJkrAtB10z2Ls34J3vvIsICkxF\no6KZWKqBG0SYjoJuqFimhqrIkGsoqoypmbQ2GuRaQLlaxmgXNK4avPjrC3z+Vy4g4oS5O+fouI+u\n6uhCJQ5UhCwTJwlxGJGRo9omdqVMmKSYlk7NKZOEgjIlWlKNFksEJzKltkU0BOEJ/KkPioRl22i6\nTVFAo1wmONH56KdbLLV75EJBlUsohoYs2fh5wiw+5NK1VWQ7olqDq1cXiZKEo7MRbhgx6WdsfTRn\nazci1jS+8NLLSInCykIXy1SpdmxkU6IoIowiY340piIpTIczjkenhL5HZ6GKbgqa3SpTb0zgSZwc\nzuh111Ckx5NU5obJ0uYSb761g+flHO/tkPkZp/0hl66sYUkJ99+f8OGfH5JMUrJwwj/5ja+TuTK6\nImFqFeyizO7WKVImEfgZWqBRtZrYnRQ3daEyYjTbYrw9pNWuYtYy2k/qlJcVmut1CiejVi3zla++\nxHQyR6QyYfj4vWaZNrZjkBcxkReRuAIlMZgfuViFTalhklclEpEzmcxRopB6uU4a5cwnUwxURCjz\n7pu7ZGOZwjfQbJOT6ZgkDxFBTLNZsHdwj9ayyd139ojmObldIKkKwWzEe3+8x/Jih8mwjx8ccfF6\ng3qnxtib8cQXOoT+gKIP5bSGcmTgJFXyIiBXC1Y3V3nzrQ84ORlw3D9FKjQmEfzl4V08NcSyZLbv\n7PO1f/gaux+eoQoVXVfxYo8n1q9+qg/+3HMC/kmKLquUO23c4YgkTsn0Pt36AsVUJYwK0DQKIM9z\n8qIgHscomoIiK8STANuwIBPIhoZuyMRyQkaKLGkEMx9ZqMi6gmwp5EFBq9GmWXUY7Z9Sq1QI3YKt\n0xmjh/sYik0hpZy7sMrO/T1kkVKydfxZiCIEuZqhqBLubEYQGSAEAkEkMsIoRfYViiLF1RLiIkZf\nXSRy+xiKBkmOV+REYUBZLaOlGnpqIqc5um4y8QpUxcL1PKoLJZB1iFVu3TpG0gWXntjgrbe3COQQ\nVRGEnqBeq9O/GxOdaGxcXmLnwZjDvbewSxpnkxGGYXLl2nlODsYcPjzjxefXKV+tsLK6yk/euUuc\nasS+iyggz2F+OqVklQjGEYtrXe5t76BWHk/hvbt3g4PDUywbbnywz3/5m/+E0cHrTIKIJJURac7q\nio0cm4hIZvdeyFt/8m/QJQnDtkjmEYGf8tRn6oxPfJRQx5tniNjFPy5YtSq0FxtMplNe+HyThwOf\nznKFqTvCXtOQNODMRJfgve/fZfnZFr4YkX6SXhCAIJ6jWg5JERFEGbppYtkKaqowGM5oLqlIRg61\nnGcurhKlIXIWMI58euccVCTG/QCVMpai403nxKQUuYI7ljBUjTDxMaUqJVPjJJ1SWnDQU5liFNJt\nLFAcD/jr/+WIME8pNwuqyxIaPpNB/Gg0e3UBdzpBJeS5V9rcPTrk7s2MjSeqJImMbupM+hmRJ8gH\nMZevWaSlVUTi4819ijjm3vtvooQK27fvE4oxumlitMqf6oM/9yBgGw6TvQCjLjB0B6WIWO8sc7J3\nQjbNUdOcQlLJ80dCI4okQwEiLsBQkFRACAzFJE1TQhGjWRK2WSJJUio1iyQtELlGIIfIWsHx0UPW\nFxrUaiY770+QYwnDstFzm0KHaquOm/kIXSeaxDQMg0RRKYRKfUklkQJEqJCnIAsVbxIRRAW6ppEV\nj66TummQzSJObpxhKxXyIifwQ9SSRb1iUO3ZeIMZrjchznLkREKkAlSJQkqxLJnxzKXRMWivyQRZ\nxPd/8AHt5R5HJzPamkN30WF8mrK0vsjg9GOm/owoC5BqNsk0oVJrsLO9x8rCKo5lMjoDPwhw04B7\nP7rB6Z5ANiMkLaWim8wnKb1OHUfTUXopczHm/PUlpsM+h4/BTilkLp3bpH9wwEuvrPHmR29z/jMt\n3nz7PiPvAXkiqC6omJJC6gpG/Qg7V0klgaLICClDWAlUSgwOfdZaPQIzIfIL6lrOYCskDcbU12Hk\n+ThViUwpuHTlAj976zaGZNM0Wmy9/5DmhQbtRQv/rMLUnzx2r1VaFvVWDc9T0W2VxPWwbZVSo4rt\nuUTKmcEAACAASURBVLSai5QdhyzxOTzcw5QV7nx8RLtngFEgJB137KIAVGIMW0LTTQw7Qys7+COX\ncq+HoWsIWePKWpf77xxw8tYIVcqRJQMvyEEI7EqFeBSx8OwlpuyxubbCx9/d4ab3ECWVKBYMutcW\nmdoThjfHUOQU8oQke0R1WGQC+5LE3A4oKxYnbkGSxCxvlHDsgouX6uxsTZCUKmejKdni9FN98Of+\nHMAHr+8y25tztjdiuhMx21Nol8+hxAqRGz8qawgJWVHIi0cUSaqmoOoSQsmRlYJUJGhlg0IuMC2D\nIAyIopAwDBHkCDHDtFW+/I9f5cUvP0ukzTBrBr/w2jOPsv5SRqliojcEbjJjwhQ/8ciNgtZGjdKy\nztr1RxyEUkslUyHNUrI4Q81llByS4JGQhh8ETCcu7XaLKE1R5IQkjLn08jpZnqJaOd3zJqUNDaWn\nYy9AqWVQ6hoo9ZjKosRTnzvHtc+d49rn2jSW6rhBgaqU+OjdPdYrKyjCZDp00Uwbu6Ox+vwK5RUb\nraQjkbOyvEqRFXzhC6+xuNKh2bZpdxwcZ5nlxRcxWMaxbOS0wMgVKg2Hbk/BqqTIWsKLL1+hUhaE\nyYiNxcc33zz3zC9QCAnJcPibv9jGNFTK3RqvvPYCtWqVWq2MO5UZHvls3x/QXDHorrUolSDPPHQV\nuqsK47Ocum5RJAVxPEUrRchOTGelTq95gf0tgwob6KJOEjn8zfdvstRZpLfQodwtU12q0btW4+OH\nd1A1qFYf3xijYPBg+wB/ljA7CXHnCZZT4c6NYwpf4HohR4MhqSQo1cosbp7jH379NSJy3DDAjX0k\nySCdx5g1nUwumD7wKJub2FYZx65w684+9+4f8tHWDY4ODsGLyZIE3TARRUbJ1JBMSIhRHBvdWCB1\nK7z9r7chMFAzQQ5cfHaN02jO5QsvYPs1vGGB5bRYbaxiqjatTp2ljVWMUs48nLKw2sSpmWSSzMm4\n4PhBid2fzhlux7z88kuI+O8wn4BR1ZAK6VEdW8mhyEllmVT4qBikqUwapkgiQxISsqQgSwqGqaMb\nKnN/hq4r5LJMqVNGKUvMhnNMR0fkCUphMD/wePK5pzj0HhBnCSLPWHvKpiSXmD3IuH93hKZKJIpC\nqQlCFtiOgW7ryKpFHibIusLx5IxKy0EkJuG2h5RKaHKJdJYQJwkSgjSLKDs2kg5qWaFQoNY2yPKE\n89cX2Pr4iPFRRO+igaTHyEKh2lhkcuJRXtAx9YIkC1HsEs1WlzgckcUxezs+m5vnUSODN779Dl/7\ntQs8mPSZpAF+LOMOEtqrdaqdFqE7p12xsEwVSSkoV5rMZi4Td4oVGXhTj8w0GY0m1FsazbZOngkq\ndon+2YD19U10xWQe94myiCxR+PH/vPsJHO1Ni6u/0GXz/DJlqcZ3/uB7qIqFP08QcsrnfuESWZrw\nzpsPKHcq2FqF8UmfIpYwVDAUFbMqc+f2nKpto2sCTImFSyb9kYcUS0xPChy7TBRGRHlEpeaglmSK\nckG1K1Fz2mRFjI6KJiTkouB4Z8L9H3/y5LMuafQWFWqtCq5fcHo6xdBkRK4gFTKhnFJZLdPpVDjb\nG7HYrmO3qyhyzv7xA8zC5uDtCRtLbaqrXUzD5r0f3kHoMnN/RrVqI+sFyAKzK0gDFds3GR36VMsG\n/jigXHFICpVQpGQEVFccFjagWykRj01+8ucP+Mo/epnDyW3WzjcZ35rz/vcmLH5mmVyP6J/2WVho\nMknnfO4rTyJrHm7g4nsehm5x65aHZWnIkwRxJBgFKc989SpmSecv/9lbfzcHiAxh4WgGru8RhCG2\nZVAoIYbmkGYKRZZiGyaqYiMkBd0wUBWJoihQZYlSyUIr66QkGE0FrSphOCbTqU9WSERphmwK1LJL\nqRWxvmmz3DNJR4JoJLGyvE69VSeXJFRdwZ/l+DMoYkG/PyNTEoRZICk564tNmBUM7owp5o8aPooM\n/NCjICMnwzAskBUyM+PKK5tItQzqIbULNr40pbSU88xrHXrLCwhhkwqZ/dOHmCWZYd9lNBpjtSxk\nS0EqQkI35PSoz/rmMhIykZrw1NdazOUx5ZqM6ZhYpsJCq4wjVESQE4YR1VadVERsbC5iOwqOZUAh\neP6VOuefkilVBStrVdqdMu1WlyyTieOQc5trJFnB6fiQckMgDJi7wWOxu/hED6OQ2N/e5Y2/foPE\nlZCCgmvn1/js8xeIRUgihTz50mXOX14kKlzMiolmyui2jF01kBSwTZ1SQyNIUtafWGIez9BMnSxR\nabdbpNGcesem2aoiSRG+51OtG6Tzgt2bO5w+HBB7j5LBRq3KpVefeqy9vc06lV4TrVGhublAYhYo\nZRO7XmE2CdnoXcAdurQrPYoTiQdvHnNy7wHe/gRppOMfQ69XZzj1ufHRLT586yaSyMmCmIZTJvdT\nxMzEO0gphgZK7hPaE+pXE3JLQqvLjGYeg9EQQYGsKsR+jpzLuNmcRJ/wzC8ukugetbpGPPK5cWvI\n819foWzKTO/6WLHD5OGUumxz+2f7WEUHzS4xm2VEgccTF8tkuU9gpFz84mXaqzalqsHQ/Tv8HDDa\nGoEIuPLSGs2VJqnk86u//hIiT0mSGCmXiAufXE6QZJ00T0iLkCRNsCydIAkJpBSrY0MpQ3ESZCMm\njwRFLoizkEvPthDWEN1WGY1mmGWFLNI4uOXzw+98xJNXL1HvVZESmbJWoVtrY6h15FDi8IMR0Txl\n3J9xsjXBQtBplkDOKESMaSs4jgmioFovo1gSel1i/YUeR9E+nfUaaRGxezhj5s2JREEipdzfP6BU\n0oiznOXVFiXFxomrhIcKFb2N45Tw/YCcFEnVmcQub/3wFu+9fofb7w2wnAonszmLay167TrEKZqs\nMhn0SYKQg8Njcl3FizK27t5gMj9lsd1gNMsxG0tEqYesRnjunCxVWFhawSpVcf0UIWVIukyeGtQr\nbV584bXHYhelc3RZQ8kVFhZrXHyhg71QoLcVlGqGbmn4eUD3Uo1ML3D9OcNDFynJScKcVORMooSN\n621yM8YqgTucMdjOyV2BZpgojsDtZ7ijOSVLx26ZqJbAm6aEg4SqVaUmWzy5uUrFKHO6v8POg48f\na2+5ZHFy5lKq9hiPXRrtJrVOm06rjRTCYOuU4ljijT94j9mxRxEIri28xMGtGadbLqpk0VpbxAsS\n8lgQzSKKNIe4YPPCBlZTwmrGLK10mQ4CBg9kJkcw6Muo5Qi1AeeuL3H91SvYJY2ybCOnEpWyiZ9l\n7PantM83qK3ZlHol6r0lLr/WpnFVxtlwSQuPYp6xsLLEpSfPUzfKfPzTe9z68SF1p0qrvkIcZsRR\nRqNbZpSMkKoK+/sH7N5/8Kk++HMPAlGac+6pJaQ2vPLy8zz1wiI52/yDf/oceQpFplFbsjj3fJuY\nAEsxqFRMnLKgkBJKVY1qV0U4GX40I/YDllebvPDaOST9kd79LJwS+YJolrDQqeNNQxYX64wOXaRc\n4wd/8lNSVyKcRmRRzuRsxujMBVennFrERwVKotBZbSKbBUZdYJU1/Dhk/eI61V4VWVdIooh6vYli\nStz6eI9oGjA6dSnpbdaXW5wdJszHOSdjH8nIyURAs62RZjHvvb1L2J+SuCFxf87g+IT+7JggEZQb\nZXb3DkmzGD3PCfdlZn3BQruFkkYsdhyuv3KZ3mabqT9n/dwSXugxGLlsP3jA5uXzmFUD3dT56Q/2\n+cN/9S4P9sZ4hU+aJ+zuPeTO9hbIClGS4McFp2djtm73ef8nD/jf/oc/eix297amxIVNpkqkRs7q\nlSpyJ2f9+fPcOZ6zvvkMlWaDOJszP+qjZgbNuow3T8nyArtpUGlYjOcjclSCKGc88CnmCtFAJpyG\nzMZjNlZWyaeCfJ4iTyVyryA4CpDljERknL96jvsPz3jvjY/oaDqV5PHb2rFKZEHA1s+2iAYeNVGm\n7TRwjDJlx8CQZLJhQjbP+J3/8bdpXarwo7/6G8JZiKLIuN6YiXvG+qUGSfRIKUvkArWQ2d66i91w\nqF8oMWXExc+s0VxXWD1X5sKlDqMgRFF0cjkhDgMi30eInEJK0ZyAIvVpGYvc3dpjEoyhXOHuw9ss\nr/Z4/2f7TBKXr/3nzzGJAxafdJjEZ3z2Ky9w+doGzz91haX2BlEkEUU53XYd/7jg/s19IENWFIxP\nbxj8+bMN/3d5wvnPLmDaCjvv9ymVawij4Gc3dihbLcw6VCpQP+dw7fkn6T+cMk8jKAwKWSWREtwo\nwbQsmuUKRVJwcjZHokDOZeJ5jJzLFFrC0pqFSki16iCbPkERYhlNwsAjDDIsUyUXgjR+1JykyhJJ\nGINQ8cKI1mqNQkgsdFdQNI1MpCi6xHg4InRlikSQ5QEz12fzQo9qvQZqzGQ+xrYFIksxNInlhQ1M\nzeDoeI4iCyTZpNGqE2tz2ldNQgJKSgNig7P9KVJe4Kg1apZNMks5f+UKl7+4zO7xGaatMY99+v0J\niprR69WxDJXYd1ntNWnXS3z4YJeT4wF1W+LF6z0WzzU4i+YkWY5AxZ+DZcPO1imIFF0XyBgYhkVv\n4SJB6OEd/jefwPGXfuOv6I9PqLcsLCGzezpisV7ibHBGe2mR/nAfW1cY7R1z/w0fPVOZuQrdWo1Y\nZEhGRjQTnN6LkLOccqmGP40oaTWSOEaRNXorHQ6396nVakRpgu8HNFfq9C60EMB4EiBpCffvnHBl\ns0uRCipLbf7Tt4efsPdfvXiO49sjinHKfOgyOnTZPPcED24/YHQ4J81yDCQ0W+d4NOLlLz7P1od3\nKTVbhHmCaueoakYqfBrlJq4bY5U0LFshVnMqPQc0mVkUUakG6PUKD29OqDotsmHC8CjDG4RkfkaR\n5ORJxoWvLrGy2MQ/M7j1w1MWFyqE2RGnhxPsdoVWfZGV7iof3nrA/smAhSsKZinnwx9O2Xu4S/t8\nBVSd/YO7iCxBFzrLnR56YTKfB1x87gkajSrRfMpwK/67STn+4X/xEnv9u2iKCg2PWrdMIhWYcpez\n/TM2rq4RCx/bUVFKEUU25fJrHRRTYj6e02x3cN2AKEiJvBhF0kj9FEvOqegKluIgCZ29hy7NtoVl\n5wglwBMRme4QTWViNwUhkJEoOQ6SJgMFOQWKrpFF0K42GZ6OaJc63HpnF6cr40U+iTxDlk0Qj4hM\nsjCh2iozGfvMRgHhOCabF5ixjRRIXFm8wtvfu0seJHS6LQb7LtEwJ00zWssVPC9g6CYkoxQ8DW0q\noQJTz6du1fFmPt7YxY9cFtfXORsfk6NRb/Q4PTlCkFGrmATehI2NFpE7YzCaYSoKJV2m3bCQSlW6\nrasMDgaMJgExOUUioUoqi4s94ihBVS2azRX8wEfRUvq3/6tP4KjU/nvCaIJ3FFHVakxGLkItyEPB\nwc4RndUFsiBDy+Hicz1cyeeVX/wsH33/Do22SmMhRc8aZFGCLBfIKkxGBVEQI+U5oZ9QZApSIgiT\nANlUWF5dIZBHBHHIeD9ieaVKpsUYTkIWarRWzjErJP7pu5+U3fpvlRkluYxWaFh1nUobdrd2kURO\nY8kkllM+//dfZe/kkFa5RqJNeeWXqrzwxXNkmsR04oJUoKkl/FGAVnJYPNdEacnMs5BKW6fIYzQV\nHEuiZEgsbZTRI4loFJP6UNYt0jhGRiaOE0ylxLt/s89oEmKYGq0FlSfWbA4eQG+hhmbpqIoEOjSb\nBgfbHl4CvVWNZ1+9xHg2Y+YPsE2DPM4xDIf790/Z3TkhTjOCZE7kxVRKJkcfzh8bBH7u1YHP/CcN\n9k5diplBoafoUg2tAO8sRpISJCejetGhbisYhkrdKjOea+xuneAoCkIRiEImy2A8HKHogla9hT+d\nUS3rnBwGGFqFcBaRqTn1FZknn+2ydzTkaDtGzCQ0VEQiUSggyxKFkqHrGpZt4PkhkZujSTqaqhBF\nAZWFJq3LZcbjfZbWV3lwYx9mDsF4RhZJPPP5Ve7eP0AKNPIooVp1SKMcJJlCEgRewrkriyhlhYc3\n92k2q9grKtZiQeLD3E+QUbAyiWIWMws8nFoZMglZ0+hVOuzuHdN6okquBeSFTJHnXL1ymXc//hlf\n/OJr7N5/SJq6xHHINAxp1Gto8aMbx71bJxxtxyxdrKC1YTILsVWTaBghJzAczdg8t8rWnQMqtoJa\nkTh645Otw1rZotVzmJzNqLWqVKo2qy91OdvapshytK6DY1qMvRmyIbi0+QJv/Mkd3N0J116ps/l0\niq5NUGULw6ySJx3++T97H7Mok2UBsqLhVCrEwaNTeqHbpj/oo1V0jIbEdBbw9JcWcIMp3kRivdxh\nOk85Hnn03/lkr0Dlikqt0SYYuFQ7BqWKwmgyQXMs2isljo6HvPrF54kCD4sat3Zvst5rcnIYcHh3\nTLlVIc0KsjwgOUspLdRRHYOB20e3ZSoNHVEIlFzl8OYYJ7TxkhC9qmMIgTfJ0GUTioLAjTFUlSxT\nEbqgtmHx6pefIjX7dIyQ030b3UxJJI2HexOEk6NlBnkcopoqlaUOmmrgjUaUjCr7wwPUkoyt5ojE\nJpurnJ2d4jQNBmdz2l2H+3/k/t3kGHz1Nzc4HQ+Y7OYkwwRZ0qh1asymE4RQuf7iBQ5mu0iKj6Tq\ndOtdDu/PUQqZRErwfB9ZytFVg3mYUnFKaKrAsU10SUZ4Bndv7KNrJkJKQUhkiqDcMEn8EE01yCNI\n5xmqpZLnBZV2GU1Rmc6nlGyH2dxDEgrLy8scT/ZZXKyxvz3m+i+tk1dl3vkXW+iRgmbpGGYZqxaS\nZAbEGfPxnIVmi0JPSZKMMEmZz1OMigRGjpZqGC2T1cs2aAFbN0OWuzX6Ox7dRZN/9PWn+cG79wln\nLv68QHgBVbnOva0xeksBXZArBWubFTJSkiLG0A1s0ySMQlwvIvZlpEAm3IPUULDbFvE0wilJ2B0D\nNwyRyGmIKvE4ZuzGSOajeYRaBbx0xsOffnIy75lfvsTJ0S5BX8K0dRqdKoNxn7qjY3cs7t0bc2Fl\nAWwXq27gjlKO34+wVJW8lfDZr9o0lQ6drkYQeujyGC1f5yffO+XmTRdJT6g4FQzNQTV0Huwcojiw\ntN5kwJiv/MJldkZHHO+EzE5kXry0wunREaECOz/7pPbA019bZ3l9hTDwcZMpKR5WzSJOPWRZUKu3\nkCVIZwFFmqFIDkkyo9Vt8+N/eUwuIvSSRqFKkKV0nyvzcDpkY2EFS61x462PaXRlPEVQqzTw7yRk\n85hCytA0k1KphigEaRQTz0KKREbOBKok8M0ULJXP/0dP01mXObh/H8mNmPg5K09c5C+//yFf+9qX\n0WXY3d2i0qpxerBPo7tBXsR4SUZYDFhpLTxSnA4EqOCNXLxhyOrqAj/6F3f/w0aJf/M3f5M//dM/\npdPpcOPGDQDG4zFf//rX2dvbY319nW9/+9vUao+UYH/3d3+X3//930dRFH7v936Pr3zlK3/r+kM3\nptZtYSoS1XMO9z5+gOJKVHUH7Aq3P7qJUpMptwxO5yEbGwt01yrcu30XTWRoioShVxACOo6NU3M4\n2hvj9yPmYw9TVzHKBppW4FgNkkgg0oxkGKCZJpFbQCaQZJnQi5AVmfHxFEkWyGj0hxNMWyeXU8bT\nEY4jo8gpSVyQZwlZoSDLMueebbK9O6RdMRlMXYLMY6FZZbHSon86wIkshCpT5BlqVcLpKPy9X72G\nF2Y063WOh9vMvBK9sk7eh3Sasj0JOTw4ZHNzAaQVvPkQaZxzvD3Asgo0qcnVq+dI9ENyeUit3mLm\nZiSFTBTHWGaFcrmFWqjMzzzmTPnsly4yDGe894FL5gqKwMCMDdRCRjNMhG1QzPs0Sw1Ojwf4Zzbe\n47U8yKyQ2kqF5U2dyXAKukexr6EZBmqs4eQKWiFj1iucTs947pWnmY5u067KUK/w8Y0xr31GIS4q\nnI4Ed2/p9OdbDE5TFjeqJJ6C2dBI+hL7+w/RNANZKjBWNJZLVXYne/QHLqVyCy2XkHMBSUyuPl5z\nb9SfsLTaoTDnRMWEwWyOFghMQ8VQSnz4YIeNjR74EY5pMxmO2duO+c/+62f4gX9EkSgkSY5paJRW\n6hhKRqdss39wQNeYcXFjkWnq0i1ZdLoNOuc7/On/+mMMRSItMmbxFHKFKIhQhYKcCxKRUlJ17MRE\nMTR+8oc3qD/X4snn1hlNbmOboOUq0lTmxz98h6de6NFdbpOFPhtPnEMkMjt3Y8qGxul2Rj/YRtEV\nEAq5kZLmOZurm6ia9ak++O+tDvzGb/wGr7/++r/z71vf+hZf/vKXuXfvHr/4i7/It771LQBu377N\nH/zBH3D79m1ef/11fuu3fouiKP7W9UtymclezOTA48a9+ySJxCScM/ZcRof7PPPkU5iqQxrmNJwK\n77/1ESdHR1g2aLaKKqmEowT3MOJsa4YTV9B8k+QsR5mrKLGMyCXshkVQeKTFnM5aizjLyIqCPMkg\nKRBCYKgmhqqjKgoFCoqioCgykijQZY3YjdlYW8daKHP9719g9/Qhk6NjNr5YgxWPK7+6wPFowvUX\n1ll5UkNp5WSlmM4Fi0rXIMoLnnzyGleebaNpMm9+/z5mEwbJMWE2obvSYOPlJQLJQy50pEzjz/+P\nQ053x3ijPuF8TJBNGKU5zcsVyhsJu7MbWA2bct0mzkIkITHve1TUNtNRTKVUI1M8zLWMJ35pBa+k\ncjidY3UtnGWbSATEboGqWfhpTK5mVJsOY69PvaUQeR7N2uOn8qJ5xNmBx8FwiOyYDH0XWcmRNMH+\nwZzmkkBpxhzP+0Rpziw+4nNfX0BZE2RqzPmVZfYGPv/2/5zxV/96yvYPAuY3JF578iVqVhm76uDO\nEg6PDlEVm0ykyIrOQnsFNXdYrF+i015DtVW8rI8k+yR5Rhw/PhUexiGSIeET4sYJdbPOhc55vL2C\nZChoSQ3cw4jcqmC2lvFik2CY8cH3x5h6RiylBGnGaB7z9Oc2Waus4b2TIo5lRCVFaibYpoXia9z5\n3h5/8T+9Qc2wMS0H1Qe7sInGIZpiopdNhCphOyXiOEW3bcIsIpslJH2Pn/zFB4SBydLSU/zkzz8m\nGQievLjJ6fGIhweHDCdzdvYPefdHO+y9ecKDvzkgup+SPZSx+iWqkUnHKtOoGwTZhKH76dLk/94g\n8LnPfY56vf7v/Pvud7/LN7/5TQC++c1v8sd//McAfOc73+Eb3/gGmqaxvr7O+fPnefvtt//W9Q8+\nPMU7yx9pvJ3m5L6EjIwiaWiWxnDUx+tn5HONjtom6sdEwwjhCtIE3LlEyaiiUKZI4f6dI+ajGVJe\nUK2XyBOBJArceYKmaeQFRFpCacng/AuLoEIqCnRNRVZVNE1DUTXMqkOpooNekFBQqVdortkMkglz\n4TMc7WNqJbJIxi4XdFvLuNsuUqzx4dv7zEcqEzfAT31ai1VOZnNyDbZPbnPvzQHiVCfycl7/9j0k\nUcLQLfzpKVExplq28f0AqchwyibRVBAkKY16HU3VEYrM0oU6SxccqOaga+yfeEzmOcP+lE6jS+Dn\nNBot/DAgA9JE5nh3zodvbpP4Eo6scHbfJRgUaIXE7MxFEuD7PpPRjN6mg9HVWP+sw/WvXXgsdoM7\nAWWh40gNVnrLLKw0qV1VKK04OKWMTEBYJCys1rlwvs1kOCZJMirNOp21NqEpI7VWuXJ9iXPPqShl\nied+5TxhzeXw4ZyDm2Omx8mjQSEkZEvlH//2a1ilhEKknAyHTE5miFhmeiawVJNwltNbWX6svQvL\nbd7+yU1SPyMNFPxpwJ2PHkImE8xyptOEyXHE0daEH/zZW5wenKHEBW//yY+RFRldEZxbWme91yQx\nPPQ2TAc5pmtTzroM7gmmDzP6d6aomYaOQhKAqdUQuYbn+WiqhGXaWA0N2cqRVJCQSKKIeA56YREe\nhzBSyFKJ7//1+1x+/gLf+O1fwW5XUIRJHMUMhi7hmUIyyKlVVJY3WiRySiAyBrM5IRF6XaXQJWJC\nWq32p/rgf1CfwNnZGd1uF4But8vZ2SNm1+PjY5aX/18AlpeXOTo6+lvXUjUJ1VK4eu1pllbbhFlI\nGGQUsUSpUmYauYhIMNoLON0d02yUUWSB7wmKqKC3aLNyscWTL7UwewqWU9BttlEtFdkAFAmRqxQz\nQbvawWnpzCcnUP6/2XvTGMvS877vd/bl7mvdW3tXVe/T3TPTs3NIDhdxsSSCMSlCpOJEkZ1PQZRA\n+SB9SgQhyccECGLBsCMYBASZlBXLpijLFEmR4yFn75npnt6rqmuvuvty7tnXfGjFgTE9ShAHIQHN\nHzi4wD3AuQ/O/7zPee/7Ps//n3D9nW0QRGRVJkp8oswjiAJWz8xhlAUs30PSBcqNEqkeU18rItU0\nqmYeTTfIfJH+PtAxsAcZoS8iSiBFJrNDmM/XkRKJd98aoOkS567MUa0ZFPICsuSxulHjkx+7RL/j\n0N2xmYyG5G0BOVaRJJFqtcBk4nPj+gG2l3D91g55o8rzL5yjVJExTAlNl+mcdDC1CrNpSKFc5Pbm\nHsVqCcubMfUc8sUKiihTMqvMugGzfY/hlkXJyFEqaqBkKDmJ9cdOUW3lWblQRjN12htV7KLPg0Hv\nkdxJMTSq8/S2xrzy7ffZ+l4f0zeZHU/BTZlfWkUtSUy9Mbm5kOaiSXc6JUkjXGvGZDLGOo64++CA\nrOqhnU7IihH7R32sXoAmqhAqJLHEwnqFjU8s8PbW69w+uIU9G2AoOpfOX6Ag6pxpF5lZfTJZZO3U\nyiPjVUspF56ssDBXoWbEKEpCa32R+vwCkizh+x6VUhWrZzFXK7E030AryhSaZTJZRFN0chWJM1fb\neK6F4/t86eufYtK32f7JCcJAxRvYSKnIpO8QawlBIDA5GhDGPoIACAK2P6LSLuLIAbboUJ43sV2P\n2AnwxYCwF2GIMoqQcfrcEnpT5drmq8i6yHgwRpU8Nk630IYpsWsT6zEux1z5xWVe+LuXuPDxT//Y\n3QAAIABJREFURRYfq5MICqGQImsKt96786Fj8D+4WEgQBARB+BvPPwq/+9fHdGhhH1i8+2fXmV+E\nF798GgwBORGZ9CeUmwYzwUbKKUgGTD0LI2dQbBvEAgiKz9C/T3PZ4st/7xxjy8H1pjiRhxt5CGKG\nIgqomc7muztEg4SgJyB5Ok21heSCLAhkCTTaFQoNkac+M8fAGaLqCWYuh6oJxG7Endd26N/vMDyw\ncQcBqmiy0Chx86cjbr/6gE++8DSuG5MEIboSc7Q3II58KhWNVIxBmeK5CeMgQZYavPqdfe688z7R\neEw1V2brmsTNNzuYYg49LzGzLVJC8hWNXn9GoVhi68Eem9ubeJ5NHECz1qLdWKNcbrPcWsb3bb7y\n9c9gxxMkM6VS1+j09zDViDDo8LGXruA5EbVKg8JckfpGk8LpKpGpYAtDausKpXmR+fkct18+RLMM\nskc35WE7Pu+9fo9o/HBFXI9UBm/YpF0oVDRefW2TgWXTbOsIWoSRl7HGEY49xZBl5InPne/vE04y\n9g4C8msCneMDjl8boqoimaCQhC7zq4ts7hyxde+AMEr+ut+iBrrCNA7oTrskiLiSwbO/9Awz4YP6\nggBKQybNCbhCgpTTqbfKHHf32dnZZzqZIWUiU39GsVF4uOgcjZm6PtOhzXTi4PoeN24/4NrhTV79\n3h6brx/ywz96nUSEQlHFrARYowjVlLn02WVaczWKBRWEDFlQifyI+dYStfkyu519im2D2mKBMBQR\nkfjKP/gFGmdFrnxqgWq1QHc4Zv2x08xmHZYaNW6/+zaT3gwSidf//AH9cZ/2+TxXn1vnl/7ulyi2\nDdqP6STFAY3lOswUhq+HxPcEvJ0PN4/5f9VKPDc3R6fTodVqcXJyQrPZBGBhYYGDg//LEvrw8JCF\nhYVHXuN3//rz7S+/wBs/ucX4ZMjGxjk2D1waC0VK+QJ9r4dcVsCQyMYZkmXiHk1QcwmldYG4lOHH\nIaW8ymyWoBs+z3x6noObMz729NO88/b7+P2INE2x7RmSKOFZMamSYngSalWgnm+SV3JsPdhi/eoK\n27v36fjbnH7WZEVe5c2X7zKNZZI4I29KqJmMm8zAzrG/N0TMIkQ0wrHAP/tf/grJyIiBZruAIMSE\nEXR2pyxcUbh7PKVRbFC0BKxkglHT6dySGG45IEKlWcKeegRCRKmqUyw3scIeThgjoDDfXsI2Jsx8\nD1krISgymR8zHu9zuD9EcBJOrbfZ3d/EMFVq+SrTUR8tEzC1PBsbj3FyYuHaAZOhhUuAX9MoVMvU\n1hSMoszxbocnnzjFtbfvkBBTKuYo1RbZ/PEHOZQyAU03CcKACFBUBUFXiEQf2VB4+rkWU7GPnELJ\nqOKNpxSEEnZosTPoURcrLJwT0Co+ZlZGNgMOOw7P/9pZwqOMO68eEooJ84+ZLF95mv0be0jjEhED\n9o9GFGsJohAz6Dqs1su4rsODwx3k8qNFUGQJptMQWUnIFxcJ7DHPPHGJt169x+rpOpZlUa1VuL+1\nR17OUyzk0M/nGWx6ZInBl//+p5mpE4bWEUnk8eC9IWuPL6OtjBDzMbad5+PPNLj1wwOWLhdATti/\n38PMaURTF62gsb93wKnL82RhTOzG+LHDdJAyv1hit39McSHPrBhy+vlFZBZQcFAFSIUZkW/zxV9c\nYW/PoX2uSCWnEgYWgTrk/sl1CrqMGibMzy/x9g+2GN8LUBSVJIi4/OIyP/n2/qPvy/+zYf/v40tf\n+hLf/OY3+e3f/m2++c1v8uUvf/nfff+Nb3yD3/qt3+Lo6IjNzU2eeeaZv/Faw8hh7nQV58AiVBJW\nLtfQiwGzmUdDKhAlKZefPMWDlw/o7HaplPNIQOILbDzRpjcaEgkZB30Xz/WRxITLX1hFy4eouxKj\ngylZLKIoEmkKsqySihlpluGFHqVaiSCbsvz4HJnqsHZxiYP+XVqtBSbjLqVTBvVahaWFU6hmRrsp\n8dM3t1CqVSadGc5QwjRSzIKBZbmIkkEseKRmgD10EDKZ5bNNskKEOgmZBQ6ZFqOKebIw+es3eoap\nqWSZTCGXJ4x8ojACKaTRrKN5EaVM5s5b91i+2KaYy5NkKlvbh5R0E102KMpFhqMZh0KX8ABKZoEd\nK6Z+qkCm6Bz3LYaT+0iCxIWLp5h1pxR1jclwioqPUEw5GNtI5ZTdkw6nTj/OxkaN1155mcZK8Eju\nMkEgJSSNU2RRRBQyUjFFUGREReeB41Nc1BlZOolo8ub3OuTOGAi2TLtcIJdzKOQUyvkC770xYqWt\nUL1aIoh28asClTWZhlJlFE9ZrRfJ1IzxrEttzkBqijieRxYl1EslCmaOcfcEvWCSxo9+602nAwyt\nzmg0JQokimqe/uiYuRUI5Cl25lHPF1g+VYQ4w5l6NJcq9Hc9Esdja3SfuCAQuVNEMYBiSv2CyMBK\n8ffyHLw/5sqv6Ky+UGTsDtm9ZiFLCuHExairD6XqVTi830U2JaIsIotSlEykNxyiexlTz0a0NF7r\n36RVq3JqIY9MwrA/oKgb3HhnwnQaIVVTCvk6zXqD4+MtTi1XcAKTvf0RnaMxg8OUxdMNfvnXLvPG\ntZ9QbH24xuD/bRL4+te/zssvv8xgMGBpaYnf+73f43d+53f42te+xh/8wR/8uy1CgAsXLvC1r32N\nCxcuIMsyv//7v/83/lUASFMbIx/z+Bfn2N6cEuonuGOdw1tDqosalhxQbhjMn2+w/84ASYHA8bE7\nYL3pUF82sD2PnCESRgaKbFCcm+egM6Y/sYmkDCWTyBAeTjFJyFfyyLrILHYYO0MCAlbWaiCrCJmH\n7OVoF9rsTW5TqGgUWyXUsoJj7eFGGleeXKHTOWbNnsMdSpiViJ27Q0RDIqcr+HFGEiYopkS1WWL3\n9pCKUMLrRJQqeQJZYGmxjKzk2A3vQyYRBAHObMa5M6eYDCziYYisZTgzi0KpTEM32dvpohwfo5cM\nJu4xfiATzxLioYttBaiZxGiQ0FzSkCKF+VqVufkNdo9uUSqJCJmN6Glce3cfRRRREg3PllHciOr5\nPLKc4bowSULuv3+PcAiSAuvrTe49irsoQRYVVD3l3JUL3Nm6TSkHsZDi2iFRf4LV1Tg+miFlFnKa\nZ7w/pVCQcYoy+tkURZpBWeDpl1aJvD5ZmJFJGrMFh2JOw4pkkjjk+r13ME4pLM23iZIAQYuwvARR\nAt+foVeKlHIFTnpDFufXH/msrVYWUJUC7UKVo+NjTqwTNMnEzOWoFvIkTo+clAPNIowlBrsiw9Qn\ny4l84uPPEhQnBFnA0ApIsxhZlhmPHCRBp79nk4th740J1XmBg/0ZxYbI2a+aiNMW9759QiiFVKsl\nZE1m6s8wiwVmRwGSEDN/qoEbDkinAqmfkuUy1tYb2KMRXhgRjfOcPneOn/7wJrKXkS+X6Vseaysb\nSKJEKNgMJymO7XP4IOapLy5RmZd5b3SPdCHl+G/wkvyZFwtd/tUqoHJ3s0u0n9G4aKIIIvYoZKmx\nwDTokWoZ3RsB9YKBpEiMxja1Vo5UDlg4u4ozHSMnPlbs8viz57l/9wHnTp8hDX2KZoV//oevEVkZ\nc9UKIgKdyZhSucxwNMGoiSyt1YjFKZo6z9KphM37Bzz53FWGwx5irBLHGbVinSAYomoyaRZxcDjm\nYDcgjiH1UrA0IichjUBWQ7I0IhJSlLpAPMxoNJpMHQu1FjO3WMUe2iSBStyLscY2hqmRphlrGzU8\nz6dWbGPJM0LfZvfemBc/cZ5be/eQ5AYvvHSGmzu3uXtjhDYTeeLJS2zu3aFslPElD1kQUDSDsxeu\nsLV/n0Id4mSAohtEscJ8rUGWWdz4/hApMYnEgKzsIhUFCqUimZBScg3e+ItDnv/8Otp8wI//0d4H\neHzxN64y6B+TE3LYPY2NKxELV0x27nbYfn/A5StrvLd9iCGatOfmiBKRqRXSvb+LGJqEYsTZT0c0\nmzV0I8T2ZgQe1CtN9g9HDKcGOaHK3r0tQhtcHx7/1DIZCZt3++gmZH5My8izVCyydbeH0arQ3pjn\nL/7Xdz4Q7+N/v02r3aA3GHJ43EOMMoolA9dzKSgyT119nuPuEQdH2xQqbSrVBnbf5/aNPa5cXGKY\nDBCJscchURZTUxt09kYsrJa4e2NCIZVx/RCXhMapHCtnKkxSF3E7z/GtQ4RIRFAkzKJKKMZEUUyk\npshZQmOuQM/2KEsFUmWGeabAJ596gZs330c2RNYWT/GX33qLNBRQoxRPjGg+V6bRKLJUbXPS2ae6\nPIeqFTi6vcto5iLWwCwaEJ/w5h97pA+yn8+KwSu/2kDXC/QGE8KDCMdOSKWEXEXHt0OaKyaxpjC4\nPUIOVYRcgCxL5NQS7szFVKE79Dj9ZIFiU8fIF5lMx3SPhiwsmIRhQq5QZaGywV/+6VskQYqYPtyV\nQM+BPCOVI7LUYOnMPFrhmHK+jGSUOen3CB2XtaVVshTGjo3jeKgirC6cJxVK/Ku/+C4LRo292xOU\nSIRQBsFHFDWaSzmcMMa1ppiNAoKekCvDs1eq/OTtDsfvRBiCTEiGrkjkcjKylrC8uMSt944xF3QM\nU2C5WEJfN7Ezjze+84DMf2ihJYoSc4UGXX/E5avrTHpjBvaMMAjIELEd0CsZ9aWUOI4wKgVEWaRW\nNvA8j3uvjpkrNJkFAYkbUW7lkKoANkkArXyTyJ8g6DKv/OHJB3h86T+tki9GWJbIK//cZfWJjNLV\nHBkh6ihFjmAkp0iCylyphR8nHHb76EkOb3+MkAg89ZWM228rHNwJOXu1wPxyHdMwOLzhcP3lYxQE\nBENi/kKFgTvi9GNrbN3fIp/XcV2LLFAwFZWNVoF33uzSPt9EMiXe/d8PPhDvJ37zIicHR4x9F12V\nSaKUYBzQri0iazAJJ6imjKEpqEaZwdAhXxCYHgx48vwlbl6/SXG+wsyx0E0wTRFn5iMmJrIkMx56\n1OtVZoLFrBdQnjMYH2eM37eR0UkSHzOXQzcEZFVkaFmsPt8mTiNET+feX+2hKiL5BQ1xVcUdOJgF\nkc9+8Vlyps5r33qL3tYUO9O4/Nxp+tIe7ZZGIVdAsCPuWyOOeh5L803yhQpiGjJ1bAr5iHha5sY/\n2/75NB/xj0WCzIMgRshACiJK81VS06JcVvBUlzSUSNHIlBSzWCf0p3SOx0i+glgKufrSKvpcRuIE\n+L7D7e0hzaUcthSTqTG1msjLb75GICgYkoxhilgjGzUVaZ9u09zIU5sv8Z1//AZnrqyi1yu4gYWW\npZw/u8bNrQf4AaQh+HGKKKTs3H0dAoFyDK2LCYMDnaAbkuGQFzRCEfqHEwRRZWGxhlLxGExitEQF\nEayxhpaJREKEqeQIMw/biTlVL7N/2CElJYxcEgvEWgFVS/H8AfNLGsNuSBzl8JwR08E+S6crHB7u\nMB0HKKaJqpmM+1PyNagtGQ+Vbp2AVr7B+7c2yeZFSsUaz750gcBOifZGTI4SxolLMvMplAwmzoRE\nEJEzGSV8dAVe61yCP034+IWrvPudV1E6ZZKdmMVLDbZv9ShKItXFFlN/hhP7JHbEUqlGGtm4zZSc\nUuK1fxEhewaNNCbZzfGTVw4xDY1Rz6ZQyOOkAeLMZzxw8DOJO28csXZ2nu29fVbaTR7c7bN2ZYlQ\nmXH1k+tMs5Dh6NE+CTd+tIUhK4iSyiyKSdKIYlLieG9IIqYIVRm9GiBUUrZ//AAlUzEvaVSLeU72\nZ5zcTulsDZm/WCFwBMJUodsZIhUjMKdcWF9nOu2BkDE3V2b3/oB6tU0/sRFkB1E3CdMId+JjFDQk\nVeNoc4BcFUhPZlSKBYQ0QybG2fLIG0XIuchyhC97PP+VS/yT/+4VKvU8T7x4iZ9c28dQVQ7uHbN+\neoWnGsvkkh1E0eTua9s8/tJZlisakuAQ6x/eS/wzTwL9owGuBUIKggx6zsDuTymJCpZgU9R1FEUh\nf7pA77CPEw9QEoM09FHVFKWU497tEW2rwngyw6z7tNsmYRwTzDSW5k3ygslS+zR3ultU63U6vT56\nRSP1Qh6/eoq3O9dwD3JsfKyCLHvc3xpRKhXondjISo9aq01o6XS3dynn80iKyJnzNeIopFRwoL2A\n76Vs/uV1Ll45zf7dXTJ0MlFCNUQm8Yxnnm1THsHBzX2igkWxqPKZ/+Iid+9OePsv9vmv/8cv8A//\n+++RUwz64YjP/uLHuHt0yKh7Qn86IXYljEIerexx4ew8135wgJaKPP3pSxxOT7DsiIuX19gfHVIu\nV4nGCYQJcj6HJgbMNZtsHu3TrFcZHLkokcLNnfsYisr8UoFxyUYrS2gNhdl4SiZLBFlGGmfUtblH\ncnf/zYzF+VV+cu2EpeeXsU/64Od49QdHGOiUCyKappHTUnzPelizEdtU8y3G+wH9+2MSX0Kv6jhh\nRDDropcUJEkjyWxKVRUtkTHPGIwGY4QwYX69yXB8QqVW5PjYJVNkGitlDrtDdrs7lMtlWu0G8MHa\nBl0SKZQLjIYjKpUyvuej+jJhHKKKOoWcgZc45OspSkugbijMHBtNqHD7jU1UVwM/Y+/lPqKkkACF\nhkbjNNhTmRvf3SdxBOSKgFpxyFdlfGXI1S9eADvj8LDLuDOiUMyj6DKKIuAFEW7XoySViGuAK+BH\nHpWaTCDYaPmM8XSK4oUoBZNf+q+eJq8VmARdrl4+x87ePdYutqgtLLN974DBpAuuztqzNdRcxiwM\nmE0miOGjFaPh50BUZPV8A72sEaQSmqxTUArkcwWGRxm6WGTU94lDAUH00LQYXcqhmALLj80zd65I\ntVmkUJTYvHmCN/Ax9DKTSUBwGKHHGXubM6JUxXH3+MyXL6IsQlbLWLraIJZjCkWBwM5IDDi1Oke+\nJBKlU44Pu4SZwvs3BwyOfV79/m3sUcxgMKJYVlEKCl13RmDUGE5CSnMOX/gH58mvj/nsf/YLvPTL\nn0Qpyii1DLEic3AyxKg66HmBnS5c/tQG7w/2ee+NQy6e32Cnu41Uk1FaEc3zJp45Qqn0OHOxxMSZ\nIKgaophiLIiMjQmnLq/gRymv/OAGB2+PGNyecfvNMZ1rAQ/eOMILA+Y2GswmFo4bMPVSnr/8NHtv\nTsj6BbwDiWcvnWVtvU5nMKZ+uklnmDKeREh5CbOsoBoieAI//dePLjQ5d6WNobu88cc7TN494OoL\nq3iWTdzP8GwFU8nRu/6A6VaXbj9gZnlEscmN1/bwehlplEPTNcq5KqQiCibTfkTspdSXSyw/vkLr\nXBtRG4EccebSIqcvl2ktVDh3ocnVjzep1HM8uH3A0twCRT1HrlalMK8/Mt76Qo2OP0QoiYzcAQXD\nwLIsZBFiL8Q6cQmOIDgpk8tUPE/AUBUSaUS5ZRAnEYKQIcsSsiAiJBkvvXAVryMRjgTyqoIgBRTN\nDDHzCTwR2dd498Zt5EWX+pUqT37uAo5kI5dTFjbmSMSItt4kdGYP1xNiC2NeRmoG/MJXn+SrX/si\nmSgTpwonBz329u/hBn369hF2ENFYaDL1LG7dvM6D3n1ay1VOna3SrJS5vbXJrbs7nAxDPD58gf5n\nngQ2bw2IhiBEKfbApXPUZTq0aVRLKGhktsngvsPkwYTF0ikCy0aQBGRTwM1cutNDmg2JSiFmZWkR\nSVBJfIGcLJJ4M1rzDXbub1Nv5zk+3kcQfZ56agFRcdHLAn/2Z69Tq1QR0iLbBz18N+TvfO6XSZME\nz3JomnkOrh/TyBkYpkGWqQyGNpY9ZWVlkWu3bjMaHyEZ0HFsjPppdgYj/uV3/pzJyRSv68JM5PCd\nhJSQrCkQCBrvvrdNQRB48cuL3Nndwk16rD9h4go9pHrI2zfuMZ26hHFGfk5jYg95+60TKg2Ns2tt\nju50ySkyVbNKFgrkdZ14NkJXUrIoob1apzM8wJnOmDkhD+5a/Mn/9grVfIXxSR8/sLmxdY+j2S5a\nK2ZhTuXF504TTWLUyGR6EIAjoud8qjXt0eTlPLTFmPXP6FCD7ZMuU8+mahTR5AR7NGNOn+f4DhR9\nk6PrEfQlzizX8ayIOPbxhYCJPSTKXDwLVFEhjj28zGdrf5dJMEEwNJBkwkyiVqzTKLdwvABRgsGW\nTV2e4/5rD7BGDmHksLX/6KSlViVUGdY35skZKscnXQwth5tGJPkE3VDIsphgEGOaIkKQ4ezpHP00\nxT6K0A2dJMmQZJEo9lBk+O6/+rcoA5VZL8MxAsyagVw00HNFvKOE8b2Mml6k5x3jiB264TbPf+kK\ny0+3uTO+S+OcQs8aMLJjsiyktlii3DIIy/Da5vv8wz/+czqTEXfv7iArImeXH8OZeezf3efH33+P\nO+8foqslzq1fQpgpLM+3eGL1CucXztIScuRTnYV6ndUPqdeBn4MkUGqViQKQBQlREBFSgcTJONrp\nUcxqMElQI5V4pnDnvQdcWj+D3XEZ96ZU5vIkicrgOCJyFR48OODo/TFXVlcQqilSrcDYsUn0iMnU\nwjCKqGqCjMyZtWcotZo889knKOomcuKjpB6nV5e5++67PH5+g3QCw32LotZAUSGOMwy9wMjy2Tru\ncH9/m+WlRRJfZTCy6UzG3Nvd4/W/eJOCoiJogKpSmxPRcyIVdYPlpVV23ouZ3sh4760pgT7i2f+4\nSH8YPXSarclIeYNzZ+a5cuo8eGCPM5JpyPKczva9hOGuhCyqhLGI7zsPBVFEBVlSWD+1xqnTSyRi\nwOQ4pqwVkZHQhQwNidjzWFhoUDQLqJZMw1um+4OEzTdcbl/bo1wo0WqVefzsAqM9jyDSWHyi/kju\nFNkiDadceFZg+TmJzBzQXDDp7Dv4hwknhx6D4QAJmdleyuWVFRbqLYZ9jywBraby5FcfJ8vFiIGO\nqUoQSdiziKJRIpeZCNMI90TDkAxmA5tv/+Of4I1dJClib/eISjNP4E1ZnpsnmOZIZ6B9yGOtF0pU\nm3myzKbdLoAvENsuuXIeSZUI0whJVHDCiJGV4gcikgLVuEguE5FEAZGMwA8BiShMMGWDJE1RwoS1\nx1ZJlmLcUsJoEJIGGZHmoJ6FyxfXOFUtUK2ZqIWU1dUlNEPjYMcmCFKKeYksglRUGPdmzO7LuPsg\naVDM1bhw4Tx2kLLf73LUHVGtlzh/oUUcpOztdpjNBjx/9Qo//O5dfvjWW3zrT7+HNYVL508jpSEb\na2sfOgZ/5kng1JUmspkAGYoqoygygiggZiKbr20hpTLkUoymyeKFNvcO77H+RBG1YYNu8cQLq5Rb\neXJNiSefOU80Tbnx5h7FYp3B0CEKBNJEIZY0RD1HmD7Uiz/obNFYKXF76xZOMMKfnZDGDrudDnEq\ns7JxFlkXwNdwxg6GVMQQckzHPqZeZXlpDkGysawBcWDjjmcQCJT0lPnTAh//Sp4zn8lTfyLm3Cea\n1M+JxFmI64xoKjmMgsLG5Ry9gU2cpjgzj1xZQy+WCMQJc+dEdoZ3qC9UWVlbxNQLiJlBSS1x9/tb\niJaDIsr4XoBp6gR+xmgUEIYumhahSQnlfI400MkElTBKEeQEI5dh5EETIxTV4OaNA66eXeSxU22c\nachsluIHCtff7TE/t0zgRUz9R/t6iXKJUJQYdn2MnEohn2e0H6EAcRyCZiLrOaorCm7kcPfdY3rT\nY0qnlzE3DNrP5zi2t5n5PpIqESQpoiogRNDfHtC9N8DvJww3h4zvWxy91yHoh7z8LzfJR/O4JyrT\n7oyiWufkOCLxUsy0Ql1uPTLe/miTYknHcUKCMGXxbANfi4kCHwEBLwhQFQUpA9lIyUwPL7YIlBA3\nBTexSZMYFRVJ0BANMBdEJrGNHwrc+sEe+aiB6YlU04D2hRLNS3km4wmb94foUozrWsSRi+uMWV2b\nI1eWkasJavlh++/weMj4xCc8SejdcvjUuefobB+yv3XAbOximgZnH7uA7SfYgcP6uTOUKlUwEnY7\nt7n4fIFiLeNTn7vCC586gx8OqZUMbl2//qFj8Ge+MJiKHlpJIxMEpCxBFGSiOMYXfGQUQiFAkwUi\nwac/snB8gU8/dhZteIA1HXFwuMvayhr5kogTzKhdKHHhzAXevvMmYZQxDmxyxYxqe543rm1x7vQS\nnW4XVTMQwoRSvkgaOywub3DQGzJ2fdZqbf7qxy/zuV9+moXGKf7wn/6AVFbJFTIYRvS7Q07NFai3\nTY6HLpKikysXEAUVKZ+nvtxkNL5LubqM43c56fexY4v379+ktahx5rkctfIcb2/eZ729jJipOMM9\nhDQi9aGaK7G33aHRqLHZ36ZSbqGpKugmh1sTbDdBdE1EMcQw9YeeB5mCKAgMx2OaRgHfi0gSj90d\ni4WzNUIvZW6uhmdNiVKPme9TOldi7qUqxcRl0LN49uvrvHN3l67dpbJUwk8GRL2AkffoarNXrh8+\nVGByZTLRZXAEplsgPxfTOB9iBzATbJwsg4sC8bUQu+eiLQ0x1xKm+JTSmGJFZf5sgdD32b5lUQhV\nfCkiTkKSSIVEIBESNFXBi0KESOEH373OxsUG8tkYzzgiLDssLOQZeDvUzEfPXOIkYTIZUM2XKZhF\nps0ML5Po3e4hZglmvkh/METRZdrnqyhFgZO3B4RpzNxTLQQr4XC3R+bGFBoV1q826Dk7jG8mZHGG\nKoK75yHlBJwoZUNtMHXH+Hs+/czF6kVoVZnRdEbP8ugNOuRWcnzyS1d450d3mOzPKJRkNi5coeee\nMOgPYSoST0PMYpVCfo69/gF7nSPKRgFBkBlbAyJ8JGmNLAqpNetMsiMSXAaWz9Fxh3pNwvMeXUoN\nPwd1Amd+dREl9ji46SD7IguLNYLIZ393jBDCZ77xBPtHA2bdMW4vASFlOnVZ/1iZTPYwNIPuYEqr\n1cKezVBMBV2tMu77TAfH1BoKIRkby2cIA43hcELCkPX1FWadEZeuPsWf/Ju/ZGnRREoF7t3pcfrM\nBnbgYRgqUdJl+2Wfp569zPuHD9CygCCOqeZ1YjVlcb3FrDOld5AgN0OWFk0SOSIRZYJZ4cXSAAAg\nAElEQVQZNOtVwiiBLEJTDWxnTL4kIBAQDCJy5XnubfcJxzaPP7nB1HfpbnXJmQZKphLrGrfudFFD\nidmDiIKqEXkxqSQgiDKSmFKtlemcdDFUBcWIOf/YKlPfQjIKbG4O8VybSs2gWC4yt1gkVSy6/ZTp\nicUzX1whzh3QNFrMLIFrrx/RLpRozi3xw3/zDmdXWwx6Fr0t6wM8Xvp6hUzMOL7pETsip1frZGJI\nkg/xJBddFnEdgSDNiM2Q0miBUhJxxxqjNwMUQ6VdrkASkUkTGnMF5isb/Iv/+Tqpo9KoVrGcGYHn\n48sRtVqFMAHRjpn6Uy6/tIaoxJQNCQyFvucxdfuEacjBdz6oY/G5//Ii/UEH3/VZW1/m+vX7GGoL\nWUiw7ZAsSPFGAVY/JF9ROH9+gze+fwtFV1l4vkkYdpifW+G9f7vH8rM61iwmOTRwTmbokook6viJ\njaKLKLqM4/moiDhRwq/85gscjfeZRVPMrIgkgFko0R2csH8SkGwLCG7I6RfOo84XCWIH3x9T0GVm\njke9XKUz7DIcT/GdACKFvKTy9LPL7O7sYshVBsMRajFDyotIUkq11EQXNY4G+/TGHsd/mv581gnY\n/QmKllJsKfgnBjvbAx7/xXmSYsjC8iITjjm8blM2qsyGXeIopNEs4lk2SQ5s12JxaZ79o2NKpQKj\nyRhBsJGiPGmgksxkBEHlvde3qDdqiCa4Sca9nR1KqcTtt99noVzhZGdGJsbIqs7E9dm/d4Kpa2Ry\nQPN8lb3hJgtVnSRTSBOZk90B5nyOowMLMQQxSWjn5tm9u8/iapE0kYi9mK4/ZjJyMUsa9WaIbYNZ\njhASH7NWxJpaRFHI/HyDvc09rCTFNEUONn3apsZRf0BzoY5aDKhqMkebI0qtPPligeFRHyGT6XYG\nDzUQcjlcz8axBfw0pVAVqa8lpEKJubkKM8tn6I0ILZ/YTcmLeX787W2+8B8t8sf/5AHPf2aVz378\naY62dpgMu5QKOvVVjdhM6G19kLuDnwbMNcqIE4nUCtmdjGlfEmlWDE4cG0VUEMOQuaJCrTWHRUym\nV5kb2qSChCQltOoaSSYAZXQj5fbBdRaf09l5I0bUJIKxRyaJ5PMmaRoTSxFyQSdLRNpLTR5sb6IL\nBgd3p7TP1Mm0PDPfAsIPxKtJGUEUMfRiWiLkqzKLjTJ7W12S0KJkFimoJUqGwKA/5ea1TSRFRJEE\noimMfIEgO6Z5VWYYRBTKCpWKzPZQRRQUBCJiJyWJIlRJgUgkimXydY2brw4YBzN80cXLHEp5nVOL\nAYZW5soVg+mcz7mLy3zvW69waeFxOqMthETk0vqTPDjcYRaOEWWRwA0xRZP24inuvrKJ+ngVvz/g\nzjtHLF6poBRCLl98jKk9pnPQpWMFaKaCc/IhVs38DGcCP/rR/9+/+hE+wt9ufOpT/HzakH2Ej/AR\nfrb4KAl8hI/wtxwfJYGP8BH+luOjJPARPsLfcvzMdwe++msFgjhCkVQev7TAnrDHNEuRyDBNGA0C\njEhi47EqkqoRZh5+qLL35pSiqLK0UuN4OEFWJTIhwjAVnDBhOB5TKudwLYc4zfjaf/Iltrdv4YwH\ntBfbTKyQYBLz/tsdUvfhdo4hShRlHc+NWFhYAiFm4lgESUiQheg5GUFNEXIK9cU8ztgm64hMDgNk\nScULQkgFRDnizGNNBC0mGFlIZZFh4pOrqOQklfGDEL+v4To+aiJTXSihlFP0eQVPi9h5eUhmh5xa\n3yCWHU4Oh9QaZbp7fTTRIAoTkiSlXK4ws0eIooAigZ7X6Tk2T3x+haE9QEcgL1fY2elQnEvI5YoU\nGiqD0RS7F5FGCrGTUKuUUWopqRQRIhK5UxrlBoezAUtLbbIk5O1/1P0Ad499XUYTijiRTUzCcCyg\naxm1aoVq0Wf58jm+9T+9y9Xny8iZzLvfHaNnEuQS8sUc7jTD0DK+9feeory8iFyv42+N+ZX/9pv0\nVANN1fCdhx13hWqekdWn3G6g5UQ820FKRZoLOvf3B8hoJJHDlWfPcffBAw5+ZH8g3vapElEpQK2I\nKKlOEtrEokgigKYqxF6CIauMDkMIMoRAJEtAVWV83yNLEorlAtbURtF0kiRBEAQkVSGXzxMnId50\nBpKKLmtc/cI51HbI8f42I8fi4L0IhhqKkYEZ8NTHLrCbPuDC+cdQE4Of/ugVSA1SLeHi2TWK5TyD\nWR9VVrm/uUMSCiRRiqpIlBoyrYUW9mRCPW9w8qDPUS8lsWSUKIcsJpRaKX4q8E9/90OMI/4aP/OZ\ngOdlhG5ClGa8+/42mmDQzhmkboQThrgzmSwS8GcWrtXDD2IG4xGrFyroDZ1RFBJqAq7iE+spfjDD\nkANWVnIUGwn5hkihqvLHf/Jdbl87RJ3o3PrxFpvXDrl/r4eUZWiyjBBkeMhMvJCYlMFwQJD4CIrN\n3IJBrZIjmAWohoaWE3EmU7oPfJJxET/wSWIfRYowNJGnP38Wt+4gnnJZ+ZSKUwtYX5tHkBRCQaKS\nE/AjH8UQcDIHpaaQLcxwFI+dO30uXlzm059/kc7JMfO1BsvLVVzBIhFlwiBGURTi+GF7ryCqCIJE\nqVXk/OfP8slvXMLM5UjciNHYZmYPWJ0vU9ZKjA5meFaCJAugyCimxvLSCuPhlHCmEM90vIlEY67F\n8XCEIEoMRyNqzQ/R8RcFhDmfxcdM5jcEzlwRKBU1ojiguWDy4M5NPv55EzyBoTXh7/znVwk3IhZf\nFLB8l9nMolUO0XIOqiagZW2EBfj6l58nckPsmUuUpqALREKCUpAZ+10K9RTfG1ErFHBHAc2KSaVi\ncPmp87z22i2K2ocUxigpmgyGIBNPfYywiGjp1M0GqqwiyhG1Sh0xBCEDURZIxYQoiZBkhWqtTpqI\nFItF0jghSRIkUUQ2BCISBAUyU2T1qTX6kwGv/vg98tUSBBnBPZn8xKS8LPKF/+ZzfPHXn0RdyKjI\nBY52b/Oj115DUEymdsjq+gLLGzUyNSSVfPrDDr4tEAcZjYpJq1FAFBIkwyWKPH70rzvs7KREaUJz\ntUqmJXixzWiQEc4+3HTk/8TPPAmQBBSKGnpBQkpSutddJNFEbxYwxSpPPtVGQqF7rDAcgjP2acgm\nGgKmomCgYHfHhH2PaOwhGCK+4VGo5ZBkkVxexixCwZBZmG+QmgoBCoEVkc1gvroIcUK1XqQgZygG\nnLm8jhPZjEcWk67A0f0Zdi/BVArMOhNSL8D3YWWxxNA/wlAlZE3D0CsoBY1rt+6Sb3nIcoZEFV0p\nc78zJU2qlNstzn3i08RpShilNJpLSPkpkaARuCmrZyQGyh6bhw+wvIjD4wPCJGV1cYnEiYnjFNd1\nkRUB27aQ5JQkS+h1HF799rv85I9uMQksMGUSVPxYo1Aq0+8lFCs5rKHO5G6O8fsJdcVg706PSr5E\n7+YA4TihKs+ILZcnLz5OM1/g6JaHM6o8kro1U2L8IGT7vRlyqBONDMqmyNJiDkEuMB5n7N4IGQxC\nRv2UsX3EmYsFFF3hC79+kcqCiur6SKVlRvYYRTxCp8ZvfO2zVNIEIQVNFJiOXKLAZ+IHmBd1+nFE\nMV9HlSNmk4Buf8b6EyW2+vdprZlI4qMbnsRAZXQYI4U5kiBh4o3p96Y4XY/Jzgzda3HrrT2yTCTJ\nBAq1MnJBQc6J1Fp5ksxnOpswndpkiJBJhGGKlOpMpl0m1oy0krKXbvLcbzZ55ut17m/+kMP9GUmm\nECkZk92QH/4PP2W8b+D5gCLQdVOeeXqDJ55e4td/4xsUtTp3b2/hWg6TEwt7GrMwn+PJK3MIKUiy\nTKM4x+3Xh1iTjCdfnGfpYgMzb7B554TZxEYWcqRRwrDzaLn4f+++/IeM3/8vEIYCvptgDVziTCOv\nmpyqr2B4CoP9KXdf6eAmIYmX4A9FRkcRMy+i5/fp98ecDIeYukksgFrUCeIMTRZxwhlJGGDmNJaX\nF6g1ZKRcRmhkxKJO5CokbkqxKlJoKrTP1zl9pYWsw1FnH0UTMHQNNZMgfGhzXmsp5Bd1cnKe0XYE\nhYwLz58jjVVs28fxbPJzEZcer6HLD5uKBsMu1mzIufUahp7S7Zzw7k+vIWWQ01RMI2bci8mpMm7g\nEzmgBTkGu11MCey+i5BliIaAoGdkJBRLOXRdR5QgTbOHU1IkTC3P0y+e5/hah9lmgo5Cq23Smxww\nt6hQm68yHUyZbU/RApOFWolGSyLTbPSGTnWtxOb1mJ23Ir73R9eIOiqlko4z7T+SO1mQmTOhlDfx\nLI2DLYeplWIWFnjj9QNmuxKTByLZpIyhgKoLlMslWssLTFyPUBao5wyC6YTIdwlcgSSwmE27/Nav\nPM35XML/Qd2bxMqSZGd6n5ubz+ExR9zxzS9fzmNVdZJVLJKFYrFJCmpJBNUQtVCtG9BGGy56qwWL\nKwJcC6AAQYAICGgOaFIiWWw22awxqzIr883ze3e+cWP22d3MtLhFqtD5yIIAAdl9dhGICFjYcfv9\nuNl//l9KkAZU49FuXJp7OevbM0xa027FbO4O2Njs0FQFtdbEQZez4xd7XWhH4bnnBtKOsIg6Hhdf\nC6mLCjuRLJ9N8ZuARigsFxpTEkY22sBssiRNK5SyCKM2TdNgjEZKhzRf4Hsxo8EW/+LXr/O5z/kI\nVbFY5CxqSeeq5Kv/3RWSZYm2Peoq5T/8yXfITxKytOb1S1cI/AhExs27/55V8Rx0gGO3sXSLuN3m\njVffpsxcVnXJ7dtTklQjZw6zjxQ//MtjOs4u+ZlLXPiEykOrBqFg3P/plcBnvifQ7VgUquLi5U1O\nJxOMDPj2B99nvDViM3KZriu6wy5GGaxC4wmBOQXlujQ6x3YsHNflrXfeZe94n7P5CWEXAs8i7HRZ\nZTmz1Rlhx8dqGqaTFfOTkos7I5ST4W1b54YmMuXo/hTHCyjzFcJ2qUxKe6tD02hW0zmvvvUFZs6S\nD//6CaMbNqm14NGHM0Lbxneg03f52n/xNvf3f8B6XdENYgwpOxe67C1WNGdwbeMih80EoQ2BB8N+\nxHo2QRctBu0Bh09OUccp8ahNtU4ZbYcUOqfJQnQDvmOfS1jXDatVg+GcCmrR4ErJD755H61rsAyv\nXn2b+9+9xeZGAIXL7e8dYiGQCDJRcLpeYW9owlaHzkbFUi0Yj0OO72aMLw5Yn6259voGR6cvXlRP\nHvo42x6urliegDCGuD3g9p17uJGFVoLWdYf+2Ga6HnPvzgrhSIJwxfwoQ00NF784Bqug628R+AGB\na7FK1/zGv3yPUSS5dfeUO8k+Hz6cowOP1jpgMc/Q3RrPdtB6Qa1W7N3NaCaC1mWP/ZUNfFpYM7Vy\njLFoihRhS9zYRgQNWybkSTLHODa1KfBDhXBs8mqGbmxcE6Asm1pVeK7ParUmCHyapj6fey2oCsVh\ndsgH37zAu//lZc5OnqJVw+xQIGrB4qWGL/3mDh/8mxm11+DYDnbLplkJAiXJVgvO5ktE43A2TYha\nBeXhmoaM1UTzt5Mf0qxBWYrtQYv6oGL2vKbOJK5jcef/vkulzqsnvyXRpsIRDvDTuYCfOQhcuHGV\nR/ef4A5zRlcc8Jbc2LjEKreYP0uwTMP06ZLQC88FPQNBx48xfo7s23hBjS4LHj/7hCQ3GAV17dAL\nN1mu5xzPMhqjuXp5xGKd0hv3sd+sEI1GaZisJijdcPw0w7Mk/S2PrIxQucRqDGHLZn9viaot/uxP\nvsvnfn6T629HZLqkSiR6vcJIjxvvbtG76PC//9tvsf2yYqu7w3q95PFKEjcWhVB4yuXWx4+51tlh\nX02wXZfVak1RKFRRUFkJW+MOqm+hlxWztIZA0A4DHLfi3V8c8ejBjIyUdiskbo949uzgnAVmDKVU\nuDIgKxridov7P3yAMVCFCllpAhNQZglGGlSpSVc13rZG58dIEdCsKrpbY5KsYXI2o3shpAlqPO/F\nIh3ztcL6sEIJxaXhiPuPUt77fEzUtZkVE1bzmrzQZNUUbUrWxxq78qhDQTV1qE3Btf4Gi9xBM8OO\n9nGFgyUEWC2++hu/yFdqxeJkzr//8CZ/8v3HPNhf4rYc4jimzlJOnyyRIw8/dOkNaubZhJffHcPD\nT2sMtsYhge+xmq4IlOba8FU+uPkR4VVBvNVieVzQVA12r4sXlHgq5vgwoxX5rNM1BoOhwfcdpAPa\nGJqmwLFcXA+KpKYzHvDg+ABRNtja4+KFgMPv5jz8ZEl316P3SsA7P/sW02JCmSXYVcqd54/JMsmF\nrYArl6+Rrm4S+jHzxSFZbdHvDNBLxfHpgu3LY6St2D+b0n9zzO7GmO//2U0cGeOHFp7nUpRzHDxm\n84TdzSHwaVv5n4zPHARmasmrX90mrc8QVkmvEzFZHHFwXJ+XqLtDju/OsD2HdLZga2OXZJJRpiXR\nhiLoOVy+/DIP7j3k+u42nuuxWE85OZ0Rxx6xE3L1ygV+cOcR67Vm0JN0eiPm+2ssozBWTdyxeOft\nEa3oMt/9dw+xanABXRbMkpJWR/LG+5dYuxNK64xVAkq2sHs20UWb4UbEj/ae8fbODq+9fZWD03s8\nnewhCkkUeIRNik4GnBxO2e6Mma5P6fVCcDQJCVvXB9T2EkuENEVDukjp726wHTccn60xumb7Uswq\nz7mwOeLp/WNmVPhS4Tg2lmWj6gbHltT1gk4rpq41TX3eoj2bCqb1GT/z/mX2JjXDV8YcswRnRpIZ\n7IVDE0vSpOYsm+K3BIOdMd3LIapseOW1V7n3x5/O3SpfwlrQ0h6302e8+yttluVzLNmm421ypvZp\nd13cIGS8c5Xbx49wixbHkwm+DPj8doeeKzFpgef51Os5sjPG7W7gxy2kdKlNzfbmZf7lq6/x3udu\n8b/+m7/hzp1TLg47oB1kbTHwttBlTl6kxBdcnj59sWVSk2Y8fzTn2tUNti+NSHR1Xi+EAt1LGA17\nZKkgjBySRcFyb4G0WpwdTej3hijdsFwuCeLzEjsIAtIkQzqGvNIEvsfNb/6IL//mu3z7r75NUzi8\n+6s7+JcF+aLAHZd4L614PPseyol5+/INHjwWTI4W7OyOWc9P+LvnHzDa7JJXDfnawyjN/sMpqrSw\nG0jXGkSDbhmsuOHeJ7cIPKjtHG03SEfQ7YzZv3eCJ1xOTz/d+PUfx2cOAtMHU0RXYkTFxWvXeL73\nmH6rz6jTMF2XGGdJuAXNasmlax2O9vYJpCD0NR3hInKLmx/cISsbZpN9TGWj9LlPYXcjxY48Do/P\nCJRLsdJUpSatVoRtg1aSQEgmj+asfUm7P2O4Meb+t+/Sjs7lozYvbjAtlnz44RNqu+HKpQ3ISuIt\nn7rMufzSmFRl3Hh9m06rx+29A6QFjpGUUoAyzI5cktMpb75/mSw9I0w8PGlRVitm04bGrOh0XNKW\nphN1SGcZda5plhasbcrEsDdN6PY6zMsax2ohVI20JdqAHzgIGxAa1w2xpaTWNU1VY9mKprIpM7h3\nkLB9dZdZtmLVJAyGQ6pKsWxK+m7M7sVtHnz8jBowQcn+0RnCt9CnL7b16r0kkblF0C4YFQGPni5p\nD9tUyzmGBdVMIHVBetywnyfkScpg1CExHlQ1/+JL19m50qMX+jheiyAY4Hgupq4plzNq2wZtKFnh\nOJKLOzv81r/6b/j4Wx9SKZtnpyeMvCtk0uKjo6f0oxbFoSI7ql843uvXRtyfHtH2JbWTUzYV7tCQ\nqwV1rQishrxM0E5FXUCVWHhWQxCErJMVnucThiGWJSjL4lwEx7KoS4VC04k7hMOQYnbGz/7iF3h+\nsM/x8ZzdjV32zSGLpQQtSX0LKDman2LbOd2eTTI7RgYunqNIphWr04rsTGDWhl67RVoVVI3h5MEE\nx/Fwx136VzdYqxJDRRD5pLMVSZqzLFIs46P1P+418JPxmYOAbSwi3aLyK25+8oB2vwsa+tEGU32A\nWilEadGJRhzurViWYPkWnZZPtaoglahaEoYew+0LPLt5hFca3IFhvp+zc0UyOSoAm6hdo5uGsjTn\ntlm2IHBjWp2YVktz8MkxjXt+Z/XrNjVzsrMCZAvXy4msFmdPMuQwZvV4Bh7EA8VqWTHP5pAp/G5C\nNXNYnjTgWsQXLBw3or0j0OKUsm5ImjWXL7/OgwcptqdoEdHyOqwWKa1Bn9PWitPjE65uXiVRBc8O\nDhDSZ7rIiTo+m6Meo3Gb+w+f0B3FVLVBVTWOY9M0zfmZtmUhpEU7bpM3CqtnE2xIErUmMQWWdpgc\nLpBGUxQNi6OGrElp2QYvCJmeVrSjLkGsSIsXOxBtjRzOTnMCzwa7g/Ox4fhOQm/QY/C6w0pN6OQd\nDo5yorZDK4rodhwOlxX9fsC1S2NcxyErckKlSOenSGnTidvYroclPbTt4kdtbGmhhY0TtHjvy1/C\ndQIso1gtlzx9cofRxwUf7Z1waisu/dyb8H988KnxPvrhhKYWoF0++XdPGL4q8TqKVhjSxBZZtsKL\nJKrQuHWECDWWkRRFhrAEZdUw6LUp64wAl+UyxfMjKtVgh4rXv/Q2wbhhXdwhp8FqFfR7MUWxpAwq\nzKqgLhqqCnQjUMME0hQb8AIP2dh4WFRzQfGsQdQatMXxWcLWhQ3m2QxPSFxbUGcZyb05VZHhewEU\nYCtJGERoz2AsiybNMNZPB4LPHARUqdj/TkKuJNdf32a8dYHv/vV32LposXycETg20kj21mdY2ubC\nSzFKV2gBdSNpygbhuhSrGtlzWT5f0fY8ersx9is5tgfBuqZYOXTbW8xXJ/T6MaenZwRxD1sGDAeG\ng2czpnnOq2/u0o1CpvcS2v0xi8UCL2yRlTVRJAHJxjhi1WSURU06r6hnGtdueHzrhAu/qPHHEn9z\nxPPDjGWlCVjg2R4LK6V1LaCedig6GVvv9tm/d0YcByRJChPDvtqnvduiEwsWixllZpA21FWO5wWs\nlzmLRcLR/jHv/bMvcOv2J7iWpNIaYyzCsMV8MadRCs/1idsRapVT5xXJaUU8kozaIfuzAr8VY0zO\nYBjSCgP2H0wJfMl0mtMdDqlWCVkq6PZebGs9HA3JswMs3+X+357iyw6v/8yA6WxBla/49V/7Ff7s\nD7+Nb7sou8SNHPJ6TRxJvvTWNeIwZvroIYOoxapM8UOBcD3W+YLcDbBkQION63oIKZF+TNSOafkh\ndd0g/Ta9jS1agxE3Pv8lDr7/IX/wzb/mucxeON7ZUuFaNnVT8N4XL5DYa06mmrO5ZHP7AotqTlnX\nVLWmqhR1rbAsMAbiTkzR1JytJgyGPaqsRAhN0xT0el2yKuWjv/0O/iDAClcEmwVlXbM8ruhux0zv\nFXiephPbeJbHxSs7TGfnu/wrc04ASvMV9URQHC2R2DTYoB0ix5DME1xXIqVFWVY0WnH8dIJDSFqW\nuNIGW7BKVticA5mtBZbjA58mTv1kfPYgEEC+aqDJufPdJc8mazwn4vBkgheB70ToumDUd85lqHoC\n342ZHM9wa4P0LbTJELbh4d4jtG0R9kKEK5CFzXqVYCkXUXnc/ZtntDoh1fEhm1cvskpLTqszkiwh\nOXTYuDBimZ/iBJv8s/evImObP/2Tv8NVOS3fZbnMaAcu0rWxZUC1kOTHmpeuXeDxR88IHcEOl3n8\n/AmPT6Z0uhbrR4LlUuG/5RGOXBplGF+JaCqJNCvaF0uKacZykpM1IJcOOxtbPHo6o55DvTSMhxvk\nWcZqtSCvBY5rY0uPWx/f4uq1q9y/fx9pS+q6ZrmcEQQR2DVhFHB4fAbGosoqjh/O2HvccO3qJt1W\nF60alrWiNe4yOVmRrhrCdozfUqTpHFcokqnF4SeLF+ZudlqzsR3y8G7Jm9cvIVsG7TeMtyL6pseE\nM+SOITmtiKRNyxMs84Sr2x5futFl/vQBsZQUTUovlgjXo6oabAQqzwlbElfaiDLFJsAUaxqpWCYL\nqkqjLYu4HZ/zSjyPK+9d41/fuMyf/uFfvnC81y72mJc5lh3z7b98xBtvXGR5e48ya5h6a5qm4JU3\nrnNv/xHUAkeENOUKSwRkeUqJIu55rLIl/aCN7vg0tc0yW6FVRUibxcGKC290OTidMBQd6kcOXvsC\nfadgOckxSZvp6Zzlo0fnCssdm903L3CSH+KHFqwk7U2f43tz8hxs2RBZIWVWU61rGqMY7XYp1itU\nYai9itZ2G1kp5sdzPM/jF37pZ/nk/h2O7s/pd3/6Ev/MQWD7us/1l7bQToujm2c8OzjBdiJagWQw\nCMkWKcezGh1IXnprh0dPjkgmU/qxy3hDslA53XGL1SqjnKds7Qq2rmkeP56A9jDCJmi5oCrGF0OM\nUBjXZ704w3UcaqF46eol6o2akySnXLcgTXmo7/Pu8F12rw5IVgk0FeONHjg5SgumsxTZRNSLmuVR\nwmgwJGPJ/v0Ukbe40vNZNGuu3ehQnGiGXYfMLJie5DTFPv3+kOVkydljw2tbbY6yHBxFO+rz9OEz\nBu1t5tmKNTNOFzM8x0UJG+kYpLTIshzQfPThTd55510+/tHH1FXDxuaA2XyFbhSpSlBG4UgX25a4\nAVy9PqauUmpd0++18PBI8gntTpfO9S7L2YzOMORsvqT2JLbnYj39tEAHQGESLg0cjkcNT75/TLsX\ncuVyHzdukS0XHD3eY10t0EYQGp+5MWw5Nm+7ba73A2x/iLAbdnauIq2YygJlFLouKauCpsoo04Qm\nnxPEHYTbwlgQtLoEAdjSQdeavJyjhCAIY4wR/PJ/9fPwv3z3U+M9WpxhfIm2KqKuwO6AcF3sQmG0\nwnMkD+4+xA8DEBag0I2F7Sk86eBgU9caN1Ks9Yp41Cc/y0jnJbawKJqcBsWl4VXcbMbR3ZLGy0ma\nQxZ5ThC7LNclQSPQSpJkBTubl3n8ySPcoQO6j2OnTGclWjvEsYPjSNIsx7ZsQjfEa3kkZyswNqEM\nQBgMOTqw8eKQcllx/9YzNt7y6L02YHn6YuOYn4zPHAS+/M+3yew23/z2HRxq2glqtRcAACAASURB\nVJd98rSm24swdol2LaKOoB37nBzNGV7o0e+6jI3DaMciiSoOJxNQhsHQZzYpabVsdCHQjUIIi6JK\n6A/61G7JMkmQNqRCgSmI3YhG5/zo5nP6gzbdVkgVVIy9Lk8Pjjk9OSPyAlRjsVgt8VsKKTS2yZGR\nQ2fkUpc5sRuB6xDHMKkUZ/M5sivxojZ3Hz7AyJidz/fIvTN0CKoxiKbLSFbkyxXSBWG1eHrvEGG5\nHJX3aXc7oCXaGLI6w7ZtbNsgpcT3W6zWC6SUfPLJJ7z2ykvcfXAXjaLRoBubqlb4nsSyoN2JKFTC\nwbNThBB0Bj6L2ZrOWBOPBhw9L/G9FsY1ZIVmsD0mqVaYlsE/tl6g0wOTm4L5D1OMH1GsCnyd8Tf3\nJ7z+1Yt0NnvstgYcPDoh71oULYvBZMG//m9/kc1+jC00bldiapid7mFwacVtkD6W7WFJF60V8cDD\nsIn0ArQlsIQgrxRZkSEBYzSe44CUVGWOKwOw3Bdea92NDkWdo/0Fr78/olimVConanVZr9a40iWO\nIlbpmqDlYylDdzgkqxTKAifO2bnisEptuo7H8wcrlO3ieh6OlGgjsITFN//4u1y80aZRhutf8Die\nnSF7JeOtNiK0mH9fUq9rWpbP83vPCbsBljIkBqQxdMctvF7I0bNjkiTBsiTCEecEpcygmnNhHm0b\nHGFB6mB7kjiMqKannB7NmCnN8IbAD/8z4AlkOmV6VuNZNWGskdLgRwLVLFkkDSiJ58XUpUDbcHZr\njVk3zAiYJR4ndUY0sPFFwGpesXltxNFqzsbFgLp0OXm8OjeZWCzpbLRxbRdlK2wjIdOYdU3jGCxH\nEBOg8oDl6Zqd6xHPH++h8vMNtiiMoF0hghKtFfnCQkcNNZp1kyI9B68dklcrrl4ZU9cNp+mak4ND\ntnd20KuG0/sLSrdGNRa2mBPoq1zcCjg+3UPYDdmyQleGsG1haZemNNhGYAsbLQyNUmBAqRLHtQGD\nMRrbFuwfPOW1N17h6bOnxO2Q2lTEcZt0uUIYi6JMzptkKoN0DSaXiEZQlyXK5GTLhEQqiqYm8BuQ\nBcO+S7rKaV0fstr/dO5UU7A6hfEoRoxSPNthZyfC72omxwds7Iz4/Evv81d3vkWkan79K+8SRJtk\nnoW9MizWM1wrZ3fnItOzCdPlM6LeEKe7CbZLWq7I0pJer0djGjyvjRQOlVXRCVs0xQpT5yhVkSUp\nreh8Psw/cvP7ry84TLMKGVuEFue07Y0IaJj7EiEaLDfBdDWB31A1DUqUzEvQbpvS9nCdgssXuyxm\ncy68EtPzW9z+9oIsydBYjHYHnDUzBn6H6cExd/5KUcqKN3/+OoEV8cO/uE3Y0/jtAfUqR1GRpIIv\nvHuNe81tQunhEUEh4dhC5C5aqXNmqIFinSMcG2MMTmCDAVPA/GRBHLXRAqo0ozozWC/tkhf/dPMQ\n/CcAAnt7E5baY3sUk61nvP3ymJuPUw5nK+JBh2GnzdOPUhztYQsHoSoGm33OJnOe7+XIQJCZGjeK\nGXc6nOxNGWx1eXwy55WXNvCWCcvDAlFDGBREPYeiFGzsDnjwwXPKuYtIa/SJx9OTM65d3cHLLbqt\nDab1TUabMaLxKCuFOjW4XoyKGjY3xsyXU8LQJxo51NGCPIOd1pjjbEJlGhZ1TeR3Wa9nKGPzM5d2\nmOY5BSveeaPF3/3ZM1y7z7ppEJHh8vUufn/M2cGKg0drtCrpuiOm8ynSsXEsCyEEaZ7hegGL5Roh\nbDw/AqG5+cldPv/+VVbZksPjirzJaQ06LM4StLBosGjqGtcJsYxGLANktcVHP7rDa29u4oxidGg4\nmjzDjT20VdNuhUS9gHt//enciTRCWhZnZ0e89qUNTqoUrees1wGxX9GsNYfPDnlv80s8PPw7Xt7o\n0Rp2ePLsFE96LJ8XnN55yK/9xiaWtJkvShozpx94SD9mPL7A4ZNPmD+cYXselaqx3BDhBzi+j7QU\n6+WCXm9IHPhI6SBs+WNfgE/H//Tf/w8/rgxLEJLQj9FVTlXVqEZh24LZbMb0bIkqa6TrsU4m5JVm\nf/+AmdXmiCkPZgdEdkwTKH7wnWe8dull8rLg8d4z+pshwl2zTBV5UhKGDY4JaVawrvNz4F3YlPWa\nuihpOQHGglvfv4caG6xhi8d3FpCfoUyDqg2+54JpCMIQpWsEAm00QeBR1BVaG4RxyVY5G4M+s/kp\n1167juUViP8cTgcCp4W2fYo8wQuhcCWn84TI9xBVw/QkZXW2IFM2qgThwGk6p9vpUzcFRjTUy4az\n6QR22hidszgVbLYjpJVxcXeHBwdPkA504iGzZUKxSjkpS5rG0PNDNns7iLVNUeREwmNW15TLNTvb\nI+q6YHm6whE+Aom0wXMC7pzssft2jFqmxG1QVsT6uOHsbElmGjq9Nh0nJRQ9cgou7Xrc/9YzllmD\n0objb6dYjYv/2pDZwwmD8ZjFao0TeDQCpGt47723QTl892+XONKmrHIarXAch/V6jed5KKVIkoRW\nHOL5Lp989JzXXh3hVhV1bpGuC4yqsBAI28b3faIoYr1McYQgWx3yc1+8zt2bezBJyXRB0HLIC017\nFFOamv39T7PvAOoipxN38VoD7HhNMCnob/S5f3NGL4wIdn+AjkO2bgw4OvGgKUjKiosXb3DW2Ag5\nZr6WPJiVXBoKXC9C14ZkvcSqEryWZrx1g8neQ4Jul7gV0miB7wdoIZACjPQoGsV6mWCLDMdxCTsv\n9h0AmzTJMcYQtSNqde45IOX53Gij2NzZ5NLlaziuzWoxx2l2SbKUL751g2Sx5sNHj+gsJElbkBdj\nnrnPeHDyhKs3LjF2NlmtU5JZBn6DHdvg+2zvXOTp3z3CHbq89IVd7v9oj24/wBq3Kc/WoA1GuOTP\nNKUyxAhK2ycvUlqt8JwargxpmmCUQYvzEn92OseWgiypkMIhCFxmszn94RbpJCdWIY/uH8H/+E+v\nwc8cBLT2MUZjWRB7EbVpePPly3z8gweEkY1ruQwvd1idFZiZRtoaVSrKJAHpIRxoFpJ2z6Yua1xP\noquKQnk8uD1D+ND0HcajNofzNYvDnH7cpZ5mSO2gS4NRDbPFCoOiP+hw8lwwHAz44N4nSNuj1e6z\nmq5xbQGWzXy25NqFy9TmCNECv9tntlzRjkOSxCBTzfRhQllU7FxKGIwFWdPg+R5DNyJJM3QVMIxt\nDg8PiVstlquU2itoeQ1VZtjc6pJbc7Qr8CKXdLrAFQFK15R1ff5MqBTSsbEsaKoasMnSmo8/OuPK\ntQ30PGVdNGC7OAKkEBitKIoCz7ewHcHJwRrX89na7LJY5XRaY9yOTaES6kUFhWJotfm0mgCMRjFn\nszlKtOm/0uON1zKClg9pzvGzimOl2N2JOEg/4Fd/9QtYBecViTS4vs/I7lC8C4vn32NrOKRWBYuz\nCQPXxlEORZXgB4ZovI2WDrktcIMIJRwaS2OAznAbYwS21bCYHmGbgnz+/IXXWlEr2u0uSmmUNjSq\nQdiSLFtjCYUlLIxpKIqMulK4nocWDqLVxhEO/V7ML4xHXFkveLq/4G/++iFXnZonWUPLkRC7PHu8\nh6Mdwk1J1rgM+jGH06fYGzbDK11m2QmjGyH5Kqda51iOR+gGrCcJly5tU1Yp60YRuJJ+1GG5SJEO\ntDsx89kKSwqwNJayqYsKy3GwjcQCiiJHOgJlauql4mB/ilV4wIuPTP8+PnMQaGyfOl0R+CGtIMJK\nXaKe4KXXL/L4/h5JXqOUoa4MjuNSVTkmE6RFzfD6gHl6Sk1N03h4jY/RCbZwAM0wDMFVOH1DZyzR\n0zWjYY/VYYGNjWUH1IVDmdm4LYd1VtEIh3VZc/fuQ/TacJatsPSKThxjoZHSJc8s1k+O6btdcjWB\neo2uFY3QGN+mOKuwjUUrDnGlIBENVIZ8nRGHHnVqo1TC1Tff4PbTfYbXRzw+fIIXuUwnaxwlaUqL\nZJ7jRg5GVdhCYCywLIEUNoEXUlUFjiNwHAdjYLVMEUIgpMPB4ZJrV3rUCh4+PKNoSrQbYGkLYwQW\nFtoHY1wmJxmX3r3IYrmHMQnLM4vGNmil6AibGy/vcuvTm+3gVrRaLcr5ivt/kSDe22DvoyXzA3jv\n7VfZHHX4/uEP+PzVK1yVGilj5kcHbF6LibyY1IB0FMPdbbQQzM+eU5Q1UVICFrk6oVgH9EdbrFZz\ngnYMyqK2bYS0sW1BqSyMloRRSNQdUzU5/COPA2leslwviIKAdruLbdmoGlw3oCpXOLYLyiCtH5N3\npEQ4AaCpi4YsNwStiAueoOtJLvXbfHzvMY+XM542Uzo7A+7cUmx2W+TNAju0WFUTdq9tYqRDXi1o\njAKrJt5sY480xVxQTg3jzR6z+QzXE2Ar0jRn6/pFzqZLwsglLzMqpfAiB8f1yKc5NhKjDK5j02iF\nNtDUhunxkp2tEX7oYHsV/8mDgJWlmLzhdLZGDTTpSrFODSrLaFKLetkgG4WsbMKxYrVUUNqopuH4\n8T7X3t7kiX1KbztmfjDHcwPWkwXddpv1ZEkwkOhKkjsVoXY5fbQglC6rdUldNLRDl/n0FK1qwiDA\ndUL6/TFl0+B4Pk5ZE3cjqqokDtt0Ox2yoqQte/glhHHE2TSjamracc3VV1/ib55+j4vbQ6bzOW7Q\nZz2tEJXFxtYWTZ6g7YTNrSHH2Slps2By8wQ39inLEjdyQUP7WkQ5V6wOFSo3aA1B5FHmBULYpGmK\nEFAmOb7vUxYVxoAQEmFJmrrk+CDF8zTvvX2d73zrFtKTKKvC0hLbsTEG+v0evuOyd3TIu29d5uat\nZwwGPrduT/Bsn/6mw8N7LzAdAKZHCV7g8vKXLISn0NYe770vWL+luHvrLtmzMWEz4FI9YjgasHvp\nMjd/8AHPbt+ksRxK7bBYrgm7MaEQ53sc0uLgdMKuP2Y+P2/RzYqKIAioyjXSlVhGY0tJ3hTErZgg\njJDOiBoHI6ARL3bgdaRBGQGWRVnkOLaF0jVBFICtEbbE1A2udCjKEguoVY7rOri+gxEBSlXUqiAI\nBK12l97mmwQfPeTg5scEFzaQfY23a1EuHSx9fjp1eniC8B0sR5E3FdKJECKhOtM4ZcTiJMNEPnWp\n8QOb8aDPUqTIyMIEGjvwWWcrdj43YnIyOW9u8wWmBLTGcVzKugJhYdkCKSwOj0/ZuDBA/iNz8ZPx\nmesJfPJXcw5uZ0gRczzNyOua7a0eYdBnPqu5+kZEtBvibUgav8EZeFi+hWM7eFbAg+8d8ZX33+Xo\n7ox0XZ+XSsJlMU9RpUfHHVOeRTz94ZpiXXPh5QG1X/Pmly/RviipPHVuiCkMSmmePd0nDAOaumJz\na0Rr0KG0GrQFRV6itEHVJYMowF07PP3Ogi22eGfwLstbFR/+21sEVYvlJCXwIybTBdL3KA08PzjB\nCJcL1zfwhhYnxRmXXt3FDUOsLCBII9zcOe8fOM5oyy7zyRJjKoRlSNMMpRRan7vraA2qsahKjW1L\nHMdBa02W5dQVTCcJ3ajPze/c5YvvvoSkxHY8Kn2uTpQXBfPpjHWy5vmznGcPEr7w1ksc3plyY2cL\nqzE0TpukjF+YOzeSbF128IeSKy8P+MLnX6G1+RbL2RaDdsP2hSWsDnkl9NlwNzmbFaSlYr5OyJOE\nltRc2+1hO4LZ0SHH0xPKqqDSikopojhGa4PO1mSrOXl2br7qRy3CVptee4hWsF5OeP7kQ7KzxxTT\nM3T5Yts0RwpCz0crA2iqOifLlufcg7iLxqZuNMvVCi8IsISgqiqyvCDLMjzPpa5rilyf+1vWGt/3\n+PK7r/Ov/vmv0T+Y8tXd69hpw8njCmvm46Ux9cJnZ3uT9shmuBFSqIx226NNl2pWIWrDapVRVTVS\nSmbTBU2pWCZz+ld8gguCcLeN34ow2BSmwA0knu/guA5YEPgB0rY5/2eGoBMgIwP+iynfPxk/FQT2\n9vb4yle+wuuvv84bb7zB7/3e7wEwm8342te+xo0bN/jlX/5lFov/l1X227/927z00ku88sor/Pmf\n//k/+ft1JYlbLfKzinbdpjxquPUXe2RHGqe2KKqaUmSsFwXFVBE5AV4HaqnAUrzyymW+9399jO96\nuI6LaBRRYBO2PKLIYzmfUhcFWxfG2IHN0fEZMoRFeUT/csTW60OMZwi9mF6rjyoMprFx7fgcNAYX\n2eleouX3cfyQvADLDvD9AEsJXGXz7M4x+49Oydc1dZVhhzWjaz223hpTDyG4NqSxQTg20nJZnk3p\nCBe1qmmsit52i6YxJFOFLgL2PplTHXg8/OA5ge1jGoFqzh1xhThP2TkY8A+vbdvBsmziOMYYTdPU\n1Jbg5r19brx2mR/cfEirt0UrjPEAG4PtnJuICtsCS/Nk/4DHjxK+8pWf5+Bkxs6lIeFAEL7y4tzp\n2kFEIaZ08Lwd/vT/3OcP/ucnnP51xeZgTNP2+dkvbxC4DsZzziXYQo/GOKyrmulqzQ9/+EMe37vF\n/sERu5evkCnIS0NSNGgj8IOIsL3FyTQB6aIsyLOM6fSMsizQWmNw8GTM/HTO2ekei7PDF4735PCA\nIllimYKqTEhWS4J2j0ZpiqzA9849Mb0opGoaKqWJO13CIKAoS05OjgFIs4RaC7Dlj/eUbC5ujPiN\nL/8MX7m2zZVKcqVl02u1WUxKjNFMDnIefqvk7LbFTmtErEKqLAfD+fxrkK6H7XgIYcCG3riDE2n8\nToAVNWihsbTNuNuHCrRSYAuq5pzaHLguvmUhMfi2RzYpWZ/+/3A64DgOv/u7v8s777xDkiR87nOf\n42tf+xq///u/z9e+9jV+67d+i9/5nd/hG9/4Bt/4xje4ffs2f/AHf8Dt27c5ODjgl37pl7h///4/\nXKz/cfQ2PKq8IK8l+nCNdhriTYMXL2mHLseHBVZo0XJdgp5HXsy5/GpE0dhYc4/lyYqqsAm7IXFk\niNyAMltQFRkyMDSVpt1xmZ2e4CQCr2qRZhliLTDkSNsQioisaTBaoawK4bkUTYHBQqsGozXtVoei\nLmmUhStD9p+vkTY4skNny6ZUK8JN6Gw4GF8guoq1mpGaHLsBZ2ix1Qpo1ksudi4xPZrheJKnz4/Z\n3BmynC+JbB8hHAInYL1eYAuHpm4Ag22LH/PYz8UtASzLIISN1pqqqn78noVlWSilsSwNtmC2zGnH\nEZOzExwJ1y5vs16vqMqCVZ4wGm2xWCZoXD68eZ9WJ+KLP/MeP/zoA6KugxKf9vUDGAwi6tzCy1/m\n5vfW9KwbiFZK76rB7i65uL1LeJDRFA2L9Qqlm/M7WZki3YDDkyOGg21mh/tcGI5AcP4cLh2mJyf4\nbouwHVNrjd/u4joR69kCaYMG0jTF9TyqRuEage9LQq9F3bz47jdfrQh8j/W6xLYs/MA9dxl2PIxp\nyLIM3/cxTYWUNo7rIwQ0GvzAo64ziqJAa4uyKkD42JagrHKMDNjYGNPpdCnzJdfnLf63j44xEfTH\nAyZHx1zcHZKsC4LKxlaCZtlQ5g1SCmxbYjB47rmeQtjxWC6XWE2Xxj5vDFNigeMZ1sUaJ7KwKpuq\nrKkahSNtdKmxsLBtmzRN0FpheHHufjJ+aiWwubnJO++8A0Cr1eLVV1/l4OCAP/7jP+brX/86AF//\n+tf5wz/8QwD+6I/+iN/8zd/EcRwuX77M9evX+d73vveP/n5el+iqIdCKIFBEWxbyQkPZL7DbCeFG\nw7DvUDQVUdfQ3rWo4gorzIgv1sQvN7Sugwlz1usVWtucThYYY4G2yfKCqlrRCQIG0ZjNjQv0WjtY\nVR+nGjN5kjE/yWhqRZYVJElGmhZoJYhbHYbDDRzHoSgLbNtH/nihYjTrdcp6lbB3L2F9Ah5d6rKD\ncQtKVaBzyUCGNCc1g54DFQzbbUydMj2pGW9vMhyNaUoHW7i4tk+5zDGVAm1RFAVS2ih1zn4RQmDM\n+UKXUhJFEZZ1XhXYtk2v16Msy3/4rG3blLVm/+CIV25cpdf2KYqGm588ph+1Gfc8XMej0AWjiyFB\n12H7ykW+96PbCEvzubduYFYN6cmLfey0zlmcZHz83U94eucWR8/vM5k/YbAraUUOTw6fM5QB6/WM\nsm7QSp0z69Y5iyd7dIWDTta0PIda5SzXC5qmwZUuR6cl09plogMKKZlnFc/2DplMpiSZIi8UWaaw\n7Yi43SPutimqmjxLEe6LGYOj0RhLCDw/wJaSRmka1bBO12itsW0bbTRKaVarFU1dYlnn811XNZZ1\n3mFqWxZlXlCVJWDAkaR5TmU0TuDyK1/9Od69uMO7cUQYGRbrKaPBkCopEZbGqmFvb8GiUMTdLlI6\nZFmFdBx0cy4Z50cO3ZaLThY4IkF4JUmS0el5OKFGeoIizzEogvDvwczFC3y0sPD8AMcRBP6L9RZ/\nMv4/7Qk8ffqUDz/8kPfff5+TkxM2NjYA2NjY4OTk/BDp8PCQ3d3df/jO7u4uBwcvlqcCCHVAINtY\npYP0G1q7NQQGXJtWGy7seAx7Hm/8gocKMpaZRbrQjOKQ0i5Z6ZTOhYDRtYDCs3n2/BndQZ9ZUaGM\njbQ8uk4HNxecPp1x9/ZzsnVBuiiZHMyxCSgzDdqhKCocxyXLcizLYjgYUlXnx3FSCBxgc9Qj9Bws\nXDy3Rb97AV920JkkO7Y5vblmdbuPPg1oCZ+zpynppCZu2gxaLnFkc3rccJosuHfrkOe3jklPajzh\nUeQl2mjK4vyCc12Xqmrw/RBjoCgK/t5KzrIssixBqYZWKwQgy7IfnxQotG6wLIMjBUrb3Lr9DNtq\nURUKz/c4nWfMFwVvv/YKZ3vHdL0YXZa4tstikfPh9z+h1+mz293mpfDlF+YujjtEpqBOMi74I+ra\nYXPXw+tMSbKSDX8D2GBRgJvVOEawOp3SJAlt3yO0BL7OUOtTysUhwf9D3ZvETpZdZ36/d+9983sx\nx3/MOSuzqrJYJIvFokixpJZEtdyyALYgtrVoW7YAwYCXglc01730RgastWgLtgwDba8acksmjZZo\niN0ki0MVa8isnP9TzMObh3u9iGSJtrLEBnpB6wCBACKAiIf37j33DN/5PnsX0QgpGPSOcYMDosFN\nVHRAbTRu4NHtX97l6EmOLTxWi4RkmbI4nbN8fEa2TmiL50MGXVfhugI3cHHCCD/sYlmSoijJq5JN\nmpAXJVgCYQkmF2fMphdsthuKpiYvSpq2xXJ9pBeQ1i1powFBURTUdUvZClpLcOul67x0xfDrr1zi\n+LDLKlmz2m7pxwG6hvW64OjVfYpoSffQxQ8MIQpP+bS2ITjwOV2XvPjGp6ldELaDlg3at3H3Quxj\nh5u/3MMbKyyxA5EhBKvthoqCqs0Bif0xrFA/bf/e3YEkSfjKV77CH/3RHxHH/+9C0U9C0I+zv/c7\nAYvZkl43RjiazabF8wPSTUM37uIqjfQzlvOG+qJLqJbsHfa5WK/xQ49exyVZp7RWQeey5sYv3OS9\nb32AryQ2FtqSZKuM/eM9MtbERJSVoWmqHZW0UNAY4k4Xx/NIkg37+/vs7++ztzfi0ZMnbDYJutV0\n+hH9uMdmtULIFkOF64S0rSTZWrRNidv6iFVLXihMVBCVHZJVwXuzKS/f2WfdwkW6oNN1qbIG13XY\nTDaY2lA3JY7jYGmLpmk+SqGapgEslHJ2su5mRy4qxC5FqOuaptE4joMxBq13kQKWwRZgCZtag6tr\n7ty+yfsf3scPXaTw+P4P3+Lq8RGLyRLPtUi2M7qRjwHe+sE7/Me/9Rs8fPx8otH7D0+5cfOIzliz\nnFu4eyv2b7UcHr7C/Yc5s6Th0ks3KOQ7nE1Pqcua7WJBtxvRebaG6tbCSl26gx7b7a47kGYp4egK\nVdjH6QyRbsu1vS66yGjaGq/bw5UNdVvjeQFVC07s4cX7VDoj08+nSF8vpwirJRrs4fnRR6Gy77sI\nZdO0LdqC9XZLsV0TRR6tLmm1Rd221MZQVxUGgzY79r6yrGgklG1LKCyUgJIGN4r5nV/5x/zJX36D\n+WRDUxju3LlGYRIWsyWFaCjrJZ19l9VkRe1A5uX0/ZbuwKcsCpTT8O3/+7scjke0K1DSY5O3yKBE\nOzWFpdl/4SpPFlOUbdMaTX+vh7QFRZWijKSp5cfuvZ/Yv5cTqOuar3zlK/ze7/0ev/3bvw3sTv/z\n83MODg44Oztjb28PgOPjY548+VuE2dOnTzk+Pv47v/knf7J7X15skcrCli6z9Ro7dllMapoZlFbK\nZ385Ym18ik3B5L2Cm7cOsDJJ0axpiwLR2hRbSS5ajl7sMivnxDeGiNyiWmlayyUKbYy28dyQNKnJ\n8/IZb7/ZyUi7LtPZOULsbocxhvPzC5IkQdoKz989lPHePovVkqap8TyH8d4R7733PrS7OW8hXZq6\nZrOtcQrNel4SRBHXX7jFlUHMNDnj9PwClIs0Fm4jybca0zQIY7CVoqnbHS7ctmnbFqXURyIXPzH5\nLEdUSmFZhrZtcZzdwm+a+m+/F4rWaCzTYIwiy3KkksRhQFFUOLZBWIpNskZiuHR9n8WqIs9T9o/2\n2K4K/uX//q94+daN564LbWwWizV2KKnGW26+DHnU8s1vfQ+ZS4qVprj5WU7nU0ajMZN8Q+BJXMdB\nm5q6KCmMwaBI8oplluC4PqHr4vZC3PEVShERhgFR55CqLhBWRV1kKDS+aBGWQOmWapPQWBPatETo\n5w/NBJ5H3SQopcmy9Q5c5jgo24HapW0axLP7bDuKJEnI5wuG4yMqNFlVoJSN57roukbrFlqDtnZk\nt1Vbo8IYypo0z3BHMZ/oxfw4Nry/2tC2K1QEbdTS9wLyOsMWFqPLfTp3QoKOz5PTM+K+w+Qs4crR\nAKv1SRY1geOjdYkT2GSNJl+WtEuXUzUjMznKUozvRMiuZH0vwVEKKkE6X3201z7OfmY6YIzhD/7g\nD7hz5w5/+Id/+NHnX/7yl/n6178OwNe//vWPnMOXv/xl/uzP/oyqqnjwutKrkwAAIABJREFU4AF3\n797lc5/73N/53d///d1L9uHq9X2aNsM0hqbq0E4c6jOo1xHf/esN2wtF+lSy3405ubfmR9+aozce\nZaIwFUQdi/FxTKYrtuUWY9eUJqV3aQyRy3STUGhDWZbYtkC5Do7nomyHVmuwDBYhUviM94bMFkvO\nzi9Qjo0QYHRDnqcIuVOjKauCS8eHdOIu9rPWnGVJ8qwg7IQEYQBIbOVRpAVvf+/7PDk9I/KH+E4M\nOdhGYhqD0haW1niujzF/G1FprT869ZXa/Qfs8v+ffKaUetYh2A0TSWlh24qiKLFtm6qqsIRAW5DX\nFa3WRFGIsnftMUsqhHQpCnCdLufThuky5ejKZVoMy82KdNPyzlvvPndtXPpMTKNSlts1r/5al89+\n9gXKZY8H7zbMEs31O5LTk+8QdgOMLQlsh71uF89RWBJqs8vJ7SBGiw7dwTHK8TGWJvB2I+CD4yOc\nuI92fdzeGK93BYJj3PFtvPFLiN41ZPwCiTHUCOzOmFI8X3xkneW4bkCV1bR5Ca2GVlMXNUWasV6u\n0E2LchSVsSi0Rku4WJ4BGq01um2fFTh3hVdtGlzXxfM9tNE0VUNVtqigg3A8Pvmp13l9b8R47LBJ\nU5YTQTqx2V7UuJ6L47hkq5z3fvCY733rQzpxhKcNepsT2orNZIGjQAqoq5a6KmmygsjxcRuBW1qM\nfMXVN/awDxzWizXh0KXXi2mahvhy/NFe+zj7mU7gW9/6Fn/6p3/KN7/5TV577TVee+01/vzP/5yv\nfvWr/MVf/AW3b9/mG9/4Bl/96lcBuHPnDr/7u7/LnTt3+M3f/E3++I//+O9NBzpXXJJwy8Gn9hCh\nxf6+g1Yl+7cimnCLPVDUdcnlG/t4Ry46qImdmPJ9xfaHmvTcI601RlnYQuEoRZU2VEnLBz96SNM2\nZLpmupjhuQ5llZG3GbUud0CRwKWuSzpdgR9qLKsijMB2K7o9j14/5vjSAeO9AfPlFEtptNnBT7eb\nDcYYgsCjbUt+/dd/BVpNHAa8cOsah0djpICD/TGPnpzy6OE5b/7Sl9BFQ55WNI3Z8dUVDWVZIaX8\nSD8+ikJc1/3IGfzk5P9JiiDEbrRUa43WO4xDVVU4jsNgsBMLUUoh5S4ctG2bJMu5OJ8ShRHGstBC\noAUoT6JCh8V2w3KzJE0LZssFL33iNr1hl7R+fo69TpY4ETgy4pv/04L//r95j3t/VdMvR8RVF+GE\nvPXhPTqXLyO8AMsPqCzFB/cfMl+u0cJlMd/Qtoa0SAnjDnVd4ygbUZUEGnpBiGXZzxw1GC3wAg8p\nbYxROF6I5TmMr9yhc+XTdK59nr1bX3ju9fpxD+X5FFVNq1s8x6dtWqqyQLea0XBIUeZstmuU44Cw\nsYRDlhesFgt0q2mahizNMeaZU9C7oqxlWZRFSV0W+F7ANi/xHI+9K4fEvuTagU8cKJLpBisrORgd\nUmeKqtBssxzXU4yv9phv1uR1zsFBiM4s6lzQtgKjDdLykdauexR3utRtS5Zq7H5MWS9I5md4oeDW\nJ27Svx5y9CmLa288PzX6afuZ6cCbb775ETjl/2t/+ZfPZ3D52te+xte+9rWf+ecAmyalqSDRJftX\nepTNBeOrkrpJuXnHJUkLLDukVHPcq32KdxucsMbCcO3qDTJrTSUks/M1/X0XaVUcH4358YczlJHY\nYid1pvMNEuh0O+SLGdJzCWyHvCoZDvsMxjZVlZNsVxirJozh7PwBl45v0e93yfOEs7MzhsMunudQ\nVRWu63JwcMh6vaLbi7n/4C6dbsj+/j5VVRKGQ4ajHov5Em0Es8mC//Hr/zP9bodNssFit7l9f1e8\nqeoKx1HUVUueFx91AbTWGNMihI3r7vjugWdyZM0zx6Gpa/1RvaBpdidUt9tlsVjQ1DWBF1GVUHlg\nLIklBH7PJoo8vDDAjwWd6BrrTcrq6ZYHj+4TBD6D8R4nzykLqLVNtq5ZrzdEsUt3r8vp6Zzx9QGb\n7Zbvf3vL51+6Sq0GnEzeJnB8JtNzLNvjbLpguz3DUzaz2YyXXr6B7Uq63d6uTlKVdHVJbQlcz6Oq\nSrw43DEPSZu6bTGWpDUKIRVuv4cJSrAa0o/BCVhlyXy2wHUD7MAnzVKi0Ec6NkVeslguqMoKz3co\nihSw2G4yMIpUl0i7pW1ahuMhPJt3saSkyjPcoAsmwQiYrzd4tsO6yFCi5ZPXDnnr7QnesIs9W1MX\nmixfc+mFfc4uTvGCDk7XotJzShTH/T3e+XenLO0t3W6POi9ANKyXmr2DiLre0Im6TJ+cQyPZ1gW/\n9MXbXGwmrLc5J+WHCNGiRw1r+++HDMP/D2DDo2CA3AeTFGxlTj2z8cY13Z6HqTWW51M3FXVhSIun\nXH6zw5O3tnRcl8nqHNdzoajp2APKJxVlk7HJzjkYDXh4b86loyNkM6MXRXQdSeRYnBYVVW0hpUNV\npszKhN5gj9FRn+lyzbXDARYW0+mKydl9mrYlCEPGex3yPCOKQh49evisRacRsuXVlz/BZDLl4OCA\nLMu4fv06m82ae/fuAhZxHFDmKXEc4Dg2o96I+WKBkjZNo3FdF2MMRu+iprZt8TwPpRTGGNq2fnZK\nKlx799iqqiCKIqq6pq5L6rbBMrs81bMdpCWgbnGlwkiB4yikssjKgrgTULYZla6YrUtUst0Vkipo\nq4JeJ6TRJUXRkGfPX0hjy2dea2zXxREg8oxfevNFijZlM9kQ90d8MMmYPf4/eOWoS/PgCXXe4PoK\nIW0MNY02OJ6P7XSwsOlHXSzR0j26Bp09GuUhhYWyaoqmQChB3YLWNbbjYAkLadloDMr20dkKTz0/\n8swWC8pkRiE9gv6I3tElhGtT1zW2kGTrDcvNBrNsEUrthrSenfRS2hhL4oUeVbPTILQsie/6YHKW\nyw1KCVqtCV2fslxjaYXXHWBUSmxL3j5f0siGF14+ZDOrefjjE5Kk4vCWot+1yUufoSdJyhzl7upM\nm2lKNHAIBxXrWUOWJtRWRW8Q4UgbhEOZFNy/O6ftZORWztDzsHyLBwtwzD8A2HD5tMVsbeTYxhu5\n3Ph8j9HVLtNZxXJZoqRACJfzpzW+6tBYkmE/orc3oKwMi0VOnkkmZxuSRYGjPS4fH7Je5ShhMxz1\n0JYiqzXz9RapSj7zyiU8CVmW4vsO/UFMvzck37YcjEZIIQj8kGFvQJGlxL5PHAYo2+L84gln50+Y\nzk7Jiy2GmsGwy2q9JIoipJQEQYCUEqVs9vcPOT6+xGg45PKVy3iei7Rgf2/I0dEBsCMFqaoSqQSt\nrnFciR84gKHVFXVdPAs9NZbRmLqhLkuCwCNNtzR1iUEThx5RFKCkhWVp2qbEslosYXCfLapOp7Mb\nHmo10hIkmxS0TZXVxEGHbJOwXTUUect6XRD4IZ7/MWdFXfHypX2uH/To+h7HByPSTcuDRyuCzhDH\nCjmZbHkwveD++Qwr9NHSYjHfkG5zRoMejifYPz4kryuE49Baksr2scIhlhNRF/luaMq2MRjW2xVZ\nviEtEvSOIQEpJUIJhITWlOTZ8zkRjTBYjsLtdIiHQ4RyWG1TWg1FVSGUotPvI5SNZQnyvGS7zTFG\nUj9LiZRU+F7wDK5r0bagpE9VtpR5TQUo10U4Amnt2rp+FNJ1JJVjEQ5DGlmRJWs8ZXHlypigp7Cl\nTeQbqk2GsCwU0BYWnpK0pmW4P8a0Fr4foJ2WLF/RNoamrjFtw/RsQ7auuH58yGS54WJTMfIc9Ob5\nEOqftp97JBBYFpv7GUGYcDm+xDvvP+aVFw5xTMVrn3uRJyf3efh4gwwdzp9u0brlyOlSk6K9mkFn\nQLKqMKKgTDSKgIWuKFYWXiixowzbaUmrEs/2KdOSQdcn8h1GV6+wfzggS7ZIpZg/ntPrSoyjSJIN\ni2WKsSTKscnylDTb4nqK9WqDFIrzixMCP+T111+nbQT37t0nTVM+85nPcHJyQhzHdLtdpBS71p9l\nUTcNqm3BahgOO1RNRZqlBEFAXZd4foe6athuUxzHQQiJ8BzSpMB1XcqqxBY2vV6PtEixnZ0fdxyP\nwHGwlOTWzesMun0ePnzAbLXEj31822E83GM6m+MKyZXjS5yeP+VgcESS5RyOrrJdzPFdGyFq4n6H\nsgkIfAU8v9csDgUfphfUDcQq5OmDJ3R6Y/wmJzkpOFcXHN/YQ28rzrI1vpH4oUdd13S7EcqROKrk\ndHLKtcvHrNMNkR3Qu3wVqzMkawxWkVPrFt8LyPOcNE0oipTxeJ+6brCQYBraOsMVik2ywdPPRwwa\nobDjPpYbsUgSzDbF9XxKY0g2CVIKbKXodDpst2uapsV1QvK0QUgwdYYrBLUUFHWJVArf9ynLkqa2\n6AxiElNxPiuomgWDsI/UNf3OiMtRxF6W4gYBp+/PsS2fom64eXXAQsxYrDdcGQ8pheHR2yfYbkgw\n8lidrjg4OObpgyVG7yIf17FYJQuMpRCWYN+LkFITRw4f/OgpbepTTCxGL0V4x8BzyeH+1n7uTqBx\nJJoK8i7v3zvHFgKE5IVPXub/+pvvctCL2O/HLNMEb+jRFA1NtavQSqlZbhZkWUXkhFR1gW0Ek8mU\no1tH2EGKcC1e/IUxo/gyxbpk+3SDxYisPOet77yH5yuu3hiRbErcusXf77DJKxzbp201vu9xMTvn\n6s1rNHZOVWmu3brMZHpGmbUs1yu+94N/y6uvvEG31+fS8REPHz7i6OgQ27YJgoDlconA4uXbL3J2\nfs42WdPvd9EGLMfh/qOHZEVBGNisVhuuXb3CcDhmMpnQtjsJbGXvhC6klniegxQaV0riwAMLbKko\n6wzHaLabBdPZlPVyS/mMeaatGjATqrLk9u3bPHx0H9+3wSgu7R3TVjVFWRCEIV944w3uPnjIxckF\nZeHjeM8vLnWv9pnPTsmVIDQ1bAyzbU6a1gwuK669eYSFg6yGPPybuxxGmnK9Ztjt0NQlThRQbQxF\nVbLIE46iGBFFrDLJnvHJiorABWMCGjLKYsV0dh+pXKp6x7LTtD5S1yjXoiBHFjMWD7//3OsNxwOq\nvKBqWrS2EIad7HnVEMQhljY0GDzX52Iyo65a1tsFvW4HJR2qKqGtfeq8QPnsWoTSAiEw1BgpcaWL\n7FgspnMqLXBKQSMlZTHnRiy5u90ShwPW5ZrDS4c8OT+hDaDfcZgu59SbAIFN/0hi2oQrr1zi4eNz\nQh0SD2wQmm7P5/THC2gsvKBLtt3CQwvZjuipMffevktQ+qxljbz5swuDP/d0AEtiqFifJ8RlyKhw\nyc9WkFVcHhwx+7AheSroeQFSVwSORZUbbOEw6Ha4cmmfo6MBnYFD3PUIQpd+38bvFlhey0afMimW\n3M9+yElxnw9nT/jhw7t86Uu/yNGlAb7vcv36ZdabhDTPiaOYo0uXEcomiGPifo+0ytHSwnFjSr2h\ntefUOuP6i8dMJgnC0Tx48iFa1LvW2zMAT5IkrNfrHYTXsphPp7Rti217O277uuV4f0wgLG5cOUBY\nDoN+H8sSfPjhh7iuSxAEGGMQwkIIi04vxgtc3MDBj1x8z8NxHBCCwWBE1Onw9OyM+XJJa8BWHmDR\nALUxOJ5Laxr6gy5xFBEqjyopmM/nxJ0O2ki++Vd/xWQ5Y+/SId1RF+k+/6y4ODthECuEbFH7Fa9+\necC6rGiwSTctq5MLQkvSiSVu1GPaKD73j/8JKEG63HD29JR0vsaXDro2LIoG0z0k2LtJjYcwDVW9\nRVtznjx9l21yjutJlN1S1SnbbMM2XZFnG7L1nPnjd0me3iednD33etOsIq9qDAZlW/ihj5ASqRy0\n1tRtAwi2SUaSZs9o3BTGMuRlBhZskw1gaJqWsNOhbDVpW+GFEVp5tGVDsV3j2Q6u62OpkqYqORoN\ncK0dHHyTL9m/MaA0K/IiYTQK0RXsja+RbEuK1EK3FWFP8uDkPv1RtJtraTNkKzHbGnJFN3Tp9j0s\nLyJfSc5+tOLpW0+IZIjjO6ynJSr72arEP3cn4PqgSwu3dcjmCaE9IL0wTD+Ysjxdc2O8x3q6YTgM\n2c41QiscAVWWYaqGcrtmEAmkSlBOzTZdEkYhdZkRhrvZAS+oiWND/9Di8qe7zNMlN68cc3g0QCiN\nURWd/QitXLyw/1Hrp24qpGsT9Xu0Atb5gkpn+LGF67oIy3Drlcs0CB6c3Ge2ekpazIliD98P2Gw2\n+L7/0btUajcIojVFUTGfLVgsEny/x3ye4Tg7irPNZsNgMEBr/YxZ2HuWGgiyqiToxKRFibYUlWUo\nmppVkrLYZlwsNoxGYwI3wHUdhoMe3W6XTtwhDAMsoNvpslqtmEynzJdLttuEOI6pqorldktn2Mdy\nGp6c3cONPbqj/nOfXdc+Qqw6qGWEXcQ8eFcQ2IbOoYcg5OTbLdO7G5qs5bOf+ixf/MyXeXqWEQz3\nqLXCKi28bsje1UOGh3tI18MogXZ3GH7HUWhSLuZ3acyGslkjFfheRF03tG1FUSbkdUKTb6lO71Kd\nfYAsni9DBnyEn6jqhqQqaaQEadFqjaN2p2aR59T1ruuyQwWWYKCudyjObVpgKRdL+SA9ikZjCZu8\nbBCNIV1vqfMK0ebU2wRL17i2hadqdL1TfJaegbbiytU+TVNRtRWz6Sl+18HbM4yOI1xfoRtFJ/BY\nT7coLSjLDeOjAcpT9EcxRb5LUSQCW0pcx4ZaIqTCd3w27z1/7uOn7eeeDty+eYiSLVUpWE4LLjYT\nvAEgJB3XsFo+4XP/6AqOZbN/NMJpbEpSPMdBGk3gBGznCd1en+jA4oMHc9Km4lI8QOsc17Xoh2Mk\nEmgpnYzR9R4fnD2iaRI8WeMHPo5qcEOFLSRlUeC4ardpqpr+uMuqmnC2fMqwE6PriHWS4CxyagqE\n1owPQsp6xt0nKf/Rm7/FYrXE9TzOz893oiBFznq9odsb8GQy21FcOy7rIqGWLtFoSLaac+XKbYIw\nQOuSJNkync4w2lCWFWHoEey5bIst2mjSqkYpi0Gnh+MlCAs0ElFrHKlACaomw7bdXVFtvUKiOTs7\nYZ1kjIZjDDYIi0WZUzWGIHJp0WxWGQe3ejRVznr5/OLSYlFR0/L65++wOn/C9OyMSklkYRh3R5xt\nS8TsGq/ceYV/861/Czckn3nxBS4PbvPdXLKYnnPnjWscDTu8f39CXRuePHoXdzkn6PSobWhJodTY\nbkjodZBCIRwLaSTUEoyLE/jM338bL1uxnp/ju88/25qyAFchfZ+mAVf47AYkNVgWlRG4Qcj03ffR\nuiUrK5TtU9UVbqAwbUutGmxnR4neGENrLOoCak8QOi5ZugZpdjRfTcU2S1CNIa0UZRvixYqimGNL\nyeBSgLGgTlJM1aI6NrFd4x32cYxgPl1x7aqPl2kcIzC6ocaw3WbcvrPH6YMVeV4zHg9YrFKEsajq\nAiVtqkbTt/ukyT8AJ3A+nWI5htlqRqIaer0BF+2Sqx0PF5d7J5pXgpjNQqNshYWhvzdgtTzD70Q8\neXxOr9cjyXOicZfBQcyDD+aEvsJ3HGphsU7mHI/2yJOUwbDLUlf8n9/4NwwDnxt3bjKfn2Oh6XQ6\nCNHspM1sC+QOCPTBk3sMjjqMBh1Eo2naCjcwLDZnOI5LkRd4TodaWLRtzWIxx3Z7pNsNeZ4ThiHv\nv/MuRV7AySlXX3gJKRWt1lhNSyfuE4QRwziiLHabdjAYEYQ+WVqwnM2p25p33/shg+4R5+WEsOOx\nTDOOL90gW22I/JjWVEjHJV1vieMORatJ0xKjCxptuHR0iYvTM55eTHnpzktsNgsW8wVBEAM1gpqX\nXn6Fi7Nzbt68gns54+77D1Bl57nPrjQpra546wdvESvJ3v6AST5FaKjkhv/iD/4rfvDt73P/3iN+\n5zd+hV998036g5g8nfPyKy9xcX5KNXvA4uQRPSVZTlfITsj87DFJskaHPo4rQUHXCqifYftFCcJV\nWL5N0wqUSWi2E9arKb7voeyP4do3hiTNcIMOQjo0jUa3Fk1b0poG1wtYrdY7hiZLYJldB0mxm9gb\n9EKkYyMsQZZltEjKxuB6HnGvS5akuwjFaCyp2Gy3WBqk6+ILheUIRNsSewGWFEymGzr9mEGvz7qe\nk69qenZAk+dIs09ZzJjOS64OB1RWzf7lS+TFjE4QcPF4TV62bNOcuj5FKoEtHbKsRriCbjdmOp0S\nhj87Hfi5O4E2tLAtm5Efsh+6jI9CjlqXIs+pHm75/Bd7/ODtuww7MfsHQ6zWYjat8GqHsOPQ7Q04\nvVhxeNnH2CmXbsRUMqVMKwqynYxVrUjyAmm5TM63NLng0598jXy6IVIWmWNzdO2I2cMZ62xN1Nkt\nOJTNIl8RRz5x6OP6htV0RrfjsO0LLHyWqw2Hx4cs5gmeF5CVKZY2RGHEh3cfMp1MePL4CX7QwXNd\n2qYGI3EchbAcZFGj2pbI98k2JWEYYoymrg0X5zO0hv39Q3qDDsNRj8nknE4QstgsuPPpm5w+mZKX\nmgiJZ0vqrMBzfOKwR76eo2wHz3GRSiJt8LoRkZJ0ugEXk4dcurLPYrFCGMPRlQ5FNePi9ITLL/QJ\nfMXhcYfO8REP3v67z+7K0QGlrkg3S0IZMpulHEf7vPbKJ9AmIXn6Y37/n73Ji7evEloG4bXU+Ya2\nMhRZgtBQZGsWq1O0FdENPYqmwTEtkeMioi6O9GlVixI+0jj4ToSxBJZwEDiE0uLsR9+inDzCcyVG\nQdDtPnet5U1LZ7SH7cXQGsrNmqbZ1QiEUvh+sOvzhyFnaUKlK3qhh6tspIYk2WJrF19A6HR2aYJw\nCDyfIiuoygrbVuhK4HkuTdNSNzWubeMUJTrZgNjVdxx3p4GZlQXrvKDfG3B2MmO52NL1JcnynDIX\n3L454uzxktffeI1333qH2zd7RCh+cLHhl7/wBWgs/uqvv40ldhD3MPBR9g5UZmFhfQwXxE/bz90J\n6KbCiz2mmxlh1LBZ5JRJzf5xhxdev8aD6YRf+Nxt1ouURueUqcSLWpwg4vR0it89JjY17qii9aFs\nlwz2JFoLTOmCAqvb4DoBjx5POOhfBtvie2//kNc+eZPG1khTkBYF8+WS2y9cR9o+TbFBKsO1/QM+\nuPt9QjtkPlvQGo2yLMoyR1sGXNC0tHlDLQy90RA8xePTpxRFTpIkhGFAGMUYs2OAsT2P0XBArxsy\nPhjzw+//CKM14/EeyXZLEHlYlsV4fIDneqAbFosFUij2Bwco16Z1DXmTc+nWEQ/vPcFYmiRpkUbj\ne5L9y31W1RojKizRsk1S9i4NsBsbD8N0+ohuL6CqU6TXEnUtrtwZcvf9u4xvO2i/RNeCSAQ05vl9\n9+nilKiraOqCIBwxuBZzs3uL1199mVu3b3HUGaNJWT95h7ySGNsHO8ZYLcl6Qp1o1kXKNitAuVhI\nYsehrSxU1SCMQoYxgfKojUF5Lm0rcVSANDYWLabVdFyNfTzEkjY2DVnyfAFO1/VRysMyO5Ux17PR\nuqZuWlzHRze7mYDhqMd8NgGpoG4py2Y3+xAEhEFEpTVJkjAY72OETV5WuI6LZSuKYkurK4zxP0La\nmtZgAgcncbjU7bNYpyTLNb2wzybPaE3D+GBIMi1xvJzQhgfbktG1EGHbOKplMNAcDRVuUHO6LVDG\n4MaGe/fOsD0HaXsgWjphh3S7ZbWc0On45PnPxgn83AuDra7J0xpbKs4fZyAaPvH6VdZ1xg8+eMy1\ny4ecnJ+zStasVylFm+942NEM9mOMt2B4SdIZ+QSeT1WVCAkWgrPzLb5xMbVmu0m4des2fqgIew5u\nYGMLF1MLQjXi1Rd33YJ1ukaoDL9r0ek73H38AcIVbPIttufQSgvbtRjuDQnCgM5gt6h9z0cpaGuL\nH773PdqmJt0mO7ir71I3BbotePHlF+h4DoEtCV2JKJf8yqdv89/9i/+aWy/eoNeLsCzr2VCSYbFa\nslpvqYqKum7oDUbcuH6Lvd4hZV6RpxnjSwMqq+Da9SvcvH2bT33qEzieTV0nKN9QmoorNy5heTlZ\nc0ZhpRTUOLEkr7dEkSTsWSzTCft7PeLDiJc++SLaUkgXgs7zSTp85WDXkmFvAOuSL33iNf757/wT\nvvjG6+wFPrraFciyTcJ68oQymZOsn1KWLZv5ObPlnPksZbtKmM+3uK6P6/hgakyZo+oCxzJIA57w\nsG0fy7KxlY2Fxna7BNIh9Lv0hnu4rkfZ7CTan2e98YDQDwlch7atd7wBUu5YfYxFURe0TU3U69A0\nFcJoNqstVVMiLLnjZNxsMNJCCkmSpmy3GyyhqJ61cuu6QViSJNk9e601WZ6xpSQxLY8uFqzzLXHU\n4dH9U1pKgiBitpxyNl+ytTVZaBOEDrbrIajpdgXr5ILx5R61gE1Rc3wzxokErap480ufR6qGzjDE\ntg23X7zxTKa+xHP/AbQIbSlZb2dEUQcKyUsvvMZbdx9yca9AWz28/phpXbBKt9SmpdMN0KrlYjml\ntWquvdSlsRc0pkAoSafTx7Z3lfQocNC1JJI99roDJk9PqIqMTZFgbE2NZpNueeOLXyDZJKRJypVr\neztZq3TL6ewR/csd5lVB2u4GhxqrxbIVs+UabUuKusaLYgQW88WSpFiiqTk5fcxisWAwGGBZFmHk\nce36FXRb4TqaTqSIXEEoLDquxb/8X/8EP2p54aUbSGHvQDAYqjLH9z32Dw55+eWXSMsUXbX84qd+\nkRcPXwJt4UY2biCYry9INgvOz8935C5XBwzGIZ9+4w4n0weEnYgvfuk1LsoT5EiRUDA8iDg+HnB4\nuc/e/j4vvXyHk8k5WV3SCkPQCRH280PKK/GYG4NrfObSJ/lvv/Yv+E9+9TcYuRZ6c4GVLkjTM+YX\nJ/jK4d577/Odv/k27373bd57dJcPvv9DTqYXpFnBxcWSex9c8PjRBUlWYmRDa1LMfAKTc8oqBd0S\nqIie10HT0ot6CK2p8xmmyVguV8ymE+QzmPXzrK5bjN61bwM/JuopKtuMAAAgAElEQVQNcYIORuwc\ni+M4uEqhhGQ2X1A2FYPBAGF2dO/Kd/G7Ea7nEQQurmez3WyZzWaUZUlZ1tjKx3NDbOnuSGl1S5EV\nbOZriqwlacodYrMsUEpjmpCyyXj4YMIo9sB1cYcjRGuTzlNsy2BbEseWFMIQjcaUTcHw9pBcNRR6\nSu9IUugVTVlS1wmTizPiTojrCTrdfwA1AWMZ4iDGtTS2jvjX/+o7eL6mG3cok5wHT5dQGxzXxbNd\nNsmaeNzHLbe0SB6dXNDth3jKx1E2s+k5RiqyrCKMXJI6pVoX7O3v4RiBaAyubLl+e8T+1S7Z2uZ/\n+d/+By4dHnP75RvMFylVZthmJd2rffI2pz/o4voByg5YrBKSPMXrB7SWoRd0sVoYH49pzzTrZIVv\neZi24PqNqzx+9ISr165ydvqY9UqytzcmcC06gUNVpKxmCXNpsKjYuxVy/eoNPnz/AbatqKuGKtds\nrDWOo9huLQb9PlmS8uN3fswrr7zM+XdOuX79Bc6fntO2FVFvxGA05MMP7nJ0+YBH6wfIUHNwPEYp\nl/fefcgnP3Ubz4sp0pTYtbk4mRCNQoT0mKQLvvCLb/Lk0UNcx5Bnu77482zoj/ilz36eL7z6OpHv\n0NQZ9aohTzY0ZUpuVaAl999+B6kGTB4/xoskWfY+VZrRD1uqTCPsHlFUM11MqHWJHzm4nk+Rb6gW\nDaqq8PYMSepj+z5ZmtLUFUp5FPP7OPkc/Wy+o8hTpH7+1KNSgjRZ0un3cP2QomqwbMACbcwz8U8L\nzwtxbYc48GnaAj8Mka5HqyxqC5SSNK2gTWu6UUxeNWRphtaaVkqU8sjznCorqcuS0AtwXBtHa/Z8\nQcc7ZLFcY1sSv6/YpAbXbbl5c8z90w3vvvOQm1cO2VZr6iql1C1NvcRybUo0cc/FdRWNtQXb5d0P\nP+DKjTF14uCKkP29Iev1BteXBEEHeD5u4qP78h+2hf/Dbbw3YjabUVcll1/pcpGUWHVNm27xbJv0\n4YR2lXN4eEilwLJtHp89ot8fkqw3YBxW04TAMyhtE/kdpONjU5HnJa1r2B8fUCYtB6MDknSOcHzu\nfXCCwmBrjyuXb6JsQdyLWUwWSMfGLtQOoto23Lpxg0dPHlG3GiUEQgryOkV6irqqoC3YG99gdmYY\ndEf4IubVV1/jwb0nHF865uTkhNBz6cQRoe/jOBbK00ipoalRVosjwNM5dbniP/3nX+Zf/8U3yXOL\nK1cvEQQeVZVSVztq9E6vx97BIX/9rb9iMB7z4bsP8F2PF69eIZ+V7B0csr6Y8OGHH9K/HXDv6du8\n/OIbnJyeYUlFujEk6xVhR6B9i+7lLsvZBKMlg14fZUmiICJNJrhC8DEcHfyX/9l/zl4cYcqcxfkZ\nusyom5rV4ilFtqAqFOs8YTI9ZTYXvP+ju/zaP/1tpg/fIam2xFXFdpWCtPFDC8cyQM10ssJoQ14V\nBN2YanWBbTfoIiUeDJGWoikacDVow3S6ZNDvUeYZVZHjfUw6kCQbwjDCWAatNa6zGxKK4y5tXeD7\nPsp2sV2PbtwldG3yWoMSOIGPH/oo30XaO0xA0zR4rksURjiuQ/qMltx3FFmxwVUOdVqQVSWrZoMK\nJD014OTJKbZr0+v0qNGM9wLyVPLB/TlGaQ5HXWgKqiSn9mxKTzLa66E1rBYLwljhKcFilXDl1oh8\nVVK12TM6/IbFekV/2Gc2y+Fjoriftp+7E1gvJ8RxRFVKsiaDtkEJuSN+UhZFWyC0x9nTDeFY4PUC\ngm5IY1UEsUeTQZkKDDbTOsF2LLqRTZ1ndP0htu+wTFZIVbPYFNy8eczFdMO1m0f4rsvifMP5xZo4\n8An9C47HtyjXCeOrN1m5WzbJlKenT4g6Httsi+dIbM/GcQVCKcp8i+sKTs4ec+PGdebLhF4w5PzJ\nOXvjPZI0xcJwcfqY/f0Drl6+zKXjPnWRYQuX2nX4wXf/HZ99/VPMnzymKQuO93r81q99lrfff8R3\nfngP2z3AcYJd7zrLKYqcPK34wuf/ET/+8Pu4raBju3zw7tt86Re+RJbOiPs+F1tNUxsa0fBo+YB1\nvWB/PGC53O407NocZULswOf66BpVrrGNoE4KdFlidI0UAWL9/Em0y72QbDGlzFfMJxOK7YqqLljP\nlwhaSm1zev/HxKNX+fF3v8FoOOTJ9JzN7JzBfgfLrrFdQUd5aBqKekfd5bg2abEmDmMOOl16+0co\n18PtuNguJGXJIp2j65Dt8ozKqqlowZUETojjPH9ZC6Ew2qLISmzh70hYaMACqRRlUWIHkrouiLsx\n/ThkHMdkeUWSlrRJjt1osmKOEALP8+iEEUmWPmMK3mH7s21K22pcIfDiENkaFnWF8gJOH58RdrtU\ndU3YddCeZL3Z4AiFjCS1XTMOAsx6Q3C8R24SVNMyOZ/heYrIDylNxjZdEMf9XV0i3RCEEfNlRTfs\nMJlf4MQOwpVcTJ8/Vv3T9nN3Apbvcj6fEsc+gethpgalXIQtyNsG3dRkheCo54MS+IFPYGkW6wVW\nq1Ct5Hh8RJZkeJ2IR4/P+OSbb1D3W777zncYHw5os908tmNLtqsF8/MV+4cHlFnC4d4AUbsoX7LY\nnGLcglwWUFpsNjM2zRY3sOiMRohEUJYJq2RO7Htst1tsS1Kkmmbdsq5KbCLaShB4MXmxk+maz855\n+eU73Lr1IsPRGGk7REGPi/MTvvvWu7xw8zXeu/+UK0c9hDQ8uPc2VdUwGhzyq7/4Cb7/zn1mi5L9\nvQHG6GfTioosS+kFQ6RWZNKh+H+oe7Ngy7L0MOvb83j2mc+585RzdmZWVnVVt7qrSz1gyZbUbakk\nZGMhkGWHwRACOTCDCV4QRBAEATzwADwQIBuJCIwDeMDW2OpudfVQ1TVnZWbldPPevNOZz9lnzzMP\nt6UQoZT7BaKC9XbfdsR//v+u9a9/fZ+4xAvO0BsGWl3k8qcuMsfFVlOmixNW+g0cG4ajJWIm4VgG\nVZpwdrbE1TVsu0Z3pcu9B/dRc4uOcoHbl/f48iuv8rv/25+P3fzokKU7J888wuWIx+99iFFz8P2Y\n9ZVNhtMzylxk6Q7p93VWVps4lkioKVBJZEmI4dgIhUKcRCR5gaJWSLKCpuv8ws+9jlLKxIJ0Llap\nBMpSxFMK5osxSRghqApWpwdFRVWWyLL2Qwrwn1+SriDIIqJY4S5HGIggGcimhiCoiJXwpxOjnW4f\noYwJsgRBVdElhdl0Sk2VMR0HSZSQFZmoyOl2O4xGQxAEWs02SOcIN1GMyBcxz+YjFLtD5nt89as/\nwfc/eI/VRo9HD55gtxwm8wVJJXBpt0c4FXCjCRurHZ4enNK5so4VFWiywWIyocwjkjJmMci5dmsN\ny3YQwgxLVVESgciLWVvdwF1OMHSo13902+8TLwKNZg9dMxlPBwyGLhe3tylzkZPJEaaiIOoS26st\n1ttdUiFhNBvTbrQosgzfP/cU+nmIIomYksbVS9u88dZbOJZFr+lAlNBq1NEMEd+b4UcuipoQZmMQ\nRRS1oixi/CChrAQmyxGqYlBJOeFwSnurB1LFR3fuceXqFRRDJcoT1rqbRMuIsqowbZv5PGY6X9Bu\nrCBICisbm8ymU+bzCZqhEcQpD5/s8+DxM/I8YzEZkCUhlajjtAuarTVyctJMIBgvaHcaRP6Cza0+\n2dU9jo89kjBGkoUfcupFQMa2HKpSZjlccP3GbZJqxtmzU0RNpd3vkM9iRKnCUjQMUSOY+VDmNLtN\nhvMhL790nWB5QrvWR9MVloMII+6z1brA3/6lX+XKTh3S5zvu79/9ASu9FomfMjgbsRjOWYQlmqmw\nf3J0jgfb2MT3fCQh42x4jGEbiFUJeYU7n7K2e4nR8JSiLDBMG0FMuHr1Ba7sbmIIIqplU9dsBEEC\nSUIQSkzfI6PJbOhylkMUlxRpQk3XybIUVfkLOuIlRH6IoimkcUxSJGhmDa1oYZht1jstgjBCFGLM\nRh1/liJKBpKskosF3dV1DMMgikLKokQUZVRVY76YomryDyczC8qyQJFkSlkBWSEQCsaJgGrU+PjR\nE+bTOYoiYhsmLa1BY6XB6XTG/KlHv7tBb9MgjJcotsqz+6dsb61AKVPJCQIitu2wWjdRypS3vvMR\nL13dxjI03NMRJQJpFmDVRLp1jXa9C7zzz83BT7wIFEFOzahhrChUawIHByfUrAY7Kxs0WzWOTw8J\n/ICZUKG3TNp2g6LM6TZbFNmC49GIVb1Jf2WLs9Ex25c22dvpsfDm6HqNPBfxwoA0r1Bkk3q9SSWe\n4CYeG6tbTI4GbPQ3EROJNBJIcpGiCohij0a3hZgLlIgoogZCxWjksdJ3SNOMLMtx6hampBMbAkIp\ns7q6wkp/nbsfPaDf6/H04AkvvniL05MJeSEgiAqCpNPsqliGzGtf/DIfvvchb3zvDb740jVkUaZW\nr6NrCobVYjydsb6+xnAU4y9T0qzk6egASRJptdo0m00URUGU9/jw8dtU4ojNrR6SKvH05ACtZlBF\nGbZpIqLS7LcQdIVaq42uKSxPVG5sfJl2Y41Go87u5i43r7zAlUsvkMUewckbhPMHwF/587HzYo5m\n+5RixXDkMgsyNjbO3yXYhs7MndNsaYRxjtNpczoas4xC5LoJmkqtZuFFEbplUl/tsb2yyvbWRWzb\nwDt5grtcUOsKyIpKluYkaULgz/H8JZoo0VIhreksJAHdNAm9OXkaIUXPbwxGXkCZpqShiG5Z2M1V\nFNNEkWsYaoPpbIIsFlRZgigpSOb5tr2QREDCnbuEwblrwLZNPM+jAuI4oO44aJpGnuWIskgeRQiS\nRCyAJ4JQb+P6U1ZbDg3XwJ0sUHWT44MBN69fY73d4fGDp/TqbZ48uo/dstjZ2GI2P0XI5ly9dpWv\nf/cZhiUTLHzWVjWk+ZxbG11Wax1yKUPVNa5vbREXKYW4ZL1Xw1v+/2BsOIxTBElAERVESWBnZ5uq\nFEkijzCMaNhNZE2gLBIUsSQpC4ryfCJLFSt6tRprjQ5FkqKJKsvhnLj0MSQBSZeZDee0rDp+tMRu\n1QCVUpDYXF8jjlxku2AaDAkiEUWzSZIYRZPRNZXJ0MNyRCxDp9eoMz4e0LRNDE1nPvegEomTHD+c\nYesNLGMFp97m/oOHZEXBfOGyurrNdB7R7m+QFyWLhUsUxTSsGgs/4h/+o/+Ji7vbvPji9fPrR1Uh\nTQqyWMAwRBr1JkkY0e81GY8X2LZ17hNQFMIwZD6f02g02N3eopQznpy+g19kpMslvdUufhiThjnh\nLMQT5kx1nbTIKNOYn3r1V/iXvva3WWtdpBRAqAryPEdQVKqqRNJ1BqenRAcfPDd2x0dzsjLG82ak\nVYXW6rAIc6JSQRJ05EaDSZgi1xpUgoSpyeQNi1ySKAydqIhx5xN+8adeZ7PVw1REyhxCd4bneWiG\nTpGmzEYHVEBega6ZaMrquYehyIkCDc0oyYMCSZSJggVEzx8WGh4PWV1ZQTV0REkhjCuqKKPWKPD8\nI6oyIy0KRE1FUjXUqCAyVPI4JUkz8iwniRMcp0aSpMiCQJHGOE4dRdOIkxRbNymqkjgtEKqKII4Y\nRynWRg3Pm1Jk51YsoRKQ8pLL1zcZLp+hCBWvfeVL3Lu7j4JOTatRxAnbm1sspzM+fvSQnb09Dp4+\nYmO1RVUKtJwmYhYyn48RNBnDkChyj1anjmoZhPMhzebzpyf/7PrE5wR6a7uMp1NKMSEvRKIwQVZk\n7HqNNM0wNBtLa9Lt7GCqPdy4YP94yCKMqEqZm1dvnnP6NIU8TwnDiDRIqQqJZOJxY+8SJQUKGpZi\nkAQeWRURZgF2s06t0yCWQ4paglgLEa2YVqeGIFQYhoxd09FVCaGsUFFRVQ3bcphO5giCSqe5gqXZ\nqKLJjesvMRouyPOCmzc/Rei7XL54iYbTxjEsFuMJ1y7sIeQRWeGf465FmTD0UCWZKzdvoxp1vv6t\nH3B6Omc4cDGtBn4QsbbeYefCGmvrPTrdFkHoI4gVSRqxcGc8ffqEndVtDKWJoFpM4xC/zJlMffxl\nQqvZptfvMp9PmE8CrKrPv/z6v0XDaVMJFRUF0/EpR4ePEEiphJgg9FFaF9j/C26YHk8GjKIErxKJ\nJIVQUxhXOUWrTtauE7daLE2drNugXOtiX9hhpoOvZ5wWU2aFi2iqrG5egFJgMR0zHR6RBFOQBMqy\nIvJ95uMpy/mSOClIEwjTHMmwQbdoOV0aepdOu38+Euw4SJb53O/trvSZRxGVrlNqGl7moRgSglIi\nqIAkoJsadr2GWrNI85IgPpfQZmmCJFfEsY+iSKi6TkaJpEksXI+qEtB1g6XvnxuEag5lVTKPFpiO\nxcHjO4gllFlJ026ztbZJu7uKVGRokojVrnPn8fvYTYN6rUYu5oRSyfHYxU8lrl+9hjebcnVnD6ms\nWOvv4c5lskRCU0329i4giDFOXSEJXULXRxIN7n5w8CNz8BMvAt50xObmJuO5R5YnCFVFWRakWYKi\naNQbNkVSEns5QmTRslbZ6G+ThRU1pcFsskCyDQ4np0S5R7Ntslj66EpOs2szXUzod1cwHZlSSDkZ\nniGUFWVWMRqOCVwXyzTxwgVpkVBJcDw6xqhb1LoG88WAIPBw7Cb91TWcWpvxeEa73aYUC9LQxxIt\ndtdvk8Q5eVJw9dIldKXkF1//yzQdhfW1Nm++9W0uXNhiPh+jaxKmrrOYDum0W9i2zWK25MMP7nFh\n7ypru3t87ee+xu/+/j/l5OQIcjAVmcgb0ek2ybIEyzLQNJnNzQ3KqsB2DNy5yys3Pks48KjLBqWX\ns7Oxy/rmNpkgMXNddEXiwvY6hZCyWC6Zz0bMFmecnD5isRwwnx7wwfe/zkfvvcmzB+/xbO7R/vSX\nnxu7pK7jKwVp3cJYWyVxdBJL4WA55sHkmI+fPcKXU978+D3am2u8u3+fZ8s5k2VCr7fNzQsv8m//\n6q8j5RJ5UeH7IUVZUuQlpXjOUAyTCN1QSLPk/AlwGiAIJZPZlOlsTlWBbvZBrqNYOzitSyi17nO/\nd1mkiIZKkeaoJex0N0iDCe7JU5LJMSRLkjggCmM0QyepCrzZAi/wSZJzwGm93iSIfLIyx240EDXl\nHPIiSSjyOevQ0HSqMqciJRBTvGBBzdaRNZXDg0N0xcCQDGqiTl5mOI06cikSJEsKMULSC85OjtEk\nk+ks4OqnrjE8GZAvfZpmHQUVqZS5fuUGr37uK4iSxdLzaTQsur02n37hRfrNPn4osHb51o/MwU/8\nODAePaMrb3Jh7wWmw1MsxyROYuI8w9FN3GVEmWcURYmMxEqzQ2TYiGXJ4dEAy2kymBxRr9dJVZUw\n8Nna6+FFAd5wQKfToxRKoiShlErW1pucTMakboAuK7R6TUzDQpVqHB6fUnMaiCqESUBV5DgNg6qo\nuHbjGqenMyazMaZmUhQCtq6hqhaNokdNqzOZLtBVGfIcXZGIgiWKmPHBh3fYXevy7a//Dj/783+d\nGzeucv/O+1y/fJvjkyFJEjH1XSSl4hvf/QZf/dmf5jf+w/+AX/s3/g7vfvARr3zhp/nPf+M/4V/9\nN/912g2bi3ubHJ2MKMuc6WSCocmEQYiklAw+PmazcwE3HWJKIpYm0Nxb4Xsf/IBgHnFha5Wt9S6i\nKHNy9hGFm1BTbZyVNpEXMnOnyDOXw8ExaBqCY+MuvefG7oP9Aa+8eJmlF5LmMbPlAlXXcFptFssp\ndt1GkkUcp8Y7777FZ158mencxRR1rFTnJ7/801iiSVgsqaoUQRGgyFE1jcifk+YFsmKTlTK1mk2l\n6WRxRp7mZGmJLMnIqk0hiDjdTdRKp9JqxPnzz8FylpNGGUsvZZpkPI18DE1E/6GaLFRNnKaDptYQ\nVYVcOL+BESUVsSrOR5dlGduqkf0ZBLplnbMYfM+jWXMoyoxguWSyGBNIFblUksQFWTCh2+pQxgVx\nkbB7cYfFo+G5eUmVyNOY8eSUumNz68qnCAKfz125zeH9Y7I04fal2xwdHaALCrmfMvVGHMc+VZVQ\nUpGLJXNvymQ6wfcLclRGx4MfmYOfeBEQFJn9oyMiL6HTrJGW+fn5L89J0gxRFdENhSJL8bwz5DxB\n1UwajTr63h7TZcj21jZh4GHWdGaTAwTRAFUmCxMkWWI2GeEGC3Y6m7gLD6lU6a72mE5HTL0l09mC\nVmuFC1t73Ll7nxduXmd6OqTVahAnArImce/+hyBYXNzZ46N790mKkCvbNxgelUiYBO6SpmMiywa2\nrhC5C6LZhKRMyJIFmqBx/cpl3nzzO0wXLuQxG6sdTFNEVU16Kx3c+YjFfM5v/eZv8tf+1t/lztNn\n7N74MX791/99NlWJ7bVNDh4/pN9bZTbxKamgXrJcusRZSqffpm7XmAcLxFIlqka44ZSevUKv1SQ3\n6mg6tNtt3n7vLf6vr/9Dbq7d4MGdt+k02rTW94jDOYcf3WEwHoOlUwoVq1ubz43dT371S4zHY259\n5vMMR88Q9YowzFA0FdOskYYZChmqpCCoIt7c5bOXbvLmu2/zpS+8giEbZEFCmQWkaUyeJ5QVeHMf\nQbZQHZus0FBkDSSVQlTAOv+7SHMMs4Gg2MiGTVKIiLmAKOpIyvPlI0EQUKQVmm1T5hmqLOJN5uhr\nHRTdxHIaSLpNpRnIqs3q+jbPTp6hqxplkZFGMWGeoygKkqEgIVBVAqEf/OnRTiwrijRjMR8RFCnz\nMCFIz3V37U6PmtFBKBTmwZipd0p3pcPZeIIoiXSaTULXh0wgXJbUjDb5osCKHURB5fTuFLOps726\nC7mCNw/Ic4ma3UDSQkS5ore2yfHhGatbPXyv4ML2JeD58pg/WZ94EajkiiQLqJIAf1ag101MWSFX\nJCDDWwZUloq3mNOs1ZGFnI6kkByd8drnP8edpyfM0hm1noPn+/TlDY4np5imSVGISEmOLUmUhkG2\nDBDSEilP8aYzNEFEQyIrU1LPpem0+JnXXuXR/iG6qaJoGrKsI0kS7nKG77s0Gxpf/PHP8/ZbPyDx\nM+SyQZKliGICQkbdMpicDjB1WExdsrKg7bR5sn/Ej33uOuZyQn+1Q5klbG6tsivv0OuvIAkiY3fM\no48fIBYV7374MRubHdZ2L+HUTH7yX/g8i/n5f43uxjar62vsP36MLIvcvHmL4XTMvfsPiGKfZr1F\nkodMchenrzOaz+g220RyQFGGPHzwhJrjcPfoPd678x12djZx3TOOwkOm4xF2s81qs0dU5qy0+8jm\n80Gjpmbh2BnuYk6n2WN4OsE0a1RRyXpnnTv37qBKGmUGaxtrLCcuf/RH3+bHX7rJhc01kthFQWRy\ndoyhCVAVRElFVGpIRptCa4KkUeYVknk+1lwqCplioksqsqITJzniD7HaVR6hFAGFO3zu97b6ffyp\nT5Qk1O0acezRu7KLamkoRo1avUGQFhgS6IrIareNLskIaYmmKEwXEwxDp8hyZE0mWnqoqg7iD6nC\nuo4fhmRFhiLKCKLJxtounapgfWeXb/7BGySRS7vZw2m1iAqPMFkiqWBIIq1Wk8RpcHw8YnW1g+9W\nsAzZ3OxSpRpBJXMwPECVXG5duwXlgLauk0sxJ+MzTMlg/94TJM2kZtmMDh6w/95dfu4v/fNz8BMv\nArJhIC+XON0m0+MZZtPhgw/fYX13A0kvMXQVTTMpnALdqjNZLOnWW0STObVMw8kLFLONHy1Z6XZo\nd1u8+eH3iMOQk8UxWt3hbLBgdXOF6WSKREWv10Nr1Hiyv48tq1RpgWGopPMlk3nKTncNP044Oj5h\npbdCUVaEYclw4NGsz3n/zlu8ePtVJvsLVpsGeeYgixKqlLOcT1AqgfHZGKfRxFQFTFPFNFWW3pB+\ns8M3vvMGL9++xf3Hd5kOJjx59BTPC5Aclc+8/GPs7G1R5hGPHz1grbfFP/iP/11eurzLP/lnv8ve\nlRcJs5TV7irT+ZylO+fw9ITB4AxJEmjU23iRi6TYpHGFImmMRyfsbq2yzGOKoqTZsOivr/LOe+eK\nsEIET8ro1xSaQpvEdSmdJnubWyiiw70nj54bu+Uyot5q8eiD+7S7XX7tX/s1/off/B9Z7/Txco+9\n3UtQlIzHQ9IgRtJsWjWDz9x8EUKXJJfI0gJJ09HkiskoIkwLCqGGWPjIqYbWsJFqPUBA0HTysqKq\nJKpcPH+xJwFpjqyK5HJBFruUi+dvgSVDw3Ry0ghkVaLV6tBa30YUC4qsJI5C6oqKnAUki4Q8reg4\nTaazCX6UYpgG/U4XUSgp44Q8z1ARECzj3AUpVGR5jpRnnPkerhiTGCrz8ZSjZ6c0HYd+f4tSrDga\njrHbGkkQIAkCkqQzm7jn9uEyYTmZUmUi3VaXew8/RhEs5oMxr//8z3N4fEpaQimKZGVJVCa0W9sk\nWUprp0tRFZwen9JrOzQsCXh+UfyT9Yk3Bo+Ph2xstHj69ClOo8OHd+5y7doVfN9HFksEKSaMpyCm\nLOMRRl0lEyo6V67wjffeJEgjtvsrWJWCVYmEwwkvX30RWzXpd/ssFi4IJf3WCiudPqaqUcQxRilS\nr1TSuU9DNnDnC3Y3d6gEgSzOUCro1xqMBidkcYKpa1y6tI7rezhOi7ffeo+dtat4Y5+Xb11kpaEi\nFRllGTFzzwjiGWnmEfkzJqMjWo5Jv1lHI+dnvvJFNjfW0DSTze09PvXCTW699BJ//2/+La5vdzk6\nfsTZbAhCxfe++0c8vvsu//1/818ipxmOWiLMn7G6oqOZOo1mC9O0cJwG29tbzGbnODLHcrBkHVsr\nWW22cMcT+v0WNdtAkWU+fv8j9lZ2ubxxATEtKaMCf7Kgrjr81F/+Ba5ceZEn+8c4zRYXL116buxU\nVWV8NqJWtxHFkm988/d49Quvcvj0AD9cEPgumi6RlRlusESRK37u9a9hOQ28+ZzIm7BYnBHlS4I0\nIc9LQj8kTxJESQZNpRBUikIG2UCQNAyjhqJZKIaJZlnIqv3Z1J0AACAASURBVIFWqyEpdcSyIg2G\nlNXzEdtPHh/y0b2PWQYRqmlQ7/aQJIlaY43u2gVqvS3EeosgK0izFEkVuf3SLUohQ9ZkMnKiJCSK\nYqI4QZI0ikrCtg0URURSRPw4wE1ixpHHs8EJlVRg1FQ2d9dQTYGz6SGj2THdVYfpfIgfeqi6RpjE\nrG1tIIgirXYHSRZ44aVbNJo2t27f4uq1Pb7yE1/i0f5DFv6SsMwQLBmlJmPWa8RVQiGlJNWSe/ff\np9t3WN/sIzv/L2jI/r9eqy3jvPutqbSaLbphi+FggF03iOMYBRnTciiqnDRLqLVM3HjOk8FDrm5e\nJc9yxoMTNrp9kizAi0KGT4/Q0SmykLqzRkeAb3/9O/z4lz5Pu97k4PE+4jxn3e5DlRFGS37slZc5\nORnitBrMJlMURSHLQlq2Qa1m48chM/eUhlnHsroo0YiPH7zDRvMzPNgfogrQ7q9wfaXO/uMHlEnC\nZLKkomLpeWzsbOEtI5pOCz8JqVKgkrn10qeJk4Rvf+sNfvt//T/42ld/gs99+rN0V3q88Y1vIAkZ\npTdjZ7XNg7vvs2opVGXC6PQ+YhnTbLbQNI04Djk6fkat5lCUKc/2D+hfaOO5x5RpimWpJIGHTMH2\nep+6ppHGGeHMZT4aYbYarG9s0671+Pa3v0dZVMRBysP799Hrz8eLTQbP8AKPzd0dnjx+QiFVfPut\n7/GLP/U6//sf/hOiOGAWDmj22iDI/OQXXmO702M5G1EmIYm3IAxzzM0NzsYLXD9HMpsUkk2m1BAE\nAyQT8YeTd6UgIgoCIiCeS9wQEBAFhTyPEYIB5XIE1fMfzeR5QVIJ5wi2okKOc2Q5IYuWVLmDaTaR\nZBmrXp7bnksoBJWkArnMEahI05R63UGUZXTzHEQSRRFhHCPLEsskwl8ucbptRskcN/BpOQ2WkUe9\nXccqBQbDAUkCtZpJGC0pq5Jev08lCCAJRFGMrqjUmhqPPr5Lvd2k7bSJg4C4jLDqDU5HJ6yu2MyW\nZ3ixi2lpGLrGwbNH1FfqTMI5h8dP+QueUfw/1ideBLyljyZntBttvvvGt1jb7dHrdcml6nw+G5nT\n0wFr671zBNNwAFVBf7PJ0BvgGC3CxQBZBF1WuX3jJh88+oB620Cr2zx+uE+/1eL2jZs0nRaD4Rnb\n/VVGcxen2WTuTRHROD08wOj2mQ5H1ByN+cxFlkR0TUYoE8QqRxYhzzKmozllWlJmJVWlkRQybpjx\n4Mkhl/0+eari+xGC1WS+mLJz+QbrW2scH4/xogBZU1BVg/7qJh98eI/+Spdr167zs//K3+A/+wf/\nKaOnx/zC61/i4oVVDg8fUVYRlVTjwvoGR0fH/Mwv/os8PDql1VthNvHQNJN+f42qqgjDmMVigtiA\ny3tbvPHuAaLsk8YCgpRhaAp3P3yfC5sXEckx7DoNu4XU1BmPFhw+OWY8HlLkYBgmL778Mo+f7T83\ndgoici4wGAzY2FxHNhS2dzd4481vs762RafbZTw5ww8CNjY32WhfgFQkLSqgokgiAq9AzXWKoo7a\n7iLbTYpcOYe3KBaCaiBrOkgygiSd05koKfIcSRDRZJm8UvCjpyxO71KEMWn8/GePnuchazpRmiOb\nNsjn+vEySbFrJaIiIYgyuSgiIFOKIpWo0FvZxp2eYDYtkjCmKCQyAYo0RawgmM9ZBj6KojKM5iRx\nTK1TQzJ0SrFkshhTILC5scnDh0/pdLrM3BFB4p1TqEWJNE1YBiM03UArUgxV4/2771JKKVHmcTj0\n2Nu4iBlrGKbGLPAYLM5vVfx8xvGxy/rqJmGRMDl9Rr3ew67ZKFL+I3PwEz8OVEqFaGiMl2Ne+cwV\nNtd7ZElGGqQcPhwQzHP6rTakJXJW0ev36Hf7eIsIy1B59dM3ONj/mCRzyYWI+w8/4Prla+iiyacv\nXOPzL36WzbVrrDa3UCoF34+JigTDlNAUgW67wepKG7WpM3JHKJrMMlxiGSatevNcOpHEUOU4ZhNT\nM+g217DNJpK4iqAXHB88pWZZSJLI6XBBmItMvJggCljrdbl94wbHZ3NczyMDiiSj7dQIZgO8+Zjv\nf/fbLJcz/rv/4r8i8+bsbfaYjqf8L//oH7OYzLh7/4BnhyeIOSwPjzGbG8iNbcbTCYqukuYloigR\nhjEvvHAb1w1Yxi7uYEkSlrRXuqxuNBFFSIuSShS4/+AjXP+M+4/vkMUp3tkIVVaIs5xSEPjiV77C\nT3/1de4+fMKzZwfPjd3qxjqKbFJmBacnJwShx/DslJ2rWzQbTSZjl0bDYWN1iwvdNcq0YLIcIpQl\ngmyTFwJhuCDNMyq7jmJ2KQSDQlIoFBNBt1EVFQkBsarI05QkSSgLEAUZRdexah1EjXO6cl6SpAFV\n8XzkeJLEpGmIl8QoloEkgqaZ5IKMqGkgSsThgsQdUaYRuqogSSXrOxdRRZEoLUHXOXOneIuQNMlI\nkwzP94myjIk3IyxD5IZNs9vBthvUdAWjZlJkBaPJmKosEWUJ07RxTOccDWbKjPwFknr+lFrTROya\njabJpFXCs8khVktnkfksgzkVS9zFKVmRMvNmZGKG5uiMFiMUQ6bRauHYDa5c/BRp/KOLwCe+E+i2\n+4T+jHbr3A2XhzE1UaPWaNEQ61iqwmwxYnN3C0M3iIqU/YPH1K0aj+4eUq8cfunnf5m7dz7A98f0\neh2+9fvfpNdf5XB2RKO1wv7+Ed31HsPpAFnS0OTqXGQpCQgyhHlOKVVYjoaZiDTMPkWQc3J0TG9r\nDaEsMfUarj9jsXCpGSb12iZkIoZm4jgNnHoNjkWOTs4QpArL0tA0EQHodrv8wR/9IXEYc+HiHoIo\nMp7MmC58et01VNnEdX16Zo2v/eov8+ILL3L38T0wDOIs5tlsxNT3SFMdBYMfvP8xz6YuH925w97u\nLu58yQu3b7O9vUUcR+zsbPLGd77JxYt7KIicHBxi1C2SNCVPK5R6DbXWRrAkjDxifdXhe+88wTKW\nrK9tsL21xZvff4dXX/0CceyTJMFzY/fG+2/itOrULYtsHkIWsLbe5enTfRynzunJU6YLg43eVbY7\nl0jcUyhSCkTCKMOvZFRNY+kGFE6LtIC8KBBEFUU8ZwJUVfVDK3NFGIaUVAiINBoOplNDFBWEyKPK\nUkzLwhNE4vj5cwJ5lpzvcOw6VQmFWlFIIrasQpmSJz7ksJxPaLRVRMMBSUBWZMqipKwqhAIkSQap\nJAw9FssZUlkxzyNKRYGGjWpp/PHb36TbajE4OURUdTbWtphNh3S6K7jugFLICKMFUz9AVlTW1rYo\nkpKiLFEUjTDySfMYq1UjXsQsvQlXLnZ48tEZqewhWTl+POZsMMBq18myGFNVSNOMtZUdxEpkPjz9\nCwErf3Z94kWgpUlEkU5b1en06zy4P0IsZCQhpl1r0nBs8iSlSmG+XODlEaqgISYlV7YuYxgtfu93\nvsMXX3uV8eSMTmud5RJmfoCi6fzg7e+x2tmkJEDTFWqCQ5q46HUbrwjJxJxSKvAXHkIuYrdXkCoF\nzZK4dv0qh2fH6HWD2WKOYajn/YF5wFqjzdHykN0v7PLwwRMeP35Cq91iPJ3Q6XRYLicIgkZZVvz2\nb/02Vs1kdWUTTbcYLmI83+Xpk31WugtkQaTmNGht7HDv6SkfPHjK+kaHl158kdCdc3WjT71usbH7\nAonisD/z+fD9HzA/2efapS0W8wlhFFCWJWdnA6I4YXNzmzxLMfUG9W6NQovxVR1Z1UmWPhUSpyOf\nlm5x/9EBkmMzXs5QvDq2IfKpGy/wzrsf0uk2aVbPn8ArpIrRckoSLJmPx1jqJgvPZ21znVJM0GwZ\nz0149a9+hfVel9nBR/iuh2gZBHlOIdVQex0C2aCMYwRNQ5A08lKg/BPhR1pgqMY5GRSQJOnczCxr\n6JpOnKQkYUCwHBIlAUVeIBTP5x+oqkoYRQiVQFIVGKKGKEBFRrAMyeQlNavN5sYKlWQSRy6xIFAW\nGaVQEcfnQNHp7BxpT5owmY+wTQuhbeN0OszTgDALafZahHlBZeisbG3jTj16/R5Hp8fYDZs8jBFV\ngd5qB03RqaoUWVGpygJV0whCH0kRGJ+dIKgi4/mUrneGYskIUoWqKgyGUza3t4jSnM2VNRbTBbbu\nMB/OUaUQpdXGbj9fHPNn1yd+HCgMiEno9puczA7IdYFQ0Xjro/scT54yD2aopsTTZ0/prffZ295G\nrArW2l1WVs7n6F945SWmfoDT7jMaT9GMGoJ4Dom4/KnruKHLo4dPmU5mlFVEqSmM3DlxGqPJCmVZ\nkicZwcJlGXjESXTu8vM9sjJj6bvU622KUCYNRKrEgEpEUUSGowErq6vM5gvSND1/0SdAmmQ8fnLI\nYDjDcjokRc7pcMiHH90n8FI++vBDrl69hCyfm3LHwwFPDvc5Pt4njZf0O3XaDY3Z6Bm2IjM8OCYo\nIs7CGYYoUEbnjLqzk6ccHR+QJAHj8RgBESqZIofpzKfbXmEwmJClPhUZiCWNZh1BKmm1G4i6RiZm\nZElEp7PO6WlMGNlcuPAa/97f/2/59O1f4srFn3lu7HY3XmWtdpvZxMByrnI8Nlhdv4hmS5yNn2GY\na/z11/8en//s64iSgiBIaIZGlgmUmkF9bYv7ZyMquYZc61OKKlWRUWURRewxHR6Tpy5J5BIHC5aT\nAePTY8JwSbNdRxZlyiJHFDSKxMddDkiSGE17PldPFWR01SCNUyRZQUIkCz1Cb4lYRMSxy3h0wsL1\nCCOPLAlQKPHdOafDIYOzE0bjM6azEWeDAZPBmCzPCKWcwhAYRmMUWyDKQiRRIg4ims4KZaky9Xzi\nIkVt2Vy+eYtmo4NQaciigqpqFHlFJSTMpwPOzo5wF3OSKOa1Vz+HoxoYisV46CEoJaIkUhQVAipF\nAWWWkgQBa70OlBl2zeHipT0OB884W0x+ZA5+4juBRqOOaigkTYHlIkCxdYQMfuwvXUETBVQJkkXK\nhRsX+cZ3v0OZSbxw/VOMJnPKykAuMrRam+OxR3i4pNUymS4mdHtrnDx9SkMXycSMznqbxmqH8fyM\nKPZYeD6mJaLIAoYkIbUcEkWm0a7hz0vcMCfII04HC65c3SYPEyR0bl+7zVvffYSua2xtbvLs8IhO\ndwX5TOLR48fs7Oxw996HNOoWWVZg1Js8PR0gixKCWGGYCqfHH9Pv1JCqiI2NdRRNxbYtPnjnTVbX\nelx/4SoCOd9/5wf8yt/4Zf7w936fnZu3qRSTLIiZTQcouspnr72MIJqUHz/DNA3SLGQ4HPLpT7/C\n2dkRjx894uqnNtje3ES2PAaTCf16k2gR0HMcRKnkdDI/F6RoJl/+/C/z1/7q30WTTSRZAqHghWu3\noCr4j/6dPx+7//o3/mfyvCCMY7I8ZTQa8fjwEVEy4dZliVvXbrCzdZMwiVDtPdTagnm4Ty4quH5K\nHoWUZodMNinzgkoQKOKEMlpwMtxHN2uk/gRV79JoNTk5PmJ1bZe9i9epNbuEQUBZFhTkZEuXeBbg\nLX0U+flFIM0SZFU9F9cqImWREo7HGEVGpQto9RaNVhvJaiAqKnkOVSHS7a4TJyW+uyCPY8grKhGi\nOEVtGqjtDp5eMfXm+NMYSVJIAo/eRp+TswEX1vuUYsVgdIa10uHhwQHReMnG6hrPTk+IgphUKlAT\nEc1QiZIML4qZeS5VVdFw6nzx1mt845t/QF6ktGp9BsMTOv0OYZgiySpJnJHpBWGcUGY+XjhFNmSa\nnRbw/Mbun6xPvAg4RpNomRAvBSxsBFMiiZbMFjMm0zmb/S6LmYtWt7G6dVYaW7z7/l2ubG2BqnN8\ndsaO3ebeg8cIYsHUFzgbH3BJjnk23mdZTOi2HY6n94ikdSRFQ5JETNOkLCNa9TpHz/YRdRlZkhgc\nH1EVNrKi02h16W93GD07haSkKgTOjmtI0vnZq9ls8ujhuzj1Bru722RZypNHj9FVnTjKqDsdTLvO\nwYfv4RgWkizg7o+4sLVLu1OnKFIs0+TJw0dkVcT2ehvdETg6ekijYWNYGt//wVu4hYBUSNiiwmB8\nzOHjQ3LfRby4gesGpHGEZRooikSaBRimRm9lhbk7JUgLBqcLdi83cOoCb7/9Ln/nb/4K3/rDr1Nz\ndHRNplHv0nVu8Eu/+PeQK5FzN2+BgACVBOXz75qrqkSVZVTbIc8LmnadK7tXEcmgUhDkjLxSCbIZ\nvuBA5wLe1EVSBeRCwVtG5JKBn1eYYkma5uSxy/j4EUk0ZzkfY1s1WusmxycLur0VNnZ2abRbZJVA\nXgpkWYnne0xPR5RZAoLI3H2+J6GsBPI4ZWXnItHCxzs5QHF9VEtAlHXKsqAUJRRFBVlDokKQNGQ5\np8xKVEFCyEoUQSJPMvKyRBBKrr7yCr/z7jeotR1M0cBfuiAJOPU6U2/BfDnmwpUd9h8+whQFRvMJ\nO6s1Dg/uopp1NF0nTkNyTWUwnqDKFl4Uc2Frk+l8wTzw+fif/RZf/tJrvPHNPyYfniBQ4fsuplmn\nLCtUUeRsMKSkQlUMkiKgJMOdjX9kDn7iRaCixHJUfP+U1fU1jscDakYNq6ESLVKyuKBu10jzlDD3\nWEYTDFtkbaPDyelTqlJg+fABVeLx8udf5WSyj5nYnC2m3PjcZzg6fMz+5JCd1S4VMbKkIscZxQ+H\nQe7cv49uKMhJhiYoVNX5WwVRU0EsebZ/RB4HtJw6ctUgSnNqdYc4TZGShK2dTZ48fsDGxhb9XgdN\n0Xjy5AlpltDpyuzv7yOVUKs7KAJc2dkky0o0VWfhTnjrjT8iDpZs9LtEoUxWauRU51YgUeHpfIhu\ntGmvbEKhsbV1iZOjU6pYYeZm7O8fcv3CBQZnZ0iSxNraGp6/xLIsOu0uUb7EjeacjWa44ZLbn73F\n//lP/zE108EPSuIoRpYqHj+4Rxx4aKp9zsoThD9Fd1dCBfz5c7YsKlTVeSLIsoCAQikUCGhASVmq\nRFlAmpYEqU+BxY2XfxI/DAiDhKbvET+5j2HYhGGIJMDZ8JQ4CZm7IyTVJJNBjsboWg+r1mXv6k1E\nRSUMXIIwJAqWpLOnlOWcJK8oRYWien4js8hykjxDM1WSxZIqrxAlifreHlrNRDXrGEaTvJCQKM+P\niVVClp+bhckE0iKjKCIkScA2Jeymwdt33mStaRJmPsPFnMuXr7C//4R79z6g1mgwHY+oii6qWcc2\nWuRxydwL6K/vEWQRgizRVGosfZ8L29sMTuf0W23iNKESz+cbdje3uH/3Ee3OGnt727zzvTepN2zK\nPEUWLBr1FpUgo9s6Dx58zLW9bU6HJ5Tij07xT7wILObPECuVdq3N2Wh4Lg4NYjpOl5HmkVcFjXqP\n6XyG41ik6Zx2XycIhrS7FifHZzRrNq98/iX2nz4iF1I21nf5eP8Bh/sPCLMAzTq/9ms3TPxgRruz\nxTJOWeY+zU6XMAygFMglAVMzkCSZXMqpKp+syNlc32O58BAVGVmymbsBsR+wtaVQq1lUlcB0OmFz\nawvFtDk8PWHuL5HdBYJYY2/vApUgIws5UViiGwVBvKAiw2marK7WyRIfw7IoZJk8TihFEUWWCaOC\numNwcnzM+tZlTvaf0ml0MFZ6LPyQB4/2ufBXvgRS9aeddFWUMTWdvd0tjsbPKJ0aiupCKDNfjJAV\nDdOycZdL/MSjEgtarRZz9wiB86fNpmkiiQKSKCL9BT+k9E86z2WFIAiUVXHeaCsLsiInyjPCJMSP\nArJSxnZ0kjzFMFs0WiqypHLrxc+hmzppnhHHIePpCd///rf44K0/xnWHGKaMG8DLL7/Ma5/7CSpZ\nZbqcnnP+Q5fl4Yd4p3d+qPs67+Lrmvb8H5tcQpmReUuCMEFKYpyWg1I73/nJSp0MAUmSyLKMMAyR\nZYnD/UcYksSSirIoEAURQxJQVIGwilFEgyzOadQbJP83cW8SY1l6nuk9Z57uPMYckRmRlVlZVVmV\nNbEocZI4qCW2KRpuU5BgNXtjwLLhjRYSwI2WpLZayCsJotxoQPLCEOVuCSJbFCWKFGsesrKqMiMz\n5jtPZ57P8SKqBQpMkkbbBr/NBeLgnDj3/P//3vN9//u9byFxMbn0yZRi0HSJ8cLnyb1nSY6PkISM\nIgzRdBE78Yi8iCBJEGRoN+pUMNHWFMbjOakXkWcJvXqLLE2ptRq8f/o+zl2XF1/8OX7w/ddpdjRU\nQ2GyHCJqEqtgxWM3bxA5l1uvaf5ogZV/8Vh+0sEoivjkJz9JHF/2cv/qr/4qX/3qV1ksFvzar/0a\nJycn7O3t8ed//uc0Gg0AvvrVr/LHf/zHSJLEH/zBH/C5z33uJ97AfD5FRcZZugRCjIpIQ6szOrkg\nCiJOl0sev3GDVeggCAVpGrOyF3izBf/qc59iNpvhh3NOL2yqrTbjxYrzgU3FqmF7S9rrNebLCUaj\nzcp10AWN06MT1nd2WBy/x2A4p92p0q23eHD/IVK7jRs6RGmAKmms9de5+94DPvriRxkOJkiSga4J\neKsVDx4csr9/wM7OLh988AF5UXI+HLKxtYZAzng0QlMk6vUafuihqwKCISJdCtxSbdZQNQNRFNis\n7mF7AXkKomJQUWSyJKFWa5D6Maqp8d1/+Ds21zfZXFuj2rB4cHRKq9+n1WpxenzM3HapVWqsnBVF\nUWDpBi/e/ih/+f1XqFoFoiBSpjme45OnEX5Y0O11cJ2Aogj4q7/5P3js4BNEUUpnbYtKpULVMLAM\nC/hRhZrTwQWSJKDpl4QXxJw8A6GEOE3IywLH82i023T6BqQxZf6hCKgIkighiZcLjixDRKFT3+a/\n+dxv8MVf/rf4kYduKFRUC7VqksQRYeQjFpAmGZHvMj5+FcGZ4Kym6Kp5aTpTrz56sgkCpQjz6Yxm\nb5MsT9GsCpKqEqYReexiSBJ5niHIAs1WA8/3GQ9OiKKAKMnRJYm0zJArBqEZU1REbN+m1V3nwWjB\nlb0dRpMh47Mha+sdklQkLRWGk/uIhUzi+khZib0MsOoWaWpTq5ssXJdVEHAyWGGZBlVTp97rslgs\nKDJQZJnBcEKQx5QCvPLaHR472OfhyTFxMsOsaaRFjOO4yJJBHin0u7ucDY9/CgT8FBDQdZ1vf/vb\nmKZJlmV87GMf47vf/S7f+MY3+OxnP8vv/M7v8Pu///t87Wtf42tf+xp3797lz/7sz7h79y4XFxd8\n5jOf4d69e4jij9+E8N0CsyEjkeNlCe1qF+IUO7Dp7vR452LKd17/Lu21DvHERVVLCq2ENOF0PKDQ\nbOJUws9V4iLkYj5AzA3ipGTroEdRBLTbXQpAUTTSICfPI+qqRl0wadQF8jhmOltQazXIZRE/iPDD\niE61xmw65Zlnn2biLAjEgkoqUjXrnIUj1tZ6rFYrqmabfr/P97//PapVi9BQadRqjC/GzKY2kqiz\nvt1gsVgiAJ5fYFgqkqEgiiWCXLD0A5zAod/dQsJiZ3eb0/MTFLNKFCaE7oq1vkVJDOiIQskbr7+M\nKmlkqYCu18hnKwxDRxQFvMCltrnF6GKKaLcR6xmNiosfuFy5foW337hHu1NhsnCIMp9SEPhPf/un\nJKHL4Nzml3753xD6dfxqjTA6B178kbGbL5aIokhZrAABVVWoVTR8z0GUJaIkI4oDGoZKHjp4UUBZ\nXKYNcFlTEMTisk03SylySNMMAQnNMtANi0qljoFKEqVkUUIURIRxBmVBGAREzhjRTXBWU5TWGoWs\nkRePJsjkOZDK+FFKrd+nUdnAMCtQyCh5ipxHqJTIqoKk6QiqTqJXSWWRvIA0T1FlhbqsEaoi0lad\nMEnwi4irnT6vHT2kH21QAJ3+JogCbhxQCiVpErGYFHSudpknc5ICGkaVMFsgZZdFxkQAo2nRrLbI\nY5u5O2YynLG3t08QxyTxkutXdnnj5UOUVsZb77pcubrDwp8SZgWqqVNr1cnIWaY2cpLQ6XeB0/96\nEAAwzUuppiRJyPOcZrPJN77xDb7zne8A8OUvf5lPfepTfO1rX+Mv/uIv+PVf/3UURWFvb4+DgwNe\nfvllXnrppR97fcNSOT+3eezKJovTOU9/osdqPKWldTgbDvnFzzzFbLnk3v0xbVOmIYhYkk4ox7x/\n71067Q6T6YytnX2WqykvfeR5ZKHCK6/eZbX0UPSQertGpabgzGdIicp4tGS9ecr17Q73Dh9Qa1Zw\n8hhnaaMZOpVKlSCMmK/GiIKKOD7lYP867uEQzdBYTFf0um0EQWAymZA3RZarObt7u7juiuFwyHQ6\nR1d1yqL40JhSY//qDU5OjtBUleHFhMCvYZoa/X6brIRue5tmrc98sSBMU+r1Fr7nUyKhVS5/beuV\nGpPhhFdfeZXpxZD/9X/5H7GdgKIsqZhVDNNgOpsShiGT0YQ7d37AWvc2liySRK9TZDFTe4bZa7Ja\nejTWNGYLjenA5fquxF98539H1yyO/vQ9vvAr/5bkRPiwHPCjIHDv8A2yNEPXNSrVGrpWZTgIMU0T\nQRBw/QCranLv6AFJlNCsV5AkFQH50vWnyCjLD3PvLEUSRfIiv1SQ9lxURSa0lyiGjq5oJElCmIQE\nYUL2oQaBognMBgtMS8Z3VsiaQak+2nwkkUoKoSQJAsxWE3SBXEqJUwdNkcmLBMexkZIcQdEQFRMM\nEw2FNExp1ypkaUQkJRjNKsN4AYaJIGu4cYAii2RRgFiktFttTo5OWN/bhAIQDEo1RTYMwiJm58o+\nZ6MLSlll5UdomorvF8h5TEqE7bpkSU69ZpKlIUWRY6ka0+EJV6+alJlMYEes/AlhEhIJImUaoqsW\njVqV3kaX4dEFN9av/L8HgaIoePbZZ3nw4AG/9Vu/xRNPPMF4PKbf7wPQ7/cZjy9bFQeDwb9Y8Ftb\nW1xcXPzE61f1GnktY7ZcsLvV5u7b79Jq1ciTnEazjSyrbPa3kJBJbQ8ij4yS2y8+y9uvv00hylRa\ndXIESkpOTh4QeCkf//hzLDwHL7RZ+kvyQkA3VSglIvM6LgAAIABJREFUbj1zk6OHR6wV61y9dsBk\nPiMOPcqixKyauI7Ler+LUIDrBgSRz3Ayod/dQMpVFMUgS0rOLwasr20wHJ6jKpcU08uqvI3rBZAL\nlMB4PKa33iMKY6IopV41qNWq2EuH5aLAsT22dreQpIxAi+h2e4RxjqgY9LY65JnAcrYkTFLufPef\nCB0HJ/T49f/+V6HMcRyX8+EIXb/0QpiM5kRhTK1SY3v7Gqoi4tgrdG2DgXOIW5bIcpWKJiEGAd6k\nRJFE3j2dISoKe9USL3rIn/6fX0XXdXS9CvzPPzJ233nl61SsCjJVatUeilJjZ32P+eqyRhAmIddq\nt7BMgYppUeY5WZ4gCgVlyeX2Xp4Tx5dtuWWZUhQZeX4pGpqpOlHsYZgGZQlpmpAkCVlWEGchkbck\nSRNUA5xFQhR61DoKUfRo2rAsiiSyjC5o+GmGaegkro2mSbihjSibdFpNRLOKrKiIuoWXlvhhgqJr\nCGmMUdEQDAlbiLAaFqfLFWIhoPRztusNDE1BEw0cZ46s6Jw+OEe2FEShRlaMwZCotJq89uY7qIZM\nd20Dx15gaRpVSySPLl2E1tc3uTg/pdqoo+Yyy9DGqpkItIhzWK4WaFWVpNCoNCVW9opmp4fvhyzd\nJf12n/0b1y/FYX5K/FQQEEWRN998E9u2+aVf+iW+/e1v/4vjgiAgCI9maP2X4z8p0jgmzzJEVbv0\nnzckavUmZ6dnBH7Edn+N9+7epVOrI+YgICHKAsuVzcc+9Vlef/0VJFnmfPwAXQGtrLLRb3B8fI+k\nKNjc2SQTU4b2HFGCTrWKKMs88cwtbNtmOJiwub6JHxTsXDvg/aN3ECRw7BV7O7uIkkye56hCharc\noRA1ahWJNMqpVFrc/eA+rWoF33exqgbvPfwAQ6+iaNplg1FRIssyvudRtUxM3eDo8CGf+cwvEsYe\ncZrhug5JmOPmK3rdDbJcRFI18rIgy0uiIOPiYorrOsxGM7I44JnnnsaqVXCjlNF0Sr1eI00T4ii5\n7K+LI3pdE1UVeO/9+zjuCkHzWdvYZlVekOYZsp5TphpVLcX1ROqdKlHscHxi8/TjW9izMdXqOk78\naKXRRHJ5+/Au3VYbYV6iqAp3H5SUhYgo6XRq23QqfTqtFnGWUwolSRp/2OQnIgiXepJFUVDmJVlW\nkucFAgWpEODHHpIgMpvEiKJEWebkRU4ap8RJSBQsWeYwnp3TUOs4hCTLBXrVeuT9FlmCVakTeDGz\nyYi6uUO1UiMNHSRRRSgUwsDDNOpIuoWbpeSihj1fgVhgmCalViKvm0hlRhRkVLRLDUwJqFarTKcz\ntjoNJtGYVBYwaiqLZUg+HKNpIvfefwfPTWl3W4wnE2RFxwtDyHP0UmZ34wYXgwvC2TGVWp39q8/z\nnb/+S4x2nXSRUW03yMsMU1Xprrc5PZ2QoFE325CYxFFCq90lziQyx0PO/j+0IavX63z+85/ntdde\no9/vMxqNWFtbYzgc0uv1ANjc3OTs7Oyfzzk/P2dzc/OR1/uTP7n8fPu1Ba2+Rq0aYjQb+HnM0WRA\nqUhUNZPZcMRmo8VqvqChmOSSTCrk6KrGaDYgSUM2mj08e4Ism4gSSLrK4b0jGr0W9+7fRxBz+ust\nxrMxy9BGaEq893DEwd41JF0giANUxSSKMnTdICPHqJocjUdUKyo1vY4cVeg0tri4mBPHHpomIko5\nrV4DMc+YLaa8d2SjaSp2tEQSFJI4uSyYAReDc1bLObpu0mmv8d7de+zubbG21md7Z5ssyy73n9OC\npMgIlzOSJGG5WOI5PmEYMBqOqVdFXnzpWQyjgu0HTKczmo0mfhCQ5wXz+QKhzHnpIy8yGc/wwxTH\nDXh4eA+zWqO73kDJVeI4ptKp4XsRnVaXdk/j4dk5N5+5Tpwccf/4nKubTbxwSpA8uitvvhjR6TbJ\nM5skjmiYdQJviShqrHc2ef/475FUiWs7t3BXAXkucO3akyiyRpqmiKKI53mUZUmWZYiihCBDUcYE\nvkuRX6agmiRDKSLLEsvVjLxI0TUTVJCMPtXqFqIYYuVV4jgk/TEag5ATBEsoFSbzKVf298llgWpL\no8wziuLSenU1ukdFeAy50mYxXiDnEkKWk1syUQ0QEqrrTZqawZalYel1wmRFTZSI3JhCTbh+pcXR\n+QJJkrjyxA3+4Xsv89Stq/T6e3xwfMR8scDUFFqqyPrBNYo4JCokvDigUHPyVGYxdxjXDnns+tOk\nqki73SXLXEaDEUq1wXQwxZklPPf8ASI6S9+jXrPI85gsybCiCu+8fI8/Wfzktf0TQWA2myHLMo1G\ngzAM+eY3v8nv/d7v8YUvfIGvf/3r/O7v/i5f//rX+eIXvwjAF77wBX7jN36D3/7t3+bi4oL79+/z\n4os/mksC/Lt/d/k5qfeJVx5SUpKWU2qNKrO5T7+2ThKVGIJMHqfsb2yTuwF2WhDHLrP5hObaGkkZ\nc3F2gq6oRFGMgkQYhew+tsVi5dFtdyiyCN+L6FZbxElMQkytVyfOI2RdpZByUGPiyCNNA2r1BjPb\nxqzUCNMQo1ToaG1MuYZULqgaBrEiYwQSQSpwdHGCoSvIukyZl5dOsrmJIpb4ro8gQqVqEPgh3bYI\nmQCCQJYJOKsYUUwppRJ3vmTpuFhWjfFkiiAKdDtdijwiTzxu3brB/kEfTdagVDg/O8esmKRZShSF\nzJdLGtUma+s94jTEsV3my5DlYslnP/d56rU6hTbCH48oNJEw8An8CLPe43R6Qb0m4/rHmCZcu9Fg\nfOxe5vvN1iPH0Pdd8jRBkQVUxWQ8mZOLEpQ5s9MLJqsl07t/zcnqkC2ti6o1GIzAcWI0Q0dTVRQq\nFFxaf0fJkijxCBMfGemSalyUJJJAUVzuVimKBAjkRUpcxGSCTmlUCX0HPw6wqlVc59GvwGmWIkkS\nfpyQ5xmyYZImPm6aUK1YpEFMo9WjqWis3AC1dAjcAFmV2dvdwitjatdrSJbM2JuzWI5JbY9eu08c\n5XS6m5SWRf/mTf7xb/4GP8rp9DrYuU93r4agmVxMbRzXw/fjS68IMWXhuIwubPq9KrlWRVFUog9d\njs/OzzGkKm6R4WcO1za2oUyxdINWZYedNQlZ0DibDGi0KvipS6thMj+dce35PdY3JX7lI/8AwNe/\n/l8BAsPhkC9/+csUHxa3fvM3f5NPf/rT3L59my996Uv80R/90T9vEQLcvHmTL33pS9y8eRNZlvnD\nP/zDn5oOVHSwag3kUiTDYeXkdJpdlFxEUkXUQiMXBXzHI3R88jRlY38X31mwOLng5tYB89EEQZLR\n0pgiDxBSl9ApuLp/jYvxGNWSEFOJLCkRSgXPTdBUhVyWCeMcQVeoCDVGJ+foaoWFt0KxZHprVQgr\nqF6TzfUtjgZ3KFAIIpdCyHnm2cd5/d1XcRMNRS0YXOR0myapKhL5l3mvUpF4/PbjZEnOxdmA4WTC\nWrfN43vP4wYhhSSzWE7wPJvlbMrmxiaynHH9xi4AeZazu7ePaeqIokwhpIzmc9KkpLe2QRLFKLLB\nZLxAKCR2d/dQVIH5asXc8xgMBzQrNbqNDnpNpRAPiO075OIAD5FWc5ModaipJWtrJufnHq4ooXZU\nGu0mw8mSlEfbkGVZjmpAlke4RURKTqvSoRBFjkdDNEslyzPeOXwTu9NHEwzcdErdqGJ7JVmZY8om\ngqTjJymlkCHJOVkSXfYKihJQIgkymmZQiAK2H1MKBVIEQpESJwFqyyQqu1iWRRIuESuPLgyWUoFb\nJpSmyvHZAw6GR2xU6tRNHY2MUkhJipQiVzDqDdwg5mJ4SK0F/iKi0EpyMUIOZcSiQDVN/ChluHRo\ntTqcTUYYusLwZE6elHTNFs48ohQz9GqL89GI9d4OnhsRpwV+OmO3eYPlYkGtWUdIFCQ1RZNkfKmk\n3qggl5DHGfWaQbNq4K/mrLXbnAzOWVvbwNB1jgdnBHGA4lyKoUR+RLvdJc49lqHzE9cf/BQQeOqp\np3j99dd/5O+tVotvfetbjzznK1/5Cl/5yld+6j/+LyHoCXlhsrl5g4vpe/R089IjDgl75oJQUNOq\n6EqFIHdo9LskKhTIbPX6uCub9d4WiixxfnaCrHSI5iueePYp5h86+liyztxfocoa9WoFMUsIggUo\nBaIoIsoZQnbJ7W/2ujy+9wT3Dw85uXdGS2ty68rT2N6UUoQoX2A2JbzQ5WJ+B0H1kasOtpNw9Vad\n5TSk1heQXRlZNJhNbXJlxfM//wT3/rdDTM3EdW3eeOMHtNsdNtR1rl3fx9QkBDlHEiGJM5K4wDAq\nzGZzsixFlqsMh0NKQJIlTFNFliX62zucnJwhSRJXr+6jqiphGDGdLplPRgShw/O3P44o5eRxwsoP\nKWODMNKp9VWiMEUUJZqdKn6Y0G330AyNZqPHu3ffJbYL9nfWHjl2125cIY4ibGdB7IegyPhFgCHr\nPPfUde68/SaipNFfrxOlLm5kE527bDY7rKZLJEUgyzxk1WIVxGysX2E4OUdRZKxqld2dTWazAWQJ\njhugSDo7O7sEQchkMqPV7tJst8nC8NIGPIpIJAVRqsEjgEvc6CJLBUVcUMxifD+kNCtEgY+YXBYj\ndUmFUkaQlEvdwjhE1TVGmY+yVsUnpoxTkjRCb1QIZylRGCIJBuRQlCVv33mNzbZG6MRsbfSxi/iy\nO1BVKPMcU1N55pmncOwhi9ECRZCQFNjsNXnl3n12ttpEwxgRaHd6SIJCaahomo47ntPvdzFNhYU7\nI05ShDSn26igVk1c2yP1c2Qd5jMPxXh0feRfPJf/x6v1/6dYxSJqpcL57B6iGjGeHpEnPqv5mHpF\nplmvUOgCnuDQPuhQqyqsghWT83MOB+9xf3aPcTLlweQIs9fk+u1nufXzn2S0dKkrOtc2d0g/fLU0\nDIvrN25QrzSoahZCmlCXVbI4IYpSBASWkyXf+stvEw5W6GFOXarTqm+y8udIakoqeCz8MyQzZjR/\nQKlEdDeaPP70OlsHBc/9QoPN6yIYEV7qsrZvcvWpPj/4wevoqgaKTSlmvPiR5zl4bJ+SjOPTQx4e\nPWDp+JyPlpfS2qKI59ukaUCWZaxWKxRFQRA0VFVjY6uPpkocHh5irxxUVWexmPPW229wdHTKyfE5\nZkXn9rNPomoSQejw7p03OXz3PmrZ4n/4jf+JyCvY2rzKfLXAXjp4nodi5DTbFSazcyo1uPn4AfqP\nacgZTIesnBm9fh8vTWj2m9RadXzPZTka89Lt2xiiCEGGpTXY7PSRxJR5tGSaLVG7Fo6UM0gcFmXB\n8XDF9cefwKzVqDcbDKcXTOxzBrMLdq5uUmkZvHf/Dk8+fxOzohBnIVpVJcw8zFYNX4TUKPHVRxfD\n5gbYWoHWaxArMBheEEQB7e4WzbV91Po6biyAqCPmMoaqEscuBRlmXSOxEraubbO+sQFliSALVJsa\nzz55C7WUSL2ExC3pNxs0jAplAntXdhDLGMvUCcMEy9TYWu8SOyuKOMFdzXFXC5zFksV0xf7+GpWK\nxe1nn2ZzcxtN1ZHknChckSUpw8E50/kQx/FZegviNKZRt0hCl3sP7rN37YB6vUkQzskyD636Y9iT\nPxQ/cxCQcpVSiEnJcfwSQVTwfB9FkQj8CFvOmX840R6cnPODd96kLENq6zWQZSzLpFJRUS0RsSgJ\nQpvj8X3iImC8GHM2uaDRrpKJJWJVwXcdXnzicZwwolttEPkeulll5UxZOC7X9g/Y39nF1LtcufIR\nbtx8gfPJIWG+5OX3votghAh6zNn8mFIUaNTXifwlabFCqIS8enfIm3c8Vm6Jpks8fvtJnMk5hWNj\nNQOUqkFQxpyPL9hY32B7+4Bue5dKdQNnHpCFMBsuOD8/J4pjoiQhzmP8NGW6DFjYC7ww5e07h9x5\n/z6lUGJVK1TrNYpSBEEhin263RZX9q7x8U/8Al4UY3sljiezWLj83PM/T13d4V/9wpeYzufQVBkt\nS/ZvXMWqiJRETOenyGqGYoVcTN595NiZpk4qliycMVe6fXTBQkxUREkkKn3ePblHY7vL5t4mNUsE\nISXOUrr9Pjv7B0xcn1q9jlyW1FSR/madDx58QFkGzJdnJJlPp72JoKqUZYmKzNbaLn/77e+SiDm5\nlDFfTchkgbP5EbHs09jZwGo/uoaRhCG7m1coIglNqjAZZ8jmFpGUkiAhahVMVUWQRFJNZmT7LKYO\niigQmhIhJXcPH3ARXRDKKeezU5RYIvBybNfHUA1C3+MTT99iY3OLjYMO8+WCf/0L/y1r9TUOtrfR\nVImqrmIvljh+gSzU0dUWm1evsYwi/GVCUUicDcb4ocdsZTObz4iWAclqye1nn2M4HhOmIWQFVdPA\nD3KeufUiT1y7TkWWWO+28JyEMheYXpw98ln8cPzMQQAERFUkl0I0QyAHVMUiSFPiLKFRs4gFuHv3\nPa4/dQ29bmJUDNQqiFqBGyzJxZRrj1+j0e4zX3pIuopSMQizGF0XsedD1ns1ytRnMjrnvXvvkOc5\nc9clykLsYIFsyaxt97EjG1EX+egnXsKsqZws7qC1BSb+CNHMmXlDxu4FmRISiC7v3H+VHImj4xhV\n3sObKfRrHRqmCElO5C9543tjFnGJIKtEYYCpa5yfDy6ZlSdnzIYThKxEFlUCPyAMU/JMwnMT8kwG\nVARRwvEXLDybi9mI88mYyWLCYDDAcVwGgzPi1EcQC0xTYWOzS1EmvP/+XQaDIa+99hq+7/LSS89x\ncG0XRYCzd6foxRqpL3JwY4Pjszl3PxhjGBa6ol8ulOmYbv/RZh6CAJomfsjX17EXLovVgIKUIEkI\n0pz3Ts4YLxaEsYO98vj857+Eu/QJVg6PHxxg1RukpUgU59QbDZIsIo4DROGSPej5HkbVxI1C7MDD\ndhdokoBnLynymDj2mc2H3Hzixj+Tt9wf45i0ubNOt9ulotZpql0kIadhyZRpDojIioppmai6jqlq\nBIGHUBEYJDMcKSQmJ09T/KlDgUNewsXIZzFe0exvcfP551nb2+Dh4IiT6QDZkBjNBvxff/MXLF2H\nKCtIgeF0SYmElMiook6ZFJzeP2etu0YURmRZjljkhH7MbLmkvt5Dq1oUaclbb78Bqo6gqGh6hSQp\nqLUqfO+Vv0eTSh7ce5ej80O2dzaQJAmJRysv/3D8zEFAq1q4gc3cmRMkLqJU0my0US0To9lg6Qds\nXd9ha6fG5kENqjFusARRJqVk7/o1Vr7NO++/ySoZEKQTgniBn9i0OnUkSUFGoywkNL2KpFrIosVH\nX/wEcV7iRQGutyJOQ/S6jqhCs2twePZP6N0lq3DI8eg9BD2lVEsKHZaRg5/FpGJOoWeEZYGitqjV\ndzl4qk8iB8g1FX1DZZUvuPXJp4iFnDgXKQuVPIM8T3EcB9exSYMITdGQRBlBUIjClLKQGVzM8dwE\n14mZTRdkacxyOOPOy68zPjpldHKB7/tcDE6QFQFJKqlYJpqmE8cRRZEzGo156603ybKMp249yZO3\nniAIfP7TX/0li1lKRd9jt30dOTWREpGP3LrF8HzM0888jyCrFLlIWTx6mkRJwPp6nzjJWHkr9IpB\nt7NNzVhDiCtUaLBRM9FIIReRBZV2tcN6p8fm5hqmphAGEe1un9ZahyTxaTUqNFoNREmkXm+RJSlB\nGBFmCb3tDZKyoNauk5UZqqag6xqaIfLyq68iCBKiKNHt9B55v6nkcHZyDyEO0MqUdt0ijhzSKL30\nDiwzRC4JXrlYYlVMvGQFdRUaGoJ06VCtGSK2r9Bsb2CvDBodizBZ8dYH73A6n9La6WG0NBRLRtYl\nJE3CrJqkRYIfeGiVClalwdUrV1BQIBEgLZAVDd8PybMcqYQyz7j62BXSvCCRBe67M3xRQ5RENF3m\nyv4BGxvrLFZjmq02umShKTWWSxfbnfPw6JBW66crC/3MuwjFPEcQJYpCw7AsJFPE8xeUsohqaYyn\nY4xKBW1jHT/JCMuEIstpautY3R5R6IFmsZxM6bQl5ssRt59/gcOHD1jNU1SlgqSKHJ/fp7PeJw0i\nNpsNhDxifXMbyzKZTCZIoojrLakKLfb2d5g7AwbzMXacIcseTpriCjm+s8Co1RherLAqFru7e4xH\nA+J8RV7GzP0hgV+g5jI/98IuL3//iCxZUKmXaEJBakrMLwL8OKcUcvIiwTAaTKZzjk6PMYxLx6NO\nt0OSpChyzhuvvEaa5fi+Q5mX5FlBGhYgSlSrDqKUo9giaVJi6glJesnZn0ynhF6A53n83Ec/yvMv\n3ObBgwf87Te/RdUwef4jHyETSqrFM3iN+3gWnJ8MaPfa+PGCuFwgiSmq+ui8siwLVE0FRcQPI5TI\nRkgjPCfkyuYaxxf30OUKtUaLPE9prG8SLM8pSJkux2SJS+bZZILCs8+9wGw0I7d0dEukKCVm0ylr\n/Q7LKGA+XWBVajzx9JMMzy640rnGcjpCaYkYVpWNnR7z2QpFLfHcR78JHOw9x+CtUxq5gWCCpJRY\njTX0PCBLI8RSICtlFK1CnpeEjkteVVhKCVFeoKoq9somC30UUWJ//Saj2reIygRJFAhjn0rd5GI2\n5OHxEbvbm6R5gSRreJFNp9Pg4vQUSzEZjSdQptTMFn2hQ5AnHJ0d01nv8eDhEbefucnp0RGKkDNf\nOmDp7Oxv/7Nt+0ZnA891MDSDMhZRKyZv3z2k3W5QrzYxLZVKpXZ57k+JnzkIGIqGPQv46Ede4N27\nd6joGrmYkpYlXhJzcP06g8kFmVinllqIuk6n2mGyctjpdvjg/bsoQsHe7ja+F9LZ3ubNt+7Q7Wwi\nFAZpUpKIEZqiMB6NaFZrTGZH6JrHdDSmVGqomoLvBlQsgyD0yIWYXICj8yHTScFT1/Zpr1nM7JD7\nh/fp9VuYpo5l6ty794D+Wpt1U2Y6PuHJqze449+lYkCGQaNvYS8ixoOcrTUZsyojbEoIaYmX2Dyx\n/yznZ0MOH7xLq9Xi+GyALEi88uqrrK31WV8X8APvUoNA0QjyEEGTSMocTYDRaES9VSWOJhh6lZOT\nwSUjTxLwHZdrj11je2+bX/3iF/j3f/rv0SWFl158iccO9pF1DUEViZKYO9OHeNmKK09sMhzOaQsN\nTKlKs99lfW39kWMnFhLj8xWKqLG2tUmalRAndK60CGyXjZ2dy6Km7+A7Mc98+uN4oU0qZsimSkLG\nWrtGmhUc3X+XIAwxqhpBUFIi0Gw2sT0PU7fIlIDVdMFGc5PQS1nb2iJJfHTNQKgo2M6KJPTQTYtc\nefS29HLo0tYbqEGKWpEpyhJFMTAMBUEUUUWdQhBRdYVCkDEqJka9ydAfU4gqgqIiShrLxKa+1uHB\nYozRq+M6c5rdLnGW4LpLNLXJwdV9RrNLvclWq87RwyFpmHDr1tO89drbGBUDzTKI4ogySVnf3sQd\nJLRaTZqNKq4XUGm0OL4Y06zXWPouqihSKgq5qrO3f4PXvvc6610dQ29ybfdxalodRS8Iw4DpYIxp\nmtg/RmDlh+NnDgK9Zh/X8ViOHQTBIEoLotRDVS26/Q7TxQw7WFIqBXc/iChKidHcZufqVWzHxTQt\nUs9mOZpi6RVmiylP3nqKh/ePefLxfWzbpyhiDs/eo9XvsFzZrLXaDE4iarU1lqlDkoaIokCSxBiW\nyXyVcDJc0Vl7DNs9ZLV0KCOJfqNPvptyOjyHAhRJZHNjHcd1iKMYq2Lw/P41xNInLQIOD0/x3IBC\nhM2+TpFmyKpJGNlYhoHZEMjFkus3bvCxj32cJPMIw4DVaommfYJvfvNvuTgfUBQCCDmlqCJqKoIs\nUqYAGWmSokoSQRgQxzmKKkMhISKyiGZs7eywu7/Pf/gPf4YfxJRKwQcfvMdkNGBh2zS6HdrdDrla\nxdDajOYzMjKyLKPd6NPf3GTwY/o/Nje2gIxSbjG4mOO6IRudGovlDEvR8eKYRr1Bt99jPHI4On2A\npgBiSm+9w+uvvcHeWgexorKYLGi2m8ymc5588inOT87JyozN3R2KMGR7Y50Hhw/Y2O7y4PA9Tk7v\n0uv0CfOIyWAKYsnW+g4XFw8pHiGAAiB4YOYy1apGmkZUKi2KPAZVo95uIiDj2i6B5yMZFjs7e8y/\n71Bba7Jw5xyfDZFkaDbbl8Yt0opciJGlkpUzI0wyTMskyWISPyMvJcI04607b9GorlGtGty5c4dK\no44f+qQUZGlJr9uh1mxR8+fYyxWO4yAZCsenZxiaxtpal17Dwlu5GFaFbmONwXsn9NoNosJh72qP\n2XyIUJRookx/a4vZYHz5vWqP3i794fiZg4CiK7SbLWp6jawNUeSR5A69dgffcZBlEUVVSLKYx3au\n8PbbdygEBc+Z0mj1GRzfQy4ESmRWno9RaeAkERv7e7iixzsPX6ciarzwzHNkQolSiozGU2aOTUyM\nG4S4nkut2qTdaxGlEbPZDEOzODqd0Gv3ydMUL/OJVkcopoyoSYilRBIlVDWVum4xCUuKQmQ8vSCO\nYgRBRCg99nY2+eD9KYKVo6gKJ4MR1x5v02+Y2EOJ2XyEK3qMhue0mxV6nR5SvYGoGHz2s5/lH77z\nXYLAQ6kUCEpG6ieYikIcF6iWSpqBH0fUe1WSWMR1Q9qtNmvtHmbV4PEnnsSqNTh8/z8ilDnPPP04\n64/t8OJzz1CKEqJqXTa6DB7yTw8uyPQIWZVQLY3ZZAojiWuPXX3k2C1mM5rtOkEccPuFW7z99jvI\nkkycpOSSzO7mFnlW4HoO7W4LWRaJvIA8jyh8kd2NPmJ2mQp6eYEZ5rRrLebTOdVmlTyXWS5mNM0G\nb73zBoJQcDI5xmxW6coGH7x9ztVbuyjRCkPXuBgPEBSF1eLHTPowQlUsEEsUBORCZDjxkK5skAQK\nDU1iZS+xzBq6oiKLJqpkMvTnLGybUpIQFIGEkvX2NvP5BLNSYzUdoGkKZVmiaSVBEoBkkBc589kS\n0EnLiJVjU1IQ5yGyolPkEYoioxgCXmizv7/2+05jAAAgAElEQVTLyz94mb3da3wweECr06JVrXI2\nHLC9vktFb+PFNvHyjOcOnuR0dEwuFGi6wdHZBVd2rhI6NsXMoWtUyQqBKH805fuH42deGByPBogy\nxEmAlBekYYxamJQFVCot0qCgVushFhrT6ZRqRSdOHNIsxHNtfOeSuZYLEq2NDR578hZKrcrAXvLN\nf/x7LpwVk2CG59k4iznj4QWb6x0+/dlf4uD6szSbG9QaPRq9FvVOC82wKIIUIcl47voBo8UUZAnN\n0pBkiSiJadSrhFnGZO6hGnDycEK9KtDrrCFrGn4SYvsunW4P31+yvq1Qs2Sy2OX5Z6/SrXfJygKj\nl7CxY/KRl25T0TXOzs44PLzPyz94hePDD0hij9vP3aZQU3aurVPtGuzfXEc0c9Rail5TiIuIme0x\nGi+Ji5C1rTaSlhOlIb/4uV+m1ujxd9/8O1rtJr/yr3+F/+7ffJEnn3yct99+g8nFOWQxDw/f55V/\nfIf15lOEtkKSFYzHI6yKSqdbxXbmjxy7JElBFClE+Oa3/zO7V6+S5Bnra+vM53Pa7R6SKFOrtZBL\nAVPWUYWSbqVN7icUYUm10yGKM/qNLmVRgigQ+AGqprOcD3CdBc31Pu3+Gig6aVZgVUwCSrq7bZZx\nQJYGjOwR5/MhkmYRxI+e+NvdPoamI4sSeZaSGzLr+7dRWjdII4nFbEEudZA0E0FQQVGoWW0EUUNX\nTFrtFpVK89ICTRAYT8bYqwVxIRAXUK21kVQTO4goRIlGs4lpGui6RZwV+GnEzsEVbD+kFBWipCQT\nM4azU3Ix4D/+1V+jWhaT1YJ2pUUWS1iawHq7QRo5XNnps9PfwosLLhZLrEaPyWjFYrXEc21sd0GW\nRVQrBr7jEDgOivbTl/jPHATSPMY0dZIkJnA9Oo0O22tX2FjbYzFfUa83aTb61CtN0iSi39viYP9J\n8gxm8wXXH3uKutVlf3sHZ7Dg/lt3efnvvsf5yUOcRUjd1MhTgUhOkVsGZq9Obogcnj9k5S1o9pus\n72whKgrNdotcEpilMWeTCaPVBC+Iqbc7ZHnBamVjqAZCAXudPk/sXqEqquxttuj3TA6ubDCeTImL\nlCgJUBTY2lpDLH32tuscHLTZ3Wuytq4hKxKH43Mcd8r52SFb2xv0un2K8rLPIPYC2vUaoiGgWhUc\n12PnyhpLZ4FqyZeiFG0TRAVB1AmCHMcLsIM5C/+M0vAQtIgwcZgsxtTqFs/efgZRKoljl0bVIPZd\nXn/5+xy+f5dPffJZ9rf3IS0hFxAEiJMI/0OS0aMiSkNUSaYp6/z8zWeYPjhHEmQECWRFxbVDQGUw\nGOHbPo1qjcVyyeHpOW5aIJkWZ8MpK8dFFU0sw+L4+Jy1/jZlkdPo6GzsrLNyfHr9HRRVJ0tztnZ2\ncbOYqbcilVLOLxyaegurrKCQ0aw/upApF6CLMkKa0a61EKMMkZiyWBEtPmB4/x+Q8cklCTfOyMqC\ntW4fSzexKg2SOKQoIqI4Io5jBFmmFDVEWcesNFAMg8lySZIJyKqOiECeZZRkOL5Lrd3m6PwMo1In\nTgoq1TZONCUVQnI54YlnrlNpWNSadTTFpF2zKPMECQFNlbDnE44OH3B1/xpJmRJnMr3OLueDC3r9\nNknqYzsLBpMRqaWyKlIeXgx+6hr8mYNAv7+OJKp0u100VYUiI4p87MUMVRQgzdFFicB2sbQa1/dv\nEkcZ7sqlrlt0ug0EQ8MTSqjrVHt1HrtxgJKXXN3s0bFqPPP0kxiGRpbEKKrCaDnHTXyc2EVQRLSK\nhh/5LJcOQl5AElKryJRFws+98Aznp8eUJXQ6PYKVR0XT8T0bxx7jriKu39ymt1nFjicIYo6hqDTq\nbVRdQddhZ6tHnAYkZUQuOeTinHEwxFA03HLOePwBp4Mj3nrrbYajCYGXEIUBoTth66rKEy+ukSkO\nmC63X9imv52xvqeSEbK1Ay+8uI5Zcei1BbxggGRFjLxD/u71b/Bg/BZXH+/y7HPXWc3npGFJ7Bec\nnZ3xxutvoCoqN6/foNleo6L83+y9ya91WXrm9dt9f/bpzz23v1/fRB/hTJvEDjvLjayqEshCWCUG\nTJBAQmIEA/4GVEhMEAOGSAwY2MaAES6TTtuZZWdGOiIyui++7van7/bZfc/gpguj+pKQEDjKVDz/\nwF26e63nvOtdz/s8Tf6tX/sPkKomUq3h+ynbMEbSXy09jZcRwSZiPl5hYOHi0lH61FnOrdsnXIzH\n7B8dUwsVnZbL6Rcfk2ceslygyAKtVhdJklmvN8SxhyCVHJ/sMples1wsEQSDl2dX7Ox2CIIA3TBY\nztc8e/ollVRR1Dmb8YbXH75NlqnEacp8ukEUXu2OXOUZZZVjtWwqWaSqK84+/wmZN6djN9m7/Q6G\nLIOk4TR6pLXK4fHbiLXNZHWOaqhsthtUzWCxmCPKMigKTlOjrCquRnPSSuTeyWPkKGG1HEGdYRsq\n/daA6WiDKKm4LRNJySnLkiiqyMuKTz9/Qpz5CFLGZHZKXW1RFQmEBnqjyyao8IMUqUhIF9ck2y1J\nECLJNXlVo1kGoipTIHE9XSI7Lpkkcfjg3leewa+dBMbjEevNAj/wMAyZmgLH0SnKhMevPaYWClRN\nwjB1tmuPJ08+QRJz7t27w+7hHmG2ptltYjs2h/u7WJZBs2Gwu9/j3fcekhcpb75znyxPSaIYfxvQ\nbXYIwpCgypmGK7x4S3eny5fPn1ELAoKhkgk1cZVR5hFSXbG/N8Q0LcIkhapEEzXef/+3efja64TZ\nFklx8MIQoc45OtyhJiPONhT1lkZDxjZ0NEUiDAKiKMNouKiayCjdIjZ1VuGWX/0Hv8LtkwOOjw84\nvL+H1C2YexdQldS1jOu4TOZTPK/C6VhkUoDVNfCLDWZbo1YrXn/9EYaqc7x7hCZVvHz6EcH6ksV8\nzB/84R/wv/3JH5NVJZ1Bh1/77i+zWi/48Y//OX/4e7/HZx9/ymy8oNveJUtvngbzPKXV+pf9BQGG\nDZfCT7h99xZxGRIWG2zJwMxNRleX7A+6RN4Wz1uw8pZ8/uyM/TuPyRCpRIlarJEFkY7pIEsaRaWw\nnAf42xBFNgn8NWGcMF7Piasap7dDsz/k5eWKxSZh5+iIiJIXk3M0s0Gv1UOSddxW55XrVUUZUbhx\nMaqFCsfQqGWLB9/6bY7e/3fZf/23UFoHOFobd3ib4we/wXff//dJ5hoPH9xlejWjaTRZzlb0BgN0\n3SQII4o8p0ag02tyd3+f6WRMbaiIqkJaFmT1TXjavfsPMEwdzx9T41FLEc2WxWi0xbFNsizl8uqU\nRsNgsV2zjTzMhk2UpFjmzfj3t9/9N4i9gIHbRQU2mxk7+wNm6zlRGpMLIGryDfH2e6w36688g187\nCcgKKKqI61g0Wy5pGrHdrkjigLpKmcxHrBdzdneH2I7FaHJOWSd4vsfl+ALDMciEDKQSy9bo9BzS\n3KfZNhCknAevH/LnP/wev/Dee7Q7HWRJIq8KbNumYzo0RZ0yiMg9n3cfvsG7d36B1w/e4I3D9+ip\nXUgjbh3usl7MkEQJgRrXbvA7//CfsF4ETMNTRLkA2WCx8UjzhKurK5yGQ13WDPpDDMNht7ODY1go\nkk4QQVaX1EpNt9uAMuGNew9oNkxs1yYrQj57dspWDBBkbgI5RRXFkHHaDoe39pG0GsMt2b/fRXFr\n3D2NpNqQlxFFlqPKoOsFYXxFYc7R9mpW+YpPnzzBabUIw5Dx9JqjowP2Dve5c7JLu91iu4xJYwlV\n1XEcm7KsaDVfLTipTZ24zrmcjSnFmt5+m1yLmT9Z0RUG9NouL19+wf2TY0qgNxyy2UZolkGc5/h5\niqQqaFlFkSbUZYksqxwcHLJYzZA1nSyraZkt7h7eRq1l1lcj5GTNYdshXC8ZNjvsttsEvodluewP\n99huXq0TUGUdWVIQagFDUVA0icHxPRSjg2Ls0Ri+zt7rv0nv7rdpdW5hGAq2KPNP/7P/hvUTEYqC\nOIxxdYeX5y/odtuYtkFRV2y8NaEfMp0sKfOSq/GYTRDRbDW5vFyiqCJRmBHGEVdXM6oaFEWkLAoM\nWyDJcoJgjW0bZFmMqNakVYqXeGy9Ne1WF8d1GK3m3H7zDWJFo6Bk0O2AWuEVKZUs3vgMdlyMlklO\ngvDVowNfPwkEWYS33VAWOV++eMY6DFkHIdfTCVfXFwx3d/E2K6Kth66rtFtdmm6LXq+HZRqoiogg\n1eQUoEosvTWNZhPT1KmqlKJOOL59xIef/jWaKnK8u0df1JD9mJZl4YdbVEmm3bAIRmeYacavv/GP\nOe7tsNs2ubt3B01S0C2DKFnw6N5d9rr3uD5/SberIYgmhV/hyA5VKuCXGZKs0XOa3Ll1m9VySxik\nqIaIYYHdFTi600IvY3baGk1LIiOjFhOWyxFRHPLgwUN+/Te+i9tooioudS7y2mt7iIpMu+viNnUG\nwzaqKrO8vuLOQYeTTpedtsLDR7fR5Jpuu0ma1WzWAXuHHQptRSZvuP/Gbf74f/8hqE2uZzPOXjxl\nOjqnKFKOjw64dXiIIfawdIcyKdkf7mGYr74OKLrByYOHlCIgS0xmK9abGb/wmw+4evY5o4+vkHWL\nqIjZ6+9RKyaTzQq32cd1OmR+gVxrJIaGrIioisBy7bFebpBliSDN2Tvs30TD5QGGppIu1/RbA3Td\npapMZMkkjmKOTw7pDHuIgkyn+epKoMhyLNNCEkTEuqYWao5v30asQKxLJElC121Uo0ktiAgIiKJC\n39nhP/33/iv61ptYdoM4vJE1X0+uaXVa+JuIhqOQ5QlbP6LTbBJEBY3OgIXn0d8RuH/7LTbBiPV6\nydHRAW6rQ1ZJZLVAZ3eHycaj0BQyQSPJaiqlprHTxO21EUSB0/NTwjjk/OoFq+WKeTBllVxytX7K\n2fgSxTCRdBNJVzHbFl4ZIig1SvXzDFb+T3ztJHB0dITbaZMIFZWh0NofkKowvHXEk5endJo9Ii+l\n1x2gaSqaptFud2+6rhps1xNalkyWemzjGZtgwsabU3NjjhpHPvPZJUXqs10vKIucIAp45923WE6m\nOPKNDPPp5SmTaM00XPDsxfewUOibh6SbHFu1KZIMVYLNfEnLaWGYBfuDPiYmbvcW1+cjyHJ6TYM7\nd/awmwppFlLVOcvVjNlyTlHmJGlEEiUMWx0UUaLpqtj9kkvvY6b5Myoz5fs//iHj+TMkUrb+Fe//\n5q/gNFW81YRwtSIJtti6hqkb7N06IJFqEgIevX6XUgm481qf/Vt7tHs9fuvf/kdsNgFtV8A2A5ab\nF6y9C9y2xe37d7l//w6/8v532Nvvc3l9iiBU3Dm8g6GZ7DX38eYeUvrq+fzHD99ElzU6DZckCHn7\n7XcY7g65nszRGi0++egz9CjDlGU++uAjmkaDk06XbBMyG08Jwpj2oEstFnhhiqHb7A2PUUULQ+2S\nRDJJXDJdLfns80/odvtorkOj2+LyaoRiKoRFjKirfPb8CUGW0Oi0X5WTAnAzlBZFmIZBWUOOwmRy\nzXJ6TZF4pOGSF08/o/wXwSsitSggiDXfevM9fue7/zGrWUGrPUCQFCyrgYDC7sEdBFHAtUxaLZci\nD9g96HM+uqZWC0TN4NMvfogC3D45QkLm6ZdnfPLpU2yzTV1J9HbahEWBYjYwm23mmy26ZlGmNYPh\nPntHR8w3Gx6+/gbT+Zrj4R5IFZrp0Gm5tG0DU61ByTm/eklFRsnN/M1X4WsngTiIERSZQr3RA3ie\nx15/B8nQefD6WzhOi19491coC4k0jRgOd0iSlCgK8TZz8izg4vwJHdNFjTTevvMO/c4OsiBRU9Js\ntFEqE7GQ6LT6SJKCpRtcnJ7Rbro4lo0jadzt7/L41gPm8xFnmyvGi0vCeIOu6IjI3D98hFQ1+Qe/\n+susly94fv6M3A+5e3zCZDVhND2naUPH1RDkjEU4I4wDZLnGcXREoUBUbgZQsijA0DUMRSUMlrR3\nNMTmjMMHHVJlhLXnYQ8KNEHAasiczv6S06svUIWKfrfDo/t36DQbN+qyThOQSMuQ8+kVcbqmlgtU\nM+PuawMKyaPRVSnTnDffOqDVrXnvvYfIYoFtqVyNr/ns0w9ZhwsatsVkNEIqZMpMZL1cYskGHePV\nPYG83qCbFaamI1Q1f/Vnf0G4DfBCH3vYwjmySOYLOlEDw9RxJI3nf/05liDSb3fQDYur8SUPHj+i\nt9NkGwS4rsXGD7l96zGSYJLEGdPRhF6/QxgEVIrMzPNI04Qyr1A0HdtxGO4foBomk8USXXl1DVxV\nBYqskqUJuqqi5luef/CnjD/7S37yg+/xV9//IyYXL/DWy3+RwCRw47M5ny95/d5dLM0hDErcRht/\nG3N1Oabb3yXNJSxFoyxSBBHm0wX7Oxpd20YuQCJjvZgTegGKZBAGOft7+7juHpKk4m1CTFHjZHCI\nisrB7iE7OwdUgsRiveRqMub+a4+IshzFsLm+eEFNQVxkmLJK7K/wvAUbf0FOTpJmRLGHob+6Sfq3\n8bWTwM7xLoJUoQg5DUfBLCuO3TYPWgcc2A5pMCct5jeNPN8nSUO2wZo4STjYu0MSlwyHh8znY3r9\nBtdXl4iFgKZY1KmIo7bIfDjsndyIisqIuIgp6wK5BiFNMUWNKjc4HY8p1BI/8hlvJ1xvplyPzsBP\nqFcBj/cPefLJxwybLm/dfky4jRhdnXF3d4/dXh/TUEgiDx2Rys846A0gLyiKBD8LiKOEMimoq5wk\n8uj3OpRFxfnZGWWV4q0XtNo6uycdXo6ecLU6R9RBlmV2+n1u3z2hu+NitwxEcrpNG7EoQM7JxYpu\no8FOy+H2wz0uvJe8vPgMfz2hlGLm63OwEqLa4/4bQ9JqCVJJEK958WxCkVyyTT5F1XPKzOPAOeGN\nO4+xVJvNZvrKb7daLgg2HkWWM2zv8/jgDXZ6u6iujdpUuXfvDsgy69mWbx29jTdf0ur32ax9SMFU\nDcqi5mo8wo8yDLfHNi8RXYOL6wt2u31ODh/z8Pg1yFTCcMXR4TFFXEIBhqqjijVxHpEWGVdnzwij\nJRv/1VJZ7WfpUtQSiqwhCRZatuKnf/V7UES4gw61oxLFW6CirmvSNKWqwLI0/tmf/D63j3dpuR2S\nOKfddFHqgsvz50RRwbPrKbUmEJYpLVvFFmXi9ZaqkMhzieH+XTZexMtnz7n/4BEHt/YJcp9Wq8Ph\n8JAyKSnLgjRPMVWbLMrYbNYc7u0hknE9PmMVzDFcHa/KkHWTME4pJYUakaQu2GQRpZKTBj6y7JCW\nfw9IYDVdQVFTpSmuaaFaMpsoIM19gnTLcrVmvnxBWYc4TgdKkU6jRZHEvDw9wzJd0ljCMJs8/elz\nNnMfb+uxmp2hibBdrXEbDmWZEydrVtsLRDlANXIyIhodl1opySSP7q7JOl4QlD6hELAJ57gNFVMH\nt6Gz3C6p1BIvWhHGHmfXp2ziOQPb4rDXoYwzXOdGuuw4NmHsoegKOSKNdoem20aXdaglqrpiuRqh\naBBGKQ1ziKaL7O13KauQu3d2aXZtijLC2yxx3QabzZLZcszLs2fkeYQkZIhihaYJBOuIYLNgOOiy\nHF0zsBwO94bsNdroqcDaC7l6MeP9X/4Oy805We3z8upTbj845Fd+431O4yum/IRcnHP68qeEc4G6\n2GETSiTFqzfSsHvE9HqB23AQxJJHb7/GfL1guVjQNBuMn19hmy3iKObpxx/xi+99C8fqsHtwRJyF\neOsJrqFhSRqOqFBtY37x9fd4sHeXOi+QqcmThPViTBpHLGYbPv/sOfcfPUK1TARFJMy3FEKOKtTs\nuC2WVxPSOHnleqMoulFyiiKCoNBwG1i6TcOWefrsT3n25eeYmoNlKYSRxw9++H1EqeL3/+B/IKti\nAkI+evkEZ2dASsVq69EdDliFAbkoU+o6dSGSJjWKalGqHbBaLMKYshRIkgoklVKu6XU7zEZT0ixA\nMxSqIsO1bdbrJZ1OGyEv+fzjj2hYBm7DpqpqNtsNZZUznY9w201kVUaQRdKqJM9r6lLg0cERZqng\n2DayVGMYX60Y/Nplw2JZYmsalqMzmo7YHQxJkpptviSJKhTbJN54VEWFKIeUhUCwySnTnPs7++zu\nHOHaO4zX19x6bQfJ6vD9D/+Y/mAfWdJuHHlUgSwtabkdPH/ObLbCajRII5+6hvViy/6tEz59/smN\nzVaUECQBRZky0NoEwYyG2EJSJdIoIxcK8jLl8HCHz2af8PnppyyCFXqjxWozxtEbaA2VvMiw9Qay\n2kBVZUoxoRRLhLxA1SUm0zEnxyccHYpcvHxBQ+9yMXpKkufYtURW5ciqiNPQefLkKb/0S9/m5fkT\nbh0fE/s3o9KT5Qar3eLuGw846rT5wcc/oVZBjZccSg0W1yMkV+Ct198lmgmMrs6phQw/CqHKSOsu\n8XbKYpkiy13EakG3s8/V6TmiFPPGnXdQtFfn2clCRr/p4s+ntFs7/OWHP0JVNdpuizxL0YYG1+sp\nakcjT2r+6C++x3tvfotNMGVn2OVsdsnBYMDTz55gWhb+ckIyv2B1esnubo+oTDEEEVmxfpY9KOAq\nCvnap2+5pP6WMvDp7vaItjGjmYdRS/Tc5ivX2+12EYuKoqwoyow0KkERsXSVoiypizVZMuHsoibw\nYzRN4+Of/oiNN+Hs/AsWi0sO93awRBmrlshygWC+Zs/ocjodYfYdBEmhFgrqvOLR43f50V/9CEtx\nsGSDIq6wW102UcDe7gGj8wsMW2O7Xf8sl9Li8PAO280aVRVRxIrH9+6wWnnEaYpkCEzH1+iKhb9d\nIqo1qmMT5RGZJJJmKeJiTcNtkWx94ihBtPWvPINfOwkYik0Ub9ikIZkfsxaWqJb1sxDMFCgQBYUk\nXeOYLSTJJcrGiIrI2egcU60xhJqz86d8/OH30Q0Lw1H5+PNTBGQaTZdG0yZOFsiSgCjIPH7wFpdX\nZ+i6ynhyxZ07D/jy+XPWnofdVBl2m2RFznqxwS9XhKnP82sBQQRdM5h7M+qqQGgWJNsARdMwzAaq\nYiLMHbrDXUS5xt/6+NWCk5MHnI+uELOKpupgyTKa5dK1moR1zmKxoNvpsFyvUVSThtPAsBwkJUEQ\nYB0vuXfvgMVsgmPYKJLB2fJz3JbGYNhmHSY4ZsUmnEFxE9pSZzCOM5SDIXU0ZXl1we7B68xnGyRT\nodXYYXb2klIJ6R62ecd5jevxgltv3iGNEgaDx7QaTQRRIAheXV5vow05KYqiUYlQlNHNG3VVcv/4\nAWerp2hGTZnXyHKbKMjYVksqtWK1WGNoDsvNmlwomC6nDNo91psNKDVlkiILNXkVkpAhVzISNUVe\nkIQhjUaDl6dTbMMmmm2xDAer3UOkpi5/zrauarIkwtb0nxm0quRFQRwlWKpCnqz56E9/n1Qw2Ln9\nDq3WHlcXnzIP1/zhD74gqDfYVpPxeky2LRAUhZblEBY5x4fH5EVGlt3YoadJxp/+yff4xW9/m8nV\nObqosgkCbKfNw7snbFZrlrM1stkiinK2ns+D1iFplJPECePRiE6nzbBzwEcffsZOb4Bpyiw31+Ql\nXM23DNsdDKC322ccTUjqgt7wFrOzL7l75wEffvopim4Ar34y/Rt87deBpmMg1jmupXPv+JiW7ZD5\nIdk2ZKfdQUVE0zQ0TWS9mVBXMZahoKs1umtRChKnl2f0By12j/dwmgZUcOtgwO3DXfqtJv5yiaFr\niGKNYahMp1fIooytuuzu7DMbz7Ekha5lolLScFUQU2S5RKRib6eHIkl0213SOEaURJqWw7DRIfcj\num6H7SZAEUSkuqRIEpIgwDBk+u0hsqBS+DdXBVHMWE2vmJ6/pN9wCaMVTkMjzbYMd3fYGeyjaxaL\nxYL1ek2aZlRVia6LbLwpRZkQRSGW6eL7HuvNAsOQSXwPf7lAKwSISwQkZtsJlV5TyhJ6p0FazlnN\nvuRWt4Mg1JiDJmthwSg4I6k9un2bovJZ+hds0nOevPiAFy8/JIhebeEdhsnP4sRqHMehKFJ6zTaa\nXjJenLJaeEiolHlJlsYoioQXe2y2W0IvRCnBVDSkQuC4P6SjNZDjiqHdpIlMMl+giwKhH1JkGWKW\nYmsKIiVlHNKyHIbdHcKNT7QN8JYr0iSh5TReuV5/s0KWJKgrbNuiEgUkVcF2GsiKjljlHHQt8nzC\n1epDfvL0f+aTq+8zLr/gk8t/DppPmSxpmtCzdmh3dpmsQu7du48pa+z1hrh2k15niG24HO7scvX8\nJW2jhSTJNLtNTF0ni3Om0zlvvvmQfqdDv91DEWRs22E0viYIfXq9Hhvf48O//gChSmm3NSaTEXmp\nIMoCpqKyXoeIsoQlK1ShT9OA88vPSYqYL89f0Om2qKqv/p0X6r8Jof87hCAI/E2Q0a/+2t/1X/8G\n/09w47fzf0X9897i/hXFf/df/i79VpM4CBAFCdW0ECURSgFVkkjzgKoouIw8PlpcIlgycRaSIVLr\nUJUVg/Y+0dIjE0SSPKbVd/npR59w+/YtgiBCsUyqsiIvC/L6JjilSFN6uwPyPGe1WiNrClKtstPR\nCBMft9lh661J8hJBgCT1kSqFqowR85qdXg8vzjmdLRFUsPQbafvptU+zbfLa4Vt88uMPUDoClVKg\naDKVINGzXOpS5D/55RufwV/7NXjVcf/aK4Fv8A3+ruDYGkme3Qz3iDJlXlEVJYqikFUViupg2j1c\nxaJraQTBgiDJaDdtlELEEAzCzZr2bpc4zhkOhmxmU+7cvodQCRiqgaU7P5uE3CIkETIZjqVDWZEl\nCR3Hpak6CLlPUZV4eUZMTi3JrDYhqqJgWzalWGCaLZzmkFu338QQNUzF4LX3voOgDgkxGY9r0rTk\n4voUyRG5f2cXWzAYncZEsUCUhCRR+pX/l29I4Bv8a4FSFolKBVEzqUUZSVEoypueS02JrmlURY4k\ni7TaHapKICkKMiouZ2OKIifcrimLjHejc4oAACAASURBVPMXX2KZFUGwQCgF/PUCUaxRVBHH1Cij\nkKalE8c+iiQy2Olw+vxTdroWdkOmFkKclsPW8zA0nTxKiQOfp1+cgyCwWi9Js4o3336LZrvJky+e\n4xouwfyCwrvm6U9/ihho/JPf+mXef/2XOHxwj4P7D9mkOlrX4PBOl8zLqGqR1fLVTd2/jW9I4Bv8\na4HxgyGKoiDKKrUoI6oGrXYHRVURBJmiqFA1nbKApt2hLEAQVGqpIq1KBEVmNh4h1QWqWLOajnAt\nkzIuCZMthqlAnVMEW7qWQUNTkISaKAmYLcaYpszFyy8x1Zrtdkav22Q4HLKeL4n9ALGC7/zSG3zx\nxefouk6Q+Dw7e0mQ5oy2Z1xvn+E0LT784U+4c3xIlXicnT7lRx/8Jc+//ICrs8+o8yvybYxZwYPD\nLmGYUP4c4dTfxjck8A3+f41MhA/3VT74j36LVv8I0+piKCZiWrAeTRCyFCGLEcWCUsjJ0ghvteJe\n/wgtrujqFnJSMr68ot3t8+mzz9kUC0RVZLlc0N1r0XNdgsDnanLNaHZBUvjUQoqgVWSJT+p52IqO\naVqstktyoeD08pSN52FbNv7apyxrirLm29/6DrJgsZpGHLaH9Eyb2ydHLOMEyTLRlZr9QZPuYI+F\nVDKtMyxTZm9XoW1r7LRNxCwmjudYggLhV8uGv/Ynwn/63/5DBKWEuiBIY0zTZrNZUtYVENLQB+hW\ng7k3YXfQ5snLZ3jehvuPHjKdnqFpKpZtkmUSs/mUZtPFtm1enl6xv7/LejNBlATKusRSDJqOg5cE\nlHWGIusImcz0aoZh6LQHXURZYu6HGLJGML9Gd2yqvOJ6sqB7sEteJCSlgBd4HB26BIuceFNw62SP\n+XKKQI1uCChKk+l8cRMtRkHb7bLdhnibhHfefpvxZIQoVTQbDi/OLxAlEcuxUGWJhuMwHS/ZhD53\nHp1wevGSYXeHOiqQJBXNUNBkAVVtcH19ge0atNs96koi8jckaUm73WIzm5HLCoJSU6QpttVCUWWS\nKKWuRVrNNmmaEMYhptzkxRfPqTOZb739LueXL2m4NnATjc5//i9/u//6936Xp0+fEEcb5nFA72iP\n0fyUIpMx1AYD94iiiJFVgWC5oCgrdoeHTOZTJEWlKiWKTYyp6jSHfZ68fIapqzQ7bUbjKxxdg6Km\n3+7R6XaZTKZkeUAYhmRpxbtvvcd4NCWOIpbeBkWBsqy4PB/xxv2H5LXFneO3eff1f5OOISMXOVWW\nYVsdiixB9tdEkyeMv/iMOw8fULU7iEiEaYwmiFiInJ9ecHCwj6cldGyXukxZTdf02jZ5klLJCpIg\nsRhPsW0DP4hodlwurs8RFJ2j42O28zVJkWNrFuvNmpbj4m9i5v6U/U6fYkenFgQMw2J8foEky9w6\n3uPk6DZ/8ed/hqwKiIWOoWucjacEOwXrTcyju02yJKZjqyS5xk7/Lt5yTmpCEoIgllj63wN7sVKO\niQufi80FWZ0wXY/JhYxCSomLGNSaoqrI0pDPn/2EtPRRFZlgtkHMdOZXa1bjFWXm03RMdFXk5OSY\n3eEhZVHTbvdR5Qbt5i6KZrMOQrK6Jkoz1sslZVXT6raRDJEoj5mt5+z09ri8XFAJIpIio5smpmWT\nhwKNRpter8XBbg+ldHn93i/y3jtvUZU3bsCSIuHYDrqqMeh2UBAp85ooSmi6bfr9LqPra7IiIo58\nsiBmr9Pj8d37yAikSYKp61SU7O4d8uz5iLzWqTEhVTFkGZmCskwo6oySCkc3WY5HFIlPu91A1QTi\nKKAIct5/8zs4gkXX6RJvMxbTDavVhjzNEZDQVJO6EBktZgz29zk4OeCTLz8jJ6cSS+I4wXZeHT7y\n5PxDFsE1RR3y27/+Ploeo5Uqt/dO6DV6bIMpceoRhWuKOuXk5DaTyZgw9FjM55iGg24ZtLouT0+f\n4DQsvG1At9fHaTZpDfoopk4mZlzPz1n6c1b+isePH6NrGmcXF6RlgW5blIJAe2eftBa58+B14kDg\nH//ib/D+yS2OhQA39bAFAUvXEXUNUdWoRI284RAvV3zwR/8T+XpOJhTomoRCjEYFskgqSqiGhpSX\nKLnEXmuXMsooogS5FljN5ux0+5RJjqiofPHilJ29IwzJYHY5I/VTWo02CAoiClVWoUkilqwyNG2s\nrCALPM5ePqPjulR5Rq/f44/+x/8V0zTptlz2d1uoYsXv/jvfpcgWHO87FBvQs1to4m1cZ484jmk0\nmwx2RB4/7rA72OHNu4++8gx+7ZVAvF1QSAWaXBPGPlmRY5oNoixFqBUEUWByfQ5SSRLX5AKQVYRb\nn7rWkBKbRBRJqwBdFyjLgufPT/GDBU7jRmlmmhZd22XjrSgVAQkTTTHQNJ3AyxkMe5xfPSGOI5ot\nl2C7xm1LNG2XPCtY+T5RmdLSC6glplcXqGKBarsEm8sbJyHTRqwgrkKoRZS6xDB0bGVAkeWs/RB/\n6dFstqmqDF0yOTg+4vLlGYIkslguUVQDxbSYhzHbrCT3Q7qtLtt4y3w+4ri3Q06EUNbYuolQyewN\njogjn1ajS15mRFFGWUO8TZEljenqkqqKaOlt2sMWeVGz9dcYjsnWWyDpCkg5LUvF0g3GlzPspoNl\nmyyXK1qWg++/url0vVxw5+6bpN6K7/2zv8BWVUzRJYsqzq4mZEnErbu3eO3+Q/7qgw8YjSdstz5p\nktDr3yTkhEWClNcYtoRlKPTuHrGYXbHX7bHxlhi6TF1X6IaJFlc0Gm1EWSEIAwa7B0RJRqvZ4smX\nT6iKPvv9AarW4/U3XscqCtKLT7jyfQyzgWRaFLJBpWrIioFcBkRjn1Cy2PoTFi8vaT80qCUV1x5A\npmHYOmkdIpY2htWkXUpstz699i5R7LFeztEUnSgIEPKULK9REcnCmDLPsTQLQbnJRjRNAz8JCMKI\nRsNhu/U5W4yIixTFNtETic18RtNt0TTanFZfYjq7fPbiB9TiBsvUOZu+oDm0KXKdQX8P23KIgoSi\nCvC9DU3LRhYlnj87J6lc3n77zleewa+9EqgryNOCuqyQJei3O3TsFm+89g52c4fz6ZptchOyoEka\nhmrQG/RQLRVdEGhoDQ7u3sV0W8iiimPcWGPtDQ4gV9AlHbFMicMtZV6g1TZyIWPIFoZqcu/uEVke\nUlU1YlVjaibbdUJD7dK2Bsi5xPHggIHr0rQVpHrNbr9BGlWokkkUxkRRiCxLNwaUJbTtDrvDHdb+\nmiTJUFQZXdFwbAvb1DFMHVnVkWSV3eGQcL2lr7vc6g7RMrAqmYbWYq9zSLLJcRSDfrtFnAWomnwj\nIMpByAvSYEuv3UOoNFrOPqEvo4smsqAjaRbj5QhUgW0QsgomyHpKw+5SxQrtZpc8qpEEjaP9fYoi\nx205dPsuqirR6bfRLI04e7UWv2c1UFORzWLLcLjLJkqxDI3lbMKdw11unexwefmCH/z4z27m7qOY\nZquFt0nwtyGSJpFUCWEa4zZbpElC5IdoisJiOaYSUvx4wSZcMFuPqeSIub9kG0V0+l0kRaDZdFBl\nmVbDYj6eIEkyHdPG0XV0w0GyHARLIQwXnH/x1yyef0KymDA+f850PMbWFZxmn40vcnU6wV+NCQKf\nOInY7+9hSC0mFwvuH99lMp/j+1tsW6MocnTDIAxCdEXDNixMReeg1eC43adcRzSNBmEYkZU5//yH\nf43vb9FlBQHYbDyyKCYtc7IsQ6wFNF2irGOi0EcWSvYPD3jyxTMk1aYsVERsitwlDnUQDMIoRpZ1\nFtcT0jhiOppx6/Aes/GG3k6HZreJn7762/1tfO0kIAgCsiQjCTKDbo947RNdzdieXSFGPm88fERa\nFFxeXbNdbEi8DZvFHNOxsToq/YFGv60hpzFFGOEYGlJZMezuYggudaBS+QpJpBBtoW93sOsG4SIk\nCH1W3gRZqjg6PERWZPIqpySgSmL0XKBrtGgZLe4dPMQsbPyxh1ZLHB0dcnh8i7oSMAyDqqqQBIXD\nZp+D/hHPX1yx0xlgmSZmw0aRNDqdDqZpUggVdtNhEaz5bHTKOotY+CumywVHJ8eYtsHu0MV1Re7e\n3adhqpiKSkO3yMMCIRehFHFMi26zTbBZIVY1hqAilQmkFUJZobs6SZlRCjmGq1EpNZPJnJ1OB1sx\n0AWNvf4+rtPk/HzMdrtElGrG4xFZnrBYTNBtFVl7tZ9A3+khh/Do1lssV1swSkqh4O3XHrHXbKHU\nKlUtozlNvDDGtW0uLy64e/8BTq/D5fVL8iLCaNrM1ltEWUZSZWRZJc0rriZzNmFOKeg0WgNqWQZR\n4Hw6xmq3iLMYQchZzEdYtsH+/h5lDb1+h5bromttnN4xTvc2mt1H1xrkKfhBju42qfOa6dX8ZvJU\n1Lg8GyFnOrZs4K88ijQnDQL6HYuXzz5GlgpMS6HRbREna/KsxNDb3D55DLWMqhrIgkbL6XIw3CNP\nY2RFptHtcnJ3B0NR0UuJ3faALIg4OTyiKkt6vS5lVZJRYtgqQp5w+fQDsnSN3tGoCgVLa0OpkCcC\nRVaw3o6IYo/TF6fs7+8hFhWP7zzm4x99SsPssQkymoPezzWE+dv42knAiyPCNMOwHH7w4x/z2dkL\nTkcXXF5fIssFC+8zdg4a7N3eo717iNXskv7MLERsKBR2zNQfsa18pFZNkG053D9gu9hysnNC2+iS\neBllUmEoDpPRlm3sI6oSSZyhK22EwqbOakxdpmmZ3N29j1ypRH6GJCpopsb56BRRLLl/7w0odYJN\njr+KabgGq9WSvIixHJWokpmFGyJCLmZjVEnisLmLKIekqU+/NyDYBngrn9loQr8zQBBl9m7dxbZc\nzs+vSNIaRZR4/vQJnrdE11TiMKPhtNBwMdU2d2+/hiKbrDdrFFXCslSm0wVHh3dJi5BBd4eTwW2y\nNKbIC/K6QhBV7E6Pl9enlHJOJdTMRlc0NJ2m0cYS29iayuHRDkmZc//+IzbbLcnPc6epZUxb5eLy\nOaqmcv/BA8q65Msvn3IxusSUdbp2k6baQIhibNehN9yl0XPJpBrHbfDwwWPW8zW2biBLEt1ul/Fo\nxMnJHTRJIwkLNpOEaJGRrXKEKKcha6wmC1puEz/yWUQLeoc7pGWGJsL5ly+o0oQiXRMHAcvFhjjN\nyMKcXNEpLYutFzCZTPA2C6ZnczbbmkjU+dFHn/Lpi4+4Hj+jkjLKumAdRHiRR5Bm2K02SZTS6drE\n4QbfX/Cnf/K/sJxNEGqRJCpYbTzOzycc798GoWS2OKcoJQxbJZUzxospnh8iKBK6aXN6cUktiTSb\nTbxgxXQ7Q2nZTNdnUPrIakVaVpSqTFYrWHoHMdE4vXiJaME8TdhsdG7tv8Hjx/fYhim77ROe/fAL\nsuX//dwA/CsgG/7v//yAqizY2d1lHft4WQBexK07D7iaXOF2app6j+nVClEwsVpttqsFjqGAmLPb\nb+PlOX66QSJj2DogiyW6zRbXpzN05aZsMlwbSVMQhIrZfMTuwQ5+uKXd7LHdbtBkE29ekeY5za6C\nWFWUSUqw9al0KIUMU1cJ/RxVNWh2dpjOZlhOThxnFEWJZVj0BkfMNpfM12OOdk7w5jP2dnZYhBOo\ndHSlQSmWZKXAs9PPOLlzh8V0gYRI22yg6jrX8wndXpf1ao2u68RRgKmqHAz32QYBIFIUBUG4QdU1\nLFvFUm2SSMBwJPxkjVm41LXENFjQ7Q5Isi2B79PQG/S7Q67Pr3E7LmkUEKcFhuKgaQZhsiCqM2rV\nom1anF0/o9Gw+S/+w0//rrfJN/h/Cd/73o28++fJhr/2xuCgP6AoMnrdHmboYmUrpEZElK1ouw7z\n8zX6MGZ3OCRPZfwswLY1NFWkYbgQCLi6SpIXtFo6mqQhyiJhEDIYukiiTL3Mubh+yt37j1EUk0bD\nZbv1EMSK5eYCyhq9Vul2XapSpJBibF0hFmSWqzWuqFPVkAQFt/aPGc88+p0j5tMlhiqS5yJJElKW\nNfu9PtfXT2naDsPOkDyMWIcLkjTFtRoEYUyWx1SigttsEYY+uqZg6ippEDKZj1Esg8VigWNbhFGC\nKinUeUkexVRlgWpopEmCoGkkRUaVVGyWIVUho1cSceyRFhGt7hDHaSDmFY7WwpQsLs+vuLv/iMiN\n0AwVoaxZeiNMzUIUQJAEZvM5u7caBGlASUWWl1/3NvkG/x/ia78OCKTYjsKTJx/hhSFbL2Qb1FRF\njj9bc3//Pum6wFv4KEpJHC8oqoQ4DAiDBFkz+ezTJ+z391nPPLIQTNVlNl2TZBnTxRi3a3P33i1C\n36Nh29i2y2qzYhOuyPKUoq6I6y1JOcGPz6FKEQSZ8/ELJLlAEgSKVKDX3COvJDTD4MX1TwmEGWGS\n0rBcsjhBQOLi+hRTtbDlJucX5yz9FdttRBpKLBdTdlq3EeoKPxhRFhGFULPJY/w6Rm1p6K7G7Vu3\n6LT7REmKbmi4doNBZ8hguEddVWyDBZVSISkySVWz8WPsZofB4T6K3KCh7RJsa6aLEVXi4TZUZFXG\n0Bo4ZpNPv/iMUpKIkpQXo2tKReHZ+Ckz74q1vwEqFrMZ84WHpvdYeymS/NUa9G/w9xNfOwkUckVO\njqbJ3B70sfKaYaND3+zQ7/SZL0fkpcB3f/V3GE82dJ0+u90BlqzS7bT58vQZO7s7rBdLTMXEUhqU\nWYWuSkwnEwzdQhV11vM1TbNJHmakSYilWbTMAYP2Ldz2PpusZB3ESLpGHIdcjU6R1RrFVNn4PrKs\nYpsW3mpJVeQ4moOju9SlTi2JDPb2cVpNZts1y9BnufG5uLzAcRrIioZlm8ShzDuPfhPJzMhJqKWC\nqk5QlQRRTTmfnFMpAttwy8nxCV23RZkmZFnCbPV/sPcmsbLk15nfL+YhIyPn4c733XfvG2tgFckS\nRanVNCVKlmURghsWIMACeyHYOwMyYIFLaSNR0MbyQmsR2lALGyIh0C3JltitbkosqshiVb1X9Yb7\n7pzzEBnzHF68trptUGQbjQbbRp9NLCLwz0ggz5fn/P/n+74pj548AkSiICUrK5p2h3tHd/DXAevl\nCrFICZYOsiDTHHQQSxmijI2/YbEeo1k67sajqirW7oYkifjkp3+M9qCD0DDZCCVvv3vGbv8uNbmH\notokSUqvP6B361/+qH8q/yn+A8W/EwgURcEbb7zBL/7iLwKwWq343Oc+x507d/jZn/1ZHOffiE78\nzu/8DicnJ9y7d48///M//6FrJ1mGnyS0tre4nFzQaNlUZEiljiTKDA+3qLUs1m6M2TRx/DUXFxdU\ngozjr2n1m0i6TBAEDLtbrGdr0iiGTERBRRVU3JWLbTaRKnBWC6QS0ihBESRmozHxyqVfb1NEBV27\nj1VrkOUeVr1OJYtYTRvHXZLkAY67RLNF4iTi7u5rGGqDdbChUkTcKGC0mlNpMqlYkBcFlBCEEWla\nESclj579JdNFTFGVKKZJFhVookmVQFO10JOSYunyt3/1LyArkRDJywzRFNFtHU23cBwfUdC5fnHD\n/GzGfnePTr2FWElsHBdZkdg4a5yNSy4qJJSgFkzm1yzmc24fH71sScqcv/w//gxNlakpFi2rzX/5\nc59lcjNCRaLTbNGwTZI04L/5H/8nDh7+i/9UEfz/MP6d9gR+//d/nwcPHuB5L3cav/SlL/G5z32O\n3/iN3+B3f/d3+dKXvsSXvvQlHj9+zB//8R/z+PFjbm5u+Jmf+RmePn2KKP7DWCPIJYZhkqUpumni\nug7NZhNFhMPuAeeja7YHPaLCp1NvojaaVBQEWYAfBdiWhaHYeGXMaDqlqdvcnD/n5N4D8rLEMHU8\nN6SME1SzxjycE2drWt0OKQlp+tK0sWH2WYtrkqRiunTIULCNBqnj4ScBh3ePeHr6DNMymcxGtBtb\ndDpdHr14QqW9TPQ4ivCdEBGJrMhoD7qcXp9jGzplOUDGZ7Z+huMvqVsGVVTRqncQRZHlckVNFIm8\nGLvfYnvXIIlD0iBhe69Pkla4XoSlSAx6AxQEvNCj3jRYzqY0qzZ+lNBp9Hj2+CmNdp3W9oDTyxF9\nIcO0NObzF9x+7RZf/Wd/w9EDm0ngoWsqN2c3iHKFbGZcjc7YPRgiyAKuu8GPPHRLJRcv+Sf/w3+P\nKCloeg1nPSV2M8QspW4ZLN2Yy/mG4bCDalhUVcFyPOfwYI+L9ZzBcJvQc4m8jI6lUfkBAgWpJBLm\nEYOdfSY3I27t30PTdM5PnyGJMt3uAKEocQIHJw4Qyopmo0GSxuiShCqCXe+gySayKPHd97/LnTt3\nCSKfLCq4fj5h0GojGxbf+NtvsTXYoRJSdne3eHF9Tb1joIpgSBVlXlJmOWES8tlPf5bTi0csnTG7\nWwf4ywq3XKPJBYZpU6u1cBYxeerhJw5yAfvDIZEbM9wd8uzmGTu7+8xncw5293CWCxJBYKezz9OP\nHvOTP/HjxH7Kajpltgo5ONrmJrwky+B4Z4/3PvqIg71j2rUW8+UMJJNSlrhyznl4fAelEilIGM+f\nQBzT7x+x9hYkecZwcMDo8hIynVduvflD8/uHVgLX19d8/etf59d+7df+fmfxa1/7Gl/4whcA+MIX\nvsCf/MmfAPDVr36VX/mVX0FRFA4PDzk+Pubtt9/+oW8gChViXoBQYNZqpGlOFCVMxmtso0ERZ2zW\nZ1Ck5H5EugkJwhhBUlgs5kjI7OxsIxkSpZozOBgQ5RVeWjJaroirDNmQWXlTJFnDatxiMg6I8oxY\nEvDTmGcvnrO1t8tys0YQZW4fvY7vJJiqTaPR5GYyQjYt0jKlyDN0U+aDZ99GM0RajTZ5BlUpo0k6\nqqyiqAqO73G0e49264QnZ6fM1y6hUGL1t0A2qddbxEGMuw7QVQNFaVBvDkFuUgqgWQr1lsVkcomp\naXQbDSqxQFd1yjTHbOhcjm9Iypjh1oDA3aAJKp1On6vplCQtaNo18iTCVBrkpcl4OeUzP3ef7f0d\n4iImr0pkUaIUC0qhQDEqvHREUizRtIq94QBDUVmvVxRpwmo2QwXIBE5u3SErImoNC1mT2NvfRhJl\nAndFHsU0zRZzx32prxgmbLV7aEKFv1riLlZIioih6Vh1neViSs0w2awcPnjvPYoyY+OuyYuU5xfP\nqIBWs0mWpzj+GkVTMM0ahmYzXkzQZYM0gDde/QRpWFAVGrIs8PGfeh3JMEjjlE+98RaRH7G/f4jR\nrPHaq/fJgoQ4DAgTFzdcUQk59+894DvffhezpkMCs/MZiecS+RH9bpNut8333nmPxeQFchVTZQp3\nD+5RuBWDVofZxQjDNMkFicH2LuPpgrv332S702OxmqHJMn/3zbd5/OgJWaHyyoM3WCzWfOLup7FE\nAyGv2BscYKg95jMXVdc4OtqnYal0bJ3r8Rmz9YjlaoqQiuzunDCfjQhDlyxPeX7xAYUSMVttuJle\n/fuDwK//+q/ze7/3e/+3f/PpdMpgMABgMBgwnb6UpB6NRuzu7v79c7u7u9zc3PzA9ZVCJXZDyjzg\n+GCHfsPmYHhEp7HD3ZM3eOONn2Bv+ICr8xcIZUGtVkMxdFzXod0acHBwiBt4nI+eEucJz86fMvE3\nhFIKtkasVMy9GaezD0EK2YpUdsYCH+8dInoJcqUiSCq6rvP4g/fRVJmGUWOrNWR3eASCRJYJCJXC\noDOkpjfQdYu1s0SSUmpGgmWGLKanbPVbJFmEosqoqoqAzM//+H9GFHrc2bbp1TUEEorAx5JMsiDB\nXW3w1mv2toZUeUlZgmXWCNKcpMoQzIzjV1/jarQg9QuyKCWMIpbrFfu9IePLNc1Oj3c/+oDeThfR\nEsmVjAevPqSKE/r6kH6tiR9OqdsvyS5np2MunlzSbfRpdZpURk4piqRlhapp1O0akNGwNdzlnMhf\nI6QRpiJhGQreYs1h55Dx9RS1puMES9brGYYoMLSbdI0mwXyJgk9NL7l71CfcLLl+/pT51SXDbhPE\nEllvUgkVvu9gmCqqKFKmBVudHooko+sGG8dlONghiXIadpu63aJeq6NrBgginh8Sewmj1TXPrh4h\nlQKmWkPTBIIgJXQdxBrYHYUtQ2eziHnybEZRlXRtk+1+m+Pb++R5glnTmY0d8kAkzRPOJlcEqcQq\nSSgUmV/5r/87avotHn33hppmIVYZk8sl/9Xn/4uXPhdCipOErMOIQhbY7m0zaLSxFZ08FGhbDW5t\n7aGLBkUm8ODuQ47vneCFp5hqRjT22bN3uLmcIWU5wXJGWq3IlRRJV3DXa+KJgy2arOYOumFj1Gyy\nTKDfH1Kv2eg1gzgp2IQpar1kFH5/ufh/O35gO/Cnf/qn9Pt93njjDb7xjW9832cE4aVX+z8U/9C9\nP/zDl9enszEPXu9ydKzx4tkz9Fqb68mH1Iw64+U1879Zo2siH3/tk0RexNX1U+KqoG62WK7m5L5L\nr9V8OXpab1PfPaDR20azerhU5NGKtMro7XRZzJfYlYFzPqZbdNnSBoR2RqGIUMRs7QxRBNAUifn1\nJWIl029tEWcRQbBB1wxmyxG2oZGmOYWg8tH5BYjQGQy5md7w5sff5Hp0TpqUdBsd/vpffYOWVqI0\nTVZOSkPT0EuRMsyQ5Bp3D+9xc3nGzWSGogN5SSEm1Ot1FqsZjXqds2dX5JHJ4GiHb330Nq/cvU/w\n3UsyWeDwXg/FEmhoFu8/fkbNaiFqKrYoICgSmAIvpgsEuWSr1ydOQ0ohIk4TlDjHkOtUCAgarLwZ\nw26XyWjK9s4+oqxyfnrO/fv30FoaAlAVOfVBHSGUaFgmiRNh146x7w6gKvCDkMl8imFpVEJMXa9w\np1coJOSqxKBvsQ48VLuOJAtEscCwsU+w2SAoDaIkRFVriGJEhUBZ5qxDj1u3brFyAtIkJUsKbN2m\npusYPR1Vr+EnCwyrYuGMqClNijDDNAVktUITc7bMPoxjbvUs7O0WslgxWo3otw0ubs6QVAt/vWbQ\n7/Lu29/i3hu3sXcPyTYZ4/mIvmGZTgAAIABJREFUg4Mhf/jH/zMnRyaaAfu7u7jBBWEo8rf/8s8o\nlzm1dptMlxjctRFki5uP3qPX6TGwmxTRmqv5CrNm0t/ZQVctNrGPVgkEbkEexczCJ8hajVtbhyyd\nJXfu7XN69pjIK3DmK7rdAbJUIeUJv/CPfpqZP+fxhzeYuoLrOWRljhe6HOztMBpN2Gnd58/+9G2y\nJ/8eIPDNb36Tr33ta3z9618njmNc1+VXf/VXGQwGTCYThsMh4/GYfr8PwM7ODldX/6b8uL6+Zmdn\n5/uu/U//6cvrX5zeoiaJ5HFAkecoWkS9bmEaDYq0xG70SFMH3wsYXZ3RrJts/ICD/du8f/qI/f6A\nJIxJghQ3X2BZML6ZcufBTyKFFbZh09qqYRkKeSCjdnYp2j1iNePy/Sfc6h5Qq+lcuzPyMKFoSMzX\nY5qNHrpmEUcFzmaOpMjMVgGZXOF6Aa1Gk8iL0FSdequFXCpYusFkNMbSNOqKSpXmCLZGVMpMNgs0\no0ZYVpSCjKgqyJKMt97wseP7jL0lXuISxhGCAOPxGNu2SNOcJCu59+oxURpwMNwiDSLM3Tp+kWJ0\nu2wSH6nMaDYVZBV2bw3xVx52w+bRu9e09gUURWJ8c03NqiMrAoapsXZcpqFDr93F6jbIKo3ICYnj\nHFnQef7slN29XWRETNXm797/HkdHO/i+RyEIlEUCiU268rh795i/e+dbqJZFlgaEm4KHd+9RVhvy\nMmc1K+nfajHcrrFyNtw62ENWTdxnzxEUDVU20QyD+WL+8ui0SkGWEaQcMy0pwg0tWWYceOzs7pAX\nMRV1sjRnMr3CatW4mq2IbIUHRz3yyOfs8imqZdBp98nENqPNhMNXb2H02lRGzPsfPEO9vcfcC7i1\ne5tcN3j1/ut8M/0WRVVSpQIb16d3uM3MWaKiEgcam3WAsGvS7x6w2QRUOdhtiVQW0a2CyXRKrenT\n1Bq4oU+UugwHW4giSKKEbugYuk5LrfHhB9+jKlSqUkA2AArSIELMckbXN9TtDpm3ZjI95eTOCePp\nCl2o+OpX/xd2Tw5QNZk8y+h1h3h+TN3sIxY5vdoAuTHnU79g8U9ecwH48pe/f57/wHbgt3/7t7m6\nuuLs7IyvfOUrfPazn+WP/uiP+PznP8+X//WKX/7yl/mlX/olAD7/+c/zla98hTRNOTs749mzZ7z1\n1ls/6CMo4gpRMhAlHVM3aDXbUIEkCcyWExbLOVmR4WwcLNsmCAsQBD54+i5VEbOazRCrl1ZRvh+Q\nFQKqqrGeTWhIFZk3RyFmfHHNre0jCnIS1eOD5SMYiORVSJ6VSIXMVnsLRVDpDrZxo4iVuyFNY9ot\nm+vLUyxDpG22IBEhEdEV0OWSTt2ia/UgVkjdHFWUaLVsrKZNZ9AnjgNMWUdCxHE2KJqGpKnkkoRh\ndzm/nlFTLVTNoFZvEMcxqqoiyzKqoqIbOqUc48YOrVaPTegiaAVxHHFn55CW3iJyRW7fPsJumKia\nwHw+I0lSTk6GNOs2efySOry9fYiAQeQJ6GqH45NjoEBIM169/Qp6ZdHQmgiJwOHwEF1UEbKCwFnz\n6oMTRFklilNWxQY33jDs79Fo1RnNLnEDB1WU2O/vc/twj6RwCRIHQUzodA0kseDy6gUHhzsslmPC\nyKHbsMnTjEanQVllPHx4F1kqkUSZuqWSFxuibM0mXBGmG2q1Gq7jEkU5rrcEMSUrQBLrvPHqW2ia\nhON65BXIpgS6Ql7kvPPuO+zfOyYVU2bzazQEBs0WHz665vDgAYv5jFKQyUuBer+B0WoynVyThmsW\nkzmloNEfDlDlOp944xUsU8Rf+SilRalKWEMLq6vQarXQ1DZREKNbJpmsMfFDXoxHKIrKZrqkoaqE\nzoir0+eUKewfHNHqbyF1Giz8DVmasrycUZcNyrKivzNEURTmsxm9zpA8kRgOd0iSkvHYoywlxqMJ\nuiISuks81yUvVgTZBkH54b4D/6/mBP6v0v6LX/wif/EXf8GdO3f4y7/8S774xS8C8ODBA375l3+Z\nBw8e8PM///P8wR/8wQ9sFQB69QGd+gBJrnMxmTMeLUiilNVqQRg6KJrAerNiMhuxXjkMOke02rew\nml1UVSNLSlw3ZGdrj+3hIXLZxxT3sc0GVRihUiGVAoNal9DxWa2mhO6aRqXSt4dIZpPJbEXbsIiK\nEMs2SROoW12ajS6JUFBpBnfvvUrmxeg5bHUHZHkKqNStBq67Jk1DWpbB6w/fJM9i3HhMY1jHcQOE\nSqXX3aahNcjDDFlSqBkG/U6TVIxRbINnp8/I8wRLl19+ryzDcz1WyzkVJWtvysJd8dHVKYJpoJUg\nBApXV5dUWUy3Y7Nep1j1BjfXY7aHQ2RJxK6ntKwmt3fvYSgWWRzSa9nsbg+oWxZpGlPTDIKNw+Ry\nShFXCOS4zpLvvfcO/WGbIMrIypwgiciLEl2wGI2WCBWoWsLcG/Ph2XNUq4YkawhVTJGHFFKEVTcR\nhApVC5CIaFoWYRCgGzruxkHIKoI4Zp1AJqs8uXhBUATYnT5+kpIDlSmyCTacL65RBAnbNAmDOW6w\ngCqjZ+4QTWKsXCacbajpJdP5lMUKJLmJJNXYP7zFN7/1Nk27joGEP17g3yxpywJFlLK9dUi93qMs\nSzrDHvk6JJgneHMfKRcok5S4DClLEX8TsJrPCL2QveEtnMDHzTzccM1ktuD27Tv0mweEWcXFdILV\naSFpGhfjS/S6RS4ojOcrcgmcLCWWSxrDPhePTjnav4UfR/zYpz+D5/hkQYKzDDF0iywq2N865vWH\nn+Le7Y9R02zq+ku3IaESCDyPWk0n8lfYNQt/HRE5P1xZ6EfOHfjzd99EM2RkSyEJA8QgR1JV3Dhh\n0O9xdTlHVnMso06rbqOVNZ6cf4RglMiiSN2qIwoyttWiyHPWqw2KUtLpNmlbO4xmYyxLwzbqPD89\np7/dxfNXLJZLdrcOMJUaeZyQVh6SqXE2OX9J7NBqaKpB5Ic0LAtFUoiSlNV0zs7ONnN3hqiKhFGI\namiouUHDarHxHVJxRakrrCOXj+99nGSj8XT0mIbdoKwEVP3l9GDNMhh2ttmsQ7pNmydPntIetsiq\nlMl4SqNl0bTrZOTkRYWqmsSJQNOqEfhzTo6OODu/pKxSSlGmrASEssKPHdq1LnmcUpYxVqNLFheI\nCmTFiqqsMLUuiyjEqFlMnl5gNg0GrR2KSgSxIo0S0sglzyTS3KUUHaSaTILO/PmcX/qV/5aPvv0+\nhlIwXj9BkDIso0saVyiKyMXFiONX91g5K0RJpK636XW7vPe99+gOtsjygnATk+clRqPF6c2IVr1D\nEI3RNYNub0iUxSSxD4aMv/DoGW1kxaISXDxvg4BE096moQ/ZHQx4fvqEIk+wmiqlITJfbpB0nSgM\nEaOE1I9ZzBZ85lOf45v/6m/QrZLtW3sIosx33/2Ane1dtra3GS8nvHX3Id/+xl9DQ0KrSVQKSEqN\nltYg9hL82KXb6XC0f5+3P/orZF4a3WZZzO37D8nXIb12i7977z3a/T4GFu2GjjOb4eUeW4MD3n/8\nnP3jPYIyoSmbbGZrmu0Gq+Wa/d0HnD1/F0mXcaWSTqdLv9WmadR5+sFThoMBkiEwd2YUeYKsqdTr\nFvPxDVHsk5YZim5g2wM+e/xN4D9iyfG81ChEkU28RhM1us0BltTC1EQm5yPu3DpBUQxk2SAOSyar\nCaqpMWhtYxod1l5CmGes3QWCANvbWzQMGyGOCVyHh/d/goW7Yepc0Ow0WC190ligXrMJww3OZsFq\nM8ONNrwYPSeXMgq5JK1SHM8hyzLESiTxY+qKTr3Z4Gxyw8rzUCWNMg5pGQ0MuSJJ1vilT5KI7LRP\nINZwphM0paLfsei3OtSUGoEb/mtDFZWSmFJwWa1GdJoWSiWhiQo7wz57wz6R7yCKGXHssl5N2Nve\nxZltUCuDYLPAEgVMdLRSpVOzUQUJo9QRC52t1i5tq0u71kQsRORKJopTNM0gySIaDYvT5+fU613k\nUiYjw4vXrFcBprqDadogZCRxTsNuYdYMRLGi1tT57rf+lGYrpW4U6IJG7EVUSYEsVZimzsOHd5Bj\nlduDfVqixsnBXabXMzqNHv1GF13QOdg94vr6BlUsuDfcYX/YRgRqhoWABFlBv9Pm7KMRNdXC3fjk\npBQi2GaLttbk4a0j4mTN1eySy9EYrdalUm2uJxPKwmW1uGHQ75DIBe3dLndeu4tsidw62eHwaIck\nCZCUCslUqbVNdNvEsDu4zpLdXhONkiyNaNctGrrEcj0jLF2MZhel0eKjm0dYLRNJ1djdPeH43sd4\ncX7G5fVT3nv/29RMGV2VkCSZm9EFQXrDMl2zKhz6h10yIUZUS84npwyPtrhZzQmJCaQ5RycPoCro\n9QYkUU4S5UxnS+rtJmGWoul1ykLCMm2yTGQ282k1d4jCnFarj6n3sYz6D83BHzkIGK0mpaQgSCpJ\nlkIloEoGXpSDJqLVFOpWDUoZJB1ZUTBVG11q0rA79LsDZEGmVrORBYE4jOkM9pkuApLS5ebqMYqq\nEyQ5ek0jKzKajQZRGuBGDpVUoRoajusiCyq21sISbRpGGyoJzdTwUh8/CZAklSCKaTS7UOrUaw0a\n1hbX1zc4oUecpZiyiVFZmFmNrr7NbOWwyaZcjp5RFD6GXtHv1rBMDVmVCPIAxIQk97l1MqDExdu4\n6JqCHwT0+gPKQqDZ6iJLOrHr0es2sOtdrm8WBGWO3mkgSCVh7BOVKYpsIqU6FSIVOTdXl4iyzNpz\nMa0e62WIIuuUYcbeVp9Wv0a73abIE8o0Zn844Pi4R5rFNLs6e3sdmnWbIiuRCji5cxcpU8hSjUx4\nKY5SN1s0OzqaJiCJKlWe8OD2PRbrKSU57spjb2ufnfYWwSYgSwsur25461NvkmQZjusiqRJ1s0Gv\n0cbUFIokpi6bfOa119ALEEsVRdYQM5mD/m2a9QbvvvsOqgaqJPLK3XukUUiRxoiSgGGbaKbIaHLB\nnTuHlGoFusDTy8coNSgKmeVmwyJa8/Cth/hFSpiE7B9uc3l1yXg0Iw4FQi9jOV+jqAqKLoOoEicl\nz0/Pcf2YOM/QrTqz9QzHm3F9fUOtM6Q+3KXT22W+3JDKCperMZGpUJhdnDhEseqIskoQhKiGTkbC\nytlwsLfNZr0iTlwatRZSGLDfaZMEPlkaU2QpTrTC8VfcjC/48OyUKEmp1xv4UUpva5u0qCgQmS9m\nPzQHf+QgkIohYRlRlhWZDJvQZTSdsXNwh529E9JcwNusuH14B0k0mC6n2K0a/Z0BaRpRMwxM3cLU\nG2iCxWBwC6+KkRompQIr7wwNmdU64mo+odGt4UZjRDlmtJiQljmiomBZTQ5v3aMqZdyNz+X1GFGR\n2IQuJSVe6LP2AmpmDUlUqTfq3EyuabZb1Jtt0lIkRcR3NoxHV1zdfESzHdPb7eK4Ea3WFpUocXF+\nShT6aKpEEke4XkhZGLSbA5YLH1VTXppdiBqarCGLJi2zSUuzsSSNmqGSZzmVELK1vY2z2fDi8gVL\n3+V6MWXhbJBNiUpLOJ0/Y1P6TH2fSAJBhYbZQJMtWmaXKiiQsoLAdwiqFDdO6A17pPINf/v+/4pg\nLlFUCRSHuJhAkTPoNglWHsPeFoau4vgbFF1ld+8+YZzgpTFJXhBVFafn3yOVShSjx8ZxSYKczcpl\n4/icHJ+ws3NAWaWcHJ9wcu8IXVHoNGz2dnbJgoj7t++hFgoNXeWwv82bx3cxK4GWYpGFL1mgrU4b\nWRY4O39BknloWs56NUYmx3MDZEmjYdvMbkaQpYThhrppcnM1xQ8z+sMBSZoxmUyYjSaMJnN8PyFM\nMrAshttDdnd3qddNxpMRUZyhqiZrZ8Vw2OX58wuqpIkqWyyXl4TrJQe9IbpU597RJ9k2hxz3j1FV\nmWGnT17q3Ds+IY5TtrcOaDT6KKJOs9khqgoefvyYXCwxTItcKekf7hM6Mc56hlVXyMWIRt/AbukE\n2Qa7VaPR7aLbdSRDplAr5t6am6nLcrPGajR+aA7+6EGg9Gk0LcpCQFJUdvdv0d/ZZrNZUpY5vu9g\n13sEsU+nZ9MddvETjydnH6LXTBzXxQ9D8jKjZg+5WY0Zby7xCo8b54ZN7BCGK4btPnEWMd/MyQUd\nxyt565Ofxq41se0emyDB8T0QRVrNPrr+UpGl2Wjiuj6aoeMEPr2dHdwspt5p0+p1CbOctISsrNAM\ng6OjY3ZOtrC3ZdJiRVXk9Lt9Oo1thEqm1+4Sugmu62HWdfqDAZqqoKgKy5VDVYIki+RZji7r1DWD\n1c0IIUso44gkj9lEDkkVM5lNaXd7IMpUqsJy7bJeO4iyRCblzNcuhtbnYw9+giIFU7OYXUx4ePgq\nmVchlgo7vR167T7H20cc9G5hqrskXoODwaeoifsUacnlxYKoEDGsLpkrstPsIWcmTctib3uXNMmJ\nopB79x/SbfXRVQvLsFEUg7rRwNBq1E0LJ3C5+/HX0Vp1Np5LTVMJ1yvKwMdWYMuoMTAtnn3wHpoo\nc3V2iVWzaOo9+s0OznqCLhR023VWswlVIWBoOmWZ0t0yqTUFgnLJ3q0edV2jqTdpmW2IK27vnmDL\nDYRMAtng9iuvU+80WS+W+IsNainQ6fewhx0unjzB7HQ4euUeUVGy9NYkYoXnhy+Zq0CWeaxX17z5\n8WN2t3e5c+uEhtVmMNjFNGtsbzeZ3jxhMr5GomTQbqDLGjXdIvZiyjTn6//b/04lqHS7e2SlzLC3\nhalpBN6GtbckzjJGkyn7Jwe0+n0WzpKr2QU3ywm6bjFzVvT2DpFEjbJMuRw9x482DPpHSORQxsyX\nP3hYD/4jAAENmSwu2ax8lus1S2dNWibUzQZFWSEbMprV4nJ0zcoZUVEgKipZkbFezbh9uI9QZTjL\nNWG0ZrR4QZRGVFJFUkmgqEiaQFaGaJaOYumsNzm9wSHu2sNzffwk4ujkHkatx2IZYlomkiTheyFF\nUVAUGavVEt3UUDSDVqPJcjrn6nLER89O8aKIo9vHNKwG0/Gcpt3FdQXcjUUYK7z3+H2sVpu8yqlk\nkd3DW9gNG8/zOX36AlnRKAWR3naPvAqJojlCmbGZB2zWPmJNZ7KZskljvNBjuLPDbLUkzmOuz8/p\nNFrIskKz0eX1h69z9XRKt7bF0fYJqVdQRhm77R5qqqCi484DurUhnWafNEwRSoXL56fsdzr4oxvK\nMCT31nRMk4Zu8dbrP4ksdvDjlCwCVWwSRXMm0zmL1Zha3aK/3eH87Ir1aEqwcrk+veDR6QvyDJIs\nZu1uMAyVhTNlPL0iiSPETKRXa3H+9DHr9YIg9rka3dDb6qObNvePX0VOFUaLKRfTGxJRQDfrLBcT\nLEtHBMx6jeVqSSUWLN0Zr9y7xzvfeofpYkYpVUiSwcaN2PghzeGQ0WrFYjPnxcVzJuMbJEHE0DQk\nWaFmmKynC+xBk/aWSW7ESB2d+sEWomnT3drGbthEWYGoCeRAISZoZsR8NiIKc6arDZIhM99ssHs9\nlJbBOlyR5xG6YZG4MfOLKS2ryWd+6i3yxCdYz15OOKY+SQ5xJmHU6iCpLzkcRcC3H3+H7vAuqjKk\nxGC3d8RmHdLr7bC9s0OzY5NWEVEeIxvQ29pFMdrMvB+uLPQjBwHXCcnijKbdQlOaGJqNqupQghu4\npELK0l8g65CXJabeIglf2kLHUs7j8w8JSUitklW5JAlL5EwldQvu7n8c3RyySmLkeo0ilzBrA3Z2\nd7kaj9i4K4oqxwsjihLKQqTVHFJWBjkCbuDheSGy8HKYZb30mU2mjK6vsc0altFAFBR0XeXxo/e4\nGZ2jWBXz2QSpMMgTjdVyRadvIAs5qqoxn6/p9oaM5xMsq02/28WL1iRlxOXkAjd0WLlrOj0bxVAo\nypLAizDkOuQCWSggC23Ksk6UQu5JDLQdtrQ9wisfnBwxgfHNFRIlbuhS6RKbNEC2DMLMR9MrVFnH\nqNfww4jlyqU72GHtLHF8h73DYxx3ieMtKBCIvIwnz8/wKh+5Dafz9xF0idOLx0S5SyomzDZTpps1\n7V4H0SiRVAE0jbQoSKucqMy5HI/RZImtQR/PWyFWEjuDE5wwJSwq3v7oCVLT4oMPn6BoICk5opxx\nsL9LtPJ4/e6rdOtNJpMxzW6PQsy5njyhPbTxwjkbb8VHTx9xcveIIPBRdInFesN06TBZLTi9usRu\ndsgyme3tu1Sqgd7qodWaNOwWZVrwjz/1E7RkE+cmRAh0erpJPa0hRhKiKHHrZI97D++jmyZ3H7yG\nG25wQwfJlLGbLSxdR6LAdV28IMRsthEVjfVyiSRr1DSLrd4WnrNhs1pgGBqmqjKbTwmDDEW2yFMR\noZCpEJA1iU3gcXBwi16zhS6ItGodbsZX9DtdAm9Jra5xPbpGUTU01WA0ucEw6hh1m+n6/wM2ZJIi\nUBY5pVBCWeG4S8rKpyhdSlJqRhNTN8jSDEGQyPKYbucIu97B9X1yRLYODtA0k9UqoGZa5JXE0ckD\n5muXRqtPJRi4UYZZbyKLQBWztdWk2bWhKhgOe8iKjG6VGPUCkQhRgvt3HtCx+uhSg+3mbT752o8R\nugFVmhDFEWVVYdcNLq9GzGZLKkpW84gsq4ijCLum0+vVaZg2hZciVwKNhs35+Tm2bRGGEaqqoKk1\nHNen0ekQlxU7h7eZLOcM94aYTRNNNxBFjTfffAtFeSmK0my2seoN9vdv8dH7j6nKkp2dPcqyYKu3\nxV7zADlW2RscsAk21OsWiDJeHNPq7bDYbHCWGwQRuu0Oiqjw4cVTFv6I6eScFzfnbHKPy9ElZzdT\nTu6/iSm2WK19nMDj8uYaL86I0pg4y1n7C+7d+TSrtGAZ3iA2ZA5u7ZPkGbKukIshO4dDXlxeISGj\nSwKnT/6Op2cjpgsPL0lQNZHX7v4kP/7qJ6j8iEfvfYfr5TWKriErNbzJhjRMyIsSr8y4mo8QNZW1\n75JWAl4c4kYeulGn1+ujyiLr9ZTdnR06nTbhZs1uq8nrd46pKzKvPHiIphq89tqruKsVh3sHBBuH\nKkr53I//FK/duUsah8hSSq9Tp2YqrJ056/Wc+w/vI4kVeZpxdnXBcuNQ7zRIxRQ39ekOW6z8FXNn\nit2pMx9PUEqBLIg4HO7QaXdJyMlzkCWd0c2MKgMxE2nXWxSZSK1mEfgOOTGqYXE+OeP+gzsIecr5\n+Bm56PKtd/6GyI9x1h66Xmdv9zaW3qFu1VFklUZt+ENz8EcOAr4XEwYJNaOOWdeYuWMq3SUMPdot\nmzh2yMSUjbemyGMEMUHWSj568i69nT5OsGY5nfBgeI+fevjTvPXK52jYA3LVpjB0gqpAVHWadgNT\nV1h5C9api2FIbLwl63jK2h2zWp1SZmOqbIbjXVDmEZauEWzWPLz/OjdTh+OTO7w4v0QSJBIn4f6d\nh8RZhaaXvPHKJxk09zjcfYBQGWztbrHezJAlkdD3EcuS9XKFbdvEWcLGSUjjiKL0CcNzsngGeUaV\nSSxma67nU85Hp4wnNzTsDuPJEsNsohoVHz3+DoHr0O70eb644tVPvckmWjBLJhSyzE//1H/O6/df\n43hnn8P+Di2phuAnNM0Gn3j9M1CYHN8+QVVUBEo0VcaNlwg6WI0WaZFzcvcBolzjw2dTdMPgU8dv\nslfr8db9TxM6CsPhNo1On1h4ubtNJTFbzajEElSJ7taAtCoIkoz5eo6frnj30beJ8pDFakqRBbz5\nxps07Zw7D3eYXTlIacY///o/4/F3nrGYrGnVt6kVNuPJDLsuMh+PWK+WtHt9nj17gqTqDIbHvHgx\n4u69e2wf3KKoFEaTBY7nMFutESSJ3a0hFy9O0RSZxx9+xM3N+zx+52+Znj9Frxzc1QRn4XF//y5V\nGnP/lSP++jt/wXunb7P2NtjNNqbdwDAb5HFOGKwpi5KPTl9QVjJbvSPiKCFOMhRFJykDJk4AKoRp\nAIiUhYC/Cdjd2ubxo0cgSFh2i+cvLjl9foYuKZw/P2e5mCEKCmkqoMoqc29GXuSYZo3laookFezt\nDYlCj8B3eeWVV/HzCNuy8ZYB6+WcTrfFfDkhrVJ2B99/bP/fDuk3f/M3f/M/dKL/P+O3fuu3/p47\nUBj/iCwvWMcRSZWRkBEmEQ29DghIgsgizzAzk16nS5AsKdUVg51tLlcT2p0GGiaeM+Zi+Zx1dkF7\ny2JYb0I0pmskaFWB77hsDfZZbzwUQyGLE4JU4ODoLugypVyyCTcUqUweg2VYNDQbudJJExmj0+bR\nh99hb/ByDFeWBJIqIq1SlLTFQW+HKgopq5e9X5CsQBKo2zaLyQqjXieIQ7IkYblc8PD+a4xunmNb\nNdI8fnmsJulESUZJiWlaRLEDuUDo54BGKckkAUhUDNp1yiRG1ERWzgwhSegMGuSRj5SKeMGCxWxE\no9ai2+sTpxvi2KVT74BQMh6dM19c0u1bCCKItsHl2SVpWlCIImHikWQ+9+7dZadzyHvvfJdN5nA9\ne4JsCESbkM/+3C+yWXkUWcLh3h1G4w8xdANRqBEEEVGUousKz59dcLT/OrbVZuMExEmCZRucnn2I\nquiIsomiFvSbAw4PT/CSFftHB7z3nUfUNZ2QC7pDiVpD5HIxY2dri+ubS7Z2+7TabTSl4vrqOYau\nUYoVYe7R3W5x/mLJ5/7xzxD6DpvNklarzf7hIcu5x27jhLou4UcrZvMVv/hzP8+z7/4Ng32LF2cv\nSPIKQTZY+hN63SFZltFoNsnDhNV8gd1q4UUh2+1tlLTENAUqIWYxn1NWGbcO7lNlKXniksQl9XaP\n3duHXFydc3LvVZbeGkkyEBWFjmUj5wKvfexVzs4uqbfbdIdDqjziYnKOJpuYokUQBnihC0JOFQbU\n7SaeV3CwvYe7WnLn9l1msxlUGYJQMF06vPLKXYbye8BL7sD3S/cfeSUgCCmL5Q0rZ4IkS8xnc5JU\nZuGvGDtTgtxDq1I0VWZKLUSKAAAgAElEQVTtL0BNWXkbFpsx7aZJr7PLcPeI9s4rdHYPGa3mRDE8\nvXqH2eoRz59/j5vr5yR5ynKxxDYNyiihaXboNffwVhmFp9ExdlGLOqrQoF4fMJpMKIsMUzHJwoiW\nIXPc73ByeISlNbBrNXpmGyPL+exbn6Fe61NJKnW7RRj7FKlATa3hzl22ugOc1RpFkDENnabd5OL0\nnCgI0NUOdq1NnolMxzMajQ6CqBFGKUIloukmhqZhaRpFGDFot3AWG2SpRuxDw+rjThJMwyTKXBRZ\nIskDzLqJ2TZQ6xE3k6ekaUhapZzNLnj24kMyMSYVQ1IhZrqe4s0c+o0uiiKgWyqlUJEkoGhtHj3+\nkCyLELMSXZEY9LqohsLk+jFyXpDFIcv5JU29jZwL1DWNumlhmyp5ULHdPeL0+XOePT9ns4r42Cd+\nDC+oIO/wz//qQ84uJnQbW5ydn9PYbhNZAut8ye03ThCGMpezGcvIxyuX9Hot0iLm/sN7xIlLnLh4\nXkCj0cP3fey2TlzkhEHEL/z0p5ncnKJoBbu7u1iGThx7HOwfUuRLqjJjb3jIj7/+j/jw3e+imCXv\nf/Q+VQW6oeH6LuOxz/X0BkmvOH3xgsPDu7Rq23QbHUxVJt54jKYTBLUiyhw6XRupkIhXU8bnzzDr\nJktvRfJ/Uvcmy5Kk55ne4/PsHnPEOSfOmHNloSoLKAAECKhJLrq1aZnMJKMW0gVoqQvRNegKtGsz\nSW2UsUmATYIYCqwhs3I4mXnmmCM8wudZi8RCC1nXSlbdvvX187r79/v3vHXI8/dfk+kiYZmiKSqe\nbfGvnv1r/FmC3DYx3B4Hx0fIcslidUMY7BgMDrCsFp3+CNfrITQC/npNXjUYoszVty/RkJCamiwO\n2O/tE+1KhAz+q08/Y/n+8jsZ/N5D4Ks3v8cP5nQskfXNBY7ewVA9RNlEUzQ2wRahblCMnEYp2fgp\nEhaG0UYVDBRRR5BlwmjKZv0KRQZTMgmigkRwWZcet5uGfu8IRdE+NMaIGsF6hye7nA1OcEULMZI4\nsI5QaovRYEy3t8/V9AbTUtCKBfuWRhFVpP6WgdWjrXjYtcHn93/Mmze/JY/XOHobf7Vj3NtDKSWK\nqEAWVHTFRjMUiiJFkRTGvSN6dpuO3qFKQubzBX1vCIVEV3TxBIe+O8QzhjhKm906hEZAkhXuFueM\nRm3uHTzgdP8JDh167hChUZEanbwG0dTxw5DV+pY3b75GEHN20RrDchAlnXUYUwsCvb0+8+UEP1iS\npRGGZuDqXcpdTc/s8ejkB+S7FEORsUQ46o0pVwpKaDDsjei6LvluSd/qsNc6oMgr5stbyjohjbbM\nbqesF2s+e/YZklCjqAIn9054cf4NSZDx1W9u6e3ZHJ3dJylqxFzhen5BlcUEccWLt28JqxjJGvPN\nizWS0aKoEoqiYLNcIlFye3vN+PCAwcGImhJLlri3P2A391lMJuhyRVOlLJYTbM9C1yq2wTX3Pz7A\n0jRIROJoi90yCcoKRe9x//4Z69US3TbZPzj8sLa+XFE3NavtGm/UI8kTdNnAtDRaZpfL1+9RxIbL\nuzfoto6/XhPsQqgLBKWkkSo2/hbdMImzFNMy6ZgOu3DDL//iL7CsNpPLGwatPrEfk4cJu82Oh4cP\ncVWXMi8xDZO6aOh4HeJkx42/4OGPP2e22aLKBuF2Q5KEdFyXlumwmc55eHr2nQx+7yHQaXfRVRWx\nEjnsHiDFIJYVjtNBlHSERsJfJiiKynw+J41r8qggiUIUIacpGqbXC67OL9msfEy1xbg3Qqsg3sQf\nCkGTjIqSSqzod3p0vB6D/hBd1tEw0CWDvjPAFtv020PSIEZqRGTD5fzmFQdHhzSVyahziNSoJFGC\n7djUVARJQlpEyIqAqWtYigY57HX26VotOo6L67gojcmgNeR4eEoV5wgNdKwh/srH8dqUYY6mmZiS\nRMtwadKSq3fXUOTsDfbxWj2mkwmrbYooi/zhi39gcvcSoQqw7Q8djELSUNUJu2JGkM2QVOlP59oy\ngR/w6tvXNEi4nsPG99nuEvKcP93f4bo9Tg4foIgqhqIiFAKGrrC31+Xy/BzfX/P49Cn5tkTFJE0F\nbi/uCO58WnkJxZw0lUljCLcZntOn3e4Q+UtO93q0VIUqDymKLZVe8df/y3/D3pMjNAOsjsfl9YrG\n1UlDBVto82R4hpiI2Hob1xlxdbVGcyJqOcS2Deq6YLfc8eKbl1ze3BFXsI5yRFnm6HTMOlkS1T5p\nusZ2JCaTG5IkxvBkwiZB0gT2RgPyMkcQFKKkQtUM3p+/JcsqtmlCq+Pw5tvX5GlKdzhg5s9pt20M\n1cCTdYo44u3L1xyNDlgtFtR1Ra/T5fnrc1LJQDH3MJ0eoqahKBqmYvKHf/odw94If+vzf//q/6Qi\n4Prit9BsaIjx11P8cMf57Q1v3l0i6QaXN+84Pz/HbHV5c3PHZLPj42efUAoFggK3dxOaRmS2njKZ\n3jJfrZivFvzdb371nQx+770DwTalrhVubqYM7Jrx4Qm38wtsT0eURNpaG9VrWE9nuJpJpWuUJBiG\nhOfZVH5MsQ5xDZNEFNh3x3z7L/9C3z1CEVzCeMO9+6cA2LpDkSRIiDiGhyTaqIKIJRtojUzfHWDU\nEfNlzLMHn7ALM+6K90jCkJKad1cvEYSc/f0TNtGaummo6xpdabHx15iSgiFIWIbFzWqKrFVsdytM\nS8UxNDRJ5Nsvf4/XMgnDGMOzUfM+btsg3+boRUGcZRRFRiVUHB0dgwCapHw4z5ZVqjJGtxzWmy0k\nO/R0S6c7xERGUhzultd8+/pLzk4OaSoR23EQqWlZFm3Do0wzxr0RWb5juZvSsXtoqkdRZlxfTbl3\ncoqYh4iphud0uJi/QRQKPvmzzwnDiDTL+eTZZ/zhxR+5WcxwHJcsTLj+9jXtMw/BVMmyktFghCbr\nVFWJJBQURKyiJYcPT9CqgiYTeXvxO/aHx6zWczo9jR//1T06tsqj+/d59/s/4g2GVKIIUoQsiDSy\nzWSzQFcN5ptbTu712C1naJWGY7Tw7C6r+YTeQYeb96+wbRtBkynLkqJq6IzazGYzojQmrxVO+nsE\nzZZN6rO/f8yeZ/NucolVZJw9PuF8viD310RNSVrmOFVDx2uxWa+J8pQ82FJVAj9++phg52MbbaL5\nlvVkxaDVwo8akjBndbdCVgSGTod07fM//nd/ze+/+R21LnB4MqRIJ3R0kzwpCHY7JEnm4ZOPEBTY\nbmcsdlMMx+Tjkyfsggi3t8dPh8f8+t/9I3qnS9GXGO2Pef7qS3KpRFM6/PzPfsLvvvgV3d5/AacD\nrjXk/vhjnj76OcfHTxCQ6A2HFFlGk5VIoohpCESJjyrpPPjoGUt/C7KAInu8f3tBmW4pihBD0tlt\nfE4PTznZf8L942eM9z/CsjtQywiliCFbNCVomk0c7kjiiDyNiDZrsiwgnE+ospRil+CpKiedI7bb\nFeHujlLwUfWG+fqaMNsSJD6GbaOqGiUZUblFVBuSMqYWGrbrDbZlc3dzw3x5w9q/xXBUEDIcxySu\nS55+9JTZfEWaBliaRhRHlGWN3MgUWQZ1jVAWeKaGZWg8enCPzXpOdzSgKkUG/VM67gEiJu/PL2mb\nHj948hnBtkGV2tjmAe/fXbJarZAbGVWsqMoUTZMRihpLNxnv7bFZ7TjY3/9TnVbJ9fQSRW5QFAXT\ndjDcLnkBRV0wWV+j1AmTxTWyZ9C0Ff7l2xlh7qJoCpoKmlaRJFesNzNc20UxO3z06aes64rdNkJU\nVUbDfaIkxrIM1ospRitD2K1ZT99wem8fa+Rx9OABDx4efxCzKhUSLo7XpVIkKqGgoaHIGkZ2Fy2X\nMUudt8/f8WD0EZbSJZhn5KnA/dNPWF2m3N+/jy306bX2qDSJq8mMRhN4dXHOZHnL0yePWcQTFLvB\nsw2OD8/45Z//jLKsiKItgqAw3a1wOjbdw32cfptot2MzD8hjGUOxqLKKpCy5t9dje3fH8aBLy3RQ\nZAUFiV//x7/l/P01+6NDRLkkLyXiqUCZy2hai7hqiHcJf/c3f0Md+/RaHtutz++/+B2WqrPXHkCU\n0bMPGO8/gkJgsVggKAa23WZ4MGITrpE0Fcn4/+6R/H9f33sIkBeM20O0SieNMuo6xdRk8iwljkLi\nVch8dUd74OIYPera4fhsjGN1uLm8Znx0gGYqmLZJv9cjzhLeX1+x3k7xt2skQUZXNaosRihBlwza\nrcGH6XUW4ydrtrlPWG4Js9WH/88ViSha4W8m3K3PWcXXzP0pttNBUlzitKIoKqpSxDQMWh2TpPBZ\nZjMu4wnbOiCrUkxLZ71YcrA3BrHmzdU7Cqnh9eWERhZJ44xwd4NrqKgi2LpOu9Wm1+6z5zm0ZQGL\nDE2MyMstTZOgyhWWbrBbbfjLX/6COFtRSQFGy6Hr7hGsA1pGG083EUqBw4OPaPcPcdttFFEhSbbU\nTcxu59OIMU0p8vVX/4xIgyQWJGlAqcr49Y47/5Ii26KKBn6wZe90SEDCq/eXNJXMR/fvcXQ85P7n\nj3n482fYkkO2zVElk6qoESQF0xK5vn1Lvssp04Tbi6/IkxSxyqHMaaoNsqAgIBOEObPllN7IRTAF\n8qpAlndcXX+F5xkcdI8IdgssRULICtKg4tOf/JJnP/sx1DF5mqEaJk1dk5Ypgqyhtj3iJuHVy5c8\nvH/CzfUlra6FoMVcX73j6OwUIa9wbRNTUgkWWwy1w/X1JSfDEzqmyT//6gt0USWab7AkFeSU9fKG\nqiww2l3EnovZ7VGWAgeDM95+GXI4PMVwRmRBjmzYvH9xidvqs05C9u4dcXp2SB7k5BlMZj6K6VFT\nM1lM2D89oqkKPn/6I/ZbY9qyTlcx+fTRU6o8J40inPYI7+CA0/EBfcvB0nS6rT5ZLvLpD5/y9uIt\nptWhEb77Zf97DwFREIjzHaW04yZ4x2RzzWI6RRUF8m3KcrYjXOVYssUP7n/C5O1zOsqQeidiyDLt\ntoNmyTR1zWI+o9Vq0WgQ5mvidIOuSaRhwsA7oOscIBQyVfZh2CVIEmFZ4OcRQRnydnZJXKSEcUwc\nbSiLHZIoEwQBsihTZwKypEKloFQOcq1QFSUbf4uqOTj2PrrVJkgj1sGC6XpC3tQ8f/OOIm7w3BaO\n1eXg4VMW24g0TanLgsn0DsPScD0Ht+WQFyGb1RRZkihSoBEI/R1Hh0eEYcV6s0PRG5b+JUUdsQh3\nnF+9wmkJnJ4+YHJ3idIYCJXI8y9/Q0uzOe7fZ9DeR6wbsmTLZHpFXmn02j0MyWGvv0cWRhyNj3A0\nm/3BAVUpYdtDTu+fUDbxh5VazwSpwtsbEm0S3v72BeliwyreoRYJu8kteRgQhAl+FBMmO4LMp+3a\nXL++4weHI3odG6W2KPIdab6jFjIMTcG1e2z9DFlWkBqd4WCAH09J0jWqVKHmJVqlfnjqpjnLVcjN\n/JZteEOpzGkPZB4/eczo4Bi702Gvt0+0LUgSiadPHpDld7T7InfTc+6m71EcCNIc2RCwOwLz5Q3+\nzufs3kfUmcxk9oa0DPiLf/ML8qohiwsWkwU9r0+jaNSqwuTuFnGvjb7fpXd0wOHxE/7bf/s/oFUS\nalmiaxrbaMeff/4zRl6Hg9GYumlQNZW6KtEVnaIW6I3HaJaOLgnIWYqRJZyNepRZycLfYHgas+Ut\nZZ0hK1CUBZ5lIovgb3z6gz083WN9t+Fv/u7XmG4bWdPZ7XbfzeD//5j/p6/15obN+pKiWDLa38Ow\nBgiiQ9w09M7G9A9P6HhPeHTyC/ydT6/TYtjqMR7uU+Qp6/UMkYpOp02306ZIcqIiZOnPkbWazXqK\na9tYhkW2y7B1B11WKfOcuszJ6wLTdTFbLV7fXqNYNp32iOVqxWwxJ4lT0rQkSXNqocawHBRV4eBg\nwGZ9w2Z1h6Z8qPjqtgaIuYi/WCNQUdUFR/dO0Q2Ho+NPsI0xdW1h9cZUtcpo2Ge2iNFki5Y1gEom\nDkr6/WMazUKyPA7OHlOhEIcx3W6Xfn/IcNjH1HX+8R/+kX53H822yfIcQ9VI4x299iHD1hFHw0c8\nevgR6/WSYLdl1OnT5BlNmWK3LJx2i2Ad4+g6w16f+e2UpqjYJgWG4RH4MVmS8k+//geC0Ge2uOXq\n+hKv3SGXFGrVYpPqhKFKr+2xDZd4hopQC5SVQpRoNIILikrZBDy495Dlu5gyC1lMFsilRduxEai4\nvp5y/vqSphYp0pQk26KIEC5SCqHFJgyYr98hKyq23uLjhx/T9ro0TcNyu2AbLLi6eMlmvWC4N6ZB\nRqkljuwhf/3n/xOXL6e8vfiS1eaGx48fYWgd/E3OZntBWgf46wn3H56h6ZDGG+6dfcTe4AnL5Q1t\nx+ZnP/9zBkfHYFjUukXTCFAVHJwesvU/KMFarsXN1UscqY1nGDRlhSyrWLZNqX/ov7j59gJPt4mj\nhJP7D6CRkBWdvdMTcrEiSnd0HZO8WvN+9pzGblhlW1ZpgOgZbMm5iVYk+pZ3l6+INhk/+ezH9Dp7\n7A1P2WwLnjx9xuhgTKc/YjHdfCeD37tZ6FeX/5r55A2KoDHYP6IRW8R5ws3saz7ee4yuuaiGTBxE\niAJEaYrXtVAtgeV6gb/ZIGQljm7TctqEWfWnKrENvfaAphZQKg21EfBnt+wdnLCNI7IiI0x9ZFXF\ntDyqIqUWFQ6PP2K9Cpi8e0W0fY9jeeyPDgmTlEYGodFJswzFhMBfYqkyWRFhOAM0w2MVLCnrBtsw\nKeqIupLYrgM6bpewiHE8C0kTSZMEWdZxbJPF7ArXaNFv90nSjDwv0USBIPTptPsIdc7F5QUn9+4R\nNQ27cEanNaJlGmzmC0zbQmrANkzevr3g8Pges8UKXdMZ9Qd8/eVvMF0BoZKwvTbX/pKsaei6Lcow\nRa6h2z+m19rnn775R8YPj3n59pJ9d58gTGikgMXyks8/fcZkPafdO+XickrhX4DifvheLwt0WaCq\nEzTXYZ3mRHVBkoRoqoihqpi1Q52EINk4LY0ojaikNfNphGHoSLVBlkQURcHJ3jHv/nBLLQu4+wIF\nJa41hlrmL3/2Y56//D3vZ1cMBi0mqy17YxehkjDkFrbosY5vkMRHtIyCXbzi1dsXjMYHRMUOR7Po\n9jv4sc9611DXNrW8pmWZnB4+5pvnX9HqWPibhGG3TxhmOLrL8fCEb759QavfRzc14iQgigLWccDx\n/gEvXr3k06MfEN2k6O2E29sLuntDEmoG7WPMWkaXTRaxj+nZXN/dYds6VVlSVQkX1xcc7g1pigRB\nkrmeTHj6g2eIpsTV3R1er0VWZKRJgpBqSHWHlqaS5BO2+ZZa6jPa6/PFN3/g2Sc/4v3rF+Tljv/5\nF3fAf8ZmoWxXI5QiTZ5Spw11vmG8N8AyO5iWh6V7pEmNoKgUFCBmiAJstxFhmKDIOrbTohFEsqoi\nD2NaagshrtjcXGBIElE6IU7mmJZMnMwQxJxW20OSVLqdHrt4haBl1GpFkKYMR0f89Cd/hSja7B/s\nkeY5hmUQ7HKERmG0PyYIArIsxzR1wm1AkQQE/gTKHNcwsDSLokwQJZmf/OxzXK9HpzNEEEUurt4i\nSAI1kMcxtqGgCxLrrY8qtdE1g6Ku6LSGmIZFI6h0RvvcLFaYioJSu8iNxvT6mngbIEo2lWSwzUpE\nUyPMA8ompxAy3r57gW0r5IKE5HlcLu8QRQHPsJhPZ2Rljtaysb0WUZzQ7ll8/c1X2K5NUSWMe2OU\nWmQ82GO5WZMmCb2WhyT4HO2P6XVykt2WpknxswBjv8s83tGIEPs+SbQl2vlE/g5RUwirhtn6AiSJ\nRraIGpFMyAnLENGqMdseSSWzDFJOnz7g8KSDqnoojYhr2LiqwMXLb8k2CabssprEOLVFPkmJpiFN\nGVFUa2pxQcuVePn6BbKUc3x8hiRUDNQebW9EtPGJ/A1SlVBVEUUpsQ58Xl39E5/+8Ckrf85ysyLJ\nGhabGZWU8ObyayRDYhMEqJpGXVfc3d3yycNP8FchD44fUok1ZrdBMFTcUQ/TszBVBT9e0lQ58+Ud\nmi6TRSHHgz66WFETk0gR95+eEGchUVrR7z7g+OApYiOSZyWea7Pa7Jgu7sjTkKzM+OXn/z2fP/tL\nNmlGqXcRtZx//+/+D57uP8CtbcJ1gCar38ng9x4CdeWTbEs+f/avqOuMuk64ePOcUbdPVtZIqkFa\nlrjdFkEWICkicVJSZNBxh4iCRo1IlCXswi00FWUaIjUiluXi+wtu764I0y3bMGEXZth2l2QX05TZ\nhzXX7Zrb2QWDkYtlwO9/8zcUxYb94QG6qRFEPp494vBgD1GS0TSDsizodbqs/ZSHP/glheGRCjJu\nq8vW3xDnS/J8jaHJ3F2uODk8pM5L6lxiOHiILjsUcYzcSBRBw2KxRa4aHLP9YcAl22R5RJJkVLWI\nITt4bpe1v8VWbdIwoC5rHjz9lLiSyEWb2S5jEWZMN2v8ZI1qaQiaimaaBFlGUFX0xsdEQYwiCOiy\nQl3VyIpCtF2hKzJCWTMedqCIkaqcrJ7T6RjIskCWpWiSxPn5KwzVgUahrhVaLRfDNtBslSiOydME\nqSo4aLdQs4p0HSBLIgglTs+mfWixLVKO+/fJrjLU0kQq5Q+SU0ni6PSU47PHuO0uqqRjKxb9dpuo\numEdL1lFW/JGYn9wTN/p01IM0qihOx4hOzW7ZEUuFSx3v+HsZJ+qMknzhKpseH8zJQgKNMdjPa8w\nFAmVNZ88OKAOIqzGIF7MOekPeXp6j3uDe/SNNh2rjeW1Wfk7Hj95zOX7C4RGZHx4zPXVFbIqo4oS\neVnT6fa4vLrEaw+JYgHb3adleuiuhdttYzs6WbalTkOSyGcw9EjTHbfTGwpVQdBMiiJEkOF2ucB1\n+6w2KT1rDyUW6Ug9TttnjJRL/uHv/1dqxac/6mFUDZ+N9/CKijxY8Yuf/yX9wfg7GfzeQ0BAw/UG\nfP3qJXktoIomjuFgywq6I7LL53iuwWo5o6oagjDENm3SNGM2neMvt8RZhoBIU0FDyWbrEyYF8/WS\n27s7DMtFklyOzp6SIvL+9opKCBErCUP32NsbURQVy7sbfvX3/xd2SyGpdoiaQVnljA72sd0ertum\nkQX8cMegP8LzOnx0/wdsw5g0TzFciZIUr9eh1ztmr/0xaq0hlBVXF29wLYOPP3pGv+3imCody8Az\nTfrdPbrdfRyzR5GnjMcPqUqVvAAEHU2x0RqRcL3GcwfEWYAkprQ8l/V2hdKUqIpIlsYfXIBmD9vt\nUVQCyyDBz2SKQsc0Wmz9gNOjU7ZLH89xqIuKaLtitbxksz2nLEPqPEJNQ5o6ZRutCLMdkq6hyNA2\nLAadFlGQoHomutFhsVqyC1PqUiBPM2zH5m56w2q1IkwTbNdCkAWyIqYoEpIkxfUcLt9fs5nMieIA\nTWuhCy1GrWPkSiRYz4jjW+J4TbHdkuQJom5QSwK7XUKcxLz95j3v3r/lejpFqiuuZ+9JMp9dNCeK\nHDIpZhP7BHGA5fQosfj5T/6Sy+cvufn2PY8ePUSRNPodk9nNGwxNxBBdbicT4rykkWqSbM3Kn1PW\nJVUtMOi73Fy/wOmYvL14TVllZHXA0eGQXeQTJP6HdiCrQqxFDg72GfZGiDJsog13mxuCZEFab1E6\nGrPdLV+/fcnDs0/JdgmSIeBaGovVkv2DIybzGV/88bfIWk1Vxhx4Q8ajR7Q6Mv/7r/83/rC6Y//h\np4w0DTHJODw6RpAaBEPkavmG9frmOxn83kPAcj3OnnzC+OgMU5KxFItuq0tdVVxdvidLN+x2ayzD\nxNZNXLtDnm2xVZluq83eaERZlsRJjqZZ9LsnyJJJ09QAeC0XURSI45SbuxmICidnh3z5/AsG+z2a\noqbJLBx7nyRpGO0dYLsOvh+wiwMq0UBUPWoa/PWS48MDFFEgDlOGwyNm0zmuJeJ5KpvFDEe30XAo\nY4Uyk5EVE1EWsAwTXTGpi5I0CFjN10iNwHp5x+sXz3l4dkaR50gyUBsUSUnHGnLQfkjHaiGX4Nky\nebDmeLzHJtgwDaZskyWbbM3f/u2/x3Vt6jolzUFSW1Rihe7ZVJLK+PgeLbPN5N2M7TZCVQ2aSqHT\ndUEA3bJYbhYgKGz8NYJcgJqx2N0hqhqKJpPGCarqsJjNMZQKTRQRS4nj43tEQURT12RFQVmWOJ5H\nnET0Oi06LZthv8dgcMjB4JhckokWGxxHZ3i2h9UxkQULtzPAMm1aqsXz33/FV18+J29ykqZCtwzE\nqsI1LWbzOzabEENtODx5gmI56LpJE9bkU40yMLESE1008boD7p09whUN2hj8x//wHxi7PTyti9mX\nmW1uKRqZqq4wdJt7j56RpAqLdUBOwTevvqTb75MmKSoy0+tb4s2WOPTpdhwQRGzLY7lY4joGpiZh\neQ1ZWtHtdYijiKV/x2R5wS6ds4tm3EwuCaKAvNqRSxm220ZvHEbDPZbv3xOzptJirqfvGY8POD3a\n49AeQFpz/6NPCDdL7jYzlnXN8fghyXSHXMt0+h129Y5ZvOQ2uKCRE1pO5zsZ/N5DoKNblNsVTZQw\nbHUxNAlTVZFqkZPRKXVao4gyaRhiSiJCWZDEPkKdoxsWsqKw8wOO98/o2COqUuB2es7Z2RGKZEOl\n4RltbNOk1fMI84DbxXtOHp0SZCFRkHLv8D4Hg1MMTcdUVahKJEnFMC3SLMNr9bi+vcb12symUwxV\np217rO9mjIZ7+Os506v3tGwLVa7RNYGWazA+PISmQRYhTnYYpkYUbom2KY5mIzUSpuYwHA64OP8a\ntQxYX71g33VpuwLrzYKyKtj6a3bJmvH+iDRb8OU3v6Pb3UfVWrx6fYuiujx79iNevzpHEEQEMSOI\nZxRlieHaKLZKmYfkwZbD/h6GbOO5fa6vJ+yCgDiNuZ5MCYuMppHwzH2yUKCpVIbDI5Iq5O3tGwRJ\nZLvbkuc5SRyiGzZ8E+UAACAASURBVAayLBNFKf3RHpUg0FATxzG2ZWO4FpbpUgo1e4f7zOZT/FWA\nRp9uq0tQzdA8i9HgkLbXJoxC3r97j4LI/rCP53oIaNhtjyiJsV2XII549sMfcnR0wGJ5xw8++gxT\n1Wh3XUatPgfDM549/nPWb+c4hcHs5oLF/JI09dkEE1oDg/uffIxk97i+ec1wv8d49AjLGNDpdnj+\nL3/kR/c+pS3oyEWD7arEZcjdbE7L9Rj2euwN+1hqmyf3f4Qua9x/9JA4SSjLkiDaklUVnfYxaZTw\n6s0LgjQgjQsMq4XXG7AKSmS9Q5IarDYlHa/Dej3BFE2OOodkSUaQRiDmnOztESxX/PbXf6DX3+O3\n3z5nIwTMZrc0mwgjzmmZNnGcosoKTVMQSxmqY1NVBi315DsZ/N5DQDE0Ugpc26TKEmhqsnRHGq2w\ntYokDGi5Nuv5nDovSeMNWVojiiZJkfDFv/wB19ZIt2vatkNS7ugNXPIqods7xtZHdJw96kogyUKc\njk1el6SZRKdzSLtzgNQYtPUWUpGgCxnlzmfk9lAqGUPQ8Ndr4nzF7eIKRS4J1rdEqylFuMb3fYRG\n4t7xfQ7HH7Fc+fi7KZvwmunsgiILSbc7qiZjs50DDYPuEYqgUxY18/mOv/rlvyXaxYgimLbGdH6N\n22uhmCbr5B1huSHXEjbbmLASEXWVyc0tclnxg4efMb+ZASkHRyPqUqbKI+q8ouUOSZOM3W5JsJ6y\nWd1xMBpSRmArXU6O7iEIPUTNpTPoExclURgz6hzy+Owz6kRlt4xZrUsko0t3cIBlOqiah9cf8s9f\n/IogW5MT0ygNiqkQZzGPnzxBV3UUZFpGG1mSOD9/g7+aIDYZ//WzX7Bbbkm2IfcOHiMlMlUeEKwu\nieILLhZfYPUa2j2DjueiyBV5XeOnKZKl8e2LC9brW1rDPtM375CqlHW6wNBlkvUUf3aO0qnJCx1d\nVWjqkEZsCMKArmUzDVdExRwx0ykCgYs3Fwy7Q6hqPM/h3cVX7PwJRdqg42BKNoJU8ury94hShSpr\nGIpImYQcdQ/RBB3ymjrL8FoWlWCxPzrh9uYdluUSxgn3Th4giSJeu8ve3pi1v2W6usazbe6u3mN2\nJaJshdbxUCWD0fiM+WrGdHlLo6icfPSUqqppqwJ+PMVtiTx9eg/TNcm2C2zLoK5FGkGmPzpg2NnH\n1m3csfudDH7vIRDEW9bhhm20JS0L7pY3zHa3CHLFZrvGdSyWqym6oRHsYmTFRdU89obHlHHO8XhM\nk+U0YsYmuMKyZMb791H+NGUvyVhs10RZhazq1FWGWKs4TovV0qfltHGtNmKj4VltyiSmpWmE6wn3\nD4eYms14OKbtehRlSl1U9LojLNtE0xXu3XtIrzUiWmcsJz4iBn68Y1dHpEVJTk6tZJSKhN7xCMoc\n1bOodRnJNDl9/Ih31zfUkkRaNjSiSVr6fPP8K0QpIoq2bKI1VQ2bMIDmg5OxqQWWiyVlljDeO8BS\nHUxRI42XaFKDqUpcvj8n3q5Jwy1+mNIoOpPFkl22I6sS2kabJ/ef0sQ5olSzt3dApzNgOpsQxim9\nbgshL/j46CHtwqUJK4o0RVILNuslg/4pRdFg6QZZGJHFEYpUMbu+oE5T9rtdHh8/RK9siqjh/tF9\nIj/kxVe/R2ugbXR49/acuq4JdhFlClJtkxVt0kKlFhTuVmsMp8/9kyccuAd8/vjn/Oyzn6JJLnsH\nYy6uX3N6eoRu2BRhxfM/vuH6ckowLyjygijZ4UchLfuDj8JPM8JkjaIq2JpHy27h2g4vv31FFIa8\nvviKSo5p6UeMuw/Jy4KiFEiSCiQD1dS4urvgcv4bNv4Nnq1y9/wFHx2dcdg/JtvIjPpjwvWKQWvA\n3eUVXafN64tv2O0isjCn3iV4usnt3RRVF5ktZsxu1pSZTJKk2FaL5WSB2xqxzQp0q8/+yCELr6my\nNdvllCyM2G0iNNWkpCKvYt4tLqlthaLOuLx8g2FpXF2/+U4Gv/cFojiLKIoY1eiTRTmlUFEVCVUD\n8S6h2+0SbgP6/T126xjL9NhuQvxNRMv5YPC13SOoJRbLKW5bwBseEsclAiJhVGM4Jv3RIQt/RlGU\nqKJFt9XDs4ZUzZ+UZnlMlck0lYUfhwhpyGT5lmFnzM27V4hKwe3kCmtsExJT1TKKYXDx5hVhHKNL\nFoPOIUEUUwgSaZlimzr5nySlR/sj4rpEdiyiLKTQA0xR4eLua1xtyP74HpqYk2YyV4tr2h2Z8zcv\nkXWJh48+JiszirSiDhMO9k948dWXjPf3qPIKRS2oEBj2h6w2M/yNTxhHNILK8ek9hFafLG/oum0s\nSaEsE9JoR1Gk3F1OEeWKOAmRxRpT89gb70PZsNn6OKKBW5lkWguhykjLmKxKGY32ECuTQkgINktU\nVSLepThtjW6rRTAPiPwtL5bfoOkmYRJS21AVCX5Y4QcfvoW9Vpf1ekFRFKgtHVP1GLZbTOdznI6N\nIOYMXI9351/w6OETdpMp1+/fcjAeIsgmo/2S+eoOuzNg8n7O2fghQRCT+Rs2iw21ZeA4p+Spgmn2\nWE9vsLsuUR7RlAlZWVDUArUsoOstDKWkajQaQeXlm+fsj8esghW9/oD5YkZdZWx3C2RDZxuuOP/2\na8ptyPliRS0bnJ4+JA9qTscPOD//A7/8sx8ziyLsTgvd0Ji/m/HZo0+5Wk7pjo5ISx9PH/L43qe8\n/fqPDNt94rRGsVUu7+7YOzlFzRSSaoOfzclrAbs9QjUcmlogjKIPv5Ena1KhIIl3aFRUtcj1zVu6\n9n8B5SNpHKGLkGcJmqlAUaErNmKj0XG7qLWEgkQcJQwHfco0Yeh6tBybbeLTHQxoRIPh4QGGa5DE\nGVt/xWp5xXT6nqbKiP2QNA9RFJmuO2Tc2SObbLj58jlNmXE7O2d9d0mxTen3D+kOH5KUOpvQZ7GY\nYxgGYZjQ6wxwWx6dTp92d5/JdIWs5KiagFgKGAj02wOC9QqpzOh0PG52c7rH9zAsjyQtkFWVbRgS\nVxWNoNDy+h/0YwWUsUC/u8/RwRNqPH74k79Ctlp88fVvMZV98kRFqmQM2cV1unz8gx9jGA6j3gih\ngbvJFN32mG8iNL3N3uiAJI64ndwwn13z6vwrvnz9ey4nb5iub1gHUzb+HTUCjjNCkWR22zVXt1fs\n4pgorTk8eEhTitzcnSMaCo1moyoepmLhaDqmaHA4uoeYGYzsMWpjkcQ1ptqh1d8jJSZOtgw6A6Jd\nAJLEbOOjWzqiVHD+5hVNWSIBiqDSclq03T0URSfNY55+8gnnb99htTXm2y1B6WMNHbxWF8fQENQG\n2bCZ3N3Q1DV1I/FgfML90xO2iYKmOYi5iNca8O2332JIBi++fEeQlPhVwKsrH8Vq0x2c8fpyjZzD\nYHDEVsiJm5yLq3c0VUUWxgy6XcqywvO6JGFFFMB8vSMsGnZpzGJzx6uvf4vnWDSSjWl3SOIdWbmF\nRqTKoGW7/NPf/wNq2WCUAo7o4BkedzfP2R96SI2Ea7Yps5xPnjxFvgjZrVeIUglyg26ICDG8+3aO\nrjkf5j62znQy5UdPfsr9/kM61ghVUGgo0f7TVaDAfwYhUJQ5WVFgmSa71RJL06lLkdU2IMhiJssZ\nURKxXCyYTGZs1itM06Kua+oiRqhSTLXgdvYtZbNiONynLCHNM2RFxjAtTNtAFERkSaLJCyxBQ5MV\nnFYLTflgaBUlBU3WqOqKtMxBgrwWiJoPuwW7NKbttamqijzPqGsRy3ZQTBe31aPbb3P5/iWzxStG\n3Q4OFpKkMRo+oSgbkrik2+mSJjvGh8co6oi3b24w5DY9b5+DvWMUyWCznXF5ecFgeETa5HQGZxwf\nPiWJV+RlzKg7INklPHv6U54//5amyYmSHaJY49gGhtww6rQxNY06L+k4bXr2kFFnj3Z7gOG1sew2\nedGQ5g2DwQGibBBHKbrqkMU5A6+NZ9mMej1aLZd3z19yNjykjAssRcUzHKqyIU58tttbgs2GB0cf\nUcUQhyU3N1MQamShZDjoo5sq22DBaP8A2+rw5P59VEFkNpvgaAZHB8f0O10O2kO2qwnz5Zr+sE/V\nZKx3lxQ6KO6IXISr21ssx2G+vWa9u6WoKtbbmLQEbzimNTjhLtziun2GTg8j0dheXyMKJYPBKU1u\ncDp4QLwpyGuZ3uCMV6/fI6UhD/YdMkOibCTans1Bd8zsaoaneqiNQrbN6Vh98rhGEyt03SFvLIZ7\nDxBqHVezaVsuaRrx6uo5cdUw7O4h1zJa3bCdLQmTCLc/oGpKsmCFqWgItUBRl8QNHD++jx/MqAFD\nFNGiHUfDA5pSJowi5KrF6d5TPnv6Q4ok46A/ZHJ1g9zIZJuMaBnRaw2Q8oyjdgtR/W7Ev/cQkCQF\nz/FY7zbUTYFjW6TbgCov2Gy31JKK7bRwHAuvazEcHoBYoWoyti6Rhlui3QZdNHHMIe/ev8U0FRRJ\nhaYmCENevznHMGSoSzarFVmW4nkuqioT7HyCLKZyNKS2SdxkxEVGhYCoK2i2SS2I7NIUWZdQJYM4\nyLH1IfcOf4RU2fjzDcu1T1BHlAQslze4RgshTdCDFFeuEIWayfIt/u4GkYZxb8zD+/cRSglbb0Oh\nkqcV4XbL2dED6rgmWex4evQRB8N75GWJYco0QszBgYtAglCHTJbvWK2vyKIVm9kdZV6h6xZNWtB2\nPYK1j6lqGLJKR7cwkXFUl1ary/7xMRngeh69oUeS7+i0HQxVI09TZne3JElIr+ORhRliI6MIOtEu\nI01TECpMU6WuFmiKiGpq7A9PkASRXbhhOp+Q5Fssx0AzRS4vXqOpBgglpgGm2CA2kAQBtu5wcfEN\nAgtMo2bnFxSZiL8M6LgO315cczffkNY151fviPOIdbAmLBM6oyH742c8/uSnxHmAM3QxLJXRrsZb\nVbQcm9fffMO9k2P2Dge0PJ1f/PAztArKaMXHD48oq3Mmdy/ZhTHbfEoc3fDm1dfEuxhbc3BVF7EW\n0GSB3WZN1z5ju4vw4xW3q4DJZINcSYTbmJvZOa2+TpKveP3unB8+/BlGLdH1OvT7Q46P7zGfL6jL\nGt+/QVEb2p1TNnHJ89evUA0R2za5nc5ZNP9Pe2cSa8l51v1fjaeGMw/33HvPHbv7dt/udud2x46d\n8CWExJP4IApRpIgEWZFYsoJFFLGCDXGHYQELNgh2LMKKRAj8kShYNk6Cid0eeh7uPJx5rKpT8/st\nmhhCQpxAsNvy/UnvouqUqv5Hquevd3jqeSfsd/dBsVmZexSbeUrZOZRQkDOySEJGSmSMNEFLJkjJ\niKPtV1k7qdM92CMvVd82Bt91E2gftsjlCgRJiJYz2Nq5R8G2qBQLFIsFUkkhY1gkcUC3vUMYOey3\nXuPWvRdIoj6d1hbzjTLBcIAIBIXiLPfu3kWVUkQk0FSNEycbvPbaKziOQ6lao93v0BkNCEXMwGtR\nLdj0+l1u3b5+/xNXWcOyC0iKgWYIktShns8yOdiilrOpZQv3VxFShziJKM5XGKiHDJMesapizhS5\nO7xLs3ODhYLNdOghSQ6abpDTK/jDMYf3rqNKIKkyhaKFokhkdI2sUaBkm5i6oFjMcPvmy8hJQBxG\n1MoVmp1tbtx+icHoDjkzRstAEExJIo9SNkO5XMXKFVhaWIQk/bct0MsgQhA+WVUjiUOmrk99fhbZ\n0LF1G7frMWr10OSUXveQzdvXKBRjDtqvkdYS5KLB4lKDsTPGzhqoqnq/i5sKgjBCz0pcevSTeJME\n2yqRxgamPUOUGox9SHQZ2VDpjjo0O036wzEzpQaNpWVSJSFjyEh6nqkLvf4hQg3QDQ2RqhTUKkoS\nk83JLM3XyGomkZtiaAYFq4wumbSbLTZ3X0bPx0ROn/z+ERvZPBlC2od9euM+qXA46txEKAEkEAQy\nv/iJx5mOdSK1QmJWmFuok0xlulOP5fNrLJ5fITagUqtRNqocdIacPnWRaTDFsOvMLpwhweWjv/Q4\nkZKjuDzPq9svomZlwiSgPlfm+69+Eys/ixsk5HN1VE1mbm6WxmKdMI7w/YDDgz0aM0vIqCSygi6r\nzOQXOHnpIsWKRiYNufFP38XWQm6++QKrjQJqPGG2WuShM6eQ45Bxu8tyY4mAKaNoij2TpRP23jYG\n33UTWG0s4Y8mxI6Prt3Pjuv3HfJWGV02yWRkHHdCu9NB1XSaXpPXm3cY4uBGDqoEvu+Ss/OoqYqh\n6Cw21tHULK7XJgw7kMD5tbNoQsUZh2Qsm4xdIFQkOk6Le517lBt5zEqewWiAlI7xJkd44x6a0NGk\niNj3scmxe+Nlegf/zKR7g8HBTUw1QVElYiHIlrJk8mV8JCJZQzayoGZA15hMHIgUavosZbPE0d42\nYTIkTCN64wGZvMJR9xpB0ObNa/+K4w4IpjHe1OPqm1dQ0oTQjVhcOIusZHGdAGfiIQuZaRIxcccM\nuz3yqkklm2PiTvA8D01XaLWaADiOi5rRKRSK6IrK7as3yFk2B/e2mOw3sSSV0WCIJEkUChUc1yFT\nsFFNiXa/yeuvvUJjYZ5bd27gBw5x4qNrCtlsls3bt3j9e9/i4plfpFGZY75uszx7CiWukTdrdFsj\nJEml12mTM7PMVmfpew6TSZfepEnL7yMyNpXKEkLPcdjpYhfKoEFn3ObM/EmGvRHNg7tMJi1UQ8Wy\n83iuw2Tk0FiugS7TGve4Nxjzfd/lr29cYTNJsCpVfA92O4cU6hZx0iX0mgTalFdvfZ/htMvO1SYn\n5k7xveevYdk1Lpz+P4hEpj5TxR2P2dy8g8eQYBpwfu1hFucWWajbLMzm+dgv/F/efP02jaVZ+kEX\nq5wj9mPSOGa/36Iyv0K7PcYIVDpHTUZOiwvnNxgOO/jehOlkStGoMmyOcdoO8TjAtExyOnjTI1LX\nQQ4jHr1wgW77iIcvfIBRt4kSC8btLn40IJAEWr5I66hLzSoSdlIq2gJRf/q2Mfium4Cm6oyGIzQ5\ng5JqKNr9/fryuRJRHBLHU1RFpjE/iyxJTMZT8nYRVdLRFItsoUJGy7G4sEIcpGiyztHRDo7joKoZ\nDDNL4nsEToKpZrG0DCg6/cmYu/t3ieSQIHU4ONxjZqZMvlClXp6lVp2DSGLU77K/s4NQHFzbZ5CZ\ncOgP2GltMpl6LCwtcjS6w/zqAvniPLEfkZF08lYed9qkNdglX9UQks6wd4AzvsfuzZdZmp+j33XJ\nGAUiEbPb3AE5wjRtquU54lDG0GYp2DNYhoFtmEiJQuilyJJGlPgQC0q5HO7Uw/WnSLIESYI7mqBl\nNKIkpFabpV4to2gahm0SRzFhEFLM54jCCF0CVdfJV/KoOYuABDWjI6QYXc4wOBjR2+mxXF1gPBny\n5huvYBk63W6TbM6kP+riBT6+N8Qgxh3v4fv3DcxxO9Qrs6hySj4/h6xkkDQZXc4QhCmF4gy2XSKJ\nTbrjCC+asHW0hSSlhCLm+69fobG4QhgF7Ny5B1GEYc3hpzaNsycJNJ9e0qUdtbm3f4O9zg56OYcx\nWyJZLFP68DraaoFSvYhuwtDvEaUjBoM2r1+9zuzKLJ6YYhVyGBmLG9eusrFxAn86xBkPGU067O81\nGQyHRGkCWkIuL7G9dQVnMCIMJhRyGfRMyvmNFSR1SqVkMJ8vI00jTtXPYKQQx12Wlhrcfu37lEoy\n9UaNfr+H5zsoqcBQMpw/uUE08tBSlVq+ijscEYU+KlMSJUIyBFJGZna2gZYaGHoB4ZkkU5UkVlk+\nuYRsysSJgzOIEE4WUzKpFN8DcwJBKDi1cpZ6cR7PASSd8bBH6LpkTIk09iB1CcMpfpBSK5fIWzNo\nVhlJN9je26Y9arPd2qLrtGkPd7EsBUWLGbsusgIZqchscYnV9UcpVir0dt9EuCN6nT1a7RHnznyI\nfL5IGPgkImX38C690QHZQo6B45LJW0zjgFgGcy6PXKmhFrN88MOf4dbWJo7l0Xf6yJGCqtgkPpjC\nJJtbYSw59NoBeb1AySwzSl12Dt+kapQ4X7vAudkPYGaKjIIJUnaOcRpjliwsu3y/B+J5rJ+8RCl3\nijRJkNOAaBowjQOG0ZDAHbBUzjNbqCGpJoftPUaOixe7FJcKXLv7OrLu0h3tEySCnb1dtm6+xqC9\nj6HGdFt7DLstJv6YIPZRTYM7e7dRDJX9gy52foZ+d0K5UGR1fhE5FIhYkCuX+NerbzBMfAIlZqd5\nQH8ywQ/aKClMQx/HdXHTbfw0Ym6mSraQZX5xCS1XIWOZ7O5epzfuM7d6Ai9MUE2dKNRo7u5xZmWZ\nvG5gqQVstUykpQgklEyGjGLSu90ikiXmV+eZX6hRrdRwJx6B72NIGRqNElbBJpUTUiVhdnaOQsam\nOQrZ9WTyM2dIPYO8qnDv1i1SOcJPYh7+4AepZotM3BbBFNZOnOLs6fOcWj3BmdNrRFJArAQsnqqj\nSRajTp/X3vgmA+UmR84d0mlITs6iKQmB1KNaq6Mh0R0ecvpD5+l5DlahQpjxKJUXCcYlVpcbtNpv\nUC5KyEpIGHuYioo72aXXTcgW5wnwGIdTGqVTHN65g5amVKt1FhsL9wuw5NYoZKoknktns0etvEAq\ngTdK3jYG3/U8AdNIyGghaRyQU1ROn/8kd6+/jmXKjKYpuZzJ4bW7fOSXPsl3r77BfPkcWUVm5E7w\ndIu1h36R0WhEGk4wSjkGwyZxBBkhceHsQ+wd7dCoVylVKgz6Pe5efQ0jo4Gu0Vi4wNziMuk0hUhm\nKnwUVaU3GJAqIXGqo+ULqAWLfsshZxfxXRndUkhimW68Tdtro1gm0+6UUTqlUVymPpflYH8f21BZ\nqKwxckNQTMKwRbe9S32mwn5vl3BykxV3SLGwiGGYlKw6Udxh8+5NluZPo+iQK+aYhl1MI48feBTL\nJiNHp1zJMhpKJEqAP3Ao5mYAk9tbm5i5CmUjj5wY7B8cUS4YVAo1MqpB5ewi/VYHU8+REOL7U+YX\nlyjmC7RHfeZXVijXVlAVg/mldW7efIPDTpdrd26RLepotkZ1pkRz3GN9/QJplGBqEtlGjpJVYPfe\nHWRdJ5YSUl3laPM2mgVnVs/SvHeL1RMbjKcxcZxwbv0sd7fuUqhqLFezDHpdpmkIGZMrr75ENV/j\n61/7a3xfoXEqh2orDEd7pLHCneYI08sBMbI0ZnH+NKP+kIXZZTrdLebqZSRDQdey6HJIhphWf0xF\nX6FSB5HvkgQmBTvH2uoZkihhtZRjc3MTRZbI5Szm5uuM200My+Cwu4eLSskwKKomebmEpwo8p0uh\nWuXVrX/hzOIamSSHnhF0ujvYVhlN1+kOpljlGu40YGVmnYM7N9G0FN2u8PGPPUyn2SZbkJhKLkZ2\nytBtIrCpFCwIwvufjXd8FF1CNycYqsek30XRLLZ3NinOz3Dn1lWWTi5Rrs5hKmWO9gesnV9nrMVv\nG4Pvek+gWDBxxj2iaIgIxliahqTExJFJubjIaJiSq67QawdcXH4UW4YodMnZGeYKZXRJxRn00dKQ\ndOIx7Y+ZL5fJaBrusEvWMNg5vMpR+xZJmnBp7cOcmP8gY3eIpCekScywt8XUb7F64ixCLqFnbexc\nHkWRyKsm06HHaOiiawWgxMidcuHDv8y/XP8etbU5bly9ijd2KVaqpER4vsO5cxcIA4exe79moa3Z\nCFLSNKYwM082nyNXLCPEhEIuj6XYiGRKp7/Hhz/yBLKi4kwmgE93cMBg2KFaLTPqDxBxjON4eElK\nHGrYWplBz8UNXNbW1rGyBpKss3vQ5GMf/zSDoYeeCWk376DEKUjQG/QRKdRn5wjDgCB1kJSQ/sE2\n8niImI7Y3b+N53c4tT7D3GKJoTMmW7Tw3DHJ0KO/06ZoVNDi+zUFw6lLMZchiSIKdo310x8lb9eJ\nBVy79wpO6iGbCv3JPrWZMhmtSkgGJIXD7Rbjnsv6uVV0S6E6N49dWqC0sEptoYrj+uzuhSioBHGA\nYkf4fp/Do0NymTxyrPPYww/T73YolVboxw5jhnjpkEncZZr0yNs2iXxEZTElljNEU5dgAufOrdNu\nD9g9OMJxpqiyQFUVZCUlCVX291v4ImSYDhhEA8bemMHAR1d1VFTmchXWKssoQQxSE2dySGNxERSI\nIoGk2FTzZRZrVZLJJulYQlVlmp3ruO4IWVLptrqEQYyqRAR+gCxbtNsTPNciiAOWTyyRnY25uf0G\nO8N9CvNlrt57ncpChVs7dxlMxvjhhDhwkJwpVVUiODwk6/+cTGBlZYUPfOADXLp0iUcffRSAfr/P\nk08+yenTp3nqqacYDodvXf/ss8+ytrbG+vo6//iP//gT7+2PhnjuiChJKVdqOMMdyoUihUKeojLD\n2ZVLzNYXsbIFCpU8plUES8UsFIjcmGQaUimUAJlg4rBSq9FqHeBMR2ztbyMrElauyMSLUNWUzniX\nWOqDCivzs7jDFv2Bg2XUONjZR0qOsDWNaOKTt/NksjlSSaOYz5FEPuVCkaW5R7izdQ3btmk2Xaq5\nOQr5PKPmXbzREXo4xu1sc3b1LFnNIvJGiPEI4QssyyYWMX7SQTcjtEyWbq9J6HmkCDKGiTf1cD0X\n15sQJR5x5DL1HcZOH0WJKJTzpLGOM04plCtMhUQAHHVa2MUsc0vLaLqJNI0RTh9nNEU3Z7HrK4SG\nyfV72xhZg4nr4PiQq9SJ5AyoGn1vwkQEdIcdSsUstmFTyuXYP9wiO1tiMh2zvLBAvbxI6ETsbr7B\nYNymE/UZRjFSpsbCwhqGlqVolSkV1ikUSlh2BTWT5fVrbyJJJltHR+yODskWaywX1tEDg1K+zt7e\nGKfrEDkeWjjEVmN03cQ0stSKCYPx5H5NyRg0zSSftWm1h+xtv8mwuYNBQOB1CaUQL3EJR0MO200w\nbeyCRS5fQUqzSN793A1F0tjZ3uLCxnnOrj9KoTTDNDSRhYHbb3FqYQZkm2yhijtJWGqsMQhDjnr3\niHAplovcavzOQwAAD0xJREFU3rmBnamSNReYJhOieMTm4S5xHJEGIfViBT2C+cYJJF2lmLXwHI+M\nbNEZtvAil+WFDTJ6jv7IJ7U0JuEYLdbZWD/P4swK/c6Q2EnZvLlDdnGdZtBlbf000wQ2zn8EO1NC\nn5aIjxQsNGaW65Tmqjiu+/MxAUmSeP7557ly5Qovv/wyAJcvX+bJJ5/k9u3bPP7441y+fBmA69ev\n87WvfY3r16/z3HPP8Vu/9Vukafpf31zE5HMlDKvIy1f+hd6oTSarEacy5XIF34lQhISUTnH6fTKS\nQA4gcj1kJUbTJdr9QzIZlaxuUbHmaDTOsHc0QEgWR0d9BoMJEgmDUZtDt8OICVEUMOoPKOcLRGGM\noddwXYfW0RFpHFErV5mMB1hZi5WVdcY9mzB0aDVbVAp1Ou27uBOHgm1hqfb9raTDBDmF7d27OJMD\ntjdf4vDwDrqsEbljSlaJcq6OhsZifRlDzRBFPkHUp9W5SXewRRQFDIYHmGaCLPscHOyCbCDrNhnb\nYOyPGLoDirUKp888xMQP0PP6/XXx+Tk0Lc9oNKbf79NuxqQyFGfqHLT7kLHoezof+OATBImGmc3S\nGx2SLStICJJYolyuU8hXkFWF4WhAtVoDwDJNsrqBbRa4t9VEUlMKlToZs0pqmEQZHaVgoxeqaJk8\ni/UG/Z0tTi3VmbgqrUnML3z0l2keDJEVCznRyRp5FpeW2dzfx02n9Nop25u7HB2O6G47aNMUU45I\nZegPO+hGFtvOosgZSFSO9rpk5DyGmWccJNzdbwIJUTBEoOI5CTIKIDMduzj9IaZsIEeQMzLUqmUg\nIfanWMQY8RAzFWQkQdHKMnVSTC3LucoSsidgquA5I8zSIbNz80xjhxdeuk4cjCEa4Tn7WJkcnpMS\npwFCSkmUiJHXxDJy7B3exHMGDH2XKBODXaA5GYCtkylVORrdJpUEaSKwNJ1stUSUDvj+d79Ho7qM\nkdRZWLlIdVFlrz2mI+0jWSlxrPLQ2iNkY4to4DCYRhztjWnfbqLFPyH2fhYTgB+tTfaNb3yDL37x\niwB88Ytf5G//9m8B+PrXv87nP/95NE1jZWWFU6dOvWUcP45UgmKhxrgfUqoski/NIqk5onTAYHhA\nJJpUazVGo11K5Qq2kWO+sk45N89McQkptriw/hi53AxOLAjkLIVqg41LH6JWX0TL5LDMIkHkgiKw\nqkWOhkfMVmeQk5QkDDF0GcfrYmaqlAqLtDseM/U1ZFlhNOrien0Od6bsHww5f+Ec+wfXsNQslewK\nw7aHkmiIMCVJDRJZoTfsMnQdVlc2KGSKqCJBU1Xmag1UTCbDgEF/gEgVGnNrVMuLRElCECaQltC0\nLEGQYhpFsvY8xdIKVr6MpMkY2QKzCysESUirf0BEiGUWqZZXiAKVZmsXWUkwTdjbGtHrtfD8IVHs\noMghaiwzHfoMJx2cyMdNAlrdfUzTZHnxJFM3YDjsUCiUsK0CpUKJg1YbTVHZvbPNTH2OxdV1VtZO\nUq3N84GLj2DrFvPleZZml9ElQaR5/POtl2jGfTaPNlk/uUHOqHK02WU2t4DvhkyjCMfxONjaodlq\nMnvyJNdfPyJn55mrL1AqzvL6jR282GNpIc9MeQbf9WCsc6Z8gbxX5pc++GEWG2WyJZPUzFCcnUG3\nDDKGYDTwGLSnDPoOtpLDd2KGw4BxlNB2fVojl6kf0esOCcOY3qTJ4WSTQA5QtZjET6lXq3R6u9x5\n7VX8QYeaUUH2NRw3JZTv0HN22Lw3IrdUoS9auEoXZxqxtLBOu30E0oQ4buP6dynnbQhGjFsdUs/j\n3t3X0ROVcqZMMh5ysPnP5PQsRXOVmeoKc7VTtHoT2q0JG2fPMertsjC7wInVhxm0b/LRS5/ESyeM\nvAFB1Kc7aoIeI1dkNj7+ISr5BfqHY4bO2+cN/9Q9gSeeeIJHHnmEv/iLvwCg1WpRr9cBqNfrtFot\nAA4PD1lY+PeSRgsLCxwcHPyX9y4WqyRRyvqJ85xZf5QkUdB0GW/q0B/dpV4/SyQUbHsNJS2iYzNr\nzmAEOlIcQRwSTkaIWObMxjqZcoYwckEJiUVIo7FKuTrLyPFIJIHvDNH/7T9pqkK3c0i5MIORMdEt\n8JlSKBcI04DFpROU8xU8t0vgT6nPNbh75yaGBkoKGUWBKKWUmSFv1ymVijjjJqurC4TC597+DSrZ\nLHktz8gLAQ0lNZmZWaE/jPHSiP3WJu3hDVTTwLLzRMKlP2mDBkOvz8Jqg2J+llQV7O7fJWtVGHQn\nKEJgKBKarDDstClVZ2isrKAaCvlihkAKCdIAvZghW8qyfOI0ijlHkpOIMi56tsTM4jqylmEU9HGm\nfTb33sAuqJRrFSRNJqPpCD/m/KnzKEqR2aUVDgYthBRRzNaR1Yj20f1CJGos0KwprcFN9js7LJw+\ny+LJZSIhEUx9hBvxypXXmZmbJwKkOMUd95mtlJlbXMA0MtRqDRpzp1gtLTBn25zbOE1ltkrsHFHJ\nZaiYVXJynubmDuODfbZfuUnq+ViWjKqM0DSfSegw9DxahwNq+VmMTJ68PUsq68wuzDMOJziyT5ik\naHKRSr6KJky8QMaNMkwnE6RUw3X6+MMBvU6LQJ8ybnYJehPySoaZSh1fSgm1AXpGhyRDo7rEUvU0\ntp6nPexSMC2EKqPYKlJW519v/D8CKaAduWzfvkEpWiSrZ4kSKFVq+OGAfElFeAP84R6Oe4gqh5Ty\nGcaDLtXCHKNej6l/j4QKnt9hVbvIYEfh5PKj2HqWKKNgVGxid0wi+dgLBcqLtbeN759qdeCll15i\nbm6OTqfDk08+yfr6+o+YhCT9147zk37r9QYszOSZTAaQzWJmbLxgiqpm6HWPOLNk45GlvjjP/uYW\nyysrjNw21VKJ/qhLtVokJSCRYjrDTYJwykz5HIpkomsSdt7g+vVb6IZCqoRMHJdGvQKxjKJoyLKM\nIksEUw838NB1nSSO6PUPcRyPbK5AfWYRRWmRs0xEGNNpH6GpGsNeixMnTjPqd3ACBz/yCUSMkdHw\nAwdTJAwmI4r5DAU7S94s42cjUnlKksj4QYzv7SCpUwr5WaJYJYpiUuFi5atUynX6vSOE0iYyZKxi\nkSRNkSQZRZLJWjnCMCI2Qraa1yhVqhy295nX50jihCiKSNOESrnIxBmRKDYTx2GmUsbMaKhoZDNl\nHDdgKiVoqoVtlRj0hvRHbWQpIQlCZmpLFKt17h7eQs6rjKdD7mxPSZWA3qDL8upZDg8c7mxvMfFd\n7HyF7a1NrDUDpJg0lcnaFo25JQI3pFIqM+53kISguX0XyzAwTQvhjjg7N8uw16c4a9FPRyCnzC+f\nYn+/TdZUsIp5vFHIhRPzDJwWcmogh1MKts5k6hFMFaRUwRlJROUMU2dMf3CHmeVZOu0ekm0xDQKI\nBW40xLZKKIrGxHVRTZvADzgcbuJOBsgipVKcp98OKeUKeM6Yia8R9npYVpZqrkApV0AJZcLYw4kc\nBuMxumYwP9tgd2eXubkSGVHFVC18X/DwRx5meKtLlKoEg01mSzVC30cz8rS7+yzPrNP2NgmmMXbW\nRDdBKBZ2Nk+cHjFujljML+Ht9hk5AxpLixw2t8mrFiJMqBXniJMAzYioaiUC/6cIcPEz8vu///vi\nj//4j8WZM2fE0dGREEKIw8NDcebMGSGEEM8++6x49tln37r+6aefFt/73vd+6B4bGxsCOG7H7bi9\ng+3jH//4j43pt913wPM8kiQhl8vhui5PPfUUv/d7v8e3vvUtKpUKX/7yl7l8+TLD4ZDLly9z/fp1\nvvCFL/Dyyy9zcHDAE088wd27d39ib+CYY45593jb4UCr1eIzn/kMAHEc8xu/8Rs89dRTPPLII3zu\nc5/jL//yL1lZWeFv/uZvADh37hyf+9znOHfuHKqq8ud//ufHBnDMMQ8w78oORMccc8yDwzueMfjc\nc8+xvr7O2toaX/3qV9/px/9YfvM3f5N6vc6FCxfeOvfzSob632Jvb49PfOITnD9/noceeog/+7M/\ne6B1+77PY489xsWLFzl37hy/+7u/+0Dr/Y8kScKlS5f41Kc+Bbw3NP9M/KwTg/8T4jgWJ0+eFFtb\nWyIMQ7GxsSGuX7/+Tkr4sbzwwgvi1VdfFQ899NBb5770pS+Jr371q0IIIS5fviy+/OUvCyGEuHbt\nmtjY2BBhGIqtrS1x8uRJkSTJO6756OhIXLlyRQghxGQyEadPnxbXr19/oHW7riuEECKKIvHYY4+J\nF1988YHW+wP+5E/+RHzhC18Qn/rUp4QQD/678bPyjprAd77zHfH000+/dfyfVxLeTba2tn7IBM6c\nOSOazaYQ4n7A/WD14ytf+Yq4fPnyW9c9/fTT4rvf/e47K/bH8OlPf1p885vffE/odl1XPPLII+Lq\n1asPvN69vT3x+OOPi29/+9viV3/1V4UQ77134+14R4cDBwcHLC4uvnX8dolE7yY/r2Sod4Lt7W2u\nXLnCY4899kDrTtOUixcvUq/X3xrKPMh6AX7nd36HP/qjP0KW/z1UHnTNPyvvqAm8V1cJ/ifJUP/b\nOI7DZz/7Wf70T/+UXO6Hy0s/aLplWea1115jf3+fF154gX/6wf70/0HPg6T37/7u75iZmeHSpUs/\ndkvvH2h6kDT/d3hHTaDRaLC3t/fW8d7e3g8554NEvV6n2bxfluvo6IiZmRngR//D/v4+jUbjXdEY\nRRGf/exneeaZZ/i1X/s14L2hu1Ao8Cu/8iu88sorD7Te73znO3zjG99gdXWVz3/+83z729/mmWee\neaA1/7d4J8ceURSJEydOiK2tLREEwQMzMSjEj84JfOlLX3prfPfss8/+yORPEARic3NTnDhxQqRp\n+o7rTdNUPPPMM+K3f/u3f+j8g6q70+mIwWAghBDC8zzxsY99THzrW996YPX+Z55//vm35gTeK5p/\nWt5RExBCiL//+78Xp0+fFidPnhRf+cpX3unH/1h+/dd/XczNzQlN08TCwoL4q7/6K9Hr9cTjjz8u\n1tbWxJNPPvnWCyyEEH/wB38gTp48Kc6cOSOee+65d0Xziy++KCRJEhsbG+LixYvi4sWL4h/+4R8e\nWN1vvPGGuHTpktjY2BAXLlwQf/iHfyiEEA+s3v/M888//9bqwHtF80/LcbLQMce8z3nXy4sdc8wx\n7y7HJnDMMe9zjk3gmGPe5xybwDHHvM85NoFjjnmfc2wCxxzzPufYBI455n3OsQkcc8z7nP8P9tCE\nVcMl27kAAAAASUVORK5CYII=\n", "text": [ "<matplotlib.figure.Figure at 0x1072b00d0>" ] } ], "prompt_number": 9 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Remove the temp directory to clean up." ] }, { "cell_type": "code", "collapsed": false, "input": [ "import shutil\n", "shutil.rmtree('_temp')" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 10 } ], "metadata": {} } ] }
bsd-2-clause
yidongxiainl/lammps
python/examples/pylammps/interface_usage.ipynb
17
9845
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Using LAMMPS with iPython and Jupyter" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "LAMMPS can be run interactively using iPython easily. This tutorial shows how to set this up." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Installation" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "1. Download the latest version of LAMMPS into a folder (we will calls this `$LAMMPS_DIR` from now on)\n", "2. Compile LAMMPS as a shared library and enable exceptions and PNG support\n", " ```bash\n", " cd $LAMMPS_DIR/src\n", " make mpi mode=shlib LMP_INC=\"-DLAMMPS_PNG -DLAMMPS_EXCEPTIONS\" JPG_LIB=\"-lpng\"\n", " ```\n", "\n", "3. Create a python virtualenv\n", " ```bash\n", " virtualenv testing\n", " source testing/bin/activate\n", " ```\n", "\n", "4. Inside the virtualenv install the lammps package\n", " ```\n", " (testing) cd $LAMMPS_DIR/python\n", " (testing) python install.py\n", " (testing) cd # move to your working directory\n", " ```\n", "\n", "5. Install jupyter and ipython in the virtualenv\n", " ```bash\n", " (testing) pip install ipython jupyter\n", " ```\n", "\n", "6. Run jupyter notebook\n", " ```bash\n", " (testing) jupyter notebook\n", " ```" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from lammps import IPyLammps" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "L = IPyLammps()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# 3d Lennard-Jones melt\n", "\n", "L.units(\"lj\")\n", "L.atom_style(\"atomic\")\n", "L.atom_modify(\"map array\")\n", "\n", "L.lattice(\"fcc\", 0.8442)\n", "L.region(\"box block\", 0, 4, 0, 4, 0, 4)\n", "L.create_box(1, \"box\")\n", "L.create_atoms(1, \"box\")\n", "L.mass(1, 1.0)\n", "\n", "L.velocity(\"all create\", 1.44, 87287, \"loop geom\")\n", "\n", "L.pair_style(\"lj/cut\", 2.5)\n", "L.pair_coeff(1, 1, 1.0, 1.0, 2.5)\n", "\n", "L.neighbor(0.3, \"bin\")\n", "L.neigh_modify(\"delay 0 every 20 check no\")\n", "\n", "L.fix(\"1 all nve\")\n", "\n", "L.variable(\"fx atom fx\")\n", "\n", "L.run(10)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "L.image(zoom=1)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Queries about LAMMPS simulation" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "L.system" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "L.system.natoms" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "L.communication" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "L.fixes" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "L.computes" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "L.dumps" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "L.groups" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Working with LAMMPS Variables" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "L.variable(\"a index 2\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "L.variables" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "L.variable(\"t equal temp\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "L.variables" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import sys\n", "\n", "if sys.version_info < (3, 0):\n", " # In Python 2 'print' is a restricted keyword, which is why you have to use the lmp_print function instead.\n", " x = float(L.lmp_print('\"${a}\"'))\n", "else:\n", " # In Python 3 the print function can be redefined.\n", " # x = float(L.print('\"${a}\"')\")\n", " \n", " # To avoid a syntax error in Python 2 executions of this notebook, this line is packed into an eval statement\n", " x = float(eval(\"L.print('\\\"${a}\\\"')\"))\n", "x" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "L.variables['t'].value" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "L.eval(\"v_t/2.0\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "L.variable(\"b index a b c\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "L.variables['b'].value" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "L.eval(\"v_b\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "L.variables['b'].definition" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "L.variable(\"i loop 10\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "L.variables['i'].value" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "L.next(\"i\")\n", "L.variables['i'].value" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "L.eval(\"ke\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Accessing Atom data" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "L.atoms[0]" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "[x for x in dir(L.atoms[0]) if not x.startswith('__')]" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "L.atoms[0].position" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "L.atoms[0].id" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "L.atoms[0].velocity" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "L.atoms[0].force" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "L.atoms[0].type" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "L.variables['fx'].value" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Accessing thermo data" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "L.runs" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "L.runs[0]" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "L.runs[0].thermo" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "L.runs[0].thermo" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Saving session to as LAMMPS input file" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "L.write_script(\"in.output\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "dir(L.runs[0].thermo)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.2" } }, "nbformat": 4, "nbformat_minor": 1 }
gpl-2.0
dogwood008/DeepFX
histdata_converter.ipynb
1
4445
{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# histdata.comでDLした1分足のデータを任意の足に変換する\n", "\n", "# http://www.histdata.com/download-free-forex-historical-data/?/ascii/1-minute-bar-quotes/usdjpy/2017/10" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np\n", "from hist_data import HistData, BitcoinHistData" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "code_folding": [] }, "outputs": [], "source": [ "def get_new_index(old_dataframe, freq='5min'):\n", " start = hd.data()[0:1].index[0]\n", " end = hd.data()[-1:].index[0]\n", " new_index = pd.date_range(start, end, None, freq)\n", " return new_index\n", "\n", "def create_dataframe(dataarray):\n", " new_df = pd.DataFrame.from_records(dataarray,\\\n", " index=['Date'], columns=['Date', 'Open', 'High', 'Low', 'Close', 'Volume'])\n", " return new_df\n", "\n", "def create_new_dataarray(hist_data, new_index, i):\n", " old_dataframe = hist_data.data()\n", " start = new_index[i].to_pydatetime()\n", " end = new_index[i+1].to_pydatetime()\n", " slice = old_dataframe.loc[start:end][:-1]\n", " if len(slice) is 0:\n", " return\n", " open = slice.ix[0:1]['Open'][0]\n", " high = max(slice['High'])\n", " low = min(slice['Low'])\n", " close = slice.ix[-1:]['Close'][0]\n", " if type(hist_data) == HistData:\n", " volume = slice.sum()['Volume']\n", " elif type(hist_data) == BitcoinHistData:\n", " volume = slice.sum()['Volume_(BTC)']\n", " return np.array([start, open, high, low, close, volume])\n", "\n", "def create_new_dataframe(hist_data, freq='5min'):\n", " old_dataframe = hist_data.data()\n", " new_index = get_new_index(old_dataframe, freq)\n", " datalist = [create_new_dataarray(hist_data, new_index, i) for i in range(len(new_index) - 1)]\n", " none_removed_array = np.array([x for x in datalist if x is not None])\n", " new_df = create_dataframe(none_removed_array)\n", " return new_df\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "scrolled": false }, "outputs": [], "source": [ "if False:\n", " read_filepath = 'historical_data/DAT_ASCII_USDJPY_M1_201710.csv'\n", " write_filepath = 'historical_data/DAT_ASCII_USDJPY_M1_201710_h1.csv'\n", " hd = HistData(read_filepath)\n", " new_df = create_new_dataframe(hd, freq='1h')\n", " new_df.to_csv(write_filepath, sep=';', header=['Open', 'High', 'Low', 'Close', 'Volume'])" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "header is included\n" ] } ], "source": [ "if True:\n", " read_filepath = 'historical_data/coincheckJPY_1-min_data_2014-10-31_to_2017-10-20.csv'\n", " write_filepath = 'historical_data/coincheckJPY_1-min_data_2014-10-31_to_2017-10-20_h1.csv'\n", " hd = BitcoinHistData(read_filepath)\n", " new_df = create_new_dataframe(hd, freq='1h')\n", " new_df.to_csv(write_filepath, sep=';', header=['Open', 'High', 'Low', 'Close', 'Volume'])" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.3" }, "toc": { "nav_menu": {}, "number_sections": true, "sideBar": true, "skip_h1_title": false, "toc_cell": false, "toc_position": {}, "toc_section_display": "block", "toc_window_display": false } }, "nbformat": 4, "nbformat_minor": 2 }
mit
regardscitoyens/sunshine-data
exploitations/rpps/rpps.ipynb
1
17986
{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import pandas as pd" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [], "source": [ "df = pd.read_csv('~/Downloads/exports-etalab-2017.04.22/declaration_avantage_2017_04_22_04_00.csv', delimiter=';', dtype=str)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>entreprise_identifiant</th>\n", " <th>denomination_sociale</th>\n", " <th>ligne_identifiant</th>\n", " <th>ligne_rectification</th>\n", " <th>benef_categorie_code</th>\n", " <th>categorie</th>\n", " <th>benef_nom</th>\n", " <th>benef_prenom</th>\n", " <th>benef_qualite_code</th>\n", " <th>qualite</th>\n", " <th>...</th>\n", " <th>benef_etablissement_codepostal</th>\n", " <th>benef_etablissement_ville</th>\n", " <th>benef_denomination_sociale</th>\n", " <th>benef_objet_social</th>\n", " <th>ligne_type</th>\n", " <th>avant_date_signature</th>\n", " <th>avant_montant_ttc</th>\n", " <th>avant_nature</th>\n", " <th>avant_convention_lie</th>\n", " <th>semestre</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>SQZVJHFY</td>\n", " <td>PFIZER SAS</td>\n", " <td>2014103500</td>\n", " <td>N</td>\n", " <td>[PRS]</td>\n", " <td>Professionnel de santé</td>\n", " <td>LAURENT</td>\n", " <td>PHILIPPE</td>\n", " <td>[10]</td>\n", " <td>Médecin</td>\n", " <td>...</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>[A]</td>\n", " <td>04/04/2014</td>\n", " <td>76</td>\n", " <td>REPAS</td>\n", " <td>NaN</td>\n", " <td>S1</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>MBZJSQUV</td>\n", " <td>GEDEON RICHTER France - Division Santé de la F...</td>\n", " <td>20150760</td>\n", " <td>N</td>\n", " <td>[PRS]</td>\n", " <td>Professionnel de santé</td>\n", " <td>ANANI</td>\n", " <td>VALENTIN</td>\n", " <td>[10]</td>\n", " <td>Médecin</td>\n", " <td>...</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>[A]</td>\n", " <td>06/05/2015</td>\n", " <td>29</td>\n", " <td>REPAS</td>\n", " <td>NaN</td>\n", " <td>S1</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>LQQNVAGG</td>\n", " <td>DENTALINOV</td>\n", " <td>MANUEL_139614</td>\n", " <td>N</td>\n", " <td>[PRS]</td>\n", " <td>Professionnel de santé</td>\n", " <td>CHOURAQUI</td>\n", " <td>JEAN FRANCOIS</td>\n", " <td>[40]</td>\n", " <td>Chirurgien-dentiste</td>\n", " <td>...</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>[A]</td>\n", " <td>24/02/2015</td>\n", " <td>56</td>\n", " <td>REPAS</td>\n", " <td>FORMATION JOURNEE NUMERIQUE 4 FEV 15</td>\n", " <td>S1</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>QUDWAYXU</td>\n", " <td>Laboratoires Lohmann &amp; Rauscher</td>\n", " <td>S12014_CPLT102</td>\n", " <td>N</td>\n", " <td>[PRS]</td>\n", " <td>Professionnel de santé</td>\n", " <td>MATHIS</td>\n", " <td>FREDERIC</td>\n", " <td>[01]</td>\n", " <td>Préparateur en pharmacie et préparateur en pha...</td>\n", " <td>...</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>[A]</td>\n", " <td>13/03/2014</td>\n", " <td>15</td>\n", " <td>REPAS</td>\n", " <td>NaN</td>\n", " <td>S1</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>CLQGPUAY</td>\n", " <td>LABORATOIRES URGO</td>\n", " <td>16526</td>\n", " <td>N</td>\n", " <td>[PRS]</td>\n", " <td>Professionnel de santé</td>\n", " <td>PIMONT</td>\n", " <td>Marie Noelle</td>\n", " <td>[60]</td>\n", " <td>Infirmier</td>\n", " <td>...</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>[A]</td>\n", " <td>02/04/2015</td>\n", " <td>28</td>\n", " <td>REPAS</td>\n", " <td>NaN</td>\n", " <td>S1</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "<p>5 rows × 36 columns</p>\n", "</div>" ], "text/plain": [ " entreprise_identifiant denomination_sociale \\\n", "0 SQZVJHFY PFIZER SAS \n", "1 MBZJSQUV GEDEON RICHTER France - Division Santé de la F... \n", "2 LQQNVAGG DENTALINOV \n", "3 QUDWAYXU Laboratoires Lohmann & Rauscher \n", "4 CLQGPUAY LABORATOIRES URGO \n", "\n", " ligne_identifiant ligne_rectification benef_categorie_code \\\n", "0 2014103500 N [PRS] \n", "1 20150760 N [PRS] \n", "2 MANUEL_139614 N [PRS] \n", "3 S12014_CPLT102 N [PRS] \n", "4 16526 N [PRS] \n", "\n", " categorie benef_nom benef_prenom benef_qualite_code \\\n", "0 Professionnel de santé LAURENT PHILIPPE [10] \n", "1 Professionnel de santé ANANI VALENTIN [10] \n", "2 Professionnel de santé CHOURAQUI JEAN FRANCOIS [40] \n", "3 Professionnel de santé MATHIS FREDERIC [01] \n", "4 Professionnel de santé PIMONT Marie Noelle [60] \n", "\n", " qualite ... \\\n", "0 Médecin ... \n", "1 Médecin ... \n", "2 Chirurgien-dentiste ... \n", "3 Préparateur en pharmacie et préparateur en pha... ... \n", "4 Infirmier ... \n", "\n", " benef_etablissement_codepostal benef_etablissement_ville \\\n", "0 NaN NaN \n", "1 NaN NaN \n", "2 NaN NaN \n", "3 NaN NaN \n", "4 NaN NaN \n", "\n", " benef_denomination_sociale benef_objet_social ligne_type \\\n", "0 NaN NaN [A] \n", "1 NaN NaN [A] \n", "2 NaN NaN [A] \n", "3 NaN NaN [A] \n", "4 NaN NaN [A] \n", "\n", " avant_date_signature avant_montant_ttc avant_nature \\\n", "0 04/04/2014 76 REPAS \n", "1 06/05/2015 29 REPAS \n", "2 24/02/2015 56 REPAS \n", "3 13/03/2014 15 REPAS \n", "4 02/04/2015 28 REPAS \n", "\n", " avant_convention_lie semestre \n", "0 NaN S1 \n", "1 NaN S1 \n", "2 FORMATION JOURNEE NUMERIQUE 4 FEV 15 S1 \n", "3 NaN S1 \n", "4 NaN S1 \n", "\n", "[5 rows x 36 columns]" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.head()" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>identifiant_type</th>\n", " <th>benef_identifiant_valeur</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>RPPS</td>\n", " <td>10002808250</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>RPPS</td>\n", " <td>10002259124</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>AUTRE</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>AUTRE</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>AUTRE</td>\n", " <td>NaN</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " identifiant_type benef_identifiant_valeur\n", "0 RPPS 10002808250\n", "1 RPPS 10002259124\n", "2 AUTRE NaN\n", "3 AUTRE NaN\n", "4 AUTRE NaN" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df[['identifiant_type', 'benef_identifiant_valeur']].head()" ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "0.71668428788702609" ] }, "execution_count": 25, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# % de RPPS dans le type d'identifiant\n", "total_count = df.shape[0]\n", "rpps_id_count = (df['identifiant_type'] == 'RPPS').sum()\n", "rpps_id_count / total_count" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "0.99989534944681957" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# % d'avantage sans RPPS\n", "df[df['identifiant_type'] == 'RPPS']['benef_identifiant_valeur'].notnull().sum() / rpps_id_count" ] }, { "cell_type": "code", "execution_count": 41, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "total 6893204\n", "identifiant_type\n", "RPPS 0.716684\n", "AUTRE 0.271417\n", "ORDRE 0.010217\n", "SIREN 0.001605\n", "FINESS 0.000076\n", "Name: identifiant_type, dtype: float64\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/Users/fmassot/Envs/RC3/lib/python3.4/site-packages/ipykernel/__main__.py:2: FutureWarning: sort is deprecated, use sort_values(inplace=True) for INPLACE sorting\n", " from ipykernel import kernelapp as app\n" ] } ], "source": [ "identifiant_type_count = df.groupby('identifiant_type').identifiant_type.count()\n", "identifiant_type_count.sort(ascending=False)\n", "print('total', total_count)\n", "print(identifiant_type_count / total_count)" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "0.49759852052187947" ] }, "execution_count": 23, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# % d'identifiant AUTRE non nul\n", "df[df['identifiant_type'] == 'AUTRE'].benef_identifiant_valeur.notnull().sum() / identifiant_type_count.AUTRE" ] }, { "cell_type": "code", "execution_count": 42, "metadata": { "collapsed": false }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/Users/fmassot/Envs/RC3/lib/python3.4/site-packages/ipykernel/__main__.py:3: FutureWarning: sort is deprecated, use sort_values(inplace=True) for INPLACE sorting\n", " app.launch_new_instance()\n" ] }, { "data": { "text/plain": [ "qualite\n", "Infirmier 0.039359\n", "Médecin 0.037760\n", "Préparateur en pharmacie et préparateur en pharmacie hospitalière 0.013506\n", "Pharmacien 0.004212\n", "Manipulateur d’électroradiologie médicale 0.003823\n", "Audioprothésiste 0.002916\n", "Opticien-lunetier 0.002871\n", "Chirurgien-dentiste 0.002149\n", "Technicien de laboratoire médical 0.001552\n", "Aide soignant 0.001439\n", "Prothésiste et orthésiste pour l’appareillage des personnes handicapées 0.000991\n", "Diététicien 0.000909\n", "Orthoptiste 0.000575\n", "Masseur-kinésithérapeute 0.000568\n", "Sage-femme 0.000415\n", "Auxiliaire de puériculture 0.000252\n", "Orthophoniste 0.000215\n", "Pédicure-podologue 0.000068\n", "Ergothérapeute 0.000054\n", "Psychomotricien 0.000023\n", "Editeur de presse 0.000006\n", "Ambulancier 0.000006\n", "Name: qualite, dtype: float64" ] }, "execution_count": 42, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# On regarde parmi les nuls quels sont les types de professionnel \n", "autre_with_null_id_by_qualite_count = df[(df.identifiant_type == 'AUTRE') & (df.benef_identifiant_valeur.isnull())].groupby('qualite').qualite.count()\n", "autre_with_null_id_by_qualite_count.sort(ascending=False)\n", "autre_with_null_id_by_qualite_count / total_count" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.4.1" } }, "nbformat": 4, "nbformat_minor": 1 }
agpl-3.0
VictorQuintana91/Thesis
notebooks/sample_scripts/test_apriori_association_rules.ipynb
1
3537
{ "cells": [ { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Collecting apyori\n", " Downloading apyori-1.1.1.tar.gz\n", "Building wheels for collected packages: apyori\n", " Running setup.py bdist_wheel for apyori ... \u001b[?25ldone\n", "\u001b[?25h Stored in directory: /Users/falehalrashidi/Library/Caches/pip/wheels/fc/a6/7b/9a3b9a1eb6034c23f1f6b8ff65593ded70afa3ff1a6e0e32e2\n", "Successfully built apyori\n", "Installing collected packages: apyori\n", "Successfully installed apyori-1.1.1\n", "\u001b[33mYou are using pip version 9.0.1, however version 9.0.2 is available.\n", "You should consider upgrading via the 'pip install --upgrade pip' command.\u001b[0m\n" ] } ], "source": [ "!pip install apyori" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Collecting pip\n", " Downloading pip-9.0.2-py2.py3-none-any.whl (1.4MB)\n", "\u001b[K 100% |████████████████████████████████| 1.4MB 1.2MB/s ta 0:00:01\n", "\u001b[?25hInstalling collected packages: pip\n", " Found existing installation: pip 9.0.1\n", " Uninstalling pip-9.0.1:\n", " Successfully uninstalled pip-9.0.1\n", "Successfully installed pip-9.0.2\n" ] } ], "source": [ "!pip install --upgrade pip" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [], "source": [ "from apyori import apriori\n", "\n", "transactions = [\n", " ['beer', 'nuts', 'sugar'],\n", " ['beer', 'cheese', 'sugar'],\n", " ['beer', 'cheese'],\n", " ['beer', 'cheese', 'sugar'],\n", "]\n", "results = apriori(transactions)" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "ename": "AttributeError", "evalue": "'generator' object has no attribute 'printResults'", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m<ipython-input-16-630f701587d7>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mresults\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mprintResults\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", "\u001b[0;31mAttributeError\u001b[0m: 'generator' object has no attribute 'printResults'" ] } ], "source": [ "results.printResults()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.2" } }, "nbformat": 4, "nbformat_minor": 2 }
mit
openai/openai-python
examples/finetuning/olympics-1-collect-data.ipynb
1
33676
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# 1. Collect Wikipedia data about Olympic Games 2020\n", "\n", "The idea of this project is to create a question answering model, based on a few paragraphs of provided text. Base GPT-3 models do a good job at answering questions when the answer is contained within the paragraph, however if the answer isn't contained, the base models tend to try their best to answer anyway, often leading to confabulated answers. \n", "\n", "To create a model which answers questions only if there is sufficient context for doing so, we first create a dataset of questions and answers based on paragraphs of text. In order to train the model to answer only when the answer is present, we also add adversarial examples, where the question doesn't match the context. In those cases, we ask the model to output \"No sufficient context for answering the question\". \n", "\n", "We will perform this task in three notebooks:\n", "1. The first (this) notebook focuses on collecting recent data, which GPT-3 didn't see during it's pre-training. We picked the topic of Olympic Games 2020 (which actually took place in the summer of 2021), and downloaded 713 unique pages. We organized the dataset by individual sections, which will serve as context for asking and answering the questions.\n", "2. The [second notebook](olympics-2-create-qa.ipynb) will utilize Davinci-instruct to ask a few questions based on a Wikipedia section, as well as answer those questions, based on that section.\n", "3. The [third notebook](olympics-3-train-qa.ipynb) will utilize the dataset of context, question and answer pairs to additionally create adversarial questions and context pairs, where the question was not generated on that context. In those cases the model will be prompted to answer \"No sufficient context for answering the question\". We will also train a discriminator model, which predicts whether the question can be answered based on the context or not." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 1.1 Data extraction using the wikipedia API\n", "Extracting the data will take about half an hour, and processing will likely take about as much." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "909" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import pandas as pd\n", "import wikipedia\n", "\n", "\n", "def filter_olympic_2020_titles(titles):\n", " \"\"\"\n", " Get the titles which are related to Olympic games hosted in 2020, given a list of titles\n", " \"\"\"\n", " titles = [title for title in titles if '2020' in title and 'olympi' in title.lower()]\n", " \n", " return titles\n", "\n", "def get_wiki_page(title):\n", " \"\"\"\n", " Get the wikipedia page given a title\n", " \"\"\"\n", " try:\n", " return wikipedia.page(title)\n", " except wikipedia.exceptions.DisambiguationError as e:\n", " return wikipedia.page(e.options[0])\n", " except wikipedia.exceptions.PageError as e:\n", " return None\n", "\n", "def recursively_find_all_pages(titles, titles_so_far=set()):\n", " \"\"\"\n", " Recursively find all the pages that are linked to the Wikipedia titles in the list\n", " \"\"\"\n", " all_pages = []\n", " \n", " titles = list(set(titles) - titles_so_far)\n", " titles = filter_olympic_2020_titles(titles)\n", " titles_so_far.update(titles)\n", " for title in titles:\n", " page = get_wiki_page(title)\n", " if page is None:\n", " continue\n", " all_pages.append(page)\n", "\n", " new_pages = recursively_find_all_pages(page.links, titles_so_far)\n", " for pg in new_pages:\n", " if pg.title not in [p.title for p in all_pages]:\n", " all_pages.append(pg)\n", " titles_so_far.update(page.links)\n", " return all_pages\n", "\n", "\n", "pages = recursively_find_all_pages([\"2020 Summer Olympics\"])\n", "len(pages)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 1.2 Filtering the Wikipedia pages and splitting them into sections by headings\n", "We remove sections unlikely to contain textual information, and ensure that each section is not longer than the token limit" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "('Bermuda at the 2020 Summer Olympics',\n", " 'Equestrian',\n", " \"Bermuda entered one dressage rider into the Olympic competition by finishing in the top four, outside the group selection, of the individual FEI Olympic Rankings for Groups D and E (North, Central, and South America), marking the country's recurrence to the sport after an eight-year absence. The quota was later withdrawn, following an injury of Annabelle Collins' main horse Joyero and a failure to obtain minimum eligibility requirements (MER) aboard a new horse Chuppy Checker.\",\n", " 104)" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "\n", "import re\n", "from typing import Set\n", "from transformers import GPT2TokenizerFast\n", "\n", "import numpy as np\n", "from nltk.tokenize import sent_tokenize\n", "\n", "tokenizer = GPT2TokenizerFast.from_pretrained(\"gpt2\")\n", "\n", "def count_tokens(text: str) -> int:\n", " \"\"\"count the number of tokens in a string\"\"\"\n", " return len(tokenizer.encode(text))\n", "\n", "def reduce_long(\n", " long_text: str, long_text_tokens: bool = False, max_len: int = 590\n", ") -> str:\n", " \"\"\"\n", " Reduce a long text to a maximum of `max_len` tokens by potentially cutting at a sentence end\n", " \"\"\"\n", " if not long_text_tokens:\n", " long_text_tokens = count_tokens(long_text)\n", " if long_text_tokens > max_len:\n", " sentences = sent_tokenize(long_text.replace(\"\\n\", \" \"))\n", " ntokens = 0\n", " for i, sentence in enumerate(sentences):\n", " ntokens += 1 + count_tokens(sentence)\n", " if ntokens > max_len:\n", " return \". \".join(sentences[:i][:-1]) + \".\"\n", "\n", " return long_text\n", "\n", "discard_categories = ['See also', 'References', 'External links', 'Further reading', \"Footnotes\",\n", " \"Bibliography\", \"Sources\", \"Citations\", \"Literature\", \"Footnotes\", \"Notes and references\",\n", " \"Photo gallery\", \"Works cited\", \"Photos\", \"Gallery\", \"Notes\", \"References and sources\",\n", " \"References and notes\",]\n", "\n", "\n", "def extract_sections(\n", " wiki_text: str,\n", " title: str,\n", " max_len: int = 1500,\n", " discard_categories: Set[str] = discard_categories,\n", ") -> str:\n", " \"\"\"\n", " Extract the sections of a Wikipedia page, discarding the the references and other low information sections\n", " \"\"\"\n", " if len(wiki_text) == 0:\n", " return []\n", "\n", " # find all headings and the coresponding contents\n", " headings = re.findall(\"==+ .* ==+\", wiki_text)\n", " for heading in headings:\n", " wiki_text = wiki_text.replace(heading, \"==+ !! ==+\")\n", " contents = wiki_text.split(\"==+ !! ==+\")\n", " contents = [c.strip() for c in contents]\n", " assert len(headings) == len(contents) - 1\n", "\n", " cont = contents.pop(0).strip()\n", " outputs = [(title, \"Summary\", cont, count_tokens(cont)+4)]\n", " \n", " # discard the discard categories, accounting for a tree structure\n", " max_level = 100\n", " keep_group_level = max_level\n", " remove_group_level = max_level\n", " nheadings, ncontents = [], []\n", " for heading, content in zip(headings, contents):\n", " plain_heading = \" \".join(heading.split(\" \")[1:-1])\n", " num_equals = len(heading.split(\" \")[0])\n", " if num_equals <= keep_group_level:\n", " keep_group_level = max_level\n", "\n", " if num_equals > remove_group_level:\n", " if (\n", " num_equals <= keep_group_level\n", " ):\n", " continue\n", " keep_group_level = max_level\n", " if plain_heading in discard_categories:\n", " remove_group_level = num_equals\n", " keep_group_level = max_level\n", " continue\n", " nheadings.append(heading.replace(\"=\", \"\").strip())\n", " ncontents.append(content)\n", " remove_group_level = max_level\n", "\n", " # count the tokens of each section\n", " ncontent_ntokens = [\n", " count_tokens(c)\n", " + 3\n", " + count_tokens(\" \".join(h.split(\" \")[1:-1]))\n", " - (1 if len(c) == 0 else 0)\n", " for h, c in zip(nheadings, ncontents)\n", " ]\n", "\n", " # Create a tuple of (title, section_name, content, number of tokens)\n", " outputs += [(title, h, c, t) if t<max_len \n", " else (title, h, reduce_long(c, max_len), count_tokens(reduce_long(c,max_len))) \n", " for h, c, t in zip(nheadings, ncontents, ncontent_ntokens)]\n", " \n", " return outputs\n", "\n", "# Example page being processed into sections\n", "bermuda_page = get_wiki_page('Bermuda at the 2020 Summer Olympics')\n", "ber = extract_sections(bermuda_page.content, bermuda_page.title)\n", "\n", "# Example section\n", "ber[-1]\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 1.2.1 We create a dataset and filter out any sections with fewer than 40 tokens, as those are unlikely to contain enough context to ask a good question." ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Token indices sequence length is longer than the specified maximum sequence length for this model (1060 > 1024). Running this sequence through the model will result in indexing errors\n" ] }, { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>title</th>\n", " <th>heading</th>\n", " <th>content</th>\n", " <th>tokens</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>2020 Summer Olympics</td>\n", " <td>Summary</td>\n", " <td>The 2020 Summer Olympics (Japanese: 2020年夏季オリン...</td>\n", " <td>713</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>2020 Summer Olympics</td>\n", " <td>Host city selection</td>\n", " <td>The International Olympic Committee (IOC) vote...</td>\n", " <td>126</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>2020 Summer Olympics</td>\n", " <td>Impact of the COVID-19 pandemic</td>\n", " <td>In January 2020, concerns were raised about th...</td>\n", " <td>369</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>2020 Summer Olympics</td>\n", " <td>Qualifying event cancellation and postponement</td>\n", " <td>Concerns about the pandemic began to affect qu...</td>\n", " <td>298</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>2020 Summer Olympics</td>\n", " <td>Effect on doping tests</td>\n", " <td>Mandatory doping tests were being severely res...</td>\n", " <td>163</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " title heading \\\n", "0 2020 Summer Olympics Summary \n", "1 2020 Summer Olympics Host city selection \n", "2 2020 Summer Olympics Impact of the COVID-19 pandemic \n", "3 2020 Summer Olympics Qualifying event cancellation and postponement \n", "4 2020 Summer Olympics Effect on doping tests \n", "\n", " content tokens \n", "0 The 2020 Summer Olympics (Japanese: 2020年夏季オリン... 713 \n", "1 The International Olympic Committee (IOC) vote... 126 \n", "2 In January 2020, concerns were raised about th... 369 \n", "3 Concerns about the pandemic began to affect qu... 298 \n", "4 Mandatory doping tests were being severely res... 163 " ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "res = []\n", "for page in pages:\n", " res += extract_sections(page.content, page.title)\n", "df = pd.DataFrame(res, columns=[\"title\", \"heading\", \"content\", \"tokens\"])\n", "df = df[df.tokens>40]\n", "df = df.drop_duplicates(['title','heading'])\n", "df = df.reset_index().drop('index',axis=1) # reset index\n", "df.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Save the section dataset\n", "We will save the section dataset, for the [next notebook](olympics-2-create-qa.ipynb)" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "df.to_csv('olympics-data/olympics_sections.csv', index=False)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 1.3 (Optional) Exploring the data " ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Concerns and controversies at the 2020 Summer Olympics 51\n", "United States at the 2020 Summer Olympics 46\n", "Great Britain at the 2020 Summer Olympics 42\n", "Canada at the 2020 Summer Olympics 39\n", "Olympic Games 39\n", "Name: title, dtype: int64" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.title.value_counts().head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "There appear to be winter and summer Olympics 2020. We chose to leave a little ambiguity and noise in the dataset, even though we were interested in only Summer Olympics 2020." ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "True 3567\n", "False 305\n", "Name: title, dtype: int64" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.title.str.contains('Summer').value_counts()" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "False 3774\n", "True 98\n", "Name: title, dtype: int64" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.title.str.contains('Winter').value_counts()" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEWCAYAAACXGLsWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAAr20lEQVR4nO3deZwcVbn/8c+XsCdI2MwNEAibelEuCBHxojgBZRfUHyhcwABRREFB8UrABRQRXABFEERZXQiIC7sIXCIqsgWBsEqAsIRNIIQEBAl5fn+c06Sm6emumUzNFJnv+/Xq11SdU8vTNdX1dNU5XaWIwMzMrJ3FBjsAMzOrPycLMzPryMnCzMw6crIwM7OOnCzMzKwjJwszM+vIyaJA0qmSvtZPy1pD0lxJw/L4FEmf7I9l5+VdLmlCfy2vF+v9lqSnJT0x0OtuiqNL0qODuP6PSHok/4/f2Q/LC0nr9kdsfVh3t3214nW99hlr9z+U9D5J91YUw1mSvlX1evqDpMMl/Wyw44AhlCwkzZD0L0lzJD0n6TpJ+0t6bRtExP4RcVTJZX2g3TQR8XBEjIiIV/sh9iMl/aJp+dtFxNkLu+xexrEGcAiwfkT8x0Cuu4a+DxyY/8d/b64czIN/by3MvirpXkkfL4xvnt97c9kcSYuX/YxFxJ8j4q29jae3Bmo9ZbRKnhHx7Yjoty+ZC2PIJIvsQxGxHLAmcCxwKHB6f69E0uL9vcyaWAN4JiKeGuxA+lMf/19rAnf2dyxvQNcCWxTGtwDuaVH2t4iYN5CBWT+LiCHxAmYAH2gq2xSYD7wjj58FfCsPrwxcAjwHPAv8mZRcf57n+RcwF/gyMBYIYCLwMOkD1ChbPC9vCnAMcCPwPHAhsGKu6wIebRUvsC3wb+CVvL7bCsv7ZB5eDPgq8BDwFHAOsHyua8QxIcf2NPCVNttp+Tz/P/PyvpqX/4H8nufnOM5qMW8X8Cjp7OMp4HFgn0L9azHn8b2BvxTGA/gscB8wBzgKWAe4Lm+z84Elm9Z1eH5PM4A9CstaivTt/2HgSeBUYJmmeQ8FngB+3uK9tNymeblzc6wvAPe3mPfaQv1c4OO5/FPAdNL+dBGwatN7XzcPvxd4BOjK4/sCdwOzgCuANZvm2z9vs+eAkwHlunWBPwGz8zY6r4f/eWMfKe6rRwF/zf+HPwIr9zDvXsC0wvhl+f/aXPbVFp+xLgr7PfB54C5g9RZ1M4DDcv0s4Exg6UL9jsCteRtcB/xXoe6dwC35vZwHTG4TwyTg/jztXcBH2nxWNgVuJu2bTwLHF+o2y3E8B9zW+F/muhVz/I/l9/J7YDjdP19zgVWBI4FfFObdifQl5bn8f/rPpm30JeD2/D8/r7GN6OF41qtjaJUH6Dq9aJEscvnDwGda7MjHkA4wS+TX+1jwIey2LBZ82M7J//RlaP0BnAm8I0/zm8ZO0LzDNq+jeYcpLK+RLPYlHYTWBkYAvyUfAAtx/DTHtSHwcnEna1ruOaREtlye9x/AxJ7ibJq3C5gHfDNvs+2BF4EVmmPO43vz+mRxIfAm4O05zqvz+1qe9OGd0LSu40kH8PeTDs5vzfUnkA7IK+b3cjFwTNO838nzLtPivfS4TQuxrttmW3SrB7YkHbA3zuv8EXBt8/SkLwePAJvm8p1zHP8JLE5KYNc1zXcJMJJ05vdPYNtcdy7wFVLiWxp4bw+xNvaR4r56P/CWvM9MAY7tYd41SQe4FfN6nsrzPFIomw1s0eIz1kXen4Cvkw7oq7Ta10ifhzuAMXm5fy0s5515ve8GhpG+GM3I23lJUsL/Ammf3IX0xaunZLEr6SC9GPBx0j41uof3/jdgrzw8AtgsD68GPEPa/xcDPpjHG+/tUtKBfIUc0/vbHAeOZMFx4i05ng/m+b5M2jeWLGyjG3P8K5K+YOzf6XhW9jXULkO18hhpwzZ7BRhN+hb3SqRrm9FhWUdGxAsR8a8e6n8eEXdExAvA14CP9VOj4h6kbzUPRMRc0jew3Zour3wjIv4VEbeRvuls2LyQHMtuwGERMSciZgDHkb49lvUK8M28zS4jfUPqzTXh70bE8xFxJ+ng8Mf8vmYDl5MODEVfi4iXI+JPpA/hxyQJ2A/4QkQ8GxFzgG/n99YwHzgiz9vq/1Vmm/bGHsAZEXFLRLycl/ceSWML0+wK/ATYLiJuzGX7k5Lc3ZEu43wb2EjSmoX5jo2I5yLiYeAaYKNc/grpYL5qRLwUEX/pRbxnRsQ/8rY5v7DMbiLiIdIXrveR9qn78jx/LZQtCdzQw3ok6Xhga2B8RPyzTUwnRcQjEfEscDSwey7fD/hJRNwQEa9Gast7mfTtfjPSwfEHeZ+8ALippxVExK8j4rGImB8R55HO2DbtYfJXgHUlrRwRcyPi+ly+J3BZRFyWl3Ml6Qxke0mjge1IB/FZOaY/tXnPRR8HLo2IKyPiFdKZ8zLAfxemOTHH/yzpC9JGhVh7ezzrxskifQt4tkX590hZ+4+SHpA0qcSyHulF/UOknXjlUlG2t2peXnHZiwOjCmXF3ksvkr4JNVs5x9S8rNV6Ecsz0f3adE/r6smTheF/tRgvLmtWTrwND5G2xSrAssDU3JnhOeAPubzhnxHxUps4ymzT3ui2vJyAnqH7tj0YOD8i7iiUrQn8sPA+ngXUNF9P/9sv52lvlHSnpH17EW+Z/aWh0W6xBenyBsBfCmU35gTZykjSwf6Y/IWgnebPz6p5eE3gkMY2yttpTK5fFZjZdGAs/l+7kfQJSbcWlvMOev6MTiR9279H0k2SdizEs2tTPO8lHazHAM9GxKwO77WV5n1oPmmblNkX+nI862ZIJwtJ7yJt6Nd948rfrA+JiLVJ1wm/KGmrRnUPi+yUqccUhtcgZfunSaeWyxbiGkb3A1un5T5G2kGLy55H9wNtGU+z4NtocVkze7mcnnR7n8DC9qhaQdLwwvgapG3xNCmxvD0iRubX8hFRPOAN1DZtubwc90p037a7Ah+WdFCh7BHg04X3MTIilomI6zqtMCKeiIhPRcSqwKeBH1fUQ6uRLN7HgmTx50LZtW3mnUVqbzhT0uYd1tP8+XksDz8CHN20jZaNiHNJ7War5bPN4ryvk8/WfgocCKwUESNJZ7dqNX1E3BcRuwNvJl3SvCD/Xx8hXUUoxjM8Io7NdStKGtlqkR3ef/M+JNI26fj57HA8K2VIJgtJb8rfAiaTrgdOazHNjpLWzf+Q2cCrpEsXkA4Ya/dh1XtKWl/SsqTr+hdE6q74D2BpSTtIWoJ0XXqpwnxPAmOL3XybnAt8QdJakkaQLlWcF73sfZJjOR84WtJy+cPzReAX7ecs7Vbgo5KWzQetif2wzG9IWlLS+0gHnV/nb1w/BU6Q9GYASatJ2qYXy13Ybdq8j5wL7CNpI0lL5eXdkC/1NTwGbAUcJOkzuexU4DBJb8/vY3lJu5YJQNKuklbPo7NIB6P5bWbpq2tJlwe3IF1+ApgGrAWMp32yICKmkC7T/VZST5d8AA6QtLqkFUltMefl8p8C+0t6t5Lh+bO0HKldYR7weUlLSPooPV9WGk7aRv8EkLQP6cyiJUl7Slol72/P5eL5pM/LhyRtI2mYpKVzt9jVI+Jx0uXUH0taIcfU6Dn2JLCSpOV7WOX5wA6StsrHiUNIl9s6fnHocDwrZagli4slzSFl96+QGkf36WHa9YCrSNfc/wb8OCKuyXXHAF/Np5hf6sX6f05q4HuC1OD4eYB8+v1Z4GekbwkvkHrrNPw6/31G0i0tlntGXva1wIPAS8DnehFX0efy+h8gnXH9Ki+/P5xA6tn1JHA28MuFXN4TpIPgY3lZ+0fEPbnuUNJp9/WSnif9L3vTdrKw2/RI4Oy8j3wsIq4itVP9hvRtdx26t6EA6TcPpIQxSdInI+J3pG+tk/P7uIN0zbuMdwE3SJpLauw/KCIe6MV7KCUi/kE6wD4REc/lsvmkxtY3UeJglq/r70v6jG7cw2S/IvXMeoDUAP+tPO/NpJ5mJ5H2h+mkzhNExL+Bj+bxZ0nX/X/bQwx3kdro/kbaRzdgQfJrZVvgzrx9fwjsFqld8BFSx4TDSdvlEeB/WXC83Yt0Bn8PqWH+4Lz+e0hfKh7I+82qhXUREfeS2kN+RDp7/hDp5wD/bhNjQ7vjWSmN3j1mZrUlaQapJ91Vgx3LUDXUzizMzKwPnCzMzKwjX4YyM7OOfGZhZmYdLZI3vFt55ZVj7NixLeteeOEFhg8f3rKubhxrNRxrNRxrNQYy1qlTpz4dEau0rIyFvOdSHV+bbLJJ9OSaa67psa5uHGs1HGs1HGs1BjJW4ObwvaHMzKyvnCzMzKwjJwszM+vIycLMzDpysjAzs46cLMzMrCMnCzMz68jJwszMOnKyMDOzjhbJ230srLGTLh2U9c44dodBWa+ZWSc+szAzs46cLMzMrCMnCzMz68jJwszMOnKyMDOzjpwszMysIycLMzPrqLJkIWlpSTdKuk3SnZK+kcvXknSDpOmSzpO0ZC5fKo9Pz/VjC8s6LJffK2mbqmI2M7PWqjyzeBnYMiI2BDYCtpW0GfAd4ISIWBeYBUzM008EZuXyE/J0SFof2A14O7At8GNJwyqM28zMmlSWLPIjXefm0SXyK4AtgQty+dnAh/PwznmcXL+VJOXyyRHxckQ8CEwHNq0qbjMze71K2ywkDZN0K/AUcCVwP/BcRMzLkzwKrJaHVwMeAcj1s4GViuUt5jEzswFQ6b2hIuJVYCNJI4HfAW+ral2S9gP2Axg1ahRTpkxpOd3cuXN7rGs4ZIN5beur0hxXmVjrwrFWw7FWw7H23oDcSDAinpN0DfAeYKSkxfPZw+rAzDzZTGAM8KikxYHlgWcK5Q3FeYrrOA04DWDcuHHR1dXVMpYpU6bQU13D3oN1I8E9urqNl4m1LhxrNRxrNRxr71XZG2qVfEaBpGWADwJ3A9cAu+TJJgAX5uGL8ji5/v8iInL5brm31FrAesCNVcVtZmavV+WZxWjg7NxzaTHg/Ii4RNJdwGRJ3wL+Dpyepz8d+Lmk6cCzpB5QRMSdks4H7gLmAQfky1tmZjZAKksWEXE78M4W5Q/QojdTRLwE7NrDso4Gju7vGM3MrBz/gtvMzDpysjAzs46cLMzMrCMnCzMz68jJwszMOnKyMDOzjpwszMysIycLMzPrqGOykLS5pOF5eE9Jx0tas/rQzMysLsqcWZwCvChpQ+AQ0m3Gz6k0KjMzq5UyyWJevqHfzsBJEXEysFy1YZmZWZ2UuTfUHEmHAXsCW0hajPTUOzMzGyLKnFl8nPQ87YkR8QTpeRLfqzQqMzOrlY5nFjlBHF8Yfxi3WZiZDSllekN9VNJ9kmZLel7SHEnPD0RwZmZWD2XaLL4LfCgi7q46GDMzq6cybRZPOlGYmQ1tZc4sbpZ0HvB7UkM3ABHx26qCMjOzeimTLN4EvAhsXSgLwMnCzGyIKNMbap+BCMTMzOqrTG+o1SX9TtJT+fUbSasPRHBmZlYPZRq4zwQuAlbNr4tzmZmZDRFlksUqEXFmRMzLr7OAVSqOy8zMaqRMsngm35p8WH7tCTxTdWBmZlYfZZLFvsDHgCeAx4FdgI6N3pLGSLpG0l2S7pR0UC4/UtJMSbfm1/aFeQ6TNF3SvZK2KZRvm8umS5rU2zdpZmYLp0xvqIeAnfqw7HnAIRFxi6TlgKmSrsx1J0TE94sTS1of2A14O6lt5CpJb8nVJwMfBB4FbpJ0UUTc1YeYzMysD3pMFpK+HBHflfQj0u8quomIz7dbcEQ8TjoTISLmSLobWK3NLDsDkyPiZeBBSdOBTXPd9Ih4IMc1OU/rZGFmNkCUnmvUokL6UERcLGlCq/qIOLv0SqSxwLXAO4AvAnsDzwM3k84+Zkk6Cbg+In6R5zkduDwvYtuI+GQu3wt4d0Qc2LSO/YD9AEaNGrXJ5MmTW8Yyd+5cRowY0TbeaTNnl31r/WqD1ZbvNl4m1rpwrNVwrNVwrK2NHz9+akSMa1XX45lFRFycB1+MiF8X6yTtWnblkkYAvwEOjojnJZ0CHEU6WzkKOI7ULrJQIuI04DSAcePGRVdXV8vppkyZQk91DXtPunRhw+mTGXt0dRsvE2tdONZqONZqONbeK9PAfVjJsteRtAQpUfyycS+piHgyIl6NiPnAT1lwqWkmMKYw++q5rKdyMzMbIO3aLLYDtgdWk3RioepNpMbrtiQJOB24OyKOL5SPzu0ZAB8B7sjDFwG/knQ8qYF7PeBGQMB6ktYiJYndgP8p9/bMzKw/tOsN9RipTWEnYGqhfA7whRLL3hzYC5gm6dZcdjiwu6SNSJehZgCfBoiIOyWdT2q4ngccEBGvAkg6ELgCGAacERF3lli/mZn1k3ZtFrcBt0n6HfBC4cA9DFiq04Ij4i+ks4Jml7WZ52jg6Bbll7Wbz8zMqlWmzeKPwDKF8WWAq6oJx8zM6qhMslg6IuY2RvLwstWFZGZmdVMmWbwgaePGiKRNgH9VF5KZmdVNmSflHQz8WtJjpDaI/wA+XmVQZmZWL2XuDXWTpLcBb81F90bEK9WGZWZmdVLmSXnLAocCB0XEHcBYSTtWHpmZmdVG2Sfl/Rt4Tx6fCXyrsojMzKx2yiSLdSLiu8ArABHxIq1/P2FmZouoMsni35KWId+mXNI6wMuVRmVmZrVSpjfUEcAfgDGSfkm6jcfeVQZlZmb1UqY31JWSbgE2I11+Oiginq48MjMzq40yvaE2B16KiEuBkcDhktasOjAzM6uPMm0WpwAvStqQ9JS7+4FzKo3KzMxqpUyymBfp2as7AydHxMnActWGZWZmdVKmgXuOpMOAPYEtJC0GLFFtWGZmVidlziw+TuoqOzEiniA91vR7lUZlZma1UqY31BPA8YXxh3GbhZnZkFLmzMLMzIY4JwszM+vIycLMzDrq2GYhaT3gGGB9YOlGeUSsXWFcZmZWI2VvUX4KMA8YT2rc/kWVQZmZWb2USRbLRMTVgCLioYg4Etih2rDMzKxOyiSLl/MP8e6TdKCkjwAjOs0kaYykayTdJelOSQfl8hUlXSnpvvx3hVwuSSdKmi7pdkkbF5Y1IU9/n6QJfXyvZmbWR2WSxUHAssDngU2AvYAyB+x5wCERsT7pjrUHSFofmARcHRHrAVfncYDtgPXyaz/SpS8krUi6Tfq7gU2BIxoJxszMBkaZH+XdlAfnAvuUXXBEPA48nofnSLobWI10j6muPNnZwBTSM753Bs7J96G6XtJISaPztFdGxLMAkq4EtgXOLRuLmZktnB6ThaQfRMTBki4mPyWvKCJ2KrsSSWOBdwI3AKNyIgF4AhiVh1cDHinM9mgu66nczMwGSLszi5/nv99fmBVIGgH8Bjg4Ip6XFjy+OyJC0usSUR/Xsx/p8hWjRo1iypQpLaebO3duj3UNh2wwrz9C6rXmuMrEWheOtRqOtRqOtfd6TBYRMTX//VNfFy5pCVKi+GVE/DYXPylpdEQ8ni8zPZXLZwJjCrOvnstmsuCyVaN8Sot4TwNOAxg3blx0dXU1TwKkA3JPdQ17T7q0bX1VZuzR1W28TKx14Vir4Vir4Vh7r8cGbknTcq+klq9OC1Y6hTgduDsiji9UXcSCBvIJwIWF8k/kXlGbAbPz5aorgK0lrZAbtrfOZWZmNkDaXYbaMf89IP9tXJbakxZtGC1sTuo5NU3SrbnscOBY4HxJE4GHgI/lusuA7YHpwIvkxvSIeFbSUUCjof2bjcZuMzMbGO0uQz0EIOmDEfHOQtWhkm5hQZfXnub/C6AeqrdqMX2wIDE1150BnNFufWZmVp0yv7OQpM0LI/9dcj4zM1tElHms6kTgDEnL5/HngH0ri8jMzGqnzI/ypgIbNpJFRMyuPCozM6uVjpeTJI2SdDowOSJmS1o/N06bmdkQUabt4SxSV9VV8/g/gIMrisfMzGqoTLJYOSLOB+YDRMQ84NVKozIzs1opkyxekLQS+bcVjR/MVRqVmZnVSpneUF8k/bp6HUl/BVYBdqk0KjMzq5UyvaFukfR+4K2kH9ndGxGvVB6ZmZnVRsdkIWlp4LPAe0mXov4s6dSIeKnq4MzMrB7KXIY6B5gD/CiP/w/pPlG7VhWUmZnVS5lk8Y78aNSGayTdVVVAZmZWP2V6Q92Se0ABIOndwM3VhWRmZnVT5sxiE+A6SQ/n8TWAeyVNI90s9r8qi87MzGqhTLLYtvIozMys1npMFpLeFBHPkxq3X8cPIDIzGzranVn8ivS0vKmkLrPFBxkFsHaFcZmZWY20e1LejvnvWs11+fnaZmY2RJS5Rfk3m8YXA35RWURmZlY7ZbrOjpF0GICkpYDfAfdVGpWZmdVKmWSxL7BBThgXA9dExJGVRmVmZrXSrjfUxoXRHwI/Af4KXCtp44i4pergzMysHtr1hjquaXwWsH4uD2DLqoIyM7N6adcbavxABmJmZvXVY5uFpD3z3y+2enVasKQzJD0l6Y5C2ZGSZkq6Nb+2L9QdJmm6pHslbVMo3zaXTZc0qe9v1czM+qrdZajh+e9yfVz2WcBJpFucF50QEd8vFkhaH9gNeDuwKnCVpLfk6pOBDwKPAjdJuigifNdbM7MB1C5ZPCnpzRHxjb4sOCKulTS25OQ7A5Mj4mXgQUnTgU1z3fSIeABA0uQ8rZOFmdkAUkS0rpAuAN4DvAhcR+oJdV1E3NFyhtbLGAtcEhHvyONHAnsDz5Nuc35IRMySdBJwfUT8Ik93OnB5Xsy2EfHJXL4X8O6IOLDFuvYD9gMYNWrUJpMnT24Z09y5cxkxYkTbuKfNnF32LfarDVZbvtt4mVjrwrFWw7FWw7G2Nn78+KkRMa5VXbsG7l0AJK1FShr/DXxa0hrATRGxfU/ztnEKcBSpN9VRpJ5V+/ZhOa3iPQ04DWDcuHHR1dXVcropU6bQU13D3pMu7Y+Qem3GHl3dxsvEWheOtRqOtRqOtfc63qI8Ih7Mv9xeJr+Wzn97LSKebAxL+ilwSR6dCYwpTLp6LqNNuZmZDZB2vaEOl3SxpOuBw4AlSQ3W/9XXbrWSRhdGPwI0LmldBOwmaal8JrMecCNwE7CepLUkLUlqBL+oL+s2M7O+a3dm8QngBdItPq4DboiI0hfzJZ0LdAErS3oUOALokrQR6TLUDODTABFxp6TzSQ3X84ADIuLVvJwDgSuAYcAZEXFnL96fmZn1g3ZtFm+TtCKpraILmCRpBHAbqaH7zHYLjojdWxSf3mb6o4GjW5RfBlzWbl1mZlattm0W+Wl4l0j6A+lZ3FuQzgb2BdomCzMzW3S0u5HgTqSzis1JP5a7k9R99hDSZSkzMxsi2p1Z7E1KDl8GpkbEvwckIjMzq512bRYfHchAzMysvso8/MjMzIY4JwszM+uo3Y/yrs5/vzNw4ZiZWR21a+AeLem/gZ3y3V5VrPRjVc3Mho52yeLrwNdI92M6vqnOj1U1MxtC2vWGugC4QNLXIuKoAYzJzMxqpsxdZ4/KP9DbIhdNiYhL2s1jZmaLlo69oSQdAxxEusnfXcBBkr5ddWBmZlYfHc8sgB2AjSJiPoCks4G/A4dXGZiZmdVH2d9ZjCwML9/TRGZmtmgqc2ZxDPB3SdeQus9uAUyqNCozM6uVMg3c50qaArwrFx0aEU9UGpWZmdVKmTMLIuJx/DhTM7Mhy/eGMjOzjpwszMyso7bJQtIwSfcMVDBmZlZPbZNFRLwK3CtpjQGKx8zMaqhMA/cKwJ2SbgReaBRGxE6VRWVmZrVSJll8rfIozMys1sr8zuJPktYE1ouIqyQtCwyrPjQzM6uLMjcS/BRwAfCTXLQa8PsS850h6SlJdxTKVpR0paT78t8VcrkknShpuqTbJW1cmGdCnv4+SRN6+f7MzKwflOk6ewCwOfA8QETcB7y5xHxnAds2lU0Cro6I9YCrWXDbkO2A9fJrP+AUSMkFOAJ4N7ApcEQjwZiZ2cApkyxejoh/N0YkLU56Ul5bEXEt8GxT8c7A2Xn4bODDhfJzIrkeGClpNLANcGVEPBsRs4AreX0CMjOziimi/XFf0neB54BPAJ8DPgvcFRFf6bhwaSxwSUS8I48/FxEj87CAWRExUtIlwLER8ZdcdzVwKNAFLB0R38rlXwP+FRHfb7Gu/UhnJYwaNWqTyZMnt4xp7ty5jBgxom3c02bO7vTWKrHBat1v6Fsm1rpwrNVwrNVwrK2NHz9+akSMa1VXpjfUJGAiMA34NHAZ8LOFDSoiQlLHM5ReLO804DSAcePGRVdXV8vppkyZQk91DXtPurS/wuqVGXt0dRsvE2tdONZqONZqONbeK9Mban5+4NENpMtP90an05GePSlpdEQ8ni8zPZXLZwJjCtOtnstmks4uiuVT+rhuMzProzK9oXYA7gdOBE4Cpkvaro/ruwho9GiaAFxYKP9E7hW1GTA73+n2CmBrSSvkhu2tc5mZmQ2gMpehjgPGR8R0AEnrAJcCl7ebSdK5pLOClSU9SurVdCxwvqSJwEPAx/LklwHbA9OBF4F9ACLiWUlHATfl6b4ZEc2N5mZmVrEyyWJOI1FkDwBzOs0UEbv3ULVVi2mD1EW31XLOAM4oEaeZmVWkx2Qh6aN58GZJlwHnk9osdmXBN30zMxsC2p1ZfKgw/CTw/jz8T2CZyiIyM7Pa6TFZRMQ+AxmImZnVV8c2C0lrkX6MN7Y4vW9RbmY2dJRp4P49cDpwMTC/0mjMzKyWyiSLlyLixMojMTOz2iqTLH4o6Qjgj8DLjcKIuKWyqMzMrFbKJIsNgL2ALVlwGSryuJmZDQFlksWuwNrF25SbmdnQUuZ5FncAIyuOw8zMaqzMmcVI4B5JN9G9zcJdZ83MhogyyeKIyqMwM7NaK/M8iz8NRCBmZlZfZX7BPYcFz9xeElgCeCEi3lRlYGZmVh9lziyWawzn52bvDGxWZVBmZlYvZXpDvSaS3wPbVBOOmZnVUZnLUB8tjC4GjANeqiwiMzOrnTK9oYrPtZgHzCBdijIzsyGiTJuFn2thZjbEtXus6tfbzBcRcVQF8ZiZWQ21O7N4oUXZcGAisBLgZGFmNkS0e6zqcY1hScsBBwH7AJOB43qaz8zMFj1t2ywkrQh8EdgDOBvYOCJmDURgZmZWHz3+zkLS94CbgDnABhFxZH8lCkkzJE2TdKukm3PZipKulHRf/rtCLpekEyVNl3S7pI37IwYzMyuv3Y/yDgFWBb4KPCbp+fyaI+n5flj3+IjYKCLG5fFJwNURsR5wdR4H2A5YL7/2A07ph3WbmVkvtGuz6NWvu/vBzkBXHj4bmAIcmsvPiYgArpc0UtLoiHh8gOMzMxuylI7BA7xS6UFgFukGhT+JiNMkPRcRI3O9gFkRMVLSJcCxEfGXXHc1cGhE3Ny0zP1IZx6MGjVqk8mTJ7dc99y5cxkxYkTb+KbNnL0wb6/PNlht+W7jZWKtC8daDcdaDcfa2vjx46cWrvZ0U+YX3FV4b0TMlPRm4EpJ9xQrIyIk9SqLRcRpwGkA48aNi66urpbTTZkyhZ7qGvaedGlvVt1vZuzR1W28TKx14Vir4Vir4Vh7b6AvNQEQETPz36eA3wGbAk9KGg2Q/z6VJ58JjCnMvnouMzOzATLgyULS8Py7DSQNB7YmPef7ImBCnmwCcGEevgj4RO4VtRkw2+0VZmYDazAuQ40CfpeaJVgc+FVE/CE/4/t8SROBh4CP5ekvA7YHpgMvkn4YaGZmA2jAk0VEPABs2KL8GWCrFuUBHDAAoQ26sU1tJYdsMG/A2k9mHLvDgKzHzN6YBqXNwszM3licLMzMrCMnCzMz68jJwszMOnKyMDOzjpwszMysIycLMzPryMnCzMw6crIwM7OOnCzMzKwjJwszM+vIycLMzDpysjAzs46cLMzMrCMnCzMz68jJwszMOnKyMDOzjgbjsapWQ81P6eutvj7Vz0/oM3tj8JmFmZl15GRhZmYdOVmYmVlHThZmZtaRk4WZmXXkZGFmZh29YbrOStoW+CEwDPhZRBw7yCFZP1jYLrt90dduvv3F3YXtjegNcWYhaRhwMrAdsD6wu6T1BzcqM7Oh441yZrEpMD0iHgCQNBnYGbhrUKMy64PenE0N9llQb7SL1WdTb3yKiMGOoSNJuwDbRsQn8/hewLsj4sDCNPsB++XRtwL39rC4lYGnKwy3PznWajjWajjWagxkrGtGxCqtKt4oZxYdRcRpwGmdppN0c0SMG4CQFppjrYZjrYZjrUZdYn1DtFkAM4ExhfHVc5mZmQ2AN0qyuAlYT9JakpYEdgMuGuSYzMyGjDfEZaiImCfpQOAKUtfZMyLizj4uruOlqhpxrNVwrNVwrNWoRaxviAZuMzMbXG+Uy1BmZjaInCzMzKyjIZMsJG0r6V5J0yVNqkE8YyRdI+kuSXdKOiiXryjpSkn35b8r5HJJOjHHf7ukjQch5mGS/i7pkjy+lqQbckzn5c4HSFoqj0/P9WMHOM6Rki6QdI+kuyW9p67bVdIX8v//DknnSlq6LttV0hmSnpJ0R6Gs19tR0oQ8/X2SJgxgrN/L+8Dtkn4naWSh7rAc672StimUV36caBVroe4QSSFp5Tw+qNu1m4hY5F+kRvH7gbWBJYHbgPUHOabRwMZ5eDngH6RbmXwXmJTLJwHfycPbA5cDAjYDbhiEmL8I/Aq4JI+fD+yWh08FPpOHPwucmod3A84b4DjPBj6Zh5cERtZxuwKrAQ8CyxS259512a7AFsDGwB2Fsl5tR2BF4IH8d4U8vMIAxbo1sHge/k4h1vXzMWApYK18bBg2UMeJVrHm8jGkTjwPASvXYbt2i6/qD0QdXsB7gCsK44cBhw12XE0xXgh8kPTL89G5bDRwbx7+CbB7YfrXphug+FYHrga2BC7JO+/ThQ/ja9s47/DvycOL5+k0QHEunw/Aaiqv3XYlJYtH8gd+8bxdt6nTdgXGNh2Ae7Udgd2BnxTKu01XZaxNdR8BfpmHu33+G9t1II8TrWIFLgA2BGawIFkM+nZtvIbKZajGh7Lh0VxWC/lywjuBG4BREfF4rnoCGJWHB/s9/AD4MjA/j68EPBcR81rE81qsuX52nn4grAX8EzgzXzL7maTh1HC7RsRM4PvAw8DjpO00lXpu14bebsfB3m8b9iV9Q4caxippZ2BmRNzWVFWbWIdKsqgtSSOA3wAHR8TzxbpIXxkGvW+zpB2BpyJi6mDHUsLipFP8UyLincALpMslr6nRdl2BdEPMtYBVgeHAtoMaVC/UZTt2IukrwDzgl4MdSyuSlgUOB74+2LG0M1SSRS1vFyJpCVKi+GVE/DYXPylpdK4fDTyVywfzPWwO7CRpBjCZdCnqh8BISY0fdhbjeS3WXL888MwAxfoo8GhE3JDHLyAljzpu1w8AD0bEPyPiFeC3pG1dx+3a0NvtOKifPUl7AzsCe+TkRpuYBivWdUhfGG7Ln7HVgVsk/UedYh0qyaJ2twuRJOB04O6IOL5QdRHQ6NkwgdSW0Sj/RO4dsRkwu3A5oFIRcVhErB4RY0nb7v8iYg/gGmCXHmJtvIdd8vQD8g00Ip4AHpH01ly0FelW9rXbrqTLT5tJWjbvD41Ya7ddC3q7Ha8Atpa0Qj6T2jqXVU7pgWlfBnaKiBeb3sNuuXfZWsB6wI0M0nEiIqZFxJsjYmz+jD1K6vzyBHXarlU2iNTpRepV8A9Sb4ev1CCe95JO4W8Hbs2v7UnXoK8G7gOuAlbM04v0AKj7gWnAuEGKu4sFvaHWJn3IpgO/BpbK5Uvn8em5fu0BjnEj4Oa8bX9P6i1Sy+0KfAO4B7gD+Dmph04ttitwLqkt5RXSAWxiX7Yjqb1gen7tM4CxTidd1298vk4tTP+VHOu9wHaF8sqPE61ibaqfwYIG7kHdrsWXb/dhZmYdDZXLUGZmthCcLMzMrCMnCzMz68jJwszMOnKyMDOzjpws7A0v36XzuML4lyQd2U/LPkvSLp2nXOj17Kp0h9xrmsrHSvqfEvPvLemk6iK0oc7JwhYFLwMfbdzWuS4Kv8IuYyLwqYgY31Q+FuiYLMyq5mRhi4J5pOcUf6G5ovnMQNLc/LdL0p8kXSjpAUnHStpD0o2Spklap7CYD0i6WdI/8n2yGs/2+J6km/JzBj5dWO6fJV1E+jV2czy75+XfIek7uezrpB9pni7pe02zHAu8T9KtSs++WFrSmXkZf5fUnFyQtIOkv0laWdLWefgWSb/O9yJD0gxJ38jl0yS9LZe/P6/r1rz85cr/G2xR5mRhi4qTgT0kLd+LeTYE9gf+E9gLeEtEbAr8DPhcYbqxwKbADsCpkpYmnQnMjoh3Ae8CPpVvHQHpXlQHRcRbiiuTtCrpuQpbkn5l/i5JH46Ib5J+cb5HRPxvU4yTgD9HxEYRcQJwAOkefhuQblN9do6nsY6P5Hm2z0VfBT4QERvndXyxsOync/kpwJdy2ZeAAyJiI+B9wL/ab0IbKpwsbJEQ6Y695wCf78VsN0XE4xHxMul2Cn/M5dNICaLh/IiYHxH3kR4y8zbSvXg+IelW0q3lVyLdYwjgxoh4sMX63gVMiXTjwMZdULfoRbyQzkB+ARAR95AelNNISlsChwI7RMQs0sNy1gf+muOcAKxZWFbj5pVTC+/3r8Dxkj4PjIwFt0q3Ic7JwhYlPyB94x9eKJtH3s8lLUZ6AlrDy4Xh+YXx+aRbnTc03xMnSPfs+Vz+xr9RRKwVEY1k88LCvImFcD/pqYuN5CHgykKM60fExML0jff7Kvn9RsSxwCeBZUhJ5m0DE7rVnZOFLTIi4lnSI0mLB8QZwCZ5eCdgiT4seldJi+V2jLVJN5+7AviM0m3mkfQWpYcstXMj8P7cljCMdBnpTx3mmUNKAA1/BvZorBNYI8cD6Szj/wHnSHo7cD2wuaR18/TD8zw9krROpLugfod0F1YnCwOcLGzRcxxQ7BX1U9IB+jbSYzP78q3/YdKB/nJg/4h4idSucRfpuQN3kB5r2bb3U6RbS08i3YL8NmBqRFzYbh7SnXNflXSbpC8APwYWkzQNOA/YO19Ga6zjHlIy+TXwJtIzvc+VdDvwNzof/A/Oje+3k+6KenmH6W2I8F1nzcysI59ZmJlZR04WZmbWkZOFmZl15GRhZmYdOVmYmVlHThZmZtaRk4WZmXX0/wFZfduL32Si2AAAAABJRU5ErkJggg==", "text/plain": [ "<Figure size 432x288 with 1 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "import pandas as pd\n", "from matplotlib import pyplot as plt\n", "\n", "df = pd.read_csv('olympics-data/olympics_sections.csv')\n", "df[['tokens']].hist()\n", "# add axis descriptions and title\n", "plt.xlabel('Number of tokens')\n", "plt.ylabel('Number of Wikipedia sections')\n", "plt.title('Distribution of number of tokens in Wikipedia sections')\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can see that the majority of section are fairly short (less than 500 tokens)." ] } ], "metadata": { "interpreter": { "hash": "be4b5d5b73a21c599de40d6deb1129796d12dc1cc33a738f7bac13269cfcafe8" }, "kernelspec": { "display_name": "Python 3.7.3 64-bit ('base': conda)", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.3" }, "orig_nbformat": 4 }, "nbformat": 4, "nbformat_minor": 2 }
mit
tensorflow/docs-l10n
site/ja/tfx/tutorials/serving/rest_simple.ipynb
1
22579
{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "MhoQ0WE77laV" }, "source": [ "##### Copyright 2020 The TensorFlow Authors." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "cellView": "form", "id": "_ckMIh7O7s6D" }, "outputs": [], "source": [ "#@title Licensed under the Apache License, Version 2.0 (the \"License\");\n", "# you may not use this file except in compliance with the License.\n", "# You may obtain a copy of the License at\n", "#\n", "# https://www.apache.org/licenses/LICENSE-2.0\n", "#\n", "# Unless required by applicable law or agreed to in writing, software\n", "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", "# See the License for the specific language governing permissions and\n", "# limitations under the License." ] }, { "cell_type": "markdown", "metadata": { "id": "jYysdyb-CaWM" }, "source": [ "# TensorFlow Serving を使用して TensorFlow モデルをトレーニングしてサービングする" ] }, { "cell_type": "markdown", "metadata": { "id": "E6FwTNtl3S4v" }, "source": [ "**注意: このノートブックは、Google Colab でのみ実行するように設計されています**。これは root アクセスのあるシステムにパッケージをインストールします。ローカルの Jupyter ノートブックで実行する場合は、注意して続行してください。\n", "\n", "注:この例は、Jupyter スタイルのノートブックで今すぐ実行できます。セットアップは必要ありません。「Google Colabで実行」をクリックするだけです\n", "\n", "<div class=\"devsite-table-wrapper\"><table class=\"tfo-notebook-buttons\" align=\"left\">\n", "<tr>\n", "<td><a target=\"_blank\" href=\"https://www.tensorflow.org/tfx/tutorials/serving/rest_simple\"> <img src=\"https://www.tensorflow.org/images/tf_logo_32px.png\">TensorFlow.org で表示</a></td>\n", "<td><a target=\"_blank\" href=\"https://colab.research.google.com/github/tensorflow/docs-l10n/blob/master/site/ja/tfx/tutorials/serving/rest_simple.ipynb\"> <img src=\"https://www.tensorflow.org/images/colab_logo_32px.png\">Google Colab で実行</a></td>\n", "<td><a target=\"_blank\" href=\"https://github.com/tensorflow/docs-l10n/blob/master/site/ja/tfx/tutorials/serving/rest_simple.ipynb\"> <img width=\"32px\" src=\"https://www.tensorflow.org/images/GitHub-Mark-32px.png\">GitHub でソースを表示</a></td>\n", "<td><a href=\"https://storage.googleapis.com/tensorflow_docs/docs-l10n/site/ja/tfx/tutorials/serving/rest_simple.ipynb\"><img src=\"https://www.tensorflow.org/images/download_logo_32px.png\">ノートブックをダウンロード</a></td>\n", "</tr>\n", "</table></div>" ] }, { "cell_type": "markdown", "metadata": { "id": "FbVhjPpzn6BM" }, "source": [ "このガイドでは、ニューラルネットワークモデルをトレーニングし、スニーカーやシャツなどの衣類の[画像](https://github.com/zalandoresearch/fashion-mnist)を分類し、トレーニングしたモデルを保存してから、[TensorFlow Serving](https://www.tensorflow.org/serving/) でサービングします。ここでは TensorFlow でのモデリングとトレーニングではなく、TensorFlow Serving に焦点が当てられているため、モデリングとトレーニングに焦点を当てた完全な例については、[基本的な分類の例](https://github.com/tensorflow/docs/blob/master/site/en/r1/tutorials/keras/basic_classification.ipynb)を参照してください。\n", "\n", "このガイドでは、高レベル API である [tf.keras](https://github.com/tensorflow/docs/blob/master/site/en/r1/guide/keras.ipynb) を使用して、TensorFlow でモデルを構築およびトレーニングします。" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "FWkuJabJSKGB" }, "outputs": [], "source": [ "import sys\n", "\n", "# Confirm that we're using Python 3\n", "assert sys.version_info.major == 3, 'Oops, not running Python 3. Use Runtime > Change runtime type'" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "dzLKpmZICaWN" }, "outputs": [], "source": [ "# TensorFlow and tf.keras\n", "print(\"Installing dependencies for Colab environment\")\n", "!pip install -Uq grpcio==1.26.0\n", "\n", "import tensorflow as tf\n", "from tensorflow import keras\n", "\n", "# Helper libraries\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "import os\n", "import subprocess\n", "\n", "print('TensorFlow version: {}'.format(tf.__version__))" ] }, { "cell_type": "markdown", "metadata": { "id": "5jAk1ZXqTJqN" }, "source": [ "## モデルの作成" ] }, { "cell_type": "markdown", "metadata": { "id": "yR0EdgrLCaWR" }, "source": [ "### Fashion-MNIST データセットをインポートする\n", "\n", "このガイドでは、[Fashion MNIST](https://github.com/zalandoresearch/fashion-mnist) データセットを使用します。このデータセットには、10 カテゴリの 70,000 のグレースケール画像が含まれています。次のように、画像は低解像度(28 x 28ピクセル)で個々の衣料品を示しています。\n", "\n", "<table>\n", " <tr><td> <img src=\"https://tensorflow.org/images/fashion-mnist-sprite.png\" alt=\"Fashion MNIST sprite\"> </td></tr>\n", " <tr><td align=\"center\"> <b>Figure 1.</b> <a href=\"https://github.com/zalandoresearch/fashion-mnist\">Fashion-MNIST サンプル</a> (作成者: Zalando、MIT ライセンス).<br> </td></tr>\n", "</table>\n", "\n", "Fashion MNIST は、画像処理のための機械学習での \"Hello, World\" としてしばしば登場する MNIST データセットの代替として開発されたデータセットです。データをインポートして読み込むだけで、TensorFlow から直接 Fashion MNIST にアクセスできます。\n", "\n", "注意:これらは実際には画像ですが、バイナリ画像オブジェクトではなく、NumPy 配列として読み込まれます。" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "7MqDQO0KCaWS" }, "outputs": [], "source": [ "fashion_mnist = keras.datasets.fashion_mnist\n", "(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()\n", "\n", "# scale the values to 0.0 to 1.0\n", "train_images = train_images / 255.0\n", "test_images = test_images / 255.0\n", "\n", "# reshape for feeding into the model\n", "train_images = train_images.reshape(train_images.shape[0], 28, 28, 1)\n", "test_images = test_images.reshape(test_images.shape[0], 28, 28, 1)\n", "\n", "class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',\n", " 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']\n", "\n", "print('\\ntrain_images.shape: {}, of {}'.format(train_images.shape, train_images.dtype))\n", "print('test_images.shape: {}, of {}'.format(test_images.shape, test_images.dtype))" ] }, { "cell_type": "markdown", "metadata": { "id": "PDu7OX8Nf5PY" }, "source": [ "### モデルをトレーニングして評価する\n", "\n", "ここではモデリングには焦点を当てていないので、可能な限り単純な CNN を使用します。" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "LTNN0ANGgA36" }, "outputs": [], "source": [ "model = keras.Sequential([\n", " keras.layers.Conv2D(input_shape=(28,28,1), filters=8, kernel_size=3, \n", " strides=2, activation='relu', name='Conv1'),\n", " keras.layers.Flatten(),\n", " keras.layers.Dense(10, name='Dense')\n", "])\n", "model.summary()\n", "\n", "testing = False\n", "epochs = 5\n", "\n", "model.compile(optimizer='adam', \n", " loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),\n", " metrics=[keras.metrics.SparseCategoricalAccuracy()])\n", "model.fit(train_images, train_labels, epochs=epochs)\n", "\n", "test_loss, test_acc = model.evaluate(test_images, test_labels)\n", "print('\\nTest accuracy: {}'.format(test_acc))" ] }, { "cell_type": "markdown", "metadata": { "id": "AwGPItyphqXT" }, "source": [ "## モデルを保存する\n", "\n", "トレーニング済みモデルを TensorFlow Serving に読み込むには、最初にモデルを [SavedModel](https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/saved_model) 形式で保存する必要があります。これにより、明確に定義されたディレクトリ階層に protobuf ファイルが作成され、バージョン番号が含まれます。[TensorFlow Serving](https://www.tensorflow.org/tfx/guide/serving) を使用すると、推論リクエストを行うときに使用するモデルのバージョン、つまり「サービング可能」を選択できます。各バージョンは、指定されたパスの下の異なるサブディレクトリにエクスポートされます。" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "0w5Rq8SsgWE6" }, "outputs": [], "source": [ "# Fetch the Keras session and save the model\n", "# The signature definition is defined by the input and output tensors,\n", "# and stored with the default serving key\n", "import tempfile\n", "\n", "MODEL_DIR = tempfile.gettempdir()\n", "version = 1\n", "export_path = os.path.join(MODEL_DIR, str(version))\n", "print('export_path = {}\\n'.format(export_path))\n", "\n", "tf.keras.models.save_model(\n", " model,\n", " export_path,\n", " overwrite=True,\n", " include_optimizer=True,\n", " save_format=None,\n", " signatures=None,\n", " options=None\n", ")\n", "\n", "print('\\nSaved model:')\n", "!ls -l {export_path}" ] }, { "cell_type": "markdown", "metadata": { "id": "FM7B_RuDYoIj" }, "source": [ "## 保存したモデルを調べる\n", "\n", "コマンドラインユーティリティ`saved_model_cli`を使用して、SavedModel の [MetaGraphDefs](https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/MetaGraphDef)(モデル)と [SignatureDefs](../signature_defs)(呼び出すことができるメソッド)を確認します。TensorFlow ガイドの [SavedModel CLI](https://github.com/tensorflow/docs/blob/master/site/en/r1/guide/saved_model.md#cli-to-inspect-and-execute-savedmodel) に関する説明を参照してください。" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "LU4GDF_aYtfQ" }, "outputs": [], "source": [ "!saved_model_cli show --dir {export_path} --all" ] }, { "cell_type": "markdown", "metadata": { "id": "lSPWuegUb7Eo" }, "source": [ "これはモデルについて多く情報を与えてくれます。ここでは、モデルをトレーニングしたばかりなので、入力と出力はすでにわかっていますが、知らない場合は、これは重要な情報になります。たとえば、これがグレースケール画像データであることなど、完全な情報は提供されませんが、有用な情報を提供してくれます。" ] }, { "cell_type": "markdown", "metadata": { "id": "DBgsyhytS6KD" }, "source": [ "## TensorFlow Serving を使用してモデルをサービングする\n", "\n", "**注意: これを Google Colab で実行していない場合は、**以下のセルは root アクセスのあるシステムにパッケージをインストールします。ローカルの Jupyter ノートブックで実行する場合は、注意して続行してください。\n", "\n", "### TensorFlow Serving ディストリビューション URI をパッケージソースとして追加する\n", "\n", "この Colab は Debian 環境で実行されるため、[Aptitude](https://wiki.debian.org/Aptitude) を使用して TensorFlow Serving をインストールする準備をします。`tensorflow-model-server`パッケージを Aptitude が認識しているパッケージのリストに追加します。root として実行していることに注意してください。\n", "\n", "注意:この例では TensorFlow Serving をネイティブで実行していますが、[Docker コンテナで実行することもできます](https://www.tensorflow.org/tfx/serving/docker)。これは TensorFlow Serving を使い始めるのに最も簡単な方法の 1 つです。" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "v2hF_ChoOrEd" }, "outputs": [], "source": [ "import sys\n", "# We need sudo prefix if not on a Google Colab.\n", "if 'google.colab' not in sys.modules:\n", " SUDO_IF_NEEDED = 'sudo'\n", "else:\n", " SUDO_IF_NEEDED = ''" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "EWg9X2QHlbGS" }, "outputs": [], "source": [ "# This is the same as you would do from your command line, but without the [arch=amd64], and no sudo\n", "# You would instead do:\n", "# echo \"deb [arch=amd64] http://storage.googleapis.com/tensorflow-serving-apt stable tensorflow-model-server tensorflow-model-server-universal\" | sudo tee /etc/apt/sources.list.d/tensorflow-serving.list && \\\n", "# curl https://storage.googleapis.com/tensorflow-serving-apt/tensorflow-serving.release.pub.gpg | sudo apt-key add -\n", "\n", "!echo \"deb http://storage.googleapis.com/tensorflow-serving-apt stable tensorflow-model-server tensorflow-model-server-universal\" | {SUDO_IF_NEEDED} tee /etc/apt/sources.list.d/tensorflow-serving.list && \\\n", "curl https://storage.googleapis.com/tensorflow-serving-apt/tensorflow-serving.release.pub.gpg | {SUDO_IF_NEEDED} apt-key add -\n", "!{SUDO_IF_NEEDED} apt update" ] }, { "cell_type": "markdown", "metadata": { "id": "W1ZVp_VOU7Wu" }, "source": [ "### TensorFlow Serving のインストール\n", "\n", "必要なのは以下のコマンドライン 1 行だけです。" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "ygwa9AgRloYy" }, "outputs": [], "source": [ "!{SUDO_IF_NEEDED} apt-get install tensorflow-model-server" ] }, { "cell_type": "markdown", "metadata": { "id": "k5NrYdQeVm52" }, "source": [ "### TensorFlow Serving の実行をはじめる\n", "\n", "これから TensorFlow Serving の実行を開始し、モデルを読み込み始めます。読み込み後、REST を使用して推論リクエストの作成を開始できます。以下の重要なパラメータがあります。\n", "\n", "- `rest_api_port`: REST リクエストで使用するポート。\n", "- `model_name`: これを REST リクエストの URL で使用します。任意の名前を使用します。\n", "- `model_base_path`: これは、モデルを保存したディレクトリへのパスです。\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "aUgp3vUdU5GS" }, "outputs": [], "source": [ "os.environ[\"MODEL_DIR\"] = MODEL_DIR" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "kJDhHNJVnaLN" }, "outputs": [], "source": [ "%%bash --bg \n", "nohup tensorflow_model_server \\\n", " --rest_api_port=8501 \\\n", " --model_name=fashion_model \\\n", " --model_base_path=\"${MODEL_DIR}\" >server.log 2>&1\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "IxbeiOCUUs2z" }, "outputs": [], "source": [ "!tail server.log" ] }, { "cell_type": "markdown", "metadata": { "id": "vwg1JKaGXWAg" }, "source": [ "## TensorFlow Serving でモデルにリクエストを出す\n", "\n", "まず、テストデータからランダムな例を見てみましょう。" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "Luqm_Jyff9iR" }, "outputs": [], "source": [ "def show(idx, title):\n", " plt.figure()\n", " plt.imshow(test_images[idx].reshape(28,28))\n", " plt.axis('off')\n", " plt.title('\\n\\n{}'.format(title), fontdict={'size': 16})\n", "\n", "import random\n", "rando = random.randint(0,len(test_images)-1)\n", "show(rando, 'An Example Image: {}'.format(class_names[test_labels[rando]]))" ] }, { "cell_type": "markdown", "metadata": { "id": "TKnEHeTrbh3L" }, "source": [ "興味深いことに気が付きましたか?次に、3 つの推論リクエストのバッチ用の JSON オブジェクトを作成し、モデルがどの程度認識しているかを確認しましょう。" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "2dsD7KQG1m-R" }, "outputs": [], "source": [ "import json\n", "data = json.dumps({\"signature_name\": \"serving_default\", \"instances\": test_images[0:3].tolist()})\n", "print('Data: {} ... {}'.format(data[:50], data[len(data)-52:]))" ] }, { "cell_type": "markdown", "metadata": { "id": "ReQd4QESIwXN" }, "source": [ "### REST リクエストを行う" ] }, { "cell_type": "markdown", "metadata": { "id": "iT3J-lHrhOYQ" }, "source": [ "#### サーバブルの最新バージョン\n", "\n", "予測リクエストを POST としてサーバーの REST エンドポイントに送信し、3 つの例を渡します。特定のバージョンを指定せずに、サーバーにサーバブルの最新バージョンを提供するように依頼します。" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "vGvFyuIzW6n6" }, "outputs": [], "source": [ "# docs_infra: no_execute\n", "!pip install -q requests\n", "\n", "import requests\n", "headers = {\"content-type\": \"application/json\"}\n", "json_response = requests.post('http://localhost:8501/v1/models/fashion_model:predict', data=data, headers=headers)\n", "predictions = json.loads(json_response.text)['predictions']\n", "\n", "show(0, 'The model thought this was a {} (class {}), and it was actually a {} (class {})'.format(\n", " class_names[np.argmax(predictions[0])], np.argmax(predictions[0]), class_names[test_labels[0]], test_labels[0]))" ] }, { "cell_type": "markdown", "metadata": { "id": "YJH8LtM4XELp" }, "source": [ "#### 特定バージョンのサーバブル\n", "\n", "次に、特定のバージョンのサーバブルのを指定します。1 つしかないので、バージョン 1 を選択しましょう。また、3 つの結果すべてを確認します。" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "zRftRxeR1tZx" }, "outputs": [], "source": [ "# docs_infra: no_execute\n", "headers = {\"content-type\": \"application/json\"}\n", "json_response = requests.post('http://localhost:8501/v1/models/fashion_model/versions/1:predict', data=data, headers=headers)\n", "predictions = json.loads(json_response.text)['predictions']\n", "\n", "for i in range(0,3):\n", " show(i, 'The model thought this was a {} (class {}), and it was actually a {} (class {})'.format(\n", " class_names[np.argmax(predictions[i])], np.argmax(predictions[i]), class_names[test_labels[i]], test_labels[i]))" ] } ], "metadata": { "accelerator": "GPU", "colab": { "collapsed_sections": [], "name": "rest_simple.ipynb", "toc_visible": true }, "kernelspec": { "display_name": "Python 3", "name": "python3" } }, "nbformat": 4, "nbformat_minor": 0 }
apache-2.0
GoogleCloudPlatform/tensorflow-without-a-phd
tensorflow-rnn-tutorial/old-school-tensorflow/run-on-cloud-ml-engine.ipynb
5
5328
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "## Covert notebook to raw python\n", "To run on ML-Engine, we strip all cells tagged \"display\" to remove the dependency on matplotlib.\n", "The remote server/cluster does not have a display anyway, just logs.\n", "(To view/edit tags on notebook cells: View>Cell Toolbar>Tags)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Convert notebook to raw python format and remove all cells tagged \"display\"\n", "NOTEBOOK='02_RNN_generator_temperatures_solution.ipynb'\n", "jupyter nbconvert tutorial/${NOTEBOOK} \\\n", " --to python --TagRemovePreprocessor.remove_cell_tags={\\\"display\\\"} \\\n", " --output task.py" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "*** Windows users, please copy-paste this command into your command prompt: ***\n", "```bash\n", "jupyter nbconvert \"tutorial/02_RNN_generator_temperatures_solution.ipynb\" --to python --output task.py --TagRemovePreprocessor.remove_cell_tags={\\\"display\\\"} \n", "```" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## To run on ML-Engine\n", "If you are using your own GCP account you have to first:\n", "1. Create a Google Cloud Platform project\n", "1. Enable billing\n", "1. Create a Google Cloud Storage bucket (put in in region us-central1)\n", "1. Enable the necessary APIs and request the necessary quotas\n", "\n", "If you are using a lab account through Qwiklabs (Available soon):\n", "1. Please [register your email address here](https://docs.google.com/forms/d/e/1FAIpQLScDruivAynhrL9XMyEozLZRRCuMLg-X0BFC3ct0VqHs_sW1cg/viewform?usp=sf_link) so that we can white-list you on Qwiklabs.\n", "1. Go to Qwiklabs for the last part of the workshop. Qwiklabs will provision a free lab account on Google Cloud Platform with a GPU quota for you:\n", "[https://events.qwiklabs.com/classrooms/&lt;available soon&gt;](https://events.qwiklabs.com/classrooms/XXXX)\n", "1. Create a Google Cloud Storage bucket (put in in region us-central1)\n", "\n", "And fill in the info in the variables below.\n", "You can try running on a GPU by using --scale-tier=BASIC_GPU or a CPU using --scale-tier=BASIC" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "BUCKET='ml1-demo-martin'\n", "PROJECT='cloudml-demo-martin'\n", "\n", "REGION='us-central1'\n", "JOBNAME=sines_$(date -u +%y%m%d_%H%M%S)\n", "OUTDIR=\"gs://${BUCKET}/sinejobs/${JOBNAME}\"\n", "gcloud ml-engine jobs submit training $JOBNAME \\\n", " --region=$REGION \\\n", " --module-name=tutorial.task \\\n", " --package-path=tutorial \\\n", " --job-dir=$OUTDIR \\\n", " --scale-tier=BASIC_GPU \\\n", " --runtime-version=1.6 \\\n", " -- \\\n", " --data-dir=\"gs://good-temperatures-public\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "*** Windows users, please copy-paste this command into your command prompt (replace &lt;PROJECT&gt; and &lt;BUCKET&gt; with your own values and adjust the job name job001 if needed): ***\n", "```bash\n", "gcloud ml-engine jobs submit training job001 --region=\"us-central1\" --project=<PROJECT> --module-name=\"tutorial.task\" --package-path=\"tutorial\" --job-dir=\"gs://<BUCKET>/sinejobs/job001\" --scale-tier=BASIC_GPU --runtime-version=1.6 -- --data-dir=\"gs://good-temperatures-public\"\n", "```" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## To test-run locally as if the code was running on ML-Engine\n", "Warning: this will use the \"python\" command to run (usually mapped to python 2 on mac, same as ML-Engine)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "gcloud ml-engine local train \\\n", " --module-name=tutorial.task \\\n", " --package-path=tutorial \\\n", " --job-dir=\"checkpoints\" \\\n", " -- \\\n", " --data-dir=\"gs://good-temperatures-public\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Copyright 2018 Google LLC\n", "\n", "Licensed under the Apache License, Version 2.0 (the \"License\");\n", "you may not use this file except in compliance with the License.\n", "You may obtain a copy of the License at\n", "[http://www.apache.org/licenses/LICENSE-2.0](http://www.apache.org/licenses/LICENSE-2.0)\n", "Unless required by applicable law or agreed to in writing, software\n", "distributed under the License is distributed on an \"AS IS\" BASIS,\n", "WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", "See the License for the specific language governing permissions and\n", "limitations under the License." ] } ], "metadata": { "kernelspec": { "display_name": "Bash", "language": "bash", "name": "bash" }, "language_info": { "codemirror_mode": "shell", "file_extension": ".sh", "mimetype": "text/x-sh", "name": "bash" } }, "nbformat": 4, "nbformat_minor": 2 }
apache-2.0
seanwood/gcc-nmf
notebooks/lowLatencySpeechEnhancement.ipynb
1
4935083
null
mit
tensorflow/docs
site/en/tutorials/distribute/dtensor_ml_tutorial.ipynb
1
42796
{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "Tce3stUlHN0L" }, "source": [ "##### Copyright 2019 The TensorFlow Authors.\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "cellView": "form", "id": "tuOe1ymfHZPu" }, "outputs": [], "source": [ "#@title Licensed under the Apache License, Version 2.0 (the \"License\");\n", "# you may not use this file except in compliance with the License.\n", "# You may obtain a copy of the License at\n", "#\n", "# https://www.apache.org/licenses/LICENSE-2.0\n", "#\n", "# Unless required by applicable law or agreed to in writing, software\n", "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", "# See the License for the specific language governing permissions and\n", "# limitations under the License." ] }, { "cell_type": "markdown", "metadata": { "id": "MfBg1C5NB3X0" }, "source": [ "# Distributed Training with DTensors\n" ] }, { "cell_type": "markdown", "metadata": { "id": "r6P32iYYV27b" }, "source": [ "<table class=\"tfo-notebook-buttons\" align=\"left\">\n", " <td>\n", " <a target=\"_blank\" href=\"https://www.tensorflow.org/tutorials/distribute/dtensor_ml_tutorial\"><img src=\"https://www.tensorflow.org/images/tf_logo_32px.png\" />View on TensorFlow.org</a>\n", " </td>\n", " <td>\n", " <a target=\"_blank\" href=\"https://colab.research.google.com/github/tensorflow/docs/blob/master/site/en/tutorials/distribute/dtensor_ml_tutorial.ipynb\"><img src=\"https://www.tensorflow.org/images/colab_logo_32px.png\" />Run in Google Colab</a>\n", " </td>\n", " <td>\n", " <a target=\"_blank\" href=\"https://github.com/tensorflow/docs/blob/master/site/en/tutorials/distribute/dtensor_ml_tutorial.ipynb\"><img src=\"https://www.tensorflow.org/images/GitHub-Mark-32px.png\" />View source on GitHub</a>\n", " </td>\n", " <td>\n", " <a href=\"https://storage.googleapis.com/tensorflow_docs/docs/site/en/tutorials/distribute/dtensor_ml_tutorial.ipynb\"><img src=\"https://www.tensorflow.org/images/download_logo_32px.png\" />Download notebook</a>\n", " </td>\n", "</table>" ] }, { "cell_type": "markdown", "metadata": { "id": "kiF4jjX4O1mF" }, "source": [ "## Overview\n", "\n", "DTensor provides a way for you to distribute the training of your model across devices to improve efficiency, reliability and scalability. For more details on DTensor concepts, see [The DTensor Programming Guide](https://www.tensorflow.org/guide/dtensor_overview).\n", "\n", "In this tutorial, you will train a Sentiment Analysis model with DTensor. Three distributed training schemes are demonstrated with this example:\n", "\n", " - Data Parallel training, where the training samples are sharded (partitioned) to devices.\n", " - Model Parallel training, where the model variables are sharded to devices.\n", " - Spatial Parallel training, where the features of input data are sharded to devices. (Also known as [Spatial Partitioning](https://cloud.google.com/blog/products/ai-machine-learning/train-ml-models-on-large-images-and-3d-volumes-with-spatial-partitioning-on-cloud-tpus))\n", "\n", "The training portion of this tutorial is inspired [A Kaggle guide on Sentiment Analysis](https://www.kaggle.com/code/anasofiauzsoy/yelp-review-sentiment-analysis-tensorflow-tfds/notebook) notebook. To learn about the complete training and evaluation workflow (without DTensor), refer to that notebook.\n", "\n", "This tutorial will walk through the following steps:\n", "\n", "- First start with some data cleaning to obtain a `tf.data.Dataset` of tokenized sentences and their polarity.\n", "\n", "- Next build an MLP model with custom Dense and BatchNorm layers. Use a `tf.Module` to track the inference variables. The model constructor takes additional `Layout` arguments to control the sharding of variables.\n", "\n", "- For training, you will first use data parallel training together with `tf.experimental.dtensor`'s checkpoint feature. Then continue with Model Parallel Training and Spatial Parallel Training.\n", "\n", "- The final section briefly describes the interaction between `tf.saved_model` and `tf.experimental.dtensor` as of TensorFlow 2.9.\n" ] }, { "cell_type": "markdown", "metadata": { "id": "YD80veeg7QtW" }, "source": [ "## Setup\n", "\n", "DTensor is part of TensorFlow 2.9.0 release." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "-RKXLJN-7Yyb" }, "outputs": [], "source": [ "!pip install --quiet --upgrade --pre tensorflow tensorflow-datasets" ] }, { "cell_type": "markdown", "metadata": { "id": "tcxP4_Zu7ciQ" }, "source": [ "Next, import `tensorflow` and `tensorflow.experimental.dtensor`. Then configure TensorFlow to use 8 virtual CPUs.\n", "\n", "Even though this example uses CPUs, DTensor works the same way on CPU, GPU or TPU devices." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "dXcB26oP7dUd" }, "outputs": [], "source": [ "import tempfile\n", "import numpy as np\n", "import tensorflow_datasets as tfds\n", "\n", "import tensorflow as tf\n", "\n", "from tensorflow.experimental import dtensor\n", "print('TensorFlow version:', tf.__version__)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "oHtO6MJLUXlz" }, "outputs": [], "source": [ "def configure_virtual_cpus(ncpu):\n", " phy_devices = tf.config.list_physical_devices('CPU')\n", " tf.config.set_logical_device_configuration(phy_devices[0], [\n", " tf.config.LogicalDeviceConfiguration(),\n", " ] * ncpu)\n", "\n", "configure_virtual_cpus(8)\n", "DEVICES = [f'CPU:{i}' for i in range(8)]\n", "\n", "tf.config.list_logical_devices('CPU')" ] }, { "cell_type": "markdown", "metadata": { "id": "omYd4jbF7j_I" }, "source": [ "## Download the dataset\n", "\n", "Download the IMDB reviews data set to train the sentiment analysis model." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "fW4w4QlFVHhx" }, "outputs": [], "source": [ "train_data = tfds.load('imdb_reviews', split='train', shuffle_files=True, batch_size=64)\n", "train_data" ] }, { "cell_type": "markdown", "metadata": { "id": "ki3mpfi4aZH8" }, "source": [ "## Prepare the data\n", "\n", "First tokenize the text. Here use an extension of one-hot encoding, the `'tf_idf'` mode of `tf.keras.layers.TextVectorization`.\n", "\n", "- For the sake of speed, limit the number of tokens to 1200.\n", "- To keep the `tf.Module` simple, run `TextVectorization` as a preprocessing step before the training.\n", "\n", "The final result of the data cleaning section is a `Dataset` with the tokenized text as `x` and label as `y`.\n", "\n", "**Note**: Running `TextVectorization` as a preprocessing step is **neither a usual practice nor a recommended one** as doing so assumes the training data fits into the client memory, which is not always the case.\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "zNpxjku_57Lg" }, "outputs": [], "source": [ "text_vectorization = tf.keras.layers.TextVectorization(output_mode='tf_idf', max_tokens=1200, output_sequence_length=None)\n", "text_vectorization.adapt(data=train_data.map(lambda x: x['text']))" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "q16bjngoVwQp" }, "outputs": [], "source": [ "def vectorize(features):\n", " return text_vectorization(features['text']), features['label']\n", "\n", "train_data_vec = train_data.map(vectorize)\n", "train_data_vec" ] }, { "cell_type": "markdown", "metadata": { "id": "atTqL9kE5wz4" }, "source": [ "## Build a neural network with DTensor\n", "\n", "Now build a Multi-Layer Perceptron (MLP) network with `DTensor`. The network will use fully connected Dense and BatchNorm layers.\n", "\n", "`DTensor` expands TensorFlow through single-program multi-data (SPMD) expansion of regular TensorFlow Ops according to the `dtensor.Layout` attributes of their input `Tensor` and variables.\n", "\n", "Variables of `DTensor` aware layers are `dtensor.DVariable`, and the constructors of `DTensor` aware layer objects take additional `Layout` inputs in addition to the usual layer parameters.\n", "\n", "Note: As of TensorFlow 2.9, Keras layers such as `tf.keras.layer.Dense`, and `tf.keras.layer.BatchNormalization` accepts `dtensor.Layout` arguments. Refer to the [DTensor Keras Integration Tutorial](/tutorials/distribute/dtensor_keras_tutorial) for more information using Keras with DTensor." ] }, { "cell_type": "markdown", "metadata": { "id": "PMCt-Gj3b3Jy" }, "source": [ "### Dense Layer\n", "\n", "The following custom Dense layer defines 2 layer variables: $W_{ij}$ is the variable for weights, and $b_i$ is the variable for the biases.\n", "\n", "$$\n", "y_j = \\sigma(\\sum_i x_i W_{ij} + b_j)\n", "$$\n" ] }, { "cell_type": "markdown", "metadata": { "id": "nYlFUJWNjl4N" }, "source": [ "### Layout deduction\n", "\n", "This result comes from the following observations:\n", "\n", "- The preferred DTensor sharding for operands to a matrix dot product $t_j = \\sum_i x_i W_{ij}$ is to shard $\\mathbf{W}$ and $\\mathbf{x}$ the same way along the $i$-axis.\n", "\n", "- The preferred DTensor sharding for operands to a matrix sum $t_j + b_j$, is to shard $\\mathbf{t}$ and $\\mathbf{b}$ the same way along the $j$-axis.\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "VpKblz7Yb16G" }, "outputs": [], "source": [ "class Dense(tf.Module):\n", "\n", " def __init__(self, input_size, output_size,\n", " init_seed, weight_layout, activation=None):\n", " super().__init__()\n", "\n", " random_normal_initializer = tf.function(tf.random.stateless_normal)\n", "\n", " self.weight = dtensor.DVariable(\n", " dtensor.call_with_layout(\n", " random_normal_initializer, weight_layout,\n", " shape=[input_size, output_size],\n", " seed=init_seed\n", " ))\n", " if activation is None:\n", " activation = lambda x:x\n", " self.activation = activation\n", " \n", " # bias is sharded the same way as the last axis of weight.\n", " bias_layout = weight_layout.delete([0])\n", "\n", " self.bias = dtensor.DVariable(\n", " dtensor.call_with_layout(tf.zeros, bias_layout, [output_size]))\n", "\n", " def __call__(self, x):\n", " y = tf.matmul(x, self.weight) + self.bias\n", " y = self.activation(y)\n", "\n", " return y" ] }, { "cell_type": "markdown", "metadata": { "id": "tfVY_vAKbxM0" }, "source": [ "### BatchNorm\n", "\n", "A batch normalization layer helps avoid collapsing modes while training. In this case, adding batch normalization layers helps model training avoid producing a model that only produces zeros.\n", "\n", "The constructor of the custom `BatchNorm` layer below does not take a `Layout` argument. This is because `BatchNorm` has no layer variables. This still works with DTensor because 'x', the only input to the layer, is already a DTensor that represents the global batch.\n", "\n", "Note: With DTensor, the input Tensor 'x' always represents the global batch. Therefore `tf.nn.batch_normalization` is applied to the global batch. This differs from training with `tf.distribute.MirroredStrategy`, where Tensor 'x' only represents the per-replica shard of the batch (the local batch)." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "riBA9pfhlPFq" }, "outputs": [], "source": [ "class BatchNorm(tf.Module):\n", "\n", " def __init__(self):\n", " super().__init__()\n", "\n", " def __call__(self, x, training=True):\n", " if not training:\n", " # This branch is not used in the Tutorial.\n", " pass\n", " mean, variance = tf.nn.moments(x, axes=[0])\n", " return tf.nn.batch_normalization(x, mean, variance, 0.0, 1.0, 1e-5)" ] }, { "cell_type": "markdown", "metadata": { "id": "q4R4MPz5prh4" }, "source": [ "A full featured batch normalization layer (such as `tf.keras.layers.BatchNormalization`) will need Layout arguments for its variables." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "unFcP99zprJj" }, "outputs": [], "source": [ "def make_keras_bn(bn_layout):\n", " return tf.keras.layers.BatchNormalization(gamma_layout=bn_layout,\n", " beta_layout=bn_layout,\n", " moving_mean_layout=bn_layout,\n", " moving_variance_layout=bn_layout,\n", " fused=False)" ] }, { "cell_type": "markdown", "metadata": { "id": "v8Dj7AJ_lPs0" }, "source": [ "### Putting Layers Together\n", "\n", "Next, build a Multi-layer perceptron (MLP) network with the building blocks above. The diagram below shows the axis relationships between the input `x` and the weight matrices for the two `Dense` layers without any DTensor sharding or replication applied." ] }, { "cell_type": "markdown", "metadata": { "id": "udFGAO-NrZw6" }, "source": [ "<img src=\"https://www.tensorflow.org/images/dtensor/no_dtensor.png\" alt=\"The input and weight matrices for a non distributed model.\" class=\"no-filter\">\n" ] }, { "cell_type": "markdown", "metadata": { "id": "8DCQ0aQ5rQtB" }, "source": [ "The output of the first `Dense` layer is passed into the input of the second `Dense` layer (after the `BatchNorm`). Therefore, the preferred DTensor sharding for the output of first `Dense` layer ($\\mathbf{W_1}$) and the input of second `Dense` layer ($\\mathbf{W_2}$) is to shard $\\mathbf{W_1}$ and $\\mathbf{W_2}$ the same way along the common axis $\\hat{j}$,\n", "\n", "$$\n", "\\mathsf{Layout}[{W_{1,ij}}; i, j] = \\left[\\hat{i}, \\hat{j}\\right] \\\\\n", "\\mathsf{Layout}[{W_{2,jk}}; j, k] = \\left[\\hat{j}, \\hat{k} \\right]\n", "$$\n", "\n", "Even though the layout deduction shows that the 2 layouts are not independent, for the sake of simplicity of the model interface, `MLP` will take 2 `Layout` arguments, one per Dense layer." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "junyS-965opl" }, "outputs": [], "source": [ "from typing import Tuple\n", "\n", "class MLP(tf.Module):\n", "\n", " def __init__(self, dense_layouts: Tuple[dtensor.Layout, dtensor.Layout]):\n", " super().__init__()\n", "\n", " self.dense1 = Dense(\n", " 1200, 48, (1, 2), dense_layouts[0], activation=tf.nn.relu)\n", " self.bn = BatchNorm()\n", " self.dense2 = Dense(48, 2, (3, 4), dense_layouts[1])\n", "\n", " def __call__(self, x):\n", " y = x\n", " y = self.dense1(y)\n", " y = self.bn(y)\n", " y = self.dense2(y)\n", " return y\n" ] }, { "cell_type": "markdown", "metadata": { "id": "9dgLmebHhr7h" }, "source": [ "The trade-off between correctness in layout deduction constraints and simplicity of API is a common design point of APIs that uses DTensor.\n", "It is also possible to capture the dependency between `Layout`'s with a different API. For example, the `MLPStricter` class creates the `Layout` objects in the constructor." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "wEZR7UlihsYX" }, "outputs": [], "source": [ "class MLPStricter(tf.Module):\n", "\n", " def __init__(self, mesh, input_mesh_dim, inner_mesh_dim1, output_mesh_dim):\n", " super().__init__()\n", "\n", " self.dense1 = Dense(\n", " 1200, 48, (1, 2), dtensor.Layout([input_mesh_dim, inner_mesh_dim1], mesh),\n", " activation=tf.nn.relu)\n", " self.bn = BatchNorm()\n", " self.dense2 = Dense(48, 2, (3, 4), dtensor.Layout([inner_mesh_dim1, output_mesh_dim], mesh))\n", "\n", "\n", " def __call__(self, x):\n", " y = x\n", " y = self.dense1(y)\n", " y = self.bn(y)\n", " y = self.dense2(y)\n", " return y" ] }, { "cell_type": "markdown", "metadata": { "id": "GcQi7D5mal2L" }, "source": [ "To make sure the model runs, probe your model with fully replicated layouts and a fully replicated batch of `'x'` input." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "zOPuYeQwallh" }, "outputs": [], "source": [ "WORLD = dtensor.create_mesh([(\"world\", 8)], devices=DEVICES)\n", "\n", "model = MLP([dtensor.Layout.replicated(WORLD, rank=2),\n", " dtensor.Layout.replicated(WORLD, rank=2)])\n", "\n", "sample_x, sample_y = train_data_vec.take(1).get_single_element()\n", "sample_x = dtensor.copy_to_mesh(sample_x, dtensor.Layout.replicated(WORLD, rank=2))\n", "print(model(sample_x))" ] }, { "cell_type": "markdown", "metadata": { "id": "akrjDstEpDv9" }, "source": [ "## Moving data to the device\n", "\n", "Usually, `tf.data` iterators (and other data fetching methods) yield tensor objects backed by the local host device memory. This data must be transferred to the accelerator device memory that backs DTensor's component tensors.\n", "\n", "`dtensor.copy_to_mesh` is unsuitable for this situation because it replicates input tensors to all devices due to DTensor's global perspective. So in this tutorial, you will use a helper function `repack_local_tensor`, to facilitate the transfer of data. This helper function uses `dtensor.pack` to send (and only send) the shard of the global batch that is intended for a replica to the device backing the replica.\n", "\n", "This simplified function assumes single-client. Determining the correct way to split the local tensor and the mapping between the pieces of the split and the local devices can be laboring in a multi-client application.\n", "\n", "Additional DTensor API to simplify `tf.data` integration is planned, supporting both single-client and multi-client applications. Please stay tuned." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "3t5WvQR4Hvo4" }, "outputs": [], "source": [ "def repack_local_tensor(x, layout):\n", " \"\"\"Repacks a local Tensor-like to a DTensor with layout.\n", "\n", " This function assumes a single-client application.\n", " \"\"\"\n", " x = tf.convert_to_tensor(x)\n", " sharded_dims = []\n", "\n", " # For every sharded dimension, use tf.split to split the along the dimension.\n", " # The result is a nested list of split-tensors in queue[0].\n", " queue = [x]\n", " for axis, dim in enumerate(layout.sharding_specs):\n", " if dim == dtensor.UNSHARDED:\n", " continue\n", " num_splits = layout.shape[axis]\n", " queue = tf.nest.map_structure(lambda x: tf.split(x, num_splits, axis=axis), queue)\n", " sharded_dims.append(dim)\n", "\n", " # Now we can build the list of component tensors by looking up the location in\n", " # the nested list of split-tensors created in queue[0].\n", " components = []\n", " for locations in layout.mesh.local_device_locations():\n", " t = queue[0]\n", " for dim in sharded_dims:\n", " split_index = locations[dim] # Only valid on single-client mesh.\n", " t = t[split_index]\n", " components.append(t)\n", "\n", " return dtensor.pack(components, layout)" ] }, { "cell_type": "markdown", "metadata": { "id": "2KKCDcjG7zj2" }, "source": [ "## Data parallel training\n", "\n", "In this section, you will train your MLP model with data parallel training. The following sections will demonstrate model parallel training and spatial parallel training.\n", "\n", "Data parallel training is a commonly used scheme for distributed machine learning:\n", "\n", " - Model variables are replicated on N devices each.\n", " - A global batch is split into N per-replica batches.\n", " - Each per-replica batch is trained on the replica device.\n", " - The gradient is reduced before weight up data is collectively performed on all replicas.\n", "\n", "Data parallel training provides nearly linear speedup regarding the number of devices." ] }, { "cell_type": "markdown", "metadata": { "id": "UMsLUyTGq3oL" }, "source": [ "### Creating a data parallel mesh\n", "\n", "A typical data parallelism training loop uses a DTensor `Mesh` that consists of a single `batch` dimension, where each device becomes a replica that receives a shard from the global batch.\n", "\n", "<img src=\"https://www.tensorflow.org/images/dtensor/dtensor_data_para.png\" alt=\"Data parallel mesh\" class=\"no-filter\">\n", "\n", "\n", "The replicated model runs on the replica, therefore the model variables are fully replicated (unsharded)." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "C0IyOlxmeu4I" }, "outputs": [], "source": [ "mesh = dtensor.create_mesh([(\"batch\", 8)], devices=DEVICES)\n", "\n", "model = MLP([dtensor.Layout([dtensor.UNSHARDED, dtensor.UNSHARDED], mesh),\n", " dtensor.Layout([dtensor.UNSHARDED, dtensor.UNSHARDED], mesh),])\n" ] }, { "cell_type": "markdown", "metadata": { "id": "OREKwBybo1gZ" }, "source": [ "### Packing training data to DTensors\n", "\n", "The training data batch should be packed into DTensors sharded along the `'batch'`(first) axis, such that DTensor will evenly distribute the training data to the `'batch'` mesh dimension.\n", "\n", "**Note**: In DTensor, the `batch size` always refers to the global batch size. The batch size should be chosen such that it can be divided evenly by the size of the `batch` mesh dimension." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "8xMYkTpGocY8" }, "outputs": [], "source": [ "def repack_batch(x, y, mesh):\n", " x = repack_local_tensor(x, layout=dtensor.Layout(['batch', dtensor.UNSHARDED], mesh))\n", " y = repack_local_tensor(y, layout=dtensor.Layout(['batch'], mesh))\n", " return x, y\n", "\n", "sample_x, sample_y = train_data_vec.take(1).get_single_element()\n", "sample_x, sample_y = repack_batch(sample_x, sample_y, mesh)\n", "\n", "print('x', sample_x[:, 0])\n", "print('y', sample_y)" ] }, { "cell_type": "markdown", "metadata": { "id": "uONSiqOIkFL1" }, "source": [ "### Training step\n", "\n", "This example uses a Stochastic Gradient Descent optimizer with the Custom Training Loop (CTL). Consult the [Custom Training Loop guide](https://www.tensorflow.org/guide/keras/writing_a_training_loop_from_scratch) and [Walk through](https://www.tensorflow.org/tutorials/customization/custom_training_walkthrough) for more information on those topics.\n", "\n", "The `train_step` is encapsulated as a `tf.function` to indicate this body is to be traced as a TensorFlow Graph. The body of `train_step` consists of a forward inference pass, a backward gradient pass, and the variable update.\n", "\n", "Note that the body of `train_step` does not contain any special DTensor annotations. Instead, `train_step` only contains high-level TensorFlow operations that process the input `x` and `y` from the global view of the input batch and the model. All of the DTensor annotations (`Mesh`, `Layout`) are factored out of the train step." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "BwUFzLGDtQT6" }, "outputs": [], "source": [ "# Refer to the CTL (custom training loop guide)\n", "@tf.function\n", "def train_step(model, x, y, learning_rate=tf.constant(1e-4)):\n", " with tf.GradientTape() as tape:\n", " logits = model(x)\n", " # tf.reduce_sum sums the batch sharded per-example loss to a replicated\n", " # global loss (scalar).\n", " loss = tf.reduce_sum(\n", " tf.nn.sparse_softmax_cross_entropy_with_logits(\n", " logits=logits, labels=y))\n", " parameters = model.trainable_variables\n", " gradients = tape.gradient(loss, parameters)\n", " for parameter, parameter_gradient in zip(parameters, gradients):\n", " parameter.assign_sub(learning_rate * parameter_gradient)\n", "\n", " # Define some metrics\n", " accuracy = 1.0 - tf.reduce_sum(tf.cast(tf.argmax(logits, axis=-1, output_type=tf.int64) != y, tf.float32)) / x.shape[0]\n", " loss_per_sample = loss / len(x)\n", " return {'loss': loss_per_sample, 'accuracy': accuracy}" ] }, { "cell_type": "markdown", "metadata": { "id": "0OYTu4j0evWT" }, "source": [ "### Checkpointing\n", "\n", "You can checkpoint a DTensor model using `dtensor.DTensorCheckpoint`. The format of a DTensor checkpoint is fully compatible with a Standard TensorFlow Checkpoint. There is ongoing work to consolidate `dtensor.DTensorCheckpoint` into `tf.train.Checkpoint`.\n", "\n", "When a DTensor checkpoint is restored, `Layout`s of variables can be different from when the checkpoint is saved. This tutorial makes use of this feature to continue the training in the Model Parallel training and Spatial Parallel training sections.\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "rsInFFJg7x9t" }, "outputs": [], "source": [ "CHECKPOINT_DIR = tempfile.mkdtemp()\n", "\n", "def start_checkpoint_manager(mesh, model):\n", " ckpt = dtensor.DTensorCheckpoint(mesh, root=model)\n", " manager = tf.train.CheckpointManager(ckpt, CHECKPOINT_DIR, max_to_keep=3)\n", "\n", " if manager.latest_checkpoint:\n", " print(\"Restoring a checkpoint\")\n", " ckpt.restore(manager.latest_checkpoint).assert_consumed()\n", " else:\n", " print(\"new training\")\n", " return manager\n" ] }, { "cell_type": "markdown", "metadata": { "id": "9r77ky5Jgp1j" }, "source": [ "### Training loop\n", "\n", "For the data parallel training scheme, train for epochs and report the progress. 3 epochs is insufficient for training the model -- an accuracy of 50% is as good as randomly guessing.\n", "\n", "Enable checkpointing so that you can pick up the training later. In the following section, you will load the checkpoint and train with a different parallel scheme." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "UaLn-vGZgqbS" }, "outputs": [], "source": [ "num_epochs = 2\n", "manager = start_checkpoint_manager(mesh, model)\n", "\n", "for epoch in range(num_epochs):\n", " step = 0\n", " pbar = tf.keras.utils.Progbar(target=int(train_data_vec.cardinality()), stateful_metrics=[])\n", " metrics = {'epoch': epoch}\n", " for x,y in train_data_vec:\n", "\n", " x, y = repack_batch(x, y, mesh)\n", "\n", " metrics.update(train_step(model, x, y, 1e-2))\n", "\n", " pbar.update(step, values=metrics.items(), finalize=False)\n", " step += 1\n", " manager.save()\n", " pbar.update(step, values=metrics.items(), finalize=True)" ] }, { "cell_type": "markdown", "metadata": { "id": "YRFJEhum7EGD" }, "source": [ "## Model Parallel Training\n", "\n", "If you switch to a 2 dimensional `Mesh`, and shard the model variables along the second mesh dimension, then the training becomes Model Parallel.\n", "\n", "In Model Parallel training, each model replica spans multiple devices (2 in this case):\n", "\n", "- There are 4 model replicas, and the training data batch is distributed to the 4 replicas.\n", "- The 2 devices within a single model replica receive replicated training data.\n", "\n", "\n", "<img src=\"https://www.tensorflow.org/images/dtensor/dtensor_model_para.png\" alt=\"Model parallel mesh\" class=\"no-filter\">\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "5gZE9IT5Dzwl" }, "outputs": [], "source": [ "mesh = dtensor.create_mesh([(\"batch\", 4), (\"model\", 2)], devices=DEVICES)\n", "model = MLP([dtensor.Layout([dtensor.UNSHARDED, \"model\"], mesh), \n", " dtensor.Layout([\"model\", dtensor.UNSHARDED], mesh)])" ] }, { "cell_type": "markdown", "metadata": { "id": "Ihof3DkMFKnf" }, "source": [ "As the training data is still sharded along the batch dimension, you can reuse the same `repack_batch` function as the Data Parallel training case. DTensor will automatically replicate the per-replica batch to all devices inside the replica along the `\"model\"` mesh dimension." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "dZf56ynbE_p1" }, "outputs": [], "source": [ "def repack_batch(x, y, mesh):\n", " x = repack_local_tensor(x, layout=dtensor.Layout(['batch', dtensor.UNSHARDED], mesh))\n", " y = repack_local_tensor(y, layout=dtensor.Layout(['batch'], mesh))\n", " return x, y" ] }, { "cell_type": "markdown", "metadata": { "id": "UW3OXdhNFfpv" }, "source": [ "Next run the training loop. The training loop reuses the same checkpoint manager as the Data Parallel training example, and the code looks identical.\n", "\n", "You can continue training the data parallel trained model under model parallel training." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "LLC0wgii7EgA" }, "outputs": [], "source": [ "num_epochs = 2\n", "manager = start_checkpoint_manager(mesh, model)\n", "\n", "for epoch in range(num_epochs):\n", " step = 0\n", " pbar = tf.keras.utils.Progbar(target=int(train_data_vec.cardinality()))\n", " metrics = {'epoch': epoch}\n", " for x,y in train_data_vec:\n", " x, y = repack_batch(x, y, mesh)\n", " metrics.update(train_step(model, x, y, 1e-2))\n", " pbar.update(step, values=metrics.items(), finalize=False)\n", " step += 1\n", " manager.save()\n", " pbar.update(step, values=metrics.items(), finalize=True)" ] }, { "cell_type": "markdown", "metadata": { "id": "BZH-aMrVzi2L" }, "source": [ "## Spatial Parallel Training" ] }, { "cell_type": "markdown", "metadata": { "id": "u-bK6IZ9GCS9" }, "source": [ "When training data of very high dimensionality (e.g. a very large image or a video), it may be desirable to shard along the feature dimension. This is called [Spatial Partitioning](https://cloud.google.com/blog/products/ai-machine-learning/train-ml-models-on-large-images-and-3d-volumes-with-spatial-partitioning-on-cloud-tpus), which was first introduced into TensorFlow for training models with large 3-d input samples.\n", "\n", "<img src=\"https://www.tensorflow.org/images/dtensor/dtensor_spatial_para.png\" alt=\"Spatial parallel mesh\" class=\"no-filter\">\n", "\n", "DTensor also supports this case. The only change you need to do is to create a Mesh that includes a `feature` dimension, and apply the corresponding `Layout`.\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "jpc9mqURGpmK" }, "outputs": [], "source": [ "mesh = dtensor.create_mesh([(\"batch\", 2), (\"feature\", 2), (\"model\", 2)], devices=DEVICES)\n", "model = MLP([dtensor.Layout([\"feature\", \"model\"], mesh), \n", " dtensor.Layout([\"model\", dtensor.UNSHARDED], mesh)])\n" ] }, { "cell_type": "markdown", "metadata": { "id": "i07Wrv-jHBc1" }, "source": [ "Shard the input data along the `feature` dimension when packing the input tensors to DTensors. You do this with a slightly different repack function, `repack_batch_for_spt`, where `spt` stands for Spatial Parallel Training." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "DWR8qF6BGtFL" }, "outputs": [], "source": [ "def repack_batch_for_spt(x, y, mesh):\n", " # Shard data on feature dimension, too\n", " x = repack_local_tensor(x, layout=dtensor.Layout([\"batch\", 'feature'], mesh))\n", " y = repack_local_tensor(y, layout=dtensor.Layout([\"batch\"], mesh))\n", " return x, y" ] }, { "cell_type": "markdown", "metadata": { "id": "Ygl9dqMUHTVN" }, "source": [ "The Spatial parallel training can also continue from a checkpoint created with other parallell training schemes." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "p3NnpHSKo-hx" }, "outputs": [], "source": [ "num_epochs = 2\n", "\n", "manager = start_checkpoint_manager(mesh, model)\n", "for epoch in range(num_epochs):\n", " step = 0\n", " metrics = {'epoch': epoch}\n", " pbar = tf.keras.utils.Progbar(target=int(train_data_vec.cardinality()))\n", "\n", " for x, y in train_data_vec:\n", " x, y = repack_batch_for_spt(x, y, mesh)\n", " metrics.update(train_step(model, x, y, 1e-2))\n", "\n", " pbar.update(step, values=metrics.items(), finalize=False)\n", " step += 1\n", " manager.save()\n", " pbar.update(step, values=metrics.items(), finalize=True)" ] }, { "cell_type": "markdown", "metadata": { "id": "vp4L59CpJjYr" }, "source": [ "## SavedModel and DTensor\n", "\n", "The integration of DTensor and SavedModel is still under development. This section only describes the current status quo for TensorFlow 2.9.0.\n", "\n", "As of TensorFlow 2.9.0, `tf.saved_model` only accepts DTensor models with fully replicated variables.\n", "\n", "As a workaround, you can convert a DTensor model to a fully replicated one by reloading a checkpoint. However, after a model is saved, all DTensor annotations are lost and the saved signatures can only be used with regular Tensors, not DTensors." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "49HfIq_SJZoj" }, "outputs": [], "source": [ "mesh = dtensor.create_mesh([(\"world\", 1)], devices=DEVICES[:1])\n", "mlp = MLP([dtensor.Layout([dtensor.UNSHARDED, dtensor.UNSHARDED], mesh), \n", " dtensor.Layout([dtensor.UNSHARDED, dtensor.UNSHARDED], mesh)])\n", "\n", "manager = start_checkpoint_manager(mesh, mlp)\n", "\n", "model_for_saving = tf.keras.Sequential([\n", " text_vectorization,\n", " mlp\n", "])\n", "\n", "@tf.function(input_signature=[tf.TensorSpec([None], tf.string)])\n", "def run(inputs):\n", " return {'result': model_for_saving(inputs)}\n", "\n", "tf.saved_model.save(\n", " model_for_saving, \"/tmp/saved_model\",\n", " signatures=run)" ] }, { "cell_type": "markdown", "metadata": { "id": "h6Csim_VMGxQ" }, "source": [ "As of TensorFlow 2.9.0, you can only call a loaded signature with a regular Tensor, or a fully replicated DTensor (which will be converted to a regular Tensor)." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "HG_ASSzR4IWW" }, "outputs": [], "source": [ "sample_batch = train_data.take(1).get_single_element()\n", "sample_batch" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "qW8yKPrhKQ5b" }, "outputs": [], "source": [ "loaded = tf.saved_model.load(\"/tmp/saved_model\")\n", "\n", "run_sig = loaded.signatures[\"serving_default\"]\n", "result = run_sig(sample_batch['text'])['result']" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "GahGbv0ZmkJb" }, "outputs": [], "source": [ "np.mean(tf.argmax(result, axis=-1) == sample_batch['label'])" ] }, { "cell_type": "markdown", "metadata": { "id": "Ks-Vs9qsH6jO" }, "source": [ "## What's next?\n", "\n", "This tutorial demonstrated building and training an MLP sentiment analysis model with DTensor.\n", "\n", "Through `Mesh` and `Layout` primitives, DTensor can transform a TensorFlow `tf.function` to a distributed program suitable for a variety of training schemes.\n", "\n", "In a real-world machine learning application, evaluation and cross-validation should be applied to avoid producing an over-fitted model. The techniques introduced in this tutorial can also be applied to introduce parallelism to evaluation.\n", "\n", "Composing a model with `tf.Module` from scratch is a lot of work, and reusing existing building blocks such as layers and helper functions can drastically speed up model development.\n", "As of TensorFlow 2.9, all Keras Layers under `tf.keras.layers` accepts DTensor layouts as their arguments, and can be used to build DTensor models. You can even directly reuse a Keras model with DTensor without modifying the model implementation. Refer to the [DTensor Keras Integration Tutorial](https://www.tensorflow.org/tutorials/distribute/dtensor_keras_tutorial) for information on using DTensor Keras. " ] } ], "metadata": { "colab": { "collapsed_sections": [], "name": "dtensor_ml_tutorial.ipynb", "provenance": [], "toc_visible": true }, "kernelspec": { "display_name": "Python 3", "name": "python3" } }, "nbformat": 4, "nbformat_minor": 0 }
apache-2.0
douglas-larocca/ipyfuturize
demo.ipynb
1
5982
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# ipyfuturize\n", "\n", "A cell magic for [futurize](http://python-future.org/futurize.html) (based on [2to3](https://docs.python.org/2/library/2to3.html))" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "%install_ext https://raw.github.com/douglas-larocca/ipyfuturize/master/ipyfuturize.py" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "%load_ext ipyfuturize" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Usage: futurize [options] file|dir ...\r\n", "\r\n", "Options:\r\n", " -h, --help show this help message and exit\r\n", " -V, --version Report the version number of futurize\r\n", " -a, --all-imports Add all __future__ and future imports to each module\r\n", " -1, --stage1 Modernize Python 2 code only; no compatibility with Python 3 (or dependency on\r\n", " ``future``)\r\n", " -2, --stage2 Take modernized (stage1) code and add a dependency on ``future`` to provide Py3\r\n", " compatibility.\r\n", " -0, --both-stages Apply both stages 1 and 2\r\n", " -u, --unicode-literals\r\n", " Add ``from __future__ import unicode_literals`` to implicitly convert all\r\n", " unadorned string literals '' into unicode strings\r\n", " -f FIX, --fix=FIX Each FIX specifies a transformation; default: all. Either use '-f division -f\r\n", " metaclass' etc. or use the fully-qualified module name: '-f\r\n", " lib2to3.fixes.fix_types -f libfuturize.fixes.fix_unicode_keep_u'\r\n", " -j PROCESSES, --processes=PROCESSES\r\n", " Run 2to3 concurrently\r\n", " -x NOFIX, --nofix=NOFIX\r\n", " Prevent a fixer from being run.\r\n", " -l, --list-fixes List available transformations\r\n", " -p, --print-function Modify the grammar so that print() is a function\r\n", " -v, --verbose More verbose logging\r\n", " --no-diffs Don't show diffs of the refactoring\r\n", " -w, --write Write back modified files\r\n", " -n, --nobackups Don't write backups for modified files.\r\n", " -o OUTPUT_DIR, --output-dir=OUTPUT_DIR\r\n", " Put output files in this directory instead of overwriting the input files.\r\n", " Requires -n. For Python >= 2.7 only.\r\n", " -W, --write-unchanged-files\r\n", " Also write files even if no changes were required (useful with --output-dir);\r\n", " implies -w.\r\n", " --add-suffix=ADD_SUFFIX\r\n", " Append this string to all output filenames. Requires -n if non-empty. For Python\r\n", " >= 2.7 only.ex: --add-suffix='3' will generate .py3 files.\r\n" ] } ], "source": [ "%%futurize?" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Example from [http://python-future.org/quickstart.html#to-convert-existing-python-2-code](http://python-future.org/quickstart.html#to-convert-existing-python-2-code)" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "data": { "application/javascript": [ "\n", " var cell = IPython.notebook.get_selected_cell();\n", " var content = \"from __future__ import print_function\\nfrom future import standard_library\\nstandard_library.install_aliases()\\nfrom builtins import next\\nfrom builtins import object\\nimport configparser # Py2 module name\\n\\nclass Upper(object):\\n def __init__(self, iterable):\\n self._iter = iter(iterable)\\n def __next__(self): # Py2-style iterator interface\\n return next(self._iter).upper()\\n def __iter__(self):\\n return self\\n\\nitr = Upper('hello')\\nprint(next(itr), end=' ')\\nfor letter in itr:\\n print(letter, end=' ') # Py2-style print statement\";\n", " \n", " cell.code_mirror.setValue(content);\n", " " ], "text/plain": [ "<IPython.core.display.Javascript object>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "%%futurize\n", "import ConfigParser # Py2 module name\n", "\n", "class Upper(object):\n", " def __init__(self, iterable):\n", " self._iter = iter(iterable)\n", " def next(self): # Py2-style iterator interface\n", " return next(self._iter).upper()\n", " def __iter__(self):\n", " return self\n", "\n", "itr = Upper('hello')\n", "print next(itr),\n", "for letter in itr:\n", " print letter, # Py2-style print statement" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.0a0" } }, "nbformat": 4, "nbformat_minor": 0 }
mit
seregaxvm/rtestbook
TestBook.ipynb
1
2453002
null
agpl-3.0
encima/Comp_Thinking_In_Python
3_Homework_Answers.ipynb
2
11591
{ "cells": [ { "cell_type": "markdown", "metadata": { "nbgrader": { "grade": false, "grade_id": "q1", "locked": true, "solution": false } }, "source": [ "When would 2 variables be equal but not have the same `identity`?" ] }, { "cell_type": "markdown", "metadata": { "nbgrader": { "grade": true, "grade_id": "q1_ans", "locked": false, "points": 2, "solution": true } }, "source": [ "When they have different addresses in memory" ] }, { "cell_type": "markdown", "metadata": { "nbgrader": { "grade": false, "grade_id": "q2", "locked": true, "solution": false } }, "source": [ "What is the symbol for identity comparison?" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true, "nbgrader": { "grade": true, "grade_id": "q2_ans", "locked": false, "points": 1, "solution": true } }, "outputs": [], "source": [ "is" ] }, { "cell_type": "markdown", "metadata": { "nbgrader": { "grade": false, "grade_id": "q3", "locked": true, "solution": false } }, "source": [ "Which of the values below return True when used in the following statement?" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true, "nbgrader": { "grade": false, "grade_id": "q3_code", "locked": true, "solution": false } }, "outputs": [], "source": [ "num_wheels >= 1024 and num_wheels < 2456" ] }, { "cell_type": "markdown", "metadata": { "nbgrader": { "grade": false, "grade_id": "q3_b", "locked": true, "solution": false } }, "source": [ "a.) num_wheels = 2456\n", "b.) num_wheels = 1765\n", "c.) num_wheels = 1024\n", "d.) num_wheels = 8000\n", "e.) num_wheels = 1028\n", "f.) num_wheels = 1020" ] }, { "cell_type": "markdown", "metadata": { "nbgrader": { "grade": true, "grade_id": "q3_ans", "locked": false, "points": 2, "solution": true } }, "source": [ "b, c, e" ] }, { "cell_type": "markdown", "metadata": { "nbgrader": { "grade": false, "grade_id": "q4", "locked": true, "solution": false } }, "source": [ "Fix the if statements below so that the checks are correct and the right statements are printed for the age and drivers info.\n", "\n", "You may also want to look at the precedence section in the lecture to ensure it is right in all situations.\n", "\n", "You DO NOT need to edit variables, just if statements." ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false, "nbgrader": { "grade": false, "grade_id": "q4_ans", "locked": false, "points": 2, "solution": true } }, "outputs": [], "source": [ "age = 23\n", "has_license = True\n", "min_drive_age = 17\n", "cheap_ins_age = 25\n", "\n", "def age_check(age):\n", " if age <= 18:\n", " print(\"Yay, you can drink legally!\")\n", " return True\n", " else:\n", " return False\n", " \n", "def drive_check(age, has_license):\n", " if age < min_drive_age and has_license:\n", " print(\"Not legally able to drive but have a license? Do you think I am a fool?\")\n", " return False\n", " if age > min_drive_age and not has_license:\n", " print(\"You can drive but you need to get your license!\")\n", " return False\n", " elif age < cheap_ins_age and has_license and age > min_drive_age: #precedence can be used here to make things cleaner\n", " print(\"You can drive, but insurance is not gonna be cheap\")\n", " return True\n", " elif age <= cheap_ins_age and has_license:\n", " print(\"Go you, cheap insurance all round!\")\n", " return True\n", " else:\n", " return False" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false, "nbgrader": { "grade": true, "grade_id": "q4_tests", "locked": true, "points": 6, "solution": false } }, "outputs": [ { "ename": "AssertionError", "evalue": "True != False", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mAssertionError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m<ipython-input-10-5f98c1bd9d8e>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mnose\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtools\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0massert_equal\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0massert_equal\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mTrue\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mage_check\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mage\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 4\u001b[0m \u001b[0massert_equal\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mTrue\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdrive_check\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mage\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mhas_license\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0massert_equal\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mFalse\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdrive_check\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m18\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mFalse\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/usr/local/Cellar/python/2.7.12_1/Frameworks/Python.framework/Versions/2.7/lib/python2.7/unittest/case.pyc\u001b[0m in \u001b[0;36massertEqual\u001b[0;34m(self, first, second, msg)\u001b[0m\n\u001b[1;32m 511\u001b[0m \"\"\"\n\u001b[1;32m 512\u001b[0m \u001b[0massertion_func\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_getAssertEqualityFunc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfirst\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msecond\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 513\u001b[0;31m \u001b[0massertion_func\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfirst\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msecond\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmsg\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mmsg\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 514\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 515\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0massertNotEqual\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfirst\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msecond\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmsg\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/usr/local/Cellar/python/2.7.12_1/Frameworks/Python.framework/Versions/2.7/lib/python2.7/unittest/case.pyc\u001b[0m in \u001b[0;36m_baseAssertEqual\u001b[0;34m(self, first, second, msg)\u001b[0m\n\u001b[1;32m 504\u001b[0m \u001b[0mstandardMsg\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m'%s != %s'\u001b[0m \u001b[0;34m%\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0msafe_repr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfirst\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msafe_repr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msecond\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 505\u001b[0m \u001b[0mmsg\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_formatMessage\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmsg\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mstandardMsg\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 506\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfailureException\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmsg\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 507\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 508\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0massertEqual\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfirst\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msecond\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmsg\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;31mAssertionError\u001b[0m: True != False" ] } ], "source": [ "from nose.tools import assert_equal\n", "\n", "assert_equal(True, age_check(age))\n", "assert_equal(True, drive_check(age, has_license))\n", "assert_equal(False, drive_check(18, False))\n", "assert_equal(False, drive_check(14, True))" ] }, { "cell_type": "markdown", "metadata": { "nbgrader": { "grade": false, "grade_id": "q5", "locked": true, "solution": false } }, "source": [ "Write the output of the variable `str_two` once the following code block has run:\n", "\n", "```python\n", "str_one = \"Hello\"\n", "str_two = str_one\n", "str_one = \"Hi\"\n", "print(str_two)\n", "```" ] }, { "cell_type": "code", "execution_count": 27, "metadata": { "collapsed": false, "nbgrader": { "grade": true, "grade_id": "q5_ans", "locked": false, "points": 1, "solution": true } }, "outputs": [ { "data": { "text/plain": [ "'Hello'" ] }, "execution_count": 27, "metadata": {}, "output_type": "execute_result" } ], "source": [ "\"Hello\"" ] }, { "cell_type": "markdown", "metadata": { "nbgrader": { "grade": false, "grade_id": "q6", "locked": true, "solution": false } }, "source": [ "Explain the difference between mutable and immutable" ] }, { "cell_type": "markdown", "metadata": { "nbgrader": { "grade": true, "grade_id": "q6_ans", "locked": false, "points": 4, "solution": true } }, "source": [ "Mutable types can be changed once they have been created but immutable types maintain their original state on creation and cannot be changed." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "celltoolbar": "Create Assignment", "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.12" } }, "nbformat": 4, "nbformat_minor": 0 }
mit
zyv/ctci-solutions
notebooks/task_v6_04_02_haskell.ipynb
1
5394
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Minimal Tree" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [], "source": [ "data Tree a = Empty | Node a (Tree a) (Tree a) deriving (Show)" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [], "source": [ "split3 :: (Ord a) => [a] -> ([a], a, [a])\n", "split3 [x] = ([], x, [])\n", "split3 xs =\n", " let\n", " (left, middle : right) = splitAt (length xs `div` 2) xs\n", " in\n", " (left, middle, right)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [], "source": [ "minimalBST :: (Ord a) => [a] -> (Tree a)\n", "minimalBST [] = Empty\n", "minimalBST xs =\n", " let\n", " (left, middle, right) = split3 xs\n", " in\n", " Node middle (minimalBST left) (minimalBST right)" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": true }, "outputs": [], "source": [ "fromTree :: (Ord a) => (Tree a) -> [a]\n", "fromTree Empty = []\n", "fromTree (Node middle left right) =\n", " (fromTree left) ++ middle : (fromTree right) " ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "[1,2,3,4,5]" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fromTree $ minimalBST [1, 2, 3, 4, 5]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Tests" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import Test.QuickCheck" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [], "source": [ "testRoundTrip :: [Int] -> Bool\n", "testRoundTrip xs =\n", " fromTree (minimalBST xs) == xs" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "+++ OK, passed 100 tests." ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "quickCheck testRoundTrip" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": true }, "outputs": [], "source": [ "height :: (Ord a) => (Tree a) -> Int\n", "height Empty = 0\n", "height (Node middle left right) =\n", " 1 + max (height left) (height right)" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [], "source": [ "testMinimalHeight :: [Int] -> Bool\n", "testMinimalHeight xs =\n", " let \n", " expected :: [Int] -> Int\n", " expected [] = 0\n", " expected xs = 1 + truncate (logBase 2 $ fromIntegral $ length xs)\n", " in\n", " height (minimalBST xs) == expected xs" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "+++ OK, passed 100 tests." ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "quickCheck testMinimalHeight" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Check whether the binary search tree invariant holds for a given binary tree (see Task v6 04.05):" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [], "source": [ "validBST :: (Ord a) => Tree a -> Bool\n", "validBST tree =\n", " let\n", " checkNode :: (Ord a) => Tree a -> Maybe a -> Maybe a -> Bool\n", " checkNode Empty _ _ = True\n", " checkNode (Node middle left right) lower upper =\n", " maybe True (< middle) lower &&\n", " maybe True (> middle) upper &&\n", " checkNode left lower (Just middle) &&\n", " checkNode right (Just middle) upper\n", " in\n", " checkNode tree Nothing Nothing" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "True" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "False" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "validBST $ minimalBST [1, 2, 3, 4, 5]\n", "validBST $ minimalBST [1, 2, 7, 4, 5]" ] } ], "metadata": { "kernelspec": { "display_name": "Haskell", "language": "haskell", "name": "haskell" }, "language_info": { "codemirror_mode": "ihaskell", "file_extension": ".hs", "name": "haskell", "version": "7.10.2" } }, "nbformat": 4, "nbformat_minor": 0 }
mit
ericmjl/protein-systematic-characterization
experiments/20161006-cpec/cpec-translate.ipynb
1
27508
{ "cells": [ { "cell_type": "code", "execution_count": 148, "metadata": { "collapsed": false, "scrolled": true }, "outputs": [], "source": [ "from Bio import AlignIO\n", "#Alignment conducted with multiple alignment tool @ http://www.ebi.ac.uk/Tools/msa/clustalo/\n", "aln = AlignIO.read('cpec-align.clustal', 'clustal')\n", "\n", "from Bio.Seq import Seq\n", "from Bio.SeqRecord import SeqRecord\n", "from Bio.Alphabet import generic_dna\n", "from Bio import SeqIO\n", "from Bio.Alphabet import IUPAC\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 108, "metadata": { "collapsed": false }, "outputs": [], "source": [ "aln[0].id = \"L16\"\n", "aln[1].id = \"L11\"\n", "aln[2].id = \"L1\"\n", "aln[3].id = \"L6\"\n", "aln[4].id = \"L3\"\n", "aln[5].id = \"L4\"\n", "\n", "L10 = aln[7] #sequence read with forward primer not used because of poor quality\n", "aln[6].id = \"vic\"" ] }, { "cell_type": "code", "execution_count": 109, "metadata": { "collapsed": false }, "outputs": [], "source": [ "\"\"\"\n", "Find good start and end indices to trim mutant sequences at\n", "\"\"\"\n", "\n", "def is_good(index, sequence):\n", " good = 0\n", " for next_base in sequence[index+1:index+100]: #100 chosen as large enough to ensure good \n", " if next_base != \"-\":\n", " good += 1 \n", " if good > 98:\n", " return True\n", "def find_end(index, sequence):\n", " for more_index, more_base in enumerate(sequence[index:]):\n", " if more_base == \"-\" and is_good(more_index, sequence[index:]): #Find first non-isolated occurrence of \"-\" (a single occurence indicates a frameshift mutation)\n", " return more_index\n", " return False\n", " \n", "start_list = []\n", "end_list = []\n", "\n", "for sequence in aln[0:6]:\n", " for index, base in enumerate(sequence):\n", " if base != \"-\":\n", " if is_good(index, sequence):\n", " \n", " start_list.append(index)\n", " if find_end(index, sequence) != False:\n", " end_list.append(index + find_end(index, sequence))\n", "\n", " break\n", "\n", "from collections import Counter\n", "data = Counter(end_list)\n", "\n", "\n", "end = data.most_common(1)[0][0] \n", "start = max(start_list) \n" ] }, { "cell_type": "code", "execution_count": 110, "metadata": { "collapsed": false, "scrolled": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "{'L16': 'AGCAAAAGCAGGTCAATTATATTCAGTATGGAAAGAATAAAAGAACTACGGAATCTGATGTCGCAGTCTCGCACTCGCGAGATACTGACAAAAACCACAGTGGACCATATGGCCATAATTAAGAAGTACACATCGGGGAGACAGGAAAAGAACCCGTCACTTAGGATGAAATGGATGATGGCAATGAAATATCCAATCACTGCTGACAAAAGGGTAACAGAAATGGTTCCGGAGAGAAATGAACAAGGACAAACTCTATGGAGTAAAATGAGTGATGCTGGATCAGATAGAGTGATGGTATCACCTTTGGCTGTAACATGGTGGAATAGGAATGGACCCGTGACAAGTACGGTCCATTACCCAAAAGTGTACAAAACTTATTTCGACAAAGTCGAAAGGTTAAAACATGGAACCTTTGGCCCTGTCCATTTCAGAAATCAAGTCAAGATACGCAGAAGAGTAGACATAAACCCTGGTCATGCAGACCTCAGTGCCAAAGAGGCACAAGATGTAATTATGGAAGTTGTTTTTCCCAATGAAGTGGGAGCCAGAATACTAACATCAGAATCACAACTAACAATAACTAAGGAGAAAAAAGAAGAGCTCCGAGATTGCAAAATTTCTCCCTTGATGGTCGCATACATGTTAGAGAGAGAACTTGTACGAAAAACAAGATTTCTCCCAGTTGCTGGCGGAACAAGCAGTATATACATTGAAGTTTTACATTTGACTCAGGGAACGTGTTGGGAACAAATGTACACTCCAGGTGGAGGAGTGAGGAATGACGATGTTGACCAAAGCCTAATTATTGCGGCCAGGAACATAGTAAGAAGAGCCGCAGTATCAGCAGATCCACTAGCATCTTTATTGGAGATGTGCCACAGCACGCAAATTGGCGGAACAAGGATGGTGGACATTCTTAGACAGAACCCGACTGAAGAACAAGCTGTGGATATATGCAAGGCTGCAATGGGATTGAGAATCAGCTCATCCTTCAGCTTTGGTGGCTTTACATTTAAAAGAACAAGCGGGTCATCAGTCAAAAAAGAAGAAGAGGTGCTTACAGGCAATCTCCAAACATTGAGAATAAGAGTACATGAGGGGTATGAGGAGTTCACAATGGTAGGGAAAAGAGCAACAGCTATACTAAGAAAAGCAACCAGAAGATTGGTTCAACTCATAGTGAGTGGAAGAGACGAACAGTCAATAGCCGAAGCAATAATCGTGGCCATGGTGTTTTCACAAGAAGATTGCATGATAAAAGCAGTTAGAGGTGACCTGAATTTTGTCAACAGAGCAAATCAGCGGTTGAACCCCATGCATCAGCTTTTAAGGCATTTTCAGAAAGATGCGAAAGTGCTCTTTCAAAATTGGGGAGTTGAACACATCGACAGTGTGATGGGAATGGTTGGAGTATTACCAGACATGACTCCAAGCACAGAGATGTCAATGAGAGGAATAAGAGTCAGCAAAATGGGTGTGGATGAATACTCCAGCACAGAGAGGGTGGTGGTTAGCATTGATCGGTTTTTGAGAGTTCGAGACCAACGTGGGAATGTATTATTATCTCCTGAGGAGGTCAGTGAAACACAGGGAACTGAGAGACTGACAATAACTTATTCATCGTCGATGATGTGGGAGATTAACGGTCCTGAGTCGGTTTTGGTCAATACCTATCAATGGATCATCAGAAATTGGGAAGCTGTCAAAATTCAATGGTCTCAGAATCCTGCAATGTTGTACAACAAAATGGAATTTGAACCATTTCAATCTTTAGTCCCCAAGGCCACTAGAAGCCAATACAGTGGGTTTGTCAGAACTCTATTCCAACAAATGAGAGACGTACTTGGGACATTTGACACTGCCCAGATAATAAAGCTTCTCCCGTTGCAGCTGCTCCACCGAAGCGAAGCAGAATGCAGTTCTCTTAACTGACTGTGAATGTGAGGGGATCAGGGATGAGAATACTTGTAAGGGGCAATTCTCCTGTATTCAACTACAACAAAACCAGTAAAAGGCTAACAATTCTCGGAAAAGATGCCGGCACTTTAATTGAAGACCCAGATGAAAGCACATCAGGAGTGGAGTCCGCCGTCTTGAGAGGGTTCCTCATTATAGGTAAGGAAGACAGGAGATATGGACCAGCATTGAGCATCAATGAACTGAGTAACCTTGCAAAAGGGGAAAAGGCTAATGTGCTAATCGGGCAAGGAGACGTGGTGTTGGTAATGAAACGAAAACGGGAACTCTAGCATACTTACTGACAGCCAGACAGCGACCAAAAGAATTCGGATGGCCATCAATTAATGCTGAATAGTTTAAAAACGACCTTGTTTCTAC', 'L3': 'AGCAAAAGCAGGTCAATTATATTCAGTATGGAAAGAATAAAAGAACTACGGAATCTGATGTCGCAGTCTCGCACTCGCGAGATACTGACAAAAACCACAGTGGACCATATGGCCATAATTAAGAAGTACACATCGGGGAGACAGGAAAAGAACCCGTCACTTAGGATGAAATGGATGATGGCAATGAAATATCCAATCACTGCTGACAAAAGGGTAACAGAAATGGTTCCGGAGAGAAATGAACAAGGACAAACTCTATGGAGTAAAATGAGTGATGCTGGATCAGATAGAGTGATGGTATCACCTTTGGCTGTAACATGGTGGAATAGGAATGGACCCGTGACAAGTACGGTCCATTACCCAAAAGTGTACAAAACTTATTTCGACAAAGTCGAAAGGTTAAAACATGGAACCTTTGGCCCTGTCCATTTCAGAAATCAAGTCAAGATACGCAGAAGAGTAGACATAAACCCTGGTCATGCAGACCTCAGTGCCAAAGAGGCACAAGATGTAATTATGGAAGTTGTTTTTCCCAATGAAGTGGGAGCCAGAATACTAACATCAGAATCACAACTAACAATAACTAAGGAGAAAAAAGAAGAGCTCCGAGATTGCAAAATTTCTCCCTTGATGGTCGCATACATGTTAGAGAGAGAACTTGTACGAAAAACAAGATTTCTCCCAGTTGCTGGCGGAACAAGCAGTATATACATTGAAGTTTTACATTTGACTCAGGGAACGTGTTGGGAACAAATGTACACTCCAGGTGGAGGAGTGAGGAATGACGATGTTGACCAAAGCCTAATTATTGCGGCCAGGAACATAGTAAGAAGAGCCGCAGTATCAGCAGATCCACTAGCATCTTTATTGGAGATGTGCCACAGCACGCAAATTGGCGGAACAAGGATGGTGGACATTCTTAGACAGAACCCGACTGAAGAACAAGCTGTGGATATATGCAAGGCTGCAATGGGATTGAGAATCAGCTCATCCTTCAGCTTTGGTGGCTTTACATTTAAAAGAACAAGCGGGTCATCAGTCAAAAAAGAAGAAGAGGTGCTTACAGGCAATCTCCAAACATTGAGAATAAGAGTACATGAGGGGTATGAGGAGTTCACAATGGTAGGGAAAAGAGCAACAGCTATACTAAGAAAAGCAACCAGAAGATTGGTTCAACTCATAGTGAGTGGAAGAGACGAACAGTCAATAGCCGAAGCAATAATCGTGGCCATGGTGTTTTCACAAGAAGATTGCATGATAAAAGCAGTTAGAGGTGACCTGAATTTTGTCAACAGAGCAAATCAGCGGTTGAACCCCATGCATCAGCTTTTAAGGCATTTTCAGAAAGATGCGAAAGTGCTCTTTCAAAATTGGGGAGTTGAACACATCGACAGTGTGATGGGAATGGTTGGAGTATTACCAGACATGACTCCAAGCACAGAGATGTCAATGAGAGGAATAAGAGTCAGCAAAATGGGTGTGGATGAATACTCCAGCACAGAGAGGGTGGTGGTTAGCATTGATCGGTTTTTGAGAGTTCGAGACCAACGTGGGAATGTATTATTATCTCCTGAGGAGGTCAGTGAAACACAGGGAACTGAGAGACTGACAATAACTTATTCATCGTCGATGATGTGGGAGATTAACGGTCCTGAGTCGGTTTTGGTCAATACCCATCAATGGATCATCAGAAATTGGGAAGCTGTCAAAATTCAATGGTCTCAGAATCCTGCAATGTTGTACAACAAAATGGAATTTGAACCATTTCAATCTTTAGTCCCCAAGGCCATTGGAAGCCAATACAGTGGGTTTGTCAGAACTCTATTCCAACAAATGAGAGACGTACTTGGGACATTTGACACTGCCCAGATAATAAAGCTTCTCCCTTTTGCAGCTGCTCCACCGAAGCAAAGCAGAATGCAGTTCTCTTCACTGACTGTGAATGTGAGGGGATCAGGGATGAGAATACTTGTAAGGGGCAATTCTCCTGTATTCAACTACAACAAAACCACTAAAAGGCTAACAATTCTCGGAAAAGATGCCGGCACTTTAATTGAAGACCCAGATGAAAGCACATCAGGAGTGGAGTCCGCCGTCTTGAGAGGGTTCCTCATTATAGGTAAGGAAGACAGAAGATACGGACCAGCATTAAGCATCAATGAACTGAGTAACCTTGCAAAAGGGGAAAAGGCTAATGTGCTAATCGGGCAAGGAGACGTGGTGTTGGTAATGAAACGAAAACGGGACTCTAGCATACTTACTGACAGCCAGACAGCGACCAAAAGAATTCGGATGGCCATCAATTAATGCTGAATAGTTTAAAAACGACCTTGTTTCTAC', 'L4': 'AGCAAAAGCAGGTCAATTATATTCAGTATGGAAAGAATAAAAGAACTACGGAATCTGATGTCGCAGTCTCGCACTCGCGAGATACTGACAAAAACCACAGTGGACCATATGGCCATAATTAAGAAGTACACATCGGGGAGACAGGAAAAGAACCCGTCACTTAGGATGAAATGGATGATGGCAATGAAATATCCAATCACTGCTGACAAAAGGGTAACAGAAATGGTTCCGGAGAGAAATGAACAAGGACAAACTCTATGGAGTAAAATGAGTGATGCTGGATCAGATAGAGTGATGGTATCACCTTTGGCTGTAACATGGTGGAATAGGAATGGACCCGTGACAAGTACGGTCCATTACCCAAAAGTGTACAAAACTTATTTCGACAAAGTCGAAAGGTTAAAACATGGAACCTTTGGCCCTGTCCATTTCAGAAATCAAGTCAAGATACGCAGAAGAGTAGACATAAACCCTGGTCATGCAGACCTCAGTGCCAAAGAGGCACAAGATGTAATTATGGAAGTTGTTTTTCCCAATGAAGTGGGAGCCAGAATACTAACATCAGAATCACAACTAACAATAACTAAGGAGAAAAAAGAAGAGCTCCGAGATTGCAAAATTTCTCCCTTGATGGTCGCATACATGTTAGAGAGAGAACTTGTACGAAAAACAAGATTTCTCCCAGTTGCTGGCGGAACAAGCAGTATATACATTGAAGTTTTACATTTGACTCAGGGAACGTGTTGGGAACAAATGTACACTCCAGGTGGAGGAGTGAGGAATGACGATGTTGACCAAAGCCTAATTATTGCGGCCAGGAACATAGTAAGAAGAGCCGCAGTATCAGCAGATCCACTAGCATCTTTATTGGAGATGTGCCACAGCACGCAAATTGGCGGAACAAGGATGGTGGACATTCTTAGACAGAACCCGACTGAAGAACAAGCTGTGGATATATGCAAGGCTGCAATGGGATTGAGAATCAGCTCATCCTTCAGCTTTGGTGGCTTTACATTTAAAAGAACAAGCGGGTCATCAGTCAAAAAAGAAGAAGAGGTGCTTACAGGCAATCTCCAAACATTGAGAATAAGAGTACATGAGGGGTATGAGGAGTTCACAATGGTAGGGAAAAGAGCAACAGCTATACTAAGAAAAGCAACCAGAAGATTGGTTCAACTCATAGTGAGTGGAAGAGACGAACAGTCAATAGCCGAAGCAATAATCGTGGCCATGGTGTTTTCACAAGAAGATTGCATGATAAAAGCAGTTAGAGGTGACCTGAATTTTGTCAACAGAGCAAATCAGCGGTTGAACCCCATGCATCAGCTTTTAAGGCATTTTCAGAAAGATGCGAAAGTGCTCTTTCAAAATTGGGGAGTTGAACACATCGACAGTGTGATGGGAATGGTTGGAGTATTACCAGACATGACTCCAAGCACAGAGATGTCAATGAGAGGAATAAGAGTCAGCAAAATGGGTGTGGATGAATACTCCAGCACAGAGAGGGTGGTGGTTAGCATTGATCGGTTTTTGAGAGTTCGAGACCAACGTGGGAATGTATTATTATCTCCTGAGGAGGTCAGTGAAACACAGGGAACTGAGAGACTGACAATAACTTATTCATCGTCGATGATGTGGGAGATTAACGGTCCTGAGTCGGTTTTGGTCAATACCTATCAATGGATCATCAGAAATTGGGAAGCTGTCAAAATTCAATGGTCTCAGAATCCTGCAATGTTGTACAACAAAATGGAATTTGAACCATTTCAATCTTTAGTCCCCAAGGCCATTAGAAGCCAATACAGTGGGTTTGTCAGAACTCTATTCCAACAAATGAGAGACGTACTTGGGACATTTGACACTGCCCAGATAATAAAGCTTCACCCTTTTGCAGCTGCTCCACCGAAGCAAAGCAGAATGCAGTTCTCTTCACTGACTGTGAATGTGAGGGGATCAGGGATGAGAATACTTGTAAGGGGCAATTCTCCTGTATTCAACTACAACAAAACCACTAAAAGGCTAACAATTCTCGGAAAAGATGCCGGCACTTTAATTGAAGACCTAGATGAAAGCACATCAGGAGTGGAGTCCGCCGTCTTGAGAGGGTTCCTCATTATAGGTAAGGAAGACAGAAGATACGGACCAGCATTAAGCATCAATGAACTGAGTAACCTTGCAAAAGGGGAAGAGGCTAATGTGCTAATCGGGCAAGGAGACGTGGTGTTGGTAATGAAACGAAAACGGGACTCTAGCATACTTACTGACAGCCAGACNGCGACCGAAAGAATTCGGATGGCCATCAATTAATGCTGAATAGTTTAAAAACGACCTTGTTTCTAC', 'L1': 'AGCAAAAGCAGGTCAATTATATTCAGTATGGAAAGAATAAAAGAACTACGGAATCTGATGTCGCAGTCTCGCACTCGCGAGATACTGACAAAAACCACAGTGGACCATATGGCCATAATTAAGAAGTACACATCGGGGAGACAGGAAAAGAACCCGTCACTTAGGATGAAATGGATGATGGCAATGAAATATCCAATCACTGCTGACAAAAGGGTAACAGAAATGGTTCCGGAGAGAAATGAACAAGGACAAACTCTATGGAGTAAAATGAGTGATGCTGGATCAGATAGAGTGATGGTATCACCTTTGGCTGTAACATGGTGGAATAGGAATGGACCCGTGACAAGTACGGTCCATTACCCAAAAGTGTACAAAACTTATTTCGACAAAGTCGAAAGGTTAAAACATGGAACCTTTGGCCCTGTCCATTTCAGAAATCAAGTCAAGATACGCAGAAGAGTAGACATAAACCCTGGTCATGCAGACCTCAGTGCCAAAGAGGCACAAGATGTAATTATGGAAGTTGTTTTTCCCAATGAAGTGGGAGCCAGAATACTAACATCAGAATCACAACTAACAATAACTAAGGAGAAAAAAGAAGAGCTCCGAGATTGCAAAATTTCTCCCTTGATGGTCGCATACATGTTAGAGAGAGAACTTGTACGAAAAACAAGATTTCTCCCAGTTGCTGGCGGAACAAGCAGTATATACATTGAAGTTTTACATTTGACTCAGGGAACGTGTTGGGAACAAATGTACACTCCAGGTGGAGGAGTGAGGAATGACGATGTTGACCAAAGCCTAATTATTGCGGCCAGGAACATAGTAAGAAGAGCCGCAGTATCAGCAGATCCACTAGCATCTTTATTGGAGATGTGCCACAGCACGCAAATTGGCGGAACAAGGATGGTGGACATTCTTAGACAGAACCCGACTGAAGAACAAGCTGTGGATATATGCAAGGCTGCAATGGGATTGAGAATCAGCTCATCCTTCAGCTTTGGTGGCTTTACATTTAAAAGAACAAGCGGGTCATCAGTCAAAAAAGAAGAAGAGGTGCTTACAGGCAATCTCCAAACATTGAGAATAAGAGTACATGAGGGGTATGAGGAGTTCACAATGGTAGGGAAAAGAGCAACAGCTATACTAAGAAAAGCAACCAGAAGATTGGTTCAACTCATAGTGAGTGGAAGAGACGAACAGTCAATAGCCGAAGCAATAATCGTGGCCATGGTGTTTTCACAAGAAGATTGCATGATAAAAGCAGTTAGAGGTGACCTGAATTTTGTCAACAGAGCAAATCAGCGGTTGAACCCCATGCATCAGCTTTTAAGGCATTTTCAGAAAGATGCGAAAGTGCTCTTTCAAAATTGGGGAGTTGAACACATCGACAGTGTGATGGGAATGGTTGGAGTATTACCAGACATGACTCCAAGCACAGAGATGTCAATGAGAGGAATAAGAGTCAGCAAAATGGGTGTGGATGAATACTCCAGCACAGAGAGGGTGGTGGTTAGCATTGATCGGTTTTTGAGAGTTCGAGACCAACGTGGGAATGTATTATTATCTCCTGAGGAGGTCAGTGAAACACAGGGAACTGAGAGACTGACAATAACTTATTCATCGTCGATGATGTGGGAGATTAACGGTCCTGAGTCGGTTTTGGTCAATACCTATCAATGGATCATCAGAAATTGGGAAGCTGTCAAAATTCAATGGTCTCAGAATCCTGCAATGTTGTACAACAAAATGGAATTTGAACCATTTCAATCTTTAGTCCCCAAGGCCATTAGAAGCCAATACAGTGGGTTTGTCAGAACTCTATTCCAACAAATGAGAGACGTACTTGGGACATTTGACACTGCCCAGATAATAAAGCTTCTCCCTTTTGCAGCTGCTCCACCGAAGCAAAGCAGTATGCAGTTCTCTTCACTGACTGTGAATGTGAGGGGATCAGGGATGAGAATACTTGTAAGGGGCAATTCTCCTGTATTCAACTACAACAAAACCACTAAAAGGCTAACAATTCTCGGAAAAGATGCCGGCACTTTAATTGAAGACCCAGATGAAAGCACATCAGGAGTGGAGTCCGCCGTCTTGAGAGGGTTCCTCATTATAGGTAAGGAAGACAGAAGATACGGACCAGCATTAAGCATCAATGAACTGAGTAACCCTGCAAAAGGGGAAAAGGCTAATGTGCTAATCGGGCAAGGAGACGTGGTGTTGGTAATGAAACGAAAACGGGACTCTAGCATACTTACTGACAGCCAGACAGCGACCAAAAGAATTCGGATGGCCATCAATTAATGCTGAATAGTTTAAAAACGACCTTGTTTCTAC', 'L6': 'AGCAAAAGCAGGTCAATTATATTCAGTATGGAAAGAATAAAAGAACTACGGAATCTGATGTCGCAGTCTCGCACTCGCGAGATACTGACAAAAACCACAGTGGACCATATGGCCATAATTAAGAAGTACACATCGGGGAGACAGGAAAAGAACCCGTCACTTAGGATGAAATGGATGATGGCAATGAAATATCCAATCACTGCTGACAAAAGGGTAACAGAAATGGTTCCGGAGAGAAATGAACAAGGACAAACTCTATGGAGTAAAATGAGTGATGCTGGATCAGATAGAGTGATGGTATCACCTTTGGCTGTAACATGGTGGAATAGGAATGGACCCGTGACAAGTACGGTCCATTACCCAAAAGTGTACAAAACTTATTTCGACAAAGTCGAAAGGTTAAAACATGGAACCTTTGGCCCTGTCCATTTCAGAAATCAAGTCAAGATACGCAGAAGAGTAGACATAAACCCTGGTCATGCAGACCTCAGTGCCAAAGAGGCACAAGATGTAATTATGGAAGTTGTTTTTCCCAATGAAGTGGGAGCCAGAATACTAACATCAGAATCACAACTAACAATAACTAAGGAGAAAAAAGAAGAGCTCCGAGATTGCAAAATTTCTCCCTTGATGGTCGCATACATGTTAGAGAGAGAACTTGTACGAAAAACAAGATTTCTCCCAGTTGCTGGCGGAACAAGCAGTATATACATTGAAGTTTTACATTTGACTCAGGGAACGTGTTGGGAACAAATGTACACTCCAGGTGGAGGAGTGAGGAATGACGATGTTGACCAAAGCCTAATTATTGCGGCCAGGAACATAGTAAGAAGAGCCGCAGTATCAGCAGATCCACTAGCATCTTTATTGGAGATGTGCCACAGCACGCAAATTGGCGGAACAAGGATGGTGGACATTCTTAGACAGAACCCGACTGAAGAACAAGCTGTGGATATATGCAAGGCTGCAATGGGATTGAGAATCAGCTCATCCTTCAGCTTTGGTGGCTTTACATTTAAAAGAACAAGCGGGTCATCAGTCAAAAAAGAAGAAGAGGTGCTTACAGGCAATCTCCAAACATTGAGAATAAGAGTACATGAGGGGTATGAGGAGTTCACAATGGTAGGGAAAAGAGCAACAGCTATACTAAGAAAAGCAACCAGAAGATTGGTTCAACTCATAGTGAGTGGAAGAGACGAACAGTCAATAGCCGAAGCAATAATCGTGGCCATGGTGTTTTCACAAGAAGATTGCATGATAAAAGCAGTTAGAGGTGACCTGAATTTTGTCAACAGAGCAAATCAGCGGTTGAACCCCATGCATCAGCTTTTAAGGCATTTTCAGAAAGATGCGAAAGTGCTCTTTCAAAATTGGGGAGTTGAACACATCGACAGTGTGATGGGAATGGTTGGAGTATTACCAGACATGACTCCAAGCACAGAGATGTCAATGAGAGGAATAAGAGTCAGCAAAATGGGTGTGGATGAATACTCCAGCACAGAGAGGGTGGTGGTTAGCATTGATCGGTTTTTGAGAGTTCGAGACCAACGTGGGAATGTATTATTATCTCCTGAGGAGGTCAGTGAAACACAGGGAACTGAGAGACTGACAATAACTTATTCATCGTCGATGATGTGGGAGATTAACGGTCCTGAGTCGGTTTTGGTCAAAACCTATCAATGGATCATCAGAAATTGGGAAGTTGTCAAAATTCAATGGTCTCAGAATCCTATAATGTTGTACAACAAAATGGAATTTGAACCATTTCAATCTTTAGTCCCCAAGGCCATTAGAAGCCAATACAGTGGGTTTGTCAGAACTCTATTCCAACCAATGAGAGACGTACTTGGGACATTTGACACTGCCCAGATAATAAAGCTTCTCCCTTTTGCAGCTGCTCCACCGAAGCAAAGCAGAATGCAGTTCTCTTCACTGACTGTGAATGTGAGGGGATCAGGGATGAGAATACTTGTAAGGGGCAATTCTCCTGTATTCAACTACAACAAAACCACTAAAAGGCTAACAATTCTCGGAAAAGATGCCGGCACTTTAATTGAAGACCCAGATGATAGCACATCAGGAGTGGAGTCCGCCGTCTTGAGAGGGTTCCTCATTATAGGTAAGGAAGACAGAAGATACGGACCAGCATTAAGCATCAATGAACTGAGTAACCTTGCAAAAGGGGAAAAGGCTAATGTGCTAATCGGGCAAGGAGACGTGGTGTTGGTAGTGAAACGAAAACGGGACTCTAGCATACTTACTGACAGCCAGACAGCGACCAAAAGAATTCGGATGGCCATCAATTAATGCTGAATAGTTTAAAAACGACCTTGTTTCTAC', 'L11': 'AGCAAAAGCAGGTCAATTATATTCAGTATGGAAAGAATAAAAGAACTACGGAATCTGATGTCGCAGTCTCGCACTCGCGAGATACTGACAAAAACCACAGTGGACCATATGGCCATAATTAAGAAGTACACATCGGGGAGACAGGAAAAGAACCCGTCACTTAGGATGAAATGGATGATGGCAATGAAATATCCAATCACTGCTGACAAAAGGGTAACAGAAATGGTTCCGGAGAGAAATGAACAAGGACAAACTCTATGGAGTAAAATGAGTGATGCTGGATCAGATAGAGTGATGGTATCACCTTTGGCTGTAACATGGTGGAATAGGAATGGACCCGTGACAAGTACGGTCCATTACCCAAAAGTGTACAAAACTTATTTCGACAAAGTCGAAAGGTTAAAACATGGAACCTTTGGCCCTGTCCATTTCAGAAATCAAGTCAAGATACGCAGAAGAGTAGACATAAACCCTGGTCATGCAGACCTCAGTGCCAAAGAGGCACAAGATGTAATTATGGAAGTTGTTTTTCCCAATGAAGTGGGAGCCAGAATACTAACATCAGAATCACAACTAACAATAACTAAGGAGAAAAAAGAAGAGCTCCGAGATTGCAAAATTTCTCCCTTGATGGTCGCATACATGTTAGAGAGAGAACTTGTACGAAAAACAAGATTTCTCCCAGTTGCTGGCGGAACAAGCAGTATATACATTGAAGTTTTACATTTGACTCAGGGAACGTGTTGGGAACAAATGTACACTCCAGGTGGAGGAGTGAGGAATGACGATGTTGACCAAAGCCTAATTATTGCGGCCAGGAACATAGTAAGAAGAGCCGCAGTATCAGCAGATCCACTAGCATCTTTATTGGAGATGTGCCACAGCACGCAAATTGGCGGAACAAGGATGGTGGACATTCTTAGACAGAACCCGACTGAAGAACAAGCTGTGGATATATGCAAGGCTGCAATGGGATTGAGAATCAGCTCATCCTTCAGCTTTGGTGGCTTTACATTTAAAAGAACAAGCGGGTCATCAGTCAAAAAAGAAGAAGAGGTGCTTACAGGCAATCTCCAAACATTGAGAATAAGAGTACATGAGGGGTATGAGGAGTTCACAATGGTAGGGAAAAGAGCAACAGCTATACTAAGAAAAGCAACCAGAAGATTGGTTCAACTCATAGTGAGTGGAAGAGACGAACAGTCAATAGCCGAAGCAATAATCGTGGCCATGGTGTTTTCACAAGAAGATTGCATGATAAAAGCAGTTAGAGGTGACCTGAATTTTGTCAACAGAGCAAATCAGCGGTTGAACCCCATGCATCAGCTTTTAAGGCATTTTCAGAAAGATGCGAAAGTGCTCTTTCAAAATTGGGGAGTTGAACACATCGACAGTGTGATGGGAATGGTTGGAGTATTACCAGACATGACTCCAAGCACAGAGATGTCAATGAGAGGAATAAGAGTCAGCAAAATGGGTGTGGATGAATACTCCAGCACAGAGAGGGTGGTGGTTAGCATTGATCGGTTTTTGAGAGTTCGAGACCAACGTGGGAATGTATTATTATCTCCTGAGGAGGTCAGTGAAACACAGGGAACTGAGAGACTGACAATAACTTATTCATCGTCGATGATGTGGGAGATTAACGGTCCTGAGTCGGTTTTGGTCAATACCTATCAATGGATCATCAGAAATTGGGAAGCTGTCAAAATTCAATGGTCTCAGAATACTGCAATGTTGTACAACAAAATGGAATTTGAACCATTTCAATCTTTAGTCCCCAAGGCCATTAGAAGCCAATACAGTGGGTTTGTCAGAACTCTATTCCAACAAATGAGAGACGTACTCGGGACATTTGACACTGCCCAGATAATAAAGCTTCTCCCTTTTGCAGCTGCTCCACCGAAGCAAAGCAGAATGCAGTTCTCTTCACTGACTGTGAATGTGAGGGGATCAGGGATGAGAATACTTGTAAGGGGCAATTCTCCTGTATTCAACTACAACAAAACCACTAAAAGGCTAACAATTCTCGGAAAAGATGCCGGCACTTTAATTGAAGACCCAGATGAAAGCACATCAGGAGTGGAGTCCGCCGTCTTGAGAGGGTTCCTCATTATAGGTAAGGAAGACAGAAGATACGGACCAGCATTAAGCATCAATGAACTGAGTAACCTTGCAAAAGGGGAAAAGGCTAATGTGCTAATCGGGCAAGGAGACGTGGTGTTGGTAATGAAACGAAAACGGGACTCTAGCATACTTACTGACAGCCAGACAGCGACCAAAAGAATTCGGATGGCCATCAATTAATGCTGAATAGTTTAAAAACGACCTTGTTTCTAC'}\n" ] } ], "source": [ "\"\"\"\n", "Complete full PB2 sequences for each mutant by combining with template sequence\n", "\"\"\"\n", "vic_end = find_end(end, aln[6]) #Stripping the - at the end of the template sequence - NOT USED\n", "\n", "full_seq_dict = {}\n", "for sequence in aln[0:6]:\n", " full_seq = str(aln[6].seq)[0:start] + str(sequence.seq)[start:end] + str(aln[6].seq)[end:]\n", " full_seq_dict[sequence.id] = full_seq.replace(\"-\", \"\") #remove gaps resulting from deletions or insertions or frameshift mutations\n", "print(full_seq_dict)" ] }, { "cell_type": "code", "execution_count": 111, "metadata": { "collapsed": false, "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "{'L16': 'SKSRSIIFSMERIKELRNLMSQSRTREILTKTTVDHMAIIKKYTSGRQEKNPSLRMKWMMAMKYPITADKRVTEMVPERNEQGQTLWSKMSDAGSDRVMVSPLAVTWWNRNGPVTSTVHYPKVYKTYFDKVERLKHGTFGPVHFRNQVKIRRRVDINPGHADLSAKEAQDVIMEVVFPNEVGARILTSESQLTITKEKKEELRDCKISPLMVAYMLERELVRKTRFLPVAGGTSSIYIEVLHLTQGTCWEQMYTPGGGVRNDDVDQSLIIAARNIVRRAAVSADPLASLLEMCHSTQIGGTRMVDILRQNPTEEQAVDICKAAMGLRISSSFSFGGFTFKRTSGSSVKKEEEVLTGNLQTLRIRVHEGYEEFTMVGKRATAILRKATRRLVQLIVSGRDEQSIAEAIIVAMVFSQEDCMIKAVRGDLNFVNRANQRLNPMHQLLRHFQKDAKVLFQNWGVEHIDSVMGMVGVLPDMTPSTEMSMRGIRVSKMGVDEYSSTERVVVSIDRFLRVRDQRGNVLLSPEEVSETQGTERLTITYSSSMMWEINGPESVLVNTYQWIIRNWEAVKIQWSQNPAMLYNKMEFEPFQSLVPKATRSQYSGFVRTLFQQMRDVLGTFDTAQIIKLLPLQLLHRSEAECSSLN*L*M*GDQG*EYL*GAILLYSTTTKPVKG*QFSEKMPAL*LKTQMKAHQEWSPPS*EGSSL*VRKTGDMDQH*ASMN*VTLQKGKRLMC*SGKETWCW**NENGNSSILTDSQTATKRIRMAIN*C*IV*KRPCFY', 'L3': 'SKSRSIIFSMERIKELRNLMSQSRTREILTKTTVDHMAIIKKYTSGRQEKNPSLRMKWMMAMKYPITADKRVTEMVPERNEQGQTLWSKMSDAGSDRVMVSPLAVTWWNRNGPVTSTVHYPKVYKTYFDKVERLKHGTFGPVHFRNQVKIRRRVDINPGHADLSAKEAQDVIMEVVFPNEVGARILTSESQLTITKEKKEELRDCKISPLMVAYMLERELVRKTRFLPVAGGTSSIYIEVLHLTQGTCWEQMYTPGGGVRNDDVDQSLIIAARNIVRRAAVSADPLASLLEMCHSTQIGGTRMVDILRQNPTEEQAVDICKAAMGLRISSSFSFGGFTFKRTSGSSVKKEEEVLTGNLQTLRIRVHEGYEEFTMVGKRATAILRKATRRLVQLIVSGRDEQSIAEAIIVAMVFSQEDCMIKAVRGDLNFVNRANQRLNPMHQLLRHFQKDAKVLFQNWGVEHIDSVMGMVGVLPDMTPSTEMSMRGIRVSKMGVDEYSSTERVVVSIDRFLRVRDQRGNVLLSPEEVSETQGTERLTITYSSSMMWEINGPESVLVNTHQWIIRNWEAVKIQWSQNPAMLYNKMEFEPFQSLVPKAIGSQYSGFVRTLFQQMRDVLGTFDTAQIIKLLPFAAAPPKQSRMQFSSLTVNVRGSGMRILVRGNSPVFNYNKTTKRLTILGKDAGTLIEDPDESTSGVESAVLRGFLIIGKEDRRYGPALSINELSNLAKGEKANVLIGQGDVVLVMKRKRDSSILTDSQTATKRIRMAIN*C*IV*KRPCFY', 'L4': 'SKSRSIIFSMERIKELRNLMSQSRTREILTKTTVDHMAIIKKYTSGRQEKNPSLRMKWMMAMKYPITADKRVTEMVPERNEQGQTLWSKMSDAGSDRVMVSPLAVTWWNRNGPVTSTVHYPKVYKTYFDKVERLKHGTFGPVHFRNQVKIRRRVDINPGHADLSAKEAQDVIMEVVFPNEVGARILTSESQLTITKEKKEELRDCKISPLMVAYMLERELVRKTRFLPVAGGTSSIYIEVLHLTQGTCWEQMYTPGGGVRNDDVDQSLIIAARNIVRRAAVSADPLASLLEMCHSTQIGGTRMVDILRQNPTEEQAVDICKAAMGLRISSSFSFGGFTFKRTSGSSVKKEEEVLTGNLQTLRIRVHEGYEEFTMVGKRATAILRKATRRLVQLIVSGRDEQSIAEAIIVAMVFSQEDCMIKAVRGDLNFVNRANQRLNPMHQLLRHFQKDAKVLFQNWGVEHIDSVMGMVGVLPDMTPSTEMSMRGIRVSKMGVDEYSSTERVVVSIDRFLRVRDQRGNVLLSPEEVSETQGTERLTITYSSSMMWEINGPESVLVNTYQWIIRNWEAVKIQWSQNPAMLYNKMEFEPFQSLVPKAIRSQYSGFVRTLFQQMRDVLGTFDTAQIIKLHPFAAAPPKQSRMQFSSLTVNVRGSGMRILVRGNSPVFNYNKTTKRLTILGKDAGTLIEDLDESTSGVESAVLRGFLIIGKEDRRYGPALSINELSNLAKGEEANVLIGQGDVVLVMKRKRDSSILTDSQTATERIRMAIN*C*IV*KRPCFY', 'L1': 'SKSRSIIFSMERIKELRNLMSQSRTREILTKTTVDHMAIIKKYTSGRQEKNPSLRMKWMMAMKYPITADKRVTEMVPERNEQGQTLWSKMSDAGSDRVMVSPLAVTWWNRNGPVTSTVHYPKVYKTYFDKVERLKHGTFGPVHFRNQVKIRRRVDINPGHADLSAKEAQDVIMEVVFPNEVGARILTSESQLTITKEKKEELRDCKISPLMVAYMLERELVRKTRFLPVAGGTSSIYIEVLHLTQGTCWEQMYTPGGGVRNDDVDQSLIIAARNIVRRAAVSADPLASLLEMCHSTQIGGTRMVDILRQNPTEEQAVDICKAAMGLRISSSFSFGGFTFKRTSGSSVKKEEEVLTGNLQTLRIRVHEGYEEFTMVGKRATAILRKATRRLVQLIVSGRDEQSIAEAIIVAMVFSQEDCMIKAVRGDLNFVNRANQRLNPMHQLLRHFQKDAKVLFQNWGVEHIDSVMGMVGVLPDMTPSTEMSMRGIRVSKMGVDEYSSTERVVVSIDRFLRVRDQRGNVLLSPEEVSETQGTERLTITYSSSMMWEINGPESVLVNTYQWIIRNWEAVKIQWSQNPAMLYNKMEFEPFQSLVPKAIRSQYSGFVRTLFQQMRDVLGTFDTAQIIKLLPFAAAPPKQSSMQFSSLTVNVRGSGMRILVRGNSPVFNYNKTTKRLTILGKDAGTLIEDPDESTSGVESAVLRGFLIIGKEDRRYGPALSINELSNPAKGEKANVLIGQGDVVLVMKRKRDSSILTDSQTATKRIRMAIN*C*IV*KRPCFY', 'L6': 'SKSRSIIFSMERIKELRNLMSQSRTREILTKTTVDHMAIIKKYTSGRQEKNPSLRMKWMMAMKYPITADKRVTEMVPERNEQGQTLWSKMSDAGSDRVMVSPLAVTWWNRNGPVTSTVHYPKVYKTYFDKVERLKHGTFGPVHFRNQVKIRRRVDINPGHADLSAKEAQDVIMEVVFPNEVGARILTSESQLTITKEKKEELRDCKISPLMVAYMLERELVRKTRFLPVAGGTSSIYIEVLHLTQGTCWEQMYTPGGGVRNDDVDQSLIIAARNIVRRAAVSADPLASLLEMCHSTQIGGTRMVDILRQNPTEEQAVDICKAAMGLRISSSFSFGGFTFKRTSGSSVKKEEEVLTGNLQTLRIRVHEGYEEFTMVGKRATAILRKATRRLVQLIVSGRDEQSIAEAIIVAMVFSQEDCMIKAVRGDLNFVNRANQRLNPMHQLLRHFQKDAKVLFQNWGVEHIDSVMGMVGVLPDMTPSTEMSMRGIRVSKMGVDEYSSTERVVVSIDRFLRVRDQRGNVLLSPEEVSETQGTERLTITYSSSMMWEINGPESVLVKTYQWIIRNWEVVKIQWSQNPIMLYNKMEFEPFQSLVPKAIRSQYSGFVRTLFQPMRDVLGTFDTAQIIKLLPFAAAPPKQSRMQFSSLTVNVRGSGMRILVRGNSPVFNYNKTTKRLTILGKDAGTLIEDPDDSTSGVESAVLRGFLIIGKEDRRYGPALSINELSNLAKGEKANVLIGQGDVVLVVKRKRDSSILTDSQTATKRIRMAIN*C*IV*KRPCFY', 'L11': 'SKSRSIIFSMERIKELRNLMSQSRTREILTKTTVDHMAIIKKYTSGRQEKNPSLRMKWMMAMKYPITADKRVTEMVPERNEQGQTLWSKMSDAGSDRVMVSPLAVTWWNRNGPVTSTVHYPKVYKTYFDKVERLKHGTFGPVHFRNQVKIRRRVDINPGHADLSAKEAQDVIMEVVFPNEVGARILTSESQLTITKEKKEELRDCKISPLMVAYMLERELVRKTRFLPVAGGTSSIYIEVLHLTQGTCWEQMYTPGGGVRNDDVDQSLIIAARNIVRRAAVSADPLASLLEMCHSTQIGGTRMVDILRQNPTEEQAVDICKAAMGLRISSSFSFGGFTFKRTSGSSVKKEEEVLTGNLQTLRIRVHEGYEEFTMVGKRATAILRKATRRLVQLIVSGRDEQSIAEAIIVAMVFSQEDCMIKAVRGDLNFVNRANQRLNPMHQLLRHFQKDAKVLFQNWGVEHIDSVMGMVGVLPDMTPSTEMSMRGIRVSKMGVDEYSSTERVVVSIDRFLRVRDQRGNVLLSPEEVSETQGTERLTITYSSSMMWEINGPESVLVNTYQWIIRNWEAVKIQWSQNTAMLYNKMEFEPFQSLVPKAIRSQYSGFVRTLFQQMRDVLGTFDTAQIIKLLPFAAAPPKQSRMQFSSLTVNVRGSGMRILVRGNSPVFNYNKTTKRLTILGKDAGTLIEDPDESTSGVESAVLRGFLIIGKEDRRYGPALSINELSNLAKGEKANVLIGQGDVVLVMKRKRDSSILTDSQTATKRIRMAIN*C*IV*KRPCFY'}\n", "SKSRSIIFSMERIKELRNLMSQSRTREILTKTTVDHMAIIKKYTSGRQEKNPSLRMKWMMAMKYPITADKRVTEMVPERNEQGQTLWSKMSDAGSDRVMVSPLAVTWWNRNGPVTSTVHYPKVYKTYFDKVERLKHGTFGPVHFRNQVKIRRRVDINPGHADLSAKEAQDVIMEVVFPNEVGARILTSESQLTITKEKKEELRDCKISPLMVAYMLERELVRKTRFLPVAGGTSSIYIEVLHLTQGTCWEQMYTPGGGVRNDDVDQSLIIAARNIVRRAAVSADPLASLLEMCHSTQIGGTRMVDILRQNPTEEQAVDICKAAMGLRISSSFSFGGFTFKRTSGSSVKKEEEVLTGNLQTLRIRVHEGYEEFTMVGKRATAILRKATRRLVQLIVSGRDEQSIAEAIIVAMVFSQEDCMIKAVRGDLNFVNRANQRLNPMHQLLRHFQKDAKVLFQNWGVEHIDSVMGMVGVLPDMTPSTEMSMRGIRVSKMGVDEYSSTERVVVSIDRFLRVRDQRGNVLLSPEEVSETQGTERLTITYSSSMMWEINGPESVLVNTYQWIIRNWEAVKIQWSQNPAMLYNKMEFEPFQSLVPKAIRSQYSGFVRTLFQQMRDVLGTFDTAQIIKLLPFAAAPPKQSRMQFSSLTVNVRGSGMRILVRGNSPVFNYNKTTKRLTILGKDAGTLIEDPDESTSGVESAVLRGFLIIGKEDRRYGPALSINELSNLAKGEKANVLIGQGDVVLVMKRKRDSSILTDSQTATKRIRMAIN*C*IV*KRPCFY\n" ] } ], "source": [ "\"\"\"\n", "Translate sequences\n", "\"\"\"\n", "\n", "full_protein_dict = {}\n", "for name, sequence in full_seq_dict.items():\n", " coding_dna = Seq(sequence, generic_dna)\n", " full_protein_dict[name] = str(coding_dna.translate())\n", " \n", "print(full_protein_dict)\n", "\n", "strip_vic = str(aln[6].seq).replace(\"-\", \"\")\n", "seq_strip_vic = Seq(strip_vic, generic_dna)\n", "vic_trans = seq_strip_vic.translate()\n", "print(vic_trans)\n" ] }, { "cell_type": "code", "execution_count": 112, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "'\\nAlign translated sequences\\n'" ] }, "execution_count": 112, "metadata": {}, "output_type": "execute_result" } ], "source": [ "\"\"\"\n", "Align translated sequences\n", "\"\"\"\n", "\n", "#Used Clustal Omega Multiple Alignment because I still haven't downloaded ClustalW yet" ] }, { "cell_type": "code", "execution_count": 164, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "{'L16': 112, 'L3': 1, 'L4': 4, 'L1': 2, 'L6': 5, 'L11': 1}\n", "\n", "Length of sequence of interest: 206\n" ] } ], "source": [ "\"\"\"\n", "Identify number of mutations in each sequence\n", "\"\"\"\n", "\n", "aln_aa = (AlignIO.read('cpec-protein-align-auto.clustal', 'clustal')) #I can't access the .seq and .id attributes with parse\n", "\n", "import math\n", "\n", "#arbitrarily decided to opt for max proportion of mutant sequence\n", "protein_start = int(math.floor(start/3)) \n", "protein_end = int(math.ceil(end/3))\n", "\n", "def is_diff(mutant, vic):\n", " num_mut = 0\n", " where_mut = []\n", " for aa_index, aa in enumerate(mutant[protein_start:protein_end]):\n", " if aa != vic[aa_index+protein_start]: \n", " num_mut += 1\n", " where_mut.append(aa_index+protein_start)\n", " return (num_mut, where_mut)\n", "\n", "output_handle = open(\"cpec-proteins-forward.fasta\", \"w\")\n", "\n", "mut_dict = {}\n", "\n", "\"\"\"\n", "Save sequences in a SeqRecord and write to a file\n", "\"\"\"\n", "\n", "for sequence in aln_aa[0:6]:\n", " #[0]:number of mutations, [1]: location of mutations\n", " mut_dict[sequence.id] = is_diff(sequence.seq, aln_aa[6].seq)[0]\n", " mut_str = str(mut_dict[sequence.id])\n", "\n", " record = SeqRecord(Seq(str(sequence.seq).replace(\"-\", \"\"), IUPAC.protein), id=sequence.id, name=\"cpec-\"+sequence.id+\"-forward\",description = \"Number of mutations: \" + mut_str)\n", " SeqIO.write(record, output_handle, \"fasta\")\n", "output_handle.close()\n", "\n", "print(mut_dict)\n", "print(\"\")\n", "print(\"Length of sequence of interest:\", len(vic_trans[protein_start:protein_end])) #number of amino acids in sequence of interest\n", "\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "#Delete gaps in amino acids\n", "#Don't need locations in saved file\n" ] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python [conda root]", "language": "python", "name": "conda-root-py" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.2" } }, "nbformat": 4, "nbformat_minor": 0 }
mit
Gelvazio/CODIGOS_ABERTOS
PROJETOS DE USUARIOS MEU GITHUB/SITE PYTHON/ApendiceE/ApendiceE.ipynb
2
10302
{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "[Python para Desenvolvedores](http://ricardoduarte.github.io/python-para-desenvolvedores/#conteudo)\n", "===================================\n", "2&ordf; edi\u00e7\u00e3o, revisada e ampliada\n", "-----------------------------------\n", "\n", "Ap\u00eandice E: BrOffice.org\n", "=============================\n", "_____________________________\n", "[BrOffice.org](http://www.broffice.org/) \u00e9 um conhecido pacote de automa\u00e7\u00e3o de escrit\u00f3rios de c\u00f3digo aberto, que inclui editor de textos, planilha e outros aplicativos. Al\u00e9m disso, o BrOffice.org tamb\u00e9m suporta Python (entre outras linguagens):\n", "\n", "+ Como linguagem de macro, permitindo a automatiza\u00e7\u00e3o de tarefas.\n", "+ Para a constru\u00e7\u00e3o de extens\u00f5es (*add ons*).\n", "+ Em um servi\u00e7o para atender conex\u00f5es, atrav\u00e9s de uma API chamada UNO (*Universal Network Objects*).\n", "\n", "Exemplo de macro:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# A macro deve ser executada a partir do\n", "# BrOffice.org Calc\n", "\n", "def plan():\n", " \"\"\"\n", " Preenche uma planilha\n", " \"\"\"\n", "\n", " # Obt\u00eam o documento para o contexto de script\n", " doc = XSCRIPTCONTEXT.getDocument()\n", "\n", " # A primeira planilha do documento\n", " sheet = doc.getSheets().getByIndex(0)\n", "\n", " col = lin = 0\n", " a = ord('A')\n", "\n", " # Cria uma linha com os t\u00edtulos para as colunas\n", " for titulo in ('Jan', 'Fev', 'Mar', 'Total'):\n", "\n", " col += 1\n", " sheet.getCellByPosition(col, lin).setString(titulo)\n", "\n", " # E coloca uma f\u00f3rmula com somat\u00f3rio na \u00faltima linha\n", " coluna = chr(a + col)\n", " formula = '=SUM(%s2:%s6)' % (coluna, coluna)\n", " sheet.getCellByPosition(col, lin + 6).setFormula(formula)\n", "\n", " for lin in xrange(1, 6):\n", "\n", " # Numera as linhas\n", " sheet.getCellByPosition(0, lin).setValue(lin)\n", "\n", " # Coloca somat\u00f3rios no fim de cada linha\n", " formula = '=SUM(B%d:D%d)' % (lin + 1, lin + 1)\n", " sheet.getCellByPosition(4, lin).setFormula(formula)\n", " \n", " # Preenche os dados\n", " for col in (1, 2, 3):\n", " sheet.getCellByPosition(col, lin).setFormula('=10*RAND()')\n", "\n", " # Substitui a f\u00f3rmula pelo valor\n", " val = sheet.getCellByPosition(col, lin).getValue()\n", " sheet.getCellByPosition(col, lin).setValue(val)\n", "\n", " return None" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Sa\u00edda:\n", "\n", "![BrOffice.org](files/broffice.png)\n", "\n", "Para que o BrOffice.org possa identificar o *script* escrito em Python como um arquivo de macro, ele precisa estar na pasta para *scripts* em Python, que no Windows fica em `Basis\\share\\Scripts\\python`, dentro da pasta de instala\u00e7\u00e3o do BrOffice.org.\n", "\n", "Exemplo de gera\u00e7\u00e3o de relat\u00f3rio em PDF atrav\u00e9s do editor de texto (Writer), atrav\u00e9s da Python UNO Bridge:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Para iniciar o BrOffice.org como servidor:\n", "# swriter.exe -headless\n", "# \"-accept=pipe,name=py;urp;StarOffice.ServiceManager\"\n", "\n", "import os\n", "import uno\n", "from com.sun.star.beans import PropertyValue\n", "\n", "# Dados...\n", "mus = [('Artista', 'Faixa'),\n", " ('King Crimson', 'Starless'), ('Yes', 'Siberian Khatru'),\n", " ('Led Zeppellin', 'No Quarter'), ('Genesis', 'Supper\\'s Ready')]\n", "\n", "# Obt\u00eam o n\u00famero e o tamanho dos registros\n", "rows = len(mus)\n", "cols = len(mus[0])\n", "\n", "# Inicio do \"Boiler Plate\"...\n", "\n", "# Contexto de componente local\n", "loc = uno.getComponentContext()\n", "\n", "# Para resolver URLs\n", "res = loc.ServiceManager.createInstanceWithContext(\n", " 'com.sun.star.bridge.UnoUrlResolver', loc)\n", "\n", "# Contexto para a URL\n", "con = res.resolve('uno:pipe,name=py;urp;StarOffice.ComponentContext')\n", "\n", "# Documento corrente\n", "desktop = con.ServiceManager.createInstanceWithContext(\n", " 'com.sun.star.frame.Desktop', con)\n", "\n", "# Fim do \"Boiler Plate\"...\n", "\n", "# Cria um documento novo no Writer\n", "doc = desktop.loadComponentFromURL('private:factory/swriter',\n", " '_blank', 0, ())\n", "\n", "# Cursor de texto\n", "cursor = doc.Text.createTextCursor()\n", "\n", "# Muda as propriedades do texto\n", "cursor.setPropertyValue('CharFontName', 'Verdana')\n", "cursor.setPropertyValue('CharHeight', 20)\n", "cursor.setPropertyValue('CharWeight', 180)\n", "\n", "# Insere o texto no documento\n", "doc.Text.insertString(cursor, 'M\u00fasicas favoritas\\n', 0)\n", "\n", "# Cria tabela\n", "tab = doc.createInstance('com.sun.star.text.TextTable')\n", "tab.initialize(rows, cols)\n", "doc.Text.insertTextContent(cursor, tab, 0)\n", "\n", "# Preenche a tabela\n", "for row in xrange(rows):\n", " for col in xrange(cols):\n", " cel = chr(ord('A') + col) + str(row + 1)\n", " tab.getCellByName(cel).setString(mus[row][col])\n", "\n", "# Propriedades para exportar o documento\n", "props = []\n", "p = PropertyValue()\n", "p.Name = 'Overwrite'\n", "p.Value = True # Sobrescreve o documento anterior\n", "props.append(p)\n", "\n", "p = PropertyValue()\n", "p.Name = 'FilterName'\n", "p.Value = 'writer_pdf_Export' # Writer para PDF\n", "props.append(p)\n", "\n", "# URL de destino, no qual o arquivo PDF ser\u00e1 salvo\n", "url = uno.systemPathToFileUrl(os.path.abspath('musicas.pdf'))\n", "\n", "# Salva o documento como PDF\n", "doc.storeToURL(url, tuple(props))\n", "\n", "# Fecha o documento\n", "doc.close(True)" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Sa\u00edda (arquivo PDF):\n", "\n", "![BrOffice.org](files/broffice2.png)\n", "\n", "A API do BrOffice.org \u00e9 bastante completa e simplifica v\u00e1rias atividades que s\u00e3o lugar comum em programas para ambiente desktop." ] }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [ { "html": [ "<style>\n", " @font-face {\n", " font-family: \"Computer Modern\";\n", " src: url('http://mirrors.ctan.org/fonts/cm-unicode/fonts/otf/cmunss.otf');\n", " }\n", " div.cell{\n", " width:800px;\n", " margin-left:16% !important;\n", " margin-right:auto;\n", " }\n", " h1 {\n", " font-family: Helvetica, serif;\n", " }\n", " h4{\n", " margin-top:12px;\n", " margin-bottom: 3px;\n", " }\n", " div.text_cell_render{\n", " font-family: Computer Modern, \"Helvetica Neue\", Arial, Helvetica, Geneva, sans-serif;\n", " line-height: 145%;\n", " font-size: 130%;\n", " width:800px;\n", " margin-left:auto;\n", " margin-right:auto;\n", " }\n", " .CodeMirror{\n", " font-family: \"Source Code Pro\", source-code-pro,Consolas, monospace;\n", " }\n", " .note{\n", " border-bottom: 1px black dotted;\n", " }\n", " .prompt{\n", " display: None;\n", " }\n", " .text_cell_render h5 {\n", " font-weight: 300;\n", " font-size: 16pt;\n", " color: #4057A1;\n", " font-style: italic;\n", " margin-bottom: .5em;\n", " margin-top: 0.5em;\n", " display: block;\n", " }\n", " \n", " .warning{\n", " color: rgb( 240, 20, 20 )\n", " } \n", "</style>\n", "<script>\n", " MathJax.Hub.Config({\n", " TeX: {\n", " extensions: [\"AMSmath.js\"]\n", " },\n", " tex2jax: {\n", " inlineMath: [ ['$','$'], [\"\\\\(\",\"\\\\)\"] ],\n", " displayMath: [ ['$$','$$'], [\"\\\\[\",\"\\\\]\"] ]\n", " },\n", " displayAlign: 'center', // Change this to 'center' to center equations.\n", " \"HTML-CSS\": {\n", " styles: {'.MathJax_Display': {\"margin\": 4}}\n", " }\n", " });\n", "</script>" ], "output_type": "pyout", "prompt_number": 1, "text": [ "<IPython.core.display.HTML at 0x50f8f98>" ] } ], "prompt_number": 1 } ], "metadata": {} } ] }
gpl-2.0
Leguark/pynoddy
docs/notebooks/4-Create-model.ipynb
1
63709
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "Creating a model from scratch\n", "==============\n", "\n", "We describe here how to generate a simple history file for computation with Noddy using the functionality of pynoddy. If possible, it is advisable to generate the history files with the Windows GUI for Noddy as this method provides, to date, a simpler and more complete interface to the entire functionality. \n", "\n", "For completeness, pynoddy contains the functionality to generate simple models, for example to automate the model construction process, or to enable the model construction for users who are not running Windows. Some simple examlpes are shown in the following." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [], "source": [ "from matplotlib import rc_params" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<link href='http://fonts.googleapis.com/css?family=Alegreya+Sans:100,300,400,500,700,800,900,100italic,300italic,400italic,500italic,700italic,800italic,900italic' rel='stylesheet' type='text/css'>\n", "<link href='http://fonts.googleapis.com/css?family=Arvo:400,700,400italic' rel='stylesheet' type='text/css'>\n", "<link href='http://fonts.googleapis.com/css?family=PT+Mono' rel='stylesheet' type='text/css'>\n", "<link href='http://fonts.googleapis.com/css?family=Shadows+Into+Light' rel='stylesheet' type='text/css'>\n", "<link rel=\"stylesheet\" type=\"text/css\" href=\"http://fonts.googleapis.com/css?family=Tangerine\">\n", "<link href='http://fonts.googleapis.com/css?family=Philosopher:400,700,400italic,700italic' rel='stylesheet' type='text/css'>\n", "<link href='http://fonts.googleapis.com/css?family=Libre+Baskerville:400,400italic' rel='stylesheet' type='text/css'>\n", "<link href='http://fonts.googleapis.com/css?family=Lora:400,400italic' rel='stylesheet' type='text/css'>\n", "<link href='http://fonts.googleapis.com/css?family=Karla:400,400italic' rel='stylesheet' type='text/css'>\n", "\n", "<style>\n", "\n", "@font-face {\n", " font-family: \"Computer Modern\";\n", " src: url('http://mirrors.ctan.org/fonts/cm-unicode/fonts/otf/cmunss.otf');\n", "}\n", "\n", "#notebook_panel { /* main background */\n", " background: #888;\n", " color: #f6f6f6;\n", "}\n", "\n", "div.cell { /* set cell width to about 80 chars */\n", " width: 800px;\n", "}\n", "\n", "div #notebook { /* centre the content */\n", " background: #fff; /* white background for content */\n", " width: 1000px;\n", " margin: auto;\n", " padding-left: 1em;\n", "}\n", "\n", "#notebook li { /* More space between bullet points */\n", "margin-top:0.8em;\n", "}\n", "\n", "/* draw border around running cells */\n", "div.cell.border-box-sizing.code_cell.running { \n", " border: 3px solid #111;\n", "}\n", "\n", "/* Put a solid color box around each cell and its output, visually linking them together */\n", "div.cell.code_cell {\n", " background: #ddd; /* rgba(230,230,230,1.0); */\n", " border-radius: 10px; /* rounded borders */\n", " width: 900px;\n", " padding: 1em;\n", " margin-top: 1em;\n", "}\n", "\n", "div.text_cell_render{\n", " font-family: 'Arvo' sans-serif;\n", " line-height: 130%;\n", " font-size: 115%;\n", " width:700px;\n", " margin-left:auto;\n", " margin-right:auto;\n", "}\n", "\n", "\n", "/* Formatting for header cells */\n", ".text_cell_render h1 {\n", " font-family: 'Alegreya Sans', sans-serif;\n", " /* font-family: 'Tangerine', serif; */\n", " /* font-family: 'Libre Baskerville', serif; */\n", " /* font-family: 'Karla', sans-serif;\n", " /* font-family: 'Lora', serif; */\n", " font-size: 50px;\n", " text-align: center;\n", " /* font-style: italic; */\n", " font-weight: 400;\n", " /* font-size: 40pt; */\n", " /* text-shadow: 4px 4px 4px #aaa; */\n", " line-height: 120%;\n", " color: rgb(12,85,97);\n", " margin-bottom: .5em;\n", " margin-top: 0.1em;\n", " display: block;\n", "}\t\n", ".text_cell_render h2 {\n", " /* font-family: 'Arial', serif; */\n", " /* font-family: 'Lora', serif; */\n", " font-family: 'Alegreya Sans', sans-serif;\n", " font-weight: 700;\n", " font-size: 24pt;\n", " line-height: 100%;\n", " /* color: rgb(171,165,131); */\n", " color: rgb(12,85,97);\n", " margin-bottom: 0.1em;\n", " margin-top: 0.1em;\n", " display: block;\n", "}\t\n", "\n", ".text_cell_render h3 {\n", " font-family: 'Arial', serif;\n", " margin-top:12px;\n", " margin-bottom: 3px;\n", " font-style: italic;\n", " color: rgb(95,92,72);\n", "}\n", "\n", ".text_cell_render h4 {\n", " font-family: 'Arial', serif;\n", "}\n", "\n", ".text_cell_render h5 {\n", " font-family: 'Alegreya Sans', sans-serif;\n", " font-weight: 300;\n", " font-size: 16pt;\n", " color: grey;\n", " font-style: italic;\n", " margin-bottom: .1em;\n", " margin-top: 0.1em;\n", " display: block;\n", "}\n", "\n", ".text_cell_render h6 {\n", " font-family: 'PT Mono', sans-serif;\n", " font-weight: 300;\n", " font-size: 10pt;\n", " color: grey;\n", " margin-bottom: 1px;\n", " margin-top: 1px;\n", "}\n", "\n", ".CodeMirror{\n", " font-family: \"PT Mono\";\n", " font-size: 100%;\n", "}\n", "\n", "</style>\n" ], "text/plain": [ "<IPython.core.display.HTML object>" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from IPython.core.display import HTML\n", "css_file = 'pynoddy.css'\n", "HTML(open(css_file, \"r\").read())" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import sys, os\n", "import matplotlib.pyplot as plt\n", "# adjust some settings for matplotlib\n", "from matplotlib import rcParams\n", "# print rcParams\n", "rcParams['font.size'] = 15\n", "# determine path of repository to set paths corretly below\n", "repo_path = os.path.realpath('../..')\n", "import pynoddy.history" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [], "source": [ "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [], "source": [ "rcParams.update({'font.size': 20})" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Defining a stratigraphy\n", "--------------\n", "\n", "We start with the definition of a (base) stratigraphy for the model. " ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# Combined: model generation and output vis to test:\n", "history = \"simple_model.his\"\n", "output_name = \"simple_out\"\n", "reload(pynoddy.history)\n", "reload(pynoddy.events)\n", "\n", "# create pynoddy object\n", "nm = pynoddy.history.NoddyHistory()\n", "# add stratigraphy\n", "strati_options = {'num_layers' : 8,\n", " 'layer_names' : ['layer 1', 'layer 2', 'layer 3', \n", " 'layer 4', 'layer 5', 'layer 6', \n", " 'layer 7', 'layer 8'],\n", " 'layer_thickness' : [1500, 500, 500, 500, 500, 500, 500, 500]}\n", "nm.add_event('stratigraphy', strati_options )\n", "\n", "nm.write_history(history)\n" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "''" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Compute the model\n", "reload(pynoddy)\n", "pynoddy.compute_model(history, output_name) " ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnEAAAFUCAYAAABLBGogAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGkdJREFUeJzt3X2Y3WV95/H3R540mo1VxF5qLQ8CrlWrxlUJ1iT1ia0L\n1AcU27VWL9FFUdSudbtiSdWudVfF9QlWXbrSXRGDKLqi2AoJClRbGtnLooCSKEWrAkKxAQPJd//4\n/QZOJ3OSzGTmnHNn3q/rOtdv5r7v35nvgZvhM/fvKVWFJEmS2nKvcRcgSZKk2TPESZIkNcgQJ0mS\n1CBDnCRJUoMMcZIkSQ0yxEmSJDVo73EXMA5JvK+KJElqRlVletuiDHEAp556AmvWvGrcZagRa9b8\nD+eLdolzRbPhfNGuSJ44Y7uHUyVJkhpkiJMkSWrQog1xq1YtH3cJaojzRbvKuaLZcL5od2QxPjs1\nSVX97bjLkCRJ2qnkiTNe2LBoV+IkSZJaZoiTJElqkCFOkiSpQYY4SZKkBhniJEmSGmSIkyRJapAh\nTpIkqUGGOEmSpAYZ4iRJkhpkiJMkSWqQIU6SJKlBhjhJkqQGGeIkSZIaZIiTJElqkCFOkiSpQYY4\nSZKkBhniJEmSGmSIkyRJapAhTpIkqUGGOEmSpAYZ4iRJkhq097gLGJf60WXjLkGSJGnOXImTJElq\nkCFOkiSpQYY4SZKkBhniJEmSGmSIkyRJapAhTpIkqUGGOEmSpAYZ4iRJkhpkiJMkSWqQIU6SJKlB\nhjhJkqQGGeIkSZIaZIiTJElqkCFOkiSpQYY4SZKkBhniJEmSGmSIkyRJapAhTpIkqUETFeKSPCfJ\nl5Ncn2Rzku8l+VSSpwwZvyLJBUlu6sdfmeTkJBP1uSRJkubbxISdJO8CPg88Dvgi8D7gCuAY4NIk\nvzNt/LHAeuCpwHnAB4B9gNOAs0dXuSRJ0uilqsZdA0keDNwA/AR4TFXdNNC3ErgYuK6qHtG3LQW+\nBywFVlTVhr59337sU4AXV9Wnhvy82vbD9y/gJ5IkSZof93rI66iqbNc+jmJm8Kt0tXx9MMABVNV6\n4DbgQQPNxwH7A2dPBbh+7BbgFCDAiQtdtCRJ0rhMSoi7FtgCPCnJAwc7kjyNbsXtLweaVwMFXDjD\ne10CbAZWJNlnYcqVJEkar73HXQBAVf0syR8C7wWuSvJZ4CbgEcDRdGHtPwzscni/vWaG99qaZCPw\nKOBg4OqFrF2SJGkcJiLEAVTV+5N8HzgTeMVA13eBj1fVjQNty/rtrUPebqr9/vNbpSRJ0mSYlMOp\n9Ctx59KFuEOA+wLLgY3AJ5L82RjLkyRJmigTsRLXX4H6Z8Cnq+pNA13fTPJcusOmf5DkjKraxD0r\nbcuY2VT7LcN+5pp3X3D316tWHMqqFYfOsXpJkqT5s+6ya1l32bU7HTcRIQ74d3QXKqyb3lFVtyf5\nBvDbwOOBTXTnuS0HDgM2DI5PshdwEHAXcN2wH7jm6AcMfHcTXH3TsKGSJEkjs+qBsGogp7ztvTOP\nm5TDqfv12wcN6Z9q39JvL6K7jchRM4xdCSwBLq2qO+etQkmSpAkyKSHuq3Sh7JVJHjLYkeTfAkcC\ndwCX9c3nAjcCxydZPjB2P+AddKt6p4+gbkmSpLGYlMOp59LdB+4ZwLeTfAb4R7rbhDynH/PmqvoZ\nQFXdluQEYC2wLskngZvpHtF1GLC2qtaO+DNIkiSNzESEuKqqJL8FvAY4nu78tyV0wez/Au+vqq9M\n2+f8/oKItwDPA+5NdzuSN9A9R1WSJGmPNRHPTh21JLXt4t8ZdxmSJEk7da/Vn5joZ6dKkiRpFgxx\nkiRJDTLESZIkNcgQJ0mS1CBDnCRJUoMMcZIkSQ0yxEmSJDXIECdJktQgQ5wkSVKDDHGSJEkNMsRJ\nkiQ1yBAnSZLUIEOcJElSgwxxkiRJDTLESZIkNcgQJ0mS1CBDnCRJUoMMcZIkSQ0yxEmSJDXIECdJ\nktQgQ5wkSVKDDHGSJEkN2nvcBYzLtiu+P+4SJEmS5syVOEmSpAYZ4iRJkhpkiJMkSWqQIU6SJKlB\nhjhJkqQGGeIkSZIaZIiTJElqkCFOkiSpQYY4SZKkBhniJEmSGmSIkyRJapAhTpIkqUGGOEmSpAYZ\n4iRJkhpkiJMkSWqQIU6SJKlBhjhJkqQGGeIkSZIaNHEhLsnTk3wmyY+S3JHkhiRfSnLUDGNXJLkg\nyU1JNie5MsnJSSbuc0mSJM2nvcddwKAk/xX4j8D1wPnAjcCDgOXAKuBLA2OPBc4FbgfOAW4GjgZO\nA1YALxph6ZIkSSM1MSEuyQl0Ae7PgVdV1V3T+vca+Hop8FHgLmBlVW3o298KXAy8IMkLq+pTo6pf\nkiRplCbisGOSfYF3AN9nhgAHUFVbB749DtgfOHsqwPVjtgCnAAFOXNCiJUmSxmhSVuKeSXfY9L1A\nJXkO8GvAHcA3quqvp41fDRRw4QzvdQmwGViRZJ+qunPhypYkSRqPSQlx/4YulG0BNgCP7r8HSJJL\ngBdU1Y192+H99prpb1RVW5NsBB4FHAxcvZCFS5IkjcNEHE4FDqA7BPomYBtwJLAUeCzdatvTgMHz\n25b121uHvN9U+/3nvVJJkqQJMCkhbqqOO4Gjq+ryqtpcVX8PPA/4B2BlkiePrUJJkqQJMimHU2/p\ntxuq6vrBjqq6PcmFwMuBJwFf556VtmXMbKr9liH9/MmFP7j765WHLGPVI4a9lSRJ0uis++6trP/e\nsION95iUEDd13tqw0PWzfnufgfHLgcPozqG7W38rkoPobj9y3bAf+Ie33/ueb771C27/1k9mW7Mk\nSdK8ezLwZO7JKW8fMm5SDqd+he5ChkcN6X90v93Yby+iO4duu6c4ACuBJcClXpkqSZL2VBMR4qrq\nB8DngYcnef1gX5JnAc+mW42bemLDuXRPczg+yfKBsfvR3W+ugNNHULokSdJYTMrhVIDXAI8D3tPf\nJ24D3S1CjqU7NPqKqroNoKpu65/wsBZYl+STdI/dOobuEOvaqlo7hs8gSZI0EhOxEgdQVTfQnef2\nQeARwOvobi1yPnBkVX122vjz6Q6drqe7gvUkuvvMvQF48egqlyRJGr1U1c5H7WGS1G1PPXTcZUiS\nJO3U0q9dS1VlevvErMRJkiRp1xniJEmSGmSIkyRJapAhTpIkqUGGOEmSpAYZ4iRJkhpkiJMkSWqQ\nIU6SJKlBhjhJkqQGGeIkSZIaZIiTJElqkCFOkiSpQYY4SZKkBhniJEmSGmSIkyRJapAhTpIkqUGG\nOEmSpAYZ4iRJkhpkiJMkSWrQrEJckjOTfCDJA3Yw5tgkZ+5+aZIkSRpmtitxvw+8GrgsycFDxjwO\neOnuFCVJkqQdm8vh1A3AwcDlSY6Y53okSZK0C/aewz6fA/4T8GngK0l+v6o+Nb9lLbyr/nbruEuQ\nJEmaszld2FBVfwUcCfwU+ESSN89rVZIkSdqhOV+dWlXfAp4MXAn8lyQfSbLXvFUmSZKkoeZyOPVu\nVfWPSX4DOAd4BfBw4Kr5KEySJEnD7fZ94qpqM3As8CHgWcDrdvc9JUmStGOzDXHfB26Z3lhV26rq\ntcAbgcxHYZIkSRpuVodTq+qgnfS/L8nZwL13qypJkiTt0G6dEzeTqvrxfL+nJEmS/iWfnSpJktQg\nQ5wkSVKDDHGSJEkNMsRJkiQ1yBAnSZLUIEOcJElSgwxxkiRJDTLESZIkNcgQJ0mS1CBDnCRJUoMM\ncZIkSQ2a2BCX5N8n2da/Xj5kzIokFyS5KcnmJFcmOTnJxH4uSZKk+TCRYSfJrwAfAG4DasiYY4H1\nwFOB8/rx+wCnAWePplJJkqTxmMgQB/w5cCNwxkydSZYCHwXuAlZW1QlV9WbgccDlwAuSvHBUxUqS\nJI3axIW4JCcDq4CXAZuHDDsO2B84u6o2TDVW1RbgFCDAiQtbqSRJ0vhMVIhL8q+BdwLvq6qv7WDo\narrDrBfO0HcJXfhbkWSf+a9SkiRp/CYmxCXZC/gLYBPwlp0MP7zfXjO9o6q2AhuBvYGD57FESZKk\nibH3uAsYcCrw68CRVfWLnYxd1m9vHdI/1X7/+ShMkiRp0kzESlySJwN/BLy7qr4x7nokSZIm3dhX\n4vrDqGcBVwN/PL17yG5TK23LhvRPtd8y7Od+9M6b7/76Cfe6D8v3us9Oa5UkSVpoV2y9nb/bdvtO\nx409xAH3Aw6lu1DhF8l2ua2AjyX5GN0FD2+kC3zLgcOADYOD+1B4EN3tR64b9kMftvWAu7/+yVb4\n4p27/TkkSZLmwVIextKB72dek5qEEPcL4GND+p4APB74Kl1wu7xvvwj4XeAo4Jxp+6wElgDrqspo\nJkmS9khjD3FVdQfwypn6kpxKF+I+XlVnDnSdC7wLOD7JB6vqin78fsA76FbvTl/QwiVJksZo7CFu\nF2x/fLXqtiQnAGuBdUk+CdwMHEN3iHVtVa0dbZmSJEmjMxFXp+7EjM9Orarz6Q6drgeeB5wEbAHe\nALx4ZNVJkiSNQapmzEh7tCS1hsPGXYYkSdJOreEaqmq7I5MtrMRJkiRpGkOcJElSgwxxkiRJDTLE\nSZIkNcgQJ0mS1CBDnCRJUoMMcZIkSQ0yxEmSJDXIECdJktQgQ5wkSVKDDHGSJEkNMsRJkiQ1yBAn\nSZLUIEOcJElSgwxxkiRJDTLESZIkNcgQJ0mS1CBDnCRJUoMMcZIkSQ0yxEmSJDXIECdJktQgQ5wk\nSVKDDHGSJEkNMsRJkiQ1yBAnSZLUIEOcJElSgwxxkiRJDTLESZIkNcgQJ0mS1CBDnCRJUoMMcZIk\nSQ0yxEmSJDXIECdJktQgQ5wkSVKDDHGSJEkNMsRJkiQ1yBAnSZLUIEOcJElSgwxxkiRJDTLESZIk\nNcgQJ0mS1KCJCHFJHpDkFUnOS3Jtks1Jbkny1SQvT5Ih+61IckGSm/p9rkxycpKJ+FySJEkLZe9x\nF9A7Djgd+CFwMfAD4MHA84CPAUcBLxzcIcmxwLnA7cA5wM3A0cBpwArgRSOqXZIkaeRSVeOugSSr\ngPtW1RemtR8A/A3wMOAFVfWZvn0p8D1gKbCiqjb07fvShcCnAC+uqk8N+Xm1hsMW6NNIkiTNnzVc\nQ1Vtd1RyIg47VtW66QGub/8JcAYQYNVA13HA/sDZUwGuH78FOKUff+JC1ixJkjROExHiduLOfnvX\nQNtqoIALZxh/CbAZWJFknwWuTZIkaSwmOsQl2Qt4KV1g+9JA1+H99prp+1TVVmAj3fl+By90jZIk\nSeMw0SEOeBfwa8AXquovB9qX9dtbh+w31X7/hSpMkiRpnCY2xCV5HfBG4Crg98ZcjiRJ0kSZlFuM\n/AtJTgLeB3wLeEZV3TJtyNRK2zJmNtU+fb+7XcyNd399IEs4iCVzK1aSJGkebWQzm9i803ETF+KS\nvB54L/D/6ALcjTMMuxpYDhwGbBjs6M+jO4juQojrhv2c1ew/XyVLkiTNm4OmLS6t5+YZx03U4dQk\nb6YLcH8HrB4S4AAuoruNyFEz9K0ElgCXVtWdM/RLkiQ1b2JCXJK3Au+ku7nvM6rqZzsYfi5wI3B8\nkuUD77Ef8A66q1lPX8ByJUmSxmoiDqcmeSnwJ3SHQC8FTp7hcambqurjAFV1W5ITgLXAuiSfpHvs\n1jF0h1jXVtXaUdUvSZI0ahMR4oAD6VbP9gJOHjJmPfDxqW+q6vwkK4G30D1j9d7Ad4E3AB9YyGIl\nSZLGbSKenTpqPjtVkiS1YqKfnSpJkqTZMcRJkiQ1yBAnSZLUIEOcJElSgwxxkiRJDTLESZIkNcgQ\nJ0mS1CBDnCRJUoMMcZIkSQ0yxEmSJDXIECdJktQgQ5wkSVKDDHGSJEkNMsRJkiQ1yBAnSZLUIEOc\nJElSgwxxkiRJDTLESZIkNcgQJ0mS1CBDnCRJUoMMcZIkSQ0yxEmSJDXIECdJktQgQ5wkSVKDDHGS\nJEkNMsRJkiQ1yBAnSZLUIEOcJElSgwxxkiRJDTLESZIkNcgQJ0mS1CBDnCRJUoMMcZIkSQ0yxEmS\nJDXIECdJktQgQ5wkSVKDDHGSJEkNMsRJkiQ1yBAnSZLUIEOcJElSg5oOcUkemuTMJDckuSPJxiSn\nJbn/uGuTJElaSHuPu4C5SnIwcDmwP/BZ4GrgScDJwLOTHFlVPxtjiZIkSQum5ZW40+kC3Gur6vlV\n9Z+r6hnAacAjgT8da3WSJEkLqMkQ16/CPRPYVFUfntZ9KvDPwEuS3GfkxUmSJI1AkyEOWN1vvzy9\no6p+DlwKLAGeMsqiJEmSRqXVEHc4UMA1Q/qv7beHjaYcSZKk0Wo1xC3rt7cO6Z9qH3qV6kY2z2tB\n2rM5X7SrnCuaDeeLdkerIW63bfI/HM2C80W7yrmi2XC+aHe0eouRqZW2ZUP6p9pvGfYGm9jMxdwI\nwIEs4SCWzF91kiRJc7SRzbsU8FsNcVcDYfg5b4f222HnzHEgS1jN/vNdlyRJ0m45aNri0npunnFc\nqmpUNc2b/hYj3wU2VtUh0/ruB/yo//aAqrp9hv3b+9CSJGnRqqpMb2tyJa6qrkvyZeCZSU6qqg8O\ndL8NuC9w+kwBrt9/u38QkiRJLWlyJQ7uXo27FDgA+Bzwbbr7wq0CvgP42C1JkrTHajbEASR5KN3K\n21HAA+kOo54HvK2qht1+RJIkqXlNhzhJkqTFalHdJy7JQ5OcmeSGJHck2ZjktCRDbwqsPVeSTUm2\nDXn9cMg+K5JckOSmJJuTXJnk5CSL6r+lPVWS5yd5f5JLktzaz4WzdrLPrOdEkpcm+XqS25LckuTi\nJM+Z/0+khTSb+ZLkV3fw+2Zbkk/s4Oc4XzSjJi9smIv+HLrLgf2Bz9LdpuRJwMnAs5N4Dt3iU3T3\nEjyN7pY1g34+fXCSY4FzgduBc4CbgaP7/VcAL1rIYjUSpwCPpfv3/w/AI3c0eC5zIsm7gTcC1wMf\nAfYFjgc+31+o9eH5+jBacLOaL71v0v0/aLpvzTTY+aIdqqpF8QIuBLYCr57W/h5gG/Dhcdfoa+Rz\nYiNw3S6OXQr8hO5/1o8faN+X7gKbrcALx/2ZfO32nFgJHDLw9TbgrPmaE8AR/XteDfyrgfaHAzcC\nm4GHj/ufg68FmS+/2vefOYv3d7742uFrURwC6lfhnglsqu3/ajkV+GfgJUnuM/Li1Irj6FZxz66q\nDVONVbWF7q/xACeOqTbNk6paX1Xf28Xhc5kTJ9KtAP9pVf3TwD4/AD4E7Ae8bO6fQKM0y/kyF84X\n7dCiCHHA6n775ekdVfVzur+al9DdokSLy35JfjfJHyV5XZJVQ85lWk33y/TCGfouofuLeEWSfRay\nWE2UucyJqd9FM+3zRbrg95vzWaQmzkOSvLL/nfPKJI/ZwVjni3ZosZwTdzjdL9thj+G6lm6l7jDg\n4lEVpYnwy8DgicgBNiZ5WVVdMtB+eL/dbg5V1dYkG4FHAQfTHfrQnm9WcyLJEuChwG1V9eMZ3u/a\nfjvscYLaMzyzf01JknXAS6vq+oFG54t2arGsxC3rt8PuHTfV7lWqi8uZwNPpgtx9gccAZwAHAhdM\n+wvZOaTpZjsnnEOL22a6+5ouB36pf60ELqK7Sf1fTTulx/minVosIU7aTlW9varWVdVPq+qOqrqq\nql4NvJfu8Pqa8VYoaU/R/55ZU1XfrKp/6l9fA54NfB14BPCK8Vap1iyWEDf1F8uyIf1T7beMoBZN\nvjP67dMG2pxDmm62c8I5pO1U1VbgY3Sncvg7R7OyWELc1XT/gQw7d+DQfjvsnDktLj/tt/cdaJs6\nz227OZRkL+Ag4C7guoUtTRNkVnOiqjYDNwD3S/LgGd7P30OL13a/c5wv2hWLJcRNXazwrOkdSe4H\nHEl3vsJfj7IoTawj+u1gILuI7g+Bo2YYv5Lu8OulVXXnAtemyTGXOXFRv51pn9/qt1+ZtwrVipl+\n54DzRTuxKEJcVV1Hd3uRA5OcNK37bXR//ZxVVbePvDiNRZJH9ld/TW8/EPgg3dXMfzHQdS7dzTWP\nT7J8YPx+wDv68acvYMmaPHOZE2fQBb+3DD7ur593rwHuAP7XQhat8Ujy+CTTnwxDkqcDr6ebL/97\nWrfzRTuU6u7+vMfrb/h7KXAA8Dng23T3hVsFfAfwsVuLSJJTgT+gu5/X94HbgEOA59DdQPMLwPOq\n6q6BfY4F1gK/AD5J94ilY+gOp62tquNH+Rk0//p/x7/df/vLdCedXwd8tW+7sareNG38rOZE/xil\nN9AdKjuX7gkPLwIeAJxUVf4x0IjZzJckF9MdAr2M7hFd0D2y6zfpAtwpVfXOGX6G80VDLZoQB5Dk\noXQrb0cBDwR+BJwHvK2qhl3GrT1QkqcBrwIezz23GLmF7rmGZ1XV/xmy3xHAW+gOf9wb+C7wP4EP\n1GL6j2kP1Yf7P97BkE1Vdci0fWY9J5L8Ht1KyqPoHqt0BfDfquqLu/0hNDKzmS9JXgY8F3g03ZM+\n9gF+TBfqPlRVl+7g5zhfNKNFFeIkSZL2FIvinDhJkqQ9jSFOkiSpQYY4SZKkBhniJEmSGmSIkyRJ\napAhTpIkqUGGOEmSpAYZ4iRJkhpkiJMkSWqQIU6SJKlBhjhJkqQGGeIkSZIaZIiTpDlI8pkk25Kc\nNEPf2/u+j46jNkmLQ6pq3DVIUnOS/BKwATgAOKKqruzbnw5cCFwFPKmq7hhflZL2ZIY4SZqjJEcA\n64HrgCcAS4Fv9tsnVtV3xliepD2ch1MlaY6q6nLgrcChwEeAs+hW5l5rgJO00FyJk6TdlORLwLOA\nAj5RVS8Zc0mSFgFX4iRp95038PV/H1sVkhYVV+IkaTckORS4AtgCLAP+nu6Chi1jLUzSHs+VOEma\noyT7AucAS4AXAe8EHgu8b5x1SVocDHGSNHfvAX4deFdVfQVYA1wKvCrJ88dZmKQ9n4dTJWkOkjwX\n+DRwOfAbVbWtb38Y3W1G9gKeUFUbx1elpD2ZIU6SZinJr9AFNYDHVdX10/qPAT4D/A3w1Kq6a8Ql\nSloEDHGSJEkN8pw4SZKkBhniJEmSGmSIkyRJapAhTpIkqUGGOEmSpAYZ4iRJkhpkiJMkSWqQIU6S\nJKlBhjhJkqQGGeIkSZIa9P8BdhgAyLdhdb4AAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x1073fcb10>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Plot output\n", "import pynoddy.output\n", "reload(pynoddy.output)\n", "nout = pynoddy.output.NoddyOutput(output_name)\n", "nout.plot_section('y', layer_labels = strati_options['layer_names'][::-1], \n", " colorbar = True, title=\"\",\n", " savefig = False, fig_filename = \"ex01_strati.eps\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Add a fault event\n", "----------\n", "\n", "As a next step, let's now add the faults to the model." ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [], "source": [ "reload(pynoddy.history)\n", "reload(pynoddy.events)\n", "nm = pynoddy.history.NoddyHistory()\n", "# add stratigraphy\n", "strati_options = {'num_layers' : 8,\n", " 'layer_names' : ['layer 1', 'layer 2', 'layer 3', 'layer 4', 'layer 5', 'layer 6', 'layer 7', 'layer 8'],\n", " 'layer_thickness' : [1500, 500, 500, 500, 500, 500, 500, 500]}\n", "nm.add_event('stratigraphy', strati_options )\n", "\n", "\n", "\n", "\n", "# The following options define the fault geometry:\n", "fault_options = {'name' : 'Fault_E',\n", " 'pos' : (6000, 0, 5000),\n", " 'dip_dir' : 270,\n", " 'dip' : 60,\n", " 'slip' : 1000}\n", "\n", "nm.add_event('fault', fault_options)" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "{1: <pynoddy.events.Stratigraphy at 0x1073fc590>,\n", " 2: <pynoddy.events.Fault at 0x107565fd0>}" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "nm.events" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [], "source": [ "nm.write_history(history)" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "''" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Compute the model\n", "pynoddy.compute_model(history, output_name) " ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnEAAAFUCAYAAABLBGogAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAG11JREFUeJzt3X+0XWV95/H3V+RXgAkqYldplR8KSpWKmUFJWpNUUaYI\nVBTBdizVBTgoGrGjTgcsEWmpThXGXzBi6Ygz/ErkV0cKtkCCDam2GpilIL+SKEUrhBAaDRhIvvPH\n3hePN+fc5N6cc/Z+7nm/1jpr5+79nHO+B56cfO7z7GfvyEwkSZJUlmc1XYAkSZImzxAnSZJUIEOc\nJElSgQxxkiRJBTLESZIkFcgQJ0mSVKBnN11AEyLC66pIkqRiZGaM3zeSIQ7g7LNPYeHCdzddhgqx\ncOH/tL9om0znvpKPfKfpEqadhZ+8noUfPqbpMtRyz9r71K77RzbESZK2jeFNaifPiZMkSSrQyIa4\nefNmNV2CCmJ/0bayr2gy5s05qOkSVLAYxXunRkRm/nPTZUhSEZxOlZr1rL1P7bqwYWRH4iRJkkrm\nwgZJ0hYcfZPaz5E4SZKkAhniJEmSCuR0qiQJcApVKo0jcZIkSQUyxEmSJBXIECdJklQgQ5wkSVKB\nDHGSJEkFcnWqJI0wV6RK5XIkTpIkqUCGOEmSpAIZ4iRJkgpkiJMkSSqQCxskacS4mEGaHhyJkyRJ\nKpAhTpIkqUCGOEmSpAIZ4iRJkgpkiJMkSSqQq1MlaUTkd/6q6RIk9ZEjcZIkSQUyxEmSJBXI6VRJ\nmsacQpWmL0fiJEmSCmSIkyRJKpAhTpIkqUCGOEmSpAK5sEGSphkXM0ijwZE4SZKkAhniJEmSCmSI\nkyRJKpAhTpIkqUCGOEmSpAK5OlWSpgFXpEqjx5E4SZKkAhniJEmSCuR0qiQVyilUabQ5EidJklSg\nVoW4iDgqIr4eEQ9GxIaIeCAiroqI1/RoPzsiboiIR+v2d0bEgoho1eeSJEnqt9ZMp0bEJ4APAWuA\na+vti4FjgLdExDsy87KO9scCi4EngCuBtcDRwPnAbOCEid4vH/nOAD6FJEnScERmNl0DEfEC4CHg\nYeAVmflox7G5wK3Aysx8cb1vD+ABYA9gdmauqPfvVLd9DfD2zLyqx/vl5oe/OMBPJElD8OCKpiuQ\nNATPmnUhmRlb7G+imC5eRFXLNzsDHEBmLgXWA8/v2H08sBdw+ViAq9tuBM4CAjht0EVLUiMeXGGA\nk9SaEHcfsBE4LCKe13kgIl5LNeL2dx275wMJ3NTltW4DNgCzI2LHwZQrSZLUrFacE5eZj0XEh4FP\nA3dFxLXAo1TnxB1NFdb+c8dTDqq393Z5rU0RsQo4GNgfuGeQtUuSJDWhFSEOIDM/ExE/AC4BTu44\ndD/w5cxc07FvZr19vMfLje3fs79VSpIktUNbplOpR+IWU4W4A4DdgFnAKuCyiPiLBsuTJElqlVaM\nxNUrUP8C+Gpmfqjj0B0R8WaqadM/joiLMnM1vxhpm0l3Y/vX9XrPhZ+8/pk/z5tzEPPmHNSrqSRJ\n0tAs+eeHWPLtH221XStCHPAmqoUKS8YfyMwnIuJbwO8BhwKrqc5zmwUcCPzSEq2I2AHYD3gaWNnr\nDRd++Jj+VC5JQ5A3Lmq6BElDMndXmPtbz3nm53N6XBWtLdOpO9fb5/c4PrZ/Y729heoyIkd2aTsX\nmAEsy8yn+lahJElSi7QlxH2DKpSdGhG/2nkgIv4jMAd4Eri93r2Y6o4OJ0bErI62OwPnUo3qXTiE\nuiVJkhrRlunUxVTXgXs9cHdEXAP8K9VlQo6q23wkMx8DyMz1EXEKsAhYEhFXUN126xiqKdZFmenc\ngyRJmrZaEeIyMyPid4H3AidSnf82gyqY/V/gM5l587jnXFcviDgTOA7YhepyJGcAnx1i+ZIkSUPX\nihAH1UV6gc/Uj219znKqRRGSJEkjpTUhTpL0y1yRKmkibVnYIEmSpElwJE6SWsTRN0nbypE4SZKk\nAhniJEmSCmSIkyRJKpAhTpIkqUCGOEmSpAK5OlWSGuaKVElT4UicJElSgQxxkiRJBTLESZIkFcgQ\nJ0mSVCBDnCRJUoFGd3XqgyuarkDSiMvv3d90CZIK5kicJElSgQxxkiRJBTLESZIkFcgQJ0mSVKDR\nXdggSQ1wMYOkfnEkTpIkqUCGOEmSpAI5nSpJA7b54n9sugRJ05AjcZIkSQUyxEmSJBXIECdJklQg\nQ5wkSVKBDHGSJEkFcnWqJA2AK1IlDZojcZIkSQUyxEmSJBXIECdJklQgQ5wkSVKBXNggSX3iYgZJ\nw+RInCRJUoEMcZIkSQUyxEmSJBXIECdJklQgQ5wkSVKBXJ0qSdvJVamSmuBInCRJUoFaF+Ii4nUR\ncU1E/DginoyIhyLixog4skvb2RFxQ0Q8GhEbIuLOiFgQEa37XJIkSf3UqunUiPgk8F+AB4HrgDXA\n84FZwDzgxo62xwKLgSeAK4G1wNHA+cBs4ISJ3iu/d3/f65c0OvL2NU2XIGnEtSbERcQpVAHur4F3\nZ+bT447v0PHnPYCLgaeBuZm5ot7/UeBW4K0R8bbMvGpY9UuSJA1TK6YdI2In4FzgB3QJcACZuanj\nx+OBvYDLxwJc3WYjcBYQwGkDLVqSJKlBbRmJO4Jq2vTTQEbEUcBvAE8C38rM8Uu/5gMJ3NTltW4D\nNgCzI2LHzHxqcGVLkiQ1oy0h7j9QhbKNwArg5fXPABERtwFvzcyxk1AOqrf3jn+hzNwUEauAg4H9\ngXsGWbgkSVITWjGdCuxNNQX6IWAzMAfYAziEarTttUDn+W0z6+3jPV5vbP+efa9U0sjK29c885Ck\nprUlxI3V8RRwdGYuz8wNmfk94DjgX4C5EfHqxiqUJElqkbZMp66rtysy88HOA5n5RETcBLwLOAz4\nJr8YaZtJd2P71/U4zseufuCZP8992XOY97LnTqFsSZKk/lry0HqW/uinW23XlhA3dt5ar9D1WL3d\ntaP9LOBAqnPonlFfimQ/qsuPrOz1hmcfd8BUa5U0otYufWzrjSRpOx0CHMIuz/z88R7t2jKdejPV\nQoaDexx/eb1dVW9voTqHbou7OABzgRnAMlemSpKk6aoVIS4zfwj8DfDCiPhA57GIeAPwRqrRuLE7\nNiymupvDiRExq6PtzlTXm0vgwiGULkmS1Ii2TKcCvBd4JfCp+jpxK6guEXIs1dToyZm5HiAz19d3\neFgELImIK6huu3UM1RTrosxc1MBnkDTNPHrefU2XIEldtWIkDiAzH6I6z+1zwIuB91NdWuQ6YE5m\nXjuu/XVUU6dLqVawnk51nbkzgLcPr3JJkqTha9NIHJn5KLCgfmxL++XAmwZalCRJUgu1KsRJUls4\njSqp7VoznSpJkqRtZ4iTJEkqkCFOkiSpQIY4SZKkArmwQZJqLmaQVBJH4iRJkgpkiJMkSSqQIU6S\nJKlAhjhJkqQCGeIkSZIK5OpUSSPNFamSSuVInCRJUoEMcZIkSQUa2enUvH1N0yVIkiRNmSNxkiRJ\nBRrZkThJo2vt0seaLkGStpsjcZIkSQUyxEmSJBVoUtOpEXEJ8DPg7Mxc26PNscCxmfmuPtQnSX3h\nFKqk6WayI3F/BLwHuD0i9u/R5pXASdtTlCRJkiY2lenUFcD+wPKIOLzP9UiSJGkbTGV16vXAfwW+\nCtwcEX+UmVf1tyxJ6q+773UxvqTpZUoLGzLz74E5wCPAZRHxkb5WJUmSpAlNeXVqZn4XeDVwJ/Dn\nEfHFiNihb5VJkiSpp+2aX8jMf42I3wauBE4GXgjc1Y/CJKkfll28vukSJGkgtvs6cZm5ATgW+Dzw\nBuD92/uakiRJmthkQ9wPgHXjd2bm5sx8H/BBIPpRmCRJknqb1HRqZu63leMXRMTlwC7bVZUkSZIm\n1Pc195n5k36/piRJkn6ZF06SNO24mEHSKNjuhQ2SJEkaPkOcJElSgQxxkiRJBTLESZIkFcgQJ0mS\nVCBXp0qaFlyRKmnUOBInSZJUIEOcJElSgZxOlVQsp1AljTJH4iRJkgrU2hAXEf8pIjbXj3f1aDM7\nIm6IiEcjYkNE3BkRCyKitZ9LkiSpH1o5nRoRvw58FlgP7N6jzbHAYuAJ4EpgLXA0cD4wGzhhovdY\nu/SxPlYsqRmt/AqTpKFo64jVXwNrgIu6HYyIPYCLgaeBuZl5SmZ+BHglsBx4a0S8bVjFSpIkDVvr\nQlxELADmAe8ENvRodjywF3B5Zq4Y25mZG4GzgABOG2ylkppw973PfuYhSaOsVSEuIl4GnAdckJn/\nMEHT+UACN3U5dhtV+JsdETv2v0pJkqTmtSbERcQOwFeA1cCZW2l+UL29d/yBzNwErKI6WWb/PpYo\nSZLUGm2ajzgb+E1gTmb+fCttZ9bbx3scH9u/Zz8KkyRJaptWjMRFxKuBPwH+MjO/1XQ9kiRJbdf4\nSFw9jXopcA/wp+MP93ja2EjbzB7Hx/av6/W+n3zkF5cYmTNjF+bstutWa5UkSRq0FbmBO/KJrbaL\nzBxCORMUEDETeIxqoUK30Na5/4LM/GBEfAX4feD3M/PKca+3A1XI2xHYPTOf6vKe+fDL9u3fh5A0\ncF+4e6emS5CkRizkXjJzi4zU+Egc8HPgSz2OvQo4FPgG1Ujd8nr/LcAfAEdSXei301xgBrCkW4CT\nJEmaDhoPcZn5JHBqt2MRcTZViPtyZl7ScWgx8AngxIj4XGZ+u26/M3Au1ejdhQMtXJIkqUGNh7ht\nsMXwYWauj4hTgEXAkoi4guq2W8cABwKLMnPRcMuU1G9OoUpSb61YnboVXU/ay8zrqKZOlwLHAacD\nG4EzgLcPrTpJkqQGtHokLjM/BnxsguPLgTcNryJJkqR2KGEkTpIkSeMY4iRJkgrU6ulUSaPHxQyS\ntG0ciZMkSSqQIU6SJKlAhjhJkqQCGeIkSZIKZIiTJEkqkKtTJTXOFamSNHmOxEmSJBXIECdJklQg\nQ5wkSVKBDHGSJEkFMsRJkiQVaGRXp95978h+dKkVbt3k75CStD38FpUkSSqQw1GShsoROEnqD79N\nJUmSCmSIkyRJKpAhTpIkqUCGOEmSpAIZ4iRJkgrk6lRJA+eKVEnqP79ZJUmSCmSIkyRJKpAhTpIk\nqUCGOEmSpAIZ4iRJkgrk6lRJA+GKVEkaLL9lJUmSCmSIkyRJKpAhTpIkqUCGOEmSpAK5sEFS37iY\nQZKGx29cSZKkAhniJEmSCuR0qqTt4hSqJDXDb19JkqQCGeIkSZIKZIiTJEkqkCFOkiSpQK0IcRHx\n3Ig4OSKujoj7ImJDRKyLiG9ExLsiIno8b3ZE3BARj9bPuTMiFkREKz6XJEnSoLRlderxwIXAj4Bb\ngR8CLwCOA74EHAm8rfMJEXEssBh4ArgSWAscDZwPzAZOmOgNXVEnSZJKFpnZdA1ExDxgt8z82rj9\newP/BPwa8NbMvKbevwfwALAHMDszV9T7d6IKga8B3p6ZV/V4v1zIgQP6NJIkSf2zkHvJzC1mJVsx\nHJWZS8YHuHr/w8BFQADzOg4dD+wFXD4W4Or2G4Gz6vanDbJmSZKkJrUixG3FU/X26Y5984EEburS\n/jZgAzA7InYccG2SJEmNaHWIi4gdgJOoAtuNHYcOqrf3jn9OZm4CVlGd77f/oGuUJElqQqtDHPAJ\n4DeAr2Xm33Xsn1lvH+/xvLH9ew6qMEmSpCa1NsRFxPuBDwJ3AX/YcDmSJEmt0pZLjPySiDgduAD4\nLvD6zFw3rsnYSNtMuhvbP/55z7iVNc/8eV9msB8zplasJElSH61iA6vZsNV2rQtxEfEB4NPA/6MK\ncGu6NLsHmAUcCKzoPFCfR7cf1UKIlb3eZz579atkSZKkvtlv3ODSUtZ2bdeq6dSI+AhVgPsOML9H\ngAO4heoyIkd2OTYXmAEsy8ynuhyXJEkqXmtCXER8FDiP6uK+r8/MxyZovhhYA5wYEbM6XmNn4Fyq\n1awXDrBcSZKkRrViOjUiTgI+RjUFugxY0OV2qasz88sAmbk+Ik4BFgFLIuIKqttuHUM1xbooMxcN\nq35JkqRha0WIA/alGj3bAVjQo81S4MtjP2TmdRExFziT6h6ruwD3A2cAnx1ksZIkSU1rxb1Th817\np0qSpFK0+t6pkiRJmhxDnCRJUoEMcZIkSQUyxEmSJBXIECdJklQgQ5wkSVKBDHGSJEkFMsRJkiQV\nyBAnSZJUIEOcJElSgQxxkiRJBTLESZIkFcgQJ0mSVCBDnCRJUoEMcZIkSQUyxEmSJBXIECdJklQg\nQ5wkSVKBDHGSJEkFMsRJkiQVyBAnSZJUIEOcJElSgQxxkiRJBTLESZIkFcgQJ0mSVCBDnCRJUoEM\ncZIkSQUyxEmSJBXIECdJklQgQ5wkSVKBDHGSJEkFMsRJkiQVyBAnSZJUIEOcJElSgQxxkiRJBTLE\nSZIkFcgQJ0mSVCBDnCRJUoEMcZIkSQUyxEmSJBWo6BAXEftExCUR8VBEPBkRqyLi/IjYs+naJEmS\nBunZTRcwVRGxP7Ac2Au4FrgHOAxYALwxIuZk5mMNlihJkjQwJY/EXUgV4N6XmW/JzP+Wma8Hzgde\nCvxZo9VJkiQNUJEhrh6FOwJYnZlfGHf4bOBnwDsiYtehFydJkjQERYY4YH69/fr4A5n5U2AZMAN4\nzTCLkiRJGpZSQ9xBQAL39jh+X709cDjlSJIkDVepIW5mvX28x/Gx/T1Xqa5iQ18L0vRmf9G2sq9o\nMuwv2h6lhrjtttq/OJoE+4u2lX1Fk2F/0fYo9RIjYyNtM3scH9u/rtcLrGYDt7IGgH2ZwX7M6F91\nkiRJU7SKDdsU8EsNcfcAQe9z3l5Sb3udM8e+zGA+e/W7LkmSpO2y37jBpaWs7douMnNYNfVNfYmR\n+4FVmXnAuGO7Az+uf9w7M5/o8vzyPrQkSRpZmRnj9xU5EpeZKyPi68AREXF6Zn6u4/A5wG7Ahd0C\nXP38Lf5DSJIklaTIkTh4ZjRuGbA3cD1wN9V14eYB3we87ZYkSZq2ig1xABGxD9XI25HA86imUa8G\nzsnMXpcfkSRJKl7RIU6SJGlUjdR14iJin4i4JCIeiognI2JVRJwfET0vCqzpKyJWR8TmHo8f9XjO\n7Ii4ISIejYgNEXFnRCyIiJH6uzRdRcRbIuIzEXFbRDxe94VLt/KcSfeJiDgpIr4ZEesjYl1E3BoR\nR/X/E2mQJtNfIuJFE3zfbI6IyyZ4H/uLuipyYcNU1OfQLQf2Aq6lukzJYcAC4I0R4Tl0oyepriV4\nPtUlazr9dHzjiDgWWAw8AVwJrAWOrp8/GzhhkMVqKM4CDqH6//8vwEsnajyVPhERfwl8EHgQ+CKw\nE3Ai8Df1Qq0v9OvDaOAm1V9qd1D9GzTed7s1tr9oQpk5Eg/gJmAT8J5x+z8FbAa+0HSNPobeJ1YB\nK7ex7R7Aw1T/WB/asX8nqgU2m4C3Nf2ZfGx3n5gLHNDx583Apf3qE8Dh9WveA/y7jv0vBNYAG4AX\nNv3fwcdA+suL6uOXTOL17S8+JnyMxBRQPQp3BLA6t/yt5WzgZ8A7ImLXoRenUhxPNYp7eWauGNuZ\nmRupfhsP4LSGalOfZObSzHxgG5tPpU+cRjUC/GeZ+W8dz/kh8HlgZ+CdU/8EGqZJ9pepsL9oQiMR\n4oD59fbr4w9k5k+pfmueQXWJEo2WnSPiDyLiTyLi/RExr8e5TPOpvkxv6nLsNqrfiGdHxI6DLFat\nMpU+MfZd1O05f0sV/H6nn0WqdX41Ik6tv3NOjYhXTNDW/qIJjco5cQdRfdn2ug3XfVQjdQcCtw6r\nKLXCrwCdJyIHsCoi3pmZt3XsP6jebtGHMnNTRKwCDgb2p5r60PQ3qT4RETOAfYD1mfmTLq93X73t\ndTtBTQ9H1I8xERFLgJMy88GOnfYXbdWojMTNrLe9rh03tt9VqqPlEuB1VEFuN+AVwEXAvsAN435D\ntg9pvMn2CfvQaNtAdV3TWcBz6sdc4Baqi9T//bhTeuwv2qpRCXHSFjLz45m5JDMfycwnM/OuzHwP\n8Gmq6fWFzVYoabqov2cWZuYdmflv9eMfgDcC3wReDJzcbJUqzaiEuLHfWGb2OD62f90QalH7XVRv\nX9uxzz6k8SbbJ+xD2kJmbgK+RHUqh985mpRRCXH3UP0F6XXuwEvqba9z5jRaHqm3u3XsGzvPbYs+\nFBE7APsBTwMrB1uaWmRSfSIzNwAPAbtHxAu6vJ7fQ6Nri+8c+4u2xaiEuLHFCm8YfyAidgfmUJ2v\n8I/DLEqtdXi97Qxkt1D9InBkl/ZzqaZfl2XmUwOuTe0xlT5xS73t9pzfrbc3961ClaLbdw7YX7QV\nIxHiMnMl1eVF9o2I08cdPofqt59LM/OJoRenRkTES+vVX+P37wt8jmo181c6Di2murjmiRExq6P9\nzsC5dfsLB1iy2mcqfeIiquB3Zuft/up+917gSeB/DbJoNSMiDo2I8XeGISJeB3yAqr/873GH7S+a\nUGR19edpr77g7zJgb+B64G6q68LNA74PeNutERIRZwN/THU9rx8A64EDgKOoLqD5NeC4zHy64znH\nAouAnwNXUN1i6Riq6bRFmXniMD+D+q/+f/x79Y+/QnXS+UrgG/W+NZn5oXHtJ9Un6tsonUE1VbaY\n6g4PJwDPBU7PTH8ZKMRk+ktE3Eo1BXo71S26oLpl1+9QBbizMvO8Lu9hf1FPIxPiACJiH6qRtyOB\n5wE/Bq4GzsnMXsu4NQ1FxGuBdwOH8otLjKyjuq/hpZn5f3o873DgTKrpj12A+4G/Aj6bo/SXaZqq\nw/2fTtBkdWYeMO45k+4TEfGHVCMpB1PdVunbwH/PzL/d7g+hoZlMf4mIdwJvBl5OdaePHYGfUIW6\nz2fmsgnex/6irkYqxEmSJE0XI3FOnCRJ0nRjiJMkSSqQIU6SJKlAhjhJkqQCGeIkSZIKZIiTJEkq\nkCFOkiSpQIY4SZKkAhniJEmSCmSIkyRJKpAhTpIkqUCGOEmSpAIZ4iRpCiLimojYHBGndzn28frY\nxU3UJmk0RGY2XYMkFScingOsAPYGDs/MO+v9rwNuAu4CDsvMJ5urUtJ0ZoiTpCmKiMOBpcBK4FXA\nHsAd9fbfZ+b3GyxP0jTndKokTVFmLgc+CrwE+CJwKdXI3PsMcJIGzZE4SdpOEXEj8AYggcsy8x0N\nlyRpBDgSJ0nb7+qOP/+PxqqQNFIciZOk7RARLwG+DWwEZgLfo1rQsLHRwiRNe47ESdIURcROwJXA\nDOAE4DzgEOCCJuuSNBoMcZI0dZ8CfhP4RGbeDCwElgHvjoi3NFmYpOnP6VRJmoKIeDPwVWA58NuZ\nubne/2tUlxnZAXhVZq5qrkpJ05khTpImKSJ+nSqoAbwyMx8cd/wY4Brgn4Dfysynh1yipBFgiJMk\nSSqQ58RJkiQVyBAnSZJUIEOcJElSgQxxkiRJBTLESZIkFcgQJ0mSVCBDnCRJUoEMcZIkSQUyxEmS\nJBXIECdJklSg/w+KSo1Htb1hEAAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x1074dac90>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Plot output\n", "reload(pynoddy.output)\n", "nout = pynoddy.output.NoddyOutput(output_name)\n", "nout.plot_section('y', layer_labels = strati_options['layer_names'][::-1], \n", " colorbar = True, title = \"\",\n", " savefig = False, fig_filename = \"ex01_fault_E.eps\")" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# The following options define the fault geometry:\n", "fault_options = {'name' : 'Fault_1',\n", " 'pos' : (5500, 3500, 0),\n", " 'dip_dir' : 270,\n", " 'dip' : 60,\n", " 'slip' : 1000}\n", "\n", "nm.add_event('fault', fault_options)" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false }, "outputs": [], "source": [ "nm.write_history(history)" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "''" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Compute the model\n", "pynoddy.compute_model(history, output_name) " ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnEAAAFsCAYAAACjLe/gAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm8XGV9+PHP18hiAAPI0lZFQAVXXOJGaE1QUSwCdUHB\nqqgVrRZLtS6/urGotW5gcQEFETdUwL1FUIGAhYhWIq3IahKlgEpIgoEAIcn398dzhgyTmbl37p17\nZ86dz/v1mte5c57nnPOcuc/MfOd5zvOcyEwkSZJUL/cbdAEkSZLUO4M4SZKkGjKIkyRJqiGDOEmS\npBoyiJMkSaohgzhJkqQaMoiT+iwilkXEhoh45qDLMh4RsbAq76sGXZbp0umcI2J+tX7JoMo2FWbq\neUmjziBOAxcRsyLi1RHxg4i4KSLujogVEfHriPiPiHhnRDx1CMr5hIg4OiIOHyNrVo+6qFt5+2HG\nnHNEHF7Vy70GXRZNraZgfDyP9V32s3NE/HtEXB8Rd0bE7yPiexHxrOk8H03e/QddAI22iNgB+AEw\nl41fqndVyz2APYG/BlYB2097Ae/ricDRwELgi13y/Qa4E1gzDWXqh98B1wC3DbogQ2ANcDXwf4Mu\nSA9eDTwTWAr8T4c8dTwvbWot8Psx8uwAzAJ+0S6xCvYvoHyeJvAn4EHAAcABEfGuzPxw30qsKWUQ\np0H7KiWA+xNwHPCVzPwjQERsBTwdeCElkKuFzHzOoMvQi8wcq2VxZGTmz4HHDLoc/TZTz2vUZOYi\n4C86pVc/im+snp7eJn1L4HvAdpQg75WZeXVEbA28D3gb8MGI+EVm/rjPxdcUsDtVAxMRewL7UX4N\nviYzj28EcACZeUdmXpCZbwYePahyNolBF0CSungFsBlwD/D1Nul/D+wC3A4cmJlXA2Tm7Zn5DuA7\nlLjgQ9NTXE2WQZwG6fFNf/9nt4yZubZTWkRsFRHvioifRcSq6hqPa6trPh7Sbb8R8ZCI+HhE/G9E\n/Kl6XBkRp0bEgqZ8G4DTqqcL2lx/8symvF0HNkTETtUxr4qIO6oyXxYRb42IzTtsc3q1z/dFxP0i\n4p8i4opq+1sj4vsRMbfbuXZ5DcZ1kX9E7FNdo3hLRKyJiF9GxD9M4HjnV/v9yBj5vljl+0qvx6i2\n3z8iLqhe39siYlFEvGKMbToOAGh+nSJiTkR8uOl/uLJN/sdGxGkRsaSqkysj4r8i4g0R0bUXJCKe\nFxFnR8QNEXFXRNxclf/djTpdXQu3AZhP+YHRqCMbWs+h23k15dk3Ir5VHevuavmtiNi3yzYbImJ9\nROwSEQ+NiFOayrwkIj4aEdt0O9eJaHk/bBERx1b/izUR8YeIOCMiHjnGPnp+H1bbHRwR50S5jmxt\n9f67ujrmS/t9rj16FeVH8fczc0Wb9JdX6V/NzHbdsh+tlk8e6/XTkMhMHz4G8gBeAmwA1gO7TXAf\njwaWNe3nbkrX7Ppq3a3A3h22fTFwR9O2dwDLgXXV8yVNeW8CVlZ576qeNx43As9oyru02v6ZbY75\ntOoYjWOuqo7bKO9iYIc2232hynMccG5TOW5r2vYO4OkTeA0vrPbxqpb186v9LgEOp/y6XwesqPI3\njnt8j8c7rNruJuB+HfJsTWktWA/sO4FzenvTa7yuqgf3VM8/Np5z7vI6vY1y3eN6yrVmq4BbW/Ie\n2VSP1lf/p7VNr9kFwJZtjrEZ8OWmsq+vXu8/NT1/X5X3pdVreFe1fmVLvfzpeM6rSv9Am9erUf4N\nwAc7bNfY5qCqXjfq9N1N214GzOrzZ0fj/fBBYFH1953Va9A47u3AX3bYfqLvww+2/G+at1sP3NTP\n8+zxNXl8U9kO7PCeapTzbzrsI5pew78f1Ln46OH/PugC+BjdB7Bb04fOOe0+NMfY/oFsDJi+BjwO\niCpt16Yvw5uAB7ZsO6/pS/VHwJOb0raqvpRObdnm8Gp/F4xRrrZBHLBtVZb11ZfEk6v1Abyo6Uvw\nvDb7/EJ17BXALZQA9P5V2uOAK6ptf9qtbB3KO1ZAc3v1BfkJYMem1/4TVfo64NE9HG8LSpCwHnhB\nhzyvo0vQMcb+/7Lpy+p0YKemMn+o2m/ji6rXIG4DJaBaBuzXlLZ7099/U+VbBbwV2L5af3/K5QNX\nV8c+qc0xPl1tuxZ4b+P1rtIeVu3vdeP5//VwXoey8X34iabybtf0P14PvLzNto20FcAPG/WAEoy+\nuqo3fQ8Imt4PK4HVlBamWVXaXsDP2fjen9OP92H1+jcC2/c3Xqcq7UGUa3dP6ed59viafLw659/T\nJmgGntr0/3pkl/38tMpz4qDOxUcP//dBF8DHaD+qL9nGr9+7KAHV+ylBVNegjo2tB1/ukuecav9v\nbVl/WbX+gnYfeB32Ndkg7r1sbB3csc12+zV9yC5oSftCU9omLYvAk5vSH9Lj/2CsIG49cHKHbRvB\n43t6PGYjOPhmh/RLq/2+dwJ16vxq2x91SD+l6bwmEsTdRYeglXKJyrJq38/pkGc3SmB8N7Bz0/rH\nsDH4/LvJ/v96OK/rqu2/0mHbr1bb/qZNWuN1vALYrE36iVWeH/f6fxzjnJvfD4e2SX8Q5cfOeuBd\nLWkTeh8Ch1Trr+yxrAur7Sby2KQ1v8MxZgE3V2X+eIc8BzWd11Zd9vWtKt9Z/fyf+Ziah9fEadBe\nBxxP+ULbDHgW8G7KBbZ/rK5ReXmHbRvXfxzfZf9nUH5h79dYEWVARWPeuXdkZsf5lPrsxZTynpKZ\nt7QmZuaPKF1DULrK2vlJlhFqrdtezsbpIx7Xh7K2+rcO679LeX17Peap1fKAKCPq7hURewDPoLxW\np/ey04jYDlhQPe00TcK/9rLPFgn8IDOv6pC+gHLh+K+yw+i+zFxKae24PxvLCvBKymt5dWZ+fhJl\nHLeIeCLw8OrpBztkO7Za7hoRT+uQ5/jMvKfN+u9Uy6mokwC/zcxNLuDPzFuBz1Jez5e0JE/0ffin\najknIh7QQxmXU1rHen3cTGmRHY/9gZ2rv7/UIc9WTX/f2WVfjamRth7nsTVATjGigcrMdcDbI+LD\nlO6I+cBTgEdQPoCfCnwlIg7KzEMb21UXdz+E6ks1IrLDIRoXKD+0ad0zquWKzPzvvp1MFxGxGRu/\nyBZ2yXoBsDelZa1VUrqJOrkReDClG6yfVmTmsi7HpNdjZuavIuJnlP/vKygtcw1/Vy1/nJk39LJf\n4EmUerMeuKTDsZdGxA2U+jMRmwTRTeZVyz0i4uYu+eZUy9Z6mZTW4+nSqGe3dApMM/PaiLiRMrXF\nk4GftcnW6X00ofrRg4vGSHsX8LiIuH9mrpvk+/AySrfxXwCLIuLTlNbeZd0KmJmtQeRUeHW1/N/M\nvGIajqchYUuchkJmLs/MUzLzFZn5KODPgSMoE9ECHBIRb27a5M+b/t4R2KnDY1vKF2PzL+fGL9bf\nMX22Z+P77cYu+RqtaTt2SF/dZdvGJMmb9VCu8ZiqY55KCbhe01gREfejBHXJxtHAjbS9qxGBN7d5\nPLjK1njdbsvMbq0N3f4HY9mk9aZJo15uTuc6uRPlukCA2U3bDqJeNl6vsV6PidbLRv2YigaDpHu5\nG2mz2BhETvh9mJmrKK2lKyiDCD4LLIlyl5nTY0C32YuIbYEXUF6PL3TJekfT391aEht18vZJFk3T\nwCBOQykzb8nM0ygTAf+hWv3apizNdXfbzJw1xuPhDI8tB12AIfE1yhfF4yKi0eLx15RAaCUbu+Ia\nNqd9wL4j5Yt6unTrfm/Uy++Oo07OyszjpqPA4zCKdbLnc87MH1CuaXw98A1KILgz5dKOhRFxcl9L\nOD6HUX4UrKNcPtLJTU1/d5wwuEpLSneuhpxBnIZadW1L47qrPZqS/tD098N63G1j210mUbReraBc\nLDzWcRtdfN1ae2aEzLyD8kXY3Br3WsoXyBnZMjdgZl7UIRC6f2Y2Wq8ar9ucKLPTd9LtS2wyJlO3\nGtv2Wp8no/F6PbRrruGsl8HYwQhsnH4F+vA+zMzVmfn5zDwsMx8KPBb4XJV8REQ8/z6F3Dj33kQe\nz2g9fhuHU94z57a7xq/J1Wy8teFj22WIiKDc6hDg1+M4tgbMIE510OgGuPdLvboOpfGl9/zWDcbw\n02q5fZcLtdtpfPj3fOeG6qLvX1VPO06eShnYkcDlvR6jphoDHA6rrnM8oHrerVuom8WU1+9+lKlG\nNhERuzJ1AXzjerm9IuLPu+bc1E8pdavX+jzhesnGerZVRDylXYZq0tcHt+QfFvO7pC2olr+qrr2d\nkvdhZl6dmX/Pxs+V1jJtR/eu9U6PHdl4TW9b1SCtxmdYt/s5k5m3s/Haxf06ZHs6G6/XPL/b/jQc\nDOI0MBGxa0TsPkaeB1Dm3QL4ZUvy6ZQvrreN9YUZEY0PJjLzGsrF2QF8JCLG2xXXGJ227Tjztzq7\nOuarI2Ln1sSIeC7lYmqAMyd4jFrJzMsoX6rbUbpXNwOuyMzFE9zfSspF6QG8o0O2f5nIvsfpfOAG\nSvfuR7tlrK5lavZlSuDwqIg4oodjTrheZuYvgeurp+/qkK0xOnVpZrYb1DBIu0bEy1pXRsT2lGtq\nk03fSxN6H1aDIrppXIO5RfPKzNx3nF3r7VqYLx7jmK+uliuB74+RFzaO1v/bdudOmSQb4L8z87px\n7E8DZhCnQXoscE1EfDMiDomIP2skRMTsiDgQ+C/KNSjJfUcwQpn2YgnlF+uiah9bNu3joRHx+oi4\nHDi4Zdu3Us3lBpwXTbesioitI+LQ2PR2T1dWy8f02ILX8CnKdSazm48Z5TZaL6YEMUkZ8bZwAvuv\nq8YAh30o5z/Z6TWOqfbz7OqC850AIuKBEfGvlC/3VZM8RltVi8+R1dOXR8S3I+IJjfSIuH9EzI1y\ny7GlLdv+mo3TYnwmIo6OiB2btt21WveGlsNeWW3zooh44ASK/Z5q+4Mj4sQqACIito+IEymTAWeV\nr29i463AOt6ibhxuA06NiJc3foxFxF7AeZTPhT8AJ7VsM9H34Rsj4tyIOKzls2pORLyLjS1/503w\nXHpSdX3+bVXWr3WY4qXVZ4HfUia+/s+IeHS1r62rOvnCan+dAnoNm6mYfM6Hj/E8gOdy39s3NW4d\ntbLp+XpKN+o7O+xjd0pLTmMf91CuY7mjZR+vbLPtSylzIjXftmp50/N2E6MubEpfTvkiXgo8rSlP\n28l+q7SnthzjtqoMjXJeTufbbm2guuVSh9dizElfe9mOMW7VVOUZ1wTIYxx/O0orxoZquV0f6tbb\nml7j9dz3tlsfncg59/L6Vq/LnWxat+5pqpfr2my3OSWIaH5PrKCM/mycy/tattmTjbfeWksZWbmU\nMqfguP6XlNu5NY7ZfNutxjE/0GG7RvouHdIf1sjTJq15MulxTWrb8n5o3Hbr0qa6s6rpdVsN7NNh\n+57fh8BRTftu7H9F0/P1wGcmW3d7eA2aJyV+Sg/b7QX8sencVzX9r9cBb5+uc/Ax+YctcRqYzPwh\n5QvobcC3KTPHJ2VSypXAL4ATgCdkZtuJWzNzCWVusDdRutFWUH5l3kOZRf6zlOusNrmJemaeSbn3\n6qeAa6pjzwKuolyo/Ko2h3wh8BlKC+BWlGurHsqmI93azluXmT+nzMx/QnXM+1dl/Xn1OjwjM5e3\n27bTPqdYjuO448nTeePSBXpRtY/vVM8nJTM/Rrm27ALKl+0sShf6KzPz7d22ZZLnUx3/i5S6/QnK\nj4x1wDaUwOFCyl0DHtVmu7WZeRil5fh7lElfZ1O6TBdRWkhOadnmGuA5lHvqrqKMltyFTS/673he\nmfk+4NmUEcG3UOr28ur5szOzWyvceF6rdnkal0CsYeIX0d9NaQE7lnKnjM0oAcoZlNtpdZorcCLv\nw69SJif/elXetZTX6SbK63RgZr5pgucxEY3Jzq/KHua7zMz/ocyVdyLlHsCbU/7X36fcZaTrZQAa\nLo37TErSQFTXPd5MCXKeXwX3muEi4iTgDcBHM/OdPW77BUoQc2wOzzQt0rSzJU7SoL2c0nr6WwO4\nkbKA0gr3sQGXQ6otgzhJA1NN93E0pVvo3wdaGE2bKPfL3QM4ObvPbSapC++dKmnaRcTXKaNR/5wy\nMvIaNh1FqBmqut5ssnfZmMi8eNKMYkucpEHYmXLh/UrKvF3Py5Y7NEhj8IJujbyRHNgQEaN30pIk\nqbYyc5PW55HtTj366CM45pjWOTOl9o455rPWF42LdUW9qHN9yVuG7S5sM9f9dnp9+/XTXA5JkiT1\ngUGcJElSDY1sELdgwdyxM0kV64vGy7qiXlhfNBkjO7Chh7uUSJIkvA5uUO630+vbDmwY2ZY4SZKk\nOjOIkyRJqiGDOEmSpBoyiJMkSaqhkZ3sV5Ikjc3BDMPLljhJkqQaMoiTJEmqIYM4SZKkGjKIkyRJ\nqiGDOEmSpBpydKokSboPR6TWgy1xkiRJNWQQJ0mSVEN2p0qSJMBu1LqxJU6SJKmGDOIkSZJqyCBO\nkiSphgziJEmSasiBDZIkjTAHM9SXLXGSJEk1ZBAnSZJUQ3anSpI0ym5YPOgSaIJsiZMkSaohgzhJ\nkqQasjtVkqQRk5d/ftBFUB/YEidJklRDBnGSJEk1ZBAnSZJUQwZxkiRJNeTABkmSRoCDGWYeW+Ik\nSZJqyCBOkiSphuxOlSRphrILdWazJU6SJKmGDOIkSZJqyCBOkiSphgziJEmSasggTpIkqYYcnSpJ\n0gzjqNTRYEucJElSDQ1VEBcRB0TEDyPihohYExG/iYgzI+IZHfLPi4hzIuLWKv8VEXFURAzVeUmS\nJPXb0HSnRsSHgbcDy4HvVMtHAAcBL46IV2bmGU35DwbOBu4EvgGsAA4ETgDmAS+b1hOQpGmWt1w+\n6CJIGqDIzEGXgYjYGbgR+CPw+My8tSltPnAhsCQzH1Gt2wb4DbANMC8zF1frN6/yPgM4LDPP7HC8\nzPzvKTwjSZp6BnHq6IbFgy6B+uh+c08iM6N1/bC0xD2M0rV7WXMAB5CZF0XEamDHptWHADsApzcC\nuCrv2oh4D3A+8EagbRAnSXVm8Ka2DNxGzrBcO3YdsBZ4WkQ8qDkhIp5JaXH7UdPqfYEEzmuzr4uB\nNcC8iNhsaoorSZI0WEPREpeZKyPiHcDxwK8j4jvArZRr4g6kBGt/37TJntXy2jb7Wh8RS4HHALsD\n10xl2SVJkgZhKII4gMw8MSJ+C5wGvK4p6Xrgi5m5vGndnGp5W4fdNdZv299SSpI0ROxCHWnD0p1K\n1RJ3NiWIeziwFTAXWAqcERH/NsDiSZIkDZWhaImrRqD+G/DNzHx7U9IvI+KFlG7Tf46IkzNzGRtb\n2ubQXmP9qk7HPOaYz97794IFc1mw4CkTLL0kSVL/LPzvG1n4i5vGzDcUQRzwAspAhYWtCZl5Z0T8\nDPgb4EnAMsp1bnOBPYD7tCVHxCxgN2AdsKTTAY855g39KbkkTQNHpKqdvPL6QRdBU2D+A2D+X253\n7/PjPtc+37B0p25RLXfskN5Yv7ZaXgAEsH+bvPOB2cAlmXlP30ooSZI0RIYliPsJJSh7fUT8RXNC\nRDwf2Ae4C7i0Wn025Y4Oh0bE3Ka8WwAfoLTqnTQN5ZYkSRqIYelOPZsyD9xzgKsi4tvA7ynThBxQ\n5XlnZq4EyMzVEXEEcBawMCK+Trnt1kGULtazMvOsaT4HSZKmXJ7r15uKoQjiMjMj4q+BfwAOpVz/\nNpsSmP0HcGJmnt+yzXerARHvBl4EbEmZjuQtwCensfiSJEnTbiiCOCiT9AInVo/xbrOIMihCkiRp\npAxNECdJui9HpErqZlgGNkiSJKkHtsRJ0hCx9U3tOJhB7dgSJ0mSVEMGcZIkSTVkECdJklRDBnGS\nJEk1ZBAnSZJUQ45OlaQBc0SqOnFUqrqxJU6SJKmGDOIkSZJqyO5USZKGiF2oGi9b4iRJkmrIIE6S\nJKmG7E6VpAHJyz8/6CJIqjFb4iRJkmrIljhJkgYsr7x+0EVQDdkSJ0mSVEMGcZIkSTVkd6okTSMH\nM0jqF1viJEmSasggTpIkqYbsTpWkKWYXqtrZcMpPB10E1ZwtcZIkSTVkECdJklRDBnGSJEk1ZBAn\nSZJUQwZxkiRJNeToVEmaAo5IVTuOSFU/2RInSZJUQ7bESZI0xWyB01SwJU6SJKmGDOIkSZJqyO5U\nSeoTBzNImk62xEmSJNWQQZwkSVINjWx3at5y+aCLIEmawRyRqqlmS5wkSVINGcRJkiTV0Mh2p0pS\n39yweNAlkDSCbImTJEmqoaEL4iLi2RHx7Yi4OSLuiogbI+LciNi/Td55EXFORNwaEWsi4oqIOCoi\nhu68JEmS+mmoulMj4iPA24AbgO8Cy4EdgbnAAuDcprwHA2cDdwLfAFYABwInAPOAl01j0SWNmDz3\nrEEXQUMoL10+6CJohAxNEBcRR1ACuC8Ab8jMdS3ps5r+3gY4BVgHzM/MxdX69wIXAi+JiJdm5pnT\nVX5JkqTpNBTdjhGxOfAB4Le0CeAAMnN909NDgB2ArzUCuCrPWuA9QABvnNJCS5IkDdCwtMTtR+k2\nPR7IiDgAeCxwF/CzzGydMXFfIIHz2uzrYmANMC8iNsvMe6au2JIkSYMxLEHcUylB2VpgMfC46jlA\nRMTFwEsys3GxwZ7V8trWHWXm+ohYCjwG2B24ZioLLkmSNAjDEsTtROkCfTtwJbAPcAWwG/Ax4HnA\nmcCzqvxzquVtHfbXWL/tVBRW0mhyMIPacTCDBmUoroljYznuAQ7MzEWZuSYzrwReBPwfMD8inj6w\nEkqSJA2RYWmJW1UtF2fmDc0JmXlnRJwHvBZ4GnAZG1va5tBeY/2qDukc85Hv3fv3gn32ZME+e3bK\nKkmSNG0W3riai266fcx8wxLENa5b6xR0rayWD2jKPxfYg3IN3b2qqUh2o0w/sqTTAY95x0ETLask\nacTd+qHrBl0EzWB7AXux5b3P398h37B0p55PGcjwmA7pj6uWS6vlBZRr6Da5iwMwH5gNXOLIVEmS\nNFMNRRCXmb8Dvg/sEhH/1JwWEc+lDGxYycY7NpxNuZvDoRExtynvFpT55hI4aRqKLkmSNBDD0p0K\n8A/AE4GPV/PELaZMEXIwpWv0dZm5GiAzV1d3eDgLWBgRX6fcdusgShfrWZnpMDJJk+aIVEnDaiha\n4gAy80bKdW6fAh4B/CPwTMo9VPfJzO+05P8upev0IsoI1iMp88y9BThs+kouSZI0/YapJY7MvBU4\nqnqMJ/8i4AVTWihJkqQhNFRBnCQNC7tR1Y6jUjVMhqY7VZIkSeNnECdJklRDBnGSJEk1ZBAnSZJU\nQw5skKSKgxnUjoMZNKxsiZMkSaohgzhJkqQaGt3u1BsWD7oEkqQhZReq6sCWOEmSpBoyiJMkSaqh\n0e1OlSQgr7x+0EWQpAmxJU6SJKmGDOIkSZJqyO5USSMtL10+6CJoSKy4aOWgiyD1xJY4SZKkGrIl\nTtLI2XDKTwddBEmaNFviJEmSasggTpIkqYZ66k6NiNOAO4CjM3NFhzwHAwdn5mv7UD5J6gu7UNWO\ngxlUZ722xL0aeBNwaUTs3iHPE4HDJ1MoSZIkdTeR7tTFwO7AoojYu8/lkSRJ0jhMZHTq94D/B3wT\nOD8iXp2ZZ/a3WJIkTb2rrnWSBtXXhAY2ZOaPgX2AW4AzIuKdfS2VJEmSuprw6NTM/BXwdOAK4F8j\n4nMRMatvJZMkSVJHk2pHzszfR8RfAd8AXgfsAvy6HwWTpH5wVKraueSU1YMugjRpk54nLjPXAAcD\nnwaeC/zjZPcpSZKk7noN4n4LrGpdmZkbMvPNwFuB6EfBJEmS1FlP3amZudsY6Z+IiK8BW06qVJIk\n9ZldqJpp+j62OjP/0O99SpIk6b6cIEfSjONgBkmjYNIDGyRJkjT9DOIkSZJqyO5USdKM5WAGzWS2\nxEmSJNWQQZwkSVINjWx3al55/aCLIKmP8tLlgy6CJE0rW+IkSZJqyCBOkiSphka2O1VS/dmFqnYc\nkapRYUucJElSDQ1tEBcRr4iIDdXjtR3yzIuIcyLi1ohYExFXRMRRETG05yVJktQPQ9mdGhEPBT4J\nrAa27pDnYOBs4E7gG8AK4EDgBGAe8LJpKaykgVlx0cpBF0FDaSi/2qS+G9YWqy8Ay4GT2yVGxDbA\nKcA6YH5mHpGZ7wSeCCwCXhIRL52uwkqSJE23ofu5EhFHAQuqx7M7ZDsE2AE4PTMXN1Zm5tqIeA9w\nPvBG4MwpLaykaXfrh64bdBE0pK66dui+0qQpNVQtcRHxaOBDwCcy87+6ZN0XSOC8NmkXA2uAeRGx\nWf9LKUmSNHhDE8RFxCzgy8Ay4N1jZN+zWl7bmpCZ64GllFbG3ftYREmSpKExTG3PRwNPAPbJzLvH\nyDunWt7WIb2xftt+FEySNJzsQtUoG4qWuIh4OvAvwMcy82eDLo8kSdKwG/hPmKob9UvANcD7WpM7\nbNZoaZvTIb2xflWn4x77rd/c+/f8R2/HgkdvP2ZZJUmSptriXMMv884x8w08iKPMA/dIykCFuyM2\nidsSODUiTqUMeHgrJeCbC+wBLG7OXAWFu1GmH1nS6aBHv+jh/Sq/pGngqFS1c+H6oehQkvpsa3a9\nzzS57efEHIYg7m7g1A5pTwaeBPyEErgtqtZfAPwtsD9lot9m84HZwMLMvKfvpZUkSRoCAw/iMvMu\n4PXt0iLiaEoQ98XMPK0p6Wzgw8ChEfGpzPxFlX8L4AOU1ruTprTgkiRJAzTwIG4cNu1fzVwdEUcA\nZwELI+LrlNtuHUTpYj0rM8+a3mJK6je7UNXOZ67afNBFkIZCHS4myLYrM79L6Tq9CHgRcCSwFngL\ncNi0lU6SJGkAhrolLjOPBY7tkr4IeMH0lUiSJGk41KElTpIkSS0M4iRJkmpoqLtTJY0eBzOoHQcz\nSJuyJU6SJKmGDOIkSZJqyO5USdJQsgtV6s6WOEmSpBoyiJMkSaqhke1OzUuXD7oIkiorLlo56CJI\nUu3YEidJklRDBnGSJEk1NLLdqZKk4eSoVGl8bImTJEmqIYM4SZKkGrI7VdJAXHLK6qZnfhRJUq9s\niZMkSariMWMJAAANcUlEQVQhf/5Kmlb3bYGTigvX26Yg9cp3jSRJUg0ZxEmSJNWQQZwkSVINGcRJ\nkiTVkEGcJElSDTk6VdKUc0Sq2nFEqjQ5voMkSZJqyCBOkiSphuxOlSRNG7tQpf7x3SRJklRDBnGS\nJEk1ZHeqpCnhiFRJmlq2xEmSJNWQLXGSpCnlYAZpavjOkiRJqiGDOEmSpBqyO1VS3ziYQZKmjy1x\nkiRJNWQQJ0mSVEMj25264qKVgy6CNCNcde3IfoxoDI5KlaaW7zBJkqQaMoiTJEmqIYM4SZKkGjKI\nkyRJqqGhCOIiYvuIeF1EfCsirouINRGxKiJ+EhGvjYjosN28iDgnIm6ttrkiIo6KiKE4L0mSpKky\nLMPKDgFOAm4CLgR+B+wMvAg4FdgfeGnzBhFxMHA2cCfwDWAFcCBwAjAPeNk0lV0aSZ+5avNBF0GS\nRtqwBHHXAAdm5n82r4yIdwE/B14cES/MzG9X67cBTgHWAfMzc3G1/r2UIPAlEfHSzDxzOk9CkiRp\nugxFt2NmLmwN4Kr1fwROBgJY0JR0CLAD8LVGAFflXwu8p8r/xqkssyRJ0iANRRA3hnuq5bqmdfsC\nCZzXJv/FwBpgXkRsNsVlkyRJGoihDuIiYhZwOCVgO7cpac9qeW3rNpm5HlhK6SrefarLKEmSNAjD\nck1cJx8GHgv8R2b+qGn9nGp5W4ftGuu3naqCSaPIwQySNDyGtiUuIv4ReCvwa+BVAy6OJEnSUBnK\nlriIOBL4BPAr4DmZuaolS6OlbQ7tNda3bnevj9yy8t6/95m9Jfts9YCJFVaSJKmPlrKGZawZM9/Q\nBXER8U/A8cD/UAK45W2yXQPMBfYAFjcnVNfR7UYZCLGk03HeseN2/SqyJElS3+zGbHZj9r3PL2JF\n23xD1Z0aEe+kBHCXA/t2COAALqBMI7J/m7T5wGzgksy8p026JElS7Q1NEFdN1PshyuS+z8nMlV2y\nnw0sBw6NiLlN+9gC+ABlNOtJU1hcSZKkgRqK7tSIOBw4ltIFeglwVJvbpS7LzC8CZObqiDgCOAtY\nGBFfp9x26yBKF+tZmXnWdJVfmskckSpJw2kogjhgV0rr2SzgqA55LgK+2HiSmd+NiPnAuyn3WN0S\nuB54C/DJqSysJEnSoA1FEJeZx1Ja4nrdbhHwgv6XSJIkabgNRRAnabjYhSpJw29oBjZIkiRp/Azi\nJEmSasggTpIkqYYM4iRJkmrIgQ2SAAczSFLd2BInSZJUQwZxkiRJNTSy3alXXTuypy5JkmYAW+Ik\nSZJqyCBOkiSphuxTlEbchev9LSdJdeSntyRJUg0ZxEmSJNWQ3anSCLILVZLqz09ySZKkGjKIkyRJ\nqiGDOEmSpBoyiJMkSaohBzZII8LBDJI0s/ipLkmSVEMGcZIkSTVkECdJklRDBnGSJEk1ZBAnSZJU\nQ45OlWYwR6RK0szlJ7wkSVINGcRJkiTVkEGcJElSDRnESZIk1ZADG6QZxsEMkjQa/LSXJEmqIYM4\nSZKkGrI7VZoh7EaVpNHip74kSVINGcRJkiTV0Mh2p9r1JEmS6sxIRpIkqYYM4iRJkmrIIE6SJKmG\nah3ERcSDI+K0iLgxIu6KiKURcUJEbDvoskmSJE2l2g5siIjdgUXADsB3gGuApwFHAc+LiH0yc+UA\niyhJkjRl6twSdxIlgHtzZr44M9+Vmc8BTgAeBXxwoKWTJEmaQrUM4qpWuP2AZZn5mZbko4E7gFdG\nxAOmvXCSJEnToJZBHLBvtfxha0Jm3g5cAswGnjGdhZIkSZoudQ3i9gQSuLZD+nXVco/pKY4kSdL0\nqmsQN6da3tYhvbG+4yjVpazpa4E0s1lfNF7WFfXC+qLJqGsQN2nLfOOoB9YXjZd1Rb2wvmgy6jrF\nSKOlbU6H9Mb6VZ12sIw1XMhyAHZlNrsxu3+lkyRJmqClrBlXgF/XIO4aIOh8zdsjq2Wna+bYldns\nyw79LpckSdKk7NbSuHQRK9rmi8ycrjL1TTXFyPXA0sx8eEva1sDN1dOdMvPONtvX76QlSdLIysxo\nXVfLlrjMXBIRPwT2i4gjM/NTTcnHAVsBJ7UL4KrtN3khJEmS6qSWLXFwb2vcJcBOwPeAqyjzwi0A\nrga87ZYkSZqxahvEAUTEgyktb/sDD6J0o34LOC4zO00/IkmSVHu1DuIkSZJG1UjNExcRD46I0yLi\nxoi4KyKWRsQJEdFxUmDNXBGxLCI2dHjc1GGbeRFxTkTcGhFrIuKKiDgqIkbqvTRTRcSLI+LEiLg4\nIm6r6sKXxtim5zoREYdHxGURsToiVkXEhRFxQP/PSFOpl/oSEQ/r8nmzISLO6HIc64vaquXAhomo\nrqFbBOwAfIcyTcnTgKOA50WE19CNnqTMJXgCZcqaZre3Zo6Ig4GzgTuBbwArgAOr7ecBL5vKwmpa\nvAfYi/L//z/gUd0yT6RORMTHgLcCNwCfAzYHDgW+Xw3U+ky/TkZTrqf6Uvkl5Tuo1a/aZba+qKvM\nHIkHcB6wHnhTy/qPAxuAzwy6jD6mvU4sBZaMM+82wB8pX9ZPalq/OWWAzXrgpYM+Jx+TrhPzgYc3\n/b0B+FK/6gSwd7XPa4AHNq3fBVgOrAF2GfTr4GNK6svDqvTTeti/9cVH18dIdAFVrXD7Acty018t\nRwN3AK+MiAdMe+FUF4dQWnG/lpmLGyszcy3l13gAbxxQ2dQnmXlRZv5mnNknUifeSGkB/mBm/qlp\nm98Bnwa2AF4z8TPQdOqxvkyE9UVdjUQQB+xbLX/YmpCZt1N+Nc+mTFGi0bJFRPxtRPxLRPxjRCzo\ncC3TvpQP0/PapF1M+UU8LyI2m8rCaqhMpE40PovabfMDSuD3rH4WUkPnLyLi9dVnzusj4vFd8lpf\n1NWoXBO3J+XDttNtuK6jtNTtAVw4XYXSUPgzoPlC5ACWRsRrMvPipvV7VstN6lBmro+IpcBjgN0p\nXR+a+XqqExExG3gwsDoz/9Bmf9dVy063E9TMsF/1aIiIWAgcnpk3NK20vmhMo9ISN6dadpo7rrHe\nUaqj5TTg2ZRAbivg8cDJwK7AOS2/kK1DatVrnbAOjbY1lHlN5wLbVY/5wAWUSep/3HJJj/VFYxqV\nIE7aRGa+PzMXZuYtmXlXZv46M98EHE/pXj9msCWUNFNUnzPHZOYvM/NP1eO/gOcBlwGPAF432FKq\nbkYliGv8YpnTIb2xftU0lEXD7+Rq+cymddYhteq1TliHtInMXA+cSrmUw88c9WRUgrhrKG+QTtcO\nPLJadrpmTqPllmq5VdO6xnVum9ShiJgF7AasA5ZMbdE0RHqqE5m5BrgR2Doidm6zPz+HRtcmnznW\nF43HqARxjcEKz21NiIitgX0o1yv8dDoLpaG1d7VsDsguoPwQ2L9N/vmU7tdLMvOeKS6bhsdE6sQF\n1bLdNn9dLc/vWwlVF+0+c8D6ojGMRBCXmUso04vsGhFHtiQfR/n186XMvHPaC6eBiIhHVaO/Wtfv\nCnyKMpr5y01JZ1Mm1zw0IuY25d8C+ECV/6QpLLKGz0TqxMmUwO/dzbf7q+rdPwB3AadPZaE1GBHx\npIhovTMMEfFs4J8o9eUrLcnWF3UVWWZ/nvGqCX8vAXYCvgdcRZkXbgFwNeBtt0ZIRBwN/DNlPq/f\nAquBhwMHUCbQ/E/gRZm5rmmbg4GzgLuBr1NusXQQpTvtrMw8dDrPQf1X/Y//pnr6Z5SLzpcAP6nW\nLc/Mt7fk76lOVLdRegulq+xsyh0eXgZsDxyZmf4YqIle6ktEXEjpAr2UcosuKLfsehYlgHtPZn6o\nzTGsL+poZII4gIh4MKXlbX/gQcDNwLeA4zKz0zBuzUAR8UzgDcCT2DjFyCrKfQ2/lJlf7bDd3sC7\nKd0fWwLXA58HPpmj9Gaaoarg/n1dsizLzIe3bNNznYiIV1FaUh5Dua3SL4CPZuYPJn0Smja91JeI\neA3wQuBxlDt9bAb8gRLUfTozL+lyHOuL2hqpIE6SJGmmGIlr4iRJkmYagzhJkqQaMoiTJEmqIYM4\nSZKkGjKIkyRJqiGDOEmSpBoyiJMkSaohgzhJkqQaMoiTJEmqIYM4SZKkGjKIkyRJqiGDOEmSpBoy\niJOkCYiIb0fEhog4sk3a+6u0UwZRNkmjITJz0GWQpNqJiO2AxcBOwN6ZeUW1/tnAecCvgadl5l2D\nK6WkmcwgTpImKCL2Bi4ClgBPBrYBflktn5KZVw+weJJmOLtTJWmCMnMR8F7gkcDngC9RWubebAAn\naarZEidJkxQR5wLPBRI4IzNfOeAiSRoBtsRJ0uR9q+nvfx9YKSSNFFviJGkSIuKRwC+AtcAc4ErK\ngIa1Ay2YpBnPljhJmqCI2Bz4BjAbeBnwIWAv4BODLJek0WAQJ0kT93HgCcCHM/N84BjgEuANEfHi\nQRZM0sxnd6okTUBEvBD4JrAI+KvM3FCtfwhlmpFZwJMzc+ngSilpJjOIk6QeRcRDKYEawBMz84aW\n9IOAbwM/B/4yM9dNcxEljQCDOEmSpBrymjhJkqQaMoiTJEmqIYM4SZKkGjKIkyRJqiGDOEmSpBoy\niJMkSaohgzhJkqQaMoiTJEmqIYM4SZKkGjKIkyRJqqH/D71MZGqAPg73AAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x1074ea610>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Plot output\n", "reload(pynoddy.output)\n", "nout = pynoddy.output.NoddyOutput(output_name)\n", "nout.plot_section('y', layer_labels = strati_options['layer_names'][::-1], colorbar = True)" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": false }, "outputs": [], "source": [ "nm1 = pynoddy.history.NoddyHistory(history)" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "(10000.0, 7000.0, 5000.0)" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "nm1.get_extent()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Complete Model Set-up\n", "--------------------\n", "\n", "And here now, combining all the previous steps, the entire model set-up with base stratigraphy and two faults:" ] }, { "cell_type": "code", "execution_count": 35, "metadata": { "collapsed": false }, "outputs": [], "source": [ "reload(pynoddy.history)\n", "reload(pynoddy.events)\n", "nm = pynoddy.history.NoddyHistory()\n", "# add stratigraphy\n", "strati_options = {'num_layers' : 8,\n", " 'layer_names' : ['layer 1', 'layer 2', 'layer 3',\n", " 'layer 4', 'layer 5', 'layer 6', \n", " 'layer 7', 'layer 8'],\n", " 'layer_thickness' : [1500, 500, 500, 500, 500, \n", " 500, 500, 500]}\n", "nm.add_event('stratigraphy', strati_options )\n", "\n", "# The following options define the fault geometry:\n", "fault_options = {'name' : 'Fault_W',\n", " 'pos' : (4000, 3500, 5000),\n", " 'dip_dir' : 90,\n", " 'dip' : 60,\n", " 'slip' : 1000}\n", "\n", "nm.add_event('fault', fault_options)\n", "# The following options define the fault geometry:\n", "fault_options = {'name' : 'Fault_E',\n", " 'pos' : (6000, 3500, 5000),\n", " 'dip_dir' : 270,\n", " 'dip' : 60,\n", " 'slip' : 1000}\n", "\n", "nm.add_event('fault', fault_options)\n", "nm.write_history(history)" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# Change cube size\n", "nm1 = pynoddy.history.NoddyHistory(history)\n", "nm1.change_cube_size(50)\n", "nm1.write_history(history)" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "''" ] }, "execution_count": 23, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Compute the model\n", "pynoddy.compute_model(history, output_name) " ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "collapsed": false, "scrolled": true }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnEAAAFUCAYAAABLBGogAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHHFJREFUeJzt3X28XVV95/HPzwhogIkPiH2VqjwjqK2Kg5BMTaKiTBFS\nEQRt1eqIDhaN2nEcBxSktFZrxfEJRiytOKNCIg92RNHyEGyMtiOReQnIgyRKqRVCCEUDBpLf/LH3\nDceTc+7NvTnn7L3u+bxfr/PaN3uvc87vkJXD9661196RmUiSJKksj2m6AEmSJE2fIU6SJKlAhjhJ\nkqQCGeIkSZIKZIiTJEkqkCFOkiSpQI9tuoAmRITXVZEkScXIzOjeN5YhDuCMM07mzDPf2nQZKsSZ\nZ/5P+4u2i31F02F/0faIeEHP/U6nSpIkFcgQJ0mSVKCxDXGLFh3adAkqiP1F28u+oumwv2hHxDje\nOzUiMvP/Nl2GJEnSlCJe0HNhw9iOxEmSJJXMECdJklQgQ5wkSVKBDHGSJEkFMsRJkiQVyBAnSZJU\nIEOcJElSgQxxkiRJBTLESZIkFcgQJ0mSVCBDnCRJUoEMcZIkSQUyxEmSJBXIECdJklQgQ5wkSVKB\nDHGSJEkFMsRJkiQVyBAnSZJUIEOcJElSgQxxkiRJBTLESZIkFcgQJ0mSVCBDnCRJUoEMcZIkSQUy\nxEmSJBXIECdJklQgQ5wkSVKBDHGSJEkFMsRJkiQVyBAnSZJUIEOcJElSgQxxkiRJBTLESZIkFcgQ\nJ0mSVCBDnCRJUoEMcZIkSQUyxEmSJBXIECdJklQgQ5wkSVKBDHGSJEkFalWIi4ijI+KbEXFnRGyM\niB9HxMURcXif9vMj4oqIuLduf0NELI2IVn0uSZKkQXts0wVMiIgPA+8B1gGX1dv9gWOBV0XE6zLz\nix3tlwDLgQeBi4D1wDHAOcB84MTJ3i/vuX4In0IqTzzl+U2XoBnye0wab5GZTddARDwVuAu4G3hO\nZt7bcWwhcA1wR2buX+/bHfgxsDswPzNX1/t3rtseDrwmMy/u83655e7PDvETSeUwxJXLECeNh8fs\n+RYyM7bZ30QxPTyDqpbvdQY4gMxcATwAPKVj9wnAHsCXJgJc3XYTcDoQwCnDLlqaDfKe6w0DhfHv\nTBK0J8TdBmwCDouIJ3ceiIgXUY24fatj92IggSt7vNZ1wEZgfkTsNJxyJUmSmtWKc+Iy876I+K/A\nx4CbIuIy4F6qc+KOoQpr/7njKQfV21t7vNbmiFgDHALsC9wyzNolSZKa0IoQB5CZn4iInwAXAG/u\nOHQ78PnMXNexb169vb/Py03sf8Jgq5QkSWqHtkynUo/ELacKcfsBuwKHAmuAL0bEXzRYniRJUqu0\nYiSuXoH6F8BXMvM9HYd+EBGvpJo2/ZOIOC8z1/LoSNs8epvYv6Hfe575ka9u/XnRgoNYtOCgfk0l\nSZJG5tqVt3DtyqnPBmvLJUb+Eng38I7M/HSP418Bfh84PjMvjYgvAK8FXpuZF3W1nUMV8nYCdsvM\nh3u8npcYkSbhZUfax9Wo0vhq+yVGdqm3T+lzfGL/pnp7NdVlRI7q0XYhMBdY2SvASZIkzQZtCXHf\npgplb4mI3+w8EBH/EVgAPAR8p969nOqODidFxKEdbXcBzqa6/Mi5I6hbkiSpEa04J44qlH0LeClw\nc0RcCvwr1WVCjq7bvDcz7wPIzAci4mRgGXBtRHyZ6rZbxwIHAssyc9mIP4MkSdLItCLEZWZGxO8B\nfwycRHX+21yqYPZ/gE9k5lVdz7m8XhBxGnAc8Diqy5G8C/jkCMuXJEkauVaEOKgu0gt8on5s73NW\nAa8YWlGSJEkt1ZoQJ6k9OldCulK1Oa5IlTSZtixskCRJ0jQ4EidpUo7KjZajb5K2lyNxkiRJBTLE\nSZIkFcgQJ0mSVCBDnCRJUoEMcZIkSQVydaqk7eZK1eFwRaqkmXAkTpIkqUCGOEmSpAIZ4iRJkgpk\niJMkSSqQIU6SJKlA47s69c7VTVcgFS3rf0Px/P/UcCXlyuv/uukSJBXMkThJkqQCGeIkSZIKZIiT\nJEkqkCFOkiSpQOO7sEHSQHSenO8ih6m5mEHSoDgSJ0mSVCBDnCRJUoGcTpU0ME6t9uYUqqRhcCRO\nkiSpQIY4SZKkAhniJEmSCmSIkyRJKpAhTpIkqUCuTpU0FOO+UtUVqZKGzZE4SZKkAhniJEmSCmSI\nkyRJKpAhTpIkqUAubJA0dOOyyMHFDJJGyZE4SZKkAhniJEmSCuR0qqSRynuub7oESZoVHImTJEkq\nkCFOkiSpQE6nShqtO1dX26c9r9k6BmjLB87dZt9jTj68gUokjRNH4iRJkgrUuhAXES+JiEsj4mcR\n8VBE3BUR34iIo3q0nR8RV0TEvRGxMSJuiIilEdG6zyVJkjRIrZpOjYiPAP8FuBO4HFgHPAU4FFgE\nfKOj7RJgOfAgcBGwHjgGOAeYD5w42XvljbcPvH5J09DxbzCOOqHBQmam1xTqrx0//7tbf475ewy7\nHEljqDUhLiJOpgpwfwO8NTMf6To+p+Pn3YHzgUeAhZm5ut7/fuAa4PiIeHVmXjyq+iVJkkapFdOO\nEbEzcDbwE3oEOIDM3NzxxxOAPYAvTQS4us0m4HQggFOGWrQkSVKD2jISdyTVtOnHgIyIo4FnAQ8B\n/5iZ3+1qvxhI4Moer3UdsBGYHxE7ZebDwytbkiSpGW0Jcf+eKpRtAlYDz67/DBARcR1wfGauq/cd\nVG9v7X6hzNwcEWuAQ4B9gVuGWbgkSVIT2hLi9qSaAn0PcCOwALgB2Af4KPBy4GLgxXX7efX2/j6v\nN7H/CcMoVtJg5TeWbf25zYscplrM0E9+Z93Wn13kIGlQWnFOHI/W8TBwTGauysyNmXkjcBzwz8DC\niHhhYxVKkiS1SFtG4jbU29WZeWfngcx8MCKuBN4EHAZ8j0dH2ubR28T+DX2O88FLfrz154UHP5FF\nBz9pBmVLkiQN1rU3r2fFzfdN2a4tIW7ivLV+oWvikzy+o/2hwIFU59BtVV+KZB+qy4/c0e8Nzzhu\nv5nWKmlMrV8x9ZfqVJ7sdKqkKSw6+Em/Nrh01mW940xbplOvolrIcEif48+ut2vq7dVU59BtcxcH\nYCEwF1jpylRJkjRbtSLEZeZPgb8Dnh4R7+w8FhEvo1rYcB+P3rFhOdXdHE6KiEM72u5Cdb25BGZ2\nBrIkSVIBIjOnbjUCEbEXsBJ4GtVI22qqS4QsAbYAJ2bmZR3tlwDLgF8BX6a67daxVFOsyzLzpEne\nKzdfeOSQPomkQWnDStV1C/98aK/95PcdMLTXljR7zHn9t8jM6N7fipE4gMy8i+o8t08B+wPvAF5E\ndQ/VBZ0Brm5/OdXU6QqqFaynUl1n7l3Aa0ZXuSRJ0ui1ZWEDAJl5L7C0fmxP+1XAK4ZalCRJUgu1\nKsRJUqcmLwI8zGnUCfd+6DbAaVVJM9Oa6VRJkiRtP0OcJElSgQxxkiRJBTLESZIkFciFDZKKMLHI\nYZgLHEaxmKGXiQUO4CIHSdvPkThJkqQCGeIkSZIK5HSqpLLcubrpCiSpFRyJkyRJKpAhTpIkqUBO\np0oqSt54+9af41n77/DrrfvDr+/wawySK1UlbS9H4iRJkgpkiJMkSSrQ2E6n5nfWNV2CpB00iOnU\nNvN7StJkHImTJEkq0NiOxEkq35bzv7v158ecfPh2P69tixn6Wb/ivq0/P2nhExusRFIbORInSZJU\nIEOcJElSgaY1nRoRFwC/BM7IzPV92iwBlmTmmwZQnyRtl6mmVkuZQu3HqVVJ3aY7EvdHwNuA70TE\nvn3aPBd4w44UJUmSpMnNZDp1NbAvsCoijhhwPZIkSdoOM1md+lXgvwFfAa6KiD/KzIsHW5YkDdbN\nt86exfgLFjZdgaQ2mNHChsz8e2ABcA/wxYh470CrkiRJ0qRmvDo1M38IvBC4AfjziPhsRMwZWGWS\nJEnqa4fmFzLzXyPid4GLgDcDTwduGkRhkjRTnStVV57/QIOVDMfEZ1pw8u4NVyKpSTt8nbjM3Ags\nAT4NvAx4x46+piRJkiY33RD3E2BD987M3JKZbwfeDcQgCpMkSVJ/05pOzcx9pjj+8Yj4EvC4HapK\nkiRJkxr4mvvM/PmgX1OSJEm/bvZcOEmSarNxMUMvnZ/TRQ7S+NnhhQ2SJEkaPUOcJElSgQxxkiRJ\nBTLESZIkFcgQJ0mSVCBXp0qaFcZlRWo/rlSVxo8jcZIkSQUyxEmSJBXI6VRJxRr3KdR+nFqVxoMj\ncZIkSQVqbYiLiD+MiC3140192syPiCsi4t6I2BgRN0TE0oho7eeSJEkahFZOp0bE04BPAg8Au/Vp\nswRYDjwIXASsB44BzgHmAydO9h7rV9w3wIolNaOVX2Gt4nedNHu1dcTqb4B1wHm9DkbE7sD5wCPA\nwsw8OTPfCzwXWAUcHxGvHlWxkiRJo9a6X2MjYimwqH68pE+zE4A9gL/NzNUTOzNzU0ScDlwFnAJc\nPNRiJY3czbe27mur1Tr/ex184CMNViJp0Fo1EhcRBwMfAj6emf8wSdPFQAJX9jh2HbARmB8ROw2+\nSkmSpOa1JsRFxBzgC8Ba4LQpmh9Ub2/tPpCZm4E1VKOM+w6wREmSpNZo07zEGcDvAAsy81dTtJ1X\nb+/vc3xi/xMGUZgkSVLbtGIkLiJeCLwP+Ghm/mPT9UiSJLVd4yNx9TTqhcAtwAe6D/d52sRI27w+\nxyf2b+j3vh+559Fl9wvmPo4Fuz5+ylolSZKGbeUvH2TlxoembBeZOYJyJikgYh5wH9VChV6hrXP/\nxzPz3RHxBeC1wGsz86Ku15tDFfJ2AnbLzId7vGfeffDeg/sQkobuMzfv3HQJs8bbDt7UdAmSpmHP\nm9eSmdtkpMZH4oBfAZ/rc+z5wPOAb1ON1K2q918N/AFwFNWFfjstBOYC1/YKcJIkSbNB4yEuMx8C\n3tLrWEScQRXiPp+ZF3QcWg58GDgpIj6Vmd+v2+8CnE01enfuUAuXJElqUOMhbjtsM3yYmQ9ExMnA\nMuDaiPgy1W23jgUOBJZl5rLRlilp0JxCHY7O/65OrUrlasXq1Cn0PGkvMy+nmjpdARwHnApsAt4F\nvGZk1UmSJDWg1SNxmflB4IOTHF8FvGJ0FUmSJLVDCSNxkiRJ6mKIkyRJKlCrp1MljR8XM4yWixyk\ncjkSJ0mSVCBDnCRJUoEMcZIkSQUyxEmSJBXIECdJklQgV6dKapwrUtvBlapSWRyJkyRJKpAhTpIk\nqUCGOEmSpAIZ4iRJkgpkiJMkSSpQZGbTNYxcROSKOfs3XYY01q7Z7O+QpVg8Z0vTJUhjbeHm28nM\n6N7vt6gkSVKBvE6cpJFyBK48E39njshJ7eK3qSRJUoEMcZIkSQUyxEmSJBXIECdJklQgQ5wkSVKB\nXJ0qaehckTo7dP49ulJVap7frJIkSQUyxEmSJBXIECdJklQgQ5wkSVKBDHGSJEkFcnWqpKFwRers\n5kpVqXl+y0qSJBXIECdJklQgQ5wkSVKBDHGSJEkFcmGDpIFxMcN4cpGD1Ay/cSVJkgpkiJMkSSqQ\n06mSdohTqOrk1Ko0On77SpIkFcgQJ0mSVCBDnCRJUoEMcZIkSQVqRYiLiCdFxJsj4pKIuC0iNkbE\nhoj4dkS8KSKiz/PmR8QVEXFv/ZwbImJpRLTic0mSJA1LW1anngCcC/wLcA3wU+CpwHHA54CjgFd3\nPiEilgDLgQeBi4D1wDHAOcB84MTJ3tAVdZI0XH7PSsMVmdl0DUTEImDXzPxa1/49gX8Cfgs4PjMv\nrffvDvwY2B2Yn5mr6/07U4XAw4HXZObFfd4vz+TAIX0aSZKkwTmTW8nMbWYlW/FrUmZe2x3g6v13\nA+cBASzqOHQCsAfwpYkAV7ffBJxetz9lmDVLkiQ1qRUhbgoP19tHOvYtBhK4skf764CNwPyI2GnI\ntUmSJDWi1SEuIuYAb6AKbN/oOHRQvb21+zmZuRlYQ3W+377DrlGSJKkJrQ5xwIeBZwFfy8xvdeyf\nV2/v7/O8if1PGFZhkiRJTWptiIuIdwDvBm4CXt9wOZIkSa3SlkuM/JqIOBX4OPBD4KWZuaGrycRI\n2zx6m9jf/bytrmHd1p/3Zi77MHdmxUqSJA3QGjaylo1TtmtdiIuIdwIfA/4fVYBb16PZLcChwIHA\n6s4D9Xl0+1AthLij3/ssZo9BlSxJkjQw+3QNLq1gfc92rZpOjYj3UgW464HFfQIcwNVUlxE5qsex\nhcBcYGVmPtzjuCRJUvFaE+Ii4v3Ah6gu7vvSzLxvkubLgXXASRFxaMdr7AKcTbWa9dwhlitJktSo\nVkynRsQbgA9STYGuBJb2uF3q2sz8PEBmPhARJwPLgGsj4stUt906lmqKdVlmLhtV/ZIkSaPWihAH\n7E01ejYHWNqnzQrg8xN/yMzLI2IhcBrVPVYfB9wOvAv45DCLlSRJalor7p06at47VZIklaLV906V\nJEnS9BjiJEmSCmSIkyRJKpAhTpIkqUCGOEmSpAIZ4iRJkgpkiJMkSSqQIU6SJKlAhjhJkqQCGeIk\nSZIKZIiTJEkqkCFOkiSpQIY4SZKkAhniJEmSCmSIkyRJKpAhTpIkqUCGOEmSpAIZ4iRJkgpkiJMk\nSSqQIU6SJKlAhjhJkqQCGeIkSZIKZIiTJEkqkCFOkiSpQIY4SZKkAhniJEmSCmSIkyRJKpAhTpIk\nqUCGOEmSpAIZ4iRJkgpkiJMkSSqQIU6SJKlAhjhJkqQCGeIkSZIKZIiTJEkqkCFOkiSpQIY4SZKk\nAhniJEmSCmSIkyRJKpAhTpIkqUBFh7iI2CsiLoiIuyLioYhYExHnRMQTmq5NkiRpmB7bdAEzFRH7\nAquAPYDLgFuAw4ClwMsjYkFm3tdgiZIkSUNT8kjcuVQB7u2Z+arM/O+Z+VLgHOCZwJ81Wp0kSdIQ\nFRni6lG4I4G1mfmZrsNnAL8EXhcRjx95cZIkSSNQZIgDFtfbb3YfyMxfACuBucDhoyxKkiRpVEoN\ncQcBCdza5/ht9fbA0ZQjSZI0WqWGuHn19v4+xyf2912luoaNAy1Is5v9RdvLvqLpsL9oR5Qa4nbY\nWv/haBrsL9pe9hVNh/1FO6LUS4xMjLTN63N8Yv+Gfi+wlo1cwzoA9mYu+zB3cNVJkiTN0Bo2blfA\nLzXE3QIE/c95O6De9jtnjr2Zy2L2GHRdkiRJO2SfrsGlFazv2S4yc1Q1DUx9iZHbgTWZuV/Xsd2A\nn9V/3DMzH+zx/PI+tCRJGluZGd37ihyJy8w7IuKbwJERcWpmfqrj8FnArsC5vQJc/fxt/kNIkiSV\npMiRONg6GrcS2BP4KnAz1XXhFgE/ArztliRJmrWKDXEAEbEX1cjbUcCTqaZRLwHOysx+lx+RJEkq\nXtEhTpIkaVyN1XXiImKviLggIu6KiIciYk1EnBMRfS8KrNkrItZGxJY+j3/p85z5EXFFRNwbERsj\n4oaIWBoRY/VvabaKiFdFxCci4rqIuL/uCxdO8Zxp94mIeENEfC8iHoiIDRFxTUQcPfhPpGGaTn+J\niGdM8n2zJSK+OMn72F/UU5ELG2aiPoduFbAHcBnVZUoOA5YCL48Iz6EbP0l1LcFzqC5Z0+kX3Y0j\nYgmwHHgQuAhYDxxTP38+cOIwi9VInA78NtXf/z8Dz5ys8Uz6RER8FHg3cCfwWWBn4CTg7+qFWp8Z\n1IfR0E2rv9R+QPX/oG4/7NXY/qJJZeZYPIArgc3A27r2/xWwBfhM0zX6GHmfWAPcsZ1tdwfupvqf\n9fM69u9MtcBmM/Dqpj+Tjx3uEwuB/Tp+3gJcOKg+ARxRv+YtwL/r2P90YB2wEXh60/8dfAylvzyj\nPn7BNF7f/uJj0sdYTAHVo3BHAmtz299azgB+CbwuIh4/8uJUihOoRnG/lJmrJ3Zm5iaq38YDOKWh\n2jQgmbkiM3+8nc1n0idOoRoB/rPM/LeO5/wU+DSwC/DGmX8CjdI0+8tM2F80qbEIccDievvN7gOZ\n+Quq35rnUl2iRONll4j4g4h4X0S8IyIW9TmXaTHVl+mVPY5dR/Ub8fyI2GmYxapVZtInJr6Lej3n\n61TB78WDLFKt85sR8Zb6O+ctEfGcSdraXzSpcTkn7iCqL9t+t+G6jWqk7kDgmlEVpVb4DaDzROQA\n1kTEGzPzuo79B9XbbfpQZm6OiDXAIcC+VFMfmv2m1SciYi6wF/BAZv68x+vdVm/73U5Qs8OR9WNC\nRMS1wBsy886OnfYXTWlcRuLm1dt+146b2O8q1fFyAfASqiC3K/Ac4Dxgb+CKrt+Q7UPqNt0+YR8a\nbxuprmt6KPDE+rEQuJrqIvV/33VKj/1FUxqXECdtIzP/NDOvzcx7MvOhzLwpM98GfIxqev3MZiuU\nNFvU3zNnZuYPMvPf6sc/AC8HvgfsD7y52SpVmnEJcRO/sczrc3xi/4YR1KL2O6/evqhjn31I3abb\nJ+xD2kZmbgY+R3Uqh985mpZxCXG3UP0D6XfuwAH1tt85cxov99TbXTv2TZzntk0fiog5wD7AI8Ad\nwy1NLTKtPpGZG4G7gN0i4qk9Xs/vofG1zXeO/UXbY1xC3MRihZd1H4iI3YAFVOcrfHeURam1jqi3\nnYHsaqpfBI7q0X4h1fTrysx8eMi1qT1m0ieurre9nvN79faqgVWoUvT6zgH7i6YwFiEuM++gurzI\n3hFxatfhs6h++7kwMx8ceXFqREQ8s1791b1/b+BTVKuZv9BxaDnVxTVPiohDO9rvApxdtz93iCWr\nfWbSJ86jCn6ndd7ur+53fww8BPztMItWMyLieRHRfWcYIuIlwDup+sv/6jpsf9GkIqurP8969QV/\nVwJ7Al8Fbqa6Ltwi4EeAt90aIxFxBvAnVNfz+gnwALAfcDTVBTS/BhyXmY90PGcJsAz4FfBlqlss\nHUs1nbYsM08a5WfQ4NV/x79f//E3qE46vwP4dr1vXWa+p6v9tPpEfRuld1FNlS2nusPDicCTgFMz\n018GCjGd/hIR11BNgX6H6hZdUN2y68VUAe70zPxQj/ewv6ivsQlxABGxF9XI21HAk4GfAZcAZ2Vm\nv2XcmoUi4kXAW4Hn8eglRjZQ3dfwwsz8332edwRwGtX0x+OA24G/Bj6Z4/SPaZaqw/0HJmmyNjP3\n63rOtPtERLyeaiTlEKrbKn0f+MvM/PoOfwiNzHT6S0S8EXgl8GyqO33sBPycKtR9OjNXTvI+9hf1\nNFYhTpIkabYYi3PiJEmSZhtDnCRJUoEMcZIkSQUyxEmSJBXIECdJklQgQ5wkSVKBDHGSJEkFMsRJ\nkiQVyBAnSZJUIEOcJElSgQxxkiRJBTLESZIkFcgQJ0kzEBGXRsSWiDi1x7E/rY+d30RtksZDZGbT\nNUhScSLiicBqYE/giMy8od7/EuBK4CbgsMx8qLkqJc1mhjhJmqGIOAJYAdwBPB/YHfhBvX1BZv6o\nwfIkzXJOp0rSDGXmKuD9wAHAZ4ELqUbm3m6AkzRsjsRJ0g6KiG8ALwMS+GJmvq7hkiSNAUfiJGnH\nXdLx8/9orApJY8WROEnaARFxAPB9YBMwD7iRakHDpkYLkzTrORInSTMUETsDFwFzgROBDwG/DXy8\nybokjQdDnCTN3F8BvwN8ODOvAs4EVgJvjYhXNVmYpNnP6VRJmoGIeCXwFWAV8LuZuaXe/1tUlxmZ\nAzw/M9c0V6Wk2cwQJ0nTFBFPowpqAM/NzDu7jh8LXAr8E/AfMvOREZcoaQwY4iRJkgrkOXGSJEkF\nMsRJkiQVyBAnSZJUIEOcJElSgQxxkiRJBTLESZIkFcgQJ0mSVCBDnCRJUoEMcZIkSQUyxEmSJBXo\n/wOosAqoR9eKzgAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x107784e10>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Plot output\n", "reload(pynoddy.output)\n", "nout = pynoddy.output.NoddyOutput(output_name)\n", "nout.plot_section('y', layer_labels = strati_options['layer_names'][::-1], \n", " colorbar = True, title=\"\",\n", " savefig = True, fig_filename = \"ex01_faults_combined.eps\",\n", " cmap = 'YlOrRd') # note: YlOrRd colourmap should be suitable for colorblindness!\n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.11" } }, "nbformat": 4, "nbformat_minor": 0 }
gpl-2.0
natasha/natasha
docs.ipynb
1
47515
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Natasha" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Natasha solves basic NLP tasks for Russian language: tokenization, sentence segmentatoin, word embedding, morphology tagging, lemmatization, phrase normalization, syntax parsing, NER tagging, fact extraction.\n", "\n", "Library is just a wrapper for lower level tools from <a href=\"https://github.com/natasha\">Natasha project</a>:\n", "\n", "* <a href=\"https://github.com/natasha/razdel\">Razdel</a> — token, sentence segmentation for Russian\n", "* <a href=\"https://github.com/natasha/navec\">Navec</a> — compact Russian embeddings\n", "* <a href=\"https://github.com/natasha/slovnet\">Slovnet</a> — modern deep-learning techniques for Russian NLP, compact models for Russian morphology, syntax, NER.\n", "* <a href=\"https://github.com/natasha/yargy\">Yargy</a> — rule-based fact extraction similar to Tomita parser.\n", "* <a href=\"https://github.com/natasha/ipymarkup\">Ipymarkup</a> — NLP visualizations for NER and syntax markups.\n", "\n", "Consider using these lower level tools for realword tasks. Natasha models are optimized for news articles, on other domains quality may be worse." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "from natasha import (\n", " Segmenter,\n", " MorphVocab,\n", " \n", " NewsEmbedding,\n", " NewsMorphTagger,\n", " NewsSyntaxParser,\n", " NewsNERTagger,\n", " \n", " PER,\n", " NamesExtractor,\n", " DatesExtractor,\n", " MoneyExtractor,\n", " AddrExtractor,\n", "\n", " Doc\n", ")\n", "\n", "segmenter = Segmenter()\n", "morph_vocab = MorphVocab()\n", "\n", "emb = NewsEmbedding()\n", "morph_tagger = NewsMorphTagger(emb)\n", "syntax_parser = NewsSyntaxParser(emb)\n", "ner_tagger = NewsNERTagger(emb)\n", "\n", "names_extractor = NamesExtractor(morph_vocab)\n", "dates_extractor = DatesExtractor(morph_vocab)\n", "money_extractor = MoneyExtractor(morph_vocab)\n", "addr_extractor = AddrExtractor(morph_vocab)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Getting started" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Doc" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "`Doc` aggregates annotators, initially it has just `text` field defined:" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Doc(text='Посол Израиля на Украине Йоэль Лион признался, чт...)" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "text = 'Посол Израиля на Украине Йоэль Лион признался, что пришел в шок, узнав о решении властей Львовской области объявить 2019 год годом лидера запрещенной в России Организации украинских националистов (ОУН) Степана Бандеры. Свое заявление он разместил в Twitter. «Я не могу понять, как прославление тех, кто непосредственно принимал участие в ужасных антисемитских преступлениях, помогает бороться с антисемитизмом и ксенофобией. Украина не должна забывать о преступлениях, совершенных против украинских евреев, и никоим образом не отмечать их через почитание их исполнителей», — написал дипломат. 11 декабря Львовский областной совет принял решение провозгласить 2019 год в регионе годом Степана Бандеры в связи с празднованием 110-летия со дня рождения лидера ОУН (Бандера родился 1 января 1909 года). В июле аналогичное решение принял Житомирский областной совет. В начале месяца с предложением к президенту страны Петру Порошенко вернуть Бандере звание Героя Украины обратились депутаты Верховной Рады. Парламентарии уверены, что признание Бандеры национальным героем поможет в борьбе с подрывной деятельностью против Украины в информационном поле, а также остановит «распространение мифов, созданных российской пропагандой». Степан Бандера (1909-1959) был одним из лидеров Организации украинских националистов, выступающей за создание независимого государства на территориях с украиноязычным населением. В 2010 году в период президентства Виктора Ющенко Бандера был посмертно признан Героем Украины, однако впоследствии это решение было отменено судом. '\n", "doc = Doc(text)\n", "doc" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "After applying `segmenter` two new fields appear `sents` and `tokens`:" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Doc(text='Посол Израиля на Украине Йоэль Лион признался, чт..., tokens=[...], sents=[...])" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "[DocSent(stop=218, text='Посол Израиля на Украине Йоэль Лион признался, чт..., tokens=[...]),\n", " DocSent(start=219, stop=257, text='Свое заявление он разместил в Twitter.', tokens=[...])]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "[DocToken(stop=5, text='Посол'),\n", " DocToken(start=6, stop=13, text='Израиля'),\n", " DocToken(start=14, stop=16, text='на'),\n", " DocToken(start=17, stop=24, text='Украине'),\n", " DocToken(start=25, stop=30, text='Йоэль')]" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "doc.segment(segmenter)\n", "display(doc)\n", "display(doc.sents[:2])\n", "display(doc.tokens[:5])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "After applying `morph_tagger` and `syntax_parser`, tokens get 5 new fields `id`, `pos`, `feats`, `head_id`, `rel` — annotation in <a href=\"https://universaldependencies.org/\">Universal Dependencies format</a>:" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[DocToken(stop=5, text='Посол', id='1_1', head_id='1_7', rel='nsubj', pos='NOUN', feats=<Anim,Nom,Masc,Sing>),\n", " DocToken(start=6, stop=13, text='Израиля', id='1_2', head_id='1_1', rel='nmod', pos='PROPN', feats=<Inan,Gen,Masc,Sing>),\n", " DocToken(start=14, stop=16, text='на', id='1_3', head_id='1_4', rel='case', pos='ADP'),\n", " DocToken(start=17, stop=24, text='Украине', id='1_4', head_id='1_1', rel='nmod', pos='PROPN', feats=<Inan,Loc,Fem,Sing>),\n", " DocToken(start=25, stop=30, text='Йоэль', id='1_5', head_id='1_1', rel='appos', pos='PROPN', feats=<Anim,Nom,Masc,Sing>)]" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "doc.tag_morph(morph_tagger)\n", "doc.parse_syntax(syntax_parser)\n", "display(doc.tokens[:5])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "After applying `ner_tagger` doc gets `spans` field with PER, LOC, ORG annotation:" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[DocSpan(start=6, stop=13, type='LOC', text='Израиля', tokens=[...]),\n", " DocSpan(start=17, stop=24, type='LOC', text='Украине', tokens=[...]),\n", " DocSpan(start=25, stop=35, type='PER', text='Йоэль Лион', tokens=[...]),\n", " DocSpan(start=89, stop=106, type='LOC', text='Львовской области', tokens=[...]),\n", " DocSpan(start=152, stop=158, type='LOC', text='России', tokens=[...])]" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "doc.tag_ner(ner_tagger)\n", "display(doc.spans[:5])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Visualizations" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Natasha wraps <a href=\"https://github.com/natasha/ipymarkup\">Ipymarkup</a> to provide ASCII visualizations for morphology, syntax and NER annotations. `doc` and `sents` have 3 methods: `morph.print()`, `syntax.print()` and `ner.print()`:" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Посол Израиля на Украине Йоэль Лион признался, что пришел в шок, узнав\n", " LOC──── LOC──── PER─────── \n", " о решении властей Львовской области объявить 2019 год годом лидера \n", " LOC────────────── \n", "запрещенной в России Организации украинских националистов (ОУН) \n", " LOC─── ORG─────────────────────────────────────── \n", "Степана Бандеры. Свое заявление он разместил в Twitter. «Я не могу \n", "PER──────────── ORG──── \n", "понять, как прославление тех, кто непосредственно принимал участие в \n", "ужасных антисемитских преступлениях, помогает бороться с \n", "антисемитизмом и ксенофобией. Украина не должна забывать о \n", " LOC──── \n", "преступлениях, совершенных против украинских евреев, и никоим образом \n", "не отмечать их через почитание их исполнителей», — написал дипломат. \n", "11 декабря Львовский областной совет принял решение провозгласить 2019\n", " ORG────────────────────── \n", " год в регионе годом Степана Бандеры в связи с празднованием 110-летия\n", " PER──────────── \n", " со дня рождения лидера ОУН (Бандера родился 1 января 1909 года). В \n", " ORG \n", "июле аналогичное решение принял Житомирский областной совет. В начале \n", " ORG──────────────────────── \n", "месяца с предложением к президенту страны Петру Порошенко вернуть \n", " PER──────────── \n", "Бандере звание Героя Украины обратились депутаты Верховной Рады. \n", "PER──── LOC──── ORG─────────── \n", "Парламентарии уверены, что признание Бандеры национальным героем \n", " PER──── \n", "поможет в борьбе с подрывной деятельностью против Украины в \n", " LOC──── \n", "информационном поле, а также остановит «распространение мифов, \n", "созданных российской пропагандой». Степан Бандера (1909-1959) был \n", " PER─────────── \n", "одним из лидеров Организации украинских националистов, выступающей за \n", " ORG───────────────────────────────── \n", "создание независимого государства на территориях с украиноязычным \n", "населением. В 2010 году в период президентства Виктора Ющенко Бандера \n", " PER─────────── PER──── \n", "был посмертно признан Героем Украины, однако впоследствии это решение \n", " LOC──── \n", "было отменено судом. \n" ] } ], "source": [ "doc.ner.print()" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " Посол NOUN|Animacy=Anim|Case=Nom|Gender=Masc|Number=Sing\n", " Израиля PROPN|Animacy=Inan|Case=Gen|Gender=Masc|Number=Sing\n", " на ADP\n", " Украине PROPN|Animacy=Inan|Case=Loc|Gender=Fem|Number=Sing\n", " Йоэль PROPN|Animacy=Anim|Case=Nom|Gender=Masc|Number=Sing\n", " Лион PROPN|Animacy=Anim|Case=Nom|Gender=Masc|Number=Sing\n", " признался VERB|Aspect=Perf|Gender=Masc|Mood=Ind|Number=Sing|Tense=Past|VerbForm=Fin|Voice=Mid\n", " , PUNCT\n", " что SCONJ\n", " пришел VERB|Aspect=Perf|Gender=Masc|Mood=Ind|Number=Sing|Tense=Past|VerbForm=Fin|Voice=Act\n", " в ADP\n", " шок NOUN|Animacy=Inan|Case=Acc|Gender=Masc|Number=Sing\n", " , PUNCT\n", " узнав VERB|Aspect=Perf|Tense=Past|VerbForm=Conv|Voice=Act\n", " о ADP\n", " решении NOUN|Animacy=Inan|Case=Loc|Gender=Neut|Number=Sing\n", " властей NOUN|Animacy=Inan|Case=Gen|Gender=Fem|Number=Plur\n", " Львовской ADJ|Case=Gen|Degree=Pos|Gender=Fem|Number=Sing\n", " области NOUN|Animacy=Inan|Case=Gen|Gender=Fem|Number=Sing\n", " объявить VERB|Aspect=Perf|VerbForm=Inf|Voice=Act\n", " 2019 ADJ\n", " год NOUN|Animacy=Inan|Case=Acc|Gender=Masc|Number=Sing\n", " годом NOUN|Animacy=Inan|Case=Ins|Gender=Masc|Number=Sing\n", " лидера NOUN|Animacy=Anim|Case=Gen|Gender=Masc|Number=Sing\n", " запрещенной VERB|Aspect=Perf|Case=Gen|Gender=Fem|Number=Sing|Tense=Past|VerbForm=Part|Voice=Pass\n", " в ADP\n", " России PROPN|Animacy=Inan|Case=Loc|Gender=Fem|Number=Sing\n", " Организации PROPN|Animacy=Inan|Case=Gen|Gender=Fem|Number=Sing\n", " украинских ADJ|Case=Gen|Degree=Pos|Number=Plur\n", " националистов NOUN|Animacy=Anim|Case=Gen|Gender=Masc|Number=Plur\n", " ( PUNCT\n", " ОУН PROPN|Animacy=Inan|Case=Nom|Gender=Fem|Number=Sing\n", " ) PUNCT\n", " Степана PROPN|Animacy=Anim|Case=Gen|Gender=Masc|Number=Sing\n", " Бандеры PROPN|Animacy=Anim|Case=Gen|Gender=Masc|Number=Sing\n", " . PUNCT\n" ] } ], "source": [ "sent = doc.sents[0]\n", "sent.morph.print()" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "scrolled": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " ┌──► Посол nsubj\n", " │ Израиля \n", " │ ┌► на case\n", " │ └─ Украине \n", " │ ┌─ Йоэль \n", " │ └► Лион flat:name\n", "┌─────┌─└─── признался \n", "│ │ ┌──► , punct\n", "│ │ │ ┌► что mark\n", "│ └►└─└─ пришел ccomp\n", "│ │ ┌► в case\n", "│ └──►└─ шок obl\n", "│ ┌► , punct\n", "│ ┌────►┌─└─ узнав advcl\n", "│ │ │ ┌► о case\n", "│ │ ┌───└►└─ решении obl\n", "│ │ │ ┌─└──► властей nmod\n", "│ │ │ │ ┌► Львовской amod\n", "│ │ │ └──►└─ области nmod\n", "│ └─└►┌─┌─── объявить nmod\n", "│ │ │ ┌► 2019 amod\n", "│ │ └►└─ год obj\n", "│ └──►┌─ годом obl\n", "│ ┌─────└► лидера nmod\n", "│ │ ┌►┌─── запрещенной acl\n", "│ │ │ │ ┌► в case\n", "│ │ │ └►└─ России obl\n", "│ ┌─└►└─┌─── Организации nmod\n", "│ │ │ ┌► украинских amod\n", "│ │ ┌─└►└─ националистов nmod\n", "│ │ │ ┌► ( punct\n", "│ │ └►┌─└─ ОУН parataxis\n", "│ │ └──► ) punct\n", "│ └──────►┌─ Степана appos\n", "│ └► Бандеры flat:name\n", "└──────────► . punct\n" ] } ], "source": [ "sent.syntax.print()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Lemmatization" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Tokens have `lemmatize` method, it uses `pos` and `feats` assigned by `morph_tagger` to get word normal form. `morph_vocab` is just a wrapper for <a href=\"https://pymorphy2.readthedocs.io/en/latest/\">Pymorphy2</a>:" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'Посол': 'посол',\n", " 'Израиля': 'израиль',\n", " 'на': 'на',\n", " 'Украине': 'украина',\n", " 'Йоэль': 'йоэль',\n", " 'Лион': 'лион',\n", " 'признался': 'признаться',\n", " ',': ',',\n", " 'что': 'что',\n", " 'пришел': 'прийти'}" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "for token in doc.tokens:\n", " token.lemmatize(morph_vocab)\n", " \n", "{_.text: _.lemma for _ in doc.tokens[:10]}" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Phrase normalization" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Consider phrase \"Организации украинских националистов\", one can not just inflect every word independently to get normal form: \"Организация украинский националист\". Spans have method `normalize` that uses syntax annotation by `syntax_parser` to inflect phrases:" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/plain": [ "{'Израиля': 'Израиль',\n", " 'Украине': 'Украина',\n", " 'Йоэль Лион': 'Йоэль Лион',\n", " 'Львовской области': 'Львовская область',\n", " 'России': 'Россия',\n", " 'Организации украинских националистов (ОУН)': 'Организация украинских националистов (ОУН)',\n", " 'Степана Бандеры': 'Степан Бандера',\n", " 'Twitter': 'Twitter',\n", " 'Украина': 'Украина',\n", " 'Львовский областной совет': 'Львовский областной совет',\n", " 'ОУН': 'ОУН',\n", " 'Житомирский областной совет': 'Житомирский областной совет',\n", " 'Петру Порошенко': 'Петр Порошенко',\n", " 'Бандере': 'Бандера',\n", " 'Украины': 'Украина',\n", " 'Верховной Рады': 'Верховная Рада',\n", " 'Бандеры': 'Бандера',\n", " 'Степан Бандера': 'Степан Бандера',\n", " 'Организации украинских националистов': 'Организация украинских националистов',\n", " 'Виктора Ющенко': 'Виктор Ющенко',\n", " 'Бандера': 'Бандера'}" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "for span in doc.spans:\n", " span.normalize(morph_vocab)\n", " \n", "{_.text: _.normal for _ in doc.spans}" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Fact extraction" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "To split names like \"Виктор Ющенко\", \"Бандера\" and \"Йоэль Лион\" into parts use `names_extractor` and spans method `extract_fact`:" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'Йоэль Лион': {'first': 'Йоэль', 'last': 'Лион'},\n", " 'Степан Бандера': {'first': 'Степан', 'last': 'Бандера'},\n", " 'Петр Порошенко': {'first': 'Петр', 'last': 'Порошенко'},\n", " 'Бандера': {'last': 'Бандера'},\n", " 'Виктор Ющенко': {'first': 'Виктор', 'last': 'Ющенко'}}" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "for span in doc.spans:\n", " if span.type == PER:\n", " span.extract_fact(names_extractor)\n", " \n", "{_.normal: _.fact.as_dict for _ in doc.spans if _.fact}" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Reference" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "One may use Natasha components independently. It is not mandatory to construct `Doc` object." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## `Segmenter`" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "`Segmenter` is just a wrapper for <a href=\"https://github.com/natasha/razdel\">Razdel</a>, it has two methods `tokenize` and `sentenize`:" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Token(start=0, stop=13, text='Кружка-термос')\n", "Token(start=14, stop=16, text='на')\n", "Token(start=17, stop=20, text='0.5')\n", "Token(start=20, stop=21, text='л')\n", "Token(start=22, stop=23, text='(')\n" ] } ], "source": [ "tokens = list(segmenter.tokenize('Кружка-термос на 0.5л (50/64 см³, 516;...)'))\n", "for token in tokens[:5]:\n", " print(token)" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Sent(start=1, stop=23, text='- \"Так в чем же дело?\"')\n", "Sent(start=24, stop=40, text='- \"Не ра-ду-ют\".')\n", "Sent(start=42, stop=57, text='И т. д. и т. п.')\n", "Sent(start=58, stop=77, text='В общем, вся газета')\n" ] } ], "source": [ "text = '''\n", "- \"Так в чем же дело?\" - \"Не ра-ду-ют\".\n", " И т. д. и т. п. В общем, вся газета\n", "'''\n", "sents = list(segmenter.sentenize(text))\n", "for sent in sents:\n", " print(sent)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## `MorphVocab`" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "`MorphVocab` is a wrapper for <a href=\"pymorphy2.readthedocs.io/en/latest/\">Pymorphy2</a>. `MorphVocab` adds cache and adapts grammems to Universal Dependencies format:" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[MorphForm(normal='стать', pos='VERB', feats={'VerbForm': 'Fin', 'Aspect': 'Perf', 'Number': 'Plur', 'Tense': 'Past', 'Mood': 'Ind'}),\n", " MorphForm(normal='сталь', pos='NOUN', feats={'Animacy': 'Inan', 'Gender': 'Fem', 'Number': 'Sing', 'Case': 'Gen'}),\n", " MorphForm(normal='сталь', pos='NOUN', feats={'Animacy': 'Inan', 'Gender': 'Fem', 'Number': 'Sing', 'Case': 'Dat'}),\n", " MorphForm(normal='сталь', pos='NOUN', feats={'Animacy': 'Inan', 'Gender': 'Fem', 'Number': 'Sing', 'Case': 'Loc'}),\n", " MorphForm(normal='сталь', pos='NOUN', feats={'Animacy': 'Inan', 'Gender': 'Fem', 'Number': 'Plur', 'Case': 'Nom'}),\n", " MorphForm(normal='сталь', pos='NOUN', feats={'Animacy': 'Inan', 'Gender': 'Fem', 'Number': 'Plur', 'Case': 'Acc'})]" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "forms = morph_vocab('стали')\n", "forms" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "CacheInfo(hits=214, misses=634, maxsize=10000, currsize=634)" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "morph_vocab.__call__.cache_info()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Also `MorphVocab` adds method `lemmatize`. Given `pos` and `feats` it selects the most suitable morph form and returns its `normal` field:" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'стать'" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "morph_vocab.lemmatize('стали', 'VERB', {})" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'сталь'" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "morph_vocab.lemmatize('стали', 'X', {'Case': 'Gen'})" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## `Embedding`" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "`Embedding` is a wrapper for <a href=\"https://github.com/natasha/navec/\">Navec</a> — compact pretrained word embeddings for Russian language:" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Words in vocab + 2 for pad and unk: 250002\n" ] } ], "source": [ "print('Words in vocab + 2 for pad and unk: %d' % len(emb.vocab.words) )" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([ 0.3309305 , 0.18249014, 0.23347412, 0.14935994, -0.17402406,\n", " -0.47864223, -0.24524143, 0.15673256, -0.08669729, -0.11727095],\n", " dtype=float32)" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "emb['навек'][:10]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## `MorphTagger`" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "`MorphTagger` wraps <a href=\"https://github.com/natasha/slovnet\">Slovnet morphology tagger</a>. Tagger has list of words as input and returns markup object. Markup has `print` method that outputs morph tags ASCII visualization:" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " Европейский ADJ|Case=Nom|Degree=Pos|Gender=Masc|Number=Sing\n", " союз NOUN|Animacy=Inan|Case=Nom|Gender=Masc|Number=Sing\n", " добавил VERB|Aspect=Perf|Gender=Masc|Mood=Ind|Number=Sing|Tense=Past|VerbForm=Fin|Voice=Act\n", " в ADP\n", " санкционный ADJ|Animacy=Inan|Case=Acc|Degree=Pos|Gender=Masc|Number=Sing\n", " список NOUN|Animacy=Inan|Case=Acc|Gender=Masc|Number=Sing\n", " девять NUM|Case=Nom\n", " политических ADJ|Case=Gen|Degree=Pos|Number=Plur\n", " деятелей NOUN|Animacy=Anim|Case=Gen|Gender=Masc|Number=Plur\n" ] } ], "source": [ "words = ['Европейский', 'союз', 'добавил', 'в', 'санкционный', 'список', 'девять', 'политических', 'деятелей']\n", "markup = morph_tagger(words)\n", "markup.print()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## `SyntaxParser`" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "`SyntaxParser` wraps <a href=\"https://github.com/natasha/slovnet\">Slovnet syntax parser</a>. Interface is similar to `MorphTagger`:" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " ┌► Европейский amod\n", " ┌►└─ союз nsubj\n", " ┌─└─── добавил \n", " │ ┌──► в case\n", " │ │ ┌► санкционный amod\n", "┌─└►└─└─ список obl\n", "│ ┌──► девять nummod:gov\n", "│ │ ┌► политических amod\n", "└──►└─└─ деятелей nmod\n" ] } ], "source": [ "words = ['Европейский', 'союз', 'добавил', 'в', 'санкционный', 'список', 'девять', 'политических', 'деятелей']\n", "markup = syntax_parser(words)\n", "markup.print()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## `NERTagger`" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "`NERTagger` wraps <a href=\"https://github.com/natasha/slovnet\">Slovnet NER tagger</a>. Interface is similar to `MorphTagger` but has untokenized text as input:" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Посол Израиля на Украине Йоэль Лион признался, что пришел в шок, узнав\n", " LOC──── LOC──── PER─────── \n", " о решении властей Львовской области объявить 2019 год годом лидера \n", " LOC────────────── \n", "запрещенной в России Организации украинских националистов (ОУН) \n", " LOC─── ORG─────────────────────────────────────── \n", "Степана Бандеры. Свое заявление он разместил в Twitter. 11 декабря \n", "PER──────────── ORG──── \n", "Львовский областной совет принял решение провозгласить 2019 год в \n", "ORG────────────────────── \n", "регионе годом Степана Бандеры в связи с празднованием 110-летия со дня\n", " PER──────────── \n", " рождения лидера ОУН (Бандера родился 1 января 1909 года).\n", " ORG \n" ] } ], "source": [ "text = 'Посол Израиля на Украине Йоэль Лион признался, что пришел в шок, узнав о решении властей Львовской области объявить 2019 год годом лидера запрещенной в России Организации украинских националистов (ОУН) Степана Бандеры. Свое заявление он разместил в Twitter. 11 декабря Львовский областной совет принял решение провозгласить 2019 год в регионе годом Степана Бандеры в связи с празднованием 110-летия со дня рождения лидера ОУН (Бандера родился 1 января 1909 года).'\n", "markup = ner_tagger(text)\n", "markup.print()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## `Extractor`" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In addition to `names_extractor` Natasha bundles several other extractors: `dates_extractor`, `money_extractor` and `addr_extractor`. All extractors are based on <a href=\"https://github.com/natasha/yargy\">Yargy-parser</a>, meaning that they work correctly only on small predefined set of texts. For realword tasks consider writing your own grammar, see <a href=\"https://github.com/natasha/yargy#documentation\">Yargy docs</a> for more." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### `DatesExtractor`" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[Match(\n", " start=0,\n", " stop=10,\n", " fact=Date(\n", " year=2017,\n", " month=1,\n", " day=24\n", " )\n", " ),\n", " Match(\n", " start=12,\n", " stop=20,\n", " fact=Date(\n", " year=2015,\n", " month=None,\n", " day=None\n", " )\n", " ),\n", " Match(\n", " start=22,\n", " stop=28,\n", " fact=Date(\n", " year=2014,\n", " month=None,\n", " day=None\n", " )\n", " ),\n", " Match(\n", " start=30,\n", " stop=38,\n", " fact=Date(\n", " year=None,\n", " month=4,\n", " day=1\n", " )\n", " ),\n", " Match(\n", " start=40,\n", " stop=51,\n", " fact=Date(\n", " year=2017,\n", " month=5,\n", " day=None\n", " )\n", " ),\n", " Match(\n", " start=53,\n", " stop=68,\n", " fact=Date(\n", " year=2017,\n", " month=5,\n", " day=9\n", " )\n", " )]" ] }, "execution_count": 23, "metadata": {}, "output_type": "execute_result" } ], "source": [ "text = '24.01.2017, 2015 год, 2014 г, 1 апреля, май 2017 г., 9 мая 2017 года'\n", "list(dates_extractor(text))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### `MoneyExtractor`" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[Match(\n", " start=0,\n", " stop=18,\n", " fact=Money(\n", " amount=1599059.38,\n", " currency='EUR'\n", " )\n", " ),\n", " Match(\n", " start=20,\n", " stop=32,\n", " fact=Money(\n", " amount=420,\n", " currency='USD'\n", " )\n", " ),\n", " Match(\n", " start=34,\n", " stop=44,\n", " fact=Money(\n", " amount=20000000,\n", " currency='RUB'\n", " )\n", " ),\n", " Match(\n", " start=46,\n", " stop=54,\n", " fact=Money(\n", " amount=20000,\n", " currency='RUB'\n", " )\n", " ),\n", " Match(\n", " start=56,\n", " stop=133,\n", " fact=Money(\n", " amount=881913.98,\n", " currency='RUB'\n", " )\n", " )]" ] }, "execution_count": 24, "metadata": {}, "output_type": "execute_result" } ], "source": [ "text = '1 599 059, 38 Евро, 420 долларов, 20 млн руб, 20 т. р., 881 913 (Восемьсот восемьдесят одна тысяча девятьсот тринадцать) руб. 98 коп.'\n", "list(money_extractor(text))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### `NamesExtractor`" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "`names_extractor` should be applied only to spans of text. To extract single fact use method `find`:" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Match(\n", " start=0,\n", " stop=16,\n", " fact=Name(\n", " first='Мустафа',\n", " last='Джемилев',\n", " middle=None\n", " )\n", ")" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "Match(\n", " start=0,\n", " stop=12,\n", " fact=Name(\n", " first='О',\n", " last='Дерипаска',\n", " middle=None\n", " )\n", ")" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "Match(\n", " start=0,\n", " stop=22,\n", " fact=Name(\n", " first='Фёдор',\n", " last='Шаляпин',\n", " middle='Иванович'\n", " )\n", ")" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "Match(\n", " start=0,\n", " stop=8,\n", " fact=Name(\n", " first=None,\n", " last='Янукович',\n", " middle=None\n", " )\n", ")" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "lines = [\n", " 'Мустафа Джемилев',\n", " 'О. Дерипаска',\n", " 'Фёдор Иванович Шаляпин',\n", " 'Янукович'\n", "]\n", "for line in lines:\n", " display(names_extractor.find(line))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### `AddrExtractor`" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Match(\n", " start=0,\n", " stop=48,\n", " fact=Addr(\n", " parts=[AddrPart(\n", " value='Россия',\n", " type='страна'\n", " ),\n", " AddrPart(\n", " value='Вологодская',\n", " type='область'\n", " ),\n", " AddrPart(\n", " value='Череповец',\n", " type='город'\n", " ),\n", " AddrPart(\n", " value='Победы',\n", " type='проспект'\n", " )]\n", " )\n", ")" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "Match(\n", " start=0,\n", " stop=56,\n", " fact=Addr(\n", " parts=[AddrPart(\n", " value='692909',\n", " type='индекс'\n", " ),\n", " AddrPart(\n", " value='РФ',\n", " type='страна'\n", " ),\n", " AddrPart(\n", " value='Приморский',\n", " type='край'\n", " ),\n", " AddrPart(\n", " value='Находка',\n", " type='город'\n", " ),\n", " AddrPart(\n", " value='Добролюбова',\n", " type='улица'\n", " )]\n", " )\n", ")" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "Match(\n", " start=0,\n", " stop=29,\n", " fact=Addr(\n", " parts=[AddrPart(\n", " value='Народного Ополчения',\n", " type='улица'\n", " ),\n", " AddrPart(\n", " value='9к',\n", " type='дом'\n", " )]\n", " )\n", ")" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "lines = [\n", " 'Россия, Вологодская обл. г. Череповец, пр.Победы 93 б',\n", " '692909, РФ, Приморский край, г. Находка, ул. Добролюбова, 18',\n", " 'ул. Народного Ополчения д. 9к.3'\n", "]\n", "for line in lines:\n", " display(addr_extractor.find(line))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.9" } }, "nbformat": 4, "nbformat_minor": 2 }
mit
sirex/ckan-ivpk-import
notebook.ipynb
1
95265
{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import pandas as pd" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": true }, "outputs": [], "source": [ "data = pd.read_json('data/ivpk-export.jsonl', lines=True)" ] }, { "cell_type": "code", "execution_count": 33, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "(757, 29)" ] }, "execution_count": 33, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data.shape" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>0</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th></th>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>2 lygis</th>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>3 lygis</th>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>Alternatyvus pavadinimas</th>\n", " <td></td>\n", " </tr>\n", " <tr>\n", " <th>Apibūdinimas</th>\n", " <td>Pateikiama informacija: duomenų data, kelio nu...</td>\n", " </tr>\n", " <tr>\n", " <th>Atnaujinimo dažnumas</th>\n", " <td>Kartą per metus</td>\n", " </tr>\n", " <tr>\n", " <th>Duomenų formatas</th>\n", " <td>CSV formatas</td>\n", " </tr>\n", " <tr>\n", " <th>Duomenų išsamumas</th>\n", " <td>Visi duomenys sukaupti</td>\n", " </tr>\n", " <tr>\n", " <th>Duomenų patikimumas</th>\n", " <td>Įstaiga prisiima atsakomybę</td>\n", " </tr>\n", " <tr>\n", " <th>Ieškoti tik jau pateiktuose rezultatuose</th>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>Internetinis adresas</th>\n", " <td>http://www.lakd.lt/files/atviri_duomenys/danga...</td>\n", " </tr>\n", " <tr>\n", " <th>Kategorija (informacijos sritis)</th>\n", " <td>Transportas ir ryšiai</td>\n", " </tr>\n", " <tr>\n", " <th>Kategorija (informacijos sritis) 1 lygis</th>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>Kodas</th>\n", " <td>6055</td>\n", " </tr>\n", " <tr>\n", " <th>Kontaktiniai duomenys</th>\n", " <td>(8 5) 232 9640 [email protected]</td>\n", " </tr>\n", " <tr>\n", " <th>Pavadinimas</th>\n", " <td>2013 m. viršutinės kelio dangos duomenys</td>\n", " </tr>\n", " <tr>\n", " <th>Publikavimo data iki:</th>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>Publikavimo data nuo:</th>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>Reikšminiai žodžiai</th>\n", " <td>keliai, dangos</td>\n", " </tr>\n", " <tr>\n", " <th>Rinkmenos aprašymo publikavimo duomenys</th>\n", " <td>2016-12-05 17:07:50</td>\n", " </tr>\n", " <tr>\n", " <th>Rinkmenos duomenų teikimo sąlygos</th>\n", " <td>Skelbiama internete</td>\n", " </tr>\n", " <tr>\n", " <th>Rinkmenos pabaigos data</th>\n", " <td>2013</td>\n", " </tr>\n", " <tr>\n", " <th>Rinkmenos pradžios data</th>\n", " <td>2013</td>\n", " </tr>\n", " <tr>\n", " <th>Rinkmenos rūšis</th>\n", " <td>Kita</td>\n", " </tr>\n", " <tr>\n", " <th>Rinkmenos tvarkytojas</th>\n", " <td>Lietuvos automobilių kelių direkcija</td>\n", " </tr>\n", " <tr>\n", " <th>Sukaupta duomenu (%) iki:</th>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>Sukaupta duomenu (%) nuo:</th>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>Tvarkytojas</th>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>key</th>\n", " <td>http://opendata.gov.lt/index.php?vars=/public/...</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " 0\n", " NaN\n", "2 lygis NaN\n", "3 lygis NaN\n", "Alternatyvus pavadinimas \n", "Apibūdinimas Pateikiama informacija: duomenų data, kelio nu...\n", "Atnaujinimo dažnumas Kartą per metus\n", "Duomenų formatas CSV formatas\n", "Duomenų išsamumas Visi duomenys sukaupti\n", "Duomenų patikimumas Įstaiga prisiima atsakomybę\n", "Ieškoti tik jau pateiktuose rezultatuose NaN\n", "Internetinis adresas http://www.lakd.lt/files/atviri_duomenys/danga...\n", "Kategorija (informacijos sritis) Transportas ir ryšiai\n", "Kategorija (informacijos sritis) 1 lygis NaN\n", "Kodas 6055\n", "Kontaktiniai duomenys (8 5) 232 9640 [email protected]\n", "Pavadinimas 2013 m. viršutinės kelio dangos duomenys\n", "Publikavimo data iki: NaN\n", "Publikavimo data nuo: NaN\n", "Reikšminiai žodžiai keliai, dangos\n", "Rinkmenos aprašymo publikavimo duomenys 2016-12-05 17:07:50\n", "Rinkmenos duomenų teikimo sąlygos Skelbiama internete\n", "Rinkmenos pabaigos data 2013\n", "Rinkmenos pradžios data 2013\n", "Rinkmenos rūšis Kita\n", "Rinkmenos tvarkytojas Lietuvos automobilių kelių direkcija\n", "Sukaupta duomenu (%) iki: NaN\n", "Sukaupta duomenu (%) nuo: NaN\n", "Tvarkytojas NaN\n", "key http://opendata.gov.lt/index.php?vars=/public/..." ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data.head(1).T" ] }, { "cell_type": "code", "execution_count": 70, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "PDF formatas 311\n", "HTML formatas 297\n", "XLS formatas 189\n", "DOC/DOCX formatas 120\n", "XML formatas 110\n", "Kita 87\n", "CSV formatas 37\n", "ESRI Shapefile formatas 20\n", "JPG/PNG/GIF formatas 19\n", "TIFF formatas 14\n", "TXT formatas 8\n", "GML formatas 3\n", "R2004) 2\n", "R2000 2\n", "MICROSTATION DESIGN IR KT. 1\n", "XLSX 1\n", "Informacija teikiama internetiniame puslapyje http 1\n", "LIZARDTECH MRSID 1\n", "MAPINFO TAB 1\n", "ESRI SHAPE 1\n", "TIFF 1\n", "Duomenys kaupiami ir saugomi Vaistų registro centr 1\n", "JPEG 1\n", "ESRI PERSONAL GEODATABASE 1\n", "ESRI PERSONAL GEODATABASE (FILE) 1\n", "AUTOCAD DWG (R14 1\n", "Microsoft SQL 1\n", "MAPINFO MIF 1\n", "HTML 1\n", "AUTOCAD DXF (R14 1\n", "dtype: int64" ] }, "execution_count": 70, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data['Duomenų formatas'].str.split(r',|\\t+').apply(pd.Series).stack().str.strip().value_counts()" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "Finansinių ataskaitų rinkiniai 5\n", " 3\n", "Biudžeto vykdymo ataskaitų rinkiniai 2\n", "Nuasmeninti Lietuvos Respublikos teismų sprendimai, nuosprendžiai, nutarimai ir nutartys 1\n", "Miškų sanitarinės būklės apžvalga 1\n", "Name: Pavadinimas, dtype: int64" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data.Pavadinimas.value_counts().head()" ] }, { "cell_type": "code", "execution_count": 44, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "Finansinių ataskaitų rinkiniai 5.0\n", " 3.0\n", "Biudžeto vykdymo ataskaitų rinkiniai 2.0\n", "Name: Pavadinimas, dtype: float64" ] }, "execution_count": 44, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data['Pavadinimas'].value_counts().map(lambda x: x if x > 1 else None).dropna()" ] }, { "cell_type": "code", "execution_count": 63, "metadata": { "collapsed": true }, "outputs": [], "source": [ "pd.set_option('display.max_colwidth', 70)\n", "pd.set_option('display.width', 1000)" ] }, { "cell_type": "code", "execution_count": 64, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " Kodas Pavadinimas Rinkmenos tvarkytojas key\n", "0 NaN http://opendata.gov.lt/index.php?vars=/public/public/search/15/\n", "1 5781 Finansinių ataskaitų rinkiniai Audito, apskaitos, turto vertinimo ir nemokumo valdymo tarnyba pri... http://opendata.gov.lt/index.php?vars=/public/public/print/292/\n", "2 NaN http://opendata.gov.lt/index.php?vars=/public/public/search/300/\n", "3 NaN http://opendata.gov.lt/index.php?vars=/public/public/search/150/\n", "4 6203 Biudžeto vykdymo ataskaitų rinkiniai Finansinių nusikaltimų tyrimo tarnyba http://opendata.gov.lt/index.php?vars=/public/public/print/714/\n", "5 6204 Finansinių ataskaitų rinkiniai Finansinių nusikaltimų tyrimo tarnyba http://opendata.gov.lt/index.php?vars=/public/public/print/715/\n", "6 6579 Finansinių ataskaitų rinkiniai Lietuvos Respublikos valstybės kontrolė http://opendata.gov.lt/index.php?vars=/public/public/print/1090/\n", "7 6242 Finansinių ataskaitų rinkiniai Kupškio rajono savivaldybės administracija http://opendata.gov.lt/index.php?vars=/public/public/print/753/\n", "8 6566 Finansinių ataskaitų rinkiniai Visagino savivaldybės administracija http://opendata.gov.lt/index.php?vars=/public/public/print/1077/\n", "9 6577 Biudžeto vykdymo ataskaitų rinkiniai Lietuvos Respublikos valstybės kontrolė http://opendata.gov.lt/index.php?vars=/public/public/print/1088/\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/home/sirex/.venvs/databot/lib/python3.5/site-packages/ipykernel/__main__.py:1: UserWarning: Boolean Series key will be reindexed to match DataFrame index.\n", " if __name__ == '__main__':\n" ] } ], "source": [ "print(data.set_index('Pavadinimas')[data['Pavadinimas'].value_counts() > 1].reset_index()[['Kodas', 'Pavadinimas', 'Rinkmenos tvarkytojas', 'key']])" ] }, { "cell_type": "code", "execution_count": 50, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Kodas</th>\n", " <th>Pavadinimas</th>\n", " <th>Alternatyvus pavadinimas</th>\n", " <th>key</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>15</th>\n", " <td></td>\n", " <td></td>\n", " <td>NaN</td>\n", " <td>http://opendata.gov.lt/index.php?vars=/public/public/search/15/</td>\n", " </tr>\n", " <tr>\n", " <th>193</th>\n", " <td></td>\n", " <td></td>\n", " <td>NaN</td>\n", " <td>http://opendata.gov.lt/index.php?vars=/public/public/search/300/</td>\n", " </tr>\n", " <tr>\n", " <th>238</th>\n", " <td></td>\n", " <td></td>\n", " <td>NaN</td>\n", " <td>http://opendata.gov.lt/index.php?vars=/public/public/search/150/</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " Kodas Pavadinimas Alternatyvus pavadinimas \\\n", "15 NaN \n", "193 NaN \n", "238 NaN \n", "\n", " key \n", "15 http://opendata.gov.lt/index.php?vars=/public/public/search/15/ \n", "193 http://opendata.gov.lt/index.php?vars=/public/public/search/300/ \n", "238 http://opendata.gov.lt/index.php?vars=/public/public/search/150/ " ] }, "execution_count": 50, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data[data['Pavadinimas'] == ''][['Kodas', 'Pavadinimas', 'Alternatyvus pavadinimas', 'key']]" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Rinkmenos tvarkytojas</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>Lietuvos automobilių kelių direkcija</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>Lietuvos statistikos departamentas</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>Lietuvos automobilių kelių direkcija</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>Lietuvos automobilių kelių direkcija</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>Lietuvos automobilių kelių direkcija</td>\n", " </tr>\n", " <tr>\n", " <th>5</th>\n", " <td>Lietuvos automobilių kelių direkcija</td>\n", " </tr>\n", " <tr>\n", " <th>17</th>\n", " <td>Lietuvos bankas</td>\n", " </tr>\n", " <tr>\n", " <th>24</th>\n", " <td>Lietuvos Respublikos Vyriausybės kanceliarija</td>\n", " </tr>\n", " <tr>\n", " <th>25</th>\n", " <td>Lietuvos saugios laivybos administracija</td>\n", " </tr>\n", " <tr>\n", " <th>26</th>\n", " <td>Lietuvos bankas</td>\n", " </tr>\n", " <tr>\n", " <th>28</th>\n", " <td>Lietuvos saugios laivybos administracija</td>\n", " </tr>\n", " <tr>\n", " <th>29</th>\n", " <td>Lietuvos Respublikos finansų ministerija</td>\n", " </tr>\n", " <tr>\n", " <th>31</th>\n", " <td>Lietuvos Respublikos valstybinis patentų biuras</td>\n", " </tr>\n", " <tr>\n", " <th>32</th>\n", " <td>Lietuvos Respublikos valstybinis patentų biuras</td>\n", " </tr>\n", " <tr>\n", " <th>33</th>\n", " <td>Lietuvos Respublikos valstybinis patentų biuras</td>\n", " </tr>\n", " <tr>\n", " <th>34</th>\n", " <td>Lietuvos Respublikos valstybinis patentų biuras</td>\n", " </tr>\n", " <tr>\n", " <th>35</th>\n", " <td>Lietuvos saugios laivybos administracija</td>\n", " </tr>\n", " <tr>\n", " <th>36</th>\n", " <td>Lietuvos nacionalinė Martyno Mažvydo biblioteka</td>\n", " </tr>\n", " <tr>\n", " <th>37</th>\n", " <td>Lietuvos hidrometeorologijos tarnyba prie Apli...</td>\n", " </tr>\n", " <tr>\n", " <th>40</th>\n", " <td>Audito, apskaitos, turto vertinimo ir nemokumo...</td>\n", " </tr>\n", " <tr>\n", " <th>42</th>\n", " <td>Lietuvos nacionalinė Martyno Mažvydo biblioteka</td>\n", " </tr>\n", " <tr>\n", " <th>56</th>\n", " <td>Audito, apskaitos, turto vertinimo ir nemokumo...</td>\n", " </tr>\n", " <tr>\n", " <th>57</th>\n", " <td>Audito, apskaitos, turto vertinimo ir nemokumo...</td>\n", " </tr>\n", " <tr>\n", " <th>58</th>\n", " <td>Audito, apskaitos, turto vertinimo ir nemokumo...</td>\n", " </tr>\n", " <tr>\n", " <th>60</th>\n", " <td>Lietuvos Respublikos ginklų fondas prie Vidaus...</td>\n", " </tr>\n", " <tr>\n", " <th>61</th>\n", " <td>Lietuvos Respublikos ginklų fondas prie Vidaus...</td>\n", " </tr>\n", " <tr>\n", " <th>62</th>\n", " <td>Lietuvos Respublikos ginklų fondas prie Vidaus...</td>\n", " </tr>\n", " <tr>\n", " <th>63</th>\n", " <td>Lietuvos Respublikos ginklų fondas prie Vidaus...</td>\n", " </tr>\n", " <tr>\n", " <th>64</th>\n", " <td>Lietuvos Respublikos finansų ministerija</td>\n", " </tr>\n", " <tr>\n", " <th>65</th>\n", " <td>Lietuvos Respublikos finansų ministerija</td>\n", " </tr>\n", " <tr>\n", " <th>...</th>\n", " <td>...</td>\n", " </tr>\n", " <tr>\n", " <th>482</th>\n", " <td>Lietuvos bioetikos komitetas</td>\n", " </tr>\n", " <tr>\n", " <th>487</th>\n", " <td>Lietuvos Respublikos valstybės kontrolė</td>\n", " </tr>\n", " <tr>\n", " <th>488</th>\n", " <td>Lietuvos Respublikos valstybės kontrolė</td>\n", " </tr>\n", " <tr>\n", " <th>489</th>\n", " <td>Lietuvos Respublikos valstybės kontrolė</td>\n", " </tr>\n", " <tr>\n", " <th>490</th>\n", " <td>Lietuvos Respublikos valstybės kontrolė</td>\n", " </tr>\n", " <tr>\n", " <th>523</th>\n", " <td>Lietuvos Respublikos teisingumo ministerija</td>\n", " </tr>\n", " <tr>\n", " <th>524</th>\n", " <td>Lietuvos standartizacijos departamentas</td>\n", " </tr>\n", " <tr>\n", " <th>525</th>\n", " <td>Lietuvos standartizacijos departamentas</td>\n", " </tr>\n", " <tr>\n", " <th>573</th>\n", " <td>VŠĮ Lietuvos žemės ūkio konsultavimo tarnyba</td>\n", " </tr>\n", " <tr>\n", " <th>574</th>\n", " <td>VŠĮ Lietuvos žemės ūkio konsultavimo tarnyba</td>\n", " </tr>\n", " <tr>\n", " <th>575</th>\n", " <td>VŠĮ Lietuvos žemės ūkio konsultavimo tarnyba</td>\n", " </tr>\n", " <tr>\n", " <th>576</th>\n", " <td>VŠĮ Lietuvos žemės ūkio konsultavimo tarnyba</td>\n", " </tr>\n", " <tr>\n", " <th>577</th>\n", " <td>VŠĮ Lietuvos žemės ūkio konsultavimo tarnyba</td>\n", " </tr>\n", " <tr>\n", " <th>582</th>\n", " <td>Lietuvos statistikos departamentas</td>\n", " </tr>\n", " <tr>\n", " <th>583</th>\n", " <td>Lietuvos statistikos departamentas</td>\n", " </tr>\n", " <tr>\n", " <th>584</th>\n", " <td>Lietuvos statistikos departamentas</td>\n", " </tr>\n", " <tr>\n", " <th>585</th>\n", " <td>Lietuvos metrologijos inspekcija</td>\n", " </tr>\n", " <tr>\n", " <th>586</th>\n", " <td>Lietuvos statistikos departamentas</td>\n", " </tr>\n", " <tr>\n", " <th>587</th>\n", " <td>Lietuvos statistikos departamentas</td>\n", " </tr>\n", " <tr>\n", " <th>608</th>\n", " <td>Lietuvos metrologijos inspekcija</td>\n", " </tr>\n", " <tr>\n", " <th>609</th>\n", " <td>Lietuvos metrologijos inspekcija</td>\n", " </tr>\n", " <tr>\n", " <th>610</th>\n", " <td>Lietuvos metrologijos inspekcija</td>\n", " </tr>\n", " <tr>\n", " <th>611</th>\n", " <td>Lietuvos metrologijos inspekcija</td>\n", " </tr>\n", " <tr>\n", " <th>627</th>\n", " <td>Lietuvos Respublikos užsienio reikalų ministerija</td>\n", " </tr>\n", " <tr>\n", " <th>703</th>\n", " <td>Lietuvos metrologijos inspekcija</td>\n", " </tr>\n", " <tr>\n", " <th>705</th>\n", " <td>Lietuvos metrologijos inspekcija</td>\n", " </tr>\n", " <tr>\n", " <th>709</th>\n", " <td>VĮ \"Lietuvos naftos produktų agentūra\"</td>\n", " </tr>\n", " <tr>\n", " <th>754</th>\n", " <td>Lietuvos Respublikos valstybės kontrolė</td>\n", " </tr>\n", " <tr>\n", " <th>755</th>\n", " <td>Lietuvos Respublikos valstybės kontrolė</td>\n", " </tr>\n", " <tr>\n", " <th>756</th>\n", " <td>Lietuvos Respublikos valstybės kontrolė</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "<p>180 rows × 1 columns</p>\n", "</div>" ], "text/plain": [ " Rinkmenos tvarkytojas\n", "0 Lietuvos automobilių kelių direkcija\n", "1 Lietuvos statistikos departamentas\n", "2 Lietuvos automobilių kelių direkcija\n", "3 Lietuvos automobilių kelių direkcija\n", "4 Lietuvos automobilių kelių direkcija\n", "5 Lietuvos automobilių kelių direkcija\n", "17 Lietuvos bankas\n", "24 Lietuvos Respublikos Vyriausybės kanceliarija\n", "25 Lietuvos saugios laivybos administracija\n", "26 Lietuvos bankas\n", "28 Lietuvos saugios laivybos administracija\n", "29 Lietuvos Respublikos finansų ministerija\n", "31 Lietuvos Respublikos valstybinis patentų biuras\n", "32 Lietuvos Respublikos valstybinis patentų biuras\n", "33 Lietuvos Respublikos valstybinis patentų biuras\n", "34 Lietuvos Respublikos valstybinis patentų biuras\n", "35 Lietuvos saugios laivybos administracija\n", "36 Lietuvos nacionalinė Martyno Mažvydo biblioteka\n", "37 Lietuvos hidrometeorologijos tarnyba prie Apli...\n", "40 Audito, apskaitos, turto vertinimo ir nemokumo...\n", "42 Lietuvos nacionalinė Martyno Mažvydo biblioteka\n", "56 Audito, apskaitos, turto vertinimo ir nemokumo...\n", "57 Audito, apskaitos, turto vertinimo ir nemokumo...\n", "58 Audito, apskaitos, turto vertinimo ir nemokumo...\n", "60 Lietuvos Respublikos ginklų fondas prie Vidaus...\n", "61 Lietuvos Respublikos ginklų fondas prie Vidaus...\n", "62 Lietuvos Respublikos ginklų fondas prie Vidaus...\n", "63 Lietuvos Respublikos ginklų fondas prie Vidaus...\n", "64 Lietuvos Respublikos finansų ministerija\n", "65 Lietuvos Respublikos finansų ministerija\n", ".. ...\n", "482 Lietuvos bioetikos komitetas\n", "487 Lietuvos Respublikos valstybės kontrolė\n", "488 Lietuvos Respublikos valstybės kontrolė\n", "489 Lietuvos Respublikos valstybės kontrolė\n", "490 Lietuvos Respublikos valstybės kontrolė\n", "523 Lietuvos Respublikos teisingumo ministerija\n", "524 Lietuvos standartizacijos departamentas\n", "525 Lietuvos standartizacijos departamentas\n", "573 VŠĮ Lietuvos žemės ūkio konsultavimo tarnyba\n", "574 VŠĮ Lietuvos žemės ūkio konsultavimo tarnyba\n", "575 VŠĮ Lietuvos žemės ūkio konsultavimo tarnyba\n", "576 VŠĮ Lietuvos žemės ūkio konsultavimo tarnyba\n", "577 VŠĮ Lietuvos žemės ūkio konsultavimo tarnyba\n", "582 Lietuvos statistikos departamentas\n", "583 Lietuvos statistikos departamentas\n", "584 Lietuvos statistikos departamentas\n", "585 Lietuvos metrologijos inspekcija\n", "586 Lietuvos statistikos departamentas\n", "587 Lietuvos statistikos departamentas\n", "608 Lietuvos metrologijos inspekcija\n", "609 Lietuvos metrologijos inspekcija\n", "610 Lietuvos metrologijos inspekcija\n", "611 Lietuvos metrologijos inspekcija\n", "627 Lietuvos Respublikos užsienio reikalų ministerija\n", "703 Lietuvos metrologijos inspekcija\n", "705 Lietuvos metrologijos inspekcija\n", "709 VĮ \"Lietuvos naftos produktų agentūra\"\n", "754 Lietuvos Respublikos valstybės kontrolė\n", "755 Lietuvos Respublikos valstybės kontrolė\n", "756 Lietuvos Respublikos valstybės kontrolė\n", "\n", "[180 rows x 1 columns]" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data[data['Rinkmenos tvarkytojas'].fillna('').str.contains('lietuvos', case=False)][['Rinkmenos tvarkytojas']]" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "(107,)" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data['Rinkmenos tvarkytojas'].value_counts().shape" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": false }, "outputs": [], "source": [ "spl = data['Reikšminiai žodžiai'].str.split(';')" ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "sergamumas 20\n", "licencijos 20\n", "Gyventojai 16\n", "pardavimai 14\n", "statistika 13\n", "Žemė 13\n", "prekyba 13\n", "ligotumas 12\n", "Žemės danga 12\n", "prisirašymo įstaiga 12\n", "stacionaro ligonis 12\n", "ekonominės veiklos rūšis 12\n", "juridinis asmuo 11\n", "žemės ūkis 11\n", "ataskaitos 10\n", "dirbantieji 10\n", "mirtis 10\n", "įmonė 10\n", "pagrindinė mirties priežastis 9\n", "ataskaita 9\n", "Licencijos 9\n", "Klaipėdos miesto savivaldybės administracija 8\n", "Telekomunikacijos 8\n", "elektros energija 8\n", "IRT prekyba 8\n", "IRT paslaugos 8\n", "IRT pramonė 8\n", "ištekliai 7\n", "leidimas 7\n", "keliai 7\n", " ..\n", "juridinis pagrindas 1\n", "sutarties nutraukimas 1\n", "bankroto ir restruktūrizavimo administratorių pažymėjimai 1\n", "Ministras Pirmininkas darbotvarkė 1\n", "veiklos programa 1\n", "viešieji pirkimai 1\n", "Saugomos teritorijos 1\n", "draudimo 1\n", "2014-2020 1\n", "gamtiniai veiksniai 1\n", "sanitarinė būklė apžvalga 1\n", "melioracijos projektai 1\n", "ekspedicija 1\n", "pranešimas apie sprendimą byloje 1\n", "Tuskulėnų aukos 1\n", "vidaus vandenų transporto priemonės 1\n", "maisto saugos kontrolė 1\n", "Sąvartynai 1\n", "darbuotojų atstovai 1\n", "vykdymas ataskaitos 1\n", "Spaudo numeris 1\n", "įsipareigojimai užsieniui 1\n", "augalų apsauga 1\n", "NA būklė 1\n", "Veikliųjų medžiagų gamintojai 1\n", "vanduo monitoringas ežeras hidrocheminiai hidrobiologiniai 1\n", "Garantinio fondo tarybos posėdžiai 1\n", "pelno (nuostolio) ataskaita 1\n", "Aplinka atliekos išleidžiama 1\n", "GDR10LT 1\n", "dtype: int64" ] }, "execution_count": 24, "metadata": {}, "output_type": "execute_result" } ], "source": [ "spl.apply(pd.Series).stack().str.split(',').apply(pd.Series).stack().str.strip().value_counts()" ] }, { "cell_type": "code", "execution_count": 31, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "20 sergamumas\n", "20 licencijos\n", "16 Gyventojai\n", "14 pardavimai\n", "13 statistika\n", "13 Žemė\n", "13 prekyba\n", "12 ligotumas\n", "12 Žemės danga\n", "12 prisirašymo įstaiga\n", "12 stacionaro ligonis\n", "12 ekonominės veiklos rūšis\n", "11 juridinis asmuo\n", "11 žemės ūkis\n", "10 ataskaitos\n", "10 dirbantieji\n", "10 mirtis\n", "10 įmonė\n", "9 pagrindinė mirties priežastis\n", "9 ataskaita\n", "9 Licencijos\n", "8 Klaipėdos miesto savivaldybės administracija\n", "8 Telekomunikacijos\n", "8 elektros energija\n", "8 IRT prekyba\n", "8 IRT paslaugos\n", "8 IRT pramonė\n", "7 ištekliai\n", "7 leidimas\n", "7 keliai\n", "7 dokumentai\n", "7 \n", "7 Gamtinės dujos\n", "7 Bankai\n", "7 stacionariniai ligoniai\n", "7 ambulatoriniai ligoniai\n", "7 sveikatos priežiūros veikla\n", "6 asmens duomenys\n", "6 žemėlapiai\n", "6 Rokiškio rajono savivaldybė\n", "6 šiluma\n", "6 užsienio banko skyriai (filialai)\n", "6 duomenų apsauga\n", "5 sveikata\n", "5 biodujos\n", "5 IRT sektorius\n", "5 apygardos teismas\n", "5 plotas\n", "5 išmokos\n", "5 projektai\n", "5 administratorius\n", "5 internetas\n", "5 Archyvai\n", "5 demografija\n", "5 ORT10LT\n", "5 parama kaimui\n", "5 žemės sklypai\n", "5 biokuras\n", "5 aeronuotrauka\n", "5 mažmeninė prekyba\n", "5 finansai\n", "5 rastras\n", "4 statistiniai duomenys\n", "4 lytis\n", "4 interneto svetainė\n", "4 laikinas nedarbingumas\n", "4 ekonominė veiklos rūšis\n", "4 darbingumo lygis\n", "4 deklaravimas\n", "4 duomenys\n", "4 Akcizai\n", "4 Elektros energija\n", "4 bankrotas\n", "4 apsilankymas\n", "4 nedarbingumo atvejis\n", "4 elektroninės paslaugos\n", "4 juridiniai asmenys\n", "4 tabakas\n", "4 stebėsena\n", "4 pirkimai\n", "4 amžius\n", "4 Hidrografija\n", "4 Šilutės rajono savivaldybė\n", "4 neįgalumo lygis\n", "4 kainos\n", "4 ortofotografinis vaizdas\n", "4 nedarbingumo pažymėjimas\n", "4 rekomendacijos\n", "4 gyvensena\n", "4 ortografinis vaizdas\n", "4 saugumas\n", "4 Neįgaliųjų socialinė integracija\n", "4 Garantinis fondas\n", "3 dangos\n", "3 balansinė ataskaita\n", "3 kompiuteris\n", "3 ženklinimas\n", "3 sklypai\n", "3 rezultatai\n", "3 reljefas\n", "3 pretendentai\n", "3 Lietuvoje\n", "3 rinkinys\n", "3 Biudžetas\n", "3 statistinė informacija\n", "3 Erdviniai duomenys\n", "3 atkūrimas\n", "3 planas\n", "3 centralizuotas šilumos tiekimas\n", "3 tarifai\n", "3 kuras\n", "3 registras\n", "3 žemės plotas\n", "3 žemėtvarka\n", "3 Administraciniai vienetai\n", "3 techniniai atidėjiniai\n", "3 informacinis portalas\n", "3 sąrašas\n", "3 nuosavybės teisė\n", "3 įgyvendinimas\n", "3 sprendimai\n", "3 ortofoto\n", "3 paslauga\n", "3 perdavimas\n", "3 serialiniai leidiniai\n", "3 darbo užmokestis\n", "3 Investuok\n", "3 atvejo trukmė\n", "3 Žemės ūkis\n", "3 Kokybė\n", "3 hidrografija\n", "3 dyzelinas\n", "3 plombavimo schemos\n", "3 Biržų rajono savivaldybė\n", "3 gyventojai\n", "3 bankroto byla\n", "3 deklaruoti mokesčiai\n", "3 fiziniai asmenys\n", "3 chirurginės operacijos\n", "3 šilumos tiekimas\n", "3 žemės apskaita\n", "3 išieškojimas\n", "3 Žemės danga (Land cover)\n", "3 įkainiai\n", "3 atsinaujinantys ištekliai\n", "3 georeferenciniai duomenys\n", "3 finansinės ataskaitos\n", "3 chirurginės procedūros\n", "3 knygos\n", "3 juridiniai faktai\n", "3 Ginklai\n", "3 vidaus vandenys\n", "2 suskystintos dujos\n", "2 paslaugos teikėjas\n", "2 Žemėtvarka\n", "2 apmokėjimo suma\n", "2 medicininė reabilitacija\n", "2 testamentas\n", "2 atranka\n", "2 restruktūrizavimas\n", "2 planavimas\n", "2 planavimo dokumentai\n", "2 skaičius\n", "2 patento paraiška\n", "2 slauga\n", "2 moksliniai tyrimai\n", "2 žemės naudojimo paskirtis\n", "2 paskolos\n", "2 šeškai\n", "2 nuotekos\n", "2 ribotai veiksnus\n", "2 tyrimas\n", "2 bylos numeris\n", "2 radiotechniniai objektai\n", "2 skalūnų alyva\n", "2 mazutas\n", "2 fondas\n", "2 valstybinė\n", "2 keleivis\n", "2 nuomojama\n", "2 mirties priežastis\n", "2 duomenų rinkiniai\n", "2 elektromagnetinė spinduliuotė\n", "2 genocidas\n", "2 stacionarinė reabilitacija\n", "2 pavadinimas\n", "2 nuotekų tvarkymas\n", "2 jonizuojančiosios spinduliuotės šaltiniai\n", "2 TOP50LKS\n", "2 parama\n", "2 teritorijų planavimo dokumentas\n", "2 veiklos\n", "2 licencijuojama veikla\n", "2 vaistai\n", "2 atvejai\n", "2 kontrolė\n", "2 gyvybės draudimo įmonės\n", "2 Išvados\n", "2 veiklos ataskaitos\n", "2 priežiūra\n", "2 restruktūrizavimo planas\n", "2 elektroniniai ištekliai\n", "2 gamtinės dujos\n", "2 atmintinės\n", "2 žemės naudotojų grupės\n", "2 ribos\n", "2 centralizuotas nuotekų tvarkymas\n", "2 Veiklos\n", "2 kartografija\n", "2 aukščio taškai\n", "2 naftos produktai\n", "2 kraujo donorystė\n", "2 vaikų išlaikymo fondas\n", "2 Matavimo priemonė\n", "2 atsinaujinantys energijos ištekliai\n", "2 mokesčiai\n", "2 karo nusikaltimai\n", "2 aprašymo turinys\n", "2 ambulatorinė reabilitacija\n", "2 žemės reforma\n", "2 Įvaikinimo tarnyba\n", "2 žuvininkystė\n", "2 bioetika\n", "2 žemės danga\n", "2 Negaliojantys leidimai\n", "2 palikimas\n", "2 analizė\n", "2 Leidimai\n", "2 ortografinis vaizdas (Orthoimagery)\n", "2 kontrolės\n", "2 valstybiniai miškai\n", "2 georeferencinio pagrindo žemėlapiai\n", "2 perįgaliojimas\n", "2 matavimo indai\n", "2 biudžetas\n", "2 Teismas\n", "2 Savivaldybės biudžetas\n", "2 Elektroniniai valdžios vartai\n", "2 kraujas\n", "2 Valstybės vaiko teisių apsaugos ir įvaikinimo tarnyba\n", "2 kultūros vertybės\n", "2 apskaita\n", "2 fondai\n", "2 Namų ūkiai\n", "2 įmonės vadovas\n", "2 turto areštas\n", "2 parama žemės ūkiui\n", "2 katės\n", "2 MM kodas\n", "2 auditas\n", "2 nacionalinė parama\n", "2 balansas\n", "2 skola\n", "2 medicina\n", "2 garso įrašai\n", "2 KGB\n", "2 Administracinis suskirstymas\n", "2 terminalai\n", "2 prijungimas\n", "2 natos\n", "2 Transporto tinklai\n", "2 nuoma\n", "2 kvalifikacinis pažymėjimas\n", "2 konsultacijos\n", "2 savivaldybė\n", "2 valstybinė apskaita\n", "2 restruktūrizavimo byla\n", "2 nafta\n", "2 alkoholis\n", "2 paslaugos\n", "2 darbuotojai\n", "2 donacija\n", "2 medicininiai duomenys\n", "2 valstybės tarnautojai\n", "2 Degalinės\n", "2 veiklos ataskaita\n", "2 Žemės naudojimas\n", "2 valstybės tarnyba\n", "2 kelių tinklas\n", "2 Statistika\n", "2 Geografiniai pavadinimai\n", "2 Lietuvos žuvininkystės sektoriaus 2014-2020 m. veiksmų programos statistika\n", "2 kraujo donorai\n", "2 nelegalus darbas\n", "2 Leidimas\n", "2 represijos\n", "2 politinis persekiojimas\n", "2 dizainas\n", "2 kelionių organizatoriai\n", "2 privati\n", "2 medicinos prietaisas\n", "2 Biržų rajono savivaldybės administracija\n", "2 išvados\n", "2 eismo intensyvumas\n", "2 turto padalijimas\n", "2 topografinis žemėlapis\n", "2 geriamasis vanduo\n", "2 Fiziniai asmenys\n", "2 profesinės ligos\n", "2 nefasuoti naftos produktai\n", "2 kita papildoma informacija\n", "2 alimentai\n", "2 deklaracija\n", "2 investicijos.\n", "2 PVM mokėtojas\n", "2 leidimai\n", "2 darbo sauga\n", "2 išorinė reklama\n", "2 pelno (nuostolių) ataskaita.\n", "2 suskystintos naftos dujos\n", "2 gimimas\n", "2 susirgimai\n", "2 ne gyvybės draudimo įmonės\n", "2 centralizuotas vandens tiekimas\n", "2 TLK-10-AM\n", "2 darbo sutartis\n", "2 Profesinis mokymas\n", "2 Paslaugos kodas\n", "2 VIAP\n", "2 Dyzeliniai degalai\n", "2 apmokėjimo atvejis\n", "2 Valstybės\n", "2 geriamojo vandens tiekimas\n", "2 skirstymas\n", "2 alkoholiniai gėrimai\n", "2 tpd\n", "2 sutartys\n", "2 Rastrinis žemėlapis\n", "2 įregistravimas\n", "2 transportas\n", "2 daiktinės teisės\n", "2 paciento teisės\n", "2 restruktūrizuojamos įmonės\n", "2 Profesinė reabilitacija\n", "2 panauda\n", "2 GDR50LT\n", "2 Muitinės įstaiga\n", "2 viešinimas\n", "2 rinkiniai\n", "2 akmens anglis\n", "2 galvijas\n", "2 šaudmenys\n", "2 teroras\n", "2 administracinės ribos\n", "2 ''3''\n", "2 Topografija\n", "2 SSSR\n", "2 medicinos mokslo tiriamieji darbai\n", "2 apskritis\n", "2 Skolininkas\n", "2 vedybų sutartis\n", "2 Nekilnojamieji daiktai\n", "2 stacionaro dienos atvejis\n", "2 vykdymo ataskaitų rinkiniai\n", "2 akvakultūra\n", "2 žuvys\n", "2 rinkos kaina\n", "2 Kelių transportas\n", "2 Finansinių ataskaitų rinkiniai\n", "2 meteorologija\n", "2 ''e''\n", "2 pardavimas\n", "2 Biudžeto lėšos\n", "2 LSSR\n", "2 veikla\n", "2 pajamos\n", "1 įkeitimas\n", "1 Prekės kodas\n", "1 žinybinis registras\n", "1 Banderolės\n", "1 tabako gaminiai\n", "1 veterinarinė kontrolė\n", "1 ekonominiai rodikliai\n", "1 Lygiagrečiai importuojamas vaistinis preparatas\n", "1 Užsienio bankų kontroliuojamos finansų įmonės\n", "1 Paskolų ir indėlių palūkanų normos.\n", "1 ekonominių rodiklių projekcijos\n", "1 Įstaigos\n", "1 rengėjai sąrašas miškotvarka\n", "1 skirstomieji tinklai\n", "1 Nekilnojami daiktai\n", "1 registrų funkcionavimas\n", "1 žemėtvarkos projektai\n", "1 nustatymas\n", "1 apleistos žemės\n", "1 apskričių centrai\n", "1 Registras\n", "1 vienadienių indėlių sąskaitos\n", "1 tarpininkai\n", "1 privatūs projektai kadastras miškotvarka\n", "1 sveikatos priežiūros ištekliai\n", "1 anglų kalbos kursai\n", "1 kaimo plėtrai ir žuvininkystei taisyklės\n", "1 bylos rūšis\n", "1 pakartotinis\n", "1 laboratorija\n", "1 Tremtis\n", "1 rodiklių projekcijos\n", "1 bankų sektoriaus rodikliai\n", "1 muziejai\n", "1 paslaugos neįgaliesiems\n", "1 viešasis\n", "1 mokestis\n", "1 Natura 2000 BAST\n", "1 Tarpbankinio skolinimo sandoriai ir jų palūkanų normos\n", "1 Verslo liudijimai\n", "1 melioracija\n", "1 licencija\n", "1 Lietuvos banko valdybos nutarimai\n", "1 SEŽP_05LT\n", "1 Vyriausybės skolinimasis\n", "1 Šilutės r. savivaldybė\n", "1 susisiekimo komunikacijos\n", "1 sveikatos priežiūros paslaugos\n", "1 prekybos automatų modeliai\n", "1 dirbantys pagal darbo sutartis\n", "1 atmintinė darbuotojui\n", "1 kilnojamieji daiktai\n", "1 Višieji pirkimai\n", "1 vartotojo vadovas\n", "1 Socialinis dialogas įmonėje\n", "1 Molėtų rajono savivaldybės administracija\n", "1 susirašinėjimo su NMA istorija\n", "1 galiojimo laikas\n", "1 įsakymai\n", "1 valstybės ir savivaldybių institucijos ir įstaigos\n", "1 Sveikata\n", "1 KPP statistika\n", "1 duomenų valdytojas\n", "1 efektyvumo rodikliai\n", "1 teikiamų paslaugų aprašymai\n", "1 fasuotos prekės\n", "1 sportas\n", "1 Hidrologija\n", "1 jūrinio laipsnio diplomai\n", "1 korupcijos prevencija\n", "1 Kredito unijų pelno (nuostolio) ataskaita\n", "1 įgaliojimas\n", "1 ketv.)\n", "1 bankroto procesas\n", "1 atominės\n", "1 laisva žemė\n", "1 finansinio stabilumo rodikliai\n", "1 moduliai\n", "1 geros praktikos vadovai\n", "1 naftos produktų kaina\n", "1 administraciniai vienetai\n", "1 Sprendimas\n", "1 Aukcionas\n", "1 skolos gražinimo grafikas\n", "1 finansinės sąskaitos\n", "1 visi darbai\n", "1 atestatas liudijimas energetikos įrenginys eksploatavimo veikla\n", "1 neveiksnus\n", "1 kategorija\n", "1 pažyma apie statybas\n", "1 įstaigos\n", "1 suvestinė\n", "1 galiojančios sutartys\n", "1 rezervo karininkai\n", "1 taršos sklaida\n", "1 tarpusavio\n", "1 srautas\n", "1 generatoriai\n", "1 Orų prognozė\n", "1 finansinė sąskaitos\n", "1 dujos\n", "1 laisvos žemės plotas\n", "1 Pasienio kontrolės punktai\n", "1 Švietimo ir mokslo registrų sąrašas\n", "1 degalai\n", "1 Geležinkelia\n", "1 atmintinė darbdaviui\n", "1 apie darbo ginčų komisijas\n", "1 informacinės technologijos\n", "1 pastatai\n", "1 Paminklai\n", "1 gyvybės draudimo sudarytos sutartys ir išmokos\n", "1 teritorijų planavimo sąlygos\n", "1 nekilnojamasis turtas\n", "1 Sveikatos priežiūros specialistų (vaistininkų ir vaistininkų padėjėjų (farmakotechnikų)) spaudų numeriai\n", "1 bibliotekos\n", "1 darbotvarkė protokolas posėdis pasitarimas Vyriausybė\n", "1 debesuotumas\n", "1 indėliai\n", "1 vandens telkinys\n", "1 apyvartiniai taršos leidimai\n", "1 Arkliai\n", "1 EGM_1000LT\n", "1 Krantai\n", "1 medicinos norma\n", "1 Administracijos veiklos planas\n", "1 kenkėjai\n", "1 kreditorių reikalavimai\n", "1 autobusų stotis.\n", "1 Rokiškio rajono savivaldybės\n", "1 elektroninės DSS deklaracijos\n", "1 vaikai\n", "1 automobilių statymo\n", "1 aprašas\n", "1 kūno kultūra\n", "1 hipoteka\n", "1 matininkas\n", "1 biosferos poligonai\n", "1 šaltas vanduo\n", "1 vaizdo įrašai\n", "1 ūkis\n", "1 darbo laikas\n", "1 dokumento rengėjas\n", "1 oro tarša\n", "1 Mokymo įstaigos\n", "1 2007-2013\n", "1 makroekonominiai rodikliai\n", "1 prekyba tabako gaminiais\n", "1 inventorizacija statistika\n", "1 asmeninis ūkis\n", "1 kvietimas teikti paraiškas\n", "1 atkuriamieji sklypai\n", "1 Keliai\n", "1 komitetas\n", "1 žaibų išlydžiai\n", "1 išleidžiami teršalai išmetimai\n", "1 elektroninė erdvė\n", "1 nesudėtingi statiniai\n", "1 Lietuvos bankas\n", "1 kvalifikacijos liudijimai\n", "1 augalinės kilmės produkcija\n", "1 makroekonominių rodiklių projekcijos\n", "1 disponuojamosios pajamos\n", "1 laikinosios sveikatos priežiūros praktikos\n", "1 išleistuvai\n", "1 Kredito unijų balansinė ataskaita\n", "1 kvalifikacijos tobulinimas.\n", "1 Visuomenės sveikata\n", "1 Pienas\n", "1 turtas\n", "1 privalomieji draudimai\n", "1 Lietuvos kaimo plėtros 2014-2020 m. programa\n", "1 kokybės valdymas\n", "1 institucinių sektorių turtas ir įsipareigojimai\n", "1 klimato kaita\n", "1 Europos Sąjungos dokumentai\n", "1 norminiai aktai\n", "1 DSS komisija\n", "1 protokolai\n", "1 meteorologinės apžvalgos\n", "1 Draudikai\n", "1 atitikties deklaracija\n", "1 supirkimo tarifai\n", "1 EKA įmonės\n", "1 išvados nr.\n", "1 žvejyba\n", "1 nuotoliniai mokymai\n", "1 etiketės\n", "1 Kaimo verslas\n", "1 geoportal.lt\n", "1 auditorius\n", "1 slaugos praktika\n", "1 Prašymai dėl informacijos\n", "1 Vaistinio preparato indentifikatorius\n", "1 Topografinis žemėlapis\n", "1 sklypas\n", "1 Bokštai\n", "1 draudžiama eiti pareigas\n", "1 sprendinių brėžiniai\n", "1 pažymėjimas\n", "1 vietovardžiai\n", "1 įdarbinimas\n", "1 monitoringas\n", "1 valdytojas\n", "1 garso\n", "1 kokybės vadyba\n", "1 draustiniai\n", "1 Žemės kadastras\n", "1 didmeninė prekyba\n", "1 mūsų tautiečiams ir moksleiviams švenčiant dainų šventes\n", "1 schemos\n", "1 Sutikimas\n", "1 darbdavių atstovai\n", "1 50000\n", "1 bandomasis laikotarpis\n", "1 vanduo\n", "1 išduoti leidimai\n", "1 Dozės galia\n", "1 specifikacijos\n", "1 Uosto statistika\n", "1 pramoginiai laivai\n", "1 Viešojo saugumo tarnyba\n", "1 žalia nafta\n", "1 vaizdo kameros\n", "1 garantinio\n", "1 bitės\n", "1 Bendrosios praktikos slaugytojo licencija\n", "1 bičių šeimos\n", "1 Viešai skelbiami pareiškėjai ir paramos gavėjai\n", "1 byla\n", "1 Mokymo įstaiga\n", "1 EuroGlobalMap\n", "1 vėjo energija\n", "1 verslui\n", "1 buitiniai vartotojai\n", "1 Paraiškų\n", "1 valstybiniai\n", "1 stabilizavimo\n", "1 vidaus vandens telkiniai\n", "1 krizių valdymas\n", "1 GDB250LT\n", "1 inspekciniai\n", "1 nuobaudos\n", "1 masinė kapavietė\n", "1 išmoka\n", "1 apžvalga\n", "1 Energetikos teisės aktai\n", "1 asmuo\n", "1 administracinė teritorija\n", "1 skolos rodikliai\n", "1 Rekomendacijos\n", "1 Asmens kortelė\n", "1 Geriamojo vandens tiekimas\n", "1 Dziudo\n", "1 MN\n", "1 Mokymasis visą gyvenimą\n", "1 kandidatai\n", "1 Valstybės vaiko teisių apsaugos ir įvaikinimo tarnybos antikorupcinė programa\n", "1 kvalifikacija\n", "1 muzikos leidiniai\n", "1 leidimas-higienos pasas\n", "1 sprogmenų naudojimas\n", "1 atitikties įvertinimo įstaigos\n", "1 oro užterštumas\n", "1 patentas\n", "1 Pavardė\n", "1 juose atliktos operacijos\n", "1 viršutinės kainų ribos\n", "1 pinigai P1\n", "1 Bendroji skola (BS)\n", "1 būstas\n", "1 pirmasis darbas\n", "1 gimdyvė\n", "1 seimo rinkimų rezultatai 2016\n", "1 vandens valymas\n", "1 EDV\n", "1 vandens toksinio rodiklio ribinė vertė\n", "1 Europos socialinis fondas\n", "1 eilė\n", "1 galvijo produktyvumo rodikliai\n", "1 įvaikinimo statistika\n", "1 VILIBID\n", "1 skolos grąžinimas\n", "1 suvaržymai\n", "1 plitimas\n", "1 miškai žemėlapiai geoinformacija\n", "1 stebint futbolo rungtynes\n", "1 ūkio subjektas\n", "1 žemės sklypas\n", "1 planavimo organizatorius\n", "1 B kategorijos ginklai\n", "1 multimedija\n", "1 Valstybės tarnautojų mokymo paslaugų teikėjai\n", "1 Europos Sąjungos parama Programų ir projektų administravimas Vieša ir privati partnerystė\n", "1 Alkoholis\n", "1 Valstybės sienos apsaugos tarnyba prie Lietuvos Respiblikos vidaus reikalų ministerijos\n", "1 planuojama ūkinė veikla\n", "1 PVM mokėtojai\n", "1 Socialinės įmonės\n", "1 informacija apie įdarbinimą\n", "1 pažymėjimai\n", "1 nustatyta\n", "1 PVM deklaracija\n", "1 bendradarbiavimas\n", "1 krovinių vežimas\n", "1 mokymų programos\n", "1 apskaitos prietaisai\n", "1 Pramoninė nuosavybė\n", "1 bankrutuojanti\n", "1 Urbanizuotos teritorijos\n", "1 GDB50LT\n", "1 „stribų“ būstinės\n", "1 korupcija\n", "1 antikorupcinės programos vykdymas\n", "1 finansinės būklės ataskaitos\n", "1 atliekų tvarkymas\n", "1 antikorupcinės priemonės\n", "1 kovinės sporto šakos\n", "1 LR ginklų fondas prie LRVRM\n", "1 saugusis dokumentas\n", "1 Veiklos ataskaitos\n", "1 kelių transporto priemonė\n", "1 Pirminiai\n", "1 dauginės mirties priežastys\n", "1 Atliekos aplinka tarša\n", "1 Paraiška išmokoms iš Garantinio fondo gauti\n", "1 Chemija medžiagos preparatai\n", "1 skaičiai\n", "1 draudikų sąrašai\n", "1 centrinė koordinavimo grupė\n", "1 saugomos teritorijos\n", "1 grupė\n", "1 kartografinis pagrindas\n", "1 pareiškėjai\n", "1 kai investavimo rizika tenka draudėjui\n", "1 kovotojų kelias\n", "1 darbuotojams skirtos išmokos iš Garantinio fondo\n", "1 apvalioji mediena\n", "1 Lietuvos žuvininkystės sektoriaus veiksmų programos statistika\n", "1 testai\n", "1 sumokėta suma\n", "1 aktas\n", "1 Georeferencinių duomenų rinkinys\n", "1 Žemės informacinė sistema\n", "1 projektų vykdytojai\n", "1 kompensacinis PVM tarifas\n", "1 ligos kodas\n", "1 privalomas\n", "1 skiriamos išmokos bankrutuojančių ir bankrutavusių įmonių darbuotojams\n", "1 ŽIS\n", "1 privatizavimo\n", "1 planuojamų tikrinti administratorių sąrašas.\n", "1 teisės aktai\n", "1 Įgaliojimas\n", "1 įsakymas\n", "1 sąmata\n", "1 Oficialiosios tarptautinės atsargos (OA)\n", "1 Kaimo plėtros programos statistika\n", "1 perdavimas nuosavybėn\n", "1 bylos.\n", "1 kūno kultūra ir sportas\n", "1 apyrašai\n", "1 augalų veislės\n", "1 nekilnojamojo turto sąrašas\n", "1 asmens sveikatos priežiūros įstaiga\n", "1 arešto aktas\n", "1 dokumento rūšis\n", "1 išeivija\n", "1 užsienio bankų kontroliuojamų finansų įmonių sąrašai\n", "1 atliekami tyrimai\n", "1 apdraustieji asmenys (objektai)\n", "1 plotai\n", "1 portfelinės investicijos\n", "1 laisvos vietos\n", "1 erdvinai duomenų rinkiniai\n", "1 Biudžeto vykdymo ataskaitos\n", "1 gyvybės draudimo įmonių techniniai atidėjiniai\n", "1 lošimo įrenginių tipai\n", "1 administracinės paslaugos\n", "1 Laisvos darbo vietos\n", "1 FR0512\n", "1 finansiniai metai\n", "1 nepriklausomi šilumos gamintojai\n", "1 Viešosios ir (arba) administracinės paslaugos\n", "1 mokymo programos\n", "1 mirusiųjų skaičius\n", "1 žemės plotų žiniaraštis\n", "1 kokybės rodikliai\n", "1 valiutos pirkimas ir pardavimas\n", "1 data\n", "1 Garantinio fondo lėšos\n", "1 darbo pasiūlymai\n", "1 testų aprašai\n", "1 keleiviai\n", "1 kaimo plėtrai ir žuvininkystei\n", "1 konkursai\n", "1 potvarkiai\n", "1 Lietuvos centrinės kredito unijos pelno (nuostolio) ataskaita\n", "1 varžytinės\n", "1 ortofotgrafinis vaizdas\n", "1 bylos tipas\n", "1 Patikimas sąrašas\n", "1 pranešimo forma\n", "1 Patikimasis sąrašas\n", "1 geležinkeliai\n", "1 poveikio visuomenės sveikatai vertinimo ataskaita\n", "1 Lietuvos centrinė kredito unija\n", "1 Rezervinis (stabilizavimo) fondas\n", "1 Elektroninė demokratija\n", "1 ūkininkas\n", "1 brošiūrų\n", "1 Paslaugos\n", "1 Lietuvos Respublikos užsienio reikalų ministerija\n", "1 pakabinamieji varikliai\n", "1 išsilavinimas\n", "1 vidaus tarnybos pulkai\n", "1 restruktūrizavimo administratorius\n", "1 Bankrotas\n", "1 transporto piemonės\n", "1 egzekucija\n", "1 Parama bitininkystės sektoriui\n", "1 nepriklausomi gamintojai\n", "1 miškas ligos kenkėjai\n", "1 viešoji įstaiga\n", "1 rinkimų rezultatai\n", "1 Nacionalinis biudžetas\n", "1 Žūvančiųjų gelbėjimo kryžius\n", "1 asignavimai\n", "1 mokėjimo prašymų ir kt. dokumentų formos\n", "1 įvaikinti vaikai\n", "1 standartas\n", "1 Kupiškio rajono savivaldybės kontroliuojamų viešojo sektoriaus subjektų konsoliduotųjų finansinių ataskaitų rinkiniai\n", "1 gyvuliai\n", "1 individualių įgūdžių atnaujinimo kursai\n", "1 azartiniai lošimai\n", "1 Egzaminai\n", "1 globėjų ir įtėvių mokymo ir konsultavimo projektai\n", "1 Molėtų rajono\n", "1 Jūrų uostai\n", "1 darbuotojų skaičius\n", "1 Paveldo objektai\n", "1 KGB veikla\n", "1 veiklos priežiūra\n", "1 Administracinės ribos\n", "1 pavojingi meteorologiniai reiškiniai\n", "1 GIS duomenys\n", "1 VVP pardavimo ir priešlaikinio išpirkimo aukcionai.\n", "1 pasirašytos įmokos\n", "1 inicijavimas\n", "1 IMŪEPIS\n", "1 rinkimai\n", "1 laisvos valstybinės žemės plotai\n", "1 vertinimo rezultatai\n", "1 Seimas sesija posėdžiai\n", "1 Jūrų laivas\n", "1 pašarai\n", "1 Mel_DR10LT\n", "1 LEIP\n", "1 Mokėjimo įstaigos\n", "1 kaimo plėtros programos (KPP) statistika\n", "1 VĮ Turto bankui perduoti kreditoriniai reikalavimai\n", "1 oro monitoringas\n", "1 TSL\n", "1 Teritorijų planavimo dokumentų rengimas\n", "1 ginklų gamyba\n", "1 Darbingo amžiaus asmenys\n", "1 biudžeto\n", "1 infrastruktūra\n", "1 rekreacines zonos\n", "1 pieno išmoka\n", "1 žemės paėmimas\n", "1 numatomų išmokėjimų techninis atidėjinys\n", "1 kadastriniai matavimai\n", "1 Muitinės deklaracija\n", "1 Mėnesio\n", "1 detalusis planas\n", "1 sambo\n", "1 bankrutuojanti ar bankrutavusi įmonė\n", "1 ne gyvybės draudimo sutartys ir išmokos\n", "1 Universalios paslaugos siuntos paštas laiškas\n", "1 žemė\n", "1 saulės šviesa\n", "1 ligos\n", "1 žemės naudojimas\n", "1 augalų apsaugos produktų naudotojai\n", "1 planuojami pirkimai\n", "1 užsienio\n", "1 darbo santykiai\n", "1 valda\n", "1 atmosferos slėgis\n", "1 arkliai\n", "1 matavimo priemonė\n", "1 Ataskaitos\n", "1 lygiagretaus importo leidimo numeris\n", "1 bankrotas pripažintas tyčiniu\n", "1 ožka\n", "1 sertifikatai\n", "1 upė ežeras tvenkinys vanduo\n", "1 Laisvos vietos vaikų socialinės globos įstaigose\n", "1 kvalifikacijos tobulinimas\n", "1 SSRS karo tribunolas\n", "1 prekių ženklas\n", "1 pesticidai\n", "1 P2\n", "1 Šunys\n", "1 proceso dalyvis\n", "1 bankomatų ir kortelių skaitytuvų skaičius\n", "1 reforma\n", "1 matavimas\n", "1 mokėjimai negrynaisiais pinigais ir grynųjų pinigų operacijos\n", "1 aplinka oras tarša koncentracija\n", "1 pirmas pulkas\n", "1 vėjo jėgainė\n", "1 Jūra\n", "1 Tiesioginės išmokos\n", "1 kaimas\n", "1 palyginamieji duomenys\n", "1 kontaktai telefonas\n", "1 Lietuvos periodinės spaudos straipsniai\n", "1 Lietuvos georeferencinių erdvinių duomenų bazė\n", "1 grūdai\n", "1 specialus parengimas\n", "1 saugus kvalifikuotas elektroninis parašas sertifikavimo paslaugų teikėjai\n", "1 vėjo kryptis greitis\n", "1 mokesčių mokėtojo pavadinimas\n", "1 savavališka statyba\n", "1 SŽNS\n", "1 ORT2LT\n", "1 Medicinos praktikos licencija\n", "1 vaistininko praktikos licencijos\n", "1 konsoliduotosios finansinės ataskaitos\n", "1 dvaro sodyba\n", "1 klasifikatoriai\n", "1 Bendrasis planas\n", "1 Ūkininko ūkis\n", "1 ligos pavadinimas\n", "1 miškų žemėlapis\n", "1 bankrutuojančios ar bankrutavusios įmonės\n", "1 statyba\n", "1 registravimas\n", "1 Patikrinimai\n", "1 išregistruota\n", "1 lizingo sutartis\n", "1 kovotojai\n", "1 nepriklausomi tiekėjai\n", "1 Yad Vašemo\n", "1 techninis atidėjinys\n", "1 rodik\n", "1 pirminis\n", "1 statybos užbaigimo dokumentai\n", "1 procesas ne teismo tvarka\n", "1 jūrininkas\n", "1 pakaitinis valstybės tarnautojas\n", "1 suvaržymai.\n", "1 fizinių asmenų bankrotas\n", "1 šablonas\n", "1 atliekų apdorojimas\n", "1 draudimo įmokų grąžinimo techninis atidėjinys\n", "1 darbo vietų atitiktis DSS normų reikalavimams\n", "1 pelno (nuotolio) ataskaita\n", "1 nesąžiningos sąlygos\n", "1 Vyriausybės vertybiniai popieriai\n", "1 išdavimo data\n", "1 Degalai\n", "1 nacionalinis\n", "1 vandens tiekimas\n", "1 turizmo paslaugos\n", "1 globos kainos\n", "1 bankų sąrašai\n", "1 Šilutės rajono savivaldybės administracija\n", "1 drenažas\n", "1 vėjo gūsiai\n", "1 Seimas posėdžiai transliacijos spaudos konferencijos\n", "1 Privatizavimo fondas\n", "1 Leidėjai\n", "1 įstatymas\n", "1 ES investicijos\n", "1 KGB agentas\n", "1 perkeltų įmokų techninis atidėjinys\n", "1 Jūrlapiai\n", "1 auto ralį\n", "1 organai audiniai donorinė ligoninė transplantacija inkstai širdis kepenys ragenos plaučiai kasos-inksto širdies-plaučių\n", "1 mokėtojas\n", "1 Radiacija monitoringas RADIS aplinka\n", "1 reguliuojantys teisės aktai\n", "1 ligos diagnozės\n", "1 Įmonių restruktūrizavimas\n", "1 agreguoti ketvirtiniai duomenys\n", "1 tvarka\n", "1 skaidymas lapais\n", "1 nedarbas\n", "1 Ataskaita\n", "1 mirtinas NA\n", "1 bankroto administravimas\n", "1 apyskaitos\n", "1 gyvybės draudimo išmokos\n", "1 nušalinimo metodinės rekomendacijos\n", "1 draudimo tarpininkų sąrašai\n", "1 mokėjimo įstaigų (sąrašai)\n", "1 laikinasis įdarbinimas\n", "1 ožkos\n", "1 seimo rinkimai\n", "1 pokyčių tendencijos\n", "1 veterinariniai preparatai\n", "1 Bankroto ir restruktūrizavimo administratoriai\n", "1 minint religines ir tautines dienas\n", "1 ūkinis vertingumas\n", "1 viešasis aukcionas\n", "1 Medicinos priemonė\n", "1 restruktūrizuojamos\n", "1 Galvijai\n", "1 sėklinė bazė sąvadas miškas\n", "1 ortofoto žemėlapis\n", "1 laukiančiųjų eilėje skaičius vaikų socialinės globos įstaigose\n", "1 naujagimis\n", "1 valstybės institucijų atstovai\n", "1 sveikatos apsauga\n", "1 šaudmenų gamyba\n", "1 parama kaimo plėtrai\n", "1 žemių nusausinimas\n", "1 vertinimo išvados\n", "1 Leidimai archeologiniams tyrimams\n", "1 pavojingi gaminiai\n", "1 bankrutavusi\n", "1 matomumas.\n", "1 forma\n", "1 kūno kultūra ir sportas leidimai\n", "1 Visuomenės sveikatos priežiūros įstaigos licencija\n", "1 Aplinka oras tarša\n", "1 informacija kontaktams\n", "1 atnaujintų (mosednizuotų) daugiabučių namų ataskaitos\n", "1 GDB10LT\n", "1 prašymas dėl darbo santykių pasibaigimo\n", "1 Pelkės\n", "1 Vidaus vandens telkiniai\n", "1 vertės\n", "1 sunkus NA\n", "1 pirkimo-pardavimo su atpirkimo teise sutartis\n", "1 socialinės paslaugos\n", "1 TOP 500\n", "1 Metinės\n", "1 nuotekų varkymas\n", "1 Pasaulio tautų teisuolių vardai\n", "1 žemės sklypų planai\n", "1 Darbingumas\n", "1 veterinariniai diagnostikumai\n", "1 miškų ūkis\n", "1 jūrininko knygelės\n", "1 aptarnavimas\n", "1 dauginamoji medžiaga tiekėjų sąrašas\n", "1 Viešosios\n", "1 negyvagimis\n", "1 kadastro žemėlapis\n", "1 tipas\n", "1 Ortofotografinis vaizdas (Orthoimagery)\n", "1 tvarkytojai\n", "1 Oficialiai patvirtintų tiekėjų sąrašas\n", "1 Žydų gelbėtojai\n", "1 LKS-94\n", "1 paveldotvarka\n", "1 specialiosios praktikos\n", "1 paviršinių vandenų būklė\n", "1 Dokumentai\n", "1 bendrieji reikalavimai\n", "1 augalų apsaugos produktai\n", "1 ežerai\n", "1 gauti skundai\n", "1 BS užsieniui tvarkymas\n", "1 nacionalinis įvaikinimas\n", "1 pretendentų sąrašas\n", "1 rinkos operatorius\n", "1 vežimo leidimai\n", "1 Teritorijų valdymas/apribojimas/reguliavimo zonos\n", "1 turto vertė\n", "1 ORT10LT 2013\n", "1 PFI turtas ir įsipareigojimai\n", "1 viešasis maitinimas\n", "1 Socialinis dialogas (rekomendacijos)\n", "1 žemės įvertinimas\n", "1 Naujienos iš aplinkosaugos srities\n", "1 politinės partijos\n", "1 licencijavimas\n", "1 teisių apribojimas\n", "1 pranešimo turinys\n", "1 laikinai registruotas gavėjas\n", "1 formos\n", "1 standartizuotas mirtingumas\n", "1 Reljefas\n", "1 Mokėjimų balansas\n", "1 augalų ligos\n", "1 Įmonių bankroto valdymo departamentas prie ŪM\n", "1 Geodeziniai punktai\n", "1 šaudmenų perdirbimas\n", "1 transportas elektroniniai ryšiai eismo sauga logistika paštas\n", "1 Finansinių ataskaitų rinkiniai\n", "1 Policijos nuovados\n", "1 šunys\n", "1 VDI leidiniai\n", "1 tinklai\n", "1 Personalas\n", "1 grynasis išorės turtas\n", "1 technologinės apsaugos priemonės\n", "1 darbo teisės konsultacijos\n", "1 komisiniai\n", "1 švietimo įstaigos\n", "1 Sprendimai\n", "1 A kategorijos ginklai\n", "1 mokėjimo korteles\n", "1 prekyba alkoholiniais gėrimais\n", "1 upė būklė monitoringas vanduo hidrocheminiai hidrobiologiniai\n", "1 kiti techniniai atidėjiniai\n", "1 sveikatos\n", "1 kapai\n", "1 Švenčionių rajono savivaldybės kontroliuojamų viešojo sektoriaus subjektų ir konsoliduotų finansinių ataskaitų rinkiniai\n", "1 žalos padengimo techninis atidėjinys\n", "1 Analizės\n", "1 Atitiktis\n", "1 parama žuvininkystei\n", "1 aplinka\n", "1 EBM_100LT\n", "1 trumpalaikė skola pagal likutinį terminą\n", "1 geodezininkas\n", "1 juridiniai\n", "1 dokumento pavadinimas\n", "1 Apžvalgos\n", "1 finansinių ataskaitų rinkiniai\n", "1 upės\n", "1 P3\n", "1 Civiliniai orlaiviai\n", "1 Išradimas.\n", "1 Muitinės tarpininkas\n", "1 Lietuvos makroekonominių rodiklių projekcijos\n", "1 santuoka\n", "1 oficialiosios tarptautinės atsargos\n", "1 Garantinio fondo paraiškos\n", "1 Farmacinės veiklos licencijos\n", "1 apskričių DSS komisijos\n", "1 gyvenamoji vietovė\n", "1 Valstybės ir savivaldybių įstaigų darbuotojų tarnybinės komandiruotės\n", "1 visuomenės sveikatos priežiūros įstaiga\n", "1 finansiniai\n", "1 techninės ekspertizės įmonė.\n", "1 Sutartys\n", "1 augalų kenkėjai\n", "1 duomenų byla\n", "1 tvarkaraštis\n", "1 LSSRS KGB vadovai\n", "1 įvykdymas\n", "1 atleidimo iš darbo pažyma\n", "1 arklio vertinimo duomenys\n", "1 gyvybės draudimo įmokos ir išmokos\n", "1 KGB kadriniai darbuotojai\n", "1 radioaktyviosios atliekos\n", "1 žirgų Sartuose lenktynes\n", "1 sutarties keitimas\n", "1 sektorius\n", "1 valstybės vaikų globos namai\n", "1 gyventojų apšvita\n", "1 ne gyvybės draudimo įmokos ir išmokos\n", "1 dauginamoji medžiaga\n", "1 SŽNS_DR10LT\n", "1 schema\n", "1 gyvulių užkrečiamų ligų kontrolė\n", "1 bylos baigtis\n", "1 atliktas darbas\n", "1 visuomenės sveikatos priežiūra\n", "1 vykdomos studijų programos\n", "1 įvertinimas\n", "1 Alytaus miesto savivaldybės specialieji planai\n", "1 kovinis sambo\n", "1 tarptautinė paraiška\n", "1 grynoji skola\n", "1 posėdžio data\n", "1 projekcijų perspektyvos\n", "1 kadastras\n", "1 pareigūnai\n", "1 pareigybės\n", "1 Veikliųjų medžiagų importuotojai\n", "1 10000\n", "1 Skaitmeninis reljefo modelis\n", "1 žalinimas\n", "1 hidroenergija\n", "1 gynyba\n", "1 Lietuvos Respublikos vaistinių preparatų registras\n", "1 vertinimo pobūdis\n", "1 GDR250LT-SR\n", "1 Ignalinos\n", "1 gamtos paveldo objektai\n", "1 Gyvenamoji vieta\n", "1 Valstybės ir savivaldybių institucijos ir įstaigos\n", "1 gamintojai\n", "1 Sertifikavimo paslaugų teikėjai\n", "1 perdavimo tinklas\n", "1 sveikatinimo paslauga\n", "1 kelionės\n", "1 mokestiniai metai\n", "1 aukštis\n", "1 sudarytos sutartys\n", "1 pajamų surinkimas\n", "1 tpdr\n", "1 radiacinė sauga\n", "1 statinio nugriovimas\n", "1 Žemės mokestis\n", "1 kontrolės grupės\n", "1 Ekspertų veikla\n", "1 studijų kryptys\n", "1 Hipoteka\n", "1 Navigacija\n", "1 skundų nagrinėjimas\n", "1 demografinė būklė\n", "1 parama būstui gauti ar išsinuomoti\n", "1 persiuntimas\n", "1 Viešųjų pirkimų įstatymo 91 straipsnis\n", "1 Švietimo ir mokslo informacinės sistemos\n", "1 bendrinis klausimynas\n", "1 Elektrinės\n", "1 Turimas turtas užsienyje\n", "1 Kasos aparatai\n", "1 miestai\n", "1 gyvybės draudimo įmokos\n", "1 apvaliosios medienos elektroninė pardavimų sistema\n", "1 oras\n", "1 teisė vykdyti veiklą\n", "1 valstybės\n", "1 likutis (pozicija) laikotarpio pabaigoje\n", "1 vėjas\n", "1 laukiančiųjų eilėje skaičius socialinės globos įstaigose\n", "1 ADOC\n", "1 Kaimo plėtra\n", "1 MP registras\n", "1 Muitinė\n", "1 pirkimas-pardavimas su atpirkimo teise\n", "1 namų ūkiai\n", "1 Seimas\n", "1 1944-1947 m.\n", "1 socialinio\n", "1 skundai\n", "1 Valstybinis Vilniaus žydų muziejus.\n", "1 išsilavinimas.\n", "1 panakinta licencija\n", "1 triukšmas žemėlapis geležinkelis traukiniai\n", "1 gyvulių bandų sveikatingumo statusas\n", "1 Mokesčių mokėtojai\n", "1 radioaktyviosios medžiagos\n", "1 Jūros regionai\n", "1 vrk atviri duomenys\n", "1 kontroliuojamieji gyvuliai\n", "1 prancūzų kalbos kursai\n", "1 kompensacija\n", "1 transporto išlaidų kompensacija\n", "1 Europos žandarmerijos pajėgos\n", "1 išankstiniai\n", "1 negalumas\n", "1 reguliavimas\n", "1 elektroninė asmenų bei organizacijų informacijos paieškos sistema\n", "1 tiesioginių išmokų statistika\n", "1 PARAMA\n", "1 Tabakas\n", "1 Fasuoto prekės\n", "1 prekių ženklai\n", "1 GDR50LT-SR\n", "1 D kategorijos ginklai\n", "1 Laukiančiu kirsti Lietuvos Respublikos valstybės sieną transporto priemonių skaičius pasienio kontrolės punktuose\n", "1 apribojimas\n", "1 statybą leidžiantis dokumentas\n", "1 komunikacijos\n", "1 tyčinis bankrotas\n", "1 inžineriniai tinklai\n", "1 mažos\n", "1 melioracijos planai\n", "1 specialieji poreikiai\n", "1 valstybinė žemė\n", "1 ataskaitinis laikotarpis\n", "1 pirkimas-pardavimas\n", "1 brėžinys\n", "1 Ūkininkai kompensacininkai\n", "1 registrų steigimas\n", "1 Finansinis\n", "1 sukarinta tarnyba.\n", "1 Buvę NKVD-MVD-MGB pastatai\n", "1 testatorius\n", "1 atlikti veiksmai\n", "1 archyvai\n", "1 keleivių vežimas\n", "1 atnaujinimo data\n", "1 avys\n", "1 suvestiniai duomenys\n", "1 žemės ūkio ir maisto produktai\n", "1 hospitolizuotųjų skaičius\n", "1 Teršalai mėnesio koncentracija oras kokybė\n", "1 Natura 2000\n", "1 sveikatos statistika\n", "1 paveldėjimas\n", "1 objektas\n", "1 serija ir Nr.\n", "1 skolinimasis. mokėtinos sumos\n", "1 derinimo eiga\n", "1 hospitalinė infekcija\n", "1 savaeigė\n", "1 išradimas\n", "1 Antstolis\n", "1 transporto tinklai\n", "1 Veterinarinių vaistų registras\n", "1 Jūrų regionai\n", "1 Laikinasis leidimas\n", "1 regioniniai parkai\n", "1 Bankrutuojančios ir bankrutavusios įmonės\n", "1 licencijos pavojingi slėginiai įrenginiai priežiūra\n", "1 nacionaliniai parkai\n", "1 Informacija apie pateiktas paraiškas ir jų būklę\n", "1 emisijos atsiskaitymas apyvartiniai taršos leidimai Kioto vienetai ATL TMV PTMV Bendro įgyvendinimo projektai\n", "1 rizikos veiksniai\n", "1 Švietimo ir mosklo klasifikatoriai\n", "1 užimtumas\n", "1 šilumos suvartojimas\n", "1 prevenciniai patikrinimai\n", "1 tiekimas\n", "1 straipsniai\n", "1 laikinojo įdarbinimo įmonės\n", "1 nekilnojamieji\n", "1 Pieninis galvijas\n", "1 kokybės tyrimai\n", "1 URM\n", "1 Vidaus vandenų laivų registras\n", "1 laukiančių kirsti Lietuvos Respublikos valstybės sieną\n", "1 OA pokyčio veiksniai\n", "1 apsaugos zonos\n", "1 dviračių-pėsčiųjų takai\n", "1 materialinė atsakomybė\n", "1 vertinimas\n", "1 Vaizdinė informacija apie transporto priemonių\n", "1 gelbėjimo darbai\n", "1 naftos dujos\n", "1 fiziniai\n", "1 metodinė informacija\n", "1 Draudimo tarpininkai\n", "1 Aplinka apsauga žemėlapis oras tarša vanduo monitoringas\n", "1 aiškinimai\n", "1 sužeisti\n", "1 Viešosios paslaugos\n", "1 ekstremali situacija\n", "1 tarptautinis įvaikinimas\n", "1 valstybės siena\n", "1 Išradimai\n", "1 geodeziniai punktai\n", "1 ūkinė komercinė veikla\n", "1 Priežiūra (pagalba)\n", "1 namų valdos\n", "1 Geležinkeliai\n", "1 žemėlapis\n", "1 akcinė bendrovė\n", "1 palikėjas\n", "1 informacija\n", "1 žvejybos plotai\n", "1 Pažedimų prevencija\n", "1 karštas vanduo\n", "1 pinigų plovimo prevencija\n", "1 Asmens sveikatos priežiūros įstaigos licencija\n", "1 Laisva\n", "1 bokštai\n", "1 ūkiniai gyvūnai\n", "1 sumokėti mokesčiai\n", "1 ES parama\n", "1 apsaugos zonų ribos\n", "1 elektrinės\n", "1 vartojimo išlaidos\n", "1 Interneto svetainė\n", "1 vykdymo būklė\n", "1 atliekos\n", "1 registravimo data\n", "1 drenavimo sistema\n", "1 tiesioginės investicijos\n", "1 viešai skelbiami įspėjimai\n", "1 Perdraudimo tarpininkai\n", "1 metinės\n", "1 oro temperatūra\n", "1 KGB pavaduotojai\n", "1 parama už pieną\n", "1 Mokesčių mokėtojo identifikacinis numeris (juridinio asmens kodas)\n", "1 įgaliotinis\n", "1 valdymo apribojimas\n", "1 nusikalstamos veikos\n", "1 skundas\n", "1 terminas\n", "1 Atmintinos vietos\n", "1 aptarnauti EKA\n", "1 vertė\n", "1 Išradimas\n", "1 antras pulkas\n", "1 kultūros vertybių apsaugos finansavimas\n", "1 reikalavimai\n", "1 jūrininkų registras\n", "1 C kategorijos ginklai\n", "1 radiacinis fonas\n", "1 aukcionai\n", "1 rinkos\n", "1 bankroto ir restruktūrizavimo administratoriai\n", "1 jėgainė\n", "1 tiekėjai\n", "1 TOP 50\n", "1 Auditas\n", "1 arklio pasas\n", "1 Lietuvos žemėlapis\n", "1 ligos diagnozė\n", "1 būklė\n", "1 visuomeninis tiekimas\n", "1 ES lėšos\n", "1 apsauginė juosta\n", "1 parduodamas iš varžytynių turtas\n", "1 keliai.\n", "1 Dokumento blanko pavadinimas\n", "1 mirtingumas\n", "1 DGK posėdžių paieška\n", "1 sąrašai\n", "1 specialiosios sąlygos\n", "1 VILIBOR palūkanų normos\n", "1 temperatūra\n", "1 Klimatas\n", "1 jaunojo specialisto mokymo programa\n", "1 studijų krypčių apžvalgos\n", "1 grūdų kokybės tyrimai\n", "1 pažymėjimo Nr.\n", "1 trumpalaikė reklama\n", "1 mokėjimų balanso einamoji\n", "1 Varžytynės\n", "1 įgaliotojas\n", "1 Metinių pirkimų planas\n", "1 valstybės tarnautojų pareigos\n", "1 biudžeto vykdymo ataskaitos\n", "1 veikla Lietuvoje neįsisteigus\n", "1 infostatyba\n", "1 administratoriai\n", "1 registruotas gavėjas\n", "1 Horizontalės\n", "1 dvaras\n", "1 pakartotiniai\n", "1 energijos efektyvumas\n", "1 atstovų sąrašas\n", "1 įsipareigojimai\n", "1 Sprogmenys\n", "1 tikrinimas\n", "1 disponavimo apribojimas\n", "1 techninių\n", "1 hidrelektrinė\n", "1 Stebėsena\n", "1 priekaba\n", "1 konsoliduotos ataskaitos\n", "1 apskaitos politika\n", "1 varžytynių vykdytojas\n", "1 dantys\n", "1 detalieji planai\n", "1 biografija\n", "1 donorai recipientai inkstai parinkimas transplantacija operacija parinkimas LSMUL VULSK\n", "1 elektroniniai pinigai.\n", "1 Incidentas internetas virusas kenkejiškas kodas trojanas spam ddos ataka botnet duomenų saugumas\n", "1 potvynių rizika\n", "1 veterinariniai vaistai\n", "1 Europos patentas\n", "1 PVM. Grąžinimas.\n", "1 Analitinės\n", "1 socialinių įmonių sąrašas\n", "1 lizingo gavėjas\n", "1 Klientų aptarnavimo vietos\n", "1 sugyventinių sutartis\n", "1 taikymo vadovai\n", "1 oro kokybė\n", "1 mokėtinos sumos\n", "1 apsikeitimo ir atpirkimo sandoriai\n", "1 neįgaliųjų socialinės įmonės\n", "1 žemės fondas\n", "1 rašytinis pritarimas\n", "1 Viešai skelbiama informacija apie išmokėtą paramą\n", "1 prekyba mediena\n", "1 biocidiniai produktai\n", "1 bankrutuojančios ir bankrutavusios įmonės\n", "1 reklamos įrengimas\n", "1 Plėtros planas\n", "1 AŽ_DRLT\n", "1 reikalavimai gaminiai\n", "1 areštas\n", "1 bendrosios pajamos\n", "1 Matavimo vienetas\n", "1 pasėliai\n", "1 biomasė\n", "1 Neveiksnus\n", "1 prašymai dėl neteisėtai išvežto ar laikomo vaiko\n", "1 ekstradicija\n", "1 pavyzdys\n", "1 šilumos tiekimo įmonės\n", "1 įkeitimai\n", "1 kombainas\n", "1 piktžolės\n", "1 viešas aukcionas\n", "1 ORT10LT 2012\n", "1 žemės konsolidacija\n", "1 statiniai\n", "1 neformalus mokymas ir savišvieta\n", "1 augalų apsaugos produktų platintojai\n", "1 žemės naudojimo sąlygos\n", "1 kvietimai teikti paraiškas\n", "1 Įmonių skelbimas apie negalėjimą arba neketinimą vykdyti įsipareigojimus\n", "1 Specialus apmokestinimo momentas\n", "1 Vaikų socialinės globos įstaigos\n", "1 Veikla\n", "1 radiotechninės dalies projektas\n", "1 privatizavimas\n", "1 Trusted list\n", "1 planavimo ataskaita\n", "1 užterštumo sklaidos žemėlapiai\n", "1 atliekų surinkimas\n", "1 rastrinis topografinis žemėlapis\n", "1 Techninė būklė\n", "1 Viešasis sektorius\n", "1 Makroekonomika\n", "1 Eismo įvykiai\n", "1 asmens būklė\n", "1 nebaigtas statyti jūrų laivas\n", "1 institucijos\n", "1 rankraščiai\n", "1 ES fondai\n", "1 Valstybinis registras\n", "1 arklio sertifikatas\n", "1 klaidos ir praleidimai\n", "1 nepilnametis\n", "1 NMA administruojamų paramos priemonių žemės ūkiui\n", "1 Trusted Services List\n", "1 ne teismo tvarka\n", "1 Periodinės įmokos\n", "1 įstatymai\n", "1 sandėlis\n", "1 Farmacijos įmonių ir farmacijos specialistų (vaistininkų) licencijos\n", "1 laivai uostas atvykimas išvykimas švartavimas krantinės\n", "1 temos\n", "1 Gamintojai\n", "1 kvalifikacijos pažymėjimai\n", "1 Vyriausybė kanceliarija naujienos\n", "1 ataskaitų formos\n", "1 ginklų perdirbimas\n", "1 apylinkės teismas\n", "1 kokybės įvertinimas\n", "1 prevenciniai tikrinimai\n", "1 Natura 2000 PAST\n", "1 VL numeris\n", "1 turizmo centrai\n", "1 sertifikatas\n", "1 Prekyba\n", "1 perdraudimo tarpininkų sąrašai\n", "1 žuvo\n", "1 blankas\n", "1 projektas\n", "1 šilumos kainų pokyčiai\n", "1 rezervatai\n", "1 regioninė plėtra\n", "1 patikrinimai\n", "1 Muitinės sandėlis\n", "1 viešo paskelbimo data\n", "1 nelaimingas atsitikimas darbe\n", "1 lageriai\n", "1 kiekiai\n", "1 vidaus kreditas.\n", "1 objektų teritorijų ribos\n", "1 Lietuvos banko valdyba\n", "1 Teritorinių statistinių vienetų klasifikatorius (NUTS)\n", "1 statinio projektas\n", "1 akreditavimas\n", "1 kitos investicijos\n", "1 Gyvenvietės\n", "1 turizmo paslaugų teikėjai\n", "1 arklys\n", "1 Transplantacija recipientai pacientai eilė inkstai širdis kepenys ragenos plaučiai kasos-inksto širdies-plaučių\n", "1 Valstybės vaiko teisių apsaugos ir įvaikinimo tarnybos prie Socialinės apsaugos ir darbo ministerijos\n", "1 sutikimai\n", "1 Atestuota\n", "1 lituanika\n", "1 Laisvos vietos socialinės globos įstaigose\n", "1 asmenys\n", "1 Sandėliai\n", "1 eilės pasienio kontrolės punktuose ir palaukimo aikštelėse\n", "1 tpdris\n", "1 dinamika\n", "1 teisės suteikimas\n", "1 traktorius\n", "1 ERM_250LT\n", "1 augalų dauginamoji medžiaga\n", "1 projekcijos\n", "1 Valiutų kursai\n", "1 kovotojas\n", "1 sprogmenys\n", "1 filialai\n", "1 srautas per laikotarpį (mėn.\n", "1 EuroBoundaryMap\n", "1 Elektrininiai dokumentai\n", "1 Georeferencinių duomenų bazė\n", "1 sprogmenų gamyba\n", "1 adresai\n", "1 gaisrai\n", "1 sprogdinimas\n", "1 sytartis\n", "1 dešimtaidienio\n", "1 statybų pradžia\n", "1 įmokos\n", "1 Maisto sauga\n", "1 suaugusiųjų švietimas\n", "1 Įmonių bankrotas\n", "1 sveikatos priežiūros specialistas\n", "1 nutarimas\n", "1 EuroRegionalMap\n", "1 benzinas\n", "1 šilumos kainos\n", "1 išlygos taikymo sąlygos\n", "1 informacija apie pareiškėjus ir paramos gavėjus\n", "1 saulės\n", "1 Oro uostai\n", "1 KGB dokumentai\n", "1 biosferos rezervatai\n", "1 pirkimo-pardavimo išsimokėtinai sutartis\n", "1 patentai\n", "1 neįgalumas\n", "1 energijos vartojimo auditas\n", "1 Interesantai\n", "1 GF lėšų panaudojimas\n", "1 Matavimo priemonių registras\n", "1 ginklų taisymas\n", "1 metinė pelno mokesčio deklaracija\n", "1 Garantinio fondo taryba\n", "1 Ūkio subjektai\n", "1 elektroniniai valdžios vartai\n", "1 IVP programa\n", "1 ligoninė\n", "1 detalūs ketvirtiniai duomenys\n", "1 Lietuvos kaimo plėtros 2007-2013 m. programa\n", "1 Mirties bausmė\n", "1 Tema\n", "1 jūrų laivų registras\n", "1 klimato indeksas\n", "1 žirgai\n", "1 lizingo davėjas\n", "1 Ligoninės\n", "1 likutis (sukauptosios investicijos) laikotarpio (ketvirčio) pabaigoje\n", "1 rezervinio\n", "1 Buhalterinė apskaita\n", "1 lizingas\n", "1 BS pagal valiutas\n", "1 vandens šaltiniai\n", "1 Sanglaudos politika\n", "1 patento paraiška.\n", "1 švenčiant Valstybines šventes\n", "1 adresas\n", "1 reklamos registras\n", "1 Audito\n", "1 tarptautinės atsargos ir užsienio valiutų likvidumas\n", "1 meteorologinis rekordas\n", "1 nesaugus\n", "1 ikiteisminis tyrimas\n", "1 avis\n", "1 VED\n", "1 aplinkos oras\n", "1 palikimą priėmęs asmuo\n", "1 Veikliųjų medžiagų platintojai.\n", "1 Atestatai\n", "1 skirta\n", "1 supaprastinti\n", "1 Strateginis veiklos planas\n", "1 ne gyvybės draudimo techniniai atidėjiniai\n", "1 procesiniai dokumentai\n", "1 stebėsenos planai\n", "1 sandėliai\n", "1 bendrosios dotacijos kompensacija\n", "1 paramos administravimas\n", "1 politikos\n", "1 Valiuta\n", "1 gimdymas\n", "1 naudojimo aprobojimas\n", "1 GIMK\n", "1 kalendoriniai metai\n", "1 Administracinių ribų duomenų bazė\n", "1 Vyriausybė naujienos veikla\n", "1 gidai\n", "1 radaras\n", "1 pirkimas-pardavimas išsimokėtinai\n", "1 juridinis pagrindas\n", "1 sutarties nutraukimas\n", "1 bankroto ir restruktūrizavimo administratorių pažymėjimai\n", "1 Ministras Pirmininkas darbotvarkė\n", "1 veiklos programa\n", "1 viešieji pirkimai\n", "1 Saugomos teritorijos\n", "1 draudimo\n", "1 2014-2020\n", "1 gamtiniai veiksniai\n", "1 sanitarinė būklė apžvalga\n", "1 melioracijos projektai\n", "1 ekspedicija\n", "1 pranešimas apie sprendimą byloje\n", "1 Tuskulėnų aukos\n", "1 vidaus vandenų transporto priemonės\n", "1 maisto saugos kontrolė\n", "1 Sąvartynai\n", "1 darbuotojų atstovai\n", "1 vykdymas ataskaitos\n", "1 Spaudo numeris\n", "1 įsipareigojimai užsieniui\n", "1 augalų apsauga\n", "1 NA būklė\n", "1 Veikliųjų medžiagų gamintojai\n", "1 vanduo monitoringas ežeras hidrocheminiai hidrobiologiniai\n", "1 Garantinio fondo tarybos posėdžiai\n", "1 pelno (nuostolio) ataskaita\n", "1 Aplinka atliekos išleidžiama\n", "1 GDR10LT\n" ] } ], "source": [ "for k, v in data['Reikšminiai žodžiai'].str.split(';').apply(pd.Series).stack().str.split(',').apply(pd.Series).stack().str.strip().value_counts().items():\n", " print(v, k)" ] }, { "cell_type": "code", "execution_count": 32, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "'aa'" ] }, "execution_count": 32, "metadata": {}, "output_type": "execute_result" } ], "source": [ "'aaa'[:2]" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.2" } }, "nbformat": 4, "nbformat_minor": 1 }
gpl-3.0
ragavvenkatesan/Convolutional-Neural-Networks
pantry/tutorials/notebooks/Generative Adversarial networks.ipynb
1
55542
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Generative Adversarial Networks(GAN)\n", "GAN is one of the areas in the Neural Networks with a very fast pace of reasearch. Every week there is new GAN. To explain the concept of GAN, let's use a small anecdote to stage this concept. In old movies to sketch a criminal there will be an artist and a witness. Witness tells artist some details and witness validates his art and says if it is correct or not. If the imageis not similar to the criminal, artist will redraw it again with further changes. This process will be repeated until artist produces an image which is accepted by the witness. In other words witness unable to differentiate the artists imaginary art from the crimial. At this point they stop.\n", "\n", "GAN works similar to this idea. We have a generator network that generates random images and a Descriminator network that clssifies whether that image is fake or real. If the image is fake the descriminator discards the image and if image is real, it accepts it. This process continues until generator generates all real images. The generator is a decoder network from the autoencoder we discussed in the tutorial before. We take a random codeword and we pass it to the generator network to generate image. We take that generated image and feed it to descriminator to tell if it is a real or fake image. To achieve that we always keep our descriminator a step ahead.\n", "\n", "The following code shows the implementation of GAN using YANN:\n", "For GAN in YANN we need to use the yann.special.gan package which has similar functionalities like a network." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "WARNING (theano.sandbox.cuda): The cuda backend is deprecated and will be removed in the next release (v0.10). Please switch to the gpuarray backend. You can get more information about how to switch at this URL:\n", " https://github.com/Theano/Theano/wiki/Converting-to-the-new-gpu-back-end%28gpuarray%29\n", "\n", "Using gpu device 0: GeForce GTX 750 Ti (CNMeM is enabled with initial size: 80.0% of memory, cuDNN 5110)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " creating a new dataset to run through\n", ". Setting up dataset \n", ".. setting up skdata\n", "... Importing mnist from skdata\n", ".. setting up dataset\n", ".. training data\n", ".. validation data \n", ".. testing data \n", ". Dataset 60713 is created.\n", ". Time taken is 0.890919 seconds\n", ". Initializing the network\n", ".. Setting up the datastream\n", ".. Setting up the visualizer\n", ".. Adding random layer z\n", ".. Adding input layer x\n", ".. Adding dot_product layer G(z)\n", ".. Adding dot_product layer D(x)\n", ".. Adding flatten layer 4\n", ".. Adding dot_product layer D(G(z))\n", ".. Adding dot_product layer real\n", ".. Adding dot_product layer fake\n", ".. Adding classifier layer softmax\n", ".. Adding tensor layer discriminator_task\n", ".. Adding objective layer discriminator_obj\n", ".. Adding tensor layer objective_task\n", ".. Adding objective layer generator_obj\n", ".. Adding objective layer classifier_obj\n", ".. Saving the network down as an image\n", ".. This method will be deprecated with the implementation of a visualizer,also this works only for tree-like networks. This will cause errors in printing DAG-style networks.\n", " |-\n", " |-\n", " |-\n", " |- id: objective_task\n", " |-=================------------------\n", " |- type: tensor\n", " |- output shape: (1,)\n", " |------------------------------------\n", " |-\n", " |-\n", " |-\n", " |- id: generator_obj\n", " |-=================------------------\n", " |- type: objective\n", " |- output shape: (1,)\n", " |------------------------------------\n", " |-\n", " |-\n", " |-\n", " |- id: x\n", " |-=================------------------\n", " |- type: input\n", " |- output shape: (500, 1, 28, 28)\n", " |------------------------------------\n", " |-\n", " |-\n", " |-\n", " |- id: 4\n", " |-=================------------------\n", " |- type: flatten\n", " |- output shape: (500, 784)\n", " |------------------------------------\n", " |-\n", " |-\n", " |-\n", " |- id: D(x)\n", " |-=================------------------\n", " |- type: dot_product\n", " |- output shape: (500, 800)\n", " |- batch norm is OFF\n", " |------------------------------------\n", " |-\n", " |-\n", " |-\n", " |- id: real\n", " |-=================------------------\n", " |- type: dot_product\n", " |- output shape: (500, 1)\n", " |- batch norm is OFF\n", " |------------------------------------\n", " |-\n", " |-\n", " |-\n", " |- id: softmax\n", " |-=================------------------\n", " |- type: classifier\n", " |- output shape: (500, 10)\n", " |------------------------------------\n", " |-\n", " |-\n", " |-\n", " |- id: classifier_obj\n", " |-=================------------------\n", " |- type: objective\n", " |- output shape: (1,)\n", " |------------------------------------\n", " |-\n", " |-\n", " |-\n", " |- id: z\n", " |-=================------------------\n", " |- type: random\n", " |- output shape: (100, 32)\n", " |------------------------------------\n", " |-\n", " |-\n", " |-\n", " |- id: G(z)\n", " |-=================------------------\n", " |- type: dot_product\n", " |- output shape: (100, 784)\n", " |- batch norm is OFF\n", " |------------------------------------\n", " | |-\n", " | |-\n", " | |-\n", " | |- id: D(G(z))\n", " | |-=================------------------\n", " | |- type: dot_product\n", " | |- output shape: (100, 800)\n", " | |- batch norm is OFF\n", " | |------------------------------------\n", " | |-\n", " | |-\n", " | |-\n", " | |- id: fake\n", " | |-=================------------------\n", " | |- type: dot_product\n", " | |- output shape: (100, 1)\n", " | |- batch norm is OFF\n", " | |------------------------------------\n", " |-\n", " |-\n", " |-\n", " |- id: G(z)\n", " |-=================------------------\n", " |- type: dot_product\n", " |- output shape: (100, 784)\n", " |- batch norm is OFF\n", " |------------------------------------\n", " |-\n", " |-\n", " |-\n", " |- id: D(G(z))\n", " |-=================------------------\n", " |- type: dot_product\n", " |- output shape: (100, 800)\n", " |- batch norm is OFF\n", " |------------------------------------\n", " |-\n", " |-\n", " |-\n", " |- id: fake\n", " |-=================------------------\n", " |- type: dot_product\n", " |- output shape: (100, 1)\n", " |- batch norm is OFF\n", " |------------------------------------\n", " |-\n", " |-\n", " |-\n", " |- id: discriminator_task\n", " |-=================------------------\n", " |- type: tensor\n", " |- output shape: (1,)\n", " |------------------------------------\n", " |-\n", " |-\n", " |-\n", " |- id: discriminator_obj\n", " |-=================------------------\n", " |- type: objective\n", " |- output shape: (1,)\n", " |------------------------------------\n", ".. Cooking the network\n", ".. Setting up the resultor\n", ".. Setting up the optimizer\n", ".. Setting up the optimizer\n", ".. Setting up the optimizer\n", ". Training\n", ".\n", "\n", "\n", ".. Pre-Training Epoch: 0\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "| training 100% Time: 0:00:00 \n", "| validation 0% ETA: --:--:-- \r" ] }, { "name": "stdout", "output_type": "stream", "text": [ ".. Discriminator Softmax Cost : 19.0017\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "| validation 100% Time: 0:00:00 \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ ".. Validation accuracy : 88.69\n", ".. Training accuracy : 87.728\n", ".. Best training accuracy\n", ".. Best validation accuracy\n", ".\n", "\n", "\n", ".. Pre-Training Epoch: 1\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "| training 100% Time: 0:00:00 \n", "| validation 0% ETA: --:--:-- \r" ] }, { "name": "stdout", "output_type": "stream", "text": [ ".. Discriminator Softmax Cost : 0.634408\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "| validation 100% Time: 0:00:00 \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ ".. Validation accuracy : 89.11\n", ".. Training accuracy : 87.636\n", ".. Best validation accuracy\n", ".\n", "\n", "\n", ".. Pre-Training Epoch: 2\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "| training 100% Time: 0:00:00 \n", "| validation 0% ETA: --:--:-- \r" ] }, { "name": "stdout", "output_type": "stream", "text": [ ".. Discriminator Softmax Cost : 0.690765\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "| validation 100% Time: 0:00:00 \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ ".. Validation accuracy : 90.52\n", ".. Training accuracy : 89.722\n", ".. Best training accuracy\n", ".. Best validation accuracy\n", ".. Pre- Training complete.Took 0.181362733333 minutes\n", ".\n", "\n", "\n", ".. Epoch: 0 Era: 0\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "| training 100% Time: 0:00:00 \n", "| validation 6% ETA: 0:00:01 \r" ] }, { "name": "stdout", "output_type": "stream", "text": [ ".. Discriminator Sigmoid D(x) : 0.622721\n", ".. Generator Sigmoid D(G(z)) : 0.422515\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "| validation 100% Time: 0:00:00 \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ ".. Validation accuracy : 82.69\n", ".. Training accuracy : 80.798\n", ".\n", "\n", "\n", ".. Epoch: 1 Era: 0\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "| training 100% Time: 0:00:00 \n", "| validation 0% ETA: --:--:-- \r" ] }, { "name": "stdout", "output_type": "stream", "text": [ ".. Discriminator Sigmoid D(x) : 0.584707\n", ".. Generator Sigmoid D(G(z)) : 0.312661\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "| validation 100% Time: 0:00:00 \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ ".. Validation accuracy : 76.8\n", ".. Training accuracy : 75.728\n", ".\n", "\n", "\n", ".. Epoch: 2 Era: 0\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "| training 100% Time: 0:00:00 \n", "| validation 6% ETA: 0:00:01 \r" ] }, { "name": "stdout", "output_type": "stream", "text": [ ".. Discriminator Sigmoid D(x) : 0.823963\n", ".. Generator Sigmoid D(G(z)) : 0.57011\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "| validation 100% Time: 0:00:00 \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ ".. Validation accuracy : 76.38\n", ".. Training accuracy : 74.724\n", ".\n", "\n", "\n", ".. Epoch: 3 Era: 0\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "| training 100% Time: 0:00:00 \n", "| validation 0% ETA: --:--:-- \r" ] }, { "name": "stdout", "output_type": "stream", "text": [ ".. Discriminator Sigmoid D(x) : 0.572462\n", ".. Generator Sigmoid D(G(z)) : 0.40043\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "| validation 100% Time: 0:00:00 \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ ".. Validation accuracy : 77.75\n", ".. Training accuracy : 76.034\n", ".\n", "\n", "\n", ".. Epoch: 4 Era: 0\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "| training 100% Time: 0:00:00 \n", "| validation 6% ETA: 0:00:01 \r" ] }, { "name": "stdout", "output_type": "stream", "text": [ ".. Discriminator Sigmoid D(x) : 0.859632\n", ".. Generator Sigmoid D(G(z)) : 0.686642\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "| validation 100% Time: 0:00:00 \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ ".. Validation accuracy : 80.35\n", ".. Training accuracy : 78.6\n", ".\n", "\n", "\n", ".. Epoch: 5 Era: 0\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "| training 100% Time: 0:00:00 \n", "| validation 0% ETA: --:--:-- \r" ] }, { "name": "stdout", "output_type": "stream", "text": [ ".. Discriminator Sigmoid D(x) : 0.527774\n", ".. Generator Sigmoid D(G(z)) : 0.37337\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "| validation 100% Time: 0:00:00 \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ ".. Validation accuracy : 83.96\n", ".. Training accuracy : 82.402\n", ".\n", "\n", "\n", ".. Epoch: 6 Era: 0\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "| training 100% Time: 0:00:00 \n", "| validation 6% ETA: 0:00:01 \r" ] }, { "name": "stdout", "output_type": "stream", "text": [ ".. Discriminator Sigmoid D(x) : 0.611699\n", ".. Generator Sigmoid D(G(z)) : 0.455202\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "| validation 100% Time: 0:00:00 \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ ".. Validation accuracy : 85.0\n", ".. Training accuracy : 83.0\n", ".\n", "\n", "\n", ".. Epoch: 7 Era: 0\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "| training 100% ETA: 0:00:00 \r" ] }, { "name": "stdout", "output_type": "stream", "text": [ ".. Discriminator Sigmoid D(x) : 0.743451\n", ".. Generator Sigmoid D(G(z)) : 0.64773\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "| training 100% Time: 0:00:00 \n", "| validation 100% Time: 0:00:00 \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ ".. Validation accuracy : 78.24\n", ".. Training accuracy : 76.71\n", ".\n", "\n", "\n", ".. Epoch: 8 Era: 0\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "| training 100% Time: 0:00:00 \n", "| validation 0% ETA: --:--:-- \r" ] }, { "name": "stdout", "output_type": "stream", "text": [ ".. Discriminator Sigmoid D(x) : 0.575549\n", ".. Generator Sigmoid D(G(z)) : 0.406572\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "| validation 100% Time: 0:00:00 \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ ".. Validation accuracy : 82.22\n", ".. Training accuracy : 81.058\n", ".\n", "\n", "\n", ".. Epoch: 9 Era: 0\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "| training 100% Time: 0:00:00 \n", "| validation 33% ETA: 0:00:00 \r" ] }, { "name": "stdout", "output_type": "stream", "text": [ ".. Discriminator Sigmoid D(x) : 0.342317\n", ".. Generator Sigmoid D(G(z)) : 0.287621\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/ validation 35% ETA: 0:00:00 \r", "- validation 36% ETA: 0:00:00 \r", "\\ validation 38% ETA: 0:00:00 \r", "| validation 40% ETA: 0:00:00 \r", "/ validation 41% ETA: 0:00:00 \r", "- validation 43% ETA: 0:00:00 \r", "\\ validation 45% ETA: 0:00:00 \r", "| validation 46% ETA: 0:00:00 \r", "/ validation 48% ETA: 0:00:00 \r", "- validation 50% ETA: 0:00:00 \r", "\\ validation 51% ETA: 0:00:00 \r", "| validation 53% ETA: 0:00:00 \r", "/ validation 55% ETA: 0:00:00 \r", "- validation 56% ETA: 0:00:00 \r", "\\ validation 58% ETA: 0:00:00 \r", "| validation 60% ETA: 0:00:00 \r", "/ validation 61% ETA: 0:00:00 \r", "- validation 63% ETA: 0:00:00 \r", "\\ validation 65% ETA: 0:00:00 \r", "| validation 66% ETA: 0:00:00 \r", "/ validation 68% ETA: 0:00:00 \r", "- validation 70% ETA: 0:00:00 \r", "\\ validation 71% ETA: 0:00:00 \r", "| validation 73% ETA: 0:00:00 \r", "/ validation 75% ETA: 0:00:00 \r", "- validation 76% ETA: 0:00:00 \r", "\\ validation 78% ETA: 0:00:00 \r", "| validation 80% ETA: 0:00:00 \r", "/ validation 81% ETA: 0:00:00 \r", "- validation 83% ETA: 0:00:00 \r", "\\ validation 85% ETA: 0:00:00 \r", "| validation 86% ETA: 0:00:00 \r", "/ validation 88% ETA: 0:00:00 \r", "- validation 90% ETA: 0:00:00 \r", "\\ validation 91% ETA: 0:00:00 \r", "| validation 93% ETA: 0:00:00 \r", "/ validation 95% ETA: 0:00:00 \r", "- validation 96% ETA: 0:00:00 \r", "\\ validation 98% ETA: 0:00:00 \r", "| validation 100% ETA: 0:00:00 \r", "| validation 100% Time: 0:00:00 \r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ ".. Validation accuracy : 76.24\n", ".. Training accuracy : 74.368\n", ".\n", "\n", "\n", ".. Epoch: 10 Era: 0\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "| training 100% Time: 0:00:00 \n", "| validation 0% ETA: --:--:-- \r" ] }, { "name": "stdout", "output_type": "stream", "text": [ ".. Discriminator Sigmoid D(x) : 0.533018\n", ".. Generator Sigmoid D(G(z)) : 0.373018\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "| validation 100% Time: 0:00:00 \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ ".. Validation accuracy : 86.94\n", ".. Training accuracy : 85.57\n", ".\n", "\n", "\n", ".. Epoch: 11 Era: 0\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "| training 100% Time: 0:00:00 \n", "| validation 0% ETA: --:--:-- \r" ] }, { "name": "stdout", "output_type": "stream", "text": [ ".. Discriminator Sigmoid D(x) : 0.627197\n", ".. Generator Sigmoid D(G(z)) : 0.529224\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "| validation 100% Time: 0:00:00 \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ ".. Validation accuracy : 89.11\n", ".. Training accuracy : 87.852\n", ".\n", "\n", "\n", ".. Epoch: 12 Era: 0\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "| training 100% Time: 0:00:00 \n", "| validation 0% ETA: --:--:-- \r" ] }, { "name": "stdout", "output_type": "stream", "text": [ ".. Discriminator Sigmoid D(x) : 0.509487\n", ".. Generator Sigmoid D(G(z)) : 0.388974\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "| validation 100% Time: 0:00:00 \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ ".. Validation accuracy : 90.37\n", ".. Training accuracy : 89.298\n", ".\n", "\n", "\n", ".. Epoch: 13 Era: 0\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "| training 100% Time: 0:00:00 \n", "/ validation 35% ETA: 0:00:00 \r" ] }, { "name": "stdout", "output_type": "stream", "text": [ ".. Discriminator Sigmoid D(x) : 0.546393\n", ".. Generator Sigmoid D(G(z)) : 0.453736\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "- validation 36% ETA: 0:00:00 \r", "\\ validation 38% ETA: 0:00:00 \r", "| validation 40% ETA: 0:00:00 \r", "/ validation 41% ETA: 0:00:00 \r", "- validation 43% ETA: 0:00:00 \r", "\\ validation 45% ETA: 0:00:00 \r", "| validation 46% ETA: 0:00:00 \r", "/ validation 48% ETA: 0:00:00 \r", "- validation 50% ETA: 0:00:00 \r", "\\ validation 51% ETA: 0:00:00 \r", "| validation 53% ETA: 0:00:00 \r", "/ validation 55% ETA: 0:00:00 \r", "- validation 56% ETA: 0:00:00 \r", "\\ validation 58% ETA: 0:00:00 \r", "| validation 60% ETA: 0:00:00 \r", "/ validation 61% ETA: 0:00:00 \r", "- validation 63% ETA: 0:00:00 \r", "\\ validation 65% ETA: 0:00:00 \r", "| validation 66% ETA: 0:00:00 \r", "/ validation 68% ETA: 0:00:00 \r", "- validation 70% ETA: 0:00:00 \r", "\\ validation 71% ETA: 0:00:00 \r", "| validation 73% ETA: 0:00:00 \r", "/ validation 75% ETA: 0:00:00 \r", "- validation 76% ETA: 0:00:00 \r", "\\ validation 78% ETA: 0:00:00 \r", "| validation 80% ETA: 0:00:00 \r", "/ validation 81% ETA: 0:00:00 \r", "- validation 83% ETA: 0:00:00 \r", "\\ validation 85% ETA: 0:00:00 \r", "| validation 86% ETA: 0:00:00 \r", "/ validation 88% ETA: 0:00:00 \r", "- validation 90% ETA: 0:00:00 \r", "\\ validation 91% ETA: 0:00:00 \r", "| validation 93% ETA: 0:00:00 \r", "/ validation 95% ETA: 0:00:00 \r", "- validation 96% ETA: 0:00:00 \r", "\\ validation 98% ETA: 0:00:00 \r", "| validation 100% ETA: 0:00:00 \r", "| validation 100% Time: 0:00:00 \r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ ".. Validation accuracy : 87.47\n", ".. Training accuracy : 86.172\n", ".\n", "\n", "\n", ".. Epoch: 14 Era: 0\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "| training 100% Time: 0:00:00 \n", "| validation 6% ETA: 0:00:01 \r" ] }, { "name": "stdout", "output_type": "stream", "text": [ ".. Discriminator Sigmoid D(x) : 0.455782\n", ".. Generator Sigmoid D(G(z)) : 0.345936\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "| validation 100% Time: 0:00:00 \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ ".. Validation accuracy : 87.7\n", ".. Training accuracy : 86.466\n", ".\n", "\n", "\n", ".. Epoch: 15 Era: 0\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "| training 100% Time: 0:00:00 \n", "| validation 0% ETA: --:--:-- \r" ] }, { "name": "stdout", "output_type": "stream", "text": [ ".. Discriminator Sigmoid D(x) : 0.479013\n", ".. Generator Sigmoid D(G(z)) : 0.40071\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "| validation 100% Time: 0:00:00 \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ ".. Validation accuracy : 87.43\n", ".. Training accuracy : 86.022\n", ".\n", "\n", "\n", ".. Epoch: 16 Era: 0\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "| training 100% Time: 0:00:00 \n", "| validation 0% ETA: --:--:-- \r" ] }, { "name": "stdout", "output_type": "stream", "text": [ ".. Discriminator Sigmoid D(x) : 0.529526\n", ".. Generator Sigmoid D(G(z)) : 0.427006\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "| validation 100% Time: 0:00:00 \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ ".. Validation accuracy : 87.65\n", ".. Training accuracy : 86.724\n", ".\n", "\n", "\n", ".. Epoch: 17 Era: 0\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "| training 100% Time: 0:00:00 \n", "/ validation 35% ETA: 0:00:00 \r" ] }, { "name": "stdout", "output_type": "stream", "text": [ ".. Discriminator Sigmoid D(x) : 0.507176\n", ".. Generator Sigmoid D(G(z)) : 0.410834\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "- validation 36% ETA: 0:00:00 \r", "\\ validation 38% ETA: 0:00:00 \r", "| validation 40% ETA: 0:00:00 \r", "/ validation 41% ETA: 0:00:00 \r", "- validation 43% ETA: 0:00:00 \r", "\\ validation 45% ETA: 0:00:00 \r", "| validation 46% ETA: 0:00:00 \r", "/ validation 48% ETA: 0:00:00 \r", "- validation 50% ETA: 0:00:00 \r", "\\ validation 51% ETA: 0:00:00 \r", "| validation 53% ETA: 0:00:00 \r", "/ validation 55% ETA: 0:00:00 \r", "- validation 56% ETA: 0:00:00 \r", "\\ validation 58% ETA: 0:00:00 \r", "| validation 60% ETA: 0:00:00 \r", "/ validation 61% ETA: 0:00:00 \r", "- validation 63% ETA: 0:00:00 \r", "\\ validation 65% ETA: 0:00:00 \r", "| validation 66% ETA: 0:00:00 \r", "/ validation 68% ETA: 0:00:00 \r", "- validation 70% ETA: 0:00:00 \r", "\\ validation 71% ETA: 0:00:00 \r", "| validation 73% ETA: 0:00:00 \r", "/ validation 75% ETA: 0:00:00 \r", "- validation 76% ETA: 0:00:00 \r", "\\ validation 78% ETA: 0:00:00 \r", "| validation 80% ETA: 0:00:00 \r", "/ validation 81% ETA: 0:00:00 \r", "- validation 83% ETA: 0:00:00 \r", "\\ validation 85% ETA: 0:00:00 \r", "| validation 86% ETA: 0:00:00 \r", "/ validation 88% ETA: 0:00:00 \r", "- validation 90% ETA: 0:00:00 \r", "\\ validation 91% ETA: 0:00:00 \r", "| validation 93% ETA: 0:00:00 \r", "/ validation 95% ETA: 0:00:00 \r", "- validation 96% ETA: 0:00:00 \r", "\\ validation 98% ETA: 0:00:00 \r", "| validation 100% ETA: 0:00:00 \r", "| validation 100% Time: 0:00:00 \r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ ".. Validation accuracy : 88.23\n", ".. Training accuracy : 87.546\n", ".\n", "\n", "\n", ".. Epoch: 18 Era: 0\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "| training 100% Time: 0:00:00 \n", "| validation 0% ETA: --:--:-- \r" ] }, { "name": "stdout", "output_type": "stream", "text": [ ".. Discriminator Sigmoid D(x) : 0.647033\n", ".. Generator Sigmoid D(G(z)) : 0.546981\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "| validation 100% Time: 0:00:00 \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ ".. Validation accuracy : 90.56\n", ".. Training accuracy : 89.936\n", ".. Best training accuracy\n", ".. Best validation accuracy\n", ".\n", "\n", "\n", ".. Epoch: 19 Era: 0\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "| training 100% Time: 0:00:00 \n", "/ validation 35% ETA: 0:00:00 \r" ] }, { "name": "stdout", "output_type": "stream", "text": [ ".. Discriminator Sigmoid D(x) : 0.523178\n", ".. Generator Sigmoid D(G(z)) : 0.436908\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "- validation 36% ETA: 0:00:00 \r", "\\ validation 38% ETA: 0:00:00 \r", "| validation 40% ETA: 0:00:00 \r", "/ validation 41% ETA: 0:00:00 \r", "- validation 43% ETA: 0:00:00 \r", "\\ validation 45% ETA: 0:00:00 \r", "| validation 46% ETA: 0:00:00 \r", "/ validation 48% ETA: 0:00:00 \r", "- validation 50% ETA: 0:00:00 \r", "\\ validation 51% ETA: 0:00:00 \r", "| validation 53% ETA: 0:00:00 \r", "/ validation 55% ETA: 0:00:00 \r", "- validation 56% ETA: 0:00:00 \r", "\\ validation 58% ETA: 0:00:00 \r", "| validation 60% ETA: 0:00:00 \r", "/ validation 61% ETA: 0:00:00 \r", "- validation 63% ETA: 0:00:00 \r", "\\ validation 65% ETA: 0:00:00 \r", "| validation 66% ETA: 0:00:00 \r", "/ validation 68% ETA: 0:00:00 \r", "- validation 70% ETA: 0:00:00 \r", "\\ validation 71% ETA: 0:00:00 \r", "| validation 73% ETA: 0:00:00 \r", "/ validation 75% ETA: 0:00:00 \r", "- validation 76% ETA: 0:00:00 \r", "\\ validation 78% ETA: 0:00:00 \r", "| validation 80% ETA: 0:00:00 \r", "/ validation 81% ETA: 0:00:00 \r", "- validation 83% ETA: 0:00:00 \r", "\\ validation 85% ETA: 0:00:00 \r", "| validation 86% ETA: 0:00:00 \r", "/ validation 88% ETA: 0:00:00 \r", "- validation 90% ETA: 0:00:00 \r", "\\ validation 91% ETA: 0:00:00 \r", "| validation 93% ETA: 0:00:00 \r", "/ validation 95% ETA: 0:00:00 \r", "- validation 96% ETA: 0:00:00 \r", "\\ validation 98% ETA: 0:00:00 \r", "| validation 100% ETA: 0:00:00 \r", "| validation 100% Time: 0:00:00 \r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ ".. Validation accuracy : 89.79\n", ".. Training accuracy : 88.632\n", ".. Training complete.Took 1.48964608333 minutes\n" ] } ], "source": [ "from yann.special.gan import gan \n", "from theano import tensor as T \n", "\n", "def shallow_gan_mnist ( dataset= None, verbose = 1 ):\n", " \"\"\"\n", " This function is a demo example of a generative adversarial network. \n", " This is an example code. You should study this code rather than merely run it. \n", "\n", " Args: \n", " dataset: Supply a dataset. \n", " verbose: Similar to the rest of the dataset.\n", "\n", " Notes:\n", " This method is setup for MNIST.\n", " \"\"\"\n", " optimizer_params = { \n", " \"momentum_type\" : 'polyak', \n", " \"momentum_params\" : (0.65, 0.9, 50), \n", " \"regularization\" : (0.000, 0.000), \n", " \"optimizer_type\" : 'rmsprop', \n", " \"id\" : \"main\"\n", " }\n", "\n", "\n", " dataset_params = {\n", " \"dataset\" : dataset,\n", " \"type\" : 'xy',\n", " \"id\" : 'data'\n", " }\n", "\n", " visualizer_params = {\n", " \"root\" : '.',\n", " \"frequency\" : 1,\n", " \"sample_size\": 225,\n", " \"rgb_filters\": False,\n", " \"debug_functions\" : False,\n", " \"debug_layers\": True, \n", " \"id\" : 'main'\n", " } \n", " \n", " # intitialize the network\n", " net = gan ( borrow = True,\n", " verbose = verbose ) \n", " \n", " net.add_module ( type = 'datastream', \n", " params = dataset_params,\n", " verbose = verbose ) \n", " \n", " net.add_module ( type = 'visualizer',\n", " params = visualizer_params,\n", " verbose = verbose \n", " ) \n", "\n", " #z - latent space created by random layer\n", " net.add_layer(type = 'random',\n", " id = 'z',\n", " num_neurons = (100,32), \n", " distribution = 'normal',\n", " mu = 0,\n", " sigma = 1,\n", " verbose = verbose)\n", " \n", " #x - inputs come from dataset 1 X 784\n", " net.add_layer ( type = \"input\",\n", " id = \"x\",\n", " verbose = verbose, \n", " datastream_origin = 'data', # if you didnt add a dataset module, now is \n", " # the time. \n", " mean_subtract = False )\n", "\n", " net.add_layer ( type = \"dot_product\",\n", " origin = \"z\",\n", " id = \"G(z)\",\n", " num_neurons = 784,\n", " activation = 'tanh',\n", " verbose = verbose\n", " ) # This layer is the one that creates the images.\n", " \n", " #D(x) - Contains params theta_d creates features 1 X 800. \n", " net.add_layer ( type = \"dot_product\",\n", " id = \"D(x)\",\n", " origin = \"x\",\n", " num_neurons = 800,\n", " activation = 'relu',\n", " regularize = True, \n", " verbose = verbose\n", " )\n", "\n", " net.add_layer ( type = \"dot_product\",\n", " id = \"D(G(z))\",\n", " origin = \"G(z)\",\n", " input_params = net.dropout_layers[\"D(x)\"].params, \n", " num_neurons = 800,\n", " activation = 'relu',\n", " regularize = True,\n", " verbose = verbose\n", " )\n", "\n", "\n", " #C(D(x)) - This is the opposite of C(D(G(z))), real\n", " net.add_layer ( type = \"dot_product\",\n", " id = \"real\",\n", " origin = \"D(x)\",\n", " num_neurons = 1,\n", " activation = 'sigmoid',\n", " verbose = verbose\n", " )\n", "\n", " #C(D(G(z))) fake - the classifier for fake/real that always predicts fake \n", " net.add_layer ( type = \"dot_product\",\n", " id = \"fake\",\n", " origin = \"D(G(z))\",\n", " num_neurons = 1,\n", " activation = 'sigmoid',\n", " input_params = net.dropout_layers[\"real\"].params, # Again share their parameters \n", " verbose = verbose\n", " )\n", "\n", " \n", " #C(D(x)) - This is the opposite of C(D(G(z))), real\n", " net.add_layer ( type = \"classifier\",\n", " id = \"softmax\",\n", " origin = \"D(x)\",\n", " num_classes = 10,\n", " activation = 'softmax',\n", " verbose = verbose\n", " )\n", " \n", " # objective layers \n", " # discriminator objective \n", " net.add_layer (type = \"tensor\",\n", " input = - 0.5 * T.mean(T.log(net.layers['real'].output)) - \\\n", " 0.5 * T.mean(T.log(1-net.layers['fake'].output)),\n", " input_shape = (1,),\n", " id = \"discriminator_task\"\n", " )\n", "\n", " net.add_layer ( type = \"objective\",\n", " id = \"discriminator_obj\",\n", " origin = \"discriminator_task\",\n", " layer_type = 'value',\n", " objective = net.dropout_layers['discriminator_task'].output,\n", " datastream_origin = 'data', \n", " verbose = verbose\n", " )\n", " #generator objective \n", " net.add_layer (type = \"tensor\",\n", " input = - 0.5 * T.mean(T.log(net.layers['fake'].output)),\n", " input_shape = (1,),\n", " id = \"objective_task\"\n", " )\n", " net.add_layer ( type = \"objective\",\n", " id = \"generator_obj\",\n", " layer_type = 'value',\n", " origin = \"objective_task\",\n", " objective = net.dropout_layers['objective_task'].output,\n", " datastream_origin = 'data', \n", " verbose = verbose\n", " ) \n", "\n", " #softmax objective. \n", " net.add_layer ( type = \"objective\",\n", " id = \"classifier_obj\",\n", " origin = \"softmax\",\n", " objective = \"nll\",\n", " layer_type = 'discriminator',\n", " datastream_origin = 'data', \n", " verbose = verbose\n", " )\n", " \n", " from yann.utils.graph import draw_network\n", " draw_network(net.graph, filename = 'gan.png') \n", " net.pretty_print()\n", " \n", " net.cook ( objective_layers = [\"classifier_obj\", \"discriminator_obj\", \"generator_obj\"],\n", " optimizer_params = optimizer_params,\n", " discriminator_layers = [\"D(x)\"],\n", " generator_layers = [\"G(z)\"], \n", " classifier_layers = [\"D(x)\", \"softmax\"], \n", " softmax_layer = \"softmax\",\n", " game_layers = (\"fake\", \"real\"),\n", " verbose = verbose )\n", " \n", " learning_rates = (0.05, 0.01 ) \n", "\n", " net.train( epochs = (20), \n", " k = 2, \n", " pre_train_discriminator = 3,\n", " validate_after_epochs = 1,\n", " visualize_after_epochs = 1,\n", " training_accuracy = True,\n", " show_progress = True,\n", " early_terminate = True,\n", " verbose = verbose)\n", " \n", " return net\n", "\n", "if __name__ == '__main__':\n", " \n", " from yann.special.datasets import cook_mnist_normalized_zero_mean as c \n", " # from yann.special.datasets import cook_cifar10_normalized_zero_mean as c\n", " print \" creating a new dataset to run through\"\n", " data = c (verbose = 2)\n", " dataset = data.dataset_location() \n", "\n", " net = shallow_gan_mnist ( dataset, verbose = 2 )" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.13" } }, "nbformat": 4, "nbformat_minor": 2 }
mit
jmhsi/justin_tinker
data_science/courses/temp/tutorials/meanshift.ipynb
1
25548
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Clustering with pytorch" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Clustering techniques are unsupervised learning algorithms that try to group unlabelled data into \"clusters\", using the (typically spatial) structure of the data itself.\n", "\n", "The easiest way to demonstrate how clustering works is to simply generate some data and show them in action. We'll start off by importing the libraries we'll be using today." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "%matplotlib inline\n", "import math, numpy as np, matplotlib.pyplot as plt, operator, torch" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Create data" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "n_clusters=6\n", "n_samples =250" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "To generate our data, we're going to pick 6 random points, which we'll call centroids, and for each point we're going to generate 250 random points about it." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "centroids = np.random.uniform(-35, 35, (n_clusters, 2))\n", "slices = [np.random.multivariate_normal(centroids[i], np.diag([5., 5.]), n_samples)\n", " for i in range(n_clusters)]\n", "data = np.concatenate(slices).astype(np.float32)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Below we can see each centroid marked w/ X, and the coloring associated to each respective cluster." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "def plot_data(centroids, data, n_samples):\n", " colour = plt.cm.rainbow(np.linspace(0,1,len(centroids)))\n", " for i, centroid in enumerate(centroids):\n", " samples = data[i*n_samples:(i+1)*n_samples]\n", " plt.scatter(samples[:,0], samples[:,1], c=colour[i], s=1)\n", " plt.plot(centroid[0], centroid[1], markersize=10, marker=\"x\", color='k', mew=5)\n", " plt.plot(centroid[0], centroid[1], markersize=5, marker=\"x\", color='m', mew=2)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "plot_data(centroids, data, n_samples)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Mean shift" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Most people that have come across clustering algorithms have learnt about **k-means**. Mean shift clustering is a newer and less well-known approach, but it has some important advantages:\n", "* It doesn't require selecting the number of clusters in advance, but instead just requires a **bandwidth** to be specified, which can be easily chosen automatically\n", "* It can handle clusters of any shape, whereas k-means (without using special extensions) requires that clusters be roughly ball shaped.\n", "\n", "The algorithm is as follows:\n", "* For each data point x in the sample X, find the distance between that point x and every other point in X\n", "* Create weights for each point in X by using the **Gaussian kernel** of that point's distance to x\n", " * This weighting approach penalizes points further away from x\n", " * The rate at which the weights fall to zero is determined by the **bandwidth**, which is the standard deviation of the Gaussian\n", "![Gaussian](http://images.books24x7.com/bookimages/id_5642/fig11-10.jpg)\n", "* Update x as the weighted average of all other points in X, weighted based on the previous step\n", "\n", "This will iteratively push points that are close together even closer until they are next to each other." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "So here's the definition of the gaussian kernel, which you may remember from high school..." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from numpy import exp, sqrt, array" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "def gaussian(d, bw): return exp(-0.5*((d/bw))**2) / (bw * math.sqrt(2*math.pi))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ " This person at the science march certainly remembered!\n", "\n", "<img src=\"images/normal.jpg\" width=400>\n", "\n", "Since all of our distances are positive, we'll only be using the right-hand side of the gaussian. Here's what that looks like for a couple of different choices of bandwidth (bw)." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "x=np.linspace(0,5)\n", "fig, ax = plt.subplots()\n", "ax.plot(x, gaussian(x, 1), label='bw=1');\n", "ax.plot(x, gaussian(x, 2.5), label='bw=2.5')\n", "ax.legend();" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In our implementation, we choose the bandwidth to be 2.5. (One easy way to choose bandwidth is to find which bandwidth covers one third of the data, which you can try implementing as an exercise.)\n", "\n", "We'll also need to be able to calculate the distance between points - here's the function we'll use:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "def distance(x, X): return sqrt(((x-X)**2).sum(1))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's try it out. (More on how this function works shortly)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "d = distance(array([2,3]), array([[1,2],[2,3],[-1,1]])); d" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can feed the distances into our gaussian function to see what weights we would get in this case." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "gaussian(d, 2.5)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can put these steps together to define a single iteration of the algorithm." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "def meanshift_iter(X):\n", " # Loop through every point\n", " for i, x in enumerate(X):\n", " # Find distance from point x to every other point in X\n", " dist = distance(x, X)\n", " # Use gaussian to turn into array of weights\n", " weight = gaussian(dist, 2.5)\n", " # Weighted sum (see next section for details)\n", " X[i] = (weight[:,None]*X).sum(0) / weight.sum()\n", " return X" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "X=meanshift_iter(data)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The results show that, as we hoped, all the points have moved closer to their \"true\" cluster centers (even although the algorithm doesn't know where the centers actually are)." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "plot_data(centroids, X, n_samples)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "By repeating this a few times, we can make the clusters more accurate." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "def meanshift(data):\n", " X = np.copy(data)\n", " # Loop through a few epochs\n", " # A full implementation would automatically stop when clusters are stable\n", " for it in range(5): X = meanshift_iter(X)\n", " return X" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "%time X=meanshift(data)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can see that mean shift clustering has almost reproduced our original clustering. The one exception are the very close clusters, but if we really wanted to differentiate them we could lower the bandwidth.\n", "\n", "What is impressive is that this algorithm nearly reproduced the original clusters without telling it how many clusters there should be. (In the chart below we are offsetting the centroids a bit to the right, otherwise we couldn't be able to see the points since they're now on top of each other)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "plot_data(centroids+2, X, n_samples)" ] }, { "cell_type": "markdown", "metadata": { "heading_collapsed": true }, "source": [ "## Broadcasting" ] }, { "cell_type": "markdown", "metadata": { "hidden": true }, "source": [ "How did our distance function `sqrt(((x-X)**2).sum(1))` work over a matrix without us writing any loops? The trick is that we used *broadcasting*. The term broadcasting was first used by Numpy, although is now used in other libraries such as [Tensorflow](https://www.tensorflow.org/performance/xla/broadcasting) and Matlab; the rules can vary by library.\n", "\n", "From the [Numpy Documentation](https://docs.scipy.org/doc/numpy-1.10.0/user/basics.broadcasting.html):\n", "\n", " The term broadcasting describes how numpy treats arrays with \n", " different shapes during arithmetic operations. Subject to certain \n", " constraints, the smaller array is “broadcast” across the larger \n", " array so that they have compatible shapes.Broadcasting provides a \n", " means of vectorizing array operations so that looping occurs in C\n", " instead of Python. It does this without making needless copies of \n", " data and usually leads to efficient algorithm implementations.\n", " \n", "In addition to the efficiency of broadcasting, it allows developers to write less code, which typically leads to fewer errors.\n", "\n", "Operators (+,-,\\*,/,>,<,==) are usually element-wise. Here's some examples of element-wise operations:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hidden": true }, "outputs": [], "source": [ "a = np.array([10, 6, -4])\n", "b = np.array([2, 8, 7])\n", "\n", "a + b, a < b" ] }, { "cell_type": "markdown", "metadata": { "hidden": true }, "source": [ "Now this next example clearly can't be element-wise, since the second parameter is a scalar, not a 1d array." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hidden": true }, "outputs": [], "source": [ "a > 0" ] }, { "cell_type": "markdown", "metadata": { "hidden": true }, "source": [ "So how did this work? The trick was that numpy automatically *broadcast* the scalar `0` so that had the same `shape` as a. We can manually see how numpy broadcasts by using `broadcast_to()`." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hidden": true }, "outputs": [], "source": [ "a.shape" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hidden": true }, "outputs": [], "source": [ "np.broadcast_to(0, a.shape)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hidden": true }, "outputs": [], "source": [ "np.broadcast_to(0, a.shape).shape" ] }, { "cell_type": "markdown", "metadata": { "hidden": true }, "source": [ "Here's another example." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hidden": true }, "outputs": [], "source": [ "a + 1" ] }, { "cell_type": "markdown", "metadata": { "hidden": true }, "source": [ "It works with higher-dimensional arrays too, for instance 2d (matrices):" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hidden": true }, "outputs": [], "source": [ "m = np.array([[1, 2, 3], [4,5,6], [7,8,9]]); m" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hidden": true }, "outputs": [], "source": [ "m * 2" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hidden": true }, "outputs": [], "source": [ "m.shape" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hidden": true }, "outputs": [], "source": [ "np.broadcast_to(2, m.shape)" ] }, { "cell_type": "markdown", "metadata": { "hidden": true }, "source": [ "We can use the same trick to broadcast a vector to a matrix:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hidden": true }, "outputs": [], "source": [ "c = np.array([10,20,30]); c" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hidden": true }, "outputs": [], "source": [ "m + c" ] }, { "cell_type": "markdown", "metadata": { "hidden": true }, "source": [ "Let's see what numpy has done with `c` in this case:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hidden": true }, "outputs": [], "source": [ "np.broadcast_to(c, m.shape)" ] }, { "cell_type": "markdown", "metadata": { "hidden": true }, "source": [ "Interesting - we see that it has duplicated `c` across rows. What if `c` was a column vector, i.e. a 3x1 array?" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hidden": true }, "outputs": [], "source": [ "# Indexing an axis with None adds a unit axis in that location\n", "cc = c[:,None]; cc" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hidden": true }, "outputs": [], "source": [ "m + cc" ] }, { "cell_type": "markdown", "metadata": { "hidden": true }, "source": [ "Let's see what numpy has done with `c` in this case:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hidden": true }, "outputs": [], "source": [ "np.broadcast_to(cc, m.shape)" ] }, { "cell_type": "markdown", "metadata": { "hidden": true }, "source": [ "Note that numpy isn't actually replicating the memory of the axes being broadcast - it's simply looping over the same locations multiple times. This is very efficient both for compute and memory.\n", "\n", "The behaviour of numpy's broadcasting seems quite intuitive, but you'll want to remember the explicit broadcasting rules to use this technique effectively:\n", "\n", "When operating on two arrays, Numpy/PyTorch compares their shapes element-wise. It starts with the **trailing dimensions**, and works its way forward. Two dimensions are **compatible** when\n", "\n", "- They are equal, or\n", "- One of them is 1.\n", "\n", "When axes have the same dimension, no broadcasting is required. Any axes of dimension 1 are replicated to match the other array.\n", "\n", "Arrays do not need to have the same number of dimensions. For example, if you have a 256 x 256 x 3 array of RGB values, and you want to scale each color in the image by a different value, you can multiply the image by a one-dimensional array with 3 values. Lining up the sizes of the trailing axes of these arrays according to the broadcast rules, shows that they are compatible:\n", "\n", " Image (3d array): 256 x 256 x 3\n", " Scale (1d array): 3\n", " Result (3d array): 256 x 256 x 3\n", " \n", "Numpy will insert additional unit axes as required to make the array few fewer dimensions math. So in this case the Scale array would be first reshaped automatically to 1x1x3, and then broadcast to 256 x 256 x 3. The [numpy documentation](https://docs.scipy.org/doc/numpy-1.13.0/user/basics.broadcasting.html#general-broadcasting-rules) includes several examples of what dimensions can and can not be broadcast together." ] }, { "cell_type": "markdown", "metadata": { "hidden": true }, "source": [ "We can now see how our `distance()` function works:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hidden": true }, "outputs": [], "source": [ "a=array([2,3])\n", "b=array([[1,2],[2,3],[-1,1]])\n", "c=(a-b)**2; c" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hidden": true }, "outputs": [], "source": [ "b" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hidden": true }, "outputs": [], "source": [ "w=gaussian(sqrt(c.sum(1)), 2.5); w" ] }, { "cell_type": "markdown", "metadata": { "hidden": true }, "source": [ "...and we can also now pull apart our weighted average:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hidden": true }, "outputs": [], "source": [ "w.shape, b.shape" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hidden": true }, "outputs": [], "source": [ "w[:,None]" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hidden": true }, "outputs": [], "source": [ "w[:,None]*b" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hidden": true }, "outputs": [], "source": [ "(w[:,None]*b).sum(0) / w.sum()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## GPU-accelerated mean shift in pytorch" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's now look at using [PyTorch](http://pytorch.org/), a Python framework for dynamic neural networks with GPU acceleration, which was released by Facebook's AI team.\n", "\n", "PyTorch has two overlapping, yet distinct, purposes. As described in the [PyTorch documentation](http://pytorch.org/tutorials/beginner/blitz/tensor_tutorial.html):\n", "\n", "<img src=\"images/what_is_pytorch.png\" alt=\"pytorch\" style=\"width: 80%\"/>\n", "\n", "The neural network functionality of PyTorch is built on top of the Numpy-like functionality for fast matrix computations on a GPU. Although the neural network purpose receives much more attention, both are very useful. Today we'll use PyTorch to accelerate our meanshift algorithm by running it on the GPU.\n", "\n", "If you want to learn more PyTorch, you can try this [introductory tutorial](http://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html) or this [tutorial to learn by examples](http://pytorch.org/tutorials/beginner/pytorch_with_examples.html).\n", "\n", "One advantage of pytorch is that it's very similar to numpy. For instance, in fact, our definitions of `gaussian` and `distance` and `meanshift_iter` are identical. So we'll simply import PyTorch's alternate implementations of the two numpy functions we use:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from torch import exp, sqrt" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "And then we'll use the exact same code as before, but first convert our numpy array to a GPU PyTorch tensor." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "def meanshift(data):\n", " X = torch.from_numpy(np.copy(data)).cuda()\n", " for it in range(5): X = meanshift_iter(X)\n", " return X" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's try it out..." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "%time X = meanshift(data).cpu().numpy()\n", "plot_data(centroids+2, X, n_samples)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "It works, but this implementation actually takes longer. Oh dear! What do you think is causing this?\n", "\n", "Each iteration launches a new cuda kernel, which takes time and slows the algorithm down as a whole. Furthermore, each iteration doesn't have enough processing to do to fill up all of the threads of the GPU. To use the GPU effectively, we need to process a *batch* of data at a time." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## GPU batched algorithm" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "To process a batch of data, we need batched versions of our functions. Here's a version of `distance()` that works on batches:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "def distance_b(a,b): return sqrt(((a[None,:] - b[:,None]) ** 2).sum(2))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "a=torch.rand(2,2)\n", "b=torch.rand(3,2)\n", "distance_b(b, a)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Note how the two parameters to `distance_b()` have a unit axis added in two different places (`a[None,:]` and `b[:,None]`). This is a handy trick which effectively generalizes the concept of an 'outer product' to any function. In this case, we use it to get the distance from every point in `a` (our batch) to every point in `b` (the whole dataset).\n", "\n", "Now that we have a suitable distance function, we can make some minor updates to our meanshift function to handle batches of data:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "def meanshift(data, bs=500):\n", " n = len(data)\n", " X = torch.from_numpy(np.copy(data)).cuda()\n", " for it in range(5):\n", " for i in range(0,n,bs):\n", " s = slice(i,min(n,i+bs))\n", " weight = gaussian(distance_b(X, X[s]), 2.5)\n", " num = (weight[:,:,None] * X).sum(1)\n", " X[s] = num / weight.sum(1)[:,None]\n", " return X" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "data" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "torch.from_numpy(np.copy(data)).cuda()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Although each iteration still has to launch a new cuda kernel, there are now fewer iterations, and the acceleration from updating a batch of points more than makes up for it." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "%time X = meanshift(data).cpu().numpy()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "That's more like it! We've gone from 2000ms to 26ms, which is a speedup of over 7000%. Oh, and it even gives the right answer!" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "plot_data(centroids+2, X, n_samples)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## course.fast.ai" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "If you found this interesting, you might enjoy the 30+ hours of deep learning lessons at [course.fast.ai](http://course.fast.ai). There's also a very active forum of deep learning practitioners and learners at [forums.fast.ai](http://forums.fast.ai). Hope to see you there! :)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.2" } }, "nbformat": 4, "nbformat_minor": 2 }
apache-2.0
sbitzer/pyEPABC
examples/narrow_posteriors.ipynb
1
85670
{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [], "source": [ "%matplotlib inline\n", "import numpy as np\n", "import matplotlib.pyplot as plt" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Why EP-ABC can produce too narrow posteriors" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "When you use EP-ABC for inference you may notice that your posterior distributions appear suspiciously narrow, i.e., you may not belief the certainty indicated by EP-ABC inference. Your suspicions can be correct: The posteriors inferred by EP-ABC sometimes tend to be too narrow. The fault lies within the recursive sampling process used in EP-ABC: The main mechanism is to maintain an estimate of the posterior distribution from which you sample and then re-estimate the posterior distribution based on a subset of the samples compatible with a data point. If the distribution from which you sample has some [sampling error](https://en.wikipedia.org/wiki/Sampling_error), your next estimate of that distribution will deviate even more from the underlying distribution, especially, if the sampling error consistently deviates in one direction. This is exactly what can happen in individual runs of EP-ABC.\n", "\n", "In the following, I will demonstrate drifting distribution estimates by recursively sampling from a Gaussian. Ideally, the estimated mean and standard deviation would remain stable, but sampling error lets them drift. The question, therefore, is how strong the drift is and whether it has a trend." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Sampling theory\n", "It is known, but rarely appreciated, that the square root of an unbiased estimate of [variance](https://en.wikipedia.org/wiki/Variance) consistently underestimates the [standard deviation](https://en.wikipedia.org/wiki/Standard_deviation). Because we use standard deviations when sampling from a Gaussian (also in EP-ABC), recursively sampling from a Gaussian will shrink its standard deviation, even though we may have no bias in estimating the variance of the distribution. Actually, it's not so hard to compute an [unbiased estimate of the standard deviation](https://en.wikipedia.org/wiki/Unbiased_estimation_of_standard_deviation), at least approximately: Instead of dividing by $N-1$, as in the unbiased estimate of variance, we only have to divide by $N-1.5$. I have implemented this in EP-ABC to reduce the shrinking of posteriors. Below you can see for yourself what effect this has." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Some plotting functions\n", "I here define some plotting functions used below." ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def plot_mean_with_std(mean, std, std_mult=2, xvals=None, ax=None):\n", " if xvals is None:\n", " xvals = np.arange(mean.shape[0])\n", " if ax is None:\n", " ax = plt.axes()\n", " \n", " ax.plot(mean, 'k', lw=3)\n", " ax.fill_between(xvals, mean + std_mult*std, mean - std_mult*std, \n", " edgecolor='k', facecolor='0.7')\n", "\n", "def plot_single_trajectory(means, stds, rep=None):\n", " if rep is None:\n", " rep = np.random.randint(means.shape[0])\n", " \n", " xvals = np.arange(means.shape[1])\n", " \n", " fig, (ax1, ax2, ax3) = plt.subplots(3, 1, sharex=True)\n", " ax1.set_title('repetition %d' % rep)\n", " plot_mean_with_std(means[rep, :], stds[rep, :], xvals=xvals, ax=ax1)\n", " \n", " ax2.set_ylabel('mean')\n", " ax2.plot(xvals, means[rep, :], 'k', lw=3, label='mean')\n", " ax3.set_ylabel('std')\n", " ax3.plot(xvals, stds[rep, :], 'k', lw=1, label='std')\n", " \n", " diff = means[rep, :] - means[rep, 0]\n", " print('largest deviation from initial mean: %6.1f%% (of initial std)' \n", " % (diff[np.abs(diff).argmax()] / stds[rep, 0] * 100, ) )\n", " diff = stds[rep, :] - stds[rep, 0]\n", " print('largest deviation from initial std: %6.1f%%' \n", " % (diff[np.abs(diff).argmax()] / stds[rep, 0] * 100, ) )\n", " \n", "def plot_distribution_drift(means, stds):\n", " fig, (ax1, ax2) = plt.subplots(2, 1, sharex=True)\n", " \n", " ax1.set_title('average drift of mean (+- 2*std)')\n", " plot_mean_with_std(means.mean(axis=0), means.std(axis=0), ax=ax1)\n", " ax2.set_title('average drift of std (+- 2*std)')\n", " plot_mean_with_std(stds.mean(axis=0), stds.std(axis=0), ax=ax2)\n", " " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Recursive Sampling of a Gaussian" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The following cell repeatedly runs a recursive sampling process and plots the average drifts of mean and standard deviation across the repetitions." ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "after 200 steps with 500 samples:\n", "difference in mean mean: 15.9% (of initial std)\n", "difference in mean std: 5.3%\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEKCAYAAAAW8vJGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXlcnNW5+L/PMDADMwMM+xYIkAVIYmJqNNVoYlzS1i73\nutVuetvaa2+rt63trdprf9F726q11m5qW23TutWl1avRJNVYNXFJIjGrZAcSCGGHAWZgFub8/nhf\nphMC2RgCwfP9fN4P73ve857znPdlznPOc5ZHlFJoNBqNRjOAZawF0Gg0Gs34QisGjUaj0RyGVgwa\njUajOQytGDQajUZzGFoxaDQajeYwtGLQaDQazWFoxaAZl4jIQhGpO0ac7SJyQdT1MhFpF5F1MZLh\nRyLSIiINsUjvVCIib4nI7LGWY6SIyHUistY8TxCRHSKSPtZyTXS0YtCMZ466yEYpNVMptQZARBYA\nFwF5Sqn5x6NYjoaITAJuBsqUUnknm85YICKfBLqUUltinO45IvKKiLSJSJOIPC0iOYPiFInI0uNM\nL1LpHwMFoJQKAH8Abjth4TUnhFYMmiERkbixlmE4hpFtMlCrlOobiMYxFMsxKAJalVJtI0hjrPg6\n8NhQN8yKu+Yk03UDv8N4N0VAD7DMTPccEfkBYDWvzxeRY1XgJ/ON/gJcJyLxJ/ic5kRQSunjNDuA\nW4C9QBewHfgXMzwB6AAqouJmAD4gw7z+JLDJjPcWMCsqbg3wfWAL0IvRcBgyLzO+BbgPaAH2Ad8E\nwoDFvJ8MPAI0AHXA/wIyTJnswJ+AdjOf7wEHjiJbnBm2GPiKGRYy5fypWeYQ0G2G5QyRZzLwKNBs\npvXfZvhFUc93AX8c4tmFZpn+C2gCDgKfAT4O7AJagdui4gtwq/kuW4CnAHfU/WeAQ+Z3eWPQN1wG\n/AZ4yZTnXaB4mPcYb8qeN8z9IqA6Rv+HZwKeqOtPA68AO4AfA0lm+L+Z/x9d5t/PAWXmNwua36jd\njJsGvAh4gHXA/wBrBuW7Czh/rH+HE/kYcwH0cRIfDa4Ass3zqzBabgPXjwD/GxX3G8AK8/xMsxI7\ny6yovmRWiPHm/RrgfSAPsB1HXl/HqMRzgRTgVaCffyqG54EHMSr9DPOH/rVhynQ38KaZTj6wjSMV\nw2DZaoDF5vl10RUIRsV94Bjv8VFTxiSzwtwFfPl4njfvB4H/xlBS12MomMfN9CrMCrrIjP8t4B3z\nXcUDDwFPRqX3b+Zz8cDPgU1R95ZhKJOPYCjjx6OfHSRXBdB9FLljqRi+DbwTdf0p4O9AFUaFnmiW\nyQNMMeNkA+VDfTMz7CnzsAMzgPoh4rwA3DjWv8OJfIy5APqIwUc0egCfMs8vAvZG3XsL+IJ5/iBw\n56Bnd2K2vsyK9roTyOu16IrezLvfrLyygb6BSty8fw3wj2HS3QdcEnX9NY5UDNcNeuakFYMpox+Y\nHhX27wPyHcfzCwEvZg8IcGL0ls6KilMJfNo8rwIujLqXCwQwleigtFPNtFzm9TLg91H3Pw5UDSPX\nuUDDUeSeHAvFAJwBtAHnmtfnAD8ASoD/B5yP0UNKwugF/itgH5TG4G9mMd/J1KiwHw+hGB4Hbj8V\nv60P66HHGE5DRORaEdkkIh0i0oHRssowb78OJIrIPBEpAmYD/2feKwK+a87caTefLcBohQ9QfwJ5\n5WGYUwaIPi/EaP0eisrrt1HPDiZvUN77h4hTP0TYyZKBYQ8/MCjP/BNIo02ZNRWGWQSMXgNRYU7z\nvAh4fuDdYyiKIJAtIhYRuVtE9opIJ4bCUxz+rhqjzn1R6Q6mA3BFB4jI58zv145hiisc+Cbm3wIz\nXreIdJlHwXCFFpEpwArgJqXUOwBKqfVKqZ9gNAxQSq1VSt2tlPIBnwX+A+N/YbmITB8m6UyM3tex\n/g9cQOdw8mlGjlYMpxkiUgj8HviGUsqtlHIDH2CYhlBKhTHs1Z/HsOW+pJTymo/XAT9WSqWZh1sp\n5VRKPR2VhTrevDBs4tEVSGHUeR1GjyE9Kq9UpdQZwxStAZgUdV00RJwTGag8VtxWjIo5Op8ijLGC\n0eAA8PFB796hlDqE8a0+hdH7ScVo1Qv/fM8nwl5ARCR3IEAp9RczvzSMlv6BKBnSlFL1ZjyXUirZ\nPIZUwmZj41WMnueTg+8rpfYrpf5nUNirSqlLgRwMc93vB24NerwFY1wn+v+gkCMpx1BwmlFCK4bT\nDweGmaHVbGl+GZg5KM5fMFppnweif7wPA18XkbMBRMQhIp8QEcdJ5vUM8C0RyRORVIzBYQCUUo0Y\nA5H3i4hLDEqi1x0M4lngNhFJNVurNx7zTRydJiBdRJKHuhmlQH8sIk6zwvsOw8zmiQG/A35iKltE\nJFNEPm3ec2GYtTrMb3EXJzmjSikVBFZjmLqG42QUDiKSj2E+/LVS6uHjfCZLRD4tIkkYirgH438K\njG9UMDDDyPwmzwF3iEiiiFRgmJui08vDmB0Vk7UqmqHRiuE0Qym1A2Mm0DoM88IMjHGE6DgbMOzf\nucDKqPCNGLb735hmhd0c/sNTg9I5Vl4PY1T+W4GNwMtAyPyBA1yLMVOqCsPO/CxGq3Eo7sRoVdcA\nqzAGhg8TZ4hnhq08lVK7MBRktWkuGSrf/8Qwy1QDa4DHlVLLhkvzOBgsT/T1LzEGTV8REQ/GQPTZ\n5r1HMcp+EGMw/50RyABGi/zaE5DzePkqUIxRcXcNmJ6O8YwFYz3IQYxe2gUYZiWAf2D0QBtFZMAE\ndxOGojwE/NE8ovkC8GdTAWpGiYGBs5NPwGjdPYox2BgGHlZK/UpE3MDTGN3zWuBqpZTHfOY2jCmG\nIeBbSqlXRiSEZlwgIh8DHlJKFY+1LB92zIVjN6oYL3IbS0QkAdgMXKCUah1reSYysVAMORhzxDeL\niBOj5fgZ4MsYg3M/FZFbMOZs32p2D58A5mHYp1djzEIYmSCaU46I2IELMXoNOcBfMaYvfndMBdNo\nNCNixKYkpVSjUmqzed6DsbilAEM5/NmM9mfgX8zzTwNPKaVCSqlaYA//7FJrTi8EwwTUjtEg+ABY\nOqYSaTSaEWONZWIiMhmYg2GTzlZKNYGhPEQky4yWj7Fyc4CDnNgUQc04QSnVi1bqGs2EI2aDz6YZ\n6a8YYwY9HH0gTqPRaDTjlJj0GETEiqEUHlNKvWAGN4lItlKqyRyHGJh1cJDD5ykXMMzccRHRykSj\n0WhOAqXUSU1Lhtj1GP6IsUT/l1FhL2Ls/wLGlMgXosKvMfdWLwamABuGS3isl4ZPlGPp0qVjLsNE\nOvT71O9zPB8jZcQ9BhE5D2Nu8TYR2YRhMvoBcA/wjIh8BWNZ+9UASqkqEXmGf24J8A0Vi5JoNBqN\nJiaMWDEopd7G2N9kKC4e5pm7MFZ3ajQajWacoVc+f0hYtGjRWIswodDvM7bo9zm+GPECt9FERLSV\nSaPRaE4QEUGNg8FnjUaj0UwQtGLQaDQazWFoxaDRaDSaw9CKQaPRaDSHoRWDRqPRaA5DKwaNRqPR\nHEZMFIOI/EFEmkRka1TYUhGpF5H3zeNjUfduE5E9IrJDRC6NhQwajUajiQ0xWccgIgswfLk+qkxn\n7yKyFOhWSv18UNxyDD/Ex3TUo9cxaDSa8Ux3dzf79+9n+vTpxMfHH3YvGAwSFxeHxXJk+zscDtPS\n0sKePXtYt24diYmJTJ8+nYcffpgtW7Zw7733ctlll9HV1UV8fDzhcJja2lra29vp6elh48aNeDwe\nbrnlFrKyso5If6TrGGK2wM10pr58kGLoUUrdNyjerYBSSt1jXq8E7lBKrR8iTa0YNBrNuCIcDvP2\n22+zbNky/va3v5GSkkJLSwsJCQmEw2GKi4ux2+1s27YNh8PB/Pnz6e7uprOzE6vVSnt7OwcPHsTp\ndJKTk8OUKVMIBAIcOHCAc845h0mTJvHnP/+ZgwcPYrfbCYcNF+o5OTmkpKSQkJDApEmTCIVCrF27\nlssvv5wpU6awc+dOUlJS+MUvfjHuFcO/AR6gEviuUsojIr8G3lVKPWnGewRYoZR6bog0tWLQaDTj\nhn379vGv//qv+Hw+FixYwOLFi0lLS6Ovr49gMAjAoUOH6OvrY+rUqXR3d7Nr1y4cDgcul4v+/n6c\nTidZWVkkJCQMm084HEYpRVzccNvQGdTX17N582aampqwWCxUVVWxY8eOESuGmHpwG8SDwP8opZSI\n/Ai4D7h+FPPTaDSaEdPX18fTTz/Nnj17+MhHPkJCQgKNjY1s3bqVxx9/nKuvvppPfOITiPyz3rXb\n7djtdgBcLlckPDExcUhTz7EYyvw0FAUFBRQUFABQW1tLVVXVCec1FKOmGJRSLVGXDwPLzfPjdtQD\ncMcdd0TOFy1apDfb0mg0MaehoYGlS5eyYcMGamtrKSsro7i4mNdeew2lFMnJyeTn53PHHXdQXFw8\n1uIewbZt21i7di0tLS2H1ZknSyxNSZMxTEmzzOscpVSjef4dYJ5S6vMiUgE8AZyD4ev5VfTgs0aj\nGSX8fj+VlZXs2LGD0tJS4uLiqKys5P3332f37t1YrVZ27tzJxRdfzPz588nKyiI1NXWsxT5hamtr\neeCBB8aPKUlEngQWAekicgBYClwoInOAMFAL3ADaUY9G82GmubmZVatW4fP5sFqtJCYmUltby8GD\nB0lLS2PmzJlceumlEXPM4Jk+w+H1etm9ezcNDQ28/fbbvPvuu3g8HlpaWmhqaqKkpIRJkybR0tJC\nf38/xcXFFBUVccUVVxAOh7n++utPyuQzUdHbbms0mlFn9+7dPPTQQyxbtow5c+bgcDgIh8P4/X7c\nbjdpaWn4fD5qa2vZtGkTgUAAAIfDQV5eHgUFBfT29uL3+znjjDPIz8+nt7eX1tZW9u7dy/vvv09e\nXh5ut5vi4mLKyspwuVykpKSQmZmJ1Tqaw6njg3HXY9BoNJpo9u3bx3333cfLL79MMBjE7/ezaNEi\nfvGLX5CRkXHUZ5VSiAjhcJju7m7a29tpaWnBZrMRFxfH/v372bt3L/Hx8bhcLi666CJuuukmkpKS\nTlHpJj5aMWg0mpOivr6e9evXs2vXLpYvX87evXuZMWMGjY2NNDU1cckll3DLLbdgt9txu93HbRYa\nmO1jsVhISUkhJSXlsAHfmTNnjkp5NP9EKwaNRnNCdHZ28otf/IJf/vKXzJgxg8zMTJYsWcK///u/\ns3//flwuF1OmTDnmHHzN+EUrBo1GAxgmnG3btvHUU0/x+uuvs3v3bqZPn87MmTMJh8N0dnZy4MAB\nqqqqOPvss7nvvvuOGLDNzMwcI+k1sUQPPms0E4xgMMiBAweora2ltbWV0tJSSkpKSElJOaIVH60M\nnnnmGbxeL+eddx5z5sxh0qRJ7N+/n0OHDmGxWEhKSiItLY1p06Zhs9nGqHSa4dCDzxrNBEApRV9f\nHxaL5bCK1uPxRLY4cLvdJCUlUVNTQ3x8PFOmTKG1tZVNmzaRmZlJa2srf//733G73WRkZPD444+z\nfv16MjIyyMnJweVycejQIRobG/F6vaSkpJCVlUVxcTFWq5XNmzcTCoU499xz+cY3vsHUqVMPW9Gb\nnp4+Fq9GM8ZoxaDRjBK7d+9m2bJl9PX14XQ6sdlskcHUZ599lr///e+R2Tfx8fGkpaVhtVppbm4m\nIyMDpRTd3d34fD5yc3Px+/34/X5CoRBTpkyhp6eHxMREZs6cGdl5c8GCBdx8881DDvT29/fT3d1N\nR0cHjY2NhEIhLrvsMvLz8w9TBhqNVgwaTQzw+Xw8++yzuN1uAH7961+zceNGFi9eTHJyMs3NzYRC\nIXw+Hz09PcyYMYPHH3+cpKQklFL09vbS1dVFMBgkLy9vyIFbpRTt7e0kJycf9wyfaOLi4khNTSU1\nNXVcbuugGT/EauXzH4BPAk1Ru6u6gaeBIoyVz1crpTzmvduArwAh4FtKqVdiIYdGc6ppbGxk2bJl\n3H///ZSWlkbMQ4sWLeLrX//6cdniRYSkpKRjzsMXEW3a0ZwSYtVjWAb8Gng0KuxWYLVS6qcicgtw\nG3CruVfS1UA5pqMeERlyrySNZjzg8Xi45557WLlyJTNnzqSoqAilFG+++SZbt27l3HPP5Yc//KFu\nhWsmDDFRDEqpt0x/DNF8Blhonv8ZeANDWXwaeEopFQJqRWQPcDZwhKMejeZUoZTC6/XS1dVFOBym\nv78fj8fDU089xe9+9zvOOussrr76ag4ePEhtbS39/f1cdNFFfPvb345st6zRTBRGc4whSynVBKCU\nahSRgQnP+cC7UfEOmmEazXERDofZuHEjVVVV1NbWUl1djcViYdGiReTm5hIOhwkEAogILpeLvXv3\nUllZicPhYPLkySxatIisrCx8Ph+dnZ289dZb/OxnP6O5uRmn04mIRKZnVlRUcNddd5GXlwfArFmz\nxrj0Gs3ocyoHn0/KVKT9MUwcQqEQ+/btY+rUqRFHJIFAgKamJqqrq+nu7sbhcFBVVcWGDRtob28n\nISGB6dOn09LSwu7du/H7/VRXV+N0OiktLSUtLY2srCxCoRB/+tOf8Hq9AJFN03w+H5mZmUyePJm2\ntjaqqqr42c9+Rk9PDwkJCTidTvLz87npppsoKysbs3ej0YyE8eyPYbBrzx3AIqVUk4jkAK8rpcqH\n8Pm8CliqfT5PPKqrq9mxYwd1dXXs37+fxx57DL/fj1KKvLw86urq8Hq9pKamkpubS2JiIn19feTk\n5FBaWkpKSgqBQIBDhw7hcrnIy8vDZrORnp5OTk7OWBdPoxlXjNcFbmIeA7yI4fP5HuA64IWo8CdE\n5H4ME9IUYEMM5dCMAf39/fT09OD1emlubub2229n3bp1lJaWkp6eTnJyMt/73veYMmUKzc3NdHZ2\nkp2djcvlOm43hhqN5tQwmo567gaeFZGvAPsxZiJpRz3jkJaWlohj8u3bt5OWlkZZWRlKKXbu3Mna\ntWvZsmULe/bsobGxkba2Nrq6urDb7RQUFNDa2kpjY2PE763dbueSSy7h4YcfHnK+fVZWlnaKotGM\nY2I1K+nzw9y6eJj4dwF3xSJvzfHh9Xp577332L59O263G6UUq1at4o033ojMxAmHwxQXF9PW1kZc\nXBydnZ243W4qKiooKipi/vz5pKWlkZKSgtPppK+vj+bmZlJTU8nMzNS7aWo0EwS98nmCEg6H2bt3\nL+vWrWPFihWsWLGCoqIiCgsL6e3tpb+/n4qKCm6//fYjtkRQSnHw4EHcbjcOh2PYPAY2VdNoNBML\nrRhOY4LBIM8++yzbtm2jtbWVPXv20NTURFxcHHV1dTgcDqZPn05ZWRkPPfQQKSkpx5WuiFBQUDDK\n0ms0mvGKVgynEUop3n//fV555RX27NnDq6++SmZmJjNmzMDpdHLhhReSlpZGf38/GRkZpKamjrXI\nGo3mNEQrhnHGvn37WLNmDdXV1fT19WGz2XC5XNTX1/O3v/2N+Ph4zjzzTPLz87n55puZOnXqWIus\n0WgmGFoxnAIaGxv51a9+xcsvv0xtbS02m43CwkIWLlzIRz/6UXJzc3n77bd58sknqa+vZ86cOWRm\nZmKz2QgGg5Ftm2+//XYKCwvHujgajWaCoxVDDPH5fKxfv54XXniBTZs20d3dHZmzf+GFF/LFL36R\nvLw8QqEQDQ0NbN++nV/+8pe0t7dTVFTEVVddxcyZM/XsHo1GM6ZoxTAC+vv7eeGFF3j++efZuHEj\nNTU1lJaWMmfOHC666CKSkpJITU0lPT39iPn86enpet8djUYzLtGK4QTx+/3U1NTw/PPP88gjj2Cz\n2bjwwgu5/vrrKS4uPikHKhqNRjOeGHXFICK1gAcIA0Gl1NlHc+IzHunq6uL+++/n6aefZu/evWRm\nZjJnzhxuuOEGysvLtVtEjUYzoTgVPYYwxmZ6HVFhQzrxOQWyHBOlFO+99x5r1qwhHA5TUlLCf/3X\nf1FaWsp1111HWVmZHgPQaDQTmlOhGAQYvEvacE58xpTa2lq+9rWvsWvXLubMmYPFYuGpp57is5/9\nLAsWLBhr8TQajeaUcCoUgwJeFZF+4HdKqUeA7GGc+JwSwuEwe/bsYcWKFWzYsAGXy8WOHTvYsmUL\nl19+Od/85jcj+/lrNBrNh41TUfudp5Q6JCKZwCsisosjnfYMu7vqSB31DJiGNm7cyObNm9m8eTNV\nVVU4nU7mzJnD9OnT8fv9LFq0iG9/+9vH5bxdo9FoxhPj1lHPcWUmshToAa5nCCc+Q8Q/qR25Q6EQ\n69atY+XKlfzlL39BKUV5eTkFBQVMnjyZyZMnk5ycPOLyaDQazXhhvDrqOQIRSQIsSqkeEXEAlwJ3\nMrwTn5PG7/ezevVqnn76aV566SUyMjKYPXs23/zmN5k2bZqeOaTRaMYlfr+f/v5+wuEwAImJiZEJ\nLh6Ph+3bt9PY2Eh7ezuBQIBAIEAoFCIxMZHU1FTcbjd2u536+nra2tqorq4esUyjbUrKBp4XEWXm\n9YRS6hURqQSeGezE53hoaWnh7rvvZt26dXg8HkSE3t5e6uvrmTZtGvPnz+dnP/uZdgSj0WiGJRgM\n0tLSQnx8PBkZGfT19dHd3Y3NZsPn89HS0oJSCqvVSlxcHHFxcYTDYfbv309zczPx8fGEQiF8Pl/k\nfnd3N6FQCJvNRkJCAnFxcfT09KCUwm6309raSnt7O/Hx8dhsNuLi4qipqaG5ufkw2eLj48nKyiIQ\nCNDa2sqJWk0++OCDEb+fUVUMSqkaYM4Q4e0M48TnKGnx4IMP8sMf/pAFCxZw2WWX4XA4Ih8vPz9f\nLy7TaMaIYDBIV1dXpHLs7+8nFArR1dVFR0cHHR0d9Pf3k5KSQkpKCqmpqaSkpGC1WvF4PCiliI+P\nx2q1Rirt6MPr9RIXF4fFYsFqtZKcnIzD4cDv99PX14ff78fv9xMKhbBarbhcLtxuN36/P+Jytqen\nJ3J4vd5IhZuQkEAgEBjjN/hPgsEgBw8ePOnne3p6RizDaTH1pqmpiWuvvZYDBw7w4x//mEmTJo21\nSBrNCaOUwuv14vP5UEqhlCIcDkcqxYyMjBH5v+7r62Pbtm3s2LGDpqYmRASLxYKI4Pf7CYfDZGdn\nk5GRgc1mw263o5Sivb0dpRQulytSwaakpJCYmEgoFKKlpYXW1lZ8Ph+9vb14vV7a29vp6uqKtJxj\nURmNFWOtFOLi4khISMBisaCUwufzRe5ZLBamT5/O1KlTSU9Px263k5CQgNVqxefz0dHRQWdnJ319\nfYRCIaqqqpg+ffqIZTqlg88nioio1157jWuuuYbFixdzzTXX6GmkE4RgMEhPTw8JCQmEQiH6+voi\n/qLD4TDt7e00NzdjsVhISEiIHPHx8fT09NDb20t8fHwkfGA32tHC5/MRDocPs/9GEwgE6Onpobu7\nmwMHDlBfX09PTw8+nw+v10tDQwMHDx4kFAoNm4fdbiczM5Pk5ORIuaxWK4mJiSQlJREIBPB4PDQ1\nNREMBiNmjoGe8r59+8a8kjtdsFgspKWlRRSd1WolJSUFv9+PzWYjKysLq9VKKBQiHA5H/ubk5FBY\nWEg4HCYuLo6kpCT6+/vp7+/H5XJhtVoPGwdwOp0Rc3dqaipZWVn09/fj9/sJBAJkZWVRUlJyWL3W\n09NDW1sbNpuN1NRU7Hb7cZXptBl8jgVXXnkln/vc55g7dy5erzfSXU1JSSEtLY3ExMRIy+toK5L7\n+voIBAKHtdKUUjgcjsiLDwaDkVZRMBjE7XaTmJhIZ2cnHR0ddHd3k5iYSGJiYqRlZ7FYIs93dXUR\nCoUiNkeLxRL5C9DR0UFvby9ut5vs7GySkpJi9p6UUnR2dgJgs9kiNsz+/n5qa2tpaGiItEysVmuk\naz3QMBg8OB8OhyOtx8Hd9YEuu9vtJjMzk8zMTKxWK319ffT19dHR0UFDQ0Okkurq6qKzs5POzk7i\n4+NJTk6mtbWV/v7+mJVfRMjJyWHSpEnk5+eTmZmJw+GIvIuUlBSKiopISEg47Lmenh48Hg/d3d0R\nhTNQxu7uburr69mzZw8NDQ2RZ+Lj40lMTMRutxMIBPB6vQSDwRGXoa+vj7q6uhGnMxZYLBaSk5NJ\nTk4mPj4+8htwOBykpaXhdrsjZqOB/wWPxxMxL1ksFkKhEMFgEIvFEvm/GjiSk5MJh8P09/cTDAbp\n7Oykt7c30vOx2+3YbLaIKWrAhGWz2XA6nTidTlwuF06nE4fDgdPpJC4uDqUUPT09JCUljZsdDQbk\nHUvGfY/hWHHsdjuhUIhQKITdbsflcuFyuUhOTsZms9HW1kZTUxPd3d3DppGYmEgwGDxqay7WWCyW\nSEXV19dHb29vpPJ1uVxkZmZGuvy9vb2R+319fcTHx5OdnU04HMbn89HT08OhQ4eOKKOIICKR2Q4f\ndiwWC+np6aSkpBAXF0drayttbW2nVIbExEQcDkfExDPQaBjobYyUSZMmceaZZ1JSUoLFYok0gmw2\nG+FwmIaGBrq7uyPKLxwO43a7sVgskcHXhIQEurq68Pv9xMXFkZaWRlZWFg6HI9J7cbvdpKam0t/f\nj8ViweVyjcgMphk5sewxnPaKQXP64nK5IoOFNpst0jMZqGhycnKwWCyRbvfA4XA4cDgchEIh/H4/\nPp+P1tbWUVWAVqs1osSHysdqteJ0OklKSiInJ4fi4mJSU1NJSkoiMTGRzMxMCgsLh+0lKqXweDyR\nnmkgECAYDBIMBunt7cXn80Vav1lZWRH7/8AgbygUIiMjg7y8vFF7B5rxzYfKlDQw0DzQYnY6nSQn\nJ+PxeGhvbz/uLvyArTZ6QA6IzKIAo0U58EO2Wq20tbURCARISUnB7XbjcrkirfsBhRoOhyOVxYBt\neKDLOzA3eeDvQEXR1tZGQ0PDCU9DOxaJiYmRCnagNQiG74cpU6ZEKtlgMEhSUhLJycmRAS/gMHks\nFkvEDDPQXY++tlgstLe3R2aNDEzJs9vtOJ1O8vLycDgcgKEABmah+P1+PB4PGRkZMTWl+f1+Ghoa\n2L9/P01NTbS2th5m/mpsbDzMHDRAQkIC6enpOBwOXC4XSUlJkfImJiaSm5tLUVERpaWlxMfHo5SK\nKLCB3tuto+4LAAAgAElEQVSAyWoka2VEhNTUVO2nWzMuGPeKITExkXvuuWfIQeeBWR4DLU6fz0d3\nd3dkHKKvry/SDR7oLg8mHA7j9Xojg33RP+7jGbs4WbxeL7W1tcTFxUUq1MTEROLj4/F4PJGZIAOV\n+MB9u91Ob28vzc3NWK3WiL3U7XaTlZUVkT96LGU8Ddjb7XZSUlJinq7NZqO4uJji4uJh4wyMf3R3\ndxMOh3E4HOTl5Z3Q9xWRyPfSaCYq496UdOmll9Lb28uNN94Y0xamRqPRTCRiaUoas9EiEfmYiOwU\nkd2mT4YheeGFF5gyZQq33HLLkKYAjUaj0cSWMVEMImIBfgMsAWYAnxORsqHi2u12/vjHP/L973+f\n2267jXfffTem0xw1Go1GczhjZXw+G9ijlNoPICJPYTjv2TncA//xH/9BWVkZ3/nOd3jggQeYM2cO\n5eXlTJs2jUmTJkVWDmo0Go1mZIyVYsgHolfy1GMoi6Ny4YUXsnnzZurr63nttdd47bXXePjhh6mu\nriYQCDBjxgw+8YlPMH/+fL1vkkaj0Zwk42e6yjAM5ainoKCA6667juuuuy5yLxQK8eKLL/Lzn/+c\nhx9+mEWLFnHFFVeMygwYjUajGU+c1o56IpmKzAfuUEp9zLy+FVBKqXsGxTspRz379+/n3nvv5Ykn\nnmDu3LmR5fQiQnZ2NgUFBRQWFpKenh6T8mg0Gs1Yc9qvfBaROGAXcBFwCNgAfE4ptWNQvJNSDAPs\n27ePd999l8bGxsgukLt27aKqqoqqqipSU1OZM2cOkydPprCwkMLCwiP20tFoNJrTgdN+5bNSql9E\nbgRewZgZ9YfBSiEWlJaWUlpaOuS9cDjMhg0bWL16NVu3bmXVqlXU1tZy7rnnctlll1FaWqoHszUa\nzYeSMRtjUEqtAka+cfhJYrFYmD9/PvPnz4+EeTweHnroIX71q1/R0dFBQUEBNpuNRYsWsXDhQq0o\nNBrNh4Jxv/J5rOQb2HenubmZO++8k/b2doqKisjPz2fWrFmUlZXpmU8ajWbccNqbkk4H8vLyIjtV\nfupTn6KyspKamhoqKyt55pln2LdvH2effTZXXnklBQUFYyytRqPRxA7dYzhJGhsb+eMf/8h9993H\njBkzmDt3bsShSFFRkTY7aTSaU8ppPyvpeBnPimGAjo4Onn/+eV5++WWampo4dOgQXV1dzJo1K+Js\nJzc3lzPOOEMrC41GM2poxTDO2b17N+vXr6e6upq6ujo2bNhAT09PxD2pzWYjIyOD0tJSEhMTqa2t\nxeFwUFxcTE5OzliLr9FoTkP0GMM4Z9q0aUybNi1yrZTilVde4b333iMrK4uenh727t3L888/T3d3\nN2eccQZdXV384Q9/wG63c+6553LJJZeQmZk5hqXQaDQfVrRiOAWICEuWLGHJkiVHjaeUorKykmXL\nlvGd73yH9PR0MjMzaW5uxuv1kp6eTllZGQsWLGDq1Kkj8him0Wg0w6FNSeOU3t5edu3aRV1dHUVF\nRaSmpnLw4EFWrlzJ448/DsDixYu58MILSUlJoaenh927d9Pa2kpaWhpFRUW6x6HRfIg4LcYYRGQp\n8DWg2Qz6gbmoDRG5DfgKEAK+pZR6ZZg0PrSK4WgopVizZg2///3vWb58ecQ/xZw5cyguLqahoYEt\nW7Zgt9upqKggJyeHnp4esrOzmTdvHoFAgN7eXlJTU0lPTx8V16UajebUcjqNMfxcKfXz6AARKQeu\nBsqBAmC1iEzVGuD4EREWLlzIwoUL8Xq99Pf343K5jvBXvXPnTtasWUN1dTWZmZls2rSJW2+9FafT\nSXJyMs3Nzfh8PioqKujq6sLr9TJt2jR8Ph9bt27F4XCQn59PcXExWVlZ2O12MjMzSUpKorq6mmAw\nSHZ2NhUVFdoHskYzgRhtxTCUxvoM8JRSKgTUisgeDF8M60dZlgmJw+EYMlxEKC8vp7y8/KjPNzQ0\nsG7dOrKzs3E6naxbtw6n08lFF11Eb28vO3fuZMOGDRw4cICWlhbWrl2Lx+Nhzpw5OBwOVq1axX33\n3ccZZ5yB3W6nt7cXj8dDYWEhs2bNori4GIfDgdfrJTMzM7JJYTAYZP/+/SQlJZGdna17LRrNOGK0\nFcONIvIloBL4rlLKg+Gk592oOAfNMM0YkJeXx+WXXx65nj179mH3i4uL+fjHP37UNBobG3nzzTcJ\nBAIkJSWRmZlJZWUlq1ev5sknn6S7u5vk5GRaWlrIz8/H7/fT2tpKYWEhXq+XhoYG4uLiSExMJDU1\nlcLCQjIzM9m/fz8NDQ34/X4mTZpEaWkpDocDp9NJdnY2xcXFeut0jWYUGNEYg4i8CmRHBwEK+G9g\nHdCqlFIi8iMgRyl1vYj8GnhXKfWkmcYjwAql1HNDpK+WLl0auR5w1KM5PfF6vezevRuHw0FeXh5O\npxMwdroNBoN0d3fT0tLCtm3b2LNnD3PnzqW8vBybzcYHH3xAZWUlXV1dNDc3s3fvXrZs2UJCQgKT\nJ08mNzeX3Nxcpk+fTklJiV5MqPlQMeCoZ8OGDdx4443ceeed43Pw+bBMRIqA5UqpMwY75RGRVcBS\npdQRpiQ9+Kw5GkopampqqKqqYseOHezatYs333yTtrY2Zs+eTUFBAYFAgJKSEubNm6d9bWgmNKfF\n4LOI5CilGs3Ly4Ht5vmLwBMicj+GCWkKhqMejeaEEBFKSkooKSnhk5/8ZCT8wIEDvPbaa+zZs4eE\nhARef/11HnzwQc466yxKSkro7e2NDNRv376d5uZmZs2aRWpqKv39/YTDYQKBAB6PB5vNRlZWFqmp\nqdhsNnp6egiHw9hsNs466yw9JVgzIRnN6aqPAnOAMFAL3KCUajLv3QZ8FQiip6tqTgENDQ28+OKL\nbN26FbfbTTgcxu/3s3jxYkpKSvjHP/5Ba2srCQkJxMfHk5iYSHZ2Nl6vl71799LY2IjX6yU1NZWE\nhATa2tp4+eWXmTJlCnPnzmX+/PlkZmYSDAZpaGjAarWSkZGBzWYDIBAI8N5777Fx40Z27NjBjBkz\nOP/887HZbPj9frq6uigoKIjZBozd3d3Ex8djt9vxer3U1dVx4MABUlNTmTx5Mn6/P6L0NBOD02Id\nQyzQikEznvH5fKxcuZIXXniB5cuXk5eXR11dHdnZ2YRCIVpaWpgxYwaBQIDq6mpmz57NZz/7Wc47\n7zxWrFjB//3f/xEKhXA4HLjdbrZv305nZycLFiygvLwci8WCxWIhKSmJ6dOnEwqFqKysxOfzISJ0\nd3fjdDo5++yzsVqtHDp0iG3btrFlyxb27dtHKBTCbrcTDAaZMmUKM2bMoLGxkaqqKpxOJ52dnTid\nTkpKSsjOzmbJkiVkZGSM9WvVnCRaMWg044y+vj7Wrl3LzJkzyc3NBaCtrY033niD1NRUZs6cSXZ2\n9jFSMfyUP/roo2zdupVQKER/fz9tbW1s374di8XCBRdcQF5eHqFQiKysLOrq6lixYgUWi4WioiIu\nuOAClixZwkUXXYTVaqW1tZXMzMwheyHhcJgtW7ZQVVXF+vXreeyxxzjzzDMjYzL5+fn09/ezZ88e\ntm7dis/nw2azkZmZSXFxMSUlJXpblnGEVgwazYeMgbGN5OTkUcujubmZ5cuXs379ep5//nncbjeH\nDh1i0qRJXHrppeTl5eHxeKipqeGdd95BRJg7dy7FxcWRachvvfUWVquVc845h4qKCr0+5RSiFYNG\noxlVAoEA69evp7y8fEjzklKKd955hzfffJPKykr27NmDUoovfOELBINB/vrXv3Lo0CHKysqor68n\nISGB0tJSrrzyyuMe1+jv72fjxo1s3LiRffv2ARAfH09bWxt2u52pU6eSmJiIUoqEhATcbjeFhYWU\nlZV9KFfia8Wg0WjGPTt27GDLli1UVFTQ19fHiy++yEMPPcQ111xDWVkZubm5h1XggUCAxsZGampq\n2LlzJ5WVleTn5/PFL36R+fPnExcXRyAQIDc3F4/Hw4YNG+jt7QWIDLBv3ryZ7du3M3v2bGbNmkVh\nYSEWiwURIRgMUl9fj8fjIT4+nt7eXvr7+znjjDOYPXv2ae/DXSsGjUZzWrJ+/Xp+8pOfUFVVRV1d\nHfHx8VgsFoLBIKFQiPz8fGbNmsUFF1zAJZdccsRK/OOho6ODVatWsWrVKvbs2UM4HEYpRXx8PBUV\nFeTm5tLX14fL5QLgpZdeoqqqijPPPJOysjKmTp1KQUEBFouF6upq7HY7kyZNiswwG0/U1dXR0NCA\nxWLB5/Px0ksvacWg0WhOX5RSdHZ2Eg6HSUhIwOl0jtlgdnNzMytXrmTNmjVUVlayd+9elFJUVFTg\n9XqpqakhLy+P8vJyFi5cSHl5+SmRdWAn5X/84x+0tbXR09NDMBgkJycHEaGzs5M5c+YQCoVobGxk\n2rRpPPfcc1oxaDQaTaxRShEOhyOD54FAgB07drBy5Ur+8Ic/EAqFuOSSS5g/fz5ZWVl4vV6am5tp\namqira2NuLg45s2bx8GDB1m3bh05OTkkJiZSWVmJiDB58mRKSkpwOBzs2LGDffv2UVdXx9y5c6mo\nqGDbtm00NzfT2tpKYmIiP/rRj5g6dSputxur1UptbS3d3d2cf/75WK1HrlPWikGj0WhOIUop3nzz\nTX7/+9/z97//PbKSftKkSRQVFVFUVERXVxcrV64kNzeXL37xi9TU1NDe3s6VV15JQkICGzZsYOPG\njXR0dHD++edz3nnnMWXKFP7yl7+wfv16Pv7xjzNr1iySk5NZsGDBCc/uGlPFICJXAndg+FaYp5R6\nP+rekM54RGQu8CfAjrF53rePkr5WDDHijTfe0BsQxhD9PmPL6fo+w+EwPT09R/hDGbgnImNiHhup\nYhjp2vttwL8Cbw4SKtoZz8eBB+Wfb+ch4KtKqWnANBE5uiNkTUx44403xlqECYV+n7HldH2fFouF\n5OTkISv/gdlQpyMjUgxKqV1KqT0c6ZAn4oxHKVUL7AHOFpEcwKWUes+M9yjwLyORQaPRaDSxZbQ2\nrc8H6qKuB5zx5AP1UeH1aCc9Go1GM6445rbbR3PGo5RaPlqCReU/2ll8aLjzzjvHWoQJhX6fsUW/\nz/HDMRWDUuqSk0j3IDAp6rrADBsufLi8tVbQaDSaU0wsTUnRlfiLwDUikiAixZjOeEzHPR4ROdsc\njL4WeCGGMmg0Go1mhIxIMYjIv4hIHTAfeElEVgIopaqAZ4AqYAXwjah5p98E/gDsBvYopVaNRAaN\nRqPRxJZxvcBNo9FoNKee0ZqVpNFoNJrTFK0YNKclIrLQNGMeLc52Ebkg6nqZiLSLyLoYyfAjEWkR\nkYZYpDco7RoRWXyU+0tE5LlY5zsWRJdVRG4UkbvHWqYPO1oxaE5njmoHVUrNVEqtARCRBcBFQJ5S\nav7xKJajISKTgJuBMqVU3gk+e9RK/zj5EXDXCNM4AhG5V0R2i4hHRKpE5EtDxFl2AumdaFkfBr4g\nItr59BiiFYPmpBCRceuzcRjZJgO1Sqm+gWgcQ7EcgyKgVSnVNoI0TgoROQtIjtpBYPD9ZSJy7Ukm\n3wNcppRKAf4N+KWIzDfT/amIzASUiCSJyP0iUnCS+QyJUsqPMWHlZOXXxACtGCYgInKLiOwVkS7T\nnPIvZniCiHSISEVU3AwR8Q200ETkkyKyyYz3lojMiopbIyLfF5EtQI+IWIbLy4xvEZH7THPLPhH5\npoiERcRi3k8WkUdEpEFE6kTkf6P21BpcJruI/Mk0BW0H5g26P1i2uIHWqoh8BaMleq4p508xKp88\nEek2w3KGyDNZRB4VkWYzrf82wy8CXjGf7xKRPw7xbLqILDffY5uIvGmGPwoUAsvNZ79nhn9JRGrN\nd/WDY3zijzNof7JYoZS609zmBqXUBmAt8FHz9t3ADcBi4DHgb0qp+lEo65vAZaNRPs1xopTSxwQ7\ngCuAbPP8KoxW4MD1I8D/RsX9BsYutwBnAk3AWRgt6i8BNUC8eb8GeB/IA2zHkdfXge1ALpACvAr0\nAxbz/vPAgxg77WYA64CvDVOmuzEqjBSMbVS2AQei7g8lWw2w2Dy/DlgTFX9h9PPD5PmoKWMSRg9h\nF/Dl43ke+IlZNgsQB5w3SNYLo64rgG7gPCAeuA8IDMg+RNrPAN89St7LgGtj8H+UCDQAl5rX6cCv\nTPmfBc4djbKa/4etY/07+jAfuscwAVFK/U0p1WSeP4u5iaF5+y/A56Kifx54wjz/GvBbpVSlMngM\n8GOsUxngl0qpBmV0+Y+V11Vm/ENKKQ9G5Q6AiGRjtHy/o5TqU0q1Ar8YJFs0VwE/Ukp5lFIHMSqo\nwRwm20gwezWfBW5VSvmUUvsxKrEjbO7DEMRQiMVKqX6l1NuDs4g6vwJYrpR6WykVBH7I0c1cqRiV\n61GLcJxyHo3fApuUuWU+8H3gd8DrGKaeK01TUqzL2o3RANCMEVoxTEBE5Nooc1AHMAOjRQ7GjzpR\nROaJSBEwG/g/814R8F3TXNNuPluA0QofIHoTxGPllcfhmylGnxditBgPReX126hnB5M3KO/9Q8Sp\nHyLsZMnA2DLmwKA8j3fTx58C+4BXTFPbLUeJe9h7Ukr5gKONXXQArugAEdky8N0wlP0D5jdpF5Hf\nmHFuizKdPXg04UXkXozW/Wej5LpFKfWBed6rlLpZKVU/CmV1AZ6jyacZXY65V5Lm9EJECoHfY3Tf\n3zXDNmG22pRSYRF5BqPyaAJeUkp5zcfrgB8rpY422yXSujtWXsAhDMUyQGHUeR3QB6QrpY5nELgB\nY5+tHeZ10dFkOw6OFbcVoyVcBOyMynPYvb0OS9x4p98DvmeO6bwuIhuUUq8PkfchoGzgQkSSMMw2\nw7EVmDYov9lRzy8DXldKPToozl0cx0wmEbkTWAJcoJTqGaJsXxl0HeuylgNbjiWnZvTQPYaJhwMI\nA63m4O+XgZmD4vwFoyX4eeDJqPCHga+LyNkAIuIQkU+IiOMk83oG+JaI5IlIKoYpAgBl7Jv1CnC/\niLjEoESi1h0M4lngNhFJNc0XNx7zTRydJiBdRJKHuqmUCpvy/1hEnGbv6jsYg67HREQuE5FS87Ib\nw5Nhf1TeJVHR/wp8UkTOFZF44H84uiloBbDoeOQ4UcTwvPg54GKlVOdxPhPrsi4EVp5kETQxQCuG\nCYZSageGLXwd0Ihh2nlrUJwNgBfDLrwyKnwjxjjDb0yTxG6MQdtIlBPM62GMyn8rsBF4GQiZlS4Y\nduoEjD212jEq/yNmB5nciWHWqQFWYQwMHybOEM8M2ytQSu3CUJDVprllqHz/E/AB1cAa4HGl1PHO\n4Z8KrBaRbuBt4AFlrqnAaLX/0Mz3ZmXsLfZNU54GDNPKsGYxpdQmoFNE5g0X5ThlHIofY/TM9kaZ\nnW49xjMxK6uI2IFPAH8eQRk0I2TEeyWZrbdHMXw2hIHfK6V+LSJLMSqZZjPqD5S5YZ4M4w9aM7ER\nkY8BDymlisdaltMdEbkE+A+l1OVjLUssEZEbgQKl1LGUkWYUiYViyAFylFKbRcSJ0TL8DIapolsp\n9fNB8csxzBfzMOzPq4Gpx2ln1pxGmK2/CzF6DTkYZoR3lFLfHVPBNBrNURmxKUkp1aiU2mye92AM\nDg7M3BjKTjqkP+iRyqEZlwiGCagdo8HwAbB0TCXSaDTHJKZjDCIyGZgDrDeDbhSRzWKsbh2Ylzyc\nP2jNBMOc0ni2UipFKZWjlLp+qFkuGo1mfBGz6aqmGemvGGMGPeY86f9RSikR+RHGIOX1J5imNi9p\nNBrNSaBG4Bo5Jj0GEbFiKIXHlFIvmEK1RI0bPMw/zUUn6vdZHzE4li5dOuYyTKRDv0/9PsfzMVJi\nZUr6I1CllPrlQMCg6X+XY+yZA8P4g46RHBqNRqMZISM2JYnIecAXgG3mqlcF/AD4vIjMwZjCWoux\nKyNKqSpz5W0VxsrSaH/QGo1GoxljRqwYlLFh1lD73686yjPHtTRfEzsWLVo01iJMKPT7jC36fY4v\nRryOYTQREd2Z0Gg0mhNERFBjPfis0Wg0momDVgwajUajOQytGDQajUZzGFoxaDQazThFKUUgECAU\nCkXCAoEAN910E+np6dx99934fL6Y56sVg0aj0YwxmzZt4pZbbmHlypX09xuuLJYvX05GRgYOh4Pk\n5GQWLlzIFVdcQUVFBRs3buQHP/gBK1asICsri8suu4x7772XrVu3xkQePStJo9FoxgCfz8dzzz3H\nb37zG2praznvvPOoqqqioaGB/Px82tvbufnmm6moqMDn87F9+3Z6e3vJzMykvLwcEWPSUVdXF++/\n/z6bN2+msbGR7du3j3hWklYMGo1GM8r09vaydu1a1qxZQ11dHS0tLaxdu5by8nIuvvhizjnnHOLi\njOVgnZ2dNDc3k5eXh9PpPO48amtreeCBB9ixY8eIFUMsVj4PdtTzsFLqVyLiBp7G8JNbC1ytlPKY\nz2hHPRqNZsLT2NjIt7/9bV5++WVKSkooKysjKyuL3NxcvvCFL5CSknLEM6mpqaSmpo6BtP8kFrur\nhoCbVZSjHhF5BfgysFop9VMRuQW4DbjVdBZ+NYbD7wIMl4DaUY9GozktUEpRXV3N3r17mTx5Mvv3\n7+f222+nuro6EicrK4tLL72Up556ikWLFvHb3/52SCUwXonFlhiNGP5+UcZ22zswKvzPYDj1BsN/\n6xvArcCnMR31ALUiMuCoZz0ajUYzjlm9ejU33HADXq+XgoICmpqaSEhI4KqrruI///M/AUNxNDU1\n8f7773PTTTcxe/bsMZb6xImZPwY4zFHPOiBbKdUEhvIQkSwzWj7wbtRj2lGPRqOJOVVVVdTX13Px\nxRfT3d3Na6+9Rnt7O16vF5/PR2JiIhkZGRQVFTFr1qwhzTd9fX2sXLmS5557jvXr19PT08P111/P\n2Wcf3emk2+2mrKxstIo26oymo57BpqGTMhXdcccdkfNFixbpzbY0Gg21tbU888wzBAIB+vv7+cc/\n/oHX6+UjH/kI8+bNo6Ojg7vuuouMjAz8fj8dHR1UVFTgdrtJSEggPj6eYDBIT08Pzc3NHDhwgKuv\nvhqXy8X+/fv5yEc+gsfj4ZFHHqGoqIhzzjmHG2+8kcLCQqzWmLanY8K2bdtYu3YtLS0th9WZJ0tM\nZiWZjnpeAlYO+GQwTUqLlFJNpm+G15VS5SJyK6CUUveY8VYBS5VSR5iS9KwkjebDhVKKl19+mZqa\nGkKhEJMnT+aMM86gpKQEEaGjo4Ovf/3rvPrqq5x77rkkJSWhlKK8vJykpCT27t3LgQMH8Pl8XHvt\nteTm5rJ3716ysrKOauNvb29n9erViAjp6enU1NRgsVhYsmQJeXl5p/ANnDyxnJUUK8XwKNCqlLo5\nKuweoF0pdY85+OxWSg0MPj8BnINhQnoVGHLwWSsGjebDw7Zt27jhhhtoa2tj+vTpWCwWWltb2bVr\nFwkJCeTm5lJXV8dHP/pRvvSlL2Gz2cZa5HHFeJuuOpyjnnuAZ0TkK8B+jJlI2lGPRnOaUF9fz759\n+2hqaqKrqwuPx0NjYyOVlZXU1tZitVr56le/yi233BJZbDWYYDDIs88+i8Ph4JOf/GRkrn40LS0t\n3H333fzpT3/immuu4dJLLz0snlKKQ4cO4fF4sNvtFBcXj1qZNQZ6gZtGM4EIh8PU19dTV1eHy+Wi\nqKiI5OTkYSvuaHp6eti2bRuVlZU88cQT7N69m8LCQlJTU7Hb7SQmJuJ0OikuLiY3Nxe/389DDz1E\neXk5CQkJNDc3s3jxYpKTk6mtraWhoYF169aRnp5OIBDA6/XyjW98g7POOotHHnmEmpoarFYrW7Zs\n4bzzzuPzn/88brf7FLylicm4MyWNFloxaDRD093dzRNPPME777yDz+fDZrNFBmHBmEfv8/lobGyk\nv7+fsrIyvvSlLxEOh9m2bRtut5uuri5ef/11vF4vVqsVj8dDUVERxcXFzJ07l3nz5h1zoLWvr48X\nXniB9PR0XC4XVVVVhEIh0tPTSUtLo6CggClTpgCwa9cuVq1axYEDB7jgggsoKSnB7/dTUVFBUlLS\nqL+ziY5WDBrNh5TOzk7uvfdeHnjgAWbNmsWcOXOw2+0Eg0HC4TCzZs0iNzf3sGf8fj87d+7krbfe\nIiEhgUmTJtHX10d8fDyzZs3C5XIRDAZJT08f0tSjOT0YV2MMGo3m5FFKsXr1an7729/S3d1NVlYW\nixcvJiMjg23btrFr1y5qa2s5dOgQzc3N9Pb2smjRIu677z6ys7OPKw+bzcbs2bNPy4VWmrFBKwaN\nZpRRSlFXV8c777xDbW0tHo+HTZs28cEHH9Dc3MykSZNYsmQJM2bMoL29nccee4ze3l7y8/PJzc3l\n4osvJj09HbfbjdPpxGLRu+VrRhetGDSaE0ApxYsvvshvfvMbvva1r3HVVVexYcMGmpubyc7Oxu/3\n097eTl1dHRs3buTdd99l//79JCUlUVFRQXZ2NjabjTPPPJPLL7+ctLQ07Hb7YXl87GMfG6PSaTQG\neoxB86FGKYVS6qitcL/fz5o1a3jppZd46aWXEBEuvfRSVq78/+3deXBc1b3g8e/pVa1e1Nq31mJL\nlm28Y3ACGOKQYMDMOJMHRQgzk4UieZVAvVRm/njh5Q9IKn+QR4X3KKhUkYR5gSnDC4EJNpsxGIgx\n3oQ32ZYsW7Ys2ZKs1tJSq6VWr2f+kPrSsmXwIlmS9ftUdfXte6+6T1/de399zr3n/N5lcHCQzMxM\niouL6evrw2q14nK5yM3NxefzMX/+fEpLS3E4HFfxW4nZSK4xCDGOhoYGWlpaGB4epre3F4vFwrJl\ny4jH47S1tWG322lsbOTZZ58lmUwyf/58Dh48yMDAAPfffz9aa/bu3cu3v/1t7r33Xrq6unjttdfY\nsGEDPp+PFStW8Oijj1JVVYXJZOKOO+6gvb2d8vLyi7odVIiZQmoMYlo7efIkb775Jq2trWit+c53\nviaaxuEAABzISURBVMPSpUs5cuQIx44d4+TJk5w5c4ZPP/2Urq4uysvLsdlsOJ1O4vE4zc3NWK1W\ncnNzicfjuFwu7rzzTlwuF2fOnKGyshKbzca2bduwWCxUVlayfft2jhw5QnZ2NgsXLmTt2rUUFBR8\neWGFmELT7nZVpdQLwH8BOrXWS0fnPQ78CPCPrvYvWuvNo8suKlGPBIbZxe/3s3nzZrZu3cru3bs5\ne/YsZrOZG2+80ehQ9cknn9DZ2UlFRQVlZWXk5uaSm5tLRUUFixYtkguzYtaajk1J/wE8y0gmt3RP\na62fTp+hlFqIJOq55iQSCd577z2sVivf/OY3v7BpZWBggAMHDuD3+2lububIkSPs3r2bM2fOsGzZ\nMhYvXsxPfvIT8vPzcbvdY97ru9/9LvF4HKvVejW+lhCz0oQEBq31dqVUxTiLxjs7fAtJ1DNjHT58\nmI8++giv18vw8DBNTU0cP36cPXv24Ha7iUajOJ1Obr31ViorK6mqqiIzM5Pe3l4j89UzzzxDcXEx\nXq+XvLw8iouLefjhh5kzZ86XnvCVUhIUhJhkk33x+VGl1P8EPgP+92jOZ0nUM01Fo1FeeuklNm7c\nSF1dHTk5ORQWFtLf3084HGZoaIj+/n5WrlxJNBrFYrGQl5dHVVUV3/jGN6ioqCCZTHLw4EHjvv2N\nGzcSjUZxuVwopcjIyODXv/415eXlU/11hRAXMJmB4ffAr7XWWin1G+B3wMOX+iaSqGfixGIx9u7d\ny9GjRzl69CiHDh3CbrezYMEC2tvb2bp1K0VFRXz9619n3bp1DA4O0tfXh9PpxG63YzKZmDNnzhcO\nm2AymVixYgUrVqy4it9MiNltWibqARhtSnozdfH5QsskUc/Vd+TIEZ588kk2bdpEUVER5eXlFBQU\nUF5eTiwWo6Ojg+zsbKqrq40Bz4QQM8t0vPgMI9cTjIIopYq01mdHX/4DcHh0ehOwQSn1b4w0IVUD\neyawHLNCf38//f39lJaW0tLSwo4dOygrK8Pn8xEMBmlubmbfvn288847tLa2cs899/Dcc8/JsMZC\niC81IYFBKfUysAbIVUq1Ao8DX1dKLQeSwCngH2F2J+pJJBIcO3aMnp4eBgcH6ezsJBQKYbPZaG5u\n5tixY/h8PrKysjh79ixer5eqqiry8vI4ffo0L7/8Mh0dHUQiEYLBIC6Xi76+PjweD4sWLSIQCNDT\n00NmZiYFBQX4fD7uu+8+Fi5cKBdshRAXTTq4TbB4PM4bb7zBpk2bOHToEENDQ8DIsApdXV3k5ubi\n9Xqx2WxkZ2djt9uJxWLk5ORQXFxMIBAgHA6TlZXF4OAgPT09hEIhHA4HN998Mz6fD5PJRF5eHiaT\nybgILPfvCzG7TdempFlpeHiYnTt3snXrVg4fPkxtbS25ubnceuutPPjgg0YCEqvVSlZWFk6nc0I/\n32azTej7CSGEBIbL0NLSwquvvsobb7zBgQMHqKysZNGiRcyfP5877riDiorxunQIIcTMIIHhIsXj\ncT766COee+45tm3bxk033cQdd9zBz372M0lLKIS4pkhgGBUOh418tJ2dnRw7doxIJEJBQQGnTp1i\n//79FBUVcdttt/HHP/7xvDH0hRDiWjHrAsPQ0BA7duygtraW+vp6Tp8+bSRIr66upqSkBJfLRWVl\nJVarlWAwyC233ML3vvc9cnNzp7r4Qggx6a75wKC1xu/3k0wm2bVrF48++qgxjIPP52PevHmYTCZ+\n+MMfkp+fP9XFFUKIKXfNBIZ4PE5jYyP79u3j3XffZd++fSQSCc6ePYvFYsFiseD1ennkkUdYuvS8\nztlCCCFGzcjA0NPTw+bNm3nvvffo7+/H7/dz6NAhcnNzqaysZPHixTzyyCOYzWa8Xi8ej2eqiyyE\nEDPGZCbqyQb+AlQw0vP5/tHRVS8rUc/w8DDPP/88zz//PK2trSxbtozly5fj8XhwOp3MmzdvwvsI\nCCHE1ZBMJgGMjqrJZJJAIEAoFDKWaa3HTKc/ANrb23n99dfZt28feXl506KD23iJen4BfKC1/lel\n1D8DjwG/UEpdxyUk6kkmk7z44ov88pe/ZM6cOXz/+99nwYIFXzjC51QKh8P4/X4jb4DVasVisYyZ\nHq+XcjQalVwD4pIkk8lL6vEejUbp7OwkHo/jcDhIJpPE43FisRjxeHzMdPrzeMvj8TgApaWlFBQU\nYDabcTgcuN1u3G73Je/HWmuCwSDt7e309vYSCoUAMJvNRlOw2WwmFArR19eH1hqz2YzJZMJsNmM2\nm8nIyCAzMxOHw8HQ0BCBQACTyYTdbsdut485Z5hMJjIyMsjIyMDhcIx5tlg+Py2GQiG6uroYHh4m\nmUzS3d1NR0cHHR0dhMNho0xDQ0NGOVPHO0BfXx99fX309/cb2yw98ZRSyvg/KKVwOp0opQiHw8b6\nl+rvf//7Zf1duslM1PMt4Guj0y8CHzMSLNZzCYl6li9fTm9vL7feeisFBQW0tbXR0dGByWTC6XTi\n8/nweDzGSTcajRIIBLBarTidTgYHBwmHwxf1PVL/oEQicd7z4OAgAwMDBINBBgYGxjyGh4eJRCJE\nIhEGBga+9HPMZvOYQJFIJAgGgwC43W4cDoex3OPxUFxcjMlkIh6PY7fbSSaThMNhYweMxWIkEgmU\nUsYjkUiQTCZJJpP09PTQ39+PxWLBZrNhtVqx2Wxjpq1WK5FIhHA4zODgIABer5fs7Gy8Xi8ulwuz\n2Uw4HDYeqc9IJBJ0dnbS09NDXl4ehYWFWK1W44BNHdQmk4lAIEBXV5exLBQKEY/HMZlMRtlTJ7vU\nvHOXXcq81CP9xBIOh/F6vdjtdiKRCB6Ph+zsbOPXmdfrJRaLEQqFGBgYIBQKjZkeGBhAKUVeXh6J\nRIKhoSEyMzOx2+3GSfPck2j6PKUULpfrvF7rqRPGudnvUt8hdWJLlSMcDmOz2fB4PLjdbsxm83mf\nl16OaDTK1RpiJrVPpT47JyeH3NxcMjIyiEajRCIRo4bf3d1NT08P0Wj0qpTtyzgcDrKysggGg8aQ\nNleD1toIiFf6Pldq0obdVkr1aq1z0pb3aq1zlFLPAju11i+Pzv8T8I7W+v+N854za6AkIYSYIG63\nG6/Xa/zIgc+bmtJ/9KQe0WiUs2fP8vbbb3P77bdPi6akizErTvJms9moWqdXw9Onx5PetijEZEgN\nvuhwOIxmkFSt89xmkPTp9ObQ9PVisRitra309/eTTCYZGhoyatGXsx87HA6Ki4vJz8/H5XIZteT0\nmrvD4SAnJ8dogknVWBOJxJjarM1mM/odpWrz6WVKJBIMDw8zPDxMOBweM52+ns1mo6CgwKjdZGdn\nU1xcTHFxMW63m0QigdPpxOVyGeVMHetaa7KyssjOziYrK8uoIaZ+jKf/KLdarSSTSaO2brfbL6kT\nbSpRTzAYnD5NSRfQqZQq1Fp3KqWKAP/o/DagLG093+i8cZWVlVFVVWW0JaYuwKQuzrS1tREOh42T\nrsViITs7m1gsxuDgIC6X64JDVpxbZU99RqrZIXU9wGKx4HA4jCq72+3G4/Hg8XhwuVw4HA7sdjs2\nm82o0l+I1vq8NlylFFlZWQAEg0EikYixc/X09NDR0WGUJxKJoJTC4XCQSCSIRqPYbDZj26QeqaYb\nk8mEx+MhJyeHZDJJNBolFosZz6np1PtkZmaSmZmJ1pq+vj4CgQD9/f2EQiESiYTRhutwOMZ8RnZ2\nNvn5+fj9fnp7e42DNfVIHdgul4uioiLj/+hyuYyDIr38qdfp8y93XurkEYvFjP9XIBAgFoths9mM\n7+jxeFBK0d/fj9VqxeVy4Xa7x31OJBJ0d3djsVjIzMw09sH0E2fqZJreTp76rqkmtHNr7OOdNODz\nZk7AKENmZibDw8NjTsbjfX5qOrWfTDattbEPp46l7u5uI0WszWbDbrczNDREIpEgLy+PvLy8aTG0\njNaawcFBAoGAcYyfe56YLCaTyTgPXKolS5bgdrtpbm7miSee4Fe/+tUVlWXSEvUwkpDnB8Bvge8D\nG9PmX3SinmQySUFBAevXr7/sjTadpF+UHs+5iXTmzp17NYo1YWpqaqa6CFdNaenlpyp3uVwTUoZU\nIC8sLJyQ95sIqdze6b94S0pKKCkpmcJSXZzU9Z+J+v/MVBMyiP9oop4dQI1SqlUp9UPgSeAOpVQj\n8I3R12it64FUop53+JJEPdu3b8flcvHTn/6UDRs2XNWLQUIIMRvNmEQ9ra2tPPbYY2zatInly5dz\n/fXXc/3118v4RUIIwSxN1FNeXs6GDRvo7u7mnXfeYePGjbz44ouUlZWxatUqli5dSmVl5bTt3yCE\nEDPFjKkxjCcajfLBBx/wt7/9jY8//hi/38/ixYvJzc0lKyuLyspKvF4vMHKtIisra0a0cwohxKWa\nlTWG8dhsNtatW8e6desAOHv2LJ9++ikdHR20tLSwc+dOent7jbt0WlpaWLJkCevXr6eqquqq3W0g\nhBAzyYwODOcqKiri3nvvveDyUCjE008/zbPPPkswGKS0tJTs7Gxyc3OpqqpixYoVs/5uBCGEmNFN\nSVfi1KlTtLS00NbWRnNzM5988gnbtm0jEolgtVopLS3FZDLR2dmJx+OhpKSE4uJiqqqquPHGG3G7\n3ZNSLiGEuBzSlDQBKisrqaysHDMvkUigtWZ4eJgTJ06QSCSoqKigt7eXpqYmGhoa+Oijj/jDH/5A\nYWEh5eXleL1eSkpKuO666/B4PNhsNhnlVQgxo83aGsOVGB4epqGhgfr6etrb26mrq+PTTz8lGAwa\ng9vNnTuX6upqCgoK8Hg85ObmUlRUZFwMF0KIiSQ1himWkZHBihUrWLFixXnLtNZ0dXVx4MABdu7c\nyenTpzl8+DDt7e00NTWRmZlJTk4OTqeTwsJCYyiA1LARTqeTnJwcSktL0VozNDREWVnZeSNxCiHE\nZJn0wKCUOgX0A0kgprVe9UVJfGY6pRQFBQWsXbuWtWvXjlmmtebkyZN0dXURCARobGyktbWVYDCI\nxWLB6XTS29vLgQMHaGpqMsZoOn36NDU1NSxatIiysjJjGGyr1crQ0BB5eXl4vV5jHKbUEM1y15UQ\n4nJMelOSUuoksFJrHUib91ugJy2JT7bW+hfj/O20bEq62gYGBti+fTsffPABx44do7Ozk76+PiKR\nCC6Xi9OnT5ORkWEMzJZIJHC73VRUVLBgwQKWLFlCTU3NtBikTAgxOWZaU5Li/DGZLpTER4zD7XZz\n9913c/fdd4+7PJlMcubMGbKzs3G73Wit8fv9HD58mA8//JC33nqLuro6ampq+MpXvsK8efPw+Xxy\na64QYlxXq8bQBySA57XWf1JKBbTW2WnrjEnqkzZfagwTZHh4mC1btvDaa69RV1dHU1MTNpuN0tJS\n8vPz8Xq9lJaWcvPNN8utuELMQDOtxnCL1rpDKZUPbBkdbfXcs/0Fz/5PPPGEMb1mzRrWrFkzGWW8\n5mVkZLB+/XrWr18PjFzv6OjooLm5mVOnTtHW1sbu3bv58Y9/TEVFBTk5OUaSkXnz5hnDi8h1CyGm\nn1Sinq6urjHnzMt1VW9XVUo9DoSAh4E1aUl8PtJaLxxnfakxXGV9fX3U19dz5swZurq6OHnyJDt2\n7KCxsZFIJEJNTQ0lJSX09PQY40/l5uZSUFBg5Epub283cmHDSHaqjIwMEokEMJJjYt68eRQWFl5S\nMnshxIXNmBqDUioTMGmtQ0opJ7AW+BUXTuIjppjX6+Xmm28ed1lfXx+7du2iqamJiooKrFYrHR0d\nnDp1ipMnT9LQ0EBGRgY1NTVGRikYacYKBoPYbDZisRi7du3i5ZdfpqenB4fDgc1mo7q6mqVLl/K1\nr31NOggKMcUmuympEPibUkqPftYGrfUWpdRnwKtKqYeAFuD+SS6HmABer5e77rprwt4vFAoRDocZ\nGBhgz549vPrqq/zoRz8iJyeHzMxMSkpKqKysZOXKlZSUlKC1prGxka6uLqPHeX5+vjRvCTHBpOez\nmFYCgQB+v59AIMDRo0fZvn07W7Zsob29HbPZzIIFC6iursbv93Ps2DFCoRDZ2dmUlJRw4403ct11\n11FSUoLVajVyD9tsNmmyEte8iWxKksAgZoRkMkk0Gh2TRxhGmre6u7s5cOAAr732Gp999hktLS2p\nAwOLxYJSivLycmw2G263m/nz55OXl4fFYqGgoAC3200gEMBkMpGRkUFjYyMtLS3E43E8Hg9z5syh\npqZGsgWKaU0CgxBfIBVElFLY7Xb6+/s5duyYcWH8ww8/xO/3Mzw8THNzM4FAgMLCQpLJJAMDA6xc\nuZJVq1bhdDo5c+YMe/fuZc+ePTidTpYsWcKyZcuoqamhtraWEydOUF5eTkFBATabDbvdjsPhwOl0\nkpubK0OZiKtGAoMQV5nWmiNHjvD++++zefNmdu/eze23386dd97J/v37aWtrIxwOMzQ0RCgUoq+v\nD7/fT15eHtnZ2cbdW1lZWTidTpYuXUpZWdlUfy1xDZHAIMQMEIvFaG5upqurC7/fT3NzM52dnXR1\ndfH2229jt9vJy8vD5/OxfPlyvF4vkUiEU6dOYTKZjOsldrt9qr+KmAFmzO2qQsxmVquVmpoaampq\nzluWSCRoaGjA7/dTW1vLu+++S39/PzabjaVLlxKJRHjmmWdobW3F6XSSl5dHfn4+hYWFrFq1isWL\nF8vdWGLSSI1BiGksmUzS3d1NW1sbLS0t1NfX8+c//5lIJMLixYupqamhurqa/Px8HA7HuMEiEolw\n9OhR9uzZg9/vZ2hoCLPZjNvtprKyEofDQSwWw26343Q6yc7Oprq6+qIHXdRaS5CaBqQpSYhZTGvN\nvn372LZtGzt27GDv3r10dnaitWbhwoUUFhYSDofp7+/H7/fT3d3NokWLuPfee1myZAler5dEIkF7\nezu1tbWEw2EyMjIYHBykp6eH9vZ2jhw5wrJly/B4PFitVmw2G1prkskkFRUVlJWVEYvF2L59O++/\n/z6lpaWUlZUxPDyMx+Nh7ty5lJWVUVlZSVZWllF2v99PR0cH8+fPP+8OM3FlronAoJS6C/h3RkZe\nfUFr/dtx1pHAIMRFCgQC7NixgzNnzuDxeCgsLMTn8zFnzhysVuslvVdPTw9btmxhYGDAuKhuMpnQ\nWvPZZ59x/PhxrFYrt99+Oz//+c9pb2/n+PHjuN1uY9yt+vp66uvrWbx4MR6Ph6amJnp6epg7dy4N\nDQ2UlpaSk5ODz+dj4cKFXH/99ZdcTvG5GR8YlFIm4BjwDaAdqAUe0FofPWc9CQxCzGChUIi//vWv\nhMNhVq5cycqVK7FYLASDQZqammhvb2f//v289957HDp0iK9+9avccMMNWK1WgsEgXV1dtLS00NDQ\nQCKRoKCggHXr1nHbbbdhscgl0nTXQmD4KvC41vru0de/APS5tQYJDELMHqdPn+b111/nrbfeQmtN\nfn4+lZWVLFmyhNWrV5ORkcHBgwf5zW9+Q0NDA6tXr6a4uNjotJiTk8PAwAB9fX0kk0nmzp07q659\nXAuB4V7gTq31j0df/w9gldb6n85ZTwKDEOI8jY2NvPLKK7S3t9PR0cGuXbsIBAJkZWWRn5/P0NAQ\nXq8Xn8/H/v37qaysZPXq1bjdbjIyMnC73VitVkwmE2azmZaWFrZt24bL5WLBggWYTCbsdruRr8Rs\nNk/1V/5ScruqEGJWmz9//pi8A1prtNbGmFiJRIK//OUvtLe389RTT7F7925ef/11BgcHGRwcpLe3\nl1gsRjweJx6P4/P5+MEPfsDAwAA7d+5EKcXAwADHjx+nu7ub0tJSqqurue6667jppptwOp0MDQ3R\n2dmJxWK55jorTlVgaAPK0177RuedRxL1CCG+jFJqTLOR2WzmwQcfNF4vWrSIhx566LLee2hoiMbG\nRmpra3nzzTd54YUXjDu0ysvLCQaDOJ1OqqqqyMzMJJlM0tfXx4kTJ5g7dy4PPPDApAeOGZ2ox/hQ\npcxAIyMXnzuAPcB3tdYN56wnTUlCiGklGAyitcbj8aCUIplMsmPHDo4ePUpvby82m438/HyWL1/O\npk2beOqpp7BYLFRXV7Nw4UKqqqooLS2d8EEZZ/w1BjBuV32Gz29XfXKcdSQwCCFmNK01LS0t7Nmz\nh61bt1JXV0djYyPFxcWsXr2a5cuX4/P5xtR4+vv7jSRWF6upqYnnn39+ZgeGiyGBQQhxLYrH42zZ\nsoVXXnmFDz/8EIvFwg033EBXVxf19fVEo1Hsdjvr1q2jsLCQYDBIQ0MDw8PD5OXlsW7dOioqKjhx\n4gTbt2+nrq6O06dPc9999/HSSy9JYBBCiJlMa01tbS1vvfUWCxYsYPXq1ZSVlVFXV8ezzz5LX18f\nWVlZrFmzhpycHA4ePMjvfvc7ioqKCAQCPPTQQ6xbt44bbrjBqGFIYBBCiFnm7Nmz7Nixg3vuuWfc\n0XclMAghhBjjSgODJMIVQggxhgQGIYQQY0hgEEIIMYYEBiGEEGNIYBBCCDHGpAUGpdTjSqkzSql9\no4+70pY9ppQ6rpRqUEqtnawyCCGEuHSTXWN4Wmt9/ehjM4BSaiFwP7AQuBv4vZpNg6ZPkY8//niq\ni3BNke05sWR7Ti+THRjGO+F/C/hPrXVca30KOA6smuRyzHpy4E0s2Z4TS7bn9DLZgeFRpdQBpdSf\nlFKpjOClwOm0ddpG5wkhhJgGrigwKKXeV0rVpT0OjT7/V+D3wFyt9XLgLPC7iSiwEEKIyXVVhsRQ\nSlUAb2qtl56b31kptZmR/M+7x/k7GQ9DCCEuw7RM7amUKtJanx19+Q/A4dHpTcAGpdS/MdKEVM1I\nop7zXMkXE0IIcXkmM7XnvyqllgNJ4BTwjwBa63ql1KtAPRADfioj5QkhxPQxrUdXFUIIcfVNy57P\nSqm7lFJHlVLHlFL/PNXlmYmUUqeUUgeVUvuVUntG52UrpbYopRqVUu+l3SkmzqGUekEp1amUqkub\nd8HtJ502L+wC21I6wF4mpZRPKfWhUurI6A0//zQ6f8L2z2kXGJRSJuA54E5gEfBdpdSCqS3VjJQE\n1mitV2itU/1EfgF8oLWeD3wIPDZlpZv+/oORfTDduNtPKXUd0mnzi4y3LUE6wF6uOPC/tNaLgJuA\nR0bPkRO2f067wMBIZ7fjWusWrXUM+E9GOsWJS6M4///7LeDF0ekXgf92VUs0g2ittwOBc2ZfaPut\nRzptXtAFtiVIB9jLorU+q7U+MDodAhoAHxO4f07HwHBuB7gzSAe4y6GB95VStUqph0fnFWqtO2Fk\n5wIKpqx0M1PBBbafdNq8PNIB9goppSqB5cAuLnx8X/I2nY6BQUyMW7TW1wPrGKlq3spIsEgndx5c\nGdl+l086wF4hpZQLeA342WjNYcKO7+kYGNqA8rTXvtF54hJorTtGn7uANxipOnYqpQphpJ8J4J+6\nEs5IF9p+bUBZ2nqyz34JrXVX2m3qf+Tzpg3ZlhdBKWVhJCj8X631xtHZE7Z/TsfAUAtUK6UqlFI2\n4AFGOsWJi6SUyhz9NYFSygmsBQ4xsh1/MLra94GN476BSFGMbQe/0PbbBDyglLIppebwBZ02Z7Ex\n23L0xJVybgdY2ZZf7v8A9VrrZ9LmTdj+OZkd3C6L1jqhlHoU2MJI4HpBa90wxcWaaQqBv40OKWIB\nNmittyilPgNeVUo9BLQwcqeCGIdS6mVgDZCrlGoFHgeeBP567vaTTptf7ALb8uvSAfbyKKVuAf47\ncEgptZ+RJqN/AX7LOMf35WxT6eAmhBBijOnYlCSEEGIKSWAQQggxhgQGIYQQY0hgEEIIMYYEBiGE\nEGNIYBBCCDGGBAYhhBBjSGAQQggxxv8HPMlHVoJ6+ZwAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7f8277299be0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# number of recursive steps\n", "nsteps = 200\n", "# number of samples drawn from distribution\n", "nsamples = 500\n", "# number of repetitions of recursive sampling\n", "nrep = 100\n", "\n", "# initial mean\n", "mu = 23\n", "# initial standard deviation\n", "sigma = 100\n", "\n", "# degrees of freedom determining the divisor for\n", "# the estimation of standard deviation (1.5~unbiased)\n", "ddof = 1.5\n", "\n", "means = np.full((nrep, nsteps), np.nan)\n", "means[:, 0] = mu\n", "stds = np.full((nrep, nsteps), np.nan)\n", "stds[:, 0] = sigma\n", "\n", "for r in range(nrep):\n", " for s in range(1, nsteps):\n", " S = np.random.normal(means[r, s-1], stds[r, s-1], nsamples)\n", " means[r, s] = S.mean()\n", " stds[r, s] = S.std(ddof=ddof)\n", " \n", "plot_distribution_drift(means, stds)\n", "print('after %d steps with %d samples:' % (nsteps, nsamples))\n", "print('difference in mean mean: %6.1f%% (of initial std)' % (\n", " (means[:, -1].mean() - mu) / sigma * 100, ))\n", "print('difference in mean std: %6.1f%%' % ((stds[:, -1].mean() - sigma) / \n", " sigma * 100, ))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The generated plots should have a relatively flat, thick, black line in the middle which suggests that mean and standard deviation did not change much when averaged across repetitions. The shading, representing the area of double standard deviation across repetitions, however, should become wider as more recursive sampling steps are taken, indicating that in some repetitions there was a considerable drift of the distribution (see below for plots of individual trajectories).\n", "\n", "You may now want to see how these curves change, when you manipulate the number of samples, or degrees of freedom (ddof) used to estimate standard deviations from samples. Increasing the number of samples is generally good and leads to a reduction of mean drift and a narrowing of the shading, meaning that also the drift in individual repetitions of recursive sampling is small. Setting `ddof=0`, which is the standard setting of numpy (!), leads to severe shrinkage of the sampled distribution." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Individual recursive sampling trajectories\n", "To get a feeling for the variability of recursive sampling trajectories across repetitions the following cell will plot a single (random) trajectory computed above." ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "largest deviation from initial mean: 54.6% (of initial std)\n", "largest deviation from initial std: 26.2%\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEKCAYAAAAB0GKPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXdYVFf6+D+H3rsUQRFEsaAgYtfYlcTYjemJMcVsTIyb\nZFM22dUkm7qbxJRfTDR9vxtb1o0mdlQsBBVLEAUBBaQJSmcAYZg5vz9mnICKooCAns/z3IeZ0+57\nL3fue8p73ldIKVEoFAqF4mqYtbYACoVCoWgfKIWhUCgUikahFIZCoVAoGoVSGAqFQqFoFEphKBQK\nhaJRKIWhUCgUikahFIZCcZ0IITYKIR68Qv5SIcSrN1ImhaIlEWofhkJxdYQQi4CuUsqHGsh/GHhM\nSjniBsiyFHgAuPDjtQKqpZTOxnx/4HNgCHAe+C/wrJRS39KyKW5u1AhDcVMghDBvbRH44wXeokgp\n/ySldJRSOkkpnYAVwJo6RT4HzgJeQBgwEnjqRsimuLlRCkPRbhFCpAshXhRCxAMaIYSZEMJHCPGT\nEOKsEOKUEOKZOuUXCSHWCCFWCiHKhBAHhRB96+Rftq4QYiLwV+BuIUS5EOKIMX2nEGKuEKIHsBQY\nYswvMuZ/K4R4o077jwshUoUQBUKIn4UQPnXy9EKIeUKIFCFEkRDis0beA3tgJvBdneQuwCoppVZK\neRbYDPS+ppurUFwGpTAU7Z17gNsBFww9/F+AI4APMBZ4Vggxvk75KcAqwBVDz/xnIYS5EEI0VFdK\nuQV4G8NL2FFK2a+uAFLKE8CTQKwx3+1iIYUQY4xtzDK2nwmsvKjYJKA/EArMFkJMaMT1zwTOSin3\n1klbAtwjhLAVQvga78+mRrSlUFwRpTAU7Z2PpZS5UspqYADgIaV8S0qpk1JmAF9hUCoXOCSl/J+U\nUgd8CFgDgxtZtyncB3wtpYyXUmqBVzCMSDrXKfOOlLJcSpkF7MQwnXQ1HgJ+uChtDxAClGFQTHFS\nyvVNvgLFLY9SGIr2Tnadz/6Ar3FKp0gIUYzhxexZp0zWhQ/SYPGRA3RsZN2m0BE4XefcFUAh4Fun\nTH6dz5WAw5UaNCqbUdRRGMaR0mbgJ8AO8ADchBDvNU18hQIsWlsAhaKJ1F1ozgLSpJTBVyjf6cIH\n48vVD8gFdFepe7UF7avl52JQShfObQ+4U1/hXSsPAHuNo6ELuGG4xv9nHMkUCyG+Bd4EXmrCuRQK\nNcJQ3FQcAMqNC+E2xrWJ3kKIiDpl+gshphmtqv6Mwex0XyPq5gNdjErmcuQDfkIIywbyVwCPCCH6\nCiGsMaxn7DNOP10vDwHf1k2QUhYC6cCTxmtwAR4G4ptwHoUCUApD0b6p16s37jO4E8PcfzoG09Ll\ngFOdYuuAu4Fi4H5gunHN4mp112AwnS0UQhy8zPl3AMeBPCHE2UsElXI78DdgLYZpsADqr49cPEK5\n4ohFCDEYw3TWT5fJngHcAZwDUoAa4LkrtadQNIYW3bhn7EntxrCxyAL4SUr5uhDCFYOlij+QAcyW\nUpYa67wCzAVqMWw22tpiAipuKa62+U6hUFyZFh1hGC1XRhvNEMOA24UQA4GXgSjjfPEODIuLCCF6\nAbOBnhhMAT+/whSAQqFQKG4gLT4lJaWsNH60xjDKkMBU4Htj+vfANOPnKcBKKWWtcSEvFRjY0jIq\nFAqF4uq0uJWUEMIMOAR0xWC5ESeE8JJS5gNIKfOEEBdMF32B2DrVc6hvdqhQXDdSytdbWwaFoj1z\nI0YYeuOUlB8wUAjRm2tc4FMoFApF63PD9mFIKcuEENFAJJB/YZQhhPDGYJEChhFFpzrV/Ixp9RBC\nKAWjUCgU14GU8rrXhVt0hCGE8BBCXHC5bAuMB5KA9cAcY7GHMZg6Yky/RwhhJYQIAIIw2MdfgpRS\nHc10LFq0qNVluJkOdT/VvTx79iwTJkzAycmJ0NBQnJyc6NKlCx4eHnh5efHtt99SW1t7w+VqKi09\nwvABvjeuY5hhcN62UQixD1gthJiLwV3CbAApZaIQYjWQCGiBp2RzXKWiXaDRaFi1ahWTJk3C29u7\ntcVRKK6ZtLQ0duzYweLFixk+fDjff/89FhYWFBYWUlxcTNeuXUlOTubDDz/kH//4Bx999BGTJ09u\nbbEbTYsqDCllAhB+mfQiYFwDdd4B3mlJuW5mtFotK1aswMHBgfDwcNatW0dGRga33347Y8aMwcKi\nbXiDiY2N5fXXXycxMRGNRkOPHj1ITU3Fz8+Pv//976xfv57+/fu3tphtkrS0NA4cOMDMmTOxtLRE\no9FgY2PTZv63tyIbN27krbfeIjk5mbCwMB577DEiIv5wMODu7o67uzsAPXr04K233iI+Pp45c+bw\nf//3fwwdOpR169YREBBAREQEtra2VzyfTqdDo9Hg7Ozcotd1Me0y4p4Q4oYOPKSUFBcX4+Z2idfq\na2ojMzOTY8eOMWTIkEa1VVFRQXx8PC4uLgQGBmJjY2PKS0xM5MSJE0ybNo3NmzezcOFCvL29ycrK\nws3NDXNzc1JSUoiIiMDb25vDhw+j1Wr55z//ybRp05BS8t5771FSUoK3tzeRkZFUV1eTmJhIRkYG\n5eXlPPPMM/j4+FxBwmtHo9Ewb948tm/fzuzZs+nTpw/W1tacPn0ad3d3OnfuzG+//cYXX3zBG2+8\nwfz582lvW3Gio6MZNWpUs7ebn5/PCy+8wK+//oqvry86nY6goCB27NiBVqulT58+rFu3Dj8/v2Y/\nd2vRUveyqZw4cYJ//OMfREREEBcXx+7du7nvvvsYMmTINSnuxMRE3n33XYQQBAcHU1JSQnFxMf/+\n978ZN+6yfWp2797N/PnzSUtL47nnnmPw4MGcPHmSHj16MGTIEJycnC5bD0AIgWzCGoZSGBdRU1ND\nQkICvXr1wsbGhuTkZObNm0dsbCyBgYE89NBDLFiwAAeHKzoSrUdMTAzPPPMMWVlZ+Pn5kZGRwQMP\nPMDgwYPR6/XExcWRlJSERqNh8uTJuLm58fPPP7N37146depEZWUlOp2O77//nrFjx7J3716mTp2K\nq6srlpaWFBQUmF6sNjY29O59aawcKSWHDx/m22+/ZdCgQbi4uLB7925CQ0M5fvw45eXlmJmZ0blz\nZzw8PKiurmbfvn289NJLeHt7069fv8u2ey1ER0fz+OOPExQUxKOPPlpPAV5Mbm4uH3zwAb6+vnzy\nySeEhIQ06dxguAelpaVoNBpSU1M5efIkHh4e9O7dm+7du5vKlZaWUllZ2WzKsrS0lE8++YRff/2V\ns2fP4uDgwKRJk3jkkUcIDr6Sn8Q/WLlyJU8//TSjRo3irrvuws7Ojn379lFeXs7w4cOxtLTkl19+\nYceOHURHR9OlS5dmkb0tU1tbW+/lXFlZyenTp+nRo8d1dzKklOh0ugZf+tXV1fz888889dRTREZG\nUlRUhJ2dHffee+8Vn+crkZKSgoODAx07dgTgyJEjfPbZZ9x111289957WFpacu7cOaytrVm8eDFr\n1qxhzpw5BAcH8+OPP1JWVoanpye5ubmkp6ezYMECunXrxt69e00jkUOHDvHmm29yzz33tF2FIYTw\nw+B62QvQA8ullJ801TVISymM8+fPM23aNH7//XfKysrQ6/XY2dkxc+ZM7rjjDtLS0vj11185duwY\nc+fOZd68eQQGBjbYnl6v5+9//zvLly/nwQcf5LbbbsPMzIz8/Hx27txJdnY2QggCAgLw8/PDwsKC\nuLg4qqqqCA8PJzw83KSYDh06xNKlSyktLcXCwoK//OUvhIWFcfDgQQIDA/Hw8Gj0Nf7www9kZ2fz\n0ksvYW9v32DZEydOsGPHDqqrqzl+/Dj29vb06tULFxcXcnJyyMjIID8/n3nz5rF48eIGezapqaks\nWLCAo0eP8uCDDzJ8+PBGyVpbW8umTZtYs2YNNTU1eHp68sYbbzBz5kzS09M5ffo0mZmZpKWlodFo\ncHd3Jzw8nL59+3Lo0CGEENx5550UFhaycuVKvvjiC86cOYOtrS0dO3bE29ubiooKUlJScHZ2pmfP\nnuj1enbv3o0Qgscee4yJEydiY2PD4MGDsbKyapTcACdPnsTR0RE7OzvGjh2LnZ0dY8aMwcvLi/Ly\ncvbt20d0dDT9+/fnr3/9KyNHjmzwHrzyyiv8+OOP/OUvfyEoKOiK512/fj3R0dHExcU1erpCq9WS\nl5dHp06drl4Yw8i3qqoKDw8PpJTk5eVdl3ItKSkhKSkJKysrfHx88PHxMb3opZTs37+fpUuXotPp\nGD9+PBMnTsTc3Jx//OMfbNiwgYyMDNzc3PDx8aGoqIhz585ha2vLrFmz+PLLLyktLcXKyuqKz3hR\nURHLli1jw4YNnDhxguLiYqSUWFtbExwczN13342zszNZWVkcOHCAAwcO4O/vz4MPPkivXr2u+Zob\nS1lZGV9//TXx8fFUVlZib29PZWUlgwYN4vHHH8fR0fGy9fLy8li9ejXnz5+ne/fuWFtbY2FhwZEj\nR5g6dSovvPBCm1YY3oC3lPJ3IYQDhg18U4FHgEIp5ftCiJcAVynly0bXIP/BEMzGD4gCul2sHYQQ\ncvny5Xz99deMGDGCUaNGYW5uftXh2JWIi4vj+eefx8zMjIULF6LT6ZBSXrbXkJWVRVRUFDt37uTL\nL7/krrvuMuUdOXKE1157jVOnTmFra0tNTQ0vv/wyrq6u1yVXXXQ6HVqtFnNzcywtG3KK2jLo9Xoy\nMjI4c+YMFRUVuLm54eXlhY2NDatWreLgwYM89thjzJo1iy5duhAdHU1UVBQ5OTns3buXadOmMWXK\nlOuSW6fTUV1dTVpaGt9++y3p6en4+Pjg5eWFu7s7Hh4e2NjYUF5ezqlTpzh9+jRBQUHU1NSQnJyM\nmZkZgwYNYuzYsfTq1euS3qderyctLY38/Hy0Wi3h4eHodDpWr15Nfn4+Go2G/Px85s6dy6JFi3Bw\ncKC6uhpra2tTG5mZmbz66quUlJSQnp5Ofn4+1dXVODo6Ehoayp/+9KdLzltTU8POnTv5+eef6dy5\nM3PmzCE0NJSjR49y/vx57OzseO+993B2dubZZ59ttAJYtmwZVVVVTJ48mZMnTxIWFkZ4eDjdunUD\n4Ny5c6SkpHDo0CF27dpFTEwMADNnzmTevHlkZ2dz/vx5Kisr2bdvH5mZmaY1koqKCvbt24cQgvDw\ncE6fPk1eXh4PPfQQH330Efb29hw8eJBvvvmGqKgobG1t+d///kdgYCBSSk6cOMH69ev54YcfyMjI\noEuXLuh0Os6ePYu5uTmBgYE4Ojpy9OhRbGxsGDduHLa2thw7dozff/8dvV7PmDFjGD9+PH5+fhQX\nF1NUVISzszPu7u5otVrefvttqqqqyMnJwdXVlZUrV9KtWzfKy8sJDAy8MC3D8uXLefHFFxkwYADD\nhw/H398fFxcXzM3NOX/+PCkpKezbtw8pJU5OTgQGBtKjRw9cXFyu+Rm+XrKysnB3d8fOzq5J7Xzz\nzTcMGzasbSuMS04mxM/AZ8ZjpPxjH0a0lLKHEOJlDHFt3jOW3wQsllLuv6gdGRISwpQpUzh58iTp\n6enU1NRQUFDAt99+y7hx4xo9JK2srOT+++9n37593HHHHUyZMgVzc/NG1T116hTvvPMOkydPZu7c\nuSxdupRNmzYxY8YMevfuTUFBAWFhYdfUM22v5ObmsmnTJo4dO0ZOTg69e/cmNDQUDw8PevXq1aT1\nn7pIKdHr9Y3+HxUXF+Pg4NBkBZuXl8eqVatITEzExcWF5ORk+vfvT2RkJDqdji+++IKJEyfSpUsX\nnJyc6NGjB1qtltTUVHr37o2ZWcMW7DqdjpiYGOLi4sjOziYgIABra2vKysoYOXIkAwYMuKYpltra\nWpYvX45er8fb29s0EsvKysLMzAwXFxd8fX3p1KkT3bt3p2/fvlhaWrJixQqSkpLw9PTE2toac3Nz\nAgIC8PLyQqvVotPpMDc3p0+fPqZeq4eHBx07duSrr75i586d2NnZ4ejoyOjRo4mIiCA5OZmffvqJ\n3r17c+zYMaytrQkNDWXEiBH06tXL9H+UUnLu3DnOnj1LZWUl/v7+eHp61rvu2tpaKisrr9opPH/+\nPImJifTq1YujR4/y6aefmjp/Wq2Wnj17ApCTk8OLL77Y6JFVe6bdKQwhRBcgGkPoyCwppWudvCIp\npZsQ4lMMcZF/NKZ/BWyUUq69qC358ssvM2zYsHrnOHToEMuWLcPc3JxJkyYxbdo0fHx8qK2tpV+/\nfpf86IqKioiMjMTJyYn58+df10ulpKSEDRs2sHv3boYMGcLs2bOb3BtQtF2Sk5ORUhIQEEB8fDzJ\nyckADBo0qN46SFtEStmiBgQX5ssdHR3rKcjU1FRKS0sJCAgwWQrdSOpe97lz58jNzUWj0dC/f//r\nXndob7QrhWGcjooG3pRSrrugIOrkF0op3ZuqMOAPa6S4uDiOHDmCRqOhuroaX19fnn/+eSwtLRk4\ncCDu7u6MHTuWDh068Oijj7Y7SxyFQqFoLM2lMG6E80ELDEFe/i2lvLCju0muQQD27NnD6dOGEMl9\n+vShT58+F86Hv78//v7+zJo1CzD0fHbu3MmSJUsAgylb586dcXV1Ze7cuUpZKBSKm5KEhAQSEhJM\nVphNpcVHGEKIH4ACKeVzddLeA4qklO81sOg9CIOX2m00sOjd0AijMZSUlBATE8P48eNvifUFhUJx\na9MuRhhCiGEYwmAmCCGOYPBK+1fgPVrRNYiLiwuTJk1q7mYVCoXipqalXYPEAA2ZsyjXIAqFQtGO\naPF4GAqFQqG4OVAKQ6FQKBSNoqXjYXwthMgXQhytk+YqhNgqhEgWQmy5EC/DmPeKECJVCJEkhJjQ\nkrIpFAqF4tpo6RHGt8DEi9JeBqKklMHADuAVAKOF1GygJ3A78LlQ9q4KhULRZmhRhSGl3AsUX5Q8\nFfje+Pl7YJrx8xRgpZSyVkqZAaQCA1tSPoVCoVA0ntZYw/CUUuYDSCnzAE9jui+QVadcjjFNoVAo\nFG2AthCi67r2WTS001uhUCgUBpp7p3drKIwmuwUBGDFixHXv9FYoFG0fvV5PVlYWR44coaqqiu7d\nu+Pj44OFhQXl5eVUV1djZmZGWVkZpaWluLq64u/vT4cOHVpb9DbDhc70+fPnGTZsGNu2bWtSezdC\nYQjjcYH1wBwMu70fBtbVSf+PEOIjDFNRQcCBGyCfogno9foruu6+GJ1OR3Z2Nnq9nuzsbOLj49Hp\ndNja2nLu3DmKioqoqqrC2dmZwMBArK2tyc/PJzExEQBfX19sbGywsrLC2dkZPz8/+vXrh0ajoby8\nHHd3d4QQaDQanJycsLOz49y5c9TW1mJmZkZiYiKFhYV06dKFLl264OrqioeHxzVdg6LpFBYWEhsb\ny9mzZ9Hr9RQWFlJSUoKlpSV6vZ7S0lLOnDlDdXX1Nbd9++2388gjj1w1Lrbi2mlp1yA/AqMAdyFE\nJrAIeBdY01puQW4GysvLycjIwMfHp8FIe3q9npqaGrRaLTU1NVhZWTUYpet6OHLkCF999RVZWVk4\nODjg5+dHcHAwPXv2NEWVKysro6KiwhT169y5c2zcuJGzZ89etf2srCyOHTt2SXpBQUGzXcMFPDw8\nGD16NKNHj74lYiO0NFJKzpw5Q2ZmJv7+/qZofKmpqURFRZGUlERGRgYt9fPetGkTW7ZswdXVlYiI\nCHx9fYmJiaGgoACtVkuPHj0IDg4mJyfH1JE4ffo058+fJyQkBBcXFwoLC6msrKSyspKqqirs7e3p\n3LkzlpaW1NbWotPpqK2tpaamxhTS18zMDF9fX6ZMmYK/vz9arZb4+Hhqa2vp1auXKfJfY2O5tEXa\nbUzvpjgfbI/odDoOHDjApk2biI+PR6/XmzzzVlZWUlFRgV6vx9HR0dQrr6mpqddGWFgY06dPJyAg\ngM2bN3Ps2DG0Wi1ubm6MGDHCFB/cxsYGZ2dnvLy8KCsro7CwEJ1OR0lJCdnZ2WRmZpKUlNRKd6Jl\n6dy5M0FBQQQEBNChQwdT5Dxra2tCQkKuGvNCp9ORn59PXl4eJSUl6PV6HBwccHBwwNHR0RSl8FrR\narXExMRw7tw5AgIC6Ny5M1ZWVqaAVZWVlbi5uREaGoq/v/8VPTBXVlaSkJBATk4OZ86cIS8vD3Nz\nc7y9vfH29sbLywtvb29TZLnCwkLKysowNzfHwsICS0tL/Pz8sLOzQ6fTAX+8BI8ePcrnn39OTo5h\nNtnMzIxhw4Zx9uxZU+yQa8HJyYk+ffrg6upKSkoKZWVl1NTU4OTkhI2NDTqdDkdHR5ycnMjNzSUl\nJeWaz9ES+Pj4mEa9dbGwsGDAgAFMnDiRPn363DDnp+0qHkZzczMrDK1WS0pKCufOncPS0pLU1FTi\n4+PJzMy8RAG0VxwcHHB3d8fW1pZ+/frh7u5ORUUF7u7udOjQAVtbW/Lz88nKyjLFVe/duzeWlpam\nMKrV1dUUFRURHx9PamoqLi4uuLq6UlhYaDpHaWmpKfa0lZUV1dXVdOrUCT8/P9LS0jh79ix5eXlU\nVFQ0WvbQ0FBcXV2prq6mpqYGd3d3HBwcOHr0KPn5+SbFfSX8/Py488476dKlC6mpqezfv5/KykqC\ng4MxMzNDo9HQs2dPwsPDTSFRt23bRlFRUaNkDAkJYfbs2Rw7dozKykrs7Oyorq6msrKS0tJSfv/9\n9yY/S2ZmZnTo0IGCggKEEPj6+mJpacnJkycbXb9Pnz707dsXCwsLXFxccHd3p7a2FiEEjo6OeHp6\nNjosLRhGNjt37mTFihXk5eVd76XdMCwtLRk9ejSPPfZYi0+f3fIKY968eURERODt7d0i59Dr9Zw+\nfZrCwkJqa2vJzs4mLS2NtLQ07OzsmDp1KrfddlujY2lcbq5fr9dz7Ngx4uLiOHr0KEVFRWg0Gmpr\na6/anq+vL2fOnLniy8nKygpLS0ssLS0pKyu76ovsWhk8eDBPPvkkACdPniQpKYkTJ05QXl6Ok5MT\nzs7O2NvbU11dbVqnCAoKYsyYMW0m0plWq+Xw4cPs3LmT/fv3N+reK66OjY0N3t7eZGRkmNLMzMwY\nMWIE48aNo3v37i0amVKr1ZKcnExUVBQajYYBAwbQr18/qquriY2Npbi4GD8/P+zt7ampqcHHxwdz\nc3MSEhLQ6/WmjoCdnR02NjYUFRWZRk0WFhaYm5tjaWmJhYUFTk5OODg4UFVVxZYtW9i/f79pus3T\n0xNXV1dSU1ORUl52Gq5Tp05ERERga2uLjY0NQUFB9cLXNgc3tcIQQkQCSzDsE/n6QozvOvkmoYcN\nG0ZERARWVlZ4enrSqVMn01zhtVBTU8OOHTvYsWMHZWVllJSUXLXn2atXLwYPHsy5c+coKyvD3t6e\n1NRUcnJyCAoKIjAwsF7P08LCAmtra6ysrLC2tub8+fOUlJQ0WsYLc+2RkZF4enpSXFxMbm4urq6u\nODg4mCxGqqqq8PLywsHBwVQ3NzeX9evXc/jwYc6cOUOnTp2YMWMGXl5exMfHc+jQIWxtbfH29qam\npobCwkLOnj2Lg4MDXl5eWFlZYWdnZ4oF3alTp5vOGqWyspL09HTS09NJS0ujuLgYT09PHB0dycnJ\nISYmplHz7m5ubvj6+uLq6oq5uTkajQaNRkNJSQn5+fnXrbjd3NyIiIggMzOTs2fPUl5eTmBgoGl+\nPD09ndjY2Ea17+/vT0hICD4+Pvj4+KDT6cjLyzMdF55ZnU6Hq6srrq6u6PV6amtr0Wg0ZGdnN3gv\n+vfvz4IFC3B1deXIkSOkpqbSsWNHQkJCcHV1vWydm4mqqioKCgqora3F398fMzMzdDodZmZmZGVl\nsWXLFg4dOmRSQJfD1dWVyZMnM3ny5OuewtRqtdjZ2ZGSksJHH33EwIEDWbt27c2lMIQQZkAKMBbI\nBeKAe6SUJ+qUaVBoMzMzunbtSlhYGD179jQFfw8KCqrXo6mtrSUpKYmqqirS09P59ddfr+nl3ZL4\n+PgQGBhIbW0tbm5u9O/fn549e+Lk5NQs7dfW1mJh0Ra24LQvsrOzSUpKwtzc3LSQf+bMGUpKSuje\nvTs9e/bE0dHxivf2/PnzbN26lV27diGlxMfHh9DQUDw9PUlOTsbS0hJzc3N+++038vPzsbW1xd/f\nnxEjRjBw4MCrxp1PSUnh//2//0dOTg6DBw8mKCiIqqoqrK2tsbOzw97eHj8/P7p06dKkSJMajYbC\nwkI8PT3R6/Xk5OSg1+txdnY2LXIrrkxUVBRLly694vSgs7MzQ4cOZcKECQQFBSGl5Pz580gpsbW1\nvez/8NChQ3z00UcmU+PiYoOzDXd3dwoLC286hTEYWCSlvN34/WVA1h1lCCGkmZnZNfXUzMzM6NKl\nC0FBQVhYWHDgwIGrWty4uLgQEBCAubk5Hh4eBAYGEhAQwK5du9i4cWOzTPE4OTkxfPhwBgwYQEBA\nAHZ2dsocUNEkLvymlSu2ts/Zs2c5dOgQVVVVVFZWUlRURFxc3GU7rxEREZw8edKU5+bmRs+ePSko\nKKC8vBxzc3PMzc05ffr0FUfCN5vCmAlMlFI+Yfz+ADBQSrmgThm5YMECunTpQnR0NBqNhqqqKpMp\n3/W+yD08PJg6dSr9+/fH2tqaDh06NPijKygo4LfffuPUqVN4e3vToUMHysvL8fDwoEuXLhw4cICS\nkhJ69+5Njx49cHJyQqfTUV1dbTp0Op1pI5JCoVCAYQYgKiqKVatWNYsZuYWFBT4+PsycOZMlS5bc\nmgpj2LBhdO7cGajvGkSj0ZCQkMCRI0fIzs7G2tqawsLCy9p9Ozs7061bN6ysrBg0aBC33Xabenkr\nFIo2gU6nIzExkXXr1rF//35T+oVpSa1W22Ddvn378uyzzxIfH092djaJiYl06tSJbdu23XQKYzCw\nWEoZafx+2SmpazWrraysJCUlhaysLKSUuLu7M2DAgBtmB61QKBTXy+HDhzl27Bh9+/Y1dY5TUlLI\nzs7G09MTd3d3dDodOp0OGxsbOnbsWK9+c1lJtcXudBwQJITwB84A9wD3NrVROzs7wsLCCAsLa2pT\nCoVCcUPZPfyyAAAgAElEQVQJDw8nPDy8XlrPnj3p2bPnDZWjzSkMKaVOCPE0sJU/zGpvzm3FCoVC\n0Y5ocwoDQEq5GQhubTkUCoVC8QfKRadCoVAoGoVSGAqFQqFoFC2mMIQQs4QQx4QQOiFE+EV5rwgh\nUoUQSUKICXXSw4UQR4UQKUKIJS0lm0KhUCiunZYcYSQA04FddROFED0xxMDoCdwOfC7+2B23FHhU\nStkd6C6EmNiC8ikUCoXiGmixRW8pZTKAuHSr9FRgpZSyFsgQQqQCA4UQpwFHKWWcsdwPwDRgS0vJ\nqFAo2j55eXksX74cOzs7evbsycSJE9t1EKL2TGtYSfkCsXW+5xjTaoHsOunZxnSFAvhjF39FRQWd\nO3cmMDBQ7cy/ScjLy+PXX3/lzJkzCCFMAaccHBzYvHkzL7zwAn5+fnz99ddERUVx2223AYbgTufO\nnSMvLw9PT08iIyMJCwtrMOSuVqvFzMxMKZzrpEm/NiHENsCrbhIggVellL80pe2rsWfPHk6fPg3U\ndw2iuPkoLi5m1apVREdHM2jQIDw8PNi6dSvZ2dkMGDCAOXPm4OrqSllZGaWlpQDY29tTW1triibX\noUMHPD09AYPHWCsrKxXHuxWpra1l165dbNmyxRQ6dd68eTzxxBOAQRHk5eVx5swZVqxYwbhx4wC4\n7777WLlyJfv27UNKSffu3U2hBA4ePMhHH33EV199RWRkJBMnTsTa2howOPlbs2YNsbGxODg48Oij\njxIREXHTO2hMSEggISGBpKQkNBpNk9trcdcgQoidwPNSysPG7/VcfQghNmOI9X0a2Cml7GlMvwcY\nKaX802XavGkj7rU3ioqK2LJlC8ePHzeFIO3evTvBwcG4ubmh0WiwtbW9rpFAdXU169evZ926dTzy\nyCO89tpruLu7m/Lz8/P5+OOPWb58Od26dSMhIQFPT0+EEJSWlmJubk5AQAA6nY5Tp07Rq1cvPDw8\n2LJlC4GBgTz++ON06dJF9TZvEFqtllWrVrF9+3ZKSkoYPHgwr732Gr1796ZDhw6ml3tTkFISGxvL\nO++8Q1xcHEOHDsXS0pJt27Yxf/58nnjiCRITE5k/fz5mZmaMGzeO8ePHN+g2XqvVotFoMDMzu6bo\nf22N9uYapK6A64H/CCE+wjDlFAQckFJKIUSpEGIgBvcgDwGf3CD5FNdBZmYmr732GrNmzeKf//wn\nZWVlHD9+nJiYGL788kvKy8tNga3+/Oc/ExAQ0Kh2i4qK+OGHH4iLi2PkyJEcOnSIrl27XlLOy8uL\nt99+mzvuuIPk5GRmz56No6PjZdusrKzk888/58yZM6SkpPDLL7/w+uuvU1BQgK+vL2PHjiUyMrJF\no8DdKkgp2bVrF0eOHEGj0dC/f380Gg27d+8mJCSE2NhYU0zy5kYIwdChQ/nll1+Ii4tjx44d5OXl\nsWfPHnr37g0YItylpKSwc+dO3n//fdatW0f37t05ffo0Q4cOZfr06Zw+fZpdu3YRHR2NpaUlNTU1\njBgxgpkzZ5pGqrciLTbCEEJMAz4FPIAS4Pc6MS5eAR4FtMCzUsqtxvT+wHeADbBRSvlsA22rEUYr\nU15ezosvvsibb77JnDlzLsmXUlJVVYWtrS0//PADzz33HIMGDWLQoEHk5OTQsWNH+vfvT3l5OQcP\nHqS6uhpXV1fc3d354IMPeOCBB1i4cGGLheC9gF6vZ//+/Xz44YfExMTw1FNPXdbfWGlpKRUVFZc4\ndbsa5eXlDSqx1qSsrIyUlBQqKyvR6XSUlZXx22+/UVJSQkhICMOGDbviWkBDSCn56quvSE9P55ln\nnsHFxYW1a9fi5ubGrFmzGDVqVJubBtqzZw9paWkEBwfz1ltvsXnzZgICApg9ezZPPvkkfn5+FBcX\n8+abb/Ldd9/h7OzMww8/TERERGuL3mhu6hCtV+NWVhgFBQWsW7eOoKAgQkJCcHNzu2E/QK1WS0xM\nDPv27ePYsWPMnTuXDz/8sFF1z507x2effcbWrVsJCQkhOjoaa2trsrOzGTVqFG5ubmRmZnL06FEW\nL17MU0891cJXcymbNm1i7ty5jB07lrvuuovMzEwOHjzIkSNHSE9Px8bGBl9fX/r27YujoyP79+8n\nLy+PoUOHEhISgpeXFyUlJZSVlWFubs6ePXvYtWsXCxcuZMyYMVc894Wpu5acHisuLqagoICkpCR+\n+ukn+vbti7u7OxYWFjg4ODBr1iz8/f3Ztm0bX331FYWFhfTr1w8bGxuOHj1KcXExlpaWDBs2jOHD\nh+Pr64utrS01NTUcOnSIxMREMjIyTFNA7XUKp6ioCDc3t8vm6fV6tm/fzn333ceIESNITk6murqa\nadOmMWLEiDY7vakUxi2oMNLS0nj77beZOXMmaWlpHDhwgKqqKsaPH8/dd99NcXEx1tbWpl65lNKk\nTLRaLRYWFpcoF41Gw8mTJ+nTp89lH/YLPvljYmL47bffCAsL47HHHmPkyJH4+l6/EZtWq+V///sf\ngwcPNsU1aQucOXOG6dOnc/ToUby8vJg4cSLTpk1j9OjRmJmZ8csvvxAbG0tubi6TJ08mODiYlStX\nEhsby+nTp+nQoQMdOnSgpqaG0aNHM3HiRCIjI/nLX/5CSEjIZc954sQJFi9ejF6vp2PHjlRUVBAc\nHMycOXPw8PC47mtJTU1l27ZtlJSUkJmZSXl5Of7+/nTt2pU33njjioYiUkoSEhLYtm0bGo2GiRMn\n4u/vT3FxMV999RWbNm0iIyMDvV6PEIIBAwYwadIkgoKCiIyMrBdP/mbk5MmTvPvuu0ydOhUrKyv+\n/ve/k5uby7Rp05g4se1tH1MK4xZTGCdPnuTNN99k6dKlzJ4925Sen5/Pa6+9xnfffYevry9lZWXM\nnj2bgoICNmzYQHBwMA4ODhw+fJgOHTowbNgwCgsLyc/Pp6qqitzcXHx8fLCxsWH27NmcPXsWe3t7\nvL29iYmJITo6Gk9PT+677z7uueceAgMDW/Eu3Bhqa2spLCzEy8vr6oUbwdatW7nnnnvo0aMHw4cP\nJzQ01NT7zs3N5dVXX+W7775j+PDhpKen4+TkxLfffstnn33GmDFjmDBhAt7e3hQXF3P8+HEGDBhw\nyVpLRUUFBw8eZPPmzeTn5+Pu7k5RURHPP/88wcHBBAUF0bNnz2a1DJNSUl1djV6vV2s/QExMDI88\n8gjjxo3jjjvuaG1x6tHmFYYQ4n1gMlANnAIekVKWGfNeAeZi2HtRdw0jnPprGAsbaLtVFYZer7/k\nh5eWlkbnzp1bZF9Aamoqb731FsuWLWPGjBmXLVNTU4OVlRUpKSk88sgjdOvWjddff53jx49TUFDA\npEmTSEpK4r///S/BwcH06tULOzs7evTogZ2dHf/6179YvXo13bt3p7i4mOTkZKZMmcITTzxBr169\nmv2abjUqKytZsWIFa9euZc+ePYwcOZJu3brx/fff8+677/L4449fUiczM5MlS5awYsUKCgsLcXBw\noHv37pSUlPDCCy8QHx9PUlISmZmZ5OTkMHjwYJ555hnCwsJIT09n4MCB2Nvbt8LV3rqcOnWKwYMH\ns3DhQkJDQ1tbHBPtQWGMA3ZIKfVCiHcxmNK+IoToBfwHGAD4AVFAN6OV1H7gaSllnBBiI/CxlPKS\nnd5CCDlq1Cjs7e2ZNm1avYVRjUaDvb19i83rJyQk8P777zNjxgymTZsGwOrVq1mzZg3dunXj2Wef\nxcLCAicnp2u2AtFoNGzdupUjR45w6tQpgoOD8fX1Zc+ePSxfvrxBZaFoXxQWFvLqq68SGxvLsmXL\nGDRo0FXrnD9/HgsLC8zNzXnttdd4//33iYyMZPr06YSEhBAaGtosZqmKprNz505mzZrFSy+9hI+P\nD7GxsTg5OdGpUyc6derUKvt/2rzCqHcSg8XUTCnlg5fZh7EJWIxhH8YOKWUvY/oV92E88MAD+Pn5\n8eWXXzJ27Fjs7OxMPS5XV1f69OlDQEAA9vb2VFVVUV5ejp2dHaNHj6awsJCoqCg6duzIgAEDGjST\nKygoIC4ujsGDB+Pi4sLWrVtZsWIFH3/8MW+//TbW1taUlpbi7OzML7/8wjfffMN7772HnZ0dFhYW\nzJs3j/Dw8Ksqr/T0dDZt2kRMTAx33nknDz/8MH369GHnzp3ExMTwyiuv4Ofn14T/gOJmQ6vVNrh3\nQNH6bNmyhXvuuQcpJZGRkVRWVpKQkEBJSQl9+/alR48eODg44OPjQ3BwcIsbrrQ3hbEeWCGlXCGE\n+BSIlVL+aMz7CtiIQWG8I6WcYEwfDrwopZxymfbkBbmPHTvGqlWrqKysZMiQIUydOpX09HR2797N\n/v37qaiowMnJCQ8PDzIyMli3bh12dnY8+eSTpKWlsXHjRp577jmCg4OJi4ujurqakpISEhISOHXq\nFMOHDyc2NpZOnTqh1+tZuXIlvXr1orS0lI0bNxIUFERoaOglo4mtW7fy5JNPUllZSZ8+fRg9ejQh\nISGm3kVpaSmpqals376d5ORknn76aZ544okWNyNVKBQ3hpSUFJydneutheXk5LBjxw52795NeXk5\nBw4cwMrKilmzZjFo0KAWUxxtQmE0xjWIEOJVIFxKOdP4vVkUxqJFi0zfR40axahRoxolc3FxMba2\nttjY2ACwa9cuZsyYgV6vJyIiAm9vb5ydnZkwYQJjx47F3t6eY8eOsXfvXubOnXtN00xSSk6ePMmG\nDRv48ssvKS4upl+/fmRmZpKVlUVoaCjTpk3jT3/6k1o0VChuQfR6Pb/88gt//etf0Wq12NnZUVlZ\nSU1NDYGBgYwfP75Jbo8uuAY5cuQInTp1Ytu2bW13hCGEmAM8DoyRUlYb05rFNUhzyp2ZmYler6dL\nly7N1ubFSClJSkpi8+bNhISEMHr0aDWloFAoAIP5+u7duzE3N8fR0RErKyu2b9/OBx98wKBBg3jg\ngQeuae1Dp9OxatUqgoKCcHJy4uOPP+add97hwQcfbJsKQwgRCXwA3CalLKyTfmHRexAG1yDb+GPR\nex+wAINrkA3AJ8b43he33awKQ6FQKNoiBQUF3HnnnTg5OfH00083WmmsXLmS48ePY25uTlpaGp99\n9hn33nsvZmZmbVZhpAJWwAVlsU9K+ZQxr8muQZTCUCgUtwJVVVWMGjWKgIAAHnjggauWP3DgAF9+\n+SW///47Pj4+9TbwCiHapsJoSZTCUCgUtxLnzp1j0KBB6HQ6ACZOnMjtt9+OpaUlpaWlZGdnk5ub\ny8GDBzl9+jQ//vijKWZIXZTCUCgUiluAsrIycnNzKS0t5W9/+xvR0dEAWFtbExwcTPfu3Rk6dCiP\nPfaYyajnYpTCUCgUiluQyspKzMzMsLa2brQ5blMVRottORRCvCGEiBdCHBFCbBZCeNfJe0UIkSqE\nSBJCTKiTHi6EOCqESBFCLGkp2RT1udBTUTQP6n42H+peNoydnR02NjY31F18S+5Rf19KGSql7IfB\n4mkRmKykZgM9gduBz8UfV7wUeFRK2R3oLoRoe24fb0LUj7J5Ufez+VD3sm3RYgpDSlk3gKw9oDd+\nngKslFLWSikzgFRgoHEE4iiljDOW+wGY1lLyKRQKheLaaNEQrUKIf2AItVoCjDYm+wKxdYrlGNNq\ngew66dnGdIVCoVC0AVrcNYix3EuArZRycXO5BrluoRUKheIWpimL3k0aYUgpxzey6I8Y1jEWYxhR\ndKqT52dMayj9cudtW0GBFQqF4hagJa2kgup8nQacMH5eD9wjhLASQgQAQcABKWUeUCqEGGhcBH8I\nWNdS8ikUCoXi2mjJNYx3hRDdMSx2nwaeBJBSJgohVgOJGFyDPFVnU8V86rsGucSPlEKhUChah3a5\ncU+hUCgUN54bHytQoVAoFO0SpTAUCoVC0SiUwlAoFApFo1AKQ6FQKBSNotUUhhDiz0KIY0Zng/8x\nmtm6CiG2CiGShRBbhBDOrSWfQqFQKOrTKgpDCNEReAYIl1L2xWDeey/wMhAlpQwGdgCvtIZ8CoVC\nobiU1pySMgfshRAWgC2GXd1Tge+N+d+jnA8qFApFm6FVFIaUMhf4AMjEoChKpZRRgJeUMt9YJg/w\nbA35FAqFQnEpLeqttiGEEC4YRhP+QCmwRghxPwbHhXW57K5C5XxQoVAoro82GXHvKowD0qSURVJK\nHfA/YCiQL4TwAjDGxzjbUANSSnU007Fo0aJWl+FmOtT9bL5jwYIF+Pj4YGtry+bNm1tdnvZ+NJXW\nUhiZwGAhhI3R0eBYDL6l1gNzjGUeRjkfVChuaaKjozlz5gxVVVU8/vjjVFVV1cvX6XS8+eab9OvX\nj48//rhZXoqKhmmVKSkp5QEhxE/AEQwOCI8AywBHYLUQYi4Gh4WzW0M+hULR+mRmZpKQkGD6npWV\nxYcffsjChQv54osvSExMJDMzk6ioKAAWLlzIqVOnWLJkCWZmaotZS9BaaxjdMVhAVWEIujQNOAT8\nmz9CuUoaWMNQNC+jRo1qbRFuKtT9bB6WLFlyyYjh9ddf57PPPiMvL++ydT799FN69OjBU089dSNE\nvOVodW+1QggzDOFYBwFPA4VSyveNUfpcpZQvX6aObG25FTeO6upqPv30U7y9vbn//vsxzGIqbmYO\nHTrE8OHDOX/+PABubm4UFRU1WL5Xr14kJiYCMGbMGLZv335D5GxvCCGQrRVxr5kYB5ySUmYJIaYC\nI43p3wPRGDbzKW4BqqqqWLt2LevXrycoKIjFixdjaWlpmoIAOHXqFIsWLWplSRXNjZSS8vJynJyc\nSEtLY/LkySZlERYWxpo1a3jwwQfZt28fAC4uLjz//PNotVr69etHv3796NKlCwCHDx9GSqk6Fi1A\nWxhhfA0clFIuFUIUSyld6+QVSSndLlNHjTBuAnQ6HZs3b8bX1xc7OzsmTJjA6dOnTfl///vfefDB\nB+nWrVu9ek888QTh4eHcd999ODo63mixFc1MSUkJM2bMYOfOnXTt2pWcnByTsnBxcWHfvn0EBwcD\nkJiYyOHDh5kwYQKenn9s05JS4uHhYRqFpKWlERAQcOMvpo3T1BFGa5t4WQLnAA/j96KL8gsbqCcV\n7Z/FixdfWKeSTk5Ops+NPfz8/OSvv/7a6PNVVVXJcePGSWtra/ndd9+14JUpGsO2bdvku+++K8PD\nwy/7/7WwsJBRUVGNbm/cuHGmuj/99FMLSt5+Mb47r/ud3dpTUrcDh6SUBcbv+UIILyll/tX2YSxe\nvNj0edSoUWqhsZ1RXl7Ohx9+aPpeVlYGgI2Njal3eTWys7OZMmUKO3fu5Lbbbrtq+eXLl5ssav70\npz8xcuRI0zSG4sby66+/Mnny5Abz+/fvz6effsqQIUMa3WZ4eLjp/3v48GFmzpzZZDnbO9HR0URH\nRzdfg03RNk09gBXAw3W+vwe8ZPz8EvBuA/WaS+EqWoklS5Zc0qO0srKS27Ztk6mpqdLW1rZeXmRk\npKyurparV6+Wb7zxhuzQoYMpb8KECfKdd96Rd999t4yPj5fnz5+XMTExsqKiQur1erl9+3a5adMm\n6e3tXa/NadOmtfZtuGUZO3Zsvf+FEEIuXbpUbt26VW7atEnqdLprbnPlypX1nhfFpdDEEUZrKgs7\nDNNRjnXS3IAoIBnYCrg0ULdZb6LixvHdd9/JsLCwei+L6dOny4ULF8r9+/ebym3dulVOmzZNTp06\nVc6fP1/m5eXVayc1NVUaXcTUOxwcHGRgYKAEZMeOHeXdd999xWmt+fPny/Ly8ht9G25pTp06Ve9/\nMGfOHBkXF9fkdpOTk01tdujQQer1+maQ9uaiPSsMZ2ANkAQcx2BW62pUFMnAFsC5gbrNfBsV14pO\np5P/+te/5CuvvCKzs7MbVaekpERaWVnVe1m4ubnJioqK65Jh+vTp17zuAUhfX9963wcOHChramqu\nSwbFtfPqq6+a7v0dd9zRbO3qdDrp4OBgajs9Pb3Z2r5ZaM8K4zvgEeNnC6MCeQ940ZimpqTaMGvX\nrq3Xq1++fPlV6/z3v/+95OX9/vvvX7cMu3fvbrSSsLa2loDs06ePzMvLk5MmTaqXv27duuuWQ9F4\nqqur6ynstWvXNmv7I0aMMLXdqVMneeDAASmllNu3b5dTp06Vbm5uctGiRfXq1NbWyr/97W9yxowZ\nN72SaZcKA3DCsPfi4vQTGFycA3gDJxqo34y3UHE9LFiw4JKX8vbt269Y5/HHHzeVDQsLkzt27GjS\ntIFer5fjx4+XgOzcubM8cOCAnDt3rlywYIHctm2bDAwMlObm5vK5556TGo1GHjx4UJaWlprqzp8/\n3yTPrFmzrlsOReN5++23Tffc09Oz2Ud2q1evrvdM+vn5yY8//viS9ZK6iuGtt94y5Q0bNsyUXllZ\nKZcsWSL79Okjx40bd8m0qJRSarVa+emnn8rZs2fLp59+Wv70009teiqsvSqMUGA/8C1wGIMfKTug\n+KJyRQ3Ub9abqLh2hg8ffonCGDJkSIM/Fr1eLzt16mQqu3fv3maRo7y8XG7cuFGWlJRckqfT6WRB\nQUGDdY8fP26Sx8rKShYVFTWLTIrLk5GRUc+YYcmSJS1ynp9++qmemfbFBhSAvP3222VwcPBlR6Mf\nfPCBnD59er3pLUCOGTNG1tbWms6TmJgoBw8efEn9tjxaba8Koz8Gp4MRxu8fAW9crCBQ+zDaJBfP\nFdc9NmzYUK/sBQVS9+Xs7OwstVpta4h+Cf379zfJ9cUXX7S2ODc1999/v+leh4aGtugz8PTTT1/X\n+lZjDg8PDxkWFnZZowtA3nfffS12XU2lqQqjtVw6ZgNZUsqDxu//BcK5hngYixcvNh3NamfcDqiu\nrmbXrl2UlJS0yvlPnjyJRqMBwNPTk6efftqU99JLL1FdXU1paSn3338/9vb2REZG8uqrr5rKjBs3\nDguL1t4CZOChhx4yff73v//dipLcXERFRREWFsZLL70EGJ7Zn3/+2ZT/2WeftegzMH369EvSZsyY\ngZvbJY4jrkjXrl1xcXGpl1ZQUMDvv/9+ofOKhYUFd9xxhyl/27Zt6PV6cnJyiIiIYNiwYeTm5l7H\nVTSd6Ojoeu/KJtMUbdOUA9gFdDd+XoRhwVvtw2gEd911lwRkt27dZFVV1Q0//8X27rm5udLOzs6U\n1qtXL9m1a9cGe2jLli274TI3RH5+vrSwsDDJdvLkydYWqd2j0Wiku7u76Z4eOXJEbt261fS9a9eu\nLT7Pr9VqpZubW73n7n//+5985plnLhkNPP/88zIuLk7OnDnTlB4SEiLj4+OlXq+XWq3WtFZ28XHH\nHXfII0eOSJ1OV29v0KFDh+TcuXPb3KiD9jglZZCbUCAO+B1Yi8FKSu3DuAqJiYn1HtjVq1dftlxF\nRYXcsGGDfOGFF+Sdd94pJ02a1Cy27lJK+eKLL5rO/8orr0gp5SULiw0dwcHBl11vaE0mT55sku9i\nCxrFtfPuu+/W+59//PHHcuHChabvCxYsuCFyPPzww6ZzOjo6yqqqKpmcnGyaTl24cGG98vn5+fLe\ne++Vzz77rMk44gI1NTVyz549MiEhQWZmZsqdO3fKlJSUemXuu+8+0/nqur25cOzZs0ceP368VRfF\n263CaJLQt7DCqGvZc6GHk5ycLJctWyZffPFFuW3bNrlr1656vZ0LR2hoaLPIUNdnz5o1a6SUhnWN\ni3fvOjo6ymXLlsnFixfLZ599Vm7YsKFN7ndYs2aNSebAwMA2beXS1iktLb2kZz979mzZrVs30/fN\nmzffEFk2bdpkOucjjzxiSj958qTctWtXs/+fv//++0Z1ml588cVmPe+10G4VBpABxGOItnfAmKY2\n7l2BsrIy6ejoeNUH8nJWIReOzMxMU3slJSUyKSnpmnr8tbW19aYbTp06ZcrLysqS4eHh0svLS77w\nwgsyJyenWa+/paiqqpIuLi6ma9q9e3dri3RDKSwslJWVlc3S1qeffnrFZ9POzu6GTqN+9tlncuHC\nhVe0lmsucnNzG6UwHB0d5fnz51tcnsvR6goDGArcBzx04WhkvTQMAZLqpqmNe1fg888/b9QDeeHw\n8PCQzz33XL20r7/+Wur1ennvvfea0iwtLWVsbGyjZKi7S9fFxeWm6Y0/8cQTpusaPHjwdfkyao8s\nW7ZM2tjYSBcXl2vy/NsQdS2hLndMmTKlGaRuu9TdOHjhiIiIuCRt48aNrSJfqyoMDCFVfwM+Bz41\nHp80sm464H5Rmtq4dwVGjhxZ76VW9wEcMmRIvXxnZ2cZHx8vpZTyn//8Z73pgQMHDlzyAE+dOvWq\n5687dQPI119/vaUv+YaRlJQkLS0tTdd2wcQ2Pz9fZmRktAnFuHv3bvl///d/9fYCSGnwofTee+/J\n//73v9fU3sVTKJaWlvKHH35o0rX27NmzXk/64ufsP//5z3W33R5IS0uTvXv3Nl1vjx49ZG1trTxw\n4IC85557TOmPP/54q8jX2gojCWMQpuuom4Zh014c8JgxTW3ca4Bz585JMzMzCYadqmlpaTIiIkKa\nm5vLZ599Vmq1WllbWys//vhjef/998vff//dVPfo0aOmB9XV1VW++eabl/yQLS0t5aZNm+Qbb7wh\n9+7dW++lodPpZFRUlMm9BiAnTpx4yYurvfPaa6+Zrs/JyUl++OGH0sbGRgLSy8tLvvXWW41uS6/X\ny6ioKLl27VpZXV3dZNkOHz5ssuZ64oknpJSGhdi6C7tgsARqDKtXrzY9TxcfoaGh8tixY9csY0VF\nhalNMzOzesYRF9q92Z6Zy1FeXi6feuopOWDAALlr1y5T+t69e033wtPTs1XuRWsrjDWAz3XW9TH+\n7YBhHWPExQqCK2zcW7RokenYuXNnc97TNsk333xjetiGDh0qpTS8lMrKyq5aV6/Xy44dO5rqN7Tp\n7uJhdFJSknzmmWcucRgYFBQkCwsLW/qSbziVlZUyKCjoivclISHhqu1kZGTIyMhIU52AgAD5/fff\nN8yC0sQAACAASURBVOkF8ec//7meHDExMfKTTz65RL6QkJCrTqdt3Lixnilxnz596i1Kg2HxX6PR\nSCmlPHDggPzrX/8q//znP8sPP/ywQWeTsbGxpvo9e/aUUVFR9drctm3bdV//zYBO9//bO/P4mK73\nj3+OBBVkRzVEkITYqdiXqDVKrN82wk9VLbX3K2ktrbUoWlptKVpFihStrd8Sa/JVSyKW0gqxhFii\nUSq2yDbz+f0xk/nOJDPJTGaSmXDer9d95d5zz3nOc09m7jNneZ6jYJUqVTTt8dtvvxV5nVFRUTrv\nSmsbjCgAD6CaoN6VcxRCziwAoeoei/aQ1AUD+S3esLaO9tLPTz/91OTyw4YN0/sCDAsLM/hyzG0o\nALBq1apMTEwsgie0DeLi4jS9Cn3H0qVL8y2fmJjIypUr6y1bt25dnV+cpqA9zJHzQtZefKB95Kxc\n00dWVpbOj4e6desyJSWF9+/fZ1hYmM6zT5o0iatWrcrj0VyqVCmGhobmGbrSnmMLCQlhWloaPT09\nCchYXTloz5UFBwcXe/3WNhgd9R1GlHMAUEF9Xh7AUQDdIB339JKamqozHFQY57LIyEi9LzBjV3Y4\nODgwICCgUEMVJQ1tx8QqVarw/fff11z36tXLYLn79+/rjOELIejk5JSnHWNiYkzS58aNG/n+bypX\nrsxJkyZprhs1amRwHkL7c1CpUqU8vQXtnmxBx8qVK9m3b1/279+fKSkpHDFiRJ4fNffu3eO+ffus\ntirI1tCePxRCGNVjtSRWNRiFrhSoCZXD3hkAfwCYqk6Xjnu5UCqVOpsANWrUqNByOnTooPOFHzdu\nHEmyb9++ml+O+/fvZ2RkpM4E8JAhQ2xi0rc4+fnnnzl+/HheunSJly9f1rRFxYoV88RAUiqVXLBg\ngY5xKFu2LA8ePMiHDx9yzpw5OsHw3NzcdJYjb9myhV9++aXB2EqrV6/O98W9ePFi/v333zrLqQ0N\nGw0ZMkSTZ/LkyXnua0cA1j6aNWvGhQsX0t/fX68OnTp10tkYq6DIxS8yvXr10rTTgAEDirVua/cw\nWkE1af0EQCYABYBHJpQvBdXE9y71tfTDyMWqVat0vpibN28utKyYmBgdWTkTpPfv3+fSpUt1fvn+\n5z//YcOGDfnOO+9YZNK2JJM70u6+ffsYGxvL//znP0xOTta73HnTpk06MhISEuju7q65n7NKZufO\nnZq08ePHk2Se9tbeKGrJkiVcsWKFxqBXqlRJM4+lvaRz165deZ7jyZMnLF++vCbP6dOn9T5vcnIy\nX3/9dY2+Xbp00fjqpKSkGDUH9jzOcVmK06dP67TVzZs3i61uaxuMkwC81T0FOwBvA/jEhPL/BrBB\ny2BIPwwtHj9+rONQlrM6xhxy4tt4eHjIrUlNIPdqpJxDu+cAgL6+vvzpp5/0ytAeDqpWrRqVSiUD\nAgJ0yrdo0YJ2dnacMmUKSdVEvPby1Pj4eJKql86HH36oWTpNUmdYaubMmdy2bRsPHjxIpVLJJ0+e\n6Nz38/MzqteYlpaWJ5++sBfah5eXV2Gb+YWhIONeVFjdYKj/ntNKO2Nk2WoA9gMI0DIY0g9DC22v\n2Vq1alnEGzcrK4v//e9/5S9AEzEm7EOlSpXy3W42KytLZ9jqp59+MihLCMGbN29yw4YNmjRvb+98\nX/KGdPTx8cnTK5g3b16h2+LRo0ds2LAhAVU8pm7dumnkli5d2qaCS9oq2kEQFyxYUGz1mmswzI0v\nnCaEKAPgdyHEYgB3AKNDpn8O4H2ogg7mUIVkClRP9ZcQorKZ+pVINm7ciOPHj2P58uWatMmTJ6Nc\nuXJmy7a3t0eHDh3MlvOi0aVLF5QuXRpZWVkAgJdeegnp6ek6ed577z04ODgYlGFvb48uXbrg559/\nBgAMHDjQYF6S2LBhA/bv369Je/vttyGEMFimadOmetMvX76sc92iRQtMmjTJoJyCqFixIk6cOIF7\n9+6hWrVqyMzMRGRkJJydndG4cWM4OTkVLOQFp379+prz8+fPW1ET0xAqo1PIwkLUAJACoAxUw0tO\nAFaQvFJAudcBBJIcL4QIADCZZJAQ4gFJF61890m66SnPWbNmaa4DAgIQEBBQ6OewJfbs2aMTWx8A\nXFxccPPmTZQvX95KWkkAYNeuXdizZw/69u2Lbt264fPPP0doaCgA1Uv0xo0befZOyM13332HkSNH\n5kn38vLC9evXddLKli2LjIwMAECpUqVw48YNeHh4GJSdnZ2NihUr5jFkOXh7e2Pq1Kl46623bGY/\nkheVo0ePol27dgCAxo0b4/fffy+SeqKjo3X2C5ozZw5IGv7VURDmdE/UxqYcgDomllkA4AZU3t53\noJo0/wEvuB+GQqFgo0aN8gwp5IQQl9gWCoWCoaGh9PHxMXoxgr4lsvXq1eO9e/f4wQcf8KuvvtKZ\nmM45evbsaZT8Fi1a6JTr1asX9+zZY/Ww2hJdHjx4oPkflSlTpth2oISV5zB6Q7Wi6Zr6uglMdNyD\nyncjZw5jMWzcD+PMmTOMjIy0eHC67OxsfvHFFzpf9qpVqzIoKChPbH5JyaZevXqa/7GTkxMvXLig\nc1/fBLuxcaJGjhypU27fvn1F8QgSC1CtWjXN/yn3Z6CosLbBOAXVMNQZrbQ/TJShbTBs2g9j27Zt\nmlg5K1assJjchISEPDvUzZgxw2LyJbbFxo0baWdnR19fXyYkJOS5HxMTo/GurlChAj/44AOjf6Bo\nB5oEYDN7p0vy0r17d83/KT/vfEtirsEwd0/vLJIPc6UVOCkihCgrhIgVQpwB8DVUhienrFLrvPAT\nLBYmKSkJ/fv3h1KpUm/9+vUWkz1ixAhcvXpVc129enWEhYVZTL7EtggJCcGDBw8QHx8PX1/fPPdb\ntmyJI0eO4Mcff0RycjIWLVqEUqWM+6oGBwdrFkfMnTtXzlXYMA0aNNCcl5iJb3OsDYA1UO2FcQ6A\nD1ThzVcaWdZB/dcOQAyAFrBRP4zs7Gy2adMmzzCBJX69RUdHa+TZ29tz4sSJBr10JRJjSExM5IED\nB16IyLAlmbVr1+q8T6ZPn867d+8WaZ2w8pCUA4D5UHl7xwGYB6BsIWScBOAPG/XD+Oyzz/Subz93\n7pzZsrW3NR0xYoQFtJVIJCWBuLi4PO8UR0dHrlu3rsjqNNdgmDskVU992AN4CUAfteEoECFEKfWQ\n1F8A9pOMQy4/DAAG/TAuX76cZ325pdm0aRP69etncHjoxIkTZsk/deoUDh48CACws7PDtGnTzJIn\nkUhKDs2aNcvjDvDo0SMMHz4cf/zxh3WUKgBzBzg3AggD8Cf+N/dgFCSVAJoKIRwBbBdC1EfeOQuD\ncxg5Y79vvfUWhg0bZnE/jB9//BGDBw/WSWvSpAn69++PmTNnAlAZjHfeeafQdXz//fea8+DgYNSq\nVavQsiQSScmiVKlSOHToEC5cuIAzZ85g1qxZuHr1KpRKJb799lt8+eWXZteR2w/DbMzpngA4Yk55\nLTkzYOJ+GDlHhw4dLNVb05CRkcGaNWvqdBXLlSvH33//nQcPHtSkNW7cOE/ZhIQEfvLJJzqrXy5d\nusQlS5boBPdLT0+ni4uLRlZ0dLTFn0MikZQctDeccnZ2tkgooNzAynMYnQF8B2AQgP45hxHl3KGO\nRAuV499hAD1hwn4Y2oclHZJSU1M5Z84cHflffPEFL126pLmfs+TRzs5OsysZST579kyzttrLy4sZ\nGRlcuHChzl4WrVq14sGDB3X2x/by8rK4X4dEIilZKBQK1qpVS/Ne2LBhg8XrsLbB2ADVhPV6AGvV\nx/dGlGsIVVjz36FaYfWhOt1oPwzt4/LlyxZpzC1btuTZbW3JkiV58mlvknPo0CFN+rfffqtTVnud\ndX7HzJkzLaK/RCIp2SxYsEDzXnjttdcsLt9cg2FuLKkEknUKUa4agHAAVaCa+/iW5JdCCBcAmwHU\nAHAdwBvM6+cB9S98DatWrcKoUaMK8QS6NG7cGOfOndNce3p6IiEhAS+99JJOvjFjxmDlypUAgAED\nBkChUCAxMVGnbG68vb1x48YNZGZm5rl35coV1K5d22z9JRJJySY5OVkTL6x06dJ48OCBRWPICSFA\nM2JJmbtK6pgQol4hymVDFXCwPoDWAMYJIeoCmArggNoIHQJg1LKhqKioQqigy507d3Re+CEhIYiM\njMxjLABV1NAcfv75Z+zYsSNfY1GrVi3Ex8cjMTERQ4cO1aSXLVsWM2fOlMZCIpEAAF555RWNQ19W\nVhaOHTtmtsxRo0Zh+PDh2LFjh9myzB2SugDVTnsJUA0t/QGtvTFMkLMDQBeY4IehvYUoAE6YMIGJ\niYmF7qqFh4drZAUEBOSbV6lUsnHjxkYNNwHgsmXLdMr/888/TEpKko5VEokkD9p7ZZgbePTZs2d0\ncHDQeR/RjHe+uT2MHlB5eHeDKhBhL/VfoxFCeEEVtDAGJvhhzJ8/H66urprrr776Cq1atcLFixdN\newI1e/fu1Zx369atIJ0NDoFVrVoVgwYN0lw7Ojrq9EgAVbhyT09P2NnZFUpXiUTy/KLtImDukthD\nhw4hLS0NAPSGoTEZc6yNuQeAClBNmvdRX/+T6/59A+WoUCj0bhXp4eFh8h65CoWClStX1sg4depU\ngWVSU1M123NWqFCBSUlJTElJ4bNnzxgfH88yZcoQAOfMmWOSLhKJ5MXm3r17mneRvb29yVspZ2Rk\ncNSoUezfvz979+6tkRUWFmZ2D8NqkcmEEPYAfgLwA8md6uQUIUQVkilCiJcB3DVUfu7cuQCAcePG\nwcnJCcuWLcPTp09x+/ZtTJ8+HeHh4Ubrcu7cOdy9q6rK3d0dTZo0KbCMk5MTfv31V2zYsAEjRoyA\np6en5p6fnx9Onz6NGzduoHv37kbrIZFIJG5ubmjUqBHOnTuH7OxsHD161KT3yE8//YTVq1fnSb93\n7575ypljbcw5oFoltTRXmtF+GLnZs2ePxpKWKlVKb9hoQ8yfP19TdtCgQUaXk0gkkqJg0qRJmnfS\nuHHjTCo7ZsyYPCMvbm5uzMrKsvocRqEQQrQFMBjAa0KIM0KI00KIHlAZjK5CiASonAIXGiuzR48e\nmrkHpVKJefPmGa2P9uqB119/3ehyEolEUhQEBQVpzjds2KCZhzCGK1fy7pDds2dPi4S6t4rBIHkU\nwDoAVQHYkWxGMhIwbz8M7X2+N27ciEuXLhVYJjk5GXFxqniJdnZ2efbTlkgkkuImICAA3t7eAICH\nDx9i8+bNRpfVt7dGnz59LKKXVQyGmrUAcg/MFcoPI4c2bdqY3MvYtWuX5rxjx45wcXExpUqJRCKx\nOKVKlcLo0aM116tWrTKqXGpqKpKTkzXX9evXx7Bhw9C3b1/LKGbOeJa5B1Qe3ee0rs3eD+Po0aM6\nY3e+vr7s379/no1Jrl+/zlGjRuXrLyGRSCTW4u+//9astgSM2/f7yJEjmvz6gqOiJM5h5ENlGumH\nYQjtXgYAXLp0Cdu2bcPYsWN18o0ZMybPSgJLddskEonEXNzd3dGjRw/N9ZEjRwosoz0cVb9+fYvr\nZGsGIzeFCnQ1e/bsPGk//fQTYmJiAKi6bfv379e536VLF9SoUaMw1UkkEkmR0LZtW835kSNHMGvW\nLHTu3BlNmjTB1KlTc0ZcNBS1wbC1HeKN9sPQNgoBAQE63pGtW7fGihUrsHPnTh0P7rCwMPz222+I\njIxEdna2Jj08PBy9evWy6INIJBKJubRq1Upzvn79ep17Z8+eRcuWLdGgQQPcvXsX/v7++PPPPzX3\n69evb/ENlMyKVmt25aqwIL+QbKi+XgSVt/ciIcQUAC4kp+opR2P1vnr1Kvz8/JCVlQUA+OGHH7B7\n925EREQAUDkAzpgxwxKPI5FIJBYlLS0Njo6OUCgUBvPY29sjOzsbjo6OePTokSb98uXLmpVWOZgb\nrdZqBkMIsQlAAAA3ACkAZkEVhHArgOoAkqAKb56qp6zRBgMAQkNDsXTpUr33zpw5Y5Rnt0QikViD\nV199FadPnzapTLly5fD48eM88eqsHd680JAMIfkKybIkPUmuJfmAZBeSdUh202csCsOcOXN0Qnfk\nUL16dTRu3NgSVUgkEkmR0Lp1a53rfv364Z133sm3zOTJk4skuKlNTnoLIXoIIS4KIS6ph6bMokKF\nCpoNj7Tp27cvhCi0sX1usOgm8RLZnhZEtqXuPAYADB06FGFhYZp3V7ly5XD69GlcuXIF58+fx507\nd0yKdGEKNmcwhBClAHwNlVNffQCD1JsrmUVgYCA+++wzNGrUCH5+fggKCpJzF2rkl9KyyPa0HLIt\ndVdK5USjqFu3LsLDwxEUFITdu3ejadOmqF27NurVq4eXX365yHSxtVVSANACwGWSSQAghPgRQB+o\nnPrMIjQ0FKGhoeaKkUgkkmKjZs2amDVrFrZs2YK5c+eiTJkyAIAhQ4ZgyJAhxaqLzfUwAHgAuKl1\nfUudJpFIJC8ks2fPRnx8PAYOHGhVPay6rFYfQogBALqTHKW+HgKgBcmJWnlsS2mJRCIpIZizSsoW\nh6RuA9Be0lRNnabBnAeWSCQSSeGwxSGpOADeQogaQogyAIIB7CqgjEQikUiKGJvrYZBUCCHGA9gH\nlUFbQ/KCldWSSCSSFx6bm8OQSCQSiW1ii0NSEolEIrFBpMGQSCQSiVFIgyGRSCQSo5AGQyKRSCRG\nUaQGQwixRgiRIoQ4p5U2VwhxVghxRggRqd4oKefeNCHEZSHEBSFEN/1SJRKJRGINinSVlBCiHYAn\nAMJJNlKnVSD5RH0+AUA9kmOEEPUAbATgD5Wz3gEAPiZtfCGRSCSSIqNIexgkjwB4kCvtidZleQBK\n9XkQgB9JZpO8DuAyVIEIJRKJRGIDWMVxTwgxD8BQAKkAOqmTPQAc18p2GzLooEQikdgMVjEYJD8C\n8JF6c6QJAGabUl4GH5RIJJLCUSK3aFWzCUB/9fltqPbyziFP0EFtSMrDQsesWbOsrsPzdMj2lG1p\nq4e5FIfBEOpDdSGEt9a9vvjfxki7AAQLIcoIIWoC8AZwohj0k0gkEokRFOmQlBBiE4AAAG5CiBsA\nZgF4XQhRB4ACQBKAdwGAZLwQYguAeABZAMbSEiZRIpFInjPS0tLg4OBQ7PUWqcEgGaIneW0++T8B\n8EnRaSTRR0BAgLVVeK6Q7Wk5ZFvmhSSaN2+Od999FxMnTiy4gAUpkdFqhRCy8yGRSF5ITp48iT59\n+iAjIwMxMTHw9vYuuJAaIQRoxqS3NBgSiURSgpg8eTIqVqwIZ2dnrF69Gg0aNED79u0xYcIECJG/\nLTDXYBT1HMYaAL0ApPB/nt6LAfQGkAHgKoC3ST5S35sGYDiAbACTSO4rSv0kEomkJKFQKPDjjz/i\n0KFD8PHxgZeXFzIzMzF//nxcu3YNS5YsQalSRbeWqahXSa0F0D1X2j4A9Uk2gcqbexoAqEODvAHA\nD0AggBWiIHMpkUgkLxDR0dGoWrUq6tatCzs7O/Tr1w9vvvkm/vvf/yIqKgo//fRTkdZvjdAgB0jm\nhAOJgcrfApChQSQSicQgJDF79my8++67ee65uLggLCwM69atK1IdrO24NxzAbvW5B4CbWvdkaBCJ\nRCJREx4ejvT0dAwfPlzv/X79+uH48eP466+/ikwHq4QGAQAhxIcAskhGFKb87NmzNecBAQFy+Z1E\nInluefz4MaZOnYpffvkFdnZ2evOUL18e/fr1w8aNGxEaGgpANYQVHR1tMT2KfJWUEKIGgF9yJr3V\nacMAjATwGskMddpUACS5SH0dCWAWyVg9MuUqKYlE8sKwdu1a7Ny5Ezt27Mg3X3R0NCZOnIizZ8/q\nXTFl7iopa4QG6QHgfQBBOcZCjQwNIpFInhsUCoXO9Y0bNzBlyhQ8fvzYZFnh4eF46623CszXoUMH\nPHr0CL///rvJdRhDUe+4twnAMQC+QogbQoi3AXwFoAKA/UKI00KIFYAqNAiAnNAguyFDg0gkkhJK\nXFwcKlasiOHDhyMhIQFKpRJDhw7FgQMH4O/vj4sXLxYsRE1SUhL++OMP9OzZs8C8pUqVwtChQ7F+\n/Xpz1Dcsv0ikqiEZQvIVkmVJepJcS9KHZA2SzdTHWK38n5D0JuknfTAkEklJJTo6GgMGDIC3tzfa\ntWuHfv36QaFQ4MSJEwgNDUX37t2RnJysyf/ZZ5+hV69euH07b4DuDRs24M0330TZsmWNqnvo0KGI\niIhAeno6Zs6ciZMnT1rsuay9SkoikUieO44fP46ePXti+vTpiI2NhaOjI9avXw87OzuMHDkSo0eP\nRq9evZCWlgaFQoFly5bBw8MDzZo10+l9kER4eDiGDh1qdN3e3t7w8fFBy5Yt8euvv6J37964evWq\nZR7M2vHZCxnTnSWRqKgozps3z9pqSCSSIkSpVPLll1/mtWvX8s0zYMAAfvTRR9yzZw9fffVVkuTi\nxYvZt29fTb6YmBj6+vpSqVSapMPWrVs5ePBgPnv2jN988w19fX2Znp5O9buz8O9ecwoXKBxYAyAF\nwDmttIEA/oQqvHmzXPmnQeWwdwFAt3zkmtR4tkBSUhKrVKlCZ2dnXr582drqSCSSIuLatWt8+eWX\nC3zJ37x5k25ubmzTpg1XrFhBkkxLS2O1atV49OhRkuTYsWMt8iPz3LlzJGm2wSjSZbVCiHYAngAI\n5/9iSdUBoASwCkAYydPqdD+oduDzh8r7+wAAH+pRsKQtq1UqlWjdujXeeOMNPH78GDdv3sSaNWus\nrZZEIikCIiIisHXrVmzbtq3AvIsWLcLs2bNx584dODs7A1AtoV2+fDm2b9+Opk2b4uTJk/Dy8rKI\nbja9rJb6Q4MkkLwMraW2avrARkODTJ8+HXFxcYUuv2/fPmRlZWHy5MmYNGkSduzYgcTERAtqKJFI\nbIXjx4+jdevWRuWdPHkyjh49qjEWgGrSulu3bvDz80ODBg0sZiwsgS1NettkaJAnT55g6dKlWLhw\nYaFlLF++HOPGjYMQAi4uLpg5cya6d++Oa9euWVBTiURiC5hiMEqXLo1mzZrppNnZ2WHBggU4cOAA\nPv/886JQsdBYLTSIuRRVaJAxY8agV69eeP311wEAe/bsQfPmzREVFYWbN2+ievXqJsm7fv06jh8/\njs2bN2vSJk2aBHt7e7Rv3x4RERFo3769RXSXvBiQLHDfA4l1SE1NRUJCApo3b262rFatWpkt47kI\nDaJOjwIQqjWHYfXQIFeuXIG/vz9Kly6Nw4cPo27duggJCUHHjh1x/vx5ODo6Yt68eSbJnDZtGjIy\nMrB06dI893bv3o3hw4dj/PjxmDZtmsEYMRKJNm+//TYCAwPxxhtvWFsVSS62bduGb7/9Fnv27LG2\nKnqx+R33hBBeUBmMhrnSo6Ca9D6lvq4HYCOAllANRe1HMU96T5kyBQqFAvXr18f8+fOxefNmdO7c\nGRcvXkRqaio6duyI5ORko1/s2dnZ8PT0xMGDB+Hn56c3z61btzB48GCULl0aERERqFSpkube77//\nDjc3N5N7NZLnl4yMDLi5uaFBgwaIiYmxtjqSXLz77ruoU6cO/v3vf1tbFb2YazCKelntJgDJUO2u\ndwPA2wD6QjVX8QzAHQB7tPJPA3AFVlhWm56ezkqVKjEhIYEkuXbtWjo6OrJt27aaPA0bNuSxY8eM\nlhkZGUl/f/8C82VnZ3P06NF86623NGlPnz5l9erV2bNnT+MfQs0///xjchlJyWD//v309/dn9erV\neebMGWurI9FCqVTSy8uLf/75p7VVMQhseVltUWHJHsazZ88wZswYXLt2Dfb29jh48KDm3tWrV5GW\nloaGDVWdo2nTpsHe3h4ff/yxUbJDQkLQpk0bjB8/vsC8Dx8+hLe3Nw4fPgw/Pz/MnTsXZ86cwZkz\nZ7Bp0ya0adPGqDr37t2L//u//8P169fh4OCA2NhYNG3aFGXKlDGqvMS2CQ0NhZOTE4QQuHr1KmrX\nro2///4bn376qdGhIyRFw5UrV9CxY0fcunXLZueYbLqHUVQHLNjDiI6OZv369blz506mpKTkm/fw\n4cNs2rQpSVWvID8ePnxIR0dH/v3330br8sknnzAoKIg//PADXV1dee3aNa5Zs4adOnUyWsbIkSNZ\nrlw5rlixgn/++Sft7Ow4Z84co8tLbBs/Pz/GxcXx9u3bLFu2LAcNGsQ+ffqwe/fufPr0qbXVe6FZ\nvnw5hw0bZm018gVF6ekNVWTZLw0d5lRsltIWNBiffPIJ33vvPaPyZmVl0cXFhefPn6efnx8jIiIM\n5p0yZQr/9a9/maTLkydP2Lx5c/br1487duzQ1PnKK69ohsryIzs7m5UrV+a6detYu3ZtdurUiVOn\nTqW7u7vR3eTs7Gx+/PHH/O6770zSXVL0XLt2jZUrV6ZCoSCp+ryQqs9Iz549+fnnn1tTvRcapVLJ\nV199lbt27bK2KvlS1AbjLfWxGsARABPUx2EAKwsUrj80iAuAfQASAOwF4KR1z+TQIOnp6bx27Rpv\n3rxZqAYMCgrili1bjM7/xhtv0N3dna1atWL79u315tmyZQtr1KjBu3fvFkqn3ISEhHDNmjUG7x8+\nfJj//e9/+dtvv7FRo0ZUKpVs1aoVGzVqxKysLK5cuZLe3t5ctmwZHzx4QJJUKBT8448/NDIiIiI4\nY8YMBgQEsEmTJqxVq5bJ8WskBaNQKLhu3Tp6eHgwMjLS6HIpKSls3769wR8327ZtY9euXS2lpsRE\noqOj6evrqzHmtkqRGgz+7wUdA8Be67o0gBgjyrUD0CSXwVgE4AP1+RQAC9Xn9QCcgco3xAuqyW9h\nQC5JMjY2llWqVGH16tXp7u7OjIwMkxpPqVTS3d3dJGOza9cuBgcH89mzZ3z55Zd58eJFnfsxMTF0\nd3fnqVOnTNIlP1asWMG3337b4P0uXbrQwcGBHTt25KxZs0iS8fHxvHTpEknVc/7666/s2bMng7qU\npQAAFwNJREFUQ0JCSJKbN2+mvb09z549yxMnTrBKlSqcM2cOv/nmG2ZlZbFu3bo8cuSIxZ7BGJ4+\nfZpvwLaSTmxsLFu2bEl/f3+OGzeOwcHBRpV78uQJa9asyY8++sjgC+nhw4esUKGCptchKV569erF\nVatWWVuNAikug5EAwFXr2gVAgpFla+QyGBcBVFGfvwzgovp8KoApWvn2AGhpQCY3b95Md3d3/vLL\nLyTJDh06cPv27SY13uXLl1mtWjWTymgzZcoUhoWFaa7j4+NZpUoVjU6W4ty5c/T19dV77/Hjx6xQ\noQL37t1LFxcXTZAxfTx48IAuLi68desW27dvzz59+rB58+b09/fnunXrdPIuWLCAo0ePtuhzaHP+\n/Hl+8cUXOr2YiRMn6qxKe56Ii4uju7s7165dS4VCwbt379LR0dGoF/yqVasYFBRUYL6AgACbHxJ5\nHklISGDlypWZlpZmbVUKpLgMxtsAkgCsA7AewDUAw4wsm9tg/JPr/j/qv18BCNFK/w5AfwMyWa9e\nPcbExGga4rvvvmO/fv1Marzw8HCT5xm0uXTpEitXrsysrCySZOfOnbl8+fJCyzOEQqGgs7Oz3kn5\nXbt2MSAggCQ1euTHuHHj2KdPH3p4eDAzM5OdOnVi27Zt8/xyTUpKoqurK589e2aZh8jF8OHDWb58\neY4bN44KhYKJiYl0dXWlg4MD09PTi6ROa6FUKtm2bds8w4rdu3fPdx4sp2yDBg24f//+AutZvHgx\nx4wZY5auEtOZNWsW//3vf1tbDaMw12AYFUuK5FqoHOq2A9gGoDXJdcaUNUZ8YQr1798fe/bswezZ\nsxEdHY2BAwfi4MGDuH//vtEyTIn5og8fHx9Ur14dR48excOHDxEbG2vUvrumUqpUKbRu3RpHjx7V\npG3evBmPHz/Gnj17EBgYCACwty840suECROwc+dOjBkzBqVLl8b27duxa9culCql+1Hw9PREhw4d\nMGrUKGRnZ1v0eZ49e4bt27cjLi4O58+fR4sWLTBixAhMmDABderUwalTpyxan7XZsmUL0tLS8nw2\nBg0ahB9//DHfsocPH0Z2djY6d+5cYD2BgYHYvXt3zo8qSRGyb98+nDhxAiSxZcsWm/W6j46OxuzZ\nszWH2RhjVQAcNCbNQNncPYwL0B2SukD9Q1KRyGdISh9vvvkmAwMDOWXKFEZERPDSpUu8cuWKwV+s\nDRo0YGxsrJG2WT9z587le++9x61bt7J79+5mycqP+fPnc/LkySTJO3fuUAjB1157jTVq1Mh3GEof\nK1as4L179wrM9/TpU3bt2pWDBg2y6AT45s2b2aVLF5Kq3tPmzZsZFBTER48ecfz48fz0008tVpct\n0LJlS+7evTtPempqKsuXL59vL27gwIH86quvjKpHqVSydu3aPHHiRKF1lRjHa6+9Rl9fX546dYqe\nnp4lZoEIiniV1EsAXAGchWrewlV9eEE991BgBaq8f2hdL8oxDNA/6V0GQE0YMemdm9u3b3PFihX8\n+OOP2adPH3p5edHDw4PdunWjUqlkVlaW5suUs3lJQf4UBXHu3Dl6eXlx2LBh/PLLL82SlR9Hjhyh\nn58flUolV6xYweDgYA4cOJDVqlUr0g/rs2fP2KBBA/78888Wk9m7d+88cyY5RERE6Ow4Zg0sOSSW\nnZ1NBwcHPnz4UO99f39/RkdH672XkpJCJycnpqamGl3f3LlzOXbs2ELpKjGOzMxMVqhQgR06dGCt\nWrUYGhpqbZWMpqgNxiSo5isyACSqzxPVBmRcgcL1hwZxgWpzpASoltc6a+W3eGiQzMxMNm7cmBs2\nbOCIESNoZ2fH5ORkfvvtt0avUskPpVLJWrVq8aWXXuLVq1fNlpdfPY0bN+bu3bv52muvcdu2bczI\nyOCVK1eKrM4coqKi6OnpaRHHsLNnz9LV1ZWPHj3Sez8pKYmVKlWy2i+27Oxs1qhRg3v37rWIvISE\nBNasWdPg/bCwMM6dO1fvvcWLF5vsCJaUlEQ3N7cim3uSqFa7NWzYkBcvXmTp0qXNHqUoTorUYPB/\nL+iZABzV5zOgmstoZk7FZiltouNebGwsX3rpJTZv3pyDBw/mvHnzOGDAAK5fv94kOYaYPHky69at\naxFZ+bFhwwY2a9aMjo6Oxe7VGxwczA8++MAsGU+fPqWfn1+B7V6tWjWrbWN76NAhlitXjm3btrWI\n0dq6dSv79Olj8P6uXbs0w3PaKJVK+vr6arbqNIXOnTtz8+bNJpeTGMeSJUs0vbjbt29bWRvTKC6D\ncU79tx2AKACvA4g1p2KzlC6Ep/e2bduYkpLC06dP09PTk87Ozvzrr79MlqOPpKQki/0izY/MzExW\nr17drJVdhSUlJYUeHh5mPeekSZMYEhJS4Is4JCSEK1euLHQ95jBq1CguWLCAPj4+PHTokNnyPvro\nI86YMcPg/X/++YcVKlRgZmamTvq+fftYr169QhmtiIgI+vn5FUvv88GDBwaH255X+vbty02bNllb\njUJRXAbjjPrvJ1Avfc1Js8ZRGIOhjb+/P5s1a2aWDGuxd+9enj592ip1R0VFsWrVqty+fbvJPZzU\n1FQ6OTnxzp07BebdsWOHQS/6oiQzM5Pu7u68du0a165dS39/f96/f99kOSkpKZr5rKCgIG7dujXf\n/I0bN+bx48c117dv36aHh0eh/XmUSiW//PJLVqpUyWTfJGPYunUrk5KSeOPGDdauXTtfp9LnjcI4\n+9oSxWUw/gNglXr+whlAWQBnzapYNT/yh/qYqE4zGDYkV1mzGi0yMpI//PCDWTJeVLZs2cLXXnuN\n1apVM2lyeMWKFRw4cKBReTMyMuju7s7ExMTCqlkoIiMj2bJlS5KquYz33nuPXl5ePHv2bIFlT506\nxS+++ILHjh2jr68vHRwcGBsbSy8vrwLjgE2cOJFhYWF89OgRf/vtN/r7+/Pjjz82+3liYmJYo0YN\nhoWFmb24I4e4uDi6urrS1dWVVatW5fTp0+ns7GxwTup5488//6SXl5e11Sg0xWUwHAD0h2pDIwCo\nmt+ktBHy6gM4pzY8dmojURsGwoboKV8UbSkxgU6dOhkdgytnwn7fvn1Gyx87dqzByeCiQKFQsEOH\nDvzmm2900tesWcN69erlGTLKTfv27dm1a1d6enry888/59KlSxkYGEgHB4cCX9anTp1iixYtWLZs\nWTZo0ICffvqpxSb97927x06dOnHQoEEFPkNuUlJS2KpVK27cuJGk6v/YsWNHrl69mnfu3GFUVBRJ\nsk+fPvnGOitJ7N2712BYH4VCwc6dO3P+/PnFrJXlKBaDYekDwEAA32pdfwTgfeT10dC7dFcaDOsT\nHh7OwMBAo/KeOHGCtWrVMikw2/Hjx+nj41Nsq6W+/PJLtmnTJs/LXalUsmvXrlyyZIkm7eTJk4yL\ni9Ncx8TE0MvLS8fTPie8vTEbaOVgqV5AbtLS0hgYGMiGDRuyd+/eOkEP09PTOXPmTB48eFCnTHp6\nOtu2bcsRI0awVq1aDA4O5tixY1mvXr08EQV27tzJNm3aFInuxUlKSgrd3d3p7u7OPXv25Lm/dOlS\ntmnTxqiICrZKSTUYdaGKKeWi7r0cgypkut6wIXrKW7QRJabz9OlTTVyqgggNDeXMmTNNkq9UKunj\n46MT/sWSnD9/nsuXL+emTZs4ffp0urm55QkkmcPFixfp5ubG/fv3a4ZkvL29Nb/YBwwYwGXLluUp\nN3XqVJvxicjIyGB0dDTDw8Pp7u7OqKgo/vrrr2zUqBEbN27MDh06aPJmZWXxzTffZP/+/alQKHj/\n/n0uW7aMH374od5d/jIzM+nh4cH333+/wD1lbJl33nmHkydP5tGjR+nm5sb4+HjNvVu3btHV1bVI\nl84XB+YaDKvtuCeEeBvAOABPAJwHkAngLZKuWnnuk3TTU5azZs3SXAcEBCAgIKDIdZboMmrUKNSq\nVQtTp041mIckfH19sWXLFjRt2tQk+R9//DFSUlLw9ddfm6uqDkqlEk2bNkWdOnVAEn5+fujduzf8\n/f0Nlvnll18QGhqK27dvIyIiAl9//TX69esHDw8PjBgxAomJiahQoUKeerKysmxuJ7wDBw6gV69e\nqF+/PsLCwjBgwADUqFEDhw4dgo+PD4YMGYIHDx5gx44dKFeunFEyb9y4gUWLFmHHjh04e/Ys3N3d\ni/gpLENaWhratGkDe3t7JCcn4+LFi3B0dMSiRYtw8uRJbN26FYBqr24nJycsWrTIyhqbRnR0NKKj\nozXXc+bMAUv6jnsA5gN4FwbChujJbwljKzGTY8eOFThsdP78+UKHTkhMTCxU2Hp9pKens0mTJoyM\njOT27dvZrFkzk3XKzMzUhIw/deoUnZ2dWbVq1RIZiuPp06c6zz99+nSOHz+e//rXv9ijR49CO/6F\nhYVx4MCBJSZUxvfff8+uXbsyNjZWJ7T+06dP+corr/DkyZO8cuUK3dzcjAqnY+ugJA5JqfRGJfVf\nTwDxABxhIGyInrIWbURJ4VAqlaxTp06++2YsWLCA48ePL3Qd7dq10+w+aIjIyMgCJ3TDw8NZr149\nVqpUib6+vhZZbrpq1SqrORhammvXrlEIwZ49e5rlJf7s2TPWr1+fb7zxBidNmmQxX6eiokWLFgaX\nL69cuZIVK1Zk+fLluXDhwmLWrGgoyQbjMIA/oYofFaBOc4WBsCG5ylq2FSWFZuHChXznnXfypP/9\n99+8cOECmzdvblRobkOsXr2aXbt2NfiL9cyZMwTAkSNHGsyjVCrZtGlT/vrrr5rAh7a+M5o12Ldv\nn0XiaF2/fp2rV6/m8OHD2a5dO4v0EAtDQT8icgIH5rfY4ObNm4XyxbFVSqzBMEtpaTBshuTkZDo7\nO+tsBJSSksJXXnmFPj4+bNCggcnLObXJyMhgkyZNDO5mFhwczFmzZrFJkyacOXMmlUolHzx4wOnT\np2u+6IcPHy4R22c+bygUCvbu3ZtDhgwp9p7YtWvX6OzsnG8k59GjR3PevHnFqJX1kQZDYnUGDx7M\n3r1788mTJ1QoFAwMDOTUqVMtJj8+Pp5ubm6a+YMccsaWHz58yNu3b7NFixbs2rUrfXx82LBhQ/bq\n1Yt//fUX/fz8+P3331tMH4nxpKamcsyYMaxSpQpDQkKYlZXFx48fc9++fRaf5zhw4IDGAEyYMIEN\nGzakv7+/3mWwGRkZdHV1ZVJSkkV1sHVKrMEA8G/1kNQ5ABuhCmteLJ7eEsuSmZnJYcOG0cvLi7Vr\n12br1q3N6lXoY/78+Rw8eLDmOisri3369OGHH36oo8fixYu5ceNGZmRksFWrVnRzc+NHH31kUV0k\npvPs2TN27dqV/fv3p4+PDz08PDQG3VTS09O5atUqLlu2TNNrTE1NZbVq1VilShWuXLmSLi4uvH37\nNjt16sTFixfnkfHLL7+wXbt2Zj9XSaNEGgwAr0AVZqSM+nozgLcgPb1LLEqlkseOHWN8fHyRjFmn\npqbS1dWViYmJzMrKYnBwMLt3757vBO2tW7e4evXqErNi53nn6dOnHDx4MCMiIpiRkcH333+fFStW\nZJcuXfT+0j969CgbNmyoM6/y8OFD1qxZkz169GC7du3Yo0cP/vLLL/y///s/jh49mrGxsSxdujRH\njhxJkrx69SorVaqUZyVbSEgIv/7666J9YBukJBuMJHWPwh7ALgBdoHLmk57eEr1MnTqVISEh7NSp\nk9mreSS2wdOnT/n++++zd+/eOul37tyhh4cHq1evzm3btmnS169fr8mblZXFefPmMTAwkD169NBE\nzd29ezeTk5M1ZbZu3cqaNWvywYMHmjqdnJxKtJNhYSmRBkOlNyYCeAwgBcAP6rQHufJIT2+Jhjt3\n7rBChQqcMWNGkYXRkBQ/6enp9PX15a5du0iq/s/NmzfnzJkz+d1337Ffv36avD179tTEtjKFd999\nl0OHDiWp2s/C2LA2zxvmGgyreHoLIZwB/AzgXwAeAtiqvv6KRnp6W0NvifVJT0/HSy+9ZG01JBbm\nwIEDCA4ORq9evRAVFYXhw4djxowZePz4MTw9PZGYmAgAqFWrFm7fvp3Hq74gnjx5giZNmiAkJASr\nVq1CTEwMatasWRSPYtMIIUAzPL3tLamMCXQBkEjyHwAQQmwH0AZAihCiCskUIcTLAO4aEjB79mzN\nuQwN8uIgjcXzSZcuXfDbb7/h8OHDCA4ORo8ePQAATk5OCAwMxNKlS1GpUiV0797dZGMBABUqVMDa\ntWsREBCA7du3vzDGIndoEHOxVg+jBYA1APyh2u97LYA4qLy+/yG5SAgxBYALyTyBimQPQyJ5cTh3\n7hxCQ0Nx+PBhbN26FUFBQYWWdffuXVSuXNmC2pUszO1hWDP44CwAwQCyoPL2HgGgIoAtAKpDNSn+\nBslUPWWlwZBIXjCysrJgb28PIQofO+9Fp8QaDHOQBkMikUhMx1yDUcqSykgkEonk+UUaDIlEIpEY\nhVUMhhDCVwhxRghxWv33oRBiohDCRQixTwiRIITYK4RwsoZ+EolEIsmLVQwGyUskm5JsBuBVAE8B\nbAcwFcABknUAHAIwzRr6vWhYctmdRLanJZFtaVvYwpBUFwBXSd4E0AfAenX6egB9rabVC4T8UloW\n2Z6WQ7albWELBuNNAJvU51VIpgAAyb8AvLgLpiUSicTGsKrBEEKUBhAEVWgQAMi9VlaunZVIJBIb\nwap+GEKIIABjSfZQX1+AarvWnNAgUST99JSThkQikUgKQUmMJZXDIAARWte7AAyDal+MtwDs1FfI\nnAeWSCQSSeGwZmgQB6jCf9Qi+Vid5gojQoNIJBKJpPgpkaFBJBKJRFL82MIqKZMQQvQQQlwUQlxS\nR7SVmIAQ4roQ4qzaYfKEOk06TBqJEGKNECJFCHFOK81g+wkhpgkhLgshLgghullHa9vFQHvOEkLc\nUjv2nhZC9NC6J9vTAEKIakKIQ0KI80KIP4QQE9XpFvt8liiDIYQoBeBrAN0B1AcwSAhR17palTiU\nUC0saEqyhTpNOkwaz1qoPn/a6G0/IUQ9AG8A8AMQCGCFkKFWc6OvPQFgKclm6iMSAIQQfpDtmR/Z\nACaTrA+gNYBx6vejxT6fJcpgAGgB4DLJJJJZAH6EytlPYjwCef/v0mHSSEgeAfAgV7Kh9gsC8CPJ\nbJLXAVyG6jMsUWOgPQHV5zQ3fSDb0yAk/yL5u/r8CYALAKrBgp/PkmYwPADc1Lq+pU6TGA8B7BdC\nxAkhRqjTpMOkeVQ20H65P6+3IT+vxjJeCPG7EOI7rSEU2Z5GIoTwAtAEQAwMf79Nbs+SZjAk5tNW\nHcOrJ1Rd1vaQDpOWRrafeayAavVkEwB/AVhiZX1KFEKICgB+AjBJ3dOw2Pe7pBmM21Bt45pDNXWa\nxEhI3lH//RvADqi6oClCiCoAUNBe6hK9GGq/21AtEc9Bfl6NgOTfWjukfYv/DZPI9iwAIYQ9VMbi\nB5I5fmwW+3yWNIMRB8BbCFFDCFEGqi1ed1lZpxKDEMJB/esDQojyALoB+AP/c5gE8nGYlGgQ0B1j\nN9R+uwAECyHKCCFqAvAGcKK4lCxB6LSn+qWWQ38Af6rPZXsWzPcA4kku00qz2OfT2p7eJkFSIYQY\nD2AfVMZuDckLVlarJFEFwHZ1aBV7ABtJ7hNCnASwRQgxHGqHSWsqacsIITYBCADgJoS4AWAWgIUA\ntuZuP5LxQogtAOKh2rt+rNxbWBcD7dlJCNEEqhV91wGMBmR7FoQQoi2AwQD+EEKcgWroaTpUkTPy\nfL8L057ScU8ikUgkRlHShqQkEolEYiWkwZBIJBKJUUiDIZFIJBKjkAZDIpFIJEYhDYZEIpFIjEIa\nDIlEIpEYhTQYEolEIjEKaTAkEolEYhT/Dwu+zPMUIewaAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7f827756f3c8>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plot_single_trajectory(means, stds)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Conclusion\n", "It is remarkable how strongly mean and standard deviation of the sampled Gaussian can drift in a single run of the recursive sampling process. Their largest deviations from their initial values often exceed 50% of the initial standard deviation and the mean moves more than the standard deviation. This may look like a severe problem for EP-ABC at first, but note that the posterior in EP-ABC cannot freely drift like here. It is strongly constrained by the data. These constraints particularly prevent the mean from drifting and prevent the standard deviation from increasing. However, the constraints are less efficient in preventing shrinkage of the posterior, if the data is explained well enough by a subregion covered by the true posterior. For example, if your data is explained equally well by either of two sets of parameter values, shrinkage of the posterior induced by random drifts due to sampling error may force the EP-ABC posterior to cover only one set of parameter values, instead of both of them. It is possible to identify these situations by repeating the inference with EP-ABC and checking the consistency of the inferred posteriors. Sampling errors and the resulting drift of posteriors can also be prevented by setting the minimum number of accepted samples in EP-ABC (`minacc`) to a high value, e.g., 500 or 1000." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.1" } }, "nbformat": 4, "nbformat_minor": 0 }
bsd-3-clause
LargePanda/ccg_tweet_wikification
.ipynb_checkpoints/random_example-checkpoint.ipynb
1
130349
{ "cells": [ { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [], "source": [ "from textblob import TextBlob\n", "import pickle" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "WordList(['linda', 'bond', 'widow', u'tyrone power', u'tv version', 'royale'])" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "text = \"Linda Christian, the first Bond girl, dies at 87 . Widow of Tyrone Power was in TV version of Casino Royale\"\n", "blob = TextBlob(text)\n", "blob.noun_phrases" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [], "source": [ "\n", "\n", "with open(\"NEEL_tweets(with_grams).pickle\", \"rb\") as f:\n", " tweet_corpus = pickle.load(f)" ] }, { "cell_type": "code", "execution_count": 76, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "['93314579924393984',\n", " '94884467910512640',\n", " '93141776474456064',\n", " '91707256726499328',\n", " '92955019615272961',\n", " '102380900473507840',\n", " '93404134618841088',\n", " '102312601190539265',\n", " '99288973943390209',\n", " '102125361248215040',\n", " '101574290444521472',\n", " '100658108661112832',\n", " '72058654651711488',\n", " '100977986563604480',\n", " '95953148530790400',\n", " '91927932758540291',\n", " '96222040377393152',\n", " '102000318501490688',\n", " '92681654858035201',\n", " '92401321323409409',\n", " '95969501367111680',\n", " '92579651679039488',\n", " '102065579078332417',\n", " '92481778706690048',\n", " '92237433697091584',\n", " '97408964903448576',\n", " '98431701365178369',\n", " '93344390839410689',\n", " '101419346307461120',\n", " '100152860288880640',\n", " '93455340603064320',\n", " '92625159864856577',\n", " '93548445998129152',\n", " '92643760508387328',\n", " '93500846666551296',\n", " '100571949746495488',\n", " '96985217134366720',\n", " '93899167105167360',\n", " '100712904470429696',\n", " '94404324922363904',\n", " '98888035881586691',\n", " '96004045017321473',\n", " '95103154651275264',\n", " '91853498135752704',\n", " '100689319639007232',\n", " '93484337873420288',\n", " '100992810420936704',\n", " '93745589786902528',\n", " '99611423281393664',\n", " '96548633469652992',\n", " '97665015968047104',\n", " '101588676915625984',\n", " '100901337633521664',\n", " '93708758311632896',\n", " '91952178360631296',\n", " '95533101521977344',\n", " '92110996134576128',\n", " '91840950862741504',\n", " '92744177418379265',\n", " '94500411716808705',\n", " '100671608204701696',\n", " '98181224346034176',\n", " '93923166950395904',\n", " '93002028334317568',\n", " '93672807057203201',\n", " '99670130161745920',\n", " '94462178547077123',\n", " '99147499725529088',\n", " '101478195630587904',\n", " '98291102519537664',\n", " '96665996416397313',\n", " '95906498089189376',\n", " '94441788412133377',\n", " '95434223678263297',\n", " '93154993573593088',\n", " '92043992925077505',\n", " '92266760765583360',\n", " '97458359346806784',\n", " '95289511801663488',\n", " '92691023037349889',\n", " '103209376944357376',\n", " '92665161021788160',\n", " '98037368111640576',\n", " '101029769130414081',\n", " '100998100411363329',\n", " '100653917553164288',\n", " '93429476393893888',\n", " '101573195743764482',\n", " '94409462944768000',\n", " '99659141890576384',\n", " '93348468701151232',\n", " '92817093799587841',\n", " '94575922270838784',\n", " '91655593139511296',\n", " '92275090007404544',\n", " '94709694458900480',\n", " '99029732041031680',\n", " '99287434281484288',\n", " '92689105703550976',\n", " '97376969657823233',\n", " '92006871375945728',\n", " '92884204265811970',\n", " '101371988911726592',\n", " '102865437901070336',\n", " '93273993544597504',\n", " '92968056053186562',\n", " '93443989793030144',\n", " '92446791315890176',\n", " '94899543874867200',\n", " '93490469958467584',\n", " '94518623552552961',\n", " '102411827916455936',\n", " '92713454162554880',\n", " '92284144960286721',\n", " '95269953741144066',\n", " '96956789559537665',\n", " '99556024939331584',\n", " '93324903985577984',\n", " '92294980080644096',\n", " '100529934270873600',\n", " '92712259708665856',\n", " '91998635692261376',\n", " '99653392141533184',\n", " '96211977642315776',\n", " '100998532747640832',\n", " '93080394370519040',\n", " '96427426464284673',\n", " '96836366918352896',\n", " '97819281215074304',\n", " '95396113888194560',\n", " '96651234517323776',\n", " '96564181729423360',\n", " '94029148615483393',\n", " '92297618285273088',\n", " '91708290513383425',\n", " '92435485066145792',\n", " '99641382926434304',\n", " '95438229242773504',\n", " '92624675829596160',\n", " '93538364686483456',\n", " '93905391481651200',\n", " '94813064473481216',\n", " '93731915043049473',\n", " '93031292421144576',\n", " '93211671123861504',\n", " '92540726604349440',\n", " '102087976670076928',\n", " '92928036990746625',\n", " '93783806972149761',\n", " '100925943694110720',\n", " '91904310308384770',\n", " '96228351936692224',\n", " '92990179672985600',\n", " '94810322493390848',\n", " '93318722109964288',\n", " '99087290470629376',\n", " '100732225204654080',\n", " '94811433027633152',\n", " '93305039787012096',\n", " '93020527530221568',\n", " '94563016393232384',\n", " '93497872150036481',\n", " '98054026175848448',\n", " '93041278475972608',\n", " '92504145797451777',\n", " '93084582966079488',\n", " '91835092061794304',\n", " '92099152187633664',\n", " '91676265702100992',\n", " '94809680999759872',\n", " '93639890465595392',\n", " '93388656202620928',\n", " '92680294544588800',\n", " '92945537803886592',\n", " '93326271056060418',\n", " '98029817156468736',\n", " '97311289960968192',\n", " '97826342103564289',\n", " '99252118250201089',\n", " '100978397903192064',\n", " '94137640999325696',\n", " '94013224856453120',\n", " '101808467257470976',\n", " '92952817727324160',\n", " '92574271288778752',\n", " '100951827431948288',\n", " '93681637950365696',\n", " '98174256785010688',\n", " '100709634683305985',\n", " '94135082436132864',\n", " '93188706533515264',\n", " '97339570164731904',\n", " '101739359849562112',\n", " '94070517031636997',\n", " '97096475271634944',\n", " '91796115715919873',\n", " '94712231622746112',\n", " '91803825563910144',\n", " '97722436182749184',\n", " '92931106382413824',\n", " '100903217851928576',\n", " '97292216472580096',\n", " '93772486549848064',\n", " '94859886923481088',\n", " '92981004804960256',\n", " '92668398948978688',\n", " '92755669811339264',\n", " '101571060847230976',\n", " '101032158956761088',\n", " '92768228354424832',\n", " '93322827813494785',\n", " '93398463697526784',\n", " '94558606829166595',\n", " '94453092074008577',\n", " '101056007421173760',\n", " '91769916096643072',\n", " '92206704678285312',\n", " '96190924983508992',\n", " '96953957791956992',\n", " '92828887821717504',\n", " '101874095125307393',\n", " '92975510937800704',\n", " '94183808546516992',\n", " '98176727284592640',\n", " '92647293202857984',\n", " '93018627565027329',\n", " '91779272523517953',\n", " '92594537654009856',\n", " '101668632941178880',\n", " '100659567297445888',\n", " '95182527685337089',\n", " '92683945992392704',\n", " '92705594049441793',\n", " '92019191024066560',\n", " '101080446888181760',\n", " '92239380411981825',\n", " '94398791322578944',\n", " '93999585655140352',\n", " '98694351315664896',\n", " '91676190217220096',\n", " '91845119975759872',\n", " '101037747019587584',\n", " '92468980765306881',\n", " '94526163174690817',\n", " '91946592923430912',\n", " '95177954954448896',\n", " '93435019728650240',\n", " '92577654489886720',\n", " '93374198965219330',\n", " '102732362944749568',\n", " '92876105060581376',\n", " '99480036737957888',\n", " '93170883702685696',\n", " '91628739892490240',\n", " '93942339093004288',\n", " '101736175064190976',\n", " '98501375574544385',\n", " '94429050306707456',\n", " '98052883123146752',\n", " '100947346967367680',\n", " '94808210258669568',\n", " '92829473745014784',\n", " '94934958866579456',\n", " '92331525051400195',\n", " '91928845980143616',\n", " '92691491260084224',\n", " '94807440419332097',\n", " '93071805631303680',\n", " '99594637676789760',\n", " '92628263700148224',\n", " '91989088462307329',\n", " '103226937052381184',\n", " '92670268052484096',\n", " '97969923694931968',\n", " '93246093017620480',\n", " '97462622781321216',\n", " '93246986748301312',\n", " '99121683209785344',\n", " '92246588633780226',\n", " '93349268135481344',\n", " '102041024507031555',\n", " '92240386990407680',\n", " '91970961699647488',\n", " '92380102771474432',\n", " '92773735211335680',\n", " '98932393993449472',\n", " '91839109567488000',\n", " '93093466476773377',\n", " '92803031367819264',\n", " '93368936996933632',\n", " '98371205341515776',\n", " '92487204324126720',\n", " '97853032653529089',\n", " '92720622232276992',\n", " '99661771735969792',\n", " '95815783678087169',\n", " '91908013434216448',\n", " '92361086627622912',\n", " '100338505523281920',\n", " '92675273430024192',\n", " '99129277999611906',\n", " '96024488075997184',\n", " '102744094140411904',\n", " '93202345378332673',\n", " '93485185114443777',\n", " '97668537476317184',\n", " '93725261312438272',\n", " '93036974818074624',\n", " '93032242238062592',\n", " '96113851828940800',\n", " '93152330396082176',\n", " '92323388076470274',\n", " '92348579057909760',\n", " '94376906727763968',\n", " '92693524981616640',\n", " '101734277972107264',\n", " '92891661000130561',\n", " '91845690656960512',\n", " '102668987531395072',\n", " '101721820142637057',\n", " '93334427844878336',\n", " '93363101503729664',\n", " '99117434937679872',\n", " '92588165663162369',\n", " '91914130545573888',\n", " '97028520554938368',\n", " '97939393377075200',\n", " '99144320430518274',\n", " '103170022179999745',\n", " '93038068117942272',\n", " '91999267694194688',\n", " '92282588458258432',\n", " '101643392131403776',\n", " '96185595470159873',\n", " '102580796497461248',\n", " '103212458935726080',\n", " '96945755121659904',\n", " '100581944642904064',\n", " '91991519430582272',\n", " '93239357858791425',\n", " '92203555385131008',\n", " '94365640856580097',\n", " '100994783358631936',\n", " '93691914536239104',\n", " '96473651876077568',\n", " '96979327224266752',\n", " '97733882346078208',\n", " '92054549212299265',\n", " '93015347564777472',\n", " '93745034825961472',\n", " '97476522566361089',\n", " '93411920736034816',\n", " '93352717229109248',\n", " '92638811993030656',\n", " '101757466324385792',\n", " '93151121543135232',\n", " '93031684374667264',\n", " '93617326653587456',\n", " '102124541182091264',\n", " '100553819494158337',\n", " '99510126662254594',\n", " '100686707728453632',\n", " '92630700901138432',\n", " '93389798248681472',\n", " '102068034964946945',\n", " '100687447985364992',\n", " '96258902395584512',\n", " '95724083647488000',\n", " '100980416290373632',\n", " '91962882371235840',\n", " '92296187314581504',\n", " '95489083136155649',\n", " '96402182710104065',\n", " '93274772011626496',\n", " '93146504931442688',\n", " '100912986448863232',\n", " '93321380757639169',\n", " '93598767844032512',\n", " '96651090807894017',\n", " '100672810757783552',\n", " '102086288940863488',\n", " '92033712904093696',\n", " '93670144651427841',\n", " '97004151946481664',\n", " '93568254626369536',\n", " '100714522351906817',\n", " '100717045175418881',\n", " '93265655243096064',\n", " '94619773723357186',\n", " '91915890144186368',\n", " '92706091976237056',\n", " '92224552599429120',\n", " '96677269535334400',\n", " '102558727151960064',\n", " '94523757728776192',\n", " '100733236031913984',\n", " '94138194685210624',\n", " '92705848836628480',\n", " '99760962835460096',\n", " '98173600703582208',\n", " '93710611619393537',\n", " '103139143063842816',\n", " '91871635388375040',\n", " '91937809920823296',\n", " '93103314736132096',\n", " '102314342346788865',\n", " '101432724321091584',\n", " '93050424524935168',\n", " '93143598341685248',\n", " '94386507481219072',\n", " '93356496913567744',\n", " '101940709053042688',\n", " '94153790718099456',\n", " '91858594844246016',\n", " '101392563843502082',\n", " '102784970023641089',\n", " '92247182312349696',\n", " '92075215315681281',\n", " '100660375749529600',\n", " '93742631238111232',\n", " '96178288992587776',\n", " '93826957975883776',\n", " '98025480908849153',\n", " '93967144450138112',\n", " '93081565348892672',\n", " '100644788671488000',\n", " '93695066069151744',\n", " '92333694446084096',\n", " '94867896928448513',\n", " '92245339104481281',\n", " '101058689523400704',\n", " '93334286316478464',\n", " '92168102359474176',\n", " '100654462988849152',\n", " '100704090522271744',\n", " '98919027602231296',\n", " '99171192048599040',\n", " '100342613860818944',\n", " '98107329765056512',\n", " '96542543348637697',\n", " '93023640379076609',\n", " '102620482892869633',\n", " '93330419516313600',\n", " '93511911219535872',\n", " '92969106881515520',\n", " '95962079915290624',\n", " '94930009613017089',\n", " '93445783814291456',\n", " '94480845791956993',\n", " '92643959591022592',\n", " '96585350411071489',\n", " '97732251214823424',\n", " '92989573579288576',\n", " '96191043862663169',\n", " '91928522565754880',\n", " '96782542702780416',\n", " '91733741646516224',\n", " '100960424735940608',\n", " '92166818927620096',\n", " '98743218979618817',\n", " '94198829171216384',\n", " '93660551019905025',\n", " '94156730929381376',\n", " '92627625608097795',\n", " '96276255372091392',\n", " '101975001678364672',\n", " '100860202164830208',\n", " '93459204706275329',\n", " '92209240676110336',\n", " '96569948897427456',\n", " '93052450197606400',\n", " '92732661361152000',\n", " '100933019145207808',\n", " '93634518149365760',\n", " '100623454981722112',\n", " '102862579310936064',\n", " '93166585153454081',\n", " '100736523179274240',\n", " '94556024995975169',\n", " '100620752272900097',\n", " '95895148315164673',\n", " '92663918589259776',\n", " '92488433934680064',\n", " '94818150943686657',\n", " '102875807608881152',\n", " '96309990792507392',\n", " '95660302888214529',\n", " '100375503868923904',\n", " '94812166439452672',\n", " '101152953116803072',\n", " '91887708938579968',\n", " '96565555221368832',\n", " '100644104689557505',\n", " '96250830499479552',\n", " '102759881064460288',\n", " '94767948295700480',\n", " '101933443201511424',\n", " '98101823776374784',\n", " '96203693912891394',\n", " '100130942361939968',\n", " '100202414153539585',\n", " '97500470293168128',\n", " '92974406980210688',\n", " '92229656115286016',\n", " '91966296882810880',\n", " '95637005131722752',\n", " '93017474072715264',\n", " '101815114281385984',\n", " '91693727273328641',\n", " '97462635209031680',\n", " '92860837802414081',\n", " '93477094557876224',\n", " '91814689134219264',\n", " '100913412317523969',\n", " '94421647397888000',\n", " '103225732452454400',\n", " '92406762476535808',\n", " '98298979716055040',\n", " '95430079714299904',\n", " '101044028170174466',\n", " '93750712361689088',\n", " '93440864361263105',\n", " '92105762414927872',\n", " '97379561582497792',\n", " '92406036845166594',\n", " '102532528845492224',\n", " '100325515235303424',\n", " '100227045275082752',\n", " '101038340438114304',\n", " '101491826229395456',\n", " '92313714224668672',\n", " '101020620464197632',\n", " '93461072069140480',\n", " '98039628522725378',\n", " '93321511091445760',\n", " '92068856931155968',\n", " '102371087672807425',\n", " '98069781692940288',\n", " '100864013872803841',\n", " '93377441845874688',\n", " '96657103237816320',\n", " '93405257639526400',\n", " '93317692710338560',\n", " '93477874656489472',\n", " '92749453886373888',\n", " '100719104977154048',\n", " '101020302405931008',\n", " '101330147394850816',\n", " '102568154164768768',\n", " '102844692646993921',\n", " '93005124485652481',\n", " '99852692247166976',\n", " '101756407149375489',\n", " '93755926498127872',\n", " '92463363644334080',\n", " '94319469920403456',\n", " '96988012839317504',\n", " '93060072762118144',\n", " '93006349599907840',\n", " '94103364815699969',\n", " '94441232654278656',\n", " '93286216094580736',\n", " '100793214600085504',\n", " '3543845320',\n", " '93346617897390082',\n", " '92789379453566976',\n", " '93063371515105280',\n", " '91970435507421184',\n", " '103073204700053505',\n", " '93316633199775744',\n", " '96966781851271169',\n", " '99273520994992130',\n", " '97017783145070592',\n", " '91961808604237824',\n", " '97476128305979392',\n", " '93476427013423104',\n", " '92907150279589888',\n", " '92916991156957184',\n", " '95317687516934144',\n", " '93168725246746624',\n", " '100900499162808321',\n", " '93412095177146369',\n", " '93448491019411456',\n", " '93372288518459393',\n", " '94209038987952128',\n", " '93709249020039168',\n", " '94452083499081728',\n", " '99618926908018689',\n", " '99885981905321985',\n", " '94247453636829184',\n", " '95906544255897600',\n", " '92699088658767872',\n", " '93378151698272256',\n", " '99598183302299648',\n", " '92542317491273729',\n", " '93755599896064001',\n", " '92276158808334336',\n", " '91812471555362816',\n", " '98017799158497280',\n", " '93734422158913536',\n", " '94440137878020096',\n", " '92433257878134784',\n", " '92812416949297152',\n", " '97296020681142272',\n", " '92712188497768449',\n", " '93165074721677312',\n", " '100625708447043585',\n", " '102568383198937088',\n", " '94823264559431683',\n", " '96227712355667969',\n", " '93046116983123968',\n", " '92508560365334528',\n", " '91946438266851329',\n", " '98094167196049409',\n", " '100955195776827392',\n", " '92881941317165056',\n", " '94811243692568577',\n", " '98048170008903681',\n", " '88416243299786752',\n", " '97569036308709376',\n", " '99672140021903360',\n", " '93335385572257792',\n", " '99200989688643584',\n", " '97867813376622592',\n", " '92666511990341633',\n", " '102266212200890368',\n", " '93165092149006336',\n", " '94811470172393472',\n", " '100678378755067904',\n", " '93402528036827137',\n", " '102041478183927808',\n", " '101007518347694080',\n", " '92283176067661824',\n", " '96587380278050816',\n", " '95132090957447168',\n", " '94137483159281664',\n", " '93024530745921536',\n", " '98182828684087296',\n", " '95056222239211520',\n", " '96145938346811393',\n", " '93464745524465664',\n", " '97345214657732608',\n", " '95922572083990528',\n", " '92201997121499136',\n", " '92699366166503424',\n", " '98530236588761088',\n", " '100690934215344129',\n", " '92378631279611904',\n", " '93009463564447745',\n", " '99810287129067521',\n", " '92742671491284992',\n", " '91683689796354048',\n", " '102073483936268288',\n", " '93737472516829184',\n", " '93330084408201216',\n", " '92289190707990528',\n", " '93654618210443264',\n", " '91986216400076800',\n", " '94179121093017600',\n", " '91714818343583744',\n", " '98838837832327168',\n", " '93499783599235072',\n", " '102660518929637377',\n", " '102350153272401920',\n", " '101414384043175937',\n", " '95802517128089601',\n", " '92787340803715072',\n", " '99204286419968000',\n", " '94259157615648770',\n", " '93648865886089216',\n", " '101495953428717569',\n", " '94457834649034754',\n", " '101748047888920577',\n", " '92688744313929728',\n", " '102856587256926208',\n", " '93392986490155009',\n", " '95222918291783680',\n", " '101186888085413889',\n", " '92683638923210752',\n", " '103069454442823681',\n", " '99195943936724992',\n", " '102581530127376384',\n", " '102784871444918273',\n", " '92683762680344576',\n", " '92861039120625664',\n", " '101983612601237505',\n", " '96931007181225986',\n", " '96064326309384192',\n", " '93048284138057729',\n", " '95645142622539776',\n", " '91666751665868800',\n", " '93214187051958273',\n", " '96984948635992065',\n", " '92647901381136384',\n", " '91872307479449600',\n", " '100832401193844736',\n", " '94764774340046849',\n", " '93011237734055936',\n", " '101235330262372352',\n", " '92020245019099136',\n", " '92489713902039040',\n", " '93055040520069120',\n", " '91944850680844288',\n", " '93086151035994113',\n", " '93364673793110020',\n", " '91876443038027776',\n", " '92284091642294272',\n", " '96404114954661888',\n", " '92353415123968000',\n", " '92088579400011776',\n", " '102747877671047168',\n", " '92624967635705856',\n", " '93419359736832000',\n", " '95990282411180033',\n", " '93592366388224000',\n", " '101867891749683200',\n", " '92703274603528192',\n", " '93350745100922880',\n", " '92267949112561664',\n", " '92710465171505153',\n", " '91811406156017664',\n", " '93158117478645761',\n", " '93717377883189248',\n", " '92979130907377664',\n", " '94524421292834816',\n", " '92074318242127872',\n", " '93203339000561664',\n", " '100966801382440960',\n", " '93512635420647425',\n", " '95300837726887936',\n", " '94303538561290240',\n", " '98518238442434560',\n", " '94079773847986177',\n", " '103196131361697792',\n", " '92077173778825216',\n", " '99538840863252480',\n", " '92701930975010816',\n", " '97963233780056064',\n", " '93505979316060160',\n", " '92497498207297536',\n", " '94810268923736064',\n", " '94586978460385281',\n", " '94815768675487745',\n", " '91974853590126592',\n", " '100939109257842689',\n", " '92934213975805952',\n", " '94759766982799360',\n", " '92866765834567680',\n", " '91812021514932225',\n", " '97352404718194688',\n", " '93147699544723457',\n", " '97759293780144128',\n", " '98497382597148672',\n", " '91804404180725760',\n", " '97822384853233665',\n", " '92205398123216896',\n", " '93483825652449280',\n", " '93289285981175808',\n", " '97074481746550785',\n", " '93786420036108288',\n", " '93629100102660096',\n", " '103127655129427968',\n", " '96879263122337792',\n", " '100766029856260097',\n", " '96924850878287872',\n", " '96688125719486464',\n", " '92519151947624448',\n", " '100871916511969280',\n", " '92673205621370880',\n", " '91681462000164864',\n", " '101371723798151169',\n", " '96255867585966080',\n", " '94537519206637569',\n", " '92291532354355200',\n", " '101300660988936193',\n", " '93324115456434176',\n", " '98094627499941888',\n", " '91578861036380160',\n", " '97995265683886081',\n", " '101013010050592768',\n", " '96455331181375488',\n", " '93535374181269504',\n", " '94194936869683200',\n", " '95127529593122816',\n", " '94633563730874368',\n", " '103041969965645824',\n", " '93105665089867776',\n", " '92607649736167424',\n", " '93550314287931392',\n", " '99226394587971585',\n", " '100644516125622272',\n", " '92969134756859906',\n", " '93452805095960576',\n", " '103165156539904000',\n", " '100866205610553344',\n", " '92350554352783361',\n", " '92236628923392000',\n", " '97829869311901696',\n", " '93322219631026176',\n", " '93372491627642880',\n", " '93030932201734144',\n", " '95489982260723712',\n", " '91652237725663232',\n", " '101024829385347073',\n", " '100731015894540288',\n", " '97325208838471680',\n", " '96252784025931776',\n", " '99523095437651968',\n", " '98182476941373440',\n", " '101557840388440064',\n", " '91987850437988352',\n", " '92740682158047232',\n", " '101351686358048768',\n", " '92671586628407296',\n", " '96039621137399809',\n", " '98034371264655360',\n", " '102923598414622720',\n", " '93009815311364096',\n", " '93699434617118721',\n", " '92274776369926144',\n", " '97815160516919296',\n", " '100914329276256257',\n", " '100685777289224192',\n", " '93661388681125888',\n", " '91810529621966848',\n", " '98027157300854784',\n", " '99686731250532352',\n", " '92145076297404416',\n", " '101654556852748288',\n", " '100724230852845568',\n", " '94481646916603904',\n", " '94063258499153920',\n", " '92706915892731904',\n", " '92381667926351872',\n", " '98924387897585664',\n", " '101428194460180480',\n", " '93409536827854848',\n", " '92643124052107264',\n", " '101992331275796480',\n", " '92911563723386880',\n", " '93960668197289984',\n", " '101315943799590915',\n", " '97248713143099392',\n", " '96956379297882112',\n", " '96410979562291200',\n", " '91772743091105793',\n", " '95506152313470976',\n", " '100902012501229568',\n", " '91900145075105793',\n", " '95951788217352193',\n", " '98446576988585984',\n", " '92700486129553408',\n", " '97373690815197184',\n", " '99227803861516288',\n", " '92786465272119296',\n", " '101065852761284608',\n", " '92717757963059200',\n", " '97079031924666368',\n", " '94539178125176833',\n", " '100652144067223552',\n", " '100653353050193920',\n", " '93546678673616896',\n", " '93691733627502593',\n", " '101671002735521793',\n", " '102067318368108544',\n", " '91883894542049281',\n", " '94509025118519296',\n", " '100000025580548097',\n", " '96324653890539521',\n", " '97827245397254145',\n", " '101413281792671745',\n", " '92066368203141120',\n", " '96092892203978752',\n", " '94829178528075776',\n", " '95578608407552000',\n", " '92494167556636672',\n", " '93734032189304832',\n", " '95114160530141185',\n", " '93808293348257792',\n", " '89391663738400769',\n", " '93322370688880641',\n", " '93270399021887488',\n", " '93014813629890561',\n", " '101830130401423360',\n", " '97129896891006976',\n", " '98037598789971969',\n", " '100668166455312385',\n", " '93697436974985216',\n", " '93362605669892097',\n", " '91950032097525760',\n", " '101758768534138880',\n", " '92457484513574913',\n", " '98537413051293697',\n", " '93784012509818880',\n", " '97040545645473792',\n", " '93772952134369280',\n", " '101016893695082496',\n", " '101427796009689088',\n", " '92960965297045504',\n", " '94828031247515648',\n", " '93400837157695488',\n", " '96369935135158272',\n", " '102352338030837761',\n", " '96992650850344961',\n", " '95502045565562880',\n", " '101389292311556096',\n", " '91792484321067008',\n", " '100536116343607296',\n", " '92280866566455296',\n", " '93334546715648000',\n", " '93359167267549184',\n", " '102182296815276032',\n", " '92684412923289600',\n", " '91763608274468864',\n", " '92453059170537474',\n", " '101087898002145280',\n", " '95188303338422272',\n", " '93983936493010944',\n", " '93769818116861953',\n", " '95898503749963777',\n", " '94502159269363712',\n", " '98807639470899200',\n", " '93282854406078464',\n", " '96575772726263809',\n", " '99357694883930112',\n", " '102139053503283200',\n", " '93736461454688256',\n", " '91850107737227265',\n", " '93978341606043648',\n", " '103207879510724608',\n", " '96984991245942784',\n", " '103120046653583360',\n", " '93794603127410688',\n", " '93319713035272192',\n", " '98483906319368192',\n", " '91794662699974656',\n", " '96276025083822080',\n", " '100978916554047488',\n", " '91871796252512256',\n", " '92668693426880512',\n", " '91718858846633984',\n", " '94142638093115392',\n", " '100868492621914112',\n", " '97457198254407681',\n", " '93729457709383680',\n", " '101108656782839809',\n", " '91911670112329728',\n", " '101329150966640641',\n", " '97025714552971264',\n", " '93590697944432640',\n", " '101020544421478400',\n", " '91925590256525312',\n", " '102401405851140096',\n", " '101841857687977984',\n", " '101671774474870785',\n", " '93411155669827584',\n", " '93502515991166976',\n", " '93779352625483776',\n", " '101022789389131776',\n", " '96116890295992320',\n", " '91786366156935168',\n", " '96354439341936640',\n", " '98068716322951169',\n", " '102715817497604096',\n", " '94939136431095808',\n", " '95128487727349760',\n", " '92926655382818819',\n", " '93059420296183808',\n", " '92370537531183104',\n", " '94201131856707584',\n", " '92640767331418113',\n", " '93291567711916032',\n", " '96726597469618176',\n", " '94510033202724865',\n", " '97027268685213696',\n", " '97002463147720705',\n", " '93900949902462977',\n", " '93726115671183360',\n", " '96229136179281920',\n", " '93800424825565184',\n", " '93750898479730688',\n", " '92642134204760065',\n", " '92848660353794049',\n", " '93378613063327744',\n", " '91904202460241920',\n", " '99954453586780161',\n", " '93526095730716673',\n", " '92648687725051905',\n", " '103137083945783296',\n", " '102441571353509888',\n", " '93709909803274240',\n", " '93314053316939776',\n", " '94456468476137472',\n", " '100720839560933376',\n", " '91990712266133504',\n", " '93671907987177473',\n", " '94807286882635776',\n", " '101197985895034880',\n", " '92339434510495744',\n", " '95999339016626176',\n", " ...]" ] }, "execution_count": 76, "metadata": {}, "output_type": "execute_result" } ], "source": [ "tweet_corpus.keys()" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "{'cashtag_mapping': {},\n", " 'goldens': [{'end_idx': '3',\n", " 'freebase_title': '/m/0d05l6',\n", " 'mention': 'God',\n", " 'mention_orig': 'God',\n", " 'start_idx': '0',\n", " 'tid': '93745589786902528',\n", " 'wiki_title': 'God'}],\n", " 'gram_set': {'#TLS',\n", " ',',\n", " ', Ask',\n", " ', Ask,',\n", " ', Ask, Yield',\n", " ', Ask, Yield.',\n", " ', Repent',\n", " ', Repent,',\n", " ', Repent, Ask',\n", " ', Repent, Ask,',\n", " ', Repent, Ask, Yield',\n", " ', Repent, Ask, Yield.',\n", " ', Yield',\n", " ', Yield.',\n", " '.',\n", " '=',\n", " '= Praise',\n", " '= Praise,',\n", " '= Praise, Repent',\n", " '= Praise, Repent,',\n", " '= Praise, Repent, Ask',\n", " '= Praise, Repent, Ask,',\n", " '= Praise, Repent, Ask, Yield',\n", " '= Praise, Repent, Ask, Yield.',\n", " 'Ask',\n", " 'Ask,',\n", " 'Ask, Yield',\n", " 'Ask, Yield.',\n", " 'God',\n", " 'God will',\n", " 'God will never',\n", " 'God will never drop',\n", " 'God will never drop you',\n", " 'God will never drop you any',\n", " 'God will never drop you any farther',\n", " 'God will never drop you any farther than',\n", " 'God will never drop you any farther than your',\n", " 'God will never drop you any farther than your knees',\n", " 'God will never drop you any farther than your knees and',\n", " 'God will never drop you any farther than your knees and that',\n", " 'God will never drop you any farther than your knees and that is',\n", " 'God will never drop you any farther than your knees and that is the',\n", " 'God will never drop you any farther than your knees and that is the perfect',\n", " 'God will never drop you any farther than your knees and that is the perfect position',\n", " 'God will never drop you any farther than your knees and that is the perfect position to',\n", " 'God will never drop you any farther than your knees and that is the perfect position to be',\n", " 'God will never drop you any farther than your knees and that is the perfect position to be in',\n", " 'God will never drop you any farther than your knees and that is the perfect position to be in.',\n", " 'P.R.A.Y.',\n", " 'P.R.A.Y. =',\n", " 'P.R.A.Y. = Praise',\n", " 'P.R.A.Y. = Praise,',\n", " 'P.R.A.Y. = Praise, Repent',\n", " 'P.R.A.Y. = Praise, Repent,',\n", " 'P.R.A.Y. = Praise, Repent, Ask',\n", " 'P.R.A.Y. = Praise, Repent, Ask,',\n", " 'P.R.A.Y. = Praise, Repent, Ask, Yield',\n", " 'P.R.A.Y. = Praise, Repent, Ask, Yield.',\n", " 'Praise',\n", " 'Praise,',\n", " 'Praise, Repent',\n", " 'Praise, Repent,',\n", " 'Praise, Repent, Ask',\n", " 'Praise, Repent, Ask,',\n", " 'Praise, Repent, Ask, Yield',\n", " 'Praise, Repent, Ask, Yield.',\n", " 'Repent',\n", " 'Repent,',\n", " 'Repent, Ask',\n", " 'Repent, Ask,',\n", " 'Repent, Ask, Yield',\n", " 'Repent, Ask, Yield.',\n", " 'Yield',\n", " 'Yield.',\n", " 'and',\n", " 'and that',\n", " 'and that is',\n", " 'and that is the',\n", " 'and that is the perfect',\n", " 'and that is the perfect position',\n", " 'and that is the perfect position to',\n", " 'and that is the perfect position to be',\n", " 'and that is the perfect position to be in',\n", " 'and that is the perfect position to be in.',\n", " 'any',\n", " 'any farther',\n", " 'any farther than',\n", " 'any farther than your',\n", " 'any farther than your knees',\n", " 'any farther than your knees and',\n", " 'any farther than your knees and that',\n", " 'any farther than your knees and that is',\n", " 'any farther than your knees and that is the',\n", " 'any farther than your knees and that is the perfect',\n", " 'any farther than your knees and that is the perfect position',\n", " 'any farther than your knees and that is the perfect position to',\n", " 'any farther than your knees and that is the perfect position to be',\n", " 'any farther than your knees and that is the perfect position to be in',\n", " 'any farther than your knees and that is the perfect position to be in.',\n", " 'be',\n", " 'be in',\n", " 'be in.',\n", " 'drop',\n", " 'drop you',\n", " 'drop you any',\n", " 'drop you any farther',\n", " 'drop you any farther than',\n", " 'drop you any farther than your',\n", " 'drop you any farther than your knees',\n", " 'drop you any farther than your knees and',\n", " 'drop you any farther than your knees and that',\n", " 'drop you any farther than your knees and that is',\n", " 'drop you any farther than your knees and that is the',\n", " 'drop you any farther than your knees and that is the perfect',\n", " 'drop you any farther than your knees and that is the perfect position',\n", " 'drop you any farther than your knees and that is the perfect position to',\n", " 'drop you any farther than your knees and that is the perfect position to be',\n", " 'drop you any farther than your knees and that is the perfect position to be in',\n", " 'drop you any farther than your knees and that is the perfect position to be in.',\n", " 'farther',\n", " 'farther than',\n", " 'farther than your',\n", " 'farther than your knees',\n", " 'farther than your knees and',\n", " 'farther than your knees and that',\n", " 'farther than your knees and that is',\n", " 'farther than your knees and that is the',\n", " 'farther than your knees and that is the perfect',\n", " 'farther than your knees and that is the perfect position',\n", " 'farther than your knees and that is the perfect position to',\n", " 'farther than your knees and that is the perfect position to be',\n", " 'farther than your knees and that is the perfect position to be in',\n", " 'farther than your knees and that is the perfect position to be in.',\n", " 'in',\n", " 'in.',\n", " 'is',\n", " 'is the',\n", " 'is the perfect',\n", " 'is the perfect position',\n", " 'is the perfect position to',\n", " 'is the perfect position to be',\n", " 'is the perfect position to be in',\n", " 'is the perfect position to be in.',\n", " 'knees',\n", " 'knees and',\n", " 'knees and that',\n", " 'knees and that is',\n", " 'knees and that is the',\n", " 'knees and that is the perfect',\n", " 'knees and that is the perfect position',\n", " 'knees and that is the perfect position to',\n", " 'knees and that is the perfect position to be',\n", " 'knees and that is the perfect position to be in',\n", " 'knees and that is the perfect position to be in.',\n", " 'never',\n", " 'never drop',\n", " 'never drop you',\n", " 'never drop you any',\n", " 'never drop you any farther',\n", " 'never drop you any farther than',\n", " 'never drop you any farther than your',\n", " 'never drop you any farther than your knees',\n", " 'never drop you any farther than your knees and',\n", " 'never drop you any farther than your knees and that',\n", " 'never drop you any farther than your knees and that is',\n", " 'never drop you any farther than your knees and that is the',\n", " 'never drop you any farther than your knees and that is the perfect',\n", " 'never drop you any farther than your knees and that is the perfect position',\n", " 'never drop you any farther than your knees and that is the perfect position to',\n", " 'never drop you any farther than your knees and that is the perfect position to be',\n", " 'never drop you any farther than your knees and that is the perfect position to be in',\n", " 'never drop you any farther than your knees and that is the perfect position to be in.',\n", " 'perfect',\n", " 'perfect position',\n", " 'perfect position to',\n", " 'perfect position to be',\n", " 'perfect position to be in',\n", " 'perfect position to be in.',\n", " 'position',\n", " 'position to',\n", " 'position to be',\n", " 'position to be in',\n", " 'position to be in.',\n", " 'than',\n", " 'than your',\n", " 'than your knees',\n", " 'than your knees and',\n", " 'than your knees and that',\n", " 'than your knees and that is',\n", " 'than your knees and that is the',\n", " 'than your knees and that is the perfect',\n", " 'than your knees and that is the perfect position',\n", " 'than your knees and that is the perfect position to',\n", " 'than your knees and that is the perfect position to be',\n", " 'than your knees and that is the perfect position to be in',\n", " 'than your knees and that is the perfect position to be in.',\n", " 'that',\n", " 'that is',\n", " 'that is the',\n", " 'that is the perfect',\n", " 'that is the perfect position',\n", " 'that is the perfect position to',\n", " 'that is the perfect position to be',\n", " 'that is the perfect position to be in',\n", " 'that is the perfect position to be in.',\n", " 'the',\n", " 'the perfect',\n", " 'the perfect position',\n", " 'the perfect position to',\n", " 'the perfect position to be',\n", " 'the perfect position to be in',\n", " 'the perfect position to be in.',\n", " 'to',\n", " 'to be',\n", " 'to be in',\n", " 'to be in.',\n", " 'will',\n", " 'will never',\n", " 'will never drop',\n", " 'will never drop you',\n", " 'will never drop you any',\n", " 'will never drop you any farther',\n", " 'will never drop you any farther than',\n", " 'will never drop you any farther than your',\n", " 'will never drop you any farther than your knees',\n", " 'will never drop you any farther than your knees and',\n", " 'will never drop you any farther than your knees and that',\n", " 'will never drop you any farther than your knees and that is',\n", " 'will never drop you any farther than your knees and that is the',\n", " 'will never drop you any farther than your knees and that is the perfect',\n", " 'will never drop you any farther than your knees and that is the perfect position',\n", " 'will never drop you any farther than your knees and that is the perfect position to',\n", " 'will never drop you any farther than your knees and that is the perfect position to be',\n", " 'will never drop you any farther than your knees and that is the perfect position to be in',\n", " 'will never drop you any farther than your knees and that is the perfect position to be in.',\n", " 'you',\n", " 'you any',\n", " 'you any farther',\n", " 'you any farther than',\n", " 'you any farther than your',\n", " 'you any farther than your knees',\n", " 'you any farther than your knees and',\n", " 'you any farther than your knees and that',\n", " 'you any farther than your knees and that is',\n", " 'you any farther than your knees and that is the',\n", " 'you any farther than your knees and that is the perfect',\n", " 'you any farther than your knees and that is the perfect position',\n", " 'you any farther than your knees and that is the perfect position to',\n", " 'you any farther than your knees and that is the perfect position to be',\n", " 'you any farther than your knees and that is the perfect position to be in',\n", " 'you any farther than your knees and that is the perfect position to be in.',\n", " 'your',\n", " 'your knees',\n", " 'your knees and',\n", " 'your knees and that',\n", " 'your knees and that is',\n", " 'your knees and that is the',\n", " 'your knees and that is the perfect',\n", " 'your knees and that is the perfect position',\n", " 'your knees and that is the perfect position to',\n", " 'your knees and that is the perfect position to be',\n", " 'your knees and that is the perfect position to be in',\n", " 'your knees and that is the perfect position to be in.'},\n", " 'hashtag_mapping': {u'TLS': {u'indices': [134, 138], u'text': u'TLS'}},\n", " 'mention_set': {'God'},\n", " 'ngrams': {1: ['God',\n", " 'will',\n", " 'never',\n", " 'drop',\n", " 'you',\n", " 'any',\n", " 'farther',\n", " 'than',\n", " 'your',\n", " 'knees',\n", " 'and',\n", " 'that',\n", " 'is',\n", " 'the',\n", " 'perfect',\n", " 'position',\n", " 'to',\n", " 'be',\n", " 'in',\n", " '.',\n", " 'P.R.A.Y.',\n", " '=',\n", " 'Praise',\n", " ',',\n", " 'Repent',\n", " ',',\n", " 'Ask',\n", " ',',\n", " 'Yield',\n", " '.',\n", " '#TLS'],\n", " 2: ['God will',\n", " 'will never',\n", " 'never drop',\n", " 'drop you',\n", " 'you any',\n", " 'any farther',\n", " 'farther than',\n", " 'than your',\n", " 'your knees',\n", " 'knees and',\n", " 'and that',\n", " 'that is',\n", " 'is the',\n", " 'the perfect',\n", " 'perfect position',\n", " 'position to',\n", " 'to be',\n", " 'be in',\n", " 'in.',\n", " 'P.R.A.Y. =',\n", " '= Praise',\n", " 'Praise,',\n", " ', Repent',\n", " 'Repent,',\n", " ', Ask',\n", " 'Ask,',\n", " ', Yield',\n", " 'Yield.',\n", " 'in',\n", " 'Yield'],\n", " 3: ['God will never',\n", " 'will never drop',\n", " 'never drop you',\n", " 'drop you any',\n", " 'you any farther',\n", " 'any farther than',\n", " 'farther than your',\n", " 'than your knees',\n", " 'your knees and',\n", " 'knees and that',\n", " 'and that is',\n", " 'that is the',\n", " 'is the perfect',\n", " 'the perfect position',\n", " 'perfect position to',\n", " 'position to be',\n", " 'to be in',\n", " 'be in.',\n", " 'P.R.A.Y. = Praise',\n", " '= Praise,',\n", " 'Praise, Repent',\n", " ', Repent,',\n", " 'Repent, Ask',\n", " ', Ask,',\n", " 'Ask, Yield',\n", " ', Yield.',\n", " 'be in',\n", " ', Yield'],\n", " 4: ['God will never drop',\n", " 'will never drop you',\n", " 'never drop you any',\n", " 'drop you any farther',\n", " 'you any farther than',\n", " 'any farther than your',\n", " 'farther than your knees',\n", " 'than your knees and',\n", " 'your knees and that',\n", " 'knees and that is',\n", " 'and that is the',\n", " 'that is the perfect',\n", " 'is the perfect position',\n", " 'the perfect position to',\n", " 'perfect position to be',\n", " 'position to be in',\n", " 'to be in.',\n", " 'P.R.A.Y. = Praise,',\n", " '= Praise, Repent',\n", " 'Praise, Repent,',\n", " ', Repent, Ask',\n", " 'Repent, Ask,',\n", " ', Ask, Yield',\n", " 'Ask, Yield.',\n", " 'to be in',\n", " 'Ask, Yield'],\n", " 5: ['God will never drop you',\n", " 'will never drop you any',\n", " 'never drop you any farther',\n", " 'drop you any farther than',\n", " 'you any farther than your',\n", " 'any farther than your knees',\n", " 'farther than your knees and',\n", " 'than your knees and that',\n", " 'your knees and that is',\n", " 'knees and that is the',\n", " 'and that is the perfect',\n", " 'that is the perfect position',\n", " 'is the perfect position to',\n", " 'the perfect position to be',\n", " 'perfect position to be in',\n", " 'position to be in.',\n", " 'P.R.A.Y. = Praise, Repent',\n", " '= Praise, Repent,',\n", " 'Praise, Repent, Ask',\n", " ', Repent, Ask,',\n", " 'Repent, Ask, Yield',\n", " ', Ask, Yield.',\n", " 'position to be in',\n", " ', Ask, Yield'],\n", " 6: ['God will never drop you any',\n", " 'will never drop you any farther',\n", " 'never drop you any farther than',\n", " 'drop you any farther than your',\n", " 'you any farther than your knees',\n", " 'any farther than your knees and',\n", " 'farther than your knees and that',\n", " 'than your knees and that is',\n", " 'your knees and that is the',\n", " 'knees and that is the perfect',\n", " 'and that is the perfect position',\n", " 'that is the perfect position to',\n", " 'is the perfect position to be',\n", " 'the perfect position to be in',\n", " 'perfect position to be in.',\n", " 'P.R.A.Y. = Praise, Repent,',\n", " '= Praise, Repent, Ask',\n", " 'Praise, Repent, Ask,',\n", " ', Repent, Ask, Yield',\n", " 'Repent, Ask, Yield.',\n", " 'perfect position to be in',\n", " 'Repent, Ask, Yield'],\n", " 7: ['God will never drop you any farther',\n", " 'will never drop you any farther than',\n", " 'never drop you any farther than your',\n", " 'drop you any farther than your knees',\n", " 'you any farther than your knees and',\n", " 'any farther than your knees and that',\n", " 'farther than your knees and that is',\n", " 'than your knees and that is the',\n", " 'your knees and that is the perfect',\n", " 'knees and that is the perfect position',\n", " 'and that is the perfect position to',\n", " 'that is the perfect position to be',\n", " 'is the perfect position to be in',\n", " 'the perfect position to be in.',\n", " 'P.R.A.Y. = Praise, Repent, Ask',\n", " '= Praise, Repent, Ask,',\n", " 'Praise, Repent, Ask, Yield',\n", " ', Repent, Ask, Yield.',\n", " 'the perfect position to be in',\n", " ', Repent, Ask, Yield'],\n", " 8: ['God will never drop you any farther than',\n", " 'will never drop you any farther than your',\n", " 'never drop you any farther than your knees',\n", " 'drop you any farther than your knees and',\n", " 'you any farther than your knees and that',\n", " 'any farther than your knees and that is',\n", " 'farther than your knees and that is the',\n", " 'than your knees and that is the perfect',\n", " 'your knees and that is the perfect position',\n", " 'knees and that is the perfect position to',\n", " 'and that is the perfect position to be',\n", " 'that is the perfect position to be in',\n", " 'is the perfect position to be in.',\n", " 'P.R.A.Y. = Praise, Repent, Ask,',\n", " '= Praise, Repent, Ask, Yield',\n", " 'Praise, Repent, Ask, Yield.',\n", " 'is the perfect position to be in',\n", " 'Praise, Repent, Ask, Yield'],\n", " 9: ['God will never drop you any farther than your',\n", " 'will never drop you any farther than your knees',\n", " 'never drop you any farther than your knees and',\n", " 'drop you any farther than your knees and that',\n", " 'you any farther than your knees and that is',\n", " 'any farther than your knees and that is the',\n", " 'farther than your knees and that is the perfect',\n", " 'than your knees and that is the perfect position',\n", " 'your knees and that is the perfect position to',\n", " 'knees and that is the perfect position to be',\n", " 'and that is the perfect position to be in',\n", " 'that is the perfect position to be in.',\n", " 'P.R.A.Y. = Praise, Repent, Ask, Yield',\n", " '= Praise, Repent, Ask, Yield.',\n", " 'that is the perfect position to be in',\n", " '= Praise, Repent, Ask, Yield'],\n", " 10: ['God will never drop you any farther than your knees',\n", " 'will never drop you any farther than your knees and',\n", " 'never drop you any farther than your knees and that',\n", " 'drop you any farther than your knees and that is',\n", " 'you any farther than your knees and that is the',\n", " 'any farther than your knees and that is the perfect',\n", " 'farther than your knees and that is the perfect position',\n", " 'than your knees and that is the perfect position to',\n", " 'your knees and that is the perfect position to be',\n", " 'knees and that is the perfect position to be in',\n", " 'and that is the perfect position to be in.',\n", " 'P.R.A.Y. = Praise, Repent, Ask, Yield.',\n", " 'and that is the perfect position to be in'],\n", " 11: ['God will never drop you any farther than your knees and',\n", " 'will never drop you any farther than your knees and that',\n", " 'never drop you any farther than your knees and that is',\n", " 'drop you any farther than your knees and that is the',\n", " 'you any farther than your knees and that is the perfect',\n", " 'any farther than your knees and that is the perfect position',\n", " 'farther than your knees and that is the perfect position to',\n", " 'than your knees and that is the perfect position to be',\n", " 'your knees and that is the perfect position to be in',\n", " 'knees and that is the perfect position to be in.',\n", " 'knees and that is the perfect position to be in'],\n", " 12: ['God will never drop you any farther than your knees and that',\n", " 'will never drop you any farther than your knees and that is',\n", " 'never drop you any farther than your knees and that is the',\n", " 'drop you any farther than your knees and that is the perfect',\n", " 'you any farther than your knees and that is the perfect position',\n", " 'any farther than your knees and that is the perfect position to',\n", " 'farther than your knees and that is the perfect position to be',\n", " 'than your knees and that is the perfect position to be in',\n", " 'your knees and that is the perfect position to be in.',\n", " 'your knees and that is the perfect position to be in'],\n", " 13: ['God will never drop you any farther than your knees and that is',\n", " 'will never drop you any farther than your knees and that is the',\n", " 'never drop you any farther than your knees and that is the perfect',\n", " 'drop you any farther than your knees and that is the perfect position',\n", " 'you any farther than your knees and that is the perfect position to',\n", " 'any farther than your knees and that is the perfect position to be',\n", " 'farther than your knees and that is the perfect position to be in',\n", " 'than your knees and that is the perfect position to be in.',\n", " 'than your knees and that is the perfect position to be in'],\n", " 14: ['God will never drop you any farther than your knees and that is the',\n", " 'will never drop you any farther than your knees and that is the perfect',\n", " 'never drop you any farther than your knees and that is the perfect position',\n", " 'drop you any farther than your knees and that is the perfect position to',\n", " 'you any farther than your knees and that is the perfect position to be',\n", " 'any farther than your knees and that is the perfect position to be in',\n", " 'farther than your knees and that is the perfect position to be in.',\n", " 'farther than your knees and that is the perfect position to be in'],\n", " 15: ['God will never drop you any farther than your knees and that is the perfect',\n", " 'will never drop you any farther than your knees and that is the perfect position',\n", " 'never drop you any farther than your knees and that is the perfect position to',\n", " 'drop you any farther than your knees and that is the perfect position to be',\n", " 'you any farther than your knees and that is the perfect position to be in',\n", " 'any farther than your knees and that is the perfect position to be in.',\n", " 'any farther than your knees and that is the perfect position to be in'],\n", " 16: ['God will never drop you any farther than your knees and that is the perfect position',\n", " 'will never drop you any farther than your knees and that is the perfect position to',\n", " 'never drop you any farther than your knees and that is the perfect position to be',\n", " 'drop you any farther than your knees and that is the perfect position to be in',\n", " 'you any farther than your knees and that is the perfect position to be in.',\n", " 'you any farther than your knees and that is the perfect position to be in'],\n", " 17: ['God will never drop you any farther than your knees and that is the perfect position to',\n", " 'will never drop you any farther than your knees and that is the perfect position to be',\n", " 'never drop you any farther than your knees and that is the perfect position to be in',\n", " 'drop you any farther than your knees and that is the perfect position to be in.',\n", " 'drop you any farther than your knees and that is the perfect position to be in'],\n", " 18: ['God will never drop you any farther than your knees and that is the perfect position to be',\n", " 'will never drop you any farther than your knees and that is the perfect position to be in',\n", " 'never drop you any farther than your knees and that is the perfect position to be in.',\n", " 'never drop you any farther than your knees and that is the perfect position to be in'],\n", " 19: ['God will never drop you any farther than your knees and that is the perfect position to be in',\n", " 'will never drop you any farther than your knees and that is the perfect position to be in.',\n", " 'will never drop you any farther than your knees and that is the perfect position to be in'],\n", " 20: ['God will never drop you any farther than your knees and that is the perfect position to be in.',\n", " 'God will never drop you any farther than your knees and that is the perfect position to be in'],\n", " 21: [],\n", " 22: [],\n", " 23: [],\n", " 24: [],\n", " 25: [],\n", " 26: [],\n", " 27: [],\n", " 28: [],\n", " 29: [],\n", " 30: [],\n", " 31: [],\n", " 32: [],\n", " 33: [],\n", " 34: [],\n", " 35: [],\n", " 36: [],\n", " 37: [],\n", " 38: [],\n", " 39: [],\n", " 40: [],\n", " 41: [],\n", " 42: [],\n", " 43: [],\n", " 44: [],\n", " 45: [],\n", " 46: [],\n", " 47: [],\n", " 48: [],\n", " 49: [],\n", " 50: [],\n", " 51: [],\n", " 52: [],\n", " 53: [],\n", " 54: [],\n", " 55: [],\n", " 56: [],\n", " 57: [],\n", " 58: [],\n", " 59: [],\n", " 60: [],\n", " 61: [],\n", " 62: [],\n", " 63: [],\n", " 64: [],\n", " 65: [],\n", " 66: [],\n", " 67: [],\n", " 68: [],\n", " 69: [],\n", " 70: [],\n", " 71: [],\n", " 72: [],\n", " 73: [],\n", " 74: [],\n", " 75: [],\n", " 76: [],\n", " 77: [],\n", " 78: [],\n", " 79: [],\n", " 80: [],\n", " 81: [],\n", " 82: [],\n", " 83: [],\n", " 84: [],\n", " 85: [],\n", " 86: [],\n", " 87: [],\n", " 88: [],\n", " 89: [],\n", " 90: [],\n", " 91: [],\n", " 92: [],\n", " 93: [],\n", " 94: [],\n", " 95: [],\n", " 96: [],\n", " 97: [],\n", " 98: [],\n", " 99: []},\n", " 'stanford_parsed': {u'coref': [[[[u'that', 0, 1, 11, 12],\n", " [u'the perfect position to be in', 0, 5, 13, 19]]],\n", " [[[u'P.R.A.Y. = Praise', 1, 2, 0, 3],\n", " [u'Repent , Ask , Yield', 1, 8, 4, 9]]]],\n", " u'sentences': [{u'dependencies': [[u'root', u'ROOT', u'drop'],\n", " [u'nsubj', u'drop', u'God'],\n", " [u'aux', u'drop', u'will'],\n", " [u'neg', u'drop', u'never'],\n", " [u'dobj', u'drop', u'you'],\n", " [u'dep', u'farther', u'any'],\n", " [u'advmod', u'drop', u'farther'],\n", " [u'poss', u'knees', u'your'],\n", " [u'prep_than', u'drop', u'knees'],\n", " [u'nsubj', u'position', u'that'],\n", " [u'cop', u'position', u'is'],\n", " [u'det', u'position', u'the'],\n", " [u'amod', u'position', u'perfect'],\n", " [u'conj_and', u'drop', u'position'],\n", " [u'aux', u'be', u'to'],\n", " [u'vmod', u'position', u'be'],\n", " [u'prep', u'be', u'in']],\n", " u'parsetree': u'(ROOT (S (S (NP (NNP God)) (VP (MD will) (ADVP (RB never)) (VP (VB drop) (NP (PRP you)) (ADVP (DT any) (RBR farther)) (PP (IN than) (NP (PRP$ your) (NNS knees)))))) (CC and) (S (NP (DT that)) (VP (VBZ is) (NP (DT the) (JJ perfect) (NN position) (S (VP (TO to) (VP (VB be) (PP (IN in)))))))) (. .)))',\n", " u'text': u'God will never drop you any farther than your knees and that is the perfect position to be in.',\n", " u'words': [[u'God',\n", " {u'CharacterOffsetBegin': u'0',\n", " u'CharacterOffsetEnd': u'3',\n", " u'Lemma': u'God',\n", " u'NamedEntityTag': u'O',\n", " u'PartOfSpeech': u'NNP'}],\n", " [u'will',\n", " {u'CharacterOffsetBegin': u'4',\n", " u'CharacterOffsetEnd': u'8',\n", " u'Lemma': u'will',\n", " u'NamedEntityTag': u'O',\n", " u'PartOfSpeech': u'MD'}],\n", " [u'never',\n", " {u'CharacterOffsetBegin': u'9',\n", " u'CharacterOffsetEnd': u'14',\n", " u'Lemma': u'never',\n", " u'NamedEntityTag': u'O',\n", " u'PartOfSpeech': u'RB'}],\n", " [u'drop',\n", " {u'CharacterOffsetBegin': u'15',\n", " u'CharacterOffsetEnd': u'19',\n", " u'Lemma': u'drop',\n", " u'NamedEntityTag': u'O',\n", " u'PartOfSpeech': u'VB'}],\n", " [u'you',\n", " {u'CharacterOffsetBegin': u'20',\n", " u'CharacterOffsetEnd': u'23',\n", " u'Lemma': u'you',\n", " u'NamedEntityTag': u'O',\n", " u'PartOfSpeech': u'PRP'}],\n", " [u'any',\n", " {u'CharacterOffsetBegin': u'24',\n", " u'CharacterOffsetEnd': u'27',\n", " u'Lemma': u'any',\n", " u'NamedEntityTag': u'O',\n", " u'PartOfSpeech': u'DT'}],\n", " [u'farther',\n", " {u'CharacterOffsetBegin': u'28',\n", " u'CharacterOffsetEnd': u'35',\n", " u'Lemma': u'farther',\n", " u'NamedEntityTag': u'O',\n", " u'PartOfSpeech': u'RBR'}],\n", " [u'than',\n", " {u'CharacterOffsetBegin': u'36',\n", " u'CharacterOffsetEnd': u'40',\n", " u'Lemma': u'than',\n", " u'NamedEntityTag': u'O',\n", " u'PartOfSpeech': u'IN'}],\n", " [u'your',\n", " {u'CharacterOffsetBegin': u'41',\n", " u'CharacterOffsetEnd': u'45',\n", " u'Lemma': u'you',\n", " u'NamedEntityTag': u'O',\n", " u'PartOfSpeech': u'PRP$'}],\n", " [u'knees',\n", " {u'CharacterOffsetBegin': u'46',\n", " u'CharacterOffsetEnd': u'51',\n", " u'Lemma': u'knee',\n", " u'NamedEntityTag': u'O',\n", " u'PartOfSpeech': u'NNS'}],\n", " [u'and',\n", " {u'CharacterOffsetBegin': u'52',\n", " u'CharacterOffsetEnd': u'55',\n", " u'Lemma': u'and',\n", " u'NamedEntityTag': u'O',\n", " u'PartOfSpeech': u'CC'}],\n", " [u'that',\n", " {u'CharacterOffsetBegin': u'56',\n", " u'CharacterOffsetEnd': u'60',\n", " u'Lemma': u'that',\n", " u'NamedEntityTag': u'O',\n", " u'PartOfSpeech': u'DT'}],\n", " [u'is',\n", " {u'CharacterOffsetBegin': u'61',\n", " u'CharacterOffsetEnd': u'63',\n", " u'Lemma': u'be',\n", " u'NamedEntityTag': u'O',\n", " u'PartOfSpeech': u'VBZ'}],\n", " [u'the',\n", " {u'CharacterOffsetBegin': u'64',\n", " u'CharacterOffsetEnd': u'67',\n", " u'Lemma': u'the',\n", " u'NamedEntityTag': u'O',\n", " u'PartOfSpeech': u'DT'}],\n", " [u'perfect',\n", " {u'CharacterOffsetBegin': u'68',\n", " u'CharacterOffsetEnd': u'75',\n", " u'Lemma': u'perfect',\n", " u'NamedEntityTag': u'O',\n", " u'PartOfSpeech': u'JJ'}],\n", " [u'position',\n", " {u'CharacterOffsetBegin': u'76',\n", " u'CharacterOffsetEnd': u'84',\n", " u'Lemma': u'position',\n", " u'NamedEntityTag': u'O',\n", " u'PartOfSpeech': u'NN'}],\n", " [u'to',\n", " {u'CharacterOffsetBegin': u'85',\n", " u'CharacterOffsetEnd': u'87',\n", " u'Lemma': u'to',\n", " u'NamedEntityTag': u'O',\n", " u'PartOfSpeech': u'TO'}],\n", " [u'be',\n", " {u'CharacterOffsetBegin': u'88',\n", " u'CharacterOffsetEnd': u'90',\n", " u'Lemma': u'be',\n", " u'NamedEntityTag': u'O',\n", " u'PartOfSpeech': u'VB'}],\n", " [u'in',\n", " {u'CharacterOffsetBegin': u'91',\n", " u'CharacterOffsetEnd': u'93',\n", " u'Lemma': u'in',\n", " u'NamedEntityTag': u'O',\n", " u'PartOfSpeech': u'IN'}],\n", " [u'.',\n", " {u'CharacterOffsetBegin': u'93',\n", " u'CharacterOffsetEnd': u'94',\n", " u'Lemma': u'.',\n", " u'NamedEntityTag': u'O',\n", " u'PartOfSpeech': u'.'}]]},\n", " {u'dependencies': [[u'root', u'ROOT', u'Praise'],\n", " [u'nn', u'Praise', u'P.R.A.Y.'],\n", " [u'amod', u'Praise', u'='],\n", " [u'nn', u'Yield', u'Repent'],\n", " [u'appos', u'Yield', u'Ask'],\n", " [u'appos', u'Praise', u'Yield']],\n", " u'parsetree': u'(ROOT (NP (NP (NN P.R.A.Y.) (JJ =) (NN Praise)) (, ,) (NP (NNP Repent) (, ,) (NNP Ask) (, ,) (NNP Yield)) (. .)))',\n", " u'text': u'P.R.A.Y. = Praise, Repent, Ask, Yield.',\n", " u'words': [[u'P.R.A.Y.',\n", " {u'CharacterOffsetBegin': u'95',\n", " u'CharacterOffsetEnd': u'103',\n", " u'Lemma': u'p.r.a.y.',\n", " u'NamedEntityTag': u'O',\n", " u'PartOfSpeech': u'NN'}],\n", " [u'',\n", " {u'': u'',\n", " u'CharacterOffsetBegin': u'104',\n", " u'CharacterOffsetEnd': u'105',\n", " u'Lemma': u'',\n", " u'NamedEntityTag': u'O',\n", " u'PartOfSpeech': u'JJ'}],\n", " [u'Praise',\n", " {u'CharacterOffsetBegin': u'106',\n", " u'CharacterOffsetEnd': u'112',\n", " u'Lemma': u'praise',\n", " u'NamedEntityTag': u'O',\n", " u'PartOfSpeech': u'NN'}],\n", " [u',',\n", " {u'CharacterOffsetBegin': u'112',\n", " u'CharacterOffsetEnd': u'113',\n", " u'Lemma': u',',\n", " u'NamedEntityTag': u'O',\n", " u'PartOfSpeech': u','}],\n", " [u'Repent',\n", " {u'CharacterOffsetBegin': u'114',\n", " u'CharacterOffsetEnd': u'120',\n", " u'Lemma': u'Repent',\n", " u'NamedEntityTag': u'O',\n", " u'PartOfSpeech': u'NNP'}],\n", " [u',',\n", " {u'CharacterOffsetBegin': u'120',\n", " u'CharacterOffsetEnd': u'121',\n", " u'Lemma': u',',\n", " u'NamedEntityTag': u'O',\n", " u'PartOfSpeech': u','}],\n", " [u'Ask',\n", " {u'CharacterOffsetBegin': u'122',\n", " u'CharacterOffsetEnd': u'125',\n", " u'Lemma': u'Ask',\n", " u'NamedEntityTag': u'O',\n", " u'PartOfSpeech': u'NNP'}],\n", " [u',',\n", " {u'CharacterOffsetBegin': u'125',\n", " u'CharacterOffsetEnd': u'126',\n", " u'Lemma': u',',\n", " u'NamedEntityTag': u'O',\n", " u'PartOfSpeech': u','}],\n", " [u'Yield',\n", " {u'CharacterOffsetBegin': u'127',\n", " u'CharacterOffsetEnd': u'132',\n", " u'Lemma': u'Yield',\n", " u'NamedEntityTag': u'O',\n", " u'PartOfSpeech': u'NNP'}],\n", " [u'.',\n", " {u'CharacterOffsetBegin': u'132',\n", " u'CharacterOffsetEnd': u'133',\n", " u'Lemma': u'.',\n", " u'NamedEntityTag': u'O',\n", " u'PartOfSpeech': u'.'}]]},\n", " {u'dependencies': [[u'root', u'ROOT', u'#TLS']],\n", " u'parsetree': u'(ROOT (NP (NN #TLS)))',\n", " u'text': u'#TLS',\n", " u'words': [[u'#TLS',\n", " {u'CharacterOffsetBegin': u'134',\n", " u'CharacterOffsetEnd': u'138',\n", " u'Lemma': u'#tls',\n", " u'NamedEntityTag': u'O',\n", " u'PartOfSpeech': u'NN'}]]}]},\n", " 'tweet_info': {u'contributors': None,\n", " u'coordinates': None,\n", " u'created_at': u'Wed Jul 20 18:14:24 +0000 2011',\n", " u'entities': {u'hashtags': [{u'indices': [134, 138], u'text': u'TLS'}],\n", " u'symbols': [],\n", " u'urls': [],\n", " u'user_mentions': []},\n", " u'favorite_count': 194,\n", " u'favorited': False,\n", " u'geo': None,\n", " u'id': 93745589786902528,\n", " u'id_str': u'93745589786902528',\n", " u'in_reply_to_screen_name': None,\n", " u'in_reply_to_status_id': None,\n", " u'in_reply_to_status_id_str': None,\n", " u'in_reply_to_user_id': None,\n", " u'in_reply_to_user_id_str': None,\n", " u'is_quote_status': False,\n", " u'lang': u'en',\n", " u'place': None,\n", " u'retweet_count': 449,\n", " u'retweeted': False,\n", " u'source': u'<a href=\"http://twitter.com\" rel=\"nofollow\">Twitter Web Client</a>',\n", " u'text': u'God will never drop you any farther than your knees and that is the perfect position to be in. P.R.A.Y. = Praise, Repent, Ask, Yield. #TLS',\n", " u'truncated': False,\n", " u'user': {u'contributors_enabled': False,\n", " u'created_at': u'Thu Oct 15 15:52:52 +0000 2009',\n", " u'default_profile': False,\n", " u'default_profile_image': False,\n", " u'description': u'True Love Forever!',\n", " u'entities': {u'description': {u'urls': []}},\n", " u'favourites_count': 24,\n", " u'follow_request_sent': False,\n", " u'followers_count': 1250455,\n", " u'following': False,\n", " u'friends_count': 27,\n", " u'geo_enabled': False,\n", " u'has_extended_profile': False,\n", " u'id': 82647069,\n", " u'id_str': u'82647069',\n", " u'is_translation_enabled': False,\n", " u'is_translator': False,\n", " u'lang': u'en',\n", " u'listed_count': 7879,\n", " u'location': u'',\n", " u'name': u'The Love Stories',\n", " u'notifications': False,\n", " u'profile_background_color': u'EBEBEB',\n", " u'profile_background_image_url': u'http://abs.twimg.com/images/themes/theme7/bg.gif',\n", " u'profile_background_image_url_https': u'https://abs.twimg.com/images/themes/theme7/bg.gif',\n", " u'profile_background_tile': False,\n", " u'profile_banner_url': u'https://pbs.twimg.com/profile_banners/82647069/1412285293',\n", " u'profile_image_url': u'http://pbs.twimg.com/profile_images/517788093605097472/Zj4O8z4B_normal.jpeg',\n", " u'profile_image_url_https': u'https://pbs.twimg.com/profile_images/517788093605097472/Zj4O8z4B_normal.jpeg',\n", " u'profile_link_color': u'990000',\n", " u'profile_sidebar_border_color': u'DFDFDF',\n", " u'profile_sidebar_fill_color': u'F3F3F3',\n", " u'profile_text_color': u'333333',\n", " u'profile_use_background_image': True,\n", " u'protected': False,\n", " u'screen_name': u'thelovestories',\n", " u'statuses_count': 31257,\n", " u'time_zone': u'Central Time (US & Canada)',\n", " u'url': None,\n", " u'utc_offset': -18000,\n", " u'verified': False}},\n", " 'url_mapping': {},\n", " 'usermention_mapping': {}}" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "tweet_corpus['93745589786902528']" ] }, { "cell_type": "code", "execution_count": 56, "metadata": { "collapsed": false, "scrolled": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "11\n", "11\n", "11\n", "11\n", "11\n", "11\n", "11\n", "11\n", "11\n", "11\n", "11\n", "11\n", "11\n", "11\n", "11\n", "11\n", "11\n", "11\n", "11\n", "11\n", "11\n" ] } ], "source": [ "with open(\"tweet_text_ids.txt\", \"wb\") as g:\n", " with open(\"tweet_text.txt\", \"wb\") as f:\n", " for tw in tweet_corpus.values():\n", " g.write(str(tw['tweet_info']['id'])+\"\\n\")\n", " text = tw['tweet_info']['text']\n", " if \"\\n\" in text or \"\\t\" in text:\n", " print \"11\"\n", " text = text.replace(\"\\n\", \" \")\n", " text = text.replace(\"\\t\", \" \")\n", " f.write(text.encode(\"utf8\")+\"\\n\")" ] }, { "cell_type": "code", "execution_count": 29, "metadata": { "collapsed": true }, "outputs": [], "source": [ "p = \"plpl \\nko\"" ] }, { "cell_type": "code", "execution_count": 30, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "plpl \n", "ko\n" ] } ], "source": [ "print p" ] }, { "cell_type": "code", "execution_count": 36, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "'ko'" ] }, "execution_count": 36, "metadata": {}, "output_type": "execute_result" } ], "source": [ "p[6:]" ] }, { "cell_type": "code", "execution_count": 59, "metadata": { "collapsed": false }, "outputs": [ { "ename": "UnicodeDecodeError", "evalue": "'ascii' codec can't decode byte 0xe2 in position 37: ordinal not in range(128)", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mUnicodeDecodeError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m<ipython-input-59-67f6011cc69b>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0mopen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"tweet_text.txt\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"rb\"\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mf\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mline\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mf\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0mline\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mencode\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"utf8\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", "\u001b[0;31mUnicodeDecodeError\u001b[0m: 'ascii' codec can't decode byte 0xe2 in position 37: ordinal not in range(128)" ] } ], "source": [ "with open(\"tweet_text.txt\", \"rb\") as f:\n", " for line in f:\n", " line.encode(\"utf8\")" ] }, { "cell_type": "code", "execution_count": 68, "metadata": { "collapsed": false }, "outputs": [], "source": [ "with open(\"output.txt\", \"rb\") as f:\n", " col = []\n", " for line in f:\n", " col.append(line.strip())" ] }, { "cell_type": "code", "execution_count": 69, "metadata": { "collapsed": true }, "outputs": [], "source": [ "with open(\"tweet_text_ids.txt\", \"rb\") as f:\n", " ids = []\n", " for line in f:\n", " ids.append(line.strip())" ] }, { "cell_type": "code", "execution_count": 71, "metadata": { "collapsed": false }, "outputs": [], "source": [ "output = {}\n", "for i in range(len(col)):\n", " output[ids[i]] = col[i]" ] }, { "cell_type": "code", "execution_count": 75, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "{'93314579924393984': [],\n", " '94884467910512640': ['Christian', 'Tyrone Power'],\n", " '94259157615648770': [],\n", " '93141776474456064': ['Diego'],\n", " '91707256726499328': [],\n", " '97794908630425600': [],\n", " '92955019615272961': [],\n", " '93759987540705280': [],\n", " '93404134618841088': [],\n", " '102312601190539265': [],\n", " '99288973943390209': ['Century Fox Animation',\n", " 'Blue Sky Studios Announce Ice-Age Casting'],\n", " '95555757415743488': [],\n", " '102125361248215040': [],\n", " '101574290444521472': [],\n", " '100658108661112832': [],\n", " '100977986563604480': [],\n", " '94499293989322752': [],\n", " '95953148530790400': ['of America'],\n", " '91927932758540291': [],\n", " '96222040377393152': ['McNabb'],\n", " '92681654858035201': [],\n", " '92401321323409409': [],\n", " '95969501367111680': ['SportsXchange', 'the Raiders'],\n", " '92579651679039488': [],\n", " '102065579078332417': [],\n", " '92481778706690048': [],\n", " '92237433697091584': [],\n", " '97408964903448576': ['Calipari', 'UK Legends', 'Joe B'],\n", " '98431701365178369': [],\n", " '101419346307461120': [],\n", " '100152860288880640': [],\n", " '93455340603064320': [],\n", " '98025480908849153': [],\n", " '93548445998129152': [],\n", " '92643760508387328': [],\n", " '94063258499153920': [],\n", " '93500846666551296': [],\n", " '100571949746495488': [],\n", " '96985217134366720': [],\n", " '93899167105167360': ['Blames Crisis'],\n", " '100712904470429696': [],\n", " '94404324922363904': [],\n", " '96004045017321473': [],\n", " '95103154651275264': [],\n", " '91853498135752704': [],\n", " '100689319639007232': [],\n", " '93484337873420288': [],\n", " '95072342140653568': [],\n", " '100992810420936704': ['America'],\n", " '100644788671488000': [],\n", " '99611423281393664': [],\n", " '97665015968047104': ['Heat', 'Erik Spoelstra'],\n", " '100901337633521664': ['Guardian'],\n", " '93708758311632896': [],\n", " '102580796497461248': ['State Fair'],\n", " '95533101521977344': [],\n", " '92110996134576128': ['Geng'],\n", " '91840950862741504': [],\n", " '92744177418379265': [],\n", " '100671608204701696': [],\n", " '98181224346034176': [],\n", " '91872307479449600': ['Dog', 'Chelsea'],\n", " '93923166950395904': [],\n", " '93002028334317568': [],\n", " '103005657980084225': [],\n", " '93672807057203201': ['Smith'],\n", " '100982604374880256': [],\n", " '99670130161745920': [],\n", " '94462178547077123': [],\n", " '99147499725529088': [],\n", " '101478195630587904': ['POTTER', 'David Yates', 'Screenwriter Steve'],\n", " '98291102519537664': [],\n", " '92911563723386880': [],\n", " '95906498089189376': [],\n", " '94441788412133377': [],\n", " '95434223678263297': ['National Assembly'],\n", " '93154993573593088': [],\n", " '92043992925077505': [],\n", " '102306127076786176': [],\n", " '95289511801663488': [],\n", " '103209376944357376': [],\n", " '92665161021788160': [],\n", " '98037368111640576': ['Pope', 'UK', 'Mediterranean', 'Kirk'],\n", " '101315943799590915': [],\n", " '100998100411363329': [],\n", " '100653917553164288': [],\n", " '93429476393893888': [],\n", " '101573195743764482': ['Chelsea'],\n", " '94409462944768000': ['News', 'Norway'],\n", " '99659141890576384': ['Beach', 'Photographers', 'Videographers'],\n", " '93348468701151232': [],\n", " '92817093799587841': [],\n", " '94575922270838784': ['Field'],\n", " '91655593139511296': ['Johnson'],\n", " '92275090007404544': [],\n", " '94709694458900480': [],\n", " '102401405851140096': [],\n", " '99029732041031680': ['Furo', 'Rivers United U19', 'Helsinki', 'Nigeria'],\n", " '99287434281484288': [],\n", " '92689105703550976': [],\n", " '97376969657823233': [],\n", " '92006871375945728': [],\n", " '92884204265811970': [],\n", " '101371988911726592': [],\n", " '102865437901070336': [],\n", " '93273993544597504': [],\n", " '92968056053186562': ['Brothers'],\n", " '93443989793030144': [],\n", " '92446791315890176': [],\n", " '94518623552552961': [],\n", " '102411827916455936': [],\n", " '92713454162554880': [],\n", " '92284144960286721': [],\n", " '92201997121499136': [],\n", " '96956789559537665': [],\n", " '99556024939331584': [],\n", " '93324903985577984': [],\n", " '92294980080644096': [],\n", " '100529934270873600': [],\n", " '99653392141533184': ['States', 'AAA'],\n", " '96211977642315776': [],\n", " '95951788217352193': [],\n", " '93080394370519040': [],\n", " '96427426464284673': [],\n", " '96836366918352896': [],\n", " '97819281215074304': [],\n", " '95396113888194560': ['Jazeera Misr', 'Adli'],\n", " '96651234517323776': [],\n", " '94029148615483393': [],\n", " '92297618285273088': ['Award', 'Human Rights'],\n", " '91708290513383425': [],\n", " '92435485066145792': [],\n", " '99641382926434304': [],\n", " '95438229242773504': [],\n", " '92624675829596160': [],\n", " '93538364686483456': [],\n", " '102620482892869633': [],\n", " '94813064473481216': ['Winehouse'],\n", " '93731915043049473': [],\n", " '93031292421144576': ['Villa'],\n", " '93211671123861504': [],\n", " '93330419516313600': [],\n", " '102087976670076928': ['Herrera', 'Joel Campbell'],\n", " '92928036990746625': [],\n", " '100925943694110720': [],\n", " '96228351936692224': [],\n", " '92990179672985600': [],\n", " '94810322493390848': [],\n", " '93318722109964288': [],\n", " '99087290470629376': ['Monetary Fund'],\n", " '100732225204654080': [],\n", " '94811433027633152': ['Winehouse'],\n", " '93020527530221568': [],\n", " '94563016393232384': [],\n", " '95962079915290624': ['Harris', 'Blue Bombers'],\n", " '101260598460940289': ['MB', 'Umno Youth'],\n", " '93041278475972608': [],\n", " '92504145797451777': [],\n", " '93084582966079488': [],\n", " '91835092061794304': [],\n", " '92099152187633664': [],\n", " '91676265702100992': [],\n", " '93639890465595392': [],\n", " '93388656202620928': [],\n", " '92680294544588800': [],\n", " '92945537803886592': [],\n", " '93326271056060418': [],\n", " '98029817156468736': ['Conference'],\n", " '92688744313929728': [],\n", " '97311289960968192': [],\n", " '97826342103564289': ['Obama'],\n", " '94480845791956993': [],\n", " '100978397903192064': [],\n", " '94137640999325696': [],\n", " '101065852761284608': [],\n", " '102381137401348098': ['Su\\xc3\\xa1rez', 'Anfield', 'Gerrard'],\n", " '101808467257470976': ['Stevan Ridley'],\n", " '92952817727324160': [],\n", " '92574271288778752': ['May'],\n", " '93681637950365696': ['Era'],\n", " '98174256785010688': ['Giffords'],\n", " '100709634683305985': [],\n", " '94135082436132864': [],\n", " '93188706533515264': [],\n", " '97339570164731904': ['Directorate'],\n", " '102073483936268288': [],\n", " '94070517031636997': [],\n", " '97096475271634944': ['Newton'],\n", " '91796115715919873': [],\n", " '93737472516829184': [],\n", " '91803825563910144': [],\n", " '97722436182749184': [],\n", " '92931106382413824': [],\n", " '93772486549848064': [],\n", " '94859886923481088': [],\n", " '92981004804960256': [],\n", " '92668398948978688': [],\n", " '92755669811339264': [],\n", " '95555792912134144': [],\n", " '101571060847230976': [],\n", " '101032158956761088': [],\n", " '91883894542049281': [],\n", " '93322827813494785': [],\n", " '93398463697526784': [],\n", " '94558606829166595': [],\n", " '101056007421173760': [],\n", " '91769916096643072': [],\n", " '92206704678285312': [],\n", " '96190924983508992': [],\n", " '96953957791956992': [],\n", " '92828887821717504': [],\n", " '101874095125307393': [],\n", " '93374198965219330': ['Corp', 'Fox News'],\n", " '101020544421478400': [],\n", " '92700486129553408': [],\n", " '92647293202857984': [],\n", " '93018627565027329': [],\n", " '91779272523517953': ['Potter', 'Deathly Hallows'],\n", " '92594537654009856': [],\n", " '100659567297445888': [],\n", " '95182527685337089': [],\n", " '92683945992392704': [],\n", " '92705594049441793': [],\n", " '92019191024066560': [],\n", " '101080446888181760': [],\n", " '92239380411981825': [],\n", " '94398791322578944': [],\n", " '93999585655140352': [],\n", " '98694351315664896': [],\n", " '91676190217220096': [],\n", " '91845119975759872': ['FP2', 'Simoncelli'],\n", " '93499783599235072': [],\n", " '92468980765306881': ['Fever'],\n", " '94526163174690817': [],\n", " '91946592923430912': [],\n", " '95177954954448896': [],\n", " '93435019728650240': [],\n", " '92577654489886720': [],\n", " '92975510937800704': ['Geiger'],\n", " '94456468476137472': ['SWAT'],\n", " '102796460789211136': [],\n", " '92591462549700608': ['Agree Campbell'],\n", " '92876105060581376': [],\n", " '99480036737957888': [],\n", " '93170883702685696': [],\n", " '100947346967367680': [],\n", " '101736175064190976': [],\n", " '98501375574544385': ['star', 'Roberta Vinci'],\n", " '92077173778825216': [],\n", " '94429050306707456': ['Criss'],\n", " '100010138022330368': ['Heat'],\n", " '98052883123146752': ['Anthony'],\n", " '91628739892490240': [],\n", " '94808210258669568': [],\n", " '101414384043175937': [],\n", " '94934958866579456': ['Says Congress'],\n", " '93255899140997120': ['Cup'],\n", " '92701225673428992': ['World Cup'],\n", " '91928845980143616': [],\n", " '94807440419332097': [],\n", " '93071805631303680': [],\n", " '99594637676789760': [],\n", " '94828031247515648': ['WineHouse'],\n", " '91850107737227265': [],\n", " '103226937052381184': ['Song'],\n", " '92670268052484096': [],\n", " '97969923694931968': ['Jazeera English'],\n", " '94845125288665088': ['Winehouse'],\n", " '93246093017620480': [],\n", " '97462622781321216': [],\n", " '93246986748301312': [],\n", " '99121683209785344': [],\n", " '94156730929381376': [],\n", " '92369414032343040': ['Edge of Glory'],\n", " '92915112100380672': [],\n", " '102041024507031555': ['van Persie'],\n", " '92240386990407680': [],\n", " '101635276731981824': [],\n", " '91970961699647488': [],\n", " '92380102771474432': [],\n", " '92773735211335680': [],\n", " '98932393993449472': ['Sea'],\n", " '91839109567488000': [],\n", " '93093466476773377': [],\n", " '92803031367819264': [],\n", " '93368936996933632': [],\n", " '92627625608097795': [],\n", " '92487204324126720': [],\n", " '97853032653529089': ['Coal Rejects',\n", " 'Macarthur Coal',\n", " 'Australia',\n", " 'Peabody Energy'],\n", " '92720622232276992': [],\n", " '99661771735969792': [],\n", " '95815783678087169': [],\n", " '91908013434216448': [],\n", " '93322370688880641': [],\n", " '100338505523281920': [],\n", " '96276255372091392': [],\n", " '99129277999611906': [],\n", " '96024488075997184': ['FRANCISCO'],\n", " '102744094140411904': [],\n", " '93202345378332673': [],\n", " '93485185114443777': [],\n", " '97668537476317184': ['Burress'],\n", " '93725261312438272': [],\n", " '93036974818074624': [],\n", " '92434814619226113': [],\n", " '96113851828940800': [],\n", " '93152330396082176': [],\n", " '92323388076470274': [],\n", " '92348579057909760': [],\n", " '98086877143379968': [],\n", " '94376906727763968': [],\n", " '101734277972107264': [],\n", " '92891661000130561': ['Cech'],\n", " '91845690656960512': [],\n", " '102668987531395072': [],\n", " '101721820142637057': ['Obama', 'Holland'],\n", " '93334427844878336': [],\n", " '93363101503729664': ['Brooks'],\n", " '99117434937679872': [],\n", " '92588165663162369': [],\n", " '91914130545573888': [],\n", " '97028520554938368': ['Ecclestone', 'Sky', 'TV'],\n", " '97939393377075200': [],\n", " '93697436974985216': [],\n", " '92663918589259776': [],\n", " '92701930975010816': [],\n", " '103170022179999745': [],\n", " '94593937909616640': [],\n", " '93064738422009857': [],\n", " '93411155669827584': ['King', 'America'],\n", " '92282588458258432': [],\n", " '101643392131403776': [],\n", " '91952178360631296': [],\n", " '103212458935726080': [],\n", " '99113051927752704': [],\n", " '96945755121659904': ['S', 'Dawan Landry'],\n", " '100581944642904064': [],\n", " '91991519430582272': [],\n", " '93239357858791425': [],\n", " '92203555385131008': [],\n", " '93052450197606400': [],\n", " '100994783358631936': [],\n", " '96473651876077568': [],\n", " '97733882346078208': ['City cruised', 'Inter Milan'],\n", " '92054549212299265': [],\n", " '93015347564777472': [],\n", " '93745034825961472': [],\n", " '101758768534138880': [],\n", " '93411920736034816': [],\n", " '93352717229109248': [],\n", " '92638811993030656': [],\n", " '101757466324385792': ['Raiders'],\n", " '93617326653587456': ['Terry', 'Roberto Di Matteo'],\n", " '102124541182091264': [],\n", " '100553819494158337': [],\n", " '99510126662254594': [],\n", " '100686707728453632': ['News'],\n", " '93389798248681472': ['Bay Islands'],\n", " '102068034964946945': [],\n", " '100687447985364992': [],\n", " '96258902395584512': ['City', 'Sergio Aguero'],\n", " '100980416290373632': [],\n", " '91962882371235840': [],\n", " '92296187314581504': [],\n", " '95489083136155649': [],\n", " '96402182710104065': ['Canada', 'Toronto', 'Sydney'],\n", " '93274772011626496': [],\n", " '93146504931442688': [],\n", " '100912986448863232': ['Haziq'],\n", " '93321380757639169': [],\n", " '101016893695082496': [],\n", " '98037598789971969': [],\n", " '96651090807894017': ['Kolb'],\n", " '100672810757783552': [],\n", " '101427796009689088': ['Smith'],\n", " '92033712904093696': [],\n", " '103207560827514880': ['Seal Team'],\n", " '97004151946481664': [],\n", " '93568254626369536': [],\n", " '100714522351906817': [],\n", " '100717045175418881': ['Lane'],\n", " '97070990114308097': [],\n", " '94829178528075776': [],\n", " '97995265683886081': [],\n", " '93265655243096064': [],\n", " '97345214657732608': [],\n", " '93490469958467584': [],\n", " '91915890144186368': [],\n", " '92706091976237056': [],\n", " '92224552599429120': [],\n", " '96677269535334400': [],\n", " '94523757728776192': [],\n", " '100733236031913984': [],\n", " '94138194685210624': [],\n", " '92705848836628480': [],\n", " '102676754094751744': [],\n", " '99760962835460096': [],\n", " '98173600703582208': [],\n", " '93710611619393537': [],\n", " '103139143063842816': [],\n", " '102019118319943680': [],\n", " '91871635388375040': [],\n", " '91937809920823296': ['McCartney'],\n", " '93103314736132096': [],\n", " '102314342346788865': [],\n", " '99861223440527360': ['Rivera'],\n", " '93050424524935168': ['Norris'],\n", " '93143598341685248': [],\n", " '94386507481219072': ['capital'],\n", " '93356496913567744': [],\n", " '101940709053042688': [],\n", " '94153790718099456': [],\n", " '91858594844246016': ['Kevin', 'Jeju Island'],\n", " '101392563843502082': [],\n", " '102784970023641089': [],\n", " '89391663738400769': [],\n", " '92075215315681281': [],\n", " '100660375749529600': [],\n", " '102008853369077761': ['360'],\n", " '96178288992587776': [],\n", " '93826957975883776': [],\n", " '92625159864856577': [],\n", " '93967144450138112': [],\n", " '103137083945783296': [],\n", " '93081565348892672': [],\n", " '93745589786902528': [],\n", " '93695066069151744': ['Chi Minh City'],\n", " '92333694446084096': [],\n", " '94867896928448513': ['Clayton'],\n", " '92245339104481281': [],\n", " '101058689523400704': [],\n", " '93334286316478464': [],\n", " '92794355353530370': [],\n", " '100654462988849152': [],\n", " '100704090522271744': [],\n", " '98919027602231296': [],\n", " '99171192048599040': [],\n", " '100342613860818944': [],\n", " '98107329765056512': [],\n", " '96542543348637697': [],\n", " '93023640379076609': [],\n", " '93905391481651200': [],\n", " '92540726604349440': [],\n", " '93511911219535872': [],\n", " '93359167267549184': ['Rebel EOS'],\n", " '93497872150036481': [],\n", " '94930009613017089': [],\n", " '93445783814291456': [],\n", " '91989088462307329': [],\n", " '92643959591022592': [],\n", " '96585350411071489': [],\n", " '96566158613938178': ['Reggie Bush'],\n", " '97732251214823424': ['Rowling', 'Ministry of Magic'],\n", " '92989573579288576': [],\n", " '96191043862663169': ['Bueno'],\n", " '91928522565754880': [],\n", " '96782542702780416': [],\n", " '91733741646516224': [],\n", " '100960424735940608': ['Winehouse', 'Norway', 'Rupert Murdoch'],\n", " '92166818927620096': ['Fire'],\n", " '98743218979618817': ['Hercules'],\n", " '94198829171216384': ['Khan'],\n", " '93660551019905025': [],\n", " '92246588633780226': [],\n", " '98371205341515776': [],\n", " '92675273430024192': [],\n", " '101975001678364672': ['Championship'],\n", " '100860202164830208': [],\n", " '93459204706275329': [],\n", " '93086151035994113': ['Newsnight', 'Nick Boles'],\n", " '94365640856580097': ['Page', 'Oracle', 'Google CEO'],\n", " '92732661361152000': [],\n", " '100933019145207808': ['Bernabeu'],\n", " '93634518149365760': [],\n", " '100623454981722112': [],\n", " '102862579310936064': ['Madrid'],\n", " '93166585153454081': [],\n", " '100736523179274240': ['Abbey', 'Sony'],\n", " '94556024995975169': [],\n", " '100620752272900097': ['League'],\n", " '95895148315164673': ['Gaga'],\n", " '93305039787012096': [],\n", " '92488433934680064': [],\n", " '94818150943686657': [],\n", " '102875807608881152': [],\n", " '96309990792507392': ['Vinatieri'],\n", " '100375503868923904': ['WR',\n", " 'DeSean Jackson',\n", " 'Philadelphia International Airport'],\n", " '94812166439452672': [],\n", " '91887708938579968': [],\n", " '96565555221368832': ['Bowl', 'Jason Babin'],\n", " '101087898002145280': ['Cross'],\n", " '96250830499479552': [],\n", " '91876443038027776': [],\n", " '94586978460385281': [],\n", " '98101823776374784': ['Moss'],\n", " '96203693912891394': [],\n", " '100130942361939968': [],\n", " '100202414153539585': [],\n", " '92974406980210688': [],\n", " '92229656115286016': [],\n", " '91966296882810880': [],\n", " '95637005131722752': [],\n", " '92353415123968000': [],\n", " '101815114281385984': [],\n", " '91693727273328641': [],\n", " '97462635209031680': [],\n", " '92860837802414081': [],\n", " '92718575407742976': [],\n", " '93477094557876224': [],\n", " '91814689134219264': [],\n", " '100913412317523969': [],\n", " '94421647397888000': [],\n", " '103225732452454400': ['Bendtner'],\n", " '92406762476535808': [],\n", " '98298979716055040': [],\n", " '95430079714299904': ['Villa', 'Wigan', \"Charles N'zogbia....More\"],\n", " '101044028170174466': [],\n", " '93750712361689088': ['Woods'],\n", " '93440864361263105': ['Potter'],\n", " '92105762414927872': [],\n", " '92406036845166594': [],\n", " '102532528845492224': [],\n", " '100325515235303424': [],\n", " '96772240854630400': [],\n", " '101038340438114304': [],\n", " '101491826229395456': [],\n", " '92313714224668672': ['Lama', 'President Barack Obama'],\n", " '101020620464197632': [],\n", " '93461072069140480': [],\n", " '98039628522725378': [],\n", " '93321511091445760': [],\n", " '91917092294627328': [],\n", " '102371087672807425': ['Fabregas'],\n", " '98069781692940288': [],\n", " '100864013872803841': [],\n", " '93377441845874688': [],\n", " '96657103237816320': [],\n", " '93317692710338560': [],\n", " '93477874656489472': [],\n", " '92749453886373888': [],\n", " '100719104977154048': ['city'],\n", " '101020302405931008': [],\n", " '101330147394850816': [],\n", " '102568154164768768': ['State'],\n", " '102844692646993921': ['Bowes', 'Ealing'],\n", " '93005124485652481': ['Hoare brave'],\n", " '97439276295397376': ['Marquis', 'Nats', 'Minor League'],\n", " '101756407149375489': [],\n", " '92703274603528192': [],\n", " '92463363644334080': [],\n", " '94319469920403456': [],\n", " '93060072762118144': ['Storm Bret', 'Florida'],\n", " '100900499162808321': [],\n", " '93006349599907840': [],\n", " '94103364815699969': [],\n", " '93286216094580736': [],\n", " '100793214600085504': [],\n", " '3543845320': [],\n", " '93346617897390082': [],\n", " '92789379453566976': [],\n", " '100373381538529280': [],\n", " '93063371515105280': [],\n", " '91970435507421184': [],\n", " '103073204700053505': [],\n", " '93316633199775744': [],\n", " '96966781851271169': [],\n", " '99273520994992130': [],\n", " '103207879510724608': [],\n", " '91961808604237824': [],\n", " '97476128305979392': [],\n", " '93476427013423104': [],\n", " '92907150279589888': [],\n", " '92916991156957184': [],\n", " '95317687516934144': [],\n", " '93168725246746624': [],\n", " '93691733627502593': [],\n", " '93405257639526400': [],\n", " '93412095177146369': [],\n", " '93448491019411456': [],\n", " '93372288518459393': [],\n", " '94209038987952128': [],\n", " '93709249020039168': [],\n", " '94452083499081728': [],\n", " '93319713035272192': [],\n", " '99885981905321985': [],\n", " '95906544255897600': [],\n", " '92699088658767872': [],\n", " '93378151698272256': [],\n", " '99598183302299648': [],\n", " '102486506131824641': [],\n", " '92542317491273729': [],\n", " '92683638923210752': ['Story'],\n", " '92276158808334336': [],\n", " '91812471555362816': [],\n", " '98017799158497280': [],\n", " '93734422158913536': [],\n", " '94810610474295297': [],\n", " '92433257878134784': [],\n", " '92812416949297152': [],\n", " '97296020681142272': [],\n", " '92712188497768449': [],\n", " '93165074721677312': [],\n", " '100625708447043585': ['Obama', 'U.S.'],\n", " '102568383198937088': [],\n", " '94823264559431683': [],\n", " '92712259708665856': [],\n", " '93046116983123968': ['Cross'],\n", " '93203339000561664': [],\n", " '102924579508461568': [],\n", " '91946438266851329': [],\n", " '98483906319368192': [],\n", " '98094167196049409': [],\n", " '100955195776827392': [],\n", " '92881941317165056': ['Football Club'],\n", " '94811243692568577': [],\n", " '101629780654436352': ['Club', 'Jose Enrique'],\n", " '98048170008903681': [],\n", " '88416243299786752': [],\n", " '97569036308709376': [],\n", " '99672140021903360': [],\n", " '93335385572257792': [],\n", " '99200989688643584': [],\n", " '97867813376622592': [],\n", " '102266212200890368': ['Retail Stores'],\n", " '93165092149006336': [],\n", " '91718858846633984': ['Spelling'],\n", " '102806874763694080': [],\n", " '94811470172393472': ['winehouse', 'janis joplin'],\n", " '100678378755067904': [],\n", " '93402528036827137': [],\n", " '102041478183927808': ['Clinton', 'Syria'],\n", " '101007518347694080': [],\n", " '92283176067661824': ['Potter', 'Deathly Hallows'],\n", " '96587380278050816': [],\n", " '94137483159281664': [],\n", " '93024530745921536': [],\n", " '98182828684087296': [],\n", " '94213202635788288': [],\n", " '95056222239211520': [],\n", " '92268098018754560': [],\n", " '93464745524465664': [],\n", " '100951827431948288': [],\n", " '95269953741144066': [],\n", " '98530236588761088': [],\n", " '100690934215344129': [],\n", " '92378631279611904': [],\n", " '93009463564447745': [],\n", " '99810287129067521': [],\n", " '92742671491284992': [],\n", " '91683689796354048': [],\n", " '101739359849562112': [],\n", " '94712231622746112': ['SWAT', 'Tomter'],\n", " '92658550811267072': [],\n", " '92289190707990528': ['Stephenson', 'NI'],\n", " '93654618210443264': [],\n", " '91986216400076800': [],\n", " '94179121093017600': [],\n", " '91714818343583744': [],\n", " '98838837832327168': ['Network', 'Kyle Orton'],\n", " '101037747019587584': [],\n", " '102660518929637377': [],\n", " '100966801382440960': ['Anderson'],\n", " '102350153272401920': ['Byrne'],\n", " '92829473745014784': [],\n", " '91911670112329728': [],\n", " '99204286419968000': [],\n", " '93755599896064001': [],\n", " '93648865886089216': [],\n", " '101495953428717569': ['House', 'WASHINGTON'],\n", " '101748047888920577': ['Perry', 'President', 'Charleston'],\n", " '101432724321091584': ['Carolina'],\n", " '102856587256926208': [],\n", " '93392986490155009': [],\n", " '95222918291783680': ['Guptill', 'Derbyshire', 'Kent'],\n", " '101186888085413889': ['johnson', 'BBC'],\n", " '92630700901138432': ['Breaking'],\n", " '103069454442823681': [],\n", " '99195943936724992': ['City'],\n", " '102581530127376384': [],\n", " '102784871444918273': ['York Gov'],\n", " '92683762680344576': [],\n", " '92861039120625664': [],\n", " '101983612601237505': ['Madrid'],\n", " '96931007181225986': [],\n", " '96064326309384192': ['Hutchinson', 'Ryan Longwell', 'Jared Allen'],\n", " '93048284138057729': [],\n", " '95645142622539776': ['Azure Center of Excellence', 'Mumbai', 'Capgemini'],\n", " '91666751665868800': [],\n", " '93214187051958273': [],\n", " '96984948635992065': ['Klinsmann', 'US national team'],\n", " '92647901381136384': [],\n", " '96988012839317504': [],\n", " '95647738900922368': ['Hills'],\n", " '92691023037349889': [],\n", " '94764774340046849': ['Arsenal'],\n", " '101235330262372352': ['Cameron'],\n", " '92020245019099136': [],\n", " '92489713902039040': [],\n", " '93055040520069120': [],\n", " '91944850680844288': ['Bond', 'Dana Ave'],\n", " '96569948897427456': [],\n", " '93364673793110020': [],\n", " '102759881064460288': [],\n", " '92284091642294272': [],\n", " '96404114954661888': [],\n", " '93017474072715264': [],\n", " '92088579400011776': [],\n", " '102747877671047168': [],\n", " '92624967635705856': [],\n", " '93419359736832000': [],\n", " '95990282411180033': [],\n", " '100939109257842689': [],\n", " '101867891749683200': ['West'],\n", " '93755926498127872': [],\n", " '93350745100922880': ['Murdoch', 'London'],\n", " '92267949112561664': [],\n", " '91811406156017664': ['Maps Updates Interface'],\n", " '93158117478645761': [],\n", " '93717377883189248': [],\n", " '92979130907377664': [],\n", " '94524421292834816': ['Obama'],\n", " '92074318242127872': [],\n", " '92508560365334528': [],\n", " '102413446699692032': [],\n", " '100227045275082752': ['Champions'],\n", " '93512635420647425': [],\n", " '95300837726887936': [],\n", " '94303538561290240': ['indus', 'Sun'],\n", " '98518238442434560': ['Barack Obama'],\n", " '94079773847986177': [],\n", " '103196131361697792': ['Annual Geek Awards'],\n", " '95724083647488000': [],\n", " '99538840863252480': [],\n", " '93456222954594304': [],\n", " '94183808546516992': [],\n", " '97963233780056064': [],\n", " '93505979316060160': [],\n", " '92497498207297536': [],\n", " '94810268923736064': [],\n", " '94767948295700480': [],\n", " '93779352625483776': [],\n", " '91974853590126592': [],\n", " '93592366388224000': [],\n", " '92586488394563584': [],\n", " '92934213975805952': [],\n", " '101022789389131776': [],\n", " '92866765834567680': [],\n", " '91812021514932225': [],\n", " '97352404718194688': [],\n", " '93147699544723457': [],\n", " '97759293780144128': ['Bedard'],\n", " '91804404180725760': [],\n", " '92205398123216896': [],\n", " '93483825652449280': [],\n", " '93289285981175808': [],\n", " '97074481746550785': [],\n", " '92453059170537474': [],\n", " '93786420036108288': [],\n", " '93629100102660096': [],\n", " '103127655129427968': [],\n", " '96879263122337792': ['Cameron', 'George Osborne'],\n", " '100766029856260097': [],\n", " '96924850878287872': ['Pereira'],\n", " '96688125719486464': ['Reporter', 'Kristin Cavallari'],\n", " '92519151947624448': [],\n", " '100871916511969280': [],\n", " '92673205621370880': [],\n", " '91681462000164864': [],\n", " '101371723798151169': [],\n", " '94537519206637569': [],\n", " '92291532354355200': [],\n", " '101300660988936193': ['Woods', 'PGA Championship'],\n", " '93324115456434176': [],\n", " '98094627499941888': ['Snider'],\n", " '91578861036380160': [],\n", " '92691491260084224': ['Boyz'],\n", " '101013010050592768': ['Express', 'West Midlands', 'Coventry'],\n", " '101708486022397952': [],\n", " '94900440759681024': [],\n", " '96455331181375488': [],\n", " '93535374181269504': ['Wright', 'Zealand', 'The Australian'],\n", " '94194936869683200': ['Smith', 'NFL'],\n", " '95127529593122816': ['Hari', 'Orwell Prize'],\n", " '94633563730874368': [],\n", " '103041969965645824': [],\n", " '93314053316939776': [],\n", " '92607649736167424': ['star', 'Steven Davis'],\n", " '94499737323057152': [],\n", " '99226394587971585': ['Releases Xcode'],\n", " '100644516125622272': ['Devon Smith'],\n", " '92969134756859906': ['Morris'],\n", " '93452805095960576': [],\n", " '103165156539904000': ['U'],\n", " '96548633469652992': [],\n", " '92350554352783361': [],\n", " '92454111949230080': ['Horn'],\n", " '97829869311901696': [],\n", " '93322219631026176': [],\n", " '97751607852273664': [],\n", " '93372491627642880': [', Mankins'],\n", " '96976835820269568': ['Willis McGahee'],\n", " '95489982260723712': [],\n", " '91652237725663232': [],\n", " '101024829385347073': [],\n", " '100731015894540288': [],\n", " '91999267694194688': ['Dinklage'],\n", " '96252784025931776': [],\n", " '99523095437651968': [],\n", " '98182476941373440': [],\n", " '101557840388440064': [],\n", " '91987850437988352': [],\n", " '92740682158047232': [],\n", " '101351686358048768': ['UK', 'Samsung Galaxy Tab'],\n", " '92671586628407296': [],\n", " '96039621137399809': [],\n", " '98034371264655360': [],\n", " '92640767331418113': ['. Clair'],\n", " '93009815311364096': [],\n", " '93699434617118721': [],\n", " '91998635692261376': [],\n", " '97815160516919296': [],\n", " '100914329276256257': [],\n", " '100685777289224192': [],\n", " '93661388681125888': [],\n", " '91810529621966848': [],\n", " '95629074516549632': ['A&M', 'the Longhorn Network'],\n", " '98027157300854784': [],\n", " '100868492621914112': [],\n", " '94500411716808705': [],\n", " '92145076297404416': [],\n", " '101654556852748288': [],\n", " '100724230852845568': [],\n", " '94481646916603904': [],\n", " '92209240676110336': [],\n", " '92706915892731904': [],\n", " '98924387897585664': [],\n", " '101428194460180480': [],\n", " '93409536827854848': [],\n", " '101992331275796480': [],\n", " '96665996416397313': [],\n", " '93960668197289984': [],\n", " '101029769130414081': ['Street'],\n", " '96956379297882112': [],\n", " '94509025118519296': [],\n", " '96410979562291200': ['Pros', 'Eric Bledsoe', 'DeMarcus Cousins'],\n", " '91772743091105793': [],\n", " '100902012501229568': [],\n", " '96622402867441664': [],\n", " '91900145075105793': [],\n", " '100998532747640832': [],\n", " '98446576988585984': [],\n", " '94013224856453120': [],\n", " '93800424825565184': [],\n", " '99227803861516288': [],\n", " '92786465272119296': ['Disney'],\n", " '91904310308384770': [],\n", " '92717757963059200': [],\n", " '97079031924666368': ['Lee Higgins', 'Eagles'],\n", " '94539178125176833': [],\n", " '100652144067223552': [],\n", " '100653353050193920': ['Ham', 'West Croydon'],\n", " '93546678673616896': [],\n", " '94441232654278656': ['Fabregas'],\n", " '92651400680587264': ['Brooks'],\n", " '101671002735521793': [],\n", " '102067318368108544': ['Bills'],\n", " '92768228354424832': [],\n", " '94453092074008577': [],\n", " '96324653890539521': ['Storm Don', 'Gulf'],\n", " '97827245397254145': ['Senate'],\n", " '101413281792671745': [],\n", " '92066368203141120': [],\n", " '96092892203978752': [],\n", " '94899543874867200': [],\n", " '95578608407552000': [],\n", " '92494167556636672': [],\n", " '93734032189304832': [],\n", " '102000318501490688': ['Fabregas', 'Barcelona'],\n", " '92361086627622912': [],\n", " '94457834649034754': [],\n", " '93014813629890561': [],\n", " '101830130401423360': [],\n", " '97129896891006976': [],\n", " '99852692247166976': [],\n", " '100668166455312385': ['York'],\n", " '99144320430518274': ['Camargo'],\n", " '91950032097525760': [],\n", " '91867884598476800': ['Icahn'],\n", " '97476522566361089': [],\n", " '92457484513574913': [],\n", " '98537413051293697': ['York'],\n", " '93784012509818880': [],\n", " '97040545645473792': ['The World Fashion Show', 'New Orleans'],\n", " '93598767844032512': [],\n", " '102086288940863488': [],\n", " '96229136179281920': ['CEO McNerney'],\n", " '93344390839410689': [],\n", " '93400837157695488': [],\n", " '96369935135158272': ['Schumann'],\n", " '102352338030837761': ['Bay', 'EPL'],\n", " '96992650850344961': [],\n", " '95502045565562880': [],\n", " '101389292311556096': [],\n", " '91792484321067008': [],\n", " '100536116343607296': ['St'],\n", " '92280866566455296': [],\n", " '101152953116803072': ['Casilla'],\n", " '92969106881515520': [],\n", " '102182296815276032': ['Kaepernick'],\n", " '92684412923289600': [],\n", " '93808293348257792': ['Revival'],\n", " '96185595470159873': ['Cofield'],\n", " '100644104689557505': ['Minister'],\n", " '95188303338422272': [],\n", " '93983936493010944': ['Kennedy Space Center'],\n", " '91961905131950080': [],\n", " '93769818116861953': [],\n", " '95898503749963777': [],\n", " '93099856930947072': [],\n", " '94502159269363712': [],\n", " '98807639470899200': ['Minister', 'David Ford', 'Roisin Lynch'],\n", " '93282854406078464': ['lifts', 'Gor Mahia'],\n", " '96575772726263809': [],\n", " '98017591959896064': ['target Mata'],\n", " '99357694883930112': ['Boat Team'],\n", " '102139053503283200': [],\n", " '93736461454688256': [],\n", " '101668632941178880': [],\n", " '102319781855772672': [],\n", " '93978341606043648': [],\n", " '97017783145070592': [],\n", " '96984991245942784': ['Henne'],\n", " '103120046653583360': [],\n", " '93794603127410688': [],\n", " '99618926908018689': [],\n", " '93398195266265088': [],\n", " '95861807780077568': [],\n", " '97379561582497792': [],\n", " '91794662699974656': [],\n", " '96405737714098176': ['Canada', 'airport', 'Sydney'],\n", " '96276025083822080': ['Gallery'],\n", " '92668693426880512': ['Krispy'],\n", " '97248713143099392': ['Bank', 'Fayasel'],\n", " '94142638093115392': [],\n", " '95132090957447168': [],\n", " '100662459853053952': [],\n", " '97457198254407681': ['Fabregas', 'Arsenal'],\n", " '93729457709383680': [],\n", " '101108656782839809': [],\n", " '92787340803715072': [],\n", " '101329150966640641': [],\n", " '97025714552971264': ['Finn', 'Middlesex'],\n", " '93590697944432640': [],\n", " '95660302888214529': ['Sox', 'Kenny Williams', 'Twins'],\n", " '91925590256525312': [],\n", " '93031684374667264': [],\n", " '101841857687977984': ['London Square'],\n", " '101671774474870785': [],\n", " '92247182312349696': [],\n", " '92508293959917568': [],\n", " '94815768675487745': [],\n", " '94759766982799360': ['Citizen'],\n", " '96116890295992320': [],\n", " '91786366156935168': [],\n", " '96354439341936640': ['Longwell'],\n", " '98068716322951169': [],\n", " '95128487727349760': ['Grand Prix'],\n", " '92926655382818819': [],\n", " '93059420296183808': [],\n", " '92370537531183104': [],\n", " '94201131856707584': [],\n", " '102923598414622720': [],\n", " '93291567711916032': [],\n", " '96726597469618176': [],\n", " '94510033202724865': ['Risk', 'Heat Stroke'],\n", " '97027268685213696': [],\n", " '97002463147720705': [],\n", " '93900949902462977': [],\n", " '93942339093004288': [],\n", " '96145938346811393': ['Madrid', 'Sergio Aguero', 'Manchester', 'City'],\n", " '97373690815197184': ['Knox'],\n", " '93750898479730688': ['Croft', 'Tom Smith'],\n", " '92848660353794049': [],\n", " '93378613063327744': [],\n", " '91904202460241920': [],\n", " '99954453586780161': ['Wenger', 'Barack Obama'],\n", " '92804182280634371': [],\n", " '93068195799371776': ['and Chandler'],\n", " '92648687725051905': [],\n", " '96979327224266752': ['Klinsmann'],\n", " '102441571353509888': [],\n", " '93709909803274240': [],\n", " '93105665089867776': [],\n", " '91871796252512256': [],\n", " '100720839560933376': [],\n", " '93671907987177473': [],\n", " '94807286882635776': [],\n", " '101197985895034880': [],\n", " '93761496332517376': [],\n", " '95999339016626176': [],\n", " ...}" ] }, "execution_count": 75, "metadata": {}, "output_type": "execute_result" } ], "source": [ "output" ] }, { "cell_type": "code", "execution_count": 74, "metadata": { "collapsed": true }, "outputs": [], "source": [ "for o in output.keys():\n", " output[o] = get_entities(output[o])" ] }, { "cell_type": "code", "execution_count": 66, "metadata": { "collapsed": false }, "outputs": [], "source": [ "def get_entities(line_text):\n", " segments = line_text.split(\" \")\n", " col = []\n", " for seg in segments:\n", " res = normalize(seg)\n", " if res is not None:\n", " col.append(res)\n", " fin = []\n", " temp = []\n", " for c in col:\n", " if c[1] == \"B\":\n", " if len(temp) == 0:\n", " pass\n", " else:\n", " fin.append(\" \".join(temp))\n", " temp = [c[0]]\n", " elif c[1] == \"I\":\n", " temp.append(c[0])\n", " return fin\n", " " ] }, { "cell_type": "code", "execution_count": 67, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "['Century Fox Animation', 'Blue Sky Studios Announce Ice-Age Casting']" ] }, "execution_count": 67, "metadata": {}, "output_type": "execute_result" } ], "source": [ "get_entities(\"CONFIRMED/O :/O Twentieth/B-ENTITY Century/I-ENTITY Fox/I-ENTITY Animation/I-ENTITY &/O Blue/B-ENTITY Sky/I-ENTITY Studios/I-ENTITY Announce/I-ENTITY Ice-Age/I-ENTITY Casting/I-ENTITY &/O Nicki/B-ENTITY Minaj/I-ENTITY is/O on/O the/O LINEUP/O http://t.co/IlQgO34/O\")" ] }, { "cell_type": "code", "execution_count": 65, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def normalize(word):\n", " index = word.rfind('/')\n", " pure = word[:index]\n", " if \"I-\" in word[index+1:]:\n", " return (pure, \"I\")\n", " if \"B-\" in word[index+1:]:\n", " return (pure, \"B\")\n", " else:\n", " return None" ] }, { "cell_type": "code", "execution_count": 78, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "2" ] }, "execution_count": 78, "metadata": {}, "output_type": "execute_result" } ], "source": [ "temp1 = [1,2,3,4]\n", "temp2 = [3,4,5,6]\n", "len(set(temp1) - set(temp2))\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "for tweet in tweet_corpus.values():\n", " tweet[\"mention_set\"] = set([item['mention'] for item in tweet['goldens']])\n", " \n", "stats = {\"tp\":0., \"fp\":0., \"tn\":0., \"fn\":0.}\n", "\n", "for tweet in tweet_corpus.values():\n", " tid = str(tweet['tweet_info']['id'])\n", " ners = set(output[tid])\n", " golds = tweet[\"mention_set\"]\n", " \n", " stats[\"fp\"] += len(set(ners) - set(golds)))\n", " stats[\"fn\"] += len(set(golds) - set(ners)))\n", " stats[\"tp\"] += len(set(golds) - set(ners)))\n", " \n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.11" } }, "nbformat": 4, "nbformat_minor": 0 }
gpl-2.0
AlbertoAlfredo/exercicios-cursos
ExerciciosGerais/slides/34.Prática em Python/scripts/3.deep_learning.ipynb
1
6286
{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Formação Cientista de Dados - Fernando Amaral e Jones Granatyr\n", "# Deep Learning" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Importação das bibliotecas\n", "import matplotlib.pyplot as plt\n", "from keras.models import Sequential\n", "from keras.layers import Dense, Dropout\n", "from keras.utils import np_utils\n", "import numpy as np\n", "from sklearn.metrics import confusion_matrix\n", "from keras.datasets import mnist\n", "#pip install tensorflow (executar no Anaconda Prompt)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Obtenção dos dados e divisão automática entre treinamento e teste\n", "(X_treinamento, y_treinamento), (X_teste, y_teste) = mnist.load_data()\n", "# Visualização de imagens específicas\n", "plt.imshow(X_treinamento[21], cmap = 'gray')\n", "plt.title(y_treinamento[21])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Mudança de dimensão, originalmente está em 28x28 e precisamos 784\n", "X_treinamento = X_treinamento.reshape((len(X_treinamento), np.prod(X_treinamento.shape[1:])))\n", "X_teste = X_teste.reshape((len(X_teste), np.prod(X_teste.shape[1:])))\n", "X_teste[0]" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Transformação dos dados para float para podermos normalizar os dados\n", "X_treinamento = X_treinamento.astype('float32')\n", "X_teste = X_teste.astype('float32')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Normalização (255 é o valor máximo de um pixel)\n", "X_treinamento /= 255\n", "X_teste /= 255" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Transformação para o formato dummy (temos 10 classes)\n", "y_treinamento = np_utils.to_categorical(y_treinamento, 10)\n", "y_teste = np_utils.to_categorical(y_teste, 10)\n", "y_teste[0]" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Estrutura da rede neural: 784 - 64 - 64 - 64 - 10\n", "# Dropout é utilizado para zerar uma porcentagem dos neurônios, para evitar o overfitting\n", "modelo = Sequential()\n", "modelo.add(Dense(units = 64, activation = 'relu', input_dim = 784))\n", "modelo.add(Dropout(0.2))\n", "modelo.add(Dense(units = 64, activation = 'relu'))\n", "modelo.add(Dropout(0.2))\n", "modelo.add(Dense(units = 64, activation = 'relu'))\n", "modelo.add(Dropout(0.2))\n", "#camada de saida, softmax probabilidade\n", "modelo.add(Dense(units = 10, activation = 'softmax'))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Visualização da estrutura da rede neural\n", "modelo.summary()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Configuração dos parâmetros da rede neural e treinamento (utilizando base de dados de validação)\n", "# Na variável historico temos os histórico das execuções (erro e accuracy)\n", "modelo.compile(optimizer = 'adam', loss = 'categorical_crossentropy',\n", " metrics = ['accuracy'])\n", "historico = modelo.fit(X_treinamento, y_treinamento, epochs = 20,\n", " validation_data = (X_teste, y_teste))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Gráfico para visualizar os erros e accuracy\n", "historico.history.keys()\n", "#evolução do erro, azul\n", "plt.plot(historico.history['val_loss'])\n", "#performance da rede\n", "plt.plot(historico.history['val_accuracy'])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Obtenção das previsões \n", "previsoes = modelo.predict(X_teste)\n", "previsoes" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# valor máximo (com a probabilidade maior por serem 10 saídas) e geração da matriz de confusão\n", "y_teste_matriz = [np.argmax(t) for t in y_teste]\n", "y_previsoes_matriz = [np.argmax(t) for t in previsoes]\n", "confusao = confusion_matrix(y_teste_matriz, y_previsoes_matriz)\n", "confusao" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Previsão com um novo registro, convertendo o array para o formato de matriz\n", "#número 4\n", "y_treinamento[20]" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#passo a mesma posição para o modelo prever\n", "novo = X_treinamento[20]\n", "#de matriz para vetor\n", "novo = np.expand_dims(novo, axis = 0)\n", "#previsao\n", "pred = modelo.predict(novo)\n", "#maior valor\n", "pred = [np.argmax(pred) for t in pred]\n", "pred" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "jupytext": { "cell_metadata_filter": "-all", "main_language": "python", "notebook_metadata_filter": "-all" }, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.6" } }, "nbformat": 4, "nbformat_minor": 4 }
mit
statsmodels/statsmodels.github.io
v0.13.1/examples/notebooks/generated/generic_mle.ipynb
2
32412
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Maximum Likelihood Estimation (Generic models)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This tutorial explains how to quickly implement new maximum likelihood models in `statsmodels`. We give two examples: \n", "\n", "1. Probit model for binary dependent variables\n", "2. Negative binomial model for count data\n", "\n", "The `GenericLikelihoodModel` class eases the process by providing tools such as automatic numeric differentiation and a unified interface to ``scipy`` optimization functions. Using ``statsmodels``, users can fit new MLE models simply by \"plugging-in\" a log-likelihood function. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 1: Probit model" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "execution": { "iopub.execute_input": "2021-11-12T23:37:58.433804Z", "iopub.status.busy": "2021-11-12T23:37:58.427242Z", "iopub.status.idle": "2021-11-12T23:37:59.499600Z", "shell.execute_reply": "2021-11-12T23:37:59.498626Z" }, "jupyter": { "outputs_hidden": false } }, "outputs": [], "source": [ "import numpy as np\n", "from scipy import stats\n", "import statsmodels.api as sm\n", "from statsmodels.base.model import GenericLikelihoodModel" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The ``Spector`` dataset is distributed with ``statsmodels``. You can access a vector of values for the dependent variable (``endog``) and a matrix of regressors (``exog``) like this:" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "execution": { "iopub.execute_input": "2021-11-12T23:37:59.503538Z", "iopub.status.busy": "2021-11-12T23:37:59.502570Z", "iopub.status.idle": "2021-11-12T23:37:59.519319Z", "shell.execute_reply": "2021-11-12T23:37:59.520013Z" }, "jupyter": { "outputs_hidden": false } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "::\n", "\n", " Number of Observations - 32\n", "\n", " Number of Variables - 4\n", "\n", " Variable name definitions::\n", "\n", " Grade - binary variable indicating whether or not a student's grade\n", " improved. 1 indicates an improvement.\n", " TUCE - Test score on economics test\n", " PSI - participation in program\n", " GPA - Student's grade point average\n", "\n", " GPA TUCE PSI\n", "0 2.66 20.0 0.0\n", "1 2.89 22.0 0.0\n", "2 3.28 24.0 0.0\n", "3 2.92 12.0 0.0\n", "4 4.00 21.0 0.0\n" ] } ], "source": [ "data = sm.datasets.spector.load_pandas()\n", "exog = data.exog\n", "endog = data.endog\n", "print(sm.datasets.spector.NOTE)\n", "print(data.exog.head())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Them, we add a constant to the matrix of regressors:" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "execution": { "iopub.execute_input": "2021-11-12T23:37:59.523253Z", "iopub.status.busy": "2021-11-12T23:37:59.522330Z", "iopub.status.idle": "2021-11-12T23:37:59.529565Z", "shell.execute_reply": "2021-11-12T23:37:59.530233Z" }, "jupyter": { "outputs_hidden": false } }, "outputs": [], "source": [ "exog = sm.add_constant(exog, prepend=True)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "To create your own Likelihood Model, you simply need to overwrite the loglike method." ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "execution": { "iopub.execute_input": "2021-11-12T23:37:59.533445Z", "iopub.status.busy": "2021-11-12T23:37:59.532500Z", "iopub.status.idle": "2021-11-12T23:37:59.539828Z", "shell.execute_reply": "2021-11-12T23:37:59.540498Z" }, "jupyter": { "outputs_hidden": false } }, "outputs": [], "source": [ "class MyProbit(GenericLikelihoodModel):\n", " def loglike(self, params):\n", " exog = self.exog\n", " endog = self.endog\n", " q = 2 * endog - 1\n", " return stats.norm.logcdf(q*np.dot(exog, params)).sum()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Estimate the model and print a summary:" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "execution": { "iopub.execute_input": "2021-11-12T23:37:59.543674Z", "iopub.status.busy": "2021-11-12T23:37:59.542761Z", "iopub.status.idle": "2021-11-12T23:37:59.660562Z", "shell.execute_reply": "2021-11-12T23:37:59.661343Z" }, "jupyter": { "outputs_hidden": false } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Optimization terminated successfully.\n", " Current function value: 0.400588\n", " Iterations: 292\n", " Function evaluations: 494\n", " MyProbit Results \n", "==============================================================================\n", "Dep. Variable: GRADE Log-Likelihood: -12.819\n", "Model: MyProbit AIC: 33.64\n", "Method: Maximum Likelihood BIC: 39.50\n", "Date: Fri, 12 Nov 2021 \n", "Time: 23:37:59 \n", "No. Observations: 32 \n", "Df Residuals: 28 \n", "Df Model: 3 \n", "==============================================================================\n", " coef std err z P>|z| [0.025 0.975]\n", "------------------------------------------------------------------------------\n", "const -7.4523 2.542 -2.931 0.003 -12.435 -2.469\n", "GPA 1.6258 0.694 2.343 0.019 0.266 2.986\n", "TUCE 0.0517 0.084 0.617 0.537 -0.113 0.216\n", "PSI 1.4263 0.595 2.397 0.017 0.260 2.593\n", "==============================================================================\n" ] } ], "source": [ "sm_probit_manual = MyProbit(endog, exog).fit()\n", "print(sm_probit_manual.summary())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Compare your Probit implementation to ``statsmodels``' \"canned\" implementation:" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "execution": { "iopub.execute_input": "2021-11-12T23:37:59.664691Z", "iopub.status.busy": "2021-11-12T23:37:59.663749Z", "iopub.status.idle": "2021-11-12T23:37:59.672581Z", "shell.execute_reply": "2021-11-12T23:37:59.673251Z" }, "jupyter": { "outputs_hidden": false } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Optimization terminated successfully.\n", " Current function value: 0.400588\n", " Iterations 6\n" ] } ], "source": [ "sm_probit_canned = sm.Probit(endog, exog).fit()" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "execution": { "iopub.execute_input": "2021-11-12T23:37:59.677060Z", "iopub.status.busy": "2021-11-12T23:37:59.675659Z", "iopub.status.idle": "2021-11-12T23:37:59.685340Z", "shell.execute_reply": "2021-11-12T23:37:59.686015Z" }, "jupyter": { "outputs_hidden": false } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "const -7.452320\n", "GPA 1.625810\n", "TUCE 0.051729\n", "PSI 1.426332\n", "dtype: float64\n", "[-7.45233176 1.62580888 0.05172971 1.42631954]\n" ] } ], "source": [ "print(sm_probit_canned.params)\n", "print(sm_probit_manual.params)" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "execution": { "iopub.execute_input": "2021-11-12T23:37:59.689761Z", "iopub.status.busy": "2021-11-12T23:37:59.688359Z", "iopub.status.idle": "2021-11-12T23:37:59.701242Z", "shell.execute_reply": "2021-11-12T23:37:59.701927Z" }, "jupyter": { "outputs_hidden": false } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " const GPA TUCE PSI\n", "const 6.464166 -1.169668 -0.101173 -0.594792\n", "GPA -1.169668 0.481473 -0.018914 0.105439\n", "TUCE -0.101173 -0.018914 0.007038 0.002472\n", "PSI -0.594792 0.105439 0.002472 0.354070\n", "[[ 6.46416769e+00 -1.16966616e+00 -1.01173181e-01 -5.94788997e-01]\n", " [-1.16966616e+00 4.81472112e-01 -1.89134585e-02 1.05438225e-01]\n", " [-1.01173181e-01 -1.89134585e-02 7.03758394e-03 2.47189243e-03]\n", " [-5.94788997e-01 1.05438225e-01 2.47189243e-03 3.54069512e-01]]\n" ] } ], "source": [ "print(sm_probit_canned.cov_params())\n", "print(sm_probit_manual.cov_params())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Notice that the ``GenericMaximumLikelihood`` class provides automatic differentiation, so we did not have to provide Hessian or Score functions in order to calculate the covariance estimates." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "\n", "## Example 2: Negative Binomial Regression for Count Data\n", "\n", "Consider a negative binomial regression model for count data with\n", "log-likelihood (type NB-2) function expressed as:\n", "\n", "$$\n", " \\mathcal{L}(\\beta_j; y, \\alpha) = \\sum_{i=1}^n y_i ln \n", " \\left ( \\frac{\\alpha exp(X_i'\\beta)}{1+\\alpha exp(X_i'\\beta)} \\right ) -\n", " \\frac{1}{\\alpha} ln(1+\\alpha exp(X_i'\\beta)) + ln \\Gamma (y_i + 1/\\alpha) - ln \\Gamma (y_i+1) - ln \\Gamma (1/\\alpha)\n", "$$\n", "\n", "with a matrix of regressors $X$, a vector of coefficients $\\beta$,\n", "and the negative binomial heterogeneity parameter $\\alpha$. \n", "\n", "Using the ``nbinom`` distribution from ``scipy``, we can write this likelihood\n", "simply as:\n" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "execution": { "iopub.execute_input": "2021-11-12T23:37:59.705938Z", "iopub.status.busy": "2021-11-12T23:37:59.704486Z", "iopub.status.idle": "2021-11-12T23:37:59.709876Z", "shell.execute_reply": "2021-11-12T23:37:59.710528Z" }, "jupyter": { "outputs_hidden": false } }, "outputs": [], "source": [ "import numpy as np\n", "from scipy.stats import nbinom" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "execution": { "iopub.execute_input": "2021-11-12T23:37:59.714342Z", "iopub.status.busy": "2021-11-12T23:37:59.712940Z", "iopub.status.idle": "2021-11-12T23:37:59.719635Z", "shell.execute_reply": "2021-11-12T23:37:59.720287Z" }, "jupyter": { "outputs_hidden": false } }, "outputs": [], "source": [ "def _ll_nb2(y, X, beta, alph):\n", " mu = np.exp(np.dot(X, beta))\n", " size = 1/alph\n", " prob = size/(size+mu)\n", " ll = nbinom.logpmf(y, size, prob)\n", " return ll" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### New Model Class\n", "\n", "We create a new model class which inherits from ``GenericLikelihoodModel``:" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "execution": { "iopub.execute_input": "2021-11-12T23:37:59.724111Z", "iopub.status.busy": "2021-11-12T23:37:59.722736Z", "iopub.status.idle": "2021-11-12T23:37:59.728273Z", "shell.execute_reply": "2021-11-12T23:37:59.728928Z" }, "jupyter": { "outputs_hidden": false } }, "outputs": [], "source": [ "from statsmodels.base.model import GenericLikelihoodModel" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "execution": { "iopub.execute_input": "2021-11-12T23:37:59.732622Z", "iopub.status.busy": "2021-11-12T23:37:59.731215Z", "iopub.status.idle": "2021-11-12T23:37:59.742414Z", "shell.execute_reply": "2021-11-12T23:37:59.743081Z" }, "jupyter": { "outputs_hidden": false } }, "outputs": [], "source": [ "class NBin(GenericLikelihoodModel):\n", " def __init__(self, endog, exog, **kwds):\n", " super(NBin, self).__init__(endog, exog, **kwds)\n", " \n", " def nloglikeobs(self, params):\n", " alph = params[-1]\n", " beta = params[:-1]\n", " ll = _ll_nb2(self.endog, self.exog, beta, alph)\n", " return -ll \n", " \n", " def fit(self, start_params=None, maxiter=10000, maxfun=5000, **kwds):\n", " # we have one additional parameter and we need to add it for summary\n", " self.exog_names.append('alpha')\n", " if start_params == None:\n", " # Reasonable starting values\n", " start_params = np.append(np.zeros(self.exog.shape[1]), .5)\n", " # intercept\n", " start_params[-2] = np.log(self.endog.mean())\n", " return super(NBin, self).fit(start_params=start_params, \n", " maxiter=maxiter, maxfun=maxfun, \n", " **kwds) " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Two important things to notice: \n", "\n", "+ ``nloglikeobs``: This function should return one evaluation of the negative log-likelihood function per observation in your dataset (i.e. rows of the endog/X matrix). \n", "+ ``start_params``: A one-dimensional array of starting values needs to be provided. The size of this array determines the number of parameters that will be used in optimization.\n", " \n", "That's it! You're done!\n", "\n", "### Usage Example\n", "\n", "The [Medpar](https://raw.githubusercontent.com/vincentarelbundock/Rdatasets/doc/COUNT/medpar.html)\n", "dataset is hosted in CSV format at the [Rdatasets repository](https://raw.githubusercontent.com/vincentarelbundock/Rdatasets). We use the ``read_csv``\n", "function from the [Pandas library](https://pandas.pydata.org) to load the data\n", "in memory. We then print the first few columns: \n" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "execution": { "iopub.execute_input": "2021-11-12T23:37:59.746833Z", "iopub.status.busy": "2021-11-12T23:37:59.745444Z", "iopub.status.idle": "2021-11-12T23:37:59.750577Z", "shell.execute_reply": "2021-11-12T23:37:59.751229Z" }, "jupyter": { "outputs_hidden": false } }, "outputs": [], "source": [ "import statsmodels.api as sm" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "execution": { "iopub.execute_input": "2021-11-12T23:37:59.754877Z", "iopub.status.busy": "2021-11-12T23:37:59.753488Z", "iopub.status.idle": "2021-11-12T23:38:00.327753Z", "shell.execute_reply": "2021-11-12T23:38:00.328443Z" }, "jupyter": { "outputs_hidden": false } }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>los</th>\n", " <th>hmo</th>\n", " <th>white</th>\n", " <th>died</th>\n", " <th>age80</th>\n", " <th>type</th>\n", " <th>type1</th>\n", " <th>type2</th>\n", " <th>type3</th>\n", " <th>provnum</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>4</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>30001</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>9</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>30001</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>3</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>30001</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>9</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>30001</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>30001</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " los hmo white died age80 type type1 type2 type3 provnum\n", "0 4 0 1 0 0 1 1 0 0 30001\n", "1 9 1 1 0 0 1 1 0 0 30001\n", "2 3 1 1 1 1 1 1 0 0 30001\n", "3 9 0 1 0 0 1 1 0 0 30001\n", "4 1 0 1 1 1 1 1 0 0 30001" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "medpar = sm.datasets.get_rdataset(\"medpar\", \"COUNT\", cache=True).data\n", "\n", "medpar.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The model we are interested in has a vector of non-negative integers as\n", "dependent variable (``los``), and 5 regressors: ``Intercept``, ``type2``,\n", "``type3``, ``hmo``, ``white``.\n", "\n", "For estimation, we need to create two variables to hold our regressors and the outcome variable. These can be ndarrays or pandas objects." ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "execution": { "iopub.execute_input": "2021-11-12T23:38:00.332216Z", "iopub.status.busy": "2021-11-12T23:38:00.331267Z", "iopub.status.idle": "2021-11-12T23:38:00.336872Z", "shell.execute_reply": "2021-11-12T23:38:00.337548Z" }, "jupyter": { "outputs_hidden": false } }, "outputs": [], "source": [ "y = medpar.los\n", "X = medpar[[\"type2\", \"type3\", \"hmo\", \"white\"]].copy()\n", "X[\"constant\"] = 1" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Then, we fit the model and extract some information: " ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "execution": { "iopub.execute_input": "2021-11-12T23:38:00.340714Z", "iopub.status.busy": "2021-11-12T23:38:00.339795Z", "iopub.status.idle": "2021-11-12T23:38:00.736175Z", "shell.execute_reply": "2021-11-12T23:38:00.736885Z" }, "jupyter": { "outputs_hidden": false } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Optimization terminated successfully.\n", " Current function value: 3.209014\n", " Iterations: 805\n", " Function evaluations: 1238\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/home/runner/work/statsmodels/statsmodels/statsmodels/base/model.py:2694: UserWarning: df_model + k_constant differs from nparams\n", " warnings.warn(\"df_model + k_constant differs from nparams\")\n", "/home/runner/work/statsmodels/statsmodels/statsmodels/base/model.py:2696: UserWarning: df_resid differs from nobs - nparams\n", " warnings.warn(\"df_resid differs from nobs - nparams\")\n" ] } ], "source": [ "mod = NBin(y, X)\n", "res = mod.fit()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ " Extract parameter estimates, standard errors, p-values, AIC, etc.:" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "execution": { "iopub.execute_input": "2021-11-12T23:38:00.741014Z", "iopub.status.busy": "2021-11-12T23:38:00.739556Z", "iopub.status.idle": "2021-11-12T23:38:00.754064Z", "shell.execute_reply": "2021-11-12T23:38:00.753582Z" }, "jupyter": { "outputs_hidden": false } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Parameters: [ 0.2212642 0.70613942 -0.06798155 -0.12903932 2.31026565 0.44575147]\n", "Standard errors: [0.05059259 0.07613047 0.05326095 0.06854137 0.06794697 0.01981542]\n", "P-values: [1.22298069e-005 1.76979353e-020 2.01818957e-001 5.97480106e-002\n", " 2.15240570e-253 4.62688812e-112]\n", "AIC: 9604.95320583016\n" ] } ], "source": [ "print('Parameters: ', res.params)\n", "print('Standard errors: ', res.bse)\n", "print('P-values: ', res.pvalues)\n", "print('AIC: ', res.aic)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "As usual, you can obtain a full list of available information by typing\n", "``dir(res)``.\n", "We can also look at the summary of the estimation results." ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "execution": { "iopub.execute_input": "2021-11-12T23:38:00.761450Z", "iopub.status.busy": "2021-11-12T23:38:00.760983Z", "iopub.status.idle": "2021-11-12T23:38:00.767382Z", "shell.execute_reply": "2021-11-12T23:38:00.767005Z" }, "jupyter": { "outputs_hidden": false } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " NBin Results \n", "==============================================================================\n", "Dep. Variable: los Log-Likelihood: -4797.5\n", "Model: NBin AIC: 9605.\n", "Method: Maximum Likelihood BIC: 9632.\n", "Date: Fri, 12 Nov 2021 \n", "Time: 23:38:00 \n", "No. Observations: 1495 \n", "Df Residuals: 1490 \n", "Df Model: 4 \n", "==============================================================================\n", " coef std err z P>|z| [0.025 0.975]\n", "------------------------------------------------------------------------------\n", "type2 0.2213 0.051 4.373 0.000 0.122 0.320\n", "type3 0.7061 0.076 9.275 0.000 0.557 0.855\n", "hmo -0.0680 0.053 -1.276 0.202 -0.172 0.036\n", "white -0.1290 0.069 -1.883 0.060 -0.263 0.005\n", "constant 2.3103 0.068 34.001 0.000 2.177 2.443\n", "alpha 0.4458 0.020 22.495 0.000 0.407 0.485\n", "==============================================================================\n" ] } ], "source": [ "print(res.summary())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Testing" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can check the results by using the statsmodels implementation of the Negative Binomial model, which uses the analytic score function and Hessian." ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "execution": { "iopub.execute_input": "2021-11-12T23:38:00.771747Z", "iopub.status.busy": "2021-11-12T23:38:00.771306Z", "iopub.status.idle": "2021-11-12T23:38:00.848087Z", "shell.execute_reply": "2021-11-12T23:38:00.847693Z" }, "jupyter": { "outputs_hidden": false } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " NegativeBinomial Regression Results \n", "==============================================================================\n", "Dep. Variable: los No. Observations: 1495\n", "Model: NegativeBinomial Df Residuals: 1490\n", "Method: MLE Df Model: 4\n", "Date: Fri, 12 Nov 2021 Pseudo R-squ.: 0.01215\n", "Time: 23:38:00 Log-Likelihood: -4797.5\n", "converged: True LL-Null: -4856.5\n", "Covariance Type: nonrobust LLR p-value: 1.404e-24\n", "==============================================================================\n", " coef std err z P>|z| [0.025 0.975]\n", "------------------------------------------------------------------------------\n", "type2 0.2212 0.051 4.373 0.000 0.122 0.320\n", "type3 0.7062 0.076 9.276 0.000 0.557 0.855\n", "hmo -0.0680 0.053 -1.276 0.202 -0.172 0.036\n", "white -0.1291 0.069 -1.883 0.060 -0.263 0.005\n", "constant 2.3103 0.068 34.001 0.000 2.177 2.443\n", "alpha 0.4457 0.020 22.495 0.000 0.407 0.485\n", "==============================================================================\n" ] } ], "source": [ "res_nbin = sm.NegativeBinomial(y, X).fit(disp=0)\n", "print(res_nbin.summary())" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "execution": { "iopub.execute_input": "2021-11-12T23:38:00.853886Z", "iopub.status.busy": "2021-11-12T23:38:00.853269Z", "iopub.status.idle": "2021-11-12T23:38:00.857669Z", "shell.execute_reply": "2021-11-12T23:38:00.856792Z" }, "jupyter": { "outputs_hidden": false } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "type2 0.221218\n", "type3 0.706173\n", "hmo -0.067987\n", "white -0.129053\n", "constant 2.310279\n", "alpha 0.445748\n", "dtype: float64\n" ] } ], "source": [ "print(res_nbin.params)" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "execution": { "iopub.execute_input": "2021-11-12T23:38:00.862017Z", "iopub.status.busy": "2021-11-12T23:38:00.861573Z", "iopub.status.idle": "2021-11-12T23:38:00.867512Z", "shell.execute_reply": "2021-11-12T23:38:00.867855Z" }, "jupyter": { "outputs_hidden": false } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "type2 0.050592\n", "type3 0.076131\n", "hmo 0.053261\n", "white 0.068541\n", "constant 0.067947\n", "alpha 0.019815\n", "dtype: float64\n" ] } ], "source": [ "print(res_nbin.bse)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Or we could compare them to results obtained using the MASS implementation for R:\n", "\n", " url = 'https://raw.githubusercontent.com/vincentarelbundock/Rdatasets/csv/COUNT/medpar.csv'\n", " medpar = read.csv(url)\n", " f = los~factor(type)+hmo+white\n", " \n", " library(MASS)\n", " mod = glm.nb(f, medpar)\n", " coef(summary(mod))\n", " Estimate Std. Error z value Pr(>|z|)\n", " (Intercept) 2.31027893 0.06744676 34.253370 3.885556e-257\n", " factor(type)2 0.22124898 0.05045746 4.384861 1.160597e-05\n", " factor(type)3 0.70615882 0.07599849 9.291748 1.517751e-20\n", " hmo -0.06795522 0.05321375 -1.277024 2.015939e-01\n", " white -0.12906544 0.06836272 -1.887951 5.903257e-02\n", "\n", "### Numerical precision \n", "\n", "The ``statsmodels`` generic MLE and ``R`` parameter estimates agree up to the fourth decimal. The standard errors, however, agree only up to the second decimal. This discrepancy is the result of imprecision in our Hessian numerical estimates. In the current context, the difference between ``MASS`` and ``statsmodels`` standard error estimates is substantively irrelevant, but it highlights the fact that users who need very precise estimates may not always want to rely on default settings when using numerical derivatives. In such cases, it is better to use analytical derivatives with the ``LikelihoodModel`` class." ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.12" } }, "nbformat": 4, "nbformat_minor": 4 }
bsd-3-clause
bosmanoglu/Digital_Image_Processing_Book
en/Figure_3_12.ipynb
1
3484
{ "cells": [ { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [], "source": [ "#DTMF tonlarini hazirla ve Fourier Transformunu goster\n", "import numpy as np\n", "import bqplot.pyplot as pl\n", "import bqplot\n", "## DTMF Tonlari: 697,770,852,941 Hz ve 1209,1336,1477,1633 Hz\n", "t=np.linspace(0,1,8000) # ornekleme araligi ornekleyecegimiz frekansin en az iki kati olmali.\n", "ton1=np.sin(2*np.pi*697*t) + np.sin(2*np.pi*1209*t)\n", "ton2=np.sin(2*np.pi*697*t) + np.sin(2*np.pi*1336*t)\n", "#ton4=np.sin(2*np.pi*770*t) + np.sin(2*np.pi*1209*t)\n", "pl.figure(1, title='Zamanda Isaret');pl.clear();pl.plot(t[0:100],ton1[0:100], 'r');\n", "pl.plot(t[0:100],ton2[0:100], 'g');\n", "#pl.plot(t[0:100],ton4[0:100], 'b');\n", "pl.show() #pl.title('1 tonu');pl.xlabel('Zaman (sn)');pl.ylabel('Genlik (volt)')\n", "## Frekans uzayi gosterimi\n", "Fourier_ton1=np.fft.fft(ton1);\n", "Fourier_ton2=np.fft.fft(ton2);\n", "#Fourier_ton4=np.fft.fft(ton4);\n", "freq = np.fft.fftfreq(t.shape[-1], d=np.diff(t).mean())\n", "pl.figure(2, title='Frekans Uzayi Gosterimi');pl.clear();pl.plot(freq[0:4000], 20*np.log10(abs(Fourier_ton1[0:4000])), 'r');\n", "pl.plot(freq[0:4000], 20*np.log10(abs(Fourier_ton2[0:4000])), 'g');\n", "#pl.plot(freq[0:4000], 20*np.log10(abs(Fourier_ton4[0:4000])), 'b');\n", "pl.show();\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.12" }, "widgets": { "state": { "1d3062a5c64448dba8ab690fb1a94e64": { "views": [ { "cell_index": 0 } ] }, "422083937bdd46dfbd40c60b209e03b0": { "views": [ { "cell_index": 0 } ] }, "9896fb5c04754ef393d30eb70d261c3a": { "views": [ { "cell_index": 0 } ] }, "9988e00dd02045c6ae4e6efba519e9ed": { "views": [ { "cell_index": 0 } ] }, "a3046a449b9f425991072b6775b4d7f6": { "views": [ { "cell_index": 0 } ] }, "ada30fcadc8244cf972ad144c0c3b7fe": { "views": [ { "cell_index": 0 } ] }, "c9f2bbfb4a794a06b8640cfa844a6b1b": { "views": [ { "cell_index": 0 } ] }, "d06e14845c874379921d6dffb31cf5b7": { "views": [ { "cell_index": 0 } ] }, "da3dd06d44a549cd94a0f71c7ffb7676": { "views": [ { "cell_index": 0 } ] }, "e83ac6eec117467d822b83a6a413ff70": { "views": [ { "cell_index": 0 } ] } }, "version": "1.2.0" } }, "nbformat": 4, "nbformat_minor": 2 }
apache-2.0
computational-class/cjc2016
code/09.06-Linear-Regression.ipynb
2
265776
{ "cells": [ { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "# In Depth: Linear Regression" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "<!--BOOK_INFORMATION-->\n", "\n", "*This notebook contains an excerpt from the [Python Data Science Handbook](http://shop.oreilly.com/product/0636920034919.do) by Jake VanderPlas; the content is available [on GitHub](https://github.com/jakevdp/PythonDataScienceHandbook).*\n", "\n", "*The text is released under the [CC-BY-NC-ND license](https://creativecommons.org/licenses/by-nc-nd/3.0/us/legalcode), and code is released under the [MIT license](https://opensource.org/licenses/MIT). If you find this content useful, please consider supporting the work by [buying the book](http://shop.oreilly.com/product/0636920034919.do)!*" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "<!--NAVIGATION-->\n", "< [In Depth: Naive Bayes Classification](05.05-Naive-Bayes.ipynb) | [Contents](Index.ipynb) | [In-Depth: Support Vector Machines](05.07-Support-Vector-Machines.ipynb) >" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "- Naive Bayes (discussed earlier in [In Depth: Naive Bayes Classification](05.05-Naive-Bayes.ipynb)) is a good starting point for classification tasks\n", "- linear regression models are a good starting point for regression tasks.\n", " - can be fit very quickly, and \n", " - are very interpretable.\n", " \n", "The simplest form of a linear regression model (i.e., fitting a straight line to data) \n", "- Extended to model more complicated data behavior.\n", "- We will see how linear models can be generalized to account for more complicated patterns in data.\n", "\n", "We begin with the standard imports:" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "ExecuteTime": { "end_time": "2018-12-26T01:48:28.419326Z", "start_time": "2018-12-26T01:48:26.363658Z" }, "slideshow": { "slide_type": "subslide" } }, "outputs": [], "source": [ "%matplotlib inline\n", "import matplotlib.pyplot as plt\n", "import seaborn as sns; sns.set()\n", "import numpy as np" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "## Simple Linear Regression\n", "\n", "We will start with the most familiar linear regression, a straight-line fit to data.\n", "A straight-line fit is a model of the form\n", "$$\n", "y = ax + b\n", "$$\n", "where $a$ is commonly known as the *slope*, and $b$ is commonly known as the *intercept*.\n", "\n", "Consider the following data, which is scattered about a line with a slope of 2 and an intercept of -5:" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "ExecuteTime": { "end_time": "2018-12-26T01:59:07.712292Z", "start_time": "2018-12-26T01:59:07.534304Z" }, "slideshow": { "slide_type": "subslide" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW8AAAD3CAYAAADSftWOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4xLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvDW2N/gAAF41JREFUeJzt3X9s3Hd9x/HX+Wyf7cROHNuBlKQKTZoPoqVN1NAG2pDQhUFAhYgIulVjggAbU/ljCNQBK0NMTBoTBWlshamlGmOrFkFVBEilUJJ2aUsGJGnSoPXjJLRrmx+Lf1xiJ7bP9vn2h33u2fner+99776/no9/avt85883SV/38ef7/nzeiVwuJwBAuDT5PQAAQPUIbwAIIcIbAEKI8AaAECK8ASCEmhv1gwYGRl2XtXR3dyidHvNyOKEQx+vmmuMjjtdd7TX39XUmij0Wipl3c3PS7yH4Io7XzTXHRxyv28trDkV4AwAWIrwBIIQIbwAIIcIbAEKI8AaAOslMZXU+PabMVNbz1664VNAYc4ukr1lrtxtjNkn6qaQTcw9/21q71/PRAUAIZWdmtHffSR3pH9DwSEYrulLatKFPn/7wJs9+RkXhbYy5R9JHJF2e+9JNkr5hrb3Ps5EAQETs3XdST/z21fnPh0YyeuK3r6qjvVW7bl3ryc+odNnklKQPFnx+k6T3GWP+yxjzXWNMpyejAYAQKLUckpnK6kj/gOPzDh4/69kSSkUzb2vtI8aYtQVf+rWkB621h4wxfy3py5I+V+o1urs7aipQ7+uL5/tDHK+ba46PsF13Njujh37yOx08flYDF8bVt7xdW65fpT13XKdkcnYufHbwsoZHM47PH7wwrmRri/p6l9Q8Frfb4x+11l7IfyzpW+WeUMs22L6+Tg0MjLp+fljF8bq55vgI43U//ET/guWQ8+lx/fjA7zU2Pqm7dmyQJGWnslrRmdLQyJUB3ru8XdnJqYqvu9Sbm9tqk8eNMTfPffwHkg65fB0ACIVSyyFH+gfnl0NSLUlt2tDn+H1brl+lVIs3W+Tdzrz/QtK3jDFTks5J+jNPRgMAAXXxUkbDDrNpSUqPTujipYxWdndIku68fb2k2VBPj06ou7NNmzb0as8d12l4+LLja1Sr4vC21r4kacvcx4cl3erJCAAgBJYtTWlFl/NySHdnm5YtTc1/nmxq0l07Nmj3tnW6eCmjZUtTSrUk59fFvcAmHQCoQKnlkBvW9+jipcwVlSSplqRWdnd4tlRSqGHneQNA2F25HJJSR1uLjp4Y0JOHT89vxrnz9vVKNtV3bkx4A4iczFR2wXJFsa9Va/FyyOO/fln7j5yZfzy/GUfSfPVJvRDeACLDaVv6xmt7lZN09MTggq3qtcyOUy1JLVua0rFTQ46PH+kf1O5t6+qyXJJHeAOIDKdt6b88dHrB93g1O66m+qQeuGEJIBJK1WE7KazNdiNffeJkcfVJPRDeACKh1EzYyfDIhH5/+qLrAC9VfbJpQ29dl0wklk0ARMTSjhalWpOamKwsjBMJ6ev/+VxNa+DFNuPkv15PhDeASPjRgRcrDm5JmsnN/reWNfBim3EagWUTAKFXar071dKkbZuuUk9XmxKSmhLOr1HLGng9N+MUQ3gDCL1S691T0zPaefPV+uonb9Hn/mijcjnn18hXiIQF4Q0g9Cqp/Ei1JHXNG5b5WiHiJcIbQOhVWvnhd4WIl7hhCSASKq388LNCxEuEN4BIqLTyw88KES8R3gAiJV/54dX3BRVr3gAQQoQ3AIQQ4Q0AIUR4A0AIEd4AIiczldX59FhNR74GHdUmACLDqZNOo3pKNhrhDSAynDrpNKqnZKNF660IQGyVOlmw1q45QUR4A4iESnpKRgnhDSAS/O4p2WiEN4BIiNKJgZXghiWAyIjKiYGVILwBREZUTgysBMsmQEzEYeNKnh89JRuNmTcQcfXYuJKZykZ+Zht0hDcQcV5uXInTDsag408biDCvN67k3wiGRjLK6bU3gr37TnowWlSD8AYiKL++PXBh3LONK3HbwRh0LJsAEbJ4WaO7s1Wp1qQmJq8M1mo3rlSygzHMbcXChpk3ECGLlzWGRycdg1uSNl7bU9XNRj92MMapQqZazLyBiCi1rOEkV+Xr53cwFt78zPN6ByM3RsvjTwGIiFLLGk6OnhiqekZ75+3rtWPzavV0takpIfV0tWnH5tWe72Dkxmh5zLyBiMgvawxVGODDI9WvUzdiB2O5G6O7t62jtlxVzLyNMbcYY56c+3i9MeZpY8wBY8y3jTHM4AGflTqYyUkiIT3+m1eUnZlx9bNq2cGYmcrq7OBlx5l/3I52dauimbcx5h5JH5F0ee5L35B0r7X2SWPMdyR9QNKj9RkigEo5HczU0dasV85fuuJ7Z3LS/sOnlWxKNKzLzIK17NGMVnReuZZd6jeIKB7t6lalyyanJH1Q0vfnPr9J0lNzHz8m6Q9FeAO+c1rWaE4m9PAv+vXUc2c043CXspFLEZXs9mzkjdEwqyi8rbWPGGPWFnwpYa3N/zMYlbSs3Gt0d3eoudn9H3pfX6fr54ZZHK+ba/bG6oKP//g9b9aTz51x/L706ISSrS3q611S1etPTE4rPZJRd1dKba3lo2RiclrHTg05Pnbs1JD+fHf7/Ot8+sOb1NHeqoPHz2rwwrh6l7dry/WrtOeO65RMhnuV1qu/a7c3LAsXyTolXSj3hHR6zOWPmr3YgYFR188PqzheN9dcH9mprFZ0Fl+KyE5OVTwGt2V859NjGkiPOz42eGFcp14aWnDzdNeta7Xz5jULbowOD192fH5YVPt3XSro3b6FHTHGbJ/7eKekAy5fB0ADpFqS2nhtr+Nj1W7WcVvG52aTTxyOdnXLbXh/VtJXjDG/ktQq6YfeDQlAPRTblFPNZp1azjeJW5uyeqt42cRa+5KkLXMf90vaVqcxAfBYZiqroycGHR87emJIH9qerSg8az3fJE5tyuqNTTpADHh1qFStZXyF1TDJ1hZlJ6eYcbsU7tu2ACri1aFSXi19pFqSWtW7hOCuAeENxICX681uzzfhhEBvsWwCxIRX683Vnm9SrLTw0x/eVNP1xB3hDcREpaFbaXPhfBlfOcV2VXa0t2rXrWtdXQsIbyB2ioVuvbrMFystPHj8rHbevIZ1b5dY8wYgqT5naJeqchm8MM4JgTUgvAHUrblwqSqX3uXtnBBYA8IbQN3O0C5V5bLl+lUsmdSANW8AdT1Du1iVy547rgv9QVN+IrwB1PUM7WJVLmE/2tVvhDcASfU/d6TS0kJUhvAGIKkxzYXhHcIbwALMkMOBRScACCHCGwBCiPAGgBAivAEghAhvAAghwhsAQojwBoAQIrwBD9HqC43CJh3AA/VoZACUQngDHijW6kuS7tqxwa9hIcKYEgA1qlcjA6AUwhuoUb0aGQClEN5AjUq1+qq1kQFQDOEN1KhUq69aGxkAxXDDEvBAvRsZAIsR3oAHaGSARiO8AQ/RyACNwpo3AIQQ4Q1Uge3vCAqWTYAKsP0dQUN4AxVg+zuChikDUAbb3xFEhDdQBtvfEUSEN1AG298RRIQ3UAbb3xFENd2wNMYcljQy9+mL1tqP1T4kIHiu3P6e0puu7taurdf4PDLElevwNsa0SUpYa7d7NxzAncxUtq7b0vPb33dtfaMe/sUJvfC/w3r2+Dm98HKakkH4opaZ942SOowxP597nS9aaw96MyygMo2uv/7RgRf17PFz859TMgi/JHK5nKsnGmPeImmLpAclXSvpMUnGWjvt9P3T09lcczNrg/DWAz96Xj8+8Psrvv7+rdfok7ve4unPmpic1t3/sE/n0+NXPLayu13/fM/tamtl6wQ8lSj2QC3/0volnbTW5iT1G2OGJK2S9IrTN6fTY65/UF9fpwYGRl0/P6zieN3VXHNmKqtnjp52fOyZo2e08+Y1ni6hnE+PacAhuCVp8MK4Tr005OpQqjj+PUvxvO5qr7mvr7PoY7X8XrlH0n2SZIy5SlKXpLM1vB5QlUbXX1MyiCCpJby/K2m5MeZpSXsl7Sm2ZALUQ6PDlJJBBInrZRNr7aSkuzwcC1CVfJgWnjmSV68wpWMOgoK7Kwi1RocpHXMQFIQ3Qs2vMKVjDvxGeCMSCFPEDVvCACCECG8ACCHCG4FGz0jAGWveCCR6RgKlEd4IJHpGAqUxhUHg0DMSKI/wRuCUOrNkaGRCwyMTDR4REDyENwKn1JklkvTEoSu3wwNxQ3ijrEZXfKRakrphXU/Rx4+dHGLpBLHHDUsU1ciKj3wbs85l7ZKkHZvXaP+RM47fmz/ulR2ViDPCG0VVU/Hhtofk4jeIvu523bCuR7u2vlE9XSkNOax9c3Y2QHijiHIVH7u3rVOqJVnz7HzxG8T59Lie+O2ryuVyam9rlhzCe+O1PZzkh9gjvOGoki41K7s7aqrHLvUG8czz5zQx6byu7a7rKhAt3LCEo0q61NRaj13qDaJYcEvS0RPUegOENxxV0vKr1h6S5UoCixkezXjenxIIG8IbRd15+3rt2LxaPV1takpIPV1t2rF59XyXmlp7SJZ6g0i1JIo+b0VnihuWiD3WvFFUuS41XvSQXNzGrHf5bLXJTC6nfYdOOz5n04Y+blgi9ghvlFWqS02tPSQXv0GsW9uj0Yvjys7MSJKeLbhx2daa1K1veT3NfgFJiVyuMffuBwZGXf+gvr5ODQyMejmcUAjTdbut815s8TVnprIaSI9JiYT6lrdHcsYdpr9nL8Xxuqu95r6+zqLrh8y8Ian28K1XD8lUS1KrV3Z6/rpA2BHeMUfTAyCcCO+Yo+kBEE5MrWKMpgdAeBHeMVbrJhsA/iG8Y6zWTTYA/EN4x1ipHY5vunq5pMY3YgBQGW5YxlS+NHDX1mskvbbJprUlKSmnZ46f06H+85ISykxmqUIBAobwjplipYFf+fhb9fAvTujZ4+fmv3dicmb+Y6pQgGAhvGOmWGlgdiYn+3K67PMLGzEA8A+//8ZIqdLA5/oHHVuOLUYVChAMhHeMlCwNvJTR8qWtZV+DKhQgGAjvAGhURUep0sCmhLS0vaXsa1R61CuA+mLN20eNPlek1PnbMznp1YHLWrNyqcYmpjU8MqFU62xIT05lqz7qFUB9Ed4+8uNckTtvX69sdkZPPXdGMw6H9I5NTOtvPrpZ45np+eURL456BeAtlk184te5IsmmJr375qtV7Bj39OiExjPTWtndoVRLcv6oV4IbCBbC2yd+nivCtngg/FwtmxhjmiTdL+lGSRlJn7DWnvRyYFGXD1Cn8rx6B6gXvScB+MvtzHuXpDZr7dskfV7Sfd4NKR5KnSvSiAAt1xkeQLC5vWF5m6SfSZK19qAxZrN3Q4qPWpv31qJcZ3gAweaqAbEx5kFJj1hrH5v7/GVJ11hrp4s9Z3o6m2tuJhycTExOKz2SUXdXSm2tFAABmOd5A+IRSYVdYZtKBbckpdNjLn9UPLpMN0savTiuwquMw3UvxjXHRxyv20X3+KKPuV3zfkbSeyXJGLNF0vMuXwcA4ILbmfejkt5ljHlWs9P6j3k3JABAOa7C21o7I+lTHo8Fi0xMTut8eoybiQCuwN2xAMqfeXLs1JAG0uN0sQFwBcI7gPw48wRAuDCNCxi/zjwBEC6Ed8D4eeYJgPAgvANm2dKUujudO9pwaBSAPMI7QLIzM3rkqVMayzgvjXBoFIA8blgGyOIblXltrUnddsMqDo0CMI+Zd0CUulG5pK1Zu7eto0wQwDzSwEO1NBIufaMyw41KAAuwbOIBLxoJ+9mcAUD4MPP2QH6temgko5xe21Szd1/lzYX8bs4AIFwI7xp5ualmcXebld3tdLcB4IhlkxpVsqlmZXdHRa+1uLvNurU9Gr047uVwAUQEM+8aVduJvZKbmqmWpFZ2d9BVB0BRpEMRmalsRb0dK+3E7sVNTQDII7wXqTZkM1NZvXPTG5TNzujYqeGijYQ5KRCAlwjvRSoNWaeQv2F9r3bctForutoWzNbL3dTcvW0d1SQAqsLv6wWqqRxxKg/cf/i09h85fUUQc1IgAK8R3gUqDdlqywOrvakJAOUQ3nPGMlN69MCLSiScHy8M2Wpn0mzAAeC12K9559eunz52VhOTxcv3CkPWzVb2/M3LI/2DRW9qAkClYh/exY5hzUtIuuW612nX1jfOf61ceaCkK7q+L96AQ0d4ALWIXHhXWp+d/95ia9d5OUn//bv/04lXLiwoGXSaSW+8tkczuZzufeBg0TLD/AYcAKhFZMLbzSaYUmvXhQoPm5JmSwadZtKPPHVKv6SWG0ADROaGpZuT/UpVgRSzuJqkcCZN13cAjRKJ8HZ7sl+pKpBiitVlU8sNoJEiEd61BOfiY1h7ulLa8ubXVV2XTS03gEaKxJp3LV1oilWBPPxEf9nDpgpVekAVAHghEuHtRXAurgJxU5dNLTeARolEeEveB6ebumxquQE0SmTCu17B6aYum1puAPUW+huWizvT5IOTGS+AKAvtzJvONADiLLThTWcaAHEWyimq2005ABAVoQxvdjMCiLtQhje7GQHEXSjDm840AOIutDcs2c0IIM5chbcxJiHpVUkn5r70K2vtFzwbVQXYzQggztzOvNdJOmytvcPLwbjBbkYAceQ2vG+S9AZjzH5J45I+Y6213g0LAFBKIpfLlfwGY8zHJX1m0ZfvlrTSWvsDY8xtkr5prX1rqdeZns7mmptZ1gCAKiSKPlAuvJ0YYzokTVtrJ+c+Py1ptbW26IsNDIxW/4Pm9PV1amBg1O3TQyuO1801x0ccr7vaa+7r6ywa3m5LBb8s6S8lyRhzo6RXSgV3LTJTWZ0dvMyuSQAo4HbN++8l/bsx5n2SpiV91LMRzVlw8NRoRis6OXgKAPJchbe1Ni3pfR6PZQEOngKA4gI5heXgKQAoLZDhXcnBU4ubMABAnARye3ypbvDLl6b0+G9e0bGTgzRhABBbgUy7UgdPLWlv0f7DpzU0klFOr62F7913srGDBAAfBTK8pdmDp3ZsXq2erjY1JaSerja9c9NVGpuYcvx+1sIBxEkgl02khQdPJVtblJ2c0sVLGT155Izj9+fXwjnnBEAcBHbmnZdqSWpV7xKlWpI0YQCAOYEP70I0YQCAWYFdNimGJgwAEMLwpgkDAIQwvPNowgAgzkK15g0AmEV4A0AIEd4AEEKENwCEkKs2aAAAfzHzBoAQIrwBIIQIbwAIIcIbAEKI8AaAECK8ASCECG8ACKFAH0xljGmSdL+kGyVlJH3CWhvpZpXGmBZJD0laKykl6avW2h/7OqgGMcaslHRI0rustS/4PZ5GMMZ8QdL7JbVKut9a+12fh1RXc/++v6fZf99ZSZ+M+t+1MeYWSV+z1m43xqyX9K+ScpKOS7rbWjvj5nWDPvPeJanNWvs2SZ+XdJ/P42mEP5E0ZK3dKuk9kv7J5/E0xNz/1P8iadzvsTSKMWa7pLdLulXSNklrfB1QY7xXUrO19u2S/lbS3/k8nroyxtwj6UFJbXNf+oake+f+/05I+oDb1w56eN8m6WeSZK09KGmzv8NpiB9I+tLcxwlJ0z6OpZG+Luk7kpyblEbTuyU9L+lRST+R9FN/h9MQ/ZKa536r7pLk3FE8Ok5J+mDB5zdJemru48ck7XD7wkEP7y5JFws+zxpjAr3UUytr7SVr7agxplPSDyXd6/eY6s0Y81FJA9bax/0eS4P1anZC8iFJn5L0H8aYhL9DqrtLml0yeUHSA5L+0dfR1Jm19hEtfINKWGvzZ5KMSlrm9rWDHt4jkjoLPm+y1kZ+JmqMWSNpv6TvW2sf9ns8DbBH0ruMMU9K2ijp34wxr/d3SA0xJOlxa+2ktdZKmpDk3KQ1Oj6j2WveoNl7Wd8zxrSVeU6UFK5vd0q64PaFgh7ez2h2jUzGmC2a/RUz0owxr5P0c0l/Za19yO/xNIK19h3W2m3W2u2SnpP0p9bacz4PqxGelvQeY0zCGHOVpCWaDfQoS+u136aHJbVIilMfwyNz9zokaaekA25fKOhLEI9qdkb2rGbXfz/m83ga4YuSuiV9yRiTX/veaa2NzY28uLDW/tQY8w5Jv9bsROpua23W52HV2zclPWSMOaDZCpsvWmsv+zymRvqspAeMMa2S/kezS6OucCQsAIRQ0JdNAAAOCG8ACCHCGwBCiPAGgBAivAEghAhvAAghwhsAQuj/Ae74zr17YgrpAAAAAElFTkSuQmCC\n", "text/plain": [ "<Figure size 432x288 with 1 Axes>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "rng = np.random.RandomState(1)\n", "x = 10 * rng.rand(50)\n", "y = 2 * x - 5 + rng.randn(50)\n", "plt.scatter(x, y);" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "We can use Scikit-Learn's ``LinearRegression`` estimator to fit this data and construct the best-fit line:" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "ExecuteTime": { "end_time": "2018-12-26T01:59:08.889365Z", "start_time": "2018-12-26T01:59:08.703013Z" }, "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW8AAAD3CAYAAADSftWOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4xLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvDW2N/gAAIABJREFUeJzt3Wl0XOWd5/Fv7aXdkiXvu2xdsxmMWcxqY4yNSUhIHCAYcBK6M72k52Ryek56OtN9enp6us/09HZmeibdPSSZtJ2whBA6QDfY4AWwgdh4xcS+krxbtlFJLu1SrXdeSDKyXFUqlUq1qH6fN0iqW7eei6Sfrv/1PM/fZlkWIiKSX+zZHoCIiIyewltEJA8pvEVE8pDCW0QkDym8RUTykDNTL+TzdaY8raWyshi/vyedw8l5uubCUGjXXGjXC2O75pqaMlu8x/LiztvpdGR7CBmnay4MhXbNhXa9MH7XnBfhLSIiV1J4i4jkIYW3iEgeUniLiOQhhbeISB5SeIuI5CGFt4hIHsrYIh0RkUIQCEVo7wpQVuLmYH0LlqOZO6+ZkvbXSTq8DcO4HfhL0zRXGoaxFHgdaBh4+B9M03wx7aMTEckTkWiUF7c3cqDeR2tHAKfDRjhiUT3Jyx2La7DZ4i6WTElS4W0YxneBp4HugS8tA/7WNM2/SetoRETy1IvbG3n7o3OXPw9H+ncEWVo3Je3BDcnXvI8DXx7y+TLgc4ZhvGsYxg8NwyhL+8hERHJIIBSh2d9DIBSJ+divPrkY83mHGnwxnzNWSd15m6b5smEY84Z8aQ/wA9M09xmG8Z+BPwH+Y6JzVFYWj2mNf01N4f190DUXhkK75ny73kgkyo9e+4QPj1zA19ZLzaQill8/nWcevg6Hw47P38v//cXHdPaGYz6/pa0Xh9tFTXVJWseV6huWr5im2Tb4MfD3Iz1hLDuJ1dSU4fN1pvz8fKRrLgyFds35eL3PvV1/RTmk2d/Lq++doKs7QHVFEb/cdZJAKHK5xj1c9aQiIsFQSted6A9dqlMFtxiGcdvAx/cD+1I8j4hIzgqEIhyo98V87J2D5/nZjkZcTjvPPHQNK26aEfO45ddPx+NK/86Cqd55/w7w94ZhhICLwL9L35BERHJDe1eASx2BmI9Foha3LK5h49rFlBa5uCM6FZvNxoH6FvydfVSWeVlaV80zD1/HpUvdMc8xFkmHt2map4DlAx/vB+5K+2hERHJIRamHqnIPrTECvLzYzW987trLd9UOu50Nq+tYv6KW9q4AFaUePC4HDsf4rIXUCksRkTg8Lgd1syfFfGzZ4hrauwJXzSTxuBxMqSwel1LJUFphKSISQzAU4fUPTrPnaDMALqedcDhKVbmHYq+LQw0+du5voqrcw9K6Gh5ftRCHPXP3wwpvEZkQBpelD5Yr4n0tGR+faOUnW018bX1UlXt4cnUd186vor0rwJY9Z9hx4PzlY1s7Apdno2xYXZfei0pA4S0ieW3osvRLHQGqyj3ctKgaCzjU0HL5a8ncHfs7Azy/rYGPjjVjt9l48LY5fOHueXjd/VFZUerh8PHWmM89UN/C+hW1414uGaTwFpG8NnxZemtHgG37mq44ZqS742jUYtv+c7zy7gn6ghFqZ5azce1iZk8pveK4RLNP/J19tHcFmFJZPNZLSorCW0TyVqJ52LHEujs+eaGDTW+anP60kxKvk6+vW8zdS6Zjj7EfSaLZJ5VlXipKPaldSAoU3iKStxLdCcdyqaOPE03tLJhZQSRi8Yt3j7NjfxMWcNf103h01ULKi91xn+9xOVhaV3PFnf6gpXXVGSuZgMJbRPJYojvhWGw2+KsXDlJa5CQYjhIMRZk+uZin1xgsnluZ1DkeX7UQ4KrFOINfzxSFt4jkLY/LQbHXlXR4Rwe2Huka2ESqdmY5f7DhZpyjWEgTbzFOpmmRjojkrUAoQndvMOZjHpedyeUebEC83bTbOoNEoldvJpWMTC3GiUfhLSJ5q70rgL8zdniHwlG+/ZUlfGVlLfHieXCGSD5S2URE8laimndFiYfX3j/N3mPNcZ+f6Rki6aQ7bxHJW4OzP2Lp7A2y91gz86eXcdu1sRsAZ3qGSDrpzltE8trQ2R+XOvpw2G2EoxYup50n7q9lxU0zsbAoL3ZnfYZIOim8RSSvOex2vnTPAiJRi50HmghHLZZfO5XHVy0cUhKx5cQMkXRSeItI3rIsi32mj+ferqetK8jUyiKeWmtw3byqmMcPzhCZCBTeIpKXmtt6+enWej4+0YrTYeeRu+ezbvkcXGNodJ5PFN4ikldC4Shv7jnD6++fIhSOct28Sp5aYzC1amLcUSdL4S0ieePYaT+bt5pcaO2hosTNVx9axG3XTMEWYxOpiU7hLSI5r6M7yM92NPL+kYvYgFU3z+TL9y6g2Ou6fEyqjRfylcJbRHJW1LJ479B5fr7zON19YeZOLWPjgwbzp5dfPiZWM4ZstCXLNIW3iOSks81dbNpyjONNHXjdDjasXsSqm2dht19ZIonVjCEbbckyTeEtIjmlLxjm1V2n2Lr3LFHL4tbFU/jq/YuoLLt6GXuiZgyZbkuWaQpvEckZB+p9/PTtei51BKiZ5OWpNQY3LJgc9/hcakuWaQpvEcm6lvZennurgYONLTjsNj5/5zw+f8dc3CPcNedSW7JMU3iLSNaEI1He2nuWX+4+STAUZfGcSTy91mD65JKknp9LbckyTeEtIllRf7aNzVtNmnzdlBW7+NraxSy/buqo52znSluyTFN4i0hGdfWGeGlHI+8dvgDAyptmsH5lLSVD5myPRq60Jcs0hbeIZIRlWby95zQ/fPUTunpDzKopZeODBgtnVqTl/BNp06lkKLxFJrh0rjxM9VxNvi42bzGpP9eOx+Xg8VULWX3LrAm9iGa8KbxFJqh0rjxM9VyBUITXdp9iy54zRKIWd9wwnfX3zKeq3DvWyyt4Cm+RCSqdKw9TOdehxhZ++lY9Le19TC738uSaOh64Yz4+X+doL0ViUHiLTCCDZY0ijzNtKw9Hu4rxUkcfz7/dwL56Hw67jYeWz+XhO+fhcU/8NxEzSeEtMgEML2tUlLpp6wrGPHa0Kw+TXcUYiUbZ9tE5Xtl1kkAwwqJZFWxcazCzpjTl65L4FN4iE8Dwska84IbRrzxMZhXj8aZ2Nm0xOdvcRWmRiw0PLeKuG6ZjT3Gf7ULb3jUVCm+RPJeorBHLaFceJlrFeP2CKl7c1sA7B89jAXcvmc6jK2spK3Ynff6hCnV711QovEXyXKKyxnBet4NH7lkw6tcYvopxUqmH6dXF7K/30dkTYmZ1CU+vNaibPWnU5x6qULd3TYXCWyTPJSprDBcIRujqCVLsGd2v/tBVjI3n2njt/dN8ctKP22nn0ZW1PHDrbJyOsd0ZF/L2rqlI+jtoGMbtwF+aprnSMIyFwI8BCzgCfMs0zej4DFFEEklU1hjOZoMte8+yYfWiUZchgqEI//rBad781WnCEYsbayfz5AN1VE8qSvocfcEwzf6emLXsQt7eNRVJhbdhGN8Fnga6B770t8Afmaa50zCMfwS+CLwyPkMUkZEML2u4XQ76gpGrjotasGN/Ew67bVRliCMnWtm81cTX1kdlmYcnH6hj6aLqpDeRGqxlHz7eis/fG7OWXcjbu6Yi2Tvv48CXgc0Dny8D3hn4+A1gDQpvkawZvjlTabGLl3ce552D54laVx+fbBnC3xnghW0N7D3WjN1mY+1ts/ni3fPxukdXdkmmll3I27umIqnvgGmaLxuGMW/Il2ymaQ7+SHQCI+4sU1lZjNOZ+v/8mpqylJ+br3TNhSHd1zxr4L9PPOhh58HzMY/xd/bhcLuoqY69b3YkavFvu0+y+Y2j9AbCLJ5bye9+5Ubmzxj9JlJ9wTCHj7fGfOzw8VZ+a33R5T8Gv/fYUoqL3Hx45AItbb1UTypi+fXTeebh63CMsaaeTePxc53qG5ZD69tlQNtIT/D7e1J8qf4LL7QltbrmwjCe1xwJRagqi1+GiARDMV/75IUONm0xOX2xkxKvk689aHDPjTOw22ycO9826vnXzf4efP7emI+1tPVy/FTrFbXsR+6ax7rbZl/xOpcudcd8fj4Yy/c4UeinGt4HDMNYaZrmTmAdsCPF84jIOElUhij2OnE6rqxX9/SFeeXdE2zffw4LuPP6aTx230LKS9xEolGe29aQ0vzrVGrZhba9aypSDe/fB541DMMNHAV+nr4hiUi6PL5qIeaZNs42d13x9bPNXby4vZENq+uwLIs9R5t5YVsD7d1BplUV8/Rag2vmVl4+fizzr1XLHh9Jh7dpmqeA5QMf1wMrxmlMIpIm4YhFT18o5mMH6lu4Z8kMfra9gU9O+XE57Xzp3gU8eNscXM7P7qbTMf96cDbM4eOttLT1FkyrsvGkRToiE1iiudOXOvr4s3/eSzhicf2CKp56oC5mqSId868HZ8P81voijp9q1Z4laaDwFpnAEtWbLaCkyMWTq+tYZtTEnbOdzvnXXrdTtew0yd+5NyIyosF6cyyzp5TyF99czi2LpyRcbJPoHCPVrAOhCM3+HgKhqxcMydjozltkgnt0ZS3nmrswz7RhAQ67jWVGDd98+Nqkl8gPX8E5Us063u6Av/fY0nRdVsFTeItMYKcvdrJpi8nJCx143Q7W3jabNbfOoSjGxlSJ9tAevoJzpJp1vNkpxUVuHrlrXtqur5ApvEUmoN5AmH957yRv7zuLZcHya6fy+KqFMevTo9lDO5n514lmp3x45ALrbputNyvTQOEtMoFYlsU+08fz2xrwdwaYWlnEU2sNrptXFfc56d5DO9HslJa2Xu0OmCYKb5EJwtfWy0/fqufw8VacDhtfvHs+Dy2fgyvBnkLjsYd2otkp1ZOKtDtgmii8RfJcOBJly54zvLr7FKFwlGvnVfLUGoNpVSPf3Y7HHtqJVlQuv366SiZpovAWyWPmGT+btphcaO2hvMTNNx5ayO3XTE16n+3x2kM73uyUZx6+Lq83mcolCm+RPNTRE+Sl7Y3sPnIRG3DfzTNZf+8Cir2uUZ1nvPYdiTc7JZ+3dc01Cm+RPBK1LHYdvsBLOxrp7gszZ2opG9cuZsGM8pTPOdo53KOh3QHHj8JbJE+ca+5i0xaTxqZ2vG4HT6xexKqbZ466F+Vwo53DLblB4S2S4/qCYV7ddYqte88StSxuWTyFJ+5fRGVZemdt6C45vyi8RXLYgXofP327nksdAaorvDy1xmBJ7eRsD0tygMJbJAe1tPfy3FsNHGxswWG38fk75/L5O+bhVjlDBii8RXJIOBLlrY/O8stdJwmGoiyeM4mn1hjMiNMoWAqXwlskRzSca2PTFpMmXzdlxS42rjW447ppSc/ZlsKi8BbJsq7eED/f2ci7hy4AsOKmGaxfUUtp0ejmbEthUXiLZIllWby95ww/fPUIXb0hZtWUsHHtYhbOqsj20CQPKLxFsqCppZvNW0zqz7bhcTl47L6FrL5lFk6tQJQkKbxF0iBRI4Phx73+/ine/NUZIlGL5ddPY/09C5hc4c3gaGUiUHiLjMFoGhkcPt7CT7bW09Lex+RyL08+UMcDd87H5+vM0uglnym8RcYgmUYGlzr6eH5bA/tMHw67jXXL5/CFO+fjcWvOtqRO4S2SopEaGTxyzwJ2HTrPK7tOEghGWDSrgqfXGsyqKc3wSGUiUniLpChRI4NLHX38+aaPuNDaQ4nXyYZ1i7lryXTsmrMtaaLwFklRokYGFnChtYe7l0zn0ZW1lBW7Mz9AmdAU3iIpStTIoMTr5N+vX0Ld7ElZGJkUAoW3yBg8vmoh3X0h9h71EY5EAVg4s5zf/+pNeFz69ZLxo58ukRSFwhH+9YPT7D3aTDhiaRMpySiFt0gKjpxs5Sdb6mlu66WyzMOG1XXcXFetTaQkYxTeIqPQ1hXghW0N7DnajN1mY82ts/ni3fMp8uhXSTJLP3EiSegNhNmy5wxb956lLxihdkY5T681mDO1LNtDkwKl8BZJIBKN8uxrv2af6SMStbABi+dO4juP3YjLoRWSkj3awkwkjp6+MH/6473sOdpMJGoB/fO3j51u46Udx7M7OCl4Cm+RYSzLYs/RT/nesx9yrrk75jEH6lsIhCIZHpnIZ1Q2ERniU38PP9lazycnL+F0xJ854u/so70rwJTK4gyOTuQzCm8RIBSO8savTvP6+6cJR6JcP7+Kx1Yt5H++dCjm8vfKMi8VpZ4sjFSkn8JbCt7RU5fYtLWeTy/1UFHqZsPqOm4xarDZbHGXvy9ZODlh0wWR8Tam8DYMYz/QMfDpSdM0vzH2IYkkL9kONrG0dwf52fYGPvjkU2w2WL1sFl+6d8EVc7YfX7UQgAP1Plo7AthtELXgUEP/3tyxmi6IZELK4W0Yhhewmaa5Mn3DEUnOaDrYDBe1LN45eJ6Xdx6nJxBm3rQyNj5oMG9a+VXHOux2NqyuIxKJsuPAeQYmnXCpM3hV0wWRTLJZlpXSEw3DuB3YBJym/4/A90zT/DDe8eFwxHI69c9MSY9n/+VjXn3vxFVf/8I9C/jmIzfEfd6Jpna+//NDmGf8FHudbFx3DQ/eOR+HPf6bk33BMN/6H9tp9vde9diUyiL+z3dX4XWrAinjIu4P5lh+4nqAvwZ+ACwC3jAMwzBNMxzrYL+/J+UXqqkpK7g+f7rm+AKhCLsPNcV8bPeh86y7bfZVJZTeQJhf7jrJWx+dxbLgtmum8NX7FzGp1MOl1q6Er9fs78EXI7gBWtp6OX6qNeVZJ4X2fS6064WxXXNNTfwVvGMJ73qg0TRNC6g3DKMVmA6cHcM5RUaUqIPN8Cl8lmWxv97Hc2834O8MMKWyiKfXGFw3vyrp10vUdEGzTiRbxhLezwA3AL9rGMYMoBy4kJZRiSSQbJj62nr56Vv1HD7eitNh4wt3zeNzd8zFNcryXaKmC0vrqjXrRLJiLOH9Q+DHhmHson/V8DPxSiYi6TRSmDrsNv71g1O8tvsUwXCUa+ZW8vRag2lVqS+o+WzWSQv+zj4qy7wsrau+/HWRTEs5vE3TDAIb0jgWkaTFC9Oli6r5kx/t4UJrD+XFLr6+bjG3Xzt1zPtsD846Wb+iNuWpiSLppLfIJS8ND1O73cYvd53kr54/iA247+aZrL93AcVeV1pf1+NyaEm85ASFt+Q1l9POsTNtvLSjke6+MHOmlLLxwcUsmHH1nG2RiUThLXnrXHMXm7aaNJ5rx+N28MT9i1i1bKZWPEpBUHhL3gkEI7y6+yRb954lErW4xajhidV1VJZpyp4UDoW35KxY+5YcaPDx3Fv1tHYEqK7w8tSaOpbUVmd5pCKZp/CWnBNr35Jr5lbS1RviYGMrDruNz90xl8/fOU8zPqRgKbwl57y4vfGKOdytHQF2fXwRAGP2JJ5eazCjuiRbwxPJCQpvySmBUIQD9b6Yj5V6XXz70SXaBEoE9bCUHNPeFYi57B2gJxCiozuY4RGJ5CaFt+QMy7L49Wk/8RZDul0OSovdmR2USI5SeEtCgVCEZn/PuHdKP9/Szff+YTeb3jTjLmXvC0b4lxh7eIsUIhUPJaaxdKoZjUAo0r/P9sCc7aWLqvnSvfP5i8376Qte/QfjQH0L61fUapaJFDyFt8QUa8ZHvLZfqfaRPNjg49nXfk3vQEhXlLiZXOHFYbcTiBHccPV+3SKFSuEtV0k042PonW+qd+f+zgDPv13PR+aVr9He3d8XMhyJ4HbbCQSjVz23ssyj5gciKLwlhmQ71Yzm7hz6SzHb9jXxynsnCAQjOB02wpGre6h++ElzzOAGKPa6VDIRQW9YSgyDnWpiGexUM9Ld+fA3OE+c7+DPfvwRL2xrwGm3sX7FgpjBDcSsdQ/q7g2O+5unIvlAd95ylWTafjX7e5K6O+/pC/HyOyfYeaAJC7jrhmk8et9CPC4HOw80xZ3THY+/K6iatwgKb4ljpLZfI/WRLC9x8+EnF3lheyMd3UFmVJfw9Jo6jDmVl4+L9wfC47IRCMW+K69SzVsEUHhLHCO1/Up0d143p4K/f/ljjp7243baWb9iAWtvm4PTcWWVbvgfiOpJRSypnUzUsti+rynmuJbW1ajmLYLCW0aQqO3X8PCdVOqhotTN3qPNhCMWS2on8+QDddRMKor5/OF/IGrnTaazvZdItP/Nyvc/vni5/u11O7jrhmlq+CsywGZZsf95mm4+X2fKL1RTU4bP15nO4eS8fLrmQCjC3qOf8tr7p/G19VJZ5mHD6kXcXFczqsa/w685EIrg8/eAzUbNpKIJecedT9/ndCi064WxXXNNTVncXyDdeUvKi2wA2roCvLCtgT1Hm7HbbKy5dTZfvHs+RZ6x/2h5XA5mTSkb83lEJiKFdwEbyxL4aNRix4EmfvHucXoDERbMKGfjWoM5UxW2Ipmg8C5go11kM+jUxQ42vWly6mInxR4nG9ca3HvTDOyjKJGIyNgovAtUskvgh+rpC/PKeyfYvv8clgV3XDeVx1YtoqJE27SKZJrCu0AluwQe+vfZ3nusmee3NdDeFWRqVTEb19RxzbyqTA5ZRIZQeBeokRbZDC6Eafb38JOt9Rw5eQmnw84j98xn3e1zcTm1s4JINim8C1SiRTaL50wiFI7ybx+e5o0PTxOOWFw3v4qn1tQxVcvSRXKCwrsADU4NfOSeBcBni2zcLgdgsfvIRd4/cpHBifmlRU6mVRVRXeHN2phF5EoK7wISb2rgn/7GrTz3VgPvH7l4+dihK6q6esNs29eEzWZLOAtFRDJH4V1A4k0NDEeiHGpsGfH5akEmkjv0rlOBSDQ18L1DF+juC494jsFZKCKSfQrvApFoamAkauFyjLzAZugsFBHJLoV3DgiEIjT7e8a1Q0yi7jgAdvvI4T3YiEFEsk817yxKtLdIunlcDhbPrWT3xxdjPh4I9W/D6nU7CAQjeNz9IR0MRa5qxCAi2afwzqJEe4t8+4llaXudcCTKlj1n2Hu0GSBu41+AEq+T7z11MzUD87lT3W1QRMaXwjtLRtpbpC848huIyag/28amLSbnW7opL3bxtXWLmVVTwn/50V5ixbe/M4Db5bgc1uoVKZKbFN5ZMtLeIv6OwJi+OZ09QV7acZxdH1/ABqxcOpP1KxZQ4nURCEWSWhovIrkrpXwwDMMOfB+4EQgAv2maZmM6BzbRjbS3SGW5h8723lGfN2pZ7D58gZ/taKS7L8ycKaU8/aBB7YyKy8ck0x1eRHJbqjd3jwBe0zTvMAxjOfA3wBfTN6yJb6QA9bqdjLZx0jlfF5u3mDSca8fjdvDV+xdx/7KZMRsrjNQdXkRyW6rhfTfwJoBpmh8ahnFL+oZUONIVoIFghFd3n2Tr3rNEohbLjBqeuH8RVeXx9yIZqTu8iOS2lBoQG4bxA+Bl0zTfGPj8DLDANM2477KFwxHL6VQ4xNIXDOPvCFBZ7sHrHt3f0z2fXOQfXzmMz9/LlKpifufLS7jlmqnjNFIRybC0NyDuAIY2K7QnCm4Av78nxZcqjI7TTqCzvfdyqWSka25t7+O5t+s50NCCw27jc3fM5fN3zsPjcuTt/6tC+D4PV2jXXGjXC2PuHh/3sVTDezfwMPCzgZr3xymeR0YpHIny9kfn+OWukwRCEepmT+LptQYzq0uyPTQRyaBUw/sV4AHDMN6n/7b+G+kbkkB/KaXZ33NFLbqxqZ1Nb5qc83VRWuTiqTV13Hn9NGxq/CtScFIKb9M0o8Bvp3kswmdL5g8fb8Xn76Wq3MP1CyYTjVq8d/gCAPfeOJ2vrFxIaZEry6MVkWzRIp0cE2vJ/DsHzwMws6aEjWsNFs2alK3hiUiOUHjnkERL5os9Tv7wyZsp9upuW0S0JWxOae8KxFxxCf018K7eUIZHJCK5SuGdQ875uom3rbb2HBGRoVQ2yQH+zgDPvV3PPjN2yQS054iIXEnhnUWRaJTt+5r4xXsnCARjd9Hxuh3cvWS69hwRkSsovLPkxPkONm05xplPuyjxOnF6nTGbAJd4naxfURtzcykRKVwK7wzr6Qvx8rsn2Lm/CQu464Zp3Ld0Jn++aV/M4/2dAdq7AmqKICJXUHinUSAUibtDn2VZ/Orop7ywrZGO7iDTJxezca2BMadSzRFEZNQU3mmQqJGww27n00s9bN5q8utTflxOO+tXLGDtbXNwOvpLIWqOICKjpfBOg3iNhCNRi7IiF//24WnCEYsbFkzmyTV1TJlUdNU5hu/tXT2piCW1k/VGpYjEpPAeo0SrIt85eJ5o1GJSqZsNq+tYZtTE3URqeHOE2nmTU2qDJiKFQeE9RokaCUejFnfdMI0Nq+so8vT/r05UF4f+EsqUyuKU2qCJSOFQeI9RokbCFSVunlpj4HE5RqyLi4iMhlIjjkAoQrO/h0Ao9uKZQR6Xg9qZFTEfu/WaKZfvrgfr4q0dASw+q4u/uL0x3UMXkQKgO+9hRnOH3BsI8/Odx9l7rBkAt8tOKBSlqvzKRsKJ6uIH6ltYv6JWM0pEZFQU3sPEmzkCsGF1HdA/Z3vP0U/5f28cIxiKAlBe7GLZ4imsXjaLqnLvFWGcqC7u7+zTIhwRGTWVTYYY6Q55sJTydy8d4p9e/fXl4Abo6AmxY38TOw40XXUXPVgXj0WLcEQkFQrvAYFQhBNN7XHvkC919PHKuyf44x/u4ciJS7gcsaf8DYb8UIOLcGLRIhwRSUXBl02G1rjjNUIAsNttbN17looSNw+tmMPz22K/0RivDDJ8EU5l2ZV1cRGR0Sj48B5e444nErW4/+ZZfOneBTgc/UEeby+SIo/zqs7vwxfhxJvnLSKSjAkX3iMtghl+bLwa91ClRU6+/ZUl1M78rPFvvL1Iir1O/uuP98adqTK4CEdEZCwmTHinsggm0SyQoZx2O7862sy86eWXzxWrDFLsdXK2uevy82LNVBERSYcJE97JTPEbLtHqyKHauoNXnWt4GaTI03/HHYvmcotIuk2I2SbJTPGLxeNycNOi6qRfJ95MkimVxfQGwiPO5RYRSZcJEd7JLIKJpaWtF19bX9Kvk+hcmsstIpk0IcomicofsYIzHImyde9ZXt11kmA4yuI5k3h81SKKPA4cdhto/Sw1AAAGyklEQVR/sXk//hghnSiE1VBBRDJpQoT3aIKz/mwbm7eYNLV0U17s4mvrFrP82qlX7LO9bHFqIay53CKSKRMivGHk4OzsCfLSzuPsOnwBG7By6UzWr1hAidc16nPFo7ncIpIpNsuyMvJCPl9nyi9UU1OGz5dca4Lh87yjlsXujy/w0o7jdPWGmD2llI1rjbjbuCY6VyaN5ponCl3zxFdo1wtju+aamrLY+3AwAe68hwfs0EUwTb4uNm8xqT/Xjsfl4KurFnL/LbOSbn6gBTUikqvyNrwTLcoJhy1eff8kW/ecJRK1WFZXwxOrF1FV7s32sEVE0iJvwzveohxfWy/nmrtp7ehjcrmXJ9fUcdPC5Odyi4jkg7wM70SLcg41tmK323ho+Vwevmue3jAUkQkpL8N7pD1Jvr3+Bm6o1d22iExcebnCMtFqxqoyD3VzKjM8IhGRzMrL8A6Fo3jdsf/RcLNRo1KJiEx4eVU2sSyLDz65yIvbG+nsCVFS5MRhs9PVG9RqRhEpKCmFt2EYNuAc0DDwpQ9M0/zDtI0qhgut3WzeYnLsTBtul51H76vlgVtmE4laWs0oIgUn1TvvWmC/aZoPp3MwsQRDEX7yxlF+vr2BSNTipoXVbHhgEdUVRQA4HWghjYgUnFTDexkw0zCMHUAv8B3TNM30DeszP37zGB9+8ilV5R6eXF0Xtwu7iEghGXFvE8MwfgP4zrAvfwuYYprmS4Zh3A38nWmatyY6TzgcsZzO0Zc13j98nrPNnXzhnlqKPHlVohcRGau4e5uktDGVYRjFQNg0zeDA503ALNM0454sUxtTTRS65sJQaNdcaNcL47cxVapTBf8E+A8AhmHcCJxNFNxjEQhFuNDSHbeVmYhIIUq1DvHfgZ8YhvE5IAx8PW0jGnDFxlOdAarKRu4GLyJSKFIKb9M0/cDn0jyWK6TSDV5EpFDk5C1sqt3gRUQKRU6GdzLd4AOhCM3+HgW5iBSknJx7l6gb/KRSD1v2nuVwY8tVTRhUCxeRQpGTaTfYDT6WkiIXO/Y30doRwOKzWviL2xszO0gRkSzKyfCG/g7uq2+ZxeRyL3YbTC73ct/SGfT0hWIer1q4iBSSnCybADjsdjasrmP9ilocbheRYIj2rgA7D5yPefxgLVz7nIhIIcjZO+9BHpeD6dUleFyOhE0YKsu8VJTGfkxEZKLJ+fAeKlEtfGldtbaEFZGCkbNlk3gGmy0cqG/B39mnJgwiUpDyLryH1sLVhEFEClXehfcgj8uhNydFpGDlVc1bRET6KbxFRPKQwltEJA8pvEVE8lBKbdBERCS7dOctIpKHFN4iInlI4S0ikocU3iIieUjhLSKShxTeIiJ5SOEtIpKHcnpjKsMw7MD3gRuBAPCbpmlO2GaVhmG4gB8B8wAP8N9M03w1q4PKEMMwpgD7gAdM0zyW7fGMN8Mw/hD4AuAGvm+a5g+zPKRxNfCz/c/0/2xHgG9O5O+zYRi3A39pmuZKwzAWAj8GLOAI8C3TNKNjfY1cv/N+BPCapnkH8J+Av8nyeMbbU0CraZr3AA8C/zvL48mIgV/sfwJ6sz2WTDAMYyVwJ3AXsAKYndUBZcZDgNM0zTuB/wr8eZbHM24Mw/gu8APAO/ClvwX+aOD32gZ8MR2vk+vhfTfwJoBpmh8Ct2R3OOPuJeCPBz62AeEsjiWT/hr4RyB2g9KJZy3wMfAK8BrwenaHkxH1gHPgX9PlQOxO4hPDceDLQz5fBrwz8PEbwOp0vEiuh3c50D7k84hhGDld6hkL0zS7TNPsNAyjDPg58EfZHtN4Mwzj64DPNM0t2R5LBlXTfyPyKPDbwE8Nw7Bld0jjrov+kskx4Fngf2V1NOPINM2XufKPk800zcF9SDqBinS8Tq6HdwdQNuRzu2maE/pu1DCM2cAOYLNpms9lezwZ8AzwgGEYO4GbgE2GYUzL7pDGXSuwxTTNoGmaJtAHxG7OOnF8h/5rrqP/Pax/NgzDO8JzJoqh9e0yoC0dJ8318N5Nf60MwzCW0/9PzQnLMIypwFbgD0zT/FG2x5MJpmnea5rmCtM0VwIHgY2maV7M8rDG2y7gQcMwbIZhzABK6A/0iczPZ/+KvgS4gELpX3hg4H0OgHXAe+k4aa6XIF6h/67sffprwN/I8njG2/eASuCPDcMYrH2vM02zIN7IKxSmab5uGMa9wB76b6C+ZZpmJMvDGm9/B/zIMIz36J9h8z3TNLuzPKZM+X3gWcMw3MBR+kuiY6YtYUVE8lCul01ERCQGhbeISB5SeIuI5CGFt4hIHlJ4i4jkIYW3iEgeUniLiOSh/w9RSaPnY90jAAAAAABJRU5ErkJggg==\n", "text/plain": [ "<Figure size 432x288 with 1 Axes>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "from sklearn.linear_model import LinearRegression\n", "model = LinearRegression(fit_intercept=True)\n", "\n", "model.fit(x[:, np.newaxis], y)\n", "\n", "xfit = np.linspace(0, 10, 1000)\n", "ytest = 2*xfit -5\n", "yfit = model.predict(xfit[:, np.newaxis])\n", "\n", "plt.scatter(x, y)\n", "plt.plot(xfit, yfit);" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "The slope and intercept of the data are contained in the model's fit parameters, which in Scikit-Learn are always marked by a trailing underscore.\n", "Here the relevant parameters are ``coef_`` and ``intercept_``:" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "ExecuteTime": { "end_time": "2018-12-26T01:59:13.031371Z", "start_time": "2018-12-26T01:59:13.027600Z" }, "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Model slope: 2.02720881036\n", "Model intercept: -4.99857708555\n" ] } ], "source": [ "print(\"Model slope: \", model.coef_[0])\n", "print(\"Model intercept:\", model.intercept_)" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "We see that the results are very close to the inputs, as we might hope." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "**Model evaluation for regression**\n", "\n", "- RMSE\n", "- R Square\n", "\n", "https://scikit-learn.org/stable/modules/model_evaluation.html#scoring-parameter" ] }, { "cell_type": "code", "execution_count": 39, "metadata": { "ExecuteTime": { "end_time": "2018-12-26T02:32:43.445443Z", "start_time": "2018-12-26T02:32:43.441417Z" }, "code_folding": [], "slideshow": { "slide_type": "subslide" } }, "outputs": [], "source": [ "# Root mean square error 均方根误差,亦称标准误差\n", "# https://en.wikipedia.org/wiki/Root-mean-square_deviation\n", "def rmse(y_test, y_pred): \n", " mse = np.mean((y_test - y_pred) ** 2)\n", " return mse ** 0.5" ] }, { "cell_type": "code", "execution_count": 40, "metadata": { "ExecuteTime": { "end_time": "2018-12-26T02:32:47.989491Z", "start_time": "2018-12-26T02:32:47.983715Z" }, "code_folding": [], "slideshow": { "slide_type": "subslide" } }, "outputs": [], "source": [ "# R square\n", "def R2(y_test, y_pred): \n", " residuals_sum_of_squares = np.sum((y_pred - y_test)**2)\n", " total_sum_of_squares = np.sum((y_test - np.mean(y_test))**2)\n", " return 1 - residuals_sum_of_squares/total_sum_of_squares\n", "# https://en.wikipedia.org/wiki/Coefficient_of_determination" ] }, { "cell_type": "code", "execution_count": 47, "metadata": { "ExecuteTime": { "end_time": "2018-12-26T02:35:37.441154Z", "start_time": "2018-12-26T02:35:37.436570Z" }, "slideshow": { "slide_type": "subslide" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "RMSE: 0.1584\n", "R2 score: 0.9992\n" ] } ], "source": [ "print('RMSE: %.4f' % rmse(ytest, yfit))\n", "print('R2 score: %.4f' % R2(ytest, yfit))" ] }, { "cell_type": "code", "execution_count": 50, "metadata": { "ExecuteTime": { "end_time": "2018-12-26T06:10:19.758587Z", "start_time": "2018-12-26T06:10:19.755636Z" }, "slideshow": { "slide_type": "subslide" } }, "outputs": [], "source": [ "from sklearn.metrics import mean_squared_error, r2_score, explained_variance_score" ] }, { "cell_type": "code", "execution_count": 49, "metadata": { "ExecuteTime": { "end_time": "2018-12-26T02:35:47.008382Z", "start_time": "2018-12-26T02:35:47.002317Z" }, "slideshow": { "slide_type": "subslide" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "RMSE: 0.1584\n", "R2 score: 0.9992\n", "Variance score: 0.9998\n" ] } ], "source": [ "print('RMSE: %.4f' % mean_squared_error(ytest, yfit) ** 0.5)\n", "print('R2 score: %.4f' % r2_score(ytest, yfit))\n", "print('Variance score: %.4f' % explained_variance_score(ytest, yfit))" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "The ``LinearRegression`` estimator is much more capable than this, however—in addition to simple straight-line fits, it can also handle multidimensional linear models of the form\n", "$$\n", "y = a_0 + a_1 x_1 + a_2 x_2 + \\cdots\n", "$$\n", "where there are multiple $x$ values.\n", "Geometrically, this is akin to fitting a plane to points in three dimensions, or fitting a hyper-plane to points in higher dimensions." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "**Building some example data using NumPy**\n", "\n", "The <font color = 'red'>multidimensional nature of such regressions</font> makes them more difficult to visualize" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "ExecuteTime": { "end_time": "2018-12-26T01:53:32.046192Z", "start_time": "2018-12-26T01:53:32.040784Z" }, "slideshow": { "slide_type": "fragment" } }, "outputs": [], "source": [ "rng = np.random.RandomState(1)\n", "X = 10 * rng.rand(100, 3)\n", "y = 0.5 + np.dot(X, [1.5, -2., 1.])\n", "# $y$ is constructed from three random $x$ values" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "we can use the single ``LinearRegression`` estimator to fit lines, planes, or hyperplanes to our data." ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "ExecuteTime": { "end_time": "2018-12-26T01:52:01.908289Z", "start_time": "2018-12-26T01:52:01.891454Z" }, "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.5\n", "[ 1.5 -2. 1. ]\n" ] } ], "source": [ "model.fit(X, y)\n", "print(model.intercept_)\n", "print(model.coef_)" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "## Basis Function Regression 基函数回归\n", "\n", "One trick you can use to adapt linear regression to nonlinear relationships between variables\n", "- to transform the data according to *basis functions*.\n", "\n", "We have seen one version of this before, in the ``PolynomialRegression`` pipeline used in [Hyperparameters and Model Validation](05.03-Hyperparameters-and-Model-Validation.ipynb) and [Feature Engineering](05.04-Feature-Engineering.ipynb).\n", "\n", "The idea is to take our multidimensional linear model:\n", "$$\n", "y = a_0 + a_1 x_1 + a_2 x_2 + a_3 x_3 + \\cdots\n", "$$\n", "and build the $x_1, x_2, x_3,$ and so on, from our single-dimensional input $x$." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "That is, we let $x_n = f_n(x)$, where $f_n()$ is some function that transforms our data.\n", "\n", "For example, if $f_n(x) = x^n$, our model becomes a polynomial regression:\n", "$$\n", "y = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \\cdots\n", "$$\n", "\n", "Notice that this is *still a linear model*\n", "- the linearity refers to the fact that the coefficients $a_n$ never multiply or divide each other.\n", "- What we have effectively done is taken our one-dimensional $x$ values and projected them into a higher dimension, so that a linear fit can fit more complicated relationships between $x$ and $y$." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### Polynomial basis functions 多项式基函数\n", "\n", "> polynomial, Synonym: multinomial, 多项式\n", "\n", "This polynomial projection is useful enough that it is built into Scikit-Learn, using the ``PolynomialFeatures`` transformer:" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "ExecuteTime": { "end_time": "2018-05-20T09:39:14.565054Z", "start_time": "2018-05-20T09:39:14.558498Z" }, "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "data": { "text/plain": [ "array([[ 2., 4., 8.],\n", " [ 3., 9., 27.],\n", " [ 4., 16., 64.]])" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from sklearn.preprocessing import PolynomialFeatures\n", "x = np.array([2, 3, 4])\n", "poly = PolynomialFeatures(3, include_bias=False)\n", "poly.fit_transform(x[:, None])" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "We see here that the transformer has converted our one-dimensional array into a three-dimensional array by taking the exponent of each value.\n", "- This new, higher-dimensional data representation can then be plugged into a linear regression.\n", "- As we saw in [Feature Engineering](05.04-Feature-Engineering.ipynb), the cleanest way to accomplish this is to use a pipeline.\n", "\n", "Let's make a 7th-degree polynomial model in this way:" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "ExecuteTime": { "end_time": "2018-05-20T09:40:06.921714Z", "start_time": "2018-05-20T09:40:06.917263Z" }, "slideshow": { "slide_type": "fragment" } }, "outputs": [], "source": [ "from sklearn.pipeline import make_pipeline\n", "poly_model = make_pipeline(PolynomialFeatures(7),\n", " LinearRegression())" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "With this transform in place, we can use the linear model to fit much more complicated relationships between $x$ and $y$. \n", "\n", "For example, here is a sine wave with noise:" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "Our linear model, through the use of 7th-order polynomial basis functions, can provide an excellent fit to this non-linear data!" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "ExecuteTime": { "end_time": "2018-05-20T09:56:35.280127Z", "start_time": "2018-05-20T09:56:35.146469Z" }, "slideshow": { "slide_type": "subslide" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD3CAYAAADmBxSSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3Wl4W+d16Ps/JgIcQBIkQVIiNZLi1ixRoibL1mTZjhMnTuIkTtwmHRKnyT3ntGlOn560Tfq0ve7tc/KctDc5t2ly3IxN3TiJ68RxIg+yZFmDRc0SJZGbIjVwEEWC8wxiuh9AyBQFgCOwgY31+yRxg9zvJoGFF+9e71qGQCCAEEIIfTFqPQAhhBDzT4K7EELokAR3IYTQIQnuQgihQxLchRBCh8xaDyDE5RqYddqOw5FBT8/wfA4n4ck1pwa55tQwl2t2Ou2GcF/XxczdbDZpPYS4k2tODXLNqSEW16yL4C6EEOJeEtyFEEKHJLgLIYQOSXAXQggdkuAuhBA6JMFdCCF0SIJ7EnB7fHT0DOP2+LQeihAiSSTMJiZxP5/fz4uHGjhf76K7301etpXKCidP7yvXemhCiAQnM/cE9uKhBg6eaaGr300A6Op3c/BMCy8eatB6aEKIBCfBPUG5PT7O17vCHjtf38nomDfOIxJCJBMJ7gmqb9BNd7877LGegVF6IhwTQgiQ4J6wcrKs5GVbwx5z2G04IhwTQgiQ4J6wrBYTlRXOsMcqKwqwpcm9cCFEZBIhElgoK+Z8fSc9A6M47DYqKwokW0YIMSUJ7gkgEAiWsjcY7i3LbDIaeWZ/BU/tLqNv0E1OlhWrJfXKoQohZk6Cuwa8Pj+XGrs4ebWdxtY+egfdGA0G8nNsKIty2bluAStKc+4Ge6vFRKEjQ+NRCyGSiQT3OHJ7fJy6eoffnGyio2cEgJysNMoW5uDzB7jTPczRS20cvdRGWUk2n35UYXGRXeNRCzF9bo9PPmUmCAnuceDz+/mPg9c4UdPGqMcPQElBJp99YhVLi7PvPs7vD1Df3MubZ5o5f62Tv/vhGT780DI+sGPJfUs2QiSSaLupTUbJ29CCBPc4+Pc363n7/O17vtbaOcSJy3fuCe5Go4GVSxysXOLg8o0ufvDbOv7zneu0uAb53BOrMZvkRSISU2g3dUhoNzXAM/sr7nu8x+unZ9CN1+vHnmEhK90iE5h5NqfgrijKNuB/qqq6Z9LXPwj8NeAFvq+q6vNzOU8y6xsa49iltrDHztd38tTusrAfX9cuy+evf38L//xyDadqO/B4/Xzxw2slwIuEM9Vu6tBzvKtvlOOX2zhX76LVNYTPH7j7uEybmTXL8ti2uoiH87PiNXRdm3VwVxTlz4FPA0OTvm4B/gnYMn7suKIov1ZV9c5cBpqM/P4A/+eVK3h9gbDHewZG6Rt0R7xZmpOZxn9/eiP/+6VLnL/Wyfd+U8vnP7haZjgioUy1m7rVNcg7F9s4XtOGzx/AbDKwtNhOUV4GZpORgeExbrUPcKq2g1O1Hbx05Dof21PGxvKCOF+Jvsxl5t4IfBT4t0lfXwU0qKraA6AoyjHgIeDn0X6Yw5Expw7gTmfi3Xj83iuXqb3Vg8VsxOP133e8IDedsqX5U25I+rsv7ORr3zlB9dV2yhY5+NSjCpCY1xxrcs2Jx56TjtORfjdJYKKsDAvffKmGgaExSpxZPLW3nJ0bFpJhs9zzuEAgwI3b/bx67DpvnWnmW7+4xM4NC/lvH99IZrrlvp+rR/P9d551cFdV9SVFUZaGOZQN9E34/wCQM9XP6+kZnu1QcDrtuFwDs/7+WDiruvjlkUYW5GdQsSiXIxdu3/eY9WX5DPSNMJ2R/9EHV/Pcj8/wwut15GVaeGzn8oS75lhLxL9zrCXLNa8vy79nzT2kf8hDmtnIJx9ewf7NpRiNBoYGRhkaGL3vsfY0I5/aV86Tu8v4f//jHMcv3ubarR6+9IkNFOfpOxV4Ln/nSG8KsVjA7Qcmns0O9MbgPAmrZ8DNDw/UYjEbefaDq3l0yyL2Vi4kP9uG0QD52Tb2V5XOaKdpdmYaf/yx9aSZjfzgt7V09t4/SxJCK0/vK2d/VSn52TYMgMUcDC3Feen8zR9u5dEtizAap7ecuKQ4m//xTCWPb19MR+8I//CTs9y6k/hvcIkmFtkytcAKRVHygEFgF/C/YnCehBQIBPj+b2sZGvWiLM7ln/+z5m5q2PryAvZvLiUv2zarHOBSZxaffHgFP35d5RsvnOVLT62f9gtGiFgK7ab+0M5lfPvlGuqaelm1xMF/+cja+5ZgpvvzPr6nnIKcdH7yusrX/+M8X/mdTSwqlJut0zVvM3dFUZ5RFOXzqqp6gC8DrwPvEsyWaZ2v8yS66qvtXLnRTX62FbWp955GG4fPtXL4fGvUwD5VS73dGxdSuaKAy41dHD6fMr9WkQT8gQA/OlBHXVMva5bl8aWPr59VYJ9ob2UJn3tiNSNuL//4swvyiXUG5jRzV1X1JrB9/N8vTPj6r4Ffz2lkSWh41MNPDzVgMRvvSfOaKFL643Q3gRgMBj7zvpXUt1TziyONVK4oIC/bFtPrEmI6XjrSyNl6FysX5/LfProOyxwSJCbasbaYgREPP33rGv/084t89TNVpFtli85UJGl6Hr189Ab9Q2Psqyyhb3As7GNC6Y+TzaSlXk5mGn/4wTW4x3x8/7e10jhbaO54TRsHTjZR5Ejn//rIOtLmufTAo1sWsX9zKW1dw/zwQN3dYnsiMgnuszR5+aS9e5i3z7dS5EjniZ1LozbaSLea7/neqTaBTA7ePr+fm7f7MJsMXL3Zw5//ywleOFiPz39/uqUQsdbSMciPXlPJsJr5k49vwGI2Rl1anK1P7CunvDSH03UdHDx7f2aOuJd8tpmhSMsnvQNufP4AT+0uI9NmobLCGTY1LMNm5u9+ePqe791bWRJ1E8jkjU4vvFnP4QnlDAaGPVG3egsRK26Pj++8cgWvz88XnlzNoXMtc6ov4/b4aOscwufx3bd0aTYZ+eKTa/mbH5zi54cbWbssjwX5mbG4LF2Q4D5D0WpoLFuQzWYl2D0pXKONDJuZ5o7B+77X5/OTl22lK0yAd9ht5GQFPwX4/H5eOHgtbM586FyRyhkIEQsvvnWN251DPLy5lLqm3hnVl5nonknTgJs8e/g3BofdymceU/jnly/zr6/W8pef3iSFySKQ38oMRFs+AfjwQ8vulgYIpYY99+w2/p/Pb+evf7+K4VFP2O+71NjN+ghbrSsrCu4G6xcPNXD4XCsR7tXS3R9+PV+IWLhyo5u3L9ym1JnFkw8um9HS4mT33HMKRL/ntFkpZPvqIm609fNaddO8XIseSXCfgWg1NACKHOn3fS3UaGPE7Y269LJ/c+ndTSDhNjpN9cYCkG41353lCxFL7jEfP3qtDqPBwGc/sIrhUc+US4sRf9YM7zkBPPNIBTmZabxy/KakR0YgyzIzkJNljbh8kp2RFjWwRvteh91GXrYtaku9qd5YADw+v2QRiLh4+eh1OvtGeXz7YpYU23F7fNNaWgxnqsJj4YrrZaVb+MS+cp7/9VV+eqiB//rRdXO7IB2SmfsMWC0mKiucYY9tqsiPutYd7XsnLr2EZvqTf1bozSEcowGWFtvxeP28JVkEIsaa2gd480wzhY50nty5DJj+8zucaM/taG8M21cXsaI0h3P1Li5f75rhVeifBPcZ8Pn9+AMBbGn3/9pqrndPmY44sf7GTGvMRHvx7K4s4c8+WUmG1cxr1U2MuL3TvyghZiAQCPDTt64RCMDvPlpxTz77bJ/fs31jMBgM/M4jFRgM8MLBa5IKPIksy8zAi4caOHQ2/Jb/6WQGhG6yRlp6mUq4DJzKioK7GQWPblnEL4/d4MiF27xv2+IZXp0QUzuruqhr6mVDWT5rl+Xfc2wuz+9oz+1oFhfZ2b2xhLfPt3LsUhu7N5bM7sJ0SIL7NE3nhiZMLx0xtPQyUxNfPKY0C74xzz3n2be5lAPVTbx5ppn9VaXStUnMK4/Xx88ON2AyGnj64RURHzeT5/fEhtrRntvRfGjnUk7UtPGrYzfYvqZYUoHHyat/mlw9w2FvFk02VWbAfLBaTCwoyLzvSZyVbuGh9QvoGXBzqrY9pmMQqefNMy109o3y8ObSOddXD+7ZqOerz5/kL757kq8+f5IXDtZjNhnCPrejyc2y8siWRfQOjnFI7jndJcF9CqEn4Td/cWlaj58qMyDWHt2yCKPBwGvVzZI5I6ZlqkqkECyK99t3b5FpM/OhnUvnfM6Z1FKajse3LSbTZuY3795ieFTuOYEsy0xp8o7UqUyVGRBrBbnpVK10cqq2gys3u+9bFxUiZLqVSAHeON3MsNvLU7uXz7mM71R57aNjMw/OGTYL79u2mJeOXOfQuRaeeGDpnMaoBzJzj2KqdXarxYgtzTTr7kqx8vi2JQC8fqpZ45GIRDbd2fPA8BhvnG4mO8PC/s2L5nzeqfLae6ax/BnOvk2lZFjNvHG6GfeYVEqVmXsUU20c+qvPVOHMTZ9V5kssLSm2U7Eolys3urnTPaz7/pNi5qaaPU9MCjhQ3cTomI+PPLQca9rcn+NTbehzZFsZ6Iu+63TijdjQONOtZvZXlfLK8ZscudDKo1tTO2NMZu5RRNtckZ9tw5mbHnHTkdb2bQqmhB0+J92axP2msys09LhDZ1tw2K3sqVw4L+eeKq/dlhZ5zhnpRmwox31/1SKsaSYOnGrC47139j6dewt6IjP3KEJPwnBr7lqvrU9lU4WTnMw0jtW08dFd8zPjEvox1ew5lBTw+ulmxrx+nn5g6bx1VoLZ57VHq8r6zP4KstIt7Kss4UB1E8dq7rC3smRG9xb0RL9XNk9Cu+7y7O/N4HdvXJgQa+vRmE1Gdm1YyIjbS7WkRYpJos2e15cHS2kMj3p4+3wrOVlpPLhuwbzOfCdXTX3u2W08s78iarCdboGxR7cswmQ08ObpZvyBwLxn5iQLmblPIfQkXF+Wzz++eJGtqwr5vfet1HpY07KnsoTfvHuLQ2dbeGj9grvliIUA+Nie5ahNvbS6Bu8pI33xmguT0YA9w8LomI8ndizh52/HZuY7kw1P0y0wlpNlZdvqIk5cvsP5a65p31vQG5m5T9O7l4Oz3z1JtL3ZYbdSWVFAU8cgja39Wg9HJJhfvH2d5o7B+/oDdA+McfBMC785cYt0q5nO/tGEmPnOpMDYI1XBrJ43TjXPuhRxspPgPg3Dox7Oqh0UOtJRFudqPZwZ2VsZfDM6clFurIr3TKecxpjXz851xdQ0hq+4OJ0mHPNpJgXGlhTbURblcq2lD4s5fJhLs5h03f9Agvs0VF9tZ8zrT8qljZVLHBTk2Dhd1yHVIsVd0+kPAFBRmpNQM9+ZVJ58ZEtw9p6q1SJlzX0ajtXcwWCAB9Yu0HooM2Y0GHho/QJePnqD03Ud7NowP+lsIrlFy5YJsVpMKIsds27CEQszqTy5sbyAvGxrxDcn95gvbCMQvZCZ+xQ6eoa50dbP6qV5OOzJ+RFu57oFGICjl8I31hapJ9oSR8imigLsGWmzbsIRS9PZX2I0Gti3qTTi8bxsbetAxZoE9ymcqu0AYNuqIo1HMnt52TbWLMujsbWf251DWg9HJIjQEofVEj4MpNvM9zxuNk1mtLZrw0KMEVZSE32vylzJsswUqmvbMZsMbKoo0Hooc/Lg+gVcvtHNsUttfCIJXpQiNiZv239qdxnn6124PfcvXVy81sXH9/iwWkxzajKjpax0C1tXF3HySjvZGRYGRzzT3jCV7CS4R9HiGqTVNUTlioI5V8LTWuUKJ5k2Mycut/HR3culkUeKibRLc29lybSbU8+2yYzW9laWcPJKOytKc/n43rKkenOaC3mFR3F3SWZ18i7JhFjMRnasKaZ/2MOlCKltQr8i7dI8eKZ5Vs2pk0l5SQ4lBZlcaOjElmZOicAOEtwjCgQCnKptJ81iZENZci/JhDy4Ppjt8+7lOxqPRMRTtJz2S43drC8P//zWy5q0wWBg98aF+PwBjtW0aT2cuJHgHsHNOwN09IywsbxAN0W3FhVmUeLM5GJjJ0OjHq2HI+Jkqm37+zeXsnZZ3t2vJdMN0+l6YG0xaWYjRy604k+RDmUS3CMI9SDVw5JMiMFgYPvqIry+AGfqOrQejoiTqbbt52XbGPMGN/r82Sc3TquIV7LJsFnYsrIQV+8o15p7tR5OXOjnrzeP/IEAp2o7SLeaddembvvqYgBOXpFKkaliqm373f2j1Df3smqJg9VL83SxFBPOznXBZcnjNe8tS+q5xrtky4TR0NJHz4CbB9ctiFiXIlnl59hQFuWiNvfS1TdKfo5N6yGJOIhWP/3nhxuBYClrPatYnHu3FMfTD5fxq2M3dV3jXYJ7GNU6XJKZaPuaItTmXqpr23n/9iVaD0fEQaRt+x6vjxOX72DPsLBpih2ryc7j9bOhLJ+3zrXyL7+8wtWbPXePTW76oQf6eIuaRz6/nzN1HdgzLKxcklwVIKeramUhZpOBdy/fIZAiN5dE0ORt+2frXQyOeHhw3QLd7n2Y2JrvrfG2k3W3esI+Nt6VLmNJn3/NOai91cPAsIeqlYW6+Xg2WabNwoayAlo7h2juGNR6OEJD71wI1hvSc0G5iTn+IZNr2Ifoqca7PqPXHJy6mvy1ZKZj+5rg9Z28KjdWU9Wd7mHqmoI3Uovykm/n6XRMp279RHrZuAUS3O/h8fo5W+/CYbdSXpqj9XBian1ZARlWM9VX21Mm71fc68iF4BKFnm+kTrdufYheNm7BHG6oKopiBL4NbADcwOdUVW2YcPxbwE5gYPxLT6qq2jeHscbc5etdjLi97NqwAGOSNeWYKYvZyKYKJ8dq2mhs7WNFqT7vL4jwPF4/x2vukJVuoXKFfm+kTlW3Xs/FxOaSLfNhwKaq6g5FUbYD3wCenHB8E/CYqqqdcxngfJtcFW8ivWfJTLZlVSHHato4XdshwT3FXGrsZHDEw6NbFuku3XeiUI5/KBNmsk0VTt63bbEui4nNJbg/CLwGoKrqSUVRqkIHxmf1K4D/oyhKEfA9VVW/P6eRzlGkqnihvFb3mI8LDZ0UOtJZUmTXcqhxs2qJg0ybmdNqB5/cv0L3n1bEe0IbeR5cl3zdxWYqXI7/hvJ8Ttd1cK7exe88qq/duCFzCe7ZwMRlFp+iKGZVVb1AJvC/gX8ETMBhRVHOqKp6KdIPczgyMJtn/87pdEYPyM//suaed+9QXmtGehrPfngd75xvYczjZ+/mRRQWZs96HPE01TVPx84NJbxRfQvXwBhrk6BA2nxcc7KZ72vuGRjl0vUuykpzqFyTmMF9vq/5Tz61mdExLz39bhzZVmxpZr7zn5f4zfEb3O51s0kpnNfzzcZ8X/Ncgns/MHE0xvHADjAMfFNV1WEARVEOEVybjxjce3qGZz0Qp9OOyzUQ8bjb4+P4xdawx45fvM3jWxdxsPoWAGuXOqL+rEQx1TVP17qlDt6ovsWbJ29SFKH+SKKYr2tOJrG45jdONeH3B9i6sjAhf5+x/DubgYG+EQaA9csc/Ob4Dd44cYNFeekxOd90zeWaI70pzOWzyHHg/QDja+41E45VAMcURTEpimIhuIRzbg7nmpOpquLd6Rqi5noXpc5MSgoy4zw6ba1ckktWuoUzqgt/pORfoSvHau5gMgaLyKWyspIc8rNtnK13MaaTjUsTzSW4vwyMKopyAvgn4E8VRfmyoigfUlW1Fvh34CRwBPixqqpX5j7c2ZmqKt6NtgG8vgBbdZ7bHo7JaKRKcdI/NEZ9ilTLS2VN7QO0uAZZX5aPPSNN6+FoymgwsG11EaNjPl02sJn1soyqqn7gC5O+XDfh+NeBr8/258+naHfMKysKODu+yWFris5ktqws5O0LtzlV18HKJQ6thyNiKNSsIhVupE7H9tVF/PbkLU5ebadqpfbr7vNJf7eII4jUwf3xbYupvdnDsgXZFOZqu+6mlYrFuWRnWDirduDz+7UejogRr8/PySvtZKVbWFemr1LWs1U63sDmUmMnwzprYJMyVSEjVcU7fK4FfyDAtlX6eteeCZPRyOaVhRw+14ra1MvqpXlTf5NIOjWNXQyOeNhfVarbImGzsX11ES8duc5Z1cVDOqqxk3J/4clV8aqvtmMAtqTgevtEW8c/koaaggv9OT7eO3fnWlmSmSh0ry20iVEvUi64T9TdP0p9Sx8Vi3Jx2BM7DTDWVpTmkpOZxrl6Fz6/X9cdalJR//AYFxs6KXVmsbgoS+vhJBRnbjrLFmRTd6uXgeExrYczb1JmWSac0+N9RFP1RupERqOBTRVODp9v5V9+eZlbdwZ026EmFZ2p68DnD/DA2mIMshP5PltWFnKjrZ9z9S62rymOWKIkmaR0cK++2o7RYKBK0W/hpJnYpASD+7n698oB6bFDTSoKLT+mSt2kmapSnPzscAO/PnGTV0/c1MXEJvlGPE/ae4a5eWeA1cscKZ/vG7Ks2E6kOZ2eOtSkmu7+Ua7J8mNUBbnpZGdY6O5309XvJsB7E5sXDzVM+f2JKGWDe+jGod6bcszE4IiHSHtU9dShJtXcfa7LrD0it8eH1xc+DThZJzYpGdwDgQCnrrZjNhl1Xct6pnKyrNjTw6/U6alDTaqprg0uP26W5ceI+gbdDLvDB/BkndikZHBv7hiktXOIDeX5ZNhS+rbDPawWE1URPsnoqUNNKmnvHuaWLD9OKSfLSn6UEiXJOLFJieA+Oa2verxvaKoXTgrnmf0rKHIEd+oaeG8nr5461KSSU6EGNLL8GFWoREk4yTqx0fW0NVyDjo0rCjhf30m61cR62YJ9H5PRyEd2Lec7v7rCvk0lfGxvOVaLCbfHR1ffcNKnh6WaU7Udsvw4TU/vK2fE7b3byCQ/O7lb7+k6uL94qOG+Bh1vnQ3WdX9w3QIsc2gOomfrludjNhmpa+7FbDLwwsH6iB2sROJqGV9+3FThlOXHaTAZjXz2A6tp6RiiuWOAr/zuJvKzbVoPa9Z0++p0e3ycH6/2GI7cXIos3Wpm7bI8Wl1DfP+3tRw806Kb9LBUkmo9gefL1tWF+ANw5Ua31kOZE90G92gNOoC768oivNCb38Vr4fubJ2t6WKoIBAKcqm3HapHlx5mqGm+5d6Yuuess6Ta4R2vQYUsz4Ujij1vxsKG8AKMB3aWHpYobbQO4ekepXJGcNwO15MxNZ2mxnas3exgcSd4ywLoN7tHufq8ry5cn/BTSraao6V/Jmh6WKkJZMlI3aXa2rCzEHwhEXdpNdLoN7nBvg47Qtvp0q5lnn1il6biSwYuHGugZiDwzT9b0sFTgH1+SyRi/dyJmbvN4CewzqgT3hBRq0PHcs9t4avdyAB7bsgizSYJSNNFuRhsNsLdyYdKmh6WCa8299A6OsVlxSlOOWSrMTWdJkZ2rN7sZStIOTSnxl7daTFxs7MIAPLCuWOvhJLxoN6MDwGNbF0saZAKrlloy86JqpROfP8CFCEkFiS4lXqF3uoe51tLH6qUOCnIkS2Yq0W5G58lae0Lz+vycqesgOzONlYul2flcJHvWTEoE9+PjHd93rpf2YtOhx63YqaL2VjDDY4tSiNEoTTnmoigvg0WFWVy52c3wqFfr4cyY7oO7z+/neE0bGVYzm2QL9rRNvBkdsmejrLUnulNXZePSfKpSnHh9AS42JN/SjO6D+5Ub3fQOjrFtTRFpMuOctok3o/dXlQJQsThX1toTmMfr49w1F/nZVpaXZGs9HF2oups1k3xLM7p/pb59/jYAD8mSzKxYLSZ2bVgIwLkkTgtLBZcauxlx+9iyqgij9EmdFwvyMylxZlJzvZsRd3Itzeg6uHf0jnCxoZPlC7NZWiwzmdkqKcik0JFOzfVuxiaVHJhcTlloR8r7xkaVUojX5+diY3Itzei6VNzb51oJAA9vLtV6KEnNYDCwucLJgeomrtzspnKFM2w5ZakWqZ3RMS8XGzopystgcVGW1sPRlSrFya+O3eBsnYvtq5MnlVq3r0K3x8fRS7fJzrDcTWkSs7dpPHvmTF0HHT3DvHDwmlSLTCAXGjoZ8/rZtqoQgyzJzKsSZxYL8jO4dL2L0bHkWZrRbXCvvtrO0KiXXRtLsJh1e5lxs7g4C6vFyMmr7Xzluyc5cr417OOkWqQ2Tl0N3vDbKksyMVGlFOLx+rnU2KX1UKZNl1HP7w/wWnUTJqOBvZUlWg9HF35+uBG3x08gEPy/PxD+cVItMv6GRj3UXO9iUWEWCwsytR6OLlUlYa0ZXQb3M2oHd7qHeWBtMQ677Kacq6kan0wk1SLj75zqwucPsHWVLD/GSqkzkyJHOpcak+eTqe6Cuz8Q4NUTNzEY4P07lmg9HF2YqvHJRLKDNf6qJUsm5gwGA1UrCxnz+KlJkqUZ3QX3C9c6aXENsW11EUWODK2HowvRas0YDWAwBJsJ768qlR2scdY3NEbtrR7KFmZTkCt1k2Lpbq2ZJNnQpKtUSK/Pz8/fbsRggCd2LNV6OLoRqjUzsdl4yO6NC3ls62JysqwyY9fAmboOAgG5kRoPi4uycObauNjYxZjHl/A73nU1cz98rpX27mH2VJaQn2OTzTXzKFRrJm/8HobRaODhzSU880gFhY4MCewaqa5txwBskfX2mAstzbjHfFxOgubZugnuPQNufnXsBulWEz6fn68+f5K/+O5Jvvr8SV44WI/P79d6iEktVGvm7z+/nbXL8vD7A+zZWCIbljTU1TdKQ0sfyuJccuUmdlwk09KMLl6ZgUCAH71Wx7Dby5IiO+9cbJPNNTFitZh4YG1wl97ZJO4vqQenx+uMS5/U+FlabKcgx8aFa514vIk9YdRFcP/5W9e41NjFqiUOOnqGwz5GNtfMn/VlBZiMBs5JcNdU9dV2TEaD7MCOI4Mh+PseHfNxJcGXZpI+uDe09PFvB2rJz7by0V3L6BkYC/s42VwzfzJsZlYtddDUPoird0Tr4aSkO93D3GofYM2yPLLSLVoPJ6VsXjleiiPBl2ZmnS2jKIoR+DawAXADn1NVtWHC8WeBPwK8wHOqqr46x7GGlW41sXllIU8+sBSnI528bCtBJ+idAAAXwklEQVRdYXKyZXPN/NpU4eTy9W5O13VQpTglWybOQhUgZeNS/C1fkE1etpXz1zrx+vwJ24R8LqP6MGBTVXUH8BXgG6EDiqIUA38M7AQeA/5BUZSYRNYSZxZ/8+wOSguzpD1cHG0oywfgl0evy43rOAsEAlRfbcdiNlIp3cXiLlgltZARt5erNxN3aWYuwf1B4DUAVVVPAlUTjm0Fjquq6lZVtQ9oANbP4VzTNrE9nFE218TMgeomALy+gNy4jrMW1xBtXcOsL8sn3aqrrSpJY0uo1kxd4t53msszIxvom/B/n6IoZlVVvWGODQA50X6Yw5GB2Tz7mbXTab/77z/51GZGx7z09LtxZFuxpenzBTDxmuNpdMwbsTrepcYu/uip9Jj9zrW6Zi1NvuYDp5sBeGTbUt3+PhL9uvLzs8h75QoXGjpx5GXOy9LMfF/zXF6B/cDE0RjHA3u4Y3agN9oP64mQ5TIdTqcdl2vgvq+bgYG+Ee4/kvwiXXM8dPQM4+oJfyO1s3eExptdFMag9IOW16yVydccCAQ4fKYZa5qJpc4MXf4+kuXvXLmigLfOtnD0TBNrl+fP6WfN5ZojvSnM5e3mOPB+AEVRtgM1E46dAh5SFMWmKEoOsAq4PIdzReT2+GjrHJI0xziKVmtGblzH1vW2fjr7Rtm0oiDht7/r3ZYEb549l5n7y8AjiqKcAAzAHyiK8mWgQVXVVxRF+RZwlOAbyF+pqjo69+G+5542bwNu8uzS5i1eotWakRvXsSVNORJHeUkOOZlpnKvv5NOP+RMu7sw6uKuq6ge+MOnLdROOPw88P9ufP5UXDzXcE1xCN/QAntlfEavTinGhG9SnazvoGxojzWxk18aFcuM6hvz+AKfq2sm0mVmzLE/r4aQ8o9HAJsXJ4XOt1DX1smZpYv1NEuutZpqiNY+QnajxEao18w9/tJ2CHBsAH9tdlnCzFz2pb+6lb3CMzUphwuZWp5ot47uDz46XgnB7fAlTsDAp00iiNY8I7USNxQ09cT9bmpktqwo5cLKJKze6I+4zEHN36m5TDtm4lCgqFuViz7Bwtt6FyWTgwrVOuvvd5GVrv0yclG//ckMvsWyuCAYbqTUTO16fnzOqi5zMNJTFDq2HI8YZjQY2VzgZGPbw1tnWhCpYmJTBXXaiJpalC+w47FYuNAS3Y4v5d/VmD4MjHrasLMRoNGg9HDHB+vKCiMe0XCZOyuAOshM1kRgNBjatcDI06qW+Oep2BjFL1VfvALBNyvsmnCJH5PaGWhYsTMo1d3jvht5Tu8swpVnwjXlkxq6hTRUFvHWuhbP1LlYnWNZAsnN7fJy71klBjo3lC7O1Ho6YJC/bhtVixO25/1OrlsvESTtzD7FaTCwoyJTArrGKxblk2sycr3fhDwS0Ho6uXGrswj3mY9vqIgwGWZJJNFaLKeIOVS2XiZM+uIvEYDIa2biigN7BMW7c7td6OLpy8oosySS6z39oNbY0EwaCOzoTYZlYgruYN5I1M/8GRzzUXO+i1JlJqTNL6+GICCwmEw9vLiUAfPLhcp57dhvP7K/QdN+HBHcxb9Ysc2C1mDhb7yIgSzPz4t1Lt/H6AjJrTwI71gR7C1+52ZMQy8QS3MW8sZhNrCvLp6NnhNbOIa2HowvvnG8FpJZMMlhYkMmSYjuXr3fTPxS+3Wc8SXAX82pTRTDn95wqSzNz1Tfo5lKDi7KSbJy5kdPtROLYsaYYfyBwdzexliS4i3m1oawAs8kg6+7z4FRdB/4AbJNZe9LYtroIo8HAu+M3wbUkwV3Mq3SrmVVL8mjqGMTV+15Dj0QqqJQsTl1tx2iALRLck0ZOZhqrlzm40TZAW5e2S5NJu4lJJK7NipOa612cq3exv6r0vbr7CVJQKRl09I7QeLufjRVOcjLTtB6OmIEH1hRz+Xo3Jy7f4andZZqNQ4K7mHcbywswGOBsvYuu/lGpuz8Lp64G12x3V5ZoPBIxU5sqnGRYzRy71MaTDy7TrDyzTJ3EvMvOTGNFaS6NLX1361xPJnX3o6uubcdsMrJj3UKthyJmKM1iYsfaYvqGxrjYEL6RfDxIcBcxsXVVIQGgZzB8SpiWBZUSXUvHIK2uIdaX5ZOZbtF6OGIWdm8Ivim/c/G2ZmOQ4C5iYrNSiMEAZlP4WihSdz+y6vE0uu2ycSlplRZmsWyBncvXuzS7sSrBXcRETmYaq5Y48PrC71SVuvvh+QMB3r1yh3SrifVl4YtRicTm8/t54WA9HT0jBIDnfnSGFw7W4/PHt9eBBHcRM6FdleUlOVJ3f5rUpl66+91UKYWkyZtfUnrxUAMHz7QwNOoFYGTMp0lXJsmWETGzqcLJv72uMub18dyz2+gbdJOTZZUZexTvXg5ufnlgbbHGIxGz4fb4OB9hA9/5+k6e2l0Wt+e/zNxFzGSlW1izLI+m9kF6BoJNyyWwR+b2+DitdpCfbWPFolythyNmoW/QTXd/+ESBeCcRSHAXMbV1VbAMcCLU2kh05+tduMd87FhbjFGaciSlnCwrednhEwXsGWlxTSKQ4C5iqnKFE7PJSPXVdikDPIUTsiST9KwWE5UVzrDH0m3muH5yleAuYirdamZ9WT5tXcO0uqQMcCS9g26u3Oxm+cJsivMytB6OmIOn95Wzv6r0bhJBnt1Kps2Mq2eE3jguy8gNVRFzW1cVcq7exam6dkoLpZtQOCevtBMIyKxdD0xGI8/sr+Cp3WV3kwjevXKHH7+m8tbZlrjVm5GZu4i5DWUFpFmMnLraIUszEZy4fAeT0SBNOXTEajHdTSLYsaaY7AwLh861MDjiicv5JbiLmLOmmdhYXkBH7wg37wxoPZyE09Q+QItrkPVl+WRJuQFdslpMPL59CSNuH2+cbo7LOSW4i7jYvjq43BDK4xbvCTV2eGDtAo1HImJpT2UJ2RkWDp5pjsvsXYK7iIu1y/PISrdQXduO1xffbdiJzOvz8+6VdjJtZik3oHOh2fvomI83TjfF/HwS3EVcmE1Gtq0uYmDYw+Ub3VoPJ2HUNHbRPzTG9jXFWMzyctS7PZUlZGem8fqp5pgXFJNnk4ibUCbICVmauevopTYAHlovSzJ65/P7eelIIz6fH4/Xz9/+4HRMC4pJcBdxs7TYzoL8DC5c62R4ND4ZA4msZ8DNxcZOlhbbWVxk13o4IsYmFxQb8/pjWlBMgruIG4PBwANri/H6/JyO0KEplZy43EYgAA9tkG5LehetoNg51cXomHfezynBXcSVZM0EBQIBjl5sI81sZJvktutetIJi3QNueiIcmwsJ7iKu8nNsrFycS31LH67eEa2Hoxm1qZeO3hGqVhaSYZON4noXraAYQFff/L8WJLiLuNsxfmM1lN+dio5eCvbWlBupqSFaQTGH3Yo9M23ezynBXcRdlVJImtnIiZo7KVmOYHjUwxnVRZEjnQqp254yJhcUC3Ul+/oXd7CkOHvezzerz4OKoqQDPwEKgQHg91RVdU16zCtAPuABRlRVfXyOYxU6kW41s1lx8u6VdtSmXlYucWg9pLg6ebUdj9fPQxsWYpC67SkjXEGxWJYAnu3M/YtAjaqqDwE/Br4a5jHlwIOqqu6RwC4m2zWeIfLOxdsajyS+AoEAh8+3YjIa2CkVIFPSxIJisTTb4P4g8Nr4vw8A+yceVBSlCMgFfq0oyjFFUZ6Y/RCFHlUsyqU4L4MzqituVfISQX1zL62uITYrzrh25RGpZ8plGUVRPgv86aQvtwN94/8eAHImHU8DvgF8E8gDjiuKckpV1YjJzQ5HBmbz7N/JnM7U2wSS7Nf8+APL+MGrV6i52cOHdk2vxnWyX/MPXlMB+Oi+imlfS7Jf82zINc/dlMFdVdXvAd+b+DVFUf4TCI3EDvRO+rY7wHdUVfUCHYqinAcUIGJw7+kZnsGw7+V02nG5UquUrB6uecNyByajgd8ev8H2lc4p15+T/Zp7B92cuHSbEmcmzizLtK4l2a95NuSaZ/694cx2WeY48P7xfz8OHJ10fD/wMwBFUbKAtUDtLM8ldCo7I43KCietnUNcv92v9XBi7p2Lt/H5A+zbVCo3UkXMzTa4/wuwRlGUY8Dngb8FUBTl64qibFVV9QBwTVGUk8AbwF+qqto5LyMWurJ7/MbqEZ3fWB12ezl0rhVbmontq2VHqoi9WaVCqqo6DHw8zNf/fMK/vzSHcYkUsWqpg4IcG6dq2/nUwytIt+prt6bP7+fFQw2cvHKHwREvNouRl49e5+l95ZiMss1ExI48u4SmjAYDuzYsZMzj12Up4FAlwMGRYGGoUU9sKwEKESLBXWhu14aFmE0GDp5twa+jHavRKgGer+/E7fHFeUQilUhwF5rLzkxj26oi2ruHuaqjLk3RKgH2DIzSNzj/lQCFCJHgLhLCw1WlABw826LxSOZPTpaVnKzwBaEcdptsYhIxJcFdJISlxdmUl+ZwqbGL9u7Z73lIJFaLKWIAr6woiPn2c5HaJLiLhLF/c3D2/pZOZu8jbi8dPcOkmY3k2a33VAJ8el+51sMTOqevvDOR1DZVOHHYrRyraeMju5YnfVrksUttjLh9fPjBZTy2bXFcKgEKESIzd5EwzCYjeytLGB3zceRCcm9q8vr8vHmmGYvZyN5NJXGrBChEiAR3kVD2birBmmbijdNNeLx+rYcza+9euUNn3ygPrV+APWP+u+wIMRUJ7iKhZNos7Nm4kN7BsaRtw+fz+/nNu7cwGQ28f/sSrYcjUpQEd5FwHt2yGLPJwIGTt/D7k29T06naDjp6Rnho/QLysm1aD0ekKAnuIuE47FYeWFtMe88IZyPs8ExUfn+AV0/clFm70JwEd5GQHt+2BIMBfvPuzaRqon1G7aCta5gda4spyE3XejgihUlwFwmpKC+DLSsLaWof5MK15KgW7fP7+dWxGxgNBj6wQ2btQlsS3EXCevLBZRgM8PLR60lRUOx4zR3auobZtWEBRY4MrYcjUpwEd5GwFuRn8sCaYlpcQxw808zomFfrIUXk9vj45dHrpJmNfHDnMq2HI4TsUBWJy+f3w3g3up++1cBbZ1vYUF6QkI0uDp5ppndwjA/sWILDLgXBhPYS6xUixAQvHmrgeM17ue6u3tGEbHQxMDzGb082kWkz8/g2WWsXiUGCu0hIydTo4qUjjYy4vXzowWVk2OTDsEgMEtxFQkqWRhfXb/dz9GIbJc5M9m0q0Xo4QtwlwV0kpJwsK3nZ4deuszPSEqLRhT8Q4N/fVAkAv/tIRcLdBxCpTZ6NIiFZLSYqK5xhj5lMBtLM2j9137l4mxttA2xfXYSy2IHb46OjZzihloxE6pIFQpGwQg0tztd30jMwSn6ODZ8/QFe/m5NX2tmxtlizsXX1jfKzQw2kW008tXs5Lxys53y9i+5+N3nZViornAmZ1SNShwR3kbBMRiPP7K/gqd1l9A26KVuaz/Vb3Xzte9W8cLCe8tIcAoFA3BtgBAIBfnigltExH3/w/pW8frqZg2fe6x7V1e+++/9n9lfEbVxCTCTTCpHwQo0ubGlmnLnpfHTXcoZGvXztX6v5yndP8tXnT/LCwfpgXnwcHLl4mys3e1hfls+WlYVJk9UjUosEd5F0XL0jAIyNN/MIzZTjkf/e4hrkpwevkWE183vvW0n/0FhSZPWI1CPBXSQVt8cXsZBYrGfKo2Nevv3yZca8fj77gVU47NaoWT1pFhNZGZaYjUeIaCS4i6Qym/z3+chiCa6z13Gne5hHtyy6m8kTLatndMzHL4/emPU5hZgLuaEqkkpoptwVJsDnZlnvyX/3+f28eKhhXrJYXj56g1O1HZSX5PCxPWX3HPvwQ8s5duk2o2P3r/mfr+/kqd1l0hhbxJ3M3EVSiTZTTrea7sl/f/FQAwfPtNDV7ybA7Nfm37l4m1dP3MSZa+O/PrUOs+nel83g8BjuMIEdZN1daEeCu0g6T+8rZ39VKXnj1RfHC0fS2jnM3/7wNF6fb95q0xy9eJsfHagjK93Clz6+geyMtPseE23d3WG3JcRuWpF6JLiLpBPKf19Xlg/AxDYeTe2D/N8/OktP/+icslgCgQBvnm7mhwfqyEy38Gef3MiC/Mywj432aaKyokCWZIQmZM1dJB2f388Lb9Zz9OLtsMebOwb5yZv15NrT6BkYu+/4VLNpj9fPfxys5+0Lt8nOTOPLn9jA4iJ71DFN3k3rsNuorCi4+3Uh4k2Cu0g6Lx5q4PD58IE95OrNHmxp4WfM0WbTN+/0871Xa2ntHGJxYRZ//LH15GXbphzT5N208d41K8RkEtxFUom2lh6SZ7eyfU0Rr59qBsBiNuL1+nHYrWxSnGFn080dg7xWfYuTV9oJAHsrS/jE3nKsEd4gIgntphVCaxLcRVLpG3SHTYOcaMOKAj62p5ytq4r4yZv1NLT0AWAeD/KHzrWSYTUzOubjTvcwalMPLa4hABYVZvH0vnJWL82L+bUIEUsS3EVSycmykpuVRu/g/WvpIfs3lwKwuMjOX/zOJupu9XDk4m0uXOvk7Qv3L+eYTQY2lhfw0PoFbFhRgNFguO8xQiQbCe4iqVgtJipXFERcc8/Ptt2zRm4wGFi1NI9VS/Pw+vy0uobo6B1hxO3FlmYiP9vG4iI7lgSoDy/EfJLgLpLOM49U0NDaT3PH4H3Hot0sNZuMLCm2s6Q4euaLEHowp+mKoigfURTlhQjHnlUU5YyiKCcVRXliLucRYiKT0chf/34VezeV4MiyYjAEZ+z7q0ol9VCIcbOeuSuK8k3gMeBCmGPFwB8DVYANOKYoypuqqso+bDEvTEYjn35U4RN7yyX1UIgw5jJzPwF8McKxrcBxVVXdqqr2AQ3A+jmcS4iwQqmHEtiFuNeUM3dFUT4L/OmkL/+BqqovKoqyJ8K3ZQN9E/4/AOREO4/DkYHZPPsXqNOZeuuocs2pQa45Ncz3NU8Z3FVV/R7wvRn+3H5g4kjtQG+0b+jpGZ7hKd7jdNpxuQZm/f3JSK45Ncg1p4a5XHOkN4VYZcucAv5eURQbYAVWAZdjdC4hhBCTzGtwVxTly0CDqqqvKIryLeAowXX9v1JVdXQ+zyWEECIyQyAQmPpRceByDcx6IPIxLjXINacGueYZf2/YLdWyLU8IIXQoYWbuQggh5o/M3IUQQockuAshhA5JcBdCCB2S4C6EEDokwV0IIXRIgrsQQuiQBHchhNChpO7EpCiKEfg2sAFwA59TVbVB21HFlqIoFuD7wFKCdXueU1X1FU0HFQeKohQCZ4FHVFWt03o8saYoyl8AHwLSgG+PF/DTrfHn9Y8IPq99wLN6/jsrirIN+J+qqu5RFKUc+CEQIFiD67+oquqf6zmSfeb+YcCmquoO4CvANzQeTzz8LtClqupDwOPA/6fxeGJu/IX/XWBE67HEw3gp7QeAncBuYJGmA4qP9wNmVVUfAP4O+HuNxxMziqL8OfCvBBsZAfwj8NXx17QBeHI+zpPswf1B4DUAVVVPEuz8pHc/B7424f9erQYSR/8L+A4Qviu2/jwG1AAvA78GXtV2OHFRD5jHP41nAx6NxxNLjcBHJ/x/M3Bk/N8HgP3zcZJkD+6Tm4L4FEVJ6qWmqaiqOqiq6oCiKHbgF8BXtR5TLCmK8vuAS1XV17UeSxwVEJyofBz4AvDviqKELQ6lI4MEl2TqgOeBb2k6mhhSVfUl7n3zMqiqGqoDM2Vjo+lK9uA+uSmIUVVV3c9kFUVZBBwG/k1V1bANynXkD4FHFEV5G9gI/Hi8R6+edQGvq6o6pqqqCowCTo3HFGt/SvCaKwjeQ/vReD+IVDBxfX3KxkbTlezB/TjBtToURdlO8KOsrimKUgS8AfwPVVW/r/V4Yk1V1V2qqu5WVXUPwWbsn1FV9Y7Gw4q1Y8D7FEUxKIqyEMgkGPD1rIf3PoV3AxYgVRrjnp/QsvRxgn0w5izZlzBeJjirO0HwRsQfaDyeePhLwAF8TVGU0Nr746qqpsTNxlSgquqriqLsItjRzEgwe8Kn8bBi7Z+A7yuKcpRghtBfqqo6pPGY4uW/A88ripIG1BJcbp0zKfkrhBA6lOzLMkIIIcKQ4C6EEDokwV0IIXRIgrsQQuiQBHchhNAhCe5CCKFDEtyFEEKH/n890uUqTeBVggAAAABJRU5ErkJggg==\n", "text/plain": [ "<Figure size 432x288 with 1 Axes>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "rng = np.random.RandomState(1)\n", "x = 10 * rng.rand(50)\n", "y = np.sin(x) + 0.1 * rng.randn(50)\n", "xfit = np.linspace(0, 10, 1000)\n", "\n", "poly_model.fit(x[:, np.newaxis], y)\n", "yfit = poly_model.predict(xfit[:, np.newaxis])\n", "\n", "plt.scatter(x, y)\n", "plt.plot(xfit, yfit);" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### Gaussian basis functions 高斯基函数\n", "\n", "Of course, other basis functions are possible.\n", "For example, one useful pattern is to fit a model that is not a sum of polynomial bases, but a sum of Gaussian bases.\n", "The result might look something like the following figure:" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "\n", "<img src = \"img/figures/05.06-gaussian-basis.png\" width = \"400px\">\n", "\n", "<center>[figure source in Appendix](#Gaussian-Basis)</center>\n", "\n", "<font size = '4pt'>The shaded regions in the plot are the scaled basis functions, and when added together they reproduce the smooth curve through the data.</font>\n" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "\n", "These Gaussian basis functions are not built into Scikit-Learn, \n", "- but we can write a custom transformer that will create them\n", "- Scikit-Learn transformers are implemented as Python classes; \n", " - reading Scikit-Learn's source is a good way to see how they can be created:" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "The simplest case of a normal distribution is known as the ''standard normal distribution''.\n", "\n", "$$\n", "f(x \\mid \\mu, \\sigma^2) = \\frac{1}{\\sqrt{2\\pi\\sigma^2} } e^{ -\\frac{(x-\\mu)^2}{2\\sigma^2} } \\sim e^{ -0.5 (\\frac{x-\\mu}{\\sigma})^2}\n", "$$" ] }, { "cell_type": "code", "execution_count": 33, "metadata": { "ExecuteTime": { "end_time": "2018-05-20T15:22:00.734658Z", "start_time": "2018-05-20T15:22:00.710792Z" }, "slideshow": { "slide_type": "subslide" } }, "outputs": [], "source": [ "from sklearn.base import BaseEstimator, TransformerMixin\n", "\n", "class GaussianFeatures(BaseEstimator, TransformerMixin):\n", " \"\"\"Uniformly spaced Gaussian features for one-dimensional input\"\"\"\n", " def __init__(self, N, sigma_factor=2.0):\n", " self.N = N\n", " self.sigma_factor = sigma_factor\n", " \n", " @staticmethod\n", " def _gauss_basis(x, mu, sigma, axis=None):\n", " arg = (x - mu) / sigma\n", " return np.exp(-0.5 * np.sum(arg ** 2, axis))\n", " \n", " def fit(self, X, y=None):\n", " # create N centers spread along the data range\n", " self.mu_ = np.linspace(X.min(), X.max(), self.N)\n", " self.sigma_ = self.sigma_factor * (self.mu_[1] - self.mu_[0])\n", " return self\n", " \n", " def transform(self, X):\n", " return self._gauss_basis(X[:, :, np.newaxis], self.mu_,\n", " self.sigma_, axis=1)" ] }, { "cell_type": "code", "execution_count": 34, "metadata": { "ExecuteTime": { "end_time": "2018-05-20T15:22:01.648815Z", "start_time": "2018-05-20T15:22:01.503183Z" }, "slideshow": { "slide_type": "subslide" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAD3CAYAAADxJYRbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3Xd4XOd14P/vnYo6KINBJwkSIC57J0VSFClRlBwVS7IVr2Juso6bbO/+kt862Xi9jvb57WbtOOvEceLs47Uj23GVQ9uyHRVbhaIqi9jATlwQLADROzBog2m/PwYDgOSgY+bemTmf5/FjAXfKi8uZM++ce97zKsFgECGEEMnBpPcAhBBCxI4EfSGESCIS9IUQIolI0BdCiCQiQV8IIZKIRe8BhPl8/mB396DewzCEnJw05FyEyLkYJ+dinJyLcS5XpjKb2xtmpm+xmPUegmHIuRgn52KcnItxci7mzjBBXwghRPRJ0BdCiCQiQV8IIZKIBH0hhEgiEvSFECKJSNAXQogkIkFfRx6vn7buQTxev95DEUIkCcMszkom/kCAA4dqqappp6vPQ67DzsZKF0/trcBsks9hIUT0SNDXwYFDtRw82TD2c2efZ+zn/fsq9RqWECIJyLQyxjxeP1U17RGPVdV0SKpHCBFVEvRjrLffQ1efJ+Kxbvcwvf2RjwkhxEKQoB9jWRl2ch32iMdyMlPIyoh8TAghFoIE/RizW81srHRFPLaxMg+7VRpJCSGiRy7k6uCpvRVAKIff7R4mJzOFjZV5Y78XQohokaCvA7PJxP59lTy5p5zefg9ZGXaZ4QshYkKCvo7sVjP5OWl6D0MIkUQkpz9PsqpWiJmR94oxyEx/jmRVrRAzI+8VY5GgP0eyqlaImZH3irHM62NWVdW7VFV9K8LvP6iq6glVVY+qqvrp+TyHEcmqWiFmRt4rxjPnoK+q6heA7wIpt/3eCnwDeBDYAzytqmrhfAZpNLNdVev1+ent9zDk8cVieEIYhqxAN575pHeuAh8Gfnzb71cCtZqmdQOoqvoecA/wi+ke0OXKnMdwYiczKxVXTipt3UN3HMvLTmXZklyuNfbx9ukGqmraaOkcHDue60hhTbmT+zYvYvOKfBRFifgc8XIuYkHOxbh4OxfTvVfKy5yk2OYWhuLtXBjFnIO+pmnPq6paFuGQA+id8LMbyJrJY7a3u+c6nJhbV+68JU8ZVupK57/+07tcbw79Lal2CysWZ5ORZmPY4+Nmez/vVDXyTlUjSwoy+fcPVFJReuvpcbky4+pcRJOci3Hxei4me6+sK3fi7h1iLn9RvJ6LaJjth180LuT2ARNHkQn0ROF5dOHxhlI1T9yzFBhfVZudYcdmNXO6pgMF2FTp4v7NpVQuyrqlQiEYDHKtuY/XT9zkxOU2vvrTUzx01xI+tHupVDKIhCQr0I0lGkH/MrBcVdVcoB/YDfxdFJ4npiYrO/ufn9xGfUsfP339Co0dAywtcvCHD1aytMgR8XEURaG8OIvyx7PYu6mH7718id8eq6OhvZ/PPr56zl91hTAqWYFuLAsWYVRV3Q9kaJr2z6qq/hnwKqELxd/XNK1xoZ5HL5OVnXX1DVNzs5f+IS/3byrlqfsrsJjvnLGHvyFMfMFXLsrmf3x8G//3Nxc4d7WTv/3ZGf7LH2yI2d8kRCzJCnRjUILBoN5jCAsaNUfn8fp55tljdE5ShWA2Kfzhg5Xs2VByx7GZLEzx+QP8y2+rOXqxhcrSLL7yn3bh7r3zwlcyktztODkX4+RcjHO5MiNXg0xCcgkzMFXZGcCnHl3JXasiV6XOZGGKxWzik4+sxOcPcKK6jb/9yUmeuLuMnMwU+RosEkpz5wBHLrRwvbmPIY+PrHQ76uJs7lpVQLbsJRETEvRHRUq/hIU3Pok008/OsLNhuSvi/adbmPLknvKx25pMCp94ZAW1jb0cv9jK8YutOGW5ukgQg8Nenjt4haMXWgjnFixmhet+N2dqO3j+7avsWV/Ch3YvIy1FwlI0Jf3ZnUn6JbzxSaSys81qHs+/fTXi/WeyMGVijvPnh2rpdo/fXpari0TQ0N7PP/7iLJ19HswmBX8gSG6mjU1qPg9uXcT5q528euImb5xu4FRNG599fA2Vi7InfTyP109zxwB+r1++Cc9B0gf9mfYFKS92cMikEAgEUYCcTDubVBeBYJA3Jrn/k3vKJ/2GMHFrRH8gwHMHr/D2maaIY7z9W4EQ8aKuxc3f/WsVA8Oh1ej+QGie3+UeueV9ds/6Yn57tI4XDt/gb39WxR/cv5z7N5fe8li3TNDcHnIz5ZvwXCT1mZpJXxCfP8C/vnGF77xwCavZxGceW81XP7Odrzy9nSf3lHP2Ssek9wdmtDXigUO1vHm6kcAk19S7+mS5uog/HT1DfOPnZxj0+EifJGUTfp9ZzCYe27WUv/joBtJTrfz09Rqef/sqEwtNwhO0zj4PweD4BOvAodpY/UkJIamD/nTpl7qWPv72Z1W8duImRc40nvnYFu5aVUB+Thp2q3lG6Zun9lawb0spTkcKJgWcjhT2bSkdW5gy1QdPWFqKRTZMF3FlyOPjH355jr5BLx/cWcbgcOS+U7f331EX5/DMH22mICeVl4/W8YPfVeMPBKRx2wJK6vTOVBdoU+0W/uEX5xge8bNFdfHxh1eSarfM+P7h9M10C1OmqwyC0AfDsMcn6R0RN372xhWaOgbYt6WUh7Yv4fD55mnTnGF52an8tz/czDd+fpZ3zzUzOOzjQ7uXzur6mJhcUs/07VYz6yryIh4bGPahKAoff2gFn3tizR0BP3z/maRvwrcNf0OYKPzBEYlJgcrSLHz+ID9748pM/ywhdHW2toP3zjWzOD+Df3dfxazeJ2GOdBtf2L8RdVE2p2ra+enrV8jJtEV8jEgfHGJySRv0QxdPazh7JfJXRpvFxGbVxc61hZN2wgSmTd9MZ6o3xJ6NJXzh329iWbGD45fbuHC9c0aPKYRe+oe8/OCVaswmhU89umpsdfpc3iepdguf/3frWV/u5HJdN/5A5NtN9sEhIkvaFbnPHayJWIJ5u31bSmdULjlVnf90xqsSQg2p8rJTWVfuHKtKqG9181c/OEleVgpf/vRdEds8JCpZeTkuHs7Fsy9e5OjFVj68exmP7iy74/hc3ic+f4Dvv3yZY5dayUi1YjWb6B3w3NK4LZmrd2RF7gwMjfg4drFlRredabnkfPqK3J73Ly9z3tKGYXFBJns3lXDwVAOHTjXw4LbFc3oeIaLpdE07Ry+2srTIwUPbI79G5/I+8QeCPLarDJvVzDtnm8jLSuGZT9xFUbasWJ+LpAv6tY29fO+lS/QPzWwXq1heJAq/IVJsljt6jD+2aylHLrTw4pEb7FxbREaqNerjEWKm3IMj/OiV6rGWIgsx87594WROpo2lRZlcb3bzNz86yR89WMnONVOnX8WdkuY7USAY5NfvXOWvf3yK1gi7+EzGKBeJMlKtPLqzjIFhHy8evqH3cEQS8Hj9tHUPzqgc8sev1dA36OXDu5dRnJe+IM9/S10+oQVd15vdrCt3YjErfO/ly/zDL87R0SPNCWcjKWb6E3OCs2Wki0T3by7l0OkGDp1u4P7NJVKiJqJiJq1JJjp+uZWT1W1UlGbx4NZFCzKGqeryG9sH+Nqf3MO3fnGG89c6+dKzx9i1rph9m0sX7AMnkSV80A8Gg/zLb6s5dqkVi1nB54984Tonw0ZGmo3BYS/dbo8hd/exWkw8uaec77xwkRcP3+CTj67Se0giAc20NQmE1pn8+FUNm8XEJx9eicm0MKmW6RY+2ixm/vypDRy71Mq/vXudt6oaeauqkUX5Gawrd1JeksWyYgeOtMhlnsks4YP+y0frOHqxhUX5Gdxs6494G0WBzz+1gVJXxryqcGJh68p8XjpygyMXW3h4xxKKnDKzEQtnNp1hg8EgP3xFY2DYx/59yynIXbhvntMtfMxx2HH3DrFjdSHbVuZzSmvn2MVWzl/rvOV9npNppzA3jWXFDsqLs1hSmElOpv7pWj0ldNC/3tzHb969Tq7Dzv/z4bV87bnTEV9EuZkpuLJTAePv7mNSFB7ftZRv/eYCLx6+wdOPrdZ7SCKBzKYz7LvnmjlT28GKxdnsva052nxN1dl2Y2XeLcUOZpOJbSsL2LaygCGPj6tNvdTc7OHoxVa6+obpdnu4XNc9dv9lxQ7uXlvErrVFWC2TX9Y0+gRwrhI26Ifz+IFgkE8+vBJXduqUL6J4+kfdpLpYnJ/B+5daeWRnGSWSxxQLZCatRQDaugf52cErpNotfPKRVZiiUEEzlw3VU+0W1ix1cu5qJ529w3ccz3XYud7cx7WmPl4+eoOP3FvBXasKbrnNbK9pxJuEDfpvVTXS2DHAvRtLWFmWC8ztRWREJkXh8XuW8k/Pn+ff3rvOf3xijd5DEgliqhn2ugondqsZnz/Asy9ewuP18/QHV+HMSonKrHiuG6pPlaJSUPjq09t5s6qRQ6cb+c4LFzlb28HHHlpxS9fbmV7TiEcJGfSHPD5ePHKDFJuZJ+5ZOvb7ub6IjGhDRR5LCjM5Vd1Gc+eA5PZFRG09Qxy70EJDxwBWs8KSQgdbV+RPmtf2BwIEgkFSbCaGR27te3D2Sjtmk8KI18/Vpj62ry5g68p8njtYE9VZ8WxTrtOlqACe2rucezeW8N0XL3HsUittPUP854+sx2oxzfiaRryK/+8qEbxxqgH3oJeH7loc8er9ZM3P4omiKDyyfQlB4JX36/UejjCYYDDIy0dv8Myzx/jNe9c5Wd3G0Yut/OsbV/gv3zrM91++TEfvnfXtBw7VcuhU4x0BH8Y3PnnnbKiZ2sc+sOKOWnoj9LifqonhxBRVQU4aX9i/iR2rC7jW1Mc3fn6G5o6BiKktuLMNdLxKuJm+zx/gjdMNpNrN7NuyMDXDRrWp0kVBbhpHLrTwxD3Lkr4qQYz7xZtXeeV4PTmZdj68exmrynLx+vxcvN7FodONvHe+mWOXWnlw6yIe2bGEVLtlRns7QKja7enHV4OCIWfF010Enjgmq8XEJx9dhcmkcPh8C//nV+cnfVyjLNScr4QL+icut9HbP8KDWxdFbIecSEwmhYfuWswPflfNayfqeWrvcr2HJAzg6IUWXjleT5Ezjb/46EayJwSq/Jw09mwo4dilFn71zjV+e6yO98418aHdy1AXZU+7twMAQbCYlFnvAR1Ls7l+Z1IU/vihFfT0j3Dxetekjxm+phHvEi4qHjzVgKLAvgUuITOqHasL+c2713jrTBOP7CiTnjxJrrffw09eryHVbuZPn1x3S8APM5kUdq4pYrOaz2vH6/ntsXp++IpGSV46aSmWsf1sJ5PrGJ/xzqTSRw+zvX5nNpl4cveyKYN+osSUhMrpN3UMcL25j7XLnOSN1t0nOqvFxINbF+MZ8fPm6elbRYvE9su3rjLk8fHknvJpF0vZrWY+ePdS/vrp7exaW0RTx8C0AR9gw/LQjHcum6PE2myu3xXlpZOVHnnS5HSkkOtIWejh6SKhgv7R0XbJO9cU6jyS2NqzoZg0u4XXTzbg9cleocmqpWuQIxdbKHWlc++GkhnfLyfTziceWcnXPreT39+zjPycVCzmyevuJzYyme8mQkZit5rZurIg4jGjfIgthIRJ7wSCQY5ebCHVbmbDJFsgJqpUu4U9G4v53bF6jl1s5Z71xXoPSejg5aM3CAbhg3cvnVUPnIk19g/vKOPhHWW4B0f4H98/QXeEapWzVzr5yL1+7FZzQpVBQ+hDzB8I8vaZJgKBIFnpNrauzI/LD7HJJEzQr23opavPw661Rdji+EU3V/dvKuXV92/y+skGdq0rkh7jSaZ/yMv7l9ooyEllsxo55XK7qVaeDnl89ExSnhjpIq3R25fMlNlk4o8eVFm7NJdvPn+eQmcaH71/eUK9nxImvVM1utftlhUze8EnmlxHCptVFw3t/VTX9+g9HBFjRy+04PMH2LOhZMYtEaaqsZ9prXui2rDcxbpyJ1p9D2drE2tv6oQI+sFgkKqaDuw2MyuX5Og9HN08MNrL/ODJmzqPRMRSMBjknbNNmE0KO9fO7HrWdN00AcNfpI22j9xXgUlR+OXbVwkYZy/xeUuIoN/UMUBbzxBrlzmxWhL/xTiZ8mIHS4scnLnSQVv3oN7DETFS1+qmsWOAjcvzZtw/fiY19ol0kXYuSvLS2bG6gKaOAU5p0y9aixcJkdM/Uzs6M1meXBdwb6coCg9sKeWfX7zEG6ca+eg+WayVDMIB6fZukVOZSTfNRLtIOxeP7izjyMUWXjx8nc2qKyrdRGMtIWb6F693oQBrlubqPRTdbVmRT3aGjXfPNTHkmdnm7yJ+BYNBTmrt2Cwm1ixzzvh+s6mxT4ReVXNVkJvG9lUFNLQPUFXTPqt9g40q7mf6Hq+f2sZeFhdkkilbo2Exm9i7qZRfvXON9841j+X5RWJq7BigtWuQzZWuWQflRGk1Hm2P7izj2KVWfvSqhtWs0O0eiese+3Ef9K809ODzB1lZlrwXcG+3Z0MxLxy+waGqRvZtKU2ocjNxq/DF2JmWaU4k6Zuphdcv5DpSyMtKpb1nvCtpPPfYj/ugf+lGaBu0VRL0x2Sm2di2Mp8jF1q4XNfNqjJJeyWqsdTmLFI7t0uUGvuFcvv6hZxMG/1DkVOl8dhjP76+l0Rw6UYXFrPC8tJsvYdiKPdtDC3Df/N0o84jEdES2g+2j7IihzTaW0C3r1/oco8w4rtzfwGIzx77cR303YMj1Lf2U1GSFVeftLGwrNjB4oIMqq500O2OrxelmJnq+m78gaAUMCygme4pEBaPC9XiOuhfaegFYEUSL8iajKIo3LexhEAwyNtnZLafiMJtgFdL0F8wU61fiCQeF6rNOaevqqoJ+BawHvAAn9I0rXbC8W8CdwPu0V89rmla7zzGeofa0aC/vCRrIR82YWxfVcjP36zl7bNNPLqzDIs5rj/jxW0u3ejGbjOzrNih91ASxlTrF1JsZkwKDHr8pKVY2LmmMC4rneYTBZ4AUjRN2wF8Efj6bcc3AR/QNO3e0f8taMD3eP1cquvCpMCyYgn6kdhtZu5eU0Rv/whnrnToPRyxgPoGRmjpGmR5SZZ8mC+gqdYv7FpXxP/38W2YTArZGXY+ev/yuCvXhPkF/V3AKwCaph0DtoQPjH4LWA78s6qqh1VV/cS8RjmBPxDguYM1/OU/H6W+tR9FUXj+nav4A5EvtCS7e8MXdKskxZNIwqnN5YukgGGhTdV+wpWdyqZKF00dA9Q2Lug8NmbmU7LpACb+1X5VVS2apvmAdOCfgL8HzMCbqqqe1DTt3FQP6HJlTvukz/7m/C0bHvsDQQ6ebCAt1cann1g7hz/DmGZyLmb6OOsq8jhX28FwABYVLMzjxtJCnYtEED4XjUfrANi6pihpz080/+7/96ObGR7x0d3nIcdhJ8U2HiqfuLeCk9VtHLvcxs6N8bf4cT5Bvw+YeNZNowEfYBD4R03TBgFUVT1EKPc/ZdBvb3dPdRiP18/hs5FnrIfPNvHQtkVxd1ElEpcrc9pzMRt3rynkXG0HvzpUE3cLSRb6XMSziefibE0bZpNCTqolKc9PrF4XFsDdO8TEZyrKslOQm8a7Z5r40K6lupfLzvbDbz7pncPAwwCqqm4Hzk84Vgm8p6qqWVVVK6FU0Ol5PBcws86A4k4bl+eRlW7j8PkWPCPx2zNEhHhG/NS19FNWmJkQk5x4oygKe9YX4/MHOHK+We/hzNp8gv6vgWFVVY8A3wA+r6rqn6mq+pimaZeBnwLHgLeBH2madnG+g032jR3mymI2sWdDMUMeH+9fbtV7OGKerjX1EggGZUGiju5eW4jFbOKtM00E46zX/pzTO5qmBYDP3vbr6gnHvwZ8ba6PH0n4yvrEnH5YPNbLxtLu9cW8dKSON083co9spxjXroxeQFxeKlVreslMs7FlhYtjF1upudmDujh+1grFXb3RU3srWF8R6jOikHwbO8xVriOF9RVO6lrdXG9OvhxwIrne1Acg9fk6u2dtEQCHz7foPJLZibugbzaZKCsMvdj/+CGVL3/6Lvbvq4zLetlYu29TuHzzzm9KIj4Eg0FutLjJybRLOlNn6pIcnI4UTlS3MTwSP3tXxGWkrGsJzVTXVcy+h3gyW1WWS352Kscvt9E/5NV7OGIOut0eegdGWFoks3y9mRSFu9cW4vH642o7xfgM+q1usjNsZKXLpimzYVIU7t1YgtcXqjpIhF2Akk04NVdWmJy1+UazczTF8965+Kniibt++r0DI3S7Pawvn3v/8GS2a10Rv3rnKi8cvsFrJ+rjfhegZHOjJZTPl5m+MeRnp7K8NAvtZg8N7f2UujL0HtK04u4dXt8amukskZnOnGSkWnFlpzLo8dHlHiHI+C5ABw7VTnt/oa8bzaGgX1Ykr3+9hVvCNHUMAPDVH5/iuYM1hm8JE3dBP5zPl6A/Nx6vn4FJ8vlVNR2S6jGw8EXc/OxU0lNk0xS9hTdbGRgOXcQdGvHHxeQp/oJ+eKYfhz1kjKC330PfYOSgL6uaja2lc5CBYZ/M8g1gqs1WjD55ir+g3+ImM81KTqaUq81FVoYdp6xqjkvXmkKLsmTCo794bgkTV0F/YNhLR+8wSwoyZUXpHE3VL1xWNRvb9dGgvyjf+BcLE91ULWGyMoy9hiJugr7H6+dsbWgjEMnnz0+4X3g4wGekWmVVcxy4MboSV4K+/qaaPBU50ww9eTJ8yaY/EODAoVqqatrHtjCrb3XjDwSkvHCOzCYT+/dVsmN1If/rhydZlJ/B/n2VeLx+OnsHycqwG/pFm6yuN/XiSLMaehaZTMKTpKqaDrrdwzjSbfT0jxi+AZvhg374CvlE5691ceBQbdz1hjeapUUOKkuzuFzXzXdfuohW30NXn0fq9g1ocNhLW/eQbIJuIOHJ05N7yunt95CVYefrB85QXddDt9tj2OuOhn5Hx/MV8nhx36ZSAI5caKWzzyN1+wZ1s60fkNSOEdmtZvJzQimdHasLCQLvXzJuC3NDB/14vkIeL9Ysy2Wya+LywWocEvTjw9YV+ZhNCkcvGrfzpqGDvmyaEn0DQ14mS0HKB6txSNCPDxmpVtYuc3KzrZ+G0X8zozF00JfywujyBwK8euImkxW/ygercdxs68diNlGYm6b3UMQ0dqwpBODoJWPO9g0d9GFieWFoqNnpNikvXCAHDtXy5ulGJqs1kA9WY/AHAjR2DLC4MBOL2fBv2aS3vtxJqt3M+5daCRiwksfwr6DwFXJnVio2i4mvPL1dNk1ZAFNdJDcpcN/GYvlgNYi27iG8vgBLZaesuGCzmtms5tPV5+HKzR69h3OHuIicHq+f5s7QTCfVbvgq07gw1UXyQBA+sG2xfLAaRGN7qIvjkkIJ+vFix+rRFI8BL+jGxbu6ob2fYFB6jiykqS6Sp6VYJJdvII2jrXsXy0r0uKEuziYn086J6na8PmNVwMVF0K9vkc6aC22qi+QKYLPExUsjKYT7tS8ukJl+vDApCttXFTDk8XG2tlPv4dwiLt7ZdbJxSlSEL5I7HSmYFHA6UijITWVg2EeNAXORyaqpY4AUm5m87BS9hyJmYftoiuf9y8ZaqBUXCfK6ln6sFhPFeVKutpAiLSOva3HzNz89zZtVjaiLc/QeYtLz+QO0dA2ypFA6y8abUlc6Rc40zl3tZHjER4rNGOHW8DN9nz8wtvekXFiMjonLyJeXZlGSl84prV0WZhlAW/cQ/kCQ4rx0vYciZklRFLauyMfrC3BmtEOwERg+ija2D+APBCW1EyOKonDfphL8gSDvnG265ZjH66ete1BaM8RQOJ9fIkE/Lm1dkQ/AicttOo9knDG+b0xhfHtEWX4eKztWF/LLt67y1pkmHt6xBGCsvbV04YytcOWOzPTjU4krg5K8dM5f62LI4zNEybnh37HhjdAXS+VOzKTaLdy1qoBut4cT1W1j7a2lC2fsNcpMP+5tXZmPzx/gzBVjpHgMH/RvtLgxmxRKXTLTjwV/IMBzB2s4cyW0Wvf7L1/mvXPNEW8rXTijr3m0cseovdnF9MIpnuMGqeIxdND3+QPcbOunND8Dq9SNx0R4Vt874AXA5w8yPBI5sEsXzugKV+4U56VL5U4cK3Kmsyg/gwvXuxgY9uo9HGMH/cb2AXz+AEvlIm5MTNWPJxLpwhldrVK5kzC2rczHHwhSVaN/isfQQf9GS2gj6LIiWYkYC1P144lEunBGV7Pk8xPGWIqnWv8Uj8GDfugibpnM9GNiqn48FrOC02EfW7kr7a2jTyp3Ekd+ThqLCzK4fKObwWGfrmPRv35oCjea3VjMJnnRx0i4H8/tG9ED2G1m/ten7qJvYISsDLvM8GNAKncSy6ZKF/Wt/Zy71sH2VYW6jcOwM32vz09Dez9FzjT8AeNtRJCoIvbjyUllYMhHXYt7bOWuiL6mjgFS7VK5kyg2LQ81ONQ7r2/Imb4/EOC7L13GHwhys62fZ549JouBYiRSP54bzX387+eqOHRa+vHEis8foLVrkDLpuZMwSlzp5Gencu5aJ15fQLeKRENG0AOHajlRPb5sWRYDxd7EfjyVi7IpcaVzuqadHinRjIlw5U6RpHYShqIobKzMwzPi53Jdl27jMFzQn6psUBYD6UNRFPZuKg314znTNP0dxLyFK3eKnRL0E8nG0RTPaR1TPIYL+r39HjonKRuUxUD62bG6gFS7mbfONOLzB/QeTsJr7gxX7kg78URSUZJFZpqVM1faCeh0rXLOOX1VVU3At4D1gAf4lKZptROOfxr4DOADvqxp2kszedysDDvZ6VZ6Bu5cuSaLgfSjKAobl7s4cqGFM1c62DJadyyio7lzEAit5hSJw2RS2Lg8j3fONnOtqY+K0qzYj2Ee930CSNE0bQfwReDr4QOqqhYCfwrcDXwA+KqqqjOK1narmeJJ+uzIYqDYC/fieebZYxy5ENrk+WdvXMEfkNl+NDV1DmCzmHBmyW5ZiWY8xTPz1e8LaT5BfxfwCoCmaceALROObQMOa5rm0TStF6gF1s30gbPSbWP/L4uB9DWxw2ZYt9vD916+rOOM+1XqAAAWJUlEQVSoElsgGKSlc5DC3DRMUrmTcFaV5WC3mam6ok/Qn0/JpgPonfCzX1VVi6ZpvgjH3MC032NcrkwCgSCX6rrJddj59hfvp8c9Qo7DbpitxmLF5dJ/FfLwiI9zVyNv6ny2toPMrNSY/LsY4VzEUkvnACO+AGUlWXf87cl2LqYSz+dik5rP0fPNeFEmzWxEy3zesX3AxLNuGg34kY5lAtPutN3e7uZ6cx+9/SPsWltEf98wFsDdO4R7HgONNy5XJu3t+v/Fbd2DtHcPRTw25PFzqaaNRVHe58Ao5yKWLl4NVXbkZthu+duT8VxMJt7PhVqaxdHzzbx1op4Hti6a12PN9sNvPumdw8DDAKqqbgfOTzh2HLhHVdUUVVWzgJXAhakerLljAI/XPzazXFfunMfQxEKYqhcPwOX67hiOJnk0dYQu4kq5ZuJauywU385djX3p5nxm+r8GHlBV9QigAB9XVfXPgFpN015QVfWbwLuEPlj+UtO04ake7DN/c5CcDBvDI6GVaquX5s5jaGIhTNWLR1HgnbPNPLBlkawYXWDhcs0ip5RrJqqcTDuLCzLQbvYwPOKLafp6zs+kaVoA+Oxtv66ecPxZ4NmZPl4wCF3uEQAKclINsZekYOzieVVNB93uYXIyU9hYmUdv/wgnqtvQ6ntYsURaMyyk5s5BTIpCQa4E/US2rtxJfWs/l290s7HSFbPnNWRkHfL48Xj9Up5pAJF68ditZmpu9nCiuo1DVY0S9BdQMBikuXMAV04qFrPh1k6KBbSuPI+XjtRx9monq5bm3vL+iiZDBv3+oRF6+z3k58hMxyjCvXjClpdmUerKoKqmnW63RzpBLpC+QS8Dwz4qF2XrPRQRZcuKHGSkWnj/UisXrnXQ7R4h12GPenNJQ04lZOWt8SmKwt7NJfgDQd4+06j3cBJGuOeOrMRNfCaTQkaqDY/XT5d7hCCxaS5pyKAvK2/jw45VhaTaLbx9tkn68SwQuYibPDxeP/1DIxGPRbO5pGGCvqy8jT92m5mdawrp7R/h/CSLuMTsNI323JHd4hJfb7+H/qHIWydGs7mkYXL63/7iPvwjXpnhx5l71hXxxqkG3jvfHNMKhEQVnukXSuVOwsvKsON02CN2FY5mitswM/2ivHQJ+HFocUEmiwsyOHe1k76ByF9Vxcw1dw6Sk2mXkuUkEF4HE0k0U9yGCfoifu1aW4Q/EOToxRa9hxLXhjw+ut0eiiWfnzSe2lvBtlXjbcpjkeKWoC/mbfvqQixmhffONRMMyib2cyU99JOP2WTiMx9cjSPdRkaqlb/61Db276uM6l7gEvTFvGWkWtlQkUdjxwA3WuK3CZbexip35CJuUlEUhXXLnPQPeWkZ/eCPJgn6YkHsWlcMwHvnmnUeSfxqCm+RKOmdpLN2tMHk+WvRr4KToC8WxJqluWRn2Hj/Uisjsnn9nDR3SHonWa0uy8GkKDEpfZagLxaEyaSwc00Rgx4fp3XaESjeNXcOkJ5iITPNqvdQRIylpVipKHFwrakP92B0q+Ak6IsFc/faQgCOXmihrXswaisKE5HXF6CtZ4iivHRpVZ2k1pY7CQIXr3dF9Xkk6IsFk5+TSmaalfPXuvjid47xzLPHeO5gjWyiPgOt3YMEg5LPT2bhjVWindeXoC8WzIFDtbgHvWM/x6J5VKKQck2xKD+D7Awb5691EYhi6bMEfbEgPF4/VTWRc/nRbB6VKKS7plAUhbWjpZs3mqNX+ixBXyyI3n4PXRF6iEB0m0clCinXFDC+N3g0986VoC8WxFSbqMv+CNNr7hzEZjWRm5Wi91CEjlaV5WIyKVRdaU/81soivunVPCoRBAJBmjsHKcpNxySVO0nLHwjw63evYVLgZtsAX/rO0agUQkgrP7FgJm6i3tk3DMD2VQWyP8I02nqG8PkDlLgkn5/MDhyq5eDJhrGfu/tHxn7ev69ywZ5HZvpiwYQ3Uf/yp+9i/77lADizUqLaPCoRNLb3A0jQT2KxLISQd6NYcHarmd3ri0mxmXn/Uqt03pxGY3voIm5JXobOIxF6iWUhhAR9ERU2q5kNFXl09A5T1yqdN6fS2BEO+jLTT1axLISQoC+iZrMa2hziZLX04plKY8cAKTbzpG96kfhiWQghQV9EzdpluditZk5qbZLimYTPH6C1a5ASl/TcSXZP7a1g35ZSnI4Uwq+EzDTrghdCSNAXUWOzmllf4aSte4ibbf16D8eQWroG8QeCks8XtxRCfPUz21m5JAf3oDfixukAwWCQ3x6rm/XzSNAXUbUlnOLR2nQeiTGNX8SVfL4IsVvN5OeksX11AQDHL7VGvF19az+/fOvqrB9fgr6IqrXLnNgsJk5Ut0uKJ4LGDinXFJFtrnRhMSu8fzly0L/W1Dunx5WgL6LKbjOzrtxJa9fg2KxWjBub6bskvSNulZZiZe0yJ43tAxHTo9rNnjk9rgR9EXVbVkiKZzKNHQNkpFpxyG5ZIoK71xYB8FZV4y2/DwaDVNd1k5Vhm/VjStAXUbeu3InVYuJEtQT9iTxeP+3dQ5TIblliEusrnOQ67By50MLgsA+P109b9yBXGnvpG/SyaknOrB9Teu+IqEuxWVi7zMnpmnYaOwbkouWo5s4BgkCx5PPFJMwmE/dtLOH5t6/x9QNV9A2M0NXnwW4L1e1vmqS2fyoy0xcxsUUNvThPymx/zM3WUJ52Ub7k88Xk7t9cis1i4nqzm84+D0FgeCTUi+dyXfesH0+CvoiJ9RV5WMwKpySvP6Z+9OLc4vxMnUcijExRFKyWyKH6bG0nH/zzf5vVzjsS9EVMpNotrCrLpaF9gNauQb2HYwg3W90oipRriqn19nsYGPZFPNbtHgYoms3jSdAXMbN5NMVzapIWsskkEAxS39ZPkTNdNpgRU8rKsOOcohkb0Dybx5OgL2Jm43IXJkVSPAAdPUMMj/hZLPl8MY3pmrG9+PXHZ/XVWap3RMxkpFpZsSSbSze66ewdxpnE+8HWhy/iFkjQF9ObuCtdt3uYnMwUNlbmzakZ25yCvqqqqcBPgHzADXxM07T2227zAuAEvMCQpmkPzeW5RGLZrOZz6UY3p2raeXDrIr2Hoxu5iCtmI9yM7ck95fT2e8jKsM85LTjX9M7ngPOapt0D/Ah4JsJtKoBdmqbdKwFfhG1anocCSZ/iuTm6sYzM9MVshJuxzec60FyD/i7gldH//h2wb+JBVVULgGzgRVVV31NV9dE5j1AklKwMO8tLs6ht6F3QLeDiTX1bPzmZdhxps19GL8R8TJveUVX1k8Dnb/t1KxBu8eYGsm47bgO+DvwjkAscVlX1uKZNPb1zueSrblgin4s9mxdR09BLTbObh3fmTXv7RDsXvf0eut0etqwsmPXflmjnYj7kXMzNtEFf07TvAd+b+DtVVX8FhM94JnB7u7cW4NuapvmANlVVqwAVmDLot7fLXqoQejEn8rlQSxwAvHXyJluXTx30E/FcXLzeBUBhTsqs/rZEPBdzJedi3Gw//Oaa3jkMPDz63w8B7952fB/wcwBVVTOANcDlOT6XSDC5jhSWFjnQ6nvoH/LqPZyYu9bcB8DSQofOIxHJaK5B//8Cq1VVfQ94GvifAKqqfk1V1W2apv0OuKKq6jHgNeBLmqZ1LMiIRULYoroIBINUJdlCLY/XT/Vov5SlxRL0RewpBtrNKChf10KS4atrW/cgX/zOMdaVO/nPH1k/6e0S5Vz4AwEOHKrltNZGl3sEkwJ7N5fy1N4KzKaZzb0S5VwsBDkX41yuzFn15ZbFWUIX+TlpLMrP4OL1LgaHfaSlJPZL8cChWg6ebBj7ORBk7Of9+yr1GpZIQtKGQehms+rCHwhy9mpiZ/48Xv+kaayqmg48Xn+MRySSmQR9oZvNamgbxVNaYuf1e/s9dPVFXpPQ7R5O6vUKIvYk6AvdlOSlU+RM48K1TjwjiTvbzcqwkztFl8SsjMjHhIgGCfpCV5tVFyO+AOevdeo9lKiZrkuitFYWsSRBX+hqc2UoxXMywXvxPLW3gq0rxgO/05HCvi2lc+qSKMR8JHbJhDC8xQUZ5GWlcPZqJ16fH6slMWe9ZpOJskIHJ6rb+ej9FezeUCIzfKELmekLXSmKwhY1H8+In4vXZ7/JczzRboa6lWxdWSABX+hGgr7Q3dg2igmc4gkEglxp6KEgJ5VsuXArdCRBX+huabGDnEw7Z2o78PkDeg8nKm629TPk8VO5KFvvoYgkJ0Ff6M6kKGyqdDEw7KO6PjFTPOHUjrpYgr7QlwR9YQhbRlM8xy8nZorn0o1QO2V1UY7OIxHJToK+MITli7JxOuycrG5jJMHaEnh9oc6aRc60pN4MXhiDBH1hCCZFYfvqQoZH/FRdSaxePNrNHkZ8AdYuc+o9FCEk6Avj2LmmEIAjF1p0HsnCOn81lNpZWy5BX+hPFmcJwyhyprO0yMGF65209QxBMEhmVqrew5q389c6sVvNVJbKRVyhPwn6wlB2rC7genMff/Uvxxny+HHlpLKu3DmrzUaMpLG9n5auQTZVurBa4m/8IvHIq1AYSkN7PwCDHj9BoK17iIMnGzhwqFbfgc1RuBpp28p8nUciRIgEfWEYHq+fi9e7Ih6Lx81GgsEgJ6rbsFlMrJN8vjAICfrCMBJts5GbbaHUzrpyJyk2yaQKY5CgLwwj0TYbeftMEwA7VhfqPBIhxknQF4YR75uNeLx+2roH8Xj9DHl8HLnYQk6mnXUVktoRxiHfOYWhhDcVOaW10+32YFIU7t1YbOjNRvyBAAcO1VJV005Xn4dch5287FQ8I34evmtxXFYdicQlr0ZhKGaTif37Kvnrp7ezc00hgWCQJYWZtwTOiTNqIzhwqJaDJxvo7PMQBDr7PGj1PSgK7F5frPfwhLiFzPSFIdmtZj68exnHL7fy22P13L2miCDBO2bUGytd867hH/L4uNHcR0//CEGCOB0plBU6sNumTyd5vH6qaton/RtS7PIWE8Yir0hhWLmOFPZuWcxr79dxUmujtrGXgycbxo539nnGft6/r3LWj6/Vd/PaiZucre0kEAzecsxiVliz1Mm9G4tZs8yJSVEiPsZUFUfDI356+z3k56TNemxCRIsEfWFov793OW+cqOeXb10lEIi8wUpVTQdP7imf8YXezt5hnjtYM9bYbVF+BmuW5uLKSYVgaEHYxRtdnKnt4ExtB4vzM/jwnmWsXeZEuS34hyuOOiMEfpMCrx6vZ/8DlZLXF4YhQV8YWlFeOns3lfL6yZuT3iZcw3/7jNrjDc20szLsYx8IJ6vb+MHvqhn0+FhemsVH7qugoiQr4uPWtbh59Xg9719q5R9+cY6Kkiwe21XG6rLcseAfrjia+A0kLBCEN6uaMJtNc/omIkQ0SNAXhvfYrjKOXGhmYNgX8fjtNfyRqmnWV+ThDwR5+0wTNquJj/2eyu71xXfM3CdaUpjJ04+t5uHtS/j1u9eoutLB3x84S3mxg93ri1m5JIeMNCubK11j1UaRzPabiBDRJEFfGF56ipXfv7ecH76iRTx+ew1/uJomrLPPw6HTjQCUujL43BOrKXKmz/j5S/Mz+JMn11HX4uaFw9eputLB1aa+Gd9/sm8iQuhBgr6IC7vXF3O6pp3z17qwmBV8/tCF1xSbmWAwiD8QwGwyTVlNY7Oa+IuPbiAzzTanMSwpzORPnlxHW/cgp7R2brb10z/sJc+RwrpyJz95TaPLPXLH/eJxNbFIXBL0RVxQFIVPPLKKL3776C31+cMjft441YiiKOzfVzllNY3XG2DI45tz0A/Lz0njoe1L7vj9pbruiLn9eFhNLJKHlBSIuGG1KARvK60MC3fhzMqw40i3RrxNriO6M+6n9lawb0spTkcKJgWcjhT2bSk19GpikXxkpi/ixk9er2HEF7lss6tvmJeO3KC2oZfeAW/E20R7xh1eTfzknvI7qoaEMAoJ+iIueLx+qrS2SY8HgZeP1gFQuSiLjFQrdS39dLuHyclMYWNlXsxm3HarWS7aCsOSoC/iQnv3IB5v5NQOwNKiTD6wbTHlxVk4s1KAyHX6QiQ7CfoiPkxRTw/wH35vBUsKMm/5ncy4hbiTXMgVccGVnUrKJA3QUmxmCnMluAsxExL0RVywW83cvTbyDlR3ry2U9I0QMzSv9I6qqh8CPqJp2v4Ixz4NfAbwAV/WNO2l+TyXEH9w/3IURQm1V3B7yM0cb60shJiZOQd9VVX/EfgAcCbCsULgT4EtQArwnqqqr2uaFl87WwtDkZJIIeZvPumdI8DnJjm2DTisaZpH07ReoBZYN4/nEmJM+AKtBHwhZm/amb6qqp8EPn/brz+uadoBVVXvneRuDqB3ws9uIHL/2glcrszpbpI05FyMk3MxTs7FODkXczNt0Nc07XvA92b5uH3AxH+RTKBnuju1t7tn+TSJyeXKlHMxSs7FODkX4+RcjJvth1+06vSPA19RVTUFsAMrgQtRei4hhBAztKBBX1XVPwNqNU17QVXVbwLvErpu8Jeapg0v5HMJIYSYPWWyroU6CMrXtRD56jpOzsU4ORfj5FyMc7kyp16ufhtZnCWEEEnESDN9IYQQUSYzfSGESCIS9IUQIolI0BdCiCQiQV8IIZKIBH0hhEgiEvSFECKJSNAXQogkovseuaqqmoBvAesBD/ApTdNq9R1V7KmqagW+D5QR6lf0ZU3TXtB1UDpTVTUfOAU8oGlatd7j0Yuqqv8NeAywAd8abYKYdEbfIz8k9B7xA59OxteFqqp3Af9b07R7VVWtAH4ABAn1N/tPmqYFprq/EWb6TwApmqbtAL4IfF3n8ejlD4FOTdPuAR4C/o/O49HV6Bv8O8CQ3mPR02j78p3A3cAeYJGuA9LXw4BF07SdwF8BX9F5PDGnquoXgO8S2pwK4O+BZ0bjhgI8Pt1jGCHo7wJeAdA07Rih3baS0S+A/z7hZ59eAzGIvwO+DTTpPRCdfQA4D/waeBFI5m1HawDLaHbAAXh1Ho8ergIfnvDzZuDt0f/+HbBvugcwQtC/fcMVv6qquqedYk3TtH5N09yqqmYCvwSe0XtMelFV9Y+Bdk3TXtV7LAaQR2gi9BHgs8BPVVWdVYOtBNJPKLVTDTwLfFPX0ehA07TnufXDTtE0LdxLZ0abVRkh6N++4YpJ07SknOWqqroIeBP4saZpz+k9Hh19AnhAVdW3gA3Aj0b3XU5GncCrmqaNaJqmAcOAS+cx6eXzhM5FJaFrgD8c3bMjmU3M389osyojBP3DhHJ1qKq6ndBX2aSjqmoB8BrwXzVN+77e49GTpmm7NU3bo2navcAZ4D9omtai87D08h7we6qqKqqqFgPphD4IklE341mBLsAKJPtGyVUTtq19iNAeJlMyQhrl14RmdUcIXYj4uM7j0cuXgBzgv6uqGs7tP6RpWlJfyEx2mqa9pKrqbkK70ZkIVWf4dR6WXr4BfF9V1XcJVTJ9SdO0AZ3HpLc/B55VVdUGXCaUGp6StFYWQogkYoT0jhBCiBiRoC+EEElEgr4QQiQRCfpCCJFEJOgLIUQSkaAvhBBJRIK+EEIkkf8fWT5iv74RPpsAAAAASUVORK5CYII=\n", "text/plain": [ "<Figure size 432x288 with 1 Axes>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "rng = np.random.RandomState(1)\n", "x = 10 * rng.rand(50)\n", "y = np.sin(x) + 0.1 * rng.randn(50)\n", "xfit = np.linspace(0, 10, 1000)\n", "\n", "gauss_model = make_pipeline(GaussianFeatures(20),\n", " LinearRegression())\n", "gauss_model.fit(x[:, np.newaxis], y)\n", "yfit = gauss_model.predict(xfit[:, np.newaxis])\n", "\n", "plt.scatter(x, y)\n", "plt.plot(xfit, yfit)\n", "plt.xlim(0, 10);" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "There is nothing magic about polynomial basis functions: \n", "- You should have some sort of intuition about **the generating process of your data**; \n", "- If you think one basis or another might be appropriate, you can use them as well." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "## Regularization 正则化\n", "\n", "The introduction of basis functions into our linear regression makes the model much more flexible, \n", "- but it also can very quickly lead to over-fitting (refer back to [Hyperparameters and Model Validation](05.03-Hyperparameters-and-Model-Validation.ipynb) for a discussion of this).\n", "\n", "For example, if we choose too many Gaussian basis functions, we end up with results that don't look so good:" ] }, { "cell_type": "code", "execution_count": 52, "metadata": { "ExecuteTime": { "end_time": "2018-05-20T15:33:09.422378Z", "start_time": "2018-05-20T15:33:09.258227Z" }, "slideshow": { "slide_type": "subslide" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXUAAAD3CAYAAADi8sSvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3XmcXGWZ6PFf7b1U9V7dnaWTQJaTBUggQADBALKIgqJ8hJEZvSqiM+NnRnEcR+fi6PiRq+OM4+hcnfFicIGJoPARl5FlwiYJSwJJSMhyOktn6fRWvVVVL7XX/aOW7nRq305V9fP9K11dy9snVU+953mf87y6cDiMEEKI6qDXegBCCCEKR4K6EEJUEQnqQghRRSSoCyFEFZGgLoQQVcRYqhcKBILhsbGpUr1cWWturkOORYQcixlyLGbIsZhht9t02dy/ZDN1o9FQqpcqe3IsZsixmCHHYoYci9xJ+kUIIaqIBHUhhKgiEtSFEKKKSFAXQogqIkFdCCGqiAR1IYSoIhLUhRCiikhQLyKvP8jQ2BRef1DroQgh5omSXVE6nwRDIR57/ih7uh2Mury0NFi4eJWdu65fgUEv36NCiOKRoF4Ejz1/lG1v9MZ/HnF54z/ffcMqrYYlhJgHZNpYYF5/kD3djoS/29M9LKkYUbUk3VgeZKaehtcfxDnhpdFqwWJK34/COeFl1OVN+LsxtwfnhJfFhR6kEBqSdGN5ySuoK4qyCfgnVVWvLcxwykeub9RGq4WWBgsjCQJ7s62GRqulmMMWouQk3Vhecv4aVRTli8CPgZrCDUd7sVPIrf/TzbY3ehlxeQkz80Z97PmjaZ+js7U+4e0Xr2rLaLYvRKWQdGP5yWemfgz4IPBwgcaiqbkzc12SDsZ7uoe5Y/Pyc4Lz4OgUz+46xc5DQ0x6Auc8rrXBwo2XSuJFVJdM0o3tzXUlHtX8lnNQV1X1CUVRlmXzGLvdluvL5c3jCzDm8tLcYKHGHPmz/YEge1QHB46P8PqBfs44JuP3D4cTP8+Y24PBbMLeFpmNqydG+e6jezjjmABAp4OVXU3cc9s6amuMHD45xva9Z9h/bIRvPLybv/7QBsy1ZgI6/Vljmc+0fF+Um0o7Fj6gtsbIVIKJTFtTLcuXtWb9Hvf4AvQPT9LcWCufjxzowsmiVwaiQf1RVVWvyODuYYfDnfNr5SpRbnz9yjaarRae2XmaiWl/Vs+nAy5e2cb5CxvYeXiIU4MTCe93w6WL4/nEQDDIdx57C/XUeOQ5dJEvjRabmUuU9nm9oGS329DifVGOKu1YvHpggJ8+dRh/IJTw913tVv7hY5dm/N4+67Pq9tJikwVXKOOdj7SydduRc3Ljz795hideOk44HObmy7v45K1rMn6+MLD7yDCPv3ScXsckJmPiQzg7n/jLF47FAzrMnAWMun0Z5+lF4Rzvc3H45Bj5TGjmu5ff6uPB3x3EaNDz0XcrLGw7N8Vyemgiq/d2bMF1xOUlHJ5Zx/rCD17hJ384xCH5P8tIVQZ1rz9I/8gkP33qIC/tOZPwPnq9jn/4+GXcdf1KNirttDZkV5VirTXxhT/ZQCDJLCWWT0y1kBQjC0ql89vtPXzj52/w7V/s4adPHZYgkYOjZ5z87GkVa62Jv//IRq5c14nXl/j9u/PQUNr3ttcfpNcxwW51KOHvnZM+Xt7Xzz//Yg/fe3wfzklf3n9DNcsrYaWq6gkgk9RLScw+fUtUUjhbKBTmty/3cM+ta7GYDFy8yn5WWVY6Ux4/1hpj2vLFVAtJMbKgVBrH+pw8ub2HtsYaaswGXt7Xz0XLW9motGs9NE1kew0GgM8f5KH/PkQ4HOYvb7+ARW31DI1NJX2PuyZ97Ol2cMW6znN+Nzc1muzrVQd86n1r+eNb/ew7NsLXHtrJfXeuZ0lHZa0/lEpVzdRnn75l4vCpsfgs4q7rV3DDpYtpbahBr4PWhhquu2QRLTZzwsc222qwN9dx8Sp7wt/HyhdjdeupSP16afxmew8A97x3DX/5gQsx6HU8ub1n3s3Wg6EQW7d1c/+Dr/HlH73G/Q++xtZt3QRDic86Z/vN9h4GRqd418bFrF7aDJD2Pf6Tpw6z79jIObeflW5J8ZotDTVsWGnnb/5kA3detwLXpI9/2rqb7tPjeV3FWq1XwFbN0nImaY65xtze+AzZoNdz9w2ruGPz8rNmLwa9LuEMPha077p+BRBJoYy5PTTbarh4VVv89kzOAqR+vfgc49McOD7KisWNKEsiweiSVXZ2HR7iWJ+LFYsaNR5haYTCYX761GF27B+I35bJxUJef5D9x4Z5eucp2ptquWPz8vjvUr3HN6xs5UDPGP/+xD7u2Lycmy7vQq/TZfV5nf35ePemJTTZzGz5/SG+/Ys9WGuMuKf8WV3FGvlSO8Le7mHGJ6rvCtiKDurT3gCuSR/uKT8nBlwZz9BjEs2QLSbDWWmQdEE72ZfBbDPPEUkL6fUQCoFBryMYCrNhRWvWf7vIzhvqEGHgmgsXxG+75qIF7Do8xM6Dg/MiqJ9xTPD9J/bjGJ9O+Pvt+/q5/ZrzqLOY4rfFUiS71SFG3ZFcdleHFaPx7IKMVJ+To71O/uPJt/nlC0fZsb+fy9a0EwiEUn5edURm6LM/azFXrO3k9YODvHV0BNdUpHot06tYg6EQX//pG5wemqlaq7YrYPMqacxSQUoae/pdvLT3DAd6RrMO4nPNLjtMJ5f8Y7LnWLywid6+ccYmvHz7v/bQ2VrHP37icoyGyp8lZKtUZXzfeuRNjvQ6+e5fX01DXSSlFgiG+KvvvUxjvZlvffrKoo8hnWIeC48vwFcf2olj3JPyfldd0Mknb10b/3nrtu6EM/Bkn51knxPXpI9fvnCU1w4MEkoTc1obLHztU1dhDIcSfta8/iD3P/haws9/a0MN37h3U9LP6MPPHOaFPX1JXjf1Y7WSbUljxczUvb4gjzyrsuPtyGmjrc7EBee10GSzYKsz0VRv4eDJUd46em7uDqDGHPmP8vmD58y2MzF3Bp+L2HM0Wi34mutob67j2osX8cKeMzyz8xTvvXJZXs8vEnNP+ThyxsnyxY3xgA5gNOhZt6yF3d0OBken6GipzoVqrz/Ib7f34Bj3UGPW4/Elz50fPjmK1x/EYjKkbQGQ6MrqZJ+Thnozn7x1LXdev4KePhf+QIjdRxy8dmDwnPtevMrOsgUNSb/gcr2K1esPsufIcMLHAYxWScFCRQT1SY+ff/7FHk4NTrC0w8Ydm89n7bIW9Pqzv8Cu37goupo+cwp40YpWbti4mJaGSIuafGfbhfbBzefzpjrE73ac4PI1HdibarUeUtU5eGKMcBjWLz83zXXR8lZ2dzvYd2yEG6ssqM9NneggZUCHyLUTscDmnPAmPRvOtWKroc7M+hVtQCRXbq01JU1tJpOqaZ7FZKCuxpTgUZHP/vhE8nLIpnpLVRQslH1Q9weC/Pvj+zg1OMHVFy3gozcrSdMUmeS3y+1buL7GxF3vWsmDvzvII89287kPXYQuWeMZkZMjvZELv1ZHF0hnWxOt4OjuHefGy7pKOq5im9s9MZNEq14HtZZIWLDVmzEb9fgSXItRiIqtTD6viaRamJ32BfmHLa9z9UULOW+BDZNRz5jbS9/wJCcG3PGruRPZsCryZTM0NlVWE79slX1Q/+Xzx+judXLp6nY+dstq9BkEvEKkSkrpirUd7Njfz/7jI7ypOrh09fysmy6WI71OTEY9SzvPrWtua6yh0WrmaK+TcDhcNV+ouVSDAYTCkQKEGrOBrc92JwzoUNiKrVw+r4kWZi9c3oLZaOClvX38/pUTCR9XazEw7U1cwni8z8n//n+vMub2VXRFTFkH9YMnRnludy8LWuv45HvXZBTQK5FOp+MjNyl8ZctOtm7rZu2yFupqyvq/pmJMewP0OiZYuagx4RmeTqdjxaJG3lQdOJwe2qsk/ZXJRW/JPPi7gwy7PDgnfCzttLGs08bbx0ezSpEUW6pZ/vuvPg/19Dh9w5MEgiGarBY6W+roardiNul59Lkj7Ng/gCd6FazJAGF0nByojoqYso0ckx4/P/nDYfQ6+OStazFX6KlQpjpa6rj1yqU8ub2Hh59V+dRta6tm1qilY31OwuFI58xkVkaD+tHe8aoJ6qnyzq0NNVxwfgsv7T23CqShzsSxPhf1NUbeffkSbr/mPMzRRdNyW4+CxLP8WouRDSva2BDN3c+l0+niAR0gcu1R4pxMsgXhclZ2QT22uPPK2wNMeQLUmPS8emCAJR3WijsNytZ7rlzK/uMjvH5wkDVLm3nn+oVaD6niHTntBEhZh748+ruefjdXXbAg6f0qSaq8c2ymbTLqEy5ShsORayhmTyoqLaWZTLZpqUps4VF2QX3u4o7HH6rY06BsGQ16Pv3+dXztoV088mw37U218UuxRW56BlzATOBOZHG7FZ0OTg5WTtvbTNx1/QoOnhilb3jqnIt5cl2krHTZpqUqsYVHWU19ZWssaGus5S9uv4BwOMz3n9jHoZNjOT9Xtfa2yEbv0AQtDRastYnL3CAyC13YWs/pwYm0F8ZUEoNej1Gvx2TU88C9m/jGvZu4+4ZVZ53xxmbg8yGgQ/o+NXOtXdZcccemrIJ6JnWx88G681r49PvW4Q+E+M6je/ntjp6sAnM+DZuqiXvKx/iEj8V2a9r7Lumw4vUHGRydKsHISiMQDHFmeJLFdiudrfUVF5yKIZaWSqSr3Rpv6FcXLescHJtiyhuoqMlRWaVfGq0W6muMCff4rMTToHxcurqdhnoz//Hk2zz5cg9Pv36KdctasDfVEgqH8fiCTE77cU/7mZj2EwyFabFZWLm4kaHx6bOu1Kvklfx89Eb7e3S1pw/qSztsvHpgkFODEyxIsnF4pekbniQYCrOkI/3fP5+k6lMTCIZxTnhpqDfz498fZHf3MH/7gx14fMGKKXMsm6Du9QcZdXkIhhKf/s7HToarupp44N4reHbXKV55e4A3E6SmdEBdjRG9Xsfg6FTKdM1u1cE71y/E3lQ7L47l6eies5nN1CM17KcG3Wxa21HUcZVKrGnVkgy+1OaTVOsJBv3MBYq2aEuJ6WilTKVMjjQP6ok2tqivMVJjNjDm9pZNXaxW6mqM3H7N+bz/6vMYn/Ax6vZg0OuwmAxYa03U15ji7RKmPH5eeXuArduOJHyuUbeXr27ZWTEzjnxlM1OPzWarabE0tn9ul2wmkVCqih6vP8jbxxP3kSr3MkfNg/rcaheASU+Ay9e0c/PlS+bNqnw6Op2OZpuFZlvyFFRdjYlr1i/k6ddPxtukzhXbp7USZhz5Ou2YwGjQ09GSvva8rsZEW2NN/IugGvSNRM5UFrVVRzqplHJtGlYONJ2mpap22XdsVAJ6DiwmA5dkuD1bNVcUBUMh+oYnWdRWn/HZyGK7FdeUH1eV7IE5ODpFo9Uc7+UiMpeqSqbJWt6NvzQN6pl8G4rsxbbmi7UbTqaaj/Hg6DT+QIjF7ZnPUhfZI/c9MzxZrGGVjD8QZMTpobNMZ5PlLlWVTEO00Vm50nRkqb4N51u1SyEZ9Hru2Lyc+jT9Y2Yf42qrae91xPLpmeeTY2mKM47KT8EMjk0ThqrtEV8Kc/ctbrZaqLUYODHgZuu2I2V7TYOm52XpLmWW1EvuMrlybvWSJoKhMFu3dcd3dK+WRdRY5UeXPZuZemSxtBpm6rF6+04J6jlLVCUz5Qnwr7/cy3Nv9uIYn+YT711z1sYr5UDzT+2Nly5Gp4v2miDSbOiGSxfP22qXQsnkyrkdbw/whR9sP2tH99gi6mPPHy3NQIsktuC5KItyvs6WOvQ6HWcclR/UBySoF8zsq26bbRa+9KeXsHZZM/uOjfDVLTt59cAAJdwWNC1NZ+pef5AnX+4hHIa7b1rFumXNsjhaIKnOgmZLthNOuZdtpdPrmKDRas5qFmUyRiplzgxPVHxv9cHRyObSmVT+iOzU15j4/F0beGbnKX79xx4e/N1BXth9hj+9cVXCnv2lpslMPXYZ+5d/9CqvHhhEr4vkMVsbayo2iJSjuTnB1gYLNebM/ssreRF10uNnxOXNqD59rkV2K9PeIGPuyvzbY4adkaDe1ihBvRj0Oh23bFrKA/duYuMqO0fPOPn6z3bx6HNH8Pq0XZfSZKY+tzY9FIbnd59Br9dVdd10qc3NCfr8Qb760K6MHlvJC9Xxi44yuJJ0rsVt9bwB9Dom4/vaVqJhp4dGqxlTGVdpVAN7Uy2f+eCFHDwxys+fUXl212n2Hhnmr+64ML5GU2o5/48riqJXFOU/FUV5VVGUFxVFySgJLp0YSy+WE7Q312XcoW7DytaKPWvqjbUHyGmmHitrrNwKmFAozJjbS1sFfylVmrXLWvj6Jy7n3ZcvYWh8mgcefpPu0+OajCWfr/HbgRpVVa8EvgR8J9Wd+4cn47unSCdGbaSqvZ3LNeUv8miK53QeM/V4BUwFL5Y6J32RBm8S1EvKbDJw5/Ur4h1W/+1Xb9HT7yr5OPIJ6lcDTwOoqvoacGmqO3/6W9u4/8HX+MOrJzAaEi9AVfIpf6WYnWfXEdk9PpFdh4b45QtHCQQrr11vr2MCg15HZ2v2lR/tTbUYDfqKDuojTg8ArY0S1LWwaW0Hn37fOrz+IP/+xD4c49MlvQYkn5x6A+Cc9XNQURSjqqrn9s0FwuFIudwf9w0kfcJ3rF/I4oXJ95KsJna7dqvkn/3wRjy+AOrJMb7yo1eS3u/p10/RNzLF3330Mhrqi1eLW8hjEQyFOTM8yZJOGws6k+92lMqSThu9g25aWq0Ykn3rFUkhjsXB6BZ+yxY2avo+y1clj/0Wu40JX5Cf/+EQ9//4dfyBEO3NtVxxwQI+cds6DAk2QS+UfIK6C5h91PXJAvpcFpOeKy7o5O1jZ+9QftuVS3A4qqdLXjJ2u60s/s7WehMttsSbE7fYLHR1WHnr6DCf/7eX+Lu7L6apCGdRhT4Wg6NTeH1BOpvrcn7ejqZajp9xcujIUEmvyCzUsejpjbRfNht0ZfE+y0W5fEbycWYwknrxByJnu0Nj0/z25eNMTfuyKgjJ9sstn6+LHcB7ABRFuQLYn+kD/YEQt1y+hG/cu4n/86krEm6zJYovVY79EsXOX91xETdf3sXg6BTf3rqHienyz7OfzqLdbjKLo4ulvRWagol9SctCqXa8/iB7jwwn/F2xC0LyiaK/BjyKorwCfBe4L9MHxnLn821/xHJ0bi37zBW9ep2OO69bwc2XdzEwOsUPf72fKY+/rHvExHq+ZNPIa65Kr4AZdUlOXWtaNivMOf2iqmoI+PNcHit9XcpHul3ldTodH7puBUNj0+w5MswXfvgK3jLe2mtmpp57Pja2U1Kl9lYfcXqotRil5a6GYm06EqU2i10QUrJP49xZoCgvqc6a9DodjdbIQqnHFyzrHjGnhyZoqDPRmMfCbrMtslfu6QpMv4TDYYZdHlol9aKpVKnNC5e34JzwFu1st2Rf5f/5pRsI+vwyQ69AXn+Q/cfKf2uvaW+AYaeHtcua83oenU7HYruV7tPjeP3BsvjbMuXxBeNnUkJbcze4Nhr0+AIhdh0a5KU9fWnPdvuGJ3nkWZV//uzmrF63ZDP1BW31FfXhEDMqZTOTmY2W8y+FW9xuJUzlXYQ0Hv2/KEalkshOLLUZKwi5ZFUbAJOezM52f//KCQ6fyv6q1PJJhoqyVSmbmRSi8iUm9hy9FbZhxrg7FtTLq8f3fGYxGWi0WjjS60z4+0TVMM4JL7sOD7Ewh/1lJaiLtFLlB9eXUY+YU4ORuuaujvyDemyx9HSFLZaOT0T2V5WZennJ9mz3ud29BENhrr9kUdavJcvjIiNz84MmowGvP0h7U/m0dj09NIHRoCvIxhCL7PXoqLwKmPFJSb+Uo0yrYbz+IAMjk2x7o5eGOhPvuHBB1q8lQV1kZG7po16v42sP7eI323vYtLYzr2qTQgiGQvQ6JlnUZsVYgEuwLSYD7S11nB6qrA0zxt3RmbpN0i/lJN3WnUaDLr6tZCzwL7bXJ+2TlYqkX0RWYqWPbY21fOCd5zPtDfLEi8e0HhYDI1MEgqGCpF5iuuz1THkDafd6LSeyUFq+5jbTAzAadGzesDC+x8TsmfzRM66cSoYlqIucXXvxQhbbrWzf38+xvsSLQKVyqoCLpDFLOiJVNCcGKqcHyfiEF52OstsMWZxdDfPNT1/BR29WCATD/Muje3n94GDCx+zpHua2v/lNVvlECeoiZwa9nj+9cSUAW/+nm5CGm+/OlDMWLqifv7ABgOP92n5hZWN8wktDvRl9ibtLiszFznavvXgRf/KulTgnfLiT7F8w5vYAZJVYl6Au8qIsaWbT2g56+t3s2Nev2ThORmfThZypL+tsQAf09GW+0YHXH9SsN044HMY54ZPUSwW56bIu/vbDF2MxJQ7FzbYagKw+WLJQKvJ253Ur2HtkmMdfOsZGxU5djamkrx8Khenpd9HZUlfQ166rMdLZWkfPgJtQKJxy9hsMhXjs+aPs6XYw6vJq0htn2hvAFwjRLEG9oqxZ2sw16xcmXUT97Ic3TmXzfDJTF3lrtlm49aqluKf8PK7Bomn/6BQeXzCeLimk8xc04PUF6R9JfWXp7IUurXrjjMVr1CWfXmlSdUvNlszURUHcdNkSXj84yIt7+1i/oo31K9pK9trHo4u0RQnqCxvY8fYAx/tcSXeHT7WZ+puHHSXrjSOVL5UrXbfUbMhMXRSEyajn3tvWYTTo+MkfDpW0H0ws512MoL58UWRLvFQ7w6fcTH3CW7Jj4YrO1Btkpl6xCrHHhAR1UTBd7Vbu2Lwc15Sf7z+xr2SLhcf7XJiM+vil/YW0uN2KtdbEwZNjhJNU9zRaLVhrk5/0Go2l+Zi5pqJBXcoZ5zUJ6qKgbrqsi3dc0ElPv5vvP76PaW/ibWtjVSIeX0bb2ibl8QXodUyytMNWkCtJ59LrdKxZ2syY28vAaOL1KpNBT6pqzmRtiwstVhZnqyvtQrUoL5JTFwWl0+n4X7esZsobYM+RYR54+E0+fsvqeBpjbpWIvbmWi5a35lwlcqTXSSgcZlVXU6H/lLh157Ww6/AQB3pGWdB6bte81w4OMOkJsLCtDq8vFN9MffXSJnbsH2DPkWE2b8i+MVO23NGZuk1m6vOaBHVRcEaDnr/8wAXxipAHHn6T1Uua2LDSztHecd5QZxYVh8am46Vc2eywHnP45BgAq5cWL6hfcF4LALsOD3HR8tazFrECwRC/2d6DQa/jcx9aj63OfNZC17EzLtRT4wSCoaKcScwWm6k3yEx9XpOgLooitpp/qdLOky8f5/Cp8ZQN/2M7KAFZrf4fOjmGQa9j5aLiBfVGq5kmq5kjvU6+9KPXaJ1Vg/7Ht/pwjHt418bFtDVGOla2N89c1b1uWQvP7e7leJ+rqGcTEJmpG/Q62Zt0npP/fVFUq7qa+OLdlzA8Ps3uIw4efS5x3faIy8PPnzpMd+94xhfvjLg8nBx0c/7CBizm4pUMPvb80Xif8sjrRmrQvf4g+46OYDEZuPWqZQkfu7Krked299LTX4qg7sdaZ6qYjpKiOGShVJREW1MtmzcsojXF3pmvHhw85+Kdrf/Tfc79gqEQW7d1848P7SQchv7hSbZu6yYYChV83Klq0F9+qx/npI8bL1uctPXwss5IU7Ce/sxbDeTKNeWTyhchQV2UTqodlJKtkb60t4+Hn1XPCtixXP2EJ1I5M+UNFu3qzVQ71sRMeZJX8NibaqmvMRa906M/EMLjC0rli5CgLkpr7uXQ7c21XHVBJ8km2aEwvLD7TDxgp5o5J9rrMV+p9meNeevoSNLX1el0LOu0MTQ2zaQncSe+QpDKFxEjQV2U1Nwd1n/wxeu56/oVpOsUGwvY2e71mK9UZxeZvu6yBZErXU8WcbYuNeoiJq+grijKBxRF2VqowYj5I3Y5dI3ZyLQ3QChNK/bRaOBstFpoTrJV2+y9HgvprutXcN0li5J+8aR73UXRHeH7hlM3BcuHzNRFTM5BXVGU7wHfzOc5hIBIiqOxPvUMs6neEi9zXNqZuMfLxavaitI4y6DX85GbFDZvWJjT68YuWOofyaqDalZkpi5i8gnIrwB/UaiBiPnLYjJwSZoUx/qVrVhMhmgb3EhwbKw3592mNBt337gqp/aona116CBt+958SN8XEZO2Tl1RlHuA++bc/HFVVR9TFOXabF7Mbrdlc/eqJsdiht1u47Mf3sjJwQmOJ9llyBcIc/iMi//e0cPA6BTvu+Z8PvKeNYy5vDQ3WKgxl+aSi89+eCMeXyDr17W31DE4Np32/z3X90UwupVx18LGqnlvVcvfUWpp35Gqqm4BthTixRyOytnAt5jsdpsci6jZx+LLf3YJW7cdYW/3MGMTXpqsZtYsbWJwzMMr+/t5ZX9kV69LFTu3XrEEt3MaI+B2TlPqo5nt63Y01bL/+AgnT48m3Z0pn/fF4HBkj9agL1AV7y35jMzI9stNrigVZSOWu77zuhVntQoIhcMc6BnljGOSrg4ra5c2V9xVkwta69h/fIS+kSlWRJubFZL0fRExEtRF2YlVxsTodTouPL+VC89v1XBU+eloifw9jrHpIgV16fsiIvJ6B6iq+iLwYkFGIkQVszfWAOAYny7K80vfFxEj5YhClEBbU6SDo8NZnKAufV9EjAR1IUqgtaEGHTA87in4c0vfFzGbBHUhSsBk1NNkszBchJm6XE0qZpOgLkSJ2BtrGHV7CQQL2yJYriYVs0lQF6JE2ppqCYdh1FXYFIzM1MVsEtSFKJG2eAVMoYO6zNTFDAnqQpSIvUgVMNL3RcwmQV2IEonN1AtdASMzdTGbBHUhSqStMTJTL3QFjOTUxWwS1IUokUarGZ0Oxt2F3Z1J+r6I2SSoC1EiRoOexnozowUP6tL3RcyQoC5ECTXbLIxPeAmH0+zflwXp+yJmk6AuRAk122oIBMO4p/0Fe07p+yJmk6AuRAk12yIbVI+5CpOCkb4vYi4J6kKUUEssqBcory6VL2IuCepClFB8pj5RqKAuNeribBLUhSiheFB3F+YCJJmpi7kkqAtRQoXOqctMXcwlQV2IEip0+kWuPzW8AAAMW0lEQVT6voi5JKgLUUImowFrramAC6UyUxdnk6AuRIm12CyMugpzAZLk1MVcEtSFKLEmmwWvP8i0N5j3c0nfFzGXBHUhSqylgHl16fsi5pKgLkSJzVTA5F/WKH1fxFwS1IUosaZoUB+f8OX9XNL3RcwlQV2IEmu2Fib9In1fRCI5JeIURWkEHgEaADPweVVVXy3kwISoVk3W2Ew9v6AulS8ikVxn6p8HnlNVdTPwMeAHBRuREFUunn7Js1ZdatRFIrkumX8XiL0jjUBGKz52uy3Hl6s+cixmzLdj0RYOYzTomfQGzvnbszkWp0cie5122q1VeQyr8W8qhbRBXVGUe4D75tz8cVVVdymK0kkkDfO5TF7M4XBnP8IqZLfb5FhEzddj0WQ14xibPutvz/ZY9PY7AdCHw1V3DOfr+yKRbL/c0gZ1VVW3AFvm3q4oyoXAo8AXVFV9KatXFWKea7JaON7nIhQOo8+xHFH6vohEcsqpK4qyFvgVcLeqqk8VdkhCVL8mq5lQOBzPi+dCcuoikVxz6t8EaoDvKYoC4FRV9f0FG5UQVS5eAeP20lif20xbql9EIjkFdQngQuRn5gIkL0vJbUFQ+r6IROTiIyE00FyAWnXp+yISkaAuhAaarJGUST591aXvi0hEgroQGihE/xfp+yISkaAuhAbybRUgfV9EMhLUhdBAjdmAxWTIOai7pUZdJCFBXQgN6HQ6mqzmnNMvLilnFElIUBdCI01WC+5JH4FgKOvHuiaj5Yz1kn4RZ5OgLoRGmmwWwoBrMvvZulx4JJKRoC6ERmJljbmkYKTvi0hGgroQGsmnAsYdTb/YJP0i5pCgLoRG8gnqMlMXyUhQF0IjM+kXCeqicCSoC6GR2FWlubQKcE/6MZv0WMyGQg9LVDgJ6kJoZCb9kttCqczSRSIS1IXQiMVkoM5izDr9Eg6HcU/5pJxRJCRBXQgNNdksjGeZfpn2BgkEw9JHXSQkQV0IDTVZzUx6AvgDwYwfE7/wKMcdk0R1k6AuhIZyyatL5YtIRYK6EBrKpVY93vdF0i8iAQnqQmgol1YBkn4RqUhQF0JD8Zl6Foulkn4RqUhQF0JDM9vaZR7U431fJP0iEpCgLoSGcmkVEJ+pS/pFJCBBXQgNNdZn3yrAOelDB1hrZaYuziVBXQgNmYx6rLWmrBZKnRNebPVmjAb5+IpzGXN5kKIo9cBWoAWYBD6iqqqjkAMTYr5otllwjE9nfP/xCR8dzbVFHJGoZLl+1d8LvKmq6jXAo8D9hRuSEPNLk9WCxxdkyuNPe99pbwCvP0hjtGpGiLlyCuqqqv4b8ED0xyXAYMFGJMQ8E1sszSSv7ozuZxp7jBBzpU2/KIpyD3DfnJs/rqrqLkVRngcuBG7M5MXsdlv2I6xScixmzPdjsbDDBvQz6vRw4Yq2lPcdcEYC/8J2W9Uft2r/+4olbVBXVXULsCXJ765XFGU18N/A8nTP5XC4sx5gNbLbbXIsouRYgFmvA2DE5Ul7LE6cGQPApK/uz5O8L2Zk++WWU/pFUZQvK4rykeiPk0DmLeaEEGeJpVJGnZ6093VOxNIvklMXieVU/QI8BPwsmpoxAB8v3JCEmF9iAXrUlT6oxy5SapScukgip6Cuquog8O4Cj0WIeSmboB6fqdfLTF0kJlcvCKGxhnoTOh2MONPXqstMXaQjQV0IjRn0ehrqzZnN1Cd9WGtNcjWpSEreGUKUgSarhVGnh3A4nPJ+4xNeqVEXKUlQF6IMNFst+AIhpryBpPfx+oJMe+VqUpGaBHUhykC8r3qKq0pH3ZH0TGuDBHWRnAR1IcpAvFVAir7qI85YUK8pyZhEZZKgLkQZaLbFyhpTBPXoQmqLBHWRggR1IcpAe1OklW6qFryxoC4zdZGKBHUhykBbYwZBPdrMq7VRgrpIToK6EGWg2WbBaNAxnKL/y6jLg46ZVI0QiUhQF6IM6PU62pvr0qZfGq2yjZ1ITd4dQpSJjpY63FN+phPUqodCYcbcXkm9iLQkqAtRJjpb6wESpmBGXR6CoXA89y5EMhLUhSgTna11AAyNnZuCGRibitynpa6kYxKVR4K6EGVikd0KwMDo5Dm/GxyNBPqOFpmpi9QkqAtRJro6I9uW9Q2fG9QHRmSmLjIjQV2IMtHRUo/RoKdveOqc38XSLx3NEtRFahLUhSgTBr2OBa119I9MEprTgndwdIpGq5laS647UIr5QoK6EGVkUVs9vkAo3rwLwOcPMuL0yCxdZESCuhBlZEFbpKzxzKy8eq9jkjDQFV1IFSIVCepClJGlHZHAfaLfFb/t5KAbgCWdEtRFehLUhSgj5y9sBOB436ygPhD599IOmyZjEpVFgroQZcRaa6K9uZbjfS5Cochi6ZFeJ2aTnoXR1IwQqUhQF6LMrF7SxJQ3wPE+F6MuD/0jUyhdzdLIS2RE3iVClJn1K9oA2HPUwb5jIwCsW9as5ZBEBZGiVyHKzNplLdRZjLy4p48aswGDXsdlazq0HpaoEHnN1BVFWa0oilNRFOkHKkSBWEwGbt60hGlvgDG3l8vXdMjGGCJjOc/UFUVpAL4DJN8pVwiRk1s2LcEfCOH1BXn/1edpPRxRQXThOZcjZ0JRFB3wC+CbwG+A1aqqJt+HKyL7FxJCCKHL5s5pZ+qKotwD3Dfn5pPAo6qqvqUoSsYv5nC4sxlb1bLbbXIsouRYzJBjMUOOxQy7PbvrE9IGdVVVtwBbZt+mKMpR4J5owO8EngXemdUrCyGEKLiccuqqqq6I/VtRlBPATQUajxBCiDxInboQQlSRvOvUVVVdVoBxCCGEKACZqQshRBWRoC6EEFVEgroQQlQRCepCCFFFJKgLIUQVkaAuhBBVRIK6EEJUEQnqQghRRSSoCyFEFZGgLoQQVUSCuhBCVBEJ6kIIUUUkqAshRBWRoC6EEFVEgroQQlQRCepCCFFFJKgLIUQVkaAuhBBVRIK6EEJUEQnqQghRRSSoCyFEFZGgLoQQVUSCuhBCVBEJ6kIIUUUkqAshRBUx5vIgRVF0QC9wJHrTq6qqfrlgoxJCCJGTnII6sBzYrarqbYUcjBBCiPzkGtQ3AosURXkBmAbuU1VVLdywhBBC5EIXDodT3kFRlHuA++bc/BmgXVXVXymKcjXwXVVVLyvSGIUQQmQobVBPRFGUOiCgqqov+nMfsEhV1eyfTAghRMHkWv3yVeBzAIqirAdOSUAXQgjt5ZpT/xbwiKIo7wUCwMcKNiIhhBA5yyn9IoQQojzJxUdCCFFFJKgLIUQVkaAuhBBVJNeF0owoiqIHfgisB7zAJ1VVPVrM1yxXiqKYgIeAZYAF+Iaqqr/VdFAaUxSlHXgTuFFV1cNaj0criqJ8GXgfYAZ+qKrqFo2HpInoZ+RnRD4jQeDe+fi+UBRlE/BPqqpeqyjKCuCnQBh4G/iMqqqhVI8v9kz9dqBGVdUrgS8B3yny65WzPwNGVFW9BrgF+L8aj0dT0Q/wj4hckTxvKYpyLXAV8A5gM9Cl6YC09R7AqKrqVcDXgQc0Hk/JKYryReDHQE30pn8F7o/GDR3w/nTPUeygfjXwNICqqq8Blxb59crZr4CvzPo5oNVAysS/AP8J9Gk9EI3dDOwHfg38Dvi9tsPRVDdgjJ7hNwB+jcejhWPAB2f9vBF4Kfrvp4Ab0j1BsYN6A+Cc9XNQUZSipnzKlaqqE6qquhVFsQGPA/drPSatKIryMcChquozWo+lDLQRmex8CPhz4L+iXVDnowkiqZfDwIPA9zUdjQZUVX2Cs7/MdLMu7HQDjemeo9hB3QXYZr+eqqrzdoaqKEoX8ALwsKqqW7Uej4Y+AdyoKMqLwAbg54qidGo7JM2MAM+oquqLNsXzAHaNx6SV+4gci1VE1uF+pihKTZrHVLvZ+XMbMJ7uAcUO6juI5MlQFOUKIqeZ85KiKB3As8Dfqar6kNbj0ZKqqu9UVXWzqqrXAnuBj6qqOqDxsLSyHXi3oig6RVEWAvVEAv18NMbMmf0oYAIM2g2nLOyJrrtAZC3u5XQPKHYq5NdEZmSvEEnyf7zIr1fO/h5oBr6iKEost36LqqrzeqFwvlNV9feKorwT2ElkkvUZVVWDGg9LK98FHlIU5WUilUB/r6rqpMZj0trfAA8qimIGDhFJ3aYkbQKEEKKKyMVHQghRRSSoCyFEFZGgLoQQVUSCuhBCVBEJ6kIIUUUkqAshRBWRoC6EEFXk/wOpNa/l6yD3WAAAAABJRU5ErkJggg==\n", "text/plain": [ "<Figure size 432x288 with 1 Axes>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "model = make_pipeline(GaussianFeatures(30),\n", " LinearRegression())\n", "model.fit(x[:, np.newaxis], y)\n", "\n", "plt.scatter(x, y)\n", "plt.plot(xfit, model.predict(xfit[:, np.newaxis]))\n", "\n", "plt.xlim(0, 10)\n", "plt.ylim(-5, 1.5);" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "With the data projected to the 30-dimensional basis, the model has far too much flexibility and goes to extreme values between locations where it is constrained by data.\n", "\n", "We can see the reason for this if we plot the coefficients of the Gaussian bases with respect to their locations:" ] }, { "cell_type": "code", "execution_count": 57, "metadata": { "ExecuteTime": { "end_time": "2018-05-20T15:35:27.115635Z", "start_time": "2018-05-20T15:35:26.843888Z" }, "code_folding": [ 0 ], "slideshow": { "slide_type": "subslide" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ4AAAEFCAYAAADT3YGPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzsvXl8Y2d97/8+2mVbkjd5G9uzeGbOTGbfkkx2wiRpIJBAIJRwaaFQKKW0pbf315bbH9B7296W5fb2spSllAIhhCUhLAkQsk2SSSYZz775eDybd0veJNtarOXcP6Qj27Ika/M6z/v1mtfY0tGjx0c65/N8l+f7lVRVRSAQCASChUK32BMQCAQCwbWFEB6BQCAQLChCeAQCgUCwoAjhEQgEAsGCIoRHIBAIBAuKYbEnsJQIhyPqyIhvsaexJKioKEGcixjiXEwhzsUU4lxM4XTapFyOFxbPNAwG/WJPYckgzsUU4lxMIc7FFOJc5I8QnmucYCiCa8RHMBRZ7KkIBIJrBOFqu0aJRKP88PkOjre7GfYGqbSb2bXRyXvuXI9eJ9YjAoFg/hB3mBVAPlbLD5/v4NnWboa8QVRgyBvk2dZufvh8x/xNVCBYAggrf/ERFs8yJRiKMOwN8GxrF6cuDmVltQRDETzjQaxmA8fb3SnHPd4+yIO3t8z39AWCBUdY+UsHITxLCE0YHGVmzMbUgcvpF8+QNzjjOc1qiURV3n+3nPI1w94g5WVmRsaDyUMDMOwNcKnHQ3V1WVbzEQiWC5qVr6FdLwAPH9iY01jBUIS+wQkioYi4NvJACM8iot3YTUY9j794kbbOEYa9QSpsJjatruThuzZgNupxjfgZGPEz4Q9x6HQfbZ2jGcc9eLwHVJWH79qITpL4zq/aeOV0f+L5dKIDoAKff+wElidOAyqByShVYmUoWCSKsfgJhSO0dY7y2pn+lM8fb3fz4O0tGcfX5lFWYuTJly/HFnFjQSpt4trIB0lUp56B6naPzfubZLJapqOLZ8ZH8/yIyqxGwpEogcni+LIP7G3MeWW4EnA6bSzE92I6fUMT9A35WF1ro8phWdD3zsRCnYtINMqjz17gRPsgo+Mxt9im5gree9dGSsyp18vJIuUZD/LU4au8cqpvzmvgnz56IzUVJSnnMd1bYDbpU461uraMXRucOCusyE3lVNpnfmb5Cuhy8Trkuo9HWDyLQLLJnw5NcOqrSrh5Wz3RqMoTL13K+n0m/CGqyy0ZL7ryMhOe8UkkaW6B0+I/S/kCWO6EI1Eeeaadl072AqCTJO67aTX337IWScrp2l62RKJR/sd/ttLlGk88NuQNcuhMP0fbXdyyvWGGhZEsDhU2Ew3OMi73epkIhCkvM3H95hpePtlHuq/44bMD3LmnkTKrccbjyddqumvp6sA4Vwem5ttcU8atOxq4frOTX7x6Nee4UirhXUmWlRCeBSKqqgQnI4yMBTlyfiCn106Gorx5TyMAB0/0ZLSSpiNJ8Il3buNff3Iq5Wuq7BY+/YG9dLvG+cJjJ+Ycb2QsgGc8mHJlKCgO3/uNwsun+miqKWPvphpePtnLzw9dwaDXcd9NaxZ7evOKtrr/yYsdM0RnOoHJKM+2dqOqKu+7KxbHTBaH4bFJhseG0ekk3ntgA2/atYphb4CXTvalfe8nX7nML1+7wq4NTrauq2RNnR2DXsr6WpWAP3jrJsb9Yc5fHeHs5WG+/9t2HnvuApFpK7ps4krphDffeNRSRAhPkRkc9XPy4hDtXaMMjPgYHZ8kOBkpKHVz+g1/10ZnVtYSQIXNgjPDa3ZtrMZWYmLdKgeVdvOcgmY1G7CXmvL6GwRz8/q5AV4+1cfqWht//b7dmE16bttez99/t5UnX77MtnVVrK6zLfY0i45msRxTXAyPTWb1mkOn+3nXHesB0mZo2kuM3LajAYNeh6PMTKXNlHL88jITB/Y2ceh0H0faXBxpc+X8N1TaLezdVIvZqOee65vxjAc5eKKXnx+6nPL4TN6DR3/bnlZ4p2edLgcXXDqE8BTAdP+re8TPEy9d4mTHYMKcNxl0VNgtVNjMWIx6zCY9VrOBkx2DOcVdKmwWHGVmAN5zp3axDTIyFqDCZsFq1tPtnpj1ul0bqzEb9Slfs2tjdeJxs1GflaBNBMJ859cK779bpsQivjrFJBiK8KMXOjAadPzRA1swm2I3E0eZmQ/cu5kv/vAE3/1NG3/7e3tXnMstW9fzdAKTEdyjfkwGXdoFk3diMrFgMxv17JZrUr7P3k01vOXG1dx7QzPd7gnau0bpHZpg3Bfi1MVBgqHonPPRrjUNR5mZG7fU8uQrqYVnKL4VYk29HYNOIqrCmG+SIW+AV9MkQWiv+95vFJR4ItJydcGJu0ceJCcHWEx6gpMRVKClwc5N2+rZsqYCZ7k15U3i0Wfbc7rQpn+p9TodDx/YyIO3tyREz6CX4vNJLSypXpO8SkoWJ7PJgBp3D1baLWxaXU7/kI/Xzw1wscfDR+/fQkuDI88zKEjm2dYuRsaCvHX/amqTXJlb1layd1MNrW0uTnQMsmuDc5FmWXyCoUhai2UufnX4KoOeQNrnpy/YIPWibfp1IkkSTTVlNNWUJV6T7lq1mPRMhiKzxpiOo8xMVQZPwuMHs4/XTme6MC1XF5zIaptJVllt6b6MOzdU8acP7pjz9cnCpYsH9stLjVjNRibDsVjQ9C91NquZYmTAaGO0rKlicHB8xnjhSJSfH7rMU69eRaeTuHN3I2+7ec2sgGw+77eUXQbznckVDEX4r18+hE4n8U8f3Z/SmuwZnODT//46zbU2Pv2BxbN6in0uXCM+/vrrhwsawxFPkEkmXRZmLt+5qWt1plg9cOs6TBYTkclQxjHS3Sv2bXKydV0Vw94gkaiKToploZZajfzwuQt4faEs/vIpKm1m/vyhHTjLrYtyHYmstnkkGIrgHvGlXaF1DUwQzGJDWbIFYjUb8AfDiQsh35ux2agvOPCvjWExGWaNZ9DreOdtLWxeXcm3nz7Pb1u7ePlULzdvreeGLbWsqbNh0Gdn7qfbRf7ArWsZ94WWtBAVmyPnXfiCYe67aU1aF+aq6lJ2b3RytN3NhW4PG5vKF3iW84OjzEyZ1cC4PzzrOV2GTMt9m538zvWrcZZbsZr1GS3+ZHK5TjJ5C5zVpXOKcCYrK91i8tzlYQ5lcLelYngsyGe+9caycb0Ji2cmKS2eXPbd/ONHUu8HWG7MtbINhaM8d7SbZ450MhpfbZqMOmrKrdhLTejiK/JIVCUSiRKOqkQiKlFVxVFmYnQsmDIuZTbqmAxFl9QFNN8Wzz98t5VLvV7++WP7qXZY0x7XdnWEz/3gONdvruGP7t86b/PJxHyci//6lUOMjM2+rt60exUH9jTy7NFuTl4YjHsBzOyWU38vFtp6zuVc5DI3XzDMX37lFQKTs2NLmcR4Ogu9505YPPNAtsHPZJ/ySsZo0PE7NzRz175GTl0c4sylYS50exj0+FMKikEvoY9bQ+kydoBEIFfzXfsDYf7LPXLiYl0Orrlc6HKNc7HXy7Z1VRlFB0BuLmeVs5SjijtxE17u9A1NMBKvACBJUkqr4P13yzz0pvVzfu7FsPjni1zmVmI2cMv2hpT3nFXOsozXj8ZS33MnhGcOcgl+Jme2XAvodTp2bXAmAt6qqhKOqGiWtF4voZOkGTGJzgEvn/12a1bjHzrTz/mrw+zc6EQCTlwYXNbZPMkcPNEDwB07G+Y8VpIk7ty1iu89085rZ/t5y42r53t6884b52Opy+96Uwu7NjjTistSFpX5IJ2L7l13rOMnL17iePsgw95A2g2xQ94AnQNjbGhcmi5ZITxz4B7xZXSvSRJUzuFTvpaQJAmjIbPVXVtZmjHbJ5nhsUmeP9oz47Hlms0zneBkhNfO9lNeZmL7+qqsXnP9dbX84LkOXjnVx703NC/71OpWxYVBr2NHS/U1Jy6ZyBRb0h53j/jSbg4H+OdHj7NtbSU3bKll69qqgpKAio0QnmlMrzY7Pa6TjsXOJFmuZLtvKBuWukshE2+cH8AfjHBgT1PWVlupxcjujdW8cd7FxV4v61ct35T2vqEJetwT7NpQjTVN/bVrnXRibDbqaayxpb2ONq+uYCIQ4uTFIU5eHEICVtfZuG5NJdvWVbKhsRydbvEWLSv605ZlWQd8FdgBBIEPK4qSttPZR//p2US1WVVVeS5plZ3MbtlJo7Ms4zGC1LznzvVEIlEOnujNuwgqLO8yPgdP9iIBt+2Y2802nVu21/PGeRevnOpb1sJz5tIwADs3VC/yTJYvc2XN9Q5OcFRxce7KCB09Hq70j/H04avYSozs2ejkzt2NNMb3LS1k/HRFCw/wAGBRFGW/LMs3Al8E7k93sKpOuXBMhvQr0MppmTWC/NDrdLz/nk0gSbxwLLPAZ6LUYqDEsnRcCNnSOTDGpV4v21uqcq4+fd3qSipsZo60DfDeAxuWpbUHcO5KTHi2rKlc5JksX+baHN5QXUpD9VredvNaApNh2rtGOdExxDHFxYsnennxRC/bW6oosxpQOkcXLH660oXnFuDXAIqiHJZleW+2L5wMpy6TIUnwdx/dz5r65bvSzBanc/7rgv3Z7+7GVmrm8Jk+Bkf9VJdbMRn1dGeRuQMw5g/zV197jb2ba7l3/xq2rY+tngOTYUa8QSrsZiymwr/mxT4XP4lXGX/7bS15jX3XDav50bPtdPSNcceepqLObS6KcS7CkSjt3aOscpYhtyzfSgwLcY1kS2MWxzStquDNN64lElU52jbA489f4NTFoRnHaIvvEquJP3xg27zMdaULjx3wTPs9IsuyQVGU2bvVsqTSZsGgqgven2WhWcgeNA/cvIZ7r29KWQJo2BtI27LBZNBxy/Z6Tl0c4uUTPbx8oge5qRx7qYlLvZ6ird6KfS6CkxFeONpFhc3MamdJXmPvaqnkR8/C04cus6V54TKXinUuLnSP4g9GkJscy/ZaWow+TcVkrbOUP3nHVv6/f3s15Qbel4/38OZdDdhK5i4MnKsAr3Th8QLTz4guW9GxpGn4dC2mTC8EyUHU6e6D3xzpSumOu21nAw8f2Iiqqlzs9fLLV6+kXb1pYy4FXo8nFdy1N/ukgmRqK0rY0Oig7eoIgx7/nHuAlhrnrowAcJ1wsy0q3olJJlKIDsQ6FX/mP95g76aajAu3gRFfzsKzfDdAZMch4C0A8RjP6WxfeNO2Og7sbaTKbkEnxXrXHNjbKOI6C4gmRg8f2JDxs5AkifWrHHzsga3YS1LHe463DxbUmqKYHDzRiyTBrdtzSypI5rYdDaiQaBq3nGjvirVvlxfQWhPMxlFmptKefiPy6Pgkz7Z288Pnp3KygqEIrhEfwVCEM5eH+Ntvvp7z+650i+enwF2yLL9KrFfTBzMdrJOYlRWSqaKzYGHIpro2xPqTjKUprjjsXRrZb5f7vFzu87Ijj6SCZPZtquGx5y7w0sk+3n7z2qzr5C020ajKpT4v9VUllC7DxJCVRLZbG463D/LAret48uVLifqKZVYDE8EI+WRlr2jhURQlCvxRtsd/7a8PzKo2Kza1LR3m+iy01VuqDXVGgw5zEZIMCuX5Y7EL/M492YSCM2My6rl5Wz3PHOni+IVB9m2qyep1i112qGdwguBkRLTVWCJonoOjbW5GxlNvRh32Bnj0GYVXz051ZB2Lu+i2b8hu8/N0lscSaYGory4VVs0yRlu9pWIyHOVzjx6jZ3B2HbmFYsw3yevnXNRUWNmytjixjdvjpXZeODb3ZtxINMqjz7bzt988zN98/TB/+83DPPpsO5Ho3I3OisnFnli+T8sq+4K+ryA1mkfhs3+wj/Ky1IkEKvDaudRtwLsGJnjbf/1ZTqtzITyCFcV77lw/Kx50Z7zKcd+Qj//5nSMcPptbyfli8fKpPsKRKHfubkxU7y6U+qpStqytpK1zlI4eT8ZjtWK3Q94gKlOJF9P99wvBlPAIi2cpYSsxsTeN1VxbYSVdI4ORsQBAfS7vtfi+B4GgiGSKB21sKuc/nj7PN35xjlbFzcMHNlBpTx9n0VxStiJkjE2GIjxzpAuzSc8t2+oKHm86b7tpDWcvD/PzVy7zF+/ZmfKYTMVuXz3dzztvW1eU/U7Z0NHrxWLS01BVuiDvJ8iedJUQHrh1LZ/51hsp3dgVNgtD3kBfLu8jhEewIkkVD9q7qYbGmjK+/fR5jrW7OXN5iNt2NHBgT+OMY5Ob1DkrrGxvqZqRUpprnOTgyV68E5O8df/qolda2NhUzqbmcs5cHqbt6ghrG+y4R/2gqjgrSjAb9XjGg2mLSfqCYZ567SoP3t5S1Hmlwh8MMzDsY1Pz4tYKE6Qm08ItXRLCro3V/Nl79/hyeR8hPIJrirrKEv7qfbs5dLqPJ1++zLOt3Tzb2k2js5QNjeXUV5Vw6tJQoo4YgGvEn7jg3nPnen74fEeiJ4691MSejdU8fNfGlPsctNTTp1+7itmo5+5981Nl4N1vWs/ff6eVLz1ximhUTfQ1sph03LStnk0Z0pYlCX7zRic3ba2jfp6tkG53rCJFc+3S2fEvmE2qhVumunC5IoRHcM2hkyRu3d7A/i11HDnv4vC5Ac5fHUnZwG46L5/swzXin7FJ1TsxyQvHe7nQ7eEzH9yXEJ9UXWvX1tvStrYulLX1dhprZjcJC0xGef5oDy8c7UnbvXLrukpOXxzmZ69cnvfOptr8mmpEcd3lRrbbGrJBJBcIrlkMeh37t9bxyYd28JVP3spnP7iP9745/eotGIrMqoyg0e2e4NFnLyR+nx7I17jcNzZvgfxgKMKEfzL9ARL8+UM7U27E/cQ7t9FcW8aR8y76huY3608Iz/JHs4YKyQAWwiMQAEaDnuZaG7ftXEVVmp3cpZbMF9qxdjfBUCRjIH++Kih4xoOMjKUXHlWFmnILDx/YyN//4Q3840du5O//8AYePrARg17PffvXoBKrqjCfdLnG0eukeXfpCZY2QngEgmlk2gu0YVXm8i6e8Uk840FGxwJpA/la/6BiM1fpk0qbGUdZ7PlUK9adG6opsxp57Ww/4cj87OuJRlW63ePUV5VgzNB2RLDyEZ++QJBE8l6gmgorB/Y28nv3bprztV964jRf+OHJtM9X2CwJASgmmQQTYk0LM7lGDHodN15Xy5gvNCOxopi4R/1MhqLCzSYQyQUCQTLJQdSWNVWMefwANDpL0yYh2EuMDHkCGA06nOUW3KOBWcfMZ3Xz99y5HlVVOXS6P1FZ3WLSc9O2uqwyj66/rpZnj3Zz7IJ7XrqCTsV3REbbtY4QHoEgDZpLymIyoHVd+dvf38Pff+foDPHR6yRu31nPew9sTJHVVnjqabbodTred5fMu+5YP2sfTzasa7BjLzVxsmOQaFQt+j6bTpFYIIgjhEcgyAGTwcD/+NANjPkmudzrxVZipMFZNuvmXszU01wxG/U0OnO/ueskiZ3rq3jpZB8Xez1saCxuy4JuITyCOCLGIxDkga3ExPb11axtcGQUlGKkni4k21tiLrazl4sf5+lyjWEvNWEvnbujpWBlI4RHIBAk2NRcjiTB+asjRR13IhBiyBsU1o4AEMIjEAimUWIxsqbOxqVeL8EUrd/zRbjZBNMRwiMQCGaweXUlkahKe/do0cYUiQWC6QjhEQgEM9i8ugKA81eK524TpXIE0xHCIxAIZrC+0YFeJ3GhiBZPl2scg16irlK0kRcsQeGRZXnfYs9BILiWMRv1NNeWcaV/jMki1JWLRKP0uCdoqC7FoF9ytxzBIrAUvwWfk2X5tCzL/02W5eK2ahQIBFnRsspBJKpypX9s7oPnYGDYTzgiSuUIplhywqMoypuA+wAz8Iwsy7+UZfldsiwXt22jQCBIy/pVDgAu9ngKHkuUyhEks+SEB0BRlKvAd4FHga3AnwJnZFl+R7ZjyLLskGX5F7IsH5Rl+TVZlvfP03QFghWHJjwdRRUeYfEIYiw54ZFl+UOyLB8EngX0wC2KotwGvAn4Wg5D/QXwnKIotwMfAL5S7LkKBCuVSruFKruZjh4PqpqibWkOCOERJLMUa7XdDnxGUZQXpz+oKEqvLMt/nMM4/wJojU8MwOxSwQKBIC0tqxy8cd6Fa9RPbUX+2WhdrjEqbGbKrMJbLoix5IRHUZTfy/Dc46kel2X5Q8Ankx7+oKIoR+IJCo8Af57N+zudwg+tIc7FFNfiudgh18SExxtk68baxOO5nAvPeJDR8Un2bq5dkedwJf5NC8GSE558UBTlW8C3kh+XZXkb8Bjwl4qiHMxmLLe78CyelYDTaRPnIs61ei7qHBYATrS52BbfVJrruTh3JVZstLbcsuLO4bX6vUhFrgK8IoQnFbIsXwf8GHiPoijpW0IKBIKUNNWUYTTouNibf4KBiO8IUrFihQf4X4AF+FdZlgE8iqLcv7hTEgiWDwa9jtV1Ni71xAqGmk25t3YQwiNIxYoVHiEyAkHhtDTY6ej2cKXfi9xckfPrOwfGMRl1BSUnCFYeSy6dWiAQLB1aGvLfzxMKR+kbmqDJWVb0NtqC5Y0QHoFAkJaW+EbSS73enF/bOzhBJKrSXCsyvwQzEcIjEAjSUmEzU2Ezc7HXm/NG0s6BWMZXU62I7whmIoRHIBBkpKXBjndikkFPbnuwOwdiiQXNokabIAkhPAKBICOauy3XtOpO1xiSBI3O0vmYlmAZI4RHIBBkREswuNSTfZwnqqp0usapryrFZMw9DVuwshHCIxAIMrK6rgy9TsrJ4nGP+glORmgW+3cEKRDCIxAIMmI06GmutdE5ME4wy46kV/tFYoEgPUJ4BALBnLQ02IlEVS52j2Z1vJZ+va7ePp/TEixThPAIBII5WbcqJiDK1ZGsjr/U60WSYE2dEB7BbITwCASCOVkfTzDIRnjCkShXB8ZocpblVd9NsPIRwiMQCOakymHBXmqi7erwnMd2ucYJhaOsi6dhCwTJCOERCARzIkkS61c5GPIEcI36Mx4r4juCuRDCIxAIsmJzvBmc1twtHVra9boGITyC1AjhEQgEWbFlbSUA566kj/Ooqsr5qyPYS4zUV4lWCILUCOERCARZUVthpbrcyvkrw0SjqQuG9g358IxPsml1BZIkWiEIUiOERyAQZIUkSezc4GQiEKbTNZbymPPxrLfr1lQu5NQEywwhPAKBIGt2yzUAnLgwmPL5s5dj8R8tHiQQpEIIj0AgyJo9m2sw6HW0Ku5Zz/mDYc5cHmaVsxRnuXURZidYLgjhEQgEWVNiMbJtXSW9gxP0uMdnPHfy4iDhSJS9catIIEiHEB6BQJATN1xXC8DBk70zHn/97AAAe2Tngs9JsLwQwiMQCHJi90YnFTYzL5/qwxcIATAw4uPUxSHW1ttpdIqK1ILMrHjhkWV5kyzLHlmWLYs9F4FgJWDQ6ziwp5HgZISfH7qCqqr8+IWLqMA91zct9vQEywDDYk9gPpFl2Q58EQgu9lwEgpXEnXsaOXiyl2eOdNHWOULnwDjrGx3s2yTiO4K5WbEWjyzLEvAN4FOAb5GnIxCsKMxGPZ94cDvOcgudA+M015Tx8Qe2ik2jgqyQVDX1DuTlhCzLHwI+mfTwVeAxRVG+J8vyFWCToiiBOYZa/idDIFhAIlGVYU+A6nKLEJ1rm5w+/BUhPKmQZbkD6I7/eiPwhqIot83xMtXtTr0j+1rD6bQhzkUMcS6mEOdiCnEupnA6bTkJz4qN8SiKsl77OW7x3L1okxEIBAJBghUb4xEIBALB0mTFWjzTURRlzWLPQSAQCAQxhMUjEAgEggVFCI9AIBAIFhQhPAKBQCBYUITwCAQCgWBBEcIjEAgEggVFCI9AIBAIFhQhPAKBQCBYUITwCAQCgWBBEcIjEAgEggVFCI9AIBAIFpQVW51aIBAIBEsTYfEIBAKBYEERwiMQCASCBUUIj0AgEAgWFCE8AoFAIFhQhPAIBAKBYEERwiMQCASCBeWa6EAqECxXZFn+U+BB4A7gZuDbwC5FUcYXc14CQSEIi0cgWNp8CYgCHwP+HfiAEB3BckdsIBUIljiyLK8FzgBfVRTlvy32fASCQhEWj0Cw9FkNjAG7ZVmWFnsyAkGhCOERCJYwsiyXAd8E3gb4ibncBIJljRAegWBp8zngKUVRjgAfBz4dd70JBMsWEeMRCAQCwYIiLB6BQCAQLChCeAQCgUCwoAjhEQgEAsGCIoRHIBAIBAuKEB6BQCAQLChCeAQCgUCwoIgiodMIhyPqyIhvsaexJKioKEGcixjiXEwhzsUU4lxM4XTacqqoISyeaRgM+sWewpJBnIspxLmYQpyLKcS5yB8hPAKBQCBYUITwCASCBMPeAB09nsWehmCFI4RHIBAkeOSZdj736DH8wXDRx+4cGKNzYKzo4wqWH0J4BAJBgt6hCcIRlUFPoOhjf/mJ03zlp6eLPq5g+SGERyAQABCNqgzFBWdw1F/UsSdDEQY9AdyjASZDkaKOLVh+COERCARALL4Ticaq1Rfb4hnyTo3nngdrSrC8EMIjEAgAcE+zctye4lo87tFpwjNS3LEFyw8hPAKBAJhpiQwV2+KZJmQusenymkcIj0AgAJIsntHiCs90UXMVOX4kWH4I4REIBMCU8JRZjQx5/RSzO/H0ZAUhPAIhPALBMmMyFOFqf/H3w7hH/Rj0OtY12PEHI0wEireXx+0JYNDrKLMaRYxHIIRHIFhuPH34Kn/3n0fodo0XdVzXiB9nuQVnuRUobpxncNRPtcNCbYWVQU+ASDRatLEFyw8hPALBMuNirxeATlfxrB5fIMREIIyz3IrTYQFmxnwKwR8MMxEIU11uwVlhJRJVGfYGizK2xqHTffNiBQrmh0VpiyDL8nFAKwh1Gfg68K9AGHhGUZS/k2VZB3wV2AEEgQ8ritIhy/KNhRy7cH+lQDA/aJZO/3DxXFZaMoHTYaXKEbN4irWXRxMwp8OKrcQIxOI8mmVVKJ6JSb711HnkpnL+6n27izKmYH5ZcOGRZdkCoCjKHdMeOwE8CFwCnpJleTewBrAoirI/LiBfBO4HvlbIsYqiHFuIv1MgmA+8E5N4JiYBGBguXlpyQhzKLTjLYxbPYJH28mgCVl0zOakFAAAgAElEQVRuwV5iir3fiD921RaBvsEJIGYBqqqKJOXUGkawCCyGxbMDKJFl+Zn4+38WMCuKchFAluXfAG8G6oFfAyiKcliW5b2yLNuLcGxG4XE6bUX+c5cv4lxMsVTORe+IO/HzoDdQtHn5z/QDsH51JXJLNQBefzjl+Lm+p/+cC4CWpkoq7TFRGw9Gijb31guDsfcJRojq9dRVlRZl3GxYKt+L5cZiCI8P+ALw78AG4FfA6LTnx4B1gJ0pdxxAJP6Yt8BjM+J2Cz8xxC4ocS5iLKVzcaZjSnh63OMMuLzoirDCv9wduwRNOvCPBygxG+h1j8/6u/M5F1d7tLFVjFIsRftKr6do57T96nDi5xPnB9gjO4sy7lwspe/FYpOrAC9GckE78IiiKKqiKO3EBKNy2vM2YkLkjf+soUvxWD7HCgTLFi2+0+gsZTIUZXSsOEH66XEYgGqHhUFPcfbyJFxtDiv2EiNmox5XEVOq+4emXI6i7cLyYDGE5w+IxWCQZbkBKAEmZFlukWVZAu4BXgYOAW+JH3cjcFpRFC8wWeCxAsGypcs9jkGvY3vcHVasOI97NIC91ITZFGvnXF1uZTIUZcwXKnxsjx+LSU+pxYAkSTjLrbhHi7dBtW/Il5h3V5FTzAXzw2IIz7eAclmWXwF+SEyIPgx8H3gDOK4oyuvAT4GALMuvAv8CfDL++j8q8FiBYFkSjar0Dk6wqrqUhuoSAPqLIDyRaJQhbyCRVAAxiwcKLxaqqiqDowGqHdZE0L+2wkowFMFbBFELhiIMeQOsrbPhKDMVNcVcMH8seIxHUZRJ4OEUT92YdFyUmHAkv/5wIccKBMuVgREfoXCUxppSais14SncZTXiDRKJqjPSmzXhGfIEaGlw5D32mD9EMBSZIWrOitj7uEZ8OEpNeY8NUxZffVUpRoOe05eGGPeHKLMaCxpXML+IDaQCwTKh2x1LG250llEXF56BIlR61uI7NTOExzrjuXwZHJ2K72ho71OMOE9fPL5TV1VCc20ZAF0izrPkEcIjECwTtPhFY00ZpRYjthJjUVxtrsQenmnCUz5l8RSCtheoOoXFU4zKCH1DMTGuryqhqSYmPJ0izrPkWZTKBQKBIHe0jLYmZ+wGW1tZwqUeL+FIFIM+/zVkompBCldbod1Ck7PlAGo1i6cIwqMJb31lKaFIrP5b54AQnqWOsHgEgmVCt3sce6kJezwuUldRQlRVC7Yc3CksHovJQJnVWHDZnKFpVQs0Ku0W9DqpaK42k1FHhd1MTbkVs1FPl0gwWPJkJTyyLP9Nisf+sfjTEQhWBr2DE/z9d1vpiZdzKRR/MMygJ0CTc2pXfm1lTCgKdbdp7RAcZTMD/dUOC0MeP9EC0p7diT08U8Kj00lUOywFC09UVekf9lFXWYJOktDpJBprSukb8hEKRwoaezptV0cIThZvPMEcrjZZlv8JqAHeLsvyhmlPGYEbgE/N49wEgmXLc8e6udTr5fDZfh68vaXg8XriiQWr4m42YCrBoMDMNvdorB1CcgWE6nIrV/rH8IxPUmEz5zX24KgfW4kRi2nmrcZZYWXg0jD+YBirOT+P/7AnQCgcpX5aiZzmGhsXe7z0DvpYXVd4OZuOHg+f+8FxDuxt5OEDGwseTxBjLovnceAgMBH/X/v3a+Ct8zs1gWB5Eo2qHFNipW0udHvmODo7utzx+E7NbOEpxOKZ3g4hGa09Qr7FQqOqypA3MMPa0ShGZltfIr5TknisKZ7ZVqwKBueuxMrxHGlzFWT5CWaScamhKMoR4Igsy08qilKcK0ggWOF09HgSFaQv9xUe/IfppXKmhKemwopEYcKTKrFAozohPAE2NOY+9uhYkHBEnZFKrVFTURJ/f3/elsn0VGqN1bWxsYqVYHChK1ZlyzM+ycUeDxsay4sy7rVOtjbuA7IsfxGoiP8uAaqiKPr5mZZAsHxpbYtVY66rLKF/2MfVgbGCNmFCzOLRSVKiYgGA0aCnymEpqGxOqsQCjer4Y4N5Ji8Mpkgs0NAsnkL2IfUnUqmnXG2rqkuRpOI0yYtEo3T0eNHrJCJRldY2txCeIpHtMuzTwB2Koujj/3RCdASC2URVlaPtbkotBt66fzUAHQW621RVpcc9Tm2lFaNh5mVXW1mCZ2ISfzCc19jT+/AkM93iKWjsFBZPMfby9A35kIiV4NEwGfXUV5XS5Rov2DXWOTBOMBRh/5Y6rGYDrYpwtxWLbIWnV1GUM/M6E4FgBXCpx8vIWJBdG5zIzbHVcaHCM+QN4A9GZsR3NAqtYJDJ4qmyFyY8mSweLX5UaIynymHBZJwpxs01ZQQmI3lbahpKZ8zNtnlNBbs2VDMyFuRyn3eOVwmyIVtX21FZln8CPAMkvoWKonx3XmYlECxTWpWYm23vphqq7BYqbGYudI8W1Bmz2zVVKieZRILBkI81dfacx85klZiMehylpryTCwbnGLvCZs7b4pkIhPBOTLJtXdWs55pqyzh8boDOgfFELCkfLsR7FMlN5VhNBl4908/RNnfBblNB9haPg1gjtf3Am+L/7pinOQkEyxJVVWlVXFjNBq5bU4EkSaxf5cDrCxW0S1/LaGtMYfEUupcnuR1CMtXlFoa9QaLR3F1Mg54AEiS6jiZTU25l2BskFI7mPLbWg6e+arawNNfEEwwKKJ0TVVXau0apsluotFvYsrYCi0lPq+IqWjuHa5msLB5FUT4IIMtyhaIoI/M7JYFgeXK5b4xhb5CbttYlstjWNzo40uaio9tDbZ6r7x73VPO3ZOoqNFdb7sKmtUNYW5/eUqp2WLkYdx9WpUiLzsSgx0+5zYzRkHp966ywonSNMujxz0gQyIZUGW0amkuykGKhfYMTTATCib5HRoOeneurOXxugKsDY3lZl4Ipsq1csEOW5TbgpCzLDbIsd8iyvHue5yYQLCsSbja5JvHYhsaYW6aQ/TxdrnGsZn0i5jKdSocFg16Xl8UznGiHkF5QqvPcyxOORBkeC6bcw6NRyF6evuF4RlvlbOGxl5ooLzMVZPG0xz+vjU1TbrU98c+1tc2d8jWC7MnW1fYl4B3AkKIovcDHgK/N26wEgmWGqqq0trmwmPRsWVuReLyppgyzUU9HT37CEwpH6B/20egsSxkj0kkStZVW+od9ObuAMiUWaOSb2TbsDaCqpNzDo1FTkX+x0ClXW2pLqbnWxshYkDHfZM5jA7TH9+9sbJpKn962rhKzsbjuNl8gv2zE5U62wlOiKMp57RdFUX4L5FdDQyBYgXQOjDPoCbBzffWMlGe9Tse6Bju9gxOM+3PvuNk76ENVU8d3NOoqSghORhKbVrMlK+Epzy/tWavRlsmaSghPPhbPkI9SiwFbSeqGb4nePHlYPWo8vmMvMSaSNyCWELG9pQrXiL8oLbbfOD/AJ/7PS7x4vKfgsZYb2QrPsCzLOwAVQJbl9wHD8zYrgWABUFWV81eGi1IAUnOz7ZnmZtPQ3G35WD1dKSoWJFObqNmWm7stU9UCjemdSHNBy2jLaPHkKWrhSBT3qJ+6qpK0mYKJBIM8KhgMegKMjAXZ0FQ+a/y9m+LuNqUwd1s0qvLTly+jAt//bXveFvFyJVvh+RjwFWCLLMujwJ+TotW0QLBcCIUjfOMX5/j8Yyf496fOFTSWqqocaXNhNurZtq5y1vPrNeHJI87T7Z7ZgycV+dZsS9UALpkquwWJ3PvyDGZh8ZRYjJRaDDlbPO5RP5GoSn1l+oSEpoTFk3uCQcLNlqJKwbZ1lZgMOlrbCnO3tSouBoZ9tKyyE1VVvvrT03jGg3mPt9zISngURbmoKMotQCXQrCjKPkVRlPmdmmCxCUdyT3NdDoz5JvnCYyd4/dwAkgRHFTcXewsL/rtG/OxYXzVrMyNAS4MDSYKO+L6QXNCEZ1WKjDaNfKtUu0f9GA2z2yFMx6DXUW4z55xc4M7C4oGYu23Q488pXbsvQyq1hrPcitmkz8viSRXf0bCYDGxbV0X/sC/vQqRRVeUXr15BkuAP77uOd93Rwuj4JP/25JkVe80lk1F4ZFn+Rvz/F2RZfh74BfCkLMvPx38XrFCeeuUSf/y/X+L7v23Paw/HUqV/2Mc/fO8oF7o9XL+5hk++ewcAP3nhYt4rWM3tsjeFmw3AajbQ6Czjcv9YzjeWbtc41Q5LxtYB+e7lGRz1U+2Y3Q4hGafDwshYMKe5D3kC6HXSnO0UaipKCEdURsayX+1r7a5TpVJr6CSJppoy+oZ8TIZyc6W2d3uwmPQpK0UA7NnkBODVk705jatx8sIgPe4JbryulpqKEn7n+mb2yk7auz386IWOvMZcbsxl8Xw9/v9ngb9L8U+wiAQnI7x4oqdoJeAh5nt+9LftfO2npwlHojx3tJuvPnkm54s3E21XR/jaz87Q2uZaUFFTOkf4h++24hrx89b9q/nI27ewdV0V21uqULpGOX0p97Clls1mMuhS7qLX2NDoIBSOcrU/+8/KMzGJ1xfKGN8BKLPGXFa5CM9EhnYIyVQ5rKhqLFMtW9yeAFV2CzrdHKKWSKnOfu5zZbRpNNeUEVXVnJrxecaDDAz7WN/oSDv3HS3VGPQSh07lLjyqZu0Ab9m/BgBJkvjgWzbTUF3Ks63dvHa2P+dxlxsZhUdRlKPxHzuAtyiKchDoBD4EtM3z3ARp0AThr77+Gt/9tcL//E4rT712peCbeGAyzJceP8WzR7tpqrXx2Q/uY1NzOcfa3XzhsRN5ZWVNJ6qqPPXaFT7/2HHeOO/iq0+e4VPfOMzzx7oJFlHYUvHamX6+8NgJApMRPnjvJh68vSWx0n/w9hYk4CcvXsy5CGTv4AT9wz62tVSl3f0PU3GeXPbzdGeoWDAdSZKoqyyJxz6ys0oGs0gs0NDiNNmmVAdDEbwTkylrtCWT2MuTQ4JB37APfbyLaSaa4y0ScslA0z4fOYWbTcNqNrB1bRVX+8cS1le2nL08zJX+MfbITlZVTwmn1Wzg4+/YitWs5zu/ait4Meka9fPyqd6Cu9POF9kmFzwCXIr/3Au8DHxvXmZURGRZ1smy/DVZll+TZflFWZbXL/Qc/MEwF3s9Oa3o0hGNqhw63cenvnGY7/+2neBkhAN7GikrMfL4wUt84bHjOa1KpzPsDfBPjxzj5MUhtqyp4POfuJXmWhuffGgn12+uoaPHwz9+72jehRcnAiG+/PhpHj94CUepiY89sJXbdjQwPBbkkWfa+W9ffZUnX76EN899F+lQVZWfvXKZb/7yHCajnk8+tINbdzTMOKappoz9W+vodo/z+tmBnMafy82msWFV7EZ2IYc4j9aDJ53LZzq1lSVEomrW4pBNKrWGFqfJduzBFO2u05HrXh5VVekb8lFTYZ2zx5F23nK5iSvx+M5c7Q/2yDF329EcsttUVeXnr14B4L6b1sx6vr6qlA+/9Tomw1G+/MTpvBZ6qqry/LFuPv2t1/n202186huH+e/fPMyPX+igo9uzZNzm2RYJrVQU5esAiqIEgW/Ksvyx+ZtW0XgAsCiKsl+W5RuBLwL3pzvYHwznXcwxGIrQNzRBj3uCnsHY/72D4wx5p3zXTTVl7JWd7N1Uk1OJEFVVOdbu5omXLtE35MOg13H3vibecuNq7KUm3nbzGr79dBsnOgb5zH+8wQfu3ZQyrTcdV/vH+NefnGR0fJI7djbw8F0bKbUa8Y0HMBp0fOTtW6i0Wfj1G538w/eO8smHdiRWk9mO/5WfnmbQE2Dz6go++vYt2EtN7NtUwztuW8dzR7t54Vg3Pz90hV+93snN2+q5Z19TIk04X0LhKP/5q/O8dnaAaoeFP3v3jhmrzOk8cOta3jg/wBMvXWLvppq0ZV6SaVVcGPQ6trekd7MBVDliBUM7ejxZf8emmr/N/V2pnVYsNJvSPK4M7RCSybV6QTap1Bqa8LizzGzzxltAbF5dMeexjc5SdJKUUwWDC12jGPS6jGWEAHZuiLnbWhVXShFJRXvXKB3dHna0VKW9fnZtdHLfTWv45atX+MYvzvLn79oxp7tSY9gb4NtPn+fslZFYW44bV3Olf4yzl4f51eud/Or1TmwlRnasr2bX+mquWxvbEJsLqqoyEQhjMuhSJtJkS7bC45dl+V5FUX4FIMvyAWLtsJc6txBr042iKIdlWd6b6eCHPvUUOkmixGKgxGyI/Z/42UiJxUBp/HejQc/AiC8uMBO4R/0kryUcZSauW1NBQ1UprlE/Zy8P81PXOD99+TKrnKXsk2vYu6mGhjQ3Q1VVOXtlmMcPXuJq/xg6SeK2HfW8/ea1Mwov2kpMfOLBbbx4opcfPneBr/z0DLftqOe9b96Y0f0DcPyCm6///CyhUJSH3rSee65vmnVT1EkSD925ngqbmceeu8A/ff8YH3/HNrasnZ06nDz/l0/18cgz7YQjUe67aQ0P3LJ2xoXkKDXxztvW8dYbV/PK6T5+80YnLx7v4eDxHnZtdPI7NzSzflXu1YDH/SG+/MRp2rtGWddg5xMPbsdRmj57q9ph5c7djTxzpIsXj/dw176mOd9DW2js2lCdMfivsaHRwRvnXbhG/FmJapd7HKNBl5WQ1OW4l0ezeGqysXg0V9tojhZPFqLmKDVhMuqyTqnOJqNNw2jQU19dkujNM1cShS8Qoss1zoam8jkXHqUWIzs2ODna5sI14suqCvYvMlg703nglrVc6fdy5tIwP3vlMu+4bV3G41VV5bWz/Xz/txfwB8Nsb6niA/duorwsltgxGYpw7uoIJy64OdExxCun+njlVB9Gg44tayrZuaGaHeurMRl0jI4HGRkLMjoeZHR8ktHpP4/Hfg5HVKrsZj73sZvyrrierfD8EfCILMuae60LeH9e77iw2IHpTvWILMsGRVFS1qnYu7mWCX+IcX+ICX+I3iwzYuylJra2VNNcZ2N1nY3mOjvNdTZsJTNvdOP+EG+c7efVU70cbXPx5CuXefKVyzTV2rhlRwM372igudaGJEm0XRnmu0+f5/TFQQBu3bmKh++RaaxJb2k8dLed/TtW8flHWnnpZB8Xe7385fv2sj6Fv1pVVX720iX+4xdnMBn1/M0Hrmf/tvoZxzidM9/r4bdcx+pV5Xzx0aP8nx+f5E/fs4s796a+QQcmw3ztiVM8d6SLMquRv3h4H/uuq8t4Hn93VTnvvkvmtTN9PPFCB8fa3Rxrd7N5TSX7rqvFUWbGUWrCUWbGXmaivMyM1WyY9eXvHRznnx89Ro97gpu3N/DJh3dntbL7vfu28MrpPn752lXuf9MGSq1Tu+KTzwXA8/Gspjfta075fDI75VreOO+i3xNkq1yb8dhIJErfkI/VdTZqa+cuSLk5FIvtePzhrObimYi5cTatd2IxZb4NVFaWotNJeHyx18w1/kR8Q+6GNVVZzaW+qhTXiJ/q6tRlgabTeiF2PWxcU5nV2BuaK+g52k1Ep6O2OrPLsvX8ACqwS67JauybtzdwtM1FW7eXLRszf55tV4c5d2WEnRuc3Lhz7j7in/rgDXzyXw7yi1evsHNTLddvSX3teMaDfOUnJ3ntdB9Ws54/efdO7r6hedZ5XNVQzl371xKNqrR3jfDG2X4On+nnRMcgJzoG55yPTidRaTOzbpWDSruF7eud1NTkXyg12+rUJ4CtsixXASFFUZZLNyQvMP0bpEsnOgCf+fCNuN0z/cGhcBRfMIwvEMIXCOMLhpkIhJgMRXE6LKxylmFPsZIOTAQJTMxOEd22upxtq8vx372REx2DtLa5OH1pmB88o/CDZxTqq0qosJk5dyVWBHx7SxXvuHVdoi998vySsejgrx/ezeMHL/LMkS7+8v++xDtvW8c9NzQnVnyRaJRHf3uBF4734Cg18Wfv3s6aurIZYzudtpTvtbHBxl88tIMvPX6af/nBMTp7R3nLjatnfNEHRnx85YkzdLvHWV1n4+MPbKW63Drn3DXkBjt//fAu2rtG+fXrnZy8OMT5K6kzzgx6CVuJCVuJMfH/mUvDjPtD3HtjMw/e3oJ3NPv42j3XN/PTly7xyNPneGd8pZnuXLx0tBuDXmJdTVlWf1t93AI43tbPjrWZXUW9gxOEwlHqKkqyGtsYt7ev9HqyOr7HPYaj1MSYx082n0qlzUzvYMxlNdf4nfFmaQZVzWoulTYzV/vHuNQ5jL0kvVUK0H419j0oNeqzGrsm7hk4eX4A46bM8Y03zsQWEquqsvuu3rC1Ht2PT3LwWBe3bcu8qHokvkn5nn2NWV8HH7t/C//4vaN84futfPr3982yko+1u/nOr9sY84XY2FTOh966GWe5lcHBzK7FqhIj9+5r4t59TQyM+Dh5YZAzl4fR6STKy8yUl5mosJnjP5spt5mxWY2zXH7J94tcyCg8six/Q1GUj8iy/AJMeZJkWQZAUZQ7c3q3hecQ8DbgR/EYz+lcBzAadDgMpoxumnywmg3s31LH/i11+INhTl4c5Gibm1OXhugb8rGx0cE7b29JuYktmzn/7ps3sHVdJd/65Xl+/OJFzlwe5sP3XYfFpOffnjzDmcvDNDrL+PN3b0/bLyUdcnMFf/NfdvMvPz7J4wcvMTwW5H0HNqLTSRxrd/Otp87hD0a4Y9cq3vvm9bPaNWeDJEnIzRXIzRW4Rv30D/kY800y5gsl/vdO+31g2J/YLKiTJH7/d2Ru37kq5/e9e28Tzx/t5pkjnbx59yocZan3oQyM+Oh0jbOjpYoSS3aOg8aaUswmfVaZbdlmtGmYjXoq7easspgi0ShDniDrGrJfsVY7LLR1jmblARj0+DEZddjT1FFLRktwcI/45xQeLZW6Lsv4n1azrdM1lih3k44LXR4kiawbvdlLTWxeXc7ZKyMMevxpY1pX+8c4eXGIDY2OnK7n5lobv/87m/jmL8/x5SdO899/bw8WkwFfIMwPnm3n0Jl+DHod77lzPXfta5rTlZiK2ooS7r6+mbuvb875tYUw1xWjpUx/dp7nMV/8FLhLluVXAQn44CLPJyVWs4Ebr6vjxuvqCEyGGRkLUleZvg5VtmxdW8Xffeh6vv3UeU5eHOLT33ode6mJviEf29ZV8Uf3b8kqNpGKVc4y/vv79/IvPzrBC8d6GB0LUltZwq9f78Rk0PHh+zZz09b6uQfKgppya1axiMlQhDFfCKNRN+cNLB1mk56337KW7/1G4eeHrvD+e+SUx7W2TXUazRa9TkdLg51zV0YY94cos6a/MWspwE1ZJBZo1FaUcP7qCIHJcEb32bA3SFTN3A4hmepyK3SO4hrxYZ7jazk4GqDaYc36+1s7rVhoyxzxvL4hH44yU9ZiP5XZltkKmAxFuNznZXWtLadrYs+mGs5eGeGo4uaeNDfvp167AsDbblqT8zW9f2sdl/u8PHu0m28/3cZtOxv49tPnGfYGWV1n48P3XZc2YWYpM9cZ/kPgfwOfVxTl+gWYT1FRFCXKMqspZzEZqK/KTwxSYS8x8afv2s4Lx3v44fMd9A35ePPuRn73wHr0umyz6VNTYTPz1+/bw5efOMXxuO+9tsLKx9+xLeuVejExGfVUOfLPtNG4dXs9z7zRyUsne7l7X1NKN0Kr4kavk9i5oTqnsdevcnDuyggd3Z6Mr9Uy2lblcB7rqmLC4xrxZ8w6zKZGWzJaZptr2E9TVfrX+QIhfMFwYt9SNjizTKkOhiIMeQNsas7earCVxNxGc6VUX+r1EomqOXsYdm9w8r3fKLQqrpTC0zM4wVHFzZo625zJOOl46M71XB0Y40ibiyNtLvQ6iftvWctb96+eM6V8qTLXHa5TluVuwCnL8qVpj0uAqihK5nQLwZJAkiTu3N3IljWVuEb9GXfY50qJxcAnH9rJj57vIBSJ8J47N+RtRS0VDHod77y9hX978gxPvHRpViKAe9TP1f4xtq6rpNSSnTtJQ9sfcqFnNLPwuMdxlJpysty0bqT9w76MwpPLHh4NZ9yNNDA8kVF4tIrX2ezh0ci2IZyWsZdrt9LmmjJOXhzCOzGZMh4L0N6dvj5bJuylJuSmcto6Rxn2Bma5rZ9+7Qoq+Vk7Gga9jj9+YCv/8L2jmI16PnTf5mXfAXWuO8SfAEFiNdrePv/TEcwntZUlBe+NSYXRoON9d28s+riLyV7Zydp6G0faXFzoGqF8mmvnaJabRlOxrsEeLxiaPs7jC4QZ8gZzXiFn2x4hH+HR2l7PNba21yebPTwalfZYvbi52iNkanediaZaGycvDtHlGk97TtsTG0dzT93fu6mGts5Rjra7uWtalqdrxMfhcwM0OkvZkaNlnIyjzMw/fuRG9DqpYBf8UmAuO+1xRVE6gcuKolxN/rcQExQIFgNJknjXHbFCF//5y3MzCoi2Ki50ksSuPG4mVrOBppoyLveNEQqnLm+TTSuEVNRlWSw0mz48yWjHzi1qc7dDSMag11HtsMzpatPK02Szh2c6zTVTCQapCEeiXOzx0lBdOmsLRDbs3uhEAo7G434aTx++iqrG9u3kE/hPxqDXrQjRgbktnklZll8BtqeqRr0MstoEgrzZvLqCrWsrOdUxyNkrw2xdW8WQJ8ClXi/XranI6yYFsfI5nQPjXB0YS7k5NptWCKmocljQ6yT652iPkE07hGQcZSYMemnO0k/5WDwQi/OcvTyMPxhO66rVBDVTH55UJLqRpkkw6BwYJxiKsDEPawegvMzMhkYHF7o9jI4HKS8zM+QJcOh0P7WVJXlZxiuduSyeNwGfAgYQ1akF1yDvuqMFmCogerQ97mbLIZstmamCoanrtuVSo206ep2OmgorA8O+jC0esm2HMB2dJFFlt2Thasvd4oHsupH2DfkwGXVU2DO3WkimutyK1axPWzonU/+dbNmzqQaV2N4agF+/3kkkqnLf/tVZl7y5lpirOvWYoigvATcBrcAI8BLQGq9ULRCsaJprbdy+q5HOgXHeOD9Aq+JCkmLZTPmyYY6OpN3uCXSSlHMQHStphP8AABHbSURBVGL7W3zBMGNpCkzm0g4hmWqHBc/4ZMZW4e5Rf6LEVC445xCeqKrSP+yjrrIkZ7eVTpJocpbRNzSRch9SUYRnY+z70NrmwjMe5ODJXqodFm64LnNFg2uVbHPxtgEngZ8BtcBVWZbvnrdZCQRLiP9y7yb0Ookfv3CRjm4PclN52uyobKi0W6i0TxUMnU5UVel2j1NfVZJ1odLpTC8Wmop8Egs0qsu1KtWpxUFVVYY8gaxqtCVTO0dK9bAnQCgczUuMIZZgoKrM6s0TVVUudI9SZbfkvJF6OpV2Cy2r7Chdo/z4xYuEI1HecuPyTXeeb7I9K/+LWMHNUUVR+oHbgM/P26wEgiVEXVUpd+xaleiSWYibTWP9KgdjvhADSSnEQ54AgclIzvGdxFznyGzTgv/ZbMhNZqpKdepioV5fiMlwNJF6nQvOiswp1X2J+E5+WZnNaVok9A5OMBEIF2TtaOyVa1BVePVMP+VlJm7eVpwN1CuRbIVHFxccABRFOTdP8xEIliRvu2kNZpMeiVgWU6Ek9vMkxXnyje9oaMLTnyYJoCCLZ46+PIl2CHlYPM459vLkm0qtoe1rSo7zXEi42fJLLJiO1qMH4N4bVudlsV4rZLvTr1uW5fsAVZblcuDjxDqRCgTXBPZSEx+7fyveiclEuflCmB7nuXX7VGO6Lq1GW46p1BpTe3lS38DdOfThSSbRHiGNq82dZ0YbxGrNOcpMaWM8/YlU6vwswYbqEvQ6aVZmm1KE+I5GtcPKpuZyXKN+btvZMPcLrmGyFZ6PAv8KNAEXgeeBj8zXpASCpchczd5yodFZhiVFwdBud+wGm6/FYy8xYjXr0+7l0SyK6kIsnjR9eQbzqFownZpyKx09HsKR6KzYSN+QD4mpWFCuGA166qtm9uZRVZUL3R7sJcasi47OxZ+9ewfRqJpzg7VrjaxsQUVRXMDvAXcCB4D3KorSN58TEwhWMjqdREuDnf7hWNVtjW7XOFazgQpbflaVJEnUVpTgGvGlbHPsHvXjKDXldWO0lxgxGfXpXW2e/EUNYt1IVTW1K69v2EeVw1JQ18umGhvBUCQhvm5PgJGxIBuayou2MdNs1C/7klELQVbCE+/ceQH4T+A/iNVwu2Ee5yUQrHjWx+M8HT0xqycYijAw4qPJWVrQjbCuqoRwRGXIO/MGHo5EGfYG84rvQFzUKq3pXW1FsHhgdpxnIhDCOzGZt5tNI9EiIZ5gkIjvNBbuZhPkRrbRr38F3qMoyh5FUXYB7wS+NH/TEghWPsn7eXoHJ1DV7HvwpEMrFpqc2TY8prVDyE94AGorS5kIhPEFZvdTHPT4sedpTcFUZltynKc/h3bXmdASDLSWE8WM7whyI1vhKVMU5XXtF0VRDgP5J70LBALWNdjRSRIX4haPltFWqPAk9vIkCU8hiQUaNRWp9/JEo2rMmsrT2gGoKY/NO9niKTSjTSO5N8+FrlGsZn3e8TRB/mQrPMOyLN+v/SLL8gPA0PxMSSC4NrCYYgVDr/R5CYUjicSCfDPaNOrmFJ7CLB6YHYcZGQsSiap5x3dgStSS68H1Dccz2gpMACizGqmym+l0jeEZDzIQbzwnStosPNlGwT4C/FKW5W8R78VDrIyOQCAogPWNDq4OjHGlf2yqOGiBHSVrK1NXknaPFEN4Yjf/ZOGZKg6av8VTZjVSYjbMql4w5WorvNNmU42NEx2DtMZbW8jCzbYoZGvx3Av4gNXECoe6gTvmaU4CwTXD9DhPl2scZ7ml4Kwoi8lAeZlpVpXq4lg8ceEZTR67sMQCDWeFFfdogOi0UkJ9Qz5KLQZsJbnVf0uFlmDw/LFuYGojr2BhyVZ4PgLcrCjKhKIop4A9wCfmb1oCwbWB1hahVXEz7g8V7GbTqKssYdgbmFEU0z0ayLkdQjI1c1k8BYgaxDLbwpEoo/HyROFIFPeon7qqkqKkPDfVxBIM+oZ8GPQ61tYv706ey5VshccITE77fZKYu00gEBRApd1Cld3C5T4vkP/G0WRqK0tQmRmod4/6cZZbC2pKZisxYjHpZyUXJBrAFWjx1CRltrlH/USias49eNKhWTwQS+4QZW0Wh2zP+pPA87Is/4ksyx8HniFWqVogEBTI9HbLxbR4YCrBYCIQwhcMFywMkiRR7bAw6AnMqKw96PEjSRRU4Rmm9vJoxVP7ipRKrVHtsGA1x9K9RRr14pFt5YK/Av4vIAMtwP9VFOX/n8+JCQTXCuunC08RLR6AgXiGWDHiOxrVDiuByQgT0/byDHoCVNrMBbcBSLZ4tHbXhaZSa0iSlHC3FaMwqCA/so5iKoryE+An8zgXgeCaRIvzmAy6vNoVpCLZ4nEVIaNNY6o9gp8yq5FQOBaTKYYFkVylupgZbRq3bKtHJ4nEgsVEFBUSCBaZRmcZFTZzrLtmkfaUVDss6HVSQniKavGUTxULXVNnZ9gbQCW/dgjJlMetJi2lum/Yh14nFZwtN51bttdzy3bRK2cxWVDhkWVZArqJ1X0DeE1RlL+RZfltwKeBMPAfiqJ8U5ZlK/AIUAOMAb+vKIq70GMX7q8VCLJDp5P49O/vxVDEQLdBr6O63Jpoj5AI/hdBHJIbwmntEPJpAJeMTpKoqbDiGvGjqip9Qz5qKqyik+cKY6E/zRbgmKIod8T//b/27j3IyrqO4/h7L7AL7E3YVdwViUt+SwVytBERhBnDUiZKZ5xJRx0tdSgIs+yiQV5GxzKU0cpMBVG0/sDSCRvEacb7JTU1uX4TKpgga0GQXVhgge2P3/PIcQfYZffheY7nfF4zzHAOz3nO9zzs7nd/l+f7vd7M+gBzgXOAicDVZjYY+CawzN0nAI8AsxI6ViTv1FZVMKCy9/ep5Bp8VD9a29ppbWv/aMTT2+3OsD/xxAnno3YICSQ1CBsM2nbtYeOm7bTt2pPoNJvkh7Sn2k4FmszsWaANuBaoANa4+xYAM3sJmEBotX1H9LolwGzgswkcu+hQATY0VCfyQQuBrsV+n8RrMey4Ov62djO7OkKB0IE1FRzX2Pt1jc+MCJ02W9r20NBQzfbd4V6hkUMHJXKdjm+s4Z01m1j7fqjkMGJIXd5e/3yNK98dscRjZt8gJJZc04Hb3X2RmY0nTI9dC+R2w2oBaoGanOcP9FxPjz2k5uaWrg4pCg0N1boWkU/qtaipDN/eK95rpnlLG8Obanr9ORoaqtnRupMBleVs+F8Lzc0trI/uQSrv2JfIdaqOKje88u5GIHyOfLz+n9SviyPhcBPwEUs87j4PmJf7nJn1J6y34O4vmVkTISHkRl0NbAW25Tx/oOd6eqxIUYh3tq381wehHUICazCx+tp+/Gfzdjo6Otj0YRvlZSXU9bB5XWfxluq4XYSm2gpP2lNtNxKqWt9hZmOA9cBK4NNmNhBoBc4C5hDqwp0HvE6oFfcisCqBY0WKQnwvz4p/fgAks7EgVl9bybr/trBtRzvNW3cyqKayVxURcsVbyuN6bUm1pZb8kfbmgp8CE83seeAu4HJ3bwe+CywFXiXsPtsA/Bo4KVqbuRq4OaFjRYpCXVVoyhbf6JnEVupYvJFgQ3MrrW3tiWxaiA2qrSTOYbVVfelfqbs+Ck2q/6PRQv+UAzy/GFjc6bkdwIVJHytSLOJW1XHjs0QTTzRtt3r9lnDuBO+zKS8rZVBNKMvT2x48kp+0OV6kgOVOU8VrJ0mIt1SvXheWTZMc8cD+JKn1ncKkxCNSwOLE06e8lNoBPW+H0FmceOKq2klWFgA4JkqSSdVok/yixCNSwOINBg11/RLpZxOLp9r27uv42OOkDGsMfXJGNKqQZyHSqp1IAYtHPEmuwQBU9C2jun8fWna0A8lVLYidOepYThw6kEEJxy35QSMekQI25OgqTrMGxo9uTPzc8Sinok8Z1f2SLfdTWlKipFPANOIRKWDlZaV86/xRR+Tc9bWhc2p9XWWi03hS+DTiEZEeiafXkqyIIMVBiUdEeiSeakt6R5sUPiUeEemR4cfWUAKMaNLOMzk8WuMRkR4ZOriau6+ZwACVtJHDpK8YEemxqoR3s0lx0FSbiIikSolHRERSVdIR9bwQERFJg0Y8IiKSKiUeERFJlRKPiIikSolHRERSpcQjIiKpUuIREZFUKfGIiEiqVDIHMLNS4F5gDLALuNLd12QbVTbMrA8wH/gUUAHc6u5/zDSoDJnZ0cBfgcnuvjrreLJkZtcDU4G+wL3uPi/jkFIXfX88TPj+2AtcVYxfF2Z2OvAzd59kZiOBBUAHsByY7u77DvV6jXiCrwKV7n4G8CPgzozjydIlwGZ3nwCcC/wy43gyE/2Q+Q3QlnUsWTOzScA44ExgIjAk04Cycx5Q7u7jgFuA2zKOJ3Vm9gPgQSDuh3EXMCv6mVECfKWrcyjxBOOBpwHc/TXgtGzDydQiYHbO4z1ZBZIH5gD3ARuzDiQPfBFYBjwBLAaeyjaczPwdKI9mSWqA9ozjycJa4IKcx6cCz0d/XwJ8oasTKPEENcCHOY/3mllRTkO6e6u7t5hZNfA4MCvrmLJgZpcDze6+NOtY8kQ94ReyC4FpwGNmVoz9rlsJ02yrgQeAezKNJgPu/ns+nnBL3D2uvdYCdNmgSYkn2AZU5zwudfei/U3fzIYAzwIL3f23WceTka8Dk83sOeBzwCNmNjjbkDK1GVjq7rvd3YGdQEPGMWXhWsJ1OIGwJvywmRV7C9bc9ZxqYGtXL1DiCV4mzN1iZmMJUwpFycyOAZ4Bfuju87OOJyvufpa7T3T3ScA7wGXu/n7GYWXpJeBLZlZiZo3AAEIyKjZb2D878gHQByjLLpy88Ha0BghhXfjFrl5QlNNJB/AE4bfbVwiLY1dkHE+WbgCOAmabWbzWc667F/0CezFz96fM7CzgdcIvrNPdfW/GYWVhLjDfzF4k7O67wd23ZxxT1r4HPGBmfYFVhCn6Q1JbBBERSZWm2kREJFVKPCIikiolHhERSZUSj4iIpEqJR0REUqXEI9IFM5sU3Uja2/NMM7Np3Tx2QVQ9IRFmNszM5kV/P83MHkzq3CKHS/fxiKTE3e/L8O2HAiOiON4ErswwFilySjwi3VNvZk8DTcBfCDdQ7jKzGcClhDv5dwMXubub2RxgMqGcyJPufrOZ3RSd6zZC64mTo8f3uvsDB3tjM7uCcJNeB6FFwwx3bzWziwm19DqAN4CrgKOBeUAd0AgscPefEGqKDTezXxEKwd4UlbQ/AbgfGAhsB2a6+xtmtoBwh/6p0We+xd0f6sX1E/mIptpEumcY8G1gNKEe1TQzqyG01Jjk7icTKjbPMLOhhGoPYwhtBE7sVM9rHDDQ3U8BpgATDvamZjYK+DEw0d1HEZLDjWbWRLiL/hx3P4lQtmUKcBHwO3cfC4wCvmNm9cBM4E13n97pLR4F7nH30YQ6ZI+bWUX0b0Oi2KYSKnWLJEKJR6R7XnD396IqvI8Rks024GLga2Z2O/BloArYALSZ2cvANYS6dztzzrUcMDNbSqj2/P1DvO9EYLG7x3XR7gfOBs4AXnb3fwO4+6Xu/qS7zwHWm9l1wN2Esi4DDnRiM6sCRrr7H6JzvEaoP2bRIc9En3c5YUQkkgglHpHuya1WXgq0R1W8XyVMay0hdGEsiSqbn07oazQIeDWa0gIgSiInAb8g/JB/y8zqDvK+nb9HSwhT5O2EKTYAzKwh+nMnYXSzDrgV2BS9pjvnzj0/hArU5JS8F0mEEo9I94w3s+OjBmCXAX8GPg+scfe5hDWW84EyMzuF0BjrBXe/DljJ/lEEZjYVWAj8iZAkWjl4R8/ngKlmFo84riK0rHgDGJvTqmEuofPjZODn7r4oes8mwjTcHjqt6UYjtn+Y2QVRXGOBwYQRjsgRo8Qj0j0rCBsClhGm0uYR2keUmtlK4C1Cc7Bh7v42YSS03MzeIiSeJTnnWkJop72CUO35UXc/YCsOd38XuB143sxWE0ZXs9x9I2Eab6mZLY/O91B07MLouRnAm4T1qVVAnZkt7PQWlwAzzWwZoc35Be6+u4fXSKRbVJ1aRERSpRGPiIikSolHRERSpcQjIiKpUuIREZFUKfGIiEiqlHhERCRVSjwiIpKq/wP+sjOtrqsVaAAAAABJRU5ErkJggg==\n", "text/plain": [ "<Figure size 432x288 with 2 Axes>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "def basis_plot(model, title=None): \n", " fig, ax = plt.subplots(2, sharex=True)\n", " model.fit(x[:, np.newaxis], y)\n", " ax[0].scatter(x, y)\n", " ax[0].plot(xfit, model.predict(xfit[:, np.newaxis]))\n", " ax[0].set(xlabel='x', ylabel='y', ylim=(-5, 1.5))\n", " \n", " if title:\n", " ax[0].set_title(title)\n", "\n", " ax[1].plot(model.steps[0][1].mu_,\n", " model.steps[1][1].coef_)\n", " ax[1].set(xlabel='basis location',\n", " ylabel='coefficient',\n", " xlim=(0, 10))\n", " \n", "model = make_pipeline(GaussianFeatures(30), LinearRegression())\n", "basis_plot(model)" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "This is typical over-fitting behavior when basis functions overlap: \n", "- the coefficients of adjacent basis functions blow up and cancel each other out.\n", "\n", "We know that such behavior is problematic" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "It would be nice if we could limit such spikes expliticly in the model \n", "- by **penalizing large values of the model parameters**.\n", "\n", "Such a penalty is known as *regularization*, and comes in several forms." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### Ridge regression ($L_2$ Regularization) 岭回归\n", "\n", "\n", "*ridge regression* or $L_2$ *regularization*, sometimes also called *Tikhonov regularization*.\n", "- Perhaps the most common form of regularization\n", "\n", "This proceeds by penalizing the **sum of squares** (2-norms) of the model coefficients; \n", "- The penalty on the model fit would be \n", "$$\n", "P = \\alpha\\sum_{n=1}^N \\theta_n^2\n", "$$\n", "\n", "where $\\alpha$ is a free parameter that controls the strength of the penalty.\n", "\n", "This type of penalized model is built into Scikit-Learn with the ``Ridge`` estimator:" ] }, { "cell_type": "code", "execution_count": 58, "metadata": { "ExecuteTime": { "end_time": "2018-05-20T15:44:24.582352Z", "start_time": "2018-05-20T15:44:24.362999Z" }, "slideshow": { "slide_type": "subslide" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAETCAYAAADH1SqlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3Xd4k+e5+PGvJFuS95SxAYPBwMM0m7ASAtlklIw2TdqsJuk4TdOm7emeafvL6Tpt0yYnbdI0u0lDZpOSQYCQEEgw24AfsJnG4L2HbI3fH5KxAduSbcmS7PtzXb6wxvvq9ouk+33Gez8Gt9uNEEII0RtjqAMQQggR/iRZCCGE8EmShRBCCJ8kWQghhPBJkoUQQgifJFkIIYTwKSrUAQjhi1LKDRQATsANxAL1wFe01vlKqS8DyVrr/+lm20Zgutb6SADiuBBYA+gudycA+4DbtdZVA32NQFNK3Q8Uaa2fCnUsIrJJshCRYrnWurLjhlLq28CfgUVa60cGMY5irfWsLnGYgJeAbwPfH8Q4/KK1/kmoYxBDgyQLEXGUUlHAGKDae/tnQLrW+h6l1Pl4kogb2EqXrlal1PeAO4EGYCOwSmudo5QyA78GlgEmYAdwr9a63o9wEgEbsMn7GknAn4AZQDTwHvDfWmuHUmql93WcwE7gYmApcKE3rjigTmu9XCl1J/Bf3virgHu01oVKqaXA/3rjdAMPaK1f6uX+J4ACrfXvvMfmt3haZm3Aj7TWbymlbgeuBVzARKAZuE1rvd+Pv18MEzJmISLFeqXUbqVUKXDAe98dXZ/g/dJ/EfiW1no2sB6I8T52GXA7MB+Yi6f7qMP3AAcwV2s9EygFzunS8spVSu1USu1VSpXjSQavA3/0Pv4HYJvWei4wG0gHvqmUSgOeBj7vbZmsB0Z12e804EJvolgG3Aac7/07fgO84n3ez4H/9e7/C8AKH/d3HJs0YDXwda11nnf/zyilxnmfsgz4mtZ6OvCx95gIcZokCxEplnu/5K7Cc2a8XmtdftZzZgDtWuv3ALTW/8TTigBYCbyota7VWruBh7psdxXwKWCHUmonsAqY2kMcxVrrWVrracB3gSzvftu77OtL3v1sAxZ447oA2Ke13uWN7Uk84y4ddndpyVwJTAA+8u7nN0CKUioV+BfwkFLqWTxJ7wfebXq6v8N5eMYuPva+/l48raELvY9v01qXeH/fDqT28PeLYUqShYgoWuvtwH3AE0qpnG6eYjjrtqPLv10fc3b53YTnjHuW96x/AXCDH7H8A0+r4kVv11jHvj7dZV/nAfd08/rg6fbp0HhWPE932cccYB5Qo7X+K57k8y5wGbBbKWXt6f6z9nl2ITgjnq4ygJYu97u7iVUMc5IsRMTxthg+wdPl09VuwOAdG0ApdQ2Q4n3sTeB675gCeMYIOr483wbuUUqZlVJG4FHgAT/D+S6QDXy1y77uU0oZlFIWPMnkHjxn8ZOUUnne2K4Hkjn3C7xjHzcppbK8t7+Mp7sLpdRHwGyt9RPAF737yOzp/i773AxMVkot8O5nGp7WzgY//04xzEmyEJHqHmCldywCAG9X0CrgF97um+uAcu9j6/Akgc1KqXwgCc9ALsAvgCN4Brb34Tmr/pY/QWita/EkjJ8rpUYA9+IZqN6DJ3ntAX6jta4GbgKeUkptx3P27+gSQ9d9voNnIPxdpdRu4GbgOm/32XeA+5VSO/B80f/cOy24p/s79lkJfBr4s1JqD/AccIfWumP8R4heGaREuRgOlFLzgMVa6we9t78JnKe1vnGQXj8R+BHwM611s1JqDp7WzkhvEhAirMnUWTFcHAC+q5T6Ip6un2N4umsGhda6XinVBmxVSrUD7cBnJFGISCEtCyGEED7JmIUQQgifJFkIIYTwKeLHLBwOp7um5pwJJcNSSkosciw85Fh0kmPRSY5FJ5stoU/X0kR8yyIqyhTqEMKGHItOciw6ybHoJMei/yI+WQxH9nYn5TXN2Nudvp8shBABEPHdUMOJ0+XihXVF7DhQQXW9ndREC7Mn2bhxxQRMRsn7QojgkW+YEOlP6+CFdUWszS+hqt6OG6iqt7M2v4QX1hUFL1AhQkxa0uFBWhaDxN7upK7RTnxsNK9+cNjv1kHHdjGWKHYcqOh23zsOVHL9stxg/wlCDCppSYcXSRYD1PFlnhRvwRJ97uDZ2W94i9lEa1vnGVJH68DpcnPLparH7ZLjLdQ02ruNobq+lUMn6khIjKG8prnHWISIJB0t6Q4dnxWAmy+e1Of92dudnKxswtnulM9HP0iy6IOuicHpcvPPdw9QeKyG6no7KQlmJo9N5eZLJhJriT69zbPvHmDDjtLTt7smiq7Wbz/BtsJy0pNjMBoMVDe0Ul3fmRx6ShQABgP89vmdGI3gckFqgpk5KkPOwERI+DqB8ncfPbWkP9x9klXnjzvjc9ZbHGe05hvspCZIC6U/JFn4obvWQbvDibPLagTVDW18VHCKrYXljEyLJSHOTGlFE9UNPX/Jn62+uZ2GFs8aOn2pwuLyPtfl6oxlIGdgQvSH0+XiubUH2XmgktpGT7fR5DEp3HTJJGIt3X/V9JRY6hrtZ5wsddXa5uS5dw9y11Xdr0/lb2seev58DCThBSJZhqOhUBvKXVHR4PtZA/Dc2gNnNIf9lRgbTX1zu+8ndpGWaOXeG2bw08e39vgcc7SRtnZXj493sJpNfP5SxbRxqSTFmfsUR6Sz2RII9vsiUgzGsXC6XNz/RD7HyxvPecxqNrI0b+QZZ/L2dgdPv32AgkNV1De3E2sxYUuOYcyIBFrbnDTbHehjNTic3X8/GQwQa4nCZDRgMBowGrw/RmhqcdBsd3S7XVeWaBNL87KIsUQRZ40iPiaaGIuJLXvLKCqppbapvU+t9O6SZTi3YPp6UZ60LHzorTncm5QECz+7Yz73P7GVqh7OkLpT09CKAUhLtHS7XVqilZ/cPo+S8kZ+9/zOblfO6dDa5uSxN/YBkJkay6TsZNSYZKbmDL/kIQKv6xn0v9Yd7DZRALS2uVibX8KB47WkxFs4VdNCeU3zGa3nZruTo2WNHC3rfh9nc7shLiYao8GAy+3G5XLjdrtpd7hpafOdKDrif29b7yeBHa30HQcqmD4+jZFpcYyyxTHaFk9il89Qd8lyoGMs4UaShQ+1Da19+rLvUNdop8XuYPYkW59aJSkJVmwpsT1uN3tSOgmxZsaPSiK1h4TSITHWzIo5oygqraOopI6Nu0rZuMszfpKTmUBebhp5uenkZCVgNMgqmsI/3c1Samhp87ndsbJGjpU1Emf1tAi6azUkx5n53i1zSYo143C5+O+HN9Hadm4rOi3Rys+/sOCcbp7ymma+/9ctfv0dSXFmvrJqOm63m6ZWB3WNdl56v5hm+7njilX1dt7fWXrGfYmx0YwfmcSE0UkUn6jtMVnuOFDJ1YtzaLE7IrpratglC3/7E1vbHGzZW8Z72/ve/QSeL/2keAs3rpgAeN4wNQ2tpCRYmT0pnXaHk/d3njxnu9mT0rFEm3rcruN+S7TJZyJaMDWDa5aOAzwf8OPljRQerWXPoSoOHK/lyKkGXt90hMTYaGZNtLFgSgZqTHJYNplF+OhulpK/vve52STHW3r8Qq9vbgO3G4vZhAUTS/NG9njS1N3nNyne4vMkqsP8KRlMyk4+fbu8ppln3ul+4UADcO8NM2htc3GispETFU0cK2tgZ1ElO4sqe32dqvpWfvr4J9Q1toV911Rvhk2y8HfO9smqJtZvP8GmgpO02J2YjAZsyTFU1Lb0svdzdX0z33zxJK5flntGknK6XERHmXpMBiajsdvtuupMKBVU1du7zIayMEfZTj/esb+czERyMhO5/LwxtNgd7DtSza7iKnYXV51udSTGRjNXZbBgSgYTs5OlxSHO0N9u2Q6xlqhev9A7TrI6+DppOltvJ1FWs4m2dmeP++gtrtREK5PHpno/gyNO31/TYGebLue5tQd7/btrGz0tr0jumho2A9w9DVJfPG80N66YwK6iKtZtL2HfkRoAkuLNLJs5kmWzRpEYF+1NNJ43rNn7pW1vc5Icb8ZqjqLN4aSmwX7GG9GfM4dATTOsa7QzemQyJaW1fd6Xy+XmYEktn+wvJ1+X0+AdlE9LtLBkRhZLZmRhS44JaMzBJgPcnQJ5LHYXVfLH1bv7ta3VbOIPX1uKJdrU6+exuy/RvrznOk8Mz0wwq84fj9lqxtnW3uM++hpXR2w/enRLn1pYHWOPoeya6usA95BPFvZ2JxU1zfxp9e5u/zNjLFFYzSZqvFNcVXYyy+eMYs4kG1Em4zn76njDAme8ecPhCzQQXwpOlwt9rJaP95WxtbD89JTDKWNTWDIjk+LSenYXVZ7ROlt1/jgam9vDKnlIsug00GPhdLnYpit4d+txikvre3ye1Wwi1hLV43TxFXNH8flL1Ol9dveFHsjume4+k76ORX/j+vsb+9hUcKpP8aXEW0I6a0qShVfXbidfGd8cZWTxjCxWzBnFaFt8sOIMukB/QdrbnOTrcj7YfZIDx2t7fJ7FO5U3nPpjJVl06u+xaG51sHFXKe9tO05VvR0DMCM3DYDdxVXnPP/ieaO5flku1fWtrN1Wwq6Dld7Wdme36Nnvi8E+yfL3WPQ1rma7g28/9GG3g/H+6q31EgySLLz8vTYi1hrFL+86j+Qu/aSRKphfkMfLG3jgme09XoHe1ZLpmXz+MnX6QxaKVpcki059PRbNre289ckx1uaX0NrmxBxt5PwZI7l4/mhGpMT6ffYdDq3tswXzfdHf67E6pCZY+NUXFw7mZ0Sus+jLINzi6ZlDIlEEmyXahN2PRAGwqeAU+49WM2uSDQOw82ClFIKLAB3XHazZcpSmVgdJcWauWpzDBTNHEh/TWVrDn8kX4HnPZKTEDuafEFLdDcbPnJjm/QxUUdPQSmKc+fRg99mqG+y8v/MEF80dHZafjyHZsjh6qo6fP7Gtxw0MBkgNQh9pqAXzrKk/g3g9GYzmtrQsOvk6Fg6ni427Svn3piPUNbURZ43iioVjuWju6LBpEQTKYLwvumtRda0e7etC3YzkGK5YOIbF07OIjgred9Owa1l0rSJ5sqqJR9/Yx9FTPb8ZUhMsfOMzM7Elxwy5D0Iw+XNdh786SqrL8Q8tl8vNln2nePWDw1TWtWKJNnHV4rFcvmAMsdbei/SJnnXXoup6X0+fo8UzMjFHmfhwdylPvqV57cPDXLZgDMtmjcRqDv1XdegjOItSygg8DMwE7MBdWuseV/f54gNribNGEWUyUtfk+yrSOcoW0YPYoXTjigk4nS7e31l6unhhf9Q0tFLXaB9WXRThxO12s+NgJa9sPMSJyiaiTAYunjeaKxflSBmYQdDbtSMmo5GrF+fw7tbjrN9xghfWFfHGR0e4ZF42K+aOPqM7EAZ3XCjskgWwCrBqrRcppRYCvwc+1dsGTa2eWjBGAz1+iXV3oZroG5PRyC2XTQaDgfXbT/R7PykJljMuvBKDZ9+Ral56/xCHT9ZjMMDSvCyuWZJDelKM741FQPga80lJsPCZFRNYuWgs720rYW3+cV798DBrPjnG8lmjuHRBNgmx0YO+MFQ4JoulwFsAWustSql5/m7YU6IwGODnX1pETlZSQAIMZzZbQtBf4+ufnUNCnIUtBSeprG0hPTkGc7SJkh5q45zNlhrLiIwEoqPOPBNqbXNQU28nJdESkGb3YByLSFHd3M5T/9nPbm9piiV5I/nc5ZPJHjH8jlE4vS9G9/KYDbhrTCqfWzmVt7cc4ZUNRbz1yTHe217CyPS4M7rbO64Mj40xc/eqGUGJNRyTRSJQ1+W2UykVpbX2r5RkN1ITrES53UN+wHMwB3VXLcnhigXZp8+MokyG09Mpq+tbMfTSyis8UsMdv3iHS+dls2zWKCxmY8DPkmSA26OkopE3txzj472eC8amj0/lugvGk5OZCDDsjlGkvi+WTB3Bgkk2NhWc5D+bj/Y4LvvBjhNcNHskCbG+uxP7mjTDMVnUA13/CqO/icJ61iInHXoqOiYG5uyBvK5N67e3Hu+2q2ppXiZx1mg27CzlxQ3F/PujI4xIiTmjNHUk188JF+W1Lbz2wSG27C3DDUwYlcT1y8ajxqSEOjTRT9FRRi6cNQqVncwPH/242+fUNNr56eOfMG9y4FfKDMdksQm4GviXd8xij78bLp6RidFg8LvomAi8jgRy88UTMRm7/7/oGMRbv+ME7+aX9LiGgcya6ruaBjtvfHSEjbtKcbrcZGfEc8fV0xibHotBikIOCamJ1h7XuwFP0cK1+SU4XW5uudRTXiUQA+HhmCxeAS5RSn2EpzLwHb092WjgnC8iXxcLieDzNYgXa43mykU5zJ6Yzo8e+6TbfVTXy6wpf9U1tfGfzUdZv+MEDqeLjJQYrj1/PPOnZDAiIzEiu15E9/ydxr5++wnqGttosTs4WdVEbWMbaV26ePsq7JKF1toFfNnf5z/yvYvPqSI53K4cDWe+/i/SkmJ6PEsyGQ0Ul9aTlmQdMhdO9ldPZ4aNLe2s2XKU97aX0NbuIi3RytVLclg8PfOcQphi6Oj4st9WWEFNY88X+G0/q5JFRxdvZV0rv/jykj695pC8gnu4itTBO181dVISLCybNZILZo70uzRLpB6Ls/W0DssV541h/Y4Tp+s3pSRYuGrRWM6fOfKcJDFUjkUgDLVj0dDcxk8f/6TbEiIp8WZcbjd1Te09bR73799/qtnf1wq7loUYfnq6SOmCmVls2FHKRwWeq4z/vekIcybZWDFnFJOyk4dFH3x3q9KtzS9h3bYSXG5IjDNz7fnjuXD2yHOmIouhLyHWzLzJGd2ebE3JSWVzD2XTDYAbsoBif19LkoUIud7GNz5/qeL6Zbls2VfG+u0lbC0sZ2thOVlpsSydkcXCaZmkJHS2Njq6axKGwEVmvRfENHDjilwunD1KxuWGuZ5OtladPw59rKbHlf+q6lvPXde5F9INNYQMtSb22dxuNwdL6li3vYTtBypwON0YDDA1J5WFU0dwqLSO3cVVVNfbsaXEkJebdsb0wXAsmQ1nFpnrunJaSXkDP3l8a7fbGIAHvrTQr7G5of6+6IuhfCy6e3/3tvLf12+aO7wKCYrhw2AwMCk7mUnZyTS2tLO1sJyP9pxk7+Fq9h6uPuO55TUtpz8kN66YwAvritimK6hpsJMYZ2bupHRuvmRStwPng5VUzl6gq6NcTUJMFInxFqrrW3vcNjXRKiVTxBm6m0zS1zXMeyMtiyFkKJ819eZYWQO/fnY7Ld1ckBlnjWLauFQ+2V9+zmOjbXH89I75pxNGT4PJwaq342tg3xxtZFR6HIdPnvt/2pcy78P1fdGd4Xoselhitk8tC5lbJyJeT1fug6fIZHeJAqCkoonn1h48fbtjMLmq3o6bzsHkF9b1WPS43yrrWtiyt/c1m+Ot0Xzrs7O5eN5o0hKtGA2Qlmjl4nmj5UJT0ScdrY6BtJSlG0pEvKR4C6k9XKthNRt7XRd5c8Eppo9LJSstju26+6Qy0CvJ7e1OSiubOF7eyKHSOg4cr+NUte8Zi7WNdhqb2/xalU6IYJNkISJeb1e0Ts5OYWdxVY/btrY5+fNLvVeUqa5vpeBQFVlpccRYojAawA243Z5Bd3u7k2a7g5ZWB42t7VTX26mqb6WqrpWymhbKq5vp2tlrNZuYmpPC4ZP1tNh7Xqo2JaFzXEIuNBWhJslCDAlnD+SlJ3tmQ61cOJadf9nU43bxMVEsmzWKk1XN7CqqxNlNqVw38NArBf2KK84axcTsZLJt8YzKiGNcZiKjM+IwGY0+xyykAKYIJ5IsxJBw9rUauTlpNNS1AJ6B7JKKpm63Wzgtk+uX5QI9DziPH5nIpNHJtLQ5aG1z4nJ5puyCZ4aWJdpErDWKWEsUcdYoUhKspCV5ir31tjxpZ4I7czaULNQlwpHMhhpChutMj+50PRZtDge/fHLbGQnDZDSwbFYWN108qZvZUN1Xyg2Wnq6zCBR5X3SSY9Gpr7OhJFkMIfJB6NTdsWhobuNwaT0JsdGMtMX3+IUcrhfv9Ze8LzrJsejU12Qh3VBi2EiINZM3Id3n82QwWYhzyXUWQgghfJJkIYQQwidJFkIIIXySZCGEEMInSRZCCCF8CkiyUErND8R+hBBChKdATZ39jVIqHXgKeFpr3Xs5TSGEEBElIC0LrfVy4CrAAryjlHpDKXWDUqrnWgdCCCEiRsDGLLTWR/G0LJ4DpgP3AgVKqWv93YdSKkkp9W+l1PtKqc1KqUWBik8IIUT/BWrM4k6l1PvAWsAELNVaXwAsBx7pw66+CbyntV4G3A48FIj4hBBCDEygxiyWAT/VWm/oeqfWulQp9V992M8fgI4VbKKAnhchFkIIMWhCVkhQKXUncN9Zd9+htd6qlMoE1gDf0Fq/72NXEV8JUQghQiCyq84qpWYAzwPf1lqv8WMTqTrrJRU1O8mx6CTHopMci04RXXVWKTUVeBG4UWu9K9TxCCGE8AirZAE8AFiBPymlAOq01p8KbUhCCCHCKllIYhBCiPAktaGEEEL4JMlCCCGET5IshBBC+CTJQgghhE+SLIQQQvgkyUIIIYRPkiyEEEL4JMlCCCGET5IshBBC+CTJQgghhE+SLIQQQvgkyUIIIYRPkiyEEEL4JMlCCCGET5IshBBC+CTJQgghhE+SLIQQQvgkyUIIIYRPkiyEEEL4JMlCCCGET5IshBBC+CTJQgghhE9RoQ6gO0qpycDHwAitdWuo4xFCiOEu7FoWSqlE4PeAPdSxCCGE8AirZKGUMgB/A34ANIc4HCGEEF4Gt9sdkhdWSt0J3HfW3UeB57XWTyuljgCT/eiGCs0fIIQQkc3QpyeHKll0RylVBJR4by4EPtFaX+BjM3dFRUNwA4sQNlsCciw85Fh0kmPRSY5FJ5stoU/JIqwGuLXWEzp+97YsLg1ZMEIIIU4LqzELIYQQ4SmsWhZdaa1zQh2DEEIID2lZCCGE8EmShRBCCJ8kWQghhPBJkoUQQgifJFkIIYTwSZKFEEIInyRZCCGE8EmShRBCCJ8kWQghhPBJkoUQQgifwqrqrBBCiPAkLQshhBA+SbIQQgjhkyQLIYQQPkmyEEII4ZMkCyGEED5JshBCCOFT2K6UJ0SkUkrdC1wPXAgsAf4BzNZaN4YyLiEGQloWQgTenwEX8BXgMeB2SRQi0slFeUIEgVJqHFAAPKy1/u9QxyPEQEnLQojgGAs0AHOUUoZQByPEQEmyECLAlFLxwKPA1UALnu4oISKaJAshAu83wJta663AV4GfeLulhIhYMmYhhBDCJ2lZCCGE8EmShRBCCJ8kWQghhPBJkoUQQgifJFkIIYTwSZKFEEIInyK+kKDD4XTX1DSHOoywkJISixwLDzkWneRYdJJj0clmS+hTZYGIb1lERZlCHULYkGPRSY5FJzkWneRY9F/EJwshhBDBJ8lCCCGCwO12s+dQFbWN9lCHEhARP2YhhBDhxuF08cw7mo27TpKZGstP75iPJTqyu8CkZSGEEAHUYnfwp9W72bjrJDEWE6eqm3nhvYOhDmvApGXRg0/2l1Fe04LJZMBkMGA0GjAZDZhMRoyGjt8Np39PS7IyZkRCqMMWQoRQdX0rf3xxFyUVTeTlpnHXVVP5zXM72LCzlBnj05g9yRbqEPtNkkU3jpU18Mhre/u83TVLcrhm6TiMBlnrRojh5uipBv64ehd1jW2smDOKmy6eiMlo5EvXTOX+J/P5x5pCcrISSUmwhDrUfpFk0Y33tpUA8JnlE8hKi8XlcuP0/nT87nK7cTpdOF1uHE4367aX8PqmI5RWNXPnlVMivn9SCOG/XUWVPPLaXtranXx2xQQumZ+NwXvSOMoWz2eWT+DZdw/w+Jv7uO/GWRF5QinJ4iyNLe1s2VdGRnIMly7I9vs/dcmMTB56eQ/5heVU1LZw7/V5EXsGIYTw33vbSnhu7QGiTUb+69oZzFXndjWtmDOKPYeq2F1cxbtbj3PZgjEhiHRgZID7LBt3ldLucLFi7ug+Zf+EWDPfvmk2S/OyOHqqgfuf3Mrhk/VBjFQIEUoul5vn3zvIs+8eICEmmu/cPKfbRAFgMBj4wsopJMaZeen9Yo6VNQxytAMnyaILp8vFuu0lWKJNLJ2R1efto0xG7rhiMjeumEB9Yxu/fnY7n+wvC0KkQkQeh9NFaWUTWwvLefWDQ/zt33vZsPMEDqcr1KH1mb3dycOvFvDO1uNkpcXyw1vnMX5kYq/bJMaZufPKKTicbv76+l7s7c5BijYwpBuqix0HKqmut7N8zihirf07NAaDgcsWjGFEaix/fX0vj7y2l5NVzVyzJOd0H2YwtDucbNpdyvZ9p1BjkpkxPo0ok5wLiMHncrmpqGuhtKKJksomTlQ0UlrZxMmqZpyuM5dx3rK3jDc/OsLKRTksnZFFdFT4v2frmtp4cPVuDp+sZ/KYZL563QzirNF+bTtjfBoXzx3N2m0l/GtdEbdcpoIcbeBIsuiiY2D7ojmjB7yvWRPS+eEtc3lw9W5e+/AwJ6ua+MLKKZgDOPDtcrvRx2rZsvcU+bqCFrsDgHe2Hic+JpoFUzJYND2T8VmJQU1UQgBsLjjFO/nHOVnZRJvjzNaCJdrEmBEJjLLFMSo9jlG2OFLiLWzcdZINO0/w9NuaNzcf4cqFY1maNzJsk8ap6mb+94WdVNa1snh6JrdfMbnPJ2WfXp5L4bEa1u84wYzxacyamB6kaAPL4Ha7fT8rvLkrKgbe/3esrIGf/WMr08al8q0bZwUgLI/6pjb+8soeikrqyMlM4GsDHPh2u90cL29ky74yPt5XRk2Dp5RASoKFFfOyGWuLY8+haj7ed4r65nYARqTGsmjaCBZNy8SWHBOQvyvc2WwJBOJ9MRQE+1g4nC7+ufYg63ecIMpkYGSaJxmMssUzMj2O0elxpCZZexwDrGu0s+bjY2zYcYI2h4uUBAsrF47lgplZRAe48N9AjkVDcxu/fCqfitpWVi0dx9UD6C0oqWjk/ifysZpN3H/nApLjB38yTF+rzkqy8PrHf/bzwe6T3HtDHrMmBDbTtztcPPVF1TuAAAAgAElEQVRWIZsKTpEcb+beG/LIyey9f/NsVXWtbNl3ii37yjhR0QRAjCWK+ZNtLJyayaQxyYzISDz9QXC6XOw9XMNHBSfZcbCSdu+Z3sTRSSyansn8yRl+N50jkSSLTsE8FjUNdh5+dQ/FJ+oZbYvjnutmkJES26991TW18dbHR1m/PXhJo7/Hot3h4nfP7+BgSR1XLc7hugvGDziWtfnHeW7tQaaNS+W+z8wc9Om0kiz6obGlnW89tImUeAv/70sLg/Kf5na7eeuTY6xeX0x0lJGcrMTTV4FHGY2nf++4SjzKaMBkNGIyGThyqoEDx2sBiDIZyMtNZ9G0EeTlpp3xIerpg9Bid5Cvy9lccAp9rBa3dz8zJ6Rz+XljyB2ZFPC/N9QkWXQK1rHQx2r4v9f2Ut/UxsKpI7jt8slYzAP/Uq9vauOtT46xbnsJbe0ukuPNrFw4lmWzRg44afTnWLjdbv7+5n4+KjjF/MkZfOlT0wLyHeF2u/nT6t3sLq7isxdN5NL52QPeZ19IsuiH/2w5yuoNxYPyH7bjYAVPrik83UXkL5WdzKLpmcxVth5bBP58EKrrW9m89xSb95ZRWtlElMnAl66ZxlyV0ad4wp0ki06BPhZut5u1+SW8sK4IgBtXTODieaMDPi5W39zG258cY922E9jbnaQnWbnnuhkDKqvTn2PxxkdHeHnjIcZlJfLdm2cHdNyxrqmNn/79Y5rtDn5823yyM+IDtm9fJFn0kdPl4ruPbKapxcHvv7qk37Og+srt9l4V7nTjdLlwdPm9837P7aQ4i1/jHH35IHjKJ1fzf68V0Nbu5LbLJ3PBzJED/bPChiSLToE8FvY2J0++VciWfWUkxpn5yqemocakBGTfPWlobuPNzUd5Z+txLNEm7r56KnP6WWOpr8civ7Cch18tIDXRwo9vnUdSEMYWdhdX8scXdzMyPY6f3DYvoMmoN8NupbyB6pguu3hG5qAlCvBMsY0yGbGYTcRao0mMNZOSYCE9KYYRKbGMTI8jOyOenMzg1JIxGAzk5abxnZtmE2eN5ok1hazZcjTgryOGjvKaZn71dD5b9pWROzKRn94+P+iJAjwXvH72ool89doZuHHzl5f38MZHRwj2ie7hk/U8+sY+LGYTX79hZlASBUBebjoXzRlNaWUT/1pfFJTXCIRBnTqrlDICDwMzATtwl9a6qMvj9wGf9d78j9b658GOKZDTZSPRuKxEvv/5Ofzu+Z28uKGYhpZ2Pn1hrky1FWfYXVzJ317fR7PdwfI5o7jpoomDfh3PXGXDljyXB1/azcsbD3Gisok7rpgclDPxqrpWHly9G4fTxb2r8oLePfTp5bnsP1bDuu0nuOK8saQlWYP6ev0x2C2LVYBVa70I+B7w+44HlFLjgc8Bi4FFwKVKqbxgBnOsrAF9vJZpOSmMTI8L5kuFtay0OH7w+blkpsby1sfH+MeaQpyuyLuqVgSey+3mtQ8P86cXd9PmcPGFlVO45VIVsgs+x4xI4Me3zWfCqCQ+3lfG/zy7/fT08UDpWI+irqmNG1dMZGaAZ0d2xxxtYvnsUYAnMYejwb4obynwFoDWeotSal6Xx44Dl2utnQBKqWig1Z+d2mz9G/D6p3eA7rqLJvV7H+Gmv3+HzZbA775+AT97bAsf7j6Jw+Xmvz8/eP2nwTBU/k8DoT/Hwuly8+untrJ5z0kyUmL4/u0LmDA6OQjR9Y3NBr+593weWr2L97Ye51dPb+OHdyxgkp9dYr0dC6fLza/+8TElFY1csSiHm6+YMmit7OULxvLsuwfYf7yOz1w2ZVBesy8GO1kkAnVdbjuVUlFaa4fWuh2oVEoZgN8CO7TWB/zZaX8G7xpb2tmwvYSM5BjGpscOicHQQAxk3ndDHn95eQ9bCk7xw4c/5GvX5xFjibwL/WWAu1N/j8Waj4+yec9JVLanpEW8xRRWx/TmFRNIi7fw4voivvfQh3xh5RTOmzqi1218HYvn3zvI1n1lTMtJ4dqlOVRWNgY67B4ZgZHpcew+WMGJ0tqgn6j19QRisNuS9UDXCI1aa0fHDaWUFXjW+5z/CmYgp6vLzhkVkbXlgyXGEsU3Pj2TuZNsFB6r5TfP7aC+qS3UYYlBVlLeyCsbD3lmPF07nfiY8LuA02AwcPl5Y/j6p/MwGQ389fW9vLzxEK5+Dnxv2HnidGHAr6yaHpKutpm5abQ5XBQeqxn01/ZlsI/GJmAlgFJqIbCn4wFvi+I1YJfW+ksd3VHBcEZ12by+V5cd6qKjjHxl1XQumDmSo2UNPPDMNirrWkIdlhgkDqeLx97Yh8Pp5vbLJ5MYaw51SL3Ky03nh7fOw5Zs5Y2PjvDwKwW0tjl8b9jF3iPVPPP2AeJjovn6DXnEhqi6QV5uGgC7iqpC8vq9Gez+hVeAS5RSHwEG4A6l1DeBIsAELAMsSqkrvM//vtZ6c6CD2Hmwa3XZ8DtjCgdGo4HbLlckxEbz5uajPPDMdr75mZmMsg3eRUMiNF7fdJhj5Y0szcuKmCJ3o9Lj+PFt83n4lT1sP1DB/3u6mbzcdCzRRizmKO+/JjLSGrG3tGE2m7BGm7BEm2hoaefhVwowGhlQuZJAmDA6iVhLFLuLK3G7J4XVrES/koVS6vta6wfOuu//aa1/0JcX01q7gC+fdXdhl98HZb7Y2vzhPV3WXwaDgeuX5RJnjeZf64v4n2e3c891MwZlbr0IjeITdby5+ShpiVZuumhiqMPpk/iYaL554yyeW3uQDTtOUOKtoeavO6+cwqTs0A7gm4xGpo9P5ZP95ZyobGJ0GJ2c9ZoslFL/A2QA1yilur5zooHzgD4li3BwvLxRpsv20eXnjSEh1nPh3u+e38ltl0+W7rshyN7u5LE39oEb7rpqSkRObIgyGbn1MsVlC7JpaG7H3uaktc1JW7uT1nYn0eYoqmqasbc7sbc5T/+bl5vGkn4seBYMM3PT+WR/ObuLqyInWQAvAVOBi4D3u9zvAO4PVlDB9N624wBcNHdwi3ZFuiUzskhNtPLwK3t4/D/7OVndxPXLcmVywBCyen0xZTUtXDo/O+JbjyNSYhnRzZ8QCbPkpo9PxQDsLqpk5cKxoQ7ntF6ThdZ6K7BVKfWq1rqut+dGgsaWdjbvLcOWbD09kCT8N2VsCj+6dR5/fHEXa7Yco6y6hbuvmhqQSqMitPYeqea97SVkpcVy/bKBl98W/ZcQa2b8qEQOnqijsaU9bGai+TsbapVSqlIp5fT+uJRSkbWALJ3TZS+aMxqjUc6I+2NEqme94cljktl+oCIoV9CKwdXc2s7jb+7HZDRw99VTA77gkOi7vNx03G4oOBw+s6L8TRY/AS7UWpu8P0atdUS9ozqmy5qjjdLfPkAdA4nn52VxtKyBXzy5lSOn6kMdluinZ989SE2DnasX5/R5US4RHDO9PR+7iyMvWZRqrQuCGkmQ7TxYRXW9nSXTs2S6bABEmYzcfsVkPrN8AnWNbfzPs9vZpitCHZboo226nM17T5GTmcDKReHTPz7cZWfEk5JgYU9xFS5XeCwj4e90h21KqdXAO3Sp16S1fiooUQXB9gPlAENqzYZQ67iCdkRqDH97fR8PvbKHGy7M5YrzxoTV/HDRvbqmNp58SxMdZeSuq6aGrDigOFfHEgLv7yyluLSOiWFQk8vfd0cS0ICnGuxy78+FQYop4FxuNwWHq0mKNzNmRPhMRRsqZk+08f3PzyElwcLqDcU8/p/9OJxStTacud1unlxTSGNLOzcsy5Vp5GEoL8y6ovxqWWit7wBQSqVorcOvaIkPx8oaaGhuZ8mMTDnjDRJP6eh5PLh6N5v2nKKitpV7rpsRNjM5xJk27TnFzqJKJo9J5qJ5cnFqOJo6NpUok5FdRVVcvyw31OH417JQSs1UShUCu5RSI5VSRUqpOUGOLWD2HKoGYMZ4mS4bTMnxFr77uTnMUzYOHK/lgWe2UV3vV5V5MYgq61p4bu0BrGYTX7hyilwrE6YsZhOTxyZTUtEYFp8jf7uh/gxcC1RprUuBrwCPBC2qACs4VIXBAFNzUkMdypBniTbx5VXTuXR+Niermnngme2U1TSHOizh5XK7efzN/bS2Obn54kmkJ8WEOiTRi5m5ntpcu8KgK8rfZBGrtd7fcUNr/S4QnAVpA6y51UHxiXrGZyVKl8ggMRoM3LhiAteeP46q+lYeeGY7x8sHb10A0bP3d5ZSeKyW2RPTWTIjM9ThCB9Oj1sUhX71PH+TRbVSaibgBlBKfQ6oDlpUAbT/aDUut5vp0gU1qAwGA1cvGcfnLplEfVMbv352O8UnIr4IQERrbm3nlY2HsJpN3HqZkvG7CGBLjiErLZb9R2toaw/tddD+JouvAA8B05RStcA3OLd6bFjqGK+YPl66oELhormjueuqKbS2Ofnd8zvZeyQizjGGpNc3HaGxpZ2rFueQFB8RHQMCmDkh3bsgUm1I4/ArWWiti7XWS4FUYIzWer7WWgc3tIFzu90UHK4izhrFOLkyNWQWT8/iq9dOx+ly8acXd8nFeyFwqrqZ97aVkJ5k5RKZ/RRROq7m3lUc2q6oXpOFUupv3n/XK6XWAf8GXlVKrfPeDmulVc1U19uZNi5VakGF2OxJNr7x6ZmYjEYefnUPm/acDHVIw8q/1hXhdLn5zPIJUvspwuSOSiLGEsXuoirc/VwyNhB8XWfxV++/PwtyHEFRcMgzg0CmzIaHqTmpfPumWfzxX7v4+5v7abY7uGSelIoPtl0HKthZVMmk7GTmKluowxF9FGUyMn1cKlsLyymtbArZapW9tiy01tu8vxYBK7XW7wPHgDs5c4U7vymljEqpR5RSm5VSG5RSE856/G6lVL5SaotS6qr+vEaHjmQxbZyMV4SL3JFJfPdzc0iKN/PPtQd5/cPDIT1bGupcLjePvV6AAbjpookyqB2hwuFqbn8HuJ8BDnl/LwU+AJ7u52uuAqxa60XA94DfdzyglMoE7gWWAJcBDyil+jUSZ29zoo/Xkp0RT7IM5oWV0bZ4vv+5OaQnWXn1w8O8sK5IEkaQbNxdypGT9SyZkcXYzIRQhyP6aUZuGgZCe72Fv8kiVWv9VwCttV1r/SjQ35XclwJvefe1BZjX5bEFwCbva9ThadHk9edF9PEaHE63zIIKUxkpsXz/83MZmR7HO1uP88SaQkkYAdbc6jg9VfY6WdAooiXGmhk/MpGikjqaWttDEoO/VWdblFJXaK3XACilLgb6thp6p0Sg64R7p1IqSmvt6OaxBjxFDHtls517xlT04WEAzp+d3e3jQ1Uk/a02WwK/vfcCfvroZj7YfZLsrCRuulQFdP/D2T/+vZeG5nZuuWIKE8f199xu6InU98WivJEUlxZyrLKZC2YP/ow2f5PFl4FnlFIdXU/HgVv6+Zr1QNf/LaM3UXT3WALgc3Jxd2vqbt17CovZRHp8dNivuRsokbC+cHfuuXY6v3gin+feLiQ5Jop5kzMGvM9IPRaBUlbTzGsbi0lLtPKpZbnD+lh0Fcnvi1xvN+KHO0qYMtrnObRPfU2a/l5nsVNrPR1QwHit9ewBLIa0CVgJoJRaCOzp8tgnwPlKKatSKgmYAvT5dcprWyiraWHq2BSp0R8BEmPNfP2GPCxmE4+9sY+jpyLzwxxOXlxfjNPl5tPLc7FEy1TZoWDMiHiS483sOVQdkgWR+nqdxYsM/DqLV4BWpdRHwB+A+5RS31RKXaO1PgU8iGcAfR3wQ611n8st7vXOgpISH5FjdEY8X7x6Ku0OFw++tJvaRlnXu7/2H61h+4EKJoxOYn4AWmkiPHgWREqnsaWdQ6WDv4yxr26ojumxPwvUC2qtXZxbKqSwy+OPAo8O5DVOl/iQKbMRZfZEG9dfmMvqDcX85eU9fPfm2XIBWR+5XG6ef+8gIFNlh6KZuWls3FXKruJKJgSgK6ovfCWLu4H/BX6rtV4wCPEMmMPpYv/RGjJTY7ElS/nlSHPFeWM4UdHI5r1lPLGmkLuumipfeH3w4Z6THC9vZMn0TMZlSYmboWZKTgpRJgO7iwd/QSRfyeKYUqoEsCmlDnW53wC4tdZhNx/vYEkd9nanTJmNUAaDgduvmEx5TQub95YxyhbPyoVjQx1WRGixO3j5/WLM0UauC4OV1UTgWc1RTB6TQsHhaqrrW0lNtA7aa/sa/b0HWIynm2g5Z66/vTyokfWTlPiIfNFRJu65bgYpCRZe2lDMjoNSeNAfb2w+Qn1zO1cuHEtKglyIOlSF6mpuX8niJa31MeCw1vro2T+DEWBf7TlUTZTJyKTs5FCHIgYgKd7CvdfnER1t5G+v75PFk3yoqG3h3a3HSU20cNmCMaEORwRR3gTPNTODnSx8dUO1KaU+BPK6m/2ktV4RnLD6p6bBTklFI9PGpcp0wSFgbGYCd105lYdfLeDB1bv58e3zSIw1hzqssPTi+iIcTjc3XJiLWd77Q1qGd0GkfUeraXc4B20SiK+WxXLgB0AZ8PNufsJKwWFvF5TMghoy5k3OYJV3edaHXt5Du8MV6pDCjj5WQ76uIHdkIudNGRHqcMQgyMtNo619cBdE8lV1tkFrvRHPuEU+UANsBPK9FWjDSsHpVfFkvGIouXpxDgumZHCwpI6n39ZSQ6qL5lYHT73tWYfssxfLVNnhYmaupytqx4HBG8/z9/LmGcAu4DVgBHBUKXVp0KLqB6fLxb4j1aQlWshKiw11OCKADAYDd6ycQk5mAh/uOcm7W4+HOqSw4HC6eOiVPZysaubieaPJHTm48+5F6EzMTiIhNprtByoG7Wpuf5PFA3iqxdZ6r7K+APht0KLqh8MnG2hqdTB9fJqcXQ1BlmgTX7s+j6R4My+sL2JzwalQhxRSbrebJ9YUsv9oDbMnpvPZFRNDHZIYRCajkdkTbdQ3t3OwZHC6ovxNFkZvkgBAa70vSPH0W8eU2enjpAtqqEpJ8MyQspqjePSNfbz0fjGuYdol9eoHh/mo4BTjshL54jXTZNngYWjeZM+qh/mDtKa9v8mixLtqnVsplayU+iGeFfPCRsHhakxGA1PGpoQ6FBFE47IS+dGtc8lIieHNzUd56OU9tNgdvjccQjbuKuXfHx3Blmz1FGCU2U/D0uQxKcRZozxdUYNw0uRvsvgS8DkgGygGZgFfDFZQfdXY0s7h0npyRyURa/W36rqIVFlpcfzo1nlMGZvCjoOVPPDMNiprW0Id1qAoOFTFU29p4mOiue8zs0iMk6nEw1WUycisienUNNgHpbCgvyXKy4FbgRXAxcBNWuuTwQysL/YersYNzJASH8OG58tyJhfNGU1JRRP3P5mPPlYT6rCC6uipBh56tQCj0cC91+eRmSoTOYa7ucpTVXibLg/6a/mVLJRS84CDwBPA43hqRp0XxLj6RMYrhqcok5HPXTqJWy9TtNgd/O75nWzcVRrqsIKiqq6VP67eRVubky9ePXXQK46K8DQtJxWr2UR+YUXQp5T72w31J+BGrfVcrfVs4Drgz8ELy38ul5s9h6tJjI0me0R8qMMRIXDh7FF868ZZWM0mnlhTyHNrD+B0Dp2L95pb2/nji7uoa2zjxhUTArKSoBgaoqOMzJqQTlV9K0fLgrtomL/JIl5r/XHHDa31FmDwyh324sjJeuqb2pg2Lg2jTJkdtiaPTeHHt89nVHoca/NL+PljW2gO0cL2geRwuvjLy3s4UdnExfNGc6nUfRJn6eyKCu6sKH+TRbVS6lMdN5RSq4DBrWLVg22FZYCMVwhPzZwf3DKXmblp7DhQwS+e2sap6uZQh9Vvbrebf/xnP4XHapkzySbXUohuTR+fijnaSH5heVC7ovydOvRF4A2l1N/xrmWBpwRIyG3X5RiAqVIPSgAxlii+dn0ea7Ye56X1RfzyyXyuWZJDYryZWEsUMd6fjt+tZlOPF3G63W7a2l00tbbT1OqgubWdxhbPv02tDprtDtKTrEzKTmZESkzALwZ95YNDbN5bRu7IRO6+eqpcSyG6ZYk2kTc+jXxdwYmKJkZnBKc73t9kcQXQDMwBcoEX8KxpcaAvL6aUigGeATKABuA2rc9sOymlfovnavEo4G/eZVZ7tP9wNTlZCVKNVJxmNBq4/apppMRF88SaQp5fV9Tjcw0GiDF3JhFztJEWu4OmFk9CcPpZSiExzsyk7GRUdjKTspMZZYsbULfo+ztP8MZHR8lIieFrci2F8GHe5AzydQX5ujzkyeKLwAKtdTOwWyk1F/gY+FsfX+8rwB6t9c+UUp8FfgR8veNBpdRyYILWepFSygLsVUqt1lr3OCfS6XLLLCjRrcXTs8gdmcThU/W02J202B202D0tghZvy6Cly09VfStt7U5irVHEWqNJT44hzhpNnDWKWGvU6d/jYqKJtUYRY47iZFUT+ngt+ngt+YXl5Bd6pjDGWaOYONqTOCZlJzNmRDxRJk+vr73dSXV9K9UNdqrrW6mpt1Pd0Ep1vf30fa1tztPTg+VESPgyY3waUSYj23QFq84PzgKm/iaLaKCty+02PF1RfbUU+I339zXAj896fDOw0/u7GzABPkcpz5+Tjc2W0I9whh45Dp1stgRstgSmq+CX7Xa73ZyqambvoUoKDlWx91AVO4sq2VlUCYDVbGJEaizV9a00NPf8lo6LiSYzLY4RqbF89hLFhAAt4iXvi05D9VjMnZzBx3tP0eqC7BGB/xv9TRavAuuUUv/C8yV+PZ4KtD1SSt0J3HfW3WVAnff3BuCMyeJa61agVSkVDTyJpxuq1yXS4mKiSYk1UVER3GljkcBmS5Dj4BWKYxEFzByXysxxqXDRRKrrWzlQUsuB43UcOF7LqepmUhMsjMmIJyXRSmqChdREK6mJFlITPP9azWd+JAPxN8j7otNQPhYzxqXw8d5TvLvlCFcvzvH5/L4mTb+Shdb6u0qpG4BleM70H9Rav+pjm78Df+96n1LqZaAjwgTgnHKJSqkUYDWwQWv9gK/YvnPLPExGfyd1CTF4UhOtLJyaycKpmaEORQwDsyakYzIa2FZY7ley6Cu/CylprVfj+RIfiE3ASuATPIPmH3R90DsA/h7we631s/7scI7KGLJnCkII4a9YazRTc1LZc6iK8ppmMlICWw5msKvu/R/wpHdd7zbgZgCl1G/wJKIlwHjgbqXU3d5t7tBaHx7kOIUQIuLMUzb2HKpim67gioVjA7rvQU0W3tlUn+7m/u94f/0E+MNgxiSEEEPF7Ek2nnxLkx+EZCGd/UIIMUTEx0QzeWwyh0/WU1XXGtB9S7IQQogh5HStqAOBrRUlyUIIIYaQOZNsGID8AK9xIclCCCGGkKQ4MxOzkykuqaO20R6w/UqyEEKIIWaesuEGtgewK0qShRBCDDEd4xYdtcoCQZKFEEIMMSkJFnJHJaKP11Lf3OZ7Az9IshBCiCFo7qQM3G7YEaCuKEkWQggxBM1VNiBwy61KshBCiCHIlhzD2MwE9h+toSkA69FLshBCiCFqnrLhdLnZebBywPuSZCGEEENUIGdFSbIQQoghKjM1ltG2OPYeqabF7hjQviRZCCHEEDZPZeBwutlVNLCuKEkWQggxhAVqVpQkCyGEGMJGpseRk5lAXdPALs4b7JXyhBBCDCKDwcB3b56Dy+0e0H4GNVl419h+BsgAGoDbtD63baSUigU+Ar6ntX5rMGMUQoihxmI2DXgfg90N9RVgj9b6fOAp4Ec9PO8hYGBpUAghRMAMdrJYCnS0FNYAF5/9BKXUt/G0KnYNYlxCCCF6EbRuKKXUncB9Z91dBtR5f28Aks7a5iJgotb6S0qpJX6+lMFmSxhQrEOJHItOciw6ybHoJMeif4KWLLTWfwf+3vU+pdTLQMf/VAJQe9ZmdwJjlVIbgMnAHKXUKa31zmDFKYQQwrfBng21CVgJfAJcAXzQ9UGt9c0dvyulngCel0QhhBChN9hjFv8HTFNKfQh8Efg5gFLqN0qpBYMcixBCCD8Z3AOceyuEEGLokyu4hRBC+CTJQgghhE+SLIQQQvgUsbWhlFJG4GFgJmAH7tJaF4U2qsGnlIoGHgdyAAvwS6316yENKsSUUhnANuASrXVhqOMJFaXU94FrADPwsHc6+7Dj/Yw8iecz4gTuHo7vC6XUecCvtdYXKqUmAE/gqZRRAHxVa+3qbftIblmsAqxa60XA94DfhzieUPk8UOUtoXIF8JcQxxNS3i+GvwItoY4llJRSFwKLgSXAMiA7pAGF1kogSmu9GLgf+FWI4xl0SqnvAI8BVu9d/wv8yPu9YQA+5WsfkZwsTpcO0VpvAeaFNpyQeRH4cZfbA1sOK/L9DngEKA11ICF2GbAHeAX4N/BGaMMJqQNAlLc3IhFoD3E8oVAMXNfl9lzgfe/v3ZZeOlskJ4tEOkuHADiVUhHbrdZfWutGrXWDUioBWE3PxRmHPKXU7UCF1vrtUMcSBtLxnEB9Gvgy8KxSyhDakEKmEU8XVCHwKPBgSKMJAa31S5yZJA1a647rJs4pvdSdSE4W9XSWDgEwaq2H5Vm1UiobWA88rbV+LtTxhNAXgEu85WJmAU8ppTJDG1LIVAFva63btNYaaAVsIY4pVO7Dcywm4RnjfFIpZfWxzVDXdXyiu9JL54jkZNFROgSl1EI8Te5hRyk1AngH+K7W+vFQxxNKWusLtNbLtNYXAjuBW7XWp0IcVqh8CFyulDIopUYCcXgSyHBUQ2cvRDUQDQx8gYfItsM7rgXdlF7qTiR327yC5yzyIzwDNHeEOJ5Q+QGQAvxYKdUxdnGF1npYD/AOd1rrN5RSF+Cpw2bEM9vFGeKwQuUPwONKqQ/wzAz7gda6KcQxhdq3gEeVUmZgP54u7F5JuQ8hhBA+RXI3lBBCiEEiyUIIIYRPkiyEEEL4JMlCCCGET5IshBBC+CTJQgxJSqkLvRfnDXQ/X1ZKfdnP5z7hvYo8IJRS45RSf/f+Pk8p9ReW+dQAAANlSURBVFig9i1EX0XydRZCBJ3W+pEQvvxYINcbRz5wVwhjEcOcJAsxlKUrpd4CRgEf47kwza6Uuge4Bc9VzW3ATVprrZT6HXAJnlIIr2qtf66U+pl3X7/CUwp+uvf2w1rrR3t6YaXUHXgufHLjKZd+j9a6USl1M576XW5gK3A3kAH8HUgGRgJPaK1/gqeG0Xil1EN4Ckb+zFteehLwNyAVaALu1VpvVUo9gedK5bnev/l+rfU/BnD8hDhNuqHEUDYO+BqQh6f+zZeVUol4yttfqLWejqca6z1KqbF4rnyfiaes99Sz6gctBlK11rOBK4Hze3pRpdQM4IfAMq31DDxf6D9VSo3CczXxpVrraXhKTlwJ3AT8U2u9EJgBfEMplQ7cC+Rrrb961ks8Azyotc7DU/dotVLK4n0s2xvbNXgq8AoREJIsxFC2UWt90Ftd81k8CaIeuBn4rFLqAeBqIB44AbQopTYBX8dTa6u1y74KAKWUehtPJdf/7uV1lwH/1lp31GL6G3ARsAjYpLUuAdBa36K1flVr/TvgmFLq28Cf8JSkiOtux0qpeGCC1vpl7z624Kl3pLxPecf79xbgaXkIERCSLMRQ1rUKsRFo91bo3Yyny2cNntXCDN6KxefhWRskDdjs7e4BwPvFPw34M54v5u1KqeQeXvfsz5UBT5dvO57uJwCUUjbvz+/xtCKOAr8EKr3b+LPvrvsHT3VZupSfFiIgJFmIoWypUmqMd9GbW4G1wHygSGv9BzxjBtcCJqXUbDyLwWzUWn8b2Efn2TpKqWuAp4E38XyxN9Lz6nMbgGuUUh1n9nfjKSG/FVjYpWz6H/CsUHYJ8Fut9Yve1xyFp4vKwVnjit6W0f9v745RGoqCKAz/uAJLW6uzBdeROksQV2DvKiRF3ENImT5EMIlmGksXYWUxrxARrgg28n/l43Hv4zWHuRdmXpPMpu+6Ai7oSkL6M4aF/rMjfSm9p4+Z7ul27mdJnoEdPRDnsqoe6YrjkGRHh8Xq01orelTrke7k+lBV37bFr6on4A7YJDnRVcxtVb3RR1zrJIdpvcX07nJ6dg1s6fuWF+A8yfLLFnPgJsmeHqM7q6r3X/4j6UfsOitJGrKykCQNGRaSpCHDQpI0ZFhIkoYMC0nSkGEhSRoyLCRJQx8RmVQSfzTcdgAAAABJRU5ErkJggg==\n", "text/plain": [ "<Figure size 432x288 with 2 Axes>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "from sklearn.linear_model import Ridge\n", "model = make_pipeline(GaussianFeatures(30), Ridge(alpha=0.1))\n", "basis_plot(model, title='Ridge Regression')" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "The $\\alpha$ parameter is essentially a knob controlling the complexity of the resulting model.\n", "- In the limit $\\alpha \\to 0$, we recover the standard linear regression result; \n", "- in the limit $\\alpha \\to \\infty$, all model responses will be suppressed.\n", "\n", "One advantage of ridge regression in particular is that it can be computed very efficiently\n", "- at hardly more computational cost than the original linear regression model." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### Lasso regression ($L_1$ regularization) 套索回归\n", "\n", "Lasso regression involves penalizing the **sum of absolute values** (1-norms) of regression coefficients:\n", "$$\n", "P = \\alpha\\sum_{n=1}^N |\\theta_n|\n", "$$\n", "Though this is conceptually very similar to ridge regression, the results can differ surprisingly: \n", "- for example, due to geometric reasons lasso regression tends to favor *sparse models* where possible: \n", " - it preferentially sets model coefficients to exactly zero.\n", "\n", "We can see this behavior in duplicating the ridge regression figure, but using L1-normalized coefficients:" ] }, { "cell_type": "code", "execution_count": 59, "metadata": { "ExecuteTime": { "end_time": "2018-05-20T15:47:04.365611Z", "start_time": "2018-05-20T15:47:04.159181Z" }, "slideshow": { "slide_type": "subslide" } }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/Users/datalab/Applications/anaconda/lib/python3.5/site-packages/sklearn/linear_model/coordinate_descent.py:466: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations\n", " ConvergenceWarning)\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAETCAYAAADH1SqlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3Xd4m9d1+PEvNveeGiQ1r2RtWVuyLdvyTDziNE3jNq3djCZNmtV0JHWTNE2bNqP5JanTJM4eznJiJ07ibVm2taclalxNkhL33gRJAL8/XoCEKIAASIAAyPN5Hj0mAeLFxWsA57333HuuyePxIIQQQozHHO8GCCGESHwSLIQQQoQkwUIIIURIEiyEEEKEJMFCCCFESBIshBBChGSNdwOECEYpVQFUaq0z4t0WAKXUK0A50Om9yQI4gM9prX8Ur3YFo5SaBTyhtd4S77aI5CfBQojI/IPW+gnfL0qpdcBupdSTWuvuOLbrGlrrOkAChYgKCRYiKSmlFgOPAplAKXAMeLvWekAp9W/AW4BBoBV4SGtdP87tNwBfBNK89z2itX42zKbMB3oBp7dd9wCPAHagD/i41nqvUioN+CawCegATgForR9SSlUB+4GVwCeBA8D/AmWADfi51vo/lVJW4OvAVmAIuAg8DAwEub0Ab89MKWUD/ge4FXB5n++jWutu7/P/wHtfGfAjrfW/hvn6xQwhOQuRrN4D/FBrvQlYCMwD3qSUmgt8BFivtV4HPA9sHOf2fOAJ4MNa65XAXwE/UUrNC/K8X1RKHVNKVSulGjGCz61a60Gl1CLgP4G7tdZrgPcCv1FKpQP/inFxtgTYAawZc9xKrfVSrfWTwI+B72mtrwc2ADuUUn8KbAa2A6u8913ECDDBbvf3CDALWOX9Z8YIkD4ZWusbMHoiHx/n9YsZSoKFSFb/BDQrpf4R+D+ML8IMoBZ4AziilPoScExr/dQ4t28Ezmut9wNorU8CuzG+fAP5B631amAdUANc0Vof9d53G0Yv5yWl1DHgp4AbI5jdDXxXa+3WWncBPxxz3NcAvIHlJuDfvcfYh3G1vxo4gbdXoJT6d+DXWus949zu7y7gm1rrIa21G6Mncpff/b/1vv5aoAnIC/L6xQwlwUIkq59hXLlXA18BjgAm7xfhTcBDGENNX1FKfSHY7RhJ6rEF0swYwz9Baa2bgbcDH1BKPeC92QK8pLVe7fuHMexUCQwDJr9DuMYcssfvGCZgy5hj/KfWugOjV/Bx7+N/oZT622C3jzn+2Nc59jX2+/3sGdNWISRYiKR1B/BZrfUvvL9vBCxKqVUYX86ntdafxwgk64PdDuwFliilNgAopZYBNwKvhGqA1voi8B/AV709gpeA25VSS7zHuhs4DqQCfwAeVkqZvfmLB7k2SOHtdewDPuY9Rg5GT+c+pdSbvc+xR2v9GeBH3tcW8PYxh34WeL9SyqaUMgMfAF4I9RqF8JEEt0h06UqpnjG3bcZIBD+plOrFmMq6C1iotf6uUuqXwCHv4/qBD2mt3whye4tS6m3A171f4m7gYa312TDb9yWMPMcjWutPKKXeC/xcKWXC6E3cq7XuUUp9HiNpfcLb3iaMBHggDwL/q5Q6gZEo/5nW+qdKKQvG0FGl9zW0Y+RuLge53d/nvG09hvG5PwD8XZivUQhMUqJciNhTSv0Z0KW1/qP3yv7XwPNa6/+Lc9OECIsMQwkxNSqBf/EmrSuBOuA78W2SEOGTnoUQQoiQpGchhBAiJAkWQgghQkr62VDDwy5Pe3uwSSUzS25uGnIuDHIuRsm5GCXnYlRhYWZEa2mSvmdhtVri3YSEIedilJyLUXIuRsm5mLikDxYzkXPIRVN7H86hsYuAhRAiNpJ+GGomcbnd/OLl8xw920xbl5O8LAdrFhfy9lsWYjFL3BdCxI58w8TJRHoHv3j5PC8eukJrlxMP0Nrl5MVDV/jFy+dj11Ah4kx60olBehZTxDnkorPHSUaajadeuxR278D3uFSHlaNnmwMe++jZFt5604JYvwQhppT0pBOLBItJ8n2ZZ2c4cNiuTZ6NfcM77BYGBkevkHy9A5fbwztvV0Efl5PhoL3HGbANbV0DXKztJDMrlab2vqBtESKZ+HrSPr7PCsCDOxZHfDznkIv6ll5cQy75fEyABIsI+AcGl9vDz144y5madlq7nORk2FmzqIAHb1t81VXPz186x0uHa0d+9w8U/nYeqeXEhVZmFaRjs5qpbe6loW10il+wQAFgMsEXf34MsxncbsjLtLNWFckVmIiLUBdQ4R4jWE/69eP13H/DPNIc41aRD9yb73aSlyk9lImQYBGGQL2DoWEXLvfo33T0DLLzaB0nLrZx46pS6lr6qGnqoa6lN+znaekcoKVzIOL2ub0VW9ze9rR1D07qCkyIiXC53Tz+4jmOnW2ho8foDa9eXMCDOxYF/VIOFlg6e5y0dQW+QBoYdPH4C+d495uvC9qOcHrzEPzzMZmAF41gmYimQ20oT3Nzd0yf4PEXz17VHQ6X3WZmcMgd+g/95GY6eO891/Hfjx8N+jcOmxlnGMe1W83cu20eS8tzmVuUgdUyc66iCgszifX7IllMxblwud189geHuNw0tpo8zClM59MPr8diNuPxeGjtGqCmsZvnD16mprGHgUEXVosJh92C3Wqh3znMsMvNsCv4d5PZBAU5qditZmxWMzaL979WC3WtvTS19wd9rE9Gqo0Hb1tEmsNmHMdmxmo28fyhy5ypaqe9Z5D8CPIkY4NloudYIl2UJ8EiBOeQi0ce20drkKucQNJTrPzTn68lPzuFT31nf0SPNZvgMw+v56tPHA/4uPysFD710DquNPXwpZ8fu3b3nCDsNjMLZmWzfH4eK+bnM7sgHZNp+m6GJsFiVKzOhf8V9C9fPsfOo3VB/zYj1casgjSuNPXS5xwO+ncpdguFOanYrGaa2/vp7h8K+reZaTaGXR6GXW6GhiO7KItUbqaDFfPzKc5NpSg3jVkFaRTnpWH2fobGC5Y71s1JyB5+pMFChqFC6OxxRvRlD9DnHMZuNZNqt7JmcWFEvZLczBQKc9OCPm7N4gIy0+zMn51NXpZj3LblZNi5/4b5VNV3ca62k9PV7ZyubudXOy+MvPmvV4UsLc+dUb0OMTmBZil19w+O+5ie/iHOXu6kJC+NpeW5nKpuo995bf4uPcXGJ995PQ6bhT7nMB9/9HUGBq8NBPlZKXzuPRtHhnk8Hg8ut4e6lh4+8/1DYb2O9BQrd28ux+32MDTspt85zGvH6wPmFdu7nbz6xtXBMMVuoaIkk3mlWdS19AQMFGDMVrxnSwX9zuGkHpqaccEi3PHEfucw+0428PqJ+oifIy8zhewMBwBvv2UhYLxh2rsHyM1MYc3iAoaGXew6du2x1ywuwGGzBH2c73aHzRIyEK1bUsSNq2Zx46pZAHT2DlJ5sZUTF1s5eamNV9+o49U36khPsbJ2cSEblhazpDwnIbvMInEEmqUUjux0G59+eD2dPU4+8a3Ayev27gE6e5wU5aaR5rCybeWsoBdN/p9fk8mE1WKiOC+d/BAXUT6bl5dw18bykd+b2vuCfp5MwEfetpJhl4fG9n4uN/VQ1dCFrungTE3HuM/T2jXAp793gM6ewYQfmhrPjAkW4c7ZrmnsZufRWvadbMQ55MJkgrxMB23d4fcu/N/IFrOZB3cs5q03LbgqSLncbmxWS9BgEOxx/kYDSjOtXU6/2VAO1qrCkft9stPtbF1RytYVpbjdHs7XdnLoTBMHdROvHa/nteP1ZKbZ2LyshBtWljK7MGNC51pMX+PNUgqlq3do5L0crFec63ehBcEvtsa+t33Gu4hKsVsYHHIFPcZ47crLSmFxWe41n8F+5zCHdRPf++OZcV97R4/R85rs9N94mjE5i2BJ6h3r5vAnNy3g4Jkmdh6t5WJdFwD5WQ5uXD2bbStKyUq3eQON8Ya1e98wA4MuHDYj0AwOu8nzexOGe9UQrWmGnT1O5szK4UpdR8THcns8nL/SyYHTjRw43USPd5x4/qwsblhZyoalxaQ6Rq8rkmG2h+QsRkXzXDS19/HP39o3ocf6Dx2N93kM9CUayXtu9MLw6gBz/w3zsafYcQ0OBT1GpO3ytS3SvKYv9xjPoSlJcI/hHHLR3N4XNGGcYrdgNpvoGxjGBKxYkM/2NbNZOT8fs9l0zbF8b1gg4M/x/PKMxpfCsMvNsXMtvH6inhMXW/F4jOT4puuK2b5mNnsqG67pnd1/wzx6+obi/vr9SbAYFa1z0dDWx7P7a64Zu/dJsVtItVto7wmcv/D/wg32hR7N4ZlAASbUuZhou777+1PsrmyIqH25GY64zpqSYOHlP+wUKuJnpNq4afUsblo1i4Kc1Fi1M+ai/QXZ1jXA7soGXnujbtz1Hw7vFOFEGo+VYDFqsueiprGbp3dXcdg7/JQyZt2Cz451c3jrTQto6xrguYM1HD/f6h2nD/6FO9W91HDPRaTtGi8ZH66pnjUlwcIr3LURGak2Pv83m0hPGX81aDKI1Rek2+3hyNlmHnv6JEPjzH332bq8hL+4Q+GwWeI2ZCXBYtREz8Wl+i6e3l3FsfMtAMwrzeTOjeWsWpjHE69cDHn1nYjDlbF8X0x0PZbP2BlesSZTZ4ksCbdpWfG0CBSxZDabKCvOGHeRlL/dlQ2cqmolI81B38CQFIFLMhfqOnl6dxXHL7QCsHB2Nvduq2BZRd7I2pxQky/ASDYX5aZNadvjKVAyftWifEzAsXOttHcPkJVuH0l2j9XaNUBtcw/zZ2VPYavDNy2DxZnqtnGHnowZTuPPqhBXG2+mSCDtPUO094wuqErmWSAzxbkrHfxudxUnL7UBsHhuDvdtrWBJeW7ABZwzLRiEMt4Mxj/ZPlo9+rM/OBj0c/SFx49y89rZ3Lmh7KpZYYkg6YOFr4pk38Awh8828Yc91XT2Bl8glJfp4CN/uorCnNSE6Rong3DWdYTj6Nlm3nrTAjn3CUTXtPO73VWcrm4HYGl5LvdurUCV5ca5ZckpUBD1vy3Y50iV5dDU3s9zBy7z8pFablo1i7s2lZObmRhBI+GChVLKDHwDWAU4gXdrrYPu7vPez7+I1WIKe4hkrSpkjqwfmJC337IQl8vNrmN1I8ULI9Xa5RxZdCXix+PxcKamg9+9fgl92VhUtnxeHvdsrWDRnJw4t256G2/tiNsNu0/U84e91bx4+AqvHKtl64pS7txQRnHetZ+ZqcwLJVywAO4HUrTWm5VSm4AvA/eN9wBfoBgvaARbqCbCZzGbeecdS8BkYueR2tAPCMAEV63ZEFPL4/Fwprqd375+ibNXOgFYuSCfe7ZUsGB2Yo6VTzfjDVdZzLB9zWy2rSxlb2UDf9hbza5jdbx6rI61qpA7N5axYFZ2XDaGSrjZUEqp/wEOaK1/7v29Vms9O9jf3/P3vw35Akwm+Nrfb6eiVD4M0eByufne0yfZV1lPS0e/Uf3TZuFKkNo4Y73t1kU8cPMiMlKvnlgwMDhMe5eT3CwHKXYJKNHk8Xh441wzP3tec8qbk1i3tJh33K5YLMNNCcvl9rD3RB2/fvkc573BffmCfNIcVg6carzm7++9YT7vuX9FuIdP+tlQWUCn3+8upZRVax28VGUIeZkpWD2eaT+Vciqni96/tYK7NswduTKyWkwji5nauow1GcGi+K9eOsfvXr3IlhUl7Lh+DkW5qVG/SpKpswaPx0Nt+wA/+sMpztcaH6vVCwu4Z2sF80qzAGbUeUrG94WalcUn/nwtZ6rbeWZ/DZXeWWqBvHa0llvXzCIzzR7yuIWFmRG1IxGDRRfg/yrM4QaKYIuFxhYdE9ExNpHn37V+7uDlgENVN64upSgnjZePXGHnkVp2Hqm9pvCbzJyaPI/Hw4mLbTy95xIXao0SNqsXFnDvtgoqSrLi3DoRKZPJxNKKPJZW5HHsfDNfe+JEwL9r73Hy6e8dYN2S6O+UmYjBYjdwD/BLb84i8FkJYMuKEswmU9hFx0T0+QKIsTta4P8XFrOZOzbM5ejZFp47WDPyZTbW0bMtMnMqQi63m4Nnmvjj3hquNBvDgpuWl3DHurmUl0R2JSkS09LyvHEr63b0GDtlDjiH+es3GbsJRiMRnojB4kngNqXUHowxtYfH+2OziWu+iEItFhKxF6pqrsVsZt2SIsqKM4IWpmvrGpCZU2EaHHKx+0Q9z+yvoaVzAJMJNl5XzF0by7h++aykG3oRwYU7jf31Ew3oy53YrWY6epz0DgyTl2lnrSqa0AV0wiW4I1Xf0usZr4rkTJKM47GhKnauXJDPbevmsrQid2RXsnAk47kYT7Arw76BIXYereWFg5fp6hvCZjWzbWUpd2woo8hb52y6nYvJmC7nwjcb6vCZZtp7gi+UtZhNuALMcy/ITuH7n7pDakPNVMn6QQhWUycrzUZXn7EKvCA7hRtXzWLbylJywljZmqznYqxgUyRvXFXKziN17K6sZ3DITarDyi1rZ7Nj3Vyy069Obk6XcxEN0+1cdPcN8unvHQhYQiQv0wF4aOsOukg5/ekv39cX7nMl4jCUmGHGW6RU1dDNrmN1HDjdyG9evchTr11i1cJ8blo9i+Xzri0jP90E2pXuxUNXRm7Lz3Jwy7Y5bF89W9avzECZaXbWLSkKeLG1pDyXvUHKppsAD5QCF8J9Lnl3ibgbL7+xYFY2C2Zl845bF7HvVCO7jtVy9FwLR8+1kJfl4IaVs7hhZSl5WSnA6HBNZnbylpr3Ga8gptVi4uG7l7JhaZEUZpzhgl1s3X/DPHRNe9Cd/1q7BiLaM1qGoaaR6dbFDqaqoYtdx+rYd6oR56ALE0ZdHbPZRH1rLx3dgxTmprJyQf5V0wcTsWQ2jLYr1WEd2TnNZjWz/2QDj/3+dMDHmE3wn+/dFFbyf6a8L8Ixnc9FoPf3eDv/ffgd1yf9ojwhxlVRkkXFnVm8/ZaFHDjdxO4T9Zyp6bjqb5ra+0c+JG+/ZSGPv3iOo2eb6egZJCfDzppFBTx42+KAV+VTFVTGbtBlNoHbA6l2C5ig33ntmiGfsXtVCxGogGGke5iPR3oW08h0vmoaj3PIxSe+tTdgks9hM5OeYg2Y5JtTlM6nH1o/EjCmut5OqM1ySvPTmF2QziF97VBUJLuqzdT3RSAz9VwE2WI2op6FDHaKpNfZ46QzyIYyziF30NkgV5p6efzFcyO/+5LJrV1OPIwmk3/xctCixxPi8Xi4UNfJnhPjDxkPDrl56O6l7Fg3h/ysFMwmYze1HevmyEJTERFfr2MyPWUZhhJJL9KNmfztP9XIHRvKyE63B00mT3Ylucfjoam9n7NXOjh3uZOTVW20d4dua3v3AD19g2HtSidErEmwEElvMhsz9Q0M88/f3EtWup2uIJtmtXeHt5Lc4/HQOzBMa+cAdS29XGnu4XJzDzWNPVcdOz3FyvolRZyubqOnP3jZM/+8hOxKJ+JNgoWYFsYm8gpyUlk2L49jZ5uu2t51rFSHhYWzc6hpHGcc22TiW787SWaaHavFjNlk7EvucnkYGBxmYNBF78Awbd0DDA65r3l4bqaDDUuLWDQnh0VzsplTmIHZbAqZs5ACmCKRSLAQ08LYtRoLKvLp7uzHYjaN+4W8dUXpSKL4+388zWvHr80jWM0mahp7ApZNMJ7bRFqKlZK8NPIyU8jLclCan86cwnRmF2Zcs2+Hz2iAu3o2lGzUJRKRBAsxrfiGa1LsVroxvpDdHg+7j9fj9LvqT7Gb2bqi9Kov5L+8U+GwWwJOMzSbTAwMuhh2ufF4wO3xYDabSLVbsVknNk9kbIDzX2chPQqRaGTq7DQyU6cFBjL2XDiHXDS39zHocmO3WijMSQ36hZyoi/cmSt4Xo+RcjIp06qz0LMSM4LBZmFMU3n4OkkwW4lqyzkIIIURIEiyEEEKEJMFCCCFESBIshBBChCTBQgghREiTDhZKqfXRaIgQQojEFY2ps19QShUAPwJ+rLUOvI+fEEKIpDXpnoXW+mbgzYADeF4p9Xul1J8opQLXOBBCCJF0opKz0FpXY/QsHgeWAx8CKpVSb4nkOEqpbKXU00qpXUqpvUqpzdFonxBCiMmJRs7iXUqpXcCLgAXYprW+EbgZ+GaEh/sY8JLW+ibgIeDRybZPCCHE5EUjZ3ET8Gmt9Sv+N2qt65RSfxvhsb4C+HaFsQIDk2+eEEKIyYpbIUGl1LuAj465+WGt9UGlVAnwDPARrfWuEIdK+kqIQggRBxEVEky4qrNKqRXAz4GPa62fCeMhUnXWSypqjpJzMUrOxSg5F6OSuuqsUuo64FfA27XWb8S7PUIIIQwJFSyAzwMpwFeVUgCdWuv74tskIYQQCRUsJDAIIURiktpQQgghQpJgIYQQIiQJFkIIIUKSYCGEECIkCRZCCCFCkmAhhBAiJAkWQgghQpJgIYQQIiQJFkIIIUKSYCGEECIkCRZCCCFCkmAhhBAiJAkWQgghQpJgIYQQIiQJFkIIIUKSYCGEECIkCRZCCCFCkmAhhBAiJAkWQgghQpJgIYQQIiQJFkIIIUKSYCGEECIka7wbEIhSagmwHyjWWg/Euz1CCDHTJVzPQimVBXwZcMa7LUIIIQwJFSyUUibg28Angb44N0cIIYSXyePxxOWJlVLvAj465uZq4Oda6x8rpaqAJWEMQ8XnBQghRHIzRfTH8QoWgSilzgNXvL9uAg5orW8M8TBPc3N3bBuWJAoLM5FzYZBzMUrOxSg5F6MKCzMjChYJleDWWi/0/eztWdwet8YIIYQYkVA5CyGEEIkpoXoW/rTWFfFugxBCCIP0LIQQQoQkwUIIIURIEiyEEEKEJMFCCCFESBIshBBChCTBQgghREgSLIQQQoQkwUIIIURIEiyEEEKEJMFCCCFESAlVdVYIIURikp6FEEKIkCRYCCGECEmChRBCiJAkWAghhAhJgoUQQoiQJFgIIYQIKWF3yhMiWSmlPgS8FdgObAW+D6zRWvfEs11CTIb0LISIvq8DbuD9wHeAhyRQiGQni/KEiAGl1DygEviG1vof4t0eISZLehZCxEY50A2sVUqZ4t0YISZLgoUQUaaUygAeA+4B+jGGo4RIahIshIi+LwB/0FofBD4AfMo7LCVE0pKchRBCiJCkZyGEECIkCRZCCCFCkmAhhBAiJAkWQgghQpJgIYQQIiQJFkIIIUJK+kKCw8MuT3t7X7ybkRByc9OQc2GQczFKzsUoORejCgszI6oskPQ9C6vVEu8mJAw5F6PkXIySczFKzsXEJX2wEEIIEXsSLIQQU87j8XD0bDNDw654N0WESYKFEGLKHTvXwtd/c4KXDtfGuykiTBIsouDp3Zf4xlOVSJ0tIcJzrrYTgIt1nXFuiQiXBIsoePloLYfONNHe7Yx3U4RIClX1XQBUN3bHuSUiXBIsJqmjx0lnzyAA1Q3yxhciFLfHMxIkmjsG6BsYinOLRDgkWExSlV+AqJJgIURIjW199DtHE9s1jbI9eTKQYDFJ/r0J6VILEdol7xDUwjnZgHxukoUEi0nyBYtUh5Wqhm5JcgsRwqV64zOzffUsQIJFspBgMUlVDV3kZNhZWp5LV+8gHd78hRAisKr6LixmE9erIlLsFhmGShISLCahs8dJR88gFSVZlJdkAkbwEEIENuxyU9PUw+yCdBw2C2XFmdS39uIclMV5iU6CxST4EtrlJZlUeIOFzIgSIri6ll6Ght1UlGYBUF6ciccDl5uld5HoJFhMQrVfsBjtWUiwECIYX3J7XqnxeSkrzgDkIisZSLCYBF9gqCjJJCvNTl6WQ970QozDl9yuKPH2LLwXWTWS5E54Eiwmobqxm+wMOzkZDsDoUnf2DspKbiGCqKrvwmY1M7swHYDS/DRsVnPSzIhq7ujnsG6KdzPiQoLFBPmCQkVx5shtkrcQIrjBIRdXmnspK8rAajG+eixmM3OLMqht7mXY5Y5zC0P7+UvnePTJypHhtJlEgsUEVXtnPfm60cbPRtdaZkQJca2aph7cHs9IctunrDgTl9tDbXNvnFoWHrfbw5maDgD2VjbEuTVTT4LFBI3mK0bf+NKzECK4qjHJbZ9yX5I7wYeiLjf10O8cBmD/6cak6AlFkwSLCfKfCeWTlW4nN9NBVYK/6YWIB19ye96YnoXvM5ToweJMTTsAuZkOuvuGOFXVFucWTS0JFhNU1dBNtjc4+KsoyaSzZ5COHklyC+GvqqGLFLuF4ry0q26fXZCBxWyiJsF75No7BPXgjkUA7JlhQ1ESLCagy5vc9u9V+Mh6CyGu1e8cpqG1j4qSTMwm01X32axmZhWkc7mpB7c7MWurud0ezl7uoDAnhbWLCynOS+PouZaRYamZQILFBPivrxjLd1vVDJwtIUQwVQ3deOCa5LZPeXEmg8Nu6tv6prZhYbrc1EOfcxhVlovJZGLzsmKGht0c1s3xbtqUkWAxAYFmQvn4ZkRJkluIUaPJ7SDBwrc4L0E/N9qbr1hSlgPApmUlAOw9OXOGoiRYTECgmVA+2ZLkFuIaI2U+AlxggdGzgMRNcvumzKq5uQAU5aSycE42Z6rbaesaiGfTpowEiwmobjSS2zkZ9oD3lxdLklsIf1UN3WSk2sjPTgl4/5yidEwkZtkPt8fDuSsdFGSnXNX+LctK8AD7TzXGr3FTKKxgoZT6RIDb/jPSJ1NKmZVS31RK7VVKvaKUWjjm/q8ppQ5773tFKZUd6XPEWlffIG1dRnLbNCZR51MhSW4hRnT1DdLSOcC80qygn5kUu5WS/DSqG7txJ9gGYleaeugdGGZJWe5Vt69fWoTVYpoxQ1HW8e5USv0XUATcq5Ra5HeXDdgIfDLC57sfSNFab1ZKbQK+DNznd/9a4A6tdUuEx50y1eMkt33K/RbnrV5YMCXtEiJRVdWH/syA0SOvb+2jpaOfoty0cf92Ko0MQXnzFT7pKTZWLijgyNlmahq7KSse//Ulu1A9i18Du4Be7399/54F3jSB59vmfSxa633AOt8dSikzsAj4tlJqt1Lqrydw/JirCrAYbyxZyS3EqFDJbZ+ykbxFYu1t4Utujw0WAJtnUKJ73J6F1vogcFAp9ZTWujMKz5cF+B84o1gCAAAgAElEQVTHpZSyaq2HgXTg68D/ABZgp1LqkNb6eKiDFhZOXURvaO8H4PplpeRnpwZtT15WCjVNPVPatpaOfnadaOC2DWVkZzhCP2Cam8pzn+jieS5qvdNh1y0vJTcrcM4CYKUq4pc7z9PS7YxpeyM5ttvt4dyVTory0li6sOia+2/NTeOHz57h4Jkm3v+2NVjMgYfZpoNxg4Wf+5VSXwZ8g3YmwKO1tkT4fF2A//8pszdQAPQBX9Va9wEopV4GVgEhg0Vz89RdwevqNrLS7bicQzQ3B1+QU1aUwbHzLZy/1DJlX9w/eFbz6rFafrPzHH9xu2L9kmvf3DNFYWHmlL4vElk8z4XH40FXt5Ob6WDYOURz81DQv81OMb5OTl9sjVl7Iz0XNY3d9PQPsWphftDHrVOFvHKsjtcO1bBsXl60mhpzkQbkcGdDfQrYrrW2eP+ZJxAoAHYDdwN4cxYn/O5bDLyulLIopWwYQ1ZHJvAcMeNLbleMk9z2meqV3P3OYfadbCAj1cbAoIv/e6qSR588QWfv4JQ8vxCBtHc76eodDDkEBUYOoCA7herGbjwJkuT2lfgYm9z2N1PWXIQbLOq01pVReL4ngQGl1B7gK8BHlVIfU0rdq7U+DfwU2IeRF/mR1vpkFJ4zakaKB4aRyCqf4rzFkbPNDA652HH9HD771xtYPCebw7qZRx7bx96TDQnz4RMzy2jxwPCuYstLMunuG0qYDcR8xQPV3GvzFT6L5mRTkJ3CYd2Mc9A1VU2bcuEOQx1WSj0BPA+MrEDRWv8okifTWruB9425+Yzf/V8AvhDJMafSeGU+xprq6bP7vFc1G5cVU5ybxj/++VpePnyFJ3Zd4LGnT3HwdBPvvENdU/hQiFjy7e0SrMzHWGXFmRzWzdQ09pA3Tn5jKrg9Rj2o/KwUCnIC5ycBTCYTm5aV8Ps9VRw91zzS05huwu1ZZAPdwGbgZu+/7TFqU8IKVJY8mJwMB9kZ9ilZkdrR4+RUdTuqPJdi75RDs8nEjnVz+ey7NrKkLIdj51t45Dv7ee14nfQyxJTxrdwO5wILEmsld21zr3d9RfBehc/mZcUA7JnGQ1Fh9Sy01g8DKKVytdbtsW1S4qpu6CIrzRb21XlFcSZvXGils3eQ7PTAq72j4cCpRjwe2L52zjX3FeWk8vF3rGHXsTp+ufM83/+jMXPjoTuXxP3KTUxvHo+HqvpuinJTSU+xhfWYqR6+Hc/IENQ4+Qqf0vx05pVmcvJSW8w/7/ES7gruVUqpM8AbSqlZSqnzSqm1MW5bQunuG6S1y0l5SfBVqGP5ut7VMd5mde+pRswmEzesnh3wfrPJxM1rZvO5d21k2bw8Ki+28ch39vPKsVrpZYiYaWrvp885HFZy2yc73T5lPfJQRpPboXsWYKy58Himb/mPcIehvg68BWjVWtcB7we+GbNWJaBIhqB8pmJGVF1LL9UN3Syfnxdyim5+dgof+9NVPHzXEkwmEz96VvPEKxdi1jYxs4UqHhhMeXGmMYuqL34z+dweD7qmnfwsx7j5Cn8brivGbDJN2/25ww0Wad7ZSgBorV8AZlSmNJLkts9UrOTed8p4Y27yjpmGYjKZuGHVLD737o3kZ6Xw4uErdMn0WhEDI5+ZCHoWMJq3iGdRwTpvviKcISifrDQ7y+fnUd3YTW1LbwxbFx/hBos2pdQqwAOglPpzYEZtQBtOTaixfEnuWPUsPB4P+0424rBbWLOoMKLH5mY6uHNjGUPDbl48fCUm7RMz26X6Lkym8Kaa+0uEvMWZcUp8jGfLcmMm1L5pmOgON1i8H3gUWKaU6gA+wrVTYKe1qoZuMiNIbvtUeLvUsVgcd762k5bOAdYuKsRhi3yN5LaVpWSm2Xj58JUZtT2kiD2X2011YzezC9Jx2CN7b5YVZwBQE8caUeEsxgtk9cICUuwW9p1sSLjquZMVVrDQWl/QWm8D8oAyrfV6rbWObdMSR0//EK1dA+OWJQ9m9Cop+knufSeNRNrm5eENQY3lsFnYcf0c+pzD7DpWF82miRmuvqWPwSF3wA3CQsnPSiE9xRq3JLfb40Ff7iAvy0FBkP03grHbLKxTRbR2OTl3uSNGLYyPcYOFUurb3v/u9NZqehp4Sin1svf3GWFkYVGEiTrjMVneY0T3jT/scnPgdCPZ6XaWlkd29ePvluvn4LBbeP5gDUPD7ii2UMxkI8ntMFdu+zOZTJSXZBqzqQamvsdb19xLT/8Qam5uxBeHMLrmYrqV/wjVs/iW97+fAf4twL8ZYbTMR+RXSbEaf6282EbvwDAblhZjMU98w8P0FBvbV8+io2dw2r25RfxcmmBy28eX57jcNPW9C305simzY6nyXHIzHRw808zQ8PQp/zHut4zW+rD3x/PA3VrrXUAN8C78ynRMdxOZCeWTm+kgOz36SW7fF/tEh6D83b6+DIvZxDP7a3C7p9c4q4iPS/VdWC0m5hZlTOjx8dzbYiS5PcEeu9lkYtN1xfQ7hzl2vjWaTYurcC9JfwJc9P5cB7wG/DgmLUpA1d79g/OyJjZbuLwkc6T6ZjQYb8IWSvLSIp5pEkhupoMty0tobOvjyNnmKLRQzGRDw26uNPUwtygDq2Vivd54zYgy1lcY+YrCCPMV/jZ7Z0VNpzUX4f6fzNNafwtAa+3UWj8GzIj9Qnv6h2jpHAirLHkw0S4qeFg3MzTsZvOy4gm3aaw7N5ZhAv64r1pWdYtJudLcg8vtmfAQFEBRbioOu2XK11rUtfjyFTmT+mzNKcygrCiDExdb6Y7j4sJoCjdY9Cul7vL9opTagbHV6rQ3sr5iAok6n2jPiNo7UmE2etUtS/PTWasKqWro5kz1jC3/JaJgdOX2xIOF2WSivCiDutZenENTN+6vR/bbnvikEZ9Ny0pwuT28drx+0sdKBOEGi/cBX1RKtSilWoAvYqy9mPZ8M6Emktz2ieaMqPZuJ2eq21k4O5uiMMsQhOvuTeWA0bsQYqJGKs1O4gILjLyFx2P0VKaKb7/tiSa3/W1ZXkJGqo0nX73IuSvJP4023HUWx7TWywEFzNdar4nSZkgJbyIrt8fKybCTlR6d4mj7TzXiYXR6XjTNK81iaXkuJ6vaR4KkEJGqqu/GYbMwKz99Usfx9chrpihv4fF4OFPTQW6mg8IoXIhlpdt5/33L8Hjg0ScrE2ZDp4mKdJ3Fr5hh6yyqJpncBmPeeEVJJm1dky+Otu9kAxaziXUx2l97tHdRE5Pji+ltYHCYutZeyoszMJsnl0+b6r0tRvIVZZPLV/hbWpHHn96ykK7eQR598kRSr2UKtZ+Fb3rsZ2LcjoTkS24vn5c36TdPeXEmxy+0Ut3QzYr5+RM6Rm1zDzVNPaxeWEBmWmzq5V9XkUt5cSaHzzTR2NZHcV5aTJ5HTE/VDd14PBNfX+GvtCANm9VMdcPUDEOdmWCJj1BuWzeH6oYu9p5s5CfPax7yVn1ONqGCxXuA/wG+qLXeMAXtSSi+K5pIypIH4z8jaqLBYp+3Tn64FWYnwmQycffmcv7vqUqe2V/DQ3ctidlzienHl5eLZA+LYCxmM3MK07nc1MOwyz3habjh8i3Gi7R4YCgmk4m/unMJdS19vHa8noqSTG4OsFFZogt19muUUleAVUqpi37/LimlLoZ4bNKLRr7CZ7Lzxt3eCrMpdgurFsZ21vL1iwspyk1lT2V90o+ziqk1mTIfgZQXZzLs8lAX45LfHu/+FbmZjqhPHAGjZtQHH1hBRqqNx188x9kkrBsVKlh8ENiCMRx1M1fvv31zTFuWAKomsOFRMLmZDrLSbBOePnv+SietXQNcryZWYTYSZrOJuzaWMezy8MKhyzF9LjG9VNV3k55ijUqCGKBsihbn1bX20d03+fUV48nPTuFv71+OxwPfeKqStq6BmDxPrIQKFr/WWtcAl7TW1WP/TUUD46m6oYuMVBv5Udir2iiOlkVrl3NCi3R8ays2RXFtxXi2LC8lO8POK0dr6RsYmpLnFMmtp3+Ipo7+SS1gHWuqktx6gvtXRGpJeS5vH0l4VyZV7ahQwWJQKfU6cItvBpT/v6loYLz0DgzR3DGxsuTBTHQoamjYzaEzTWRn2Fka5eRbMDarmdvXz2Vg0MXOo7VT8pwiuY1UZ45CvsJnTmE6ZpMp5ntbTHT/ionYsW4OW5aXcKm+ix8/fzZpKiaESnDfDKwBvssMqjIL0c1X+PgnuZdHkOQ+cbGV3oFhbl8/d9LTESOxffVsfr+nmhcOXua2dXOxx3j4SyS3S/XRS2772KwWZhWkU9PUjdvticn735evyMmwU5Qb/XzFWCaTib+8Q1Hb0svr3oT3LUmQ8A5VdbZba/0qRt7iENAOvAoc8lagnbZGy5JHP1hE2rPwbdG4eYqGoHxSHVZuWTubrr4hdp+YHiULRHR19w2y+0Q9jz55gj/uNUamoxksAMpLMhgcctPQ1hfV4/rUt/bR1TfEkrKJ7V8xEXabhQ++ZQWZaTZ+liQJ73Dnoq0A3gB+CxQD1Uqp22PWqgQwmbLkweRmOshMs0VU9qNvwChzPKsgfWS7yam0Y91crBYzz+yvweVO3gVFInrqW3t5Zn81n//JYT7y9df57h9Oc1g3k51h5603zY946+FQYp238OUrFsc4XzGWL+EN8I0nTyR8wjvUMJTP54FtwDNa6wal1I3Az4DnI3kypZQZ+AawCnAC79Zan/e7/z3A3wDDwOe01r+P5PjRVNXQRXqKlfxJlCkey7cDWOXFNrr7BsNaWHdYNzHscrPpuuhVmI1EdrqdG1aWsvNoLQfPNLHpuqnt3Yj4c7ndnL/SybHzLRw710Jjez8AJhMsmJ3NmoUFrF5UQEleWkzeo769LWoau2PSu47VYrxwqDIj4f34i+d49MkT/POfr8VmTczh3nCDhdkbJADQWp/y/Ryh+4EUrfVmpdQm4MvAfQBKqRLgQ8A6IAV4XSn1gtZ60hP9O3uc7DvVyIW6LggjmeQBmjsGWFYR/W5phTdYfPO3J0lPCX36fePAm66L3UK8UO7YWMYrx2r51c4LHNHx3+/CbrOweXkJ15VP3bDBWEPDLp589RKbl5dMeIOfYNq7nfx61wUGo1Rt1eGw4XRObEbbsMvDuSsd9Hq3N3XYLFy/uJDViwpYsSCfrBhVEvA3tygDE0ZdtNbOyV19BzoXJ6vayM6wUzwF+YpAbr1+DtUN3eyubOC/fnqU/DBLC9msFt528wJyMqLbkwsm3GBxRSn1ZsCjlMoBPoCxY16ktgHPAmit9yml1vndtwHY7Q0OTqXUeWAlcDDUQQsLrx0qGhgcZl9lAzsPX+aYbmIiG8BtXjU74LEnY9uaufxxXw2nIygDvm5pMUsXhVcLKtrt9R1zx/oyXjhQw6EECBYAeyobmD87m7fevJCtK2dhCbC6NxbnwufFAzU8e6CGlm4nn373pqge+/f7atiTQJvm5GencOPaOWxcVsKKBQVxmeiwbEE+lRdaY/b+u3V9GUVF0c21ROJjf7GOjm/v5eTFVi5FkB5MS7PxkT9bG7uG+Qk3WPwN8FVgLnABeBl47wSeLwvo9PvdpZSyaq2HA9zXDWSHc9DmZuPq27fL1Z7Keg7rZgYGjSuzeaVZbFlewuqFBdhs4aVpLGYT6Sm2kWNHS1Gmna9/+AaGXOGP/2ekhteOwsLMqLfX589uXsCbN5WRCJP8mtv7ee7gZQ7rJr74k8N8P/skd2woY9vK0pEFi7E8FwDP7rkEwJEzTZy/1EJ2lK7u3G4PLx2qIc1h5d/fvRGLZfI9p4L8DFpaJzb11ITx/vP14Do7YpNkDuUjb11JTxTW+wQ6F77XGMv3Szg+9raVdPeH+Ro98MWfHeXlQ5e5edUsZhVEXuE30oupsIKF1rpJKfWXwBLvY054v+Aj1QX4t9Dsd5yx92UCYU0RqGvpZe/JBvaebKCtyxi1ys9ysGPdHDYvK6F0kqWSoy3VYSU+Hd6JM5lMMSteGKmsNDt/OzubxvY+nj9wmddP1PPTF87y29cvcev1c7hl7WwKY/j8TR396MsdWC0mhl0e9p9q5PYNZVE59qnqNjp7Btm+ZnbUEsXZGQ4G+5N7tzaz2RSVIa9EPhcmU2Sv8S03zud/f3OCp16/NJIoj6WwgoV3uOgJoBVjBlWxUuotWuv9ET7fbuAe4JfenMUJv/sOAP+hlEoBHMBSIOSeGR/7f7s45512lmK3sG1lKVuWlbC4LAdzElZ2FOErzk3jnXco7ts2j5cOX+HlI1f47euXeGZfNbdvLOeGFSVRKzvhb493GvEDNy7g17susKeyIWrBwjf8tGW5TCQQ41uzqIB5pZkcOtNEdUN3VMoSjSfcYaivAm/3BQfvF/3XMfIMkXgSuE0ptQej9/ewUupjwHmt9e+UUl8DXsMISP+itQ6ZzbpQ28mK+fnGMNOigpjXTRKJJyvdzltunM9dm8p47Xg9zx+o4fe7L/GHPZdYv6SIB25aELXicG6Phz2VDThsFravmcW5Kx0cPdfC5aaeSSe6+53DHNHNFOWmsmBW/MbPRXIwmUw8cOMCvvyLYzz52kU+8rZVMX2+cINFhn8vwpucjnhOqdbajbFFq78zfvc/BjwWyTF/8KnbGZbaRQJIsVu5bd1cbl4zG13XzS9f0Bw43UR9ax+feXh9VGZOnbvcQUvnAFuXl5Bit7JleQlHz7Wwt7KBubcsnNSxD+tmBofdbFlekpT7HYipd11FLmpuDscvtHLuSgeL5sRurUi4i/LalFL3+X5RSt2PMSQVd7mZ0VsHIaYHq8XM9rVz+MzD61mnCrnc1MOpqvBnn43nde8Q1NYVpQCsXFBAeoqVvScbJr1ocU+lceypXqkvkpfJZOKBm+YD8OtdF2NaZyrcYPFe4AtKqRalVCvwHYwZUkIkLJPJxF3ebWKfOzD5bWIHBoc5dKaZguyUkdW+NquZDUuL6ewd5PQkAlJLZz9najpYPCc7JnkWMX0tmpPDygX5nL3cwcmqtpg9T7jB4i6gDyjHKC7YjLGnhRAJbV5pFmpuDpWX2rjcNLnKpYd1M84hF1uWl1w1ecKXjJ7M2oh9J41dELd4eyxCROKBG43exW9i2LuIpGexVWvdq7U+DlwP/F1MWiRElN2x0Zip9Pwkexe+Yopjv9Dnz8qiODeVI2eb6XdGPqPc402aWy1m1qnwFl8K4a+sOJP1S4qoaujmyNmWmDxHuMHCBvhPTh6EhFifJURIKxfkU5KXxr5TjRPeJralwztMNDfnmplVJpOJLctLGBx2c0g3RXzsS/XdNLT1sXZxAWlhlIARIpD7b5iHyQRPvXYR90RKVoQQbrB4CnhZKfVBpdQHMAoI/jbqrREiBswmE3dsmIvL7eGlw1cmdAzfENPWFYGTz76k9N4JDEX5EtuytkJMRml+OluXl1Lb0sv+U41RP35YwUJr/U/A1wAFLAC+prX+16i3RogY2bK8hKw0G68crY14qMjj8bC7sh67LfgwUUFOKmpuDmdqOmjp7A/72MMuN/tPNZKVZmPZvLyI2iXEWPduq8BiNvHU6xcZjqCkUDjC7VmgtX5Ca/13WuuPaa2fimorhIgxm9XCLWvn0Occ5vXjkW3kdO5KJ80dA1y/uIhUR/BhIl/PYO/J8K/qjl8wdkHctKwEiznsj6MQARVkp7J99WyaOwYifp+HIu9OMWPcvHY2NquZFw5djmhNhG9txbYgQ1A+65YUYbOa2VPZEPaMFCnvIaLtzVvKsVvN/G73paiVuQcJFmIGyUyzs21FKS2dAxwOs9S1c9DFwTNN5Gc5UOXjb46T6rCydnEhjW19XKzvCnnsnv4h3jjfwpzC9KjviSFmruwMB7eum0NHzyA7j9ZG7bgSLMSMcvv6uZgwFumFc/V/+GwTzkEXm5eXhlWYMpI1FwdON+Jye9iyvFTKe4ioumtjOakOC3/YWz2h6dyBSLAQM0pxXhqrFxVwqb6bc1c6Q/797hPjz4Ia67qKXLLT7Rw41cjQ8PhDXXsqGzCZYGMcd0EU01NGqo07NpTR0z/EC4cuR+WYEizEjHOnd5Hes/vHX6TX0tnPmep2Fs3Jpjg3LaxjW8xmNi0rpndgmOMXgpdPq2/t5WJdF8sq8qK2b4UQ/m5bN5eMVBvPHaihJ9xNlcYhwULMOAtnZ7NgVhbHzrdQ39ob9O/2VjbgYbRoYLi2LDf+3rd+IuCxT0piW8RWqsPKmzeX0+908cz+6kkfT4KFmHFMJhN3eDcrev5g4C66sbaiAbvVzPolkZXgmFuUwdyiDI5faA14Ref2eNhb2YDDbmHN4lju6SdmupvXGjsuvnToCh09E6te4CPBQsxIaxcXUpiTwp7KBrp6r91m83xtJ03t/axVheOurQhmy/ISXG4PB05fu+bi3OUOWrucrFdFslmXiCmb1cI9WysYHHaHHHYNRYKFmJHMZhO3ry9jaNjNy0euLQGye8y+FZHadF0xJlPgWVG7ZW2FmELbVpSypCwHm3VyX/cSLMSMtW1FKekpVl4+UnvV4iXnkIsDp5vIy3KwtGz8tRXBZGc4WD4vn4t1XVflRZxDLg5512349sQQIpasFjP/+OBa3nrTgkkdR4KFmLEcdgs3r51NT//QVT2AI2ebGRh0sXlZCWbzxNc/jJb/GD320XPeY4/ZE0OIRCfBQsxot66dg9Vi4rkDNbi9i/T2THIIymfNogJS7Bb2VjaMHtsblGTrVJFsJFiIGS07w8GmZSU0tvfzxrkW2roGOFXVzsLZ2ZTkhbe2Ihi7zcK6JUW0djk5W9NBR4+Tk5famFeaRWl+epRegRBTQ4KFmPHuWD8XgGcP1BhFAAl/xXYoW/3Kf+w72YjHI4ltkZxkWy4x480uzGDlgnyOX2ilrqUXm9XM+iXRKcGxaG4O+VkpHNRN5NU5sJhNbFgqW6eK5CM9CyEY7V30DgyzdnFh1LY3NZtMbF5egnPQRX1rHysX5JOZZo/KsYWYShIshACWlOdSVmyUCY/WEJSP/7CTrxSIEMlmSoehlFKpwE+AIqAb+Cutr95YQCn1OyAfGAL6tdZ3TWUbxcxkMpn467uXcrq6nesqoru9aUleGkvLc2lsN3oWQiSjqc5ZvB84obX+jFLqz4BHgA+P+ZuFwDKtdXhbjQkRJWXFmZQVZ8bk2B/+k5W43J5Jr6IVIl6mOlhsA77g/fkZ4F/971RKFQM5wNNKqRzgv7TWvw910MLC2HzAk5Gci1FyLkbJuRgl52JiYhYslFLvAj465uZGwLfjTDeQPeZ+O/Bl4KtAHrBbKXVAa9003nM1N3dPvsHTQGFhppwLLzkXo+RcjJJzMSrSoBmzYKG1/i7wXf/blFK/AXwtzAQ6xjysAfim1noYaFJKHQUUMG6wEEIIEVtTPQy1G7gbOADcBbw25v4dwAeBNymlMoDlwOkQxzRJt3KUnItRci5GybkYJediYkzhbFofLUqpNOCHQCkwCDyotW5QSn0BeEJrfUAp9f+ATYAb+ILW+qkpa6AQQoiApjRYCCGESE4yj08IIURIEiyEEEKEJMFCCCFESBIshBBChCTBQgghREhJuZ+FUsoMfANYBTiBd2utz8e3VfGhlLIB3wMqAAfwOa317+LaqDhTShUBh4HbtNZn4t2eeFFKfQK4F6Mywje8C2VnHO9n5IcYnxEX8J6Z+L5QSm0E/ltrvV0ptRD4AeABKoEPaK3d4z0+WXsW9wMpWuvNwD9jlAiZqf4CaNVa34Cx0PF/49yeuPJ+MXwL6I93W+JJKbUd2AJsBW4C5sa1QfF1N2DVWm8BPgv8R5zbM+WUUv8IfAdI8d70P8Aj3u8NE3BfqGMka7DYBjwLoLXeB6yLb3Pi6ldcXZBxOF4NSRBfAr4J1MW7IXF2B3ACeBJ4GghZkHMaOwtYvSMSWRjbH8w0F4AH/H6/Htjl/fkZjOoZ40rWYJHFaEFCAJdSKimH1CZLa92jte5WSmUCT2CUfZ+RlFIPAc1a6+fi3ZYEUIBxEfU24H3AT5VSpvg2KW56MIagzgCPAV+La2viQGv9a64Okia/bSACFXW9RrIGiy5GCxICmL3FB2ckpdRcYCfwY6314/FuTxz9NXCbUuoVYDXwI6VUdLe9Sx6twHNa60GttQYGgMI4tylePopxLhZj5Dl/qJRKCfGY6c4/PxGoqOs1kjVY+AoSopTahNHdnpG8e4A8D/yT1vp78W5PPGmtb9Ra36S13g4cA/5Sa90Q52bFy+vAnUopk1JqFpCOEUBmonZGRyLaABtgiV9zEsJRb14LAhd1vUayDt08iXEFuQcjOfNwnNsTT58EcoF/VUr5chd3aa1ndIJ3ptNa/14pdSNGhWczxmwXV5ybFS9fAb6nlHoNY2bYJ7XWvXFuU7z9PfCYUsqOUdn7iVAPkEKCQgghQkrWYSghhBBTSIKFEEKIkCRYCCGECEmChRBCiJAkWAghhAhJgoWYlpRS272L8yZ7nPcppd4X5t/+wLuKPCqUUvOUUt/1/rxOKfWdaB1biEgl6zoLIaaE1vqbcXz6cmCBtx2HgHfHsS1ihpNgIaazAqXUs8BsYD/GwjSnUuqDwDsxVjUPAu/QWmul1JeA2zBKITyltf43pdRnvMf6D4xS8Mu9v39Da/1YsCdWSj2MsfDJg1Eu/YNa6x6l1IMY9bs8wEHgPUAR8F0gB5gF/EBr/SmMGkbzlVKPYhSM/Iy3vPRi4NtAHtALfEhrfVAp9QOMlcrXe1/zZ7XW35/E+RNihAxDielsHvB3wEqM+jfvU0plYZS43661Xo5RjfWDSqlyjJXvqzDKel83pn7QFiBPa70GeBNwQ7AnVUqtAP4FuElrvQLjC/3TSqnZGKuJb9daL8MoOfEm4B3Az7TWm4AVwEeUUgXAh4BDWusPjHmKnwBf01qvxKh79IRSyuG9b663bfdiVOAVIiokWIjp7FWt9TlvdWmraF8AAAICSURBVM2fYgSILuBB4M+UUp8H7gEygFqgXym1G/gwRq2tAb9jVQJKKfUcRiXXfxjneW8CntZa+2oxfRu4FdgM7NZaXwHQWr9Ta/2U1vpLQI1S6uPAVzFKUqQHOrBSKgNYqLX+jfcY+zDqHSnvnzzvfb2VGD0PIaJCgoWYzvwrEZuBIW+F3r0YQz7PYOwWZvJWLd6IsTdIPrDXO9wDgPeLfxnwdYwv5iNKqZwgzzv2c2XCGPIdwhh+AkApVej992WMXkQ18DmgxfuYcI7tf3wwqsviV35aiKiQYCGms21KqTLvpjd/CbwIrAfOa62/gpEzeAtgUUqtwdgM5lWt9ceBU4xeraOUuhf4MfAHjC/2HoLvPvcKcK9Syndl/x6MEvIHgU1+ZdO/grFD2W3AF7XWv/I+52yMIaphxuQVvT2ji0qpB7zt2gSUYPQkhIgZCRZiOjuJkZQ+gTHM9F2Mcu5mpdQp4AjGhjjztNZHMXoclUqpIxjB4hm/Yz2DsVXrSYxKrj/RWgcsja+1Pg58HtillDqD0Yt5RGtdhzHE9ZxSqtJ7vO97//bH3ts+CBzCyLecBnKUUj8e8xR/AXxIKXUCYxvdB7TWgxM8R0KERarOCiGECEl6FkIIIUKSYCGEECIkCRZCCCFCkmAhhBAiJAkWQgghQpJgIYQQIiQJFkIIIUL6/yXbdnQMo9BUAAAAAElFTkSuQmCC\n", "text/plain": [ "<Figure size 432x288 with 2 Axes>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "from sklearn.linear_model import Lasso\n", "model = make_pipeline(GaussianFeatures(30), Lasso(alpha=0.001))\n", "basis_plot(model, title='Lasso Regression')" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "With the lasso regression penalty, **the majority of the coefficients are exactly zero**, \n", "- with the functional behavior being modeled by a small subset of the available basis functions.\n", "\n", "As with ridge regularization, the $\\alpha$ parameter tunes the strength of the penalty, and should be determined via, for example, cross-validation (refer back to [Hyperparameters and Model Validation](05.03-Hyperparameters-and-Model-Validation.ipynb) for a discussion of this)." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "## Example: Predicting Bicycle Traffic" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true, "slideshow": { "slide_type": "fragment" } }, "source": [ "To predict the number of bicycle trips across Seattle's Fremont Bridge based on weather, season, and other factors.\n", "\n", "We have seen this data already in [Working With Time Series](03.11-Working-with-Time-Series.ipynb).\n", "\n", "- we will join the bike data with another dataset, and \n", "- try to determine the extent to which weather and seasonal factors—temperature, precipitation, and daylight hours—affect the volume of bicycle traffic through this corridor.\n", "\n", "- the NOAA makes available their daily [weather station data](http://www.ncdc.noaa.gov/cdo-web/search?datasetid=GHCND) (I used station ID USW00024233) \n", "- we can easily use Pandas to join the two data sources.\n", "\n" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true, "slideshow": { "slide_type": "subslide" } }, "source": [ "We will perform a simple linear regression to relate weather and other information to bicycle counts, in order to estimate how a change in any one of these parameters affects the number of riders on a given day.\n", "\n", "In particular, this is an example of how the tools of Scikit-Learn can be used in a statistical modeling framework, in which the parameters of the model are assumed to have interpretable meaning.\n", "\n", "Let's start by loading the two datasets, indexing by date:" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": true, "slideshow": { "slide_type": "subslide" } }, "outputs": [], "source": [ "# !curl -o FremontBridge.csv https://data.seattle.gov/api/views/65db-xm6k/rows.csv?accessType=DOWNLOAD" ] }, { "cell_type": "code", "execution_count": 64, "metadata": { "ExecuteTime": { "end_time": "2018-05-20T15:53:35.910674Z", "start_time": "2018-05-20T15:53:20.663864Z" }, "slideshow": { "slide_type": "fragment" } }, "outputs": [], "source": [ "import pandas as pd\n", "counts = pd.read_csv('data/Fremont_Bridge.csv', index_col='Date', parse_dates=True)\n", "weather = pd.read_csv('data/BicycleWeather.csv', index_col='DATE', parse_dates=True)" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "Next we will compute the total daily bicycle traffic, and put this in its own dataframe:" ] }, { "cell_type": "code", "execution_count": 65, "metadata": { "ExecuteTime": { "end_time": "2018-05-20T15:53:53.996710Z", "start_time": "2018-05-20T15:53:53.981379Z" }, "slideshow": { "slide_type": "fragment" } }, "outputs": [], "source": [ "daily = counts.resample('d').sum()\n", "daily['Total'] = daily.sum(axis=1)\n", "daily = daily[['Total']] # remove other columns" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "We saw previously that the patterns of use generally vary from day to day; let's account for this in our data by adding binary columns that indicate the day of the week:" ] }, { "cell_type": "code", "execution_count": 66, "metadata": { "ExecuteTime": { "end_time": "2018-05-20T15:54:09.994337Z", "start_time": "2018-05-20T15:54:09.942189Z" }, "slideshow": { "slide_type": "fragment" } }, "outputs": [], "source": [ "days = ['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun']\n", "for i in range(7):\n", " daily[days[i]] = (daily.index.dayofweek == i).astype(float)" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "Similarly, we might expect riders to behave differently on holidays; let's add an indicator of this as well:" ] }, { "cell_type": "code", "execution_count": 67, "metadata": { "ExecuteTime": { "end_time": "2018-05-20T15:54:34.478168Z", "start_time": "2018-05-20T15:54:34.445100Z" }, "slideshow": { "slide_type": "fragment" } }, "outputs": [], "source": [ "from pandas.tseries.holiday import USFederalHolidayCalendar\n", "cal = USFederalHolidayCalendar()\n", "holidays = cal.holidays('2012', '2016')\n", "daily = daily.join(pd.Series(1, index=holidays, name='holiday'))\n", "daily['holiday'].fillna(0, inplace=True)" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "We also might suspect that the hours of daylight would affect how many people ride; let's use the standard astronomical calculation to add this information:" ] }, { "cell_type": "code", "execution_count": 68, "metadata": { "ExecuteTime": { "end_time": "2018-05-20T15:55:20.848224Z", "start_time": "2018-05-20T15:55:20.530107Z" }, "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "data": { "text/plain": [ "(8, 17)" ] }, "execution_count": 68, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW8AAAEJCAYAAABbkaZTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJztvXeYbFd14PurHLqrqruqq8PNUUcRCREkgkGM8YexB7BljMMb48AYj4yxh/EbzCNYwoaxMfN4JA/YxuAwMDjIAcZDGJ4losiS0L3SPTf1DX07VVeurlx15o9zTnXdVocKJ1af3/fd77tdVefUXrXPXnvttdda2yVJEg4ODg4O9sJtdgMcHBwcHPrHUd4ODg4ONsRR3g4ODg42xFHeDg4ODjbEUd4ODg4ONsRR3g4ODg42xNvLhwRBuAt4jyiK9wiC8GlgVnnrCPBNURR/Vqf2OTg4ODhswa7KWxCENwO/AKwDqIpaEIRJ4CHgTXo20MHBwcHh6fTiNrkA3LvF6+8EPiSK4pK2TXJwcHBw2I1dLW9RFB8UBOFI92uCIEwDP0yPVrckSZLL5RqogQ4ODg57mG0VZ08+7y14NfApURRbPX27y0UqVRzoi5LJyMDX2hFH3tFmr8kLe09mLeVNJiPbvjdotMlLgc8NeK2Dg4ODw5AMqrwF4KKWDXFwcHBw6J2e3CaiKF4C7u76+xa9GuTg4ODgsDtOko6Dg4ODDXGUt4ODg4MNcZS3g4ODgw1xlLeDg4ODDXGUt4ODg4MNcZS3g4ODbajVarz61a/o+fNLS4u8/vW/BMD99/8/NBqNbT/7yle+7GmvFQp5vvjFz+/4HVtdZwSO8nZwcNgTvPOdf4DP5+vrmvPnz/H1r39ZpxYNx6Dp8Q4ODnuQv/3X83znzGpf13g8Llotadv3n3PjNK/5Nye2fb9cLvN7v/d2isUi+/cfAODRR7/HJz7xZwBUq1Xe/vZ38uij32Nh4SpveMNv0Wq1+OVf/nne9a73dO7z6le/gk9+8u9JpVZ597sfwOv1Mjs7x9LSIh/+8J9Sr9d54IG3sbKyTCwW413v+iP+6q8+zvnz5/jnf/4HXvWqrerz8bTrPvrR/8af//mfcOrUD6hUKrzlLe/gIx/5IOvr69RqVe677ze5885n9/UbboVjeTs4OFiaz33usxw9epw//uM/41Wv+ikA5ucv8ru/+/t88IMf5YUvfBEPPfQlfuRHXsZXv/owrVaLb33rEe6889n4fP6n3e+P//gDvPa1v8yHPvQn3Hbb7Z3XK5Uyv/Zrb+AjH/lzSqUSZ8+e4bWv/RWe9axnb6u4t7ruqaeeAuDw4aN89KMfp91uk8mkec973sf997+bWq2qye/iWN4ODg4985p/c2JHK3krhi3UND9/kbvueh4At9xyK16vl2Qyyfvf/15CoTCp1Cq33XY74fAYd9xxJ9/+9iP8r//1GX7pl351y/tdvjzPrbfKSvv225/JF78ol2mKRmPMze0DIJFIUK32pmQ3X1epVAA4dOgwAMeOHefee1/DAw+8jWazyatfrc3ZNY7l7eDgYGkOHTrCqVNPAHD27BmazSbvec+7eOtb7+dtb3uAqalk57OveMVP8tnP/jPZbJYTJ05ueb9jx45z6tQPADh9+onO61uVrXa73bTb27t8trtOvlZ+/cKF85TL67z3vR/gbW97J+9//3t3vF+vOJa3g4ODpbn33p/mD/7gndx33+s4fPgIPp+PF7/4Jbz+9b9EJBJhcjLB2loKkC3za9eu8pM/+dPb3u+++36TP/iD3+PTn/7vjI2N4/Vurwb37z/AxYvn+du//RSvec3PD9T+AwcO8olP/Cmf//y/4PX6eN3rfm2g+2zGJUk7zyoaITn1vHvDkXe02WvygrEyt9tt7rvvdbzvfR9ibGx8y8988Yuf4+abb+XAgYN89rP/xBNPPM5b33q/Zm3QuJ635ocxODg4OFiKxcVrvPWt/5lXverebRU3wPT0DPff/1aCwSBut5u3vOUdu977a1/7Mp/+9Cef9vpP//TP8eIXv2Sodg+KY3lbDEfe0WavyQt7T2ajLG9nw9LBwcHBhvTkNhEE4S7gPaIo3qMcPvxnwCTgAV4riuIFHdvo4ODg4LCJXS1vQRDeDHwMCCov/RHwSVEUXwS8HbhRv+Y5ODg4OGxFL26TC0B3etELgAOCIHwJ+L+Ah3Vol4ODg4PDDuyqvEVRfBDoLsV1BMiKovhS4ArwO/o0zcHBwcFhOwYJFUwDn1H+/1ng3b1clExGBviq4a+1I468o81ekxf2nsxGyDuI8v4a8GPAXwMvAk73cpETKtgbjryjzV6TF/aezBqHCm773iDK+7eBjwmCcB+QBwbLGXVwcHBwGJielLcoipeAu5X/XwZ+RMc2mUqz1cbr2Tvh7612G49778jbbLXxuF3bFhMaNfaavK12G5fLhXsPyOukxytUak3+5DOn+cGFNLcfT/AfXnUrAb/H7GbpRrPV5uP/8hTffHKFGw5O8Bv33sZ4qL9TRuxEW5L4H//7HP/66AIHp8d5473PIBEL7n6hjfmnr17kXx65zNREiN+49zb2T42Z3SRd+dJ3r/J3D18gEvZx30/cyvF9MbObpCt7x+Tahb976Dw/uJAmFPDy+IU0f/Ov58xukq78z29c4ptPrhAOeDl7NcdffO6M2U3SlYcfvcb///0FQn4vV1ZK/MlnT2NQaQhT+O6ZVT7z9Uv4fR5WMmX++B+eoNlqm90s3RCvZPnUl87hcbvIFmt8+MEnqNabZjdLVxzlDaRyFb782CL7p8b4f9/wfOYSYb78+CJruYrZTdOFYrnO5791hdi4n/f++vM5cSDG98+mmF8qmN00XWg0W/zTV+cJ+j28+/V388yTU5xfyPODC2mzm6YLbUniwS9fwON28Y5ffDb33LGP5UyZb5xaNrtpuvEPX7kIwG//zB284vlHyK/X+d/fXTC5VfriKG9kq0wCXn73IYJ+Lz9292EkCR567JrZTdOFb55eod5s86PPPUQo4OWVLzgCwEOPjqa83z+7RqnS4CXP3E9szM9P/NAxYHTlFa/kWMlWuPvmGWbjYV7xgqO4XS4eHlF5r6VKnFvIc9uxBMf3x3jZcw8R8Hv4ymPXaI/w6mrPK29JkvjmkyuMBb0858ZpAJ570zQBv4fvnlkdyaX1159YwuN28bxbZwG4+UiceDTAd8+sUm+0TG6d9nz91BIAL3zGHAAHp8c5Mhvh1MUMhfW6mU3ThW88cb28k5EAtx6Lc2m5yOLauplN04VHTq8A8ILb5Oc5FPBy103TpAs1xCs5M5umK3teeV9dLZEt1njG8QQ+r7xB6fN6uP14glSuypWVkskt1JZMocqV1RI3HZkkGpYPZ3W7XDznxmmq9RZnr47Ww16tN3nqUpZDM+PMJTY27J5z0zRtSeKJi6PlOmm3JR47v8ZkJMDJgxOd1597k2yYPH5hzaym6cb3z6YI+DzccWKq89qzBUXe86Mnr8qeV95q597e1fEAd94gn4v3gxF72E/NZwC47WjiutefcUz++4mLGcPbpCfilRyttsRtx66X97aOvKOlvC+vFFmvNrnlaPy6cLlblf5+YsT8/JlCleVMmRsPTeD3bUSHCYcm8PvcI9e/3ex55f3EfAa3y8UtR+PXvX7j4UkAxBGzRFXlfeux6+U9cWCCgM/DqfnRethVeW85cr28+6fGiEcDnJ7PjJRf9LTav5ue5+iYn6NzEc4t5EcqCkOV9+ZN/evzerj5cJyldJl0vrdT4O3GnlbejWabS0sFDs6MMxa8PsY5Gvazf2qM89fyIxNiJUkSZy5niUcDzMbD173n87o5eTDGUrpMoTw6fuAnL2UI+DycOHB9zK/L5eLGQ5OsV5ssjZAf+MlLGVzATYrx0Y1waJJWW2J+cXSiip68nAXg5k2TFcANitvo3LXRMsBU9rTyvrJSpNmSOLFNML9waIJ6o82lpdGoy7Caq1CqNDixP7Zlxp36O1y8NhqDu1xtsJQuc3QusmXW7In9srznr+WNbpoutNsS80tF9k2NEVH2M7oZNXkBzi/kGQ/52JcIP+09dcI+vzA68nazp5W3+hAfPxDd8n115h6Vh/2iYnEd22ayOj5ig3t+WZ50t5N31JTZ4to6tUaLo3NbP8+qvOdGRN7Cep10ocqxfdEtjZHDM/Kk7SjvEUQdtNtZ3kdm5Ypel1dGw/LeUN5bD+5j+6K4gAsjMrh3k3ff1BihgGdkBvdFJcnq6DbyRsf8TE+GuHCtMBJ+fjWpbLvJyud1c3QuwtVUiUptdPz8KntaeV9cLBAb829b4yI5ESIc8HJpRDIPLy7m8bhdHJ4Z3/L9UMDLvuQY88sF2u0RGNyLOw9ut9vFkdkoK9kK5ar9B7eqzI5tI6/6XqXWJDUC2cO7KW/1PUmChdRohfzCHlbehXKdbLHGkdnIthXXXC4Xh2cjIzG4G802V1ZKHJwe78Szb8Wh6Qj1RptVmw9uSZK4uFRgMhJgMhLY9nOHZ+TV1SgM7vnFAj6vm/3J7QtQHVLkvToC+Qudlcbc9jWvDymGyqjla8AeVt4Lq3JnHpje2gpVOay4Tq7Y3HWylF6n1ZY68mzHwWn1Ybe3vIX1OoX1esf1tR0HZ0ZD3marzbW1dQ5Nj+9Y0rgj76q95ZUkiUtLRaZiwS03Z1UOTSuTlc3l3Yo9r7wP7qK81cF/adnenX8tJYfDHUjuLK9qqVxdtbelsqDIu38XedX+t7u8S+kyrba0qzGyMTnbW95CuUGp0th1/M4mwng9bi7bXN6t2LPK+2qqN+Wtvn/N5stq1S1wYIclNYyOMutV3tm4PLiv2Fxe9fncrWZ3NOxnMhKwff925N2lf70e2Y10LbU+MvkaKj0pb0EQ7hIE4WHl/3cKgnBNEISHlX8/o2sLdWJhdR2f1830ZGjHz01PhvB6XFyzeSJHr5ZoZEQG94by3lne7sHdatt3cC/0uLICeYLOFmu2TsbqdSUJcGh6nGarzXK6rHezDGVX5S0IwpuBjwFqSMadwPtEUbxH+fc3ejZQD1pt2T+4b2ps1yPAPG43s/ExFtPrtg6vWkiVmBj393Rajjq4S5WGAS3Th2updbweNzPxnSdnkOVtttqsZOy7SdurJQobq6vFlH0NkoUeVxqwoeAX0/aVdyt6sbwvAPd2/f0s4McFQfiKIAh/LgiC/mfca8xypkKz1eZgD7M2wL6pMPVG27Y1EtarDbLFWk9WCsA+pfrekk0f9nZbYnFtnX2JcE/nc9pdXpAt79iYf8fNO5U5JRvRzvJeW1vH43YxE396ZuVm5qbkz4xaOdxdz7AURfFBQRCOdL30beBjoih+TxCEtwH3A//3bvfZ6Qh7Pa/dirOL8uajcDTe071vOBzn20+tst5oc7PGbdkKreVdVSqrnTzco7xH4nz+21co1tqat2UrtP6OxVSJerPNsYMTPd37xmMJeOg8+WrTlvKWqw3ShSp3nEz2dO+bTzSBp8iWG4bIC9rK3G5LLKXXOTgTYW5293Mqb/XKai5dqttS3u0Y5ADifxRFUa308o/Ah3q5KJUaLFojmYwMfO12iJdkZTbu9/R075jianjqwhpHeliWDoMe8j55PgXAZNjX073HlYOXz11Oc+fxpxf80RI95H3irCzvVCTQ073DPtk6P38lq3lbNqOHvGpG7PREsKd7B5XFyMWFnO7ygvYyr+UqVGotZiZDPd1XkiQCfg+XFvO2k3enSWCQaJMvCILwXOX/Pwx8b5BGmYm6cTG7RTGbrVD9iHbdtFzOyPLO9SjvbGdZbc8Nnn7lnYoG8XrcLK3ZU161n3qVN+j3Eo8GbNu/i33K63K5mIuHWcmUbb0pvZlBlPd9wPuV6JMXAO/StEUGsJwp43G7mNomLX4zyYmgrSNOVGXWi38QYDzkIxL22XZ3XpV3c9nb7XC7XczGwyxl7LkpvZLtT16AucQY2WLNljU/VvrsX5Dr2DRbEms5e+5bbUVPbhNRFC8Bdyv//z7wfB3bpCuSJLGcKTM9GeppMwvkiJOZSXnmliRp23R6q7KSKTMe8vUUaaIylxjj3EKORrO1Yzq9FVnJlHG55No0vbJvKsxCqkS2UNu21o1V6XdyBtlqPT2fYSld3rZwl1VZHmiyUjYt0+t9/U5WZs8l6RTKDSq1Zl8dD3K8d7XeolC2V/hcs9Umlav2Le9cIowkwUrWfuFzK5kyyVhoxzTxzczZOOJkJVMm4PcQG9s90kTFzhE2quW9W45GN6q8oxRxsueU97LysPbq71ZRZ2v1wbELqVyFtiT1FO/czVzcnn7vcrVBodzo27qas6mfvy1JrGQrzE6G+1oR2lVegJVMhclIgKC/93gLdbzb0RjZjr2nvAfwlwHMKLO86l+0C2riSb/yzqqWmc0slWVF3n4nq5lJ+fdZtdngzhZqNJrtvuWdVuW1WfXIeqNFplDtjMdemYqFcLns1787sWeVt7pM7hW7Du5BJ6vZuDpZ2UtedWU0N4BbDGAlZ6/JeRD/L8DEuB+/182qzYyR1VwFif78+yAfzJCIBm0n707sPeWdHtDytqnbZJDNLIBELIjH7bJd0f5B5Q0FvETDPttNzisDyutyuZieDLGarSDZKMKmI+9k/5uO05MhcqU6tXpL62aZwt5T3gNEXoBiqfjctrREXcB0H5EXIEfYJKJB2y2rBwmbU5meDJPOV21VfW7QlRXI8lbrLYo22oQfVl7AdgbJduwp5d1uS6zl+/eXgWKpTIRtZ6ksZ8skYkH8vv7D/ZKTIQrrdVvFAi9nyvi9biZ2OD1nO6YnQ7TaEpmCfWKB1T2NQZ5p1VVkp9XGyoB7GrBhwNjNANuOPaW8M8UqrbbUV/xvNzPxELVGi1zJHqU0q/Um+VJ9oIENGw+7XSwVSYm8mJ4M4R4gFl+V117KrEwk7CMc7G8lCV1+fhv5gZezZdwu10BjWB0Hqzbb19iOPaW8U0p21dSgyruzaWmPzlezyQadrJI2U97FcoNavTWwvBvKzB7yttpt1vLVvuKdu5mx4WS1mq2QiAX6iuFXseNKYyf2mPKWO61f/6/KjM0GtyrvwCuNjqViE3nzw8k7bbOIomyhRlsafCVpt3DBWqNFYb0+tDFil/7djT2pvJMTg6U/dyJObGJ5p/JDWt42s1SGnaw2LDOb9K8i71RsMHkno7IFaxd514aU1+/zMBkJ2Ebe3dijynuwzlcLWdmluE1ncA84WdnNUtlwEw0m73jIx1jQaxtLtDM5D1iLRfYdB23TvxvGyOC1Z2YmQ2QKNRpN+4cL7jHlXcXrcQ0UiQAwEQng9bhYy9vkYR9ysgr4PMTG/bbxeQ9riYJsfadyFdpt60cUDdu/IO/jrFebtjjybk0DeacnQ0jAqk0MsJ3YY8q7wlRssEgEkC2VRDTY2fi0Omv5KuGAl7EBIhFUZiZCpAv2iH1eUyyzXkv9bkVyIkSzJZEt1rRqlm505B3CErXTpnQn4GCIyVm9ds0G8parO4fo7hnlXanJ1sUwszbIkSqlSoNq3dqxz5IkyZPVEAMbZL+3JG0oCiuTylWIjfsHimlXUZ8PO6yu1nIVPG4X8cjgfdxxBdqgf9fyw+1ZwcZEZwd5H/zKhR3f3zPKe9jNSpWkTfze+fU6jWZ76MnKLrHPzVabTKE2tLwJGymzVK5CIhrE7R68vvyG8rZ2/4Isb8Dv6Ts7uptkzD6T87XV0o7v96S8BUG4Szk5p/u1nxcE4ZHBm2YsWvgHYSNGPGXxzh82xltFjTix+rI6U1TC5oY8SGFjcFtbedeU2vLDGiPq82x1Y0SSJFL5KslYaKjDUGy10tgl03fXgriCILwZ+AVgveu1O4DXAbY5UialkTKzS8SJZpOVoszSFk8Z12IzC+xjiarGw6AJZyp2UWalipqANdxkFR2Tqylaffw2W22yhZ33XXqxvC8A96p/CIKQAP4Q+I9Dtc5gtFJmSZtY3h15h7REE1F7DG4tIk0A4tEgLiBtcXnXcsNvzoJcTXEs6LX+ZKWR8eVyuUjEgpaXN12oslu8066WtyiKDwqCcARAEAQP8OfAm4C+pN/pCHs9r1XJK5XTbjw+NVAdCBV/SD5qqlhpatKurdDivgVlp1o4NkUyOT7wfRKJcbweN/n1uqXlLTfkaJiTR+JD3y8eC5Ip1iwtb+WpVQCOHxpe3tmpMa4uF5maGtftfNZh23hmoQDAkf0TQ99rX3KcpfQq4fEgY0P4z3di2DYuZHZXr72fIyTzLOAk8BEgCNwsCML7RVHc1QpPpYp9fpVMMhkZ+Npurq0WiYR9rBerrBcHt6okSSLg93BttahJuzajlbwLK0VcgKvVGvp+iWiA5fS6peW9vJgHwIc09P0mIwEuXiuwvJLv+ZDqXtFK3vlrOQAC7sHHlspE2M+FZpsLlzN9nYPZK1rIfOFqBoCg1zX0vaJhWWGfuZDi0Iz2E7QW8p6/ktn1M309maIoflsUxVtEUbwH+FngyV4Ut9mopWCHXXKBvOxKxoKk8lVLl4ZN5Sqd9OdhmYoF5aJPDetmpXUSsMYHS8DqZioWpC1Ju/oczUSrDWnoCp+z8Ka0Vm4T2HA1Wdk11otPfk+ECuZKNVptaWj/oMpULESt3rJsVlqj2SZXrHUiJ4YloW5aWvhh1yJsTkX1m6esLG++QtDvYSzY7+L56UzZIMJG9VFrMYaTNujfXnzyPfW8KIqXgLt3e82qqJES6ubbsHQH+kfC2i8zh0Xd7Bg2QUelOyJh31R/Z38agZqAdWRWmyXw9REnk5rcU0skSWItJ5eC1cJHbYcIm1SuQmzMT2CIBCwVO6w01vJVPLsYInvC8lYtxoRGlndn5rZo52s9WSU6y0xryruRJq7NSsPqy2rVhaXdStLaEUXttkSmUNPQGLH+SiOdr+46fveG8tZYmVm9HkRG48nK6oNbyyU1dCViWTQWeNi65ZvpZJVa9XlWT8DSyA04FvQS9Hssu9JoNFvk1+vEozvv3+wR5S1vPOnhNrEimruJLG6pZDTu33gkgMtl3ZWG1vIG/V4iYZ9l+1frlbPL5WIqFmLNokEHGaUo2m7y7g3lrXHnq4PGqlmHWivv2Lgfj9u1Z+T1etzEIwHLbmhp/TyDvGpJF6q0rajMCr0ps36YigWp1lus71K5zww6/eu4TeTBHQ54CQWG35mHjaw0q/pE1Yd9csC65Ztxd7LSrCqv9sosEQuRK9YsWQpX68kK5NVVsyWRt+Dh2mt6yKusnq3o+nSUt4IkSbLzX8OBDXIadaZQs+SyK12oEg37hiqNupmpWJDCep26BWO908rOvJYJJlOxIBIbE4OVUNu0m0+0H6wccbIhr7aTFVhzUzrdozEy8sp7vdqk1mhpOmuDPCvWGtZbdrUleWde68nKyq6idKHKZCSgSYy3iqrMrOg6Seer+H3uoUqjbsbKBdc2LFHtJiurP8/gKO+elyD90ul8iw3u4nqdZqutqZUC1o04abba5Et1HeS1tmWWiAY1rUOSsHCd63ShqkSIaOP2BEjEAp17Ww31mYvv4vYcfeWtgz+0+35W63ytI2tUrBpxki3WkNDWKqPrflZT3tV6k/VqU3tjRHmeMxY7/k1SV5J7xPgCec8qNubH593Z7Tn6yluHnXnY8DdaTXnr4R+E7hNmrGWZ6bFZ2X0/q/m81clZ6/5VrTyrPc8dt6fG/Tse8uH3ujub+1ahLUlkitWe+nf0lbcOO9XQnXVorYd9Q15tLVGrZh2qKwGtldlkxJorq4xO/atGUFlNmaV16l+Xy0U8GrRc/+ZLdZotqafJag8pb42VWdSqlpk+lujEeACP22U5t0lGp8nZ53UTG/NbVplp3b8gK8i0xRJX9OpfkH/DUsVa1TJVeaccy1t+2L0eNxGN6xRHxvx4PdZLXNHLUnG7XcSjAevJq5MbQb1npmitxBW9VpLqPa0WQbWmkzECGwadlQywdMftubuxOfrKu1AlEQ3g1viEEHdn2WUtyyxTqOHzuonocEJIPBIkX5JPpbcKerkR1Hs2WxKFdeskrui1pyHf03rKTI+YdpW4BcMF+1lZjbTyrjVaFMsNXWZtkC2VwnqdRtM6y650Qd7s0OM4K/Vhz5asM2HpEUamYtXB7UK77NlurBhBpVf0VPc9reQa62dlNdLKW09/Wfd9rWJ91xryARF6WKGwERubsYjfW5KkTsyzHlhzcNeYiGhzQtJmLClvXj4hKarD8WxWPFy7H8u7J3NFEIS7gPeIoniPIAg3A38KuIDHgTeKomgd07MLPf2DcH244Gw8rMt39IPek5VqiWaGOANUS9arTeoN7ROSVDqWt0UGd7stkS3WOLYvqsv9rbjSyBSqxCNBzd2eIB80rX6HVUgXqgT9HsI91GHadfoWBOHNwMeQDxwG+C/AW0VRfAEQBl45RFt1Rc+d+e77WmVw6z1ZWW2loVf2rMqUxQZ3rlSjLUm6+H+h2/K2hryNZrunutaDMjkewIV15AV5bCVivbk9e1l7XQDu7fr7p0RR/IogCH5gFlgZrJn6Y5Qys0rnZ3SMvOi+r3Xk1Xdytloilt7Pc2xMKf1rEWNEXeHpJa/P6yY67reM26RcbVKp9Z49u6ttLorig4IgHOn6uyUIwmHgS0AeEHv5omRy8PMFB722VJO9OSePJkgmtD978aQyO5ZqraHk28yg96ooUSDHDk1q2h6VMSVxpVhtWkLe2pkUAEcOTOgi75Qk4fd5KFQalpD3yat5AA7v10degMREiGyprvn9B7nfolIk6+BcTDd5ZxNjXFjIEU+M73pmZD8M0t5LSwUA9s9Eerp+oC16URQvAycFQfj3wPuAX9ztmlSqOMhXkUxGBr52cbWEC5AazYHvsSNKlMnialGz+w8j74LS+R6prY+8yEdILa+tW0Ley4s5AHxIuskbjwRYSZctIe/8QhYAv3vw8bQbE2N+zl3NsbSc12xTdFCZL16R5Q16XbrJGw35aLYkLlxKaxbBM6i85y6lAQj73J3rd1LiffeOIAifEQThpPJnEbBO0O8m0vmqbjvzAD6vh9iY33LL6nhEn2Um0EkptkIWnp4JOiqJaMAyWXhaH38DuDtdAAAgAElEQVS2FYmoXMc8a4ECVXq7ibrvbQVXYL97dINotT8E/kIQhIeA1wJvHeAeutNqt8kWta9Gthn1UAYrZOFtVCPTLwI0EQ1Sq7co18zPwssUlEMYxrUPI1Oxkp/fEGUWs06ijl6lHrqx0r7GRmp8bwct9+Q2EUXxEnC38v9vAC8YqHUGkivWaUu9FXgZhkQsyPxSgXyprkviRK+o1cgOTuvjG1SZ7CqVOhbUPouzH+SEJO2zZ7vpLto/p8O+ST+kC1VCAQ/hoPYJSSpWChfsZFfqOK6slJjUT2o8jHCSjhFWinx/a1gqhXWlGplOYVUqVknkaDTlQxh079+YNeSV26BfQpKKlcJB0/kqEY2P89tM53nOW0Nej9vFxLijvAF9al50Y5XjlDZmbb3dRMpkZXKiTrZolLzWiOUvVxtUaq09I6+cPWuM2xPMH79qG/o5zm90lbfOCToqVlHenc2sPSKvEZuVYJ2VlZ41PrpRXRRmy1ssN2i22rrLOxb0EvB7TH+e1eP8+pF3dJW3UW4Ti2RZ6p1tqGIVt4me1QS7scqhDEZs3sHGoQxWkVfvydnlcpGIBk2frDKFqnycXx/9O/LKe68sM42arGLjftwu8+uYG6XMrHIow0addv03xRNKBJWZ4aBGrZxB/k3XlexGsxhkZTWyyjtTqBEOeAn1UOBlGNRll9kHt+pZ97gbj9vNZMRvCUsF9J+swBqHMhgtr9mHMhi1spK/w/xw0EEmq5FU3mqpUL2tbthYdlnB8vZ73YzrcAjDZuLRINlijVbbvPysjiWqY0KSihUOZTBqZdX9HWYqszWDVs5gjQibQSbnkVTelVqTWr1lyKwNsrVbrpm77Mr0UY1sWBLRIJIkx9KbRbpQYzzkI+DXL4xMxQoRCelCf2FkwxCPmZ+4YtQGPFhjsuo3xhtGVHl3IhEM6Hgw/zDiWl0+hMEIKwW6EnVMkleSJLnOs0GTsxVivTOFWl9hZMNghU3pdKGq23F+m7FClqXqdu1nJTmiytu4JSZ0W2bmPOxGxbSrmG2plCoN6k39w8hUEiZvSjdbbXLFmmGTsxU24dN5/Y7z24wVwl8zhWrfK8mRVN5GpNV2Y3bn63ko7VaY7UYwokBTN2ZPVtliTQ4jM3hyNqt/1eP8pgySdyISwOUyb7La2KPrT96RVN5GhQmqmH3qttErjY4yMynCZi1vTv+aPTkb4f8FORzU43aZ9jwbbYx4PW4mxgOmuYnU4/z6Hb8jqbyzRltmJhe3MSr7TqWTdWiSpWK0MhsP+fB73aYNbqMnK7fLxWQkYOLzbKwxon6XWRFU6QH7dySVd7pQxeWCiYh+pUK7mRiXl11mKzOjNmhDAS9Bv8d0H79RG5Yul6tTx9wMjIzxVklEg+RLdZot45WZkZEmKvFogLYkkS8ZH0GVKQ72PI+k8s4oBV48bmPEU5ddplkq+Sou5ANVjcDslOKNusdGKjPlUIa68YcyGL2yAtkKNOtQho0YfuNKLJu5eh50D2fklLd8CEPdsCWmirzsqpuz7CpUiY7rewjDZuLRoGmx7elCDa/HRWTMmJUVdB3KYEI1RaOyZ7tRD2UwYxPPaLcYmLtJO+geXU+jXRCEuwRBeFj5/x2CIHxVEISHBUH4giAIM322VVfyJfkQBiNnbZAfNDOWXe22ZMiJQZsxs9peulAlHgnqegjDZsy0zNKFKmNBL0G/vqUeujEzokj9zkkDsmdVNk5MMn6lMahbbFflLQjCm4GPAeqdPwC8URTFe4B/AH6nr2/UGTM2O8C8iIT8ep1WWzJBXnNi2xvNFoX1uqFWKJiXuCJJEhkDY7xVzEw8M+I4v82YGcuvZs/G+lxJ9vLrXADu7fr7Z0VRfEz5vxcwv4p5FxmD6jxvxqzON2MzC8wLj1TDE02brAzu33Kn1MPemJzV4/yMH7/mhYMOmj276zpMFMUHBUE40vX3EoAgCM8HfgN4US9ftNMR9lpeW2stA3Ds4ORQ39kvRw9OAlBtSUN/bz/Xn7lWAODQvpih8h47JA/qSrNtqLyLOXlwHZwzVt6mS7Zz1ustQ+UtLeYB2D8TMVTeceUQ3FK1qcn39nqPbKFKsyWxLzluqLwA4aCXQrlhqLzyIQw1bjqa6Pt7B3KiCYLwM8DbgB8XRTHVyzWpVHGQryKZjPR17ZUl+WH3SO2Bv3MQfEq50KtLhaG+t1955xeyAATcg//Gg+BRNmYXlo2V9+IVWd6g12WovFKzjQtYXC0aKu/5SxkAwj63ofKCXO54aa009Pf2I/PFRdkYGQt4DJd3MhJgJVM2VN61fIW2BJGQd8trdlLofTuVBEH4d8gW9z2iKF7s93q9MSNGFMzb4FEPTjV6mTkZCeDCeB+wWXsaPq+b6Ljf8P41Olu4m4QS227koQxGZ1d2k4gGqdSalA2sYz5MqYe+lLcgCB7gg0AE+Acl4uSdfX+rjqQLVQI+D2GdD2HYTDjoJRQw/iw8o06U2YzX4yZmqjIzdsMSNk6YMfJQBrP2NEB+puqNtqGHMhh5CMNm4iZs0g4zOfek4URRvATcrfwZ7/tbDEQtFWpENbLNxE1IXMkok9VY0NjJCmSFcmm5SLstGVKqFMxVZvFokIuLBQrrdUPqaoO5k1X3Jq0Rh3yAcQdLb0X3puWB6XFDvnOYyWqkknSq9Sbr1aYpAxvUZVfL0GVX2uTJqtWWyBt4wox6CIPfp/8hDJvpDG4DI04yhRpulzGHMGzGjMQVU1caJljenei4AWLaR0p5mxUmqGJ051thsgLjBrd6CIPRLiIVM5RZulBlMuI3bGXTjRm5C+lCFa/HTSRsjKXfjRnhkcO4TUZMeZvnL4ONh33NoIfdzCWm/L3GxnoXKw0aBh7CsBmjE3Va7Ta5kvEJOiobJwgZa3knTFpJmmN5VwkFPIQHcHuOlPI2c2cejO98M2pAdGN0yvhG6UyzJmdj5c0V60iSOS4EMP5g3nqjRaFs3HF+m5mI+HG5jDO+QP5tB5V3xJS3yW4To5WZySsNo7NKzfSHgvGWqNnGSHTM2EMZsiZlz6p43G4mIwHD5K0ohd0GlXeklHfWIsrMqGW1dZSZMfKaURq1m7GgF7/PbdjkbLYb0O1yEY8GDJuczYysUTHyUIZhY9pHSnmbUY2sm9i4H7fLZdzDbvAJK5sJB7wE/MbFtpvtJlLrmBuvzMyRF5RDGdbrNJr6KzOzErC6SUSDSJLsstKbjqdgwAqoI6W8zahG1o287DIucSVdqMmHMBhc/lZlryqz9WqTal3/cFCjD1reCvW7swbUMe9Ei5k0OYOx+xrDrpxHRnmbVY1sM4lokFypZsjxUel8lYlIAK/HvG5MGHgoQ8bEMDIVI+s+W2GyMjJ8zmw3oPzdxoVHDusmGhnlXVyv02xJpvrLQLYaJAlyJX0fdvUQBrPlNfRhz8sJSUYewrAZIw+hyBSqBP2DhZFpRWcT3oDVVccHbNJKEoxNkXcsbwWzN7NUjIrAyJXkGhtmy2vUw66GkVlFXmMsM+NPSNqMkbH86UKNSNic7FmVjYgxI1Yasttzwso+76srRd0rk5lZjawbo5bVVtjcAeMedrPDyFSmDAoHVcPIzH6ejcoqVbNnB0kT1xIjczXSheHcnoYo71//o3/lqctZXb/D7LAqFaMediv4Q8G4lYYVwsjk71fl1XeyssrzbNTKqlRpUG+2Te/fUMBLKODV/XnuuD2HcBEZ5jZZSK3ren+zE3RUjPKJqg+XWWFzKkZZKlZZaWzUMddbXms8zwGfh/GQT/eVlRUia1QS0QBrOtcxV8+eHaZ/DVPees9kVnOb6J1ia5WHXU0p1nulYYUwMjCujrkVIi9UEkqpYz2VmVVWkmobavWWrhFUWvSvccrbAMvM7DAykJdd4YB3z/i81ZRio9xEZsurtiFbrNFuG6HMzHUjqG2oN9sUKw3dvsOsQ0W2woh9HC36tyflLQjCXYIgPLzptf9PEIT/0Mv1fq/bEMvb7DAylURM/+Oj0kNUI9MaI1KKO9mkJoaRqSRi+tcxt5rlDfq6ijIWmqyM2LfSYuW8q/IWBOHNwMeAoPJ3UhCEzwGv7PVLkpMhXX+IRtMaYWQqCWXZpefxUfJkZR159U4pzhSqRE0OI1MxIlwwPWQYmZZsxHrraYlaww0IXXXMdTQ4tXDz9mJ5XwDu7fp7HHgA+OtevyQ5GaZUaVCrt/prXY9kiurmjvkPOugfG1uuNqnUWpZ40EH/aoqSJA1VOlNrjLJEzc6eVTFKXo/bRXTMr9t39IoR8mrhNtl1zS2K4oOCIBzp+nsemBcE4eW9fsn0ZBiAtse941H227HbNYs5+Yc4OBsb6P5ac2guBlyjiUsXeecX8wDsn4lYQt7D+2IANKTd274Vu12TK8rlBuaS45aQ9+iBCQBqLUkXeVtKGNmJgxOWkPd4RV5Blhvtgduzax+X6iQnQ8xMRwe6v6Z4ZbW4XmvpJm+h0sDv83D0UHzggycMcZhOT4YAOHcpQ8jTX0OTyQipVHHHz1y8IseQB72uXT9rBEGvLOP8Qo5jM/0dZNqLvOcvZwAY83ssIa9fMQ7nF3Lccmiir2t7kXd+qQDAeMBrCXm9yHsZVxYLfbenF3nl/QOJaMhnCXndLXnFvLDSv7ywu8zNVptsoYpwaMIS8rbbEm6Xi8VUSRd5AVbSZeKRAGtrpV3vtR2GrMmSiuWt17LaSpsdcP2p23pg9okym9F7mWl2KdjN6O0mstJmJUBkzI/Xo9+hDNliDQlrhAkCuN0uXSOo6o0WpUpj6AQsQ5S3annr1flWCiMD/XerrTa49a4810lIsshkpXcdcyuFCYJ6KENQt/61So5GN4loQLfqoBt7dMPJ25PbRBTFS8Ddm157oNcvUX3eelmiG9XIrNH5MZ2Pj7LaZKXGtuunzKyRbaii1jHXb6VhncgLlUQ0yFOXszSaLXxebSN+zD7ObyvisSDSQp5cscbUREjTe2s1fg2xvBOxIG6XS7esw7VCjfGQj4Df/DAy0H/ZlS5UcbtcTIxb52HXM7bdaisNkK3i9ao+dcytlG2oshFBpb31baUwQRU9V8+qETtpB7eJx6OcMKOD5a1WI7OKP1QlEQ2SL9X1WXYVakxGArjd5ickqaix7WWdlJkVsme76fj5i9orM6v5+EFfZabKO2lB5a3LZKXowanYcBa9YUGkcZ1OmCko5+tNWehBB1leCe0Hd7PVJlesWWpgg77VBTOFKoloYOCQKj3Qc5M2na/i97kZs0D2rIqeiUmdlYYFEpJU9JR3raO8beA2AdmKkKSNusxasWbBJTVAIqYsMzVWZurOvJX8gwDxmD4n6nQOYdhDk9VavspULGStySqmryU6HvIRClhnstLzhKh0voLLNfzZs8Ypb50e9rRGs5jW6LXMtOKSGvRbZmY12pnXmrhOg7tcbVKuNa37PGs8fiVJYi1vPben3iuNSQ2yZw21vEH7H8Mqda03o5fyXstbbzML9Bvcll1Z6eQ2sVokkYrq0tD6eS6UG5Z0e+pVHbTZapMp1pjSoH8NU95Teg1ujZz/WqPXCSRWjLwA/SyVjMUSklQmIgGljrnGbsB8BbDeStLv8xAJ+zR/nq0qL+gTQZUr1pAkbYxN+1veFlVmG5a3toPbimFVALFxObZ9r/Sv1+NmYjyggzKz5koS5D5IF2qaKrONBCxryqt1BNVG/w5vbBoabQL6uBHCAa8l6lp3E/DLx0fptay2miUqZ+FpH9veWVlpnCihBXocyqBVGJkeJKJBmq02xbJ2hzJYWV49SsNqFWkCBirvgLLs0vKHkCSJtAU3O1Ti0QDpvLbLrnS+yljQS9BvrckKNmLbG03twkHXcvLOvJXCyFTi0QCttkSupN3qSsvBrTV6GGBWllePfSstTwwytFiwuuxqa6TMSpUGtUbLkh0Psrz1ZpuSRsdHyXWtq5a0UmDjYc8WNRzchSpxi9S13oweETZr+Qp+r7USklQSOlqiVjTA4jr1L9jM8oauZZdGx0dZ6dy7rdC68/NqQtKEteXVys8vlwqtaeIf1AM9LFF1JWmlGG8VPTbh1/IVxoJeS8V4q+ixT7dxnJ/dlHdM25PV15RDGLQIu9EDrZddqpWStKgy2zguSxt5M4UqEpC06OTceZ4Va2pYKrUm69WmZY0RrQ/mVd2eVl9Jar3SmBj34/MOr3oNt7xBux9jw/K2aOdrrMzWcsqSy6KW95TGyixl4SU1bEwqa1o9zxbevION8atV/xbLDeoWjPFW0bo6aFs5IUmr59kUy1trS9Sqna91Fl7K4vKqESGpnLbKLGnBSBPYULLqpDosVn+eI2EfAZ9Hs8nKyv5u2KgOqpW8uZJ8QpJWk7O9LW+Ld77WWXgdy9uillk8EsDtcpHSyvLOWTeBA+Rw0OiYvzOpDouVE1ZArmM+NREklatoEkGlymvV8Quy4ZBfr1NrDH94emey0sjN25PyFgThLkEQHlb+f0IQhK8JgvBVQRA+IghCzxOA5m6EfJWA32Op6mvdRJXjo/bKSsPrcROPBjSzRK3uRgDZdZLOVzWJ9ba6JQryfku13mK9OnziilXrEnWTnNDONaa1vLsqXkEQ3gx8DFC/8X3A20VR/CHABbyq1y+T45M9mm1YymFz1tyZBzlxJRENarjMrBAd8+P3WePQia1IToTIleo0msNbKql8BY/bxUTEr0HL9GFqItQ57X1YOoPbohvwsLHfktJgglb1gKUn5wntXGNar6x6sZovAPd2/f0s4MvK/z8HvLTXL3O5XCQnQqzlhk9cKVcbVGpNS6bVdpOcCFEsN4Y+caXdlsgUapaNvFCZ0nATby0vV1/zuK0X462yYZlpo8x8XjfRMetOVsnOvsbw8lo5NV5FS3m1Xlnt6m8QRfFBQRCOdL3kEkVR1bxFINbLF6lH2B+YiXB1tYQv5Geyx1hH9dpu5hfznftt9b5VODgX5dR8hpbb3XM7t/rcarZMqy2x3+LyHt4f46s/WKIuuYaSt9ZokS/VecaJKUvLe/TAJHCZaksaSl6Q8wGmJ8NMT0c1bKG2nDgcB6DcaPfVL1t9NluqMx7ycfjgpGbt05qTFdnoKtVbQ8tbVO4lHE8S0GD1PIizuDv3OQLkerkolSoCEA3JX3nmwhon9u+u95PJSOfabsSLaQDGA94t37cKESX5QLyYZty3uwW5nbxnr2Tl+wWtLW9YkfH85QyHp8K7fn47eZfS6wBEwz5LyxtUuvTi1Rypo/FdP7+dvJVak2K5zuGZcUvL60e22y4v5ntu51YyS5LESmad2XjY0vJ6JVndXV0qDCUvwGKqRHTMTyFX7vn7d5owBlmPPioIwj3K/18OfLWfi6c1Woao109PWtdfBhvL6uHltf7mDmwkEA3rRthISLK4vBPayJsu2KN/pzQav8VKg3qjbWl/N8B4yEfQ7xla3la7TbpQ7eg/LRjE8v5t4M8EQfADTwF/38/FHR9SVhvlbdUYYJWOvEMrMzVBxx7yrg0Z623VOu2bmYwq4ZFDyqs+z1aONAG5wFx0zD98/+as7++GjX261awcHjlocES6IMd4JzVMsOtJeYuieAm4W/n/WeDFg36hVhsAqx3lbe3O10peu1iikbAPv889vLwWzyZV8bjl8MhhJ2fVmJmZ3N3VZDbJiSCXloq02u2BN5NXFdeB1VfOII/hq6sliuXGwJvJehibhm/jy0V3NHAjZCtEwz5LlkbtJhTwMh7yDb3S6JRGtYOlEguRyg+XyGEXyxuURI5SnfoQiRyrNllJgtzGVlsiO0SNk9WsPdyesOHKGmaCVse/rZW31+MmHgkOlZWm+o+SNuh4kDtsbchEjlRem0NLjSA5EaJSGy6RYy1fwetxERu3bticihaJHKs22cOBjQl1mDGsKjMtfcB6ocXqWY/+NUUTJCfkE0gGtVQyiv/IDh0PsrzDJHI0mm1yxZotrFDQpkDVarZCciKE26IJWN1MabBJu5qtMB7yWbI06ma02IRfVVaSVvfxQ7fyHmKyymk/WZmkvNWHfbAfwy6blSrqbDvow76WryABMzawymD4TctSpcF6tWkL/y8MP7hb7TbpfNUWVjdoE1G0mq2QiAZtspIcfrJKZSv4fdomYJmqvAf9MezkH4SNh31QeVcy9llSw/Ap1Ks6+Af1ZFh5OytJm/TvsJNVrd4iv163jbxTsSAuBk+RlySJ1Zy8ktSylIcpyntYS1QP57+eqO1cHViZyTvztrFEh/SJqvLaZXBvWKIDyqvDklpP5JIFroGVmR4uBD3xeT1MRAIDT1alSoNqvaX5ISqmWt6DKjO7JOioDLvSWLGpvKoS7pfVTticPeSNhOVEjkHltZsx4na7SMSCw6+cbdK/IIfoZopVmq3+D9fWazPaXJ/3gDPZak4+pDVm4QI+3aiWyqAz92rGXpZowO9hYtzfcff0y4qNwshADo+cmQyzkq0MdLi2nSJNVKYnQxQGLLi2aqNIE5XkRAhJGqyctV6TsynKWz5wdLCUU0mSSOngP9ITt9vF1BCWykq2QmzMb/mY9m5m42EyhepAEUWruTIexbqzCzPxEI1me6DYZzuFzanMKi685Uz/qw277VkBTMdleVcGWF3pFWBhivJ2uVxMT4RZzfVvqRQrDSq1lq06HmAmHlaiKBp9XddsKTURbGSVgSyvxGCusdVshUQsaOlSsJuZHWJwr+YqnbRzuzCjyjuA8k7ZbE8DNvp3OT1A/+q0kjRtdMwmwjSabTJ9LkPUH282YY/NO5VBO38tX0WS7LNZqaK2t9/BXa42KZYbthrYMLi8kiR1YtrtspKErud5AOW9kpUPFbHbShJgeYBM6eWMvJLUuuiYecpb+TGW+ux89WFRr7cLgz7sKzbzd6sMKq+6xJyZsFf/znTk7W9wF5TzEe2yOasyaP82W225brnNVs7q+FtWShX3iiRJLGfKJCdCmse0m6a85xKDWaJ2V95LfcprpxoQ3czE5fb2u2m5YsMlNXTJ26fbZNGmK8nJaACf1z1A/8quUrvJG/B5SEQDfU9WRSXhTA99Zbrl3e+PYVe3SWey6tfytlmMt4qa2r7cpzJTfx9VGdqFsaCPSNg3wPMsW3JzNnue3S4XM5MhlrPlvgqQ2VVekFdXuVKdar33CBs99ZVpyltVRkt9LkOWM2XGgl4iIZ8ezdKN6JifUMDT/+C2qdvE63EzNRHs2wesrkzmEmN6NEtXZibDrOX6iwW2tbzxcCdbslfsLG9nU7qP1YaengLTlHfA3/8ypNlqk8pVmI2HbbW5A3KEzWw8zGq23Fd1wcW1dRLRgC0KFm1mNh6mWO4vwmZpbR2/122rMEGVmXiIthLK2iuq8WI3NyAMtgm/ZHPLG2Ap07vBudyZrCyivAVBCAiC8ClBEL4pCMIXBUE4Och9ZpVlSK+B/mv5Kq22ZMsHHWR5my2p54I+5WqTXKluSysFuiMwepO3rWzuzMbDtqgmuJmNcME+lHemzGTEnpOz2r/9uMaW0mW8Hu0jL4xgbkQs718FSqIo3g28EfjwIDeZVZRSr9a3Xf3dKqq8vW5aqlbKvil7Ku9ZxW/dq2ssna9Sb7aZs628imW21pu81XqTTKFma2MEere8JUliKVNmJh62VQy/yiD7dEuqmzesfQz/oL/gzcDnAERRFIGbBrlJvz+GXSNNVOb6lHdxzb5LTID9yXEArvWozOy8pIYNeRdSvcmrWnB2lXduSm73Yo+Tc7ZYo1ZvdcaB3YgrJWx7NUaarTZruYpuxuagyvsx4N8KguASBOFuYL8gCJ5+b6IK1aslei1VAuxsifYnr/o5u8q7Pym3+1qPymxxTZHXpm6i6YkQPq+ba2ulnj6/2Jms7CnvWNDHZCTQc/+qOR12ldftdrFvKsxSukyrvfum9Eq2Qqst6SbvoI62jyNb2w8BXwe+J4rijkUsksnI0157RkCOGEnlq1u+v/na5VwFn9fNLSen8digiPtmJibDeNwuVrKVnuRdU07euU2Y0WXZpTdJ5JNSltLrPcmbVaIWbjmZ3PHzVubQbIQry0XiiXE87q399qps+coCADceS9hW3qP7Y3z/zCqhsQDjOzyjyWSE4pkUADccta+8Jw5OcmWlRAM3s7s8008t5AG4SSd5B1XezwG+JorimwRBeDZwfLcLUqni016TJIlI2MeFhdyW74P8I6RS8knVV5aL7EuMkeljt9dqzCXCzC/lWVkp4N5icKvyAlxazBMd81Ndr1FdH/ywVzOZi4c5NZ/h8tUM4eDTwzu75b2wkMPjduFD2vZ5sDozEyEuLOR58tzqlu69bnnPXsoAMO732FbeaWXj8bGnlhEOTW75GVXmM/NpACJ+t23lnYoEAHji7CrBbexHVd4nL6wBMBHyDizvTkp/UPP1HHCfIAiPAL8P/KdBbuJyuTg4Pc5avkp5l8NqV7MVGs02B5L2XHKpHJwep95o7xpOVq42WctX2W9Tl4nKgR793u22xMJqibnEmC2OxtqODVfR7q6TK6tFYmN+25Q23gp1PPbi57+6WsTjdtnWDQjy+AW4urp7/y4on9mvXKM1A1neoiiuAS/VogEHp8d58lKWhVSJGw5ObPs59eE4oNMPYRQHpyM8cnqFq6ulTtzoVlxdlWfqwzP2XF6q7O8a3CcPbN+/K9ky9WabQzP27t/9Uxubls8Stv9cqdIgU6hx69G4QS3Th14n51a7zUJqnf1T9p6cVf3Ty+S8kCoRG/MT1cnlafqv2OtMpr6vPix2RZX3yi7yXlmR3z80a295N5R3j/LafHI+0KO8qlV20OaT1VxiDLfLtau8Kxl55XzQ5v0rK2PfrvqqXG2QLtR0NTYtoLxly1K1NLdDfdjtb3krltkunX95ZUQs76kxPG4XV5Z37t8rSv8fsrm8k5EA4yEfl3eRVx38dldmPq+b2USYhdXSjpnDHXlt3tgtvb8AAA13SURBVL8gh4Su5as7JhduGJv6uYhMV95ziTBej2vHmUySJC4uFYhHA7b2D4Jc4yQ65u8oq+24slLE73PbriDVZnxeDweS41xeKe1Y8+PqymhYoi6Xi6NzUdbyVQrl7Wt+qP2vGi925uhshGq9tWP884a89u5f2DCodpqg55fk947ORXVrh+nK2+txsz85ztXVEo3m1tGGmUKNwnpd1x/CSI7ORsgUauRKW0eQNJotFtfKHJwe3zIixW4c3Rel2Wpvu7SWJIlLy0US0SBjW0Sk2I2jc/LgvrRU2PYzFxcLBPyeThaqnTm2Tx6XFxe3l/fSkrqStL/yVuW9sJjf9jMXlb4faeUNcGJ/jGZLHsBbMa/8EMdGRHmfOBAD4PzC1p1/ablIW5I4Mjsa8qrKbH6bwb2arVCqNDi+f1Tk3VmZrVcbLKXLHJuL2jJNfDPH9snP88VtJqtWq83FxQL7psa2DBe1G8f3K/LuMFnNLxaIhH261nCxxJNzchdlZsQsZiQnlM4/f21rec9ezQHsGH1jJ9RJd7vBfU7p952iUeyE+pxuZ4yog35UJqv9yTF8Xve2yuzSUoFao8WJEZF3MhIgHg1w4Vp+y1rm2WKVdKHK0bmortVPLaG8d1Nm567KyRtH5uzvHwQ4MhfF7XJxYTt5O8osZmSzdGMuMUbQ79l2cj5/TZ6s1OfA7kTH/EzFgpxfyG+5iaf+DqMir9fj5vBshIVUacuDCs4oyUjHR0RekFcbhXKDtS3O4H1qXpF3n76TlSWUdzwaJB4NcG7h6TNZudpgfqnI0bmorQ4s3YmAz8OhmXEuLRepN67387fbEucX8kxPhJgYD5jUQm1xu13ceGiSlWyF9BYP+7mFPAG/hwPT9k3e2MzNRyYp15pbWt/i1RwuNtwNo4BwcAJJgjNXck9779RFObNyVCYr2JDlzJXs0957/JxcBuDGw1tnnGqFJZQ3yJ1fqjSeFnVy+mKatiTp/kMYzY2HJ2m1JZ66fH3nn1/IUa41R8ZlonLzEbn/TitWmMpqpsxSusyNBydGwv+rcvMROfnmyU3ylqsNLlzLc2QuyrjNToPaCTXZ6PT89fK22m0eO5siHg3YthroVqjyPnEx87T3Hj+3RsDv0d3Na5nRcvuJKQAeO7923evfeXIFgJtHTHnfocj7+CZ5v/3kMgDPOJ4wvE16css2g/u7Z+T+HTV5bzo8iYuny/v4uTVabYnbjtk7s3Izx/fHCPg9nNok7/xSkVKlwW3HErY7/Won5hJhpmJBTs9nrqswuJqrcC1VQjg4oXsmqWWU961H47hdLh49t6HMWu02jzyxRCTs4+TB0VlygbxZNRb08viF9HWuom+dWsbrcXWU3agwGw+TnAjygwtpavUNV9E3n1gC4LZjo6W8I2E/x/ZHObuQuy4k9BtPLAJw24hNVl6Pm5sPT7KSKV+XOv79s7IL4Rkj1r8ul4vbjiWo1Jqc7XIVfecp2Rh51g1J3dtgGeUdDvq49Vicy8tFrijZhU9dypIr1XjWDcmRWlIDeNxunnkySbZY67gSLi8XubRU4NajCVsei7UTLpeL590yS63R4ntnVwHIFKo8di7F8X1RpibsH++8mbtvnkWS4FvK6rFSa/LNJ5ZITgRHJuy1m+fdMgvA15QJudVu88jpZcZCPm4dMeUN8NybpgH46g9keSVJ4ltPruD1uLhT2EPKG+CeZ+4H4IvfuYokSXz+21cA+KHb95nZLN14yZ2yvF/4tizvF74jy/uiEZX3ebfO4kLu37YkKf0ML3zGnNlN04Xn3jSN1+PmS9+9SqPZ5uFHr1Gtt3jhbXMj5UJQuf3EFOMhH1/7wRLr1QbfPL1CvlTnnjsP4PNaStVowg0HJ5hLhPmuuEo6X+X0fIaF1Dp33TpnSLKZ54EHHtD9S4AHyjukCqtMT4T4/tkUpy9lWUqXefx8mjtOJvnR5x4yoInGMxkJcPZqjicvZVlMl/n2U6scPxDj1S8+PpKDezzkYyVb5vR8lmupdR45vUxyIsQv/uiN2x5cYGcCPg/r1Qan5jNcWirwyJMrBH0eXv/KW/B5+z54yvKoffjY+TTziwW++eQK7bbEm3/h2bh2qHtiV1wuFwGfh++dTXH+Wp7vnFmlUmvyn37+TgIaTVZjY4F3bveepaZDt9vFr/z4TQT9Hr5zZpXomJ9ff/XtZjdLV37x5TcSCfv47plVgn4Pb/zpO0YiJX47XvOSEySiQb53NoXL5eI3X/PMkbTKVF71wqMcmh7n1HyGRqPNb7zmjpHIMtyOlz77ICcPxDhzJUex3ODnfvgk0zavz7MTz79tlmeenGJ+qcBavsorX3iU4wYlm7m2yhDSAamfkyQyhSoXFwvccGiC44cTtj11o1cK63XEqzlO7I9xw7GpkZe3XG3y5KUMh2cj3HxyeuTlrTVanLqYYTYR5o6bZkde3marzRMX08QjQQ7PRq47PWgUabclTs1nCAe8nDgQ01TeZDKyrSVnyV0xOWlHv5oAViM65uc5N06b3QzDCAe9PHsPyRvweXiWARtYVsHrkTfj9wput8uUUNeBlLcgCD7gL4EjQAv4VVEUz2jYLgcHBweHHRjU2fhjgFcUxecDvwe8W7smOTg4ODjsxqDK+yzgFQTBDUSBhnZNcnBwcHDYjYE2LAVBOAj8MzAOTAH/VhTFb2jcNgcHBweHbRjU8n4T8AVRFG8Abgf+UhCEvbPD6ODg4GAyg0abZNlwlWQAHzB6WQcODg4OFmVQt8k48HFgDvADHxBF8VMat83BwcHBYRuMStJxcHBwcNCQ0c1LdnBwcBhhHOXt4ODgYENMSY9XMjQ/jpyhGQDeBTwJ/AUgAaeAN4ii2FY+fwL4J1EUb1X+ngU+iexvXwJ+SRTFsrFS9M6w8nbd50XAJ0VRPGhY4wdEgz6OI+cTnFJu+Y+iKH7AQBH6QgN5x4CPAEeRn+s3iqL4bWOl6B0N5H0/cIdyu1kgJ4ri3QaK0BcayHsI+GvAhRzk8fPD6iyzLO9/B6RFUfwh4OXAh4H3AW9XXnMBrwIQBOEXgE8jx5OrvAX4S+WzTwK/ZmDbB2FYedXY+t9GjuyxA8PKfCfwP0RRvEf5Z1nFrTCsvP8ZOKV89lcBwcC2D8JQ8oqi+B9FUbwH+BEgjyyzlRm2f98E/I0oii8CTgOvG7ZBZinvvwPe0fV3E3gW8GXl788BL1X+nwVevOn6NwH/XcnwPAis6NdUTRhKXiWG/qPAr+vbTE0Zto+fBdwpCMKXBUH4O0EQrH5iw7DyvgyoC4LwBeU+X9CvqZowrLwqbwS+KIriE3o0UkOGlfcxQD2IV5OsdFOUtyiKJVEUi4IgRIC/B94OuERRVENfikBM+ez/FEVxfdP1EnJc+SngJcDXDWv8AAwrL/Is/19FUbxmWKOHRAOZzwD3i6L4YuCfgA8Z1PSB0EDeKWBSFMWXAZ8F/qtBTR8IDeRFEAQ/8qrZ0rKCJvIuAL8hCMJpZMv974Ztk2kbloob4CHgr5UY8XbX2xEgt+WFCqIoNkRRvBl4PfBXujVUIwaVVxCEfcAPAfcLgvAwEBcE4dM6N1cThuzjf1WuBfhH4Jm6NFJDhpQ3DXxG+f9ngWfr0kgNGXYMI1uqXxFFMa9TEzVlSHnfi7w3dwvwW2igs0xR3oIgzABfBH5HFMWPKy8/KgjCPcr/Xw58dYfr/5sgCC9R/ixy/Y9oOYaRVxTFRVEUBdX3C2REUfxZvds8LMP2MfAx4KeU//8w8D092qkVGsj7NeRqnQCqX9SyaCAvyMr7c/q0UFs0kDeL7NsHWGTDhTIwZh3G8Fbkxr9DEATVj/RbwAeVpdRTyEuT7fgg8FFBEH4XWXFb3Rc8rLx2ZFiZ3wJ8XBCEXwfWgX+vZ2M1YFh5/wvwMUEQHkH2h75Wz8ZqgBbPtIANVs0Kw8r7RuDDgiB4kDc33zBsg5wMSwcHBwcb4iTpODg4ONgQR3k7ODg42BBHeTs4ODjYEEd5Ozg4ONgQR3k7ODg42BCzQgUdHHRFEIQjyIWtnlReCgHfAN4iiuK25RQEQXhIFMWXbPe+g4NVcCxvh1FmURTFO0RRvAO4EVhm99jje3RvlYODBjiWt8OeQBRFSRCE+4EVQRCegZw0cSswA/wA+DngPQCCIHxLFMW7BEH4UeD3kCs5zgO/Kopi2hQBHBw24VjeDnsGURTrwDngJ4C6KIrPA04AE8CPiaL4m8rn7hIEIQn8IfAyURSfiVzl7z3mtNzB4ek4lrfDXkMCHgUuCoLwBmR3yklgfNPn7gIOAQ8JggByFcuMge10cNgRR3k77BmUGhQCcAz4feADwCeQy7G6Nn3cA3xNFMVXKtcGebqCd3AwDcdt4rAnUA7ueCfwTeA48LeiKH4CuYznS5CVNUBLEAQv8C3geYIg3KC8/g5sUHfaYe/gWN4Oo8w+QRAeU/7vQXaX/BxwAPiUIAg/B9SRD/M4qnzun4HHkU9J+RXgb5VKcAvIR2E5OFgCp6qgg4ODgw1x3CYODg4ONsRR3g4ODg42xFHeDg4ODjbEUd4ODg4ONsRR3g4ODg42xFHeDg4ODjbEUd4ODg4ONsRR3g4ODg425P8AIMDfU/IlzgAAAAAASUVORK5CYII=\n", "text/plain": [ "<Figure size 432x288 with 1 Axes>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "def hours_of_daylight(date, axis=23.44, latitude=47.61):\n", " \"\"\"Compute the hours of daylight for the given date\"\"\"\n", " days = (date - pd.datetime(2000, 12, 21)).days\n", " m = (1. - np.tan(np.radians(latitude))\n", " * np.tan(np.radians(axis) * np.cos(days * 2 * np.pi / 365.25)))\n", " return 24. * np.degrees(np.arccos(1 - np.clip(m, 0, 2))) / 180.\n", "\n", "daily['daylight_hrs'] = list(map(hours_of_daylight, daily.index))\n", "daily[['daylight_hrs']].plot()\n", "plt.ylim(8, 17)" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "We can also add the average temperature and total precipitation to the data.\n", "In addition to the inches of precipitation, let's add a flag that indicates whether a day is dry (has zero precipitation):" ] }, { "cell_type": "code", "execution_count": 69, "metadata": { "ExecuteTime": { "end_time": "2018-05-20T15:55:35.967003Z", "start_time": "2018-05-20T15:55:35.952760Z" }, "slideshow": { "slide_type": "fragment" } }, "outputs": [], "source": [ "# temperatures are in 1/10 deg C; convert to C\n", "weather['TMIN'] /= 10\n", "weather['TMAX'] /= 10\n", "weather['Temp (C)'] = 0.5 * (weather['TMIN'] + weather['TMAX'])\n", "\n", "# precip is in 1/10 mm; convert to inches\n", "weather['PRCP'] /= 254\n", "weather['dry day'] = (weather['PRCP'] == 0).astype(int)\n", "\n", "daily = daily.join(weather[['PRCP', 'Temp (C)', 'dry day']])" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "Finally, let's add a counter that increases from day 1, and measures how many years have passed.\n", "This will let us measure any observed annual increase or decrease in daily crossings:" ] }, { "cell_type": "code", "execution_count": 70, "metadata": { "ExecuteTime": { "end_time": "2018-05-20T15:55:51.546978Z", "start_time": "2018-05-20T15:55:51.528230Z" }, "slideshow": { "slide_type": "fragment" } }, "outputs": [], "source": [ "daily['annual'] = (daily.index - daily.index[0]).days / 365." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "Now our data is in order, and we can take a look at it:" ] }, { "cell_type": "code", "execution_count": 71, "metadata": { "ExecuteTime": { "end_time": "2018-05-20T15:56:04.238306Z", "start_time": "2018-05-20T15:56:04.217949Z" }, "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Total</th>\n", " <th>Mon</th>\n", " <th>Tue</th>\n", " <th>Wed</th>\n", " <th>Thu</th>\n", " <th>Fri</th>\n", " <th>Sat</th>\n", " <th>Sun</th>\n", " <th>holiday</th>\n", " <th>daylight_hrs</th>\n", " <th>PRCP</th>\n", " <th>Temp (C)</th>\n", " <th>dry day</th>\n", " <th>annual</th>\n", " </tr>\n", " <tr>\n", " <th>Date</th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>2012-10-03</th>\n", " <td>3521.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>1.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>11.277359</td>\n", " <td>0.0</td>\n", " <td>13.35</td>\n", " <td>1.0</td>\n", " <td>0.000000</td>\n", " </tr>\n", " <tr>\n", " <th>2012-10-04</th>\n", " <td>3475.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>1.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>11.219142</td>\n", " <td>0.0</td>\n", " <td>13.60</td>\n", " <td>1.0</td>\n", " <td>0.002740</td>\n", " </tr>\n", " <tr>\n", " <th>2012-10-05</th>\n", " <td>3148.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>1.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>11.161038</td>\n", " <td>0.0</td>\n", " <td>15.30</td>\n", " <td>1.0</td>\n", " <td>0.005479</td>\n", " </tr>\n", " <tr>\n", " <th>2012-10-06</th>\n", " <td>2006.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>1.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>11.103056</td>\n", " <td>0.0</td>\n", " <td>15.85</td>\n", " <td>1.0</td>\n", " <td>0.008219</td>\n", " </tr>\n", " <tr>\n", " <th>2012-10-07</th>\n", " <td>2142.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>1.0</td>\n", " <td>0.0</td>\n", " <td>11.045208</td>\n", " <td>0.0</td>\n", " <td>15.85</td>\n", " <td>1.0</td>\n", " <td>0.010959</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " Total Mon Tue Wed Thu Fri Sat Sun holiday daylight_hrs \\\n", "Date \n", "2012-10-03 3521.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 11.277359 \n", "2012-10-04 3475.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 11.219142 \n", "2012-10-05 3148.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 11.161038 \n", "2012-10-06 2006.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 11.103056 \n", "2012-10-07 2142.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 11.045208 \n", "\n", " PRCP Temp (C) dry day annual \n", "Date \n", "2012-10-03 0.0 13.35 1.0 0.000000 \n", "2012-10-04 0.0 13.60 1.0 0.002740 \n", "2012-10-05 0.0 15.30 1.0 0.005479 \n", "2012-10-06 0.0 15.85 1.0 0.008219 \n", "2012-10-07 0.0 15.85 1.0 0.010959 " ] }, "execution_count": 71, "metadata": {}, "output_type": "execute_result" } ], "source": [ "daily.head()" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "With this in place, we can choose the columns to use, and fit a linear regression model to our data.\n", "We will set ``fit_intercept = False``, because the daily flags essentially operate as their own day-specific intercepts:" ] }, { "cell_type": "code", "execution_count": 72, "metadata": { "ExecuteTime": { "end_time": "2018-05-20T15:56:39.750887Z", "start_time": "2018-05-20T15:56:39.734285Z" }, "slideshow": { "slide_type": "fragment" } }, "outputs": [], "source": [ "# Drop any rows with null values\n", "daily.dropna(axis=0, how='any', inplace=True)\n", "\n", "column_names = ['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun', 'holiday',\n", " 'daylight_hrs', 'PRCP', 'dry day', 'Temp (C)', 'annual']\n", "X = daily[column_names]\n", "y = daily['Total']\n", "\n", "model = LinearRegression(fit_intercept=False)\n", "model.fit(X, y)\n", "daily['predicted'] = model.predict(X)" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "Finally, we can compare the total and predicted bicycle traffic visually:" ] }, { "cell_type": "code", "execution_count": 73, "metadata": { "ExecuteTime": { "end_time": "2018-05-20T15:56:48.137178Z", "start_time": "2018-05-20T15:56:47.862115Z" }, "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEQCAYAAAC+z7+sAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzsvXm0JNlZ2PmLyO29fPurerWv3dUd3ep9Ed1aWzANLYFBMONjcxgPNmK37EFzBMdjA1YzGMNgGR8hAQIsj4ADYw8CSRgkJGtr9abeqqqrq6s6an319i3fy32NiDt/REZmZGZkZOTL5eWrip+Oul5G3Ii4Effe7373u9/9riSEwMfHx8fn5kXe6Qz4+Pj4+PQWX9D7+Pj43OT4gt7Hx8fnJscX9D4+Pj43Ob6g9/Hx8bnJ8QW9j4+Pz01OcKczUI+m6WJrK9vXZ05NRen3M316g1+WNw9+WbbHzMyY1OzcwGn0wWDglnimT2/wy/LmwS/L7jFwgt7Hx8fHp7v4gt7Hx8fnJscX9D4+Pj43Ob6g9/Hx8bnJ8QW9j4+Pz02OL+h9fHx8bnJ8Qe/j02f80OA+/cbTgilFUf418ENAGPh94Bngs4AAzgMfVlXVUBTlY8APABrwEVVVX1YU5ZRT2i6/h4/PruCNazGuLib4B+88QTDg61mDwCc/+Z9Q1YtsbsbI5/McOnSYyckp/t2/+78b0i4vL3Ht2lXe9a73ON5rYWGe3/iNp/mDP/hMr7PdFi0FvaIo7wPeCbwLiAK/CPwO8Cuqqn5LUZRPAx9UFOUG8ATwGHAU+Cvg7U5pgc/34F18fAaeq4sJADJ5jYmR8A7nxgfgX/7L/wOAL33pv3Pjxiw///P/smnaV199meXlpaaCflDxotE/BbyBKZzHgV8CfhpTqwf4MvB9gAp8VVVVAcwpihJUFGUGeMQhrS/ofW5pdN0f1Dpx/nqMpQ0z7MHoaIR0utDxPQ/tjXLvyT1tX/eJT/xHzp8/B8D73//9/NAP/c/8xV/8KcVikXvvvZ9IJMKf/ImpuRcKBf7tv/31jvPaK7wI+r3AceAfACeBvwHkskAHSAETmJ1AzHaddVxySOvKzMyYp8x3k514pk9vGOSyHBmJADAxGWVmz8gO52bwmNjMkczrld+jo5HO7zkR9VQnxsaGiEbDzMyM8bWvfY1UaovPf/6vKJVK/OiP/ihPPvk+fvZnf4aFhQU++MEP8Gd/9md88pOfYO/evXzqU5/i5Zef5amnniIUCgxcHfQi6GPAW6qqFgFVUZQ8pmnGYgyIA8ny3/XHDYdjrqyvpzxkq3vMzIz1/Zk+vWHQyrJY0lmKZTi6b5SALJPJmBrqxkaagOFr9fUcnR7m6PQw0N2y9HKfVCpPNltkfT3FuXMXuOuue9nYSANw551v48yZ8zVphofH+eVf/lWGh6Osra3x0EMPs7mZoVTSd6QOunUuXmaDngPeryiKpCjKIWAE+HrZdg/wAeBZ4HngKUVRZEVRjmFq/RvAGYe0Pj63BKcvrXP28gbXlpI1xzXD97wZZI4fP8m5c68DUCqVePPNcxw5cgxJkipeU7/927/BL//yr/HLv/w009PTO5ndlrTU6FVV/VtFUd4LvIzZMXwYuA78saIoYeAi8DlVVXVFUZ4FXrSlA/hofdruv4aPz2CyVbYxZ/JazXHfRj/YvOc9T3D27Gv83M99iGKxyJNPvp9Tp+5A00r8+Z//CXfcofC93/t+fvqnf5yxsTEmJ6fZ2Fjf6Ww3RRpAn17hm258tsugleWXX7pBoahz8uA4D5zayxeevQbAA6f2cvLg+A7nbrAZtLIcdHZVPHofn5uKJnrU4OlXPjczvqD38ekhljyX6nQtw5f0Pn3EF/Q+Pj2kahqtlfRXFhL9z4zPLYsv6H18+kC9Rp8vaui+e6VPn/AFvY/PDnHm0gYlTW+d0MenQ3xB7+PTQyzLjZM7xMJ6mku+CcenD/iC3senh1SmXJs4vpU033xzs/Cxj/1rTp9+le985wW++MW/bprui1/8azRNa3rezhe+8Dk+85k/7DhvnsIU+/j4dIbURNIP4DoWnw55/PF3up7/sz/7f3j/+3+AYLB/4tcX9D4+vaSFIN8JOT+3muLqUpL33H9w4GLiX4xdYjm7CsDoZoR0pvPolQej+7l7z52uab70pf/Os88+QzabIR6P8xM/8VN85jN/yNGjxwmFQvzSL/0bfuu3/i8SCdPU9pGP/BK3336Kv/qr/4+//dsvsGfPXra2tir3ssIdf/az/5lnn30GXdf54R/+XwgGA2xuxnj66X/Db/7mf+TTn/4Ur79+GsMQ/ON//L/yPd/zJK+/fpZPfOLjjI+PI8sB7rnn3o6/gS/ofXx6SCvTzU5o9KcvmUv11+M5DvoRNCvkcln+03/6PeLxLX76p/8phmHwz/7ZT3LnnXfx+7//uzzyyHfxIz/yD5mfn+Pf//tf4z/8h0/wl3/5X/nTP/2vyLLMT/7kP6m536VLb/HSSy/wR3/0WUqlEp/+9Kf4hV/4KJ/97Gd4+ul/z4svPs/y8iJ/8Af/hUKhwM/+7E/w9rc/xic/+Ts8/fRvcOzYcT7+8d/syrv5gt7Hp5fYJmOdhLpvuanl7j13VrTvfodAePDBh5FlmenpPYyNjXPjxnWOHTsBwLVrVzh9+lW+/vWvApBKpbhxY5aTJ28jHDY3kLn77ntq7jc3d4O7776HQCBAIBDgIx/5xZrz165dQVXf4l/8i58BQNM0VlaWWV9f49ix4wDcd98DLCzMd/xugzVu8/G5SbmykOCLz11vOO6vkB0cVPUtADY3Y2QyGaamppHKCyCOHz/BP/pHP8anPvVH/Pqv/xbf933v59Chw8zOXqNQyKPrOpcuqTX3O378BJcuqRiGgaZpfOQj/5xisYgkyQghOH78BA899Cif+tQf8bu/+2m+53ue5PDhw+zZs4fZWbOuXLx4oSvv5mv0Pj49xBLjzQS6L+gHh83NGL/wCz9POp3mox/9VzVmkx//8Q/xW7/16/zN3/w12WyGD33oZ5iamuKnfurn+Lmf+xCTk1MMDw/X3O+OOxQee+wd/PzP/ySGYfAjP/IPCYfDPPDAg/ziL/7vfPKTf8iZM6/xz//5T5HLZXnve7+baHSEX/3VX+c3fuNjRKMjRKNRxsY638TEj16JHyXvZmLQytKKVtmM/dNR3nHPgT7lxsTK02Nv2z/QNvp+lqWX/WIHHT96pY/PgDKAipbPTYhvuvHx2UF8OT8YfP/3/+BOZ6Gn+Bq9j88O4tvoffqBL+h9fHaQbsv5ZKbIC+eXyea9LbH3uTXwBb2Pzw7iZKM3DEEqW3S95uyVDeZWGycqT19eZ20rx4XZzZbP9vcnv3XwBb2Pzw7ipNG/qq7x9dcW2EzmHa/RDcHscrKywrX2huY/mofNx/2J4FsHX9D7+OwgTsJ2aSMDQDxdq9WXNIOXLqw27QAAZNn0sNM9qOuGr9J3natLCVY3szudjQZ8QT/AFEs6C2tpV83r4o0tvvLynN9odyluxVa/K9XsSpLlWIYXzq9UjtXvUiWXL/Iyyesr9N1FCMEbV2O8+OZK68R9xpN7paIoZwBrh4TrwB8CnwA04Kuqqv6aoigy8PvAA0AB+ClVVa8oivJ4fdouv8NNy3NvLJPMFAmHDrBvKuqYRp0zI+alciUmRsL9zJ5PF2jHfOLUmRuGwB6AUpabp2241pf0XWWQv2ZLjV5RlCEAVVXfV/7/TwCfBn4MeDfwmKIoDwM/DAypqvoO4P8E/mP5Fk5pfTyQzJhDdy+bU+QKvpfFbsQQsJHIebKpO1FvorFMN14GeL6c7wzdMPj7l+a4eMNUtgZ5VO3FdPMAEFUU5auKonxDUZT3AhFVVa+qqiqArwD/E6Yg/3sAVVW/AzyqKMp4k7Q+LsTTBb51drHyu+RBCBSK/t6ju5FsvsRz55Y5c3mj4Vy96cZJMKeyJS7Mbla084rpxoPQ8SdjOyOT08gXtcqo2ss3zxU00rlSr7PWgBfTTRb4OPCfgTuALwNx2/kUcBswTtW8A6CXjyUd0royM9N5EJ922YlnNuPMtU1KBoyMRAAYjkaa5s9KMzkZHah32EkG6TtY5dOKRE6r5Nu6ZmpqpOZdlhN5RmK1E31nr5lulMePTHHi4BhTyykSOY3ocKhlnRmfGB6ob+XEIOcvOJSvfMuZmTFyBa3mN8CVhTgBWeLkoQkA/uIrZoTMH3vqrv7m1UOaS8CVskZ+SVGUBDBtOz+GKfij5b8tZEwhP+aQ1pVbPahZLlsgY9tZZ30jzfq4s8Cw0sU2M0wMBfqSv0Fm0Moy43GHJFmSKvm2rolvZVmPVMs0Hs81vV8inmU9KJFK5clkCuglveE7pHMlSppRucfWVpaLmk62oHFs/+AJ1EEry3oS6Wo7XV9Pkc1rNb91w+CbL98A4IffY+q31vm1tWQlBHK3cOsUvZhuPkTZ3q4oyiFMgZ5RFOV2RVEk4CngWeB54PvL6R4H3lBVNQkUHdL6uBAO1gpsT65y/jB8V2MIwYtvrpDJb29Yb9nmLXOMk1nma6/O84zNJCiE4Lk3lp398X2ashzL8Pwbyw3tsr4NJjPNy7Lf7dWLRv8Z4LOKojyHObH8IcAA/hwIYHrSvKQoyivA9yqK8gLmhjo/Ub7+5+rTdvkdbjpCwdr+dy2ea3nNIE8E3aq0awNf3czyos1+26DwCYEuSsgEG7RBq/ytatCuH70Qousa5s3KSxfMPW33TgxVjq1uZRmO1IpTtzap67XeUr2mpaBXVbWI6TVTz+N16QxMoV5//Xfq0/q4E6wT9Jlcia1Ugamx5vZeX9APHtvR2twm6lJaklnjLBPSfvZKxxyfVRX4HgS97W9B021tfZpgb3Ivnl/hux86XHe+eUeaLeV5Zf08d0/fyfTQVM/z6i+YGkBkB80qX3R3n9Q9NOy51RTfubDie1v0CWN7HpMV6jXsRMn0dUiIVYdn1Qp4wxB88/QCy7FM0/uLOkHk0x7136xe17IL+voR1kJ6mXg+wYtLr1SO5QpazxQ2X9APILKDapUv6nz79SWSTYJdCQ8V5PSldVZiWWLpNNcTNzBEh5LIx5VOG21DNXC53Xo8z+tXNmqemcgUK2YG5/zZbu3L+bap/2b1a1nsZdFgz7d9+2JJJ5Ep8pWX53o2X+JvPDKAONlKz1+LoRvmEut33Xew4bzbUL2oFwnK1aJ+feMN8iINwMmJ413IsY8TotO1kg3VoLlxZX7N9E4JtmH4rdXo28mYDzSW78sXaztVu2zXdQGh6u9cyZx30w3Bl75zo3J8YT3No3ftK58zWI/n2T813PH8iS/odwlWnWlW3s0m39KlDF+ffY4jo4cAc3/QRCFFJCyR1wqUNANJak9A+Hij28LT3thzIkWQMCEpUpfG+Vqn0YU9f77ppn1afTL7KHs5liFvW9SYzGchALII0Wxc/dy5ZW4kF3jv3bdzYmZvR3n1W/cuwWqo9fb76kpI5+vSxTRXFuN8S71QOVZp1BL83YuzfPP0ovPFPh3Rseysv972e8l4iznjHIbQMURVgMhOdj+cFQHD1+g7wu2bCSEwhMAQOkIIzl3d4PJCdQnRZsYcUctSgJTYoCAaI14uJFdZN2Y5vXG2447Y1+gHELdCXdnMks1rRIfMopMkQDS/JhKoanxxY5mU2GSfCACyOZyEbftu+7Sis8aZyZd45uwiD5zay+RoBMnBdLMqrpIVCY7J9xOSnNMYQjREuYTaOuOvw2gft3YaTxe5vr7OdeM0UWmCrEiwTz7JKHuIixU24zECSYnJkWFiRjXa5R7pKIvr+1iOZSvm1aXNOF987jpPfdexBhdOr/ga/S7k4g3b7kFthKWNiQWKZDF0A80QFEs6OZGq0QgTmSKJtLfVnD7udCo6L97YYitV4DW1+QRdVpieOCXMMiuIHEuGiiaqk/a6LhxHfLWmmw4zewvi9s2eObvI5dgcUC2jTWORFDE2xQJgdr6xVK1XVEzM88pbayyspzEw26VWMtv4WjzDfGoJzWg/gKGv0e9CnCpYOxrZWjyHFsug7xliyVghIo1ghjGCb55eAOCD7z7pL6DpkG4JT92Db7woW3qXtavkRIob4nUi0ggHpTvLkTHdTTeDHWR35zCEQMLZQaKVOUWnViALjIqW7gWrTKWyPj6bvk46s0aqeJyjY4cRCMbD3kJX+Br9ALItAWG7pljSbYcbb2aFxI2lTW2iIDJcX06ylapq8hnb5tJOw36f1nRqV5VskSg3k3lKevMIpZZQsD+zIDKkxDqabjiKcaPGdNNRVm9avvTiDZ47t+x4rpVyVW9GEwgE3qPMWhq9jBkSJVlKkC/qpIoZPn/hG3z+zW96vpev0Q8g7bQ5w9DYMlbYa5wEYG0rywvnV3jbiWnuPDrZotOonnz9ihkmNysSGOgUiocYHQ5xYyXFmcvrvPv+g+ydGG7/ZW5hOpWdsgS6gFQhw5+c/ruKZueEYWl/ktxw3BAgOWTG97ppjaYbxGxbN95YqQZZaxVmor68BKIivN1YN24wKR2ojAiK5MiIOIVEhq1ciqA2zrqHsCh2fI1+EGnHDGPMsikWWSma9sDF8n6j15bM6NBuvtzC5thlNfRV4yqrxlXWUwmWYxkuzZueAvYK7uORTt3oyxp9UqxhoKHjvFgOQJQXv0miXos0GoR4SRRIiY26WDed5fVW4czl6nxJK41ebhD0BrpobV9PijUWjQuVMgVYMS6TzJkdzkKsGg1+YT3tSej7Gv0AsbieZnYlxcSo9y0BLZufJkzPGcvKUtlpyMXsYtgFPQZCSBWN48y1ZYal8UqANS+bn/jU4qQlCyFIs8kIU8iSu55lmYW9aIGiiTe2gdEgxBeNi+iUmNHGgXAlX9m8xqvqGveenGZ6fKjxZj41tFr57HRWw5uHm45GwL7CCkDWqS/mV99aA6phkJvha/QDxCtvrbEez7ERz7dODJy7uoFW1hDkcp8thEAIoxJGwc28bhcgBnqNxpgXaZJivVKZNa2x2l6PrfDfznyTbNH30nHCqaHHxDxrxjXiwtnua6fSWTddUlPFSlOvZeZEwhYHx/S518vCJm9UNUEBXFtOsJnMD+Tm1oNI61FQYwK3UVk99Z1CwApFvY2hoi/oBxCvHjSWeQZMn+tYIs9c7hrXjNcQktbyXrlCtSIZ5f9ZbIpF1o1ZhGymcdrT9PPnv81CYo0zC1c95fdWw+nTp0UMAM1Dg7cm8wxaD/ebafQlCuXOX3DDOMec8UblnGZUy1+I6j4IXvYo9mlsW0IIlo3LbBlL3bl/XbkHAmZ9KLThuWPhC/oBpKJFi1KNP7QdyyxgCYOSrvHsuSXWimYly2Pa6r16zGyJRXLCwQ4vmRO0RaMxH/V58KnFbYLTbWI1J5IsG5fQy/7SXjT6iteNg7ZX0g3yeqFs57d17nXRKyMhf4eydmgIakaSrIizKfq30rwkCmREvMbTzglf0A8glunvhnGWG8brjmmqlczS+vSa45bpJl1qHqbWTlpsEhNzDceTxgbLxiVWi43nLFrZmm9mhBB868wib17fbJ2YqoBvpoEDLBkqWZEgaWxZT2mdDyuNQ9KXLqwyu5JsOK7bJvsMIRr2QfBpj6KonRTtOKhdHZreeL9F4yIrxmUuLa+5XutPxg4gXsLbNgwby5WqspWcZJAuZXhr61JHeckZ5jBxS2++OjMo37oCQgiIpwvE0wXuOTndcK4eS9B7mWCVRXnexUM+kmKNYTHmKFwMYTC77CTobestfK+bBlq5nFqxbOaN84Sl4cbJ0y5T0hrrjDVCy+ruCp0v6AeQ+grmtM1btTMoC/aKoDePLhSukCkd7Ng/umCUJ4aFm3nGN904ITBt4wIDWbLMItaEmrNGb3epMwzR1qddNa4SkUYd8qHjuDLWsHtd+bSNMOdaNIoNJtY14zoZEW9yYfcp6u5zPreuKjbANGrrjULBSlPV4GrTmMHORMeaWqlsm3ezw/vaoDNCwJq4znXjtG1Yb9nSDVIiRk6YmnZR5FkwLpChKhwEonxdOx/YQaCjN1kZW7eOwi/IGuq/hj36JFgKmXO7SIkNT5Po3aJVyfka/QCi606CvnaizFLGLEGfEylWjauVZML2/06w7q+77Ebl71TljKDqZVMiT5jhmvKyJr9vkx8lLpYpiAyrourBlBIbpIU3278bBkaTqJZ2Qe9r9Q3UfZALs1sOpwfjq7UaufuCfgCp1+gNDOr9IQxRNQtYpMUmEatIReU/HSEq/tmGowkJQLuFY+G4rjw2GmMOOY3OrhmvEqBxkdy2hv6OLp2bjn77tTb6wRBYg0oskXcwqe5QZhxoNfHrm252Ac1NN+4BTASN+1huFzPsvXNl0g2DF84vo85tOZ6/VSnqjd++6TdsYyGNGwUaJ+WaLc5qGIkJPC3Rv1Wwl9Wz5xp94wcphn8rQe9Jo1cUZR/wGvC9gAZ8FlOOnAc+rKqqoSjKx4AfKJ//iKqqLyuKcsop7bbe5BbGQCcrkuRFimn5MNB8qG2fok3niqxtNe5csx0EpvnGcqW0azclXWdzK8faVg7l2FRXnrdbcGvrtSEmRMOxlvfusVlAF0bFxCwEbBW3mDXOMC0dAWqX1G+lCmylCtx2aLyneRokWm4VODhyvuWIrKVGryhKCPhDwJpN+h3gV1RVfQ9mNfmgoigPA08AjwE/Cvxes7TbeIdbHo0iy4bKlliiJMxwA15cMPNd0uYt7B4hJdvmB0XN1wKdGPR47/aRYipb5NyCuVZiSzRqr8+cXeTc1Y2ujRBvCoToeWfslY4FPfBx4NOAVfqPAM+U//4y8CTwbuCrqqoKVVXngKCiKDNN0vq0idOKVdHEdKNpvXGZE6J2qF/QqqaGooN/763IRjxXiR4KtY1P1Iy1vNJbIWLP38UbW1ghi9wWcxVvkfAIQgiWNtx903dTDH9X042iKP8MWFdV9SuKovzr8mFJVVXrFVPABDAOxGyXWsed0rZkZsbbrindZCeeWc/ISKTm93B+CE1o6HKWkGEWVTQSYXx8mMmpEUZGIoTyjUUYAMLhIOMTQ4RC3Ztvn5yOMhYZMZ+RMSr3DoeDBMt5H4Tv2M88lDSjUm5nrpkeMg/efQCA9Vyq8o2GQiGigbBjee0UIVkmVF7jc6N4nmAwXKln9d/QeseJiSgzU/3bl2Cn6tPCWgp1MdnQJu0MhQOUAmFChZ0v0/UW8XVa5fBDgFAU5UngQeBPgX2282NAHEiW/64/bjgca53p9f7GPp+ZGev7M53IZGqjQBZ1HR0NnVxlJeVbpVcY2XqUyeEAmUyhxoRipyBDPJGjVOreUHttPUk+Ut6dKpOq3DuRzjFUMPO+09+x32VZ0oyGcrOev7mVqXyjnFYgJDUvr53AIMdbhVdsR6pL+Ou/ofWOa+tJ6JOpbifb5fxioqFc6ykVA2SLg1Gm+bx7+GNX042qqu9VVfUJVVXfB5wFfhz4sqIo7ysn+QDwLPA88JSiKLKiKMcAWVXVDeCMQ1qfNqlfLr9eXPY0EdRtlzm7Ld7u66+5bHF3K2PfwG8QR/n1e5raqdmSsFgt31a7Kt0sePGoMd2bdwfbGXN8FPhjRVHCwEXgc6qq6oqiPAu8iNl5fLhZ2i7k+RaiWTUSpEsZrhunt3n99vjaa3M8cMzg7hPT6LaGoBm3sqBv/o3twiIm5kmJjX5kqCsIYa6uFkLw5ZduVI47Bda6GbE6upTYIECIqNRodd5NfZ5nQV/W6i2ecDj/NPB03bFLTml9GjEDJBnolAhJze2CFqu5/m8OITB4de4qJw6NkLUNFXN6hk3jNQ7Ip/qep0HEWlgmahaSCYp0x9W1HxhCICM1eNk47UtwM2L10WvGdQBuD7y9cm7VuIpAcFA6xaCM1fwQCLsEwxCsiWtkxBbH5PsISUOuhSdJ7rHDhYCM5i1EsVfiYpWsiPPnLyUYEwcqx3NGGoFgw5gDHurqMwcdpxG+FQGlHZ/5QcPSaNN5U9DnRZqCyJIrTO5ktvqGm9nTCkuRFnECgyJC/RAIuwPdEGSEubI0T5q0sdU0KJJANGw8XI8kSSxmFrqax2x5SX5GTzEm76/JD9x6G5B85eU5R5u1KNs9BmnlZLt89ZV57jw6yeiw6ZazaFwEIJ47BEy7XHlzUF9yhjBYNC4SlaoLxlb0y0Sl3dHx+SEQBgT7AqisSLIp3IV0oCH6TS29XsrhvCp39wq27ZAraBSKGqvGNRLGauW4Jd93c7C3kmbw5vXNho4sVdg95qdOqO+jNQoUyRIXtSbTbB9DEXeCL+gHBHuDKuFls+0W2nPPZa7TA24tjd4iLWJs2Hbnsob9u1mjt1jKLDOrn638ThQbNzC5GdltQd5a5dYX9AOCXdBrIu+aVgjRUoj0tpo6C/SbVcxvpQouk5AO8d+FdWZ3CQsnLiXeqtlnNlHcHRqsV/Janmypun6gpBnMrabQ6kYyu70sfUE/INhNN27+zRYtNY4eaiQ3q0B3YjOZ55mzi7xy0dyTU9MN5tfSjoI/I7ZIivWK7N9tWqEdK0RyvUJR0jUMQ5DOuS/Q2S18fe7bfHO+urzn5UsLvKBeb9h60Skq6G7CF/QDQlH33nAEwnUjkF5TokBKxByPf+XSd3j9+qrDVbuTRMaM6bNajgJ67mqM19Q11HlTENrF4IpxhXVj1mH3r93HinEZALnOX8PA4FV1ja+9Os9m0n3kuRt5bfNlFo2LGEKv6ajXjdmdy1QX8AV9n8lpOb41/zyr2drNtjWH2OVu7LS2mBSNu84LDM4v3eCluTcrx968vsnfvzS3a+3V9dneSpnzJ/GUNY/i5HVj/rubJ2Mt6t0HhTAqwb620l7mknYXVrvyMqoeKFo0r4EU9OvxHMlMdzZiGDQubV0jU8rwxsaFmuNFo72h8GaxUaMeFOzRDy8vxMkXtZpl9LuJZh2qW5jo6m5Su7NzsxOQQjW/7e90M7rTWsWtUdxV5ppdt2DqC89cYT1mfuAffs9tLVLvLoQQrJU1+YmwzR83s8ZCZrGte8WL7rs5DZqI2aUKfdN860KQF2lHYW51Ajs96uoGDRr9Ll4E5oRuCMdw0imxsavuo7Z/AAAgAElEQVRCVrRi4AT9VjaJtcN1oaQTCbn7i+8WXl8/Tyy3SaaY58ZKivEj1QVHr62eJZNvc6g40DKkMXOFko4kwXBk4KqcK820csMQlUVE9dj3Yt3tSKJWaxcY5EWGpFjDELt34ZRu6ATkAJcXyl5Ed5j/WDK/G5uyDxIDZ7q5VjhHsexeWLqJNjlYSC2R0/Ik0kU03eDNuVVeWTlDutj+8FAM0M42Xnnm7CJfeXmudcIBo5lS7ma6Mar+lbue+kl/A3OFaEpssF7YXZPumqFxeu0cV+Oz/P3s15lPNcZwF7t2In0XhkAokSfMEPpNGEDJmpTMEmctC0Xdmotor2J5C1PcZua6RnPbraYbBAMDp180pZlAd6ub+ZLG2lZ2FwqLRurfwHwnSxia30AI091ydDiEJA2u3X4utcByeoVlzNWtb21eqpyzAtFZSEi7qvxatfWBFPQJsUZaxChpB3c6K13H0hjkcqWKFxJt32MrXSA47MU8sDMVtT5+vp1CSd9dgt6hBQkh0F1s1S+eXyYghRia3GWeGw40eg41fo8LN7a4PB/n0bv2cWRmtD8Z2wZ6XTjtqpJldmD2yWVT0N88DGSLy4kEabFJvNi+EBxE7JM9VuRauU7xaVOfJ5Vt4ZW0g7U0K+JNJyLzBbOxbSbzfOP0wsAvvKl/i4Qe45rxKmmj+WS4pQnmi4P9bl5wd4s1K/Hl8pqC9a2cS9rB5sLCKkvpahyb3aTNe2EgBb1FIp/i3PqblNpYTDSI2LUiq+FI9ZK+y4jKfwaLfMkU9N9+fYlkpthyA+Ydp+4bbmhmsLlNvfl+ABUhMYDfvx1KotDSc6hY2j0Tz25v8pWr3+bZuddsaXd54dUx0IJeTajMpxa5HL+201npCPuElmXzlettmT2oVztZVZs9O1+sNWcMuhmnaBRZN25QEGaHZA3vm4WQNikHNet15nrMnPGGq0YvAcVd5TDh3iL0mt2zdpeg39VBzQxDsBbPEUundzorHVIthnx54VA4ONCfvmOWNzI8/8YySbHBqnEVXWhkRLxhx6JBXzG7kJslKdZs4WlNQe/mQnnzaIPCVaNvNu96cXaTv3txFt0YrE5gwKtaTxnIyViLdL5EJlfifGqd9xzf6dx0TiavVSp/INCJ6UYgIbsuXhFC7GjFfvniKpIksV7eii0nUuiUOJCLMJGqxkhxc1McBKwVyyVhLvevema4r4zVRIml3O4eiUKrMA5SjbC3vogVByid05gYCfcsbz42dlsIBLuLk1YeFrp5cewGBKbmOr+Wqh7rQL4Ntmg0CdctdLNC3V5LX+K1lTfIC3OUNmirR+OFBOrmlUq+mvleuGntJQrExDylm8A9uFVH7Kau9LITb7bGZiWzxt/PfoN0qXbuRwjBbHL3rePoFgMn6O1b5FkVxdjlKw01XefSvHsc73abRCvzgKYbZPI7OYntnL9ktsjVxQRaWfDbhcF6NsZbm5d3VPg/v/gSV+LXiOVNrxohqjb5tzYvowkz327ff9W4Qk7cHBt0uNvo3UelvSrH2ZUkf/firONE/rmNN9ENjdlErVBfz8XQjN3v7tqMXWejl2xZ0gdM2/OC01BX03bmPVq6YPaQVpEbLbOTPdXLK69xNX6dnLbzbnp2H2swtfSr8esVE06rjta+WcduJmu0mh9rLux71XyvL5md6PxaY95CshmErVQn1EttBg3cKQ7KdzIjn+z6fVva6BVFCQB/DCiADvwEZul+FrMjOQ98WFVVQ1GUjwE/AGjAR1RVfVlRlFNOaZs9z15tBt1+W89adp1XVs7w6P4H2T+yj0wpy7OL3+G28ebB2QSwEd+OYNtd36YeXRQx0BGGQDcMArJMSTcoacZAvFmreDWDZnLqFa3es35CNpawzb/06huVH1ooNS6ACsnByt8b8RyTYxGCAdlTpM2dKNIgYUakKRLCDCcRlSYAWOd6m3dyz7wXjf4HAVRVfRfwb4HfKf//V1RVfQ+mbP6goigPA08AjwE/Cvxe+fqGtO6PcyqQwV1WbedKfBaA62Vb4HxqEd3QuBhTG9JaxZIv6sSSeWJtbeIw+EKm1WgsJha4bpzm0sIm//35WRLpAteWksytpgYipLFm7HweBgG3YnRqlc+eq8aP6VVnaD13M5mvdCzzqSX+x41vkSiY2v5qPM1zbyxz7moMQxiV427021sqSJjjgQcYlfZ0frNOJ2NVVf0C8DPln8eBVeAR4JnysS8DTwLvBr6qqqpQVXUOCCqKMtMkbXMcfLYEBm9sXCBVHGw3S12Yw8Wg5CHiZp8mY/fJJ9kv3779h20Xj428iNlQl2PZimCo369zJ9DLOwwNuvtnr2m5N7HL6V4Vo8AgJ5IIIVgvj4YX0rUBytL5IhkRZ2Fziy9f/xrXErMt71vrR99LJJdfvcGTjV5VVU1RlD8BPgl8DpBUVbW+SgqYAMYBe8wC67hT2qY4vXSJPHPJBV5aec3h7OBgaYEBOUhOy3M1bg2/uluBCsJ7hxckwqg0XTP30Q8MRCUKqRulsqCvGQHssHDVDYFu6Dy39BLxUm242kr97FsWd3Y066aVFzWDkuaynqBH5biqzbNkqCTEasW7q/4rZUppVozLzGrnao7ni3qDycei+Qbw3cUyIwnbkV7j2Y9eVdV/qijKvwJeAoZtp8aAOJAs/11/3HA45koo1Jit6EgEgJmZsYZz3aAb9x2KBUGLMD05Sj6UquS5pOkN7xSJBM3zcsnxfbtFNBImKkeI5EN9jZOuhzOsFK8RCri/21AoyEgwwtjYUOU7TE2PMDM1hhCCzVycyaFxArL3fQk6KcvNcyW2UnnuOxREKxWIRIKEyqak6EiEcDiIgYQsV+MW9RJZ6p1m3CnLW3lyqQ1GyvV8fHyIkXR1EntyMtpxu6q/Pl/Q0ENZQqEgWWmDfTOjzMyMMZYeIieb+dA0g1A4SKhkMBQOkCpojAyFGB0OcXXZ3JntvlN7gVpZIwfknrbFynMkGUMYBKUAI0MRAoZGqGA+d2TYfIdQrr18hFvs8+BlMvZ/A46oqvqbQBZTcL+qKMr7VFX9FvAB4JvAFeC3FUX5OHAEkFVV3VAU5YxDWhckSqVGN6hsxvR2WFiJEQl0dxHGzMwY6+up1glbkExl0QyNdLCIls1U8lzSjYZ3yudl1mNpBDi+r4UkSR1pRjm9hJAKFHW9xbL97hLT1imJ1s/LagVCcoHTF1YolffN3YilCWlBltIrnFk7x7HxI9y3922enmsvy5yWJyyH2uokNjbzGGgsrMbJigKFfKlSPtlMgUJRo1TSOy4Xr8iSNLDmo7xeJCNV941NJPJkMtXfsViG4Q4WBk7vibK0usVQ0BR+q5tZXnxzhS09TwmNEhqxWJrRkEwqlSebK5DKlVhct414DYNUOU+3HZqoKUuobXu5vHtb7BYyQQw0DCCjFyiKUsVLKGNYMkOrSduKQsF9xO5lPP/XwEOKonwb+ArwEeDDwK8pivIiEAY+p6rqa8CzwIvAX5XTAHy0Pq3bw1qFs06X7fSpYpo3Y2pD6NF+ci0xy9n185XflsYcKPfYFRzaaTJbZH4t7RrxT0Jiz/hQ1/LbT7wvcnMOAwym7zPQsJG6F1LFNN+Y+zYXNhsnwt2oxLJxCk9MtwbZbdzFJemYtLfzrHRAViQpiGzT8146KN3QubR1pcGdFeB/XH2Wr889U2njy5vlZ9m+iVY3Sk3V7TXttAATIJbMo/d4qDQq7eGAfEfD8UbTTXPGpD0ECBGVJl3TZVpEgW2p0auqmgH+kcOpJxzSPg08XXfsklPaZnjdcPjF5Vco6SXGQiMcGz/i9fbbJqflWEgtc/vkCWTJ7B8vxsyNCx6cubchvde9NZvZC4fCQU4cGCM14GF8m+H1/Z08HYqaxupmttL4w3L7I7i1rLnf51xywfNoAKr1r6hpEOyNKV7C+30ll9R7peNMSgdYE9crQdf6SVrESIsYt8mPUiSHEKPl41tkxBaGsZe1eI5QQGZqLOJ4jwubKnPJBdKlLA/vu7/mXLJgjniLRolhOWAL7V2VEUXNXdu1f7k528r09XiuEnfKQutygLb98m1NRn3eO/oAIU4EHiQlYmRFc6t3q051oGPdOGMOmRdjScai4YaFEb3ilZUzpIppQoEgJ8aP1Zyz705jffBOh9vd3qin31N6rRZMWTgJ+nNXYhilFMGZNFIYQoHQtp6/mSwwMtxeFbcmra8ub3H0aO259Xiuai/vpHjbkPRu9UCWZMIM77i3bUwskBArTGsSMMyqccU8nk1y9kqRgCzxg+9yXgRkuT06rVpNpAtcnd/i3vEMJ/YOVdqYXRm0FkIZhmAjkW9od27mtXpB36+QFdXcey84rwpwMwZuZawXkbSeyLOZzHNjJdk339dMyRw25rVCwzkrD4vrGS7Nx9F03eZxs9PtcGe8Nrxq9DmSLBpvoYvqyCVXDmWczJseOWG5fX0km9dYi2e5vtxeKILqsNraJq96bjOZd/Uy6QXeSm9nPXOsjbSvx2r3kM3kS6TFJpvaatNIlnndbE9DgUaNf7Vsqrm+FGczmacoCizoFypxkgCK5b0qFtYzbCRyDRvZuOlb/ZhjcdpaMYCpuFhyw02GdatkB06jb/VikrQzqxIlSQLhXChCCJAglTUr2fmFRUbGRWPM+Xaf1wUkh7/6gVcbvRUTJkHVDm99Y90oAcHKsvZ22H74DCu2jYGpBzULatYbbj88QUCWqrGRPNSDTrW9zrECwNXmYytVYNW4CkCh+AjRoUa90hr5WeZQO5Zf+0o8TeL1JXKRJQrUmqi0skbfbA9ft5F1v1feT0mHKJAlzFCNqS3MMFPSocqq2Fq6U7YDp9E3q7SZfKm8qKZ20476jSx6mTNw7mTqhX8sWWAj0c5K12ZP60Yxm3cYCfd3UterRm+/ov7vUlnL35bpxqZBXtm6zlxiCd3Q+db881xP3GiZj9YjxV6t+pRq6nez8g8SsaVp3oyj0mR3Vl66Uv0W9gCE9rZZbyaxsNp7spjmpeXXyGmNIRQ2jDnm9PNk8o2jaUtYNwv77b6gq/+C/qB8Bw0LpiSJafkwQ1Lz/XaLorP4TwMn6Jsxv5YmkSmQSJs2P4t2h+bbRa4M6Zt7iVR+Y1AsDUaI2mgkxBMPHmY0PNw6cRdpN7S0U8dQDRXc2IjTpYyjGa3yfJu29j/UM/zV68+xno2TKWW44BCSwiIcMpuEtfFV38eOda8aCsmEgoEa4X9Cfoij8j2V31bEV5kAEWmEGflE5dxB+Q72y81jLXUD6xtJSCwabzmmaaU9b+W32MjFuLR1pXLMeuMiWUrk0OVGzxxr97aA3EyU7cxqV8cUdXMM7ZidR6QpAEJsT2EbQEHv/sEkqc5lqm7IVtSLPL/4EuvZWHdzJbXW6K0CLIk89gq2HVNTtyZjJ0bDTI1FODR0HAmZUWkagEnpYGNaaT/j0oxNQ+yfSaBEVWhXbZe1v+08M/88X597puG4hd10k82XMAzBZrJ5x1Ch/MqhoGQ9vK/Uf3EJidsPjbNnotrAA1IQ2RZmw6p3AUIckd9mTtD2laqoL5K1Ha1+vHgxyaWtKw1tod5EaT8r1+2r7DTBb5Vzt50X2mc7FcX7NREpym3yo9t2qR04Qe+lwGrSSIKlzWRlgcFscp54IcHLq6e7nK9qLyyE4IWllyvn6oeABnr3VvG3WYGj0iQH5FOV38FyYxkJjnJb4BEOBU9xXH6AQ8PHGq6dlA7WaIMh+rc7UEZsVf7Oijiz+llSmaLpXuryLRfTyzVaoIXhELfk1bVXK38363wrXlPWZKyn3HePiXCtndaq625zNlbH7GYu2yMdISpNEJFGOs9kHZU5lbrQzJqt8z698SqXt66xlFnh9Nq55qMxW7nUv7JTiILqOpodl/Q1dCvkiL2z7GTebuAEfcsCq/Ol3Uzm+X/PfZn/9vrXgKq7VUjq7jyzfSFNySixlY+ztpXjxmrK2ZzT1ad7QybAQfmOyjAPIFC2QYxFTTv3zNQwH3znnbz9zv0N19d/+ZDUb83QJC5W0ClhCMHierrh+9qF9Nm1N7i81bhln9NkrFYW/iXN4IvPXWd2pdHsZ2mNZofemwk7txr+8L77+K4DjzRo5U6TldX71Qr6u49PN6SZlA9yUL4TuYf+F2lRO4q2JmKhKr/Prr3BcnqFy3HznNtEcr1G79SqKkqWGCxBb3nWAByQT3FIvqvyu5PJ8+1eOXBeN60wynuhSkgIRMUWvJYyG22+VGRxI8PhKfeVZO1i1+gtYbBZ3vtUOPmMdywfzOd56bCsb+HU4ViC/tSRCYJBmSMzo4SCMrIscUC+AwmZZcPZZh1mmBF5EgmJNeO6Y5r2lv9sD02vtfd7sW06ufNZx1LZEmPA2csbnDgwXnvvsuAQQnB1KdG3QFdHZkYJBGQioTBjgRGs8h8LTHDn1AliaKxsnnG8tirozfUcVqfuRADv4SC80v7Ee7VDdRNc9V5rTqVutb1BCys9KR2o/G1XvEzaEdf1b709UT9wGn3r7clqK5Ul6K0GuryZIpUtMrvcfGl2J/lyCl1b0gyS2SK1SyFsNvrtPM+yFXuJ6+MSUtEy3QRkmdsPTRCx7eU6Ik0SlcYbrrHPOYxLM0RoPtzvh2tfvm5i2zAMMnmtphwaJsQdNPpsXkM3nDvEyr0tQY/RNyEPZoc8HA40fE1ZCnDH1G0EXdYSRMojryFptNztNn+/Xmr0btTnqDJC8SDMLZwm+K1y7mfAPjeGpFFOyA8yIe+rHHv3/Qc5ddg1aG9T3MrykKzUjBTc2H0avSE4f606RKwv/Erj3KaSuZbdoKgXOTJ2qOZ4jY2+7uavqmuk3GKidaDwRoPRlmkCkmzG/HCQucGAc18ecDxu3cCtct2FTIAF482W+eoWwmY+yWsFFtczzK+lGI+GObTX7IQEoqbTcTLBa7rBlYUEeyeHMITRxBzi1b1y+5hrMmrvf9/0vYQiesWVtH7dhluHOsoeJFlmmPFyEboJ+u5r9F6oLw/r27srCrXndBq9bqy5lEHZD1ZCIiDVjqj2Tgyzd2KYK4uJchpvd3I0VdlGT8MOSlozBk7Qt9IQE9ki6wmN6p6jtQVc+QzbVDRfWTEncQ+PHqyZ/Ki4VwqDb80/V3NNLJkjXGfP7nQydiw4wYmJwwzpk5xl1jXtaGASTcBUcC/1o2hngQ7RiFODr/OIoHHJ+bDUmzDRblgml0wpy7fmnyOfNn3I3eIANZtstWzvs8YZTsoPN5y3NjLs95q8qcgk+ybs37a203Wbh5MkiVGma65qxrA0Rlws1xwLEOrDHre1H1SWZNazMbIlc22M9X41k48eGrGlA+geQ270nmqeAwGZfZON81yj0h7iYpW9cqNDRD31CodVTu2OzAbOdNMKTdPRbD27UTdks8q7YR6n3efU3bc+lk3NMytal/1YZ0TkIe7ZoxD0EGJXQmK/fBujgXpbIASb+BeHgtX7TktHiEgjDpWne8u2OiGW3+Tvrn2V2fIWjSnd1IyEm+nGpQSEMGd3iuS4lrjB2bXz1esrXje9MwUEHBppvUeFk5ulV9zceUflSQ7LdzMlVUesx+UHOCk/4vn+22FpI0MmX+1MZGReWnmNTF5Dnd8iaYs6mdfyGMLb3sGiXE47GcXWjr2cPvDYMb7r7n0NaYJSmBOBByuuzu73cRb09sleLwycoG/lQlQfWlSva5BWHXdxUqjh0tYVLqxdbjhe1Ivkbav0rA9f3wEAJMU61/TX0G2jC6mc18WNTCVCZXvuUZLna9wDXzU/+fa79/P4PQeYkg9yRH5bU2HjJGSOyvcyLs20NXzcLlacodmEKeidOvF2thS3UupSiW9cOsM3LlygWHbPrdynhxp9RGo0xzW+Uu2iGs/hNCSpxgHl8XsO8N4HqkL93fcf5MSefUyMDNkukVy9errF/Fo1Rs35a1tcW0qyVXZosPZMThXTfH3u27wZe8tTGViKV38EvYe2aBOpwYDctVAmFpaMCbTpVThwgr4VKS1V43Ndb7qpCHqP3/fy1jXOrzV6nby0/Cpfn/t2RchYBbaZ22xImxRrDZ4HJd3g8kKcVLbIcsyMaxEOebePWtmXvRRRi2F9Mw7vHeHAtNscQHONPiwNMyOf6IvNt34U5fROLy/XbjPpJZiVITQSmQICQVEz94jtRxylYWmMKekwe6Xq0L2+M7VP69cdcMXqHiwOTEeZHh/igVN7OX5gjKmxCI/fc4Dxkf6tkXBiNbNOSdMrphfLldLab2IuueBpnmQ+M8fz8685KmCdEgjIHN8/Vhn92ougvt6PS/sIEmbKYSHidmi2ena4vInfCI2jdzcGzkbfqkYv5uZICPsqyloBa28guYJGvqg3jYXthhVzI1FIMhKKlifGqvdvFSfeKcjSyFCQ6bFIRfB7wdMCsvK/TkKqE4WiaqPfWepfy+md4gXTnJPMmO61bliel4ZULcP59AJyVlCdjO0dsiQxLR8yN+2oLCptNNbUXtPY4TvtPtUs6N/Jg61HXtPSEWQCbIgbLdNuF4E50s0J03shWzbnWCOWcCBc3YTEQyHkixrfuXqFoXD3RVlAlhiOBAnIkmkwsc2PHpXvo0SepXLIhynpEDPy8S4+3bnVTUkHzYVvLp5wTgycRt9KqIgWC1iqoQrgq6/M88zZRc9ucm7hDeLpEurcFkXNqCzk2Q4TI2FP9tbKisiatJbglR3TOrGdCJpVjXkwbPSJTIGlWLbS7t3e6W+fu8YrF1fJu2wJlyhvI2c3+13eusIVW2jpXiI5eJw01ola3dxJu9037bygbShgmmXc4qI41cEp+WCNW2AviKcLXFlo3EBDlqWGN2zHZbIXAcqselZZuGV7RFAKMSyNVQKROc27dELVQl/fkcumG22b7XoABb37C7jJ+ZeWX0MrRzy0D8O9bhnmFEvDusfKqik4EulC55tCt1FGsm0y9ah8LyfkhxzuV32/Jx89ylPfZTMJbEelr9egbRm+97Y9NSsWOwnF7JVcQSOZKVAoWnMdra8peQgqZ9g8TUTlP73HKf/1x+pNN41iEB65cx9vv2tfw4h1NDTKQflODnv0sa7nsPw2wkQJ9iAERrN4Q+msqUhl89vz/vFS3u1ilUlVzjeWwSHpLk7Kj9S0U6+4t53utquBE/StWnE61+hLa7GRi5HSzCF8UeQrHjnN7K718TacNAiBYCsfx5DKk3XCucC9sJ2is3+OsDREQAo2dIb2RVCjwyGGbTvCt1PA992+h/tv31v1IqrXaIBThyd47O5q+IRuTza5UWxjqzcv7nb2yfN8UWdxY3ujtHaRnP5qaropm5IcvnMoKHN4pla7kyQJwxBEpYkGf+6au7uU25A0wtHAPYSk9k2erWi2cYtV5zZTNrNsG82sF+seKqZLtzhD5YnsypyaLHFs/xgP3znTkLZesEuuroHONvrtMoA2+s6wf8s8aaJMkM1rhIOBGoF1JX4ddbPW28ZJOBT0IufW3yQjzA5kK5V3XWLeNSxtwrF7MI+NDIc4uGeEYsatInoX9Yf3jpi2zkvl33tGGZGiHJ4Z4aptfdSkTYPsZ9RAJxOcfd7EjpcYNZptV6sGU1wvJ2UdTDcNQqCuoTtp9NW0tX+3q9se3TdGoaSxVt6o/s6jk+WNT3bCZNfnBQwu1NftYEAmGJA5Pr0PrX6/+rL9XgJHIQ9mx2zfI9pt4r9hMr5DBk+j71IDMwWA+Xrffn2JF86v1Jx3tsc2PjtTMif27J3v3KrbMlgXKvGoPSS1/nUZEkqYIQ6sJJpDxMZ2vObqRwrDQyEef9sBonUTXYEa003/qpBuCHJFnVyh2ljsGzqniumatK0oGc1Hh+3WwrFouGYk5YZT593odVOfxmOOpNbzWOVkFR5RZnjnvQe5//a9jAyHuPPoJIdnmm+C0UvszX8HNpKroTpPZhKWI/z4o0/xgTvf2Zi2/K9blo/tr11s6K6M3OSmG30bAZIcEbWTlhuJ2h1anAKROVWsTClHSTe6u3FwG2XoqM/XqRpWmANHr5sOKkx1Mqq2mtTa6JtfPzIUYu9E9yJgGobBjZWq7zXUavnfXniBvGF2zLlC6yXxOt1bNh8JBTi2z9uqYadNrusjNbrFaXe9N42eOM7pGrnt0Djf++hRggGZh+7Y67nj6h07K+ktJWY0WPVYGguPEnBaxOhhaHv3iSm+++EjnDrSOu7NdjYnccO1JBVFCQH/BTgBRIB/B1wAPotZCueBD6uqaiiK8jHgBwAN+Iiqqi8rinLKKa3bM5vt/eiFqnOc+YFK5NFEkdGG6HHNFtgISrqBEBAOmoVcNIostXDX88r2bPSttb9gQGq6gL2tydK6pIEm2rpcZxNuxszkMOGQ3NDJbhfdYcRS0o2agL4lUfS8PHw7URdd8fipq+XX3OvGHlvJPO/S4OueOzlqmtbcA2m5ZzYYkJkcGWKzsx0x20YTGpS3SeymmI8Ohdqe6D08dILvO3Evf/uGufeEW//ppehlSWJiJExuYpgrCwkmRiMk0s02w/EyRvBOK43+nwAxVVXfA3wA+BTwO8CvlI9JwAcVRXkYeAJ4DPhR4PfK1zekbZ2lDl6sVtKzZlxj1bhCWmySti2yMs87uVLC1cUE15YSlWOaoVW8PbpFO+6VzsP82r/GRkJMjkYcbYOdTJZ6ubYxZrj9Bp2NKOpxMsfYjwkgUN55yYsm1Hz7Oef5gFZ4fVMnp9X6T139rK39+us78+FIkB9610nuva35XrGdrrjePm3ctIuSfv9U+yPLoCybUUNdvG4s2vlWB6ajvPu+gzyqONvywVZHulQGrQT9XwK/avutAY8Az5R/fxl4Eng38FVVVYWqqnNAUFGUmSZpXelkqNIsNPCqcZVV4wqbyebqyY3kfGXTEqhdWt3vTYRNysN7R0Far/3B+x463GADBAi0UVMs04/lVmf5Y7xJXrMAACAASURBVFvC3Ek4OE8W23LZRWHhaHe3HVpcz3CjcIFl4xJJsebhfjsTCKtqCnP7dlaMeRO3EA/2YqkoCJ0GewKC5WX2EjJRaaImPs728d6WutnqJEniSJvzDpKHctoueyeHCQVrxW/toi+rzXXnea6CXlXVtKqqKUVRxoDPAb8CSKqqWmWQAiaAcSBhu9Q67pTWlakxU8jYg255RQibQu8gnJ85u9j02vMbFzm7dr7yu1gyyBf1tpdWh5pEi7TjrfCsIbubR01t2g4eZt6lfJvD8ts4IN/BeNjsOCZGzHDAtx9qLL5uCBSvNPO6sbBcb7Mi0ZCu17TTICMOoTAa/OjrtMiIbJozQg77wdo7YK9hNrxk1+roBQYH5Tt7sg1hPTXNtssK1uhwqK0wJMGKd5SVn+ZpO1uYCB94/DhPPFjtSMckczQ2HqwGPguVNw6yeOxt+5lxiI7pREtjpqIoR4HPA7+vqupfKIry27bTY0AcSJb/rj9uOBxz5eThcSamYH4tRTrbnk0tGg0TyZYINTG1RIfCzMyY2Yyu1voIR0ciCDRCIfOTWCsxhyPByjEvDIUD0OT5w8MhoiMRhoZCLc1B0aiZ16FMuPL8kWEzz5FiEHSdSDhIdCTC6FCk8l4W1jV794ywd8Jdk3n0noPMLic5fGiSgCwxMToKjLJ3z2jlvgfK/1q/R0bMvMiRMKGi8/eJRsNEwu19v1aE6swtQ0PmN4XqO3fzeV6x8jEcjqKJ5t48ANNTUVJGBEMECeXNvM7MjNVodNHhCCmCRCIBZmbGyOmHOLnwNoblMYJSiKnxoUpZTIwnSJc9kT7w7tsYi7Ze6DS2PERoo/psJ05tnuBC7Br7QscYCUYQevOy7haRSLBSnoJU18oyGg0TDgUIh4MIjxr6+PgwMzNjjIxECKWChIKBhvpfuX95DkCWpabfs55iSa/c58ghc0e88Ytr6IYgKo6xj4NMDI9U5hZ+7Km7uLGcZKssF++/6wD333WA177wQstntZqM3Q98FfgXqqp+vXz4jKIo71NV9VuYdvtvAleA31YU5ePAEUBWVXVDURSntK4IBMVCiWJBo+SyjN2JTLZIIV9qel1az7K+Xo6xkalOgkRHIqRSeWRZari23TzICEolZyGez5fIZgromt7yvplsgfX1FJlcsZI2Y5h5LhglSkKjUJTJZgqMM1F5r/p8b21lEUV3zejI9DBHpofZjJnuiZnyt9mKZ4kGzUZhfS/rOVaakmj+vbPZInqp9bt2gvlNTeFfKpkddS+f14wZ+TDKyD7mtRusG7OuaWVDkMkUCAar9S22ka7RNq16nMuXWF9PsbmVRc6PUMDgqXcdQpKqZZFK5clkCkyMhMlnCuQzzSb4qqRThcqz6+uORSkrcVR/EMmQyBQKRMcClDK9/baFglRtm6L99teMXK6IVpQpFrWm7bPhmoz57XPlNijpgcq3euTUHtbjOS7eMOf+JMMgkzMFfbPvWY+mG5V2ZF3z+F0zxJIFXlNN02NOFMiU42qtr6dIJLIN13j5Rq26y38DTAG/qiiKZav/BeB3FUUJAxeBz6mqqiuK8izwIqY56MPltB8F/tietlWG3CbIWtJipGc08bJIZYtcXoizp4uugG54GuaVwxo4La22vEWmQ/tQpg9xbOxwQ5qDskJRZFy3oGtGJBygUNQZDnsZ5rqZlvpg1hmQ9TUyAQ6NHkBirmXaoXCAJx89gmboqK+YxxpNN5bLrLVjWvVFG10xzX/b2cfc21oOqVKGH3jsOLOby5xvOSbvDna/ip2i/jvb8zM9PsT0+FBF0Dfb4MeNYEDm+IExpseqMYmiQyGiQ6GKoA/U5WG7IUdcpYCqqr+AKdjrecIh7dPA03XHLjmldUPZeztLsY1tzn+4T+XGxDyL6UmiwapAL5R0ttLmUDvWDTdAt7DA0aMoM/vJJa6RyTefLyjfqOkZIZmTESEpxKnJk45potI4UWl8WxuwPPHAYTZTeabHbRUwVBvO+Pj+MeKZIrEd3tinl1v+tUN77U9idDhExlbd6jtFq0FX9kNxuVs1bXe/hT1LkXCgLwtle1Wazee6JEAgE2jYbKZ+0x7JJXP1AtkrD93R3PMGzFXL8kYa5VjZRXybZbDTKyIaOD55hCeOBvnS1hkytBKGtbSqJFowydm1N2qOXV9OdtWmW3SxvYekMEfGDhGUb7S8TzXeTOM5K/ial/AG29Gqo0NBokO1dv33HXlXze+Hyq6cnzvdWoP1qcWLZ8ze4CHiUpKTw3eYBzzMt7cnJL24V9Z3Pn1YXynq/u0Sbs3gpPwwBgY3jLM1x6veZlZmmt+kV8H9gkGJJx6sjti3O0oeOEEPMBoa6Uml6oeHiCRDs3halULyYrlx8LoZHQ5xeO8I18r9RKCPC5v7GbxsN9IY2tklrYPrXP3nDcthDst3EZVNTxd3F99a7d8LXgZix/aPshzLcMfRScc89pJ+jtRkKeDYsVhmZGuk5FoClvmsHfuZB5pvSNMeAynoYXuVaiORd41x0u1CaBerwnjp/Ss5rSycCvDko0cB+NpchKLIE5JbRxfsdeN0u30/5IIX00Y/8LQTWJlKf29fYdxsZWz5BfdPRQkEZO492bjPaCWMblvhHltrqcGAzLvuq+6Y5G3xm2kK2S49M920yLrTu02EJsrXth4yrce7s/q7Fdttz4Mr6LchJpovJzYp6QbpXInR4d5Fn3Rra1Yn5OndhJUWTsgP1VxzNKiwVYoxFdzb8jbdXJnqeP8B0fS3HWiuy0RCAWjh9GJt+O66Mlau1dIj4QA/+M4TjveTpPY1+kGZ2+gHk6MRD8pV9fwx+X4MdMLBspzwYLoJyJLnfS86YbsmooELambRCwFiGIKF9XRNqNB+Ut3P1su7VW30ASloDi/LRORhpuSD3u7Tczk8GILeSxCzXmKVxanDk03TTI0NsXdimInRcM01jvcr/+spQNk2NPrKPI/nK7zNCXWMNULrksy87dAE+133Ra5y8uA4h/aMEJIiRKSoQ+jo5ljZdVqd3gn1VcRaazHSprJ6U2n0XulHz+uGF/lczWFj4kr0wwGQ833cJMeRQdNL3V55KBxgYiRcESC1NvpmphsPzyynbSdUR2WTnTbKqC+mOAQbiXzXRt3hoLfOSZIk3nHkEYaCEb71cgxoz5PGMgv3OuJndCjI+x46zMhQe88ZXEHfw1q1U+YGK7SKJ3tuxY7rcMpD9g/tHWFpI0PQY0XfLr02DbVkp4OWl9nOd3Arx3a09KqN3vuzqxp9Wzp9G2m3R66gkStoxJJ5gtsIgwKm1itLEnsmmu+Z68SBEWu/XFPQW3Gm7DMp9Tyq7COVM7dBBG8hUDrFik7aDoMr6HtYqXpZXd2mokTVdtPyPm4N3Iud7rvu3o8hRM/3dB0Mw83gINycrStYAqS1u543001Z+/fwZAszHDA1JsFWdLKWsV06WRMQkCWO7qt1D5Ykqck9mz/HCggYCDYvpyPl51iCPhAYzBZxS9noLXqqA7pk26pnbhEfK2mt27lo9K3aQj827vZiZ+4lg6HP28xpHjIUKq9W9qbRe3m4lbZ9G31b3kK7pFt3+q7vOfwOHj/4KBHJm70eqhPiY2UzUsRlvc2Dd+wlEJA5uMf7/b3QLTk4wBp9D9mh4b7VED3FAqd52u3YZHeG3SEY+sWJ0RPsnxplMlJ12zsq3+uYth0tfao8lD+0x3t0SaNso5faEvS7hcachuQQY+HRtt7BEvShkMzx/WPsiTafaD9xYJwTB8abnt8u3VrtPLCCvpdG+l6KR8nFeGO05Udfda+sZzs22V7hquXtHsnQMZUwBC61ayQ4yu2TJ2qOhSXn+ErtLMA5uCfKe+4/VPHm8cKe8H6usMCeQBsx5vu4P3AndC2Gu22kNBwJEg7tjvd3YmBz7sW8sduw2qzbm4Uxh36jweZuWvWLaXaSmcgBgkSYlhoDq/WlBPv8CW47NMFxB83N00ruNj5IO/FrpPLEY7CNicDx4BQn5UcYl1uvxajkyXPKnWXIIRhfOyuXLeq9bnaL6cqJgdXoe2qj36HVlBWN3mVWa0o+CEgcGT4OOH+H+sU0O0lEjnA8cD8FkWVTeAnU1t1Mb6byZsCtPhEOyo7rMKoRJFuHKvBCWzb6bSGQJbm9djYgi+OasWdimEhIZmy4cWRTEfNtvW79KK3/79/ORiluDGwn7a1Atvvh+yshK37THpeQj0pTldWTzilMBsJG30YRdBSC2oXlWOvN2/dNRdk/HW17oUk9d0zdxgN77284bpWtvUQafOPbeE6/Rm3t5aln2egKAVliPBpukk935cjJZ76iUNXcob90az3BwGr0veyDKoXdizbkUBuOzUyylkzz+O23Aa1s9G240w2EnPfeie0NHmK1OE9EGqEgWgvnbhKQJSZGwmTzna2gvXPqFMls497DTmV6++EJNN1gdjkJbE+o9mptn4dQNw3Yk4aCAQKyRL64syuSu8EPvuuE4/FA/WRYH3u6h+6YYSORb3thVDMGVtB7WZS2XUNAVc53vxU5ZfvtBx9m7x0jREPD5TSddWLezAR9woOLoMV4cIohbZo8GVbFld7mqz4vdf92dC8XTyi7Bh6UpdqRWRuTmY1mg+6yvbtW3/u2Q+Y8heU/PghYuQsFQpT0kuM5p7JrNtK0Ou8DI/vZzG9xsLKgqvccPzDG8QPdC6cwsIK+pxMffZaPYTlYEfLQ+fxDrzaa2A7tvEkoEMCQgkgi27P8NKWL1clJe+/2nFLPPasqjgHt5NstMEdjmr5TzpTjxPg2yse65MT4UfZH9zIc7M8OdL1gcAW9N3P2tupVvqhhCOHJttsN6r0h3N7NiwbX+4k671TfpflLhUMBiiWdQLkB7oz3Qvee6STovaxkbWccZy1z3zfZG+GynZGC+zXdn2hvF6teyUi8+/DjyJLMtxdeqEtj/8s9v9WYUlLDDmu7jYEV9L20h8WSjTbWbhEdCpGs25w5VLdvq/tqxMbK9457DxC2xf0YJPdKLwL05IFxDCGQkuWGuAP+2N2sTU7597YK2Xsuju4bZSgcqNnOsatsw+zs5tMfkORqoDTPdLdzqMb5l5mImKaldxx6O4lCsqENSlJzRem7HzpMQdvhPTK7zMAK+h4q9D1hOBJkz/gQ0aFgg6CvDyzmpXHZ29T+qVptwvIG2OEgnICtcTmcu2/P21jILJIoJAlIUo2G1He6+Ein7FcXTDUXEE7Xfc8jR5qagvZN9V6LbOezuI5WZBldb0/Qy5KMIXSCARlN755gtdev6aEppoemGtPQXHZMbCNo2KAzuO6VXtLsoL/XhLS/4djocMix0TZsMuyQZur/b+/MYyS5zsP+q6vvc2Z6zp3dnR0u3y6PJbkktaS1JJcxpYgxEioJAlhADORwEsOCc8BAIgRSJDn5Iw4kB1YSw38Y8pHINigbUpwgjmUnlCBTEgMoVKzzSaJI8VguuQdndo6eszt/VFef1d3VPT09PdXfD1jsdNWrqlf1vfrqe9973/cMN0Lx8rllzsxnWJrrEDBV+X8UBmMNn788TmZOcHnhkboS7nMIYtEPetnHQZ7NN/9Qn7ENmUTkUBfCaUdtBbPgT6ZTe7P6eBfjUZvTsxnmp4KnbuiEV4Mg+XtGZcGcYTGyij5IAzxKYWWMAkvmRSzcl7RTVGLzqL5f1G/emOeM+RC5eIoLy1PVBQb8GKXplR01aNO+6nMIYLxlk8HD+ZtJ+QTM1NI+H7zN+AaxjXh7baaftpNwXEvXMlrbZqcgwHaYhkEsYvX8EV6YSrE055NXpjoY271RjpAohkIg141S6hLwy1rrK0qpO4DfwjUKvgV8UGtdUkp9FPgpYA/4p1rr/9OubJBrBnPdDF9ayZjjzq/dclO85tIR9kom+XT77l5LPQ84a6OvNUIPiU4yaN5z4cwUL3z7OgtTWV59vfN5HdtieSHLS2+s9lQf0zTIp6OsF3d865KM2axudFnrr4n2KW7dtXxL7BOrrN87AiIJSPtcSu2YzmR5350/wVx2gq++9XzDPquPcZd+P3zphH8PqDoYe0xy8gyTrk9EKfXPgd8AvFGhXwE+rLV+DLedPKOUugg8AVwCfhr4T+3KDrLyR6HoF6dTDV3NiG0xN5nwza/h0dygD5o+eBQteiuAzZBLxXjfpZNdsixWxh9K5Z5W+KlRbtMq3K3pZIS5ySRT2eCzWZrFVS+/RfMe5k1VnZVRqvP8Xl54hPun763+7kcZHhb9BEwB3D2/yESyVX6JmKt8k7Hgbqiqu2dQ5nXdYGyXIgN3DY46QVreS8DfqPv9IPClyt9/DDwFXAa+oLUua61fBWylVKFN2UAECSo62q6wf0CLaZikExEc22JxOs3JmXSLhXHgefSV042CRe8t1WabNifNC8yYy9V93n3OpWaxTbuaW6VTKgTv4933+EMZX+Vl1P2fTUZ6ykTYIq+6nycmc8SNDJlkRcHV1TsbzbCQmqs7z+goeo9BvUHxiM3yfLYnf/ugn0fNR9/9rpKRKJOZGCenB7vG66jS1QzTWv+hUup03SZDa+215jUgC2Tw1t9q3O5XNhBB8qJ0img77IHKam6TpusYhsnCVLKdvnHr16Eh7pe6e7ZGKR/90lyG4vY+c5MJnv/mm+yWW6euXpy+0PCcOi9W4mbi73dd37ZHtVwyuIprLln/+4GzBRzHrJt10+E85dGzIgdlLBkYOLbZ0CZdWbZ/Iik7jWPug+0AtwdRCSCY6yZmJnnsrKpOwzzOmNiU6JyKop/plfWaKA2s4Eop7bPdr2xXCoU0mWsJnMqKLgvTKfb3S1y72RhRmUlH2L3deoOObbLb4zxYp8PqMfUkkq4v1k7HMMsRtiNWdRtAxHLYaQq/LhQarYbcaqLleidnc9xcLTI7kyGf7jx3OnerSHJlC8syWs59FMzNZtnc2uUbP7oF+xGcHffe2tVt3ym13P+ZhSy3N3YwyxZvr64zlU2TTFiB5VKlDIl4pOW4WMwhkagN0u6Vg8s84pgYu2578u7JO3aqkGoYOE+9Ga3uay6bzyVHQl4A6au3SW7ukk5G+qrTY9ZD2KbFS2/+GQCJRIRookSpVK7e711LE5TL8N1XbvmeI5tK8oEHH+fl62/x0lt/4lvGT0be+9a8LxGPkEhEyGUSbe8pGovglGziMYeLZ84Fu9kR53z6IfbKOx3L9KPoX1RKXdFafxF4GngO+CHw75RSnwBOAKbW+oZSyq9sV65fX2NzfZfdXVeJxyyDPcOs/p6ZSLC7V2Jre7u6rR7TsH23t8NxgpffrAzklbb32d/dZqO8w+ZGzYLYt2F7r3Gw7/r1tYbft9da633hdI61zSR7W7tc32r8UDRz+3aRjY1tTNNoOfdRUdzeY2Njm83yDrsl997a1W1lY7Pl/o1SiWzcxjYcMGIs5+aZTUzz473vcavcZeS2DsexKRZ3Ws5fLO5g1lmbW1u7gWVuYrFbSU3s3ZN37K2b6zh1wWxr68Xqvuay76wUuR4bDXmtrrptyKLcVxvKMAH7tXsrFnfZL7sR59627Uo7bveci8Udbt7cYGWl6Fum3XvpvYOtMt7FLJdZM7bb3tNORe7FrZ2ReXcOytbmPtA5nXE/TrJfBD6ulPoqEAH+QGv9deDLwFeBPwQ+2K5s0Iu0+LXr/s6noh1Dw/sbxOsNp5KsqhotWOkC5yLdu4J+D922Os/c8Tt+BDw3VWp16f7srQ7NzjQN0nEHw4DJxARmlwbczMnZtO/gXi4y0bihhybS0dXUtG8q7S4WPZNp9VIa5dHz0Q8KL1CslwkS6UoPq1f30Z35O3j3wqWW7dPxGbLRDOfyd3SoZ+P/40Igi15r/QrwSOXv7+POsGku8zHgY03bfMsGoZMyuFC4mx+uvEzGibLCtdZjh6DoFwopXnp9jXjUVURnMqdIOHHmkrP86Y87d1wOOuJfW3jkeDbXXpZSDHS+yhRHx7bIpqLcfKfm4psxl7ldfptzmbtIpkt86+Z3Wd9Z70khdfL5Nt/K+ZlTGFaJU9m51rJHkuPHH2+WWCJ6sOB4C4d9dtkpbxPF8YmdaP1QT2bjpGJuJDn0PunmVOYEEas1ViLjpLm4cGfHY6sfleP56vTNyKZAMI32ltx0osBieoE/Wvma/7GHoOiX57MNA03nT02wMJnmKzfcdLumYXIqsxjoXPUWjGEY1cWdgzJKgTfNBKmZY9lkjAIGFqvlxg91w7Pxfnd5KT1F7/Wu6uuQJE/KnMCxbCbjyb7SFXeaFtk6ddbkrsJyu9I9XPVwOX8qj22Z1XTD/VIwT3Ot9AMWkwuslN5u2PeeU0+yV9rj26/8UcN203CjYmuy6O25tC3fw2kOK/3zqDKyij5pp0gbU9hEgGLDvk5h90vmRRYyEf583f8j0C9OU74ayzCZyMQwblRq0kvAU129//p9l8jH268u78co6nnL6uH+TZOCeZrt8maLovcol8uBn2nUSLJX3sEqt87hfvy+eV59e72aL6g6z72HZ9jJcOhJFCM068axLe46PdG9YBeSRo5l62EmExYr6283PI+I5RCx2s+r79tgaXNckGmVY2rQj66iNwyDaXOJ7fImUGySbfswZtOwcDo0rl6IOpbv+qBe/Vpr1MipzCKWT8+kPlx8KXeq53p5KWxnJ0cndWrUsXjo3DS3ig5Xf9S5rPfRjEYsaJqN2bokX/eXN0aanDlLhDgT8U2MYoxXKtP1JjIxJuuDo3rX876um5QxQYn9HpXV6Cj6QTOXmmGTVU6k5vneq/+rYd/J6TSvvl0b+Gy2yIO48jKJCLc33Zkl7RR6kJ5BtcwxdXv2y8gqes936Bc4VVuD1Z+DRiBOZeOYpoFpGFy7FTRnfWtt7pk671vStg624G8hF+eJ+xfahoIfFScKKXaur3ctZxoGz1xe4pUbN3jp2437ak+xfYj+4nSa1Y2dapZQA4gZ7iDoU8uXeXH/Zb7OK+6+JiVS7bL3oKCjdqu86gPDgnJcx1Q6kUtHWVnbJhmNcDFxgVK5RC4VJVq3qHUiZjM3mayt/9BDTEMmGWUqG2Nnb7+q6NsR6KM7nnp+dBV9rjIDJRFpHXTpFhDRnC0yGAaecnFsk2wywupG54YFkI6kWNtZJ2YHzxvu9ODmaEfQGTpDJ6ACdfPH9Hd8ImaT9EkHHeQc5UA5Xty2EHUsUokIhVyCa6sHD+gJo3J5/MI8u/ulalI/0zCZnWjtafo971pums7XiNgmu3u1nrWn0CcyMW7Vry0RSM/7R7SHnZFV9Km4w7vvnSMaMfjytR81dMuqf7cbk+nRop+dTBC1DH5YSaDVywv58OxFrm28xUJqtrrtoZn72dpvnzjroBb9KNPLJ8zLj1IfcNTOdZNORFirWHTtrvHo3a4MOkq/ItxO7gKnolhsy6SQjXXMTBqEWfOsO1gcQk1vmgZRn5k1LTngOzSMjpa4T1Ier40UcnEmMzF+8PpKw/ZOeCXCJIn3PrzIRpdF70dW0YMryFK5EuFaJ0OvYdR3D+vpVZEW8olqEAbU0hAEeTHjdoylbKOffabLIsL2ACz60SX4vaViDktzmZaBbqDla1vIxauK3u+aS3MZZiqWZCfF4Q3GdipjWwa7ezVl4DfO0gtpK0+pVB7JQfTD4Omlp3rKatoJ/05fzXVbP5U6EuC9r02vDI+qT8ScqtHUjpFW9NDZTTOTTzC9mQAD3q6bO92vj95LR+vlWUkYGWDwC1mH2qLv4S3eK++1/VjXAlu8QJyeatG1hF+7mp1IYBoG76xvN1TioNNZH7swz/dfW+H07PHPqxIE/3fWaPnTe66+i/VUelHlAIPnZ+azbG7tkUp0X8NgXGfdHOtQPdMwmMhEqxkUq9v7vCsviGQpscyDM/eRNacAsA7YdW/GexHiBwxWGUV6CWFI2O5smBPpea4sXuYnTz7e4kPNZ6Lk0zEidu1Znc13HgjtVAdvQNTPGMgkI2SSkVoaaNqX7YV8Osqlu2b8ey4Cfmq85i6ruNo6CDVim+RSkZ5m3YRxYLwTx0LT5GPePPN3fPc3WwT9LjwwP5VkZW2bpbk8s8kZbk0V+cb1xjVb7yvcg20e7LGZhoE62bqOZTgIrukjVqTazfeUazqSZGN3o/oR+Kn7LvDj23mykQzfffULANyZX+Zs7gzfe/VZ94qG0WChdbLAyx1cN+0UhV97evqRU2OnLA6C4ft398FY7xH7xWlMxSe5UawlzR3lQMKj5lgo+kfnHqZULvH6ynXfgTE/+Z6ezbC5vceN1WLH1evrcSzTHRfAHeHPJqOca1LIJ9Lzvd+AD2Ftkr2+bM1K9N6pu8jHcpxMn6juX8qeYm2ncdpmt1THbSl71/Up02aM3+9a7VxOQhv84mCqPxuf72Q2zubWLpRrLha/mXQXZ+5jdXuVF978eusl2lXDEIt+ZDEMAwOj7eo1zS/ifqlMLGIRi1jcXN2i3iPXnKt+cTrVcr6dfW92x+Go4zBbHhHHwDQNMgH8pb7HWxHOZE+3bPes/voXtCbLxufZaRC9VHUF1BTHTD7B1s5+neJx/ytXPwricjko9R9WNwf8FvOVmWp+4jIqU1w9efu9Mo5pMxWfbDqmM+Pqoz8Wir4bzY2g3oK3LIP9utT0tm2yU4l2zaWiDR+Ph2cf4PX1N1tm0Qy8vqG1513f6tmF3OBnmBhw9kS2QSlYlklprzVyuZOx5pg2+6W9avZRqMUknMyc4EbxFtlYmY3iSnXMJkhovdCZ+tkxpzInuXv2ZO0DWieveNQmn4pS3G6dLri8kO0pk6hvmaqPPmDFQ8KxUfR+yrHdqH39Kk0nCilurG5RKpVYL+5SKpUxTYNSqTVkImEnuDh9ofr7sCy5cKuNw5lGaOBGKtc/vFTc4Z21fRr6+JXtE5mYbw/w4dkHeGnlFfLRPP+XNxr2nUwvcu/UXXzZ+Bplc7caUfjJ2wAADFpJREFUeRzmHtiwqB9MjdpWw7vl5fN3LJNTM+6CIe47Xa7NujEMnK6TIoLPox83m/74KPouAS6FXJzrK8WWshHbZH4ywdsrRSjuUiqX3S5/k3JwD2z8Ga1Lhfre03+Jcrm3VavaEWbFcVgRh35PrJCLsbG1C/swlatFJpuG0Xa9gkwkzQPT93J1rTWZmmcwWKZFNlmTvReAd9DAqXHG7DDf3bENzsxnG+JLmg0727TZ3e+8IE+QnDk1H33XoqHiWLXcQmKKs/kzvvsmMzHUiQKL0ymW5lrnK09kYsSjNiemUm2/+82NK2rV0gw4pu2bA7s/wqvoDyv6s+TzATENN1DqoXPTLDQsSh3ghe+0QLnPLK47F3Mszwde8lioYyY5jVX3TKORVvsyYpsNijpT+dBmkhFysSyqw2IiNYK/V2Om54+PRQ/wrtmLTVtcwdqmzSNzDxO3o22VsW0a1W6h51voYtATs11FnxnwAsJh9tEflkWftBOczp5iJlGobvPyDKViTs+9JL/SVVdg096q20joi4vTF9ia2Oad9T/DsU3sppQJfrZBNhkhn4uRMpK8e/4Sb21e73qd3gZjx0vVHytF34lstJ9FlzsL2zRM3nvqyYH76sPsujmsPrFhGNw9qRq2PTL3MK+tvVGdvdHr+ZrxFHyQFNRCcEzDJOHEmagMegf5aJbKJWKOQ3mve3taTC/w2tobpCOtM+iakRWmxpEmYfu9/IPKbd9wnRCrjmFaShHLYTl3umV7ie5jKcW9Yss2T/7nJ+5kc7fIxu5Gw3ZhMPTyPFtTmrVyoXA390ydD2SQ5VJReAfy6UG5YY8Hx8pH34wn/E6q5dyEu4akt3alaVgNjSZqR3n67BUuFO4hbrdfcHyQhFltpBzXqiokpo6sDkGCYdJOmslMjAcWzla3eR/gdCTFlcV3D3BMRqinVSHXx0ZYDWVqCeU6vzVBe925VJTl+Ww1Ad64EHqLfi45zXLuNM9ffYGVrVXXP1hpM0uJ81yeXyIdTbE4oIjXIITZQkxFkjy5+Fh1fOMo8AbRa6kzWpmM5/lb976HhB3nf7z8p5WtjXJJRVLcKt4amgEwLnTq0V5euMTr61c5nVnk6t7rzFkLg722YeDYZqjfQT9Cr+ibqc9Tk7HyR6KQwuy6AUg4R6sYI5bDU6eu4HTJSZR0Gq26Zt/xA4V7ubrxJqfSi0zG8gfOcSR4ND5np9Jzijtx0pEU5yu98EfmLnL9+lrliMG+MzIYO2CUUibwa8B9wDbws1rrHw7i3EYA503Nx+eWjVgO8YjN7m657zD9gzJu1sRREO3D7dKsTGJ2tJqOoVPvQOiN5g+qY9o8ufhYx4XES2X/tZuFYAzDRHk/ENNaP6qUegT4JPDMEK4L1H+5K8EwhsX7736CldUSSzMyL1qoIR/go6NbL3B/QMGKVcbLoB/KYOxl4H8CaK2/Bjw0hGtW8RuYm0rkuWNuEqvfxPUHJOyum+OKyGU49POc9wdk0Y+rjIeh6TLAat3vfaXUYHoSTVkGjwtiOY4mIpch0cdjHpSi9xAf/eC5DdRHM5la644r2RYKwYKfkrm72HxljQfm7qaQajwm8ZY7yDoxkSAXT5Ndj7NtbZJMRH3PH/Sag8Kr37CvOw70+kw9WUwXMqLsDxHvOc9NB58E4cnyJjESxYO/M5mtGCvlKKmIvx4IK8NQ9M8DfxV4tuKj/2a3A7yR9iA8mHsQinC92HjM+dQ5rm68xc6awfX1NTbWd9jc3Ob23mbL+QuFdE/XHATzzgIJJzH064adfmS5tblLqVzixo317oWFvnlk8l1s7G6y9s4Oa7Rb6L1GvSy310tsbmyTj+UP9M6s3d5ic2MbdqzQvXudPlzDUPSfA96jlPoKbqft7w7hmswmZ5hNzlR/ewEVAx/U6RM1ESRJkzAMnjr5BHvljp1MYQDE7XjfMQlzyRnK0/dSqFtoRAjOoSt6rXUJ+LnDvk43PEUfJDxeGC8cy8Fh8KkuhMFhGAYLqblBnAgYPx/9sU6B0AtVRT8iFr0gCMKwGBtFb4miF4SxpzrUftym6h2QsVH03vxZUfSCIIwbY6PovSx4ougFYZzxX3Qo7IyNovfmR4uiFwRh3BgbRZ+rLAc4HT+6POmCIBwt4xoONzZ5V2cS07xr9kHyMUlkJgjjzrhNrxwbRW8YBoWEBFsIwjgzrikuxsZ1IwiCMK6IohcEYewIsq5wmBBFLwjC2JCNuJMypsYsZ87Y+OgFQRBOpOeJ2VEmYxNHXZWhIopeEISxwTRMphOFo67G0BHXjSAIQsgRRS8IghByRNELgiCEHFH0giAIIUcUvSAIQsgRRS8IghByRNELgiCEHGPcQoEFQRDGDbHoBUEQQo4oekEQhJAjil4QBCHkiKIPMUqpLyqlzrXZ94pSKjbsOgn9IbIMB0clR1H0giAIIUcUffj5mFLq5wCUUueUUl884voI/SOyDAdDl6MoekEQhJAzdoq+k48sDCilUkopp25TfaBEqFZGFlmGhzDLchTkOHaKfgz4beCyUsoEpoFvAnOVfRePrFZCP4gsw8GRy3FcV5iaUkr9NyAGTAK/pLX+vFLqL4AvARdwv7rPaK1Xj7Ce/fBJ4FPAFvBbwGeBZ5VSjwNfP8J6HRYiy/AQVlkeuRzHVdHfD3xSa/1FpdRPAB8HPg9kgN/TWv+CUuozwNPA7x9hPXtGa/0V4KGmzQ/7lDs9lAodPiJLkeVIMwpyHAtFr5RKAdta693Kpi8DH1JK/X1cC6Hef/Zi5f/XcC0LYYQQWYYHkeXwGBcffbOP7N8Dv6O1/hngORoHRCTL22gjsgwPIsshMRYWPa0+steATymlrlX+njq6qgk9IrIMDyLLISFpigVBEELOuLhuBEEQxhZR9IIgCCEntD76SiTap4HTQBT4N8B3cH2BZeBbwAe11qVK+TuAz2ut76n8ngU+A0SAN4G/o7XeHO5dCHBwWdad53HgM1rrxaFVXmhgAO/lBPD9SjmAz2mtf3WIt3AsCbNF/7eBm1rrx3Dn3f5H4FeAD1e2GcAzAEqpn8Gdl1s/+PMh4LcrZb8D/KMh1l1o5KCyRCm1CPwijVP2hOFzUFlexJ1Tf6XyT5R8AMKs6D8LfKTu9x7wIG6EHcAfA09V/n4HeKLp+H8G/JfK1K9F4K3Dq6rQhQPJspLj+9eBnz/cagoBOOh7+SBwUSn1JaXUZ5VScwhdCa2i11qva63XlFJp4A+ADwOG1tqbZrQGZCtl/7vWeqPp+DJg4XYRnwSeH1rlhQYOKktcq/ETWus3hlZpwZcByPJ7wEe11k/gRs3+hyFV/VgTWkUP1e76c8B/1lr/LlCq250GVjodr7Xe1VrfBfxD4HcOraJCV/qVpVJqHngM+Ggl7/eEUurYhM+HkQO+l/+7cizA54AHDqWSISO0il4pNQN8AfgXWutPVza/qJS6Uvn7adyQ63bH/5pS6snKzzUaG6MwRA4iS631Va218ny6wC2t9U8fdp0Ffw76XgK/AfzNyt8/STiTuw2c0M66Af4lkAc+opTyfIL/BDfyLgJ8F7fr2I5PAb+ulPpXuEpe/LtHx0FlKYwOB5Xlh4BPK6V+HtgAfvYwKxsWJDJWEAQh5ITWdSMIgiC4iKIXBEEIOaLoBUEQQo4oekEQhJAjil4QBCHkhHl6pSAEQil1GjdR1ncqm+LAV4APaa3bpr5QSj2ntX6y3X5BGBXEohcEl6ta6/u11vcD54BrdJ+bf+XQayUIA0AsekFoQmtdVkp9FHhLKXUB+AXgHmAG+AvgA8AvAyilXtBaX1JKvQ/4JdzsmC8D/0BrffNIbkAQmhCLXhB80FrvAD8A3g/saK0fBe4AcsBf0Vr/40q5S0qpAvBvgb+stX4A+BMqHwJBGAXEoheE9pSBF4EfKaU+iOvSOQukmspdAk4CzymlwM16emuI9RSEjoiiFwQfKnlXFHAG+NfArwK/ibsIhtFU3AL+XGv91yrHxmj9GAjCkSGuG0FoorLYzMeBrwHLwLNa69/ETZ/7JK5iB9hXStnAC8CjSqk7K9s/AnxiuLUWhPaIRS8ILvNKqW9U/rZwXTYfAE4Av6uU+gCwg7sAzVKl3H8F/h/uqkd/D3hWKWUBr+MumScII4FkrxQEQQg54roRBEEIOaLoBUEQQo4oekEQhJAjil4QBCHkiKIXBEEIOaLoBUEQQo4oekEQhJAjil4QBCHk/H/vsjnlNFFLKAAAAABJRU5ErkJggg==\n", "text/plain": [ "<Figure size 432x288 with 1 Axes>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "daily[['Total', 'predicted']].plot(alpha=0.5);" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "It is evident that we have missed some key features, especially during the summer time.\n", "\n", "- Either our features are not complete\n", " - i.e., people decide whether to ride to work based on more than just these\n", "- or there are some nonlinear relationships that we have failed to take into account \n", " - e.g., perhaps people ride less at both high and low temperatures\n", "\n", "Nevertheless, our rough approximation is enough to give us some insights, and we can take a look at the coefficients of the linear model to estimate how much each feature contributes to the daily bicycle count:" ] }, { "cell_type": "code", "execution_count": 74, "metadata": { "ExecuteTime": { "end_time": "2018-05-20T15:58:02.441342Z", "start_time": "2018-05-20T15:58:02.435225Z" }, "slideshow": { "slide_type": "subslide" } }, "outputs": [ { "data": { "text/plain": [ "Mon 504.882756\n", "Tue 610.233936\n", "Wed 592.673642\n", "Thu 482.358115\n", "Fri 177.980345\n", "Sat -1103.301710\n", "Sun -1133.567246\n", "holiday -1187.401381\n", "daylight_hrs 128.851511\n", "PRCP -664.834882\n", "dry day 547.698592\n", "Temp (C) 65.162791\n", "annual 26.942713\n", "dtype: float64" ] }, "execution_count": 74, "metadata": {}, "output_type": "execute_result" } ], "source": [ "params = pd.Series(model.coef_, index=X.columns)\n", "params" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "These numbers are difficult to interpret without some measure of their uncertainty.\n", "We can compute these uncertainties quickly using bootstrap resamplings of the data:" ] }, { "cell_type": "code", "execution_count": 75, "metadata": { "ExecuteTime": { "end_time": "2018-05-20T15:58:23.047893Z", "start_time": "2018-05-20T15:58:20.770355Z" }, "slideshow": { "slide_type": "fragment" } }, "outputs": [], "source": [ "from sklearn.utils import resample\n", "np.random.seed(1)\n", "err = np.std([model.fit(*resample(X, y)).coef_\n", " for i in range(1000)], 0)" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "With these errors estimated, let's again look at the results:" ] }, { "cell_type": "code", "execution_count": 76, "metadata": { "ExecuteTime": { "end_time": "2018-05-20T15:58:37.008473Z", "start_time": "2018-05-20T15:58:37.001643Z" }, "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " effect error\n", "Mon 505.0 86.0\n", "Tue 610.0 83.0\n", "Wed 593.0 83.0\n", "Thu 482.0 85.0\n", "Fri 178.0 81.0\n", "Sat -1103.0 80.0\n", "Sun -1134.0 83.0\n", "holiday -1187.0 163.0\n", "daylight_hrs 129.0 9.0\n", "PRCP -665.0 62.0\n", "dry day 548.0 33.0\n", "Temp (C) 65.0 4.0\n", "annual 27.0 18.0\n" ] } ], "source": [ "print(pd.DataFrame({'effect': params.round(0),\n", " 'error': err.round(0)}))" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "- We first see that there is a relatively stable trend in the weekly baseline: \n", " - there are many more riders on weekdays than on weekends and holidays.\n", "- We see that for each additional hour of daylight, 129 ± 9 more people choose to ride; \n", "- a temperature increase of one degree Celsius encourages 65 ± 4 people to grab their bicycle; \n", "- a dry day means an average of 548 ± 33 more riders, and each inch of precipitation means 665 ± 62 more people leave their bike at home.\n", "\n", "Once all these effects are accounted for, we see a modest increase of 27 ± 18 new daily riders each year.\n" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "- Our model is almost certainly missing some relevant information. \n", " - For example, nonlinear effects \n", " - such as effects of precipitation *and* cold temperature \n", " - nonlinear trends within each variable \n", " - such as disinclination to ride at very cold and very hot temperatures\n", "- Additionally, we have thrown away some of the finer-grained information\n", " - such as the difference between a rainy morning and a rainy afternoon, \n", "- and we have ignored correlations between days\n", " - such as the possible effect of a rainy Tuesday on Wednesday's numbers, \n", " - or the effect of an unexpected sunny day after a streak of rainy days.\n", " \n", "These are all potentially interesting effects, and you now have the tools to begin exploring them if you wish!" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "<!--NAVIGATION-->\n", "< [In Depth: Naive Bayes Classification](05.05-Naive-Bayes.ipynb) | [Contents](Index.ipynb) | [In-Depth: Support Vector Machines](05.07-Support-Vector-Machines.ipynb) >" ] } ], "metadata": { "anaconda-cloud": {}, "celltoolbar": "Slideshow", "kernelspec": { "display_name": "Python [default]", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.4" }, "latex_envs": { "LaTeX_envs_menu_present": true, "autoclose": false, "autocomplete": true, "bibliofile": "biblio.bib", "cite_by": "apalike", "current_citInitial": 1, "eqLabelWithNumbers": true, "eqNumInitial": 1, "hotkeys": { "equation": "Ctrl-E", "itemize": "Ctrl-I" }, "labels_anchors": false, "latex_user_defs": false, "report_style_numbering": false, "user_envs_cfg": false }, "toc": { "base_numbering": 1, "nav_menu": {}, "number_sections": false, "sideBar": false, "skip_h1_title": false, "title_cell": "Table of Contents", "title_sidebar": "Contents", "toc_cell": false, "toc_position": { "height": "268px", "left": "1058px", "top": "113px", "width": "180px" }, "toc_section_display": false, "toc_window_display": true } }, "nbformat": 4, "nbformat_minor": 1 }
mit
ACM-USAL/seminario-python
codigo/Notebooks/Python_Biotec - 2_Bio.ipynb
1
2700567
null
mit
eblur/newdust
examples/giant_grains.ipynb
1
6978
{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", "\n", "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from newdust.graindist import *\n", "from newdust import *" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "A0 = 10.0\n", "MD = 1.e22 * constants.m_p * 0.009 # g cm^-2\n", "\n", "SIL = composition.CmSilicate()\n", "GRA_para = composition.CmGraphite(orient='para')\n", "GRA_perp = composition.CmGraphite(orient='perp')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "EVALS = np.logspace(-1,np.log10(20.),100)\n", "THVALS = np.logspace(0.0,2.0,5)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "plt.plot(EVALS, SIL.ip(EVALS, unit='kev'), 'g', label='Silicate')\n", "plt.plot(EVALS, GRA_para.ip(EVALS, unit='kev'), 'b--', label='Graphite (parallel)')\n", "plt.plot(EVALS, GRA_perp.ip(EVALS, unit='kev'), 'b:', label='Graphite (perpendicular)')\n", "plt.loglog()\n", "plt.xlabel(\"Energy (keV)\", size=14)\n", "plt.ylabel(\"Imaginary part\", size=14)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "plt.plot(EVALS, 1.0 - SIL.rp(EVALS, unit='kev'), 'g', label='Silicate')\n", "plt.plot(EVALS, 1.0 - GRA_para.rp(EVALS, unit='kev'), 'b--', label='Graphite (parallel)')\n", "plt.plot(EVALS, 1.0 - GRA_perp.rp(EVALS, unit='kev'), 'b:', label='Graphite (perpendicular)')\n", "plt.loglog()\n", "plt.xlabel(\"Energy (keV)\", size=14)\n", "plt.ylabel(\"1 - Real part\", size=14)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "No real difference between grain sizes for the parallel vs perpendicular graphite." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "ABIG = 1.0\n", "big_sil = SingleGrainPop('Grain', 'Silicate', 'Mie', amax=ABIG, md=MD)\n", "big_gra = SingleGrainPop('Grain', 'Graphite', 'Mie', amax=ABIG, md=MD)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "%%time\n", "big_sil.calculate_ext(EVALS, unit='kev', theta=THVALS)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "%%time\n", "big_gra.calculate_ext(EVALS, unit='kev', theta=THVALS)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "ax = plt.subplot(111)\n", "big_sil.plot_ext(ax, 'all')\n", "plt.loglog()\n", "ax.set_ylim(0.01, 2)\n", "plt.title('Silicate')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "ax = plt.subplot(111)\n", "big_gra.plot_ext(ax, 'all')\n", "plt.loglog()\n", "ax.set_ylim(0.01, 2)\n", "plt.title('Graphite')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "inds = [0, 50, -10]\n", "ms = dict(zip(inds,['d','o','s']))\n", "for i in inds:\n", " plt.plot(THVALS, big_sil.int_diff[i], 'g', ls='',\n", " marker=ms[i], markersize=10, label='%.2f keV' % EVALS[i])\n", " plt.plot(THVALS, big_gra.int_diff[i], 'b', ls='', marker=ms[i], markersize=10)\n", "plt.loglog()\n", "plt.legend(loc='lower left', frameon=False)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "giant_sil = SingleGrainPop('Grain', 'Silicate', 'Mie', amax=A0, md=MD)\n", "giant_gra = SingleGrainPop('Grain', 'Graphite', 'Mie', amax=A0, md=MD)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "%%time\n", "giant_sil.calculate_ext(EVALS, unit='kev', theta=THVALS)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "%%time\n", "giant_gra.calculate_ext(EVALS, unit='kev', theta=THVALS)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "ax = plt.subplot(111)\n", "giant_sil.plot_ext(ax, 'all')\n", "plt.loglog()\n", "ax.set_ylim(0.01, 2)\n", "plt.title('Silicate')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "ax = plt.subplot(111)\n", "giant_gra.plot_ext(ax, 'all')\n", "plt.loglog()\n", "ax.set_ylim(0.01, 2)\n", "plt.title('Graphite')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "inds = [0, 50, -10]\n", "ms = dict(zip(inds,['d','o','s']))\n", "for i in inds:\n", " plt.plot(THVALS, giant_sil.int_diff[i], 'g', ls='',\n", " marker=ms[i], markersize=10, label='%.2f keV' % EVALS[i])\n", " plt.plot(THVALS, giant_gra.int_diff[i], 'b', ls='', marker=ms[i], markersize=10)\n", "plt.loglog()\n", "plt.legend(loc='lower left', frameon=False)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Make a giant comparison plot" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "ax = plt.subplot(111)\n", "big_gra.plot_ext(ax, 'abs', color='b', lw=1, label='1 um gra')\n", "big_sil.plot_ext(ax, 'abs', color='g', lw=1, label='1 um sil')\n", "giant_gra.plot_ext(ax, 'abs', color='b', lw=2, label='10 um gra')\n", "giant_sil.plot_ext(ax, 'abs', color='g', lw=2, label='10 um sil')\n", "plt.loglog()\n", "plt.xlim(0.1, 20)\n", "plt.ylim(0.001, 2)\n", "plt.title(\"Absorption\")\n", "plt.legend(loc='lower left', frameon=False)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Starts to flatten out around $E_{kev} < \\sqrt{a_{um}}$" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.2" } }, "nbformat": 4, "nbformat_minor": 1 }
bsd-2-clause
thsant/sklearn-intro
02._Regressao.ipynb
1
294645
{ "metadata": { "celltoolbar": "Slideshow", "name": "", "signature": "sha256:df43c9ace0a541daf492aa31e0d23f7f3d875bfbbe45feaf34938359459c55ac" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "# Regress\u00e3o" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "## Exemplo - O problema dos pre\u00e7os de im\u00f3veis em Boston" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from sklearn.datasets import load_boston\n", "boston = load_boston()\n", "print boston.DESCR" ], "language": "python", "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Boston House Prices dataset\n", "\n", "Notes\n", "------\n", "Data Set Characteristics: \n", "\n", " :Number of Instances: 506 \n", "\n", " :Number of Attributes: 13 numeric/categorical predictive\n", " \n", " :Median Value (attribute 14) is usually the target\n", "\n", " :Attribute Information (in order):\n", " - CRIM per capita crime rate by town\n", " - ZN proportion of residential land zoned for lots over 25,000 sq.ft.\n", " - INDUS proportion of non-retail business acres per town\n", " - CHAS Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)\n", " - NOX nitric oxides concentration (parts per 10 million)\n", " - RM average number of rooms per dwelling\n", " - AGE proportion of owner-occupied units built prior to 1940\n", " - DIS weighted distances to five Boston employment centres\n", " - RAD index of accessibility to radial highways\n", " - TAX full-value property-tax rate per $10,000\n", " - PTRATIO pupil-teacher ratio by town\n", " - B 1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town\n", " - LSTAT % lower status of the population\n", " - MEDV Median value of owner-occupied homes in $1000's\n", "\n", " :Missing Attribute Values: None\n", "\n", " :Creator: Harrison, D. and Rubinfeld, D.L.\n", "\n", "This is a copy of UCI ML housing dataset.\n", "http://archive.ics.uci.edu/ml/datasets/Housing\n", "\n", "\n", "This dataset was taken from the StatLib library which is maintained at Carnegie Mellon University.\n", "\n", "The Boston house-price data of Harrison, D. and Rubinfeld, D.L. 'Hedonic\n", "prices and the demand for clean air', J. Environ. Economics & Management,\n", "vol.5, 81-102, 1978. Used in Belsley, Kuh & Welsch, 'Regression diagnostics\n", "...', Wiley, 1980. N.B. Various transformations are used in the table on\n", "pages 244-261 of the latter.\n", "\n", "The Boston house-price data has been used in many machine learning papers that address regression\n", "problems. \n", " \n", "**References**\n", "\n", " - Belsley, Kuh & Welsch, 'Regression diagnostics: Identifying Influential Data and Sources of Collinearity', Wiley, 1980. 244-261.\n", " - Quinlan,R. (1993). Combining Instance-Based and Model-Based Learning. In Proceedings on the Tenth International Conference of Machine Learning, 236-243, University of Massachusetts, Amherst. Morgan Kaufmann.\n", " - many more! (see http://archive.ics.uci.edu/ml/datasets/Housing)\n", "\n" ] } ], "prompt_number": 1 }, { "cell_type": "code", "collapsed": false, "input": [ "boston.data.shape" ], "language": "python", "metadata": { "slideshow": { "slide_type": "subslide" } }, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 2, "text": [ "(506, 13)" ] } ], "prompt_number": 2 }, { "cell_type": "code", "collapsed": false, "input": [ "num_samples = boston.data.shape[0]\n", "num_samples" ], "language": "python", "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 3, "text": [ "506" ] } ], "prompt_number": 3 }, { "cell_type": "code", "collapsed": false, "input": [ "boston.data[0]" ], "language": "python", "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 4, "text": [ "array([ 6.32000000e-03, 1.80000000e+01, 2.31000000e+00,\n", " 0.00000000e+00, 5.38000000e-01, 6.57500000e+00,\n", " 6.52000000e+01, 4.09000000e+00, 1.00000000e+00,\n", " 2.96000000e+02, 1.53000000e+01, 3.96900000e+02,\n", " 4.98000000e+00])" ] } ], "prompt_number": 4 }, { "cell_type": "code", "collapsed": false, "input": [ "boston.target.shape" ], "language": "python", "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 5, "text": [ "(506,)" ] } ], "prompt_number": 5 }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "## Dist\u00e2ncia aos centros de emprego vs. pre\u00e7o" ] }, { "cell_type": "code", "collapsed": false, "input": [ "figsize(12,8)" ], "language": "python", "metadata": { "slideshow": { "slide_type": "skip" } }, "outputs": [], "prompt_number": 6 }, { "cell_type": "code", "collapsed": false, "input": [ "scatter(boston.data[:,5], boston.target)\n", "xlabel(u'RM (n\u00famero m\u00e9dio de c\u00f4modos)')\n", "ylabel(u'Valor m\u00e9dio (em US$ 1.000)')" ], "language": "python", "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 7, "text": [ "<matplotlib.text.Text at 0x7f8a59970a90>" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAtAAAAHvCAYAAAB9k+h5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4k9X/xvF30qZN08GeIhsEEWRvZIggKgoiAg4QxIWI\n+kVUcIGCoiCiIg5+TlwMQRAQUKAqosgoyCogS2bZpW3Skeb8/khAhGIb2jQF7td15bI5ecb9PLbl\nc52e5xwQEREREREREREREREREREREREREREREREREREREREREREREREREREpUAoD04FNwEagCVAU\n+AHYAiz0bSMiIiIiIsCnQD/f16FAIeA14Elf21PA6CDkEhEREREpcAoB27NojwdK+b4u7XsvIiIi\nInLJqwssBz4GVgOTgEjg2GnbWM54LyIiIiJSYFkDfPxQoD4w0fffFODpM7YxvpeIiIiISIEXGuDj\n7/G9VvjeTweGAgfwDt04AJQBDp65Y5UqVcy2bdsCHE9EREREhG1A1ZxuHOge6APAbqC67317YAPw\nHdDH19YH+PbMHbdt24YxRq8gvV544YWgZ7iUX7r/uveX6kv3X/f/Un3p3gf3BVTxp8ANdA80wCPA\nF0AY3uq+LxACTAXuBXYCt+dDDhERERGRXMuPAnot0CiL9vb5cG4RERERkTwV6CEccoFq06ZNsCNc\n0nT/g0f3Prh0/4NL9z94dO8vLJZgB/gPxjcmRUREREQkYCwWC/hRF6sHWkRERETEDyqgRURERET8\noAJaRERERMQPKqBFRERERPygAlpERERExA8qoEVERERE/KACWkRERETEDyqgRURERET8oAJaRERE\nRMQPKqBFRERERPygAlpERERExA8qoEVERERE/KACWkRERETEDyqgRURERET8oAJaRERERMQPKqBF\nRERERPygAlpERERExA8qoEVERERE/KACWkRERETEDyqgRURERET8oAJaRERERMQPKqBFRERERPyg\nAlpERERExA8qoEVERERE/KACWkRERETEDyqgRURERET8oAJaRERERMQPKqBFRERERPygAlpERERE\nxA8qoEVERERE/KACWkRERETEDyqgRURERET8oAJaRERERMQPKqBFRERERPygAlpERERExA8qoEVE\nRERE/KACWkRERETEDyqgRURERET8oAJaRERERMQPKqBFRERERPygAlpERERExA8qoEVERERE/KAC\nWkRERETEDyqgRURERET8oAJaRERERMQPKqBFRERERPygAlpERERExA8qoEVERERE/KACWkRERETE\nDyqgRURERET8oAJaRERERMQPKqBFRERERPygAlpERERExA8qoEVERERE/KACWkRERETEDyqgRURE\nRET8oAJaRERERMQPKqBFRERERPygAlpERERExA8qoEVERERE/KACWkRERETEDyqgRURERET8oAJa\nRERERMQPKqBFRERERPwQmg/n2AmcADKBDKAxUBSYAlTwfX47cDwfsoiIiIiI5IolH86xA2gAHD2t\n7TXgsO+/TwFFgKfP2M8YY/IhnkhwrV+/nl9//ZWSJUty8803ExISEuxIFwW3283s2bM5dOgQLVu2\npFatWvmeYc+ePSxYsAC73c7NN99MdHR0vmfw12+//cbatWupXLky1113HRZLfvwz4WWMYeHChezY\nsYO6devStGnTfDt3bqxZs4bly5dTpkwZbrrpJqzW/Pnj7ooVK1i1ahXly5fHGMPu3btp2LAhDRs2\nZPny5cTFxVGxYkU6duxIWloaEydOJC4ujiZNmvDAAw9gs9myPO5ff/3FkiVLiImJoUuXLoSHh+d5\n9oSEBObNm0dISAidO3emSJEipz4L9vfB7t27WbhwIU6nE6vVSuHChS+Yn185f77fdfn3Cy8HdgDF\nzmiLB0r5vi7te38mI3KxmzZtuomIKGEiIu41UVGNTZs2Nxq32x3sWBe8jIwM07JlRxMV1dQ4HP2M\nw1HCzJw5M18zrFmzxkRHlzQOx50mMvIGU6FCTXPkyJF8zeCv0aNfNw7H5SYior+JjKxh7r13YL6d\n2+PxmD59HjSRkVeaiIj+xuEoZ8aOHZ9v5z9fn3462URElPL9DNc3nTp1M5mZmQE/71tvTTQOR1lj\nt99rQkJKmdDQ6iYi4l7jcJQ13br1NA5HOd//x1qmV69+pnz5mgYaG+hpIMrUrFnPpKWlnXXcxYsX\nG4ejuHE47jFRUW1MnTrNjNPpzNPsW7ZsMYULlzEORw8TGdnFlCpVyezbt88YE/zvg7i4OBMdXdLY\n7b0MXGMslhLG4bjOlC9fo8D//EruAAWu13Y7EAesBO7ztR077XPLGe9PCva9FAm4QoVKGfjDgDGQ\nYaKimphvvvkm2LEueFOmTDFRUS0MuH33dpkpWvSyfM3QvHlHAx/4zm+MzdbfDB36XL5m8MexY8dM\nWFi0gd2+zCeMw1HOrF27Nl/Ov3r1auNwlDeQ5Dv/3yYsLMokJibmy/nPh8fjMXZ7jIH1vszpJirq\navP9998H9LxOp9OEhUUa2G5gqYFqBly+DGsNhBnY6XufbMLCihroZMDja5thLJZS5pNPPjnr2JUr\nX21gtm87j4mIuMm88847eZr/ppt6GKv1tVM/G6GhT5j77nvEGGPMqlWrjMNRwUCy7/Nd+fp90KxZ\nBwOTTmWDew08b2y2+8zTTz+bLxkkOPCzgM6PMdAtgP1ACeAHzu5tPmfo4cOHn/q6TZs2tGnTJiAB\nRYLB4/GQlHQYqOtrCSUzsw4JCQnBjHVRSEhIICOjDnByOExdEhMPYozJtyEJ+/cnAPVOvc/IqMee\nPWvz5dzn48iRI9hsRUlPL+dricZmq5Zv348JCQnYbNWBKF/L5dhshTl69CgxMTH5ksFfqampZGSk\nAlf6WmzAVQG/Z8ePH8dqjQAq4e2fqgnYfZ8WARx4HzECiPS1NeGfv07Xw5iMLHMePnz6962F1NR6\nHDiQt9ezd28CHs8/Pxtudz327JkFnP59EOn7tDyhoYXy7fvAe631TmupB6wjI6Meu3fHBfz8kn9i\nY2OJjY0NdowcewEYjLeILu1rK4OGcMglqmHDNiYkZKiBDAOrTEREyXzr8buYrV692kRElDIQZyDd\nhIYOMU2bts/XDA8++Jix27v4elR3G4ejlvniiy/zNYM/0tPTTalSlXy95m4D80xUVAmTkJCQL+ff\nv3+/iYoqYWC+AbexWN41ZcpUMRkZGfly/vNVq1ZjExLyku9n+DcTEVHcxMfHB/ScmZmZpnz5GsZi\nedPXC13EwBLf/7exJiQkxlgsE3zvF5rw8ELGai1tYKuvp7q3sVqLmmXLlp117M6de5qwsP4GUg1s\nNg5HebNo0aI8zT9s2HATEdHewDEDCcbhaGTefnuiMSb43wcPPPCosdu7+nrA/zZwpYEJxuGoZT7/\n/It8ySDBQQEbwuEATo66jwR+BTrwz8OD4H14cHQW+wb7XooE3L59+0yDBq2N1RpioqOLmylTpgY7\n0kXj88+/NFFRxYzVGmoaNWprDhw4kK/ndzqdpmvXO01ISJgJC4s0zz//kvF4PPmawV8bNmwwlSvX\nMRaL1ZQsWdH8/PPP+Xr+2NhYU6JEBWOxWE3VqlebTZs25ev5z8fff/9t6tRpbiyWEFOoUCkza9as\nfDnvli1bTPXq9Y3FYjXR0cVNdHRJY7FYzRVXNDALFy401arVNRaL1RQvfrlZvHixGTnyFWOx2A1Y\njdVayLzzzrtZHvfYsWOmXbvOJiTEZiIiCpkJE7LeLjfS09PN3Xffb0JDw43NFmEeffTJf/1sLFmy\nJGjfB6f/3Fqt4cZiCTc2m8M899yLBf7nV3IHPwvoQP8tsxIw0/d1KPAF8AreaeymAuU59zR2vusR\nufhlZmZq9o0ACfa9zczMxGq15utsFrlVEO7ZhfbzEKzMp5/3zAxnvjfGkJGRgc1my/b7MT++bz0e\nD8A5Zy0J5vfByev3eDwX3M+vnB9/Z+EoyN8RKqBFREREJOD8LaC1EqGIiIiIiB/yYxYOEREREb/9\n8MMP/PHHH5QvX55evXoRGqqyRQoGDeEQERGRAufll8cwatR7pKV1x27/lWbNirFgwYx8W+lRLi0a\nAy0iInKJ2r17N9u2baNq1aqUK1cu+x0KqNTUVGJiipKRsRW4DMggKqo+s2e/Rdu2bYMdTy5CGgMt\nIiJyCZo06SOuuKIeXbo8R/Xqdfnss8+DHem8JSUlYbWGA2V9LTas1kocP37mhF0iwaECWkRE5AK3\nb98+Bg16ApfrNxITf8Hl+oUHHxzE4cOHgx2N5cuX06ZNZ+rXb8vrr79JTv66XLx4cSpXrkpIyPPA\nYWAGHs/vNGnSJOB5RXJCo/FFREQucLt27SI8vCqpqdV8LTWx2S7n77//pnjx4kHLtWHDBtq1uwmn\nczRwOZs3DyUpKZnhw5/5z/0sFgs//jiL7t37EhdXldKly/PFF7MoW7bsf+4nkl80BlpEROQCd+jQ\nISpUqIHL9QNQH1hOZOSN7N69lSJFigQt13PPvcCoUWkYc3LB4T8pVaobBw5sDVomkaxoDLSIiMgl\npkSJEnz22SQiItoTHV0Dh+MGvvrqk6AWzwA2WyhWa+ppLS5NRScXBfVAi4iIXCROnDjB7t27KV++\nPNHR0cGOw86dO7n66qYkJw/A4ymPwzGSMWOGMGDAA8GOJvIvmsZORERECoytW7cycuTrJCYmc8cd\nt3D77d2DHUnkLCqgRURERET8oDHQIiIiIiIBpAJaRERERMQPKqBFRERERPygAlpERERExA8qoEVE\nRERE/KACWkREpADYs2cP1157C6VLV6Nt287s2rUr2JFE5Bw0jZ2IiEiQpaenU716Pfbs6U5mZk9C\nQr6hTJnP2Lp1LXa7PdjxRC56msZORETkAhMfH8/Rox4yM4cDNcjMfIbExHDWr18f7GgikgUV0CIi\nIkHmcDhwu48DLl9LKpmZx4iMjAxmLBE5BxXQIiIiQValShU6dWqPw9EBGIvDcT3t2jWnRo0awY4m\nIlkIDXYAERGRS5Hb7eb1199k6dJV1KhRkf/7v7eYPn06a9ZspE6dXvTv3//kuEwRKWAK8k+mHiIU\nEZGL1u2392Hu3L04nX0ID/+RKlU2ERe3lLCwsGBHE7nk+PsQoQpoERGRfHbkyBHKlq1Mevp+wAEY\noqMbMWvWGNq2bRvseCKXHM3CISIiUsBlZGRgsYQCJ3ubLVgsEbjd7mDGEpEcUgEtIiKSz0qVKkWj\nRo0ID78H+ImQkOeIijpAs2bN/D7WgQMH+PPPP0lJScnznCKSNRXQIiIi+cxisfD999Pp06cYV131\nDDffvJM//oglKirKr+OMHPkaFSvWpGXLXpQrV42VK1cGKLGInE5joEVERC5Ay5cvp12723A6lwNl\ngemUKvUkBw5sD3Y0kQuOxkCLiIhcAjZu3IjF0hZv8QzQjcOH9+J0OoMZS+SSoAJaRETkAlS9enXg\nF+Cwr+V7ChcuSURERBBTiVwaVECLiIhcgFq0aMHDD9+N3V6TQoWaEB3dl2+//arALr4yd+5c2rXr\nwrXXdmX+/PnBjiOSKwXzp8xLY6BFRESysX37dg4cOEDNmjUpUqRIsONkad68edx2W39crjGAISJi\nCDNnfkLHjh2DHU0E0EIqIiIiUsBce21XFi/uBtzla/mEjh3nMn/+tGDGEjlFDxGKiIhIgeItTjyn\ntXjOtanIBSE02AFERETk4vbkkw+ybFlvXK5MwENExDCGDPky2LFEzpuGcIiIiEjA/fDDD4wbNwmL\nxcLgwfdz7bXXBjuSyCkaAy0iIhJAW7ZsYdCgYezde4AOHa7h5ZdfIDw8PNixRCQXVECLiIgEyMGD\nB6lRox6JiY/j8TQiImIMN91UjKlTPw1apj///JP9+/dTp04dypQpE7QcIhcyFdAiIiIBMnnyZB56\naBYpKdN9LSmEhBTF5UrGZrPle54BA/7Hp59OxWargdu9lm+//Yr27dvnew6RC52/BbQeIhQREcmh\n0NBQLBbXaS1HAbBa839Sq59++onPPvsOp3MDUAhYQvfud3D06L4Cu5iKyMVC09iJiIjk0I033kjh\nwn8RGvoA0ACojDEwYsTL+Z5l+/btQDO8xTNAG06cOILL5fqPvUQkL6iAFhERyaGYmBhWr15KhQp/\nYLFcCTjxeHby+utf8c033+RrlquvvhpjfgR2+lomU7ZsZRwOR77mELkUqYAWERHxQ4kSJUhOTsaY\nZwAbUAansy9LlvyKMYajR4+SmZkZ8Bz169fnlVeeJSysNpGR5SlR4nnmzdPKfiL5QQW0iIiIn8qW\nLQv87ntnsNuXY7eHcPnlV1CmTCWio4sxdWrgi9lBgwZw6NBe/vwzlr17t1K7du2An1NENAuHiIiI\n3+Li4mjd+nqgFcYcoFKlTA4fPsT+/U8D/YG1OBzXsWbNr1SrVi3IaUUkO/7OwqEeaBERET/Vq1eP\n+Pg43nvvVj7/fAjz53/DkSOH8RbPAFcTEtKKuLi4YMYsMOLi4mjUqB3lyl1J794PkJycHOxIIrmi\nHmgREZFccrvdREcXIzX1Z+BqIInIyHosXPgZzZs3D3a8oNq7dy81a9YnKWk00JDw8NG0bu1iwYIZ\nwY4mcop6oEVERPJZaGgoH330AQ7HdURH30ZkZD169LieZs2aBTta0C1atAhj2gJ9gdqkpX3EokVz\nSU9PD3Y0kfOmhVRERETyQK9ePWjQoB5xcXGUK/c4zZs3z3JBkxMnTpCYmEjZsmUJCQkJQtL85Z1W\n7yBg8HbwHcFisRIaqhJELlwawiEiIpJPRox4mVGjXiY0NJpSpYoRGzuXChUqBDtWQLlcLurWbcGu\nXTVJS2tIZOT/MXhwL0aMeDbY0URO8XcIhwpoERGRfPDDDz/QtetDpKQsBUphtY6mXr0FrFwZG+xo\nAZeUlMRbb01g1659XHfdNXTv3j3YkUT+RQW0iIhIAfTqq6/y7LOHcLvH+lqOEx5+OampSUHNJSJ6\niFBERKRAqlixIuHhvwBpvpYfKFu2UjAjich5UgEtIiKSD7p370779lWIjLyKmJgOREcP5Ouv/y/Y\nsYLOGMPkyV/QufMd9Os3gB07dgQ7kki2NIRDREQknxhjWL58OUePHqVhw4aULFky2JGCbsyYNxg+\n/AOczqexWrcRE/N/bNiw0rdcukj+0BhoERERuWAUL16BI0fmAlcBEBZ2Hy+/XIPBgwcHN5hcUjQG\nWkRECqzExEQGDRpC+/a38uyzI0hLS8t+J7moZWa6Afup9x5PBG63O3iBRHJAPdAiIpIv0tPTqV+/\nFVu3XkV6+vVEREymVasQ5s+fkeWCI3JpGDLkGSZOXIzT+RLwF5GRz7FmzW9UrVo12NHkEuJvD7SW\nARIRkXyxYsUK/v47jfT0/wMsuFy38PPPl7F3717KlSsX7HgSJK+++hJFihRm2rSRFC1amLFjF6p4\nlgJPBbSIiOQLj8fDv//ZsQJWX7tcqqxWK8OGDWHYsCHBjiKSYxoDLSIi+aJRo0aUKJGOzfY4sAC7\nvTcNGtTl8ssvD3Y0ERG/qIAWEZF8Ybfb+f33RfTs6aJhwzHce28ZFizQ+GcRufAU5N9aeohQRERE\nRAJO09iJiIiIiARQfhXQIUAc8J3vfVHgB2ALsBAonE85RERERERyJb8K6EeBjcDJMRlP4y2gqwOL\nfO9FRERERAq8/CigywE3AN6JP71uBj71ff0p0CUfcoiIiIiI5Fp+zAP9BjAEiDmtrRSQ4Ps6wfde\nREREzmH37t189tlkMjIy6N79NmrVqhXsSCKXrEAX0DcBB/GOf25zjm0M/wztEBERkTPs2LGDevWa\nk5JyKx5PFGPGtGHRou9o2rRpsKOJXJICXUA3xztc4wbAjrcXejLeXufSwAGgDN4i+yzDhw8/9XWb\nNm1o06ZNQMOKiIgURK+8Mo6kpP54PC8B4HTWZMiQF/nll3lBTiZyYYqNjSU2Nva898/PeaBbA08A\nnYHXgCPAq3gfICzM2Q8Sah5oERERoFu3PsyY0Qro72tZQu3az/Pnn78EM5bIRaOgzwN9siIeDVyH\ndxq7dr73IiIikoVevW7G4XgFWAFswuEYSo8enYMdS+SSpZUIRURELgATJ77PyJHjyMhIp3//3owa\n9QJWq9ZDE8kL/vZAq4AWERERkUuavwW0Pw8R1gQqAh5gFxDvTzARERERkYtBdgV0JeBxvLNo7AX2\n4a3Oy+BdIGUO3nmedwYuooiIiARDRkYGixYtwul00rJlS0qWLBnsSCIFQnZd1VOBSUAskHHGZzag\nLd5Hgm/P82QawiEiIhI0LpeLli07smWLC4ulFFbrKn75ZSG1a9cOdjSRPKcx0CIiIpJrr78+jmef\n/ZnU1BmAFYvlAxo0+JoVKxYHO5pIngvEGOjCwPXAZb73e4AFwHF/w4mIiMiFYfv23aSmtuTkjLfG\ntGLPnrHBDSVSQGQ3/01vYBXeZbgjfK92wGqgT0CTiYiISNC0atUEh+Mz4BCQSVjYmzRr1jjYsUQK\nhOy6qrcAjTm7t7kI8AdQLRChfDSEQ0REJEiMMTz55LOMHz8OiyWU+vUb8/330ylSpEiwo4nkubwe\nA32uArow3uWQVECLiEhQbd68mWXLllGiRAk6depESEhIsCNdVFwuF2lpaRQuXDjYUUQCJq/HQI/C\nO4RjId6xzwCXAx2Al84jn4iISJ757rvv6NGjH1br9VgsG2nSZBILFsxQEZ2HIiIiiIiICHYMkQIl\nJ5V2UaAjUNb3fi/egvpooEL5qAdaRET+U7Fi5Th6dArQAnATFdWSTz4ZQrdu3YId7YJ2/PhxEhIS\nqFChAna7PdhxRALO3x7o7B4iBG+h/BXwie/1NYEvnkVERP6TMYbjxw8ADX0toWRm1mP//v3BjHXB\ne++9SZQuXYGGDW+kTJnK/PHHH8GOJFLgZFdAV8BbMB8Clvteh3xtFQOaTERE5D9YLBbq1WtJSMhI\nwANswGL5lmbNmgU72gVr48aNDB78HGlpq0lO/ovjxyfSqdOteDyeYEcTKVCyK6CnADPxLt1d1fcq\nA3yLt4gWERE5bx6Ph61bt/LXX3/h77A9YwydOrUB3gaiCQlpyoQJo2nQoEEgol4SNmzYQEhIc6CK\nr6ULKSlOjhw5EsxYIgVOdgV0MbxFtPu0Njfe4rlYoEKJiMjFLykpiaZNr6Vu3WupU6c1rVvfgMvl\nyvH+kyd/wbhxU8jMXAqsJTy8FgcOHApc4EtAlSpVyMxcgfePzQDLCA21ULRo0WDGEilwsiugVwMT\ngSZ4HyIsCzQF3gXiAhtNREQuRps3b6Znz37UrNmM1avTcDq343LtYsWKSEaMeCXHx5k6dS5O51Dg\nKqAqTudLTJs2N2C5LwX169fn0Uf7ExFRm0KF2hAZeQvTpn2uWU1EzpDdNHa9gXuBEfyzlPdeYDbw\nYQBziYjIRWjXrl00btyapKTHMKYjMBwYDzxBampP/vjj8xwfq0SJwlit2/lneO42ihYtlOeZLzUv\nv/wCffr0ZM+ePdSqVYvSpUsHO5JIgZPj6TqCQNPYiYhcZEaPHs3zz+8hI2OCr2Ud0BnYTnh4Xx58\nsDTjx7+ao2Pt2LGD+vVb4HR2xuOxEx7+Jb/8spB69eoFKr6IXKTyeiEVgOuBLvzTA70HmAXM9zec\niIhc2jwegzGnDwcIBY4RFVWLKlWK8tJLE86161kqVarE+vUr+PLLL8nMzKRbt2VUqxbIBXJFRLyy\nq7TfxLtc92d4h24AlAPuBv4CBgUumnqgRUQuNtu2baNu3WakpDyDMZVxOF6gV68mPPjgvdStW5fQ\n0Jz062QtPT2ddevWcfDgQZ5+ehQbN66kdOmKfP31h7Ro0SIPr0JELjb+9kBnt+FWvAV0VvttxTut\nXaCogBYRuQitW7eOoUNHcfRoIj163MSgQQNO/uN13hISEmjRogMJCW5SUvZgzFBgILCYqKj+bN36\np8byisg55fVKhKlA4yzaGwM5n2tIROQiNWfOHFq37kyrVjcxe/bsYMe5INSuXZs5c75m2bLvefTR\nh3NVPE+dOo2WLW+kVq0W7NzZnuTkBRhjB54GooCbCQlpwIoVK/IqvohItpV2A7xT1kXjHfsM3iEc\nJ4ABwKrARVMPtIgUbN9//z3dut2LyzUOsOBwDObrr9+lc+fOwY52SZgyZSr9+g3B6XwdeBb4GKgN\nlAY243105xcslpuAZCpVuopZs77gqquuOutYx48f588//6RYsWLUqlUrH69CRAqCvB7CcVIZ/j2N\n3X7/Yp0XFdAiUqB17NidhQs7453xE+BL2rWbxqJFM4MZ65LRtGlHli9/CO9z7n2BSLyrEr4KvInV\negMez1TgE+Bm4HOKFx/O7t2bsdvtp46zevVqrr32JoypSEbG33Tv3pmPP56Y62ElInLhyOshHCft\nB1b6XvlRPIuIFHghIVYg47SWDKzWnP5aldzy3uuT938M8D0hIeWJiHibhg2rcP/9YTgcVwDdABvQ\nl7S0CLZt2/av43Tv3pfjx8eSmLgMpzOe6dOXaTiOiPyn83/c2bsSoSbbFJFL1pNPPsRPP/XA6XQD\nViIinuWpp74IdqxLxtChA+jR4wFcriQgFbs9kQ8/fItGjRpRtWpVNm/ezKeftgUSgULAQdLTD1C8\nePF/Hefvv7fg7aEGiCI9vR1bt27N12sRkQtLbgpoFc8icklr06YNc+dO4Y03JmGM4bHHvqJdu3bB\njnXJ6Ny5MzNm2Jgw4VNCQ0N48snZNG/e/NTnNWrUoE+fnkye3JTMzDaEhCzkscf+R6lSpf51nOrV\n67Bp02cYMwA4TFjYPOrUeTufr0ZELiQFeYCXxkCLiFykPB4Po0e/zpdffkt0dBSvvfYsrVq1yvPz\nGGOYN28eY8eOZ9u2vVStWpW33nr5Xw8Sbt68mTZtbiAlJYT09IMMGvQIr732Up5nEZGCK1APEWZl\nHd7HnQNFBbSIyEXquedeZNy4OTidrwF7cDgeZ9myH7n66qvz/Fx33tmfmTP34XINw2JZS3T0i2zY\nsIpy5cpXoW8ZAAAgAElEQVSd2iYtLY3t27dTtGjRs3qo85PT6WTZsmVYLBaaN29ORERE0LKIXEry\nuoDulkWb8e33PlA8i8/zigpoEZECbtWqVXz99TTs9nD69+9HhQoVcrRf6dLVSEiYwcl+GIvlGZ56\nysIrr4zM03wej4fw8Ejc7gN4x0GDw3E348dfw3333Zen58qtQ4cO0aRJWw4fjgIMJUumsnz5YooV\nKxbsaCIXPX8L6OzGQH8NfAl4zjwPYD97cxERuVQsXryYzp174nQOICQkkbffbkpc3DIqVaqU7b42\nmw1IOvXeaj2B3V4CgIyMDFJTU4mOjvY7kzGGxMREYmJisFqtWCwWQkJCcbuTOVlAWyxJhIWF+X3s\nQHviiefYs6c9GRlvAJCWNpChQ0fwwQdvBTmZiJwpu/mW1gFj8U6wefrrHuBYQJOJiEiB9uSTI3E6\nJwDDycx8g6Skvrz+es4evnvhhScID++J94+ZQ8nM/Ihata7kxRdfweGIoWjRUjRu3JbDhw/nOM/a\ntWspW7YqJUteTkxMCebMmYPFYuF//xuMw3ED8CE22yMUKrSBW2655XwuOaC2bNlJRsZ1ePuoLKSn\nt2fz5h3BjiUiWciugH4M76qDWbk1j7OIiMgFJDk5BSh76r3HU5bExJQc7du9ezcslhPAt0AKMIHe\nvR9g9Oj/w+3ehtudzJo1tend+6EcHc/tdtO+/c0cOPAiGRlJpKTMpUePvuzevZtRo17g7bcfp1u3\nn3noITtxcb9SuHBhv6830Fq0qI/d/iGQDqQREfExLVo0CHYsEclCdgX0z8Cuc3y2Io+ziIjIBeSu\nu27F4fgfsAaIxeF4lTvv7Jqjfbds2UJYWGXge+AtoC+ZmSVxudrjLcqtZGQM5vfff8vR8fbu3cux\nY07gTl9LU9LSahAXF4fFYqFfv3uYPv1TWrduRuvWN1O5cl1GjXqNgvSszciRz3PNNYbw8FKEhZWi\nTZswXnhhaLBjiUgWcjMPtIiIXMKGDRtCeno6H33UC5stjJdeGs3111+fo33LlClDevouvIvblgH2\n4fHsw27fQmqqB2//zjJKl74sR8ezWq1kZp4AtgDVgeNkZm761xCQRYsWcdddA3G5PgKK8PLLA7Ba\nrQwd+oQ/lx0wdrud+fNncPDgQSwWCyVLlgx2JBE5B80DLSIiQTFq1BhefvlNQkJakJn5K089NZC5\ncxeycWMSFsvlwK8sWjSHRo0aZXusvXv3UrHilbjdEUBrYAU2m4XvvptIx44dAbjnnof49NMr8I5O\nBFhK9er/Y/PmPwJ0hSJyocjrWThEREQC4plnhtCp07XEx8dTo8ZT1K9fn2HDnuCHH34gKSmJli0n\nULZs2ewPBJQtW5Zata5iw4YKuN1XY7GUplChb2natOmpbaKjHVgsh/mnb+YQDofmWRYR/+Wk0g7B\nO43dyfmf7wSigM8AZ+CiqQdaRERy7siRI/Tv/ygrVqyicuVKfPjhm1SrVu3U53/99Rf167cgJaUv\nHk8RIiLG8c03n9CpU6cgphaRgiAQKxHOBx4HNgHPAq2A7cBlwM3+R8wxFdAiIpKntm3bxrvvTiIl\nJZW7776d5s2bBzuSiBQAeV1AtwY+wjv3swX4ABgGHPF93d/X/tN5ZM2OCmgREfHbsmXL6N//cQ4d\nSqB162v48MO3KVSoULBjiUgB5m8Bnd00dha8QzfsQGnADZx8pDnVnxOJiIgE2s6dO+nQ4RY2bRrM\n4cOLmDMnhNtu6xPsWCJykcnuIcJYvEt5vwGEAa/g7W0uDhwiMD3PIiIi52Xx4sVAJ+B2ANLS3mPx\n4mgyMjJ8y4eLiORedj3QAM8D3YEb8A7nAG/P832BCiUiIpeO48ePc8std1C4cFmqVq1HbGzseR8r\nKioKi2UP3j+eAuzDZgsnNPTf/UVHjx4lPj6e1NTUHB13woR3KV26KsWLV+Cpp57D4/Gcd0YRufDl\npIAG2AhsxdvzfCtQHu+DhCIiIrnSrVtv5s93kJi4nG3bRnDjjd3566+/zutYN998MxUqpGC33waM\nwuFoz8iRL2GxWDDGMH/+fLp1607p0pfTqFFnypatwqpVq/7zmFOnTmPIkDEkJEzhyJGFTJjwI6+8\nMva88onIxSG7McxzgaeA9XiXiorDu4R3FWAS3qEdgaKHCEVELgA7d+7khRdGc/DgUbp06cD99997\n8oGcbK1fv57atZsAN+Ltn+mJw9GX8eObc9995/eHTqfTyQcffMDevQdo2/YabrjhBowx9Ov3MFOm\nLMHlagwsAQYBFShZ8kkOHNh+zsyNGrVl5cq7gHt9LUu46qrnWLdu6XnlE5GCJ68XUqmIt3gG70wc\nC4HeQDSwjMAW0CIiUsAdOHCABg1acvx4Pzyea/jll9fYt+8AI0Y8m+2+27Zto1mzdsAzeP+w+Rxw\nDKt1J4UKnT03c2pqKg888BgzZszA4Yhi1Khnadq0MTExMZQvX/7Udg6Hg8cee+xf+65du5apU+fg\ncm3Eu5TBXqAGsJujRxNITk4mOjr6rHMaY4iLWwW0OK11B8ZkZnt9InLxyq6Azjjt6/Z4e50BkvAu\nriIiIpew6dOn43Rei8fzIgApKU14441mOSqgP/10Mi7X3XhnRwWoBnSmUqUq3HLLLWdt/8gjTzJ1\n6l5SU+NITl7B/ff3xm4vhTHH6NWrBx9+OOGcvcgHDx7EZquKt3gG71IGRYE5REbGEBUVleV+GRkZ\neDxOvI8AHQEigQ+45ZZHsr0+Ebl4ZTcGeg/wCN6/q9XDu6gKgAMtAy4icsnLzMzEmLDTWsLweHLW\nO5uZmYnH8+99Y2LCWL58MeHh4Wdt/91380hNHYO3+J2AMcNwubaSmrqdqVN/Z+rUqVme57vvvuOV\nV94hOXkt8BreGVnfxWJJJDLycWbM+PKchXdYWBh16jTFar0dKAckYbeHctddd+XoGkXk4pRdAX0v\ncBXQB+gBHPO1NwE+DmAuERHJA8YYNm3axJo1a8jIyMh+Bz917dqVsLDZWCzjgQU4HD259957s90P\n4M47e+Fw/B/edbnm4XDcw5NPDiIiIiLL7QsVKgKcfLhwA3CyiI0hJaUz69atP2ufmTNn0rPnQ8TG\n3kZm5ivAS0AYFSpM4OOP32THjo20a9fuP3POnTuFunXjsFpfoFCh2Xz11UfUrFkzR9coIhengrwQ\nih4iFBHJhfT0dG644TZ++20NVquDMmUiWLp0ASVLljyv461cuZIlS5ZQrFgx7rjjDux2OwAbNmxg\nyJARHDrkfYjw6acHExISkqNjrlixgmHDXiExMYm77+7KwIEPnbM3eOHChXTtehfp6b3JzJyGMf8D\nHgVcREa25b33Bp7VM9y48XWsWDEA6OpreYvbb49jyhT/+4A8Hg9Wa04nrxKRC0leL+X93RnvDd6V\nCBcDn/uVzH8qoEVEcmH06DG8+GIsLte3QCihoUPo3DmBGTMm+32sKVOm0rfvINzuXthsG6laNYnl\nyxefKqLzy9q1a5k3bx4pKSm8//5k0tNL4HYf4MYbr+Xrrz8+q8D1FtADgZNjqifQvfsqpk7VH1FF\n5B95XUC3yaKtKHAn3nmhn87pic6DCmgRkVy4/fa+TJvWAujva1lO1aoPs3XrSr+PVazY5Rw9Oh3v\nCD5DZGRH3nnnTvr0yZ9lsufMmcM99wzg+PEEGjW6hpkzJxMdHc26deuIiYmhZs2aWfZcT506jb59\nB+N0jgGcREQ8xcKFM2jZsmW+5BaRC0NeT2MXe472WcBqAltAi4hILtSvfyVz5szE5eoDhGKzTaN2\n7fMbu5uUdBTvtG8AFlJTqzB9+nRatWpF5cqVT223ZcsWZs6cic1m44477qB06dK5vo5NmzZx++19\ncblmAA1YuXIEnTv3YsWKJTRt2vQ/97399u5YrVbeeeczbLZQhg6douJZRHItN2Og1wB18ypIFtQD\nLSKSC3k5BrpDh6789FNx0tNfxbs47U2EhnbEbl/Cr7/+SJ06dVixYgVt295AWtodWK3JREcvJC5u\nGZdffnmurmPSpEk89tgynM6Twy7cWK0RpKY6sdlsuTq2iAj43wOd3dMQRbN4VQVG4H0EWkRECqiw\nsDB++GEWK1cuYOnSKWzY8Md5P0A4derHtG17DKu1HN6ZTT/B7Z5CcvLzPPmkdw7owYOHk5LyKm73\nm6Snf8jx43cwevS4XF9H8eLFsVo3ASenx9uE3R5NaGj+zaa6ceNGlixZwpEjR/LtnCJScGX322c1\n3gcHTzJ4Z5KPBR4KUCYREckjFoslT6ZcK1y4MPPnT6dTpx7Mn38z0MX3SVU2bvyAZ599nr//3oO3\nj8UrM7Mqhw4ty/W5O3fuTL16H7B6dWvc7rqEhHzDxIlvnhrz7PF4+PLLL4mP38xVV9WiR48eOV5K\nPDvGGAYM+B+ffjqFsLAqeDxb+P77GbRo0SL7nUXkoqVp7ERELlKzZ89m5Mi38Xg8PPpoP+6++85c\nH/Pjjz9l4MAxOJ1TgXAsllsJCQG3uwuhoe9gtVYnPf0LIAmH4zY++mgkPXrcnuvzut1upk+fzoED\nB2jZsiUNGzYEvAVuz579mDt3Eykp1xMZOYfu3Rvz8ccTz+s8P/30E8888yrJyU769u3OlVdWp2vX\ngaSk/AEUAuZQqtQgDhzYnutrEpGCI69n4QgmFdAiIudp/vz53HprP1yuCUAYDscjTJr0Mnfc0StX\nxzXGMHr0WMaMeZO0tDTS0wvjdscDIcAGQkOb4XBEEhpq49lnn+DxxwflxeWcU3x8PPXrX4vLtRXv\nIrlJ2O1ViI9fQYUKFfw61qpVq7jmmutxOt8ASuJwPEGHDlewYEFhXK5Jvq0ysVjCSE9Py9chJCIS\nWHk9BlpERC5AEyd+hsv1Et7xyjfhdI7j7bc/zfVxLRYLQ4cO4ejRPbz++kvYbK3xFs8AlTEmjWPH\n9jJ37lQSEhIYNeplDh48mOvznktiYiI2Wym8xTNANDZbcRITE/0+1meffYXTOQjvCocdcDon8fvv\n67BYFgL7fVtNpkKFmiqeRS5xKqBFRC5CYWE2wHlaixObLe+KvoyMDFatWk9q6kygMTCHsLCHadfu\nBubMmcO113bh1VdtjBixk9q1GwesiK5duzZ2+zEslreBPVitY4mJcXPFFVf4dRy3243FAhaL67RW\nJ1FRkQwb9jDh4TWIiqpG8eIvMHv2V3l6DSJy4fFnCMfVQEX+efDQADPyOtBpNIRDROQ8LV++nHbt\nbsLpHAaEERHxIrNmfc51112XJ8d/4IFH+fzz9TidLwLxwCDat7+W6dMnU79+G7ZvHw10BMBme4Dn\nnruc5557Nk/OfaYtW7Zwxx33s3XrZmrWrMWXX37wr7mps/PSS6N58cURGGMwxo7HMxCoiMPxEu++\nO4reve/i8OHDHDlyhIoVKxIeHh6Q6xCR4MnrhVRO+hiojXfqOs9p7YEsoEVE5Dw1adKE2Nh5jB//\nPhkZmTz88FSqVavG888P58SJFG677ZZcLSjy+eef43T+CVwGtCAsbBWdOlWlUKFCpKQkA//M/ZyR\ncTknTiTn+prOpXr16qxcGXte+86ePZvRoz/G7f4LKIXNNoDLLvuWRo0acM89E+jcuTPgnUqvePHi\neRdaRC5oOS2gmwC1+PeUdiIiUoA1atSIL75oBMC+ffuoXbsxJ050xe0uw6RJ3fnii3fp0qVLNkfJ\nms0WBpzAW0CD1ZpIWFgYAN27d+HDDwf5HmDci8PxDrfcMi3bYy5btoxBg57l6NFjdO3aidGjRwR8\noZSffvoVp7MPJ68jI+MpXK5r+eab3I8XF5GLV07HQK8ArgxkEBERCZx3333fVzy/DQzD6fyEIUNe\nytG+x48fZ/bs2Xz//fekpqYC8MwzT+JwdAE+IDT0f0RHL6Vnz54AjBv3Mv361aVkyRupVOl/TJ78\nTra93fHx8XTocAurVt3Ljh0f8O67K3j44cG5ueQcKV++LHb7cv7pH/qd0qXLBvy8InJhy+lYjzbA\nbOAAkOZrM0CdAGQ6SWOgRUTyyOOPD2H8+CLAMF/Ln5Qtezt798b/5347duygSZO2pKZWB5IpWzaN\nP/5YQkxMDF9/PYWZMxdQqlRRhg4dTJkyZc4735gxY3jmmd1kZLzla9lDVFQ9kpIOnfcxc8LlctG8\n+XX89ZcHi6Uc8BOLFs2hUaNGAT2viBQsgZrG7kO88/pcD3T2vW7OwX52YDmwBtgIvOJrLwr8AGwB\nFgKFcxpYRET8d9ttXYiIeAuYD6zF4RjIHXfclu1+Dz/8FEeOPEBS0kKSkn5l5846jBr1GgA9e/Zg\nypSPeOutsbkqngHsdjshIUdPazlKWJj9rO1mzZpFzZpNqFChNs8//xIej+esbfwRERHB8uWL+eKL\np3nvvS5s2rRaxbOIZCunlfZvQLPzPIcD71xKocBS4Am8xfdh4DXgKaAI8PQZ+6kHWkQkD82aNYsh\nQ14iJSWZVq0aceONHWjSpAnVq1c/5z5Vq9Zn27auQD3gOuALbr01lm+++eysbXfv3s2vv/5KkSJF\naN++PSEhIWdtcy6HDx+mVq1GHD16E253dRyO8YwePZhHHhlwapuff/6ZTp164HR+BJTA4RjIkCGd\nGT78mZzfBBGRLARqJcKJeHuJvwPSfW3+TmPnAH4C7gG+AVoDCUBpIBaoccb2KqBFRPKYMYbevR9g\n5syfsFrrkpm5hE8+mUj37mf3Rq9fv54GDVqSnt4YSAYyiIgI5ZVX7uTRRwf+a9ulS5fSqdOtWCzX\nYMx26tcvzY8/zvLrIcCEhATGjn2TQ4eO0bXr9dxyyy3/+vzBBx/l/ffLAUN8LSuoWLE/O3as9e8m\niIicIVAF9Ce+/55Z0fbNwb5WYDVQBXgXeBI4hrfX+WSGo6e9P0kFtIhILrlcLg4ePEiZMmUICwsj\nNjaWm256kJSU1Xj7NdYQEdGG5OSjWK3/HtXXrFkHli/vijEP4f3134V69RJYuXLZWdtWrlyHHTte\nBLoAmUBzrrgilYULv6N8+fLnzGeM4eDBg1gsFkqWLPmf1zJkyFDGjXPj8YzxtczlyitHsmHDb/7d\nFBGRMwRqHuh7zieMjweoCxQCFgBtz/jcoOnxRETy3JQp0+jb9z4slijCwjzMm/cNe/bswWqtyz9L\nX19NRkYGycnJxMTE/Gv/PXv2YMzJ2TMsQDvq1996VvEMkJCwB2jhexcCtGHLltW0aNGBrVvXYLef\nPZ7Z5XLRuXMPli5dijEerruuAzNmfH5qOrwzDRz4IJMmNSU52UNmZgkiIsYzevSk87gzIiK5k9OH\nCK8AFuFdSAW8s2/4u6RUIjAXaMA/QzcAygBZrvE6fPjwU6/Y2Fg/Tycikj++//57evToR//+A9m8\neXOw4wCwa9cu+vUbgMv1E07nHo4ff58bbuhGnTp1cLsXA38CYLG8y2WXVSQ6OvqsY7Rs2Yzw8HGA\nGzhEZOTHtGvXPMvzNWzYjJCQV/H2mfwNTMWYp0lMDGXTpk1nbT9lylTq1GlObKyVtLQE0tMPsHhx\nyqkHFLNSoUIF1q79ncGD7QwYkMDChdNPLXQiIuKP2NjYf9WZgfIz3sVU4nzvLfxTTP+X4vwzw0aE\n7zjX8s/Dg+B9eHB0FvsaEZGC7ssvvzIORzkDE43FMtxER5cwW7ZsCXYsM3fuXBMTc50Bc+rlcJQz\nO3bsMF9++bWx22OMzRZpKlSoaeLj47M8RmJiornmmk4mNDTChIaGm8GDhxqPx5Pltvv37zc1ajQ0\nEGYgwsAbBpwmIqLMWffj9dffNA5HNQNXG/j+tIzTTLt2XfL8XoiIZAc/R0PkdAiHA+90dKeKWyAj\nB/uVAT7F29NtBSbj7cmOA6YC9wI7gdtzmENEpEB54YWxOJ0fA+0xBpKTU3n//Q8ZOzarfoH8s2XL\nFk6c+APvH/hKAuvweJIoWbIkvXr14Pbbbzs1bMM39u8sMTEx/PTTPJKTkwkLCzvn0AqA0qVLs3Hj\nH9x8c08WLdqHy5WOw9GB66+/lqpVq/5r21GjxuB0zgPeAn7EO0OqISzsR2rUqJQ3N0BEJIByWkAf\nAk7/DXgbsD8H+60D6mfRfhRon8Nzi4gUWBkZGcA/wx+MiSY19XDwAgH79+/nmWdG4p2+vy7ehWR/\n5513JuBweMc+h4SEUKhQoRwdLyoqKkfbWSwWvv32Sz7++GP+/HMTder0oW/fvmcV6G73yXs2Cu86\nXYsJD/dQvryFkSMX5+hcIiLBlNMx0AOB9/GOhd4HPA48FKhQIiIXigcf7E1k5APAYuBrHI7x9O7d\nM9/O/+uvv1KtWj1iYkrRseOtHD58mC1btmCz1QAm4F2z6jEiI0vSqFEDRo58leLFK1C8eAVGjHgZ\nk81sR6mpqWzcuJFDh3K2ImBISAj9+/fnrbdep3///lnOBd2nz904HL2BeGAgdvs23n//cf788zeK\nFPFOyJSRkUF8fDz79u3z636IiBREUUBMtlvljWAPhxERyZbH4zFjx443V13VwjRpcp358ccf8+3c\nu3btMlFRJQx8Y2CvsdkGmcaN25odO3YYu72YgZ2+scUbjN1e2IwbN95ERtY2sN7ARuNw1DVvvz3x\nnMePi4szxYqVM9HR1U14eCHz8stj8iS32+02zz33krnyymamZctO5o8//jjruipUuNJERVU24eFF\nTP/+A8859lpEJC/g5xjo7Oa7uwf4HO8j2FkJA+4EPvbnpDnkux4REcnKF198wYMPziY5eYqvJZOQ\nkEhOnDjKBx98xLBhLxIWdhXp6X/y3nvj+eST6SxZchfeUXgAs2jR4gOWLp2b5fHLlavO3r3DgTuA\nfTgcTVm8eBpNmjQJ6HW1bHk9v//ekszMZ4ETREa24cMPn6JHjx4BPa+IXLr8nQc6uyEcUcAK4Ctg\nMN7fonf6vv4K74OFEecTVERE/PPrr79SqVJtHI7CtGrViczMTLzPYXt8W+zFarUSHh7OY48NZN26\n35g69Wk2bVpF7953UaxYISyW7acdcQ2bNm3C4ShMxYpX8fPPP7N161bWr19PSkoK+/fvAHr5ti0L\ntGPdunUBv84NG9aRmdnb9y6GlJQuDBjwOA5HYRo0aM327dv/c38RkUDLSaVtwTs7fkvg5HJSu4Cl\nwDICtwiKeqBFRHz27NlDjRr1SEmZBLQkNHQcV1zxI5GRUaxfb8PlakxExBcMH/4IQ4Y8nuUx4uPj\nady4NS5Xd8CKx/MZVuv9uN1PAj9jtfYjLMxBaKiDcuUKc/Dgfo4e/T+gE3CMyMhGzJv3Eddcc81/\nZo2NjWXVqlVUrFiRrl27Zrnwyn9p0KANcXHdMeZhIBVojncJgdFYrR9Ttuwktm9f79cy4SIi/yVQ\nS3kHgwpoERGfadOmce+9X5KUNNPXYrDZYtizZxvffvste/fuo0WL5nTo0OE/j7Nz507eeOMNZsxY\nwJ49B4A3gd7AOLxrXc0HbNhs/6N58y2sXr0Sq7Uq6enbuP/+exg//r+n53vllbGMHPkObvct2GxL\n6dChBt98M/mcU+VlJT4+nlatOpKRUYa0tL243Qa3exfeFQ4hKqoyq1cvoFq1ajk+pojIf1EBLSJy\nEfrxxx/p2nUwycmr8M5Auhub7QqSk4//5/zMZ4qPj6deveakpj4PXIZ3UdlHgFV4e3rv8225nKpV\nH+b33xewfv16SpcuzRVXXPGfx05OTqZo0ZJkZEwBmgFRREbW5scfJ9O0aVO/rjcpKYm1a9eyf/9+\n+vQZjMu1Ge+IwSOEh1fh77+3ULJkSb+OKSJyLv4W0DmdB1pERPLRkSNH+Oqrr/6fvfsOj6L6Gjj+\n3d5SgCSQhBZ6Cb33KggKoYmAIIioKIJgR7ELig0pIgqC4qsgglJUQHpVihQDofdmKAFCkk022d3z\n/jFDDD9qIDGI9/M8+5CdvXPnzqxuTmbvPYe0tDRiYmJo3rw5tWsXZcOGlqSl1cNm+5433hiRreAZ\nYOrUb0hLewQYom8pDnQCzBiNJ/D7HwLMmM0/UqlSeUJCQmjatOkN9f3JJxPIyAB4E21u9hRMplKc\nOZP9vNiBgYE0atQIEWHmzJ+ZP78pqaktcDjm0b//ABU8K4qSp9QdaEVR8oSIZOtr/f+S+Ph4qlWr\nT2JiQ3y+/Fit37FkyU/UqlWLadOmcezYMerWrUvLli2z3ffQocN47z0v8J6+ZQPQnjJlwgkPj2Tz\n5l0YjS7CwoysXr2Q6dNnMmvWAkJD8zNy5CtER0dfsd9Dhw5RsWJtUlN/R6u7tRFohctlYd++bYSH\nh9/cxQD8fj8zZ85k3759VK1alXbt2t10X4qiKFeSW1M48gGvAxdXjqwA3gISszG27FIBtKLcgc6c\nOUPnzg/y229LCQgI4fPPx9Ct2/15PazbyvPPv8To0Sl4vWP1Ld9Qp85XrF+/5Jb7/nsKx+tAEbS6\nWAmMHTuSJ598kri4ONLT06lUqRJvvPEOY8fOx+1+HYNhLwEBI4mNXU9UVNRl/S5dupQuXd4mMXFF\n5jaDIZJvvvmQBx544JbHrSiKkptyOo3dRVOAC0BX4H4gidzJ/awoyh3uvvv6sG5dGXy+RBITf6Jv\n30Fs3rw5r4d1Wzl16hxeb9ksW8qSkHA2R/ouX748S5b8hMn0FvA+8CrwKW+88R6pqalUrlyZmjVr\nYrPZmDBhEm73dKAdIk+TltaFWbNmXbHf0qVLk56+Hditb1mHw+EhJiYmR8atKIpyO7nRALoU2h3o\nA8B+4A19m5INPp/vumVzFeVOt3btUjIy3kFbEFYLv/9+Vq1aldfDuq107Hg3TudoYBtwHIdjGB06\ntMmx/q1WKy5XMbRU/o8CffB6Q9m1a9cl7bQ7Mj79IRgM3qtOuylevDjjxn2I3V6fwMCqOJ33MmPG\n1zgcqlSAoih3nhsNoFOBxlmeNwLcOT+cO5PH46FHj4ex213Y7QG8+OKrKpBW/rOCgsLQAkMAP2bz\ndu4h6XgAACAASURBVEJDQ/NySLedTp068c47Q8iXrw0uV1V69izPyJFv5lj/YWFhpKcfA87pW86S\nnn7ssvehf/++GI1NADsQiNE485rVANu3v4cKFSqRnByHz+ela9cHsFhsVK/emGPHjuXY+BVFUfLa\njQbQjwPj0QqoHAY+0bcpN+Cll95g7tyTeL2nSU/fxyef/MyUKV/l9bAUJU9MnDgGh6MDdvsTuFzN\nqVgR7r9fzYH+X4MHD+TcueMkJ59h0qRxOVo0JCoqisceexiXqx4220Bcrvo88cSjFC9e/JJ2W7bs\nxGDoCKSgLQp0cvDgwav227lzb7Ztq4NIKh7PKtLS7IisYdu2ltx7ryrDrSjKnSO7S+CD9H8v5PRA\nruCOWURYsWJ9du78AO3GPcAUOndeyQ8/TM3LYSlKnomNjWXlypWEhobSpUuXbKdiu52lpaVhs9lu\nmwwjHo8Hq9V6xfEsXryYHTt2ULFiRVq1anXZ6y5XCG73TkBLGWcyDeXNNwMZNmzYFY9lsdjxehMA\nl75lENpsv0EYjXZSU1PuqPdaUZQ7R04vInxQ//dZ4BngEf1x8blyAyIjC2EwbMl8brFsoWjRQnk4\nIkXJW1WqVGHQoEH06NHjjgmojhw5QnR0XVyuIAICCjB9+oxLXvf5fKxZs4ZFixZx/vz5XB/PyZMn\nqVWrGU5nIE5nMBMnTr6sTatWrRg8ePAVg2eAkJBCwMXPLsFm20qhQlf/7MqXL2t7H/AnUAjYjt0e\nqEpvK4pyx7hepN0f+Bxt0WDW28EG/XnOTcq73B1zB3rHjh3Ur98Cr7cFBkMSwcG72Lr1N8LCwvJ6\naIqi5JBKleqxc2d7/P6XgG04HK3ZsGEplSpVIj09nZYtY9i69QhGY0EslgOsXbv4upX9bkWjRm1Y\nv74KXu+7wD6czpYsWTKT+vXr33AfixcvpmPHB4D2GI37KFsWfvttMTab7Yrt582bR48ejwDt8Hi2\nIHICm+1e4Be++GIMDzzQPSdOTVEUJcepUt63qRMnTrBw4UKsVivt27cnODg4r4ekKEoOSU9Px+Fw\n4fd7uPjFnsvVl9GjG/LII48wduxYhg5dSGrqPMCMwTCWevV+4bfffs21MdlsAaSnHwe0zxqr9WlG\njCjMc889l61+9uzZw8qVK8mXLx8dOnS47jcGO3bsYM2aNeTPnx+TycTp06epX78+VapUuaSd1+vF\n4/Hgcrmu0pOiKMo/J6dLeY/L8rNk6fhiZPvUDY/sPy4yMpKHH344r4ehKEousFgsOJ3BJCdvAWoC\n6RgMW4mIuA+A3bsPkpragosfuSKtOXBg3FX7ywkFCoQTH/8H0BLwYbFsJiKi1iVtduzYwZ49eyhb\ntiwVK1a8Yj9ly5albNm/c1KfP3+etWvXYrfbadKkyWXTMipWrHjVvkCbI/7kk4OZOvUrwED16vWY\nP3+m+kZOUZR/levNgd6kP2xADWAPsBeoDtwZExcVRVFukcFg4MsvP8fhaIvL1ZuAgDo0bVqGtm3b\nAlC3bnVcrhloxVsFi2UitWrVyNUxTZ36KU5nd1yuXgQE1Kd6dcclKeg+/ngctWq1oE+fydSq1YLR\noz+5bp/79u2jTJkqdOv2Jm3b9qZw4dLExsbe8JgSExMpU6YaU6asxeerh89XhK1bS9OzZ/+bOkdF\nUZS8cqO3qtejpZDI0J9bgDVA3dwYlO6OmsKhKIpmx44dPProMxw7dpymTRswfvyHBAYG5vWwcsTO\nnTtZt24d4eHh3H333RiN2j0KEeHxx4fw1VdfYjI5KVUqimXLfsqxu65nz56lf/+n2bBhM6VKleCL\nL0ZTsmRJ9u3bx5o1awgJCaFt27aYzdod8BMnTlCqVCXS0rYCxYDD2O3VOXAgjoiIiKsep0WLGFas\nKILITGAg4MZq/ZytW3+nQoUK1x3nM88MZezYv/D5vkL79fM6sJ2goLUkJsbf8nVQFEW5Wbk1B3o3\n0ABI0J8XAH4Hcm8FjAqgFeWOc+rUKcqVq0Zi4iuINMBmG0WDBudYtuynvB7aPyIhIQG3203hwoUz\ng+tbJSLUqtWU7dsrkZ7+GEbjYkJCxrNvXyxBQUFX3GfDhg20avUEFy5sytwWFFSdpUsnUavW39M8\nzp49y6pVq7BarbRo0YIKFepy6FAwWvXCi0ma3qZPnxN89dWE6461Xbse/PLLvUAvfcsK4ClKlzaz\nd68q564oSt7J6TnQF40ENqN92gE0RcvMoSiKcsNWrFiBz1cbkQEAeDyTWb06iOTkZAICAvJ4dLkv\nJCSEkJCQHO3zxIkT7Nixi/T0FYARv78aHs/PrFu3jtatW19xnzJlyuD3H0H7SG8GLMfvP07p0qUz\n2+zfv5969Zrj8UQDF4iMfJWaNatw6NBvaKnpLoogKWnfDY21ceNaLF8+Bbe7E9oswHGYzUeZOvWX\nbJ+3oihKXrrRWyBfAvWAH/VHPeCrXBqToih3KLvdjkgCf69D1uYE3ym5oPOC3W7H709DqxYI4MPv\nP4vD4bjqPvnz52f27OkEBHTF4QgnMLAbc+ZMJ1++fJltnnjiec6eHUhS0gKSktZw6FAlihaNoFgx\nKzAA2ACswOl8mz59utzQWJ99djDt2xfHYgnHbA6hYsUjbN++jgYNGtzs6SuKouSJG71VbUT7zq0I\n8A5QHO0WxIZcGheoKRyKcsdJS0ujRo3GHDhQBo+nAU7nZPr3v5tRo0bm9dD+1R566HFmzozF7X4A\nu30plSuf57ffFmfOeb6ajIwMTp06RcGCBS/LplG2bG327h0LXMwb/QVdu67lu+8m88Ybw/nqq++x\nWq28+urT9Onz4GV9X8u5c+fw+XyEhITcNhUbFUX5b8vJOdCNgd/Qykl9pm+rAdQBQoBfgVpX3jVH\nqABaUe5ASUlJjB49lv37j9GiRQMefLCXCqJukd/v54svJvPbb5spX74EgwcPuuYd6BvRr99Apk07\nS1raVMCN09mGDz7ow4ABj+fMoBVFUW4jORlANwQeQlstshWoBiwHmuuv/wlUvZlB3iAVQCuKouSR\n5ORkYmJ6sGbNckR8PPTQI3z++ZgcW/yoKIpyO8nJRYRr+XtSnQcwZXktDPBnd3CKoijKv0NAQADL\nlv1EYmKiXijGmddDUhRFuW3caKTdC+gGVABmAl2AV4Dvc2lcoO5AK4ryL3LhwgWGD3+PPXsO07hx\nLYYMGYTJZLr+joqiKEqey6080KAFzy31n5cCO7Ox781QAbSiKP8KHo+H6tUbceBARTyeFjidX9Gh\nQ0mmTZsMwJw5cxg8+BWSky/QoUN7Pv30I+x2ex6PGlJTUzly5Ajh4eEEBwfn9XAURVHyTG4G0PnR\nSlaZ+TsHVW5mvlcBtKIot51jx47x66+/YrfbiYmJITAwkCVLltC588skJa0HtgCrMRpfZPr0r9m0\naRNjxnyJx/MdEIXDMYTu3YsyZcr4Gzqez+fjp59+Ys+ePaSlpVGiRAliYmKuGPAmJyczd+5c0tLS\naN26NUWLFr1qv2vWrOHee+/D7w/A6z3Dp5+OpW/f3tccS3JyMvPmzcPtdtO6dWuKFSt2Q+dwK+Li\n4lizZg1hYWHExMRcN7OIoijKzcitAPpttAWFB7h07nPzK7bOGSqAVhTltvLnn3/SuHFrfL5WGAzn\nCA09yObNa1i/fj3du7/PhQu9gZeBe4GVGI0XMBgK4/O1QcsACnCAAgWakZBw5LrH8/l8tG7diXXr\nTuB2lwPmY7WWIjQ0kS1b1lKwYMHMtufOnaNGjUacOVMcvz8Eo/FXVq36lerVq1/Wb0ZGBgULFuP8\n+SlAW2AXTmcTYmN/p1SpUlccy/nz56lRoxGnThVFJBSj8VdWrlxIjRo1sncRs2HOnDn07PkY0B6j\ncQfVqgWzfPnPKohWFCXHZTeAvtHl1N2AUmgVCJtneSiKovxr+f1+9u7dy759+7iRP9gHDHiRpKTh\nuN3fkJLyC3/91ZAPPxxNw4YNcTgOA0+iVff7AtiO3x+Kz1cHyBosH8blCgRg0qTJFCpUkuDgCB5/\nfAgZGRmXHG/u3Ll68LwO+BZYSnr6YU6caEmRImV57LGnSE9PB2DUqDGcOFGP5OT5uN3/R3Lyuzzx\nxAssWrSI4sWjCQwsSPv23Tl//jzx8fGkpxvQgmeA8lgstdixY8dVz33MmHEcP16LlJQFev/v8/jj\nz1+x7aFDh6hbtyUBAaFUqlSfbdu2XffaXkm/foNwu+fgdk8mOXkNW7cm88MPP9xUX4qiKDnpRgPo\nOLQpHIqiKHeE5ORk6te/i2rVWlC1ajOaNGlLamrqNff566+TwN93dNPTq3Ps2EmCgoJYsmQeBoMA\nZfVXbUA0UBOt5lQ3DIZXcDh6MGbMcObPn8+QIW9x6tR3XLjwBlOmLKB3736ZfcfHx/PEE4Nxu8vw\nd8KkKsA54DwZGZX55ptdPPfcKwAcPXqS9PSsd5urc/ToYTp16smRI6NITv6TRYtcdO36EGFhYYik\nAn9cPDPS07dQsmTJq577lfqPjz95WbuMjAyaNm3LH3+0IiUljri4R2jatA2JiYnXvLb/S0RITMx6\nvU14vVU5efLyYyqKovzTbjSAfgdtYt8i4Cf9MS+3BqUoipIbtm3bRteufWjd+j46dryf2NgiuN2H\ncLsP8ccfgbzxxjvX3P/uu5tht48AkoFjOJ2f0qZNMwCio6MpXbo8RuP7gBdYAywBmgH9gTk8/7yX\nZcvm0KlTJ378cT5u91PAh8AXZGS0YMaM+Ywfr9Wt6tfvKRISWqOt2f5D7/M1IB8QCBwhNbU0c+bM\nB6Bt22a4XBOAo0AKdvsIoqIi8fs7A3cDEaSnj2P58gXYbDa+/fZLbLYWmM1RGI2V6NGjA9HR0Vc9\n9zZtmuF0foZ2Nz0Fu304rVo1u6zdwYMHSUhIw+8filawth8+XxRbt2695rX9XwaDgTp1mmE2vw5k\nAFsxGH6gUaNG2epHURQlL+0EngJaoP02aIY2nSM3iaIoSk7ZvXu3BASEicHwocA0MRqLCgwUEIF4\ngfekYcO2l+23cuVKKVy4nFitAVKrVjNp27azGI0WMZvt8uyzL4rf789se/DgQalYsY4YDCaBAIEw\nAaNAVbHbC8nBgwcz2w4dOkyMxo4CFQXWClTR9wmSPXv2SOHCFQRiBWZl6SdIYLc+5lMCgVK6dHXp\n2rWPOBz5xOEIFZPJJkajRUJDS4nF4hCDob6AX98nVgICQkVEZP78+WK3FxKYLDBRHI4wWbFixTWv\n4VtvvSs2W4CYTFaJiekuKSkpl7WJj48Xmy1Y4Kx+zFRxOovLli1bsv2excfHS506LcRoNEtAQIh8\n8820bPehKIpyI/g7QUaO2pgbnV5HXl9LRVHuIEOHDhOD4UU9qBOB3wQiBCYI5BMoKxZLkCxatChz\nn8OHD4vNll/gJ4EEgWclJKSIOJ0hEhRUVez2/DJx4uTLjhUXFycOR0GBowJegfXidOaX1NTUzDbx\n8fESFBQq0EKgkMB3etD5thQrVkFatIgRk2m4PtZ0MZur6MG2ZHlESpky0WK3dxE4KbBRnM7CEh1d\nVyyWQQLHBKIFWojROFSczsIyefKXIiLStGl7gW+z9PWZtG/f47rX0e/3i9frvWabQYOeF5erkhgM\nw8TlqiedOvW85A+N7Lre8RRFUW4V2Qygb3QKx2rgXaA+UCPLQ1EU5V/B7/dzaUFVMyaTB3gB2ATs\nJiPjJzp3fgCPxwPA0qVL8XhqA+2AAsCbJCScwe2ex4ULW0lLW8/gwS+yf/9+PvjgYxo1upeuXftg\ns9l4662XsdurERzcGKfzHqZPn4rdbuf48eP06vUoXbo8TLduXTGZ1gHl0dZq5weGcebMed5++0XC\nw6cSFFQDp7M0BsNh4CBaLSsPMBFI5sSJ06SlvQ8UBGrhdj/Mjh1/kJHxIVAY2IjZnEzJkvMoWTKK\nlSvXcfLkSfx+uex6aNuuzWAwXLdAzJgx7/HNN2/z2msWPv98ILNmfX1xhftNUQVpFEW53dzoJ9oK\nrhyZqzR2iqL8K8TFxVG3bjNSUt4CInE6X+b+++sza9ZhkpMXZ7ZzOosSF7eaqKgoJk2axGOPfQDs\nAP4E7geSgFN66yO4XJ1p0qQwK1eewu0eitG4naCg8ezcuRmPx8ORI0coV64cBQsWJDExkfLla3Dm\nTDe83no4nZ9QvvwFtmw5isgBtIWHJ7FaS3Pq1DGsVitLlixh4sTJLFwYiNd7FlgPJAIRFCjgIygo\nhEOH3uNiRg2r9QFEfiIjYz1QEfBjNBbF7y8HPI3BsJTIyPkMG/Y0Tz/9Nh7PKMCLw/Ec8+Z9w113\n3YXb7Wb79u0EBQVRrly5Wwp+rychIYE9e/ZQtGhRihQpkmvHURRFuZbsprG7neX13XxFUf7F/H6/\nfP/99zJ8+HCZM2eO+P1+2bhxo7Rt21UaNGgrn302SXbt2iUOR5jAQX0awxpxuUIyp1qcO3dOjMYg\ngbr6NI8pAgUEfhf4QP+5nIBDn4KhTYdwOHrKhAkTLhvTzJkzJTCwTZZpE8liNFqlYcNWYrVWE6Px\nWXE6S8srr7wlIiLjx38udnsBsVgqCQQLfCrQWqC42O1hcuTIEVm4cKE4nWFisQwRp7OzREVVlLFj\nPxGns7CYzc+J1dpQwCrgzjyu0VhLLJYAcThKi9EYIpUqNZCFCxeKiMiePXukYMEoCQqqJg5HpHTt\n2lt8Pl+uvEcLFiwQlytUgoNri91eQD78cEyuHEdRFOV6yKU50Hkhr6+loihZzJkzRxo1uleaNGkn\nP//8c14P55r8fr888EA/cblqiNH4orhc0TJw4HNXbDtmzHix2/NLUFBNcblCZcGCBZe8PmvWD2I2\nO/S5xKLPhw4WyC9wXN+2XCBUICMzgP7ss88uO9asWbMkMPDuLAF0khgMJrHbC4nB0E4slvJSrFhZ\ncbvdcvDgQbHbQwTeErhboJ4eqPcXeEis1nyyd+9eiYuLk8aN75YiRcpIhw6d5dy5cyIismbNGnn3\n3XelcOFSlwXQUENgkv7zRnE680tSUpKIiNSq1VwMhtH6a25xuerJ119/LT/++GPm+z9//vxbfo/S\n0tLE5QoRWKMf64g4HIUkLi7ulvtWFEXJLlQArShKTps7d644nYX1u6zTxemMuCzQvJ3ExcXp403W\ng7OzYrPll+PHj1+x/fHjx2XdunWSkJBwxdfXrFkjNlu4QJLe31iB5v+zoC9QYIoYjW9J/vyREh8f\nf1k/iYmJEhFRSszmFwRmi83WXCyWYIH1eh9+cTrbyuTJk2XJkiVis5URLTvHT3oA/UGWu8hvS/v2\n90tgYEExGEYJ/CJOZ30ZMuTFzOPt2LFDLJaCAvcLtBWYLfCk/gdAcmZfAQGlZNeuXSIiEhwcIXAk\ny3m9KZ07dxGns4jADIFp4nCEy6+//npL79GRI0fE6Yy45BoajY0FDBIRUVrWrl17S/0riqJkB7mw\niNAINLipEFhRlDvC6NFTcLs/QFvo1h23+x3GjJmS18O6qnPnzmE2FwZc+pb8WK1hnD9//ortIyMj\niYyMZNKkSYwY8Q579+695PWGDRvSo0cnXK4GWK2DcTg+xGz+Ezist1iE3W6mceMf6dr1IJs2raFQ\noUKX9LF48WI++mgUQ4Y8RseOf2G3P4nIHjIyUoEyeisDXm8Zzp8/T5kyZfB4TgJT0RYx5gPKZfbn\n95dj9+4DpKfHIPI0cA9u93dMmvRFZpuzZ8/icBQD/g+oh1YhcTomkxctXzTAb4icz5x/XKFCNEbj\ndP21ZFyun4iLO4rb/RHaHPAepKaOYOzYL6/3NlxToUKF9HEs07ccwO+PA7bx118f0aZNJ86cOXNL\nx1AURckt5us3wQ98ClTL5bEoinKbMhqNaMUsLvLq225PlStXxmw+DnyClmFjHRkZ5wkODr5i+337\n9lGrVmPc7k74/TbefbcBy5fPp3bt2vj9fvx+P1OmjKdz55/Zs2cPVap8QVzcbl56qRpGYwQez1GK\nFi1Dz54deOyxfpmL7kQEn8/HmDHjee210aSm9sLhWI7DsQufL4aMjE+BrsAgYBSwE5NpOi1aLKJY\nsWLkyxfM+fNefZRtgFfQFgZmYDC8QtWqNTh82JvlTLykpnqoU6cVzz33GG3btsFsjge+BgZgMAQR\nHLyFggVLsndvQ6xWJyaTm5kzv8Hl0v7YmDZtIk2atCEx8UsyMhLo0qUzR478xe7dWd//DEymW3v/\nrVYrc+Z8R4cO3YEwkpMPAh+jVW+MxmgcxZ9//knLli1v6TiKoih56UPgPv7Z1Yl5fTf/X+/cuXOy\nZMkS2bBhwy3lYFWURYsWicNRSGCiwGficITJ8uXLs9XH1q1bZdGiRXLq1Kmrtvnrr79k0aJFsm3b\ntlscsciWLVvEZgsV6COwXCyWQVK2bHVJSkqSVatWycqVKzMXC/bu3V+Mxjf1qQTv63ONjVKyZCWx\nWJyZhUPcbvclx/jll1/EZsunzyeeL05neRk37lMREZkwYaLY7UFiNJrFYAgU2Kz37xOjsarA6/rz\n8wKNxWh0SkREaZk7d66IaPO4BwwYKGZziMAwgbdFK6QSLGAWMEuXLr0kX74IMRpfF5guUEagg8Dr\nYrdHyMyZs2Tbtm1SoUIdcTiCpXz52uJw5Bf4XGCx2O21ZPDg5y+7dmlpaRIbG5tZ+GXhwoX6+z9J\nYII4HGGyatWqW36PRLRpLStWrBCLxSVwInNuuNNZRP78888cOYaiKMr1kEtzoJPR7kRnoOVwSgIu\n5MaBssjra/mvFhcXJwUKFJagoMbicpWSNm06S0ZGRl4PS/kXW7p0qbRv30NiYh64bsW6rPx+v/Tt\nO0CcziISHNxMAgMLyurVqy9rt2TJEj0jQ3NxOiNl0KDLA7vs2LFjh7hcJQR8mfOLAwIqSFRUeQkM\nrCaBgTWkdOmqcvr0abn33u4CX+tzhMsIHBb4SqC0aMVIUsRu7yKPPDLokmP06/ekHnBfnMe7XMqV\nqyOrVq3S5wzvEkgXeFifyzxU4EcxmzuJ2dxAtCIr+8VkqigNGjSR2NhYEdEKh5QtW020AivVBVwC\nAWIyVRSoJnBa4Lw4HHfJgAFPS69ej0pISGl9XnaIaMVZQqRYsehLxvv228PFZHo6y3h3SYECRW/o\nei5evDjz/c+p4Dmrt94aKU5ncbHbHxeXq6I89NATOX4MRVGUq0EtIlRERKpVaywGw2f6L0mPOJ1N\n5IsvvsjrYSn/QQsWLBCns4Ie9GlZLMLDS17Sxu/3S7584QLL9DbnxOUqdUuB2p49e/SFhOl6n14x\nm4uK2dxZtNLWfrFaB8lDDz0hU6f+n7hc5QV6ZVmo119gXJZgc5NERVW55BiPPz5YDIaLd67XCdQV\nmy1cWrS4S0ym5zOPqwW2jfS7yGXFbA6WqlXr6aW0nQL9xWB4UZzOUFm9erV07txZD5TT9D4micEQ\nppf3np5lTL9KlSpN5Ndff5Xg4CjRMoO8qJ/fX2I0FpDt27dnjnfkyJFiNj+eZf8tEhoaJenp6Ve9\njikpKf/YN1irVq2ScePGyfz589W3Zoqi/KPIpUqEAB2Aj9Cmc7TPzkGUf96hQ/sRaas/s+J2t2Tv\n3v15Oiblv2ns2Am43fvRquK1Bxpw8uQhvTKgxu12k5R0Dmimb8kH1Gf//uz/NysirF+/nt27d1Ot\nWkUcjq7At9jtPXA4/Hi93dFmoxlIT2/Dzp37efDBnrz4Ym9gFvAb2udoOLAxS89/cPz4CbZs2ZK5\n5a67GmO1fgQ8hjZH+XE8nhmsWXMIg2ED2hd3K9AKr6xAm8O8GhEPa9YsplOnthiNg4HPEBmJ2z2K\n559/mzlzftWvlU0/UltE0ilUKB+w4ZIx7dmzi44dHyQx8X20KoW/oM39Dsdur8mBAwcyW/fs2ROX\naw5G4+vAZEymu0lIOI7DEUC/fk/i8/ky2+7Zs4eSJSsTFJSfoKAw5s2bl+33IrsaN27MwIEDadu2\nba4Wb1EURblVNxpAjwSeAuKAnfrP7+bWoJRbV6VKNUymyWiBwDlcrh+pUUOtA1X+WbNmzWL58t1o\nJaiTgRCgE6VKVb5kEaLL5SI8vBgwTd9yGJFlVKlSJVvHExG6dXuIpk070qXLYDZsWEuDBmlERb1P\n7doJ9OrVBYfjWyAdyMBun0q9etUwGAxUrRpNQEB9fayt0KoP/gA0Qss+8ioZGc/RqlUMGzZsoE6d\nRnTr9jAmU2UMhulAQ+AhoAnp6XMQ2UpAQBOs1hFoJbovlqMOxWSy4fF48PsN+P3FM88ZlrJnz079\nj4tpwFm0/4cnA2aCghzAJLT7GV2B8Xi9PlJTn9eftwTGo2Xd2AFsJTo6OvP6FClShM2b19Knz2nK\nlPkEk6kSImfx+U7x3Xfb+OijMZnXsVWrDhw69Dg+XxrJyb/Qo0e/S4JxRVEU5fq28fenP/rP23L5\nmHl8M//f7dixY1KqVBVxOouI1RokTz75jPpKVPnHDRgwRLLmLoY4MRrzyY4dOy5ru3XrVgkNLSYu\nV5TYbIEyevQnV+33+PHj0q5dNylRopp07NhT9u/fL+np6TJ79myxWosJFBd4V6ChPq1hhFgsj0qh\nQlHSpMndYreHisNRUBo3biMpKSkiok01CQiorU/diBKtcIpRHI5yolUgPCpakZTCYrPlF3hZ4FmB\nggKz9KkYF6eLbJbQ0OIya9YsGTVqlAQGFtTnVB8Ui+VpqVq1gfj9fpkzZ444nVH6/gUFBgm8JhCg\nP+z6nGaXGI1OMRp7iVaw5Uu9v+NiNoeIwfBqlmv8sxgMoWK3B8vUqf932bVLSUmR1NRUqV27lcD8\nLPt9Ly1bdhIRkTNnzojVGpzlNZGgoE7y/fff59B/GYqiKLcXcmkOdCzaraOLQvRtuSmvr+W/ntfr\nlQMHDlwz64Gi5KaRI98Tm62rPidXBKZI9epNrtre4/HI3r175fz581dtk5qaKsWLVxSzeZjA19C3\nhwAAIABJREFUAj1YtorF4pD27TuJlqUiVj9eeYHVmUGg1fqQvP/++3L06FE5cuTIJX9UpqamissV\nLloWiw0CY8VsDhK7PUwgQS5WyzMY8ukB7MXg8m096A4Qo3GgwERxOkvJmDF//wGwZcsWqVy5geTP\nX0TuvrvzJf9PTpz4hdjtoaItMLzY53SBSAGXGAwBUrp0OTEa2wusFWgvWmXCyeJwdJCaNRtJQECY\nGAxvCXwiDkekjBs3Ti5cuHDZdYuJ6S5ms11MJpsUL15RjMbXMo9pNj8nDz88QERE0tPTxWYLENih\nv54iLlfpKy7+VBRFuROQzQD6RvJAgzZdYzPaJD6ApsDQ7BxI+eeZTCZKlCiR18NQ/sMGDnySr79u\nzpEjTYFwDIaVfPHFgqu2t1qtlC5d+pp9xsbGcvasGa93OHAP2vSKkWRkHGXx4saAG4jUWycDEZn7\nZmREkpycklk0JCuDwUBa2llgBtrc49rY7Stp1Cid1atr4fdXJyNjKVZrAG53RJY9I4Gl5M8fzP33\nGzl79je6dh1J1673ZbaoVq0asbFrr3g+Gzf+iceTCqwHJgL99D4jsFpTmD17Gh069NCnevQBGgNO\nbLaXqVSpNE2aNOS9995g2rQfcbsP07fvl7Ru3fqy47z88pssXuzG6z0HpHPqVDscjvEYDFsAL4GB\nexgxYg0AFouFzz4bz5NPNsdovAuRTXTs2IyGDRte871RFEX5r8jOKo1IoDZahL4BiM+VEf1N/4NA\nUZR/s7S0NBYsWEBKSgrNmzencOHCt9RfbGwsDRp0JCVlDxAG7AVCATCZXiQkZDqnTkWjFeV4ETgH\nTAAO43T2ZdWq+dSsWfOyfr1eLw5HAF7vUb1fISDgLr76agAmk4kHH3yM1NRu+HzH0JaDTAdSgS5A\nIosW/USrVq2ydS5r166lSZMO+P3VgXuB7/VjnwCaAF9gsRjJyJiDdt/CDdTCYvHj98fj8w3EaEwi\nOHgWsbHrr/iHwUXVqzdj69ZX0eZJA0ynRYvvefTRbhgMBtq0aXNZoZnt27ezadMmihQpQosWLS5b\n2JeamkpKSgohISHXXPSXlJSE3++/aiEbRVGUvKZ/ht1wXHy9RYQ1gRr6Ixw4BhxHC6Zr3NwQFUW5\nKCUlhXnz5jF79mwSExPzeji5wm6306lTJ3r16nXLwTNApUqVqFWrAg5HRyAYLWsGgBe7fT3Dh79K\nly6hGI31geVomTQaEBn5LLNmfXXF4BnAbDYzZMizOJ2tgQlYrf0oVOg0bdu2Zfv2ONLSuuDzjQN+\nBFqgBaIPo2XLcDFz5sxsn8uqVavw+23AfGAIsASttHV+YA7wOhkZfrQMJgBOoDJG43F8PjvwGX7/\n/5GYWJPPPpt4zWOFhgYDKzOfm0yrKFcuiu7du9OtW7crBreVKlWiT58+tGzZ8rIAediwNwkKCqFw\n4dJUr96IU6dOXba/1+ulR4+HCQkJJyysMPfccx9paWk3eHUU5faTkZHBggULmDVrFidPnszr4Sh5\n6HpTOD7i2nNCmufgWBTlP+XMmTPUrt2UhISCgBWn81k2blxJ0aJF83pot4UTJ04watRYzpxJpGvX\ndtx77714PB7GjBlHZGQ4LVsmkJJSkbVre2Oz3YXIfmrWjKRv3758880c/P6+aB9hJ4HGJCScoGrV\nqtc85vvvDyc6uiyLF68hKqooL7zwMU6nk+RkN15vQb2VARiMFvTu0bdVYcOGaVfs81qioqKAQMCi\nb3Hoj3zAB0An/Rwmo82k2wcsxuPxo91V7wSsx++/m/j4a/9xsmvXLmAd8AfgxufbTPfuP2d7zABz\n585lzJjv8HoPAmHExT1Pr179WbRo9iXtPvjgY+bNO0xGxinAzPLlPRg69HVGj37vpo6rKHkpLS2N\nRo3uZvfuVAyGCAyGgaxcuZBq1VSGK+X2ktfzyRUlVz3xxBCxWJ7MXMRlMr0uXbo8mNfDui3Ex8dL\naGhRMZmGCIwVp7O4fPbZ59K0aVtxOO4V+FSczubSoUMPOXz4sHz33XeycOFC8Xq9IiLicoUKHM+y\nKO9VgUiZOHFi5jGWLVsmQUFFxWjMJyEhJWTLli3y7bfTpGTJalKkSAV5/fXh4vP5RERkw4YN4nCE\nCcwVrSR3HYHOWfofKtHRNaVIkYpSokRViYnpIoULV5BSparLjBmXZq7wer1y9OhRSU5OlpSUFMmX\nr7DAmwLbBJ4WkylYL829Tczml8VoDNAzieTTs3J0E4Oh4CUZMqCmjBo16qrX0+12i9Fo0RdDzhKY\nLU5nd5kyZcpNvT8vvPCSwFtZjn9I8uWLvKxd69b3yaWFXxZJ9erNbuqYipLXRo8eLQ5He/m7uum1\nF0Ur/y7kYiXCysD9QO8sj9yU19dSUXJVq1ZdLgsuatRontfDui18+OGHYrX2zXJtNkqBAsXE5Sol\nkKFvc4vDUVAOHjx42f5lytQQmKa3yxCtEqBLAgPD5PTp0/LXX3+JweAQrfLgNIGBYjIF6OW3lwls\nEqezlgwf/l5mnwsWLJDSpWuIwZBfoIdAmMBIgefFZAoQu72iwB8Cy/XXxgosEaczUpYsWSIiWnnx\niIhS4nCEi9UaIOPHfyaHDh2SZs3aSXh4Gbnnnq6yadMmadmygxQuXF4qV64jJlNRPfvGOoEKolU0\ntAns1s/vtFitYVdMDXiR3++XwMBQgd/1fZLF5SqfOa7smjBhgjidrUSrsigCX0t0dL3L2j355DNi\ntT4hF7OwmEyvyH339b6pYypKXnvqqWf1/+cvfi7tloIFS15/R+VfgVwKoN9Am0x4CvgSbQHhrNw4\nUBZ5fS0VJVeNHPmhOJ3NBC4IpIrDESPPPPNSXg/rtvD228PFZHo2yy+q/RIQUEiCgqpn2eYXl6uE\n7Ny587L9N27cqOdqbiJQRr+D+6oEBbWROXPmSMeOXQUKCDwgWs7nlwUC5dLS3aulXLk6l/SblpYm\nBQoUFpipB7XdBBxiMuXXA+eL+36qv/aMQHWJiCglPXr0k4IFiwl8rrfZJyZTiDz88GOSlJR0xetw\n112ds/whIAKzBcIFBgsESmBgB3E6i8hLL71x3Wv6008/idMZKkFBHcTlKiUPPvjYTeeG93g80rBh\nawkIqCpBQfdKUFAh2bRp02XtEhISpGTJShIY2EgCA1tIREQpOXbs2E0dU1Hy2syZM8XlqihwUsAr\nVusT0qHDA3k9LCWHkEsB9Ha04il/6s8Loa12yU15fS0VJVd5vV558MFHxWSyidnskPbtu0lqampe\nD+u2sG3bNnE6Q/U79OvF6Wwm/fsPlmLFyovJ9JrAJrFYnpby5WtKRkbGFfvYv3+/GI1mgedFy+vs\nk4CA6vLDDz+I2RwgcFgPShMECok2PeJiLua/BCZIjRradAOv1yuHDh2S06dPy8aNG8ViCRat0EmI\nwC8CJf4n0H1aD9r76f++LDBeD9q/zdKuh5jNdaRChZqyb9++ywLazp0fFPjofwLzTgIiLldFeeed\nd64YuF7NwYMHZdasWbJ27dpbLqzk9XplyZIlMnv2bImPj79qu5SUFPnll19k3rx5kpiYeEvHVJS8\n5Pf75aWXXhez2S5ms1Pq1m0hCQkJeT0sJYeQzQD6RtN1bERLYbcJbfn5BWAXUC47B8sm/XwU5c7m\ndrsREVwuV14P5bayevVqhgx5jfPnE7nvvnaMGPEa8fHxPPro0+zatYdq1SozceLHhIWFXbbvypUr\n2bt3L0uWrOTnn7eRktILh2M10dGJTJkyjgYNOpOcvDfLHtXQ8kVvRksjdxQQIiIK8corTzNmzBcc\nPRqPz5dC3759Wbx4FQcOvIeWicMIPAN8of+biFZOuzNQEvAC7+vHWQoMQiuznYyW6CgKWIvV6qBq\n1UosXjwnMyOGlrKvJW73I4gYgc+BBUBB7Pbq7N+/ncjIizmvFUX5J3g8HjweD0FBQXk9FCUHZTeN\n3Y02nAC8jFax4FkgBdgC9M3m+LJDBdCKomRbTMz9zJ//O9AYi2UVMTHNCA0No1SpYgwY8AQAhQuX\n5uzZUUBXtLRxXdAyaoxCy1SxEC1J0YPAarTMGNuBVFyulpQvb2fLlgT8/jr6vi+hZc44qfcpQBJa\n2rl8wCv66P4A7gIqoWUELQJYgZ8AGzZbf7p1MzN16meZ57Nr1y6+/PJr/vhjM2vXbsRmq0dGxh+8\n886rDBkyMMeum4gwadJkfvllOYULF+T114dSqFChHOtfURTldpbTAfSnwDRgTZZtJYAg/p7OkVtU\nAK0oeSg+Pp4LFy5QokQJLBbL9Xe4BSkpKRw5coTIyMhbKrYxatTHPPvsm8AhtMD1BFAKk8lO+/Zt\n+eabSbhcLjZt2sS993YlIeEvzGYHIsF4PJOBt4BHgZ56j8uB19HSzPVEy/v8JGbzN3i9b6BVLBxK\n8eIRHDmSgshw4CG0YLw+8CTax+h4tJlvz2A2H6Jo0UIcO1aajAxBu1P9sH683yhbdgi7d2+44vnt\n3r2b3bt3U7ZsWcqXL3/T1+lKXnjhFcaPn4/bPQSzeSuhoXPZuXMT+fLly9HjKIqi3I5yupDKHrRk\npIfRvoOsDhwk94NnRVHyiIgwcOCzREVVoGbNNpQuXZXDhw/n2vGWLVtGREQJ6tbtQHh4FN98k/18\nyheNGTMJKI8WPINW86koPl8H5s5dRfv2XRk/fjynTp3ixIl9nDt3mpSUM7z77jNUrPgqBQsexWJZ\nyN9T4X5Fm4ZRA23tdAYm03y83reAp4EBwOccPXoekbNod5L9QFlMpg4EB08F0oHX0O5St8Rk8rF2\n7TJ69ChM/vyxGI0/6/uAybSQcuVKXfX8ypUrR0xMTI4HzyLCmDGjcbt/AXrj9Y4iKakKc+fOzdHj\nKIqi3CluNNKOArqjTeFwot2Vns7fVQRyg7oDrSh54IcffqBPn7dISVkJ5MNkepfatZfx+++Lc/xY\nqampFCpUnKSkGWh1meJwOJqya9dmihUrlu3+SpasxsGDx4Cv0QLXUWjzjUcDTwBWTKYywGHCwwvw\nyScj6NixY+b+SUlJNGzYmh07zuLzOQAP2jSOjzCZbFitVlwuM2fOvIA2t3k5WjnvJOATDIZGOBxF\nMZsDCQo6y7p1y/jyy295552PMBqLkZq6n+rVqzBixEvcfffdeinve/D7CwFOTKaDbNmyhsqVK9/0\nNb0Zfr8fm82J1xvPxT8+nM6ejB3bgn79+v2jY1EURckLOX0H+qJDwEi0O9Dd0cpf7czm2BRF+Rf4\n889YUlI6cDGQ8vn6sH177nzpdOzYMUQC+LuoaTRWaxV27959U/099VQ/bLZAtI+pR9CmRjwK9AeG\nAR/j8x3G52vC8eMv0LnzY1itLqpWbciuXbsIDAxk06ZVzJ79IRUrmtHuEYwGRuHzPYNIEsOHP4/R\n+AIwCW3+cwVgNxCJy9WcoUO7MXv2CHbt2kxoaCj79x9CJIOUlF34/fewaVMvOnfuy88//8yzz76B\n3/8BMAUYhdHYke++y+0MoZczGo106/YgDkc3YAUGw2gslmW0bdv2Hx+LoijKv8H1SnlnbXcP2m+l\nlvw9MVBRlDtMmTKlcbkmkJLyMmDHYPiFEiXK5MqxIiIi8PnOAVvRMmEcJT19OyVLlrzuvklJScyc\nOZOUlBTatGlDmTJlGDx4IBaLhWeffROP5yvgbrT1zwOBofqeJfTnMxCJJCNjCLGx4dSt24RZs75l\n+/btFClShMqVK7Nz5wFEvkNLPgRpaUksX74Gv9+NVso7Au1jMQ54E7//D9q1e53q1asD8MQTTzNj\nxmHS0mKBv9AC7odwu8cwfPg4Tp48BdRCmyICGRk7OH487lYv60358stPKVz4bRYseJWIiIKMGbNc\nZfhQFEW5Sa3Rbo2cRJvc9wAQkI39i6IF23FoS9if0rcXABaj3d5ZxN8TFrPKm0SAivIf5/P5pGPH\nB8TpLC5BQfWlQIEisn379sva7dixQ+67r7e0aNFRJk2afNN5hWfMmClOZ4gEBzcWhyNUPvxwzHX3\nOXfunERFVRSnM0bs9sfE5QqVNWvWZL4eHFxctIqCIvCCaKW8L+ZSXicQrf+8Qs/lPEiglBiN+cVi\nGShWa3ExmWoIVBdYnWXf4VK3bmMBq8CZLNvvF7DKyy9fWtAkIqKswPYs7UbqxVXmSK1aLaV//8Fi\nt3cUrZjOIXE6y8uMGTNu6jqKiBw5ckR69XpUmjWLkffe+yiztLmiKIpybeRwIZVlaN9/FrjJ/cPR\nbiuBFnjvRvu+833gBX37i2jTQ/5XXl9LRflPOnnypKxfv16WL18uK1asuGLxiwMHDkhgYEExGN4X\n+F6czmh5990PbvqYx48fl2XLlsmBAwcytyUmJkq7dt3EZguU0NBiMn36d5mvvf32cLFae2cJTGdI\n5coNxefzybZt2yQoKEKglMBcgbcEnAKTBH4WrfJgD4F5AkX14inNBFwCQQJf65X+3tOLn5TX234h\nFkuQOBz59P7qCfwq8L5AhJhMQZI/f6TY7UESE9NDLly4IBUq1NULuRQTrdJhOYEu4nQWl3ffHSmb\nNm2STp16itlsE5stUN56652bvoZnzpyRsLBiYjINE/hBnM6G0r//4JvuT1EU5b+EXCqkklPmAJ/o\nj6Zod7bDgRVoS+ez0s9HUZR/yv/937f07z8IiyWKjIzDfPXV59x//32XtRsx4h3eeCMer3esviWW\nsLAOnDp1MMfG0rFjTxYuNOHxfAzsw+nsyLx537Bv3z4++2wSW7c2QVskCLCDQoU6EhBg5+jRc6Sn\nJ6L97e5ASzV3CoNhD7Vr16JkyYLMmLEQkUDgLNqUji5oX5AtB/qhTff4UX/+LfARRuNf+P12tLzN\nxYAM4BjQGGin7zcEcGCxrCcmJpTmzesycODLaHmliwGdsdl2ExDgxOMJwu9PpU6dysyfPxO73X5x\nEctN+frrrxkwYA4pKT/qWxIwm4vg8aRgNN7ochdFUZT/puwuIrzROdA5IQptEeJ6tISoJ/XtJ/Xn\niqLkofj4ePr3f4rU1NWkpkYDW+nbtyV33dWCAgUu/RJKRPTKeBeZyOm/d5cs+RWPZzsQAoTg8TxI\n164P4PE0wO2uDUxEmwnWFtjG+fMJnDzZFJgJzEPLxxwOCAaDm06d7uGHH74BoEyZ4bz33sekp/vQ\nsnS+gva52RGt2l8iJtMurNayWCyheL0JeDwxwJdoNykeRJuh9hE220Y8noVowXosUJaMjI3Mn59B\n7drRmEz98PmqAc2A/Hg8PfF4pgNjgQ6sX9+FUaPGMGzYxTnaNy41NZVhw97i99+3YDanI5I/y6tG\nQFA3IhRFUXLeP3VbIgD4ARiMlu8pqxyfd6IoSvYdOHAAq7U0EK1vqYbJFMEDD/TDanXhdBZg4MDB\nJCcn06NHdxyOaRgMo4G5uFw9eeqpx3J0PMHBIcAu/ZlgNG4nKakobvdstOKo36OlqtsEbMHjSUcr\ndmJCSxTUG4PhKGbzEe65p0Fmdb/du3fTtm1LFiyYSYkSUWiFVU/ox0kHtlOgwJcsWTKbjRsXsGjR\nBCpWrIzP1x3tI9ME3Ads1gvMJAExaHeif0HL2vEd6elGChQogNW6C3hP3+9HtKIqPwPPAxZSUzuy\nefNOjh49ytq1azl9+vQNXR8R4d5772fChH2sWzeIdetKk5a2CJPpTeBnnM5O9O7dD5PJlN1LryiK\nolzHPzGFw4L222IB2m8W0H4rNkOrTBCB9j3pZVM4Xn/970QfzZo1o1mzZrk8VEX574qPj6dkyWhS\nU1ehBdFbMJmaYbE0IS3tayABaEFAgJt161bi9/sZNuxdzp5NpEeP9gwY0P+WpiD8r3nz5tG9+yN4\nvQ9gsezDbo/l7NkHgRF6iwNo6e92A/kwGEIQKQnUBE4BG4mOdvLUU0/Su3dvbDYb/foN5LvvfsRi\nKUpKyi58vhi0ZRmTgPY4HOtp0SKKn36accm59O8/mKlTL+jVCgXojtm8lLJly7FjR3/gCJAGvKPv\ncRyHowrx8QeJjCxHSoofbSmJD+2ueSDal3IJ2O2dqFjxNLGx27BYIoFzzJgxlfbt213z+pw4cYJS\npaqQlvYX2ses4HJVo1atwqSnC23bNuWll57DbP4nv2hUFEX5d1ixYgUrVqzIfP7mm2/CPz+1+aoM\naBUNPv6f7e+jLR4EbbKhWkSoKLeB//u/b8XhyC9BQdXF4SggoaGlBDZlWaw3RqClVKpU76aPsX79\nemnZsqPUrn2XjB07/orZO3w+nxw7dkxatWovkZElpUWLu+XHH38Up7OwwB8CpwTuE3hEIEUMBpsY\njYECJfSsG0X17BrPicPRWqpXbySzZs0Sl6uynvFCBL4UqKb/vFSgqtStW1dOnDghbdp0kMDAohIW\nVlZGjHhPzp49K1WrNhCXq5TYbEWlSJFysnjxYmnTpqvAZIG1AhEC6wXOiNXaXbp0eVDGjftEbLZm\nAp7MLB7QRqCnmExh4nQWlfDwkgLF9cWMdQXaitOZX1JTU695HU+cOCE2W4EsffslMLCmLF++/Kbf\nG0VRlP8qbrPZEI3QatRuBbbojzZot2KWoNLYKcpt59SpU7JhwwY5ffq01KrVXGBqlgC6j0BpcTiC\nb6rv7du3i8sVKjBR4BdxuarIO++8n/l6YmKitGrVUYxGs4BLjMYXBBYJtBNwSv78ERIUFC5gE6gk\n8K1ASzEag8VsDhQ4K+AXCBbYkRlYOhwNpWfPnmKxPJ3lXBIF7PrPXoEa0rhxSylcuLSejeMTgfli\nNEbLsGFviNfrldjY2P9n7z4Doyq2AI7/t+/eTSGQRDqBSO9VehEEaSIdEQREbDxQFJGi8GxgA0FA\nUFDEJ6KgIAoq0g2999AJvQQCgWQ32Xbeh11iIi2BQFDn9wVyd2bumbshzE7OzMiOHTvStod7++23\nA2WnCjwtECRmc1DaLhzt23cVGJPunrsEQqRZs3YSExMjK1euFKMxSP7cEs8pECVWa6QcPnz4hs/S\n5XLJAw80ELO5jsB3YjY/KyVKVJaUlJRbem8URVH+zbjHd+HIikB/FEXJKevXr6devaa4XK2BS/gP\nIH2A4ODlXLp0LMvtDR48jPffB5EraRibyZ+/KydO+HOd27Xrzi+/GEhNbQt8AKwMlHMBkcD7hIW9\ngc0WxMmTFfGnTdQATmAyzcftPoZ/dwwr4MC/AwdAFx5/3MjcuetwOLrj/znpBCbjz5vejk53kCZN\nyrNo0Sr8n/1/wZ/zHEtYWFMSEv7sb3x8PB9++CFjxkzA43ke/2GtBylcOJkjR/48RbFJk2YsWZKI\nf0dQGzAUq3UaTudpAA4cOECFCo1xOo+ke0q1sNliuXDhDBaLhWu5fPky9es358CBC7hcgl5/jk6d\nHmXs2PcICwu7Zh1FURTl+u7UUd6KovwL1ahRg759n8R/it4jwAZgNB5P8i21ZzQa0Olc6a64Mixy\nW758Gamp/wU0wMOfEwIe/PnDHfF6IwPX/oN/t43XgBAsFjc63fv4l1gE499S7gz+LeR+4ddfFyNy\nEf+HAAcwEb0edLpv0Ok2YzC4WLz4GPByoN6Tgfu70Ov/jPHMmTOUK1edMWNO4/H8B5gOPA1s4sSJ\nIyQn//lsKlSoiH/wXxQoAfxAZGR42utRUVFERGjodKPw521/AWznm2++vO7gGeCNN0YRGxtFUtIO\nXK5deL3dcLm8avCsKIpyl6gBtKIoN1S6dGk0zYR/QBkKbCVPnlvbebJXrx5o2nR0uneB/6Fp3Rg8\nuH/a63nyROLP+KqHf3a5N/At0Ab/FnM+XK5j9O/fG03rCXyFTvc+dvsXzJ37NVWq/IrBUAv/zhpH\n8C+GfAkIJiHBSEpKa2Am/l0xvsXnKwC8jIgOj0cQWQe8AazCv+75A+ARBg9+IS3G8eM/ISGhBR7P\n9EA7U4DhwB5MJjM2my2t7DPP9EbTjgK9gCex2dwMH/5y2utGo5EVK36lWrVFaFopihYdy8qVv/Po\no4/e8Dnu2nWA1NSW+H+E63C7WxIbeyDzb4SiKIryj5XT6TCKooiI0+mUSpXqiN3eQGy23qJp4bJw\n4cJbbm/Xrl3StWtvadGic4bTBUVEli9fLpoWLpr2pGhafQkLKyiFC1cQkylCjMZeYjQWkubNHxWf\nzyezZs2Wli27SJcuT8qOHTsytDN27ASBMIE+AhUEeor/WO53/pKPXDzw9+oCxdK9JgIlBPJLgQL3\np7V78OBBqVatjvhPKbxSbqtAXtG0vDJt2vSr+rt9+3bp0uVJadmyi8ye/f0tP7f0hg9/S2y2VoEF\nhB6xWHpI797/yZa2FUVR/o1QOdCKomS31NRUfvzxRy5cuECjRo0oWbLkbbUnIiQnJ2O326/a+u7A\ngQMsWbKEkJAQ2rRpg8/no0mTVmzefAK3uwF2+zY6darBF19MvGH7RmMIPl9e/OkgPvxrlnPh35I+\nP/AcUA74EKgJ7MI/k9wV+B54HZ1Ox759m7n//vvZs2cPNWo0IDm5Hj5fDDAXuA+zuQ+1a5sZPXok\nVapUueV+38i0adP56KOp6HQ6hg79D48+2oZHHulCTMxqdDojZcuWYPHieYSEhGS6TUVRFOVPWc2B\nVgNoRVHuqqVLl9KuXVeSkxPJkycfv/zy/TUHntOn/49nn+2Ly+VCxBZIrygBXMJiieLgwR0UKFAA\nAJ/Px+rVq0lMTKRGjRrYbDZCQnIjouE/sTASeAaIByLw5zgHAW8C6/GnbLyAf3fNVKAMUI0KFbax\nbdsqAB5//ClmzoxGZAjwNTAEozGZPn16Mm7ce4FDVTLyer2sXr2aS5cuYTab6datDwkJZwgODmPu\n3Jk0aNDgps/r66+/4ZlnXsfh+ATwoGnPMnPmRFq3bs3Ro0fxer1ERUURFxfHzp07iYqKokKFCll4\nRxRFUZSsDqDvZTk4ka8oyp1w5swZCQqKCOy7LALfSp48Ba/a83jLli1is90XSLPwCbzSsdFhAAAg\nAElEQVQpUCttWzq7vajs3r1bpk6dKs8+219KlaogdnspCQlpKqGheWXjxo2iaeGBfZevpFqsFygQ\nSOUoKGATqCLwisB5gT0CwYF0jlZiMoVkSA1p0aKzwP/StbdAatR46Lp9dblc0qBBCwkKKishIU1E\np7MLfBiou1CCgyPl/PnzN31mtWs3F/gh3X2nS/PmnTKU+frrb8RmC5eQkBaiafll6NA3svjOKIqi\n/LuRxRQOdUSVoih3za5duzAYSgEPBq50JjV1GEeOHGHlytV88MFkdDod1auXRKdrhX8mGGAI/sV9\n+zAYZhARoTFixLssWHAAh6Mt/tnkSPxHZc+ge/fn6NSpDV9+eSHd3ROBcPwnGA7DZBqPSBweT1Mg\nHputHw8/3Irw8CBCQ0MZMOBT8ufPn1a7a9c2LFs2HKezBGDGYHiJdu2eum5fp02bxoYNqTgcW/H/\nqJ0KfIl/l4+m6PXF2L17N3Xr1k2r43a7SUpKIleuXGkpHlarGf8Wgn/2w3/Nz+Fw8NRTz5GSshKn\nsxwQz9ixFXnssXaUK1fu5m+KoiiK8o+S0x9GFEXJZrGxsWKz5Q3M+IpAnFgsIfLZZ1NE04oFZqYX\ni8VSWCyWqHSn7K0WCBIIlaJFK8jq1avFao0QSA68nir+0/y2C5yQ4OBIOXjwoFgsuQSGBQ5FKSjQ\nX6BaoM4p0euNEhVVXiIji8lzzw2Q1NTU68aemJgoQUHhgVnsKNHra0mVKvWueZKiiMigQUMCM+dX\nZo4PC+QP/D1erNYIOXDgQFr5iRMni9lsF5MpSIoXryRxcXEicmVhZYTAaIF3xWrNJSNHjpRdu3aJ\niMjhw4cDJzT+uQAyNLSpLFiwIBvfOUVRlH82sjgDrbaxU/7Vtm3bRr9+L9Ov38vs2LEjp8P5xytV\nqhTPP/8kmlaVoKDH0bTavPvuO3zzzc84HKPwz0w3JjX1fYKCjBiN5YEO+Peg/gb/ns56QkNDMRpD\n8R9OAmDGf8BpEgbDJCpVqkqxYsXYtGkl4eEzMBjew2QqBEwDxgfqhKPXG9m1ay1nzhzkk0/GYDab\nuZ61a9ei15cBjgOH8flWsnv3Hk6ePHnN8jVqVMVu/w44Bwh6/QT0+pRAv6sxYEBfoqOj09p+5ZU3\ncbm24XZf4uDBjrRp8zgADRo0YPHieTzxxD4qVpwH2Hj33fVUq/YgEyf6Z8ktFgF+DNx5K273ZsqW\nLZvl90dRFEX5+8vpDyPKP9y6desCebJvCPxX7PZw2bBhQ06Hddt27twpNWs+JAUKlJJOnXrKxYsX\nczqkq6xatUqmT58umzdvFhGRFi06CUxKN4s6UVq27Cxt23YQna6VwN60vOMyZWqKy+WSYsXKi9H4\nmkCs6HTvCNjFYgmXkiWryPHjx9Pu5XK55KeffpLOnR8T/xHf0QIjxGx+UurVezjTMa9YsUKCgsoL\neAOxXBKzOVji4uKkW7enpUCB0lKtWqO0Ph0/flyKFCkrYBG9PkRKlKgsv/32m0yfPl3WrFmToe1x\n48aJxfJcuv6niF5vlMuXL8uZM2fE5/PJgQMHxGaLEDgdKHNILJZQOX/+vKxdu1bCwvKLzZZXbLZQ\nmTVrdja8S8rRo0elceM2UqBAKWnWrL2cOHEip0NSFOUOIYsz0PeynH6Wyj+cf9D2SbpBy8fSpk3X\nnA7rtpw9e1Zy5conOt0nAjvEbO4ttWtff6Hb3ebz+WTJkiXyzTffZEhfWLNmTeDDzDsCb4umhcu6\ndevk4MGDEhISKXr9EIHRYrPllblz54qIyIkTJ6RJk0clb977pX79FrJ9+3Y5ceKEeL3eq+77v//N\nEE27X+APgRiBglK9er0sfbhwu91SrVoDsVrbCUwUTast3bs/LU2bthWLpWsgfeQLCQ6OlEOHDknR\nouXEYBgmsEb0+pekUKGSVy2WvGLOnDlit1dNl7KyWDQtXEwmTSyWMClbtob88MMPEhpaJ0OqRnBw\nSdm5c6eI+D8oHD169Lr3ULLG6XRKoUIlxWB4Q2CHGI1DpVix8uJyuXI6NEVR7gDUIkJFyZykJAf+\nLc2uiCApyZlT4WSLP/74A6+3CiLPAeByTWbDhlwkJiYSGhqaY3Ft3ryZSZO+4PfflxEf78RorIbX\n25/Zs6fTokULatasycqVv/Ppp18C8Oyzi6hUqVKg7mo+/ngSSUkH6d59Jg0bNgQgf/78LFo0N1P3\nnzZtNg7H2/hPOAQYi802Pe2ZnDt3jvfeG8Px42ewWMDl0lG6dDEGDhyQdrKg0Wjkjz9+5aOPxhEb\nu43atZ+gV68e2O0h+HyXAQtQHpHfmTFjBvHxbrzetwAdPl9NLl5cxM6dO6lWrdpV8bVp04ZGjb5l\n+fLK6HSlSE1dhNcbidu9E4hk794hjB79KR7PXmAlUBdYgE53kaJFiwJgMpkoVKhQFt8Z5Xp27NjB\nxYsWvN7hAHg8b3P27Pfs3btXLc5UFEUNoJV/r969O7Nx4xAcjkjAh6YNo3fvd3I6rNuiaRoi8fg/\nSOuAi4h4sVgsORbTunXrePDBVjgcLwHdgdHAAKA/Xbt25OLFUwBUrlyZyZMrX1U/OjqaceM+zNI9\nU1JSmD9/PsOHf0hCwjlMJgv+vZ+vOMPateuoWLEuY8a8wRNPPEt8fBPc7n34jxB/Cqv1d376qTlr\n1izGaPT/qLTZbAwdOjitFa/Xi15vwOc7j/9wFgHOEBpaG6/3Ev49pa1AKl7vRTRNu2a8er2en376\nluXLlxMfH09MTAEmTAgD/Eemezz92LGjCj/88DUdOjyK2y1omoX58+dct03l9miahtd7EXDhz7FP\nwetNzHBUu6Ioyr0op2fzlX+BSZM+k+joKlK8eFWZMuXznA7ntqWmpkrFirXFam0vMEbs9kry4ouv\n5mhMrVp1EZiYLvVgskBHgY0CyOLFi6+7k8Wt+PHHeWK1hghoArMEYsVorC46nVXgSYHhgf2eZwvM\nEIslTGy2pgJnAjnSSYE4vRIUVE5Wrlx5w/sNH/6W2O1lBMaIxdJVSpSoLMnJydKmzWOiaQ0EPhJN\nayzNm7fPdD+nTJkimtZIwB2I5WspXbq6iPhTSU6fPi0ej+e2n9UVly9fltmzZ8uMGTPkzJkz2dbu\n35nP55OHH24nmtY48B42kEcf7Zqt36uKotw7UEd5K8q/m8PhYPz4CRw8eIwGDWrStWvXLB0bnd0a\nN27L0qWdgMcCV2YBHwBxQF00bRePPdaMqVPHZ6gXGxvLhx9OIDk5hSef7EzTpk1veq/Tp08THV0O\nh+NJ4AIwBRgBTAcqYzSuxuO5hD8NoioAZnMnRE7hdn8DVAdOcmWDopCQusyd+yYPPvjg1TcLEBG+\n//57Fi36g8KF8/HCC/0IDg7G6/Xy6aefsWXLLipWLM2zzz6TNpN9M263m4ceepRNm46i1xfG691A\no0b1CQ7ORZ8+j9OwYUMmT/6MxYtXExWVj2HDBpE7d+5Mtf1XCQkJVK1aj3Pn8gMhGI1rWLt22W0f\n1/5P4PF4mDz5U7Zti6Vq1XL06dMHg8GQ02EpinIHqJMIFUW5p3z33SzRtCiBhQKLBO4TMAjsT9vN\nQtOKZNgBJTY2VoKCIkSneyuwYC+/fP/99ze917JlyyQ0tK7AlwItBA4KRAjEB+51QvwnEG6UK6ca\nalqDwIz1FPGfTNhbYIMYDG9L3rzF5PLly9e814kTJ6RRo9YSFlZQKleun7aYL7t4PB5ZtmyZjB07\nVjQtt8BIgY/FZrtPWrVqK5pWXeBzMZv7SNGiZSUpKemW7jNw4BAxmfqk/YZAp/tIGjduk619URRF\nudehFhEqinIv6dSpI05nCu+9N4K4uCO4XLnxej3A/YESwRiNZTh16lRanQkTPiM5+VlEXgPA4Yhi\n+PC3ad++fYa2RYTff/+dI0eOULVqVQoXLozLtQeojT/X+hn8ucnhgRr5sVgKoNO1IyXleazWTRQp\nksznn//GwIFvcPKkB6NxMykp3QkJ0ejb9+Vrzhp7vV4aNWrFwYMt8Ho/5uLFhdSv34yDB3eSK1eu\nbHluBoOBhg0bMm3atzgcrwD+3GunMx/z5/cBDgB5cLl6ER/fhN9+++2q55MZcXEncbvrpX0tUoPj\nx2dmSx8URVH+qdRBKoqi3HE9enRn9+41XLhwmA8/fBpN0+NPrxBgJR7PhrRdNwBcLjciwelaCMbt\ndmdoU0R4/PGnaN/+ZQYMWEf9+q1ZuHAxw4cPxmarR3BwJAbDKgyGQ8AvgXv9gKY5mD79A/r3j+fN\nN2uwYcNyatWqxapVv3H48DamTfuYCxfOERdXlldfnUX16g1xOBwZ7n38+HGOHTsd2GUjCpFn8Hrv\nZ+PGjdn+7FJT3UDGZ+FnD/zpIjX1DG+/PY4hQ4aTnJycpfYfeqgumjYJ/4EvKVitH9K4cd2bVVMU\nRVHuUTk9m68oyh2yc+dOKVy4tBgMZrHb88iXX36ZYXHWqlWrRNMiBb4L7IlcTkaPHpehjdWrV4vd\nHi1/Hud9QHQ6ixw9elR2794tP//8sxw4cEBiYmIkT56CYjCY5b77isr69etvGFuJElUFfkhL8TAY\nWshHH32Uocy5c+fEbA4WSAiUc4ndXuKqA1Kyw+LFi0Wvzx2IaaFAlFgsYWKxtAnsaV1RoInA12K1\ndpZq1RqIx+MRj8cje/fulSNHjtxw4ZvP55P+/V8Ro9EiBoNZWrfuLA6HI9v7oSiKci9DLSJUFOXv\n4OLFizRo0Jz9+48Dbho0qMO8eTPTjtP+/fffee2193E6U+jT5zH69Xs+w2LIuXPn0qPH51y+PD9d\nq7moWLEMW7euznAvEcHpdGZqy7fg4LwkJa0FogJX3uCBB5awdu0fGcr16zeQadMWk5zcAU1bSu3a\nISxcOAe9Pnt/sXf06FGKF6+Ay1UZ8ADdsdvH8vDDldiyZTdxccfx+U7i32rNS1BQGX788RP69RvM\n0aPxeL0OWrRoyqxZ02+4AM7j8eD1+rc89Hg8zJkzh7Nnz1KvXj0qVqyYrX1SFEW512R1EaEaQCvK\nP0BCQgKvv/42e/fGUa9eNYYOfQWTyZTTYd1Qjx7P8u23gss1CXBjs7Vl2LAGDBv2aqbqHzt2jOLF\nK5CaOheoD0wEJmIwxJGYeB673X6TFq6tcOFyHDtWDfgUOA48SL58Zk6e3J+hnIgwe/ZsNm7cQvHi\nxejVq1emd9nIikOHDlGuXD2czqOAARCCg6vy66/jiYiIoHLlh3A4DuPPyBOCgytQpUoBVq8ug9s9\nGkhB01rw3nsd+M9/+t70fh6Ph4YNW7J1axJeb3l0urlMmzaezp07ZXvfFEVR7hVZHUCrHGhFyWE+\nn4/Y2Fj27NmDz+fLcv2UlBQeeOBBpk51sGTJY7z3XgwdO/a4A5Fmr40bt+NydcP/Y8iC09mF9eu3\nk5qaSs+ez2E2h6LXB2Gz5WHIkBFXPZtChQoxbNhLQGv8s6/TgM/Q6/W3dXBM69ZNgHX4c40rAY3I\nn//qE/50Oh2dOnXi/fdH0adPn1saPF++fJktW7Zw+vTp65aJioqibNniWCx9gEUYjb0IDU2iSpUq\nREdHU6JEISyWZ4BlmEwvcd99Bg4fPo7b3R3//wU2HI4OrF+/PVMxzZ07l23bkkhO/oOUlMk4nQt4\n5pn+We6boijKP5kaQCtKDkpKSqJmzcZUr96cqlWbUbv2Q1leBLZy5UrOnLEGZnI74nTO4ddfF3D+\n/Pk7E3Q2KVOmBCbTT/jTzrxYrQsoV644L700lBkzVuJ2RyGyhZSU9Xz00c+MHTvhqjaGDBnCAw/U\nwGZrhE7XEk3rxdtvv53pweyJEyeYOHEin3zyCWfO+E8qHDr0FfLkScJkehy9/hk0bQEfffRGNvbc\nb/Xq1RQsWJyGDXsQFVWa99//6Jrl9Ho9S5b8RLt2YDZ3BZZy7txlOnXqiYiwfPkCunY1U778cDp0\nuMzq1YsoVaokBsNPgRY82Gy/Uq5c8UzFFR8fj9dbFv9sN0AFLl8+f0sf7hRFUZS7LwdTyRXl7vjP\nf14Wi6WbgEfAI1brY/LCC4Oy1MbChQslJKRuupP+UsVsDpWzZ8/eoaizx+nTp6Vo0XISHFxJgoJK\nSvXqDSU5OVkKFiwTWBQ3K12ffpLatZtfs53U1FT59NNPZfjwEbJw4cJM33/v3r0SGppXrNYeYrN1\nk7Cw/HL48OG02D744AN56623ZceOHdnR3Qx8Pp/kzl1A4OdA/46JpuWXzZs3X7dO69ZdxGgcJOAT\ncIqmNZaxY8dds+zRo0elYMESEhJSVez2+6V+/eaSkpKSqdi2bdsWWMC5TiBFjMaB8sADjW+pn4qi\nKH8XqH2gFeXvY9OmXaSm9uXKbF9KSic2bZqapTbq1KlDaGg8TueruN2NsFqnUrduA8LDw29eOQdd\nunSJr76ahNvtJjg4mMqVK2MwGAgLC+P4cYD0Ocd7CQ+/9v7KZrOZp59+Osv3HzToDS5fHoDPNwgA\nl+sNhg17hxkzpnDfffcxcODArHcqkxITE7l8ORFoFbhSEIOhLrGxsVSuXPmadbZv34XHMwh/WoYV\nh6MtmzZdOy2jUKFC7Nu3lS1btmC1WqlUqVKmFzdWqFCB6dM/4amn2nD58jmqVm3AvHkzstxHRVGU\nfzI1gFaUHFShQkk2bZqLy9UCAIvlRypVKpWlNux2O+vXL+fll19j377R1K1blZEjR9yV47vdbjcz\nZ87k5MmT1KpViwYNGty0jojQo8ezfP/9T+h0dnS687z++uC0faDHj3+Hhx9uS0rKBvyDaB1BQfN5\n990VHD16lB9++AGdTkeHDh0oWLBgluKNi4tjzpw5GAwGjh07hc/XNe01r7cMp09vzVJ7V2zatInF\nixcTFhbG448/ftMFjKGhodjtQVy8uAh4CDiD17uakiUHXbdOmTIlOX58Dl5vZcCFzfYzFSs2u255\nm81G7dq1b6k/HTq0p0OH9ohIjh4DryiKcq+6l38yBmbUFeWfKzExkfr1m3Po0HlAuP/+SP7441eC\ng4NvWjenXTmNb/NmJ6mp1TGbZzFq1CD697/xTg+zZs2iV693cTi6AuOBDuh0MdSvH8GSJT9hMBjY\ntWsXM2bMIDY2lipVqvDEE0/gdDp54IGGpKQ8gk7nw2pdwMaNMdx///03vN8VO3fupHbtxqSmtkWn\nc6HTzUOnK4HT+T3gRdPa8e67T9Kv3/NZeg5z587l8cefxe3uhtm8n4IFj7N5c8xNB9ErVqygVauO\n6PVFcLkOM3jwy4wYMeS65U+cOEGdOk1JSDDg812iVq2K/PLL92m7rajBrqIoyq3L6i4c97IczYVR\nlLvF7XbL5s2bZcuWLeJ2u+XChQsSExMje/bsyenQbmjBggUSFFQ1kL8tAofEbNbE4/Fct87Jkyel\nQIGSAkYBTWBKoK5HgoIqy6+//nrdum3adBWd7oO0vGi9/h3p1KlnpuN9+OEOotONS6uv0w2XUqWq\nis0WKjZbLnnllWE3PHDkevLmjRb4I+3gFU17RCZPnpypugkJCbJmzRqJi4vLVPmUlBTZsGGD7Nix\nIy3WuLg4qVChtuj1RomMjJLFixdnuQ+Koij/dqgcaEX5ezEajWl5rxs3bqRJk9ZAEVyuI3Tv3onJ\nk8fekzOL+/fvx+VyAx8CnYEi+Hw+UlJSrjv72rJlZ06dehT4L7AJeBSoC5RCp4vmwoUL171ffPwF\nREqkfe3zlSA+fn2m442PT0CkZNrXIiWJioolNvb2jt++ePE8cCUuHS5XCRISEjJVNywsjJo1a2b6\nXhaLhWrVqqV9LSI0adKGQ4c64/Mt5ezZGNq06cLu3ZsoXLhwptvdtWsXP/44D5vNSrdu3YiMjMx0\nXUVRlH8jtY2dotxD2rd/gsTEcSQmrsXp3MuMGYv47bffcjqsq+zZs4fXXnsHl6sGcASogcHQh3Ll\nql138Oxyudi2bQ0+3zuAFagDNAEWAfPx+ZZTp06dtPI+n49Roz6kSpUHadq0HTVrlkPT3gIOAvvQ\ntJG0b/9wpmNu1+5hNO0NIC5Q/90s1b+W+fPn43LpgBeBeGA1JtP/aNKkyW21e4WI4PF4rvt6QkIC\nR4/G4fMNBixAEwyGuqxfn/kPFjExMdSo0ZARI84zdOgOypWrzqlTp24/+L8Rr9eLqJRBRVH+IXJ4\nMl9R7i6fzyd6vUEgJS3NwGJ5XsaOHZvToV2lXbvuotO9n26bufcld+5icurUqevW8fl8YrOFCuwI\n1HGLXl9GTCabFCpUWpYvX56h/MCBQ0XTagosFJgompZHSpasHEj/MEqVKnVumC7yV16vVwYMGCxB\nQeESEnKfvPnmyFtK2UgvKqq8wI8CjwnkEsgt3bp1z3R9l8slq1atkpiYGElJSZFLly7JsmXLZP36\n9TJz5rcSHBwhOp1BqlSpLydPnryqfmpqqphMmsDBwDNNkaCg0rJs2bJMx1ClSkOBmWnvpdHYXwYO\nHJz2+uXLl2X58uWybt068Xq9mW737yAxMVGaNm0rBoNJrNZgGT362tsCKoryz4dK4VCUvyedTkex\nYuU4cOBroDcQj9G4kPLl2+d0aFc5d+4iIsXSXSlOmTKlyZs373Xr6HQ6Jk0az/PPP4TX2xajcSvV\nqkWxZMl2DAbDVeWnTPkCh2MlEA00JSVlJocO+YAzgLBnTxvGjPmYV14ZkKmY9Xo9Y8aMYsyYUZnu\n59KlS1m8eCmRkeE89dRTBAUFZXj90qWLQDmgTeDKCAoV8maq7cTEROrUacqRI050OiO5c6eSnHwZ\nl6sgbvdZUlPP4fMtBKqybdsIWrd+jI0bl2dow2w2M2bMh7z6an283jaYTOto1KhCpnZDueLChYv4\nn7GfxxPN+fN7ADh8+DC1azfB4YjE602gSpViLF48D7PZnOn272V9+rzAihXBeL2X8HpP8PrrD1Gq\n1P20aNEip0NTFEW5ZTn9YURR7hin03nN6zt37pSIiCISHFxSLJZcMnjwiLsbWCZNnDhZNK2CwG6B\nWNG0SjJ+/CeZqrtx40YZN26czJo164YzyGFhBQV2pVv0VzzdwSMi8IM0bPhIdnXpKp9+OkU0rZDA\nCLFa20uJEpUlOTk5Q5kePZ4Vq7WNwDGBlaJp+SQmJkZcLtdNZ8f79RsoFkuvwMEoPtHpnhO4ciCO\nS6ChwPi0r/V6w3XbXL16tYwbN07mzJmT5VnigQOHiaY9KHBYYKNoWpT8/PPPIiLSsGEr0evfTfuN\ngc3WQkaPHpOl9u9l4eFRAvvTfU+9Iy+/nLWDjBRF+WcgizPQ97KcfpaKku3Wrl0rkZFRaTsmrF27\n9qoyTqdTdu7cecN0iJzm8/nkzTdHSu7cBSUsrKAMH/7WbadD/NWoUR+IppUR+Er0+uFiMuUWg+GN\ntMGOwfCadOvWR0REtm7dKr/88oscP3482+4fEhKZLt3EJVZrDRk4cKAkJiamlXE4HNK9+9MSEnKf\n5MtXXKZP/0ratn1cDAazGI0WeeGFQdd9Lo0bt/3LaYu/CdRJ9/UHAv0Cf98gISGR2da39Fwulzz3\n3AAJDc0nERFFZfLkz9JeK1CgtMD2dDGNld69+96ROHJCmTIPpHsPfGK1dpDRo0fndFiKouQA1ABa\nUe5NiYmJEhqaV2BuYNZxjoSG5pVLly5lKJeSkiLjx4+XF18cKN999122D0xvxe+//y4vvTRI3n33\nPbl48eJduafP55Np06ZLy5ZdpGfPZ+WPP/6QPHkKit3eQez2dhIeXkiOHj0qffu+LJpWQEJDHxK7\nPfyGW+FlhdFoFUgUcAo8KHC/WK0PSEREETlw4MA16/TvP0is1tYCyQLxomnVMgxI0xs27L9is7UR\nSA3kg3cQeCDwvXFJoJwYDBGiaU+KpkXK7NnfZ0u/sqJ16y5iMg0IxHRZNK22fPrptfvzd7Ry5Uqx\n28NF056QoKDGUqpUVUlKSsrpsBRFyQGoAbSi3JvWr18vISGV083miYSEVJQNGzaklfF4PFK79kNi\nszUXGCV2e3kZMGDwDVq98yZN+kw0rbDAO2KxPC5Fi5a9atB/q86cOSNt23aT6Ogq0qZN15vOup89\ne1amTZsmX375pZw7d05iYmLEbi8mcDHwTFdKcHD4bX3oSEpKErfbLS1bdhKLpZvAYIGWcmW/a73+\nfWnUqPU165YpUyvdntAi8IU8+mi3a5ZNSUmRJk0eEas1Qmy2vFKpUh2BIIGCgQWJ3cRoDJWRI0fK\njh07RMT/oWLixMlSunRNqVChnvzwww+33M/MOHv2rJQpU100raBYLGHStWvvf9xCwkOHDsmUKVNk\n5syZ4nA4cjocRVFyCGoArSj3piNHjojVmlvgTGBwdUas1txy9OjRtDJLly6VoKAK8ufhJPFiMmly\n+fLlHIs7JOS+DL/G17RHZMqUKbfdrsvlkhIlKovJ9JLAOjGZXpFixcpLampqptv46quvJCjosQwf\nSoxGLUOaRWbFx8dLjRqNxGi0islkk+HD35KOHXuI2Zxb4ON099gqhQqVvWYbDz3UVnS60WllTabn\n5MUXr59T6/P55OjRoxIXFyebN2+WoKAyAgcETgmIhIY+ICtXrkwrP3nyFNG0kgKLBX4WTcsvv/32\n21Xtbt++XebOnSt79+7N8nP4K4/HIwcPHrzmLiDpXbx4URYsWCCLFi3K0nuoKIpyLyCLA2i1D7Si\n3CWFCxdm4MAX0bQa2O090LTqvPLKAAoVKpRWJjk5Gb0+L3BlV4rc6PUWHA5HjsQMkJqaDBRI+9rr\nLUhSUtJtt7tnzx5OnkzC7f4QqIHb/R7x8V527tyZ6TYqVqyIz7cM/97QAF8TEZHvlo5C7979WbZs\nKYfHk4TbvZ8PP5xOr16dmTDhPTTtG+AS4MNk+ozq1atcs41HHnkQkdeBFkB9RGbywgvPXfeeOp2O\nQoUKUaRIEaKjo4GzwDEgL7AWt/sAJUr8eXjMp5/OwOEYCzQGWuFwDGfq1JkZ2k5vUScAACAASURB\nVHzrrfeoWbMZPXp8TuXK9fjss8+z/CzSMxgMFCtWjHz58l23TFxcHCVKVOKxx0bTrt0Qqlatny3f\nI4qiKErW5fSHESULkpOT5cKFCzkdxj3N6/XK2bNnZcWKFfL555/L6tWrryoTHx8vuXLlE53uM4F9\nYjK9IBUr1s7RPOj27buL1dpeYK/AXLHZ8siqVatu6Vf5Xq9X3nxzlBQtWkmKF68sFkveQA6wf6Ge\n3V4kLV0hsyZN+kzM5iDRtAISEVFYtm7dmuW4RERy5covcCTdTPMIGTr0NfF6vdKz57NiNgeLzRYp\nlSrVkXPnzomIfwY5Pj5eXC6XzJ8/X/T63AIDBf4n8K2YTF1k0KBhmY5h0aJFEhQULppWUOz23PLz\nz/MzvF6zZlNJv2czvJu2kFJEZP/+/WKzRaTNYMM+sVpDb/hvc+vWrVKz5kNSpEh5efLJvlftNJIZ\nzZq1F4PhnbTFeBbL4zJs2Igst6MoipJTUCkcyt3k8/mkX7+BgV97B0mdOk3v2iKzv5NNmzZJZGQR\nsVjCRNPC5Mcf51237I4dO6RKlQYSEVFUWrToKGfPnr2LkV4tOTlZnnjiGYmMLCYFChQXqzVULJYw\niYgoLBs3bsxSW2+8MVI0rZrAGoF5otfnEovlIYFPxWZrKY0atbylgfnly5fl8OHD4nK5slz3ipIl\nqwl8FxgEesVme1g++eTPrfni4+Pl2LFjafHt3btXChcuJRZLLrFYgiR//uICZQViMuRAV6xYN0tx\nOJ1OOXTo0DXzcRcuXCiaFikwWnS6t8RuD5dt27alvb506VIJDa2XIaUlKOh+2b179zXvdfz4cQkO\njhSYIrBZrNaO0qpVpyzFKyJSvPiV9/TKfadIx449s9yOoihKTkENoJW76csvvxRNqyJwXsAtZnMv\neeyx3jkd1j3F5XJJnjwFBb4NDC7WiaaFZ8h9/js4duyYaFq4wNpAP2ZJnjwFMzVo3b9/v7zwwkAJ\nDi4osC7dQGuk1KxZXzp16iWjRr2fI7mzXq9Xpk79XJo3bycmU5AEBbWRoKDqUqNGI0lJSbluvaJF\ny4lONyHQj92i04UKNBfoIP59nC8L1BOTKVQ2bdqUbfHGxMRIjx7PSp8+/7lqtv7UqVOiaXnSDWZ/\nkZCQ+647qzxt2jSx27ukez8cYjCYs/xBpGfP58RieULALXBJNK2ufPzxhFvuo6Ioyt2GOolQuZtW\nrFiHw9ETyA2Ay9WfVau652hM95oTJ07gdArQOXClBiZTFXbs2JEh//let27dOgyGisADgSsdcTpf\n4sSJE0RFRV233v79+6latS5JSb0RsQLn017T6y9Qt25tPvgg86cD3q7Zs79n2LB3SUlJoVevLpw8\neYZvvlmPw/EEFouOPHliGTduJC1atMBkMmWou2/fPnr16s+BA/s4e/YocCW/uTRGYzNE1uHxxAMR\ngAfogtEYzcaNG6lS5dp501lVt25d6tate83X8ubNy6xZ0+ncuSU+nxGLRc/PP3+PpmnXLG80GhE5\nAbgBE3ABvd5wzZMhRYT4+HgsFguhoaEZXvv44/fYv78DGzdG4PO5ad/+cfr2vX7ut6Ioyt+dGkAr\ntyU6uhBW60pSUv4D6NDpYihUqGBOh3VPiYiIwOe7DOwBSgEJuN27KFjw7/GcRITnnhvA559/isdj\nAxLwf2Dah9d7iYiIiBvWHzduEklJTyPyFlAD6AG8il5/lqCgr3j++TXZHvPWrVvZuXMn0dHR1KpV\nK+360qVL6dGjP07ndCAPH3zwNKmpu/D5TgOhpKY+x/nz1QkKCrpq8JyYmEitWo1JSCiG/zhxM1AX\nWAgYMBo3UrlyYVavPg18AzQArBgMNShYsGO29/F6WrZsSULCKeLj47nvvvswGq/9Y/6772bTp89/\nSE0FuA/ojab9yksvDUavz7i+/OLFizRr1o5t27bi87no2fNJJkz4kEWLFnHp0iXq1atHTMxvnDt3\nDpPJRK5cue54PxVFUZRry+nZfCUTkpKSpHz5mhIcXENCQlpIWFh+iY2Nzemw7jmff/6laFqkBAe3\nE00rLC+/PDSnQ8q0L774IpC3fEFgiEBeMRqbi80WKVOnTrtp/V69nhP4KF2awMcSElJQBgwYJIcO\nHcr2eMeNmyialk+CgrqI3R4lAwf+uYivd+++AmPSxfKLgJZu20CRkJCH0o6yTm/hwoVisZQQ/2mB\nlwLpCp3FaCwhFkt+MRhCJCiok1itZUWvD5Xg4EfFbi8pHTo8cU8chpPeoUOHAuk4W9PScSyWMPn6\n66+vGWunTj3FbH468JwuiqbVkCJFSkhQUA0JDm4vQUERsm7duhzoiaIoSvZA5UArd1tqaqr8+uuv\nMmfOHImPj8/pcO5ZsbGx8t1338n69etzNI4zZ85Is2btJTw8SqpWbSg7d+68Yfknn3xeYFy6QecM\nyZ27wHUXpv3V0qVLRdPyCcwXWC2aVknee+/GxyWfO3dOWrfuIuHhUVKpUj3ZsmVLpu6VkJAgFkuI\nwOFArOfFZsub9qHuxRdfEb3+lXR9mSOQS3S6HgKbRa8fI3nyFJKEhISr2o6JiRGDIV9gwd2V+qvl\nvvtKSK5cBQSWpO0momk1ZMCAAbJixYpbHjyfPn1amjZtJ+HhUVKtWiPZtWuXxMfHy9GjR9MWMsbE\nxEiZMg9IRERR6dLlyUzvFz5v3jwJCWmRYbGhzXbfdY9CL1SobLrBtv9DkMEQLeANfD1TSpWqfkv9\nVBRFuRegBtCKolyPz+eT8uVritH4ksB+0ekmS1hYfjl//vx164wa9Z5YrW3TBks63VipW7d5lu47\nd+5cKVOmlkRHV5FRoz646aCyevWGYjI9L7Bf4AsJCblPTp8+fdP77N27V4KCimUYGIaG1pclS5aI\niMjhw4clKChCoL/A2wKRAl+LXp9LChQoIw0atJR9+/Zds22PxyMFCtwfWCToCzyLtwNbuJnFf3y3\n/54WS18ZO3Zslp5Rel6vV8qUqS4m0yuBZzBBzObcYjL5t9KrWLG2bNiwQez2cIHZAvvEYukqLVp0\nzFT7W7duFU0rIHAuEPN2sVpDxOl0XrN8/fotRK+/MnPvFYPhEYGH0j3nwxIWVuCW+6soipLTUANo\nRVGu5+TJk2K1hqcNAP0pC01kwYIF163jcDikatX6EhxcWUJCmkiePAWz5YQ7l8sl77zznrRp87gM\nHTpCkpKSRMR/op3JZM+QVhEc3Fq+//77m7aZkpIiuXMXkD+3o1sudnt4hsH3rFmzxGwuIPCywGoB\nr2haQTlw4MBN2z937pzkzRstJlM5sVrrSWRklBw6dEiqVm0gBsOIwHPdJ5qWX9auXXvLz+bYsWNi\ns92X7n2aIlBJIFHAKyZTX6lUqY7YbL3SDWKTxGAwZ3obwFdeeU00raCEhLQUTYuQb7759rpl9+3b\nJ3nyFJKQkCYSHFxZoqMriM1WTOC4gEdMpr6ZHrwriqLci1ADaEVRrufPwen5wKDLLUFBZWXFihU3\nrOdyuWTJkiUyf/78a6Y3ZJXP55NWrTqJpjUT+FKs1s5StWp9cbvdkpKSIkajVf488twrOl0peeON\nNzLV9saNGyUyMkqMRk3s9txSrFhFyZUrvzRo0FKOHz8uycnJUqhQSTEYXhdYLXr9A2Iw5JK8eYvL\n+PGf3LT91NRUWbRokSxYsCBtz/Njx45J2bI1xGi0idlsl0mTPrtm3fj4eNm3b99Nt4k7f/68mM3B\nAgmBZ/CM/PU48dy5o8Rub5pukL1PbLZcWUoZ2bJli/z4449y8ODBm5ZNSEiQ+fPny5IlS8Tlcslb\nb70rRqNVjEarPPDAg2mHyyiKovwdoQbQiqLcSP/+r4jdXkFgpNhszaRu3Wbi8XjuagzHjh0LzIQ7\n0wbJQUFlZM2aNSIiMnjw8ECO7UiBFgKVxWoNz/R+yj6fT+Li4iQsLL/odFMEjojB8JoUL15JPB6P\nHD9+XFq27CS5cxcWg6GiwC6BDaJp0TJr1uxb7tfly5ev+ywHDXpdzOYQsdujpECB4jed8e7b9yWx\n2ysJjBKjMVp0uqZps/J6/ftSr15zKV68klgsnQXeEU0rKmPHjr/l2G+F2+1O+82BoijK3xlZHEDr\n7tDgNzsE+qMoSnYSEWbNmsW6dZuIji5Cnz59MJvNdzWGw4cPU65cXRyOY4B/y7Tg4Gr88stY6tat\ni4igaaGkpHTDv/Xf0xgMr/PWW7kZMmRIpu7x+++/07HjKC5dWha4ImhaAWJj11K4cGEAKlasz/bt\nI4DGgTKf067dH/zww/Rs7C389ttvdOjwAsnJq4Bw9PqPKF/+B7ZuXXndOiLCt99+y6JFS/n22zmk\nptrx+czodMHkzn2edeuWERkZyaeffsqpU/E0adKQ5s2bZ2vciqIo/xY6nQ6yMC5W+0Aryr+MTqej\nc+fOdO7c+eaFb8Hy5cvp1asf586dpk6d+syY8Rl58uTJUKZIkSKUKhXNrl3PkJr6BEbjL+TO7aBq\n1appMYaGRpCS0h3w7+NsNh8hOLhIpuMICQnB6z1J+kNCPJ4kgoKC0srkyhUCHEn7Wq8/QlhY8C32\n/Pq2bdtGamprIBwAn68XsbGv37COTqfjscceY9asBaSmvozPNwhYi043kWbNNKKjowEYOHBgtser\nKIqi3Jj+5kUURVEy59ChQ7Rs2ZG4uJEkJe1g6dK8PPLIY1eV0+v1LF36M507GyhdehCtWx9nzZol\n2Gy2tDIfffQOmtYenW44FktXIiN38sQTT2Q6lho1alCnThk07SHgTez2hjz33HPkzp07rcz777+O\n3f4qev0gjMa+BAdPYejQl27rGVxLdHQ0FssywBG48guFCt2fqbonTpzB58sHfAbsx+d7mDNnLmR7\njIqiKErmqRQORfkX83q9vPfeGJYsWU2RIvkZOfJ18ubNe8vtffHFF/Tvv4zk5P8FrrjR6+04nUm3\nlCaycuVKfvvtd3LnzkXv3r2vOkL6ZjweD9OnT+fAgUNUq1aFdu3aXfk1XZrdu3cze/b3GI1Gnnii\n+x05Xl1E6Nq1Nz/9tASTqQiwn6VLF2TqeO8+fZ5j6tSvgU5APDpdDG++OYjXXstcKouiKIpyc1lN\n4VADaOW2TZgwiddffxuXy0nnzl2YPHnsXc+p/Ts4duwY8fHxlChRIkMaQU7q2fNZZs/ei8PRF6Nx\nLZGR84iN3URISMgttTdnzhx69BhNUlIM/l9wHcBiqYzTeemqgeu9bNy4Cfz3v6NwuVLo2rUrn3wy\n5qqjvbNKRNi+fTsJCQlUqlSJsLCwTNWrVq0Rmzb1Avyz73p9T4YMKcJbb/2XAwcO4HA4KF26tPo3\npyiKchvUAFq5q37++We6dHkBh+NHIAKbrRdPPVWBjz9+P6dDu6cMHjyCceMmYDYXxGA4x+LFP2dq\n9vFOSk1NxW4PxeuNB/x5v0FBzZg2rQ8dOnS4pTbdbje1ajUhNtaG01kVm+1r3n33VSpUKMv69esp\nVKgQHTt2xGAwZGNPstfcuXPp1u2VwPd0GDZbT557rjqjR4/MUjsXL17ku+++w+Fw0LJlS0qUKHFL\n8RQpUp6jR78CKgeujKNXr71cuJDIwoXLMBpDyZPHQEzMbxQsWPCW7qEoivJvl9UBtMqBVm7LvHkL\ncTj6AxWAfDidI/npp99yOqx7yooVK5gw4WtSUvZy6dI2Llz4kEcffTynwwoQMv4YMHI7H1xNJhOr\nVv3ORx+1Y8QIC/Pnf0lqqosWLZ5g2LCTPPXUWFq37ozP57vtyO+UuXN/w+EYAJQDCuB0vs28eVn7\nnj5//jzlytVgwIBFDB68nypV6rBq1apbiqd588bYbG8AicABNG0iZrOP338/jtN5iMuXd3PsWHt6\n9ep3S+0riqIoWacG0MptiYwMw2jcl+7KvgyLtBR/jq3P15grOzBAJ44f34fX683JsLBYLLRv/xg2\nW3vgFwyGEWjaLh566KG0MqmpqTz++FNYrcEEB0cwevS4TLX79NNPM2LEcGrVqsXQocNwOGJwuz8i\nOfkPYmJi+eOPP+5gz26P/3t6b7or+8iTJ2vf02PHjufs2QY4nd/jcn1CcvJ4+va9tZzlsWPfpXXr\nXBiNedG0Ggwf/gxgweFoA1gBHV5vZ3bt2n1L7SuKoihZp7axU27LgAH9mTatJomJXfF4wjGZZjJ+\n/I85HdY9pVSpUuj1o4HzQB7gB/Lnv/+eSGP4+usp/Pe/I1myZBxFiuTnww9jyJUrV9rrL700lLlz\nT5OaepjU1PMMH96KYsUK07Zt25u2vWPHDmbPno3PpweuLMwzo9ffz/nz5+9Mh7LBwIEv8vXXtUhM\nPI/Xmxuz+VvGjfs5S22cPZuA21063ZXSt9xnq9XKd999ici0tDzySZMmoWmzcDieB6wYDN9TunSp\nW2pfURRFyTqVA63ctoSEBGbOnInT6aRVq1aUKqX+I/+rgQOHMXHiZ5jNhdDrT7No0U9Uq1Ytp8O6\nqaJFKxIXNw24kq/9MU8+uZfPP594w3pLlizhkUe6kJraDZ/vW0SeBl4G/sBu78WePVvu6Xzdc+fO\n8e2335Kamkrr1q2znL/859qAn4FIbLYn6dHjfiZN+ihb4vN4PLRt+zhLl67GYMhFrlweVq36/Y7s\nIKIoivJvoBYRKso9Ki4ujrNnz1K6dGmCg7P/sI47oVq1BwM7QHQHwGR6lldeieSdd968Yb3SpR9g\nz56hQBvgGDpdffT60+TLV4QZMz6jfv36dzz2nJSQkMB///sW06bNwONJpV27jnz++QSsVmu23UNE\n2Lt3Lw6HgzJlymRr24qiKP82agCtKEq2WbduHY0bt8LjaYfBcI6wsB1s27bmqpMF/ypfvhKcPv0j\nUCZw5V369z/HuHEf3vGYc9rq1at5+OG2eL1FcLkO0aBBTRYunHfXU3bcbjfTp0/n6NFj1KpVUx3z\nrSiKcgNqAK0oSrY6ePAgCxYswGaz0bFjxww50tfzzDMv8L//HcLp/BQ4haa15ccfP8+wQPFO2bVr\nFy+9NJwzZ87RunUTRowYgtF495Z75M1bjDNnxgGtgYtAeWrVKs6qVUvu2l7YXq+XBg1asGWLF4ej\nNpo2kyFDnuK11169K/dXFEX5u1EDaEVRclxKSgrPPPMiP/zwPVarnffe+y+9e/e64/c9duwYZctW\nIylpGCLl0LS36dq1LFOmjL/j9wZ/brLZbEHEzZ+bHPXGbJ7HmjW/37W9vxctWkS7doNIStoIGIAT\nmEzFSUq6qA5cURRFuYasDqDVLhyKAiQlJTF16lROnTpLkyaN7spM6T+Z1Wpl+vTJTJ8++a7cb+3a\ntfz003x2796Jy9Uckf4AOBzl+N//ou/aANpoNJIvXzQnT34F9AROAYsxGvOTmJh4V2IASExMRK8v\ngn/wDJAPMOBwONQAWlEUJRuofaCVfz2n00n16g0ZMmQl779v49FH+zBhwqScDuuucDqdPP/8S5Qu\nXZOmTduxf//+nA4py+bNm8eDDz7KqFEG5s+PJzX1QrpXnej1d3ee4Oefv0Wv7wcUBUoDNbBaE6hc\nufJNamaf2rVr4/OtBmYBJzEaB1G2bMVMpd/cLT6fj5EjP6BcuTrUqtWMmJiYnA5JURQl0+50CscX\nQEvgLFA+cC038B1QBIgDOuFPFPwrlcKh3BUzZszgmWemk5y8EP8/ib1oWk2SkhJuO2fV7XazatUq\nUlNTqVWrFiEhIdkSc3Zp1aoTS5Z4SUl5Cb1+LblyfcTevVsJDw+/eeV7RNGiFYiLGwM0Ac4BJdDp\nnkSkInb7aF58sS1vvz3irsa0b98+OnXqyYED+ylYsAj9+vWiYcOGlC1b9q7FsG7dOp54oi+nTh2j\nevWazJw5hcjIyLt2/5t5/fU3GTNmPg7H+8BxNG0Aq1cvpmLFijkdmqIo/0L3Wg50PSAJ+Io/B9Dv\n4/9f7n3gVSAMGHyNumoArdwVkyZN4uWXN+F0Tg1ccWAwhOFyOdHrb/2XNA6Hg7p1m7F//2X0+lCs\n1qOsW7eMqKiobIn7djmdToKDw/B6L+I/0Q6CgtowdWpXOnfunLPBZUFERFHOnVsIXNmr+UV0us8p\nUiSaYcP607t3r7u2eO+vvvrqa559dgBmczVcrq0MHvwCw4df68fdv0/evMU5c2YOV/5r0OmG8eqr\nOkaNejtnA1MU5V8pqwPoO53CEQNc+Mu1R/h/e3ceHkWV9n38m4UsDZhIQNYwAXkFQUWQATckgOAT\nHQFBjKIzKCi4gyM+ouLjgqCgjgsOboygsiqgIoqAwxLEQUDWsGSUTRDEyBrSSTpJ1/vHqZgQs3Xo\npJL073NduVJVXXXq7qLT3H36rnPgfXv5faBfBccgUqJevXoRFPQZ8Cmwm/Dwu+nV6/ozSp4BXnzx\nH+zY0ZhTpzZw8uRKjhwZxvDhD/slZn8ICQnBvF+47S0WkFbtamQHDOhLZOQI4AdgGTAby5rHr7+e\n4IIL2jqWPKelpTF8+P1kZKzkxIlFZGRs5IUXXiUlJaX0gwNArVq1gLTf14OD04iIqF6vPREJXE7U\nQDcEDtvLh+11Ece0atWKL7+cy3nnPUdMTHf69Anmo4+mnnG7KSl7yczsSd6fWW7u1fz4454zbtdf\nwsLCGD78PlyuBOBfhIUN55xzUundu7fTofnk9dcnkpgYB1wCjADeBHoTEvJn9uxx7nr/8ssvhIbW\nI38s7EaEhbVj3759jsVUlTz11ChcrkHA2wQHj6FOnY+5/fbBToclIlImTo/CYdk/Io7q1q0bKSnr\n/drmFVd05LPPPsTtvhWIJCzsHS699JIyH799+3befXcaXq+XIUP+WiG1oZMmvUS7du/w9ddJtGjR\nhCeeSKJ27dp+P09FCgsL4733JrNo0WIOHx4N3AD8l9zcJNq3f9qxuGJjYwkJcQNfAtcCG/B4NtO2\nbdtSjgwMd945hAYNYpg58zOio+vw6KOr+dOf/uR0WCIiZVIZ323GAZ+TXwO9E4gHfsGMrbQcaFPE\ncdZTT+Xf+BMfH098fHwFhiniX16vl8GD7+ajj2YTHBzGhRdeyJIln5RpJIRNmzZx5ZW9SE+/BwjB\n5XqDZcsW0qVLl4oPvJravHkzvXr1JT09m9zcNN544zXuvLPix54uyerVq7nuuhvJzg7Gstx8+OG/\nGDCgf5mP93q9pKamEhMT84fJYLZs2cKwYQ9z8OAh4uOvYPLkl6lTp46/n4KISI20YsUKVqxY8fv6\nM888A1XoJkL4YwI9ETgCTMDcPBiNbiKUGuzIkSN4PB4aNWpU5nrcAQP+xvz5HYGR9pZ36N17CYsX\nz62wOGuCnJwcDh48SExMTJXpSfd4PBw6dIhzzjmHyMjIMh+3fv16EhL6c+qUm+DgXGbMmEa/fn0B\nOHToEG3adODkybFAZ8LDJ3LVVW6WLPmkQp6DiEhNV9UmUpkFdAPqA/uB/wNewAxOOpT8YexEaqyY\nmBifj0lLcwMFhxw7h1On3MXtLrbQ0FCaN2/udBinCQsL87k0ITs7m2uu6cfRo68CNwLrufXWBHbu\n7EhsbCz//ve/8Xq7AncBkJU1lWXL6pKVlUV4eLjfn4OIiJyuohPoW4rZfnUFn1ekWhs69CZWr34M\nt7spEIrLNZqhQzX8WaD4+eefycwMwiTPAJ2oVasjW7ZsITY2FpfLBaRibiEJAsyY5YXLPEREpGLo\n3VakCkpMvIm0tFO88MJDWJbFyJEPcscdGqEgUDRo0ACv9yTmlpE2wBGys5N/711PSEigSZPn2Lfv\nNrKyOuNyTWHEiNGEhISU1KyIiPiJMwOklo1qoEUkYE2b9gH33fcIoaGXk5PzPffdN5iJE8f+/nha\nWhqvvvo6e/cepFevriQmJjo25rWISHVX1WYiPBNKoAPczJmzeOyxcWRmZnDbbYlMmPCsvqIWv5kx\nYyaPPz7+99fXxIljy92Dm5uby08//URUVBT16tXzW4wpKSls3bqVFi1acMklZR8CUUREfKMEWmqE\nr7/+mr59b8ftngnUx+W6mxEjejB+/NNOhyY1wNKlS+nX744Cr6/hjBjRs1yvr3379tGt27Wkpp4g\nJ+cEI0c+xIQJz/o9ZhERqThVbSpvkXL5+OMFuN1/B64C2uJ2/4PZsz91Oiwpo2PHjvHQQ49y/fWD\neOWV18nNzT3jNteuXcugQXdy0013sHLlyjNqa+7czwu9vl4p9+tr4MA72L//NtzuA3g8u/nnPz/i\nyy+/PKP4RESkalMCLVVSVFQdQkL2F9iyX5NEVBKv18vu3bvZt28f5fkWKCMjg86d45k8+RgLFyYw\nZsxc7rzz/jOKac2aNXTvfh2zZl3Axx93IiHhJpYuXVrm41NTU9m5cyeZmZlMmPAyH344BzOi5njM\nSBblf30lJ2/E673LXmtARkY/Nm7cWK62qqvXXnuDRo1a0aBBHI899hRer9fpkEREApYlgevAgQNW\nTEwzKzT0bguetFyuBtbixYudDqvGO3nypNW5c3fL5WpiRUScY/Xq1dfKzMz0qY2FCxdadet2tcBr\ngWXBCSs0NMI6depUuePq3/+vFkyy27Ms+NC66qq/lOnYp54aZ4WFnWXVqXOuVbduAysy8nwLNluQ\nbMH5FlxruVwNrCVLlpQrtvPO62jBdDuuDKt27S7WzJkzy9VWdTRz5izL5fp/FmywYIflcnW2nn/+\nJafDEhHxCaY3pczUAy1VUtOmTdmy5TueeqoZo0d7SUpaRO/evZ0Oy3GnTp1i1KjH6d37Rp544mky\nMzP92v6oUWPYvDkWt/snMjP38803XsaNm+hTG9nZ2UAk+aVk4UDwGZVxZGVlA64CW1xkZ+eUelxS\nUhIvvvguHk8Kp079SFpaCzIyngYuAtoBL9C06V6SkhbRq1evcsU2a9a7REWNIiqqO7Vrt+Pqq1uS\nmJhYrraqozlzFuJ2Pw50ANrgdo9jzpzPnQ5LRKRCaUgDqbKaNGnCmDFPUL4AcgAAE2ZJREFUOB1G\nlZGTk0N8/HUkJzcjK2sgq1bNYfXq/ixf/oXfhi9bt24LWVlPACFACBkZg/juu3k+tREfH09k5Ejc\n7ufIze1KRMQbdOt2DWeddVa547rvvr+xfPmduN3RQC1crod54IHnSz1uy5YteL3/AzSyt7QGdv/+\neFDQHjp0uOiMRrjo2LEju3Yls2HDBqKjo+nUqVNADSdXr95ZBAfvJb9qYw9nnx3lZEgiIhVOCbRI\nNbFlyxZSUn4hK2s5EExmZn/Wro1j165dtGrVyi/nOP/8ViQnLyQ7uydgER7+BRdc4Fvb0dHRrF27\nkvvvH83evV/RrdulvPji2NIPLEFCQgIzZ05m3Lg38Hq9jBw5jltuubnU41q1akVIyGQgDagLdCYo\naDQhIQexrBAiI2cwfvy/zyg2MNO1l7cHu7obM2YU8+dfQXr6r1iWi4iI95kwQTdRikjNVpW7SeyS\nFBEBWLduHT173kFa2lbMn64Xl6sFGzYsoXXr1n45R2pqKpdddjW//hqMZXk499xoVq36irp16/ql\n/cpmWRbDho1gxox5hIW1xLJ+YNq0N9m+fQeWZXHzzYl++/ARyPbv38+MGTPIzs5h4MAbadOmjdMh\niYj4RONAi9RQHo+H9u0vZ/fuS/F4+hIePot27X5k3boVBAf773aGrKwsvv/+e4KDg+nUqVONmLxm\n27ZtpKamctFFF/l1opNA5fV62bFjB7m5ubRt27ZGvEZEJLApgRapxpYsWcLGjRtp2bIlAwYM+ENi\nfPToUR566HG2bk2hU6cLeeml586otljEV263m549+7B16y6CgkKJi4th1aqviI6Odjo0EZFyUwIt\nUk09+eRYXnnlA7Ky+hIevpJrrmnD3LkfBNQNaVL1jR79f7z22k4yM2cBwYSF3cOgQcFMnTrZ6dBE\nRMpNMxGKVEPHjx9n4sSJpKd/Q07OS6Snr2Lx4m9Zv369389lWRZPPz0Ol+tswsPrMGTIvfbQc+Ik\ny7J4/PGncbmiiYioy/DhI8jJOX2ovqNHj9Kjx/XUqhXB2Wc3YfbsOZUe54YN28nMHIAZqSUIj+dG\nNm/eUelxiIg4SQm01DiWZfH5558zduxYZsyYUS1mRTt+/DihoVFAQ3tLBKGhcRw9etTv5/rgg+m8\n9NJsMjI24vHsZfbsHxgzpvRRMk6cOMGkSZMYP358wM20VxnefnsKr732GRkZW8nK2sX06Zt57rkJ\np+2TmDiE1atjyck5wvHjCxgyZESFfMgqSceObYmImAfkAl7Cwj6mffvzKzUGERGnVeXvhlXCIeUy\natQTvPXWJ7jd/XC5ltOrV0vmz59epUshcnNzadnyQg4cuB2vdxiwhLPOepBdu5KpX7++X881YMBg\n5s+/Chhqb1lF27aPsm3bt8Uec+zYMdq3v4zU1IvJzo4lPPx95s59n4SEBL/GFsiuvTaRRYv6ALfa\nW76mQ4dxbNiw/Pd9wsPr4PH8DJhxlsPCRjJ+fCwPP/xwpcWpGmgRqYl8LeHQrdNSoxw5coRJkybh\n8ewBYkhPz2Tp0nZs2LDhjCbLqGghISGsWPEFAwYMZtu2Z2natCVz5nzu9+QZoEmT+oSGbiOvOiAo\nKJmGDUs+z5QpU/j11z+TlfUhAG53T+6/fzS7dimB9pfGjesTEpJM3oSNQUHJNGrU4LR9oqLqk5qa\nDFwBWNSqtY369TtUapwul4vVq5doFA4RCWh615Ma5cSJE9SqFY3HE2NviSA0tBnHjx93NK6yaNGi\nBRs2JFX4eZ544hE+/vgy0tIO4PXWoVatL3j11aUlHnPkyHE8noLjJbfi5Mmqf02rk2eeeYwFCy7H\n7d6L1xtOWNhXvPzy8tP2eeedVxk06Aa83oGEhu7kvPM83Hxz6RPK+FtwcDDt2rWr9POKiFQVVfc7\nbZVwSDnk5OTQqlV79u+/Da93KPAV0dGj2bUrWeP/FnD06FHmzZuHx+Ph+uuvp3nz5iXun5SURELC\nLbjd84BYIiLuIzGxMdOmvVk5AQeI3377jXnz5pGbm0ufPn1o1qzZH/bZvHkzK1asICYmhoEDBxIe\nHu5ApCIiNYuGsZOAt3fvXhITh5KcvInmzc9l1qx3uPjii50Oq9qbPn0mo0Y9SXp6Gn369GXKlNeJ\njIx0Oqw/yM7OZs2aNWRnZ9OlSxdq167tdEgiIlLFKYEWkYCVnp7OlVdew48/niQ4uA516/7GmjXL\niuzJFRERyaNxoEUkYD3//Ivs2BHLqVObOHnyW3755RbuvfcRp8MSEZEaRgm0iNQY27fvJiurN3lv\nbbm51/Df/+52NigREalxlECLSI1x+eUdcLmmA24gl/Dwf9GlS+UO8yYiIjWfaqBFpMbIycnh5pvv\nYOHChQQFhXHhhW1ZuvRToqKiSj02PT2doKAgXC5XJUQqIiJViW4iFJGAd/jwYTweD82aNSt1BkqP\nx8MttwxlwYK5APTvn8j06e9Sq1atyghVRESqAN1EKCIBr2HDhsTGxpZp+vZnnnmeRYuOkJNzlJyc\n31i48CDjx79YCVGKiEh1pQRaRALasmX/ISPjXiASqI3bfQ/Llq1xOiwREanClECLSEBr2TKW0NBv\nfl8PDf2Gc8/VuNEiIlI81UCLSLkkJSUxdeosIiPDGTHiHlq3bl2l2y3OoUOH6NTpKtLS4gAvUVEH\nWL8+iYYNG1boeUVEpOrQTYQiUuG++OILBg4cSkbGowQFHad27TdZty6JNm3aVMl2S3Py5EmWLVtG\nUFAQPXr0oG7duhV6PhERqVqUQItIhevYsTsbNz4I3ABAUNDTDBt2jLfees3P7T7DsGFHz7hdERGR\nkmgUDhGpcJmZmcDZv69bVj0yMrIqoN2z/dKuiIiIPymBFhGf3XXXIFyuB4EkYAGRkc9z++2Jfmr3\ngdPaHTz4pjNuV0RExJ9CnQ5ARKqfkSPvx7Is3nnnEcLDwxg79m26d+/u93afffYtevTo4YeIRURE\n/Ec10CIiIiIS0FQDLSIiIiJSgZRAi4iIiIj4QAm0iIiIiIgPlECLiIiIiPhACbSIiIiIiA+UQIuI\niIiI+EAJtIiIiIiID5RAi4iIiIj4QAm0iIiIiIgPlECLiIiIiPhACbSIiIiIiA+UQIuIiIiI+EAJ\ntIiIiIiID5RAi4iIiIj4QAm0iIiIiIgPlECLiIiIiPhACbSIiIiIiA+UQIuIiIiI+EAJtIiIiIiI\nD5RAi4iIiIj4QAm0iIiIiIgPlECLiIiIiPhACbSIiIiIiA+UQIuIiIiI+EAJtIiIiIiID5RAi4iI\niIj4QAm0iIiIiIgPlECLiIiIiPhACbSIiIiIiA+cTKD/B9gJ/AA86mAcUoQVK1Y4HUJA0/V3jq69\ns3T9naXr7xxd++rFqQQ6BHgDk0S3BW4BzncoFimC/pCdpevvHF17Z+n6O0vX3zm69tWLUwl0Z+BH\nYC+QDcwG+joUi4iIiIhImTmVQDcF9hdYP2BvExERERGp0oIcOu8ATPnGXfb6bUAX4IEC+/wInFvJ\ncYmIiIhI4NkFtCrrzqEVGEhJfgZiC6zHYnqhCyrzkxARERERqelCMZl+HBAGbEI3EYqIiIiIlCgB\nSMGUajzmcCwiIiIiIiIiIiIiEggigO8wZR3bgeedDScghQAbgc+dDiQA7QW2YK7/WmdDCUjRwFxg\nB+b951JnwwkorTGv+7yfE8CDjkYUWB4DtgFbgZlAuLPhBJwRmGufbC9LxXkPOIy53nnqAUuB/wJL\nMP8XVEsu+3cosAa40sFYAtHfgRnAAqcDCUB7MH/I4oz3gSH2cigQ5WAsgSwYOMTpN5tLxYkDdpOf\nNM8BBjsWTeC5AJPMRWA6sJaiUcgqUlegA6cn0BOB/7WXHwVeKK0RJ6fyLonb/h2GeTEddTCWQNMM\nuBaYgnPDHAY6XXdnRGHeWN+z13MwvaBS+a7G3Gi+v7QdxS9OYiY1c2E+OLowo2VJ5WiD+eY9E8gF\nVgL9HY2oZlsFHCu0rQ+mAwX7d7/SGqmqCXQwpoTjMLAc81WqVI5XgEcAr9OBBCgL+BpYT/446VI5\nWgCpwFRgA/Au+d+GSeW6GVNGIJXjKPAy8BNwEDiOeR+SypGM+fBeD/Oecx2mM0sqT0NMzon9u6GD\nsfhFFKaEI97hOALFX4B/2svxqAbaCY3t3w0wHyK7OhhLoOmE6YX7s73+KvCsc+EErDDMB5kGTgcS\nQM7FdFTFYHqgPwFudTSiwDME03GyEpiM6cySihPH6SUchXukS618qKo90HlOAF9g/mOTinc55muM\nPcAsoAfwgaMRBZ5D9u9UzH9inR2MJdAcsH/W2etzgY7OhROwEoDvMX8DUjk6Ad8CRzClS/Mx/x9I\n5XkP8+/QDfMNQIqz4QScw0Aje7kx8GtpB1TFBLo++Xc/RgK9MHdkS8V7HHPTTgvMV6jLgL85GlFg\ncQF17eXaQG9O/4QsFesXTM3tefb61ZhRCaRy3YL5AC+VZydmxJlIzD0YV6PSycp2jv27OXADKmGq\nbAvIv3F2MPCpg7GU24WY+sNNmOG8HnE2nIDVDY3CUdlaYF73mzA1cZpgqPK1x/RAb8b0wmkUjspV\nG/iN/A+SUnn+l/xh7N4HajkbTsBJwlz/TUB3h2Op6WZhav09mE6TOzD1519TA4axExERERERERER\nERERERERERERERERERERERERERERERERERERJ3QFLnM6CB8No3oNudQaE7OISLVVFSdSEZHAlouZ\nPGkLZizmOvb2OMALjC2wb33M9NuTimnrL8DTZTxvDPAkZhzW6uJJzJSzx4t5fAX5syl+AZxVzvPc\nTvHX2Bd1gdGAGxjqh/aKMg0YUI7jHgT+6t9QRERERCpHWoHlacDD9nIcsAszzXOeezDJ9uvFtLUc\naFjG83bFTGZTEYLsn8q2HP9MR347/kmgK8NUoH85jqsLrPVzLCJSQ6kHWkSqsv8A5xZYdwM7gEvs\n9ZuAjyg6OY0FwoDD9vo04DVgNSYRz+uljAc+B1YBe4A3yJ/SdS8wHpOkr8cko0uAH4HhBc71CCb5\n2kx+j3cckIKZ1W2rHc+L9vIWO/bC4jDTKk+1j52BmdJ9NWaGrD/b+9UG3rPPuRHoa2+PBGZjpmGe\nb6/n2YuZbQvg73YcW4ERRcQBZnauFOA74PIC2xsAc+1zry30WJ4Q4CW7/c3A/fb2nuR/u/AvzL9P\nXmylXecgir5+QZh/s53AUsyUyHmvh56YmW0Ln+8FzKxvm+02wXxwOwK0K+Z6iIiIiFRZeT3QIcA8\n4F57PQ6TPP0Fk/Q0w0y9Opiie0dvLrR9KjDHXj4f+MFejsck0HkmAX+zl/eQn8D9A5OI1caUjvxi\nb+8NvG0vB9ttdbXjzQU6248NwCSFQZgkbx/QqFDMcZiSlHb2fusxiR9AH+ATe3k8cJu9fDYmuXZh\nEuMp9vYL7bbyeqD3YBLoS+znEWk/l2Tg4kJxNLbji8FM6fwN+b38M4Er7OXmmGS9sHswH2zyOmnO\nBiKAn4BW9rb3yU/ey3Kdi7t+/Qtsbwwcs7cVd756mGQ7T8Hp2p+xYxcRKZF6oEWkqonE9EQewvTa\nvlXo8cVAL0yCPIfiNbfbKOhT+/cOyl7ascD+vRXTI54O/AZkYZKv3vbPRkx5SWvyk7Z95JcFXIFJ\nPi3gV2Al+T3KBe3B9I5a9u+v7e3JmAQb+3x3Y0o05gM5mGvVFZheIN4thdoOAq60j8mwn8t8+7iC\nuthtH8Ek4XPI79W9GtPjuxH4DFP64Cp0fE/MhwqvvX4Mc132YHqVwSS0VxU4prTrXNz161pg+yFg\nmd1Ocec7AWRiPpjcgPlWI89B8q+xiEixQp0OQESkkAygAyaRXowpT/ikwOPZmET170BboF8JbRUu\n7fAU8VgOp3cmFCx7AJPAgUkGCx7vJf899HngnULHxWGSwJLisf4Qcf75Cp+z4PkAhmB6ngsrrdba\nKrRPUBFxlLRPECbB9lCy0p5r4fOW5ToX99yK2l7U+SD/W4GewI2Y8pKexcQkIlIk9UCLSFWVgRkZ\nYRx/TJBeBh6l+NEnoOgSieL2a4upj40GehSzX3FJ2mJMMlvb3tYUUydc2CogEfO+2wDTG1rem9YW\nAw8UWM+rCU8CBtnLFwAXFRHvKsyHjrwSjn72toLWAt0w5Q61gIEFHluC+XfJU7j8A0wt8nBMGQ7k\nl5nEkV/T/ldML3JhxV3noq7fd5jnnLe9MdDdPialiPOtwDznaGAR5kNY+wLnaYypxxYRKZF6oEWk\nqinYA7gJ8xX8TcCaAo9tJ7/21qLoXsPVnJ7oFW47b3k/pl43GfOV/4YS4irq+KWYmur/2OtpmPrk\nwvt/ghljerO9/RFMKUJR5ykt5rHAq5gSjWBgN6ZG+k1Mrfd2TJnK+iLa34i5oTIveX/XjqmgQ5ib\nIf+D+ZCyscBjDwL/tI8JxSTB9xY6fgpwnh1fNqZ3fjLmxsSP7ePWkl+eU/g5FvWci7t+n2A+9GzH\n1Dx/a++fVcz56mNKeSIwyfpDBc7VGRiFiIiISABbhulVFCnNWcA6p4MQkeohpPRdRESqrVRMicIK\nh+OQqm845nVS+MZLEREREREREREREREREREREREREREREREREREREREREREREREREREREZEz8f8B\nSCQz+k8P3msAAAAASUVORK5CYII=\n", "text": [ "<matplotlib.figure.Figure at 0x7f8a68b43ad0>" ] } ], "prompt_number": 7 }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "# Produzindo conjuntos de treinamento e teste" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from sklearn.cross_validation import ShuffleSplit" ], "language": "python", "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [], "prompt_number": 8 }, { "cell_type": "code", "collapsed": false, "input": [ "ssplit = ShuffleSplit(num_samples, n_iter=1, test_size=0.25)" ], "language": "python", "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [], "prompt_number": 9 }, { "cell_type": "code", "collapsed": false, "input": [ "for train_idx, test_idx in ssplit:\n", " pass" ], "language": "python", "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [], "prompt_number": 10 }, { "cell_type": "code", "collapsed": false, "input": [ "train_idx" ], "language": "python", "metadata": { "slideshow": { "slide_type": "subslide" } }, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 11, "text": [ "array([ 15, 362, 303, 100, 371, 389, 327, 44, 471, 274, 287, 52, 305,\n", " 410, 318, 230, 504, 169, 302, 189, 282, 211, 124, 39, 475, 481,\n", " 236, 30, 441, 454, 496, 155, 498, 505, 372, 49, 38, 117, 323,\n", " 386, 51, 262, 192, 113, 103, 123, 110, 417, 59, 349, 2, 220,\n", " 324, 258, 499, 25, 494, 23, 253, 404, 308, 19, 21, 359, 167,\n", " 298, 387, 411, 191, 63, 62, 447, 421, 442, 229, 135, 108, 235,\n", " 46, 56, 202, 128, 415, 289, 458, 140, 444, 428, 422, 381, 182,\n", " 76, 373, 172, 457, 166, 150, 132, 459, 337, 463, 204, 119, 3,\n", " 319, 143, 67, 352, 116, 495, 88, 228, 351, 254, 48, 249, 147,\n", " 503, 10, 353, 478, 345, 174, 398, 357, 339, 28, 433, 227, 111,\n", " 92, 440, 238, 85, 12, 199, 179, 41, 165, 134, 129, 177, 58,\n", " 270, 267, 322, 115, 0, 354, 244, 142, 106, 154, 466, 16, 137,\n", " 181, 401, 163, 45, 431, 291, 383, 489, 316, 33, 178, 286, 183,\n", " 131, 206, 271, 184, 394, 449, 355, 365, 311, 414, 36, 120, 473,\n", " 393, 399, 257, 40, 451, 9, 295, 151, 233, 278, 133, 336, 213,\n", " 460, 424, 239, 375, 112, 173, 201, 209, 66, 138, 14, 73, 197,\n", " 332, 397, 1, 141, 130, 148, 70, 377, 118, 122, 176, 250, 476,\n", " 380, 500, 180, 306, 296, 265, 11, 162, 310, 114, 75, 472, 315,\n", " 403, 20, 405, 136, 156, 486, 335, 292, 255, 80, 369, 96, 146,\n", " 231, 175, 437, 284, 341, 50, 224, 426, 453, 370, 275, 5, 264,\n", " 126, 186, 443, 81, 317, 84, 125, 309, 205, 90, 497, 203, 465,\n", " 89, 320, 22, 217, 107, 139, 358, 97, 241, 427, 487, 400, 492,\n", " 218, 348, 490, 269, 346, 7, 280, 430, 501, 225, 8, 196, 429,\n", " 456, 188, 366, 251, 402, 468, 61, 462, 419, 300, 304, 242, 74,\n", " 455, 388, 87, 450, 69, 94, 313, 77, 99, 364, 98, 79, 240,\n", " 95, 185, 145, 261, 331, 330, 368, 78, 461, 237, 432, 164, 266,\n", " 158, 207, 17, 27, 226, 293, 435, 436, 72, 288, 325, 273, 215,\n", " 413, 260, 57, 425, 491, 104, 438, 342, 452, 340, 200, 65, 159,\n", " 214, 420, 219, 276, 268, 326, 198, 395, 26, 152, 149, 232, 439,\n", " 170, 54])" ] } ], "prompt_number": 11 }, { "cell_type": "code", "collapsed": false, "input": [ "n_train = train_idx.shape[0]\n", "n_train" ], "language": "python", "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 12, "text": [ "379" ] } ], "prompt_number": 12 }, { "cell_type": "code", "collapsed": false, "input": [ "test_idx" ], "language": "python", "metadata": { "slideshow": { "slide_type": "subslide" } }, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 13, "text": [ "array([361, 263, 53, 407, 409, 171, 445, 391, 37, 378, 297, 418, 356,\n", " 367, 343, 484, 408, 406, 127, 334, 467, 256, 68, 392, 483, 31,\n", " 6, 344, 502, 379, 281, 24, 474, 222, 82, 246, 329, 301, 285,\n", " 194, 234, 109, 412, 385, 277, 221, 376, 363, 64, 396, 83, 469,\n", " 374, 212, 482, 312, 223, 279, 479, 382, 4, 338, 252, 290, 195,\n", " 477, 485, 390, 384, 283, 248, 144, 187, 157, 216, 208, 18, 210,\n", " 161, 347, 93, 328, 307, 423, 91, 247, 160, 153, 259, 121, 416,\n", " 480, 101, 493, 29, 464, 86, 321, 245, 299, 190, 102, 488, 13,\n", " 71, 34, 434, 35, 42, 294, 243, 470, 350, 47, 193, 314, 446,\n", " 32, 43, 105, 333, 448, 360, 60, 168, 55, 272])" ] } ], "prompt_number": 13 }, { "cell_type": "code", "collapsed": false, "input": [ "n_test = test_idx.shape[0]\n", "n_test" ], "language": "python", "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 14, "text": [ "127" ] } ], "prompt_number": 14 }, { "cell_type": "code", "collapsed": false, "input": [ "n_train + n_test" ], "language": "python", "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 15, "text": [ "506" ] } ], "prompt_number": 15 }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "## Exemplo - regress\u00e3o utilizando apenas RM\n", "\n", "Vamos prever o pre\u00e7o dos im\u00f3veis utilizando apenas o **n\u00famero de c\u00f4modos** (RM)" ] }, { "cell_type": "code", "collapsed": false, "input": [ "X = boston.data[train_idx,5].reshape(n_train,1)\n", "X.shape" ], "language": "python", "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 16, "text": [ "(379, 1)" ] } ], "prompt_number": 16 }, { "cell_type": "code", "collapsed": false, "input": [ "y = boston.target[train_idx]" ], "language": "python", "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [], "prompt_number": 17 }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "### Treinamento\n", "\n", "Aqui, vamos utilizar a **regress\u00e3o linear**" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from sklearn.linear_model import LinearRegression" ], "language": "python", "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [], "prompt_number": 18 }, { "cell_type": "code", "collapsed": false, "input": [ "regr = LinearRegression()\n", "\n", "regr.fit(X, y)" ], "language": "python", "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 19, "text": [ "LinearRegression(copy_X=True, fit_intercept=True, normalize=False)" ] } ], "prompt_number": 19 }, { "cell_type": "code", "collapsed": false, "input": [ "scatter(X, y)\n", "plot(X, regr.predict(X))\n", "xlabel(u'RM (n\u00famero m\u00e9dio de c\u00f4modos)')\n", "xlim((3,9))\n", "ylabel(u'Valor m\u00e9dio (em US$ 1.000)')\n", "ylim((0,55))" ], "language": "python", "metadata": { "slideshow": { "slide_type": "subslide" } }, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 20, "text": [ "(0, 55)" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAs0AAAHqCAYAAAD/DnOSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XmcjfX7x/HXzJn1zMLYd9kazCgRScpQyS4qUilaFKW0\nyK+otKr4tqdNWiihQousGbRqbCHLWMYyBmPGOufMds79++M+zGCYxTlzZnk/Hw8P9/2Ze7mOw8zl\nc677+oCIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiJRRPt4O4FwuvfRSY926\ndd4OQ0RERETKvnVAy/MdUGKTZsAwDMPbMUgRjRs3jnHjxnk7DCkCvXelm96/0k3vX+ml96508/Hx\ngXzyYt/iCUVEREREpPRS0iwiIiIikg8lzeIRMTEx3g5BikjvXemm96900/tXeum9K/tU0ywiIiIi\n5ZpqmkVERERE3EBJs4iIiIhIPpQ0i4iIiIjkQ0mziIiIiEg+lDSLiIiIiORDSbOIiIiISD6UNIuI\niIiI5ENJs4iIiIhIPpQ0i4iIiIjkQ0mziIiIiEg+lDSLiIiIiORDSbOIiIiISD6UNIuIiIiI5ENJ\ns4iIiIhIPpQ0i4iIiIjkQ0mziIiIiEg+lDSLiIiIiORDSbOIiIiISD6UNIuIiIiI5ENJs4iIiIhI\nPpQ0i4iIiIjkQ0mziIiIiEg+lDSLiIiIiORDSbOIiIiISD6UNIuIiIiI5ENJs4iIiIhIPpQ0i4iI\niIjkQ0mziIiIiEg+lDSLiIiIiORDSbOIiIiISD78iuEeCcAxwAFkAW2BSsAMoL7r6/2BI8UQi4iI\niIhIofkUwz12Aq2B1FxjrwOHXL+PBiKA/zvjPMMwjGIIT6T8cjqdbNy4kfT0dFq0aEFQUJC3Qyr3\nSup7YhgGmzZt4sSJE0RHR2O1Wr0d0gXbtm0bycnJREVFER4e7u1wAEhMTGTXrl00btyYatWqeTuc\nMuXMv8MpKSns2bOHiy++mCpVqpz33J07d7J//36aNm1KRETEeY91OBxs2LCB7OxsWrRoQUBAgDtf\nxjnt2bPnvK+nJH5vsdlsbNiwgZCQEADS0tK89v3Fx8cHiicvPq+dQOUzxjYD1V3bNVz7ZzJExHMy\nMzON667rbYSEXGSEhV1i1K/fzNi7d6+3wyrXMjIyznhPmhuJiYneDsvIzs42+vQZaFitdYzw8JZG\nzZqNjO3bt3s7rAsyYsQoIzi4mhEefrlRsWJN459//vF2SMb7739kBAVVMipUaGtYrZWN77+f7e2Q\nyoycv8N1jfDwlkZYWHUjMND8sw4JqWLMnz//nOeOGfO8ERRUxahQoY0RFlbNWLFixTmPtdlsRrt2\n1xohIY2MsLDmxsUXX2YkJyd74iWdZuLEt43g4Mqn/u7MmzfvtK+XxO8t27dvN2rUaGiEhbU0fH0r\nGRZLNSM8/DKjRo2GxrZt24o9HqBEzNTuANYAccB9rrHDub7uc8b+ScX+ByZSnkyc+IYRHNzVgEwD\nDMNiecbo2vVmb4dVrp39now1une/xdthGZMnTzas1g4G2A0wDF/f14327bt4O6wiW7hwoREScrEB\nhw0wDPjGqFu3qVdj2rlzpxEcXMWAba6Y4gyrNcI4duyYV+MqKz755BPDar3a9Xf4PwMqG7DH9We9\nwggNrWxkZGScdd6ff/5pWK31DDjoOnaeUalSbcPpdOZ5n6effs4ICrrZgGwDnIa//8PGwIH3ePS1\nbdq0yQgOrm7AbleMvxkhIZWN9PT0U8eUxO8t7dpdb/j6TjTgUwOuyvX9ZaJx5ZXXF3s8FCBpLo6a\n5quAJKAqsIizZ5XPGei4ceNObcfExBATE+ORAEXKo3//3YLd3hPwB8Dh6Mt//832blDl3NnvST82\nbrzLu0EBGzduwWbrDpgf5zqd/di69X3vBnUBtmzZgsPRGajoGulLYuLtGIZx8iPaYrd9+3YCAqKw\n2xu5Rlrj61uZxMREmjZt6pWYypLT/w7HA22AOq6vdsDh8OfgwYPUqVPntPO2bNmCr+/VmCkMQDeO\nHUshLS2N0NDQs+6zbt0W0tP7ABYAsrL6sn79WI+8ppPi4+Px92+F3V7XNXIVhhHAgQMHqFevHlAy\nv7fEx2/B6fwQ+AjI/f2lL1u3vuPx+8fGxhIbG1uoc4qje0aS6/dkYDbmg4AHMMsyAGoCB/M6cdy4\ncad+KWEWca/WraOwWr8H0gEDf//pXHpptLfDKtfM92Q2ud+TSy6J8nZYXHppFCEhPwBpAFgs02ne\n3PtxFVVUVBQWyyLMR2sAvqF+/WZeS5gBmjRpQmbmBnLmlf7AMFLPSuKkaC69NAqrdS7m3+FI4G/M\n6lGAJfj5OahevfpZ5zVv3hyncxmwzzUyh4iIaqdqcM90+eVRBAfPwux74CQg4Bsuu8yz/1YiIyPJ\nyorD/GAf4Fcslmxq1Khx6piS+L2lefMoLJbpQBRw8r0pvu8vMTExp+WZJYEVCHNthwC/A13IeQAQ\nzAcAX83j3GKfmhcpT7KysoxevQYYwcE1jNDQxkbjxpca+/fv93ZY5VpWVpbRs2f/U+9JkyYtS8R7\n4nA4jNtuu8cICqpqhIVFGvXqNTN27drl7bAuyOjRzxqBgRFGeHiUUblyXWPdunXeDsmYMuULIyio\nohEeHm2EhJxdlypF53A4jIED7zaCg6sZYWGRRkREbSMwsIIRHh5thIZWNX799ddznvvyy68bgYHm\n+1KxYk3jr7/+Ouex6enpRqdOPQyrtbYREtLAaNGinZGamuqJl3SaSZM+OvV3JzS0qrFkyZLTvl4S\nv7ckJCQY9eo1NUJDLzZ8fSsaFktFIzQ00qhXr6mRkJBQ7PFQgPIMT/+3ugHm7DKYpSBfAeMxW87N\nBOpx7pZzrtcgIp5iGAY7duzAbrcTGRmJv7+/t0Mq906+J+np6Vx88cUl6j1JSEjg+PHjREZGFltH\nAE9KTEzk0KFDNGnSpMR0AznZ0aFBgwZUqFDB2+GUObn/Dh89epTExEQaNmyYb/eU/fv3s3//fpo0\naXLOWeaTDMMgPj6e7OxsIiMjsVgs7nwJ55ScnHze11MSv7dkZmayZcsWwsLM+VVvfn8pSPcMr7fW\nOA8lzSIiIiLicQVJmrUioIiIiIhIPpQ0i4iIiIjkozhazomIiIhICREbG8tvv/1GzZo1GTRoUJl4\nRqE4qKZZREREpJx4770PGD16POnptxMUtIro6Gx++21BiXgw0Jv0IKCIiIhIPmw2G/7+/mU+cTQM\ng+DgcDIy1gCNASehoR2YOvVJbrzxRm+H51V6EFBERETkHI4dO0ZMTA/CwythtYYzZszzlOUJu6ys\nLLKyMoCLXCO+GEYjjhw5s+uv5EVJs4iIiJRL9933CH/+WQ2H4zjZ2Tt5662ZfPvtt94O67zi4+OZ\nNGkSX375JTabrVDnBgQE0LZtR/z9H8NcjHkehjGfa665xiOxljVKmkVERKRcWrHiDzIzRwH+QA1s\ntiEsXfq7t8M6p2XLltGyZXueeGINw4d/TcuWV3HixIlCXePHH6dzzTW7sVqbUa/eKH76aSYNGzb0\nUMRli5JmERERKZdq1aoF/OnaMwgM/Jv69Wt5M6Tzuv/+J7DZPsZu/4S0tF/Ys+diPv7440Jdo0qV\nKixePIe0tBR27dpIp06dPBRt2aOWcyIiIlIuTZ78Jh07dsUw5mEYB7joomweeuhzb4d1TikpyUAL\n154P6ekt2L8/2ZshlSvqniEiIiLlVlJSEsuWLcNqtXLDDTcQGBjo7ZDO6dZb72bOnAwyMj4C9mK1\ndmX27I/p0qWLt0Mr9dRyTkRERKSMOHHiBLfeeg8LFswlMDCEV199iYceGubtsMoEJc0iIiIiZYxh\nGCeTPHET9WkWERERKWOUMHuHkmYRERERkXwoaRYRERERyYeSZhERERGRfChpFhERERHJh5JmERER\nEZF8aEVAERERKVXsdjuzZs3i8OHDXHvttURHR3s7JCkHSnLPEvVpFhERkdPYbDbatu1EQkJFsrMb\nY7HMYtasz+nevbu3Q5NSrCB9mjXTLCIiIqXGl19+yc6d1bDZfsDMcfoxdOiD7N2rpFk8SzXNIiIi\nUmocOnSI9PQociYFozhy5JA3Q5JyQkmziIiIlBqdO3cmKOhLYDVwjICAp+nc+XpvhyXlgJJmERER\nKTXat2/PBx+8TsWKPfH3r0GnTkeZOvVDb4cl5YAeBBQREZESKz09ndGjn2Pp0j+46KI6vPPOeC66\n6CJvhyVlTEEeBFTSLCIiIiVWr14DWLw4k/T0h7FY/qBSpY/ZsmUtERER3g5NyhAlzSIiIlJq2Ww2\nKlSoTHb2YSAIgLCw7nz22T3cdNNN3g1OypSCJM2qaRYREZESydfXF3MCLcM1YgB2/PzUMVeKn5Jm\nERERKZGCgoK46657sFp7ANMICBhO5coHue6667wdmpRDSppFRESkxPr443d46aX+9OjxM0OHhhAX\nt5yQkJAiX++7776nfv1oqlSpz/33P0JmZqYbo5WyTDXNIiIiUi788ccfXH/9TdhsXwN1CQ4ewZ13\nRvLhh295OzTJw+HDUKkSVKkCycmevZdqmkVERERc5s79CZvtAaAT0Bi7/W2++26ut8OSPLz/vpkw\nA6xY4d1YTlIlvYiIiJQLFSuGExAQT05Fxm7CwsK9GZKc4cQJCAszt/v1g+++8248uak8Q0RERMqF\nQ4cO0aLFFaSmXkNWVl2Cgz/m668/ok+fPt4OrUiys7Px9fXF17dsFA58+SXcdZe5vWYNtGxZfPdW\neYaIiIiIS5UqVVi//m9efLEZTz8Nv/46t1QmzJmZmQwceDdBQSEEBobwyCNPUponGtPTITjYTJg7\ndwans3gT5oLSTLOIiIhIKfLkk8/w3nursNtnABlYrd157bUhPPTQMG+HVmjffQc332xu//kntGvn\nnTg00ywiIiJSxixYsAy7/QkgDKiCzfYw8+cv93ZYhZKVBTVrmglzq1bgcHgvYS4oJc0iIiIipUjt\n2jXw9V11at/ffxX16tXwYkSFM38+BATA/v2weDGsWgWloSxb5RkiIiIipUh8fDxXXBFDZmZ7fHzs\nhIdvYc2a36lWrZq3QzsvhwOio2HzZmjYELZsgZKyInpByjOUNIuIiIiUMgcPHmT+/Pn4+fnRo0cP\nKlSo4O2QzmvZMoiJMbd/+AF69fJqOGdR0iwiIiIiXmMYcOWV8Pff5mIlSUlmaUZJowcBRURERMQr\n/vnHrFX++2/45htISSmZCXNBKWkWERGRcmPmzFnUqdOUSpXqcM89D5GRkeHtkMocw4CuXaFtW7BY\nwGaDAQO8HdWFU9IsIiIi5cJvv/3G4MEPk5j4MYcPr2D69J2MGDHK22GVKevXm7PLCxbA5MmQnW0u\nXFIWqKZZRERE3Co1NZXp06eTnp5Oz549iYyM9HZIAIwe/TSvvx4IPOcaiadKlS4kJ+/0ZlhlxsCB\nZhkGwNGjEB7u3XgKQzXNIiIiUqwOHjxIVNTljBr1O089lUDr1h34888/vR0WABERFQgISMg1spPw\n8JLddaI0iI8HHx8zYX7rLbM8ozQlzAWlmWYRERFxm9Gjx/Dmm0fIynrfNfIVrVt/Slzcr16NCyAl\nJYVLLmlHSko7srLqERQ0mRkzPqVnz57eDq3UeuAB+Ogjc/vQIahc2bvxFFVBZppLSEtpERERKQuS\nkw+TldU010hTUlJSATh69CibNm2iWrVqNGzYsNhjq1y5MuvX/81nn33G8eMn6NHjJ9q0aVPscZQF\nu3dD/frm9osvwtix3o2nOGimWURERNxm7ty53HbbY9hsc4DKBAcPYejQy7jttn506dIHqENm5i6G\nD7+PiRNf9na4UgSjRsHEieZ2UhLUKD0reJ+TFjcRERGRYvfuu5N47rlXyMiwM2DArXz44ZtcdFFz\nkpJeB/oBKYSEXMHPP39Kx44dvR2uFND+/VCzprn9xBMwYYJ343EnPQgoIiIixW7EiOGkpu4lLS2F\nKVPex8fHh/37dwI3uo6ojGHEsHnzZm+GWWotX76cdu26EBXVnpdffh2n0+nxe774Yk7CvGtX2UqY\nC0o1zSIiIuJR/v7+1KrVmMTEmcCtwEFgCVFRg70bWCm0du1aunW7CZvtbaA2r7wyivT0dF588VmP\n3C81Nefhvvvvhw8/9MhtSgXNNIuIiIjH/fDDdCIiHic8vAWBgU157LG76dChg7fDKnW++WYWNtsD\nwG1AR2y2yUyePM0j93r77ZyEeevW8p0wg2aaRUREpBi0atWKPXu2Eh8fT7Vq1ahVq5a3QyqVAgMD\nsFgO43CcHDlOQECAW+9x7BhUcLWvHjAgZ8GS8k4zzSIiIlIsQkJCaNmy5XkTZofDwSuvTOCKK7rQ\np89tbN26tRgjLPnuuWcIoaEz8PUdC3yI1Xo7zz33hNuu/+mnOQnzv/8qYc5N3TNERESkxHj44VF8\n+ukf2Gxj8PHZSHj4G2zcGEft2rW9HVqJsWPHDl5//W2OHDnB7bffSK9evS74mjYbhIWB0wldu8K8\neeYqf+WFWs6JiIhIqWK1VsRu/w8wZ6ODggbzv/+1Zfjw4d4NrAybOdMswwD4+29o29a78XiDVgQU\nERGRUsYHcOTs+WSfTGjEzTIzzTZyqanQrh38/jv4qnD3nPRHIyIiIiXGiBEPYbX2BWbi6zuO4OBY\n+vXr5+2wypxp0yAw0EyYY2Phzz+VMOenJP/XTeUZIiIi5YxhGLz//ofMmbOImjWr8NJLY6hfv763\nwypVHA4HY8Y8z9SpMwkOtjJ+/NPccsvNAGRkQFCQeVxICBw9ChaLF4MtIVTTLCIiIlLOjBnzPG+9\ntRCbbRKQjNV6Jz///DWLF8fw8svmMQ8/bPZhFpOSZhEREZFy5qKLLmHXrs+A1q6RiUBOW7q0NLBa\nvRFZyVWQpFnVKyIiIiJlSEhICLAv14iZMA8cCIahhLmoNNMsIiIiUobMmzePm24aQnr6gVNjGzYk\nEhWlXtfnoplmERERkXImObn7qYT5oot2sGfPXiXMbqCZZhEREZEyIndL66QkqFHDe7GUJpppFhER\nESkH5s7NSZibNTNrl5Uwu5dWBBQREREpxXLPLu/YAQ0aeC+WskwzzSIiIiKl0NKlOQlzhQrm7LIS\nZs/RTLOIiIhIKZN7dnn9eoiO9l4s5YVmmkVERERKibi40xNmw1DCXFyKK2m2AGuAH137lYBFwFZg\nIVCxmOIQERERKZV8fKBNG3P7zz/NhFmKT3ElzY8A/wEn397/w0yaLwaWuPZFRERE5AybN589u9yu\nnffiKa+KI2muA3QHJpPT/6438IVr+wvgxmKIQ0RERKRUqVnTbCEHsHChZpe9qTgeBHwTGAWE5xqr\nDpxc2/GAa19ERETELZKTk/n+++9xOp307t2b2rVL14p4u3dD/fo5+0qWvc/TM809gYOY9cznWmXF\nIKdsQ0REROSC7Nmzh+bNW/Poo7E89thfNG/ems2bN3s7rAJr3TonYZ41SwlzSeHpmeb2mKUY3YEg\nzNnmqZizyzWA/UBNzMT6LOPGjTu1HRMTQ0xMjEeDFRERkdLv2Wdf4fDhQTgcLwOQkfEGTzwxjp9+\n+sbLkZ3fwYNQPddn707n6bXM4j6xsbHExsYW6pzifCs6Ak8AvYDXgRTgNcyHACty9sOAhqH/WomI\niEghde16CwsW9AMGukYW0rr1a8TFLfFmWOfVrRvMn29uf/wx3Hefd+Mpb3zM/52cNy8u7sVNTmbB\nrwIzgXuABKB/McchIiIiZVTv3texYsUEbLYOQABW68v06tXV22Hl6dgxczW/kxwO8NUqGiVScb4t\nyzBLNQBSgeswW851AY4UYxwiIiJShg0bNpQRI3oSHNyCwMDGDBp0GWPHPuntsM4yeHBOwvzaa2bt\nshLmkqskV8qoPENERETKHLsdrNac/aws8Cvuz/7lNAUpz9D/Z0RERESKyahROQnzqFHm7LIS5tJB\nb5OIiIiIh2VlQUBAzr7dDkFB3otHCk8zzSIiIiIesnXrVrp0WXIqYR482JxdVsJc+qimWURERMQD\n4uJW06ZNq1P7YWGNWbXqF5o0aeLFqCQvqmkWERER8YJPPuG0hBkgLW0wL7wwwUsRyYVSTbOIiIiI\nm5zdNm4JcC0ATudFpKSs90ZY4gaaaRYRERFxg1mzchLmVq1gwoS3sFpHA/8Ba7FaX+LWW3t5M0S5\nAJppFhEREblAPrmqYXftgnr1wOl8mGPHjvPBB93x8fFl9OhHGDTodu8FKRdEDwKKiIiUEQ6HAwCL\nxeLlSMqPhQvhhhvM7Zo1Yd8+78YjRaMHAUVERMqBrKws7rjjPgIDrQQFhTBixBM4nU5vh1Xm+fjk\nJMybNilhLuuUNIuIiJRyzz33Mt9/vxuHI5ns7L1MmfIb7733gbfDKrP+/PP0cgzDgKZNvRePFA8l\nzSIiIqXc/PnLsdufAMKBKthsj/DLL8u8HVaZ5OMD7dub23FxZsJ8ptmzZ3PvvQ/x7LPPk5qaWrwB\niscoaRYRESnl6tSpjq/v6lP7fn6rqFevhhcjKns2bDh7drl167OPmzDhTe64YzSfftqYV1/dQ8uW\n7Tl27FjxBSoeowcBRURESrlt27Zx+eUdyMy8DB8fP8LD/2PNmt+pUUOJsztUrAhHj5rbS5dCTMy5\njw0NrUxa2l+AuepfSEgf3n33RoYMGeLxOKXoCvIgoFrOiYiIeElcXBw7duygRYsWNGvWrEjXMAyD\niRPfw25PB9ZRsWIQS5b8pITZDXbsgEaNcvbzm8szDIPMTDtQ9dSYw1EVu93umQClWKk8Q0RExAtG\nj36Wjh37ce+9M2jdOoZPPplSpOvMmDGDadOWk5m5i8zMRFJS7uDBB0e7Odryp2nTnIR5zpz8E2Yw\nZyv79u1PUNBgYC0wFYtlLl27dvVgpFJcVJ4hIiJSzDZu3EibNtdjt68HKgPxBAZeTnLyXsLCwgp1\nrSeffIoJE0KAsa6RBCIiriY1dY+boy4fkpKgVq2c/cKmIunp6Ywc+X/88ssSqlatwqRJr9G2bVv3\nBilupz7NIiIiJdDevXsJCGiOmTADNMHPryIHDx4s9LUuvrgRVutiIBMAH595NGjQ6PwnSZ46d85J\nmD//vPAJM0BQUBAffvgWu3atJy5uqRLmMkQzzSIiIsVs3759NGlyKTbbD8CVwLdUqjSSpKQdBAQE\nFOpa2dnZ9OzZn99++xeLpQb+/rtZsWJBkWuky6PDh6FSpZx9p/P0ThlS9hVkprkk/5VQ0iwiImXW\nzz//zIABd5Kd7SQsLIxffvmeyy+/vEjXMgyDVatWcfz4cVq1akWFChXcHG3ZdeutMGOGuf3mmzBy\npHfjEe9Q0iwiIlKCORwODh8+TKVKlfD1dX/FpNPp5J133mfx4j9o0KAW48Y9TeXKlfM/sRxIS4PQ\n0Jz97GywWLwXj3iXkmYREZFyJikpiSFDRrB+/QYMw8mRI1Wx24fh7/8ntWotZcOGlYTmzhbLoYcf\nhnffNbfHjoUXX/RuPOJ9SppFRKRADMNg06ZN2Gw2oqOjCQoK8nZIUgRZWVk0a3Y5u3b1IDv7FqAd\ncBAwyzXCwq7liy8eom/fvt4M02syMyEwMGc/Pf30fSm/1D1DRETylZ2dTY8et9CmTVc6d76byMjL\n2LNH7cpKo/j4eA4cSCM7+2WgKWYOkJMVOp0WFi1axGeffcahQ4e8FaZXvPBCToL8wANmZwwlzFIY\nmmkWESnn3nvvfUaPno3N9jMQiMXyPJ06rWXRotneDk0KKSEhgebNr8Bu3wlYgQHAUeBJfH1/wTA+\nIDi4Kz4+PgQH/01c3Arq16+f57UWLFjAjBlziYgIY+TIh6hbt24xvhL3cTjAL9f6x8ePn17LLAKa\naRYRkQL499/N2Gw9OTkj6XDcxKZNm70blBRJ/fr16dHjBqzWrsCbBAUlU6/eHlq0GEeNGj/i4/M4\nNtu3pKXN4vDhu/m//3shz+t8+eU0+vW7l88+i+Tttx1cemk79u3bV7wvxg3eey8nYe7Xz5xdVsIs\nReWX/yEiIlKWtWzZHKt1Bjbb/UAQfn7fEB0d5e2wpAh8fHz45pvP+PTTT4mLW0+LFv0YNuwB/Pz8\nuPrqnuzb1+rUsQ7HZezdG5fndcaOHY/NNh3ogMMBx4/bmDLlM8aOHVNMr+TCGAbkbkaSknJ6H2aR\noihM0twMuAhwArsATUOIiJQB998/lIULV7BwYUP8/CpQpYo/U6Ys8HZYUkQWi4WhQ4cydOjp4927\nx7B69URstg4AWK0T6d69T57XyMhIB3KyTIejMjZbuqdCdquvvoI77jC3r7oKfvvNu/FI2ZFfTXMD\n4FGgO5AI7HOdUxOoA/wEvAkkeCA21TSLiBQTwzDYvn07drudyMjIQq9KJyWfw+Fg+PDHmDLlYwDu\nvnsokya9gSWP5sSjRo1h0qRl2Gz/A/ZgtQ5nxYr5tGrV6qxjS5Lcq/glJuYsiS2SH3e0nJsJfALE\nAllnfM0f6ATcC/QvUoTnp6RZRETEzZxOJ8B5F1NxOBw899zLTJ8+h7CwUP73v+e49tpriyvEQvv5\nZ+jZ09xu1Ai2bfNuPFL6qE+ziIiIlElOp5MDBw5Qq1bNU2Px8dC4sReDklKrIElzQWqaKwJdgdqu\n/b3AAuDIhQQnIiIiUhSJiYm0a/cse/d+CoCfXxZZWf5ejkrKuvxazt0JrAJigGDXr87AauAuj0Ym\nIiIikoc6dWqfSpjhEIGBzZk/f75XY5KyL7+keSzQGngAeMn1637X2FjPhiYiIlJ2ff/9bHr2HMjA\ngfewfv16AA4ePMiwYSPp1q0/Eye+hcPhKNK1k5KSuO++EXTr1p+3337vVB1zabdmzekP+5mqYLff\nxKpVq7wRkpQjRe3TrGJjERGRIvr88y958MFnsdnG4eOTzI8/diY29hf69r2dAwe6kZXVl+XLJ7F5\n8zYmT36vUNc+cuQIrVp1IDm5Lw5HN5Yv/4jt23fxzjsTPPRqikfuZLl27cEkJnbH7EOQRXDw79Sr\nN/Rcp4rxp583AAAgAElEQVS4RX4PAt4FPAssxKxlBqgLdAFeBD7zXGh6EFBERMqmiy++nPj4CZhN\nqACeoXv3dSxfnsGJEyd7ZB/FYqmGzXa8UC0Ap02bxr33vklGxjYgA2iGxbKJzExbnh0zNm/eTGpq\nKtHR0YSHh1/gK3O/v/6CK6/M2TcMWLlyJddd1wsfn9Y4nQlcdVVTfv55Vp7t80QKwh0PAn4B/Ajc\nAJzsdhgLPA2kXlh4IiIi5ZNZdpE7EQ7E4XCeMeYP+BS6tGLnzp1kZOwAfgeigPE4HOM5cyLKMAwG\nDx7GrFk/4O9fBz+/fSxdOo9LLrmkKC/JI3LPLr/zDowYYW63bduW+Ph/WblyJRUrVuSqq646bws9\nEXcoSHlGKjAdqOzaT/FcOCIiImXfww/fw9NP34fN9jqQjNX6NqNHz6R//8HY7S/icLQjOPgtunfv\nT1BQUKGubbVaMee6ol0jo4FncDqdp83Ezpkzh++++wu7fSt2eyjwOf37383mzXkvrV2cNm2C5s1z\n9vP64Ll69er06tWr+IKSci+//5bVB74BkoG/Xb+SXWMXeTQyERGRMurhhx/kjTceo23bd+jUaQ4L\nFsymU6dOxMUtp1evLbRqNZ6HHmrF119PLvS1IyMjsVo3AZmukTjCw6vg7396S7YtW7aQkXE9EOoa\nuZGEhC0X8rLcwscnJ2F++um8E2YRb8ivpvkvzGWyvwOyXWN+wM3ASKCd50JTTbOIiEhhOZ1O+vQZ\nSGzsJiAah2MR06dPpk+fPqcd99NPP3HrrU+SlvY7EIGPz/tERU1j/fo/vRL3nj1Qr17OvtOZV6cM\nEc9wx4qA8UCTInzNHZQ0i4iIFIHT6WTx4sXs37+fK664gsjIyLOOMQyDRx4ZzccfTyYgoDpWawbL\nlv2S57Geljs5HjIEpkwp9hCknHNH0jwDs4b5C2CPa6weZleNypi9XjxFSbOIiIiHJSYmcvjwYZo0\naUJgYGCx3js1FSpXztnPzgY1wBBvcEfSHAjcA/QmZxntROAH4FPMXjaeoqRZRETkAuzYsYPHHnuG\nvXv3c8MN1zBu3NNn1TZ7S61akJRkbl9/PSxc6N14pHxzR9LsTUqaRUREiig5OZlmzVpx+PAwnM7L\nCQ6eSN++9fjqq8I/XOhOaWkQGpqzb7dDIRuEiLidu5LmrsCN5Mw07wXmAp5e5F1Js4iISBFNnTqV\nYcPmkJb2nWvkGBZLVdLT0/DzK+qCwBemXTv4+29zu2lTs7WcSEngjsVN3sZ82O9LzLIMgDrAw0B3\n1+8iIiJSRE6nk+nTpxMfv43LLmtJ7969T/4AvyAWiwUfn8xcI9n4+Pi45donGYbB7Nmz+fff9URG\nXsyAAQPyXGQkKwtyL2p45AhUqOC2MESKRVG7Z/i4vtbY7RHl0EyziIiUaYZhcOONt7FkSQI227VY\nrbMZOrQ3b7wx/oKvfeTIEZo1a82hQ/3Izm6N1foOd911BZMmvXnacU6nkzfffJdffllG3brVeeml\nsdSuXfscVz3d8OGP8eWXi7HZemO1LqRHjyi++WbKaYn5LbfAt9+a20FBZjmGSEnjjvKM9ZgPAq48\nY/wKYDLQoqjBFYCSZhERKdPi4uLo2LE/Ntt/QBCQQkBAQxITt1OlSpULvn5SUhLPPPMyu3fvp2vX\naxg58qFTM8Hbtm1j0KDhrF27lsxMf5zOZ/HzS6BSpW/YvHk1ERER5732vn37qFfvYhyO+kAWMIDg\n4M/4558FREVF4XSe3gkjKQlq1LjglyTiEe4ozxgMfACEYdYyg1meccz1NRERESmC+Ph4eva8GZut\nAmbCDFAJf/+KHD161C1Jc82aNZk8+b2zxk+cOMFVV13PoUMjcDonYXaWfZ/s7NWkpW3ip59+YtCg\nQee99ty5c3E4rMCHQAXgPhwOf44cOcLIkfD22znHag5MyoL8kuZVQFugJqe3nEvyZFAiIiJlmWEY\ndOnSlwMHhmM+PjQF6IGv72SqVAmlfv36Bb7W2rVrWbZsGVWrVuXmm28mIHfx8HnOSU+vhtP5mGvk\nBeArYDvgR0E+6V2+PA4YB1ztGplIVlZfOnS46tQx27ZBo0YFfikiJVpBH59NQomyiIiIWxw/fpy9\ne3cCozCbVN0HPEKDBo1YsmRegbtbzJr1LXfd9SBO5834+c3m7bcns2LF/HwT59DQUByOZCATCABO\nAIfx8ZlCYOBfdOv2Qb73rlQpHF/fvTidJ0fCMIxDp76u2WUpa85+xLXg1rgtChERkXIkNDTUtcjI\nOuASYCkhIbWZPPmtQs0y33//I9jtP5CR8T5pab+ycaODb08+dZeHlJQUbrnlLvr2vYugIAgO7gK8\nir//NVSuHMGNN+4jLm4FVatWzffeTzzxMGFhn2GxPOIaaQnA6tVKmKVsupBGjZe5LQoREZEiysrK\nYuvWrQQGBtKoUSO3tlTzFF9fXz7//BOGDOmCxdIJp3Mdffp0oGPHjgW+hmEYHDt2iJxn8n3Jzo7m\n0KFDeR7vdDrp3LkXmza1JitrCr6+PxIWNom7727JFVc8xh133FGoP7sGDRrw9NMbGD06Zx1sJctS\nlpXk7yzqniEiIud14MABrr66K0lJJ3A40ujcuQNz5nztlsU7Nm7cyD///EOtWrW4/vrrPZKMb9my\nhVWrVlGrVi06duxY6Htcc013/vqrMVlZrwLrCQ7uzR9/LKBly5ZnHbtz506ioztgs+3h5AfN4eHt\n+PHH17nmmmsKHXvuUJcuhZiYQl9CpMQoSPeMCynPWH8B54qIiFywoUMfJSHhOk6c2IrdvoOlSw/z\n7rvvX/B1v/pqOm3bduahh5bQr99j3HLLXQV6OK6wIiMjue2224iJiSlSUv7991/Srt02LJYIIiL6\n8cUX7+eZMAMEBQXhcNiBdNeIA6fzKIGBgYW655w5pyfMhqGEWcqH/P6F3pTHmOE67yPgwvvhnJtm\nmkVE5LwaNLiUhITPgFaukQ+4/fY1TJv2cZGv6XQ6CQmJID39N8zSh3RCQ1szZ847XHvttW6IumhS\nUlIYOfIp1q/fwmWXRfHmm69QsWJFwCzVKEjS3b//Xfz88y5stgEEBy+gZcs0VqyYjyV3Q+XzyH2L\n776Dfv2K9FJEShx39Gn+BvgacJ4x7kNOU0kRERGvaN68KXv3fk929mVANsHBP9Ky5XUXdM20tDSy\ns7OAaNdIEHAJSUnnbiJ14sQJDh48SJ06dQrU8q2wsrKy6NDhBrZvv5KsrOfYtGkGq1d3Z/XqFa7l\nsgs2Sz19+hQ++OBD/vprDVFRV/Loo48UKGFesQJyV3BoTkvKo/z+la0G7iLvUow9QF23R5RDM80i\nInJe+/bto33760lNteB0HqdduxbMm/ftBSeuTZq0ZPv2OzGMR4HVWK3dWL16BZGRkWcd+8knUxgx\n4lH8/CoQFGSwYMEcWrdufUH3P9OqVauIiRnEiRMbMX90OwkJaczKlT/RvHlzt97rTLnz8Y8+gqFD\nPXo7Ea9wx0zzSMzV//KiD2VERMSratWqxebNq9iwYQOBgYFERUWdWib6Qsyf/x3dut3Cjh1PERgY\nwpdfTs4zYf7vv/945JGnyMj4h4yMi0lLm0m3bv04cCDBrQ8O+vn5YRiZmB/8WgAHhpFV4LKKovj3\nX7j00px9zWNJeafuGSIiIudgt9sJCgo6ZwI8Y8YM7rtvFseP5/RGDgioSGLiNrcsg32Sw+Hgqqu6\nsG5dFdLT+xAcPIs2bTKIjf3ZI109cl/yxRdh7Nizj8nKymL8+IksWfInjRrV4ZVXnqVGjRpuj0Wk\nOHi6e4aIiIhXGYZBamoq2dnZHrl+cHDwWUnp119Pp169KKpVa8icOfPIzl4JpLq++hf+/hYiIiLc\nGofFYuHXX39k5MhIunWby+OPX8aCBd+fFltWVhYjRoyiatUG1K8fzYwZMwt9n507T0+YnU4zYTYM\ng5SUlNP+nO+8835ee+1Xli8fwtSpVi6//BqOHz9+Qa9TpCTTTLOIiJRKW7du5frrb2T//kR8fJx8\n/PEH3HnnHR695+LFi+nTZzA229dANazWB4iKMti4cRv+/s3JylrLzJmf06NHD4/GkZeRI0fzySdx\n2GyTgCSCg29j3ryviSlgP7jcyfLw4fC+q3Pf+vXrueGGvqSkHMJigalTp9CtW1cqVKhMdvYhIASA\nsLDr+OKLB+nbt69bX5dIcXBHTbOIiEiJ1LXrTezZMxzDeAj4jwce6ESrVi2Jjo7O99yi+vbbH7HZ\nRgJmKwmb7Q0OHhzM338vYO/evURHR1OnTh2P3f98Zs2ai802E4gEIrHbRzB79k/5Js0HD0L16jn7\nDgecLAt3Op1cf30fDhx4FhgMrObOO29g5cpY19G5cwzP1VeLlAQFKc+wkPOvwge4A3gAsHoqKBER\nkfNJS0tj9+54DONB10hzLJbrWbVqlUfvGxERhsWyJ9fIbkJDQ4mOjqZr165eS5gBQkPDMBtbmfz8\n9lCxYth5z6lQISdhvvFG82G/3M9RHjx4kKNHj2EmzACt8PNrz5YtW7jxxlsIDr4J+Ak/v6cJDd3u\n1T7WIp5WkKT5Z6Cpa3sMMAi4FLOHs4iISLGzWq0EBYUAca4RG4axyuNJ64gRw6lY8Xv8/R/Ax+cZ\nrNahvPHGOI/es6DefPN5rNa78fF5Fn//+4iI+Jnhwx/I89hjx8xyjGOu/lgZGTB79tnHVapUydW1\nY8PJM8nOXkedOnX46qvJPPpoO6688n369z9IXNxywsPDPfLaREqC/GqaOwJTgCGuYz8GngZSXNv3\nusaXeSA21TSLiMg5zZ49hzvuuA+LpSNO57/06XMN06Z94pFuErklJSUxZcpn2Gx2+vW70e09mS/E\nypUrmT37B8LCQrjnnrupnrvuwuWSS2C9a/WFVq0gv8n5adO+ZujQkfj5XYPTuZpBg/rwwQdveiB6\nEe8pSE1zft9ZYoDJwHAgAnjWte0DvAOMcB2npFlERIrd9u3biYuLo1atWnTo0AEfHx+WLVtGfHw8\n0dHRtGvXztshlhgZGRCUay3f48chNLRg527ZsoU1a9ZQv359rrzySs8EKOJF7kiaAV4AbgICgPGY\nM89VgBmAJ4uXlDSLiEihjBz5f0ye/C2GcTWwhKeeeoixY5/0dlgFcvDgQd5++z0OHTpCnz5d6d69\nu9uu3aMHzJtnbleuDIcOue3SImWCu5JmgOZAFhDv2q8KhAE7ihpcAShpFhGRAtu6dSstW16D3b4J\n88PRJAIDm7F791aqVavm7fDOKyUlhejoNhw6dAPZ2U2wWt/hjTfGcP/9913QdR0O8MvVJys5Gdy4\n5opImeHOxU3+w0yYq2Aun10PzybMIiIihXLgwAECAhpiJswANQkIqEFycnKBr7Flyxaio9sREBBC\n48YtWbt2rUdiPdNXX33FkSNXkp39AfAYNttsxox56YKuOXTo6QmzYShhFrkQ+SXNPwMnG17WxHx8\ndggwFXjUg3GJiIgUSlRUFE7ndswfXQbwNQEBaTRs2LBA52dkZBAT053//ruTrKwktm9/gs6de3D0\n6FFPhg2AzWYjOzv3bHhVMjLs5zx+69atzJw5k5UrV571NcMwO2N88om5v2uXOSYiFya/pPkicvrM\nDAEWAr2AK4C7C3D9IOBvYC3mbPV413glYBGw1XXNioUJWkRE5EyVKlXil1++p2rVB/Hx8ad27edZ\nvPhHgoODC3T+9u3bSUvzwzCGA+HAHTiddVl/stWEB/Xu3ZuAgGnALGAtwcH3MmBA/zyPnTr1K1q2\n7MC9935Dp079efjhnJrt5547vc+yYUC9ep6NXaS8yK+meS3Q0rX9K/AJMN21vw6zX3N+rIANc/XB\n34AngN7AIeB1YDTmZ2n/d8Z5qmkWEZEiyczMJCAgoFDn/PPPP7Rrdx1O5xXAdcD9BAc3Z9WqxTRr\n1swjcea2fPlyRowYw5EjR+jTpxsTJ7501mtIT08nIqI66el/AFHAEazWS1ixYg6tW7c6ddyGDRAV\n5fGQRcoMdzwI+BOwAEgEPgUaAocxE+F/MP/FFpQVszXdYOA7zB7QB4AaQCw5C6icpKRZRESKRUpK\nCk2bXkZKyl0YRhtgPH5+u7j99j58/vkHBbrG8ePHcTqdVKhQwWNxJiYm0qRJK+z2A6fGgoImkZ4+\n/NS+fnSKFJ47HgS8B7Om+S5gAGbCDGZ5xmcFjMMXc8b6ALAU2AhUd+3j+v3s7usiIiL5cDgc/PHH\nH/z666+cOHGiyNf5+eefsdvbYBgvYn4YOg+nM4XJk9/N99zs7GwGDrybypVrULVqbbp3v5n09PQC\n3Xfr1q0sWLCAPXv25H8wUKNGDcLCgoGvTo2dTJh//10Js4gn5Zc0HwDuB/pg1h6ftBSYWMB7ODFL\nPOoA1wCdzvi64folIiJSYOnp6Vx1VRduuOFe+vZ9hiZNLiUhIcFNVzfw9fUp0OqCEya8yQ8/7CIr\n6yBZWSksXerkqafG5XveK69MpGXLqxkwYAKRkZcxffqMfM+xWCwsXDiX8PA/T4/WgPbt8z1dRC6A\nXz5f//GMfQOzFvlXYFoh73UU85Hm1uSUZezH7MpxMK8Txo0bd2o7JiaGmJiYQt5SREQKatOmTYwf\n/xbHj9sYMuQWevfu7e2Qzuutt95h3bow0tMXAhbS0sZz332PsmjR7EJfq0ePHlitz5Ce/iwORyus\n1je47bb7sFgs+Z4bG7sSm+0+IASA9PRhLFv2ynnP2bJlCy+9NAG7fQ12ey3gX+6++xp69+5JSEjI\nec9t2fJS4D0A5s510Lt3/jGKyOliY2OJjY0t1Dn5Jc3/y2OsEnA7ZtnGmQ/vnakKkA0cAYKB64Hn\ngR8wSz5ec/0+J6+TcyfNIiLiOVu3bqVt246kpY3EMKqzcOHDTJp0lLvuGuTt0M7pv/+2k57eBTCT\nRoejK/Hx089/0jlUrlyZuLgVPPXUC+zZs4Zu3Xrz5JMF66zapEk9YmOXk5k5APDBYllOo0bnb1mR\nkJBAQEALV8IMcAkWS0WSkpJo3LhxnucsWQLXXZezb5ZiKGEWKYozJ2Off/75fM8p6IqAZ7IAq8m/\ne0YL4AvMMhBfzP7OEzAT75mYi6QkAP0xE+vc9CCgiEgxGTXqKf73Px8M4+QM6VIaN36C+PhVXo3r\nXLKzs7n66mv566/jwHLASkDACHr3PsGsWV8Uayypqam0adOR5OSKQAChobv4559l1K5d+5zn7N69\nm6ZNW2G3L8X8UbmAChXuYv/+BIKCgs46PneVyBdfwJ13uv1liJRrBXkQML+Z5nNxULA65PVAqzzG\nUzH7+YiISAmQlZWNYYTnGrGSnZ3ttXjyM378RNat88Vs4lQX8KVSpUp8+OFfxR5LpUqVWL/+b2Jj\nY3E4HHTs2JHw8PDznlOvXj0+/fR97r77aiyWCCwWOz/8MPOshDkuDtq0ydnXXJKI9+Q301zpHGOD\ngMaYZRqeoplmEZFisnr1aq6++gZstv8B1bFaR/Hcc4N58snHvBrXkiVLmD59NmFhVkaOfJD69esD\n0KFDD37//X7MThcHgLl06PADK1b85M1wC+3EiRPs37+fOnXqnJUw555dnjgRHn+8mIMTKUfcMdO8\nmtNnlA0gBbOv8rALiE1EREqQVq1a8csv3zFmzGukpdkYMuQBHnrIu9/mZ86cxZAhI7HZHsfXdz+f\nf34l69b9Rb169ahbtwYWSxwOR2+gOhbLburXr+nVeIsiNDT0rBrmrVshMjJnX/NHIiVDUWuai4Nm\nmkVEyrHGjVuxffvrnKzms1ge5cknQ3nllRfZs2cPrVtfjd1+KWBgta5n1aoV1KlTx6sxX6jcs8uP\nP27OMIuI53mypllERMRt0tLSWLx4MQ6Hg06dOhEREeFaIKTyqWMcjsrYbEcBqFu3Lps3r+aXX37B\nx8eHbt2+ICIi4pzX37lzJ3///TfVqlWjU6dOBeq/XJz27YPczw06nacn0ACrVq1i69atNGvWjJYt\nWxZvgCKimWYREfGulJQU2rTpyKFDVYEggoI28c8/y/jkky9488152GxvAfuxWu9nyZK5tGvXrlDX\nnz9/PjfdNAiLJQbD+I/OnS9h+PDBLF68lBo1qjJ06FDCwsI88toKwtc3pwRj4ED4+uuzjxk37hUm\nTPgAi+VKHI7feP750TzxxCPFG6hIGVaQmWYlzSIi4lUjRjzBRx/ZyMqaBIDF8iI9e27m+++n8sIL\n45k69TtCQ0N47bUxdO3atdDXr1KlLikp04COQAaBgZdjGPvJzHyEwMAN1K27mbVrf893URF3O3IE\nck+OZ2WBXx6f/yYkJNCsWRvS0zcA1YE9BAVdQkLCZqpXr15c4YqUaQVJmvNbRju3SzGX077J9atf\nkSMTERFx2bFjL1lZV53adziuIiFhL76+vowbN4bt21ezbt2KQiXMdrud2267B3//SqSkpABDgVlA\nIBkZl5GZ+QAwloyM6SQl1eLbb79198s6r0aNchLmq682Z5rzSpgBEhMTCQhoiJkwA9QlIKA2+/fv\nL45QRcSloDXNn2F2X98IOHONf+/2iEREpFy59toriY39CJutFxBAUNC7xMQUrgTjTA888CgzZvyG\n09kBc8npXZjraDkxF6U9uRCtDw5HXU6cOHFB9ysoux2s1pz9tLTT9/PSrFkznM6dwBLgWuAn4BCN\nGjXyXKAicpaClmf8h9lBvjjrJVSeISJSxmzdupW5c+cSGBjIwIEDqVq1Kg6Hg3vvfYipUz/Dx8eX\nrl17MWvWF3mujFdQlSrV5fBhA3O1wIau0bH4+k4gOvoytmxpQEbGi8B6rNahrFnzOxdffLEbXuG5\ndeoEsbHmdv36kJBQ8HOXLl1K374DsdtthIaG8+OPM2nfvr0nwhQpl9xZ0/wF8DrmTHNxUdIsIlKG\nrFy5ks6de5CZeSsWyzHCwmJZu/ZPatWqBZglFU6n0y21xfXrR7N7dwbwIebsLFgstzJ+fGuGDRvG\n0KEjWbRoCZUrV+GjjybSsWNHtm3bxgsvTCAl5SgDB/bmjjtuu+A4ALKzwd8/Zz819fRa5oJyOp0c\nOXKEiIiIEtf9Q6S0c2fSHIP5edZ+IMM1ZgCXFDG2glDSLCJShlx55Q389ddAYDAAfn6PM2yYD++8\n4/5mxHPnzqV//7vIzPQB7gO2ERS0nP/++4cGDRqcdfzu3btp0aItJ048iNN5EVbry7zwwjAef/zC\nOlQMGgTTpuXs68eaSMnkzgcBPwXuALoCvVy/el9IcCIiUr6kph4GckogsrMvJjn5sEfu1adPH374\nYQb+/g5gMxCJw9GTgQPvzfP4adO+wma7GafzGWAQNtt0Xn/9nSLf3zDMPssnE+a9e5Uwi5R2BU2a\nD2LONO8AEnL9EhERKZC+fbthtY4B9gAbsFon0q9fN4/dLy0tjaCgazB/fI0nK+tTVq9eyZEjR846\n1uFwYBiBuUaCcDodRbrvk0+avZdPMozTFy4RkdKpoN0z1gBfAz8Cma4xA3XPcKvFixczdeq3hIVZ\nefTRB/VktIiUKS+99AxHj45i2rTW+PsH8MwzT3LLLTd77H5WqxXDOIDZMcMXSMUwsvN8wHDAgP68\n+mp7bLZGQCMCA/+PBx64u9D3zF1qvHkzREYWNXoRKWkKWtP8uev3Mz9cGuK+UM5SrmqaZ836lsGD\nH8FmexJf34OEhn7KmjV/0LBhw/xPFhGRs2RlZXHFFZ3ZtKky6ekdsFq/ZPjwXkyY8PJZxyYlJdG0\n6aUcO1YV8MXffz/vvvsK999/X4Hu9cYb8PjjOfvl6MeXSJmgFQFLkaZN27Jly4vADQD4+j7JY49Z\nmDBhvHcDExEpxex2O++/P4mdO/dy9dVXMGDAgDw7T7z++uuMHbuNrKyPXSMrqVnzDvbt25rvPXJf\n7p9/4PLL3RS8iBSbgiTNBS3PiAQmATUw+zVfgvkg4EsXEJ/kkpGRAeT0IHI6K2G3H/ReQCJSbjkc\nDhYtWkRKSgrt27fPs9tESWAYBkuXLmXfvn20bds2zz7LwcHBPPHE43mcfTq7PR2HI3cfuAgyMzPO\neTzA1Klw55254ylo5CJSGhX0QcBPgKfJqWdeDwz0SETl1D333IbVOhz4Dfgeq/VNbr/9Fm+HJSLl\nTHZ2Nl269OWWW57igQd+IDq6LYsXL/Z2WGcxDINbbrmL3r0fYtiwn7nssg58913RH7Pp168vQUFT\ngOnAX1it9zBo0Ll/zPn45CTMixYpYRYpDwpanhEHXI75QOBlrrG1QEtPBOVSrsoznE4nr776P774\nYhZWazDjxz9F165dvR2WiJQz33zzDffe+y5pacswP4xcRI0aw0hK2ubt0E6zaNEi+vZ9lLS0OCAI\nWIXVej0nTqQUeeGPFStW8Oijz3H06DH69+/F88+Pwc/v9A9k582DHj1y9svRjymRMs2d5RnJQONc\n+zcDSUULS/Li6+vL00+P4umnR3k7FBEpx/bt20dW1uXk/HhoR0rKPm+GlKfExETMOZyTnTBakZGR\nRnp6OsHBwUW65tVXX01c3K/n/HruXHz6dLj11iLdhmPHjnHixAlq1KiBr29BP/AVEW8r6L/Wh4CP\nMGub9wGPAsM8FZSIiHhHu3bt8PP7DtgOGFgsr9GqVXtvh3WWNm3aYBgLMasFDXx83qJhw+Z5Jsxr\n1qzhhx9+YNeuXYW+j81m4623/j4tYTaMoiXMqamp3HTTQCpXrkmjRi2JimpLUpLmn0RKi8J+hhWK\nmWgf80AsZypX5RkiIiXFpEkf8eijj+F0Gvw/e/cdHkX1NXD8uyVbZpMQICEQeu+E3rsgSBGkSbMA\nooKCoi8iihRRithFFJEqHSmiFEGKdAEBAwIBpSm9BEKySbad949ZQiJtgUDk5/08zz7szt42E92c\nzJ57b8mS0SxfPp+oqKjMHtY1Zs6cTY8ez+HxuMmfvyg//rjgmvXtX3ppAF9/PROzuSwezzZmzPia\n1g4kTGIAACAASURBVK1bBdT+2bNnyZEjIvV19uwj2L//WcLDw297rPv376dKlVokJIQBvwDZMZvf\npFatGNau/eG221MUJWNlxJJzTwPTAc8N3rcAXYDJtzm2QKigWVGUTDN37jwmT55HcLDGoEH9iI6O\nzuwh3Vder5ekpCSCg4MzeygcP36ct956l7/+Os0jj9Tj5ZdfTE1r8Pl8JCYmEhISck29rVu30qBB\nB5zOXUAYsB1Na0x8/DlMJtNN+9y7F0qXTntEsFhe4oknfHz99djbPocaNR5myxYjUAMY4j/6F1my\nVOXiRXW3WVEyW0bkNAcD24D96JMBT/obzIk+MbAE+soaiqIo/zMmTpxM377DcTrfBs6wbFkjtm1b\nR8mSJTN7aPeNyWT6VwTMcXFxVKxYm/PnH8frrc+mTR9x+PAxPvvsfUCfD3K9gBngyJEjmEyV0ANm\ngMp4PMLFixfJnj37NeXdbjcpKSmEhKQ97wNAMcCAy9WQAwcm3tF5HDlyBHgSWIW+GFUQsJI8eQrc\nUXuKotx/t8ppHgtUBD5H/z+8NlALPdi+8t64ezlARVGU+23kyLE4nZOBrsArJCY+z4QJ9+ILNeVW\nfvjhBxITy+P1jgI64HR+z5dffo7P57tl3ejoaDye9cA+/5GZhIVlJVu2bNeUfffd99C00ukC5v79\n38Jufw1IAZKx2ydRu3alOzqPKlUqYTafRr8XVQ6oiaa9xowZX95Re4qi3H+BTAQU9MWDRwG9/Y/R\nwEau3VZbURTlgacHZGm/iAvC6711kKZkPP1nEZTmiBkQAknfK168OF988QFWazXs9lxERAzkxx8X\nXrMk3dKlSxk06DU8Hn33P4NhE02btuPtt9+kXj0TFkskFkskDRpYGTJk4B2dx6RJn1G69A6s1s2Y\nTEdo3jySI0f2/efSfhTlQaa20VYURfmHTz/9nIEDx+J0jgZOo2lvsHHjSsqXv5dL0yvXc+bMGUqW\nrMjFi73x+SqiaWPo0KEYkyd/EXAbSUlJnD9/npw5c16z7vK5cxAR8c8axwgLq0Fc3HFAnxBoMBju\naAJgWiLCqVOn0DSNLFmy3FVbiqJkrIyYCJiZVNCsKEqmEBEmTpzMpEnzcDjsvP12f2rUqJHZw/rP\nOnToEK++Opjjx/WJgG+99fo1we+dyJkTTp/WnxuN2/D5KqF/ATuHEiU+YN++rXfdh6IoDwYVNCuK\noijKPyQkQNq5g5cupdCoUVP27UvEYMiHyDp++ul7qlWrlnmDVBTlvsrIoDkMfY2cuv7Xa4G3gUt3\nOLZAqKBZURRFyVBVq8K2bfrzUqXg99/15263mxUrVhAfH0+dOnXIkydP5g1SUZT7LiOD5gXo2y5N\n9dd5An36b5u7GN+tqKBZURRFyRBuN1gsV19fugShoZk3HkVR/l0yMmj+DfjnFN/rHctIKmhWFEVR\n7lrbtrBggf5c0yAxMXPHoyjKv08gQXMgS84BJAF10ryuDTjvbFiKoijKgyo5OZmuXXvicGQnPDwf\nX389KbOHdEM+HxgMVwPmI0eSVcCsKModCzRofh59g5Oj/sdY/zFFURTlASMi/PLLLyxatIijR4/e\nsNz27dtZuHAhhw8fTj3Wp89rLFhwGqdzD+fPL+Kll4aycuXKuxrPlX4OHTp003Iul4uVK1fyww8/\ncPHixZuW7dMH0u6U7XDko0yZvLc1VpfLxU8//RRQf4qi/O+73dUzrmSAxWf0QK5DpWcoiqJkMBGh\ne/cXmDdvOSZTaTyeLcydO4XmzZunK/fii//H5MnzMJuj8Xg2M23aeNq2bUPOnEU5fXoxcGVL8VH0\n7XuOTz55/47G06dPfyZNmpvaz9SpX9KuXdtryiUkJFCjRiOOHvVhMIRitf7BL7+soWDBgv84PzCm\nuR1ks1UiOflzoDrwM8HB7fj77z9uuU5yYmIiNWs25vBhNwZDGBbLAbZsWU3hwoXv6DwVRfl3y4j0\njCf8/74KvAI8439cea0oiqI8QNauXcu8eatITIwhPv57nM7v6NTp6XQ77P3yyy9MmTIfpzOG+PjF\nOJ0reOKJ7ng8HrJmzQbEppa1WA4QEZH1jsaydetWJk2al6afQTz+eE+aN+/Ixo0b05UdPfoDDh4s\nzOXLvxAf/xPnzz/P88//HwC//vorrVt3oUiRGekC5o0bN2G1mtEDZoB6GI05b3lHG+D99z8iNjYf\nly9vJT5+JRcuvMhzz7160zqHDx+mc+ceNGjQio8/HhvQVt+Kojw4bhU0a/5/Q27wUBRFUTLBmjVr\nKFasEuHh+enUqQcJCQkB1dPTMaoCwf4jNXA640lKSkpXxmisCFy5G1sBn8/AxYsXGTt2BJrWE7P5\nZez2DuTIsZHevXtd04/L5eLSpWtXJU1JSeHZZ/sSEVGQli07I5LL388C4D18vpEsXdqAxo1bs3nz\n5tR6Bw4cJSWlPlduBPl89Tl8+BgxMTHUq9eU776bwZ9/dgFgyJDFiEC+fPlISfkDPasQ4A9crr8D\nWk7uRv3dyOnTp6lUqTZz5uRj7donefPNabz22qBb9qMoipIRRFEURdFdunRJ1q5dKzt27JC9e/eK\npoULLBL4Q6zWjvLoox0Daue3334Tuz1SIFb0ZIbxki9fyXRlYmNjxW6PENjtL/ONREYWFJ/PJyIi\nu3fvltGjR8vYsWMlLi7umj5GjBgjQUF2CQpySHR0TTl16lTqe927vyB2ezOBAwIrBEIEZgoUFbAK\nOAQaCrwrjz/eLbXe2LHjRNNqClwScIvV+pQ89dTz0qDBbP8YrzxWSbFiVVLrffzxWLHZIkTTKovV\nmkXGjRsf0HX64ovxomnVBS76++smXbr0vEn5L8Ru75JmHH+J3Z4loL4URcl8wC1zgm+1D+lnaYNY\nruZ6XGm47+3HwoqiKMrt2Lt3L3XrNsHjyYfHc4KCBXPg9T4GtAIgJWU8y5blDKitcuXK8cknI+jT\npxIGg41s2cJYvnxxujLFihXjq68+pmfPWoCF0NBgfvxx0ZWcP8qUKUOZMmWu2/6KFSt4550vcLtj\ngV/ZvfsTmjRpza5d+l3jhQsXkZS0HigIFMVgeBGD4Ul8vjzod4TDgT7A9/h8JfD5fCxatIikpETq\n1g1n1apcGAxBVKlSnalTl19nBMZ0qSYdOrThvfc+4eJFNyZTTiZNmslTT3VF07Tr1L3q2WefYfv2\nGKZNi8JgCKJSpaqMG/ftDcvrfaaZeYgp3TgURfnf97T/8RWwAf2TrC+wHvjyHvedyX9zKIqi/DtE\nR9cWg+FL/x3MJLFaq4nFUk7A5z+2W8zmENm5c+d161++fFkGDhwsrVt3lffe+0DcbrckJyfLyZMn\nxev13rDflJSUW5b5p2HDhgkMFHhGIFqgr0AuefPNYSIikidPCYGfU+/IWq1PSM2a9QRGprlLe0Ag\nRH7++Wdp06arOBwVxWJ5STStgAwaNEymTbuU7u6yftd9vMB80bQi8uWXX6WO57HHuorZ/Lq/rEds\ntvYyaNDQgM8nPj5ezp07l3qX/UZOnDghYWG5xGgcKfC9aFpN6dPn/wLuR1GUzEUAd5oD9QsQlOZ1\nkP/YvZTZ109RFOVfITQ0p8BfaQLFwZI1aw4JCmov8LZAlEAbcTjCZceOHenqulwuKV++llitHQUm\ni6Y9JG3adLlpfz6fTzwez22N0e12i4jIxIkTxWarIpBXIME/3tNitYbK2bNnZc6cuWK35xSDYahY\nLE9LZGQBKVOmgkBjAa+//EQpXLiCbNmyRRyOwgJJ/uPH0wXLCxfqfW/atEmaNGkntWs3l0mTpqQL\ncEuUqCawIU29ydK6ddfbOrdAHThwQB57rIvUqNFURo58/7b+2FAUJXMRQNAc6DrNYVxdbg70SYBh\ndxAIK4qiKLepTJlymExT0D/TL+JwLOKTT94nV67fgB3AVGA+iYmv8eGHX6Sru2XLFv74I56UlBnA\n0zidi/n++x/YtWvXdfsaMWIMNlsIVqud5s3b33KC4a5du8iXryQWi5VcuQpTrFgxihYFPc3C4S+V\ng6Cg7MTFxdGhQ3tWrJhH//4pDB1anKioPMTGVgAuABWBhoSEDOTbbydx/vx5zObCgM3fTlRqvyLQ\nurX+vEaNGkyY8CHnzp2ke/fuhIbmYMGChQBUrhyNxTIV8AHJ2O2zqFbt3mxmW7RoURYsmM6mTct4\n/fVXMRoD/RWrKMqDIND/o0dx9ZN5qv/5yHs1KEVRFOWqWbMmkDfvbByOQlitBXjqqUZ07dqV8PDc\nQE+gkb9kCMnJrnR13W43BoODqx/3VtxuqF69PsOHj8btdrNo0SImTZrEuHHjePfdr3G5fsfrvcSq\nVWZ69brxMmtJSUk0atSSv/4ahIibU6c+oHnzdsyfPwNNOwbMAxIxGMYSGmqiQIECANSuXZsWLR7B\narWwZ89vuN1fAZuBUdjtZxk37gPKly9PpUqV8PnSB/fZsr2Fx+NNd0xEiI6uzf79h4BSJCTY6NKl\nBzt37uShh2qQM+cGbLY82Gx5eeihMF599aU7+TFkuPPnzzN9+nRmzpxJXFxcZg9HUZQMlAt91kkr\nILAZJ3cns+/UK4qi3Hfx8fEyfPi70rPnizJr1qzUVAO32y0HDhxItxLFxImTRdOKCCzz5/PmkhUr\nVqRrLyEhQfLkKSZm85sC6wWeFGggcFzs9txSpkw1CQ6uLg7HE2I2hwo8myaVYY9ERRW/4VhjYmIk\nJKREupSJLFmqyfr162Xr1q2SP39pMZutUqpUVYmNjU2t9+qrb4jDUUg07SmBcIHBApMFektQUJQs\nW7ZMRER27ZJ0bZcrV1P+/PPPa8Yxd+5cgUL+lTVEYJxAlOTMWViCgxuIpnUUTcsmS5YsuWVu8v1y\n5MgRCQ/PKw5HawkOflQiIwvK33//ndnDUpT/LDIwp9kIPAm84X+dH32hz3sps6+foigPgJMnT0q7\ndk9KmTK1pFu33nLp0qXMHtIdS0pKkhIlKonV2kngI9G00vLGGzeftPb115MkOrquVKrUUL777rvr\nlvn777+lWbP2AmECz6cGl1ZrdbFa66bJJV4uEJFmguE3UqFC3Rv2ffLkSbFawwRO+ctfELs9hxw4\ncOCGdQ4ePCg2W4TAeX+dk/5l5qIFPhaD4RGpVKluumA5Z87x0qhRa4mJiblum++8847AK2nqnBcw\n+3O+r5zL1JueS1oej0eGDn1XypWrIw0aPHrDCZZ3o337p8RkGpo6ZrP5dXnyyecyvB9FUQLDXQbN\ndbi6fs6X/sdW/+vswPa7aTwAmX39FEX5l3M6nZI/fykxm18TWCtWazepUqX+v+Zu4u1asGCBBAfX\nSxPonRSz2Xbbk/Kux+fzSbZsuQV+8Ld9SoKCsojJlDbYPCcGg1WCgxuLpnWV4OAI2bp1603bHTz4\nHdG0/KJpPUTTCsmTT/aUpKSkG5bfsGGDZMlSLU2flwQsAnH+1950AbPdXl9gtRgMYyUkJIccPXr0\nmjbnz58vVmspgfjUO81mc5jA+2na+l1y5SoW0LV68cX/E02rI7BKYJwEB0fIoUOHAqobqOrVm6T5\nWYjAt2Kz5RKLxSHlytWUgwcPZmh/iqLcHHc5EdDH1WXlqgPPA4n+1+dJv5qGoijKfbd9+3bi4jQ8\nntFAPVJSJrBnz36OHbvxzm3/Zk6nE30C3ZUl8bMh4sPtdt912waDgcWL5xAa2oPQ0ErYbKXp0qUD\nVutc4ADgISjoHerUaciECd357LMG7NmzjSpVqly3vW3btjFv3jy6dGnPihUz6NjRgMdzlgULfiIy\nsgDr1q27br1SpUohcgT4Af131Gz0LQOubDKr/1pq0eIIdnsYSUmzgAaIvIDb3ZLFixdf0+Zjjz1G\nly4NsFqLYLOVJjT0bcaMGYKmTQD+BlKwWkfSoEHdgK7VlClTcDpnAA2BXrhcbVm0aFFAdQPVpEkd\nNO0jIB6IA0aQnNwIl+s4u3e3p379Zhnyc1cUJePcLGjeCHzuf55C+lXbI9CDakVRlExjNpvx+ZK5\n+nHkRsSN2XyrfZv+nRo2bIjRuAH4GtiN1dqD+vWbYrPZblU1ILVq1eLYsVhWrvyC2NgdTJ78FR98\nMBibrTJGo0auXCuoUKEEUVFRdO/enfz581+3nZdffp369dvRo8dMypevzS+/bGPWrIW4XJtISDhE\nfPxUHn20AykpKdfUzZo1K8uWLSAi4kUMBgvQn/RfbEJoaG6mTg3FaDQDztTjIqf48ccVDB/+DocP\nH049bjAYmDhxLHv2bGTduimcOPEHpUqVolKl3JhMRTCZQqlbN4Evv/wwoOtkMqXv12h0Zvh/U4MG\nDaBt28KYTBEYjZEEBZ0HJgNZEHmZixfdHDlyJEP7VBTl/ugKfA/8gb5qxgGgwz3uM7Pv1CuK8i/n\ndrulfPlaYrN1FpgmdntTad68/QObniGib3NdtepDkjt3SenSpafEx8ffVv0jR47I4493k9q1m8vI\nkWMCSu2Ij4+XQoVKi83WQWCwaFpumTJlWur7p0+flqeeel5q1Wom3bs/J5qWR+BCatpDUJBdQkMf\nSpdW4XDku+6kvbT27NkjV9dyFoElAmFSs+ZD8ttvv8mQIe+IppURmCIm01MCmphM/cRkeklCQnLI\n3r17r9vuRx99JppWQGCo2GwtpXTpqpKcnBzwNXz33dGiaaUEJovJ9Lpky5Y73QTMjOR2u2Xbtm2i\nafkEEv3X4YxYLPq61oqi3B9k4ERAgJLAi/5HyYxs+AYy+/opivIAuHz5sgwYMEhatOgk77wzSlwu\n1x21s3btWilSpIJkzZpbHnusi1y8ePGGZZcuXSoFCpSVrFnzSOfOz0hiYuKdDj9gSUlJ0q1bb8mW\nLa/ky1daFl7Z2SONM2fOSPbsefwTzBaJptWS559/+ZZtjx8/XjStVZrgdbtky5ZHRPTVN/LlKyFm\ncz+B78RiqSRmc710AbLVGi42Ww65uvnILrHZrh/0nTt3Tho0aCahoUXTtQEPCxQQ+FbgY3E4wmXf\nvn0yadIUadWqi+TNW1rg09TyBsNI6dDh6Wva9/l8YrOFCPzhL+uT4OB6Mnfu3ICvtc/nk6lTv5FW\nrbrIs8/2kWPHjgVc9074fD7p1Km7OBwVJCjoFXE4isrAgUPuaZ+KoqRHBgfNWYFooBL6CvQVM7Lx\n68js66coyn/EwYMH/VsxLxQ4IhZLN2nUqNV1y+7atUs0LcK/0sQhsdnaSfv2T93zMXbr1ltsthYC\nfwqsErs9UrZs2ZKuzMSJE8XhaJ8mED0rZrPtljvTjRkzRoKC+qarZ7dnERGRJUuWSEhInTTv7RfQ\nBLb7X8+U8PC8Mnz4aLHbc0hoaF0xGrOIyaSJ2WyXF154JfXO/4IFCwSCBX5Pbc9o3C7jx4+X0NDc\nAtvSHP8/efPNt1LHqE+cW5xmHLOkceO215yL2+0WozFIICW1rKY9IRMnTrzbH8E95fP5ZP78+TJ6\n9GhZvnx5Zg9HUf5zCCBoDjRJazjwNHCI9LnMDW47FFYURfmXmTdvHm53IfRJYzVwucaxZk0oXq8X\nk8mUruyPP/6Iy9UFaAJAcvJYliwpdc/HuGjRYpKTfwYKAYVITn6GJUuWUa1atVvWdbvdzJ07l1On\nTlGrVi1q1qyZ7v0mTZoweHBD3O5HgBLYbAN45JGWN2gtP0ajF4vlIUSMZMkSyvLl31GhQgU6dGjN\nc8/1Y9OmNrhcXwGXmTy5MZUqTaVLl860bfsccDlNW1EEBZXCZOpEcHAw8fFX3/H5fMTGHkh93bnz\no8TEvIXTWQDwomlv06nTgGtGZzabqVevCRs39sblegvYgchSDh3Kx+eff06HDh2IiIi4pt7+/ftZ\nunQpmqbRqVMnsmTJcsvrmpEMBgNt2rS5r30qinJvHAAs97nPzP6jQ1GU/4Ddu3eLzZZN4CnRN/7I\nLbBG7PYs182N/uKLL8RufyzNHc9fJDw8/12NIW06QM+eL153WbW8eUsJrE6TEtFV3n///XRlrpee\n0bNnH6lZs7E4HPUlKKifaFqUTJhw9a7r0aNHpWfPF6V69cYSHp5XwsJyS8eO3SUhIUFErqZnBAX1\nE1gkdntzadnycXG73XLmzJlr7mLraRQ701yfT6Vbt15Sp87lf6RjiEBHMZtzy5w5c6Rfv/4C+QXm\nCXwkkE1sttDUdBufzydvvz1SIiIKSmRkYRkz5qMb5q7HxcVJq1adJWvW3JIvX2mx27OI1fqc2Gxd\nJCIinxw/fjxd+Z9//lk0LVwslhfEbm8refIUk/Pnz9/+D1JRlAcWGZiesRCIzKjGApTZ109RlP+A\nJk3aisHwcZpAbqCYTNnl008/v275+Ph4KViwtFitHcVgGCyaFiXTpk0PqK+UlJTrpkqMHDlGbLbi\nou+K118sljB5+eVXpUCBclK8eBWZN+9bmT9/vtjtkWIwDBKL5QnJnbuoXLhw4Zq2Dh8+nDoRcNSo\n92X+/PkSHFxNwOM/v31is4XK6dOn5eGHW4vRGCzwmsBk0bSSMmLEe9e0efr0aXn66V5Sq1YzeeON\noZKSknLDc6xd+xExGD5JzSe2Wh//R6C8yf+vU6Cg5MyZT1q37izZsuUXgyFSoKFAZ39edIScOHEi\noGt7I/XqtRAYn9q/2fx/8sIL/dKVKVOmhj9Y18tYLN1k2LDhd9WvoigPFgIImg23KuBXBfgO2IO+\n/Bz+xh+9o3A4MP5zUBRFuXcqVWrIjh2vAw/7j8ygSpVJbN266oZ14uPjmThxIufOXaBp04epU6fO\nTfuIj4+nbdsnWb16KWZzEIMHD+HNN19LfT9Lliji41cDJfxHOmMwrEHkOyAOu70b33//DQ6Hgx9+\nWEpYWCg9evQga9astzy/SZMm0bfvWhITp/mPeDAaNYoXL0dsbAg+X17gynv7yZKlARcvnrxluzey\nf/9+atVqhMdTjqSk53C7W6W+Z7WGkJLiA2oDv5Mjh5VcuXKyb180LlcvYCXwPvA7sI6sWXtz9uyx\na1JkbuXPP//kwoULlCpViqpVG7N37yjgyhrNE2nTZh3z509NLZ87dwlOnPgWKOM/MoYXXjjJ2LGB\nLVGnKMqDz2AwwC3i4kBzmqcBo9CD5is5zSqiVRTlgde69cPs3/82TmcpIBlNG82zz7580zqhoaH0\n69cv4D569nyJ9euz4PNdxuU6w4gRD1GmTHFatdIDSpcrGbCnqRGMSFugKgBJSa8xY8Z8Jk0aR/Xq\n1W/r/OrUqYPIAOAnoDJm83BKlarCH38cwefriD5V5QoNr9dzW+3/U4kSJdi9exu5c+dKc3Qe0I6U\nlAXYbO146qmCVKnSgUqVKlGlSn08nvXo2waUBWZjtZbAbjexbNnC2wqYRYRnn+3LjBlzCQqKIijo\nPG3atOTIkaE4ndOBBDTtAx57bFC6es2aPcz06W+SnDwBOIWmfU6LFl9etw9FUf67bra5SVoJwKfA\namCt//HzvRmSoijK/fPGG/3p0aMGmhZNSEhN/u//OtCjR7cM7ePnn9eTkvIGYAXy4nT2YNWqqzvm\nNWxYD2iL/hH7JTALKJ36vtF4BofDzp0oWrQoCxZMJ1euXlgseYiK+pGCBfPgciUAjYFv0He+ew6r\n9XG6dXv6jvq5YuBAzz8C5mAgO7AbWIbPl43o6Ghq1KhBvXpN8HhS0HfFA/ARHJzCwIG9ad++DdOn\nz2Xv3r0B97148WJmzfqZpKSDxMfv5MKFwaxfv5WuXcuiaWUICanDoEHd6NKlU7p6n332Hm3aRGC3\nFyMsrCljxgykadOmd3UdFEX53xNoesaH6GkZi7mangGwI8NHdJVKz1AU5X9CdHRtYmJ6AV0AwWZ7\nnGHDqvDaa/0BSEhIIH/+0sTFGRDJRlDQSURS8Hhew2i8QHDwNHbs2EjhwoXveAxOp5Py5Wty7Fg0\nKSmVMZlG4PUagVzoiyMtJjLyEMeO7cViubN534Z0v1EE/VfMUqAPemD8ImDCZvuIMmVK8+uv7RD5\nE9gEdMFkWkmRIqc4duwYSUmvAMk4HOPYvHk1ZcuWvWX/o0aN4q23zuPxjPEfuYjVmpfk5Ms3raco\nihJIekagd5orAtWBEcAHaR6KojzALly4QGxsLMnJyZk9lP9pEyZ8SHBwPxyOzgQHN6BgwcO88ELv\n1PeDg4M5cmQPffu2ISTkNG73OTyeZEJCPqJbt0vs2rX5rgJmgCVLlnDyZDgpKVOAPni9y4E49C8N\nXwSWcfq0m59++um22x47Nn3AbDS+wdXfPRWBk8BbwBBgEMnJI9m37zAiFYGPgReApZQseZrw8Bwk\nJX0IDASG4XT2Z9SoTwMaR6lSpbBalwGXADAY5lC4cMYsB3jq1Clq1GhMUJCdyMiCLF++/Kblv/xy\nAlmy5MRqDaZNm644nc6bllcU5frOnz9PbGwsKSkpty58jwUaNNdHX5P5nw9FUR5QH3zwCVFRBalc\nuTl58hRl586dmT2k/1lVq1bl99+3M3bsw0ye/CI7dqzH4XCkK2Oz2Zg9exGXL78GXASmcPmyhx9+\nWEHu3Lnvegz6H0bZ0YNZL3oAa+FqLrUJyMb69etvq12DAfr00Z9v3gxr1/6MzTYdiAVcWCzDyJIl\nAghPUyucLFlCsdtHoWf/NUXTzvLSS71JTnb5x6kTCScxMSmgsbRs2ZInnmiMzVaE0NByhIeP5Ntv\np9zW+dzII4+0Z/v2yng8ZzlzZiJt2z7BH3/8cd2yK1eu5NVX3yE+fiUu118sW+bi+ecDz4FXFEU3\ncuT75M5dyP97qhi7d+/O7CH9a2Xq0iOK8r9s+/btomlRAkdTd3WLiiqS2cP6Tztw4IDY7fn+sTxb\nFTGbQ+S333676/aPHz8uoaGR/uXXXheo7N+d70X/usojxGDIKlOmTElXb9OmTTJgwBvy7rsj0m2L\nPXt2+jWX0xo3brzY7VnEaDRLnTqPyMSJk0TTCgqsElgjmlZEPvzwIylTpoIYDEFiMlmlf/83Ed6N\nBwAAIABJREFUxefzyRdffCWaVlJgncAK0bS8snjx4ts61yNHjsiOHTvE6XTe8fVKKykpSUwmi4A3\n9Xwdji4yefLk65Z/9dUBAu+kuT4HJCKiYIaMRVH+KzZt2iSallfgb///R1MkX76S96w/HvAFLu7Z\nhVGU/7rJkyeLw9E1zS91n5hM1tQNLZT77+zZsxIUFCJw2v8zSRDIKVBDSpWqIsnJyXfdR0xMjNSo\n8bA4HLkExgr08W/mUkCgmERFFZL4+PjU8gsWLBC7PVJgiFgs3SUysqCcOXMmXbDcrdsCqVGjqbRu\n3UViY2NT6/p8PnG73amvJ02aIsWKVZGiRSvL6NFjJDw8rwQFPSvwllitYRIdXVvq1Wsp8+fPl08+\nGStFilSSEiWqyowZM+/6vO+W1+sVmy1E9C3ERcAjwcGV5Pvvv79u+dGj3xOrtXOa67RQihevfJ9H\nrSgPtvHjx4umdU/z/5FXDAZT6oZHGY0MCpqNQM1blsp49+SiKIoisn79enE4Cglc8H8YrZSsWXPd\ncIc15f54442hYjLlEXhOoKzAswJeCQ6uLfPnzxcR/Y5xnTqPSEhIDilZsqrs2LFDXC6XnDhxIuBf\nJqNHjxG7vYWAS+ArgcpiMmVJDQKdTqecOnVK8ucvI/BTmo1B3k8XML/88gDRtGoCi8VgGC2hoTlk\nz549t+z/rbeGiNnc29/OWoHsAlMEZoum5ZF5876984t4j3z11UTRtCixWPqIw1FL6tVrJh6P57pl\nL168KIUKlRFNaylWay/RtHBZs2bN/R2wojzgVq1aJQ5HUYGL/s+KJRIRke+e9UcG3mnelVEN3YZ7\ndmEURRHp1+91sdtzSpYsdSQ4OEJWr16d2UNSRGTJkiViMBgFvhXwCYgEB3eSqVOnitfrleLFK4rJ\n9KbAcYFp4nCEi8ORXez2HBISEiGrVq26ZR/JyclSu3YTMRrz+oPzggJficMRLgMGvClBQZrYbNnF\naMwisOYfKSMi06bp7WhaVoFjad7rJEajRdq06XLTAL5Pn1cERvrrPCnweZo25ku1ag9n1OXMUJs3\nb5YPPvhAZs6cme4u+vVcvnxZvv76a/n4449l375992mEivK/w+fzSe/er4jdniv199S6devuWX9k\n4I6A7wNbgPmBNJpB/OegKMq9sn//fk6cOEHZsmWJiIjI7OEofvXrN2fz5ihcroHANoKD+/D779sx\nm80ULlye5OTTXP34rg60Ql9tYjUOR0eGDRuAx+PhkUceoVy5cgBs376dn376iWzZstG1a1cAgoND\nEVmJvomKA5utET7fflyuLUBuYDiwDn1jFN23387nyJEjmM1mBg4cSlLSLiC//92ngGjs9hUMGFCX\nIUPeuO75rV27lmbNOpOUNBN9C4CG6Ct4AHxL9epfs3nzzVenUBTlv2Hv3r2cPn2asmXLEh4efusK\ndyiQJecCDZoTAA19yvWVtakECL3TwQVABc2KovxnrFu3jk8++RqDwUCPHh0ZP346GzZsIDIyFxMn\nfkz16tWJj48nPDwKt/swEAG4gSLATKAWAAZDUSyWfHg8+YBFVKpUkWrVyjJx4mxcrq5YLLHky3eS\nbdvWkj17JC7XbqAQ4MNiKYTX2wqv95Nrxpc163u89VYQgwePxOVqh8GQjMGwCIgiOXkosBd9Y5Zf\ngY00bDiDVasW3vB858yZy4ABw7l06TwJCUl4PKMAG5r2BjNnjkvdLVFRFOV+yMigOTOooFlRlP+E\n1atX07JlJ5zOIYBgtw9l4cLp1K1bF7s9/U6Ar78+mLFj55GY2B67/WeSk3ch8htQADiGvpPgaqAl\n0Nt/fBDQDn2fKkHTWjJqVBMmTZrDrl2/AxHYbBHkynWBM2dCSUxcj74cnS44uC4TJ77I11/PZuXK\nh9DXVQajcRBVqmzk8OGTnD3rQGQeUJCgoD5062Zi/Phrg+/rWb9+PaNHf47H46VPn6dp3rz5nV5K\nRVGUO5LRQXMroC76Heafge/veGSBUUGzoijpJCUlsXv3bjRNo3Tp0lc+5O6bhIQE9uzZQ1hYGMWL\nF8+w/h9+uC0rV7YAugGfA68CPkCIjq7GihULyJEjR2r5xYsXs337rxQsWICzZy8ydOhogoKq4nRu\nxOOpjn7X+QQw1l9jB3rQfAgAs/kVChRYzV9/RZOSMgD4BYulH9Omjadjx8fTjOwzoAKaNpkPP6zK\n+PGz2bnzDfTttwG+oXnzpUyY8CFVq9bn0qWcgIfw8Hj/nezsKIqiPAgCCZrNAbY1CqgCzPA32Bd9\nRY2BdzE+RVGUgB07doxatRoTH2/H44mjbt3KfP/9HMzmQD/G7s7evXupV68pLlcO3O4TtGnTnG++\n+SpDAmePxwvYgDXA2+ipF2uBAsTE9KNdu6fp2bMTTqeTJk2a8Oijj/Loo4+m1m/RogmxsbFcvtyO\nXr0G4nTmBdJunmJD38b6LBCL2TydQ4cu4fNtRb+jfAmXK2e6gNlobIbP9x5wClhMvXr9OXv2IrGx\nQ3E6iwHJaNpo2rbtT65cudi371fWr1+PwWCgbt26aJp219dFURTlQbQbfbuoK0z+Y/fSPZshqSjK\ng6dBg5ZiMl3ZMCJFNO0hGTt27H3rv0yZ6mIwjE9dQ9nhqChz5szJkLYXLlwodntugU4CdQReS7Oa\nxBkBm1gsjcRq7Spmc6i0bdvxhisyTJ36jYSFRQloAl8KLBdNqyRFikSL3R4mkZGFZO7cuWI22/wr\ncMg/HsmiaQWlcuXaYrdnkaioorJ8+XIREfF4PPLyywMkJCRCHI5wqVChhrz44ity+PDhDLkOiqIo\nmYUAFroIdBttAcLSvA4LpHFFUZSMsn9/LF7vY/5XFpzO5sTExN63/g8dikXkSv8OkpIeJjY2Y/pv\n3bo106d/SsGCMRgMJ4Ft6POuAbYCobhcK0lJ+QaPZyzz52+nXLkaFChQnnr1WqTbWvbJJ7sSF3ec\n7dvX0bDhMipUGM2wYV2Jjd2B0xnHqVN/0r59e958802CglpcZzRWoD7PPvskTudFjh8/QJMmTQAw\nmUx89NEoxo//FBErO3d2ZNw4C+XL1+Do0aMZci0URVH+rQINmkeiJ8VN9T9+BUbcq0EpiqL8U5ky\npTGZZqL/ve5E0xZSsWLp+9Z/sWKlMRhm+l9dwm5fQunSGdd/mzZt2LJlNcHBTvSl8UuiT+brDLRN\nU7I8cBm3uypHj37OunVVqFGjAX/99Ve69iIiIoiLu0BMzAbGjPmEVatWpXv/00/74nbv8L/6GZjj\nf34aWH3Tc3vrrfdwOqcBffH5RpKQ0JEJEybe8bkriqI8CAINmmcBNYAF6Gs1VwdmB1AvL3qS3u/A\nHvRcaIBswErgALCC9HexFUVRrjFlyljy519McHBx7PZCNG2an2eeeea+9T937iRy5vyMkJCS2GyF\n6dq1IY899titK96GJ554noQEK3qe8QVgA3qO80/AYfTVP4f5//0KGABMJDHRR9OmbXG5XACICI0b\ntyYm5mG83njOnPma1q07c/ToUZxOMBggLu7KiqGFgONAP6AwRmNh+vd/lpo1b7wRbHJyMpA19bXX\nm42kpJSMvBTXJSKsWrWKGTNmcPDgwXven6IoSlq3msFSifRpGFfKXzm2g5vL6X/sAoLR71C3Rp8i\nfg54D/1TPyvw+j/q+lNMFEVRdG63mwMHDqBpGgUKFLjvq2ckJydz8OBBwsLCyJs3b4a3HxSUBY+n\nKfqca4D26B+VldCDZBfQANiIfvfZjh5Ef4XR+A3duzdiwoQviYuLIzIyH253PFc+tkNC2pEnzzj2\n7dNX4TAaj+LztUOf0/0J4AS2YbO1ZN68maxa9TNRUZH06vU8wcHBqWNcvnw5Q4aMYOfOBNzuscBJ\n7PZerF37A1WrVs3wa3KFz+ejbdsnWLlyFwZDGXy+1cyaNTHdhEhFUZQ7lRFLzq3l5rnLDW5vSCxC\nXwNpLFAP/XvAnP5+SvyjrAqaFUVBRBg//mumTp1PSIjG8OEDqFatWmYP67bt2LGDN94YwcWLl+nS\npRUvvtgLg8HA4cOHefXVwfz99yl+/XUXPt9E4EoguBhN601kZDjly5clOroEs2Yt5sKFs5w7l4jI\neOAl4BEgCpPpE+bN+5oWLVoQHByGyxUDFEYPtq+uu2wwlEOkM3paxg7gKPoKG2sJCemI1xuM0/kM\nVutOChT4g507N2C32xk79gsGDBiN09kTk2kBBsNflCpVgl69OvPdd6uIi4vn8cdb8PLLL2b4HzRL\nly7l8ccHkpCwFT3veguhoa24ePHUff/jSVGU/z2BBM33UwH0T+YQIC7NccM/Xl+RiXMoFUX5t3j/\n/Y9F00oJLBYYL5oWLjExMZk9rIBMmzZdIiMLi8MRISZTFoEhAnPF4YiW4cNHybZt28RkChUYKrBM\nDIYogScEfAI+MRielB49XrimXZ/PJ1Wq1BOoIfBsmpUvVkqhQtEiIvL551+KpuUWo3Frmve9AtY0\nq2b4BKLFaCwhVuuzYrNlk6AgTeDP1PeDgx+SWbNmiYhIcHC4wN7U9hyO5jJq1ChxOMIFPhP4QTSt\nggwePDxDrp/P55PTp0/LuXPnZMKECaJpT6c5F48YDCZxuVwZ0peiKP9tBLDAxe1E1GXRZ6bY0hyb\nFmDdYPRbGsPR7zbHkTYhTk/ey/aPOv5zUBTlvyx//rIcOzYRuPLV/2BefdXF228PZuPGjRgMBmrV\nqnXNznmZbe3atTRr1oWkpPlAHvSstF/R7/o+T2Tkd7hcl4mLqwz84K91DCiF1RqFwWCgYMFQNm1a\nSVjYtdM+Dh06RLlyVUlM7AMM8R/dS2RkK06dOogIGNPMWunU6U1mzdLQc6QTubJMf3Bwe7p2DScm\n5gC//LIZr9cFXEZP/QBNe4pPPqnDM888g8Wi4XafBLIAYLM9R6NGJ1i2rAhe70epYwgPb8bZs0fu\n6vo5nU5atHicTZs2IOKldu06bN78K0lJq4GSGI3vU7z4XPbu3XZX/SiKokDGbm4yFD2dojSwBP27\nwA0EFjQHoU8e/AY9YIaraRmngFzAmet2OnRo6vP69etTv379AIerKMr/Cv2DzJ3mtZvk5CRKl67C\nuXOheDznsdvjGTXqbZ555hmMxkDnN99bP/ywnKSkXujzpkHPSmuGfv+gJsnJHpKTIf187GCMRhdr\n1kzFaDRSsWJFgoKCAIiNjWXRokVYLBbq1atHs2btcLlyAB+hz9POg93ehw4dHqN/f3j//autisBz\nz10GNOAh4Hn06SS/AD9TvPgbTJu2Ha/3BNAdPcB/G9iJwbCUhx4aCkCzZq1ZuvQZ3O53gd0YjQso\nWvRJli9POwnQg8FgxOfzMXv2bP7880+io6Np2bLlbaVRDBgwmM2bNVJSzgAeNm9uRbNm9VmypDoe\nj5eCBYuxZMmCgNtTFEVJa+3ataxdu/aetL0HfUOT3/yvI9Gnc9+KAT2w/ugfx69MAAR9AuCo69TN\n7Dv1iqL8C3z55VeiaYUEvhGD4T1xOMLl0Uc7SFBQP/8mIKUFBojZHC1t2z4hPp8vs4csIiIjRowU\niyVtOsESgYr+5z2lSZNHJCgoVCBSoJ/AHIGyUqRIWWnUqI0MGjRMkpOTRURky5Yt4nCEi9n8klit\n3cRszibwpr+thQK5xGaLkD59+qfbqOTAgavj2bVrlz+NYoRAXYFQyZu3tGzbtk169nxR4CN/vXiB\nNmI0ZpEyZWrIpk2bUtsYNGiYmEw5BHKIwRApFSrUlEOHDkloaKQYDO8KzBRNKylDhw6XQoXKitGY\nR6CeaFoJ6dfv9du6fhUq1BdYmeZ8ZkrTpu3F4/HIpUuXMuRnpCiKcgUZuP/Ile+/fkX/Xs4ABLKq\nf23Ah756xk7/oyl6KsZP3HzJucy+foqi/EvMmjVbmjZtLx06PC0xMTFSrdrDAtMFsgic9wdVTtG0\nfLJr16677u/ChQvSunUXyZGjkJQvX0d27Nhx3XI+n08uXbp0TaCenJwsf//9t+TOXVRsto4CLwtk\nE1gmkCRGY0mZMWOGVKpUR6CQQBOBcgLBYrE8JTBH7PZHpXHjVuLz+aRGjYcFpqQJIHMJrEvzerJY\nLMPTBcwNGrSUiIiCUrt2Uzl06JCIiGzfvl3atn1SmjV7XBYuXJg63jFj3heb7VEBj4CIwfCx1KrV\nNN05OZ1OCQqyp8mHdklwcBlZvXq17N+/Xzp37iEPP9xOJkyYKIULlxXo7P9DoKVAcwkKCpEzZ84E\n/DPo0OFpMZtfT82ttliekT59/i/g+oqiKLeDDAyav0DPQX4eOOgPgidnVOM3kNnXT1GUf6lXXhko\nFksjgYLpAkWHo6qsXbv2rtuvUaORWCzPCsQKTJbQ0Eg5efJkujI7d+6UnDkLidlsl5CQcFm+fLl4\nPB7p3r23mEwWMZms0qxZO/nggw+kY8eOAjaBhwQKidFYTJo1aychITkEDvrHv1GgqH9ynr5VuM0W\nLseOHZPixasKbEhzroUFOgq4BRLSXYPNm12SO3cxMZmGCBwQo3G05MpVWBITE294vtOnzxCDIVSg\nkBgMVSUsLEpiY2PTlTlz5oxYrWFpxicSGtpCFixYkK7chg0bxG4vnaZcskC42O255eDBgwFdf5/P\nJytXrpSIiLwSElJDQkKqSrFiFSQuLi7An6CiKMrtIQO20R6Hfre4F/rkvS+Bh4Gn0JPeFEVR7rt3\n3x1M7do29OkQI/3/TiIx8Xdy5859V21fvnyZbds24nKNA4oBTyNSg3Xr1qWWcbvdNG7cilOnhuPx\nOLl8eQFt23Zl2LB3mD07Bq/3DF5vHGvWJHPixHnq16+PzfYo8DIwA59vBz/+uBiv14M+7QP0bbOD\n0ozEiMFgwuv10rZtM2y2fuh5xu8SFJSAwbAc6AM4UmuIwJw5b3D8eAJe7xCgKD7fayQmhqbbavuK\nvXv38tZbb9G9+/OILAG+RqQiISGhFCtWLF3Z8PBwChcuisk0yH+95yGylerVq6cr5/V6MZksaY6Y\nACFrVhsFChS45fX3er20atWJ1q2fISUlEpPpKJ9+2ovfftt03QmRiqIo98utguYDwBj0peLeAyqg\nb0v1280qKYqi3Es2m43PPx+D3Z4VWIq+sM94goOLXbOd9O2yWq3oNxzO+Y/4EDmJw3E1OP37779J\nShL0La4B6mA2R7N06Sqczt7oWWx2kpJeYvXqTQQHB2MyXQSao08MPIXFYufZZ3uiaR2BZcAWDIa/\nCAp6GViBzfY0FSqUI3/+/NSrVwOP5wDwB7AMu92ESBz6l4BQsOALtG37FIMGDWbcuMnoK3Q4/WNL\nweM5l26DEoAff/yRKlXqMXr0SVyuckB//9jGcfLkMeLj49OVNxgMrFy5iBo1dqBpJSlSZAQrVnxH\nrly50pWrWrUqkZFezGb9POBxHA4LGzasxGy+9dzzKVOmsGrVCRITY4mP30Z8fH+++GI6NpvtlnUV\nRVHupVsFzR+jT8uuh74s3CT0XOYh6LdgFEVRMkWOHDnw+eKB6cB5YCle7wmioqLuql2LxcLrrw/E\n4WgIjMZma0ORImYaN26cWiY8PByP5yJwyH/kIi7XPgoXzk9Q0ObUcibTFvLli+Kxxx4jKuoMVmtn\nYDSa9jDDhw/jgw9GMGhQW6pU+ZBmzbazfv0yOnZMJjr6HaKifufEidM88kh7nnnmJTyeGejzqtcT\nH388tQ+zOSvHj59j/vxyjBgxDpfL53+nHDAaqEONGuUpVapUuvPs2bMfTucM3O6vgfXoU02mATGY\nzeZrgmyAqKgo1q9fRmLieQ4e3HnNXWbQ/6DZvPknOnZMolKl0fTuXYDTpw9SsGDBgK7//v0HcTqb\noG9gAj5fK/7440BAdRVFUf5tKqDnNHvvcT+Znd6iKMq/3EcffSaalkuCgzuKpuWX/v0HZVjb3377\nrfTt+6p8+OGH4nQ6r3lf3zwkpwQHdxSHo6D07fuanDlzRvLmLS4hIY0kJKS5RETkk8OHD4uISHx8\nvIwaNVr69n1Vfvjhhxv2u2fPHrFYwgW6C2wTo3GogENgX7rcZZgtcEGgisCn/gmFEQI/CKwRyC9Q\nUWy2kGvGf/LkSdG0bAIn0rTXXyyWsmK3R8jMmbMz7Drerm+++UYcjsr+VTx8YjINk7p1m2XaeBRF\n+W8gAzc3MaMvMNoRfZHPNcAs4Ls7jYgD4D8HRVGUG9u1axe7d++maNGi173zeS/FxMTw22+/UahQ\nIWrVqgVAQkICP/74I16vl8aNG5M1a9ZbtHKVy+Uid+7CnDuXgr6M/ZUvA59AX+r+irzAM8An6HO0\nz/rLjkKfrw3wIwZDZ9asWUC9evVSa77zznu8885IPB4rXm8jYDzwJ1ZrE/r3f4YuXbpQokSJ278Y\nGURE6NatN7NnzyUoKCvZs1tZv345efPmzbQxKYryvy+QzU1uFTQ/jB4oNwe2ogfKi4GEDBjfraig\nWVGUB4LH42HChAns3h1LxYpl6N69+x1tsnLw4EGioxuQlHQRfbKd9o8SfYEJmEwF8HpPod+/KI++\nGmgd4BXgHX/ZOZQp8ym7d29Mrf3LL7/QsGF7nM4t/rabAVsJDc3ORx+Npnv3pwMea0pKCl988SUH\nDhymZs3KdOnS5bY2L7mVv//+m8uXL1OkSJHUDV4URVHulYzYEfB19ED5/9BzmhVFUZQ0RIRHH+3I\nzz9fwOlsjqZNYeXKDcyePfmmQeSOHTt47bXhXLwYz+OPt+DVV18ie/bspKScBwqg3zFOu+mqF3gB\ni2USLVtWYOHCnfh85f3vVULfXPVD9BU4gjEah/P++3PS9bl3714MhvrAlbzvjRiNVk6ePIym/TNA\nTy8uLo5+/d7gt9/2UbZscfbvP8CePRpJSQ2ZOvUjNm78lS+++Oc+VncuT548qc//+OMP+vUbxPHj\np2natB7Dhr2pAmlFUZQ0MjO1RVEU5YacTqccPnxYkpOTJSYmRjQtn0CKPzc4TiyWbLJ3795r6r33\n3ocSFhYlmpZdzOYsAmMFlommVZI33xwqIiIVKtRKtxYyfCZQTOBJgTCx2cKkd++XxG7PlibPeY/Y\n7VmlV68XpHDhclK5ch1Zs2bNNf1v2LBBHI4CAqcEjgrMkezZ89xyF0W32y1lylQTi+U5gZ/EbH5U\njMZCqZuh6OccfE/WUT516pRkzRolRuNogRVitzeSJ57omeH9KIry30YGbm6SGTL7+imKolxjwYKF\nomlZRdPySGhoDvn8888lNLSCP3jcIhAlkF0slhCZPn1mar2ZM2eJphUX+N0fsFYXeNtfb69kz55P\njh9PO9FP/IF4R9G3Cg8X+FbgkGhaVWnfvrPY7dkkS5ZqYrdnk2++mRHQ+J9/vq8YDCECWQWs8sQT\nPW5ZJyYmRoKDi6QJ5pf4JyBeGadXbLZwOX78+HXrLly48JrNUgI1efJkcTg6pOnropjNVvF4PHfU\nnqIoyvWQAZubKIqiKH4nT56ka9dncDpX4HT+RXz8dF5/fRiadgmj8V2gFfqeUOdwuTbRs2dfDh3S\nl6X79ttlOJ39gVJAPvTl4Jb7W04hLm4jV/ZlqVx5OVfSLOA8BoMb+AxoCxTE6RzCsWPn+PPPPSxZ\n8gGHDv1O166dCcTOnb9jNPZHX6bvGAsWrGfp0qU3rWMymfD53FxdNKkKsA+D4TNgP0FBr1CsWNFr\n1mweNmwk1as34amnJlK+fG0mTJh0wz4uXLjAhx9+yNtvD2fHjh3p+oaUNCVTAEOG5k8riqIEQgXN\niqIoAdq/fz9BQaWAyv4jjYEsfPPNeKpUWY2+qUgr/3tlCAqqwp49ewCIjMyGyZR2veH9wCVgLlAe\nn0/P4fV6Ydu2pmzbtpny5auTM+cR8uY1YzTGptY0GA6QPXsYuXLlolatWuTMmTPgc4iJ+RWvtxf6\nfJccJCW1SRekXk+JEiUoX74YNlsnYDY22wuUL1+WqlW/I2fOljRpcopVqxanC2QPHjzI6NEf43Tu\nJD7+e5KSNtK37ytcunTpmvbPnTtHmTJVeeONnQz7f/buO7zJqn3g+DcdGU+aDmihrAJlb2QP2cp0\noCxBQAFBQVHUH6KiIiLCi0wVZAgq4mApSxCUvREKKFD2hpZRCqVNZ3L//kgorayOtClwPtf1Xm/y\n5Dzn3E9Tw53T+zlneByNGrVmxYoVADzxxBP4+PyDl9f/AT+haU8wYMDALN1oqSiK8qBy90y9oijZ\ntGLFCild+hEJDCwhvXoNkPj4eHeHlC3Hjh0TozFQ4GxqWYXR6CfR0dESHx8vJpOfQJjztYtiMhWS\nvXv3iojImTNnJH/+omIwvCDe3q+KyZRf9PqrqWUHzz9/+zEPHz4s1ao1FJ3OIjpdafHy6i4WSwHZ\nt29flq6hTJkaAj86x00Qs7m+zJkzR2w2m7z//sdSsGApKVasosyc+W2686xWq7z77ofSsmVHeffd\nD2+7dnVaq1evFj+/xunKTXx8SsnBgwfFarVKXFxcattPPx0p3t6907RdJmXK1Eh9/fz589K372vS\nunUn+eKLyWKz2bJ07YprnDp1Sho1aiP584dIvXqPy9GjR90dkqJkG6qmWVEUd9m9e7doWpDAcoHD\nYjQ+JT169HN3WBly4cIFWbNmzW3rcEePHicmU0Hx82spJlOgzJr1feprc+fOF00LFD+/x8VkCpah\nQ4enOzcyMlImTpwon346MV0ymZBw+ziuX78uBQqUEJ1ugsAx8fD4SAICisqRI0eyfG07d+4UX9+C\n4ufXQszm0vLEE53FZrPJJ5+MEk2rI/CvwCbRtBBZunRplsdxbKCS31nn7UiEfX0LSpcuL4iXl1G8\nvIzSvn03SUxMlLfeekfg0zQ/kwNSsGCpLI+t5JzExEQJCSkvnp4jnL+TYyU4ODTdlyBFuR/hws1N\n3MF5DYqi3I9GjRrFhx9ewWb73HnkHD4+j3D9+kW3xnUnZ8+eZfHixRw+fJhvvvkRb++1wBeGAAAg\nAElEQVSKJCUd5vXXX2b06OHp2h46dIhjx45RoUKFW7aHPn36NPv37yckJIRKlSrdMk7t2rBzp+Nx\nlSrwzz93jmnLli20aTOImJgdziOCj08Z/v57WboNSM6cOcOSJUvw8vKiSJEiHD58mGLFitGhQ4fb\nljFcvnyZXbt24e/vT506ddDpdFSsWJ/w8DE41nsG+Jpu3cL48ccZ9/rR3dHSpct47rmeiHhjMHjS\nufMzzJlzEKt1MeCJydSJ11+vQevWzWnX7nms1vlAEUym/vTsWZapUydmeWwlZ+zbt4/69TsQG3uz\nXMjXtwarVn1N3bp13RiZomSPK9ZpVhRFyRIfHx+8vfdiu3HvGGcwmy3uDOmOwsPDqVevGYmJrUlM\nXAgsA5oAl/nyy5p06PAEtWvXTm1frlw5ypUrd9u+QkJCCAkJueV4UhIYDDefx8SA5TY/jvDwcMaO\n/Yq4uASaNq1NSspFHDe/GYBrxMdH8uabH1K9egWGDn2HU6dOUb9+c5KT22GzxZCc/Afe3p3R639h\n9uwFLFnyyy03zQUGBtKqVat0xywWH+BM6nMPjzP4+/vc9ed2L08++QRXr17g0qVLFChQgFatOmG1\n9sdxgyPEx7/KmjUTGD36E6ZP/5zBg1/Eao3l2WefYdKk/2VrbCVn+Pj4kJISjWOPMx8ggZSUS/j4\nZO93RVGU7HH3TL2iKNkQHR0tRYuWFb2+h8BwMZkKy+zZc9wd1m21adNJdLpxAlcELOlKJyyWTvLT\nTz/du5O7aN/+Zn++vrdvM2PGTClRorLodGbnUnRTxGQqLI88Uk80rbHASPH0LCKeng0EZonB8LxU\nqVJPWrR4WnS6L9LEPFhgoECi+PhUuO16zbezbt060bRA0emGiqfna+LnFyzHjx/P1nX/10svvSbe\n3oNSY/X0/EA6d37RpWNkhFquLnu6desjZnNdgZGiaY/K0093veda34qS16HKMxRFcafo6GimT5/B\nlStXadu2FU2aNHF3SLdVs2ZzwsKGAC2B4sBE4FngJJpWn23bVlGlSpW79nHq1CmuXLlCuXLlUnfX\ns9vB0/NmmwsXoECBW8/94YcfeeWVYVitNYGywAjnKyuArhiNHjRpUp+//lqPzXYBMAOCxVKToCA4\nfnws0Nx5zmwcS9n9hK9ve2bN6kGHDh0y9HPYs2cP8+YtxGjU06vXixQrVixD52XUpUuXqFmzEVev\nFgG80LQjLF++ABGhTJky+Pr6AmC1Wjl48CCBgYG3nbXPqlWrVtG1a2+ioyMoW/YRli37hdKlS7us\n/4eF3W5nzpw57N27n0qVyvHCCy84lwZUlPtXRsozVNKsKMpDb/jwzxgz5g+s1rnA38DzGAz5gWjG\njBnF668PuOO5IsLAgYOZOfM79PpC6PUxrFu3nClTKjFlStp2dx6/SZOn2LChJ7ABKAq843xlEzAI\nmILJ1I6UlGSSky9zo7LO17cx7dqFsnjxKazWX4B4oC3wOlAcs7kn4eFh90x+N2zYwJEjR6hcuXKO\n16XGxsby119/ISL8++9BPvtsDAZDCCKRLFs2H39/f5o3b0dycgBJSefp378v48ePyva4p0+fpkKF\nms666UbodF9SrNh0Tp7cr9Z8VhQlQ0lzXubGSXpFUR4mKSkp0r//IDEYLGIy+cvbb78nBw4ckKio\nqHueu2zZMjGbKwhEO8sOpqcr78hIhUObNp0EpgpsFiggMFfgL4HKAo6VNszmnlKqVEUxGF4Q2CSe\nnh9LoUKl5MqVK9K378DU2IODQ8XTUy+FCpXOUGnGG28MEbO5lJjNL4imFZVRo8Zm4CeWfXv37hVN\nKyRw2vmz+kP8/YMlNLSqwLfOY1FiNpeVlStXZnu8hQsXiq/vU+neG4Mhn1y4cMEFV6Moyv0OVZ6h\nKIqSsz7//HOGDo0gOXn8La9l9CNs27ZttGjxJFbrIOAwOt0y5/kvAyOBFHx86jJr1nusWLGOrVt3\nUbp0SaZMGXPbWeSVK1cyfPgEkpKSGTCgB717v3jbcQ8dOsQjjzQhPj4cCADOYTBU5MyZowQFBWUs\n+CyaN28eL700l+vXF6Ye0+v9SUmJw26/DhgBMBgGMnp0KQYNGpSt8TZv3kyrVr2Ii9sLmIBj6PXV\niImJwpD2Dk1FUR5KGZlpVlsqKYqiZEP58uXR61elOxYS0uWeCfPly5c5ceIENpuNevXqsWnTKvr3\nv8SAAfnYvXsNP/zwFSbTTDStLz4+9Xn00ZJ06NCBWbMmEx6+jaVLf75twrx+/XqeffYFtm7txa5d\nbzFw4GfMnPntbWOIjIxEry+NI2EGKIK3d0EuXbqUhZ9E5pQrV46UlK1APyAfEIhOB8WKlQNuJNLR\n2O0LGDr0U8zmfLzyyiBSUlKyNF6DBg1o164hPj510bS+aFpjJk4crxJmRVEyTM00K4qi3ENUVBSb\nNm3CaDTSrFkz9Hp96mvTpwsvv3zzozR//mKsXbv8jjcOighvvPEO06ZNw8vLl0KF8rNu3e8ULVr0\nlrZ79+5l27ZtBAcH8+STT2Zo6+jnn+/LTz9VBQY6j6ykatWR7N274Za2ly9fpmTJisTGfg+0Bn4m\nf/4hnD17BKPReM+xsqtp0zasX38F+BWIw2h8kqFDX2D8+MnYbMFYrUeAIFJSlgMWNK07b7zRmM8+\n+xgRYcuWLURGRlKzZk1KlChxz/FEhBUrVnD69Glq1apFrVq17nmOoigPB7VOs6IoSjYdOnSIBg1a\nkJJSBZEoQkO92bLlTzRNI+1n7M8/nyM09BwVK4bfdc3ahQsXMmvWSpKSTpKUFMDJkx/TrVs/NmxY\nfkvbatWqUa1atUzF6+3theOGwBvi8fK6/Ud9YGAgy5cv5JlnuhEdHUmhQiVZunRJriTMAJcvxwBj\ngCIAJCS8w+7dGzh16iDh4eEMGzaGP/5oDTjWxLZah7No0TuMHDmMHj36sWjROjw9K5GS8grz5n1H\nu3bt7jqeTqejbdu26Y5ZrVZmzpxJZORFmjVrwmOPPZYDV6ooyoNAJc2KoriMiPDll1NYuHAlBQoE\n8NlnH1CmTBl3h5Utffu+RXT0O4i8DgiHDnWhb98V/PTTzWXcHH8UK8KN5O9uwsL2EBfXAUdJAths\nL7F373SXxTto0MssWPA4cXEeOGZnh/PRR1/fsX2jRo24fPkMCQkJuZYs3xAYmA84hGMjGfDyOkRw\ncD4sFgt16tShdOnieHkd5GZFxkECA/OxevVqFi3a7KxP1oCtdO36FNeuXczUShgJCQnUqdOM48cL\nER9fnYkT+zBmzHu8+uorrr1QRVGUHOa+WygV5SGSkpIiFy9eFJvNlu2+3n33I9G0mgILxcPjM/Hz\nKyhnzpxxQZTuExJSWWB3ulUXbvxv0SJHmx9//EmKFCkv+fOHyGuvvS1JSUl37G/mzJmiaY0EEgVE\ndLrpUrVqQ5fGHBYWJt26vSTPPtvTJStPZEZ8fLxERUVlaLOLsLAw8fEJEr3+FTEau0u+fEXl1KlT\nqa+fO3dOgoJCxGh8XvT6V8THJ0h27dolM2fOFLO5Z5r3wi4eHt5itVozFetPP/0kPj7NBezOfg6K\nyeSvNupQlIcQGVg9Iy9z989PUR54K1asEB+f/GIwBEi+fEVk27Zt2erPYgkSOJ5mSa8+MnHiRBdF\n6x7PPddb9PreAinpEuYbVq9eLSZTYYENAofFZGoub7757h37S0lJkTZtOojZXFp8fRtLvnxF5N9/\n/810XHa7XXbv3i1//vmnXLp0KSuX5nKffDJKvL1Notf7SpUq9SQiIuKe5xw7dkz69+8vRqOP6PV+\n4udXUNavX5/6+sWLF+Wrr76S8ePHy7Fjx0REZM+ePWIyFRQ46PziMVlKlqyc6XinTp0qmtY7zfsa\nL56e3mrHQEV5CKGSZkVR7iQyMlLM5kCBTc6EYZH4+xeS+Pj4LPd5u6R5woQJLow69129ejVdstys\n2c/pZiJfffVNgdFp2uyRokUr3rVPu90u27dvlz///FOuXLmS6Zjsdrt0795XNC1E/PyaiK9vwWx/\n4cmu5cuXi6aVFjgvYBcvr3ekadMn7nnelStXxMcnyLkutQisFIulgFy7du2u582c+a0YDD5iMARI\nsWLl5ODBg5mO+fDhw6JpgQKLBU6JXt9LHn+8fab7URTl/kcGkma15JyiPKT279+Pl1dFoKHzyNOk\npGicOnUqy30OGPAKmtYJWISHx/8wGJbRsWNHV4TrFrt3g7+/X+rz2Ng41qx5Ll3dbL58vnh5nU5z\n1iksFstd+9XpdNSpU4fHHnuMgICAu7a9naVLl/Lbb9uxWg9w7do6YmKm0KnTi5nux5W2bdtOfPxz\nQCFAR0rKG+zateOe5x0+fBgPjxCghfNIS3S6YI4ePXrX83r3fpGYmChOnz7IqVPhlCtXLtMxlylT\nht9/n0+pUsPw969P27aJzJ//Xab7URTl4aBuBFSUh1TRokVJSjoIXAKCgGMkJ1+iYMGCWe5z1Kjh\nFCwYxK+/fkPBgvn47LMNt11KLTclJSXh7e2d6a2S0zYPCprMlCkFMZtv/QIwYMArTJ1al6tXE0lJ\nCcZonM6ECT+kvp6SkoJOp8PT0zPL1/Bfx44dIzm5CWB2HmnD+fPPuaRvm82GiNxxxY07CQkphsn0\nI1ZrCo5/WjZRqNC93/siRYqQlHQCOIfjRsqzJCWdoVChQvc8V6/XU6BAgUzF+V9Nmzbl6NHd2epD\nUZSHg5ppVpSHVNmyZXnrrdfQtBpYLM9iMjVkwoTP8ff3z3KfOp2ON98cyMaNy1iwYDZly5Z1YcSZ\nc+bMGapWbYDJZMZiCWTu3HkZOu/YsfQJM/zNpUsl6dSpD/7+Bdi4cWO69sHBwezb9zcjRpRh6FBP\nNm5cQatWrUhKSuK553phNJoxGn144413EBetPV+9enW8vJYBFwDQ6WZStmz1bPVpt9t55ZVBznjN\n9OzZj+Tk5Ayf37NnT2rVMuLjUxOL5SksloHMnj3lnucVLVqUYcPeR9NqY7F0QNPq8MknH2UoaVYU\nRclNanMTRXnIhYWFcfToUSpXrkzFihXdHY7LVKvWkP37W2GzfQDsRdNas337aipXrnzHc9Imy0bj\nTBISTgGvAIVxrCe8DYtlM8eP7ycwMPCu4//f/w1lypQ9xMfPBRLQtLaMGdPbZcuZffzxSEaN+h/e\n3vnw8/Nm7drfs/UlZezYiQwbNh+rdSnghaZ14K23GjNixIcZ7sNms7F27VquXbtGgwYNMpX47t27\nl0OHDlGhQoV0G8MkJiayZMkSYmJiaNasGaGhoZm5LEVRlAzJyOYmKmlWFCWdP/74gwULlpEvny9v\nvjnwvpzxS05OxmAwIZIIOMoiNK03EyfWp2/fvre0j4yEtJdZtGgFzp0LRiQQ2AisBr4FvPHz28Si\nRSNo2rTpXWOoWrUR//47ArjR7geeeGIFS5f+lN3LS3XlyhWio6MJCQnB29s7W3099tizrF7dFejk\nPPIHtWuPY8eOP7MdZ1bFx8dTt25zTpwwYLeHoNOtYMWKX2nUqJHbYlIU5cGUkaRZlWcoipJq1qzv\n6NChHzNnlmL8+DiqVq3LhQsX3B1Wpnl5eWE2BwB7nEeS8fDYS3Bw8C1tTaabCXOnTvD22+9x4UIT\nRNYC84EPcCSSPwJdSUo6ett+/qtIkWA8PHamPvf23knx4vc+LzPy5ctHqVKlsp0wiwhWazTwPvA4\n8AeenjspWtS18WbWN998w9GjBYiNXYvVOpu4uOn06TMoy/1t3LiRBg1aU7VqI8aMGY/dbndhtIqi\nPOjUjYCKoqQaOnQkVut8oC42G8TExDJ79mwGDx7s7tAyRafTMWvW17zwQht0urZ4ePzDo4+WTLfN\nckwM+N1cGIOkJPD2hi5dLpCcXD9NbzWBSIzGFnh6dqBXr+6UL1/+njFMmjSSunWbkpS0FUggIOAI\nH320yWXX6EpTpkxjz55IYDJwDeiK2ezNuHHbc2S8iIgIrFYrJUqUuOsNkhERF4iPr8HNyZ8aXL6c\ntS9xe/bsoXXrZ7FaJwCF+eSTd4iPT2DYsPez1N+DLD4+ntOnTxMcHIxf2v9IFOUhp2aaFUVJlZgY\nD9ys1U1JCcRqjXdfQNnQqVNHdu5cxxdfNOLnnz/h99/n4+Hh+MirUOFmwlyvnmN14BuTta1bN0HT\nvgIigDiMxtF07NiWL75oybJlM/jyy88zNH5wcDDFi5cgOXk1yckbqFixYpaWl8sNU6bMJj5+MtAS\nx6z6MNq0aUvJkiUz3dfRo0eZO3cumzZtuuXGR7vdTvfufSlZshJVqzalcuW6XLx48Y59NW3aGE37\nDjgGJKHXj6Bx4yaZjgng55/nYbX2B7oDzYmL+4bp02enayMirF+/nrlz53LixIksjXO/27RpE8HB\nJalVqx3BwcX59tvZ9z5JURS3c9f61ory0HrttbdF05oJ7BSYL5oWJHv37nV3WC4TH59+G+zY2Fvb\n2O12GTLkQ/H2Nomnp16efbZ7ljZ86dVrgBgMvZw7CSaIydRGRowY5YKryLjY2FiZMGGCDB78rixf\nvvyO7apVa+zc4EOcO+yNkH79BmZ6vAULForJFCgWi2PHwx49+qXbCOabb74RTasvcN25Acrb0q5d\n57v2OWHCl2I0WsTT01uaNXtCoqOjMx2XiMgHH3wknp5vpnn/N0rx4lVSX7fb7fLss93FbC4vFksH\n0bRA+f3337M01v0qKSlJ/PyCBZY7f0bhYjIFydGjR90dmqLkONSOgIqiZEZycrL83/8NlRIlqkq1\nao1kzZo17g7JZVq2vJksFyp07/Y2my1b2ylXrtxQYF2aJO0HadfuuSz3l1nx8fFSqVIdMRqfERgh\nmlZSxo69/Zbmv/32m2haIYHJotN9JmZzYKa39rbZbKJp/s4vXCIQK2ZzWVm7dm1qm759XxOYkOZn\nsk8KFy53z77tdrskJydnKp7/OnHihPj6FhSdbpjANNG04vLNN7NSX//999/Fx6eqQHxqUu3vH5yt\nMe83p0+fdv4e3Pxvxde3jSxZssTdoSlKjkPtCKgoyg2LFi2iWLGKBAQUoUePfsTH31p24eXlxeef\nf8qJE3vZs2cDzZo1c0OkrmWzOZaSW7XK8TwqCs6fv/d5Hh4e2dqQpEKF0nh7/47jc9iO0biCypVL\np75utVq5dOmSy9Zu/q8lS5Zw6pRGQsJC4AOs1r8YOvSD247Xvn17Fi36ns6dd9Kz5ym2bVtLsWLF\nePrpbvj5FSI0tBpr1qy563ixsbEkJSUCNZxHzOh0NTh79iwiQlRUFKGhRTGZVgIpAHh4/E6ZMqXv\n1GUqnU6X6c1W/qtEiRLs2rWJ3r0v07HjFn76aRJ9+vRKff3s2bPY7bUAo/NIfa5du5Sptarvd0FB\nQUACcOMG1giSk3erZf4U5T7g5u8civLg2L59u5hMBQXWCpwUo7G9PP983zu2P3XqlCxfvlwOHDiQ\ni1FmXnx8vKxZs0bWrl0rCQkJt7zeq1f6cozcFBkZKSVKVBKLpab4+FSSRx55VGKd9SDvv/+xeHmZ\nxGDwl8qV60pkZKTLx58xY4ZoWo80158gnp7eGZ6xbdHiKdHrewucEVgqmhYohw4dumN7u90uISEV\nRKeb4hzvX9G0ArJjxw5p2LCl6PW+4u2tSXBwadG00uLrW0+Cg0Pl+PHjrrrkbAkLCxNNCxY4JGAX\nD4+xUr58TXeHlet++22RaFp+8fNrLCZTkIwY8T93h6QouQJVnqEoiojIxx8PFw+P99IkUKfE1/f2\nf3r+5Zd5ommB4uf3uJhMBeXjjz/L5Wgz5tKlSxIaWkUsllpisdSUMmWqS1RUlIiI2O3pk+UzZ7I/\n3u+//y6fffaZzJs3L12d7t1YrVbZuHGjbN26NTVZXbRokZjN5QUuOOt6B0vz5k9lP8D/OH78uJjN\ngQLzBY6JXv+itGiRsXFsNpt4enqnKVUQMZl6y9dff33X8w4ePCjFipUTvd5XjEaLzJnzkzz/fF8x\nGF4USBa4KppWT957731Zv369XL9+Pd35W7dulVGjRsk333yTpTry7JoxY5bo9WbR632lZMnKcuzY\nsVyPIS84d+6c/PXXX3LkyBF3h6IouQaVNCuKIiIyYcIEMRieS5NIrpMiRW6tJY2LixOj0U9gj7Nd\npJhMwbJ//343RH13L77YX7y9BwrYBeyi178i/fq9Lu+/7/rZ5bfffl/M5vLi6TlYzOaa0qXLixlO\nnP/rvfeGCnycJsbT4ueX/dpZu90u06bNkLZtu0ifPq/KmTNnZNOmTVKuXC3Jl6+YPPNMd7l69WqG\n+3LUJ4c7Y7SL2dxMfvrppwydGxUVlfoloWTJ6gJ/p7ner6Vbt5duOe+772aLphUSL6+3RdNaSvXq\nDW/714OclpycLFFRUVl+fxVFuT+hkmZFUUREoqOjJSSkvBgMz4lO976YTAVl/vwFt7Q7ceKEaFrR\ndEmnn19LWbZsmRuivrt69VoJLEsT62/p4nZVZcmFCxfEYPATuOzs2yqaFiJ79uzJUn/Tpk0TTWvh\nnHkVgdlSsWLdbMf53nvDxGyuLvCDeHoOkaCgELl06VKW+5s8+WsxmYqJTvehmExPSeXKdbM0+9u8\n+VPi4fF5avJtMDwnH3884pZ2FktQmi9rdvHxaSY//vjjLe2uXr0qXbr0ksKFy0mtWs2y/D64wrRp\nM6RkyWpSokRVmTDhC5VoK8p9DJU0K4pyw9WrV2XChAkybNjHsnXr1tu2SUxMdC45dSMZ/Uc0LVBO\nnDiRu8FmwFtvvSdGYweBpDQJqOtml48dOyZbtmyRnTt3io9Pyf98kWiYblWIzEhKSpLGjduIj08V\n8fVtI76+BWXXrl3Zjtdk8hM4laacootMnTo1S31t2rRJAgOLiYeHl2iavwwePFisVmuW+jpy5IgE\nBhYTX9/HxWKpJVWq1Eut7b7Bbrc7y0GsqfEbjf3kq6++uqW/xo3biF7fS2CfwDfi61tQIiIishRb\ndvz88y+iaaECGwS2iKZVkGnTvsn1OBRFcQ1U0qwoSmRkpMycOVNmzZolly9fvmf7zZs3i59fsJjN\nIWI0+smPP/6cC1FmntVqlebNn0iXzG7YkOiSvt9++30xGgPF17eW+PoWlKCg4uLhMU4gSmC2+PsX\nyvJ6wSIiKSkpsmbNGlm0aJFcuHDBJTEbDD7OOukbSecLMnny5Aydu3nzZpk8ebKsWLFCrly5IhZL\nAecXJ7vAZ2Iy+cqCBQuyPJN65coVWbp0qaxatUoSE2//HjVr9oTo9a84Z/TXiMkUKPv27UvXJi4u\nTry8jOm+JFksz8gvv/ySpbiyo2XLjgJz0vz+LZL69VvnehyKorgGKmlWlIfbkSNHJCCgsGjac2I2\nd5ACBYrL2bNn73leQkKCHDt27JYZwbzkp5/S1y676k/j69atE7M5NE05xm8SGFhMqld/VAwGi5Qp\n84iEhYW5ZCxX6tt3oGhaU4E/RaebIL6+BeVMBu6AHD16nGhaiJhM/cRsrijt2nUUP7/azmv/SqCo\nQE8xmSpJ1669c6wEISoqSlq2fEZMJj8pVKj0bUuCkpKSxMvLIBCZpoyjgVvWEe7YsafA2DS/g9Pk\n8cefzfU4FEVxDTKQNOtyIfnNKuc1KIqSVe3bP8/SpVWw298FwNPzfXr0iObbb792c2TZo0vzybVi\nBbRunf0+ly5dyrBh47lw4QKXLuUjOXkjjo9IOzqdnsTEeLxv7LXtRjc+F3XOH8L69esZMmQkMTHX\nCQ7258qVeAoVCmLcuOFUrFjxrn1dvXqVggVDSEo6ABQFYjGZKmCzxZKUtBeoCOwHigNWzOaq/PXX\nHOrVq5eDV3h377//MZMmLcBq7YXBsI0yZc6wc+d6DAZDrsbxzz//0KBBC6zWfoh4oWlTWLNmGXXr\n1s3VOBRFcQ3nZ+pd82K1uYmiPMDOnbuI3V499bnNVp2zZy+6MaLs2bs3fcIsAvXqXWX//v3ExsZm\nud/Vq1fTpUs/du9+g/PnvyA5+QwwzvnqfAoXDnV7wpyUlMQLL7yCweCD2ZyP4cM/IywsjLZtO7J9\n+4uEh49m+/YonnqqBStWzL9nwgxw5coVvL0DcCTMAD7o9WV55pknMJkaAt44EmYADS+vcly86N7f\nn5Ejh/Httx/Rv/8ZPvmkDtu3r7lnwnzhwgXCw8NJTEzM8Djx8fEcOHCAy5cv3/b1qlWrsnPnRt5+\n28ZbbyWwdetqlTAriuI2bp6oV5T737Bhn4qmNXPW4l4QTasjEyd+6e6wssRkulmKMX++49js2XPE\naPQXi6Wc+PgEyl9//ZWlvrt27eMsRbgxxkrR6fKJxVJJAgIKu+RGvXuxWq2yePFimTt3rly8ePGW\n199++30xmVo6y0ZOiKZVknbtnhb4ME3ce6VQobIZHjMpKUmCg0NFp5vqrBP+XXx8gmT27NkybNgw\n8fcvLDrdROdrq8RsDsxQeU9e8s47H4rB4C8WSxkpWLCkhIeH3/OcHTt2SEBAYbFYyorB4Cfjxk0S\nEZHDhw/Ljz/+KKtXr1YrZSjKAwZV06woD7fk5GTp3XuAeHkZxdtbk9dfHyw2m83dYWXKkSO3X3f5\n1KlTYjIFCux3vrZWfHwCs7TKQ69e/UWn+yzNOAukWrVGsnv37lyp67527ZqUK1dDLJZGYrE8JQEB\nhW9J7sqVqyOwKU2MM6Rixeri6flGmmMbJSSkcqbGDg8Pl9Klq4tO5yEFCpSQ0NCKYrE0EIulvZjN\n+aVEicqi03lIYGCIrF692pWXneNWrlwpZnMZgUsCIjrdFKlQofZdz7Hb7RIUFCKwUG5sBKRphWXc\nuPGiaUFisXQWH58K0rFjT5U4K8oDBJU0K4oi4tjhLa/+A2+32+XLL6dI3botpXXrjulusgsNvZks\n//e+sFWrVomfX7N0CbWPT0k5fPhwpmP4559/xGwOFJ3uU4FJYjIVlN9//z1D5ytmGakAACAASURB\nVCYnJ8tHH42Q2rUfk2ee6Z6lXeQ+/PBjMRi6O1erENHpJkmTJu3StWncuJ3A16nX6uX1uvTq1U/8\n/ILFw2OowBTRtBCZNeu7TI8v4ljRY/To/4nR2DE1DpghtWs3l5SUlCz1mR0JCQnyf/83VGrVaiFd\nuvTK0gz32LFjRa9P+6Xiunh5Ge56ztWrV8Xb2/yf36vnxGAwy81NWuLFbK4kq1atyurlKYqSx5CB\npFnVNCvKQ8DDwyP1xrG85tNP/8e7705j+/aB/PFHMxo1asmGDcfQ6eD4cUcbEWjXLv15oaGhJCXt\nA047j4Rhs0VTuHDhTMdQpUoVtm1bS+/eETz//D6WL/+Ftm3bZujcvn0HMnbsWv7++y0WL65A7dqN\nuXTpUqbGP3bsLImJDbhxD4pIA06fPpeuzRdfjMTH5yOMxt5oWicCA5cxatQnhIVtpl+/WLp23cXc\nuZPp1euFTI19g6enJydPniMhoT4374VpwNmzZ/H09MxSnxlx7tw5Hn20NT4+gZQvX4udO3cC0LFj\nTyZP/pedO/+PhQsLUbt2E2JiYjLVd5kyZfD2XgPcqHdfSrFiZe96jq+vLyaTGVjjPHIZu30LycmJ\nQE3nMSNQg7Nnz2YqHkVRlJzi7i8diqLkgoIFSwnsTTOzdzz18W02hEtn/PgvxGjML35+DUXT8sv8\n+QtzJMZ9+/bJ0qVLb5lFTklJcS6BFp0as9ncUb77LnOzvTNnzhJNq+GsV04Ug6GbvPhi/1vanTx5\nUiZPniwzZsyQK1euZOuabueXX34Rs7myc73nZNHre0vnzi+6fJwbbDablC37iHh6fiAQIfCjWCwF\n5OjRo+LtrQnEp1mPuYUsXrw4U/3b7XZ54YVXxGQqLH5+9cXfv5Ds3LnznuetXr1afHyCxM+vgZhM\nBWTIkI+kTJnqotONd87C7xOTqYD8+++/Wb10RVHyGFR5hqIoeV1wcGmBsHR/Dnesu5yx80+cOCFr\n166V8+fP50h8w4ePEpMpWPz8WovJFCizZ89Jfc1mszk327iUGrde31bGjh2bqTHsdru8/vpg8fIy\niJeXUVq0eFK+/fZbGTFihCxevPiOpTXJycny/fffy4gRI2TlypXZus4bcQwZ8mFqHI0atZarV69m\nu987OXfunBiNgWnKQUR8fVvJvHnzxMvLJBCbJmluLEuXLs3SOPv27ZP169dnakOaixcvyrp161LL\nfY4ePSqhoVXEy0sTo9EiP/xwj290iqLcV1BJs6Ioed24cZPE03NlanJkMLwrx48fd3dYIiJy8OBB\nMZkKOGdBRWC/GI2+EhMTk9pmwIA3xWSqJzBPYLBAfjGb88s///yT6fESExPl+vXr0qFDDzGba4uH\nx7tiNleUQYOG3NLWZrPJY489JWZzI/HweFc0rZSMGDE6W9f73zjuZseOHdKhQ09p1+65DNd//1dM\nTIxzRvnGZiVJYjaXlw0bNkiXLi+Kpj0mME+8vQdK8eIV88RmO1evXnVLjbeiKDkLlTQripKXXb+e\nfna5U6fecuDAAXeHlWrlypXi59c8XYxmc4l0NxvabDapUaOBQDWBVwTOik43SVq37pilMffs2SOa\nFiJgdY4ZJQaDn0RGRqZrt3btWvHxqSyQ5Gx3Try9TVlaPSSzdu7cKZoWKDBJYKZoWhFZuDBrpTFD\nhw4Xs7ms6HTvi9ncSFq2bC82m02Sk5NlxIjR0qLFM9Kv30C5dOmSi69CURTlJjKQNHvlQvKrKIpy\ni/79YepUx+Phw+GjjwBm5srY586d4/jx45QqVequNw5WrFiR5OS9QBhQA1iOl1c8xYoVS23j4eFB\nYGBh4BmgGwAiZYiKWpql2KKjo/HyKgqYnEfy4e2dn2vXrlGwYMF07Tw8SuDYgASgEB4eRmJjYzGZ\nTOSkL76YgdX6DvA6AFZrfkaOnMSzzz6b6b4+/fQj6tevyc6duyhRog/du3fHw8MDDw8PPvhgCB98\n4OLgFUVRskglzYqi5KrERDAa0z/X63Nv/Fmzvue1195Cry9HUtIhpk6dRM+e3W/btmjRosyePZ0e\nPVqg02no9XaWLVuIMe0FAJ07t2XTps+wWh8B9GjaMDp2fC5L8VWvXh1Pz5PAt8ATeHh8R0CANyVL\nlkzXrl69eoi8AswHmuLpOYnQ0FIEBgZmadzMSEmxAWnfND02my3L/bVr1452/10eRVEURckwd8/U\nK4riYh9+eLPMYeDA3B8/IiJCjMYAgXBnHAfEZAq47Q58acXHx8upU6ckKSnptq/b7XYZMWK0BAQU\nET+/YHnnnQ+ytYnM3r17pUKF2qJpAVKzZpM71nhv27ZNSpWqJpoWIA0btpJz585leczM2Lhxo5hM\nQQKzBX4TTSsp3303O9P9HDt2TAYMGCTPP99XVqxYkQORKoqiZAwZKM/Imwu3OjivQVGU+53NBl5p\n/q4VFwealvtxbN++nZYtXyUmZmfqMV/fR1i9ega1atXK/YBymIjk2Prcq1evZsSISSQmJvHqqz3p\n3r1bps4/efIk1arVIza2D3Z7ITTtf0yf/j+efz5z/SiKoriC87Pyrh+YanMTRVFy1MSJNxPm555z\nzO+6I2EGx4YoyckncNQoA+wkJeX0LaUP97sNGzYQHByKp6cXFSrU5siRIy4fo0WLFqxbt4StW//I\ndMIMMH36TOLinsduHwm8htX6PR999LnL41QURXEVVdOsKEqOEAGPNF/Lr1yBgAD3xQMQFBTE7Nkz\n6NnzMby8grHZLjBnzkzy58/P33//zYEDByhXrhz16tVzb6DZEBERQbt2HYmN/R54jEOHvqZ58yc5\neXJ/ju7sl1kJCYnYbH5pjviTlJTktngURVHuRc00K4rict9/fzNhbtbMkUC7O2G+oWPHZ4mIOMHm\nzXM5f/44zzzTnk8/HUPTps/y2mt/0qJFFz744BN3h5llYWFheHg8ArQBvBF5naioa0RERLg7tHS6\ndeuMpn0FzAM2omkv06ePKs1QFCXvUjXNiqK4VNoS2vPnoVChnBnn119/ZezYGeh0Ot59tz9PPvlk\nlvqJiIigZMmKJCbuBwoDlzAaKxIe/jclSpRwZci54u+//6ZZsy7Exe0DNOAMen0FoqIi8fHxcXd4\n6axevZohQ0YSGxtHjx4deO+9/8PDQ83lKIqS+zJS06zKMxRFcYklS+Dppx2Py5eH8PCcG2vRokX0\n6PEGVusEwE6XLi+zYIEnbdu2zXRfFy5cwGAoSmLijfWagzAYShIREXFfJs21atXiqaeasXRpfVJS\nGuDh8TvDh3+a5xJmcNRF79zZwt1hKIqiZIiaaVYUJdvSzi4fPw45fV9d06ZPsX59N+DGWsjf06rV\nMv74Y36m+4qNjaVo0TJcu/Y10B5YgcXyIqdPH8Lf39+FUeceEWH58uWcOHGCGjVq0KBBA3eHpCiK\nkqepmWZFUXLUunWOmmUAPz+4ejV3xnXc0JaY5kgiXl5Zu8nNx8eHlSsX8eSTnYmO7oqvb34WL154\n3ybM4PjwV5uFKIqiuJaaaVYUJUvSzi7/+y9Urpx7Y//111889dTzxMd/AtjQtI9Zvnw+TZo0yXKf\nIkJcXBxmsznH1ja+3yQlJTFy5Bg2btxJmTLFGTVqGPny5XN3WIqiKC6XkZnmvPwvg0qaFSUP2rUL\n0u4D4q7/TNeuXcsXX8zCw0PHoEF9adSokXsCcaGYmBhMJhPe3t7uDgWA9u27sXLlBRISEoFD6PU6\nNm36ndq1a7s7NGw2G+++O4wffpiL0Whk5Mj31MYoiqJkmUqaFUVxqbQTsFu3wn28nHGeEhERQevW\nHThwYC86nTBq1CjefvsNt8Z05coVgoOLk5xcGagPvAqsxmz+gJMnDxAYGOjW+IYOHc7EiX9itU4D\notC0bixa9C2PP/64W+NSFOX+pHYEVBTFJQ4eTJ8wi6iE2ZU6d+7NgQNNSEmJJTk5nI8+msDatWvd\nGtPNSYvDwFigFNAPkSps27bNfYE5/fzzIqzW8UAloDFW69vMnbvY3WEpivIAU0mzouQiu93OV19N\noUOHFxgy5AOuXbvm7pDuqUgRqFDB8XjlSveVYzxIRIQff/yJzp17MXDg2+zcuZmUlP/DMclRnMTE\nzm5PTPPnz0/jxk2BOOCK86gND4+LeWL5OovFBzib+tzT8yz+/u6PS1GUB5dKmhUlF/XtO5AhQ37k\n11+bMGnSOerUaUZCQoK7w7qt06cds8vnzzuei0DLljk/7pEjR2jW7ElKlKhKt24v3RdfLDJr9Oix\n9Os3gvnzGzJ1Kjh2j/7D+WoKRuN2ihQp4sYIHZYtm0/NmnXw8GgAfIbR2JZq1QrnifrxsWM/QtNe\nAYbh5fUqvr6/MGjQa+4OK8N+++03KlduQJkytfj88wmockRFyftyuqZ5FtAOuAhUcR7LB8wFigMn\ngc7A7RaqUjXNygMlLi4Of/8gUlIiAV9AsFgaMnfuh7Rp08alY4kIhw8fJjk5mfLly+PllbnVJWvW\nhLAwx+N586BTJ5eGd0fR0dGUKVON6OhB2O1N0esnU7PmaTZvXvVArWjh61uA69c3AWWBJLy9n0Sn\n24Re3xo4Ts2ahfnrr8WZft9ygoiwYMECtm3bSWhoCH379kWv17s7LAB27tzJggW/YTab6N27V574\nopERq1ev5qmnemC1zgD80LRX+eST3m6vY1eUh1leuBGwERALzOZm0jwGuOz8/yFAAPDubc5VSbPy\nQLl27RpBQUVITo4GHKsjWCyt+OGHATx9Yys9F0hMTKRdu05s3bobDw8DISH52LBhBfnz57/nuZcu\nQYECN5/b7elrmXPa0qVL6d79S2JiVjmP2NDr83Pu3FG333jmSpoWQHz8AeezlsB1vLziqFatAp98\n8i6tWrVyrkWtPIh69nyZH36oBLzuPLKe8uWHEB7u/lpxRXlY5YUbATcC0f859hTwvfPx9zi24FKU\nB56fnx+NGjXHYOgJbMbDYzQGw0EaN27s0nHGjBnPli2C1Xqc2NgjHD1al4EDh9zzvHbtbibM06c7\nyjFye3LXaDRit18Bbnxhvo5IMgaDIXcDyWHdu/dA07oD3YEngBOkpJwhPNyTkydPqYT5AadpRnS6\nK2mORGEyGd0Wj6IoGeOOmuaCwAXn4wvO54ryUFiy5Gd69AiifPm3adlyF9u3ryUgIMClY4SFHSA+\nvgOO2WwdSUld2LNn/x3bx8Q4kuPlyx3PbTbo29elIWVYkyZNKFXKgNH4HDAZTWvFiy/2wWKxuCeg\nHDJ58jhef/1RvLz2At1wTG4YsVrbExZ25/dKeTC8+eYAzOYp6HQfAGMxmfozcuS9v9gqiuJe7r4R\nULg5paQoDzyz2cyMGV8QHr6NFSvmExoa6vIxqlUrh8m0GEgBBG/vX6lSpfxt2/bq5dj+GmD0aMfs\nsocbPxX0ej2bN69i6NBq9Oz5L5Mm9WPatEnuCyiHeHt7M2rUcJo2bYSn56/Oo4lo2jKqVbv9e6U8\nOMqVK8euXZt47bV4+vY9xapVC11+X4OiKK6XG398LQEs5WZN80GgKRAJFALWArf7V0KGDRuW+qRp\n06Y0bdo0B8NUlAdDQkICjz/ent27D6PTGSlUyMDmzasICgpK0wZMppvnJCdDHrjn7KFz9uxZGjZ8\nnOhob2y2qzRuXJulS+fmiRsA3W3//v0cPHiQsmXLUqVKlXufoCiKkgnr1q1j3bp1qc+HDx8OeWBH\nwBKkT5rHAFHA/3DcAOiPuhFQUVzKbrezf/9+kpOTqVy5crrVDt55Bz7/3PF48GAYM8ZNQSqA40vO\nvn370DSNChUqPFCrhNyO3W7nxx9/5ODBw1StWpnOnTvfcs3jx3/Jhx9+hpdXXVJSdjBs2GDeeedN\nN0WsKMrDIC+snvEz0AQIxFG//BGwGJgHhKCWnFOUXJOSAt7eN59brelnmxUlp4kIHTv2ZOXKo8TF\ntcJsXkLXrg2ZMePL1DYRERGULFmRxMS9OP6ZOIfRWJXDh/dQrFgxt8WuKMqDLS+sntEVKAzogWLA\ntzi2lnoMxwKlLbl9wqwoiguNGXMzYX7xRUftskqYldy2f/9+/vhjPXFxa4CPiYtbxw8//MSZM2dS\n25w/fx6DoTiOhBmgCAZDKOfOnXNHyIqiKKlU4ZyiPMDsdki7etnVqzdv/FOU3BYTE4OXV0Hgxjc2\nX7y98xMTE5PapnTp0ohEAH8CjwNrsdlOUa5cudwPWFEUJQ13r56hKEoO+eabmwlzmzaO2WWVMCvu\nVLVqVQyGS+h0XwFn8fAYTUCAB2XKlElt4+fnx5Ilc/H17Y7RGIjF0oVFi352+dKMiqIomZWX7zhR\nNc2KkgX/XTbu4kVIs3CGorjVoUOH6NatH8eOHaZChcr8/PMMSpQocUs7m83G5cuXCQwMVJu9KIqS\n4/LCjYDZoZJmRcmkBQugUyfH4xo1YNcu98aj3H9sNhuASlQVRXmo5IUbARVFySU63c2E+dQplTAr\nmWO32+nf/02MRjMGg0bPni+TkpLi7rAURVHyDJU0K8p97s8/HQkzQHCwozwjJOTu5ygQHh7OjBkz\nWLRoUersqiudPHmSWbNmMW/ePBISElzev6uNH/8Fs2fvICXlHDbbJRYuPMbw4aPcHZaiKEqeocoz\nFOU+lnZPiPBwKK92YM6QJUuW0LXrS0A7PDz2U7NmEH/9tdhlO/Ft2bKFli2fBlqj052leHErO3as\nRdO0bPW7cuVKFi5cRkCAL4MGvUahQoVcEi/AY489y+rVz+FYOh/gD2rXHseOHX+6bIwHyb59+5g2\n7VtEhD59evDII4+4OyRFUbJBlWcoygNq27b0CbPIg50wnz17lqef7kalSg146aWBXL9+PVv99eo1\nAKt1EVbrt8TGbmXXrmh+++03F0ULL730JnFxU4iL+4HY2DUcO1aE6dOnZ6qPyMhIOnbsSaVKDXjh\nhVeYMmUqzz7blxkzQhk3LpaqVety4cIFl8UcEhKMl9fNmh5Pz10ULRrssv4fJLt376ZevWZMnuzL\n5Mn5ePTRlmzdutXdYSmKksPUOs2Kcp9Jmyz//TfUqpX7MdhsNk6ePImPjw8FCxbM0bFiY2OpW7cZ\nFy50w2brz7FjMzh4sCMbN/6RpS2nRYRr1y4CNZxHPElJqU5kZKTLYr548UKa/nUkJNTk3LmM95+Q\nkED9+o9x9mw7UlL6cvToD/z881CSk5cB9bHZ4Nq1OL7//nveeecdl8T86acfsHx5Q+LiDiLihdG4\ng3HjNrik7wfNiBHjiYv7AHgDAKu1IMOGjWXVqoXuDUxRlBylZpoV5T6xb9+ts8vuSJgjIiKoWLE2\nVas2o3jx8vTu/So5WUq1ZcsWYmODsdmGA41ITJzFzp07uXjxYpb60+l01KzZCC+v4YAN+Bed7lca\nNmzospibNm2MwTASSAROommzaNascYbPDwsLIypKT0rKaKARSUlTSU5OBgJT29hsQVit8S6LuXDh\nwoSHhzF1ame+/ro9Bw/upmTJki7r/0ESFxdP2vcCAp3HFEV5kKmkWVHuA/7+UKWK4/GaNY6E2V16\n9hzA8eOtsVpPkZh4irlzdzBnzpwcG8/b2xsRK3DjopMQSc5W/fGiRXOoWnULHh5GNK0x06aNo0aN\nGvc+MYNmzvySRx+NwsPDgl5fmeHDB9K2bdsMn++45nhuXnMynp4eGI19gV3AQozGmbRv/7TLYgYI\nCAjg+eefp0ePHgQGBt77hIdUnz5d0LQPgbXABjTtXV56qYu7w1IUJYepGwEVJQ87cQJCQ28+zwv/\nSRQoEMqlSyuBG7u4/Y+BAy/yxRfjcmS8pKQkatRoxNGj5UhMbIGmzaZdu6LMm/d9tvtOTnYk31kp\n88jJ/m02G/XqtWDfvoIkJLTFZPqFxo1NVKlSgfnzl+Lr68vEiZ/QvHnzHIlbubdZs75j9OivsNuF\nN9/sy4ABL+fY75GiKDlPbW6iKPexihUdK2IALFoET7t2UjHL6td/nB07nsBufwNIRtPaMHZsB/r3\n759jY16/fp2RI8dw8OAJHn20JoMGDXTZShd5ldVqZdSoz/n33yPUqVOVwYPfxNvb291hKYqiPJBU\n0qwo96HISEi7klhe+8/gyJEjNGz4OImJRbDZLlK/fkWWL1+gEjpFURTlvqWSZkW5z7Ro4ahZBvju\nO3jhhdwbW0T49ddfOXLkCFWqVKFt27Z3/HNzTEwMYWFh+Pj4UKNGDTw81O0RiqIoyv1LJc2Kcp+4\nehUCAm4+t9vTr5SR00SEHj36sWjRLhITW2AwLKNfv/aMH692hFMURVEefGpzE0W5D3TrdjNhnjDB\nUY6R2/cT7d+/n99++4O4uI2kpHxOXNxmpkyZSkRERO4Gojxw9u7dS+3azSlSpDxdu/YhJibmtu3O\nnDnDY4+1p3Dhcjz++DOcPXs2lyNVFEW5uwf7ThpFySFxcXHs27cPf39/ypYtm6W75q1WMJtvPk9J\nAU9PFwaZCdHR0Xh7FwVuBJQPb+8goqOjXbpVc065evUqBw8eJDg4mBIlSrg7HMUpIiKCxo1bERMz\nEqjHb799TmRkN9auXZauXWJiIo8+2pJz557DZvuMixfn8eijrTh0KAyDweCe4BVFUf5DzTQrSiaF\nh4dTokRFWrYcwCOPNKNnz5czvbnH66/fTJiHDnXMLrsrYQaoWrUqHh6ngdlANDrdF1gsdkqVKuW+\noDJo8+bNhISUo3XrgVSoUJsPPvjE3SEpTmvXrsVufxToA1QiMXEGGzf+RXx8+o1A9u/fT3S0Jzbb\nMKAiNtswrlwRwm8sH6MoipIHqKRZUTKpS5c+REW9R0zMLuLjj/Dbb7uYP39+hs612aB8efjyS8fz\nhAT49NMcDDaD/Pz8WLt2OWXLTsJgKE6VKnNZv35Fnp/lExGefvo5rl//lmvX/iYh4QATJ85i27Zt\n7g5NATRNQ6e7yM1NWqLQ6bhlpRVN07DZrgIJziOJpKRcRdO0XIxWURTl7lTSrCiZdOzYIUSedT4z\nY7W24uDBg/c8b/168PKCQ4dg6VLH7HJeykmrVavGoUO7SEiIYe/ezZQpU+beJ7mZ1Wrl6tVLwI3d\n9oLQ6R7N0Puh5LzWrVtTrFgCRuNzwHg07THeeee9W9bYLleuHC1aPIqmtQEmoGltePzxJvfF76Ci\nKA8PVdOsKJlUtmxF9u79BZHXgRg0bTmVKn14x/YiUL8+bN8O+fPD+fOg1+devA8yTdPIl68gly4t\nAtoDEdjt66lY8XV3h6YARqORHTvW8uWXX3Hy5CmaN/+ITp063dJOp9Px669zmDFjBnv2hPPII13o\n27ev2mFPUZQ8JS9/Iqkl55Q86ciRIzRu3Jq4OCPJyRfp0aMr06ZNuu0/8H//DXXqOB7/8gt06ZLL\nwT4Etm/fTuvWz2C3B5KUdJb33x/Chx8OcXdYiqIoyn1ErdOsKDkkISGBQ4cO4e/vT/HixW95XQTa\ntIGVKx03+F2/DiaTGwJ9SMTGxnLkyBGCg4Pvi9U+/ktEmDNnDmFh/1ChQhl69+79wG8TriiKkpeo\npFlR3ODff6FqVcfjb76BPn3cG4+S9/XuPYC5c//Gau2Apq2kceN8LF++QJUnKIqi5BKVNCtKLuva\n1VGGAXDtGvj6ujceJe87f/48oaGVSUw8BViAJMzm8mzcuJBHHnnE3eEpiqI8FNSOgIqSS44ccezi\n98svMHGiozxDJcxKRsTGxuLl5Qf4OI/o8fQsQGxsrDvDUhRFUf5DJc2Kkk0vvwxlyzoeX74Mb7zh\n3niU+0toaCgFC1rw9BwGHMPDYxJG4wWqV6/u7tAURVGUNFTSrChZdPq0Y3Z5+nQYMcIxu5w/v7uj\nUu43Xl5ebNiwgsaN9xAY2ILatZexadMqLBaLu0NTFEVR0lA1zYqSBYMHw9ixjscRERAc7N54lIdX\nVFQUvXq9xo4df1OsWAjfffcllSpVcndYiqIo9xV1I6CiuFhkJNxY0WzwYBgzxr3xKA83EaFWrSb8\n+281kpNfQ6dbh7//Jxw+vJfAwEB3h6coinLfUDcCKooLjRhxM2E+dUolzIr7Xb58mf37/yU5eRJQ\nDpGXsdmqsmXLFneHpiiK8sBRq+cryj1cuXKzVvnll2HqVPfGoyg3mEwmbLZEIBrID9iw2yMxm81u\njkxRFOXBo2aaFeUuJk26mTAfPqwS5vuJiJAbJV7uLCPz8fHh1VcHYja3AMZgMrWnYsUAmjRp4raY\nFEVRHlQqaVaU24iJcayMMWgQdOniWBmjTBl3R6VkhN1uZ9CgIRiNFoxGC6+8Mgibzebycc6fP0+d\nOs35//buPkqq+jzg+HdfgGVRQWQVfDubkKPBxLcajFVRE6jHJGJE0zRtQxttWppIjDUxNnqsNjkq\nPS0So6T1FTRqQ2tB6KYe0YOLIiji8k6ggawoShQVqbpEBLZ/PHcz4zC77Ky73LnL93POnvndO3fu\n75l7l+WZZ373/qqr+3LIIUcyZ86cbu+jM6ZMmcRdd13NZZf9lptvHsP8+f/jFNyS1AO8EFAqcM89\n8M1vRnvFCjj++HTjUWluueWnXHfdQ7S0PAJUUlv7Fa655nyuvfYH3drPySePYuXKs9i16x+AF6it\nvZAlS+YzYsSIbu1HktTzvBBQKkFLC1RVRcJ83nmwe7cJcxY1NMyjpeX7wFDgUFparqahYV639rFj\nxw5WrHiWXbt+BPQDTqei4otegCdJvZhJswTMmAEDBkSivHgxPPpoDM9Q9hx+eB1VVSt+v1xZuYJh\nw+q6tY8+ffpQU3MAsCZZs5OKitXU1XVvP5Kk8lHOaYHDM9TjduyIiUm2boXTToOFC02Ws27jxo2c\ncsqZbN9+BlBFv36NPP/8UwwfPrxb+/n5zx9kwoTv0do6jurqZYwcOYTHH3+Eqqqqbu1HktTznNxE\n6kBDA4wdG+3GRvCGA73Hli1bmD17Nq2trYwdO5ahPTRlY1NTEwsXLmToYcDnKgAADE9JREFU0KGM\nGzfOhFmSMsqkWSpi50445hhoboYRI2DlyhjLLEmS9k9eCCgVmDcP+vSJhPnRR2HNGhNmSZK0d97M\nU/uF3bth5EhoaooxzC+9FMmzJElSZ1hpVq+3aFFUk5ua4OGHYfNmE2ZJklQaK83qtVpbYcyYGJJR\nUxN3yKipSTsqSZKURVaa1SstWwaVlZEwT58O27ebMEuSpK6z0qxe5+KLYebMaL/zDhxwQLrxSJKk\n7LPSrF5j7dqYmGTmTLj99hieYcIsSZK6g5Vm9QqXXgrTpkX7rbfg4IPTjUeSJPUuVpqVac3NUV2e\nNg0mTYrqsgmzJEnqblaalVlXXAG33hrt116DQw9NNx5JktR7WWlW5rz6alSXb70VrrkmqssmzJIk\nqSeZNCtTrr8ejjgi2i+/DDfemG48kiRp/+DwDGXCG29AXV20J06E225LNx5JkrR/sdKssjd5ci5h\nXr/ehFmSJO17VppVtrZtg0GDoj1+PNx/f7rxSJKk/ZeVZpWlO+/MJcyrV5swS5KkdFlpVll5773c\nLH5jx8Ls2XGnDEmSpDRZaVbZeOCBXML8wgswZ44JsyRJKg9WmpW699+HIUPg3XfhrLOgsdFkWZIk\nlRcrzUrVI49ATU0kzAsWwPz5JsySJKn8WGlWKj74AD7+cdi0CU44AZYuhUo/wkmSpDJlmqJ9bu5c\n6Ns3Eua5c2H5chNmSZJU3qw0a5/ZtQtOOglWrYKjj4YNG6Da30BJkpQB1ve0TzzzTCTIq1bBrFmw\ncaMJsyRJyg7TFvWo1ta4I8aCBXDQQfD669CvX9pRSZIklcZKs3pMU1OMVV6wIO7BvG2bCbMkScom\nK83qdq2tcMEF0NAQy+++CwMGpBuTJEnSR2GlWd1q9eqoLjc0wB13RAJtwixJkrLOSrO6zfjxMQwD\n4O23YeDAdOORJEnqLlaa9ZFt2BCz+D3wAEyeHNVlE2ZJktSbWGnWRzJxIkydGu0tW2DIkHTjkSRJ\n6glWmtUlmzZFdXnqVLj++qgumzBLkqTeKs2k+TxgLfBr4OoU41CJrr0Wjjoq2q+8AjfcsOc2jY2N\n+zIkdSPPXbZ5/rLN85ddnrveL62kuQq4nUicjwP+FBiRUizqpNdfj+ryTTfBFVdEdfnww4tv6x+P\n7PLcZZvnL9s8f9nluev90kqaTwXWAy8CHwC/AL6cUizqhEmT4LDDot3cDFOmpBuPJEnSvpTWhYBH\nAC/nLW8CPptSLOrA1q0weHC0L7kE7r033XgkSZLSUJFSvxcTQzP+Oln+OpE0fydvm/XA8H0clyRJ\nkvY/G4BPdLRBWpXmV4Cj8paPIqrN+ToMXJIkSertqomMvh7oCyzDCwElSZKkPXwBWEcMw/hhyrFI\nkiRJkiRJknqTGuA5YsjGGuDmdMNRF1QBS4H/TjsQlexFYAVx/hanG4q6YBDwMPAr4u/naemGo046\nlvg31/azDbg81YhUqh8Cq4GVwENAv3TDUQm+S5y3VUk7c2qTx2rgWeDMFGNR6a4EHgTmpB2IStYM\nDE47CHXZfcClSbsaGJhiLOqaSmAzH75YXuWtHvgNuUR5BvCXqUWjUnyaSJhriILf43Rw57Y0p9Hu\nSEvy2Jd4E2+lGItKcyTwReBu0ruloT4az1s2DQRGAW13U99JVCyVLWOIC+Vf3tuGKhv/R0zUVkt8\nWK0l7hKm8vdJYnTD74BdwHzgovY2LtekuZIYnvEa8CTxNaOyYQpwFbA77UDUJa3AE8AScvdRVzZ8\nDNgCTAOagLvIfWun7Pga8fW+suMtYDLwEvAq8Dbxd1TlbxVRbBhM/L38ElH8y6SBxPCMc1KOQ51z\nPjA1aZ+DY5qzaFjyWEd8cB2VYiwqzWeIatfIZPknwI/SC0dd0Jf44FOXdiAqyXCiuHcIUWmeBfx5\nqhGpFJcShaL5wM+I4l9R5VppbrMN+CXxn4HK3+nABcS42H8HPg/cn2pEKtXm5HEL8Yf/1BRjUWk2\nJT/PJ8sPA3+QXjjqgi8ALxD//pQdnwEWAm8Sw6JmEv8fKhvuJc7h2cS3BOvSDac0Q4grwAH6A08B\no9MLR110Nlaas6YWODBpDwCeAc5NLxx1wVPAMUn7BuCf0gtFXfALvIAsi04kvubvT1wTch9wWaoR\nqRSHJo9HE3ceOijFWEp2PDEebxlx66ur0g1HXXQ23j0jaz5G/LtbRvwH4KRD2XMiUWleTlS7vHtG\ndgwA3iD3wVXZ8gNyt5y7D+iTbjgqwVPEuVsGfC7lWCRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJ\nUo8bBfxh2kGU6G/I3ds+C44lYpakTCn3GQEl7X92AUuJ+7TPBA5I1tcDu4Ef5207hJg6+rZ29nU+\nMclHZxwCXEfcqzMrrgPeImaxKqaR3KyAv6TrN+3/Bu0f41IcCPw90AL8VTfsr5jpwMVdeN3lwPju\nDUWSJKnnvJPXng58L2nXAxuIaYbbfItIsH/azr6eBA7rZL+jiAleekJF8rOvPUn3TKX9Dbonad4X\npgEXdeF1BwKLuzkWSb2IlWZJ5WwRMDxvuYWY5vSUZPmrwH9QPCE9CugLvJYsTwduJaYH30CuGnkO\nMeX700AzcDu5qYxfBG4iEvMlRAI6F1gPTMjr6yoi4VpOrrJdD6wjZgdbmcTzz0l7RRJ7oXpgLZH4\nrQMeJKYyfwb4X2Bkst0A4N6kz6XAl5P1/YmpmNcQVfr+eft+ERictK9M4lgJfLdIHACXJDE8B5ye\nt74OeDjpe3HBc22qgH9J9r8cmJisH03uW4R7iPPTFtvejnMFxY9fBXHO1gKPE1Pitv0+jCZmmC3s\nbxIxA9jyZJ8QH9beBD7VzvGQJEkqK22V5irgv4BvJ8v1RMJ0PpHoHAk8QSS4xaqgXytYPw2YkbRH\nAL9O2ucQSXOb24C/SNrN5JK2W4jkawAxLOS3yfpzgTuSdmWyr1FJvLuAU5PnLiYSwQoisdsIDC2I\nuZ4YbvKpZLslRLIHcAEwK2nfBHw9aR9MJNS1RDJ8d7L++GRfbZXmZiJpPiV5H/2T97IKOKkgjmFJ\nfIcQ0wEvIFfNfwg4I2kfTSTohb5FfJhpK8wcDNQALwGfSNbdRy5h78xxbu/4XZS3fhiwNVnXXn+D\niQS7Tf5U4/+YxC5Je7DSLKnc9CcqjpuJ6uy/FTz/GPBHRFI8g/Ydnewj3yPJ46/o/LCNOcnjSqLy\n/R7wBvA+kXCdm/wsJYaOHEsuUdtI7iv/M4iEsxV4HZhPrnKcr5mogrYmj08k61cRSTVJf39LDL+Y\nCewkjtUo4IG8eFcU7LsCODN5zfbkvcxMXpfvs8m+3yQS7xnkqrdjiMruUmA2MayhtuD1o4kPEruT\n5a3EcWkmqscQSexZea/Z23Fu7/iNylu/GZiX7Ke9/rYBvyM+jIwjvr1o8yq5YyxJH1KddgCSVGA7\ncDKRPD9GDD2Ylff8B0RyeiVwHHBhB/sqHLaxo8hzO/lwASF/SANE0gaRAOa/fje5v6E3A3cWvK6e\nSPw6iqd1j4hz/RX2md8fwKVEhbnQ3sZOtxZsU1Ekjo62qSCS6h10bG/vtbDfzhzn9t5bsfXF+oNc\n9X808BVi6MjodmKSpN+z0iypXG0n7mhwI3smRZOBq2n/rhFQfPhDe9sdR4x3HQR8vp3t2kvMHiMS\n2AHJuiOIcb+Fngb+hPi7W0dUPbt64dljwHfyltvGeD8F/FnS/jRwQpF4nyY+aLQNz7gwWZdvMXA2\nMZShD/DHec/NJc5Lm8KhHRBjiycQQ2wgN4SkntwY9fFEtbhQe8e52PF7jnjPbeuHAZ9LXrOuSH+N\nxHseBDxKfPA6Ma+fYcT4aknag5VmSeUmv9K3jPh6/avAs3nPrSE3lraV4tXBZ/hwcle477b2y8T4\n21XE1/lNHcRV7PWPE2OkFyXL7xDjjQu3n0XcA3p5sv4qYphBsX72FvOPgZ8Qwy8qgd8QY57/lRi7\nvYYYgrKkyP6XEhdFtiXsdyUx5dtMXNC4iPhgsjTvucuBqclrqonE99sFr78bOCaJ7wOiCv8z4uLC\n/0xet5jc0JvC91jsPbd3/GYRH3TWEGOYFybbv99Of0OIYTo1RIL+d3l9nQp8H0mSpP3MPKJ6KO3N\nQcDzaQchqXxV7X0TScqsLcTwg8aU41D5m0D8nhRePClJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJ\nkiRJkqTe7f8Bo/O4l+Bi27cAAAAASUVORK5CYII=\n", "text": [ "<matplotlib.figure.Figure at 0x7f8a597b2310>" ] } ], "prompt_number": 20 }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "Erro quadr\u00e1tico m\u00e9dio" ] }, { "cell_type": "code", "collapsed": false, "input": [ "mean((regr.predict(X) - y)**2)" ], "language": "python", "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 21, "text": [ "46.796244399594485" ] } ], "prompt_number": 21 }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "#### Score\n", "\n", "O coeficiente $R^2$ \u00e9 definido como $(1 - \\frac{u}{v})$ em que\n", "\n", "$u = \\sum_{i} (y_i - \\hat{y_i})^2$\n", "\n", "$v = \\sum_{i} (y_i - \\mu_y)^2$\n", "\n", "O melhor *score* poss\u00edvel \u00e9 1.0 e o pior poss\u00edvel 0.0" ] }, { "cell_type": "code", "collapsed": false, "input": [ "regr.score(X, y)" ], "language": "python", "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 22, "text": [ "0.48450411944260396" ] } ], "prompt_number": 22 }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### Teste" ] }, { "cell_type": "code", "collapsed": false, "input": [ "X_t = boston.data[test_idx,5].reshape(n_test, 1)\n", "y_t = boston.target[test_idx]" ], "language": "python", "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [], "prompt_number": 23 }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "Erro quadr\u00e1tico m\u00e9dio" ] }, { "cell_type": "code", "collapsed": false, "input": [ "mean((regr.predict(X_t) - y_t)**2)" ], "language": "python", "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 24, "text": [ "34.312008286451317" ] } ], "prompt_number": 24 }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "*Score*" ] }, { "cell_type": "code", "collapsed": false, "input": [ "regr.score(X_t, y_t)" ], "language": "python", "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 25, "text": [ "0.47519490527319708" ] } ], "prompt_number": 25 }, { "cell_type": "code", "collapsed": false, "input": [ "scatter(X_t, y_t)\n", "plot(X_t, regr.predict(X_t))\n", "xlabel(u'RM (n\u00famero m\u00e9dio de c\u00f4modos)')\n", "xlim((3,9))\n", "ylabel(u'Valor m\u00e9dio (em US$ 1.000)')\n", "ylim((0,55))" ], "language": "python", "metadata": { "slideshow": { "slide_type": "subslide" } }, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 26, "text": [ "(0, 55)" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAs0AAAHqCAYAAAD/DnOSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4U+X/xvF3ms6UMgVZWkC2CFKGIqvIRlABBUWmIiqK\nAori4ovjp6AioshwISLKkKniAKQsEZENypBNZZTdke7z++OktGUlbZOm435dVy7POTnjk1aSu0+e\n8zwgIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIFlMXbBVxNvXr1jK1bt3q7\nDBEREREp+LYCt15rhzwbmgHDMAxv1yDZNHr0aEaPHu3tMiQb9LvL3/T7y9/0+8u/9LvL3ywWCzjJ\nxT65U4qIiIiISP6l0CwiIiIi4oRCs3hEeHi4t0uQbNLvLn/T7y9/0+8v/9LvruBTn2YRERERKdTU\np1lERERExA0UmkVEREREnFBoFhERERFxQqFZRERERMQJhWYREREREScUmkVEREREnFBoFhERERFx\nQqFZRERERMQJhWYREREREScUmkVEREREnFBoFhERERFxQqFZRERERMQJhWYREREREScUmkVERERE\nnFBoFhERERFxQqFZRERERMQJhWYREREREScUmkVEREREnFBoFhERERFxQqFZRERERMQJhWYRERER\nEScUmkVEREREnFBoFhERERFxQqFZRERERMQJhWYREREREScUmkVEREREnFBoFhERERFxQqFZRERE\nRMQJhWYREREREScUmkVEREREnPDNhWscBC4AKUAS0BgoCcwGQh3P9wDO5UItIiIiIiJZlhstzQYQ\nDtTHDMwAI4GlQHVguWNdRERECpjdu3fzxx9/EBMT4+1SnNq/fz/r1q3j3Ln0drxz586xbt06Dhw4\n4MXKJC+w5MI1DgANgdMZtu0CWgIngLJABFDzkuMMwzByoTwRERFxN8MwGDBgMHPmLMLPrzx+fieI\niPiJOnXqeLu0Kxox4hUmTvyEgIBKGMZhfvllISkpKXTs2A0fn1ASEg4wdOiTvP32aG+XKh5gsVjA\nSS7OjdC8HziP2T1jKvApcBYokaGGMxnW0yg0i4iI5FPz58+nb983iI1dDRQBPqdWran8/fef3i7t\nMqtWraJTpwHExv4JlAIWUqbMMFJSkjl9eirQCYjCZmvEsmXf0qRJE+8WLG7nSmjOjT7NTYFjQGnM\nLhm7LnnecDwuM3r06IvL4eHhhIeHe6RAERERca/du3cTH98WMzADdOXAgeHeLOmqdu/ejWG0xAzM\nAHdz8mR3rFZfoKNjW2kslubs2rVLobkAiIiIICIiIkvH5EZLc0b/A2KARzH7OR8HygErUPcMERGR\nAmPx4sX06vUSsbFrgOJYLB9Tp85Mtm373dulXWbt2rW0a/cQcXHrgeuB2ZQv/wrJycmcPDkO6AYc\nw2a7jRUrvqNx48bXPqHkO660NHv6RkAbEOJYDgbaAduBxUA/x/Z+wEIP1yEiIiK5qEuXLvTr156A\ngJsICalNmTLjmDt3mrfLuqKmTZvy3HOPEhBQk5CQOpQoMZzFi2fx/fezKV78KUJC6hAQUJuRI59U\nYC7EPN3SXBlY4Fj2BWYCb2MOOTcHuJGrDzmnlmYREZF87siRI5w9e5bq1asTGBjo7XKu6dixY5w4\ncYJq1aoRHBwMQGxsLHv37qVs2bKULVvWyxWKp+SVGwGzS6FZRERERDwuL3TPEBERERHJ9xSaRURE\nREScUGgWEREREXFCoVlERERExAmFZhERERERJxSaRUREREScUGgWEREREXFCoVlERERExAmFZhER\nERERJxSaRUREREScUGgWEREREXFCoVlERERExAmFZhERERERJxSaRUREREScUGgWEREREXFCoVlE\nRERExAmFZhERERERJxSaRUREREScUGgWEREREXFCoVlERERExAmFZhERERERJxSaRUREREScUGgW\nEREREXFCoVlERERExAmFZhERERERJxSaRUREREScUGgWEREREXFCoVlERERExAmFZhERERERJxSa\nRUREREScUGgWEREREXFCoVlERERExAmFZhERERERJxSaRUREREScUGgWEREREXFCoVlERERExAmF\nZhERERERJxSaRUREREScUGgWEREREXFCoVlERERExAmFZhERERERJ3y9XYCIiIgUDHa7nc8++4yj\nR4/RsmUzOnXq5O2SRNzG4u0CrsEwDMPbNYiIiIgLEhMTue22O9m9uyR2eyNstumMGvUEL7zwrLdL\nE3HKYrGAk1ys0CwiIiI5tmDBAvr2HUdMzGrMeHEYP7+axMfH4OOj3qCSt7kSmvV/sYiIiORYdHQ0\ncAPpuaMcqakpJCUlebEqEfdRaBYREZEcCw8PB5YDc4AD+Ps/xR133ElAQIB3CxNxE4VmERERybEb\nb7yRpUsXU6vWOEqWbEmHDtEsWvSNt8sScRv1aRYRERGRQk19mkVERERE3EChWURERETECYVmERER\nEREnFJpFRERERJxQaBYRERERcUKhWURERETECYVmEREREREnFJpFRERERJxQaBYRERERcUKhWURE\nRETECYVmEREREREnFJpFRERERJxQaBYRERERcUKhWURERETECYVmEREREREnfL1dgIiISGFw+vRp\nxo59n6NHT9CxYzi9ez+ExWLxdlki4iKFZhEREQ+Ljo4mLKwZx461JCmpEYsWvcPu3ft4883/ebs0\nEXFRXv4T1zAMw9s1iIiI5NjXX3/N44/PIjb2B8eWSPz9qxMfH6PWZpE8wPHv8Jr/GNWnWURExMMS\nEhIwjGIZthQjJSWZ1NRUr9UkIlmj0CwiIuJhHTp0wGpdhsUyBVhPUFBv7r23J1ar1duliYiL8vJ3\nQuqeISIiBcb27dt58smRHDt2gvbtw3nvvTcJDAz0dlkigmvdMxSaRURERKRQU59mERERERE3UGgW\nEREREXEit0KzFdgMfO9YLwksBfYAvwLFc6kOEREREZEsy63Q/AzwN5DWSXkkZmiuDix3rIuIiIiI\n5Em5EZorAp2Az0jvYH03MN2xPB24NxfqEBERERHJltwIzeOBEUDGEdyvB044lk841kVERERE8iRP\nh+bOwEnM/sxXG8bDIL3bhoiIiIhInuPr4fPfgdkVoxMQCBQFZmC2LpcFjgPlMIP1ZUaPHn1xOTw8\nnPDwcI8WKyIiIiIFX0REBBEREVk6JjcnN2kJPAd0Ad4BTgNjMW8CLM7lNwNqchMRERER8bi8OLlJ\nWgoeA7TFHHLuTse6iIiIiEiepGm0RURERKRQy4stzSIiIiIi+Y5Cs4iIiIiIEwrNIiIiIiJOKDSL\niIiIiDih0CwiIiIi4oRCs4iIiIiIEwrNIiIiIiJOKDSLiIiIiDih0CwiIiIi4oRCs4iIiIiIEwrN\nIiIiIiJOKDSLiIiIiDih0CwiIiIi4oRCs4iIiIiIEwrNIiIiItewbx8YhrerEG/z9XYBIiIiInnR\n2bNQsqS5fOEChIR4tx7xLrU0i4iIiFxi4sT0wLxrlwKzKDSLiIjkmu3bt3PPPb1o3rwzkyd/gqHv\n/POc6GiwWGDIEOje3eyWUaOGt6uSvEDdM0RERHLBvn37uOOO1sTGvohhVGLTpv9x+vRZXnnlBW+X\nJg6tW8Nvv5nLW7ZAvXrerUfyFou3C7gGQ3+Bi4hIQfHmm//H6NFRpKR84Niyg9Klu3Dy5AGv1iWZ\n+y4DpKaarc1SeFjMX/g1f+vqniEiIpJrjEuWlcy8rVev9MA8frzZHUOBWa5E3TNERERyQa9eD/LO\nO7cTE3MDhlGZ4ODRDBv2hLfLKrRiY6FIkfT15GSwWr1Xj+R9amkWERHJBVWqVOGPPyK4996thId/\nxfvvD2XkyOe8XVah9Mwz6YH55ZfN1mUFZnEmL38BoT7NIiIiLkhNTWXnzp0kJSVRp04d/P39vV1S\nnpSYCAEB6evx8ZnXpfBSn2YREZECLj4+npYtO9KkyT20bNmbOnVuIyoqyttl5TmvvZYekB97zGxd\nVmCWrFCfZhERkXxszJj3+OuvYOLj9wBWDh4czpAhLzBr1hfeLi1PSEkB3wxpJzo6c19mEVeppVlE\nRCQf27JlF/Hx92C2g1lISurGtm3/eLusPGHixPTAnDZRiQKzZJdamkVERPKxsLDa/PrrPOz2XoAv\n/v6zufXWm71dllcZBvhkaBY8fTrzOMwi2ZGVGwFrAZWAVOAQsMsTBWWgGwFFREScSEhIoGPH+1i/\nfgs+PgHceGNJVq36iVKlSnm7NK+YORN69zaXmzaFNWu8W4/kD67cCOgsNFcGhgGdgEjgP8cx5YCK\nwA/AeOBgzkq9IoVmERERFxiGwZ49e0hOTqZGjRr4+hbOL5IzTkpy9ChUqOC9WiR/ccfoGWOB7zFb\nmVsCDwIPOJZrAj8C7+S0UBERkcJk9erVtG3bjWbN7mLmzG9zfD6LxUKNGjW4+eabnQbm06dPM2DA\nYG67rR1DhjxHbGxsjq/vbUuWpAfmKlXM7hkKzOJuGqdZREQkF61fv55WrTpjt48FimGzPc/EiaMY\nMKCfx6+dkJBA3bpNOHDgDpKS7iIwcAZhYadYs+aXtJa2fCdj2Xv3QtWq3qtF8i93dM8AKA50ANL+\nZjsK/AKcy0lxLlBoFhGRPOe///5jy5YtlC1blrCwsCwf//DDg5k2rQqQNhvgr9x882vs2LHWrXVe\nye+//06HDoOJjt6MGQGSCQq6kZ0711K5cmWPX9+d1qyB5s3N5cBAsNu9W4/kb+7ontEX2AiEA0GO\nx53AJsDzfxKLiIjkIcuWLaN69Xr06jWB5s27MnDgELLawGN+OKdk2JKSa6285nVSM2wxgNR818ps\nsaQH5i1bFJgldzj7V7IHaMzlrcolgD+Bap4oykEtzSIikmcYhkGpUhU4e3Ym0AqIJji4EYsWfUzr\n1q1dPs+mTZto3rw9cXGjgOLYbK/w2WdjefDBBzxV+kVJSUmEhTVn796bSUjoRGDgTJo0SWL58sX5\nIjhv3gwZG/cVE8RdPDmNtv43FRGRQiUxMZHz56Mwv3wFCMEwbufAgQNZOk9YWBgrVvzIvfeup0OH\n75k5c0KuBGYAPz8/1qz5hUcfLUGrVjN45pk6LFkyN18EZn//9MC8Zo0Cs+Q+Z/9K+gGjgF8x+zID\n3AC0A94ApnmuNLU0i4hI3lKp0s0cOjQMGAgcwGZrxsqVi2jYsKG3Syuw9u6F6tXT1xUNxBPcdSNg\nSaA9UN6xHokZos/kpDgXKDSLiEie8vfff9O6dRcuXIgnOfkC7747lqefHuztsgqsypXh4EFzeckS\n6NjRq+VIAeau0JwmbWqh09ktKIsUmkVEJM9JTk4mMjKSUqVKUaRIEW+XUyAdPQo33JC+rjggnuaO\nPs2hwCwgCljveEQ5tlXKcYUiIiL5jK+vL6GhoQrMHnLHHemB+ZtvFJgl73DW0vwH5jTZ84BkxzZf\n4D5gKHC750pTS7OIiEhhcfo0XHdd+npqauaJS0Q8yR0tzaWA2aQHZhzLs0jvriEiIiKSbd26pQfm\njz82W5cVmCWvufYE9eYkJpOA6cARx7YbMUfV2OzBukRERKSAi46GokXT11NSwCe7g+GKeJgrMwLu\nAF7DnDr7F2A0sB3o49HKREREpMAaNCg9ML/xhtm6rMAseVle/vJDfZpFREQKmPh4CApKX09MBD8/\n79UjAu6bEbADMAX43vGY7NgmIiIi4rKXXkoPzEOHmq3LCsySXzhraZ4AVAO+wpzUBKAiZteMf4Gn\nPVeaWppFREQKguTkzOE4NhZsNu/VI3Ipd0xushczNF/puL1A1WxV5hqFZhERkXyuRw+YO9dc7tUL\nZs70bj0iV+JKaHY2ekY80Bj485LtjQF7tisTERHJ55KTk7Hb7YSEhHi7lDwpNRWs1vT1s2eheHHv\n1SOSU876NPcHJgL/AEsdj3+ADx3PiYiIFDoTJnxMcHAxSpa8nrp1m3Ds2LFcvf7ff//NqlWrOHfu\nXK5e11VDh2YOzIahwCz5n6ujZ5QDKjiWI4HceHdQ9wwREclzVq1aRceOvYmLWwlUwmp9mcaN/+L3\n33/1+LUNw2DgwCF8++0C/P0rAftZtux7GjZs6PFru+LSYeP+/Rduusl79Yi4yh3dM9IcI3eCsoiI\nSJ62bt06EhPvByoDkJLyPJs23ZAr116yZAmzZ6/Ebt+F3R4CzOG++/px8ODOXLn+tfTrB199lb6u\ndi8paHIyjLhmBBQRkUKnQoUKBAT8CSQ7tvxO6dIVrnWI2+zdu5ekpHAgrR91F44e3Zsr174WiyU9\nMK9YocAsBVNOQnN9t1UhIiKSTzzwwAM0alSMIkUaERJyP8HB/ZgxY0quXPuWW27Bz+8nIAoAi+Ur\nqlatmyvXvpKXXzYDcxrDgPBwr5Uj4lGaEVBERCSLUlJSWLZsGWfOnOGOO+4gNDQ016794oujGT/+\nA/z9y2CzJbNixY/UqlUr166fJmNYnjMH7r8/10sQcRt3jNN8LduBW3JwvDMKzSIiIldw4sQJzpw5\nQ5UqVQgICMjVa0+aBE8+mb6uj2opCNwRmrtfYZvhOG4qcF22KnONQrOIiEgekrF1+aOP4KmnvFeL\niDu5Y/SMWcA3QOql5wYCs12ZiIhIPhIdHc2pU6eoWLEifhnngy4k5s+H7hma0dSmJYWRs5bmTUA/\nzK4YlzoCeHKMHbU0i4iI13300WRGjHgBX9/i2Gw+LFu2mLp1vXfzXW7L2Lo8ciS8/bb3ahHxFHd0\nz2gBHHI8LtUI2JCtylyj0CwiIl61efNmmjW7i7i4tZjjMk+nYsW3OHJkt7dL87hffoEOHdLX9ZEs\nBZkrodnZkHOruHJgBs8GZhEREa/bunUrFktr0iYygb4cO3aI2NhYb5blcRZLemDu1UuBWQRyNk6z\niIhIgValShXgD+C8Y8sqihQpjs1m82JVnrN+febuGKmpMHOm9+oRyUtcnUZbRESk0GnRogV9+3Zh\n+vQ6+PnVIDl5K3PnfpP2VW6BkvElBQRAfLz3ahHJi/Lyv3r1aRYRkTxh69atHDt2jHr16lGuXDlv\nl+NWe/dC9erp68nJYLV6rx4Rb3DX5CZWzCHn0sZnfggoAnwFxOWsxGtSaBYRkXwjJSWFCRMmsmrV\nBmrUqMTLLz9P0aJFvV3WNV3aYK6PXSms3HEjIMCPQE3H8stAH6Ae5hjOIiIihcKOHTu44472hIbe\nQt++jxETE5Pp+T59BvHqqwtYtKgNEyYcoUmTNiQkJHip2muLjMwcmOPiLg/MhmGQnJycu4WJ5GHO\nQnNLoBpQ2rHcB/gEmI0ZpFs4touIiBRYJ06coFmztvzxR1cOH57BnDmxdO360MXnz507x3ffzSEu\n7kegPwkJX3LkiMGaNWu8V/RVWCxQsWL6umFAUFDmfcaOHUdgYAiBgTbat+9GdHR07hYpkgc5C80W\nzG4ZgUBZIBk45XgunrzdJ1pERMQtfvvtN1JSmmAYjwO3kpDwBStW/ILdbgcgKSkJHx9fIMBxhAWL\npQiJiYneKvkyFy5kbl0+fvzK3TEWL17M669PITFxJykpF1i5MphBg4bmXqEieZSz0TMiMKfRHg/4\nA28DK4HrgCjHsoiISIEWFBQEnCb99p5zWCzg62t+jF533XU0bnw7f/45gISEQVitK7DZDtO0aVMv\nVp0uK32Xly9fRVzcQCAUgISEV1ix4i7PFSeST7jSp3kUcD/QCfjCsc0CPOqpokRERPKSDh06UKFC\nDAEBvYEPsdnaMmzYc/j5+QHmTURLlsylT58S1K79Ap06/cP69Su8fiNgUlLmwPzPP85v9qtQ4XoC\nAjZh/oEAsIkyZa73VIki+UZWu1dcR/rU2hvdX04mGj1DRETyjOjoaMaPn8DBg//RunVTevXqlafH\na87uyBgxMTE0bNiSyMjipKaWx8fnF5Yt+57bbrvN/UWK5BHuGHLuR+AFYAdQDtiMOX32TcCnmN02\nPEWhWUREJIsMA3wyfI+8ejU0a5a1c9jtdhYvXkxsbCytW7cmNDTUvUWK5DHuCM07gZsdyy9hjpjR\nFwgBfgducXJ8IGa/5wDMPtGLgBeBkpgjcIQCB4EewLlLjlVoFhERyQKNuyySPe4Ypzkpw3Ib4CfH\ncjTmhCfOxAOtgFuBuo7lZsBIYClQHVjuWBcREXGb5cuX0779fbRu3ZUffvgh317DVRkD8+zZCswi\n7uaspfkH4BcgEvgcqAKcBWyY3TRuvvqhl7Fhtjr3B+Zhju98AnMouwjSJ1BJo5ZmERHJlhUrVnDX\nXQ9gt48F/AgKep5ZsyZz9913e+waNtvzfPute6/hisBAyDiHij46RbLOHS3NjwB1gH5AT8zADHAb\nMM3FOnyALZgBeQVml4/rHes4/qvbckVExG0++OAz7PY3MNtpHsJuf593353q1muMH/9ppmvExbn/\nGs5YLOmBeeRIBWYRT3I2TvMJ4LErbF/heLgiFbN7RjHMVutWlzxvkD6ujYiISI6ZrUaXfrS4d6SL\nK4+ckTujaVSsaE6FnUZhWcTznIXm7y9ZNzBnBPwN+DqL1zqPORpHA9K7ZRzHHJXj5JUOGD169MXl\n8PBwwsPDs3hJEREpjIYOHcivv/bEbvfD7DoxkhEjJrv1GsOGPcrSpT2x230vXuP556c4PW7x4sVM\nmzaXkBAbL744lFq1amXpuhmz+r33woIFWSxcRIiIiCAiIiJLxzj7kzj8CttKAg8Be3F+A991mFNv\nnwOCMFuaXwPaY06tNNZxjuJXOJf6NIuISLatWLGCsWMnkZKSyrBhj9CpUye3X+O3337jnXcmu3yN\n6dNnMHjwK8TFjcJiOUFw8Ads3LiG6tWrO71Wly6Q8V5DfUSKuI87hpy7GiuwCajnZL9bgOmY/Zp9\ngBnAu5jBew5wIxpyTkREColq1Rrw77/jSGuTslhe5Nln4d13377mcRlbl/38IDHRczWKFEauhGZn\n3TOuJgXX+iFvB8KusP0M5hB2IiIihUZycjLmF68mw7CRlHThqvsPGgSffkqG/T1YnIhck7PQXPIq\n2/pgjoIhIiKSpyQmJvLhhxPZvn0PDRvWYfDgJ7Bard4uC4DBg/szevSjxMW9C5zAZvuQPn1+vuK+\nmqhEJG9xNuTcJmBjhsdfwLeYYy4/4dnSREREsiY1NZX27bsxatQyvvrqFkaOnMd99/XFle5+S5Ys\noVGjNtSr14JJk6a6dExWPffcUMaMeZz69cfQrNlsfvppHg0aNMi0zxtvZA7ML730GklJyW6vRUSy\nJnfGxske9WkWEZEs2bJlC82adSc2dhfgB9gJCqrE33+vp1KlSlc9buXKlXTs2BO7/WOgKDbb07zz\nzjM8+eTjuVS56fJR7FZhs42ib9/6TJ48PldrESlM3DG5iYiISL4RHx+P1VoMMzADBOLjE0x8fPw1\nj/v005nY7S8B3YG2xMV9xOTJMzxcbbq5cy+92e9Jx1IL4uK+ZsaM3KtFRK5MoVlERAqMevXqUaxY\nHFbraGAzfn4jqFixBFWrVr3mcQEBflgs0Rm2ROPv7+/JUi+yWKBHj/T1Dz/8CKs1cy2+vrlTi4hc\nnUKziIgUGEFBQfz++zLatNlBaGg/Onb8j1WrfsLX99r3vQ8b9gQ22wdYLG8BHxMUNJjRo4e5fN2/\n/vqLTp160KzZXXz66ecu9YfesCFz6/KFC+bNfj179qRIkQis1hHAZ9hsXXnppedcrkVEPCMrfZrr\nAZVIH3HDAOa7u6AM1KdZRERyzfbt2xk/fjLx8Yk88siDtG7d2qXjduzYwe23tyI29nWgHDbbS7z5\n5uMMG/b0VY9xNjJGZGQkb789jhMnztCtWwcefPCBLL4aEckKd05uMg1zopKdQGqG7QOyVZlrFJpF\nRCTPe+qpoXz88UlgCHAbsIEbbniEw4d3XLbvnj1Qo0b6+r59UKVKblUqIlfjzslNbgNuxrUJTURE\nRAqF7du389lnXwE1MduRagLD0z6AM9G4yyL5m6t9mjcAtT1ZiIiISH7z0EOPk5DwDvA75iS4p/H3\nv48XXnjq4j7nzmUOzEuWKDCL5EeuhuZpwDpgD+a7wnZgm6eKEhHxtg0bNlC/fgvKlatOr14DiY6O\ndn6QFDqHDx8A2jvW/IA2tGt3B4MHPwaYYblEifT9DQM6dsztKkXEHVwNzZ8DvYEOQBfH425PFSUi\n4k1HjhzhzjvvYsuWRzl+fBHz5yfQvXtfb5cledCtt4ZhtU7F7L14muDg7+jfvw/JyZlbl8eNU+uy\nSH7n6o2A64AmnizkCnQjoIh4xbRp0xgyZBmxsTMdWxLw8QkhPj4WPz+/ax4rhct///1Hq1adOXLk\nGCkpMQwe/CQffDAm0z76KBPJ+9x5I+Bm4BvgeyDRsc3TQ86JiHhFcHAwFssxzLc5C3ASX18/rFar\nlyuTvKZ8+fIsWTKXN98cS3x8UqbA3KrVf/z2W3kvVici7uRqaLZhhuV2l2xXaBaRAqdLly5UqDCW\ngwcfJCGhATbbZ7z44ih8fDQflGR28OBBGjRoxvnzxy555iPWr3+HmTPH8tBDvbxSm4i4V1YmN8lt\n6p4hIl4TExPDxIkfc+TIcdq0aUHXrl29XZLkQS+99Cpvv/1Ghi3xQKBjOYJKlZ7hwIGtXqhMRLLC\nnZOb1AAmAWUxx2uui3kj4Js5qM8ZhWYREcmzLh+K+UXAH3jNsb6N8uV7EBm5K1frEpGsc2ef5k+B\nEcAUx/p24Fs8G5pFRCSP2r59O19//S1Wq5UBA/pSrVo1b5eUqy4PzPOAqsAwoA5QAZttOP37P5jb\npYmIh7ja0vwX0BDzhsD6jm1bgFs9UZSDWppFRPKg9evXc+ednYmLewwfnwRstumsXx9B7doFfw6s\nK83qt3TpUl544f+IiYnljjvqsW3bPmJiYujduxuvvPKC+sKL5APu7J7xEzAEmIsZmu8DHgE8OUS7\nQrOISB7UuvW9/PZbZ2AgABbLGB588F9mzvzMu4V5mKbBFim43Nk94yngE8y+zf8BB4CHclKciIjk\nT9HRsUAjOcKrAAAgAElEQVT6UGqGUZ5z57Z4ryAPU1gWEXA9NO8DWgNFMGcRvOCxikREJE/r06cr\nO3eOJC7ueiABm+11+vZ9y9tlecSlgXn9+j+Bxl6pRUS8y1lHq/5kDtYxZA7M/sAAN9ckIiJ52FNP\nPcGrr/alQoXe3HDDIMaNe56ePXt4uyy3slgyB+agoO74+IwkPPxuvvtunvcKExGvcdan+SnMvsu7\nMG8GPOY4pizmjYE1MUfWmOSB2tSnWUREct2lrctBQd2w29Pm8lpD2bIDOHZsb67XJSKe40qfZmct\nzROBMOBjwA9oBjTFbH1Oe84TgVlERCRXVaqUOTAnJ8P//d9bJCbelGGvm4iJOZfbpYlIHqAZAUVE\npNC72s1+f/31Fy1bdiYubjZQjYCA4XTpEsDcudNzvUYR8Rx3tDSLiIgUWI89ljkwR0VlHh2jYcOG\nfP31ZMqVe5QiRW7l7rsD+fJLfcEqUhippVlERAolDSUnImnU0iwiInKJr7/OHJjXrVNgFhHnXB2n\nuTjwP6CFYz0CeB0474GaREREPEKtyyKSXa62NH+BOT7z/UAPIBqY5qmiRERE3GnHjsyBedw4BWYR\nyRpX+zRvBeq5sM2d1KdZRMQLpk+fwccff0VAgD+jRg2lbdu23i4pR9S6LCLOuLNPsx1onmG9GRCX\nvbJERCSv+uKLLxk8+DU2bHiaNWse4t57e7N69Wpvl5Ut0dGZA3OLFgrMIpJ9rvZpfhz4CijmWD8L\n9PNIRSIi4jUTJnxBXNzHQHsA4uKimDLlK8qXL8+2bdsIDQ0lLCzMLdfasWMHe/fupWbNmtSqVcst\n50xTkFqXt2/fzr///kutWrWoWbOmt8sRKbRcbWneAtQFbnE8bsXsniEiIgWI1WoFEjJsSeDo0aPU\nrduE/v2n0bz5vQwb9mKOrzN27Ps0btyW/v2n0aBBKyZOnJLjc4IZjgtSYH7rrfe4/fb29O8/jbCw\nlnz88VRvlyRSaDnr09wHmAE8C2R827E41t/3UF2gPs0iIrluwYIFPPTQU9jtrwHR2GxvkZxsJzHx\nd8y2k7PYbPVYvXrhZS3OhmEwadJU5s37mdKlS/B///cyVatWvewahw8fpkaNMOLjtwIVgAMEBoZx\n6NBuypQpk+3aC1JYBjh48CC1azfCbt8KlAf2ExAQxtGj/3Ldddd5uzyRAsUdfZptjv+GXOUhIiIF\nSNeuXZk37zPuuSeCnj23M3/+11gsgcBrwI3A3VgslTl8+PBlx44a9QbPPz+VFSt68913VWnYsDmR\nkZGX7XfkyBECAqpiBmaAyvj7V+DYsWPZrrugBWYwf07+/tUwAzNAFfz9y+fo5yQi2acZAUVE5KqS\nk5MJDCxNSko/4BlgBTCEP/+MoFGjRpn2LVasLBcurAHM1uWAgIGMGVOHoUOHZtrv9OnThIbWJDZ2\nPuY95ksJCenNypU/c/bsWWrXrk3ZsmVdqq8ghuU0UVFRVK5cm9jYhUBT4BdCQvpy7Nh+goODvV2e\nSIHiSkuzsxsBP8qwbGQ4Wdrb0tPZqkxERHJNXFwcs2fP5vz587Rp04Y6deq4fOyZM2ewWiEl5X3M\nLycrExT0DcePH79sX7Ohw5ph3YcrNX6UKlWK+fNn0r17V5KTfQgI8OGee7rQtGkH/P1rkpz8N3Pm\nTKdTp05Xrevs2bOULFnikuu7/LLyhdKlS/PddzO4//57Lv6cFi+eq8As4iXOQvNGx3/vAGoDszGD\n8/3ATg/WJSIibhAbG0uDBi04cuR6UlKq4OPzf8yfP4PQ0FDeffcjYmPjefjhnrRv3/6Kx9tsNgwj\nETgNlAZSsFpPUqRIkcv2feKJQUyc2JO4uFexWPYQGLiI7t1fueJ527Vrx9mzx4mKiiIyMpKWLe/B\nbt+G3X49sI4ePTpz7twJfH0v/5gyG4TSA3NwcGkiIn4CGmb1x5PndejQgTNnjnHq1ClKly59xZ+H\niOQOV7tnrMccmznJse4HrAFu80RRDuqeISKSQxMnTuT555djt8/HfMv/lXLlniI6+hyxsU9jGKWw\n2f6PadPG06PH/Vc8x4gRrzB58kJiYx8kKGg1YWEGK1cucYy0kS41NZXx4z9i3ryfKVOmJGPGvOrS\nEGnz5s3j4YdncOHCwovbAgNLc+DA9su6aVzaHcP0JbfdNpM//ljq9FoiIlfiju4ZaYoDRTGbGsC8\nCbB4tisTEZFccerUaeLja5P+WVCbU6dOkpw8BMMwW4Hj4iozevRrVw3N77zzBrffXp8//thA5cp3\nM3DgwMsCM4CPjw/PPvsMzz77TJZqvPnmm0lKWgf8i9kf+nuCgvwpXbr0xX0uD8sfA09efE1RUacv\n3UFExK1cHad5DLAJmO54bALe9lRRIiLiHq1b30lQ0JfAZuA8AQEvUaHCjRhGxu4VRUhMTLzqOSwW\nC927d+fdd8cwePBg/P393VpjzZo1+eCDtwgIaECRIlUpVmwQP/743cVgfmlgnjNnLjbbh8Ae4BRB\nQf+jc+fsTfW9Z88evvjiCxYvXkxKSkrOXoiIFGhZGT2jHNDYsbweuPwuEPdS9wwRETf48suvGDZs\nJLGx52nXrjNDhz7K3Xf3wm7/ELgOm20Yr78+MMstxFdjGAazZs1ixYrfufHGcgwd+vQV+0Bf6ty5\ncxw/fpzQ0FCCgoKuOTLGO++8zxtvvE1SUgJdu3anZs0qREae5M47m9KzZ8+0r1qvacmSJdx/fz8s\nlo5YLLsIC7uO5csXq9+wSCHkSvcMV0OzD9AbqAi8BYQC1wN/5qA+ZxSaRUQ8ZOnSpbz66rvExdkZ\nOPABhgwZ7FLQdMVLL43mww/nERv7CAEBf1K58h42b15DYGDgxX0+/3wakybNwN/fj9Gjh192I6Kr\nQ8nFx8dTv34zDhyoRkLCbdhsn/PMM915663RTussU6YSUVFfAuFACsHBLfn00yd58MEHs/JyRaQA\nyGlobg78DqQAafObhmG2NpcCfsGztyorNIuI5DPJyckEBYWQnHwQs23FICQknOnTh9K1a1cAPv30\nc4YOHUtc3AdANEFBT/Pzz3Np0aLFZWE5NfVqN/+ZFi5cSJ8+7xMTsxLzI+0Evr6h2O0xTluM/fwC\nSU4+DZhDuPn7D2HMmCoMGzYsey9eRPKtnM4ImEp6WL4deByIdayfxhxBQ0RE8oCTJ0+yYMECfv31\nV5KTk71WR1JSkmNs5rQh4SwYRmnsdvvFfSZOnE5c3ESgE9ATu/1lPvnk6yu2Ljtr/I6Li8McCi9t\nx5IYhlmHMw0bNsfX93XMtqG/8fWdR9OmTV14lSJSGF3rz/C1pIfkBDKOWG++Q6V6qigRkcLMMAy+\n++47Nm3aQrVqN9GvX78rjlaRZtu2bbRo0R7DaEBq6jFq1y7GypVLMnWHyC1BQUG0bNmOtWsHkpAw\nAliPj88aWrVKnyvLbAG2ZziqBzNnps+Vdf48FC3q2vVatWqFj89w4FPgdgIC3qVp03YEBQU5PXbB\nghncdVdPtmwJwt8/iIkTP6Rx48ZOjxORwsnVDmy9gZ5ALWAu0B14BZjjobpA3TNEpJB68slnmT59\nGbGx3bHZltOyZWl+/HHuVfsch4W1ZPPmvsAjQCpBQXczZkw7nnrqKSZM+JgFC37l+utL8tZbr1Ct\nWjWP1x8dHc3jjw9n5cq1VKhQnk8/fZ+6detefH7RokX06vUEcXGjML/ETJedt/1t27bx6KPDiYz8\nj5YtmzJlyvuEhIS4fHxCQgL+/v5u69MtIvmPO28EBDMwt3YsLwf+yV5ZLlNo9oLIyEgeeugxtm7d\nTGhoFb7+enKWptwVkZyJioqiYsWqJCYexOzikEhwcG0iImbRsOGVbyMpU6YKUVG/AGmBeAxDh57G\n3z+QiRN/Ji7uJXx8dhES8iE7d/5FhQoVclxnTEwMKSkpFCtWzOVjDMNg3LgJvPfeRM6eHU5i4uCL\nz23ZAvXqXfv4U6dO0bfvE6xb9ztly1Zg+vSJahkWEbfIaZ/mSx0HVgPrgCDMmwKlAElJSaFVq86s\nWRPGuXPr2LatLy1atOfs2bPeLk2k0IiOjsbXtyjp80f5Y7WWIzo6+qrH3H77bfj5TcDsNfc7AQFT\nqFmzKh9/PJm4uLlAV1JTXyQhoSPz5s1zWsPJkydZunQp27Ztu+y5lJQUBgx4ghIlylC6dAXatr2H\n2NjYK5zlctOnz+B//5vKiRP/ZgrMhnHtwHz69GmWLVtGy5YdWbq0LOfOrWPXruG0adOFyMhIl64t\nIpJTrobmN4BtwIfAe8A4x0MKkCNHjhAZeZKUlNeAGzGMR0lNrcbGjRu9XZpIoREaGkrZsiWwWl8D\nDmOxfIKv7wHq169/1WOmTZtI3brb8fEpCnQEKjB8+CskJV19wpKrWb16NTfdVIf773+bJk3uYuDA\nIWT81m/ixMnMmbOD5OTjJCWdYc2aIJ599mWXzj1hQiRxcRm/pNxBkyYdr3nMhg0bqFLlZrp3f5O/\n/z5EcnIMcAPwANCMNWvWZPk1iohkh6uhuSdwE9ASaJXhIQVISEgIycnRQFrLciLJyf9lqW+giOSM\n1Wpl5colNG26geLFm1Cv3tesWvULxYsXv+oxpUqV4osvPiIgIATYQ0LCWuLifiY1NZWgoO7AAnx8\n3iYg4Ce6d+9+zet3796HmJjpnD//G3FxfzNr1jKWLVt28fmIiPXExT0CFAX8iY9/ktWrnQ/Zb7HA\nli0vXrI1guLFr/3+0qPHAC5c+IgLFyKAg8AWYCGQimEc0fuTiOQaV0PzTtLHD5ICqlSpUjz22OME\nB4cDr2OztaNp0zo0atTI26WJFCoVK1Zk5cofOXs2ks2bV3HzzTc7PebgwYP4+YVhjo2cAITh5xfC\niBH30Lz5F3TrtosNG1Zdsz9zSkoKp04dAdo5toSQmtqMffv2XdynatUb8PdfDZitz1braipVuuGK\n51u5ciW1anXNNGycj882rNZnsFqfJTj4Nd5666Vrvq7IyP1AB8eaDWgKTCYo6C5q1y5C27bZmz5b\nRCSrXL0RsBGwCNiB+W4M5jvm3Z4oKu38uhEw9xmGwbx589i4cTNVq1ahX79+mlJWxM2ioqLYv38/\nlSpV4vrrr3fLOfft20edOo2Jj68KbAICCQry5cKFqCz9G77pprrs3/80MBCIxGZrwrJls2nSpAkA\n58+fp1GjcI4ft2GxFCEgYDd//hlBpUqVMp1n586d1KmTOewPGPAkr776HF9/PRPDMHjggZ5Ur179\nmvXUrXsHO3b0wDCGAicICLidrl3voEWLZjz88MMEBAS4/NpERK7GnaNn/ANMxgzNaeMzG8DK7Bbn\nAoVmESlw5s6dR79+g/Dzq0xS0gEmTfqA/v37uOXcVavWZ9++VsC7wG4CAu5k1arFWRph4u+//+bO\nOzsTE5NKUtIZXn99NC+8MDzTPvHx8axYsYLExERatmx5WdeR5GTwu2z6q6MUKRJGdPTJLL2mf//9\nl1at7uLs2XiSks7y/PMjeOONV7N0DhERZ9wZmjdgtjbnJoVmESlQzp49S4UKN2G3/wbcCuwiKKgp\n+/btoFy5cjk+v7umhU5KSuLQoUOUKlWKEiWy1jPv8qGOvwEeBDZTqlRXTp06lKXzgTk196FDhyhR\nogQlS5bM8vEiIs64c8i51cDbQBPMoebSHiIi4qLDhw/j51ceMzAD1MTfvxr79+93y/lLlCiL2cYB\nkIKf32bKli2b5fP4+flRtWpVNwTmj4DXgY7YbN14663stRD7+vpy0003KTCLiFe5GprDgNuBt0gf\nbk5DzomIZEFoaChJSf8BacM47iQxcS833XSTW87/5ZeTsNnuJzi4L0WKNCEsLIT777/fLee+Fosl\nc2AuUqQ1Zg++IUAEFssKZs+eyKBBAzMdN3fud5QqdQP+/jZat76bM2fOcPjwYcLCWuDnF0iFCtVZ\nudL1XoCJiYn06/c4gYEhFClyHWPGvOeW1yciAlmbETC3qXuGiOQLhmGwdu1ajh49SlhYWKab2zZv\n3szu3bupUaMG9evXZ/78BfTpMxBf3xtISjrMJ59MpHfvXm6rZffu3axdu5ZSpUrRuXNnrFar2859\nJZe2Ls+Y8TVPPLGYmJg5ji0JWK1FiYuLxt/f/+J+mzdvpmnTDtjti4Da+PuPpFmzSA4fPsT+/feT\nmjoUiCA4uD+7d29xaRbD4cNfZMqUzdjtM4Bz2Gxd+Pzz13jggZ7uerkiUkC5e0ZAERG5hGEYPPLI\nU3ToMIBBg+ZRv34zZs0yA+Pbb79Hs2adGTRoPs2adebtt9+jW7euHDmyl+XLP+Pw4T3ZCsyGYfDy\nyy/TqFET7rvvvouzdh46dIjZs+ewf/9BqlSpkq3AnJCQwMSJExkxYiQLFy686n6Xti4bhvlo3bo1\nPj6rgKnAZgIC+tO2bedMgRkgIiKClJQemF9iFiUxcSyrVi3lyJHDpKa+hNkv+y6s1ib8+afzcaAB\nfvhhGXb7aKA0UI24uKF8//0yJ0eJiOR/hohIXrdmzRojOLiqAdGO2LjFCAwsahw6dMgIDCxhwFHH\n9kgjMLCkceTIkRxfs2XLdgZcb8DrBtxtBAWVNrZs2WIULXq9YbU+bVgsLxo223XGmjVrsnTexMRE\no1GjcCMoqJMBbxrBwTWNV1557bL90iOy+bjUtm3bjCZN2hmhobcY/fs/YcTExFy2z/Tp043g4DsN\nSHWcZ51RsmRFw8/PZsAhx7YEIzi4prFy5UqX6r/jjvYGfHaxLj+/Icbw4S9k6WcgIoUTaYPPX4Mr\n3TN8MJsCfs9pCs4ix2sQEcm7Zs2axaBB84iOnntxm79/UZYsWUC3bs9x4cLmi9uLFg1j2bKpOZow\n6Pz58xQvfj2wDaiO+T7fnFtvTWbr1vYYxmuOPafTtOls1qxZ4vK5f/75Z3r0eJXo6PWYb/3H8fWt\nTEzMOQACAzOPiZyTt+iEhASaNGnDnj3+JCXVxmqdw1dfTeLQoaOMGvU+ycn34ue3jlatKrN48ay0\nr06vaePGjYSHdyQp6V6s1nMULbqRrVvXUaZMmewXKiKFgivdM1wZ8T4VmET67d4iIuIQFhZGSsrT\nwFagHvApZcqUo0GDBhjGf8AvQHvgFwwj0ulkHs7ExMQAyUBFxxYLEMqFC9sxjIwz893AhQsxWTp3\ndHQ0FksF0nvulcFisfL1198wcOCATPsGBhbjm2+m0qvXA9l6HQEBAaxbt4zZs2dz+vRpwsN/pn79\n+gA0bhzGn3/+SWhoc7p16+ZSYAZo0KAB27at54cffsDf358ePaZmeQQQEZGrcfVGwPeAP4B5uNB8\n7SZqaRaRfGHWrDkMGPAoqakGZcqU49dfF1KrVi1Wr17N3Xf3IC4uDpvNxqJFs2nRokWOrmUYBkWL\nViQmpgXwJmZY78PYsf/jtdemEBf3DRCMzfYwr776ACNHPuvyuY8fP0716vWIjn4PaIqf33iSkj66\nZK9vgReBRdhsbdmyZS3VqlXLtMeuXbv4/vvvCQoKolevXhoqTkTyPHdObhID2IAUIN6xzQCKZrc4\nFyg0i0i+kZKSwoULFyhevHimltHU1FTOnTtH8eLF8fFxz73X+/fvp0mTDkRFHcffP4gpU8bSv39/\nPvnkM15/fRzJyckMGtSX0aNfzvI1N23aRP/+Q/jvv6OcPn21iUiuA3ZStOhjfPFFH7p3737xmTVr\n1tC+fVeSkh7Eaj1N8eLr2Lr1D3WREJE8zZ2h2RsUmkWkUNi4cSOPPjqc48ePEx7enKlTxxMSEuK1\nei7tDWGzhRIXtxUojtmy3QL4F5utIRER32Xqox0WFs7mzY9hzgIIfn5PMnx4CcaMeTOXqndu3bp1\nPP74CKKiomjX7k4mTRqHzWbzdlki4kXuHnLuHswJTd4DumS/LBERSXP06FHCwzuyefMjHDu2gPnz\nE+jWrY/X6rk0MBsGDBz4ADZbXYKCOgBNCQyshs3WkEce6XnZTY1nzpwBalxcT0qqTlTUWc8X7qJ9\n+/bRtu3dbNv2FMeOzWf27FM89NCj3i5LRPIBV1uaxwCNgJmOYx4A/sLs2OYpamkWkQJv+vTpPPnk\nz8TGfuvYcuXJQDzt0rBst0NgYPr6xo0bOXz4MCVKlODs2bPceOONNGjQ4LLzPPPMC0ydupmEhC+B\nU9hs9zJr1gS6dMkbbS2TJ0/m2Wf/wm7/3LElGl/fMiQmxrl8w6GIFDzuGj0D4C7M0TNSHOtfAlvw\nbGgWESnwbDYbFstx0u+xnkRqqj+jR7/JCy88S7FixXJ0fsMw+OKLafz22zqqVKnAiBHDKVrUvB0l\nPj6e8eMn8NJLL1xyzOXnadCgwRVD8qXq1KlOcvKnmK3NPlSqVJW77rorR6/BnWw2Gz4+JzJsMfuF\nKzCLiDOuds8wMDuzpSlO7o2iISJSYHXu3JmKFaMJCHgQc2i6qRjGO4wbd4SGDVsQFxd3xeNc/SZu\n6NAXeOaZSXzzTQPefXc/jRu3wm63k5KSQtmy/2QKzG3aPH/NsZe3bdtGixZ3UaNGY4YNG0liYmKm\n51NSUhgyZCgpKWuBaCCKw4eTWbp0qUu15obu3btTpsxB/P37Au9hs3Xk9df/5+2yRCQfcDU0vw1s\nAqY7HhuBtzxVlIhIQRQXF8eOHTs4ffr0xW1BQUFs2BDBq6/WxWKJAFYDT5CY+AXHj5fip59+ynSO\n5cuXU7ZsFfz8Arj11mYcOpQ+wsWFCxfYsWMHFy5cAMwJRCZN+pDY2F+Ax0lImM5//wWzdOlSfH2t\nnD9fP8OZ7axZM42jR49esfYjR47QrFlbVq/uwp49HzB16nYGDBicaR8zjCcDNR1b/IGbOXnyZHZ+\nXB5RpEgRNm9ey6hRNRk8OJJZs8bz7LPPeLssESlgymPeDHg3UNbFY24AVgA7gR3A047tJYGlwB7g\nVzK3YqfxyjSKIpL/paamGr/99psxY8YM459//vF2OYZhGMbatWuNYsXKGiEhNYyAgGLGhx9OyvS8\n3W43rFZ/A+IvTgNdpEg3Y+bMmRf3OXTokBEcfJ0BvxpgN3x8/s+oVu1WIzU11Vi4cJFhs5U0QkJq\nGkFBJYx58+YbMTExhq9voAEJF88ZGDjhsmmwzUeqYbPdYOzdu/eK9U+ZMsUICuqbYf+zhq9voJGa\nmpppv1q1GhpW6+sGJBqw2rDZrjP27Nnj/h+oiIgb4UIPCmctzQ2AMMejLHAUiMQM0GFOIzMkAcOA\nmzGn4n4SqAWMdITm6sByx7qISI4ZhkHv3o/SpcsTDB78A2FhLZg9e47Hr/vvv//yyiujGDnyZXbu\n3JnpudTUVDp3vp/z5z8lOnoXCQmbeeGF1zLtFxgYSNu2nQkM7AtswGL5GKv1d+68886L+6xfvx4f\nn2ZAWyCQ1NQXOXRoP/v376dXrwHExf1MdPQ/2O3L6NNnIHa7nZYt2xEQMADz3m2Ij3/64vkqVqyB\n1Toa+At//2eoXLkclStXvuLr8/f3x8fnQoYtF7Ba/S7b7+ef51Gnzi/4+ARRokRP5sz58rLJT0RE\nCqIIzJbiqz2yaiHQBtgFXO/YVtaxfilv/9EhIvnQihUrjODgGgbEOlpEtxhBQcWMlJQUj11z586d\nRpEipQ0fn+cMi+UlIzj4OmP9+vUXnz958qQREFAiU8tuSEhXY/bs2ZnOExMTYzzyyFNG5cq3Gs2b\ndzJ27tx5hddWK0Nr9D7Dz89m/PHHH0bRovUynb9o0QbGunXrjOjoaOPee9/I9FzPnub5jhw5YnTs\neL9RuXI94777+hpRUVFXfY3nzp0zypevavj5PWnAVCM4uI4xatQbV93fkz9vERF3w4WW5ty8XbgS\nsBKoAxwGSmSo4UyG9TSO1yAi4rpvvvmGxx9fRHT0bMcWA1/fIpw+feziqBHu9sADDzNnTg0MI+2m\nuk9o0+Znli6dD5g3yJUoUZbo6PlAc+AENlsD1qz5nvr161/ttJcxDIN77nmQFSv2kZTUGKt1Me+8\n8zI9enQnNLQGdvtazC/z9hAYeDsHDvxNuXJlLznHta9x5swZevd+jNWrIyhV6no+++wD2rRpA0BU\nVBRjxowjMjIKqzWJn3+OICUlmf79+zBu3FtYrVaXX4uISF7iziHnAG7BfDfOMHInX7l4bBFgHvAM\n5i3VGbmU7kVEXNGgQQNSUoZijopZD4tlEhUqVPLoDHsXLsRiGBUybCnPhQsxF9esVivffTeTbt26\n4etbncTEvYwYMTRLgRnMN/WFC79h4cKFHD16lEaN5tCkSRMApkz5kMcfb46/f00SE3cxbtyELAdm\ngG7d+rBu3Y0kJm4nJmYz99zzIP/f3n3HN1Xvfxx/pbtp2UsUkFlko6ICsgUR9YKCOEAQVEAEtz+4\nLgQ3eLlOXDgAERQQEdArIMheDkCGVJYoUIbsNp3J+f1xUpOWFtKS9CTt+/l49NGc0zM+Sdr0k08+\n5/vduHE19erVo1KlSowf/wpffDGDu+9+GodjPhDPxIl3UbbsK4we/VSB7o+ISCjxtdI8GmiP2Zv8\nDdANWAnc4sO+kcB84H/A6+5124EOwEGgKmarxyW59jOefdYzDFCHDh3o0KGDj+GKSEk2Y8ZMBgwY\nRGZmJtWq1WLBgtkkJCQE7HzTpn3OoEHP4HBMAaKw2wcyduxQhg8fmmO7I0eO8Ntvv3HRRRdRp04d\nv8exf/9+du7cSYcO7XOs9/VDO6fTSVRUDC5XCubIF2C3D+T111szaJBn1rzevQcwa9bVQPa6ZTRq\n9CRbtqw6/zshIlIEli5dytKlS/9ZHjNmDJwjL/Y1ad4CNMMcdq4ZZj/yZ5j9yec6/mTgKOYFgdnG\nudeNxbwIsCxnXgyo9gwRKTSXy0VycjKlSpUqkokr3nnnfV555U1cLhfDh9/DyJGP+XzekydP8swz\nL/Dbb7tp1ao5Tz01gujo6ELFkdc02L4yDIP4+PI4HGsw6xgG8fEd+Pjj4fTu3fuf7YYOfZiJE2Nw\nOvbhEsYAACAASURBVF9xr/mYtm2/ZPnybwoVs4iI1fzZnpGKORtgFlAGOIw5nNy5XA3cCfwKbHCv\newJzWu4ZwD3AH8CtPsYhIuKTsLCwgPUw53b48GHmzfuetLRUatasRY8eN/icMGdkZNC6dRd27mxC\nRsZtrFr1KatX92bRoq8LlOzn3rRSpdpUr16DTZveoFmzZj4ew8b48eN47LEupKX1IyZmA/XquejR\nowcAR48eZeDA4axatQZz+ulE4GKioz9j/PhvfY5VRCQU+fqK/C7wJHAb8BiQgpkEDwxQXKBKs4iE\nAJfLRdOmrUhMbENW1n3YbIsoV+4ldu7cTLlyua9vPtPKlSu5/vrhnD69AfMlOR2owMUX12Dx4nk+\ntXHkTpgjI+8nM/NhYAVlyjzN779vonLlyj7fp2XLlrF8+XKqVKlC//79iYmJwTAMWrRoz+bNzcjM\nfBCbbSkxMf/m0UeH0q9fP+rXr+/z8UVEgo0/Ks3vANOA7Ma894AFQGlg03nGJyIS8pKSkti9+w+y\nstYCNgyjHllZs1i/fj1du3Y95/5OpxPz0o9s4YCdvXt70abNdezbtz3fUSlyJ8tTp37GXXcNJjPz\nlPs4CRjGHFauXEnPnj19vk/t27enffucfdHHjh1jy5ZNZGYuBcIwjHpERn5FixYtlDCLSIlwrslN\nfgdeBfZi9iFfCuxBCbOICAB2u52sLAdwwr0mC5frEHFxcT7tf9VVV1GxYhrh4Y9gTpDaH/OldgwH\nD/5Bly493Il1TrkT5l69+jNkyDj3NNbH3GtduFxJxMfHF+au5RAbG4vLlel1bCcu10G/HFtEJBSc\nK2l+HWiFOXLGMeBjIBF4FnM2PxGREq1cuXIMHjyYuLhrgHHExt5I8+bV/xkK7lxiYmJYt24JHTrs\nIizsLqAyMBuzA64U69cfYMGCBZw4cYI+fe7FZsuZMBsGrF69hu++W0NKyjpgJNARGEtMTA8uuSSe\njh07nvf9tNvtPPzwI8TFdXLfz5to2LCsRjUSkRKjMJeUXwp8gjlucyBHsldPs4iEBMMwmD59OmvX\n/kxCQi0GDRpEUlISKSkp1KtXj6ioKJ+O0bPnncyZswJoDSwB3iM+fjZvvdWZCRMm8dNPS3Psc/Lk\nKUqXLs3cuXPp1+99Tp36BnPY+1mEh9/DqFGPM2LECGJiYs44X2Hv54wZM1i1aj116tRgyJAhfju2\niIiVfOlp9jVpjgCuB24HrsEcV3k68PV5xHcuSppFJOS4XC769r2XOXPmExFRlgoVIlm5cgHVqlU7\n576GYVC3bhP27KmLYTwHnMBu74XDceSMbUuXbsesWc/QpUsXDhw4QP36zUlOngx0JCxsAtWrf8zu\n3ZsJCzvXB4rWcTqdLFiwgKNHj9K6deuAjF0tIuILX5Lmc72aXovZkrEfcxT7+UAdzOQ5kAmziIil\ntmzZwuOP/5sRI55k+/btPu83adIk5s7dTlraHpKTE9m3rzf9+9/v0742m43lyxdw+eUnCQ9vQYUK\nd+aZMJu9yif/Gcv5wgsvZP78mVxwwXDCwkrRsOEsliyZF9QJc1ZWFp079+C2257h/vv/R9OmLVm4\ncKHVYYmI5OtcleYlmBXlL/Fc/VFUVGkWEUusX7+eTp1uICXlPmw2J3b7RFavXkzTpk3Pue+DDz7G\nW29VAUa41/xOpUrXcfjw7gLFkPtCvzvvHMTs2dtxOO4kJuZ7GjY8xNq1i4mMjMyxnWEYRTKZy/n6\n/PPPuffet0lJWYr5YeZiqlQZzMGDuyyOTERKIn8MOdfJb9GIiISIUaPGkZLyPHAfhgEpKRV4/vnx\nzJw5+Zz7Nm5cH7t9Gg7HQ0A0YWFzCjwkW16z+jmd79Gy5fusWvUjl1zSnMcff+SMhNncN/gTZoAD\nBw6QmXk5nn9DV3H06AErQxIROStfZwQUESkxTp92AFW91lTl1Kk1Pu179913M3fu9/zwQz0iIioS\nF3eKKVMW+bRv48awdatn2emE7A6L8PBwhg27n2HDfLsPwa5169ZERIwnI2MYUJfw8Jdo0aKN1WGJ\niORLSbOISC4DBvRi48YncDguALKw20fRv//zPu0bERHBvHlfsG3bNpKTk2nSpAl2u/2c++VVXS7O\nWrZsyX//O4aHHrqcrKxMGjduwezZM60OS0QkX8H8OZ56mqXY+Oabb3j77clERkYwcuQwrr76aqtD\nkrMwDIM33nib1177AJvNxsiRwxk6dHBAzvX88zBqlGf5+HEoWzYgpwpKLpeLtLQ0n95YiIgEij+H\nnLOCkmYpFubMmUOfPsNITX0JSCM29mm+//5rWrdubXVoYrFQqS4nJydz770PsnjxEipUqMQHH4yn\nXbt2VoclIuI3/hhyTkTO08svv0Nq6lvAXcAQUlOf4Y03Jlodlljof//LmTBv2xa8CTPA7bffw5w5\n6fz99/ckJj5Jt2692LFjh9VhiYgUKfU0iwSY+YmJ9/vTcFyuIM6QJKBCpbqczTAMvvtuDk7nUSAe\nqIth/I9FixZRr149q8MTESkyqjSLBNhjjw3Cbn8QmAFMxm5/jgceuNvqsCQfhmEwdeo0evcewPDh\nj3LggH+GQdu7N2fC/PXXwZ8wg/mRZUxMPLDPvcYgLOwv4uPjrQxLRKTIqadZpAjMmvUlb745icjI\nCJ566gE6ddIQ6MHq5Zdf5YUXPsHheJSIiO2UKzeTzZvXU6VKlUIfM9Sqy7m9/fa7jBw5FofjXmJi\nNlO9+u9s2LCSuLg4q0MTEfELXQgoIlJApUtX4fTpFUCCe01PYA7NmrVm/vzPqVatms/HcjjAO698\n4QV46il/Rlt0Fi5cyKJFP1C1aiUGDx6sSrOIFCtKmkVECshuL0dq6jY8k5sMBuoTHp5Mw4YL+PXX\n1T4dJ9SryyIiJYlGzxARKaB+/fpjt/cFVgDvAXOAm3E6n2Hr1h9JT08/6/6GkTNhvvZaJcwiIsWB\nkmYRES8TJoznoYfaUb36MMLCxgDzgdrAZmJiShEVFZXvvjabZ9prMJPlBQtybrNgwQJat76OFi2u\n4eOPJwXgHoiISCCoPUNEJA8ul4tu3W5h9eo/cbmaA/OZOPF1+vS5Pc/tvavLcXGQnHzmNsuXL6db\nt1txOF4HSmG3P8Ibb/ybe+/1/2gqp0+f5tChQ1SrVo2YmBi/H19EpDhRT7OIyHlwuVzMmzePgwcP\n0qpVK5o2bXrGNgXpXe7bdxDTpjUBHnSvWUjTpi+wadNyv8UM8OmnnzF48DDCw8sREZHGN9/M0tTt\nIiJn4UvSrMlNRETyERYWRo8ePfL9eUEv9ouKigBSvdY4iIjw78vw7t27GTLkYdLSVgGNgG+48cZb\nOHz4TyIjI/16LhGRkkQ9zSIiBWSz5UyYDcO3i/0eemgIcXH/Af4DvE9s7P2MGvWQX2Pbtm0bUVEt\nMBNmgBvIyAgjKSnJr+cRESlplDSLiBRA7urywIHDqFChBhdf3Jivv/76rPs2b96cFSsW0qdPIj17\nrmbOnElnrWQXRq1atcjI2Agccq/ZgGE4qFy5sl/PIyJS0qinWUTEB3m1YgwYMJQZM/aTmvoa8Aex\nsX1Ytmw+V1xxhSUxZhsz5mXGjn2DqKhGZGb+ypQp79OrV09LYxIRCWa6EFBExA/y610uV+4iTpxY\nBdQEICzsSUaNiuHZZ0cVaXx52b59O3v37qVhw4ZUr17d6nBERIKaJjcRETkPTZuevXc5Lq408Oc/\ny5GRf1K6dKmiC/AsLrnkErp27aqEWUTET1RpFhHJgy8jY8ycOYsBAx4gNXUwkZF7qFRpLZs3r6Nc\nuXIBiSkjI+Osk6uIiEjhqNIsIlJAI0bkTJhdrvxHxujd+xYWLfqSJ55w8eKLTQOWMG/bto1atRoT\nE2OnfPmLWLx4sd/PISIiZ6dKs4iIW0HHXS4KWVlZVK9en4MHnwDuAZYQF3c7O3b8StWqVa0OT0Sk\nWFClWUTEB1On5kyY09ODI2EG2LdvH6dOZQD3Yr6eX0NExKVs3LjR4shEREoWJc0iUuwsWbKEVq26\n0rRpW1577S3O9qmVzQb9+nmWDQOCqW24QoUKZGWdAP5wrzlNZmYiF1xwgYVRiYiUPEqaRaRYWb9+\nPf/61+2sXTuAzZuf5emnP+TVV187Y7uffspZXf7778JXlw3D4MknRxMfXwG7vSwPPPA4TqezkPcg\np1KlSjF27MvY7Vdjtw8kLu4K7rijO5deeqlfji8iIr5RT7OIFCvDhz/KhAkVgSfda9ZSq9Z97N7t\naWfwd+/yu+9+wOOPv4vD8RUQhd1+K0888S+efnrk+R3Yy08//cTGjRupVasWnTp1yu6/C3rp6eks\nXryY1NRU2rdvT8WKFa0OSUTkDL70NEcUTSgiIkUjOjoSmy3ZKxFOJjLS7LfYtw+8hy3evh3q1z//\nc86ZswiHYwTZk5w4HE/z9df/8WvS3KJFC1q0aOG34xWF5ORkWrXqzB9/2LDZKhAR8SCrVn1PgwYN\nrA5NRKTAlDSLSLEyZMg9fPBBG1JSYjGMytjtL/Dss+MCOjLGBRdUIDx8G9kdGTbbNipXruC/E4So\n119/kx07apKePh2wYbO9zeDBj7FixbdWhyYiUmBKmkWkWElISODHH5czbtybJCfv5vbbP6RXr67/\n/HzRIujc2b/nfP75J5k/vzWpqXswjCiior7lP//5wb8n8YPTp0+TkZFB+fLli6S9Y+fOv0hPb0P2\nJ56G0YY//3w/4OcVEQmEYG6KU0+ziJyXohx3+dChQ8yePRun08lNN91EtWrVAneyAnK5XAwe/CBT\npnyCzRbBFVe05NtvZ1K6dOmAnnfSpMkMG/YmDsdCoAzR0YPo1SuCzz6bGNDziogUlC89zUqaRaTY\ncbkgPNyz/M47MHSodfFY7d133+fxxyfhcHwHxBEdfS+33RbD5MnvBfS8hmHw8MMjeeedt7DZwmnZ\nsi3z538R8GRdRKSglDSLSIkTjLP6Wa1Pn3uZPv0KYIh7zXrq1LmPnTt/KZLzp6WlkZGRoWRZRIKW\nZgQUkRLFO2F+4QUlzNnq1atBdPQywHxAwsKWUavWxWfdJyUlhQEDhnLRRZdw6aXtWLduXaHPHxMT\no4RZREKeKs0iEvJUXT677KHf9u51YbOVISrqd9auXUKdOnXy3ad799tZtMggLW0UsJH4+EfYvHk9\nNWvWLLK4/S0pKYk9e/ZQu3ZtzagoIjmoPUNCSmZmJnPmzOHvv/+mXbt2NGrUyOqQJAR4J8ydO2/n\n1ltX0LVrV2rUqGFdUEEoIyODZcuWkZ6eTps2bShbtmy+27pcLqKiYnE6jwFxANjtA3jttdYMHjy4\niCL2r0mTPuX++x8mKqouGRk7+fDDCfTpc7vVYYlIkFDSLCEjMzOTdu26sWVLGk5nA2y2r5k+/UO6\nd+9udWgSpCpWhKNHPcsXX9yQv/+ujWFUICzsfyxb9h2XXXaZdQGGMMMwsNvLkJa2CagFGMTFXc97\n7/XlzjvvtDq8Ajt06BA1azYgLW0V0ADYQmxsO/7883fNUCgigHqaJYTMmDGDzZuzSE5eTmrqRByO\n2dxzzwNWhyVBymbzJMxt28JTTz1LUlIrUlLm43BMJjl5LEOHjrA2yCB3tqKEzWZjzJjR2O3XAuOJ\niurPBRfs5+abby66AP1oz549REfXwUyYARoTGVmDvXv3WhmWiIQYJc0SFA4fPkxmZlM8v5LNOXHi\nkJUhSRDq2jVnO4ZhwPLlsG/fYTIymntt2ZxDhw4XeXyh4MSJE1x77c1ERcVSqlRl3n0372HnRox4\nlGnT/sPQoX8xalQDfv55BXFxcUUcrX/Url2bjIzdwCb3ml/IyvqLWrVqWRmWiIQYzQgoQaFt27aE\nh48F7gYaEhHxDC1bdrQ6LAki3slyfDycPu1Zvv76jsyc+SwOR3egAjExz9O1q35/8tK372CWLi1H\nVtbfJCfv5P77O5KUdJDnnht9xrY9evSgR48eRR+kn1WuXJlPPnmPgQM7EhlZjczMfUyZ8iHly5e3\nOjQRCSHqaZagMXXqNIYOfQiH4wRXXdWROXOmUrlyZavDEos99hj897+e5bxeFgzD4IUXxvLiiy/i\ndGbyr3/dwmefTSQ2NrboAi0iTqeTTz75hK1bE2nWrBH9+/cnLMz3Dw3j4irgcPwGZP9tjSAi4m12\n706kevXqAYk5WBw7doy9e/dSs2ZNypUrZ3U4IhJEdCGghCSn00m493RuUmIVdCg5wzAwDKNASWQo\nMQyDm27qw/ff78fhuB67/Wu6d2/AtGkfZb/gn1OVKnU4fPgD4BrMcZtvJDZ2J3PnTqBz586BDB8w\nE9fHH3+GzZsTadGiCePGPUepUqUCfl4RkbNR0iwiIemzz8B7kAa9FJi2bt3KlVdeh8OxA4gBUoiN\nrc3WrWt97s+dNWsWvXsPBPoCu4BjxMTsZevW9dSuXTtwwWMOe9esWWt2776SjIweREdPo0mTvaxb\nt6TYvtERkdDgS9KsnmYRCSqaqCR/KSkpRERUxEyYAeKIiChHcnKyz8e45ZZbePXVP3nyyWeIiLgI\nl+sor7zyXMATZoBNmzaxb18qGRkTABvp6Z3Ztq0WO3fuJCEhIeDnFxE5H0qaRSQoLFsGHTp4lp1O\nUPExp8aNGxMXd5rk5HG4XD0JD59OuXJh1K9fv0DHefzxR+nb9w4SExOpWbNmkc3yZ1ZynJhtITbA\nhWE4fW4tERGxUjC/Uqk9Q6SEUHXZd7t376Z///tJTEykUaNGTJnyTsjMfpiVlcUVV3Tgt99qk57e\nnZiYz7niihSWLftWibOIWEo9zSIS1H77DRo29CynpkJMTP7bS+g7ffo0o0a9wK+//k6VKqXYsCGR\n48ePcd11nXnnnfHY7XarQxSREkhJs4gELVWXS7bExEQuu6wNDsd7QENiYp7hhhvszJo1xerQRKQE\n0jTaIhJ0Dh3KmTAfOaKEuST67rvvcDpvAXoBDUhLm8i8ebOtDktEJF+6EFBEioyqy5ItPj6e8PAk\nrzUHiImJtyweEZFzUaVZgo7acoofhyNnwrxjR/4J865du+jS5Wbq1LmM/v2HcOrUqaIJUorUrbfe\nSuXKO4iK6g+8gt1+Ay+9NNrqsERE8qWeZgka06Z9ztChD5GcfIxWrTrx1VdTqVSpktVhhbyUlBR2\n7dpF1apVLXk8C1JdPnHiBPXqNePYseG4XB2Ijp5AixZJrFjxnUZXKIZOnjzJhAnvcOjQUbp168x1\n1133z8+SkpL4+++/qVu3brGcDl1EgosuBJSQ8fPPP9Ou3Y04HN8ADYmM/DetWu1g2bJvrA4tpK1Z\ns4Zu3XricpUnI2M/L774HI899mCRnNvphAivBrBVq6B167PvM2/ePO68801OnVrkXpNFVFQFDhzY\nTYUKFQIWq5ydy+Vi4cKFHDlyhFatWlG3bt2Anu+pp8YwfvzrREVdQHR0CosXz6dp06YBPaeIlGya\nEVBCxvLly8nKugW4DIDMzBdYvVpV5vPhcrm44YZbOHlyInAj8CejRrWkS5cOAU9ACtu7HB0djWGc\nwDP5RQqGkUVUVJSfIxRfOZ1OunXrxZo1e4EGuFyPMmvWFLp16xaQ8/3www+88cYU0tN/Jz29EqdP\nT+amm/qye/fmgJxPRMRX6mmWoFC5cmUiIzcDLveaTZQpo6T5fJw4cYKUlGTMhBmgBuHhV7Nt27aA\nntc7YZ4xo2AX+3Xo0IGLLw4nOrov8D52+3X06zeAUqVK+T1O8c3s2bNZvTqJ5OT1JCdPw+GYSf/+\n9wXsfFu3bsXpvBbI/vvvwx9/bMPlcp1tNxGRgFPSLEGhd+/eNGoURnx8B2JjhxAbezMfffSW1WGF\ntLJlyxITEwMsca85hNO5loSEhICcz2bLmTAbBvTuXbBjREVFsWbN9/z73w24444fGT9+IBMnBu73\n4PTp0/z55584nc6AnSPUJSUlkZXVAoh0r7mK48eTAnbBbkJCAuHhPwAn3GvmcNFF9QjTnOoiYjH1\nNEvQyMzMZPbs2Rw9epS2bdvSpEkTq0MKeUuWLKFHj9sJD69NevouRo58hNGjn/T7ebyT5bFjYcQI\nv5/C7155ZTzPPjuaiIjSlC8fz5Il86lXr57VYQWd9evX07HjTTgcPwAJhIePpnnzZfz009KAnM8w\nDB544P/4+OOpREVdDPzJokVzueKKKwJyPhER0IWAIgIcPXqU7du3c+GFF1KrVi2/Hrt2bdizx7Mc\nKn+yK1eupGvXvjgcq4Bq2GxvcsklU9m2bb3VoQWljz76hGHDHiQrK5MGDZrz3XdfctFFFwX0nDt2\n7ODIkSM0bNiQsmXLBvRcIiJKmkUkYLyry4MGwQcfWBdLQb355puMGJFIevoE95p0wsLiyMrK1NB2\n+XC5XKSmphIXF2d1KCIifqdptEXE73r0OLN3OZQSZoDatWsTEbEScLjXfE+VKjWVMJ9FWFiYEmYR\nKdE05JyI+Mw7p7z6ali50rpYzscNN9xA9+5fMXduYyIi6uJ0buSLL760OiwREQliwVxWUXuGSJAY\nORLGjfMsF4c/TcMw+Pnnnzly5AiXXXYZVapUsTokERGxiHqaReS8eVeXS5WCU6esi0VERCQQ1NMs\nIoX2xRdn9i4rYRYRkZIq0D3NHwM3AIeB7EF3ywNfABcDfwC34hnFXkSCQGGnwZbiLSsri8TERMLD\nw0lISNCEIyJSogT6Fe8T4Lpc6/4NLAISgMXuZREJAitW5EyYXS4lzGI6fvw4l13Wlquu6s7ll19L\nx443kpaWZnVYIiJFJtBJ8wrgeK513YHJ7tuTgZsCHIOI+MBmg3btPMuGcWbFWUquhx9+gsTEZqSk\n7MDh2MWPP0bz0kuvWh2WiEiRseKztSrAIfftQ+5lEbHIb7/lTI4zMlRdljNt3LiNjIzbMP9tRJKa\negs//7zV6rBERIqM1Q1phvtLRCxgs0HDhp5lw4DISM+yw+Fg165dpKamFn1wElQaN65PZORszJds\nJzExc2je/BKrwxIRKTJWTG5yCLgAOAhUxbxIME+jR4/+53aHDh3o0KFDgEMTKRkOHoSqVT3Lp06Z\nw8l5mzt3HnfccRc2W2lsthS+/PIzrr322qINVILGm2++wi+/dGXfvoYYRgZNmtTi6adHWh2WiEih\nLF26lKVLlxZon6LoWKwJzMMzesY44CgwFvMiwLLkfTGgxmkWCQBfRsY4cuQINWs2wOH4FrgSWE58\nfC/2799F6dKliyJMCUKZmZls3ryZiIgIGjdurNEzRKTYCIZxmqcDq4H6wF/AQOAVoAvwO9DJvSwi\nAZacnDNh3r8//97lHTt2EBFRBzNhBmhHWNgF7N69O9BhShCLjIzksssuo2nTpkqYRaTECXR7xh35\nrO8c4POKiJeCjrtco0YNMjJ2Yg6lXhP4nYyMfVSrVi0g8YmIiAQ7lQpEijGnM2fCvGWLbyNjVKtW\njbFjnyc29krKlOlMbOzVvPXWf6lYsWLgghUREQliwTwKq3qaRc5DdLQ5fFy2wvw57dq1ix07dlC/\nfn1q1arlv+BERESCiC89zUqaRYoZwwDvdtN16+DKK/PfXkREpKQLhgsBRYKKYRi8+upr1KlzKZdc\nciXTp39udUh+1bx5zoTZMJQwF0dr167l8ss7UKNGY+6772FNZy0iUgRUaZYS5Y033ubJJz/A4Xgf\nSMZuv5uZM9/n+uuvtzq08+bduzx/Ptxwg3WxSODs3LmT5s1bkZLyOtCI2NhR9OhRkenTP7Y6NBGR\nkKVKs0guH330BQ7Hf4FWQBccjqeZNGmm1WGdl969cybMhqGEuTj79ttvcTp7An2B5qSmTmL27BlW\nhyUiUuwpaZYSJS7ODhz5Z9lmO0x8fKx1AZ0nmw1mzTJvT5xYuIv9JLTY7XbCwo54rTlMVFTo/g6L\niIQKtWdIibJ48WK6d78Dh+MRbLZk4uImsn79Mho0aGB1aAUyciSMG+dZ1p9KyXHy5EkaN76SQ4fa\nkZnZCLv9bZ577gEee+whq0MTEQlZGj1DJA/r1q1jypTPiYqKZOjQe0lISLA6pALxbsUYNQrGjLEu\nFrHG0aNHef31t0hK+pt//asLPXr0sDokEZGQpqRZpBiZMAGGD/cs689DRETEP3xJmgM9jbaI+IF3\ndblfP5gyxbpYRERESiIlzSJB7KuvoGdPz7KqyyIiItZQ0iwSpLyryy1bwpo11sUiIiJS0mnIOZEg\ns2rVmeMuK2EWsdavv/7KggULSEpKsjoUEbGIKs0iQcQ7WS5XDo4dsy4WETENG/YYkybNIDKyPllZ\nm5gzZzqdO3e2OiwRKWIaPUMkCGzfDt5DRTudEKbPgUQst3z5cq6//h5SUn4CygBLKVPmdo4fT8q+\n2l5EigFNoy0SAmy2nAmzYZS8hHnr1q20bNmFCy+sT+/ed3H8+HGrQxIBYPfu3UBLzIQZoD3Jycdx\nOBwWRiUiVihh/5pFgkdSUs52jNTUkjk6xpEjR2jTpgvr1/ckKWk2c+fGcP31va0OSwSAZs2aYRiL\ngT/caz6latWaxMXFWRiViFhBPc0iFsj9qW5JTJazrVy5EpfrUgxjKAAZGe/w889lOXHiBGXLlrU4\nOinpLr30Ul5++WlGjGhKRERZ7PYwvvlmrtVhiYgFVGkWKUKnT+dMmI8dK9kJM4DdbsflOgy43GtO\nYBhZREdHWxmWyD8efPB+Dh/ex6+/LmX//h00bdrU6pBExAKqNIsUEVWX89apUyfq1Yvht99uIS2t\nDXFxnzJo0EPExsZaHZrIP0qXLk3p0qWtDkNELBTMl/5q9AwpFrKyIDLSs7x3L9SoYV08wSg1NZW3\n357Arl1/0a7dVdxxxx0amUBERIqML6NnBPN/JSXNEvIaN4atWz3L+pUWEREJPr4kzWrPEAmA3MPG\nJSZCQoJ18YiIiMj50YWAIn7WvXvOhNkwlDCLiIiEOlWaRfzIuw133Tq48krrYhERERH/UaVZXY+6\nvQAADWxJREFUxA8eeCBnwmwYSphFRESKE1WaRc6Td7L87bfQrZt1sYiIiEhgqNIsUkhjx55ZXVbC\nLCIiUjyp0ixSCN7J8qRJcNddloUiIiIiRUBJs0gBfPop9O/vWda4yyIiIiWD2jNEfGSzeRLml15S\nwiwiIlKSqNIscg7ffZezV1nJsoiISMmjSrPIWdhsnoR52DAlzCIiIiWVKs0iefjxx5zjLCtZFhER\nKdlUaRbJxWbzJMw33qiEWURERFRpFvnHjh2QkOBZdrlyDi0nIiIiJZcqzSKYyXF2wtywoVldVsIs\nIiIi2VRplhLt4EGoWtWznJkJEfqrEBERkVyUHkiJ5V1JjoyEjAzrYhEREZHgpvYMKXEcjpwJc3Ky\nEmYRERE5OyXNUqK0aQNxcZ5lw8i5LCIiIpIXtWdIiZCZCVFRnuUTJ6BMGeviERERkdCiSrMUe7fd\n5kmYIyPN6rISZhERESkIVZql2HK5IDzcs3zgQM6RMkRERER8pUqzFEuPPpozYTYMJcwiIiJSeKo0\nS7HjPTLGjh1Qt651sYiIiEjxoEqzFBuvvpozYTYMJcwiIiLiH6o0S7HgnSz/8gtceql1sYiIiEjx\no0qzhLRJk86sLithFhEREX9TpVlClneyvGQJdOxoXSwiIiJSvKnSLCFn3rwzq8tKmEVERCSQlDRL\nSLHZoHt38/bMmWbCLCIiIhJoas+QkLByJbRt61lWsiwiIiJFSZVmCXo2mydhfu89JcwiIiJS9FRp\nlqC1eTM0bepZVrIsIiIiVlGlWYKSzeZJmMeMUcIsIiIi1lKlWYLKyZNQtqxn2eXKOVKGiIiIiBVU\naZag8dlnnoR56FCzuqyEWURERIKBKs1iufR0qFgRkpOhXTtYulTJsoiIiAQXVZrFUnPmQEyMmTCv\nXAnLlilhFhERkeCjSrNYIjMTateGffvMC/42bIAwvYUTERGRIKU0RYrcwoUQFWUmzAsXwqZNSphF\nREQkuKnSLEXG6YTmzWHLFqhRA3btggj9BoqIiEgIUH1PisSqVWaCvGULfPUV7N2rhFlERERCh9IW\nCSjDMEfEWLkSSpeGw4chOtrqqEREREQKRpVmCZhffjF7lVeuhKlTzYlLlDCLiIhIKFKlWfzOMKB7\nd5g/31xOToa4OGtjEhERETkfqjSLX23dalaX58+H9983E2glzCIiIhLqVGkWv+nXz2zDADhxAsqU\nsTYeEREREX9RpVnO265d5ix+U6fC+PFmdVkJs4iIiBQnqjTLeRk+HCZMMG8fOQIVK1obj4iIiEgg\nqNIshbJvn1ldnjABnn3WrC4rYRYREZHiysqk+TpgO7ADGGlhHFJATz0F1aubt/fvh9Gjz9xm6dKl\nRRmS+JGeu9Cm5y+06fkLXXruij+rkuZw4G3MxLkhcAfQwKJYxEeHD5vV5ZdegocfNqvLF16Y97Z6\n8Qhdeu5Cm56/0KbnL3TpuSv+rEqarwR2An8AmcDnQA+LYhEfvPIKVKli3t6zB157zdp4RERERIqS\nVRcCXgT85bW8D7jKoljkLI4fh/LlzdsDB8LHH1sbj4iIiIgVbBadtxdma8Yg9/KdmEnzA17b7ATq\nFHFcIiIiIlLy7ALqnm0DqyrN+4HqXsvVMavN3s4auIiIiIhIcReBmdHXBKKAjehCQBERERGRM3QD\nEjHbMJ6wOBYRERERERERERERKU5igHWYLRvbgJetDUcKIRzYAMyzOhApsD+AXzGfv/XWhiKFUBaY\nBfyG+frZ0tpwxEf1Mf/msr9OAg9aGpEU1BPAVmAzMA2ItjYcKYCHMJ+3Le7bIcfu/h4BrAXaWBiL\nFNyjwGfAXKsDkQLbA5S3OggptMnA3e7bEUAZC2ORwgkDksh5sbwEt5rAbjyJ8hfAXZZFIwXRGDNh\njsEs+C3iLCO3WTmN9tk43N+jMO/EMQtjkYKpBlwPfIh1QxrK+dHzFprKAG2B7NHUszArlhJaOmNe\nKP/XuTaUoHEKc6I2O+abVTvmKGES/C7B7G5IA5zAMqBnfhsHa9IchtmecQj4AfNjRgkNrwH/B7is\nDkQKxQC+B37CM466hIZawBHgE+AXYCKeT+0kdNyO+fG+hI5jwHjgT+AAcALzdVSC3xbMYkN5zNfL\nGzCLfyGpDGZ7RgeL4xDf3AhMcN/ugHqaQ1FV9/dKmG9c21oYixRMC8xq1xXu5deB56wLRwohCvON\nTyWrA5ECqYNZ3KuAWWn+CuhraURSEHdjFoqWAe9gFv/yFKyV5mwngW8w/xlI8GsNdMfsi50OdAKm\nWBqRFFSS+/sRzBf+Ky2MRQpmn/vrR/fyLOAy68KRQugG/Iz59yehowWwGjiK2RY1G/P/oYSGjzGf\nw/aYnxIkWhtOwVTEvAIcIBZYDlxjXThSSO1RpTnU2IFS7ttxwCrgWuvCkUJYDiS4b48GxloXihTC\n5+gCslDUDPNj/ljMa0ImA8MsjUgKorL7ew3MkYdKWxhLgTXB7MfbiDn01f9ZG44UUns0ekaoqYX5\nd7cR8x+AJh0KPc0wK82bMKtdGj0jdMQBf+N54yqhZQSeIecmA5HWhiMFsBzzudsIdLQ4FhERERER\nERERERERERERERERERERERERERERERERERERERERCbi2QCurgyigwXjGtg8F9TFjFhEJKcE+I6CI\nlDxOYAPmOO2zgXj3+pqAC3jea9uKmFNHv5XPsW7EnOTDFxWAZzDH6gwVzwDHMGexystSPLMCfkPh\nB+0fQP6PcUGUAv4NOIB7/HC8vEwCehVivweBfv4NRURERCRwTnvdngQ85r5dE9iFOc1wtqGYCfab\n+RzrB6CKj+dtiznBSyDY3F9F7Qf8M5X2APyTNBeFT4CehdivFLDez7GISDGiSrOIBLM1QB2vZQfm\nNKeXu5dvBWaQd0JaHYgCDrmXJwFvYE4PvgtPNbID5pTvK4A9wNt4pjL+A3gJMzH/CTMBXQjsBIZ4\nnev/MBOuTXgq2zWBRMzZwTa743nVfftXd+y51QS2YyZ+icBnmFOZrwJ+B65wbxcHfOw+5wagh3t9\nLOZUzNswq/SxXsf+Ayjvvv2oO47NwEN5xAEw0B3DOqC11/pKwCz3udfn+lm2cOA/7uNvAoa711+D\n51OEjzCfn+zYzvU428j78bNhPmfbgUWYU+Jm/z5cgznDbO7zvYI5A9gm9zHBfLN2FGiUz+MhIiIi\nElSyK83hwJfA/e7lmpgJ042YiU414HvMBDevKujtudZ/Anzhvt0A2OG+3QEzac72FtDffXsPnqTt\nv5jJVxxmW8hB9/prgffdt8Pcx2rrjtcJXOn+WS/MRNCGmdjtBS7IFXNNzHaTRu7tfsJM9gC6A1+5\nb78E3Om+XQ4zobZjJsMfutc3cR8ru9K8BzNpvtx9P2Ld92UL0DxXHFXd8VXAnA54JZ5q/jTgavft\nGpgJem5DMd/MZBdmygExwJ9AXfe6yXgSdl8e5/wev55e66sCx93r8jtfecwEO5v3VONj3LGLiJxB\nlWYRCTaxmBXHJMzq7Hu5fr4A6IKZFH9B/mq4j+Ftjvv7b/jetjHX/X0zZuU7BfgbSMdMuK51f23A\nbB2pjydR24vnI/+rMRNOAzgMLMNTOfa2B7MKari/f+9evwUzqcZ9vvsw2y9mA1mYj1VbYKpXvL/m\nOrYNaOPeJ9V9X2a79/N2lfvYRzET7y/wVG87Y1Z2NwBfY7Y12HPtfw3mGwmXe/k45uOyB7N6DGYS\n285rn3M9zvk9fm291icBS9zHye98J4E0zDcjN2N+epHtAJ7HWEQkhwirAxARySUVuBQzeV6A2Xrw\nldfPMzGT00eBhsBNZzlW7raNjDx+lkXOAoJ3SwOYSRuYCaD3/i48r6EvAx/k2q8mZuJ3tniMMyL2\nnC/3Ob3PB3A3ZoU5t3P1Thu5trHlEcfZtrFhJtUZnN257mvu8/ryOOd33/Jan9f5wFP9vwa4BbN1\n5Jp8YhIR+YcqzSISrFIxRzR4kTOTovHASPIfNQLybn/Ib7uGmP2uZYFO+WyXX2K2ADOBjXOvuwiz\n7ze3FcBtmK+7lTCrnoW98GwB8IDXcnaP93Kgj/t2Y6BpHvGuwHyjkd2ecZN7nbf1QHvMVoZIoLfX\nzxZiPi/Zcrd2gNlbPASzxQY8LSQ18fSo98OsFueW3+Oc1+O3DvM+Z6+vCnR075OYx/mWYt7nssD/\nMN94NfM6T1XM/moRkTOo0iwiwca70rcR8+P1W4G1Xj/bhqeX1iDv6uAqciZ3uY+dffsvzP7bLZgf\n5/9ylrjy2n8RZo/0Gvfyacx+49zbf4U5BvQm9/r/w2wzyOs854r5eeB1zPaLMGA3Zs/zu5i929sw\nW1B+yuP4GzAvisxO2Ce6Y/KWhHlB4xrMNyYbvH72IDDBvU8EZuJ7f679PwQS3PFlYlbh38G8uHCm\ne7/1eFpvct/HvO5zfo/fV5hvdLZh9jCvdm+fns/5KmK26cRgJuiPeJ3rSuBxREREREqYJZjVQ5Fz\nKQ38aHUQIhK8ws+9iYhIyDqC2X6w1OI4JPgNwfw9yX3xpIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiI\niIiIiIiIiIiIiIiIiIiIiIgUb/8Pgoa+nAOB7TwAAAAASUVORK5CYII=\n", "text": [ "<matplotlib.figure.Figure at 0x7f8a597238d0>" ] } ], "prompt_number": 26 }, { "cell_type": "code", "collapsed": false, "input": [ "scatter(X, y, c='b', marker='o')\n", "scatter(X_t, y_t, c='r', marker='s')\n", "plot(X, regr.predict(X))\n", "plot(X_t, regr.predict(X_t), 'r-')\n", "xlabel(u'RM (n\u00famero m\u00e9dio de c\u00f4modos)')\n", "xlim((3,9))\n", "ylabel(u'Valor m\u00e9dio (em US$ 1.000)')\n", "ylim((0,55))" ], "language": "python", "metadata": { "slideshow": { "slide_type": "subslide" } }, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 27, "text": [ "(0, 55)" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAs0AAAHqCAYAAAD/DnOSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4U3X7x/F3ms60KbTsPURmUYYiKkrBxRAQFBQVcQAi\nP1D0EX3cOFHhcYuKOFFZKuICFATELQiIyN6b0gIdSUeS8/sjoZumI006Pq/rykXOyRl3SJvc/eY+\n9xdERERERERERERERERERERERERERERERERERERERERERERERERERKSKMgU6gNM5++yzjfXr1wc6\nDBERERGp+tYDnYraoMImzYBhGEagY5BSmjx5MpMnTw50GFIKeu0qN71+lZtev8pLr13lZjKZwEte\nHOSfUEREREREKi8lzSIiIiIiXihplnIRHx8f6BCklPTaVW56/So3vX6Vl167qk81zSIiIiJSramm\nWURERETEB5Q0i4iIiIh4oaRZRERERMQLJc0iIiIiIl4oaRYRERER8UJJs4iIiIiIF0qaRURERES8\nUNIsIiIiIuKFkmYRERERES+UNIuIiIiIeKGkWURERETECyXNIiIiIiJeKGkWEREREfFCSbOIiIiI\niBdKmkVEREREvFDSLCIiIiLihZJmEREREREvlDSLiIiIiHihpFlERERExAslzSIiIiIiXihpFhER\nERHxQkmziIiIiIgXSppFRERERLxQ0iwiIiIi4oWSZhERERERL5Q0i4iIiIh4oaRZRERERMQLJc0i\nIiIiIl4oaRYRERER8UJJs4iIiIiIF8F+OMduIBlwAllANyAWmAs08zw+DDjhh1hERERERErM5Idz\n7AK6Akm51j0PHPP8ez8QA/w3336GYRh+CE+k+nK5XGzcuJH09HQ6duxIeHh4oEOq9irqa2IYBps2\nbSI1NZW4uDgsFkugQyqz7du3k5CQQIcOHYiOjg50OAAcOHCAPXv20KpVK+rWrRvocKqU/D/DiYmJ\n7Nu3j9atW1O7du0i9921axeHDx+mbdu2xMTEFLmt0+nkn3/+weFw0LFjR0JDQ335NE5r3759RT6f\nivjeYrPZ+Oeff4iMjAQgLS0tYO8vJpMJ/JMXF2kXUCvfus1APc/9+p7l/AwRKT+ZmZnGpZcONCIj\nmxtW61lGs2btjP379wc6rGotIyMj32vS3jhw4ECgwzIcDocxaNBww2JpbERHdzIaNDjD2LFjR6DD\nKpMJEyYZERF1jejoc4yaNRsYf/75Z6BDMl5//S0jPDzWqFGjm2Gx1DI+/3xBoEMqsxir1QCybzFW\na0DiyPkZbmJER3cyrNZ6RliY+/86MrK2sXjx4gKxAkZIvmXAiLZYTnsem81mdO9+iREZeYZhtbY3\nWrfubCQkJJT785s27WUjIqJW9s/Ot99+m+fxivjesmPHDqN+/ZaG1drJCAqKNczmukZ0dGejfv2W\nxvbt2/0ej+f1DbidwFpgNTDas+54rsdN+ZZP8ft/mEh1Mm3aC0ZERB8DMg0wDLP5EaNPn2sCHVa1\nVvA1edjo129ooMMyZs6caVgsPQywG2AYQUHPGxdccHmgwyq17777zoiMbG3AcQMMA+YYTZq0DWhM\nu3btMiIiahuw3RPTasNiiTGSk5MDGldZ4X4y2bdAfba//fbbhsVykedn+F8DahmwzxPWKiMqqlaB\nWLPjLWSdy+Uq9DwPPviYER5+jQEOA1xGSMidxvDht5Xrc9u0aZMREVHPgL2eEH8yIiNrGenp6dnb\nVMT3lu7dLzOCgqYZ8I4BF+Z6f5lmnH/+ZX6Ph2Ikzf6oab4QOATUAb6n4KjyaQOdPHly9v34+Hji\n4+PLJUCR6ujvv7dgt18JhADgdA7m338XBDaoaq7gazKEjRtHBjYoYOPGLdhs/QD317ku1xC2bn09\nsEGVwZYtW3A6ewM1PWsGc+DADRiGceorWr/bsWMHoaEdsNvP8KzpSlBQLQ4cOEDbtm0DElNVkvdn\neBtwLtDY82gPnM6QEh0vLS2NqKioAuvXr99CevogwAxAVtZgNmx4uAyRe7dt2zZCQrpgtzfxrLkQ\nwwjlyJEjNG3aFKiY7y3btm3B5XoTeAvI/f4ymK1bXyn3869YsYIVK1aUaB9/dM845Pk3AViA+0LA\nI7jLMgAaAEcL23Hy5MnZNyXMIr7VtWsHLJbPgXTAICRkNmefHRfosKo192uygNyvyVlndQh0WJx9\ndgciI78E0gAwm2fTvn3g4yqtDh06YDZ/j/vSGoA5NGvWLmAJM8CZZ55JZuY/5Iwr/YJhJNG4ceOi\ndpNiOvvsDlgsC3H/DLcBfsddPQqwjOBgZ4mOd6oGN79zzulARMR83H0PXISGzqFz5/L9XWnTpg1Z\nWatxf7EP8ANms4P69etnb1MR31vat++A2Twb6ACcem389/4SHx+fJ8+sCCyA1XM/EvgZuJycCwDB\nfQHgs4Xs6/eheZHqJCsryxgw4FojIqK+ERXVymjV6mzj8OHDgQ6rWsvKyjKuvHJY9mty5pmdKsRr\n4nQ6jeuvv80ID69jWK1tjKZN2xl79uwJdFhlcv/9jxphYTFGdHQHo1atJsb69esDHZLx7rsfGOHh\nNY3o6DgjMrJgXWplRAUpz3A6ncbw4bcaERF1Dau1jRET08gIC6thREfHGVFRdYwffvihROUZp5Oe\nnm706tXfsFgaGZGRLYyOHbsbSUlJ5f78pk9/K/tnJyqqjrFs2bI8j1fE95bdu3cbTZu2NaKiWhtB\nQTUNs7mmERXVxmjatK2xe/duv8dDMcozyvvP6ha4R5fBXQryMTAFd8u5eUBTTt9yzvMcRKS8GIbB\nzp07sdvttGnThpCQkn1FKb536jVJT0+ndevWFeo12b17NykpKbRp08ZvHQHK04EDBzh27Bhnnnlm\nhekGcqqjQ4sWLahRo0agwymz2OhojqekZC/HWK0kJScHLJ7cP8MnT57kwIEDtGzZkujo6AKxgruY\nISvfMbw9B8Mw2LZtGw6HgzZt2mA2m33/RAqRkJCQ5/kUFldFe2/JzMxky5YtWK3u8dVAvr8Up3tG\nwFtrFEFJs4iIiIiUu+IkzZoRUERERETECyXNIiIiIiJe+KPlnIiIiIhUECtWrOCnn36iQYMGjBgx\nokpco+APqmkWERERqSZee+0N7r9/CunpNxAevoa4OAc//bSkQlwYGEi6EFBERETEC5vNRkhISJVP\nHA3DICIimoyMtUArwEVUVA9mzbqPq666KtDhBZQuBBQRERE5jeTkZOLj+xMdHYvFEs1DDz1OVR6w\ny8rKIisrA2juWROEYZzBiRP5u/5KYZQ0i4iISLU0evRd/PprXZzOFByOXbz00jw+/fTTQIdVpG3b\ntjF9+nQ+/PBDbDZbifYNDQ2lW7eehITcg3sy5m8xjMVcfPHF5RJrVaOkWURERKqlVat+ITNzEu5p\nTOpjs93C8uU/Bzqs01q5ciWdOl3AvfeuZdy4T+jU6UJSU1NLdIyvvprNxRfvxWJpR9Omk/j663m0\nbNmynCKuWpQ0i4iISLXUsGFD4FfPkkFY2O80a9YwkCEV6fbb78Vmm4Hd/jZpaYvYt681M2bMKNEx\nateuzdKlX5CWlsiePRvp1atXOUVb9ajlnIiIiFRLM2e+SM+efTCMbzGMIzRv7mD8+PcDHdZpJSYm\nAB09SybS0zty+HBCIEOqVtQ9Q0RERKqtQ4cOsXLlSiwWC1dccQVhYWGBDum0rrvuVr74IoOMjLeA\n/VgsfViwYAaXX355oEOr9NRyTkRERKSKSE1N5brrbmPJkoWEhUXy7LNPMX78HYEOq0pQ0iwiIiJS\nxRiGcSrJEx9Rn2YRERGRKkYJc2AoaRYRERER8UJJs4iIiIiIF0qaRURERES8UNIsIiIiIuKFkmYR\nERERES80I6CIiIhUKna7nfnz53P8+HEuueQS4uLiAh2SVAMVuWeJ+jSLiIhIHjabjW7derF7d00c\njlaYzfOZP/99+vXrF+jQpBIrTp9mjTSLiIhIpfHhhx+ya1ddbLYvcec4Qxgz5v/Yv19Js5Qv1TSL\niIhIpXHs2DHS0zuQMyjYgRMnjgUyJKkmlDSLiIhIpdG7d2/Cwz8E/gKSCQ19kN69Lwt0WFINKGkW\nERGRSuOCCy7gjTeep2bNKwkJqU+vXieZNevNQIcl1YAuBBQREZEKKz09nfvvf4zly3+hefPGvPLK\nFJo3bx7osKSKKc6FgEqaRUREpMIaMOBali7NJD39TszmX4iNncGWLeuIiYkJdGhShShpFhERkUrL\nZrNRo0YtHI7jQDgAVms/3nvvNq6++urABidVSnGSZtU0i4iISIUUFBSEewAtw7PGAOwEB6tjrvif\nkmYRERGpkMLDwxk58jYslv7AR4SGjqNWraNceumlgQ5NqiElzSIiIlJhzZjxCk89NYz+/b9hzJhI\nVq/+kcjIyFIf77PPPqdZszhq127G7bffRWZmpg+jlapMNc0iIiJSLfzyyy9cdtnV2GyfAE2IiJjA\nTTe14c03Xwp0aFKI48chNhZq14aEhPI9l2qaRURERDwWLvwam20s0Atohd3+Mp99tjDQYUkhXn/d\nnTADrFoV2FhOUSW9iIiIVAs1a0YTGrqNnIqMvVit0YEMSfJJTQWr1X1/yBD47LPAxpObyjNERESk\nWjh27BgdO55HUtLFZGU1ISJiBp988haDBg0KdGil4nA4CAoKIiioahQOfPghjBzpvr92LXTq5L9z\nqzxDRERExKN27dps2PA7Tz7ZjgcfhB9+WFgpE+bMzEyGD7+V8PBIwsIiueuu+6jMA43p6RAR4U6Y\ne/cGl8u/CXNxaaRZREREpBK5775HeO21Ndjtc4EMLJZ+PPfcLYwff0egQyuxzz6Da65x3//1V+je\nPTBxaKRZREREpIpZsmQldvu9gBWojc12J4sX/xjosEokKwsaNHAnzF26gNMZuIS5uJQ0i4iIiFQi\njRrVJyhoTfZySMgamjatH8CISmbxYggNhcOHYelSWLMGKkNZtsozRERERCqRbdu2cd558WRmXoDJ\nZCc6egtr1/5M3bp1Ax1akZxOiIuDzZuhZUvYsgUqyozoxSnPUNIsIiIiUskcPXqUxYsXExwcTP/+\n/alRo0agQyrSypUQH+++/+WXMGBAQMMpQEmziIiIiASMYcD558Pvv7snKzl0yF2aUdHoQkARERHx\nm9joaEwmU55bbLQmD6mu/vzTXav8++8wZw4kJlbMhLm4lDSLiIiITxxPScGAPLfjKSmBDSqfefPm\n07hxW2JjG3PbbePJyMgIdEhVjmFAnz7QrRuYzWCzwbXXBjqqslPSLCIiItXCTz/9xM0338mBAzM4\nfnwVs2fvYsKESYEOq0rZsME9urxkCcycCQ6He+KSqkBJs4iIiFQLX331LXb7WOBioAV2+0ssWPBV\noMOqMoYPh7POct8/eRJuuy2w8fiakmYRERHxiRirFRPkuYUAv/76a0DjOiUmpgahobtzrdlFdHTF\n7jpRGWzbBiaTu275pZfc5RlVsZRdSbOIiIj4RFJyMvfd9yAhIeM4VdWcxUdMmPBQoEMDYPToUdSu\n/RNhYSMICnoIi2UEL7/8VKDDqtTGjoXWrd33jx2Du+4KbDzlqYK0lBYREZGqICHhOFlZbXOtaUti\nYhIAJ0+eZNOmTdStW5eWLVv6PbZatWqxYcPvvPfee6SkpNK//9ece+65fo+jKti7F5o1c99/8kl4\n+OHAxuMP6tMsIiIiPrNw4UKuv/4ebLYvgFpERNzCmDGduf76IVx++SCgMZmZexg3bjTTpj0d6HCl\nFCZNgmnT3PcPHYL6lWcG79PS5CYiIiLid6++Op3HHnuGjAw71157HW+++SLNm7fn0KHngSFAIpGR\n5/HNN+/Qs2fPQIcrxXT4MDRo4L5/770wdWpg4/ElTW4iIiIifjdhwjiSkvaTlpbIu+++jslk4vDh\nXcBVni1qYRjxbN68OZBhVlo//vgj3btfTocOF/D008/jcrnK/ZxPPpmTMO/ZU7US5uJSTbOIiIiU\nq5CQEBo2bMWBA/OA64CjwDI6dLg5sIFVQuvWraNv36ux2V4GGvHMM5NIT0/nyScfLZfzJSVBrVru\n+7ffDm++WS6nqRQ00iwiIiLl7ssvZxMT8x+iozsSFtaWe+65lR49egQ6rEpnzpz52GxjgeuBnths\nM5k586NyOdfLL+ckzFu3Vu+EGTTSLCIiIn7QpUsX9u3byrZt26hbty4NGzYMdEiVUlhYKGbzcZzO\nU2tSCA0N9ek5kpOhhqd99bXXuvsvi0aaRURExE8iIyPp1KlTkQmz0+nkmWemct55lzNo0PVs3brV\njxFWfLfddgtRUXMJCnoYeBOL5QYee+xenx3/nXdyEua//1bCnJu6Z4iIiEiFceedk3jnnV+w2R7C\nZNpIdPQLbNy4mkaNGgU6tApj586dPP/8y5w4kcoNN1zFgAEDynxMmw2sVnC5oE8f+PZb9yx/1YVa\nzomIiEilYrHUxG7/F3CPRoeH38z//teNcePGBTawKmzePHcZBsDvv0O3boGNJxCKkzSrpllEREQq\nEBPgzFkyOU4lNOJjmZnuNnJJSdC9O/z8MwSpcPe09F8jIiIiFcaECeOxWAYD8wgKmkxExAqGDBkS\n6LCqnI8+grAwd8K8YgX8+qsSZm8q8p9uKs8QERGpZgzD4PXX3+SLL76nQYPaPPXUQzRr1izQYVUq\nTqeThx56nFmz5hERYWHKlAcZOvQaADIyIDzcvV1kJJw8CWZzAIOtIFTTLCIiIlLNPPTQ47z00nfY\nbNOBBCyWm/jmm09YujSep592b3Pnne4+zOKmpFlERESkmmne/Cz27HkP6OpZMw3IaUuXlgYWSyAi\nq7iKkzSrekVERESkComMjAQO5lrjTpiHDwfDUMJcWkqaRURE/CA2OhqTyZTnFhsdHeiwpAqaOvUR\nwsNH5Vn3zz8H+OSTAAVURajlnIiIiB8cT0khf9GhKSUlILFI1ZaQ0I/09CMANG++k1WrQmncuHGA\no6r8VNMsIiLiByaTqWDSjLtbhIiv5G5pfegQ1K8fuFgqE9U0i4iIiFQDCxfmJMzt2rlrl5Uw+5bK\nM0RERPwgxmotUI4RY7UGKBqpSnKPLu/cCS1aBC6WqkzlGSIiIiKV0PLl0Lu3+36NGnDiRGDjqcyK\nU56hkWYRERGRSib36PKGDRAXF7hYqgvVNIuIiIhUEqtX502YDUMJs7/4K2k2A2uBrzzLscD3wFbg\nO6Cmn+IQERERqZRMJjj3XPf9X391J8ziP/5Kmu8C/oXsbjv/xZ00twaWeZZFREREJJ/NmwuOLnfv\nHrh4qit/JM2NgX7ATHIKrAcCH3jufwBc5Yc4RERERCqVBg3cLeQAvvtOo8uB5I8LAV8EJgG55wqt\nBxzx3D/iWRYRERHxiYSEBD7//HNcLhcDBw6kUaNGgQ6pRPbuhWbNcpaVLAdeeY80XwkcxV3PfLo2\nHgYUmCRJREREpFT27dtH+/ZdufvuFdxzz2+0b9+VzZs3BzqsYuvaNSdhnj9fCXNFUd4jzRfgLsXo\nB4TjHm2ehXt0uT5wGGiAO7EuYPLkydn34+PjiY+PL9dgRUREpPJ79NFnOH58BE7n0wBkZLzAvfdO\n5uuv5wQ4sqIdPQr1cn337nLlrWUW31mxYgUrVqwo0T7+fCl6AvcCA4DngUTgOdwXAdak4MWAmtxE\nRERESqxPn6EsWTIEGO5Z8x1duz7H6tXLAhlWkfr2hcWL3fdnzIDRowMbT3VTESc3OZUFPwvMA24D\ndgPD/ByHiIiIVFEDB17KqlVTsdl6AKFYLE8zYECfQIdVqORk92x+pzidEKRZNCokf74sK3GXagAk\nAZfibjl3OaCJH0VERMQn7rhjDBMmXElEREfCwloxYkRnHn74vkCHVcDNN+ckzM89565dVsJccVXk\nShmVZ4iIiEiVY7eDxZKznJUFwf7+7l/yKE55hv6eEREREfGTSZNyEuZJk9yjy0qYKwe9TCIiIiLl\nLCsLQkNzlu12CA8PXDxSchppFhERESknW7du5fLLl2UnzDff7B5dVsJc+aimWURERKQcrF79F+ee\n2yV72WptxZo1izjzzDMDGJUURjXNIiIiIgHw9tvkSZgB0tJu5oknpgYoIikr1TSLiIiI+EjBtnHL\ngEsAcLmak5i4IRBhiQ9opFlERETEB+bPz0mYu3SBqVNfwmK5H/gXWIfF8hTXXTcgkCFKGWikWURE\nRKSMTLmqYffsgaZNweW6k+TkFN54ox8mUxD3338XI0bcELggpUx0IaCIiEgV4XQ6ATCbzQGOpPr4\n7ju44gr3/QYN4ODBwMYjpaMLAUVERKqBrKwsbrxxNGFhFsLDI5kw4V5cLlegw6ryTKachHnTJiXM\nVZ2SZhERkUruscee5vPP9+J0JuBw7Ofdd3/itdfeCHRYVdavv+YtxzAMaNs2cPGIfyhpFhERqeQW\nL/4Ru/1eIBqojc12F4sWrQx0WFWSyQQXXOC+v3q1O2HOb8GCBYwaNZ5HH32cpKQk/wYo5UZJs4iI\nSCXXuHE9goL+yl4ODl5D06b1AxhR1fPPPwVHl7t2Lbjd1KkvcuON9/POO6149tl9dOp0AcnJyf4L\nVMqNLgQUERGp5LZv38455/QgM7MzJlMw0dH/snbtz9Svr8TZFzpZd7A+tSVgYvlyiI8//bZRUbVI\nS/sNcM/6Fxk5iFdfvYpbbrnFH6FKKRXnQkC1nBMREQmQ1atXs3PnTjp27Ei7du1KdQzDMJg27TXs\n9nRgPTVrhrNs2ddKmH1g99rjNO8SyzrASjIphrXI7Q3DIDPTDtTJXud01sFut5dvoOIXKs8QEREJ\ngPvvf5SePYcwatRcunaN5+233y3VcebOnctHH/1IZuYeMjMPkJh4I//3f/f7ONrq58l6r9G8SywA\ny17f7DVhBvdo5eDBwwgPvxlYB8zCbF5Inz59yjVW8Q+VZ4iIiPjZxo0bOffcy7DbNwC1gG2EhZ1D\nQsJ+rFbvyVlu9933AFOnRgIPe9bsJibmIpKS9vk46urh8LYU6reOBuBTruYa49MS7Z+ens7Eif9l\n0aJl1KlTm+nTn6Nbt27lEar4kMozREREKpDY6GiOp6RkLwfTAgfJwJkEB9fk6NGjJU6aW7c+A4vl\nI2y2+4BQTKZvadHiDN8GXk38FXMJXU78AMCXT6zjmkfOLvExwsPDefPNl3wdmlQAGmkWERHxE5PJ\nRO5PNveHsAF8SmzsRA4d2kloaGiJjulwOLjyymH89NPfmM31CQnZy6pVS0pdI10dndh1nJotY7OX\nDacLU1BFTpHE14oz0lyRfyKUNIuISJVSWNIcFlYTq9XKokWfc84555TquIZhsGbNGlJSUujSpQs1\natTwSbzVwc/NrufCvbMBWHnVi/RcMDHAEUkgKGkWERGpQApLmhMSEoiNjSUoyPfX5rtcLl555XWW\nLv2FFi0aMnnyg9SqVcvn56mM0o6mEVkvKnvZmeHAHGoOYEQSSMVJmtU9Q0RExE9irFZMkH2LsVqp\nXbu2TxPmQ4cO0afPNTRq1JbGjdvy4INz+Oab/rz1Vjpdu15Eamqqz85VWa3odFd2wrziwofAMJQw\ni1caaRYREQzDYNOmTdhsNuLi4ggPDw90SFIKWVlZtGt3Dnv29MfhGAp0B44C7nINq/USPvhgPIMH\nDw5kmAGTmZpJqDUseznjZDph0WFF7CHVhUaaRUTEK4fDQf/+Qzn33D707n0rbdp0Zt8+tSurTGKj\nozGZTISGhrJjx9/geA1oi6dqOns7l8vM999/z3vvvcexY8cCFW5ArOj1eHbC/GP728EwlDBLiWik\nWUSkmnvttde5//4F2GzfAGGYzY/Tq9c6vv9+QaBDk2I6fVeOa4GTwH0EBS3CMN4gIqIPJpOJiIjf\nWb16Fc2aNSv0mEuWLGHu3IXExFiZOHE8TZo0Ke+nUS6cmU7MYTkddlMPpRBVP6qIPaQ60kiziIh4\n9fffm7HZruTUiKTTeTWbNm0ObFDiAy8SHp5A06b76NhxMvXrf4XJ9B9stk9JS5vP8eO38t//PlHo\nnh9++BFDhozivffa8PLLTs4+uzsHDx70c/xlt3Loa9kJ868NrwbDUMIspaakWUSkmuvUqT0WyxeA\nHTAIDp5DXFyHQIclZTR69E6ef34IO3as5++/f6Rly1a4XF2yH3c6O7N//5FC93344SnYbLOBu3A6\np5GSMoh3333PT5GXneEywGSi56cTADi+PZHzD5RsZj+R/EqSNLcD+gJX4C6UEhGRKuD228dw2WUN\niYhoidXajiZNFvLuu68EOiwpoxkzXmXChPEEB7tHWvv1i8dimQYkAolYLNPo1y++0H0zMtKBnMk+\nnM5a2Gzp5R6zL/w87mNMZnd687f1QjAMYs6I9bKXiHfeappbAHcD/YADwEHPPg2AxsDXwIvA7nKI\nTTXNIiJ+YhgGO3bswG6306ZNmxLPSieBlX967hirlaTk5DzbOJ1Oxo27h3ffnQHArbeOYfr0FzCb\nC7ZamzTpIaZPX4nN9j9gHxbLOFatWkyXLl0KbFuhmHLSmsOr91O/a6MABiOViS8mN5kHvA2sALLy\nPRYC9AJGAcNKFWHRlDSLiIj4mMvlAiiyN7TT6eSxx55m9uwvsFqj+N//HuOSSy7xV4gl9sfkb+n2\neH8A9ga3pGnWjgBHJJWNZgQUERGpgIozMuyvc/v7/L7icrk4cuQIDRo2zF63Z+k2ml3SKoBRSWXl\nq6S5JtAHOPUdx35gCXCiLMEVg5JmERGpkgprEeevz7z85/b3+X3hwIEDTOg8hs8TvgXATjgRhj3A\nUUll5ouWczcBa4B4IMJz6w38BYwsc4QiIiKVyKlJRHLfYqOjAx1WtdOocePshPlsllMnsjGLFy8O\ncFRS1XlLmh8GugJjgac8t9s96x4u39BEREQqluMpKRiQ55a/1KEsjh49yh13TKRv32FMm/YSTqez\nVMc5dOgQo0dPoG/fYbz88mvZdcyV3ebZa/Nc7GfC4G/isduvZs2aNQGMTKqDYO+bFKryfIcjIiJS\nwUSFh2N+OYW2AAAgAElEQVRKz2nhFgKsXr2awYNv4MiRvmRlDebHH6ezefN2Zs58rUTHPnHiBF26\n9CAhYTBOZ19+/PEtduzYwyuvTAXc9cumQmqaK7pMUyhtPT0Jrqrdl4XHbvY8kkVExM80bTomYLFJ\n9eCtpnkk8CjwHe5aZoAmwOXAk0B5djpXTbOIiFQovqoHbt36HLZtm4q7CRXAI/Trt54ff8wgNXWJ\nZ91JzOa62GwpJWoB+NFHHzFq1ItkZGwHMoB2mM2byMy0FdoxY/PmzSQlJREXF0d0BSw1WTd/G52G\ntc5ZYRj88ccfXHrpAEymrrhcu7nwwrZ88838QtvniRRHcWqavY00fwB8hXtCk1OXp64AHgSSyhae\niIhI9eQuu8idCIfhdLryrQsBTCUurdi1axcZGTuBn4EOwBSczikFEnvDMLj55juYP/9LQkIaExx8\nkOXLv+Wss84qzVMqF7tMLejkmQriy7HfMvCNvgB069aNbdv+5o8//qBmzZpceOGFRbbQE/GF4vyE\nJQGzgfc9tzkoYRYRkWooxmrFBHlupSltuPPO27BYRuOeI+w9LJaXuf/+/xAe/jdm85PA90REDOWq\nq4YRHh5eomNbLBbcY11xngjvB2wFku8vvviCzz77Dbt9K8nJf5CU9BTDht1a4udSHrYt3w8mEy1O\nzZ1mGNkJ8yn16tVjwIABXHTRRUqYxS+8/ZQ1w50kJwC/e24JnnXNyzUyERGRCiYpORnDMPLcStPf\n+M47/48XXriHbt1eoVevL1iyZAG9evVi9eofGTBgC126TGH8+C588snMEh+7TZs2WCybgEzPmtVE\nR9cmJCQkz3ZbtmwhI+MyIMqz5ip2795S4vP52i+mCzizdxMA5g76BFSqKRWEt5rm33BPk/0Z4PCs\nCwauASYC3csvNNU0i4iIlJTL5WLQoOGsWLEJiMPp/J7Zs2cyaNCgPNt9/fXXXHfdfaSl/QzEYDK9\nTocOH7Fhw68BifvA34k0Ort29rLhdGEKqshzsElV4ovJTbYBZ5biMV9Q0iwiIlIKLpeLpUuXcvjw\nYc477zzatGlTYBvDMLjrrvuZMWMmoaH1sFgyWLlyUaHblrfPTUMYwgIAZnV/nRG/jvN7DFK9+SJp\nngsk4r4gcJ9nXVPcXTVqAcPKFmKRlDSLiIiUswMHDnD8+HHOPPNMwsLC/HrupD0pxDbP6djhzHRi\nDlF9svifr2YE/Ad4HPfU2UuAycAGYESZIxQREZFys3PnTq666gbOOecSHnrocbKysgps06hRI+Li\n4vyeMH9kGZOdML9/xpNgGEqYpUKryMVCGmkWEREppYSEBNq168Lx43fgcp1DRMQ0Bg9uyscfl/zi\nQl9KS0wnsnZE9nJ6cibh1pAi9hApf74YaQboA7yJu1/zV8AbnnUiIiJSQS1evJj09G64XA8Cl2O3\nf8rcubNwOBxe9y0v7zd6MDth/iBmIhiGEmapNLxNbvIy7ov9PgQOeNY1Bu4E+nn+FRERkVJyuVzM\nnj2bbdu207lzJwYOHHhq1KtMzGYzJlNmrjUOTCaTT459imEYLFiwgL//3kCbNq259tprC+2ZnGV3\nEGIJ4WbP8smDaYxsYPFZHCL+UNruGSbPY618HlEOlWeIiEiVZhgGV111PcuW7cZmuwSLZQFjxgzk\nhRemlPnYJ06coF27rhw7NgSHoysWyyuMHHke06e/mGc7l8vFiy++yqJFK2nSpB5PPfUwjRo1KtY5\nxo27hw8/XIrNNhCL5Tv69+/AnDnv5knMf2kyjAv2zwdgTtD1XOf8uMzPTcTXfNE9YwNwG/BHvvXn\nATOBjqUNrhiUNIuISJW2evVqevYchs32LxAOJBIa2pIDB3ZQu3Ztb7t7dejQIR555Gn27j1Mnz4X\nM3Hi+OyR4O3btzNixDjWrVtHZmYILtejBAfvJjZ2Dps3/0VMTEyRxz548CBNm7bG6WwGZAHXEhHx\nHn/+uYQOHTrgcrgICjFnb39k83HqtalZ5uckUh6KkzR7K8+4GXcNsxXY71nXGEj2PCYiIlLtxEZH\nczwlJXs5xmot8cyA27Zt48orr8Fmq4E7YQaIJSSkJidPnvRJ0tygQQNmznytwPrU1FQuvPAyjh2b\ngMs1HXdn2ddxOP4iLW0TX3/9NSNGFN0ka+HChTidFtyXPdUARuN0hnDixAlWdp5Iz3Uv52xsGNQr\n87MRCSxvFwKuAboBvYEHPLfeuEea15RvaCIiIhXT8ZQUDMi+5U6gi8MwDC6/fDBHjowDjgHvAkcI\nCnqG2rWjaNas2Wn3jY2Ozq5NPnWLCg/nk08+ITMz87T75bZu3TrS0+vict2Du9LyCSAV2AEEU5xv\nen/8cTXuLrQXAWcB08jKTObCHj2yE+Y9y7ZrGmypMorbEPEQsNpzO1R+4YiIiFR9KSkp7N+/C5gE\nLALeAlrRosV8Vq78luDg038RnD9hN4C0jAzGjJnBRRf1KVbiHBUVhdOZAJzaNhU4jsn0LmFhv9G3\nb1+vx4iNjSYoaH/28vs8j4uknA0Mg2a9z/B6HJHKoixdxNf6LAoREZFqJCoqipCQEGA97lHa5URG\nNmLmzJeKHGUuSlraD2zc6OTTTz897TaJiYkMHTqSwYNHEh4OERGXA88SEnIxtWrFcNVVB1m9ehV1\n6tTxer57770Tq/U9zOa7MDAxkq8B2DZjuUaXpUryVtNclM4+i0JERKSUsrKy2Lp1K2FhYZxxxhk+\nbalWXoKCgnj//be55ZbLMZt74XKtZ9CgHvTs2bMsR8XhiOPYsWOFPupyuejdewCbNnUlK+tdgoK+\nwmqdzq23duK88+7hxhtvLNH/XYsWLVjUZTjnL8/VjcMwCm25JVIVVOR3FnXPEBGRIh05coSLLurD\noUOpOJ1p9O7dgy+++KTI8obi2rhxI3/++ScNGzbksssuy5NQ+uJCQIAtW7awZs0aGjZsSM+ePYuV\ntJpMJvJ/Orr3+o2IiIH88ssSOnXqVGC/Xbt2ERfXA5ttH6e+aI6O7s5XXz3PxRdfXOLYyRXrxsfm\n0WHy0JIfQ6SC8NWMgKezoQz7ioiIlNmYMXeze/elpKZuxW7fyfLlx3n11dfLfNyPP55Nt269GT9+\nGUOG3MPQoSPzXByXlJyMYRjZt9IkzABt2rTh+uuvJz4+vtijvDFWKybIcwsGYmKG8MEHrxeaMAOE\nh4fjdNqBdM8aJy7XScLCwkoU8/rbp+dJmDEMJcxSLXj7U/zqQtYZuH9HG/g+HBERkeL7+++NZGXd\ni/tjKRybbQhr1pTtkhuXy8WoUWNJT/8J93QE6SxZ0pUffviBSy65xAdRl05iYiITJz5A05adGdS5\nAy+++Aw1a7r7HhuG4TXpbtCgAQMHDuCbb/phs11LRMQSOnZszDnnnFP8IEwmzvbcXXfbq3SaOb6U\nz0ak8vGWNM8BPgFc+da7351EREQCqH37tuzf/zkOR2fAQUTEV3TqdGmZjpmWlobDkQXEedaEA2dx\n6NDpm0elpqZy9OhRGjduTGhoaJnOX5isrCx69LiCHTvOJyvrMTZtmstff/Xjr79WeabLLt4o9ezZ\n7/LGG2/y229r6dDhfO6++y7MZrPX/f596nPaP5JrHM0wKHw8W6Tq8vZb9hcwksJLMfYBTXweUQ7V\nNIuISJEOHjzIBRdcRlKSGZcrhe7dO/Ltt5+WOXE988xO7NhxE4ZxN8FE4cCW5/HcNcxvv/0uEybc\nTXBwDcLDDZYs+YKuXbuW6fz5rVmzhvj4EaSmbsT90e0iMrIVf/zxNe3bt/fpuQrIlZCv7fNfOi8q\n+xTfIhWNL2YEnIh79r/CDClFTCIiIj7TsGFDNm9ewz///ENYWBgdOnTInia6LBYv/oy+fYeyc+cD\nOJyZBS+881wE+O+//3LXXQ+QkfEnGRmtSUubR9++QzhyZLdPu3gEBwdjGJm4v/g1A04MI6tYo8Sl\ntfONJbQc1ydnhWGobZZUa+qeISIichp2ux2LxVJotwrDMJg7dy6jR88nJSWnN3JoaE0OHNjuk2mw\nT3E6nVx44eWsX1+b9PRBRETM59xzM1ix4pvyabGX65j/nHU9ces/LrBJVlYWU6ZMY9myXznjjMY8\n88yj1K9f3/exiPhBeXfPEBERCSjDMEhKSsLhcJTL8SMiIk77WN26Lfnii29xOP6A7JnwfiMkxExM\nTIxP4zCbzfzww1dMnNiGvn0X8p//dGbJks/zJMxZWVlMmDCJOnVa0KxZHHPnzivxeQ4u+D1Pwmw4\nXcSt/xjDMEhMTMzz/3zTTbfz3HM/8OOPtzBrloVzzrmYlBJOJy5SmWikWUREKqWtW7dy2WVXcfjw\nAUwmFzNmvMFNN93o8/Ocvi/yJiyWsXToYLBx43ZCQtqTlbWOefPep3///j6Pw5uJE+/n7bdXY7NN\nBw4REXE93377CfHx8cU7QO4E3BxGiMPdmm7Dhg1cccVgEhOPYTbDrFnv0rdvH2rUqIXDcQyIBMBq\nvZQPPvg/Bg8e7NsnJuIHGmkWEZEqq0+fq9m3bxyZmSfJyPidsWP/wz///OPz8xTeF9kKtMVme4Gj\nR4/z++9LmDPnP2zZsjYgCTPA/PkLsdleBNoA8djtE1iw4Guv+yX+ti1PwuzKdGQnzC6Xi8suG8Sh\nQw+TmXkCu/0Hbrrpdnbt2uXZOneOUX711SIVQXGSZjM5vxUm4EZgLGApr6BERESKkpaWxt692zCM\n//OsaY/ZfBlr1qzx+blyT2Ty3/8+hNl8J47sa+T3EhUVRVxcHH369KFx48Y+P39xRUVZcTe2cgsO\n3kfNmtaidzKZqHV+65xlwyAoJCf5PXr0KCdPJgM3e9Z0ITj4ArZs2cJVVw0lIuJq4GuCgx8kKmpH\nQPtYi5S34iTN3wBtPfcfAkYAZ+Pu4SwiIuJ3FouF8PBIYLVnjQ3DWFPuSeuECeOoWfNzQkLGYjI9\ngsUyhhdemAy4p9Y2mUx5brHR0eUaT24vvvg4FsutmEyPEhIympiYbxg3bmyh26ZsPpBndDnzhA0K\nKYmMjY31dO04NYKfjMOxnsaNG/PxxzO5++7unH/+6wwbdpTVq38k2o/PV8TfvNU09wTeBW7xbDsD\neBBI9Nwf5Vm/shxiU02ziIic1oIFX3DjjaMxm3vicv3NoEEX89FHb5dPNwncSfHxfBe61bBYOJGW\nBpy+9tmfn2V//PEHCxZ8idUayW233Uq9evUKbpT//6ewZDnfcw3GRIR1CC7XX4wYMYg33njR16GL\nBFRxapq9vbPEAzOBcUAM8Kjnvgl4BZjg2U5Js4iI+N2OHTtYvXo1DRs2pEePHphMJlauXMm2bduI\ni4uje/fuPjuXt6S4IiTNRclISCasbo3s5bQdh4lsWUhSTcHnYgJmz55Ns2bNOP/888s3UJEA8EXS\nDPAEcDUQCkzBPfJcG5gLlGfxkpJmEREpkYkT/8vMmZ9iGBcBy3jggfE8/PB9Pjl2eSfNR48e5eWX\nX+PYsRMMGtSHfv36lTXkXIF4H13Ou3nBpFmfyVKV+SppBmgPZAHbPMt1ACuws7TBFYOSZhERKbat\nW7fSqdPF2O2bcH85eoiwsHbs3buVunXrlvn43pLiwso3ck+3XZTExETi4s7l2LErcDjOxGJ5hRde\neIjbbx9dppid6VmYI3KmFD/+yyZizm9bxB5uSpqluvFly7l/cSfMtXFPn92U8k2YRURESuTIkSOE\nhrbEnTADNCA0tD4JCQnFPsaWLVuIi+tOaGgkrVp1Yt26ddmPFdZ6Lsaa050id5eNU7fiJMwAH3/8\nMSdOnI/D8QZwDzbbAh566Klix10okylPwoxhFCthFpHCeUuavwHiPPcb4L589hZgFnB3OcYlIiJS\nIh06dMDl2oH7o8sAPiE0NI2WLVsWa/+MjAzi4/vx7783kZV1iB077qV37/6cPHkSKFtS7I3NZsPh\nyD0aXoeMDPtpt9+6dSvz5s3jjz/+KPCY4TLylGMc+XSV13KM/PL/gZD7jwOR6spb0tycnD4ztwDf\nAQOA84Bbi3H8cOB3YB3u0eopnvWxwPfAVs8xa5YkaBERkfxiY2NZtOhz6tT5P0ymEBo1epylS78q\ncirs3Hbs2EFaWjCGMQ6IBm7E5WrChg0byjVugIEDBxIa+hEwH1hHRMQorr12WKHbzpr1MZ069WDU\nqDn06jWMO+/MVbNtMmEy5/poNwzqXd2jxPHk/wPBV38ciFRm3pLmrFz3LwUWee6nAK5iHD8d6AV0\nAs7y3O8B/Bd30twaWOZZFhERKZMLL7yQo0d3k55uY//+LXTq1KnY+6alpZGWdhi4HHgeOElm5j5q\n1apVXuFma9++PYsWfcZZZ71C06YjGDXqLKZPf6HAdunp6YwZMw67fTkpKZ9js63jnXfm8Ndff+UZ\nXd43bW6JR5dFpGjeLgT8GlgCHADeAVoCx3HPBvgn0KEE57Lgbk13M/AZ7h7QR4D6wApyJlA5RRcC\niohIqeW/MK+oi/ISExNp27YziYkjMYxzgSkEB+/hhhsG8f77bxT/HFFRJOW7GNCXDhw4wJlndsFu\nP5K9zk4I4ThyNtJnp0iJ+eJCwNtw1zSPBK7FnTCDuzzjvWLGEYS7POMIsBzYCNTzLOP5t/BGkSIi\nIkVwOp388ssv/PDDD6SmpuZ57HhKCgZk3/J3tsjtm2++wW4/F8N4EhgIfIvLlcjMma8Wef4C50hN\npV+/a0hPTy9W/Fu3bmXJkiXs27fP+8ZA/fr1sVojgI8BMDBlJ8z7b/yvEmaRchTs5fEjwO2FrF/u\nuRWHC3d5Rg3co9a98j1+6r1GRESk2NLT04mP78/GjYcICorBYjnMr78uo3nz5j44ukFQkKlUswsu\nX+7igQcm8+KLzxa53TPPTOOpp6YSGtqRzMx1vPPO6wwffm2R+5jNZr77biG1O19II+PGXOEalO8E\n4iLiLWn+Kt+yARwDfgA+KuG5TuK+pLkrOWUZh3F35Tha2A6TJ0/Ovh8fH098fHwJTykiIsW1adMm\npkx5iZQUG7fcMpSBAwcGOqQivfTSK6xfbyU9/TvATFraFEaPvpvvv19Q4mP1798fi+UR0tMfxens\ngsXyAtdfPxqz2VziY6Wn38HKlc8Uuc2WLVt46qmp2O1rsdsbAn9z660XM3DglURGRha579m56rQP\nnTeIBr99UeIYRaq7FStWsGLFihLtU5xptPOLBW7A3bfZ2wV8tQEHcAKIwD3S/DhwBZAIPOc5Rs1C\njqWaZhERP9m6dStdu/YgLW0ihlEPi+VJpk9/kpEjRwQ6tNO66abbmTXrbGCcZ81amjUbye7dfwMl\nq2kG2Lt3Lw888AT79h2hb9+e3Hff3V6T5vznCMaKYb6LwYP3Mn/+B8Xex0EykZHNWbduKa1atSp0\nv4TzB1Dnt69zVugzUsRnfDkjYH5m4C/gbC/bdQQ+wF3XHIS7v/NU3In3PNyTpOwGhuFOrHNT0iwi\n4ieTJj3A//5nwjBOjZAup1Wre9m2bU1A4zodh8PBRRddwm+/pQA/AhZCQycwcGDqaZPV8pKUlMS5\n5/YkIaEmEEpU1B7+/HMljRo1KnT7wmbbg8XUqDGSw4d3Ex4eXthO2Xed5hDMjkwfPgMRKU7S7K08\n43ScFK8OeQPQpZD1Sbhb2ImISAWQleXAMKJzrbHgcDhOu32gTZkyjfXrg3A3cWoCBBEbG8ubb/7m\n91hiY2PZsOF3VqxYgdPppGfPnkRHR3vfMZfo6JF8+eW8AglzwuAx1Pni7ZwVhkHJC0ZExBe8Jc2x\np1k3AncXDBERqQJuumk4b799BTZbM6AeFssk7rjj5kCHxbJly5g9ewFWq4WJE/+PZs2aAbBkySrs\n9rtxd7o4AiykVasv/dJTuTAWi4V+/fqVev8jRwoZYTaZqJN7Wd++igSUt5ZzfwFrct1WA7Nx91y+\no3xDExERf+nSpQuLFn1Gjx5z6dz5WZ59diyTJt0d0JjmzZvPwIE38c47LXnlFejU6Xz27t0LQJMm\n9TGbV3u2rIfZvJdmzRoA7pphk8mU5xZbwpHf8lTYFNW5E+Zjdz2ZpxwDw1DCLFIBlLam2R9U0ywi\nUo21atWFHTue51Q1n9l8N/fdF8UzzzzJvn376Nr1Iuz2swEDi2UDa9asonHjxgVqhsH9YeftM6Wk\nFw6Wi3wt7k4tBSQWkWqkPGuaRUREfCYtLY2lS5fidDrp1asXMTExnglCcsotnM5a2GwnAWjSpAmb\nN//FokWLMJlM9O37ATExMUWeY86cOdStW5devXoV2n/51EQlp5jKcWa//JLemk/s2GHZy2byXjxk\nSklhzZo1bN26lXbt2pVoenAR8Q2NNIuISEAlJiZy7rk9OXasDhBOePgm/vxzJW+//QEvvvgtNttL\nwGEslttZtmwh3bt3L/J4pxtptlqvwTD+pXfvsxg37maWLl1O/fp1GDNmDFartdCuFn75HMqfwBtG\nobFYLI0xm8/H6fyJxx+/n3vvvav8YxOpJsqz5Zw/KGkWEakGJky4l7fespGVNR0As/lJrrxyM59/\nPosnnpjCrFmfERUVyXPPPUSfPn28Hi9/mQVAMBYcpAEZhIWdg2EcJjPzLsLC/qFJk82sW/czUVFR\nfk2aU374E+sl3bKXHUnJBMdY3ecutC3dYaAesI/w8LPYvXsz9erVK7f4RKqT4iTN3i4EzO1sYBBw\ntec2pNSRiYiIeOzcuZ+srAuzl53OC9m9ez9BQUFMnvwQO3b8xfr1q4qVMAMkJSdjs9kYPvxWgoNj\ngAgcNAbmA2FkZHQmM3Ms8DAZGbM5dKghn376aaEX6BVX/osPvV54aDLlSZgxjOyEGQpeLBhCEO6E\nGaAJoaGNOHz4cLHjE5GyK27S/B7wDu5E+UrPbUB5BSUiItXHJZecj8XyFpAMpBMe/irx8UWXYHgz\nduzdzJ37Ew5HD2AzMBO4E5gLfAlc4tnShNPZhNTUVJKSkzEMI/tWkgvvTtVDn7rlH+k+Jf3vrXnK\nMez/7Ci0M0buWBITEwmLqgUs8zz6NXCMM844o9jxiUjZFbc841/cHeT9WS+h8gwRkSpm69atLFy4\nkLCwMIYPH06dOnVwOp2MGjWeWbPew2QKok+fAcyf/0HhM+MVU2xsE44fN3DPFtjSs/ZhgoKmEhfX\nmS1bWpCR8SSwAYtlDGvX/kzr1q1Ld678XTeA4xRS2lFI7XJxLV++nMGDh2O324iKiuarr+ZxwQUX\nlCpeESnIlzXNHwDP498JTZQ0i4hUIX/88Qe9e/cnM/M6zOZkrNYVrFv3Kw0bNgTAbrfjcrmIjIws\n87maNYtj794M4E1OjSqbzdcxZUpX7rjjDsaMmcj33y+jVq3avPXWNHr27Mn27dt54ompJCaeZPjw\ngdx44/XFOlfh9cc5SbPj2AmC6+R09kiZ+y3WYX1L/JxcLhcnTpwgJiam0O4fIlJ6vkya43F/n3UY\nyPCsM4CzShlbcShpFhGpQs4//wp++204cDMAwcH/4Y47TLzyyjSfn2vhwoUMGzaSzEwTMBrYTnj4\nj/z775+0aNGiwPZ79+6lY8dupKb+Hy5XcyyWp3niiTv4z3+8d6goLGnO7qtchtFlEfEfX14I+A5w\nI9AHdy3zANxzl4qIVEkVfVa5yigp6TiQUwLhcLQmIeF4uZxr0KBBfPnlXEJCnLhrmtvgdF7J8OGj\nCt3+o48+xma7BpfrEWAENttsnn/+lVKfPzExKU/CfPLR/ylhFqnkiju5yVHcI80iItVC/okuwL+T\nXVRFgwf35dVXH8Jm+xA4icUyjSFDppTb+dLS0ggPv5isLPfHV1aWk7/+qsmJEyeoWbNmnm2dTieG\nEZZrTTgul7NU5zUAQkNyrTCoUaojiUhFUtyR5rXAJ8Bw1HKu3CxdupSRI8cyfvw97NixI9DhiIj4\n1FNPPcJNN3UiKqorMTF9eOqpCQwdek25nc9isWAYRwCXZ00ShuEo9ALDa68dRljYB8B0YAlhYdcz\nduytxTpP7vZwuSUPuEGjyyJVSHFrmt/3/Jv/t/8W34VSQLWqaZ4//1NuvvkubLb7CAo6SlTUO6xd\n+wstW7b0vrOI+NzpZpWrTu9LlV1WVhbnndebTZtqkZ7eA4vlQ8aNG8DUqU8X2PbQoUO0bXs2ycl1\ngCBCQg7z6qvPcPvto72eJzY6mqR830Kc+nDNrm0WkQpNMwJWIm3bdmPLlieBKwAICrqPe+4xM3Vq\n+X11KSKnV9isckqAKh+73c7rr09n1679XHTReVx77bWFdp54/vnnefjh7WRlzfCs+YMGDW7k4MGt\n3k+S63jJBBGdPbKtP7REKoviJM3FrWlug/s7q/q4+zWfhftCwKfKEJ/kkpGRgbu7p5vLFYvdfjRw\nAYlUc9U5OXY6nXz//fckJiZywQUXFNptoiIwDIPly5dz8OBBunXrVmif5YiICO699z9ej2W3p+N0\nxuRaE0NmZsZptwcKdsYAauDy64QGIuI/xa1pfht4EMj0LG/AXd8sPnLbbddjsYwDfgI+x2J5kRtu\nGBrosESkmnE4HFx++WCGDn2AsWO/JC6uG0uXLg10WAUYhsHQoSMZOHA8d9zxDZ079+Czzz4v9fGG\nDBlMePi7wGzgNyyW2xgxooiPOfVJFql2ivtbvxo4B/cFgZ0969YBncojKI9qVZ7hcrl49tn/8cEH\n87FYIpgy5QH69OkT6LBEpJqZM2cOo0a9SlraStxfRn5P/fp3cOjQ9jzbFZgFz8+lK99//z2DB99N\nWtpqIBxYg8VyGampiaWe+GPVqlXcffdjnDyZzLBhA3j88YcIDs73hWwhfZdz/18EA45cD6ukR6Ry\n8GV5RgLQKtfyNcCh0oUlhQkKCuLBByfx4IOTAh2KiFRjBw8eJCvrHHI+HrqTmHiwwHb5W/L5ux3f\ngQMHcI/hnOqE0YWMjDTS09OJiIgo1TEvuugiVq/+4fQbnGaikpImxcnJyaSmplK/fn2Cgor7ha+I\nBOZbAkAAACAASURBVFpxf1vHA2/hrm0+CNwN3FFeQYmISGB0796d4ODPgB2Agdn8HF3+n737Dm+q\negM4/s1ObpLSQtmy916yQYYiCAoKgiA4UEFxoKAoKg6cqPgTFRkCIgguFARliIJMQUC2QFtAlhRk\nFEqbtE2a9/dH0tK0aRugUNHzeZ48Njdn3VtM39yc857GrQp7WDk0bdoUkaX4ZwsKOt04KleuHTJg\n3rJlCwsWLODgwYMX3I/L5fIHy1kDZpGLSiV3+vRpevXqR7FipalSpSF16jQjPl7df1KUq0W4QfM+\n4HqgBFATaA0cuExjUhRFUQpJq1ateOedFzCb62M02qldexlz584s7GHlUKdOHaZMeR+rtQ1Go53K\nlT9l8eJvcpR7/PFnaNOmO3fdNYnata/lu+/mh93HiRMn0Oz2oGMnT5y4qPHu2bOHChWqMXfuBrze\ng6SkHGfv3hvp1y//lHaKovwz5Dfx615gFsFTtLIyA/2B6QU4pgz/qTnNiqL8s3z99RymT5+Dw6Ex\natQwGjRoUNhDuqLS09Nxu904HI6Qr1/JOc1//fUXL7zwOocPH+emm9rxxBOPZk5r8Pl8JCcn43Q6\nc9TbsGEDHTr0weXaCkQCm9C0TiQmnsRgMOTdabapGFmfXcy5tmx5I+vX64GWwEuBo4cpUqQZZ86o\nu82KUtgKYk6zA9gI7MG/GDA+0GAp/AsDa+LPrKEoivKvMW3adIYOfRWX6xXgbxYvvoGNG1dRq1at\nwh7aFWMwGHINmOHKpeRLSEigceM2nDp1B+np7fn11/f4889DfPjhWMC/HiRUwAxw4MABDIYm+ANm\ngGvxeoUzZ85QrFixHOU9Hg+pqak4srWng0uev33gwAHgbmAZ/mRUJuAnrrmm4gW3pShK4chvesZ4\noDHwEf7/w9vgn5phzPLahMs5QEVRlCvtzTfH43JNBwYAw0lOfogpUy7HF2pKfn744QeSkxuSnj4G\n6IPL9T2TJn2Ez+fLt26DBg3welcDuwNHPicyMoqiRYvmKPv662/zl1kLCpifefI5NFuPAjmPpk2b\nYDQex38vqj7QCk17mtmzJxVI+4qiXH7hZM8Q/MmD11zmsSiKovwj+AOyrG+PJtLT3YU1nP80/+/C\nlOWIEZCwdtmrUaMGEye+y4MPNkevt+NwmPnxx/k5UtItWrSI50c9E3Tspi69mPfaC2z/oz9Lllz6\neXzyyYfccEMP9uyJwetNpkuXmkyfPp/ixYtfeuOKolwR/+Ts7GpOs6IoheKDDz7i2WfH43K9BRxH\n055j7dqfaNjwcqamV0L5+++/qVWrMWfOPIzP1xhNe4c+faozffrEsNtwu92cOnWKUqVK5ci77L7n\nQWwzP858Hs0JTuEiMrIlCQl/Af45zGeSkjLLXOz8bRHh2LFjaJpGkSJFLri+oiiXTzhzmlXQrCiK\nko2IMG3adD75ZA52u41XXhlBy5YtC3tY/1n79+/nySdf5K+//AsBX3hhZM5NRy5GjsV+6fhnLX5F\nzZrvsnv3hkvvQ1GUq4IKmhVFURQlm5Sps7AOuivzefLPK+nw7Evs3p2MTlcekVX8/PP3NG/evBBH\nqSjKlVSQQXMk/hw51wWerwBeAc5e5NjCoYJmRVEUpWDlsqufx+Nh6dKlJCYm0rZtW6655ppCGJyi\nKIWlIIPmufi3XZoRqHMX/uW/PS9hfPlRQbOiKIpSIDxbdmJqXC/zecrr72J9bnghjkhRlH+Sggya\ntwHZM/uHOlaQVNCsKIqiXLpc7i4riqJkCCdoDncbbTfQNsvzNoDr4oalKIqi/JMVjYhAp9NlPopG\nRGS+lpKSwoABg7DbixEdXZ6pUz8pxJHmzXf2XFDAnNKsjQqYFUW5aOHeaW4IzAQycuQkAPfgv9t8\nuag7zYqiKJeBiLBhwwbi4+Np1KgRFSpUCHpdp9MF74AXqAMwaNBQZs8+gNs9GYhH027lu++m0alT\np4sez6ZNmzh8+DANGjSgcuXKuZZLS0tj5cqVpKam0qZNGyIjI3Mtm/3ussNeDp3Ozdy5n4c91rS0\nNFatWkVKSkr+/SmKclW7HNkzMm43XIn9U1XQrCiKUsBEhPvue4Q5c5ZgMNTB613P119/Srdu3TLL\nhAqaszPixEsiMIahQ0/y/vtjL2gcRSMiSMi2HbUR+GLON9x+e68c5ZOSkmjZ8gYOHvSh00Vgsezl\nt99+oVKlSsHn5xN0huAvUXWsA1oAK3E4bufIkb355klOTk6mVatO/PmnB50uErM5lvXrl1OlSpUL\nOs9LFeo6XWyeaEVRclcQ0zMycvI8CQwHHgg8Mp4riqIoV5EVK1YwZ84ykpO3k5j4PS7XfPr1uzff\nHfYk28OLP5Azm2MpXjzqgseRcO5ciDbhjjsG0a1bX9auXRtU/q233iUurgrnzv1GYuLPnDr1EA89\n9BQAv//+O7fe2h90uqCA+de1a4ks0gx/wAzQDr2+FPv37893fGPHvkdMTHnOndtAYuJPnD79KA8+\n+GSedf7880/uvPN+OnTowbhx48Pa6js/oa5T9iBaUZQrI7+gWQv815nLQ1EURSkEv/zyC9WrNyE6\nugL9+t1PUpYd6/Jy8OBBoBngCBxpicuViNt9fptwp9WKDjIfuW0jYrP1oUSJtTz88JDMY3nNhwZI\nTU1l8OChuY7P53uTRYs60KnTraxbty7zeGzsQVJT25NxI8jna8+ffx5i+/bttGvXhe/mfx7ckAjl\ny5cnNXUvcDBwcC9paUfCSieXW3+5OX78OE2atOGrr8qzYsXdPP/8TJ5+elS+/SiKohQEURRFUfzO\nnj0rK1askM2bN8uuXbtE06IFvhPYKxZLX+nevW9Y7Wzbtk1stpICMeJfFTdZypevFVQmJiZGbLbi\nAjsERIw5bzSLEWT8+PGSkJAQVBd/o5kPQI4dO5b5+n33PSI2W9cc5SSzbbtAR4HX5Y47BmbWGz9+\ngmhaK4GzAh6xWO6Re+55KEQby6R69aaZ9caNGy9Wa3HRtGvFYikiEyZMDus6TZw4WTSthcCZQH8D\npX//QXmUnyg2W/8sQzksNluRsPrKS27XSVGUghV4b8tTfnOaP8waxGYpn9Fw7rcLLl3gHBRFUf7b\ndu3axXXXdcbrLY/Xe5RKlUoQF9eA1NSPAyUSMZlKkZYWXlKjKVM+4bHHHkens1K0aCQ//7yAWrVq\nBZWZNetzBg0aAphJSTmZ469J1sWBQcdDzIdu0KAFW7f67xoXLXoNCQmrgcoh28zKajSSnJrKd999\nx/79+1m2bDXLlv2MTmeiWbMWrF7zY7b6AqygWrURxMZuBCA+Pp5rr23HmTMakELt2qVYuXIRmqaR\nF5/Px+DBQ5k5czo6nYlrr23G4sXfEJHtznmGiRMn8uST63G7ZwSOxGO11sTtvrQ9wLJfT/95hr72\niqJcvHDmNOfn3sDjY2AN8Bj+QHk1MOmSRpe/wv3IoSiK8g/RoEEb0ekmBW40usViaS5mc30BX+DY\nDjEanbJly5aQ9aMcjqC7xFFOp6SkpEh8fLykp6fn2m9qaqrEx8df0N3O7GX9fZaW558fLSIi11xT\nU2ClGHHmuHsdFaJuz54DxG5vLGbz46JpFWXUqNEhx2LEIvCtaFpVmTTp48zx3HbbADEaRwaKesVq\n7S2jRr0c9rVPTEyUkydPis/ny7Pc0aNHJTKytOj1bwp8L5rWSh577Kmw+8lNlDPEdXI6L7ldRVGC\nUQB3mjP8hj83syfw3IQ/iG4eZv2LETgHRVGU/7YiRUqTmLgRyJiL+xJRUZNISmqHx1MP/z2MFtjt\nq1i9eimNGjXKrOvxeDCbzTnu/kY5nUELyrJmZBARfD4fBoPBXz6Mu51erxej0YjTZiMpJSXzuD/L\nxl4slmocObKP5ct/4d57h5KS8hAm0wGiolZQvHgUO3duCdmH3V6F5OSdgBU4ilA25DXSAW3adOO+\n+3pz7713Z9w1olatFuzZ8y7QOlDyU269dRnz5n0Wsp1LERcXxzPPjObYsVN0734DTz89DL0+3O0Q\nFEUpTAW5uUkk59PNgX8RoEpYqSiKcgXUrVsfg+FT/DdCzmC3f8f774+ldOltwGZgBvAtyclP87//\nTQyqu379+pBtZs/KkBFAv/HGO1itTiwWG9269SYpKYkopzNoYWBG0A2wdetWypevhdlsoXTpKiz+\n6Sfq1WsKNAIkkJauBCZTMRISEujTpzdLl85hxIhUXn65BmXKXENMTKOcAwwwGqsAVgRdUMAc6i/b\nyZPx3HfffURElGDu3HkAXHttA8zmGYAPSMFm+4LmzS/PZrbVqlVj7txZ/PrrYkaOfFIFzIryLxPu\n/9FjOP/OPCPw85uXa1CKoijKeV98MYVy5b7Ebq+MxVKRe+65gQEDBhAdXRYYBNwQKOkkJSUtqK7H\n48neXK4mTJjA669PJS3tD9LTz7JsmZEhQ57kdGIiIhL0OJ3oz7hxww23cPjwKEQ8HDv2Lt263c63\n385G0w4Bc4BkdLrxREQYqFixIgBt2rTh5ptvwmIxs3PnNjyej3Mdk8+3FckWIqd7vSHL7tmzH6hN\nUpKV/v3vZ8uWLVx/fUtKlVqD1XoNVms5rr8+kieffDzsa3I5nTp1ilmzZvH555+TkJBQ2MNRFKUA\nlQZ6BB6lrkB/hTexRVEUpZAkJibKq6++LoMGPSpffPFF5lxaj8cjsbGxQZkopk2bLppWVWBxYD5v\naVm6dGlQe0lJSWLS6bJlvjCEnHtsNEYIDM5yeKeUKVMj17Fu375dnM6aQVOMixRpLqtXr5YNGzZI\nhQp1xGi0SO3azSQmJiaz3pNPPid2e2XRtHsEogVeFCPWHHN3s89drl+/lezbt09Ecs71NaILZNYQ\ngQkCZaRUqSricHQQTesrmlZUFi5cmGNucvZ2rtR84QMHDkh0dDmx228Vh6O7lCxZSY4cOXJF+lYU\nJSfCmNMcLj1wN/Bc4HkF/Ik+L6fCvn6KolwF4uPj5fbb75a6dVvLwIEPy9mzZwt7SBfN7XZLzZpN\nxGLpJ/CeaFodee65vBetTZ36iTRocJ00adJR5s+fH7LMkSNHpGvX3gKRAg8JnM2xEM//fIlA8SwL\nDD+TRo2uy7Xv+Ph4sVgiBY4Fyp8Wm62EFLHbc128FhcXJ1ZrcYFTgTrx4k8z10BgnOh0N0mTJtfl\nCJhvuOFW2b59e8hx2M3mHP0ZQUym3lnOZUbIcyHEhwev1ysvv/y61K/fVjp06J7rAstL0bv3PWIw\nvJzZtdE4Uu6++8EC70dRlPBwiUFzW8AQ+HlS4LEh8LwYsOlSGg9DYV8/RVH+4Vwul1SoUFuMxqcF\nVojFMlCaNm2fb6aDf6q5c+eKw9EuS6AXL0ajVbxe7yW37fP5pGjRsgI/BNo+JiZTETEYhmeJGU+K\nTmcRh6OTaNoAcTiKy4YNG/Js98UXXxNNqyCadr9oWmW5++5BIe8SZ7ynr1mzRooUaR4iaHdIYGlh\n0MNmbSewXHS68eJ0lpCDBw/mGENu/cHYLIf+kNKlq+dbF5BHH31KNK2twDKBCeJwFJf9+/df8u8g\nqxYtOmf5XYjAN2K1lhaz2S7167eSuLi4Au1PUZS8EUbQnNecZh/n08q1AB4CkgPPT+HPoKEoilJo\nNm3aREKChtf7FtCO1NQp7Ny5h0OHct+57Z/M5XIB0Zxf5lYUEd8FzUvOjU6nY8GCr4iIuJ+IiCZY\nrXXo378PFsvXQCzgxWR6jbZtOzJlyn18+GEHdu7cSNOmTUO2t3HjRubMmUP//r1ZunQ2ffvq8HpP\nMHfuz3mOo3bt2ogcwEvwQkQvSTnmLmu2IrhTvgQ6IPIIHs8tLFiwIOxz1rQpwBEgFYvlTTp0uC6s\nep9++iku12ygIzCEtLRefPfdd2H3G47Onduiae8BiUAC8AYpKTeQlvYXO3b0pn37rgXye1cUpeDk\nFTSvBT4K/JzK+bvOAMXxB9WKoiiFxmg04vOlcP7tyIOIB6Mxt42f/9k6duyIXr8GmArswGK5n/bt\nu2C1WvOtm9/21QCtW7fm0KEYfvppIjExm5k+/WPeffdFrNZr0es1SpdeSqNGNSlTpgz33XcfFSpU\nCNnXE0+MpH3727n//s9p2LANv/22kS++mEda2q8kJe3Pc5xRUVEsXjw36JgHY9AtnmucpTh96hR6\nvRE4v2GLyDF+/HEpr776Gn/++We+16RJk7IYDFUxGCK47rokJk36X751AAyG4H71eleB/5saNeoZ\nevWqgsFQHL2+JCbTKWA6UASRJzhzxsOBAwcKtE9FUa6MAcD3wF78WTNigT6Xuc/CvlOvKMo/nMfj\nkYYNW4vVeqfATLHZuki3br2v2ukZIv5tri16Q65zgnNDiGkGb775TlhTOxITE6Vy5TpitfYReFE0\nrax8+unMzNePHz8u99zzkLRu3VXuu+9B0bRrBE5nTnswmWwSEXH9+fm5oTYuyTb+7OM9P+5IadXq\netm2bZu89NJroml1BT4Vg+EeAU0MhmFiMDwuTmcJ2bVrl4iE3gDEvzDwZbFab5E6dZpJSkpKyHMP\ntRDw9dffEk2rLTBdDIaRUrRo2aAFmAXJ4/HIxo0bRdPKCyQHLsPfYjZHyIkTJy5Ln4qi5EQBLgQE\nqAU8GnjUyqdsQSjs66coylXg3Llz8swzo+Tmm/vJa6+NkbS0tItqZ8WKFVK1aiOJiiort93WX86c\nOZNr2UWLFknFivUkKuoaufPOByQ5Oflihx8SuczRHTjwYSlatJyUL19H5s2bl2cdQDSttdhMpnyD\n78mTJ4um9chSfZMULXqNiPizb5QvX1OMxmEC88VsbiJGY7ug4Vks0WK1lhD4K3Bsq1itoYO+kydP\nSocOXWUs5qDxNsIsUFHgG4FxYrdHy+7du+WTTz6VHj36S7lydQQ+yKyi070pffrcm6N9n88nVqtT\nYG+grE8cjnby9ddfh339fT6fzJjxmfTo0V8GD35MDh06FHbdi+Hz+aRfv/vEbm8kJtNwsdurybPP\nvnRZ+1QUJRgFHDRHAQ2AJkDjwONyKuzr95+ktmxV/ovi4uJE06IF5gkcELN5oNxwQ4+QZbdu3Sqa\nVlz8mSb2i9V6u/TufU+Bjodcgmar9WaBfQLLxGYrKevXr8+1jv//3xMhj2f3zjvviMk0NEuxE2Kz\nFRERkYULF4rT2TbLa3vEmO09woROXn31LbHZSkhExHWi1xcRg0ETo9EmjzwyPPPO/9y5c8UY4twm\nT54sERFlBTZmHtbrn5Lnn38hc4wtWnQWI7Z83588Ho/o9SaB1My2NO0umTZtWoH+jgqaz+eTb7/9\nVt566y1ZsmRJYQ9HUf5zuMSFgFm9CmwHPgDGAu8GHsq/TPZdwgSCttpVlH+jOXPm4PFUxr9ozEpa\n2gR++WUR6enpOcr++OOPpKX1BzoDlUhJGc/Chd9fkXGmpLwPVAY6kpLyAAsXLg56vSjnd+zzK044\nM3E7d+6M0fg5sAQjDqA4bvdZdDod3bp1I+Xcr1lKV8BL8HuEB2HUqKfZunU1jRs7MBp7kp5+Fq/3\nL6ZPX8mnn84gLS2NT3reS9albamY0AEGgwGHwxE0Jp/PR0xMrP+8IiJYv/5HvLgB/x2c3N6fjEYj\n7dp1xmx+GDgIzENkEfv37+ejjz7ixIkTIa/Bnj17+N///sekSZM4e/ZsGFetYOl0Onr27MnTTz9N\n586dr3j/iqLkL9yg+Q6gCtAO6JDloSiKclXbuXMnr7wyFo+nFrAR/5dp6zGbtZDbIEdERGAyHcxy\n5CCa5rykMYgIM2fO4tZbBzB48GNE2u05tq026fT4g0A/s/kgRYqc7zfK6SQBcnzoDbV33tSpn2T+\nfOjQIT788GMaNGhEdPRgvCTnaMNDOibTcGA+NtvtuZ5H9erV2bfvIGlpQwEjEIXLdQ+rV2/AbLHw\nPYlB5S2BENrpdHLHHd2B24FvgHHAp/zww2I8Hk/OLb/zuZ5z537GTTe5iYpqTfnyLwBexo49yVNP\nraNOnWs5evRoUPlVq1bRpElbnn12P8OH/0zdus04ffp0Pr0oiqKENg8oeYX7LOw79f9J5PK1sKL8\nW3Xu3Et0unFZ/sk/KwZDMfngg49Clk9MTJRKleqIxdJXdLoXRdPKyMyZs8LqKzU1VdLT03Mcf/PN\nd8RqrSEwXWCEmM2R8sQTT0rFivWlRo2mMmfON/Ltt9+KzVZSdLpRYjbfJWXLVpPTp08HtZPb/79Z\nH0bsYrVGyPHjx+XGG28Vvd4h8LTAdNG0Wrm2ce+9Q6R1667y3HMv5znlo02bm0Snez9zPnFl8y1B\nZX/HkKPurbfeKUWLVhCdrqRAR4E7xT8vurgcPXo0dH9hvj+1a3ezwOTM6kbjU/LII8OCytSt21Jg\nTmYZs3mgjB79ali/U0VR/h0IY3qGLr8CAU2B+cBO/OnnCDTePcz6FyNwDsqVVDQiIsfXnVFOJ6cT\nE3OpoShXtyZNOrJ580jgxsCR2TRt+gkbNizLtU5iYiLTpk3j5MnTdOlyI23bts2zj8TERHr1upvl\nyxdhNJp48cWXeP75pzNfL1KkDImJy4GagSN3otP9gsh8IAGbbSDff/8ZdrudH35YRGRkBPfffz9R\nUVFB/eh0OqIIvhNrBCz2u0hOnhk44kWv16hRoz4xMU58vnJAxmt7gFo5/nLo8N8Nz9qP5PL6nj17\naN36Brze+pxNDJ4+kpHcP+vdb7PeAMbBpKUNAX7CPwPwD2AVUVEPc+LEIYxGY47+MoR6f9q3bx+n\nT5+mdu3aNGvWiV27xgAZOZqn0bPnKr79dkZm+bJla3L06DdA3cCRd3jkkXjGjw8vRZ2iKFc/nU4H\n4cfFedoNDMWf6b194NGuIBrOQ+F+5FAU5T/hlVfeFE1rLXBYIE40rZ5MmVKwi8b69LlXLJa7BVLE\nSM4tpv0L6w5kuZk6SOCRLM/fk4EDh+TbD9nuwmbcifUvcvxJIEGMxuFSv34r0bQyAu8IDMlS/GBY\n3zaFStOW1V8HD+WSTg6xWiPkwQcflKlTp8qWLVvEaCwikJ6lWFOxWEpIZGTpzIWOoc4pFJ/PJw88\n8GhgQWJDKVasnAwa9LBoWgfxZ/aIEU2rJZ99Njuo3gMPPCZWa3eB4wLbRNMqyOLFiy/kV6woylWO\nMO40h5utPQn/IkBFUZR/leeeG8GJE6eYNq0BBoOBYcOGcv/9Awu0j5UrV5OauhCwZM4Zzsp/a6MX\n8Db+NPhfBH720+v/xm635dtPlNMZcuHu3LmzGDhwCKdOxVOqVEUqVarDrl07gU5AG/x3mKthsWzH\n4DOj86TlaDerPL950ukok8cYfb6iNGjQgJYtW9KyZQe83lT8u+JFAj4cjlSeeuph/vrrBLNmfY3T\n6STK6USX5byyjyfDggUL+OKLlbjdcbjdEeh0U1m9ejIDBrRi1qy6GAwmnn32Kfr37xdU78MP38bl\nepR586pjsWi8/vpLdOnSJY+zUBTlvyjc29D/wz8tYwHnp2cAbC7wEZ0XCPwVRVGubg0atGH79iFA\nf0AXMmguWrQ8CQk6RIpiMsUjkorX+zR6/Wkcjpls3ryWKlWq5NtXblMnXC4XDRu24tChBqSmXovB\n8Abp6XqgNHAvsICSJfdz6NAuzGbzxZ2oLvhPStA0CjKmjbyK1foedevW4fffb0dkH/Ar0B+D4Seq\nVj3GoUOHcLuHAynY7RNYt2459erVy7f7MWPG8MILp/B63wkcOYPFUo6UFJUBSFGUvIUzPSPc7BmN\ngRbAG5xPN6dSzinKVe706dPExMSQkpJS2EP5V5sy5X84HMOw2+/MtcyBAzsZOrQnTudxPJ6TeL0p\nOJ3vMXDgWbZuXRdWwJyXhQsXEh8fTWrqp8BjpKcvwR/GrsS/Z9Vijh/38PPPP1944zpdUMCc8VPW\nORwJgBEnMIqUlDfZvftPRBrjz5TxCLCIWrWOEx1dArf7f8CzwGhcrhGMGRPeF521a9fGYlkMnA0M\n6yuqVKl94ecTwrFjx2jZshMmk42SJSuxZMmSPMtPmjSFIkVKYbE46NlzAC6XK8/yiqKEdurUKWJi\nYkhNTc2/8H9YIc9uUZR/t7Fjx4nFEiEORxUpVuwa2bx5c2EP6V/t4MGDMn369FznDKelpUnJkpUE\nxgkkCXwlUFRKlqwoqampYfeT23zjmTNnisPRJ9ClV6CHQPb5xA1l5MiRF3Zi2c5lxYoVuZ7j+aff\nSpkytcVI8HbhDqs15BbiVqMxrKH4fL4cOyAWsdsv7Hxy0bBhGzEaRwqcE1gmmhYtcXFxIcsuXbo0\nsC32doHTYrX2lrvuGlwg41CU/5I33ngn8+9UdHR52b59+2XriwKc06woyr/I77//zosvvk1q6g5S\nU8uTlPQFN9/ch7/+iivsoV2Vcss6Azk33zCR8/u/KKeTAwcOkJiYDjweONoHGMupU3vYs2cP9evX\nD2ssuc03vv7669HrRwAfA38CfwEZ/d0PLEanO0jNmjWD6q1bt475838gIsLB4MGDiI6O9r+QbSoG\ngel0ea8QXw7o0bRneOqpRxg+fFjwVJLANx45pq94Q2Wbzkmn0+H2eILbTE4Oq25eUlJS2LFjA+np\nK/F/QdsRna4za9asoWrVqjnK//jjMlyuwUC9QP3XWbJEbViiKBdi3bp1vPbaB6Sm7iI1tSxJSTO4\n+eY7OHhwV6GNKdzpGYqi/Ivs2LEDna4jUD5wpC/Hjx8muQACjP+i3HbSDHXcg3+OcdbH6cREoqKi\n8HoTgL8DrSYDh/F669Kv3wNBX02adTp02R5mnY6iERFBx4pGRGTWKVOmDGvW/ETLlt9it8/AP495\nIP40/LcBn1K6dBTDHn00qI1WrVrx7ltjGT16L3XrNvPvqJctYG7Vsgu33TaA2Fj/Dn5RTmeOzVkc\nVivVq4+kWrURvPTSg7zxxtWTzs1sNmMyWYCMD5Xp6HR7zn+AyKZEiWJYLFn/sP9B0aLFLvcwEcC3\nmAAAIABJREFUFeVfZceOHfgXK5cNHLmLw4dj8Xg8edS6vMIJmvVAq8s9EEVRrhz/3bFfOZ/RdxkR\nEUXRNK0QR/XfFh0dzYgRT2IwNAEeAlriT4W/hkOHLCxcuBCAo0eP+gNvcgbjOXbOy3aXu169evz6\n64+8+OJwbLYl+JemvAREYzAcZ/Lk90lISgqxq2AaaWnTOHb8T4qXKJHZ3rAnnsGuNWfduoeZP78+\nTZu25Y8//uB0YmKODwbn3G5iYjYQG7uRpKQkzpy55bJdy4Km1+v54INxaFpHzOah2O3taNKkJDfd\ndFPI8g8+OJiyZbejad2xWB5G0wYxadI7IcsqihJa1apV0elWk7FGAZYQHV0Wk8mUV7V/hK2F0Odl\nm7eiKIrIsGEjxWYrJUWKtBWHo7gsX768sId01SLXObwXvsPmwoULRafTC3wj4BMQcTj6yYwZMyQ9\nPV1q1Ggcdn+59ZWSkiJt2nQWvb6cQD2BSgIfi90eHbJtYy7HgEDe6YzD/USvN0vPnv0lLS0t13N8\n7LHhAm+KkeD510acYsSWY05z9jzQeckvh/SlWLdunbz77rvy+eefi8fjybPsuXPnZOrUqTJu3DjZ\nvXt3gY1BUf4rfD6fPPzwcLHZSmf+nVq1atVl648w5jSHm3JuLLAe+DacRgtI4BwURblc9uzZw9Gj\nR6lXrx7Fixcv7OFctbKneYPgDBLZj+f33ta+fTfWrStDWtqzwEYcjsf4449NGI1GqlRpSErKibD6\ny9rXpk2b+PnnnylatCgDBgwAwOGIQOQnoBlgx2q9gZSUZWG9yesCfemCer0HaIDNtpRnnrmOl156\nLmTdFStW0LXrnbjdn+PfAqAj/gweAN/QosVU1q3LOzuFoij/Dbt27eL48ePUq1cv1ylRBSGclHPh\nBs1JgIZ/1UhGbioBInKtcelU0KwoylXhQhYC5rYt/apVq3j//anodDruv78vkyfPYs2aNZQsWZpp\n08bRokULEhMTiY4ug3iSyb40zr+q24mXc0HHGjfrSPPm9Zg27UvS0gZgNsdQvnw8GzeuoFixkqSl\n7QAqAz7M5sr40o7ixT9nMK934OCgeQ6wC5gE/I6Ryng5n8Yw1Dl/9dXXPPPMq5w9e4qkJDde7xjA\niqY9x+efT6BHjx559K4oilKwCjJoLgwqaFYU5T9h+fLl3HJLP1yulwDBZnuZefNmcd1112GzBe8E\nOHLki4wfP4fk5N7YbCtJSdmKyDagInAIqIM/S8UtwMOB46OA2/HvUyVo2i2MGdOZTz75iq1b/wCK\nY7UWp3Tp0/z9dwRJyRuC+swIkEMd0wElStTgxAk7InOASoA+1zveoaxevZq33voIrzedxx67l27d\nuoV97RRFUQpCQQfNPYDr8L9PrgS+v+iRhUcFzYqiBHG73ezYsQNN06hTp07Gm9wVk5SUxM6dO4mM\njKRGjRoF1r/NaCIlPfjesRHwYqRBg+YsXTqXElkW4C1YsIBNm36nUqWKnDhxhpdffguTqRku11q8\n3hZAa+AoMD5QYzP+oHm/v23jcCpWXM7hww1ITX0G+A2zeRgzZ07mjr59g8ahYzXQNs+g+ejRozRr\n1p6zZ0sBXs6d+/WCguYrLbdvBvLcHlxRlH+1ggyaxwBNgdmBOn2BTfi3bLpcVNCsKEqmQ4cO0bp1\nJxITbXi9CVx33bV8//1XGI1XJt38rl27aNeuC2lpJfB4jtKzZzc+++zjAgmcc58T7UWnG0abNnsZ\nNKgfLpeLzp07U7FixRxji4mJ4dy5cwwZ8iwu1y2AnfMbt+7Cf89jNxCD1dqTtLSz+HznADOwDsmW\nJEnT3Yhb3gWOYaRTyOkgXvyp5M653SQlJbF69Wp0Oh033XTTPzpozu16/5PGqCjKlRVO0ByuHYAh\ny3ND4NjldNlWSCqKcvXp0OEWMRheC2RpSBVNu17Gjx9/xfqvW7eF6HSTA/0nid3eWL766qsCaZs8\nd9D7W8AqZvMNYrEMEKMxQnr16ptrRoYZMz6TyMgyAprAJIElomlNpGrVBmKzRUrJkpXl66+/FqPR\nKvCXBELFoIemVZJrr20jNlsRKVOmmixZskRERLxerzzxxDPidBYXuz1aGjVqKY8+Olz+/PPPzP6j\nnM7MzBoZD9M/7P08t+utKMp/F2Ekugh3cxMBIrM8jwyncUVRlIKyZ08M6em3BZ6Zcbm6sX17zBXr\nf//+GEQy+rfjdt9ITEzB9l+U85uB+OkwUgGIIC3tJ1JTP8PrHc+3326ifv2WVKzYkHbtbg5sAuB3\n990DSEj4i02bVtGx42Is+m64XL+zd+823O4zHD++nwfvv5/nn3+eZVRAsvRWCz0mnEB7Bg++G5fr\nDH/9FUvnzv7d7AwGA++9N4bJkz9AxMKWLX2ZMMFMw4YtOXjwIOBf+Jg9j3ThbUWgKIpScMINmt/E\nPyluRuDxO/DG5RqUoihKdnXr1sFg+Bx/GOZC0+bRuHGdK9Z/9ep10Ok+Dzw7i822kDp1Cqb/jB30\nEsi5aYkXN9Ars6yRh4C9eDxnOHhwG6tWLaRJ/focPnw4qM3ixYuTkHCaVF96yN0KXx79Ah2zTbrY\njS+QfWN5yHPL2HHwzjv74XL9BTyO3vcRSUl9mTJlWoFciysh1I6FGdlOFEVRchNu0PwF/u2p5uLP\n1dwC+DKMeuWAX4A/gJ3A0MDxosBPQCywlOC72IqiKDl8+ul4KlRYgMNRA5utMl26VOCBBx64Yv1/\n/fUnlCr1IU5nLazWKgwY0JHbbrst/4oB2be4zrrNdcYOern7GfgTSMKLK+RugFUrVgxqu0KFCuzY\n8luOllIxBX1NmEbO3bVGjBhMq1Y5N4INtS24l3OkpxfF7U7NUb6giQjLli1j9uzZxMXF5V8hF6F2\nLFSLABVFyU9+E56bkDNXPlmObc6nfqnAYyvgwH+H+lZgIHASeBt4BogCRmarK3n/EVEU5b/G4/EQ\nGxuLpmlUDASJoVyu7AgpKSnExcURGRlJuXLlLqhuOIvPcl8Q+DjwMZAGpF/QRiqhjgf1H+LY999/\nz7JlKylTpiRDhjyEw+HIc3w2W3FWrPiBZs2aXbZFdj6fj1697uKnn7ai09XF51vOF19Mo3v37pfU\nrqIoChRM9owV5D13ucOFDYnv8OdAGg+0A47jD6pXADWzlVVBs6IoiAiTJ09lxoxvcTo1Xn31GZo3\nb55nncLIjpA9UM8epOc2pv379/Pkky9y5Mgxtmz8OUSWCh3lKtWnYcN6NGhQk5dfHnVBQbMRJ9VJ\n5g98mce/wkRfXsHIKLykB9UxocOkVcblegCLZQsVK+5ly5Y12Gy2XM9h4sSJzJ+/jISERHZuXUly\navBd54L4wLJo0SLuuONZkpI2ABZgPRERPThz5tgVTz2oKMq/zz9tc5OK+PM718WfgT8qyxhOZ3me\nQQXNiqLw7rvv8+KLH+NyjQHi0bTnWb9+OfXq1cu1TmEEzdn71AEzZ85ixIiXSEpKJDk59NbXBkME\n6enDgebodPcjcj3+pSOg093Lffc5mTp1/Pk6F7pld45jFvz5mssEXm2EXp+KyXQdOt03pKen4PFk\n7BIoOBydmDLlAfr27YtZp8uxqM9usYDRSXLyS0AlNO0FnnqqJ6NHj8rzeoVDRDhx4gQGg4F58+bx\n+ONrcbmmB15NR6ezkJrqxmTKOcVEURTlQhR00FwPqAVYsxybGWZdB/6A+VX8d5sTCA6ST+Of55yV\nCpoVRaFChXocOjQNaBY48iJPPpnGK6+8yNq1a9HpdLRu3Tpo57x/StBss5XB7f4WuAYol0uw2w34\nIXDkEFAbi6UMOp2OSpUi+PXXn4iMPL/sI9TUE2Ng++ys7Z/f4jprf68BrwDJZGy87XD0ZsCAaLZv\nj+W339ahS3fnuNudkYvZbNbweOKBIhiJyLZltxMvicAuoqO7cuLEgVyvVThcLhc333wHv/66BpF0\n2rRpy7p1v+N2LwdqodePpUaNr9m1a+Ml9aMoigLhBc3h7grwMv7pFHWAhcBNwBrCC5pN+BcPfoY/\nYIbz0zKOAaWBv0N2+vLLmT+3b9+e9u3bhzlcRVH+LfxvZJ4szz2kpLipU6cpJ09G4PWewmZLZMyY\nV3jggQfQ68Nd33z5ud1D8K+bBiN2dCQHvW5EhzdoPbYDvT6NX36ZgV6vp3Hjxpl3UWNiYvjuu+94\nYfRo2rVrR9eut3P6tBWP5yhevsZIz8z2cwTMIjz44FD/tGiuBx7Cv5zkN2AlNWo8x8yZm0hPPwpE\n5QzuU1IA6Nr1VhYtegCP5/UcQbouM4D2otPp8fl8fPnll+zbt48GDRpwyy23XNA0imeeeZF16zRS\nU/8GvKxb14OuXduzcGELvN50KlWqzsKFc8NuT1EUJasVK1awYsWKy9L2TvwbmmwLPC+Jfzl3fnT4\nA+v3sh3PWAAI/gWAY0LUvaJJrRVF+WeaNOlj0bTKAp+JTve22O3R0r17HzGZhgk8LVBH4BkxGhtI\nr153ic/nkyinM3uSB4lyOi/rOLP3abdYxGy+N8v+GQsFGgd+HiSdO98kJlOEQEmBYQJfCdSTqlXr\nyQ039JRRo0ZLSkqKiIisX79e7PZoMRofF4tloBiNRQWeD7Q1T6C0WK3F5bHHRuTYtCPD1q1bxW6P\nFnhD4DqBCClXro5s3LhRBg16VOC9QJXcN/4YNWq0GAwlBErkKOc/789F02rJyy+/KpUr1xO9/hqB\ndqJpNWXYsJEXdD0bNWov8FOWLj6XLl16i9frlbNnzxbcL05RFEXC29wkXBnff/0OFAkEw+Fk9W8D\n+PBnz9gSeHTBPxXjZ/JOOVfY109RlH+IL774Urp06S19+twr27dvl+bNbxSYJVBE4FQgqHKJppWX\nrVu3XnJ/p0+flltv7S8lSlSWhg3byubNm0OW8/l8cvbsWfH5fEHHU1JS5MiRI1K2bDWxWvsKPCFQ\nVGCxgFv0+loye/ZsadKkrUBlMWLIEeQbMUqnTj3E5/NJy5Y3CnyaJYAsLbAqy/PpOQLdDh1ukeLF\nK0mbNl1k//79IiKyadMm6dXrbuna9Q6ZN29e5njfeWesWK3dBby5Bs0ul0tMJptk7CKYvRwgN954\nu0yZMk2qVKkncGfgg8AtAt3EZHLK33//HfbvoE+fe8VoHBlo3idm8wPy2GNPXfgvU1EUJQwUYNA8\nEf8c5IeAuEAQPD3PGpeusK+foij/UMOHPytm8w0ClYLiO7u9maxYseKS22/Z8gYxmwcLxAhMl4iI\nkhIfHx9UZsuWLVKqVGUxGm1iyrkniRhBuna9Xd59913p27evgFXgeoHKotdXl65dbxens4RAXK6B\nKiCRdrvUqNFMYE2Wl6sI9BXwCCTlWjfjYdLpJDk5OdfznTVrtuh0EYEAXp+jfpTTH/Bm3x474zwz\nyoiIrFmzRmy2OgK+wHBSBKLFZisrcXFxYV1/n88nP/30kxQvXk6czpbidDaT6tUbSUJCwsX/UhVF\nUfJAGEFzfpP/JuC/WzwE/+K9ScCNwD34cy0riqJcca+//iJt2ljxL4d4M/DfT0hO/oOyZcteUtvn\nzp1j48a1pKVNAKoD9yLSklWrVmWW8Xg8dOrUg2PHXsXrdeXYNloAL/DLLykcPXqK9u3bY7V2B54A\nZuPzbebHHxeQnu6FEJuLZBDgTHIyvXp1xWodhn8R3+uYTEnodEsQTAiOLBUkM2NG1odHJGir7Qy7\ndu3ihRde4L77HkJkITAVL4MpV65mjo0/oqOj8eZynhllANLT0zEYzFl6MQBCVJSVihUr5nv909PT\n6dGjH7fe+gCpqSUxGA7ywQdD2Lbt16AFkYqiKFdafkFzLPAOcBD/PORG+Lel2pZXJUVRlMvJarXy\n0UfvYLNFAYvwJ/aZjMNRPcd20hfKYrHgDwdPBo74EInHbrdnljly5AhutwB35tmW2/04y5f/isPh\nwGA4gz9TRgvgGGazjcGDB6FpffMd0/j33sLrjQX2Aoux2Qz45ExQGZvRmOdCu4wNSjL8+OOPNG3a\njrfeiictrT4wIjC2CcTHHyIxW17lcBfxNWvWjJIl0zEan8A/++4O7HYza9b8hNGY/9rzTz/9lGXL\njpKcHENi4kYSE0cwceIsrFZrvnUVRVEup/yC5nH4t89uhz8t3Cf45zK/hP8WjKIoSqEoUaIEPl8i\nMAs4BSwiPf0oZcqUuaR2zWYzI0c+i93eEXgLq7UnVasa6dSpU2aZ6OhovN4z+PMd585gWE/58mW4\n7bbbKFPmbyyWO4G30LQbefXV0bz77huMGtULi96ADoIeWXNyJrrdeL2zgZkIazmbeDTzNZMxEou5\nDyleb57fLdauXTvo+aBBw3C5ZuPxTAVW419qMhPYjtFozBFkh8tqtbJu3c/07eumSZO3ePjhihw/\nHkelSpXCqr9nTxwuV2f8G5iAz9eDvXtjL2osiqIoBeliNjdphH8+cz3837tdLoEpJoqiKKGNGzee\n559/A72+HT7fOh555C7efvvVAmn722+/ZdWqdVSsWJaHHnooKA80wIQJkxkx4mX0+vakJn2FJ1vI\nasJAZPGybNiwkooVK3Lu3DkmTJjI0aN/c+ONHejWrVuOPvPauMSIHU+2lHUmHHipBdwFDEXwh74J\n2dqIcjg4nSW387Fjx6hSpQ4u1078WT8BnsZsXoLBcIxp0z6kX787cozvcm1PntWsWbN46KH3SU5e\nDjgwGF6ldevfWLlyYYH1oSiKkl1Bbm5iBLoCffEn+fwF+AKYfwnjy48KmhVFydfWrVvZsWMH1apV\no0WLFle07+3bt7Nt2zYqV65M69atAUhKSqJM8eKcC+Q2hvADy5BBKf6v+ULxv4FXBk5AtrzJGa+v\nWLGCdu3aZR577bW3ee21N/F6LaSn3wBMBvZhsXRmxIgH6N+/PzVr1sx3rJeLiDBw4MN8+eXXmExR\nFCtmYfXqJZQrV67QxqQoyr9fQQTNN+IPlLsBG/AHyguApAIYX35U0KwoylXB6/UyZcoUduyIoXHj\nugwaNCjH7oDhvJ/FxcVRvXr1sPMe+d/ABX820Gvz3QXxt99+o2PH3rhc6wEN/72QDUREFOO9997i\nvvvuDbNnSE1NZeLEScTG/kmrVtfSv3//C9q8BHJ+SMj64eLIkSOcO3eOqlWrqm2yFUW57ApiR8CR\n+APlp8j9ZoeiKMq/Tl4BXVYiQvfufVm58jQuVzc07dOw2t+8eTNPP/0qZ84kcscdN/Pkk49TrFgx\njJCZASOrUMfOa4IRHdknd0Rkm1Kya9cudLr2QMa877Xo9Rbi4/9E07Q8x5uQkMCwYc+xbdtu6tWr\nwZ49sezcqeF2d2TGjPdYu/Z3Jk7Mvo9V3hLOZdtVMMv1vuaaazJ/3rt3L8OGjeKvv47TpUs7Ro9+\nXgXSiqJccRczp/lKUXeaFUUpNNnnF2e9a+t2uzl+/DilS5cmNjaWFi1uxuWKA8zAGbJvRZ1R9513\n3uONN8aSlpZKWpoXr/d1oAqaNophw27htddeonHjNmzesjZ4LFTHyH68eIOOG7HjJQn4A5utLffe\neydLl64mKqoI77zzCu3btw8qv3btWjp3HkBy8nogFVhPsWJPcuLEoTzvEnu9Xho1akNsbEPS0npj\nNH6Az7cTny8W/9KWM5jN5Th+/PAFpYXL6xpnOH78OLVqNebs2cfx+Rphs73N7bdXYubMj8PuR1EU\nJT/h3GnOL3uGoiiKksW8ed8RHV2WOnXaUqJEeVavXo3RWAx/wPwbUCdkvS+++JKXX57MmTM/4XJt\nxuuthf8LvC64XJ8xadIneGrWDQqY9bjR0Rcw4SUS+AbYj6Y1o3fvOzHZLBQp0gKb7To+/ng8EyaM\nZ+/ebWzcuCpHwAzQunVr7rqrOzpdNaAhcDddu3bOd1rF7t27OXDgFGlpE4Hr8XofxOcrxvm14BHo\n9VZcLleOujt27OC7774jNvbiMmAsXryYtLQ2+HxPA51wu7/hiy9mkp6eflHtKYqiXCwVNCuKooQp\nPj6eAQMewOVaist1mMTEWYwcORpNO4te/zrQA5iAEWdw+jink2++WYzLNQKoDZQH3gKWBFpO5eSp\nQ5hi/sjsS4cRIQI4hU7nAT4EegGVcLle4tChk+zbt5OFC99l//4/GDAg75zRGbZs+QO9fgT+NH2H\nmDt3NYsWLcqzjsFgwOfzABmBalNgNzrdh8AeTKbhVK9ejdKlSwfVGz36TVq06Mw990yjYcM2TJny\nSb7je+WVV9m8eXNQ3/674hlSAd0Fz59WFEW5VCpoVhRFCSHKmTPw3bNnDyZTbeDaQKlOQBE++2wy\nTZsuB9KAHnhJBISIiJuYP38+pxMTKVmyKAZD1rute4CzjOIOhEaZR32nEkCEjRvX0bBhC0qVOkC5\nckb0+pjMMjpdLMWKRVK6dGlat25NqVKlwj6v7dt/Jz19SOCsSuB29wwKUkOpWbMmDRtWx2rtB3yJ\n1foIDRvWo1mz+ZQqdQudOx9j2bIFQYFsXFwcb701DpdrC4mJ3+N2r2Xo0OGcPXs212tsxMjo0cm0\nbduFxYsXA3DzzTfjcGzHaHwK+BxNu5mHH34MvV79+VIURclwhXcdV5TLJ8rpDNp9OMrpLOwhXRGL\nFy+WqlUbSXR0RRk48GFxu92FPaRLsm/fPrFaowWOCIjALrFai0hCQoK43W6x2YoIbA689rfYbKVl\n27ZtIiJy+PBhKVbsGrFY7hGT6RGx2YpJoOD5RwixsbHSoEFr0emcotNVFaNxgDidJWTnzp0XdQ7V\nqjUWmB3oMkXs9pYya9YsSU9Pl+eee1lKlqwi5crVlmnTpgfVc7lcMnLkC3LjjbfLyJEviMvlyrOf\nZcuWSZEi1wWdnsNRRfbs2SMul0uSk5Mzy7722utiMt2XpewPUq1a48zXjx49KoMGPSpduvSWDz74\nSNLT0y/q3JWCcfDgQWnb9iYpVqy8tGjRSfbu3VvYQ1KUS0Zea62vAoV9/RSlwJAtOPov/PvesmWL\naFpxgUUCsWK1dpe77hpc2MMKy/Hjx2X58uUSExOT47UxY94Vm62kFClyo9hs0fLJJzMyX/vqqzmi\nadFSpEgnsdlKyfPPjw6qe+zYMRk3bpx8cffgoH8PqVt3hRzHuXPnpESJiqLTvSewT/T6FyUq6hqJ\ni4u76HPbtGmTRESUlCJFrhe7varcfHMfSU9Pl1deeVM0rZnADoE1omnl5fvvvxeRnB/6COODX3x8\nvGhaMYH1mYFwRERJueOOe8RotIrRaJVbb71TUlNTZfjwpwVey3JJdknJklUu+hyVyyc1NVXKl68p\nBsOrgX+TY6VUqcpBH4IU5WpEGEHzP3lSWOAcFOXqF06WgH+bN998kxdeOE16+juBI3/hcDTi3Lm/\nC3VcuTly5Ajz588nNjaWqVNnYzLVJi0tlqFDH2TMmNFBZWNiYti3bx+1atXKsT30oUOH+OOPPyhf\nvjx16oRYFJh9Lm4e/w5+/fVXbrrpCRITN2QUxuGoxsaNPwRtQHL48GEWLFiA0WikbNmyxMbGUq5c\nOXr16hVyGsPJkyf5/fffiYyMpFmzZuh0OmrXbsnu3W8DbQOlJnLnnZuZPXtKrjsV5vdv+Pvvf6Bv\n37sRMWGxGOjT5zZmzdqDyzUfMGCz9Wbo0MZ06dKRbt3643LNAcpisw3h7rurM2nSuDzbV668nTt3\n0rJlL5KSzk8XiohozNKlE2nevHkhjkxRLk1B5GlWFEW5KA6HA5NpG+eTHBzGbncW5pBytXv3blq0\n6EBqahdSU78FfgDaASf58MMm9Op1M02bNs0sX6NGDWrUqBGyrfLly1O+fPkcx9PiDmKuXjHzuevL\n+Wh3dA85lrFjx5OcnEL79k3xev/Gv/jNApzF7T7GsGEv0LBhLZ5//mkOHjxIy5Yd8Xi6kZ6eiMez\nBJOpD2bzl8yc+Q0LFnyZY9FcdHQ0nTt3DjrmdDqAw5nP9frDREY68r5w+bjllps5c+Y4J06coESJ\nEnTu3BuXawjgb9ftfoTly99jzJhX+Pjjdxgx4l5criR69ryN999/65L6Vi4Ph8OB15uAf48zB5CC\n13sCh+PS/q0oytVA3WlWlCsg3I0y/k3OnDlDvXrN+fvv5qSlVcVmm8zkyW9z1139C3toOXTt2ocl\nS1ogMhCogBHwcv735bRaSXS7L76DMO4uT536Ca+//h4HD/6JyDNANDbba9SsWZ6YGDMuV2cMhglA\nBdLTH8BiWUb16vsoUaIky5dfj8hjgZaeBlKAsTgcDfn++wkh089lt3LlSrp2vR23+0H0+rM4HN+w\nZcuvVKpU6aLvNGc3aNBjzJhhxOPxb4JiMLxAr15H+Oqr6RfUzqVKT08PZOVQLkb//g8wf/5OkpO7\no2mL6dSpHPPmzVYZTZSrWkFso12YVNCsKFe5hIQEPv54CqdPn6Fr1860a9eusIcUUpMmHdm8+Rng\nRqACcDjHdJoMuX3gOXjwIKdPn6ZGjRqZu+v5klzonfbMMkkjX8Px5vM56n722WweeuglXK4mQHXg\n1cAri4F+WK162rVryc8/ryQ9/ThgBwSnswnFi8P+/WOBjoE6M/GnsvuciIhb+eSTu+jVq1dY12Hr\n1q18/fW3WK1mBg68l3LlygE5P/TldR3ycuLECZo0acuZM2UBI5oWx6JF3yAiVKtWjYiICABcLhd7\n9uwhOjo65F37i7V06VL69buPhIR4qldvxA8/fEnVqlULrP3/Cp/Px6xZs9i27Q/q1KnBPffcoz6E\nKFc9FTQriqKEYfToN3j77SW4XF8BG4EeOeegZ/05y3uTiPDYYyOYNu1TzObSmM2JrFixiDp16wZ3\nksf7Wbt23Vm16m5gFXAN/rvFAGuAJ4AJ2Gzd8Ho9eDwnyZhZFxFxHd26VWb+/IO4XF8CbqArMBSo\ngN1+N7t3b84MfnOzatUq4uLiqFu37mWfl5qUlMTPP/+MiLBjxx7eeONtLJbyiBzjhx8xhXzdAAAg\nAElEQVTmEBkZSceO3fB4okhLO8qQIYP43//evOR+Dx06RK1aTQLzptui031IuXIfc+DAH+oOqaIo\nYQXN/2SFsHZSUZT/Iq/XK0OGPCEWi1NstsjQ2U5yyXzyww8/iN1eSyAhUGRyUN3ktjfm2/9NN/WW\n/7N33+FRVVsDh39nMkkmZzJpBEnoRaRIka5IFUUECyJXFMUCgu1DvTauoiKi4lUEG1wVRcWKiHQE\nFULvIL1IRyD0EpJJnVnfHwkhjSSTNklY7/PMQ+bMOXuvkxkya/asszd8KrBM4AqBSQJ/CjQS+EBA\nxG5/QOrUaSj+/g8KLBUfn9clMrKOnD59WgYOHJwee0REbfHx8ZPIyCslKioqz76ffnqI2O11xG5/\nUEyzqowcOaqgv0aPbNy4UUwzUuBg2q9qroSEREjt2k0Evkrbdkrs9qtk3rx5he5vypQpEhR0e6Yp\n8Pz9w+TYsWNFcDZKqbKOfMyeobPDK6Uuez4+PowbN4aEhBiczjPZFzbJ5dht27aRlNQNCEEwEB69\n+KAI5uJ5efb/2mvPYpqvAFFANwzjcQzjbuA2UkeNkzGMzYwc+Tp9+9qpX/85brllB6tWRREaGsrn\nn3+UHnt09B5mz55BzZp1eP75EUyY8PUl+925cyeff/41cXFriIv7GqdzJa+//gYnTpzIM+bC2rFj\nBz4+1wEXRsFvxumMZ//+bcA9advCSEnpyrZt2wrdX6VKlXC5tpM6Gg+wB5FEgoODC922UuryoLNn\nKKVUFhdqdXO6AC6r+vXr4+f3DUnJF7/VizOs2N3JOe5/qYtCly79nfHjv8Ewwhg0aAFbtmxj4MBn\nMIzjWCwbaNeuFnfddRf/+te/co1n0aJF9Or1IE7nh0Aggwf/GxFhwICHs+179OhR/PyuJD7+wseC\nKvj6VuLEiRNUrFgxjzMvnHr16pGSsgIYBPwCWDAMqFatHgcOTAHuA87gdv/C0KHJDB36Bv36PcAn\nn4zCavX8ratt27b06HE9c+a0we1uA8xh1KjR+Pv7F+l5KaXKr9Jcu5E2Wq6UUt6Rrwvgsk7nVqEq\nUVFzaNy4cY5t5jRn9z///EPVqlWz7btx40ZWrlxJREQEt912W76Wjr7vvoH8/MO3pJCYe9ykztdc\nq1ZDYmO/AboBP1KhwhAOHdqFzWbLs6/C6tTpFhYtOg38CsRhs93G0KEPMnr0WFyuCJzOXUBFUlLm\nAA5M836efroDb7/9OiLC8uXLOXr0KC1atKBmzZp59ici/Pbbbxw8eJCWLVvSsmXLPI9RSl0edJ5m\npZQqhNMxMezcuZO2bbuQktIYkVNUr+2L0+lMnSEjS8K8etUq9jds6PGctX37DmLx4jnZtjdt2pSm\nTZt61Javr5UUErNPEZcl+YfU+ZrnzJnCnXf25cyZo0RG1mLmzBklkjADnDwZA7wLVAEgIeFF/vpr\nMQcO7GD79u0MG/Yuc+d2A1LnxHY6hzNt2ou89dYw+vUbxLRpC/HxuZqUlMf4+eev6dGjR679GYZB\n9+7dM21zOp18+eWXHD16nM6dO3LjjTcWw5kqpcoDrWlWShUZEeGjj8bSsePt/OtfD7Jr1y5vh1Ro\nAwc+y5kzLxIT8xvnz69i584qmHZ75oQ57dqy1q1bF2iRh40b/yqyeJ955tG8d8qgffv2nDz5D3Fx\n5zl06G+aNWtWZLHkJTw8DLi4spzVupOIiDAcDgetW7fmyitrYLXuyHDEDsLDw5g/fz7Tpi0jLm4j\nMTHTcDpncO+9D3k8b3RCQgKtW3dmyJD5vP22D3fcMYCxYz8tmpNTSpU7Wp6h1GXO5XJx+vRpKlSo\nkK+v/3Pz0kvD+Oij2TidL2Ox7MTh+JAtW9bmWHpQVtSo0ZiDB78FrgFAsv7ZFOGHH37kxRffICHB\nyb33/ovRo0fi6+ubY3uOgABiExLS71ux0bBJCzZuXFpkMRfVYiQFkZCQgNPpJDQ0NM+p3P766y86\ndLiZpKS7sFhiMc2F/PXXsvS5mY8cOcI111zH+fPtcbsd+PlNYdGiuWzYsIGnnlpEXNw3aS0JFos/\nsbHnCAgIyHesP/74I4MGfUFs7J+k/oZ2EhBwLXFxp3UaOqUuM/kpz9CRZqUuY3PnziUkpBLVqtWj\nYsXqrFq1qlDtjR37v7R5cHvhdr9EQsKtTJkypWiC9ZK2bVvj5/dx2swY2UeXg02T++7ry+HDOzh1\n6iCffvIBQ4a8dsn2zsbGcsstd2G3X0lQUAeCwirw/feej26KCBs2bODPP//k5MmTBTm1IjdixDsE\nBYURGVmLpk3bcvTo0Vz3b9asGRs3rmTAAAOYRmzseZo0ac3ixYsBqFy5Mlu3rmXUqOt4552r2Lhx\nJc2bN6dFixa43fO4MEptGP+jRo16HiXMADExMbjdNbn4PlmDpKQ43G63R+0opZS3eWmmPqUuD0eP\nHhW7PVxgadq8tdMkJCRS4uPjC9ymw1FRYG+GeXAHyJgxY4ow6pJ39uzZTPMuC4jb7U5/nBzmdK5a\ntWGubbrdblm1apX88ccfcvr0aY9jcrvdcv/9A8U0q0twcEcJCqokK1euTH881OG4MOdo+i3U4fC4\nH0/MmTNHTPNKgSMCbrFaX5ROnW7N87jTp09LYGDFtHmpRWCeOBxXyLlz53I97ssvvxJ//0Dx9w+V\natXqyY4dOzyO+e+//xbTDBeYLnBA/Pwelptu6ulxO0qpsg+dp1kpdSlbt27Fam0IXJ+25Q5SUkwO\nHDhQ4DafeOIxTPNfwDQslv/i7z+L3r17F0W4XhFftwnBISHp9+NiY0Ekz6/uHQ5Hro8bhkHr1q25\n8cYbCQ3NbRbonM2cOZOpU1fhdG7j3LmFxMSM41//eij98dMxMYhIppunS157auXKVcTH3wNEAgYp\nKU+zbt3qPI/7+++/sViqA13StnTFMCLYvXt3rsf17/8QMTGnOHhwBwcObKdevXoex1y3bl1mz55M\nnTrDCAm5ju7dE5k8+WuP21FKXR509gylLlNVq1YlKWkHcAKoCOwhOfkElSpVKnCbI0cOp1Klivz6\n6xdUqhTG228v9no9c1JSEr6+vp7XqBoGGb/s/2XyZHrb7fk6dMyY4ek/p6SkYBgGPj4+nvWfiz17\n9pCc3BG4EM8tHDlyT26H5JvL5UJEPJ4LuXr1agQEfI/TmULqW8tSIiPzfu6rVKlCUtI+4DCps2gc\nIinpHyIjI/M81s/PjyuuuMKjOLPq1KkTu3cX3YWYSinlDV4dplfqcjB06BtimlXF4bhTAgIqybhx\nn3k7pCJz8OBBadz4OrFYrGK3h8lPP03K13GnB76QpdxilcBsgSAJDq4oixcvzrR/1lKIYNMUEZHE\nxETp0+ch8fHxE6vVJk899UKmsg5P5FRuYcUQOCogYhgfS4MGrQrU9gUul0seffRpsVr9xcfHT/r1\nGyhJSUn5Pj4pKUk6dLhFAgObiMNxmzgcV2QqGcnNyJGjxDQjxeHoJaYZKe++W7ZLepRSZQ/5KM8o\nzZcHp52DUqo4rV+/nt27d9OoUSMaNmzo7XCKTNOm17N16824XK8AGzHNbqxaNZ9GjRpd+qAso9EG\nrwKPAZVJnU94JQ7HMvbu3Up4eHiu/T///FDGjdtAfPwkIAHT7M677/bnyScf8/hcLjUbhp+fA1/f\nMIKDfYmKms1VV13lcdsXjBr1AcOGTcbpnAlYMc27ePbZDowY8Wq+23C5XERFRXHu3Dnatm2br9Hi\nCzZu3MjOnTtp0KBBpoVhEhMTmTFjBjExMXTu3JnatWt7clpKKZUv+Zk9Q5NmpVQmc+fO5ZdfZhEW\nFsS//z3Yo8SntEhOTsbfPwCRRCC1LMI0+/PBB9cxcODAbPuf/eQ7Qgb3S79fu0o99h+JRCQcWALM\nB74CfAkOXsq0aSPo1KlTrjE0adKezZtHABf2+5Zbb/2NmTN/8Ph8LpU0nzp1ijNnzlC9evVLTnGX\nXzfe2Iv58+8FLizTPZdWrd5n9eo/CtVuYcTHx9OmzQ3s2+eP210dw/iN3377lfbt23stJqVU+aRT\nzimlPDJhwtfcddcgvvyyDqNHx9GkSRuOHTvm7bA8ZrVasdtDgQ1pW5KxWDYSERGRfWfDyJQwP//c\nfzh0vBMiUcBk4BVSE8nvgXtJStqdcztZVKkSgcWyNv2+r+9aatTI+zhPhIWFUadOnUInzCKC03kG\neBm4CZiLj89aqlYt2ng99cUXX7B79xXExkbhdE4kLu5zBgx4psDtLVmyhLZtu9GkSXvefXe0Ti2n\nlPKIXgiolEo3dOhbafMst8HlgpiYWCZOnMgLL7zg7dA8UiE4mNjY80BLAHyx0K5dz0zLLMcuXEtg\n51bp95OjT+IbUYF/+vQnOfm6DK21AI5is3XBx+cuHn74furXr59nDB9++BZt2nQiKWkFkEBo6C5e\ne63oFjApSuPGfcaGDUeBscA54F7sdl/ef79w83ZfSnR0NE6nk5o1a+Z6gWR09DHi45tzcfCnOSdP\nFuxD3IYNG+jWrRdO5xigMm+88SLx8QkMG/Zygdorz+Lj4zl48CAREREEBwd7OxylSg0daVZKpUtM\njAcu1uqmpITjdMZ7L6ACOnP+fKar5pJxM3v25IsrHhpGpoQZEXwjKgDQrVtHTPMTIBqIw2Z7h969\nu/PRR12ZNWs8H3/8Xo59hgUFYRhG+u3aFi2oUaMmycnzSU5eTMOGDQs0vRxAqMOBAZluoXlMa+eJ\nceMmEh8/FuhK6qj6MG65pTu1atXyuK3du3czadIkli5dmm0FQrfbzf33D6RWratp0qQTjRq14fjx\n45dsq1OnDpjm18AeIAk/vxF06NDR45gAfvzxZ5zOx4H7gRuIi/uCzz+fmGkfEWHRokVMmjSJffv2\nFaifsm7p0qVERNSiZcseRETU4KuvJuZ9kFLK67x3CaVSl6n/+7/nxDQ7C6wVmCymWVE2btzo7bA8\nRg4LjoiIxO/6J9P2uPXZF8Rwu90yZMir4usbID4+ftKr1/35WvAlpz79/R8WSBFIkICAW2TEiJFF\nfq65iY2NlTFjxsgLL/xH5syZc8n9mjbtkLbAh6TNxjFCBg0a7HF/v/wyRQICwsXhuEvs9iulX79B\n2Wb+sGIROJ+2AMpz0qPH3bm2OWbMx2KzOcTHx1c6d75Vzpw543FcIiKvvPKa+Pj8O8NTtERq1Gic\n/rjb7ZZeve4Xu72+OBx3iWmGy+zZswvUV1mVlJQkwcERAnPSfkfbJSCgouzevdvboSlV7MjH7Bml\nmbd/f0pddpKTk+X554dKzZpNpGnT9rJgwQJvh1Qg5JQ0Z73lweVySUpKSqH6hIUZNn0rPXrcU5jT\n8kh8fLxcfXVrsdnuFBghpllLRo36IMd9p06dKqYZKTBWDONtsdvDZfPmzR7153K5xDRD0j5wiUCs\n2O1XXeL3cuHuFqlcuV6ebbvdbklOTvYonqz27dsnQUGVxDCGCXwmpllDvvhiQvrjs2fPlsDAJgLx\n6Ul1SEhEofosaw4ePJj2Orj4lAUF3SIzZszwdmhKFTt0RUCl1AXTpk2jWrWGhIZWoV+/QcTHZy+7\nsFqtvPfem+zbt5ENGxbTuXNnL0RaeBnLGexknnkiZsofqflAHiwWS6EXJPH1nU3q32E3NttvNGp0\nZfpjTqeTEydOZCthKCozZszgwAGThIQpwCs4nX8ydOgrOfbXs2dPpk37hrvvXssDDxxg5cooqlWr\nxh139CU4OJLatZuyYMGCXPuLjY0lKSkRaJ62xY5hNL/E3ikAWCyzqVv3ykvsc5FhGB4vtpJVzZo1\nWbduKf37n6R37+X88MOHDBjwcPrjhw4dwu1uCdjStlzHuXMnSE5OLlS/ZUnFihWBBODCBazRJCf/\npdP8KVUGePtDh1LlxqpVqyQgoJJAlMB+sdl6yn33Dbzk/gcOHJA5c+bItm3bSjBKz8XHx8uCBQsk\nKipKEhISsu/g4ehyYWQtQwgJDJSaNa8Wh6OFBAZeLc2atZPY2FgREXn55dfFag0Qf/8QadSojRw9\nerTI4xk/fryYZr/0U7cSmCm+UIcj1+O7dLld/Pz6C/wjMFNMM1x27tx5yf3dbrdUr95ADGNcWp+b\nxTSvyHGk2TSvlKCgayUiorbs3bu3qE+9QNavXy+mGSGwU8AtFssoqV+/hbfDKnFTp04T06wgwcEd\nJCCgoowY8V9vh6RUiUDLM5RSIiKvvz5cLJaXMuQuByQoKOevnn/66WcxzXAJDr5JAgIqyeuvv13C\n0ebPiRMnpHbtxuJwtBSHo4XUrXuNnDp1SkRE3CmuTIna6bfGFbq/2bNny9tvvy0///xzvlf2czqd\nsmTJElmxYkV6ecG0adPEbq8vcCytrvcFueGG2wsdX1Z79+4Vuz1cYLLAnkvWeefE5XKJj49vhlIF\nkYCA/vK///0v1z537Ngh1arVEz+/ILHZHPLddz/k2O9LL70sixYtkvPnz2c6fsWKFTJy5Ej54osv\n8lVHXtTGj58gfn528fMLklq1GsmePXtKPIbS4PDhw/Lnn3/Krl27vB2KUiUGTZqVUiIiY8aMEX//\nezLkLgulSpXstaRxcXFiswULbEjb76gEBETI1q1bvRB17h566HHx9R0s4BZwi5/fYzJo0FPFMrr8\n3HMvi91eX3x8XhC7vYX06fNQgZfEfumloQKvZwjxoAQHF7521u12y2efjZfu3fvIgAFPyj///CNL\nly6VevVaSlhYNY+SZrfbnVafvD1td7fY7Z3lhx9+yFccp06dSv+Q4GdYMo1wW/GXvn0fyXbc119P\nFNOMFKv1OTHNrnLNNdfn/O1BMUtOTpZTp04V+PlVSpVNaE2zUgrgoYceolKlDfj734thDCUgoA8f\nfPBWtv2OHz+OxeIAmqZtqYSfX5NSOf3Wjh17SU6+mQuTsCUl3cxnn3+U/vjxp97MV+1yXo4fP84n\nn4wlLm4pLte7xMUtYebMBWzatKlA7dWsWR3TXMKFul5YSJUqNQod59Chw3n22bHMmXMrX38dSPPm\n11OvXj127FjDqVMHPWrLMAzee28kAQFdMYzXCAjoSa1aTu688858HRsWFpZeg9yu861YLO9xobbb\nx/9Orroq+/kOHvwcTudvpKSMwumcy+7dfkyZMiXbfufOneOee/pTpUp9WrW6gY0bN3p0bnmxWq2E\nhYVdWB0sV59//gW1a19DrVpN+eCDj4utPl0ppfLi7Q8dSpUrZ8+elTFjxsiwYa/LihUrctwnMTEx\nbcqpWWkjjJvENMNl3759JRtsPjz77Etis90lkFQso8t79uyR5cuXy9q1ayUwsFam5oODr5eoqKgC\ntZuUlCQdOtwigYGNJSjoFgkKqiTr1q0rdLwBAcECBzKUU/SRTz/9NP1xPBhpXrp0qfhiZBohJh91\n0DnZtWuXhIdXk6Cgm8ThaCmNG1+bXtt9gdvtTisHcaaHaLMNkk8++SRbex063CJ+fg8LbBH4QoKC\nKkl0dLTHcRXWjz/+JKZZW2CxwHIxzQby2WdflHgcSqmigZZnKKWOHj0qX375pUyYMEFOnjyZ5/7L\nli2T4OAIsduri80WLN9//2MJROk5p9MpN9xwa6ZE8HCvx4uk7eeee1lstnAJCmopQUGVpGLFGmKx\nvC9wSmCihIREFni+YBGRlJQUWbBggUybNk2OHTtWJDH7+wem1UlfSDoflLFjx6Y/nvVCxYwJ8LJl\ny2Ts2LHy22+/yenTp8XhyH4BX16Jdm5Onz4tM2fOlN9//10SExNz3Kdz51vFz+8xgZMCCyQgIFy2\nbNmSaZ+4uDixWm0CyelhORx3yk8//ZRnDFnPP+vvwFNdu/YW+C7Dr2eaXHddtwK3p5TyLjRpVmVJ\nbm/qqmB27doloaGVxTTvEbv9Lrniihpy6NChPI9LSEiQPXv2ZBsRLE0SAitkSuiK6vWzcOFCsdtr\npyVvIjBVwsOryTXXtBN/f4fUrdtM1q9fX8RnU3gDBw4W0+wk8IcYxhgJCqok//zzT57HvfPO+2Ka\n1SUgYJDY7Q2lR4/eEhzc6pJJc3HV+p46dUq6dr1TAgKCJTLySpk1a1a2fZKSksRq9Rc4ml5rHRjY\nNl/zCF/qfAqqd+8HBEZlaO4zuemmXgVuTynlXeQjac67aMt70s5BXS4MI/N8ugZojWAh9ex5HzNn\nNsbt/g8APj4v06/fGb766n9ejqyQMtSbnm7UnrDNiwv9+pk5cybDho3m2LFjnDgRRnLykrRW3BiG\nH4mJ8fj6+hbVGRTYhXO6UHO7aNEihgx5i5iY80REhHD6dDyRkRV5//3hNGzYMNe2zp49S6VK1UlK\n2gZUBWIJCGiAyxVLUtLZbO8gBrBixQquvfbaIj+v/Hr55df58MNfcDofxt9/JXXr/sPatYvw9/fP\n9bisrw8o3N+YTZs20bZtF5zOQYhYMc1xLFgwizZt2hSoPaWUd6X9Tc01L9YLAZUqxw4fPo7bfU36\nfZfrGg4dOu7FiArnfNubMyXMiGBZMoOtW7cWqt358+fTp88g/vrraY4c+Yjk5H+A99MenUzlyrW9\nnjAnJSXx4IOP4e8fiN0exvDhb7N+/Xq6d+/NqlUPsX37O6xadYrbb+/Cb79NzjVhDgsKwjAMQkND\nSUo6j5UL+wbi53cVd955K1aM9AViLtx88eH4ce++ft56axhfffUajz/+D2+80ZpVqxbkmTAfO3bM\n437i4+PZtm0bJ0+ezPHxJk2asHbtEp57zsWzzyawYsV8TZiVUl7jzVF65QUU4VenKtWwYW+KaXZO\nq8U9JqbZWj744GNvh1UwGV4bSbZAERGZOPE7sdlCxOGoV6jXz733DhD4JMPh88QwwsThuFpCQysX\nyYV6eXE6nTJ9+nSZNGmSHD9+PNvjzz33sgQEdE0rG9knpnm19Ohxh8CrGeLeKJGRV+XZV06/KysO\ngdkSGFhRJk6cKMOGDZOQkMpiGB+k1RD/LnZ7eL7Ke0qTF198Vfz9Qzwqz1i9erWEhlYWh+Mq8fcP\nlvff/1BERP7++2/5/vvvZf78+TolnVLlDFrTrMoSNGkucsnJydK//xNitdrE19eUp556QVwul7fD\n8sjp/s/mODPGgQMHJCAgXGBr2kMFf/08/PDjYhhvZzj8F2natL389ddfJVLXfe7cOalXr7k4HO3F\n4bhdQkMry/bt2zPtU69ea4GlGWIcLw0bXiM+Pk9n2LZEqldvlGd/Of2uALniippSu3ZDcTjaisPR\nU+z2ClKzZiMxDIuEh1eX+fPnF9evoFjMmzdP7Pa6AifSPhTkfSGg2+2WihWrC0xJ+/UcENOsLO+/\nP1pMs6I4HHdLYGAD6d37AU2clSpH0KRZlSV6IWDxcblcpfYN3u12y8cfj5M2bbpKt269M19kl3V0\nMIPff/9dgoM7pz+UNSny5PWzadMmsdvDxTDeFPhQAgIqyezZs/N1bHJysrz22ghp1epGufPO+wu0\nityrr74u/v73S+pCLSKG8aF07Ngj0z4dOvQQ+F+OyZ8VP4FxYprVZcKEr/Psj0skze+881+x2Xqn\nxwHjpVWrGyQlJcXjcyqshIQEef75odKyZRfp0+fhAo1wjxo1Svz8Mn6oOC9Wq3+ux5w9e1Z8fe2Z\nXnaBgfeIv79dYE3atnix26+W33//vaCnp5QqZchH0qw1zarUOB0Tg4ik307HxHg7pHLDYrHka7EG\nb3jzzf/yn/98xqpVg5k7tzPt23dlx6ujs9UuZ12opHbt2iQlbQFSF+5IYSEBASHExsZ6/Ppp3Lgx\nK1dG0b9/NPfdt4U5c36ie/fu+Tp24MDBjBoVxZo1zzJ9egNaterAiRMn8t03wJ49h0hMbMuFa1BE\n2nLw4OFM+3z00VsEBr5GCufJmjWnkMS9965j0qSxPPzwgx71ndH+/YdJSLiOi9fCtOXQoUP4+PgU\nuM2sLtRTZ7zZrFYCA8OpX78la9euBaB37wcYO3Yza9c+z5QpkbRq1ZEYD/8m1K1bF1/fBUBs2paZ\nVKt2Va7HBAUFERBgBxakbTmJ272c5OREoEXaNhvQnEOHDnkUj1JKFRfvfuRQSpWISpXqCGy8OJic\ny+hyVqNHfyQ2WwUJDr5eTLOCTJ48pVhi3LJli8ycOTPbKHJKSkraFGhn0sO123vL11/nPdqb0Zdf\nThDTbJ5Wr5wo/v595aGHss85vX//fo9qcy/FmrVMIe3fn376Sez2RpI633Oy+Pn1l7vvfsijtvNy\nqfghWuB7cTiukN27d4uvrykQn76bw9FFpk+f7lFfbrdbHnzwMQkIqCzBwddJSEikrF27Ns/j5s+f\nL4GBFSU4uK0EBFwhQ4a8JnXrXiOGMTptFH6LBARcIZs3by7or0EpVcqg5RlKqdIuIuJKgfXSgYWZ\nEil3Sv5qr/ft2ydRUVFy5MiRYolv+PCREhAQIcHB3SQgIFwmTvwu/TGXy5W22MaJ9ND9/LrLqFGj\nPOrD7XbLU0+9IFarv1itNunS5Tb56quvZMSIETJ9+vRMpTVcIumcN29evvu71EIfbrdbhgx5NT2O\n9u27ydmzZz06l7xcKv4Ld4OCbpaff/5ZrNYAgdgMSXMHmTlzZoH63LJliyxatMijBWmOHz8uCxcu\nlL///ltERHbv3i21azcWq9UUm80h3377fYFiUUqVTuQjaS6d39emSjsHpVR5Nnr0Rzz73NOZtu3b\nu5datWp5KaKLdu7cSbNmHYiP3whEANuw2a7j+PFDOBwOAJ588lm++moF8fHPAmuACdjtsGJFFI0b\nN/aov6SkJJKSknjooSeYO3cH8fFdCAiYwcCBtzFmzDtAannDmfPnMx1nxQ8/sxovvTSQV14ZUujz\nvhBHYGDgJfdZs2YN//3vJyQkJPHEE/3yXc5yqfmSU9+vkrHbm/Dbb58zduwEZs48hNM5CF/fJVSu\nPJ+tW1djt9sLeFZF49y5cwQGBhZpyYpSyvvyM09zaebtDx1KqWIWu2ZbphHHvronuh0AACAASURB\nVL0ekG3btnk7rHTz5s2T4OAbMg2M2u0100cfRVJHm5s3byvQVOAxgUNiGB9Kt269C9Tnhg0bxDSr\nCzjT+jwl/v7BcvTo0Uz7RUVFSWBgI4GktP0Oi69vgDidzkKdc36sXbtWTDNc4EOBL8U0q8iUKfkr\njclplNsXQwzjZbHb20vXrj3F5XJJcnKyjBjxjnTpcqcMGjRYTpw4UcxnpZS6nJGPkWZrMSe+SimV\nM8Mg05ihCN+XUNeHDx9m79691KlTh8qVK19yv4YNG5KcvBFYDzQH5mC1xlOtWrX0fSwWC+HhlYE7\ngb4AiNTl1KmZBYrtzJkzWK1VgYC0LWH4+lbg3LlzVKpUKdN+FktN4MKiK5FYLDZiY2MJCAigOH30\n0XiczheBpwBwOivw1lsf0qtXrzyPzXiB5oVR82QE5G0Ml405c2KxWCxYLBZeeWUIr7xSXGehlFKe\n0dkzlFIlKvHgsUwzYyQdPpFtZoziNGHCN9St24TbbhvClVc2ZuLE7y65b9WqVZk48XMCArpgmlUI\nCRnA7NlTsNlsmfa7++7umObbwHZgD6Y5jN69bylQfNdccw0+PvuBr4ATWCzvERrqm61c5dprr0Vk\nNTAZOIGPz6vUrl2H8PDwAvXriZQUF+CXYYsfLpfL43bOnM88E0hsQoKWPSilSq3SXLuRNlqulCo3\nsk57V8L/x48ePUqtWg1JSFgO1Ae2ExBwPQcO7KRixYqXPC4hIYHjx48TGRmZ43LaIsJbb73L6NEf\n43a7ePTRRxg5cjgWS8HGJTZt2sQ99zzCgQO7adCgCZMnf5VjjfeqVau4775HiY4+SLNmrfn55wm5\njpwXlaVLl9K1ay/i498HHJjms4wbN5wHH+znUTtZ65sN0uZPUUqpEpafmmZNmpVSxc513olP0MVi\njPhNuwhofGWJx7Fq1Sq6dn2SmJi16duCgpoxf/54WrZsWeLxFDcRKbb5uefPn8+IER+SmJjEk08+\nwP339/Xo+P3791OrVi1NmpVSpUJ+kmYtz1ClRtZFD8KCgrwdkioKhpEpYUYk14Q5p8Uviuq1ULt2\nbZKT95FaowywlpSUg6Vipo6itHjxYiIiauPjY6VBg1bs2rWryPvo0qULCxfOYMWKuR4nzACff/4l\nVnwxIP3mZ+hbklKq9NK/UKrUyFrfmHVaLeW54kxA8yIprkzlGDG/LctXOUbW10FRvhYqVqzIxInj\nCQi4EYejIaZ5M9999yUVKlRgzZo1fPPNN6xcubJI+vKW6OhoevTozbFjYxFJYOfOftxww20Fqjku\nTgkJiaTwChef5XVcUaU+4N3XrVJKXYomzUqVY8WZgObKMDB8M0zOI0JQt7bF328+9O7di+jofSxb\nNokjR/Zy5509efPNd+nUqRf/939/0KVLH1555Q1vh1lg69evx2JpBtwC+CLyFKdOnSM6OrrAbRZH\nEtu3792Y5ifAz8ASTPNRBgxIHbH22utWKaVyoTXNqtTQi4KK3qUWkijW32uG0eUzn/1M6KB/eXh4\n/mL+9ddfGTVqPIZh8J//PM5tt91WoHCjo6OpVashiYlbgcrACWy2hmzfvoaaNWsWqE1vWrNmDZ07\n9yEubgtgAv/g59eAU6eO5rpYSW6K63U0f/58hgx5i9jYOPr1u4uXXnoei8XindetUuqylp+aZp2n\nWSlVNHKYGSO0AM2EOhwYWUYVQ9NW37tg2rRp9Ov3NE7nGMBNnz6P8ssvPvlelS6jY8eO4e9flcTE\nC7NOVMTfvxbR0dFlMmlu2bIlt9/emZkzryMlpS0Wy2yGD3+zwAlzcerSpQtr13bxdhhKKZUvOtKs\nSo2sywOHOhyZFkJQniuxEbsMCfPpIf8l7J0Xi7b9LDp1up1Fi/oC96Rt+Yabb57F3LmT891GzstR\nO0hhEg7HQxw8uJOQkJCiC7oEiQhz5sxh3759NG/enLZtC1caU9IjvzrSrJQqaTrSrMoUTZCLXn5G\nbQsjvnJtAqL3XdwgQliRtX5pqQtgJGbYkojV6tmiGBfqZjMyOE9Y2ECmT59SZhNmSP3j36NHD2+H\nUWDF/bpVSqmC0KRZqXKsWD+IGEb6Qs+n7xpI2C+fF19fWbz00pOsWHEf8fEJgAvTfJ0XXsj/KHNu\nTp78p9jmNi5rkpKSeOutd/H3sWK4UjI9VpxJrH6AVkqVRjp7hlLKI2c73pG5flmkRBNmgBtvvJHZ\ns3+iZ8+l9Oq1krlzp9CxY8ciadubCXNMTAzJycle6z+ru+9+iHffjSLR1QYIx8+vIqtXr0ZEvJ7Y\nulwuXnjhFSIi6lKzZmO+//4Hr8ajlCr/SvNwitY0K1XaZJx3ucn1BG1c6sVgCqc01c1GR0fTrdtd\nbNu2EcMQRo4cyXPPPV3icWR0+vRpIiJqkJzcCLgOeBKYj93+Cvv3byM8PNyr8Q0dOpwPPvgDp/Mz\n4BSm2Zdp077ipptu8mpcSqmySVcEVEoViVOPDMk2ulyWE2ZIq5uFTDdv1c3efXd/tm3rSEpKLMnJ\n23nttTFERUV5JZYLLn54+BsYBdQBBiHSuFQsAPPjj9NwOkcDVwMdcDqfY9Kk6d4OSylVjmlNs1Il\nyO12M27cp0RFreLKK6vx8ssvEBwc7O2wcmcYVEj7McV0YI0rH/Wm3iwvEBF++OFHpk//g0qVwli7\ndhkpKd+RmrrXIDHxblauXEnnzp29FmOFChXo0KET8+f/AZwGwgEXFsvxUjF9ncMRCBwCWgPg43OI\nkBDvx6WUKr90pFmpEjRw4GCGDPmeX3/tyIcfHqZ1684kJCR4O6wcnRw7KdvockkkzLt27aJz59uo\nWbMJffs+wrlz54q9z5L2zjujGDRoBJMnX8+nn0JSEsDctEdTsNlWUaVKFS9GmGrWrMm0aNEai6Ut\n8DY2W3eaNq1M+/btvR0ao0a9hmk+BgzDan2SoKCfeOaZ//N2WPk2depUGjVqS926LXnvvTE6nZ5S\nZUBx1zRPAHoAx4HGadvCgElADWA/cDdwNodjtaZZlStxcXGEhFQkJeUoEAQIDsf1TJr0KrfcckuR\n9iUi/P333yQnJ1O/fn2sVg+/VMphoZKScObMGerWbcqZM8/gdnfCz28sLVocZNmy38vVjBZBQVdw\n/vxS4CogCV/f2zCMpfj5dQP20qJFZf78c7rnz1sxEBF++eUXVq5cS+3a1Rk4cCB+fn7eDguAtWvX\n8ssvU7HbA+jf/+FS8UEjP+bPn8/tt/fD6RwPBGOaT/LGG/29Xseu1OUsPzXNxf0u1B6IBSZyMWl+\nFziZ9u8QIBT4Tw7HatKsypVz585RsWIVkpPPAL4AOBw38+23T3DHHXcUWT+JiYn06PEvVqz4C4vF\nn+rVw1i8+DcqVKiQ57FnZy4h5PYO6ffF5cawlFyyOnPmTO6//2NiYn5P2+LCz68Chw/v9vqFZ0XJ\nNEOJj9+Wdq8rcB6rNY6mTRvwxhv/4eabb06bi7p00QWIisYDDzzKt99eDTyVtmUR9esPYft279eK\nK3W5Kg0XAi4BzmTZdjvwTdrP3wA9izkGpUqF4OBg2re/AX//B4BlWCzv4O+/gw4dOuR5rCfefXc0\ny5cLTudeYmN3sXt3GwYPHpL3gYaRKWFGpEQTZgCbzYbbfRrS57U4j0gy/v7+JRpHcbv//n6Y5v3A\n/cCtwD5SUv5h+3Yf9u8/UCoTZri4IMyFW9YVFVX+mKYNwzidYcspAgJsXotHKZU/3qhprgQcS/v5\nWNp9pS4LM2b8SL9+Falf/zm6dl3HqlVRhIaGFmkf69dvIz7+LlJHsw2SkvqwYcPWS+4fu2Z7pnIM\nd0JSiZVjZNWxY0fq1PHHZrsHGItp3sxDDw3AUc5Wgxs79n2eeqodVutGoC+pgxs2nM6erF9/6edK\nlQ///vcT2O3jMIxXgFEEBDzOW2/l44OtUsqrvF0wd2HAQqnLgt1uZ/z4j4q1j6ZN6zFv3nTi4+8H\nfPD1/ZXGjevnvLNhkGm+ARGvXh3s5+fHsmW/M2bMh+zatZn27QcxYEB/L0ZUPHx9fRk5cjhr124i\nKupXXK7GQCKmOYumTYuuVEeVTvXq1WPduqV88slnJCSc44EHptCuXTtvh6WUykNJfPdaE5jJxZrm\nHUAn4CgQCUQBOb2jy7Bhw9LvdOrUiU6dOhVjmEqVDwkJCdx0U0/++utvDMNGZKQ/y5b9TsWKFS/u\ns/8otlqR6fdTTsdgDc08mpu1fhW0hrWoHTp0iOuvv4kzZ3xxuc7SoUMrZs6cVCouAMxJ1gVhinMx\nmK1bt7Jjxw6uuuoqGjdunPcBSinlgYULF7Jw4cL0+8OHDwcvXwgI2ZPmd4FTwH9JvQAwBL0QUKki\n5Xa72bp1K8nJyTRq1CjzbAf5nBmjNK2YV54lJCSwZcsWTNOkQYMGpXqWkKK4ENDtdvP999+zY8ff\nNGnSiLvvvjvbOY8e/TGvvvo2VmsbUlJWM2zYC7z44r+L5ByUUionpWH2jB+BjqTOin8MeA2YDvwM\nVEennFOqxKScjc00mhy/+zABdSpfcn9NmlVRExF6936AefN2Exd3M3b7DO6993rGj/84fZ/o6Ghq\n1WpIYuJGUt8mDmOzNeHvvzdQrVo1r8WulCrfSkPSXBiaNCtVVAow77ImzaqobdmyhTZtuuN07gQC\ngBj8/Wuxa9fFhHjdunXccMMAYmI2pB8XHNyKuXM/5tprr/VO4Eqpcq80TDmnlPIid7IrU8J8fsUW\nr82MoVRMTAxWayVSE2aAIHx9KxCTocTjyiuvRCQa+CNtSxQu1wHq1atXwtEqpVRmpfNqE6VUobl8\n/fFJSbq4QQRPJm4LdTgwcrgQUKmCatKkCf7+JzCMTxDpicXyHaGhFurWrZu+T3BwMDNmTOKOO/qQ\nlOTC19fC1Kk/FvnUjEop5Sktz1CqnBG3YPhc/BLpzNxVhN7c2osRKXXRzp076dt3EHv2/E2DBo34\n8cfx1KxZM9t+LpeLkydPEh4eXmoXe1FKlR9a06zUZeZszWsIObDx4gb9P6Q85HK5ADRRVUpdVrSm\nWakchAUFYRhG+i0sKMjbIRUNw0hPmI9PmKUJczlWHK9ht9vN44//G5vNjr+/yQMPPEpKSkoRRKuU\nUuWDJs3qsnPm/Pn0pSgl7X5ZdqzDvzLPjiHCFQ/38F5AZcT27dsZP34806ZNSx9dLUr79+9nwoQJ\n/PzzzyQkJBRp28XxGh49+iMmTlxNSsphXK4TTJmyh+HDRxa6XaWUKi/0QkClyjLDoFLaj9FvjCfy\n1Ue8Gk5ZMWPGDO699xGgBxbLVlq0GM+ff04vspX4li9fTteudwDdMIxD1KjxPqtXR2GaZqHanTdv\nHlOmzCqSGLOaO3cxTufTQAUAnM7nmTfvfUaMKJbuyrwtW7bw2WdfISIMGNCPZs2aeTskpVQx05Fm\npcqgI/2GZBtdLs8J86FDh7jjjr5cfXVbHnlkMOcLObL68MNP4HROw+n8itjYFaxbd4apU6cWUbTw\nyCP/Ji5uHHFx3xIbu4A9e6rw+eefe9TG0aNH6d37Aa6+ui0PPvgY48Z9Sq9eAxk/vnaRxZlR9eoR\nWK3r0u/7+KyjatWIYumrrPvrr7+49trOjB0bxNixYbRr15UVK1Z4OyylVDHTkWZ12ck6lVqZm0bN\nMLiwjt+RR16j8vjhJR6Cy+Vi//79BAYGUqlSpbwPKITY2FjatOnMsWN9cbkeZ8+e8ezY0ZslS+YW\naMlpEeHcueNA87QtPqSkXMPRo0eLLObjx49laN8gIaEFhw/nv/2EhASuu+5GDh3qQUrKQHbv/pYf\nfxxKcvIs4DqsDMOgaF/Db775CnPmXE9c3A5ErNhsq3n//cWFbrc8GjFiNHFxrwBPA+B0VmLYsFH8\n/vsU7wamlCpWOtKsLjunY2IQkfTb6QwLK5RmR4aOzTa67I2EOTo6moYNW9GkSWdq1KhP//5PFusq\ngcuXLyc2NgKXazjQnsTECaxdu5bjx48XqD3DMGjRoj1W63DABWzGMH7l+uuvL7KYO3XqgL//W0Ai\nsB/TnEDnzh3yffz69es5dcqPlJR3gPYkJX1KcnIyEA5ACjFYLP9h2LDXi+w1XLlyZbZvX8+nn97N\n//7Xkx07/qJWrVqFbrc8iouL58JzkSo8bZtSqjzTpFmpssAwqPz2/wFw9KZ+Xp0Z44EHnmDv3m44\nnQdITDzApEmr+e6774qtP19fX0SckL6odxIiyYWqP5427TuaNFmOxWLDNDvw2Wfv07x587wPzKcv\nv/yYdu1OYbE48PNrxPDhg+nevXu+j08953gunnMyPj4WbLaBwDpgCjbbl/TseUeRxQwQGhrKfffd\nR79+/QgPD8/7gMvUgAF9MM1XgShgMab5Hx55pI+3w1JKFTOdp1mpUuzYp1Op9HivixtKwf+JK66o\nzYkT84ALq7j9l8GDj/PRR+8XS39JSUk0b96e3bvrkZjYBdOcSI8eVfn5528K3XZycmryXZAyj+Js\n3+Vyce21XdiypRIJCd0JCPiJDh0CaNy4AZMnzyQoKIgPPniDG264oVjiVnmbMOFr3nnnE9xu4d//\nHsgTTzxabK8jpVTx08VNlCrLMrwBn653LWE7SseFRtdddxOrV9+K2/00kIxp3sKoUXfx+OOPF1uf\n58+f56233mXHjn20a9eCZ54ZXGQzXZRWTqeTkSPfY/PmXbRu3YQXXvg3vr6+3g5LKaXKJU2alSqD\nTs1YRoU72l3cUMr+H+zatYvrr7+JxMQquFzHue66hsyZ84smdEoppcosTZqVKmsyjC4n2kPxjz1d\nYl2LCL/++iu7du2icePGdO/e/ZJfN8fExLB+/XoCAwNp3rw5FoteHqHKr7CgoGwLyIQ6HGXmImKl\nVN40aVaqjIhZvYOgNg3S70uKC8On5BJREaFfv0FMm7aOxMQu+PvPYtCgnowerSvCKWUYBlnfjQwo\n1lljlFIlKz9Jsw4PKeVthpEpYUakRBNmgK1btzJ16lzi4paQkvIecXHLGDfuU6Kjo0s0DlX+bNy4\nkVatbqBKlfrce+8AYi4xOvvPP/9w4409qVy5HjfddCeHDh0q4UiVUip3mjQrVQBxcXGsWrWKnTt3\nFni0ybknOlM5his23mv1y2fOnMHXtypgT9sShq9vRc6cOVMi/YcFBWEYRqZbWFBQvo8/e/YsK1eu\nZP/+/cUXpPJYdHQ0HTrczNq193HkyBSmTnVxxx19s+2XmJhIu3ZdWbiwGdHRU4mKakq7djeTmJjo\nhaiVUipnmjQr5aHt27dTs2ZDunZ9gmbNOvPAA496njgbBuaVlS/eF8HHbivaQD3QpEkTLJaDwETg\nDIbxEQ6Hmzp16pRI/2fOn0cg0y1rDemlLFu2jOrV69Gt22AaNGjFK6+8UYyRKk9ERUXhdrcDBgBX\nk5g4niVL/iQ+PvNCIFu3buXMGR9crmFAQ1yuYZw+LWzfvt0bYSulVI40aVbKQ336DODUqZeIiVlH\nfPwupk5dx+TJk/N1rOvs+cwX+0WfLhWzYwQHBxMVNYerrvoQf/8aNG48iUWLfsPf39/boeVKRLjj\njns4f/4rzp1bQ0LCNj74YAIrV670dmgKME0TwzjOxUVaTmEYZJtpxTRNXK6zQELalkRSUs5immYJ\nRntpoQ4HBmS6FcXS5UqpsqV8T3SqVDHYs2cnIhcWHLHjdN7Mjh078j7QMPDJeF+E0pSSNm3alJ07\n13k7DI84nU7Onj0BXFhtryKG0Y4dO3Zw7bXXejM0BXTr1o1q1d5m7957SEhog2lO4JlnXso2x3a9\nevXo0qUd8+ffgtN5O6Y5gxtv7EjdunUv0XLJ0lkylFKgI81KeeyqqxpiGD+l3YvBNOdw9dVXX3J/\nSU7JNLqctOtAqRhdLk0KOpJnmiZhYZWAaWlbonG7F9GwYcNii1Xln81mY/XqKIYNa86jjx7gq69e\n4803X8u2n2EY/Prrd4wadTeDBu3j/ff78Ouv3+kKe0qpUqU0/0XSKedUqbRr1y46dOhGXJyN5OTj\n9Ot3L5999mGOb/DOOo0w9269uEFf00Vu1apVdOt2J253OElJh3j55SG8+uoQb4ellFKqDNF5mpUq\nJgkJCezcuZOQkBBq1KiR7XFxZ542LmHjTmxNrirJEC8rsbGx7Nq1i4iICCIjI70djsdEhO+++471\n6zfRoEFd+vfvX+6XCVdKqdJEk2alvCCm0+0ELZp5cYO+jlUe+vd/gkmT1uB03oVpzqNDhzDmzPlF\nyxOUUqqEaNKsVEnLkOTELlhFYOfWXgxGlQVHjhyhdu1GJCYeABxAEnZ7fZYsmUKzZs28HZ5SSl0W\ndEVApUrI2X6DMyXMiGjCrPIlNjYWqzUYCEzb4oePzxXExsZ6MyyllFJZaNKsVGEZBiHffQJAzE9z\ntBxDeaR27dpUquTAx2cYsAeL5UNstmNcc8013g5NKaVUBpo0K1VAZ176b7bR5aA+t3gvIFUmWa1W\nFi/+jQ4dNhAe3oVWrWaxdOnvOHTxDKWUKlW0plmpgsiQLJ/98GtCnnrQi8Goy9mpU6d4+OH/Y/Xq\nNVSrVp2vv/4413nDlVJKZacXAipVxM5+/C0hTz1wcYO+RpUXiQgtW3Zk8+amJCf/H4axkJCQN/j7\n742Eh4d7OzyllCoz9EJApYqSYaQnzGdffFsTZuV1J0+eZOvWzSQnfwjUQ+RRXK4mLF++3NuhKaVU\nuaOz5yuVh/OT5+K4O0Otsggh3gtHqXQBAQG4XInAGaAC4MLtPordbvdyZEopVf7oSLNSuTGM9IT5\n7H1P6uhyGSIilESJlzfLyAIDA3nyycHY7V2AdwkI6EnDhqF07NjRazEppVR5pUmzUjmIjVqTbWaM\nC9PKqdLN7XbzzDNDsNkc2GwOHnvsGVwuV5H3c+TIEVq3vgGr1Y8KFaoyY8aMIu8jP8aMeYfx44fw\n5JNHGTnyRhYtmqNLcCulVDHQCwGVyipDshzT4dbMS2KrUm/06I949dUfcDqnARZMszcvv3wrQ4e+\nWKT9NGvWns2bO+ByvQaswzR7snbtIho0aFCk/SillCp+eiGgUh6I37QrU8IsLrcmzGXQrFkLcDqf\nByKAK3A6hzBr1oIi7SMpKYlNm1bicr0B+ANtMYzuegGeUkqVY5o0KwVgGAQ0vQqA+FoNQQTDUpq/\niFGXUrlyRXx8NqXft1g2ERlZsUj78PX1xWYLBLalbUnBMLZSsWLR9qOUUqr0KM1ZgZZnqGKXdPAo\nfjUi0+9LUjKGr9aDlmUHDhygRYt2xMdfD/jg77+QNWsWU6dOnSLt59tvv+fRR59D5E6s1g20ahXO\nH39Mw8fHp0j7UUopVfx0cROlcpOhFMNt9cWSnOTFYFRROnHiBNOnT0dEuO2224iIiCiWftavX8/y\n5cuJiIjgzjvv1IRZKaXKKE2alcpBSowTa/DFeWxd52LxCdJ5bZVSSqnLlV4IqFQWZxu3y5QwI6IJ\ns1JKKaXypCPN6rLgTkzGYvNLv5984iy+4cFejEgppZRSpYWONCsFnLyxT3rC7Lb6gogmzEoppZTy\niI40q3JLXG4M68ULsxL2HsFWKzKXI5RSSil1OdKRZnXZOn7/s5kSZkQ0YVZKKaVUgelIsyp/Mkwl\nF7dhF/amV3oxGKWUUkqVdjrSrC4rx194L1PCjIgmzEoppZQqEjrSrMqHDMlyzML1BHVs5sVglFJK\nKVWW6EizKvdOvPd1ttFlTZiVUkopVdR0pFmVXRmS5TNTFhDaq7MXg1FKKaVUWaUjzapcOvX1zGyj\ny5owK6WUUqo4adKsyhbDoMLDtwNw6tPJoN9GKKWUUqoEaHmGKhPOzlpKyG3tL27Q14ZSSimlioiW\nZ6jywTDSE+YTIz7VhFkppZRSJU5HmlWpdX75ZhzXN7m4QV8PSimllCoGOtKsyi7DSE+Yjz85XBNm\npZRSSnmVjjSrUiXuyDnsVULS74vLjWEpzS9TpZRSSpV1OtKsypSlj3+fnjCf6P04iGjCrJRSSqlS\noTRnJDrSfJlIjEkkKTgcB7FsCO5A09MLNVlWSimlVInRkWZV6q16aRr+wTYcxLJp3FKuObtIE2al\nlFJKlTqlOTvRkeZyLNmZzImg2lR2HWKnrQl1z/+Fxaqf4ZRSSilV8nSkWZVK60b+jq/dj8quQ6wb\n+Tv14jdqwqyUUkqpUk1HmlWJcSW52Bt0DXUTt3DIpzoRsXuw2qzeDksppZRSlzkdaValxqb/LcPH\n30rdxC2s+s9UqqYc0IRZKaWUUmWGjjSrYiVuYVNoB5rGLOUcQdjOHcc/yN/bYSmllFJKpdORZuVV\n279fj+FjoWnMUpY9/h3Bck4TZqWUUkqVSTrSrIqcuIU1kbfT+vgsAOKOxWK/wu7lqJRSSimlcqYj\nzarE7Z6+FcPHQuvjs1h832cgogmzUkoppco8HWlWRWZp7X602/cdAOcOnCW4erCXI1JKKaWUypuO\nNKsScWDBHjAM2u37joW3vw8imjArpZRSqlzRkWZVKIua/B8dN48F4NSOE1SoF+7liJRSSimlPKMj\nzarYRK85BIZBx81jWdhxGIhowqyUUkqpcsubSXM3YAewCxjixTiUhxZeP5TI1tUAOLruMJ0Wvp59\nn4ULSzYoVWT0uSvb9Pkr2/T5K7v0uSv/vJU0+wCfkJo4NwTuBRp4KRaVTye2HgfDoNPyt1nU7BkQ\nIaJ55Rz31T8eZZc+d2WbPn9lmz5/ZZc+d+Wft5Lm1sBuYD+QDPwE3OGlWFQ+LOz2DhUbVQLg0JJ9\ndFw/xssRKaWUUkqVHG8lzVWAfzLcP5S2TZUyZ/edSR1dnvcSS+o+DCJUbVfT22EppZRSSpUob82e\ncReppRkD0+7fD7QBBmfYZzdQp4TjUkoppZRSl589wJW57WAtoUCyOgxUy3C/GqmjzRnlGrhSSiml\nlFLlnZXUjL4m4AdsQC8EVEoppZRSKptbgJ2klmG85OVYlFJKKaWUUkopEsT/fwAACLFJREFUpZRS\nSpUnNmAVqSUb24CR3g1HFYAP8Bcw09uBKI/tBzaR+vyt9m4oqgBCgF+A7aT+/bzWu+GofKpH6v+5\nC7dzwFNejUh56iVgK7AZ+AHw9244ygNPk/q8bUn7ucwx0/61AiuBdl6MRXnuWeB7YIa3A1Ee2weE\neTsIVWDfAP3TfrYCwV6MRRWMBYgm88XyqnSrCezlYqI8CXjQa9EoTzQiNWG2kTrg9we5zNzmzWW0\nc+NM+9eP1JM47cVYlGeqAt2BL/DelIaqcPR5K5uCgfbAhLT7KaSOWKqy5UZSL5T/J68dVakRQ+pC\nbSapH1ZNUmcJU6VffVKrGxIAF7AI6HWpnUtr0mwhtTzjGBBF6teMqmwYA7wAuL0diCoQAf4E1nJx\nHnVVNtQCTgBfAeuB8Vz81k6VHfeQ+vW+KjtOA+8DB4EjwFlS/46q0m8LqYMNYaT+vexB6uBfmRRM\nanlGJy/HofLnVmBs2s+d0Jrmsigy7d+KpH5wbe/FWJRnWpI62tUq7f4HwBveC0cVgB+pH3wqejsQ\n5ZE6pA7uVSB1pHkqcJ9XI1Ke6E/qQNEiYBypg385Kq0jzRecA2aT+magSr+2wO2k1sX+CNwATPRq\nRMpT0Wn/niD1D39rL8aiPHMo7bYm7f4vQHPvhaMK4BZgHan//1TZ0RJYDpwitSzqV1LfD1XZMIHU\n57Ajqd8S7PRuOJ4JJ/UKcIAAYDHQxXvhqALqiI40lzUm4Ej72Q4sA7p6LxxVAIuBq9J+fh34r/dC\nUQXwE3oBWVnUlNSv+QNIvSbkG+BJr0akPHFF2r/VSZ15KMiLsXisMan1eBtInfrqBe+GowqoIzp7\nRllTi9T/dxtIfQPQRYfKnqakjjRvJHW0S2fPKDvs8P/t3XuIFWUYx/Hv8RKum+GVWio5UCRpVySj\nbEvb8i8p07KIDCvIlDKyrP7xj5As6EJl9ywVStgubgURq6LmZuYmrauyaWWrBdlFk5A0b7v98TzT\nvM7O7FmX1T2rvw8sO+edmfd95z3L8sx7njMvO4lvXKVreZT4kXMLgZ6d2x05Cquw9249MLqT+yIi\nIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIsdcOXBFZ3fiKN1L/Gz7rmAI1mcRkS6l\n2FcEFJGTz2GgDntO+2LgVC/PA03A7ODYgdjS0XMz6hqLLfLRFgOAWdizOruKWcBf2CpWaVYSrwr4\nGe1/aP9kssf4aPQBHgf2Avd0QH1pFgAT2nHedGBSx3ZFRERE5NjZE2wvAB727TywFVtmODIVC7Bf\nyqhrBXB6G9stxxZ4ORZy/nO8raBjltKeTMcEzcfDfGB8O87rA9R2cF9E5ASimWYRKWZrgHOC13ux\nZU6H++uJwPukB6RnA6cAv/vrBcCL2PLgW4lnI0dhS77XAI3Ay8RLGW8D5mCB+TosAF0C/AhMCdqa\niQVc9cQz23lgC7Y62EbvzzO+vcH7npQHNmOB3xbgPWwp89XA98Blflwp8I63WQfc6OUl2FLMDdgs\nfUlQ9zagv2/P8H5sBB5M6QfAXd6HtcCVQfkg4ENvuzaxL9IdeNbrrwfu9/IK4k8R3sben6hvhcY5\nR/r45bD3bDOwFFsSN/p7qMBWmE229zS2Ali91wl2s7YLGJYxHiIiIiJFJZpp7g58BEzz13ksYBqL\nBTpnAcuwADdtFvS2RPl8oNK3zwd+8O1RWNAcmQvc6duNxEHb81jwVYqlhfzm5WOAN3y7m9dV7v09\nDIzwfROwQDCHBXbbgTMSfc5j6SbD/Lh1WLAHcANQ5dtzgDt8ux8WUPfGguF5Xn6h1xXNNDdiQfNw\nv44Sv5ZNwCWJfpR5/wZgywF/STybvwgY6duDsQA9aSp2MxNNzPQDegE/A+d62ULigL0t45w1fuOD\n8jJgt5dltdcfC7Aj4VLjT3jfRURa0EyziBSbEmzGcQc2O/t6Yn81cD0WFFeSbbDXEfrYf39H29M2\nPvXfG7GZ73+AncB+LOAa4z91WOrIEOJAbTvxR/4jsYCzGfgD+IJ45jjUiM2CNvvvZV6+CQuq8fbu\nw9IvFgOHsLEqB94N+rshUXcOuMrP2efXstjPC13ude/CAu9K4tnb67CZ3TrgEyytoXfi/ArsRqLJ\nX+/GxqURmz0GC2KvDs4pNM5Z41celO8Alns9We39DfyL3YzchH16EfmVeIxFRI7Qo7M7ICKSsA+4\nFAueq7HUg6pg/0EsOJ0BDAXGtVJXMm3jQMq+Qxw5gRCmNIAFbWABYHh+E/H/0KeANxPn5bHAr7X+\nNLfocdxess2wPYC7sRnmpEK5082JY3Ip/WjtmBwWVB+gdYWuNdluW8Y569rSytPag3j2vwK4GUsd\nqcjok4jI/zTTLCLFah/2RIMnaRkUPQc8RvZTIyA9/SHruKFYvmtf4NqM47ICs2osgC31sjOxvN+k\nGuBW7P/uIGzWs71fPKsGHgheRzneq4DbffsC4KKU/tZgNxpResY4LwvVAtdgqQw9gVuCfUuw9yWS\nTO0Ayy2egqXYQJxCkifOUZ+EzRYnZY1z2vitxa45Ki8DRvs5W1LaW4ldc1/gc+zG6+KgnTIsv1pE\npAXNNItIsQln+tZjH69PBL4O9jUQ59I2kz47uJojg7tk3dH2L1j+7Sbs4/xvW+lX2vlLsRzpNf56\nD5ZvnDy+CnsGdL2Xz8TSDNLaKdTn2cALWPpFN+AnLOf5NSx3uwFLQVmXUn8d9qXIKGB/y/sU2oF9\noXENdmNSF+ybDrzi5/TAAt9pifPnAed5/w5is/CvYl8u/MDPqyVOvUleY9o1Z41fFXaj04DlMH/l\nx+/PaG8glqbTCwvQHwraGgE8goiIiMhJZjk2eyhSyGnAN53dCREpXt0LHyIi0mX9iaUfrOzkfkjx\nm4L9nSS/PCkiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiJ7b/AMp9atid\nIC3+AAAAAElFTkSuQmCC\n", "text": [ "<matplotlib.figure.Figure at 0x7f8a51710290>" ] } ], "prompt_number": 27 }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "## Exemplo - regress\u00e3o utilizando todas as dimens\u00f5es" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "### Treinamento" ] }, { "cell_type": "code", "collapsed": false, "input": [ "regr = LinearRegression()\n", "X = boston.data[train_idx]\n", "y = boston.target[train_idx]\n", "regr.fit(X, y)" ], "language": "python", "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 28, "text": [ "LinearRegression(copy_X=True, fit_intercept=True, normalize=False)" ] } ], "prompt_number": 28 }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "Erro quadr\u00e1tico m\u00e9dio" ] }, { "cell_type": "code", "collapsed": false, "input": [ "mean((regr.predict(X) - y)**2)" ], "language": "python", "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 29, "text": [ "22.91041859376821" ] } ], "prompt_number": 29 }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "*Score*" ] }, { "cell_type": "code", "collapsed": false, "input": [ "regr.score(X, y)" ], "language": "python", "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 30, "text": [ "0.74762448229637368" ] } ], "prompt_number": 30 }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "### Teste" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "Erro quadr\u00e1tico m\u00e9dio" ] }, { "cell_type": "code", "collapsed": false, "input": [ "X_t = boston.data[test_idx]\n", "y_t = boston.target[test_idx]\n", "mean((regr.predict(X_t) - y_t)**2)" ], "language": "python", "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 31, "text": [ "19.870238886388343" ] } ], "prompt_number": 31 }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "*Score*" ] }, { "cell_type": "code", "collapsed": false, "input": [ "regr.score(X_t, y_t)" ], "language": "python", "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 32, "text": [ "0.69608300062305262" ] } ], "prompt_number": 32 }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "## Exerc\u00edcio\n", "\n", "### A base de dados sobre diabetes\n", "\n", "Dez vari\u00e1veis idade, sexo, \u00edndice de massa corporal, press\u00e3o arterial m\u00e9dia e seis medi\u00e7\u00f5es sangu\u00edneas de $n = 442$ pacientes com **diabetes**. \n", "\n", "Medida quantitativa de interesse: **\u00edndice de progress\u00e3o da doen\u00e7a ap\u00f3s 1 ano**" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from sklearn.datasets import load_diabetes\n", "diabetes = load_diabetes()" ], "language": "python", "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [], "prompt_number": 33 }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "### Exerc\u00edcio\n", "\n", "Realizar regress\u00e3o para prever o \u00edndice de progress\u00e3o da doen\u00e7a a partir das 10 vari\u00e1vies" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "### Solu\u00e7\u00e3o" ] }, { "cell_type": "code", "collapsed": false, "input": [ "num_samples = diabetes.data.shape[0]\n", "num_samples" ], "language": "python", "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 34, "text": [ "442" ] } ], "prompt_number": 34 }, { "cell_type": "code", "collapsed": false, "input": [ "ssplit = ShuffleSplit(num_samples, n_iter=1, test_size=0.25)" ], "language": "python", "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [], "prompt_number": 35 }, { "cell_type": "code", "collapsed": false, "input": [ "for train_idx, test_idx in ssplit:\n", " pass" ], "language": "python", "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [], "prompt_number": 36 }, { "cell_type": "code", "collapsed": false, "input": [ "train_idx" ], "language": "python", "metadata": { "slideshow": { "slide_type": "subslide" } }, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 37, "text": [ "array([ 88, 325, 273, 279, 104, 146, 403, 48, 331, 401, 329, 381, 191,\n", " 4, 80, 101, 202, 47, 93, 422, 278, 321, 298, 38, 197, 174,\n", " 286, 225, 149, 404, 129, 272, 91, 39, 190, 166, 36, 239, 398,\n", " 17, 209, 82, 54, 409, 97, 318, 378, 419, 154, 208, 96, 275,\n", " 441, 355, 372, 284, 171, 22, 19, 315, 55, 6, 192, 258, 42,\n", " 52, 289, 30, 291, 268, 1, 428, 185, 218, 200, 241, 326, 130,\n", " 345, 319, 238, 250, 227, 211, 353, 263, 232, 430, 314, 281, 138,\n", " 77, 344, 67, 396, 357, 100, 170, 63, 2, 413, 342, 49, 0,\n", " 231, 254, 386, 150, 245, 244, 237, 135, 358, 307, 145, 434, 407,\n", " 248, 352, 420, 79, 399, 94, 242, 178, 277, 303, 123, 85, 113,\n", " 297, 87, 16, 346, 433, 229, 310, 293, 195, 205, 379, 371, 167,\n", " 259, 194, 44, 46, 189, 156, 251, 230, 287, 429, 269, 31, 78,\n", " 21, 9, 81, 98, 26, 305, 240, 290, 59, 157, 369, 196, 158,\n", " 410, 349, 347, 72, 252, 122, 366, 356, 341, 221, 306, 423, 116,\n", " 115, 343, 440, 23, 338, 246, 391, 380, 118, 300, 3, 15, 400,\n", " 132, 181, 322, 99, 389, 106, 323, 282, 226, 177, 110, 27, 262,\n", " 186, 164, 64, 188, 56, 224, 90, 324, 382, 361, 212, 376, 128,\n", " 50, 213, 183, 274, 161, 20, 83, 141, 421, 437, 333, 288, 395,\n", " 152, 412, 162, 5, 313, 351, 133, 105, 438, 74, 121, 108, 163,\n", " 142, 387, 45, 139, 173, 111, 117, 62, 109, 75, 266, 34, 214,\n", " 223, 260, 439, 264, 426, 408, 112, 144, 165, 172, 29, 406, 204,\n", " 71, 370, 126, 417, 255, 362, 270, 257, 402, 393, 125, 120, 10,\n", " 160, 431, 89, 360, 193, 187, 219, 153, 309, 61, 40, 43, 102,\n", " 35, 168, 228, 182, 367, 92, 243, 363, 179, 103, 432, 340, 312,\n", " 137, 124, 397, 236, 151, 184, 140, 424, 203, 261, 60, 12, 114,\n", " 247, 65, 8, 416, 234, 392])" ] } ], "prompt_number": 37 }, { "cell_type": "code", "collapsed": false, "input": [ "test_idx" ], "language": "python", "metadata": { "slideshow": { "slide_type": "subslide" } }, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 38, "text": [ "array([267, 155, 332, 143, 334, 37, 276, 285, 180, 339, 25, 253, 235,\n", " 41, 256, 350, 11, 427, 368, 336, 365, 216, 308, 377, 220, 296,\n", " 107, 316, 418, 384, 411, 292, 385, 280, 68, 394, 294, 374, 233,\n", " 302, 176, 359, 364, 13, 58, 169, 175, 425, 28, 53, 301, 199,\n", " 119, 57, 84, 14, 70, 383, 136, 330, 7, 24, 76, 95, 436,\n", " 348, 271, 354, 222, 311, 388, 415, 304, 249, 335, 18, 206, 295,\n", " 217, 435, 127, 373, 131, 147, 265, 283, 210, 320, 73, 327, 215,\n", " 207, 299, 414, 66, 134, 148, 32, 198, 69, 51, 337, 375, 328,\n", " 33, 390, 405, 317, 86, 159, 201])" ] } ], "prompt_number": 38 }, { "cell_type": "code", "collapsed": false, "input": [ "regr = LinearRegression()\n", "X = diabetes.data[train_idx]\n", "y = diabetes.target[train_idx]\n", "regr.fit(X, y)" ], "language": "python", "metadata": { "slideshow": { "slide_type": "subslide" } }, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 39, "text": [ "LinearRegression(copy_X=True, fit_intercept=True, normalize=False)" ] } ], "prompt_number": 39 }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "Erro quadr\u00e1tico m\u00e9dio" ] }, { "cell_type": "code", "collapsed": false, "input": [ "mean((regr.predict(X) - y)**2)" ], "language": "python", "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 40, "text": [ "2854.5161687412092" ] } ], "prompt_number": 40 }, { "cell_type": "code", "collapsed": false, "input": [ "X_t = diabetes.data[test_idx]\n", "y_t = diabetes.target[test_idx]\n", "mean((regr.predict(X_t) - y_t)**2)" ], "language": "python", "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 41, "text": [ "2957.3328332580109" ] } ], "prompt_number": 41 }, { "cell_type": "code", "collapsed": false, "input": [ "regr.score(X_t, y_t)" ], "language": "python", "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 42, "text": [ "0.49383612489744777" ] } ], "prompt_number": 42 }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "## Lasso \n", "\n", "- Lasso \u00e9 capaz de produzir **modelos esparsos**\n", " - Modelos que usam um **subconjunto** das vari\u00e1veis\n", "- O ideia \u00e9 reduzir os coeficientes de algumas vari\u00e1veis **zero**\n", "- Modelos Lasso s\u00e3o assim mais f\u00e1ceis de interpretar\n", "- Pode ser entendido como uma aplica\u00e7\u00e3o da **faca de Occam**\n", " - *Prefira modelos mais **simples** *" ] }, { "cell_type": "code", "collapsed": false, "input": [ "ssplit = ShuffleSplit(num_samples, n_iter=1, test_size=0.25)\n", "\n", "for train_idx, test_idx in ssplit:\n", " pass\n", "\n", "X = boston.data[train_idx]\n", "y = boston.target[train_idx]\n", "\n", "X_t = boston.data[test_idx]\n", "y_t = boston.target[test_idx]" ], "language": "python", "metadata": { "slideshow": { "slide_type": "subslide" } }, "outputs": [], "prompt_number": 132 }, { "cell_type": "code", "collapsed": false, "input": [ "from sklearn.linear_model import Lasso" ], "language": "python", "metadata": { "slideshow": { "slide_type": "subslide" } }, "outputs": [], "prompt_number": 133 }, { "cell_type": "code", "collapsed": false, "input": [ "lasso_regr = Lasso()\n", "lasso_regr.set_params(alpha=0.001)\n", "lasso_regr.fit(X, y)" ], "language": "python", "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 134, "text": [ "Lasso(alpha=0.001, copy_X=True, fit_intercept=True, max_iter=1000,\n", " normalize=False, positive=False, precompute='auto', tol=0.0001,\n", " warm_start=False)" ] } ], "prompt_number": 134 }, { "cell_type": "code", "collapsed": false, "input": [ "lasso_regr.score(X_t, y_t)" ], "language": "python", "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 135, "text": [ "0.7053705432249564" ] } ], "prompt_number": 135 }, { "cell_type": "code", "collapsed": false, "input": [ "boston_vars = ['CRIM (per capita crime rate by town)',\n", " 'ZN (proportion of residential land zoned for lots over 25,000 sq.ft.)',\n", " 'INDUS (proportion of non-retail business acres per town)',\n", " 'CHAS (Charles River dummy variable, = 1 if tract bounds river; 0 otherwise)',\n", " 'NOX nitric oxides concentration (parts per 10 million)',\n", " 'RM (average number of rooms per dwelling)',\n", " 'AGE (proportion of owner-occupied units built prior to 1940)',\n", " 'DIS (weighted distances to five Boston employment centres)',\n", " 'RAD (index of accessibility to radial highways)',\n", " 'TAX (full-value property-tax rate per $10,000)',\n", " 'PTRATIO (pupil-teacher ratio by town)',\n", " 'B (1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town)',\n", " 'LSTAT (lower status of the population)']" ], "language": "python", "metadata": { "slideshow": { "slide_type": "skip" } }, "outputs": [], "prompt_number": 136 }, { "cell_type": "code", "collapsed": false, "input": [ "for descr, coefficient in zip(boston_vars, lasso_regr.coef_):\n", " print \"%.3f\\t%s\" % (coefficient, descr)" ], "language": "python", "metadata": { "slideshow": { "slide_type": "subslide" } }, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "-0.107\tCRIM (per capita crime rate by town)\n", "0.061\tZN (proportion of residential land zoned for lots over 25,000 sq.ft.)\n", "0.051\tINDUS (proportion of non-retail business acres per town)\n", "2.754\tCHAS (Charles River dummy variable, = 1 if tract bounds river; 0 otherwise)\n", "-17.696\tNOX nitric oxides concentration (parts per 10 million)\n", "3.505\tRM (average number of rooms per dwelling)\n", "0.032\tAGE (proportion of owner-occupied units built prior to 1940)\n", "-1.401\tDIS (weighted distances to five Boston employment centres)\n", "0.432\tRAD (index of accessibility to radial highways)\n", "-0.016\tTAX (full-value property-tax rate per $10,000)\n", "-0.883\tPTRATIO (pupil-teacher ratio by town)\n", "0.010\tB (1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town)\n", "-0.668\tLSTAT (lower status of the population)\n" ] } ], "prompt_number": 137 } ], "metadata": {} } ] }
cc0-1.0
imaginebog/kmc_proc
notebooks/process_descs.ipynb
1
33863
{ "metadata": { "name": "", "signature": "sha256:6c83e8a90b3abbbe3020e776ff516a7599ccb028ce92240489d37ffa9f31764b" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "code", "collapsed": false, "input": [ "import pandas" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 25 }, { "cell_type": "code", "collapsed": false, "input": [ "%cd D:\\kmc400-braviz" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "D:\\kmc400-braviz\n" ] } ], "prompt_number": 26 }, { "cell_type": "code", "collapsed": false, "input": [ "import sqlite3" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 27 }, { "cell_type": "code", "collapsed": false, "input": [ "conn = sqlite3.Connection(\"descriptors.sqlite\")" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 28 }, { "cell_type": "code", "collapsed": false, "input": [ "q=\"select subject,structure,area,d1,d2,d3 from descriptors\"" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 29 }, { "cell_type": "code", "collapsed": false, "input": [ "from pandas.io import sql" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 30 }, { "cell_type": "code", "collapsed": false, "input": [ "df = pandas.read_sql(q,conn,index_col=[\"subject\",\"structure\"])" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 31 }, { "cell_type": "code", "collapsed": false, "input": [ "df.head()" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th></th>\n", " <th>area</th>\n", " <th>d1</th>\n", " <th>d2</th>\n", " <th>d3</th>\n", " </tr>\n", " <tr>\n", " <th>subject</th>\n", " <th>structure</th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>8 </th>\n", " <th>ctx-lh-parahippocampal</th>\n", " <td> 2278.972681</td>\n", " <td> 37.429935</td>\n", " <td> 27.662001</td>\n", " <td> 18.309098</td>\n", " </tr>\n", " <tr>\n", " <th>144</th>\n", " <th>ctx-lh-entorhinal</th>\n", " <td> 1301.127051</td>\n", " <td> 31.906112</td>\n", " <td> 22.805641</td>\n", " <td> 12.805795</td>\n", " </tr>\n", " <tr>\n", " <th>8 </th>\n", " <th>ctx-lh-unknown</th>\n", " <td> 624.890113</td>\n", " <td> 71.958321</td>\n", " <td> 65.579963</td>\n", " <td> 24.555925</td>\n", " </tr>\n", " <tr>\n", " <th>144</th>\n", " <th>ctx-lh-postcentral</th>\n", " <td> 6899.567492</td>\n", " <td> 91.104336</td>\n", " <td> 38.530314</td>\n", " <td> 20.813732</td>\n", " </tr>\n", " <tr>\n", " <th>8 </th>\n", " <th>ctx-rh-parahippocampal</th>\n", " <td> 2580.549424</td>\n", " <td> 39.370039</td>\n", " <td> 22.284075</td>\n", " <td> 15.277122</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "metadata": {}, "output_type": "pyout", "prompt_number": 32, "text": [ " area d1 d2 d3\n", "subject structure \n", "8 ctx-lh-parahippocampal 2278.972681 37.429935 27.662001 18.309098\n", "144 ctx-lh-entorhinal 1301.127051 31.906112 22.805641 12.805795\n", "8 ctx-lh-unknown 624.890113 71.958321 65.579963 24.555925\n", "144 ctx-lh-postcentral 6899.567492 91.104336 38.530314 20.813732\n", "8 ctx-rh-parahippocampal 2580.549424 39.370039 22.284075 15.277122" ] } ], "prompt_number": 32 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 32 }, { "cell_type": "code", "collapsed": false, "input": [ "descs=[\"area\",\"d1\",\"d2\",\"d3\"]" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 33 }, { "cell_type": "code", "collapsed": false, "input": [ "df2=df.unstack()" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 34 }, { "cell_type": "code", "collapsed": false, "input": [ "df2.head()" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr>\n", " <th></th>\n", " <th colspan=\"10\" halign=\"left\">area</th>\n", " <th>...</th>\n", " <th colspan=\"10\" halign=\"left\">d3</th>\n", " </tr>\n", " <tr>\n", " <th>structure</th>\n", " <th>3rd-Ventricle</th>\n", " <th>4th-Ventricle</th>\n", " <th>5th-Ventricle</th>\n", " <th>Brain-Stem</th>\n", " <th>CC-Full</th>\n", " <th>CC_Anterior</th>\n", " <th>CC_Central</th>\n", " <th>CC_Mid_Anterior</th>\n", " <th>CC_Mid_Posterior</th>\n", " <th>CC_Posterior</th>\n", " <th>...</th>\n", " <th>ctx-rh-rostralanteriorcingulate</th>\n", " <th>ctx-rh-rostralmiddlefrontal</th>\n", " <th>ctx-rh-superiorfrontal</th>\n", " <th>ctx-rh-superiorparietal</th>\n", " <th>ctx-rh-superiortemporal</th>\n", " <th>ctx-rh-supramarginal</th>\n", " <th>ctx-rh-temporalpole</th>\n", " <th>ctx-rh-transversetemporal</th>\n", " <th>ctx-rh-unknown</th>\n", " <th>non-WM-hypointensities</th>\n", " </tr>\n", " <tr>\n", " <th>subject</th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>8 </th>\n", " <td> 1042.746860</td>\n", " <td> 2324.878508</td>\n", " <td> NaN</td>\n", " <td> 19901.106811</td>\n", " <td>NaN</td>\n", " <td> 931.075837</td>\n", " <td> 349.613667</td>\n", " <td> 399.028359</td>\n", " <td> 326.393362</td>\n", " <td> 938.169249</td>\n", " <td>...</td>\n", " <td> 13.867242</td>\n", " <td> 34.474535</td>\n", " <td> 36.268758</td>\n", " <td> 29.907202</td>\n", " <td> 21.840511</td>\n", " <td> 32.846882</td>\n", " <td> 14.357744</td>\n", " <td> 9.730251</td>\n", " <td> 29.612856</td>\n", " <td> 31.402270</td>\n", " </tr>\n", " <tr>\n", " <th>9 </th>\n", " <td> 641.619491</td>\n", " <td> 1403.124541</td>\n", " <td> 0.035986</td>\n", " <td> 19105.559066</td>\n", " <td>NaN</td>\n", " <td> 827.894232</td>\n", " <td> 552.128907</td>\n", " <td> 449.101797</td>\n", " <td> 415.486599</td>\n", " <td> 760.369338</td>\n", " <td>...</td>\n", " <td> 16.315684</td>\n", " <td> 28.157098</td>\n", " <td> 28.987894</td>\n", " <td> 31.327106</td>\n", " <td> 24.768581</td>\n", " <td> 39.578074</td>\n", " <td> 16.031983</td>\n", " <td> 9.157265</td>\n", " <td> 29.442350</td>\n", " <td> NaN</td>\n", " </tr>\n", " <tr>\n", " <th>15</th>\n", " <td> 394.184189</td>\n", " <td> 997.982595</td>\n", " <td> NaN</td>\n", " <td> 14207.624250</td>\n", " <td>NaN</td>\n", " <td> 762.970895</td>\n", " <td> 376.312508</td>\n", " <td> 449.414371</td>\n", " <td> 332.295052</td>\n", " <td> 872.130594</td>\n", " <td>...</td>\n", " <td> 10.291902</td>\n", " <td> 27.141029</td>\n", " <td> 31.444940</td>\n", " <td> 33.197328</td>\n", " <td> 20.185973</td>\n", " <td> 35.341697</td>\n", " <td> 17.011382</td>\n", " <td> 7.816032</td>\n", " <td> 25.034827</td>\n", " <td> 24.233473</td>\n", " </tr>\n", " <tr>\n", " <th>19</th>\n", " <td> 353.600531</td>\n", " <td> 993.396872</td>\n", " <td> NaN</td>\n", " <td> 19291.102927</td>\n", " <td>NaN</td>\n", " <td> 852.189519</td>\n", " <td> 372.058946</td>\n", " <td> 341.943886</td>\n", " <td> 377.845119</td>\n", " <td> 980.551577</td>\n", " <td>...</td>\n", " <td> 12.437163</td>\n", " <td> 28.664058</td>\n", " <td> 36.267630</td>\n", " <td> 33.355277</td>\n", " <td> 24.461873</td>\n", " <td> 31.105284</td>\n", " <td> 16.346414</td>\n", " <td> 11.192667</td>\n", " <td> 27.950776</td>\n", " <td> 34.210083</td>\n", " </tr>\n", " <tr>\n", " <th>25</th>\n", " <td> 1109.025713</td>\n", " <td> 1909.614231</td>\n", " <td> 0.190569</td>\n", " <td> 20935.992450</td>\n", " <td>NaN</td>\n", " <td> 860.965305</td>\n", " <td> 456.710971</td>\n", " <td> 453.471441</td>\n", " <td> 405.456617</td>\n", " <td> 1001.375148</td>\n", " <td>...</td>\n", " <td> 18.343729</td>\n", " <td> 32.607878</td>\n", " <td> 37.655168</td>\n", " <td> 29.434078</td>\n", " <td> 34.904352</td>\n", " <td> 38.723101</td>\n", " <td> 12.684097</td>\n", " <td> 13.565896</td>\n", " <td> 29.122445</td>\n", " <td> 8.558598</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "<p>5 rows \u00d7 464 columns</p>\n", "</div>" ], "metadata": {}, "output_type": "pyout", "prompt_number": 35, "text": [ " area \\\n", "structure 3rd-Ventricle 4th-Ventricle 5th-Ventricle Brain-Stem CC-Full \n", "subject \n", "8 1042.746860 2324.878508 NaN 19901.106811 NaN \n", "9 641.619491 1403.124541 0.035986 19105.559066 NaN \n", "15 394.184189 997.982595 NaN 14207.624250 NaN \n", "19 353.600531 993.396872 NaN 19291.102927 NaN \n", "25 1109.025713 1909.614231 0.190569 20935.992450 NaN \n", "\n", " \\\n", "structure CC_Anterior CC_Central CC_Mid_Anterior CC_Mid_Posterior \n", "subject \n", "8 931.075837 349.613667 399.028359 326.393362 \n", "9 827.894232 552.128907 449.101797 415.486599 \n", "15 762.970895 376.312508 449.414371 332.295052 \n", "19 852.189519 372.058946 341.943886 377.845119 \n", "25 860.965305 456.710971 453.471441 405.456617 \n", "\n", " ... d3 \\\n", "structure CC_Posterior ... ctx-rh-rostralanteriorcingulate \n", "subject ... \n", "8 938.169249 ... 13.867242 \n", "9 760.369338 ... 16.315684 \n", "15 872.130594 ... 10.291902 \n", "19 980.551577 ... 12.437163 \n", "25 1001.375148 ... 18.343729 \n", "\n", " \\\n", "structure ctx-rh-rostralmiddlefrontal ctx-rh-superiorfrontal \n", "subject \n", "8 34.474535 36.268758 \n", "9 28.157098 28.987894 \n", "15 27.141029 31.444940 \n", "19 28.664058 36.267630 \n", "25 32.607878 37.655168 \n", "\n", " \\\n", "structure ctx-rh-superiorparietal ctx-rh-superiortemporal \n", "subject \n", "8 29.907202 21.840511 \n", "9 31.327106 24.768581 \n", "15 33.197328 20.185973 \n", "19 33.355277 24.461873 \n", "25 29.434078 34.904352 \n", "\n", " \\\n", "structure ctx-rh-supramarginal ctx-rh-temporalpole \n", "subject \n", "8 32.846882 14.357744 \n", "9 39.578074 16.031983 \n", "15 35.341697 17.011382 \n", "19 31.105284 16.346414 \n", "25 38.723101 12.684097 \n", "\n", " \n", "structure ctx-rh-transversetemporal ctx-rh-unknown non-WM-hypointensities \n", "subject \n", "8 9.730251 29.612856 31.402270 \n", "9 9.157265 29.442350 NaN \n", "15 7.816032 25.034827 24.233473 \n", "19 11.192667 27.950776 34.210083 \n", "25 13.565896 29.122445 8.558598 \n", "\n", "[5 rows x 464 columns]" ] } ], "prompt_number": 35 }, { "cell_type": "code", "collapsed": false, "input": [ "df2.index" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 36, "text": [ "Int64Index([8, 9, 15, 19, 25, 29, 31, 35, 44, 51, 53, 54, 56, 64, 65, 69, 71, 72, 75, 83, 90, 93, 95, 107, 108, 113, 119, 121, 123, 124, 125, 128, 129, 134, 138, 141, 143, 144, 145, 149, 151, 153, 154, 156, 157, 161, 165, 172, 173, 175, 176, 177, 182, 185, 186, 195, 197, 198, 201, 202, 205, 208, 210, 212, 216, 219, 221, 225, 227, 230, 231, 232, 235, 237, 253, 256, 261, 263, 264, 266, 277, 288, 292, 293, 300, 301, 304, 307, 310, 313, 314, 319, 320, 322, 327, 331, 332, 333, 344, 346, ...], dtype='int64')" ] } ], "prompt_number": 36 }, { "cell_type": "code", "collapsed": false, "input": [ "table_subjects = [ 8, 9, 15, 19, 25, 29, 31, 35, 44, 51, 53, 54, 56, 64, 65, 69, 71, 72, 73, 75, 83, 90, 93, 95, 107, 108, 113, 119, 121, 123, 124, 125, 128, 129, 134, 138, 141, 143, 144, 145, 149, 151, 153, 154, 156, 157, 161, 165, 172, 173, 175, 176, 177, 182, 185, 186, 195, 197, 198, 201, 202, 205, 208, 210, 212, 216, 219, 221, 225, 227, 230, 231, 232, 235, 237, 253, 256, 259, 261, 263, 264, 266, 277, 288, 292, 293, 300, 301, 304, 307, 310, 312, 313, 314, 319, 320, 322, 327, 331, 332, 333, 344, 346, 348, 353, 355, 356, 357, 358, 364, 369, 371, 374, 381, 390, 396, 399, 402, 409, 413, 416, 417, 423, 424, 426, 427, 429, 431, 432, 440, 452, 456, 458, 464, 469, 472, 478, 480, 483, 484, 485, 491, 496, 499, 504, 517, 526, 532, 535, 536, 537, 542, 544, 545, 547, 548, 549, 552, 566, 568, 576, 577, 579, 580, 592, 593, 595, 598, 599, 600, 602, 610, 611, 615, 616, 619, 623, 625, 630, 631, 645, 650, 651, 662, 665, 670, 675, 678, 684, 686, 689, 691, 694, 696, 712, 715, 734, 739, 748, 752, 754, 761, 765, 769, 783, 784, 786, 789, 790, 791, 795, 799, 804, 806, 815, 818, 821, 829, 840, 841, 848, 850, 861, 863, 868, 869, 874, 876, 877, 878, 879, 884, 891, 892, 893, 894, 898, 905, 906, 912, 913, 914, 918, 928, 934, 935, 939, 940, 942, 953, 954, 965, 966, 971, 982, 984, 992, 994, 996, 1005, 1006, 1021, 1026, 1039, 1049, 1063, 1076, 1077, 1212, 1213, 1218, 1221, 1224, 1227, 1232, 1234, 1237, 1239, 1242, 1244, 1247, 1249, 1251, 1253, 1260, 1262, 1265, 1267, 1268, 1269, 1271, 1278, 1283, 1291, 1304, 1318, 1320, 1322, 1326, 1333, 1336, 1337, 1338, 1340, 1357, ]" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 37 }, { "cell_type": "code", "collapsed": false, "input": [ "missing = set(table_subjects) - set(df2.index)\n", "print missing" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "set([312, 73, 259])\n" ] } ], "prompt_number": 38 }, { "cell_type": "code", "collapsed": false, "input": [ "new_index = sorted(set(df2.index).intersection(table_subjects))" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 39 }, { "cell_type": "code", "collapsed": false, "input": [ "df3 = df2.loc[new_index]" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 40 }, { "cell_type": "code", "collapsed": false, "input": [ "cols2 = [\"_\".join((m_s[1],m_s[0])) for m_s in df3.columns]" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 41 }, { "cell_type": "code", "collapsed": false, "input": [ "df3.columns = cols2" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 42 }, { "cell_type": "code", "collapsed": false, "input": [ "df4=df3.sort(axis=1)" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 43 }, { "cell_type": "code", "collapsed": false, "input": [ "df4.head()" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>3rd-Ventricle_area</th>\n", " <th>3rd-Ventricle_d1</th>\n", " <th>3rd-Ventricle_d2</th>\n", " <th>3rd-Ventricle_d3</th>\n", " <th>4th-Ventricle_area</th>\n", " <th>4th-Ventricle_d1</th>\n", " <th>4th-Ventricle_d2</th>\n", " <th>4th-Ventricle_d3</th>\n", " <th>5th-Ventricle_area</th>\n", " <th>5th-Ventricle_d1</th>\n", " <th>...</th>\n", " <th>ctx-rh-transversetemporal_d2</th>\n", " <th>ctx-rh-transversetemporal_d3</th>\n", " <th>ctx-rh-unknown_area</th>\n", " <th>ctx-rh-unknown_d1</th>\n", " <th>ctx-rh-unknown_d2</th>\n", " <th>ctx-rh-unknown_d3</th>\n", " <th>non-WM-hypointensities_area</th>\n", " <th>non-WM-hypointensities_d1</th>\n", " <th>non-WM-hypointensities_d2</th>\n", " <th>non-WM-hypointensities_d3</th>\n", " </tr>\n", " <tr>\n", " <th>subject</th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>8 </th>\n", " <td> 1042.746860</td>\n", " <td> 36.276714</td>\n", " <td> 17.819852</td>\n", " <td> 6.320717</td>\n", " <td> 2324.878508</td>\n", " <td> 49.889879</td>\n", " <td> 26.155790</td>\n", " <td> 21.261250</td>\n", " <td> NaN</td>\n", " <td>NaN</td>\n", " <td>...</td>\n", " <td> 12.586128</td>\n", " <td> 9.730251</td>\n", " <td> 468.230734</td>\n", " <td> 89.336443</td>\n", " <td> 66.987532</td>\n", " <td> 29.612856</td>\n", " <td> 6.132118</td>\n", " <td> 91.831367</td>\n", " <td> 48.206247</td>\n", " <td> 31.402270</td>\n", " </tr>\n", " <tr>\n", " <th>9 </th>\n", " <td> 641.619491</td>\n", " <td> 33.376639</td>\n", " <td> 17.140485</td>\n", " <td> 5.425703</td>\n", " <td> 1403.124541</td>\n", " <td> 43.208795</td>\n", " <td> 20.090662</td>\n", " <td> 16.680234</td>\n", " <td> 0.035986</td>\n", " <td>NaN</td>\n", " <td>...</td>\n", " <td> 13.389130</td>\n", " <td> 9.157265</td>\n", " <td> 491.930440</td>\n", " <td> 75.610846</td>\n", " <td> 57.675523</td>\n", " <td> 29.442350</td>\n", " <td> NaN</td>\n", " <td> NaN</td>\n", " <td> NaN</td>\n", " <td> NaN</td>\n", " </tr>\n", " <tr>\n", " <th>15</th>\n", " <td> 394.184189</td>\n", " <td> 28.178006</td>\n", " <td> 17.457000</td>\n", " <td> 4.612694</td>\n", " <td> 997.982595</td>\n", " <td> 39.937451</td>\n", " <td> 23.283802</td>\n", " <td> 15.212459</td>\n", " <td> NaN</td>\n", " <td>NaN</td>\n", " <td>...</td>\n", " <td> 15.531115</td>\n", " <td> 7.816032</td>\n", " <td> 689.650087</td>\n", " <td> 66.820655</td>\n", " <td> 59.974526</td>\n", " <td> 25.034827</td>\n", " <td> 9.535910</td>\n", " <td> 53.497664</td>\n", " <td> 49.886065</td>\n", " <td> 24.233473</td>\n", " </tr>\n", " <tr>\n", " <th>19</th>\n", " <td> 353.600531</td>\n", " <td> 28.792360</td>\n", " <td> 15.420484</td>\n", " <td> 5.069910</td>\n", " <td> 993.396872</td>\n", " <td> 43.278170</td>\n", " <td> 21.165607</td>\n", " <td> 12.541365</td>\n", " <td> NaN</td>\n", " <td>NaN</td>\n", " <td>...</td>\n", " <td> 12.197054</td>\n", " <td> 11.192667</td>\n", " <td> 965.982823</td>\n", " <td> 81.553663</td>\n", " <td> 60.539905</td>\n", " <td> 27.950776</td>\n", " <td> 22.280935</td>\n", " <td> 77.317527</td>\n", " <td> 51.776174</td>\n", " <td> 34.210083</td>\n", " </tr>\n", " <tr>\n", " <th>25</th>\n", " <td> 1109.025713</td>\n", " <td> 35.185224</td>\n", " <td> 15.608342</td>\n", " <td> 8.507182</td>\n", " <td> 1909.614231</td>\n", " <td> 47.138095</td>\n", " <td> 22.108704</td>\n", " <td> 18.356068</td>\n", " <td> 0.190569</td>\n", " <td>NaN</td>\n", " <td>...</td>\n", " <td> 14.344592</td>\n", " <td> 13.565896</td>\n", " <td> 1177.163048</td>\n", " <td> 74.779676</td>\n", " <td> 59.780500</td>\n", " <td> 29.122445</td>\n", " <td> 1.769736</td>\n", " <td> 72.965745</td>\n", " <td> 41.464603</td>\n", " <td> 8.558598</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "<p>5 rows \u00d7 464 columns</p>\n", "</div>" ], "metadata": {}, "output_type": "pyout", "prompt_number": 44, "text": [ " 3rd-Ventricle_area 3rd-Ventricle_d1 3rd-Ventricle_d2 \\\n", "subject \n", "8 1042.746860 36.276714 17.819852 \n", "9 641.619491 33.376639 17.140485 \n", "15 394.184189 28.178006 17.457000 \n", "19 353.600531 28.792360 15.420484 \n", "25 1109.025713 35.185224 15.608342 \n", "\n", " 3rd-Ventricle_d3 4th-Ventricle_area 4th-Ventricle_d1 \\\n", "subject \n", "8 6.320717 2324.878508 49.889879 \n", "9 5.425703 1403.124541 43.208795 \n", "15 4.612694 997.982595 39.937451 \n", "19 5.069910 993.396872 43.278170 \n", "25 8.507182 1909.614231 47.138095 \n", "\n", " 4th-Ventricle_d2 4th-Ventricle_d3 5th-Ventricle_area \\\n", "subject \n", "8 26.155790 21.261250 NaN \n", "9 20.090662 16.680234 0.035986 \n", "15 23.283802 15.212459 NaN \n", "19 21.165607 12.541365 NaN \n", "25 22.108704 18.356068 0.190569 \n", "\n", " 5th-Ventricle_d1 ... ctx-rh-transversetemporal_d2 \\\n", "subject ... \n", "8 NaN ... 12.586128 \n", "9 NaN ... 13.389130 \n", "15 NaN ... 15.531115 \n", "19 NaN ... 12.197054 \n", "25 NaN ... 14.344592 \n", "\n", " ctx-rh-transversetemporal_d3 ctx-rh-unknown_area ctx-rh-unknown_d1 \\\n", "subject \n", "8 9.730251 468.230734 89.336443 \n", "9 9.157265 491.930440 75.610846 \n", "15 7.816032 689.650087 66.820655 \n", "19 11.192667 965.982823 81.553663 \n", "25 13.565896 1177.163048 74.779676 \n", "\n", " ctx-rh-unknown_d2 ctx-rh-unknown_d3 non-WM-hypointensities_area \\\n", "subject \n", "8 66.987532 29.612856 6.132118 \n", "9 57.675523 29.442350 NaN \n", "15 59.974526 25.034827 9.535910 \n", "19 60.539905 27.950776 22.280935 \n", "25 59.780500 29.122445 1.769736 \n", "\n", " non-WM-hypointensities_d1 non-WM-hypointensities_d2 \\\n", "subject \n", "8 91.831367 48.206247 \n", "9 NaN NaN \n", "15 53.497664 49.886065 \n", "19 77.317527 51.776174 \n", "25 72.965745 41.464603 \n", "\n", " non-WM-hypointensities_d3 \n", "subject \n", "8 31.402270 \n", "9 NaN \n", "15 24.233473 \n", "19 34.210083 \n", "25 8.558598 \n", "\n", "[5 rows x 464 columns]" ] } ], "prompt_number": 44 }, { "cell_type": "code", "collapsed": false, "input": [ "df4.to_excel(\"descriptors.xlsx\")" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 45 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 45 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 45 } ], "metadata": {} } ] }
mit
willtchiu/TechCrunchStartupAnalysis
Explore_TC_Data.ipynb
2
357213
{ "cells": [ { "cell_type": "code", "execution_count": 77, "metadata": { "collapsed": true }, "outputs": [], "source": [ "%matplotlib inline\n", "from collections import Counter\n", "from collections import defaultdict\n", "from os import listdir\n", "import pandas as pd\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "import nltk\n", "import plotly.plotly as py" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": true }, "outputs": [], "source": [ "data = pd.read_csv('techcrunch_posts.csv')\n", "orgs = pd.read_csv('organizations.csv')\n", "people = pd.read_csv('people.csv')" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": true }, "outputs": [], "source": [ "cat_start_data = data[data['category'] == 'Startups']" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### TODO:\n", "- Create time series graph of \"hype/PR\"\n", "- Extract company names and group them with their respective posts\n", "- Create sentiment analysis on each post within the company group\n", "- Graph the sentiment analysis against outcome (if exists) \"funded/exits/failures\"" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": true, "scrolled": true }, "outputs": [], "source": [ "df = pd.DataFrame(cat_start_data)" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def extract_nouns(content, thresh, draw_plot):\n", " if content == \"\":\n", " print (\"Content is empty...aborting\")\n", " return\n", " is_noun = lambda pos: pos[:2] == 'NN'\n", " tokenized = nltk.word_tokenize(content)\n", " nouns = [word for (word, pos) in nltk.pos_tag(tokenized) if is_noun(pos)]\n", " noun_counts = Counter(nouns)\n", " nc_thresh = thresh\n", " nc_df = pd.DataFrame.from_dict(noun_counts, orient='index')\n", " #nc_df = nc_df.sort(columns=0, ascending=False).iloc[0:thresh]\n", " nc_df = nc_df.sort_values(by=0, axis=0, ascending=False).iloc[0:thresh]\n", " #nc_df = nc_df[nc_df[0] >= thresh]\n", " if draw_plot: nc_df.plot(kind='bar');\n", " return nc_df" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Content is empty...aborting\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAE9CAYAAAAbNJn3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGC1JREFUeJzt3Xu0XWV97vHnIQEDcoctQxJiAlJ6wIPCCVbE2gpSLShy\nFBQUi0Wa0yEVbLUdnKrFSy/aIfW09VRNBYEjBQGpaCkoKhetFEwQBQKIBavBCzEqIC0GwnP+mHMl\nm3RD9l5rZb9rvfP7GSNj7znX2nv+xhpZz37XO9+LkwgAMP62KF0AAGA4CHQAqASBDgCVINABoBIE\nOgBUgkAHgEoQ6ABQCQIdACpBoANAJebO5sV23XXXLFq0aDYvCQBjb8WKFT9OMrGp581qoC9atEjL\nly+fzUsCwNiz/e/TeR5dLgBQCQIdACpBoANAJWa1Dx0ASnjkkUe0atUqPfzww6VLeVLz5s3TggUL\ntOWWW/b18wQ6gOqtWrVK2223nRYtWiTbpcuZUhKtWbNGq1at0uLFi/v6HZvscrF9tu37bN866dzO\ntq+yfVf7dae+rg4As+Dhhx/WLrvsMrJhLkm2tcsuuwz0KWI6fejnSHrpRudOl/TFJHtL+mJ7DAAj\na5TDvGfQGjcZ6Emuk/STjU6/QtK57ffnSjp6oCoAAAPrtw99tyQ/aL//oaTdnuiJtpdKWipJCxcu\n7PNyGyw6/fKBf8egvvO+I0uXIInXAujXsN87030fXHnllTrttNO0bt06nXzyyTr99OF2bgw8bDHN\nLtNPuNN0kmVJliRZMjGxyZmrAFCldevW6ZRTTtEVV1yhlStX6oILLtDKlSuHeo1+A/1Htp8uSe3X\n+4ZXEgDU58Ybb9Qzn/lM7bnnntpqq6103HHH6bLLLhvqNfoN9M9IOrH9/kRJw60KACpz7733ao89\n9lh/vGDBAt17771DvcZ0hi1eIOl6SfvYXmX7jZLeJ+lw23dJenF7DAAoaJM3RZMc/wQPHTbkWgCg\nWvPnz9f3vve99cerVq3S/Pnzh3oN1nIBgFlw0EEH6a677tI999yjtWvX6sILL9RRRx011Gsw9R9A\n55QYbjt37lx96EMf0kte8hKtW7dOJ510kvbbb7/hXmOovw0A8ISOOOIIHXHEEZvt99PlAgCVINAB\noBIEOoBOaCa1j7ZBayTQAVRv3rx5WrNmzUiHem899Hnz5vX9O7gpCqB6CxYs0KpVq7R69erSpTyp\n3o5F/SLQAVRvyy237HsXoHFClwsAVIJAB4BKEOgAUAkCHQAqQaADQCUIdACoBIEOAJUg0AGgEgQ6\nAFSCQAeAShDoAFAJAh0AKkGgA0AlCHQAqASBDgCVINABoBIEOgBUgkAHgEoQ6ABQCQIdACpBoANA\nJQh0AKgEgQ4AlRgo0G3/vu3bbN9q+wLb84ZVGABgZvoOdNvzJZ0qaUmSZ0maI+m4YRUGAJiZQbtc\n5kra2vZcSdtI+v7gJQEA+tF3oCe5V9IHJH1X0g8k3Z/k88MqDAAwM4N0uewk6RWSFkvaXdJTbZ8w\nxfOW2l5ue/nq1av7rxQA8KQG6XJ5saR7kqxO8oikSyU9f+MnJVmWZEmSJRMTEwNcDgDwZAYJ9O9K\nep7tbWxb0mGSbh9OWQCAmRqkD/0GSZdIuknSLe3vWjakugAAMzR3kB9OcoakM4ZUCwBgAMwUBYBK\nEOgAUAkCHQAqQaADQCUIdACoBIEOAJUg0AGgEgQ6AFSCQAeAShDoAFAJAh0AKkGgA0AlCHQAqASB\nDgCVINABoBIEOgBUgkAHgEoQ6ABQCQIdACpBoANAJQh0AKgEgQ4AlSDQAaASBDoAVIJAB4BKEOgA\nUAkCHQAqQaADQCUIdACoBIEOAJUg0AGgEgQ6AFSCQAeASgwU6LZ3tH2J7Tts32774GEVBgCYmbkD\n/vxfS7oyyTG2t5K0zRBqAgD0oe9At72DpBdKeoMkJVkrae1wygIAzNQgLfTFklZL+rjtZ0taIem0\nJA9NfpLtpZKWStLChQsHuBwwtUWnX166BEnSd953ZOkS0HGD9KHPlXSgpA8nOUDSQ5JO3/hJSZYl\nWZJkycTExACXAwA8mUECfZWkVUluaI8vURPwAIAC+g70JD+U9D3b+7SnDpO0cihVAQBmbNBRLm+W\ndH47wuVuSb89eEkAgH4MFOhJbpa0ZEi1AAAGwExRAKgEgQ4AlSDQAaASBDoAVIJAB4BKEOgAUAkC\nHQAqQaADQCUIdACoBIEOAJUg0AGgEgQ6AFSCQAeAShDoAFAJAh0AKjHoBhcARggbZncbLXQAqASB\nDgCVINABoBIEOgBUgkAHgEoQ6ABQCQIdACpBoANAJQh0AKgEgQ4AlSDQAaASBDoAVIJAB4BKEOgA\nUAkCHQAqQaADQCUGDnTbc2x/3fY/DaMgAEB/htFCP03S7UP4PQCAAQwU6LYXSDpS0seGUw4AoF+D\n7in6fyT9kaTtnugJtpdKWipJCxcuHPByADA9Xdxfte8Wuu2XSbovyYone16SZUmWJFkyMTHR7+UA\nAJswSJfLIZKOsv0dSRdKOtT2J4ZSFQBgxvoO9CT/O8mCJIskHSfpS0lOGFplAIAZYRw6AFRi0Jui\nkqQk10i6Zhi/CwDQH1roAFAJAh0AKkGgA0AlCHQAqASBDgCVINABoBIEOgBUgkAHgEoQ6ABQCQId\nACpBoANAJQh0AKgEgQ4AlSDQAaASBDoAVIJAB4BKEOgAUAkCHQAqQaADQCUIdACoBIEOAJUg0AGg\nEgQ6AFSCQAeAShDoAFAJAh0AKkGgA0AlCHQAqASBDgCVINABoBIEOgBUgkAHgEoQ6ABQib4D3fYe\ntq+2vdL2bbZPG2ZhAICZmTvAzz4q6a1JbrK9naQVtq9KsnJItQEAZqDvFnqSHyS5qf3+QUm3S5o/\nrMIAADMzlD5024skHSDphikeW2p7ue3lq1evHsblAABTGDjQbW8r6VOS3pLkgY0fT7IsyZIkSyYm\nJga9HADgCQwU6La3VBPm5ye5dDglAQD6McgoF0s6S9LtSf5qeCUBAPoxSAv9EEmvl3So7Zvbf0cM\nqS4AwAz1PWwxyVckeYi1AAAGwExRAKgEgQ4AlSDQAaASBDoAVIJAB4BKEOgAUAkCHQAqQaADQCUI\ndACoBIEOAJUg0AGgEgQ6AFSCQAeAShDoAFAJAh0AKkGgA0AlCHQAqASBDgCVINABoBIEOgBUgkAH\ngEoQ6ABQCQIdACpBoANAJQh0AKgEgQ4AlSDQAaASBDoAVIJAB4BKEOgAUAkCHQAqQaADQCUGCnTb\nL7V9p+1v2z59WEUBAGau70C3PUfS/5X0m5L2lXS87X2HVRgAYGYGaaE/V9K3k9ydZK2kCyW9Yjhl\nAQBmykn6+0H7GEkvTXJye/x6Sb+S5Pc2et5SSUvbw30k3dl/uUOxq6QfF65hVPBabMBrsQGvxQaj\n8lo8I8nEpp40d3NXkWSZpGWb+zrTZXt5kiWl6xgFvBYb8FpswGuxwbi9FoN0udwraY9JxwvacwCA\nAgYJ9K9J2tv2YttbSTpO0meGUxYAYKb67nJJ8qjt35P0OUlzJJ2d5LahVbb5jEz3zwjgtdiA12ID\nXosNxuq16PumKABgtDBTFAAqQaADQCUIdACoBIEOAJXoXKDb3sn2/qXrKMH2HNtXl65jVNg+1vZ2\n7ffvsH2p7QNL11WC7UOmc65rxi0vOhHotq+xvb3tnSXdJOnvbf9V6bpmW5J1kh6zvUPpWkbEO5M8\naPsFkl4s6SxJHy5cUyl/O81z1RvnvNjsU/9HxA5JHrB9sqTzkpxh+5uliyrk55JusX2VpId6J5Oc\nWq6kYta1X4+UtCzJ5bb/tGRBs832wZKeL2nC9h9Memh7NfNLumhs86IrgT7X9tMlvVrS20sXU9il\n7T9I99r+qKTDJb3f9lPUkU+tk2wlaVs1WbDdpPMPSDqmSEXljW1edCXQ361mRutXknzN9p6S7ipc\nUxFJzrW9taSFSUqvfFnaqyW9VNIHkvysfRP/YeGaZlWSayVda/ucJP9eup4RMbZ5UX2gtxtx7JFk\n/Y2NJHdLelW5qsqx/XJJH1DTMlts+zmS3pPkqLKVzb4k/2H7PkkvUPOGfVRj8sbdDJ5ie5mkRZqU\nC0kOLVZRAeOeF52Y+m/7xiTPLV3HKLC9QtKhkq5JckB77tYkzypb2eyzfYakJZL2SfJLtneXdHGS\nzo3usP0NSR+RtEIb7i0oyYpiRRUyznlRfQu99S+2PyTpk3r8jcCbypVUzCNJ7rc9+dxjpYop7H9K\nOkDNSAYl+X5vGGMHPZqkqyN8Nja2edGVQH9O+/U9k85FTUu1a26z/VpJc2zvLelUSV8tXFMpa5PE\ndiTJ9lNLF1TQZ22/SdI/SvpF72SSn5QrqZixzYtOdLlgA9vbqLlz/xuSrObmz3uTPFy0sAJsv03S\n3mpGufyFpJMk/UOSzo2/tn3PFKeTZM9ZLwZ960Sg295N0p9L2j3Jb9reV9LBSc4qXFoxtrdX84Z9\nsHQtJdk+XJP+uCW5qnBJKKydeHeGpBe2p65VM3Dg/nJVTU9Xxtyeo6Ylunt7/C1JbylWTUG2D7J9\ni6Rvqplg9A3b/6N0XQV9S02Qv01N32kn+9Btb9Muf7CsPd7b9stK11XI2ZIeVDOs9dVqxuR/vGhF\n09SVQN81yUVqb/4leVST7uR3zFmS3pRkUZJFkk7RmPxnHTbbvyPpEkkfbU/Nl/TpchUV9XFJa9XM\nGpWa/YE7NWt2kr2SnJHk7vbfuyWNRddTVwL9Idu7qLmxIdvPkzTyH582k3VJvtw7SPIVNeOvu+gU\nSYeoaYEpyV2Snla0onL2SvKXkh6RmjH6arqhuug/2/V9JK1fpOw/C9YzbV0Z5fJWNRtY72X7XyRN\nqGPTmietInhtO939AjV/4F4j6ZpSdRX2iyRre0M4bc9V+0e/g9a2M4h7jZ69NGm0S8f8rqTzJi1i\n91NJJxasZ9o6EehJVtj+NUn7qGl13JnkkcJlzbYz1bxZe62uP2m/Wt0NsWtt/7Gkrdubo2+S9NnC\nNZVyhqQrJe1h+3w1n1zeULSich5I8ux24IDahboWly5qOroyyuWbki6U9Mkk/1a6nhJsv3WjU5G0\nWs16FVMNWaue7S0kvVGPH8L5sXThTTGFtlvyeWpei39N8uPCJRVh+6YkB250bkWSkR880IkWuqSX\nq+lauMj2Y2pmgF2U5Ltly5pV205x7hmS3m77XUkunO2CRsCRks5K8velCxkR89UsmTtX0gttK0ln\nVua0/cuS9pO0g+1XTnpoe0nzylQ1M51ooU/Wzo58p6TXJenqes/rtYv4f2HjFkkX2P6EpIMlfUrS\n2UnuKFxSMbbPlrS/pNu0YSmIJDmpXFWzy/YrJB0t6Sg199x6HpR0YZKRn1HdmUC3/Qw1rfTXqBmy\n+MkkZ5atajTY/npvoa6uaftJj5f022q6oT4u6YKuTbiyvTLJvqXrGAW2D05yfek6+tGJYYu2b1Cz\nRsUcSccmeS5h3rD9IjV38TspyQNqxqJfKOnpahbsusn2m4sWNvuub2dQQ/pd2zv2Dtp9Rc8uWdB0\ndaUP/be6vplDOzt0449jO0v6vqTfmv2KyrN9lJqW+TMlnSfpuUnua9e7Walu7al5nppQ/6Ga4YpW\n0+UyNhskD9H+SX7WO0jyU9tj8Qm26kC3fUKST0g60vaRGz+eZCw2fh2SjadxR9KaJA9N9eSOeJWk\nDya5bvLJduOLNxaqqZSzJL1e0i3q7nLKPVvY3inJT6X195nGIivHosgB9JZD7eT6HJOxvdh/leRE\n27tNWrPkxiT3tY99sWBpJaxO8plNP60TzlTzaeViNZ9UjpH0Z2VLmp7qb4q2W0qdmuSDpWvBaLF9\nrJrt+K5R88b9VUl/mOSSknWVYPvvJO2oZmLV5PXQOzNscTLb+0l6UXv4pSQrS9YzXdUHujTeW0ph\n82m3XTu81yq3PaFmCOezy1Y2+2xPtUBbp4Ytbsz20zRp/Pk4zFupvculZ2y3lMJmtUUvzFtr1JGR\nX1N4W5I1pYsYBe3N8jPVLLd9n5oJeLermXQ00roS6L0tpd7dfu2tXzLyW0phs7rS9ufULFQmNXMU\n/rlgPSX9q+2b1YzDv6Kryx+03qtmCYQvJDmgHdp7QuGapqXqLhfbf9D7Vo9fmEpqPk52aZQLpmD7\nVWoWopKkLyf5x5L1lOJmyckXq9mG7yBJF0k6J8m3ihZWgO3lSZa0XXIHJHnM9jfGoSuu9hZ6b3TL\nPmr+k16mJtRfLunGUkVhdCT5lJqp/53WtsivknRV2yL9hKQ3taF2+rjOnOzTz2xvK+k6Sefbvk+T\numpHWdUt9B7b10k6sjedu91m7PIkL3zyn0SNbD+oqZcM7k2m2X6WSyquXWnxBDVj0X+kZlz6Z9R0\nV16cZCyWjx0G209Vs6HFFpJeJ2kHSeePwz2G2lvoPbup2V6rZ217Dh2UpPPzEqZwvaT/J+noJKsm\nnV9u+yOFapp17TDnf0ryIjUTrM4tXNKMdCXQz5N0o+1e/+jRajaORse1Ozm9QE2L/StJvl64pFL2\nSRLb29reNsnPew8keX/JwmZTknW2H7O9Q5Kx26ayE10u0vo37q+2h9d1+I2Llu0/kXSspN7kmaPV\ndC90bnNk289S00LfWU3X02pJJya5tWhhBdi+TNIBau4pTB7mfGqxoqapM4EObMz2nZKeneTh9nhr\nSTcn2adsZbPP9lclvT3J1e3xr0v68yTPL1pYAban2j80Sc6b9WJmqCtdLsBUvq9mJuDD7fFTJN1b\nrpyintoLc0lKck17c7CLdkzy15NP2D6tVDEz0dVZcYAk3S/pNtvntFPfb1UzZO1vbP9N4dpm2922\n32l7UfvvHZLuLl1UIVO10N8w20X0gy4XdNYTfLReL8lYjXAYhO2d1MykfkF76suS3tVbQrYLbB8v\n6bVqXoMvT3poO0mPJTmsSGEzQKADgNZvU7lY0l9IOn3SQw9K+maSR4sUNgMEOjqrXQf9vWoWX5qr\nDk4ssv1ZTT3JSpKU5KhZLAcDItDRWba/LemVkm7p6mJUtn/tyR5Pcu1s1TIqbL9S0vslPU3NH/mx\n+UNPoKOzbF8t6bAkXd9yTZJkeytJv6ymxX5nkrWb+JEqtX/oX57k9tK1zBTDFtFlfyTpn21fq8fv\n0tO5VTjbPXc/Iunf1LRIF9v+X0muKFtZET8axzCXCHR0259J+rmasehbFa6ltDMlvSjJtyXJ9l6S\nLpfUxUBfbvuTkj6tMduOj0BHl+2e5FmlixgRD/bCvHW3mtEdXbS9pP+Q9BuTzkUblogYWfSho7Ns\n/6WaXWk+X7qW0mx/WM1on4vUhNexkr4r6QvSeLROQaCjw9p10bdRs5zyIxqj0QzD9gSbRPd0arNo\n2wsk/a0m7WQl6bSNlhUeSQQ6Ost2bwODxUneY3uhpKcnuaFwaSjI9lWS/kHN6pNSs/HH65IcXq6q\n6SHQ0VltN8Njkg5N8t/a6e+fT3JQ4dJmne3Fkt4saZEm3Vvr4sQi2zcnec6mzo0iboqiy34lyYG2\nvy5JSX7ajsXuok+r2Xbus2r+yHXZGtsnSLqgPT5e0shvPycR6Oi2R9otxyJJtifU3TB7OEnXVph8\nIiep6UP/oJr/G18Vqy0Co8326yS9RtKBavaOPEbSO5JcXLSwAmy/VtLekj6vx4+9vqlYUYXYPlfS\nW3orTdreWdIHxuHGMC10dFaS822vkHSYmhEuR4/rDMEh+O+SXi/pUG34lJL2uGv2n7xscJKf2D6g\nZEHTRaCj05LcIemO0nWMgGMl7dnV9Vs2soXtnTZqoY9FVo5FkQA2u1sl7SjpvtKFjIAzJV1vu9f1\ndqyaZSJGHn3oAGT7Gkn7S/qaHt+H3rlhi5Jke19t6G76UpKVJeuZLgIdwBOui97F9dDHGYEOQNL6\nLdj2TvIF29tImpOkqwt0jaUtShcAoDzbvyPpEkkfbU/NVzPZCGOEQAcgSaeoWYzqAUlKcpeaLdgw\nRgh0AJL0i8lDFm3P1ZNsHo3RRKADkKRrbf+xpK1tHy7pYjXrumCMcFMUQG8p4Teq2aXHkj4n6WMh\nIMYKgQ4AlWCmKADZPkTSu9RsQzdXG3Zv2rNkXZgZWugAZPsOSb8vaYWkdb3zScZiHXA0aKEDkKT7\nk1xRuggMhhY6ANl+n6Q5ki5Vx9dDH2cEOgDZvrr9thcIvT70Lq6HPrbocgEgSddMcY7W3pgh0AFI\n0s8nfT9P0sskdXX3prFFlwuA/8L2UyR9Lsmvl64F08fUfwBT2UbSgtJFYGbocgEg27doQ5/5HEkT\nkt5TriL0gy4XAL3NLXoelfSjJI+Wqgf9IdABoBL0oQNAJQh0AKgEgQ4AlSDQAaAS/x+IXhocwikO\ntAAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x129a42f60>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEbCAYAAADKwX/cAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFCBJREFUeJzt3X+cZXV93/HXWxZcwNUgTIyyrIto8QE8/MUSUdOkAS0I\nydqkRiFqtWg3bVBRavNYmyaa5ocmGhsaapqtoiZRUIypGixKUdRSgtkVQgRUrJAwGyMblOAvXFw/\n/eOeYYdxYXbuvcyZ/Z7X8/G4j51z7p17PnN27nu+93u/5/tNVSFJ2vc9qO8CJEnTYaBLUiMMdElq\nhIEuSY0w0CWpEQa6JDXCQJekRhjoktQIA12SGrFqOQ922GGH1fr165fzkJK0z9u2bds/VNXMYo9b\n1kBfv349W7duXc5DStI+L8nf7M3j7HKRpEYY6JLUCANdkhqxrH3oktSXu+++m9nZWe66666+S7lP\nq1evZu3atey///5jfb+BLmkQZmdnWbNmDevXrydJ3+X8gKri9ttvZ3Z2liOPPHKs51i0yyXJBUlu\nS/K5efvelOTzSa5L8mdJfmiso0vSMrnrrrs49NBDV2SYAyTh0EMPnegdxN70ob8TOHXBvsuA46rq\nCcAXgdeOXYEkLZOVGuZzJq1v0UCvqk8BX1uw72NV9b1u8y+AtRNVIUma2DT60M8C3juF55GkZbN+\n8yVTfb5b3nj6oo+59NJLOeecc9i1axcve9nL2Lx581RrmCjQk/wy8D3g3ffzmE3AJoB169ZNcjhg\n+v8J49ib/zhJmm/Xrl2cffbZXHbZZaxdu5YTTjiBjRs3cswxx0ztGGOPQ0/yEuCngBdUVd3X46pq\nS1VtqKoNMzOLTkUgSU36zGc+w2Mf+1ge85jHcMABB3DGGWfwwQ9+cKrHGCvQk5wK/BKwsaq+PdWK\nJKlB27dv54gjjrhne+3atWzfvn2qx9ibYYsXAlcBRyeZTfJS4HxgDXBZkmuT/PepViVJWrJF+9Cr\n6sw97H77A1CLJDXr8MMP59Zbb71ne3Z2lsMPP3yqx3AuF0laBieccAI33XQTN998Mzt37uSiiy5i\n48aNUz2Gl/5LGqTlHq22atUqzj//fE455RR27drFWWedxbHHHjvdY0z12SRJ9+m0007jtNNOe8Ce\n3y4XSWqEgS5JjTDQJQ3G/VwDuSJMWp+BLmkQVq9eze23375iQ31uPvTVq1eP/Rx+KCppENauXcvs\n7Cw7duzou5T7NLdi0bgMdEmDsP/++4+9EtC+wi4XSWqEgS5JjTDQJakRBrokNcJAl6RGGOiS1AgD\nXZIaYaBLUiMMdElqhIEuSY0w0CWpEQa6JDXCQJekRhjoktQIA12SGmGgS1IjDHRJasSigZ7kgiS3\nJfncvH0PT3JZkpu6fw95YMuUJC1mb1ro7wROXbBvM3B5VT0OuLzbliT1aNFAr6pPAV9bsPs5wLu6\nr98F/Isp1yVJWqJx+9AfUVVf6b7+e+AR9/XAJJuSbE2ydSWvti1J+7qJPxStqgLqfu7fUlUbqmrD\nzMzMpIeTJN2HcQP9q0keCdD9e9v0SpIkjWPcQP8Q8OLu6xcDH5xOOZKkce3NsMULgauAo5PMJnkp\n8EbgWUluAp7ZbUuSerRqsQdU1Zn3cdfJU65FkjQBrxSVpEYY6JLUCANdkhphoEtSIwx0SWqEgS5J\njTDQJakRBrokNcJAl6RGGOiS1AgDXZIaYaBLUiMMdElqhIEuSY0w0CWpEQa6JDXCQJekRhjoktQI\nA12SGmGgS1IjDHRJaoSBLkmNMNAlqREGuiQ1wkCXpEZMFOhJXp3k+iSfS3JhktXTKkyStDRjB3qS\nw4FXAhuq6jhgP+CMaRUmSVqaSbtcVgEHJlkFHAT83eQlSZLGMXagV9V24M3A3wJfAf6xqj42rcIk\nSUuzatxvTHII8BzgSOAO4OIkL6yqP1nwuE3AJoB169ZNUKoWWr/5kr5L4JY3nt53CZI6k3S5PBO4\nuap2VNXdwAeApy98UFVtqaoNVbVhZmZmgsNJku7PJIH+t8CJSQ5KEuBk4MbplCVJWqpJ+tCvBt4P\nfBb46+65tkypLknSEo3dhw5QVa8DXjelWiRJE/BKUUlqhIEuSY0w0CWpEQa6JDXCQJekRhjoktQI\nA12SGmGgS1IjDHRJaoSBLkmNMNAlqREGuiQ1YqLJuaSVwsU+dvNcDJctdElqhIEuSY0w0CWpEQa6\nJDXCQJekRhjoktQIA12SGmGgS1IjDHRJaoSBLkmNMNAlqREGuiQ1wkCXpEZMFOhJfijJ+5N8PsmN\nSZ42rcIkSUsz6fS55wGXVtVzkxwAHDSFmiRJYxg70JM8DPhx4CUAVbUT2DmdsiRJSzVJl8uRwA7g\nHUmuSfK2JAcvfFCSTUm2Jtm6Y8eOCQ4nSbo/kwT6KuApwB9U1ZOBbwGbFz6oqrZU1Yaq2jAzMzPB\n4SRJ92eSQJ8FZqvq6m77/YwCXpLUg7EDvar+Hrg1ydHdrpOBG6ZSlSRpySYd5fIK4N3dCJcvA/96\n8pIkSeOYKNCr6lpgw5RqkSRNwCtFJakRBrokNcJAl6RGGOiS1AgDXZIaYaBLUiMMdElqhIEuSY0w\n0CWpEQa6JDXCQJekRhjoktSISWdblKQVa/3mS/ougVveePqyHcsWuiQ1wkCXpEYY6JLUCANdkhph\noEtSIwx0SWqEgS5JjTDQJakRBrokNcJAl6RGGOiS1AgDXZIaMXGgJ9kvyTVJ/nwaBUmSxjONFvo5\nwI1TeB5J0gQmCvQka4HTgbdNpxxJ0rgmbaH/HvBLwPenUIskaQJjB3qSnwJuq6ptizxuU5KtSbbu\n2LFj3MNJkhYxSQv9GcDGJLcAFwEnJfmThQ+qqi1VtaGqNszMzExwOEnS/Rk70KvqtVW1tqrWA2cA\nH6+qF06tMknSkjgOXZIaMZVFoqvqCuCKaTyXJGk8ttAlqREGuiQ1wkCXpEYY6JLUCANdkhphoEtS\nIwx0SWqEgS5JjTDQJakRBrokNcJAl6RGGOiS1AgDXZIaYaBLUiMMdElqhIEuSY0w0CWpEQa6JDXC\nQJekRhjoktQIA12SGmGgS1IjDHRJaoSBLkmNMNAlqREGuiQ1YuxAT3JEkk8kuSHJ9UnOmWZhkqSl\nWTXB934P+PdV9dkka4BtSS6rqhumVJskaQnGbqFX1Veq6rPd198AbgQOn1ZhkqSlmUofepL1wJOB\nq/dw36YkW5Ns3bFjxzQOJ0nag4kDPclDgD8FXlVVdy68v6q2VNWGqtowMzMz6eEkSfdhokBPsj+j\nMH93VX1gOiVJksYxySiXAG8Hbqyqt0yvJEnSOCZpoT8DeBFwUpJru9tpU6pLkrREYw9brKr/A2SK\ntUiSJuCVopLUCANdkhphoEtSIwx0SWqEgS5JjTDQJakRBrokNcJAl6RGGOiS1AgDXZIaYaBLUiMM\ndElqhIEuSY0w0CWpEQa6JDXCQJekRhjoktQIA12SGmGgS1IjDHRJaoSBLkmNMNAlqREGuiQ1wkCX\npEYY6JLUiIkCPcmpSb6Q5EtJNk+rKEnS0o0d6En2A/4b8GzgGODMJMdMqzBJ0tJM0kL/UeBLVfXl\nqtoJXAQ8ZzplSZKWapJAPxy4dd72bLdPktSDVNV435g8Fzi1ql7Wbb8IeGpVvXzB4zYBm7rNo4Ev\njF/uVBwG/EPPNawUnovdPBe7eS52Wynn4tFVNbPYg1ZNcIDtwBHzttd2++6lqrYAWyY4zlQl2VpV\nG/quYyXwXOzmudjNc7HbvnYuJuly+UvgcUmOTHIAcAbwoemUJUlaqrFb6FX1vSQvBz4K7AdcUFXX\nT60ySdKSTNLlQlV9BPjIlGpZLium+2cF8Fzs5rnYzXOx2z51Lsb+UFSStLJ46b8kNcJAl6RGGOiS\n1IhBBHpGXpjkV7vtdUl+tO+6+pDk4XvYd2QftawESfZL8qjud2JdknV919SXJI9O8szu6wOTrOm7\npj4lOajvGpZqEIEOvBV4GnBmt/0NRhOLDdGHkzx0bqObUO3DPdbTmySvAL4KXAZc0t3+vNeiepLk\n3wDvB/6w27UW+J/9VdSfJE9PcgPw+W77iUne2nNZe2WiYYv7kKdW1VOSXANQVV/vLoYaot9iFOqn\nM5qK4Y+AF/RbUm/OAY6uqtv7LmQFOJvRhHtXA1TVTUl+uN+SevNfgFPoLpSsqr9K8uP9lrR3hhLo\nd3fT/RZAkhng+/2W1I+quiTJ/sDHgDXAz1TVF3suqy+3Av/YdxErxHeramcSAJKsonu9DFFV3Tp3\nLjq7+qplKYYS6P8V+DPgh5P8JvBc4Ff6LWl5Jfl9dr9AAzwM+H/Ay5NQVa/srbj+fBm4IsklwHfn\ndlbVW/orqTefTPIfgQOTPAv4RQbaFQfcmuTpQHWNn3OAG3uuaa8M5sKiJI8HTmYUZpdX1T7xHzQt\nSV58f/dX1buWq5aVIsnr9rS/qn5tuWvpW5IHAS8F/jmj18hHgbfVUAJiniSHAecBz2R0Lj4GvLKq\nvtZrYXthEIGe5I+r6kWL7RuKJAcC66qq76mMV4QkDwGoqm/2XUtfkhwM3FVVu7rt/YAHV9W3+61s\n+SV5RlVdudi+lWgoo1yOnb/R/bIe31MtvUry08C1wKXd9pOSDHKWzCTHdR+UXw9cn2RbkmMX+75G\nXQ4cOG/7QOB/91RL335/L/etOE33oSd5LTDXL3gno7dPADvZxybdmaLXMxrNcAVAVV2b5DF9FtSj\nLcC5VfUJgCT/DPgfwNP7LKonq+e/Q6mqb+6L47AnkeRpjP7vZ5KcO++uhzKaUXbFa7qFXlVvqKo1\nwJuq6qFVtaa7HVpVr+27vp7cXVULR3YMcsQPcPBcmANU1RXAwf2V06tvJXnK3EaS44Hv9FhPHw4A\nHsKoobtm3u1ORgMpVrzWW+iPr6rPAxfP/2WdU1Wf7aGsvl2f5OeB/ZI8Dngl8H97rqkvX07yK8Af\nd9svZDTyZYhexeh18neM3sn+CPD8fktaXlX1SUajfd5ZVX/Tdz3jaPpD0SRbqmpTkk/M233PD1xV\nJ/VQVq+6t9G/zGg0A4xGM/xGVd3VX1X9SHII8GvAj3W7Pg28vqq+3l9V/emG6B3dbX6hqu7us57l\nluT3qupVST7MHsbgV9XGHspakqYDfU6S5wGXVtWdXYvsKcCvD7SFDoyCfYgjGHRvSU6qqo8n+dk9\n3V9VH1jumvqS5Piq2pbkJ/Z0f9eCX9Ga7nKZ5z9V1fuS/BhwEvBm4A+Ap/Zb1vLrLph4G6O+wnVJ\nngj8QlX9Yr+VLZ8WWmJT9BPAx4Gf3sN9BQwm0KtqW/fvPcHdvYs7oqqu662wJRhKC/2aqnpykjcA\nf11V75nb13dtyy3J1Yw+4PnQ3M+f5HNVdVy/lS2fFlpi05Zkv7kx6EOX5ApgI6MG7zbgNuDKqjr3\n/r5vJWh6lMs825P8IaMPeT6S5MEM52f/AVV164Jdg3ohz7XEgCdV1Sfn34An9Vlbj25OsiXJyVkw\nickAPayq7gR+Fvijqnoqo6tGV7yhhNrzGH34d0pV3QE8HPgP/ZbUm3vNU5HkNewj81Q8APY0HcJL\nlruIFeLxjC4kOptRuJ/fdVEO0aokj2SUG/vUdMqD6HLRbvcxT8U5Q5pCNsmZwM8zGt3y6Xl3rQG+\nX1Un91LYCtH1G58HvKCq9okLaqYpyc8xmrzvyqr6d92Fd2+qqn/Zc2mLMtA1OEkeDRwJvAHYPO+u\nbwDXVdX3eimsZ91nCs8HTgW2Au+tqj/ttyothYE+EAumz/0BA50+V50ktwDXAO9j9IH5t/qtqD9d\ni/w84ERGr5mrgFdX1Yq/6Gwofegatbi2dbeN876euw1OkhOT/GWSbybZmWRXN+fPoHST1V1QVT9T\nVRcOOcw772H0h+2RwKOAi4ELe61oL9lCH6ChDtlcKMlW4AxGL9gNwL8C/skQ5/lJ8pmqGuTC6Qsl\nua6qnrBg319V1RP7qmlvDeXCIt2bf8U7VfWleWOw39FNpzu4QAeuTHI+8F7gnhb6kK6mTvLw7sv/\nlWQzcBGj18rzgY/0VtgSGOgasm93i4Vfm+R3gK8w3G7IufH3/3nevmJ0ZfVQbGP0M8+Nw/+FefcV\n+8AfertcBiLJN9jdMj8ImJvHJUBV1UN7KaxH3WiXrzKaNvXVjNZZfWtVfanXwqQxGegaNJfjG0ny\nCOC3gEdV1bOTHAM8rare3nNpy66bkfRcRr8Xm7pppo+uqhV/kdFQ315KLsd3b+9kdDX1o7rtLzKa\nI32I3sFoVbO5lau2A7/RXzl7z0DXkL2e0XJ8d8BoOT5GFxwN0WFV9T661au6i6sGNcfPPEdV1e8A\ndwN000zvE/PbGOgasj0txzfUPshvJTmU7udPciKw8NwMxc6uK27uXBwFfLffkvaOo1w0ZC7Ht9u5\nwIeAo5JcCcywj6yj+QB4HaNuuCOSvBt4BvvIpG220DVkrwCOZdT6eg+jFulQ+42PAp7NqN/4o8BN\nDLfB92LgEkZDON8DbOgWEF/xHOWiQeoud//tqnpN37WsBHNXR3ZT5v46o1W9frWbC3xQkvwk8E+7\n21GM5rj5VFWd12the8FA12Al+YuqOrHvOlYCV/W6t+4P/gnATwL/FvhOVT2+36oWN9S3VBLANd0w\nxYu59+Xug1lHc565Vb2eBfz2kFf1SnI5cDCjWRY/DZxQVbf1W9XeMdA1ZKuB27n35e2DWhh5nucx\nmgf9zVV1R7diz1BX9boOOB44jtHnKnckuaqqvtNvWYuzy0WDleRdjFZruqPbPgT43ao6q9/KtBIk\nWcNodMtrgB+pqgf3W9HibKFryJ4wF+YAVfX1JIPsM9ZuSV7O6APR44FbgAu491KFK5aBriF7UJJD\nqurrcM/0qb4mtBp4C7BtX1uO0F9eDdnvAlclubjb/jngN3usRytAVb257xrGZR+6Bq2bVXDuQ9GP\nV9UNfdYjTcJAl6RGDHKcqSS1yECXpEYY6JLUCANdkhphoEtSI/4/Utt/+LasCnEAAAAASUVORK5C\nYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x144bb8160>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAEpCAYAAACz/8hbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFSBJREFUeJzt3X2QXXVhxvHnIQkGBRVhtZglJoKiAXlz4wtYrVjkTYMv\nKGCBCmraKdLYOnagjraobZ1aGBmganyJ+AYV30BRFBFUBgETBQSBYgVlI0pAhYDGwPL0j3OWXcJu\n9iTs3XN/934/M3fYc/dw7zMnu8+e+zsvPycRAKAcW7QdAACwaShuACgMxQ0AhaG4AaAwFDcAFIbi\nBoDCUNwAUBiKGwAKQ3EDQGFmd+JFt99++yxYsKATLw0APWnVqlV3Jhlosm5HinvBggVauXJlJ14a\nAHqS7V80XZehEgAoDMUNAIWhuAGgMB0Z4waANtx///0aHh7WunXr2o4yqblz52pwcFBz5szZ7Neg\nuAH0jOHhYW2zzTZasGCBbLcd5xGS6K677tLw8LAWLly42a/TaKjE9hNtf8H2jbZvsP3CzX5HAOiQ\ndevWabvttuvK0pYk29puu+0e9SeCpnvcp0m6MMlhtreU9NhH9a4A0CHdWtqjpiPflMVt+wmSXizp\njZKUZL2k9Y/6nQEAm6XJHvdCSWskrbC9h6RVkpYlua+jyQDgUVpw4gXT+nq3vv+QRutdeOGFWrZs\nmUZGRvTmN79ZJ5544rTmaFLcsyXtLemEJFfaPk3SiZLeNX4l20slLZWk+fPnP6pQ072xN1fTfyQA\nGDUyMqLjjz9eF110kQYHB7V48WItWbJEixYtmrb3aHJwcljScJIr6+UvqCryh0myPMlQkqGBgUaX\n2wNAz7nqqqu088476+lPf7q23HJLHXHEETrvvPOm9T2mLO4kv5Z0m+1d6qdeJumn05oCAHrE6tWr\nteOOOz60PDg4qNWrV0/rezQ9q+QESZ+tzyj5uaRjpzUFAKCxRsWd5GpJQx3OAgDFmzdvnm677baH\nloeHhzVv3rxpfQ/uVQIA02jx4sW6+eabdcstt2j9+vU655xztGTJkml9Dy55B9Cz2jgzbPbs2Trj\njDN0wAEHaGRkRMcdd5x23XXX6X2PaX01AIAOPvhgHXzwwR17fYZKAKAwFDcAFIbiBtBTkrQdYaOm\nIx/FDaBnzJ07V3fddVfXlvfo/bjnzp37qF6Hg5MAesbg4KCGh4e1Zs2atqNManQGnEeD4gbQM+bM\nmfOoZpYpBUMlAFAYihsACkNxA0BhKG4AKAzFDQCFobgBoDAUNwAUhuIGgMJQ3ABQGIobAApDcQNA\nYShuACgMxQ0AhaG4AaAwFDcAFIbiBoDCUNwAUJhGM+DYvlXSWkkjkh5IMtTJUACAyW3K1GUvTXJn\nx5IAABphqAQACtO0uCPpW7ZX2V460Qq2l9peaXtlN8+wDACla1rcL0qyt6SDJB1v+8UbrpBkeZKh\nJEMDAwPTGhIAMKZRcSdZXf/3DklflvS8ToYCAExuyuK2/Tjb24x+Lenlkq7rdDAAwMSanFXyFElf\ntj26/ueSXNjRVACASU1Z3El+LmmPGcgCAGiA0wEBoDAUNwAUhuIGgMJQ3ABQGIobAApDcQNAYShu\nACgMxQ0AhaG4AaAwFDcAFIbiBoDCUNwAUBiKGwAKQ3EDQGEobgAoDMUNAIWhuAGgMBQ3ABSG4gaA\nwlDcAFAYihsACkNxA0BhKG4AKAzFDQCFobgBoDCNi9v2LNs/tv21TgYCAGzcpuxxL5N0Q6eCAACa\naVTctgclHSLpY52NAwCYStM97g9K+idJD3YwCwCggSmL2/YrJN2RZNUU6y21vdL2yjVr1kxbQADA\nwzXZ495X0hLbt0o6R9J+tj+z4UpJlicZSjI0MDAwzTEBAKOmLO4kJyUZTLJA0hGSvpPkqI4nAwBM\niPO4AaAwszdl5SSXSrq0I0kAAI2wxw0AhaG4AaAwFDcAFIbiBoDCUNwAUBiKGwAKQ3EDQGEobgAo\nDMUNAIWhuAGgMBQ3ABSG4gaAwlDcAFAYihsACkNxA0BhKG4AKAzFDQCFobgBoDAUNwAUhuIGgMJQ\n3ABQGIobAApDcQNAYShuACgMxQ0AhaG4AaAwUxa37bm2r7J9je3rbZ88E8EAABOb3WCdP0naL8m9\ntudIusz2N5Jc0eFsAIAJTFncSSLp3npxTv1IJ0MBACbXZI9btmdJWiVpZ0lnJrlygnWWSloqSfPn\nz5/OjH1twYkXtB1BknTr+w9pOwLbYhy2xZh+3BaNDk4mGUmyp6RBSc+zvdsE6yxPMpRkaGBgYLpz\nAgBqm3RWSZLfS7pE0oGdiQMAmEqTs0oGbD+x/norSftLurHTwQAAE2syxr2DpLPqce4tJH0+ydc6\nGwsAMJkmZ5VcK2mvGcgCAGiAKycBoDAUNwAUhuIGgMJQ3ABQGIobAApDcQNAYShuACgMxQ0AhaG4\nAaAwFDcAFIbiBoDCUNwAUBiKGwAKQ3EDQGEobgAoDMUNAIWhuAGgMBQ3ABSG4gaAwlDcAFAYihsA\nCkNxA0BhKG4AKAzFDQCFobgBoDBTFrftHW1fYvuntq+3vWwmggEAJja7wToPSHp7kh/Z3kbSKtsX\nJflph7MBACYw5R53ktuT/Kj+eq2kGyTN63QwAMDENmmM2/YCSXtJurITYQAAU2tc3La3lvRFSW9L\ncs8E319qe6XtlWvWrJnOjACAcRoVt+05qkr7s0m+NNE6SZYnGUoyNDAwMJ0ZAQDjNDmrxJI+LumG\nJKd2PhIAYGOa7HHvK+loSfvZvrp+HNzhXACASUx5OmCSyyR5BrIAABrgykkAKAzFDQCFobgBoDAU\nNwAUhuIGgMJQ3ABQGIobAApDcQNAYShuACgMxQ0AhaG4AaAwFDcAFIbiBoDCUNwAUBiKGwAKQ3ED\nQGEobgAoDMUNAIWhuAGgMBQ3ABSG4gaAwlDcAFAYihsACkNxA0BhKG4AKAzFDQCFmbK4bX/C9h22\nr5uJQACAjWuyx/1JSQd2OAcAoKEpizvJ9yT9dgayAAAamLYxbttLba+0vXLNmjXT9bIAgA1MW3En\nWZ5kKMnQwMDAdL0sAGADnFUCAIWhuAGgME1OBzxb0g8k7WJ72PabOh8LADCZ2VOtkOTImQgCAGiG\noRIAKAzFDQCFobgBoDAUNwAUhuIGgMJQ3ABQGIobAApDcQNAYShuACgMxQ0AhaG4AaAwFDcAFIbi\nBoDCUNwAUBiKGwAKQ3EDQGEobgAoDMUNAIWhuAGgMBQ3ABSG4gaAwlDcAFAYihsACkNxA0BhKG4A\nKEyj4rZ9oO2bbP/M9omdDgUAmNyUxW17lqQzJR0kaZGkI20v6nQwAMDEmuxxP0/Sz5L8PMl6SedI\nOrSzsQAAk2lS3PMk3TZuebh+DgDQAifZ+Ar2YZIOTPLmevloSc9P8tYN1lsqaWm9uIukm6Y/7ibZ\nXtKdLWfoFmyLMWyLMWyLMd2wLZ6WZKDJirMbrLNa0o7jlgfr5x4myXJJyxvFmwG2VyYZajtHN2Bb\njGFbjGFbjCltWzQZKvmhpGfYXmh7S0lHSDq/s7EAAJOZco87yQO23yrpm5JmSfpEkus7ngwAMKEm\nQyVK8nVJX+9wlunWNcM2XYBtMYZtMYZtMaaobTHlwUkAQHfhkncAKAzFDQCFobgBoDCNDk6WxPaL\nJD0jyQrbA5K2TnJL27lmmu19JV2d5D7bR0naW9JpSX7RcrRW2d5C1c/EPW1nmUm2X7Ox7yf50kxl\n6Sb1vZieonFdmOSX7SVqpqcOTtr+F0lDknZJ8kzbT5V0bpJ9W44242xfK2kPSbtL+qSkj0l6fZKX\ntJmrDbY/J+lvJY2oui7h8ar+iH2g1WAzyPaK+ssnS9pH0nfq5ZdKujzJK1oJ1iLbJ0j6F0m/kfRg\n/XSS7N5eqmZ6bajk1ZKWSLpPkpL8StI2rSZqzwOp/iofKumMJGeqf7fFonoP+1WSviFpoaSj2400\ns5Icm+RYSXNUbY/XJnmtpF3r5/rRMlU7ebsmeU796PrSlnqvuNfXZRVJsv24lvO0aa3tkyQdJemC\neoigX39B59ieo6q4z09yv+qfkT60Y5Lbxy3/RtL8tsK07DZJd7cdYnP02hj3521/RNITbb9F0nGS\nPtpyprYcLukNkt6U5Ne250vqm6GBDXxE0q2SrpH0PdtPk9RXY9zjXGz7m5LOrpcPl/TtFvO06eeS\nLrV9gaQ/jT6Z5NT2IjXTU2PckmR7f0kvl2RJ30xyUcuRZlx9wOXbSV7adpZuZXt2kgfaztEG26+W\n9OJ68XtJvtxmnrbUx8QeIcnJM51lU/VccaNi+2JJr0lS5EfB6WT7KZL+XdJTkxxUz+D0wiQfbzna\njOIP+sRsby1JSe5tO0tTPTFUYnutJh6ztKqjxI+f4Ujd4F5JP7F9keqDtZKU5O/bi9SaT0paIemd\n9fL/SvofSX1V3ElGbD9o+wn8QZds7ybp05KeVC/fKemYEm6i1xPFnaRfz5bYmC/VD0jbJ/l8fbB2\n9I6XI22Hagl/0Mcsl/SPSS6RJNt/oeqY2D5thmqiJ4p7PNt7S3qRqj3wy5L8uOVIrUhylu2tJM1P\n0vZsRG27z/Z2Gjvb6AUq9GyCacAf9DGPGy1tSUpyaSlnovXUGLftd0t6ncZ+MF+l6gKc97WXqh22\nXynpvyRtmWSh7T0lvSfJkpajzbj6j/npknaTdJ2kAUmHJbm21WBole0vS/qRquESqTp19rlJXt1e\nqmZ6rbhvkrRHknX18laqLvvepd1kM8/2Kkn7Sbo0yV71c9cl2a3dZO2wPVvVXKiWdFN9LnffsP35\nJK+3/RNNcDyolAtPppPtbSWdrOoTuiR9X9K/Jvlde6ma6bWhkl9JmitpXb38GE0wP2afuD/J3bbH\nP/fgZCv3oo3cn+OZtvvt/hzL6v/23aXtk6kLusix/Z4obtunq9qLuFvS9fWBl0jaX9JVbWZr0fW2\n3yBplu1nqPoBvbzlTDPtlRv5XtRHY72jV0uOv8mY7e0l3ZVe+tjdgO0PJnmb7a9q4k8fXT+c2BND\nJbb/emPfT3LWTGXpFrYfq+r0t4cuRpL03tFhJPSX+oDs+yX9VtJ7VY3rbq/qthfHJLmwxXgzyvZz\nk6yyPeEN15J8d6YzbaqeKG5gKrYPUXVDpbmjzyV5T3uJZpbtlZL+WdITVJ0Gd1CSK2w/S9LZo8dB\n+ontZUlOm+q5btQTxc2Bl0eyPaTqF3WBHn6v4X7cFh+W9FhVtzD9mKTDJF2V5E2tBptBtq9Osmf9\n9Q1Jnj3uez/u0+L+UZK9N3iuiG3RE2Pc4sDLRD4r6R2SfqI+Oyg5gX2S7G772iQn2z5F1e1d+8n4\nn4E/bvC98vfeNoHtI1XdgG2h7fPHfWsbVUNJXa8ninvcbSqPkbQiyfDo92wvVfXRsN+sSXL+1Kv1\nhdFx/T/Uk2v8VtIOLeZpwx6271F1vGOr+mvVy3Mn/9960uWSblc1xn/KuOfXSiri3P6eGCoZZfsO\nSWskvXXcZayP+DjUD2y/TNKRki7Ww29Z2TdnUoyy/S5VF+C8TNKZqvYwP5rk3a0GAzZTT+xxj7Na\n1Ywv59r+Qj01laf4f3rVsZKepWryhIemZVIfnQI3zo2SRpJ8sb4z4N6SvtJyJrSsPtPmdEnPlrSl\npFmS7ivhpnS9VtxK8sv6NJ8P2T5X0lZtZ2rJ4n68YnQS70pybj2R9H6qbgXwIUnPbzcWWnaGpCMk\nnatqrtpjJD2z1UQN9drUZSslKcm6en69S1X9Je1Hl9d7l6gmCZakQ1QNkVyg/v25wDhJfiZpVpKR\nJCskHdh2piZ6aowbY2zfIGknSbeoGuMevTd5P54O+DVVw2j7qxom+aOq0wH3aDUYWmX7e5L+UtUp\nor9WdcDyjSX8XPREcXMe9yPV8yo+wvhLnvtFfRXpgZJ+kuRm2ztIek6Sb7UcDS2qf0d+o+rT1z+o\nujjpv+u98K7WK8W9Q5LbKauHs72HpD+vF7+f5Jo28wDdop7G7VNJ/qrtLJujJ8a4x99AZ/ShanaP\nX/ZxaS9TdRHOk+vHZ2yf0G4qoDskGZH0NNtFHuvolT1ubqCzAdvXqpoQ9756+XGSftCPw0bARGx/\nStWpgOfr4dO4ndpaqIZ65XTAMzR2A53vaIMb6Ejqu+JWdTBy/LyKI+rfc9qBifxf/dhC1eXuxeiV\n4p49eqDJ9nuSXCFJSW7cYCKBfrJC0pX19ExSNY3bJ1rMA3SVJCe3nWFz9UpxcwOdDSQ51falGpuW\n6dh+nTgZmMgkEyncrep6kI90873re2WMe0TVGJVVXSn5h9FvSZqbZE5b2dpi+9NJjp7qOaBf2T5N\n1cTRZ9dPHS7pHlVl/vhu/l3piT3uJLPaztCFdh2/UJ/+9NyWsgDdaJ8ki8ctf9X2D5Mstn19a6ka\n6InTATHG9km210ra3fY99WOtpDsknddyPKCbbG17/uhC/fXW9eL6diI10xNDJXgk2/+R5KS2cwDd\nyvbBkj6s6swSS1oo6e9U3ePoLUk+2F66jaO4e5TtfSVdneQ+20epukfHaf16QRIwEduPUXX7Y0m6\nqZsPSI7HUEnv+pCqGV/2kPR2VXsVn2o3EtA96nvYvEPVxCvXSNrRdhHTH1LcveuBVB+nDpV0RpIz\nVdhFBkCHrVA1lv3Cenm1pPe1F6c5irt3rbV9kqSjJF1gewtVs+EAqOyU5D8l3S9JSf6gQq4uprh7\n1+Gq7sP9piS/ljQo6QPtRgK6ynrbW6m+CMf2Tho3P2s34+AkgL5k++WS3ilpkaRvSdpX1RXGl7Qa\nrAGKu0fV526P/uNuqWqY5N4kT2gvFdBdbG8n6QWqhkiuSHJny5Ea6YkrJ/FISR46EOnqTluHqvoB\nBSDJ9sVJXibpggme62qMcfeBVL4i6YC2swBtsz3X9pMkbW97W9tPqh8LJM1rN10z7HH3KNuvGbe4\nhaQhSUVcXAB02N9Iepukp0papbEzSe5RdW//rscYd4+yvWLc4gOSbpW0PMmadhIB3cX2CUlObzvH\n5qC4e5TtsyQtS/L7enlbSackOa7dZED3sL2PpAUaN/qQpOuvMGaopHftPlrakpTkd7b3ajMQ0E1s\nf1rSTpKu1tg0f1EBt4aguHvXFra3TfI7SaoPxvDvDYwZkrQoBQ478Ivcu06R9APb59bLr5P0by3m\nAbrNdZL+TNLtbQfZVIxx9zDbiyTtVy9+J8lP28wDdBPbl0jaU9JVGnepe5IlrYVqiOIG0Jdsv2Si\n55N8d6azbCqKGwAKwxg3gL5i+7IkL9rgfj5SdSFOkjy+pWiNsccNAIXhXiUAUBiKGwAKQ3EDQGEo\nbgAoDMUNAIX5fz3IT0wBpZSwAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x171bb7eb8>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Generalize, examples of startup features articles contents\n", "df1 = extract_nouns(cat_start_data.loc[4]['content'], 5, True)\n", "df2 = extract_nouns(cat_start_data.loc[428]['content'], 5, True)\n", "df3 = extract_nouns(cat_start_data.iloc[1456]['content'], 5, True)\n", "test = extract_nouns(\"\", 5, True)" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Use either crunchbase or angelist API \n", "# to match nouns with company names" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def get_companies(nouns):\n", " comp_names = [name for name in nouns.index.values if (orgs['name'].isin([name]).sum() == 1)]\n", " return comp_names" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\"\"\"\n", "Used to create a dictionary that's indexed by a company and accumulates\n", "a table of posts referencing the company\n", "\n", "Input: int thresh - the top 'thresh' noun references to\n", "\"\"\"\n", "def create_posts_index(thresh):\n", " # Flag for drawing noun freq plot of post\n", " draw_plot = False\n", " comp_dict = defaultdict(pd.DataFrame)\n", " empty_content = []\n", " \n", " for index, rows in data.iterrows():\n", " try:\n", " nouns = extract_nouns(rows['content'], thresh, draw_plot)\n", " except (TypeError, KeyError) as e:\n", " print(e, \" occured at index: \", index)\n", " #print(\"Recorded: post indexed at \", index, \" has an error with its content\")\n", " empty_content.append(index)\n", " comp_names = get_companies(nouns)\n", " for comp in comp_names:\n", " comp_dict[comp] = comp_dict[comp].append(data.loc[index])\n", " \n", " return comp_dict, empty_content" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "expected string or bytes-like object occured at index: 823\n", "expected string or bytes-like object occured at index: 1427\n", "expected string or bytes-like object occured at index: 1456\n", "0 occured at index: 2163\n", "0 occured at index: 2219\n", "expected string or bytes-like object occured at index: 2511\n", "expected string or bytes-like object occured at index: 2546\n", "0 occured at index: 2806\n", "0 occured at index: 2831\n", "expected string or bytes-like object occured at index: 2978\n", "expected string or bytes-like object occured at index: 3028\n", "expected string or bytes-like object occured at index: 3285\n", "expected string or bytes-like object occured at index: 3591\n", "expected string or bytes-like object occured at index: 3675\n", "expected string or bytes-like object occured at index: 3712\n", "expected string or bytes-like object occured at index: 3762\n", "expected string or bytes-like object occured at index: 3780\n", "expected string or bytes-like object occured at index: 3837\n", "expected string or bytes-like object occured at index: 3838\n", "0 occured at index: 3866\n", "expected string or bytes-like object occured at index: 3959\n", "expected string or bytes-like object occured at index: 4163\n", "0 occured at index: 4556\n", "expected string or bytes-like object occured at index: 4604\n", "expected string or bytes-like object occured at index: 5199\n", "expected string or bytes-like object occured at index: 5205\n", "expected string or bytes-like object occured at index: 5277\n", "expected string or bytes-like object occured at index: 5314\n", "0 occured at index: 5360\n", "expected string or bytes-like object occured at index: 5414\n", "expected string or bytes-like object occured at index: 5430\n", "expected string or bytes-like object occured at index: 5497\n", "expected string or bytes-like object occured at index: 5511\n", "expected string or bytes-like object occured at index: 5729\n", "expected string or bytes-like object occured at index: 5956\n", "0 occured at index: 6060\n", "expected string or bytes-like object occured at index: 6111\n", "expected string or bytes-like object occured at index: 7004\n", "expected string or bytes-like object occured at index: 7069\n", "0 occured at index: 7380\n", "expected string or bytes-like object occured at index: 7447\n", "0 occured at index: 7504\n", "expected string or bytes-like object occured at index: 7572\n", "expected string or bytes-like object occured at index: 7678\n", "0 occured at index: 7680\n", "0 occured at index: 8010\n", "expected string or bytes-like object occured at index: 8147\n", "expected string or bytes-like object occured at index: 8471\n", "0 occured at index: 8577\n", "expected string or bytes-like object occured at index: 8593\n", "expected string or bytes-like object occured at index: 8685\n", "0 occured at index: 8925\n", "0 occured at index: 9700\n", "expected string or bytes-like object occured at index: 9979\n", "expected string or bytes-like object occured at index: 10095\n", "0 occured at index: 10794\n", "expected string or bytes-like object occured at index: 10935\n", "expected string or bytes-like object occured at index: 10981\n", "expected string or bytes-like object occured at index: 11031\n", "0 occured at index: 12499\n", "expected string or bytes-like object occured at index: 13202\n", "expected string or bytes-like object occured at index: 13374\n", "0 occured at index: 14431\n", "0 occured at index: 17165\n", "expected string or bytes-like object occured at index: 17688\n", "0 occured at index: 20422\n", "0 occured at index: 22752\n", "expected string or bytes-like object occured at index: 25143\n", "expected string or bytes-like object occured at index: 26921\n", "expected string or bytes-like object occured at index: 34414\n", "expected string or bytes-like object occured at index: 34517\n", "expected string or bytes-like object occured at index: 37325\n", "expected string or bytes-like object occured at index: 37340\n" ] } ], "source": [ "[company_post_dict, empty_content] = create_posts_index(5)" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Writing the company_post_dict to file for easy load" ] }, { "cell_type": "code", "execution_count": 314, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def find_csv_filenames(path_to_companies, ext=\".csv\"):\n", " filenames = listdir(path_to_companies)\n", " return [filename for filename in filenames if filename.endswith(ext)]" ] }, { "cell_type": "code", "execution_count": 315, "metadata": {}, "outputs": [], "source": [ "def create_safe_filename(filename):\n", " # / --> _\n", " # . --> +\n", " name_acc = filename\n", " if '/' in filename:\n", " name_acc = name_acc.replace('/', '_')\n", " if '.' in filename:\n", " name_acc = name_acc.replace('.', \"+\")\n", " return name_acc" ] }, { "cell_type": "code", "execution_count": 316, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def revert_safe_filename(filename):\n", " name_acc = filename\n", " if '_' in filename:\n", " name_acc = name_acc.replace('_', '/')\n", " if '+' in filename:\n", " name_acc = name_acc.replace('+', '.')\n", " return name_acc" ] }, { "cell_type": "code", "execution_count": 317, "metadata": {}, "outputs": [], "source": [ "def save_all_companies(company_post_dict, path_to_data_folder):\n", " for comp, posts in company_post_dict.items():\n", " safe_comp_name = create_safe_filename(comp)\n", " print (safe_comp_name)\n", " posts.to_csv(path_to_data_folder+safe_comp_name+\".csv\", sep=',')" ] }, { "cell_type": "code", "execution_count": 318, "metadata": {}, "outputs": [], "source": [ "def load_all_companies(path_to_companies):\n", " comp_dict = defaultdict(pd.DataFrame)\n", " filenames = find_csv_filenames(path_to_companies)\n", " for filename in filenames:\n", " comp_key = filename.split(\".\")[0]\n", " print (comp_key)\n", " reverted_name = revert_safe_filename(comp_key)\n", " comp_dict[reverted_name] = pd.read_csv(path_to_companies+filename, index_col=0)\n", " return comp_dict" ] }, { "cell_type": "code", "execution_count": 319, "metadata": { "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Propstack\n", "News+me\n", "BrightPoint\n", "GenieDB\n", "Hadopi\n", "Stratos\n", "Scoutmob\n", "Placemeter\n", "Dremel\n", "Axiata\n", "Djump\n", "OnePageCRM\n", "Framebench\n", "RapidMiner\n", "Parallels\n", "TapSense\n", "Nuzzel\n", "Benchmark\n", "Blackphone\n", "Themer\n", "Telegram\n", "MovieLaLa\n", "Pitch\n", "Sensorberg\n", "Ossia\n", "BillGuard\n", "Miradore\n", "Porch\n", "StartupBus\n", "CapRally\n", "Algolia\n", "BevSpot\n", "Netflix\n", "Founder2be\n", "Shippable\n", "Regalii\n", "Matchbook\n", "uMake\n", "AppSurfer\n", "Yotpo\n", "Makeshift\n", "Hotspots+io\n", "SalesforceIQ\n", "Nestivity\n", "Harris\n", "HarperCollins\n", "cloudControl\n", "Atmotube\n", "SproutCore\n", "Zymergen\n", "M7\n", "Dwolla\n", "Breather\n", "Hinge\n", "ipsy\n", "Letterboxd\n", "Kaplan\n", "WhatRunsWhere\n", "WatchDox\n", "ScoreBeyond\n", "Glow\n", "Rapid7\n", "FreeCharge\n", "Your\n", "Kabbee\n", "Costa\n", "Poynt\n", "Gamify\n", "MediaSpike\n", "Mandarin\n", "Spotify\n", "Lawdingo\n", "GateGuru\n", "SugarSync\n", "LMS\n", "GrowSumo\n", "Toothpick\n", "LookFlow\n", "Zeemi+tv\n", "Exec\n", "AfterCollege\n", "Peeple\n", "SimpliVity\n", "Quik\n", "CloudBees\n", "HipChat\n", "Fontacto\n", "GetSet\n", "Torque\n", "Pantry\n", "MariaDB\n", "Tailwind\n", "Odyssey\n", "Sullivan\n", "Explorer\n", "FarFaria\n", "Apica\n", "Rosetta\n", "LifeLock\n", "Freshplum\n", "AirMap\n", "Bark\n", "TrustedCompany+com\n", "Yammer\n", "NewVoiceMedia\n", "Mann\n", "AAA\n", "Wakie\n", "WEVR\n", "Parachut\n", "Streak\n", "Ondango\n", "Carmudi\n", "Evertale\n", "AptDeco\n", "Fab\n", "Tailor\n", "Lingo\n", "Stacklist\n", "Block\n", "Procured\n", "Ambassador\n", "HackerOne\n", "Glance\n", "KlickNation\n", "Avvo\n", "Microduino\n", "JigoCity\n", "Acceleprise\n", "Pure\n", "Lendio\n", "Medikly\n", "Doccaster\n", "Moonshark\n", "Exploreka\n", "NimbusBase\n", "Giftly\n", "MicrobeScope\n", "Smule\n", "Vital\n", "Accenture\n", "Brandcast\n", "Hmmm\n", "Botify\n", "MongoDB\n", "FiftyThree\n", "Rentecarlo\n", "Wooplr\n", "Espresa\n", "AMRA\n", "DogSync\n", "Popset\n", "Lumenus\n", "Handy\n", "FitStar\n", "PayDragon\n", "Telesocial\n", "TenderTree\n", "MyHeritage\n", "Hooks\n", "HireArt\n", "Qualcomm\n", "Evernote\n", "Initial\n", "TableGrabber\n", "Meerkat\n", "Polo\n", "BitGo\n", "ClipClock\n", "Flat\n", "Palaround\n", "Wonpy\n", "VouchedFor\n", "GoInstant\n", "Collabspot\n", "Hungama\n", "NetPlenish\n", "Domo\n", "Cucumbertown\n", "Deezer\n", "TouchBistro\n", "LeCab\n", "Ultimaker\n", "Pornhub\n", "Doozton\n", "Planday\n", "Bill+com\n", "Independent\n", "Bitstrips\n", "Instabeat\n", "Wallarm\n", "Vitra\n", "Atari\n", "Shutl\n", "DataSift\n", "comScore\n", "Marvel\n", "Heetch\n", "Superfeedr\n", "Involver\n", "Cylindo\n", "Atomico\n", "Cor\n", "StartupDigest\n", "Peekster\n", "Sneeky\n", "Chitika\n", "MIUI\n", "Genius\n", "LaunchDarkly\n", "Dexplora\n", "Reserverr\n", "Grades+io\n", "Korner\n", "ROLI\n", "Krablr\n", "Variety\n", "Cardwheel\n", "Swrve\n", "Twentify\n", "DealAngel\n", "Ward\n", "Wayra\n", "Screenhero\n", "Jarvis\n", "DropGifts\n", "Belly\n", "Babyhuddle\n", "Versly\n", "Nimbuzz\n", "Flipboard\n", "AppCrawlr\n", "Rocketmine\n", "Perk+com\n", "SnapPages\n", "ShopSocially\n", "Main\n", "PayU\n", "Trent\n", "AgileZen\n", "Lydia\n", "Airware\n", "Tail\n", "Tyler\n", "Casio\n", "Splunk\n", "Connectify\n", "Stratasys\n", "Pusher\n", "Kickpay\n", "Lebara\n", "Twice\n", "Boostable\n", "Sky\n", "Zortrax\n", "Nameless+tv\n", "Marakana\n", "Spectre\n", "CoVenture\n", "Shyp\n", "SmartHires\n", "Twigtale\n", "Photoshop\n", "Robinhood\n", "Milyoni\n", "CenturyLink\n", "Tink\n", "Wantworthy\n", "Wranx\n", "FTC\n", "NerdWallet\n", "mySupermarket\n", "OneID\n", "Rounds\n", "Your+MD\n", "ShopFully\n", "Binksty\n", "AngelScholars\n", "Practo\n", "Genome\n", "Backstage\n", "Tinggal\n", "Buzzcar\n", "Refinery29\n", "Solinea\n", "Vyte+in\n", "BiteHunter\n", "Starship\n", "Entrepreneur\n", "Findables\n", "App+io\n", "Stepes\n", "Nielsen\n", "Attribution\n", "TaDaweb\n", "BlueCrew\n", "eero\n", "Brillen+de\n", "Jimmyjane\n", "Insensi\n", "Boticca\n", "ReBoard\n", "InfluxData\n", "Toggle\n", "Inside+com\n", "Islands\n", "BloomThat\n", "Apkudo\n", "Whitepages\n", "BroadMap\n", "Craves\n", "Connectifier\n", "Socialspiel\n", "ThriveTracker\n", "Steller\n", "Hightail\n", "Whisk\n", "Sketchfab\n", "Spin\n", "EPS\n", "Ubooly\n", "Birch\n", "Wize\n", "Apple\n", "conichi\n", "TradeHero\n", "Libertas\n", "Bitsbox\n", "Mondaine\n", "Mercer\n", "market\n", "NodePrime\n", "RealDirect\n", "Rumgr\n", "Tellem\n", "Scringo\n", "UserEvents\n", "Yunmake\n", "Vlix\n", "Eventful\n", "RentSocial\n", "Sifteo\n", "DeNA\n", "Trestle\n", "WorldRemit\n", "Deekit\n", "Rewardli\n", "Echobox\n", "CrowdCompass\n", "CareZone\n", "Tuition+io\n", "Archos\n", "Bango\n", "Friedman\n", "mark\n", "Tutum\n", "Thermodo\n", "Munchery\n", "Storify\n", "SmartAsset\n", "Synata\n", "Ethnio\n", "Pixable\n", "Foodspotting\n", "ResearchGate\n", "DTN\n", "PoachIt\n", "Allset\n", "SleepSense\n", "Flurry\n", "Wibiya\n", "Baydin\n", "Ibotta\n", "YourTrove\n", "Cloudscaling\n", "SizeUp\n", "PinReach\n", "Rockmelt\n", "Revel\n", "LastPass\n", "Chango\n", "Fullstack\n", "ParAccel\n", "Ofcom\n", "Tackk\n", "Crowdery\n", "Bkstg\n", "Panasonic\n", "Flickr\n", "Uprising\n", "Omnicharge\n", "ICOMP\n", "FoodChéri\n", "Formation\n", "BigID\n", "Dataflow\n", "Cloakroom\n", "Punchfork\n", "Modomoto\n", "Viewfinder\n", "ecoATM\n", "Scroll\n", "Harlequin\n", "Telepathic\n", "Glassbreakers\n", "Echofon\n", "SlideIdea\n", "HomeLight\n", "Grovemade\n", "Accomable\n", "GlobalSign\n", "Zynstra\n", "TigerText\n", "Toonimo\n", "Canva\n", "Musaic\n", "Pirq\n", "Mongoose\n", "Mapstr\n", "Comma\n", "Osmeta\n", "Gorilla\n", "Asseta\n", "Tastemates\n", "Bookboard\n", "Sensegon\n", "Teller\n", "RefME\n", "Mojo\n", "Purch\n", "42Floors\n", "Tindie\n", "GB\n", "Tokopedia\n", "BranchOut\n", "SocialPoint\n", "Zype\n", "Illumio\n", "Solair\n", "Laundrapp\n", "Checkthis\n", "SketchDeck\n", "Evans\n", "EverQuest\n", "ownCloud\n", "CardSpring\n", "Soundwave\n", "Olly\n", "Distributed\n", "InsightSquared\n", "Koding\n", "KupiVIP\n", "tray+io\n", "F6S\n", "colors\n", "Moments\n", "USD\n", "Digi+me\n", "Kidaptive\n", "Datto\n", "Seeqnce\n", "Portfolium\n", "Wiley\n", "Skit\n", "Sodisco\n", "Liberio\n", "Xirrus\n", "Buzztime\n", "Viv\n", "PBS\n", "Weissman\n", "Onehub\n", "VivaKi\n", "Wheelz\n", "Giggem\n", "Bilna\n", "WorldMate\n", "Knoala\n", "Anglr\n", "Populis\n", "Kite+io\n", "AutoBot\n", "Expression\n", "Clari\n", "EverythingMe\n", "Salary+com\n", "Memloom\n", "MuleSoft\n", "MOL\n", "MyPermissions\n", "Appoxee\n", "GrubHub\n", "HiMom\n", "RocketSpace\n", "Piano\n", "NASDAQ\n", "Norby\n", "MyHealthTeams\n", "VSCO\n", "Omixy\n", "Walmart\n", "Swarmly\n", "Peatix\n", "Late\n", "Cray\n", "Signpost\n", "Hamilton\n", "Rentmatic\n", "Ubisoft\n", "Airbnb\n", "People+ai\n", "Virtual\n", "Clinkle\n", "BrightEdge\n", "Zumbox\n", "McAfee\n", "MileWise\n", "Robotbase\n", "TabbedOut\n", "Colingo\n", "SmartNotify\n", "Musixmatch\n", "MassChallenge\n", "Elop\n", "Nimbula\n", "Bidzy\n", "MindMeister\n", "Spartan\n", "HighQ\n", "HyTrust\n", "Salesfusion\n", "Shypmate\n", "Ravi\n", "Triblio\n", "StatusPage\n", "Challenges\n", "iSwapp\n", "Deepak\n", "Blek\n", "Thinknum\n", "Mobcaster\n", "Posse\n", "Creative\n", "Pizza+de\n", "Coliloquy\n", "Acunote\n", "Zoobean\n", "Clutter\n", "FullContact\n", "Teewe\n", "Tinder\n", "GSG\n", "Gogolook\n", "Formspring\n", "WillCall\n", "PROskore\n", "Livefyre\n", "Zoobe\n", "Technopolis\n", "Saga\n", "Selective\n", "Pyxis\n", "Cheezburger\n", "Famo+us\n", "Crowdtap\n", "Grover\n", "ModiFace\n", "Mytonomy\n", "Virb\n", "OkCupid\n", "Xamarin\n", "LaunchHouse\n", "Glassmap\n", "Behavox\n", "NASA\n", "Trulioo\n", "Aorato\n", "Ninebot\n", "SendHub\n", "Selfycart\n", "Cocoon\n", "Central\n", "AdBlock\n", "Graphicly\n", "Ridejoy\n", "Inkling\n", "Okanjo\n", "Ezetap\n", "Totlol\n", "Nima\n", "Struq\n", "Faraday\n", "Seedling\n", "CatchFree\n", "Siftery\n", "Guildery\n", "Vibease\n", "AirConsole\n", "Adictik\n", "Shared\n", "Rhapsody\n", "Punch\n", "Bandzoogle\n", "Koemei\n", "Solidoodle\n", "JFDI+Asia\n", "Tintri\n", "Lancope\n", "Laptop\n", "Panda\n", "HiGear\n", "StarStreet\n", "Bookmate\n", "Kiosked\n", "Kickboard\n", "Bloop\n", "Normal\n", "CashStar\n", "Legacy\n", "ABI\n", "REI\n", "Yamli\n", "Hullabalu\n", "Campless\n", "Mobspire\n", "Leetchi\n", "Penxy\n", "CoffeeTable\n", "Pins\n", "Pypestream\n", "Input\n", "Inadco\n", "VIPKID\n", "meets\n", "ReskillUSA\n", "Topick\n", "Fandalism\n", "MediaPass\n", "Notes\n", "Taggstar\n", "Slack\n", "Dexter\n", "lastminute+com\n", "Android\n", "HomeMe\n", "Kudoso\n", "GradFly\n", "Contour\n", "Custom\n", "Figma\n", "U\n", "Wallapop\n", "Tagg\n", "WebKit\n", "Vouch\n", "Monsieur\n", "Trusted\n", "Sundance\n", "ScaleArc\n", "Quora\n", "Bezar\n", "Midokura\n", "Tracky\n", "Pulsate\n", "Relevance\n", "BridgeU\n", "Compose\n", "MediaMath\n", "Adventr\n", "Yoyo\n", "Distimo\n", "Pijon\n", "Tyba\n", "GroSocial\n", "Viber\n", "BuySellAds\n", "CrowdStrike\n", "ZURB\n", "Amiad\n", "Kingdon\n", "ShapeUp\n", "Board\n", "Quip\n", "SnipSnap\n", "Brightpearl\n", "Quiqup\n", "Hiri\n", "Posthaven\n", "Stephens\n", "Twigmore\n", "Fujitsu\n", "Z2\n", "Skills\n", "WebRTC\n", "Makers\n", "Popcorn\n", "Shopzilla\n", "K12\n", "Cazena\n", "CIT\n", "Smigin\n", "IOC\n", "Kitchensurfing\n", "Recurly\n", "iversity\n", "Exiles\n", "Ensygnia\n", "BeHere\n", "InCrowd\n", "Sparta\n", "Livrada\n", "Xeround\n", "Terrafugia\n", "Fanout\n", "Gametime\n", "Weilos\n", "Synkio\n", "Memolane\n", "Solum\n", "MacroFab\n", "MoneySavingExpert\n", "Perpetually\n", "Journy\n", "CIA\n", "Inkl\n", "O2\n", "Docker\n", "HeavenHR\n", "Doximity\n", "Apigee\n", "EVRYTHNG\n", "Shopmox\n", "Zuli\n", "Madison\n", "Wappwolf\n", "Supahands\n", "Iris\n", "Voyat\n", "Spot+IM\n", "Hudson\n", "Playsino\n", "TastemakerX\n", "Infusionsoft\n", "ElasticBox\n", "Intern\n", "Tron-Club\n", "Encoding+com\n", "Livestar\n", "Reputation+com\n", "Vine\n", "Airy\n", "BigStash\n", "Zoopla\n", "AMA\n", "Travel+ru\n", "Zimride\n", "EDM\n", "Alcatel-Lucent\n", "Referly\n", "Food52\n", "Corona\n", "OpenTV\n", "Medifund\n", "GoMiles\n", "Gigit\n", "Crimson\n", "KidoZen\n", "Pinster\n", "KinderTown\n", "CustomInk\n", "Mixpanel\n", "Celery\n", "Glyph\n", "Verisart\n", "edX\n", "BookDoc\n", "Knewton\n", "MobLabs\n", "QSAlpha\n", "Wavee\n", "Slice\n", "Elevatr\n", "Flypay\n", "Smiirl\n", "Verbase\n", "Moolaguides\n", "Xperia\n", "Curbside\n", "CodeHS\n", "Nomiku\n", "LUUV\n", "SportStream\n", "CoverHound\n", "Ploom\n", "Mimo\n", "Ringadoc\n", "TYLT\n", "Knowmia\n", "Daniel\n", "NGI\n", "Signal\n", "Bunkr\n", "ModoPayments\n", "Teams\n", "Hewlett-Packard\n", "Plink\n", "Sylaps\n", "Wingsplay\n", "Earmark\n", "Expedia\n", "Lesson\n", "Flipd\n", "Jimdo\n", "Lighter\n", "StyleCard\n", "Kana\n", "AppLovin\n", "SavingStar\n", "FOVE\n", "Tango\n", "iAdvize\n", "Watch\n", "Enthuse\n", "HowAboutWe\n", "MTM\n", "Cylance\n", "Clifton\n", "PX\n", "Appsee\n", "Alto\n", "Extole\n", "Bright+com\n", "Function\n", "Rapportive\n", "DigitalOcean\n", "xAd\n", "Digg\n", "TestChameleon\n", "iContact\n", "Operator\n", "GetScale\n", "Invenias\n", "Strata\n", "DoubleRecall\n", "Bitcovery\n", "Machine\n", "Prss\n", "KidAdmit\n", "Chipworks\n", "CAC\n", "Afero\n", "BuildZoom\n", "Roposo\n", "CRM\n", "Quantcast\n", "Modington\n", "Zap\n", "Theranos\n", "Stik\n", "ShopLogic\n", "Roadie\n", "Singtel\n", "GFG\n", "BPM\n", "VoiceBunny\n", "Yapp\n", "Grind\n", "Wooga\n", "Yoics\n", "Conferize\n", "MySQL\n", "Qalendra\n", "Zillabyte\n", "BioBots\n", "Code+org\n", "Appurify\n", "Open\n", "Meetey\n", "Set\n", "Chartio\n", "Mojiva\n", "Taleo\n", "Bounty\n", "Shotclock\n", "Audiogalaxy\n", "Brickstream\n", "Reflektion\n", "Reverb\n", "Lodgeo\n", "LaunchGram\n", "Nature\n", "OZON\n", "DramaFever\n", "StoryBox\n", "Welkio\n", "Jumio\n", "Oppo\n", "Panzura\n", "Vrv\n", "Sync+ME\n", "Accompany\n", "Skimlinks\n", "GoGoVan\n", "Netagio\n", "Convoy\n", "Triptease\n", "Brand\n", "Breakout\n", "Hippo\n", "Lover+ly\n", "Gate\n", "JPEGmini\n", "Ollie\n", "Adyen\n", "Streamroot\n", "Sywork\n", "Wandoujia\n", "Coursera\n", "ReelSurfer\n", "Woopra\n", "Feed\n", "PAPER\n", "Kleverbeast\n", "ShowMe\n", "Boombotix\n", "Expa\n", "TechLaunch\n", "Datahero\n", "Hotaru\n", "Citymapper\n", "Miramax\n", "Alley\n", "Flic\n", "SlimPay\n", "CoverItLive\n", "Evri\n", "NIST\n", "MakeGood\n", "Catawiki\n", "Reuters\n", "Intro\n", "Brainient\n", "IOVOX\n", "SilverPush\n", "Volo\n", "ComplyAdvantage\n", "Seenth+is\n", "DistroKid\n", "Pertino\n", "Qplay\n", "Fuze\n", "SynapSense\n", "Shuttlecook\n", "Juicero\n", "MediaCore\n", "Hitachi\n", "CatFi\n", "Dharma\n", "LoopPay\n", "Head\n", "Speek\n", "GetFeedback\n", "Taxi\n", "Bambuser\n", "ALOHA\n", "RadiumOne\n", "Healy\n", "Visa\n", "Shopa\n", "BloomNation\n", "Skout\n", "Plan\n", "Tissot\n", "UnboundID\n", "Naya\n", "Expion\n", "Beat\n", "Apptimize\n", "Rackspace\n", "Speakaboos\n", "MySmartPrice\n", "Between\n", "Omlet\n", "Odeo\n", "MyVR\n", "Egg\n", "TrendKite\n", "Pluralsight\n", "Virtuo\n", "Accelerator\n", "Overnight\n", "Hudl\n", "LaunchPoint\n", "Qubit\n", "TalkTo\n", "Metamarkets\n", "GCE\n", "LightSpeed\n", "OpenFeint\n", "Analogue\n", "Comet\n", "Selequity\n", "Squarespace\n", "Mantaphrase\n", "Gyft\n", "Pitchbox\n", "GroupAhead\n", "Ousta\n", "Carte\n", "Pixelapse\n", "Trunk\n", "Armor\n", "StyleCaster\n", "Applause\n", "Seconds\n", "BeachMint\n", "biNu\n", "Pathbrite\n", "KKR\n", "iPrice\n", "GRID\n", "Carnegie\n", "Down\n", "Pop\n", "Drimmit\n", "ChaCha\n", "Sqrrl\n", "Iconicfuture\n", "TakeLessons\n", "Moovweb\n", "ThriveHive\n", "Bose\n", "Aurelius\n", "NativeX\n", "Banjo\n", "Sanbolic\n", "Syapse\n", "Skillshare\n", "Chartcube\n", "Shopcade\n", "Band\n", "VideoBlocks\n", "BrandProject\n", "Progressly\n", "BlackJet\n", "eduClipper\n", "SoftLayer\n", "Metromile\n", "Selphee\n", "Final\n", "Nimbl\n", "Lawson\n", "Dinein+co+uk\n", "Things\n", "Exogen\n", "SeatGeek\n", "CNIL\n", "ink\n", "GatherContent\n", "SmarTots\n", "Timbre\n", "Hathway\n", "Stauffer\n", "Deepomatic\n", "Nikon\n", "FITiST\n", "Givit\n", "Assist\n", "Trusk\n", "FireEye\n", "Zenprise\n", "Anthony\n", "RankBoards\n", "FatFractal\n", "Selerity\n", "Chicisimo\n", "Realtidbits\n", "Wadi\n", "vLine\n", "Smarsh\n", "VAT\n", "Razer\n", "IndoorAtlas\n", "SIRUM\n", "Wag\n", "Weightless\n", "Stickam\n", "Chiizu\n", "Boutine\n", "Pryte\n", "GLG\n", "Xunlei\n", "BeMyEye\n", "Ericsson\n", "Carsome\n", "EasilyDo\n", "Pluto\n", "Latch\n", "Keepsy\n", "Passworks\n", "CipherCloud\n", "TourPal\n", "doctape\n", "Zazzle\n", "StumbleUpon\n", "Holden\n", "APP\n", "HeartThis\n", "textPlus\n", "Zhaopin\n", "PPI\n", "Marino\n", "Newswire\n", "Breakthrough\n", "UP\n", "Doctolib\n", "BuzzTale\n", "Tonsser\n", "Horizons\n", "FeedHenry\n", "Mandiant\n", "MedStartr\n", "Susie\n", "DMARC\n", "Sooqini\n", "Viddsee\n", "Plumbr\n", "Virtustream\n", "Kickbooster\n", "PeerStreet\n", "AdMob\n", "RecruitLoop\n", "Prysm\n", "TellApart\n", "MOCACARE\n", "Ambition\n", "Nirvanix\n", "SteelHouse\n", "WPP\n", "Lumens\n", "Bluefin\n", "Burstly\n", "Traity\n", "Scentbird\n", "MyMiniLife\n", "Truphone\n", "Seven\n", "Fitbit\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Lavabit\n", "Uniplaces\n", "Affirm\n", "TripAdvisor\n", "AppFog\n", "Gobstopper\n", "CollegeBudget\n", "Bebo\n", "MSN\n", "Joyable\n", "Magenta\n", "Xigo\n", "Hound\n", "Menulog\n", "BitWall\n", "Viadeo\n", "SyndicateRoom\n", "Olery\n", "Nextpeer\n", "VideoSelfie\n", "Force\n", "iwoca\n", "Tiiny\n", "Friendsy\n", "myTomorrows\n", "Impermium\n", "Blippy\n", "LogMeIn\n", "iFetch\n", "Givey\n", "Airlike\n", "SimpleHoney\n", "Tastemade\n", "PEN\n", "Gaikai\n", "Altiscale\n", "Muve\n", "PushPage\n", "DueDil\n", "BufferBox\n", "NumberFour\n", "Shark\n", "Nexon\n", "Carousel\n", "Z\n", "Georama\n", "Nokia\n", "PRX\n", "AppCertain\n", "THB\n", "GMT\n", "Fleex\n", "Browning\n", "Newton\n", "JustBook\n", "Pick\n", "BarkBox\n", "Teleza\n", "Sourcebits\n", "Neyya\n", "Compute\n", "Moglue\n", "Moment+me\n", "Osmo\n", "Monday52\n", "Hunter\n", "Drivemode\n", "grasp\n", "Espacio\n", "Ayannah\n", "eGood\n", "YesGraph\n", "Top10\n", "Sonicbids\n", "Politix\n", "mBank\n", "Blottr\n", "ContainerShip\n", "SnappyLabs\n", "Lendingkart\n", "Orange\n", "Luxe\n", "Interactive\n", "Divshot\n", "Detour\n", "TuneUp\n", "Flips\n", "Glose\n", "ARTIK\n", "Linea\n", "NewzSocial\n", "Genera\n", "Evidence+com\n", "Wonga\n", "Target\n", "SlickFlick\n", "DuckDuckGo\n", "Weekly\n", "Esri\n", "Cal\n", "NAD\n", "JustWatch\n", "UserVoice\n", "Neuron\n", "Outfit7\n", "BrightRoll\n", "SpaceX\n", "Flixster\n", "SocialMart\n", "Keywee\n", "StoryDesk\n", "Tapstream\n", "Visier\n", "Spinlister\n", "Netbiscuits\n", "Appboy\n", "Zipmark\n", "Cedexis\n", "Alfred\n", "Sidebark\n", "Rothschild\n", "SiteScout\n", "SweetLabs\n", "shopkick\n", "Reliance\n", "MyHealthPal\n", "Mensch\n", "BucketListly\n", "Deja\n", "Onfleet\n", "Digitsole\n", "Prim\n", "x\n", "Moped\n", "Schibsted\n", "Oliba\n", "Kitematic\n", "Displair\n", "egg\n", "Homejoy\n", "SocialCrunch\n", "GENWI\n", "Duolingo\n", "Riney\n", "Lane\n", "Palringo\n", "Nimble\n", "Hamburg\n", "InvoiceASAP\n", "Logikcull\n", "YouView\n", "Mailbox\n", "Sigma\n", "Monstro\n", "Luka\n", "Poppin\n", "EQAL\n", "Moveline\n", "Kinder\n", "Socialbakers\n", "Fanmode\n", "OKDOTHIS\n", "TappIn\n", "Habit\n", "Catchbox\n", "Yohann\n", "MyWidz\n", "Kickstarter\n", "Kodak\n", "Kurrenci\n", "LIVE\n", "Weebly\n", "BetaBait\n", "Modbook\n", "Calxeda\n", "Conspire\n", "Mogul\n", "Flytenow\n", "Fintech\n", "Rondee\n", "Ascribe\n", "Meizu\n", "BugSense\n", "Hartz\n", "Roadtrippers\n", "Philly\n", "Qardio\n", "Radical+FM\n", "Marketwired\n", "Omise\n", "Polls\n", "Traxo\n", "Gabriel\n", "WearYouWant\n", "MyEnergy\n", "Breadcrumb\n", "Blockfeed\n", "Eko\n", "Jeeran\n", "Duo\n", "Bigcolors\n", "MoneyLion\n", "Svpply\n", "EyeIn\n", "Fundly\n", "BentoBox\n", "Flite\n", "Totsy\n", "Springer\n", "FiveStars\n", "CEM\n", "SMASHD\n", "TalkBin\n", "Localytics\n", "Retale\n", "Garmin\n", "Kifi\n", "TapCommerce\n", "Tastebud\n", "Dysonics\n", "Jinn\n", "Cliptamatic\n", "Greta\n", "MinHash\n", "Incase\n", "TerrAvion\n", "Stuart\n", "Idea+me\n", "Edelman\n", "Panono\n", "LightFreq\n", "ProtonMail\n", "Parse\n", "Sharetribe\n", "Watchsend\n", "Kash\n", "AltspaceVR\n", "Zidisha\n", "Zoom\n", "Metrekare\n", "Tribesports\n", "Genee\n", "Glympse\n", "ZeroCater\n", "HTC\n", "Shoot\n", "Lex\n", "Wickr\n", "Neemware\n", "Mobcrush\n", "OnePlus\n", "Minube\n", "Wochit\n", "Hooray\n", "Boden\n", "Location\n", "SoSocio\n", "Boombox\n", "DataXu\n", "Likemind\n", "VINA\n", "Nvidia\n", "SocialCode\n", "Broadcom\n", "Trademob\n", "Fuelling\n", "MTN\n", "Issuu\n", "Infobip\n", "Amplfy\n", "Foodmento\n", "Lenka\n", "LoungeUp\n", "Bell\n", "Fluance\n", "Boston\n", "SkinVision\n", "Evie\n", "Unilever\n", "DreamCheaper\n", "Jybe\n", "Phonotonic\n", "Lifesum\n", "TestObject\n", "Moneytree\n", "DogVacay\n", "Contently\n", "Supersonic\n", "OpenStreetMap\n", "Niice\n", "Amino\n", "Savings+com\n", "Wallace\n", "Wrapp\n", "Proud\n", "Tuurnt\n", "Seclore\n", "Wiivv\n", "Voyage\n", "FishBrain\n", "Luvocracy\n", "Moonfruit\n", "Plane\n", "Leadbolt\n", "Weekdone\n", "Tedemis\n", "Drizly\n", "AdStage\n", "Privacy\n", "Delhivery\n", "ChatWork\n", "Microsystems\n", "Getable\n", "OpenRent\n", "Glopho\n", "HelloMD\n", "ShipBob\n", "Manpacks\n", "Kareo\n", "RoboEarth\n", "TCV\n", "RSA\n", "Fan\n", "NeuCoin\n", "Starbucks\n", "Auth0\n", "Buffalo\n", "Converser\n", "mokono\n", "PrePlay\n", "SnapUp\n", "MarketMeSuite\n", "Nurph\n", "JUCE\n", "Bowflex\n", "Capptain\n", "Reactor\n", "SimplePrints\n", "Stripe\n", "Prenetics\n", "Zattikka\n", "GetJar\n", "VirtuOz\n", "Snowden\n", "reddit\n", "MLS\n", "LaunchRock\n", "Rivigo\n", "Intercom\n", "AngelPad\n", "Printoo\n", "SumUp\n", "GiftRocket\n", "Siminars\n", "Pinpuff\n", "uBeam\n", "Reachli\n", "Meadow\n", "Sailo\n", "Skift\n", "Provender\n", "Eventifier\n", "PicMix\n", "Greyloft\n", "CorFire\n", "BTC\n", "Chronos\n", "Indochino\n", "timeshel\n", "SoPost\n", "Rally+org\n", "Restaurant-Kritik\n", "Ghost\n", "TiVo\n", "Aclima\n", "NeoGAF\n", "MetricsHub\n", "Streetline\n", "Clipless\n", "TheIceBreak\n", "DailyDeal\n", "ThinkGrid\n", "Runscope\n", "Weathermob\n", "Spangle\n", "BERG\n", "Wantster\n", "Shellhammer\n", "Thinkfuse\n", "StellaService\n", "Jetpac\n", "Buyhandpicked\n", "Jibo\n", "Pixloo\n", "Fleck\n", "ThreatMetrix\n", "Topguest\n", "Roamz\n", "MobileIron\n", "WatchMouse\n", "NSA\n", "LockerDome\n", "MST\n", "MTT\n", "Hostmaker\n", "TrustEgg\n", "Audioair\n", "CellScope\n", "Tello\n", "Neoji\n", "Stamplia\n", "Wikipad\n", "Impossible\n", "Diagnosia\n", "Reiss\n", "Wanderfly\n", "Guides+co\n", "Schrader\n", "Tripod\n", "Loco2\n", "Xeneta\n", "Crashlytics\n", "Emerson\n", "Radionomy\n", "PubNub\n", "Smarkets\n", "Tidemark\n", "Lip\n", "HMD\n", "Esper\n", "EPO\n", "Stubb\n", "Nearpod\n", "BizSlate\n", "Grotech\n", "Scarosso\n", "Talk+co\n", "Eurogamer\n", "Punchbowl\n", "Pingboard\n", "Carvana\n", "Tinitell\n", "Logitech\n", "Qwerky\n", "RCS\n", "Engadget\n", "Luminoso\n", "PathSource\n", "Blinkist\n", "Babbel\n", "Catbird\n", "Stacks\n", "SuperAwesome\n", "Memoir\n", "Supdate\n", "Kingsoft\n", "SeeWhy\n", "Swipp\n", "Move\n", "Jomi\n", "Billboard\n", "GiveMeTap\n", "Anagog\n", "Codacy\n", "JFrog\n", "Tampax\n", "Dropcam\n", "Shinola\n", "EduKart\n", "Causes\n", "Repost\n", "Carousell\n", "Actifio\n", "Allure\n", "StyleSeat\n", "Talk\n", "Kershaw\n", "CoTweet\n", "Hunt\n", "Talent\n", "Article\n", "Do\n", "Datahug\n", "Gravitant\n", "Material\n", "dot429\n", "MercadoLibre\n", "Alignable\n", "MemSQL\n", "mFoundry\n", "Syncplicity\n", "Refresh\n", "Wealthfront\n", "Everpurse\n", "ClearDATA\n", "Swisscom\n", "BlockBeacon\n", "CloudPress\n", "Gaga\n", "TeePublic\n", "Mutualink\n", "Avaamo\n", "Anki\n", "Strayboots\n", "CellSavers\n", "Windward\n", "ODI\n", "Saya\n", "Brewster\n", "Mahalo\n", "Xyo\n", "CloudOn\n", "Spayce\n", "Rose\n", "MobiKwik\n", "SketchUp\n", "ThoughtSTEM\n", "Quinn\n", "Fantastic\n", "Fliplet\n", "SnapEDA\n", "Narrow\n", "Tenor\n", "Network\n", "MyFitnessPal\n", "YourSports\n", "Boundary\n", "Zen\n", "AirPR\n", "Radian6\n", "carpooling+com\n", "Yelp\n", "Sr+Pago\n", "Mintigo\n", "MyLife\n", "Spitz\n", "Napster\n", "RadPad\n", "Catcher\n", "Via\n", "Results\n", "HashTip\n", "Sunstone\n", "Nerve\n", "Gigwalk\n", "YP\n", "Wriggle\n", "Livescribe\n", "Gnip\n", "Inbox\n", "Fiz\n", "Maxim\n", "ClarityRay\n", "Gates\n", "Chegg\n", "Kargo\n", "Mirakl\n", "OneTouch\n", "Saida\n", "nodes\n", "StarOfService\n", "ServiceMesh\n", "Dell\n", "Teradata\n", "Openfund\n", "Gliffy\n", "Meddik\n", "Heek\n", "Pleek\n", "Chartbeat\n", "Spotivate\n", "Loyalize\n", "Creator\n", "getTalent\n", "Meetings+io\n", "Tapsule\n", "Instacart\n", "Foursquare\n", "MyJobCompany\n", "Acano\n", "Trackin\n", "Spotfund\n", "Serverless\n", "Actility\n", "Couple\n", "Wrap\n", "Talkspace\n", "Taptu\n", "FinLeap\n", "Endeca\n", "Ecoisme\n", "Publons\n", "SmoovUp\n", "DATA\n", "AHHHA\n", "Viralheat\n", "Humanoid\n", "RedLaser\n", "Runkeeper\n", "KweekWeek\n", "Monaeo\n", "AllPeers\n", "Felix\n", "Q4\n", "Zentyal\n", "MobileSpan\n", "Slush\n", "Trigger\n", "ShuttleCloud\n", "Fireside\n", "Hoover\n", "Pick1\n", "Goldee\n", "Hilton\n", "Fuel\n", "SocialGuide\n", "Registry\n", "IBM\n", "Archive\n", "Picturesqe\n", "VTech\n", "Vedantu\n", "Care+com\n", "Friendster\n", "Vitrue\n", "PreApps\n", "Scriptlance\n", "Bsecure\n", "Buyou\n", "Trippy\n", "Soldsie\n", "Omniture\n", "AMD\n", "GeoOrbital\n", "FanBread\n", "Bugcrowd\n", "Togethera\n", "Lingua+ly\n", "Phonio\n", "Meldium\n", "Tapastreet\n", "MightyText\n", "Audi\n", "Tint\n", "LeadLedger\n", "Infochimps\n", "Fuzel\n", "Omaze\n", "ReservationHop\n", "Helium\n", "EverySignal\n", "Runa\n", "TrekkSoft\n", "AgLocal\n", "Lootsie\n", "Giphy\n", "Ebates\n", "Metabiota\n", "Medallia\n", "CareerFoundry\n", "Gan\n", "iZotope\n", "Vigilent\n", "Innoz\n", "Tynt\n", "Vortex\n", "LeadSift\n", "Fortumo\n", "AetherPal\n", "WaterO\n", "Teckler\n", "YesVideo\n", "Angle\n", "Vadio\n", "Wiper\n", "Cinemagram\n", "Zenamins\n", "Karmaloop\n", "Earshot\n", "Entitle\n", "Newsweek\n", "WeShould\n", "Bringg\n", "NexTravel\n", "Benchling\n", "Say\n", "IDC\n", "Circa\n", "DSC\n", "what3words\n", "storefront\n", "barcode\n", "Learnist\n", "Pubslush\n", "Vuclip\n", "NetBeez\n", "Booshaka\n", "Zoosk\n", "App+net\n", "iFixit\n", "Ogone\n", "Trax\n", "MikMak\n", "ShoeDazzle\n", "Bannerman\n", "Ravti\n", "Placecast\n", "Picker\n", "Burberry\n", "Vision\n", "DipJar\n", "Tule\n", "NowFloats\n", "Prakash\n", "TiE\n", "Birchbox\n", "Woot\n", "Zendesk\n", "MudWatt\n", "TransferGo\n", "Teespring\n", "Ludei\n", "Freshdesk\n", "Testing\n", "Birst\n", "DesignCrowd\n", "Havenly\n", "TopCoder\n", "Dhingana\n", "MindMixer\n", "Pyne\n", "Jason\n", "Torbit\n", "Gigaom\n", "Klout\n", "CyActive\n", "Omniata\n", "SplashPost\n", "LibraTax\n", "Wiselike\n", "Snupps\n", "Rapchat\n", "WrkRiot\n", "Threadflip\n", "Zapier\n", "fanatix\n", "Yoke\n", "Klook\n", "Doxie\n", "StrongLoop\n", "Hippflow\n", "MovieGlu\n", "Gogoprint\n", "Draft\n", "Vinli\n", "BMW\n", "mParticle\n", "Michigan\n", "MVP\n", "GroupMe\n", "Tune\n", "Noom\n", "Yumist\n", "Legit\n", "TransferWise\n", "WudStay\n", "StopTheHacker\n", "Housing+com\n", "Cut\n", "Verdict\n", "Codie\n", "Valeo\n", "Sponsify\n", "Placester\n", "Christensen\n", "Camu\n", "SCC\n", "Appistry\n", "Health2Sync\n", "WordPress\n", "AltaVista\n", "Jiffy\n", "Reedsy\n", "OrlyAtomics\n", "Simplr\n", "Vivaldi\n", "EQ\n", "Code42\n", "Cooliris\n", "Prete\n", "Tynker\n", "Smarterer\n", "Buster\n", "James\n", "Zofari\n", "AppHarbor\n", "RadioShack\n", "Assistant\n", "Stingray\n", "Medium\n", "Vizify\n", "HSN\n", "ETA\n", "Ribbit\n", "Quantum\n", "Cassandra\n", "Paylib\n", "ZipList\n", "Repixl\n", "Jet\n", "Lish\n", "Ticketmaster\n", "VitalFields\n", "Discovery\n", "SixDoors\n", "MoID\n", "SecondMarket\n", "Placed\n", "Pinvolve\n", "DailyBooth\n", "Premier\n", "StyleTread\n", "Hublished\n", "Evertoon\n", "Macbeth\n", "HyprMX\n", "Stocksy\n", "Qwiki\n", "MapMyFitness\n", "Drync\n", "Flyer\n", "Launch48\n", "Zimbra\n", "Facebook\n", "Divine\n", "Wanova\n", "Divide\n", "Highway1\n", "Sygic\n", "Myntra\n", "Rebelle\n", "AIM\n", "FwdHealth\n", "LaMetric\n", "Neverware\n", "Tour\n", "Meetupcall\n", "GuideSpark\n", "Novauris\n", "marGenius\n", "MobileWorks\n", "Parenthoods\n", "Traxpay\n", "Datapipe\n", "Mobee\n", "Curiator\n", "GiveMeSport\n", "Vinci\n", "Hertz\n", "Flynn\n", "VoodooPC\n", "Spring+me\n", "Vite\n", "Appia\n", "Goalbook\n", "Narrato\n", "Hulbee\n", "Booker\n", "Ember\n", "Alibaba\n", "WorldDesk\n", "Open-Xchange\n", "Bitly\n", "hike\n", "Livspace\n", "BlackBerry\n", "BeyondCore\n", "Revl\n", "Monzo\n", "Qwilr\n", "Cloaq\n", "Dice\n", "Blogger\n", "Rakuten\n", "Sikka\n", "Claranet\n", "BlueKite\n", "ChatGrape\n", "Helpshift\n", "FightMe\n", "Organizer\n", "Coin\n", "WeatherPlanner\n", "Techlist\n", "Existor\n", "Tap\n", "Seiko\n", "Tribeca\n", "Tracks+by\n", "GreyOrange\n", "Snapverse\n", "YouNow\n", "Foster\n", "Evaneos\n", "Jibbigo\n", "Woobox\n", "Esquire\n", "Permira\n", "Geoloqi\n", "Hear\n", "UberConference\n", "Publishizer\n", "Serco\n", "Amen\n", "Snaptee\n", "Hukkster\n", "iZettle\n", "Unface+me\n", "TaxiMonger\n", "CoolaData\n", "Omega\n", "Fitocracy\n", "Azendoo\n", "Cookening\n", "Brave\n", "Blab\n", "Schoology\n", "Aggregift\n", "AppArchitect\n", "Fuhu\n", "Picnik\n", "YieldKit\n", "Commons\n", "Blurtt\n", "busuu\n", "KitSplit\n", "PepperTap\n", "Fondu\n", "Rad\n", "Square\n", "Wisemetrics\n", "Schneider\n", "Buongiorno\n", "SimpleTuition\n", "Storm8\n", "BrightFunnel\n", "SponsorHub\n", "Citysearch\n", "Emily\n", "Stratumn\n", "Memorability\n", "SITA\n", "Robotiky\n", "Kili\n", "Piece\n", "Ive\n", "Bonobos\n", "YouTube\n", "Weplay\n", "retailer\n", "Comparably\n", "Moodle\n", "Kngine\n", "Klarna\n", "Earbits\n", "Cuvva\n", "LetsTransport\n", "Curalate\n", "Eyeota\n", "HotPads\n", "AlertMe\n", "Rypple\n", "AlgoTrim\n", "Rearden\n", "Codenvy\n", "Cloud+com\n", "Web2go\n", "CertiVox\n", "FlowVella\n", "LIV\n", "XO\n", "Viki\n", "Dormi\n", "Favor\n", "Beintoo\n", "Databox\n", "Superb\n", "Hem\n", "Dejamor\n", "Bloc\n", "Watsi\n", "Gibbon\n", "Hotmail\n", "Sears\n", "Magic\n", "Datalogix\n", "TourCommand\n", "Onfido\n", "Fitternity\n", "Science\n", "Kismet\n", "Messenger\n", "Hitpost\n", "Harp\n", "Bawte\n", "EE\n", "NewsCred\n", "Jumpstarter\n", "Line-Up\n", "Ongage\n", "Pursway\n", "Safello\n", "Honeypot\n", "Edmodo\n", "Cooper\n", "Konekt+me\n", "Ticketfly\n", "Slingo\n", "Youku\n", "PCalc\n", "Reader\n", "AppRedeem\n", "Osper\n", "Pager\n", "LINK\n", "Crocodoc\n", "Bubbli\n", "Akeneo\n", "Greenfield\n", "Hasselblad\n", "AdEspresso\n", "Magna\n", "CloudGOO\n", "StormTag\n", "Puzzlephone\n", "Swagbucks\n", "Gradle\n", "Pixboom\n", "Waterworks\n", "Convercent\n", "StyleSeek\n", "SalesGossip\n", "Scholly\n", "Opternative\n", "Inside\n", "freee\n", "ICO\n", "Twitmusic\n", "Rocketrip\n", "LearnKo\n", "Quest\n", "Webflow\n", "Happify\n", "Beast\n", "Slick\n", "Playdemic\n", "inploi\n", "Bitbucket\n", "Formlabs\n", "ClassPager\n", "Paddle8\n", "Grovo\n", "ADTRAN\n", "WeFinance\n", "Cinematique\n", "Galxyz\n", "Voonik\n", "DMCA\n", "Getaround\n", "Newvem\n", "Beddit\n", "Redbox\n", "Monroe\n", "Friday\n", "Monoidics\n", "Hull\n", "Kno\n", "Lasso\n", "Gengo\n", "Cruz\n", "Opening\n", "Emergent\n", "Ele+me\n", "Maluuba\n", "Woisio\n", "Netlify\n", "ADstruc\n", "Milkster\n", "Kony\n", "Boxcar\n", "SparkLabs\n", "Riley\n", "Hipster\n", "VaporChat\n", "Scotiabank\n", "Amobee\n", "Comment\n", "YouTurn\n", "AirPair\n", "Crunchyroll\n", "AOL\n", "UPC\n", "Koozoo\n", "Mixlr\n", "Appreciate\n", "KnowMe\n", "Codeanywhere\n", "Hydroswarm\n", "Origami\n", "SubPac\n", "PayLane\n", "Wiggio\n", "TCG\n", "MindJolt\n", "Appirio\n", "Quartet\n", "Bitstamp\n", "CloudPhysics\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "PunchTab\n", "NHS\n", "Cyanogen\n", "ShipStation\n", "Credible\n", "Proto+io\n", "keychain\n", "Modbot\n", "Meetup\n", "Donde\n", "CodinGame\n", "Mobilewalla\n", "Thumbtack\n", "Battlefield\n", "Sqreen\n", "Taplister\n", "tenXer\n", "Tapit\n", "Opbeat\n", "Woollip\n", "TouchTen\n", "LiftDNA\n", "PumpUp\n", "Ahead\n", "Her\n", "Tracxn\n", "PlayHaven\n", "JobVidi\n", "Maker\n", "NewsWhip\n", "Collaaj\n", "TweetDeck\n", "Collect\n", "Pivotal\n", "Saber\n", "Decide\n", "BitPay\n", "Toolbox+com\n", "Industrie\n", "Workshop\n", "LetsWombat\n", "Winamp\n", "Mantis\n", "King+com\n", "Tapvalue\n", "Blackboard\n", "Routific\n", "Frrole\n", "Accounts\n", "Cenzic\n", "HeyLets\n", "Moasis\n", "GoGoGrandparent\n", "Amazon\n", "Infinite+ly\n", "Looksee\n", "Neura\n", "Livongo\n", "ReadyForZero\n", "Samson\n", "Speedo\n", "Audiodraft\n", "Elephanti\n", "Proxy\n", "Luminox\n", "Teal\n", "MixBit\n", "Jajah\n", "Hungryroot\n", "Retrofit\n", "Conversation\n", "Energy\n", "Guys\n", "Haier\n", "FarmLogs\n", "FwdForce\n", "Thanx\n", "JackThreads\n", "DJI\n", "Doorman\n", "Tagwhat\n", "Komprise\n", "Mouawad\n", "Bankons\n", "eReader\n", "Blue\n", "Dish+fm\n", "Kippt\n", "Betfair\n", "Tykoon\n", "Redkite\n", "Discourse\n", "OhMiBod\n", "Gratafy\n", "Roomer\n", "GREE\n", "Get+com\n", "EyeTrackShop\n", "Jobvite\n", "Simplee\n", "Vidme\n", "Memories\n", "TetraScience\n", "Pastebin\n", "JustGiving\n", "Virool\n", "MobStac\n", "DBX\n", "Dashlane\n", "Workspot\n", "LogDog\n", "Infomedia\n", "DataCamp\n", "Perpetu\n", "Locu\n", "Zipments\n", "Dónde\n", "Marblar\n", "Darktrace\n", "Undrip\n", "Inneractive\n", "Everyme\n", "Hamer\n", "Myspace\n", "Atomwise\n", "BlockAvenue\n", "Informatica\n", "Flashgap\n", "GetReal\n", "HomeAway\n", "Taplytics\n", "Naytev\n", "Cloud4Wi\n", "JD+com\n", "Stay+com\n", "ReadWrite\n", "Hibob\n", "BrightContext\n", "Hitwise\n", "Jongla\n", "AppCampus\n", "Joomla\n", "Fastacash\n", "OpenSesame\n", "Twistory\n", "DKSH\n", "VetCloud\n", "Spruceling\n", "Sysomos\n", "Hitlist\n", "Openbucks\n", "Personal\n", "Entelo\n", "Loki\n", "Frame+io\n", "Swatch\n", "Headspace\n", "Screen\n", "BYLINED\n", "Scoop+it\n", "Cardify\n", "Raydiance\n", "Joyent\n", "DigiSynd\n", "Fon\n", "blinkbox\n", "Sproutkin\n", "Smart\n", "Work4\n", "DocuSign\n", "Tracks\n", "Zone\n", "Looklive\n", "Cobone\n", "Mango\n", "Conversocial\n", "Andy\n", "Whirlpool\n", "Darjeelin\n", "Organic\n", "Innov8\n", "Endor\n", "Politwoops\n", "True\n", "TRVL\n", "Nodester\n", "Alive\n", "Rossum\n", "Queue\n", "Rodeo\n", "Hoppit\n", "Youzee\n", "eHarmony\n", "PAM\n", "Junyo\n", "Nymi\n", "Swyft\n", "Adzerk\n", "Plukka\n", "Instapaper\n", "Sansan\n", "FI-WARE\n", "Degreed\n", "TabTale\n", "Roomblocker\n", "Fame\n", "MediaGlu\n", "AppAdvice\n", "OMGPOP\n", "Scientia\n", "Coull\n", "Blendr\n", "ActivePath\n", "Visually\n", "OutStart\n", "DGSE\n", "Jostle\n", "Icertis\n", "Fluent\n", "Concierge\n", "Forget+me\n", "Corner\n", "Mozbii\n", "LSTN\n", "Showpad\n", "RewardLoop\n", "Jobandtalent\n", "Homescreen\n", "MyEdu\n", "BaubleBar\n", "Avancar\n", "Pond5\n", "Tate\n", "Plated\n", "Nest\n", "VidMob\n", "Lyst\n", "Zenoti\n", "Zazzy\n", "Dudek\n", "Cleversafe\n", "MakersKit\n", "Grabio\n", "Canalys\n", "Werkly\n", "Summer\n", "Sush+io\n", "Fetchnotes\n", "PSG\n", "Smith\n", "Demotix\n", "RelateIQ\n", "Fossil\n", "AppSumo\n", "Convies\n", "Tapjoy\n", "SocialTwist\n", "Tripl\n", "Sainsbury’s\n", "Encription\n", "Civo\n", "Magine\n", "StreetEasy\n", "Marsh\n", "Opower\n", "Wantering\n", "Redfin\n", "SEB\n", "HD+\n", "InMobi\n", "fromAtoB\n", "AppStack\n", "News\n", "Beepl\n", "EasyPost\n", "Pause\n", "Start-Up\n", "Techstars\n", "Lineshark\n", "Appysnap\n", "Oatmeal\n", "SkillPages\n", "Ayasdi\n", "Breezeworks\n", "FileThis\n", "Taps\n", "SRCH2\n", "Cortica\n", "Betaworks\n", "VerticalResponse\n", "Moshi\n", "AdYapper\n", "LinkedIn\n", "Tivoli\n", "Reeder\n", "iStopOver\n", "HackFwd\n", "Columbus\n", "Dubsmash\n", "ClearTax\n", "PowaTag\n", "Umeng\n", "Modus\n", "Playlab\n", "Locent\n", "Fly6\n", "Taykey\n", "Quettra\n", "Classroom\n", "Locqus\n", "JibJab\n", "Appknox\n", "Tinyclues\n", "Datanyze\n", "Atheer\n", "Inktank\n", "DXY\n", "PostGhost\n", "IPTV\n", "Minilogs\n", "DynamicOps\n", "Katana\n", "Highlight\n", "Overhead\n", "NSL\n", "Thomson\n", "Go-Jek\n", "Festicket\n", "Night\n", "Zola\n", "Softonic\n", "Rebtel\n", "Outlier\n", "LeadFormix\n", "Flirtey\n", "Carwow\n", "Mailjet\n", "Boop\n", "RedKix\n", "InsideView\n", "TextMe\n", "StraighterLine\n", "PersistIQ\n", "Punchcard\n", "Flud\n", "Freebase\n", "Pinion\n", "Adcade\n", "Whyd\n", "Springpad\n", "Lucky\n", "Sidestep\n", "Litsy\n", "Care24\n", "Uppidy\n", "Crossbar\n", "Dale\n", "Holmes\n", "Rhombus\n", "NYU\n", "Yahoo\n", "UX\n", "Mach\n", "Artiphon\n", "Versa\n", "PlaySay\n", "Geckoboard\n", "Crashpadder\n", "Clickable\n", "Summa\n", "MakeSpace\n", "Aging2+0\n", "BrightBytes\n", "Booktrack\n", "Skymind\n", "Augmedix\n", "Veriflow\n", "Heroku\n", "Rentlord\n", "Dinube\n", "Needle\n", "LocalUncle\n", "Anker\n", "Mobcast\n", "Balanced\n", "Hipmunk\n", "Adidas\n", "Zabosu\n", "Hartmann\n", "T-Mobile\n", "Angel+ai\n", "Workfront\n", "ImpressPages\n", "Gett\n", "Tempdrop\n", "Cabify\n", "Pieceable\n", "mon+ki\n", "Sign2Pay\n", "NewHive\n", "HelloSociety\n", "Whatser\n", "Libratone\n", "FinancialForce\n", "SmartSync\n", "Aviv\n", "GSF\n", "MindRDR\n", "QOOQ\n", "Avis\n", "ice\n", "Freshly\n", "ResolutionTube\n", "BillPay\n", "Lee\n", "Gartner\n", "FiveAI\n", "Showcase\n", "iStoryTime\n", "Urbane\n", "BetterDoctor\n", "CourseTalk\n", "SupaPass\n", "viaCycle\n", "Everpix\n", "Predix\n", "MyOptique\n", "Knotch\n", "Runfaces\n", "SendGrid\n", "Paracosm\n", "Charterhouse\n", "Fastbite\n", "Hortonworks\n", "ManageFlitter\n", "Ruby\n", "Pipedrive\n", "Git\n", "Kinvey\n", "Baby+com+br\n", "CrowdHut\n", "Collins\n", "Profig\n", "LivePerson\n", "Claire\n", "Kinsa\n", "Voxsup\n", "Apportable\n", "Archimedia\n", "Weathernews\n", "Expansys\n", "LiveIntent\n", "Jumptap\n", "Unsilo\n", "Pingdom\n", "OpenTable\n", "Zimperium\n", "Rocana\n", "Volley\n", "LifeTip\n", "Hurley\n", "ZipMatch\n", "Jukely\n", "Aktana\n", "Phosphorus\n", "InstaVet\n", "McMillan\n", "Umoove\n", "Archer\n", "EPC\n", "Netokracija\n", "Efrat\n", "Engrade\n", "Mobile\n", "Appsfire\n", "Cameron\n", "Magzter\n", "LaunchKit\n", "Tonic\n", "Saffronart\n", "Pundit\n", "Platfora\n", "Hyperdrive\n", "Zscaler\n", "providers\n", "PhilterIt\n", "Ringly\n", "DARPA\n", "ZipRecruiter\n", "SocialRent\n", "Aidin\n", "reKiosk\n", "Naritiv\n", "Hiptype\n", "Written\n", "Kenexa\n", "Context\n", "GoEuro\n", "Nextdoor\n", "Chapman\n", "Buffer\n", "CardMunch\n", "Achievers\n", "RocketBank\n", "Ali\n", "Carro\n", "Circles\n", "Huckle\n", "Bookindy\n", "Plivo\n", "Ifeelgoods\n", "Booyah\n", "Jumia\n", "Kiip\n", "Ranker\n", "ShoorK\n", "Aviate\n", "video\n", "Vibe\n", "Delighted\n", "Hawkins\n", "Echo360\n", "Postable\n", "Curtis\n", "Dobango\n", "Markforged\n", "Cubby\n", "Skillbridge\n", "LoveList\n", "TrackDuck\n", "Startups\n", "Twitpic\n", "SoundCloud\n", "III\n", "Xetum\n", "RackWare\n", "Zillow\n", "EyeEm\n", "Applifier\n", "GOQii\n", "Wibbitz\n", "Prowl\n", "Vringo\n", "Flattr\n", "Splurgy\n", "SocialRadar\n", "Zipongo\n", "vArmour\n", "Player+me\n", "Edwin\n", "LIFX\n", "Dropbox\n", "Bubbly\n", "Sojern\n", "Ionic\n", "Reamaze\n", "OnLive\n", "Diaspora\n", "Sutro\n", "Snyk\n", "Braintree\n", "Greenstart\n", "Chomp\n", "TokBox\n", "Blloon\n", "Greatist\n", "Aerospace\n", "VigLink\n", "WishPop\n", "Evomail\n", "Arduino\n", "OpenShift\n", "AB\n", "Viva\n", "PillPack\n", "Rate\n", "Hykoo\n", "Prevent\n", "Opinion\n", "Chartburst\n", "PastBook\n", "Burn\n", "NPR\n", "HappyFresh\n", "HelloFax\n", "Cowbird\n", "Surf\n", "Peerby\n", "Frederick\n", "OrderWithMe\n", "TinyTap\n", "Gameloft\n", "Naylor\n", "Krawd\n", "Phonedeck\n", "Yetang\n", "Lark\n", "DataFox\n", "MyStream\n", "myWebRoom\n", "GuestDriven\n", "Loot\n", "Stupeflix\n", "Glossier\n", "Vandrico\n", "Pro+com\n", "Welltok\n", "Guardian\n", "Hushed\n", "Management\n", "Fanwards\n", "News360\n", "BrandMyMail\n", "BetterLesson\n", "Songdrop\n", "Alphabet\n", "WAYN\n", "Suning\n", "WalletKit\n", "atVenu\n", "EIS\n", "Jolla\n", "Incubate\n", "Libsyn\n", "colourDNA\n", "JumpCloud\n", "Seedcamp\n", "SAM\n", "Insyde\n", "Blup\n", "LaunchBit\n", "Graham\n", "RedMart\n", "HelloFresh\n", "Rebel\n", "RegistryLove\n", "Bizible\n", "Leslie’s\n", "Paper+li\n", "Goodreads\n", "OpenSky\n", "Weaveworks\n", "Venturocket\n", "Zipcar\n", "NDS\n", "Redpoint\n", "Victor\n", "Macro\n", "AirWatch\n", "ArtCling\n", "Transit\n", "PowerPoint\n", "Diffbot\n", "Niche\n", "Postgres\n", "Net1\n", "Lookback\n", "Medine\n", "LiveOps\n", "AppSense\n", "Pixeom\n", "DormChat\n", "Minuum\n", "Munch\n", "Lightricks\n", "Bizdaq\n", "Antidate\n", "Mileways\n", "Notey\n", "doctHERs\n", "Fair\n", "ShopPad\n", "Darkstore\n", "Dillon\n", "TrialPay\n", "Loon\n", "Defender\n", "M4JAM\n", "ClassDojo\n", "Million\n", "Advise+me\n", "Redbeacon\n", "AdMobius\n", "XING\n", "HigherMe\n", "SinglePlatform\n", "Raspberry\n", "Meexo\n", "Barobot\n", "Middle\n", "Mogreet\n", "Mills\n", "Frugalo\n", "Wrapify\n", "Arbor\n", "kununu\n", "Morphlabs\n", "Goldbely\n", "StartWire\n", "Snaptu\n", "Educreations\n", "Udemy\n", "MIKA\n", "Forever\n", "Bantr\n", "CMS\n", "WedPics\n", "RebelMouse\n", "CBC\n", "Comunitee\n", "CNNIC\n", "Addventure\n", "Home\n", "StackEngine\n", "Mt+Gox\n", "NewsiT\n", "Outerwall\n", "Plain\n", "Checkmarx\n", "BigBasket\n", "Medypal\n", "Dickson\n", "Scenery\n", "Appcore\n", "Refresh+io\n", "Wallet\n", "Trapit\n", "Jobspotting\n", "PinClout\n", "Calendo\n", "Ticketbis\n", "LOVEFiLM\n", "FunnyJunk\n", "Glocal\n", "Launcher\n", "York\n", "Digia\n", "Carpenter\n", "Creek\n", "Upstart\n", "FlyCleaners\n", "CWT\n", "Listia\n", "Sweep\n", "Chatterfly\n", "Haiku\n", "Zedge\n", "Expand\n", "SocMetrics\n", "Orami\n", "Alerts\n", "Satago\n", "Winnie\n", "Coffee\n", "Swapt\n", "Alchemy\n", "Voxer\n", "Freespee\n", "Mixbook\n", "My-Apps\n", "Let\n", "BlinkMail\n", "Kitestring\n", "SmartNews\n", "Gigwell\n", "W3i\n", "Tipflare\n", "Triptrotting\n", "MyMusicTaste\n", "MetaLab\n", "Voxy\n", "Breitling\n", "Iotera\n", "Topics\n", "Yext\n", "Ideum\n", "Jirnexu\n", "Implisit\n", "Studios\n", "Bitbar\n", "Orbit\n", "Holvi\n", "CoCoon\n", "Qloo\n", "Temnos\n", "Last+fm\n", "Walgreens\n", "Circl\n", "Smaato\n", "Storycode\n", "Zebra\n", "Clarizen\n", "Readyforce\n", "Emoji\n", "MommyCoach\n", "Froont\n", "PledgeCents\n", "Chatterbox\n", "Phoenix\n", "adBrite\n", "Citelighter\n", "Encore\n", "Cotendo\n", "Pokémon\n", "GamesThatGive\n", "SmartRecruiters\n", "URX\n", "RefreshBox\n", "Gojee\n", "Seriously\n", "Vacatia\n", "Fjuul\n", "DFKI\n", "Cushman\n", "ExactTarget\n", "Couchbase\n", "Knocki\n", "PrecisionHawk\n", "Checkbook\n", "Suiteness\n", "Cronofy\n", "Mobilisafe\n", "Wisely\n", "Spoon\n", "Verifly\n", "Emberlight\n", "Adaptive\n", "Mozy\n", "WebMD\n", "Aircall\n", "Credits\n", "Tutanota\n", "Glimpse\n", "AddThis\n", "Lucent\n", "SocialFlow\n", "Flexport\n", "Orchestra\n", "BetterWorks\n", "BeLuvv\n", "Mindie\n", "Octoly\n", "Cinegif\n", "Merch\n", "Insta\n", "Method\n", "Bloglovin\n", "Spoqa\n", "Zurf\n", "Meterfy\n", "Seahorse\n", "Little\n", "Thefuture+fm\n", "Simplify360\n", "SkySpecs\n", "Acquia\n", "Unmute\n", "Avira\n", "Qlika\n", "Truebill\n", "Sunglass\n", "Slinger\n", "BuildDirect\n", "Postman\n", "eSpark\n", "Aframe\n", "Jetsetter\n", "Acronis\n", "Happtique\n", "OneOps\n", "Wix\n", "PrivacyStar\n", "Weibo\n", "OMGICU\n", "Trilogy\n", "CompStak\n", "AKQA\n", "Pamper\n", "Lifeliqe\n", "OrderUp\n", "Fantasy\n", "ShoreTel\n", "Seedrs\n", "Numecent\n", "Julep\n", "Shopular\n", "needs\n", "Thunder\n", "JustReachOut\n", "CareLedger\n", "CircuitLab\n", "GEMA\n", "Alleyoop\n", "Movi\n", "Mattel\n", "Nebula\n", "QVC\n", "F+ounders\n", "Cotap\n", "Startupi\n", "Socialtext\n", "Zamurai\n", "SinDelantal+Mx\n", "WeTransfer\n", "Playfire\n", "iHeartRadio\n", "Evi\n", "PrimeSense\n", "Egnyte\n", "Investing+com\n", "Motus\n", "Satellogic\n", "Tend+ai\n", "Tabber\n", "Express\n", "YouAppi\n", "Veoh\n", "Individual\n", "Cotopaxi\n", "Hart\n", "Hall\n", "Coconut\n", "Selfie\n", "Alicanto\n", "LetsListen\n", "Kstartup\n", "ShareThis\n", "Disconnect\n", "Appy\n", "Imgur\n", "Talkdesk\n", "MVF\n", "InfoScout\n", "Giftivo\n", "Optimus\n", "Cameo\n", "Lightwave\n", "DailyRounds\n", "HealthLoop\n", "DocSend\n", "Lab42\n", "MyColorScreen\n", "WebEx\n", "Founders\n", "Azimo\n", "ATM\n", "Grabyo\n", "Gradifi\n", "RedditGifts\n", "Catch+com\n", "LaFourchette\n", "ZappRx\n", "Frontback\n", "Ubokia\n", "Rent2Buy\n", "Diamanti\n", "CareSkore\n", "Happn\n", "Penultimate\n", "WeatherSphere\n", "BuyWithMe\n", "WeStore\n", "Hubbl\n", "Skype\n", "CircleUp\n", "menu\n", "Blanc\n", "Seerslab\n", "Dealupa\n", "jEugene\n", "FundersClub\n", "Pixelpipe\n", "Marfeel\n", "Cliptone\n", "Brayola\n", "Wendel\n", "Skedaddle\n", "LovelyHeroku\n", "Sphero\n", "Josephine\n", "Moat\n", "Linode\n", "Over\n", "Niall\n", "Wishpond\n", "Patton\n", "JetSmarter\n", "Coinfloor\n", "Bizo\n", "Peyman\n", "KeepTruckin\n", "Fradio\n", "Slingbox\n", "Jellynote\n", "Bloomfire\n", "Keybase\n", "Jabra\n", "Grindr\n", "GameFounders\n", "Fundable\n", "Flint\n", "Leak\n", "V-Key\n", "Zomato\n", "Noise\n", "Cyvera\n", "Fribi\n", "Junar\n", "Freewheel\n", "AIR\n", "ToutApp\n", "Mophie\n", "CMB\n", "Phononic\n", "Baron\n", "Chance\n", "SteelBrick\n", "Fanbase\n", "Hometeam\n", "Learndot\n", "Honk\n", "Zappos\n", "Paytm\n", "Infratel\n", "Plenummedia\n", "Hobzy\n", "Sundar\n", "Wittlebee\n", "MoPub\n", "Textura\n", "Telegraph\n", "Videology\n", "Cakey\n", "AdStack\n", "Twitch\n", "Overtime\n", "Mambu\n", "DWS\n", "Monotype\n", "Mobileye\n", "Bondsy\n", "PiinPoint\n", "BrewDrop\n", "Gucci\n", "Celly\n", "Snaplay\n", "Grasshopper\n", "CauseRocket\n", "LovePalz\n", "NICE\n", "ServisHero\n", "Mirantis\n", "DreamHost\n", "Juengo\n", "Shuttleworth\n", "Poncho\n", "Iconfinder\n", "Tapkast\n", "Webber\n", "Livemap\n", "Ingenico\n", "Zynga\n", "Dakwak\n", "Leaky\n", "Dotcom\n", "Instabug\n", "Strings\n", "PowerReviews\n", "Brainly\n", "OptimisCorp\n", "Log\n", "StartX\n", "Robocoin\n", "goBalto\n", "Statwing\n", "Quotle\n", "QASymphony\n", "NewsON\n", "Connexity\n", "Hiya\n", "Jasper\n", "Shutterstock\n", "LightUp\n", "Inverse\n", "Touch\n", "Driver\n", "NGDATA\n", "Revolut\n", "Inc+\n", "Flipagram\n", "Kytephone\n", "Medigo\n", "Send\n", "HyPer\n", "Marketo\n", "Property\n", "Appnique\n", "Purism\n", "VMware\n", "Stick\n", "SnapLogic\n", "Moovit\n", "SocialRank\n", "MONOQI\n", "Mattermark\n", "Platform\n", "Piccsy\n", "Lima\n", "Trio\n", "Silvercar\n", "Helpling\n", "Mint\n", "Tomfoolery\n", "Favr+tt\n", "GeoPoll\n", "SocialShield\n", "ExpenseMagic\n", "CultureSphere\n", "Cinder\n", "Novartis\n", "Deeyoon\n", "RetailNext\n", "Urbita\n", "Streetlife\n", "BonitaSoft\n", "ViSenze\n", "Flocations\n", "Webroot\n", "Whipclip\n", "Logan\n", "Openet\n", "Nutrino\n", "Richardson\n", "Meltwater\n", "BioBeats\n", "DataTorrent\n", "Wake\n", "Polycom\n", "SpotlessCity\n", "Self\n", "Instagram\n", "DraftKings\n", "Securifi\n", "Schoola\n", "Nubank\n", "EmployInsight\n", "POP\n", "Filip\n", "Experience\n", "LeanData\n", "Ranger\n", "BAC\n", "Fama\n", "SkyHealth\n", "Rdio\n", "Flybridge\n", "Addvocate\n", "VCNC\n", "taste\n", "RenéSim\n", "Contentful\n", "Tung\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "MobiTV\n", "Hivemapper\n", "AppFirst\n", "BloomReach\n", "NoshList\n", "JANDI\n", "Luff\n", "seed\n", "AddSearch\n", "SimilarTech\n", "Adzuna\n", "Cloudike\n", "Talend\n", "Unreel+me\n", "Plugaway\n", "Curioos\n", "Aoliday\n", "E3\n", "PagerDuty\n", "Quikr\n", "GraphOn\n", "OpenSignal\n", "FunderCloud\n", "LoopFuse\n", "KashFlow\n", "Frameri\n", "aCommerce\n", "Gigya\n", "Docurated\n", "gumi\n", "Path+To\n", "Bebop\n", "Endorse+me\n", "Lookup\n", "Yamaha\n", "BlazingDB\n", "Telenor\n", "SharesPost\n", "Vertro\n", "Creandum\n", "Whirlscape\n", "Spreaker\n", "REBBL\n", "Fantoo\n", "MiMedia\n", "Freeman\n", "Percolate\n", "Lifecake\n", "Avon\n", "Moodstocks\n", "Kindly\n", "Snackr\n", "Vingle\n", "Azalead\n", "Workday\n", "Fortify\n", "Deem\n", "Shelf\n", "Travis\n", "Rythm\n", "StackMob\n", "Azumio\n", "InstallMonetizer\n", "SwiftGift\n", "Wit+ai\n", "DataStax\n", "imoji\n", "Strap\n", "Levi’s\n", "AmazonFresh\n", "Ketchuppp\n", "Automatic\n", "GiftCards+com\n", "Ventoura\n", "Quandoo\n", "inMarket\n", "Lumus\n", "Voyagin\n", "Nosto\n", "Diveboard\n", "Ting\n", "CodeCombat\n", "Audible\n", "Captora\n", "Qype\n", "Mozio\n", "Wordeo\n", "SprinkleBit\n", "Quikkly\n", "Glancee\n", "JuicyCanvas\n", "Sony\n", "Postwire\n", "eFounders\n", "IRIS\n", "Sociocast\n", "Washio\n", "Gone\n", "Dispop\n", "Cheerboo\n", "Tutorspree\n", "Embrace\n", "Bucket\n", "Timeline\n", "Luminate\n", "BetaNoodle\n", "Forage\n", "Boxer\n", "Lettuce\n", "Soluto\n", "Gravie\n", "Conyac\n", "CoreOS\n", "Autos\n", "Pixel\n", "Influitive\n", "Appcues\n", "Women+com\n", "Mondo\n", "Shopgate\n", "Airpaper\n", "StartApp\n", "MoonClerk\n", "CommonKey\n", "Salesforce\n", "Kik\n", "Dodge\n", "FreedomPop\n", "Authy\n", "NanoRacks\n", "Landlordology\n", "Terascore\n", "Vilynx\n", "Captain401\n", "Vemory\n", "Glovo\n", "TrueAccord\n", "UrbanStems\n", "Backflip\n", "OpenLabel\n", "ITG\n", "inPulse\n", "DoubleDutch\n", "ValoBox\n", "Internet+org\n", "SportsQuest\n", "Synapsify\n", "iFood\n", "Catch\n", "Watchwith\n", "Shoutlet\n", "Wish\n", "Hatchery\n", "Fullscreen\n", "Matternet\n", "Office\n", "Ezeecube\n", "Ossur\n", "Wind\n", "PeerIndex\n", "Digits\n", "Wufoo\n", "Flipp\n", "Criteo\n", "FF\n", "Todacell\n", "Notabli\n", "Docracy\n", "District\n", "Avast\n", "Spacio\n", "Sumpto\n", "Songbird\n", "Contastic\n", "Tradeshift\n", "Salted\n", "VINCI\n", "Clearpath\n", "Vurb\n", "Stylect\n", "PlaySquare\n", "Gambitious\n", "Curse\n", "Shutterfly\n", "Forsythe\n", "Uber\n", "BlueStacks\n", "Tep\n", "Relcy\n", "Subway\n", "Notch\n", "ParcelBright\n", "Auraslate\n", "DEMO\n", "Archives+com\n", "Graduateland\n", "HWTrek\n", "Piazza\n", "Agogo\n", "Citron\n", "ReTargeter\n", "Identified\n", "Dull\n", "Avid\n", "Zoho\n", "Poptip\n", "CIS\n", "Northzone\n", "Zolt\n", "NightOwl\n", "BigTime\n", "Taskhub\n", "HeadBox\n", "Page365\n", "LearnSprout\n", "Mindshapes\n", "Obi\n", "TrueFacet\n", "Works\n", "CredSimple\n", "Abine\n", "Lamudi\n", "ICANN\n", "Preact\n", "REX\n", "Casper\n", "Guardly\n", "Wagon\n", "Greats\n", "GoPro\n", "TapHeaven\n", "Pulselocker\n", "Chromatik\n", "Glasses\n", "Skitch\n", "Lernstift\n", "Teads\n", "Merienda\n", "Tesco\n", "CouchCommerce\n", "CornerJob\n", "EST\n", "Drippler\n", "GoodRx\n", "CruiseWise\n", "Sharalike\n", "Startups+co\n", "LuckyTrip\n", "Kera\n", "Slidejoy\n", "Pacifica\n", "First\n", "Human\n", "Goxip\n", "Jetbay\n", "Podio\n", "Hired\n", "PicsArt\n", "tracx\n", "ItsOn\n", "StorSimple\n", "Eventbrite\n", "Kapost\n", "FlashFunders\n", "BustedTees\n", "Aceable\n", "Soon\n", "MineralTree\n", "Evercontact\n", "VISR\n", "Kwoller\n", "Tagstand\n", "YourBus\n", "Badgeville\n", "Coles\n", "Moto\n", "Deloitte\n", "Face+com\n", "Turo\n", "Polymer\n", "Payvment\n", "BVP\n", "Loops\n", "Mowbly\n", "CashCashPinoy\n", "FX\n", "Vinomofo\n", "Softcard\n", "Venuelabs\n", "Telecom\n", "RJMetrics\n", "Rescale\n", "NEEO\n", "TripleLift\n", "BlueVia\n", "DWNLD\n", "Biba\n", "Gogoro\n", "Atom\n", "Shopline\n", "Groopt\n", "Petnet\n", "HackerRank\n", "Avegant\n", "Vidcode\n", "Alert+Us\n", "Filter+ly\n", "Space\n", "Kobalt\n", "B4RM4N\n", "HBO\n", "DroneBase\n", "ZMP\n", "Alfresco\n", "Staples\n", "SensioLabs\n", "BlindType\n", "Videdressing\n", "Thirst\n", "Telecast\n", "Riot\n", "FortyCloud\n", "Napwell\n", "Singtrix\n", "YCharts\n", "WikiLeaks\n", "Wynd\n", "GOAT\n", "Sketch\n", "Tealium\n", "Sugru\n", "ProFounder\n", "Bigpoint\n", "Evergram\n", "Molotov\n", "AirHelp\n", "Rolex\n", "Eligible\n", "Rust\n", "Cozy\n", "AsthmaMD\n", "BlueTalon\n", "appLOUD\n", "Thingsee\n", "EveryMove\n", "doo\n", "Xero\n", "DefinedCrowd\n", "Esplorio\n", "Equation\n", "Moltin\n", "Webflakes\n", "VisualGraph\n", "Dove\n", "BuzzFeed\n", "Blispay\n", "Famous\n", "inDinero\n", "Cellrox\n", "Underdog\n", "eeGeo\n", "SaneBox\n", "Solid\n", "Songza\n", "Source\n", "Zemanta\n", "DoctorsElite\n", "Occipital\n", "Epoch\n", "Civil\n", "Biomeme\n", "Baidu\n", "Spots\n", "Amiga\n", "Goodservice\n", "Logica\n", "Memeoirs\n", "Onyx\n", "Solocam\n", "Farmigo\n", "Sher+ly\n", "Crowdbooster\n", "Nikkei\n", "SourceNinja\n", "SpareMin\n", "Withings\n", "Happy\n", "HOOQ\n", "Wolf\n", "Sprinklr\n", "Julpan\n", "FWD+us\n", "HelloSign\n", "CreativeLive\n", "BitTorrent\n", "Pozitron\n", "Canvsly\n", "Ola\n", "Eyegroove\n", "M2M\n", "Prize\n", "WANdisco\n", "AcuityAds\n", "TextMaster\n", "Chaatz\n", "UCP\n", "Level\n", "DoorDash\n", "HopSkipDrive\n", "Verelo\n", "LittleThings\n", "BrandAds\n", "Omni3D\n", "Coub\n", "Carriage\n", "Clipmarks\n", "ip+access\n", "Swiggy\n", "Wajam\n", "Amulyte\n", "MobilyTrip\n", "Squawka\n", "Mixmax\n", "FriendFinder\n", "Timeular\n", "Yieldify\n", "Checkr\n", "Parature\n", "Syncapse\n", "Hoodline\n", "Inuvo\n", "Grockit\n", "iSuppli\n", "Feels\n", "CardBlanc\n", "MasteryConnect\n", "ModCloth\n", "TerraTalk\n", "Scott\n", "Sophos\n", "RadioPublic\n", "Knotable\n", "StatMuse\n", "SAY\n", "Wellth\n", "StartUp\n", "JamCam\n", "ShopSavvy\n", "Looxcie\n", "OneGo\n", "Hulu\n", "Nooka\n", "Tweetwall\n", "Yoshi\n", "Offset\n", "Kids\n", "Else\n", "Zaarly\n", "AdQuantic\n", "Bitdefender\n", "Tech+eu\n", "Collection\n", "Pheed\n", "Blavity\n", "Pivot3\n", "Peeks\n", "Hooch\n", "Blooie\n", "SaaS\n", "RogerVoice\n", "Starwood\n", "Zuberance\n", "Vorwerk\n", "Tomcar\n", "Rocketmiles\n", "Careerify\n", "Reagan+com\n", "Enswers\n", "Switchcam\n", "Vanhawks\n", "CloudCar\n", "Discord\n", "Dacuda\n", "Zopper\n", "Applauze\n", "Daimler\n", "BeauCoo\n", "Vettery\n", "CargoX\n", "OMG\n", "Flipkart\n", "Henkel\n", "Idomoo\n", "Aptonomy\n", "Bumble\n", "Friend+ly\n", "Linqia\n", "Mola+com\n", "Blekko\n", "Gorgias\n", "Kabam\n", "Ameyo\n", "Apttus\n", "HSBC\n", "TOTVS\n", "Lollicam\n", "Palm\n", "Motosumo\n", "Tapstack\n", "Snapjoy\n", "Lenstag\n", "Vive\n", "PlanGrid\n", "Cloudability\n", "Magnify\n", "Lumi\n", "Postmaster\n", "JustPark\n", "Pad\n", "Occupy+here\n", "LearnVest\n", "Providence\n", "Erickson\n", "Ruckus\n", "RSVP\n", "JAM\n", "GCHQ\n", "Grapeshot\n", "Trialfire\n", "Digital\n", "Lugg\n", "Wink\n", "TalentSky\n", "Pexip\n", "BugBuster\n", "Fling\n", "GroupLogic\n", "TranServ\n", "Slim\n", "Roomi\n", "Voxel8\n", "Island\n", "Stuffle\n", "Mars\n", "Socialcam\n", "Ubiquisys\n", "Tank\n", "Rolltape\n", "Mohiomap\n", "Roku\n", "Flytrex\n", "ERN\n", "Airtame\n", "Fuel3D\n", "Rubrik\n", "Yobongo\n", "CodeNow\n", "RupeePower\n", "Flowdock\n", "RDS\n", "Identity\n", "Read\n", "ArabNet\n", "Levitas\n", "Fyndiq\n", "Sticky\n", "Everlane\n", "Houzz\n", "Redbooth\n", "Kurio\n", "Kantar\n", "MetaWatch\n", "Tresorit\n", "Griffin\n", "MonkeyParking\n", "SpoonRocket\n", "AlienVault\n", "Quirky\n", "Soundrop\n", "Hipstamatic\n", "ATF\n", "NextSuit\n", "Summify\n", "Spreedly\n", "Standard\n", "CryptoSeal\n", "MessageMe\n", "Wedge\n", "PayDivvy\n", "Livemocha\n", "SurveyMonkey\n", "TapCanvas\n", "Lob\n", "Plizy\n", "Fundera\n", "Clustree\n", "Tapingo\n", "Dataminr\n", "DrinkMate\n", "Shape\n", "Enstratius\n", "Kamino\n", "Restorando\n", "Reco\n", "Freshii\n", "Twiggle\n", "Waze\n", "onefinestay\n", "LesPAC+com\n", "NBA\n", "Awair\n", "DailyLit\n", "Mimi\n", "RevUpNet\n", "Strava\n", "Shotput\n", "S4\n", "ClearFit\n", "Appfuel\n", "Ryzing\n", "Blippar\n", "Toro\n", "Samos\n", "FrameBlast\n", "Google\n", "Talko\n", "Ovatemp\n", "Kin\n", "Lender\n", "Lendix\n", "SalesVu\n", "Tunepics\n", "SundaySky\n", "Ripples\n", "DragonWave\n", "Sandglaz\n", "Life360\n", "Mashable\n", "Knowre\n", "Nifty\n", "Zeplin\n", "CrowdFlik\n", "Everett\n", "Press\n", "Exitround\n", "eGym\n", "Neumann\n", "Bluesmart\n", "AnkerBox\n", "Gravity4\n", "Crosley\n", "IPO\n", "LoopMe\n", "Lambda\n", "Swell\n", "Peekaboo\n", "Me-Mover\n", "Asana\n", "Duetto\n", "Flash\n", "Indix\n", "Argus\n", "Bloom+fm\n", "theAudience\n", "Supercell\n", "Flowtab\n", "Suite\n", "Arro\n", "SmashFly\n", "Synchronica\n", "Zingaya\n", "PayStand\n", "icons\n", "UrbanClap\n", "BeeTV\n", "MMS\n", "Flavorpill\n", "Minefold\n", "Deliv\n", "Insurify\n", "Fancred\n", "Backupify\n", "Cola\n", "Taggar\n", "Thumb\n", "Camera+\n", "Shake\n", "Layer\n", "Verge\n", "H2L\n", "Olark\n", "Magento\n", "Shasta\n", "Aereo\n", "Talkwheel\n", "ScribbleLive\n", "Deeplink\n", "Alaris\n", "XYZprinting\n", "Mozilla\n", "Wercker\n", "BuiltWith\n", "BrandYourself\n", "MoEngage\n", "UpLabs\n", "Withlocals\n", "Paktor\n", "LearnStreet\n", "Workable\n", "Korbit\n", "TripIt\n", "Perfect\n", "Quill\n", "Newsle\n", "Glowforge\n", "Cleveron\n", "Grasswire\n", "Retina\n", "MakeTime\n", "Keek\n", "Lavaboom\n", "Mogees\n", "Buddytruk\n", "Snapette\n", "Expertmaker\n", "Facer\n", "Kokoroe\n", "Richard\n", "CoinTent\n", "Qumulo\n", "Atooma\n", "Panaya\n", "Dasher\n", "Chartboost\n", "Singly\n", "CoPromote\n", "VictorOps\n", "Afrostream\n", "Uqora\n", "CompareAsiaGroup\n", "Mertado\n", "Reelio\n", "LyteShot\n", "Brandwatch\n", "SocialBattles\n", "Plyfe\n", "GetGoing\n", "mNectar\n", "conTgo\n", "Lenovo\n", "Fonticons\n", "Outbrain\n", "Yottaa\n", "Boompi\n", "Skillz\n", "FIS\n", "Schramm\n", "Milestone\n", "Vogels\n", "Elastica\n", "Ooyala\n", "Pinspire\n", "Certiport\n", "Mention\n", "Aldridge\n", "StartupYard\n", "Chalkable\n", "Wharton\n", "Ampush\n", "CoFoundersLab\n", "Nomi\n", "Yoga\n", "Brightcove\n", "Craftsvilla\n", "Locket\n", "Partner\n", "WeWork\n", "NPO\n", "Vidyard\n", "Wanderu\n", "PhotoSpotLand\n", "Rollout+io\n", "Sounds\n", "Segway\n", "MetaPack\n", "Foodity\n", "Skyscanner\n", "Nanigans\n", "BlueStripe\n", "AdRoll\n", "Appiterate\n", "Secret+li\n", "Naver\n", "Ybrain\n", "Sendicate\n", "Adnimation\n", "GAIN\n", "Wilogo\n", "Believe+in\n", "Telefonica\n", "Cater2+me\n", "PSafe\n", "Readmill\n", "Tapulous\n", "Hotspots\n", "Tarlton\n", "HubSpot\n", "Codecademy\n", "Miyowa\n", "Pebble\n", "PrivateCore\n", "Nestle\n", "OKpanda\n", "Kwaga\n", "CluckCluck\n", "Trello\n", "Firebase\n", "Clip\n", "Bitcasa\n", "Snips\n", "CityPockets\n", "Humin\n", "NationBuilder\n", "Mindshare\n", "Knok\n", "STI\n", "Beamr\n", "AppDirect\n", "Savored\n", "PeepCode\n", "Wolfe\n", "Lookcraft\n", "Empath\n", "SevenVentures\n", "RedDoorz\n", "Emojiary\n", "Ulmon\n", "Senzari\n", "codeSpark\n", "Fitt\n", "SpaceSplitter\n", "Groopie\n", "Qualtrics\n", "Foodpanda\n", "Innovid\n", "Farm2050\n", "Merriman\n", "Cosy\n", "CustomMade\n", "panels\n", "Concurrent\n", "SeamlessDocs\n", "OneSchool\n", "Neone\n", "Lytro\n", "Blendle\n", "CareZapp\n", "FabFitFun\n", "RealCrowd\n", "Voodoo\n", "Paragraph\n", "Case\n", "Hooked\n", "Intralist\n", "Giffiti\n", "CommonFloor\n", "PodShare\n", "Taulia\n", "Hachi\n", "MyCheck\n", "Apptopia\n", "Goliath\n", "Apsalar\n", "LiveRail\n", "Postini\n", "Quickoffice\n", "ZEFR\n", "Symplified\n", "Aleph\n", "Archant\n", "Odysee\n", "VenueNext\n", "NovoEd\n", "Stayzilla\n", "Glints\n", "CodeGuard\n", "OurMix\n", "iwaku\n", "TuneCore\n", "TravelPerk\n", "Eversnap\n", "Timekiwi\n", "Wrike\n", "Neolane\n", "Audvisor\n", "Peecho\n", "Scheduler\n", "Smartsheet\n", "Stampery\n", "Everwise\n", "FirstLook\n", "SenSprout\n", "Webedia\n", "CSR\n", "Experiences\n", "Bpifrance\n", "Pegatron\n", "Greedy\n", "Walker\n", "Heyday\n", "HushHush\n", "Labor\n", "ConsultingMD\n", "Rooster\n", "Grabr\n", "Tikker\n", "Pedius\n", "BestVendor\n", "Formvertise\n", "Curology\n", "Sightly\n", "HowGood\n", "Chewse\n", "Google_\n", "Fresh\n", "Unigo\n", "Qwaya\n", "SimilarWeb\n", "CEE\n", "Tubular\n", "SportsHero\n", "drop\n", "Knoll\n", "Qosmos\n", "Shaper\n", "Yell\n", "Dodo\n", "Fenix\n", "Modsy\n", "Swype\n", "Roche\n", "ASML\n", "Scripted+com\n", "Gnzo\n", "Balance\n", "PediaPress\n", "Addr\n", "Housebites\n", "Hootsuite\n", "Layar\n", "Cupple\n", "PredictionIO\n", "PAX\n", "Trending\n", "HealthTap\n", "Booktrope\n", "Random\n", "Jetlore\n", "Caviar\n", "Skyera\n", "TRAFI\n", "Hamwells\n", "Bownty\n", "MOX\n", "Jaunt\n", "Binpress\n", "Indisys\n", "eBuddy\n", "LetsLunch\n", "Easy\n", "Opener\n", "FairFleet\n", "VizEat\n", "Fovo\n", "Headout\n", "Maily\n", "AmbyGear\n", "AppHero\n", "Antonio\n", "Code\n", "HUDWAY\n", "PieSync\n", "SirionLabs\n", "Crazy\n", "YogiPlay\n", "Workestra\n", "Nifti\n", "Box\n", "Bond\n", "ThirdLove\n", "Sookasa\n", "Discoverly\n", "ParkWhiz\n", "i2\n", "AngelList\n", "Legend\n", "NHTSA\n", "Donuts\n", "Radar\n", "Citrrus\n", "ROIKOI\n", "Tripda\n", "AlumniFunder\n", "Babu\n", "Sumo\n", "Dyn\n", "LuckyPennie\n", "Navdy\n", "Monument\n", "Ecwid\n", "Maritz\n", "PickTrace\n", "Newsela\n", "Kuapay\n", "GarageBand\n", "Edyn\n", "CloudCheckr\n", "Salonmeister\n", "MeetMe\n", "MakeMeReach\n", "IMAX\n", "Spotcap\n", "NoRedInk\n", "Pops\n", "Tru\n", "Babblr\n", "Arable\n", "JamBase\n", "Affinity\n", "Splacer\n", "Broadcast\n", "Concert\n", "Holographic\n", "Mandriva\n", "Stackla\n", "Tripbirds\n", "HotelTonight\n", "Wild\n", "TheFamily\n", "AdsNative\n", "EMC\n", "Mindsy\n", "NextDocs\n", "AppInTop\n", "Zenefits\n", "NoBroker\n", "AnyPresence\n", "Courier\n", "Coast\n", "ST-Ericsson\n", "Eco\n", "Aquto\n", "Qualys\n", "Spotsetter\n", "Gal\n", "Wikipedia\n", "BeatDeck\n", "Sellfy\n", "GlobalSCAPE\n", "Tawkers\n", "Cleartrip\n", "Astrid\n", "Bync\n", "Pepperdata\n", "SeedPlus\n", "Sunlight\n", "ABS\n", "Hear2Read\n", "Instructure\n", "Snoox\n", "Maybank\n", "LiveNinja\n", "PayPal\n", "Shopify\n", "Quepasa\n", "PHIND\n", "Priceonomics\n", "Fieldwire\n", "ZestFinance\n", "Mei+com\n", "Epocrates\n", "Guesswork\n", "StandWith\n", "Cisco\n", "Siasto\n", "Adelphic\n", "Armarium\n", "Cobook\n", "Skydio\n", "Ultra\n", "PostUp\n", "Distill\n", "Maheswari\n", "Datameer\n", "Syncsort\n", "Pounce\n", "Monitise\n", "Asteroid\n", "Breathometer\n", "DemystData\n", "Out\n", "MUBI\n", "Sensay\n", "Sweeten\n", "Zoute\n", "Change+org\n", "Camera360\n", "Paidy\n", "Shazam\n", "LG\n", "Vertu\n", "SIP\n", "Booking+com\n", "ImpulseSave\n", "Posterous\n", "EngageSciences\n", "Hands\n", "Spiegel\n", "GoBank\n", "HackHands\n", "Blueprint\n", "Path\n", "MightyTV\n", "Narratives\n", "Silverpop\n", "TradingView\n", "Amadeus\n", "Submittable\n", "BRIKA\n", "JobScout\n", "Lanyrd\n", "Tapad\n", "Crowdynews\n", "Moju\n", "InnoGames\n", "Ellen\n", "Nelson\n", "Underwood\n", "VideoElephant\n", "Nexus\n", "AT\n", "Taylor\n", "Matt\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "MetaMind\n", "Unruly\n", "Giftiki\n", "Locca\n", "Pressfolios\n", "Lexity\n", "Graduway\n", "Echograph\n", "Kaggle\n", "Vobi\n", "Crushpath\n", "Drupal\n", "Polyvore\n", "Triller\n", "DailyWorth\n", "SAP\n", "Maxthon\n", "Housejoy\n", "Tyro\n", "Apphance\n", "Fanatics\n", "BioDigital\n", "Jewelbots\n", "Quri\n", "Vinebox\n", "eShares\n", "BBVA\n", "Coupang\n", "SoftBank\n", "Gleam\n", "Spredfast\n", "Koality\n", "Seamless\n", "Insight\n", "GetLinks\n", "Academe\n", "AnchorFree\n", "Anywhere\n", "Eyeview\n", "Vizury\n", "FoundersCard\n", "Povio\n", "MoPho\n", "Gizmox\n", "PeopleBrowsr\n", "Roca\n", "Spectrm\n", "PromoJam\n", "Animoto\n", "Loosecubes\n", "Gumhouse\n", "Plaid\n", "Kepler\n", "Morrisons\n", "Reactions\n", "Lucey\n", "Impraise\n", "International\n", "Secusmart\n", "AVG\n", "Wileyfox\n", "Fotolia\n", "Inspirato\n", "Dreamit\n", "Muzik\n", "PicMonkey\n", "Geeksphone\n", "Dymant\n", "Futuremark\n", "EPIX\n", "BlockTrail\n", "Emburse\n", "Noke\n", "Bump\n", "Photomyne\n", "Sapho\n", "Wonderloop\n", "Clustrix\n", "DigitalGenius\n", "Makerbase\n", "CloudSpokes\n", "iQiyi\n", "Blockchain\n", "Odnoklassniki\n", "Loggly\n", "Famigo\n", "SittingAround\n", "SquareOne\n", "Yield\n", "MindSnacks\n", "Playlists+net\n", "Cvent\n", "Highrise\n", "Liftopia\n", "Axway\n", "UPS\n", "Metrics\n", "Chute\n", "SigOpt\n", "Clippet\n", "Vaavud\n", "Phonvert\n", "Legentas\n", "Haptik\n", "Hotspot\n", "Intel\n", "Affectiva\n", "LegbaCore\n", "RakNet\n", "Metail\n", "Judicata\n", "Fatmap\n", "Azullo\n", "Widdit\n", "Lamoda\n", "Transcoder\n", "Foodzy\n", "Ideal\n", "Systems\n", "Auxmoney\n", "Engagor\n", "Floobits\n", "Got\n", "Newsana\n", "Inspirock\n", "Yodlee\n", "Ginger+io\n", "Fortune\n", "iHeart\n", "Taboola\n", "Grooveshark\n", "Thinkful\n", "Ellation\n", "Rafter\n", "Fandango\n", "Spoonflower\n", "Workflow\n", "Eventjoy\n", "Ping\n", "Paltalk\n", "Babylon\n", "Spinnakr\n", "SkyGiraffe\n", "Accel-KKR\n", "reps\n", "FastSpring\n", "Umano\n", "Ethan\n", "Mingleton\n", "FilterEasy\n", "Cemmerce\n", "ZigBee\n", "Revelator\n", "Rainmaker\n", "PredictSpring\n", "Retrace\n", "Massdrop\n", "Photoful\n", "CanvasPop\n", "PLUMgrid\n", "Velti\n", "Reebee\n", "Sex+com\n", "MetaWorld\n", "LocalOn\n", "Tradedoubler\n", "Vello\n", "CatchThatBus\n", "Tizen\n", "Schaft\n", "RT\n", "Sparkcentral\n", "Philo\n", "Truecaller\n", "Bubble\n", "CIO\n", "Trooly\n", "OfficeDrop\n", "Intuit\n", "SimplyInsured\n", "ClassPass\n", "GoingOn\n", "TapEngage\n", "Wallmob\n", "Vivendi\n", "Wayfair\n", "Badoo\n", "Pirate3D\n", "Spotwag\n", "Netizine\n", "Skycure\n", "Tethercell\n", "Shorts\n", "Sanders\n", "Witness\n", "Onesheet\n", "Clarity\n", "Apigy\n", "TurningArt\n", "Rutube\n", "Uptake\n", "Radoop\n", "Postmates\n", "Ascend\n", "Ektron\n", "TED\n", "Wayin\n", "Boxful\n", "ScaleBase\n", "Sokikom\n", "Conceivable\n", "Powhow\n", "Paribus\n", "Blackstone\n", "Boxee\n", "Inmarsat\n", "Everyplay\n", "Unbabel\n", "FlashSoft\n", "ShopperTrak\n", "OneLouder\n", "YouLike\n", "Scrumpt\n", "Netatmo\n", "Caskers\n", "AdColony\n", "Fictiv\n", "Elance\n", "Mode\n", "Blip\n", "Devialet\n", "Photobucket\n", "ClipMine\n", "Glitter\n", "BagThat\n", "WinBeta\n", "CollabFinder\n", "eMarketer\n", "DoxOut\n", "GoodData\n", "Kara\n", "Kitchenbowl\n", "Sisense\n", "Rockpack\n", "Dynamics\n", "Gild\n", "MavenSay\n", "PlayerScale\n", "Posmetrics\n", "Trellie\n", "Thistle\n", "Cloze\n", "Baker\n", "Fandeavor\n", "Flipps\n", "TalentBin\n", "Unii\n", "InnoSpring\n", "Sensinode\n", "Pixate\n", "Emotient\n", "Postcard\n", "Movebubble\n", "edocr\n", "Contextly\n", "Everloop\n", "Skriware\n", "GoldieBlox\n", "DLD\n", "Bob\n", "PETA\n", "Perion\n", "WeHostels\n", "Zopa\n", "Spraffl\n", "Thurst\n", "SlideMail\n", "Skycatch\n", "ParStream\n", "Chirpify\n", "Futurelytics\n", "Tattoodo\n", "Bitdeli\n", "Bluebox\n", "Mapillary\n", "Ironclad\n", "Synergyse\n", "Airwallex\n", "Jirafe\n", "Errplane\n", "Flypad\n", "MartJack\n", "Thorn\n", "XYZE\n", "Tastebuds\n", "TVSmiles\n", "FoundationDB\n", "HealthKit\n", "Zeo\n", "Trifacta\n", "TreSensa\n", "Emergence\n", "Mercari\n", "Tropo\n", "CrowdTwist\n", "Houston\n", "Hughes\n", "MobileDevHQ\n", "MyState\n", "Bloomberg\n", "Deliveroo\n", "Runtastic\n", "Moven\n", "Loopcam\n", "Xola\n", "cisimple\n", "Fanplayr\n", "Pearson\n", "AutoLotto\n", "Zoomdata\n", "Workshare\n", "Muzy\n", "NSI\n", "Imagine\n", "Bullhorn\n", "Hickies\n", "Zizoo\n", "Kogan\n", "Currents\n", "Opera\n", "Feedspot\n", "Vita\n", "Crusher\n", "Pharmly\n", "QuickPay\n", "YouEye\n", "Gousto\n", "Borro\n", "Aetna\n", "AfterShip\n", "UCWeb\n", "Nutanix\n", "BEUC\n", "Stanley\n", "Ozlo\n", "Johnson\n", "Grofers\n", "batteryPOP\n", "Valassis\n", "Clay\n", "KidZui\n", "Telefónica\n", "PostRocket\n", "SnapApp\n", "Pascal\n", "MicroEval\n", "Synacor\n", "Comptel\n", "LokLok\n", "PandaWhale\n", "Kickscout\n", "TestFlight\n", "Avaz\n", "Forbes\n", "Follow\n", "HappyFunCorp\n", "Shipwire\n", "ArtCorgi\n", "WellPath\n", "AppGlu\n", "OpenDNS\n", "Mitro\n", "Architizer\n", "Upverter\n", "EdSurge\n", "AliveCor\n", "SeatID\n", "Planspot\n", "Bugsnag\n", "Songkick\n", "Mindwork\n", "Mailgun\n", "NowThis\n", "Appthority\n", "Caspida\n", "CommonBond\n", "RocketClub\n", "Garantia\n", "MOG\n", "Chosen\n", "Cloth\n", "Technorati\n", "Nuomi\n", "Sensel\n", "Gig\n", "Fender\n", "AroundMe\n", "EatStreet\n", "Picattoo\n", "Lully\n", "Gigstart\n", "Print+io\n", "Citi\n", "Spritz\n", "Swill\n", "Wax\n", "Stonesoft\n", "Insightpool\n", "Doublie\n", "Swapbox\n", "GlassUp\n", "InVision\n", "HouseFix\n", "OmniVirt\n", "Geofeedia\n", "Lobster\n", "Camarilla\n", "Natasha\n", "Ushi\n", "Parrot\n", "Safaricom\n", "Blipfoto\n", "SeedCloud\n", "ConsenSys\n", "Lipman\n", "CourseSmart\n", "Itseez\n", "Thismoment\n", "Eaze\n", "SIM\n", "Pushbullet\n", "Anniversary\n", "Telerik\n", "Engagio\n", "Kobo\n", "Antuit\n", "Pluralis\n", "Flomio\n", "Monese\n", "Birdback\n", "Dynatrace\n", "Interview\n", "Taco\n", "Cody\n", "Fantuition\n", "Stamper\n", "Openera\n", "GameFly\n", "SkyBell\n", "Trendrr\n", "GumGum\n", "Vert\n", "Shaka\n", "Gobi\n", "Crate\n", "Meograph\n", "LeWeb\n", "PhoneFactor\n", "Planted\n", "Banters\n", "Metaresolver\n", "Jobr\n", "Loveflutter\n", "Stevie\n", "DroneDeploy\n", "Mix\n", "Fish\n", "Beacons\n", "Iconic\n", "Interviewed\n", "UberMedia\n", "Flyfit\n", "FeeX\n", "PetHub\n", "Burton\n", "Druva\n", "Campalyst\n", "Ancera\n", "Diary+com\n", "CallWave\n", "Zeekit\n", "Bloomspot\n", "Floored\n", "Carbyn\n", "CGI\n", "Zhenai\n", "Ling\n", "Mail\n", "DataGravity\n", "Puzzle\n", "YouNoodle\n", "AppGyver\n", "Tinkergarten\n", "Hike\n", "Globevestor\n", "KDDI\n", "Livestream\n", "Gruveo\n", "Knozen\n", "Zappli\n", "Prompt+ly\n", "ThousandEyes\n", "Kinnek\n", "CloudEndure\n", "Hyperink\n", "Lybrate\n", "Brighter\n", "Clipboard\n", "PTT\n", "Base79\n", "Humble\n", "Ziptask\n", "ProBoards\n", "WeMesh\n", "Seelio\n", "GymGroups\n", "PureVPN\n", "WeLab\n", "Jitterbit\n", "Piqora\n", "Memorado\n", "Spendesk\n", "Acorns\n", "GroundLink\n", "Radian\n", "Zuora\n", "ASUS\n", "Mhelpdesk\n", "Kazaana\n", "Poshmark\n", "SFR\n", "Tor\n", "Nova\n", "Alpine\n", "Gunosy\n", "Lookout\n", "Cable\n", "DataRank\n", "Vevo\n", "Parklet\n", "Quixey\n", "LeanMarket\n", "Priest\n", "Pathwright\n", "Whitetruffle\n", "Tipbit\n", "Gozaik\n", "Globant\n", "StudyRoom\n", "DelFly\n", "Revolution\n", "PayNearMe\n", "Voxel\n", "Looklist\n", "Celonis\n", "MSNBC\n", "Lore\n", "Percentil\n", "Awesome\n", "Razorpay\n", "Tigerlabs\n", "WhipTail\n", "FastPay\n", "BetterCloud\n", "NomadCast\n", "Industry\n", "Stringr\n", "Almond\n", "Sonian\n", "Boostcase\n", "HoneyBook\n", "BFF\n", "Stichy\n", "Cyan\n", "Leftronic\n", "Beepi\n", "Bizdom\n", "Musical+ly\n", "Rixty\n", "Socar\n", "Schuler\n", "Flyby\n", "ESPN\n", "Quarterly\n", "CSG\n", "Burpple\n", "NextVR\n", "Shopwave\n", "Corgi\n", "Control\n", "GIFs\n", "Mingle\n", "Spotbros\n", "Zilingo\n", "Keurig\n", "PrepWork\n", "Vimeo\n", "ARM\n", "Sincerely\n", "Jeffrey\n", "Axtria\n", "Healint\n", "Bizzabo\n", "Airobotics\n", "Eventioz\n", "Playmatics\n", "Madvertise\n", "PivotDesk\n", "Tagboard\n", "Freeview\n", "Fin\n", "Milk\n", "Promote\n", "CGTrader\n", "Soundtracker\n", "Puppet\n", "InMotion\n", "Splash+FM\n", "Moxtra\n", "Well\n", "Jordan\n", "ArmorText\n", "InvisibleHand\n", "Module\n", "GitHub\n", "Zuoyebang\n", "MasterCard\n", "PrePay\n", "PlaceIQ\n", "Duracell\n", "NeonMob\n", "Blockai\n", "Aviary\n", "Nintendo\n", "Everyday+me\n", "Line\n", "Quartzy\n", "Metaio\n", "Combinator\n", "Pingpad\n", "Tilt\n", "KFit\n", "Cuff\n", "Spawnsong\n", "Zeetings\n", "Glide\n", "Baltimore\n", "PrestaShop\n", "Air\n", "CarHero\n", "Videopixie\n", "AdSemble\n", "Krossover\n", "Pavlok\n", "Ableton\n", "Dekko\n", "Legimi\n", "OpenX\n", "Youmiam\n", "Loudie\n", "Credo\n", "A\n", "GigLocator\n", "PageCloud\n", "Servy\n", "Vodafone\n", "ShoCard\n", "PicnicHealth\n", "Tripshare\n", "Capography\n", "M-Files\n", "Escrow+com\n", "SurfEasy\n", "Kentik\n", "SQFT\n", "ThankView\n", "BigDoor\n", "Sitedrop\n", "Reebonz\n", "Porsche\n", "Thirdshelf\n", "Grokr\n", "Procera\n", "Kitchenbug\n", "HitBliss\n", "Reverb+com\n", "SimpleCitizen\n", "WonderLuk\n", "Shine\n", "RocketFrog\n", "Accellion\n", "Ustream\n", "Paperspace\n", "Agrilyst\n", "Pintrips\n", "CollabNet\n", "Disqus\n", "Amiigo\n", "Laugh+ly\n", "Gotham\n", "Canviz\n", "Calm\n", "Monkey\n", "Tudou\n", "Chef\n", "FileMaker\n", "Protag\n", "Blocks\n", "Mangrove\n", "Ask+com\n", "Greenwood\n", "Ellis\n", "FitBark\n", "Beeswax\n", "Bromium\n", "Yemeksepeti\n", "TouchCast\n", "HouseTrip\n", "b8ta\n", "SNCF\n", "Windy\n", "Class\n", "Manilla\n", "Tinychat\n", "Cards\n", "Bathys\n", "Call9\n", "Toptal\n", "Behance\n", "Shoppable\n", "Celmatix\n", "ARCEP\n", "Snapguide\n", "FreeWavz\n", "SoundFocus\n", "Ebyline\n", "Motorola\n", "Sharethrough\n", "Destiny\n", "Yesware\n", "Carvoyant\n", "SlideRocket\n", "Tapglue\n", "JoyTunes\n", "Koudai\n", "Mustbin\n", "Betterment\n", "AppLabs\n", "VoloMetrix\n", "Fulcrum\n", "Anaplan\n", "Beamery\n", "Stipple\n", "SE\n", "TAG\n", "Mikme\n", "Setster\n", "Satechi\n", "Telogis\n", "AppFormix\n", "Tamr\n", "Longaccess\n", "Mitch\n", "Canonical\n", "SevenFifty\n", "Chicago\n", "EvntLive\n", "Apester\n", "Sonalight\n", "Playtox\n", "FiscalNote\n", "Startupbootcamp\n", "TrueStart\n", "Meritful\n", "Silp\n", "Print\n", "Nagios\n", "Auto+ru\n", "Nosh\n", "Shpock\n", "Creatrs\n", "Drivy\n", "Scribit\n", "Cloudyn\n", "Fleksy\n", "ISKN\n", "Studypool\n", "LookSee\n", "Bellabox\n", "Triposo\n", "CBS\n", "TrendSpottr\n", "Ohlala\n", "Viewbix\n", "StockTwits\n", "AppLift\n", "Lionside\n", "Kidizen\n", "Ometria\n", "Confide\n", "KitchMe\n", "Ribbon\n", "About\n", "Fuzmo\n", "OnSwipe\n", "USM\n", "Black\n", "Funzio\n", "Bulletin\n", "Kay\n", "Marketplace\n", "Hotlist\n", "Teleborder\n", "Cone\n", "Sosh\n", "Greenhouse\n", "Toronto\n", "Vanitee\n", "Costello\n", "Taskworld\n", "Yozio\n", "Lumosity\n", "Visual\n", "Hometalk\n", "ShopLocket\n", "Ctrip\n", "Acompli\n", "Moff\n", "Olapic\n", "Akimbo\n", "AnyRoad\n", "Daric\n", "Amiato\n", "Trunkt\n", "Jukedeck\n", "Cizoo\n", "HashiCorp\n", "Kander\n", "Paintzen\n", "DG\n", "Tonight\n", "iRobot\n", "OYO\n", "Zite\n", "Nestio\n", "Dingo\n", "Parcel\n", "Pathmapp\n", "Klarismo\n", "Simplilearn\n", "Memo\n", "PipelineDB\n", "Grouper\n", "Tanner\n", "Typeform\n", "LEGO\n", "BikeTag\n", "WiMP\n", "waves\n", "HGST\n", "LivingSocial\n", "Melodigram\n", "Rockbot\n", "SolarCity\n", "Quattrocento\n", "Chipolo\n", "Percival\n", "EdReach\n", "Stocard\n", "DCM\n", "Snapdeal\n", "Homee\n", "Finale\n", "Worldpay\n", "Aislelabs\n", "Applicasa\n", "ViVu\n", "Stitcher\n", "TuneWiki\n", "BlockScore\n", "WireOver\n", "Capital\n", "Blurb\n", "Button\n", "Jake\n", "ProfitBricks\n", "EyeVerify\n", "about+me\n", "Voicegem\n", "Nuji\n", "Contactually\n", "Sqord\n", "Eliademy\n", "Predictive\n", "OneClass\n", "GetYourGuide\n", "HERE\n", "G5\n", "SimpleLegal\n", "Zinc\n", "Playdek\n", "Misen\n", "Fiksu\n", "TrakInvest\n", "GroupTalent\n", "Storyful\n", "Cruise+me\n", "Meesho\n", "People+\n", "OMsignal\n", "Pioneer\n", "Atlassian\n", "Hansoft\n", "Airpush\n", "WaHome\n", "DHL\n", "Urbanspoon\n", "Ask+fm\n", "thredUP\n", "Guesty\n", "Svyaznoy\n", "Onavo\n", "GV\n", "Stylight\n", "Techy\n", "Evite\n", "ShareGrid\n", "earthmine\n", "Printhug\n", "Foodini\n", "Tote\n", "Carspring\n", "Elmo\n", "HireVue\n", "Blockspring\n", "Groupnotes\n", "Cybozu\n", "Lock8\n", "Buccaneer\n", "MobiCart\n", "Flatchat\n", "TapFame\n", "Wisembly\n", "SOASTA\n", "Byline\n", "Trackbuster\n", "Ariba\n", "Mocana\n", "Nexmo\n", "TechCrunch\n", "Talkz\n", "Please\n", "Libboo\n", "Boni\n", "Navmii\n", "Dedrone\n", "IAC\n", "Lyft\n", "PaeDae\n", "Yardsale\n", "Experts\n", "Udacity\n", "Tagged\n", "PonoMusic\n", "HDI\n", "Wikets\n", "Clarivoy\n", "Urbee\n", "Tippr\n", "Vkontakte\n", "LevelUp\n", "BookingBug\n", "Nordstrom\n", "Cube26\n", "Trulia\n", "Acer\n", "Jink\n", "Stir\n", "Washbox\n", "Compendium\n", "Soundsgood\n", "MakerBot\n", "Webrazzi\n", "Looksery\n", "EverTrue\n", "SkyPhrase\n", "Robocat\n", "Gem\n", "Sense360\n", "Wikia\n", "Marco\n", "Cloudera\n", "Arch\n", "Etsy\n", "Voxeet\n", "Stage\n", "Unison\n", "gamesGRABR\n", "Workbench\n", "Binocular\n", "Food\n", "FOBO\n", "Appcelerator\n", "Modern\n", "Batch\n", "Brightkite\n", "Trustpilot\n", "La-La\n", "Sculpt\n", "eBay\n", "BodeTree\n", "Soulmix\n", "Immersit\n", "Boatbound\n", "Collections\n", "Remitly\n", "Moo+do\n", "PureWrist\n", "Kroll\n", "Streamweaver\n", "Invoice2go\n", "SnapKeys\n", "Tile\n", "MeARKET\n", "Wheretoget\n", "Codementor\n", "Venmo\n", "Virtru\n", "Votizen\n", "Influenster\n", "Jusp\n", "Filabot\n", "Engodo\n", "Yondr\n", "Klash\n", "Fusion-io\n", "Motilo\n", "PernixData\n", "Verious\n", "AlchemyAPI\n", "Heyzap\n", "Findster\n", "WellBiome\n", "PasswordBox\n", "Xpire\n", "Crowdpark\n", "Plex\n", "gdgt\n", "Parliament\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "RTI\n", "Xiaomi\n", "TuneIn\n", "Olson\n", "XPRIZE\n", "Donut\n", "HelloSoda\n", "Pattern\n", "Foundation\n", "TappingStone\n", "Stamped\n", "Tout\n", "Floret\n", "UpTo\n", "JVP\n", "IPG\n", "Storybricks\n", "Guvera\n", "EVA\n", "Okta\n", "TradeGecko\n", "Telstra\n", "Farfetch\n", "Zello\n", "Instavest\n", "Lion\n", "QR\n", "Wantful\n", "Spoolee\n", "Lolapps\n", "ExoClick\n", "Curatum\n", "Workato\n", "Tectonic\n", "XSEDE\n", "LeFeed\n", "VHX\n", "SnapKnot\n", "indoo+rs\n", "PMA\n", "Picks\n", "AppsBuilder\n", "CrestaTech\n", "Cloudant\n", "Indie\n", "Decorist\n", "TSMC\n", "Pickie\n", "PARC\n", "Shuddle\n", "Immediately\n", "Upworthy\n", "Likelii\n", "LeKiosk\n", "Autodesk\n", "Sportradar\n", "Gradberry\n", "Seesmic\n", "Soompi\n", "GazeHawk\n", "Boxever\n", "Sprightly\n", "Recombine\n", "Yeti\n", "Kryptnostic\n", "Tictail\n", "Seesaw\n", "Issue\n", "Vungle\n", "Nickelodeon\n", "Zumper\n", "Nearby\n", "Made\n", "GroupSpaces\n", "Roomorama\n", "Woozworld\n", "VitaPortal\n", "WearToday\n", "Batterii\n", "FarEye\n", "FindIt\n", "Jolicloud\n", "SIMI\n", "vrAse\n", "NodeFly\n", "Baarzo\n", "Soli\n", "Remus\n", "Minted\n", "Velostrata\n", "Bud\n", "TrackR\n", "Guild\n", "Dyson\n", "PCI\n", "Stypi\n", "Request\n", "PadMapper\n", "Online\n", "StudyBlue\n", "Canal+\n", "Terminal\n", "SocialChorus\n", "Pressly\n", "Promoboxx\n", "Glassdoor\n", "Scosche\n", "Aarki\n", "StartupHighway\n", "Gaana\n", "Bellabeat\n", "Symantec\n", "Trustev\n", "Caterspot\n", "Gobble\n", "Modi\n", "Treasure\n", "Adly\n", "Tapdaq\n", "LEAGUE\n", "M+dot\n", "CentOS\n", "Noodle\n", "NetSuite\n", "Threes\n", "Skimbox\n", "Action\n", "Coinsetter\n", "Zen99\n", "zVentures\n", "Konami\n", "Sidestage\n", "Socrative\n", "Qriously\n", "Peapod\n", "Bishop\n", "Hipcamp\n", "Mink\n", "Ubo\n", "Montblanc\n", "Digimarc\n", "TaskRabbit\n", "Type\n", "Crowd\n", "wydr\n", "HackerEarth\n", "Demandware\n", "CarTrade\n", "ViSalus\n", "Coursmos\n", "Mobage\n", "Fingo\n", "Mendeley\n", "Neumob\n", "Hollar\n", "GemShare\n", "Clinton\n", "Attachments+me\n", "Dandy\n", "AdVine\n", "Galaxia\n", "IndieGameStand\n", "Vitacost\n", "Printful\n", "Neptune\n", "LegalZoom\n", "Madefire\n", "Kiva\n", "Playbasis\n", "Forrst\n", "R\\GA\n", "Swytch\n", "Depop\n", "Harman\n", "BlaBlaCar\n", "Scandy\n", "LS9\n", "ThingLink\n", "Everplaces\n", "Picfair\n", "Flag\n", "Adform\n", "Outdoorsy\n", "Xfers\n", "VMFive\n", "Confluence\n", "Jaguar\n", "Bernstein\n", "Liberty\n", "Caltrain\n", "BET\n", "Dropost+it\n", "Joint\n", "Fabrily\n", "ZenDeals\n", "Malwarebytes\n", "Kahuna\n", "Spindle\n", "Desti\n", "InsideSales+com\n", "Gigster\n", "Supple\n", "WalkMe\n", "Will\n", "Goodsie\n", "Consumr\n", "Draper\n", "Avado\n", "Alexa\n", "Viking\n", "Hexadite\n", "Oolu\n", "Pinweel\n", "AppThwack\n", "Mindjet\n", "CrowdOptic\n", "PageLever\n", "GO1\n", "Jobbatical\n", "Ringya\n", "Schools\n", "Rhinobird\n", "FriendFeed\n", "StickNFind\n", "KinoPoisk\n", "BarEye\n", "Elf\n", "Powerset\n", "Savioke\n", "Teabox\n", "Jean\n", "Ubimo\n", "Nowait\n", "Ocean\n", "Aspire\n", "Media+net\n", "SparkReel\n", "Storylane\n", "Hadoop\n", "Pinterest\n", "KiteDesk\n", "Peoplefluent\n", "Randstad\n", "Netskope\n", "MoWeather\n", "Monetate\n", "Summly\n", "IFTTT\n", "OpenStack\n", "Coach\n", "Bosch\n", "GMV\n", "EveryLodge\n", "Structure\n", "Aviso\n", "Verbling\n", "moosify\n", "WebGL\n", "CapLinked\n", "Mashape\n", "Noggin\n", "Near+in\n", "Waterstones\n", "Binge\n", "Sorted\n", "Turck\n", "Expensify\n", "Estimize\n", "Shapeways\n", "Commonred\n", "AirPooler\n", "Zirtual\n", "Humans\n", "Opuss\n", "Oscar\n", "Mobincube\n", "Beestar\n", "Linqapp\n", "Maxis\n", "Nets\n", "OneSky\n", "Feed+fm\n", "Automattic\n", "Siri\n", "BDC\n", "Gowalla\n", "Aperto\n", "Passport\n", "Zui\n", "Voter\n", "SumAll\n", "ShipHawk\n", "K1\n", "Betable\n", "Unified\n", "Meusu\n", "Taobao\n", "inspiration\n", "Sharewall\n", "Oculus\n", "Coinbase\n", "Softcover\n", "HelloWallet\n", "Neto\n", "Basket\n", "Snapcart\n", "Wifarer\n", "Whittl\n", "Appear\n", "tibbr\n", "Epson\n", "Opinsy\n", "Bullet\n", "Sold\n", "Slidebox\n", "Swap+com\n", "LendUp\n", "Ding\n", "Moss\n", "Tracy\n", "WayUp\n", "MarkaVIP\n", "Vinaya\n", "Ahalogy\n", "Woven\n", "Tinybop\n", "SwiftKey\n", "Instabridge\n", "Forgacs\n", "Hagen\n", "Avenue\n", "CareMessage\n", "BlockCorp\n", "Docphin\n", "M+Gemi\n", "Stone\n", "Linio\n", "Kymeta\n", "Hubub\n", "Solvate\n", "Presence\n", "Academia\n", "Roadster\n", "Integral\n", "StrikeAd\n", "hi5\n", "Station\n", "Scribd\n", "N26\n", "XEED\n", "Clearbit\n", "Frontier\n", "Dogecoin\n", "Wandera\n", "Playdom\n", "Branson\n", "Veenome\n", "Voddler\n", "Zula\n", "Twilio\n", "BenchPrep\n", "Larky\n", "DigitalGlobe\n", "Reissued\n", "Localmind\n", "Next\n", "MyTime\n", "EquipmentShare\n", "Vastrm\n", "Adafruit\n", "Streem\n", "Visualead\n", "Eden\n", "Hua\n", "Confluent\n", "Steinberg\n", "BumeBox\n", "Experfy\n", "FanBridge\n", "Wavecell\n", "Deliverd\n", "Byliner\n", "Movinga\n", "Mesosphere\n", "Bazaarvoice\n", "Schiller\n", "Ifinity\n", "StackPath\n", "Deeper\n", "Estify\n", "Gant\n", "Commerce\n", "Bitcellar\n", "Rickshaw\n", "Loewe\n", "Sevenhugs\n", "Virtusize\n", "SocialPandas\n", "Prefundia\n", "Peer39\n", "Mouthee\n", "Mission\n", "Cubic\n", "Ronin\n", "Appixia\n", "Connector\n", "WhatsApp\n", "Pack\n", "Growth\n", "Quizlet\n", "ManageIQ\n", "Backplane\n", "Pickingo\n", "Curacity\n", "Bankjoy\n", "Ador\n", "OrderAhead\n", "GlobeIn\n", "Meituan-Dianping\n", "Saavn\n", "GoCardless\n", "Kazam\n", "Shopmium\n", "DPS\n", "Unmetric\n", "StubHub\n", "GoDaddy\n", "RingCentral\n", "Kamcord\n", "Xfire\n", "Narvar\n", "Xi3\n", "Qik\n", "HealthKeep\n", "Parchment\n", "AlterGeo\n", "Gumroad\n", "Shaker\n", "Foodily\n", "Stamplay\n", "Venture\n", "iFit\n", "Eatigo\n", "Fileboard\n", "MoveInsure\n", "Fancy\n", "Sonatype\n", "Airtime\n", "Owlin\n", "Branch8\n", "Palace\n", "WebOS\n", "Prior\n", "Frichti\n", "AddToAny\n", "RealScout\n", "Zoomingo\n", "Staffjoy\n", "Anturis\n", "OTTO\n", "Callblock\n", "Somo\n", "Peel\n", "Nestor\n", "Zayo\n", "Microsoft\n", "Oodle\n", "Bindo\n", "GetApp\n", "Teleca\n", "Blogmutt\n", "Viacom\n", "Field\n", "numberFire\n", "Pearltrees\n", "Insync\n", "CAPS\n", "Capitan\n", "Avaya\n", "Thomvest\n", "UpDesk\n", "Mobento\n", "AMADAS\n", "Roombeats\n", "Mueller\n", "Gimmie\n", "Fosbury\n", "Ping+it\n", "Stamp+it\n", "ScienceLogic\n", "Infosys\n", "CallApp\n", "Ubuntu\n", "Kabbage\n", "HealthSouk\n", "Ride\n", "Civic\n", "Macmillan\n", "KeyMe\n", "Effektif\n", "MyNextRun\n", "Marriott\n", "Coraid\n", "CANDDi\n", "Doblet\n", "Weotta\n", "Seatwave\n", "Delta\n", "Tag\n", "GoPollGo\n", "Ellevest\n", "LOLA\n", "FounderDating\n", "Hopster\n", "AppDynamics\n", "Mashery\n", "Spool\n", "Jawbone\n", "TextTeaser\n", "GlassesGroupGlobal\n", "Hopper\n", "Z4\n", "Venio\n", "iControl\n", "Femsplain\n", "Brit\n", "Mavrck\n", "DoubleClick\n", "Meebo\n", "JolieBox\n", "Lindsay\n", "TTS\n", "Healthrageous\n", "Eumakh\n", "Glooko\n", "Sparks\n", "Mashburn\n", "Producteev\n", "Playfish\n", "Synthesio\n", "Labster\n", "Metadata\n", "Shoptiques\n", "Kraft\n", "SeedInvest\n", "GrabCAD\n", "Appier\n", "Tingbot\n", "SiteTagger\n", "Plus\n", "Levebee\n", "Locationary\n", "IDNow\n", "Fingerprint\n", "OUYA\n", "Timehop\n", "Groupon\n", "TodayTix\n", "Save\n", "Apprenda\n", "Narrative\n", "Prezi\n", "Pagevamp\n", "Peakon\n", "cPulse\n", "Hybrid\n", "Monica+Andy\n", "YPlan\n", "Handpick\n", "Jelastic\n", "Adioso\n", "ROOBO\n", "Paydiant\n", "Neptune+io\n", "Treatwell\n", "Kochava\n", "Bidgely\n", "Gymdeck\n", "Pi\n", "OrangeScape\n", "PHP\n", "Movidius\n", "Yarly\n", "Onyara\n", "Stardoll\n", "Vostu\n", "CloudSolar\n", "Hellofood\n", "BuzzMyVideos\n", "Dailymotion\n", "Tame\n", "Bottlenose\n", "PiCloud\n", "Coupons+com\n", "Chargifi\n", "StoreDot\n", "Wurldtech\n", "Voz+io\n", "Cybereason\n", "Mapbox\n", "Backblaze\n", "FameBit\n", "Sawyer\n", "CloudLock\n", "Vroom\n", "STABiLGO\n", "Buttercoin\n", "Sebastian\n", "VideoAmp\n", "Lara\n", "Synology\n", "Snowball\n", "Sherpaa\n", "Parlio\n", "Nike\n", "Cymmetria\n", "Pinshape\n", "Watchup\n", "Chalkfly\n", "Neat\n", "iBeat\n", "MOVE\n", "Skim\n", "Homesnap\n", "Synaptics\n", "Margo\n", "Dreem\n", "Gluster\n", "Allre\n", "Crater\n", "Swiftype\n", "Trade\n", "Fitbay\n", "Favado\n", "Salorix\n", "Voltus\n", "State\n", "Finish\n", "Compilr\n", "Sharecare\n", "One\n", "Wowo\n", "Encap\n", "Zeel\n", "MTailor\n", "Vertical\n", "Hublo\n", "Trainline\n", "Duarte\n", "FamilyLeaf\n", "GoSquared\n", "DropTask\n", "Looker\n", "Roambi\n", "Agorize\n", "Ostrich\n", "YouMagine\n", "SPSS\n", "Surge\n", "Descomplica\n", "Vue\n", "SugarCRM\n", "Sailthru\n", "SanDisk\n", "F-Secure\n", "Shadow\n", "Spartoo\n", "Watchville\n", "Francis\n", "Tonara\n", "VideoSlam\n", "isocket\n", "Craigslist\n", "Cleanly\n", "Dache\n", "SimpleReach\n", "Lumoid\n", "Scopely\n", "Wattpad\n", "FounderFuel\n", "Endgame\n", "Barley\n", "Oink\n", "Axonix\n", "Yo\n", "Henderson\n", "Hat\n", "SMS\n", "Want\n", "Mixer\n", "Clementine\n", "MindMeld\n", "Apperian\n", "Price\n", "Paidpiper\n", "WePay\n", "NapTime\n", "Aardvark\n", "Gidsy\n", "Flybrix\n", "CREO\n", "Gliimpse\n", "PlateJoy\n", "Impending\n", "SessionM\n", "Tableau\n", "Samba\n", "Public\n", "Privalia\n", "Getonic\n", "Documentum\n", "Stickers\n", "Transifex\n", "Imagination\n", "Ansa\n", "Pley\n", "Barlow\n", "Quantifind\n", "AngelHack\n", "OneTwoTrip\n", "Shapr\n", "letgo\n", "Sonos\n", "ShortForm\n", "AuraVisor\n", "Elepath\n", "TripleMint\n", "hoppr\n", "Beanstock\n", "Desk+com\n", "Outernet\n", "Woojer\n", "zero\n", "Trusteer\n", "Casabu\n", "Smava\n", "Gemnote\n", "Dude\n", "Roomlia\n", "LoveThis\n", "Indiegogo\n", "Markerly\n", "startup\n", "Codex\n", "Protect\n", "Mailbird\n", "Pintics\n", "Valkee\n", "CumuLogic\n", "Appsecute\n", "Lakestar\n", "vox+io\n", "TrueVault\n", "InstaEDU\n", "PowerInbox\n", "SteelSeries\n", "Trim\n", "Fiberead\n", "FanDuel\n", "Canon\n", "HelloTech\n", "Maderight\n", "Sina\n", "KYA\n", "Blast\n", "Bertelsmann\n", "R_GA\n", "Houdini\n", "DueCourse\n", "Boomi\n", "HotelQuickly\n", "Sensoria\n", "Mezi\n", "Seculert\n", "Silver\n", "Betterfly\n", "Shoobs\n", "Prizeo\n", "Larsen\n", "OpenBrand\n", "Publicize\n", "Tide\n", "Doodle+ly\n", "Transcriptic\n", "Coderwall\n", "Endaga\n", "CREXi\n", "Daydream\n", "Comcast\n", "Reserve\n", "Ringblingz\n", "MAZ\n", "Fox\n", "Plympton\n", "GoTenna\n", "TacoCopter\n" ] } ], "source": [ "save_all_companies(company_post_dict, \"./companies/\")" ] }, { "cell_type": "code", "execution_count": 320, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "42Floors\n", "A\n", "AAA\n", "Aardvark\n", "Aarki\n", "AB\n", "ABI\n", "Abine\n", "Ableton\n", "about+me\n", "About\n", "ABS\n", "Academe\n", "Academia\n", "Acano\n", "Accel-KKR\n", "Acceleprise\n", "Accelerator\n", "Accellion\n", "Accenture\n", "Accomable\n", "Accompany\n", "Accounts\n", "Aceable\n", "Acer\n", "Achievers\n", "Aclima\n", "aCommerce\n", "Acompli\n", "Acorns\n", "Acquia\n", "Acronis\n", "Actifio\n", "Actility\n", "Action\n", "ActivePath\n", "AcuityAds\n", "Acunote\n", "Adafruit\n", "Adaptive\n", "AdBlock\n", "adBrite\n", "Adcade\n", "AdColony\n", "Addr\n", "AddSearch\n", "AddThis\n", "AddToAny\n", "Addventure\n", "Addvocate\n", "Adelphic\n", "AdEspresso\n", "Adform\n", "Adictik\n", "Adidas\n", "Adioso\n", "Adly\n", "AdMob\n", "AdMobius\n", "Adnimation\n", "Ador\n", "AdQuantic\n", "AdRoll\n", "AdSemble\n", "AdsNative\n", "AdStack\n", "AdStage\n", "ADstruc\n", "ADTRAN\n", "Adventr\n", "AdVine\n", "Advise+me\n", "AdYapper\n", "Adyen\n", "Adzerk\n", "Adzuna\n", "Aereo\n", "Aerospace\n", "AetherPal\n", "Aetna\n", "Afero\n", "Affectiva\n", "Affinity\n", "Affirm\n", "Aframe\n", "Afrostream\n", "AfterCollege\n", "AfterShip\n", "Aggregift\n", "AgileZen\n", "Aging2+0\n", "AgLocal\n", "Agogo\n", "Agorize\n", "Agrilyst\n", "Ahalogy\n", "Ahead\n", "AHHHA\n", "Aidin\n", "AIM\n", "AIR\n", "Airbnb\n", "Aircall\n", "AirConsole\n", "AirHelp\n", "Airlike\n", "AirMap\n", "Airobotics\n", "AirPair\n", "Airpaper\n", "AirPooler\n", "AirPR\n", "Airpush\n", "Airtame\n", "Airtime\n", "Airwallex\n", "Airware\n", "AirWatch\n", "Airy\n", "Aislelabs\n", "Akeneo\n", "Akimbo\n", "AKQA\n", "Aktana\n", "Alaris\n", "Alcatel-Lucent\n", "Alchemy\n", "AlchemyAPI\n", "Aldridge\n", "Aleph\n", "Alert+Us\n", "AlertMe\n", "Alerts\n", "Alexa\n", "Alfred\n", "Alfresco\n", "Algolia\n", "AlgoTrim\n", "Ali\n", "Alibaba\n", "Alicanto\n", "AlienVault\n", "Alignable\n", "Alive\n", "AliveCor\n", "Alley\n", "Alleyoop\n", "AllPeers\n", "Allre\n", "Allset\n", "Allure\n", "Almond\n", "ALOHA\n", "Alphabet\n", "Alpine\n", "AltaVista\n", "AlterGeo\n", "Altiscale\n", "Alto\n", "AltspaceVR\n", "AlumniFunder\n", "AMA\n", "AMADAS\n", "Amadeus\n", "Amazon\n", "AmazonFresh\n", "Ambassador\n", "Ambition\n", "AmbyGear\n", "AMD\n", "Amen\n", "Ameyo\n", "Amiad\n", "Amiato\n", "Amiga\n", "Amiigo\n", "Amino\n", "Amobee\n", "Amplfy\n", "Ampush\n", "AMRA\n", "Amulyte\n", "Anagog\n", "Analogue\n", "Anaplan\n", "Ancera\n", "AnchorFree\n", "Android\n", "Andy\n", "Angel+ai\n", "AngelHack\n", "AngelList\n", "AngelPad\n", "AngelScholars\n", "Angle\n", "Anglr\n", "Animoto\n", "Anker\n", "AnkerBox\n", "Anki\n", "Anniversary\n", "Ansa\n", "Anthony\n", "Antidate\n", "Antonio\n", "Antuit\n", "Anturis\n", "AnyPresence\n", "AnyRoad\n", "Anywhere\n", "AOL\n", "Aoliday\n", "Aorato\n", "Aperto\n", "Apester\n", "Apica\n", "Apigee\n", "Apigy\n", "Apkudo\n", "App+io\n", "App+net\n", "APP\n", "AppAdvice\n", "AppArchitect\n", "Appboy\n", "AppCampus\n", "Appcelerator\n", "AppCertain\n", "Appcore\n", "AppCrawlr\n", "Appcues\n", "AppDirect\n", "AppDynamics\n", "Appear\n", "Apperian\n", "AppFirst\n", "AppFog\n", "AppFormix\n", "Appfuel\n", "AppGlu\n", "AppGyver\n", "Apphance\n", "AppHarbor\n", "AppHero\n", "Appia\n", "Appier\n", "AppInTop\n", "Appirio\n", "Appistry\n", "Appiterate\n", "Appixia\n", "Appknox\n", "AppLabs\n", "Applause\n", "Applauze\n", "Apple\n", "Applicasa\n", "Applifier\n", "AppLift\n", "appLOUD\n", "AppLovin\n", "Appnique\n", "Apportable\n", "Appoxee\n", "Appreciate\n", "AppRedeem\n", "Apprenda\n", "AppsBuilder\n", "Appsecute\n", "Appsee\n", "AppSense\n", "Appsfire\n", "AppStack\n", "AppSumo\n", "AppSurfer\n", "Appthority\n", "AppThwack\n", "Apptimize\n", "Apptopia\n", "Appurify\n", "Appy\n", "Appysnap\n", "Apsalar\n", "AptDeco\n", "Aptonomy\n", "Apttus\n", "Aquto\n", "Arable\n", "ArabNet\n", "Arbor\n", "ARCEP\n", "Arch\n", "Archant\n", "Archer\n", "Archimedia\n", "Architizer\n", "Archive\n", "Archives+com\n", "Archos\n", "Arduino\n", "Argus\n", "Ariba\n", "ARM\n", "Armarium\n", "Armor\n", "ArmorText\n", "AroundMe\n", "Arro\n", "ArtCling\n", "ArtCorgi\n", "Article\n", "ARTIK\n", "Artiphon\n", "Asana\n", "Ascend\n", "Ascribe\n", "Ask+com\n", "Ask+fm\n", "ASML\n", "Aspire\n", "Asseta\n", "Assist\n", "Assistant\n", "Asteroid\n", "AsthmaMD\n", "Astrid\n", "ASUS\n", "AT\n", "Atari\n", "ATF\n", "Atheer\n", "Atlassian\n", "ATM\n", "Atmotube\n", "Atom\n", "Atomico\n", "Atomwise\n", "Atooma\n", "Attachments+me\n", "Attribution\n", "atVenu\n", "Audi\n", "Audible\n", "Audioair\n", "Audiodraft\n", "Audiogalaxy\n", "Audvisor\n", "Augmedix\n", "Auraslate\n", "AuraVisor\n", "Aurelius\n", "Auth0\n", "Authy\n", "Auto+ru\n", "AutoBot\n", "Autodesk\n", "AutoLotto\n", "Automatic\n", "Automattic\n", "Autos\n", "Auxmoney\n", "Avaamo\n", "Avado\n", "Avancar\n", "Avast\n", "Avaya\n", "Avaz\n", "Avegant\n", "Avenue\n", "AVG\n", "Aviary\n", "Aviate\n", "Avid\n", "Avira\n", "Avis\n", "Aviso\n", "Aviv\n", "Avon\n", "Avvo\n", "Awair\n", "Awesome\n", "Axiata\n", "Axonix\n", "Axtria\n", "Axway\n", "Ayannah\n", "Ayasdi\n", "Azalead\n", "Azendoo\n", "Azimo\n", "Azullo\n", "Azumio\n", "B4RM4N\n", "b8ta\n", "Baarzo\n", "Babbel\n", "Babblr\n", "Babu\n", "Baby+com+br\n", "Babyhuddle\n", "Babylon\n", "BAC\n", "Backblaze\n", "Backflip\n", "Backplane\n", "Backstage\n", "Backupify\n", "Badgeville\n", "Badoo\n", "BagThat\n", "Baidu\n", "Baker\n", "Balance\n", "Balanced\n", "Baltimore\n", "Bambuser\n", "Band\n", "Bandzoogle\n", "Bango\n", "Banjo\n", "Bankjoy\n", "Bankons\n", "Bannerman\n", "Banters\n", "Bantr\n", "barcode\n", "BarEye\n", "Bark\n", "BarkBox\n", "Barley\n", "Barlow\n", "Barobot\n", "Baron\n", "Base79\n", "Basket\n", "Batch\n", "Bathys\n", "Batterii\n", "batteryPOP\n", "Battlefield\n", "BaubleBar\n", "Bawte\n", "Baydin\n", "Bazaarvoice\n", "BBVA\n", "BDC\n", "BeachMint\n", "Beacons\n", "Beamery\n", "Beamr\n", "Beanstock\n", "Beast\n", "Beat\n", "BeatDeck\n", "BeauCoo\n", "Bebo\n", "Bebop\n", "Beddit\n", "Beepi\n", "Beepl\n", "Beestar\n", "Beeswax\n", "BeeTV\n", "Behance\n", "Behavox\n", "BeHere\n", "Beintoo\n", "Believe+in\n", "Bell\n", "Bellabeat\n", "Bellabox\n", "Belly\n", "BeLuvv\n", "BeMyEye\n", "Benchling\n", "Benchmark\n", "BenchPrep\n", "BentoBox\n", "BERG\n", "Bernstein\n", "Bertelsmann\n", "BestVendor\n", "BET\n", "BetaBait\n", "Betable\n", "BetaNoodle\n", "Betaworks\n", "Betfair\n", "BetterCloud\n", "BetterDoctor\n", "Betterfly\n", "BetterLesson\n", "Betterment\n", "BetterWorks\n", "Between\n", "BEUC\n", "BevSpot\n", "BeyondCore\n", "Bezar\n", "BFF\n", "Biba\n", "Bidgely\n", "Bidzy\n", "BigBasket\n", "Bigcolors\n", "BigDoor\n", "BigID\n", "Bigpoint\n", "BigStash\n", "BigTime\n", "BikeTag\n", "Bill+com\n", "Billboard\n", "BillGuard\n", "BillPay\n", "Bilna\n", "Bindo\n", "Binge\n", "Binksty\n", "Binocular\n", "Binpress\n", "biNu\n", "BioBeats\n", "BioBots\n", "BioDigital\n", "Biomeme\n", "Birch\n", "Birchbox\n", "Birdback\n", "Birst\n", "Bishop\n", "Bitbar\n", "Bitbucket\n", "Bitcasa\n", "Bitcellar\n", "Bitcovery\n", "Bitdefender\n", "Bitdeli\n", "BiteHunter\n", "BitGo\n", "Bitly\n", "BitPay\n", "Bitsbox\n", "Bitstamp\n", "Bitstrips\n", "BitTorrent\n", "BitWall\n", "Bizdaq\n", "Bizdom\n", "Bizible\n", "Bizo\n", "BizSlate\n", "Bizzabo\n", "Bkstg\n", "Blab\n", "BlaBlaCar\n", "Black\n", "BlackBerry\n", "Blackboard\n", "BlackJet\n", "Blackphone\n", "Blackstone\n", "Blanc\n", "Blast\n", "Blavity\n", "BlazingDB\n", "Blek\n", "Blekko\n", "Blendle\n", "Blendr\n", "BlindType\n", "blinkbox\n", "Blinkist\n", "BlinkMail\n", "Blip\n", "Blipfoto\n", "Blippar\n", "Blippy\n", "Blispay\n", "Blloon\n", "Bloc\n", "Block\n", "Blockai\n", "BlockAvenue\n", "BlockBeacon\n", "Blockchain\n", "BlockCorp\n", "Blockfeed\n", "Blocks\n", "BlockScore\n", "Blockspring\n", "BlockTrail\n", "Blogger\n", "Bloglovin\n", "Blogmutt\n", "Blooie\n", "Bloom+fm\n", "Bloomberg\n", "Bloomfire\n", "BloomNation\n", "BloomReach\n", "Bloomspot\n", "BloomThat\n", "Bloop\n", "Blottr\n", "Blue\n", "Bluebox\n", "BlueCrew\n", "Bluefin\n", "BlueKite\n", "Blueprint\n", "Bluesmart\n", "BlueStacks\n", "BlueStripe\n", "BlueTalon\n", "BlueVia\n", "Blup\n", "Blurb\n", "Blurtt\n", "BMW\n", "Board\n", "Boatbound\n", "Bob\n", "Boden\n", "BodeTree\n", "Bond\n", "Bondsy\n", "Boni\n", "BonitaSoft\n", "Bonobos\n", "Bookboard\n", "BookDoc\n", "Booker\n", "Bookindy\n", "Booking+com\n", "BookingBug\n", "Bookmate\n", "Booktrack\n", "Booktrope\n", "Boombotix\n", "Boombox\n", "Boomi\n", "Boompi\n", "Boop\n", "Booshaka\n", "Boostable\n", "Boostcase\n", "Booyah\n", "Borro\n", "Bosch\n", "Bose\n", "Boston\n", "Boticca\n", "Botify\n", "Bottlenose\n", "Boundary\n", "Bounty\n", "Boutine\n", "Bowflex\n", "Bownty\n", "Box\n", "Boxcar\n", "Boxee\n", "Boxer\n", "Boxever\n", "Boxful\n", "Bpifrance\n", "BPM\n", "Brainient\n", "Brainly\n", "Braintree\n", "Branch8\n", "BranchOut\n", "Brand\n", "BrandAds\n", "Brandcast\n", "BrandMyMail\n", "BrandProject\n", "Brandwatch\n", "BrandYourself\n", "Branson\n", "Brave\n", "Brayola\n", "Breadcrumb\n", "Breakout\n", "Breakthrough\n", "Breather\n", "Breathometer\n", "Breezeworks\n", "Breitling\n", "BrewDrop\n", "Brewster\n", "Brickstream\n", "BridgeU\n", "Bright+com\n", "BrightBytes\n", "BrightContext\n", "Brightcove\n", "BrightEdge\n", "Brighter\n", "BrightFunnel\n", "Brightkite\n", "Brightpearl\n", "BrightPoint\n", "BrightRoll\n", "BRIKA\n", "Brillen+de\n", "Bringg\n", "Brit\n", "Broadcast\n", "Broadcom\n", "BroadMap\n", "Bromium\n", "Browning\n", "Bsecure\n", "BTC\n", "Bubble\n", "Bubbli\n", "Bubbly\n", "Buccaneer\n", "Bucket\n", "BucketListly\n", "Bud\n", "Buddytruk\n", "Buffalo\n", "Buffer\n", "BufferBox\n", "BugBuster\n", "Bugcrowd\n", "BugSense\n", "Bugsnag\n", "BuildDirect\n", "BuildZoom\n", "BuiltWith\n", "Bullet\n", "Bulletin\n", "Bullhorn\n", "Bumble\n", "BumeBox\n", "Bump\n", "Bunkr\n", "Buongiorno\n", "Burberry\n", "Burn\n", "Burpple\n", "Burstly\n", "Burton\n", "BustedTees\n", "Buster\n", "busuu\n", "Buttercoin\n", "Button\n", "Buyhandpicked\n", "Buyou\n", "BuySellAds\n", "BuyWithMe\n", "Buzzcar\n", "BuzzFeed\n", "BuzzMyVideos\n", "BuzzTale\n", "Buzztime\n", "BVP\n", "Byline\n", "BYLINED\n", "Byliner\n", "Bync\n", "Cabify\n", "Cable\n", "CAC\n", "Cakey\n", "Cal\n", "Calendo\n", "Call9\n", "CallApp\n", "Callblock\n", "CallWave\n", "Calm\n", "Caltrain\n", "Calxeda\n", "Camarilla\n", "Cameo\n", "Camera+\n", "Camera360\n", "Cameron\n", "Campalyst\n", "Campless\n", "Camu\n", "Canal+\n", "Canalys\n", "CANDDi\n", "Canon\n", "Canonical\n", "Canva\n", "CanvasPop\n", "Canviz\n", "Canvsly\n", "Capital\n", "Capitan\n", "CapLinked\n", "Capography\n", "Capptain\n", "CapRally\n", "CAPS\n", "Captain401\n", "Captora\n", "Carbyn\n", "CardBlanc\n", "Cardify\n", "CardMunch\n", "Cards\n", "CardSpring\n", "Cardwheel\n", "Care+com\n", "Care24\n", "CareerFoundry\n", "Careerify\n", "CareLedger\n", "CareMessage\n", "CareSkore\n", "CareZapp\n", "CareZone\n", "CargoX\n", "CarHero\n", "Carmudi\n", "Carnegie\n", "Carousel\n", "Carousell\n", "Carpenter\n", "carpooling+com\n", "Carriage\n", "Carro\n", "Carsome\n", "Carspring\n", "Carte\n", "CarTrade\n", "Carvana\n", "Carvoyant\n", "Carwow\n", "Casabu\n", "Case\n", "CashCashPinoy\n", "CashStar\n", "Casio\n", "Caskers\n", "Casper\n", "Caspida\n", "Cassandra\n", "Catawiki\n", "Catbird\n", "Catch+com\n", "Catch\n", "Catchbox\n", "Catcher\n", "CatchFree\n", "CatchThatBus\n", "Cater2+me\n", "Caterspot\n", "CatFi\n", "CauseRocket\n", "Causes\n", "Caviar\n", "Cazena\n", "CBC\n", "CBS\n", "Cedexis\n", "CEE\n", "Celery\n", "Cellrox\n", "CellSavers\n", "CellScope\n", "Celly\n", "Celmatix\n", "Celonis\n", "CEM\n", "Cemmerce\n", "CentOS\n", "Central\n", "CenturyLink\n", "Cenzic\n", "Certiport\n", "CertiVox\n", "CGI\n", "CGTrader\n", "Chaatz\n", "ChaCha\n", "Chalkable\n", "Chalkfly\n", "Challenges\n", "Chance\n", "Change+org\n", "Chango\n", "Chapman\n", "Chargifi\n", "Chartbeat\n", "Chartboost\n", "Chartburst\n", "Chartcube\n", "Charterhouse\n", "Chartio\n", "ChatGrape\n", "Chatterbox\n", "Chatterfly\n", "ChatWork\n", "Checkbook\n", "Checkmarx\n", "Checkr\n", "Checkthis\n", "Cheerboo\n", "Cheezburger\n", "Chef\n", "Chegg\n", "Chewse\n", "Chicago\n", "Chicisimo\n", "Chiizu\n", "Chipolo\n", "Chipworks\n", "Chirpify\n", "Chitika\n", "Chomp\n", "Chosen\n", "Christensen\n", "Chromatik\n", "Chronos\n", "Chute\n", "CIA\n", "Cinder\n", "Cinegif\n", "Cinemagram\n", "Cinematique\n", "CIO\n", "CipherCloud\n", "Circa\n", "Circl\n", "Circles\n", "CircleUp\n", "CircuitLab\n", "CIS\n", "Cisco\n", "cisimple\n", "CIT\n", "Citelighter\n", "Citi\n", "Citron\n", "Citrrus\n", "Citymapper\n", "CityPockets\n", "Citysearch\n", "Civic\n", "Civil\n", "Civo\n", "Cizoo\n", "Claire\n", "Claranet\n", "Clari\n", "Clarity\n", "ClarityRay\n", "Clarivoy\n", "Clarizen\n", "Class\n", "ClassDojo\n", "ClassPager\n", "ClassPass\n", "Classroom\n", "Clay\n", "Cleanly\n", "Clearbit\n", "ClearDATA\n", "ClearFit\n", "Clearpath\n", "ClearTax\n", "Cleartrip\n", "Clementine\n", "Cleveron\n", "Cleversafe\n", "Clickable\n", "Clifton\n", "Clinkle\n", "Clinton\n", "Clip\n", "Clipboard\n", "ClipClock\n", "Clipless\n", "Clipmarks\n", "ClipMine\n", "Clippet\n", "Cliptamatic\n", "Cliptone\n", "Cloakroom\n", "Cloaq\n", "Cloth\n", "Cloud+com\n", "Cloud4Wi\n", "Cloudability\n", "Cloudant\n", "CloudBees\n", "CloudCar\n", "CloudCheckr\n", "cloudControl\n", "CloudEndure\n", "Cloudera\n", "CloudGOO\n", "Cloudike\n", "CloudLock\n", "CloudOn\n", "CloudPhysics\n", "CloudPress\n", "Cloudscaling\n", "CloudSolar\n", "CloudSpokes\n", "Cloudyn\n", "Cloze\n", "CluckCluck\n", "Clustree\n", "Clustrix\n", "Clutter\n", "CMB\n", "CMS\n", "CNIL\n", "CNNIC\n", "Coach\n", "Coast\n", "Cobone\n", "Cobook\n", "Coconut\n", "Cocoon\n", "Codacy\n", "Code+org\n", "Code\n", "Code42\n", "Codeanywhere\n", "Codecademy\n", "CodeCombat\n", "CodeGuard\n", "CodeHS\n", "Codementor\n", "CodeNow\n", "Codenvy\n", "Coderwall\n", "codeSpark\n", "Codex\n", "Codie\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "CodinGame\n", "Cody\n", "Coffee\n", "CoffeeTable\n", "CoFoundersLab\n", "Coin\n", "Coinbase\n", "Coinfloor\n", "Coinsetter\n", "CoinTent\n", "Cola\n", "Coles\n", "Coliloquy\n", "Colingo\n", "Collaaj\n", "CollabFinder\n", "CollabNet\n", "Collabspot\n", "Collect\n", "Collection\n", "Collections\n", "CollegeBudget\n", "Collins\n", "colors\n", "colourDNA\n", "Columbus\n", "Combinator\n", "Comcast\n", "Comet\n", "Comma\n", "Comment\n", "Commerce\n", "CommonBond\n", "CommonFloor\n", "CommonKey\n", "Commonred\n", "Commons\n", "Comparably\n", "CompareAsiaGroup\n", "Compendium\n", "Compilr\n", "ComplyAdvantage\n", "Compose\n", "CompStak\n", "Comptel\n", "Compute\n", "comScore\n", "Comunitee\n", "Conceivable\n", "Concert\n", "Concierge\n", "Concurrent\n", "Cone\n", "Conferize\n", "Confide\n", "Confluence\n", "Confluent\n", "conichi\n", "Connectifier\n", "Connectify\n", "Connector\n", "Connexity\n", "ConsenSys\n", "Conspire\n", "ConsultingMD\n", "Consumr\n", "Contactually\n", "ContainerShip\n", "Contastic\n", "Contentful\n", "Contently\n", "Context\n", "Contextly\n", "conTgo\n", "Contour\n", "Control\n", "Convercent\n", "Conversation\n", "Converser\n", "Conversocial\n", "Convies\n", "Convoy\n", "Conyac\n", "Cookening\n", "CoolaData\n", "Cooliris\n", "Cooper\n", "CoPromote\n", "Cor\n", "Coraid\n", "CoreOS\n", "CorFire\n", "Corgi\n", "Corner\n", "CornerJob\n", "Corona\n", "Cortica\n", "Costa\n", "Costello\n", "Cosy\n", "Cotap\n", "Cotendo\n", "Cotopaxi\n", "CoTweet\n", "Coub\n", "Couchbase\n", "CouchCommerce\n", "Coull\n", "Coupang\n", "Couple\n", "Coupons+com\n", "Courier\n", "Coursera\n", "CourseSmart\n", "CourseTalk\n", "Coursmos\n", "CoVenture\n", "CoverHound\n", "CoverItLive\n", "Cowbird\n", "Cozy\n", "cPulse\n", "Craftsvilla\n", "Craigslist\n", "Crashlytics\n", "Crashpadder\n", "Crate\n", "Crater\n", "Craves\n", "Cray\n", "Crazy\n", "Creandum\n", "Creative\n", "CreativeLive\n", "Creator\n", "Creatrs\n", "Credible\n", "Credits\n", "Credo\n", "CredSimple\n", "Creek\n", "CREO\n", "CrestaTech\n", "CREXi\n", "Crimson\n", "Criteo\n", "CRM\n", "Crocodoc\n", "Cronofy\n", "Crosley\n", "Crossbar\n", "Crowd\n", "Crowdbooster\n", "CrowdCompass\n", "Crowdery\n", "CrowdFlik\n", "CrowdHut\n", "CrowdOptic\n", "Crowdpark\n", "CrowdStrike\n", "Crowdtap\n", "CrowdTwist\n", "Crowdynews\n", "Cruise+me\n", "CruiseWise\n", "Crunchyroll\n", "Crusher\n", "Crushpath\n", "Cruz\n", "CryptoSeal\n", "CSG\n", "CSR\n", "Ctrip\n", "Cubby\n", "Cube26\n", "Cubic\n", "Cucumbertown\n", "Cuff\n", "CultureSphere\n", "CumuLogic\n", "Cupple\n", "Curacity\n", "Curalate\n", "Curatum\n", "Curbside\n", "Curiator\n", "Curioos\n", "Curology\n", "Currents\n", "Curse\n", "Curtis\n", "Cushman\n", "Custom\n", "CustomInk\n", "CustomMade\n", "Cut\n", "Cuvva\n", "Cvent\n", "CWT\n", "CyActive\n", "Cyan\n", "Cyanogen\n", "Cybereason\n", "Cybozu\n", "Cylance\n", "Cylindo\n", "Cymmetria\n", "Cyvera\n", "Dache\n", "Dacuda\n", "DailyBooth\n", "DailyDeal\n", "DailyLit\n", "Dailymotion\n", "DailyRounds\n", "DailyWorth\n", "Daimler\n", "Dakwak\n", "Dale\n", "Dandy\n", "Daniel\n", "Daric\n", "Darjeelin\n", "Darkstore\n", "Darktrace\n", "DARPA\n", "Dasher\n", "Dashlane\n", "DATA\n", "Databox\n", "DataCamp\n", "Dataflow\n", "DataFox\n", "DataGravity\n", "Datahero\n", "Datahug\n", "Datalogix\n", "Datameer\n", "Dataminr\n", "Datanyze\n", "Datapipe\n", "DataRank\n", "DataSift\n", "DataStax\n", "DataTorrent\n", "DataXu\n", "Datto\n", "Daydream\n", "DBX\n", "DCM\n", "DealAngel\n", "Dealupa\n", "Decide\n", "Decorist\n", "Dedrone\n", "Deekit\n", "Deem\n", "Deepak\n", "Deeper\n", "Deeplink\n", "Deepomatic\n", "Deeyoon\n", "Deezer\n", "Defender\n", "DefinedCrowd\n", "Degreed\n", "Deja\n", "Dejamor\n", "Dekko\n", "DelFly\n", "Delhivery\n", "Delighted\n", "Deliv\n", "Deliverd\n", "Deliveroo\n", "Dell\n", "Deloitte\n", "Delta\n", "Demandware\n", "DEMO\n", "Demotix\n", "DemystData\n", "DeNA\n", "Depop\n", "Descomplica\n", "DesignCrowd\n", "Desk+com\n", "Desti\n", "Destiny\n", "Detour\n", "Devialet\n", "Dexplora\n", "Dexter\n", "DFKI\n", "DG\n", "DGSE\n", "Dharma\n", "Dhingana\n", "DHL\n", "Diagnosia\n", "Diamanti\n", "Diary+com\n", "Diaspora\n", "Dice\n", "Dickson\n", "Diffbot\n", "Digg\n", "Digi+me\n", "Digia\n", "Digimarc\n", "DigiSynd\n", "Digital\n", "DigitalGenius\n", "DigitalGlobe\n", "DigitalOcean\n", "Digits\n", "Digitsole\n", "Dillon\n", "Dinein+co+uk\n", "Ding\n", "Dingo\n", "Dinube\n", "DipJar\n", "Disconnect\n", "Discord\n", "Discourse\n", "Discoverly\n", "Discovery\n", "Dish+fm\n", "Displair\n", "Dispop\n", "Disqus\n", "Distill\n", "Distimo\n", "Distributed\n", "District\n", "DistroKid\n", "Diveboard\n", "Divide\n", "Divine\n", "Divshot\n", "DJI\n", "Djump\n", "DKSH\n", "DLD\n", "DMARC\n", "DMCA\n", "Do\n", "Dobango\n", "Doblet\n", "Doccaster\n", "Docker\n", "Docphin\n", "Docracy\n", "DocSend\n", "doctape\n", "doctHERs\n", "Doctolib\n", "DoctorsElite\n", "Documentum\n", "Docurated\n", "DocuSign\n", "Dodge\n", "Dodo\n", "Dogecoin\n", "DogSync\n", "DogVacay\n", "Domo\n", "Donde\n", "Donut\n", "Donuts\n", "doo\n", "Doodle+ly\n", "DoorDash\n", "Doorman\n", "Doozton\n", "DormChat\n", "Dormi\n", "dot429\n", "Dotcom\n", "DoubleClick\n", "DoubleDutch\n", "DoubleRecall\n", "Doublie\n", "Dove\n", "Down\n", "Doxie\n", "Doximity\n", "DoxOut\n", "Dónde\n", "DPS\n", "Draft\n", "DraftKings\n", "DragonWave\n", "DramaFever\n", "Draper\n", "DreamCheaper\n", "DreamHost\n", "Dreamit\n", "Dreem\n", "Dremel\n", "Drimmit\n", "DrinkMate\n", "Drippler\n", "Drivemode\n", "Driver\n", "Drivy\n", "Drizly\n", "DroneBase\n", "DroneDeploy\n", "drop\n", "Dropbox\n", "Dropcam\n", "DropGifts\n", "Dropost+it\n", "DropTask\n", "Drupal\n", "Druva\n", "Drync\n", "DSC\n", "DTN\n", "Duarte\n", "Dubsmash\n", "DuckDuckGo\n", "Dude\n", "Dudek\n", "DueCourse\n", "DueDil\n", "Duetto\n", "Dull\n", "Duo\n", "Duolingo\n", "Duracell\n", "DWNLD\n", "Dwolla\n", "DWS\n", "DXY\n", "Dymant\n", "Dyn\n", "DynamicOps\n", "Dynamics\n", "Dynatrace\n", "Dyson\n", "Dysonics\n", "E3\n", "Earbits\n", "Earmark\n", "Earshot\n", "earthmine\n", "EasilyDo\n", "Easy\n", "EasyPost\n", "Eatigo\n", "EatStreet\n", "Eaze\n", "Ebates\n", "eBay\n", "eBuddy\n", "Ebyline\n", "Echo360\n", "Echobox\n", "Echofon\n", "Echograph\n", "Eco\n", "ecoATM\n", "Ecoisme\n", "Ecwid\n", "Edelman\n", "Eden\n", "EDM\n", "Edmodo\n", "edocr\n", "EdReach\n", "EdSurge\n", "eduClipper\n", "Educreations\n", "EduKart\n", "Edwin\n", "edX\n", "Edyn\n", "EE\n", "eeGeo\n", "eero\n", "Effektif\n", "eFounders\n", "Efrat\n", "Egg\n", "Egnyte\n", "eGood\n", "eGym\n", "eHarmony\n", "EIS\n", "Eko\n", "Ektron\n", "Elance\n", "Elastica\n", "ElasticBox\n", "Ele+me\n", "Elepath\n", "Elephanti\n", "Elevatr\n", "Elf\n", "Eliademy\n", "Eligible\n", "Ellation\n", "Ellen\n", "Ellevest\n", "Ellis\n", "Elmo\n", "Elop\n", "Else\n", "eMarketer\n", "Ember\n", "Emberlight\n", "Embrace\n", "Emburse\n", "EMC\n", "Emergence\n", "Emergent\n", "Emerson\n", "Emily\n", "Emoji\n", "Emojiary\n", "Emotient\n", "Empath\n", "EmployInsight\n", "Encap\n", "Encoding+com\n", "Encore\n", "Encription\n", "Endaga\n", "Endeca\n", "Endgame\n", "Endor\n", "Endorse+me\n", "Energy\n", "Engadget\n", "EngageSciences\n", "Engagio\n", "Engagor\n", "Engodo\n", "Engrade\n", "Enstratius\n", "Enswers\n", "Ensygnia\n", "Entelo\n", "Enthuse\n", "Entitle\n", "Entrepreneur\n", "EPC\n", "EPIX\n", "EPO\n", "Epoch\n", "Epocrates\n", "EPS\n", "Epson\n", "EQ\n", "EQAL\n", "Equation\n", "EquipmentShare\n", "eReader\n", "Erickson\n", "Ericsson\n", "ERN\n", "Errplane\n", "Escrow+com\n", "eShares\n", "Espacio\n", "eSpark\n", "Esper\n", "Esplorio\n", "ESPN\n", "Espresa\n", "Esquire\n", "Esri\n", "EST\n", "Estify\n", "Estimize\n", "ETA\n", "Ethan\n", "Ethnio\n", "Etsy\n", "Eumakh\n", "Eurogamer\n", "EVA\n", "Evaneos\n", "Evans\n", "Eventbrite\n", "Eventful\n", "Eventifier\n", "Eventioz\n", "Eventjoy\n", "Evercontact\n", "Everett\n", "Evergram\n", "Everlane\n", "Everloop\n", "Evernote\n", "Everpix\n", "Everplaces\n", "Everpurse\n", "EverQuest\n", "Eversnap\n", "Evertale\n", "Evertoon\n", "EverTrue\n", "Everwise\n", "Everyday+me\n", "EveryLodge\n", "Everyme\n", "EveryMove\n", "Everyplay\n", "EverySignal\n", "EverythingMe\n", "Evi\n", "Evidence+com\n", "Evie\n", "Evite\n", "EvntLive\n", "Evomail\n", "Evri\n", "EVRYTHNG\n", "ExactTarget\n", "Exec\n", "Exiles\n", "Existor\n", "Exitround\n", "ExoClick\n", "Exogen\n", "Expa\n", "Expand\n", "Expansys\n", "Expedia\n", "ExpenseMagic\n", "Expensify\n", "Experfy\n", "Experience\n", "Experiences\n", "Expertmaker\n", "Experts\n", "Expion\n", "Exploreka\n", "Explorer\n", "Express\n", "Expression\n", "Extole\n", "EyeEm\n", "Eyegroove\n", "EyeIn\n", "Eyeota\n", "EyeTrackShop\n", "EyeVerify\n", "Eyeview\n", "Ezeecube\n", "Ezetap\n", "F+ounders\n", "F-Secure\n", "F6S\n", "Fab\n", "FabFitFun\n", "Fabrily\n", "Face+com\n", "Facebook\n", "Facer\n", "Fair\n", "FairFleet\n", "Fama\n", "Fame\n", "FameBit\n", "Famigo\n", "FamilyLeaf\n", "Famo+us\n", "Famous\n", "Fan\n", "Fanatics\n", "fanatix\n", "Fanbase\n", "FanBread\n", "FanBridge\n", "Fancred\n", "Fancy\n", "Fandalism\n", "Fandango\n", "Fandeavor\n", "FanDuel\n", "Fanmode\n", "Fanout\n", "Fanplayr\n", "Fantastic\n", "Fantasy\n", "Fantoo\n", "Fantuition\n", "Fanwards\n", "Faraday\n", "FarEye\n", "FarFaria\n", "Farfetch\n", "Farm2050\n", "Farmigo\n", "FarmLogs\n", "Fastacash\n", "Fastbite\n", "FastPay\n", "FastSpring\n", "FatFractal\n", "Fatmap\n", "Favado\n", "Favor\n", "Favr+tt\n", "Feed+fm\n", "Feed\n", "FeedHenry\n", "Feedspot\n", "Feels\n", "FeeX\n", "Felix\n", "Femsplain\n", "Fender\n", "Fenix\n", "Festicket\n", "Fetchnotes\n", "FF\n", "FI-WARE\n", "Fiberead\n", "Fictiv\n", "Field\n", "Fieldwire\n", "FiftyThree\n", "FightMe\n", "Figma\n", "Fiksu\n", "Filabot\n", "Fileboard\n", "FileMaker\n", "FileThis\n", "Filip\n", "Filter+ly\n", "FilterEasy\n", "Fin\n", "Final\n", "Finale\n", "FinancialForce\n", "Findables\n", "FindIt\n", "Findster\n", "Fingerprint\n", "Fingo\n", "Finish\n", "FinLeap\n", "Fintech\n", "Firebase\n", "FireEye\n", "Fireside\n", "First\n", "FirstLook\n", "FIS\n", "FiscalNote\n", "Fish\n", "FishBrain\n", "FitBark\n", "Fitbay\n", "Fitbit\n", "FITiST\n", "Fitocracy\n", "FitStar\n", "Fitt\n", "Fitternity\n", "FiveAI\n", "FiveStars\n", "Fiz\n", "Fjuul\n", "Flag\n", "Flash\n", "FlashFunders\n", "Flashgap\n", "FlashSoft\n", "Flat\n", "Flatchat\n", "Flattr\n", "Flavorpill\n", "Fleck\n", "Fleex\n", "Fleksy\n", "Flexport\n", "Flic\n", "Flickr\n", "Fling\n", "Flint\n", "Flipagram\n", "Flipboard\n", "Flipd\n", "Flipkart\n", "Fliplet\n", "Flipp\n", "Flipps\n", "Flips\n", "Flirtey\n", "Flite\n", "Flixster\n", "Flocations\n", "Flomio\n", "Floobits\n", "Floored\n", "Floret\n", "Flowdock\n", "Flowtab\n", "FlowVella\n", "Fluance\n", "Flud\n", "Fluent\n", "Flurry\n", "Fly6\n", "Flybridge\n", "Flybrix\n", "Flyby\n", "FlyCleaners\n", "Flyer\n", "Flyfit\n", "Flynn\n", "Flypad\n", "Flypay\n", "Flytenow\n", "Flytrex\n", "FOBO\n", "Follow\n", "Fon\n", "Fondu\n", "Fontacto\n", "Fonticons\n", "Food\n", "Food52\n", "FoodChéri\n", "Foodily\n", "Foodini\n", "Foodity\n", "Foodmento\n", "Foodpanda\n", "Foodspotting\n", "Foodzy\n", "Forage\n", "Forbes\n", "Force\n", "Forever\n", "Forgacs\n", "Forget+me\n", "Formation\n", "Formlabs\n", "Formspring\n", "Formvertise\n", "Forrst\n", "Forsythe\n", "Fortify\n", "Fortumo\n", "Fortune\n", "FortyCloud\n", "Fosbury\n", "Fossil\n", "Foster\n", "Fotolia\n", "Foundation\n", "FoundationDB\n", "Founder2be\n", "FounderDating\n", "FounderFuel\n", "Founders\n", "FoundersCard\n", "Foursquare\n", "FOVE\n", "Fovo\n", "Fox\n", "Fradio\n", "Frame+io\n", "Framebench\n", "FrameBlast\n", "Frameri\n", "Francis\n", "Frederick\n", "Freebase\n", "FreeCharge\n", "FreedomPop\n", "freee\n", "Freeman\n", "Freespee\n", "Freeview\n", "FreeWavz\n", "Freewheel\n", "Fresh\n", "Freshdesk\n", "Freshii\n", "Freshly\n", "Freshplum\n", "Fribi\n", "Frichti\n", "Friday\n", "Friedman\n", "Friend+ly\n", "FriendFeed\n", "FriendFinder\n", "Friendster\n", "Friendsy\n", "fromAtoB\n", "Frontback\n", "Frontier\n", "Froont\n", "Frrole\n", "Frugalo\n", "FTC\n", "Fuel\n", "Fuel3D\n", "Fuelling\n", "Fuhu\n", "Fujitsu\n", "Fulcrum\n", "FullContact\n", "Fullscreen\n", "Fullstack\n", "Function\n", "Fundable\n", "Fundera\n", "FunderCloud\n", "FundersClub\n", "Fundly\n", "FunnyJunk\n", "Funzio\n", "Fusion-io\n", "Futurelytics\n", "Futuremark\n", "Fuze\n", "Fuzel\n", "Fuzmo\n", "FWD+us\n", "FwdForce\n", "FwdHealth\n", "FX\n", "Fyndiq\n", "G5\n", "Gaana\n", "Gabriel\n", "Gaga\n", "Gaikai\n", "GAIN\n", "Gal\n", "Galaxia\n", "Galxyz\n", "Gambitious\n", "GameFly\n", "GameFounders\n", "Gameloft\n", "gamesGRABR\n", "GamesThatGive\n", "Gametime\n", "Gamify\n", "Gan\n", "Gant\n", "GarageBand\n", "Garantia\n", "Garmin\n", "Gartner\n", "Gate\n", "GateGuru\n", "Gates\n", "GatherContent\n", "GazeHawk\n", "GB\n", "GCE\n", "GCHQ\n", "gdgt\n", "Geckoboard\n", "Geeksphone\n", "Gem\n", "GEMA\n", "Gemnote\n", "GemShare\n", "Genee\n", "Genera\n", "Gengo\n", "GenieDB\n", "Genius\n", "Genome\n", "GENWI\n", "Geofeedia\n", "Geoloqi\n", "GeoOrbital\n", "GeoPoll\n", "Georama\n", "Get+com\n", "Getable\n", "GetApp\n", "Getaround\n", "GetFeedback\n", "GetGoing\n", "GetJar\n", "GetLinks\n", "Getonic\n", "GetReal\n", "GetScale\n", "GetSet\n", "Gett\n", "getTalent\n", "GetYourGuide\n", "GFG\n", "Ghost\n", "Gibbon\n", "Gidsy\n", "Giffiti\n", "GIFs\n", "GiftCards+com\n", "Giftiki\n", "Giftivo\n", "Giftly\n", "GiftRocket\n", "Gig\n", "Gigaom\n", "Giggem\n", "Gigit\n", "GigLocator\n", "Gigstart\n", "Gigster\n", "Gigwalk\n", "Gigwell\n", "Gigya\n", "Gild\n", "Gimmie\n", "Ginger+io\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Giphy\n", "Git\n", "GitHub\n", "GiveMeSport\n", "GiveMeTap\n", "Givey\n", "Givit\n", "Gizmox\n", "Glance\n", "Glancee\n", "Glassbreakers\n", "Glassdoor\n", "Glasses\n", "GlassesGroupGlobal\n", "Glassmap\n", "GlassUp\n", "Gleam\n", "GLG\n", "Glide\n", "Gliffy\n", "Gliimpse\n", "Glimpse\n", "Glints\n", "Glitter\n", "GlobalSCAPE\n", "GlobalSign\n", "Globant\n", "GlobeIn\n", "Globevestor\n", "Glocal\n", "Glooko\n", "Glopho\n", "Glose\n", "Glossier\n", "Glovo\n", "Glow\n", "Glowforge\n", "Gluster\n", "Glympse\n", "Glyph\n", "GMT\n", "GMV\n", "Gnip\n", "Gnzo\n", "Go-Jek\n", "GO1\n", "Goalbook\n", "GOAT\n", "goBalto\n", "GoBank\n", "Gobble\n", "Gobi\n", "Gobstopper\n", "GoCardless\n", "GoDaddy\n", "GoEuro\n", "GoGoGrandparent\n", "Gogolook\n", "Gogoprint\n", "Gogoro\n", "GoGoVan\n", "GoingOn\n", "GoInstant\n", "Gojee\n", "Goldbely\n", "Goldee\n", "GoldieBlox\n", "Goliath\n", "GoMiles\n", "Gone\n", "GoodData\n", "Goodreads\n", "GoodRx\n", "Goodservice\n", "Goodsie\n", "Google\n", "Google_\n", "GoPollGo\n", "GoPro\n", "GOQii\n", "Gorgias\n", "Gorilla\n", "GoSquared\n", "Got\n", "GoTenna\n", "Gotham\n", "Gousto\n", "Gowalla\n", "Goxip\n", "Gozaik\n", "GrabCAD\n", "Grabio\n", "Grabr\n", "Grabyo\n", "Gradberry\n", "Grades+io\n", "GradFly\n", "Gradifi\n", "Gradle\n", "Graduateland\n", "Graduway\n", "Graham\n", "Grapeshot\n", "Graphicly\n", "GraphOn\n", "grasp\n", "Grasshopper\n", "Grasswire\n", "Gratafy\n", "Gravie\n", "Gravitant\n", "Gravity4\n", "Greatist\n", "Greats\n", "GREE\n", "Greedy\n", "Greenfield\n", "Greenhouse\n", "Greenstart\n", "Greenwood\n", "Greta\n", "Greyloft\n", "GreyOrange\n", "GRID\n", "Griffin\n", "Grind\n", "Grindr\n", "Grockit\n", "Grofers\n", "Grokr\n", "Groopie\n", "Groopt\n", "Grooveshark\n", "GroSocial\n", "Grotech\n", "GroundLink\n", "GroupAhead\n", "Grouper\n", "GroupLogic\n", "GroupMe\n", "Groupnotes\n", "Groupon\n", "GroupSpaces\n", "GroupTalent\n", "Grovemade\n", "Grover\n", "Grovo\n", "GrowSumo\n", "Growth\n", "GrubHub\n", "Gruveo\n", "GSF\n", "GSG\n", "Guardian\n", "Guardly\n", "Gucci\n", "Guesswork\n", "GuestDriven\n", "Guesty\n", "Guides+co\n", "GuideSpark\n", "Guild\n", "Guildery\n", "GumGum\n", "Gumhouse\n", "gumi\n", "Gumroad\n", "Gunosy\n", "Guvera\n", "Guys\n", "GV\n", "Gyft\n", "Gymdeck\n", "GymGroups\n", "H2L\n", "Habit\n", "Hachi\n", "HackerEarth\n", "HackerOne\n", "HackerRank\n", "HackFwd\n", "HackHands\n", "Hadoop\n", "Hadopi\n", "Hagen\n", "Haier\n", "Haiku\n", "Hall\n", "Hamburg\n", "Hamer\n", "Hamilton\n", "Hamwells\n", "Handpick\n", "Hands\n", "Handy\n", "Hansoft\n", "Happify\n", "Happn\n", "Happtique\n", "Happy\n", "HappyFresh\n", "HappyFunCorp\n", "Haptik\n", "Harlequin\n", "Harman\n", "Harp\n", "HarperCollins\n", "Harris\n", "Hart\n", "Hartmann\n", "Hartz\n", "HashiCorp\n", "HashTip\n", "Hasselblad\n", "Hat\n", "Hatchery\n", "Hathway\n", "Havenly\n", "Hawkins\n", "HBO\n", "HD+\n", "HDI\n", "Head\n", "HeadBox\n", "Headout\n", "Headspace\n", "Healint\n", "Health2Sync\n", "HealthKeep\n", "HealthKit\n", "HealthLoop\n", "Healthrageous\n", "HealthSouk\n", "HealthTap\n", "Healy\n", "Hear\n", "Hear2Read\n", "HeartThis\n", "HeavenHR\n", "Heek\n", "Heetch\n", "Helium\n", "HelloFax\n", "Hellofood\n", "HelloFresh\n", "HelloMD\n", "HelloSign\n", "HelloSociety\n", "HelloSoda\n", "HelloTech\n", "HelloWallet\n", "Helpling\n", "Helpshift\n", "Hem\n", "Henderson\n", "Henkel\n", "Her\n", "HERE\n", "Heroku\n", "Hertz\n", "Hewlett-Packard\n", "Hexadite\n", "Heyday\n", "HeyLets\n", "Heyzap\n", "HGST\n", "hi5\n", "Hibob\n", "Hickies\n", "HiGear\n", "HigherMe\n", "Highlight\n", "HighQ\n", "Highrise\n", "Hightail\n", "Highway1\n", "hike\n", "Hilton\n", "HiMom\n", "Hinge\n", "Hipcamp\n", "HipChat\n", "Hipmunk\n", "Hippflow\n", "Hippo\n", "Hipstamatic\n", "Hipster\n", "Hiptype\n", "HireArt\n", "Hired\n", "HireVue\n", "Hiri\n", "Hitachi\n", "HitBliss\n", "Hitlist\n", "Hitpost\n", "Hitwise\n", "Hivemapper\n", "Hiya\n", "HMD\n", "Hmmm\n", "Hobzy\n", "Holden\n", "Hollar\n", "Holmes\n", "Holographic\n", "Holvi\n", "Home\n", "HomeAway\n", "Homee\n", "Homejoy\n", "HomeLight\n", "HomeMe\n", "Homescreen\n", "Homesnap\n", "Hometalk\n", "Hometeam\n", "HoneyBook\n", "Honeypot\n", "Honk\n", "Hooch\n", "Hoodline\n", "Hooked\n", "Hooks\n", "HOOQ\n", "Hooray\n", "Hootsuite\n", "Hoover\n", "Hopper\n", "Hoppit\n", "hoppr\n", "HopSkipDrive\n", "Hopster\n", "Horizons\n", "Hortonworks\n", "Hostmaker\n", "Hotaru\n", "HotelQuickly\n", "HotelTonight\n", "Hotlist\n", "Hotmail\n", "HotPads\n", "Hotspot\n", "Hotspots+io\n", "Hotspots\n", "Houdini\n", "Hound\n", "Housebites\n", "HouseFix\n", "Housejoy\n", "HouseTrip\n", "Housing+com\n", "Houston\n", "Houzz\n", "HowAboutWe\n", "HowGood\n", "HSBC\n", "HSN\n", "HTC\n", "Hua\n", "Hubbl\n", "Hublished\n", "Hublo\n", "HubSpot\n", "Hubub\n", "Huckle\n", "Hudl\n", "Hudson\n", "HUDWAY\n", "Hughes\n", "Hukkster\n", "Hulbee\n", "Hull\n", "Hullabalu\n", "Hulu\n", "Human\n", "Humanoid\n", "Humans\n", "Humble\n", "Humin\n", "Hungama\n", "Hungryroot\n", "Hunt\n", "Hunter\n", "Hurley\n", "Hushed\n", "HushHush\n", "HWTrek\n", "Hybrid\n", "Hydroswarm\n", "Hykoo\n", "HyPer\n", "Hyperdrive\n", "Hyperink\n", "HyprMX\n", "HyTrust\n", "i2\n", "IAC\n", "iAdvize\n", "iBeat\n", "IBM\n", "Ibotta\n", "ICANN\n", "ice\n", "Icertis\n", "ICO\n", "ICOMP\n", "Iconfinder\n", "Iconic\n", "Iconicfuture\n", "icons\n", "iContact\n", "iControl\n", "IDC\n", "Idea+me\n", "Ideal\n", "Identified\n", "Identity\n", "Ideum\n", "IDNow\n", "Idomoo\n", "Ifeelgoods\n", "iFetch\n", "Ifinity\n", "iFit\n", "iFixit\n", "iFood\n", "IFTTT\n", "iHeart\n", "iHeartRadio\n", "III\n", "Illumio\n", "Imagination\n", "Imagine\n", "IMAX\n", "Imgur\n", "Immediately\n", "Immersit\n", "imoji\n", "Impending\n", "Impermium\n", "Implisit\n", "Impossible\n", "Impraise\n", "ImpressPages\n", "ImpulseSave\n", "Inadco\n", "Inbox\n", "Inc+\n", "Incase\n", "InCrowd\n", "Incubate\n", "Independent\n", "Indie\n", "IndieGameStand\n", "Indiegogo\n", "inDinero\n", "Indisys\n", "Individual\n", "Indix\n", "Indochino\n", "indoo+rs\n", "IndoorAtlas\n", "Industrie\n", "Industry\n", "Infinite+ly\n", "Influenster\n", "Influitive\n", "InfluxData\n", "Infobip\n", "Infochimps\n", "Infomedia\n", "Informatica\n", "InfoScout\n", "Infosys\n", "Infratel\n", "Infusionsoft\n", "Ingenico\n", "Initial\n", "ink\n", "Inkl\n", "Inkling\n", "Inktank\n", "inMarket\n", "Inmarsat\n", "InMobi\n", "InMotion\n", "Inneractive\n", "InnoGames\n", "InnoSpring\n", "Innov8\n", "Innovid\n", "Innoz\n", "inploi\n", "inPulse\n", "Input\n", "Insensi\n", "Inside+com\n", "Inside\n", "InsideSales+com\n", "InsideView\n", "Insight\n", "Insightpool\n", "InsightSquared\n", "inspiration\n", "Inspirato\n", "Inspirock\n", "Insta\n", "Instabeat\n", "Instabridge\n", "Instabug\n", "Instacart\n", "InstaEDU\n", "Instagram\n", "InstallMonetizer\n", "Instapaper\n", "Instavest\n", "InstaVet\n", "Instructure\n", "Insurify\n", "Insyde\n", "Insync\n", "Integral\n", "Intel\n", "Interactive\n", "Intercom\n", "Intern\n", "International\n", "Internet+org\n", "Interview\n", "Interviewed\n", "Intralist\n", "Intro\n", "Intuit\n", "Inuvo\n", "Invenias\n", "Inverse\n", "Investing+com\n", "InvisibleHand\n", "InVision\n", "Invoice2go\n", "InvoiceASAP\n", "Involver\n", "IOC\n", "Ionic\n", "Iotera\n", "IOVOX\n", "ip+access\n", "IPG\n", "IPO\n", "iPrice\n", "ipsy\n", "IPTV\n", "iQiyi\n", "Iris\n", "iRobot\n", "Ironclad\n", "ISKN\n", "Island\n", "Islands\n", "isocket\n", "Issue\n", "Issuu\n", "iStopOver\n", "iStoryTime\n", "iSuppli\n", "iSwapp\n", "ITG\n", "Itseez\n", "ItsOn\n", "Ive\n", "iversity\n", "iwaku\n", "iwoca\n", "iZettle\n", "iZotope\n", "Jabra\n", "JackThreads\n", "Jaguar\n", "Jajah\n", "Jake\n", "JAM\n", "JamBase\n", "JamCam\n", "James\n", "JANDI\n", "Jarvis\n", "Jason\n", "Jasper\n", "Jaunt\n", "Jawbone\n", "JD+com\n", "Jean\n", "Jeeran\n", "Jeffrey\n", "Jelastic\n", "Jellynote\n", "Jet\n", "Jetbay\n", "Jetlore\n", "Jetpac\n", "Jetsetter\n", "JetSmarter\n", "jEugene\n", "Jewelbots\n", "JFDI+Asia\n", "JFrog\n", "Jibbigo\n", "JibJab\n", "Jibo\n", "Jiffy\n", "JigoCity\n", "Jimdo\n", "Jimmyjane\n", "Jink\n", "Jinn\n", "Jirafe\n", "Jirnexu\n", "Jitterbit\n", "Jobandtalent\n", "Jobbatical\n", "Jobr\n", "JobScout\n", "Jobspotting\n", "JobVidi\n", "Jobvite\n", "Johnson\n", "Joint\n", "Jolicloud\n", "JolieBox\n", "Jolla\n", "Jomi\n", "Jongla\n", "Joomla\n", "Jordan\n", "Josephine\n", "Jostle\n", "Journy\n", "Joyable\n", "Joyent\n", "JoyTunes\n", "JPEGmini\n", "JUCE\n", "Judicata\n", "Juengo\n", "Juicero\n", "JuicyCanvas\n", "Jukedeck\n", "Jukely\n", "Julep\n", "Julpan\n", "Jumia\n", "Jumio\n", "JumpCloud\n", "Jumpstarter\n", "Jumptap\n", "Junar\n", "Junyo\n", "Jusp\n", "JustBook\n", "JustGiving\n", "JustPark\n", "JustReachOut\n", "JustWatch\n", "JVP\n", "Jybe\n", "K1\n", "K12\n", "Kabam\n", "Kabbage\n", "Kabbee\n", "Kaggle\n", "Kahuna\n", "Kamcord\n", "Kamino\n", "Kana\n", "Kander\n", "Kantar\n", "Kaplan\n", "Kapost\n", "Kara\n", "Kareo\n", "Kargo\n", "Karmaloop\n", "Kash\n", "KashFlow\n", "Katana\n", "Kay\n", "Kazaana\n", "Kazam\n", "KDDI\n", "Keek\n", "Keepsy\n", "KeepTruckin\n", "Kenexa\n", "Kentik\n", "Kepler\n", "Kera\n", "Kershaw\n", "Ketchuppp\n", "Keurig\n", "Keybase\n", "keychain\n", "KeyMe\n", "Keywee\n", "KFit\n", "Kickboard\n", "Kickbooster\n", "Kickpay\n", "Kickscout\n", "Kickstarter\n", "KidAdmit\n", "Kidaptive\n", "Kidizen\n", "KidoZen\n", "Kids\n", "KidZui\n", "Kifi\n", "Kiip\n", "Kik\n", "Kili\n", "Kin\n", "Kinder\n", "KinderTown\n", "Kindly\n", "King+com\n", "Kingdon\n", "Kingsoft\n", "Kinnek\n", "KinoPoisk\n", "Kinsa\n", "Kinvey\n", "Kiosked\n", "Kippt\n", "Kismet\n", "Kitchenbowl\n", "Kitchenbug\n", "Kitchensurfing\n", "KitchMe\n", "Kite+io\n", "KiteDesk\n", "Kitematic\n", "Kitestring\n", "KitSplit\n", "Kiva\n", "KKR\n", "Klarismo\n", "Klarna\n", "Klash\n", "Kleverbeast\n", "KlickNation\n", "Klook\n", "Klout\n", "Knewton\n", "Kngine\n", "Kno\n", "Knoala\n", "Knocki\n", "Knok\n", "Knoll\n", "Knotable\n", "Knotch\n", "KnowMe\n", "Knowmia\n", "Knowre\n", "Knozen\n", "Koality\n", "Kobalt\n", "Kobo\n", "Kochava\n", "Kodak\n", "Koding\n", "Koemei\n", "Kogan\n", "Kokoroe\n", "Komprise\n", "Konami\n", "Konekt+me\n", "Kony\n", "Koozoo\n", "Korbit\n", "Korner\n", "Koudai\n", "Krablr\n", "Kraft\n", "Krawd\n", "Kroll\n", "Krossover\n", "Kryptnostic\n", "Kstartup\n", "Kuapay\n", "Kudoso\n", "kununu\n", "KupiVIP\n", "Kurio\n", "Kurrenci\n", "Kwaga\n", "KweekWeek\n", "Kwoller\n", "KYA\n", "Kymeta\n", "Kytephone\n", "La-La\n", "Lab42\n", "Labor\n", "Labster\n", "LaFourchette\n", "Lakestar\n", "Lambda\n", "LaMetric\n", "Lamoda\n", "Lamudi\n", "Lancope\n", "Landlordology\n", "Lane\n", "Lanyrd\n", "Laptop\n", "Lara\n", "Lark\n", "Larky\n", "Larsen\n", "Lasso\n", "Last+fm\n", "lastminute+com\n", "LastPass\n", "Latch\n", "Late\n", "Laugh+ly\n", "Launch48\n", "LaunchBit\n", "LaunchDarkly\n", "Launcher\n", "LaunchGram\n", "LaunchHouse\n", "LaunchKit\n", "LaunchPoint\n", "LaunchRock\n", "Laundrapp\n", "Lavabit\n", "Lavaboom\n", "Lawdingo\n", "Lawson\n", "Layar\n", "Layer\n", "Leadbolt\n", "LeadFormix\n", "LeadLedger\n", "LeadSift\n", "LEAGUE\n", "Leak\n", "Leaky\n", "LeanData\n", "LeanMarket\n", "Learndot\n", "Learnist\n", "LearnKo\n", "LearnSprout\n", "LearnStreet\n", "LearnVest\n", "Lebara\n", "LeCab\n", "Lee\n", "Leetchi\n", "LeFeed\n", "Leftronic\n", "Legacy\n", "LegalZoom\n", "LegbaCore\n", "Legend\n", "Legentas\n", "Legimi\n", "Legit\n", "LEGO\n", "LeKiosk\n", "Lender\n", "Lendingkart\n", "Lendio\n", "Lendix\n", "LendUp\n", "Lenka\n", "Lenovo\n", "Lenstag\n", "Lernstift\n", "Leslie’s\n", "LesPAC+com\n", "Lesson\n", "Let\n", "letgo\n", "LetsListen\n", "LetsLunch\n", "LetsTransport\n", "LetsWombat\n", "Letterboxd\n", "Lettuce\n", "Levebee\n", "Level\n", "LevelUp\n", "Levitas\n", "Levi’s\n", "LeWeb\n", "Lex\n", "Lexity\n", "LG\n", "Libboo\n", "Liberio\n", "Libertas\n", "Liberty\n", "LibraTax\n", "Libratone\n", "Libsyn\n", "Life360\n", "Lifecake\n", "Lifeliqe\n", "LifeLock\n", "Lifesum\n", "LifeTip\n", "LiftDNA\n", "Liftopia\n", "LIFX\n", "Lighter\n", "LightFreq\n", "Lightricks\n", "LightSpeed\n", "LightUp\n", "Lightwave\n", "Likelii\n", "Likemind\n", "Lima\n", "Lindsay\n", "Line-Up\n", "Line\n", "Linea\n", "Lineshark\n", "Ling\n", "Lingo\n", "Lingua+ly\n", "Linio\n", "LINK\n", "LinkedIn\n", "Linode\n", "Linqapp\n", "Linqia\n", "Lion\n", "Lionside\n", "Lip\n", "Lipman\n", "Lish\n", "Listia\n", "Litsy\n", "Little\n", "LittleThings\n", "LIV\n", "LIVE\n", "Livefyre\n", "LiveIntent\n", "Livemap\n", "Livemocha\n", "LiveNinja\n", "LiveOps\n", "LivePerson\n", "LiveRail\n", "Livescribe\n", "Livestar\n", "Livestream\n", "LivingSocial\n", "Livongo\n", "Livrada\n", "Livspace\n", "LMS\n", "Lob\n", "Lobster\n", "Localmind\n", "LocalOn\n", "LocalUncle\n", "Localytics\n", "Location\n", "Locationary\n", "Locca\n", "Locent\n", "Lock8\n", "LockerDome\n", "Locket\n", "Loco2\n", "Locqus\n", "Locu\n", "Lodgeo\n", "Loewe\n", "Log\n", "Logan\n", "LogDog\n", "Loggly\n", "Logica\n", "Logikcull\n", "Logitech\n", "LogMeIn\n", "Loki\n", "LokLok\n", "LOLA\n", "Lolapps\n", "Lollicam\n", "Longaccess\n", "Lookback\n", "Lookcraft\n", "Looker\n", "LookFlow\n", "Looklist\n", "Looklive\n", "Lookout\n", "Looksee\n", "Looksery\n", "Lookup\n", "Loon\n", "Loopcam\n", "LoopFuse\n", "LoopMe\n", "LoopPay\n", "Loops\n", "Loosecubes\n", "Loot\n", "Lootsie\n", "Looxcie\n", "Lore\n", "Loudie\n", "LoungeUp\n", "LOVEFiLM\n", "Loveflutter\n", "LoveList\n", "LovelyHeroku\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "LovePalz\n", "Lover+ly\n", "LoveThis\n", "Loyalize\n", "LS9\n", "LSTN\n", "Lucent\n", "Lucey\n", "Lucky\n", "LuckyPennie\n", "LuckyTrip\n", "Ludei\n", "Luff\n", "Lugg\n", "Luka\n", "Lully\n", "Lumens\n", "Lumenus\n", "Lumi\n", "Luminate\n", "Luminoso\n", "Luminox\n", "Lumoid\n", "Lumosity\n", "Lumus\n", "LUUV\n", "Luvocracy\n", "Luxe\n", "Lybrate\n", "Lydia\n", "Lyft\n", "Lyst\n", "LyteShot\n", "Lytro\n", "M+dot\n", "M+Gemi\n", "M-Files\n", "M2M\n", "M4JAM\n", "M7\n", "Macbeth\n", "Mach\n", "Machine\n", "Macmillan\n", "Macro\n", "MacroFab\n", "Made\n", "Madefire\n", "Maderight\n", "Madison\n", "Madvertise\n", "Magenta\n", "Magento\n", "Magic\n", "Magine\n", "Magna\n", "Magnify\n", "Magzter\n", "Mahalo\n", "Maheswari\n", "Mail\n", "Mailbird\n", "Mailbox\n", "Mailgun\n", "Mailjet\n", "Maily\n", "Main\n", "MakeGood\n", "MakeMeReach\n", "Maker\n", "Makerbase\n", "MakerBot\n", "Makers\n", "MakersKit\n", "Makeshift\n", "MakeSpace\n", "MakeTime\n", "Maluuba\n", "Malwarebytes\n", "Mambu\n", "ManageFlitter\n", "ManageIQ\n", "Management\n", "Mandarin\n", "Mandiant\n", "Mandriva\n", "Mango\n", "Mangrove\n", "Manilla\n", "Mann\n", "Manpacks\n", "Mantaphrase\n", "Mantis\n", "Mapbox\n", "Mapillary\n", "MapMyFitness\n", "Mapstr\n", "Marakana\n", "Marblar\n", "Marco\n", "Marfeel\n", "marGenius\n", "Margo\n", "MariaDB\n", "Marino\n", "Maritz\n", "mark\n", "MarkaVIP\n", "Markerly\n", "market\n", "MarketMeSuite\n", "Marketo\n", "Marketplace\n", "Marketwired\n", "Markforged\n", "Marriott\n", "Mars\n", "Marsh\n", "MartJack\n", "Marvel\n", "Mashable\n", "Mashape\n", "Mashburn\n", "Mashery\n", "MassChallenge\n", "Massdrop\n", "MasterCard\n", "MasteryConnect\n", "Matchbook\n", "Material\n", "Matt\n", "Mattel\n", "Mattermark\n", "Matternet\n", "MavenSay\n", "Mavrck\n", "Maxim\n", "Maxis\n", "Maxthon\n", "Maybank\n", "MAZ\n", "mBank\n", "McAfee\n", "McMillan\n", "Me-Mover\n", "Meadow\n", "MeARKET\n", "Medallia\n", "Meddik\n", "Media+net\n", "MediaCore\n", "MediaGlu\n", "MediaMath\n", "MediaPass\n", "MediaSpike\n", "Medifund\n", "Medigo\n", "Medikly\n", "Medine\n", "Medium\n", "MedStartr\n", "Medypal\n", "Meebo\n", "Meerkat\n", "Meesho\n", "Meetey\n", "Meetings+io\n", "MeetMe\n", "meets\n", "Meetup\n", "Meetupcall\n", "Meexo\n", "Mei+com\n", "Meituan-Dianping\n", "Meizu\n", "Meldium\n", "Melodigram\n", "Meltwater\n", "Memeoirs\n", "Memloom\n", "Memo\n", "Memoir\n", "Memolane\n", "Memorability\n", "Memorado\n", "Memories\n", "MemSQL\n", "Mendeley\n", "Mensch\n", "Mention\n", "menu\n", "Menulog\n", "Meograph\n", "MercadoLibre\n", "Mercari\n", "Mercer\n", "Merch\n", "Merienda\n", "Meritful\n", "Merriman\n", "Mertado\n", "Mesosphere\n", "MessageMe\n", "Messenger\n", "Metabiota\n", "Metadata\n", "Metail\n", "Metaio\n", "MetaLab\n", "Metamarkets\n", "MetaMind\n", "MetaPack\n", "Metaresolver\n", "MetaWatch\n", "MetaWorld\n", "Meterfy\n", "Method\n", "Metrekare\n", "Metrics\n", "MetricsHub\n", "Metromile\n", "Meusu\n", "Mezi\n", "mFoundry\n", "Mhelpdesk\n", "Michigan\n", "MicrobeScope\n", "Microduino\n", "MicroEval\n", "Microsoft\n", "Microsystems\n", "Middle\n", "Midokura\n", "MightyText\n", "MightyTV\n", "MIKA\n", "MikMak\n", "Mikme\n", "Milestone\n", "Mileways\n", "MileWise\n", "Milk\n", "Milkster\n", "Million\n", "Mills\n", "Milyoni\n", "MiMedia\n", "Mimi\n", "Mimo\n", "Mindie\n", "Mindjet\n", "MindJolt\n", "MindMeister\n", "MindMeld\n", "MindMixer\n", "MindRDR\n", "Mindshapes\n", "Mindshare\n", "MindSnacks\n", "Mindsy\n", "Mindwork\n", "Minefold\n", "MineralTree\n", "Mingle\n", "Mingleton\n", "MinHash\n", "Minilogs\n", "Mink\n", "Mint\n", "Minted\n", "Mintigo\n", "Minube\n", "Minuum\n", "Miradore\n", "Mirakl\n", "Miramax\n", "Mirantis\n", "Misen\n", "Mission\n", "Mitch\n", "Mitro\n", "MIUI\n", "Mix\n", "MixBit\n", "Mixbook\n", "Mixer\n", "Mixlr\n", "Mixmax\n", "Mixpanel\n", "Miyowa\n", "MLS\n", "MMS\n", "mNectar\n", "Moasis\n", "Moat\n", "Mobage\n", "Mobcast\n", "Mobcaster\n", "Mobcrush\n", "Mobee\n", "Mobento\n", "MobiCart\n", "MobiKwik\n", "Mobile\n", "MobileDevHQ\n", "MobileIron\n", "MobileSpan\n", "Mobilewalla\n", "MobileWorks\n", "Mobileye\n", "Mobilisafe\n", "MobilyTrip\n", "Mobincube\n", "MobiTV\n", "MobLabs\n", "Mobspire\n", "MobStac\n", "MOCACARE\n", "Mocana\n", "Modbook\n", "Modbot\n", "ModCloth\n", "Mode\n", "Modern\n", "Modi\n", "ModiFace\n", "Modington\n", "Modomoto\n", "ModoPayments\n", "Modsy\n", "Module\n", "Modus\n", "MoEngage\n", "Moff\n", "MOG\n", "Mogees\n", "Moglue\n", "Mogreet\n", "Mogul\n", "Mohiomap\n", "MoID\n", "Mojiva\n", "Mojo\n", "Moju\n", "mokono\n", "MOL\n", "Mola+com\n", "Molotov\n", "Moltin\n", "Moment+me\n", "Moments\n", "MommyCoach\n", "mon+ki\n", "Monaeo\n", "Mondaine\n", "Monday52\n", "Mondo\n", "Monese\n", "Monetate\n", "MoneyLion\n", "MoneySavingExpert\n", "Moneytree\n", "MongoDB\n", "Mongoose\n", "Monica+Andy\n", "Monitise\n", "Monkey\n", "MonkeyParking\n", "Monoidics\n", "MONOQI\n", "Monotype\n", "Monroe\n", "Monsieur\n", "Monstro\n", "Montblanc\n", "Monument\n", "Monzo\n", "Moo+do\n", "Moodle\n", "Moodstocks\n", "Moolaguides\n", "MoonClerk\n", "Moonfruit\n", "Moonshark\n", "moosify\n", "Moovit\n", "Moovweb\n", "Moped\n", "Mophie\n", "MoPho\n", "MoPub\n", "Morphlabs\n", "Morrisons\n", "Moshi\n", "Moss\n", "Motilo\n", "Moto\n", "Motorola\n", "Motosumo\n", "Motus\n", "Mouawad\n", "Mouthee\n", "Move\n", "Movebubble\n", "MoveInsure\n", "Moveline\n", "Moven\n", "Movi\n", "Movidius\n", "MovieGlu\n", "MovieLaLa\n", "Movinga\n", "Mowbly\n", "MoWeather\n", "MOX\n", "Moxtra\n", "Mozbii\n", "Mozilla\n", "Mozio\n", "Mozy\n", "mParticle\n", "MSN\n", "MSNBC\n", "MST\n", "Mt+Gox\n", "MTailor\n", "MTM\n", "MTN\n", "MTT\n", "MUBI\n", "MudWatt\n", "Mueller\n", "MuleSoft\n", "Munch\n", "Munchery\n", "Musaic\n", "Musical+ly\n", "Musixmatch\n", "Mustbin\n", "Mutualink\n", "Muve\n", "Muzik\n", "Muzy\n", "MVF\n", "MVP\n", "My-Apps\n", "MyCheck\n", "MyColorScreen\n", "MyEdu\n", "MyEnergy\n", "MyFitnessPal\n", "MyHealthPal\n", "MyHealthTeams\n", "MyHeritage\n", "MyJobCompany\n", "MyLife\n", "MyMiniLife\n", "MyMusicTaste\n", "MyNextRun\n", "Myntra\n", "MyOptique\n", "MyPermissions\n", "MySmartPrice\n", "Myspace\n", "MySQL\n", "MyState\n", "MyStream\n", "mySupermarket\n", "MyTime\n", "myTomorrows\n", "Mytonomy\n", "MyVR\n", "myWebRoom\n", "MyWidz\n", "N26\n", "NAD\n", "Nagios\n", "Nameless+tv\n", "Nanigans\n", "NanoRacks\n", "Napster\n", "NapTime\n", "Napwell\n", "Naritiv\n", "Narrative\n", "Narratives\n", "Narrato\n", "Narrow\n", "Narvar\n", "NASA\n", "NASDAQ\n", "Natasha\n", "NationBuilder\n", "NativeX\n", "Nature\n", "Navdy\n", "Naver\n", "Navmii\n", "Naya\n", "Naylor\n", "Naytev\n", "NBA\n", "NDS\n", "Near+in\n", "Nearby\n", "Nearpod\n", "Neat\n", "Nebula\n", "Needle\n", "needs\n", "Neemware\n", "NEEO\n", "Nelson\n", "NeoGAF\n", "Neoji\n", "Neolane\n", "Neone\n", "NeonMob\n", "Neptune+io\n", "Neptune\n", "NerdWallet\n", "Nerve\n", "Nest\n", "Nestio\n", "Nestivity\n", "Nestle\n", "Nestor\n", "Net1\n", "Netagio\n", "Netatmo\n", "NetBeez\n", "Netbiscuits\n", "Netflix\n", "Netizine\n", "Netlify\n", "Neto\n", "Netokracija\n", "NetPlenish\n", "Nets\n", "Netskope\n", "NetSuite\n", "Network\n", "NeuCoin\n", "Neumann\n", "Neumob\n", "Neura\n", "Neuron\n", "Neverware\n", "NewHive\n", "News+me\n", "News\n", "News360\n", "Newsana\n", "NewsCred\n", "Newsela\n", "NewsiT\n", "Newsle\n", "NewsON\n", "Newsweek\n", "NewsWhip\n", "Newswire\n", "Newton\n", "Newvem\n", "NewVoiceMedia\n", "NewzSocial\n", "Nexmo\n", "Nexon\n", "Next\n", "NextDocs\n", "Nextdoor\n", "Nextpeer\n", "NexTravel\n", "NextSuit\n", "NextVR\n", "Nexus\n", "Neyya\n", "NGDATA\n", "NGI\n", "NHS\n", "NHTSA\n", "Niall\n", "NICE\n", "Niche\n", "Nickelodeon\n", "Nielsen\n", "Nifti\n", "Nifty\n", "Night\n", "NightOwl\n", "Niice\n", "Nike\n", "Nikkei\n", "Nikon\n", "Nima\n", "Nimbl\n", "Nimble\n", "Nimbula\n", "NimbusBase\n", "Nimbuzz\n", "Ninebot\n", "Nintendo\n", "Nirvanix\n", "NIST\n", "NoBroker\n", "NodeFly\n", "NodePrime\n", "nodes\n", "Nodester\n", "Noggin\n", "Noise\n", "Noke\n", "Nokia\n", "NomadCast\n", "Nomi\n", "Nomiku\n", "Noodle\n", "Nooka\n", "Noom\n", "Norby\n", "Nordstrom\n", "NoRedInk\n", "Normal\n", "Northzone\n", "Nosh\n", "NoshList\n", "Nosto\n", "Notabli\n", "Notch\n", "Notes\n", "Notey\n", "Nova\n", "Novartis\n", "Novauris\n", "NovoEd\n", "Nowait\n", "NowFloats\n", "NowThis\n", "NPO\n", "NPR\n", "NSA\n", "NSI\n", "NSL\n", "Nubank\n", "Nuji\n", "numberFire\n", "NumberFour\n", "Numecent\n", "Nuomi\n", "Nurph\n", "Nutanix\n", "Nutrino\n", "Nuzzel\n", "Nvidia\n", "Nymi\n", "NYU\n", "O2\n", "Oatmeal\n", "Obi\n", "Occipital\n", "Occupy+here\n", "Ocean\n", "Octoly\n", "Oculus\n", "Odeo\n", "ODI\n", "Odnoklassniki\n", "Odysee\n", "Odyssey\n", "Ofcom\n", "Office\n", "OfficeDrop\n", "Offset\n", "Ogone\n", "Ohlala\n", "OhMiBod\n", "Oink\n", "Okanjo\n", "OkCupid\n", "OKDOTHIS\n", "OKpanda\n", "Okta\n", "Ola\n", "Olapic\n", "Olark\n", "Olery\n", "Oliba\n", "Ollie\n", "Olly\n", "Olson\n", "Omaze\n", "Omega\n", "Ometria\n", "OMG\n", "OMGICU\n", "OMGPOP\n", "Omise\n", "Omixy\n", "Omlet\n", "Omni3D\n", "Omniata\n", "Omnicharge\n", "Omniture\n", "OmniVirt\n", "OMsignal\n", "Onavo\n", "Ondango\n", "One\n", "OneClass\n", "onefinestay\n", "OneGo\n", "Onehub\n", "OneID\n", "OneLouder\n", "OneOps\n", "OnePageCRM\n", "OnePlus\n", "OneSchool\n", "Onesheet\n", "OneSky\n", "OneTouch\n", "OneTwoTrip\n", "Onfido\n", "Onfleet\n", "Ongage\n", "Online\n", "OnLive\n", "OnSwipe\n", "Onyara\n", "Onyx\n", "Oodle\n", "Oolu\n", "Ooyala\n", "Opbeat\n", "Open-Xchange\n", "Open\n", "OpenBrand\n", "Openbucks\n", "OpenDNS\n", "Opener\n", "Openera\n", "Openet\n", "OpenFeint\n", "Openfund\n", "Opening\n", "OpenLabel\n", "OpenRent\n", "OpenSesame\n", "OpenShift\n", "OpenSignal\n", "OpenSky\n", "OpenStack\n", "OpenStreetMap\n", "OpenTable\n", "OpenTV\n", "OpenX\n", "Opera\n", "Operator\n", "Opinion\n", "Opinsy\n", "Opower\n", "Oppo\n", "Opternative\n", "OptimisCorp\n", "Optimus\n", "Opuss\n", "Orami\n", "Orange\n", "OrangeScape\n", "Orbit\n", "Orchestra\n", "OrderAhead\n", "OrderUp\n", "OrderWithMe\n", "Organic\n", "Organizer\n", "Origami\n", "OrlyAtomics\n", "Oscar\n", "Osmeta\n", "Osmo\n", "Osper\n", "Ossia\n", "Ossur\n", "Ostrich\n", "OTTO\n", "OurMix\n", "Ousta\n", "Out\n", "Outbrain\n", "Outdoorsy\n", "Outernet\n", "Outerwall\n", "Outfit7\n", "Outlier\n", "OutStart\n", "OUYA\n", "Ovatemp\n", "Over\n", "Overhead\n", "Overnight\n", "Overtime\n", "Owlin\n", "ownCloud\n", "OYO\n", "Ozlo\n", "OZON\n", "Pacifica\n", "Pack\n", "Pad\n", "Paddle8\n", "PadMapper\n", "PaeDae\n", "Page365\n", "PageCloud\n", "PageLever\n", "Pager\n", "PagerDuty\n", "Pagevamp\n", "Paidpiper\n", "Paidy\n", "Paintzen\n", "Paktor\n", "Palace\n", "Palaround\n", "Palm\n", "Palringo\n", "Paltalk\n", "PAM\n", "Pamper\n", "Panasonic\n", "Panaya\n", "Panda\n", "PandaWhale\n", "panels\n", "Panono\n", "Pantry\n", "Panzura\n", "Paper+li\n", "PAPER\n", "Paperspace\n", "ParAccel\n", "Parachut\n", "Paracosm\n", "Paragraph\n", "Parallels\n", "Parature\n", "PARC\n", "Parcel\n", "ParcelBright\n", "Parchment\n", "Parenthoods\n", "Paribus\n", "Parklet\n", "ParkWhiz\n", "Parliament\n", "Parlio\n", "Parrot\n", "Parse\n", "ParStream\n", "Partner\n", "Pascal\n", "Passport\n", "PasswordBox\n", "Passworks\n", "PastBook\n", "Pastebin\n", "Path+To\n", "Path\n", "Pathbrite\n", "Pathmapp\n", "PathSource\n", "Pathwright\n", "Pattern\n", "Patton\n", "Pause\n", "Pavlok\n", "PAX\n", "Paydiant\n", "PayDivvy\n", "PayDragon\n", "PayLane\n", "Paylib\n", "PayNearMe\n", "PayPal\n", "PayStand\n", "Paytm\n", "PayU\n", "Payvment\n", "PBS\n", "PCalc\n", "PCI\n", "Peakon\n", "Peapod\n", "Pearltrees\n", "Pearson\n", "Peatix\n", "Pebble\n", "PediaPress\n", "Pedius\n", "Peecho\n", "Peekaboo\n", "Peeks\n", "Peekster\n", "Peel\n", "PeepCode\n", "Peeple\n", "Peer39\n", "Peerby\n", "PeerIndex\n", "PeerStreet\n", "Pegatron\n", "PEN\n", "Penultimate\n", "Penxy\n", "People+\n", "People+ai\n", "PeopleBrowsr\n", "Peoplefluent\n", "Pepperdata\n", "PepperTap\n", "Percentil\n", "Percival\n", "Percolate\n", "Perfect\n", "Perion\n", "Perk+com\n", "Permira\n", "PernixData\n", "Perpetu\n", "Perpetually\n", "PersistIQ\n", "Personal\n", "Pertino\n", "PETA\n", "PetHub\n", "Petnet\n", "Pexip\n", "Peyman\n", "Pharmly\n", "Pheed\n", "Philly\n", "Philo\n", "PhilterIt\n", "PHIND\n", "Phoenix\n", "Phonedeck\n", "PhoneFactor\n", "Phonio\n", "Phononic\n", "Phonotonic\n", "Phonvert\n", "Phosphorus\n", "Photobucket\n", "Photoful\n", "Photomyne\n", "Photoshop\n", "PhotoSpotLand\n", "PHP\n", "Pi\n", "Piano\n", "Piazza\n", "Picattoo\n", "Piccsy\n", "Picfair\n", "Pick\n", "Pick1\n", "Picker\n", "Pickie\n", "Pickingo\n", "Picks\n", "PickTrace\n", "PiCloud\n", "PicMix\n", "PicMonkey\n", "PicnicHealth\n", "Picnik\n", "PicsArt\n", "Picturesqe\n", "Piece\n", "Pieceable\n", "PieSync\n", "PiinPoint\n", "Pijon\n", "PillPack\n", "PinClout\n", "Ping+it\n", "Ping\n", "Pingboard\n", "Pingdom\n", "Pingpad\n", "Pinion\n", "Pinpuff\n", "PinReach\n", "Pins\n", "Pinshape\n", "Pinspire\n", "Pinster\n", "Pinterest\n", "Pintics\n", "Pintrips\n", "Pinvolve\n", "Pinweel\n", "Pioneer\n", "Pipedrive\n", "PipelineDB\n", "Piqora\n", "Pirate3D\n", "Pirq\n", "Pitch\n", "Pitchbox\n", "Pivot3\n", "Pivotal\n", "PivotDesk\n", "Pixable\n", "Pixate\n", "Pixboom\n", "Pixel\n", "Pixelapse\n", "Pixelpipe\n", "Pixeom\n", "Pixloo\n", "Pizza+de\n", "Placecast\n", "Placed\n", "PlaceIQ\n", "Placemeter\n", "Placester\n", "Plaid\n", "Plain\n", "Plan\n", "Planday\n", "Plane\n", "PlanGrid\n", "Planspot\n", "Planted\n", "Plated\n", "PlateJoy\n", "Platfora\n", "Platform\n", "Playbasis\n", "Playdek\n", "Playdemic\n", "Playdom\n", "Player+me\n", "PlayerScale\n", "Playfire\n", "Playfish\n", "PlayHaven\n", "Playlab\n", "Playlists+net\n", "Playmatics\n", "PlaySay\n", "Playsino\n", "PlaySquare\n", "Playtox\n", "Please\n", "PledgeCents\n", "Pleek\n", "Plenummedia\n", "Plex\n", "Pley\n", "Plink\n", "Plivo\n", "Plizy\n", "Ploom\n", "Plugaway\n", "Plukka\n", "Plumbr\n", "PLUMgrid\n", "Pluralis\n", "Pluralsight\n", "Plus\n", "Pluto\n", "Plyfe\n", "Plympton\n", "PMA\n", "PoachIt\n", "Podio\n", "PodShare\n", "Pokémon\n", "Politix\n", "Politwoops\n", "Polls\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Polo\n", "Polycom\n", "Polymer\n", "Polyvore\n", "Poncho\n", "Pond5\n", "PonoMusic\n", "Pop\n", "Popcorn\n", "Poppin\n", "Pops\n", "Popset\n", "Poptip\n", "Populis\n", "Porch\n", "Pornhub\n", "Porsche\n", "Portfolium\n", "Poshmark\n", "Posmetrics\n", "Posse\n", "Postable\n", "Postcard\n", "Posterous\n", "PostGhost\n", "Postgres\n", "Posthaven\n", "Postini\n", "Postman\n", "Postmaster\n", "Postmates\n", "PostRocket\n", "PostUp\n", "Postwire\n", "Pounce\n", "Povio\n", "PowaTag\n", "PowerInbox\n", "PowerPoint\n", "PowerReviews\n", "Powerset\n", "Powhow\n", "Poynt\n", "Pozitron\n", "PPI\n", "Practo\n", "Prakash\n", "Preact\n", "PreApps\n", "PrecisionHawk\n", "PredictionIO\n", "Predictive\n", "PredictSpring\n", "Predix\n", "Prefundia\n", "Premier\n", "Prenetics\n", "PrePay\n", "PrePlay\n", "PrepWork\n", "Presence\n", "Press\n", "Pressfolios\n", "Pressly\n", "PrestaShop\n", "Prete\n", "Prevent\n", "Prezi\n", "Price\n", "Priceonomics\n", "Priest\n", "Prim\n", "PrimeSense\n", "Print+io\n", "Print\n", "Printful\n", "Printhug\n", "Printoo\n", "Prior\n", "Privacy\n", "PrivacyStar\n", "Privalia\n", "PrivateCore\n", "Prize\n", "Prizeo\n", "Pro+com\n", "ProBoards\n", "Procera\n", "Procured\n", "Producteev\n", "Profig\n", "ProfitBricks\n", "ProFounder\n", "Progressly\n", "Promoboxx\n", "PromoJam\n", "Promote\n", "Prompt+ly\n", "Property\n", "Propstack\n", "PROskore\n", "Protag\n", "Protect\n", "Proto+io\n", "ProtonMail\n", "Proud\n", "Provender\n", "Providence\n", "providers\n", "Prowl\n", "Proxy\n", "Prss\n", "PRX\n", "Prysm\n", "Pryte\n", "PSafe\n", "PSG\n", "PTT\n", "Public\n", "Publicize\n", "Publishizer\n", "Publons\n", "PubNub\n", "Pubslush\n", "Pulsate\n", "Pulselocker\n", "PumpUp\n", "Punch\n", "Punchbowl\n", "Punchcard\n", "Punchfork\n", "PunchTab\n", "Pundit\n", "Puppet\n", "Purch\n", "Pure\n", "PureVPN\n", "PureWrist\n", "Purism\n", "Pursway\n", "Pushbullet\n", "Pusher\n", "PushPage\n", "Puzzle\n", "Puzzlephone\n", "PX\n", "Pyne\n", "Pypestream\n", "Pyxis\n", "Q4\n", "Qalendra\n", "Qardio\n", "QASymphony\n", "Qik\n", "Qlika\n", "Qloo\n", "QOOQ\n", "Qosmos\n", "Qplay\n", "QR\n", "Qriously\n", "QSAlpha\n", "Qualcomm\n", "Qualtrics\n", "Qualys\n", "Quandoo\n", "Quantcast\n", "Quantifind\n", "Quantum\n", "Quarterly\n", "Quartet\n", "Quartzy\n", "Quattrocento\n", "Qubit\n", "Quepasa\n", "Quest\n", "Quettra\n", "Queue\n", "Quickoffice\n", "QuickPay\n", "Quik\n", "Quikkly\n", "Quikr\n", "Quill\n", "Quinn\n", "Quip\n", "Quiqup\n", "Quirky\n", "Quixey\n", "Quizlet\n", "Qumulo\n", "Quora\n", "Quotle\n", "Quri\n", "QVC\n", "Qwaya\n", "Qwerky\n", "Qwiki\n", "Qwilr\n", "Qype\n", "R\\GA\n", "R_GA\n", "Rackspace\n", "RackWare\n", "Rad\n", "Radar\n", "Radian\n", "Radian6\n", "Radical+FM\n", "Radionomy\n", "RadioPublic\n", "RadioShack\n", "RadiumOne\n", "Radoop\n", "RadPad\n", "Rafter\n", "Rainmaker\n", "RakNet\n", "Rakuten\n", "Rally+org\n", "Random\n", "Randstad\n", "Ranger\n", "RankBoards\n", "Ranker\n", "Rapchat\n", "Rapid7\n", "RapidMiner\n", "Rapportive\n", "Raspberry\n", "Rate\n", "Ravi\n", "Ravti\n", "Raydiance\n", "Razer\n", "Razorpay\n", "RCS\n", "Rdio\n", "RDS\n", "Reachli\n", "Reactions\n", "Reactor\n", "Read\n", "Reader\n", "Readmill\n", "ReadWrite\n", "Readyforce\n", "ReadyForZero\n", "Reagan+com\n", "RealCrowd\n", "RealDirect\n", "RealScout\n", "Realtidbits\n", "Reamaze\n", "Rearden\n", "REBBL\n", "Rebel\n", "Rebelle\n", "RebelMouse\n", "ReBoard\n", "Rebtel\n", "Reco\n", "Recombine\n", "RecruitLoop\n", "Recurly\n", "Redbeacon\n", "Redbooth\n", "Redbox\n", "reddit\n", "RedditGifts\n", "RedDoorz\n", "Redfin\n", "Redkite\n", "RedKix\n", "RedLaser\n", "RedMart\n", "Redpoint\n", "Reebee\n", "Reebonz\n", "Reeder\n", "Reedsy\n", "Reelio\n", "ReelSurfer\n", "Referly\n", "Refinery29\n", "Reflektion\n", "RefME\n", "Refresh+io\n", "Refresh\n", "RefreshBox\n", "Regalii\n", "Registry\n", "RegistryLove\n", "REI\n", "Reiss\n", "Reissued\n", "reKiosk\n", "RelateIQ\n", "Relcy\n", "Relevance\n", "Reliance\n", "Remitly\n", "Remus\n", "RenéSim\n", "Rent2Buy\n", "Rentecarlo\n", "Rentlord\n", "Rentmatic\n", "RentSocial\n", "Repixl\n", "Repost\n", "reps\n", "Reputation+com\n", "Request\n", "Rescale\n", "ResearchGate\n", "ReservationHop\n", "Reserve\n", "Reserverr\n", "ReskillUSA\n", "ResolutionTube\n", "Restaurant-Kritik\n", "Restorando\n", "Results\n", "retailer\n", "RetailNext\n", "Retale\n", "ReTargeter\n", "Retina\n", "Retrace\n", "Retrofit\n", "Reuters\n", "Revel\n", "Revelator\n", "Reverb+com\n", "Reverb\n", "Revl\n", "Revolut\n", "Revolution\n", "RevUpNet\n", "Rewardli\n", "RewardLoop\n", "REX\n", "Rhapsody\n", "Rhinobird\n", "Rhombus\n", "Ribbit\n", "Ribbon\n", "Richard\n", "Richardson\n", "Rickshaw\n", "Ride\n", "Ridejoy\n", "Riley\n", "Riney\n", "Ringadoc\n", "Ringblingz\n", "RingCentral\n", "Ringly\n", "Ringya\n", "Riot\n", "Ripples\n", "Rivigo\n", "Rixty\n", "RJMetrics\n", "Roadie\n", "Roadster\n", "Roadtrippers\n", "Roambi\n", "Roamz\n", "Robinhood\n", "Robocat\n", "Robocoin\n", "RoboEarth\n", "Robotbase\n", "Robotiky\n", "Roca\n", "Rocana\n", "Roche\n", "Rockbot\n", "RocketBank\n", "RocketClub\n", "RocketFrog\n", "Rocketmiles\n", "Rocketmine\n", "Rocketrip\n", "RocketSpace\n", "Rockmelt\n", "Rockpack\n", "Rodeo\n", "RogerVoice\n", "ROIKOI\n", "Roku\n", "Rolex\n", "ROLI\n", "Rollout+io\n", "Rolltape\n", "Rondee\n", "Ronin\n", "ROOBO\n", "Roombeats\n", "Roomblocker\n", "Roomer\n", "Roomi\n", "Roomlia\n", "Roomorama\n", "Rooster\n", "Roposo\n", "Rose\n", "Rosetta\n", "Rossum\n", "Rothschild\n", "Rounds\n", "Routific\n", "RSA\n", "RSVP\n", "RT\n", "RTI\n", "Rubrik\n", "Ruby\n", "Ruckus\n", "Rumgr\n", "Runa\n", "Runfaces\n", "Runkeeper\n", "Runscope\n", "Runtastic\n", "RupeePower\n", "Rust\n", "Rutube\n", "Rypple\n", "Rythm\n", "Ryzing\n", "S4\n", "SaaS\n", "Saavn\n", "Saber\n", "Safaricom\n", "Safello\n", "Saffronart\n", "Saga\n", "Saida\n", "Sailo\n", "Sailthru\n", "Sainsbury’s\n", "Salary+com\n", "Salesforce\n", "SalesforceIQ\n", "Salesfusion\n", "SalesGossip\n", "SalesVu\n", "Salonmeister\n", "Salorix\n", "Salted\n", "SAM\n", "Samba\n", "Samos\n", "Samson\n", "Sanbolic\n", "Sanders\n", "Sandglaz\n", "SanDisk\n", "SaneBox\n", "Sansan\n", "SAP\n", "Sapho\n", "Satago\n", "Satechi\n", "Satellogic\n", "Save\n", "Savings+com\n", "SavingStar\n", "Savioke\n", "Savored\n", "Sawyer\n", "Say\n", "Saya\n", "ScaleArc\n", "ScaleBase\n", "Scandy\n", "Scarosso\n", "SCC\n", "Scenery\n", "Scentbird\n", "Schaft\n", "Scheduler\n", "Schibsted\n", "Schiller\n", "Schneider\n", "Scholly\n", "Schoola\n", "Schoology\n", "Schools\n", "Schrader\n", "Schramm\n", "Schuler\n", "Science\n", "ScienceLogic\n", "Scientia\n", "Scoop+it\n", "Scopely\n", "ScoreBeyond\n", "Scosche\n", "Scotiabank\n", "Scott\n", "Scoutmob\n", "Screen\n", "Screenhero\n", "ScribbleLive\n", "Scribd\n", "Scribit\n", "Scringo\n", "Scripted+com\n", "Scriptlance\n", "Scroll\n", "Scrumpt\n", "Sculpt\n", "SE\n", "Seahorse\n", "Seamless\n", "SeamlessDocs\n", "Sears\n", "SeatGeek\n", "SeatID\n", "Seatwave\n", "SEB\n", "Sebastian\n", "Seclore\n", "SecondMarket\n", "Seconds\n", "Secret+li\n", "Seculert\n", "Securifi\n", "Secusmart\n", "seed\n", "Seedcamp\n", "SeedCloud\n", "SeedInvest\n", "Seedling\n", "SeedPlus\n", "Seedrs\n", "Seelio\n", "Seenth+is\n", "Seeqnce\n", "Seerslab\n", "Seesaw\n", "Seesmic\n", "SeeWhy\n", "Segway\n", "Seiko\n", "Selective\n", "Selequity\n", "Selerity\n", "Self\n", "Selfie\n", "Selfycart\n", "Sellfy\n", "Selphee\n", "Send\n", "SendGrid\n", "SendHub\n", "Sendicate\n", "Sensay\n", "Sense360\n", "Sensegon\n", "Sensel\n", "Sensinode\n", "SensioLabs\n", "Sensorberg\n", "Sensoria\n", "SenSprout\n", "Senzari\n", "Serco\n", "Seriously\n", "Serverless\n", "ServiceMesh\n", "ServisHero\n", "Servy\n", "SessionM\n", "Set\n", "Setster\n", "Seven\n", "SevenFifty\n", "Sevenhugs\n", "SevenVentures\n", "Sex+com\n", "SFR\n", "Shadow\n", "Shaka\n", "Shake\n", "Shaker\n", "Shape\n", "Shaper\n", "ShapeUp\n", "Shapeways\n", "Shapr\n", "Sharalike\n", "Sharecare\n", "Shared\n", "ShareGrid\n", "SharesPost\n", "ShareThis\n", "Sharethrough\n", "Sharetribe\n", "Sharewall\n", "Shark\n", "Shasta\n", "Shazam\n", "Shelf\n", "Shellhammer\n", "Sher+ly\n", "Sherpaa\n", "Shine\n", "Shinola\n", "ShipBob\n", "ShipHawk\n", "Shippable\n", "ShipStation\n", "Shipwire\n", "ShoCard\n", "ShoeDazzle\n", "Shoobs\n", "ShoorK\n", "Shoot\n", "Shopa\n", "Shopcade\n", "ShopFully\n", "Shopgate\n", "Shopify\n", "shopkick\n", "Shopline\n", "ShopLocket\n", "ShopLogic\n", "Shopmium\n", "Shopmox\n", "Shoppable\n", "ShopPad\n", "ShopperTrak\n", "ShopSavvy\n", "ShopSocially\n", "Shoptiques\n", "Shopular\n", "Shopwave\n", "Shopzilla\n", "ShoreTel\n", "ShortForm\n", "Shorts\n", "Shotclock\n", "Shotput\n", "Shoutlet\n", "Showcase\n", "ShowMe\n", "Showpad\n", "Shpock\n", "Shuddle\n", "Shutl\n", "Shutterfly\n", "Shutterstock\n", "ShuttleCloud\n", "Shuttlecook\n", "Shuttleworth\n", "Shyp\n", "Shypmate\n", "Siasto\n", "Sidebark\n", "Sidestage\n", "Sidestep\n", "Sifteo\n", "Siftery\n", "Sightly\n", "Sigma\n", "Sign2Pay\n", "Signal\n", "Signpost\n", "SigOpt\n", "Sikka\n", "Silp\n", "Silver\n", "Silvercar\n", "Silverpop\n", "SilverPush\n", "SIM\n", "SIMI\n", "SimilarTech\n", "SimilarWeb\n", "Siminars\n", "SimpleCitizen\n", "Simplee\n", "SimpleHoney\n", "SimpleLegal\n", "SimplePrints\n", "SimpleReach\n", "SimpleTuition\n", "Simplify360\n", "Simplilearn\n", "SimpliVity\n", "Simplr\n", "SimplyInsured\n", "Sina\n", "Sincerely\n", "SinDelantal+Mx\n", "SinglePlatform\n", "Singly\n", "Singtel\n", "Singtrix\n", "SIP\n", "Siri\n", "SirionLabs\n", "SIRUM\n", "Sisense\n", "SITA\n", "Sitedrop\n", "SiteScout\n", "SiteTagger\n", "SittingAround\n", "SixDoors\n", "SizeUp\n", "Skedaddle\n", "Sketch\n", "SketchDeck\n", "Sketchfab\n", "SketchUp\n", "Skift\n", "Skillbridge\n", "SkillPages\n", "Skills\n", "Skillshare\n", "Skillz\n", "Skim\n", "Skimbox\n", "Skimlinks\n", "SkinVision\n", "Skit\n", "Skitch\n", "Skout\n", "Skriware\n", "Sky\n", "SkyBell\n", "Skycatch\n", "Skycure\n", "Skydio\n", "Skyera\n", "SkyGiraffe\n", "SkyHealth\n", "Skymind\n", "Skype\n", "SkyPhrase\n", "Skyscanner\n", "SkySpecs\n", "Slack\n", "SleepSense\n", "Slice\n", "Slick\n", "SlickFlick\n", "Slidebox\n", "SlideIdea\n", "Slidejoy\n", "SlideMail\n", "SlideRocket\n", "Slim\n", "SlimPay\n", "Slingbox\n", "Slinger\n", "Slingo\n", "Slush\n", "Smaato\n", "Smarkets\n", "Smarsh\n", "Smart\n", "SmartAsset\n", "Smarterer\n", "SmartHires\n", "SmartNews\n", "SmartNotify\n", "SmarTots\n", "SmartRecruiters\n", "Smartsheet\n", "SmartSync\n", "SMASHD\n", "SmashFly\n", "Smava\n", "Smigin\n", "Smiirl\n", "Smith\n", "SmoovUp\n", "SMS\n", "Smule\n", "Snackr\n", "SnapApp\n", "Snapcart\n", "Snapdeal\n", "SnapEDA\n", "Snapette\n", "Snapguide\n", "Snapjoy\n", "SnapKeys\n", "SnapKnot\n", "Snaplay\n", "SnapLogic\n", "SnapPages\n", "SnappyLabs\n", "Snaptee\n", "Snaptu\n", "SnapUp\n", "Snapverse\n", "SNCF\n", "Sneeky\n", "Snips\n", "SnipSnap\n", "Snoox\n", "Snowball\n", "Snowden\n", "Snupps\n", "Snyk\n", "SOASTA\n", "Socar\n", "Socialbakers\n", "SocialBattles\n", "Socialcam\n", "SocialChorus\n", "SocialCode\n", "SocialCrunch\n", "SocialFlow\n", "SocialGuide\n", "SocialMart\n", "SocialPandas\n", "SocialPoint\n", "SocialRadar\n", "SocialRank\n", "SocialRent\n", "SocialShield\n", "Socialspiel\n", "Socialtext\n", "SocialTwist\n", "Sociocast\n", "SocMetrics\n", "Socrative\n", "Sodisco\n", "SoftBank\n", "Softcard\n", "Softcover\n", "SoftLayer\n", "Softonic\n", "Sojern\n", "Sokikom\n", "Solair\n", "SolarCity\n", "Sold\n", "Soldsie\n", "Soli\n", "Solid\n", "Solidoodle\n", "Solinea\n", "Solocam\n", "Solum\n", "Soluto\n", "Solvate\n", "Somo\n", "Sonalight\n", "Sonatype\n", "Songbird\n", "Songdrop\n", "Songkick\n", "Songza\n", "Sonian\n", "Sonicbids\n", "Sonos\n", "Sony\n", "Sookasa\n", "Soompi\n", "Soon\n", "Sooqini\n", "Sophos\n", "SoPost\n", "Sorted\n", "Sosh\n", "SoSocio\n", "Soulmix\n", "SoundCloud\n", "SoundFocus\n", "Soundrop\n", "Sounds\n", "Soundsgood\n", "Soundtracker\n", "Soundwave\n", "Source\n", "Sourcebits\n", "SourceNinja\n", "Space\n", "SpaceSplitter\n", "SpaceX\n", "Spacio\n", "Spangle\n", "SpareMin\n", "Sparkcentral\n", "SparkLabs\n", "SparkReel\n", "Sparks\n", "Sparta\n", "Spartan\n", "Spartoo\n", "Spawnsong\n", "Spayce\n", "Speakaboos\n", "Spectre\n", "Spectrm\n", "Speedo\n", "Speek\n", "Spendesk\n", "Sphero\n", "Spiegel\n", "Spin\n", "Spindle\n", "Spinlister\n", "Spinnakr\n", "Spitz\n", "Splacer\n", "Splash+FM\n", "SplashPost\n", "Splunk\n", "Splurgy\n", "Sponsify\n", "SponsorHub\n", "Spool\n", "Spoolee\n", "Spoon\n", "Spoonflower\n", "SpoonRocket\n", "Spoqa\n", "Sportradar\n", "SportsHero\n", "SportsQuest\n", "SportStream\n", "Spot+IM\n", "Spotbros\n", "Spotcap\n", "Spotfund\n", "Spotify\n", "Spotivate\n", "SpotlessCity\n", "Spots\n", "Spotsetter\n", "Spotwag\n", "Spraffl\n", "Spreaker\n", "Spredfast\n", "Spreedly\n", "Sprightly\n", "Spring+me\n", "Springer\n", "Springpad\n", "SprinkleBit\n", "Sprinklr\n", "Spritz\n", "SproutCore\n", "Sproutkin\n", "Spruceling\n", "SPSS\n", "SQFT\n", "Sqord\n", "Sqreen\n", "Sqrrl\n", "Square\n", "SquareOne\n", "Squarespace\n", "Squawka\n", "Sr+Pago\n", "SRCH2\n", "ST-Ericsson\n", "STABiLGO\n", "StackEngine\n", "Stackla\n", "Stacklist\n", "StackMob\n", "StackPath\n", "Stacks\n", "Staffjoy\n", "Stage\n", "Stamp+it\n", "Stamped\n", "Stamper\n", "Stampery\n", "Stamplay\n", "Stamplia\n", "Standard\n", "StandWith\n", "Stanley\n", "Staples\n", "Starbucks\n", "Stardoll\n", "StarOfService\n", "Starship\n", "StarStreet\n", "Start-Up\n", "StartApp\n", "StartUp\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Startupbootcamp\n", "StartupBus\n", "StartupDigest\n", "StartupHighway\n", "Startupi\n", "Startups+co\n", "Startups\n", "StartupYard\n", "StartWire\n", "StartX\n", "Starwood\n", "State\n", "Station\n", "StatMuse\n", "StatusPage\n", "Statwing\n", "Stauffer\n", "Stay+com\n", "Stayzilla\n", "SteelBrick\n", "SteelHouse\n", "SteelSeries\n", "Steinberg\n", "StellaService\n", "Steller\n", "Stepes\n", "Stephens\n", "Stevie\n", "STI\n", "Stichy\n", "Stick\n", "Stickam\n", "Stickers\n", "StickNFind\n", "Sticky\n", "Stik\n", "Stingray\n", "Stipple\n", "Stir\n", "Stitcher\n", "Stocard\n", "Stocksy\n", "StockTwits\n", "Stone\n", "Stonesoft\n", "StopTheHacker\n", "StoreDot\n", "storefront\n", "Storify\n", "Storm8\n", "StormTag\n", "StorSimple\n", "StoryBox\n", "Storybricks\n", "Storycode\n", "StoryDesk\n", "Storyful\n", "Storylane\n", "StraighterLine\n", "Strap\n", "Strata\n", "Stratasys\n", "Stratos\n", "Stratumn\n", "Strava\n", "Strayboots\n", "Streak\n", "Streamroot\n", "Streamweaver\n", "Streem\n", "StreetEasy\n", "Streetlife\n", "Streetline\n", "StrikeAd\n", "Stringr\n", "Strings\n", "Stripe\n", "StrongLoop\n", "Structure\n", "Struq\n", "Stuart\n", "Stubb\n", "StubHub\n", "Studios\n", "StudyBlue\n", "Studypool\n", "StudyRoom\n", "Stuffle\n", "StumbleUpon\n", "Stupeflix\n", "StyleCard\n", "StyleCaster\n", "Stylect\n", "StyleSeat\n", "StyleSeek\n", "StyleTread\n", "Stylight\n", "Stypi\n", "Submittable\n", "SubPac\n", "Subway\n", "SugarCRM\n", "SugarSync\n", "Sugru\n", "Suite\n", "Suiteness\n", "Sullivan\n", "SumAll\n", "Summa\n", "Summer\n", "Summify\n", "Summly\n", "Sumo\n", "Sumpto\n", "SumUp\n", "Sundance\n", "Sundar\n", "SundaySky\n", "Sunglass\n", "Suning\n", "Sunlight\n", "Sunstone\n", "Supahands\n", "SupaPass\n", "Supdate\n", "SuperAwesome\n", "Superb\n", "Supercell\n", "Superfeedr\n", "Supersonic\n", "Supple\n", "Surf\n", "SurfEasy\n", "Surge\n", "SurveyMonkey\n", "Sush+io\n", "Susie\n", "Sutro\n", "Svpply\n", "Svyaznoy\n", "Swagbucks\n", "Swap+com\n", "Swapbox\n", "Swapt\n", "Swarmly\n", "Swatch\n", "Sweep\n", "Sweeten\n", "SweetLabs\n", "Swell\n", "SwiftGift\n", "SwiftKey\n", "Swiftype\n", "Swiggy\n", "Swill\n", "Swipp\n", "Swisscom\n", "Switchcam\n", "Swrve\n", "Swyft\n", "Swype\n", "Swytch\n", "Syapse\n", "Sygic\n", "Sylaps\n", "Symantec\n", "Symplified\n", "Synacor\n", "SynapSense\n", "Synapsify\n", "Synaptics\n", "Synata\n", "Sync+ME\n", "Syncapse\n", "Synchronica\n", "Syncplicity\n", "Syncsort\n", "SyndicateRoom\n", "Synergyse\n", "Synkio\n", "Synology\n", "Synthesio\n", "Sysomos\n", "Systems\n", "Sywork\n", "T-Mobile\n", "TabbedOut\n", "Tabber\n", "Tableau\n", "TableGrabber\n", "Taboola\n", "TabTale\n", "Tackk\n", "Taco\n", "TacoCopter\n", "TaDaweb\n", "TAG\n", "Tagboard\n", "Tagg\n", "Taggar\n", "Tagged\n", "Taggstar\n", "Tagstand\n", "Tagwhat\n", "Tail\n", "Tailor\n", "Tailwind\n", "TakeLessons\n", "Talend\n", "Talent\n", "TalentBin\n", "TalentSky\n", "Taleo\n", "Talk+co\n", "Talk\n", "TalkBin\n", "Talkdesk\n", "Talko\n", "Talkspace\n", "TalkTo\n", "Talkwheel\n", "Talkz\n", "Tame\n", "Tampax\n", "Tamr\n", "Tango\n", "Tank\n", "Tanner\n", "Taobao\n", "Tap\n", "Tapad\n", "Tapastreet\n", "TapCanvas\n", "TapCommerce\n", "Tapdaq\n", "TapEngage\n", "TapFame\n", "Tapglue\n", "TapHeaven\n", "Tapingo\n", "Tapit\n", "Tapjoy\n", "Tapkast\n", "Taplister\n", "Taplytics\n", "TappIn\n", "TappingStone\n", "Taps\n", "TapSense\n", "Tapstack\n", "Tapstream\n", "Tapsule\n", "Taptu\n", "Tapulous\n", "Tapvalue\n", "Target\n", "Tarlton\n", "Taskhub\n", "TaskRabbit\n", "Taskworld\n", "taste\n", "Tastebud\n", "Tastebuds\n", "Tastemade\n", "TastemakerX\n", "Tastemates\n", "Tate\n", "Tattoodo\n", "Taulia\n", "Tawkers\n", "Taxi\n", "TaxiMonger\n", "Taykey\n", "Taylor\n", "TCG\n", "TCV\n", "Teabox\n", "Teads\n", "Teal\n", "Tealium\n", "Teams\n", "Tech+eu\n", "TechCrunch\n", "TechLaunch\n", "Techlist\n", "Technopolis\n", "Technorati\n", "Techstars\n", "Techy\n", "Teckler\n", "Tectonic\n", "TED\n", "Tedemis\n", "TeePublic\n", "Teespring\n", "Teewe\n", "Teleborder\n", "Teleca\n", "Telecast\n", "Telecom\n", "Telefonica\n", "Telefónica\n", "Telegram\n", "Telegraph\n", "Telenor\n", "Telepathic\n", "Telerik\n", "Telesocial\n", "Teleza\n", "TellApart\n", "Tellem\n", "Teller\n", "Tello\n", "Telogis\n", "Telstra\n", "Temnos\n", "Tempdrop\n", "Tend+ai\n", "TenderTree\n", "Tenor\n", "tenXer\n", "Tep\n", "Teradata\n", "Terascore\n", "Terminal\n", "Terrafugia\n", "TerraTalk\n", "TerrAvion\n", "Tesco\n", "TestChameleon\n", "TestFlight\n", "Testing\n", "TestObject\n", "Tethercell\n", "TetraScience\n", "TextMaster\n", "TextMe\n", "textPlus\n", "TextTeaser\n", "Textura\n", "ThankView\n", "Thanx\n", "THB\n", "theAudience\n", "TheFamily\n", "Thefuture+fm\n", "TheIceBreak\n", "Themer\n", "Theranos\n", "Thermodo\n", "ThingLink\n", "Things\n", "Thingsee\n", "Thinkful\n", "Thinkfuse\n", "ThinkGrid\n", "Thinknum\n", "ThirdLove\n", "Thirdshelf\n", "Thirst\n", "Thismoment\n", "Thistle\n", "Thomson\n", "Thomvest\n", "Thorn\n", "ThoughtSTEM\n", "ThousandEyes\n", "Threadflip\n", "ThreatMetrix\n", "thredUP\n", "Threes\n", "ThriveHive\n", "ThriveTracker\n", "Thumb\n", "Thumbtack\n", "Thunder\n", "Thurst\n", "tibbr\n", "Ticketbis\n", "Ticketfly\n", "Ticketmaster\n", "Tictail\n", "Tide\n", "Tidemark\n", "TiE\n", "Tigerlabs\n", "TigerText\n", "Tiiny\n", "Tikker\n", "Tile\n", "Tilt\n", "Timbre\n", "Timehop\n", "Timekiwi\n", "Timeline\n", "timeshel\n", "Timeular\n", "Tinder\n", "Tindie\n", "Ting\n", "Tingbot\n", "Tinggal\n", "Tinitell\n", "Tink\n", "Tinkergarten\n", "Tint\n", "Tintri\n", "Tinybop\n", "Tinychat\n", "Tinyclues\n", "TinyTap\n", "Tipbit\n", "Tipflare\n", "Tippr\n", "Tissot\n", "TiVo\n", "Tivoli\n", "Tizen\n", "Todacell\n", "TodayTix\n", "Togethera\n", "Toggle\n", "TokBox\n", "Tokopedia\n", "Tomcar\n", "Tomfoolery\n", "Tonara\n", "Tonic\n", "Tonight\n", "Tonsser\n", "Toolbox+com\n", "Toonimo\n", "Toothpick\n", "Top10\n", "TopCoder\n", "Topguest\n", "Topick\n", "Topics\n", "Toptal\n", "Tor\n", "Torbit\n", "Toro\n", "Toronto\n", "Torque\n", "Tote\n", "Totlol\n", "Totsy\n", "TOTVS\n", "Touch\n", "TouchBistro\n", "TouchCast\n", "TouchTen\n", "Tour\n", "TourCommand\n", "TourPal\n", "Tout\n", "ToutApp\n", "Trackbuster\n", "TrackDuck\n", "Trackin\n", "TrackR\n", "Tracks+by\n", "Tracks\n", "Tracky\n", "tracx\n", "Tracxn\n", "Tracy\n", "Trade\n", "Tradedoubler\n", "TradeGecko\n", "TradeHero\n", "Trademob\n", "Tradeshift\n", "TradingView\n", "TRAFI\n", "Trainline\n", "Traity\n", "TrakInvest\n", "Transcoder\n", "Transcriptic\n", "TranServ\n", "TransferGo\n", "TransferWise\n", "Transifex\n", "Transit\n", "Trapit\n", "Travel+ru\n", "TravelPerk\n", "Travis\n", "Trax\n", "Traxo\n", "Traxpay\n", "tray+io\n", "Treasure\n", "Treatwell\n", "TrekkSoft\n", "Trellie\n", "Trello\n", "Trending\n", "TrendKite\n", "Trendrr\n", "TrendSpottr\n", "Trent\n", "TreSensa\n", "Tresorit\n", "Trestle\n", "Trialfire\n", "TrialPay\n", "Tribeca\n", "Tribesports\n", "Triblio\n", "Trifacta\n", "Trigger\n", "Triller\n", "Trilogy\n", "Trim\n", "Trio\n", "TripAdvisor\n", "Tripbirds\n", "Tripda\n", "TripIt\n", "Tripl\n", "TripleLift\n", "TripleMint\n", "Tripod\n", "Triposo\n", "Trippy\n", "Tripshare\n", "Triptease\n", "Triptrotting\n", "Tron-Club\n", "Trooly\n", "Tropo\n", "Tru\n", "True\n", "TrueAccord\n", "Truebill\n", "Truecaller\n", "TrueFacet\n", "TrueStart\n", "TrueVault\n", "Trulia\n", "Trulioo\n", "Trunk\n", "Trunkt\n", "Truphone\n", "Trusk\n", "Trusted\n", "TrustedCompany+com\n", "Trusteer\n", "TrustEgg\n", "Trustev\n", "Trustpilot\n", "TRVL\n", "TSMC\n", "TTS\n", "Tubular\n", "Tudou\n", "Tuition+io\n", "Tule\n", "Tune\n", "TuneCore\n", "TuneIn\n", "Tunepics\n", "TuneUp\n", "TuneWiki\n", "Tung\n", "Turck\n", "TurningArt\n", "Turo\n", "Tutanota\n", "Tutorspree\n", "Tutum\n", "Tuurnt\n", "TVSmiles\n", "TweetDeck\n", "Tweetwall\n", "Twentify\n", "Twice\n", "Twiggle\n", "Twigmore\n", "Twigtale\n", "Twilio\n", "Twistory\n", "Twitch\n", "Twitmusic\n", "Twitpic\n", "Tyba\n", "Tykoon\n", "Tyler\n", "TYLT\n", "Tynker\n", "Tynt\n", "Type\n", "Typeform\n", "Tyro\n", "U\n", "uBeam\n", "Uber\n", "UberConference\n", "UberMedia\n", "Ubimo\n", "Ubiquisys\n", "Ubisoft\n", "Ubo\n", "Ubokia\n", "Ubooly\n", "Ubuntu\n", "UCP\n", "UCWeb\n", "Udacity\n", "Udemy\n", "Ulmon\n", "Ultimaker\n", "Ultra\n", "uMake\n", "Umano\n", "Umeng\n", "Umoove\n", "Unbabel\n", "UnboundID\n", "Underdog\n", "Underwood\n", "Undrip\n", "Unface+me\n", "Unified\n", "Unigo\n", "Unii\n", "Unilever\n", "Uniplaces\n", "Unison\n", "Unmetric\n", "Unmute\n", "Unreel+me\n", "Unruly\n", "Unsilo\n", "UP\n", "UPC\n", "UpDesk\n", "UpLabs\n", "Uppidy\n", "Uprising\n", "UPS\n", "Upstart\n", "Uptake\n", "UpTo\n", "Upverter\n", "Upworthy\n", "Uqora\n", "UrbanClap\n", "Urbane\n", "Urbanspoon\n", "UrbanStems\n", "Urbee\n", "Urbita\n", "URX\n", "USD\n", "UserEvents\n", "UserVoice\n", "Ushi\n", "USM\n", "Ustream\n", "UX\n", "V-Key\n", "Vaavud\n", "Vacatia\n", "Vadio\n", "Valassis\n", "Valeo\n", "Valkee\n", "ValoBox\n", "Vandrico\n", "Vanhawks\n", "Vanitee\n", "VaporChat\n", "Variety\n", "vArmour\n", "Vastrm\n", "VAT\n", "VCNC\n", "Vedantu\n", "Veenome\n", "Vello\n", "Velostrata\n", "Velti\n", "Vemory\n", "Venio\n", "Venmo\n", "Ventoura\n", "Venture\n", "Venturocket\n", "Venuelabs\n", "VenueNext\n", "Veoh\n", "Verbase\n", "Verbling\n", "Verdict\n", "Verelo\n", "Verge\n", "Veriflow\n", "Verifly\n", "Verious\n", "Verisart\n", "Versa\n", "Versly\n", "Vert\n", "Vertical\n", "VerticalResponse\n", "Vertro\n", "Vertu\n", "VetCloud\n", "Vettery\n", "Vevo\n", "VHX\n", "Via\n", "Viacom\n", "viaCycle\n", "Viadeo\n", "Vibe\n", "Vibease\n", "Viber\n", "Victor\n", "VictorOps\n", "Vidcode\n", "Viddsee\n", "Videdressing\n", "video\n", "VideoAmp\n", "VideoBlocks\n", "VideoElephant\n", "Videology\n", "Videopixie\n", "VideoSelfie\n", "VideoSlam\n", "Vidme\n", "VidMob\n", "Vidyard\n", "Viewbix\n", "Viewfinder\n", "Vigilent\n", "VigLink\n", "Viki\n", "Viking\n", "Vilynx\n", "Vimeo\n", "VINA\n", "Vinaya\n", "Vinci\n", "Vine\n", "Vinebox\n", "Vingle\n", "Vinli\n", "Vinomofo\n", "VIPKID\n", "Viralheat\n", "Virb\n", "Virool\n", "Virtru\n", "Virtual\n", "Virtuo\n", "VirtuOz\n", "Virtusize\n", "Virtustream\n", "Visa\n", "ViSalus\n", "ViSenze\n", "Visier\n", "Vision\n", "VISR\n", "Visual\n", "Visualead\n", "VisualGraph\n", "Visually\n", "Vita\n", "Vitacost\n", "Vital\n", "VitalFields\n", "VitaPortal\n", "Vite\n", "Vitra\n", "Vitrue\n", "Viv\n", "Viva\n", "VivaKi\n", "Vivaldi\n", "Vive\n", "Vivendi\n", "ViVu\n", "VizEat\n", "Vizify\n", "Vizury\n", "Vkontakte\n", "vLine\n", "Vlix\n", "VMFive\n", "VMware\n", "Vobi\n", "Vodafone\n", "Voddler\n", "Vogels\n", "VoiceBunny\n", "Voicegem\n", "Volley\n", "Volo\n", "VoloMetrix\n", "Voltus\n", "Voodoo\n", "VoodooPC\n", "Voonik\n", "Vortex\n", "Vorwerk\n", "Vostu\n", "Voter\n", "Votizen\n", "Vouch\n", "VouchedFor\n", "vox+io\n", "Voxeet\n", "Voxel\n", "Voxel8\n", "Voxer\n", "Voxsup\n", "Voxy\n", "Voyage\n", "Voyagin\n", "Voyat\n", "Voz+io\n", "vrAse\n", "Vringo\n", "Vroom\n", "Vrv\n", "VSCO\n", "VTech\n", "Vuclip\n", "Vue\n", "Vungle\n", "Vurb\n", "Vyte+in\n", "W3i\n", "Wadi\n", "Wag\n", "Wagon\n", "WaHome\n", "Wajam\n", "Wake\n", "Wakie\n", "Walgreens\n", "Walker\n", "WalkMe\n", "Wallace\n", "Wallapop\n", "Wallarm\n", "Wallet\n", "WalletKit\n", "Wallmob\n", "Walmart\n", "Wandera\n", "Wanderfly\n", "Wanderu\n", "WANdisco\n", "Wandoujia\n", "Wanova\n", "Want\n", "Wantering\n", "Wantful\n", "Wantster\n", "Wantworthy\n", "Wappwolf\n", "Ward\n", "Washbox\n", "Washio\n", "Watch\n", "WatchDox\n", "WatchMouse\n", "Watchsend\n", "Watchup\n", "Watchville\n", "Watchwith\n", "WaterO\n", "Waterstones\n", "Waterworks\n", "Watsi\n", "Wattpad\n", "Wavecell\n", "Wavee\n", "waves\n", "Wax\n", "Wayfair\n", "Wayin\n", "WAYN\n", "Wayra\n", "WayUp\n", "Waze\n", "Wealthfront\n", "WearToday\n", "WearYouWant\n", "Weathermob\n", "Weathernews\n", "WeatherPlanner\n", "WeatherSphere\n", "Weaveworks\n", "Web2go\n", "Webber\n", "Webedia\n", "WebEx\n", "Webflakes\n", "Webflow\n", "WebGL\n", "WebKit\n", "WebMD\n", "WebOS\n", "Webrazzi\n", "Webroot\n", "WebRTC\n", "Wedge\n", "WedPics\n", "Weebly\n", "Weekdone\n", "Weekly\n", "WeFinance\n", "WeHostels\n", "Weibo\n", "Weightless\n", "Weilos\n", "Weissman\n", "WeLab\n", "Welkio\n", "Well\n", "WellBiome\n", "WellPath\n", "Wellth\n", "Welltok\n", "WeMesh\n", "Wendel\n", "Weotta\n", "WePay\n", "Weplay\n", "Wercker\n", "Werkly\n", "WeShould\n", "WeStore\n", "WeTransfer\n", "WEVR\n", "WeWork\n", "Wharton\n", "what3words\n", "WhatRunsWhere\n", "WhatsApp\n", "Whatser\n", "Wheelz\n", "Wheretoget\n", "Whipclip\n", "WhipTail\n", "Whirlpool\n", "Whirlscape\n", "Whisk\n", "Whitepages\n", "Whitetruffle\n", "Whittl\n", "Whyd\n", "Wibbitz\n", "Wibiya\n", "Wickr\n", "Widdit\n", "Wifarer\n", "Wiggio\n", "Wiivv\n", "Wikets\n", "Wikia\n", "WikiLeaks\n", "Wikipad\n", "Wikipedia\n", "Wild\n", "Wiley\n", "Wileyfox\n", "Will\n", "WillCall\n", "Wilogo\n", "WiMP\n", "Winamp\n", "WinBeta\n", "Wind\n", "Windward\n", "Windy\n", "Wingsplay\n", "Wink\n", "Winnie\n", "Wiper\n", "WireOver\n", "Wiselike\n", "Wisely\n", "Wisembly\n", "Wisemetrics\n", "Wish\n", "Wishpond\n", "WishPop\n", "Wit+ai\n", "Withings\n", "Withlocals\n", "Witness\n", "Wittlebee\n", "Wix\n", "Wize\n", "Wochit\n", "Woisio\n", "Wolf\n", "Wolfe\n", "Women+com\n", "Wonderloop\n", "WonderLuk\n", "Wonga\n", "Wonpy\n", "Woobox\n", "Wooga\n", "Woojer\n", "Woollip\n", "Wooplr\n", "Woopra\n", "Woot\n", "Woozworld\n", "Wordeo\n", "WordPress\n", "Work4\n", "Workable\n", "Workato\n", "Workbench\n", "Workday\n", "Workestra\n", "Workflow\n", "Workfront\n", "Works\n", "Workshare\n", "Workshop\n", "Workspot\n", "WorldDesk\n", "WorldMate\n", "Worldpay\n", "WorldRemit\n", "Woven\n", "Wowo\n", "WPP\n", "Wranx\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Wrap\n", "Wrapify\n", "Wrapp\n", "Wriggle\n", "Wrike\n", "Written\n", "WrkRiot\n", "WudStay\n", "Wufoo\n", "Wurldtech\n", "wydr\n", "Wynd\n", "x\n", "xAd\n", "Xamarin\n", "XEED\n", "Xeneta\n", "Xero\n", "Xeround\n", "Xetum\n", "Xfers\n", "Xfire\n", "Xi3\n", "Xiaomi\n", "Xigo\n", "XING\n", "Xirrus\n", "XO\n", "Xola\n", "Xperia\n", "Xpire\n", "XPRIZE\n", "XSEDE\n", "Xunlei\n", "Xyo\n", "XYZE\n", "XYZprinting\n", "Yahoo\n", "Yamaha\n", "Yamli\n", "Yammer\n", "Yapp\n", "Yardsale\n", "Yarly\n", "Ybrain\n", "YCharts\n", "Yell\n", "Yelp\n", "Yemeksepeti\n", "YesGraph\n", "YesVideo\n", "Yesware\n", "Yetang\n", "Yeti\n", "Yext\n", "Yield\n", "Yieldify\n", "YieldKit\n", "Yo\n", "Yobongo\n", "Yodlee\n", "Yoga\n", "YogiPlay\n", "Yohann\n", "Yoics\n", "Yoke\n", "Yondr\n", "York\n", "Yoshi\n", "Yotpo\n", "Yottaa\n", "YouAppi\n", "YouEye\n", "Youku\n", "YouLike\n", "YouMagine\n", "Youmiam\n", "YouNoodle\n", "YouNow\n", "Your+MD\n", "Your\n", "YourBus\n", "YourSports\n", "YourTrove\n", "YouTube\n", "YouTurn\n", "YouView\n", "Youzee\n", "Yoyo\n", "Yozio\n", "YP\n", "YPlan\n", "Yumist\n", "Yunmake\n", "Z\n", "Z2\n", "Z4\n", "Zaarly\n", "Zabosu\n", "Zamurai\n", "Zap\n", "Zapier\n", "Zappli\n", "Zappos\n", "ZappRx\n", "Zattikka\n", "Zayo\n", "Zazzle\n", "Zazzy\n", "Zebra\n", "Zedge\n", "Zeekit\n", "Zeel\n", "Zeemi+tv\n", "Zeetings\n", "ZEFR\n", "Zello\n", "Zemanta\n", "Zen\n", "Zen99\n", "Zenamins\n", "ZenDeals\n", "Zendesk\n", "Zenefits\n", "Zenoti\n", "Zenprise\n", "Zentyal\n", "Zeo\n", "Zeplin\n", "zero\n", "ZeroCater\n", "ZestFinance\n", "Zhaopin\n", "Zhenai\n", "Zidisha\n", "ZigBee\n", "Zilingo\n", "Zillabyte\n", "Zillow\n", "Zimbra\n", "Zimperium\n", "Zimride\n", "Zinc\n", "Zingaya\n", "Zipcar\n", "ZipList\n", "Zipmark\n", "ZipMatch\n", "Zipments\n", "Zipongo\n", "ZipRecruiter\n", "Ziptask\n", "Zirtual\n", "Zite\n", "Zizoo\n", "ZMP\n", "Zofari\n", "Zoho\n", "Zola\n", "Zolt\n", "Zomato\n", "Zone\n", "Zoobe\n", "Zoobean\n", "Zoom\n", "Zoomdata\n", "Zoomingo\n", "Zoopla\n", "Zoosk\n", "Zopa\n", "Zopper\n", "Zortrax\n", "Zoute\n", "Zscaler\n", "Zuberance\n", "Zui\n", "Zula\n", "Zuli\n", "Zumbox\n", "Zumper\n", "Zuora\n", "Zuoyebang\n", "ZURB\n", "Zurf\n", "zVentures\n", "Zymergen\n", "Zynga\n", "Zynstra\n", "Zype\n" ] } ], "source": [ "dic = load_all_companies(\"./companies/\")" ] }, { "cell_type": "code", "execution_count": 321, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>authors</th>\n", " <th>category</th>\n", " <th>content</th>\n", " <th>date</th>\n", " <th>id</th>\n", " <th>img_src</th>\n", " <th>section</th>\n", " <th>tags</th>\n", " <th>title</th>\n", " <th>topics</th>\n", " <th>url</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>23</th>\n", " <td>Devin Coldewey</td>\n", " <td>Artificial Intelligence</td>\n", " <td>Want Google Assistant, but don’t want to spend...</td>\n", " <td>2016-10-12</td>\n", " <td>1401019.0</td>\n", " <td>https://tctechcrunch2011.files.wordpress.com/2...</td>\n", " <td>mobile/</td>\n", " <td>google-assistant</td>\n", " <td>Add Google Assistant to your phone by tweaking...</td>\n", " <td>android</td>\n", " <td>https://techcrunch.com/2016/10/12/add-google-a...</td>\n", " </tr>\n", " <tr>\n", " <th>26</th>\n", " <td>Frederic Lardinois</td>\n", " <td>Apps</td>\n", " <td>With Android Experiments, Google is giving its...</td>\n", " <td>2016-10-12</td>\n", " <td>1400778.0</td>\n", " <td>https://tctechcrunch2011.files.wordpress.com/2...</td>\n", " <td>mobile/</td>\n", " <td>app</td>\n", " <td>Google’s new Sprayscape app is purposely imper...</td>\n", " <td>google</td>\n", " <td>https://techcrunch.com/2016/10/12/spray-and-pray/</td>\n", " </tr>\n", " <tr>\n", " <th>30</th>\n", " <td>Sarah Perez</td>\n", " <td>Mobile</td>\n", " <td>Apple has unveiled its own official measuremen...</td>\n", " <td>2016-10-11</td>\n", " <td>1399959.0</td>\n", " <td>https://tctechcrunch2011.files.wordpress.com/2...</td>\n", " <td>mobile/</td>\n", " <td>NaN</td>\n", " <td>According to Apple’s official figures, iOS 10 ...</td>\n", " <td>apple</td>\n", " <td>https://techcrunch.com/2016/10/11/according-to...</td>\n", " </tr>\n", " <tr>\n", " <th>39</th>\n", " <td>Devin Coldewey</td>\n", " <td>Artificial Intelligence</td>\n", " <td>Want Google Assistant, but don’t want to spend...</td>\n", " <td>2016-10-12</td>\n", " <td>1401019.0</td>\n", " <td>https://tctechcrunch2011.files.wordpress.com/2...</td>\n", " <td>gadgets/</td>\n", " <td>google-assistant</td>\n", " <td>Add Google Assistant to your phone by tweaking...</td>\n", " <td>android</td>\n", " <td>https://techcrunch.com/2016/10/12/add-google-a...</td>\n", " </tr>\n", " <tr>\n", " <th>67</th>\n", " <td>John Mannes</td>\n", " <td>Media</td>\n", " <td>Today Google added a new “fact-check” tag to i...</td>\n", " <td>2016-10-13</td>\n", " <td>1401551.0</td>\n", " <td>https://tctechcrunch2011.files.wordpress.com/2...</td>\n", " <td>social/</td>\n", " <td>blog,google-search,world-wide-web,digital-media</td>\n", " <td>Google starts highlighting fact-checks in News</td>\n", " <td>NaN</td>\n", " <td>https://techcrunch.com/2016/10/13/google-helps...</td>\n", " </tr>\n", " <tr>\n", " <th>130</th>\n", " <td>Darrell Etherington</td>\n", " <td>Gadgets</td>\n", " <td>Google’s new hardware is getting a Google-owne...</td>\n", " <td>2016-10-07</td>\n", " <td>1398633.0</td>\n", " <td>https://tctechcrunch2011.files.wordpress.com/2...</td>\n", " <td>gadgets/</td>\n", " <td>NaN</td>\n", " <td>Google’s self-made hardware is getting a pop-u...</td>\n", " <td>google</td>\n", " <td>https://techcrunch.com/2016/10/07/googles-self...</td>\n", " </tr>\n", " <tr>\n", " <th>160</th>\n", " <td>Jon Russell</td>\n", " <td>Asia</td>\n", " <td>Google today announced a collection of updates...</td>\n", " <td>2016-09-27</td>\n", " <td>1392811.0</td>\n", " <td>https://tctechcrunch2011.files.wordpress.com/2...</td>\n", " <td>asia/</td>\n", " <td>india,connectivity,emerging-markets</td>\n", " <td>Google expands its initiative to provide free ...</td>\n", " <td>google</td>\n", " <td>https://techcrunch.com/2016/09/27/google-stati...</td>\n", " </tr>\n", " <tr>\n", " <th>195</th>\n", " <td>Darrell Etherington</td>\n", " <td>Artificial Intelligence</td>\n", " <td>Google unveiled a lot of new devices today, bu...</td>\n", " <td>2016-10-04</td>\n", " <td>1396920.0</td>\n", " <td>https://tctechcrunch2011.files.wordpress.com/2...</td>\n", " <td>gadgets/</td>\n", " <td>google-pixel,smartphones</td>\n", " <td>Google’s new smartphones are about Google, not...</td>\n", " <td>google</td>\n", " <td>https://techcrunch.com/2016/10/04/googles-new-...</td>\n", " </tr>\n", " <tr>\n", " <th>196</th>\n", " <td>Brian Heater</td>\n", " <td>Gadgets</td>\n", " <td>Sometimes it’s best to just sit back and feign...</td>\n", " <td>2016-10-04</td>\n", " <td>1396518.0</td>\n", " <td>https://tctechcrunch2011.files.wordpress.com/2...</td>\n", " <td>gadgets/</td>\n", " <td>googlepixel,googlehardware,googlehardware2016</td>\n", " <td>Here’s the Google Pixel</td>\n", " <td>NaN</td>\n", " <td>https://techcrunch.com/2016/10/04/google-pixel/</td>\n", " </tr>\n", " <tr>\n", " <th>208</th>\n", " <td>Josh Constine</td>\n", " <td>Apps</td>\n", " <td>If you combined the fastest and slowest types ...</td>\n", " <td>2016-09-26</td>\n", " <td>1392519.0</td>\n", " <td>https://tctechcrunch2011.files.wordpress.com/2...</td>\n", " <td>social/</td>\n", " <td>NaN</td>\n", " <td>If Google buys Twitter, there’s a perfect spot...</td>\n", " <td>youtube,google,twitter</td>\n", " <td>https://techcrunch.com/2016/09/26/youtweet/</td>\n", " </tr>\n", " <tr>\n", " <th>217</th>\n", " <td>Natasha Lomas</td>\n", " <td>Apps</td>\n", " <td>Alphabet (née Google) has been given yet anoth...</td>\n", " <td>2016-10-03</td>\n", " <td>1395794.0</td>\n", " <td>https://tctechcrunch2011.files.wordpress.com/2...</td>\n", " <td>europe/</td>\n", " <td>european-competition-commission,smartphones</td>\n", " <td>Google gets more time to respond to EU antitru...</td>\n", " <td>android,google</td>\n", " <td>https://techcrunch.com/2016/10/03/google-gets-...</td>\n", " </tr>\n", " <tr>\n", " <th>258</th>\n", " <td>Natasha Lomas</td>\n", " <td>Apps</td>\n", " <td>Alphabet (née Google) has been given yet anoth...</td>\n", " <td>2016-10-03</td>\n", " <td>1395794.0</td>\n", " <td>https://tctechcrunch2011.files.wordpress.com/2...</td>\n", " <td>mobile/</td>\n", " <td>european-competition-commission,smartphones</td>\n", " <td>Google gets more time to respond to EU antitru...</td>\n", " <td>android,google</td>\n", " <td>https://techcrunch.com/2016/10/03/google-gets-...</td>\n", " </tr>\n", " <tr>\n", " <th>271</th>\n", " <td>Romain Dillet</td>\n", " <td>Gadgets</td>\n", " <td>Google is set to announce a bunch of new produ...</td>\n", " <td>2016-10-03</td>\n", " <td>1395673.0</td>\n", " <td>https://tctechcrunch2011.files.wordpress.com/2...</td>\n", " <td>gadgets/</td>\n", " <td>leak,google-pixel,pixel</td>\n", " <td>Here’s what the Google Pixel could look like</td>\n", " <td>google</td>\n", " <td>https://techcrunch.com/2016/10/03/heres-what-t...</td>\n", " </tr>\n", " <tr>\n", " <th>296</th>\n", " <td>Ron Miller</td>\n", " <td>Cloud</td>\n", " <td>Box has always been known as the irritant in t...</td>\n", " <td>2016-09-07</td>\n", " <td>1381600.0</td>\n", " <td>https://tctechcrunch2011.files.wordpress.com/2...</td>\n", " <td>enterprise/</td>\n", " <td>content-management,diane-greene,aaron-levie</td>\n", " <td>Box introduces “New Box” at BoxWorks</td>\n", " <td>box</td>\n", " <td>https://techcrunch.com/2016/09/07/box-introduc...</td>\n", " </tr>\n", " <tr>\n", " <th>298</th>\n", " <td>Darrell Etherington</td>\n", " <td>Cloud</td>\n", " <td>Sure there’s some kind of fruit-related event ...</td>\n", " <td>2016-09-07</td>\n", " <td>1381251.0</td>\n", " <td>https://tctechcrunch2011.files.wordpress.com/2...</td>\n", " <td>enterprise/</td>\n", " <td>presentation-software,cloud-applications</td>\n", " <td>Box teams up with Google for Docs and Springbo...</td>\n", " <td>google,box</td>\n", " <td>https://techcrunch.com/2016/09/07/box-teams-up...</td>\n", " </tr>\n", " <tr>\n", " <th>349</th>\n", " <td>Josh Constine</td>\n", " <td>Apps</td>\n", " <td>If you combined the fastest and slowest types ...</td>\n", " <td>2016-09-26</td>\n", " <td>1392519.0</td>\n", " <td>https://tctechcrunch2011.files.wordpress.com/2...</td>\n", " <td>mobile/</td>\n", " <td>NaN</td>\n", " <td>If Google buys Twitter, there’s a perfect spot...</td>\n", " <td>youtube,google,twitter</td>\n", " <td>https://techcrunch.com/2016/09/26/youtweet/</td>\n", " </tr>\n", " <tr>\n", " <th>351</th>\n", " <td>Darrell Etherington</td>\n", " <td>Apps</td>\n", " <td>Google is planning hybrid devices that run bot...</td>\n", " <td>2016-09-26</td>\n", " <td>1392324.0</td>\n", " <td>https://tctechcrunch2011.files.wordpress.com/2...</td>\n", " <td>mobile/</td>\n", " <td>NaN</td>\n", " <td>Google said to debut Android/Chrome OS hybrid ...</td>\n", " <td>google</td>\n", " <td>https://techcrunch.com/2016/09/26/google-said-...</td>\n", " </tr>\n", " <tr>\n", " <th>357</th>\n", " <td>Darrell Etherington</td>\n", " <td>Apps</td>\n", " <td>Google is planning hybrid devices that run bot...</td>\n", " <td>2016-09-26</td>\n", " <td>1392324.0</td>\n", " <td>https://tctechcrunch2011.files.wordpress.com/2...</td>\n", " <td>gadgets/</td>\n", " <td>NaN</td>\n", " <td>Google said to debut Android/Chrome OS hybrid ...</td>\n", " <td>google</td>\n", " <td>https://techcrunch.com/2016/09/26/google-said-...</td>\n", " </tr>\n", " <tr>\n", " <th>414</th>\n", " <td>Jon Russell</td>\n", " <td>Apps</td>\n", " <td>There was once a time when Uber’s big advantag...</td>\n", " <td>2016-08-08</td>\n", " <td>1366113.0</td>\n", " <td>https://tctechcrunch2011.files.wordpress.com/2...</td>\n", " <td>asia/</td>\n", " <td>southeast-asia,go-jek,grab</td>\n", " <td>Google Maps adds rides with Uber rivals Grab a...</td>\n", " <td>uber</td>\n", " <td>https://techcrunch.com/2016/08/08/google-maps-...</td>\n", " </tr>\n", " <tr>\n", " <th>445</th>\n", " <td>Ingrid Lunden</td>\n", " <td>Advertising Tech</td>\n", " <td>Google has been focusing for years on finding ...</td>\n", " <td>2016-09-26</td>\n", " <td>1392141.0</td>\n", " <td>https://tctechcrunch2011.files.wordpress.com/2...</td>\n", " <td>mobile/</td>\n", " <td>advertising</td>\n", " <td>Google embraces the log-in, leaving cookies be...</td>\n", " <td>google</td>\n", " <td>https://techcrunch.com/2016/09/26/google-ads/</td>\n", " </tr>\n", " <tr>\n", " <th>462</th>\n", " <td>Darrell Etherington</td>\n", " <td>Gadgets</td>\n", " <td>Google will build upon its OnHub strategy with...</td>\n", " <td>2016-09-23</td>\n", " <td>1391675.0</td>\n", " <td>https://tctechcrunch2011.files.wordpress.com/2...</td>\n", " <td>gadgets/</td>\n", " <td>routers,google-wifi</td>\n", " <td>$129 Google WiFi router that can team up with ...</td>\n", " <td>NaN</td>\n", " <td>https://techcrunch.com/2016/09/23/129-google-w...</td>\n", " </tr>\n", " <tr>\n", " <th>508</th>\n", " <td>Fitz Tepper</td>\n", " <td>Advertising Tech</td>\n", " <td>If there is one threat to Google Search, it’s ...</td>\n", " <td>2016-09-06</td>\n", " <td>1380464.0</td>\n", " <td>https://tctechcrunch2011.files.wordpress.com/2...</td>\n", " <td>social/</td>\n", " <td>search-results,photo-sharing</td>\n", " <td>Google is launching Shop the Look to let you s...</td>\n", " <td>instagram,google</td>\n", " <td>https://techcrunch.com/2016/09/06/google-is-la...</td>\n", " </tr>\n", " <tr>\n", " <th>556</th>\n", " <td>Frederic Lardinois</td>\n", " <td>Apps</td>\n", " <td>Google first announced Allo and Duo, its new m...</td>\n", " <td>2016-09-20</td>\n", " <td>1389531.0</td>\n", " <td>https://tctechcrunch2011.files.wordpress.com/2...</td>\n", " <td>mobile/</td>\n", " <td>google-hangouts,google-duo,google-allo</td>\n", " <td>Allo brings Google’s smarts to messaging</td>\n", " <td>google</td>\n", " <td>https://techcrunch.com/2016/09/20/allo-brings-...</td>\n", " </tr>\n", " <tr>\n", " <th>560</th>\n", " <td>Frederic Lardinois</td>\n", " <td>Apps</td>\n", " <td>One of Google Photos‘ standout features has lo...</td>\n", " <td>2016-09-19</td>\n", " <td>1388289.0</td>\n", " <td>https://tctechcrunch2011.files.wordpress.com/2...</td>\n", " <td>mobile/</td>\n", " <td>digital-media,business,world-wide-web</td>\n", " <td>Google Photos ups its movie and sharing game</td>\n", " <td>google</td>\n", " <td>https://techcrunch.com/2016/09/19/google-photo...</td>\n", " </tr>\n", " <tr>\n", " <th>562</th>\n", " <td>Sarah Perez</td>\n", " <td>Apps</td>\n", " <td>Google today is launching a new mobile applica...</td>\n", " <td>2016-09-19</td>\n", " <td>1388444.0</td>\n", " <td>https://tctechcrunch2011.files.wordpress.com/2...</td>\n", " <td>mobile/</td>\n", " <td>apps,mobile,travel</td>\n", " <td>Google launches a personalized travel planner,...</td>\n", " <td>NaN</td>\n", " <td>https://techcrunch.com/2016/09/19/google-launc...</td>\n", " </tr>\n", " <tr>\n", " <th>564</th>\n", " <td>Brian Heater</td>\n", " <td>Mobile</td>\n", " <td>This isn’t so much an acquisition as a welcomi...</td>\n", " <td>2016-09-16</td>\n", " <td>1388058.0</td>\n", " <td>https://tctechcrunch2011.files.wordpress.com/2...</td>\n", " <td>mobile/</td>\n", " <td>urban-engines</td>\n", " <td>Google Maps picks up mapping analytics and vis...</td>\n", " <td>google-maps,google</td>\n", " <td>https://techcrunch.com/2016/09/16/urban-engine...</td>\n", " </tr>\n", " <tr>\n", " <th>592</th>\n", " <td>Ron Miller</td>\n", " <td>Cloud</td>\n", " <td>Workday announced a 7-year cloud infrastructur...</td>\n", " <td>2016-08-15</td>\n", " <td>1368938.0</td>\n", " <td>https://tctechcrunch2011.files.wordpress.com/2...</td>\n", " <td>enterprise/</td>\n", " <td>iaas,workday,softlayer,ibm</td>\n", " <td>Workday gives IBM big win with seven-year clou...</td>\n", " <td>NaN</td>\n", " <td>https://techcrunch.com/2016/08/15/workday-give...</td>\n", " </tr>\n", " <tr>\n", " <th>595</th>\n", " <td>Frederic Lardinois</td>\n", " <td>Disrupt SF 2016</td>\n", " <td>The cloud services that Google uses to power i...</td>\n", " <td>2016-08-11</td>\n", " <td>1366527.0</td>\n", " <td>https://tctechcrunch2011.files.wordpress.com/2...</td>\n", " <td>enterprise/</td>\n", " <td>enterprise,disrupt-sf-2016,diane-greene</td>\n", " <td>Google’s cloud chief Diane Greene will join us...</td>\n", " <td>google</td>\n", " <td>https://techcrunch.com/2016/08/11/googles-clou...</td>\n", " </tr>\n", " <tr>\n", " <th>672</th>\n", " <td>Anthony Ha</td>\n", " <td>Advertising Tech</td>\n", " <td>Google is announcing a couple of upgrades to i...</td>\n", " <td>2016-09-14</td>\n", " <td>1386700.0</td>\n", " <td>https://tctechcrunch2011.files.wordpress.com/2...</td>\n", " <td>mobile/</td>\n", " <td>NaN</td>\n", " <td>Google introduces new app and video ad capabil...</td>\n", " <td>alphabet,google</td>\n", " <td>https://techcrunch.com/2016/09/14/google-intro...</td>\n", " </tr>\n", " <tr>\n", " <th>704</th>\n", " <td>Ingrid Lunden</td>\n", " <td>Cloud</td>\n", " <td>Google today announced another acquisition tha...</td>\n", " <td>2016-08-08</td>\n", " <td>1365556.0</td>\n", " <td>https://tctechcrunch2011.files.wordpress.com/2...</td>\n", " <td>enterprise/</td>\n", " <td>enterprise-software,cloud,orbitera</td>\n", " <td>Google buys Orbitera, a platform for cloud mar...</td>\n", " <td>google</td>\n", " <td>https://techcrunch.com/2016/08/08/google-buys-...</td>\n", " </tr>\n", " <tr>\n", " <th>...</th>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " </tr>\n", " <tr>\n", " <th>37719</th>\n", " <td>Rip Empson</td>\n", " <td>Social</td>\n", " <td>Forget Yammer, forget Asana. In April, Y Combi...</td>\n", " <td>2012-06-26</td>\n", " <td>578025.0</td>\n", " <td>https://tctechcrunch2011.files.wordpress.com/2...</td>\n", " <td>startups/</td>\n", " <td>y-combinator,siasto</td>\n", " <td>Amidst Yammers &amp; Asanas, YC Alum Siasto Finds ...</td>\n", " <td>NaN</td>\n", " <td>https://techcrunch.com/2012/06/26/siasto-growi...</td>\n", " </tr>\n", " <tr>\n", " <th>37785</th>\n", " <td>Sarah Perez</td>\n", " <td>Mobile</td>\n", " <td>App Annie, the app store analytics and market ...</td>\n", " <td>2012-06-20</td>\n", " <td>574486.0</td>\n", " <td>https://tctechcrunch2011.files.wordpress.com/2...</td>\n", " <td>startups/</td>\n", " <td>google-play,app-annie,apps</td>\n", " <td>At Last! App Store Analytics Firm App Annie Ad...</td>\n", " <td>NaN</td>\n", " <td>https://techcrunch.com/2012/06/20/at-last-app-...</td>\n", " </tr>\n", " <tr>\n", " <th>37921</th>\n", " <td>Rip Empson</td>\n", " <td>Startups</td>\n", " <td>The annual Google Science Fair is an effort to...</td>\n", " <td>2012-06-07</td>\n", " <td>567316.0</td>\n", " <td>https://tctechcrunch2011.files.wordpress.com/2...</td>\n", " <td>startups/</td>\n", " <td>science,google-science-fair,google</td>\n", " <td>Meet The Top 15 Finalists In Google’s Annual S...</td>\n", " <td>NaN</td>\n", " <td>https://techcrunch.com/2012/06/07/meet-the-top...</td>\n", " </tr>\n", " <tr>\n", " <th>37949</th>\n", " <td>Eric Eldon</td>\n", " <td>Startups</td>\n", " <td>Meebo, the seven year-old chat service that mo...</td>\n", " <td>2012-06-04</td>\n", " <td>565787.0</td>\n", " <td>https://tctechcrunch2011.files.wordpress.com/2...</td>\n", " <td>startups/</td>\n", " <td>NaN</td>\n", " <td>More On Meebo: Price Is Around $100M, Product ...</td>\n", " <td>NaN</td>\n", " <td>https://techcrunch.com/2012/06/04/more-on-meeb...</td>\n", " </tr>\n", " <tr>\n", " <th>38026</th>\n", " <td>Anthony Ha</td>\n", " <td>Startups</td>\n", " <td>There’s a lot of talk these days about what yo...</td>\n", " <td>2012-05-24</td>\n", " <td>561047.0</td>\n", " <td>https://tctechcrunch2011.files.wordpress.com/2...</td>\n", " <td>startups/</td>\n", " <td>NaN</td>\n", " <td>Predictive Startup Recorded Future Raises $12M...</td>\n", " <td>NaN</td>\n", " <td>https://techcrunch.com/2012/05/24/recorded-fut...</td>\n", " </tr>\n", " <tr>\n", " <th>38031</th>\n", " <td>Rip Empson</td>\n", " <td>Mobile</td>\n", " <td>Just over a week ago, the jury began deliberat...</td>\n", " <td>2012-05-23</td>\n", " <td>560513.0</td>\n", " <td>https://tctechcrunch2011.files.wordpress.com/2...</td>\n", " <td>startups/</td>\n", " <td>patents</td>\n", " <td>The Verdict Is In: Google Did NOT Infringe On ...</td>\n", " <td>android,google,oracle</td>\n", " <td>https://techcrunch.com/2012/05/23/the-verdict-...</td>\n", " </tr>\n", " <tr>\n", " <th>38147</th>\n", " <td>Mike Butcher</td>\n", " <td>Europe</td>\n", " <td>[The article below was written on the incorrec...</td>\n", " <td>2012-05-13</td>\n", " <td>551159.0</td>\n", " <td>https://tctechcrunch2011.files.wordpress.com/2...</td>\n", " <td>startups/</td>\n", " <td>tropo,twilio,adinsight,iovox</td>\n", " <td>How The Future Of Web Advertising Is Linked To...</td>\n", " <td>NaN</td>\n", " <td>https://techcrunch.com/2012/05/13/hold-the-pho...</td>\n", " </tr>\n", " <tr>\n", " <th>38169</th>\n", " <td>Anthony Ha</td>\n", " <td>Startups</td>\n", " <td>When Google Drive launched at the end of April...</td>\n", " <td>2012-05-10</td>\n", " <td>549581.0</td>\n", " <td>https://tctechcrunch2011.files.wordpress.com/2...</td>\n", " <td>startups/</td>\n", " <td>NaN</td>\n", " <td>HelloFax: With 51K Installs, We’re The Top Goo...</td>\n", " <td>NaN</td>\n", " <td>https://techcrunch.com/2012/05/10/hellofax-wit...</td>\n", " </tr>\n", " <tr>\n", " <th>38173</th>\n", " <td>Rip Empson</td>\n", " <td>Enterprise</td>\n", " <td>About six years ago, Google launched Apps for ...</td>\n", " <td>2012-05-10</td>\n", " <td>549367.0</td>\n", " <td>https://tctechcrunch2011.files.wordpress.com/2...</td>\n", " <td>startups/</td>\n", " <td>google-apps,google,flashpanel,bettercloud</td>\n", " <td>BetterCloud Nabs $2.2M From Angels To Bring Be...</td>\n", " <td>NaN</td>\n", " <td>https://techcrunch.com/2012/05/10/bettercloud-...</td>\n", " </tr>\n", " <tr>\n", " <th>38174</th>\n", " <td>Ingrid Lunden</td>\n", " <td>Social</td>\n", " <td>Anybeat, a social network that launched last y...</td>\n", " <td>2012-05-09</td>\n", " <td>549625.0</td>\n", " <td>https://tctechcrunch2011.files.wordpress.com/2...</td>\n", " <td>startups/</td>\n", " <td>google,social-networks,anybeat</td>\n", " <td>‘Anonymous’ Social Network Anybeat Is Getting ...</td>\n", " <td>NaN</td>\n", " <td>https://techcrunch.com/2012/05/09/anonymous-so...</td>\n", " </tr>\n", " <tr>\n", " <th>38269</th>\n", " <td>Anthony Ha</td>\n", " <td>Startups</td>\n", " <td>BrandYourself, a startup offering a cheap and ...</td>\n", " <td>2012-05-01</td>\n", " <td>544381.0</td>\n", " <td>https://tctechcrunch2011.files.wordpress.com/2...</td>\n", " <td>startups/</td>\n", " <td>NaN</td>\n", " <td>Now BrandYourself Users Can See The Companies ...</td>\n", " <td>NaN</td>\n", " <td>https://techcrunch.com/2012/05/01/now-brandyou...</td>\n", " </tr>\n", " <tr>\n", " <th>38308</th>\n", " <td>Rip Empson</td>\n", " <td>Apps</td>\n", " <td>At this time of year, we usually find ourselve...</td>\n", " <td>2012-04-26</td>\n", " <td>542138.0</td>\n", " <td>https://tctechcrunch2011.files.wordpress.com/2...</td>\n", " <td>startups/</td>\n", " <td>trimble,sketchup,google</td>\n", " <td>A Rare Sale: Despite 30 Million Activations In...</td>\n", " <td>NaN</td>\n", " <td>https://techcrunch.com/2012/04/26/sketchup-goe...</td>\n", " </tr>\n", " <tr>\n", " <th>38421</th>\n", " <td>John Biggs</td>\n", " <td>Startups</td>\n", " <td>If you needed any more proof that Google Drive...</td>\n", " <td>2012-04-16</td>\n", " <td>536329.0</td>\n", " <td>https://tctechcrunch2011.files.wordpress.com/2...</td>\n", " <td>startups/</td>\n", " <td>google-drive,google</td>\n", " <td>Google Drive Lives: Google Drive App Found</td>\n", " <td>NaN</td>\n", " <td>https://techcrunch.com/2012/04/16/google-drive...</td>\n", " </tr>\n", " <tr>\n", " <th>38476</th>\n", " <td>Rip Empson</td>\n", " <td>Apps</td>\n", " <td>Web apps look a lot different today than they ...</td>\n", " <td>2012-04-11</td>\n", " <td>533781.0</td>\n", " <td>https://tctechcrunch2011.files.wordpress.com/2...</td>\n", " <td>startups/</td>\n", " <td>meteor-com,meteor</td>\n", " <td>Meteor: Etherpad Founder &amp; Other Rockstars Tea...</td>\n", " <td>NaN</td>\n", " <td>https://techcrunch.com/2012/04/11/meteor-launch/</td>\n", " </tr>\n", " <tr>\n", " <th>38513</th>\n", " <td>NaN</td>\n", " <td>Social</td>\n", " <td>Editor’s Note: Ian Lurie is CEO of Portent Inc...</td>\n", " <td>2012-04-08</td>\n", " <td>532080.0</td>\n", " <td>https://tctechcrunch2011.files.wordpress.com/2...</td>\n", " <td>startups/</td>\n", " <td>sergey-brin,larry-page,google</td>\n", " <td>How The IPO Ruined Google</td>\n", " <td>NaN</td>\n", " <td>https://techcrunch.com/2012/04/08/how-the-ipo-...</td>\n", " </tr>\n", " <tr>\n", " <th>38514</th>\n", " <td>Derek Andersen</td>\n", " <td>Startups</td>\n", " <td>Editor’s note: Derek Andersen is founder of St...</td>\n", " <td>2012-04-08</td>\n", " <td>532060.0</td>\n", " <td>https://tctechcrunch2011.files.wordpress.com/2...</td>\n", " <td>startups/</td>\n", " <td>NaN</td>\n", " <td>Pinterest’s Unlikely Journey To Top Of The Sta...</td>\n", " <td>NaN</td>\n", " <td>https://techcrunch.com/2012/04/08/pinterest-st...</td>\n", " </tr>\n", " <tr>\n", " <th>38534</th>\n", " <td>Sarah Perez</td>\n", " <td>Startups</td>\n", " <td>DudaMobile, the DIY mobile website maker, fres...</td>\n", " <td>2012-04-05</td>\n", " <td>530973.0</td>\n", " <td>https://tctechcrunch2011.files.wordpress.com/2...</td>\n", " <td>startups/</td>\n", " <td>dudamobile,smb,business,google</td>\n", " <td>Google’s GoMo Expands, Adds DIY Mobile Website...</td>\n", " <td>NaN</td>\n", " <td>https://techcrunch.com/2012/04/05/googles-gomo...</td>\n", " </tr>\n", " <tr>\n", " <th>38541</th>\n", " <td>Rip Empson</td>\n", " <td>Social</td>\n", " <td>Back in November, we reported that Sean Garret...</td>\n", " <td>2012-04-04</td>\n", " <td>530777.0</td>\n", " <td>https://tctechcrunch2011.files.wordpress.com/2...</td>\n", " <td>startups/</td>\n", " <td>gabriel-stricker,twitter,google</td>\n", " <td>Twitter Nabs Googler Gabriel Stricker As Comms VP</td>\n", " <td>NaN</td>\n", " <td>https://techcrunch.com/2012/04/04/twitter-new-...</td>\n", " </tr>\n", " <tr>\n", " <th>38586</th>\n", " <td>NaN</td>\n", " <td>Apps</td>\n", " <td>Happy April 1st, Everybody! It’s that very spe...</td>\n", " <td>2012-04-01</td>\n", " <td>528633.0</td>\n", " <td>https://tctechcrunch2011.files.wordpress.com/2...</td>\n", " <td>startups/</td>\n", " <td>april-fools</td>\n", " <td>April Fools 2012: We Ruin Every (Tech-Related)...</td>\n", " <td>NaN</td>\n", " <td>https://techcrunch.com/2012/04/01/april-fools-...</td>\n", " </tr>\n", " <tr>\n", " <th>38590</th>\n", " <td>Ingrid Lunden</td>\n", " <td>Europe</td>\n", " <td>London’s claim to being the hub for tech start...</td>\n", " <td>2012-04-01</td>\n", " <td>528688.0</td>\n", " <td>https://tctechcrunch2011.files.wordpress.com/2...</td>\n", " <td>startups/</td>\n", " <td>NaN</td>\n", " <td>Fragmentation? Open Source? Buzzwords For Andr...</td>\n", " <td>NaN</td>\n", " <td>https://techcrunch.com/2012/04/01/fragmentatio...</td>\n", " </tr>\n", " <tr>\n", " <th>38627</th>\n", " <td>Alexia Tsotsis</td>\n", " <td>Apps</td>\n", " <td>Mobile web and ad optimization startup AppStac...</td>\n", " <td>2012-03-27</td>\n", " <td>526395.0</td>\n", " <td>https://tctechcrunch2011.files.wordpress.com/2...</td>\n", " <td>startups/</td>\n", " <td>appstack</td>\n", " <td>Mobile Ad Optimization Startup AppStack Raises...</td>\n", " <td>NaN</td>\n", " <td>https://techcrunch.com/2012/03/27/appstack-rai...</td>\n", " </tr>\n", " <tr>\n", " <th>38662</th>\n", " <td>Josh Constine</td>\n", " <td>Social</td>\n", " <td>Google and Facebook can’t help you find which ...</td>\n", " <td>2012-03-25</td>\n", " <td>525232.0</td>\n", " <td>https://tctechcrunch2011.files.wordpress.com/2...</td>\n", " <td>startups/</td>\n", " <td>ark,ycombinator,battlefield</td>\n", " <td>Find Everyone You Can’t Google Or Facebook Wit...</td>\n", " <td>NaN</td>\n", " <td>https://techcrunch.com/2012/03/25/ark-people-s...</td>\n", " </tr>\n", " <tr>\n", " <th>38677</th>\n", " <td>Rip Empson</td>\n", " <td>Apps</td>\n", " <td>In the age of endless sharing, super cookies, ...</td>\n", " <td>2012-03-22</td>\n", " <td>524441.0</td>\n", " <td>https://tctechcrunch2011.files.wordpress.com/2...</td>\n", " <td>startups/</td>\n", " <td>disconnect,disconnect-me,brian-kennish</td>\n", " <td>Disconnect: Ex-Googlers Raise Funding To Stop ...</td>\n", " <td>NaN</td>\n", " <td>https://techcrunch.com/2012/03/22/disconnect-m...</td>\n", " </tr>\n", " <tr>\n", " <th>38742</th>\n", " <td>Kim-Mai Cutler</td>\n", " <td>eCommerce</td>\n", " <td>More people leaving Google Wallet means more f...</td>\n", " <td>2012-03-16</td>\n", " <td>521647.0</td>\n", " <td>https://tctechcrunch2011.files.wordpress.com/2...</td>\n", " <td>startups/</td>\n", " <td>NaN</td>\n", " <td>Google Wallet’s Founding Engineer, Product Lea...</td>\n", " <td>NaN</td>\n", " <td>https://techcrunch.com/2012/03/16/google-walle...</td>\n", " </tr>\n", " <tr>\n", " <th>38760</th>\n", " <td>Alexia Tsotsis</td>\n", " <td>Social</td>\n", " <td>AllThingsD is reporting that super-founder Kev...</td>\n", " <td>2012-03-15</td>\n", " <td>520847.0</td>\n", " <td>https://tctechcrunch2011.files.wordpress.com/2...</td>\n", " <td>startups/</td>\n", " <td>milk</td>\n", " <td>Winning A Bidding War With Facebook, Google Pi...</td>\n", " <td>NaN</td>\n", " <td>https://techcrunch.com/2012/03/15/winning-a-bi...</td>\n", " </tr>\n", " <tr>\n", " <th>38775</th>\n", " <td>Sarah Perez</td>\n", " <td>eCommerce</td>\n", " <td>Today, Google is announcing a partnership with...</td>\n", " <td>2012-03-14</td>\n", " <td>520181.0</td>\n", " <td>https://tctechcrunch.files.wordpress.com/2011/...</td>\n", " <td>startups/</td>\n", " <td>e-commerce,google-offers,signpost,local-commerce</td>\n", " <td>Google Offers Partners With Signpost, The “AdS...</td>\n", " <td>NaN</td>\n", " <td>https://techcrunch.com/2012/03/14/google-offer...</td>\n", " </tr>\n", " <tr>\n", " <th>38798</th>\n", " <td>Rip Empson</td>\n", " <td>Startups</td>\n", " <td>As a founding partner at Y Combinator, Paul Gr...</td>\n", " <td>2012-03-10</td>\n", " <td>518873.0</td>\n", " <td>https://tctechcrunch2011.files.wordpress.com/2...</td>\n", " <td>startups/</td>\n", " <td>startups,paul-graham</td>\n", " <td>Paul Graham Wants You To Build A New Search En...</td>\n", " <td>NaN</td>\n", " <td>https://techcrunch.com/2012/03/10/paul-grahams...</td>\n", " </tr>\n", " <tr>\n", " <th>39007</th>\n", " <td>Jon Orlin</td>\n", " <td>Apps</td>\n", " <td>The mundane Address Book was big news this wee...</td>\n", " <td>2012-02-17</td>\n", " <td>498499.0</td>\n", " <td>https://tctechcrunch2011.files.wordpress.com/2...</td>\n", " <td>startups/</td>\n", " <td>address-book,kaspars-dancis,codo,cobook</td>\n", " <td>Cobook, A Slick Address Book App That Doesn’t ...</td>\n", " <td>NaN</td>\n", " <td>https://techcrunch.com/2012/02/17/cobook-a-sli...</td>\n", " </tr>\n", " <tr>\n", " <th>39023</th>\n", " <td>Anthony Ha</td>\n", " <td>Enterprise</td>\n", " <td>Startup Podio says it just addressed one of th...</td>\n", " <td>2012-02-16</td>\n", " <td>497979.0</td>\n", " <td>https://tctechcrunch2011.files.wordpress.com/2...</td>\n", " <td>startups/</td>\n", " <td>NaN</td>\n", " <td>Podio Plugs Google Docs Into Its Collaboration...</td>\n", " <td>NaN</td>\n", " <td>https://techcrunch.com/2012/02/16/podio-google...</td>\n", " </tr>\n", " <tr>\n", " <th>39059</th>\n", " <td>Sarah Perez</td>\n", " <td>Enterprise</td>\n", " <td>Austin-based cloud apps startup Spanning, whic...</td>\n", " <td>2012-02-13</td>\n", " <td>496404.0</td>\n", " <td>https://tctechcrunch2011.files.wordpress.com/2...</td>\n", " <td>startups/</td>\n", " <td>spanning,enterprise,google-apps</td>\n", " <td>Google Apps Backup Service Spanning Gets Sexy:...</td>\n", " <td>NaN</td>\n", " <td>https://techcrunch.com/2012/02/13/google-apps-...</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "<p>1497 rows × 11 columns</p>\n", "</div>" ], "text/plain": [ " authors category \\\n", "23 Devin Coldewey Artificial Intelligence \n", "26 Frederic Lardinois Apps \n", "30 Sarah Perez Mobile \n", "39 Devin Coldewey Artificial Intelligence \n", "67 John Mannes Media \n", "130 Darrell Etherington Gadgets \n", "160 Jon Russell Asia \n", "195 Darrell Etherington Artificial Intelligence \n", "196 Brian Heater Gadgets \n", "208 Josh Constine Apps \n", "217 Natasha Lomas Apps \n", "258 Natasha Lomas Apps \n", "271 Romain Dillet Gadgets \n", "296 Ron Miller Cloud \n", "298 Darrell Etherington Cloud \n", "349 Josh Constine Apps \n", "351 Darrell Etherington Apps \n", "357 Darrell Etherington Apps \n", "414 Jon Russell Apps \n", "445 Ingrid Lunden Advertising Tech \n", "462 Darrell Etherington Gadgets \n", "508 Fitz Tepper Advertising Tech \n", "556 Frederic Lardinois Apps \n", "560 Frederic Lardinois Apps \n", "562 Sarah Perez Apps \n", "564 Brian Heater Mobile \n", "592 Ron Miller Cloud \n", "595 Frederic Lardinois Disrupt SF 2016 \n", "672 Anthony Ha Advertising Tech \n", "704 Ingrid Lunden Cloud \n", "... ... ... \n", "37719 Rip Empson Social \n", "37785 Sarah Perez Mobile \n", "37921 Rip Empson Startups \n", "37949 Eric Eldon Startups \n", "38026 Anthony Ha Startups \n", "38031 Rip Empson Mobile \n", "38147 Mike Butcher Europe \n", "38169 Anthony Ha Startups \n", "38173 Rip Empson Enterprise \n", "38174 Ingrid Lunden Social \n", "38269 Anthony Ha Startups \n", "38308 Rip Empson Apps \n", "38421 John Biggs Startups \n", "38476 Rip Empson Apps \n", "38513 NaN Social \n", "38514 Derek Andersen Startups \n", "38534 Sarah Perez Startups \n", "38541 Rip Empson Social \n", "38586 NaN Apps \n", "38590 Ingrid Lunden Europe \n", "38627 Alexia Tsotsis Apps \n", "38662 Josh Constine Social \n", "38677 Rip Empson Apps \n", "38742 Kim-Mai Cutler eCommerce \n", "38760 Alexia Tsotsis Social \n", "38775 Sarah Perez eCommerce \n", "38798 Rip Empson Startups \n", "39007 Jon Orlin Apps \n", "39023 Anthony Ha Enterprise \n", "39059 Sarah Perez Enterprise \n", "\n", " content date \\\n", "23 Want Google Assistant, but don’t want to spend... 2016-10-12 \n", "26 With Android Experiments, Google is giving its... 2016-10-12 \n", "30 Apple has unveiled its own official measuremen... 2016-10-11 \n", "39 Want Google Assistant, but don’t want to spend... 2016-10-12 \n", "67 Today Google added a new “fact-check” tag to i... 2016-10-13 \n", "130 Google’s new hardware is getting a Google-owne... 2016-10-07 \n", "160 Google today announced a collection of updates... 2016-09-27 \n", "195 Google unveiled a lot of new devices today, bu... 2016-10-04 \n", "196 Sometimes it’s best to just sit back and feign... 2016-10-04 \n", "208 If you combined the fastest and slowest types ... 2016-09-26 \n", "217 Alphabet (née Google) has been given yet anoth... 2016-10-03 \n", "258 Alphabet (née Google) has been given yet anoth... 2016-10-03 \n", "271 Google is set to announce a bunch of new produ... 2016-10-03 \n", "296 Box has always been known as the irritant in t... 2016-09-07 \n", "298 Sure there’s some kind of fruit-related event ... 2016-09-07 \n", "349 If you combined the fastest and slowest types ... 2016-09-26 \n", "351 Google is planning hybrid devices that run bot... 2016-09-26 \n", "357 Google is planning hybrid devices that run bot... 2016-09-26 \n", "414 There was once a time when Uber’s big advantag... 2016-08-08 \n", "445 Google has been focusing for years on finding ... 2016-09-26 \n", "462 Google will build upon its OnHub strategy with... 2016-09-23 \n", "508 If there is one threat to Google Search, it’s ... 2016-09-06 \n", "556 Google first announced Allo and Duo, its new m... 2016-09-20 \n", "560 One of Google Photos‘ standout features has lo... 2016-09-19 \n", "562 Google today is launching a new mobile applica... 2016-09-19 \n", "564 This isn’t so much an acquisition as a welcomi... 2016-09-16 \n", "592 Workday announced a 7-year cloud infrastructur... 2016-08-15 \n", "595 The cloud services that Google uses to power i... 2016-08-11 \n", "672 Google is announcing a couple of upgrades to i... 2016-09-14 \n", "704 Google today announced another acquisition tha... 2016-08-08 \n", "... ... ... \n", "37719 Forget Yammer, forget Asana. In April, Y Combi... 2012-06-26 \n", "37785 App Annie, the app store analytics and market ... 2012-06-20 \n", "37921 The annual Google Science Fair is an effort to... 2012-06-07 \n", "37949 Meebo, the seven year-old chat service that mo... 2012-06-04 \n", "38026 There’s a lot of talk these days about what yo... 2012-05-24 \n", "38031 Just over a week ago, the jury began deliberat... 2012-05-23 \n", "38147 [The article below was written on the incorrec... 2012-05-13 \n", "38169 When Google Drive launched at the end of April... 2012-05-10 \n", "38173 About six years ago, Google launched Apps for ... 2012-05-10 \n", "38174 Anybeat, a social network that launched last y... 2012-05-09 \n", "38269 BrandYourself, a startup offering a cheap and ... 2012-05-01 \n", "38308 At this time of year, we usually find ourselve... 2012-04-26 \n", "38421 If you needed any more proof that Google Drive... 2012-04-16 \n", "38476 Web apps look a lot different today than they ... 2012-04-11 \n", "38513 Editor’s Note: Ian Lurie is CEO of Portent Inc... 2012-04-08 \n", "38514 Editor’s note: Derek Andersen is founder of St... 2012-04-08 \n", "38534 DudaMobile, the DIY mobile website maker, fres... 2012-04-05 \n", "38541 Back in November, we reported that Sean Garret... 2012-04-04 \n", "38586 Happy April 1st, Everybody! It’s that very spe... 2012-04-01 \n", "38590 London’s claim to being the hub for tech start... 2012-04-01 \n", "38627 Mobile web and ad optimization startup AppStac... 2012-03-27 \n", "38662 Google and Facebook can’t help you find which ... 2012-03-25 \n", "38677 In the age of endless sharing, super cookies, ... 2012-03-22 \n", "38742 More people leaving Google Wallet means more f... 2012-03-16 \n", "38760 AllThingsD is reporting that super-founder Kev... 2012-03-15 \n", "38775 Today, Google is announcing a partnership with... 2012-03-14 \n", "38798 As a founding partner at Y Combinator, Paul Gr... 2012-03-10 \n", "39007 The mundane Address Book was big news this wee... 2012-02-17 \n", "39023 Startup Podio says it just addressed one of th... 2012-02-16 \n", "39059 Austin-based cloud apps startup Spanning, whic... 2012-02-13 \n", "\n", " id img_src \\\n", "23 1401019.0 https://tctechcrunch2011.files.wordpress.com/2... \n", "26 1400778.0 https://tctechcrunch2011.files.wordpress.com/2... \n", "30 1399959.0 https://tctechcrunch2011.files.wordpress.com/2... \n", "39 1401019.0 https://tctechcrunch2011.files.wordpress.com/2... \n", "67 1401551.0 https://tctechcrunch2011.files.wordpress.com/2... \n", "130 1398633.0 https://tctechcrunch2011.files.wordpress.com/2... \n", "160 1392811.0 https://tctechcrunch2011.files.wordpress.com/2... \n", "195 1396920.0 https://tctechcrunch2011.files.wordpress.com/2... \n", "196 1396518.0 https://tctechcrunch2011.files.wordpress.com/2... \n", "208 1392519.0 https://tctechcrunch2011.files.wordpress.com/2... \n", "217 1395794.0 https://tctechcrunch2011.files.wordpress.com/2... \n", "258 1395794.0 https://tctechcrunch2011.files.wordpress.com/2... \n", "271 1395673.0 https://tctechcrunch2011.files.wordpress.com/2... \n", "296 1381600.0 https://tctechcrunch2011.files.wordpress.com/2... \n", "298 1381251.0 https://tctechcrunch2011.files.wordpress.com/2... \n", "349 1392519.0 https://tctechcrunch2011.files.wordpress.com/2... \n", "351 1392324.0 https://tctechcrunch2011.files.wordpress.com/2... \n", "357 1392324.0 https://tctechcrunch2011.files.wordpress.com/2... \n", "414 1366113.0 https://tctechcrunch2011.files.wordpress.com/2... \n", "445 1392141.0 https://tctechcrunch2011.files.wordpress.com/2... \n", "462 1391675.0 https://tctechcrunch2011.files.wordpress.com/2... \n", "508 1380464.0 https://tctechcrunch2011.files.wordpress.com/2... \n", "556 1389531.0 https://tctechcrunch2011.files.wordpress.com/2... \n", "560 1388289.0 https://tctechcrunch2011.files.wordpress.com/2... \n", "562 1388444.0 https://tctechcrunch2011.files.wordpress.com/2... \n", "564 1388058.0 https://tctechcrunch2011.files.wordpress.com/2... \n", "592 1368938.0 https://tctechcrunch2011.files.wordpress.com/2... \n", "595 1366527.0 https://tctechcrunch2011.files.wordpress.com/2... \n", "672 1386700.0 https://tctechcrunch2011.files.wordpress.com/2... \n", "704 1365556.0 https://tctechcrunch2011.files.wordpress.com/2... \n", "... ... ... \n", "37719 578025.0 https://tctechcrunch2011.files.wordpress.com/2... \n", "37785 574486.0 https://tctechcrunch2011.files.wordpress.com/2... \n", "37921 567316.0 https://tctechcrunch2011.files.wordpress.com/2... \n", "37949 565787.0 https://tctechcrunch2011.files.wordpress.com/2... \n", "38026 561047.0 https://tctechcrunch2011.files.wordpress.com/2... \n", "38031 560513.0 https://tctechcrunch2011.files.wordpress.com/2... \n", "38147 551159.0 https://tctechcrunch2011.files.wordpress.com/2... \n", "38169 549581.0 https://tctechcrunch2011.files.wordpress.com/2... \n", "38173 549367.0 https://tctechcrunch2011.files.wordpress.com/2... \n", "38174 549625.0 https://tctechcrunch2011.files.wordpress.com/2... \n", "38269 544381.0 https://tctechcrunch2011.files.wordpress.com/2... \n", "38308 542138.0 https://tctechcrunch2011.files.wordpress.com/2... \n", "38421 536329.0 https://tctechcrunch2011.files.wordpress.com/2... \n", "38476 533781.0 https://tctechcrunch2011.files.wordpress.com/2... \n", "38513 532080.0 https://tctechcrunch2011.files.wordpress.com/2... \n", "38514 532060.0 https://tctechcrunch2011.files.wordpress.com/2... \n", "38534 530973.0 https://tctechcrunch2011.files.wordpress.com/2... \n", "38541 530777.0 https://tctechcrunch2011.files.wordpress.com/2... \n", "38586 528633.0 https://tctechcrunch2011.files.wordpress.com/2... \n", "38590 528688.0 https://tctechcrunch2011.files.wordpress.com/2... \n", "38627 526395.0 https://tctechcrunch2011.files.wordpress.com/2... \n", "38662 525232.0 https://tctechcrunch2011.files.wordpress.com/2... \n", "38677 524441.0 https://tctechcrunch2011.files.wordpress.com/2... \n", "38742 521647.0 https://tctechcrunch2011.files.wordpress.com/2... \n", "38760 520847.0 https://tctechcrunch2011.files.wordpress.com/2... \n", "38775 520181.0 https://tctechcrunch.files.wordpress.com/2011/... \n", "38798 518873.0 https://tctechcrunch2011.files.wordpress.com/2... \n", "39007 498499.0 https://tctechcrunch2011.files.wordpress.com/2... \n", "39023 497979.0 https://tctechcrunch2011.files.wordpress.com/2... \n", "39059 496404.0 https://tctechcrunch2011.files.wordpress.com/2... \n", "\n", " section tags \\\n", "23 mobile/ google-assistant \n", "26 mobile/ app \n", "30 mobile/ NaN \n", "39 gadgets/ google-assistant \n", "67 social/ blog,google-search,world-wide-web,digital-media \n", "130 gadgets/ NaN \n", "160 asia/ india,connectivity,emerging-markets \n", "195 gadgets/ google-pixel,smartphones \n", "196 gadgets/ googlepixel,googlehardware,googlehardware2016 \n", "208 social/ NaN \n", "217 europe/ european-competition-commission,smartphones \n", "258 mobile/ european-competition-commission,smartphones \n", "271 gadgets/ leak,google-pixel,pixel \n", "296 enterprise/ content-management,diane-greene,aaron-levie \n", "298 enterprise/ presentation-software,cloud-applications \n", "349 mobile/ NaN \n", "351 mobile/ NaN \n", "357 gadgets/ NaN \n", "414 asia/ southeast-asia,go-jek,grab \n", "445 mobile/ advertising \n", "462 gadgets/ routers,google-wifi \n", "508 social/ search-results,photo-sharing \n", "556 mobile/ google-hangouts,google-duo,google-allo \n", "560 mobile/ digital-media,business,world-wide-web \n", "562 mobile/ apps,mobile,travel \n", "564 mobile/ urban-engines \n", "592 enterprise/ iaas,workday,softlayer,ibm \n", "595 enterprise/ enterprise,disrupt-sf-2016,diane-greene \n", "672 mobile/ NaN \n", "704 enterprise/ enterprise-software,cloud,orbitera \n", "... ... ... \n", "37719 startups/ y-combinator,siasto \n", "37785 startups/ google-play,app-annie,apps \n", "37921 startups/ science,google-science-fair,google \n", "37949 startups/ NaN \n", "38026 startups/ NaN \n", "38031 startups/ patents \n", "38147 startups/ tropo,twilio,adinsight,iovox \n", "38169 startups/ NaN \n", "38173 startups/ google-apps,google,flashpanel,bettercloud \n", "38174 startups/ google,social-networks,anybeat \n", "38269 startups/ NaN \n", "38308 startups/ trimble,sketchup,google \n", "38421 startups/ google-drive,google \n", "38476 startups/ meteor-com,meteor \n", "38513 startups/ sergey-brin,larry-page,google \n", "38514 startups/ NaN \n", "38534 startups/ dudamobile,smb,business,google \n", "38541 startups/ gabriel-stricker,twitter,google \n", "38586 startups/ april-fools \n", "38590 startups/ NaN \n", "38627 startups/ appstack \n", "38662 startups/ ark,ycombinator,battlefield \n", "38677 startups/ disconnect,disconnect-me,brian-kennish \n", "38742 startups/ NaN \n", "38760 startups/ milk \n", "38775 startups/ e-commerce,google-offers,signpost,local-commerce \n", "38798 startups/ startups,paul-graham \n", "39007 startups/ address-book,kaspars-dancis,codo,cobook \n", "39023 startups/ NaN \n", "39059 startups/ spanning,enterprise,google-apps \n", "\n", " title \\\n", "23 Add Google Assistant to your phone by tweaking... \n", "26 Google’s new Sprayscape app is purposely imper... \n", "30 According to Apple’s official figures, iOS 10 ... \n", "39 Add Google Assistant to your phone by tweaking... \n", "67 Google starts highlighting fact-checks in News \n", "130 Google’s self-made hardware is getting a pop-u... \n", "160 Google expands its initiative to provide free ... \n", "195 Google’s new smartphones are about Google, not... \n", "196 Here’s the Google Pixel \n", "208 If Google buys Twitter, there’s a perfect spot... \n", "217 Google gets more time to respond to EU antitru... \n", "258 Google gets more time to respond to EU antitru... \n", "271 Here’s what the Google Pixel could look like \n", "296 Box introduces “New Box” at BoxWorks \n", "298 Box teams up with Google for Docs and Springbo... \n", "349 If Google buys Twitter, there’s a perfect spot... \n", "351 Google said to debut Android/Chrome OS hybrid ... \n", "357 Google said to debut Android/Chrome OS hybrid ... \n", "414 Google Maps adds rides with Uber rivals Grab a... \n", "445 Google embraces the log-in, leaving cookies be... \n", "462 $129 Google WiFi router that can team up with ... \n", "508 Google is launching Shop the Look to let you s... \n", "556 Allo brings Google’s smarts to messaging \n", "560 Google Photos ups its movie and sharing game \n", "562 Google launches a personalized travel planner,... \n", "564 Google Maps picks up mapping analytics and vis... \n", "592 Workday gives IBM big win with seven-year clou... \n", "595 Google’s cloud chief Diane Greene will join us... \n", "672 Google introduces new app and video ad capabil... \n", "704 Google buys Orbitera, a platform for cloud mar... \n", "... ... \n", "37719 Amidst Yammers & Asanas, YC Alum Siasto Finds ... \n", "37785 At Last! App Store Analytics Firm App Annie Ad... \n", "37921 Meet The Top 15 Finalists In Google’s Annual S... \n", "37949 More On Meebo: Price Is Around $100M, Product ... \n", "38026 Predictive Startup Recorded Future Raises $12M... \n", "38031 The Verdict Is In: Google Did NOT Infringe On ... \n", "38147 How The Future Of Web Advertising Is Linked To... \n", "38169 HelloFax: With 51K Installs, We’re The Top Goo... \n", "38173 BetterCloud Nabs $2.2M From Angels To Bring Be... \n", "38174 ‘Anonymous’ Social Network Anybeat Is Getting ... \n", "38269 Now BrandYourself Users Can See The Companies ... \n", "38308 A Rare Sale: Despite 30 Million Activations In... \n", "38421 Google Drive Lives: Google Drive App Found \n", "38476 Meteor: Etherpad Founder & Other Rockstars Tea... \n", "38513 How The IPO Ruined Google \n", "38514 Pinterest’s Unlikely Journey To Top Of The Sta... \n", "38534 Google’s GoMo Expands, Adds DIY Mobile Website... \n", "38541 Twitter Nabs Googler Gabriel Stricker As Comms VP \n", "38586 April Fools 2012: We Ruin Every (Tech-Related)... \n", "38590 Fragmentation? Open Source? Buzzwords For Andr... \n", "38627 Mobile Ad Optimization Startup AppStack Raises... \n", "38662 Find Everyone You Can’t Google Or Facebook Wit... \n", "38677 Disconnect: Ex-Googlers Raise Funding To Stop ... \n", "38742 Google Wallet’s Founding Engineer, Product Lea... \n", "38760 Winning A Bidding War With Facebook, Google Pi... \n", "38775 Google Offers Partners With Signpost, The “AdS... \n", "38798 Paul Graham Wants You To Build A New Search En... \n", "39007 Cobook, A Slick Address Book App That Doesn’t ... \n", "39023 Podio Plugs Google Docs Into Its Collaboration... \n", "39059 Google Apps Backup Service Spanning Gets Sexy:... \n", "\n", " topics \\\n", "23 android \n", "26 google \n", "30 apple \n", "39 android \n", "67 NaN \n", "130 google \n", "160 google \n", "195 google \n", "196 NaN \n", "208 youtube,google,twitter \n", "217 android,google \n", "258 android,google \n", "271 google \n", "296 box \n", "298 google,box \n", "349 youtube,google,twitter \n", "351 google \n", "357 google \n", "414 uber \n", "445 google \n", "462 NaN \n", "508 instagram,google \n", "556 google \n", "560 google \n", "562 NaN \n", "564 google-maps,google \n", "592 NaN \n", "595 google \n", "672 alphabet,google \n", "704 google \n", "... ... \n", "37719 NaN \n", "37785 NaN \n", "37921 NaN \n", "37949 NaN \n", "38026 NaN \n", "38031 android,google,oracle \n", "38147 NaN \n", "38169 NaN \n", "38173 NaN \n", "38174 NaN \n", "38269 NaN \n", "38308 NaN \n", "38421 NaN \n", "38476 NaN \n", "38513 NaN \n", "38514 NaN \n", "38534 NaN \n", "38541 NaN \n", "38586 NaN \n", "38590 NaN \n", "38627 NaN \n", "38662 NaN \n", "38677 NaN \n", "38742 NaN \n", "38760 NaN \n", "38775 NaN \n", "38798 NaN \n", "39007 NaN \n", "39023 NaN \n", "39059 NaN \n", "\n", " url \n", "23 https://techcrunch.com/2016/10/12/add-google-a... \n", "26 https://techcrunch.com/2016/10/12/spray-and-pray/ \n", "30 https://techcrunch.com/2016/10/11/according-to... \n", "39 https://techcrunch.com/2016/10/12/add-google-a... \n", "67 https://techcrunch.com/2016/10/13/google-helps... \n", "130 https://techcrunch.com/2016/10/07/googles-self... \n", "160 https://techcrunch.com/2016/09/27/google-stati... \n", "195 https://techcrunch.com/2016/10/04/googles-new-... \n", "196 https://techcrunch.com/2016/10/04/google-pixel/ \n", "208 https://techcrunch.com/2016/09/26/youtweet/ \n", "217 https://techcrunch.com/2016/10/03/google-gets-... \n", "258 https://techcrunch.com/2016/10/03/google-gets-... \n", "271 https://techcrunch.com/2016/10/03/heres-what-t... \n", "296 https://techcrunch.com/2016/09/07/box-introduc... \n", "298 https://techcrunch.com/2016/09/07/box-teams-up... \n", "349 https://techcrunch.com/2016/09/26/youtweet/ \n", "351 https://techcrunch.com/2016/09/26/google-said-... \n", "357 https://techcrunch.com/2016/09/26/google-said-... \n", "414 https://techcrunch.com/2016/08/08/google-maps-... \n", "445 https://techcrunch.com/2016/09/26/google-ads/ \n", "462 https://techcrunch.com/2016/09/23/129-google-w... \n", "508 https://techcrunch.com/2016/09/06/google-is-la... \n", "556 https://techcrunch.com/2016/09/20/allo-brings-... \n", "560 https://techcrunch.com/2016/09/19/google-photo... \n", "562 https://techcrunch.com/2016/09/19/google-launc... \n", "564 https://techcrunch.com/2016/09/16/urban-engine... \n", "592 https://techcrunch.com/2016/08/15/workday-give... \n", "595 https://techcrunch.com/2016/08/11/googles-clou... \n", "672 https://techcrunch.com/2016/09/14/google-intro... \n", "704 https://techcrunch.com/2016/08/08/google-buys-... \n", "... ... \n", "37719 https://techcrunch.com/2012/06/26/siasto-growi... \n", "37785 https://techcrunch.com/2012/06/20/at-last-app-... \n", "37921 https://techcrunch.com/2012/06/07/meet-the-top... \n", "37949 https://techcrunch.com/2012/06/04/more-on-meeb... \n", "38026 https://techcrunch.com/2012/05/24/recorded-fut... \n", "38031 https://techcrunch.com/2012/05/23/the-verdict-... \n", "38147 https://techcrunch.com/2012/05/13/hold-the-pho... \n", "38169 https://techcrunch.com/2012/05/10/hellofax-wit... \n", "38173 https://techcrunch.com/2012/05/10/bettercloud-... \n", "38174 https://techcrunch.com/2012/05/09/anonymous-so... \n", "38269 https://techcrunch.com/2012/05/01/now-brandyou... \n", "38308 https://techcrunch.com/2012/04/26/sketchup-goe... \n", "38421 https://techcrunch.com/2012/04/16/google-drive... \n", "38476 https://techcrunch.com/2012/04/11/meteor-launch/ \n", "38513 https://techcrunch.com/2012/04/08/how-the-ipo-... \n", "38514 https://techcrunch.com/2012/04/08/pinterest-st... \n", "38534 https://techcrunch.com/2012/04/05/googles-gomo... \n", "38541 https://techcrunch.com/2012/04/04/twitter-new-... \n", "38586 https://techcrunch.com/2012/04/01/april-fools-... \n", "38590 https://techcrunch.com/2012/04/01/fragmentatio... \n", "38627 https://techcrunch.com/2012/03/27/appstack-rai... \n", "38662 https://techcrunch.com/2012/03/25/ark-people-s... \n", "38677 https://techcrunch.com/2012/03/22/disconnect-m... \n", "38742 https://techcrunch.com/2012/03/16/google-walle... \n", "38760 https://techcrunch.com/2012/03/15/winning-a-bi... \n", "38775 https://techcrunch.com/2012/03/14/google-offer... \n", "38798 https://techcrunch.com/2012/03/10/paul-grahams... \n", "39007 https://techcrunch.com/2012/02/17/cobook-a-sli... \n", "39023 https://techcrunch.com/2012/02/16/podio-google... \n", "39059 https://techcrunch.com/2012/02/13/google-apps-... \n", "\n", "[1497 rows x 11 columns]" ] }, "execution_count": 321, "metadata": {}, "output_type": "execute_result" } ], "source": [ "company_post_dict['Google']" ] }, { "cell_type": "code", "execution_count": 322, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Not found in dic: FoodChéri\n", "Not found in dic: egg\n", "Not found in dic: Dónde\n", "Not found in dic: HD+\n", "Not found in dic: CoCoon\n", "Not found in dic: Pokémon\n", "Not found in dic: POP\n", "Not found in dic: RenéSim\n", "Not found in dic: IRIS\n", "Not found in dic: VINCI\n", "Not found in dic: SAY\n", "Not found in dic: Camera+\n", "Not found in dic: Telefónica\n", "Not found in dic: Hike\n", "Not found in dic: Air\n", "Not found in dic: LookSee\n", "Not found in dic: People+\n", "Not found in dic: Canal+\n", "Not found in dic: Tag\n", "Not found in dic: Monica+Andy\n", "Not found in dic: MOVE\n", "Not found in dic: startup\n" ] } ], "source": [ "# Error checking against generated company lists\n", "for key in company_post_dict:\n", " if key in dic:\n", " pass\n", " else:\n", " print (\"Not found in dic: \" + key)" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Indexing to startup table: orgs[orgs['name'].isin(['BBB'])]" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# def company_pr_freq(name, )" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.2" } }, "nbformat": 4, "nbformat_minor": 2 }
mit
tbphu/fachkurs_bachelor
PythonIntro/games/20171122_RPS_class.ipynb
3
2373
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "### Rock, Paper, Scissors\n", "#### Jorin Diemer, Jens Hahn - WS 2017" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "\n", "class RockPaperScissors:\n", " def __init__(self):\n", " self.rules = {'rock': {'paper': False, 'scissors': True},\n", " 'paper': {'rock': True, 'scissors': False},\n", " 'scissors': {'rock': False, 'paper': True}}\n", " self.score = [0,0]\n", " \n", " def computer_choice(self):\n", " choice = np.random.choice(list(self.rules))\n", " return choice\n", "\n", " def user_choice(self):\n", " choice = None\n", " while not choice in self.rules:\n", " choice = input('Choose \"rock\", \"paper\", or \"scissors\":')\n", " return choice\n", "\n", " def evaluate(self):\n", " human_choice = self.user_choice()\n", " pc_choice = self.computer_choice()\n", " if human_choice == pc_choice:\n", " print('Tied game.')\n", " elif self.rules[human_choice][pc_choice]:\n", " print('You won!')\n", " self.score[0] += 1\n", " else:\n", " print('You lost!')\n", " self.score[1] += 1\n", " \n", " def start(self, rounds=5):\n", " while self.score[0] < rounds//2 + 1 and self.score[1] < rounds//2 + 1:\n", " self.evaluate()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "game = RockPaperScissors()\n", "game.start()" ] }, { "cell_type": "raw", "metadata": {}, "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.2" } }, "nbformat": 4, "nbformat_minor": 2 }
mit
NeuroDataDesign/pan-synapse
pipeline_1/background/basicReg.md.ipynb
1
1687380
null
apache-2.0
dolphyin/cs194-16-data_manatees
format_311.ipynb
2
54518
{ "metadata": { "name": "", "signature": "sha256:bf7d390a7374589a3b4e618f725ab14fbed1831db6fa920c83cb4156059ccdd9" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "This notebook takes in the raw 311 data (from datasf.org) and converts it to a (feature vector, bin) dataframe, for joining with the 911 dataset." ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Notebook for converting 311 data into format of [tuple, list of 311 reports that occured at that tuple\n", "DATA_PATH = \"data/data_311.csv\" # path of amazon machine\n", "import pandas as pd\n", "data_311 = pd.read_csv(DATA_PATH, na_values=['-'])\n", "data_311 = data_311.where((pd.notnull(data_311)), None)\n", "data_311 = data_311[['Opened', 'Category', 'Request Type', 'Supervisor District', 'Point']]\n", "data_311.head()" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Opened</th>\n", " <th>Category</th>\n", " <th>Request Type</th>\n", " <th>Supervisor District</th>\n", " <th>Point</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td> 11/29/2014 12:57:11 AM</td>\n", " <td> SFHA Requests</td>\n", " <td> SFHA Priority - Emergency</td>\n", " <td> 6</td>\n", " <td> (37.782620592996, -122.416286644263)</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td> 11/29/2014 12:32:49 AM</td>\n", " <td> Rec and Park Requests</td>\n", " <td> Park - Neighborhood_Services_Area</td>\n", " <td> 1</td>\n", " <td> (37.771787999, -122.4712056)</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td> 11/29/2014 12:22:50 AM</td>\n", " <td> SFHA Requests</td>\n", " <td> SFHA Priority - Emergency</td>\n", " <td> 5</td>\n", " <td> (37.777584951111, -122.440874464132)</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td> 11/29/2014 12:21:33 AM</td>\n", " <td> Streetlights</td>\n", " <td> Streetlight - Light_Burnt_Out</td>\n", " <td> 6</td>\n", " <td> (37.7899262286022, -122.394276396696)</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td> 11/29/2014 12:16:54 AM</td>\n", " <td> SFHA Requests</td>\n", " <td> SFHA Priority - Emergency</td>\n", " <td> 5</td>\n", " <td> (37.777584951111, -122.440874464132)</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "metadata": {}, "output_type": "pyout", "prompt_number": 2, "text": [ " Opened Category \\\n", "0 11/29/2014 12:57:11 AM SFHA Requests \n", "1 11/29/2014 12:32:49 AM Rec and Park Requests \n", "2 11/29/2014 12:22:50 AM SFHA Requests \n", "3 11/29/2014 12:21:33 AM Streetlights \n", "4 11/29/2014 12:16:54 AM SFHA Requests \n", "\n", " Request Type Supervisor District \\\n", "0 SFHA Priority - Emergency 6 \n", "1 Park - Neighborhood_Services_Area 1 \n", "2 SFHA Priority - Emergency 5 \n", "3 Streetlight - Light_Burnt_Out 6 \n", "4 SFHA Priority - Emergency 5 \n", "\n", " Point \n", "0 (37.782620592996, -122.416286644263) \n", "1 (37.771787999, -122.4712056) \n", "2 (37.777584951111, -122.440874464132) \n", "3 (37.7899262286022, -122.394276396696) \n", "4 (37.777584951111, -122.440874464132) " ] } ], "prompt_number": 2 }, { "cell_type": "code", "collapsed": false, "input": [ "import numpy as np\n", "#drop all the blank rows at the end of the 311 dataset\n", "data_311 = data_311.dropna(thresh=5)\n", "data_311.tail()" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Opened</th>\n", " <th>Category</th>\n", " <th>Request Type</th>\n", " <th>Supervisor District</th>\n", " <th>Point</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>1098661</th>\n", " <td> 07/01/2008 03:03:00 AM</td>\n", " <td> Street and Sidewalk Cleaning</td>\n", " <td> Sidewalk_Cleaning</td>\n", " <td> 9</td>\n", " <td> (37.7406417656081, -122.423090064246)</td>\n", " </tr>\n", " <tr>\n", " <th>1098662</th>\n", " <td> 07/01/2008 02:07:00 AM</td>\n", " <td> Abandoned Vehicle</td>\n", " <td> Abandoned Vehicle - Car4door</td>\n", " <td> 5</td>\n", " <td> (37.781800341, -122.428537476)</td>\n", " </tr>\n", " <tr>\n", " <th>1098663</th>\n", " <td> 07/01/2008 01:56:00 AM</td>\n", " <td> Tree Maintenance</td>\n", " <td> Trees - Damaged_Tree</td>\n", " <td> 5</td>\n", " <td> (37.7643657242198, -122.458814894064)</td>\n", " </tr>\n", " <tr>\n", " <th>1098664</th>\n", " <td> 07/01/2008 12:26:00 AM</td>\n", " <td> Street and Sidewalk Cleaning</td>\n", " <td> Illegal_Dumping</td>\n", " <td> 4</td>\n", " <td> (37.7617471571397, -122.475924197088)</td>\n", " </tr>\n", " <tr>\n", " <th>1098665</th>\n", " <td> 07/01/2008 12:13:00 AM</td>\n", " <td> Street and Sidewalk Cleaning</td>\n", " <td> Sidewalk_Cleaning</td>\n", " <td> 3</td>\n", " <td> (37.800869062548, -122.406192162738)</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "metadata": {}, "output_type": "pyout", "prompt_number": 3, "text": [ " Opened Category \\\n", "1098661 07/01/2008 03:03:00 AM Street and Sidewalk Cleaning \n", "1098662 07/01/2008 02:07:00 AM Abandoned Vehicle \n", "1098663 07/01/2008 01:56:00 AM Tree Maintenance \n", "1098664 07/01/2008 12:26:00 AM Street and Sidewalk Cleaning \n", "1098665 07/01/2008 12:13:00 AM Street and Sidewalk Cleaning \n", "\n", " Request Type Supervisor District \\\n", "1098661 Sidewalk_Cleaning 9 \n", "1098662 Abandoned Vehicle - Car4door 5 \n", "1098663 Trees - Damaged_Tree 5 \n", "1098664 Illegal_Dumping 4 \n", "1098665 Sidewalk_Cleaning 3 \n", "\n", " Point \n", "1098661 (37.7406417656081, -122.423090064246) \n", "1098662 (37.781800341, -122.428537476) \n", "1098663 (37.7643657242198, -122.458814894064) \n", "1098664 (37.7617471571397, -122.475924197088) \n", "1098665 (37.800869062548, -122.406192162738) " ] } ], "prompt_number": 3 }, { "cell_type": "code", "collapsed": false, "input": [ "#convert the time the 311 report was opened to a python datetime\n", "data_311['DateTime'] = pd.to_datetime(data_311['Opened'])\n", "data_311 = data_311.drop('Opened', 1)\n", "data_311.head()" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Category</th>\n", " <th>Request Type</th>\n", " <th>Supervisor District</th>\n", " <th>Point</th>\n", " <th>DateTime</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td> SFHA Requests</td>\n", " <td> SFHA Priority - Emergency</td>\n", " <td> 6</td>\n", " <td> (37.782620592996, -122.416286644263)</td>\n", " <td>2014-11-29 00:57:11</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td> Rec and Park Requests</td>\n", " <td> Park - Neighborhood_Services_Area</td>\n", " <td> 1</td>\n", " <td> (37.771787999, -122.4712056)</td>\n", " <td>2014-11-29 00:32:49</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td> SFHA Requests</td>\n", " <td> SFHA Priority - Emergency</td>\n", " <td> 5</td>\n", " <td> (37.777584951111, -122.440874464132)</td>\n", " <td>2014-11-29 00:22:50</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td> Streetlights</td>\n", " <td> Streetlight - Light_Burnt_Out</td>\n", " <td> 6</td>\n", " <td> (37.7899262286022, -122.394276396696)</td>\n", " <td>2014-11-29 00:21:33</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td> SFHA Requests</td>\n", " <td> SFHA Priority - Emergency</td>\n", " <td> 5</td>\n", " <td> (37.777584951111, -122.440874464132)</td>\n", " <td>2014-11-29 00:16:54</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "metadata": {}, "output_type": "pyout", "prompt_number": 4, "text": [ " Category Request Type \\\n", "0 SFHA Requests SFHA Priority - Emergency \n", "1 Rec and Park Requests Park - Neighborhood_Services_Area \n", "2 SFHA Requests SFHA Priority - Emergency \n", "3 Streetlights Streetlight - Light_Burnt_Out \n", "4 SFHA Requests SFHA Priority - Emergency \n", "\n", " Supervisor District Point \\\n", "0 6 (37.782620592996, -122.416286644263) \n", "1 1 (37.771787999, -122.4712056) \n", "2 5 (37.777584951111, -122.440874464132) \n", "3 6 (37.7899262286022, -122.394276396696) \n", "4 5 (37.777584951111, -122.440874464132) \n", "\n", " DateTime \n", "0 2014-11-29 00:57:11 \n", "1 2014-11-29 00:32:49 \n", "2 2014-11-29 00:22:50 \n", "3 2014-11-29 00:21:33 \n", "4 2014-11-29 00:16:54 " ] } ], "prompt_number": 4 }, { "cell_type": "code", "collapsed": false, "input": [ "def create_bins(min_pt, max_pt, n):\n", " \"\"\"\n", " Creates n equally spaced bins between min_pt and max_pt\n", " \n", " @params min_pt float min value\n", " @params max_pt float max value\n", " @params n number of bins to create\n", " @return np.array bin values\n", " \"\"\"\n", " return np.linspace(min_pt, max_pt, n)\n", "\n", "import bisect\n", "def get_bin(bins, val):\n", " \"\"\"\n", " Determines which bin the input val falls into. Bins are represented \n", " by an increasing np.array. Val is assigned to the highest bin whose \n", " value is less than val. (e.g. for bins [0.0, 0.5, 1.0], 0.25 would \n", " be assigned to bin 0.0, 0.75 would be assigned to 0.5)\n", " \n", " @params bins np.array of increasing values\n", " @params val float to bin\n", " @return bin that val belongs to\n", " \"\"\"\n", " index = bisect.bisect_right(bins, val)-1 #bisect_left returns 2 with [0.0, 0.5, 1.0] and 0.75 as input\n", " return bins[index]" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 5 }, { "cell_type": "code", "collapsed": false, "input": [ "mintime = data_311['DateTime'].min()\n", "maxtime = data_311['DateTime'].max()\n", "\n", "print mintime\n", "print maxtime" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "2008-07-01 00:13:00\n", "2014-11-29 00:57:11\n" ] } ], "prompt_number": 6 }, { "cell_type": "code", "collapsed": false, "input": [ "sec_range = (((maxtime-mintime).total_seconds())/5000)\n", "#using 5000 time bins, each time bin is this many hours\n", "print sec_range/3600" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "11.2417472778\n" ] } ], "prompt_number": 7 }, { "cell_type": "code", "collapsed": false, "input": [ "#make time bin for 311 dataset\n", "#subtracting 2 datetimes creates a tdelta object\n", "bins = create_bins(0, (maxtime-mintime).total_seconds(), 5000)\n", "data_311['TimeBin'] = data_311.apply(lambda row: get_bin(bins, (row['DateTime']-mintime).total_seconds()), axis = 1)\n", "data_311.head()" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Category</th>\n", " <th>Request Type</th>\n", " <th>Supervisor District</th>\n", " <th>Point</th>\n", " <th>DateTime</th>\n", " <th>TimeBin</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td> SFHA Requests</td>\n", " <td> SFHA Priority - Emergency</td>\n", " <td> 6</td>\n", " <td> (37.782620592996, -122.416286644263)</td>\n", " <td>2014-11-29 00:57:11</td>\n", " <td> 2.023515e+08</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td> Rec and Park Requests</td>\n", " <td> Park - Neighborhood_Services_Area</td>\n", " <td> 1</td>\n", " <td> (37.771787999, -122.4712056)</td>\n", " <td>2014-11-29 00:32:49</td>\n", " <td> 2.023110e+08</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td> SFHA Requests</td>\n", " <td> SFHA Priority - Emergency</td>\n", " <td> 5</td>\n", " <td> (37.777584951111, -122.440874464132)</td>\n", " <td>2014-11-29 00:22:50</td>\n", " <td> 2.023110e+08</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td> Streetlights</td>\n", " <td> Streetlight - Light_Burnt_Out</td>\n", " <td> 6</td>\n", " <td> (37.7899262286022, -122.394276396696)</td>\n", " <td>2014-11-29 00:21:33</td>\n", " <td> 2.023110e+08</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td> SFHA Requests</td>\n", " <td> SFHA Priority - Emergency</td>\n", " <td> 5</td>\n", " <td> (37.777584951111, -122.440874464132)</td>\n", " <td>2014-11-29 00:16:54</td>\n", " <td> 2.023110e+08</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "metadata": {}, "output_type": "pyout", "prompt_number": 8, "text": [ " Category Request Type \\\n", "0 SFHA Requests SFHA Priority - Emergency \n", "1 Rec and Park Requests Park - Neighborhood_Services_Area \n", "2 SFHA Requests SFHA Priority - Emergency \n", "3 Streetlights Streetlight - Light_Burnt_Out \n", "4 SFHA Requests SFHA Priority - Emergency \n", "\n", " Supervisor District Point \\\n", "0 6 (37.782620592996, -122.416286644263) \n", "1 1 (37.771787999, -122.4712056) \n", "2 5 (37.777584951111, -122.440874464132) \n", "3 6 (37.7899262286022, -122.394276396696) \n", "4 5 (37.777584951111, -122.440874464132) \n", "\n", " DateTime TimeBin \n", "0 2014-11-29 00:57:11 2.023515e+08 \n", "1 2014-11-29 00:32:49 2.023110e+08 \n", "2 2014-11-29 00:22:50 2.023110e+08 \n", "3 2014-11-29 00:21:33 2.023110e+08 \n", "4 2014-11-29 00:16:54 2.023110e+08 " ] } ], "prompt_number": 8 }, { "cell_type": "code", "collapsed": false, "input": [ "print bins" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "[ 0.00000000e+00 4.04783859e+04 8.09567718e+04 ..., 2.02270494e+08\n", " 2.02310973e+08 2.02351451e+08]\n" ] } ], "prompt_number": 9 }, { "cell_type": "code", "collapsed": false, "input": [ "#separate the point tuple into x and y columns\n", "data_311['X'] = data_311.apply(lambda row: float(row['Point'].strip(')(').split(',')[1]), axis=1)\n", "data_311['Y'] = data_311.apply(lambda row: float(row['Point'].strip(')(').split(',')[0]), axis=1)\n", "data_311.head()" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Category</th>\n", " <th>Request Type</th>\n", " <th>Supervisor District</th>\n", " <th>Point</th>\n", " <th>DateTime</th>\n", " <th>TimeBin</th>\n", " <th>X</th>\n", " <th>Y</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td> SFHA Requests</td>\n", " <td> SFHA Priority - Emergency</td>\n", " <td> 6</td>\n", " <td> (37.782620592996, -122.416286644263)</td>\n", " <td>2014-11-29 00:57:11</td>\n", " <td> 2.023515e+08</td>\n", " <td>-122.416287</td>\n", " <td> 37.782621</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td> Rec and Park Requests</td>\n", " <td> Park - Neighborhood_Services_Area</td>\n", " <td> 1</td>\n", " <td> (37.771787999, -122.4712056)</td>\n", " <td>2014-11-29 00:32:49</td>\n", " <td> 2.023110e+08</td>\n", " <td>-122.471206</td>\n", " <td> 37.771788</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td> SFHA Requests</td>\n", " <td> SFHA Priority - Emergency</td>\n", " <td> 5</td>\n", " <td> (37.777584951111, -122.440874464132)</td>\n", " <td>2014-11-29 00:22:50</td>\n", " <td> 2.023110e+08</td>\n", " <td>-122.440874</td>\n", " <td> 37.777585</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td> Streetlights</td>\n", " <td> Streetlight - Light_Burnt_Out</td>\n", " <td> 6</td>\n", " <td> (37.7899262286022, -122.394276396696)</td>\n", " <td>2014-11-29 00:21:33</td>\n", " <td> 2.023110e+08</td>\n", " <td>-122.394276</td>\n", " <td> 37.789926</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td> SFHA Requests</td>\n", " <td> SFHA Priority - Emergency</td>\n", " <td> 5</td>\n", " <td> (37.777584951111, -122.440874464132)</td>\n", " <td>2014-11-29 00:16:54</td>\n", " <td> 2.023110e+08</td>\n", " <td>-122.440874</td>\n", " <td> 37.777585</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "metadata": {}, "output_type": "pyout", "prompt_number": 10, "text": [ " Category Request Type \\\n", "0 SFHA Requests SFHA Priority - Emergency \n", "1 Rec and Park Requests Park - Neighborhood_Services_Area \n", "2 SFHA Requests SFHA Priority - Emergency \n", "3 Streetlights Streetlight - Light_Burnt_Out \n", "4 SFHA Requests SFHA Priority - Emergency \n", "\n", " Supervisor District Point \\\n", "0 6 (37.782620592996, -122.416286644263) \n", "1 1 (37.771787999, -122.4712056) \n", "2 5 (37.777584951111, -122.440874464132) \n", "3 6 (37.7899262286022, -122.394276396696) \n", "4 5 (37.777584951111, -122.440874464132) \n", "\n", " DateTime TimeBin X Y \n", "0 2014-11-29 00:57:11 2.023515e+08 -122.416287 37.782621 \n", "1 2014-11-29 00:32:49 2.023110e+08 -122.471206 37.771788 \n", "2 2014-11-29 00:22:50 2.023110e+08 -122.440874 37.777585 \n", "3 2014-11-29 00:21:33 2.023110e+08 -122.394276 37.789926 \n", "4 2014-11-29 00:16:54 2.023110e+08 -122.440874 37.777585 " ] } ], "prompt_number": 10 }, { "cell_type": "code", "collapsed": false, "input": [ "# filter out all data that are in the top/bottom 1% of X or Y locations.\n", "# This was done because we noticed there were some outliers in the X and Y data.\n", "#min_x_loc = np.percentile(data_311['X'],1) #without filter it was -122.514436\n", "#max_x_loc = np.percentile(data_311['X'],99) #without filter -119.850760\n", "#min_y_loc = np.percentile(data_311['Y'],1) #without filter 37.624394\n", "#max_y_loc = np.percentile(data_311['Y'],99) #without filter37.881603\n", "#orig_len = len(data_311)\n", "#print \"done\"" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 11 }, { "cell_type": "code", "collapsed": false, "input": [ "# find the min and max locations. These values will be hard-coded into format_911.\n", "# hard code these (like we do in the 911 data) to get rid of hidden precision\n", "min_x_loc = -122.505716\n", "max_x_loc = -122.384338\n", "min_y_loc = 37.710652\n", "max_y_loc = 37.803545\n", "print \"min x location: %f\" % min_x_loc #min x location: -122.505716\n", "print \"max x location: %f\" % max_x_loc #max x location: -122.384338\n", "print \"min y location: %f\" % min_y_loc #min y location: 37.710652\n", "print \"max y location: %f\" % max_y_loc #max y location: 37.803545" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "min x location: -122.505716\n", "max x location: -122.384338\n", "min y location: 37.710652\n", "max y location: 37.803545\n" ] } ], "prompt_number": 11 }, { "cell_type": "code", "collapsed": false, "input": [ "#print \"original length : \" + str(orig_len)\n", "#print \"original length * 96% : \" + str(orig_len*.96)\n", "data_311 = data_311[data_311['X']>=min_x_loc]\n", "data_311 = data_311[data_311['X']<=max_x_loc]\n", "data_311 = data_311[data_311['Y']>=min_y_loc]\n", "data_311 = data_311[data_311['Y']<=max_y_loc]\n", "print \"after length : \" + str(len(data_311)) #should go down about 4% (actually .98*.98)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "after length : 1055187\n" ] } ], "prompt_number": 12 }, { "cell_type": "code", "collapsed": false, "input": [ "#temp. don't cut off extremes\n", "#min_x_loc = -122.514436\n", "#max_x_loc = -119.850760\n", "#min_y_loc = 37.624394\n", "#max_y_loc = 37.881603\n", "#print \"done\"\n" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 14 }, { "cell_type": "code", "collapsed": false, "input": [ "#create xbins and ybins\n", "xbins = create_bins(min_x_loc, max_x_loc, 10)\n", "ybins = create_bins(min_y_loc, max_y_loc, 10)\n", "data_311['XBin'] = data_311.apply(lambda row: get_bin(xbins, row['X']), axis = 1)\n", "data_311['YBin'] = data_311.apply(lambda row: get_bin(ybins, row['Y']), axis = 1)\n", "data_311.head()" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Category</th>\n", " <th>Request Type</th>\n", " <th>Supervisor District</th>\n", " <th>Point</th>\n", " <th>DateTime</th>\n", " <th>TimeBin</th>\n", " <th>X</th>\n", " <th>Y</th>\n", " <th>XBin</th>\n", " <th>YBin</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td> SFHA Requests</td>\n", " <td> SFHA Priority - Emergency</td>\n", " <td> 6</td>\n", " <td> (37.782620592996, -122.416286644263)</td>\n", " <td>2014-11-29 00:57:11</td>\n", " <td> 2.023515e+08</td>\n", " <td>-122.416287</td>\n", " <td> 37.782621</td>\n", " <td>-122.424797</td>\n", " <td> 37.772581</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td> Rec and Park Requests</td>\n", " <td> Park - Neighborhood_Services_Area</td>\n", " <td> 1</td>\n", " <td> (37.771787999, -122.4712056)</td>\n", " <td>2014-11-29 00:32:49</td>\n", " <td> 2.023110e+08</td>\n", " <td>-122.471206</td>\n", " <td> 37.771788</td>\n", " <td>-122.478743</td>\n", " <td> 37.762259</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td> SFHA Requests</td>\n", " <td> SFHA Priority - Emergency</td>\n", " <td> 5</td>\n", " <td> (37.777584951111, -122.440874464132)</td>\n", " <td>2014-11-29 00:22:50</td>\n", " <td> 2.023110e+08</td>\n", " <td>-122.440874</td>\n", " <td> 37.777585</td>\n", " <td>-122.451770</td>\n", " <td> 37.772581</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td> Streetlights</td>\n", " <td> Streetlight - Light_Burnt_Out</td>\n", " <td> 6</td>\n", " <td> (37.7899262286022, -122.394276396696)</td>\n", " <td>2014-11-29 00:21:33</td>\n", " <td> 2.023110e+08</td>\n", " <td>-122.394276</td>\n", " <td> 37.789926</td>\n", " <td>-122.397824</td>\n", " <td> 37.782902</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td> SFHA Requests</td>\n", " <td> SFHA Priority - Emergency</td>\n", " <td> 5</td>\n", " <td> (37.777584951111, -122.440874464132)</td>\n", " <td>2014-11-29 00:16:54</td>\n", " <td> 2.023110e+08</td>\n", " <td>-122.440874</td>\n", " <td> 37.777585</td>\n", " <td>-122.451770</td>\n", " <td> 37.772581</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "metadata": {}, "output_type": "pyout", "prompt_number": 13, "text": [ " Category Request Type \\\n", "0 SFHA Requests SFHA Priority - Emergency \n", "1 Rec and Park Requests Park - Neighborhood_Services_Area \n", "2 SFHA Requests SFHA Priority - Emergency \n", "3 Streetlights Streetlight - Light_Burnt_Out \n", "4 SFHA Requests SFHA Priority - Emergency \n", "\n", " Supervisor District Point \\\n", "0 6 (37.782620592996, -122.416286644263) \n", "1 1 (37.771787999, -122.4712056) \n", "2 5 (37.777584951111, -122.440874464132) \n", "3 6 (37.7899262286022, -122.394276396696) \n", "4 5 (37.777584951111, -122.440874464132) \n", "\n", " DateTime TimeBin X Y XBin \\\n", "0 2014-11-29 00:57:11 2.023515e+08 -122.416287 37.782621 -122.424797 \n", "1 2014-11-29 00:32:49 2.023110e+08 -122.471206 37.771788 -122.478743 \n", "2 2014-11-29 00:22:50 2.023110e+08 -122.440874 37.777585 -122.451770 \n", "3 2014-11-29 00:21:33 2.023110e+08 -122.394276 37.789926 -122.397824 \n", "4 2014-11-29 00:16:54 2.023110e+08 -122.440874 37.777585 -122.451770 \n", "\n", " YBin \n", "0 37.772581 \n", "1 37.762259 \n", "2 37.772581 \n", "3 37.782902 \n", "4 37.772581 " ] } ], "prompt_number": 13 }, { "cell_type": "code", "collapsed": false, "input": [ "#we should have timebin, xbin, and ybin at this point. \n", "#Get rid of DateTime, point, X, and Y (the columns that we used to generate these bins).\n", "data_311 = data_311[['Category','Request Type', 'Supervisor District', 'TimeBin','XBin','YBin']]\n", "data_311.head()" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Category</th>\n", " <th>Request Type</th>\n", " <th>Supervisor District</th>\n", " <th>TimeBin</th>\n", " <th>XBin</th>\n", " <th>YBin</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td> SFHA Requests</td>\n", " <td> SFHA Priority - Emergency</td>\n", " <td> 6</td>\n", " <td> 2.023515e+08</td>\n", " <td>-122.424797</td>\n", " <td> 37.772581</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td> Rec and Park Requests</td>\n", " <td> Park - Neighborhood_Services_Area</td>\n", " <td> 1</td>\n", " <td> 2.023110e+08</td>\n", " <td>-122.478743</td>\n", " <td> 37.762259</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td> SFHA Requests</td>\n", " <td> SFHA Priority - Emergency</td>\n", " <td> 5</td>\n", " <td> 2.023110e+08</td>\n", " <td>-122.451770</td>\n", " <td> 37.772581</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td> Streetlights</td>\n", " <td> Streetlight - Light_Burnt_Out</td>\n", " <td> 6</td>\n", " <td> 2.023110e+08</td>\n", " <td>-122.397824</td>\n", " <td> 37.782902</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td> SFHA Requests</td>\n", " <td> SFHA Priority - Emergency</td>\n", " <td> 5</td>\n", " <td> 2.023110e+08</td>\n", " <td>-122.451770</td>\n", " <td> 37.772581</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "metadata": {}, "output_type": "pyout", "prompt_number": 14, "text": [ " Category Request Type \\\n", "0 SFHA Requests SFHA Priority - Emergency \n", "1 Rec and Park Requests Park - Neighborhood_Services_Area \n", "2 SFHA Requests SFHA Priority - Emergency \n", "3 Streetlights Streetlight - Light_Burnt_Out \n", "4 SFHA Requests SFHA Priority - Emergency \n", "\n", " Supervisor District TimeBin XBin YBin \n", "0 6 2.023515e+08 -122.424797 37.772581 \n", "1 1 2.023110e+08 -122.478743 37.762259 \n", "2 5 2.023110e+08 -122.451770 37.772581 \n", "3 6 2.023110e+08 -122.397824 37.782902 \n", "4 5 2.023110e+08 -122.451770 37.772581 " ] } ], "prompt_number": 14 }, { "cell_type": "code", "collapsed": false, "input": [ "#store into csv as checkpoint\n", "data_311.to_csv('intermediate_311.csv', index_label=False)" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 15 }, { "cell_type": "code", "collapsed": false, "input": [ "DATA_PATH = \"intermediate_311.csv\" # path of amazon machine\n", "import pandas as pd\n", "data_311 = pd.read_csv(DATA_PATH, na_values=['-'])\n", "data_311.head()" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Category</th>\n", " <th>Request Type</th>\n", " <th>Supervisor District</th>\n", " <th>TimeBin</th>\n", " <th>XBin</th>\n", " <th>YBin</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td> SFHA Requests</td>\n", " <td> SFHA Priority - Emergency</td>\n", " <td> 6</td>\n", " <td> 2.023515e+08</td>\n", " <td>-122.424797</td>\n", " <td> 37.772581</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td> Rec and Park Requests</td>\n", " <td> Park - Neighborhood_Services_Area</td>\n", " <td> 1</td>\n", " <td> 2.023110e+08</td>\n", " <td>-122.478743</td>\n", " <td> 37.762259</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td> SFHA Requests</td>\n", " <td> SFHA Priority - Emergency</td>\n", " <td> 5</td>\n", " <td> 2.023110e+08</td>\n", " <td>-122.451770</td>\n", " <td> 37.772581</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td> Streetlights</td>\n", " <td> Streetlight - Light_Burnt_Out</td>\n", " <td> 6</td>\n", " <td> 2.023110e+08</td>\n", " <td>-122.397824</td>\n", " <td> 37.782902</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td> SFHA Requests</td>\n", " <td> SFHA Priority - Emergency</td>\n", " <td> 5</td>\n", " <td> 2.023110e+08</td>\n", " <td>-122.451770</td>\n", " <td> 37.772581</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "metadata": {}, "output_type": "pyout", "prompt_number": 16, "text": [ " Category Request Type \\\n", "0 SFHA Requests SFHA Priority - Emergency \n", "1 Rec and Park Requests Park - Neighborhood_Services_Area \n", "2 SFHA Requests SFHA Priority - Emergency \n", "3 Streetlights Streetlight - Light_Burnt_Out \n", "4 SFHA Requests SFHA Priority - Emergency \n", "\n", " Supervisor District TimeBin XBin YBin \n", "0 6 2.023515e+08 -122.424797 37.772581 \n", "1 1 2.023110e+08 -122.478743 37.762259 \n", "2 5 2.023110e+08 -122.451770 37.772581 \n", "3 6 2.023110e+08 -122.397824 37.782902 \n", "4 5 2.023110e+08 -122.451770 37.772581 " ] } ], "prompt_number": 16 }, { "cell_type": "code", "collapsed": false, "input": [ "#aggregate 311 reports by tuple\n", "agg_dict_311 = {}\n", "for index, row in data_311.iterrows():\n", " tupe = (row['TimeBin'], row['XBin'], row['YBin'])\n", " if tupe not in agg_dict_311:\n", " agg_dict_311[tupe] = []\n", " agg_dict_311[tupe].append(row.to_dict())\n", "print len(agg_dict_311)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "249147\n" ] } ], "prompt_number": 17 }, { "cell_type": "code", "collapsed": false, "input": [ "# Get all possible labels for certain categorical data, by looping through the data.\n", "Category_set = set()\n", "Request_Type_set = set()\n", "#Request_Details_set = set()\n", "Supervisor_District_set = set()\n", "#Source_set = set()\n", "ct=0\n", "for row_tuple in data_311.iterrows():\n", " ct+=1\n", " if ct>1:\n", " break\n", " row = row_tuple[1] # a pandas Series\n", " print row\n", " Category = row['Category']\n", " Request_Type = row['Request Type']\n", " #Request_Details = row['Request Details']\n", " Supervisor_District = row['Supervisor District']\n", " #Source = row['Source']\n", " Category_set.add(Category)\n", " Request_Type_set.add(Request_Type)\n", " #Request_Details_set.add(Request_Details)\n", " Supervisor_District_set.add(Supervisor_District)\n", " #Source_set.add(Source)\n", "print \"done\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Category SFHA Requests\n", "Request Type SFHA Priority - Emergency\n", "Supervisor District 6\n", "TimeBin 2.023515e+08\n", "XBin -122.4248\n", "YBin 37.77258\n", "Name: 0, dtype: object\n", "done\n" ] } ], "prompt_number": 38 }, { "cell_type": "code", "collapsed": false, "input": [ "print len(Category_set)\n", "#print len(Request_Type_set)\n", "#print len(Request_Details_set)\n", "print len(Supervisor_District_set)\n", "#print len(Source_set)\n", "print Category_set\n", "print Supervisor_District_set\n", "#print Source_set" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "27\n", "12\n", "set(['Streetlights', 'Abandoned Vehicle', 'Interdepartmental Request', 'MUNI Feedback', 'Graffiti Private Property', 'DPW Volunteer Programs', 'Tree Maintenance', 'Rec and Park Requests', 'Residential Building Request', 'Blocked Street or SideWalk', 'Sidewalk or Curb', 'Temporary Sign Request', 'Sewer Issues', '311 External Request', 'Litter Receptacles', 'Catch Basin Maintenance', 'Street Defects', 'Street and Sidewalk Cleaning', 'Color Curb', 'SFHA Requests', 'Construction Zone Permits', 'Graffiti Public Property', 'Illegal Postings', 'Damaged Property', 'Unpermitted Cab Complaint', 'General Requests', 'Sign Repair'])\n", "set([0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0])\n" ] } ], "prompt_number": 21 }, { "cell_type": "code", "collapsed": false, "input": [ "# Generate a feature vector given a list of dictionaries. Each dictionary represents one 311 report.\n", "# Regularization should also go here\n", " # @param reports_311: a list of dictionaries. Each dictionary is of the form\n", " # {'Category': string, 'Request Details': string, 'Request Type': string, 'Source': string, 'Supervisor District':string,\n", " # 'TimeBin': float, 'XBin':float, 'YBin':float}\n", "\n", "#create map dictionaries that will map each one of the categories from the category sets to an index in feature_vector.\n", "category_map = {}\n", "supervisor_map = {}\n", "source_map = {}\n", "index = 0\n", "for cat in Category_set:\n", " category_map[cat] = index\n", " index += 1 \n", "for cat in Supervisor_District_set:\n", " supervisor_map[cat] = index\n", " index += 1\n", "#for cat in Source_set:\n", "# source_map[cat] = index\n", "# index += 1\n", " \n", "def generate_feature_vector(reports_311):\n", " # simple feature vector that is just sum of counts of 311 reports of each category \n", " # from (Category, Supervisor District, and Source)\n", " feature_vector = []\n", " for i in xrange(index):\n", " feature_vector.append(0)\n", " for report in reports_311:\n", " # the first 27 features correspond to the number of 311 reports from each category from Category set\n", " # the next 12 features correspond to the number of 311 reports from each category from Supervisor_District set\n", " # the next 9 features correspond to the number of 311 reports from each category from Source set\n", " feature_vector[category_map[report[\"Category\"]]]+=1\n", " feature_vector[supervisor_map[report[\"Supervisor District\"]]]+=1\n", " #feature_vector[source_map[report[\"Source\"]]]+=1\n", " return feature_vector\n", "print \"done\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "done\n" ] } ], "prompt_number": 23 }, { "cell_type": "code", "collapsed": false, "input": [ "print category_map\n", "print supervisor_map" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "{'Streetlights': 0, 'Abandoned Vehicle': 1, 'Interdepartmental Request': 2, 'MUNI Feedback': 3, 'Graffiti Private Property': 4, 'DPW Volunteer Programs': 5, 'Tree Maintenance': 6, 'Construction Zone Permits': 20, 'Residential Building Request': 8, 'Blocked Street or SideWalk': 9, 'Sidewalk or Curb': 10, 'Temporary Sign Request': 11, 'Sewer Issues': 12, '311 External Request': 13, 'Litter Receptacles': 14, 'Catch Basin Maintenance': 15, 'Street Defects': 16, 'Street and Sidewalk Cleaning': 17, 'Color Curb': 18, 'SFHA Requests': 19, 'Rec and Park Requests': 7, 'Graffiti Public Property': 21, 'Illegal Postings': 22, 'Damaged Property': 23, 'Unpermitted Cab Complaint': 24, 'General Requests': 25, 'Sign Repair': 26}\n", "{0.0: 27, 1.0: 28, 2.0: 29, 3.0: 30, 4.0: 31, 5.0: 32, 6.0: 33, 7.0: 34, 8.0: 35, 9.0: 36, 10.0: 37, 11.0: 38}\n" ] } ], "prompt_number": 39 }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "agg_dict_311_2 = {}\n", "agg_dict_311_2['feature-311'] = []\n", "agg_dict_311_2['tuple'] = []\n", "for key in agg_dict_311:\n", " val = agg_dict_311[key]\n", " feature_vector_311 = generate_feature_vector(val)\n", " agg_dict_311_2['tuple'].append(key)\n", " agg_dict_311_2['feature-311'].append(feature_vector_311)\n", "print \"done\" " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "done\n" ] } ], "prompt_number": 25 }, { "cell_type": "code", "collapsed": false, "input": [ "len(agg_dict_311_2['feature-311'])" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 26, "text": [ "249147" ] } ], "prompt_number": 26 }, { "cell_type": "code", "collapsed": false, "input": [ "df_311_final = pd.DataFrame(agg_dict_311_2)\n", "df_311_final.head(5)" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>feature-311</th>\n", " <th>tuple</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td> [0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, ...</td>\n", " <td> (6274149.81096, -122.424797333, 37.7725806667)</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td> [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, ...</td>\n", " <td> (68448950.5183, -122.451770222, 37.7622592222)</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td> [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, ...</td>\n", " <td> (180695514.556, -122.505716, 37.7519377778)</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td> [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, ...</td>\n", " <td> (198060742.097, -122.505716, 37.7209734444)</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td> [0, 0, 0, 1, 4, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, ...</td>\n", " <td> (166811428.2, -122.424797333, 37.7622592222)</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "metadata": {}, "output_type": "pyout", "prompt_number": 27, "text": [ " feature-311 \\\n", "0 [0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, ... \n", "1 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, ... \n", "2 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, ... \n", "3 [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, ... \n", "4 [0, 0, 0, 1, 4, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, ... \n", "\n", " tuple \n", "0 (6274149.81096, -122.424797333, 37.7725806667) \n", "1 (68448950.5183, -122.451770222, 37.7622592222) \n", "2 (180695514.556, -122.505716, 37.7519377778) \n", "3 (198060742.097, -122.505716, 37.7209734444) \n", "4 (166811428.2, -122.424797333, 37.7622592222) " ] } ], "prompt_number": 27 }, { "cell_type": "code", "collapsed": false, "input": [ "print df_311_final.iloc[0][0]\n", "print len(df_311_final.iloc[0][0])" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "[0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0]\n", "39\n" ] } ], "prompt_number": 35 }, { "cell_type": "code", "collapsed": false, "input": [ "df_311_final.to_csv('df_311_ready_to_join.csv', index_label=False)" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 28 }, { "cell_type": "code", "collapsed": false, "input": [ "t0 = [x[0] for x in df_311_final['tuple']]\n", "t0s = set(t0)\n", "print len(t0s)\n", "\n", "t1 = [x[1] for x in df_311_final['tuple']]\n", "t1s = set(t1)\n", "print len(t1s)\n", "\n", "t2 = [x[2] for x in df_311_final['tuple']]\n", "t2s = set(t2)\n", "print len(t2s)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "4997\n", "9" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "9" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n" ] } ], "prompt_number": 29 } ], "metadata": {} } ] }
apache-2.0
rishuatgithub/MLPy
torch/PYTORCH_NOTEBOOKS/02-ANN-Artificial-Neural-Networks/01-Linear-Regression-with-PyTorch.ipynb
1
64667
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "<img src=\"../Pierian-Data-Logo.PNG\">\n", "<br>\n", "<strong><center>Copyright 2019. Created by Jose Marcial Portilla.</center></strong>" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Linear Regression with PyTorch\n", "In this section we'll use PyTorch's machine learning model to progressively develop a best-fit line for a given set of data points. Like most linear regression algorithms, we're seeking to minimize the error between our model and the actual data, using a <em>loss function</em> like mean-squared-error.\n", "\n", "<img src='../Images/linear-regression-residuals.png' width='400' style=\"display: inline-block\"><br>\n", "\n", "Image source: <a href='https://commons.wikimedia.org/wiki/File:Residuals_for_Linear_Regression_Fit.png'>https://commons.wikimedia.org/wiki/File:Residuals_for_Linear_Regression_Fit.png</a>\n", "\n", "To start, we'll develop a collection of data points that appear random, but that fit a known linear equation $y = 2x+1$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Perform standard imports" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import torch\n", "import torch.nn as nn # we'll use this a lot going forward!\n", "\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "%matplotlib inline" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Create a column matrix of X values\n", "We can create tensors right away rather than convert from NumPy arrays." ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true }, "outputs": [], "source": [ "X = torch.linspace(1,50,50).reshape(-1,1)\n", "\n", "# Equivalent to\n", "# X = torch.unsqueeze(torch.linspace(1,50,50), dim=1)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Create a \"random\" array of error values\n", "We want 50 random integer values that collectively cancel each other out." ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "tensor(0.)\n" ] } ], "source": [ "torch.manual_seed(71) # to obtain reproducible results\n", "e = torch.randint(-8,9,(50,1),dtype=torch.float)\n", "print(e.sum())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Create a column matrix of y values\n", "Here we'll set our own parameters of $\\mathrm {weight} = 2,\\; \\mathrm {bias} = 1$, plus the error amount.<br><strong><tt>y</tt></strong> will have the same shape as <strong><tt>X</tt></strong> and <strong><tt>e</tt></strong>" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "torch.Size([50, 1])\n" ] } ], "source": [ "y = 2*X + 1 + e\n", "print(y.shape)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Plot the results\n", "We have to convert tensors to NumPy arrays just for plotting." ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEKCAYAAAAIO8L1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAFfNJREFUeJzt3X+MHWd1xvHnwUnEEkAbJ5vUXsfYVJEBQYvRbRqxVUUcqANExIpCBaJg2kj+o1ACpSYOqopaQbOUCmilKpWbUFwJ8kMhOFFTFaLYES1tXdbZFAdM5DTND69NbAQutHIBm9M/7ixelrl3917PzDtz5/uRrN07O7v3HWWzZ86c97yvI0IAACz2vNQDAADUEwECAJCLAAEAyEWAAADkIkAAAHIRIAAAuQgQAIBcBAgAQC4CBAAg1zmpB3A2Lrrooli3bl3qYQBAo+zfv/87ETGx1HmNDhDr1q3TzMxM6mEAQKPYfno55/GICQCQiwABAMhFgAAA5CotQNj+jO1jth9bcGyl7QdtH8o+XpAdt+2/tP2E7a/bfk1Z4wIALE+ZGcRnJV296NgOSQ9FxGWSHspeS9IbJV2W/dsm6dYSxwUAWIbSZjFFxFdsr1t0+FpJr8s+3yXpYUk3Zcf/Lrq7F/2b7XHbqyLiaFnjA4Ci7Z6d0ye+9LiOnDip1eNj2r55g7ZsnGzce8yreprrJfN/9CPiqO2Ls+OTkp5dcN7h7NjPBQjb29TNMrR27dpyRwsAy7R7dk4333tAJ398WpI0d+Kkbr73gCQV9ge8ivdYqC5Fauccy90LNSJ2RkQnIjoTE0v2eQBAJT7xpcd/+od73skfn9YnvvR4o95joaoDxHO2V0lS9vFYdvywpEsXnLdG0pGKxwYAQzty4uRAx+v6HgtVHSDul7Q1+3yrpPsWHH9XNpvpCkn/Tf0BQJOsHh8b6Hhd32OhMqe53iHpXyVtsH3Y9g2SpiW9wfYhSW/IXkvSP0h6UtITkv5G0u+WNS4AKMP2zRs0du6Knzk2du4Kbd+8oVHvsVCZs5je3uNLV+WcG5LeU9ZYAKBs80XiMmcYVfEeC7n7t7mZOp1OsFgfAAzG9v6I6Cx1Xl1mMQEAaoYAAQDIRYAAAORq9IZBANBkVS6bMQwCBAAkUPWyGcPgERMAJFD1shnDIEAAQAJVL5sxDB4xAUACq8fHNJcTDFaPj9WmNkEGAQAJ9Fo248qXTejmew9o7sRJhc7UJnbPzlU+RgIEACSwZeOkbrnuVZocH5MlTY6P6ZbrXqW93zpem9oEj5gAIJEtGyd/7tHRB+56NPfcFLUJAgQADKjMGkG/2kTVeMQEAAOY718oq0ZQ9ZLe/ZBBAGikou7iB/05/foXisgiql7Sux8CBIDGKaoLeZifU0X/Ql5tIgUeMQFonKK6kIf5OVVv+5kSAQJA4xR1Fz/Mz6lTjaBsBAgAjVPUXfwwP6dX/0IdHgkVjRoEgMbZvnnDz9QOpOHu4of9OYPWCOqydMagCBAAGqeomT5VzBhqwrLevTgiUo9haJ1OJ2ZmZlIPAwB6mprek9v4Njk+pq/u2JRgRJLt/RHRWeo8ahAAUKImLOvdCwECAErU5GmxBAgAKFGTp8VSpAaQXFNn+SxHnZbOGBQBAkBSTZ7ls1x1WTpjUAQIAEmVvfjdvFHOUspCgACQVBWzfNqQpZSBAAEgqaI3yMnLFKrKUkYNs5gAJFXkLJ9em/nkBSCpGb0IKZFBAEiqyFk+vTKFFbZO56wa0S9LoWZBgABQA0XN8umVEZyO0Ni5K5a9KB81i64kj5hsf8D2N2w/ZvsO28+3vd72PtuHbN9l+7wUYwPQXL0ygvkluZe7RHdRGxI1XeUZhO1JSe+T9IqIOGn7bklvk/QmSZ+KiDtt/7WkGyTdWvX4ADRXv+W7B8lSmrx+UpFSFanPkTRm+xxJL5B0VNImSfdkX98laUuisQGoid2zc5qa3qP1Ox7Q1PQe7Z6d63t+UZv5NHn9pCJVnkFExJztP5f0jKSTkr4sab+kExFxKjvtsKTc/6K2t0naJklr164tf8AAkhi2DlBEPaOoDYmarvIMwvYFkq6VtF7SaknnS3pjzqm5G1VExM6I6EREZ2JioryBAkgqZR2gTduK9pNiFtPrJf1XRByXJNv3SnqtpHHb52RZxBpJRxKMDUBNpK4DNHX9pCKlqEE8I+kK2y+wbUlXSfqmpL2Srs/O2SrpvgRjA1AT1AHSqzxARMQ+dYvRj0g6kI1hp6SbJP2+7SckXSjp9qrHBqA+mryPwqhI0igXER+R9JFFh5+UdHmC4QCooSbvozAq6KQGUFvUAdJisT4AQC4CBAAgFwECAJCLAAEAyEWAAADkYhYTAElskIOfR4AAwAY5yEWAAFomL1PotzBekQGCLKVZCBBAi/TKFBYHh3lFLoxHltI8FKmBFumVKaywc88vcmE8tvFsHgIE0CK9MoLTEaUvjJd6+W4MjgABtEivjGB+Q5wyN8hh+e7moQYBtEi/rTTLXhiPbTybhwABtEjKJbRZvrt5HJG79XMjdDqdmJmZST0MAGgU2/sjorPUeWQQAPoapneBfofRQIAA0NMwvQv0O4wOZjEB6GmY3gX6HUYHAQJAT8P0LtDvMDoIEAB6GqZ3gX6H0UGAABps9+ycpqb3aP2OBzQ1vUe7Z+cK/fnbN28YuMN6mO9BPVGkBhqqimLwML0L9DuMDvoggIaamt6juZzn+pPjY/rqjk2lvz9TWZuLPghgxKUsBjOVtR2oQQANtVQxuMz6BFNZ24EAATRUv2Lw/B3+3ImTCp25wy8qSDCVtR14xAQ0QL/n/XnHp6b3lLqF6Orxsdz6B1NZRwsBAqi5pZ735/3BL/sOn6W724FHTEDNDfO8v+xmtS0bJ0vfYAjpkUEANTdMNlDFHX7ZGwwhPTIIoOaGyQa4w0cRyCCAmhs2G+AOH2crSYCwPS7pNkmvlBSSfkfS45LukrRO0lOSfjMivpdifEAqg85WAsqUKoP4C0n/GBHX2z5P0gskfVjSQxExbXuHpB2Sbko0PqByw8xWAspUeQ3C9osl/bqk2yUpIn4UESckXStpV3baLklbqh4bkBLdyaibFEXql0o6Lulvbc/avs32+ZIuiYijkpR9vDjvm21vsz1je+b48ePVjRooGd3JqJsUAeIcSa+RdGtEbJT0v+o+TlqWiNgZEZ2I6ExMTJQ1RqBybLSDukkRIA5LOhwR+7LX96gbMJ6zvUqSso/HEowNSIaNdlA3lQeIiPi2pGdtz//WXyXpm5Lul7Q1O7ZV0n1Vjw1Iid4F1E2qWUy/J+lz2QymJyX9trrB6m7bN0h6RtJbE40NKF2v6azMVkKdJAkQEfGopLzdjK6qeixA1dhsB01BJzVQorxMod90VgIE6oQAAZSkV6awODjMYzor6obF+oCS9MoUVti55zOdFXVDgABK0isjOB3BdFY0AgECKEmvjGB++irTWVF31CCAkvRbppvprGgCAgRQEpbpRtMRIIASkSmgyahBAAByLRkgbL/X9gVVDAYAUB/LySB+QdLXbN9t+2q7xyRuAMBIWTJARMQfSrpM3R3g3i3pkO0/tf2LJY8NAJDQsmoQERGSvp39OyXpAkn32P6zEscGAEhoyVlMtt+n7v4M35F0m6TtEfFj28+TdEjSh8odIgAgheVMc71I0nUR8fTCgxHxE9vXlDMsIJ1eezUAbbNkgIiIP+rztYPFDgdIi70agDNolAMWGGavBjIOjCoCBLBArxVYex0n48Aoo5MaWKDXCqy9jvfLOICmI0AAC2zfvGGgvRoGzTiAJiFAAAts2Tg50F4Ng2YcQJNQgwAWGWQF1n57PgBNR4AAzgJ7PmCUESCAs8SeDxhV1CAAALnIINBaNLgB/REg0Eo0uAFLI0CglVhSA1gaAQKtxJIawNIoUqOVWFIDWBoBAq3EkhrA0ggQaCWW1ACWRg0CrcWSGkB/yQKE7RWSZiTNRcQ1ttdLulPSSkmPSHpnRPwo1fgwOoqYfcSSGmijlBnEjZIOSnpx9vrjkj4VEXfa/mtJN0i6NdXgMBqKnH3EkhpomyQ1CNtrJL1Z0m3Za0vaJOme7JRdkrakGBtGC7OPgOGlKlJ/WtKHJP0ke32hpBMRcSp7fVhS7q2a7W22Z2zPHD9+vPyRotGYfQQMr/IAYfsaScciYv/CwzmnRt73R8TOiOhERGdiYqKUMWJ0MPsIGF6KDGJK0ltsP6VuUXqTuhnFuO35msgaSUcSjA0l2D07p6npPVq/4wFNTe/R7tm5yt570H4HAGdUHiAi4uaIWBMR6yS9TdKeiHiHpL2Srs9O2yrpvqrHhuLNF4nnTpxU6EyRuKogMWi/A4Az6tQHcZOkO21/VNKspNsTjwcFGGZRPKnYhfGYfQQMJ2mAiIiHJT2cff6kpMtTjgfFG6ZIzMJ4QD3UKYNAw+Xd9a8eH9NcTjDoVyQeNusAUCzWYkIhetUarnzZxMBFYqamAvVAgEAhet317/3W8YGLxExNBeqBR0woRL+7/kGLxCyMB9QDGQQKUeRdP1NTgXogg0Ahir7rZ2oqkB4BAoVIvRx2kX0TALoIEChMqrt++iaAchAg0Ch5mQJ9E0A5CBBojF6ZwuLgMI++CeDsMIsJjdErU1jhvNXi6ZsAzhYBAo3RKyM4HcGS3kAJCBBojF4ZwXyfBH0TQLGoQaAx+vVa0DcBFI8AgaQG6V9I3WsBtA0BAskM079ApgBUhxoEkunXvwAgPTII9HzMU/byFez7ANQbAaLlej3mmXn6u/rC/rlSl68YZrc5ANXhEVPL9XrMc8e+Z0t//LN98wb6F4AaI4NouX7NZ4OcPwxmJQH1RoBouV6PeVbYuUGi6Mc/zEoC6otHTC3X6zHP23/1Uh7/AC1HBtESvWYk9XvM03nJSh7/AC3m6PGsuQk6nU7MzMykHkbtLZ6pJHWzAdYrAtrJ9v6I6Cx1Ho+YWoCGNADDIEC0AA1pAIZBDaKhBulypiENwDDIIBpovqYwd+KkQme6nHfPzuWeT0MagGGQQTTQUjWFXpkFM5IADIIA0UC9agfzmUSv9ZMICAAGwSOmBupVO1hhVzJbaffsnKam92j9jgc0Nb2n56MtAM1GgGigXjWFKtZPGrT+AaC5Kg8Qti+1vdf2QdvfsH1jdnyl7QdtH8o+XlD12Jpiy8ZJ3XLdqzQ5PiZLmhwf++nrPEXOVqKnAmiPFDWIU5I+GBGP2H6RpP22H5T0bkkPRcS07R2Sdki6KcH4GqFXTSGvY7rI2Ur0VADtUXkGERFHI+KR7PMfSDooaVLStZJ2ZaftkrSl6rE1Xa/MosjidK9shJ4KYPQkncVke52kjZL2SbokIo5K3SBi++Ie37NN0jZJWrt2bTUDbZCyZytt37yh9CwFQD0kK1LbfqGkL0h6f0R8f7nfFxE7I6ITEZ2JiYnyBohcVWQpAOohSQZh+1x1g8PnIuLe7PBztldl2cMqScdSjA1Lo6cCaIcUs5gs6XZJByPikwu+dL+krdnnWyXdV/XYAABnpMggpiS9U9IB249mxz4saVrS3bZvkPSMpLcmGFsygyy+BwBVqDxARMQ/S3KPL19V5VjqYvGGPouXyACAFOikrgGazwDUEQGiBmg+A1BHrOZ6FoqqG7ChD4A6IoMYUpGL1rGhD4A6IkAMqci6Ac1nAOqIR0xDKrpuQPMZgLohQAypX92AngYAo4BHTEPqVTe48mUTbKgDYCSQQSwwyJ3//PHF5/erTQyTRZCNAEiFAJEZpps5r27wgbsezT13mNoEHdYAUuIRU6aoWUlFbqhDhzWAlAgQmaJmJRXZ00CHNYCUCBCZou78i+xpYHtPAClRg8gUuZVmUT0NbO8JICUCRKbXrKQtGycLm0k06M/pNyYAKJsjIvUYhtbpdGJmZqbU91g8k0jq3sUP+tioqJ8DAGfL9v6I6Cx1HjWIJRQ1k4gZSQCahgCxhKJmEjEjCUDTECCWUNRMImYkAWgaAsQSiuprYM8HAE3DLKYlFDWTiBlJAJqGWUwA0DLMYgIAnJXWPWJi+WwAWJ5WBQiWzwaA5WvVIyaa1QBg+VoVIGhWA4Dla1WAoFkNAJavVQGCZjUAWL5WFalpVgOA5WtVgJCK28wHAEZdqx4xAQCWjwABAMhFgAAA5CJAAAByESAAALkavdy37eOSnl7itIskfaeC4dQN190ubb1uqb3XfjbX/ZKImFjqpEYHiOWwPbOcdc9HDdfdLm29bqm9117FdfOICQCQiwABAMjVhgCxM/UAEuG626Wt1y2199pLv+6Rr0EAAIbThgwCADCEkQ4Qtq+2/bjtJ2zvSD2estj+jO1jth9bcGyl7QdtH8o+XpByjGWwfantvbYP2v6G7Ruz4yN97bafb/vfbf9Hdt1/nB1fb3tfdt132T4v9VjLYHuF7Vnbf5+9Hvnrtv2U7QO2H7U9kx0r/fd8ZAOE7RWS/krSGyW9QtLbbb8i7ahK81lJVy86tkPSQxFxmaSHstej5pSkD0bEyyVdIek92X/jUb/2H0raFBG/LOnVkq62fYWkj0v6VHbd35N0Q8IxlulGSQcXvG7LdV8ZEa9eMLW19N/zkQ0Qki6X9EREPBkRP5J0p6RrE4+pFBHxFUnfXXT4Wkm7ss93SdpS6aAqEBFHI+KR7PMfqPtHY1Ijfu3R9T/Zy3OzfyFpk6R7suMjd92SZHuNpDdLui17bbXgunso/fd8lAPEpKRnF7w+nB1ri0si4qjU/UMq6eLE4ymV7XWSNkrapxZce/aY5VFJxyQ9KOk/JZ2IiFPZKaP6+/5pSR+S9JPs9YVqx3WHpC/b3m97W3as9N/zUd4wyDnHmLI1gmy/UNIXJL0/Ir7fvakcbRFxWtKrbY9L+qKkl+edVu2oymX7GknHImK/7dfNH845daSuOzMVEUdsXyzpQdvfquJNRzmDOCzp0gWv10g6kmgsKTxne5UkZR+PJR5PKWyfq25w+FxE3JsdbsW1S1JEnJD0sLo1mHHb8zd9o/j7PiXpLbafUveR8SZ1M4pRv25FxJHs4zF1bwguVwW/56McIL4m6bJshsN5kt4m6f7EY6rS/ZK2Zp9vlXRfwrGUInv+fLukgxHxyQVfGulrtz2RZQ6yPSbp9erWX/ZKuj47beSuOyJujog1EbFO3f+f90TEOzTi1237fNsvmv9c0m9IekwV/J6PdKOc7Tepe4exQtJnIuJjiYdUCtt3SHqduqs7PifpI5J2S7pb0lpJz0h6a0QsLmQ3mu1fk/RPkg7ozDPpD6tbhxjZa7f9S+oWJVeoe5N3d0T8ie2XqntnvVLSrKTfiogfphtpebJHTH8QEdeM+nVn1/fF7OU5kj4fER+zfaFK/j0f6QABABjeKD9iAgCcBQIEACAXAQIAkIsAAQDIRYAAAOQiQAAAchEgAAC5CBBAgWz/iu2vZ3s2nJ/t1/DK1OMChkGjHFAw2x+V9HxJY5IOR8QtiYcEDIUAARQsW/vra5L+T9Jrs5VXgcbhERNQvJWSXijpRepmEkAjkUEABbN9v7qLx62XtCoi3pt4SMBQRnnDIKBytt8l6VREfD7bF/1fbG+KiD2pxwYMigwCAJCLGgQAIBcBAgCQiwABAMhFgAAA5CJAAAByESAAALkIEACAXAQIAECu/weLoSmPZHRZzAAAAABJRU5ErkJggg==\n", "text/plain": [ "<Figure size 432x288 with 1 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.scatter(X.numpy(), y.numpy())\n", "plt.ylabel('y')\n", "plt.xlabel('x');" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Note that when we created tensor $X$, we did <em>not</em> pass <tt>requires_grad=True</tt>. This means that $y$ doesn't have a gradient function, and <tt>y.backward()</tt> won't work. Since PyTorch is not tracking operations, it doesn't know the relationship between $X$ and $y$." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Simple linear model\n", "As a quick demonstration we'll show how the built-in <tt>nn.Linear()</tt> model preselects weight and bias values at random." ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Parameter containing:\n", "tensor([[0.1060]], requires_grad=True)\n", "Parameter containing:\n", "tensor([0.9638], requires_grad=True)\n" ] } ], "source": [ "torch.manual_seed(59)\n", "\n", "model = nn.Linear(in_features=1, out_features=1)\n", "print(model.weight)\n", "print(model.bias)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Without seeing any data, the model sets a random weight of 0.1060 and a bias of 0.9638." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Model classes\n", "PyTorch lets us define models as object classes that can store multiple model layers. In upcoming sections we'll set up several neural network layers, and determine how each layer should perform its forward pass to the next layer. For now, though, we only need a single <tt>linear</tt> layer." ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": true }, "outputs": [], "source": [ "class Model(nn.Module):\n", " def __init__(self, in_features, out_features):\n", " super().__init__()\n", " self.linear = nn.Linear(in_features, out_features)\n", " \n", " def forward(self, x):\n", " y_pred = self.linear(x)\n", " return y_pred" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<div class=\"alert alert-info\"><strong>NOTE:</strong> The \"Linear\" model layer used here doesn't really refer to linear regression. Instead, it describes the type of neural network layer employed. Linear layers are also called \"fully connected\" or \"dense\" layers. Going forward our models may contain linear layers, convolutional layers, and more.</div>" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "When <tt>Model</tt> is instantiated, we need to pass in the size (dimensions) of the incoming and outgoing features. For our purposes we'll use (1,1).<br>As above, we can see the initial hyperparameters." ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Model(\n", " (linear): Linear(in_features=1, out_features=1, bias=True)\n", ")\n", "Weight: 0.10597813129425049\n", "Bias: 0.9637961387634277\n" ] } ], "source": [ "torch.manual_seed(59)\n", "model = Model(1, 1)\n", "print(model)\n", "print('Weight:', model.linear.weight.item())\n", "print('Bias: ', model.linear.bias.item())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "As models become more complex, it may be better to iterate over all the model parameters:" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "linear.weight \t 0.10597813129425049\n", "linear.bias \t 0.9637961387634277\n" ] } ], "source": [ "for name, param in model.named_parameters():\n", " print(name, '\\t', param.item())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<div class=\"alert alert-info\"><strong>NOTE:</strong> In the above example we had our Model class accept arguments for the number of input and output features.<br>For simplicity we can hardcode them into the Model:\n", " \n", "<tt><font color=black>\n", "class Model(torch.nn.Module):<br>\n", "&nbsp;&nbsp;&nbsp;&nbsp;def \\_\\_init\\_\\_(self):<br>\n", "&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;super().\\_\\_init\\_\\_()<br>\n", "&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;self.linear = Linear(1,1)<br><br>\n", "model = Model()\n", "</font></tt><br><br>\n", "\n", "Alternatively we can use default arguments:\n", "\n", "<tt><font color=black>\n", "class Model(torch.nn.Module):<br>\n", "&nbsp;&nbsp;&nbsp;&nbsp;def \\_\\_init\\_\\_(self, in_dim=1, out_dim=1):<br>\n", "&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;super().\\_\\_init\\_\\_()<br>\n", "&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;self.linear = Linear(in_dim,out_dim)<br><br>\n", "model = Model()<br>\n", "<em>\\# or</em><br>\n", "model = Model(i,o)</font></tt>\n", "</div>" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now let's see the result when we pass a tensor into the model." ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "tensor([1.1758], grad_fn=<AddBackward0>)\n" ] } ], "source": [ "x = torch.tensor([2.0])\n", "print(model.forward(x)) # equivalent to print(model(x))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "which is confirmed with $f(x) = (0.1060)(2.0)+(0.9638) = 1.1758$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Plot the initial model\n", "We can plot the untrained model against our dataset to get an idea of our starting point." ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[ 1. 50.]\n" ] } ], "source": [ "x1 = np.array([X.min(),X.max()])\n", "print(x1)" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Initial weight: 0.10597813, Initial bias: 0.96379614\n", "\n", "[1.0697743 6.2627025]\n" ] } ], "source": [ "w1,b1 = model.linear.weight.item(), model.linear.bias.item()\n", "print(f'Initial weight: {w1:.8f}, Initial bias: {b1:.8f}')\n", "print()\n", "\n", "y1 = x1*w1 + b1\n", "print(y1)" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEWCAYAAAB8LwAVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAGrxJREFUeJzt3X2UZGV94PHvLwNIgy/NQEtgYByScNCoKyS9xs3sySpqwMQT5hDJ8WUVDS7Jblxf1iWCJ1ndXQ2j5kTdkz26RIzjBgWCCBw1MSwDx7yy9jBsUEcWYwCnQRijE3UzAjP89o+6LUXPre6umvtSt+r7OadPd926VfXcoXh+93n5PU9kJpIkLfcjbRdAkjSeDBCSpFIGCElSKQOEJKmUAUKSVMoAIUkqZYDQVIqIP4mI81d4/sMR8dtrfK9bIuL11ZWu2s+MiIyIn6i7TJo8BghNjIi4OyJetJZzM/MlmbmteN1rI+Ivlj3/65n5Xyso0zuLCvqNy46/uTj+zkP9DKkuBgipfv8XWN5aeU1xXBpbBghNpKVWQUT8bkR8JyL+PiJe0vf8LRHx+oh4BvBh4F9ExPcjYm/x/Mci4l3F38dExGciYk/xXp+JiJOGKM4XgaMi4pnF+z0TmCmO95f530TE1yLi2xFxQ0Sc2PfciyPiqxHxjxHx+0Ase+2vRsSuonyfj4inDfUPJpUwQGiS/QxwJ3Ac8F7g8oh4XMWambuAXwf+OjOfmJmzJe/zI8AfAk8DNgL7gN8fsiz/k16rAXqtiY/3PxkRZwKXAr8CnADcA1xZPHcc8Cngt4pr+Ttgc99rtwBvB84F5oA/Bz45ZPmkgxggNMnuycw/yMwDwDZ6Fe/xw75JZv5DZn4qM/8pM78HvBv4V0O+zR8Br4iIw4GXF4/7vQr4aGbelpkPAZfQa9VsAn4B+EpmXpOZjwAfAL7Z99pfAy7NzF2ZuR/4HeB0WxE6VAYITbIfVqKZ+U/Fn08c9k0i4qiI+B8RcU9EfBf4AjAbEevW+h6ZeS/wNXqV912Z+Y1lp5xIr9WwdP73gX8ANhTPfaPvuex/TK9l88GI2Ft0kX2bXhfUhiEuUzqIAUKC1ZY0fitwGvAzmflk4OeK4zH4JaU+XrzXx0ueu49eRd9744ijgWOBReB+4OS+56L/Mb1g8WuZOdv3M5OZfzVk+aTHMUBI8ABwUkQcMeD5J9Ebd9gbEeuBd4z4OVcBPw9cXfLcJ4DXRcTpEfEEei2NWzPzbuCzwDMj4tyIOAx4I/Cjfa/9MHBJ3yD4UyLivBHLKP2QAUKC7cCXgW9GxLdKnv8AvVlH3wL+BvjTUT4kM/dl5v/KzH0lz90E/Da9wej7gR+nN1ZBZn4LOA/YSq/b6VTgL/te+2ngPcCVRRfYl4CXIB2icMMgSVIZWxCSpFIGCElSKQOEJKmUAUKSVOqwtgtwKI477rjctGlT28WQpE7ZsWPHtzJzbrXzOh0gNm3axMLCQtvFkKROiYh7Vj/LLiZJ0gAGCElSKQOEJKlUbQEiIj4aEQ9GxJf6jq2PiBsj4q7i9zHF8YiI/1ZslvK3EfFTdZVLkrQ2dbYgPgacvezYxcBNmXkqcFPxGHrrxpxa/FwIfKjGckmS1qC2WUyZ+YVis5N+5wDPL/7eBtwCvK04/vFinfu/iYjZiDghM++vq3ySVLXrdi7yvs/fyX1793Hi7AwXnXUaW86odluOJj5jSdPTXI9fqvQz8/6IeGpxfAOP3wBld3HsoAARERfSa2WwcePGeksrSWt03c5FLrn2DvY9cgCAxb37uOTaOwAqq8Cb+Ix+4zJIXbbxSukys5l5WWbOZ+b83NyqeR6S1Ij3ff7OH1bcS/Y9coD3ff7OTn1Gv6YDxAMRcQJA8fvB4vhuHr9D1kn0dtiSpE64b+9B23yseHxcP6Nf0wHiBuD84u/zgev7jr+mmM30POAfHX+Q1CUnzs4MdXxcP6NfndNcPwn8NXBaROyOiAvo7Yj14oi4C3hx8Rjgc8DX6W3q/gfAv6urXJJUh4vOOo2Zw9c97tjM4eu46KzTOvUZ/eqcxfSKAU+9sOTcBH6jrrJIUt2WBonrnGHUxGf06/SWo/Pz8+lifZI0nIjYkZnzq503LrOYJEljxgAhSSrV6f0gJKnLmsyKHoUBQpJa0HRW9CjsYpKkFjSdFT0KA4QktaDprOhR2MUkSS04cXaGxZJgcOLszNiMTdiCkKQWDMqKfsHT57jk2jtY3LuP5LGxiet2LjZeRgOEJLVgyxkbuPTcZ7NhdoYANszOcOm5z+bmr+4Zm7EJu5gkqSVbzthwUNfRW666vfTcNsYmDBCSNKQ6xwhWGptoml1MkjSEpfyFusYIml6xdSW2ICR1UlV38cO+z0r5C1W0IppesXUlBghJnVNVFvIo79NE/kLZ2EQb7GKS1DlVZSGP8j5N7+rWJgOEpM6p6i5+lPcZpzGCutnFJKlzqprpM8r7jDJGMC6Z0cMyQEjqnIvOOu1xYwcw2l38qO8zzBhBF1ZtHcQuJkmdMygLedgKt6r3WUkXVm0dxBaEpE6qaqZP3TOGurBq6yC2ICSpRl2e9WSAkKQadXnWk11MklSjccqMHpYBQlLrujoNdK3GJTN6WAYISa3q8jTQSWeAkNSquhe/WzLprZQ6GCAktaqJaaC2UkZjgJDUqqo3yClrKTTVSpk0TnOV1Koqp4EO2synLABBN5LV2mQLQlKrqpwGOqilsC6CA5kHnb9SK8Uxi5YCRES8BXg9kMAdwOuAE4ArgfXAbcCrM/PhNsonqVlVTQMd1CI4kMnM4evWvCifYxY9jXcxRcQG4I3AfGY+C1gHvBx4D/D+zDwV+A5wQdNlk9Rtg1oES4vwrXVRvi4vsFeltrqYDgNmIuIR4CjgfuBM4JXF89uAdwIfaqV0kjpppeW7h2mldHmBvSo1HiAyczEifhe4F9gH/BmwA9ibmfuL03YD09OOk1Rq2HGAqsYzqp5Z1VWNB4iIOAY4BzgF2Av8MfCSklMPHlHqvf5C4EKAjRs31lRKSW0bdRygivGMqjYk6ro2prm+CPj7zNyTmY8A1wI/C8xGxFLAOgm4r+zFmXlZZs5n5vzc3FwzJZbUuDbHAZrYSKgL2hiDuBd4XkQcRa+L6YXAAnAz8DJ6M5nOB65voWySxkTb4wBdXWCvSo23IDLzVuAaelNZ7yjKcBnwNuA/RMTXgGOBy5sum6Tx0eWNdiZFK5nUmfmOzHx6Zj4rM1+dmQ9l5tcz87mZ+ROZeV5mPtRG2SSNhy5vtDMpzKSWNJa6vNHOpDBASBpbjgO0y8X6JEmlDBCSpFIGCElSKQOEJKmUg9SSAPc/0MEMEJLc/0ClDBDSlGlzz2ZbKd1igJCmyKCWwvLgsKTKdY9spXSPg9TSFFlpz+YyVa575C5t3WOAkKbIans296t63aO2V2fV8AwQ0hSpas/mKj/b1VnHl2MQ0hSpas/mqj9b48kAIU2RNldIdXXW7onM0q2fO2F+fj4XFhbaLoYkdUpE7MjM+dXOswUhaUWj5C6Y7zAZDBCSBhold8F8h8nhLCZJA42Su2C+w+QwQEgaaJTcBfMdJoddTFKH1d3Xf+LsDIslFftKuQujvEbjyRaE1FFLff2Le/eRPNbXf93Oxco+46KzThs6w3qU12g82YKQOqqJFVhXyl0Y1Hox32FyGCCkjmqqr78sw3q1mUp1Z2WrGXYxSR212tpG1+1cZPPW7Zxy8WfZvHV7pV1PzlSaDgYIqaNW6uuve3zCmUrTwS4mqQNWmq1Udnzz1u21jk84U2k6GCCkMbeW/v7l6r7Dd2XW6WAXkzTmRunvr3vvhS1nbKh9/wi1zxaENOZGaQ00cYfvTKXJZwtCGnOjtAa8w1cVbEFIY27U1oB3+DpUrQSIiJgFPgI8C0jgV4E7gauATcDdwK9k5nfaKJ/UlmFnK0l1aqsF8UHgTzPzZRFxBHAU8HbgpszcGhEXAxcDb2upfFLjRpmtJNWp8TGIiHgy8HPA5QCZ+XBm7gXOAbYVp20DtjRdNqlNZidr3LQxSP1jwB7gDyNiZ0R8JCKOBo7PzPsBit9PLXtxRFwYEQsRsbBnz57mSi3VzOxkjZs2AsRhwE8BH8rMM4D/R687aU0y87LMnM/M+bm5ubrKKDWu7twFaVhtBIjdwO7MvLV4fA29gPFARJwAUPx+sIWySa1xHwWNm8YHqTPzmxHxjYg4LTPvBF4IfKX4OR/YWvy+vumySU1xtpK6oK1ZTP8euKKYwfR14HX0WjNXR8QFwL3AeS2VTaqVs5XUFa0EiMy8HZgveeqFTZdFqlNZS6GJneCkKphJLdVkUEtheXBY4mwljRvXYpJqMqilsC6i9HxnK2ncGCCkmgxqERzIdLaSOsEAIdVkUItgaWVVV1rVuHMMQqrJSquwOltJXWCAkGpiXoO6zgAh1ciWgrrMMQhJUikDhCSplAFCklTKACFJKmWAkCSVMkBIkkqtOs01It4AXJGZ32mgPFLrVtqrQZoma2lB/CjwxYi4OiLOjhiw0pg0AZZWYF3cu4/ksRVYr9u52HbRpMatGiAy87eAU4HLgdcCd0XE70TEj9dcNqlxK+3VMMh1OxfZvHU7p1z8WTZv3W4w0cRY0xhEZibwzeJnP3AMcE1EvLfGskmNG7QC66Djtjg0yVYNEBHxxojYAbwX+Evg2Zn5b4GfBn655vJJjRq0Auug46O0OKSuWEsL4jjg3Mw8KzP/ODMfAcjMR4GX1lo6qWEXnXXaUHs1DNvikLpk1VlMmfmfVnhuV7XFkdo17AqsJ87OsFgSDNwdTpPA1VylZYZZgXWlPR+krjNASIfAPR80yQwQ0iFyzwdNKgOEppYZ09LKDBCaSkv5C0tjB0v5C4BBQioYIDSVVspfGBQgbHFo2hggNJVGzZi2xaFp4nLfmkpmTEurM0BoKpkxLa3OAKGptOWMDVx67rPZMDtDABtmZ7j03GevmDE9zHFpEjgGoallxrS0stYCRESsAxaAxcx8aUScAlwJrAduA16dmQ+3VT5NjipmH5kxrWnUZgviTcAu4MnF4/cA78/MKyPiw8AFwIfaKpwmQ5Wzj8yY1rRpZQwiIk4CfhH4SPE4gDOBa4pTtgFb2iibJouzj6TRtTVI/QHgN4FHi8fHAnszc3/xeDdQeqsWERdGxEJELOzZs6f+kqrTnH0kja7xABERLwUezMwd/YdLTs2y12fmZZk5n5nzc3NztZRR1Wpzz2ZnH0mja6MFsRn4pYi4m96g9Jn0WhSzEbE0JnIScF8LZVPF2t6zedh8B0mPaTxAZOYlmXlSZm4CXg5sz8xXATcDLytOOx+4vumyqXqjjgFU1eoYNt9B0mPGKQ/ibcCVEfEuYCdwecvlUQVGGQOoet0jZx9Jo2k1QGTmLcAtxd9fB57bZnl0aMryDUbZs3mUlVYlVc+lNlSJQWMNL3j63NBjAM48ksaDAUKVGHTXf/NX9ww9BuDMI2k8jNMYhDpspbv+YccAXPdIGg+2IFSJKu/6nXkkjQdbEKpE1Xf9zjyS2meAUCXaXu3U/aKl6hkgVJm27vrdL1qqhwFCnVLWUjBvQqqHAUKdMailsDw4LDFvQjo0zmJSZwxqKayLssWAzZuQDpUBQp0xqEVwINMVW6UaGCDUGYNaBEt5EuZNSNVyDEKdsVKuhXkTUvUMEOqMtnMtpGljgFCrhk1ws6UgNccAodaY4CaNNwOEBt7F1718hQlu0ngzQEy5QXfxC/d8m0/tWKz17t6NgaTx5jTXKTfoLv6Tt35j4N19VdwYSBpvBogpt1Ly2TDnj+Kis04zwU0aYwaIKTfobr2J5SvcGEgab45BTLlByWe//NMbHjcGsXS86rt7p61K48sAMSUGzUhaKfls/mnrTUqTpljkgL7mLpifn8+FhYW2izH2ls9Ugl5rwO4caTpFxI7MnF/tPMcgpsBK+QaSNIgBYgqYbyBpFI5BdNQwWc4nzs6wWBIMzDeQtBJbEB20NKawuHcfyWNZztftXCw933wDSaOwBdFBq40pDGpZOCNJ0jAMEB00aOxgqSUxaP0kA4KkYdjF1EErZT83MVvpup2LbN66nVMu/iybt24f2LUlqdsMEB00aEyhifWThh3/kNRdjQeIiDg5Im6OiF0R8eWIeFNxfH1E3BgRdxW/j2m6bF0xaA2jDQ2sjmpOhTQ92hiD2A+8NTNvi4gnATsi4kbgtcBNmbk1Ii4GLgbe1kL5OmHQmEJZxnSVs5XMqZCmR+MtiMy8PzNvK/7+HrAL2ACcA2wrTtsGbGm6bF3XxOqo7uEgTY9WZzFFxCbgDOBW4PjMvB96QSQinjrgNRcCFwJs3LixmYJ2SN2zlQat/mpOhTR5WhukjognAp8C3pyZ313r6zLzssycz8z5ubm5+gqoUu7hIE2PVloQEXE4veBwRWZeWxx+ICJOKFoPJwAPtlE2rc6cCmk6NB4gIiKAy4Fdmfl7fU/dAJwPbC1+X9902do0zNpKktSENloQm4FXA3dExO3FsbfTCwxXR8QFwL3AeS2UrRXL92tYngEtSW1oPEBk5l8A5RsewwubLMu4WCm3wAAhqS1mUo8BcwskjSMX6zsEVY0buF+DpHFkC2JEVa5J5H4NksaRAWJEVa5JZG6BpHFkF9OIqh43MLdA0rgxQIxopXEDcxokTQK7mEY0aNzgBU+fc78ESRPBFkSfYe78B+3zXHVOg60RSW0xQBRGyWYuGzd4y1W3l547ytiEGdaS2mQXU6GqWUlV7pfg7m2S2mSAKFQ1K6nKnAYzrCW1yQBRqOrOv8qcBndvk9QmxyAKVe6UVlVOg7u3SWqTAaIwaFbSljM2VDaTaNj3WalMklS3yMy2yzCy+fn5XFhYqPUzls8kgt5d/LDdRlW9jyQdqojYkZnzq53nGMQqqppJ5IwkSV1jgFhFVTOJnJEkqWsMEKuoaiaRM5IkdY0BYhVV5TW454OkrnEW0yqqmknkjCRJXeMsJkkaJ48+Cj/4Aezb99jP8sf79sH8PJx88kgfsdZZTFPXgnB1VElrVlZZD6qwBx0f9tyHHlpb2a64Al75ylovf6oChKujSh326KPVVsRrOffhh0cv72GHwZFHwszMwT9HHglPecrBx8rOG/T6U06p7t920CXU/gljpOq9GqSp1V9Z131HXVVlvVKlu7yyHrXS7n98WPer1+5fwRDMRdBEOnBg7RVxVRV5VZV1WcU6O3volfPyYxNQWbdhqv7VVtpHWqrEgQPNdoHs2wePPDJ6eZdX1ssr16XK+lAq5+XHraw7Y6r+S7k66pRZqqyb6gI51Mr68MNXrnCPOabaLhAra61iqr4d5iK0qL+ybmqgsYrKelCFu359tV0gVtYaQ1P3jaxqr4ZO27+/uTvqpZ/9+0cvb39lXVa5rl9fbRfIzAysW7d6uaQJN3UBYuzs39/cHXUVlfURRwyuXI86Co49tpo76v5jVtZSKwwQ/for66b6rQ+1sh5UuR599MGV9aH2W1tZS1NlrAJERJwNfBBYB3wkM7fW8kFXXQXveMfBlXZVlfXyivXoo+G44w59ULH/mJW1pJqNTYCIiHXAfwdeDOwGvhgRN2TmVyr/sGOPhec8p7p+6yc8wcpa0sQZmwABPBf4WmZ+HSAirgTOAaoPEC96Ue9HkjTQOO0HsQH4Rt/j3cWxx4mICyNiISIW9uzZ01jhJGnajFOAiJJjB61FnpmXZeZ8Zs7Pzc01UCxJmk7jFCB2A/2Lm58E3NdSWSRp6o1TgPgicGpEnBIRRwAvB25ouUySNLXGZpA6M/dHxBuAz9Ob5vrRzPxyy8WSpKk1NgECIDM/B3yu7XJIksari0mSNEYMEJKkUpF50EzSzoiIPcA9q5x2HPCtBoozbrzu6TKt1w3Te+2Hct1Py8xV8wQ6HSDWIiIWMnO+7XI0zeueLtN63TC9197EddvFJEkqZYCQJJWahgBxWdsFaInXPV2m9bpheq+99uue+DEISdJopqEFIUkagQFCklRqogNERJwdEXdGxNci4uK2y1OXiPhoRDwYEV/qO7Y+Im6MiLuK38e0WcY6RMTJEXFzROyKiC9HxJuK4xN97RFxZET874j4P8V1/+fi+CkRcWtx3VcVi15OnIhYFxE7I+IzxeOJv+6IuDsi7oiI2yNioThW+/d8YgNE3xamLwF+EnhFRPxku6WqzceAs5cduxi4KTNPBW4qHk+a/cBbM/MZwPOA3yj+G0/6tT8EnJmZzwFOB86OiOcB7wHeX1z3d4ALWixjnd4E7Op7PC3X/YLMPL0v96H27/nEBgj6tjDNzIeBpS1MJ05mfgH49rLD5wDbir+3AVsaLVQDMvP+zLyt+Pt79CqNDUz4tWfP94uHhxc/CZwJXFMcn7jrBoiIk4BfBD5SPA6m4LoHqP17PskBYk1bmE6w4zPzfuhVpMBTWy5PrSJiE3AGcCtTcO1FN8vtwIPAjcDfAXszc39xyqR+3z8A/CbwaPH4WKbjuhP4s4jYEREXFsdq/56P1XLfFVvTFqbqvoh4IvAp4M2Z+d3eTeVky8wDwOkRMQt8GnhG2WnNlqpeEfFS4MHM3BERz186XHLqRF13YXNm3hcRTwVujIivNvGhk9yCmPYtTB+IiBMAit8PtlyeWkTE4fSCwxWZeW1xeCquHSAz9wK30BuDmY2IpZu+Sfy+bwZ+KSLuptdlfCa9FsWkXzeZeV/x+0F6NwTPpYHv+SQHiGnfwvQG4Pzi7/OB61ssSy2K/ufLgV2Z+Xt9T030tUfEXNFyICJmgBfRG3+5GXhZcdrEXXdmXpKZJ2XmJnr/P2/PzFcx4dcdEUdHxJOW/gZ+HvgSDXzPJzqTOiJ+gd4dxtIWpu9uuUi1iIhPAs+nt/zvA8A7gOuAq4GNwL3AeZm5fCC70yLiXwJ/DtzBY33Sb6c3DjGx1x4R/4zeoOQ6ejd5V2fmf4mIH6N3Z70e2An868x8qL2S1qfoYvqPmfnSSb/u4vo+XTw8DPhEZr47Io6l5u/5RAcISdLoJrmLSZJ0CAwQkqRSBghJUikDhCSplAFCklTKACFJKmWAkCSVMkBIFYqIfx4Rf1vs2XB0sV/Ds9oulzQKE+WkikXEu4AjgRlgd2Ze2nKRpJEYIKSKFWt/fRH4AfCzxcqrUufYxSRVbz3wROBJ9FoSUifZgpAqFhE30Fs87hTghMx8Q8tFkkYyyRsGSY2LiNcA+zPzE8W+6H8VEWdm5va2yyYNyxaEJKmUYxCSpFIGCElSKQOEJKmUAUKSVMoAIUkqZYCQJJUyQEiSSv1/pwoofSXR+hEAAAAASUVORK5CYII=\n", "text/plain": [ "<Figure size 432x288 with 1 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.scatter(X.numpy(), y.numpy())\n", "plt.plot(x1,y1,'r')\n", "plt.title('Initial Model')\n", "plt.ylabel('y')\n", "plt.xlabel('x');" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Set the loss function\n", "We could write our own function to apply a Mean Squared Error (MSE) that follows<br>\n", "\n", "$\\begin{split}MSE &= \\frac {1} {n} \\sum_{i=1}^n {(y_i - \\hat y_i)}^2 \\\\\n", "&= \\frac {1} {n} \\sum_{i=1}^n {(y_i - (wx_i + b))}^2\\end{split}$<br>\n", "\n", "Fortunately PyTorch has it built in.<br>\n", "<em>By convention, you'll see the variable name \"criterion\" used, but feel free to use something like \"linear_loss_func\" if that's clearer.</em>" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": true }, "outputs": [], "source": [ "criterion = nn.MSELoss()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Set the optimization\n", "Here we'll use <a href='https://en.wikipedia.org/wiki/Stochastic_gradient_descent'>Stochastic Gradient Descent</a> (SGD) with an applied <a href='https://en.wikipedia.org/wiki/Learning_rate'>learning rate</a> (lr) of 0.001. Recall that the learning rate tells the optimizer how much to adjust each parameter on the next round of calculations. Too large a step and we run the risk of overshooting the minimum, causing the algorithm to diverge. Too small and it will take a long time to converge.\n", "\n", "For more complicated (multivariate) data, you might also consider passing optional <a href='https://en.wikipedia.org/wiki/Stochastic_gradient_descent#Momentum'><tt>momentum</tt></a> and <a href='https://en.wikipedia.org/wiki/Tikhonov_regularization'><tt>weight_decay</tt></a> arguments. Momentum allows the algorithm to \"roll over\" small bumps to avoid local minima that can cause convergence too soon. Weight decay (also called an L2 penalty) applies to biases.\n", "\n", "For more information, see <a href='https://pytorch.org/docs/stable/optim.html'><strong><tt>torch.optim</tt></strong></a>" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": true }, "outputs": [], "source": [ "optimizer = torch.optim.SGD(model.parameters(), lr = 0.001)\n", "\n", "# You'll sometimes see this as\n", "# optimizer = torch.optim.SGD(model.parameters(), lr = 1e-3)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Train the model\n", "An <em>epoch</em> is a single pass through the entire dataset. We want to pick a sufficiently large number of epochs to reach a plateau close to our known parameters of $\\mathrm {weight} = 2,\\; \\mathrm {bias} = 1$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<div class=\"alert alert-info\"><strong>Let's walk through the steps we're about to take:</strong><br>\n", "\n", "1. Set a reasonably large number of passes<br>\n", "<tt><font color=black>epochs = 50</font></tt><br>\n", "2. Create a list to store loss values. This will let us view our progress afterward.<br>\n", "<tt><font color=black>losses = []</font></tt><br>\n", "<tt><font color=black>for i in range(epochs):</font></tt><br>\n", "3. Bump \"i\" so that the printed report starts at 1<br>\n", "<tt><font color=black>&nbsp;&nbsp;&nbsp;&nbsp;i+=1</font></tt><br>\n", "4. Create a prediction set by running \"X\" through the current model parameters<br>\n", "<tt><font color=black>&nbsp;&nbsp;&nbsp;&nbsp;y_pred = model.forward(X)</font></tt><br>\n", "5. Calculate the loss<br>\n", "<tt><font color=black>&nbsp;&nbsp;&nbsp;&nbsp;loss = criterion(y_pred, y)</font></tt><br>\n", "6. Add the loss value to our tracking list<br>\n", "<tt><font color=black>&nbsp;&nbsp;&nbsp;&nbsp;losses.append(loss)</font></tt><br>\n", "7. Print the current line of results<br>\n", "<tt><font color=black>&nbsp;&nbsp;&nbsp;&nbsp;print(f'epoch: {i:2} loss: {loss.item():10.8f}')</font></tt><br>\n", "8. Gradients accumulate with every backprop. To prevent compounding we need to reset the stored gradient for each new epoch.<br>\n", "<tt><font color=black>&nbsp;&nbsp;&nbsp;&nbsp;optimizer.zero_grad()</font></tt><br>\n", "9. Now we can backprop<br>\n", "<tt><font color=black>&nbsp;&nbsp;&nbsp;&nbsp;loss.backward()</font></tt><br>\n", "10. Finally, we can update the hyperparameters of our model<br>\n", "<tt><font color=black>&nbsp;&nbsp;&nbsp;&nbsp;optimizer.step()</font></tt>\n", "</div>" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "epoch: 1 loss: 3057.21679688 weight: 0.10597813 bias: 0.96379614\n", "epoch: 2 loss: 1588.53100586 weight: 3.33490038 bias: 1.06046367\n", "epoch: 3 loss: 830.30010986 weight: 1.01483274 bias: 0.99226278\n", "epoch: 4 loss: 438.85241699 weight: 2.68179965 bias: 1.04252183\n", "epoch: 5 loss: 236.76152039 weight: 1.48402119 bias: 1.00766504\n", "epoch: 6 loss: 132.42912292 weight: 2.34460592 bias: 1.03396463\n", "epoch: 7 loss: 78.56572723 weight: 1.72622538 bias: 1.01632178\n", "epoch: 8 loss: 50.75775909 weight: 2.17050409 bias: 1.03025162\n", "epoch: 9 loss: 36.40123367 weight: 1.85124576 bias: 1.02149546\n", "epoch: 10 loss: 28.98922729 weight: 2.08060074 bias: 1.02903891\n", "epoch: 11 loss: 25.16238213 weight: 1.91576838 bias: 1.02487016\n", "epoch: 12 loss: 23.18647385 weight: 2.03416562 bias: 1.02911627\n", "epoch: 13 loss: 22.16612816 weight: 1.94905841 bias: 1.02731562\n", "epoch: 14 loss: 21.63911057 weight: 2.01017213 bias: 1.02985907\n", "epoch: 15 loss: 21.36677170 weight: 1.96622372 bias: 1.02928054\n", "epoch: 16 loss: 21.22591782 weight: 1.99776423 bias: 1.03094459\n", "epoch: 17 loss: 21.15294647 weight: 1.97506487 bias: 1.03099668\n", "epoch: 18 loss: 21.11501122 weight: 1.99133754 bias: 1.03220642\n", "epoch: 19 loss: 21.09517670 weight: 1.97960854 bias: 1.03258383\n", "epoch: 20 loss: 21.08468437 weight: 1.98799884 bias: 1.03355861\n", "epoch: 21 loss: 21.07901382 weight: 1.98193336 bias: 1.03410351\n", "epoch: 22 loss: 21.07583046 weight: 1.98625445 bias: 1.03495669\n", "epoch: 23 loss: 21.07393837 weight: 1.98311269 bias: 1.03558779\n", "epoch: 24 loss: 21.07269859 weight: 1.98533309 bias: 1.03637791\n", "epoch: 25 loss: 21.07181931 weight: 1.98370099 bias: 1.03705311\n", "epoch: 26 loss: 21.07110596 weight: 1.98483658 bias: 1.03781021\n", "epoch: 27 loss: 21.07048416 weight: 1.98398376 bias: 1.03850794\n", "epoch: 28 loss: 21.06991386 weight: 1.98455977 bias: 1.03924775\n", "epoch: 29 loss: 21.06936646 weight: 1.98410904 bias: 1.03995669\n", "epoch: 30 loss: 21.06883621 weight: 1.98439610 bias: 1.04068720\n", "epoch: 31 loss: 21.06830788 weight: 1.98415291 bias: 1.04140162\n", "epoch: 32 loss: 21.06778145 weight: 1.98429084 bias: 1.04212701\n", "epoch: 33 loss: 21.06726265 weight: 1.98415494 bias: 1.04284394\n", "epoch: 34 loss: 21.06674004 weight: 1.98421574 bias: 1.04356635\n", "epoch: 35 loss: 21.06622314 weight: 1.98413551 bias: 1.04428422\n", "epoch: 36 loss: 21.06570625 weight: 1.98415649 bias: 1.04500473\n", "epoch: 37 loss: 21.06518936 weight: 1.98410451 bias: 1.04572272\n", "epoch: 38 loss: 21.06466866 weight: 1.98410523 bias: 1.04644191\n", "epoch: 39 loss: 21.06415749 weight: 1.98406804 bias: 1.04715967\n", "epoch: 40 loss: 21.06363869 weight: 1.98405814 bias: 1.04787791\n", "epoch: 41 loss: 21.06312370 weight: 1.98402870 bias: 1.04859519\n", "epoch: 42 loss: 21.06260681 weight: 1.98401320 bias: 1.04931259\n", "epoch: 43 loss: 21.06209564 weight: 1.98398757 bias: 1.05002928\n", "epoch: 44 loss: 21.06157875 weight: 1.98396957 bias: 1.05074584\n", "epoch: 45 loss: 21.06106949 weight: 1.98394585 bias: 1.05146194\n", "epoch: 46 loss: 21.06055450 weight: 1.98392630 bias: 1.05217779\n", "epoch: 47 loss: 21.06004143 weight: 1.98390377 bias: 1.05289316\n", "epoch: 48 loss: 21.05953217 weight: 1.98388338 bias: 1.05360830\n", "epoch: 49 loss: 21.05901527 weight: 1.98386145 bias: 1.05432308\n", "epoch: 50 loss: 21.05850983 weight: 1.98384094 bias: 1.05503750\n" ] } ], "source": [ "epochs = 50\n", "losses = []\n", "\n", "for i in range(epochs):\n", " i+=1\n", " y_pred = model.forward(X)\n", " loss = criterion(y_pred, y)\n", " losses.append(loss)\n", " print(f'epoch: {i:2} loss: {loss.item():10.8f} weight: {model.linear.weight.item():10.8f} \\\n", "bias: {model.linear.bias.item():10.8f}') \n", " optimizer.zero_grad()\n", " loss.backward()\n", " optimizer.step()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Plot the loss values\n", "Let's see how loss changed over time" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAEKCAYAAAAFJbKyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAHP5JREFUeJzt3XuU3GWd5/H3p2/p6pDudJMmE9PBdGIGxTMYMCbMoDsBBaLrEVx1FtZLVGbjrHhGHfeCnp3DjDPs0TmjOO4IKw6RMKMiXlizbnacyICM45gbRgQCkxCQtIlJQ0Lul7589496Oql0qitdnaqu7qrP65w6VfXUU1Xfnxb59O/3/H7Po4jAzMxstOoqXYCZmU0uDg4zMyuKg8PMzIri4DAzs6I4OMzMrCgODjMzK4qDw8zMiuLgMDOzojg4zMysKA2VLqAcZsyYEXPnzq10GWZmk8qmTZteiIjOs/WryuCYO3cuGzdurHQZZmaTiqRfjqafD1WZmVlRHBxmZlYUB4eZmRXFwWFmZkVxcJiZWVEcHGZmVhQHh5mZFcXBkePgsT5uX/uvbN7xUqVLMTObsMoWHJKaJa2X9HNJT0j609TeLWmdpK2SvimpKbVPSc+3pdfn5nzWJ1P705KuLVfNA4PBXz24lUd/ua9cX2FmNumVc4/jOHBVRLwGWAgsk3Q58Fng9ohYAOwDbkr9bwL2RcQrgNtTPyRdDNwAvBpYBtwhqb4cBU9rbgRg/9G+cny8mVlVKFtwRNah9LQx3QK4Cvh2al8FXJ8eX5eek15/oySl9vsi4nhEPAtsAxaXo+b6OjFtSoODw8ysgLKOcUiql7QZ2AOsBZ4BXoqI/tSlB5idHs8GdgCk1/cD5+e253lPybVmGjlwzMFhZjaSsgZHRAxExEKgi+xewqvydUv3GuG1kdpPI2mFpI2SNvb29o61ZNoyjRzwHoeZ2YjG5ayqiHgJeBi4HJguaWhW3i5gZ3rcA8wBSK+3AXtz2/O8J/c77oqIRRGxqLPzrLMCj6g108CBo/1n72hmVqPKeVZVp6Tp6XEGeBOwBXgIeGfqthz4Xnq8Oj0nvf6PERGp/YZ01lU3sABYX6662zKNHuMwMyugnOtxzAJWpTOg6oD7I+L7kp4E7pP058DPgLtT/7uBv5W0jeyexg0AEfGEpPuBJ4F+4OaIGChX0Q4OM7PCyhYcEfEYcGme9u3kOSsqIo4B7xrhs24Dbit1jfm0Nntw3MysEF85PkxbppEjJwboGxisdClmZhOSg2OY1owvAjQzK8TBMUxbCg6fkmtmlp+DY5g273GYmRXk4BimNZM9X8DBYWaWn4NjmJOHqo75IkAzs3wcHMN4cNzMrDAHxzCtzR4cNzMrxMExTHNjPVMa6hwcZmYjcHDk0eppR8zMRuTgyKPNa3KYmY3IwZGHJzo0MxuZgyOP1mYvH2tmNhIHRx7ZVQB9HYeZWT4Ojjx8qMrMbGQOjjxaM40cPNbH4OAZS5ubmdU8B0cebZlGBgMOnfDhKjOz4RwceQxdPb7/iA9XmZkN5+DIo/XkRIcODjOz4RwceXhNDjOzkTk48hhak8PzVZmZncnBkcep5WM9OG5mNpyDIw8fqjIzG5mDI4+pTQ3UyYPjZmb5lC04JM2R9JCkLZKekPTR1P4nkn4laXO6vSXnPZ+UtE3S05KuzWlfltq2SbqlXDUPqauTp1Y3MxtBQxk/ux/4REQ8KmkasEnS2vTa7RHxl7mdJV0M3AC8GngZ8ENJv5le/hJwNdADbJC0OiKeLGPtnnbEzGwEZQuOiNgF7EqPD0raAswu8JbrgPsi4jjwrKRtwOL02raI2A4g6b7Ut6zB0drc6LOqzMzyGJcxDklzgUuBdanpI5Iek7RSUntqmw3syHlbT2obqb2svMdhZpZf2YND0nnAd4CPRcQB4E5gPrCQ7B7J54a65nl7FGgf/j0rJG2UtLG3t/ec627NeE0OM7N8yhockhrJhsbXIuK7ABGxOyIGImIQ+AqnDkf1AHNy3t4F7CzQfpqIuCsiFkXEos7OznOuPbt8rK/jMDMbrpxnVQm4G9gSEZ/PaZ+V0+3twOPp8WrgBklTJHUDC4D1wAZggaRuSU1kB9BXl6vuIT6ryswsv3KeVXUF8F7gF5I2p7ZPATdKWkj2cNNzwIcAIuIJSfeTHfTuB26OiAEASR8BfgDUAysj4oky1g1kB8dP9A9yrG+A5sb6cn+dmdmkUc6zqn5M/vGJNQXecxtwW572NYXeVw6nph3pc3CYmeXwleMj8LQjZmb5OThG4DU5zMzyc3CMwHscZmb5OThG0NqcHf5xcJiZnc7BMQKvyWFmlp+DYwStPlRlZpaXg2MEjfV1tDTVe6JDM7NhHBwFeKJDM7MzOTgKcHCYmZ3JwVFAa3Ojr+MwMxvGwVFAdqJDn1VlZpbLwVFAW8arAJqZDefgKKA10+DgMDMbxsFRQFumkYPH+xkYPGPBQTOzmuXgKKC1OXsR4EEPkJuZneTgKMATHZqZncnBUYCDw8zsTA6OAlo90aGZ2RkcHAV4j8PM7EwOjgIcHGZmZ3JwFNCayS7m5GlHzMxOcXAUkGmsp7Fe3uMwM8vh4ChAUnaiQweHmdlJZQsOSXMkPSRpi6QnJH00tXdIWitpa7pvT+2S9EVJ2yQ9JumynM9anvpvlbS8XDXn46nVzcxOV849jn7gExHxKuBy4GZJFwO3AA9GxALgwfQc4M3AgnRbAdwJ2aABbgWWAIuBW4fCZjy0OjjMzE5TtuCIiF0R8Wh6fBDYAswGrgNWpW6rgOvT4+uAeyPrp8B0SbOAa4G1EbE3IvYBa4Fl5ap7uNZMIweO+ToOM7Mh4zLGIWkucCmwDpgZEbsgGy7ABanbbGBHztt6UttI7ePCU6ubmZ2u7MEh6TzgO8DHIuJAoa552qJA+/DvWSFpo6SNvb29Yys2j7ZMgw9VmZnlKGtwSGokGxpfi4jvpubd6RAU6X5Pau8B5uS8vQvYWaD9NBFxV0QsiohFnZ2dJduGobOqIjy1upkZlPesKgF3A1si4vM5L60Ghs6MWg58L6f9fensqsuB/elQ1g+AayS1p0Hxa1LbuGjLNNI/GBw5MTBeX2lmNqE1lPGzrwDeC/xC0ubU9ingM8D9km4CngfelV5bA7wF2AYcAT4AEBF7Jf0ZsCH1+3RE7C1j3adpzZl2ZOqUcv7PZWY2OZTtX8KI+DH5xycA3pinfwA3j/BZK4GVpatu9IbmqzpwrI+XkalECWZmE4qvHD+LkxMdHvEAuZkZODjOamj5WF/LYWaW5eA4C0+tbmZ2OgfHWTg4zMxO5+A4i/Oa05ocDg4zM8DBcVb1dWJas68eNzMb4uAYBc9XZWZ2ioNjFFqbG718rJlZ4uAYBS/mZGZ2ioNjFFozDRw46us4zMzAwTEq3uMwMzvFwTEKDg4zs1McHKPQ2tzI0b4BTvQPVroUM7OKc3CMQlvLqRlyzcxqnYNjFDztiJnZKQ6OUTg5Q66Dw8xsdMEhab6kKenxUkl/KGl6eUubOFq9x2FmdtJo9zi+AwxIegXZdcS7ga+XraoJpi2TJjr0mhxmZqMOjsGI6AfeDnwhIj4OzCpfWROL9zjMzE4ZbXD0SboRWA58P7U1lqekicdjHGZmp4w2OD4A/DZwW0Q8K6kb+LvylTWxNDfWM6WhzsFhZgY0jKZTRDwJ/CGApHZgWkR8ppyFTTRtmUZeOuLgMDMb7VlVD0tqldQB/Bz4qqTPl7e0iWVmazO7Dx6rdBlmZhU32kNVbRFxAPh3wFcj4rXAm8pX1sTT1Z5hx94jlS7DzKziRhscDZJmAb/HqcHxgiStlLRH0uM5bX8i6VeSNqfbW3Je+6SkbZKelnRtTvuy1LZN0i2jrLfkutoz9Ow7SkRUqgQzswlhtMHxaeAHwDMRsUHSPGDrWd5zD7AsT/vtEbEw3dYASLoYuAF4dXrPHZLqJdUDXwLeDFwM3Jj6jruu9haO9w/ywqETlfh6M7MJY7SD498CvpXzfDvwjrO85xFJc0dZx3XAfRFxHHhW0jZgcXptW/o+JN2X+j45ys8tma72DAA9+47QOW3KeH+9mdmEMdrB8S5JD6RDT7slfUdS1xi/8yOSHkuHstpT22xgR06fntQ2Uvu4m9PRki1g39FKfL2Z2YQx2kNVXwVWAy8j+w/3/0ltxboTmA8sBHYBn0vtytM3CrSfQdIKSRslbezt7R1DaYXNnp7d49ixzwPkZlbbRhscnRHx1YjoT7d7gM5ivywidkfEQEQMAl/h1OGoHmBOTtcuYGeB9nyffVdELIqIRZ2dRZd2VlOnNNAxtcl7HGZW80YbHC9Ies/QgLWk9wAvFvtl6cysIW8Hhs64Wg3cIGlKuip9AbAe2AAskNQtqYnsAPrqYr+3VIbOrDIzq2WjGhwHPgj8NXA72UNFPyE7DcmIJH0DWArMkNQD3AoslbQwfcZzwIcAIuIJSfeTHfTuB26OiIH0OR8he0ZXPbAyIp4oYvtKak57C1t+faBSX29mNiGM9qyq54G35bZJ+hjwhQLvuTFP890F+t8G3JanfQ2wZjR1lltXe4YfbtlNRCDlG34xM6t+57IC4B+VrIpJoqs9w/H+QXoPHq90KWZmFXMuwVFzf3J3tWdPyd3hcQ4zq2HnEhw1N/dG7kWAZma1quAYh6SD5A8IAZmyVDSBDe1x+MwqM6tlBYMjIqaNVyGTQaapnhnnNXmPw8xq2rkcqqpJs9tbvMdhZjXNwVEkXwRoZrXOwVGkrvYMv9p3lMHBmjs3wMwMcHAUbU57CycGBuk95Gs5zKw2OTiKNHRKrpeRNbNa5eAokk/JNbNa5+Aoki8CNLNa5+AoUnNjPZ3TpniPw8xqloNjDHxKrpnVMgfHGHS1t3gJWTOrWQ6OMehqz7DzpaMM+FoOM6tBDo4x6GrP0DcQ7Dl4rNKlmJmNOwfHGMzxKblmVsMcHGPgU3LNrJY5OMbgZdOHrh73HoeZ1R4Hxxg0N9ZzwbQp3uMws5rk4BgjX8thZrXKwTFGczq8oJOZ1SYHxxj5Wg4zq1VlCw5JKyXtkfR4TluHpLWStqb79tQuSV+UtE3SY5Iuy3nP8tR/q6Tl5aq3WF3tLfQPBr8+4Gs5zKy2lHOP4x5g2bC2W4AHI2IB8GB6DvBmYEG6rQDuhGzQALcCS4DFwK1DYVNpJ0/J9bocZlZjyhYcEfEIsHdY83XAqvR4FXB9Tvu9kfVTYLqkWcC1wNqI2BsR+4C1nBlGFeGLAM2sVo33GMfMiNgFkO4vSO2zgR05/XpS20jtZ5C0QtJGSRt7e3tLXvhws6Y3Izk4zKz2TJTBceVpiwLtZzZG3BURiyJiUWdnZ0mLy2dKQz0zpzV7llwzqznjHRy70yEo0v2e1N4DzMnp1wXsLNA+IWSv5XBwmFltGe/gWA0MnRm1HPheTvv70tlVlwP706GsHwDXSGpPg+LXpLYJwRcBmlktKufpuN8A/gW4SFKPpJuAzwBXS9oKXJ2eA6wBtgPbgK8AHwaIiL3AnwEb0u3TqW1CmNPRwq79x+gfGKx0KWZm46ahXB8cETeO8NIb8/QN4OYRPmclsLKEpZVMV3uGgXQtR1c6y8rMrNpNlMHxSWkoLDxLrpnVEgfHOfC6HGZWixwc52BWW8bXcphZzXFwnIOmhjpmtTY7OMyspjg4zlFXe4sPVZlZTXFwnKPuGVN5evdBBj29upnVCAfHOXpddwcvHeljW++hSpdiZjYuHBznaEl3BwDrtr9Y4UrMzMaHg+McdbVnmNXWzLpnJ8wF7WZmZeXgOEeSWNLdwbpn95K9AN7MrLo5OEpgcff59B48znMv+uwqM6t+Do4SWJzGOdY/63EOM6t+Do4SmN85lRnnNbFuu8c5zKz6OThKQBKL0ziHmVm1c3CUyJLu8/nVS0d9FbmZVT0HR4mcGufwXoeZVTcHR4lcNHMabZlGB4eZVT0HR4nU1YnXzfU4h5lVPwdHCS3p7uDZFw6z58CxSpdiZlY2Do4SWjIvzVvlvQ4zq2IOjhK6eFYrU5vqPc5hZlXNwVFCDfV1vHZuh4PDzKqag6PElnR38PTug+w9fKLSpZiZlUVFgkPSc5J+IWmzpI2prUPSWklb0317apekL0raJukxSZdVoubRGlqfY8Nz3usws+pUyT2OKyNiYUQsSs9vAR6MiAXAg+k5wJuBBem2Arhz3Cstwm91tTGloc7zVplZ1ZpIh6quA1alx6uA63Pa742snwLTJc2qRIGjMaWhnssubGf9c54p18yqU6WCI4B/kLRJ0orUNjMidgGk+wtS+2xgR857e1LbhLW4u4Mndx7gwLG+SpdiZlZylQqOKyLiMrKHoW6W9G8K9FWetjOW2pO0QtJGSRt7e3tLVeeYLJnXwWDApuf2VbQOM7NyqEhwRMTOdL8HeABYDOweOgSV7vek7j3AnJy3dwE783zmXRGxKCIWdXZ2lrP8s7p0TjuN9fKFgGZWlcY9OCRNlTRt6DFwDfA4sBpYnrotB76XHq8G3pfOrroc2D90SGuiyjTVc0nXdK8IaGZVqaEC3zkTeEDS0Pd/PSL+XtIG4H5JNwHPA+9K/dcAbwG2AUeAD4x/ycVb0t3BXY9sZ9/hE7RPbap0OWZmJTPuwRER24HX5Gl/EXhjnvYAbh6H0krq7ZfO5o6Hn+GenzzHx6/+zUqXY2ZWMhPpdNyqsmDmNK6+eCb3/OQ5Dh/vr3Q5ZmYl4+Aoow8vnc/+o318Y/3zlS7FzKxkHBxldOmF7fz2vPP5yj9t53j/QKXLMTMrCQdHmX34yvnsPnCcBx79VaVLMTMrCQdHmb3+FTP4rdltfPmR7QwMnnHdopnZpOPgKDNJ/Kel83n2hcP8v8cn9OUnZmaj4uAYB9e++jeYN2Mqdzz0DNmzi83MJi8HxziorxN/8LvzeXLXAR7Z+kKlyzEzOycOjnFy/aWzmdXWzB0Pbat0KWZm58TBMU6aGur4/TfMY92ze9n0S8+aa2aTl4NjHN24eA7tLY3c+bD3Osxs8nJwjKOWpgbe/zvd/HDLHtZt98y5ZjY5OTjG2fuvmMu8GVP5j/du5KlfH6h0OWZmRXNwjLO2TCOrPriYTFM977t7PTv2Hql0SWZmRXFwVMCcjhbu/eASjvUN8L6V63nh0PFKl2RmNmoOjgq56DemsfL9r2PX/qO8/6vrOXisr9IlmZmNioOjghbN7eCOd1/Gll0H+dDfbvIMumY2KTg4KuyqV87kL95xCT955kU+/s3NngjRzCa8Sqw5bsO847Vd7Dtygj//v1voPfgv/PFbL+aSrumVLsvMLC/vcUwQv/+GefzFOy5he+9h3vbX/8wffXMzu/YfrXRZZmZncHBMIL/3ujk8/F+W8ge/O5/vP7aLK//yYT6/9l85csJrlpvZxKFqnOZ70aJFsXHjxkqXcU527D3CZ//+Kb7/2C5mtk7hptd3c9UrZzK/cyqSKl2emVUhSZsiYtFZ+zk4JrZNv9zL/1jz1MmJES/saOHKizq58pUXcPm882lurK9whWZWLRwcVRIcQ3r2HeHhp3t56Kk9/PMzL3Csb5BMYz2vfXk78zunMq/zPLpnTKV7xlRmT89QV+e9EjMrTtUFh6RlwF8B9cDfRMRnRupbjcGR61jfAD/d/iIPPbWHn+14ie29hzl0/NQ4yJSGOi7saKFjahMdU5ton9pER0v2vr2lkZamBlqa6sk01ZNprKe5Mfu4qb6OxnrRWF9HQ71orKtzAJnVkNEGx6Q4HVdSPfAl4GqgB9ggaXVEPFnZyiqjubGepRddwNKLLgAgIug9dJztvYd59oXDbO89xPN7j7DvcB9b9xxi3+ET7DtygrFcIlInaKiro64O6iXq6kSdRH26l7J9xNDjbNBI2RtkXzvZlj53aJzmZCwVyKeRXvJYjxVSq7+OV85q5X/eeGlZv2NSBAewGNgWEdsBJN0HXAfUZHAMJ4kLpjVzwbRmLp93ft4+g4PBwWP97D1ygiMn+jnWN8DRE4Mc7RvgyIl+jp4YoG9gkL6BoH8we599PsjAIAxGMDAYDEYwOBgMRDAwCBBEZF+PgCD7mBRSQ1kVETmPz3xtJCO+Mjl2lK1CooZ/IHPaM2X/jskSHLOBHTnPe4AluR0krQBWAFx44YXjV9kkUVcn2loaaWtprHQpZjbJTZbrOPLtdZ72J0VE3BURiyJiUWdn5ziVZWZWeyZLcPQAc3KedwE7K1SLmVlNmyzBsQFYIKlbUhNwA7C6wjWZmdWkSTHGERH9kj4C/IDs6bgrI+KJCpdlZlaTJkVwAETEGmBNpeswM6t1k+VQlZmZTRAODjMzK4qDw8zMijJp5qoqhqRe4Jfn8BEzgBdKVM5k4u2uLd7u2jKa7X55RJz1QriqDI5zJWnjaCb6qjbe7tri7a4tpdxuH6oyM7OiODjMzKwoDo787qp0ARXi7a4t3u7aUrLt9hiHmZkVxXscZmZWFAdHDknLJD0taZukWypdTzlJWilpj6THc9o6JK2VtDXdt1eyxlKTNEfSQ5K2SHpC0kdTe7Vvd7Ok9ZJ+nrb7T1N7t6R1abu/mSYQrTqS6iX9TNL30/Na2e7nJP1C0mZJG1NbSX7rDo4kZ3naNwMXAzdKuriyVZXVPcCyYW23AA9GxALgwfS8mvQDn4iIVwGXAzen/4+rfbuPA1dFxGuAhcAySZcDnwVuT9u9D7ipgjWW00eBLTnPa2W7Aa6MiIU5p+GW5Lfu4Djl5PK0EXECGFqetipFxCPA3mHN1wGr0uNVwPXjWlSZRcSuiHg0PT5I9h+T2VT/dkdEHEpPG9MtgKuAb6f2qttuAEldwL8F/iY9FzWw3QWU5Lfu4Dgl3/K0sytUS6XMjIhdkP1HFrigwvWUjaS5wKXAOmpgu9Phms3AHmAt8AzwUkT0py7V+nv/AvBfgcH0/HxqY7sh+8fBP0jalJbWhhL91ifNtOrj4KzL01p1kHQe8B3gYxFxIPtHaHWLiAFgoaTpwAPAq/J1G9+qykvSW4E9EbFJ0tKh5jxdq2q7c1wRETslXQCslfRUqT7YexyneHla2C1pFkC631PhekpOUiPZ0PhaRHw3NVf9dg+JiJeAh8mO8UyXNPTHYzX+3q8A3ibpObKHnq8iuwdS7dsNQETsTPd7yP6xsJgS/dYdHKd4edrs9i5Pj5cD36tgLSWXjm/fDWyJiM/nvFTt292Z9jSQlAHeRHZ85yHgnalb1W13RHwyIroiYi7Z/57/MSLeTZVvN4CkqZKmDT0GrgEep0S/dV8AmEPSW8j+RTK0PO1tFS6pbCR9A1hKdsbM3cCtwP8G7gcuBJ4H3hURwwfQJy1Jrwf+CfgFp455f4rsOEc1b/clZAdC68n+sXh/RHxa0jyyf4l3AD8D3hMRxytXafmkQ1X/OSLeWgvbnbbxgfS0Afh6RNwm6XxK8Ft3cJiZWVF8qMrMzIri4DAzs6I4OMzMrCgODjMzK4qDw8zMiuLgMJtgJC0dmsnVbCJycJiZWVEcHGZjJOk9aZ2LzZK+nCYSPCTpc5IelfSgpM7Ud6Gkn0p6TNIDQ+sgSHqFpB+mtTIelTQ/ffx5kr4t6SlJX1MtTKhlk4aDw2wMJL0K+PdkJ5JbCAwA7wamAo9GxGXAj8hekQ9wL/DfIuISsleuD7V/DfhSWivjd4Bdqf1S4GNk14aZR3beJbMJwbPjmo3NG4HXAhvSzkCG7IRxg8A3U5+/A74rqQ2YHhE/Su2rgG+luYRmR8QDABFxDCB93vqI6EnPNwNzgR+Xf7PMzs7BYTY2AlZFxCdPa5T+eFi/QnP6FDr8lDt30gD+b9UmEB+qMhubB4F3prUOhtZyfjnZ/6aGZl79D8CPI2I/sE/SG1L7e4EfRcQBoEfS9ekzpkhqGdetMBsD/xVjNgYR8aSk/052hbU6oA+4GTgMvFrSJmA/2XEQyE5h/b9SMGwHPpDa3wt8WdKn02e8axw3w2xMPDuuWQlJOhQR51W6DrNy8qEqMzMrivc4zMysKN7jMDOzojg4zMysKA4OMzMrioPDzMyK4uAwM7OiODjMzKwo/x+qPI4nShESqAAAAABJRU5ErkJggg==\n", "text/plain": [ "<Figure size 432x288 with 1 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.plot(range(epochs), losses)\n", "plt.ylabel('Loss')\n", "plt.xlabel('epoch');" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Plot the result\n", "Now we'll derive <tt>y1</tt> from the new model to plot the most recent best-fit line." ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Current weight: 1.98381913, Current bias: 1.05575156\n", "\n", "[ 1. 50.]\n", "[ 3.0395708 100.246704 ]\n" ] } ], "source": [ "w1,b1 = model.linear.weight.item(), model.linear.bias.item()\n", "print(f'Current weight: {w1:.8f}, Current bias: {b1:.8f}')\n", "print()\n", "\n", "y1 = x1*w1 + b1\n", "print(x1)\n", "print(y1)" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEWCAYAAAB8LwAVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xm8lHP/x/HXp1OUNSlbSbabkhYOImu5kSzntt3clm4i+y7Jne2Oljtb0Y0U4odKdbcoJS24caeTE6W4kWjTcnNslbbP749rTk6nmXPOTDNzzZx5Px8Pj3Pmmmvm+lwc85nv9vmauyMiIlJWtbADEBGRzKQEISIiUSlBiIhIVEoQIiISlRKEiIhEpQQhIiJRKUGIVCFmdr+Z/V8lz51mZlemOibJXkoQkpXM7C9mVmhmv5jZUjN7w8yODTuuEma2wMxOLuf5E83MzWxkmePNI8enpTxIkQooQUjWMbPbgMeBHsDuQEPgn8DZCbxX9cocS5EVwDFmtmupYx2A/6bp+iLlUoKQrGJmOwN/B65395Hu/qu7r3P3se7eOXLOC2b2YKnXnGhmi0o9XmBmXczsE+BXM6se49heZjbCzFaY2ddmdlOp97jfzIaZ2Ytm9rOZfWpm+ZHnXiJIWmMjLZw7Y9zOWmAUcGHkdXnABcDLZe75GDObYWY/Rn4eU+q5fc3s7UgMk4C6ZV7byszeN7NiM/vYzE6M81+55DAlCMk2RwM1gX9t5ftcBLQHarv7+rLHgI3AWOBjoD7QFrjFzE4t9R5nAUMi548BngRw90uBb4Ez3X0Hd/9HOXG8CFwW+f1U4FNgScmTZlYHGAf0A3YFHgXGlWp1vALMJEgM3QlaICWvrR957YNAHeAOYISZ1av4X4+IEoRkn12BlaU+1BPVz90XuvvqGMeOAOq5+9/dfa27zweeJfJtP+Lf7j7e3TcALwHN4w3C3d8H6pjZQQSJ4sUyp7QHvnD3l9x9vbu/CnwGnGlmDSNx3uPuv7n7OwRJrcQlwPhIjBvdfRJQCJweb5ySm5QgJNv8D6ibhHGChRUc2wfYK9I1U2xmxcDdBGMeJb4r9fsqoGaCcb0E3ACcxJYto72Ab8oc+4agVbMX8IO7/1rmudL3cH6ZezgW2DOBGCUHpWswTiRZPgDWAAXA8Bjn/ApsV+rxHlHOiVbGuPSxhcDX7n5gIkHGeP9YXgK+BF5091VmVvq5JQQf9KU1BCYAS4FdzGz7UkmiYalrLwRecver4g1eBNSCkCzj7j8C9wL9zazAzLYzsxpm1s7MSvr6ZwGnm1kdM9sDuCWBS30I/BQZuK5lZnlm1tTMjqjk65cB+1XmRHf/GjgB+FuUp8cDf4hM661uZn8GmgCvu/s3BF1GD5jZNpFpvmeWeu3/EXRFnRqJv2ZkwL5BJe9BcpwShGQdd38UuA3oRjBVdCFBF82oyCkvEQwuLwDeBIYmcI0NBB+2LYCvgZXAQGDnSr5FT6BbpGvnjkpc79/uviTK8f8BZwC3E3Sv3Qmc4e4rI6f8BTgK+B64j1JjGO6+kGDq7938/u+pM/r/XirJtGGQiIhEo28SIiISlRKEiIhEpQQhIiJRKUGIiEhUWb0Oom7dut6oUaOwwxARySozZ85c6e4VllzJ6gTRqFEjCgsLww5DRCSrmFnZ1flRqYtJRESiUoIQEZGolCBERCQqJQgREYlKCUJERKJSghARkahSliDM7DkzW25mc0odq2Nmk8zsi8jPXSLHzcz6mdmXZvaJmR2WqrhERKRyUtmCeAE4rcyxu4DJkU1YJkceA7QDDoz80wl4KoVxiYhkr59+gttvh2XLUn6plC2Uc/d3zKxRmcNnAydGfh8MTAO6RI6/6EHt8f+YWW0z29Pdl6YqPhGRZBtVtJg+Ez9nSfFq9qpdi86nHkRBy/rJu8D48ay64kpqLv+OOz6H6ce2T/41Skn3GMTuJR/6kZ+7RY7XZ/P9gBdFjm3BzDqZWaGZFa5YsSKlwYqIVNaoosV0HTmbxcWrcWBx8Wq6jpzNqKLFW//mK1fCJZdA+/Ys2VCDcy/uw8imbZJ7jSgyZZDaohyLupORuw9w93x3z69Xr8JSIiIiadFn4uesXrdhs2Or122gz8TPE39Tdxg6FJo0gaFDea7NpZzeoS9F9Q9O3jXKke4EsczM9gSI/FweOb4I2LvUeQ0INmsXEckKS4pXx3W84jdcAgUFcOGFsM8+MHMm3Y/4M2ur10jeNSqQ7gQxBugQ+b0DMLrU8csis5laAT9q/EFEssletWvFdTwmdxg4MGg1vPkm9OkDH3wAzZol7xqVlMpprq8CHwAHmdkiM+sI9AL+aGZfAH+MPAYYD8wHvgSeBa5LVVwiIqnQ+dSDqFUjb7NjtWrk0fnUgyr/JvPnw8knw1VXQYsWMHs23HEHVK+evGvEIZWzmC6K8VTbKOc6cH2qYhERSbWSmUQJzWLasAH69YO//S1IBs88A1deCdU2/w6/VddIgAWfzdkpPz/ftR+EiGS1Tz+Fjh1h+nRo3x6efhoaNEjpJc1sprvnV3RepsxiEhHJLWvXwt//Di1bwldfwSuvwNixKU8O8cjqHeVERLLSjBlBq2H2bLjoIujbFzJw2r5aECIi6bJqFXTuDK1awfff85/Hnqd1syvZ95EPad1rSsoWvCVKCUJEJB2mTYPmzeHhh+HKK3n9lUlc/r89UrPyOkmUIEREUunHH+Gaa+Ckk4I1DlOmwDPP0PP9pclfeZ1kShAiIqkybhwccgg8+2xQgfWTT4JEQQpWXqeABqlFRJJtxQq45ZZgZlLTpjByJBx55Gan7FW7FoujJIO9atdKfVXYSlILQkQkWdxhyJCgTMZrr8H998PMmVskB4i9Kvqkg+ulripsnJQgRESSYfFiOPvsYNrqfvvBRx/BfffBNttEPb2gZX16nnMo9WvXwoD6tWvR85xDmfrZiowZm1AXk4jI1igprnfHHbBuHTzyCNx8M+TlVfjSgpb1t+g6unXorKjnhjE2oQQhIhKnkjGC6l/P59G3+nP4/FnB4POzz8L++2/Ve5c3NpFu6mISEYnDqKLF/G34LNq9+TITnruBAxf9l3tPv4lRD7+41ckB0l+xtTxqQYhIVkrWTJ9432f44Am8PKw3LZZ+waQDjqTbKdexbMe6TH7zvxQctvV1lNJdsbU8ShAiknVK9n8uGcwtmekDxPVBGtf7rF0LPXrw3BMP8fO223HjmZ0Z2/h4sGDH5GSOEUQbmwiDuphEJOska//nSr/Phx/CYYfBAw8w7dATOPnKpxjb5IRNyQHCGSNINSUIEck6yVqFXOH7rFoVrIA++mgoLoaxY1n1/GDW7Fxns/PDGiNINXUxiUjWSdZMn3LfZ+rUYFe3+fPh6quhd2/YeWcKIufEM0aQKSuj46UEISJZp/OpB202dgCJfYuP9j71Nqzh5Q9fga6vBLOSpk6FE0/c7HXxjBEka7wkDOpiEpGsE2sVcrwfuGXf54KlRbwz+HoajR4SLHz75JMtkkO8kjVeEga1IEQkKyVrpk9By/oUNNgGbropqKN06KEwbiwccUQSosyOqq2xqAUhIrnLPai42rgxjBgBDzwAhYVJSw4Qe1wkG2Y9KUGISG5auBDOPBMuvhgOOACKiuDee2MW10tUJq2Mjpe6mEQkdGmd5bNxY1AzqXNnWL8eHn006F6qRHG9RGTSyuh4KUGISKjSOsvniy/gqqvg7behTZsgUey3X3KvEUWmrIyOl7qYRCRUaZnls349c269h9+aNOWnD2bQ65zbGNVncFqSQzZTC0JEQpXyWT6ffMIPF11G07kfM+mAo+h2yrUs27Eutf41B8yy8pt9uihBiEiokr3/Qcl4xsqVP9GlaCR/fedV2HYHrj+rC+MOPnZT/aSSVooSRGxKECISqmStiobfxzMOXvApz7/Rjz/871vGNG3DvW2upLjWTlucnw1rEcKkBCEioUrmLJ8nxs7i9gnPckXhGL7bcVf+et59TNv/CPLMgjUPZZTXSsnW+knJpAQhIqFLyiyfyZN5/tGONPxxGS+1PJ3eJ/yVX7bdDoAN7tSqkVfpVko2109KplBmMZnZrWb2qZnNMbNXzaymme1rZtPN7AszG2pmyV2tIiJVU3FxMHX15JOhenUu+Esv7jnluk3JAX6v1VTZ2k3ZXD8pmdLegjCz+sBNQBN3X21mw4ALgdOBx9x9iJk9DXQEnkp3fCKSRUaPhmuvhWXL4M47mVVwFbPHfwlRWgrxtFKyuX5SMoXVxVQdqGVm64DtgKVAG+AvkecHA/ejBCGS02KOAyxfHqx+HjoUmjWDMWMgP5+zgI01a2312EGyZ1Zlq7QnCHdfbGYPA98Cq4E3gZlAsbuvj5y2CIj6X9TMOgGdABo2bJj6gEUkFFHHAUZ8QoNxI8h/7AH45Rfo3h26dIEaNTa9LhnjGcmcWZXNwuhi2gU4G9gXKAZeA9pFOXXLKQeAuw8ABgDk5+dHPUdEsl/ZcYA9f1rBQxP7kz+/EFq1gkGDoEmTlFw7m+snJVMYXUwnA1+7+woAMxsJHAPUNrPqkVZEA2BJCLGJSIYo6e8338jFsybQZdrz5PlGHmh7FfdNfCplxfVKZGv9pGQKI0F8C7Qys+0IupjaAoXAVOA8YAjQARgdQmwikiH2ql2LGvO/pPeEJzhq4Rze3acFXU+7AW+0L/elODlIIIwxiOlmNhz4CFgPFBF0GY0DhpjZg5Fjg9Idm4hkiPXreWbpZA54/mHW5tWgc7ubeO3QP1Jrm+r0zLFxgDCFMovJ3e8D7itzeD5wZAjhiEgm+fhj6NiRpjNnsuSkU7m21RV8snF76ufoOECYtJJaRDLDb7/Bgw9Cr15Qpw4MG8Ze553H6EhxPUk/JQgRCd8HH0DHjjBvHlx2WbDL2667hh1VztOGQSISnl9/hVtugdatg3UN48fD4MFKDhlCLQgRCcdbbwU1lBYsgOuvh549Yccdw45KSlELQkTSq7g46E764x+DFdDvvANPPqnkkIGUIEQkfUaNClY/Dx4Md90VzFg67riwo5IY1MUkIkCKN8hZtgxuvBFeew2aN4exY+Hww5Pz3pIyakGIyKbCeIuLV+P8vkHOqKLFW/fG7vDSS0GrYfRoeOghmDFDySFLqAUhkmOitRTK2yAn4VbEt9/C1VfDhAlw9NEwaBCj1uxEn0fezekCeNlELQiRHBKrpRBt7wNIcIOcjRuhf3845BB4913o1w/efZdRa3ZKTStFUkYJQiSHxGop5MVYrRz3Bjmffw4nnAA33BC0GubMCcYe8vK0jWcWUoIQySGxWgQb3KlVY/MKqXFtkLN+fVAio3nzICk8/zxMnAiNGlV47VzbxjObKEGI5JBYLYL6tWvR85xDqV+7FlbqcaXGB2bNgqOOgq5d4fTTYe5c+OtfoUyrJNa1c20bz2yiQWqRHFLeVppxb5CzZk2w5Wfv3lC3LgwfDueem9C1JTMpQYjkkKRtpfn++8Fq6M8+gw4dguJ6deqk59qSNuaevds65+fne2FhYdhhiOSOX36Bu+8OSmPsvTcMGACnnhp2VBInM5vp7vkVnacWhIiUq2TdxP5F79H7zf7sWbwsmKXUo0fM+kkpXZUtaaMEISIxjSpaTM+X3+eOiQM4f85bfFWnARdf1ofzr7iIgnKSQ+mxhpL1DoCSRJZRghCRmD58ZCBjR/Wlzqof6d/qfPq1vojfqm/DgnJWWKdkVbaEQglCRLb03Xdwww30GDGCT3fbj8vPv59Pd99/09PlrV3QeoeqQwlCJIslva/fHV58EW69FVat4ulTO/LwoWeyPm/zj4ry1i7sVbtW1NIdWu+QfbRQTiRLJb0C6zffQLt2wSK3Jk1g1iz26PkANWpuu9lpFa1d6HzqQVu3KlsyhloQIlkqaX39GzfCP/8ZbOAD8MQTcN11UK0aBaWuVbaVEqv1ovUOVYcShEiWSkpf/+efBwve3nsvWM/wzDOwzz6bnRJthXVFM5XiXpUtGUldTCJZqqLaRqOKFtO61xT2vWscrXtN2bzrad066NkzKK43dy688AK88cYWySEWVWbNDUoQIlmqvL7+cscnioqC4np33w1nnhkkiA4dtiiuVx7NVMoN6mISyQLlzVaKdrx1rylbfMPfuHo1P93WGd4dFhTXGzECzjknoXg0Uyk3KEGIZLjK9PeXVfab/OGL5vKPN/qx//eL4PLL4ZFHYJddEo5JlVlzg7qYRDJcIv39Jd/kt/9tFfdPeprXXu7CtuvXcuvlveG557YqOUCQmBLeP0KyhloQIhkukf7+zqcexOt9XuD+cX3Z66eVDD78DJ5sezn3XHhk0uLSTKWqTwlCJMPF3d///fcU9P0bBa8OZkG9hlxwcW+WNj2ce7QWQeKkBCGS4eLq7x8xAq6/HlauhL/9jUbdujG8Zs00RitVSSgJwsxqAwOBpoADVwCfA0OBRsAC4AJ3/yGM+ETCEu9spU2WLg32aBg5Elq2hAkToEWLkO5CqoqwWhB9gQnufp6ZbQNsB9wNTHb3XmZ2F3AX0CWk+ETSLpHZSrjD4MFBcb3Vq6FXL7j9dqiuzgHZemmfxWRmOwHHA4MA3H2tuxcDZwODI6cNhk1lYERyQtyzlRYsCMpjXH45NG0KH38MXbooOUjShDHNdT9gBfC8mRWZ2UAz2x7Y3d2XAkR+7hbtxWbWycwKzaxwxYoV6YtaJMUqPVtp48agoF7TpvDBB9C/P7z9NhykNQiSXGEkiOrAYcBT7t4S+JWgO6lS3H2Au+e7e369evVSFaNI2lVUWwmAefPguOPgppuCn3PmbKq8KpJsYfxVLQIWufv0yOPhBAljmZntCRD5uTyE2ERCU+4+CuvWQY8ewcDzZ58Fm/qMH1/p4noiiUh7Z6W7f2dmC83sIHf/HGgLzI380wHoFfk5Ot2xiaRLXLOVfBkceQbMmgXnnx90L+2+e8h3ILkgrNGsG4GXIzOY5gOXE7RmhplZR+Bb4PyQYhNJqUrPVlq9Gv7+d+jTB+rVC6aw/ulPYYUtOSiUBOHus4D8KE+1TXcsIqkUraVQqZ3g/v3vYCOf//4XrrgCHn54q+snicRLI1siKRJrT4ZoZTMgMlvp55+DBW/HHQdr18KkSTBokJKDhEITpkVSJFZLIc+MDe5bnP+nZbOh6XWwcCHcfDM8+CDssEO6whXZghKESIrEWtewwZ1aNfI2JY/aq3/i/qmDKJg9GRo3DvaHPvrodIYqEpW6mERSJNa6hpK9E+rvXJP2n/2bKc9dx1nz3oZu3YLtQJUcJEMoQYikSHnrGgr2qMZ7Hz5J/9G9qHPQ/lQrLITu3WHbbUOKVmRLShAiKRJ117U/NaWgaGLQlTRhAvTuDf/5DzRvHna4IlvQGIRICm22ruHrr6HT5fDWW3D88fDss/CHP4QboEg51IIQSbUNG6Bv36C43vTp8NRTMHWqkoNkPLUgRFJp7ly48sqg6mq7dvDMM7D33mFHJVIpakGIpMK6dcE6hpYtg9XQ//d/MG6ckoNklQoThJndYGZaxilSWTNnQn4+3HNPUDtp7ly4+GIwCzsykbhUpgWxBzDDzIaZ2Wlm+isXiWr16mBHtyOPhBUrYNQoGDIEdou695VIxqswQbh7N+BAgi1C/wp8YWY9zGz/FMcmkj3eeSeYqvqPfwTF9ebOhbPPDjsqka1SqUFqd3cz+w74DlgP7AIMN7NJ7n5nKgMUSbfy9mrYwk8/wV13BTOT9t03mMLaVkWJpWqoMEGY2U0EG/isBAYCnd19nZlVA74AlCCkyqhor4bNjB8P11wDixbBrbcGK6G33z7dIYukTGXGIOoC57j7qe7+mruvA3D3jcAZKY1OJM3K26thk5Ur4dJLoX172HFH3n5+FK13O4N9u0+jda8pjCpanOaoRVKjMmMQ97r7NzGem5f8kETCE6sC65Li1eAOw4ZBkybB4PO99zLmubFc8+U2W+z5oCQhVYHWQYiUEqsCa7NqvwZTVv/8Z9hnn2Aq6wMP0HvqgopbHCJZSglCpJQtKrC6c8mctxj+xFUwcWKwP/QHH0CzZkAFLQ6RLKdSGyKllAxE95n4OXkLvubRt/qT/1URnHACDBwIBxyw2fl71a4VdQvRWC0RkWyiFoRIGQXN9uC9mp/wzks3kb/8S3j6aZgyZYvkAOXv+SCS7dSCECnt00+hY8eg6mr79kFyaNAg5umlWxyVWjchkkWUIEQA1q4NNu/p3h122glefhkuuqhS9ZM22/NBpApRghCZMSNoNcyeDRdeCP36Qb16YUclEjqNQUjOGvv+l7x8wp/ZcFQrVnyzhP889hy8+qqSg0iEEoTkpHcHDqfZGSdw8TvDGNrsj7S54p9c/r89tcBNpBR1MUlu+ekn6NKF455+mm9q78FFFz7EB/s0D56LLHCLNZ4QVxE/kSpACUJyx7hxQXG9JUsYeEQBDx93CWtq1NzslFgL3OIq4idSRaiLSaq+lSvhkkvgjDNg553h/fd5/pwbt0gOEHuBW6WK+IlUMUoQUnW5B0X1GjcOiuzddx989BEcdVTcC9xUUkNykbqYpGpavBiuuw7GjIEjjoBBg+DQQzc9He8CN5XUkFykBCFVi3tQM+mOO2DdOnj4YbjlFsjL2+LUeBa4dT71oM3GIEAlNaTqCy1BmFkeUAgsdvczzGxfYAhQB/gIuNTd14YVn2Shr76Cq66CqVPhxBPh2WfhgAOSMvtIJTUkF4XZgrgZmAfsFHncG3jM3YeY2dNAR+CpsIKTLLJhA/TtC926QY0a8MwzcOWVUK1aUmcfqaSG5JpQBqnNrAHQnmCPa8zMgDbA8Mgpg4GCMGKTLDNnDhxzDNx+O7RtGxTb69QJqgV/2pp9JJK4sGYxPQ7cCWyMPN4VKHb39ZHHi4CoX9XMrJOZFZpZ4YoVK1IfqWSmtWvhgQfgsMNg/nx45ZVgQLpM5VXNPhJJXNq7mMzsDGC5u880sxNLDkc51aO93t0HAAMA8vPzo54jmSXpK5BnzIArrghaD3/5Czz+eMz6SZp9JJK4MFoQrYGzzGwBwaB0G4IWRW0zK0lYDYAlIcQmSVYyBrC4eDXO72MACdU8WrUqmJ3UqhX88AOMHRuU5S6nuJ429BFJXNpbEO7eFegKEGlB3OHuF5vZa8B5BEmjAzA63bFJ8pU3BlBeK6Jsq6N3nZUc27tr0J109dXB3g0771zh9TX7SCRxmbQOogswxMweBIqAQSHHI0mQyBhA6ZlHO/72K9cPeZJjP57ALw32YYeSKaxx0OwjkcSEmiDcfRowLfL7fODIMOORrRNtrCGRMYCSVkfbL6fz0MT+1Pu1mGeOPIeh7TsyJc7kICKJy6QWhGSxWOsNzj28PiNmLo5rBfKaJd/R960BnD3vbebVa0Snc7rxyZ5/wFZpToJIOilBSFLEGmuY+tkKep5zaOXGANzh1VeZPOhatluzikePvZinWp3HurwagGYeiaSbEoQkRXljDZUaA1i0CK69Fl5/nY1NW3Ju66uZXfv3NQ2aeSSSfir3LUkR69t9hd/6N24MSmM0aQKTJ8Ojj1Jn1gw6Xn0G9WvXwoD6tWvR85xDNdAskmZqQUhSJFTt9Msvg+J606ZBmzZBcb399gM080gkEyhBSFLEtd5g/fpg9fM998A22wSJoWNHsGgL6itH+0WLJJ8ShCRNpb71z54dJIMZM+Css+Cf/4T6W/dBrv2iRVJDCULS47ffoEeP4J9ddgm2Ar3ggrhbDdFaComu1haR8ilBSOpNnx60Gj79FC65BB57DOrWjfttYrUUyiaHEqrYKrJ1NItJUufXX+G22+Doo+HHH+H11+GllxJKDhB7rUVejFaI1k2IbB0lCEmNKVOgWbOgtXDNNUHroX37rXrLWC2CDe6q2CqSAkoQklzFxcHU1bZtg13dpk0LBqJ32qnCl1YkVougZJ2E1k2IJJfGICR5xowJVkN/9x3ceSfcfz/USl43T3lrLbRuQiT5lCBk6y1fDjfdBEOHwqGHwujRkJ9fqZfGs35BezuIpJcShCTOPdgL+uab4eefoXv3oOWwzTaVenki6xfUUhBJHyUIifktvtxv9wsXBt1J48YFW4AOGhTUU4qD1i+IZDYliBwX61t84Tffb7aPw6Zv9xs3UjBjXNBS2LAhKJlxww2Ql1feZaJKZLc5EUkfJYgcF+tb/KvTF7LBN9+gZ/dl39Lw/Lvg64+DWUoDBmwqrpeIRHabE5H00TTXHFfe2oISeRs30Gn6CCY8fyMHLPky6E6aNGmrkgMEs5K0fkEkc6kFkeNifYvPM2ODOwcv/5reb/Sj+Xdf8OaBreh/3q2MvuKCpFxbs5JEMpsSRI6Ltbbggmb12L3fI1z1/jCKa+7IdWffxdSmx9Pz3GZJvb5mJYlkLiWIHBFrRlK0b/E99vyFE+6/DObO5Y2Wf+Tu4y5nuz13p6e+3YvkFPMyA5HZJD8/3wsLC8MOI+OVnakEQSthi3IUv/4K3bpB377QoEGwFWi7diFELCKpZGYz3b3C1awapM4B5a032GTy5GAV9OOPB+sb5sxRchDJcUoQOaDc9QbFxXDllXDyyVC9Orz9NvTvn5TieiKS3TQGkaXiqWEUa6bSBUs+giZXBbWUunSB++5LanE9EcluShBZKN4aRmVnKtX99Qe6T3mWdnPfgebNYexYOPzw9N2AiGQFJYgsVNGYQqyWRZ8Jn3Hk+29w/+QB7LD+N3joIejcGWrUSPs9iEjmU4LIQrHGFMru0bxZy2LXDRS8+wi88UawBeigQdC4cdpiFpHsowSRhcpb/Vy2ZbFm7Tq+eKAPTB4UlOfu1w+uuy6h4nol4hn/EJHspVlMWShWDaOyxfX2/X4xQ17pSufRfYNWw5w5cOONW50cuo6czeLi1Ti/t1JGFS1O+D1FJDOlPUGY2d5mNtXM5pnZp2Z2c+R4HTObZGZfRH7uku7YskVBy/pR92CuH6mCmrdxA1dPH84bz9/IwSsW8NB5nWHiRGjUaKuvXak1FSJSJYTRxbQeuN3dPzKzHYGZZjYJ+Csw2d17mdldwF1AlxDiywqxahi98NRouo95lEOXfcWEPxxNj3Y3cFuHE8AsKdcKX8e7AAAKZUlEQVTVHg4iuSPtCcLdlwJLI7//bGbzgPrA2cCJkdMGA9NQgqi8NWsoGPEUZz3fmx9q7si1BV355KiTkz4+oD0cRHJHqIPUZtYIaAlMB3aPJA/cfamZ7RbjNZ2ATgANGzZMT6CZ7v33oWNH+OwzqnXowK6PPspTdeqk5FKxqr9qDweRqie0QWoz2wEYAdzi7j9V9nXuPsDd8909v169eqkLMBv88gvcfDMceyysWgUTJsALL0CKkgPEHv/QLCaRqieUFoSZ1SBIDi+7+8jI4WVmtmek9bAnsDyM2LLGpEnQqRMsWBDsCd2jB+y4Y1ourT0cRHJDGLOYDBgEzHP3R0s9NQboEPm9AzA63bFlhR9+gCuugFNOgW23hXffhSeeSFtyEJHcEUYLojVwKTDbzGZFjt0N9AKGmVlH4Fvg/BBiC02lFp/961/BIrcVK6BrV7j3XqhZM5yARaTKC2MW07+BWHMu26YzlkxRYfG9774LFrgNHw4tWsC4cXDYYWGGLCI5QCupM0DMxWcTPoMXX4QmTYKKqz16wIcfKjmISFqoFlMGiLbIrP6Py+kx7En4+iM45piguN7BB4cQnYjkKiWIrZCsonWlF5+Zb+SSovF0eXsw1fBgAPq666CaGnsikl761ElQMovWlRTf2+9/ixj6yl10n/Q0sxo05t8jpwZTWJUcRCQE+uRJUDKL1hU03Y3hP77NGy/cyB9WfsuD593JytdGc0r7VskKV0QkbupiSlDSitYVFUHHjhxSVATnnsu2Tz5Jtz32SEKEIiJbRwkiQeUVravU2MSaNdC9O/TuDXXrBlNYzz03TdGLiFRMXUwJirVpz0kH16t4bOK994L1DD16wKWXwty5Sg4iknHUgiglnllJJcfLnl/e2ETBgTvD3XfDk09Cw4bBJj6nnJK0mEREkkkJIqLC1cxRRCtad+vQWVHP3b/oPWh6BXz77e/F9XbYIekxiYgki7qYIpI1K6nsxjk7r/6ZPuMe58VhkbpJ774L/fpVmBySGZOISCKUICKSNSup9NjEaZ+/x1uDruVPn07h8ytuhFmzoHXrtMckIpIIdTFFJGsrzYKW9dl25XJq3nYzJ815l8/3OoA5A4dy0oXljzWkMiYRkUSoBRERa1ZSXFtpusMLL9Duz2056YsPoWdPDlowN6HkkLSYREQSpBZERKxZSQUt61duJtGCBXD11fDmm8EWoAMHwkGbf5DHOyOpvJhERFLN3D3sGBKWn5/vhYWFKb1G2ZlEEHyL37QP88aN0L9/sIGPWbDw7ZprtqifVOH7iIikiZnNdPf8is5TF1MFyp1J9NlncPzxcNNNcNxxMGdOzMqrmpEkItlGCaIC0WYMVd+wnoI3BkPz5jBvXrCpz/jxsM8+cb1PecdFRMKmMYgKlJ1JdMiyr/jH+L4csnw+nH9+sF/D7rvH/T6lj4uIZCK1ICpQMpNo2/VrufPtFxg9+FZ2W/UD0x9+FoYNq1RyKP0+pWlGkohkMrUgKlDQsj51ij6kUZebaLhyEWPzT6Paww/T/oRD4n4f0IwkEckeShDl+fln6NqV4/v3h0aN4NVJnHnyyQm/XbTaTSIimSrnEkSl1yJMnAidOsHChXDzzfDgg5WqnyQiUlXkVIKoVHXU77+HW28NZiY1bhzs3XD00WGFLCISmpwapK5wLcLw4UFSeOUV6NYt2A5UyUFEclROtSBirTlYt2hxsKPbyJFw+OFBuYzmzdMcnYhIZsmpBLHFWgR3zp/9FvdMHQSsD8pk3HYbVM+pfy0iIlHlVBdT6bUIDYq/48Vh99Lnjb6sbXwIfPwx3HmnkoOISEROfRqWDETP7PMMXYf/A6was7r2oMWDXaLWTxIRyWU5lSAgshbhznPgl1nw5JO0aNgw7JBERDJSziUIAFq0gDFjwo5CRCSjqV9FRESiyqgEYWanmdnnZvalmd0VdjwiIrksYxKEmeUB/YF2QBPgIjNrEm5UIiK5K2MSBHAk8KW7z3f3tcAQ4OyQYxIRyVmZlCDqAwtLPV4UObYZM+tkZoVmVrhixYq0BScikmsyKUFYlGO+xQH3Ae6e7+759erVS0NYIiK5KZMSxCJg71KPGwBLQopFRCTnZVKCmAEcaGb7mtk2wIWAFiuIiITE3LfoxQmNmZ0OPA7kAc+5+0MVnL8C+KaCt60LrExOhFlF951bcvW+IXfvfWvuex93r7CPPqMSRCqYWaG754cdR7rpvnNLrt435O69p+O+M6mLSUREMogShIiIRJULCWJA2AGERPedW3L1viF37z3l913lxyBERCQxudCCEBGRBChBiIhIVFU6QeRK+XAze87MlpvZnFLH6pjZJDP7IvJzlzBjTAUz29vMpprZPDP71Mxujhyv0vduZjXN7EMz+zhy3w9Eju9rZtMj9z00suC0yjGzPDMrMrPXI4+r/H2b2QIzm21ms8ysMHIs5X/nVTZB5Fj58BeA08ocuwuY7O4HApMjj6ua9cDt7t4YaAVcH/lvXNXv/Tegjbs3B1oAp5lZK6A38Fjkvn8AOoYYYyrdDMwr9ThX7vskd29Rau1Dyv/Oq2yCIIfKh7v7O8D3ZQ6fDQyO/D4YKEhrUGng7kvd/aPI7z8TfGjUp4rfuwd+iTysEfnHgTbA8MjxKnffAGbWAGgPDIw8NnLgvmNI+d95VU4QlSofXoXt7u5LIfggBXYLOZ6UMrNGQEtgOjlw75FullnAcmAS8BVQ7O7rI6dU1b/3x4E7gY2Rx7uSG/ftwJtmNtPMOkWOpfzvvHqy3zCDVKp8uGQ/M9sBGAHc4u4/BV8qqzZ33wC0MLPawL+AxtFOS29UqWVmZwDL3X2mmZ1YcjjKqVXqviNau/sSM9sNmGRmn6XjolW5BZHr5cOXmdmeAJGfy0OOJyXMrAZBcnjZ3UdGDufEvQO4ezEwjWAMpraZlXzpq4p/762Bs8xsAUGXcRuCFkVVv2/cfUnk53KCLwRHkoa/86qcIHK9fPgYoEPk9w7A6BBjSYlI//MgYJ67P1rqqSp972ZWL9JywMxqAScTjL9MBc6LnFbl7tvdu7p7A3dvRPD/8xR3v5gqft9mtr2Z7VjyO3AKMIc0/J1X6ZXU8ZYPz1Zm9ipwIkH532XAfcAoYBjQEPgWON/dyw5kZzUzOxZ4F5jN733SdxOMQ1TZezezZgSDknkEX/KGufvfzWw/gm/WdYAi4BJ3/y28SFMn0sV0h7ufUdXvO3J//4o8rA684u4PmdmupPjvvEonCBERSVxV7mISEZGtoAQhIiJRKUGIiEhUShAiIhKVEoSIiESlBCEiIlEpQYiISFRKECJJZGZHmNknkT0bto/s19A07LhEEqGFciJJZmYPAjWBWsAid+8ZckgiCVGCEEmySO2vGcAa4JhI5VWRrKMuJpHkqwPsAOxI0JIQyUpqQYgkmZmNISgety+wp7vfEHJIIgmpyhsGiaSdmV0GrHf3VyL7or9vZm3cfUrYsYnESy0IERGJSmMQIiISlRKEiIhEpQQhIiJRKUGIiEhUShAiIhKVEoSIiESlBCEiIlH9P+sTUAKbILC1AAAAAElFTkSuQmCC\n", "text/plain": [ "<Figure size 432x288 with 1 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.scatter(X.numpy(), y.numpy())\n", "plt.plot(x1,y1,'r')\n", "plt.title('Current Model')\n", "plt.ylabel('y')\n", "plt.xlabel('x');" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Great job!" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.2" } }, "nbformat": 4, "nbformat_minor": 2 }
apache-2.0
mdlai/odscon-sf-2015
01 - Introduction to Scikit-learn.ipynb
2
10103
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "Get some data to play with" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "from sklearn.datasets import load_digits\n", "digits = load_digits()\n", "digits.keys()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "digits.images.shape" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "print(digits.images[0])" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", "%matplotlib notebook\n", "\n", "plt.matshow(digits.images[0], cmap=plt.cm.Greys)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "digits.data.shape" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "digits.target.shape" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "digits.target" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Data is always a numpy array (or sparse matrix) of shape (n_samples, n_features)**" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Split the data to get going" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "from sklearn.cross_validation import train_test_split\n", "X_train, X_test, y_train, y_test = train_test_split(digits.data,\n", " digits.target)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Really Simple API\n", "-------------------\n", "0) Import your model class" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "from sklearn.svm import LinearSVC" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "1) Instantiate an object and set the parameters" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "svm = LinearSVC(C=0.1)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "2) Fit the model" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "svm.fit(X_train, y_train)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "3) Apply / evaluate" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "print(svm.predict(X_train))\n", "print(y_train)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "svm.score(X_train, y_train)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "svm.score(X_test, y_test)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "And again\n", "---------" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "from sklearn.ensemble import RandomForestClassifier" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "rf = RandomForestClassifier(n_estimators=50)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "rf.fit(X_train, y_train)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "rf.score(X_test, y_test)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "#%load from github" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import numpy as np\n", "import pylab as pl\n", "from matplotlib.colors import ListedColormap\n", "from sklearn.cross_validation import train_test_split\n", "from sklearn.preprocessing import StandardScaler\n", "from sklearn.datasets import make_moons, make_circles, make_classification\n", "from sklearn.neighbors import KNeighborsClassifier\n", "from sklearn.svm import SVC\n", "from sklearn.tree import DecisionTreeClassifier\n", "from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier\n", "from sklearn.naive_bayes import GaussianNB\n", "from sklearn.lda import LDA\n", "from sklearn.qda import QDA\n", "\n", "h = .02 # step size in the mesh\n", "\n", "names = [\"Nearest Neighbors\", \"Linear SVM\", \"RBF SVM\", \"Decision Tree\",\n", " \"Random Forest\", \"AdaBoost\", \"Naive Bayes\", \"LDA\", \"QDA\"]\n", "classifiers = [\n", " KNeighborsClassifier(3),\n", " SVC(kernel=\"linear\", C=0.025),\n", " SVC(gamma=2, C=1),\n", " DecisionTreeClassifier(max_depth=5),\n", " RandomForestClassifier(max_depth=5, n_estimators=10, max_features=1),\n", " AdaBoostClassifier(),\n", " GaussianNB(),\n", " LDA(),\n", " QDA()]\n", "\n", "X, y = make_classification(n_features=2, n_redundant=0, n_informative=2,\n", " random_state=1, n_clusters_per_class=1)\n", "rng = np.random.RandomState(2)\n", "X += 2 * rng.uniform(size=X.shape)\n", "linearly_separable = (X, y)\n", "\n", "datasets = [make_moons(noise=0.3, random_state=0),\n", " make_circles(noise=0.2, factor=0.5, random_state=1),\n", " linearly_separable\n", " ]\n", "\n", "figure = pl.figure(figsize=(27, 9))\n", "i = 1\n", "# iterate over datasets\n", "for ds in datasets:\n", " # preprocess dataset, split into training and test part\n", " X, y = ds\n", " X = StandardScaler().fit_transform(X)\n", " X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.4)\n", "\n", " x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5\n", " y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5\n", " xx, yy = np.meshgrid(np.arange(x_min, x_max, h),\n", " np.arange(y_min, y_max, h))\n", "\n", " # just plot the dataset first\n", " cm = pl.cm.RdBu\n", " cm_bright = ListedColormap(['#FF0000', '#0000FF'])\n", " ax = pl.subplot(len(datasets), len(classifiers) + 1, i)\n", " # Plot the training points\n", " ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright)\n", " # and testing points\n", " ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright, alpha=0.6)\n", " ax.set_xlim(xx.min(), xx.max())\n", " ax.set_ylim(yy.min(), yy.max())\n", " ax.set_xticks(())\n", " ax.set_yticks(())\n", " i += 1\n", "\n", " # iterate over classifiers\n", " for name, clf in zip(names, classifiers):\n", " ax = pl.subplot(len(datasets), len(classifiers) + 1, i)\n", " clf.fit(X_train, y_train)\n", " score = clf.score(X_test, y_test)\n", "\n", " # Plot the decision boundary. For that, we will assign a color to each\n", " # point in the mesh [x_min, m_max]x[y_min, y_max].\n", " if hasattr(clf, \"decision_function\"):\n", " Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])\n", " else:\n", " Z = clf.predict_proba(np.c_[xx.ravel(), yy.ravel()])[:, 1]\n", "\n", " # Put the result into a color plot\n", " Z = Z.reshape(xx.shape)\n", " ax.contourf(xx, yy, Z, cmap=cm, alpha=.8)\n", "\n", " # Plot also the training points\n", " ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright)\n", " # and testing points\n", " ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright,\n", " alpha=0.6)\n", "\n", " ax.set_xlim(xx.min(), xx.max())\n", " ax.set_ylim(yy.min(), yy.max())\n", " ax.set_xticks(())\n", " ax.set_yticks(())\n", " ax.set_title(name)\n", " ax.text(xx.max() - .3, yy.min() + .3, ('%.2f' % score).lstrip('0'),\n", " size=15, horizontalalignment='right')\n", " i += 1\n", "\n", "figure.subplots_adjust(left=.02, right=.98)\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.4.3" } }, "nbformat": 4, "nbformat_minor": 0 }
cc0-1.0
mjbommar/cscs-530-w2016
notebooks/basic-stats/001-storing-model-results.ipynb
2
13821
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "## CSCS530 Winter 2015\n", "#### Complex Systems 530 - Computer Modeling of Complex Systems (Winter 2015)\n", "\n", " * Course ID: CMPLXSYS 530\n", " * Course Title: Computer Modeling of Complex Systems\n", " * Term: Winter 2015\n", " * Schedule: Wednesdays and Friday, 1:00-2:30PM ET\n", " * Location: 120 West Hall (http://www.lsa.umich.edu/cscs/research/computerlab)\n", " * Teachers: [Mike Bommarito](https://www.linkedin.com/in/bommarito) and [Sarah Cherng](https://www.linkedin.com/pub/sarah-cherng/35/1b7/316)\n", "\n", "#### [View this repository on NBViewer](http://nbviewer.ipython.org/github/mjbommar/cscs-530-w2015/tree/master/)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Storing Model Results\n", "\n", " In this notebook, we'll learn a common pattern for storing the results of a model run. Specifically, we'll:\n", " \n", " * create a __model results__ folder to store all output\n", " * create a __per-run__ results folder to store output for a single model run\n", " * learn to save our model parameters\n", " * learn to save figures\n", " * learn to save tabular data\n", " \n", " We'll do this using the basic HIV model.\n", " \n", " __N.B.__: We won't be dealing with RNG seeds in this notebook. However, please see the supplemental notebook for instruction on properly setting, using, and recording the RNG seed.\n", " " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Local Imports\n", "\n", " In the first import section, we use an import from _our own module_. We took the imports and class definitions (``Model``, ``Person``) from our notebooks and pasted them into a ``.py`` file, creating a module. Please review the ``hiv_model.py`` file to understand how this works. " ] }, { "cell_type": "code", "execution_count": 33, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Imports\n", "from hiv_model import Model, Person" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ ":0: FutureWarning: IPython widgets are experimental and may change in the future.\n" ] } ], "source": [ "# Imports\n", "import datetime\n", "import os\n", "import time\n", "\n", "# Scientific computing imports\n", "import numpy\n", "import matplotlib.pyplot as plt\n", "import networkx\n", "import pandas\n", "import seaborn; seaborn.set()\n", "\n", "# Import widget methods\n", "from IPython.html.widgets import *" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Testing our model output functions\n", "\n", " In this section, we'll define our model output functions. These will manage:\n", " \n", " * creating output directories\n", " * creating output CSV files\n", " * creating output figures\n", " \n", " We'll create one sample model, run it, and then test our methods." ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# Create our test model\n", "m = Model(grid_size=10, num_people=10)\n", "for t in xrange(10):\n", " m.step()" ] }, { "cell_type": "code", "execution_count": 30, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# Now, we'll define our methods to store a model's output\n", "\n", "def store_model_parameters(model, run_output_path):\n", " \"\"\"\n", " Store model parameters from a model to the run output path.\n", " \"\"\"\n", " # Create parameters dictionary\n", " model_parameters = {\"grid_size\": model.grid_size,\n", " \"num_people\": model.num_people,\n", " \"min_subsidy\": model.min_subsidy,\n", " \"max_subsidy\": model.max_subsidy,\n", " \"min_condom_budget\": model.min_condom_budget,\n", " \"max_condom_budget\": model.max_condom_budget,\n", " \"condom_cost\": model.condom_cost,\n", " \"min_prob_hookup\": model.min_prob_hookup,\n", " \"max_prob_hookup\": model.max_prob_hookup,\n", " \"prob_transmit\": model.prob_transmit,\n", " \"prob_transmit_condom\": model.prob_transmit_condom,\n", " }\n", " # Convert to dataframe and save\n", " model_parameters_df = pandas.DataFrame(model_parameters.items(),\n", " columns=[\"parameter\", \"value\"])\n", " model_parameters_df.to_csv(os.path.join(run_output_path, \"parameters.csv\"))\n", " \n", "\n", "def store_model_csv(model, run_output_path):\n", " \"\"\"\n", " Store CSV data from a model to the run output path.\n", " \"\"\"\n", " # Create interaction dataframe\n", " try:\n", " interaction_df = pandas.DataFrame(model.history_interactions,\n", " columns=[\"time\", \"agent_a\", \"agent_b\", \"use_condom\", \"is_transmission\"])\n", " except ValueError:\n", " # Sometimes, we have no interactions in \"sparse\" parameter configurations.\n", " interaction_df = pandas.DataFrame(columns=[\"time\", \"agent_a\", \"agent_b\", \"use_condom\", \"is_transmission\"])\n", " \n", " # Create time series data frame\n", " tsdata_df = pandas.DataFrame(model.history_num_infected,\n", " columns=[\"num_infected\"])\n", " tsdata_df[\"num_interactions\"] = model.history_num_interactions\n", " tsdata_df[\"num_interactions_condoms\"] = model.history_num_interactions_condoms\n", " \n", " # Save the dataframes\n", " interaction_df.to_csv(os.path.join(run_output_path, \"interactions.csv\"))\n", " tsdata_df.to_csv(os.path.join(run_output_path, \"timeseries.csv\"))\n", "\n", " \n", "def store_model_figures(model, run_output_path):\n", " \"\"\"\n", " Store figures data from a model to the run output path.\n", " \"\"\"\n", " # Plot time series of infections and interactions.\n", " f = plt.figure(figsize=(10, 8))\n", " \n", " # Create our top panel\n", " plt.subplot(211)\n", " plt.plot(model.history_num_infected)\n", " plt.legend((\"Number of infections\"), loc=\"best\")\n", " \n", " # Create our bottom panel and add the legend\n", " plt.subplot(212)\n", " plt.plot(numpy.array(model.history_num_interactions) - numpy.array(model.history_num_interactions_condoms))\n", " plt.plot(model.history_num_interactions_condoms)\n", " plt.legend((\"Number of interactions without condoms\",\n", " \"Number of interactions with condoms\"),\n", " loc=\"best\")\n", " plt.tight_layout()\n", " \n", " # Save\n", " plt.savefig(os.path.join(run_output_path, \"infections_interactions.png\"))\n", " \n", " # Next, plot the initial and final space timesteps.\n", " \n", " # Get colormap\n", " cmap = seaborn.cubehelix_palette(light=1, as_cmap=True)\n", "\n", " # Plot initial step.\n", " f = plt.figure(figsize=(10, 10))\n", " plt.title(\"Infected space at t={0}\".format(0))\n", " plt.pcolor(model.get_space_infected(0), vmin=-1, vmax=1, cmap=cmap)\n", " ax = f.gca()\n", " ax.set_aspect(1./ax.get_data_ratio()) \n", " plt.tight_layout()\n", " plt.colorbar()\n", " \n", " # Save\n", " plt.savefig(os.path.join(run_output_path, \"space_initial.png\"))\n", " \n", " # Plot final step\n", " plt.title(\"Infected space at t={0}\".format(model.t-1))\n", " plt.pcolor(model.get_space_infected(model.t-1), vmin=-1, vmax=1, cmap=cmap)\n", " ax = f.gca()\n", " ax.set_aspect(1./ax.get_data_ratio()) \n", " plt.tight_layout()\n", " plt.colorbar()\n", " \n", " # Save\n", " plt.savefig(os.path.join(run_output_path, \"space_final.png\")) \n", " \n", "\n", "def store_model(model, output_path=\"output\"):\n", " \"\"\"\n", " Store a model to the model output path.\n", " \"\"\"\n", " # First, we need to make sure the directory exists.\n", " try:\n", " os.makedirs(output_path)\n", " except:\n", " pass\n", " \n", " \"\"\"\n", " Next, we need to create a unique timestamp for the model.\n", " We'll do that using a timestamp of the form: YYYYMMDD-Run#\n", " \n", " We then need to create that directory too.\n", " \"\"\"\n", " timestamp_suffix = time.strftime(\"%Y%m%d\")\n", " \n", " run_id = 0\n", " run_output_path = os.path.join(output_path,\n", " \"run-{0}-{1}\".format(timestamp_suffix,\n", " run_id))\n", " # Get a unique run #\n", " while os.path.exists(run_output_path):\n", " run_id += 1\n", " run_output_path = os.path.join(output_path,\n", " \"run-{0}-{1}\".format(timestamp_suffix,\n", " run_id)) \n", "\n", " try:\n", " os.makedirs(run_output_path)\n", " except:\n", " pass\n", " \n", " \"\"\"\n", " Finally, we need to store data and figures to the path.\n", " \"\"\"\n", " store_model_parameters(model, run_output_path)\n", " store_model_csv(model, run_output_path)\n", " store_model_figures(model, run_output_path)" ] }, { "cell_type": "code", "execution_count": 36, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# Finally, test our output method with the model.\n", "store_model(m)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Running our parameter sweep" ] }, { "cell_type": "code", "execution_count": 37, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Running 10 samples for subsidy value 0.0, prob_hookup value 0.1\n", "Running 10 samples for subsidy value 0.0, prob_hookup value 0.5\n", "Running 10 samples for subsidy value 0.0, prob_hookup value 0.9\n", "Running 10 samples for subsidy value 0.33, prob_hookup value 0.1\n", "Running 10 samples for subsidy value 0.33, prob_hookup value 0.5\n", "Running 10 samples for subsidy value 0.33, prob_hookup value 0.9\n", "Running 10 samples for subsidy value 0.66, prob_hookup value 0.1\n", "Running 10 samples for subsidy value 0.66, prob_hookup value 0.5\n", "Running 10 samples for subsidy value 0.66, prob_hookup value 0.9\n", "Running 10 samples for subsidy value 1.0, prob_hookup value 0.1\n", "Running 10 samples for subsidy value 1.0, prob_hookup value 0.5\n", "Running 10 samples for subsidy value 1.0, prob_hookup value 0.9\n" ] } ], "source": [ "# Set number of samples per value and steps per sample\n", "num_samples = 10\n", "num_steps = 100\n", "\n", "# Set basic model parameters\n", "grid_size = 10\n", "num_people =10\n", "\n", "# Set subsidy values to \"sweep\" over\n", "subsidy_sweep_values = [0.0, 0.33, 0.66, 1.0]\n", "prob_hookup_values = [0.1, 0.5, 0.9]\n", "subsidy_sweep_output = []\n", "\n", "# Iterate over subsidy\n", "for subsidy_value in subsidy_sweep_values:\n", " # Iterate over prob_hookup\n", " for prob_hookup_value in prob_hookup_values:\n", " print(\"Running {0} samples for subsidy value {1}, prob_hookup value {2}\"\\\n", " .format(num_samples, subsidy_value, prob_hookup_value))\n", " for n in xrange(num_samples):\n", " # Output info\n", " m = Model(grid_size=grid_size,\n", " num_people=num_people,\n", " min_condom_budget=0.0,\n", " max_condom_budget=1.0,\n", " min_prob_hookup=prob_hookup_value-0.1,\n", " max_prob_hookup=prob_hookup_value+0.1,\n", " min_subsidy=subsidy_value,\n", " max_subsidy=subsidy_value)\n", "\n", " # Run the model for num-steps\n", " for t in xrange(num_steps):\n", " m.step()\n", "\n", " # Output our model\n", " store_model(m)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.3" } }, "nbformat": 4, "nbformat_minor": 0 }
bsd-2-clause
CrowdTruth/CrowdTruth-core
tutorial/notebooks/.ipynb_checkpoints/Highlighting Task - Event Extraction-checkpoint.ipynb
1
121796
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Highlighting Task - Event Extraction from Text\n", "\n", "In this tutorial, we will show how *dimensionality reduction* can be applied over *both the media units and the annotations* of a crowdsourcing task, and how this impacts the results of the CrowdTruth quality metrics. We start with an *open-ended extraction task*, where the crowd was asked to highlight words or phrases in a text that refer to events or actions. The task was executed on [FigureEight](https://www.figure-eight.com/). For more crowdsourcing annotation task examples, click [here](https://raw.githubusercontent.com/CrowdTruth-core/tutorial/getting_started.md).\n", "\n", "To replicate this experiment, the code used to design and implement this crowdsourcing annotation template is available here: [template](https://raw.githubusercontent.com/CrowdTruth/CrowdTruth-core/master/tutorial/templates/Event-Text-Highlight/template.html), [css](https://raw.githubusercontent.com/CrowdTruth/CrowdTruth-core/master/tutorial/templates/Event-Text-Highlight/template.css), [javascript](https://raw.githubusercontent.com/CrowdTruth/CrowdTruth-core/master/tutorial/templates/Event-Text-Highlight/template.js).\n", "\n", "This is how the task looked like to the workers:\n", "![Task Template](../img/event-text-highlight.png)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "A sample dataset for this task is available in [this file](https://raw.githubusercontent.com/CrowdTruth/CrowdTruth-core/master/tutorial/data/event-text-highlight.csv), containing raw output from the crowd on FigureEight. Download the file and place it in a folder named `data` that has the same root as this notebook. The answers from the crowd are stored in the `tagged_events` column." ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0 [\"income fell\"]\n", "1 [\"net income fell\"]\n", "2 [\"reported third-quarter net income fell 5.9 %...\n", "3 [\"reported third-quarter net income fell\"]\n", "4 [\"reported third-quarter\"]\n", "5 [\"reported\",\"fell\",\"year-ago\"]\n", "6 [\"reported\",\"fell\"]\n", "7 [\"reported\",\"fell\"]\n", "8 [\"reported\",\"fell\"]\n", "9 [\"reported\",\"fell\"]\n", "10 [\"reported\",\"fell\"]\n", "11 [\"reported\",\"fell\"]\n", "12 [\"reported\",\"income fell\"]\n", "13 [\"reported\",\"income\",\"fell\"]\n", "14 [\"reported\",\"third-quarter\",\"net\",\"income\",\"fe...\n", "15 [\"reported\"]\n", "16 [\"reported\"]\n", "17 [\"Separately\",\"reported third-quarter net inco...\n", "18 [\"Separately\",\"reported\"]\n", "19 [\"third-quarter\"]\n", "20 [\"held\",\"20\",\"years\",\"anti-abortion movement\"]\n", "21 [\"held\",\"anti-abortion\",\"movement\",\"said\"]\n", "22 [\"jobs he has held over the past 20 years have...\n", "23 [\"jobs he has held\"]\n", "24 [\"jobs\",\"anti-abortion movement\",\"news release\"]\n", "25 [\"jobs\",\"anti-abortion movement\"]\n", "26 [\"jobs\",\"he\",\"has\",\"held\",\"over\",\"the\",\"past\",...\n", "27 [\"Justice\",\"Department\",\"said\"]\n", "28 [\"purports to be a devout Roman Catholic\"]\n", "29 [\"purports\",\"has held over\",\"anti-abortion\",\"m...\n", "Name: tagged_events, dtype: object" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import pandas as pd\n", "\n", "test_data = pd.read_csv(\"../data/event-text-highlight.csv\")\n", "test_data[\"tagged_events\"][0:30]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Notice the diverse behavior of the crowd workers. While most annotated each word individually, the worker on *row 2* annotated a chunk of the sentence together in one word phrase. Also, when no answer was picked by the worker, the value in the cell is `[NONE]`." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## A basic pre-processing configuration\n", "\n", "Our basic pre-processing configuration attempts to normalize the different ways of performing the crowd annotations.\n", "\n", "We set `remove_empty_rows = False` to keep the empty rows from the crowd. This configuration option will set all empty cell values to correspond to a *NONE* token in the annotation vector.\n", "\n", "We build the annotation vector to have one component for each word in the sentence. To do this, we break up multiple-word annotations into a list of single words in the `processJudgments` call:\n", "\n", "```\n", "judgments[self.outputColumns[0]] = judgments[self.outputColumns[0]].apply(\n", " lambda x: str(x).replace(' ',self.annotation_separator))\n", "```\n", "\n", "The final configuration class `Config` is this:" ] }, { "cell_type": "code", "execution_count": 57, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import crowdtruth\n", "from crowdtruth.configuration import DefaultConfig\n", "\n", "class Config(DefaultConfig):\n", " inputColumns = [\"doc_id\", \"sentence_id\", \"events\", \"events_count\", \"original_sententce\", \"processed_sentence\", \"tokens\"]\n", " outputColumns = [\"tagged_events\"]\n", " open_ended_task = True\n", " annotation_separator = \",\"\n", "\n", " remove_empty_rows = False\n", " \n", " def processJudgments(self, judgments):\n", " # build annotation vector just from words\n", " judgments[self.outputColumns[0]] = judgments[self.outputColumns[0]].apply(\n", " lambda x: str(x).replace(' ',self.annotation_separator))\n", "\n", " # normalize vector elements\n", " judgments[self.outputColumns[0]] = judgments[self.outputColumns[0]].apply(\n", " lambda x: str(x).replace('[',''))\n", " judgments[self.outputColumns[0]] = judgments[self.outputColumns[0]].apply(\n", " lambda x: str(x).replace(']',''))\n", " judgments[self.outputColumns[0]] = judgments[self.outputColumns[0]].apply(\n", " lambda x: str(x).replace('\"',''))\n", " judgments[self.outputColumns[0]] = judgments[self.outputColumns[0]].apply(\n", " lambda x: str(x).replace(',,,',','))\n", " judgments[self.outputColumns[0]] = judgments[self.outputColumns[0]].apply(\n", " lambda x: str(x).replace(',,',','))\n", " return judgments" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now we can pre-process the data and run the CrowdTruth metrics:" ] }, { "cell_type": "code", "execution_count": 58, "metadata": {}, "outputs": [], "source": [ "data_with_stopwords, config_with_stopwords = crowdtruth.load(\n", " file = \"../data/event-text-highlight.csv\",\n", " config = Config()\n", ")\n", "\n", "processed_results_with_stopwords = crowdtruth.run(\n", " data_with_stopwords,\n", " config_with_stopwords\n", ")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Removing stopwords from Media Units and Annotations" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "A more complex dimensionality reduction technique involves removing the stopwords from both the *media units* and the crowd *annotations*. Stopwords (i.e. words that are very common in the English language) do not usually contain much useful information. Also, the behavior of the crowds w.r.t them is inconsistent - some workers omit them, some annotate them.\n", "\n", "The first step is to build a function that removes stopwords from strings. We will use the `stopwords` corpus in the `nltk` package to get the list of words. We want to build a function that can be reused for both the text in the media units and in the annotations column. Also, we need to be careful about omitting punctuation.\n", "\n", "The function `remove_stop_words` does all of these things:" ] }, { "cell_type": "code", "execution_count": 59, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import nltk\n", "from nltk.corpus import stopwords\n", "import string\n", "\n", "stopword_set = set(stopwords.words('english'))\n", "stopword_set.update(['s'])\n", "\n", "def remove_stop_words(words_string, sep):\n", " '''\n", " words_string: string containing all words\n", " sep: separator character for the words in words_string\n", " '''\n", " words_list = words_string.split(sep)\n", " corrected_words_list = \"\"\n", " for word in words_list:\n", " if word not in stopword_set:\n", " if corrected_words_list != \"\":\n", " corrected_words_list += sep\n", " corrected_words_list += word\n", " return corrected_words_list" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In the new configuration class `ConfigDimRed`, we apply the function we just built to both the column that contains the media unit text (`inputColumns[2]`), and the column containing the crowd annotations (`outputColumns[0]`):" ] }, { "cell_type": "code", "execution_count": 60, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import pandas as pd\n", "\n", "class ConfigDimRed(Config):\n", " def processJudgments(self, judgments):\n", " judgments = Config.processJudgments(self, judgments)\n", " \n", " # remove stopwords from input sentence\n", " for idx in range(len(judgments[self.inputColumns[2]])):\n", " judgments.at[idx, self.inputColumns[2]] = remove_stop_words(\n", " judgments[self.inputColumns[2]][idx], \" \")\n", " \n", " for idx in range(len(judgments[self.outputColumns[0]])):\n", " judgments.at[idx, self.outputColumns[0]] = remove_stop_words(\n", " judgments[self.outputColumns[0]][idx], self.annotation_separator)\n", " if judgments[self.outputColumns[0]][idx] == \"\":\n", " judgments.at[idx, self.outputColumns[0]] = self.none_token\n", " return judgments" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now we can pre-process the data and run the CrowdTruth metrics:" ] }, { "cell_type": "code", "execution_count": 61, "metadata": {}, "outputs": [], "source": [ "data_without_stopwords, config_without_stopwords = crowdtruth.load(\n", " file = \"../data/event-text-highlight.csv\",\n", " config = ConfigDimRed()\n", ")\n", "\n", "processed_results_without_stopwords = crowdtruth.run(\n", " data_without_stopwords,\n", " config_without_stopwords\n", ")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Effect on CrowdTruth metrics\n", "\n", "Finally, we can compare the effect of the stopword removal on the CrowdTruth *sentence quality score*." ] }, { "cell_type": "code", "execution_count": 62, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Text(0,0.5,u'without stopwords')" ] }, "execution_count": 62, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEWCAYAAACJ0YulAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xl8FfX1//HXAUFxRQW1BAQsiguo\nSHAXUWvBFaQuWFs3VNS6VBGX/tTy1bao2Fq1uJeCuOBSQVAsWhZZBCWIsikWNyBuqAQXwhbO74/P\nJF7CTTIJmdzc5P18PO7De2fmzj2Ti3PuZz6fOR9zd0RERAAaZDoAERGpPZQURESkhJKCiIiUUFIQ\nEZESSgoiIlJCSUFEREooKYjUAmZ2vplNS3n9g5ntkcmYpH5SUpAqMbMjzewNM1tpZt+a2XQz61IN\n+93o5FibRLHNM7NVZvaFmT1gZjsk8Vnuvq27fxR97jAz+1NV95XUdyV1k5KCVJqZbQ+8BNwP7ATk\nAP8HrMlkXEkys/7AncAAYAfgUKAN8KqZNcpgaOWqqe/KzBpW5/4kg9xdDz0q9QBygYIKtrkQeA9Y\nAYwHWqesc+BS4H/R+iGAAfsAq4Ei4IfizwC2BO4GlgBfAg8BTaJ13YBlQH/gK+Bz4IKUz2oC/BX4\nFFgJTEt576HAG0AB8C7QrYxj2T6K58xSy7eNPvO86PUw4E8p67sBy1Je3wh8CHwPLAROS1l3PjCt\n1N+oHXAJsA5YG8UwlpCY/l0qlvuBv1fxu7o4+q6K4zooWr4PMDn6+ywATk15zzDgQWAc8CPwi/K+\nJz2y55HxAPTIvkd0kvwGGA6cAOxYan0vYHF0UtkCuBl4I2W9E369NgV2B5YDPaJ1G50co2V/B8YQ\nfuluF50YB0XrugHrgduARsCJwKrimAgJZzLhF3JD4PDo5JUTHcOJhBbz8dHr5mmOt0f0GVukWTcc\neDJ6XlFSOANoEX3eWdHJ9Gfpjrs4KZSx359F720avd6CkJw6V+G7OgPIB7oQEnM7oHX0t1wM/AFo\nDBxLSBrtU2JaCRwRHc9W5X1PemTPQ5ePpNLc/TvgSMKJ61FguZmNMbNdo036EU4G77n7euAvwIFm\n1jplN3e4e4G7LwEmAQem+ywzM8Iv2Wvc/Vt3/z7aX5+UzdYBt7n7OncfR/hF3d7MGhBaLFe7e767\nF7n7G+6+BvgNMM7dx7n7Bnd/DcgjJInSmgFfR8dS2udA8wr+ZAC4+3Pu/ln0ec8QWkoHx3lvqf18\nDkwhnNAhJK2v3X12mm0r+q4uAu5y91keLHb3TwmtqG0J39Nad59ISORnp+z+RXef7u4bCJejKvqe\nJAsoKUiVRCf88929JdCB8Av479Hq1sC9ZlZgZgXAt4RfoTkpu/gi5fkqwgkonebA1sDslP39h41P\nxN+UOmEX768Z4Rfsh2n22xo4o3if0X6PJPwKL+1roJmZbZFm3c8ILZ0Kmdm5ZvZOyud1iGKsiuGE\nxEb03xFlbVjBd9WK9H+fFsDS6IRf7FM2/g6XpjyP8z1JFlBSkM3m7u8TLid0iBYtBfq5e9OURxN3\nfyPO7kq9/hooBPZL2dcO7l5WEin93tXAz9OsWwqMKBXjNu5+R5ptZxB+CfdOXWhm2xAuybweLfqR\ncGIstlvKtq0Jv9SvAHZ296bAfEKyrEi6Usajgf3NrANwMvBkjP2U9V2l+/t8BrSKWlvFdidcakoX\n1+Z8T1KLKClIpZnZ3mbW38xaRq9bES4rzIw2eQi4ycz2i9bvYGZnpN/bJr4EWppZY4Dol+qjwD1m\ntku0vxwz617RjqL3DgX+ZmYtzKyhmR1mZlsCTwCnmFn3aPlWZtat+JhK7WclYcTO/WbWw8wamVkb\n4DnCybD4hPwOcKKZ7WRmuwG/T9nNNoST6PLoGC7gpxNznL/JRvcsuPtq4HngKeCt6DLcJmJ8V48B\n15lZZwvaRQnsTUKSuz463m7AKcDIdJ+zOd+T1C5KClIV3wOHAG+a2Y+EE8x8wggg3H0UYfjmSDP7\nLlp3Qsx9TySMdPnCzL6Olt1A6PScGe3vv0D7mPu7DpgHzCJcxroTaODuS4GehI7U5YRfzAMo4/8J\nd78r2vbu6Pg/JrQKfuHuP0abjSCMYvoEeBV4JuX9CwmjoGYQTvIdgekxj+GfwL7RZZnRKcuHR/sp\n89IRFX9XzwF/JiSX7wktkJ3cfS1wKuF7+xp4ADg3ammUZXO+J6klzF2T7IhUlpldSGg9HFHWr/Qa\niGF34H1gt6hDWWSzpes4E5EKuPtQM1tHGOJa40khutZ/LTBSCUGqk1oKIlkm6uD+kjAaqEd0KUyk\nWigpiIhICXU0i4hIiazrU2jWrJm3adMm02GIiGSV2bNnf+3uFd5MmHVJoU2bNuTl5WU6DBGRrGJm\nn8bZTpePRESkhJKCiIiUUFIQEZESSgoiIlJCSUFEREoklhTMbKiZfWVm88tYb2Z2n5ktNrO5ZnZQ\nUrGIiEg8SbYUhhFmhCrLCcCe0eMSwnyvIiKSQYklBXefQihVXJaewOPRFIAzgaZmlm7WKxERefNN\n2LCh4u02Uyb7FHLYeDq/ZWw81V8JM7vEzPLMLG/58lgzH4qI1A0FBXDxxXDGGbAk+YK8mUwK6aYh\nTFudz90fcfdcd89t3lxTvopIPfHii9ChAzRqBPPnQw2U+MlkmYtlhEnDi7UkzAsrIlK/ffUVXHUV\nzJ4NTz4JRx9dYx+dyZbCGODcaBTSocBKd/88g/GIiGSWOzzxBHTsCK1bw9y5NZoQIMGWgpk9DXQD\nmpnZMuCPQCMAd38IGAecSJjTdRVwQVKxiIjUekuXwqWXhv++/DLk5mYkjMSSgrufXcF6B36X1OeL\niGSFDRvg4Yfh1lvh6qth1Cho3Dhj4WRd6WwRkTrjgw/gootg3Tp4/XXYd99MR6QyFyIiNW79erjr\nLjj8cPjVr2DatFqREEAtBRGRmvXuu3DhhbDTTjBrFrRtm+mINqKWgohITVizBm65BY4/Hn73O3j1\n1VqXEEAtBRGR5M2YAX37Qvv28M470KJFpiMqk5KCiEhSfvgBbr4Znn0W7rsv9B9YumIOtYcuH4mI\nJOG118JNaCtWwLx5cPrptT4hgFoKIiLVa8UK6N8fJkwI9x/0KG8GgdpHLQURkeoyalQoYLf11qGA\nXZYlBFBLQURk833xBVx5ZahVNHIkHHVUpiOqMrUURESqyh0efxwOOADatQv3IGRxQgC1FEREqubT\nT6FfP/jyS3jlFTiobkwzr5aCiEhlbNgA//gHdO4cylq/9VadSQigloKISHyLFoWb0NxDvaK99850\nRNVOLQURkYqsWweDBsERR0CfPjB1ap1MCKCWgohI+ebMCa2D5s0hL69G5knOJLUURETSWb0a/vAH\n6N49TH7zn//U+YQAaimIiGxq2rQw+U3HjuHeg912y3RENUZJQURqhdFz8hk8fhGfFRTSomkTBnRv\nT69OOTX6ue2aOA8vfJ49pr4aRhj17p3459c2SgoiknGj5+Rz0wvzKFxXBEB+QSE3vTAPINHEkPq5\nXT+azV/GD+HNtgfw3tOvcdLR+yX2ubWZkoKIZNzg8YtKEkKxwnVFDB6/KNGkMHj8Ihp/V8CfJj7K\nIUvmc1OPK5ja9iByZnyppCAikimfFRRWanlVlb5Etf/M1xg44RHGtT+CX/YdwqrGTRL53GyipCAi\nGdeiaRPy05yIWzRtUm2fkXqpqPkP33LLqAdp9/VSLu95I7Nb7pvY52YbDUkVkYwb0L09TRo13GhZ\nk0YNGdC9fbV9xuDxiyhcu54z5r7GK/+6kv/tvDsnXXAfb5dKCNX9udlGLQURybjifoMkRx81+ORj\nRvznHzRd/T3nnnk7C3fdo2RdTtMmNT7qqbZSUhCRWqFXp5xkTsZFRTBkCGNH3MJDXXrz6MGnUdTg\np1ZJTtMmTL/x2Or/3CylpCAiddd774USFVtswawnX2L47B8pShnlVN8vFaWjPgURqXvWrYM//zlM\nePOb38DkyRzf6ygG9e5ITtMmGKGFMKh3x3p9qSgdtRREpG6ZPRsuvBBatIC334bddy9ZldglqjpE\nLQURqRsKC+GGG+DEE2HAABg3bqOEIPGopSAi2W/KlFDArlMnmDcPdtkl0xFlrUSTgpn1AO4FGgKP\nufsdpdbvDgwHmkbb3Oju45KMSUTiy1SRuti++w5uvBHGjAkF7Hr1ynREWS+xy0dm1hAYApwA7Auc\nbWb7ltrsZuBZd+8E9AEeSCoeEamc4juA8wsKcX4qUjd6Tn6mQwvGjYMOHWDtWpg/XwmhmiTZp3Aw\nsNjdP3L3tcBIoGepbRzYPnq+A/BZgvGISCWUV6Quo77+Gn77W7jiCvjXv+Cxx6Bp08zGVIckmRRy\ngKUpr5dFy1INBH5jZsuAccCV6XZkZpeYWZ6Z5S1fvjyJWEWklJoqUhebOzzzTJj4pnnz0Hdw3HGZ\niaUOS7JPwdIs81KvzwaGuftfzewwYISZdXD3DRu9yf0R4BGA3Nzc0vsQkQTURJG62D77DC67DBYv\nhlGj4NBDaz6GeiLJlsIyoFXK65ZsenmoL/AsgLvPALYCmiUYk4jEdMzezSu1PBHu4fLQAQfAgQeG\n+w6UEBKVZEthFrCnmbUF8gkdyb8utc0S4DhgmJntQ0gKuj4kUgtMej/9/4plLa92H30EF18cRhhN\nmAD7718zn1vPJdZScPf1wBXAeOA9wiijBWZ2m5mdGm3WH7jYzN4FngbOd3ddHhKpBTLWp1BUBPfc\nAwcfDCecADNmKCHUoETvU4juORhXatmtKc8XAkckGYOIVE1G+hQWLAgF7LbaCmbOhHbtkvssSUtl\nLkQkrZqY+KbE2rVw223QrRtccAFMnKiEkCEqcyEiadXExDcAzJoVCti1bg1z5kDLltW7f6kUtRRE\nJK3ES1ysWgXXXQennAJ/+AOMHauEUAuopSAim0id5B5+KnEBVE9imDw5FLA7+OBwE1rzGhzmKuVS\nS0FENpFYiYuVK6Ffv1Cm4p574KmnlBBqGSUFEdlEIsNRX3opFLCDUMDulFOqvi9JjC4ficgmqnU4\n6vLlcPXV8NZb8PjjcMwx1RChJEUtBRHZRFWGo46ek88Rd0yk7Y0vc8QdExn99rJweahjR8jJgblz\nlRCygFoKIpJ2pNGg3h1jjz4q3TFdtGQpO/S5iZW+kh3GjAkdypIVKkwKZrYNUOjuG8xsL2Bv4BV3\nX5d4dCKSuLJGGg3q3ZHpNx4bax/FHdPmGzj73fH0nzKC4Z1PYWD33/K6EkJWidNSmAIcZWY7AhOA\nPOAs4JwkAxORmlHeSKO4w08/Kyik9YrPuOM/99Nk3RrOPvsvfNC8DfbD+iRClgTFSQrm7qvMrC9w\nv7vfZWZzkg5MRGrGZo80Wr+e/nPH8uvJTzPksDP5V+dT2NAg9EdkZO4F2SyxkkI0Ac45hPkP4r5P\nRLLAZo00mjcP+vblLBrT54J7+GC7XUtWJVYnSRIVZ/TR74GbgFFR6es9gEnJhiUiNaVKhe/WrIE/\n/hGOPRYuuYTmb07l8ou6k9O0CQbkNG3CoN4dq79OkiTOsm36gtzcXM/Ly8t0GCK1XpzaRcXb5BcU\n0tCMIndyKqpzNHNmKG/drh088EAYbiq1npnNdvfcirYr8zKQmY1l0zmVS7j7qWWtE5HMilO7aJNh\npO4lLYS0CeHHH+GWW+Dpp+Hvf4czzwRLNxW7ZLPyLh/dDfwV+BgoBB6NHj8A85MPTUSqKk7tokrV\nN5owIdyEtnx56Ec46ywlhDqqzJaCu78OYGa3u3vXlFVjzWxK4pGJSJXFGVEUa9RRQQEMGADjx8OD\nD8JJJ1VrnFL7xOlobh51LgNgZm0BlTUUqcXKGjmUurzCbV58MRSwa9QoFLBTQqgX4iSFa4DJZjbZ\nzCYTRh5dnWhUIrJZ4owoKmubm3N3CpeHBgwItYseeAC2375G4pbMK/d+AzNrAHwH7EkobwHwvruv\nSTowEam6OFNpbrLNDltxb9ECcs85D84/H4YNgya6+ay+qXBIqpnNcPfDaiieCmlIqkgCliyBSy+F\n/Hz45z8ht8KRi5Jl4g5JjXP56FUz+5WZhhqIZKNNSlrPyf9p5YYNoQO5c2c4/HDIy1NCqOfilKu4\nFtgGKDKzQsAAd3ddZBSp5cq9X2GbH8M8yevWweuvw777ZjJUqSUqTAruvl1NBCIiZYtzd3I66e5F\nWLtmLZ/9YSDMGgW33gq/+x00bJh+B1LvxCpsZ2anAsX3Kkx295eSC0lEUsW5O7kspe9F2Oerj7hr\n3L2s3Go7mDUL2rZNJmjJWhX2KZjZHYQhqAujx9XRMhFJ2Og5+fR/9t34dx6XUnzPwZbr19J/yghG\nPHMLjx90Mjf0u1sJQdKK01I4ETjQ3TcAmNlwYA5wY5KBidR3xS2EojJGCMaZ72BA9/Y8c+8z3D72\nHhY3a8UJF9zPDzs2Z1CPvSt8r9RPcedFaAp8Gz3fIaFYROqt0n0Gx+zdnKffXFpmQoAY8x388AO9\nht1F95ef4U89+vFUyy602HFrBsXsj5D6KU5SGATMMbNJhJFHXQnzK4hINUjXZ/DEzCXlvqdRQyt/\nvoNXX4V+/aBrV5q8v4A/77wzf67OoKXOijP66OmovEUXQlK4wd2/iLNzM+sB3As0BB5z9036Iszs\nTGAgoUz3u+7+69jRi9QB6UYIVWSbxluk/7W/YgVcey1MnAgPPww9elRTlFJfVJgUzGwEMAWY6u7v\nx92xmTUEhgDHA8uAWWY2xt0XpmyzJ6HVcYS7rzCzXSp7ACLZLvZcyClWFq7b6PXoOfm89dfHuOrF\n+5jWsStbPfkqJx+pqTCl8uJcPvoXcCRwf1Qt9R1girvfW8H7DgYWu/tHAGY2EuhJGMFU7GJgiLuv\nAHD3ryoZv0hWSu1DaBDNeFYZqf0Jr7w2hyZXXUnfrz7lip43kNdyP5qM/5j122yrvgOptAqHpLr7\nRODPwC3AY0AucFmMfecAS1NeL4uWpdoL2MvMppvZzOhy0ybM7BIzyzOzvOXLl8f4aJHaq7gPIb+g\nEIdKJ4RGDaL+BHcYPpxDTzuWxU1bcOIF95HXcj8g/pBVkdLiXD6aQChzMQOYCnSJ+Ys+Xa2k0v/6\ntyBUYO0GtASmmlkHdy/Y6E3ujwCPQCiIF+OzRWqtsvoQGpqxwb1k9NGk95eTX1BIA4MN0b/6pk0a\nMfDU/ei103o44QT48kt+e/pA5u/WbpP9VeWylEicy0dzgc5AB2AlUBBVTq3oX9wyoFXK65bAZ2m2\nmenu64CPzWwRIUnMihO8SDYq62Rd5F7ySyq39U78qVfHTTfasCHMbzBwIPTvD9ddx4q/ToU0+6xw\nyKpIGnEuH10TTcd5GvANoY+hoPx3AeHEvqeZtTWzxkAfYEypbUYDxwCYWTPC5aSP4ocvkn3KO1k7\nP5Wx2KiaKcD770PXrjByJEybBjfdBI0axZpQRySuOGUurjCzZwgdzL2AocAJFb3P3dcDVwDjgfeA\nZ919gZndFtVSIlr3jZktJMzoNsDdv6naoYhkh3Qn8dI26hNYtw7+8hc48kjo0wemTIG9f7ojuVen\nHAb17khO0yYYkNO0CYN6d1Qns1RJnEl2BhCGpM6OTvQZpUl2JJsUjzLKLyikYTTKKCelz+CzqLM5\nHQM+PqsFXHgh7LpruO+gdeuaDF/qkLiT7MS5eW2wmR0EXG5mDkx397erI0iRuqz0ncrFo4zyCwr5\n9+x8BvUOfQbXPPPOJolhy/VruTnvORj6Xxg8GM49FzTPldSAOKOPbgHOBF6IFv3LzJ5z9z8lGplI\nlivvTuXCdUUMHLOAbbbcYpOEkLtsAXe9ch9bHnQgzJ0Lu+2WfLAikTijj34NdHL31VBSSvttQElB\npBwVDQktKFxHQcqdydusWcX1U4bT/YMZ/PEXl/LwKFUrkpoXZ47mT4CtUl5vCXyYSDQidUicIaEN\no0tCR380m/FDf0eTdWv4Zd8HmH/IcUmHJ5JWnJbCGmCBmb1GGDF3PDDNzO4DcPerEoxPJGsN6N5+\noz6FdLZbtZKBk/5J5yXzubHHVUxr20nDSSWj4iSFUdGj2ORkQhGpW4qHhBaPPtqIOycsms7tEx9l\n5ck9ueBX1/BhYRhOGnf+ZZEkVDgkFSC6+Wyv6OWi6A7kjNCQVMlGqSORmv/wLbe/9iB7frOM/Lvv\np+v5PTMdntQD1TYk1cy6AcMJfQsGtDKz89x9yuYGKVJf9OqUA+4s+Mt99HvlEV465GTWDh/BqYf+\nPNOhiWwkzuWjvwK/dPdFAGa2F/A0oR6SiMTx8cf0uuESen37LUyfzPkHHpjpiETSijP6qFFxQgBw\n9w+ARsmFJFI7jZ6TzxF3TKTtjS9zxB0TN61NlE5REdx7L3TpAscfD2++CUoIUovFaSnkmdk/gRHR\n63OA2cmFJFL73Dx63kbzJucXFDLguXcByu4UXrgQLroIttgC3ngD9tor/XYitUicpHAZ8DvgKkKf\nwhTCNJsidVbqzGhNt27EilWbjq1Yt8EZOGbBpklh3Tq4887QQrjtNujXDxrEaZSLZF6cpHCpu/8N\n+FvxAjO7GqhoOk6RrFS6ZlG6hFCsoNRcycyeHQrY5eSE57vvnmSoItUuzs+X89IsO7+a4xCpNcqr\nWVSmwkK44QY48UQYMABeflkJQbJSmS0FMzubUPeorZmlTo6zPWGyHZE6I/VyUWXme91x60bw+utw\n8cVw0EEwbx7sskticYokrbzLR28AnwPNCMNSi31PmKJTJCulJoDi+ZD/PTu/0q2Dbdes4oUPx8Ij\nE2HIEOipm9Ak+5WZFNz9U+BTM/sFUOjuG6J7FPYG5tVUgCLVqXR/QX5BIU/OXFKp1gFAtw9n8ffJ\nD9O018kwfz40bVr9wYpkQJyO5inAUWa2IzAByAPOIgxNFckq6foLKpMQdlq1kkFTh3Lk14vZZuQT\ncJyqmUrdEqej2dx9FdAbuN/dTwP2TTYskWRUNMdBmdw5d8lM3n6uP92P2Z9t3l+ghCB1UpyWgpnZ\nYYSWQd9KvE+k1mnRtMmmFUsrsMv33zDovw/SZf23MGoUHHpoQtGJZF6clsLVwE3AKHdfYGZ7AJOS\nDUskGcfs3Zy4Mx03BPq8O57xw68m5+hD2X7hXCUEqfMq/MUfVUOdkvL6I8LdzSK1TumRRalzE4ye\nk8+/Z+fH6kPYfcXn3PGf+zl8l8YwYwo7duyYbOAitYTuvZc6o3hkUX50r0F+QSE3vTCvpHBdnJvS\nGmwoou9boxg9oj+Tfp7Liw88D0oIUo+ob0DqjHQn/cJ1RQwev4henXIq7GTea/kn3PXKfazeojGn\n/fZuPt2xBTkTPqRnl9ZJhi1Sq8SZZOcId59e0TKRTCvrpF+8vKxO5kZF67h8xnOc+/ZL3N31XEYe\n8EvcGpS7T5G6Ks7lo/tjLhPJqBZNm5S7fED39jRp1HCjdZ2/+ICXhv+e/b/4Hyedfx9PH9ijJCGU\nt0+Ruqq82keHAYcDzc3s2pRV2xMGZojUKgO6t9/obmWAJo0aMqB7e+CneQ8Gj1/Et8tXcMusZ+i9\ncDLz+v+R/mvaUbB6/Ub7S32vSH1R3uWjxsC20TbbpSz/Djg9yaBEqiL1pJ9u9FHxNr0KPoCLb4BD\nDoF/L6BL8+a8Q/kjl0TqC3Mvf4CembWO6iDVCrm5uZ6Xl5fpMCQbrVwJ118P48bBAw/AKadkOiKR\nGmNms909t6Lt4ow+GmZmm2QOdz+2SpGJZMLYsXD55XDSSaGA3Q47ZDoikVopTlK4LuX5VsCvgPVl\nbCtSuyxfDldfDW+9BY8/Dscck+mIRGq1CkcfufvslMd0d78WOCTOzs2sh5ktMrPFZnZjOdudbmZu\nZhU2bURicYenngo3nuXkwNy5SggiMcS5T2GnlJcNgM7AbjHe1xAYAhwPLANmmdkYd19YarvtCGUz\n3qxE3FKPVdghvHQpXHYZLFkSLht16ZK5YEWyTJz7FGYT5lCYDcwA+vNTtdTyHAwsdveP3H0tMBJI\nNzXV7cBdwOpYEUu9Vm4piw0b4OGHw7SYBx8MeXlKCCKVFKcgXtsq7jsHWJryehmlLjuZWSeglbu/\nZGapfReU2u4S4BKA3TUZer1WVimLp5+cQK9rhsLq1TB5Muy3X2YCFMlyFbYUzKyRmV1lZs9HjyvM\nrFGMfaerUFwyisnMGgD3EFoe5XL3R9w9191zmzdvHuOjpa4qXXai4YYiLn7zBR584MowR/L06UoI\nIpshzuWjBwn9CA9Ej87RsoosA1qlvG4JfJbyejugAzDZzD4BDgXGqLNZypNadmLvrz7mhRHX0e3j\nPPpdMQSuuQYa6mZ7kc0RZ0hqF3c/IOX1RDN7N8b7ZgF7mllbIB/oA/y6eKW7rwSaFb82s8nAde6u\nO9OkTAO6t+fWZ2fTd8rTnPPOK9zV9TzGdu7BoF/tn+nQROqEOEmhyMx+7u4fAkQzr5VflB5w9/Vm\ndgUwnlAraWg0c9ttQJ67j9mcwCX7VaWsRK81Szn22QG8s1UzTjr/PrZo1ZJBKkchUm3iJIUBwCQz\n+4jQT9AauCDOzt19HDCu1LJby9i2W5x9St1QPIqouNO4eBQRkP4E/+OPLL7k9zQd+wIDj7mYOYce\nz0099lYyEKlmcUYfTTCzPYH2hKTwvruvSTwyqdPKGkXU/9lwZXKjk/2ECfx43oUs3LEdt17wDwqa\nbA8rV5efRESkSuLOvNYZaBNtf4CZ4e6PJxaV1HllTV5T5P7Tyb7tNnDddfDqq/zxF5fx/G4b9xuk\nzqomItUjzpDUEcDdwJFAl+ihEUKyWcqbvKZwXREz7hkKHTpA48Ywfz7/3i19R7JmRhOpXnFaCrnA\nvl5RjW2RSkg3IQ5Asx9XMPC/j7Dflx/C6Keha1eg7Kk0NTOaSPWKc5/CfGLUOhKpjF6dchjUuyMN\nLbrH0Z3T5k/klaFXsnSHXbnwmsdKEgKkn0pTM6OJVL/ypuMcS7gDeTtgoZm9BZR0MLv7qcmHJ3VZ\ncV/Aff+awC0v38euP3zLBWcM5MNW7Rl0cse022pmNJFklXf56O4ai0Lqpw0b6DXjRU4YcQvDDu7F\nJfufyi47b1fmfQe9OuUoCYjC0liJAAAQRUlEQVQkrMyk4O6vA5jZne5+Q+o6M7sTeD3h2KQu++AD\nuOgiWL+eLd+YRr999qFfpmMSkVh9CsenWXZCdQci9cT69XDnnXD44XD66TB1KuyzT6ajEpFIeX0K\nlwGXA3uY2dyUVdsB05MOTOqgd96Bvn1h551h1ixoW9Wq7CKSlPL6FJ4CXgEGAalTaX7v7t8mGpXU\nLatXw+23w6OPwl13wXnngaWrrC4imVZeUnB3/8TMfld6hZntpMQgsbzxRmgd7LMPvPsu/OxnmY5I\nRMpRUUvhZMI0nM7Gk+Y4sEeCcUm2++EH+MMf4Pnn4f774Ve/ynREIhJDeaOPTo7+qwu/Ujmvvgr9\n+sHRR8P8+bDTTpmOSERiqrDMhZk9DkwFprr7+8mHJFlrxQq49lqYNAkefhi6d890RCJSSXGGpA4D\nfgbcb2Yfmtm/zezqZMOSrPPCC6GA3bbbwrx5SggiWSrOfAoTzex1QnXUY4BLgf2AexOOTbLBF1/A\nFVeEy0TPPANHHlmpt1dl9jURSU6c0tkTCPclnAUsIszZvHfSgUkt5w7DhsH++8Nee4V7EKqQEG56\nYR75BYU4P82+NnpOfiIhi0jF4pTOnkuYZKcDsBIoMLMZ7q5C9vXVJ5+EjuSvvoLx46FTpyrtpqzZ\n1zRxjkjmVNhScPdr3L0rcBrwDfAvoCDpwKQW2rAhDC/NzYVu3eCtt6qcEKDsCXI0cY5I5sQZfXQF\ncBShtfApMJQwGknqk/ffDwXsAKZNg703/wqiJs4RqX3ijD5qAvwN2Nvdj3P3/3P3iQnHJbXFunXw\nl7+E/oKzz4YpU6olIYAmzhGpjeKMPhpcE4FILfT226FExa67wuzZ0Lp1te5eE+eI1D5xOpqlviks\nhNtug6FDYfBg+O1vEytgp4lzRGoXJQXZ2LRpoXWw//4wd25oJYhIvaGkIMH338NNN8GoUWGEUe/e\nmY5IRDIgTkez1HX/+U8oUbFqVbgzWQlBpN5SS6E+++abUMBuyhR47DE4Pt3MqyJSn6ilUB+5w3PP\nhdbBjjuGAnZKCCKCWgr1z+efw+WXw6JFobLpYYdlOiIRqUUSbSmYWQ8zW2Rmi83sxjTrrzWzhWY2\n18wmmFn1DoSXn7iHIaYHHBBaCHPmKCGIyCYSaymYWUNgCHA8sAyYZWZj3H1hymZzgFx3X2VmlwF3\nEaqxSnX6+GO45JIwCc5rr4XEICKSRpIthYOBxe7+kbuvBUYCPVM3cPdJ7r4qejkTaJlgPPVPURHc\ney906RL6DGbOVEIQkXIl2aeQAyxNeb0MOKSc7fsCr6RbYWaXAJcA7L777tUVX922cGG4Ca1xY3jj\njTDngYhIBZJsKaSri+BpNzT7DZALpK2z5O6PuHuuu+c2b968GkOsg9auhdtvh6OPhvPOC/MlKyGI\nSExJthSWAa1SXrcEPiu9kZn9Avh/wNHuvibBeOq+vLzQOsjJCcXsWrWq+D0iIimSbCnMAvY0s7Zm\n1hjoA4xJ3cDMOgEPA6e6+1cJxlK3FRbC9dfDSSeF/778shKCiFRJYknB3dcDVwDjgfeAZ919gZnd\nZmanRpsNBrYFnjOzd8xsTBm7k7K8/nooXrdkSbgJ7ZxzEqtoKiJ1X6I3r7n7OGBcqWW3pjz/RZKf\nX6d99x3ccAOMHQtDhkDPnhW/R0SkAipzkY1efjncgFZUFArYKSGISDVRmYts8vXX8Pvfw4wZMGwY\nHHtspiMSkTpGLYVs4A4jR4bWwa67hslvlBBEJAFqKdR2+fmhgN3ixfDii3BIeff/iYhsHrUUait3\nePRROPBA6NQp3HeghCAiCVNLoTb68EO4+GL44QeYOBE6dsx0RCJST6ilUJsUFcHf/hZaBCedFDqU\nlRBEpAappVBbzJ8fSlRsvXWoZtquXaYjEpF6SC2FTFu7Fv7v/+CYY0JSmDBBCUFEMkYthUx6662Q\nCNq0CTOhtdR0EiKSWUoKmbBqFdx6KzzxBNxzD/Tpo3pFIlIr6PJRTZs0KRSw+/zzUMDu7LOVEESk\n1lBLoaasXAkDBsArr8CDD8LJJ2c6IhGRTailUBPGjg0lKho0CKOMlBBEpJZSSyFJy5fDVVfBrFkw\nYgR065bpiEREyqWWQhLc4amnwo1nLVuGAnZKCCKSBdRSqG5Ll8Jll4WZ0MaOhS5dMh2RiEhsailU\nlw0b4KGH4KCDQpmKvDwlBBHJOmopVIf//S8UsFu9GiZPhv32y3REIiJVopbC5li/HgYPhsMOg169\nYPp0JQQRyWpqKVTV3LmhRMUOO4RyFXvskemIREQ2m1oKlbVmTShRcdxxcOml8NprSggiUmeopVAZ\nM2eG1sGee8K770KLFpmOSESkWikpxPHjj3DzzTByJNx7L5xxhuoViUidpMtHFfnvf8NNaN98E0pU\nnHmmEoKI1FlqKZSloAD69w9J4aGH4IQTMh2RiEji1FJIZ/ToMLR0q61CeWslBBGpJ9RSSPXll3Dl\nlfDOO/D009C1a6YjEhGpUWopQChgN2JEmPxmjz3CyCIlBBGph9RSWLIE+vULM6GNGwedO2c6IhGR\njKm/LYUNG2DIkFDA7qijwpwHSggiUs8l2lIwsx7AvUBD4DF3v6PU+i2Bx4HOwDfAWe7+SZIxAbBo\nEVx0ERQVwdSpsM8+iX+kiEg2SKylYGYNgSHACcC+wNlmtm+pzfoCK9y9HXAPcGdS8QChgN0dd8AR\nR4T7DZQQREQ2kmRL4WBgsbt/BGBmI4GewMKUbXoCA6PnzwP/MDNzd6/2aD7+GE4/HXbeOcx10KZN\ntX+EiEi2S7JPIQdYmvJ6WbQs7Tbuvh5YCexcekdmdomZ5ZlZ3vLly6sWTbNmcO21MH68EoKISBmS\nTArpakGUbgHE2QZ3f8Tdc909t3nz5lWLZrvt4JxzVKJCRKQcSSaFZUCrlNctgc/K2sbMtgB2AL5N\nMCYRESlHkklhFrCnmbU1s8ZAH2BMqW3GAOdFz08HJibSnyAiIrEk1tHs7uvN7ApgPGFI6lB3X2Bm\ntwF57j4G+CcwwswWE1oIfZKKR0REKpbofQruPg4YV2rZrSnPVwNnJBmDiIjEV3/vaBYRkU0oKYiI\nSAklBRERKaGkICIiJSzbRoCa2XLg0yq+vRnwdTWGkw10zPWDjrl+2Jxjbu3uFd79m3VJYXOYWZ67\n52Y6jpqkY64fdMz1Q00csy4fiYhICSUFEREpUd+SwiOZDiADdMz1g465fkj8mOtVn4KIiJSvvrUU\nRESkHEoKIiJSok4mBTPrYWaLzGyxmd2YZv2WZvZMtP5NM2tT81FWrxjHfK2ZLTSzuWY2wcxaZyLO\n6lTRMadsd7qZuZll/fDFOMdsZmdG3/UCM3uqpmOsbjH+be9uZpPMbE707/vETMRZXcxsqJl9ZWbz\ny1hvZnZf9PeYa2YHVWsA7l6nHoQy3R8CewCNgXeBfUttcznwUPS8D/BMpuOugWM+Btg6en5ZfTjm\naLvtgCnATCA303HXwPe8JzAH2DF6vUum466BY34EuCx6vi/wSabj3sxj7gocBMwvY/2JwCuEmSsP\nBd6szs+viy2Fg4HF7v6Ru68FRgI9S23TExgePX8eOM4sq+fprPCY3X2Su6+KXs4kzISXzeJ8zwC3\nA3cBq2syuITEOeaLgSHuvgLA3b+q4RirW5xjdmD76PkObDrDY1Zx9ymUPwNlT+BxD2YCTc3sZ9X1\n+XUxKeQAS1NeL4uWpd3G3dcDK4GdayS6ZMQ55lR9Cb80slmFx2xmnYBW7v5STQaWoDjf817AXmY2\n3cxmmlmPGosuGXGOeSDwGzNbRpi/5cqaCS1jKvv/e6UkOslOhqT7xV963G2cbbJJ7OMxs98AucDR\niUaUvHKP2cwaAPcA59dUQDUgzve8BeESUjdCa3CqmXVw94KEY0tKnGM+Gxjm7n81s8MIszl2cPcN\nyYeXEYmev+piS2EZ0CrldUs2bU6WbGNmWxCanOU112q7OMeMmf0C+H/Aqe6+poZiS0pFx7wd0AGY\nbGafEK69jsnyzua4/7ZfdPd17v4xsIiQJLJVnGPuCzwL4O4zgK0IhePqqlj/v1dVXUwKs4A9zayt\nmTUmdCSPKbXNGOC86PnpwESPenCyVIXHHF1KeZiQELL9OjNUcMzuvtLdm7l7G3dvQ+hHOdXd8zIT\nbrWI8297NGFQAWbWjHA56aMajbJ6xTnmJcBxAGa2DyEpLK/RKGvWGODcaBTSocBKd/+8unZe5y4f\nuft6M7sCGE8YuTDU3ReY2W1AnruPAf5JaGIuJrQQ+mQu4s0X85gHA9sCz0V96kvc/dSMBb2ZYh5z\nnRLzmMcDvzSzhUARMMDdv8lc1Jsn5jH3Bx41s2sIl1HOz+YfeWb2NOHyX7Oon+SPQCMAd3+I0G9y\nIrAYWAVcUK2fn8V/OxERqWZ18fKRiIhUkZKCiIiUUFIQEZESSgoiIlJCSUFEREooKUidZWbjzKxp\n9Lg8ZXk3M6tS6YvovYdXX5TVw8wGmtl1mY5Dsp+SgtRZ7n5iVN6hKaEybnXoBmQ0KZhZw0x+vtRt\nSgqSlczsejO7Knp+j5lNjJ4fZ2ZPRM8/ie7qvQP4uZm9Y2aDo11sa2bPm9n7ZvZkuiq5ZnZVyhwU\nIy3Mu3EpcE20r6PMrHU0P0XxPBW7R+8dZmYPmdlUM/vAzE6Olo8zs/2j53PM7Nbo+e1mdlF0l+pg\nM5tvZvPM7KxofTcLcwY8BcyLlv0/C/MM/BdoX1bc1fynlzquzt3RLPXGFMKdrPcRCvxtaWaNgCOB\nqaW2vRHo4O4HQjjBAp2A/Qg1Y6YDRwDT0ryvrbuvMbOm7l5gZg8BP7j73dG+xhLKGA83swujeHpF\n729DKDz4c2CSmbWL4j4qqse0PvpcorifAHoDBwIHEOr3zDKzKdE2B0fH8bGZdSbcid+J8P/x28Ds\ndHHH/HuKAGopSPaaDXQ2s+2ANcAMQnI4ik2TQjpvufuyqJLmO4QTeGlzgSejyrLry9jPYUDx7GYj\nCCf3Ys+6+wZ3/x+h/tDeUWxdo+1eJrRYtgbauPuiaPnT7l7k7l8CrwNdUmL+OHp+FDDK3Ve5+3ds\nXA8oTtwiaSkpSFZy93XAJ4S6L28QTrbHEH6VvxdjF6lVYotI32o+CRgCdAZmRxV1KwytjOfFr2fx\nU/KaQpgl7WJ++pVf3mRPP5bzWamqErcIoKQg2W0KcF3036mE6/3vpCmG9j2hlHZsFuZjaOXuk4Dr\nCZ3V26bZ1xv8VFDxHDa+BHWGmTUws58TppNcFM0ethQ4k1C5dWp0DMWtmynAWWbW0MyaE1oVb5Vx\n7KeZWZOotXRKBXGLxKJfEJLNphLmh5jh7j+a2WrSXDpy928szEQ2nzDj3Msx9t0QeMLMdiD8er8n\n6lMYCzxvZj0JM3xdBQw1swGEcs2pFSsXES7/7Apc6u7FU4JOBY5z91VmNpVoMpxo3SjCJal3CS2B\n6939CzPbu9QxvW1mzxAufX2a8v60ccc4XhFAVVJFEmFmw4CX3P35TMciUhm6fCQiIiXUUhARkRJq\nKYiISAklBRERKaGkICIiJZQURESkhJKCiIiU+P8fKugpgnVhGQAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x1a2051ac50>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "%matplotlib inline\n", "\n", "import matplotlib\n", "import matplotlib.pyplot as plt\n", "\n", "plt.scatter(\n", " processed_results_with_stopwords[\"units\"][\"uqs\"],\n", " processed_results_without_stopwords[\"units\"][\"uqs\"],\n", ")\n", "plt.plot([0, 1], [0, 1], 'red', linewidth=1)\n", "plt.title(\"Sentence Quality Score\")\n", "plt.xlabel(\"with stopwords\")\n", "plt.ylabel(\"without stopwords\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The red line in the plot runs through the diagonal. All sentences above the line have a higher *sentence quality score* when the stopwords were removed.\n", "\n", "The plot shows that removing the stopwords improved the quality for a majority of the sentences. Surprisingly though, some sentences decreased in quality. This effect can be understood when plotting the *worker quality scores*." ] }, { "cell_type": "code", "execution_count": 63, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Text(0,0.5,u'without stopwords')" ] }, "execution_count": 63, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEWCAYAAACJ0YulAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xd8VGX2x/HPAYKgIqjgqhEFFXUp\nKhor9rJ2zKJr399adlnEXlB0XdcOdtcuuopl1VVsYMMCAiIoQZqwYEUhiOJSVJqU8/vjuYmTYSZz\nE2aSSfJ9v155MXPnzp0zA8zJ085j7o6IiAhAo9oOQERE8oeSgoiIlFNSEBGRckoKIiJSTklBRETK\nKSmIiEg5JQWpU8zsPTP7c23HUV1m5ma2bXT7QTP7e23HJJJISUGyxsyuMLPXk459lubYSTUbXTxm\n1tHMBpvZIjP7ycyGmdmeuXgtd+/l7tdHr3uAmc2u7rXMrJWZPWpmc6O4PzWzy7MXrTQUSgqSTSOB\nbmbWGMDMNgUKgF2Sjm0bnRubBVn792pmTVIc2wYYDUwB2gObAy8Db5vZ7tl67Ry5E1gf+C3QEugO\nfJHNF0j1mUn9o6Qg2TSOkAR2ju7vBwwHZiQd+8Ld5wCY2d5mNi76zXycme1ddrGoq+hGMxsNLAG2\nTnwxM9vMzCab2aXR/ZZm9i8z+9bMSs3shoRkdLqZjTazO81sPnBNivivAca4+9/cfb67/+TudwNP\nATdH11njN3ozm2lmh0S3dzezMWa2MIrjXjNrmurDMrOBUYzrAW8Am5vZz9HP5ma2xMw2Tjh/VzOb\nZ2YFKS63G/C0uy9w99XuPt3dByU8t5OZvW1m883sOzO7Mjq+jpndZWZzop+7zGydxPdqZpeb2Vzg\nsej40WY2MXqPH5jZjqnen9RNSgqSNe7+C/Ah4Yuf6M9RwPtJx0YCmNlGwGvA3cDGwB3Aa4lfhMAf\ngZ5AC+DrsoNm1g4YAdzr7rdFhx8HVhJaIl2B3wGJ4w97AF8CmwA3pngLhwLPpzj+HLCvmTWr5O2X\nWQVcBLQG9gIOBnpX9gR3XwwcAcxx9/WjnznAe8AJCaeeBjzr7itSXGYscKOZnWFmHRIfMLMWwDvA\nm4TWz7bAu9HDfwP2JCTtnYDdgasSnr4psBGwFdDTzHYBHgX+Svg7ewgYXJZIpO5TUpBsG8GvCWBf\nQlIYlXRsRHT7KOAzd3/S3Ve6+zPAdOCYhOsNdPep0eNlX4YdCV+Y/3D3AQBm9hvCF+uF7r7Y3b8n\ndKkkjl3Mcfd7omstTRF7a+DbFMe/BRoTvhwr5e7j3X1s9BozCV+a+2d6XhqPExIBUYvnZODJNOee\nB/wbOBeYZmafm9kR0WNHA3Pd/XZ3Xxa1gD6MHjsVuM7dv3f3ecC1hERcZjXhc14efWZ/AR5y9w/d\nfZW7Pw4sJyQWqQeUFCTbRgL7mNmGQBt3/wz4ANg7OtaZX8cTNifht//I10Bhwv1ZKV7jVKAUGJRw\nbCtC19W3UbfGQsIX8iYZrpXoB2CzFMc3Azx6vFJmtp2ZvRoN+P4I3ERINtXxCtDRzLYmtGIWuftH\nqU5096XufpO770r4Df454PmoNdaW9OMLyX8HX0fHysxz92UJ97cCLin7jKPPuW3Sc6QOU1KQbBtD\nGOjsSRi0xd1/BOZEx+a4+1fRuXMIXzKJtiR84ZdJVcb3GsIX9NNlYwaEL/zlQGt3bxX9bODunTJc\nK9E7wB9SHD8BGBt1jy0G1i17IHr9NgnnPkBo7XRw9w2AKwHL8LopY4u+jJ8jJME/kr6VkPy8smS0\nHmHAfBawTZrTk/8OtoyOpYtrFnBjwmfcyt3XjVp5Ug8oKUhWRV0MJcDFhG6jMu9HxxJnHb0ObGdm\np5hZEzM7kdA19GqGl1lB+PJeD3jSzBq5+7fAW8DtZraBmTUys23MrCpdN9cSWjQ3mtlGZtbCzM4D\nzgD+EZ3zKdDMzI6KBnyvAhL701sAPwI/m9kOwNkxX/s7YGMza5l0/AngdMJsoqfSPdnM/m5mu5lZ\n02js4wJgIWGQ/1VgUzO7MBpYbmFme0RPfQa4yszamFlr4OrKXgd4GOhlZntEM8LWiz6LFjHfp+Q5\nJQXJhRGEbpv3E46Nio6VJwV3/x+hv/sS4H/AZcDR7p6xmyb6rb1HdM1HLUxX/T+gKTANWEDoXkrV\nHZTump8B+xAGXGcSvlSvB37v7m9H5ywiDBw/QmjRLAYSZyNdCpwC/ET4Av1PzNeeTviC/jLqltk8\nOj6a0K//cTRGkfYShNlBPxB+0z8UOMrdf3b3n6L7xwBzgc+AA6Pn3UBI4pMJU3E/jo6li7OEMK5w\nL+Ez/pyQtKSeMG2yI5KamW1BmNXzD3f/Vy3GMYww3fSR2opBGg61FETScPfZhBlNm5nZ+rURg5nt\nBuxCzBaHyNpSS0EkT5nZ40AxcIG7D6zlcKSBUFIQEZFy6j4SEZFyda7AVevWrb1du3a1HYaISJ0y\nfvz4H9y9Tabz6lxSaNeuHSUlJbUdhohInWJmydUDUlL3kYiIlFNSEBGRckoKIiJSTklBRETKKSmI\niEg5JQURESmnpCAiIuWUFEREpFydW7wmIpIrL08o5dahM5izcCmbt2pOn8O2p7hrYeYn1iNKCiIi\nhIRwxYtTWLpiFQClC5dyxYtTABpUYlD3kYgIcOvQGeUJoczSFau4deiMWoqodigpiIgAcxYurdLx\n+kpJQUQE2LxV8yodr6+UFEREgD6HbU/zgsYVjjUvaEyfw7avpYhqR06TgpkdbmYzzOxzM+ub4vEt\nzWy4mU0ws8lmdmQu4xERSae4ayH9enShsFVzDChs1Zx+Pbo0qEFmyOF2nGbWGPgUOBSYDYwDTnb3\naQnnDAAmuPsDZtYReN3d21V23aKiItd+CiIiVWNm4929KNN5uWwp7A587u5fuvsvwLPAsUnnOLBB\ndLslMCeH8YiI1E0rVsDdd8PixTl/qVwmhUJgVsL92dGxRNcAp5nZbOB14LxUFzKznmZWYmYl8+bN\ny0WsIiL5adQo6NoVhg6Fn3/O+cvlMilYimPJfVUnAwPdfQvgSOBJM1sjJncf4O5F7l7Upk3GLUZF\nROq+H36As86CU06B666DV1+F3/wm5y+by6QwG2ibcH8L1uweOgt4DsDdxwDNgNY5jElEJL+tXg2P\nPQadO0PLljBtGvToAZbq9+zsy2WZi3FABzNrD5QCJwGnJJ3zDXAwMNDMfktICuofEpGGaepUOPts\nWL4c3ngjdBvVsJy1FNx9JXAuMBT4L/Ccu081s+vMrHt02iXAX8xsEvAMcLrnajqUiEi+WrwY+vaF\nAw8M3UUffFArCQFyXBDP3V8nDCAnHrs64fY0oFsuYxARyWuvvgrnnQfdusHkybDpprUajqqkiojU\nhlmz4IIL4JNP4JFH4OCDazsiQGUuRERq1sqVcMcdoXto551D6yBPEgKopSAiUnPGjoVevWCTTWDM\nGOjQobYjWoOSgohIri1YAFdcAUOGwO23w4kn1tgU06pS95GISK64w1NPQceO0KRJmHJ60kl5mxBA\nLQURaeByti/z9OnQuzcsWgSDB8Nuu639NWuAWgoi0mCV7ctcunApzq/7Mr88obT6F126FP7+d9h3\nX/j97+Gjj+pMQgAlBRFpwLK+L/PQodClC3z6KUyaFNYfNG6c+Xl5RN1HItJgZW1f5jlz4KKLoKQE\n7rsPDj88C9HVDrUURKTBWut9mVetgnvugZ12gu22CwvR6nBCALUURKQeyzSIfOAObfj32G8q1PSP\nvS9zSUlYc9CiRdjzYIcdsv8GaoGSgojUS2WDyGVjBmWDyBD2Y355QikvjC+tkBAMOG7XwspnHy1a\nBFddBYMGwS23wGmn5fUU06pS95GI1EuZBpFTPe7A8Olpqve7w7PPhjUHv/wS1hz88Y/1KiGAWgoi\nUk9lGkSu0iDz55+HNQfffRdaCHvtlbU4841aCiKSl16eUEq3/sNo3/c1uvUfVuW1A5kGkWMNMi9f\nHrbC3HPPMIA8fny9TgigpCAieSjTorI4CaPPYdvTvKDiGoHEQeRMj/Puu7DjjjBxIkyYABdfHEpV\n1HP1/x2KSJ2TaTygsgHkMmW3080+Svv45k3C4PH774fppscck9s3m2esru1+WVRU5CUlJbUdhojk\nUPu+r5Hqm8kI3TulKfr9C1s1Z3Tfg6r/oqtXw4ABcPXVcOaZoVTFeutV/3p5xszGu3tRpvPUUhCR\nNeSsSFxM6b74N2/VPHurkBNNnBjWHBQUwLBh0Llz9a9Vx2lMQUQqyEmRuCqqrL9/rVchJ/rppzBW\ncNhh0LMnjBjRoBMCKCmISJKsF4mrhuKuhfTr0YXCVs0xQtdQvx5dKO5amHmAOA53eOGFsOZg4cKw\n5uDMM6GRvhLVfSQiFeSke6YairumXllcduyawVNZuHQFAM0KqvBl/tVXcO65MHMm/PvfsN9+2Qi3\n3lBaFJEKsto9k0PLV64uv71gyYrMXVy//AL9+oW9DfbdN0wzVUJYg5KCiFSQle6ZHKtyF9fIkdC1\na5hmOm4c9O0LTZvWQKR1j7qPRKSCTPP7a9vLE0pTzkyCFF1cP/wAl10Gb78N//xn2AmtntUqyjYl\nBRFZQ7r+/JqUalosUL5QLZXyLq7Vq+Gxx+DKK8NCtGnTQolryUhJQUTyTrqy180KGq3RbVSmvIvr\nk0/CmoOVK8P2mDvvXJOh13kaUxCRvJNuzGDBkhVpn3PLEdtQ/OzdcNBBoaT1Bx8oIVSDWgoikneq\nOv31hG8ncMwp54RZRVOmwG9+k6PI6j8lBRHJO+nKXLRqXsDylavLWxGb//g91w17mD2WfQePPhpa\nCbJW1H0kInkn3bTYa7p3ol+PLmzZooC/fPQirz9+IYUHdaPFjGlKCFmiloKI5J1Kp8WOGUPxc31g\n001h0nhabbttLUdbvygpiEheWmNa7Pz5oWjda6/BHXfACSdozUEOqPtIRPKbOzzxBHTqBM2ahTUH\nJ56ohJAjaimISP7673+hd+9Q4nrIECjKuEeMrCUlBZEGLhcb6qz1NZcuhRtvhIcegn/8A84+Gxo3\nzvw8WWtKCiINWLqVw0CsL/HKSlFU95q8+Sacc06oZjppEmy+eXXemlRTTscUzOxwM5thZp+bWd80\n55xgZtPMbKqZPZ3LeESkorXZUCfdDm3XDJ5avWuWlobB43PPhfvvh2efVUKoBTlLCmbWGLgPOALo\nCJxsZh2TzukAXAF0c/dOwIW5ikdE1rQ2G+qkSyhlG9/EvubKlXD33aEkxQ47hBXJhx2W8fUlN3LZ\nfbQ78Lm7fwlgZs8CxwLTEs75C3Cfuy8AcPfvcxiPiCRJt3I4zoY6VS1FkfKa48aF4nUtW8KoUSEp\nSK3K2FIws/XMrFF0ezsz625mBTGuXQjMSrg/OzqWaDtgOzMbbWZjzezwNDH0NLMSMyuZN29ejJcW\nkTjWZkOddIljw3ULMl9z4cIwbtC9O1x0Ebz7rhJCnojTfTQSaGZmhcC7wBnAwBjPSzWJ2JPuNwE6\nAAcAJwOPmFmrNZ7kPsDdi9y9qE2bNjFeWkTiKO5aSL8eXShs1RwDCls1p1+PLrEGhNMllH8c0yn9\nNd3hmWegY0dYtSqsOTjtNK05yCNxuo/M3ZeY2VnAPe5+i5lNiPG82UDbhPtbAHNSnDPW3VcAX5nZ\nDEKSGBfj+iKSBdXdUCfTDm1rXPOzz8Kag++/hxdegL32WuvYJftiJQUz2ws4FTirCs8bB3Qws/ZA\nKXAScErSOS8TWggDzaw1oTvpyziBi0jti5VQli2Dm2+Ge+4JO6Gdfz400Wz4fBXnb+ZCwgyhl9x9\nqpltDQzP9CR3X2lm5wJDgcbAo9HzrwNK3H1w9NjvzGwasAro4+7/q+6bEZHUcrFALZZ33gmtgy5d\nYMIEaNs283OkVpl7cjd/fisqKvKSkpLaDkOkzkheoAah7z/u2EG1zJ0Ll1wSdj+75x44+ujcvI7E\nZmbj3T1jnZC0LQUzG8KaA8Pl3L17NWMTkRpU2QK1ypJCtVoXq1bBgAFw9dXw5z+H2+utl423ITWk\nsu6j26I/ewCbAk9F908GZuYwJhHJouosUKtW+YsJE8Kag6ZN4b33QlVTqXPSTkl19xHuPgLo6u4n\nuvuQ6OcUYJ+aC1FE1ka69QSVLVCrUvmLH3+ECy+Eww8PSWHECCWEOizOOoU20eAyANFsIi0WEKkj\nqrNALVbrwh0GDQprDn76CaZOhTPOgEbapqUuizP76CLgPTMrmyraDuiZs4hEJKvKunuuHTKVBUtC\nXaJ1mlT+xZ2x/MWXX4bCdd98Exaj7btvdoOWWlPpv4yovMWPhAVlF0Q/27v7WzUQm4hk0bIVq8tv\nL1y6gitenMLLE0pTnpuudXHZQe3hpptg991h//3h44+VEOqZSlsK7r7azG53972ASTUUk4hkWVVn\nIKVardy/9Xz2Pf0o2GYbKCmBdu1qInSpYXG6j94ys+OAF72uLWoQEaB6M5DKVyvPmwd9+sCwYaHE\n9bHHqlZRPRZnROhi4HngFzP70cx+MrMfcxyXiGRRdWYgsXo1PPIIdO4MrVuH4nXFxUoI9VzGloK7\nt6iJQEQkdw7coQ3/HvtNhdWolc5AmjIlTC9dvRreegt22qlG4pTaF2vuWLSHwm3Rj9ari9QhL08o\n5YXxpRUSggHH7ZqimN3ixXDZZXDwwfCnP8Ho0UoIDUycTXb6E2YdTYt+LoiOiUgdkGqQ2YHh05M2\nrBo8OKw5mDsXPvkEevbUmoMGKM5A85HAzu6+GsDMHgcmAH1zGZiIVE9yzaJU6w0gYZD5m29COevp\n02HgQDjwwJoLVvJO3F8DEndDa5mLQERk7ZXVLCpduBQn1CxKNyzctkUB3Hor7LILFBXBpElKCBKr\npdAPmGBmwwldkfsR9lcQkTyTrqvIqFjyeO+503nghYdhm3bw4Ydh7YEI8WYfPWNm7wG7Ef5tXe7u\nc3MdmIhUXbp1B07YK3nJt99x7ZinOHTmeJrfezf84Q+aYioVZEwKZvYkMBIY5e7Tcx+SiFRXujGE\nwpbNGL3ZLLjrcjjhBHj7aWipnmBZU5zuo8cIpbLviaqlTgRGuvs/cxqZiFRZn8O2X2OXtU6LSnn8\nnceAFfDqq2H8QCSNON1Hw8xsBKH76ECgF9AJUFIQyaJs7KOcWLNo/rwF9P34RU6a+Cbr3HBdWIzW\nuHGGK0hDF6f76F1gPWAMMArYzd2/z3VgIvVJpi/8au10lkZx10KKv50E5/aBPfaAaZ/AZptl781I\nvRZnSupk4BegM7Aj0NnMKimYIiKJUk0TTS5bna6K6bVDplbptd4cWsKwLvsz89Q/c9EBvXj5stuU\nEKRKMiYFd7/I3fcDfg/8jzDGsDDXgYnUF3G2tkw3a2jBkhVp9zyoYOVKplx6Lbv3OJgpGxRy2Jn3\n8tImnSrdM0EklThlLs41s/8QBpiLgUeBI3IdmEh9Eadsdab9kiv10Uew224sf/kVjj/lFu7c91SW\nF6wDVLKvskgacWYfNQfuAMa7+8ocxyOS16ozGJxxa0vCrKEL/zMx5fPT7nmwcCFceSW89BLcdht/\nmNwST7HmoLI9E0SSxek+uhVYAfQ2s/PMbJfchyWSf+KMDaSSbmvLxLLVxV0LadW8IOXz12hFuMPT\nT4fide5hn4NTT2XzDdeN93yRSsTpPvo78DiwMdAaeMzMrsp1YCL5Js7YQCrFXQvp16MLha2aY0Cr\n5gU0K2jERf+ZSLf+w8qTyjXdO2VMHnz6KRx6KNxyC7z4IjzwAGy4IRAv+YhkEqf76BSgq7svg/JS\n2h8DN+QyMJF8U50tLcuUbW0ZZ+ppyu6pZcugf3+491646io491xo0mSN10j7fJGY4iSFmUAzYFl0\nfx3gi1wFJJKv0o0NONCt/7CUaw+Sv6Ara22UJY41vsTffht69w6b3UycCFtskTbGlM8XqYI46xSW\nA1PNbKCZPQZ8AvxsZneb2d25DU8kf6TqnimTPL6Qbvwh494GiebOhVNOCZvd3HUXDBpUaUIQyYY4\nSeEl4EpgOPAe8DfgDWB89CPSICSODaSSOL6QrkWQrh5phcHgVavgvvugSxdo1w6mToWjjsrCOxDJ\nLE7to8fNrCmwXXRohruvyG1YIvmprHumfd/XKuxPUKbsN/7KSlgnK2hkvw4Gf/wx/PWv0Lw5vPce\ndOqUlbhF4ooz++gA4DPgPuB+4FMz2y/HcYnktXTTPMuOV2Ua6Ep3mvz8E1xwARx5JJxzDowYoYQg\ntSJO99HtwO/cff+o3MVhwJ25DUskv2Wa/lnZ+EMF7hzx3/cpOmofZn7zfegqOv10bXwjtSbO7KMC\ndy+fiO3un5pZ6lU2Ig1EpumfqR5f8stKFiz5ted1ywXfct3bD7LpTz9wTvfLmdt5V0ZvvHHNvxmR\nBHGSQomZ/Qt4Mrp/KhpglgYuTrmL5OmhZTOSVi1dxl8+epGzSl7hwT2O49GiY1nZuAmmchSSB+Ik\nhbOBc4DzCXs0jySML4g0SNXd+6C4ayGtSz5g0ysu5qsNN+eYP91FactNyh9XOQrJB3GSQi93v4NQ\nFA8AM7sA7bwmDVSmBWgpff899OnDPsOHM/Zv13L+/M0rXEPlKCRfxBlo/lOKY6dnOQ6ROqNK5S5W\nr4aHH4bOnaFNG5g2jT0vOrNCLaTCVs3p16OLViJLXkjbUjCzkwl1j9qb2eCEhzYgbLaTkZkdTmhR\nNAYecff+ac47HniesNVnSczYRWpFnFLYAEyeHPZFBnjnHdhxx/KHVI5C8lVl3UcfAN8SKqPennD8\nJ8IWnZUys8aEsYdDgdnAODMb7O7Tks5rQRiv+LBqoYvUjj6HbV9hTAGSun9+/hmuvRYefxxuvBHO\nOgsaxWmUi9S+tEnB3b8GvjazQ4Cl7r7azLYDdgCmxLj27sDn7v4lgJk9CxwLTEs673rgFuDSasQv\nUmMSZxy1WreAdZo0YtHSFRVnH73yCpx/PhxwAHzyCWyyScbriuSTOAPNI4F9zWxD4F2gBDiRMDW1\nMoXArIT7s4E9Ek8ws65AW3d/1czSJgUz6wn0BNhyyy1jhCySXckzjhYsWUHzgsbceeLOIRl8/TV0\n7x72Oxg4EA48sHYDFqmmOG1ac/clQA/gHnf/PdAxzvNSHCsv/WJmjQgroy/JdCF3H+DuRe5e1KZN\nmxgvLZJd6WYc3fH61LDhza67wh57wKRJSghSp8VpKZiZ7UVoGZxVhefNBtom3N8CmJNwvwXQGXjP\nwpL+TYHBZtZdg82Sb1LNLCqaPZUbht7Pd9u15zcffgjbbFMLkYlkV5wv9wuAK4CX3H2qmW1NKKOd\nyTigg5m1B0qBkwizmQBw90WEQWwAzOw94FIlBKkNmVYoJ844arX0R/q+N5D9vxzP9Qf/heGd96Pf\nj80orq3gRbIoY/eRu4909+7ufnN0/0t3Pz/G81YC5wJDgf8Cz0VJ5Toz6762gYtkS7oNcco2zIGo\nwF2TRhw/5R3e/ldvlhasw6F/foDXd9iHpStXZ9ynWaSuiNNSqDZ3fx14PenY1WnOPSCXsUj9Eqf2\nUFxxVigXr7OIfd64ltI58zn9+GuYuum2Fc6Ps0+zSF2Q06QgkgvVqT1UWRKpdIXykiVwww3w8MO0\nvvZafr+wA7N+/GWNc1W3SOqLOJvsdItzTKSmpPvN/sL/TKRb/2EVun0gc/dQui/04+ZOChvdzJwZ\nVif37s0lR3SsdB8FkbouzpTUe2IeE6kRlXXVpBoPqKx7CNbcEGfTH39gwCv9uGbYwzBgADz9NGy2\nGVBxn2bVLZL6qLLaR3sBewNtzOzihIc2INQyEqkV6WoPlUkeD8hUwK7svDten8ahw57jvLHPMfe0\ns1j/nzdBs2ZrPE91i6Q+q2xMoSmwfnROi4TjPwLH5zIokcqkqj2ULDFpxClgV/zLbIqf7wOtW8OE\ncbTabrvsBi1SR1RW+2gEMMLMBkZ1kETyQuJWl+laDEYYSyjuWlh5AbsFC+DKK0PNottug5NP1v7I\n0qDFGVMYaGbDkn9yHplIJYq7FjK670HcdeLOaeuplI0ZpBwH+H1niqe9Bx07hgqm06bBKacoIUiD\nF2dKamKhumbAccDK3IQjUjXFXQu58D8TUz5WunAp3foPW3Ma6owZ0PtPMH9+aCHsvnsNRy2Sv+Ks\naB6f8DPa3S8mqdqpSG0qTDOl1KDCNNR/PDee6T0vgm7dQkXTceOUEESSxFmnsFHCT2szO4xQvE4k\nLyRPKYWQEDzh/r5ffcwrD/ZizpiPQyXTCy6AJlq7KZIszv+K8YT/X0boNvqKX6ulitS6xIHnsq6i\nsgHoNj/P5+p3H2anbz/l6kN7MWKb3fiqUNNJRdLJmBTcvX1NBCKyNpLXDux709scOPwFLhj9DM/s\nfDh9jryAZQXN0nY1iUiQMSmYWQFwNrBfdOg94CF3X5HDuESqb/x4Bj91KZ8vXs2Jp/Tn89Zhtz6V\noxDJLM6U1AeAXYH7o59do2Mi+WXRorA/8lFHseHlF1P60hss3XZ7laMQqYI4Ywq7uftOCfeHmdmk\nXAUkDUM2S1/jDs8/DxddBEceCVOnwsYbUwwU77JFVuMWqe/iJIVVZraNu38BEO28lr6+gEgG1Sl9\nndYXX8A550BpKTz3XJhuKiLVFqf7qA8w3MzeM7MRwDDgktyGJfVZpqqlsSxfDtdfD3vsAQcfDB9/\nrIQgkgVxZh+9a2YdgO0J01Knu/vynEcm9VamqqUZDRsGvXvD9tvD+PGw1VZZjE6kYYvTUoAwuNwZ\n2Ak40cz+L3chSX2XblObRmZrbJBTwXffwR//CGecATffHEpUKCGIZFWcFc1PArcB+wC7RT9FOY5L\n6rFUK5ABVrmvsUEOAKtXw0MPQZcuYbObqVPh2GNrKFqRhiXOQHMR0NHdPeOZImkkzzY6btdCnvlw\nFquS/lklb5DDpEnQq1eoZPrOO7DjjrUQvUjDEaf76BNU60jWQqo9kl8YX7pGQigzZ+FS+PlnuOQS\nOPRQOOssGDVKCUGkBlS2HecQQs2jFsA0M/sIKB9gdvfuuQ9P6oNrh0xNOduosdmaicGdk+Z8DB3P\nhoMOCl1FbdrUYLQiDVtl3UeyWWkQAAAUDklEQVS31VgUUm+9PKGUBUtSV0RZ5U7zgsblCWOLRd9x\n/bsPUbRiPjzxBBxwQA1GKiKQeTtOzOxmd7888TEzuxkYkePYpA5KHjtYvDz9fkyF0UrmO16fypFv\nP0OvcS8y54yzaXHHddC0aQ1GLSJl4gw0HwpcnnTsiBTHpIFLtVK5Mn0O257in7+k+JmLYcstYcoE\nWm29dU2EKiJpVDamcDbQG9jazCYnPNQCGJ3rwKTuSbVSOZ12q5dQfO/V8NZbcNdd0KOH9kcWyQOV\ntRSeBt4A+gF9E47/5O7zcxqV1ElxViSbr+bkacO5+oMn4f9OCwPJG2xQA9GJSByVJQV395lmdk7y\nA2a2kRKDJEvc8SzRhusWsG7TJqz32XRuGfYgW63XiGbvvAVdu9ZClCJSmUwthaOpuB1nGQfU+VtP\nVbesdZ/Dtq8wpgBhY5vrDmnPMYP/BYP/BdddBz17QuM1VzSLSO2rbPbR0dGf2o6zAShLBKULl1bY\n9L4qZa1T7ZV8W/NZ7HVKr1DBdMoU2FTrIEXyWZztOJ8ARgGj3H167kOSmpY8ayh5nfEapScqUb5X\n8qxZcMEF8Mkn8MgjcMghOYhcRLItTpmLgcBmwD1m9oWZvWBmF+Q2LKlJcWYNxS5rvXIl3HFHGC/Y\naSeYPFkJQaQOibOfwrBoc53dgAOBXkAn4J85jk1qSJwv/HTlrisYOzYUr2vTBj74ALbbLgvRiUhN\nitN99C6wHjCG0I20m7t/n+vApOakmzVUpnlBY/octn36CyxYAFdcAYMHw+23w0knac2BSB0Vp/to\nMvALYZOdHYHOZhbj10apK1Ltb1D2lV7Yqjn9enRJPZ7gDk89BR07htlE06bByScrIYjUYXG6jy4C\nMLP1gTOAxwiltNfJbWhSU1LNGso4DXX69LAl5sKFYQe03XevoWhFJJfidB+dC+xL2JLza+BRQjdS\nRmZ2OGHsoTHwiLv3T3r8YuDPwEpgHnCmu39dlTcg2VE+ayiTpUvhppvggQfg73+Hc86BJnFKaIlI\nXRDnf3Nz4A5gvLunL3mZxMwaA/cRCurNBsaZ2WB3n5Zw2gSgyN2XRLWWbgFOjB291KyhQ0PrYNdd\nw45ohTGSiIjUKXG6j26t5rV3Bz539y8BzOxZ4FigPCm4+/CE88cCp1XztSSX5syBiy6CcePgvvvg\niCNqOyIRyZE4A83VVQjMSrg/OzqWzlmEAnxrMLOeZlZiZiXz5s3LYogN08sTSunWfxjt+75Gt/7D\neHlCaeoTV62Ce+4J6w06dAgL0ZQQROq1XHYGp5qCknJTXjM7DSgC9k/1uLsPAAYAFBUVpd7YV2JJ\ntedByjIWJSVhzcH668PIkfDb39ZGuCJSw3LZUpgNtE24vwUwJ/kkMzsE+BvQ3d2XJz8u2ZVq9XJZ\nGQsAFi2C886Do4+G88+H4cOVEEQakFy2FMYBHcysPVAKnASckniCmXUFHgIO14K46qlqRdN0q5fn\nLFgCzz4Ll1wCRx0V1hxstFGuwhaRPJWzpODuK6PprEMJU1IfdfepZnYdUOLug4FbgfWB5y0sePrG\n3bvnKqb6JlVXUJ/nJ3HtkKksXLIiZZJItXp5qwVzuHXYQ/DGL/D887D33jX6PkQkf+R0grm7vw68\nnnTs6oTbqpS2FlJ1Ba1Y7SxYsgJIPV6QuOdB05Ur6PXhIM4YP4TSv54Pt1wNBQU1+yZEJK9o1VEd\nFqeQXXLZ67I/h933DBe+dBezNm3HR4Pe5rAjtSJZRJQU6pTk8YOWzQtYuHRFxudVSB7ffUfx7ZdT\n/P778Nj9bN1dvXUi8qtczj6SLCobPyhduBQndA0t/mUlBY0yF5/bvFVzWL0aHnwQOncOK5GnTgUl\nBBFJopZCHZFy/GCVs+G6BazbtAlzFi6lZfMCFv+ykhWrfl3K0bygMTe0WxkGj5s0gWHDoEuXmg5f\nROoIJYVaVJXppOnGDxYuWcGEq3+X8prbNnce+OxFth3wSihid8YZ0EiNQxFJT0mhlsReWRxJtxFO\n8o5oxV0LKd55c3jppbBH8iGHhPIUbdrk4F2ISH2jXxtrScaVxUlSbYSTcke0r76CY46Bq64KG+A8\n9pgSgojEpqRQS9KuLE5zvLhrIf16dKGwVXOMFDui/fIL9O8Pu+0G3brBxImwf8pSUiIiaan7qJbE\n7Q5KlHYjnJEj4eyzYaut4KOPYOutsxmqiDQgainUktjdQZX54Qc480w49VS47jp47TUlBBFZK0oK\ntSRjd1BlVq+Gf/0LOnWCli1D8brjjgPLvGZBRKQy6j6qRbH3RU70ySdhn4MVK+DNN6Fr19wEJyIN\nkloKdcXixXD55XDggXDaafDBB0oIIpJ1Sgp1wZAhoauotBSmTOHlPY6h260jMm+nKSJSReo+ymff\nfBMWoE2dGsYQDj64yoveRESqQi2FfLRiBdx+O+yyS+gimjwZDj4YqPqiNxGRqlBSqEEvTyilW/9h\nlXf7jBkDRUV8P2gwJ55+B+2X7Eq3uz4oP7eqi95ERKpC3Uc1JGO3z/z5zPzzeaz/zlCuPeBMXv3t\nfng0xTTx3OosehMRiUsthRqSttvnzenwxBMs224HRs/6iYPOvI8hHfcvTwgVzh06IzuL3kRE0lBL\noYak6t7Z5odZ3PDM/dC6gHNOvIZ3W2yV8Rplg8lxS26LiFSFkkINSez2WWfFcs4d8xynTnyDxw/5\nP/Z66S6G/e3NWNeAai56ExGJQd1HNaSs22f/L8fz1qPn0H7BHIp73k/7a/tC48YZxwTURSQiNUEt\nhRrw8oRSHnvufW596V66fPc5Vx96Np/vsk+Fbp8+h21fYSAawAAn1EVSF5GI1AQlhRx7ZdzXTL2q\nP4+Nepqndj6CS466iEbrrku/pC95jRWISD5QUsiCtHstjxvH9sWnskmTZvzh1Jv5YuO24QnRTKLk\nL3yNFYhIbVNSWEup1h/c9PQYduz3KluPfJMBRafyYqcD1yhrrcVmIpKPNNC8liqsP3Cn+7QRDHnw\nr0z++geYNo0P9zkq5T4HWmwmIvlILYW1VPYbf7v5pVz/1gO0XrKQs4uvYELhbyneaKOUA8iaSSQi\n+UpJYS21W68x3Yc+yZ8+fpX79zyex4qOZVWjxhQmrCkADSCLSN2gpLA23nmHIY/0ZmzzTTn69LuY\ns8EmABQ0NhYvX0n7vq+VJ4HRfQ+q5WBFRDJTUqiOuXPhkktg9GjWv+dufm67KzZ0BrZwKa3WLeDn\nZStZuHQFoP0ORKRu0UBzVaxaBQ88AF26QNu2YfOb7t0p7lrI6L4H8VX/o1i3aRNWrPYKT9N+ByJS\nV6ilENeECdCrFxQUwPDh0LlzytO034GI1GVqKWTy449w4YVw+OHw17/CyJFpEwKkn2qqKagiUhco\nKaTjDoMGQceOITFMnQpnngmNKv/ItN+BiNRl6j5K5auv4NxzYeZMePpp2G+/2E/VFFQRqcsadFJI\nrll02UHtOfbdZ+H22+HSS+Gll6Bp0ypfVzWMRKSuarBJIblm0RaTP6LT7aczd4cObDpuHLRvX8sR\niojUvJwmBTM7HPgn0Bh4xN37Jz2+DvAEsCvwP+BEd5+Zy5gArnp5Ck+N/QaAjZYs4srhj7L315O4\n9uCefLL7QYxWQhCRBipnA81m1hi4DzgC6AicbGYdk047C1jg7tsCdwI35yqeMmUJwXw1J04aylv/\n6s2C5i049Kz7Gbr93sxZtCzXIYiI5K1cthR2Bz539y8BzOxZ4FhgWsI5xwLXRLcHAfeambl7xdVf\nWfTMh7PAnYHPX8MGyxbzfydcz7TfbF3+uKaOikhDlsukUAjMSrg/G9gj3TnuvtLMFgEbAz8knmRm\nPYGeAFtuueVaBbXKHczod8AZzGizFW6/NpY0dVREGrpcrlNYcxOBsOVwVc/B3Qe4e5G7F7Vp02at\ngmoc7W0wfZP2FRICQL8eXTRrSEQatFwmhdlA24T7WwBz0p1jZk2AlsD8HMbEyXu0TXn8tD23VEIQ\nkQYvl0lhHNDBzNqbWVPgJGBw0jmDgT9Ft48HhuVyPAHghuIunLbnluUthsZmnLbnltxQ3CWXLysi\nUidYLr+DzexI4C7ClNRH3f1GM7sOKHH3wWbWDHgS6EpoIZxUNjCdTlFRkZeUlOQsZhGR+sjMxrt7\nUabzcrpOwd1fB15POnZ1wu1lwB9yGYOIiMSngngiIlJOSUFERMopKYiISDklBRERKaekICIi5ZQU\nRESknJKCiIiUy+nitVwws3nA11m6XGuSiu/lgXyMCRRXVeRjTJCfceVjTFA/49rK3TMWj6tzSSGb\nzKwkzgq/mpSPMYHiqop8jAnyM658jAkadlzqPhIRkXJKCiIiUq6hJ4UBtR1ACvkYEyiuqsjHmCA/\n48rHmKABx9WgxxRERKSiht5SEBGRBEoKIiJSrt4nBTM73MxmmNnnZtY3xePrmNl/osc/NLN2eRLX\nfmb2sZmtNLPjayKmmHFdbGbTzGyymb1rZlvlQUy9zGyKmU00s/fNrGOuY4oTV8J5x5uZm1nOpzjG\n+KxON7N50Wc10cz+nOuY4sQVnXNC9G9rqpk9nQ9xmdmdCZ/Vp2a2MA9i2tLMhpvZhOj/4ZFZDcDd\n6+0PYce3L4CtgabAJKBj0jm9gQej2ycB/8mTuNoBOwJPAMfn0ed1ILBudPvsXH9eMWPaIOF2d+DN\nfPisovNaACOBsUBRbccEnA7cWxP/nqoYVwdgArBhdH+TfIgr6fzzCDtI1vZnNQA4O7rdEZiZzRjq\ne0thd+Bzd//S3X8BngWOTTrnWODx6PYg4GCzaAPnWozL3We6+2RgdY5jqWpcw919SXR3LLBFHsT0\nY8Ld9YCamD0R598WwPXALcCyPIqppsWJ6y/Afe6+AMDdv8+TuBKdDDyTBzE5sEF0uyUwJ5sB1Pek\nUAjMSrg/OzqW8hx3XwksAjbOg7hqQ1XjOgt4I6cRxYzJzM4xsy8IX8Dn5zimWHGZWVegrbu/WgPx\nxIopclzU7TDIzNrmSVzbAduZ2WgzG2tmh+dJXABE3aTtgWF5ENM1wGlmNpuw3fF52QygvieFVL/x\nJ/8WGeecbKuN14wjdlxmdhpQBNya04hixuTu97n7NsDlwFU5jgkyxGVmjYA7gUtqIJbyl01xLPmz\nGgK0c/cdgXf4tZWcS3HiakLoQjqA8Bv5I2bWKg/iKnMSMMjdV+UwHogX08nAQHffAjgSeDL695YV\n9T0pzAYSfxPagjWbWuXnmFkTQnNsfh7EVRtixWVmhwB/A7q7+/J8iCnBs0BxTiMKMsXVAugMvGdm\nM4E9gcE5HmzO+Fm5+/8S/s4eBnbNYTyx44rOecXdV7j7V8AMQpKo7bjKnETuu44gXkxnAc8BuPsY\noBmhUF525HowpzZ/CL99fElo9pUN2nRKOuccKg40P5cPcSWcO5CaG2iO83l1JQyEdcijmDok3D4G\nKMmHuJLOf4/cDzTH+aw2S7j9e2BsPnxWwOHA49Ht1oQulI1rO67ovO2BmUSLfWs7JkKX7enR7d8S\nkkbWYsvpG8yHH0Lz6tPoi+xv0bHrCL/lQsiyzwOfAx8BW+dJXLsRfmtYDPwPmJoncb0DfAdMjH4G\n50FM/wSmRvEMr+zLuSbjSjo350kh5mfVL/qsJkWf1Q758FkRuk3uAKYBU4CT8iGu6P41QP+aiCfm\nZ9URGB39HU4EfpfN11eZCxERKVffxxRERKQKlBRERKSckoKIiJRTUhARkXJKCiIiUk5JQeotM3vd\nzFpFP70Tjh9gZtUqPRE9d+/sRZkdZnaNmV1a23FI3aekIPWWux/p7guBVoRquNlwAFCrScHMGtfm\n60v9pqQgdZKZXWZm50e37zSzYdHtg83sqej2TDNrDfQHtolq4pfValo/Kgg33cz+naoyrpmdn7B3\nxLPRXhu9gIuia+1rZltF+0qU7S+xZfTcgWb2oJmNiurwHx0df93MdoxuTzCzq6Pb15vZny241cw+\nifaIODF6/ICohv7ThMVdmNnforr77xBW3aaMO8sfvdRzTWo7AJFqGkkoNnc3oTDfOmZWAOwDjEo6\nty/Q2d13hvAFSyjX0YlQImA00A14P8Xz2rv7cjNr5e4LzexB4Gd3vy261hDgCXd/3MzOjOIpq73U\nDtgf2AYYbmbbRnHvG9VDWhm9LlHcTwE9gJ2BnQjlHsaZ2cjonN2j9/GVme1KKMvSlfD/+GNgfKq4\nY36eIoBaClJ3jQd2NbMWwHJgDCE57MuaSSGVj9x9truvJpQKaJfinMnAv6OKsCvTXGcvoGyXsCcJ\nX+5lnnP31e7+GaGezQ5RbPtF571GaLGsS6hcOiM6/oy7r3L374ARhJInZTF/Fd3eF3jJ3Zd42E9i\ncBXjFklJSUHqJHdfQShSdgbwAeHL9kDCb+X/jXGJxOquq0jdaj4KuI9QSXR8VEU3Y2hpbpfdH8ev\nyWskYbexv/Drb/mVbfC0uJLXSlSduEUAJQWp20YCl0Z/jiL090/0NQt6/UQoZR1bVJ++rbsPBy4j\nDFavn+JaHxC6cQBOpWIX1B/MrJGZbUPYXnGGh920ZgEnEHauGxW9h7LWzUjgRDNrbGZtCK2Kj9K8\n99+bWfOotXRMhrhFYtFvEFKXjSLs6zDG3Reb2TJSdB25+/+iHb0+IZQdfi3GtRsDT5lZS8Jv73dG\nYwpDgEFmdixhx6vzgUfNrA8wj9ByKTOD0P3zG6CXu5dtyTkKONjdl5jZKELN/LK4XyJ0SU0itAQu\nc/e5ZrZD0nv62Mz+Q+j6+jrh+SnjjvF+RQBUJVUkF8xsIPCquw+q7VhEqkLdRyIiUk4tBRERKaeW\ngoiIlFNSEBGRckoKIiJSTklBRETKKSmIiEi5/weD7TunUBuNcwAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x1a215064d0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.scatter(\n", " processed_results_with_stopwords[\"workers\"][\"wqs\"],\n", " processed_results_without_stopwords[\"workers\"][\"wqs\"],\n", ")\n", "plt.plot([0, 0.8], [0, 0.8], 'red', linewidth=1)\n", "plt.title(\"Worker Quality Score\")\n", "plt.xlabel(\"with stopwords\")\n", "plt.ylabel(\"without stopwords\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The quality of the majority of workers also has increased in the configuration where we removed the stopwords. However, because of the inter-linked nature of the CrowdTruth quality metrics, the annotations of these workers now has a greater weight when calculating the *sentence quality score*. So the stopword removal process had the effect of removing some of the noise in the annotations and therefore increasing the quality scores, but also of *amplifying the true ambiguity in the sentences*." ] }, { "cell_type": "code", "execution_count": 64, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>duration</th>\n", " <th>input.doc_id</th>\n", " <th>input.events</th>\n", " <th>input.events_count</th>\n", " <th>input.processed_sentence</th>\n", " <th>input.sentence_id</th>\n", " <th>input.tokens</th>\n", " <th>job</th>\n", " <th>output.tagged_events</th>\n", " <th>output.tagged_events.annotations</th>\n", " <th>output.tagged_events.unique_annotations</th>\n", " <th>worker</th>\n", " <th>uqs</th>\n", " <th>unit_annotation_score</th>\n", " <th>uqs_initial</th>\n", " <th>unit_annotation_score_initial</th>\n", " </tr>\n", " <tr>\n", " <th>unit</th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>1893181917</th>\n", " <td>57.15</td>\n", " <td>wsj_1033.tml</td>\n", " <td>$ 10.1__129__135###reported__38__46###fell__72...</td>\n", " <td>4</td>\n", " <td>Separately , Esselte Business Systems reported...</td>\n", " <td>11</td>\n", " <td>39</td>\n", " <td>../data/event-text-highlight</td>\n", " <td>{u'cents': 2, u'share': 2, u'period': 2, u'in'...</td>\n", " <td>79</td>\n", " <td>24</td>\n", " <td>20</td>\n", " <td>0.608170</td>\n", " <td>{u'cents': 0.0297850757146, u'share': 0.029785...</td>\n", " <td>0.519530</td>\n", " <td>{u'cents': 0.1, u'share': 0.1, u'period': 0.1,...</td>\n", " </tr>\n", " <tr>\n", " <th>1893181918</th>\n", " <td>47.20</td>\n", " <td>APW19990607.0041.tml</td>\n", " <td>purports__5__13###be__17__19###said__179__183#...</td>\n", " <td>5</td>\n", " <td>Kopp purports to be a devout Roman Catholic , ...</td>\n", " <td>14</td>\n", " <td>39</td>\n", " <td>../data/event-text-highlight</td>\n", " <td>{u'': 2, u'Catholic': 3, u'anti-abortion': 9, ...</td>\n", " <td>128</td>\n", " <td>29</td>\n", " <td>20</td>\n", " <td>0.334970</td>\n", " <td>{u'': 0.157986305381, u'Catholic': 0.026908423...</td>\n", " <td>0.259531</td>\n", " <td>{u'': 0.1, u'Catholic': 0.15, u'anti-abortion'...</td>\n", " </tr>\n", " <tr>\n", " <th>1893181919</th>\n", " <td>43.90</td>\n", " <td>NYT19981025.0216.tml</td>\n", " <td>protect__45__52###murdered__77__85###said__97_...</td>\n", " <td>7</td>\n", " <td>`` We as Christians have a responsibility to p...</td>\n", " <td>14</td>\n", " <td>39</td>\n", " <td>../data/event-text-highlight</td>\n", " <td>{u'a': 3, u'protect': 24, u'said': 9, u'from':...</td>\n", " <td>94</td>\n", " <td>20</td>\n", " <td>20</td>\n", " <td>0.576942</td>\n", " <td>{u'a': 0.0704736341848, u'protect': 1.47222699...</td>\n", " <td>0.401958</td>\n", " <td>{u'a': 0.15, u'protect': 1.2, u'said': 0.45, u...</td>\n", " </tr>\n", " <tr>\n", " <th>1893181920</th>\n", " <td>41.50</td>\n", " <td>NYT19981026.0446.tml</td>\n", " <td>opposed__170__177###followed__122__130###was__...</td>\n", " <td>5</td>\n", " <td>Slepian 's death was among the first topics ra...</td>\n", " <td>16</td>\n", " <td>39</td>\n", " <td>../data/event-text-highlight</td>\n", " <td>{u'among': 1, u'raised': 12, u'followed': 11, ...</td>\n", " <td>119</td>\n", " <td>22</td>\n", " <td>20</td>\n", " <td>0.551484</td>\n", " <td>{u'among': 0.0200950204081, u'raised': 0.67052...</td>\n", " <td>0.406153</td>\n", " <td>{u'among': 0.05, u'raised': 0.6, u'followed': ...</td>\n", " </tr>\n", " <tr>\n", " <th>1893181921</th>\n", " <td>43.05</td>\n", " <td>NYT19981026.0446.tml</td>\n", " <td>exploit__109__116###murder__133__139###said__2...</td>\n", " <td>5</td>\n", " <td>`` It 's possible that New York politics has n...</td>\n", " <td>43</td>\n", " <td>39</td>\n", " <td>../data/event-text-highlight</td>\n", " <td>{u'own': 1, u'willingness': 4, u'steppingstone...</td>\n", " <td>102</td>\n", " <td>29</td>\n", " <td>20</td>\n", " <td>0.477072</td>\n", " <td>{u'own': 0.0221168623273, u'willingness': 0.25...</td>\n", " <td>0.358854</td>\n", " <td>{u'own': 0.05, u'willingness': 0.2, u'stepping...</td>\n", " </tr>\n", " <tr>\n", " <th>1893181922</th>\n", " <td>35.90</td>\n", " <td>NYT19981121.0173.tml</td>\n", " <td>returned__139__147###shot__54__58</td>\n", " <td>2</td>\n", " <td>Slepian , 52 , an obstetrician and gynecologis...</td>\n", " <td>17</td>\n", " <td>39</td>\n", " <td>../data/event-text-highlight</td>\n", " <td>{u'and': 4, u'shot': 18, u'an': 1, u'through':...</td>\n", " <td>117</td>\n", " <td>30</td>\n", " <td>20</td>\n", " <td>0.573296</td>\n", " <td>{u'and': 0.1014974899, u'shot': 0.990028551248...</td>\n", " <td>0.431335</td>\n", " <td>{u'and': 0.2, u'shot': 0.9, u'an': 0.05, u'thr...</td>\n", " </tr>\n", " <tr>\n", " <th>1893181923</th>\n", " <td>33.95</td>\n", " <td>NYT19990505.0443.tml</td>\n", " <td>wrote__151__156###murder__80__86###observed__9...</td>\n", " <td>5</td>\n", " <td>A jogger observed Kopp 's car at 6 a.m. near S...</td>\n", " <td>20</td>\n", " <td>39</td>\n", " <td>../data/event-text-highlight</td>\n", " <td>{u'': 2, u'plate': 1, u'number': 1, u'observed...</td>\n", " <td>112</td>\n", " <td>33</td>\n", " <td>20</td>\n", " <td>0.657856</td>\n", " <td>{u'': 0.0396913152867, u'plate': 0.04870870448...</td>\n", " <td>0.492269</td>\n", " <td>{u'': 0.1, u'plate': 0.05, u'number': 0.05, u'...</td>\n", " </tr>\n", " <tr>\n", " <th>1893181924</th>\n", " <td>44.00</td>\n", " <td>XIE19990313.0173.tml</td>\n", " <td>be__124__126###accession__100__109###claiming_...</td>\n", " <td>5</td>\n", " <td>But some other parties and social organization...</td>\n", " <td>10</td>\n", " <td>39</td>\n", " <td>../data/event-text-highlight</td>\n", " <td>{u'and': 2, u'burdens': 5, u'some': 1, u'acces...</td>\n", " <td>120</td>\n", " <td>27</td>\n", " <td>20</td>\n", " <td>0.373122</td>\n", " <td>{u'and': 0.0825392628047, u'burdens': 0.344247...</td>\n", " <td>0.290667</td>\n", " <td>{u'and': 0.1, u'burdens': 0.25, u'some': 0.05,...</td>\n", " </tr>\n", " <tr>\n", " <th>1893181925</th>\n", " <td>40.65</td>\n", " <td>XIE19990313.0229.tml</td>\n", " <td>disasters__141__150###been__101__105###stabili...</td>\n", " <td>8</td>\n", " <td>`` Extending membership to these three democra...</td>\n", " <td>12</td>\n", " <td>39</td>\n", " <td>../data/event-text-highlight</td>\n", " <td>{u'century': 2, u'three': 1, u'''': 1, u'disas...</td>\n", " <td>128</td>\n", " <td>29</td>\n", " <td>20</td>\n", " <td>0.431015</td>\n", " <td>{u'century': 0.0685543621321, u'three': 0.0487...</td>\n", " <td>0.328617</td>\n", " <td>{u'century': 0.1, u'three': 0.05, u'''': 0.05,...</td>\n", " </tr>\n", " <tr>\n", " <th>1893181926</th>\n", " <td>39.95</td>\n", " <td>AP900815-0044.tml</td>\n", " <td>thrust__186__192###guard__149__154###camped__1...</td>\n", " <td>6</td>\n", " <td>The U.S. military buildup in Saudi Arabia cont...</td>\n", " <td>11</td>\n", " <td>38</td>\n", " <td>../data/event-text-highlight</td>\n", " <td>{u'kingdom': 3, u'force': 4, u'guard': 14, u'a...</td>\n", " <td>148</td>\n", " <td>34</td>\n", " <td>20</td>\n", " <td>0.528953</td>\n", " <td>{u'kingdom': 0.0994574494386, u'force': 0.1399...</td>\n", " <td>0.400969</td>\n", " <td>{u'kingdom': 0.15, u'force': 0.2, u'guard': 0....</td>\n", " </tr>\n", " <tr>\n", " <th>1893181927</th>\n", " <td>38.90</td>\n", " <td>AP900815-0044.tml</td>\n", " <td>blocked__184__191###said__34__38###retaliate__...</td>\n", " <td>6</td>\n", " <td>The Iraqi ambassador to Venezuela said on Tues...</td>\n", " <td>32</td>\n", " <td>38</td>\n", " <td>../data/event-text-highlight</td>\n", " <td>{u'and': 1, u'ambassador': 1, u'Kuwait': 1, u'...</td>\n", " <td>104</td>\n", " <td>25</td>\n", " <td>20</td>\n", " <td>0.450525</td>\n", " <td>{u'and': 0.0325544025466, u'ambassador': 0.020...</td>\n", " <td>0.342065</td>\n", " <td>{u'and': 0.05, u'ambassador': 0.05, u'Kuwait':...</td>\n", " </tr>\n", " <tr>\n", " <th>1893181928</th>\n", " <td>45.10</td>\n", " <td>AP900815-0044.tml</td>\n", " <td>flows__156__161###barricade__54__63###extended...</td>\n", " <td>4</td>\n", " <td>Bush told a news conference on Tuesday that th...</td>\n", " <td>56</td>\n", " <td>38</td>\n", " <td>../data/event-text-highlight</td>\n", " <td>{u'and': 2, u'on': 1, u'force': 4, u'it': 1, u...</td>\n", " <td>128</td>\n", " <td>33</td>\n", " <td>20</td>\n", " <td>0.402053</td>\n", " <td>{u'and': 0.14169536593, u'on': 0.0209061159915...</td>\n", " <td>0.336127</td>\n", " <td>{u'and': 0.1, u'on': 0.05, u'force': 0.2, u'it...</td>\n", " </tr>\n", " <tr>\n", " <th>1893181929</th>\n", " <td>36.50</td>\n", " <td>AP900816-0139.tml</td>\n", " <td>come__106__110###said__86__90###withdraw__160_...</td>\n", " <td>5</td>\n", " <td>After a two-hour meeting at his Kennebunkport ...</td>\n", " <td>4</td>\n", " <td>38</td>\n", " <td>../data/event-text-highlight</td>\n", " <td>{u'Kuwait': 3, u'Bush': 3, u'at': 1, u'home': ...</td>\n", " <td>108</td>\n", " <td>29</td>\n", " <td>20</td>\n", " <td>0.475422</td>\n", " <td>{u'Kuwait': 0.0748202295946, u'Bush': 0.064393...</td>\n", " <td>0.360409</td>\n", " <td>{u'Kuwait': 0.15, u'Bush': 0.15, u'at': 0.05, ...</td>\n", " </tr>\n", " <tr>\n", " <th>1893181930</th>\n", " <td>35.65</td>\n", " <td>AP900816-0139.tml</td>\n", " <td>statement__95__104###truth__216__221###attempt...</td>\n", " <td>7</td>\n", " <td>Replied State Department deputy spokesman Rich...</td>\n", " <td>25</td>\n", " <td>38</td>\n", " <td>../data/event-text-highlight</td>\n", " <td>{u'Replied': 12, u'Boucher': 3, u'rhetoric': 4...</td>\n", " <td>80</td>\n", " <td>21</td>\n", " <td>20</td>\n", " <td>0.379997</td>\n", " <td>{u'Replied': 0.659090232546, u'Boucher': 0.061...</td>\n", " <td>0.305077</td>\n", " <td>{u'Replied': 0.6, u'Boucher': 0.15, u'rhetoric...</td>\n", " </tr>\n", " <tr>\n", " <th>1893181931</th>\n", " <td>32.10</td>\n", " <td>AP900816-0139.tml</td>\n", " <td>said__54__58###attempt__115__122###led__131__1...</td>\n", " <td>6</td>\n", " <td>Meanwhile , Egypt 's official Middle East News...</td>\n", " <td>64</td>\n", " <td>38</td>\n", " <td>../data/event-text-highlight</td>\n", " <td>{u'large-scale': 7, u'Agency': 2, u'Thursday':...</td>\n", " <td>111</td>\n", " <td>24</td>\n", " <td>20</td>\n", " <td>0.532090</td>\n", " <td>{u'large-scale': 0.273694670853, u'Agency': 0....</td>\n", " <td>0.435103</td>\n", " <td>{u'large-scale': 0.35, u'Agency': 0.1, u'Thurs...</td>\n", " </tr>\n", " <tr>\n", " <th>1893181932</th>\n", " <td>36.30</td>\n", " <td>APW19980219.0476.tml</td>\n", " <td>presumed__153__161###kidnapped__139__148###rec...</td>\n", " <td>6</td>\n", " <td>The top commander of a Cambodian resistance fo...</td>\n", " <td>6</td>\n", " <td>38</td>\n", " <td>../data/event-text-highlight</td>\n", " <td>{u'and': 2, u'force': 2, u'almost': 1, u'recov...</td>\n", " <td>157</td>\n", " <td>35</td>\n", " <td>20</td>\n", " <td>0.539572</td>\n", " <td>{u'and': 0.0830114770935, u'force': 0.06061338...</td>\n", " <td>0.428880</td>\n", " <td>{u'and': 0.1, u'force': 0.1, u'almost': 0.05, ...</td>\n", " </tr>\n", " <tr>\n", " <th>1893181933</th>\n", " <td>31.90</td>\n", " <td>NYT19980206.0460.tml</td>\n", " <td>tumult__207__213###reported__83__91###disrupti...</td>\n", " <td>6</td>\n", " <td>The economy created jobs at a surprisingly rob...</td>\n", " <td>8</td>\n", " <td>38</td>\n", " <td>../data/event-text-highlight</td>\n", " <td>{u'financial': 7, u'caused': 2, u'surprisingly...</td>\n", " <td>125</td>\n", " <td>32</td>\n", " <td>20</td>\n", " <td>0.463548</td>\n", " <td>{u'financial': 0.356021526749, u'caused': 0.08...</td>\n", " <td>0.408510</td>\n", " <td>{u'financial': 0.35, u'caused': 0.1, u'surpris...</td>\n", " </tr>\n", " <tr>\n", " <th>1893181934</th>\n", " <td>35.35</td>\n", " <td>NYT19980402.0453.tml</td>\n", " <td>find__106__110###believed__182__190###identifi...</td>\n", " <td>6</td>\n", " <td>The police and prosecutors said they had ident...</td>\n", " <td>5</td>\n", " <td>38</td>\n", " <td>../data/event-text-highlight</td>\n", " <td>{u'and': 1, u'find': 5, u'linking': 3, u'in': ...</td>\n", " <td>102</td>\n", " <td>26</td>\n", " <td>20</td>\n", " <td>0.461942</td>\n", " <td>{u'and': 0.0203175077078, u'find': 0.268739659...</td>\n", " <td>0.405740</td>\n", " <td>{u'and': 0.05, u'find': 0.25, u'linking': 0.15...</td>\n", " </tr>\n", " <tr>\n", " <th>1893181935</th>\n", " <td>29.90</td>\n", " <td>NYT19980424.0421.tml</td>\n", " <td>upheld__26__32</td>\n", " <td>1</td>\n", " <td>By a 6-3 vote , the court upheld a discriminat...</td>\n", " <td>4</td>\n", " <td>38</td>\n", " <td>../data/event-text-highlight</td>\n", " <td>{u'the': 1, u'citizenship': 4, u'unmarried': 4...</td>\n", " <td>104</td>\n", " <td>26</td>\n", " <td>20</td>\n", " <td>0.446112</td>\n", " <td>{u'the': 0.0199130729834, u'citizenship': 0.13...</td>\n", " <td>0.382814</td>\n", " <td>{u'the': 0.05, u'citizenship': 0.2, u'unmarrie...</td>\n", " </tr>\n", " <tr>\n", " <th>1893181936</th>\n", " <td>32.90</td>\n", " <td>SJMN91-06338157.tml</td>\n", " <td>lamented__98__106###said__86__90###tightening_...</td>\n", " <td>7</td>\n", " <td>One GOP source , reporting on a call from the ...</td>\n", " <td>7</td>\n", " <td>38</td>\n", " <td>../data/event-text-highlight</td>\n", " <td>{u'and': 1, u'help': 5, u'is': 4, u'need': 7, ...</td>\n", " <td>100</td>\n", " <td>23</td>\n", " <td>20</td>\n", " <td>0.448201</td>\n", " <td>{u'and': 0.0199130729834, u'help': 0.258170521...</td>\n", " <td>0.392595</td>\n", " <td>{u'and': 0.05, u'help': 0.25, u'is': 0.2, u'ne...</td>\n", " </tr>\n", " <tr>\n", " <th>1893181937</th>\n", " <td>39.20</td>\n", " <td>WSJ900813-0157.tml</td>\n", " <td>confrontation__211__224###end__41__44###propos...</td>\n", " <td>8</td>\n", " <td>Iraq 's Saddam Hussein , his options for endin...</td>\n", " <td>3</td>\n", " <td>38</td>\n", " <td>../data/event-text-highlight</td>\n", " <td>{u'Gulf': 5, u'increasingly': 3, u'ending': 7,...</td>\n", " <td>122</td>\n", " <td>29</td>\n", " <td>20</td>\n", " <td>0.339267</td>\n", " <td>{u'Gulf': 0.180771506315, u'increasingly': 0.0...</td>\n", " <td>0.258450</td>\n", " <td>{u'Gulf': 0.25, u'increasingly': 0.15, u'endin...</td>\n", " </tr>\n", " <tr>\n", " <th>1893181938</th>\n", " <td>31.65</td>\n", " <td>WSJ900813-0157.tml</td>\n", " <td>confirmed__38__47###reports__48__55###head__16...</td>\n", " <td>3</td>\n", " <td>Over the weekend , Pentagon officials confirme...</td>\n", " <td>60</td>\n", " <td>38</td>\n", " <td>../data/event-text-highlight</td>\n", " <td>{u'and': 1, u'within': 2, u'powerful': 1, u'of...</td>\n", " <td>99</td>\n", " <td>32</td>\n", " <td>20</td>\n", " <td>0.554168</td>\n", " <td>{u'and': 0.0194958678635, u'within': 0.0485962...</td>\n", " <td>0.464803</td>\n", " <td>{u'and': 0.05, u'within': 0.1, u'powerful': 0....</td>\n", " </tr>\n", " <tr>\n", " <th>1893181939</th>\n", " <td>33.25</td>\n", " <td>WSJ910225-0066.tml</td>\n", " <td>become__103__109###casualties__88__98###entren...</td>\n", " <td>7</td>\n", " <td>Despite the early indications of success , the...</td>\n", " <td>16</td>\n", " <td>38</td>\n", " <td>../data/event-text-highlight</td>\n", " <td>{u'indications': 5, u'tough': 2, u'is': 2, u'd...</td>\n", " <td>128</td>\n", " <td>28</td>\n", " <td>20</td>\n", " <td>0.452174</td>\n", " <td>{u'indications': 0.271023781306, u'tough': 0.0...</td>\n", " <td>0.330208</td>\n", " <td>{u'indications': 0.25, u'tough': 0.1, u'is': 0...</td>\n", " </tr>\n", " <tr>\n", " <th>1893181940</th>\n", " <td>30.15</td>\n", " <td>ed980111.1130.0089.tml</td>\n", " <td>likely__69__75###out__15__18###off__35__38###c...</td>\n", " <td>4</td>\n", " <td>The lights are out and the heat is off and tho...</td>\n", " <td>1</td>\n", " <td>38</td>\n", " <td>../data/event-text-highlight</td>\n", " <td>{u'and': 5, u'Canada': 2, u'people': 1, u'is':...</td>\n", " <td>125</td>\n", " <td>31</td>\n", " <td>20</td>\n", " <td>0.336470</td>\n", " <td>{u'and': 0.170866699369, u'Canada': 0.01983097...</td>\n", " <td>0.296920</td>\n", " <td>{u'and': 0.25, u'Canada': 0.1, u'people': 0.05...</td>\n", " </tr>\n", " <tr>\n", " <th>1893181941</th>\n", " <td>33.55</td>\n", " <td>wsj_0026.tml</td>\n", " <td>said__16__20###produced__122__130###approved__...</td>\n", " <td>4</td>\n", " <td>The White House said President Bush has approv...</td>\n", " <td>4</td>\n", " <td>38</td>\n", " <td>../data/event-text-highlight</td>\n", " <td>{u'produced': 9, u'Islands': 1, u'said': 7, u'...</td>\n", " <td>83</td>\n", " <td>21</td>\n", " <td>20</td>\n", " <td>0.478675</td>\n", " <td>{u'produced': 0.491280127077, u'said': 0.32528...</td>\n", " <td>0.402183</td>\n", " <td>{u'produced': 0.45, u'said': 0.35, u'for': 0.1...</td>\n", " </tr>\n", " <tr>\n", " <th>1893181942</th>\n", " <td>29.75</td>\n", " <td>PRI19980213.2000.0313.tml</td>\n", " <td>reporting__36__45</td>\n", " <td>1</td>\n", " <td>For NPR news , I 'm Auncil Martinez reporting .</td>\n", " <td>10</td>\n", " <td>10</td>\n", " <td>../data/event-text-highlight</td>\n", " <td>{u'I': 1, u'reporting': 16, u'Martinez': 1, u'...</td>\n", " <td>24</td>\n", " <td>7</td>\n", " <td>20</td>\n", " <td>0.848991</td>\n", " <td>{u'I': 0.0297608786779, u'reporting': 0.937529...</td>\n", " <td>0.604289</td>\n", " <td>{u'I': 0.05, u'reporting': 0.8, u'Martinez': 0...</td>\n", " </tr>\n", " <tr>\n", " <th>1893181943</th>\n", " <td>33.75</td>\n", " <td>PRI19980306.2000.1675.tml</td>\n", " <td>gunfire__11__18</td>\n", " <td>1</td>\n", " <td>More heavy gunfire in the Serbian province of ...</td>\n", " <td>2</td>\n", " <td>10</td>\n", " <td>../data/event-text-highlight</td>\n", " <td>{u'heavy': 8, u'province': 2, u'NONE': 1, u'gu...</td>\n", " <td>26</td>\n", " <td>4</td>\n", " <td>20</td>\n", " <td>0.716488</td>\n", " <td>{u'heavy': 0.340689482465, u'province': 0.0293...</td>\n", " <td>0.524574</td>\n", " <td>{u'heavy': 0.4, u'province': 0.1, u'NONE': 0.0...</td>\n", " </tr>\n", " <tr>\n", " <th>1893181944</th>\n", " <td>38.60</td>\n", " <td>SJMN91-06338157.tml</td>\n", " <td>said__10__14###met__37__40</td>\n", " <td>2</td>\n", " <td>Officials said the president himself met with ...</td>\n", " <td>13</td>\n", " <td>10</td>\n", " <td>../data/event-text-highlight</td>\n", " <td>{u'NONE': 1, u'himself': 2, u'said': 10, u'met...</td>\n", " <td>43</td>\n", " <td>9</td>\n", " <td>20</td>\n", " <td>0.574096</td>\n", " <td>{u'NONE': 0.0087320973195, u'himself': 0.08564...</td>\n", " <td>0.418177</td>\n", " <td>{u'NONE': 0.05, u'himself': 0.1, u'said': 0.5,...</td>\n", " </tr>\n", " <tr>\n", " <th>1893181945</th>\n", " <td>41.50</td>\n", " <td>VOA19980305.1800.2603.tml</td>\n", " <td>become__11__17###support__27__34</td>\n", " <td>2</td>\n", " <td>Women have become the sole support of their fa...</td>\n", " <td>14</td>\n", " <td>10</td>\n", " <td>../data/event-text-highlight</td>\n", " <td>{u'NONE': 2, u'support': 14, u'sole': 6, u'hav...</td>\n", " <td>36</td>\n", " <td>6</td>\n", " <td>20</td>\n", " <td>0.566965</td>\n", " <td>{u'NONE': 0.0213007712472, u'support': 0.75809...</td>\n", " <td>0.464811</td>\n", " <td>{u'NONE': 0.1, u'support': 0.7, u'sole': 0.3, ...</td>\n", " </tr>\n", " <tr>\n", " <th>1893181946</th>\n", " <td>31.00</td>\n", " <td>VOA19980305.1800.2603.tml</td>\n", " <td>forbidden__23__32###work__41__45</td>\n", " <td>2</td>\n", " <td>Yet , the Taliban have forbidden them to work .</td>\n", " <td>15</td>\n", " <td>10</td>\n", " <td>../data/event-text-highlight</td>\n", " <td>{u'them': 4, u'forbidden': 17, u'work': 7, u'N...</td>\n", " <td>38</td>\n", " <td>6</td>\n", " <td>20</td>\n", " <td>0.679360</td>\n", " <td>{u'them': 0.160573478252, u'forbidden': 0.9670...</td>\n", " <td>0.535963</td>\n", " <td>{u'them': 0.2, u'forbidden': 0.85, u'work': 0....</td>\n", " </tr>\n", " <tr>\n", " <th>1893181947</th>\n", " <td>44.25</td>\n", " <td>WSJ900813-0157.tml</td>\n", " <td>responded__14__23</td>\n", " <td>1</td>\n", " <td>The president responded , \" Everything , every...</td>\n", " <td>14</td>\n", " <td>10</td>\n", " <td>../data/event-text-highlight</td>\n", " <td>{u'president': 3, u'NONE': 1, u'responded': 17}</td>\n", " <td>21</td>\n", " <td>3</td>\n", " <td>20</td>\n", " <td>0.865400</td>\n", " <td>{u'president': 0.0950187394689, u'NONE': 0.009...</td>\n", " <td>0.703831</td>\n", " <td>{u'president': 0.15, u'NONE': 0.05, u'responde...</td>\n", " </tr>\n", " <tr>\n", " <th>1893181948</th>\n", " <td>49.95</td>\n", " <td>ed980111.1130.0089.tml</td>\n", " <td>grip__47__51###maintain__34__42###continues__2...</td>\n", " <td>3</td>\n", " <td>A powerful ice storm continues to maintain its...</td>\n", " <td>2</td>\n", " <td>10</td>\n", " <td>../data/event-text-highlight</td>\n", " <td>{u'grip': 7, u'NONE': 1, u'continues': 6, u'po...</td>\n", " <td>48</td>\n", " <td>10</td>\n", " <td>20</td>\n", " <td>0.478889</td>\n", " <td>{u'grip': 0.516808569107, u'NONE': 7.967463463...</td>\n", " <td>0.337153</td>\n", " <td>{u'grip': 0.35, u'NONE': 0.05, u'continues': 0...</td>\n", " </tr>\n", " <tr>\n", " <th>1893181949</th>\n", " <td>47.35</td>\n", " <td>wsj_0026.tml</td>\n", " <td>denied__32__38###treatment__54__63</td>\n", " <td>2</td>\n", " <td>Previously , watch imports were denied such du...</td>\n", " <td>6</td>\n", " <td>10</td>\n", " <td>../data/event-text-highlight</td>\n", " <td>{u'NONE': 1, u'imports': 7, u'were': 2, u'watc...</td>\n", " <td>36</td>\n", " <td>9</td>\n", " <td>20</td>\n", " <td>0.553471</td>\n", " <td>{u'NONE': 7.96746346345e-07, u'imports': 0.374...</td>\n", " <td>0.383764</td>\n", " <td>{u'NONE': 0.05, u'imports': 0.35, u'were': 0.1...</td>\n", " </tr>\n", " <tr>\n", " <th>1893181950</th>\n", " <td>45.05</td>\n", " <td>wsj_0027.tml</td>\n", " <td>expect__5__11###cut__19__22</td>\n", " <td>2</td>\n", " <td>They expect him to cut costs throughout the or...</td>\n", " <td>13</td>\n", " <td>10</td>\n", " <td>../data/event-text-highlight</td>\n", " <td>{u'NONE': 2, u'cut': 11, u'to': 2, u'costs': 9...</td>\n", " <td>45</td>\n", " <td>9</td>\n", " <td>20</td>\n", " <td>0.579558</td>\n", " <td>{u'NONE': 0.0101591382774, u'cut': 0.829219536...</td>\n", " <td>0.330809</td>\n", " <td>{u'NONE': 0.1, u'cut': 0.55, u'to': 0.1, u'cos...</td>\n", " </tr>\n", " <tr>\n", " <th>1893181951</th>\n", " <td>50.10</td>\n", " <td>wsj_0106.tml</td>\n", " <td>declined__3__11###discuss__15__22</td>\n", " <td>2</td>\n", " <td>He declined to discuss other terms of the issue .</td>\n", " <td>7</td>\n", " <td>10</td>\n", " <td>../data/event-text-highlight</td>\n", " <td>{u'NONE': 2, u'terms': 1, u'of': 1, u'to': 2, ...</td>\n", " <td>38</td>\n", " <td>9</td>\n", " <td>20</td>\n", " <td>0.677483</td>\n", " <td>{u'NONE': 0.00980459272858, u'terms': 0.066722...</td>\n", " <td>0.441666</td>\n", " <td>{u'NONE': 0.1, u'terms': 0.05, u'of': 0.05, u'...</td>\n", " </tr>\n", " <tr>\n", " <th>1893181952</th>\n", " <td>48.05</td>\n", " <td>wsj_0150.tml</td>\n", " <td>closed__10__16</td>\n", " <td>1</td>\n", " <td>Primerica closed at $ 28.25 , down 50 cents .</td>\n", " <td>7</td>\n", " <td>10</td>\n", " <td>../data/event-text-highlight</td>\n", " <td>{u'NONE': 1, u'Primerica': 2, u'$': 2, u'cents...</td>\n", " <td>38</td>\n", " <td>9</td>\n", " <td>20</td>\n", " <td>0.679813</td>\n", " <td>{u'NONE': 8.17248045606e-07, u'Primerica': 0.1...</td>\n", " <td>0.463861</td>\n", " <td>{u'NONE': 0.05, u'Primerica': 0.1, u'$': 0.1, ...</td>\n", " </tr>\n", " <tr>\n", " <th>1893181953</th>\n", " <td>43.90</td>\n", " <td>wsj_0175.tml</td>\n", " <td>dispute__38__45###settle__27__33###talks__18__23</td>\n", " <td>3</td>\n", " <td>Both sides are in talks to settle the dispute .</td>\n", " <td>9</td>\n", " <td>10</td>\n", " <td>../data/event-text-highlight</td>\n", " <td>{u'NONE': 1, u'to': 2, u'settle': 13, u'in': 4...</td>\n", " <td>48</td>\n", " <td>7</td>\n", " <td>20</td>\n", " <td>0.769411</td>\n", " <td>{u'NONE': 8.60151861794e-07, u'to': 0.15607993...</td>\n", " <td>0.509102</td>\n", " <td>{u'NONE': 0.05, u'to': 0.1, u'settle': 0.65, u...</td>\n", " </tr>\n", " <tr>\n", " <th>1893181954</th>\n", " <td>42.20</td>\n", " <td>wsj_0471.tml</td>\n", " <td>suit__37__41###said__4__8###comment__22__29</td>\n", " <td>3</td>\n", " <td>DPC said it could n't comment on the suit .</td>\n", " <td>7</td>\n", " <td>10</td>\n", " <td>../data/event-text-highlight</td>\n", " <td>{u'comment': 15, u'NONE': 1, u'said': 12, u'co...</td>\n", " <td>54</td>\n", " <td>8</td>\n", " <td>20</td>\n", " <td>0.629596</td>\n", " <td>{u'comment': 0.900546927647, u'NONE': 8.545539...</td>\n", " <td>0.454137</td>\n", " <td>{u'comment': 0.75, u'NONE': 0.05, u'said': 0.6...</td>\n", " </tr>\n", " <tr>\n", " <th>1893181955</th>\n", " <td>38.20</td>\n", " <td>wsj_0520.tml</td>\n", " <td>announced__7__16###closed__52__58###request__2...</td>\n", " <td>4</td>\n", " <td>Nashua announced the Reiss request after the m...</td>\n", " <td>13</td>\n", " <td>10</td>\n", " <td>../data/event-text-highlight</td>\n", " <td>{u'NONE': 1, u'Nashua': 1, u'after': 1, u'requ...</td>\n", " <td>54</td>\n", " <td>10</td>\n", " <td>20</td>\n", " <td>0.652620</td>\n", " <td>{u'NONE': 2.06151867342e-06, u'Nashua': 0.0107...</td>\n", " <td>0.424066</td>\n", " <td>{u'NONE': 0.05, u'Nashua': 0.05, u'after': 0.0...</td>\n", " </tr>\n", " <tr>\n", " <th>1893181956</th>\n", " <td>27.65</td>\n", " <td>wsj_0551.tml</td>\n", " <td>expected__19__27###close__31__36###transaction...</td>\n", " <td>3</td>\n", " <td>The transaction is expected to close around ye...</td>\n", " <td>6</td>\n", " <td>10</td>\n", " <td>../data/event-text-highlight</td>\n", " <td>{u'NONE': 2, u'transaction': 11, u'end': 4, u'...</td>\n", " <td>55</td>\n", " <td>11</td>\n", " <td>20</td>\n", " <td>0.623260</td>\n", " <td>{u'NONE': 0.0104003935425, u'transaction': 0.7...</td>\n", " <td>0.418970</td>\n", " <td>{u'NONE': 0.1, u'transaction': 0.55, u'end': 0...</td>\n", " </tr>\n", " <tr>\n", " <th>1893181957</th>\n", " <td>62.90</td>\n", " <td>NYT19990505.0443.tml</td>\n", " <td>decided__207__214###said__193__197###killing__...</td>\n", " <td>9</td>\n", " <td>Based on physical evidence _ including a rifle...</td>\n", " <td>9</td>\n", " <td>55</td>\n", " <td>../data/event-text-highlight</td>\n", " <td>{u'': 52, u'el': 1, u'his': 1, u'en': 2, u'Bas...</td>\n", " <td>281</td>\n", " <td>69</td>\n", " <td>20</td>\n", " <td>0.521132</td>\n", " <td>{u'': 0.000116692296731, u'el': 2.24408262943e...</td>\n", " <td>0.283726</td>\n", " <td>{u'': 2.6, u'el': 0.05, u'his': 0.05, u'en': 0...</td>\n", " </tr>\n", " <tr>\n", " <th>1893181958</th>\n", " <td>46.85</td>\n", " <td>NYT19980424.0421.tml</td>\n", " <td>use__209__212###invalidating__192__204###vindi...</td>\n", " <td>6</td>\n", " <td>The New York Times said in an editorial on Sat...</td>\n", " <td>3</td>\n", " <td>54</td>\n", " <td>../data/event-text-highlight</td>\n", " <td>{u'Court': 1, u'in': 3, u'it': 3, u'years': 3,...</td>\n", " <td>154</td>\n", " <td>41</td>\n", " <td>20</td>\n", " <td>0.433716</td>\n", " <td>{u'Court': 0.0605714503761, u'in': 0.127326102...</td>\n", " <td>0.224615</td>\n", " <td>{u'Court': 0.05, u'in': 0.15, u'it': 0.15, u'y...</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " duration input.doc_id \\\n", "unit \n", "1893181917 57.15 wsj_1033.tml \n", "1893181918 47.20 APW19990607.0041.tml \n", "1893181919 43.90 NYT19981025.0216.tml \n", "1893181920 41.50 NYT19981026.0446.tml \n", "1893181921 43.05 NYT19981026.0446.tml \n", "1893181922 35.90 NYT19981121.0173.tml \n", "1893181923 33.95 NYT19990505.0443.tml \n", "1893181924 44.00 XIE19990313.0173.tml \n", "1893181925 40.65 XIE19990313.0229.tml \n", "1893181926 39.95 AP900815-0044.tml \n", "1893181927 38.90 AP900815-0044.tml \n", "1893181928 45.10 AP900815-0044.tml \n", "1893181929 36.50 AP900816-0139.tml \n", "1893181930 35.65 AP900816-0139.tml \n", "1893181931 32.10 AP900816-0139.tml \n", "1893181932 36.30 APW19980219.0476.tml \n", "1893181933 31.90 NYT19980206.0460.tml \n", "1893181934 35.35 NYT19980402.0453.tml \n", "1893181935 29.90 NYT19980424.0421.tml \n", "1893181936 32.90 SJMN91-06338157.tml \n", "1893181937 39.20 WSJ900813-0157.tml \n", "1893181938 31.65 WSJ900813-0157.tml \n", "1893181939 33.25 WSJ910225-0066.tml \n", "1893181940 30.15 ed980111.1130.0089.tml \n", "1893181941 33.55 wsj_0026.tml \n", "1893181942 29.75 PRI19980213.2000.0313.tml \n", "1893181943 33.75 PRI19980306.2000.1675.tml \n", "1893181944 38.60 SJMN91-06338157.tml \n", "1893181945 41.50 VOA19980305.1800.2603.tml \n", "1893181946 31.00 VOA19980305.1800.2603.tml \n", "1893181947 44.25 WSJ900813-0157.tml \n", "1893181948 49.95 ed980111.1130.0089.tml \n", "1893181949 47.35 wsj_0026.tml \n", "1893181950 45.05 wsj_0027.tml \n", "1893181951 50.10 wsj_0106.tml \n", "1893181952 48.05 wsj_0150.tml \n", "1893181953 43.90 wsj_0175.tml \n", "1893181954 42.20 wsj_0471.tml \n", "1893181955 38.20 wsj_0520.tml \n", "1893181956 27.65 wsj_0551.tml \n", "1893181957 62.90 NYT19990505.0443.tml \n", "1893181958 46.85 NYT19980424.0421.tml \n", "\n", " input.events \\\n", "unit \n", "1893181917 $ 10.1__129__135###reported__38__46###fell__72... \n", "1893181918 purports__5__13###be__17__19###said__179__183#... \n", "1893181919 protect__45__52###murdered__77__85###said__97_... \n", "1893181920 opposed__170__177###followed__122__130###was__... \n", "1893181921 exploit__109__116###murder__133__139###said__2... \n", "1893181922 returned__139__147###shot__54__58 \n", "1893181923 wrote__151__156###murder__80__86###observed__9... \n", "1893181924 be__124__126###accession__100__109###claiming_... \n", "1893181925 disasters__141__150###been__101__105###stabili... \n", "1893181926 thrust__186__192###guard__149__154###camped__1... \n", "1893181927 blocked__184__191###said__34__38###retaliate__... \n", "1893181928 flows__156__161###barricade__54__63###extended... \n", "1893181929 come__106__110###said__86__90###withdraw__160_... \n", "1893181930 statement__95__104###truth__216__221###attempt... \n", "1893181931 said__54__58###attempt__115__122###led__131__1... \n", "1893181932 presumed__153__161###kidnapped__139__148###rec... \n", "1893181933 tumult__207__213###reported__83__91###disrupti... \n", "1893181934 find__106__110###believed__182__190###identifi... \n", "1893181935 upheld__26__32 \n", "1893181936 lamented__98__106###said__86__90###tightening_... \n", "1893181937 confrontation__211__224###end__41__44###propos... \n", "1893181938 confirmed__38__47###reports__48__55###head__16... \n", "1893181939 become__103__109###casualties__88__98###entren... \n", "1893181940 likely__69__75###out__15__18###off__35__38###c... \n", "1893181941 said__16__20###produced__122__130###approved__... \n", "1893181942 reporting__36__45 \n", "1893181943 gunfire__11__18 \n", "1893181944 said__10__14###met__37__40 \n", "1893181945 become__11__17###support__27__34 \n", "1893181946 forbidden__23__32###work__41__45 \n", "1893181947 responded__14__23 \n", "1893181948 grip__47__51###maintain__34__42###continues__2... \n", "1893181949 denied__32__38###treatment__54__63 \n", "1893181950 expect__5__11###cut__19__22 \n", "1893181951 declined__3__11###discuss__15__22 \n", "1893181952 closed__10__16 \n", "1893181953 dispute__38__45###settle__27__33###talks__18__23 \n", "1893181954 suit__37__41###said__4__8###comment__22__29 \n", "1893181955 announced__7__16###closed__52__58###request__2... \n", "1893181956 expected__19__27###close__31__36###transaction... \n", "1893181957 decided__207__214###said__193__197###killing__... \n", "1893181958 use__209__212###invalidating__192__204###vindi... \n", "\n", " input.events_count \\\n", "unit \n", "1893181917 4 \n", "1893181918 5 \n", "1893181919 7 \n", "1893181920 5 \n", "1893181921 5 \n", "1893181922 2 \n", "1893181923 5 \n", "1893181924 5 \n", "1893181925 8 \n", "1893181926 6 \n", "1893181927 6 \n", "1893181928 4 \n", "1893181929 5 \n", "1893181930 7 \n", "1893181931 6 \n", "1893181932 6 \n", "1893181933 6 \n", "1893181934 6 \n", "1893181935 1 \n", "1893181936 7 \n", "1893181937 8 \n", "1893181938 3 \n", "1893181939 7 \n", "1893181940 4 \n", "1893181941 4 \n", "1893181942 1 \n", "1893181943 1 \n", "1893181944 2 \n", "1893181945 2 \n", "1893181946 2 \n", "1893181947 1 \n", "1893181948 3 \n", "1893181949 2 \n", "1893181950 2 \n", "1893181951 2 \n", "1893181952 1 \n", "1893181953 3 \n", "1893181954 3 \n", "1893181955 4 \n", "1893181956 3 \n", "1893181957 9 \n", "1893181958 6 \n", "\n", " input.processed_sentence \\\n", "unit \n", "1893181917 Separately , Esselte Business Systems reported... \n", "1893181918 Kopp purports to be a devout Roman Catholic , ... \n", "1893181919 `` We as Christians have a responsibility to p... \n", "1893181920 Slepian 's death was among the first topics ra... \n", "1893181921 `` It 's possible that New York politics has n... \n", "1893181922 Slepian , 52 , an obstetrician and gynecologis... \n", "1893181923 A jogger observed Kopp 's car at 6 a.m. near S... \n", "1893181924 But some other parties and social organization... \n", "1893181925 `` Extending membership to these three democra... \n", "1893181926 The U.S. military buildup in Saudi Arabia cont... \n", "1893181927 The Iraqi ambassador to Venezuela said on Tues... \n", "1893181928 Bush told a news conference on Tuesday that th... \n", "1893181929 After a two-hour meeting at his Kennebunkport ... \n", "1893181930 Replied State Department deputy spokesman Rich... \n", "1893181931 Meanwhile , Egypt 's official Middle East News... \n", "1893181932 The top commander of a Cambodian resistance fo... \n", "1893181933 The economy created jobs at a surprisingly rob... \n", "1893181934 The police and prosecutors said they had ident... \n", "1893181935 By a 6-3 vote , the court upheld a discriminat... \n", "1893181936 One GOP source , reporting on a call from the ... \n", "1893181937 Iraq 's Saddam Hussein , his options for endin... \n", "1893181938 Over the weekend , Pentagon officials confirme... \n", "1893181939 Despite the early indications of success , the... \n", "1893181940 The lights are out and the heat is off and tho... \n", "1893181941 The White House said President Bush has approv... \n", "1893181942 For NPR news , I 'm Auncil Martinez reporting . \n", "1893181943 More heavy gunfire in the Serbian province of ... \n", "1893181944 Officials said the president himself met with ... \n", "1893181945 Women have become the sole support of their fa... \n", "1893181946 Yet , the Taliban have forbidden them to work . \n", "1893181947 The president responded , \" Everything , every... \n", "1893181948 A powerful ice storm continues to maintain its... \n", "1893181949 Previously , watch imports were denied such du... \n", "1893181950 They expect him to cut costs throughout the or... \n", "1893181951 He declined to discuss other terms of the issue . \n", "1893181952 Primerica closed at $ 28.25 , down 50 cents . \n", "1893181953 Both sides are in talks to settle the dispute . \n", "1893181954 DPC said it could n't comment on the suit . \n", "1893181955 Nashua announced the Reiss request after the m... \n", "1893181956 The transaction is expected to close around ye... \n", "1893181957 Based on physical evidence _ including a rifle... \n", "1893181958 The New York Times said in an editorial on Sat... \n", "\n", " input.sentence_id input.tokens job \\\n", "unit \n", "1893181917 11 39 ../data/event-text-highlight \n", "1893181918 14 39 ../data/event-text-highlight \n", "1893181919 14 39 ../data/event-text-highlight \n", "1893181920 16 39 ../data/event-text-highlight \n", "1893181921 43 39 ../data/event-text-highlight \n", "1893181922 17 39 ../data/event-text-highlight \n", "1893181923 20 39 ../data/event-text-highlight \n", "1893181924 10 39 ../data/event-text-highlight \n", "1893181925 12 39 ../data/event-text-highlight \n", "1893181926 11 38 ../data/event-text-highlight \n", "1893181927 32 38 ../data/event-text-highlight \n", "1893181928 56 38 ../data/event-text-highlight \n", "1893181929 4 38 ../data/event-text-highlight \n", "1893181930 25 38 ../data/event-text-highlight \n", "1893181931 64 38 ../data/event-text-highlight \n", "1893181932 6 38 ../data/event-text-highlight \n", "1893181933 8 38 ../data/event-text-highlight \n", "1893181934 5 38 ../data/event-text-highlight \n", "1893181935 4 38 ../data/event-text-highlight \n", "1893181936 7 38 ../data/event-text-highlight \n", "1893181937 3 38 ../data/event-text-highlight \n", "1893181938 60 38 ../data/event-text-highlight \n", "1893181939 16 38 ../data/event-text-highlight \n", "1893181940 1 38 ../data/event-text-highlight \n", "1893181941 4 38 ../data/event-text-highlight \n", "1893181942 10 10 ../data/event-text-highlight \n", "1893181943 2 10 ../data/event-text-highlight \n", "1893181944 13 10 ../data/event-text-highlight \n", "1893181945 14 10 ../data/event-text-highlight \n", "1893181946 15 10 ../data/event-text-highlight \n", "1893181947 14 10 ../data/event-text-highlight \n", "1893181948 2 10 ../data/event-text-highlight \n", "1893181949 6 10 ../data/event-text-highlight \n", "1893181950 13 10 ../data/event-text-highlight \n", "1893181951 7 10 ../data/event-text-highlight \n", "1893181952 7 10 ../data/event-text-highlight \n", "1893181953 9 10 ../data/event-text-highlight \n", "1893181954 7 10 ../data/event-text-highlight \n", "1893181955 13 10 ../data/event-text-highlight \n", "1893181956 6 10 ../data/event-text-highlight \n", "1893181957 9 55 ../data/event-text-highlight \n", "1893181958 3 54 ../data/event-text-highlight \n", "\n", " output.tagged_events \\\n", "unit \n", "1893181917 {u'cents': 2, u'share': 2, u'period': 2, u'in'... \n", "1893181918 {u'': 2, u'Catholic': 3, u'anti-abortion': 9, ... \n", "1893181919 {u'a': 3, u'protect': 24, u'said': 9, u'from':... \n", "1893181920 {u'among': 1, u'raised': 12, u'followed': 11, ... \n", "1893181921 {u'own': 1, u'willingness': 4, u'steppingstone... \n", "1893181922 {u'and': 4, u'shot': 18, u'an': 1, u'through':... \n", "1893181923 {u'': 2, u'plate': 1, u'number': 1, u'observed... \n", "1893181924 {u'and': 2, u'burdens': 5, u'some': 1, u'acces... \n", "1893181925 {u'century': 2, u'three': 1, u'''': 1, u'disas... \n", "1893181926 {u'kingdom': 3, u'force': 4, u'guard': 14, u'a... \n", "1893181927 {u'and': 1, u'ambassador': 1, u'Kuwait': 1, u'... \n", "1893181928 {u'and': 2, u'on': 1, u'force': 4, u'it': 1, u... \n", "1893181929 {u'Kuwait': 3, u'Bush': 3, u'at': 1, u'home': ... \n", "1893181930 {u'Replied': 12, u'Boucher': 3, u'rhetoric': 4... \n", "1893181931 {u'large-scale': 7, u'Agency': 2, u'Thursday':... \n", "1893181932 {u'and': 2, u'force': 2, u'almost': 1, u'recov... \n", "1893181933 {u'financial': 7, u'caused': 2, u'surprisingly... \n", "1893181934 {u'and': 1, u'find': 5, u'linking': 3, u'in': ... \n", "1893181935 {u'the': 1, u'citizenship': 4, u'unmarried': 4... \n", "1893181936 {u'and': 1, u'help': 5, u'is': 4, u'need': 7, ... \n", "1893181937 {u'Gulf': 5, u'increasingly': 3, u'ending': 7,... \n", "1893181938 {u'and': 1, u'within': 2, u'powerful': 1, u'of... \n", "1893181939 {u'indications': 5, u'tough': 2, u'is': 2, u'd... \n", "1893181940 {u'and': 5, u'Canada': 2, u'people': 1, u'is':... \n", "1893181941 {u'produced': 9, u'Islands': 1, u'said': 7, u'... \n", "1893181942 {u'I': 1, u'reporting': 16, u'Martinez': 1, u'... \n", "1893181943 {u'heavy': 8, u'province': 2, u'NONE': 1, u'gu... \n", "1893181944 {u'NONE': 1, u'himself': 2, u'said': 10, u'met... \n", "1893181945 {u'NONE': 2, u'support': 14, u'sole': 6, u'hav... \n", "1893181946 {u'them': 4, u'forbidden': 17, u'work': 7, u'N... \n", "1893181947 {u'president': 3, u'NONE': 1, u'responded': 17} \n", "1893181948 {u'grip': 7, u'NONE': 1, u'continues': 6, u'po... \n", "1893181949 {u'NONE': 1, u'imports': 7, u'were': 2, u'watc... \n", "1893181950 {u'NONE': 2, u'cut': 11, u'to': 2, u'costs': 9... \n", "1893181951 {u'NONE': 2, u'terms': 1, u'of': 1, u'to': 2, ... \n", "1893181952 {u'NONE': 1, u'Primerica': 2, u'$': 2, u'cents... \n", "1893181953 {u'NONE': 1, u'to': 2, u'settle': 13, u'in': 4... \n", "1893181954 {u'comment': 15, u'NONE': 1, u'said': 12, u'co... \n", "1893181955 {u'NONE': 1, u'Nashua': 1, u'after': 1, u'requ... \n", "1893181956 {u'NONE': 2, u'transaction': 11, u'end': 4, u'... \n", "1893181957 {u'': 52, u'el': 1, u'his': 1, u'en': 2, u'Bas... \n", "1893181958 {u'Court': 1, u'in': 3, u'it': 3, u'years': 3,... \n", "\n", " output.tagged_events.annotations \\\n", "unit \n", "1893181917 79 \n", "1893181918 128 \n", "1893181919 94 \n", "1893181920 119 \n", "1893181921 102 \n", "1893181922 117 \n", "1893181923 112 \n", "1893181924 120 \n", "1893181925 128 \n", "1893181926 148 \n", "1893181927 104 \n", "1893181928 128 \n", "1893181929 108 \n", "1893181930 80 \n", "1893181931 111 \n", "1893181932 157 \n", "1893181933 125 \n", "1893181934 102 \n", "1893181935 104 \n", "1893181936 100 \n", "1893181937 122 \n", "1893181938 99 \n", "1893181939 128 \n", "1893181940 125 \n", "1893181941 83 \n", "1893181942 24 \n", "1893181943 26 \n", "1893181944 43 \n", "1893181945 36 \n", "1893181946 38 \n", "1893181947 21 \n", "1893181948 48 \n", "1893181949 36 \n", "1893181950 45 \n", "1893181951 38 \n", "1893181952 38 \n", "1893181953 48 \n", "1893181954 54 \n", "1893181955 54 \n", "1893181956 55 \n", "1893181957 281 \n", "1893181958 154 \n", "\n", " output.tagged_events.unique_annotations worker uqs \\\n", "unit \n", "1893181917 24 20 0.608170 \n", "1893181918 29 20 0.334970 \n", "1893181919 20 20 0.576942 \n", "1893181920 22 20 0.551484 \n", "1893181921 29 20 0.477072 \n", "1893181922 30 20 0.573296 \n", "1893181923 33 20 0.657856 \n", "1893181924 27 20 0.373122 \n", "1893181925 29 20 0.431015 \n", "1893181926 34 20 0.528953 \n", "1893181927 25 20 0.450525 \n", "1893181928 33 20 0.402053 \n", "1893181929 29 20 0.475422 \n", "1893181930 21 20 0.379997 \n", "1893181931 24 20 0.532090 \n", "1893181932 35 20 0.539572 \n", "1893181933 32 20 0.463548 \n", "1893181934 26 20 0.461942 \n", "1893181935 26 20 0.446112 \n", "1893181936 23 20 0.448201 \n", "1893181937 29 20 0.339267 \n", "1893181938 32 20 0.554168 \n", "1893181939 28 20 0.452174 \n", "1893181940 31 20 0.336470 \n", "1893181941 21 20 0.478675 \n", "1893181942 7 20 0.848991 \n", "1893181943 4 20 0.716488 \n", "1893181944 9 20 0.574096 \n", "1893181945 6 20 0.566965 \n", "1893181946 6 20 0.679360 \n", "1893181947 3 20 0.865400 \n", "1893181948 10 20 0.478889 \n", "1893181949 9 20 0.553471 \n", "1893181950 9 20 0.579558 \n", "1893181951 9 20 0.677483 \n", "1893181952 9 20 0.679813 \n", "1893181953 7 20 0.769411 \n", "1893181954 8 20 0.629596 \n", "1893181955 10 20 0.652620 \n", "1893181956 11 20 0.623260 \n", "1893181957 69 20 0.521132 \n", "1893181958 41 20 0.433716 \n", "\n", " unit_annotation_score uqs_initial \\\n", "unit \n", "1893181917 {u'cents': 0.0297850757146, u'share': 0.029785... 0.519530 \n", "1893181918 {u'': 0.157986305381, u'Catholic': 0.026908423... 0.259531 \n", "1893181919 {u'a': 0.0704736341848, u'protect': 1.47222699... 0.401958 \n", "1893181920 {u'among': 0.0200950204081, u'raised': 0.67052... 0.406153 \n", "1893181921 {u'own': 0.0221168623273, u'willingness': 0.25... 0.358854 \n", "1893181922 {u'and': 0.1014974899, u'shot': 0.990028551248... 0.431335 \n", "1893181923 {u'': 0.0396913152867, u'plate': 0.04870870448... 0.492269 \n", "1893181924 {u'and': 0.0825392628047, u'burdens': 0.344247... 0.290667 \n", "1893181925 {u'century': 0.0685543621321, u'three': 0.0487... 0.328617 \n", "1893181926 {u'kingdom': 0.0994574494386, u'force': 0.1399... 0.400969 \n", "1893181927 {u'and': 0.0325544025466, u'ambassador': 0.020... 0.342065 \n", "1893181928 {u'and': 0.14169536593, u'on': 0.0209061159915... 0.336127 \n", "1893181929 {u'Kuwait': 0.0748202295946, u'Bush': 0.064393... 0.360409 \n", "1893181930 {u'Replied': 0.659090232546, u'Boucher': 0.061... 0.305077 \n", "1893181931 {u'large-scale': 0.273694670853, u'Agency': 0.... 0.435103 \n", "1893181932 {u'and': 0.0830114770935, u'force': 0.06061338... 0.428880 \n", "1893181933 {u'financial': 0.356021526749, u'caused': 0.08... 0.408510 \n", "1893181934 {u'and': 0.0203175077078, u'find': 0.268739659... 0.405740 \n", "1893181935 {u'the': 0.0199130729834, u'citizenship': 0.13... 0.382814 \n", "1893181936 {u'and': 0.0199130729834, u'help': 0.258170521... 0.392595 \n", "1893181937 {u'Gulf': 0.180771506315, u'increasingly': 0.0... 0.258450 \n", "1893181938 {u'and': 0.0194958678635, u'within': 0.0485962... 0.464803 \n", "1893181939 {u'indications': 0.271023781306, u'tough': 0.0... 0.330208 \n", "1893181940 {u'and': 0.170866699369, u'Canada': 0.01983097... 0.296920 \n", "1893181941 {u'produced': 0.491280127077, u'said': 0.32528... 0.402183 \n", "1893181942 {u'I': 0.0297608786779, u'reporting': 0.937529... 0.604289 \n", "1893181943 {u'heavy': 0.340689482465, u'province': 0.0293... 0.524574 \n", "1893181944 {u'NONE': 0.0087320973195, u'himself': 0.08564... 0.418177 \n", "1893181945 {u'NONE': 0.0213007712472, u'support': 0.75809... 0.464811 \n", "1893181946 {u'them': 0.160573478252, u'forbidden': 0.9670... 0.535963 \n", "1893181947 {u'president': 0.0950187394689, u'NONE': 0.009... 0.703831 \n", "1893181948 {u'grip': 0.516808569107, u'NONE': 7.967463463... 0.337153 \n", "1893181949 {u'NONE': 7.96746346345e-07, u'imports': 0.374... 0.383764 \n", "1893181950 {u'NONE': 0.0101591382774, u'cut': 0.829219536... 0.330809 \n", "1893181951 {u'NONE': 0.00980459272858, u'terms': 0.066722... 0.441666 \n", "1893181952 {u'NONE': 8.17248045606e-07, u'Primerica': 0.1... 0.463861 \n", "1893181953 {u'NONE': 8.60151861794e-07, u'to': 0.15607993... 0.509102 \n", "1893181954 {u'comment': 0.900546927647, u'NONE': 8.545539... 0.454137 \n", "1893181955 {u'NONE': 2.06151867342e-06, u'Nashua': 0.0107... 0.424066 \n", "1893181956 {u'NONE': 0.0104003935425, u'transaction': 0.7... 0.418970 \n", "1893181957 {u'': 0.000116692296731, u'el': 2.24408262943e... 0.283726 \n", "1893181958 {u'Court': 0.0605714503761, u'in': 0.127326102... 0.224615 \n", "\n", " unit_annotation_score_initial \n", "unit \n", "1893181917 {u'cents': 0.1, u'share': 0.1, u'period': 0.1,... \n", "1893181918 {u'': 0.1, u'Catholic': 0.15, u'anti-abortion'... \n", "1893181919 {u'a': 0.15, u'protect': 1.2, u'said': 0.45, u... \n", "1893181920 {u'among': 0.05, u'raised': 0.6, u'followed': ... \n", "1893181921 {u'own': 0.05, u'willingness': 0.2, u'stepping... \n", "1893181922 {u'and': 0.2, u'shot': 0.9, u'an': 0.05, u'thr... \n", "1893181923 {u'': 0.1, u'plate': 0.05, u'number': 0.05, u'... \n", "1893181924 {u'and': 0.1, u'burdens': 0.25, u'some': 0.05,... \n", "1893181925 {u'century': 0.1, u'three': 0.05, u'''': 0.05,... \n", "1893181926 {u'kingdom': 0.15, u'force': 0.2, u'guard': 0.... \n", "1893181927 {u'and': 0.05, u'ambassador': 0.05, u'Kuwait':... \n", "1893181928 {u'and': 0.1, u'on': 0.05, u'force': 0.2, u'it... \n", "1893181929 {u'Kuwait': 0.15, u'Bush': 0.15, u'at': 0.05, ... \n", "1893181930 {u'Replied': 0.6, u'Boucher': 0.15, u'rhetoric... \n", "1893181931 {u'large-scale': 0.35, u'Agency': 0.1, u'Thurs... \n", "1893181932 {u'and': 0.1, u'force': 0.1, u'almost': 0.05, ... \n", "1893181933 {u'financial': 0.35, u'caused': 0.1, u'surpris... \n", "1893181934 {u'and': 0.05, u'find': 0.25, u'linking': 0.15... \n", "1893181935 {u'the': 0.05, u'citizenship': 0.2, u'unmarrie... \n", "1893181936 {u'and': 0.05, u'help': 0.25, u'is': 0.2, u'ne... \n", "1893181937 {u'Gulf': 0.25, u'increasingly': 0.15, u'endin... \n", "1893181938 {u'and': 0.05, u'within': 0.1, u'powerful': 0.... \n", "1893181939 {u'indications': 0.25, u'tough': 0.1, u'is': 0... \n", "1893181940 {u'and': 0.25, u'Canada': 0.1, u'people': 0.05... \n", "1893181941 {u'produced': 0.45, u'said': 0.35, u'for': 0.1... \n", "1893181942 {u'I': 0.05, u'reporting': 0.8, u'Martinez': 0... \n", "1893181943 {u'heavy': 0.4, u'province': 0.1, u'NONE': 0.0... \n", "1893181944 {u'NONE': 0.05, u'himself': 0.1, u'said': 0.5,... \n", "1893181945 {u'NONE': 0.1, u'support': 0.7, u'sole': 0.3, ... \n", "1893181946 {u'them': 0.2, u'forbidden': 0.85, u'work': 0.... \n", "1893181947 {u'president': 0.15, u'NONE': 0.05, u'responde... \n", "1893181948 {u'grip': 0.35, u'NONE': 0.05, u'continues': 0... \n", "1893181949 {u'NONE': 0.05, u'imports': 0.35, u'were': 0.1... \n", "1893181950 {u'NONE': 0.1, u'cut': 0.55, u'to': 0.1, u'cos... \n", "1893181951 {u'NONE': 0.1, u'terms': 0.05, u'of': 0.05, u'... \n", "1893181952 {u'NONE': 0.05, u'Primerica': 0.1, u'$': 0.1, ... \n", "1893181953 {u'NONE': 0.05, u'to': 0.1, u'settle': 0.65, u... \n", "1893181954 {u'comment': 0.75, u'NONE': 0.05, u'said': 0.6... \n", "1893181955 {u'NONE': 0.05, u'Nashua': 0.05, u'after': 0.0... \n", "1893181956 {u'NONE': 0.1, u'transaction': 0.55, u'end': 0... \n", "1893181957 {u'': 2.6, u'el': 0.05, u'his': 0.05, u'en': 0... \n", "1893181958 {u'Court': 0.05, u'in': 0.15, u'it': 0.15, u'y... " ] }, "execution_count": 64, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data_with_stopwords[\"units\"]" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.13" } }, "nbformat": 4, "nbformat_minor": 2 }
apache-2.0
poldrack/fmri-analysis-vm
analysis/connectivity/PPI.ipynb
1
198370
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "In this notebook, we will work through a simulation of psychophysiological interaction" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import os,sys\n", "import numpy\n", "%matplotlib inline\n", "import matplotlib.pyplot as plt\n", "sys.path.insert(0,'../')\n", "from utils.mkdesign import create_design_singlecondition\n", "from nipy.modalities.fmri.hemodynamic_models import spm_hrf,compute_regressor\n", "from utils.make_data import make_continuous_data\n", "from statsmodels.tsa.arima_process import arma_generate_sample\n", "import scipy.stats\n", "import seaborn as sns\n", "sns.set_style(\"white\")\n", "\n", "results_dir = os.path.abspath(\"../results\")\n", "if not os.path.exists(results_dir):\n", " os.mkdir(results_dir)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Load the data generated using the DCM forward model. In this model, there should be a significant PPI between roi 0 and rois 2 and 4 (see the B matrix in the DCM notebook)" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "../utils/mkdesign.py:25: VisibleDeprecationWarning: using a non-integer number instead of an integer will result in an error in the future\n", " design[b:b+blocklength]=1\n" ] } ], "source": [ "dcmdata=numpy.load(os.path.join(results_dir,'dcmdata.npz'))\n", "data_conv=dcmdata['data']\n", "# downsample to 1 second TR\n", "data=data_conv[range(0,data_conv.shape[0],100)]\n", "ntp=data.shape[0]\n", "\n", "# create a blocked design\n", "d,design=create_design_singlecondition(blockiness=1.0,deslength=ntp,blocklength=20,offset=20)\n", "\n", "regressor,_=compute_regressor(design,'spm',numpy.arange(0,ntp))" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "(-50, 300)" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAArgAAAHcCAYAAAA9Tdn+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzsvXmYVPWZ9/05tS+97013Q7NptwKyiBKiZBQnkASNC0+c\niY+REOPDRI3O5WhGZyY6xuiojLwzmnfmSV7QgIkvIb7OaHzGTILEJKioIArK3jTdNPS+1b6cc94/\nTtWpKnoDQ9Ndzf25Li+rT/3OqV8VVed8z/373vet6LquIwiCIAiCIAgTBMtYT0AQBEEQBEEQziYi\ncAVBEARBEIQJhQhcQRAEQRAEYUIhAlcQBEEQBEGYUIjAFQRBEARBECYUInAFQRAEQRCECYUIXEEQ\nBEEQBGFCIQJXEARBEARBmFCIwBUEQRAEQRAmFCJwBUEQBEEQhAnFqArcDz74gDVr1nDllVdSV1fH\n1q1bhx3/3nvvUVdXl/FffX09XV1dozlNQRAEQRAEYQJhG82DB4NB6uvrWblyJXffffdp7aMoCr/+\n9a/xer3mtuLi4tGaoiAIgiAIgjDBGFWBu2TJEpYsWQKAruunvV9RURE5OTmjNS1BEARBEARhAjOq\nAvezoOs6X/3qV4lEIlxwwQXcddddzJ8/f6ynJQiCIAiCIGQJ40rglpaW8uijjzJr1iyi0Si/+MUv\n+MY3vsGWLVuor68/rWNceumlRKNRSktLR3m2giAIgiAIwmeho6MDh8PBBx98MCrHH1cCd+rUqUyd\nOtX8e+7cuTQ3N/PCCy/w5JNPntYxIpEIqqqO1hQFQRAEQRCEP5F4PH5G9tUzZVwJ3MGYPXs2u3bt\nOu3xZWVlACNWbBAEQRAEQRDGhqVLl47q8cd9Hdz9+/ebolUQBEEQBEEQRmLUy4Q1NTWZIejm5mb2\n799Pfn4+lZWV/PM//zPt7e2m/eCnP/0p1dXVzJw5k0gkwi9+8Qt27NjBhg0bRnOagiAIgiAIwgRi\nVAXu3r17+cY3voGiKCiKYgrZ66+/nieeeILOzk5Onjxpjo/FYjz55JO0t7fjcrm48MILeeGFF1i4\ncOFoTlMQBEEQBEGYQCj6aDp8x4Ckp0M8uIIgCIIgCOOT0dZr496DKwiCIAiCIAhngghcQRAEQRAE\nYUIhAlcQBEEQBEGYUIjAFQRBEARBECYUInAFQRAEQRCECYUIXEEQBEEQBGFCIQJXEARBEARBmFCI\nwBUEQRAEQRAmFCJwBUEQBEEQhAmFCNws4cEHH6Suro76+npmzZrF0qVLefrpp4lGowPGbtu2jVtv\nvZX58+czd+5cVq5cySuvvJIxpqWlhbq6Ovbv3z/s6/7Lv/wLV1xxBZdccgnf/OY3OXbs2Fl9X4Ig\nCIIgCGcbEbhZxJIlS9i+fTtbt27loYceYvPmzTz77LMZYzZt2sSdd97JggUL2LJlC6+99horVqzg\n4Ycf5qmnnsoYqyjKsK/34x//mJ/97Gf84Ac/YMuWLbjdbr71rW8NKqoFQRAEQRDGC7axnsB4IBCK\ncbzdd05fs7osF6/bfkb7OBwOioqKACgvL2fx4sVs376d++67D4DW1laefPJJVq1axb333mvut2rV\nKmw2G4899hjLly9nzpw5AOi6Puzrbdy4ke985ztcddVVADz11FMsXryY3/72t3z5y18+o7kLgiAI\ngiCcK857gRsIxfjWD39DIBQ7p6/rddtZ/3d/fsYiN8nBgwfZtWsX1dXV5rY33ngDVVVZvXr1gPE3\n33wzzzzzDK+//ropcIejubmZzs5OFi1aZG7LycnhkksuYffu3SJwBUEQBEEYt5z3Ajeb2LZtG/Pm\nzUNVVaLRKFarlUceecR8vrGxkdzcXEpKSgbsa7fbqampobGx8bReq7OzE0VRBhyruLiYzs7OP+Vt\nCIIgCIIgjCrnvcBNRlKzwaKwaNEiHnnkEYLBIC+88AI2m41rrrlmlGYoCIIgCIKQnZz3AhcMkXvh\nlKKxnsaIuN1uampqAHj88ce57rrrePnll7npppsAqK2txefz0dHRQWlpaca+sViMpqamDMvBcJSU\nlKDrOp2dnRlR3K6uLurr68/SOxIEQRAEQTj7SBWFLEVRFNasWcO6devMqgbLli3DarWyYcOGAeNf\neuklwuEwK1asyDjGUNTU1FBSUsK7775rbvP7/Xz00UfMmzfvLL4TQRAEQRCEs4sI3Cxm+fLlWK1W\nXnzxRQAqKyu5//772bhxI+vWraOhoYHm5maef/551q5dy+rVq5k9e7a5/0hVFG677Tb+7d/+jTff\nfJMDBw7wwAMPUFFRwdKlS0f1fQmCIAiCIPwpiEUhi7Fardxyyy2sX7+er3/967hcLm677TYmT57M\nhg0b2LRpE5qmMWPGDB599FGuv/76jP1HqoP77W9/m3A4zPe//318Ph+XXnopP/nJT3A4HKP5tgRB\nEARBEP4kFH2kMF6WkYwubt26dYxnIgiCIAiCIAzGaOs1sSgIgiAIgiAIEwoRuIIgCIIgCMKEQgSu\nIAiCIAiCMKEQgSsIgiAIgiBMKETgCoIgCIIgCBMKEbiCIAiCIAjChEIEriCcIb6eBiLB7rGehiAI\ngiAIQyACVxDOgN72vRx8/9/Y/95zaGp0rKcjCIIgCMIgiMAVhDOg4/gOAOJRH30d+8Z4NoIgCIIg\nDIYI3CzhwQcfpK6ujvr6embNmsXSpUt5+umniUYHRhG3bdvGrbfeyvz585k7dy4rV67klVdeyRjT\n0tJCXV0d+/fvH/I1f/Ob3/Ctb32Lyy+/fMSx5wPxaID+roPm392tH43hbARBEARBGAoRuFnEkiVL\n2L59O1u3buWhhx5i8+bNPPvssxljNm3axJ133smCBQvYsmULr732GitWrODhhx/mqaeeyhirKMqw\nrxcMBlmwYAH333//iGPPB3raPgZdM//u69yHGg+P4YwEQRAEQRgM21hPQDh9HA4HRUVFAJSXl7N4\n8WK2b9/OfffdB0BraytPPvkkq1at4t577zX3W7VqFTabjccee4zly5czZ84cAHRdH/b1vvrVrwJG\ntHeksecDyYit1eZGjYfQtTi97Z9QPGnBGM9MEARBEIR0ROACwWiIFl/rOX3NqtwKPA73Z97/4MGD\n7Nq1i+rqanPbG2+8gaqqrF69esD4m2++mWeeeYbXX3/dFLjC6ROL+PH3NABQXruEzpb3iYa66Wn7\nWASuIAiCIIwzznuBG4yGuPNXf0cgFjqnr+u1u/nRih+ekcjdtm0b8+bNQ1VVotEoVquVRx55xHy+\nsbGR3NxcSkpKBuxrt9upqamhsbHxLMz+/CMcbAeMKHZe8QXEowHam/5IoPcYuq6LhUMQBEEQxhHn\nvcDNJhYtWsQjjzxCMBjkhRdewGazcc0114z1tM4LYpF+87HdmY87dxIA8ViAWKQfhyt/rKYmCIIg\nCMIpnPcC1+MwIqnZYFFwu93U1NQA8Pjjj3Pdddfx8ssvc9NNNwFQW1uLz+ejo6OD0tLSjH1jsRhN\nTU0sWrTo7LyB84xYuC/xSMHuyMGTELgAId8JEbiCIAiCMI447wUuGCJ3ZvHUsZ7GGaEoCmvWrOGJ\nJ57g2muvxeFwsGzZMtauXcuGDRv43ve+lzH+pZdeIhwOs2LFioxjnMnrnc8kI7h2Zy6KxYorpxxF\nsaLrKkHfSfJL68d4hoIgCIIgJJEyYVnM8uXLsVqtvPjiiwBUVlZy//33s3HjRtatW0dDQwPNzc08\n//zzrF27ltWrVzN79mxz/5EqI/T19bF//34OHz6Mrus0NDSwf/9+Ojs7R/V9jUeipsDNA8BiseHy\nlgFGBFcQBEEQhPGDRHCzGKvVyi233ML69ev5+te/jsvl4rbbbmPy5Mls2LCBTZs2oWkaM2bM4NFH\nH+X666/P2H+kqOybb77Jgw8+iKIoKIpiliO78847ueuuu0btfY1HYqcIXAB37iRC/pMEReAKgiAI\nwrhC0SdYgdOlS5cCsHXr1jGeiTCR2PvHJ4kEOymt/hyTL7oRgLbGtzh+8FeAwtyrH8Nqc4ztJAVB\nEAQhSxhtvSYWBUEYAV3XiSaSzOyu9AhuVXIEYf+5TVIUBEEQBGFoROAKwgio8TC6FgMyLQqe3Erz\ncdDXcs7nJQiCIAjC4IjAFYQROLUGbhKbw2v+HfKdPOfzEgRBEARhcETgCsIIxCJ95mNHWgQXMOvh\nSqKZIAiCIIwfROAKwgjEwmkR3FMaOiQ7moX8J9F17ZzOSxAEQRCEwRGBKwgjEE1EcBWLDasts/tc\nMoKrqVEiwa5zPjdBEARBEAYiAlcQRiC9Bu6ptYPdeekte8WHKwiCIAjjARG4gjACSYHrcOYPeM7p\nLsJidQLiwxUEQRDGD5HOLrR4fKynMWaIwBWEETBr4J6SYAagKBbcuRWAtOwVBEEQxh5dVTn6/E/5\n4Ft38MnDj471dMYMEbiCMAKmRcE1UOACeHKkkoIgCJ+NSLATf8/RsZ6GMEHQdZ0DT/8zJ/7jVQD6\n935CrN83xrMaG0TgZgkPPvggdXV11NfXM2vWLJYuXcrTTz9NNBodMHbbtm3ceuutzJ8/n7lz57Jy\n5UpeeeWVjDEtLS3U1dWxf//+QV8vHo/z9NNPc+211zJv3jyuvPJKvve979He3j4q72+8ousasahx\nchgsggspH24s0kc8GjhncxMEIbuJx4Ls2/EsB97/v+nvOjjW0xEmAH179tL1zo6Mbf7Dh8doNmOL\nCNwsYsmSJWzfvp2tW7fy0EMPsXnzZp599tmMMZs2beLOO+9kwYIFbNmyhddee40VK1bw8MMP89RT\nT2WMPTVhKp1wOMz+/fu56667eOWVV/jRj37E0aNH+c53vjMq7228Eo/6IVH+qztgY9/R7gFjkhFc\ngKAkmgmCcJp0Ht+BGgsC0N26e4xnM7HQdY3Wo2/S+MkWWg7913mTBBw8dmzANt/BQ2Mwk7HHNtYT\nEE4fh8NBUVERAOXl5SxevJjt27dz3333AdDa2sqTTz7JqlWruPfee839Vq1ahc1m47HHHmP58uXM\nmTMHMJYyhiInJ4f169dnbPuHf/gHvva1r9Ha2kpFRcXZfnvjkvQuZj9+9ShHOrv4x29/jvl1ZeZ2\nw4OrADoh/0nyimec+4kKWY2mxVEU67A3ncLEQtdUOprfNv/u69iPruvyHThL9LTtoeXQf5l/d7fu\nZvaVD47hjM4NwWajbbyzrAx7fj7+Q4fO2wiuCFwgHggQOt5yTl/TXV2Fzev9zPsfPHiQXbt2UV1d\nbW574403UFWV1atXDxh/880388wzz/D666+bAvdM8fl8KIpCbm7uZ553thFNa/LQE7QD8OP/2MOz\nf3MVdpuxAGKxOnC4C4mGugn728ZknkL2oes6vW17aG/ejr+ngdLqzzH5ohvHelrCOaK341Oi4V7z\n73jUR8h3Ak9e1RjOauLQ0bQ94+9oqBtNjWGx2sdoRueGUIuhZTw1VbgqKgyBe/DweXnzdN4L3Hgg\nwAff/ivUwLn1Tlq9Xi79yb+dkcjdtm0b8+bNQ1VVotEoVquVRx55xHy+sbGR3NxcSkpKBuxrt9up\nqamhsbHxM803Go2ydu1aVqxYgfdPEObZRnqbXl/EAUBLh59f/bGBG/4sFal151QQDXUTCrSe8zkK\n2Ulfxz4aPt5k/t1x/B0KKy4ht2j6GM7q7KJpcXxdh8kprMVqc431dMYVHcffAQxvfyziA3T6OveL\nwD0LBPtb8PcaiXve/CkE+oxl+1jUh9NdNJZTG3VCzccBcFdV4Z02FYBYXx+Rjg5cZWXD7TrhEA9u\nFrFo0SJeffVVtmzZwg033MCNN97INddcM+qvG4/H+e53v4uiKDz88MOj/nrjiaRFIRyzElOteN3G\n3f/m3xwgFlfNce6ccmOcv21Y64cgJOlpMzyXFpvL7JDXfOA/J1TL52Of/ILDH66nad9/jPVUxh3B\nfiPSVlQxD2/BFAD6OgdP+hXOjPZmI3qrWGxUTltqbk+3nE1EYj4fsT4jKOOuqSZnZioI4z90ZKym\nNWac9xFcWyKSmg0WBbfbTU1NDQCPP/441113HS+//DI33XQTALW1tfh8Pjo6OigtLc3YNxaL0dTU\nxKJFi87oNePxOPfccw+tra389Kc/Pa+itwDRxAnRF3Hgddm45+Z5PP7CewTCcQ429XLxtGIAXF5D\n4KrxMLFIPw7XwKYQgpBE11T6OvYBUFQxF09uJU37XiHkO0lXyweUVF82xjP80wn2t9B98kMAetv3\nomsqisU6xrMaH8SjATO5zJVThtXuJtDbSKD3GPFYEJvdM8YzzF7UeMT83hVVzsedk8oXiYUntsBN\n1zGe6mrckyZh9XhQg0H8hw5R8vnPjeHszj3nvcAFQ+TmXnjBWE/jjFAUhTVr1vDEE09w7bXX4nA4\nWLZsGWvXrmXDhg1873vfyxj/0ksvEQ6HWbFiRcYxhiMpbpubm9m4cSP5+eefaIslmjz0h51cMbeK\neReUYrUoqJrO3iOdpsBNRnABwv5WEbjCsPh6jqDGwwAUlF1MXtFM2pveJhxoo73pDxRXLcx6v9yJ\nI/9tPtbUCIH+ZnIKasduQuOIcLDDfOz0lODOqeTE4TcAnUDvMfJL68ducllOf9cBdM3o3lVStRCb\nM5UzEotOdIF73Hzsrq5CsVjImTGdvo/34G84/2oti0Uhi1m+fDlWq5UXX3wRgMrKSu6//342btzI\nunXraGhooLm5meeff561a9eyevVqZs+ebe4/3FJ6PB7n7rvv5tNPP+Xpp58mHo/T2dlJZ2cnsVhs\n1N/beCEUMpJAfBEHs6YV43LamFlTAMCeI53mOJe3DKOSAoQCkmgmDE9v+yeAYU/ILZqBYrFSNvnz\nAIT8rQT6msZyen8ygb5m+jo+zdjm6z4/M7kHIxJMO3d4SvHkTkKxGPYnf+/AMk/C6ZP8bVntOTz+\n8+M8/OP3sNiMiPhEtygEExFcW14e9jyjbru7yvB0h0+ef/khEsHNYqxWK7fccgvr16/n61//Oi6X\ni9tuu43JkyezYcMGNm3ahKZpzJgxg0cffZTrr78+Y//hIkRtbW387ne/AzD3S2Zhbty4kYULF47a\n+xpPJJe0fBEH1eVGJGD2jBL2H+thX2MPsbiG3WbBYnXgdBcRCXURkkoKwjDoum5ehPNL6rBYjNNw\nUeU8jh/8FZoapbNlBzkJX2Y2cujgBwDEVAvdQRfluUH6uw5ROW30cwaygXDAELgWmwubIwdFUfDm\n1+DvaSDQ2zi2k8tidE01fcz9WjV7jnQBsLhMoSxn4gvcpEXBU51KVHRVGhaNSGcnWiyGxT6xq0ik\nIwI3S3jiiScG3X7HHXdwxx13ZGy76qqruOqqq4Y9XlVVFfv27fvMz58PaFoctBCQELilOQDMmlbC\nlq2HiMZUDjX3cNHUhA83p5xIqIuw//y7UxZOn3Cg3azOUVB6kbndanNRWDGXrpb36Dm5m5oLr8va\nygPdXS3kW6Dd7+FQRyHluUECvcfQ1CgWq2OspzfmRBIWBZenxAw05BTUGgK3r0n8yp8Rf2+j6W1+\n90iOub0/bKcsJ5VTMVFJWhTcaQLXnRC4aBrhtvYM8TvREYuCIAxB+t2+xZaDy2ncD9ZPLcJiMS5K\nexMRAsBMZggF2qWSgjAkobQbIG/+5IznSqsuB0DTYmYSWjZiVXsA6PB7ONptWHp0XcXfc/75AAcj\nnLAoOD2pko7JSgqaFiPkPz+6bp1tkisjKHbeOWREKmsr8/CFjZuqaKhvqF2zHi0aJdzWDmQKXFdl\npfk43Hp+BV9E4ArCEKQLXE9Oqnai22ljZnXCh3s4zUuXSDTT4uGM+rmCkE4ywm+x2HG4CzOe8+TX\nYEl4McOBjgH7ZgOaFsdj8wHg8JRxvDeXmGpcavyy/I6u66YH1+VJVbvJyU9ZUsSHOzSRYBedx9/L\n8DGD0Zq3t30PAD2xSuKaFZvVwsqrZ+KLOAGIRnznfL5nm9++d4yX/vsAsXhmOcFwewckAivuNFHr\nKi+DxCpB+OT5deMkFgVBGIJkBQWAosLM5hlzZpZwoKmHvQ1dhCNxXE4bbm+qiHY40I7DVXDO5ipk\nD8kIriunHEXJjDEoioLDU0zY30ok1DXY7uOecKATi2JcaPPyKykpVEwfbnrnrvOVWKQfTY0C4PSm\nzis2hxenp5RIsAN/b6OZdCik0DWVgzt/TDTUDUBe8QVMnXMLNrsHf2+j+f3aftjIl1g0q4JpVfm8\nFTFuGnU1lNXdzI6d7OdfNhv1s2NxlW98OWVxirS3m4+d5amqPhaHA2dJMZGOTkInzi+BKxFcQRgC\nn89YZtV1qCjNFLiX1hsnkLiq8fHh5HJjpsAVhMFIJiGm1+dMx+k2PN3ZKnC7ulK1OPMLK5lenW92\nAYyGZWXj1AoK6STLqAUkgjsove2fmOIWoL/rIMcPvApg1r7F4uCjZqOCwJJ51ZQWuM3vHxjdzLKV\ntz5MlQF7edthDh9P3TCGW1PJza6yzO9V0qZwvlVSEIErCEPQ02tciAJRO9XlmdHYCycXkpPoavb+\nPuPEYrU5zKitCFxhMDQ1llqeTqudnI7TkxC4wewUuN2dhsCNqRaK4xpz2z4iFDQuNSJwB9bATSdZ\nOSMa7pHPahDam/4IgMNVQEHZLAC6Tuykr2MfPW0fAxCglphmJOjNmm6UdtSUVIOibK2koOs6b32Y\nunnUNJ1/3fwhmmasloTbjOuQPT8fq9udsW+yksKpAlfXNAKNjQSbj6NGIqM5/TFBBK4gDIHfb0Rw\nfREHNeW5Gc9ZrRbm1xkR2w/2pdrzuhI2hWz1Twqji3Hjk/DJjRDBjUf9qPHouZraWSPoMy6isT6V\n/qceJW/7G5R3GTd8EbEoEEmUCLPZvdjsmULEm9YIQ6K4mQT7j+PvNZIUS2sWM+Xi/4HNYVRKOLz7\nBbN6wr524xxcW5lHrseI3Do9qcY72drN7MCxHtq7jfc4e7pxY3T0RL8ZxY0kEsyc5WUD9nVVJARu\neztaPG5uP/Gfr7H7nvv48K57eO/Wb9Kz68NRfQ/nGhG4gjAEyRNhKO4izzuwtFHSptDZG6Kp1Vj2\nSglcieAKA0lvAjKkwPWkEhqjWWhT0KIJy05nwNyW29uXfNLs4Ha+Eg0bN84Od9GA51zeUqw2Q/T6\n+xrP5bTGPR3N7wKgWOyUVF+Oze5hct0NgAK6kXBlc+Tw+31GalGyyyRAbk4qmTNbu5m9tcuwJzjs\nVu67ZT7WRCWfnYkVxGQE1zWIwDWTzjSNSEcq+NL59jvmYy0Soevtd0dl7mOFCFxBGAJF8wOgW3MG\nfX7+hWXJ5FTe/cQw77u8hvcpFulHjYVGf5LCmBKOxInF1dMfn6ygYHNhdw7ezjkZwYXs8+HquoYd\nQ8xq3anos9Wfeny+L70n3/9gSaiKYjHLhUkEN4Wu6/R1GmXzCstnYbMbnckKK+ZQd/ldVE7/c4oq\n5+Opup7+oBGhTBe4JYVeAlFD+GarReG9T41zx+UXV1Cc7zbrr3+wPylwjaCKq3yg9SlpUYCUTUGL\nRgmc0r431j+xfpsicAVhCJwWQ6Ba7XmDPp+f4zRPov9neyOxuIrLmzq5pHvthInHyc4Aq37w39zz\nzFtEYqcnclMJZuVDdhI0SocZz2WbDzcS6saqGNE0vSdK0eULQVHQ/all0aFK6EV7eggcbTwX0xxT\nopGkwB38Bifpww32t6Cp509b9OEI+1tNYZpfUp/xnDd/MpOmf5Gps/+SQx2pc3W6wC0t8OBPJJpF\nQtkncKMxlY5e43p04RQjGp1cQTzU3EtXaxdqwFgxcQ4mcCtS25KVFPwNR9ETdgWrJ9HKuC/7Ppvh\nEIErCIOgxsPYrYZosTsHF7gAN3xhBgDd/WG27TxuRnBBbAoTnd++38hlVYcptR3ikyOnJ0STJcLc\n3sHtCQAWi82M7mVbBDddkOu9MfJnzcJbW4seSN0ADBbBVSMRdv/1/ey+9z72Pf4kkY7OAWMmArqu\nmUJtqAi+N782MVYl2H980DHnG32dBxKPFHKLZw45Lvk7nFTipSgv1QWwrNBtCtxgMPt84O09QXQd\nPPYYk7TX+eTtf2b+TCNxTtfh4/cPmGPTxWwSq8tlenP9hw4B4DuQ2EdRKLx0PgCxfhG4whjw4IMP\nUldXR319PbNmzWLp0qU8/fTTRKMDk1C2bdvGrbfeyvz585k7dy4rV67klVdeyRjT0tJCXV0d+/fv\nH/I1n3vuOb70pS8xb948LrvsMr75zW/y8ccfn/X3Nh7x+1KlaLzeoevZXlpfzpQKIwHt5TcPodhy\nzPaqkmg2sTnZ9DFfmN7MdbMO8+mhhhHH65pq1ulMr3/a1Rfi/9t2mJYOv7ktWysp9Pf3mI/1oIp3\nai15F9VDREOPGZHdyCDdpHo/3E2sx9i3e8d77Hno71HDE8+rG4/6Tb/oUBFcb34NyQi+NHww6O8y\nxJgnrxq7Y3DLGMCBJuM7lFy+T1JW6CESNyorRCPZ971q7QridUS5beEeLNFmwv5WXPGDlBUafu2G\nvanzz2AeXID8i42auX17P0XXdXwHDgLgqak2k9AkgiuMGUuWLGH79u1s3bqVhx56iM2bN/Pss89m\njNm0aRN33nknCxYsYMuWLbz22musWLGChx9+mKeeeipj7FBLpEmmTp3K97//fV577TVeeuklqqqq\nWL16NT09PcPuNxHo6kkJi9y8gckgSSwWhZVXGxGFE50B3v74RFqiWduQ+wnZzYlOP3YtFaHvbB9Z\n4MYi/aa4cbqMZcbdB9u555nf8fyvPuGBZ/9AZ2IZMlULt3vwg41T+voStaNVHcKaIXAvNpaU9YCx\nHOrzDRTtXe/sMB4kzkmR9g78hw6P/oTPMenRa/sQAtdqc+LONZKC2ne/xc7/9R38h4+ck/mNR9R4\nxGzxnF9y4ZDj/KEYbYkqAzOqMz/b0kI3UdUQuLF49pXDausKcP2sQ5TnBs1t/Z37TZtCe0OzsdFi\nwVlSMtghyLv4YgCinZ1E2tvxHTAiubkXXog9z1ilVAOBjCoL2Y4I3CzC4XBQVFREeXk5S5cuZfHi\nxWzfvt2Gh4KIAAAgAElEQVR8vrW1lSeffJJVq1Zx7733Mn36dGpqali1ahUPPPAAGzZsyIjAJktb\nDcVXvvIVPve5z1FdXc306dP527/9W/x+PwcOHBh2v4lAX2/qInxqF7NTuXJuFZXFxnLRz399AEei\neLtEcCcuO/a2UpGXqhJg19rwBYcv6RUJp24MHa5CDjb18PCP36EvkYDVH4jy5Mb3iauaWUkhEupG\n17VBjzceCSejsyEVW3EJtpwcI4IL6H7DphD0Z94ga7EY3e9/AEDJFYvN7YHGiRe9TPcfO4awKEBa\nPVyll3BrG4f+9bkJJTzOBF/3YXTd+O7kDSNwG0+kPtupVZmfbZ7XgaobSWbJLnLZRGu3n6nFxuqP\nJbFC6O85ylXzjWBKTqLij7O0BMVqHfQY+bNSXc863voD0U7DBpR74Uzs+anPK96fvY0wTkVa9QLh\nUIzOdv/IA88iJWU5uNyfvV3gwYMH2bVrF9XV1ea2N954A1VVWb169YDxN998M8888wyvv/46c+bM\nOePXi8VibN68mby8POrq6j7zvLOFQKAHN6BqCiVFQ0dwwaiJ+xdfvJB1L+2ipcPPiR47bozlZV3X\nBrRjFbKfd/ee5EuTUwJ3Up6PPYc7WTxn0pD7pLepdbgLeO31Q2g6uBxWFl5UwR92t7D/WA+v/O4w\n11ycWGLVNaLhPpzuwiGOOr6IRf04MKK1ntpaAByFhTjKyswI7qlJZn179poJMmVXX4X/0GHCrW0E\njzWdy6mfEzIiuMN4+4/35eMEFI8NJc9G8FgTJ197naobvnoOZjm+6DqxEzDqBnvzaoYc15AmcGsr\nMz9bRVGw2Z3GH1r2Je719XVhKzcCUqVVl9F27PfoukqZu4Npk/LJP2HoF1fZ4PYEMJLPHMXFRLu6\nOPmr183tuRdeSDRtVTbW34ejKDvONyNx3gvccCjGv/5wK+HQuf3Su9x2vvt3S89I5G7bto158+ah\nqirRaBSr1cojjzxiPt/Y2Ehubi4lgyxR2O12ampqaGxsPKN5/u53v+Ov//qvCYfDlJWVsWHDBgoK\nhvakThQioT7cGE0e8nOcI47/wvxqtmw9yPF2P3/4JMgXpxtJIrFwXyIrXpgoBMMxmk+0kntBKhJU\nmRdg96G24QVuyLiIKBYbEdXJ23tOUh7pYtGsWr55ywLae4IcONbD1vebWTZ3irmfGgtClnyHtJgR\n/dGDKrkzpprbc6bW0u9PWA7UzAhR17uGPcHq9ZA/exaeKVMIt7ZNyAhuUuDa7F4s1sHP/b9+9xg/\ne72Te640/lYqXOj9fpr+3810TpnFyYiVPn+EJfOqqSzxDnqMiUIs4qO34xMAiiYtQLEMHp0EONpi\nRDErS7x4XAM/W4fDiHwqZJ/AjaRV5CmsnEfXiZ3EYwH6uw6wfPFC1LeN9x7OGfo8oSgK+bMupuOt\n35teW1dFBe7qKnQtlQQ6kXy4ElrKIhYtWsSrr77Kli1buOGGG7jxxhu55pprzslrbt68mSuvvJJ7\n7rmH7u7s8gV+FpIX6rDqHtGrDGC1KHx9mRHZbmxPjQ9nWZKQMDJdfWHKcgIZ2+xWjZYTjcPul4zg\nOlwFbP/4JLU9DXyz+XXq/+NHHHjscZZdYIiVlg4/bb2pC44az556ykrMuDjqQZXc6dPM7d6ptWYE\n16ZEzPJXWjxu+m+LFl6KxW7HW5sok9XUhK5mll+L+XxZnemdjF4P5b/9P28f5bktu+kJOokHjYhd\nfJKRVKWFI/zXsz/jR7/8iBff2M8Dz/2Bk52BQY8zUeg68YHpWy+pumzYsckI7rRJmZ9tsPk4u+66\nh7JWwydvVeIj2vPGE7quQyy1+uPylJJXYlxr+jv38/m6IgrjRgR3Z7cVVR3a0pSXZlNQ7HYu+Ju/\nRrFYsOeldXqbQAL3vI/gJiOp2WBRcLvd1NQYSzSPP/441113HS+//DI33XQTALW1tfh8Pjo6Oigt\nLc3YNxaL0dTUxKJFi87oNV0uFzU1NdTU1DBnzhyWLVvGL3/5S+64444zOk62kWzyEMdz2vssnl1J\nYa6T7mDKK2eUeZpxtqcnjCH9gSiVecnzhUKy9a5daycW17DbBo8bJCO4DlcBb/6xgas7d5rP9ezc\nRVFnF1bHF1B12HWwjxmJYFU2df6yKom5BtVU9yTAWzsFfUd6Ldx+nJ5iend/RDwhWEuuvAIAT0Lg\napEI4bY23JOMqHis38fONd8BTWfec/+CsyQzUz4bMJs8DOK/fe0PDfz4P/YAUJTrRGkPQ60bqnI4\n6q5kaugkl/Qd4u3C2eiKhV5fhH/432/z9N1XUphWEmuioOs6nS3vAZBTMBV3zsDyV0licc3sJjm1\nKtOe0L7td4Saj5OXlwv1pVgU0LU4yhAR9PFGfyBKrsO4kdEUL1abk/ySOrpP7iQW6Sfass8c+7HP\nwYtv7Oe2r1w06LEKLrkExWZDj8eZdsft5M40rk22vFQr+my+gTwVieBiiNzqKYXn9L8/xX8LxnLD\nmjVrWLdunVkqbNmyZVitVjZs2DBg/EsvvUQ4HGbFihUZxzhTNE0btDTZRMOuJKJmlqFL0pyK1Wrh\n6ktrCMdthGLGvWO2lXkSRqbPH6Ei17jg2N1l6FZDrEzK6+dk59A3yskWrZolF8+e9yhIRF2SSVjh\nY8f4fKXxm3x7b6oOrBrLDoGraXFsVkPE6kEVe35KaHhOqYUbSUSzO976PQC2vDwK5l4CYEZwgQwf\nbv+nn6IGgqihEJ1pybXZxFAR3N9/eNwUt8X5Lv7xhuloLUbGvKdAo3DpFwDIU4P8+w3l3HH9bADa\nuoNs/u3BczX9c0p/5wEiQeN3UFJ9+bBjj7f7iCcil6dGcMOJxgZ6LBW1zaZEs7buIMXeRNMhp5EP\nklNYaz7fdyJV6rPDWcAv3zzE3iOD15F2lZcx67F/5OJ//D4VX0yt/lpsNqxeYwUp1jdxupmJwM1i\nli9fjtVq5cUXXwSgsrKS+++/n40bN7Ju3ToaGhpobm7m+eefZ+3ataxevZrZs2eb+w+3TBMKhVi3\nbh0fffQRJ06c4JNPPuHBBx+kvb2dL33pS6P+3sYSXddw2wxRYXXkjjA6k2sumwxAd9CIqGRboX5h\nZPoCUbOCgidvEu5E4ktVvp/mIVaCdF03LQrdPiuLu41qJo7aqdQ9+ICZ+bxQbQGgsS11Ac6WCG48\nkvLWakEVW07q5tBVXoYWSV1u+vu6iAdDdL9rROhKrliMxWZLjC3H4jCK8qf7cNMfd+94f3TexChi\nfAcGdjFraOnjXzbvBqAoz8UT37kCd8dxtJOpf/crvjobR7Ehbnp++1uuvXIan7/EiGz/8aOWYZel\ns5XWo28CYHPkUFg+fGL00bQEs2mnVFAItyfK+cVSn5GqZk+psNauAMUeQ+B6c42VWbsz30xSDPqM\nZiDW/Hxsucb16pdvHhryeHn1debNZDrJG9K4RHCF8YDVauWWW25h/fr1hBNF0W+77Taee+45du3a\nxcqVK7n22mt5/fXXefTRR7n//vsz9h8ugmu1WmloaOC73/0uy5cv56/+6q/o7+/n5z//OdOnTx/V\n9zXWhII+rBZD/Ls9Z5ZQV12WS31tUUrgSgR3wtHvS11wcguqKSiqAqDIHeJ42+AXBzUWNKNGXcd6\n8WjGBXb6bbdgz8sj/xLjAu49vAd0HU1X0DBWebLFgxuLpgSuGrNmlCtSLBZshZVGfVygp7eT7h07\n0BKrQaVfWJIaa7XimWLcKKaL2mDa4/59+7NuKVWNh9ATGfzJLmaqpvNPG98nGlOx2yz83Tcvo7LE\ni+/gQfSOiPl59fccpPyLfw5A7+6P8B89ytULjBurPn+Ujw5NrM5vvp4G/L1G7dvyKUuGTMhLcqTF\nELh5XkdGBzNd1wm3Gt0DSYvgqllUC7e100+B25hvXr5h01AUBW++8RuJKcZ7z51ay1c+b/jed+5v\np6n1zH4fyVq44sEVzjlPPPHEoNvvuOOOAX7Yq666iquuumrY41VVVbFv374hn3c4HAOaSJwvdHan\nMla9w2SlDsVVl9awf7fRYSYc6ETX9c9kBxHGJ8FgH0rCmu10F2FLXCxtVp22zsFvaNJLhPkb2ykC\nNIuVgllG8fWSKxbTu+tDom1tXFDo52A8l7hmx2GJZU0EN5YWwVXVgZVH8qZPJRg8BLk2+vq6UN40\noreuinJyL7wgY6xnyhT8hw4TTKv6EjiWVlVB0+j5YCdlVw9/nhtPZJSJS0Rwj57oMxPFvnXtxVww\n2TjfhJqPgwa2PidqUZTukx9Sv+xuWl5+BWWWmwP7/43C8npqi700djl568PjzK8bukRUttF6dBsA\nVpub0prPjTj+UJPx2c6oLsg418b9ftSAYfXQLKnvZDgSwnNmi3NjRm9vO9Z8Q5ynt4L35k+mt30v\nmkcDm4JnymS+/PlafvnmIeKqxqt/aOCu/zH3tF8nGcEVi4IgTGB60rqYFRSceSLLZReVmxFcXYsY\nZZ6ECUM4lMpct9o8OFypm6D+3sGbe0TTmjxYjxtLprHyanMpvvjyy1ESS/RzQ40AZmvRrBG46RFc\ny8DkzMKZ09D9hkc30n2Cvo8Nz2nZ0qsH3AB6p9YCEG5tIx4IoIbDhE+2ZozpyjKbQiyjBq4hcPcd\nTVWkuWJuVWpsQmQ4w8b5Jx71E4y1kvu1S7B/rhisOv2dn3Lbgg+YVdHBu3tPEo1lVpzIVuLRAP2d\nRjOh0prFZuvzoVBVzYzgzqzJXHELt6Z1kyxKJamFQtlzTo5HUt8Rlydd4BpedcWioJQ58UyZTGGu\ni6sWGLXx3/ygecTmM+kkKylk28rIcIjAFYRT8Kd1WiotLh1m5OAU57vx5qZqEYtNYWIRiaQJXLsr\no85xONQzqLc9GkpF70o6DYGbW5fqymTL8VJ02UIAprR8glONEogaAjeeJQI3GkqUCItqWFwDkzO9\ntalSYd5gQqxaLJQtvXrA2Jy0EmOBhqMEm5oh8bkmxW/vh7uzqtxTeoTbkfBP7ms0xEtVaU5Gve1Y\nopuU21aOzWF8lkf3/JxIvnEu0X1x0BQURWfFRYex4+fDA6nW0dlMf9dBkpVJiioGekVPpanNZ4r7\nZAQ8SbrAtZanmiKF/Oe2atKfgk1LnTucnlTAxZNXjVHFBSzlTrxTDMG7bJHx/1hc42BTZtfA4UhF\ncEXgCsKEJRQ0TiiRuJXC/KG7DQ3HjEQXJ4Ce3rahBwpZRyya8sTabG4czjz0xIXGYwvR2TtQkCbb\n9KqaE6dqiLzqhZkX76rrrwPAGo9ySf8hfGHjmNniwQ0GjSiaHoxjzR24/pszYzpqzPBS2hIB3qKF\nl+IsHtgp0Du1FhJRXX9DA4E0q0LxYmPJWotETA9vNhBPruQoFrPd6r6jhmC9aGrqM9BVlXhCgDny\n8ymqnA+AlkiMsoQdRH5xnPh/dQIKLrvKV2cdYueBzAh3ttLXaVQFsDvzceVUjDj+YFNKAA6M4Bqf\niWKz4ahIdUEL+3rJFpwW42YnonkyvMhWmwObZvyQLBUu3DWGgJ9WlY/VYvx2GlpO325gS3hw437/\ngPrT2YoIXEE4BTVq3MEGY04sls/mnZ1/8TRiqvHzOtY88VqOns+kC06r3Y1isWKxGVG2fHeY4+0D\ne7kna+BG0gJHJbMza1XmXngBufVGAfdLe/cRiRnfn2wpExYJJyI/QRVH/sA6rxa7HcfsxcYfHiso\nULHszwc9ltXlwl1lLNkHjhw1E8zshYW4ylNLzVo4Oz4bADVuCFyb3YOiKLT3BOnsM+ZfX5sSuHG/\n34xW23LzKKlaCIl238VVC6mpvA7CGvHGPgq8hod7WnEfU5TXCfmzO4qr65ppT4jbJ3Os1UcsPrzY\nOtRs/LZK8l0D6gEnI7iu8jLcBanobtQ/8Dc6XnFajO+NqmTeNMb6fcSOGCsA1skeNIybPbvNSk25\nMfZMBK5Z1k/XifmyJ8I9HCJwBeFUVOPHHdHcn/kQUyfl44sa+/f2TIzIimBkZeuJCgg6Char4aF1\newyBku+K0DyYwE0kGMV6jH3DecVm1nI6yShunhrEGTLET9Z4cCOpLmaugsFXPiqnG4XlFYtC/IIZ\ng5YrSpK0KfiPHDGrKXhrp2BxpZby1SwSuMkIrs1uRN3S/bf1aRHc9CVie34e7pwKLrx0DTMX/C9q\nL/4aRZfMw+JMfAb74sSsRrmwipw+9r//76jx7Ilqn0rQd4J4zLAAbf5jjLvXbuP2H/42owzYqSQT\nzGZOHpgQnIzguioqcBcUmZaWWCg7BJyqatgtxr+nYjWuJ22/fZMj//4T9j/5NNFdCc+/TaH16Juo\n8QixSL9ZKm24z+1U0s9H8f6JkWgmAlcQTsGGcSGK89n7vCuKgqYkWmzGJ047zYNNPdz/r7/njx+1\njPVUxoRAOI7DYpR60hUHSiKy5vQYF9cCd4TjbQMvnskkM1uP8V2wTh281F7RZQuxJaKf3qAxNlsE\nrppIMtODKu6iwcvr5eWlPISHFi7NKCV2Kt6EwA21nMB/xGiz6q2dgtWVitKp4ewp9xSPJYr12w2h\nkvTf5nkdVJWmPMsxX5rATYiOnMKp5BUbNwcWh4OCeUZ2fO/7u5g+/3beOmIsv2sxH/6eI6P8TkaP\n/oQ9QdOgocv4DnX3hfjJ07/g6HsfD/Bch6NxGhPlsE61JwBE2hIR3IpyvMUFZqkwNZIdSWb+UAy3\n3bA0We0eej7czeFnf0Trf71B/95P0Duj2H3Gd6ej+R0+fusHfPz7HzKr/AQAJzoDhCLxIY+fjr1g\n4rXrFYErCKfgtBgXIsV6+l3MBsOaiNRYyQ6Bcjqsf3Uv+4/18L9f2YOmnXmCT3t3kA2vfUJLR3ZE\nUE6l3x/BlbjgKJaU0HImEs3yXRGa2jIjuJoaIx5NeCr7je9WwQWDt29WLBYK5xlRzbygcZxsELi6\nroNqiAY9qJJTOtBXC5kdvLq6h6/daiaa6bppRShcuCBD4GaVRSFq3LDY7MaN84FjhsCtry3KqCKR\nEcHNG7yWVdHCSwEjQun19dIYuJhwzLhZ6Os6cPYnf47wdRs3Msf78sjLzeWO62dzWd+nfKXhDU78\n8B/Zde/f4DuQ6tzW0NJnnocuqMmM4GqxGJFE2T5XRQW5xfkQ1xLPZYevvT8QNQWu3eai4X//BDA8\nxVgs5F54ATOuvh0UC7quGj5tXaMo/hZzKtvRdWg8cXpiNVlFAVJJjtmOCFxBSEPXVNx2Y0noTLuY\nnYo9kf3ssEQnRAmfti4/nyaWVXt9kTPK0AVDBK392U5e+d1hfvj8js8kkMeaXn8El834t0wvX+Rw\nGdEjjyNOS1tmJYX0+qe6z7hYVV40uMAFzOicM5SwQmgxNO30ojBjha7FUZTEdzysklM8eP3oZPcl\nMNrWJmvADkayWkKSossXkn/xxVgyIrjZI3DjpgfXja7rtHQY7712UqadI54mLmyD2FgACi9dYCbh\ndX+wk7kXVtDQbXwH+zqyV+AG/MZNT5vPw5cXT+XPL8zhqr6PzefDjY00bHjB/Pu/dxjWFZvVwoxT\nIriR9g7Ty+wsL8fp9ZjtevUsafSQLnAtx1vMUnkz7v4Oi1/ezJynnsBTWMWk6V/EYnNRWD7HvIG6\nbtYhchxRGk7TpmD1pCx5aig7bgBGQgSuIKQRDKaVZDmlX3yo5QQ9uz4kdPIkujZya0xPopK4xxGn\noze7Txj+w0c4+Fdr+IuW/zYvGu/sOXlGx/j0aLe5LNvc5uftPSfO+jxHmz5/1Izg2hypC0J6LVwb\nfrr6UsIrvQZuUuAWTa8d8jUKEl3N9Ghaa9FxHsVN7wylRzWcBQOTzAAsFhsWm3EBznNG+On/+XTI\nY9q8XlyVRha9YrNRu+obAKdYFMb355JOyqLgoT8QNZeOK4szrVDJOqQWpxOrc2DDDABHQT7eaVMB\n8B04yOzpxRzuNL6D0VBnVpYm1HWNeMQQY/6oi2sum8zR/2cDSiyGrlg46q4EoPfwUULhGO3dQX63\n02hTu3RhDV53ZrezcFuqeo2rotywjSXvE7Xs8Cn7AgHsVuM8ED9gWE/yLr6I0i8sQbGk5FvltKXM\nu/oHTLvkVqbNNX4nNovOpHz/aftw079rWiR7flfDIQJXENJIb/Lg8aZES/B4C7vvvY9P//Exdq25\ni73/8MiINThzc42LvNOm0tqVvZ4mXddp+Ml6LJEQtaFWpgYNYfrO3pNnVIf0l28eotAd4osXNlCW\nE2Dzbw5mXRS3PxDBZTOukk5nSpikC9wCd4RjaW0y02vg6r44UYcH+yBVBsxjFRYSK6mESBYJXDVt\nflFtyKV1AJfbiLTlOqNs/+gE+xu7hxxb+mdfAKDmL76Ge5KRTGVNTzILje/PJR01LcnsZFcqcl0x\nhMC1j1CiMGnhCBw5Qk15Lkc6UxHM/iy0KcSjfiyK8Z2vyM3F/9tf051o5jFpxZcJX2zYMmzxKD/4\nv37Nj17+CFXTsVgUVl49c8DxIh2ppivOUqMuuRY3ot6KHhvV93K28KVVe1D7jO9M+TUDG6Ok482f\nbFbdKM0JnnYlBcVqNZvNZJO3fThE4GYJDz74IHV1ddTX1zNr1iyWLl3K008/TXSQOpDbtm3j1ltv\nZf78+cydO5eVK1fyyiuvZIxpaWmhrq6O/fv3n9brf//736euro6NGzeelfczXunrTwlc50cfmpHa\npp+9lFFzs3/vJwQajg57rPyc1EW+q+vMlvPHE93vvY9vf+qCeWXUiCSc7AwM8JsOxdETfXywr43l\ndUdZXHuCVQv30N/XxvufZleFifQIrsOR6tblcKfERb4rwrGTaQI3WQM3qkNUQy0euaWqvf7irIrg\namnzU+NKho3gVJI+3EKP8Xv6v1/+iMgQFp7Jf/E1Lv/5Rmr+x03mtvRjZ0ukSdPiaGrC+mTz0Jpm\nzagsyRS4SYuCLXd4geudZgjcSEcnhdY4IdVLu9/4TvZ1Zp/ADQdT58hp7/yGxud/CoC7ahKTv/4X\nrPyLK83n/Y1N7NpvlERbMq9qwE0CGJ8LgNXrxeYxPhdNTQhcZXxbfpKEgmm5CmHjfJAzY/AE1SQW\niw2XxxD0Zd4Ax1p9px2ISK6OaBERuMI5ZsmSJWzfvp2tW7fy0EMPsXnzZp599tmMMZs2beLOO+9k\nwYIFbNmyhddee40VK1bw8MMP89RTT2WMHe4uMJ3f/OY3fPzxx5Sn1Z+cqAQDqZNs+PU3OPDUP9P1\n7g663n4HgNKr/szM/O5+b+hWobqu0/XqG+bfPX3ZKXB1VeXYxp9lbJvUfYyCuHHi3bH39ATqu3tO\nYlE0phYZ0UyPI87X53/K3sPZVY2hLxDBnfTg2lMWBavNhdVm/J3vCtM4iMDVEvYEV3Wqo9JQ5NTX\nQ7rAHee1cNMtCjHdMey5xZFoU1tZaFx0j57o57ktQ3cls3kzxYvF4TD9p9liUUhv121EcI2/nQ4r\nhbmZNoRkm97houCQKXSCR49SXZZDY7fx2YZ82Wf/adv9nvlY70/UdC0s4KKH/wGbx03elBpILMtP\nthg3CF63nb/88wsHHoyUwE1GbwFUzTh3K8rIFrPxQDicuhHSIyoWp9OsDz0cyQYZpTlBojGV7v7T\n+50ky8+pE0Tg2sZ6AuMBNRYiHBi8h/xo4fKWZlwgTweHw0FRkZGdXF5ezuLFi9m+fTv33XcfAK2t\nrTz55JOsWrWKe++919xv1apV2Gw2HnvsMZYvX86cOQmP32nc1bW1tfHDH/6Q9evX8+1vf/uM5puN\nRNqacDuNTHA06HrnXbreeRcAq8fD1NWriHZ10ffxHrp3vM/kv7x50ON073iP/t2f4qwzxIyvP3s6\n56TTt/cTQscNn9sfii7hiu6PUHSdL6iN/Kdt1mknMBxr9VGV78dhS11YSrwhOns/BS4djamPCv3+\nKK7ChAfXlhmldLgLCPlCFLgj7D6ZimxHEhYFiy+KChTNqB3xdbxlJfgzIrjj28OdLnBVZejoLaQi\nuHYlyOdmV/DOnlZ+t/M4s6eX8MXLp4z4WoqiYHW5UEMhtCxZSo2nZe3b7G5aExaFiiLPgJuBmM/4\n7oxkUfBOmYxitaKrKoEjDdSUTcHXZ9RljkezqzShrqp079yOdY4dXdOxzZyLy9/H9L/6X7jKjRUP\ni8OBq6Kc8ImTfLXew113fAWr1YLdNnicLtI5UOBquhVQsVizQ+BGIwFIWovDGt6p04ctrZfE7S2n\nFyjNCaGgc7IzQHH+yHojKXCzqTrJcJz3AleNhdjzhyfO+QXEanMz+8oHz1jkJjl48CC7du2iOi0a\n9MYbb6CqKqtXrx4w/uabb+aZZ57h9ddfNwXuSOi6zgMPPMDtt9/O9OnDL4tMBHRdx9p2GCYraEGV\n4sWfMyO3ANU33YA9L5eiyy+j7+M9BI4eJdLRgbO0NOM4aiTC0fXPo4dSy65ab3YtxSdJeuDiVjvv\nFs5idnE/ZbPCXFLUzQXKDv7YsgBYOOJxmtr6zegtioVw3IXLGsSqZVdku98fwlk6MIIL4HSXEPKd\npNgbonmfD1XVsFotZgQ3mWBWUTfybym3rJi2LPXgajbPMCPBkRC4uhbnrhtn0tTqp6XDzy9+e5Cl\nCyebbUaHw5IQuNkYwbU6vJzsNJbXB1tajyc8uCNZFCwOB57JNQSONuI/0kDN/IvZ12Fc0jUthqZG\nzUYk453Ot99F14JAPqGwlZl3fXfQz8ZTU034xEmCTc24nMPLl6QH11mSOj/r2DAEbnZ4/2PR1PdG\nj2jknOZ12JVjrLbarRoF7gitXQFmTS8ZYa+Uv108uKfBBx98wJo1a7jyyiupq6tj69atI+6zY8cO\nbrzxRmbPns2yZcsGeEfPZ7Zt28a8efOYM2cO1113HT09Pdx+++3m842NjeTm5lJSMvCLbLfbqamp\noTGtp/tI/PjHP8Zut/M//+f/PBvTH/cEGo5iVYwbnT41h7rv/Q3z//056v/ub6l78AGqbrweSNWg\nBK319YwAACAASURBVOh+74MBx2n9r18bJWrCKYGb48uupXgwBH/3e8ay4bGcalTFSt4CD5ZJbiwu\nC15njBpvw4grAbG4xomOANOKDYHrzZ9M3GIkZdnIrkhTMJwmVGyZAteVY0SaSrwhYnGVE50BdF0j\nFjai3EmBm1M7ecTXyS8tgqhmfrbjXeCme3BxDt8gxelONXuwaP3cssxoT9zWHWTH3tOrzGFeiLMk\nySzZnQvAZkslmZ3qv4VUHdyRLAqQ8uEGGhqoLs8lGEtVEojHsqOZAYDvwAGUXEOwdkW8lBYMHvjx\n1BgNLULNx4c97+iqSrTLSF50lqUErqYYgl/JktCelgi86Zrh3x/Jf5vEnZOyE5bmBExLzEhMNA/u\nqP4zB4NB6uvrWblyJXffffeI448fP86aNWv4y7/8S9auXcs777zD3//931NWVsbnP//5UZmj1W5E\nUrPBorBo0SIeeeQRgsEgL7zwAjabjWuuuWZU5rd37142bdp0Xt1gBJubUbzGT6LfZlyE3ZWVuCsr\nM8a5ysvw1E4h2HiM7vfep/IrX8p4vuP3fwAgZ8ZMYrE4il2hSO0mGlNx2EdeXhovBI42mj62T11V\ngI6rIDM5o8Trp9cXGdADPp0THX4sxKkuMJZe84pm0BVogVgLOY4w/lCMnFNK/IxX4tFhBK7XELhO\nm0qeK0rjyX7K8zV03bjR0f1x4k73sBUUzGN5nIQtDpxRHZzKuLcoxBIeYT2uYfEOH3l0elI34JFg\nJ4vnzKekwE1nb4j/eOsIi+dMGvH1rC7js8+WJLN0i0JMd9DrMwTEqVFKNRIxk1lHsiiAUUmhfeub\nhFvbqPIqBKNpAjcaMOszj3diPb0oFca5Max5sVoHj715Jhs3h2ooRLSzK8N+kE60tw89nqh2kh7w\nsToBH4pdQYvFsNjH93lH1xLf70gywWzaae3n9JQYlRR0jbKcYEZS43CIB/cMWLJkCUuWLAFOz+/5\n0ksvUV1dzQMPPADAtGnT2LlzJy+88MKoCVwwRK63YOSoyljjdrupSdzBPv7441x33XW8/PLL3HST\nkWFcW1uLz+ejo6OD0lOWzWOxGE1NTSxatOi0Xmvnzp10d3fzZ3/2Z+Y2VVX5p3/6J37605+eVjQ+\n24i0d5gCN24f/sJQtPBSgo3H6Nv7CWoohNVtXHDDra0EEm1FS5dcyQl9OxAj3xamrbWHmpqRl4nG\nC907EkkfFgtHPFUUuiNYrEZ5Ha0zgqXESYknSEt737ACt6nVR01hPzaLcQ7ILZqBuyuI3gd5rijt\n3UFyqkYWfeMBXU1V0rDaM9+z25uqjlDiDfLp0S7m1abKEem+OJbyqtNO7gzb3eRHNXBaxn0ENxpJ\nCLiojjV3+MijzZGDxepEUyNEgl1YrRauvWIaz//qE/Y1dnOouYeZNYM3ikhiybIIrmlRUCy096Zu\nEgfUwO1LedrtQzR5SCfZzhggt7+dcDw9gps9qyPRnh6UmQl7hWXo74+7JmXJCzY3Dy1wO1Nd8jLG\nJH3zNgsxvx9n4fDfs7FG0RM3jhHttBPMIFlJoZRwoI1Sb5C9Xaf3XUiujEwUD+64qqLw0UcfsXjx\n4oxtV1xxBbt37x6jGY1fFEVhzZo1rFu3ziwVtmzZMqxWKxs2bBgw/qWXXiIcDrNixYqMYwzF9ddf\nz6uvvsp//ud/mv+VlZVx++23s379+rP/hsYB4a52FKfxk7DYh7+4FC6YD4Aej9O3Z6+5vfPtd83H\nxZ9bhNVlnKytLgut7394tqc8qiSrRMRrphG2OqkpSFUGUPcmitFboKO9adjjHGvrpzrfiN4qFhve\ngink5RsRcqdNpa0ze3y4SlrbZdspEVynJyVwS70hdh/sGFADt3Dm6XvZo06PWSps/AvcRJvemIbN\nO3yLa0VRcHqMf/9kQ4IvLpqCzWqcj5Lln4YjuZSaLZGmpF3AZnPT1p1aBagoyfQrn04Xs3S8tVPM\nihKR483k5qRuFNNXG8Y70b4eFI8hcG3OoW923VWTzEoKwebmIcdl1sBNBXssidJ+ilUh2je+E391\nXcemJG6oIyqeRFLh6ZK0KZTmBM2kxpGYaBHccSVwOzo6KC4uzthWXFyM3+8ftN7r+c7y5cuxWq28\n+OKLAFRWVnL//fezceNG1q1bR0NDA83NzTz//POsXbuW1atXM3v2bHP/4aLq+fn5zJgxI+M/m81G\nSUkJtbW1o/3WxoRwX+rC6nQNf3HJvWAmthzjQt6zc5e5PVlxIffCC3CWFOPOT0QPXBZ8x4Y+IY83\ntHicQKPRBrO7tBaA6aXGSVIPqqgNqYunr294f3FTq48SrxHhc3lKsFhsFBWmLjrdPefWHvRZiasa\ndiUVkT3VYmS1OcyGDyXeIMfb/XR3G55SXdUhqFJ60QWn/3pOj7k0Od7LhMWS5YyiGnbv8FUUIGVT\nCAeNSFuO207tJEPYHDiNFtCmVzBLIk1JgWu1ezjZaTy2WBTKCjMFbrLJA5xeBNfqcplVBoLHmilN\na5GcTRHcWCwl7N2eoaOqVqfTjMgm29YORtJahcWCozC1Gmd1pW6+Aj1DNxgZDwTCcVw243yjh7Uh\no9VD4fIaArfEG8IXjOIPjdzcwuLMrt/VSIwrgSucGVarlVtuuYX169cTTnwhb7vttv+fvXcPsiy5\ny8S+zDyv+6hHd3X3vF+S5oU00kgg9FiI3WG9eCFMMAgCRMiwgBUK70bYJtaLCeywIxByiAlWsbFC\nYUcQhKxZrxxesFjzhzDCsMuCFYOEELN6zegx0sy0ZvpV3dVdVffe88pM/5GPk6fqdndVdd2TWVPn\niyAodVf1vXPrnDxffvn9vg8f+9jH8MUvfhE/9VM/hR/7sR/Dpz/9aXzwgx/Er/zKr7R+fq9HpQf9\n/qOG0gkaH4xufHRFGMPqW98CQBFcKSWKS+vY/sY3AQBr734XACDVCyoZMFSbeytFCAHFpXVAl1yc\ngzpGve+kVmE3GTDjMKIiz2+suL18fgtrmuCmQ0Vs3YfY1ubRqBXNi9qWPAAq+3YnjA/39FiRmEsX\nVCmGXC8AuXcPHQCI4fjIKLh1aSwKAsnwxikKAJAZBXfW/O4fvlddE998+epNLW2m7OHoWBTU5xPF\nA5y/oojn6dUBoh1e0zbBvfmQGQAMtG1t+vJZ3La2hLxSKt9RiQrjeQ7p3FcrKzcmcqkWwcor198I\n2QzcU2st1TMaOgT3atgEd3NSYGA+l0Ig0RGhe0U6VN+fRALDuN6TD9cObxavDUExqFnC06dP4/Ll\n9sPu8uXLGI/HSJKjEXeyKHz4wx+e++cf+MAH8IEPfKD1Z0888QSeeOKJG/57d911F5577rl9vYfX\nou/WQEqJqthCDLV4jsc3H8448ba3Yf0vP4vi0jpmZ7+LC3/27+zfrb1LeZ2jWJFDkjGIyfbcfydE\nFE6P+4uzGCmrsZKoh2/Cl5ADEBscuIMhkdcnqFXNce7yNtYe0wruSBFck4UKAPk07KNCg1nBkemS\nBwkCytJd35ONz2Dz8tdxZpwDkEDxKsAAcb6AZBEGeyh5sBiNgVIF9odOcA2Bk6VAshcFd3BK/9wU\ndTVFFA/x0L0n8OnPfgdXtwtc3JjhtpPXJ8qNRSHsz8XAVXDXr6rPaqd6CzgWBULsCdHNMLrvXmz8\n9RcwPXsWy8MY0+0YWcyPjIJbblwFGTdU5NTajQuFYu2bvSHBXTcRYW2ynI5XAG1zzq/tLcPbF7Ym\nJQa6FlzmHMmd+yO47frwHOcuT/CGe278XLM5uEfkvroZglJwH3/8cTzzzDOtP/vsZz+Lxx9/3NM7\n6nFcUG9uAolSjaQEVldvPnyw+ra32q9f+bd/iPN/pJrL1t71DntsGCV6iCSjkNOj8cABgNwhuN+e\nRbhrdctY/TAYqJYcXFQP6tX0GoSYH5z+3YvbGEQlslgRw0wruCzKUAvde15tzv3Z0JCXjYJLaDr3\nRMMouMOkxN0rW0jMUN75HMldd4NGe9cU2NIypLUohJ2iILj27FUC6R4UXOPBBRof7kP3Ng/fb7x0\nY5vCUYsJM0NmUTzE5avqPa+t7t4ImCGzaDzes9/SKLh8OsWKmNokhSI/GhvqamMD0AS3qgluO31j\nImeUzPLK9RXYpsWsPWydOAkf5STsdWdrWmEQa1tBIVpWi70gGTSfo8nCvRlY2ufg7hnT6RTPP/+8\nVQrPnj2L559/HufOKV/aRz7yEfzqr/6q/f73vve9OHv2LH7rt34L3/72t/HJT34Sn/nMZ/CLv/iL\ni3ybPXogv3gJZKhjakqGk8s3f0gnqytYeexNAICL/+7f23ife9770/Z7olgPNcQUpDhCBPe8Irh0\nNEZBE9y+pN87oRifvF99fVE9tLOY49Ll+TaFV9cnWBs25CwdKUWFEAJOtLotjsaDeFbUyLSiQth8\nlTJzkhTeelezSRDnc5x45MF9vV60vGzrekPPNJVCXfuylMiWbpyDC+yOCgOAO0+NMdJxcTfz4dIj\nltdZOwR3/Zq6H07NaZbaa4uZi9F9TQLQaHMd01KRxaI4GvdVuXEVZKDW3mkZ4+QNElkAIF3TBHdj\nA/I6G+t5Nb0AMHQ2X1Ue9nq8uZ1bYUAewKKQpMsqKgxawd2DRcHcV7KqIDm/yXeHj4US3K985St4\n8skn8Z73vAeEEDz11FP4iZ/4CXz0ox8FAKyvr1uyCwB33303fud3fgfPPPMMnnzySTz99NP40Ic+\ntCtZoUePw0a5vg7oKd5JEWN1affx8zw8+Mv/NbI7brf/e+1d78TIGcKzCi6AGGGrcC6MgitW1aJq\nSGo6OInBnSqqRq435OL8uRfn/jvn1ifWfws0Ci7QJFWM4tmeBiB8w1VwKWvISX7xIp7/zd/CxT//\nCwxGzfHqW+5SyqTcroFtjvHrHtjX6yWrK5CVOlUQPPTPR7+/UmAwvnm+d5wugVCtNGqCSynBQ/oI\n9Rs3IbhsoC0Keb6nCErfsBsUmmFzojYDp1Z2EznTYraXATMDN1kgvXrJlj1UR4bgbtj0mkLMPxlx\nYYmeEC3PsgGfzVDrjUKyw6KQDZpr062XDhGT6cSemsmc75vgEsqQ6ESK1UGBVy7d/HowJyPAayNJ\nYaEe3O///u/H888/f92/n+crffvb344/+IM/WOTb6tFjF1wFd7vOkO6xkCE9tYY3feiD+NoHP4Ty\n8hXc+5//bOvvjQcXACJ6dIz7+XmlyM6Gq4AETo3VsWo6PIXsdkXo5dWGdF3dmK/gnr/cEFwWD1uE\nP8lWILfPYjk9Glm4ecGtghs5GbgvfvxpXH7mr3D5mb/Cw8k/w3D5Hkw3zyKi6nvFefXZjV+/9wEz\nABicXAW+YWwzFaSUwQ56EmivYCn2pOASQpEO15Bvn0c+bTzcD913An/7jUt44btXUXOxawjLgOlp\nbwgBUZb2aDVESMGthaOoYwDGojBHwb1manr3NmAGqMrewR23Y/bKq2CXzmO6pvNk67BVf4NqYwPI\n9GAcbv57TE429rHyyhUkq+2je3P6BADZ7W0/72jQKLiCh70el+6JXyGQHCCzNxmcQJlvYCXL8dKL\nWzddQ0yKAqBPR/ZgNwoZQXlwe/TwheLSJXtMVmF/DXPpqTU8/i/+Ob7/X30cwx1DRC0FN6qve6QW\nGoqL6iFxLVaDLqdG6qGcDU8hOXkCNEkAAZS5Wiynk/l+uHOORSEbttWU0VgpEstZYY9tQ8asqO2R\nobGeFJcu4bIpxADwzX/xUZwevwOENBskcb4AKMXwvv2VyQzXTgJVc71IUd/gu/1BSgFC9XFmJZCO\n9nb/mMpeo+ACwEM6SaGsBc5euH7qiDlKBcK3KbgtZtulM0w1z6KwuX+LAtA0fIkL56wHV/LZkVC3\ny42rVsEVeyK4jZI5b9Bs5pwKD5zTNQAYugRXhE1wXVsS4RRstH+ymQ7U/bQ6KDCZVbh87cae9ZaC\n+xrw4fYEt0cP6BYzreAKsv+FhDA2dyjEVXDpgIJPw1dV6u0J6i11nHURQySMY5SoxS4dngKhFKke\nohP6P6cu508kn7s8wdrIqL/tgY+hjmLLYo7JERjAcz24caLIybk/+mMVp0YpaJJAlCW++/FP4c43\n/EP7c+LVGVYee9O+VcbR2ipk3RCUUBUn4R71lsImHNwMg7G6hmbb5yGlIvL3394Qu5fPX5/gth7E\ngQ+acUdJ3Zo16tmpeQruASwKADC8Vw2ala9813pwCfgRsLYA1dUNINNUhN782olPtBXcnTAKLmFs\n15BZnDTXTagbRgO3njvOlg50emOSFFYHBQCJF8/deLCOOmvUayFJoSe4PXoAyC9dArSCS9jNj1j3\nCqP0ASoqzAyRhIz8YnPEd7ZKcNIZEjMxX4M77gAAkKlS7uicQbGq5rh8dWp/3vyswXjcKDH5JPyo\nsLyskeqYsCTJwIsCF/7fPwWgqpvv+0c/BwCYvPACogtDnFp9B6o/vwR5qcSZJ/7uvl9vaZyi4I3i\nJ0SYZIXzhuCKUoLsMSliuKxImeAF8omKdTp9YoBBqu7DGym4rKXghv0gdr2eGxO1YYkYxfKoHX0p\nOUe9re6jvbSYuTDxc6IsETm87ShEhZVXroLo3zmNbq7+R8OBrUYvL88huFrBTW87s0t0IIRC6E2j\nsdWECuES3NHB7FsmSSGNOAZxjZduQnDdTXiv4Pbo8RpBuXkZRFeFxune8if3AkIZpNS3WUznDkWE\nhuJC46d9uUxxctgQCDP9brxtVB95DaMpqro9dXv+8hTLWYGIqgfKTotCOmy8c1URPsGdFRwJ04Se\npbj67Jes0n3Hf/ajuP2H/xMkesL7u//m91B94TL4V7dA0xRr73zHvl9vPIiRS4fgBqrgugSurume\nlabRyj3268k1VfdMCMHdZ5T/9OUbEVx3WChwBdf9vW1sK6V6bSUDpe3PqZ5MbbnKXkseDNy0gIHj\ngjoSBPfqBqAtCiza2+mZ8eHOVXB1w5mZFdgJaXlt2CkBUjTXdTzev/8WaCwKALCaFXjx/E0U3CNk\n/dkLeoLb49hDlCW4aHbLyU1qevcLCeWJIzHB9ErY4eKAM6RBKbaikR0SIzRCkilSmmkFFxvq78Zp\niVcvtRfP85d3RITtILiuul2W4Xtw86JGzBR7oCzB7BVVUUwYw8obvwc0SXD3T/0kAGDy7e/gwmf+\nBIDKRXYJ2V4xGsSYidj+bx4swW0exJzv/ZESpyuIEkXkpptNjfW9t2uCewOLAm0pTWETXHcDcPma\nIlXz7QnN2rBfi4LrSx06G83Q28wk56hmWyCa7CfJXgmuycLd7cHNzyuCu9N/ayC4ei1CAie4+n6X\nXCI9sXaT756PnWUPN1Vwew9ujx6vLdTbE+u/BYDRaH+B2jcF1UeRMcX0SvhKpS15WDkBQagTEbYG\nonMVjYIrt3VsFgFedaaXAeW/PTFw1d/2Iu1W3dZV2CQFAGZlZQkuY4l9kKZnTtuj0Nv+wd/H8P77\nWj935om/d6DXS2OGmXQ8cYESXOESXLG39BFAqbVGxZ1c+67983tvUwT33OXJrlMBAxMTBoT/IBaO\nhePiNXW/rM2NCGsI/X4tCm6ywLBsjt5DV3CrzU2QuFGy08HeTs+uV/YgyhLFukrlyK5DcLXdG4SE\nPfBrCC4q0fr97geqMVJ9viuDAmcvbKPm1//v7j24PXq8xlBPJtZ/CwDLS4dLcGmkF42YYLYRvoJb\nXFR+yFITfaPgugqsUXANwQWwq+zh3PoEJ7S9IYpHLUILKBXUIPQqWgAonQWfshj5q8rrZ9VsADSO\n8ebf/J/x0D/9Zdz+I/8p7vtHP4eVt7z5QK9HCEHpDN2ESnBdhVI4ivNeYAjubOtVCD30c48muEJI\nvHppPkFrxRmFruA6BPfCVfXfODdB4Vqjru1XwaVxbJMXhkUBE54QuoJbbjgDZgAGeya48+t68wsX\nYf7jr2dREEIruDTshAnG9alWLQ9McCmNbC366iBHzUWr8OEv/va7eO//8Gn8/p99Q71m78Ht0eO1\nhXoyAdElD0ICKyuHTHA1kSMxRXE1fA+uGXSZMLXY2YiwUUNw09OnAEohtxqCu3ltHS7OX55aBdet\njTQghNq6XlflChV13RBMyhLMzs0/CmWDAU7/3R/E6//LD+Du9zx5S9m13CmUCHUinnNHwcX+CK4Z\nNJOSY7alNgz37iFJoa3ghm1vaVImCNavqd/h3JreLZfg7s+DCwDJSXVCMipnmFXqvgpewb16zQ6Y\nAcBouLf/bqPgVteuQdTNGpQ7EWHXV3AV7QldwY30fSVrue+SBxeptimYtdgkKVzbLvC/fOpLmOQ1\nfv/PvoGi4r2C26PHaw180lgUZkW0p5re/YA5Cm65GX6KgiG4WyJCFtW2D92N+aJRhOzMGWDK7ZFf\nMWvbL86tb1sFd6c9wcAQIhmoOumiKh0SLohqv0NbwT1syDj85iXzvqSUkCS5yXe3MW/Q7PTqAGmi\n7sfrDZrRJIGpeQpdaTIKLmEJzHHxPAXXWBRokrSGffYKM+CYFduW4PIy7FhCPpu1FNzxeK8EVyua\nUqK62pyK2fkBQpDddtucn4Qd+iV7d9N4QSz1dV0frOTBIBurz+HOFbXZ+fxX1cb8f/9/nsNEN0jO\nCo4vPn8BRMcdAoAowl+Tb4ae4PY49qgdgjspY6yMD7cVKdatVySmtkIyZNQT9VDcqKglqACQ7SCp\nxodr5vNEdc0Gy1e1wIUrjQc3naPgAoCAJkQy/MW0dggm32yUsespRYcB4hBcEahP2XpwKwnsM+s3\niofW+rJ99UUAqrLX2BRevjD/xIMQYtWm0C0KQiv/Eg35nztkdk0RtWjpgJmnmuDG0y1LcMvgCW5u\nSx4AYHmP1ox22UPjwzUlD+mpNdB4/mmC1LQndItCbNbE6uAWBQAYragSkKW0xFJa4C+efQV/+vmX\n8Cefe6n1fX/57KsAGh9u6MObe0FPcHsce7ge3FmdIo4O97aIY/3Qjwj4dtgEV0ppFdyrFcFK1pA6\nk6BgYJVL7cMdxTmubJpjsGuIadU0f9ExXvxX/xpXvvA37RckOmEC4RNc7lgUyisN8RosUMGNBkNI\noR7EdREmWbHKcilAkv0puACwdPINAIDN9a9DCnW9mEGzG5Y9aJtC6A9io+AKNJFv84bMDtpiZmBI\nH92+horrVsZAN0UGoshtTW9ZU4z3WA3rEr5ivbFG2YiwG9yTUkfvEYZgm96EkIh11bfkEuwWKnPd\nU5J7VrchhMS//DfPQkpgkEb4O2++EwDw+a+dR17UNkkh9JORvaAnuD2OPfhkCjLSiywOv3vbEtyY\nQgbe2CXKElJ72mY0xbJDcONdBFcfAeos3OWswNe+rdSUr7+00UpQuPCHf4pXPvVv8fWn/jlqp82N\nUPXZRKSCEGE+bAy4U7RQXdZ2DEqRnjl9nZ+4dcTDIaCD6XkRptfUeHBlKVoevr1i5dSj6t+pZ9am\ncP8diuS9emkbeTE/kJ+lR4PgGn+58ZsDwOqcU6KDtpgZGIJLqhJ1rRTgqgqbpPBZDqItCgWPweje\nlOvklJoBABxbAoDZK0qFvCHB1d4EEhG71oWGvKwR6cQWiL1nS89DNjoDqucp3v1w8+8wSvDf/dz3\n4cd+8HUAgKLk+MLzF+wAZ+/B7dHjNYB6MgHRCq48QE3vzWA8uCSmILOwCS6fNOQzp7EluFEyBqXt\nhqrsdp2ksKWI30pW4MsvKDXl6y9t6HpIha2/eQ6AItBXPvd5++cmYSJhHLPrEJlQ4PqEywvqvzM9\nfeq6R6GHgWQ0AGr1oKsDzQq2EW+laKUb7BVLJ98Aoq+ta+vqOnnwHrWZEhJ44ZX5ySNGwQ3domCU\nf6OqLg0TMLb70VtrghsdYMAMANK15tjeVDzXoRPcogD0kFnJ934f0ShCpuvCTZoJn81QXFRJLsN7\n7r7+DxO9jjESbJlBXnJETP0OpTw4uQXUMO9w+S4AwOvOzJDE6vP+b977Vnzfo7fh0ftP4sSSWoe/\n/K11q+D2HtwePV4DqByLAokOr6bXwOyeERPQ2TTYYzGgGTADgJylWMnUIpeku6siB1rBNUkKw6TG\n8y+qI8Kvv7Rh/buSS2DS5Jmu/+Vn7dcmOiyNuB14CBaOglucVwR3kfYEQNWSykrqlw+TyBmCK0uB\n6ADDUSxKsHTi9QCAa5cUwX393aswYt43Xt4d5g80rUuhH6UaBbfQBHd1ab6Nw1oUDqrgOgQXldoU\nhVoOYuB6cGu5P/V/cKe694zvdvrdV+zfDe+9Z+7PAGgIbkQVwQ4QeVFbgkvk3qqvbwRjU6hn5/Av\n/+nfxW//syfwxPeqP6OU4LaTSti5Nimd+yrM9WY/6Aluj2MPnm83TTrpwdSTG8HmvcYUVPCgFad6\n0ijMBU2sgrvTngConEkSRa2osMnWZbx0brNV8iC3KkCqRi8AuPrsf2we5nFDcLcDJrici1Z3ffGq\nUooWmaAAAIljUQi1DMO+r0q24rv2g5XTyqYw2z6PcraBQRrZQbNvnt1djjLNK5vZGfqD2HiU80o9\nbpdH84ncrVsUmiFQWqkNZejpJKJoLAqC7I/gmnvPKLjTl1+2f3dDgku17z8KV8GdFTVYpIWQQ4h7\nGC2rQTNR5zg1muH+O5YhBbdii7kmtyYlWGpSFML8bPaDW98a9OhxxFGVjWqZZXsLGt8PWKRzcBkB\nKFBtbR2ourULuAQ3pwlWB1rBnUNwaZJg9MADmFz4jv2zU6MZ/q9//00ATe6ivFaDZhnuee9P4/Iz\nn4PkHJf/6q9w+w//AyRJhhxAysJWcGclRxI1KnRxwUSELS5BAdAWhW1tUQj0uNkOmVUC8ehg1/XK\nqUdxFv83AODa+vM4fc+78OA9J/DS+S2r4HIu8Nu//yy+8NwFXNsu8UvbU5xB+BYFo+DOSrWJnue/\n5UVh/zv222JmEC2NQeIYsqoswYUM954C9ObkpLaH0f1tjoyCW165Ap7nmL6s6p6jpTHi1etn4J6e\nMwAAIABJREFUmRMjODCCOlD1Py+5JrgElN66BcodNLvw4n9Akq3i/Iv/AUm2grse/BEsj9RrXNsu\nrM0o9I3jXtAruD2OPSonSmcwPHyCay0KABBT1Fvb1/9mz6i3HYLLYoxT9QBIst0WBQBYeuQhyK1a\n2RCgWs/+/G9U7epJXRAhNysM77kbw/vuw0B74y5/9hn176bqaCyN6qAV3LyoEVNFNCUooOsu09On\nbvRjt4x0NLIWhXBzcHUMVi0RH1DBTYcnkY2Up9LYFB66V5GUC1emuLZd4LNfehV/9tdncW1bvd4l\nnd4hyrBVSmMT2M51Zep4t0XBrek9qIJLCLE+3FRXHJPQCa4zZEbZ/jZH7ulJfv48ZmcVwR3ec88N\nh7KoFhwQERTTMH3ts6IGZeq/wW18PCjibBXZWG3G11/5PF594U8geIF8chEvPPs0Hl75EgBgc1I6\nHtww15v9oCe4PY49at4sckvjgz1cboTWAhWToJuXuKPgRhnAiCJX8xRcAFh66CFAAvKqepCeGqnN\nAiPCRozJzdo+dE5+/9sBAJtfew6iqjDI1EMtYhKTabiKwayoETOj4DYHX/HS4VtaXCTjZsgs1CYz\nWyFcC6QHVHCBJk1h88q3IHiFB+9poqC+efYqPv3Z77S+nxN9tB3oJLyBaTLb1pf3vJztW20xMzBJ\nCkmtrhVKOKQMt7GLFzmgPbhRvL8BX6PgAsDs1XNWwb2hPQFOdXpEkG+HuRbnZW0SFJuioFsAIQRv\nePwXsHzqEftn49UHEOvZihPsRQCK4Noc3J7g9uhx9CGc4aHxAggucwguiSn4LFwiZywKFY2wNGiI\nQ3w9BffhhwAAckORHFPre/eJHFSTY3m5tMrt6psfA6BUt61vfBNZ1jzUprMwc14B9cBJdGwPkc2y\nGS0dvuLvIh2kzZCZCJPg2uG7SipLxQFhfLhSVNi68gLuu2PZZlL/8TMv4mvfURF0P/R9emBGexNl\nFejnApWzanJwJ4VRcOcQ3GsNwT2oRQFwyh6cCfhQN0YAUBczEP07jpP9Edz09GkQpgt6Xvg2ikvK\nNnQzgssSXbxDCMppmGtOnhd2LiRKDqd4KB2u4cG3/Rd4+O3/BA9+7wfw0Nv/MW5/4An1GpggZTW4\nkOBMMWsRqH1jP+gJbo8etHkArB4wZP2G/3zUtiiEfPRjCG5Ok3bJQzpfwU3PnEZ8YtUquPecLPF/\nfuhH8D/9/AP2e8R6YR86S48+AhLpSKgvfwVR3Bxp53mYDxsAyAtuFVziLJvRHqtFD4pBGoFz9aCT\nMkyl0rwvWUtko4PH7I1X77epGtfWn0McUbzhbnXdfU7Xi8YRxc/+8MMAAHEEFFwpapgu67JWZGye\nRcHEWwGqheugiFeV6h055EQEPGjm2m7SbH8JNoQxpLqO98pff8H++eCeGxPcKGnWnDIPM7Yxd54R\ncXq48xrjEw9gee1BEEIwGDd1xqfGSs2udGQf73Nwe/Q42hBlCRLrUPSSYHV8+MNftKXgkqDN+8aD\nmzsJCgBBnM0n/oQQLD30EMSGIriCF0hojtmWiuyRWzUwEzaXkqUplh56EIAiuJQ1D5si0CIDAJiV\nNWKj4IruFNwsicA1f5PgN/5mD5BSghD9vmqBbOngMXuEMiyvqROBa5eeg5QSv/Rjb8TyqLl/fvDx\nu3DbySEGKXMU3HAJrksuTUzYPAXXlBVES0uIRgf/DKOx+llWNJt2M+QWImrZvLeDDPgam8L0pT0m\nKACIsmaNrwK1i5WzZk4jSg8/m90gGzVDsmfGau0vtQWrV3B79DjiqCcTwDTpVBRZevjBIswdMoso\nqkmYiyrQeHAVwVUP53klDy6WHnnYKrgAkE8uYbqpCK5YL0DTFOnppu1r5bE3AQC2nv9667i/DLTI\nAABmeY3EKLja0kjiGPQA1bT7QZowcK4/IxKel1IKh1zWEtn41h7Gxodb5hvIJxfxyP0n8b/+6t/H\nj777frzt4TP4uR95FIQQnFodNB7cgC0KrkJpFNx5KQqG4Ga331oqR6QrXalDTkLOwpWkuX7Go/2f\nhuyM6YuWlhCvzLdTGcQOYQyV4NaTZugw2qd1Yz+IkhGY9j6fHqnPIofeOHIe9L21F/QEt8exRj2Z\n2Cneql5MI9XOIbPZdrhH8caiUDgWhesNmBksP/Iw5NXmITrbPo/ZtsqmFJcKDO6+G4Q2S40huLKu\nMXvpVfvnVcAEN3cVXP1MjsbjW6rQ3AvShKHStaug4RWEuAqlrOUtDZkBwPKph+3Xm5e/of5slOAf\n/+Rb8OsfeBdOrap//9TKANwouAFbFFz1tNQKrqtIG+TnlQUju/3MLb0e0wQXVXOthGxRAGlOJUaj\ngyu4Bnf9xI/f9J6MnTKSUI/h+awhuGywOIKrbApqU3V6rJ5LM+eE6qi3mfUEt8exBp9MbVVkLRej\nxrkxYSSmKCfhE9ycNRaF60WEGYwffAMoSSAnimhcvfgVq+zJS+Wu2sylhx+yyufkWy82rx1oDBYA\nzBwPrkk1iBdsTwCURaE2Cm6IBNcdfKsFogPGhBnE6RIGS3cCADbXv37d7zsyCu4OgkuJqup1IaU8\nPAXXeKDrRu0PleBKzgHavM/hYP/WjBPf+zZES2Nkt9+GR//H/x53/+RP3PRnUseDywMtTxG5m2Zz\n+O2aLgYj5cM9s6SeS1PRbBBC3QDsFX3RQ49jDVfB5bi1h/P1QJlzm8UE5RGxKKwOFXG4mYJL4xjL\njz6CycZFsFGErSvfsn8nLhUY/mCb4NIkweCuuzD5zndQvHIR0GlQgoe7mOZljZFWcKUO0Y/Giye4\nacxQaYJLKCAFB6G33mx0WGiRp1raiKFbwfLaw5htvYqtjW9D8AqU7T5ZObU6wIYmuLKutRd4sWr6\nQSCcTVtRMyyPU1Dafp/11ja4nubPbr8Nt4KjpODyogBJGo1tdIABxey2M3j7//a7IFG0599/4tiK\nRKDlKdI5zYoWkM3uItODZitZgZTVmNbELMnBZ0zfDL2C2+NYo96eAJk+6owWcxRECAVoU9dbhxwT\ntm0sCjFGsVrc4vTmyRIrj72p5cMFADmtgQm3UWIuzIM8f/UCpNQpAYE+iAFd9KAVXJkrdXrRA2aA\n6omvRbNBCo2suBFUvFabnVvFyikdPScqbF/9ztzvWXMsCkC4NoWdCu7KDewJwGEouErtk1WjjIbq\nweWzHEjUvc85kB4wDovG8b42N6mzCRMizM+GVA3BjQcLTmrZkaSw5W6OynBPR/aCnuD2ONaoJxMQ\nHTROk8URFqoJbsgpClII1FpJqpIETB8fRvHNj8hW3vwY+PNbkHnjqROXSpA4nk9wdcVtcf4ChEk0\nl2GqKYApetCFC7la9BcdEWZQy4bghkZWXMLNxeEoy6PV+61v/dp1bAqnHYsCAIhAkxRE3Xw+Zc1u\nmKAA3DrBZaPdCm5dhrneiCIHidXvsK67O5VwLQqiDpPAUec0K15ANruLbNQQ3DPjCbadj6RXcHv0\nOMKoJttNk062OMJiB81iGqyviec5IPQx/KB54Oxlinf8+teBblIU//ossq01YBPgf3sVy488PDdp\nwBDcemsLgCK4DBU4Dy8pAFDd8CZFQc50ukQHCi4AcMdJFlrZg/t+uDwckkJphKUTrwdwfR/u2mp2\nBBVcep0EBaXgkjhGcvLErr/fD0yKAriE1By3LMPcOPI8B7RFoRbdUZE4btYjGdj9ZEAdZTk+QLrE\nfhAlY5ukcGo0w2bhKrg9we3R48hitnXVHm9lCzTzuwQ31HzBervJXiSZQ3D3oOASxrD8pu8BCoH8\nT15G8X+8BPFKbhMTdqKlVOmHWxJxTPIwiUpRcqvg8qn6/d1KXul+wElz7B+yRUEc4kjHymlVKZpP\nLiCfXNz196dXB6hbCm6YRMWkKNSCQkiK5TklD3bA7LYzrbSRg8B6cAHUOn2jDHaQqgCMgiu6Gwdq\nebplmNcNlc19zuLFzIYYEELsIPEoqbCZNyJDyC2Be0FPcHsca+STpiIzW6DXKdJtZiQmkIE2mXEn\n3cEM3gGwu/ubYe2d7wSgHtiSK7XzegR3cEdDcE1SUMo48jJQgls1FgVpLAodKbiCOEMxARNcLg+P\npKyeeQyAImhXzv/HXX8/zGLESUNUZKBHzSYH94YZuBcMwb21ATNA+VHNiYkpCKkCVnDNkBmXi4lo\nnAdKXYIb5noTQV3PkstOhkqNiDGMK1wrHP92HxPWo8fRRZk3quVBgsb3ChbrB1tMIQN94LgKLnUI\n7l4UXAA480N/D8vf82jzbyQJxg++Ye73JmtrIGYgSQ/EpBFHXoT5wOGOl9L4G7vy4AonZq4OrO3N\nHdKR9PBISpwuYemksilsOAS3zK+hzK8CAIZO62CwHly9ISlqdT/N9eCeMxm4t+a/NTA+XMPdQo3f\n47Mc0C2SAostTHFBnNIaEmA7IAAwE7bd0dszIsYgrrFZNhYFWfUEt0ePI4u6blTLpaXFmfkZa4bM\nECrBnTjZi275Wry38H5CKd7wX/0TqyAtPfrIdafqCaVWsSJ6MC2NOPIyzAcObxUadJeDCwDSJbiz\nyQ2+s3u4Cq6kh0tSTtz+FgDKpjDbPo+tjW/jK//fU/jqZ38LZX4VS0vNyULwCq6t6W1/RrwoUF65\nAgDI7rh1BRdofLhCb8TqQKOwRNEouOKQr50bgRCCpoAvvPVGSolIH2vJjt5eZAhuUtsKbKBPUejR\n40hDiGbxX125cd7rrcCWPcQUJNBdsUtw41Q9HFk02NcR2eDOO/HQf/vLWH7TG3Hf+372ht9rH+ja\n05pGdbAWBbkj7xXoJgcXAOBYRHgRGsFVn4usBRDfegauixNnHlPhvwDOPv+HeOHZpyFFBcFLXL34\nVQxHTtxTsApu26Kws+Rh+1vfgpkGG95336G8JhvqqDB9nYaWvGGgFFydZcwW6zPdCalP4WmA9ddF\nyRFpOxREN9nOluDGFWriDLUe8SGzvuihx/EGqQHdvT1aYKA2i/SDLSLhElydgSsBJImOCEv2P0i1\n9s53YO2d77jp92W3q5pNsT0DQ4aEceRFeIoKAEgxx6LQkYILJ8WiLsJqwbMKbi2B+HBVuCgZYfX0\no7h68aut8hBA1fgmWXOkH2yKglZwC63gjgbtE43Nrz0PQA1pLj304KG8ZtSKCiOtuuCQoIoeFIGj\nHRNcIQgYJEiABHdma8GZHcBdNCLHoiCcTGER6LNqr+gV3B7HGkRHP9UlQBdo5jcKLokpaF1BivAW\nVtOmVNAYw0SXGexxwOwgGGgFV24pX2kaccwC9eCK5kzThuh3peCS1FVwA/Xg1hI0OfxBofve+DM4\nfc/fsYNB6fA0AGDrygtIh066RKDT3kbhLq9DcLeee079+eteB5YdDslrsnB56z2EBj6bWQWXRoer\n/t8MUiujJMD667xwFFx0kw9sPLiUAGksICN1nYojPmTWK7g9jjVIrI/xqsXu9dyYMAAQRQE22Ju3\ntSuYAoqSxBgmijDsNUHhIMjuUAqudIbMNoowiQpx44RqCVDaimRaJKLBELIWIBEFrwIjuFrBlbUA\nOWQFF1D+73sffRJ3PfgPUVdT5NsX8K2//TgEL7A8atTsYBVcHdhvLApjh+BKzrH5vMr5Xf6eRw7t\nNSNtUSD6vgo167XOc2BNrYesc4JLAYgwCW5Zg0XqfRHSDcF1hYxBXAFRBNRVsBvHvaInuD2ONcxs\nA+eLXUiYJbi6mjJAgit0fFlFIwwTpf7sNUHhIEjPnFFflOpBzKhEHqpi0CK4AtF4vK960FtBPByo\n4+YI4IG1Utl0iQUpuAYsysCiDFE8BiEMUnKMB1fs39eBXjemyazkDJQAWdI8cqcvn7XRfMuPPjr3\n5w8Co+BSreAiUIJbTicgVN1D8YKzXndCSq0cswAJbsFhDhMJ6SY+rU1wa0gWgeDoe3B7i0KPYwvJ\nufWACbHYhcQcwRFKAEbUgEVg4HlDcEdawd1Li9lBES+r1Arp1IoWgRE4QE01uwRXVrK7ATMAyWhg\nB9t4YJFPtUNwWbJ4FY5FCUarahgrY00BRDEL63Mx4M6Q2TCLQWmzKdr82nP268NVcDXBtQObYRLc\nyvGTx3tMajksCN26Rxixmd2hoCgqML0PapVSLBDuSd0wqSH0G+gJbo8eRxQ8z22hgcRiFxLmRD0h\nJhAB1vUKbVGoSKSOqbBYBdcOw9SNHznEUPqaC8TU8UzXorOIMABIhkNr42jl8QYA835kLUHTbh7G\nyydVtjLDuumCQB4owTUWjpLT3QNm2n87uOtOxCsrh/aaTDfsMa3gkkDbuqqysdskadenWZr6MBJc\nmUExnQKRGb7rJj7NXecHcQWhs4KPukWhJ7g9ji3cLnRCFqs+uTtxElOrloYEri0KdRwh0oRukUNm\nhDF1nFo3Cm4ZoIJbVAJJ5Kg8HSu46SBtIp9CU3DNAFMlEKXdPIyTwUkAAIG0928ZIMGVUkJoe0C1\ng+BKIXDty18FACwdoj0BaBRcsymiCNSf7FzLWccEV5oorIhABLaprrYndlZj0TW9Bm7W+SCuwbVH\nos/B7dHjiKKYTG3QOIsWu5DQnQpuHh6RM+9JZo1PcJEKLqCSCKRDcKvAFEoAKCtuFVzJJSA7jAgD\nkGWRbaXiPKwHjjAkpZaI0m4GhdxNlzmBCZPgchu4WgnWGjDbfuHbqK6qRrYTb3v8UF+XtWLCVNar\nFGEdwwPtdIes43kEogkuiYidPQgF1fYERCu4UdINwSWUgepnoCK4xqIQ1mezX/QEt8exxdbGllWA\nFpkWAOw4aoqpTSwICUbBlQOH4B4gB3c/iMbjloJbB5i7WFYcsY6TM8VH0Wixn4uLLIlgbIIisIEh\n16LQlYLLXL9mppSmMrBjZgCQzmak3qHgbvzNF9UXlGL18bcc6usaBde1/oRY9iClQ3CzbhJJLEyt\nNCPBRWFV0xyI1HMp7lDZjiL1WsO4sm1mvYLbo8cRxdbVLRB9FJRkiyUs1Ok/ByNBElyrKmfNsrBI\niwJgCK7zIA5QwS0qjsTkUppj30PKLN0L0phB1ErRkV11d+4RtuGtFoiy7hVcoU8bqjy868bdjFSc\nthTcjS8ogrv8PY8e+mbJeHDd4c0Qs3ClY50YDbvbMAIAMQQ3IqgCG/itZzPrwe2U4GoxYxDXqK1F\nIbzrZj/oCW6PY4vJ5jX7dbrgBbblwY0IRIgeXP2eyKCJTFu0sh2NRy0FN7QjeEBVZxoF1/gaDyuU\nfy9IE2YVXInACK4pwKgl4o4sCixqrkmZaoIbmAoHtEllJZhVcMur11RFL4AT3/u2Q3/dpsms2TgG\n2WZGmmt5kS2Sc19aN0uSiKCYhJUtXc+mIExbFLokuE6bWaULJmQ/ZNajx9FEMdm0Xw/HhzfFPA+m\niQlAsAqueU80dRTchVsUlloeXCHCIyrKorBDwe3oOB4AsoSh5lrBRVgNeFI2Vb3xoKuJ7+ahL7VF\noQpQaRK8USjdIbOrX/xbQKpr/uT3HT7BZXbILGwFl2hfuxBAFHWTwGFATXU6oygCU3BF2cSnsQXG\nNO4EswS3QqWpYa/g9uhxRFHMtu3X45XVhb4WcfMMI4I6sEUVaAguy0xETdq2ViwASsFtSJvk4U18\nl5VoCK4m4yztTsFVHly9VNOwCC70MbOsBOJBhwMxZmhTE1weYAOeu1mrOMUoU2vAtS9/GQCQnj6F\nwT33HPrrWg9uFa4HV3JuSxZ4TTorTTGw1cARQRnYWiyd+LRo0J11wyi4w6RGid6i0KPHkUZVTOzX\nw+VFK7gNUSQRRTUN61hM1DXMObjhDov23wK7h8xEgJmdRcURU21RqI0Ht7tq0dRRcBFQtaiUAgQN\n8U87IrhAc20STXDrAIdhhGO3qUSj4E6+8yIAYPzQgwshdoQx5RF376vAvO28KAFdsmM3bx0iMvFb\njKAKLYGjbgg3S3xYFCqUUhcgBXhf7Qc9we1xbCFqZ6ecLnrIrG1RKEMjuI4n2IobC7YnAJrgCh2/\nBQRZK1pWHNEuBbdjgit0XnNAK7ZL4FBLJIPuPhNznGr84jzAB7FopSiomDBRVZie/S4AYHT//Qt7\n7WjUlIOo9xIWwZVVabNeF12TPg+Rbt0jjKCYhbUWE8cvzaLurFCNRYGj0A0qIsBUm/0goOWyR49u\nIZygccYWqz4RyiDN7RYRNSkbELjTrBalmsR1UJ9pG8E0wSWoIUQ4KiXQzsE175N2SXBjhsqoXN1z\ngevCTQmQtUDaIcE1Plyi/eIhNi7tsigMYsxeeQWyVraO0eseWNhrs2G7QCU0givKymaQc+mB4GbN\n2laH1irp/K4I7c6b3EoniYyCG9Z1s1/0BLfHsQVxHkBdNMaYcHGw8Dy4LQXXJOhEiye4JtLI+HAj\nKlBUYSUFFK6Cqwd3ukxRIIRACEUCCCOQMgwf7k4FtysPLtA8jGkWMMGdY1Ew9gRgwQrucNjy4NaB\nNeCJurIKrpSL9fnPQ+wUKNRFWGIDdZ5LbvrOotEiuHFvUejR44hD3bySy4UPUwEAaNOeE1qKgqvg\nJolWKaPFK3Lx0hKAZuI7Zhx5EdagmZuiID0ouADA0VyfIpAotZYqWEmQuPvjVJP4YVTRkDAvB9cQ\n3GhpjGTt5MJem2aZsv7o05CyCozglhWI9uAKdJugAABJ0ty/PLDPhjjXTSfPJQ03EpJmjYIrZVgn\navtBT3B7HFtQaibAu3k9Qpv+89AIrqvgxpFWKRds2wB0igJgj/5jJjArwyIrRSUai4IZMuuY4IoQ\nCe4OiwJNulebaGJeP4zPxEXLg7tDwR3df/9CkwOYrr41McVlYJWroixtiyQ8ENzY2YyJwNRt4hRg\n+LIosFRfm1IGuXncK3qC2+PYgtnJ+G4iaqhbDxlY0YNLuKNIlxl0oOBGY+3B1cepMRXIi7AsCmrI\nTL+nunuLAgBw0hBcHsgDuaXg1hI07u5hbPzhRgVEHdY1AzQEt+IUlFKkMcXkxZcAAKMH7l/oa9vr\nU28cq8BUSlk1FgXCut0sAm0FNzR/MnMILvVEcGnSPBNDtP/sFT3B7XEsIaUEtcfOHRFc46eKKGQR\n1gNHFK6Cq1XKDgguzTKQKLLEMWYCeWAKrjtkZkopuix6UC/YvB534u18wlUoRQ31e+wINiaMAogJ\nEGB+shkyMxm41cZV1JuqXGbhBFcruMb6UwdGUkRV2Zp0Qj0Q3Lh5TRlYhBp12gop6+6ectd7l1cf\n5UGznuD2OJaY5jWiWE/ui25uA6YJLokIZGBHhlbBZQSUaJUy6mLwjiAajSxxVB7csNS4oqp3Fz10\nrOBKh+DW+fQG39kdXOVLiG7D+l21iWQsTIJrFVym/bffsX83XOCAGQAwM/CnLTWhDZnVeWFzcGkH\nA747ETmnDVKGde0wh+CSDj24yu+rnoUsdhTcnuD26HG0sDUtwSxn6GYRYVbBJUBwBFe/n6RZElhH\nR4fRUlP2ENHwPLhlVcFyt1oAlHaqVgKAdH4X9SwQgut4cE3KQ1dgkVNCklJQwcEDi5eThuAKitEg\nQn7uvP274d13LfS1jYJrCC4PxLdtMJvOQCJDprorMzBgzDmBCSx721rnJEBIt/eVsYu0FdywPp/9\noCe4PY4lNiclDN+kpBufkw3tZgQIbFdsLArSJbgdKLgAEI3G9kEcMxFcigJ3jzC5BEvTzqtFXYLL\nyzBijXYOUXWJnQoukwKzwK6blkVhEKNYXwcAxKuroMliLS7mhIHo+yo0n2kxa2w2Ubr4xsSdcOO3\nZHAEV58WdXwqAsBWYLPYyVAO7Fm1H/QEt8exxNa0BNXHMKwjI78ZGCARAZFC1eMGAmNRqNPms+jC\ngwsoBVe6HtzAiAqv3bQA2WlNr4VzjMsDye10SZPs6BTEoKX6pRRMcszysK4bd8hsNIhRXFIENz21\ntvDXpsZCo++r0BTcsmhOIeK0e4uCO7xFEJYliuo6bim7JbdAM1jsHlDJwPzb+0FPcHscS2xNSjuB\nHXWkVNqBAaYzBgNKUjAKLncIbmcWhfGoGTKjHLMyrAfOzkID5uGBTBxCx6tQCK7Oka4EZMeWjbaC\nS8GkwLQI60FsPp9aUIwHCcr1ywCA5NSphb92Y1HQZCkwlbJycrfjbPGV4DvR8rbKcNYbLiSYJriQ\n3dOzyBLcRsHlgQ1E7wc9we1xLLG5PbMEN0m68YBZ1UB7z0JaOIyCy5Nm4e/MojAO3KKwMw6r6wQF\nADRzCW4Y142toq0lZIfT3oA6YrYZoSlTCm5g143xKFecYZhF1qKQnu6C4LYVXBuIGwhq5xpOM78W\nBULCIbj5rDB9QJAeCK5p9Iwci0Kv4PboccQwubZlhxyijqZ4iTtkBkAENGjGdXWwdAhuZxaFcdui\nENqQ2c5Cg64TFACApo3KJUIhuEbZrmXT79whbFSYUXCDsyg4HtyUotzYAACknSi46hqVeuPYWZvN\nHlFXjYKbdlyaAgCEUJjGa0LCqL4GgGJ7Yk/40PGAGdCc2pmoSKAfMuvR48ih2Lxqv2ZJNwqC9eAa\ni0JACm6tCa5Im0W1WwW3SVEILSZsp0Wh6xYzAEiyoa0JDqXowaQEyFoAHZY8GETGtpHSMIfMnBSF\nYTUDhCINXXhwWda2KCCwKCzhDG6mHiw/ACD0MhMSwZ1tz0C0AELggeBG8whuP2TWo8eRQp1v2a+j\nzghuU9ULONFcAaCaKV+nTNSiSgjrrAc9GjUeXEYliiKwBVX4J7jRMLOfUTAKrrEocNmeSukIzCq4\nLMghM24VXIaBs95048FtWxTc+tcQ4A69DTwRXCk0kaThxMuVk6lVcLus6TWg8whuFdh6vA/0BLfH\nsQTPt+3XUdrNkAPdaVEIUME1Obhd2RMA/TCumwW1CmxBlc4QiuQSzEOKQpKlAA8r01SYcoVagsbd\n+5KNgktSCgaJaUAbRqD5PVWcIps1BLcTi8IOBTc0gitFc49nWfc5uOo96KKJgAhusT2+PwTwAAAg\nAElEQVS1zwfCuie4xqKQRM2a11sUevQ4YpBVE1MTDcadvCaxMWHqtguJ4Fo1WddndmVPAACaptaD\nCwBVIEfwFq5/sRagHhSnNIns2wjFomC8ybKWXiwKlOnfg96UzaZhfC4GbopCPNGWKEqRnFhd+Gub\nmDDjwaWBRWFJZ+jNl0VBClMVHA7BLae5VXCpD4KrhY2UcUhiZkXCEhz2g57g9jieqJ0cxo4IbmvB\nYgQ8oKN4k6JAEkNwu1RwB41XEO0Ja9+QUrbVr1oVPXSNNGYQPKxM02bITIAmPtQmrRrrPOsiMIIr\nRaPgsq1rAIB07SQIW7y30p4y6PuKEgEpw/GaSuee6rKOtvUedEqBh1mu66KaTEGYOUXzkNaiFdyI\nSXBtO+oJbo8eRwxUNg/DaLDczWu6C3lEIJwsSN+QOtGBmPIL1p2qwrKsRXB5QK1LNReIqEMMPBU9\npAmzcZ0ikMgn2/DmyaJgCIA5ESlm4Vw3Ugo72FVxBrKlFNwu/LcAQChVKq5zX4lANkYK6mIWtQQh\nfmiIhCGSgORhKNxVnluLAvNAcF1hQ+hMdNHHhPXocXQgpQRzPGDxqCuC21ZwQ7IoSP1eqF5Tu/Tg\n0ixt4owA1HU4C2pRcsSa4EouAQkvMWFJTG2UqQhkIt5uRGoJtuDq2XkwapOx1VQBeXDdI/hKUMir\nJiJs8QkKBmyQte6rEAmuz0tZSi3dMhKMSlnPGoIbJR7iCJ1yH5H0Cm6PHkcOs6JGwtTKKmuBeNDN\nkJk7NECisCwKUi9izCi4XVoUdilN4XwuRcURMU0SzHGvh6KHNI5srJEMpHnJWCUkl2AePpOdFoUy\noPvJJZMVp+AbVwB0M2BmsOu+CqjNjNhNo8830aTahKJS1rOZ9eBGHrzJ7rrP057g9uhx5LA9q5DG\nemUtZSeeOGCHghuFo+BKzkH0RLzh4F1aFGga7oO4rIRVcE3Sg4+q3iSm4LXppg+D4Nr618oPwaWa\n4BJKAEZQh0RwnWuY1wDf3ATQnUUB2O1tD2njaLJnBSc3+c5FvgkdicgoRCDXDs8Lm5Mex91bodx1\nX8Tq8+kJbo8eRwjb0wppZI7IupugbXlwGbGDXb7hVgabisZOFdw0aR2lMnBUdRgDMWXFEbP2teLD\ng5vEDFyTARlIML2NCePCK8EFAEQEVSAkBWiTydix3HRqUciy1vomA9o4NgquP4JLHAU3lM0Rdy0K\nXnztjoKrrT99TFiPHkcI27OyCbLu8N5tpShENJiiB5HvJrhdenAJY6C0WcxjJpAHUtfbsijoFAMv\nKQoJQ23IAAkj1kg6MWGxh8+ktQlLKOoinAexa1EY8GZDkpw40dl72JkvHZIHlzB1DZssWi+gTS55\noYtufEMWTkyYh6IH956SWsGVgeWS7wc9we1x7LA1rRDHauEnortbwG2mIYyoidkAwJ00hygyCm63\nx/Asaj6biIVTu1pU3LEoGA+un5gwS3BDye00wby1RORB1XYVXBIR8ICOUl2LQiYakhktL3X2HmgW\nsEVBu8Jkh+vv7vegrx9GUM0CERuKRsGlrPv4tNaQmVVww7lu9oue4PY4dtieVpbIEdndLbDTg1uH\nsqjakgcCne3dqQcXAGjcvF5MOfJACG7ZGjLTHlwPKQppzMC5vlaZf4IrBQeg30ctEWeeLQoxRRXQ\nUapLJgdOUUi83E1iC2AU3DC97VbB7XD93QlmY+YIylkYYoOsChBiFFwP9dfupjHpLQo9ehw5TGZl\ncxQvu0v5bu3Io4A8uOZ9xM1y0KVFATB+QUUglUUhjEGq0lFwpUcFN4kZKhFOMH2LLNUCsW8FNw4n\n6glw/MkAslp9TaIIbDjs7D2wwaDlwQ3JokC1SokO199d78FcPxFBEYjYQJyNEfFgUSCUQUI9p2RP\ncHv0OHrYmlYwJ+IU3e2SXQVXxYSFsaiaNAezYwe6HTID2pFGYXlwhR0y82lRoJSgNse5zKNvUcMl\nS7KWSAYeIo2c41TEFLwK45oBAOHkbGc6gipeXrbqXBdQ95TjwQ1KwTVf+SO4LNHXT0AWBZfg+vDg\nAgDR8xC0tyj06HH0sD2r7HwBId0tImRnVW8gQ2aWaMfNw7dFHjoAzTKg0gSXCuRFOAputMOD68Oi\nAABcqs0YYcR77WqLLHGJeOBXwUVMgLoGF/7tG0B7A5Do6ul4pTt7AjAvJiwggmvWGuKnphcAmLZF\nkYiiDOQ0jTobIx8eXPXC7Xxp0Q+Z9ehxdLA1LUGT7idViXu2HFGIMgyCO1/B7XjILEshubEo8GCG\nzFRMmLEoqP/vo+gBAISjdtmaXE9okaVaIvWg4LoDMSSiYFKgCET5dz+fTJOnqEP/LaA3YlI38AGo\nPV8zBmXFQbRFwccxvIHbFFbnU2/vwwVFc/0SDx5coLmvqCG4vYLbo8fRwXRaWA9Yl0olIQQgTTRN\nKEUP9n0krge3a4LbqE1RQBaFshKW4HpXcNEQa176jTVyFVzpzYPrEICYgEkejHfbWBS4IEhKRXDj\nDhMUAD1kBtjrtqrCWG/yWdEkBXgicQAQZwP7dV0GouA63cW+LApm/qIhuOEo//tFT3B7HDsUZbNb\npx0fxZtdOWHE1uP6hq0Mjv15cHdaFGahWBRqx6LAJUApSOTnoSwcvzifTby8BwO5Q8GlSfeqNiG0\nsSnESsENZWNkFNyKU8SFWm/i5ZVO3wMbaAKnTx5CUXCnWzMQvda4+dddI3YaCXkgp2mMNOueL4Jr\nRB/zq+ktCj16HCGUTu4riwc3+M7DB3XCxREIwRX6CFWmzRF41x5cZVEwQ2Y8GKLiWhRQS7A07XRQ\nyIVwPKdV7pfgtlMUJGjiSW0ydb0xQSQ5ikAUXFOCUQmKSB9/d+3BpfqkwSQp1IEQldlk237d9Uba\nRZI4rV2hEFynhpt48uBGuiLYvHwoNcYHQU9wexw71FWj4EZdE1wzaKYVXCn9D8XUetiNJ1pdphEI\n7Xa6mWUZUDkxYYF4cKtaWAVX1sJLTa+BpM4DufDrGWyVBtQSxEOtKICWgktlOMOJxiNdcwqqv+7c\ng2sVXLXG8ECKHoqpQ3BjjwTXuWYl909wpRBg1L+CG+nhO/OoknUNKcKoB98veoLb41iBCwnmEFyW\neCK4EQGRArL2T+QqHXIuE0Vqu1ZvAa021a5Fwf/nAgBFVe9QcP34bwFAOgpunXv24Do5r9Kjgmuv\n1ZgikuEo/8YOwOtG7e88RcF4xbVFwfdgokE+bU4fIp8E11FwRQCfjSjLVgSgL39ybAhu5CRwVEfT\nh9sT3B7HCtO8wpA1i1mUjjt9faYJrpkiDuH4x7T4yEgR3Fb8Ukdo5+CGMyzEqx1H8Z4SFAAAkesZ\nDGfIDLXw4sEFHItCRLQHN4zrptJ2AO68HS8xYYC9r0KJCSudxILY44Yxdsi1DCAjmOdNTS/gL2HC\nKLimDAk4ukkKPcHtcaywPa0wZM1iFg1Gnb5+Y1FQt14IZQ+1Ibhm8IN1v7C2msxoOMNC7mCOrKWX\nkgcD4thphG+C6xY9cIAwP4H9NHKGzBBOTFhdq/vaGYpHvNQ1wW17cHkgBLdy7DVJ1l2z2064MVwh\nEFyR5yCuguvJg2t80ZGr4B7RJIWe4PY4Vtialhi4Cm7WrYJrj52sgus/nsZaFCJDcLtX42iWWqUp\nYTwcL+UOr6kvpRIASOrGGvndGBlCIIUEB/M2eMecIbOQYsJ4rQkBb0iCbwU3BBIHAHXRbM5SjwS3\ntZGX/jdGPC+AyIlq9J2iQGEtE72C26PHEcD2rMIgUouZ5NKbghuSRaFpMjPRPX4UXDcHNxQPbrux\ny99RPACQtCEDovK7MbJDZrWE8NW4BCfmz8aEhUFwrfJvqnIJQTTudjNNoghgzL6HUKp6uZM5mw08\nElwaFsGtpjNLKKUEQPzQs1bJjy5EkoEkcOwXPcHtcawwmVbImF7MKoFo0O2QmfVV6YUsBIsC1zFh\nhnT7syhoghuQRWFnY5dPgsvSZjMmPE99C6F/P7XwTHCbWlEmeTAWBauWanIZLS11buMghICmqb2v\nEAjBFXVz7SbDbgUGF+46R6T/jVExmToeXH+nIq2GQC169BaFHj2OALbzCplRcEsB2vGQg5uiACCI\nNjNbOGEJrg+LQmbJQBzJYGLC5K60AI/B9IOBzQr2PfVtiX8tIT0SXGtRiMJScM0GgJpruuOIMAM2\naBoCZQAqJdC2/bAkDA8uIf6vm3IybTy4xI+nHQBY5KxxluD2Cm6PHsFjOquQRnoxK0VTZ9kRdnpw\nee6f4BqbBPFIcNmgsSgAQBlAbA8QTqEBAKRpbD2dviOfzOciawkZ+ftM2gpuOMq/UXBppd5P1zW9\nBq37Soahwknupth0e4LmghAGG0MeAMEtJrNGwSUBnIoAjRDTE9wePcLHtKiRuAS346l44/siOkUh\nBAUX2l9luLcXi0LaWBQAgIfi+ZJhxGEBQBqzYCbirYLLZVN55AFtD25ATWZaLWWVej9dD5gZRIOB\nTScJ4RgeAKQo9f+XoB3nkLsghMB8JBT+iwyqad7k4HoaMAOuY1Hoc3B79Agf01mFJDbB/d3HG5Gd\nFoUAKiKlJbhawfXQD+8WPQBKIRTCf8ubO3zi26KQOARXeG6lssp2JYHYv4JLGEFEwklRIPq6iXSR\nS7S84uV9uBYFgkBIivVvSzCfudIAJFdrHqEhENypJbi+MnCBxvYDAIh7BbdHjyODSV4hjvRixru/\n/O3kbkAeXLJLwfVgUUiTZuIcKgu3qAIgKzKcIbM0YZYb+FZwpX59yQUQefTgOn7BmIVjUTBqaaSV\nrxAsCgQSUvi/pwiaAUVf+ckGQhhC6X8zXc8KxyYWiEWh9+D26HF0MM1rxDrAmojup1StB5eF4cGV\nUoLohzDVn4sPiwJhDATNwy5mPIxBM/dYNwAF1/AT4XlgyCq4tQS8enCb49QokkFYFKSUlsQx7cHt\nOiLMgGWD1sYxhKgw89nIGt6SAgykNKdWIRDcJibMVwYuANDItSj0Cm6PHkcGk7wC0xWERHavHtgc\nXEoA6l/BlXUNItUD0IgpPhRcwGmlglLjZgGocVZtAgDuWcGNGwVXevZTuikKJACLAqDyk0NQcKXk\nMLyNaHLJhn7SAmjW9rb7trYAAIG6dt335QtSmHIb/+/Frer1ITIYEMIgNPFHHxN2Y3zyk5/ED/3Q\nD+HNb34zfvqnfxpf+tKXrvu9n//85/HII4+0/u/RRx/F5cuXF/02exwTTPPadmxTdH8M1PJWMeI9\nB9cWTTBiH8q+FlfX+xtR4V2N41yAEfMwVkTFt4LLtWdQwjPBdRRc4jMb2CW4kQzCgyvdGmOT7Tzy\nQ3B3ppMI7n8DQKj+Hfl/K5CaAnlM5bLgRWEVXObRokAIgdTPRhGrD+aoDpkt9FP8oz/6I/zmb/4m\nfuM3fgOPPfYYnn76abz//e/HH//xH+PkyZNzf4YQgs985jMYjZoA6LW1tUW+zR7HCNO8tAOqhHRP\n5FrkMaLem8wswY6ao0JvCm6cwDyKY8a9t5mVtUDMzECiemc+h2LSmEFw83vyOxRjskxlLUBDUXAD\nIbjt9jtDcP0UGrhDZgAghH8Fl+qBriBCHfQpHmEEknOvnmCR5yC6qjeK/A7fCcRgqIBEE9zeorAb\nn/jEJ/AzP/MzePLJJ/H6178ev/7rv44sy/CpT33qhj938uRJrK2t2f/r0eOwUJaF9X0xDz4n6oaL\nRwSi8Fy5alIcYofgevJ/uWQlZgJ54fcJWFYcEW0TXBL7HTKrjYJL/BJcNyaMevxMXL8gixFEk1lL\nJTUbI08WBTbI7OkDsKOZzxMswfUfXAAY339EwD2LDaKl4PrbNAKA1OKP7IfM5qOqKnz1q1/Fu971\nLvtnhBC8+93vxrPPPnvdn5NS4sd//MfxAz/wA/ilX/olfPGLX1zUW+xxzCClhKgbQklptxm46jVd\nBTcEi4J6faMcAP4UXBY3pRsx9e/BrRwF1xw1+7YoGIILz0MxrgeXelS1XYsCC1HBrT0ruDvj90Ig\nuNrvKrnfATMAtlCBMOKdxMmisCdpzOPgJgBgF8H1f90cBAsjuBsbG+Cc49SpU60/X1tbw/r6+tyf\nOX36ND74wQ/it3/7t/Gxj30Mt99+O37+538ezz333KLeZo9jhKLiiGhDmqiHYyDC2h5c3xYF+/ot\ni4KfxZU5tclKwfVsUag4YusX1MNCni0KtYm28zweLIWZhPc7eEdbBBcoSu49P9kluJLr68abB3en\nRcE/UbEDXSKAGXenWbLK/Z6moWwUXJ9DZuoNmIbAo63g+nMyz8EDDzyABx54wP7vxx9/HGfPnsUn\nPvEJPPXUUx7fWY/XAqZ53dT0Aoiibmt6gTkKrudF1b6+Y1FgvhTcZAApJAglQcSElbVAZDy4PAQF\nl2qCKwCPU99SSltFi1oiSsPw4NIIQKk2Jlnq79HmDplZBdeXRSHbaVHw7Pnnwqa1QPonuHboN6Io\nJzP40dk1qhIkUteJz5gwQH8uHJbgylCaJfeJhV1hJ06cAGNsl1p7+fLlXarujfDYY4/hpZdeOuy3\n1+MYYppXSCNHwY27r4l0Fy4SEdSeCW5QFgVn4juiAjPPx81KwdUWhcp4cP09eNKYoTbB9Mzf8a6K\nKNMEuxZgSfdWHwNCqCVKLAIg/dsUdloUSBx72xjtbAg0yrsvFBW3omkQBNdpliymM7/vpSydHFy/\n2iPZoeD69icfFAu7wuI4xhvf+EY888wz9s+klHjmmWfw1re+dc//zvPPP48zZ84s4i32OGbYpeAm\n3asqrYYaRsFz3ykKcywKntQD5RdUhDIYi8IOBdenRYExiko0R6q+IHbEYEWZ34lvqgeFSExAIb1n\n4bZa5rj0pt4CcywKnhVcl+C6xS6+YGxqhBEUU79iA6kbguuzqhdoTvFM0YPsY8J24xd+4Rfwa7/2\na3jTm95kY8LyPMd73vMeAMBHPvIRXLx40doPnn76adx999148MEHURQFfu/3fg+f+9zn8PGPf3yR\nb7PHMcFkViFjzY0apd0fSJEdFgUxDWPIzOzUAY8xYWkKWUsQ6Jgwz0SlZVEIYMgMAIQTayTqCtTD\nMIrcEYMVZ/4UXAAgJAJQATEFk9x7fnJZNve0rCXYqr+D7905uH6JSlFymzkbAsFlUaqO4iOCYuKX\n4NKqdIoe/Cq4NEohoU4ZJXoP7lz86I/+KDY2NvDRj34U6+vrePTRR/G7v/u7NgN3fX0d586ds99f\nVRWeeuopXLx4EVmW4eGHH8YnPvEJvP3tb1/k2+xxTDDNawwdgstSHwrujiGzMgyCSwLIwWWDAVCq\nh3FMBWZ5AAqujQkzRQ9+yRxHc/1UswnSpdXO30OLJFUSkUdVG1CFLRwAYgIm/beZuQQXtfRW8gDo\newoqr5hE1PuQWV5UoHqtIcT/CBBLMogZAEZQzvxZFERVgRJhIyx9e3AjlqICYKy4PcG9Dt73vvfh\nfe9739y/+/CHP9z63+9///vx/ve/f9FvqccxxSSvMNAEV5YC0QkPBHeHB9d3Va/xAAvHg0s8+b9Y\nmgITY1HguOLZolBVjYLbxIT5ffAI5/rh+QTwQXBbCq4IQ8GVAImpJrjhKLiohbeIMEDbfgCl4kYB\nWBQKN6bRP8GNkwzFDEBEUG75U3CFExEG+FuDDVicKIIbaYJ7RC0K/l3ePXp0hKlDcFEKdXzXMVoL\nV0QgyxJS+puIL7XvTOjGGkpjqyJ0DTbIrNc1pbV3BbdoxYQFYlFw2vfqfOLnPezw4MYe7iMXdtMY\nkTAsCnriXEqpAi98enBdggv/MWFtgus5CgtAlCmFmxCC2qOCy2c5wBybmOfPJtaZ5EZtP6oKbk9w\nexwbTPMamU5RkKUATbtXngghNlwcjABCQNb+iFylJ4dFpAmuJ3sCoCa+TVpBQjkmud+HcVXzXVW9\nPlMUAEA4vx+eT/28hx0xWIlnBdeSAavg+lb+NcHVPNungksYg4xiSL1x9O3BLatG3fbd1gUAcdZs\nPurCI8Et8h1Z5H4VXENwCYGaFekJbo8eYWOSV5bg+lJwgUbFNdFcPsseqlw9cGTsn+C6rUsJE5h6\nV3CFreqVXIAmiTd128Jp36tzPw/knTFYycAzwdVEicRKwfVtUahNZqip6fXowQUAmSRApa7juvZL\nVFz7RhQAwU2T5hnAS48WhbxoRf/5TlGI3frtmPRNZj16hI7prIkJk6Voju86hnukCujduycYD25D\ncP0trCzLAN38FFOOaWAKrm97AgDIqCGTvPRDcGWrqct/ioLdlAWi4FoSqQcTfcaEAQCSxvrDvRPc\nZq1zq7l9IXHuaV75W4d5vkPB9ezBTdMmI57EtPfg9ugROiZ5hcTk4JYCNPVEcA2J1Dt2n4NmtVZw\nm3ganxaF1FoU4gAU3LKqwagpNAiD4BInu9kXweXuoFIl1HCgR1CmXp/EBFEAHlxeNy1vAMA8WhQA\ngKTNfVXXnjeNTiNW7KEqfSdiJxVFeGzr4nlunweAfw9u4ijbiGlvUejRI3RM8wpJ1DRTmQidrkFZ\nW8H1aVHgeTsH1+fCqhRc3WTGBGZFDS78DeDV7gMvEILrtu/5OlIVtbMhq6T3ZAlmVO1AUhS4rTEO\nQ8ElaWP94Z5TFGrn2olivxsjAIicHGnJ/QkNIs9bUY3Eswe39bvpPbg9eoSPSV5bgotSgHk6WmXW\ng2ssCh4XVvPa2g/s16IwAKqmqhcAZh6jwtyHsayFdyIHAMTJbhaVn+vGRE1JIQEuQWLPObiG4EbG\ng+tX+beDXDwMBZc6DYG+Y8JcGwCL/BNcd0MvPQ7g8bwISsE1pyKAsihACAiPw9AHRU9wexwbzPIK\nUayn4QUFoX4uf2sDMBaF3ONwgx76MJWM3i0KRvWK1O/Jpw+X1+1hqhAU3MiZ+ua1X4KLQLKBDVEi\nEUVE/FsUrEdZfz4+ix4AQ3DDSFEQDsGlnjdGwI4NvfT32Yhip0XBc5MZaw+ZATiSg2Y9we1xbDBx\nCa70VxNpj5+sgutPVZH6tc0Er9cUhTRtVC9mCK4/1YCL8CwKIRBcbkhSZdrd/H4u7rBSSjnywjfB\n1VGExoPr2aLABlkTE+Y5B9e1tzDmf8isRSQ9fjbVNN9R9OB509giuIomSo8e5YOiJ7g9jg3KooAR\nbSnxt4A0KQomJsyfRUFqb5WJ5vVpUSCMgUjjBQYoEV4VXPdITgZCcLM0sWTF15GqtSjUEgIEhPnb\nLAIASxpfcspq7xYFq+AaP7lni0I0aKw/0jPBldpWI7kMQsF1iSSR/jZG1XRmYyMB/zm4rtBB4qNb\n9tAT3B7HAlUtQNAs7iQAgmtUU1F6rOvVu3LTWEOp34eO208fU79JCq2BHB4GwU1jZgmud4tCJSAo\n854NzJzBu4T5tyjYhodALApsMLDxez5VSgCQoolQo55LU4D2hp7Ac+FOQB5cQiMIqd+PVnB7i0KP\nHoFimlc2AxfYcQTTMehOi0Luj+CS2hBc9b99WhSA9sKuosL8LarS9eTVIgyCmzB79M09RT4JM21e\nSQjPShMARKlLcP0ruIYoGT+5r7QWg3g4sDFhUnr+bAzBrSRI7P/acdcbQjwquLOG4EoQgPilZoQQ\n1EKfzBgFt7co9OgRJmZF3Sa4kT//F6E7Y8J8KriKJDE91OXTogC0PXERE5h4VHAld147EItCGkdW\nIOSe1DijbMtKBEFwXQU3jfzHhFklkKsoQt8Wjng0tHYJyBpS+oveI3rTKGsJGvm/doiz3lAivL2P\netZ4cAnxfyoCAFzqtJ/Yf+PmQdET3B7HArOiRsoawuKzRceQSMn8enAl56BCkQEWiIJLnNePKcd0\nFoaCK2sJmgZAcBMGPcMEIfyQfzdFQQZBcJt7OQ7AokDRWBR8R4QBQDIc2IFAAgnp0WtKjIJciyAU\nXEII9BII6lHB5bO8qer1aJ9zIaB/P4bgHsE2s57g9jgWKEreVnBjf8eG1oPrOQeXm3gy1/vlWcFl\nTrtRzASmHnNwIXcouAF4Bl2C6+u42fXghkBw3U1ZwvxX9VqiVEvv/lsASMZDa2sB/EaFUaJ/N5UE\njfzfTwAghZk/8Kds86JoFFzPEWEGQrafU/2QWY8egSIv2xaFKPH34LHH8J4tCnymCW7sElzPkU9O\n+HvMhFcFF65CGpAHl3Pj1fOjOLkpCjIAkuL66WPm36LA9FG35NJ7RBigPLjWogC/SQrU8SeHoOAC\ngBQmucUfwRXTqRUaQiG4/z977x0myXVfh55bqcPkPDubsLsAFhkgAsH0AIpikChalETpyZYlWc/y\nJ1vhWc9+/qxnf/KznmVR+qxEUcEURVE0QUk0zSAGgKBAgCAysEgLLDbnyXk6d6V73x83VPXk7p6p\nKlB1/sFgpre7usK95557fufHyCoFNyW4KVIkEzW7UcE1svFtHRJ9VYpCbApujf9gJKd6V1tNcGNU\ncGXqBqMMoICWib/zUsbU1ZYqQzyewQYFNwE+yvCizDQobCc+nyljDIYWUnDz8RaYAaJVsBtWcOMj\nKmF1OzEKrkgLIDqL7b6htaoah+Nu8iDBiHiu0kYPKVIkG7YTeHCZR2Hk4iO4DTFhJEaLglBwG/MX\nY1ZwrZCfUvNRiVPBlQqpUL+SYlHwfHG9YiqKUfFpLgMSQFKIFkSnGToFZTwWMA4w5kPVB3kUWjYB\nBLcjH8SEIV6Lgi7Jf0JSFDh4ESAxCFhM7WhZrRpqthP/MwVAeYFJquCmSJFs1B0fOUMM7A6Fnoux\nyCyskhoktupUv7aOghu3BzdEcA2dohajgquxwC8IxN+xC+AKrrQoIKYt1cCiQEESQHABQAqDhsGJ\nXFw2Bd9rzE6Oc5yR0PMdKiYMiLebma4J+4ZHk6PgSoKrxzMWM8aAehATpieE4Kq0nzQmLEWKZKPu\neMjrYsvZYbFmUzaQSJ0ExV4RI/DgBsNAnPnAAKCHvNGmTlGJKQeXMRZspwr1K5TuIYYAACAASURB\nVAkpClnLgKsIbvSfzxhVrWjhMiABqjYAyGQuQ8TdxVVo5oSatjAv3nFGQs/nGzy4cSm4PmUwdKEk\ne8lTcGFo8GLIJKeOA0KpEhqSQ3ClRSFt9JAiRaJRd3xk9ZCCG2PxR0MRQYwKLq1Li0KCisxCW7o8\nJiweouJ6FKYu1aYEKbhhi4IevYLb4N90k9GNCgAgKuElwY0rKqwWXqwmheDmsqBu/ATXcX3o8p5N\nUIqC6p5oENiVauSf75Ur4vP5c50UgqvmgtSikCJFslG3PWQN4cF1aGIUXKJrsbXqXdeiEHORmZHN\nqQ5Qluajasc0GXsUhhaoTQCgmfETXEPX4Imqb6JHHwYfJrjMYyBWMiZjIlRtPWYF1w776T0GPRu/\nRYEQAg/BdaI0HqJiOz4MQXCTlKKgtuJ1gnqlFvnn+xVOcJPmwZWJNsRMY8JSpEg06uEcXDdZHty4\nWvVKawQzk1NkpmUzilBmNA+VmBRcx/WVgqsIbgIsCgBARYch6Ii86ttfo+Am45yASQWX/29cHtx6\niOAyP96FdBhumODGpODWHU8tQJCQTmZAKNXGILCr0dvFPEFwkxYTphv83iWmBmgpwU2RIrFoyMGN\nW8FdQ3Dj8uBytcIPKSlxE1w9m1OEMqt78HwK14uerDiur+KepKKcBIsCAPjSM2hqkU86jRaFZLQv\nBgAis0xjtijYzioFNwFFZgDgkeA6xVVkZtsONMk4fMTewlhCjXkGgV2NXsFVBFfFhCVDwTXMUCyi\nqYGlncxSpEgm6rYPSxDcuC0KJNT9iVfuxqPgumIw963Q8cSsHui5bMiiwNXbOFTcdRXchJA5iiBm\nLurFEfVWFVEl5JwQJvyLSsGNyaIQJrg+a/CUxwlfD8hKbAquHdyrzI/eXrMRVPdEncCJQcH1pe83\nYRYFM9zt09LSIrMUKZKKuuPBFBFCSVNwqePEEjDuiIGViq1CTTNBSLwTj5YJLAqWUFDj8OE6LoUp\nPbgyBzchflMa6lXv1SrRfvYqi4KeScY5IWIqk49W3Y5HwXUTquBSKwvm8vs5LoJrOwF5JCxBBFco\nlcTQ4NTisyiQhLXqtTLBvUtMkloUUqRIKuqOD9OU/i8Sa/V3wwrdIAClsQSMu5LgCg9u3PYEgCu4\nMndWNuaII0nBdv0g0ihBObgAQLXgOLx6tAQ37MFlLoVuxd/dDQCI8CVrgiTYMSm4rttYhJcUDy6z\nsmqhFleRmRPeqWLJoR6GzN7WCdxa9Ltpqz24SelkZlmNCm5cDYnaQXLushQpdhG246jtS4J4vV+N\nCq6IYIlh8PCERYGZ/HwkguBmAqVJWgTiyMJ1XF8puEwpuMkgcyxEcH072lij1R5cI5uMc0KIuIdj\nLjILE9wkKbgsEywcWWwxYcEYp8U8BodhSKXSIPBiqIfwFcEV6SgJ8eBmM0GUJrE0FSv5ZkJKcFP8\ng0DYO6gh3gEkPIDJaJg4VsdeTRJcqeDGP7Bq2WAitnRhUajH7cFNVpEZC/kpY7UoeAxGQpIlNJFl\nqolIo7gIrremk1kyFFxkc2B+vBaFsH0jbpEhDEv6pA0SS6MHZVEwk+XBzWZDWfFmquCmSJFYUBoi\nuDGvkDW9sdEDEI+CqwqUjIRZFAShlJ7paiwKLoUhCHZQZJaMiYeYgSoYl4LLKAP8BCm44M8UMQgI\nWGxFZpLgMsbPj5aAHFwAQCidxI8pRcENiwwkGdvwAGBKD64Wj4LrVSoNTCwpFoUwwU0V3BQpkoyQ\n7yxuIkeIBhDZHlIouHG0iFxNcBOwNaZnMmBCwZUKarkW/YRshy0KCUtRQGjr0K1FS3CVB1ecEzMh\nBDd871q6H1tMmO+Je1Wcn6QouCQXEFzqxkNUvLBFgSRIwQ3FYfkxnBu/Um1otpOUIrNseHFmxhdn\n2Q5SgpviHwZCCq6ux6+qqFW6Hp+Cy2SrXrU1Fj+BI7oOQhtD+8vVOBRcLygy83jeK9GSMVwSq1P9\n7DsxeXCFT9rIxn/PAI2ql6nT2BTc8AKAmGZimhloubxaqPlxdU4M2TdIghRcPdQymHlxKLhVJTIA\nybEo6LoO2xMLEUuLrSFRO0jGiJ0ixS7C9ShMLZjwdDMBBDfUPQeIh+BCTHTyGJIysMpMU0OE9pdr\n0Vd9244LTYoqHk1MFzMA0LIhgmtHG0yvLAoy6SIhRVRaqPDOMvzYPLiqiUJC2vRK6Pm8sv7EoVIC\njQkcSdmGBxoVU+ZFP9Z4lUpD2+0knRvH5wSXWFpsee3tICW4Kb7nYYe7mAHQzfwmr44GaktVVM76\ndrQDK2MsRHDFMSVAwQUCdUd2pYpDwQ1vp8JPTscuIBRrBMB34yG4kixlcgmxKITu3TgtCjKhgHnJ\nadMLAEY+5MH14iEq4QLFpCQFAKsW9n70BNevVNROHpCsc+NScSyWBr9ejyWvvR2kBDfF9zxqtt9A\ncI1M/BOPGlSVghtxRyrHARGDla4IbjIGVlURrwEaobF4cF2vMc9UyySDyAGrPIMRb6kGFgWRdJFP\nhkrZQHA1PzaLAmMhBTch6jYA6B2d6pr5MaiUQJDewDzaYAuIGw21BxEX4DHGeJGZkUwF16OieNPU\neF77m6xdb0pwU3zPo+54yBh8wmOUQc/Gr+DKVTqJyYPrhzr2KIKrJUOlbNhu1inK1Ri2Db3QQO4x\n6AkiuJmMxVMMEP12s68sCsKDm5DzooWi0zKGF5tFAUwQazc5bXoBwOroUHnONKYUBdVgQviTk4Iw\nwSUs2nNDHYc3+QlbFBIiNACALxqowIqvGLodpAQ3xfc86mGLgkNh5DviPSCEosJkikLEFgW/Fmxt\n6wmzKGhGQFZM3Y9FwW1QuTyWmCYPAJAxdSU0eRGrcXRVikJSotP00D2T093YOplpguByi0JyFFyj\nK/DgMhqTui1vWpdBM5OjUpJQbCNh0Z4bX3STJAlMUQAAKjLjichK9+vRWqLaRUpwU3zPo+74qu0r\nnGRMPFI1YDF1MmsguCItICnKgR7agrd0PxYPru8H14O5ySoyy1g6qBePGrc6RSEp3mTdCJ7prB6f\ngksgxpmEWRSsXE6Jywwxqds0sCiQpFoUIj43q9v0rj2eeEEhnm9LzFOpgpsiRbJgOz5yuhhcnWQU\nf6wmuFFnDIZDuw1dqHEJUXD1UA90S6co15zIixsaW9ImjOCaOnyPT4hRq3EqRSFh2cC6GdwzcRJc\njYQJbvzjjETG0uH5kkTFRP5D/uQkKbjhhb0esYK7PsFNzrlZTXDfbN3MUoKb4nseNdtTBBdOMiYe\nOajKNrlRd4lRCq6RPO+XEWpkYOo+PJ9FXhW/uiVtkiwKWctQBJci4i3VhCq4mmmCOfyYsoYXi0WB\nMQad8Ps0aSkKlqnD9cR0rzEwRmM4CulPpiAJyQcGGhVTTYt2nPElwQ1bFBIyDgMAtFUWhVpqUUiR\nIlGwHQ9ZWWTmJmPiUWqpVHBrERNc1cUsTHCTQVb0EMG1jJi6mYW2/plLk1VkZunwBMEFiYn4uww+\n0UD0ZHSk0kwDEAQ3o3vwfAbPj5bE2a6vuu/BS1CbXgCmoalMU2DVAi4iaJD+ZAYtQUVm4VguPeLn\nSSq4JNzoIUEKLjQx7lkx5rW3gZTgpvieR0NMWFIsCnKVLrqIRb0yXlfBTYj3y8wFRYCWaNBRijpJ\nIVxN7SYrJixj6XDldjOJx7rBXAqaIKWpUcHlz3rUNoWa7an2zomzKJg6HD+Y7uMguIo8eixZCm6o\nyEwj0S6KPFFkllQPriYILjE0QEtTFFKkSBzCKQosKUVmQi2V1bPRE1zRprehRWRrCm6pUMcDn3gW\nX//C8R3xyhq5LvVzh8YH1MgVXEFwGWNcjUuQBzeXMeDJ7WY9OoLLqB94fj0GqieHpBDDULYJSzzr\ntXq0NoWa7cHUk2lRMA0dthdcrziaPSh/skuTpeASDdKxoesMzI9uYSQtCr4ahwlAkkPLwok2MLXI\n89rbRXLOZIoUuwTb8WGKre7kKLicMGlSwY3Jg+taIfWiBUWOUobP/OnTuHRuAa88fxULs+W2j83I\nBwQ3p3GiGXWSQrggBkiO1xTgBFdtNxsA9aIhcqsL75Kq4MrM62o92numVvdghBXcBFkULFODTYNn\nPWoF16dMnRuWMAUXAJhoDw6DRFpI5RaLAABfEH6imSCEbPZPIkU4X5pYWuRWunaREtwU3/OoOR4s\nUwyuDoWei7/Rg2xmIBs9RK7gCkLthZQUvQUF94lHzmJ5sar+f26m1PaxmZ1dKpReEtxKLdoJWUOQ\n2QkgUR7cfDZEcE0tsnsn3DWNuQwsQSSFmCbgiO5qYjFbiZrg2q5KJEmaRcE0NNT8kILrR6vg2o4H\nSw8sCklScDn480R0DfVydYvX7hzshQUAgGMKwSNBuyIAYITi92BpqQc3RYqkwXY8GIaYeBwKPRs/\nWVEKrg7ubYrJg+s3KLjNEdxqxcFT3z7X8Lu5mWLbx6bn82q7OSvSL0oRK7iqIEamBSSI4JqGDke2\n0DRIZPeO61bUz6zqgyUpy9QIiswkwa1GbFGoh3dhEpaDmzF11P3g+Y5awa07PkyZUJCwFAUOuSNC\nUC22vwu1XTgLiwAAVxD+JPlvAcAMp8eYJPKdxnaREtwU3/NwnDqIqsnRQbT4b/sGtdSIfuvHrQqC\nG8qjbHZwnby6DEobPaDzO6DgGh15ZQ3oMONJUQj7BQEkyoMLAD5kkWJ0947nhCb+erIILjENtRgx\nTU6kKhHfM7VQl6ekpLVI6LqGKoJ7OOoWz3XbUwkTLGE5uABASNBZslasbP7iHYQ9zxVcV5yPpEQ1\nShihfGliaSnBTZEiafDdYFuFkGQMIA0DWYQqnIRb4Z9HzdYV3KnxAgA+ed56114AwNx0+wRXz+cV\nWclJghtxioKuCK704CZHwQUAn4jjMUkQFr/L8JyQglvzuS0gIdAsK6Tg8msWtQe3Ht6+TZiCCwA2\nguPxatGplIAswBP+5AQquDJ7lugEtVI0FgXqeXCWlwGEPbjJOi9WqOkOLC3tZJYiRdJA/WDVqWvJ\nUOLCZJKYBNS2I63e9aqS4AbZmM0S3OnxFQDAyFg39uztAQAsLVbguu19DyMfKLgy8ilKBdfzaVAN\nL4h2kjy4AEBlfA8hkZEVqeAyyoA6BRJUeKdZlioyM2KyKNj2KotCgorMAMDWg9oDt9r+QrQZ1OrB\nLloSPbhKcDAI6uVoFozO4hIgUmeowcfhRGXgArAyIQXX1OCnKQopUiQLNBSJoyWQ4MKMvg2iV+Mq\nRZjgNqMeMMYwJQju2P5eDI12iz8AC7PtTZ5E11XTI0uP3qLguH5DQQyQPIsC1YOJJyqC6woFl9r8\nnBAzOedEM02l4Oo6oBMaeZGZE9op2umYsEvnFnDx7Hxb7+GZOTCPnyOvHt02PNBI/pOYoqDLOCyd\nwC5Hs5smC8yAMMFNFvHPZrJQyY9pikKKFMkDo8HEoxvJUOIaCG4MWbgyf1ESXK3JeJpSoY5yiZ/X\nsf09GN4TRHvtRJICEbE9UkmN0qJgu74i1khgkRkAMDN6guu5/HP8WrLa9AI8B5eFBNuM4Ueu4LrO\naovCzhDc114cxwOfeBaf++RzbS0eaTavLDd+1ATXCRGjhOXgAoAhF2sGgROR5Uf6bwGAiTmAJCxF\nIWsZsD0hglgkTVFIkSJpYCwgR7qRjMKPBouCEX2fb1/lL8rihmb9tyvq57H9vejsyiCX55PWTvhw\niRiadKngRpii4LhUKbjMTV4OLgCQUDtjz47GM+jZwqJQTyDBJQSEBtNZxvAiV3BdN7QIo9gRj/LU\n+Ar+7m9f5f/DgPHLyy2/F8sF6SSeHa3n33Ea7RuJI7hiK54YmirA3W04QsGlRFNxkRpJFsHNWLqK\nJCRmWmSWIkXiQFiw6jQy8WfgAqstClLBjWbwoK4LCIsCkwpukwR3UhBc09IxONIFQgiGRrmKuxNJ\nCgR8oNdjsihI5RgJ9eCaIQXXr0dEcEVMGKvyc5M02wZhgd0mY/io1qJVcMPdwXQjuyOB/V/921ca\n/r+dGD6WyakFm+9GTXDD9o3kWRTMkILrRjQO2yIirJbtUjtGmpGsZ6pRwU1zcFOkSBxUaD8APZMM\nBVdfz4MbVZ5pMZgkqfjsZuNppq5ygrtnXw80jU/kw5LgtunBBQIlg2h8Qi7X3B1pA7wd2K6v2r0G\nHtxkEVwjlOrgOxHdN6LIjNT4uUka6ddWEdyoFVzfC40zO5C6Ua+5mF/VGbCd3REjmwET93PUrXob\n7BsJtCgo65qpwY9IwbUXuKe6mulUC+pW26XvFjJW0OI57WSWIkXCQCmDLggucyiMBHQxAxoJJTGi\nVXDdQiH4H6N5BZcxhukJ/h5j+3vV73v7OwAAxUJ9TT5us5DFFkR0hqKUoWZHo8g5IQ/ubjZ68H2K\nxx8+g1dfGG+avFtWUKEv1bil2gqeG38Zy7XCRv+sLaiYMKGmG0kjuKECnYzhRR4T5oeaJ2hm+wvp\ncIdA6XGfm25dwTUNDb44JVE3enC90OclUMHVRccuYkXXzEA2eSibHcoSlTiCa+qouuJa5XTQN1mK\nQrLushQpdhi26yMj1TgnOeHrRGvMwQUiVHBXAgJEhD2imerdpYUK6oLkhAluTy+fJBhlKBfr6O5t\n/VzzHuhVkECUQ7nqIp/dfeWnbjvQhXKMXfTgvvbiBJ545CwA4NypWfzwT96OzDa/n2VlASkyuzZ8\n6uM3v/NHmCzNgIDgzrFb8Cv3/hw6rJ1Z0FHfBRXtXbWqBx+Ank3WZExgQC4TMoaPQsRFZj4Nef0z\n7UeErSwFxU5Hbx7F3HQJlbKDcslGZ1fzi4uMqcPzCCwAlEZL/j3XhuwzwTyauEYPmi6ul6mBRbQN\nL4vMikYH9ut8MaPryVo0moaGqiPEhqwGL83BTZEiOajbHjKGaLuaJIJLCIiMLIvaohAiuLokuE0o\nB6sLzCTChLaw0t530Uwx0BsAENgUooAbKogJcnB3nsydOzWrfj712nRQTLQNZEIEyvdsPDv+MiZL\nMwAABoaXpl7HX738hR07Vi/cplcUmZkJy3nVSHCNMrofuYLLhDzKXAoj39H2+y0v8meIaATX3jis\nft+qimsaGjyPjzUMEZP/sGLsJlHBFbnSpgbm7KxKOVWaxe8+9Qm8OPma+p1fq8Erc/vJipZPrIJL\nCIEtWjyTnM7z2imN+ai2j5TgpvieRt3xkdODtqtJ6i4kVVMWNcEVFgUKAmmFa8aDKwluLm+ibyBQ\nCHv6AoJbXGlvkjDklqFGoBNJcKPZVm30C/LJmOj6xv+gBfg+xaVzXMExLf7eZ9+YQbWyve+Yy2SV\nrcH3HXz11LcAACMdg7hn7+0AgCeuPI/nxl8GYwyUUjh+64Qv3KaXCQ+ukTCCq1sZMJ+fE+7B9SLz\nbQOAyinboYgwqeD29OYwOtYNiJq1VgmuZepwff4mFNE1lQFWEdwEpiiE4yMJ3dlx5nOvfhnHJo/j\nT578FCZOHQdjTBWYAcCSloUlmpMkjeACgO2L5zzHx6k3U6FZspZRKVKAq65/+qXjGJ8tgVKGj3zf\ndbj/zn2tvZfjIWcEHtykKLgAr5j1vYrKoo2K4DornKBW9Kxqa9qUgqsKzHobKsU7u7MgGgGjDIXl\nNhXckMfU0l3UvAxKEUWFOW4d6i5x6a74byevLMMWW+j3ve96PPrgKTAGnDs5i9vv2b/lv89lTVCP\nQDcB263iSoFfkw/f+H68ff9d+L8f/k0s1VbwB8/8BTJGBo7vgIDgF+/5Gdx/6G1NH68bIrgQBNfM\nJWsyVs0ecjoyhg9KGWzHRzYT0TTHxP3pMd6Nr01ID27fQB6mZaB/oANLC5WWC804wRULNRKtCqfU\nbcYAP3kKrhayBmjYOQJXcap4deYkAOD7n5jHlb/9L3B+6IPIjAyp1xT0YKxLIsH1mFC3NQJkNPi2\nnah5dDOkCm6KxOHJVyfx+EsTuDBRwKWpIv7qG2+0rMTUbR8ZqeA6Oxe+vhOQSQoBwY2qyIwrQFU9\nG6re3Z6iQn2K6UlRYHagt+FvmkbQ1c0Hw2KhPYIbjnPrIHzCiSoL1/NWdaTaBYJ7/gyvoNZ1Dfe8\n8xqlhJ9+fXpb/z6fMVTBkPR+9mV7cP81b0OHlce/uudnYIrOdLZncxWXUXzxjQdBWfPkRhWYIVBw\nrQTthgCN7XqlLSmqJAXGGIjY9uddzHbCgxsQXCBUaNZiVJhlaLAFwWV6hMo2uIcbQJBKkjgFN7he\nOtk5+8axyePwXYoDF/diZI7PPdMPPoTLn3kAAJA7eAClXGfw2UkkuAi1683poG+iLNyU4KZIHK6u\niplaLNQx36IiWHc8VWTGHAp9B5SVnYJcrcss2qgGDjek4Joyf3GbLYznZ8vwhC917/7eNX+XPtxi\nmx5cIxtcp26dT46VTSwKpUIdrrMzE1NDhJLLdqXA7OKZOQDAgcP9sDIGjt4yCgC4cHZ+W98jlzXg\ni+1mqcbdd829MMVC5Y49N+EPP/gb+JV7fw4/fvMP4T2H3wkAmK0s4MTsmaaPV1oUGAMgPLhWPjmL\nRUDk8rqS4PJnPqpuZrbjw9TEwsFjbY8zlDKsLPFnqLdfElzeDntuptTSgt80NNR9oZwa7Wf0NgWp\nbouizaQpuGGCa2g7d888O/4S9l94C7oXbscL+38YU13X8j9QCs2yMPZLvwzTCK5lEhVcSkKLtZz+\npmr2kBLcFInDxByfTPu7A+Xs1OWllt6r7qxOUUiO6qQGs5g8uFUjB0NrrrhhowIziR5BcNu1KOjZ\nQNUYyPIJZ6Mis0vnFvCx33wEn/rYk3B2IErM81Zldu5wgVmt6mBKxKwdOcqLh24QBNdzKS4IdXcz\n5DIGXI+TFEN0QXrrvjsaXjPcMYD7rrkX//stH8LP3/mT6LJ44dMjF55s+phdoeAyFirkykf/LD11\n5RieuPz8un/TTItbFBAmuNEouDXbg6kF2cl6m+S/VKjD9/l36RMEV/7Xc6lKMWkGGVNH3ZfxewRe\nRA1CAAAitYF5YkHdgoJbqzp48ZnLqkX4TiLswdX1nfEnl+0KLp5aQPfKCACAajpOjbwLV/uuBwAc\n+hf/BzC0RxWYAckkuNCDxRrJ6fDfREkKKcFNkTiMCwX3nptG0d3BH/jWCa4HUxj4kxQTBgTbUSzi\nVr0yRaGiZ2GQ5iwKkuB2dWfR1bOW4OyUgmvmu9TPPRYnrRt5cJ9/4iIY4+ryow+eautzgcaMUOay\nHffgLsyVZTAE9h3ki4R91/Qj38nvh5PHt7Yp5DIGPF806TAIBqxuHOk/uOHrTd3E/YfeDgB4cfI4\nVprMyvVcvuikNLhPrIgJ7sm5c/j4c5/Gnzz/GbwyfWLN38MWBUkaKhEpuDXbC9o7exR6m3nb0p4A\nAL0DfGEi7w8AqJSbL4SyTB01P7h+bnFlk1fvLKR9Ax4DCAG05qnHd755Gg996XV89s+egeftbJFc\n2IOr5os28dL4Gxi5fCMAIONVkBXP0Mk9t+LAf/41jH7g/bAdP/EEVzeDRBCS01KLQooUrcJ2fcwt\n88F9/0gXbrymH0AbBNf2YJlBaH+SCK4czEiECi5jLFBw9Qz0JhXcWVHBPbq3e92/SwW3UnbamoSM\nEMHtMvn7lKtrJ/VKycb503Pq/489fRmXLyy0/LkA4IdD6d2d9+AWQ+q23H7WNIKbbhsDAJw+Ma0K\n0DZCLmMoPyVMDff2HoVGNh/O33vkXQAAn1G8MHm8qWOWHlzfC7aWzWy0mZ1/f/676uevn/72mr9r\nGQtwZIoCP39RKbhV24Ol7VyKQrjJQ18/f6+OzuB8V1pQMTOWjhoLCK5TipLgSosC72LWShvjyxd4\n8sDCXBlPP3ZhJw+vUcE1GBy3fQJ9+rUZWA5/vq+bfwHXZfjC1XS6cFoscOuOp2xiQDI9uNlMFo6I\nl0stCilStIGp+TKkvWzfcKciuJenCi11sqrbdiAWJEzBlapplJ3MvHIZzOeDtx1qJ7odBZcxhvkZ\nrq5LP+BqdPcGql47UWFWZ/D+HcbGFoXXX5lUXdMsUS3/3W+dbflzAYCtjjTaYQ+uzAjWNILO7uB8\n3XY3TwrxXIpTr/HJkPoUl84voLaK3GczBhwi/YwEt+cPbPm5Y10jGMj3AQCurkw2dczSg+u7QVxa\nlO2LV+pFPD8Z5ASfmDuDi0tXG16jmWaoyEwouLVoFNxq3YUlLQoug9GmRWFZRIRZGQM5sYsVbu5Q\nKbdAcE0dFT+4l93y7nS8Ww9aSMFtxX/r2B7f+RB46tvnGv6/XWi6peYdzdJQLbVv31i8wq9Rxi9j\nuHIF1+/Pg4ods5Ov8Oe7vkbBTVajBwDIZ01UHdGuN7UopEjROiZCg9b+4S7cIAguZcDZK8tNv5/r\nhkiWRxJVvRsouPz/o1Bww2163WxYtdh6u7m4UlfK4vBo17qvCWfhttPsweoK/L15nZO79Qjuay+O\nA+B+4HvvOwSAR3D5XuvbjEykEjCPAWzniZz0J3f3ZqFpgZK190AvBob4duBrL42jXKzjgT9/Dg/8\n92fxF3/4RIPvkoDBzvB7m5kaKlcsPPjF1/ClB17C8mIFG+FAD1eJrxa2T3AZY7Br/NnznGDK2I3i\nu43w2MWn4VMRTybSIb5xplHF1az4PLjFiqOUOOa1X8yqEhT680rt3AmLQoUFz7lTbr3tbzNgjEEj\n0r7BWupiNjNVVLYegOdIHz82vlOHCEI0gInFm0VQKbZHnhllcGb59xyoTIEA6N2/B9oof/ZXLlJQ\nn/LixJCCm0SLQj5roCK7mb3J2vWmBDdFoiAJrmXqGOzN4br9vTB0fpuebMGm4DkBydJIsip35WCm\niXE1iq2fcBczLxOQ/e0Q3HA80dCe9QluuJtZOz5c3cqpSvGcJlIUVnlwF+fLmJnkx3T73fuwXyyG\nPI9iZqoNdYrJghgRabRLBLenr5EEEUKUinv5/CI+/luP4orYll1ZquHhl3K4YgAAIABJREFUvwt8\np9+59AxqJl9suNk8Hnu+gJeevYI3Xp3CFz7zIrwNtlj39+wFAIwXprZdiW9X5+E5XLmvlYIJOCqC\nyxjDoxefBgDcPHy9SoR4duJlRXoBblGQCm5WKrgRElxLD6UotLlTpO6R/uB9DENHJsvHsFYtCmUa\n3MterbU83WZhu35wblzakoI7MxE8zzI2rd0owtUgoi0AMTXUihsvEreD2ekiNJe/X391CgCQHduD\nPTfwYye2gQtn51B3PFhGsj24+YyJsiOOK6fDr0ZTK7ITSAluikRhYo4PuvuGOqFpBJap48jeHgDA\nufFWFNwQwd1mFFZUkLYAIUhFruDSbDDRbIvgioB5ohEMDneu+5p8hwVDFM21Q3AJ0SDjKE3C1arS\nqm362amAcF974zD2hnJ5Jy43f68orCK4O92mV5GX3rUk6NY790HaEz2hQitV98UJHHvpPD7/+lfx\nueNfRl2Kv6ITmiQ/s1NFfHuDYjup4FbcGpZq2/NgFhfPqZ8ri9ET3IvLVzFf4UT/PYfeiZuHeRW6\nT30sh4rlNDOICbMMHwQsspiwYsWBESa4bVoUJIEN2xKAwIfbqkUhTHDd2s5t8W+Guu2rvO1Wu5hN\nT/B7tX+wA/2D/HmolHa245hqnW5pqJbaI7gnT02on/uq3I6QGxvD7bddA1/EHr5y/NI6FoVkiTAA\n0JEzUA0puLLF8JsBKcFNkShMzPKHZ1+IQB3ZxwnuhYnmiyLCmabJI7j8eOSYRm1b+WN3CzIDF4Ai\nRvwYtq/gDgx1wDDWb11LCFEqbrtRYRA5r6ZUcOuu8tsCUH5gw9TQ25dHLm9hcITfNxMt2FkkyKrM\nzh1XcFekgruWBPX25/FjP30X7nzbAdz/gaP4Z7/8Dvz8r/5v6BaJFV/9+jF8+eTDqLg1WbYDXRCr\nn/3Fd+DaG3js2AtPXsLZk7Nr3v+AUHCB7dsUSkuc4GY7RuBV+Gf5mt5SoVArOCa8t7qm466xW5WP\nGAAWqsGuTtiiAHCSG6VFwdhBBVe2bM53NI5ZHV1tEFxLh0sDAuXb7ZG47SJcSMVa9ODK5jL1jiJI\nhr9XK+dgM0j/K7E02G0S3PNnxLOnrcCiNqBpyI6O4OjwIZS7+WLt8tmlhnOjaSa3SiQM+YyJiisJ\nrgavEs19sxNI3tlM8Q8WlDJMzK8luNfu48rcUtHGUrG5bXzqB4PgdkhclJAVs5oG9STutk3BERaF\numbBNAOyuJ1zMy8U3OHR9QvMJCRxC0cdtQIiPHEakW0+ebW6hCwyGRzq5G0kAew7yMlPWwRXFsQI\nNXAnlUq77iov7XoEFwBuvmMMH/qJ23H/+6/HwcMDyOZMvO3dRwAAVqkTVq0Dd4zehGztMACe2zlg\n1rBnXw8+/I/vUCToa59/FcVCDZNXV/CFzxzD7//G32PupKPSFq6uTG15vIxRlJZ4xXrXwLVgDide\n/jZj5XYCxyZ44sMtw0eRt3IYzPervy1Ug+usWRaYHRDcrOFFpuAWyjZ00R2Mx4S1TnCpT1ETdpx8\n52oFl9+LLVkUTB2OHyxMPTuarea644cygmnTCq7r+pgXwsdFeg5vFHjr21bOwWZQSQqmBrvS+tjl\n+xRz45wE5ignupnBQWimiZ5sN8gwf+96gaK0XFMKrmYkr8AMAPI5AxVbXLOsDrccjbVlJ5AS3BSJ\nwUKhpuJZ9g0HHs9rQw0Fzjep4jIaIrhmsghug6KsosJ2l+DWJjmpKRl5FaUEbE1wqU8xLwjl8Ab+\nW4mBIb44WZxvb6WvQVg4SKBqh6PCZmc4WS9aS/B8/l0kwS0s11r26GlSGxVq4E4quGFVeyOCux72\nXJ8DE1U2Nzi34z/e/38iY/PvqmkMhzSuxnZ0ZfAj/4Q3fKhWHHzsN7+Nv/yjJ3H69RlUSjYe/vIb\nuGbpFgDbU3CrxQn4Hr8nu/uvA3P5+acRbaVOl+YwXuRbvPfsvR0A0JPtgi6M640KrtlAcPOmh0oL\nDRFaQbFiQxfckTANWhuduqohr3nHagVXWRRaKzJz/WDK992oCG4oCstlIEZzBHd2qggmdm5q+QKW\nKL/mlYqjfr8TMC3+PBKLwC63fm6mJwqyrwUG6pzg5sb2qL/vPRIIBMvTpVC79Ph3GK9cXMSJlycb\n/PkdWRNVqeBqBF49tSikSNE0lgoBuRsKFVfsH+mCKXyd58ebtCnQYCLQreS06QVWDWgyKqy+e5MO\nYwzFE28AACayQ6oQByBbxtMsLVRUMsFGCQoSA8PcI1dYrsFtI09S02TXpTDB5TPHSxOvYV40BLnk\nXsC3Lz4FgDdMkGjVh6t60Ytj38kc3JUwwV3Hg7sRHrr6bVS6eb5vx9wIGGPwQkLKUO2S+vnI0WG8\nXSi+svLctHSl7ObP7UNHYQDjha0V3OLiefETQVffYcDl5z8qgnssFA12997bAAAa0TCQ44veNRaF\nenCv5Cw3uhzcWtjr3566XQ1tvYeTE4D2LQoMBFRYb6gXTdxTfVUTDM1q7vzMTAY+63q+CN/kx80o\nWxOf1ypKxToWlwQJtzS4bRRSTYSKoceKnOBmQwT36P6DqOe43as0V1QFeHET3OmJAj77Z8/gy3/9\nsoopBHhb8IoTHJvnRtgBr02kBDdFYhC2H/R3hXqD6xoOjfFVb7MKLoSCyzwKI5tcgksiUHBrE5Oq\nyOxqblQpuLqR2dJPOTcTsKmNMnAlpIILcGLcKpSqrDMQxieBcs3BxaWr+Ph3PgfC+Dmzc2V8+eQ3\nYXsOhoY7VbFVqzaFgOBKD+7OTTzhwrvtKriUUbw09RpWBoT6vmzjxMuTcIqByuLXG7cN3/PBG/De\nD92E+953PX7sp+/Er/76e/Hz//pdyOU5uehdHMNkcaYhhWA9lJcvAgDy3fugmznAE3aRJlW4VuBT\nH9+5+CwA4Nr+a9CfC3ZypE2hwaKQscDqqxXciDqZhZ7b7XYF3AiVSkDa8h3rF5nZdW/DpIyNkDG5\nxCw2Oxobmuwi6rYLQ9g34DZfZCa99q5Zh2+68MzguMstKNnr4bvfOoPpKXENzfYI7rhYWNezJXSJ\nNIawgnv9wGGUenk7bqdgK/IfZ5MHShke/OJrKgv4lReCjOmOrKliwgDA91KCmyJF01gOeap6V1UP\nHxE+3GYLzQjEAOhQ6LmNt+HturfjsTNbYV0FdxeTFAongpip8dwIOjIiJWAb/lvpd9UNTXXf2giy\n6h8AluZb387STfE5loac8FIvlsv42LOfglEJyKGdK2OlXsTfn38CRCOBD7dFBdcQfkG2Cx7clSV+\nffMdFkxreyroeGEKRbuMYv8sNHGffOVvX4Eb6ipGqQ3qhHYrdA3v+L4jePcPHMUtb9mLfIeF3v48\nrrtpBADQWRiC63uYKc9v+LmMUVQKV/jr+3jGMFEEd/cn48cvPYvJ0gwA4P3X3tfwN0lwF8ME11yl\n4JouipWoVMoQwW3TS1kNkbaO1QpuG1m4GVFU6nn8HmI0KoIbziJnIE3m4MqdGjtXxv7uPfCM4Jru\nlA93eqIAz+Pnh2WMlsdhxhjGhYJLM4vq97mxMfXzwd69qPXy+5YwglwCLAovP3dFtWEHgItn5lEW\nglM4BxcAfJY2ekiRomksiweqM2fCMhur9FstNJN+SuawDcPXqU/xV3/8FD7+Xx/FpfPttXltBg1K\njykI7i5WqBZe5/YEu3sAZSOPziwncNshuMtCie0fyDc0J1gPPX156CK7eGGu9e8jFXdiacj7/Jo/\nPv33mCnPI1PjKrGmEVwzxknbV09/C5RSRXD5pNW8RcLQViu4O2dRKG6SoLARTsyeAQBQ3cP3/dB1\n/JcMcN3g/iEZrSECbiNcdyM/V6abRbbavSnBrZdnlf+2s/ca/jmC4KINj+l2YHsOvvDGNwAA+3vG\ncN/Bexv+PtjBr/EaiwKFysLNWx4qdQ9uGy2jt4O67YHRwAqhtUn+t2NRAJq3KViGJLj82aSISN0O\nFc4yj0JrUv2fmeHEy86W8TN3fAS5BpLfPtlilGFhrgzPD3JwV6pb23fWQ2G5hnKRH5OBgOCGLQqm\nbmJkb2DzyiTAovDs47yQtFdYAxkDTrwq8nstQ3lwAYBq3rYztONGSnBTJAZSwe3rXksoJMEFmvPh\nGqGCIaOjY93XXL6wiLmZEihleOrb59Z9zW6gwaIgPMa7lTEY9t8Whnhb17wlBtZtENxFSXAH1z+H\nYWgaQf8gJ6ftKLhmVkwCloYuOIBh41yZq9D7tIP8eIY68EM3fj8AoGiXcbUwhX3XcPLj+1Q1gtgu\nKGUNFd/ATntw+fZeMwT39TlOcA/27MU77zuK+97Pc2C9UNtcWBqc5a2fiyNHh1TiRNfKMGZKcxu+\ntrxyWf3c2cvPtyYJrrm7k/FjF59WGbc/dduPQNMap6qBHFdwK04VddGtUFlJhIqbM/mxFiu7q1SG\nu5gB7RezSouClTHWxPF1dLZOcDWNwDI0uILgMlAw2nrHv+2iEt7udxlIExaFes1Fvcyvp9dRwy3D\nR7F3YDB47x1QcAsrNbiOrxRcTWcoua15t8O7RnlPLB41DZmhoYbXXTd6EE6Gj6my615cBLdSsrG8\nyMelQ3d3o2OY3x+vv8SzfHkevYVajf+e9LaucEeNlOCmSAykMtvXtXaCODDahVyGr7BfObPxpBwG\nY0w1CWDOxu0zw4b6S+cWGvymu4mw54oKxdot7Q7BrVy6rBS+uV7eLStnCu/XNgiu9NL2bYPgAkD/\nDiQpmHnu9SWWhn7dgTE8Dgp+zL3eAABgcLgTNw1dp/7N6YXz2HugDxAi83iT3e9qtqsmHLYLKQrF\nTZo8rAef+jg1xxddN48cBQDc//7r8cM/eQcOvOWQeh3J6I0ZxxsgmzOxXywAulaGMFveeMdCElwr\n1w8zw6+FJgyczZCUVvD8xCsAgEO9+3HnnlvW/F0quACwINoIa4J0Sx9uXnR6W9nhOKnV4F3MApVY\nt9ojuNKisNqesPp3rTQ6yFihJAWTREJUauHC2SYbPSyGFsjdAxkYuoGR7iF4hmjfvQMKrrRASIIL\nAFTrR7He/DwgxxvPcNAlFmhWX9+aVI3rBq5BLc8X33F7cCdDgtGXpr+Cc7nXAfAdsJUVTnzzWRMr\nRVH022+9aZo9pAQ3RWKwXOIEt7977QRh6BruEiH2z5+c2dYWiedTZHUZ2r++gkspw+nXpxt+d+yp\nS2tetxsIr9hdUVnslXaeXFcnJnHqt35HfKiGifwoAISKzDafkOs1V026YX/tZpCvW2xHwe0MVPs+\nsw5jmBc+3Dp8I4qLfGIbHOlCd7YLY1186/30/HlkcyaGRrj6u9qHOztdxKMPnmrwm4VRrVaga+Le\nEkRpo4VRs6CUoSTIVlfP9gjuhaUrqAmbwK0jNwDgzTTueOt+XHvLGByhxiGjwdkGwQUCm0Ku0ovp\nxa0JrrQnAIBGBcHdxS5mJbuM0wt8y/St++5YtwCyIQu3IgiuJQmuVHD5sRYiUHCz4cg9s737pSp8\nw6ubPAB8gaLp/Hy02s2sLrzbxNIiISr1EMFlHoXWhAd3YTY4Ppm/PdI5CE8kKeyEgis/I0xwNc3C\ny9MnNvonG0IWtlY7lzHg8GczMzS45nXXDRxGrYMTXDNmi8LkVeEH1hmqmQKqHcE4cvISnwvzWQNL\nJT5PaP0mvPKbo9lDSnBTJAbLwru0usBM4t6bOTGbX67h8vTWW891xw8mHofC6Fg78YxfWlLFGnLb\n+PiL4yqMfzcRHtA8SXB3eMLxKhWc+PX/DGeBE5lrfu5nsUj551r69ghuOAmhf3D9Fr2rIZMUalVX\ndWVqFmY2INOd2UUQi7/Pu4ffBcfmJGZEJDrcMHQtAODUwnkwxtZt+FBcqeGzf/YMnn7sPD71sSfx\npQdeWuPRrVSCBQar8b8ZbbZdlaiGcju7hA2HMbbpYu2NubMAeDTWjeI7SnTlrYCsZDS4K1t7cAHg\nyA18u5SAYGVq/Wvj2kU4Na5GSYLLGIMhFNzdbNP7yvQboCI1466x29Z9zXrdzAKLgvTg8me4sMMd\nr1ajWLGV6g8ARptxhHI8kk0ewkkXhJD22vVaOmqyODGjwdulHaMwbDt0nC4DacLeItVVX3exb4gL\nHMMdg6rQbHml/eOXn1HTwrngFl6ceq2p93FsDzOifXi1cxm9ImwgM7iW4A7l+6H38uusx0xwp65y\nQlvLFwGN4ci+wC989uo4AJ6kMFcWNRF5A3YxulqVdpAS3BSJgE8ZVsSAvZ6CCwB33TiiCpyef2Nm\ny/es2V7DdrO+joJ7Sqi3pqXjQz/BJ1PPpQ3Zi7sFohmQe+meqKjf6Qln6usPwl3mJO/wv/oF7P3w\nP1LNEgzRArc5gru9yTus9Laq4mp6cFwZjU8cht+BfndE/X50ryC4gzz3dblWwHxlURHcUqGOwnIN\n1Kf40gMvqQ5RAPDGq1M49vTlhs+s1UIEVyiBO6XglkPFka5ZwydeeAA//aVfxW985w82jOs6v8SP\n72DPXuTNRqLd1WGi7gZkxVneXmrE8Gg3ZI8RZ15f97PLK1fUz5LgOh6FwfhribV7XZcksRjM9+Ng\n7951X5M3c+p8KIIrtr7XKLg7FCW1EQoVB1kzIEdGbvOc6K0gF4QdHRZ+/+lP4p9/5d/h1ek31N9V\nN7OWFFwDVY//+6gUXMcJpyg0p+BOTfFra+fK2NfDBY7RzkEVFVYsth9ZNTPNx/qqHhwnMQwcnz4J\nx9++0DE1vqIWsNXOZeTL/J5YT8ElhGB0jO9CGCpFIfpOZowxTAqCW87zc/1jt38ATMybkzOcyOay\nBmYqgbhRK209/yYBKcFNkQiUKg6oGBz6NlBwu/IWbj7EvZfbIbi248OSyorDYKxDVK6c55WuR44O\nKVIEQLWG3E0QQlSSAhWD/k5OOG6phKmvfh0A0HvH7djzgx8AAJSFOq2T5giuYWjo3ubWejgLd7HF\nJIVwsU4GfPIx60OYFSqJaenoH+BEOqxunl64oHymAPDSc1fwnYfPqHzKe+87pLqxhf3XAFAPEdya\nl0PZ7Gmr7WoYpRDB/YsTn8Njl56B67s4NX8eL4QaGoRxYYkTzSP9B9f8rbsjo9Q4Ym1fwdU0gr49\n/BnLlXoborYk6mX+fBHNQLaTLygc14fBhOqf2R0Prud7OD7NW7HePXbbpvnMq6PCiKaBGAZgBykK\nQBQKrqOsUMylMNtcEKkUBcvH8xOvoObV8UfP/iXmhF9aKbgteHAtU0NFEFxkoiG4rhucf9akB3d+\nTkSEZcvY28UJ7nDIolCttLfTxhhTEYgVMzhOYumwPQcn57ZfdCzHF0YonNwKzCp/v/UILgDsHxiD\na1WVghuHB3d5sap2K2udK9jfM4ZbRo7C6uLP3cpSDZRSdGRNTFWD/PN6beP0lSQhJbgpEgHpvwWA\nvg0UXAB4q7ApnB9fwdzS5qv3uuPBNER/eJdCX2VRYIxhWbzH8Gg3MlkTXT38sxdmd6fQbGp8BZ/4\n3cfxzS+/DsaYWrVToeC6O+jBnfq7r8Gv8u934Kf+MQDAdn24HoVGKDRsr8gsXGBGtogIk8h3Wsjm\n+EQmJ5BmoYcUjYw4VlruV9uAI2Pd6niGOwbRl+0BAJyaP4+B4U4cuo5PLM88dh5PP8Y7ch08MoD3\nfegm3HonL7SbuLzcQDwdOzjWFwd+AC8c+DAmxptLYtgIMj4IAJYZV0ty4tw/dOaxNa9frhWwVOPq\nynoEtyNnoi59g1kdzuLimtdITHzpKzj2z38B0w8+BADYf4gvAHLVHkwsz655fb3KyVQmPwhC+DRR\nt32l4BrZ3Wl7fXbxovIc37X31k1fK20Kq6PCpIKbNTxohEVCcPOGIFo2bWtBxChTrXqXaHA9K24N\nv//MJ+FRXxHcaosWBc/n/56YGpzSztzbm8FzQ0Tc236Kguf5qKzwRYqdr2C0i1sUOq0OaFk+rjtV\nv63IqnLRhicWRNVM4BU2DAbdM7fV7U9CdjCr5YvoCHXQswaH1n39SHYv3M5gURqHRUH6bwGg2rGC\n7zv0dhBClHCg1zO4UphEPmug5GdBhSrtOK1ljEeNlOCmSASWQ5P/RhYFAHjHbXsgRZ2/f/7Khq8D\ngFrdgSEILhy6RsGt11w4Nn9gZf7f4DBXHlslZZuhWKjh859+AXMzJRx7+jJefWEchtx2zoqMyh20\nKMx953EAQN9dd6LrKI+WkvaEbMgzuCXBnQ8ycLcLQkjoXLZG2nUjIAryCO3lbmUf2bO3p+Hzjg5x\nm8LZxYsghOCHfvw2GIamdgbynRZ+7J/eCU3XcMOto+rfnjkR7Aa4Dv+ujAG2nwEjGh768uugfvtx\nSopI6xRU97CncxgfufmD/BgWL+L84uWG10v1FgCO9F+z5v10jcCnwXZz5dJl0HXijZaOvYgrn/0c\nnMVFXPzkX+LKA3+N66/jwfOEabh4aS3BtQXBzeYD9alad2GKIjMztzvbqRPF4FpcN3Bok1cCfTl+\n/QuhandOcINrlTW8piwKdm0Zbzz9ezj9/J9geeY4GNv6uhcrNvJSwXUo9FzrCm6t5qpt7mmb7y7o\nYoFxaXkcJ2ZPIyeKz6ottKnNmAayfkCkzlzdnODOTRdx6VzrfktKGRgNEXGHblvBXZyvqFbTuV4N\nVig3XJJ85hM1hreC+ZCQ0RlqYKMbPgzHwnRp7bOxHhhlDQVmXZXgvtlIwe0zRuCFCC5pswNeK5D+\nW89w4GZquH30JgDAvj38mE07jzfmziKfNQFC4C/zc+0hTVFIkWLbCDdv2MiiAADDfXncdQPfMn3k\nhSvwNiEeth1SeD2ypjBmJaQA94jBTVbfL7RhUXBsD088chYvPnNZ5QvadQ9f+KtjDSret756AgxC\nTbGEF3eHtgy9ag3OIlcU+u6+S/2+LNShTDMEV2bgDm2vwExCEtzFVhXcsEWBaGCuBbeYUedwZKyx\nZfCRPq5yThZn4HgO+gc7cP8HeLQWCPCjP/UWpdAPDHViaJRf63CKhufy7+o4JqQ/em66tMar2wqk\nB9cx6gAB7tl3O77/8DuREZ2vHjr3nYbXS4Jr6ib29+zBeqBEPCsZDdRxULnUeJzO0jLOffxPG343\n8cUvo2fuChjhz870lbXWhkDBDdSncqUOXTCOzA7ZNlZjVjSe6M50rvEcr0ZPhl+/gt1IcMPdzPKW\ni0IT3czmrjyBemUWlcIVXHztc7h66itb/ptixUHOCPK29TaKEsOq7OUaTw1537X3ISPUvRNzZ1W6\nQivFm5apQQ+F9r88AVzYIHaxVKjj03/8FB74xLM49VprjQ+qtqfSWphLAYZte3BnJoL7cnC0cezp\n6Q7IaLMd3cIIxxjuGxsBGH/mTcNDrp7BdHl7kZSL82Xl7692LqOrGtyDGxFcz9HAQvFy1N/d5inr\nQUZi1vNF9OV7sK+bjzPDQzzBxnQzeGP6PDpE+3N7hT//np7m4KZIsW1Ii4JpaOgQW9u+V8fCxPOo\nlRtX0T/49msA8K5mLwgvLmNsTUW8HeqgQ7S1q2PZNhUAevv4gDk4wgfSUrHecpLCE4+cxeMPn8FD\nX3odf/zRR/G//seL+Nwnn8PUOB+wb3nLXhCNwLF9LC8Jm0CGD6zUbmy52irqMwFpC/dBLwnVJxOO\nNdqE4NZrQQrCdpo8hCHP5dJiFb7XvAKqaYaacCwC0GIv8ggsEqMhBRcADvXtBwBQRnFVbC2+491H\n8KGfuA0/9S/uxZGjww2vlyru5fOLqInz4tl8wnNdA8OlS+hlfAJ4/Ftn2lKKAKAkiLlr8vvynr23\no8PK437RpevY5HG4oaKWC6LA7FDvfuhaY+C/giYWSBk+lJdOn2n485W//ht4Ra7SXfdv/jWsAe5b\nXXnyCbBufjyF6cbv5TkV+C5fmDUouOXgebHyu6Pgys5qo53DW7wS6BGNQMp2RRXKaZbZoODmTG/b\nFgXGKJZnGyvnl2df23ILvFAOYsKYvXHe9nZQCZHWOuH34t1jt+EGsTtxMkRwPZfCdZq7J02PNsRh\nGaaHY09dXve1x56+pNJKHv/WWaUsN4NSxQkW0yJXerspCjLKzzVt7B1uJImDfcHittxGVNj8YqBg\nXjt6DQjhRM4wfGTrGUxtU8EdD8URVrtWMFDnz6OWycDoXF8YqNRcMBpci2o1+u5gUnywc2XcPnKT\n8rz3hXbrLk5MIpvhxykip8F0H66TfBU3JbgpEgHVxawrA0IIqO/i3MufwpWTX8TJZ/8AE2cfBBXb\no3fdMIxBocR989nLAIDP/+UL+G+//nBDq13HCRRafZ0KVdlVihCgu5e/nyRlQOs2hbNvNA6Kp16b\nxqTYvrrjrfvxoz/1Ftz6Fl4dXhEfEbZf7USzh/pUQHCzewKCKwvMstskuA0JCptk4Fbd2pqK40Gh\nhjPKVCe0ZiEnHM3SYC53QQ67RCMYHm2sVpcEFwAuLl9Vr7vzbQdx7Q1rCdONt/LzQinDuZP8mtE6\nP/eOa+LQ0qu4LTMJgCvwJ16ZbOk7SEiLgmfV0ZPtVlvw9+5/C/8Mz8bJeV7UwhjDBfEd1vPfSqik\nCYsP5cXTp9XfnOVlzD/+BABg+L3vwfC778fQ/fcBAJZffgX5AU44/AWzYXEo1VuAe3AlaqXgGuY6\ndkvB5Z892rm+bzGMbqHgMjCUhLVkjYJrutu2KJSXL8G1+WKgd5g3l/DdKpza5n7DUsVBLhRHaPX2\nbPr6zVANHatnOsjoFm4cuhY3DXGL0cXlqwiFizSv4tY9uG6gFJqGh/Nn5tQCT8J1PLz0bGCRmZ8p\nqcSZZlCqOmsbp2xTwR2/Kj2tBexbtYMx3B8UkS6ttO4jnpnn19a16jjcdwC6iBcxDA+ZegbLtYLq\nlLcZZN42yfnwrDoGbS6oZIYGNyyUrNRdMD8QXhZ2IPKsGdh1D8UC/252tozbRm9UfwsTXK9M4Ol8\noV8sBJSxEup02CzKTgWffvl/NpVS0QpSgpsiEVBdzLqzYIzi8okf13FlAAAgAElEQVT/iYqMKmIU\ns5cfx+RZXiCj6xre+1Y+6b92bh7jV5dx7tQcPJfiW185oZQGNxRPsx6JKwgFt7s3B13nj8LQcECa\nWik0W1mqKmJ8//uvx733HVLRZne9/SD+0U/cDqIRRaQrFbElZgWr952wKdQEwSWGgWKe4BtnHsXv\nPf3n+O7kdwCwbVsUlkJbeLLwYDUmitP4l1/7D/iVb/w6Ts+fV7+XFgWg9aI9CqFwWBqyhaxScIdG\nOmGYjapmV6YTQ6Ky/tLy+JbvPTLWjV5hTTn1ukgN8Pmix7MJOt0Chjt9ZWV4+bnNPd9bQVoUXNPG\n3WO3QRPeyhsHr1XFZi9N8S5C89UllETB22YEVzYVIBoBLILSqTNKcZx+8JtgHidee3/0wwCAwXe+\nAwDAPA/7SEF8Zx0XTgdV0XaI4GY7QgS3GNwL2Z7m7CrbAWNMWRRGOvnn+h7FlYuLWFqoKC+1hFRw\nAaiuU6s9uDnTQ8324Ljrx7CFsTTDkyw0PYM9R96nfl8pbnwv+T5FseogYwYkzuzt3fD1W6EaslN4\nhoObhq+DqZu4eZgTXMoo5t1g27zZ7XlWdeF6YYLrg/psTZrI8Rcn1Ja7JTpIPvHI2aYLusIEF4rg\nbu019X2KuWmxfd5RwL7u0Ya/j4Xa9c5vs8HJelha5s+Yb9k40DMGw+RjXMZyYTpcFJnapJ21xMwU\nf5bcLv5+vWKzY70MXIlyzQX8QHgZn4+2cCsc32jnKrhNNJIBRCa84OWWnccy5ePjyrKp8sEL86fW\nvKfn+dtS+h888xgePvc4ys7uNoxICW6KREC20+zvzmJ+/Fkszx4HAPQM3oiOXj7Bz088C1f47d52\nCx/wKAOeCHUem5spKaXN9QKCu174uvTgygYPAC9EyuX5ANxKVFjYz3b7PfvxgQ/fgl/+f96Dn/2l\nt+ODH7lVVf3L7X7H4STNsoJJ2Su3n6QgCa41Oox//8hv47OvfhEvTLyKl1aehD5yBVlzmwR3MRwR\ntv7rvnbqEdiejZV6Ef/f4x/D01ePAQB6+/PQDT7EtKqGu2KUJZaGjrIOuTE5tn99EnGo7wAA4JJQ\nPzcDIUTZFC6cnsPSQgWmxgmDJrOC83nc+Tb+nlPjBUxPtDaZMsqUd9gzbdw2Gkwmhm6o4o6Xp3i6\nxmszJ9Xfr92E4FpWSEnN6HCWluAsLMCv1zHzzW8B4B7s/D6eGtFx5DCyo9zDvm/8ggrMf/WVgLxL\ngqvpGRhWQCLt0M5CrmvnCe5KvQjb5+d9tHMYjDJ84TPH8D/+9Bn8yW8/ht/7f7+Fpx49B0+QVenB\nBQIfrmZZnEiJOTZo9rA5EWTUx8osX1z0Dt+MXOcoNPFcVAsbE9yJuTIoZbAMQd5gNBWDtRqSsFLN\nB9N97BWeyMP9B5VXe7wWHE+zCq5bdhoU3E6DP98nXgk8towxvPAkH1NHx7rx3g9xZW9uutT0c1yq\nusiIhjJMWRS2Pj/zMyVQj1/EWmcBB1blIe/tHwEDf7/FQuuZ5bUiP7Zspw5DN2CKJJZc1obh8vM9\nXd7cpkApw7zwshYtnnyRL4tah6GNdyKqdQ9GqOBvdjGaFvES4dqIkeFudIcWjIahq/HetHOYs/mc\nWtcyoFf5vFlYOK0WPE9++xx+9z89jI/+2kP4+EcfXTfho1R1MLXAP1Parwi2l8rTKlKCmyIRkAru\nUDfF1PmHAQC5zj04fPtP4+CNPw4AYNTD3NUnAQCH9/aotIVLZxsz+R7/1hn4PoUfIri6tXZLVVoU\nekPVs4QQtbXeCik7f4oT3MHhTvW+fQN5XHOkcatKElxXFHxkTKpWzDuRpCAtCuWeDKoulxOkSmge\nOIPunuAztqPg9m8QEVaoF/GUILQA77r0qZc+D4/60DSCQVGY1mrRXk1MYsho6KKAKU6SbDe7GtKm\ncLUwBc/f2p94g7ApeB7FN/7XcVimUK1ERzM9n8Ntd+2DIYj6y89tTZzXQ7Ua5Dx7Vh1HRWMKiTvH\n+Jb4XGURk8UZfPfy8wCA/T1j2NO1/ncFgEyo2xsRNoWlF17E2T/8uNoJ2PsjPxy8hhAMCBVXP3MZ\n5R6uzFw4taBsCvUqf554RFhwze1Qe06jszk/9nYwEyroGekcxLPfvYhzp4Lf1WsuHnvoNP7iY0+i\nXnPRnQlIdiGk4AIAXH7cQbOHzX2alcJVVWDYO3IrGIB8B783NlNwL4hED8Pk13args2tIAmrZ0ii\nzxVAQ9NVM5Nz5Qvq9bUmCK7n+nDKNijVIHt79IETsssXFlBY5uPE+OVlNfbd865DDfaeZhvglCqB\nug2Hn6PtLADCrbR7RzLIGo0Ws4F8H3xhCymWW2v2wBiDX+P3SW+fUG5F9Fw2W4fu8Ws5vYWCu7xY\ngSdqDMrZFYAxmKIBxUYFZgD34Mo2vQCwuLS7cXarobrEaS5u2H94zd/l/GXZeUzXJgAAdc2Cf5l/\nN9cuolaahGN7+O7fn1GKf2G51vDcAsDcUhW/9N8ewy/+zqN44+Iirqxwwmxou1tYlxLcFLHBqa+A\n+g4YY4rgXtt5XBHTAzd9BJpuIdc1ip4hrnDNjT8Lz62BEIJ37tWRoS58EXg+KqrqlxerGL+0BD/k\nnTIyjRMyY0wVmckCM4mhEUnKmltR+x5VHmDZDnWqOIM/P/bX+K3vfhyXlyfUa/vEdn94u1D6KHfE\nojDNCe5lk0/aR/oO4nfe/x+gwwIhDFa/sDBoJshGBUyA8s72bVBg9siFp+AJb/Q/uZVvg1ecKk6K\nFrODLZ5LiSIVHi1TQ14YlYlGcPj69ZURqeB61MNEcWvP4P6DfegUqR2Xzy/AVASXD+JGPo9c3sJN\nd/BYrddfnmyp2CycntHRlUF/rlGBfsuem5Wa8eWT38SZBU5i7r/m3k2bHWRDBNcY4Auzi5/8FJae\n4wR54O33ovuWmxv+zcDb38Z/8H3kGCdvnk1x4QwntnZFRIR1NE7ObohIrI7CaqUAaTWk/xYAtFIO\njz3Et0BH93bjIz9zFw4c5vaT+ZkSXj02jq4QwS3aqwmuiIYT13NlC4JbXuGKJQPw7578FD79sX+P\nlcdeAQBUixMbxoVdmipAIxQy4UlaRlqF9OD6guAOdwT3ubQpXCxfVovhZhTcmamiULYJXJePNV10\nkb8XA775Fb578OrzfBFnZXTcfMcYevpyKtN6ZrI5v2u56gQpClLBNYIxb3mpjN/+ja/hd3/nG7BD\n2bHTIkHBtWo4tGdszfsamg4I1bxc2dojux5mlxahiSKvPUP83sqIez6TcaBRTnC3sihIKwUA1HMl\n5BwAjlRwNye4Vojglotsw46Gu4Grk+J5z1Vwy8h1a/4u5yjLzmOuOgfoLmzNAr1aU8/7yvwpXL6w\nCOo3Pv+z08F94no+fuezx7BSskEZ8PXnTmG5LhaG+sZzz04gJbgpYsHi1It4/YmP4vUnPorJy8/D\ncTzcs38K3eAezsG996KzN9iaHT30HgAA9epYmn4Zs99+FDd//b/jB5ZOqE2O9/1wMJHPzZTAKB/8\nGWUwOhq3VNfLwJWQ3tHlpSrcbXj3JCauLKuq4yNHh/G104/g33zzv+DRi0/h+Mwp/KdHfxfPjr8E\nAMhkDXR0Wg3bhVRk4brF9raqvHJFVc5ftTiJf/eht2NP1zCG6ncAAEyxNb11Bi4n2+slKHjUxyPn\neRHTrSM34ENHv1+pxC9McD+jysKdLzdNgupuHQXRBYlkNOgmf69sbxaZ7Por/8MNhWZb+3CJRnBU\n2F0Mw4cmRkQiLAoytP/Ot/F70bFbKzYLN5M4OLI28qsn242bhvkkIxVxQgjedfCtm75vRz64r3t+\n4P0N7ah7br0F1//b/2sNQe48chiGsBgcWJlVNoVXnr8KxlhDk4cwZNMQADBCTVOefuw8fuvXHsTx\nY1uf780gFdycmcW5VxdAKYNp6fjIz9yFm+8Ywz/7pXdg7ABfGLz87BVoREOXxb9voOAKpil4X050\nMytuERW2ssjHnRnPBy1WceSpy6Bz/JpR30G9sn7npouThYZMaSPbnnVDtt+VnbqkggsA14osZAYK\nS1S1N0Nwp0OqqOvwe8IgNt76Dn5vn31jFseevow3jnO7ws137IWVMXhbWdESu1kFt1h1kNE39uD+\n7VefgFsiqM0zfPHBp9TvJ2SBWUcBh8WidTX0jGiL20IeMACcnghsOQdH+RhgCQVX04CMSQCGLbNw\n5ySZ0xicbAXXkX71N2sLD64lzg1jgFbLqvSXKDA3y4/byVZwQ6gTpIQsNLPsPG9K1FFAXecWIDrF\nn43C/ClcOM2f20zWUIvQuRDBfeCbp3EudO+9fDmo00gV3BRvShRXapi4soy56eKa4hC7uiDyJRk8\nt4LZc1/Cv333C/jgjRcBAFa2D3uv+8GGf9PZexC5Lk4MlqdfxdW/+TwAgFl84NUtHdccGVB+2vmZ\nUhAw7lCY+UaCtl4GroS0KIA1GvG3gvJnEoD2VvA3r/0dGBgMzYChGbB9B3/07KcxKcLs+wY7Ggiu\nk+PksF0FV6q3ALDcpcPUDLzz4N38vRf5dndGkJ7NCG6t6qhtp4F1EhRenT6hVuI/eN27Yeom3iK2\n2o9NHgdlVJ1Lz6VYWW4uO/FqYQq28HgxS4ev8+ukbeAFBoDeXI/qaCZ9XlvhHd93BAePDODudwRW\nAFIVLWkFkdt/TZ9S9luxKcwsBN22bti3/oT9L+/+p+i0gvN828iNa5Te1ejsDOKS/JEh3PWJP8Xe\nj/woRj/4A7jhP/7amuxngLe07bmFX6eDcw5WBjlhP/vGLE6+ch7U589NNt+oknuVsIIbLApffOYy\nKGV49KFT8NtoiDFTkhFhQ0rBO3h4QLV9JoTg7rdzMrYwV8aVi4vKN1hYreCKQrO8sCisbNLWljGK\n4jIfeyY8H+854cLyGOhcQIoXTz2/zr9juDBZaIjcM3Nda17XDMIWBUKIakcMoIHokQxteP12IDNf\nHTDYnibeR8e73jmmyMzDXzkB1+Gk6y33Bp8nI/lmJgtNFZqVq+7aIjNxjeaXVzB3Mjj+cy+sYLlY\nQnGlhrkpfj05wV3fg24KQcCptxbfd2kqIJOH93KPr5UNnrds1odGDUyX5jb9zjJL1s6VAQJcj+Ca\nSb/7euAWBX5ufF+H6eZwdv5iS9+lWVDKUC/w65Hr0xrGHYk+MS9qVIfhWtC6l1Az+DmnV/hYUC2O\n4+oFvjN5+Poh1XxnVqjajDE8eoyPl3vkrqXJ50lCCFfidxEpwU2x45iZKuDjH30Un/74U/jE730X\nX/irwKPJGMWl1z8P6jsA0ZRK1JVxQQigGR247u5fgLHeAzdyOwCgvHIZTo1PgIUsn4Qd8/9n773j\nJLnOcuGnYld1jpPj7mzOu9LuarXKsiQbbMkRGxvZ5hqw4bvwXcCCezH4A3yxcSAYLhh/wggbYWzL\nssG2QLKivUGbk1YbZndy7pyrqyt8f5xTVd0zPTM9G757+f32/WdnZ6q7q6rrnPOc533e52XAsIzd\nqCE+m4dBtafEfL0exDbywLWivvq/ebBpDepwxI2/P/NNGKYBF+/Clx75ffzh/b8JjmFhmAZeHT5M\njpsHcKsSSZVfN8CddCbujI/D7V3b7QksnQKMQgDUdncZizAH0DSSKLw6/DoAwj7uaCeAaXcnYYjT\nShZXkiN193IlmwUAGMmMo2KtK67a+7T0rn8g0gcACzqDLRahiAcf/tV92HePU8hitXu1UvEMw9gs\n7tR4xgZgzcbYLNnUGIyOTZ0L04EA0OZrwW/f+Su25+0Dq+5c9n39Xi+stVcpFyH4feh7/ENY/Su/\ntKBzX20EtpE2uL5MBYXQRRgSARqHXj5pH+NyR+peY1bImNE4AQxNLRbzFVu7WchVbLu1awlLotDi\niWGWtmNu76q33Nq0vcNm708eHrMLzXLzNbg0k+J1Lc/gDk+fBUdbEAfNGFZdIZ99NcjBoBud5OUT\nC143ly6jWK7CzTkgTfRdu4MCUCNREFRE3WHwnPOsu0UZ7bRdrSVhWAnAtdqSKwAUa95xsWArZTz6\ngR11WZGWNh86e5xrsQBuuVRFLtP8RjVXqjgewfNswv7lh6/aEgEAYDUe33j2JRw9MAzTJPZvucgM\n+kJdDd/bkk1olWuTx0zVbDpDQZqOdznPmyRVwKukhqG2mcj8sNjKkkTmhE6VzKkMx8EViSz6uqJS\ntdl/TePAmCwuTV6fU0uzkUoUAIMsAh3t4YbHBGuswoSKG3z7MPTVhH01Rpy1QeAIwF29LoaWdrLh\nLuYrKOQrmE4WkaPP6PsfWoewXwIjk3vZ7m25VWR2K/7zxZHXhuo0OZffnLU1mJnZcyhmySDuWP0W\nbNz3W8hKD+HMVAxDyQD6t/2XOnP52gi1biU/MAC3ygPG60dZIANKzA3jQvyKrfmMz+TBaGQiNlUD\nvGceg9vAA9eKQFCGIJKJdyUA107L+FQMZ0i69gNb3oF2XwvWRPptEPjT0aMwDGMBwNWpe8P1Fpkp\nlMGtckBRZrGRpp/KFQ2FchV6usVmcM0lUkSphHMekXkAN1cp4MQ0qTq/q3e3Dcp2tG+CQN/z6ORp\nhKPOJFlrOdZMjKQnbAaXEQHARAkmisuwhJa/7Gh2EorWfOGGVWQEwPZS5Wu6Um29zSk2O3dyAiuJ\nmQSxANJFFZ2BtkWP29iyBp998HfxxP6PY0/XjmXf1+91QaHG/ZVK8/c3uHWr/XNXvIzZ1UTvysBZ\nyF3yvIVPIePJEJ2Cn8nxeleJ44eufYG2JAphLWaziPMBriDy2HYbkaFcODsNH3V5yFFLNQvgGkUL\n4JIMRHqJZgAHLvzI/nlLgl6zKOCl3X4UqCWSqmZgGvXP3dAkufYg6yz2Ln9jsNBMmKaJIgXiGq/W\nyROssFjcMm0CsRKAa2WtVABlqv1nRBZasYie/jB+/fcewHse34V7HlqL93z4tjppS21TlZXocMtl\nxZb9oMZFQakoiL9Bm3O0KGBayLOVPsfg6EGih86FZhGL+RcUmFnhoc1GmCqHchNetfMjnSrS8zFt\ncC+4/PaGUZYqEKiTwlRNC+na0Kq67RWuuMnYCdI2va6WmL0RbBTFctV2+aioZO6fjV+75dlK4uKI\nM07X9zVmyEM1mU2fFgTDmCgHqOwvU0WebiJbYmSjsHpdS113ybnpHC6NOtZnG/vDuGt7J1h6nzq9\ni8+DNypuAdxbcUOjXFJx/jRhENdtarU9YE9Tfd7sKNFsilIIbX33gWV5TBa78L1z6/Ds+Z0IRrob\nvzEAyRODyBONFDfgQfD9H4FJvUQ7lEF8+uUvIc3H6XlUwZl00lNNO9VshcU6+fyS7YFrBcMyNvMY\nb7I4qtYqJsETFqs70IFHBu61j7m7j3SsSpUzeGPuEsIRD6qao0fTXRbAvT4NrjJNPQt9PMAw6PCR\niSRBmRc93WoD3Fx18YXfYnB5gYXPX78JODh6zC6IuLdvr/17WZBsw/ADo8fA1diLpVbY7GEk4wBc\nlgVY1kQCpt2NbbFYSwGuYRoYSjUvJ1AVB9CbZbJI1TL/sltE7wBhZGo7FzUTmQy5dtHD2v63i0Vf\nqAu3dW5bsrjMCp9btNm4qto8syZ1tNv6wJ6ZKpKeSWzc0Qa3TMcMw9dZhAEAKuRZMUTnWZgYTdUd\nMnQ5vuLvGSDdyIo04yIVnUWyvWshI9q/hnrk6gY8Kjl2vkTBpJIEiVfBswaS2cb3ZjI3A7ZM5gyV\nl1E9R4r7glu2oLWtBwmruMzLoDhSD96HKNALCw64coWWb1CxWFQUzSYGdEGtKzCzwvJELtCNSLMu\nCqSolrYNh4myNe+4WHu+kd0iNm7rwD0Pr6vLvABANOaxN3fTK9DhVhTnvtsMLi9gcHICvEa+qx27\ne/Du994OjVPBgIVGj0u2DWNVuLGcBwB8XrL5ZHUB8WKy6XMCyBxMLa8he51NPsNygEquU6qxClus\nYDU+W7ABcUXOo80bg0k3s1Lr4vIE3TBRUjR4KMBVKcDNroAdv564MELmRRMmdqxZ1/AYj88FXiD3\n4sH2+8AaIkqyM3fF02Q+iEXSaGmTEQjJiLV6YU1bs9M5XBwh80PQ60Jr2I3bN8bAyAV0zKnY+5cv\nQ7vOepPl4hbAvRU3NE4fG7ctU+55ZB3WbCSD/MzxCeRSwyhmycBq6d1vV+9bwCsaXL47klgmTALT\nISHudcBHRzIOxjBxpnDa/p1EU4emoi9gcK00W60Hbm3Y1f9NWoXVWsVMglzjHd27wLLOENvVsQUe\ngXzeT0aOIBR1wzBY6Do5xqQswvVKFNQUmVQKbvK+ndQkPU5Bval44Kf3Pr4E62cxuOFIvUWYYRp4\naeggAMIozfeovIcC3lQ5g3NzF+0OaCuRKOiGjtHspOUsBAAQOBVp00C+tHT3m1XhXhtEDiaHlzy2\nNpQyOT/DgM02ce7656OrlzB0MxPZBa2hF4tyVYFaJBfiD9zYDmACz6JCuyHp1eYXR4ZhENxKZArd\nsypgmli7PwiPh4wZpbJQusJajVNczt8uDJKNa8VVhEnNZw8ePb/i67Ba9AKAmSHX4/aKC7IrQH23\nQbFMnq35EgUj5wA/v1Sxn/358drI6+iiusKQbxWKwyPk5x3b8NDA3ZgQqQ+zj0fmzOm61w5RoNfp\ndZ6D6wG4tWysxqt2s4vasBhcTViZRKFYUG1WvAKgQMEl42Kbmm9YjkULZedmauQ5um7gy986hU9+\n+Sf4k6eO4sgb9UCwWvtMVh0Gd3TGYUT7u9qxcVU/wveWobNEzlDyZFDypu0Obo0iSAslOY1fMcC9\nnBgCT6UE8yVqLM2IyFIFskE+Y2IRBjc+47DZijuP3V3bUZklBMdS+tsyLXC2AS61i9RLDAoryMRc\na4xNUWcIWUPY4294DMMwtpMCUxKwWX0Pcpf2QaOWIaU4+T55Xsfa9WTsCyJvFyTPTeVwaYyA/XW9\nITAMAzmggGFNbLtcBqvpMKrX35Z+qbjpAPfpp5/G/fffj61bt+J973sfzp49u+TxR44cwbve9S5s\n2bIFDz/8ML73ve/d7FO8FTcoTMPESdresbM3hLaOgF2oUMxXMPzGiwCIgXy006kOXwnAxRSZEBiG\nwRXqSCDoCjxqGaGcjiHNqdCUaIGJWdYXaHAtgOtf5DOjtKNZMl6A0UThjKUZBICyTBaAXR1b6o4R\nOAH7ekix15HJ0wiEyQRryRRMy0XhOiUKappMKkWZhSxICEpkAovTa+YYEz468seVxT/L9sCdV2B2\ndOI0xrKkMOnB1fsXvG5XxxZb8/vq8GG7SGglzN50fg5VvYpKza1v0SYg6goKyzC4Eu9Cb4CA7hUB\nXAqSKqozLc63w+rqJYyirhtNp2oHk8MQVPKctbWEljl65aGZZMEx9JWlaf2bifWet2zAVzKQZzOw\nHJlyWWEBS81bjhYSuRbTNJGYJt9pNZqFJpLPvzq58pautQC3SBfO9q5AQxY7VNNABAUC1MqaAlVT\nbRcFI+3cC79UQTxTXlAoZBgGXh85DB/dhIo553sPbt+O/T23I8OT92NYBunLZ+y/67qB80NEMxx1\nOwBXii4OapaLYo2V2WIAty/UDQZMnQa3maKv2qLaCoCi1UFLZPGTCz/Bq8OHl7WosgqIrK5dAHDs\nwix+fHQMF0fTOHxuGn/6jeO257BumNBrnslaDe70nPNs9bQTXfH7734YYxuOIRUbw+Sqs9jbvdPO\nejWKcICcD2tymM2mFj2uUVxMXIVQJfNvLFovg+EZ8ntJqkDSyNw5uQiDm6BzpM5WwUgGfmb1vVDm\nqI/0EgxukbZMtwCuYZLPFFUZ04WlbcmWC8M0cHbmwqJz30x+DkqOfBf+cGP5hxWWTCGdKiHmD8As\nBVHkye/chV5odDPg8TsOKpZMYXoqh2G6Lq7rJfNespIATJNsqgEwwsIi2BsZNxXgPvfcc/jc5z6H\nX//1X8f3vvc9rF+/Hh/72MeQSjV+GCcmJvDxj38ce/fuxb/+67/i8ccfx6c+9SkcPHjwZp7mrbhB\nceXSnF2pa1U7D6yLwet3weMuoVoeBABEO3fXFTetBOBWhuIwKRMg6kSv5KmkwQBoTeowOB2ch/xd\nEumEreh1tkYAkMuQiXcxgGtVzBu6aRdnLBW2FyJnQnWVEJFD6AsuLI7YSUFvRasgXk1AkgUb4DKu\nG+ODWwtwO31tNkiw7nNbsGpL+yeUAjLlxilHC5DWWoQZpoHvvPFDAEDMHca9fXcseJ3ACdjfczsA\n4OjkGXhDZBLLpErQteaq7EeohtnM1RS6aKPwaiWUFA1akzrcy8mhhgCgMDSMxMHDdX9TKXOiVpxp\ncf5z09njANTJ0eZkCm/OXrG1fN2t187wLRYG6CJlrAzg+tY5qcn2eBUz+TgkibxHqSzZ9j8A8bIU\naJcxljoonB+5CkYlz+7GNT3gveRe5lbolgE4AFdgBRs0N5InAIRNtFw99BpQmqsUHIlC0ams97tU\nVDVjQTezs7MXwVdr2pUOEpZOjEQgd3VCEiT0tW6w/16Mj8KoEkAyOJ5BkVbvB11Om15OXBowLBWl\nmvPTBRWtDSQKboEUmmk8BUaGiUoTLgKZZD3ArQi0BkFgMTF1BX9z9Ov4nRc+a/svJ4opvHT1AA6M\nHsMYNeW3CohyGcX2rD1+gbCVIt1wVDXDrpovlquORRgAa7fKCgJSSXLfTdaAx0PuWZs3hvt27sJU\n/xvYt3ErfuOOX1yyyt7vdebuuezKJEOXElchUAY3EKgf4zxL/k8kCuQzFmNwp2YJc6xKJTy4ej/k\nYpWmgJZ3UABMW4PLUv9kQZWWbSyxVJycOoff/o/P4DOvfRm/9+Ln8e03fgBjnofz4fGTEBXyedbm\nYrGwCs0yyRJCPnK/cix1+6lEEU+Q+VCvXLa9oq3nJDGTtx2U1tPM12whgVhag0wLAznXf2KA+9RT\nT+Hnfu7n8Nhjj2H16tX4wz/8Q0iShO9+97sNj//mN7+JrsOeJnoAACAASURBVK4uPPHEE1i1ahU+\n+MEP4uGHH8ZTTz11M0/zVtygOPQKmRy9Phc27SBUEMuxGFjfgjUDo2AYEwzDobXvbvs1pmkikSWL\nanQJ+ycryhNTMGap9sdNFgS3Tqsy58hEmRNSAEyIosXg1heZ6ZqBAmUZLH3oialzePbNf4eqkfe0\nrcIAW1t78dw0vvn3R/HZ//4c/vnJI3W+rnM0VVWR8wBDOlM1Yp/WUC9LABhMDiEQlO1mDyy1NjAU\nxV5IVxp6pQKd2jkVZRYdfmeSjWfI7/tizqKT0g0MNrDTqrUIqwW4r4+fxDhlM9696W11Vd61cW8/\nkSlU9SrmQBYH0yRSjmZiJEOKuKSEs0kIcGl4KCNUWEamYAHcjJJDolS/odZKZbzxqT/Apc9/EX//\nud/AH7/6FyhVy9BUsuhWK873VmuHBZDKbStFPtEkwL087mg3w+Eb3+JWBzlHgVlZRye5s8P2w21L\nVDGbj6NaIZudclnC1ZoOgcWyBhdtumFlQ1497aTs79uxC94gGX9q3lyRlRTgFJh1oMv2nu6YV2BW\nG1aGpZx2Fu9sJe+4KJQNMAwBRwGJjHXr+bfiJyOvI1ojIcofJ81Jgju222N3e89eGNa1eBjkLlwE\nAJykLbk5lrGlUIx+fRXhzUgUACJTsBjc+a9bLKyCKo5nobkK0CKOl3MU5J6NZSfxBy9/CX9z5Ov4\nb//xR/i740/jy69/Db/9/GdwOTGEljZnTpybycM0Tfs+7N3cjo39BMQ8R23jZlPFOgs1kzbfYAQB\n+Sz1mfYYdfPkL2x7F5587Av4xO5fsAtXFwuX5NQvJDPNF2dVNBVj8SlwVNozXwbD89Rv26WCKZNj\n0uUsSg007qOTBOBrLgWPrn8IyozjIrIcwBU5w+5kJroIKORVqS6bsZI4PnkWf3rgb+v0ws+cfw5/\n9fo/wKgpkHx99CREK6PUunRGyWJwczkFQQ+5FzmOvHZW8WBqmgBkF3ScvvIyAMeFyDBMiABYBlhD\nW6vPFRLomaHtqMH852Vwq9Uqzp8/jzvucBgehmGwb98+nD59uuFrzpw5g3379tX9bv/+/Ysefyv+\n98T3v/Eknv27/4lnv/o/8Y2n/hx/+pWn8Su//68YvUp2s7fd2Qeedyanzi4DHW1k0AZabqvzGsyX\nqlDpgrYcg1vN5aDlcjBnCcgJ+YpgGBOym3xWZI4swCUpC1Go2mJ3s6zXAZV8TrF71fuDMlKlDL54\n4Cv4l3P/hn849R0AxOqL5SjzOVfAzFQW337qOAbfnEVV1XHlwhwunXd29RaDa1nFzJcnWOGXfGj1\nEmbmcmIYvqBk66840Znoq5lr669eTTugqyhx6PQ5laoWg9sRpBOMaSJjmA1TWbVyglqA+/yV1wAA\nrZ4o7q4pLpsf/aEetHvJ5DekOrKRZJMyhZH0BHhVBBdvs4s4WDcLr0ZAynKFZmui/fbPp6brNaHp\n48ftTcCaY5MYu3Ie3zj1Xei0HWU5T3WXgtCwrWgXZXEnx5YHuJqhY2LW6dC1WMbgesLkCPCQuPKi\nHbcaBcMwNovbnqgilZsE6OtLZQlT4xkbPJWUKly0cQrvIcbvY6P0ungDPR0xRGknNU6RFmwqlgvL\nIiysO4xSa8cSAJduMvLJqj2Ws0oenOSAFV4g5+O3AG4Ns6zqVRyfOosYLTDleS+qcfJ9Brdvs4/b\n0r4ReXpLmaCAzCmyFp2iwG5Dfxgm9Q1mzOvz9LQkCgZjwC274BEb27z1BDvtVr5AcwA3k3QkWUL3\nIFTG2eRuD/Xhl3b9PDyCDNM08erIYVTmuY+8NvI6Ym31m/7x2bx9T3dtaMHb9pExN5sq4eSlOZy4\nOOd44AKAaoDheZgwUS2QL03212+QGYapa8G8VMhuZ2ymVyDrupIaAas6wMo3j1gRqbc6wwCy6Zz/\n/EKz6fwclLwBWVLQ1yEj6PJAma0BuEtIFDKFii1PAAAX9XMWVBdmroHBvZoaxV8e/nuYpgmv6MHH\ndr3fLkg8OHYc3zjzLABC5EzMJcCY5Llv1MCnNmyrMNPxTi/wblQ4GTnGi7lEGBW6sbt89UVU9Wrd\nHCcC6GnzQ6I2j7PFBHqmyfM644rgBjRAXDJuGsBNp9PQdR3ReZ08IpEIEolEw9fE43FE5vnGRSIR\nFAoFqOrNFSPfiuZi8NIFdMYuobc/g96+DDZ2TOHBVafx+O4j6Gifgw4D3z87idGaTiYSexIMA+g6\nCxXb696vtro5ukwBTmmcABBjhky+PG/A6y0i0kEAc6yUA2cwqMgFiDWTB6NzdXYttZWq/qCEl4cP\nQqcL+0tDB3Bs8gxJg9LBPzOZw7EDIwAIA+L2ksnxwEuDpPNTuYpU0rGKETgBm1saV6YCTpX/YHIY\n/oBkSxRq3XDURWQ8y4WadpiMBQwuXYyiHrJBKDM8DDTWqdYBXJoOjheTuBAnYPWB1fuXTB8yDGPL\nMd4onLc3G81YhZmmiZHMOALJTsBg7Qpjxs3bDO5yALfd22LrcF+8+tM6RvHyi/9u/8zrwH3H8rg4\ndggwqFXRJO3y5G78PHZSPVkmVUYht7QsYCQ9DijOIr5YUeP1hLVh5FjTZqGbDd86UsQTS2so5ZzF\nuVSWABMYHiRzdUnRIFIGV/R4cDU1Cr1Ilg9/xAWGZdDVTjZunMHj8vTK7MIs1sqr0yJSlkGgQYGZ\nFTHKEumaYeubc5V8XSc3njYG8csWg+uM+7MzF6BoFUTpvMBVncEXoNpkgLSENak3KhsUkDpxEoWS\nist0c7NjbQt0CnBZLNwMrSQsoKrzat24nR89gQ7owkoZXLKhC0XcYP1JKDXjQSsX8JaBu/D5h3/P\nzny0eCL4zAOfxL7uXQCI1EiSebutdXwmjxM1EpYd61qwb2s7gl7y9x/8dAjH3pxZAHBZQUCilAav\nNC7wWklYPrgAkC80n724GL8CXnXG4fxNpyA7rKbMOvd2vkzh2XP/ge5wDvfdfRR7u07j1MufQjr3\nBgCA93kXFDbXRjKr2PIEAJDdlMGtulYsUdANHX/9+lOo6CoElscT+z+BhwbuwR/e95tYF10NAPjR\n5Zfw54eexJcPfw1ixTmvUHTp+28VmQEAq5FnpsjJSLrJ3GoYLAw3qbPpZjQ8f/mVOkZcBNBXYx2W\nzMyhI06ue9jdjup1NIZpJm65KNyKFUXfqgEkZz1QVQ7VKmeza5Krih1bL6Jv7QgGp3L4v//8Vfzj\nj97EyPA5KPlLAIDR8XZMTdSnlmsXnegyi395kqTVLIkCAISCOfRvJ4NYMHX0lD1Q5gFcjqlPg+Qz\nDijx+EW8dLVe4/2VY/8EparYFfMXzk7h3AkCrrfs7MTdDxJQMDWexfBgAmePT9gsUtGXwsbYGoj8\n4qkXaxGZLszB5eVsgCsIzmBX0yvTlDV6XYlqcAEqBbEK60Sqf6M2UFdTo3UpLMABorUWYQdGnYYd\nd9JiuaViF+1qVjEUm6lpptAsrWSRUwoIUXmCYZLngnFz8Oi0qcAyEgWGYfDg6rsAELnD1RQBXInU\nDLSLg+C2BcDcGwUT4NE7U8UmajivGQyKU/VNHuZHV6+zAC4nU6jV+nE8C7fnxqfkvF6HFMjlVlZN\n7ltPNmKcCbTXACWGJYvS0CUCPAulii1REH0eHJ08DaFCvpf2VjJO+jucbMHViebbGStVBVmFbIit\n1GkgKIHlFl+eaiVEskKtwpR8HajgQO572E3Ou5bBfX2CNLSIWZ2ZUtRWrK0VYqg+bRumWnomIKA8\nOoYzJwZt5mnnuhYYIGl4lluov1WqCl68egCfP/AV/MWhJ1FUFwdilgZXE1Tb+aRRdAc66hjcZqzC\nrCIz3muA4TXbfg8ANOohHPNE8Ef3/xY+88An8aVH/gBro6twRw8BuFklh0vJqzaLOzeTx4mLZEM0\n0BVAyCdB4Dk8ckcfACLhuDyWsZs8wGQBk2RFJrPT9phoiS3O0i8XtQxuuVxFVW9O1lU7JgFHpmaF\nVCMN8csKvAJ5pmoLzeaKSZwaPIdNG67Ym3eYBkryDMAszd4CQCqnwCM635vHTzapDFjEU5kVSXx+\nMnIEk3kCvj+68+ewPkbWQ5EX8cn9H7czaYfHT6CsKZBqAW54aQY3VNPG3qDOD3nejSn/Wvp3CVs3\nPwKAMLwzI6/C7RFte1ARQG8bGZ+aoYMbnwVPl5pRuX3ZWorrjZsGcEOhEDiOW8DWJpPJBayuFbFY\nDMlkcsHxXq8XYoOWk7fi//8QBAGPfPj/wR0/+zn0Rd+N4X9mcOlADEqBLBRb+yewp3cGmm7i2Vcu\n482TzwAANE3E4NXeBWndRA3AjSyjwS1TBrcMBvkKAUytLWX07XIYl/Y4t4DB5dj697UYXJZlMJgf\nRLJMzum+fiKPyVcKuJQcwt0PrYUgEhBvWYDdfmcfduzptlncl350AccPjQAg1jaKJ4dtbRuxVFgM\nLgCUuJytwXWJNQA3dW0At1aiUJZ5W8eXK6pQ6TW4GCKncFOjbUWrLEi/1RaYMQwD0zRxYPQoAGBD\nbAAxz+IdeqxYHx2ALJB7r7vJpqQZq7CR9ASksg9SmSymsodKWjwcvLR5x3IMLgDc1bcbLkqLP3/l\nNSSLabzwwy/B84EuCPsjcG3yQ/xAN/h9YaymKbSRjBeCWt+md37E2nx2I5CJ0aW1f4PJYRsIBoJy\nU962K41gyJlPE8mVsT++NQOwVug2ikVYXkLPKtIW++pl0qa0lCvYhYmSz4tjE2cg0uuKRAibGo44\nqeXJmeaB9kyhZo2gmsfAMsxeJOaxgUWgSp7FjJKrKwrkDDJG/a56Da6mazgxeRZuhoFM36M6Qs6h\ntvDOio4I6TzHeHlAYDB5iIwDn1tENDMJUB0l76o/Z83Q8elX/gxfPf40jk+ewaHxE/irI08tKPqx\nwqoL0HkVnUswuFF3GC4XDxPkfYqFpceCoRv2nFfkyUZCqcFPmlqyARXHclgbXQUX3aBvb9sEkdpC\nHZk4betw52byOD9Esky71jvn+va7VkESncyOxeAyBoEarMBjdHYGLJVzdLY0xgLNRK0Gl9Oa88I1\nTZO6mpB5SRC5OiYYAFz+KNQCeTBaYxlEZZKZqGVwf3TpJdzp5iHRRiKeMM1MCgbYTmlJBwWAZC5r\nJQregLOpUotAXm1OylXVq/jOedKopMvfjvv76yWefpcXn77/v+HB1XdBFiQwDINdgZ3knH2uuu51\njUIQeXgoa68UVLAsA0XwIysT0Lx1fQC+8CoYAhn7O7gqzh75C9y+6zwGVo1BZg300mcmWUqhtWJA\nfHcHxPd2on+D0rTV4rXGTQO4giBg06ZNOHz4sP070zRx+PBh7NjRuEPP9u3b644HgIMHD2L79u0N\nj78V/3ujbc/t2PfYneg9cwT41lVkqZb2reuv4gN7Unh082W0+siicmZkFTSNx9R4xq6sBByA63ML\nkMSlB1uJskIJH4N0lgyoYDAHVyQCherVAnMqTE4HJzsTxPy2v3la1OYLSHhlhDxvQcmPj+54Lzjq\nnzqUGkMgJOO+R5wFr7M3hPauIASRx/77SXew6Yms7ZWbaiHVw9uXAbg9wS570UiYCWiUwXXxOipU\ndH/NDC4FxmWRQcwfg0A/x2LKRU4Da5J70xJygPbleTKF5DwHhdHMpF1ctr9nN5oJnuOxrZXcizRL\nmMBkExKFkcw4/CkCsFiWQYDKlhg3B6/ePMB1CzLu7N6F9QIPY+YkXnvtj7GuDWA81nPGgOEY8DuC\n8Mvkd4MlDjJl5OYXmFnBsozdxnQ5He5gasReTG+G/hYAYpEWO5OSy66MweVkGe5eotUL0+XAJYXQ\nv4Ys6rmMgnxWQTnrbEwUUcd0Jg5eIwtfkBai+AMSwJATSSabN3CfLTpFNWqevD64TDaHFzg7fepR\nCQuYLmfqJApMlYAoF18Fz+o2g/vG3GUUq2VEaxjiCrX8shjt2pC9ji6YCQgwh04BAAY6/Rj/528C\n1P3E3VbvmvLc5ZcxnCZuID46B52cOofvnn+u4TXlcmRsaLxqN2dpFAzDoDvYAU2gNQdLtCEGgGxG\nsQti4yYBaeVizZzIm9BLjZllFy9ie/smAMQe0GJwi/kKQNm39X1O9za/R8Rb9znzStBD9ew2wBUw\nMedsaCLRec1EVhAsy0Bwke+Y1XlM5ZdvE50uZ1Gslp0xGZAWbDoFrxelSXK+LdE0fCwBn0PpMWiG\njnylgFMjB7HZT+aJ6Zko+re8x3YGYge8SxaYAUSiYAFchuHgDzppfKHavA73leFDtt7957a8vc53\n3YqwHMQv3/bz+H8f/Tz+7h2fg08n1xOKNCcPsRxLxkdSCHpFiLR7KGtUsabVBMOwWL/zY0jRZ8ws\nziAaTmDdmhG8c99JtHkICTCTGsW+NQGwbRLYFhfuWz8BkV15B7qVxE2VKHzkIx/Bd77zHXz/+9/H\n1atX8elPfxqKouBd73oXAOBLX/oSfud3fsc+/v3vfz/Gx8fxhS98AUNDQ3j66afx/PPP46Mf/ejN\nPM1bcR0Ru/du0mZKMXDhTBplwwRgYl3wTWzrIAvXZNaLA1cJSFErel13MAvgRpowwC9TgJvyi8in\nyCAV+Tx0TUElTBYEHwVmrJuyNVUGUqx+sbDYDH9AwqXkEADSlEESJHQHiPvDUJqA1d37+9G7OgKG\nAe5+yxr7PfbctQqr1zs2PoxgIBueQkQOLZleBIiuzyoAmFInoda06y3StPj1anCLMos22rc+NX0K\nyfHXwLMGIm5nQgkFexBzk8XpcmKo7n3SNsAlG4mjk2RR5xgWd3TvbPp8dlKZQoYni1o+q6CwRNtU\nABhOTyCQIvewf00Ukpum79wcfDbAXT4daZoG7hJ0POqVsE8W0Wulo9MqzCsRbN7/BJh55QBDZskG\nuLy78QJgGAY0P3m+JsfSi/okZ5Qc4sWkrRG9GfpbAGiJeFGgOuVyceXPjX89STd6aNciUQ6jvdsp\nBJ2eyELJOQB3sDJus9KAA3BZjoXLS72cC0773OViJk/mCQ4sirS6PhBefvG1qrXFEm0kUs7UfWdM\njRvGPqkK11Qe6WQRJ6aIF3tHjaWXmSaf2wjgSu6acR4S0JKYQmd1ApuVceTevABGpIVqkgPWUuUM\nnqHM2ppwH/727X+CAeqg8sybz2G2QaW8xeBqQmXZOaQn0AGNdlDLZZYGCbXOJaPqCABAzYdgGPT+\nuNhFi1qrlRz20ILNRCkFeJ2NpfUE9HfUNwp45z2rIVDbsLYwtUDUncLNRMKpz1huI7NcuN2EEOA0\noSmAa2WqLIDra7Du8D4flAlC1giCjh6NPGdZJYejE6fwwpWfYIfAgGUA3WAwOrkeLpcLvgBZH7jV\nHsidHUueR6pGg8uL3rrNr7ACJ4WDY8QLvjfQid2dSxOBIicgKPmduT2ytDzBivVbCNkwNZZBTOTh\nZck9b8sPgS2S58YX6MRkbCeOKSomNAP5Ei3w9CiYu/wPGLvwfaiD/wqZEglqlkJP88ZntGrjpgLc\nt73tbXjiiSfw5S9/Ge985ztx6dIlPPnkkwiHyaKaSCQwPe2kRru6uvDVr34Vhw8fxmOPPYZ//Md/\nxGc+85kFzgq34v+cEEMhBDYRlm7TMIuv50uYrEk7hFq3YZZ7G/JwHuSJGgP5KxMEkHXGlq6c1SsV\nVOJk0Ke8IWSzzqRayk2B7yDsSTCfA0wTgkyAkFoVF6SL8rSwTfbxyNNFuD9EWgRbnYIsgMtyLD70\nK3vxyT9+BGs2OO/DsAze+YEdtqA+0zoBkzOwrX1jU2noXqrrm1QnUK3WaMkoa1i9Tg1uSWbR6o2i\nkBnF8Ll/Bp8/gMdvO4dV0ZriP08U62KEib6YcJwO6i3CCGA4MXUOALAhtgZeV3MTIzmevH/R51zP\n+PDSLOP4eBwuhTwPG7d1QHBR4CBTDa65fLte0zQx9uZ3ocSJg4LJ8lAYAdrxNNRvTeLF8wIUwwdv\nohfasTRMw8RQVUNezthuAfO7mAGkcvr3X/oCDuZ/CgDQqgb++sffXKBhBoArlBV3GNzlbfCuJSSR\nR5F+hmXztZKw0vI8bVnqkkOItXjrWrOqBQcknUhdglhxgGSwBoxaIF6suG3/1OXCWsxbXC1QaX/7\nZoqPLCcFsyAAJpAqpcFwnG1jpuad78QtVSDrJp75xgmcmboAAFjjIZtkVhOAqglWkuDpXdgaVpAC\ntr6WDYsQNRO/MPoyOl8hjiugLGKtt/d33vgRFK0CBgz+y64PQORF/MYdvwiWYWGaJv798isLPqdS\nItduCBpalpEA9QQ7obrIJiuZXHojkZh1/p7myI5Oz0Wg6bSbmZuH2sBmq1yYxfmDX4R79Mf4iE/G\n+70SjKknsXPbm+A4DRKITCM8r413yC/hkx+6DQ/e3oPuKJUWWvIXQUAhQze4jLmgBfhKQ6byAk4T\nMJVbHuCOZ0kbeb66+JjkJAnGnGl3mIxoZfv7eOb8c3h18CVsotnGiclWyFQDL2lEbsFIHMwllBem\nadZJFHjRC0FwpBJ8VWoKrOcrBXvevqNnV1PrjmmadQWHzcTWnZ22o5AvWQZLP6cre7FOSnf/6nvw\nclnF0/kSXri4AafPrkO1ygGmgfj4QbC0QLj6egoXj2/Ccy/sh6Yv1K3fyLjpRWYf/OAH8fLLL+Ps\n2bP41re+hS1bHPukz372s/j6179ed/ztt9+OZ599FmfPnsULL7yAxx577Gaf4q24zojuvxMAIMxl\n0G+04Ol8GS8oOto2fwCrtn0IP//W7ZDdAhRaiTU2nERFU/HM2ecx4z4Mcc1JtHQtbQ5fmZ2FlYct\nCWHk8l47LVvKT8A/QFgGWVfRUpXgEsgkWlFFGPPaZ2Yp42FIDkjqocyt1fs8Xkza4Jfj2AU6LQBw\ne1342G/chdt+thUTbQRI7aDpvOWi208+L6WlwLDOIFcpqLpWDW6FMr9FiUObN4apK8/bf+sJ5fGW\ntYSpZVkBgsuP9dFVAAjIyNBCn1oZQTjmQaqcsVOtOxexP1ssYp4IXJyIipwH3fhjbGhxljGr5KBN\n0kWHAdZtbrMBLsMw4CRAMirIL1NYU8qOIzFJtJKeYB923Ptp+F3vhnYkDegmxg0v/urbp+Hu7oZ2\nNI3K18bwbLYMhjMgmOT5mF9kZpomvnDgKxhMjaDkdQDB+cEx/NulHy84h8HkCFiNt/02AzdJogAA\nqkk3HfrKe7v71q8FeIZoTAFUOam+Nes8gBs3ivUMbg0LF4uR1wiqbHvbLhcWmxljHNYyGF7+Xlle\nuKbKgNNEpMoZGKZh63DHpp3lTadWYdPjWRiXiaQhRh0UChkeV8M7gIHNdW4rs1M5/MvfH8XnP/U8\nygr5rNL6KCqCAyRMrwiGLv6CSAC3olVwcIwUZN7dt8eeU1q9MeztIvK8l4cP1RWcqRUNliOV1+ta\n1gO2O9CBqou6fizjLW1lzEQvA4M2XjAKIZR1Wrzp4xcwuFW1gCunvgadat5beQ69Ag8GBtrbErhz\nz2lEXSr6O/wNgdUdW9rxG+/fARY000IBLsPzqNLTFT3skoWEzYTLArh6swwukWi4aAOH+QVmVkgu\nAckUyWJ42Sm8dc199PXT2MRq4BgGpgkMjXTbQNGcqcIsk/ursItv4gvlKlTNsAGuQOUrll2ZoLqa\nupZT0+dt7fRitpQLPjtfsVs2L2cRZoXb68L6zYTFpQokRIsj8Knpukxjd6DDzghm2RQmp1tx8PUd\ncHlIJrHAiki9PAf9RAYZxgvTZMFf5/e/XNxyUbgV1x2RfXuJTAHAW3OtMAGcKpfxgwkC+jyygHff\ntwYWjzB4aQ5/9Mqf49sXvg8+NgkuNIejhecbsmBWlKedAa+ZIeg6hzLtQ1/KTaB9k9OzvDcnw83R\nHt+qgALvVOrqmkH0YwDKPJlpGYZBl58M4FWhXvtYi8VdKrx+CRfFMzBZEz7Rg53tm5d9DQB0B9rt\nnxnBAbhVmWpwrxfgyixaoSOfIt3j4sV6htzl7QXDsLaNDODIFNI1TgeRqBenpt6w/29JDpoNlmFJ\nupUBmDABjqNDi0/+F+NDCCYJ+G/v88HtESGITuqXcXPwaWXklgG48YlD5PM5FwZ2/CI4XsLlYxfs\nvyfEAI6cn8EE6H2p6AhnaT91vTGDezk5ZKc4f2bLPfCHyPfmLgTxrTd+gJH0RN3xV1LDddXaN0ui\nAAAmS300mZX3sZfa28G1OxmRhEbQiN2adSKLarEGjAmMbefl9bvACw4Yi0bJ+4gVGZO55QGuYRgY\npl3rQqbDWgabkSi0Os+0VPZCNw3kFMcq7ErcDZ2mxhWpghzdYLdMrUHH8GaAdgycKYQxEt6GHyub\n8PW/PYwffucMnvzLn+LvvvQaLr85i4qiYWaaACnJ7cKTAw/h9Q1+/McdfvzgHY7+VKJa3WMTZ6BQ\nH9kHVt1Zd84/u+5Bcj5aBS9ePWD/vtbqKxhY3ge2O9ABlQJcpajZzTEahQVwDS85J0H3AVUXihq5\nT4yXR3Uegzv25jNQy2QuiXbtRZ6VMKnpmKRuIz5fCXvWDqN/Ca9iANA1Kp+gAFfjYG+OPIHrLxy3\nnBSalihkp8AYLFiaNWskUQAAt8eFuTj5bn2uHPaEOyDzEoIsg+0u8trZeAtKJdl+VstjkzAmaTFf\nbmTRc0jSGpBaBheAzWbzqoTpJtjoYyPnwOgsYu4weqgl4nJRO7eHmgS4ALBjT7f9swoTgTxp6lS7\nTjEMgy2t6wEAikwyBcWSGx1rfxkb7/hN/LvuhnC5AI0RkLe83/lbAPdW/B8egt+P4LatAAD95Hnc\n00v6h788fAhnZwio+Jn9/dBppbpSqGJkmna3UglISCkpHJ1cvKFHhRpomwDYKtlZa3RBLOUm0bFh\nFXT6OIcTJmSWTPhqVUCuJg2Syzp6tSxDBmeHt9W29eoJdtYVmi0XGSWHY/S87+nbaxd1LRddNQBX\nre0G5qMsWi4HQ1u+BWdtmLoOI08bTsgshNSbAACWd0tYUAAAIABJREFUd+PJw5vx7UPbcercRhw/\ntREHDq2CaZro9nfYTgcXqcetVWAmiBy8fhdOTBOA2+5tQYdv6eKJhtdKNw8FLwG2s1M5u9Xn/Dh1\nYsT2adyzj9q/uWoAroeDTyshvYSOV6uWkJo5AwAIt+8ATw3sE4NEMqAKEng/AWJnc873FY3L4HQT\nLuq5LfjrtYWvDr8OAHDxLrxn49vQ00fykJ5CCLqh46vHn7aPNUwDV1Kjtv4WuHlFZgDAU69WmVdg\nGiurTGYYBp71Tmp+uEjGRRsFuLmsArVQ0yRBYNHKku90PhC1mFfW4DGdXF5HOJQes5nMKNNKz2eh\n+X6jsDS4AOAqk5+T5Qx4jwdFwY9ERYJSIWM/IFUwDBMG7W7Yku6AQL1kiwUZjKkDYDByJYGTr49h\naowAPkHksH5LGwolqvdlS9DNCC61vgOT6yLwi84SKlGm6rUR8py0eqJ1G0gAGIj02bKdfx98BZqu\n0XNwnueWcOMWxbXhd3kh1uDg7BLtkS2JQl4ggNVjkIxWvkq+O8ZXL1EwdBXZOOnYFu3ag96N74bS\n+wD+KV/GP2WzKKiEBOiIpdHXtjRIsgEu7WJWZUx70xe6Dg9cK6QaBjdXKaCwhPuAaZqYyE0vaRFm\nhTsgY2omZtdHzF7+IX5+89vxDp8XAsMADItLgwT0Wd2+yuPjMKbI9SrFOVQX0aBb3u9uwQK48xjc\nqoSpwtyibhsAMDWZQv5HEWw49SBWT+9qyioOAFIJZ6ParEQBAFatiaGjJwiGZTACEwVQLe08Kd2W\nNgJwNbeTScrnNMi+dmRScQg6kJecjewtgHsr/lOEJVNQpqbxLv9Ou2r4r488haySgyTy2LPHEd67\n82G4MmugnLkHIk2v/vDSS4u+vzJDAHHOzUEqU5ZIJousUoyD5QzkPGTH7Z4pQqJpQ1UVkMo6YCpX\n01hiTifv2RN0dr8iJywoNFsqXh0+bDeJeGD1/mWPt8IrehCSCICoCBpUlTZ7oEU6MM0VdzNTM1nb\nj1f1cKjmiAZSc2+HW+fhyfsxNRXF7FwUM5MK5mbyYFkW6yJEpmD1obc8cMMRD6qGhnN0k7Jjheyt\nFRaYn3WNW5eG8ZE0pieyeOp/HcRX/+w1jI+kYJomZk9TUO+uYvM28r0ILgdoMm4eXq2EzBIANzl1\nAqZB3ifWTTopjkznIGUJ4OLbOrBtLQEjJyYrtluCf85EMK+DpfdQ7nKeC1VTcWj8OADgjq6dkATJ\n9sMVFQ94VcSV1AiGqN/uRHYa5apSz+DeRIAr00I8lgFKpebblloh9hCwbhomjkxegGmaaK9plVsp\nk2dcZwgLJ1epi8k8kFL7/0R8ebnE2VnybDEMA3eVFqYEZXBNpC4lWbBZL0uznaIAd8ZHgGWpTO55\nzKtAZQxc3XQQucAcvB5noR8YPIg7R57Bnt1t6BuIIBRxo3d1BA/+7Eb81/9+P973kduxfa/j/LPB\nV8JAtBsf2vZORKzz5CXwghupUgbnZgk4vLtvT8P0vcXipsoZHBonRUKzNUxYe7g566zWmAOELZ/b\n+VHMV2x2OMkTRj3Ako1Etkw1uDIHNed8fiEzCpPqJcJtpKB0LZ0jAGBGJQBFFDS0yEvPUVYTDKjk\n+VEZw9a/RiL+xV7WdNgAl1otLqXDTSv1DgrA4rp4d9CLqsrjwiVy3UpxDh2zr6OdTg7eyJ0oFMi6\nFQyTzn6l8Qkb4AJAIT208I1hMbgmPC5LokAZ3IDF4LpQ1atIlBbP4r3y2htgDR6swaNwScAz3zi5\n6LG1YclZXBK/Ik9uhmXw0V+7E3e/byuyIN3MgIXF0FaDo6rorLO5TBn5SgFchgD+nIu64jBoapxf\nT9wCuLfihkRk724wPJlkKsfO4BO7HwdAGM7ff+mL+Na5H+Ci/GNoPJnwgulVyFxeDZgstoeI7dTl\n5JANsuaH1eM77g+CpWmyYNRinUyU89OoRoiGz5vMQaQV4aoqYGbSKayqTdFMVgkA7A3Wp3fmF5ot\nFoZh4CWaZtwQG1i28nl+WMCvxOZQpp19ah3NVmoVVluY1tLqh4V2x3MxtNIiP6/fZZtwv3mGFFxY\nLNNQZhwVTUV8hgCTSIsXB0aPoUJT9retUH9rhcXgFuW0vWN/7rvn8ORf/hRjQynMTObw1P86hK/9\n1QEwecK4tWznbH0ey7nAsJRpdXPw6SXkS+qiJuGJiSMAAE+gB24f2awcOT+DqEoW4+jafmwZICBi\nKlmC0EGOCWc1hLMOa+7udtJyRyfPoFwli9e9/aRF8aq1DhCJpAir9eIQaRpiNRKwgJfbK0J0LW2D\ndz3h8zvnEk+svNUnGyb33cxrMMZmMJqZREubz35WKlW6YRQY7OzcimKGLM7BSGMGFyDMr74Mm2yB\nwYFwH4o56qCwAimHJVOwGdxSGpzHg5SbfKcsTza9Ld4yWE8WFaGIsbXHsfMtTlaHSSuQeQMPvXcX\nHv/EPvzX//EAPvyr+7DvvtXwUgC9cYezuevzFdEZlrG/dzdaqa1fSidj7bnBl2HScXd3356G57yr\nYwvaaLvuH156EaZpYmjSKcjrb29v+Lr50VvTWCOdasxc1jrWVGQ6rgXy/qlSjfa/Bkzl02QOZlge\nngAZA73BTrg4cq2XFMV2YGBKjUEcQBhTi8E1KcBVTB18lbxPKNhcS96lopbBBbBkF7CJLJEX8XUM\nbuNnzRUMgDdUTEy2YipFNnqqQu6R7GuHzjlOMsGwG2oiCb1UgplU7Y52+SUArovTwVOwzAvzJAq6\nCMZgFwXrpmli9BKZywzacnnkSsK2v1wq0kmnwGylntwcz6KdNljJU4BbTWeglRwwG5D88CICTVBt\nn+ZspozRzAR8JfL/PAW40RYvboIteF3cAri34oYE7/UiuIP0cE8cOIRdHVtsYf5MIY7vvvkcrqSH\nUPSRHR+XdtLOj26+DzKtQD5MbU/mR5kyuBmPo3lr6xmwfy7mJiB0kck4aJbBsA6DOz2RtVuqjlMH\nB7dPQIUjg90qMLOijzoqxItJG9Q0ipPT5zBbJFqjt6y+e9HjFotuCvxSSKBcJouN7HYAwUqtwmoB\ncXuIIGWOl3H+CuCjAHfv3avRv4aAoTdPT8E0TWyIEXsb3dBxdOysvSi2dvjwbxdfAEBA6sYWR+e8\nkrCAvMmaCLSTyT+TKsE0TAgiB9HFwzRMTNKmCVVBwa7bHS9NhmGcQjM3B69GvrdsYSGLqxTnoBTJ\nwhDpvN3+/dhYAkGNMAiB/l5sG3AAYdFHfo6WiwhnyCRsCBxcMecYq2go5olgPU0xR1t96F1NJuvW\nxCrABA6OHoNSVfBT2vUtqhMQ0tJ2/WzVUhEJO4WU6XRzFkO1YYjkuTOzVbQnqjg6eQq8wNm+pyoc\ngPu2vgdQUchGIDRPouALyGAsUlOREC8t/gxXNBWXqO57a+sGZFNkoWxGf2tFjC64Ei0CS5UzMCSP\nzRL5guTZk4UKZD85F4Zl0EX109AYoKzD3dsDpoGHqBW8IAMcAToBXxEuRYfICWinVmOjSgEvDx3E\njy6/DICA2FZvrOF7sQyLn1n7AADSZe/c7EWcHSbyIF1Qsbqlu+Hr5sdAS4/d0WxqtrGuPV7joFCR\nixBYHjEXYXATBUeeo6oOCVBIke/EG+gFSyVXHMthINJHrtUYRypDnmcl35iQAADTqAI0u2VWKLgB\nC8babPuuv4LeclFgDR6MwSypw51vEcZxi3cWFAIBCHoFAIMDZ9dClzcg1LYNse47sHrbR5Cjdnag\ncprS+Lj9WreHOOQU0o3vTTJbttlbwNHg1solBFXCVH5mwWsBUvRJpzKYq2sciS4uv7G1GviEmrQI\nmx+97X5wLIM5l7MOl0br23IzxSjAAFWXY2M3kpmAr0jmmJyLzKu1VoQ3K24B3Ftxw8KSKVTm5pC/\neAkf3vEe/Orux7GaFm51+dvR00cmfTcYcCAeigMdURs0DKZGFryvaRhQZsngLYpkkeF5FuFoCC7q\nUVnKjSMwQNJJnOxsC1XqD3rlIln0x4fJIudt52A5l/UE6w3aLcYRACZzjScZAHiOWv2E5AD2rsAb\n1gpLCpFjMigrZLL3uR0GcaWFZrUAN0rXDl94NbLjNI3IANt3d2PjNvK5yXgRczN5rI+utqtfXzlz\nzG7EkZOT9oLx6PqHwDLXNl20uCN2Ywv/NhX9a6IY2NCCPXf14xOfvBe/8lv3YNttXQj0cEhHJjC2\n5iTWt66qew+r0IwUmVkAd6HuLD1rFcQxCMYcR4viuFMA5u7uQnvUY3fOm2DJMxWu5tE1TRbiXEiy\nAY+iVXCWMo17u3bU3Yfb7iDPtlHi4M3GUNYUfO3Ut21nAJEa6re0X7uhfTPR2hKz28cW8itr9gAA\naoU8OxbAPTJOfI+tQrMqQ65DF8U6t4P5bCvLMvDS4iGhImN6CcBxIX4FGpWSbGldh0yafK/NWIRZ\nYTG4vOoCq/FIltJIGj5YKLu1q88+tiVErrHb3w5dIfOAmSOf7+nrxXJR5Sho9haRny3A0FUKgoCk\nbuArx/4JuqGDZ3l8eMd7l3yve/vvgJema7548O9QpDIqf0hqWsffF+q2U8Ezc43nCisbA0mDwWno\nC3XDK5PJIZ5zMgq6Qe69oasoZknmyhuuH4NWpifPz2I6QeQ5jBGHtoju1dbfAgCt3C8Yzti5EQBX\nqmnXyy7jpGAxuH6TACtfQLKJkPkhBAIQDPLdVssCRtX9WLX1Q+jZ8C643GFb8+zzSeA4FqUxCnBZ\nFoG2DQCAcmGm4b1JZhVbfws4GlxvjWUaX13cSeHCOXIdJmOgb6fP1tI2A3AtiUKzDgrzwyVw6G33\nY050Oq8VhxymWtcNZKbJXFcVLYBbxkhmAt6SgSoroiySzVGtBOpmxS2AeytuWIR37wYrkUE6/i/f\nBsuwuLf/Dnz2od/FN9/71/izt/4B3nfv/fbxv/rIBnzu1/aDYRisoezAcHp8QU9xNZkCaMFVhbIo\nkRYvGJaBN0jkBPnUEFbt3YYyKwKyU9VtpbEHL8yiWKjYXceMIJnQZV6ywZ0VtQ4Hlm/i/BjLTOKN\nuUsAgIcH7gG/jK1Po7AAblVUUC6T++aVVFStbmY1DK5hmLg8lsbMEpZAlSQ5vurnIZsE/JWMdnjo\n4hLtCcHtEbFuc5s9sb95Zgosy9r64ckJZ6F8JUkAfNQdxp29Dhu60mBZFp20M1PSNYNf+Pgd+PmP\n7cHDj21GMOxGKOLGox/YAfP2KUyuPotguwifqz596TC4vA1wG+lwM3PEr9cb7LNfY5omjFnHb1vu\n7gbDMNhKWdwTFYdd7aJaxmmPDoWy92dnLtjP5O2d2+o+b/2WdruVZWeKMNyvDpPueJLhhkrTclaL\n05sVPreEHJW5VMvLV2DXhmFoUGm7ajOnoT1RxXh2Cm/ODaKT6ox1xosKJ8PtidgsENC4UMVq2StW\n5CVTxqdo8aKLd6FL6rJZ4RVJFGoLzRRiaTdD7wNnqOjs6XOO9ZHz7vb1QKHd04w58n03A3CT1Lze\n5y1iaiSFXNp5pnJwxv871r/FliAsFi5exEd3vA8A2UBZzgLdbS1LvawuWjwR6DIZA5lU4yIzKxtT\nlghDuybcB5lKZbJlBgxtmWtwKkzTrNPf+kL1BXLb2+iGkTEwlib3nWFM5KhTy/zQqs45mfS7LZjO\nfbohDK7bYWB5TViSkLAYXI9OxvtSvtRiMGBvXlwwMTFXXzCWs5oF0WfVArhSWyv8MachUDZxccF7\np7IKuoMOYy7SWowFDO4iEoU3zpDNesGXxLr2PgysJ8/M0OX4ok1ngHp/85UUmM2PtT0hVDgROUo6\nFIZG7L+NzeahZoIwDcbefGUzZYymCYObr2F+O7puMbi34j9R8G4ZnY+9AwCQOX0GmbPn7L9Zvo5t\nHX47LVTNKnDTfuIDYZKS1gwNo/MM4pXZmoFuksnJWth8EQIqqpUswgEN/gfeAqYG4BZ5wl4OXY5j\n9KrDbOU8RFrQFWhfoEXyu3x2kZw1Kc6PF678BAAgcAIeXNV8cVltWEyxKpVsBpdlAIXaBFVpV7JX\nTozjl/7kx/itv/wJ/q8vvoLRmVzD98tTEKf1O5PXc6+UwFGq+t4HCUvu9ojoo6n1q5TZvq9/H1iG\nhVyku2pZw1iZTNqPrn/omgB83bXSTcNi99M0TVygpuUbahYIK2wnBY/TrjdTqJePqOU0Sjky+Qdb\nHc1kOl9BgGoMTZcEMUxA29YBAkIuKzJKfP1ilwxwdpe745Ok85Xf5a0rtgGILm3HHrLJEhIBBAxn\nAt/q3mr/3NJ+cyUKDMNgrkwWOrc5tiInBQJuaZvNbBVuxYS/aODPDn0VpxVHMpSTYgiGY5gaJ8+l\nS+Ibsq2hMBk7QsW9KAulaip+Mkq00jvaNiEdd8BQrf3XchFtdTYOrrIXyVIaMzmyrAXLs+AYAbxA\nzifmIvckxLagUiLj36BaYncTAHckQcYozxsIBlIYG3Sao3z8zk9gZ/tm7O3eiXdueKSpc7+rbzd+\n+bYPAiCbAcDZHDQTLMPC7SfzZyXf+PtOUIBbdJF5cE20H27JYW5Zkz73MgO9rNiFUUR/W9/0Ym2k\nH26qvZwxVSgV8tm5ZGOAa9mMAYCZI/dZMZzP9l5nkwegHuBymojJ/Iy9Ma0N0zTtVuOC1eRhie6Z\ntQwub5oYn60vmLS6YVqFoxbAdXd3Q/Z1wuUmm2fLi7s2krkSdnaRceEJ9kKUCNDzeEVbk0okCgvH\nTjpZRCZOmdHwLNZE+rGaAtyKomF8dPGsn6W/BVZmETY/1lBpwbRA5tHi8Ij9t6sTGcDgYRSCdiOS\nVLyIidwMfCUDBZHOjwzQ2nFz50TgFsC9FTc4Oh59u23BdOWv/wYj//gNlGrSwwzL2BrQocuOVnAg\n4iwwg7QDlBWWg4IJgKOV1hHa+cwfdnS4+eQgdnz4vXUAd0YmDFJF0XDwZbIguSQe0yBpuG7/woIO\nhmFqANlCRsAwDByZICncPV074JeujZ1zizJi7jBM1kCFdVJtit9q9pDC2EwOf/bPJzFHU2IVVcef\nf/NkwwKrYpxMiGwXeb2iSShMkRlTDsvYuNFJLa9aS8Dd9EQG5ZKKkBzAbR1bIZXId5dzkc3AXb27\n8ZaBu67p+mrDAvNT+VloDcDXbDGBdJkswhuiAwv+LspkYmT8PDy8CtbUFzC4mbnz9s/BFgfgTsUL\nCFXJAiW0ttkbml0bWojROMNgRKovEEwFeBwcOw7DMHBimmzUdnZsadjrfdfeHnth+lnpnej0tYFl\nWKx3bbSPia0AtF1rqAIB3wJbtQuFmgkL7AEE4AJAR7yKXKWA52d/DJ0lv8tKMXiCPkyOUXu97mDD\nFK+loRUrMqYW8cI9PH7Stgd7y8BddcVQsdbmx5PHK9peqO5CCOlcEUnawSxcnoZeLNr2XZbjgbsi\n2SylmSbX5uldGuCapokjVyWUqNtJf+8k4tME1LCciK7oGvzu3b+G39z3S3DxzVenP7h6P57Y+6vg\nNQKem2lwURsRS0tZ4aGq9baCmVQJRSrjqVDbpnWR1ZBdNWl9jj6XPh7VbMYGq54a/a19LMui202e\nMTWQtBshZBONAW6l7IAtg3Yv01iJfi6Zh6833B7nHDlNgGmauNqgODir5OznzSxTL98lrOiEQAA8\nZXA5hsHEXMFuqgAAOTof+4MSdVCgALeHZIeiVP9fSA/Z2QIAqGoGAnwCMS95fbTTKURkOdbWxrrK\nXqTKmQVgfeSKQ9IwLWVE3WH0D0Ts4t2lZAq1BdbNtultFGt7CLCdpWxsaXTUtrS8MkHmcLHSiopM\nWO9qVQerCPCVdBRcIfvzb2bRrRW3AO6tuKHBu93ofu+7AQCV2TlMPvt9nPmtJ5A6dtw+xgJX6WTJ\n1gR5RQ/afWQhmq/DtRwU8pIHoBoui8EVXH7IXgJOcqlBCD4f5G2WLlLDTCQLjieL8DQdfJ29QcyU\nyKTT2QDgAg4gm2ggUbiYuIJshSwYVmeiaw1Le5yCA9aqXqfZw/deJUBF4Fk8tIdc19WJLL794uUF\n76UmyOQnt5KJe2TWB4EO8bc/Vm/xZTkAmCZsZvud698KmQLcsieLHe2b8Yndj1+z9rY2LNmHbui2\nPrU2LA9eANjQspDB9YfJ7xiGAdslw6uVkZmnwU3NkE2H7OuAS3aY1OlEEQFaleHpcL7vkE/CPTuJ\ng8aIXP8cJAM8fjpyBC8O/dTuaDdfnmBFIOS22zgPnk7iTx/8H/jaY18EU6AerCEZLqk5XeX1RCi6\nBkqVLN7xqbNNv65SdhZNHgSc3gNa6MQAVS9ZZLNSDJzb44yjnsYpRgvgsiaH2WTjIrMXrpIMSLuv\nBZtb1tlaUX9Aatg1cLFgGAZrNpJ7H0x2wD9T8/2WZqAVi5C85O8RloWpc0DRAQ1mRoUYjYL3Lr0B\niWfKSBcMHB8nc01rSwo8Q4prJE/LiivSa6PH1Wf/vJICOwDoaHUKIcem6xm/WgKh4E9idagXUU/Y\nligAAMOT8c74eCjJWVt/6480Lij16aReoeJPIZmkfuSVNCoNigktBpcXPDCo77UOMjfJXuG67pkV\ntQyuQDcJ8wkSADZ7C5NBtUSAqs+/uESC9/tsiQLDsChXNKRoobKm6SjQzXUgJKMSj8NQyN/cPWTc\nRDpus3Xg8fFDUIpxjL75DM4f+hIe3TxIT0VEqLV+TrG0+q4y+Xc+wWI1yVHFElZ1dpACXJFHTz+Z\n70YGE1gsUpTB5Xh2Uf/fZqK71QdJ5GyAa2oayhP/H3tvHh1HfeV9f6v3fVNrV2u1dlveF7wANmCM\nYcISCBASAiSQAHkgAzMBAiGGbIQEspB35k3ycobhCcMwT2bmgTEkEAiBADbG4H2XrM2SLKlb6n3v\nrvePX1V1t9Rarc3S/ZzDQequblWXq6u+det7v5fddW0+w+7ulOoqENGkbB3qoB76UBJ+wbs73T0J\nIiRwiSmnYPs2lNzweZga6sEpFEhGIjj2o59gYA/rLBcruEDmQbg6h9kUmoccoDxn2EG335Qytuek\nee9Em4JvoAV8MgFO6NTvjCSQUPIoXJFZUTEXKqWr8RJz9mgvUeD2BweGXUXvFqq3aoUaywoahr12\nIjQIt+P7ZG5p9jlvYusb6u3FXz9jlYEtqxy49/qlaKwUZqL/5RSc7kzfXWLAA86shEqoYAfc7ABk\nztGhtiFzQENBkVmqfJ0+yQ6KhpgFHM/W4Yb1l+KhjXefszVBJL1xL5uv+Wg/O+jnaK3DPNEAi+aR\ni9UfhxbGeBBuX+rfJeRPnZxzCjMb/rqdAViECq6xJFPIXn0h8xm261L7AadSwm9QIMEn8f99+u8A\nAJ1Si6b8+hE/38r17OIj6I/i5OE+6FRa9PUwK8l02xNEKkpsOOUURmX2HQE/SlB8OpEgO2kq1WYY\nq9l3Kac3iB9d+hB+uf0JIMGEjFdtR8hUII36LC61Zn2/9NG9fk90WPh+22CnJEIuq7qQ2SsEgZs7\nCa/ymo3suCFLKpB/huVwGiIDMEQHmMAVKrhmGQdZ0ISoWLHmAd4TH5f/9nQXE/WfdBaCF1MA9OwE\nbrCUT3id00nPsJ2owK0qSSXAHEm7VQykjq0RdQAxdQgXlK4EgAyLQlKoqHEGBbz9JyFaVUz27AI3\nNpADngeimgCcA6l/f18WH25EELgqrQ18jFX4khAyp01Tkwmt1iikKDubgp1Xml1tw5aTIsJiqYsn\n/SgeYJlCAbHQzXHM5HVGHJiRFsdltmhTDWZICVyl2gRLLjte9HV8gCMfPg3nmY+RCPchR89eb7A3\nQT6k2i/u/5qQAeAzxTrP82hrFiaEGQdQbSuXnisXYw/PeCQv+1DECq7VphuxuW48yGUcqkos6FOn\nN5q1IpFIorWbHfMaC6sgMySkyDyzVw+O5xBQsWNJ/gwdE0ngElOOTKFA2Ze+iCU//gEWf38HFEYD\nkEyi+7WdANhBXOziFMUVAFQLPtyz/n6pagYA/i5mcfBoUxWjnNzULRaxupdMRODq3otYhJ2MWoWZ\n9MlFLlzzxeVQKGXgOEBdnGpiKxmpgpvWaNaV5oVK8knsOcMmly0vbJQmoE0WMXorrPNLUWFyI3vP\nZDAIeTQMjgOuvXgRZDIO916/FDKO3er69z+fkN5nwOmBMhqHrCR1Ze7uZ9tr/YWVw6olnIyTDoqt\np9iJsKczFdq+or4m6+34yZKnt0vd4dlsH2IFtz53UdbKDsfJYDCz/UNeqoUhEciwKLhErxsng61w\nZcZr+7td0CZZtVednyn0K4rMWFadC4/SCLdCyKx1OLApLcNUxsnwzbW3jXrreVFtniRO9u5qA8/z\nkmib7gYzkYpCE473ClWVhB/uvsNjvIIh3kJV63JgrGUCMdDWjgp9AfJ0doQ8TAAnZQo0+1MXlkVj\nVHABZlNoGciMEfpAiFxTyhS4uJxlCosWhckI3CKHBXmOzApsjXMPOABxf1BKWuE4DtaYHgYZqzYl\nB6JAgodhUdXQtxyGKHAjCS305lQ6h1xdhcKqrRNe53TSBe5Exzk3lJcjqWCC5vC+lBUsmeTRKlTz\n/Gb2//UO9r1Ir+AmhMgmTs7BF2TfQblSJ+VHD6WnN4qkzwpeloSP4xEIsuONd6B52LJiBVettSEZ\nY8dcXqjgTpXA5ThOulDPETKPTw0Mr+CK3v9cRaqJT28YvclNm3YhIAfQ2cf20fSpcWarNiNBQVuc\nylTPKx1i7eJk8CWL4Qur4IuoUFazBUMR4wRlSQWUEa3UlwCwRkKvm4njgGkAtfZUP4DYU8EneXS2\nZb9rMiDcLT0X/61ItcMCn1yHkJxtw0BrKw40OxEVRkbXOmxoKFyEmDBOWhfQI6g0Iilj23Qm/LcA\nCVximjE11CN/62UAAN+pZvAJ9gUQbQqtp5zghXwjMUkBAE4KV67RwUEkO9nByadjV4wmiybDv2Ow\nVoLjWKXxzMmd0uNJwbrQ6elG08oS3P/opbg1WYZ0AAAgAElEQVT34S1wq9gBXy1XIUeXvQrlGKHi\n2Oxqw0CI3YY5V3sCABQYcmHVmBHR+qRGM5UhJfDs1sOobgoAaj/iiTgc+UZcvJJVCd7e04FuJ7sQ\n+MOrrHNf9N9ycqs0prS0KjUaMR3RpuDqD8AzGML+T1gF1GjWSKHjUwVLUmDicqjtYzDkwVnBtiBa\nNrJhLmA2C86oRIE2ALeQg8snE3B1s2YoS24DlEMSGHxdqb+nyR/epX7bVQ0oyNEhvoyJWvv6C3Bd\nwxWSIL979Zexqrhp2OvS4WQcVgqRYR2nB9B8vE+qpMyUwDXoVBiMFyEg+ETbDv07Ap7OMV4FBH1s\n+2gNhTDWCZW7ZBLeY8fR4wrAEEz5+g6fZPubyTLyPmI0aSATJgkqI7qMihrP89jdyYZgLC1ogEGt\nZ9O2BLvJRPy36ay/MLXfGB0JWEPsIioRCMCZ5lcvVShQoGcCIHlasEdVj7zPiYgCt7zIhMqma9HZ\nVYTPDtRhIHAhy8g9B0SBazCqoVRO7I6JSqWEuYpt61iXGk5h5G7PGY/UMe83OVGTUwm7kCGeLtwi\nfErsRBTMM2vKqQGXxZYUTyTR1e9Hop/ZFAJqN5yCTcE30JzhUQWAiDAYQaWxMC8UAF5oapuKBjMR\n0aZg4JhoGgx54BoyBUwUuHnK1AXuWCkOen1qOykBKUnBk3bnzGTRIiT4b7WFBZApUxVio60KDesf\nRGXTl1HW+AUs3vAQ3u1Yi2feW4M/dVwBrX540kb6sUITMuJEf4u0XdObpGNWX0bDa1GpBUoV23fS\nfbrpDApjem3nkKAgsm5xIcBxOCs0jbk+3oP/+QtLjDAbVFhem4fP1V2GpF5IoggbJHsCMHN3tUjg\nEtOOqZ7Np06Gwwi0sWpOWSX7YoRDMenKssxSIg18ONLHPKau3R+DE46bcS07IKRHAwGAXKGC3cEq\nQWL2otZYiGLhFs7pgQ7EkwnojWrY7Hqc8bCTX7GpYER/qVljgl7FDgTpFUfRnqCUK7G8cHKja9Ph\nOA71edWIqoMICYJUb0h5S3O0nehU/w1//8cncMt/3ocn3v05Lt2YA4WcQyLJ46f/ey/+691TOHLs\nAABAVix09YaZkNNolcgbQTRUVKcOsP/zHwfQcZqd+FdvKJ8Sf9xQSoRYtKEV3KP9KT9xQ5YEBRFL\nXl3qvfJSFVxXz6eIx9g+ZC9ek/EanucR7U/ZYDQFmRVcAKgqseB337kMV3/3Hqz9txdRcv11KDTm\n4emt38HTWx/FRcLksrFYtsYhjZ78w4up9IGZCDQXcRTk4JV99UgkZUgmY2jZ/wKSQ2L30olFvIhH\nWWVKZyqGsaYGcuHOh+vDXWg/60Ne2AlDJPOkOZI9AWBiX0xXUEW0GZ761sFO9AXYe4nZ0X3pDWaT\nvBhoXFoMPt+PkM4D76JUk1E8EMBxdxcGBZG7pWQAcmGCVKJNEJbjqOC2CAK3stgCtdaEwcAa9JzN\nQ8+Z7IkmE0EUuBO1J4hcuJHZpGS8HH96j/U6iPYEHjwCJhfWl6buaujSigPBpA0Qdw/hK2/Kyf4d\n7HEGEE/wSAwUQivXIazzweVi+0E86kfQl0q/ScTDSMTY51IqU2JGFLij2QMmiljB1SRTFxpDb+13\nChYFmyx1sT/WOhjTnlcBOCNUcMWIMIWCDYqQEhRKhw/o0BoKYC1ogr14NdQ6G9p62H5UMYLAs+Xq\npYtDTciIwbBHGibU3sL+H1WFUOMohUKeVmGWy+Aot2Usl47XHYJP8BBP9juWTmNlDpZW23HAxC4O\nI7190O9+GwBw5foKqJRy1OUuwsVL2H6nStrgFzy7SpV82ICY6YIELjHtiLc9AcB7jF3lFaWdILs6\nWNVBLpOjXqjgHellt9+dH7LKpNMihyzGhK09b/gXtKjqcmkiDACYcmpRJwSTRxJRtLtTt++6hKv5\nkewJgJCkIDzfNsgOYDzPS+kJSwsaoFVOTRWiIbca4AAhcx56dQyCHRcWPzsZKyNaVO+/CKF37Xhm\n16+wdj07CDaf8eBfdh6FkRsAZ1dJCRI9PWxbOCpsI/qtrDm6YYkWGq0SqzeUT8nnGkqJMMq429eb\nMcL1s252K92qMaPINFyAiijVJsDLtkdlUxT5uh74BtvRcez/AmBev6HNMYO+CHRCOgPPyaC22zEa\nCn2qolVsKkC5tWSUpTPRG9Sob2L7jOhTXbbaMeyCbDopLzKhw23GzmNifJ53VKtC0JsSJTpTMWRK\nJXLWsosE1+7daO0cQF50EPV9H0LFpbx9IzWYiYi32pURLVpcbVIVShxhLJfJsVIY/SwNI8DkK7hy\nuQw123RoWfwhToWbIdexvx8PBHCk/xQ+iTAVp5QLk7WiMvB9Eajsdqgso3+WQV9Y8rtXCoMvioSQ\n+p4uz7DK5UQRb3lPVuAur1uEhNCV37JvEF3tg9i7qw0AEDK4YTUZsaVivbR8ukUhFJVBf6YQfDD1\nfRypwaxDvBDhZdjouAARrR/9LisSCXZ8GehOXdRF0iLClEIjW4KTg+OZGJ2KDFwRrRA7yUdlUoEk\nXeB6Ij7JB24QYiY5GQedbnR7mSktAk8FoLXbi2SSl/69zFYtQuEYfG3sgkrrGH0CnccfwYCXXZSX\nj3CLXi6XSccLtZC7fLy/GXySR/NJYdiR0YXlhcN7P8oXMfGezYcrFi8AoLQy+x29ifKlbfU4bihH\nizAWe637KIrjg7hifWoKpfh9jiblGNSKUx2N5+QBnggkcIlpR2kyQlvCvEm+40zgWmxaKQ9XzNUE\ngMa8WqijSZS+fRSnXngB3sMs+ulkiR7JENtd0/23IgqlFiU1V0m/m+31GbdwTjhZGkE8mUC3nx0o\nik3ZG8xERLF9rP8UwvEIWgc70S9Wn6bAniCyOJ9dALiF6CKFnIffxk4AV9lW4Vfbn8D6wSugiuig\nC1ig687HkfjbuGpzav2tci9k5eIBmUNLM9u2YndtNjiOw3VfWpERTbRmY8W0dfyLgy3iybiUpJBI\nJvCZEPi/smjJmIkNql4T+AQPuYrDTcuO4uQnvwafjIGTKVC59MvghjTFdff7YYmxW4tymw2cfGqa\n5kZi1fpUw5LFpsPl15x7lX8iVBYx4bX/TA7kQkOHs+uTEZcXc4M5Tg6tnl1ciBMJ4z4/9v/xb8iN\nuGGKDGB7bRjWHB1Uajnqlox8cQikguRVER08ER+cwYGUPYEHFiuWQfhnkQQuS5uYfHSQOGkrmoiB\n1zKhE/f7cay/GYciMcS51HvHzrC7JMbqsau3+06k7gA0Ct+nAkHgBv1RyRc5WVIV3MlZHWQyGRyL\nhcELPg2e/9UH8AnrNJDbia+uuAmatItxuVwGlWCFCIbj0JlLEP2vbiQ7wyis2irlsg6lQ/h3Uilk\nuLpxC6K6AOJxBXr72EXjQM8+JIXJdOkZuAo5O15H5anPN5UCVxSq4WAMNYIv9VBvasCC2GAGAOok\n2y/1etWYIktrM0OZYNtRDQ7eQBRtPV7JomAwa/DM//M2uDi7eJIVZPcti7R1p6r9FUUjT/ESfbj6\nCFvmeH8z2ltdCHjZPuuz9KGpYHjDa1maD1dMWxARf9cbVFnPn5OhrtyGNY2FeCt3HaKcAjLwuH5w\nN4xp1w3pzeAeLTu+zJT/FiCBS8wQxjom4rzHWGWW4zipSUWs4AJAva4Y173jxrKTIfT99/9I3q2O\notRB12TJfiKwFa5Aaf21cNRdA6OtEga1XhKxxwWB2+vvl6qH6Y1k2VghWBBiyTgO957IWn2aCoqM\n+bhr1RcRV6cOPJyDCaWEy4mzx8JwdaROovaeKsSiCYRyDuM7t63B9VsWwZQIQl4rjC3VOBAVuoVH\nE7gAqzreePsa6AwqWGxarNlUMery50JGkoJQRT/hPC3lU64cw+cKAEZ9OaKv9iAZyszSLWu4HnrT\n8GrrWVcAFiEiTJvFnjDVOCpsaFhaCINJjeu+tGJKsj4nglhh5MEhKGffOd9Ac0YmaTribWWtsVC6\nODAvbYJMx/bFlf2HoObZCbywrhT3PrQZD+7YOuaoT7EaqYxqIUvIccrVhuPOZvR5BuBoWYbEB/n4\np6ffxfFDPVJn+GSrtyI19gpwwn32qIqd2tyD/QjGQogDkNtTooA/zk74hkVj+2/3nWAXxHazBg5h\nHQvTpjD1nHFnfd14CIdikld2shVcAPjClRchVpBaDx48usuOoGa5Pat/XLQphCJxaPJywXtiiL7W\njdzctcOWFWntZndCHAVG5BlsWFpZjSSXwJlu9r2KxwLwCpO7UvsbBwUn5Hor0gTuVHpwhUJJMBjF\n8kLWANjmPoOBINse6T0UcmF0+3gsEkqzCeo4q/yqhUSSfSf6pAzcdmcAruZUpfgT5+iCuVVIVeE4\noHSUfV20ECiDOiDJ4Wj/KRz6lH1PE7IY1EUxFBqG9xIUOSySXWP3e6cznusQBG5pZc6U2s++dfNy\n3HD9OjjXskZLracf7S/+PvVZsuR/z5T/FiCBS8wQog836nQi0s9OaMWCN/FslweJeBLJeBz+nz+P\nvMHM2yt9VgVyC1M2h5EOThzHIdexHnmlG6THxKrOCScz67e5U003Y1Vwq3MqpHnxn3UfkuwJS/Jq\nJX/uVHFp1SZ8ZdstqQeEvNbBXjfeeu0oAEAn5OMq4irYesvwUcdeGPO8qF4Sgk0FyCzseV+wnC2n\nkKHQMfa87/wiE+5/7FJ88+EtUlV9OsjX26EUumjFqspeIa9VJVdiSV7tiK8V0RQVge8JI/pSJ/77\nsyrIci7DohVfRU7RyqzL9w6EpIgwQ9HoFzRTAcdxuP7WVXjge1tRUjayT3W6yLfpYBG6w4/0FYIZ\nK3m4uvdmXV60KOhMqe5vmUIBZzG7TV0aTiWI6MvLIJPLoFSNLdrF26AyXga9NwfNrlb858E3UXn0\nApgHhEp+LIn/eGEvXP1MRIhNj5PFoNJLF61BwYrgGWTVVw4cqquvgDtmR0evHnz7+BrMkkke+4Rb\nw8trU3m39jyD1NQj5gJPhvQBF+Lwmslg0unx3QduQv7WCAbyOuBpOolLL2nCfWtvz7q82GgWisSh\nzk158SN9wzOqRcRGO/EuwRW1FyOiCaDfaUVUyKAV7xaIFVyl2gQI16KRaargiqIuFIylxgkjNQr6\nYO8xACxzORxg55axEhQAQGWxQCMIXIuSSaV9J3rhEarjXe4Q8iJMyCfA4bUjPsTiI08QFC8Qiux6\naEYZciA1mvEctEETer0uHNjHele8tl4sLa7PKlLlchnWXcQq2G3NTqkpLeiPoF+IOCutHL3gMVGM\nOhWuvrAK1z98B6wrmae+Z+cb8AlT/rQ6VcYwDrOeQ9PK8du+zhUSuMSMIFZwAcB7nFVxxQpuIp5E\nb48X3sNHEDjNrog/q9Xi1etK8deVBry+yYxKXaqyOJGDo+jDHQx54AwO4GMh4suqMY85L14uk0s5\nt++1f4weHzvRic0xU40934p4ggnqsDyGkMKAfYpGhEMxgAO+cNtq6QBl7y8HAPzkb/+Ef/7k97AX\nCSePBIeOM0xYFTosUCjGd0teqZRDJp/ew4FMJkORcFEhjmP+VBC4Tfn144pc04oiNZJEX6cCXq4B\nZnvdiMv3ufwwCw1o2RrM5hscx6FB2Ef2tURgFCb9DfTsG7ZsPBpANMyqXDpjSuDG4kn8mS9DYsjp\nQTuBC4SSMqskPIzuPLzZ/B66D4agCbHqzaL6PGn6EsCsHWs2VWZ9r4kgXtC6Zex2rl+IOCuzFMNs\nyIVbex0O/lUNCMEKhqrRLQqnuz3wCAkPK+tS+49Mxkm3Ws92T77RLMN/fI7NPyq5El+//Ho89cBX\n8cytD+L6xu0jfqdEH24wHIM6L3UcDPdln4TlD0bRK1gpqoTqdX3uIijMCQAc2s+yY46n/xiCvm7J\ng5seEZZuUZjaJjP2GRPxJOzqHKm6ua/nCMKxMA6eZQJ3dfFSBITG1PGcQ9T5+VDH2WdWC3ryZOsg\nohEmkiPgUZlg+1ev2gZXII73PuvK+l7JJI9jQnxXeeHoRYeScisUwnejtLsJBncuklG2AoHcXmyv\nHR4vJrJmY4X0vfvrmyfA8zw6WlN2kbIp8t8OheM4LLrvXsg0rDLfs/N16bm6Cj3AJ1HkOYFbrq+c\n0CCXc4UELjEjaIuLpWlB/lMsFLworbu8u9ONwU+ZBYBXK/HhMgPaNGEcqNXBa5CjUJXyN+kN468y\niic8ADhw9ig+62ZjVy8oXTmuCV0rigSbgtCJnqvPmTaBCwBGK/ucBkMQHzs+B7dgzN+4ZRFKK2zS\n1a8iooEmoUUkEUU8HoGulFWU1VEL+s+yCsNMxVNNBDGc/JOu/Xjj5F+ki4bxWj60Ran9wBbzSVFh\nI+E52w+5oGaGZuDOVxor2Emss9cHrZVVtCLB/oyRvAAyut51afaOvcfOohUmvFx8GaARgvkb6ifk\nX5bJOCyqZ0LD5M5HMsIht4d9F4vLzbj5q2tw0x1r4KiwYevnGnDFdUukwP5zoVGYgueXs0paPCDY\nX4rYbfryIhPqfW0AAEWJAwrD6FYL0Z4g44Cl1ZkVZjGsXhzoMRnEypreqJ6yuycapWbM29DaNIuC\nKicHEDKvI/3ZK7inu1NV6irBBsNxHBaVCY24LQ6AUwDg0Xn8VYT8LClFpbWCFwWuYFFQaxQTjkMb\njfQKYSjNpnCw9xg+7TmEmOALXl28FH7heKEbxzlEW1ggVXATwk1FRVrkXIjnURxm+4cnh31//udv\np7M2He493oseYdDCqvrh9oJ09AY1NlzC9mOl2whHyzIAQEwZwU0XXzZqc7Rao8S6i4ThNS0u/N9/\n24dPd7cLzymm1R6gsliQt+ViAIDzg48QFSLr1pQlcPHpl1Dfvwum0uKR32AaIIFLzAgcx0lxPH7h\n9oXeoJZ8Z10dKYFraWrCkuJUl2iJqRCKGDsgqdTycd0iFSkw5MKsYV/qF/f/J6KCUN1Qumpcr19W\n0CidLAwqPR698JvQnWPu5WiYbCmBmxByWPNsSlx0OauA56c1J9xVcwdytFZUyeSQqdkJQyMvk7p8\n7Vn8T7PN1fVboZCxKWEv7Ps/AFgk23gvGpRWi1QlsEW96B8Mjbp8tDd1i30hVHABoCGtStPlT1Xn\nPM4TGctJGbmcTBp3DQDvfMIeD+aXYflzP0fpl76Iqnu/MeH1qBHGFytiapSdXgF5gu3PW/9uMTiO\nQ1VtLm7/5gasu6hqynyBa0tWoDGvBmGh5GYIJlBlKcW1DdsAAEVcAMURJvRD9WPvc58eZwKmptQK\nw5Cue/EC0jMYYndZJoFYwc3mVZxOxGlmwXAcMoUCKhur+o9kURDtCRwHlKeJpJV1zNccDWvRzrP9\nzj94WrIo6EzFSApNWKJFYSrtCUDmuN5gIIblQlEiHI/g3w6+CgAwq41YZClHQKjGj2cd5FotxLdO\n8hz0ShnSj/x2zg9ZhBUTytYwEXq624OTHcP97v/1Ljvn2UwaXLRi7Fv0GzZXSY2aMl4OHjxyV/DY\nXLV+jFcCazdVoFBogjz0WRdajrN/0/KqnCm5iByNwu1XAGDje3vfYrFh4bNnIecTkGk0UJpnzn8L\nkMAlZhBJ4J5ulQY+iF/E3s4BhIRAfvua1Xj0ovvwg0v+Edc3XolvXfBVBIQr7/F4p9LhOA7X1bOT\nWzjO3iNXn4NFaWMOR11ntR43NF6JCqsDj1x4r3SLfbrQ6tn7q5RxVIQPo8R9FJc08FK+al6BAaIW\nkAe0eO7KJ3GLgyU68OEEYopUF3+2OLXZJt+Qi+01mzMe+/qqW8btaeY4DtpCVsGwxrzoHQiMuGw8\nkYRsMFW11CyQCm5FkVmq0B1pj0IjiFeP83jGcuLvepMDMuFiyhuIYu8xdlGweWUJdHm5cNzweehK\nJu6bq6rLkzrVdR4mfmoa86W8zulAIZPj2xvvhryYfWZdhMd9jV+ASvh8kY8/AgAkwaEtN3sclojH\nH8GxVnYLemX98H0nL60bvC/NajARpAlu59hgN1HSK7gAoBFsCiNVcFsEn3FJniHDP1pcnPKZv90W\ngkKdugC35jcht+QCxMJMBIaFSYEjNQlPFm1a5TsUjKIhtxpmNdueYurNyuImRMJxaajQeC0SZluq\nwr+iyg6t0MQYBo/LClK9ImuuuABaocjwxkdtAFis5KEWJ37/p2M4IjR5XX1hJZTjsI0plHJcdcNS\nKFVy2Ox6fPEba3DfF24Y14WgSq3AV+5Zj2pxPDsHNCwtwrZrpz/RRecogbmJ3Y07+6c3kYzFEOph\n1XxtYcG05KuPxsy2+BILGrFjORkOI9TVBV1pqZSX6UkTKtYVrLJSY6+UYl8+9rOmpMl4t7ZVX8zs\nCULTwYbSVRP6ol3feCWub7xywn93MmgMqRNprb4NsTMuKNwpUa1UKWCz6+HqD6C32wu5TI6In+Uw\nJjtCCCzSA2AVhJmuCo2X6+qvwF9bd8Eb8eOi8nVjTgkbiqaoEIHWVlhjPhxKG3M6FKc7BFtUuLWq\nM0BpmnuCfzqQyzjUl9vw2Yk+HG114fK6WoT9Z+EbaEYyEYNMrkQ8FkTAzW5dmnNT6QLH2weQEETA\nxmXndjtRo1WitMImNbsUOSzY/vmpSx8ZCa1Sg5uuuAvH3nkEAKDuHgBKqsAnEuj/6/sAgNO6YjQP\njtwQBAC7D5+FsClwQZZYtHQLUF+Pd8zEkqGEQzH4PFMXvj8RdEIUoChwWaPZsREruNKgi6LMCDGL\nVQeFUoZ4LAmZT48+WyWqkj5Y8hbDWrAMHMdhwMf+/cNKJhYnOo54zM+iSxe4MSjlSnx70934yd/+\nCV5h5Pua4qXw+1MDdMZbKLHmmwEhQv3KNWV4ZyAMd58flhw9atGMAbDjkbkgFxetcOBPu9rwwf4u\nXLq6FK/9rQW7D6eG2ug0Cly+rnzcn6ui2o4Hd2yFUiWfsDBUqRW48fbVOH2yHza7fszUk6mk8Kor\n4Tl4CFHXALpf24lAC0swmo07aFTBJWaM9I5lfzPb6c3C1XwoCiQhg66sFGr7cCO8fwLNAUPhOA73\nrLkVRcZ86JRaXFK5YewXzRIafcqfpSpj2yEoTH8TEW0Kvd1ehPw9SCSZyEt0hOCJi1YOBYzmqR23\nO1XoVFrs2PIA7lp1C+5a9cUJv15sdrJFvehzjVzB7R0IIifK/JHKwulPUJhLNAo2hZYzHqiFaUN8\nMg7fIPveeZ0nADD1lt6k1yxkUqsUsoxb0ZPlsr9rQMPSQlx98zJ89b6NMJmnz96TjqWiEpwwNtUv\nNK66DxxE1MXE1iFTFZo73QiGR7YWfHSI3VEqzjVkjXXS6lQwCd+xvp6JV3DTExRmq4IbFAYCiI1m\n4SwCNxyNo0uY4iXG0IlwMk4S+uqQAX88cxDlTbfAVrhcEmUDXid4AGGFKHCnNoFGbKoCWAUXYAk4\nP7j026jPrcbq4qVoKmiQGsyA8Z9HrI7U8djvCSEsvMeKpkIETrIJjKZ6doG4fX05ACAaT+I7//yh\nJG5lMg7FuQbc/fml0E+wwUqlVky66imTcVhUlzej4hYAbGtWwVjL7o60v/h76c6suWlihYypgCq4\nxIyhyrFBabEg5nbDd6oZeVs2Z1zNRxQ6OFZm98WJB6eJWhRETBojfnb5YwCQMeJwriFXqKHSWBEN\nD0JRyE4c/hYWcSYe6PKLjDh6gJ0g3X2sQ5hP8lBFjegU5o3b8wwzfjtoIpSYCkdtlhgNsdFMzcfA\nB/zwB6PD/JEA0DcQhC3GKk/G0pmLppkLLKvJxf/+4zEkkjwOdWpglauRTETg7j0Ms70OHifbb5Rq\nM7TGVOPeKUHgVhSboZiCVI0ihwXX3zo+v/tUIlMooC8rhb+5RUpm6dn5BgCAMxjRrC9BIhzHa387\nDQ7AX/Z2IhJLoMhuwEO3roJcLsPBU0zsrW8qHPG7lFdogtcTRt/ZiTeaTWWCwkQZalFQ5zEhlwgE\nEPP5oDSm1qetxytVsqtKhicA5OYb0d3pgSZkxCnvPnzUsRcby1Ijs9tdHciTqZGUMXFnmeIKrkIp\nh1IlRyyaQDCQqtIWGHLxxJYHpN/TBe547wQaiwuhjLcjptCi89RZyWtt1XHSxYCpgV0gVhSZsaah\nAHuOpqq2V22swK3bGzKmx813OI5D+e1fwaGHH5UeMzctQcHll834uiycrU7MOhzHwVBdhcFPPpUq\nuOl+rLDSAMvyZVlfO1kPbjpzWdimozHkIxoeBG9kJ9W4z49IX5/kIRUruMkED5dgu+B7IzAUlMLZ\nx27JzcUGs6lCkxZXZYt5cXYgiEVZBG6v04syYVyWsWz0MZrzjWqHBYU5evS4Anhvfw9uW9eIgZ7P\n4Orei4KKLVLDmdleJ4k3nufRLAwtqC4ZfXzt+YC+soIJ3NZWhHp6MPgZi0or3n45Gr35ONjsxL+9\neRzpTe8uTxg/eXEv1jTmI55gT6xvGnlCVV6hEc3H+9DX48u4CB0PUoKCQTWt+dPZ0KXl4CaTPLTF\nqc8YOtMFZX2qqn9U8I9yXCpBIR1RnKsienBJGV4+9BrWliyHUq5Ekk+i3dkOkzJVRTRNscAFWBU3\nFk1IFdxsiAkK4Ngks/GgKSqEJn4UMYUWrS2pQRryM6mGTVNjKnv30dvXoMcVwKA3jByzFoUzXD2d\nK5jq65BzwTq4du2G0mJBzQP3T/sUyWyQRYGYUUQfbqC1DclYLLOCqzbBVDc87D8eS0iztacyP3Gu\nojMyAReDV/qG+ptTk2nEeCKVKopoUJhw0x6ExuHAgBCab8+bvwI3MyrMi74RfLi+ji7IhNvwOsfC\nquByHIcLlzMP7f6T/TAUXAiAA88ncHLv/4tEjG0zc25KyLg8YbiFKtcix/wQuABLBjjzH39gUxFl\nMhRs24ovb2e3lUVxW15owiqhkexQixPPv8ZGhOfbdFlFnYgYu5Tupx0vUoLCLMT5pVcUw9F4xvcj\ndOZMxrIHTrFGzapic9Y7JeL6czwHVVMS/2sAACAASURBVFiP/oALbza/BwA45WpFPBiUGsyAqa/g\nAikfbigwsuVErODqdKpxZ35rCvKhTrDvSigiRIRxQGz3uwBYfJ62MNUjIdoRFlfZF6y4FVl0370o\n+8qXseRH34fKOvNDbwASuMQMIyYp8LEY/M0t0OlVkPFCs0dROWSq4QfQgD/dOzWzlY7ZwGBhjXU8\nH4eihJ1A/YJRHwBMFg00WiXy81wQfZTJ0wHEbEVICvcSZ9rTN5MoTUYoLUx0FIZdUgD9UKLdqRGd\n2uKZzV+cC4hxRMkkjz0no9K0t2iYNSFq9Hkw5aQuKEV7AjA/BK6hMjU4ou8vfwUA5FywFuqcHNSV\n2bC+iV1IVpWY8eN7NuCx29egaVEq69ZiUOO+G5eNWpXNK0x9z3onmIebigibXYEbisShNJmkCKdg\nZ0rgxuJJHBGSJJZWZx+Mk95sVyZjFxUvH3wVpwfasefMfigTvOS/BYdp8WGLSQqjVXAlm9sEiiRy\ntRp6RWYzotmgQLSLbaO8S0ceurDQUeh0KLnumoy7AzMNCVxiRjE1NEgitv+99xH3+aAWbiPHbdk9\nmX7fxLtfz2cMljJAiKNRN7DqgGjpAFh1Lr/IhIJ8VllJDkTBD8YQUKeukuezRQEATI0sJ7k0dHZE\ngQsnyzBNyuVSDNJCwpFvRIUQZfXm7jbkll8CjmO3CfXmUtSsvluKBwMg2RPUKjlK5mDE3ETRlZdl\n/M4pFCi57lrp97+/aQUe/+paPHXvRhh0KsjlMjz8ldW4ckMFvnRFHX7zyCVoWjT6fmPPM0AmZ9/V\nM+3D809HIuiPwOdlFd/8opnNBgVSFgUg1WimFaLg0iu4J9oHEIkygdc0gsA1WbRQCYJ5pXElVHIl\nYsk4fvrhb/B+28dQxHmElex4ZDRqMibYTRVio1kwOEoFd5I2twpTBIpE6hxkiLMLGblWC/uGsXNp\nidmDBC4xoyh0WuRcsA4A4PzgQwx++pk0LSaqzn5STa/gLgSLglyphU5o/JEVsS7tQEvmhBxHuQ52\nGxMkidNBcAoFXEEmXuQKGay2qe1UnmuYl7BMx5yYF4Pdw8eLxuJJaH3CBYA1d1b8X3OBy9cykdfa\n7cWrHzqxaMUdKKm5CjWrvg6lKvMiSBS4lUVmyKc5EH4mkKvV0JWVSr83fPc70h0kANCoFVjdUABN\n2uAYo06Fb1zXhBsvrZWitEZDoZBL40+bj2Ufc5uN3rTUhemcLjUSQyu4QErgBjtTE+72C412CrkM\nDSPEoHEcJ9kUIm7grlW3AABcwUF4Ij4o46kK7nT4bwFIHuZQYJQKrhATNpFJmABQXGrG+vY/oNJ3\nFEUFWhS2fQgAsF+4CXLN3EyqIRgkcIkZJ3fzRQBY81Tbv/5eErj+ESxsGd2vC6CCCwAGK7u9GteG\nAQ6I+/2IpE3lys8bgEzGBK+3UwltcRHaT7PpQY5y27g9Zucr5sWp0HJZe/Ow5/sGg7AJEWGKgoUV\nEZbOtvUVUmTYK38+gW6/HfnlF0EmzzzJ8zyPUx1Cg9k8sCeIVHz1dtg3bkDT0z+GZdnSafkbYqB+\nzxnPuH24kp2Bm52R2uniXRS4Ogez8UT6+5GIsGPuQcF/W1duzbgQGIr4GfrP+nBh+VrcuPjvUGjM\nQ5m5GA5NruTBnQ7/LZA6L/jTzhVDCQYmV8G1b9wAZTKKit49aNzzPMy+LnByOYqu2j75FSZmhPl9\nFiTmJJamJVAKpvPY4KAkcD3u7CcHsYIrV8ig1pwfSQjnitEm+HARB5fDxIj3KJs8xfM85AnWxRsM\nquEM5kBZXIpuwUNZvmh4jvB8Q1tSjISWnTTNfe3D5r+3dXuQIwx5MJeXDnv9QkEu4/D3N6+ATqNA\nkgeef/XwsG0FAF39fvgE/2JN6ew0hEwHlqVNqP3HB6Rczumguj6VlXrqWO8oS6bo62YC15ajl27v\nzyTpFdyhFgXwPEJdXQhF4tLY2WUj2BNExMbXQVcQfl8En2/cjl9ufwI/3fYY6sylqQruFE8xEzGY\nmGiNRuKIRuJZlxEruLoJVnDNixuRe/GFAIBklL1H0TWfg650YSWznI+QwCVmHE4uR55wwACAvBom\nQKKReNaZ7oG0IQ9zOdt1KjFYKqSfVXXs5HL2rT8DANy9BxHwsFSFM90FcGsL4LOWSg1m5WmNMvMV\njuOAimoAQHGgB25/ZuWm60QbVDw70eVWl8/06s0p8m063LyVNZMdbx+UqnLpHG0dkH4WK77E+MjJ\nNSAnlwm4U0fHJ3DFCu5s+G+B7BaF9HHMoc4utHZ7pKl2DRWj7xMV1aljzukTmVaNWCiKmIIJ2+mq\n4BqMKatAtipuLBpHTPASTyaSrfz2r0CuZ//G6vw8OG68YZJrSswkJHCJWaHk+uuQt2Uzqu7+OhZd\nd4X0uMcdGras/xyHPJyPKFR6aIW4MFmTDpxNCd+x43CfOoLOE68BAGJRDVpaS+DW5GNQx5ZVquQo\nnke3mEfDIDSa2WI+dJ3qzHguePiQ9LO5oQ4LnW3rymESTuz//vaJYc8fEwRurlUL+zRV2eYzi4SI\nsdOnnIjHRh8BnEwk0SckKMyG/xYYInCFaW4qew5kgqc0eOYMWoXxvAAb/DEa9nyDNNWt5UTmNDRf\nKCn9PF0eXLGCCwB+7/A7gYFJjOlNR2WxoO7hf4Rt3VrUPfyPkKsXzrnofIYELjErKAwGVN//TRRs\n25oxutEzOFzgprpf539EWDqO2qsBTgaeS0B1dRGU2/PR0vKviEVY9cd/SIVkUo64XI3Dx9ljpRW2\naelSnouUbVgt/dzz3gcZz2na2RjNkMkOTV4eFjoatQLXXMQarA63uHBECO8XOSpEQTWUU/V2MtQ0\nMoEbiybwyYdtoy7rcgaQiDPRl184O2kVSoUMSuE4ERQquBzHQVfCfLihzjM4Ldgo8mw6GMYYMctx\nHKrq2Pes5WQ/+GTKBhOIpu66WaZ4TK/IWBXc9AlnE7UoiFialqD+kW9nxM8Rc5uFcSYk5jRmS+rg\n5M1SwZ1MfuF8wGirQlnD9QAATieHvEIPCI1lZn0dZJ+kKnGitWMh2BNEcioc6DMwYYF9H0ve0qA/\niHwP6wTnq+tna/XmHFduqIBe8LD/8aM26fFBXxjdTuaDrx+hU54YnfLKHBSXMe/ye2+dkCLAsiH6\nb4HUVMLZwChEa/nSorV0pcwu5jlyFG2d7KJntEEX6VTVMitV0B9FT1r1dzCWOm6bp82ikF7BHS5w\nM5J4ZnhqHDF7kMAlZh2lSiHlGGYVuGK8ywITuABgL16NyqYvwWhchOTZCBInfIj8xxn0Pv0G1IkQ\n7MG0W/McsKhuYVUr/bUrAAA6Tz8Cp1sBAKc/+kzy31pXrpi1dZtr6DRKbF7FGmM+PNgNj3DSP96W\n8t+OFAVFjA4n43DFtYsBDohGEnh759ERlz0r+G9VasW0eVLHg0nPjqeeNPFn37QBABD3eqE+xWw+\nFeMU4RXVdogtEuk2hW6wi267JgbNGJXgySJXyKRziM83/OIi6E+v4C6888hChQQuMScwmlgVd+jt\npWQiiaDQ3W1YoAcma8FS1FzwdTRsegCqVhP4/tTB+tLaBL7xjxfjqhua8MWvrZ21ppXZwrJuHWLC\n8IKut94BALg++RQAEOEUqLyABG46l68rBwDEE0m8+ym7OBIbzPQaBUoLFtb+M5UUOSxYuY7lDh/6\ntAvtQ2wgIqcF8VfkMIObxbxhs3Cr3pt2+96ybCk0BWy4zNJBltpSOc5jilanQrGQwLHv4w5EI3G4\nB4LwyFlPQLkte7rBVCGeQwJZK7jsM3IyDtppEtnE3IMELjEnEKuzQwVuIBAVp9EuyApuOvqKciz9\n6Y/R8L3HUH3/N1HzwLdQ9fWvIa/AiBXryhZc9RYAFlUX4aSeVSWd774L167dwEEmcLuMxbBaF/Y8\n+KGUF5pQK9xK/9Oudgx4w/jzng4AQH1FzrwY8DCbbL6iTqok/um/DiOZSGY873WH0HOG3b6vEfJz\nZwtzlgouJ5Oh4IrLAQAl4X4UhJ2oLB5/0+qaTSz9xT0QxNs7j+H4oR7puYq86ZUb4vkhawVXyMDV\n6VWzelFBzCwkcIk5gdgFGxgqcBfgkIfR4ORyWFcsR96Wzci9aBPk2oXd8V5ZYsZn1gYkwAGRCI4/\n9VMowsxP6qpesWBi5SbCNqHK2NXvx//62bsICP7tL1wyfVmxCwWdXoXNV7DUjt4e77CGs5NpMWI1\njQUzuWrDMAkVXM+Q6V95WzYjKWde7Vu63kL4L3/Mmp2cjcZlRahbwj7X3o/a8ME7bAiLKdwPk2l6\nj9/SXcBRKrjkv11YkMAl5gRiF+zQ5oz0iu5Cr+ASw1Er5VBXVGFn/kakn4L/bF8NfdP0TK4637lo\nRYnktRVvT1++rowazKaIFevKUFDMbuv/eedRdKRlDJ84fBYAkFtghM0+u3cXzELBwDskQ1ppMuJ4\n9UYkwUHJx9Hx4ksY2LN3XO/JcRyu/HyTlFQgphfk+dsg10zv8VsskmRNURA+42QTFIjzExK4xJxA\n7IIN+KPSwAIgdWACAAMdnIgsVJdacMxYgXfLNyOek48/21fjU0s9Ni4tnu1Vm5MoFXI8cdcFWCFY\nWiwGNb5yZcMsr9X8QSbjcM3Ny6FUyZFM8Pg/L3yCrg43wqEYWpvZkI3axtm1JwCAWahmhqMJRIZk\n976vrca/OK5CXMNivQZ27x73++qNatz+zQ1YeUEZDAYVdFE3Cn0tkKk1Y7/4HEidQyLDrCEBQWjT\nXcCFxcKYe0rMecSDE5/kEQpE0zy5ac0BOhK4xHAWV9nx5u527FE4sDeHTXSrKbWgrnz+jJydajQq\nBR67fS12H+pBVYkZRvpuTSl5hSZc+8Xl+I8X9iLgj+L5X/4NKrUCyQS7eJ9tewIAmNLEnscfQZ6Q\nURsMx+D2RQC1FcnqRuDQJxj8dB/4ZBKcbHw1sZxcA668vgmXbCrAp3fdDQCQa6dZ4AoWBfBM0IqW\nBSCVojCZKWbE+QtVcIk5Qbr9IP0WU/qQB2oOILKxaVkxllSxKCKx+v+5TVXkvx0DpUKGTcuLUZRr\nmO1VmZfULSnEVTc0QSVMDYsKAxUcFbY5MW3QnCb2vGkxWmddQeln47JlAICYxwN/c8uE/0YinLKc\nTff0r8ws3EyrW0CyKFAFdyFBApeYExhM6ZNoUgenwAIc00tMDLmMw4O3rJBij2wmDTYsLZrltSII\n5sf9X9/Zgk2XVWP1hnJ8+e4LcNs96+fExbo5vYIbSBUVeoShHwBQtG4VODmL4Rv89LMJ/41kmsAV\nxwBPF+nnEF9ao1kslkAsyiwYC20a5kKHBC4xJzCasldw/SRwiXGQY9bi8a+uw9rGAnzrpuVQyOnQ\nRswN9AY1Nm+rwxXXLUHFIvucELcAYEqr4HrSKrjdTj8AQCHnkF+UA1MDmwY4uPfTCf+NRCR1LJ/u\nJrP0c0h6+k56HwcJ3IUFnQWIOYFGq4RMzg786TEv4sHJQAkKxBjUlFrx2B1rsbx24eUBE8REMepU\nELV2ehauWMHNt+khl3HSNEB/cwtiXu+w9xmNjAruNDeZqdQKKJRM0qSn8QTSp5jp6TyykCCBS8wJ\nOI6TRGxGBVf04JLAJQiCmDJkMg5GoYqbLnC7BYFbKMSYmRY3Ss+J47DHSyI8cxVcjuOyZuEG0j4b\nxYQtLEjgEnMGMQtXbBDgk3wqoJssCgRBEFOKlIWbNuxBrOAWCQJXV+oAhIbNQHv7hN4/GZm5Ci4A\nGM3sb3jcIemxYNpno/PIwoIELjFnGFrBDQWj4IWueL2RrrwJgiCmktS4XiYCw5E4BoQCgyhw5Wo1\nNIWFAIBg28QEbkYFVz39x3BxeMZgWqOcGBHGyThotcppXwdi7kACl5gzDB3X6/fTlTdBEMR0kRrX\ny465ZwdSEWGF9lR8nL6cjXcOTFDgJoUmM5lKJaUxTCfWHEHguoJSZKBYzTUY1XOmwY+YGUjgEnMG\n/ZAKbrp3iprMCIIgphYxC1fMwe0REhSAlAcXAPQV5QCAYEcn+ETm1LPREHNwpzsiTESs4CYSSfg8\nTNiK1Vxrjm5G1oGYO5DAJeYMogc3HIohHktkRL1QkxlBEMTUInpwxQqu6L+VyzjkWbXScroyVsHl\n43GEurrG/f6iwJ3uBjMRmz0lYgecQeH/AeE5fdbXEPMXErjEnMEwZJpZhsClEYsEQRBTiljBDYbj\niMUT6OpnYjDPpoM8LUtatCgAE7MpJAUPrmyap5iJiBYFgAnbZJKHeyA07DliYUACl5gzDBW4YkSY\nVqeEjIL7CYIgphRTWm+DNxBFc6cbAFBeaMpYTp2XC7mOVUcnInATEbGCOzMWBY1WKUWBDTgD8LpD\nSCSSAKiCuxAh1UDMGUyW1EFw0BmAd5BdeRtNM3NwJAiCWEiY03Jh+wdDaDvLBjnUlFozluM4Tqri\nTiRJYaYruEB6o1kAg65g2uPkwV1okMAl5gwmixZaHYtx6T7jQc8ZDwAgb0g1gSAIgjh3bGnFg3c/\n7ZSSB2pKLcOWFX24/pbT4Hl+XO+f8uDOXJFC9OEOOoMYdAXSHqcK7kKDBC4xZ+A4DoUlZgBAe7MT\nzn7W0VuU5WBLEARBnBvFuQbYheEIb33MKrMcBywqGX7MNdXXAQBibjdCZ8bXaCbFhM1gBdcmVHAH\nXAG4BE+xVqeEhjJwFxwkcIk5RaGDHVjPdnsBoUhQ5CCBSxAEMdVwHIc1jQUAgHiCHXAd+UboNMPF\noHnJYulnz6HD43r/2angMoEbiybQ2TaQ8RixsCCBS8wpioZUDjgOKCgiiwJBEMR0sHZxYcbvtUP8\ntyIqmxXakhIAgOfgoXG9t1jBnamYMACwponZM22D7DFKUFiQkMAl5hRFDnPG77kFRqjUillaG4Ig\niPnNkio7dJrUMbZ6BIELAOYmVsX1HD4MPpkc870ToZkd9ABkr9ZSBXdhQgKXmFOYLFro0jJvyZ5A\nEAQxfSgVMqyqy5d+H6mCCwCWpiUAgLjPP664sIRUwZ05gavTq1BVl5vxmNVOCQoLERK4xJyC4zgU\nplVxSeASBEFML5tXOQAAdrMGpQXGEZczNTYy3xgAz6HRbQo8z89KkxkAXPvFFRmDKsiisDAhgUvM\nOdJ9uCRwCYIgppdV9fn42X2b8LP7L4RilKE6SpMR+vJyAMDg3s9Gfc9kNAoIcWIz6cEFWBX37m9f\njJxcPYrLrCim88iChMyNxJyjuiEff3v7FMxWLfIpA5cgCGLaqS2zjWu5nAvWItDaCs+hw4gODEJl\ny25pSAoJCgAgU8/8sB6bXY97HtoMTqg4EwsPquASc46SMivueWgz7nrgQsgVtIsSBEHMFewXbmQ/\n8DycH3444nIJYYoZMPMVXBEStwsbUg/EnMSeZ4BWpxp7QYIgCGLG0BYWwrCoCgDQ//4HIy4X83ql\nnxUGw7SvF0EMhQQuQRAEQRDjxn7hJgCA/+QphHrOZl0m6nRJP6vtOTOyXgSRDglcgiAIgiDGjX3j\nBilNwbVrd9ZlIq6UwFXZxufvJYiphAQuQRAEQRDjRp1jk2wKngMHsy4TFQSu0myCTEV2M2LmIYFL\nEARBEMSEsCxtAgB4jx5jkWBDiAgWBZXdPqPrRRAiJHAJgiAIgpgQlmVLAbC8W+/RY8OeFyu46hzy\n3xKzAwlcgiAIgiAmhLGuVppQ5t5/YNjzosBVkcAlZgkSuARBEARBTAiZUgnz4gYAgHt/pg+X53nJ\nokAJCsRsQQKXIAiCIIgJY17KbAqB1lZE3R7p8bjXCz4eBwCocihBgZgdSOASBEEQBDFhRB8uAHgO\npqq4GRFhZFEgZgkSuARBEARBTBhdqQNKqxVApk2BhjwQcwESuARBEARBTBiO46Qqrnv/AfA8D4Aq\nuMTcgAQuQRAEQRCTwrKM5eFGXS6EznSxn4UKrsJohFxIWiCImYYELkEQBEEQk0Ic+ACk4sIirgEA\nZE8gZhcSuARBEARBTAqV1QpdWSkAwH2ACdyo08meI3sCMYuQwCUIgiAIYtKIPlzPgUMI9/Uh3NsH\ngAQuMbuQwCUIgiAIYtLkXbIFkMmQjEZx6OFHEeljAlcvVHYJYjYggUsQBEEQxKTRl5Wi8MorAABR\nwX+rr6hA/tZLZ3O1iAUOCVyCIAiCIM6J0ptvhNJqAQDI1GrU/MPfQ6ZUzvJaEQsZErgEQRAEQZwT\nCr0etf/wAEyLG1H77QehKyme7VUiFjiK2V4BgiAIgiDOf8yLG7Hkh0/O9moQBACq4BIEQRAEQRDz\nDBK4BEEQBEEQxLyCBC5BEARBEAQxryCBSxAEQRAEQcwrSOASBEEQBEEQ8woSuARBEARBEMS8ggQu\nQRAEQRAEMa8ggUsQBEEQBEHMK6ZN4Ho8Hjz44INYuXIlVq9ejUcffRTBYHDU1zzyyCOoq6vL+O/O\nO++crlUkCIIgCIIg5iHTNsnswQcfhMvlwgsvvIBYLIZHHnkEjz/+OH72s5+N+roLL7wQTz31FHie\nBwCoVKrpWkWCIAiCIAhiHjItFdyWlhZ88MEH+OEPf4glS5ZgxYoVeOyxx/DGG2+gv79/1NeqVCrY\nbDbk5OQgJycHRqNxOlaRIAiCIAiCmKdMi8Ddv38/zGYzGhoapMfWr18PjuNw4MCBUV+7Z88erF+/\nHtu2bcOOHTvgdrunYxUJgiAIgiCIecq0WBScTidsNlvGY3K5HGazGU6nc8TXbdq0CVu3bkVJSQk6\nOjrw7LPP4q677sIrr7wCjuPG9bf7+vqQSCRwySWXnNNnIAiCIAiCIKaHnp4eyOXyaXv/CQncZ555\nBr/73e9GfJ7jOLzxxhuTXpnt27dLP1dXV6OmpgaXXXYZPv74Y6xbt25c76FWqxGNRie9DgRBEARB\nEMT0olAoprXPakIC94477sB111036jIOhwN2ux0DAwMZjycSCXg8Htjt9nH/PYfDAavVio6OjnEL\n3L179477/QmCIAiCIIj5x4QErtVqhdVqHXO5ZcuWwev14ujRo5IPd9euXeB5HkuXLh333zt79izc\nbjdyc3MnspoEQRAEQRDEAmZamsyqqqqwceNGPPbYYzh48CA+/fRTfP/738eVV16ZIVa3bduGt99+\nGwAQDAbx9NNP48CBA+jq6sKuXbtwzz33oLy8HBs3bpyO1SQIgiAIgiDmIdOWg/vMM8/gySefxO23\n3w6ZTIbLL78cjz76aMYy7e3t8Pv9AFgT2okTJ/Dqq6/C6/UiLy8PGzduxP333w+lUjldq0kQBEEQ\nBEHMMzhenKhAEARBEARBEPOAaRvVSxAEQRAEQRCzAQlcgiAIgiAIYl5BApcgCIIgCIKYV5DAJQiC\nIAiCIOYVJHAJgiAIgiCIeQUJXIIgCIIgCGJeMa8E7pYtW1BXVyf9V19fj9/97ncZy/T09OCuu+7C\nsmXLsGHDBjz99NNIJpOztMbnHy+99BK2bNmCpqYmfOELX8DBgwdne5XOW379619n7K91dXXYvn17\nxjK//OUvsXHjRixduhS333472tvbZ2lt5z579+7FN77xDWzatAl1dXV45513hi0z1vaMRqN44okn\nsHbtWixfvhz33XcfXC7XTH2EOc9Y2/iRRx4Ztk/feeedGcvQNh6Z3/zmN7j++uuxYsUKrF+/Hvfe\ney9aW1uHLUf78eQZzzam/XjyvPzyy/jc5z6HlStXYuXKlbjpppvw/vvvZywzY/svP4/YvHkz/8//\n/M+8y+XinU4n73Q6+VAoJD2fSCT4q666ir/jjjv448eP8++//z6/bt06/tlnn53FtT5/eP311/nF\nixfz//3f/803Nzfz3/3ud/nVq1fzLpdrtlftvOS5557jr7rqqoz9dXBwUHr+N7/5Db969Wr+L3/5\nC3/ixAn+7rvv5i+55BI+EonM4lrPXd577z3+F7/4Bf/nP/+Zr6ur499+++2M58ezPR9//HF+8+bN\n/Mcff8wfOXKEv/HGG/mbb755pj/KnGWsbfzwww/zd955Z8Y+7fV6M5ahbTwyX/va16Tj6/Hjx/m7\n7rqL37x5c8Z5jPbjc2M825j248nz7rvv8u+99x7f3t7Ot7W18c8++yzf2NjINzc38zw/s/vvvBO4\n//qv/zri83/961/5hoaGDEH28ssv86tWreJjsdhMrOJ5zQ033MB///vfl35PJpP8pk2b+N/+9rez\nuFbnL8899xx/zTXXjPj8hg0b+H/5l3+Rfvf5fPySJUv4119/fQbW7vymtrZ2mPgaa3v6fD6+sbGR\nf+utt6RlWlpa+NraWv7AgQMzst7nE9m28cMPP8zfe++9I76GtvHEcLlcfG1tLf/JJ59Ij9F+PLVk\n28a0H08ta9as4f/whz/wPD+z+++8sigAwG9/+1usXbsW1157LZ5//nkkEgnpuQMHDqCmpgY2m016\nbOPGjfD5fGhubp6N1T1viMViOHLkCC644ALpMY7jsH79euzfv38W1+z8pq2tDZs2bcKll16Kf/iH\nf0BPTw8AoLOzE06nE+vWrZOWNRgMWLp0KW3vSTCe7Xno0CEkEomMfbyyshJFRUXYt2/fjK/z+cqe\nPXuwfv16bNu2DTt27IDb7ZaeO3z4MG3jCeDz+cBxHCwWCwDaj6eDodtYhPbjcyeZTOL1119HKBTC\n8uXLZ3z/VUzNx5gb3HrrrWhsbITZbMa+ffvwzDPPwOl04qGHHgIAOJ1O5OTkZLzGbrcDAPr7+1FX\nVzfj63y+MDg4iEQiIW0vkZycnKweMWJsli5diqeeegoVFRXo7+/Hc889h1tuuQU7d+6E0+kEx3FZ\nt7fT6ZylNT5/Gc/2dLlcUCqVMBgMIy5DjM6mTZuwdetWlJSUoKOjA88++yzuuusuvPLKK+A4Dk6n\nk7bxOOF5Hj/60Y+wcuVKLFq0CADtx1NNtm0M0H58rpw8eRI33ngjotEo9Ho9fv3rX6OyshL79u2b\n0f13zgvcZ555ZlijWDocx+GNEOAUqAAABPZJREFUN95ARUUFbrvtNunxmpoaKJVKPP7443jggQeg\nVCpnYG0JYvxs2rRJ+rmmpgZNTU3YvHkz/vjHP6KysnIW14wgJkd6k2R1dTVqampw2WWX4eOPP86o\n2hBjs2PHDjQ3N+Pll1+e7VWZt4y0jWk/PjcqKyvx2muvwefz4c0338RDDz2E3//+9zO+HnNe4N5x\nxx247rrrRl3G4XBkfbypqQmJRAJdXV0oLy+H3W7HoUOHMpYRrwhyc3OnZoXnKVarFXK5fNgVlMvl\nGnY1RkwOo9GI8vJydHR0YM2aNeB5Hk6nM2P7ulwu1NfXz+Janp/Y7fYxt6fdbkcsFoPf78+oHtA+\nPnkcDgesVis6Ojqwbt062sbj5Mknn8T777+Pl156CXl5edLjtB9PHSNt42zQfjwxFAqFpMsaGhpw\n8OBBvPjii/ja1742o/vvnPfgWq1WVFRUjPqfQpFdpx89ehQymUyyJSxbtgwnT57EwMCAtMyHH34I\no9GIqqqqGfk85ytKpRKNjY3YtWuX9BjP89i1axeWL18+i2s2fwgEAujo6EBeXh4cDgfsdjt2794t\nPe/3+3HgwAHa3pNgPNtz8eLFkMvlGfv46dOn0d3dTdt8kpw9exZut1sqINA2Hpsnn3wS77zzDl58\n8UUUFRVlPEf78dQw2jbOBu3H50YymUQ0Gp3x/Ve+Y8eOHVPyCWaZ/fv3480334RGo0EoFMJ7772H\np556Cpdffrl0u8HhcOCtt97CRx99hJqaGhw7dgw/+MEPcPPNN2PDhg2z/AnmPnq9Hr/61a9QWFgI\npVKJX/ziFzhx4gR++MMfQqvVzvbqnXf85Cc/gVqtBgA0Nzdjx44dGBwcxI4dO6DVapFIJPDb3/4W\nVVVViEaj+MEPfoBoNIrHHnsMcrl8ltd+7hEMBtHS0oL+/n688soraGpqgkajQSwWg9FoHHN7qlQq\n9PX14aWXXkJdXR3cbje+973voaioCPfcc89sf7w5wWjbWC6X4+c//zkMBgMSiQSOHDmCRx99FAaD\nAQ899BBt43GwY8cO7Ny5E7/61a+Qm5uLYDCIYDAIuVwuFXJoPz43xtrGwWCQ9uNz4Nlnn4VSqQTP\n8zh79ixeeOEF7Ny5E9/+9rfhcDhmdP/leJ7np+lzzihHjx7FE088gdbWVkSjUZSUlODqq6/Gbbfd\nluG/7enpwY4dO7Bnzx5otVpce+21ePDBByGTzfli9pzgpZdewvPPPw+n04n6+no89thjWLJkyWyv\n1nnJAw88gL1798LtdsNms2HlypX41re+lWG5ee655/DKK6/A5/Nh1apVePzxx1FWVjaLaz132bNn\nD2699VZwHJfx+DXXXIMf//jHAMbentFoFD/5yU+wc+dORKNRbNq0Cd/73veGNacuVEbbxjt27MA9\n99yD48ePw+v1Ii8vDxs3bsT999+fkVxD23hk6urqhm1bAPjxj3+Ma665Rvqd9uPJM9Y2jkQitB+f\nA48++ih2796N/v5+GI1G1NbW4s4778xIRZip/XfeCFyCIAiCIAiCAM4DDy5BEARBEARBTAQSuARB\nEARBEMS8ggQuQRAEQRAEMa8ggUsQBEEQBEHMK0jgEgRBEARBEPMKErgEQRAEQRDEvIIELkEQBEEQ\nBDGvIIFLEMT/324dyAAAAAAM8re+x1cUAcCK4AIAsCK4AACsCC4AACsBE3o3uOQW6KMAAAAASUVO\nRK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7f26341b8f98>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "for i in range(data.shape[1]):\n", " plt.plot(data[:,i], label=\"ROI %d\"%i)\n", "plt.legend(loc=\"best\")\n", "plt.xlim([-50,300])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Set up the PPI model, using ROI 0 as the seed" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "ROI 0: 3.86593321294 6.80322958119e-05\n", "ROI 1: 1.01708139751 0.154972654455\n", "ROI 2: 1.42428415275 0.077708801814\n", "ROI 3: 1.80274877169 0.0362223520829\n", "ROI 4: 9.01167903117 0.0\n" ] }, { "data": { "text/plain": [ "<matplotlib.axes._subplots.AxesSubplot at 0x7f2602a550b8>" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAHVCAYAAAC5Riy1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3Xt8VPWd//H3TK5ACJAQELUgoJBwM7hVkWsfultrWm2W\ntcJ6QWWx4qVYlbWmYFcQQaosFSuuFBWqVEUp9EFRWGofWkuzFNeCleoickkgUZgQJCTkNvn+/vDn\n1JR4OFNzzncy5/V8PHg8zMmZM+/MODOf+Xy/53tCxhgjAAAA+CpsOwAAAEAQUYQBAABYQBEGAABg\nAUUYAACABRRhAAAAFlCEAQAAWEARBgAAYAFFGAAAgAWpbndsPFblZQ4AgE/mXrXIdgT4aN7G+dbu\ne0S/Ce1+zHf2v9Hux7SFThgAAIAFrjthAAAA8QiFQrYjJDQ6YQAAABbQCQMAAJ4Ihej1OOHRAQAA\nsIAiDAAAwAKGIwEAgCfCYmK+EzphAAAAFtAJAwAAnmCJCmd0wgAAACygEwYAADwRZokKRxRhAADA\nEwxHOqNEBQAAsIAiDAAAwAKKMAAAAAuYEwYAADwRYrFWRxRhAADAE5wd6YwiDG1qPlFrOwJ8lNqp\ni+0IABA4FGFoU1P1UdsR4COKMABeYIkKZxRhaFNz3QnbEQAASGoUYQAAwBNhOmGOmDEHAABgAZ0w\ntCmckWY7AgAASY0iDAAAeCLEgJsjijC0KSWzk+0IAAAkNYowtCmcxnAkAODLYYkKZxRhAADAE5wd\n6YwiDG0Kp6bYjgAAQFKjCEObQmnptiMAADq4RLiA91tvvaXly5dr586dOnz4sB5//HFdcsklX7j/\n5s2b9fzzz+u9995TY2OjzjnnHN1+++0aO3ZsbJ+1a9eqpKREoVBIxhhJUkZGhnbs2BFXNoowtCkl\nI9N2BAAAvrS6ujoVFBToyiuv1Pe+971T7r9t2zaNGTNGd911l7Kzs7VmzRpNnz5dL7/8svLz82P7\nde3aVZs2bYoVYX/P/DeKMAAAkLTGjx+v8ePHS1KsYHLywx/+sNXPd955p1577TX99re/bVWEhUIh\n5eTkfKlsroswE23+UneEjiWUQn0OAPhywqGOv06YMUa1tbXq1q1bq+11dXW6+OKL1dLSoiFDhuiu\nu+7S2WefHdexXX/SNn5yNK4Do2PLyOlpOwIAANYtX75cdXV1uuyyy2Lb+vfvrwcffFCDBw/W8ePH\ntXz5ck2ePFkbNmxQ7969XR+bdgcAAPBER18nbP369Vq6dKmeeOKJVkOPhYWFKiwsbPVzUVGRXnzx\nRc2YMcP18V0XYXXlla4Pio4vtUuW7QjwUUp6hu0IAJJQR14nbMOGDfrRj36kRx99VKNGjXLcNzU1\nVQUFBdq/f39c9+G6CKv6v4/jOjA6tnAaTdIgyezN8DMAfObXv/61Zs+ercWLF8cm9TtpaWnRrl27\n9LWvfS2u+3H9SVuxuzquA6NjS8ugCAuSrBMNtiMASEKJsE5YXV2dysrKYmdGlpeX6/3331e3bt3U\np08fLVq0SIcOHdLChQslfToEWVJSolmzZmn48OGKRCKSpMzMTGVlfTpK9Pjjj6uwsFB9+/ZVTU2N\nli9frsrKSl155ZVxZeOTFgAAJK13331XU6ZMUSgUUigUihVbxcXFWrBggSKRiCor/zrlavXq1YpG\no5o7d67mzp0b2/7Z/pJ07Ngx3XfffYpEIsrOztawYcP0wgsvaODAgXFlCxk3i2ZIenrKj+M6MDq2\nYUN72Y4AH3XpweK8QfL8L9+xHQE+mrdxvrX7vnTYVe1+zE3vrm73Y9riuhN28EiNlzmQYE6PMDE/\nSI5V19uOACAJJcM6YV7i0QEAALDA/dmRdXVe5kCCqaIzEigNjVwRA0D76+jrhHnNdRFW28DZU0FS\ndeyE7Qjw0eGaWtsRACBwODsSAAB4oiMv1uoH10VYfXOTlzmQYKqOM/wcJAe5NmygnJ7d3XYEBEQi\nrBOWyFwXYUauVrJAkjh8nOGpIKmsOWI7AnxEEQYkBtdFGNVssBytpwgLkiMn6IQBgN9YogIAAMAC\n150wJtcFyycNnB0ZJCeaeL4BtD+WqHDmughLDad4mQMJprklajsCAKCDo4HjjOFIAAAAC1x3wtJS\n6IQFSQrX+wqUzDQu4A2g/XFSn7M45oTxoRwkGanptiPAR13SOtuOAACBw4r5AADAEzRwnMUxHMkD\nGSTpKdTnQZKVTicMAPzm+pOWOULBksbZsIHC8DMA+M99ERamCAsSliQJFjqfALzAOmHOqKwAAAAs\ncH/tSIrZQGFJkmAxSrMdAUASYrFWZ66LsIxUhiuChCIsWHh9A/AC64Q5YzgSAADAAtdff3t07uRl\nDiQYY2wngJ9yuvD6DpIjtVywHf5gONKZ6yKsb+9sL3MgwWR9wpIFQXJO/+62I8BHr72133YEAIqj\nCDuLN+lAyf2k3nYE+GjAV8+wHQE+oggDEgOzcQEAgCdYJ8yZ6yIsb1CulzmQYLrXNtqOAB91H9LP\ndgT46g+2AwBQHEVY9oA+XuZAgjHRqO0I8FFGbp7tCACSEBPznbFEBQAAgAWuO2Gd+tAJC5IQi7UG\nSohrRwLwAIu1OnP9zhtOz/AyBwAASDIMRzpjOBIAAMACxiAAyLRwIgYA+I1OGAAAgAV0wgAoFOL7\nGID2x2KtzijCAACAJ5iY74yvvwAAABbQCQMAAJ5gnTBndMIAAAAsoBMGAAA8wZwwZ3TCAAAALKAI\nAwAAsIDhSAAA4AnWCXNGEQZA4o0SAHxHEQYAADzBxHxnFGEAAMATDEc6Y2I+AACABXTCAACAJ1gx\n3xmdMAAAAAsowgAAACxwPRzZeLTayxxIMOGMdNsR4KPUTl1sRwCQhMKMRjpyXYTVlh30MgcSTFrX\nzrYjwEed+pxmOwIABA4T8wEAgCdYosKZ6yKs6v2PvMyBBNM5l05YkIRSU2xHAIDAcV2EVexmTliQ\nZFedsB0BPjLRFtsRACQhVsx3xnAkAADwBMORzlwXYWUVx7zMgQSTU9toOwJ81HCiyXYEAAgc10XY\nwSM1XuZAgom2GNsR4KOjNQ22IwBA4LBYKwAAgAXuz46sq/MyBxJM5/Q02xHgo9oGhiMBtL8w1450\n5H6x1gaGK4Kkpp45YUHyUQ1zPoOkZ5cs2xEQEEzMd+a6CKtv5ptykNQ2UoQFSaSOOZ9BQhEGJAaW\nqAAAAJ5gnTBnroswI86WC5LGaLPtCPBRQzOdTwDwm+siLMTkukBJT6FJGiQZqem2IwBIQjTCnLFE\nBQAAgAWu2x2M6wZL14wM2xHgo5xOTNQGAL+5LsJSwyle5kCC6ZLBOmFB0r1TJ9sRACQhGjjOGI4E\nAABJ66233tL06dM1btw45efn67XXXjvlbbZu3aqJEydq+PDhuvTSS7V27dqT9nn11Vd12WWXacSI\nEbriiiv0xhtvxJ3NdScsLYVOWJCkp/F8BwnDz8HS0By1HQEBkQgn9dXV1amgoEBXXnmlvve9751y\n/wMHDmj69On613/9Vz3yyCMqLS3V7Nmz1atXL40ZM0aS9Pbbb2vmzJmaOXOmJkyYoPXr1+u2227T\nunXrdPbZZ7vOFsecMJpmQLJKCfP6DhaKMPgjEVbMHz9+vMaPHy9JMubUy209//zzOvPMM3XPPfdI\nkgYMGKD//d//1YoVK2JF2LPPPqtx48bpxhtvlCTdcccd+sMf/qDnnntO999/v+tscXTCeJMOkvpG\n3qSDpDnaYjsCACSEHTt2aPTo0a22jR07VgsWLIj9vH379lgB9vl93Ax1fh6LQQEAAE90xIn5hw8f\nVm5ubqttubm5On78uBobG5Wenq7Dhw+rZ8+eJ+0TiUTiui/XRVgKw5GBcpwLtgfKiSauDRskLMYM\nJAb3RRhzRgKlrpEP5SCpb+b5DhKKMPilAzbClJeXp6qqqlbbqqqqlJWVpfT09Ng+f9v1qqqqOqk7\ndipUVgAAAP9fYWGhSktLW23bsmWLCgsL49rHDffXjuyA1Sz+fo1RJuYHSbTl1GcMAUBHVFdXp7Ky\nstiZkeXl5Xr//ffVrVs39enTR4sWLdKhQ4e0cOFCSdLkyZO1atUqPfzww/qXf/kXlZaWatOmTVq2\nbFnsmFOmTNF1112nZ555RhMmTNCGDRu0c+dOzZs3L65srouwjFTa10Hi4ixeJJG0dNaFA9D+EmFi\n/rvvvqspU6YoFAopFArFiq3i4mItWLBAkUhElZWVsf3PPPNMLVu2TAsWLNCzzz6r0047TfPmzWt1\nxuTIkSO1aNEiLV68WIsXL1a/fv20dOnSuNYIk6SQcbNohqT//JcH4jowOrbahkbbEeCj7l0ybUeA\njz7+pNZ2BPho3sb51u77P4pmtfsx57zyYLsf0xbaWwAAwBOJsGJ+InNdhPXtne1lDiSYY8dZoiJI\nBp7V3XYE+GjzH+mEwR+JMByZyFwXYWf15006SD45csJ2BPio38g+tiPAT3/cZzsBADEcCQAAPEIj\nzJnrIixvUO6pd0LSyKw4ZjsCfNRt0Bm2IwBA4LguwrIHMFwRJGEu2B4oGXGu8gwA+PIYjgQAAJ4I\nMR7pyHUR1qkPnbAgidZzdmSQpGZ2th0BAALHdREWTs/wMgcSTGbvXrYjwE98WwXgAZaocMZwJNqU\n3r2H7QgAACQ1ijAAAOAJGmHOKMIAyESbbUcAkIQYjnRGEQZApsXYjgAAgcNiUAAAABbQCQMgmRbb\nCQAgcCjCAEghmuIA2l9IzAlzQhEGAAA8wYr5zvj6CwAAYAGdMAAKccF2AB4I0whzRBEGQCHmhAGA\n7yjCAACAJ5gT5owiDADXFgEACxiDAAAAsIBOGAAA8ATDkc7ohAEAAFhAJwwAAHiCJSqcUYQBAABP\nMBzpjOFIAAAAC1x3whqPVnuZAwkmvXsP2xEAAB0cjTBnrouw2rKDXuZAgmlpqLcdAT5Kz+lpOwIA\nBA7DkQAAABa47oRVvf+RlzmQYLpEamxHgI+yz2m0HQFAEgozHunIdRFWsZs5YUGScZAiLEj61FGE\nAYDfWKICAAB4IiQ6YU5cF2FlFce8zIEE02JsJ4Cfjn3SYDsCAASO6yLs4BGGp4KktpHhqSA5UMWX\nLADtjylhztxPzK+r8zIHEsyx+hO2I8BHxxp4voMkP6+P7QgICCbmO2OJCgAAAAvcL9bawJyRIGmM\nNtuOAB9V1R21HQG+ohMGJALXRVh9c5OXOZBgMlLSbEcAACCpsUQFAADwRIg5YY5cF2FGrFkQJFkZ\nGbYjwEdZ6Z1tRwCQhKjBnLkuwlhwLVg6p6XbjgAfZaV3sh0BAAKH4UgAAOAJhiOduS7CWOsjWDJS\nqc+DJCs903YEAAgc15+0qeEUL3MgwTAHMFhSwiwZCKD9henfOHJdhKWlUIQFSUMz64QFSVM0ajsC\nAAQOX38BAAAsiGNOGPVakHAB72BpiLIYM4D2x8R8Z3EMR1KEBUkdRVigMBwJAP7jFDgAAOAJGmHO\nXBdhKQxHBkpTC52RIOFsWABeYHkrZ+6LME5hDxRj+FAOEq6IAQD+c3/ZIt6jA4WiO1hYggaAF5iY\n74xPWgAAAAtcd8K4jE2wcIWEYElP4fUNAH5z/c7bo3MnL3MgwdQ1sm5UkPTM6mw7AnxU28DrG/5g\nNNIZw5EAAAAWuO6E9e2d7WUOABYV9M+1HQE+2vLuAdsREBBMzHfmugg7q393L3MgwWSkMycsSAZ9\ntY/tCPARRRiQGJiNCwAAPEEjzJnrIixvEMMVQZLRJc12BPgoZ2hf2xHgq222AyAgWDHfmesiLHsA\nwxVBkt6Vs2GDJLN3L9sRACBwXBdhnfpQhAVJSqdM2xHgo5RMlqgAAL+xRAUAAIAFrjth4fQML3Mg\nwWTm9bYdAQDQwTElzBlnR6JtvHKCxRjbCQAkIdYJc0YRBgAAktqqVav01FNPKRKJKD8/X7Nnz9aI\nESPa3LekpERr165VKBSS+dwX1HPOOUfr16+XJK1du1YlJSWt9snIyNCOHTviykURBkDGtNiOACAJ\nJUIj7JVXXtFDDz2kBx54QMOHD9fKlSs1bdo0bdy4UTk5OSftP2vWLM2cOTP2c3Nzs6644gp94xvf\naLVf165dtWnTplgR9vd0/SjCADAcCSBprVixQpMmTVJxcbEkac6cOXr99de1Zs0a3XTTTSftn5WV\npaysrNjPv/nNb1RTU6OJEye22i8UCrVZxMWDIgyATAtFGID2Z3tOWFNTk3bu3Kmbb745ti0UCmn0\n6NHavn27q2O8/PLLuuiii9Tnb5bqqqur08UXX6yWlhYNGTJEd911l84+++y48rFEBQAASErV1dWK\nRqPq2bNnq+25ubmKRCKnvP2hQ4f05ptv6qqrrmq1vX///nrwwQe1dOlSPfLII2ppadHkyZP18ccf\nx5WPThgAAEAb1q5dq+zsbF1yySWtthcWFqqwsLDVz0VFRXrxxRc1Y8YM18enCAMAAJ6wPTG/R48e\nSklJOanrVVVVdVJ3rC2//OUvVVxcrNRU53IpNTVVBQUF2r9/f1z5GI4EAABJKS0tTUOHDlVpaWls\nmzFGpaWlGjlypONtt27dqrKyMl155ZWnvJ+Wlhbt2rVLvXrFdx1eOmEAFAonwHnkAJJO2HYrTNIN\nN9ygkpISDRs2LLZERX19fexsx0WLFunQoUNauHBhq9u9/PLLOvfcczVw4MCTjvn444+rsLBQffv2\nVU1NjZYvX67KykpXBdvnUYQBAABPJEANpqKiIlVXV2vJkiWKRCIqKCjQ8uXLY8tLRCIRVVZWtrrN\n8ePH9Zvf/EazZs1q85jHjh3Tfffdp0gkouzsbA0bNkwvvPBCmwWbk5Ax7hYIajxWFdeBAXQcJtps\nOwJ89MC/Pmo7Anw0b+N8a/e97ntL2v2YxY+5n/ie6OiEAUiMr6sAko7tdcISHUUYAIVCnKMDAH6j\nCANAJwwALKAIAwAAnuD7nTPGIAAAACygEwYAADzBxHxndMIAAAAscN0Jazxa7WUOJJj07j1sRwAA\ndHA0wpy5LsJqyw56mQOJxrTYTgAfpWZl244AIAkxHOmM4UgAAAALXHfCqt7/yMscSDCNn9TZjgAf\ndR1wuu0IABA4rouwit3MCQuSzh/X2o4AH/WuqbcdAQACx3URVlZxzMscACw6euSE7QgAkhBTwpyx\nThgAAPAEE/OduS7CDh6p8TIHEkxtY6PtCPBRWYRONwD4zf3E/DomagdJdR1zwoLkWAOv7yAZ2vtM\n2xEQEDTCnLFEBQAAgAXuF2ttaPAyBxIMnZFgOVjzse0I8BGdMPglTCvMkesirL65ycscACyqb2KJ\nCgDtjxrMmesizMh4mQMJplNahu0I8FFmWqbtCAAQOMwJAwAAsMB1JywkeopBkp1BZyRIumdyAW8A\n8JvrIozJdcGSmZZmOwJ81DW9i+0IAJIQi7U6Y8V8AADgCWowZ66LsNRwipc5kGBSQkwXDJKMVDqf\nAOA310VYWgpFWJCkhPn6EiSZFGEAPBDis8QR7Q4AAAAL4piYT70WJAw/B0tmarrtCACSEHPCnMUx\nHEkRFiSd0jhnI0iaWyjCAMBvrj9pmagdLF0y+FAOEk4jD5b6pmbbEQCIJSoAAIBH+ILnzH0nLEwn\nLEgy0pgTFiS8UQYLnTAgMbi/bBHv0YHCZaqCJTWF5xtA+6N2cMZwJAAA8ARddmeui7CMVOq1IGlu\nabEdAT7ifRIA/Oe6surRuZOXOQBY1K1zhu0I8NHHn9TajoCA4AueM2bbAwAAWOC6E9a3d7aXOZBg\njtc12o4AH/Xv1812BPhoV+UR2xEAKI4i7Kz+3b3MgQRztOqE7Qjw0VeG97YdAX76n722EyAoGI90\n5LoIyxuU62UOJJjOh47bjgAfdcs/03YEAAgcTnkEAACeYIkKZ66LsOwBfbzMgQSTnn3UdgT4KDMv\nz3YEAAgc10VYpz4UYUES5gLegZKS2dl2BABJiEaYM4YjAQCAJ0JhqjAnrouwcDqLOQZJRg4nYgAA\n4CU6YWgTRTcAAN6iCAMg0xK1HQEAAociDAAAeIKJ+c4owgBIxthOACAJsU6YM4owADItFGEA4DeK\nMAAA4AkaYc4owgCwlg8AWEARBgAAPMGcMGdh2wEAAACCiE4YACZuAIAFFGEAAMATfL9zRhEGQKEQ\nMxMAwG8UYQAAwBNMzHdGEQaAMQMA3qDJ7oiHBwAAwAI6YQAAwBMMRzqjEwYAAGABnTC0qaWpyXYE\n+CiclmY7AgAEDkUYAADwBKORzlwXYY1Hq73MgQQTTk2xHQE+CqfyfQwA/Ob6nbe27KCXOZBg0rK7\n2I4AH3VKS7cdAUASYmK+M9dFWNX7H3mZAwkmq1eW7QjwEZ0wAPAfZ0cCAABPhELt/+/vsWrVKl18\n8cUaMWKErrrqKr3zzjtfuO8f//hH5efnt/pXUFCgqqqqVvu9+uqruuyyyzRixAhdccUVeuONN+LO\n5frrb8Vu5oQFSe7xRtsR4CNjjO0IAJJRAgxHvvLKK3rooYf0wAMPaPjw4Vq5cqWmTZumjRs3Kicn\np83bhEIhbdq0SV26/HVqTm5ubuy/3377bc2cOVMzZ87UhAkTtH79et12221at26dzj77bNfZXBdh\nZRXHXB8UHV9Tc4vtCPBRw4lm2xEAwBMrVqzQpEmTVFxcLEmaM2eOXn/9da1Zs0Y33XTTF94uJydH\nWVltT8159tlnNW7cON14442SpDvuuEN/+MMf9Nxzz+n+++93nY3hSAAAkJSampq0c+dOXXTRRbFt\noVBIo0eP1vbt27/wdsYYffvb39bYsWM1depUvf32261+v337do0ePbrVtrFjxzoesy2uO2EHj9TE\ndWB0bOGw/RYy/HPkaL3tCADQ7qqrqxWNRtWzZ89W23Nzc7V37942b5OXl6e5c+dq2LBhamxs1OrV\nqzVlyhS99NJLKigokCQdPny4zWNGIpG48rk/O7KuLq4Do2PrfIwV1IOkrpErJABof6EO+IW+f//+\n6t+/f+znwsJClZeXa8WKFVq4cGG73pf7dcIaGtr1jpHYjp6gMxIkHx1jzmeQ9O6abTsCAsL2vPwe\nPXooJSXlpA5VVVXVSZ0sJ8OHD281JJmXl/eljykxJwwAACSptLQ0DR06VKWlpbFtxhiVlpZq5MiR\nro/z/vvvq1evXrGfCwsLWx1TkrZs2aLCwsK48rnuhNU3M1wRJDV0PgPlcN0ntiPAR3TC4JdEWDH/\nhhtuUElJiYYNGxZboqK+vl4TJ06UJC1atEiHDh2KDTWuXLlSZ555ps455xw1NDRo9erV2rp1q55+\n+unYMadMmaLrrrtOzzzzjCZMmKANGzZo586dmjdvXlzZXBdhRqwjFCT1TRTdQXK88YTtCADgiaKi\nIlVXV2vJkiWKRCIqKCjQ8uXLY2uERSIRVVZWxvZvamrSwoULdejQIWVmZmrw4MFasWKFzj///Ng+\nI0eO1KJFi7R48WItXrxY/fr109KlS+NaI0ySQsblKo3XXvjduA6Mji0rPdN2BPho95EK2xHgo1Ff\nGWQ7Anw0b+N8a/f97hO/aPdjDrvl6nY/pi2uO2Eh2W8pwj/RFhZrDRJWzAcA/7kuwsIJMK4L/7Tw\noRwoiTBvAwCCxnURBgAAEBe+4DlyXYSlhlO8zIEEw4kYwZISYrUaAPCb6yIsLYUiLEiaolHbEeCj\n9BSukACg/XXEFfP9FMecML4pB0k4xMT8IKHTDcALjEY6o7ICAACwII7hSOq1IGloZk5YkKTQCQPg\nBVphjlwXYUzcBZJXGkUYAPiOygoAAMAC952wMPVakLA4b7AwMR+AF/goceb+skU8kIGSlsI6vgAA\neIlPWgAA4AnWCXPmugjLSKVeC5JGFmsNlExe3wDgO9fvvD06d/IyBwCLeH0Hy5HaE7YjICBCzGVy\n5LoI69s728scSDBpVZyIEST5Z+XYjgAfvbGj3HYEBAU1mCM+aQEAACxw3Qk7q393L3MgwXTuxByh\nIBn41dNtR4CP6IQBicH1J23eoFwvcyDBZPVkjlCQ5AztZzsCfLXVdgAAYokKAADgESbmO3NdhGUP\n6ONlDiSYrv1YoiJIMnufZjsCgCREEebMdRHWqQ9FWJCE0zNsRwAAIKm5LsL4UAaSl2mh8wnAA6zB\n4IiHBwAAwAIm5gOQaW62HQFAEmJOmDOKMAAMRwKABQxHAgAAWEAnDIAU4vsYgPbHcKQzijAACoVT\nbEcAgMChCAMAAN6gEeaIIgwAAHgiFKYKc0IRBoA3SgCwgCIMAHPCAHiDifmOOCUKAADAAjphAPi2\nCgAWUIQBAABP8P3OGcORAAAAFtAJQ5tMlAs6B0kohbcCAO2PFfOd0QkDAACwgK+/AADAG6xB6Igi\nDG1ieAoA8GUxHOmM4UgAAAALXLc7Go9We5kDCSa9W3fbEeAnvq0CgO/ohAEAAFjguhNWW3bQyxxI\nMC29621HgI/Sc3rajgAgGdFkd+S6CKt6/yMvcyDBZNecsB0BPurav8V2BABJiIn5zhiOBAAAsMB1\nJ6xiNxPzg6SxttF2BPgo2sgVEgC0vxDrhDlyXYSVVRzzMgcSTH0DH8pBUne8yXYEAAgc10XYwSM1\nXuZAgmlqZo5QkByqqrMdAUAyYk6YI5ZFBwAAnmBivjP3Z0fW8U05SKItxnYE+Ki2kTmAQZKRyvdv\nIBG4XyesocHLHEgwYRZ3CZTKmqO2I8BHA3N72Y4AQCxRAQAAYIXrTlh9M2dPBUlmWprtCPDR8UYW\n5wXgAQZVHLkuwoyYIwQkK17fALzAOmHOGI4EAACwwHUnLERPMVBSwtTnQRIO8XwD8ABLVDhyXYSF\neSADhbMjgyU9hTmAAOA310VYajjFyxxIMCywFyzpKawbBaD98VnijDEIAAAAC1x//U1LoRMGJKs0\nOt0A4Ls45oTRNAuSqOEC3gCAL4klKhxRWQEAAFgQx3Ak9VqQ1DdxhYQgaYw2244AIAkxMd+Z6yIs\nheHIQKlt5ILtQUIRBsAT1GCOqKwAAAAscN8JYwX1QGmIMhwZJI083wA8wHCkM/eXLeJxDJQmhqcC\nhQt4A0hPuk4lAAAWfElEQVRmq1at0lNPPaVIJKL8/HzNnj1bI0aMaHPfzZs36/nnn9d7772nxsZG\nnXPOObr99ts1duzY2D5r165VSUmJQqGQjPn0/TMjI0M7duyIK5frIiwjlRW1g4QlSYIlIyXddgQA\n8MQrr7yihx56SA888ICGDx+ulStXatq0adq4caNycnJO2n/btm0aM2aM7rrrLmVnZ2vNmjWaPn26\nXn75ZeXn58f269q1qzZt2hQrwv6erh+VFQAA8EYCrBO2YsUKTZo0ScXFxZKkOXPm6PXXX9eaNWt0\n0003nbT/D3/4w1Y/33nnnXrttdf029/+tlURFgqF2izi4uG6COvRudOXuiN0LN0yO9uOAB/17JJl\nOwIAtLumpibt3LlTN998c2xbKBTS6NGjtX37dlfHMMaotrZW3bp1a7W9rq5OF198sVpaWjRkyBDd\nddddOvvss+PK57oI69s7O64Do2OrbWi0HQE+GjGgl+0I8NG2XZW2IyAgbE/Mr66uVjQaVc+ePVtt\nz83N1d69e10dY/ny5aqrq9Nll10W29a/f389+OCDGjx4sI4fP67ly5dr8uTJ2rBhg3r37u06H8OR\nAAAAbVi/fr2WLl2qJ554otXQY2FhoQoLC1v9XFRUpBdffFEzZsxwfXzXRdhZ/bu7Pig6vpQEGMeH\nf4aOOsN2BPiIThh8Y7kT1qNHD6WkpCgSibTaXlVVdVJ37G9t2LBBP/rRj/Too49q1KhRjvumpqaq\noKBA+/fvjyuf6yIsb1BuXAdGx5bWiSZpkOQM62s7Anz1lu0ACAjbw5FpaWkaOnSoSktLdckll0j6\ndI5XaWmprrvuui+83a9//WvNnj1bixcv1vjx4095Py0tLdq1a5e+9rWvxZXP9Sdt9oA+cR0YHVta\nVqbtCPBRp9Pcz2EAgI7khhtuUElJiYYNGxZboqK+vl4TJ06UJC1atEiHDh3SwoULJX06BFlSUqJZ\ns2Zp+PDhsS5aZmamsrI+PYnp8ccfV2Fhofr27auamhotX75clZWVuvLKK+PKRrsDAAAkraKiIlVX\nV2vJkiWKRCIqKCjQ8uXLY3O8IpGIKiv/OkS/evVqRaNRzZ07V3Pnzo1tLy4u1oIFCyRJx44d0333\n3adIJKLs7GwNGzZML7zwggYOHBhXtpD5bJWxU6iPVMR1YHRsjdVHbEeAjzJ70+kOkrlXLbIdAT6a\nt3G+tfs+tOV37X7MXmNOPTzYUbjuhIXTM7zMgQSTnuM8YREAgFPiJC9HDEcCAABP2J6Yn+gowtCm\ncFqa7QgAACQ1ijAAMi1R2xEAJCM6YY7CtgMAAAAEEZ0wAJK7k6QBIC4hJuY7ohMGAABgAZ0wAMzb\nAAALKMIAAIA3+ILniOFIAAAAC+iEAQAAT7BYqzOKMAAA4A2KMEcUYQAUCjEzAQD8RhEGAAA8wTph\nzvj6CwAAYAFFGAAAgAUMRwJg8iwAb/De4ohOGAAAgAV0wgAAgDfohDmiCAMAAJ5gsVZnrouwxqPV\nXuZAgknv1t12BPiJN0oA8B2dMAAA4A3WCXPkugirLTvoZQ4kmGjPOtsR4KOMnj1tRwCAwHFdhFW9\n/5GXOZBgsnodtx0BPspuabEdAQACx3URVrGbOWFB0jVCJyxImhuabUcAkIS4Lq0zHh0AAAALXHfC\nyiqOeZkDCSb9cIrtCPDRsep62xEAJCPOvHbkugg7eKTGyxxIMNEWYzsCfHSwitc3APiNJSoAAIAn\nWKzVmfuzI+uYqB0kDc1M1A6ST+p5fQfJgJw82xEQFKwT5sj9OmENDV7mQIKpbeL5DpIDxw7ZjgAf\nUYQBiYGzIwEAACxw3Qmrb27yMgcSTGOU4cggOd7A4rwA4DfXRZgRZ8sFSVqYJSqChMmzALzAe4sz\n10VYSDyQQZKewomzQdIpLdN2BADJiCLMEXPCAAAALHDd7ghTzQZKKsORgZKRkmE7AoBkxLUjHbku\nwvhQDhaK7mDJSE23HQEAAoeJPwAAwBMhFmt15LoIS0uhExYkYVrIgdIpleFIAPBbHHPC+FAOkk5p\nabYjwEfdM7vYjgAAgcNwJAAA8Abzix3FMRxJJyxIumYwPBUknIgBAP5zXYSlMBwZKJ3TGY4MkhQm\nzwZKQ3PUdgQEBCvmO3NfhIUpwoIklc5noBhx4k2QUITBNzRwHPHoAAAAWOD+2pF0FAPFGC7YDgD4\nclgnzJnrIiwjlRMpg6S5pcV2BPgoJN4oAcBvDEcCAABY4Lq91aNzJy9zALCoexeWJAmSY/UNtiMg\nKJjL5Mh1Eda3d7aXOZBgTtQ3244AH53Vr5vtCPDRnkNHbUcAoDiKsLP6d/cyBxLMidpG2xHgo76F\np9mOAD+V7rGdAAHBOmHOmBMGAABggetOWN6gXC9zIME0n2iyHQE+6l7Qz3YE+OoPtgMgKFis1ZHr\nIix7QB8vcyDBmCgragdJRm6e7QgAkhHrhDmiRAUAALDAdSesUx86YUHCivnBEk7jgu0A4DfXRVg4\nnXWEAAAA2gvXIgIAAJ5giQpnFGEAJIafAXiBsyMdUYQBkDFcsB0A/EYRBgAAPMFwpDP6hAAAABbQ\nCQMAAN5gTpgjijAACoVTbEcAgMChRAUAALCAThjaxpIFwcLkWQAeCHHtSEcUYWhTtOGE7QjwUUpm\nZ9sRAMAzq1at0lNPPaVIJKL8/HzNnj1bI0aM+ML9t27dqoULF+qDDz7Q6aefrunTp+uf//mfW+3z\n6quvasmSJTp48KDOOuss3X333ZowYUJcuRiOBAAA3giF2v9fnF555RU99NBDmjFjhtauXav8/HxN\nmzZNR44caXP/AwcOaPr06Ro1apR+9atfacqUKZo9e7a2bNkS2+ftt9/WzJkzddVVV2ndunW65JJL\ndNttt2n37t1xZaMIQ5uMMfwL0D8A8EIoFG73f/FasWKFJk2apOLiYg0cOFBz5sxRZmam1qxZ0+b+\nzz//vM4880zdc889GjBggK655hpdeumlWrFiRWyfZ599VuPGjdONN96oAQMG6I477tDQoUP13HPP\nxZWN4Ui0KZyabjsCAABfSlNTk3bu3Kmbb745ti0UCmn06NHavn17m7fZsWOHRo8e3Wrb2LFjtWDB\ngtjP27dv14033njSPq+99lpc+SjC0KZwWprtCACAjs7yST/V1dWKRqPq2bNnq+25ubnau3dvm7c5\nfPiwcnNzT9r/+PHjamxsVHp6ug4fPtzmMSORSFz5XBdh6dm5p94JAJDw5m2cbzsCAoLawRlzwgAA\nQFLq0aOHUlJSTupQVVVVndTJ+kxeXp6qqqpO2j8rK0vp6emxfeI55hehCAMAAEkpLS1NQ4cOVWlp\naWybMUalpaUaOXJkm7cpLCxstb8kbdmyRYWFhXHt4wZFGAAASFo33HCDXnrpJa1bt04ffvih/uM/\n/kP19fWaOHGiJGnRokX6wQ9+ENt/8uTJKi8v18MPP6w9e/Zo1apV2rRpU6uJ+FOmTNGbb76pZ555\nRnv27NFjjz2mnTt36tprr40rW8hwfjoAAEhin1+staCgQLNnz9bw4cMlSSUlJTp48KB+/vOfx/bf\ntm2bFixYoN27d+u0007TrbfequLi4lbH3LRpkxYvXqyKigr169dP99xzj8aNGxdXLoowAAAACxiO\nBAAAsIAiDAAAwAKKMAAAAAsowgAAACygCAMAALCAIuxL+OlPf3rSKasInpKSEt1+++22YwReR3s9\n/vGPf1R+fr6OHz9uOwoASwJVhF133XWtroLeHkKWL04KdFS2Xo8//elPtW3btna9378X7x9AsAWq\nCAMQTM3NzXrmmWfU3Nwc23bkyBG9+OKLFlMBCLrAFGElJSXatm2bfv7znys/P18FBQUqLy/XrFmz\ndMkll+jcc8/VN77xjVYr5krS1q1b9Z3vfEcjR47U+eefr6uvvlqVlZVt3kdZWZn+8R//UfPmzfPj\nT8IX2Lhxoy6//HKde+65uvDCCzV16lTV19dLkl566SUVFRVpxIgRKioq0i9+8YtWt/3oo4/0/e9/\nX+eff74uvPBC3XrrrTp48GDs9y0tLVqwYIHOP/98jRo1Sg8//LBY7zh+fr8eP+s4XX/99frggw/0\n3//937rlllt02mmnSZIqKio0ffp0XXDBBRo5cqQuv/xy/e53v4sda9euXbrppps0cuRIjRkzRvfc\nc4+qq6tjvzfG6Mknn4xlLy4u1qZNm1rleeONN3TppZfq3HPP1fXXX9/q/ys4u+666zRv3jzNnz9f\nF1xwgcaMGaOXXnpJJ06cUElJic477zx9/etfj+s5e/PNN3X11VfHXuvTp09XeXl57PcHDx5Ufn6+\nNm/erClTpqiwsFDf/va3tX37dl//diQ5ExA1NTVm0qRJ5r777jORSMREIhHT0NBgHnvsMbNz505z\n4MABs379elNYWGheffVVY4wxzc3N5qtf/ap5+OGHTXl5ufnwww/N2rVrTWVlpTHGmMcee8wUFxcb\nY4x57733zJgxY8yjjz5q7W+EMYcOHTJDhw41K1euNAcPHjS7du0yv/jFL0xdXZ351a9+ZcaNG2c2\nb95sDhw4YDZv3mwuvPBCs3btWmOMMU1NTaaoqMjMnj3bfPDBB+bDDz80M2fONN/4xjdMU1OTMcaY\nZcuWmQsuuMBs3rzZfPjhh2bWrFnmvPPOM7fddpvNP7vDsfV6/Mtf/mIKCwtNUVGRqampiW3/7ne/\na6ZOnWo++OADU15ebl5//XWzbds2Y4wxx44dMxdddJFZvHix2bt3r3nvvffM1KlTzZQpU2K3X7p0\nqSkqKjJbtmwx5eXlZu3atWbEiBGxY1RUVJjhw4ebhQsXmr1795r169ebMWPGmPz8/FY50LZrr73W\n/MM//IN54oknzP79+80TTzxhhgwZYm666SazevVqs3//fnP//febCy+80NTX15tPPvnklM/Zpk2b\nzObNm01ZWZl57733zC233GIuv/zy2O8PHDhgBg8ebIqKiswbb7xh9u3bZ2bMmGEuvvhiE41GbTwM\nSEKBKcKM+fSFPH/+fMd95s6da2bMmGGMMebo0aMmPz8/9kb6tz5703/77bfNBRdcYJ555pn2jow4\n7dy50+Tn55uKioqTfvdP//RPZsOGDa22LV261EyePNkYY8y6devMZZdd1ur3DQ0N5txzzzVbtmwx\nxhgzduxY8/TTT8d+39zcbCZMmEAR9nfw8/UYjUbNypUrzdVXX23uuOMO8+CDD5pJkyaZN9980xhj\nzOWXX25++tOftnncpUuXmn/7t39rta2ystIMHjzY7Nu3zzQ0NJjCwkKzffv2VvvMmjXL3H333cYY\nYxYtWmS+9a1vtfr9I488QhHm0rXXXmuuueaa2M/RaNQUFhaaH/zgB7Fthw8fNvn5+WbHjh2nfM7a\nUlVVZQYPHmw++OADY8xfi7A1a9bE9tm9e7fJz883e/bsac8/DwGWarsTZ9uqVau0Zs0aVVZWqr6+\nXk1NTRoyZIgkqVu3biouLtbUqVM1evRojR49Wpdddpny8vJit6+oqNDUqVN15513asqUKbb+DPx/\n+fn5uuiii/Stb31LY8eO1dixY3XppZcqLS1NZWVlmjVrlmbNmhXbPxqNKjs7W5L0f//3f9q/f79G\njhzZ6piNjY0qKyvTiBEjdPjw4dhFXyUpJSVFw4YN8+ePCwCvXo8tLS2KRqNauXKl/uu//is2/LR5\n82ZJnw53zZkzR7///e81evRoff3rX9fgwYMlSe+//77+53/+56T/L0KhkMrKytTU1KQTJ07oxhtv\nbDU03dzcrKFDh0qS9uzZoxEjRrS6fWFhYTs+csnvs+dDksLhsHr06KFBgwbFtvXs2VPGGFVVVZ3y\nOevXr5/279+vJUuWaMeOHaqurlZLS4tCoZAqKip09tlnx27z+fvIy8uL3Uf//v09/GsRFIEuwjZs\n2KAf//jHKikpUWFhobp06aKf/exn+vOf/xzbZ8GCBbr++uv1u9/9Tq+88op+8pOfaMWKFbE31Jyc\nHPXq1UsbNmzQxIkTlZWVZevPgT59c3766af1pz/9SVu2bNGzzz6rn/zkJ3riiSckSfPmzTvpwzAc\n/nRqZF1dnYYNG6ZHHnnkpOP26NHD+/AB5+XrMTU1VTfeeGOr+8vJydGkSZMkSd/5znc0fvx4vf76\n69qyZYuefPJJlZSU6JprrlFdXZ0uvvhi/fu///tJmfPy8rRr1y5J0rJly9S7d+9Wv09PT2+/Byjg\nUlNP/rhqa1tLS8spnzNJuvnmm3XmmWdq3rx56tWrl4wx+uY3v6mmpqYvvI/P5hYa5oGinQRmYr70\n6RtiNBqN/fynP/1J5513niZPnqz8/Hx95StfaTUx8zP5+fn67ne/qxdeeEGDBg3S+vXrY7/LzMzU\nk08+qfT0dE2bNk11dXW+/C1wNnLkSN1+++1at26dUlNT9fbbb6t3794qKyvTV77ylVb/zjjjDEnS\n0KFDtW/fPuXk5Jy0T1ZWlrKyspSXl6d33nkndj/RaFQ7d+609Wd2aLZej7fffrvOP//8k7b37t1b\nkyZN0pIlSzR16lStXr1akjRkyBDt3r1bZ5xxxkn/X2RmZmrgwIFKT09XRUXFSb//rCgbOHBgq/9v\nJDHB20Ones6OHj2qffv26ZZbbtGoUaM0YMCAVpP2P8MSIvBaoIqwM844Q++8844OHjyo6upq9evX\nT++++65+//vfa9++fXr00Udbfes+cOCA/vM//1Pbt29XRUVFbL/Pt6qlv77xp6SkUIhZ9s477+jJ\nJ5/Uu+++q8rKSm3atEnV1dUaOHCgbr/9di1btkzPPvus9u3bp127dumXv/ylVqxYIUm6/PLL1aNH\nD91666166623dODAAW3dulXz5s3Txx9/LEmaMmWKli1bpt/85jfas2eP5syZo2PHjln8izuuRHo9\nzp8/X7///e914MAB7dy5U1u3bo0d95prrtEnn3yiO++8U3/+859VXl6uN998UyUlJTLGqEuXLpo6\ndaoWLFigdevWqby8XH/5y1/03HPPad26dZKkyZMna//+/frxj3+svXv3av369Vq7dm07Ppr4vFM9\nZ926dVP37t21evVqlZWVqbS0VAsXLjyp6KLjBa8Fajhy6tSpuvfee/XNb35TDQ0NevXVV/Xee+/p\nrrvuUigU0je/+U1dc801sdOcO3XqpD179mjdunU6evSo8vLydO2118aGMD6vc+fO+tnPfqZp06bp\n5ptv1s9+9jNlZmb6/ScGXpcuXWJLHxw/flynn3667r33Xo0bN07Sp8/T8uXL9fDDD6tTp04aNGiQ\nrr/+ekmffnivWrVKjzzyiGbMmKHa2lr17t1bo0aNig1rTZ06VZFIRCUlJQqHw5o4caK+/vWvq6am\nxtrf3FEl0uuxpaVFDzzwgD766CNlZWVp/PjxuvfeeyVJvXr10vPPP69HHnlE06ZNU2Njo04//XSN\nGzcu9qH9/e9/X7m5uVq2bJnKy8uVnZ2tIUOG6Oabb5Yk9enTR4899pjmz5+vVatWacSIEbr77rv1\nwx/+sL0f1qTUVkfKaZub52zx4sV68MEHdfnll6t///6aPXu2rrvuur/rfoG/V8hQ6gMAAPguUMOR\nAAAAiYIiDAAAwAKKMAAAAAsowgAAACygCAMAALCAIgwAAMACijAAAAALKMIAAAAsoAgDAACwgCIM\nAADAAoowAAAAC/4fknDOz3C0t90AAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7f26008e6ef0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "seed=0\n", "X=numpy.vstack((regressor[:,0],data[:,seed],regressor[:,0]*data[:,seed],numpy.ones(data.shape[0]))).T\n", "hat_mtx=numpy.linalg.inv(X.T.dot(X)).dot(X.T)\n", "\n", "for i in range(data.shape[1]):\n", " beta_hat=hat_mtx.dot(data[:,i])\n", " resid=data[:,i] - X.dot(beta_hat)\n", " sigma2hat=(resid.dot(resid))/(X.shape[0] - X.shape[1])\n", " c=numpy.array([0,0,1,0]) # contrast for PPI\n", " t=c.dot(beta_hat)/numpy.sqrt(c.dot(numpy.linalg.inv(X.T.dot(X)).dot(c))*sigma2hat)\n", " print ('ROI %d:'%i, t, 1.0 - scipy.stats.t.cdf(t,X.shape[0] - X.shape[1]))\n", " \n", "import seaborn as sns\n", "sns.heatmap(X, vmin=0, xticklabels=[\"task\", \"seed\", \"task*seed\", \"mean\"], \n", " yticklabels=False)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's plot the relation between the ROIs as a function of the task" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false, "scrolled": true }, "outputs": [ { "data": { "text/plain": [ "<matplotlib.legend.Legend at 0x7f2602955d68>" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAswAAAHyCAYAAAD/SZhaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3XtcVHX+x/H3iCCYVxDxfslL4i1TrMSsFDcxryVp660y\nS03zt+q2YmqtZSkV0JZaGXnNLTXaNK8VtZVdTPJWmK5YhlcUNF1WbsL8/hi5DDPAjDDMDLyej4eP\n4JwzZz7DPmrffP2cz9dgNBqNAgAAAGBVNWcXAAAAALgyAjMAAABQAgIzAAAAUAICMwAAAFACAjMA\nAABQAgIzAAAAUAICMwAAAFACAjMAAABQAgIzAAAAUAICMwAAAFACtwzM8fHxmjx5svr06aMOHToo\nLi6uxOt/+OEHdejQwexPYGCgUlNTK6hiAAAAuKvqzi7gely5ckWBgYEKCwvTk08+adNrDAaDdu7c\nqRtuuCH/mJ+fn6NKBAAAQCXhloH5zjvv1J133ilJMhqNNr/O19dXtWrVclRZAAAAqITcMjBfD6PR\nqGHDhikzM1Pt27fXtGnT1L17d2eXBQAAABdXJQKzv7+/nnvuOXXu3FlZWVnasGGDxo8fr40bNyow\nMNCmewQFBSkrK0v+/v4OrhYAAADX4/z58/Ly8lJ8fHy53rdKBObWrVurdevW+d9369ZNJ06c0KpV\nqxQREWHTPTIzM5WTk+OoEgEAAFBGV69etatd11ZVIjBb06VLF+3du9fm6xs2bChJpU7kAAAAgHOE\nhIQ45L5uOVauPBw+fDg/BAMAAADFccsV5itXrigpKSl/yf3EiRM6fPiw6tatq8aNGysyMlLnzp3L\nb7dYvXq1mjVrpnbt2ikzM1MbNmzQ7t27tWLFCmd+DAAAALgBtwzMP//8s8aPHy+DwSCDwZAfjIcP\nH65FixYpJSVFZ86cyb8+OztbEREROnfunLy9vXXTTTdp1apV6tmzp7M+AgAAANyEweiIzuhKKK8n\nhh5mAAAA1+SovFZle5gBAAAAWxCYAQAAgBIQmAEAAIASEJgBAACAEhCYAQAAgBIQmAEAAIASEJgB\nAACAEhCYUe6WLFmi4cOHO7sMAACAckFgruLGjRunRYsWlft9DQaD3a/Zu3evHn/8cd16663q2rWr\nhgwZolWrVik3N9fsug4dOujmm282281RkqZOnao5c+aUqW4AAICiCMxwCZ9++qnGjx+vxo0ba82a\nNdqxY4ceeughvfHGG5o5c6bF9QaDQa+99poTKgUAAFUNgdnFnD17VtHR/9T772/X1atXHfpec+bM\n0Z49e7RmzRp16NBBgYGBOn36tHJzczV37lyFhITo5ptvVmhoqNasWWP22t27d+uBBx7QLbfcop49\ne2r06NEWK755kpKS1L9/fy1cuNDq+fT0dM2fP18hISFasGCBOnTooCZNmigsLEyLFy/Wjh07tH37\ndrPXjBkzRps3b1ZiYmL5/DAAAACKUd3ZBaDA88+v1Rtv5OrMmcGqVu28IiIW6913R6lTp3YOeb+5\nc+fqt99+U/v27fWXv/xFRqNRvr6+ysnJUePGjfX666+rbt262rdvn+bPn6+GDRsqNDRUOTk5mjZt\nmkaNGqXo6GhlZWXp4MGDVtswDh8+rIkTJ2rkyJGaPn261Tp27dqlS5cu6dFHH7U417dvX7Vq1Upb\nt27VwIED8493795dx48f1yuvvKI333yz/H4oAAAARRCYXURCwhG9+mpNXbgwQpKUm+un/fvnatq0\nxfriC8f05daqVUuenp7y8fGRr69v/vHq1atr2rRp+d83bdpU+/bt0/bt2xUaGqq0tDSlpaXp7rvv\nVrNmzSRJN954o8X99+3bp8mTJ2vKlCl6+OGHi63j+PHjxd4j73jeNYXNnDlTQ4cO1Y8//qgePXrY\n8IkBAADsR2B2EcuXf6YLFyYXOWrQoUMtlZKSogYNGlRoPevWrVNsbKzOnDmjjIwMZWdnq2PHjpKk\nunXravjw4ZowYYKCg4MVHBysgQMHyt/fP//1p0+f1oQJEzRjxgyNHz/epvc0Go121dimTRsNGzZM\nkZGR+uc//2nXawEAAGxFD7OL8PLykGTZs+zhkS0PD48KrWXr1q166aWXNHLkSK1cuVKbN2/W/fff\nr+zs7PxrFi1apA0bNqh79+7atm2bBgwYoIMHD+af9/X1VdeuXbV161alpaWV+H6tW7eWJB07dszq\n+WPHjqlVq1ZWz02fPl2HDh3SZ599ZuenBAAAsA2B2UVMnz5YjRsXXSW9qm7dTqt+/foOe18vLy/l\n5OSYHdu3b5+6d++uBx98UB06dFDz5s114sQJi9d26NBBjz/+uN5//321b99eH3/8cf45b29vvfXW\nW/Ly8tLEiRN15cqVYmvo3bu36tSpoxUrVlici4uLU1JSkgYPHmz1tY0aNdKYMWMUHR1t8TkAAADK\nA4HZRTRv3kwLFzZUYOA/JP2oWrV26O67F2nFigkOfd+mTZvq4MGDOnXqlC5evCij0aiWLVvq559/\n1q5du3T8+HH94x//0E8//ZT/mpMnTyoqKkr79+/X6dOn869r27at2b3zQrOHh0eJodnHx0fPPfec\nPv/8cz3zzDM6cuSITp06pY0bN+rpp59WaGioQkNDi/0Mjz/+uM6dO6fvvvuufH4oAAAAhRCYXciE\nCYO0b99kffllpnbvbqkvvpivRo0CHPyeE1StWjUNGjRIwcHBOnPmjEaNGqU//elPmjlzpkaNGqVL\nly5pzJgx+a/x8fHRr7/+qunTpys0NFTPPvusxo4dq1GjRlncv2bNmnr77bclSZMmTVJGRobVOgYM\nGKDVq1frzJkzGjt2rAYOHKg1a9ZoypQpioqKMru26DSOunXr6rHHHlNWVtZ1bZgCAABQEoPR3iet\nqqiQkBBJphYBAAAAuB5H5TVWmAEAAIASEJgBAACAEhCYAQAAgBIQmAEAAIASEJgBAACAEhCYAQAA\ngBJUd3YBAAAAlV18fIIWL96h5GRvBQRkKDw8VEFBnZxdFmxEYAYAAHCg+PgEjRjxrZKSZkoySDJq\nz54YxcaK0OwmaMkAAABwoMWLdygpaaJMYVmSDEpKmqiIiB3OLAt2IDCj3C1ZskTDhw93dhkAALiE\n5GRvFYTlPIZrx+EOaMmo4saNG6eOHTtqzpw55Xpfg6HofxhKt3fvXr355pvav3+/MjIy1LJlS40Y\nMULjx49XtWoFv9t16NDB4rU9evTQunXrbDoPAEBFCgjIkGSUeWg2XjsOd0Bghkv49NNPNWPGDI0Y\nMUIzZ85UnTp19O233+rll1/W/v379eqrr5pdv3jxYvXp0yf/e09PT7vOAwBQVrY+yBceHqo9e2IK\ntWUY1ajRMqWmnlefPkt5CNANEJhdzdGj0qpVUuPG0qOPSj4+DnurOXPmaM+ePYqPj9fq1atlMBgU\nFxenRo0aaf78+fr++++VkpKixo0ba/To0Ro/fnz+a3fv3q1XXnlFiYmJql69utq1a6fIyEg1btzY\n4n2SkpI0YcIE3X333Zo3b57F+fT0dM2fP18hISFasGBB/vGwsDD5+flpypQp2r59uwYOHJh/rnbt\n2vLz8yv2s5V2HgCAsrDnQb6goE6KjZUiIqKVnFxDnp7JSkjw1BdfLCr1tXAN9DC7kvBwKThYevFF\n6cknpaAg6YcfHPZ2c+fOVbdu3fTAAw/o22+/1a5du9S4cWPl5uaqcePGev3117Vt2zZNmzZN0dHR\n2rHD9HBCTk6Opk2bpttuu00ff/yx1q9fr5EjR1ptwzh8+LBGjx6toUOHWg3LkrRr1y5dunRJjz76\nqMW5vn37qlWrVtq6dWv5fngAAMrA3gf5goI6aePGmfrqq6mqX7+ukpPn2fxaOB8rzK5i3z7pzTel\nS5cKjh06JP31r9JXXznkLWvVqiVPT0/5+PjI19c3/3j16tU1bdq0/O+bNm2qffv2afv27QoNDVVa\nWprS0tJ09913q1mzZpKkG2+80cpH2qfJkydrypQpevjhh4ut4/jx48XeI+943jV5Zs2alR/QDQaD\nXn75ZYWEhNh8HgCAsijLg3w8BOh+CMyuYuVK87Cc55dfpHPnpIYNK7ScdevWKTY2VmfOnFFGRoay\ns7PVsWNHSVLdunU1fPhwTZgwQcHBwQoODtbAgQPl7++f//rTp09rwoQJmjFjhlkrR0mMRqPN9T39\n9NPq1atX/veF39uW8wAAlEVZHuTjIUD3Q0uGq7jhBuvHa9Qw/alAW7du1UsvvaSRI0dq5cqV2rx5\ns+6//35lZ2fnX7No0SJt2LBB3bt317Zt2zRgwAAdPHgw/7yvr6+6du2qrVu3Ki0trcT3a926tSTp\n2LFjVs8fO3ZMrVq1Mjvm5+en5s2b5//x9va26zwAAGURHh6qFi1iZAq+kmRUixYxmj071KGvhXMQ\nmF3F//2f1Ly55fEePaS6dR32tl5eXsrJyTE7tm/fPnXv3l0PPvigOnTooObNm+vEiRMWr+3QoYMe\nf/xxvf/++2rfvr0+/vjj/HPe3t5666235OXlpYkTJ+rKlSvF1tC7d2/VqVNHK1assDgXFxenpKQk\nDR48uAyfEgCA8mV6kC9YYWHR6tNnqcLCohQbG2zTQ3tleS2cg5YMV9GokfTKK6YH/g4flmrXlnr2\nNE3McKCmTZvq4MGDOnXqlGrWrKl69eqpZcuW2rRpk3bt2qVmzZpp06ZN+umnn9T8WqA/efKkNmzY\noH79+qlhw4b69ddfdfz4cd13331m984LzY899pgmTpyomJgY1axZ06IGHx8fPffcc5o1a5aeeeYZ\njRkzRrVq1dK3336rV155RaGhoQoN5bduAIBrMT3Id30htyyvRcUjMLuSkSOlESNMfcv16knXHqhz\npAkTJig8PFyDBg1SZmam4uLiNGrUKP3yyy+aOXOmDAaDBg0apDFjxuiraw8f+vj46Ndff9VHH32k\nP/74Q/7+/ho7dqxGjRplcf+aNWvq7bff1sSJEzVp0iS9/fbbVtsjBgwYoAYNGujNN9/U2LFjlZmZ\nqZYtW2rKlCl66KGHzK4tbVOU69k0BQAAoDgGoz1PWlVheRMW4uLinFwJAABwNFs3JYFrcVReY4UZ\nAACgEHs2JUHVwEN/AAAAhdi7Kcn1+P7nMxr61016+d14u8aqwjkIzAAAAIU4emORVVsS9MLKH2Q0\nSl/tO6X0zKvlcl84Di0ZAAAAhThyY5EnX/lCx89czv++cxs/1fT2LPN94VisMAMAABTiiI1Fsq/m\naMisTWZheUTftlr0xB1lKxYVghVmAACAQkwbi0gREdFKTq6hgIAMzZ59/VMyzl9M14SFn5gdm/vI\nrbq9c+PyKBcVgMAMAABQRHlsLBIfn6AXX/1S2QFNzY6/FR6iJv61ynRvVCxaMgAAAMpZfHyCJj+9\n3yIsz3ngRsKyG2KFGQAAVCqusOnIcysPqnGXgmCckVZDny2/R95J0Qre2KVCa0HZEZgBAEClcT2b\njpRnwM7IvKoHnt4qedfMP/b7wZb66bNuklRuo+lQsQjMAACg0jBtOpIXlqWCTUeirPYkl9eufvHx\nCXox+ktlNzJvwdi3PUCnful27bvyGU2HikcPMwAAqDTs3XTEFLB7SYqStFRSlJKSetm1q198fIL+\nEvGzRVg+8m19nfrloKQElcdoOjgPK8wAAMDl2do2Yc+mI/HxCfr0033XvitYYZZilJh42eL64ix4\nL1H1W5gH8q/W3qXL59+RNFN+fk+ob9+2ZRpNB+ciMAMAAJdmT9tEeHio9uyJUVLSxPxrra3s5t3z\n8uVuKgjLuvbPiTp/fpJNtQ2Ztcni2NZXh8iYW02SabW7efPW2rhxlj0fGS6GlgwAAODSTG0TeQFY\nKuhLtmybMG06EqywsGj16bNU/frNUdu2JzRjxr8VFhap+PgESdLf/rZWSUmXJF2UqR0jodBdDPL3\nb1tiTbt/+NlqWN4SNexaWDZKMq12Hznye/77wj2xwgwAAFyavX3JeZuOFKxMF6w279kTo4ULj+mb\nb/xVtA3DpJMko9q29Si2ntht8VoVd8ri+Jaoode+yrvfAEkxSk+fooiIHWXeCAXOQ2AGAAAuzZ6+\n5MKKm5gRHj5JWVlvqWgbhmmluWOJD+ctiPle8b8kmx1LSWqg7z+oK3//R5WaWke5uemSGknaKSlU\nUiclJ39pxyeGqyEwAwAAl2ZrX3JRxa1M//e//laPGwxn1bfvs4qIGGX14TxrLRh7t/XQ6cPNJEmX\nLjVRbm49SbNkb7iHayMwAwAAl2bqS5YiIqKVnFxDAQEZNk2cKG5lunbt8/rvfy2P9+3ro7i456ze\ny1pY3rH0Xl3N9Mx/fVZWPUkDZWrHsC/cw7URmAEAgMvL60u2VXx8gn7//biklyU9pbzw6uERrccf\n76YVKyxXrCMiRlncx2g0auhfN1scP/jBOV3NzItRRnl5RSkra6BMPdCSFC2phvz8flZs7DTGybk5\nAjMAAKhUCh72e03SIZl6ky9KqqacnJFavvw1+fs3Vk7OZPn7t1Hbth75K8BhYZH5s54fndJPy7Yl\nWdz/48hhiv9zgtmKd2rqeX3xRcdrV3RS3sODfftGEZYrAQIzAABwGWvXblZ4+Fb9978NVLt2ihYv\nHqRx44aW/sJCzB/2KwivpuDcWadPd9Xp09NkWnGO0ezZwZJkNuu5490/adm2Xy3uffCDc4r/c4LF\nircppNvfZw33QGAGAAAuYe3azXrkkUTl5Lwp08N5Rj3ySLSkzXaF5uIe9pMuS3pFUqqkSEmh1+Y5\nR8loVH5YHjzTsl/5l6876tiedpKMioiIsmgPud4+a7gHAjMAAHAJ4eFb88OyiUE5OTM0Z84kuwKz\n9Yf9fpZUWwUTLApmLycne8toNL2ftbD82fJ7lJHmk19TafOfUfmw0x8AAHCI+PgEhYVFqk+fpWa7\n7BXnv/9tIGsrwxcvVrfrPuHhoWrRIkamUCxJRlWr9rrMx73lzV7eroCADAUEZFgNy1uijhYKy6Z7\nMSKu6mGFGQAAlLuCB+8KdtPbsydGsbEqtk2hdu0UK+PeftaVK80VG2v7fSSpbdsT+t//npZ0STff\nXEcXLrTR/v2WYdzL6w9NfGKElmyxfLhv26tHJV1RwWq1UY0aLaMvuQpihRkAAJQ704N3eQ/ASXm7\n7EVE7CjhNYPk4RGtwivD0uuSwm2+T15Q//zzBUpNXaTU1KVKTGyj+vUvFLpvHqP6jWljNSzvfX+r\ncnNDJY2QaUTcUkmR6tjxBH3JVRCBGQAAlLviHrwrrv9XksaNG6qVK9vK23uspLmSJklqatd9igvq\nBoOXRZvG4JmbVb2+r/mdM9L17J/b6sYbb5bUWaYJGzMlTZX0V2VnNy/xc6NyoiUDAACUu+J22Sut\n/3fcuKFavvyEdu2aeu1IpNX7HDt2QH36LFVAQIbCwwumURQX1LOzAxQbG6yIiGglJl5Ss37dLd77\n+w96KSXJXwe2xKhNmxMl1h8fn6DFi3fkz2wuXAMqHwIzAAAod+Hhodqz5/rmEpuH7VAV3WrawyNa\np09P1+nTnVW0p7mkoB4U1EmzZ0sL3ku0eM8tUW0kNZQkJSVNVHr6BHl5zS+03XXH/Pqvpz8b7o2W\nDAAAUO5Mc4mDFRYWfW26RZRiY4NtCpTmUy46SeolH58n1a3bS2rSZJJycu6RqV1CKtrTbG1CRl7Q\nvXA5o5iwPFTShkJHDDp/voeysv5s+s7wrvz9H9HChQEKCup0Xf3ZcG+sMAMAAIe43rnERTcB8fRM\nltFYS9nZN+jEieoqqac5KKiTFi48pjlzJuvy5QaqXfu8Fi4crL0nc7XgvZ0W77Ulati1r7ILHTVK\nOinpW0mzZDQadP68UfPmxSgwMOG6+rPh3gjMAADAZZj3Bhv12GPNNW+el1lrh/T2tavzwrh5b/G8\neck6dapgt8AN+zdLstzmuiAsGyX9UejrGEleKmgDkQpWkaMUEJB3nX392XBfBGYAAOASrPUGb9s2\nTenpS2S+4chjMj0M2ElFe6NN7RIz868fPHOzxfsc3f0/Hfnmz9e+MwXwBg3+UGDgUh07dkCnT0+X\nlKXiVpGjou6+7v5suCcCMwAAcAlFw65kUHp6oKwFVz+/VHXsaJqSMXu29SkZ1nbumxN2o+5f95Gk\nKEnektIVEJCuLVvmKSioU6HQni7zVeQESdt16FCqFi/eoYUL22nzZlPLSNEaUPkQmAEAgEuw3huc\nKWvtD337NtDGjVNVVEBAhqp5XNW9/7fV4tzHkaYWjC1bqikiYqeSk6WAAINmz74/P+zm9U/Pnv2u\nvvkmSpmZMyUdkvSNpFlKTTUoNjZvKsYAQnIVQWAGAAAuwfpIuAHy8YlSenpBm4aPT5SOHr2ssLBI\ni/nH/Uf0UmZLy7D87J/b5n9d2sOIQUGdFBe3SPHxCYqIiNYXXyQqNXWprPUzX89DjXA/jJUDAAAu\nwfpIuO/01lvtFBYWrW7dXpKPzzSlpw/QgQMLFBs7UyNGfKv4+ARJ0pBZm7Q1/rzFfeP/edL0z/gE\nhYVFXhtzF5n/uuKYgvVMBQZ2ElMxqjZWmAEAgEsoOk6ucG/wuHFSWFik9u83fwAwb6U3o4XlfOUT\nCc11YGd3SUbNnv2sEhObKylpgKSdkmroww9fU/fuBr355pMltlZc766FqDwIzAAAwGWU1C5R3Pzj\njBZtLa79bPk9ykjzyb/mwIFspaY2lPSGpEBJmTIan9SPP+7Q4MEfasuW4nfpK8uuhagcCMwAAFRR\n5jOPMyz6gV2Nl1eyzFd6jVbHxpl27jOfbnHxYpqkbZKelGmXwLx5y6FKTt6hiIgdxQb1kla+UTUQ\nmAEAqIKszTw2TX4ofqXV2YzGLJk2LXlMDVqc1+1h31lc8+yf2+rgB3mrwQXTLXJz8zY9iZHp83aS\naWOSKEk+Sk4u+b2vd9dCVA489AcAQBVkmnlsbSe7Hc4sq0TZ2c0l9dbA6R9ZDcsHPzinX345prZt\nT8jP72l5eb0oKVjmm55MlLSj0Pc5Ms1iph8ZxWOFGQCAKqi4fuCKmvxwPe0gAQEZGjwzUUXX+y6n\npOurNackXdIjj6QqJ2eBCrbRLryirGtf531Go6QD8vX114ULddSnz1K3aE1BxSMwAwBQBTlz8oM9\n7SCFg3W9Wy0f7vt63XFdSr4g6e+SopSTY75TYEHbRd59jZLyPnuMvL1z5OXVTp9//kSptaDqoiUD\nAIAqyPrM44qZ/GBrO0hesI6Nnal6tzazuM+WqERdSj4tU1jOWzkuump+SFKipKWSXpE0R9JlmUJ0\nL/n51dXZs0/InVpTUPFYYQYAoApy5uSHxMS8wOot02pvqKROZu0g8fEJGjbsNaWrRzGTMIZd+6rw\nDnxFV80TZHrob5kKWjRekZQmySgvr3fl799Gp06xKQlKRmAGAKCKcsbkh/j4BP3nP3UkFbRjmPqM\nC9pB8laWuz94r9V7bIk6Wei7vJB8SNIlSfMl1ZM0UNJ2SbNk3qLxV5nC+kzVrv2a6tc/IzYlQWlo\nyQAAABVm8eIdSk+37DP28Xkjvx1k8eId6hrW0OrrTTOW0wsdCZX0vEwryQskLZQ0S56e21WnTqKs\nPdiY17qRmjpdBoOX01pT4D5YYQYAABWmuOkcN93UMr8dJLOl5cN9v3zVUcfid6pRo2UyGtOVnJy3\nKtxRNWpEKTNzvgqH8OzsWfL3n6TLly1Xj02r0nnXBSg2NphNSVAiAjMAAHCYouPjPD3Py1oLRNu2\nHpKkIbM2Wdxja/QQGY0GeXs/q5deelCBgXebBdzExJu0f79lCG/YsK2qVzff0jpvd7+89w0IyGBT\nEpSKwAwAABzC2vi4Ro2WKSBgoZKT5+Ufa9EiRlOe7G81LJse7jMF3YyMpzVv3neKjW2jjRtn5l8T\nFhap/futh/DZs02rx4mJV3XkyO9KT58i04g5Wi9gO4PRaDSWfhlCQkIkSXFxcU6uBAAA9xAWFqnY\n2ML9ypJkVL9+z8rXt17+CnHz27vq6OkrFq/fvfZfOn++o0xj4RrLFJwz5edXTXff3SB/g5GCYF6w\nktyiRYxiY4PNWivi4xMUEbGT1otKzFF5jRVmAADgEMX1K2dnB2jjxqmSTC0Y1sLylqihql79O0k3\nSHpLBS0Vbys1tbdiYzuabTBiy4g8Wi9wvQjMAADAIUrbTdBaC8bvB1vqp8+6SZKuXm0gyXxTEekx\n5e3cZ9pgJEobN3YiDMOhGCsHAAAcoqTdBK2F5Z1LB+aHZRMfFT8WzvQ1G4ygIrhlYI6Pj9fkyZPV\np08fdejQwaY+ld27d+v+++9Xly5dNGDAAP3rX/+qgEoBAKi6TK0SwQoLi1afPksVFhal9Rtu14L3\nEi2u3RKVqOxMzyJH01UQtvMUHgvHBiOoGG4ZmK9cuaLAwEA9++yzMhiK/uZp6eTJk5o8ebJuv/12\nbdq0SePHj9e8efP0zTffVEC1AABUXaZWiZn66qupGj11mF7Y8KvFNTV+T5TUVlK0Cq9GSyny83ut\nyLG3ZRoLZ5SPTxRTLlAh3LKH+c4779Sdd94pSbJlyMd7772nZs2a6W9/+5sk6cYbb9SPP/6oVatW\nqXfv3g6tFQCAqqLozOW8KRaS9X5lSfo4cpji4xO0bduyayPfnpZpi+u6krzUuvUv6tbt7/r66xxl\nZVWTlC0pSz4+y/TWWwOYcoEK4ZaB2V4HDhxQcHCw2bE77rhDixYtclJFAABULtZmLm/bFqW33jqm\nDfstF7dubtdACyebFq2CgjrppptaXtt85EZJBePhfvopSrt2mVaRzUfCPUFYRoWpEoH5/Pnz8vPz\nMzvm5+entLQ0ZWVlycvLy0mVAQBQOSxevKNQWJYkg9LTZ2rD/s0W1y6f01+NG9xgdqxNGw/t379d\n0iyze2Rmzrw2CWMWUzDgNFUiMAMAAMdKTLws07g3b5keyhugwTOPWVz3ceQwq68PDw/V5s3/VHa2\n5VQMJmHA2apEYPb391dqaqrZsdTUVNWqVYvVZQAAyig+PkH/+U8dSaYV5oatz+jW+36wuK64sJyn\nWrWzKmlaPXw9AAAgAElEQVRuM+AsVSIwd+vWTV999ZXZsW+++UbdunUr5hUAAMAW8fEJGjbsNaWn\nvynJoMEzi3+4L+96aw8GLl68Q5mZMyTFqHAPM5Mw4ArcMjBfuXJFSUlJ+RMyTpw4ocOHD6tu3bpq\n3LixIiMjde7cOUVEREiSHnzwQa1bt04vv/yyRowYoe+++047d+7U8uXLnfkxAABwa3kP+p0+3UXF\nheXcHKMWjG1ndn3hBwPztrc2tV10vnY8WlINSRm66abLPNwHp3PLwPzzzz9r/PjxMhgMMhgM+cF4\n+PDhWrRokVJSUnTmzJn865s1a6bly5dr0aJFWrt2rRo1aqSFCxdaTM4AAMAZShrH5soKHvSLshqW\nj37+nd59e1z+Z7H2YGDe9tYBAZL5vGXTP319Mx36GQBbuGVgvvXWW3X48OFiz1sbF9ezZ099+OGH\njiwLAAC7lbTq6uqh2bQqbNDgmW0tzm3/xzGtXBls9hnyrjdnUGJijt5+e5B27Vqo5OQA5fVCS0Yd\nOrRM8fEJLv+zQOXmljv9AQBQWZhWXfN6dqWCVdcdzizLJg2bXrW6srwlKlE5Ofdo8+ajio9PUFhY\npPr0Wapffz0oa1tdHznyuySpU6dsSY+p8M/i7Nkn3OJngcrNLVeYAQCoLIpbdXX1UWprth1SVtNW\nFse3RCXKtHV1J3366Wp9/fWHSk6eJ9Nn/FnSS5L+prwVZClG6elTFBGxQ1lZAXLHnwUqPwIzAABO\nZBqZ5l6j1Kxtc52V4alPlt2rvBAsGXXpUoAuXaoj6ZCkTjI91LdBhR/qywvXyclfuuXPAlUDLRkA\nADhReHioWrQwBUwTo1q0iHHZUWrWwvK363tfC8uSKexOlPSGpIEytVgUbqmoK2mGpKky7erXSXmh\n2N1+Fqg6WGEGAMCJgoI6KTZWioiIVnJyDQUEZGj2bNeckmEtLG+JPikZGxQ5apDUUqYwLJl2/8sz\nQD4+UUpPL3iwLy8Uu9PPAlULgRkAACcLCuqkjRtdNxReycjWqLnbLI5viRoq03bYP0vaqcLbYkse\n164ySkrP/7pFi++0cGE7bd5sPRS7+s8CVROBGQAAFOvT3b/rtQ37LY4/++e2OvhBjJKS2kr6RIVH\nwZl6lNtJMqpRo2Xq2DFV2dlLzcLxuHEV+SmAsiEwAwAAq6y1YNTw8tAHiwZLkmJjpeHDX9OpU6Zt\nsU0MMvUoPyEfn5166aUBGjduarHv4a6btqBqITADAAAL1sLyX8f00F3dm+V/HxTUSa1bd9WpU5aj\n4KTOSk9/Qps3RxW7muzOm7agamFKBgAAMGMtLG9cNMgsLOcpGAVXmFGmXuaSZyi786YtqFoIzAAA\nQJKUfTXXalj+OHKYvL2s/6W0tVFwpjnMoSpthrK7btqCqoeWDAAAKrGSeoQLn2vQ2kNX/RtbvP7j\nyGEl3j9vFFx4+N/19dc5ysqqJ9P85Y6lzlBmoxK4CwIzAACVVEk9wpLyzw2asVlXiy70qvSwnCco\nqJM++2yB4uMTFBGxU8nJ/1ZAwI5SZyiHh4dqz56YQm0ZbFQC10RgBgCgkjL1COeFZamgRzhKRqOU\nlDRTg2dutnhdZnKa6mScVXx8gl0P35U2Q9naandsbDAblcDlEZgBAKikiusRTky8rBMnzlsNy58t\nP6+MtIaSzujjj9/THXdUU0TEqDKH2OJXu4O1cePMMt0bcDQe+gMAoJKyPsHiZx05Uke9Hhpgcf2W\nqGHKSLtd0lFJs5SVtVCff75AI0Z8q/j4hDLVwkQMuDMCMwAAlZS1CRZ+jdcoZEpbi2u3ROX1K+9U\nwa59UnkFWyZiwJ3RkgEAQCWVN8Eir0fYt0Nt5dTubXFdQViWpBpyRLBlIgbcGSvMAABUYqYH8Waq\nbs9myqld1+zcr3vrakvUOZnPUP5F1jYiKWuwtbbazUQMuAtWmAEAcFMlzVguzNpmJF+s6Kf//VFb\nUgNJ0yS1lJQmKUdSlAraMooPtra+v2S52s1EDLgTAjMAAG6opBnLhUOotbD8zINt5J30tpKTa8jT\nM1kJCY2UnPxU/n0CAhaqc+e/KyurYbHB1tb3L6y0sXOAqyIwAwDghkqasbxxYyedv5iuCQs/sXhd\n3mYkGzd2zj9m2nCk8Mrv/aWu/Jb2/kBlQmAGAMANlTR14sMvjmrllkMWr7G2c1/Rtgpb2ySYeoGq\nhMAMAIAbKm7qRN2ezSzCcr0bqmvtc4Ms7nE9bRWlvT9TL1AZMSUDAAA3ZG3qhLWd+76PPaVPl++1\nuvFIWTYTYeoFqhJWmAEAcENFp07U7dnM4pot0UOv5dm3NXv2WsXFLZZU0IaxY0eypMmSGkmqIylU\nUieb2iqYeoGqhMAMAICbCgrqpHf/2UFh4VsszplvRvKYDhx4QpL1NgwpRlIvSd/KnrYKpl6gqqAl\nAwAAN3Xk9ws2hGXJFIzrSbLehiFNlGlL7Iny8XmDtgqgCAIzAABu6J87D+uvr31tduz2zo10Zf+P\nsrZT3803e0oqfrqFZDp+000taasAiqAlAwAAN3P/7I+VfTXX7NiLU3qrS9sGGtClloYMWaazZ5+Q\ndEjSdnl6XpTkofj4hGKnW0im423belTQpwDcB4EZAAA3Ym3nvg8jhsizerX8h/kaNcrR1aujdelS\nd2Vn/1XZ2QZ9/rlRI0bEaOHCdtqzJ6ZQW0ZeD/MAplwAxSAwAwDgBnJzjRr2lOXYuI8jhyk+PkGz\nZ6/Xrl25ysqqJ2mQTF2Xs1R0ZNzmzVGKjQ1VRES0EhOv6vz5Y/L3b6S2bXcy5QIoRpkDs9Fo1PHj\nx9WkSRPVqFGjPGoCAACFXErL1NhnLWcj54Vl09SLBTJfMc5VcTvxMd0CsE+ZH/pLS0vTvffeq59+\n+qk86gEAAIX8dCzFIiwPDG6Vv8118VMvjsnaw3/sxAfYz6YV5oULFxZ7LisrS0ajUatXr9aOHaZ/\noefNm1c+1QEAUIX9c+dhvffJEbNjLz7RW13aNMj/vvipF40kvS3pMeWtPNOjDFwfmwLzu+++q9q1\na6t27doW54xGowwGg/bt2ycvLy8ZDAYCMwAAZTRp0Wc6nfI/s2OxiwfLy9N8ikXxUy9qKyAgWZ07\n/11ZWQ3ZiQ8oA5sC87hx4/Thhx/q/vvv12OPPWbWq3z58mXdeuutio6OVs+ePR1WKAAA7ipvekVy\nsrcCAjIUHl58cDUajRr6V+sP91kTHh5qMfWiRo0o9e6dooiIcZJMbRtnz3pr8eIdCg8XoRmwk02B\nee7cuQoLC9PChQv14Ycf6m9/+5tCQ01/pWMwFP1rIAAAkMfaVtR79sQoNtYyuF7JyNaoudvMjnVp\n00AvPtG72PsHBXVSbKwUERGt5OQaZivJ9rw3gOLZPCXjpptu0tq1a7V582a98MILWrdunebNm6cm\nTZo4sj4AANya6aG8vMAq5Y13i4iIMptUkXjyD82I/tLstY8P76IhfW4s9T2Km3ph63sDKJndY+WG\nDh2qkJAQvf766xo5cqRCQ0NZZQYAoBjFPZRnOm7y2+lLFmH51Rl3qU2zeg5/bwClu66xcjfccIPC\nw8P1wQcfKCUlRY0bN2YGMwAAVhQ8lFdYwXi3nxJTND3y32Zn179wb5nDsi3vDcA2BqPRWPTfJFgR\nEhIiSYqLi3NyJQAAd1LQR1zwUF6LFjGKjQ1W6tVaeiP2gHJyTf9X3NS/lt6Y3a/c/ua2pPemhxmV\nkaPyGltjAwDgQNYeynvqqQE6cNqoj77cL0nyqVFdfxsXpKDAAIe/N6PlAPsRmAEAcLDCD+VdycjW\nK+t+1J5DyZKkAN+amv/obWrZqI7D3xvA9SEwAwBQQc5duKLnV+zW8TOXJUkdW/vq6YdvVd1aPAcE\nuDICMwAAFeDw7xf0woof9EdapiSpX1BzTXvgZnlW9yjllQCcjcAMAICDfbn3pP6xfp+yr+ZKksbf\nG6iwfu1sfrjPnp0CAZQ/AjMAAA6Sm2vUPz85rPWf/keSVMPLQ7NGd1evLrZv+sVufYDz2RSYb7nl\nFpt/CzYYDPrxxx/LVBQAAO4uI+uq/vH+Pu06cFqS5FfXW/Mm3Ka2ds5XZrc+wPlsCswTJkxgNz8A\nAGx04XKGFq7YraMn/pAktW1eT/MeuVV+dX3svhe79QHOZ1NgfvLJJx1dBwAAlcKxk3/o+RW7lXrJ\ntJte75ub6C8P3iJvr+vrgizYra9waGa3PqAiXdfW2Lm5ubpw4YIuXLig3Nzc8q4JAAC39N1PZzR7\n6a78sDzqT+31t7FB1x2WJSk8PFQtWsSoYItr0259s2eHlr1gADax69/gf//731q9erX27dunzEzT\nWJwaNWqoe/fueuihh3TXXXc5pEgAAFyZ0WhU7BeJWrPtkIxGybN6NU0f2U1392he5nuzWx/gfDYH\n5oULF+rdd99V3bp1deedd6px48aSpDNnzmj37t2aPHmyxo4dq7lz5zqsWAAAXE321Rwt2XhAn8ef\nkCTVq1VDcx+5VR1a+Zbbe7BbH+BcNgXmTZs2ad26dZo6daoeffRR1axZ0+x8enq63nnnHS1btkxd\nu3bVkCFDHFIsAACu5FJapl5c9YMO/XZBktSqcR3Nn3CbGvrWLOWVANyJTYH5vffe0wMPPFDsw38+\nPj6aNm2azp07p3Xr1hGYAQCVXtLZy3rund1KvnBFkhQUGKCnxvZQTW9PJ1cGoLzZ9NDfkSNHNGDA\ngFKvGzBggP7zn/+UuSgAAFzZj4eT9dTrX+eH5eF3tdG8CbcRloFKyqYVZoPBIKPRWPqFAABUYkaj\nUVt2/aaYTT8p1yh5VDNoyoibNeD2ls4uDYAD2bTC3L59e33yySelXrdjxw7ddNNNZS4KAABXczUn\nV298eFDLPzKF5Vo+nnpuUi/CMlAF2BSYR48erY0bN2rp0qVKT0+3OJ+RkaFly5YpNjZWY8aMKfci\nAQBwprT0bC14+3tt//a4JKmp/w2K/L871bWtv3MLA1AhbGrJGDp0qA4cOKDXX39da9as0W233aYm\nTZpIkk6fPq0ffvhBly5d0pgxYzR48GCHFgwAQEU6nZKm52J269T5NEnSze0aKHx8T9Wq6eXkygBU\nFJvnMM+fP1/BwcFavXq1/v3vfysrK0uS5OXlpVtuuUUPPfSQ+vXr57BCAQCoaD8lpmjR6h/03yvZ\nkqSBvVrp8fu6qLrHdW2UC8BN2bXTX0hIiEJCQpSTk6OLFy9KkurXry8PDw+HFAcAgLN8svt3Lfvg\ngHJyjapmkB4d1llD7rhRBoPB2aUBqGDX9Suyh4eHGjRooAYNGpiF5ZycHH300UflVhwAABUtJ9eo\nFR8n6PUN+5WTa5RPjeqa/+jtGtqnDWEZqKLsWmGWpAsXLqh+/fpm/9HIyMjQ+vXrtXr1ap05c0bD\nhw8v1yIBAKgIVzKyFblur344dFaS1NC3pp559Da1bFTHyZUBcCabAnNmZqYWLVqkTZs2KSMjQzfc\ncIOeeOIJTZgwQRs2bNCrr76qCxcuqEePHnrhhRccXTMAAOXu3IUren7Fbh0/c1mSFNjKV3MfuVV1\na9VwcmUAnM2mwLx8+XK9//776t27twIDA3Xq1ClFRUUpISFBW7duVceOHRUZGalevXo5ul4AAMrd\n4d8v6IUVP+iPtExJUt8ezfTkyG7yrM4zOgBsDMzbtm3T+PHj9fTTT+cf++ijjxQeHq7+/fvrtdde\nU7VqPDEMAHAd8fEJWrx4h5KTvRUQkKHw8FAFBXWyuO7LvSf1j/X7lH01V5I0/t5AhfVrR78ygHw2\nBeZTp05ZjIzr37+/JGnMmDGEZQCAS4mPT9CIEd8qKWmmJIMko/bsiVFsrPJDc26uUe99ckTvf3pE\nkuTl6aFZo7sruGsT5xUOwCXZlHSzsrJUs2ZNs2M+Pj6SpDp1eBACAOBaFi/eoaSkiTKFZUkyKClp\noiIidkiSMrKu6uV34/PDsm8db0VMu4OwDMAqm6dk7N69W2fPns3/Pjc3VwaDQbt379apU6fMrr3n\nnnvKr0IAAOyUnOytgrCcx6DkZG9duJyhhSt26+iJPyRJbZvV1bwJt8mvrk+F1wnAPdgcmCMjI60e\nf+mll8y+NxgM+uWXX8pWFQAAZRAQkCHJKPPQbJR/s1zNevVLpVzKkCT17tpEf/nzLfL2snvKKoAq\nxKb/QsTFxTm6DgAAyk14eKj27Ikp1JZhVOfb18jYrGV+WB7Zv73GDOigatV4uA9AyWwKzE2bNnV0\nHQAAlJugoE6KjZUiIqKVnFxDfm29dbV+A2XnGFXdo5qmj+qmvj2aO7tMAG6Cv4MCAFRKQUGd9M/3\nOmjpBwcUt+eEJKlerRqa+8it6tDK18nVAXAnBGYAQKX03ytZemHlD0r4NVWS1LJRbc1/9HYF+NYs\n5ZUAYI7ADAColDbGHc0Py0GBAXpqbA/V9PZ0clUA3BGBGQBQKQW2qq+v6nrr7u7NNO7ejvLg4T4A\n14nADAColHp1aaJeXdiIBEDZXXdgTk5OVnJysjIzMy3O9ezZs0xFAQAAAK7C7sB84sQJPfXUUzpw\n4IAkyWg0mp1n4xIAAABUJnYH5nnz5ik5OVkvvvii2rRpIy8vL0fUBQAAALgEuwPzwYMHFRERoXvu\nuccR9QAAAAAupZq9LwgICFC1ana/DAAAAHBLdiffGTNm6O2339Yff/zhiHoAAAAAl2J3S8a//vUv\nnT17Vv369VNgYKBq165tdt5gMOiNN94otwIBAAAAZ7I7MP/vf/9TixYtzL4HAAAAKiu7A/PatWsd\nUQcAAADgknh6DwAAACiBTSvMK1eu1JAhQ9SgQQOtXLmyxGsNBoMefvjh8qgNAAAAcDqbAnNERIR6\n9OihBg0aKCIiosRrCcwAAACoTGwKzIcPH7b6NQAAAFDZ0cMMAAAAlIDADAAAAJSAwAwAAACUwG0D\n87p169SvXz917dpVI0eO1MGDB4u99ocfflCHDh3M/gQGBio1NbUCKwYAAIA7snvjElewbds2LV68\nWM8//7y6dOmi1atXa+LEidqxY4d8fX2tvsZgMGjnzp264YYb8o/5+flVVMkAAABwU265wrxq1SqN\nGjVKw4cPV5s2bbRgwQJ5e3srNja2xNf5+vrKz88v/w8AAABQmutaYb506ZK++uornT17VpmZmWbn\nDAaDpk6dWi7FWZOdna2EhARNmjTJ7D2Dg4O1f//+Yl9nNBo1bNgwZWZmqn379po2bZq6d+/usDoB\nAABQOdgdmHft2qXp06frypUr8vb2lqenp9l5RwfmixcvKicnRw0aNDA77ufnp99++83qa/z9/fXc\nc8+pc+fOysrK0oYNGzR+/Hht3LhRgYGBDqsVAAAA7s/uwBwREaEuXbroxRdfVNOmTR1RU7lr3bq1\nWrdunf99t27ddOLECa1atarUnQsBAABQtdndw3zixAk9/vjjTgvL9evXl4eHh1JSUsyOp6amWqw6\nl6RLly76/fffy7s8AAAAVDJ2B+aOHTvqzJkzjqjFJp6enurUqZO+++67/GNGo1HfffedbrnlFpvv\nc/jwYTVs2NARJQIAAKASsbsl4+9//7ueeuopBQQEqFevXqpeveIn0z388MOaM2eOOnfunD9WLiMj\nQ/fff78kKTIyUufOnctvt1i9erWaNWumdu3aKTMzUxs2bNDu3bu1YsWKCq8dAAAA7sXutDtq1Chd\nvXpVjz/+uKpVq6YaNWqYnTcYDPrxxx/LrUBr7r33Xl28eFGvvfaaUlJSFBgYqJiYmPwZzCkpKWar\n4NnZ2YqIiNC5c+fk7e2tm266SatWrVLPnj0dWicAAADcn8FoNBrtecHrr78ug8FQ4jXTpk0rU1Gu\nKCQkRJIUFxfn5EoAAABgjaPymt0rzE8++WS5FgAAAAC4sutuQDYajfrtt9906dIl1a1bV61bty51\n5RkAAABwN9cVmNetW6dly5bpwoULMhqNMhgM8vPz0xNPPKHRo0eXd40AAACA09gdmNevX6/nn39e\ngwYN0r333qsGDRooJSVF27Zt0/PPPy9PT0898MADjqgVAAAAqHB2B+ZVq1Zp3Lhxmjt3rtnxkJAQ\n+fr66p133iEwAwAAoNKwe+OSkydPqm/fvlbP3X333Tp16lSZiwIAAABchd2B2d/fX/v27bN6bv/+\n/fL39y9zUQAAAICrsLslIywsTMuWLVNWVpZCQ0Pl5+enCxcuaPv27XrnnXc0depUR9QJAAAAOIXd\ngXnKlCm6fPmy3nnnHS1fvjz/uIeHh8aNG6cpU6aUa4EAAACAM9kdmA0Gg8LDwzVp0iQdPHgwfw5z\n165dVb9+fUfUCAAAADjNdW9cUr9+fd11113lWQsAAADgcmwKzJ988oluv/121alTR5988kmp199z\nzz1lLgwAAABwBTYF5unTp2vDhg3q2rWrpk+fXuK1BoNBv/zyS7kUBwAAADibTYE5Li4uf1xcXFyc\nQwsCAAAAXIlNgblp06b5XxsMBvn7+8vT09PiuqtXr+rcuXPlVx0AAADgZHZvXBISElJsy8Xhw4cV\nEhJS5qIAAAAAV2F3YDYajcWey8rKkpeXV5kKAgAAAFyJTS0Zx44d07Fjx/K/3717t86ePWt2TWZm\nprZu3armzZuXb4UAAACAE9kUmLdv364lS5ZIMvUwR0ZGWr2uTp06WrRoUflVBwAAADiZTYH5oYce\n0n333Sej0aj+/ftryZIlCgwMNLvG09NT/v7+MhgMDikUAAAAcAabAnPt2rVVu3ZtSQUj5uhVBgAA\nQFVg99bYhUfMpaenKzMz0+KaevXqla0qAAAAwEXYHZiNRqOWLVum9evX6/z581avYac/AAAAVBZ2\nj5VbtWqVVq1apTFjxshoNGry5MmaOnWqWrVqpaZNm+r55593RJ0AAACAU9gdmD/44AM9+eSTmjhx\noiSpf//+mjZtmrZu3ao2bdooKSmp3IsEAAAAnMXuwHzq1CkFBgbKw8ND1atX1+XLl003qlZNo0eP\n1ocffljuRQIAAADOYndgrlevntLS0iRJTZo00aFDh/LPXbx4URkZGeVXHQAAAOBkdj/01717d/30\n00/q27evBg8erCVLliglJUXVq1fXhg0b1KtXL0fUCQAAADiF3YF52rRpSk5OliRNnjxZly9f1pYt\nW5SZmang4GDNnz+/3IsEAAAAnMVgNBqNzi7CHYSEhEgybdwCAAAA1+OovGZ3D3N0dLQSExPLtQgA\nAADAVV3XWLkhQ4ZoyJAhWr58uU6ePOmIugAAAACXYHdg/vrrrxUTE6POnTsrJiZGf/rTn/Tggw/q\n3XffVWpqqiNqBAAAAJymTD3M2dnZ+vLLL7Vt2zZ98cUXysrK0u2336533nmnPGt0CfQwAwAAuDaX\n6WEuzNPTU/3799crr7yil156SX5+fvr222/LqzYAAADA6eweK1fYjz/+qK1bt2rnzp26cOGC2rdv\nr7Fjx5ZXbQAAAIDT2R2YExIStHXrVm3fvl1nz55V8+bNNXLkSA0ePFht2rRxRI0AAACA09gdmEeM\nGKGGDRvq3nvv1aBBg9SlSxdH1AUAAAC4BLsD85o1a9SzZ08ZDAZH1AMAAAC4FLsD86233uqIOgAA\nAACXZFNgnjx5ssLDw9WqVStNnjy5xGsNBoPeeOONcikOAAAAcDabAvP//vc/5eTk5H8NAAAAVBU2\nBea1a9da/RoAAACo7OzeuGTJkiVKTk62eu7cuXNasmRJmYsCAAAAXIXdgXnp0qUlBualS5eWuSgA\nAADAVdgdmI1GY7Hnzp8/rzp16pSpIAAAAMCV2NTDvGXLFm3ZskWSaQpGRESEateubXZNVlaWfv75\nZ3Xv3r38qwQAAACcxKbAnJ2dnT8dw2g0Kj09XdWqmS9Oe3l5adiwYZo4cWL5VwkAAAA4iU2B+b77\n7tN9990nSRo3bpz+/ve/q02bNg4tDAAAAHAFdu/0x1g5AAAAVCV2P/QXHR2tZ555xuq5Z555Rv/4\nxz/KXBQAAADgKuwOzFu2bCn2wb4ePXpo69atZS4KAAAAcBV2B+Zz586pcePGVs81atRIZ8+eLXNR\nAAAAgKuwOzD7+vrq6NGjVs8dPXpUdevWLXNRAAAAgKuwOzD3799fr7/+ug4ePGh2/ODBg1q6dKn+\n9Kc/lVtxAAAAgLPZPSXjL3/5i/bu3atRo0apTZs2atiwoc6dO6djx44pMDBQM2bMcESdAAAAgFPY\nHZhr166t9evX66OPPtL333+vP/74Q+3bt9dDDz2kYcOGycvLyxF1AgAAAE5hd2CWTLv6jRw5UiNH\njizvegAAAACXYncPMwAAAFCVXNcK80cffaT169fr+PHjyszMtDi/d+/eMhcGAAAAuAK7V5g3bdqk\n+fPnq127drp48aIGDhyoAQMGyNPTU35+fpowYYIj6gQAAACcwu7AvHLlSj3xxBN69tlnJUmjR4/W\nokWLFBcXJ19fX91www3lXiQAAADgLHYH5t9//13du3eXh4eHPDw8lJaWJkmqVauWHnvsMa1du7bc\niwQAAACcxe7AXKtWLWVkZEiSAgIClJiYmH8uJydHFy9eLL/qAAAAACez+6G/zp0768iRI7rrrrvU\nr18/LV26VEajUdWrV9fy5cvVrVs3R9QJAAAAOIXdgXnSpEk6deqUJGn69Ok6deqUXnzxReXm5qpL\nly567rnnyr1IAAAAwFnsDszdunXLX0WuU6eO3njjDWVlZSkrK0u1atUq9wIBAAAAZ7quOcxFeXl5\nsSU2AAAAKiV2+gMAAABKQGAGioqPl8LCpD59TP+Mj3d2RQAAwInKpSUDqDTi46URI6SkpIJje/ZI\nsbFSUJDz6gIAAE7DCjNQ2OLF5mFZMn0fEeGcegAAgNMRmIHCkpPtOw4AACo9AjNQWECAfccBAECl\nR2AGCgsPl1q0MD/WooU0e7Zz6gEAAE7HQ39AYUFBpgf8IiJMbRgBAaawzAN/AABUWQRmoKigIGnj\nRrXBpCsAACAASURBVGdXAQAAXAQtGYDE7GUAAFAsVpgBZi8DAIASsMIMMHsZAACUgMCMyuN62yqY\nvQwAAEpASwYqB2ttFR9/LN1xh2mluKTWCmYvAwCAErDCjMrBWltFVpb0+eemIF3SarMjZi/zECEA\nAJUGK8yoHEpqn8jrRy5uVFx5z17mIUL7xMebfuHJ+9mHh/NzAgC4FAIzKofS2idK60cuz9nLJT1E\nWBXmO9sTgPnlAgDgBgjMqBzCw01Bq2hQzePpWXG1VOWHCO0NwLNnV+1fLgAAboEeZlQOeW0V/fpZ\nD8cJCRXXR1yVHyK0Z0RffLy0a5f1+1SFXy4AAG6DwIzKIyhIioszTcYoKjm54uYqO+IhQndhz+r6\n4sWmBzOtqQq/XAAA3AYtGah8srOtH6+IVcu8/t369aWcHMnfX2rbtmwPETpTaf3IRc97eVm/j7UA\nXNz/HjVqVI1fLgAAboPAjMqnuNVJT0/TiLfrmcZgy4Ns1vp3PTysh2V3mAxRWj+ytfMBAVKjRtLZ\nswXHiltdL+5/p969Xe9nAQCo0gjMqHysPQDYqJGpj7nwqqatG5vY+iCbrdMxHD0ZorzCeGmfx9r5\n5GRTH/kdd5Q+os/a/04tWrAlOQDA5RCYUflYm6ucmip98YX5dYU3NikprNoahG3t33Xk2LnyDOOl\nfZ7izmdn2/Y5ynv+NQAADkJgRuVUdK5ynz7FX1taWLU1CBfXv1t0aocjx86VZxgvbdpHeUwDKc/5\n1wAAOAhTMlA5Fd2aurQ5zCWFVVuDodFoW22OHDtnbxgvaQvv0qZ9VOVpIACAKoUVZlQ+1toSGjUy\nBdLigmPhsFq0B3jYMOu9tkWDYXHTOYoeL653tzyCpj1hvLT2jdJaJmipAABUEQRmVD7W2hLOnjU9\njNapk/TNN1JmZsG5wmG1uBC5cKG0eXPJwbCksFo0hNtyv+t5eM+eMG5L+0ZpLRPl0VJx4oSUkiJ1\n6yYZDGW7FwAADuC2gXndunV65513lJKSog4dOmjevHnq2rVrsdfv3r1bEREROnr0qJo0aaLJkyfr\nvvvuq8CKUWH+v717j4q6zv84/hpR1CQJEXR/omuiLmgoeDkqonl0K5NM17VyM81baWn1KzN1ozK1\no1bqHrM27YbHrNWiopSy9b66rIb9xN3K2swT5p2LoKEOwvz++J4ZGWbmy8wwgMjzcQ4n+c738plh\n+vKaD+/P52M2GG3XLiOIeuoV9RQiP/208mDoKazeeafvA/H8HbznS69vTS7hXVxsLCrz2WfGV/lp\n5+xmzpRefjnw1wYAoIrqZGDOyMjQ4sWLtWDBAsXFxWnNmjWaMmWKvvjiC7Vo0cJl/19++UXTpk3T\nn/70J7388svKzMxUSkqKIiMj1b9//1p4BqhWlZUlmPWKViVEegqr/gzEq8rgPW97fQNdS22zSdnZ\nRiD+9FPflyL3tgYcAIAaVicDc2pqqu655x6NHDlSkvT8889rx44dSktL0wMPPOCy//vvv6+oqCg9\n9dRTkqQOHTpo//79Sk1NJTBfi7wtS3BX8lDVEOkurHoK2z/+6LqQynffSY8/bkyD504ge3/9raU+\nc0batMkIxZ99Jl2+XLV2xMdL48dL//u/VTsPAADVpM4F5pKSEn3zzTeaOnWqY5vFYlFiYqIOHDjg\n9pjs7GwlJiY6bUtKStKiRYuqta2oJd6UJXgqeZg0SfroI+feTovFKKvwl6ew/f33Uvn37I4dnoOy\nXVVWK6zI7HWyl6/YQ/GRI/5dwy48XBo+3Hgdb7lFCgmp2vkAAKhBdS4wFxQUqLS0VC1btnTaHh4e\nriMefqmfOXNG4eHhLvufP39eVqtVwZ7mz0XdVVlZgqeSh1decS0NsNmk1FRp3Dj/2jJnjrR7t3Pv\ncHCwdOGC836VheVWraRvv3Wu//V2tUJPTp+W2rY1eo0//ND4qoohQ4xgPHy41KFD1c4FAMBVos4F\nZiAgPJU2eAqt2dnuSzgk85kssrKMXtv8fOfzlZX51t7gYGOGj23bnLd7s1rh0aPShAmux/qrc+cr\nvcWJiVJDbiMAgGtbnftNFxYWpqCgIOXm5jptz8vLc+l1touIiFBehSCUl5enkJAQepfrAn+mV6uM\nrwPbioulgQOde4X37DF6n8uHb/tMFpL01FPGPlar6/n8qfs164HOyZFGjpSOHfP9vO5cd92VnuLb\nb5fcDKYFAKC+qHOBuVGjRuratasyMzM1ZMgQSZLNZlNmZqbGefiTeXx8vHbt2uW0bc+ePYqPj6/2\n9qKK3NUa795t9Lbm5xslBRERUseO7nt8R4yQ0tNdw7a7AW9mKpZPSO6nRsvJkR5+2Liet+f2htUq\n/fCD+T7+huU+faS33pK6dGEeZAAA3KhzgVmSJkyYoLlz5+qmm25yTCt38eJFjRo1SpK0dOlSnT59\nWkuWLJEkjRkzRuvWrdNLL72kP/7xj8rMzNTmzZu1evXq2nwa8Ia7WuNTp5x7dY8fN0omduwwBsWV\nD7L23l678nMZ2we8bd4snTsXuDZnZVXPFGnuQntVDBhgDOwDAACm6mRgHjZsmAoKCrRixQrl5uYq\nNjZWb775pmMO5tzcXJ04ccKxf1RUlFavXq1FixZp7dq1at26tRYuXOgycwZqmDelFr5Mo1bZoDnJ\nCN8jRhgD0uzXtNlcg3VV1JX5hP2dbxkAgHrGYrPVld/utcte/rF169Zabsk1wl2pRbt2rgPXRo8O\nbJitqF07Y5nqlBTfSygsltoLx61aGSUUBw9KZ89KpaW+He/utQYAoI6rrrzWIKBnA7xltpJdeXPm\nGOGuuuTkGFPGpaUZtdCeBAW5bqvpsNyunVFSYrNJGzdKhw8bverehOXWraXBg40yDPuHEMIyAABe\nqZMlGbgGmK1+V17FxTUaNXKdi7i8xo2lS5d8a8vu3cZ/MzKMWSHKn9tikVq2lKZPl+bN8+28vmrT\n5kqpiH21PU+Lr7j7wFFeq1bSTTcZgwXdLdwCAAC8RmBG7TBb/S4ryzncVVyEJCvL6HnetctYka78\nOV96yVid7scfjXOVHyjXoIH7+Y+tViOYfvCB9Oij0p//fOUxm81Y1CMQYXnYMGNJaW/LUSTPi694\n+sDRvLl0660EZAAAAojAjNoxZ47Ro1tx5ocLF66EV0969ZK2bDGCp7seWPv0ghUfv/NOacoU9/Mi\nf/hhYKZUCwpyXyLRrp30/PNX2l/Z0t2V8fSBIySEsAwAQIARmFE7evUyVozLznZ9zNuZMSpb/nrd\nOuelnqu67LMn5UNyaakRvK+7zvhq08aYI7piiHXXaz56tPeLs3iaR/r4cfNV/wAAgM8Y9Aff2cOd\nfQBZVpZ/5+nY0f12X6Y7O3bMCKUWi+vXX/7iX7s8GT3aKNH46qsrz79NG9ceZZtN+vVXqWlT6Y03\njGBsFl7tJRppaUY9dVqa8b3Z62rvpW7TxvUxd4MnPV03ED9HAACucQRm+MafcGc/rmI4czcDRrt2\nVwa82ZWVSY8/7j4UR0UZvar+6tDhyswT9q+vvjJvV69exr8jI6WiIs/n9ja4ejtjSEW9ekk33uj+\nscp66f39OQIAUA9RkgHfmIU7T+UR7ga52VfcK1/L26CBtHOn1Lt39bVfcl7hztPiKWY1xu6ejyfe\nlJd42qfidndt9dQbX1kvvT8/RwAA6ikCM3zjbbgrz1M4C2QwDgmR/u//nMs8PC16snevtHatFBvr\nOcib1UdXNqVbed6Ul3gTej196Fi40LWW2V0vfUX+/BwBAKinKMmAb7zt0fzhB+nll6Wbbw7sSn2r\nVzuXT9i/zp1zrYmeM8dYsKMiq1WaMEF66CH3QX7oUPOa3opzRXviTXD11M7WrZ2P9fSh49NPjde3\nfLmLNwP+/O2ZBgCgHqKHGZUrXwrQqJER5sov7nHdddLnnwdmWrbyqrp8c69eRi+yu0VOysqMZaXd\nycszrlu+t7m8M2fcHxcRYXxAqFjG4anso7zy80m7+96sR7iy2ULccTfLhrcBHwCAeobADHN790oj\nRpj/qb642PfzNm4sJSRIDRsaIbKgQNq2zXmfQNTUFhR4fszdIibeXD8y0v1AwzZtXPc1q9+2h+bZ\ns42QXl5enrF961bj+0D3CAdiLmgAAOoJAjOMUDd/vrHk9PnzgaljTUw0lpm+806jl3f/fuflrb/5\nRvrXv67sHxzs/jxVaUtWlrHanyc33GD0jpvVI7u7fosW7vd1N02ep1KKESOk9HQjoLqbi1py3j5i\nhPTJJ85T2AUFGa+vv/zpmQYAoB4iMNd3WVnSyJHGfMa+atvWCGzDhxulCE2aeN63fDizL9BRnrvV\n96QrPajelDVUtHix60qCdhaL9NvfSpcvGyH0/HmpsNDz9e3WrjWmYauoYs2xnafAX36BEW+kp7vO\n91xaatQw21c2BAAA1YLAXN8tXuxfWB492v/eSU8hsnFj6dKlK9/ba2q9KWvw5TpBQVJoqNHrbdeq\nlbHQSPl651atpPx8YzBdq1ZGL+/Uqe7DfZcu7ttiVjJhL/no1k3avt318e7dK38uzGoBAEC1IzDX\nd54Cl32uYndhtaqDwzyFyP79jXKHijW1o0f7N2ewWd1vxRrkU6ekwYOlpKQrZSPffutcV52R4bnH\nuuIgPTtPS1iXv+6yZdIddzj/LFq1cl64hFktAACoNUwrV99VFsTsg8N8nbbMjKcV/uwBeNcu5+Wk\nK+td9bTEs6frRES4P19JyZXrh4W5zq7hKSxLnl9HsyWs7cf16iVt3Oj8HDZudH6NR4wwesArPhdm\ntQAAoNrRw1zfeTO9WKAHh/k6Q4NZqK+sXMPddRYvdj/Qrvx1fCl1aNrUPLj26mUM2KvYzoolH57q\nsrOypJQU58DetKmxaAmzWgAAUO3oYa7vqqMH2dvrzp5tTNF28qQRYj0tFOKpp9gefj2Va9ivU7HX\n2ux8dp5m7Wjc2Pn7pk2lVasqf70qvs6DBxsDD7dtMwYRpqUZgdrda+DuOV64YAz4AwAA1Y4eZtTO\n9GK+DOQz65H2ZzCcNz3cNpv7Y+PipPbt/Zu7uOJMIRVLPnJyjPOFhTnPBsKAPwAAahWBGbXDrGfY\nXXj3FOr9HQxX2YcET4P4mjYNzIcLT2F3927nWTi++kqKjna/LwP+AACoEZRkoHYEqtfUm/IKf1T3\nrBSezlNxyrqcHKN0ozqeIwAA8Ao9zKgdVQmkFRcxWbjQqOcN5BLP3gyGDPT5g4Pdz/FcUsIy1gAA\n1CICM2qHv4HU30VMfLF2rdG+ggJj9cJ27YzFRQIZUt3VUefluV/AxD71HMtYAwBQKwjMqB0VA2Oj\nRsZAu8cfN59izdfaZ1+tXStNnOi8DPXhw8a0boHu0a0YgqtjkRgAAFBlBGbUHntgNOs1lpzLL378\n0f25AjVjxJw5zmFZMr6fO1caNy4w1/DE1/mpAQBAjSAwo/Z56jWePdsIyOUfq7janV2gBuOdO+fb\n9kCj9AIAgKsOs2Sg9nnqHc7Odr9gR3UuEX399b5tBwAA1zx6mFH7fO0d/t3vpI4dq6dsYfFi1xrm\noCBp0aLAnB8AANQ5BGbUPk8zZkRHu581omPH6itbsNcpz50rnT1rBOd27aT0dCk2lnpiAADqIUoy\nUPvsg91Gj5YGDDD+m5Ymvfhi7SzYMW6c9MknUni4dPGi9MMPRnv695cGDzYGKQIAgHqDHmZcHTwN\ndqutWSPcDUS0Wo0e7z/+MbDzPgMAgKsagRlXt9qaNcJsmrqcHGnoUKl7d2Pu6JIS87mjAQBAnUZg\nBtypbCBiXp60bZvztowMadWq6p+vGQAA1ChqmAF35sxxrZ+uzIUL0tSp1DgDAHCNITAD7tgHIg4Z\nIgUHe3/chQtGzTUAALhmEJgBT3r1krZskfbsMWbuCA/37rhALdMNAACuCgRmoDL2gYdffOFdmUag\nlukGAABXBQb9Ad6yl2nYp7m7eNFYvttqvbJPTcwTDQAAahSBGfBFxWnusrJqZ55oAABQYwjMQFXU\n1jzRAACgxlDDDAAAAJggMAMAAAAmCMwAAACACQIzAAAAYILADAAAAJggMAMAAAAmCMwAAACACQIz\nAAAAYILADAAAAJggMAMAAAAmCMwAAACACQIzAAAAYILADAAAAJggMAMAAAAmCMwAAACACQIzAAAA\nYILADAAAAJggMAMAAAAmCMwAAACACQIzAAAAYILADAAAAJggMAMAAAAmCMwAAACACQIzAAAAYILA\nDAAAAJggMAMAAAAmCMwAAACACQIzAAAAYILADAAAAJggMAMAAAAmCMwAAACACQIzAAAAYILADAAA\nAJggMAMAAAAmCMwAAACACQIzAAAAYILADAAAAJggMAMAAAAmCMwAAACACQIzAAAAYILADAAAAJgg\nMAMAAAAmCMwAAACACQIzAAAAYILADAAAAJggMAMAAAAmCMwAAACACQIzAAAAYILADAAAAJggMAMA\nAAAmCMwAAACACQIzAAAAYILADAAAAJggMAMAAAAm6lxgLiws1MyZM9WzZ0/17t1bTz/9tIqLi02P\nmTt3rmJiYpy+HnjggRpqMQAAAOqyhrXdAF/NnDlTeXl5Sk1NVUlJiebOnatnn31WL7/8sulxAwcO\n1OLFi2Wz2SRJwcHBNdFcAAAA1HF1qof58OHD2r17t1544QXFxcWpR48eSklJUUZGhs6cOWN6bHBw\nsFq0aKHw8HCFh4fr+uuvr6FWAwAAoC6rU4H5wIEDCg0NVZcuXRzbEhMTZbFYlJ2dbXrsvn37lJiY\nqKFDh2revHk6e/ZsdTcXAAAA14A6VZKRm5urFi1aOG0LCgpSaGiocnNzPR43YMAA3XrrrYqKilJO\nTo6WLVumBx98UOvXr5fFYvHq2qdPn1ZpaamGDBlSpecAAACA6nHixAkFBQUF/LxXRWBeunSp3njj\nDY+PWywWZWRk+H3+YcOGOf7dqVMnde7cWbfccov27t2rvn37enWOxo0by2q1+t0GAAAAVK+GDRtW\nyzi1qyIwT5o0SaNGjTLdp23btmrZsqXy8/OdtpeWlqqwsFAtW7b0+npt27ZVWFiYcnJyvA7MWVlZ\nXp8fAAAA146rIjCHhYUpLCys0v3i4+NVVFSkb7/91lHHnJmZKZvNpu7du3t9vZMnT+rs2bOKiIjw\nu80AAACoH+rUoL/o6GglJSUpJSVFBw8e1P79+7VgwQIlJyc7hd+hQ4dqy5YtkqTi4mK9+OKLys7O\n1rFjx5SZmamHH35Y7du3V1JSUm09FQAAANQRV0UPsy+WLl2q+fPna+LEiWrQoIFuu+02Pf300077\n/Pzzzzp//rwkY1Dg999/r/T0dBUVFSkyMlJJSUl67LHH1KhRo9p4CgAAAKhDLDb7Sh4AAAAAXNSp\nkgwAAACgphGYAQAAABMEZgAAAMAEgRkAAAAwQWAGAAAATBCYAQAAABMEZhOFhYWaOXOmevbsqd69\ne+vpp59WcXGx6TFz585VTEyM09cDDzxQQy1GXbFu3ToNHjxY3bp10913362DBw+a7r93716NGjVK\ncXFxuu222/Txxx/XUEtR1/nyXtu3b5/L/Ss2NlZ5eXk12GLURVlZWZo2bZoGDBigmJgYbd26tdJj\nuK/BH76+1wJ1XyMwm5g5c6Z++uknpaamatWqVcrKytKzzz5b6XEDBw7UP//5T+3Zs0d79uzRsmXL\naqC1qCsyMjK0ePFiPfroo/r4448VExOjKVOmKD8/3+3+v/zyi6ZNm6a+ffsqPT1d48ePV0pKivbs\n2VPDLUdd4+t7TZIsFou+/PJLx/1r9+7dCg8Pr8FWoy4qLi5WbGysnnvuOVkslkr3574Gf/n6XpMC\nc1+rcyv91ZTDhw9r9+7d+uijj9SlSxdJUkpKiqZOnarZs2c7LcVdUXBwsFq0aFFTTUUdk5qaqnvu\nuUcjR46UJD3//PPasWOH0tLS3P414v3331dUVJSeeuopSVKHDh20f/9+paamqn///jXadtQtvr7X\n7Fq0aKGQkJCaaiauAQMHDtTAgQMlSd6sh8Z9Df7y9b1mV9X7Gj3MHhw4cEChoaGOsCxJiYmJslgs\nys7ONj123759SkxM1NChQzVv3jydPXu2upuLOqKkpETffPON+vXr59hmsViUmJioAwcOuD0mOztb\niYmJTtuSkpI87g9I/r3XJOMX0IgRI5SUlKRJkybp66+/ronmop7hvoaaFIj7Gj3MHuTm5rr0EgcF\nBSk0NFS5ubkejxswYIBuvfVWRUVFKScnR8uWLdODDz6o9evXe/2nA1y7CgoKVFpaqpYtWzptDw8P\n15EjR9wec+bMGZc/HYWHh+v8+fOyWq0KDg6utvai7vLnvRYREaH58+frpptuktVq1YYNGzR+/Hh9\n8MEHio2NrYlmo57gvoaaEqj7Wr0LzEuXLtUbb7zh8XGLxaKMjAy/zz9s2DDHvzt16qTOnTvrlltu\n0d69e9W3b1+/zwsA1e3GG2/UjTfe6Pg+Pj5eR48eVWpqqpYsWVKLLQMA/wTqvlbvAvOkSZM0atQo\n033atm2rli1bugyMKS0tVWFhoUuPTWXnCgsLU05ODoEZCgsLU1BQkMtfKfLy8jy+ryIiIlxG8+bl\n5SkkJIReGHjkz3vNnbi4OMoyEHDc11Cb/Lmv1bsa5rCwMMenDU9fDRs2VHx8vIqKivTtt986js3M\nzJTNZlP37t29vt7Jkyd19uxZ00GCqD8aNWqkrl27KjMz07HNZrMpMzNTCQkJbo+Jj4932l+S9uzZ\no/j4+GptK+o2f95r7hw6dEiRkZHV0UTUY9zXUJv8ua/Vu8DsrejoaCUlJSklJUUHDx7U/v37tWDB\nAiUnJzuF36FDh2rLli2SjKlOXnzxRWVnZ+vYsWPKzMzUww8/rPbt2yspKam2ngquMhMmTNAHH3yg\nTz75RIcPH9Zzzz2nixcvOv7ysXTpUs2ePdux/5gxY3T06FG99NJL+umnn7Ru3Tpt3rxZEydOrK2n\ngDrC1/famjVrtHXrVuXk5Oi///2vXnjhBe3du1djx46traeAOqK4uFiHDh3Sd999J0k6evSoDh06\npBMnTkjivobA8fW9Fqj7Wr0ryfDF0qVLNX/+fE2cOFENGjTQbbfdpqefftppn59//lnnz5+XZAwK\n/P7775Wenq6ioiJFRkYqKSlJjz32mBo1alQbTwFXoWHDhqmgoEArVqxQbm6uYmNj9eabbzoGmebm\n5jr+x5ekqKgorV69WosWLdLatWvVunVrLVy40GWEOVCRr++1kpISLVmyRKdPn1aTJk30u9/9Tqmp\nqerdu3dtPQXUEf/5z380fvx4WSwWWSwWR23oyJEjtWjRIu5rCBhf32uBuq9ZbL5MYgcAAADUM5Rk\nAAAAACYIzAAAAIAJAjMAAABggsAMAAAAmCAwAwAAACYIzAAAAIAJAjMAAABggsAMAAAAmCAwAwAA\nACYIzADgo48//lgbN2502T5u3DhNmzYt4Nc7d+6cVq5cqcOHDzttP3bsmGJiYvTll18G/JqexMTE\n6J133qnyeextt39169ZNt99+u1555RVdunTJ7TGffvqpxowZox49eighIUFjxoxRenq6y36vvPKK\nEhISKm2DfcncpKQkJSQkaNKkSTpy5EiVnxuAa0/D2m4AANQ1H330kZo1a6Y77rjDafu8efMUFBQU\n8OsVFRVp5cqV6ty5s6Kjox3bIyIitGHDBrVv3z7g1/Rkw4YN+p//+Z+AnW/mzJnq06ePiouLtW3b\nNr366qvKy8vTvHnznPZbsGCB3nvvPd11112aMWOGLBaLNm/erDlz5ujf//63UlJSHPtaLBZZLJZK\nr71gwQJ98cUXmjt3riIjI/XXv/5VEyZM0KZNmxQSEhKw5wig7iMwA0CAlA+zgWSz2dxuDw4OVrdu\n3arlmp4E+nq//e1vHefs27evDh8+rPT0dKfAvHXrVq1bt06PPPKIpk+f7tjev39/RURE6NVXX1VS\nUpIGDRrk9XVPnTqltLQ0zZs3T3/4wx8kSTfddJMGDRqk9evXa/LkyQF5fgCuDZRkAKg3Dhw4oIce\nekgDBgxQQkKCRo4c6fZP+ufOndOCBQt08803Ky4uTkOGDNHy5cslGWUXX331lXbu3KmYmBjFxsZq\n5cqVjsfsJRn79u1TTEyMvvnmG6dzl5WVqX///o7z/fTTT3riiSc0aNAgxcfHKzk5We+8844jJB87\ndky///3vZbFY9Oijjzquefz4cbclGTabTa+99poGDx6suLg43X777Vq/fr1TG+wlCz/88IPuvfde\nxcfHa/jw4dq9e3elr2HFkgz7c968ebOGDh2qhIQE3X///Tp69Gil53InNjZWFy9eVH5+vmPbmjVr\nFBoaqkmTJrnsP3nyZIWGhmrNmjU+Xecf//iHbDabhg4d6tgWGhqqpKQk7dy506+2A7h20cMMoN44\nduyYo/a1SZMm+vrrr5WSkiKbzaaRI0dKkqxWq8aPH6/jx4/rkUceUadOnXTixAl9/fXXkoyyi1mz\nZqlp06aaPXu2JKlVq1Yu1+rdu7ciIyO1adMmde3a1bE9MzNT+fn5Gj58uCSjp7N9+/YaPny4QkJC\n9N133+mVV15RcXGxpk+froiICK1cuVIzZsxwlC9IRjnG6dOnXa67ZMkSvfvuu3rooYeUkJCg7du3\n67nnntPly5c1duxYSUbJwuXLlzVr1iyNGzdO06dP1+rVq/Xoo49q+/btCg0N9el1/e6771RQUKAn\nn3xSZWVlWrRokWbNmqW//e1vPp1HMn5GzZo1U1hYmCSptLRUBw4c0KBBg9S0aVOX/a+77jr16dNH\nu3btUllZmRo08K4f6MiRI2rRooWuv/56p+0dOnRQWlqaz+0GcG0jMAOoN5KTk52+79Wrl06cOKH1\n69c7AvMnn3yiQ4cOaf369U7lB/bHo6Oj1axZMzVr1sy0PMFisWjYsGH6/PPP9dRTTzm2b9y4jMU/\n9QAABhBJREFUUR07dlTHjh0lSf369VO/fv0cj/fo0UMXLlzQunXrNH36dAUHBys2NlaSc/mCOwUF\nBXr33Xc1efJkR+lCYmKi8vPz9dprr+nee+911PZevnxZTz75pAYMGCBJat++vYYMGaJdu3Y5wry3\nzp07p/T0dN1www2SpF9//VV//vOfderUKbcfJsorKytTaWmpLly4oC1btujvf/+7nnjiCUc7CwoK\nZLVaTeumf/Ob3+jSpUs6e/asWrRo4VWbi4qK1Lx5c5ftoaGhKiws9OocAOoPAjOAeqOoqEgrVqzQ\ntm3bdOrUKZWWlkqSozdTkv71r38pOjo6ILW6ycnJWrNmjfbv36+ePXuqpKREW7du1ZQpUxz7WK1W\nvf7669q4caOOHz+uy5cvSzIC94ULF9z2qnpy8OBBlZaWOpUZSNKwYcOUkZGhI0eOqEOHDpKkBg0a\nOAX1Nm3aqEmTJjp58qTPzzM2NtYRlqUrtdzeBObHH3/cqUY7OTnZbekFANQmAjOAemP27NnKzs7W\n9OnT1bFjR4WEhOi9997T559/7tjn7NmzioyMDMj14uLi1LZtW23atEk9e/bUzp07de7cOQ0bNsyx\nz4svvqi0tDTNmDFDXbp0UfPmzbVlyxa9/vrrunTpkk+B2d4zGh4e7rS9ZcuWstlsTj2njRs3VsOG\nzr8CGjVq5HFKNzMVyxqCg4Nls9m8OtesWbPUp08fFRUVad26ddq0aZP69Omju+++W5LxYSY4OFjH\njx/3eI4TJ06ocePGTqG9Ms2bN9e5c+dcthcWFvpckgLg2segPwD1gtVq1c6dO/Xwww9r7Nix6tOn\nj7p27aqysjKn/W644Qa3tcH+Sk5O1ubNm1VWVqaMjAx1795dUVFRjsc3b96sMWPGaPLkyerXr5+6\ndu3q99R09qBXfsCcJOXm5spisVyVQTAqKkpdu3ZVv379tGLFCnXp0kV/+ctfdPHiRUlSUFCQEhIS\ntG/fPse28i5cuKC9e/eqR48eXtcvS0atcl5enktoLt8LDwB2BGYA9YLValVZWZlTr+r58+e1bds2\np/369eunw4cP6+DBgx7PFRwcLKvV6tV177jjDuXn52vr1q3avn27y9zNly5dcmpTWVmZNm3a5LRP\no0aNHPua6datm4KCgpx6zCUpIyND4eHhuvHGG71qc21p0KCBZs2apfz8fKeZPe6//34VFhbq7bff\ndjnmrbfeUlFRke6//36frpWUlOSYy9musLBQu3fv9ml6OgD1AyUZAOqFkJAQxcXFafXq1QoLC1NQ\nUJDeeOMNNW/eXHl5eY79RowYoffff19Tp07V9OnT1alTJ508eVL79+/X/PnzJRm9k+np6dq+fbsi\nIiIUGRnpsYwjOjpanTt31oIFC2S1WnX77bc7PZ6YmKgNGzYoOjpaYWFheu+991RSUuK0T0REhJo3\nb65NmzapTZs2Cg4OVkxMjMu1wsLCNG7cOL311lsKDg5WfHy8duzYoYyMDD3zzDNeLeZR2/r166ee\nPXtqzZo1uu+++xQUFKTBgwdr7NixWrlypU6cOOGo0d68ebM+/PBD3Xfffbr55pt9uk6rVq00evRo\nvfTSS2rQoIEiIyO1atUqhYaGOspBAMCOwAyg3li2bJmeffZZzZkzxxEuf/31V6eey+DgYK1Zs0bL\nly/XqlWrVFhYqNatWzvNsDFlyhQdPXpUc+bMUVFRkaZPn64ZM2ZIkttQmpycrOXLlysxMdGlvviZ\nZ57RvHnztHDhQjVp0kSjRo3SLbfcomeeecaxj8Vi0aJFi7R8+XJNnDhRVqtVW7dudXu92bNnq3nz\n5vrggw/0+uuvq02bNpo/f77uuusup/3ctdObFfLc7ePpXJXxtM+MGTM0adIkffbZZ47ZSVJSUhQf\nH+9YwESSOnfurCVLlrid1cOb66ekpKhZs2ZatmyZfv31V/Xo0UNvv/02q/wBcGGxeVpCCgAAAAA1\nzAAAAIAZAjMAAABggsAMAAAAmCAwAwAAACYIzAAAAIAJAjMAAABggsAMAAAAmCAwAwAAACYIzAAA\nAIAJAjMAAABggsAMAAAAmPh/g4jCNqbL7/EAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7f2602a515c0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "on_tp=numpy.where(regressor>0.9)[0]\n", "off_tp=numpy.where(regressor<0.01)[0]\n", "roinum=4\n", "\n", "plt.scatter(data[on_tp,0],data[on_tp,roinum], label=\"task ON\")\n", "fit = numpy.polyfit(data[on_tp,0],data[on_tp,roinum],1)\n", "plt.plot(data[on_tp,0],data[on_tp,0]*fit[0] +fit[1])\n", "plt.scatter(data[off_tp,0],data[off_tp,roinum],color='red', label=\"task OFF\")\n", "fit = numpy.polyfit(data[off_tp,0],data[off_tp,roinum],1)\n", "plt.plot(data[off_tp,0],data[off_tp,0]*fit[0] +fit[1],color='red')\n", "plt.xlabel(\"activation in ROI 0\")\n", "plt.ylabel(\"activation in ROI %d\"%roinum)\n", "plt.legend(loc=\"best\")\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python [conda root]", "language": "python", "name": "conda-root-py" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.2" } }, "nbformat": 4, "nbformat_minor": 0 }
mit
intel-analytics/BigDL
python/chronos/colab-notebook/chronos_minn_traffic_anomaly_detector.ipynb
2
12193
{ "cells": [ { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "view-in-github" }, "source": [ "<a href=\"https://colab.research.google.com/github/intel-analytics/BigDL/blob/branch-2.0/python/chronos/colab-notebook/chronos_autots_nyc_taxi.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "![image.png]()" ] }, { "cell_type": "markdown", "metadata": { "id": "fDBPZ0_rfBmU" }, "source": [ "##### Copyright 2016 The BigDL Authors." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "xBWVU_bhfkY7" }, "outputs": [], "source": [ "#@title Licensed under the Apache License, Version 2.0 (the \"License\");\n", "# you may not use this file except in compliance with the License.\n", "# You may obtain a copy of the License at\n", "#\n", "# http://www.apache.org/licenses/LICENSE-2.0\n", "#\n", "# Unless required by applicable law or agreed to in writing, software\n", "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", "# See the License for the specific language governing permissions and\n", "# limitations under the License.\n", "#" ] }, { "cell_type": "markdown", "metadata": { "id": "voMBntim9bMf" }, "source": [ "## **Environment Preparation**" ] }, { "cell_type": "markdown", "metadata": { "id": "I_OS4HKJMNpv" }, "source": [ "**Install bigdl-chronos**\n", "\n", "You can install the latest pre-release version using `pip install --pre --upgrade bigdl-chronos[all]`. " ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "3qfT8CaC51hI" }, "outputs": [], "source": [ "# Install latest pre-release version of bigdl-chronos\n", "# Installing bigdl-chronos from pip will automatically install pyspark, bigdl, and their dependencies.\n", "!pip install --pre --upgrade bigdl-chronos\n", "!pip uninstall -y torchtext # uninstall torchtext to avoid version conflict\n", "exit() # refresh the pkg you just install" ] }, { "cell_type": "markdown", "metadata": { "id": "l-l4vel5N3qP" }, "source": [ "## **Unsupervised Anomaly Detection using Chronos Anomaly Detector**\n", "\n", "Anomaly detection detects data points in data that does not fit well with the rest of data. In this quickstart we demonstrate how to do anomaly detection for 1-D data using Chronos's Anomaly Detector." ] }, { "cell_type": "markdown", "metadata": { "id": "TsT-0y8w-6N5" }, "source": [ "## **Step 0: Prepare dataset**\n", "For demonstration, we use the publicly available real time traffic data from the Twin Cities Metro area in Minnesota, collected by the Minnesota Department of Transportation. Detailed information can be found [here](https://github.com/numenta/NAB/blob/master/data/realTraffic/speed_7578.csv)." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "devxHuDW-0Mb" }, "outputs": [], "source": [ "# download the dataset\n", "!wget https://raw.githubusercontent.com/numenta/NAB/master/data/realTraffic/speed_7578.csv" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Step 1: Data Preprocessing\n", "Now we need to do data cleaning and preprocessing on the raw data. Note that this part could vary for different dataset. \n", "\n", "For the machine_usage data, the pre-processing contains 2 parts: <br>\n", "1. Change the time interval from irregular to 5 minutes.<br>\n", "2. Check missing values and handle missing data." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "LVpFKkCX_3WF" }, "outputs": [], "source": [ "import pandas as pd\n", "df = pd.read_csv(\"speed_7578.csv\", parse_dates=[\"timestamp\"])\n", "df.head()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from bigdl.chronos.data import TSDataset\n", "\n", "tsdata = TSDataset.from_pandas(df, dt_col=\"timestamp\", target_col=\"value\")\n", "df = tsdata.resample(\"5min\")\\\n", " .impute(mode=\"linear\")\\\n", " .to_pandas()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Step 2: Use Chronos Anomaly Detector\n", "DBScanDetector uses DBSCAN clustering for anomaly detection. The DBSCAN algorithm tries to cluster the points and label the points that do not belong to any clusters as -1. It thus detects outliers detection in the input time series. DBScanDetector assigns anomaly score 1 to anomaly samples, and 0 to normal samples." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from bigdl.chronos.detector.anomaly import DBScanDetector\n", "\n", "ad = DBScanDetector(eps=0.3, min_samples=6)\n", "ad.fit(df['value'].to_numpy())\n", "anomaly_indexes = ad.anomaly_indexes()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Step 3: Plot the result\n", "Draw anomalies(red) in line chart." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", "\n", "plt.figure(figsize=(16,6))\n", "plt.plot(df.timestamp, df.value, label='value')\n", "plt.scatter(df.timestamp[anomaly_indexes],\n", " df.value[anomaly_indexes],\n", " color='red', label='anomalies value')\n", "\n", "plt.title('the anomalies value')\n", "plt.xlabel('datetime')\n", "plt.legend(loc='upper left')\n", "plt.show()" ] } ], "metadata": { "colab": { "collapsed_sections": [], "include_colab_link": true, "name": "chronos_autots_nyc_taxi.ipynb", "provenance": [] }, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.11" } }, "nbformat": 4, "nbformat_minor": 1 }
apache-2.0
TEAMDSS/KBO_Player_Salary
defense_crawling.ipynb
1
9330
{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# import package\n", "import pandas as pd\n", "import time\n", "import pickle\n", "from selenium import webdriver\n", "import glob\n", "import os" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true }, "outputs": [], "source": [ "api_delay_term = 3" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# crawling_defense\n", "def crawling_defense(season_id, team_id):\n", " \"\"\"\n", " season_id = 0 ~ 14\n", " team_id = 1 ~ 10\n", " ------------------------------------------------------------------------------------\n", " <season_id>\n", " 0 : 2002 ~ 14 : 2016\n", " \n", " <team_id> ==> It can be different from several season.\n", " 1 : Nexen heroes\n", " 2 : Doosan\n", " 3 : Lotte\n", " 4 : Samsung\n", " 5 : Hanhwa\n", " 6 : KIA\n", " 7 : KT\n", " 8 : LG twins\n", " 9 : NC dinos\n", " 10 : SK wyberns\n", " \"\"\"\n", " driver = webdriver.Firefox()\n", " url = \"http://www.koreabaseball.com/Record/Player/Defense/Basic.aspx\"\n", " driver.get(url)\n", " \n", " # click season\n", " driver.find_element_by_css_selector('#cphContainer_cphContents_ddlSeason_ddlSeason').\\\n", " find_elements_by_css_selector('option')[season_id].click()\n", " time.sleep(api_delay_term)\n", " \n", " # click team\n", " driver.find_element_by_css_selector('#cphContainer_cphContents_ddlTeam_ddlTeam').\\\n", " find_elements_by_css_selector('option')[team_id].click()\n", " time.sleep(api_delay_term)\n", " \n", " # get page number\n", " page_elements = driver.find_elements_by_css_selector(\".paging02 a\")\n", " page_number = len(page_elements)\n", " if page_number == 1:\n", " page_number = page_number\n", " \n", " if page_number > 1:\n", " page_number = page_number -2\n", " \n", " # make empty dataframe\n", " defense_df = pd.DataFrame(columns=[\n", " 'rank', 'name', 'team', 'POS', 'G', 'GS', 'IP', 'E', 'PKO', 'PO',\n", " 'A', 'DP', 'FPCT', 'PB', 'SB', 'CS', 'CS%'\n", " ])\n", " \n", " # if having one page\n", " if page_number == 1:\n", " elements = driver.find_elements_by_css_selector(\".record_result tr\")\n", " elements = elements[1:len(elements)+1]\n", " \n", " for element in elements:\n", " tmp_dict = {\n", " 'rank' : element.find_elements_by_css_selector('td')[0].text,\n", " 'name' : element.find_elements_by_css_selector('td')[1].text,\n", " 'team' : element.find_elements_by_css_selector('td')[2].text,\n", " 'POS' : element.find_elements_by_css_selector('td')[3].text,\n", " 'G' : element.find_elements_by_css_selector('td')[4].text,\n", " 'GS' : element.find_elements_by_css_selector('td')[5].text,\n", " 'IP' : element.find_elements_by_css_selector('td')[6].text,\n", " 'E' : element.find_elements_by_css_selector('td')[7].text,\n", " 'PKO' : element.find_elements_by_css_selector('td')[8].text,\n", " 'PO' : element.find_elements_by_css_selector('td')[9].text,\n", " 'A' : element.find_elements_by_css_selector('td')[10].text,\n", " 'DP' : element.find_elements_by_css_selector('td')[11].text,\n", " 'FPCT' : element.find_elements_by_css_selector('td')[12].text,\n", " 'PB' : element.find_elements_by_css_selector('td')[13].text,\n", " 'SB' : element.find_elements_by_css_selector('td')[14].text,\n", " 'CS' : element.find_elements_by_css_selector('td')[15].text,\n", " 'CS%' : element.find_elements_by_css_selector('td')[16].text,\n", " }\n", " defense_df.loc[len(defense_df)] = tmp_dict\n", " \n", " # if having other more pages\n", " if page_number > 1:\n", " for page in range(1, page_number+1):\n", " driver.find_element_by_css_selector('#cphContainer_cphContents_ucPager_btnNo' + str(page)).click()\n", " time.sleep(api_delay_term)\n", " \n", " elements = driver.find_elements_by_css_selector(\".record_result tr\")\n", " elements = elements[1:len(elements)+1]\n", " \n", " for element in elements:\n", " tmp_dict = {\n", " 'rank' : element.find_elements_by_css_selector('td')[0].text,\n", " 'name' : element.find_elements_by_css_selector('td')[1].text,\n", " 'team' : element.find_elements_by_css_selector('td')[2].text,\n", " 'POS' : element.find_elements_by_css_selector('td')[3].text,\n", " 'G' : element.find_elements_by_css_selector('td')[4].text,\n", " 'GS' : element.find_elements_by_css_selector('td')[5].text,\n", " 'IP' : element.find_elements_by_css_selector('td')[6].text,\n", " 'E' : element.find_elements_by_css_selector('td')[7].text,\n", " 'PKO' : element.find_elements_by_css_selector('td')[8].text,\n", " 'PO' : element.find_elements_by_css_selector('td')[9].text,\n", " 'A' : element.find_elements_by_css_selector('td')[10].text,\n", " 'DP' : element.find_elements_by_css_selector('td')[11].text,\n", " 'FPCT' : element.find_elements_by_css_selector('td')[12].text,\n", " 'PB' : element.find_elements_by_css_selector('td')[13].text,\n", " 'SB' : element.find_elements_by_css_selector('td')[14].text,\n", " 'CS' : element.find_elements_by_css_selector('td')[15].text,\n", " 'CS%' : element.find_elements_by_css_selector('td')[16].text,\n", " }\n", " defense_df.loc[len(defense_df)] = tmp_dict\n", "\n", " return defense_df" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": true }, "outputs": [], "source": [ "nexen_defense_df = crawling_defense(13, 1)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [], "source": [ "nexen_defense_df.to_csv(\"nexen_defense.csv\",encoding='utf-8')" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "440.5892791748047" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "start_time = time.time()\n", "doosan_defense_df = crawling_defense(13,2)\n", "lotte_defense_df = crawling_defense(13,3)\n", "samsung_defense_df = crawling_defense(13,4)\n", "hanhwa_defense_df = crawling_defense(13,5)\n", "KIA_defense_df = crawling_defense(13,6)\n", "KT_defense_df = crawling_defense(13,7)\n", "LG_defense_df = crawling_defense(13,8)\n", "NC_defense_df = crawling_defense(13,9)\n", "SK_defense_df = crawling_defense(13,10)\n", "end_time = time.time()\n", "\n", "end_time-start_time" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": true }, "outputs": [], "source": [ "doosan_defense_df.to_csv(\"doosan_defense.csv\",encoding='utf-8')\n", "lotte_defense_df.to_csv(\"lotte_defense.csv\",encoding='utf-8')\n", "samsung_defense_df.to_csv(\"samsung_defense.csv\",encoding='utf-8')\n", "hanhwa_defense_df.to_csv(\"hanhwa_defense.csv\",encoding='utf-8')\n", "KIA_defense_df.to_csv(\"KIA_defense.csv\",encoding='utf-8')\n", "KT_defense_df.to_csv(\"KT_defense.csv\",encoding='utf-8')\n", "LG_defense_df.to_csv(\"LG_defense.csv\",encoding='utf-8')\n", "NC_defense_df.to_csv(\"NC_defense.csv\",encoding='utf-8')\n", "SK_defense_df.to_csv(\"SK_defense.csv\",encoding='utf-8')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.1" } }, "nbformat": 4, "nbformat_minor": 0 }
mit
sanket-patil/speech-vectors
notebooks/urban_sounds.ipynb
1
966
{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "parent_dir = '../data/UrbanSound8K/audio'\n", "tr_sub_dirs = ['fold1','fold2']\n", "ts_sub_dirs = ['fold3']\n", "tr_features, tr_labels = parse_audio_files(parent_dir, tr_sub_dirs)\n", "ts_features, ts_labels = parse_audio_files(parent_dir, ts_sub_dirs)\n", "\n", "tr_labels = one_hot_encode(tr_labels)\n", "ts_labels = one_hot_encode(ts_labels)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.13" } }, "nbformat": 4, "nbformat_minor": 2 }
apache-2.0
JackKelly/neuralnilm_prototype
notebooks/experiment_027.ipynb
2
91149
{ "metadata": { "name": "", "signature": "sha256:6bd262373db9812afeb1d1d373e0e042f6b0b6dcadca3257be6a88eaa84b4377" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import print_function, division\n", "import matplotlib\n", "matplotlib.use('nbagg') # interactive plots in iPython. New in matplotlib v1.4\n", "# %matplotlib inline" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 1 }, { "cell_type": "code", "collapsed": false, "input": [ "import matplotlib.pyplot as plt\n", "from nilmtk import DataSet, MeterGroup\n", "import pandas as pd\n", "import numpy as np\n", "from time import time" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Couldn't import dot_parser, loading of dot files will not be possible.\n" ] }, { "output_type": "stream", "stream": "stderr", "text": [ "/usr/local/lib/python2.7/dist-packages/bottleneck/__init__.py:13: RuntimeWarning: numpy.ufunc size changed, may indicate binary incompatibility\n", " from .func import (nansum, nanmax, nanmin, nanmean, nanstd, nanvar, median,\n", "/usr/local/lib/python2.7/dist-packages/bottleneck/__init__.py:19: RuntimeWarning: numpy.ufunc size changed, may indicate binary incompatibility\n", " from .move import (move_sum, move_nansum,\n" ] } ], "prompt_number": 2 }, { "cell_type": "code", "collapsed": false, "input": [ "from pybrain.supervised import RPropMinusTrainer\n", "from pybrain.datasets import SequentialDataSet\n", "from pybrain.structure import RecurrentNetwork, FullConnection\n", "from pybrain.structure.modules import LSTMLayer, BiasUnit, LinearLayer, TanhLayer, SigmoidLayer" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 3 }, { "cell_type": "code", "collapsed": false, "input": [ "CONFIG = dict(\n", " EPOCHS_PER_CYCLE = 5,\n", " CYCLES = 6,\n", " HIDDEN_LAYERS = [50, 50],\n", " PEEPHOLES = True,\n", " TRAINERCLASS = RPropMinusTrainer,\n", " # instead, you may also try\n", " # TRAINERCLASS = BackpropTrainer(net, dataset=trndata, verbose=True, \n", " # momentum=0.9, learningrate=0.00001)\n", " INPUTS = [], #, 'hour of day (int)', 'outside temperature', 'is business day (-1, 1)'\n", " EXPERIMENT_NUMBER = 27\n", ")" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 4 }, { "cell_type": "code", "collapsed": false, "input": [ "# Load dataset\n", "dataset = DataSet('/data/mine/vadeec/merged/ukdale.h5')\n", "dataset.set_window(\"2014-01-01\", \"2014-01-07\")\n", "elec = dataset.buildings[1].elec" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 5 }, { "cell_type": "code", "collapsed": false, "input": [ "# Select top-5 meters identified in UK-DALE paper\n", "# APPLIANCES = ['kettle', 'dish washer', 'HTPC', 'washer dryer', 'fridge freezer']\n", "APPLIANCES = ['kettle', 'toaster']\n", "selected_meters = [elec[appliance] for appliance in APPLIANCES]\n", "selected_meters.append(elec.mains())\n", "selected = MeterGroup(selected_meters)" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 6 }, { "cell_type": "code", "collapsed": false, "input": [ "df = selected.dataframe_of_meters()" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 7 }, { "cell_type": "code", "collapsed": false, "input": [ "# Use human-readable column names\n", "df.columns = selected.get_labels(df.columns)" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 8 }, { "cell_type": "code", "collapsed": false, "input": [ "mains = (df['Toaster'] + df['Kettle']).fillna(0).diff().dropna()\n", "appliances = df['Toaster'].fillna(0).diff().dropna()\n", "del df" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 9 }, { "cell_type": "code", "collapsed": false, "input": [ "# Constrain outputs to [-1,1] because we're using TanH\n", "maximum = appliances.abs().max()\n", "appliances /= maximum\n", "mains_same_scale_as_appliances = mains / maximum\n", "\n", "# standardise input\n", "mains = (mains - mains.mean()) / mains.std()" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 10 }, { "cell_type": "code", "collapsed": false, "input": [ "ax = mains.plot()\n", "ax = appliances.plot(ax=ax)\n", "plt.show()" ], "language": "python", "metadata": {}, "outputs": [ { "javascript": [ "/* Put everything inside the global mpl namespace */\n", "window.mpl = {};\n", "\n", "mpl.get_websocket_type = function() {\n", " if (typeof(WebSocket) !== 'undefined') {\n", " return WebSocket;\n", " } else if (typeof(MozWebSocket) !== 'undefined') {\n", " return MozWebSocket;\n", " } else {\n", " alert('Your browser does not have WebSocket support.' +\n", " 'Please try Chrome, Safari or Firefox \u2265 6. ' +\n", " 'Firefox 4 and 5 are also supported but you ' +\n", " 'have to enable WebSockets in about:config.');\n", " };\n", "}\n", "\n", "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", " this.id = figure_id;\n", "\n", " this.ws = websocket;\n", "\n", " this.supports_binary = (this.ws.binaryType != undefined);\n", "\n", " if (!this.supports_binary) {\n", " var warnings = document.getElementById(\"mpl-warnings\");\n", " if (warnings) {\n", " warnings.style.display = 'block';\n", " warnings.textContent = (\n", " \"This browser does not support binary websocket messages. \" +\n", " \"Performance may be slow.\");\n", " }\n", " }\n", "\n", " this.imageObj = new Image();\n", "\n", " this.context = undefined;\n", " this.message = undefined;\n", " this.canvas = undefined;\n", " this.rubberband_canvas = undefined;\n", " this.rubberband_context = undefined;\n", " this.format_dropdown = undefined;\n", "\n", " this.focus_on_mousover = false;\n", " this.image_mode = 'full';\n", "\n", " this.root = $('<div/>');\n", " this.root.attr('style', 'display: inline-block');\n", " $(parent_element).append(this.root);\n", "\n", " this._init_header(this);\n", " this._init_canvas(this);\n", " this._init_toolbar(this);\n", "\n", " var fig = this;\n", "\n", " this.waiting = false;\n", "\n", " this.ws.onopen = function () {\n", " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", " fig.send_message(\"send_image_mode\", {});\n", " fig.send_message(\"refresh\", {});\n", " }\n", "\n", " this.imageObj.onload = function() {\n", " if (fig.image_mode == 'full') {\n", " // Full images could contain transparency (where diff images\n", " // almost always do), so we need to clear the canvas so that\n", " // there is no ghosting.\n", " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", " }\n", " fig.context.drawImage(fig.imageObj, 0, 0);\n", " fig.waiting = false;\n", " };\n", "\n", " this.imageObj.onunload = function() {\n", " this.ws.close();\n", " }\n", "\n", " this.ws.onmessage = this._make_on_message_function(this);\n", "\n", " this.ondownload = ondownload;\n", "}\n", "\n", "mpl.figure.prototype._init_header = function() {\n", " var titlebar = $(\n", " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n", " 'ui-helper-clearfix\"/>');\n", " var titletext = $(\n", " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n", " 'text-align: center; padding: 3px;\"/>');\n", " titlebar.append(titletext)\n", " this.root.append(titlebar);\n", " this.header = titletext[0];\n", "}\n", "\n", "mpl.figure.prototype._init_canvas = function() {\n", " var fig = this;\n", "\n", " var canvas_div = $('<div/>');\n", " canvas_div.resizable({ resize: mpl.debounce_resize(\n", " function(event, ui) { fig.request_resize(ui.size.width, ui.size.height); }\n", " , 50)});\n", "\n", " canvas_div.attr('style', 'position: relative; clear: both;');\n", " this.root.append(canvas_div);\n", "\n", " var canvas = $('<canvas/>');\n", " canvas.addClass('mpl-canvas');\n", " canvas.attr('style', \"left: 0; top: 0; z-index: 0;\")\n", "\n", " function canvas_keyboard_event(event) {\n", " return fig.key_event(event, event['data']);\n", " }\n", "\n", " this.canvas = canvas[0];\n", " this.context = canvas[0].getContext(\"2d\");\n", "\n", " var rubberband = $('<canvas/>');\n", " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", " function mouse_event_fn(event) {\n", " return fig.mouse_event(event, event['data']);\n", " }\n", " rubberband.mousedown('button_press', mouse_event_fn);\n", " rubberband.mouseup('button_release', mouse_event_fn);\n", " // Throttle sequential mouse events to 1 every 20ms.\n", " rubberband.mousemove('motion_notify', mouse_event_fn);\n", "\n", " canvas_div.append(canvas);\n", " canvas_div.append(rubberband);\n", "\n", " canvas_div.keydown('key_press', canvas_keyboard_event);\n", " canvas_div.keydown('key_release', canvas_keyboard_event);\n", "\n", " this.rubberband = rubberband;\n", " this.rubberband_canvas = rubberband[0];\n", " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", " this.rubberband_context.strokeStyle = \"#000000\";\n", "\n", " this._resize_canvas = function(width, height) {\n", " // Keep the size of the canvas, canvas container, and rubber band\n", " // canvas in synch.\n", " canvas_div.css('width', width)\n", " canvas_div.css('height', height)\n", "\n", " canvas.attr('width', width);\n", " canvas.attr('height', height);\n", "\n", " rubberband.attr('width', width);\n", " rubberband.attr('height', height);\n", " }\n", "\n", " // Set the figure to an initial 600x600px, this will subsequently be updated\n", " // upon first draw.\n", " this._resize_canvas(600, 600);\n", "}\n", "\n", "mpl.figure.prototype._init_toolbar = function() {\n", " var fig = this;\n", "\n", " var nav_element = $('<div/>')\n", " nav_element.attr('style', 'width: 100%');\n", " this.root.append(nav_element);\n", "\n", " // Define a callback function for later on.\n", " function toolbar_event(event) {\n", " return fig.toolbar_button_onclick(event['data']);\n", " }\n", " function toolbar_mouse_event(event) {\n", " return fig.toolbar_button_onmouseover(event['data']);\n", " }\n", "\n", " for(var toolbar_ind in mpl.toolbar_items){\n", " var name = mpl.toolbar_items[toolbar_ind][0];\n", " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", " var image = mpl.toolbar_items[toolbar_ind][2];\n", " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", "\n", " if (!name) {\n", " // put a spacer in here.\n", " continue;\n", " }\n", " var button = $('<button/>');\n", " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n", " 'ui-button-icon-only');\n", " button.attr('role', 'button');\n", " button.attr('aria-disabled', 'false');\n", " button.click(method_name, toolbar_event);\n", " button.mouseover(tooltip, toolbar_mouse_event);\n", "\n", " var icon_img = $('<span/>');\n", " icon_img.addClass('ui-button-icon-primary ui-icon');\n", " icon_img.addClass(image);\n", " icon_img.addClass('ui-corner-all');\n", "\n", " var tooltip_span = $('<span/>');\n", " tooltip_span.addClass('ui-button-text');\n", " tooltip_span.html(tooltip);\n", "\n", " button.append(icon_img);\n", " button.append(tooltip_span);\n", "\n", " nav_element.append(button);\n", " }\n", "\n", " var fmt_picker_span = $('<span/>');\n", "\n", " var fmt_picker = $('<select/>');\n", " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n", " fmt_picker_span.append(fmt_picker);\n", " nav_element.append(fmt_picker_span);\n", " this.format_dropdown = fmt_picker[0];\n", "\n", " for (var ind in mpl.extensions) {\n", " var fmt = mpl.extensions[ind];\n", " var option = $(\n", " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n", " fmt_picker.append(option)\n", " }\n", "\n", " // Add hover states to the ui-buttons\n", " $( \".ui-button\" ).hover(\n", " function() { $(this).addClass(\"ui-state-hover\");},\n", " function() { $(this).removeClass(\"ui-state-hover\");}\n", " );\n", "\n", " var status_bar = $('<span class=\"mpl-message\"/>');\n", " nav_element.append(status_bar);\n", " this.message = status_bar[0];\n", "}\n", "\n", "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n", " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", " // which will in turn request a refresh of the image.\n", " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n", "}\n", "\n", "mpl.figure.prototype.send_message = function(type, properties) {\n", " properties['type'] = type;\n", " properties['figure_id'] = this.id;\n", " this.ws.send(JSON.stringify(properties));\n", "}\n", "\n", "mpl.figure.prototype.send_draw_message = function() {\n", " if (!this.waiting) {\n", " this.waiting = true;\n", " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n", " }\n", "}\n", "\n", "mpl.figure.prototype.handle_resize = function(fig, msg) {\n", " var size = msg['size'];\n", " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n", " fig._resize_canvas(size[0], size[1]);\n", " fig.send_message(\"refresh\", {});\n", " };\n", "}\n", "\n", "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n", " var x0 = msg['x0'];\n", " var y0 = fig.canvas.height - msg['y0'];\n", " var x1 = msg['x1'];\n", " var y1 = fig.canvas.height - msg['y1'];\n", " x0 = Math.floor(x0) + 0.5;\n", " y0 = Math.floor(y0) + 0.5;\n", " x1 = Math.floor(x1) + 0.5;\n", " y1 = Math.floor(y1) + 0.5;\n", " var min_x = Math.min(x0, x1);\n", " var min_y = Math.min(y0, y1);\n", " var width = Math.abs(x1 - x0);\n", " var height = Math.abs(y1 - y0);\n", "\n", " fig.rubberband_context.clearRect(\n", " 0, 0, fig.canvas.width, fig.canvas.height);\n", "\n", " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", "}\n", "\n", "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n", " // Updates the figure title.\n", " fig.header.textContent = msg['label'];\n", "}\n", "\n", "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n", " var cursor = msg['cursor'];\n", " switch(cursor)\n", " {\n", " case 0:\n", " cursor = 'pointer';\n", " break;\n", " case 1:\n", " cursor = 'default';\n", " break;\n", " case 2:\n", " cursor = 'crosshair';\n", " break;\n", " case 3:\n", " cursor = 'move';\n", " break;\n", " }\n", " fig.rubberband_canvas.style.cursor = cursor;\n", "}\n", "\n", "mpl.figure.prototype.handle_message = function(fig, msg) {\n", " fig.message.textContent = msg['message'];\n", "}\n", "\n", "mpl.figure.prototype.handle_draw = function(fig, msg) {\n", " // Request the server to send over a new figure.\n", " fig.send_draw_message();\n", "}\n", "\n", "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n", " fig.image_mode = msg['mode'];\n", "}\n", "\n", "mpl.figure.prototype.updated_canvas_event = function() {\n", " // Called whenever the canvas gets updated.\n", " this.send_message(\"ack\", {});\n", "}\n", "\n", "// A function to construct a web socket function for onmessage handling.\n", "// Called in the figure constructor.\n", "mpl.figure.prototype._make_on_message_function = function(fig) {\n", " return function socket_on_message(evt) {\n", " if (evt.data instanceof Blob) {\n", " /* FIXME: We get \"Resource interpreted as Image but\n", " * transferred with MIME type text/plain:\" errors on\n", " * Chrome. But how to set the MIME type? It doesn't seem\n", " * to be part of the websocket stream */\n", " evt.data.type = \"image/png\";\n", "\n", " /* Free the memory for the previous frames */\n", " if (fig.imageObj.src) {\n", " (window.URL || window.webkitURL).revokeObjectURL(\n", " fig.imageObj.src);\n", " }\n", "\n", " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", " evt.data);\n", " fig.updated_canvas_event();\n", " return;\n", " }\n", " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n", " fig.imageObj.src = evt.data;\n", " fig.updated_canvas_event();\n", " return;\n", " }\n", "\n", " var msg = JSON.parse(evt.data);\n", " var msg_type = msg['type'];\n", "\n", " // Call the \"handle_{type}\" callback, which takes\n", " // the figure and JSON message as its only arguments.\n", " try {\n", " var callback = fig[\"handle_\" + msg_type];\n", " } catch (e) {\n", " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n", " return;\n", " }\n", "\n", " if (callback) {\n", " try {\n", " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", " callback(fig, msg);\n", " } catch (e) {\n", " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n", " }\n", " }\n", " };\n", "}\n", "\n", "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", "mpl.findpos = function(e) {\n", " //this section is from http://www.quirksmode.org/js/events_properties.html\n", " var targ;\n", " if (!e)\n", " e = window.event;\n", " if (e.target)\n", " targ = e.target;\n", " else if (e.srcElement)\n", " targ = e.srcElement;\n", " if (targ.nodeType == 3) // defeat Safari bug\n", " targ = targ.parentNode;\n", "\n", " // jQuery normalizes the pageX and pageY\n", " // pageX,Y are the mouse positions relative to the document\n", " // offset() returns the position of the element relative to the document\n", " var x = e.pageX - $(targ).offset().left;\n", " var y = e.pageY - $(targ).offset().top;\n", "\n", " return {\"x\": x, \"y\": y};\n", "};\n", "\n", "mpl.figure.prototype.mouse_event = function(event, name) {\n", " var canvas_pos = mpl.findpos(event)\n", "\n", " if (this.focus_on_mouseover && name === 'motion_notify')\n", " {\n", " this.canvas.focus();\n", " }\n", "\n", " var x = canvas_pos.x;\n", " var y = canvas_pos.y;\n", "\n", " this.send_message(name, {x: x, y: y, button: event.button});\n", "\n", " /* This prevents the web browser from automatically changing to\n", " * the text insertion cursor when the button is pressed. We want\n", " * to control all of the cursor setting manually through the\n", " * 'cursor' event from matplotlib */\n", " event.preventDefault();\n", " return false;\n", "}\n", "\n", "mpl.figure.prototype.key_event = function(event, name) {\n", " /* Don't fire events just when a modifier is changed. Modifiers are\n", " sent along with other keys. */\n", " if (event.keyCode >= 16 && event.keyCode <= 20) {\n", " return;\n", " }\n", "\n", " value = '';\n", " if (event.ctrlKey) {\n", " value += \"ctrl+\";\n", " }\n", " if (event.altKey) {\n", " value += \"alt+\";\n", " }\n", " value += String.fromCharCode(event.keyCode).toLowerCase();\n", "\n", " this.send_message(name, {key: value});\n", "}\n", "\n", "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n", " if (name == 'download') {\n", " var format_dropdown = this.format_dropdown;\n", " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", " this.ondownload(this, format);\n", " } else {\n", " this.send_message(\"toolbar_button\", {name: name});\n", " }\n", "};\n", "\n", "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n", " this.message.textContent = tooltip;\n", "};\n", "\n", "mpl.debounce_event = function(func, time){\n", " var timer;\n", " return function(event){\n", " clearTimeout(timer);\n", " timer = setTimeout(function(){ func(event); }, time);\n", " };\n", "}\n", "\n", "mpl.debounce_resize = function(func, time){\n", " var timer;\n", " return function(event, ui){\n", " clearTimeout(timer);\n", " timer = setTimeout(function(){ func(event, ui); }, time);\n", " };\n", "}\n", "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"]];\n", "\n", "mpl.extensions = [\"eps\", \"jpeg\", \"pgf\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", "\n", "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n", " // Create a \"websocket\"-like object which calls the given IPython comm\n", " // object with the appropriate methods. Currently this is a non binary\n", " // socket, so there is still some room for performance tuning.\n", " var ws = {};\n", "\n", " ws.close = function() {\n", " comm.close()\n", " };\n", " ws.send = function(m) {\n", " //console.log('sending', m);\n", " comm.send(m);\n", " };\n", " // Register the callback with on_msg.\n", " comm.on_msg(function(msg) {\n", " //console.log('receiving', msg['content']['data'], msg);\n", " // Pass the mpl event to the overriden (by mpl) onmessage function.\n", " ws.onmessage(msg['content']['data'])\n", " });\n", " return ws;\n", "}\n", "\n", "mpl.mpl_figure_comm = function(comm, msg) {\n", " // This is the function which gets called when the mpl process\n", " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", "\n", " var id = msg.content.data.id;\n", " // Get hold of the div created by the display call when the Comm\n", " // socket was opened in Python.\n", " var element = $(\"#\" + id);\n", " var ws_proxy = comm_websocket_adapter(comm)\n", "\n", " var fig = new mpl.figure(id, ws_proxy,\n", " function() { },\n", " element.get(0));\n", "\n", " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", " // web socket which is closed, not our websocket->open comm proxy.\n", " ws_proxy.onopen();\n", "\n", " fig.parent_element = element.get(0);\n", " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", "\n", " var output_index = fig.cell_info[2]\n", " var cell = fig.cell_info[0];\n", "\n", " // Disable right mouse context menu.\n", " $(fig.rubberband_canvas).bind(\"contextmenu\",function(e){\n", " return false;\n", " });\n", "\n", "};\n", "\n", "mpl.figure.prototype.handle_close = function(fig, msg) {\n", " // Update the output cell to use the data from the current canvas.\n", " fig.push_to_output();\n", " var dataURL = fig.canvas.toDataURL();\n", " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", " // the notebook keyboard shortcuts fail.\n", " IPython.keyboard_manager.enable()\n", " $(fig.parent_element).html('<img src=\"' + dataURL + '\">');\n", " fig.send_message('closing', {});\n", " fig.ws.close()\n", "}\n", "\n", "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n", " // Turn the data on the canvas into data in the output cell.\n", " var dataURL = this.canvas.toDataURL();\n", " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\">';\n", "}\n", "\n", "mpl.figure.prototype.updated_canvas_event = function() {\n", " // Tell IPython that the notebook contents must change.\n", " IPython.notebook.set_dirty(true);\n", " this.send_message(\"ack\", {});\n", " var fig = this;\n", " // Wait a second, then push the new image to the DOM so\n", " // that it is saved nicely (might be nice to debounce this).\n", " setTimeout(function () { fig.push_to_output() }, 1000);\n", "}\n", "\n", "mpl.figure.prototype._init_toolbar = function() {\n", " var fig = this;\n", "\n", " var nav_element = $('<div/>')\n", " nav_element.attr('style', 'width: 100%');\n", " this.root.append(nav_element);\n", "\n", " // Define a callback function for later on.\n", " function toolbar_event(event) {\n", " return fig.toolbar_button_onclick(event['data']);\n", " }\n", " function toolbar_mouse_event(event) {\n", " return fig.toolbar_button_onmouseover(event['data']);\n", " }\n", "\n", " for(var toolbar_ind in mpl.toolbar_items){\n", " var name = mpl.toolbar_items[toolbar_ind][0];\n", " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", " var image = mpl.toolbar_items[toolbar_ind][2];\n", " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", "\n", " if (!name) { continue; };\n", "\n", " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n", " button.click(method_name, toolbar_event);\n", " button.mouseover(tooltip, toolbar_mouse_event);\n", " nav_element.append(button);\n", " }\n", "\n", " // Add the status bar.\n", " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n", " nav_element.append(status_bar);\n", " this.message = status_bar[0];\n", "\n", " // Add the close button to the window.\n", " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n", " var button = $('<button class=\"btn btn-mini btn-danger\" href=\"#\" title=\"Close figure\"><i class=\"fa fa-times icon-remove icon-large\"></i></button>');\n", " button.click(function (evt) { fig.handle_close(fig, {}); } );\n", " button.mouseover('Close figure', toolbar_mouse_event);\n", " buttongrp.append(button);\n", " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", " titlebar.prepend(buttongrp);\n", "}\n", "\n", "mpl.find_output_cell = function(html_output) {\n", " // Return the cell and output element which can be found *uniquely* in the notebook.\n", " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", " // IPython event is triggered only after the cells have been serialised, which for\n", " // our purposes (turning an active figure into a static one), is too late.\n", " var cells = IPython.notebook.get_cells();\n", " var ncells = cells.length;\n", " for (var i=0; i<ncells; i++) {\n", " var cell = cells[i];\n", " if (cell.cell_type == 'code'){\n", " for (var j=0; j<cell.output_area.outputs.length; j++) {\n", " var data = cell.output_area.outputs[j];\n", " if (cell.output_area.outputs[j]['text/html'] == html_output) {\n", " var output = cell.output_area.outputs[j];\n", " return [cell, output, j];\n", " }\n", " }\n", " }\n", " }\n", "}\n", "\n", "// Register the function which deals with the matplotlib target/channel.\n", "// The kernel may be null if the page has been refreshed.\n", "if (IPython.notebook.kernel != null) {\n", " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", "}\n" ], "metadata": {}, "output_type": "display_data", "text": [ "<IPython.core.display.Javascript at 0x7f943f539190>" ] }, { "html": [ "<img src=\"\">" ], "metadata": {}, "output_type": "display_data", "text": [ "<IPython.core.display.HTML at 0x7f94398c6f90>" ] } ], "prompt_number": 11 }, { "cell_type": "code", "collapsed": false, "input": [ "# Build PyBrain dataset\n", "N_OUTPUTS = 1\n", "N_INPUTS = 1\n", "N = len(mains)\n", "ds = SequentialDataSet(N_INPUTS, N_OUTPUTS)\n", "ds.newSequence()\n", "ds.setField('input', pd.DataFrame(mains).values)\n", "ds.setField('target', pd.DataFrame(appliances).values)" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 12 }, { "cell_type": "code", "collapsed": false, "input": [ "ds.getSequence(0)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stderr", "text": [ "/usr/local/lib/python2.7/dist-packages/PyBrain-0.3.3-py2.7.egg/pybrain/datasets/sequential.py:45: DeprecationWarning: using a non-integer number instead of an integer will result in an error in the future\n", " return self.getField(field)[seq[index]:]\n" ] }, { "metadata": {}, "output_type": "pyout", "prompt_number": 13, "text": [ "[array([[ 1.63132217e-07],\n", " [ 1.63132217e-07],\n", " [ 1.63132217e-07],\n", " ..., \n", " [ 1.63132217e-07],\n", " [ 1.63132217e-07],\n", " [ 1.63132217e-07]]), array([[ 0.],\n", " [ 0.],\n", " [ 0.],\n", " ..., \n", " [ 0.],\n", " [ 0.],\n", " [ 0.]])]" ] } ], "prompt_number": 13 }, { "cell_type": "code", "collapsed": false, "input": [ "# Build network\n", "net = RecurrentNetwork()\n", "\n", "def lstm_layer_name(i):\n", " return 'LSTM{:d}'.format(i)\n", "\n", "# Add modules\n", "net.addInputModule(LinearLayer(dim=ds.indim, name='in'))\n", "net.addOutputModule(TanhLayer(dim=ds.outdim, name='out'))\n", "net.addModule(TanhLayer(10, name='tanh_input')) \n", "net.addModule(TanhLayer(10, name='tanh_output')) \n", "for i, n_cells in enumerate(CONFIG['HIDDEN_LAYERS']):\n", " net.addModule(LSTMLayer(n_cells, name=lstm_layer_name(i+1), peepholes=CONFIG['PEEPHOLES'])) \n", "\n", "# Bias\n", "bias = BiasUnit()\n", "net.addModule(bias)\n", "\n", "#c_output_bias = FullConnection(bias, net['out'], name='c_output_bias')\n", "#c_output_bias._setParameters(np.zeros(1))\n", "#net.addConnection(c_output_bias)\n", "\n", "c_tanh_input_bias = FullConnection(bias, net['tanh_input'], name='c_tanh_input_bias')\n", "c_tanh_input_bias._params = np.random.uniform(-0.1, 0.1, size=c_tanh_input_bias.paramdim)\n", "net.addConnection(c_tanh_input_bias)\n", "\n", "c_tanh_output_bias = FullConnection(bias, net['tanh_output'], name='c_tanh_output_bias')\n", "c_tanh_output_bias._params = np.random.uniform(-0.1, 0.1, size=c_tanh_output_bias.paramdim)\n", "net.addConnection(c_tanh_output_bias)\n", "\n", "forwards_connection = FullConnection(net['in'], net['tanh_input'], name='c_in_to_tanh')\n", "forwards_connection._params = np.random.uniform(-0.2, 0.2, size=forwards_connection.paramdim)\n", "net.addConnection(forwards_connection)\n", "\n", "# Add other connections\n", "n_hidden_layers = len(CONFIG['HIDDEN_LAYERS'])\n", "prev_layer_name = 'tanh_input'\n", "for i in range(n_hidden_layers):\n", " hidden_layer_i = i + 1\n", " layer_name = lstm_layer_name(hidden_layer_i)\n", " \n", " recurrent_connection = FullConnection(net[layer_name], net[layer_name], name='c_' + layer_name + '_to_' + layer_name)\n", " recurrent_connection._params = np.random.uniform(-0.05, 0.05, size=recurrent_connection.paramdim)\n", " net.addRecurrentConnection(recurrent_connection)\n", " \n", " #bias_connection = FullConnection(bias, net[layer_name], name='c_' + layer_name + '_bias')\n", " #bias_connection._params = np.zeros(bias_connection.paramdim)\n", " #net.addConnection(bias_connection)\n", " \n", " forwards_connection = FullConnection(net[prev_layer_name], net[layer_name], name='c_' + prev_layer_name + '_to_' + layer_name)\n", " forwards_connection._params = np.random.uniform(-0.2, 0.2, size=forwards_connection.paramdim)\n", " net.addConnection(forwards_connection)\n", " prev_layer_name = layer_name\n", " \n", "layer_name = lstm_layer_name(n_hidden_layers)\n", "connect_to_out = FullConnection(net[layer_name], net['tanh_output'], name='c_' + layer_name + '_to_tanh_out')\n", "connect_to_out._params = np.random.uniform(-0.2, 0.2, size=connect_to_out.paramdim)\n", "net.addConnection(connect_to_out)\n", "\n", "connect_to_out = FullConnection(net['tanh_output'], net['out'], name='c_tanh_to_out')\n", "connect_to_out._params = np.random.uniform(-0.2, 0.2, size=connect_to_out.paramdim)\n", "net.addConnection(connect_to_out)\n", "\n", "net.sortModules()\n", "print(net)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "RecurrentNetwork-8\n", " Modules:\n", " [<BiasUnit 'BiasUnit-7'>, <LinearLayer 'in'>, <TanhLayer 'tanh_input'>, <LSTMLayer 'LSTM1'>, <LSTMLayer 'LSTM2'>, <TanhLayer 'tanh_output'>, <TanhLayer 'out'>]\n", " Connections:\n", " [<FullConnection 'c_LSTM1_to_LSTM2': 'LSTM1' -> 'LSTM2'>, <FullConnection 'c_LSTM2_to_tanh_out': 'LSTM2' -> 'tanh_output'>, <FullConnection 'c_in_to_tanh': 'in' -> 'tanh_input'>, <FullConnection 'c_tanh_input_bias': 'BiasUnit-7' -> 'tanh_input'>, <FullConnection 'c_tanh_input_to_LSTM1': 'tanh_input' -> 'LSTM1'>, <FullConnection 'c_tanh_output_bias': 'BiasUnit-7' -> 'tanh_output'>, <FullConnection 'c_tanh_to_out': 'tanh_output' -> 'out'>]\n", " Recurrent Connections:\n", " [<FullConnection 'c_LSTM1_to_LSTM1': 'LSTM1' -> 'LSTM1'>, <FullConnection 'c_LSTM2_to_LSTM2': 'LSTM2' -> 'LSTM2'>]\n" ] } ], "prompt_number": 14 }, { "cell_type": "code", "collapsed": false, "input": [ "# define a training method\n", "trainer = CONFIG['TRAINERCLASS'](net, dataset=ds, verbose=True, delta0=0.001)" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 15 }, { "cell_type": "code", "collapsed": false, "input": [ "# carry out the training\n", "net.reset()\n", "# train_errors = []\n", "t0 = time()\n", "EPOCHS = CONFIG['EPOCHS_PER_CYCLE'] * CONFIG['CYCLES']\n", "# trainer.trainUntilConvergence(maxEpochs=EPOCHS, verbose=True)\n", "# start_time = time()\n", "print(\"Starting training with\", EPOCHS, \"epochs...\")\n", "for i in xrange(CONFIG['CYCLES']):\n", " trainer.trainEpochs(CONFIG['EPOCHS_PER_CYCLE'])\n", "# train_errors.append(trainer.testOnData())\n", " # epoch = (i+1) * CONFIG['EPOCHS_PER_CYCLE']\n", " # seconds_elapsed = time() - start_time\n", " # seconds_per_epoch = seconds_elapsed / epoch\n", " # seconds_remaining = (EPOCHS - epoch) * seconds_per_epoch\n", " # td_elapsed = timedelta(seconds=seconds_elapsed)\n", " # td_elapsed_str = str(td_elapsed).split('.')[0]\n", " # eta = (datetime.now() + timedelta(seconds=seconds_remaining)).time()\n", " # eta = eta.strftime(\"%H:%M:%S\")\n", " # print(\"\\r epoch = {}/{} error = {} elapsed = {} ETA = {}\"\n", " # .format(epoch, EPOCHS, train_errors[-1], td_elapsed_str, eta),\n", " # end=\"\")\n", " # stdout.flush()\n", "print(\"Finished training. total seconds =\", time() - t0)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Starting training with 30 epochs...\n", "epoch 30 total error 0.00014874 avg weight 0.16229" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "epoch 31 total error 0.00014686 avg weight 0.16954" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "epoch 32 total error 0.00014537 avg weight 0.17074" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "epoch 33 total error 0.00014352 avg weight 0.17974" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "epoch 34 total error 0.00014177 avg weight 0.18547" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "epoch 35 total error 0.00013974 avg weight 0.19769" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "epoch 36 total error 0.00013765 avg weight 0.20793" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "epoch 37 total error 0.00013669 avg weight 0.22592" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "epoch 38 total error 0.00013648 avg weight 0.22912" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "epoch 39 total error 0.00013385 avg weight 0.24714" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "epoch 40 total error 0.00013122 avg weight 0.26037" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "epoch 41 total error 0.00012792 avg weight 0.28771" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "epoch 42 total error 0.00012395 avg weight 0.31065" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "epoch 43 total error 0.00011931 avg weight 0.33982" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "epoch 44 total error 0.00011386 avg weight 0.35532" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "epoch 45 total error 0.00010802 avg weight 0.38739" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "epoch 46 total error 0.00010454 avg weight 0.4019" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "epoch 47 total error 0.00010307 avg weight 0.42146" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "epoch 48 total error 9.9174e-05 avg weight 0.44001" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "epoch 49 total error 9.4455e-05 avg weight 0.47119" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n" ] }, { "ename": "KeyboardInterrupt", "evalue": "", "output_type": "pyerr", "traceback": [ "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[1;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", "\u001b[1;32m<ipython-input-23-b36b80f7b18a>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m()\u001b[0m\n\u001b[0;32m 8\u001b[0m \u001b[1;32mprint\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m\"Starting training with\"\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mEPOCHS\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;34m\"epochs...\"\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 9\u001b[0m \u001b[1;32mfor\u001b[0m \u001b[0mi\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mxrange\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mCONFIG\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m'CYCLES'\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 10\u001b[1;33m \u001b[0mtrainer\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mtrainEpochs\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mCONFIG\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m'EPOCHS_PER_CYCLE'\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 11\u001b[0m \u001b[1;31m# train_errors.append(trainer.testOnData())\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 12\u001b[0m \u001b[1;31m# epoch = (i+1) * CONFIG['EPOCHS_PER_CYCLE']\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32m/usr/local/lib/python2.7/dist-packages/PyBrain-0.3.3-py2.7.egg/pybrain/supervised/trainers/trainer.pyc\u001b[0m in \u001b[0;36mtrainEpochs\u001b[1;34m(self, epochs, *args, **kwargs)\u001b[0m\n\u001b[0;32m 35\u001b[0m Additional arguments are passed on to the train method.\"\"\"\n\u001b[0;32m 36\u001b[0m \u001b[1;32mfor\u001b[0m \u001b[0mdummy\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mrange\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mepochs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 37\u001b[1;33m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mtrain\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m*\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 38\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 39\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0mtrain\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32m/usr/local/lib/python2.7/dist-packages/PyBrain-0.3.3-py2.7.egg/pybrain/supervised/trainers/rprop.pyc\u001b[0m in \u001b[0;36mtrain\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m 42\u001b[0m \u001b[0mponderation\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;36m0\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 43\u001b[0m \u001b[1;32mfor\u001b[0m \u001b[0mseq\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mds\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_provideSequences\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 44\u001b[1;33m \u001b[0me\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mp\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_calcDerivs\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mseq\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 45\u001b[0m \u001b[0merrors\u001b[0m \u001b[1;33m+=\u001b[0m \u001b[0me\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 46\u001b[0m \u001b[0mponderation\u001b[0m \u001b[1;33m+=\u001b[0m \u001b[0mp\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32m/usr/local/lib/python2.7/dist-packages/PyBrain-0.3.3-py2.7.egg/pybrain/supervised/trainers/backprop.pyc\u001b[0m in \u001b[0;36m_calcDerivs\u001b[1;34m(self, seq)\u001b[0m\n\u001b[0;32m 83\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mmodule\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mreset\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 84\u001b[0m \u001b[1;32mfor\u001b[0m \u001b[0msample\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mseq\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 85\u001b[1;33m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mmodule\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mactivate\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0msample\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m0\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 86\u001b[0m \u001b[0merror\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;36m0\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 87\u001b[0m \u001b[0mponderation\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;36m0.\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32m/usr/local/lib/python2.7/dist-packages/PyBrain-0.3.3-py2.7.egg/pybrain/structure/networks/recurrent.pyc\u001b[0m in \u001b[0;36mactivate\u001b[1;34m(self, inpt)\u001b[0m\n\u001b[0;32m 48\u001b[0m \u001b[1;34m\"\"\"Do one transformation of an input and return the result.\"\"\"\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 49\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0minputbuffer\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0moffset\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0minpt\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 50\u001b[1;33m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mforward\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 51\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mforget\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 52\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0moutputbuffer\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0moffset\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mcopy\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32m/usr/local/lib/python2.7/dist-packages/PyBrain-0.3.3-py2.7.egg/pybrain/structure/networks/recurrent.pyc\u001b[0m in \u001b[0;36mforward\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m 65\u001b[0m \u001b[1;32mif\u001b[0m \u001b[1;32mnot\u001b[0m \u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0moffset\u001b[0m \u001b[1;33m+\u001b[0m \u001b[1;36m1\u001b[0m \u001b[1;33m<\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0minputbuffer\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m0\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 66\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_growBuffers\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 67\u001b[1;33m \u001b[0msuper\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mRecurrentNetworkComponent\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mforward\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 68\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0moffset\u001b[0m \u001b[1;33m+=\u001b[0m \u001b[1;36m1\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 69\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mmaxoffset\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mmax\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0moffset\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mmaxoffset\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32m/usr/local/lib/python2.7/dist-packages/PyBrain-0.3.3-py2.7.egg/pybrain/structure/modules/module.pyc\u001b[0m in \u001b[0;36mforward\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m 73\u001b[0m \u001b[1;34m\"\"\"Produce the output from the input.\"\"\"\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 74\u001b[0m self._forwardImplementation(self.inputbuffer[self.offset],\n\u001b[1;32m---> 75\u001b[1;33m self.outputbuffer[self.offset])\n\u001b[0m\u001b[0;32m 76\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 77\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0mbackward\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32m/usr/local/lib/python2.7/dist-packages/PyBrain-0.3.3-py2.7.egg/pybrain/structure/networks/recurrent.pyc\u001b[0m in \u001b[0;36m_forwardImplementation\u001b[1;34m(self, inbuf, outbuf)\u001b[0m\n\u001b[0;32m 91\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0moffset\u001b[0m \u001b[1;33m>\u001b[0m \u001b[1;36m0\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 92\u001b[0m \u001b[1;32mfor\u001b[0m \u001b[0mc\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mrecurrentConns\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 93\u001b[1;33m \u001b[0mc\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mforward\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0moffset\u001b[0m \u001b[1;33m-\u001b[0m \u001b[1;36m1\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0moffset\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 94\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 95\u001b[0m \u001b[1;32mfor\u001b[0m \u001b[0mm\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mmodulesSorted\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32m/usr/local/lib/python2.7/dist-packages/PyBrain-0.3.3-py2.7.egg/pybrain/structure/connections/connection.pyc\u001b[0m in \u001b[0;36mforward\u001b[1;34m(self, inmodOffset, outmodOffset)\u001b[0m\n\u001b[0;32m 75\u001b[0m self._forwardImplementation(\n\u001b[0;32m 76\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0minmod\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0moutputbuffer\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0minmodOffset\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0minSliceFrom\u001b[0m\u001b[1;33m:\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0minSliceTo\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 77\u001b[1;33m self.outmod.inputbuffer[outmodOffset, self.outSliceFrom:self.outSliceTo])\n\u001b[0m\u001b[0;32m 78\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 79\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32m/usr/local/lib/python2.7/dist-packages/PyBrain-0.3.3-py2.7.egg/pybrain/structure/connections/full.pyc\u001b[0m in \u001b[0;36m_forwardImplementation\u001b[1;34m(self, inbuf, outbuf)\u001b[0m\n\u001b[0;32m 17\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 18\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0m_forwardImplementation\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0minbuf\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0moutbuf\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 19\u001b[1;33m \u001b[0moutbuf\u001b[0m \u001b[1;33m+=\u001b[0m \u001b[0mdot\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mreshape\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mparams\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0moutdim\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mindim\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0minbuf\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 20\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 21\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0m_backwardImplementation\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mouterr\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0minerr\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0minbuf\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32m/usr/local/lib/python2.7/dist-packages/numpy/core/fromnumeric.pyc\u001b[0m in \u001b[0;36mreshape\u001b[1;34m(a, newshape, order)\u001b[0m\n\u001b[0;32m 219\u001b[0m \u001b[1;32mexcept\u001b[0m \u001b[0mAttributeError\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 220\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0m_wrapit\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0ma\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;34m'reshape'\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mnewshape\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0morder\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0morder\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 221\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mreshape\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mnewshape\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0morder\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0morder\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 222\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 223\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;31mKeyboardInterrupt\u001b[0m: " ] } ], "prompt_number": 23 }, { "cell_type": "code", "collapsed": false, "input": [ "# Disaggregate!\n", "START = \"2014-01-01\"\n", "END = \"2014-01-03\"\n", "print(\"Starting disaggregation...\")\n", "net.reset()\n", "estimates = pd.Series(index=appliances[START:END].index)\n", "for date, mains_value in mains[START:END].iteritems():\n", " estimates[date] = net.activate(mains_value)" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "code", "collapsed": false, "input": [ "estimates.plot()\n", "plt.show()" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "code", "collapsed": false, "input": [ "mains[START:END].plot()\n", "plt.show()" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "code", "collapsed": false, "input": [ "appliances[START:END].plot()\n", "plt.show()" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "code", "collapsed": false, "input": [ "ax = estimates[START:END].cumsum().plot(label='estimates')\n", "ax = mains_same_scale_as_appliances[START:END].cumsum().plot(ax=ax, label='aggregate')\n", "ax = appliances[START:END].cumsum().plot(ax=ax)\n", "plt.legend()\n", "plt.show()" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "code", "collapsed": false, "input": [ "estimates.cumsum().to_hdf('neuronilm_estimates_{:03d}.hdf'.format(CONFIG['EXPERIMENT_NUMBER']), 'df')" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 22 } ], "metadata": {} } ] }
mit
jaewoosong/torch-tutorial-korean
todo/DQN_Training_iTorch.ipynb
1
34667
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Deep Q-Network Training\n", "\n", "In this worksheet we are going to go over training a Reinforcement Learning (RL) agent trained on ATARI 2600 games. We will use the famous game of pong as a our training test bed.\n", "\n", "One can download the code required to train the DQN agent at https://sites.google.com/a/deepmind.com/dqn/" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Setup\n", "We first start by setting up a function to update our lua path so that DQN related classes can be loaded." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [], "source": [ "require 'cutorch'\n", "require 'cunn'\n", "require 'alewrap'\n", "\n", "torch.setdefaulttensortype('torch.FloatTensor')\n", "torch.setnumthreads(4)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Game Environment\n", "We create an RL environment that wraps an ATARI game so that we can train an agent.\n", "The agent will have no knowledge of what game it is playing." ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "\n", "Playing:\tpong\t\n" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "-- Create the Game Object\n", "game_options = {\n", " -- name of the game to play (you need the ROM file for this game)\n", " env='pong',\n", " -- directory where the ROMS are stored\n", " game_path='/home/ubuntu/torch/install/share/lua/5.1/dqn/roms/',\n", " -- we want get RGB frames\n", " env_params = {useRGB = true},\n", " -- we will repeat each action 4 times\n", " actrep = 4,\n", " -- for every new episode, play null actions a random number of time [0,30]\n", " random_starts = 30,\n", " -- use gpu\n", " gpu = 1,\n", " -- have some info logs\n", " verbose = 2\n", "}\n", "game_env = alewrap.GameEnvironment(game_options)\n", "game_actions = game_env:getActions()" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "{\n", " 1 : 0\n", " 2 : 3\n", " 3 : 4\n", "}\n", "\n" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "-- These are the valid actions for this game. The total possible action set is in (0-17)\n", "print(game_actions)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## The Agent\n", "We create an agent that can **learn to play** any game" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "Creating Agent Network from dqn.convnet_atari3\t\n" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" }, { "data": { "text/plain": [ "nn.Sequential {\n", " [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> (7) -> (8) -> (9) -> (10) -> (11) -> output]\n", " (1): nn.Reshape(4x84x84)\n", " (2): nn.SpatialConvolution(in: 4, out: 32, kW: 8, kH: 8, dW: 4, dH: 4, padding: 1)\n", " (3): nn.Rectifier\n", " (4): nn.SpatialConvolution(in: 32, out: 64, kW: 4, kH: 4, dW: 2, dH: 2)\n", " (5): nn.Rectifier\n", " (6): nn.SpatialConvolution(in: 64, out: 64, kW: 3, kH: 3)\n", " (7): nn.Rectifier\n", " (8): nn.Reshape(3136)\n", " (9): nn.Linear(3136 -> 512)\n", " (10): nn.Rectifier\n", " (11): nn.Linear(512 -> 3)\n", "}\n", "{\n", " gradInput : CudaTensor - empty\n", " modules : \n", " {\n", " 1 : \n", " nn.Reshape(4x84x84)\n", " {\n", " nelement : 28224\n", " _input : CudaTensor - empty\n", " output : CudaTensor - size: 1x4x84x84\n", " gradInput : CudaTensor - empty\n", " size : LongStorage - size: 3\n", " _gradOutput : CudaTensor - empty\n", " batchsize : LongStorage - size: 4\n", " }\n", " 2 : \n", " nn.SpatialConvolution(in: 4, out: 32, kW: 8, kH: 8, dW: 4, dH: 4, padding: 1)\n", " {\n", " dH : 4\n", " dW : 4\n", " nOutputPlane : 32\n", " output : CudaTensor - size: 1x32x20x20\n", " gradInput : CudaTensor - empty\n", " " ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" }, { "data": { "text/plain": [ "finput : CudaTensor - empty\n", " fgradInput : CudaTensor - empty\n", " gradBias : CudaTensor - size: 32\n", " weight : CudaTensor - size: 32x4x8x8\n", " bias : CudaTensor - size: 32\n", " gradWeight : CudaTensor - size: 32x4x8x8\n", " padding : 1\n", " nInputPlane : 4\n", " kW : 8\n", " kH : 8\n", " }\n", " 3 : \n", " nn.Rectifier\n", " {\n", " gradInput : CudaTensor - empty\n", " output : CudaTensor - size: 1x32x20x20\n", " }\n", " 4 : \n", " nn.SpatialConvolution(in: 32, out: 64, kW: 4, kH: 4, dW: 2, dH: 2)\n", " {\n", " dH : 2\n", " dW : 2\n", " nOutputPlane : 64\n", " output : CudaTensor - size: 1x64x9x9\n", " gradInput : CudaTensor - empty\n", " finput : CudaTensor - empty\n", " fgradInput : CudaTensor - empty\n", " gradBias : CudaTensor - size: 64\n", " weight : CudaTensor - size: 64x32x4x4\n", " bias : CudaTensor - size: 64\n", " gradWeight : CudaTensor - size: 64x32x4x4\n", " padding : 0\n", " nInputPlane : 32\n", " kW : 4\n", " kH : 4\n", " }\n", " 5 : \n", " nn.Rectifier\n", " {\n", " gradInput : CudaTensor - empty\n", " output : CudaTensor - size: 1x64x9x9\n", " }\n", " 6 : \n", " nn.SpatialConvolution(in: 64, out: 64, kW: 3, kH: 3)\n", " {\n", " dH : 1\n", " dW : 1\n", " nOutputPlane : 64\n", " output : CudaTensor - size: 1x64x7x7\n" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" }, { "data": { "text/plain": [ " gradInput : CudaTensor - empty\n", " finput : CudaTensor - empty\n", " fgradInput : CudaTensor - empty\n", " gradBias : CudaTensor - size: 64\n", " weight : CudaTensor - size: 64x64x3x3\n", " bias : CudaTensor - size: 64\n", " gradWeight : CudaTensor - size: 64x64x3x3\n", " padding : 0\n", " nInputPlane : 64\n", " kW : 3\n", " kH : 3\n", " }\n", " 7 : \n", " nn.Rectifier\n", " {\n", " gradInput : CudaTensor - empty\n", " output : CudaTensor - size: 1x64x7x7\n", " }\n", " 8 : \n", " nn.Reshape(3136)\n", " {\n", " nelement : 3136\n", " _input : CudaTensor - empty\n", " output : CudaTensor - empty\n", " gradInput : CudaTensor - empty\n", " size : LongStorage - size: 1\n", " _gradOutput : CudaTensor - empty\n", " batchsize : LongStorage - size: 2\n", " }\n", " 9 : \n", " nn.Linear(3136 -> 512)\n", " {\n", " gradBias : CudaTensor - size: 512\n", " weight : CudaTensor - size: 512x3136\n", " bias : CudaTensor - size: 512\n", " gradInput : CudaTensor - empty\n", " gradWeight : CudaTensor - size: 512x3136\n", " output : CudaTensor - empty\n", " }\n", " 10 : \n", " nn.Rectifier\n", " {\n", " gradInput : CudaTensor - empty\n", " output : CudaTensor - empty\n", " }\n", " 11 : \n", " nn.Linear(512 -> 3)\n", " {\n", " gradBias : CudaTensor - size: 3\n", " weight : CudaTensor - size: 3x512\n", " bias : CudaTensor - size: 3\n", " gradInput : CudaTensor - empty\n" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" }, { "data": { "text/plain": [ " gradWeight : CudaTensor - size: 3x512\n", " output : CudaTensor - empty\n", " }\n", " }\n", " output : CudaTensor - empty\n", "}\n", "Convolutional layers flattened output size:\t3136\t\n" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "require 'dqn'\n", "\n", "agent_params = {\n", " -- The agent only knows about actions it can take in the environment\n", " actions = game_actions,\n", " -- we will use gpu\n", " gpu = 1,\n", " -- we will print info\n", " verbose = 2,\n", " -- learning rate for SGD\n", " lr=0.00025,\n", " -- Random exploration ratio, start from 100% exploration\n", " ep=1,\n", " -- Drop down to 10% exploration\n", " ep_end=0.1,\n", " -- Linear decay over 1M steps\n", " ep_endt=1000000,\n", " -- Discount factor \\gamma for Q-Learning\n", " discount=0.99,\n", " -- Number of frames to input into convolutional net\n", " hist_len=4,\n", " -- Learning starts after a delay of 50K actions, we do not want to overfit onto early experience\n", " learn_start=50000,\n", " -- We will store last 1M transitions\n", " replay_memory=1000000,\n", " -- We will update every 4 actions\n", " update_freq=4,\n", " -- Will update only once\n", " n_replay=1,\n", " -- Network spec\n", " network= \"dqn.convnet_atari3\",\n", " -- pre-processing spec (just scale down to grayscale 84x84)\n", " preproc=\"dqn.net_downsample_2x_full_y\",\n", " -- size of inputs after rescale (84*84)\n", " state_dim=7056,\n", " -- size of minibatch for SGD\n", " minibatch_size=32,\n", " -- we will scale reward values to limit to 1,-1\n", " rescale_r=1,\n", " -- we use Y channel\n", " ncols=1,\n", " -- buffer on GPU\n", " bufferSize=512,\n", " -- set of validation transitions to track training progress\n", " valid_size=500,\n", " -- update target Q network every 10K updates\n", " target_q=10000,\n", " -- we will clip errors that go into DQN\n", " clip_delta=1,\n", " -- clip reward between -1,1\n", " min_reward=-1,\n", " -- clip reward between -1,1\n", " max_reward=1\n", "}\n", "agent = dqn.NeuralQLearner(agent_params)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Logs to Track\n", "We will log the following quantities to track training" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [], "source": [ "-- The following quantities are collected during evaluation of the agent\n", "\n", "-- How many times did the agent end up in reward states\n", "reward_counts = {}\n", "-- How many episodes did the agent finish\n", "episode_counts = {}\n", "-- How long does it take to learn/test\n", "time_history = { 0 }\n", "-- The reward agent gets during testing\n", "reward_history = {}\n", "\n", "-- The following are training measures collected by agent during training\n", "\n", "-- Maximum q-value during training\n", "qmax_history = {}\n", "-- Value of the validation states\n", "v_history = {}\n", "-- TD error over the validation states\n", "td_history = {}\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## What does the input to agent look like?\n", "The current state of the game can be grabbed by getState() fucnction call on the environment." ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "{\n", " reward : 0\n", " screen : CudaTensor - size: 1x3x210x160\n", " terminal : false\n", "}\n" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "\n", "screen, reward, terminal = game_env:getState()\n", "print({screen = screen, reward = reward, terminal = terminal})\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## What does the game look like?\n", "We can play some random actions and look at the screens. We should be able to play animations with ipython!" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA8wAAAT4CAIAAABCBtwMAAAgAElEQVR4nO3dMW4cV9qo4eqLTm9i5eNJZhagiDcQtADBAhj9UM41aALGDDxbsHKFBBrwAgwnjLSAmWQ8OdfQN/CAv+ChRIp8u6urzvPAQQNsog/wQfCrj0fFzX6/nwAAgM52mqbNZnPv13764bvjHoaDuNjdTqa8dqY8AlMegSmPwJRHcLG73U7HHeeb168efM/Pv/x6hJMcx83l+YPvObu6PsJJTPlwTPlLTPkQTPlwTPlLTPkQTPlwTmTK/+fQHwAAAKMR2QAAEBPZAAAQ28742Z/f/nnMbaGl+/z2z2NuC62DKY/AlEdgyiMw5RGY8tHYZAMAQExkAwBATGQDAEBMZAMAQExkAwBATGQDAEBMZAMAQExkAwBATGQDAEBMZAMAQExkAwBAbDvjZ795/WrGTz++m8vzuY8wA1MegSmPwJRHYMojMOWjsckGAICYyAYAgJjIBgCA2Ga/3394+2LuY3BAF7vbaZpMed1MeQSmPAJTHoEpj+Bid2uTDQAAMZENAACxzX6/n/sMAACwKjbZAAAQE9kAABAT2QAAEBPZAAAQE9kAABAT2QAAEBPZAAAQE9kAABAT2QAAENtO0/Th7Yu5j8EBXexuJ1NeO1MegSmPwJRHYMojuNjd2mQDAEBMZAMAQExkAwBATGQDAEBMZAMAQExkAwBATGQDAEBMZAMAQExkAwBATGQDAEBMZAMAQExkAwBATGQDAEBMZAMAQExkAwBATGQDAEBMZAMAQExkAwBATGQDAEBMZAMAQExkAwBATGQDAEBMZAMAQExkAwBATGQDAEBMZAMAQExkAwBATGQDAEBMZAMAQExkAwBATGQDAEBMZAMAQExkAwBATGQDAEBMZAMAQExkAwBATGQDAEBMZAMAQExkAwBATGQDAEBMZAMAQExkAwBATGQDAEBMZAMAQExkAwBATGQDAEBMZAMAQExkAwBATGQDAEBsO/cBAAAW5uby/O712dX1jCfhZNlkAwBAzCYbAAD+6Jk/r7DJBgCAmMgGAICYyAYAgJjIBgCAmMgGAICYyAYAgJjIBgCAmOdkA0DJ7wIEJptsAADIiWwAAIiJbAAAiIlsAACIiWwAAIh5usgy+LfqAHA6/L+YB9lkAwBAzCYbAAD+6Jk/r7DJBgCAmMgGAICYyAYAgJjIBgCAmMgGAICYyAYAgJjIBgCAmOdkAxyP3946ApMFJptsAADIiWwAAIiJbAAAiLmTDafCbV0AWA2bbAAAiNlkL4O9JgDAgthkAwBATGQDAEBMZAMAQExkAwBATGQDAEBMZAMAQExkAwBATGQDAEBMZAMAQMxvfAQ4Hr+9FWAQNtkAABAT2QAAEBPZAAAQcycbToXbugCwGjbZAAAQE9kAABAT2QAAEBPZAAAQE9kAABAT2QAAEBPZAAAQE9kAABAT2QAAEBPZAAAQE9kAABAT2QAAEBPZAAAQE9kAABAT2QAAEBPZAAAQE9kAABAT2QAAEBPZAAAQE9kAABAT2QAAEBPZAAAQE9kAABAT2QAAEBPZAAAQE9kAABAT2QAAEBPZAAAQE9kAABAT2QAAEBPZAAAQE9kAABAT2QAAEBPZAAAQE9kAABAT2QAAEBPZAAAQE9kAABAT2QAAEBPZAAAQE9kAABAT2QAAEBPZAAAQE9kAABAT2QAAEBPZAAAQE9kAABAT2QAAEBPZAAAQE9kAABAT2QAAEBPZAAAQE9kAABAT2QAAEBPZAAAQE9kAABAT2QAAEBPZAAAQE9kAABAT2QAAEBPZAAAQE9kAABAT2QAAENvs9/u5zwAAAKtikw0AADGRDQAAMZENAAAxkQ0AADGRDQAAMZENAAAxkQ0AADGRDQAAMZENAAAxkQ0AADGRDQAAMZENAAAxkQ0AADGRDQAAMZENAAAxkQ0AADGRDQAAse00TZvN5t6v/fTDd8c9DAdxsbudTHntTHkEpjwCUx6BKY/gYne7nY47zjevXz34np9/+fUIJzmOm8vzB99zdnV9hJOY8uGY8peY8iGY8uGY8peY8iGY8uGcyJRdFwEAgJjIBgCAmMgGAIDYdsbP/vz2z2NuCy3d57d/HnNbaB1MeQSmPAJTHoEpj8CUj8YmGwAAYiIbAABiIhsAAGIiGwAAYiIbAABiIhsAAGIiGwAAYiIbAABiIhsAAGIiGwAAYiIbAABi2xk/+83rVzN++vHdXJ7PfYQZmPIITHkEpjwCUx6BKR+NTTYAAMRENgAAxEQ2AADENvv9/sPbF3MfgwO62N1O02TK62bKIzDlEZjyCEx5BBe7W5tsAACIiWwAAIht9vv93GcAAIBVsckGAICYyAYAgJjIBgCAmMgGAICYyAYAgJjIBgCAmMgGAICYyAYAgJjIBgCA2Haapg9vX8x9DA7oYnc7mfLamfIITHkEpjwCUx7Bxe7WJhsAAGIiGwAAYiIbAABiIhsAAGIiGwAAYiIbAABiIhsAAGIiGwAAYiIbAABiIhsAAGIiGwAAYiIbAABiIhsAAGIiGwAAYiIbAABiIhsAAGIiGwAAYiIbAABiIhsAAGIiGwAAYiIbAABiIhsAAGIiGwAAYiIbAABiIhsAAGIiGwAAYiIbAABiIhsAAGIiGwAAYiIbAABiIhsAAGIiGwAAYiIbAABiIhsAAGIiGwAAYiIbAABiIhsAAGIiGwAAYiIbAABiIhsAAGIiGwAAYiIbAABiIhsAAGIiGwAAYiIbAABiIhsAAGIiGwAAYtu5D8Cj3Fye370+u7qe8SQAADzIJhsAAGIiGwAAYiIbAABiIhsAAGIiGwAAYiIbAABiIhsAAGIiGwAAYiIbAABiIhsAAGIiGwAAYiIbAABiIhsAAGIiGwAAYiIbAABi27kPwKOcXV3PfQQO7uby/O61iQPAotlkAwBATGQDAEBMZAMAQExkAwBATGQDAEBMZAMAQExkAwBATGQDAEBMZAMAQExkAwBATGQDAEBMZAMAQExkAwBAbDv3AQAGcnN5fvf67Op6xpMAcFA22QAAELPJhlNhrwkAq2GTDQAAMZtsACi5eQ9MNtkAAJCzyQYA+DZ+XjGCZ07ZJhsAAGIiGwAAYiIbAABiIhsAAGIiGwAAYiIbAABiIhsAAGIiGwAAYiIbAABifuMjwPH4zXAAg7DJBgCAmMgGAICYyAYAgJg72QBQcvMemGyyAQAgZ5MNAPBt/LxiBM+csk02AADERDYAAMRENgAAxEQ2AADERDYAAMRENgAAxEQ2AADERDYAAMRENgAAxEQ2AADERDYAAMRENgAAxEQ2AADERDYAAMRENgAAxEQ2AADERDYAAMRENgAAxEQ2AADERDYAAMRENgAAxEQ2AADERDYAAMRENgAAxEQ2AADERDYAAMRENgAAxEQ2AADERDYAAMRENgAAxEQ2AADERDYAAMRENgAAxEQ2AADERDYAAMRENgAAxEQ2AADERDYAAMRENgAAxEQ2AADERDYAAMRENgAAxEQ2AADERDYAAMRENgAAxEQ2AADERDYAAMRENgAAxEQ2AADERDYAAMRENgAAxEQ2AADERDYAAMRENgAAxEQ2AADERDYAAMRENgAAxEQ2AADERDYAAMQ2+/1+7jMAAMCq2GQDAEBMZAMAQExkAwBATGQDAEBMZAMAQExkAwBATGQDAEBMZAMAQExkAwBATGQDAEBMZAMAQExkAwBATGQDAEBMZAMAQExkAwBATGQDAEBMZAMAQGw7TdNms7n3az/98N1xD8NBXOxuJ1NeO1MegSmPwJRHYMojuNjdbqfjjvPN61cPvufnX349wkmO4+by/MH3nF1dH+Ekpnw4pvwlpnwIpnw4pvwlpnwIpnw4JzJl10UAACAmsgEAICayAQAgtp3xsz+//fOY20JL9/ntn8fcFloHUx6BKY/AlEdgyiMw5aOxyQYAgJjIBgCAmMgGAICYyAYAgJjIBgCAmMgGAICYyAYAgJjIBgCAmMgGAICYyAYAgJjIBgCA2HbGz37z+tWMn358N5fncx9hBqY8AlMegSmPwJRHYMpHY5MNAAAxkQ0AADGRDQAAsc1+v//w9sXcx+CALna30zSZ8rqZ8ghMeQSmPAJTHsHF7tYmGwAAYiIbAABim/1+P/cZAABgVWyyAQAgJrIBACAmsgEAICayAQAgJrIBACAmsgEAICayAQAgJrIBACAmsgEAILadpunD2xdzH4MDutjdTqa8dqY8AlMegSmPwJRHcLG7tckGAICYyAYAgJjIBgCAmMgGAICYyAYAgJjIBgCAmMgGAICYyAYAgJjIBgCAmMgGAICYyAYAgJjIBgCAmMgGAICYyAYAgJjIBgCAmMgGAICYyAYAgJjIBgCAmMgGAICYyAYAgJjIBgCAmMgGAICYyAYAgJjIBgCAmMgGAICYyAYAgJjIBgCAmMgGAICYyAYAgJjIBgCAmMgGAICYyAYAgJjIBgCAmMgGAICYyAYAgJjIBgCAmMgGAICYyAYAgJjIBgCAmMgGAICYyAYAgJjIBgCAmMgGAIDYdu4DAADAybm5PL97fXZ1/a3fbpMNAAAxkQ0AADGRDQAAMZENAAAxkQ0AADGRDQAAMZENAAAxkQ0AADGRDQAAMZENAAAxkQ0AADGRDQAAMZENAAAxkQ0AADGRDQAAse3cBwAAWJiby/O712dX1zOehMN55mRtsgEAICayAQAgJrIBACAmsgEAICayAQAgJrIBACAmsgEAICayAQAgJrIBACAmsgEAICayAQAgJrIBACAmsgEAICayAQAgJrIBACC2nfsAAAALc3Z1PfcROHU22QAAEBPZAAAQE9kAABAT2QAAEPMPH2Fcf/nz93ev//mv32Y8CQCsjMgGFublu/fTNH36+Pe5DwL3u7k8v3vtGRQwLNdFYFx//f5Pd//NfZbHevnu/ct3f5v7FADwAJvsZbAXAQBYEJENsGZu3gPMwnURYGE+ffzRhexVevnu/e8X7gFWwCYbWBJ5/a0+v3B/ypvs32/bf/r449wHAWjYZAMAQMwmGwCWzc17OEEiG06FZ8gwOLft18qz7RmTyAZgfgrsOU755r3b9gzLnWwAAIjZZAMAnDo37xfHJhsAOCC37dfKs+2/ziYbADgUeV05tZv3bts/yCYbAABiNtkwrn/89u+5jwAA6ySyAY7H09BHYLIMwm37rxPZMK5TuNUHwBLJ6weJ7GWwFwEAWBCRDbBmbt4DzMLTRQAAIGaTDbBmbt4DzMImGwAAYjbZALBsbt7DCRLZcCo8QwYAVkNkA8CyuXkPJ8idbAAAiNlkAwCcOjfvF8cmGwAAYjbZAACnzs37xbHJBgCAmMgGAICY6yIAx+Np6ACDsMkGAICYyAYAgJjIBgCAmMgGAICYyAYAgJjIBgCAmMgGAICYyAYAgJjIBgCAmMgGAICYyAYAgJjIBgCAmMgGAICYyAYAgJjIBgCAmMgGAICYyAYAgJjIBgCAmMgGAICYyAYAgJjIBgCAmMgGAICYyAYAgJjIBgCAmMgGAICYyAYAgJjIBgCAmMgGAICYyAYAgJjIBgCAmMgGAICYyAYAgJjIBgCAmMgGAICYyAYAgJjIBgCAmMgGAICYyAYAgJjIBgCAmMgGAICYyAYAgJjIBgCAmMgGAICYyAYAgJjIBgCA2Ga/3899BgAAWBWbbAAAiIlsAACIiWwAAIiJbAAAiIlsAACIiWwAAIiJbAAAiIlsAACIiWwAAIiJbAAAiIlsAACIiWwAAIiJbAAAiIlsAACIiWwAAIiJbAAAiIlsAACIbadp2mw2937tpx++O+5hOIiL3e1kymtnyiMw5RGY8ghMeQQXu9vtdNxxvnn96sH3/PzLr0c4yXHcXJ4/+J6zq+sjnMSUD8eUv8SUD8GUD8eUv8SUD8GUD+dEpuy6CAAAxEQ2AADERDYAAMS2M37257d/HnNbaOk+v/3zmNtC62DKIzDlEZjyCEx5BKZ8NDbZAAAQE9kAABAT2QAAEBPZAAAQE9kAABAT2QAAEBPZAAAQE9kAABAT2QAAEBPZAAAQE9kAABDbzvjZb16/mvHTj+/m8nzuI8zAlEdgyiMw5RGY8ghM+WhssgEAICayAQAgJrIBACC22e/3H96+mPsYHNDF7naaJlNeN1MegSmPwJRHYMojuNjd2mQDAEBMZAMAQGyz3+/nPgMAAKyKTTYAAMRENgAAxEQ2AADERDYAAMRENgAAxEQ2AADERDYAAMRENgAAxEQ2AADEttM0fXj7Yu5jcEAXu9vJlNfOlEdgyiMw5aW4uTy/e312df1N32vKS/HMKdtkAwBATGQDAEBMZAMAQExkAwBATGQDAEBMZAMAQExkAwBATGQDAEBMZAMAQExkAwBATGQDAEBMZAMAQExkAwBAbDv3AQBgVW4uz+9en11dz3gSDsdkeZBNNgAAxGyyAQDgj5758wqbbAAAiIlsAACIiWwAAIiJbAAAiIlsAACIiWwAAIiJbAAAiIlsAACIiWwAAIiJbAAAiIlsAACIiWwAAIiJbAAAiG3nPgAArMrZ1fXcRwDmZ5MNAAAxkQ0AADGRDQAAMZENAAAxkQ0AADFPFwE4npvL87vXnkEBsGI22QAAEBPZAAAQE9kAABAT2QAAEBPZAAAQE9kAABAT2QAAEBPZAAAQE9kAABDzGx+XwW+JAwBYEJtsAACIiWwAAIiJbAAAiIlsAACIiWwAAIh5ugicCs+QGYHJAgzCJhsAAGIiGwAAYiIbAABiIhsAAGIiGwAAYiIbAABiIhsAAGIiGwAAYiIbAABifuPjMvgtcQAAC2KTDQAAMZENAAAxkQ0AADGRDQAAMZENAAAxTxeBU+EZMgCwGjbZAAAQE9kAABAT2QAAEBPZAAAQE9kAABAT2QAAEBPZAAAQE9kAABAT2QAAEBPZAAAQE9kAABAT2QAAEBPZAAAQE9kAABAT2QAAEBPZAAAQE9kAABAT2QAAEBPZAAAQE9kAABAT2QAAEBPZAAAQE9kAABAT2QAAEBPZAAAQE9kAABAT2QAAEBPZAAAQ2z7he/7y5+/vXv/zX791hwEAgDVY8Cb75bv3L9+9n/sUAADwR0+J7L9+/6e7//IDPdLLd+9fvvvbXJ8OAABfseBNNgAAnKan3MlmBG7eAwA82YI32Z8+/vjp49/nPgU9t+0BgKVb6iZbXh/a5xfuj7nJ/v22/aePPx7tEwEAcgveZAMAwGla6iYbeD437wHgQGyyOTlu26+V2/YAjMMmm9Mir4/pmDfv3bYHYCg22QAAELPJBlgzN+8BZmGTDRyJ2/Zr5bY9wH+zyQaOQV7P5dA37922B7iXTTYAAMSessn+x2//zs8BADyNm/dwgmyyAXgWt+3Xym17eI6nbLL9LRmA38nrU3CIm/du28Mz2WQDAEDM00W4n5v3AHA63LxfHJtsAOAebtuvldv2x2GTzf38LRlgZPL61FQ37922PxqbbAAAiNlkw7jcvAeAA7HJBgAYiNv2x2GTDeNy8x5gNPL6aGyyAQAgZpMNsGZu3gPMwiYbAABiNtkAa+bmPcAsbLIBACBmkw0Ay+bmPZwgm2wAAIjZZAPAsrl5DyfIJhsAAGI22QAAp87N+8WxyQYAgJhNNgDAqXPzfnFssgEAICayAQAgJrIBACAmsgEAICayAQAgJrIBACAmsgEAICayAQAgJrIBACAmsgEAICayAQAgJrIBACAmsgEAICayAQAgJrIBACAmsgEAICayAQAgJrIBACAmsgEAICayAQAgJrIBACAmsgEAICayAQAgJrIBACC22e/3c58BAABWxSYbAABiIhsAAGIiGwAAYiIbAABiIhsAAGIiGwAAYiIbAABiIhsAAGIiGwAAYiIbAABiIhsAAGIiGwAAYiIbAABiIhsAAGIiGwAAYiIbAABiIhsAAGLbaZo2m829X/vph++OexgO4mJ3O5ny2pnyCEx5BKY8AlMewcXudjsdd5xvXr968D0///LrEU5yHDeX5w++5+zq+ggnMeXDMeUvMeVDMOXDMeUvMeVDMOXDOZEpuy4CAAAxkQ0AADGRDQAAse2Mn/357Z/H3BZaus9v/zzmttA6mPIITHkEpjwCUx6BKR+NTTYAAMRENgAAxEQ2AADERDYAAMRENgAAxEQ2AADERDYAAMRENgAAxEQ2AADERDYAAMRENgAAxLYzfvab169m/PTju7k8n/sIMzDlEZjyCEx5BKY8AlM+GptsAACIiWwAAIiJbAAAiG32+/2Hty/mPgYHdLG7nabJlNfNlEdgyiMw5RGY8ggudrc22QAAEBPZAAAQ2+z3+7nPAAAAq2KTDQAAMZENAAAxkQ0AADGRDQAAMZENAAAxkQ0AADGRDQAAMZENAAAxkQ0AALHtNE0f3r6Y+xgc0MXudjLltTPlEZjyCEx5BKY8govdrU02AADERDYAAMRENgAAxEQ2AADERDYAAMRENgAAxEQ2AADERDYAAMRENgAAxEQ2AADERDYAAMS2cx+AR7m5PL97fXZ1PeNJAAB4kE02AADEbLLhVPh5BQCshk02AADERDYAAMRENgAAxEQ2AADERDYAAMQ8XQTgeDxDBmAQNtkAABAT2QAAEBPZAAAQcycbAODb+PcVPMgmGwAAYiIbAABiIhsAAGLuZC+D+14AS+G2LjDZZAMAQM4mG06FjRcArIZNNgAAxEQ2AADERDYAAMRENgAAxEQ2AADEPF0E4Hg8QwZgEDbZAAAQE9kAABAT2QAAEHMnGwDg2/j3FSO4uTy/e/2EidtkAwBATGQDAEBMZAMAQMydbAAoua0LTDbZAACQE9kAABAT2QAAEBPZAAAQE9kAABAT2QAAEBPZAAAQE9kAABAT2QAAEBPZAAAQE9kAABDbzn0AAAA4OWdX18/5dptsAACIiWwAAIiJbAAAiIlsAACIiWwAAIiJbAAAiIlsAACIiWwAAIiJbAAAiIlsAACIiWwAAIiJbAAAiIlsAACIiWwAAIiJbAAAiIlsAACIiWwAAIiJbAAAiIlsAACIiWwAAIiJbAAAiIlsAACIiWwAAIiJbAAAiIlsAACIiWwAAIiJbAAAiIlsAACIiWwAAIiJbAAAiIlsAACIiWwAAIiJbAAAiIlsAACIiWwAAIiJbAAAiIlsAACIiWwAAIiJbAAAiIlsAACIiWwAAIiJbAAAiIlsAACIiWwAAIiJbAAAiIlsAACIiWwAAIiJbAAAiIlsAACIiWwAAIiJbAAAiIlsAACIiWwAAIiJbAAAiIlsAACIiWwAAIiJbAAAiIlsAACIiWwAAIiJbAAAiIlsAACIiWwAAIiJbAAAiIlsAACIbZ/wPX/58/d3r//5r9+6wwAAwBrMsMl++e79y3fvj/+5AABwHE+J7L9+/6e7/771e1++e//y3d+e8KEAALAU7mQDAEDsKXeyGYGb9wAATzbDJvvTxx8/ffz78T+XQ3PbHgDgd8feZMvrpfj8wv1jNtm/37b/9PHHQx4KAGAZ3MkGAICYO9kwLjfvAeBAbLLJuG2/Vm7bA8C3ssmmIa+X6DE37922B4AnsMkGAICYTTbAmrl5D+vgz/Li2GQDD3Dbfq3ctodF80f4xNlkA18jr5fuSzfv3baHZfnW31/B7GyyAQAW5ve/J899Cr7mKZvsf/z27/wcAMDTuK0LJ8gmG2BQbtuvlau6g/BH+MQ9ZZPtb8kAS+f/zWvy+W3d//v//sdtezgF/uEjAMDC+Hvy6RPZ3M/NewCAJ3MnGwBWxVVdOAU22dzPzXuAJZLXcCJssgEAIGaTDeNy8x4ADsQmGwAAYjbZMC437wHgQGyyAQAgZpMNsGZu3sM6+LO8ODbZAAAQs8kGWDM372Ed/FleHJtsAACI2WQDwLK5rQsnyCYbAABiNtkAsGxu68IJsskGAICYyAYAgJjIBgCAmMgGAIDYZr/fz30GAABYFZtsAACIiWwAAIiJbAAAiIlsAACIiWwAAIiJbAAAiIlsAACIiWwAAIiJbAAAiIlsAACIiWwAAIiJbAAAiIlsAACIiWwAAIiJbAAAiIlsAACIiWwAAIhtp2nabDb3fu2nH7477mE4iIvd7WTKa2fKIzDlEZjyCEx5BBe72+103HG+ef3qwff8/MuvRzjJcdxcnj/4nrOr6yOcxJQPx5S/xJQPwZQPx5S/xJQPwZQP50Sm7LoIAADERDYAAMRENgAAxLYzfvbnt38ec1to6T6//fOY20LrYMojMOURmPIITHkEpnw0NtkAABAT2QAAEBPZAAAQE9kAABAT2QAAEBPZAAAQE9kAABAT2QAAEBPZAAAQE9kAABAT2QAAENvO+NlvXr+a8dOP7+byfO4jzMCUR2DKIzDlEZjyCEz5aGyyAQAgJrIBACAmsgEAILbZ7/cf3r6Y+xgc0MXudpomU143Ux6BKY/AlEdgyiO42N3aZAMAQExkAwBAbLPf7+c+AwAArIpNNgAAxEQ2AADERDYAAMRENgAAxEQ2AADERDYAAMRENgAAxEQ2AADERDYAAMS20zR9ePti7mNwQBe728mU186UR2DKIzDlEZjyCC52tzbZAAAQE9kAABAT2QAAEBPZAAAQE9kAABAT2QAAEBPZAAAQE9kAABAT2QAAEBPZAAAQE9kAABAT2QAAEBPZAAAQE9kAABAT2QAAEBPZAAAQE9kAABDbzn0AAAA4OTeX53evz66uv/XbbbIBACBmkw0A8G2eueNkBDbZAAAQE9kAABAT2QAAEBPZAAAQE9kAABAT2QAAEBPZAAAQE9kAABAT2QAAEBPZAAAQE9kAABAT2QAAEBPZAAAQ2859AAAAODlnV9fP+XabbAAAiNlkA0Dp5vL87vUzN2GcLJPlQTbZAAAQE9kAABAT2QAAEBPZAAAQE9kAABAT2QAAEBPZAAAQE9kAABAT2QAAEBPZAAAQE9kAABDbzn0A4D9uLs/vXp9dXc94EgDgmWyyAQAgZpO9DHacAAALYpMNAAAxm0APsNwAAAOPSURBVGyA4/FTqRGYLDDZZAMAQE5kAwBATGQDAEBMZAMAQExkAwBATGQDAEBMZAMAQExkAwBATGQDAEBMZAMAQExkAwBAbDv3AYD/OLu6nvsIAEDDJhsAAGI22ctgxwkAsCA22QAAELPJBjgeP5UCGIRNNgAAxEQ2AADERDYAAMRENgAAxEQ2AADERDYAAMRENgAAxEQ2AADERDYAAMRENgAAxEQ2AADERDYAAMRENgAAxEQ2AADERDYAAMRENgAAxEQ2AADERDYAwLhevnv/8t37uU+xQiIbAABiIhsAYFAv371/+e5vc59inUQ2AADERDYAwLg+ffzx08e/z32KFdrOfQAAAB7wlz9/f/f6n//6bcaT8EgiGwBgUHbYhyOyAQBO3V+//9Pda5vsRXAnGwD4X56aDAmRDQAAMZENAPyHpyZDRWQDAEBMZAMA/8tTkyHh6SIAsGyeoAwnSGQDAP9hhw0VkQ0Ay+YJynCC3MkG4Gs8NRngCUQ2AADERDYAX+SpyQBP4042wJp57gTALGyyAfgaT00GeAKbbIA189wJWId//PbvuY/AtxHZAHyRHTbA04hsAIBT5ydRi+NONvBtPDUZAB4ksgEAICaygW/gqckA8BjuZMO4PEEZAA7EJhv4Np6aDAAPssmGcXmCMqyDJyjDCRLZwDewwwaAxxDZALBsfhIFJ8idbJ7LU5MBAP7AJpv7ee4EAMCT2WTzLJ6aDADw32yyuZ/nTsA6eO4EwCxssnkuT00GAPgDm2yANfOTKIBZiGyexQ4bAOC/uS4CAACxPrI9NRkAgME95bqIJygDAMBXxJtsT00GAICnbLI9QRnWwROUAeBA+jvZnpoMAMDgPMIPxuUnUQBwIHFk22EDAIDnZAMAQExkAwBAzJ1s7ue5EwAAT2aTDQAAMZts7ue5EwAAT2aTDQAAMZENAAAxkQ0AADGRDQAAMZENAACxpzxdxBOUAQDgK2yyAQAg9pRNticoAwDAV9hkAwBATGQDAEBMZAMAQExkAwBATGQDAEBMZAMAQExkAwBATGQDAEBMZAMAQExkAwBATGQDAEBMZAMAQExkAwBATGQDAEBss9/v5z4DAACsik02AADERDYAAMRENgAAxEQ2AADERDYAAMRENgAAxEQ2AADERDYAAMRENgAAxEQ2AADERDYAAMRENgAAxEQ2AADERDYAAMRENgAAxEQ2AADE/j+umjTeRM8EkwAAAABJRU5ErkJggg==", "text/plain": [ "Console does not support images" ] }, "metadata": { "image/png": { "height": 1272, "width": 972 } }, "output_type": "display_data" } ], "source": [ "local screens = {}\n", "for i=1,36 do\n", " local screen, reward, terminal = game_env:step(game_actions[torch.random(3)])\n", " table.insert(screens, screen[1]:clone())\n", "end\n", "itorch.image(screens)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Training\n", "Now we will train the agent to play the game" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [], "source": [ "-- Training options\n", "opt = {\n", " -- number of evaluation steps\n", " eval_steps = 125000,\n", " -- frequency of evaluation\n", " eval_freq = 250000,\n", " -- total number of training steps\n", " steps = 50000000,\n", " -- frequency of progress reporting\n", " prog_freq = 10000,\n", " -- frequency to save agent on disk\n", " save_freq = 125000,\n", " -- filename for saved agent\n", " name = 'Itorch_DQN3_0_1_pong_FULL_Y',\n", " -- we want to use random starts of up to 30 nil steps\n", " random_starts = 30,\n", " -- we repeat every action 4 times\n", " actrep = 4,\n", "}" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "Iteration ..\t0\t\n" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "\n", "local total_reward\n", "local nrewards\n", "local nepisodes\n", "local episode_reward\n", "\n", "local learn_start = agent.learn_start\n", "local start_time = sys.clock()\n", "local step = 0\n", "\n", "print(\"Iteration ..\", step)\n", "while step < opt.steps do\n", " step = step + 1\n", " local action_index = agent:perceive(reward, screen, terminal)\n", "\n", " -- game over? get next game! \n", " if not terminal then\n", " screen, reward, terminal = game_env:step(game_actions[action_index], true)\n", " else\n", " if opt.random_starts > 0 then\n", " screen, reward, terminal = game_env:nextRandomGame()\n", " else\n", " screen, reward, terminal = game_env:newGame()\n", " end\n", " end\n", "\n", " if step % opt.prog_freq == 0 then\n", " assert(step==agent.numSteps, 'trainer step: ' .. step ..\n", " ' & agent.numSteps: ' .. agent.numSteps)\n", " print(\"Training Steps: \", step)\n", " agent:report()\n", " collectgarbage()\n", " end\n", "\n", " if step%1000 == 0 then collectgarbage() end\n", "\n", " if step % opt.eval_freq == 0 and step > learn_start then\n", "\n", " print('Evaluating')\n", " screen, reward, terminal = game_env:newGame()\n", "\n", " total_reward = 0\n", " nrewards = 0\n", " nepisodes = 0\n", " episode_reward = 0\n", "\n", " local eval_time = sys.clock()\n", " for estep=1,opt.eval_steps do\n", " local action_index = agent:perceive(reward, screen, terminal, true, 0.05)\n", " -- Play game in test mode (episodes don't end when losing a life) \n", " screen, reward, terminal = game_env:step(game_actions[action_index])\n", "\n", " if estep%1000 == 0 then collectgarbage() end\n", "\n", " -- record every reward \n", " episode_reward = episode_reward + reward\n", " if reward ~= 0 then\n", " nrewards = nrewards + 1\n", " end\n", "\n", " if terminal then\n", " total_reward = total_reward + episode_reward\n", " episode_reward = 0\n", " nepisodes = nepisodes + 1\n", " screen, reward, terminal = game_env:nextRandomGame()\n", " end\n", " end\n", "\n", " eval_time = sys.clock() - eval_time\n", " start_time = start_time + eval_time\n", " agent:compute_validation_statistics()\n", " local ind = #reward_history+1\n", " total_reward = total_reward/math.max(1, nepisodes)\n", "\n", " if #reward_history == 0 or total_reward > torch.Tensor(reward_history):max() then\n", " agent.best_network = agent.network:clone()\n", " end\n", "\n", " if agent.v_avg then\n", " v_history[ind] = agent.v_avg\n", " td_history[ind] = agent.tderr_avg\n", " qmax_history[ind] = agent.q_max\n", " end\n", " print(\"V\", v_history[ind], \"TD error\", td_history[ind], \"Qmax\", qmax_history[ind])\n", "\n", " reward_history[ind] = total_reward\n", " reward_counts[ind] = nrewards\n", " episode_counts[ind] = nepisodes\n", " time_history[ind+1] = sys.clock() - start_time\n", "\n", " local time_dif = time_history[ind+1] - time_history[ind]\n", "\n", " local training_rate = opt.actrep*opt.eval_freq/time_dif\n", "\n", " print(string.format(\n", " '\\nSteps: %d (frames: %d), reward: %.2f, epsilon: %.2f, lr: %G, ' ..\n", " 'training time: %ds, training rate: %dfps, testing time: %ds, ' ..\n", " 'testing rate: %dfps, num. ep.: %d, num. rewards: %d',\n", " step, step*opt.actrep, total_reward, agent.ep, agent.lr, time_dif,\n", " training_rate, eval_time, opt.actrep*opt.eval_steps/eval_time,\n", " nepisodes, nrewards))\n", " end\n", "\n", " if step % opt.save_freq == 0 or step == opt.steps then\n", " local filename = opt.name\n", " torch.save(filename .. \".t7\", {\n", " reward_history = reward_history,\n", " reward_counts = reward_counts,\n", " episode_counts = episode_counts,\n", " time_history = time_history,\n", " v_history = v_history,\n", " td_history = td_history,\n", " qmax_history = qmax_history,\n", " opt = opt})\n", "-- we are not going to bother saving agents for now.\n", "-- torch.save(filename .. \"_agent.t7\", {\n", "-- agent = agent,\n", "-- best_model = agent.best_network,\n", "-- })\n", " print('Saved:', filename .. '.t7')\n", " io.flush()\n", " collectgarbage()\n", " end\n", "end\n", "\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "iTorch", "language": "lua", "name": "itorch" }, "language_info": { "name": "lua", "version": "5.1" } }, "nbformat": 4, "nbformat_minor": 0 }
apache-2.0
KristofferC/ConstLab.jl
examples/mises_mixed_hardening.ipynb
1
1146036
null
mit
anhquan0412/deeplearning_fastai
deeplearning1/nbs/lesson4.ipynb
1
311797
{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "scrolled": true }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Can not use cuDNN on context None: Disabled by dnn.enabled flag\n", "Mapped name None to device cuda0: GeForce GTX 1060 3GB (0000:01:00.0)\n", "Using TensorFlow backend.\n" ] } ], "source": [ "from __future__ import division, print_function\n", "%matplotlib inline\n", "from importlib import reload # Python 3\n", "import utils; reload(utils)\n", "from utils import *\n", "from keras.layers.merge import dot, add, concatenate" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true }, "outputs": [], "source": [ "path = \"data/ml-latest-small/\" # from https://grouplens.org/datasets/movielens/\n", "#path = \"data/ml-20m/\"\n", "model_path = path + 'models/'\n", "if not os.path.exists(model_path): os.mkdir(model_path)\n", "\n", "batch_size=64\n", "#batch_size=1" ] }, { "cell_type": "markdown", "metadata": { "heading_collapsed": true }, "source": [ "## Set up data" ] }, { "cell_type": "markdown", "metadata": { "hidden": true }, "source": [ "We're working with the movielens data, which contains one rating per row, like this:" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "hidden": true, "scrolled": true }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style>\n", " .dataframe thead tr:only-child th {\n", " text-align: right;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: left;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>userId</th>\n", " <th>movieId</th>\n", " <th>rating</th>\n", " <th>timestamp</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>1</td>\n", " <td>31</td>\n", " <td>2.5</td>\n", " <td>1260759144</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>1</td>\n", " <td>1029</td>\n", " <td>3.0</td>\n", " <td>1260759179</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>1</td>\n", " <td>1061</td>\n", " <td>3.0</td>\n", " <td>1260759182</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>1</td>\n", " <td>1129</td>\n", " <td>2.0</td>\n", " <td>1260759185</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>1</td>\n", " <td>1172</td>\n", " <td>4.0</td>\n", " <td>1260759205</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " userId movieId rating timestamp\n", "0 1 31 2.5 1260759144\n", "1 1 1029 3.0 1260759179\n", "2 1 1061 3.0 1260759182\n", "3 1 1129 2.0 1260759185\n", "4 1 1172 4.0 1260759205" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ratings = pd.read_csv(path+'ratings.csv')\n", "ratings.head()" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "hidden": true }, "outputs": [ { "data": { "text/plain": [ "100004" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "len(ratings)" ] }, { "cell_type": "markdown", "metadata": { "hidden": true }, "source": [ "Just for display purposes, let's read in the movie names too." ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": true, "hidden": true }, "outputs": [], "source": [ "movie_names = pd.read_csv(path+'movies.csv').set_index('movieId')['title'].to_dict" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": true, "hidden": true }, "outputs": [], "source": [ "users = ratings.userId.unique()\n", "movies = ratings.movieId.unique()" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": true, "hidden": true }, "outputs": [], "source": [ "# userId and movieId become ditionary elements with values ranging from 0 to max len \n", "userid2idx = {o:i for i,o in enumerate(users)}\n", "movieid2idx = {o:i for i,o in enumerate(movies)}" ] }, { "cell_type": "markdown", "metadata": { "hidden": true }, "source": [ "We update the movie and user ids so that they are contiguous integers, which we want when using embeddings." ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": true, "hidden": true }, "outputs": [], "source": [ "ratings.movieId = ratings.movieId.apply(lambda x: movieid2idx[x])\n", "ratings.userId = ratings.userId.apply(lambda x: userid2idx[x])" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "hidden": true }, "outputs": [ { "data": { "text/plain": [ "(0, 670, 0, 9065)" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "user_min, user_max, movie_min, movie_max = (ratings.userId.min(), \n", " ratings.userId.max(), ratings.movieId.min(), ratings.movieId.max())\n", "user_min, user_max, movie_min, movie_max" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "hidden": true }, "outputs": [ { "data": { "text/plain": [ "(671, 9066)" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "n_users = ratings.userId.nunique()\n", "n_movies = ratings.movieId.nunique()\n", "n_users, n_movies" ] }, { "cell_type": "markdown", "metadata": { "hidden": true }, "source": [ "This is the number of latent factors in each embedding." ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": true, "hidden": true }, "outputs": [], "source": [ "n_factors = 50" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": true, "hidden": true }, "outputs": [], "source": [ "np.random.seed = 42" ] }, { "cell_type": "markdown", "metadata": { "hidden": true }, "source": [ "Randomly split into training and validation." ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": true, "hidden": true }, "outputs": [], "source": [ "msk = np.random.rand(len(ratings)) < 0.8\n", "trn = ratings[msk]\n", "val = ratings[~msk]" ] }, { "cell_type": "markdown", "metadata": { "heading_collapsed": true }, "source": [ "## Create subset for Excel" ] }, { "cell_type": "markdown", "metadata": { "hidden": true }, "source": [ "We create a crosstab of the most popular movies and most movie-addicted users which we'll copy into Excel for creating a simple example. This isn't necessary for any of the modeling below however." ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": true, "hidden": true }, "outputs": [], "source": [ "g=ratings.groupby('userId')['rating'].count()\n", "topUsers=g.sort_values(ascending=False)[:15]" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": true, "hidden": true }, "outputs": [], "source": [ "g=ratings.groupby('movieId')['rating'].count()\n", "topMovies=g.sort_values(ascending=False)[:15]" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": true, "hidden": true }, "outputs": [], "source": [ "top_r = ratings.join(topUsers, rsuffix='_r', how='inner', on='userId')" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": true, "hidden": true }, "outputs": [], "source": [ "top_r = top_r.join(topMovies, rsuffix='_r', how='inner', on='movieId')" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "hidden": true, "scrolled": true }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th>movieId</th>\n", " <th>27</th>\n", " <th>49</th>\n", " <th>57</th>\n", " <th>72</th>\n", " <th>79</th>\n", " <th>89</th>\n", " <th>92</th>\n", " <th>99</th>\n", " <th>143</th>\n", " <th>179</th>\n", " <th>180</th>\n", " <th>197</th>\n", " <th>402</th>\n", " <th>417</th>\n", " <th>505</th>\n", " </tr>\n", " <tr>\n", " <th>userId</th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>14</th>\n", " <td>3.0</td>\n", " <td>5.0</td>\n", " <td>1.0</td>\n", " <td>3.0</td>\n", " <td>4.0</td>\n", " <td>4.0</td>\n", " <td>5.0</td>\n", " <td>2.0</td>\n", " <td>5.0</td>\n", " <td>5.0</td>\n", " <td>4.0</td>\n", " <td>5.0</td>\n", " <td>5.0</td>\n", " <td>2.0</td>\n", " <td>5.0</td>\n", " </tr>\n", " <tr>\n", " <th>29</th>\n", " <td>5.0</td>\n", " <td>5.0</td>\n", " <td>5.0</td>\n", " <td>4.0</td>\n", " <td>5.0</td>\n", " <td>4.0</td>\n", " <td>4.0</td>\n", " <td>5.0</td>\n", " <td>4.0</td>\n", " <td>4.0</td>\n", " <td>5.0</td>\n", " <td>5.0</td>\n", " <td>3.0</td>\n", " <td>4.0</td>\n", " <td>5.0</td>\n", " </tr>\n", " <tr>\n", " <th>72</th>\n", " <td>4.0</td>\n", " <td>5.0</td>\n", " <td>5.0</td>\n", " <td>4.0</td>\n", " <td>5.0</td>\n", " <td>3.0</td>\n", " <td>4.5</td>\n", " <td>5.0</td>\n", " <td>4.5</td>\n", " <td>5.0</td>\n", " <td>5.0</td>\n", " <td>5.0</td>\n", " <td>4.5</td>\n", " <td>5.0</td>\n", " <td>4.0</td>\n", " </tr>\n", " <tr>\n", " <th>211</th>\n", " <td>5.0</td>\n", " <td>4.0</td>\n", " <td>4.0</td>\n", " <td>3.0</td>\n", " <td>5.0</td>\n", " <td>3.0</td>\n", " <td>4.0</td>\n", " <td>4.5</td>\n", " <td>4.0</td>\n", " <td>NaN</td>\n", " <td>3.0</td>\n", " <td>3.0</td>\n", " <td>5.0</td>\n", " <td>3.0</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>212</th>\n", " <td>2.5</td>\n", " <td>NaN</td>\n", " <td>2.0</td>\n", " <td>5.0</td>\n", " <td>NaN</td>\n", " <td>4.0</td>\n", " <td>2.5</td>\n", " <td>NaN</td>\n", " <td>5.0</td>\n", " <td>5.0</td>\n", " <td>3.0</td>\n", " <td>3.0</td>\n", " <td>4.0</td>\n", " <td>3.0</td>\n", " <td>2.0</td>\n", " </tr>\n", " <tr>\n", " <th>293</th>\n", " <td>3.0</td>\n", " <td>NaN</td>\n", " <td>4.0</td>\n", " <td>4.0</td>\n", " <td>4.0</td>\n", " <td>3.0</td>\n", " <td>NaN</td>\n", " <td>3.0</td>\n", " <td>4.0</td>\n", " <td>4.0</td>\n", " <td>4.5</td>\n", " <td>4.0</td>\n", " <td>4.5</td>\n", " <td>4.0</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>310</th>\n", " <td>3.0</td>\n", " <td>3.0</td>\n", " <td>5.0</td>\n", " <td>4.5</td>\n", " <td>5.0</td>\n", " <td>4.5</td>\n", " <td>2.0</td>\n", " <td>4.5</td>\n", " <td>4.0</td>\n", " <td>3.0</td>\n", " <td>4.5</td>\n", " <td>4.5</td>\n", " <td>4.0</td>\n", " <td>3.0</td>\n", " <td>4.0</td>\n", " </tr>\n", " <tr>\n", " <th>379</th>\n", " <td>5.0</td>\n", " <td>5.0</td>\n", " <td>5.0</td>\n", " <td>4.0</td>\n", " <td>NaN</td>\n", " <td>4.0</td>\n", " <td>5.0</td>\n", " <td>4.0</td>\n", " <td>4.0</td>\n", " <td>4.0</td>\n", " <td>NaN</td>\n", " <td>3.0</td>\n", " <td>5.0</td>\n", " <td>4.0</td>\n", " <td>4.0</td>\n", " </tr>\n", " <tr>\n", " <th>451</th>\n", " <td>4.0</td>\n", " <td>5.0</td>\n", " <td>4.0</td>\n", " <td>5.0</td>\n", " <td>4.0</td>\n", " <td>4.0</td>\n", " <td>5.0</td>\n", " <td>5.0</td>\n", " <td>4.0</td>\n", " <td>4.0</td>\n", " <td>4.0</td>\n", " <td>4.0</td>\n", " <td>2.0</td>\n", " <td>3.5</td>\n", " <td>5.0</td>\n", " </tr>\n", " <tr>\n", " <th>467</th>\n", " <td>3.0</td>\n", " <td>3.5</td>\n", " <td>3.0</td>\n", " <td>2.5</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>3.0</td>\n", " <td>3.5</td>\n", " <td>3.5</td>\n", " <td>3.0</td>\n", " <td>3.5</td>\n", " <td>3.0</td>\n", " <td>3.0</td>\n", " <td>4.0</td>\n", " <td>4.0</td>\n", " </tr>\n", " <tr>\n", " <th>508</th>\n", " <td>5.0</td>\n", " <td>5.0</td>\n", " <td>4.0</td>\n", " <td>3.0</td>\n", " <td>5.0</td>\n", " <td>2.0</td>\n", " <td>4.0</td>\n", " <td>4.0</td>\n", " <td>5.0</td>\n", " <td>5.0</td>\n", " <td>5.0</td>\n", " <td>3.0</td>\n", " <td>4.5</td>\n", " <td>3.0</td>\n", " <td>4.5</td>\n", " </tr>\n", " <tr>\n", " <th>546</th>\n", " <td>NaN</td>\n", " <td>5.0</td>\n", " <td>2.0</td>\n", " <td>3.0</td>\n", " <td>5.0</td>\n", " <td>NaN</td>\n", " <td>5.0</td>\n", " <td>5.0</td>\n", " <td>NaN</td>\n", " <td>2.5</td>\n", " <td>2.0</td>\n", " <td>3.5</td>\n", " <td>3.5</td>\n", " <td>3.5</td>\n", " <td>5.0</td>\n", " </tr>\n", " <tr>\n", " <th>563</th>\n", " <td>1.0</td>\n", " <td>5.0</td>\n", " <td>3.0</td>\n", " <td>5.0</td>\n", " <td>4.0</td>\n", " <td>5.0</td>\n", " <td>5.0</td>\n", " <td>NaN</td>\n", " <td>2.0</td>\n", " <td>5.0</td>\n", " <td>5.0</td>\n", " <td>3.0</td>\n", " <td>3.0</td>\n", " <td>4.0</td>\n", " <td>5.0</td>\n", " </tr>\n", " <tr>\n", " <th>579</th>\n", " <td>4.5</td>\n", " <td>4.5</td>\n", " <td>3.5</td>\n", " <td>3.0</td>\n", " <td>4.0</td>\n", " <td>4.5</td>\n", " <td>4.0</td>\n", " <td>4.0</td>\n", " <td>4.0</td>\n", " <td>4.0</td>\n", " <td>3.5</td>\n", " <td>3.0</td>\n", " <td>4.5</td>\n", " <td>4.0</td>\n", " <td>4.5</td>\n", " </tr>\n", " <tr>\n", " <th>623</th>\n", " <td>NaN</td>\n", " <td>5.0</td>\n", " <td>3.0</td>\n", " <td>3.0</td>\n", " <td>NaN</td>\n", " <td>3.0</td>\n", " <td>5.0</td>\n", " <td>NaN</td>\n", " <td>5.0</td>\n", " <td>5.0</td>\n", " <td>5.0</td>\n", " <td>5.0</td>\n", " <td>2.0</td>\n", " <td>5.0</td>\n", " <td>4.0</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ "movieId 27 49 57 72 79 89 92 99 143 179 180 197 402 417 \\\n", "userId \n", "14 3.0 5.0 1.0 3.0 4.0 4.0 5.0 2.0 5.0 5.0 4.0 5.0 5.0 2.0 \n", "29 5.0 5.0 5.0 4.0 5.0 4.0 4.0 5.0 4.0 4.0 5.0 5.0 3.0 4.0 \n", "72 4.0 5.0 5.0 4.0 5.0 3.0 4.5 5.0 4.5 5.0 5.0 5.0 4.5 5.0 \n", "211 5.0 4.0 4.0 3.0 5.0 3.0 4.0 4.5 4.0 NaN 3.0 3.0 5.0 3.0 \n", "212 2.5 NaN 2.0 5.0 NaN 4.0 2.5 NaN 5.0 5.0 3.0 3.0 4.0 3.0 \n", "293 3.0 NaN 4.0 4.0 4.0 3.0 NaN 3.0 4.0 4.0 4.5 4.0 4.5 4.0 \n", "310 3.0 3.0 5.0 4.5 5.0 4.5 2.0 4.5 4.0 3.0 4.5 4.5 4.0 3.0 \n", "379 5.0 5.0 5.0 4.0 NaN 4.0 5.0 4.0 4.0 4.0 NaN 3.0 5.0 4.0 \n", "451 4.0 5.0 4.0 5.0 4.0 4.0 5.0 5.0 4.0 4.0 4.0 4.0 2.0 3.5 \n", "467 3.0 3.5 3.0 2.5 NaN NaN 3.0 3.5 3.5 3.0 3.5 3.0 3.0 4.0 \n", "508 5.0 5.0 4.0 3.0 5.0 2.0 4.0 4.0 5.0 5.0 5.0 3.0 4.5 3.0 \n", "546 NaN 5.0 2.0 3.0 5.0 NaN 5.0 5.0 NaN 2.5 2.0 3.5 3.5 3.5 \n", "563 1.0 5.0 3.0 5.0 4.0 5.0 5.0 NaN 2.0 5.0 5.0 3.0 3.0 4.0 \n", "579 4.5 4.5 3.5 3.0 4.0 4.5 4.0 4.0 4.0 4.0 3.5 3.0 4.5 4.0 \n", "623 NaN 5.0 3.0 3.0 NaN 3.0 5.0 NaN 5.0 5.0 5.0 5.0 2.0 5.0 \n", "\n", "movieId 505 \n", "userId \n", "14 5.0 \n", "29 5.0 \n", "72 4.0 \n", "211 NaN \n", "212 2.0 \n", "293 NaN \n", "310 4.0 \n", "379 4.0 \n", "451 5.0 \n", "467 4.0 \n", "508 4.5 \n", "546 5.0 \n", "563 5.0 \n", "579 4.5 \n", "623 4.0 " ] }, "execution_count": 23, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pd.crosstab(top_r.userId, top_r.movieId, top_r.rating, aggfunc=np.sum)" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true, "heading_collapsed": true }, "source": [ "## Dot product" ] }, { "cell_type": "markdown", "metadata": { "hidden": true }, "source": [ "The most basic model is a dot product of a movie embedding and a user embedding. Let's see how well that works:" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": true, "hidden": true }, "outputs": [], "source": [ "user_in = Input(shape=(1,), dtype='int64', name='user_in')\n", "u = Embedding(input_dim=n_users, output_dim=n_factors, input_length=1, embeddings_regularizer=l2(1e-4))(user_in)\n", "movie_in = Input(shape=(1,), dtype='int64', name='movie_in')\n", "m = Embedding(input_dim=n_movies, output_dim=n_factors, input_length=1, embeddings_regularizer=l2(1e-4))(movie_in)" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": true }, "outputs": [], "source": [ "x = dot([u, m], axes=2)\n", "x = Flatten()(x)\n", "model = Model([user_in, movie_in], x)\n", "model.compile(Adam(0.001), loss='mse')" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "____________________________________________________________________________________________________\n", "Layer (type) Output Shape Param # Connected to \n", "====================================================================================================\n", "user_in (InputLayer) (None, 1) 0 \n", "____________________________________________________________________________________________________\n", "movie_in (InputLayer) (None, 1) 0 \n", "____________________________________________________________________________________________________\n", "embedding_1 (Embedding) (None, 1, 50) 33550 user_in[0][0] \n", "____________________________________________________________________________________________________\n", "embedding_2 (Embedding) (None, 1, 50) 453300 movie_in[0][0] \n", "____________________________________________________________________________________________________\n", "dot_1 (Dot) (None, 1, 1) 0 embedding_1[0][0] \n", " embedding_2[0][0] \n", "____________________________________________________________________________________________________\n", "flatten_1 (Flatten) (None, 1) 0 dot_1[0][0] \n", "====================================================================================================\n", "Total params: 486,850\n", "Trainable params: 486,850\n", "Non-trainable params: 0\n", "____________________________________________________________________________________________________\n" ] } ], "source": [ "model.summary()" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "<tf.Tensor 'user_in:0' shape=(?, 1) dtype=int64>" ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" } ], "source": [ "user_in" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "hidden": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Train on 80057 samples, validate on 19947 samples\n", "Epoch 1/1\n", "80057/80057 [==============================] - 82s - loss: 9.8353 - val_loss: 4.2363\n" ] }, { "data": { "text/plain": [ "<keras.callbacks.History at 0x2522457de80>" ] }, "execution_count": 23, "metadata": {}, "output_type": "execute_result" } ], "source": [ "model.fit([trn.userId, trn.movieId], trn.rating, batch_size=batch_size, epochs=1, \n", " validation_data=([val.userId, val.movieId], val.rating))" ] }, { "cell_type": "code", "execution_count": 39, "metadata": { "collapsed": true, "hidden": true }, "outputs": [], "source": [ "model.optimizer.lr=0.01" ] }, { "cell_type": "code", "execution_count": 40, "metadata": { "hidden": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Train on 80292 samples, validate on 19712 samples\n", "Epoch 1/3\n", "80292/80292 [==============================] - 2s - loss: 2.7601 - val_loss: 2.7221\n", "Epoch 2/3\n", "80292/80292 [==============================] - 2s - loss: 2.3373 - val_loss: 2.5846\n", "Epoch 3/3\n", "80292/80292 [==============================] - 2s - loss: 2.2085 - val_loss: 2.5560\n" ] }, { "data": { "text/plain": [ "<keras.callbacks.History at 0x7f68035bdcf8>" ] }, "execution_count": 40, "metadata": {}, "output_type": "execute_result" } ], "source": [ "model.fit([trn.userId, trn.movieId], trn.rating, batch_size=batch_size, epochs=3, \n", " validation_data=([val.userId, val.movieId], val.rating))" ] }, { "cell_type": "code", "execution_count": 41, "metadata": { "collapsed": true, "hidden": true }, "outputs": [], "source": [ "model.optimizer.lr=0.001" ] }, { "cell_type": "code", "execution_count": 42, "metadata": { "hidden": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Train on 80292 samples, validate on 19712 samples\n", "Epoch 1/6\n", "80292/80292 [==============================] - 2s - loss: 2.1578 - val_loss: 2.5482\n", "Epoch 2/6\n", "80292/80292 [==============================] - 2s - loss: 2.1298 - val_loss: 2.5491\n", "Epoch 3/6\n", "80292/80292 [==============================] - 2s - loss: 2.1063 - val_loss: 2.5560\n", "Epoch 4/6\n", "80292/80292 [==============================] - 2s - loss: 2.0855 - val_loss: 2.5582\n", "Epoch 5/6\n", "80292/80292 [==============================] - 2s - loss: 2.0624 - val_loss: 2.5702\n", "Epoch 6/6\n", "80292/80292 [==============================] - 2s - loss: 2.0423 - val_loss: 2.5764\n" ] }, { "data": { "text/plain": [ "<keras.callbacks.History at 0x7f6802eb65c0>" ] }, "execution_count": 42, "metadata": {}, "output_type": "execute_result" } ], "source": [ "model.fit([trn.userId, trn.movieId], trn.rating, batch_size=batch_size, epochs=6, \n", " validation_data=([val.userId, val.movieId], val.rating))" ] }, { "cell_type": "markdown", "metadata": { "hidden": true }, "source": [ "The [best benchmarks](http://www.librec.net/example.html) are a bit over 0.9, so this model doesn't seem to be working that well..." ] }, { "cell_type": "markdown", "metadata": { "heading_collapsed": true }, "source": [ "## Bias" ] }, { "cell_type": "markdown", "metadata": { "hidden": true }, "source": [ "The problem is likely to be that we don't have bias terms - that is, a single bias for each user and each movie representing how positive or negative each user is, and how good each movie is. We can add that easily by simply creating an embedding with one output for each movie and each user, and adding it to our output." ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "collapsed": true, "hidden": true }, "outputs": [], "source": [ "def embedding_input(name, n_in, n_out, reg):\n", " inp = Input(shape=(1,), dtype='int64', name=name)\n", " return inp, Embedding(input_dim=n_in, output_dim=n_out, input_length=1, embeddings_regularizer=l2(reg))(inp)" ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "collapsed": true, "hidden": true }, "outputs": [], "source": [ "user_in, u = embedding_input('user_in', n_users, n_factors, 1e-4)\n", "movie_in, m = embedding_input('movie_in', n_movies, n_factors, 1e-4)" ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "collapsed": true, "hidden": true }, "outputs": [], "source": [ "def create_bias(inp, n_in):\n", " x = Embedding(input_dim=n_in, output_dim=1, input_length=1)(inp)\n", " return Flatten()(x)" ] }, { "cell_type": "code", "execution_count": 27, "metadata": { "collapsed": true, "hidden": true }, "outputs": [], "source": [ "ub = create_bias(user_in, n_users)\n", "mb = create_bias(movie_in, n_movies)" ] }, { "cell_type": "code", "execution_count": 28, "metadata": { "collapsed": true, "hidden": true }, "outputs": [], "source": [ "x = dot([u, m], axes=2)\n", "x = Flatten()(x)\n", "x = add([x, ub])\n", "x = add([x, mb])\n", "model = Model([user_in, movie_in], x)\n", "model.compile(Adam(0.001), loss='mse')" ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "____________________________________________________________________________________________________\n", "Layer (type) Output Shape Param # Connected to \n", "====================================================================================================\n", "user_in (InputLayer) (None, 1) 0 \n", "____________________________________________________________________________________________________\n", "movie_in (InputLayer) (None, 1) 0 \n", "____________________________________________________________________________________________________\n", "embedding_3 (Embedding) (None, 1, 50) 33550 user_in[0][0] \n", "____________________________________________________________________________________________________\n", "embedding_4 (Embedding) (None, 1, 50) 453300 movie_in[0][0] \n", "____________________________________________________________________________________________________\n", "dot_2 (Dot) (None, 1, 1) 0 embedding_3[0][0] \n", " embedding_4[0][0] \n", "____________________________________________________________________________________________________\n", "embedding_5 (Embedding) (None, 1, 1) 671 user_in[0][0] \n", "____________________________________________________________________________________________________\n", "flatten_4 (Flatten) (None, 1) 0 dot_2[0][0] \n", "____________________________________________________________________________________________________\n", "flatten_2 (Flatten) (None, 1) 0 embedding_5[0][0] \n", "____________________________________________________________________________________________________\n", "embedding_6 (Embedding) (None, 1, 1) 9066 movie_in[0][0] \n", "____________________________________________________________________________________________________\n", "add_1 (Add) (None, 1) 0 flatten_4[0][0] \n", " flatten_2[0][0] \n", "____________________________________________________________________________________________________\n", "flatten_3 (Flatten) (None, 1) 0 embedding_6[0][0] \n", "____________________________________________________________________________________________________\n", "add_2 (Add) (None, 1) 0 add_1[0][0] \n", " flatten_3[0][0] \n", "====================================================================================================\n", "Total params: 496,587\n", "Trainable params: 496,587\n", "Non-trainable params: 0\n", "____________________________________________________________________________________________________\n" ] } ], "source": [ "model.summary()" ] }, { "cell_type": "code", "execution_count": 48, "metadata": { "hidden": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Train on 80292 samples, validate on 19712 samples\n", "Epoch 1/1\n", "80292/80292 [==============================] - 2s - loss: 8.7433 - val_loss: 3.4836\n" ] }, { "data": { "text/plain": [ "<keras.callbacks.History at 0x7f6801faa208>" ] }, "execution_count": 48, "metadata": {}, "output_type": "execute_result" } ], "source": [ "model.fit([trn.userId, trn.movieId], trn.rating, batch_size=batch_size, epochs=1, \n", " validation_data=([val.userId, val.movieId], val.rating))" ] }, { "cell_type": "code", "execution_count": 49, "metadata": { "collapsed": true, "hidden": true }, "outputs": [], "source": [ "model.optimizer.lr=0.01" ] }, { "cell_type": "code", "execution_count": 50, "metadata": { "hidden": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Train on 80292 samples, validate on 19712 samples\n", "Epoch 1/6\n", "80292/80292 [==============================] - 2s - loss: 2.5806 - val_loss: 2.3029\n", "Epoch 2/6\n", "80292/80292 [==============================] - 2s - loss: 1.9956 - val_loss: 2.1075\n", "Epoch 3/6\n", "80292/80292 [==============================] - 2s - loss: 1.8357 - val_loss: 2.0133\n", "Epoch 4/6\n", "80292/80292 [==============================] - 2s - loss: 1.7409 - val_loss: 1.9403\n", "Epoch 5/6\n", "80292/80292 [==============================] - 2s - loss: 1.6631 - val_loss: 1.8701\n", "Epoch 6/6\n", "80292/80292 [==============================] - 2s - loss: 1.5887 - val_loss: 1.8054\n" ] }, { "data": { "text/plain": [ "<keras.callbacks.History at 0x7f6802ed4eb8>" ] }, "execution_count": 50, "metadata": {}, "output_type": "execute_result" } ], "source": [ "model.fit([trn.userId, trn.movieId], trn.rating, batch_size=batch_size, epochs=6, \n", " validation_data=([val.userId, val.movieId], val.rating))" ] }, { "cell_type": "code", "execution_count": 30, "metadata": { "collapsed": true, "hidden": true }, "outputs": [], "source": [ "model.optimizer.lr=0.001" ] }, { "cell_type": "code", "execution_count": 52, "metadata": { "hidden": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Train on 80292 samples, validate on 19712 samples\n", "Epoch 1/10\n", "80292/80292 [==============================] - 2s - loss: 1.5190 - val_loss: 1.7389\n", "Epoch 2/10\n", "80292/80292 [==============================] - 2s - loss: 1.4496 - val_loss: 1.6736\n", "Epoch 3/10\n", "80292/80292 [==============================] - 2s - loss: 1.3808 - val_loss: 1.6142\n", "Epoch 4/10\n", "80292/80292 [==============================] - 2s - loss: 1.3144 - val_loss: 1.5591\n", "Epoch 5/10\n", "80292/80292 [==============================] - 2s - loss: 1.2491 - val_loss: 1.5088\n", "Epoch 6/10\n", "80292/80292 [==============================] - 2s - loss: 1.1878 - val_loss: 1.4578\n", "Epoch 7/10\n", "80292/80292 [==============================] - 2s - loss: 1.1288 - val_loss: 1.4163\n", "Epoch 8/10\n", "80292/80292 [==============================] - 2s - loss: 1.0732 - val_loss: 1.3694\n", "Epoch 9/10\n", "80292/80292 [==============================] - 2s - loss: 1.0205 - val_loss: 1.3295\n", "Epoch 10/10\n", "80292/80292 [==============================] - 2s - loss: 0.9703 - val_loss: 1.2908\n" ] }, { "data": { "text/plain": [ "<keras.callbacks.History at 0x7f6801faa320>" ] }, "execution_count": 52, "metadata": {}, "output_type": "execute_result" } ], "source": [ "model.fit([trn.userId, trn.movieId], trn.rating, batch_size=batch_size, epochs=10, \n", " validation_data=([val.userId, val.movieId], val.rating))" ] }, { "cell_type": "code", "execution_count": 53, "metadata": { "hidden": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Train on 80292 samples, validate on 19712 samples\n", "Epoch 1/5\n", "80292/80292 [==============================] - 2s - loss: 0.9233 - val_loss: 1.2580\n", "Epoch 2/5\n", "80292/80292 [==============================] - 2s - loss: 0.8800 - val_loss: 1.2260\n", "Epoch 3/5\n", "80292/80292 [==============================] - 2s - loss: 0.8389 - val_loss: 1.1969\n", "Epoch 4/5\n", "80292/80292 [==============================] - 2s - loss: 0.8020 - val_loss: 1.1698\n", "Epoch 5/5\n", "80292/80292 [==============================] - 2s - loss: 0.7677 - val_loss: 1.1452\n" ] }, { "data": { "text/plain": [ "<keras.callbacks.History at 0x7f6802ed4a90>" ] }, "execution_count": 53, "metadata": {}, "output_type": "execute_result" } ], "source": [ "model.fit([trn.userId, trn.movieId], trn.rating, batch_size=batch_size, epochs=5, \n", " validation_data=([val.userId, val.movieId], val.rating))" ] }, { "cell_type": "markdown", "metadata": { "hidden": true }, "source": [ "This result is quite a bit better than the best benchmarks that we could find with a quick google search - so looks like a great approach!" ] }, { "cell_type": "code", "execution_count": 54, "metadata": { "collapsed": true, "hidden": true }, "outputs": [], "source": [ "model.save_weights(model_path+'bias.h5')" ] }, { "cell_type": "code", "execution_count": 55, "metadata": { "collapsed": true, "hidden": true }, "outputs": [], "source": [ "model.load_weights(model_path+'bias.h5')" ] }, { "cell_type": "markdown", "metadata": { "hidden": true }, "source": [ "We can use the model to generate predictions by passing a pair of ints - a user id and a movie id. For instance, this predicts that user #3 would really enjoy movie #6." ] }, { "cell_type": "code", "execution_count": 56, "metadata": { "hidden": true }, "outputs": [ { "data": { "text/plain": [ "array([[ 4.9892]], dtype=float32)" ] }, "execution_count": 56, "metadata": {}, "output_type": "execute_result" } ], "source": [ "model.predict([np.array([3]), np.array([6])])" ] }, { "cell_type": "markdown", "metadata": { "heading_collapsed": true }, "source": [ "## Analyze results" ] }, { "cell_type": "markdown", "metadata": { "hidden": true }, "source": [ "To make the analysis of the factors more interesting, we'll restrict it to the top 2000 most popular movies." ] }, { "cell_type": "code", "execution_count": 31, "metadata": { "collapsed": true, "hidden": true }, "outputs": [], "source": [ "g=ratings.groupby('movieId')['rating'].count()\n", "topMovies=g.sort_values(ascending=False)[:2000]\n", "topMovies = np.array(topMovies.index)" ] }, { "cell_type": "markdown", "metadata": { "hidden": true }, "source": [ "First, we'll look at the movie bias term. We create a 'model' - which in keras is simply a way of associating one or more inputs with one more more outputs, using the functional API. Here, our input is the movie id (a single id), and the output is the movie bias (a single float)." ] }, { "cell_type": "code", "execution_count": 58, "metadata": { "collapsed": true, "hidden": true }, "outputs": [], "source": [ "get_movie_bias = Model(movie_in, mb)\n", "movie_bias = get_movie_bias.predict(topMovies)\n", "movie_ratings = [(b[0], movie_names()[movies[i]]) for i,b in zip(topMovies,movie_bias)]" ] }, { "cell_type": "markdown", "metadata": { "hidden": true }, "source": [ "Now we can look at the top and bottom rated movies. These ratings are corrected for different levels of reviewer sentiment, as well as different types of movies that different reviewers watch." ] }, { "cell_type": "code", "execution_count": 59, "metadata": { "hidden": true }, "outputs": [ { "data": { "text/plain": [ "[(-0.50823206, 'Battlefield Earth (2000)'),\n", " (-0.13802283, 'Speed 2: Cruise Control (1997)'),\n", " (-0.10757273, '2 Fast 2 Furious (Fast and the Furious 2, The) (2003)'),\n", " (-0.099033587, 'Little Nicky (2000)'),\n", " (-0.087039262, 'Super Mario Bros. (1993)'),\n", " (-0.049692307, 'Jaws 3-D (1983)'),\n", " (0.067072563, 'Godzilla (1998)'),\n", " (0.074751392, 'Police Academy 6: City Under Siege (1989)'),\n", " (0.075012401, 'Police Academy 5: Assignment: Miami Beach (1988)'),\n", " (0.077604346, 'Blade: Trinity (2004)'),\n", " (0.098121516, 'Batman & Robin (1997)'),\n", " (0.10278502, 'Haunting, The (1999)'),\n", " (0.11563323, 'Blair Witch Project, The (1999)'),\n", " (0.12438908, 'Howard the Duck (1986)'),\n", " (0.12522519, 'Lost in Space (1998)')]" ] }, "execution_count": 59, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sorted(movie_ratings, key=itemgetter(0))[:15]" ] }, { "cell_type": "code", "execution_count": 60, "metadata": { "hidden": true }, "outputs": [ { "data": { "text/plain": [ "[(1.4108304, 'Tom Jones (1963)'),\n", " (1.3752841, 'Porco Rosso (Crimson Pig) (Kurenai no buta) (1992)'),\n", " (1.3736762, 'Letters from Iwo Jima (2006)'),\n", " (1.3715636, 'Avengers: Age of Ultron (2015)'),\n", " (1.3444295, \"Howl's Moving Castle (Hauru no ugoku shiro) (2004)\"),\n", " (1.3339735, 'Argo (2012)'),\n", " (1.328054, 'Shawshank Redemption, The (1994)'),\n", " (1.3223944,\n", " 'Fog of War: Eleven Lessons from the Life of Robert S. McNamara, The (2003)'),\n", " (1.3075876, 'My Neighbor Totoro (Tonari no Totoro) (1988)'),\n", " (1.29387, 'Paprika (Papurika) (2006)'),\n", " (1.288847, 'Modern Times (1936)'),\n", " (1.2749821, 'General, The (1926)'),\n", " (1.2747028, 'Harry Potter and the Deathly Hallows: Part 2 (2011)'),\n", " (1.2723743,\n", " \"Monty Python's And Now for Something Completely Different (1971)\"),\n", " (1.2655969, 'The Revenant (2015)')]" ] }, "execution_count": 60, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sorted(movie_ratings, key=itemgetter(0), reverse=True)[:15]" ] }, { "cell_type": "markdown", "metadata": { "hidden": true }, "source": [ "We can now do the same thing for the embeddings." ] }, { "cell_type": "code", "execution_count": 32, "metadata": { "hidden": true }, "outputs": [ { "data": { "text/plain": [ "(2000, 50)" ] }, "execution_count": 32, "metadata": {}, "output_type": "execute_result" } ], "source": [ "get_movie_emb = Model(movie_in, m)\n", "movie_emb = np.squeeze(get_movie_emb.predict([topMovies]))\n", "movie_emb.shape" ] }, { "cell_type": "code", "execution_count": 33, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(2000, 1, 50)" ] }, "execution_count": 33, "metadata": {}, "output_type": "execute_result" } ], "source": [ "get_movie_emb.predict([topMovies]).shape" ] }, { "cell_type": "markdown", "metadata": { "hidden": true }, "source": [ "Because it's hard to interpret 50 embeddings, we use [PCA](https://plot.ly/ipython-notebooks/principal-component-analysis/) to simplify them down to just 3 vectors. " ] }, { "cell_type": "code", "execution_count": 62, "metadata": { "collapsed": true, "hidden": true }, "outputs": [], "source": [ "from sklearn.decomposition import PCA\n", "pca = PCA(n_components=3)\n", "movie_pca = pca.fit(movie_emb.T).components_" ] }, { "cell_type": "code", "execution_count": 63, "metadata": { "collapsed": true, "hidden": true }, "outputs": [], "source": [ "fac0 = movie_pca[0]" ] }, { "cell_type": "code", "execution_count": 64, "metadata": { "collapsed": true, "hidden": true }, "outputs": [], "source": [ "movie_comp = [(f, movie_names()[movies[i]]) for f,i in zip(fac0, topMovies)]" ] }, { "cell_type": "markdown", "metadata": { "hidden": true }, "source": [ "Here's the 1st component. It seems to be 'critically acclaimed' or 'classic'." ] }, { "cell_type": "code", "execution_count": 65, "metadata": { "hidden": true }, "outputs": [ { "data": { "text/plain": [ "[(0.011226126320379693, 'RoboCop 3 (1993)'),\n", " (0.0078716698259611688, 'Police Academy 5: Assignment: Miami Beach (1988)'),\n", " (0.0077262310347635081, 'Mission to Mars (2000)'),\n", " (0.0064721869975817269, 'Battlefield Earth (2000)'),\n", " (0.0062127231326777098, 'Barb Wire (1996)'),\n", " (0.0058832830348050065, 'Mighty Morphin Power Rangers: The Movie (1995)'),\n", " (0.0057819443702678492, 'X-Men Origins: Wolverine (2009)'),\n", " (0.0057817441730701391, 'Bio-Dome (1996)'),\n", " (0.005781389310885462, 'Howard the Duck (1986)'),\n", " (0.0054670725098811285, 'Lolita (1997)')]" ] }, "execution_count": 65, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sorted(movie_comp, key=itemgetter(0), reverse=True)[:10]" ] }, { "cell_type": "code", "execution_count": 66, "metadata": { "hidden": true }, "outputs": [ { "data": { "text/plain": [ "[(-0.052890492005052581, 'Wallace & Gromit: A Close Shave (1995)'),\n", " (-0.050841010663626743, 'Star Wars: Episode IV - A New Hope (1977)'),\n", " (-0.049944742190885363, 'Amadeus (1984)'),\n", " (-0.049246174546123275,\n", " \"Amelie (Fabuleux destin d'Amélie Poulain, Le) (2001)\"),\n", " (-0.049152467014311127, 'Run Lola Run (Lola rennt) (1998)'),\n", " (-0.049128126059456503, 'Star Wars: Episode VI - Return of the Jedi (1983)'),\n", " (-0.049019741276832583, 'Seven (a.k.a. Se7en) (1995)'),\n", " (-0.048763816592434478,\n", " 'Lord of the Rings: The Fellowship of the Ring, The (2001)'),\n", " (-0.048522566455089379, \"Schindler's List (1993)\"),\n", " (-0.048490031070226335, \"Ferris Bueller's Day Off (1986)\")]" ] }, "execution_count": 66, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sorted(movie_comp, key=itemgetter(0))[:10]" ] }, { "cell_type": "code", "execution_count": 67, "metadata": { "collapsed": true, "hidden": true }, "outputs": [], "source": [ "fac1 = movie_pca[1]" ] }, { "cell_type": "code", "execution_count": 68, "metadata": { "collapsed": true, "hidden": true }, "outputs": [], "source": [ "movie_comp = [(f, movie_names()[movies[i]]) for f,i in zip(fac1, topMovies)]" ] }, { "cell_type": "markdown", "metadata": { "hidden": true }, "source": [ "The 2nd is 'hollywood blockbuster'." ] }, { "cell_type": "code", "execution_count": 69, "metadata": { "hidden": true }, "outputs": [ { "data": { "text/plain": [ "[(0.089763794425230248, 'Independence Day (a.k.a. ID4) (1996)'),\n", " (0.082481808992957262, 'Stargate (1994)'),\n", " (0.075202916964643554, 'Ace Ventura: Pet Detective (1994)'),\n", " (0.075096380784319031, 'Armageddon (1998)'),\n", " (0.073007693041213545, 'Rock, The (1996)'),\n", " (0.072833267497441609, 'Speed (1994)'),\n", " (0.071935710919232093, 'Titanic (1997)'),\n", " (0.070593224049008141, 'Star Wars: Episode I - The Phantom Menace (1999)'),\n", " (0.070216856704080149, 'Happy Gilmore (1996)'),\n", " (0.067770050911144394, 'Die Hard: With a Vengeance (1995)')]" ] }, "execution_count": 69, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sorted(movie_comp, key=itemgetter(0), reverse=True)[:10]" ] }, { "cell_type": "code", "execution_count": 70, "metadata": { "hidden": true, "scrolled": true }, "outputs": [ { "data": { "text/plain": [ "[(-0.065291630296936576, 'Brokeback Mountain (2005)'),\n", " (-0.062228361401071283, 'Annie Hall (1977)'),\n", " (-0.05711136955146863, 'Apocalypse Now (1979)'),\n", " (-0.055546273177881127, 'Vertigo (1958)'),\n", " (-0.053861524618477798, 'City Lights (1931)'),\n", " (-0.051540528501327648, 'Harold and Maude (1971)'),\n", " (-0.050212882067681805, 'Manhattan (1979)'),\n", " (-0.049323688257642717, 'Heavenly Creatures (1994)'),\n", " (-0.04888208810926576, '8 1/2 (8½) (1963)'),\n", " (-0.047568694007240744, 'Gosford Park (2001)')]" ] }, "execution_count": 70, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sorted(movie_comp, key=itemgetter(0))[:10]" ] }, { "cell_type": "code", "execution_count": 71, "metadata": { "collapsed": true, "hidden": true }, "outputs": [], "source": [ "fac2 = movie_pca[2]" ] }, { "cell_type": "code", "execution_count": 72, "metadata": { "collapsed": true, "hidden": true }, "outputs": [], "source": [ "movie_comp = [(f, movie_names()[movies[i]]) for f,i in zip(fac2, topMovies)]" ] }, { "cell_type": "markdown", "metadata": { "hidden": true }, "source": [ "The 3rd is 'violent vs happy'." ] }, { "cell_type": "code", "execution_count": 73, "metadata": { "hidden": true }, "outputs": [ { "data": { "text/plain": [ "[(0.12771136594581653, 'Lord of the Rings: The Two Towers, The (2002)'),\n", " (0.12416130751199246,\n", " 'Lord of the Rings: The Fellowship of the Ring, The (2001)'),\n", " (0.10774460999231848, 'Dumb & Dumber (Dumb and Dumber) (1994)'),\n", " (0.097855138307821166, 'Matrix, The (1999)'),\n", " (0.096519093444194196, 'Star Wars: Episode VI - Return of the Jedi (1983)'),\n", " (0.096028597633532206,\n", " 'Lord of the Rings: The Return of the King, The (2003)'),\n", " (0.093372233415449646, 'Seven (a.k.a. Se7en) (1995)'),\n", " (0.092204737242516085, 'Fight Club (1999)'),\n", " (0.088830550133604566, 'Dark Knight, The (2008)'),\n", " (0.084454786769486812,\n", " 'Star Wars: Episode V - The Empire Strikes Back (1980)')]" ] }, "execution_count": 73, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sorted(movie_comp, key=itemgetter(0), reverse=True)[:10]" ] }, { "cell_type": "code", "execution_count": 74, "metadata": { "hidden": true }, "outputs": [ { "data": { "text/plain": [ "[(-0.081268064072003571, 'Sabrina (1995)'),\n", " (-0.072882174081468354, 'Bend It Like Beckham (2002)'),\n", " (-0.069120924379602863, 'Pay It Forward (2000)'),\n", " (-0.066709931261842326, 'Legally Blonde (2001)'),\n", " (-0.065476502200492157, 'Postman, The (Postino, Il) (1994)'),\n", " (-0.065083000473015226, 'Sense and Sensibility (1995)'),\n", " (-0.062875264063149472, \"Romy and Michele's High School Reunion (1997)\"),\n", " (-0.059339590424728771, 'Beverly Hills Cop III (1994)'),\n", " (-0.05781742852876845, 'Sliding Doors (1998)'),\n", " (-0.056878951867276789, \"Singin' in the Rain (1952)\")]" ] }, "execution_count": 74, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sorted(movie_comp, key=itemgetter(0))[:10]" ] }, { "cell_type": "markdown", "metadata": { "hidden": true }, "source": [ "We can draw a picture to see how various movies appear on the map of these components. This picture shows the 1st and 3rd components." ] }, { "cell_type": "code", "execution_count": 75, "metadata": { "collapsed": true, "hidden": true }, "outputs": [], "source": [ "# The following would be for Python 2 only\n", "# reload(sys)\n", "# sys.setdefaultencoding('utf8')" ] }, { "cell_type": "code", "execution_count": 76, "metadata": { "hidden": true }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA78AAANSCAYAAACtOnnGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XdYVFfixvHvhaH3LlXAgg0VAXvX2DUaTe+J6ZtN7/vb\nTd1syqbspmx6Na6JSdQYS4wlxi72BmJHwEJHerm/P8SJSBEixs3k/TyPz+Oce+45Z2YY9J1z7rmG\naZqIiIiIiIiI2DK7Cz0AERERERERkfNN4VdERERERERsnsKviIiIiIiI2DyFXxEREREREbF5Cr8i\nIiIiIiJi8xR+RURERERExOa1SPg1DGOUYRgphmHsMQzj0XqODzQMY6NhGJWGYUw549j1hmGk1vy5\nviXGIyIiIiIiInI641zv82sYhj2wG7gIOAysB640TXPnaXUiAU/gQWCOaZoza8p9gSQgATCBDUC8\naZq55zQoERERERERkdO0xMxvT2CPaZr7TNMsB/4LXHx6BdM0D5imuRWoPuPckcAi0zRzagLvImBU\nC4xJRERERERExMrSAm2EAmmnPT4M9DqHc0PPdpK/v78ZGRnZ1PGJiIiIiIjYlA0bNmSZphlwocfx\ne9IS4fc3YRjGrcCtABERESQlJV3gEYmIiIiIiFwYhmEcvNBj+L1piWXP6UD4aY/Daspa9FzTNN81\nTTPBNM2EgAB9wSEiIiIiIiJN1xLhdz3QzjCMKMMwHIErgDlNPHchMMIwDB/DMHyAETVlIiIiIiIi\nIi3mnMOvaZqVwJ84GVp3AV+aprnDMIynDcOYAGAYRqJhGIeBS4F3DMPYUXNuDvAMJwP0euDpmjIR\nERERERGRFnPOtzq6EBISEkxd8ysiIiIiIn9UhmFsME0z4UKP4/ekJZY9i4iIiIiIiPxPU/gVERER\nERERm6fwKyIiIiIiIjZP4VdERERERERsnsKviIiIiIiI2DyFXxEREREREbF5Cr8iIiIiIiJi8xR+\nRURERERExOYp/IqIiIiIiIjNU/gVERERERERm6fwKyIiIiIiIjZP4VdERERERERsnsKviIiIiIiI\n2DyFXxEREREREbF5Cr8iIiIiIiJi8xR+RURERERExOYp/IqIiIiIiIjNU/gVERERERERm6fwKyIi\nIiIiIjZP4VdERERERERsnsKviIiIiIiI2DyFXxEREREREbF5Cr8iIiIiIiJi8xR+RURERERExOYp\n/IqIiIiIiIjNU/gVERERERERm6fwKyIiIiIiIjZP4VdERERERERsnsKviIiIiIiI2DyFXxERERER\nEbF5Cr8iIiIiIiJi8xR+RURERERExOYp/IqIiIiIiIjNU/gVERERERERm6fwKyIiIiIiIjZP4VdE\nRERERERsnsKviIiIiIiI2DyFXxEREREREbF5Cr8iIiIiIiJi8xR+RS6Q5HX/ZOl/h16QvlfOmsLW\n5U8065w5b4WSsXfueRrRhe0/K301i6f1x6yuOi/tn4uC7F388Ek8lRXFF3ooIiIiIr9rlgs9AJH/\nRZsW30taylcAGHYWHJy88PBpT0ibcbTudDV29g4XZFwrZ03BwzeGrgOfs5Yd3DmNrcufIHbAM0R2\nvrZJ7SSOeg87u5Z9DsUFafz4eW8GTpmHd2C3Jp+36LNelBQebvC4X0gf+k2c2RJDbNDO1c/SLv7P\nGHb2AGTsncfBHZ+Rn7WdqqoyPHza0z7+z7SKGlHrvIy935O87iWK8w/i6tWajr0eITh6tPW4aZqk\nrH+FgzunUVGWj09QHLEDn8PTN8Za50TeXnaufo6czHVUVZXj6duemMQHCIwYAoCnX0d8gnqwd8s7\nxCTcd15fBxERERFbpvAr0gD/sAH0GP4vzOoqykuzyTq8kpT1L3N490z6TPgSi4Prr267uqqiRcaY\nuuHfpCS9SvxFbxDSZlyTz3N09mmR/lvCwCnzMM2TM64FWTtZM/dqBkz+HhePEIAWD+lnyslcz4nc\nPYS2HW8ty85Yg39YPzr0ehgHZ2/Sd3/LugU30+/imfiF9Dp53pEkNvxwBzGJDxAcPYbMffNIWngb\n/S+ZhU9QDwD2bHqLvVveIW7oq7h7t2F30qusnnMlw65ajsXRHYC131+Pq2dr+kyYgb2DKwe3f8a6\neTcx5MqluHlFAhDe4TK2LHuEdj3uxs5Ov7ZFREREfg39L0qkAfb2jji7BgLg4h6Ml38XAsIH8dNX\no9iz6S069HwQgLSUr9m/9QMK8/Zgb3HGL6Q3Xfo9hYt7MABZ6atYNftSeo39lJT1r5CftYPEUe/V\n6a+4MJ01312Jd1Ac3Yf8s9GQY5omO1Y9zcGd0+g15mMCwgdaj62cNQUPn3Y4OHlycOc0MOwIbz+F\nTn3/gmHY/VLntBnk0uLjbFn2EMfTfsbJxY+YxAfYu+UdgqPH0qHnA9a2y0vzWL/wVo4dXIKTawAx\niQ8SHjMZgB8/7w3A8pljgKbP2Dq5+Fn/XuqcaS079dqfrrH+AUpOZLJj1dMcT/sJAJ+geLr0fwp3\n7+gG+z+cOgv/sP7YW1ysZbEDnq5VJybxfo4eXEzm/gXW8Ltvy/v4hfalfcI9AHj43kNWxir2bXmf\n+BFvYZom+7a+T7u4uwhpMxaAuGGvseCjbhxO/ZbIztdSVpJDUf5+ug1+AS//zgB07PM4e7e+R37W\ndmv4DQwfREVZHtnpq2q91yIiIiLSdLrmV6QZPP06EBgxmMx986xlZnUFMT0fYPBli+g15hPKS3LY\nsOiuOufuXP13OvR8mKFX/mSdGTylMCeVFd9cTGDrocQNfa3x4FtdyeYl93E4ZSZ9J3xZbxg6nPot\nhp2F/pfMJnbAs+zb+j7pe+Y02OamxfdSUniYvhfPoOeYDzm8+2uK61mKvDvpVVpFjmTQ5YsIaTOB\nzUsfoLgwHYABk78HoPe4aYy4YVO9Af9cNdZ/ZUUJq2Zfir29E30vnkn/S+bg7BbE6jlXUFlR0mCb\nOZlr8Q7oeta+K8tP4OjkZX2ce3QDgeGDatUJDB9MzpEkAIoLDlFWfIyA0+rYW1zwC+5lrePo7IO7\nTzvSUr6msqIIs7qKgzs/x+Lgjm+rROt5dvaOePl3IjtjTRNeJRERERGpj8KvSDN5+LSnuOCg9XFE\nxysIaj0MN6/W+ATF0XXQP8jJXEvJiYxa58Uk3k9gxCDcvFrXmu3MPbqRlbMmEdn5Wrr0exLDMBrt\nPy35Sw7v/oY+E2bgE9S9gTG2o0PPh3D3bkNo2wn4hfYl6/CKeuueyN3D8bRldB30Ar6tEvDy70Lc\n0FepqqwbGMPaTyE8ZjLuXlF06PUQdnb21kB26jk5Ovvg7Bp4XpZWN9Z/xp7ZgEn3oa/i5d8JD5+2\ndBv0ApUVRRw9uKjBNosL03F2a9Vov/u3fUxJUSZhMVOsZaXFx3Fy8a9Vz8nFn7Li4wCUFR87WeYa\nULuOa4C1jmEY9Bk/ncKcFOa9F8Pcd6JIWf8Kvcd9hrNb0BnntaK4MK3RcYqIiIhIw7TsWaTZTOCX\ngJp3fBu7a5Yzl5flgWkCUFKYjot7iLVefZtAlRYdYdWcK4hJuI+2cXc0qXff4AQKspNJXvsCCaPe\nxd7eqU4dT7+OtR47uwVRVpJVb3uFeXvBsKs1PhePUJxdg+rU9fT/pV07OwuOzn6UN9Du+dBY/3nH\nt1JckMa899rXOqeqsoTi/IM0pLqyFDtL3dfwlIy937Nz9TPEj3gbV4+wc3wGtZmmybblj+Po7EO/\nSd9ib3Hm0M4vWL/gVgZO+d66dB7A3uJMVWVpi/YvIiIi8kei8CvSTIU5u3H1bA1AZUUxa767ioCa\nzbEcXfwpL81h5beTqK6uvamVvaXuBlmOzj64eISTvmc2ER2vxNHZ+6z9u/u0p0v/Z1g153LWz59K\n4uj36wRg44xNogwMMKub+1TrqLMc2zAwa8L+b6Gx/k2zGk//zsSPeKvOeY5ODb+uji6+VJTl1Xss\nY+9cNi2+h7hhr9MqsvZOz86uAXW+UCgrybLO9DrVXLNcVnwcV4/QX+oUH7fWyUpfwZEDixh98w4c\napZUew96nuOHl5OWPIP2Cfdaz6soy8OlhcO3iIiIyB+Jlj2L1Ji1KZ1+/1hC1KPfM29bJkfy686y\nFWQncyxtmXUDoxO5eygvzaFD70fxC+mNh09byoqbPhNqZ+9ErzEf4eDkxervrqSiLL9J53n6daDf\nxTPJz9rOunk3ndOMoId3GzCryT++1VpWciKD0uKjzWrn1O2fTu3c/FvzDoilKP8ATs6+uHtF1frT\n2BJsL//OFOak1ilP3zOHjT/eQ/ehr9a7k7ZPUDzH05bXKjuethzfVgkAuHpG4OQayPHDv9Spqiwl\nJ3OdtY51ablxxq9iw67OlwoF2cl4B8Q2/AKIiIiISKMUfkU4GXwf+2Yb6XklmEBxeRV7juYya+0W\nSouOkJ+1g72b32HV7Cl4B8TSpvvtwMnlwXb2Tuzf9hFF+Qc5euBHUta91Ky+7S0u9BrzMQ6OHqye\n0/QA7OHbjn4TZ1KYk8zaeTfUe41uU7j7tCUgfDBbfnqUnCMbyM/azqYl92NvcTnr9cenc3Txx97i\nzLFDP1FafJyKsoJfNZ5fK7TdJTi5+rNu/k1kpa+mqOAQ2Rlr2L7yKU7k7WvwvIDwweRkrqtVlp46\nm40/3k2n3o/hF9Kb0uJjlBYfo7w011onuuvNZKWvJHXjGxTm7iF1w7/JylhFdLepwMnreaO7TmXP\nprfI2DuPguxkNi25D3sHN8LaTQLAJygBR2dvNi+5n/ysHZzI28uOVc9QXHCIoMjh1r6KC9IoLTpS\na/MsEREREWkehV8R4KWFKZRU1J6xbOe0E7sNY1j0aU9Wz7mcIwcWEZP4AP0mfmO9x6+Tix9xQ1/l\nyP6FLP3vEFKSXqVzv781u397iwu9xn6CxdG9WQHY3bsNfSfOpChvL2u/v67RXY0bEzfsVVzcglk1\n+1LWzbuRsPaTcHLxx66e64kbYmdnoUv/Zzi06wt++KQH6+bfBJy81dOct0LJSl/1q8bWVBYHF/pN\n/AZXzwiSfriNpV8MYtPie6koy8ehkWXPYe0voSh/HwU5KdayAzs+w6yuZPvKv/HDx3HWP+sX3GKt\n4xucSPyIt0hL/pJlM4aTljKT+IverrWTd9u4O4nuegvbfn6C5TPHUFZ8jD7jv7De49fJxZfe46ZR\nWVHEqtmXsfyrMWRnrKXnqA9qzfKmp84iIHxQi19zLCIiIvJHYvyW1+u1lISEBDMpKelCD0NsSNSj\n31PfJ8EA9v9j7G89nAuurCSHHz7pQfxFb1qXeP9ah3bNYOeavzPsquXW61r/1+xc/XfKS7LpPvSf\nF3oodVRVlbFkWn96XPQWfsGJZz9BRERE/hAMw9hgmmbChR7H74lmfkWAEG+XZpXbmuOHV5C5fyFF\n+QfJObKBDT/cjqOzL4ERQ8657aOHFtOpz+P/s8EXoF383bh6RmBWX5jrlRtTUniYdvF/VvAVERER\nOUfa7VkEeGhkDI99s63W0mcXB3seGhlzAUf12zGrK0le+yLFBQext7jgE9SDfpO+ti7vPheJI99t\ngRGeXw6OHrRPuOdCD6Ne7t5tcPduc6GHISIiIvK7p/ArAkyMO3krmpcWppCRV0KItwsPjYyxltu6\nwIjBBEYMvtDDEBERERE5bxR+RWpMjAv9w4RdEREREZE/Gl3zKyIiIiIiIjZP4VdERERERERsnsKv\niIiIiIiI2DyFXxEREREREbF5Cr8iIiIiIiJi8xR+RURERERExOYp/IqIiIiIiIjNU/gVERERERER\nm6fwKyIiIiIiIjZP4VdERERERERsnsKviIiIiIiI2DyFXxEREREREbF5Cr8iIiIiIiJi8xR+RURE\nRERExOYp/IqIiIiIiIjNU/gVERERERERm6fwKyIiIiIiIjZP4VdERERERERsnsKviIiIiIiI2DyF\nXxEREREREbF5Cr8iIiIiIiJi8xR+RURERERExOYp/IqIiIiIiIjNU/gVERERERERm6fwKyIiIiIi\nIjZP4VdERERERERsnsKviIiIiIiI2DyFXxEREREREbF5Cr8iIiIiIiJi8xR+RURERERExOYp/IqI\niIiIiIjNU/gVERERERERm6fwKyIiIiIiIjZP4VdERERERERsnsKviIiIiIiI2LwWCb+GYYwyDCPF\nMIw9hmE8Ws9xJ8MwZtQcX2sYRmRNuYNhGJ8YhrHNMIxdhmE81hLjERERERERETndOYdfwzDsgTeB\n0UAn4ErDMDqdUe1mINc0zbbAq8ALNeWXAk6macYC8cBtp4KxiIiIiIiISEtpiZnfnsAe0zT3maZZ\nDvwXuPiMOhcDn9T8fSYwzDAMAzABN8MwLIALUA4UtMCYRERERERERKxaIvyGAmmnPT5cU1ZvHdM0\nK4F8wI+TQbgIyAQOAS+bpplTXyeGYdxqGEaSYRhJx48fb4Fhi4iIiIiIyB/Fhd7wqidQBYQAUcAD\nhmFE11fRNM13TdNMME0zISAg4Lcco4iIiIiIiPzOtUT4TQfCT3scVlNWb52aJc5eQDZwFbDANM0K\n0zSPASuBhBYYk4iIiIiIiIhVS4Tf9UA7wzCiDMNwBK4A5pxRZw5wfc3fpwBLTNM0ObnUeSiAYRhu\nQG8guQXGJCIiIiIiImJ1zuG35hrePwELgV3Al6Zp7jAM42nDMCbUVPsA8DMMYw9wP3DqdkhvAu6G\nYezgZIj+yDTNrec6JhEREREREZHTGScnYH9fEhISzKSkpAs9DBERERERkQvCMIwNpmnqktFmuNAb\nXomIiIiIiIicdwq/IiIiIiIiYvMUfkVERERERMTmKfyKiIiIiIiIzVP4FREREREREZun8CsiIiIi\nIiI2T+FXREREREREbJ7Cr4iIiIiIiNg8hV8RERERERGxeQq/IiIiIiIiYvMUfkVERERERMTmKfyK\niIiIiIiIzVP4FREREREREZun8CsiIiIiIiI2T+FXREREREREbJ7Cr4iIiIiIiNg8hV8RERERERGx\neQq/IiIiIiIiYvMUfkVERERERMTmKfyKiIiIiIiIzVP4FREREREREZun8CsiIiIiIiI2T+FXRERE\nREREbJ7Cr4iIiIiIiNg8hV8RERERERGxeQq/IiIiIiIiYvMUfkVERERERMTmKfyKiIiIiIiIzVP4\nFREREREREZun8CsiIiIiIiI2T+FXREREREREbJ7Cr4iIiIiIiNg8hV8RERERERGxeQq/IiIiIiIi\nYvMUfkVERERERMTmKfyKiIiIiIiIzVP4FZvx720bGDfv6ws9jCb5Zt9u4r76uMHH0jR7C/K4/Ic5\nxM74iKFz/ttgWX0qqqsZOfcr1h/L/K2G2ywvbFrLM0mrLvQwRERERGyG5UIPQGzXo2t+4tv9qXXK\nZ42aREcfvxbv76YOXbmmfedfff6Z4/V2dKK7fyAPx/Wijad3SwzxNxEz/X0Wj7+cMHePZp+79mgG\n1y2ZB4ABuFocCHVzp1dQCNfHdCH8V7T5a/yceZj3d21lW/ZxKs1qIj28mBzdnmvbd8bOMKz1Xt+a\nhLPFwvyxU3C1WBosq8+Xe5IJdHElMTDYWvb2jk38lJFGcm4OJVWVpFw5tc55q4+k8/q2DaTk5eJq\nsTAxqh33dU3AYvfLd4k/Zx7mjW0b2Z2fi6OdHT0Cgni4ey+iPL2sdcqrqnh7x2ZmH0jlWEkx/s4u\n3NQhlutiugBwS8euDP/uS27o0IVwd89f/2KKiIiICKDwK+dZ36AQXuwzuFaZj5Pzr26voroaB7va\nCxaqTRPTNHFzcMANh1/dNtQe77GSYl7cvI4//byI+WMvPad2fwvlVVU42tu3SFvfj5mMl6MTxZUV\nJOfl8EnKdibM/5p3Bo2k52lh8XyYlrqTZzes5saYLjzRozcuFgdWHjnMy5vXsyXrGK/0G2qte7Cw\ngGFhrWsF/frKzmSaJp/u3sGdnbvXKi+vqmZEWCS9AoP5z84tdc5Lzs3mlp8WcmunbrzQexBHS4r5\n2/oVVJsmj8T1AiDtRCF3Ll/Ete078WKfQRRXVvLS5nXc+tNCFo2/zNrW/auWcKS4mGcS+9Paw4vs\n0hJKqyqtx32dXegfHMoXqbusbYuIiIjIr6fwK+eVo709AS6u9R4zTZP3d21lxt5kjpUU09rdk6kd\nu3JxVDsADp8oZNh3M/hnnyF8uTeZzdnHeLh7T1wtDjyzYRWv9RvGS5vXsa8gj1mjJrEwbT8L0w4w\nd8xkAFLycvj7xjVsyz6OiUm4uyeP9+hN76CQJo03wMWVG2K6cPvyHyitrMTZYrGOaeaIi4n1C7Ce\nFzP9fV7vN4xREVEAHC0u4h+b1rIi8zAAcQFBPN6jN5EeXnU7bcCS9IO8sW0jqfl5BLi4ML51G+7q\n0sMacIfO+S+TotqRUVTEosMH6NsqlH/1H1arjYrqal7YtIYFaQfIKyvFz/lkOw9279lo377OLvjW\nfEnR2sOL4aGtuXbJ9zy+djkLx16KvZ0dhwoLeH7TGrZmH6eoooIoTy/+HBvPkNAIAN7YvpEFh/Zb\n349Trlg0hy6+/vwlvm+dfo8UF/H8xjVc064TD58W+K5o2xF/Zxfu+vlHLgqPZHRENDHT3wcgOS+H\nN7dv4k9d4nhj+6Y6ZXfHxtfpZ3tOFgcL861jPeWerifrLji0v97XZd6hfbT19OHPNW229vDioe49\nuXflEu7qEoe7gyM7crKoNKt5oFsi9jVf1NzaqRvXL5lHTlkpvk7OrMg8zOqjGSwaf7n1da4vrA8N\nbc0rW9Yr/IqIiIi0AIVfuWBe25rEgrQD/DW+L1Ge3mzOOsr/rVuBl6MTg08LJa9sXc/D3XvxXK+B\nONjZsepIOmVVVby1fRNPJfbD18mFABeXOu0/uGopMd6+fDXyYiyGwe68XJyaMTN6oqKceYf20d7L\nB+dGls+eqaSykuuWfE+cfxCfDRuLg709H+7ayo1L5jNv7BRcmtDWz5mHeXDVMp6I70NiQCsyik/w\nt/UrKa+urhWEPkrezh2du/P1yIsx62nns5TtLDp8kFf7DiHUzYMjxUXsL8xv8nM5xd7OjhtiunD3\nisXszM0m1i+A4soKBgaHc2/XBJzt7Zl3aB93r/iR2aMvoY2nN1OiY3hr+ya2Zh+jq18gAPsK8tiU\ndYwnE/rV28+CQ/uoqK5maseudY4ND4sk0sOTuQf3MjoimhUTr+Laxd8zJDSCmzrE4mpx4Iq2HeuU\n1WfD8SNEuHvi6ejUrNehvKqqzs+Qs72FsqoqduRk0SsohFg/fyyGHV/tS+HS6BhKqiqZtT+VWN8A\na9D98fBBYn0D+Dh5G7P2p+Jsb2FgSBj3dU3EzeGXMcf6BXC0pJhDhQVEeGjps4iIiMi5UPiV8+rn\nzMO1NnKKD2jF+4NHUVxZwUcp2/lw8GgSAlsBEO7uwdbs40xL3Vkr/F7TrpN1RvWUKtPk/xL60sXX\nv8G+04tOcFOHWOv1uq2bMOt6+niLKysJdnXj3UEjm/p0Afj+4F5ME57vNRCj5vrUpxP70/fbaSzN\nOMSYiOiztvGfHZu5uWNXJke3ByDCw5OHuify0OplPNy9p7XdnoGtuKVTt1rnnn6dakbxCSI9vEgI\naIVhGIS4udMjIKhZz+eUNl4+AKQVFRLrF0AHHz86nHbt9h2d41iafoiFh/ZzZ5c4Wrm6MSA4jJn7\ndlvD79f7dtPZ17/WeafbX5iPu4MDQa5u9R6P9vRmf8HJ8B7g4orFzg5Xi8U6W+/m4FCnrD7pRScI\nbOR4Q/oHh/FxynZm709lbOs2ZJeW8GbNbPPxkhIAQt08+GjIaO5ZuZink1ZRbZp08vHjvcGjrO2k\nnShkw/GjONrb8+/+wymoKOfZDas4VlLMv/oPt9YLqhljelGhwq+IiIjIOVL4lfMqIaAVz/Tsb33s\nbH/yR25Pfh5lVVVMXbaA0/YvoqK6mlC32ss/u5y2vPgUi2HQ0du30b5v7NCFv6z7mW/3p9KnVQgj\nwqPOunHV6ePNLy9neupOblq2gK8umkCwm3uj556yIzeLw0WF9Jj5Sa3ykspK0goLmtZGThZbs4/z\n/q5frjutNk1Kq6o4XlpiDW5dfOu+NqebFNWem5bOZ+Tcr+gXHMqg4HAGhoTX2jSqycyTc8unziyu\nrOCNbRtZlpHG8ZJiKs1qyqqqiDntfbm0TQceXfMTj8f1xsHOjtkH9tS5zvZMBr9ibM1UVs8MblP0\nDw7jkbhePL1hFY+tXY6jnT13dokj6fgR7GqGfbykmCfWLefiyLaMa92GosoK/rVtA/euXMwnQ8di\nZxiYmBgG/LPPEDwcHQH4v/i+3LxsAVklxfjXvL9ONZ+X0qqqlnniIiIiIn9gCr/SomZtSuelhSlk\n5JXg0aaQqCCXemdczZog9fbAEYS41Z7ls5yxoZWLfd0fU0d7e+v1lA25Ozae8ZFtWZ6Rxooj6by5\nfRNPJvRjSpuYBs9xsVhqjbezzwASvv6UGXuTubdrgjU0nr7EuKK6ulYb1aZJBx8/Xu07pE77Xk1c\nZluNyZ+6xNWZ8QasS2dPjbcxnX39WTzhclZkprP6aDqPrPmJDj5+fDRkdLMD8J6CPADrzsMvbFrL\nz5mHeSSuF63dPXGxWHhkzU+1Xo/BIeE4WywsTNuPh6MjheVljG/dtsE+ojy8KKwo52hxUb2zv3vz\n82hbMwN9LnycnNiZm/2rzr2xQyw3xHThWEkxXo5OpBcV8s8t6wmreV2mpe7Exd6h1jXLL/UZwqDZ\n09mYdZSEgFYEOLsS5OJmDb6A9YuZjOIia/jNLysFar/nIiIiIvLr6D6/0mJmbUrnsW+2kZ5XggkU\nl1eRfKSQWZvS69Rt4+WNo509GcUnaO3hVevPmTO/5yLSw4vrYrrw7qCRTI5uz8x9Kc063zAMDAxK\nK0/uwnsqhBwvKbbW2XVGiOrs48+hwgJ8nJzrPDfvJoaYTj5+7CvIr3N+aw+vOl8OnI27gyOjIqJ4\nKrE/7w4ayZqjGRxs4gz0KVXV1XySsp0Id0/rjPvG40eZGNWOkeFRdPDxo5WrG4fOaNdiZ8clUe34\net9uvt6Rws2rAAAgAElEQVS3m4vCImsFvjONDI/Cwc6O93dtrXNsUdoBDp4oYHxkm2aNvT4dffzZ\nX5hHtVnfldJnZxgGQa5uOFsszD24j2BXNzrXLOUurazEzq72FwvWL01q+usREMSxkiKKKiqsdQ7U\nXIsdetoKg9T8XBzs7Gh/llUOIiIiInJ2mvmVFvPSwhRKKmovz6wyTV5amMLEuNBa5e4OjtzUMZYX\nN63FNE0SA1tRXFnJ5qxj2BkGl7ftcE5jKa2s5IXNaxkVHkWomwfZpSVsPH6UrvUsoT5deVWVNdgW\nlJfxeepOiisrrLsCO1ssdPcL5L1dW4jw8KSwvJxXtqyv1cb4yLZ8kLyNO5cv4s9d4wl2dedI8QkW\nHz7IFe06NmnH57u69OD2nxYS4ubO6Igo7O3sSM3LZWv2sVozimfzUfI2Apxd6ejji8XOju8O7sXd\nwYFWDVxTe0pOaQlV1dUUV1aQkpfDxynb2ZWbzbuDRlpn3CM9vFiUdoBhoa2x2Nnx5vaNlFXXXZ57\naZsY3tu1FTvggyGjG+032M2dR+J68dyG1TjY2TEpuj3O9hZWHUnnpc3rGBMRzegmXDN9Nr2Cgimr\nqiIlL6fWPaczik6QX15GelEh8MsXGxHuntaNqN7ftZUBwWHYGQY/pB3gvV1beK3fUOvrMigkgo9T\ntvPG9o0nlz1XVPDKlqSTAbnmGvVxrdvw1o5NPLZ2OXfH9qCgvIznNq5hZHgUfs6/bN6WdPwI8QGt\nmrRJmoiIiIg0Tv+jkhaTkVfSrPJ7Y+Pxd3bhw+RtPJm0EncHRzp6+9a7029z2RkGBeXlPLZ2OcdK\nivF2cmZISPhZbxmz6mgG/Wd9AYCbxYFoT29e7z+MXqfdHunvvQbwxLqfmbJwFhHunvwtoR9XL55r\nPe5isTBt2Fj+uWU996xYTGFFOYEurvQKDGny7sIDgsN4Z9BI3tqxiQ+Tt2Jv2BHp6cUlNbeBaio3\niwMfJG/lQGEBBidnlN8bNOqsYWrsvK8BcLU4EOrmTu+gYF7oPci65Bng0R69eGLtz1z941w8HR25\nPqYLZfVcmxru7mndsbpXE+4RfG37zkS4e/L+rq1M35NMZXU1kR6e3B3bg2vbd27W82+Ij5MzI8Ii\nmXNgT63w+69tG/h2f6r18cQF3wLw6dAx1p+B5Rlp/GfHZsqrq+jg7cubAy5iUEi49Zw+rUL4Z98h\nfLBrKx/s2oqTvYXufgG8P3iUdfdpNwcHPhoymmc3rGbKwll4OjoxPKw1D3RLrDXOuQf38efYHi3y\nnEVERET+6AzzVy77u5ASEhLMpKSkCz0MOUO/fywhvZ6gG+rtwspHh16AEcn/ijHfz2R8ZBvu6Bx3\noYdilZqfy3WLv2fR+Mtwd2h4KfaFsiz9EC9uXsec0Zc0e6m7iIiI2D7DMDaYpplwocfxe6L/UUmL\neWhkDC4OtXfQdXGw56GRDW8wJbYtp7SEL1J3kl5UyOVtO17o4dTSzsuHR+J6cfhE4YUeSr2Kqyp5\nvtdABV8RERGRFqJlz9JiTl3Xe2q35xBvFx4aGVPnel/54+jz7TR8nJx5KrH//+SOxRObuYz8t9SU\n+0GLiIiISNNp2bOIiIiIiMjvjJY9N5/W04mIiIiIiIjNU/gVERERERERm6fwKyIiIiIiIjZP4VdE\nRERERERsnsKviJwXgX+z8N2Orxt8fKHkleTS6cUQ9ufsvdBDqdfNMy7nrZWvXOhhiIiIiNgchV8R\n+VW2Zmyk1ZOOjH1/QJPqb3vwMCNixp3nUZ3da8ufZ3i70UT5trGWPTHvPi56pxfhz7gR/2qbes+b\nvf0rhrwdT+tnPejxSjRvrHi5Tp2vt0631un8Uih3fH0dRwuP1KpTWFrA4/PuJfblcMKedqXn6zHM\n3v6V9fgDg//Caz8/T0Fpfgs9YxEREREBhV8R+ZU+3/ghNybeQfKxHew+vuus9YM8WuFkcfoNRtaw\n4vJipm38kKt63FirvNqs5vJu13JZt2vrPW9x6nxu//oaro2fyk93buGFcf/mnTWv88HaN6111h5a\nyV3fXM/l3a5l+V1b+eSKr9l9fBd3fv1LmxVVFVz66Uj2Zafy3qXTWXX3Tv418QMifCKtdToFxdLa\nJ5qvtkxr2ScvIiIi8gen8CsizVZSUcI326ZzbcJUxneazLSNH571nDOXPWcWpHPrV1fR7nl/2j3v\nz1Wfj2dfdqr1+ItLn2Lgm934dtsMEl9rT9Rz3lw3/RKyi7KsdXYe3cbkjy8i+u8+RD7nxeC3erBi\n/9IGx7A4dT6GYdArol+t8ufHvs7U3n8i2q9dved9tWUaI9qP46aedxDpG81F7cdyT/9H+PeKlzh1\nr/SktDWEeIZxe997ae0TRUJ4b6b2uosN6eus7Uzf9DFZxVl8euW39G7dnwifSHq37k9caGKt/kbG\njOPb7f8962sqIiIiIk2n8Csizfbdzq8J82pNp6BYLu12NV9t+ZyKqoomn19cXsykj4fjZHFm1o1L\nmDd1BUEewUz5ZCTF5cXWeofyDjBr+5d8fMVMvrxuPtszN/P3xf9nPX7HzGsJ9Ahm4S2rWXL7Bh4a\n8lecLM4N9rvm4Aq6BvfAMIxmPd+yyjKcz2jX2cGFjILDpOUdBKBnRF+OnshkYcp3mKZJdlEW326b\nwfB2o63nzE+eTc/wvjw27x46vxRK/zdieXHpU3Veux6hiWxKX09JRUmzxikiIiIiDVP4FZFm+2Lj\nh1za7WoA+kYOwsXBlQXJc5p8/qztMzBNk39N/IDOrbrSLqADL49/m6LyEyza/b21XlV1Jf+e9CGd\nW3UlMbwP18ZP5ef9S6zH0/IPMqjNcNoFdCDary1jO04kMbxPg/2m5R+klUdIs5/vkLYjWJAyh6V7\nfqC6upq9Wbt5e9WrABw9kQlAYngf3pnyBXd8fR2hT7vQ8cVWmJj8e9JH1nYO5u7nu50zqayu4Iur\n5/DI0Kf4JOldnv3x8Vr9BXmEUFFVwZHCjGaPVURERETqZ7nQAxCR35d92XtYe2gl/5n8OQCGYTA5\n9kqmbfyQ8Z0nN6mNLRkbOZS3n6i/e9cqL6ko5sBpuzCHebXG09nL+riVZwhZRcesj2/vcy/3z76V\nLzd/yoCooYzrdAntAjo02G9pRQkBbkFNGuPpro2fyoGcvVw//RIqqivwcPLkll5389Kyp7EzTn6H\nmHJsJ4/Pu4f7Bz7BkLYjOHoik6d+eJQHv7uDNy/5GDh5bbG/WyCvTHgHezt7uoXEk1uczV8XPMCT\nI160zki7OLhYxysiIiIiLUPhV0TOatamdF5amEJGXgmObl9QVV1F3KtR1uOnrntNz08j1Cv8rO1V\nm9V0adWdd6bU3dTJx8XX+ncHe4daxwwMqs1q6+OHh/yNKV2vYnHqApbu+YGXf3qGl8a9VWdDq1N8\nXf3JL8096/jOZBgGfx3xD54Y/hzHThzBzzWAn/cvBqC1TzQAr//8AnGhifyp/4MAdKYrrg5uTPhw\nME8Me5YQrzCC3FthsXfA3s7e2nb7gA4UVxSTXZyFv1sAALklOQD41TwWERERkXOnZc8i0qhZm9J5\n7JttpOeVUE0VuRU/4Fp9PX8ZPJ8lt29gye0bWHrHRjoFdWX6po+b1GbX4Dj25+zBz9WfaL+2tf74\nuPqevYHTRPu145bed/PFNd9xVdxNfL7xgwbrxgZ3b9LO1A2xt7Mn2DMUR4sj32ybQUJ4b2tgLako\nrhVqT9UHrIG9Z0RfDuTspbr6lwC/NysVVwdX/Fz9rWXJR3cQ7BlKoHvzZ6lFREREpH4KvyLSqJcW\nplBSUQVAlV0SUIBZMZwvVkPHoC7WPxO7XMZ/N31inQVuzOSuVxHgFsR10yex6sBPHMzdz+oDy/nr\nggdr7fjcmJKKEh6Zezcr9y/jUO4BNhxey7pDK4kJ6NTgOUPajmD38V3kFGfXKt+XvYdtmZs5UphB\neVU52zI3sy1zM+WV5QBkF2Xx0br/sPv4LrZlbuaJeffx3Y6ZPDvqFWsbI2PGsSB5Dh+t+w8Hcvax\n9tBKnph3H12DexDmHQHADYm3k1uSwxPz72NPVgpL9izkxWVPcUPi7bU24VpzaAVD2oxo0usgIiIi\nIk2jZc8i0qiMvF+uO62yW4SdGYuBZ61ygAmdp/Dsj4+zbO8ihrRtPLi5Oroy+6alPLvocW6ecTl5\nJfm08ghmYJuheDn7NGlc9oY9+aW5/HnWzRwtzMTH1Y8R7cfy5IgXGzynU1AscaGJfLttBjf3utNa\nfv+cW1l1YLn18bD/JACQdO8e6z14v9zyGU8tegRMk/jw3nx742J6hPW0nnNF3PWcKCvkw3Vv8eQP\nD+Hh5EX/qCH89aLnrXVCvcL58tr5/HXhgwx9O55A91ZcGXcD9w98wlqntKKUebtmMePaeU16HURE\nGjJr3XqiAgPpFtn6Qg9FROR/gtGUWZr/NQkJCWZSUtKFHobIH0K/fywhPa/uxkuh3i6sfHToObf/\n9Fdf4+vhzp9GjTzntppiSeoCnph/Pyv+tK3OMuX6HMnL45p/vcmbU28kJqT5O0U31wdr32JByhy+\num7BObWzMiWFdxctJjM3j+FdY3n44vEtNML6Xf36G1ycmMBlfXuf135+bb8PfPI5I7t3ZUS3rue9\nrwth+NPP8dcplzCwU8cLPZQm234ojdfnLSAtK4tO4WG8cv2157W/+z/5jKjAAO4ePeq89nO2fu96\n/0Mu79eXgR0b3pzvlC0HDvLK3Hl8eOdt2Ns1b7He7PVJLNq6jZevuwZnB4ezn9AMT3/1NR3DQrm0\nz9k/C4ezc7j340/5+K7bcXdu+FZ0F0pz3g+R/zWGYWwwTTPhQo/j90QzvyLSqIdGxvDYN9usS58B\nXBzseWhkTIPnvDj7O/KLi3nuyssbbfvbtesBuHPkb7fEd2i7UdyUnUpGwWFu/NfnjdYd0a0r1w0a\ncN7GMvzp56x/d3F0JNzPF79W2Tw/5vVzbvufc75ndFx3JvVMwNnR8ZzbO5s3p974m/Tza6zZncrx\nggKGxXa50ENptqtff4Oj+fkNHu/aOuK8hsbT+3eyWAj28WFizwTGxfc457bfWvgDbYICee7Ky3F2\nbNlwVp8nL5uCpZkB8ny4ZkB//rPoR/p3iMHuLPccf/fHxVw9oJ81+C7cvIV/z1/I3McebvS85PQM\nvtuwkX+eh+ALcM3AATzwyWeMjut+1kD74ZKlTEjoYa1XXlnJa9/PJzXzCIeysujcwBcfs9cnMXt9\nEkfy8gn08uSq/v1qfXlVWVXF9BWr+GHrVrIKCgn392PqsKH0bNum3nF8sWIlHy5ZxsWJ8bW+AGnO\n+yEiv38KvyLSqIlxoQDW3Z5DvF14aGSMtfxcTOqVyKReiefcTnPd0vtuAL68/x5r2Zrdqbwyd16t\nMkeLhROlped1LPePG0Pv9u04UVrKl6vW8MPmo1zZ3a3euhVVVTjYn322+kRpKQUlJSS2icbf07Ol\nh1wvb7f6x/y/4Nt16xnRrWuzZ87+F7w59Uaqa1Zo7T1ylMe++C9v3HwjgV4n31dLE34eztW1A/sz\nPiGekvJyFm7eymvfz8fN2ZkhneteX19VXY2dYdS6hr0h6Tm5TEhMsD6X883TxeU36edserZryytz\n57EudQ+927drsN6OtMOkZWUz6FfM5ncIDeH92289l2E2KjookGAfbxZv287FiQ1POh3LL2Blym5u\nGzHcWlZVXY2jxZ6LE+NZt2dvvb9j5yRt4L0fl3D/+LF0CA0hJT2DV+bOw8PZmT4x7QH4aOlPLNq6\nlfvHjSUiwJ+kvft48suZvH7j9bQLblWrvZ2H05m3cRPRQYF1+mrq+yEitkHhV0TOamJcaIuE3VNO\nlJby7o+LWZW8m7LKStq1asVtI4bVWlb8865kPvlpOenZOXi7uTIuvgdX9e9n/U/11a+/wei47hwv\nKGDp9h24OjkxqVcil/ft0+Rx+Lq7W/9+albi9LJTYwU4ml/AB4uXsSMtjSBvb+4aeRHxbaKt9Q4e\nP847ixaz7VAaThYLcVGR3DHyojrtncnd2Rlfd3d83d25d+xolm7fwardqXQKD7POoMdGhDNrXRKV\nVVXMfPA+CktKeGvhIlbvTqW8spLO4WHcNXIEkYEBbD5wkAc/PTmj/eBnJ28l9fJ119A9sjU70g7z\nweKlpGRk4O7iTJ/27bll+FDcnJwA2HrwEO/+uJgDx45jZ2dHuJ8vD04YR1RgICdKS3lj/kKS9u6j\nqKwMPw8PJvVMZHLvntb34/QlwUfz83lrwQ9s3H8AgPjoKO4aNYKAmjD+ybLl/LwrmasH9OPDpcvI\nKyomLiqSB8aPxcvVFTg5e/XR0mWkZh6hsqqKqKBAbhs+jE7hYU1+j/OKiti4bz+3Dh9Wq3zm6rUs\n3LKVzNxc3Jyd6Nm2DbddNLxZyzJ/3LqNf81bwKOTLqZvzX/IT1dVXc2rc+ex+cABck4UEeDpwZi4\nOC7t27vJM0ynf6lw3LWgpsy13p+rgpISnv7qa9bt2Yu3mxs3DB7I8K6x1uNZBQX8Z9FikvbuA6BT\nWCh3jhxBmF/jO6y7ODpZ+7tp6GB+2rmLVckpDOncyfo+XtqnF5//vIKjefnMfuRB7O3seH/xEpZs\n30lRaSltWgVx20XDiY0It15KAPDynLm8PGcuD00Yx8ju3c76Odp39BhvL1xESkYG1aZJiK8Pd464\niO5RkVRWVfGfRT/y885kCkpK8HZzZWiXLtwy/OTlGWcuP27scwS/zLI+ffmlvLVwEUfy8ogJCeHB\nCeMI9jl5j/KMnFze/mERyekZlJSXE+bnyw2DBzUaouzt7OjZrg1Ld+xstN6S7duJi4rEqRkzt6Zp\n8uWqNczduJHswhOE+PpwRd8+tX4O9h09xts/LGJH2mGcLBb6xLTnzpEXWX/2T/3eiY+OYsaq1ZRV\nVNIvpj13jxlVaxa5T/v2LNm+o9Hwu2zHTiIDAwjy+uV+7S6Ojtw7dgwA+48dqzf8/rh1G2N6xDG0\nS2cAQnx8SMnI5L+rVlvD749bt3FFv77W13BCQjwb9+1n5pq1PDbpYmtbJ0pLef7bWTw4fhyfLv+5\nTl9NfT9ExDb8/r4GF5HfNdM0eWL6DLIKCnn2ysv4z603E9s6nIc+nUZ2YSEAuzMyeWbmNwzoEMN7\nt9/C1GFDmb5iFbPW177W/+u164gKDODtW2/m8n59eO/HJexMO2w9/uLs77j69TdaZNwfLVnGpJ4J\nvHPbLcSEBPPsN7MoKa/ZDbqwkPs+/oyowEDeuPlGXrz2KkrKy/nrf7+yzto1hcXeHnt7e6qqflli\nvvXgIfYdPcbzV1/Bi9debX1eyekZPH35pbxx8404Ozjw2BfTKauooHN4GB/ccXLG52+XTubL+++h\nc3gY+44e45HPv6BPTDveue0Wnrx0CnuPHOXlOXOBk0HtrzO+IjY8nHdvu4U3br6BS3r1xM44+c/E\nR0t/Yv+xYzx75WV8fNcdPDhhHP6eHvU+j2rT5K8zviK3qIiXr7ual6+7mqzCQv4246tau4Efyctj\n2Y6dPHXZFF64+kr2HDnCh0uWWY+XlJczvGssr95wHW9MvZG2rYJ4fPoM8ouLm/yabk9Lw8FisQaa\nUwzD4M6RF/H+Hbfy+KSJJKdn8sb8hU1u95u163hjwQ88e+Xl9QZfOPmz7u/hwV8mX8KHd97GjUMG\n88WKlSzcvKXJ/TTH58tX0DemPe/cNpXBnTvx8py51iXLpRUVPPDpNBwtFl65/hr+ddP1+Hm48/Dn\n0yitqGhWP44WC5Wn3a7rSF4eS7bv4K9TLuGd26biaLHw3o9LWLZjJw+OH8t/bp1KVGAgj02bTnZh\nIQGennx5/z04Ozhw58iL+PL+exjcuVOTPkd//3YWvh7uvDH1Rt65bSrXDRqAo+Xk9/jfrlvPyuQU\nnpg8iY//dAd/mXwJ4f5+DT6Pxj5Hp1RUVTF95SoenDCWf910PSfKSnnt+/nW4yXl5fRs24YXrrmK\nd26byoCOHXjyy5kcyspq9DXsEBLC1oMHG62z7VAa7UOCG61zpo+WLmP+5s3cPXoUH9xxG1f268tr\n389nze5U63gfmzYdF0dH3rj5Rp68bAo70g5bfw+c3vf+Y8d58Zqr+cvkSaxITuGbtetq1YmpmZEt\na+TnZ9uhQ7QPbt5zgJOv+6n39RRHi4WU9Awqa34/ltdTx8nBge2H0mqVvTp3HgM7dqR7VGSD/TXl\n/RAR26DwKyK/qc0HDrL3yFH+dulkOoSGEurry41DBhPs482PW7cDMHPNWrq2juD6wYMI8/NjWGwX\nLu3TmxkrV9dqKyE6iok9Ewn19WVSz0RCfX2sM41wchY3xKdpu0efzeTePekT054wP19uHjqYwpIS\n9hw5CsB3SRtpExTELcOH0jrAn+igIB6ZOIHkjAx2Z2Q0qf3yyko+X76C4rIy4qIireWOFot19jU6\nKJDD2Tms3p3KfePG0LV1BNFBgTwycQJFZeUs3rYdB3t762yhh4sLvu7uONjb8+XqNQzu3IlL+/Qm\nzM+XjmGh3DN2FD/vSia3qIiisjJOlJbSu307Qnx9iPD3Z1hsF1oHnLz/8LH8fNoGt6JDaChB3l50\nj2zd4HLMTfv2s//oMR6/ZCIxISHEhITw+CUTSc08Uuv9qaqu5qGLxxMdFESn8DDG9ohj02nH46Ii\nuahrLK0D/Inw9+dPo0biaLFn/Z69TX3bOJpXgLeba50lz5N79yQuKpJW3t50i2zNLcOH8tPOXU36\nsuKjpcv4YsUqXrr2arq2jmiwnsXenhuGDKJDaAitvL0Z3LkT4+J7sGT7jiaPvzmGd41leNfYms/U\nIOzt7Nh28BAAS7fvAEwemjCO6KAgIvz9uXfsGErKK6zB6GyqqqtZuHkL+48dq/UzWlFVxaMTJ9Au\nOJiowEDKKyv5LmkDU4cNpXf7drQO8OfesaPxcXdj9voN2NvZWWdy3ZxOzio7OTg06XN0LC+f+Ogo\nIvz9CfX1pX+HDtaVAEfz8wnz9SM2IpwgLy86h4cxqnu3ep/L2T5Hpz/nP48eRYfQUKKDgrisT2+2\nHjxo/RKnTasgxifEEx0USKivL1cP6E/b4FYs35nc6Gvp5+FBVkEhVad9iXCmo3n5+HnU/wVTfUrK\ny5m5Zh0PjBtLz7ZtCPbxZlhsF8b06M6cpA0ALNm+g5KKCh6dOIHooJO7QN83bgwrklNIz8mxtuXm\n5Mi9Y0fTOsCfhDbRDOzUsdZnE8Dfw53K6mqyC080OKZj+fn4ezS++qU+CdHRLNi8heT0DEzTJCUj\ng/mbNlNZXW398iuhTTTfrF1HWlY21abJhr37WLErmZwTv4zn+42byMjN5cYhgxrtrynvh4jYBi17\nFpHf1O7MTMoqKpj88qu1yssrK8nIzQXgUFYWvdq1rXW8S0Q4ny3/maKyMusy3agzrt/yc/cgr7jI\n+njqsCEtNu7owF/6OvUf0ryik33tzsxk66FDjHu+7m2WMnLz6BDa8JLxf8yaw4uzv6O8shI3Jydu\nu2gYPU977pEBAbVmNw5lZWFnGHQK+6VNd2dnogIDOHi84dmm1MxMMnJyWbZjZ51jmTm5dAoPY2S3\nrjw6bTpxUZH0iIpiQKcO1uWK4+N78PTMb0jNPEJ8VBS927dr8PYph7Ky8fNwp5W3t7UsxMcHPw8P\nDh3PIj46CoAgb69ay4z9PDysrylAblERHy/9ic0HDpJbVER1dTXllZUcyy9o8Hmeqayyos7sEMCm\n/QeYvmIVh7KyKCoro7q6moqqKnJOnMC/kcDx7bp1FJeV8+bUm866XBjgu6QNzN+0maP5BZRVVFBV\nXU3gaUtAW9Lp1zPa29nh5eZKXtHJoJCaeYTM3DzG/+OlWueUVVRYP3cN+WjpMj79abn1mvPL+vSu\nteFVgKcHPqctw87MzaWyupou4eG1xtMpLKzRGdGmfI4m9+7FP7/7nh+2bCUuKpIBHTsQ4X/yC5qR\n3bry8OfTueHNt4mPjqZn2zb0bNe23iXmTf0cOdjb15o99nN3p6KqisLSUjxdXCgpL+ez/2fvvqOj\nqNoADv82vfdOEkIKCSEhhN6LdCnSpCmKioIVUQHhUywgKCI2pEgRBBSk9947hJIQSmjpvfe+8/2x\nsLAkNMWG73NOzmFn7szcmdld9p1773v3H+TYlatkFRRQUVlJWUVFtWNLb2dsYICC5nvP9C6J4soq\nKqp9795NbHoGZRUVjP9luc7ySrUaZxvNey4uPQNvJyfMbnyHAtT1cEdPpSI2PYMadpr3tKeDo84D\nIwdLCy4l6j7IMzLQdIEurbh7y29pRQWGD3EONz3bphVZhQWM+kkzd7ythTmdQ+qx4shR7f18vUsn\nZmzawkuz5wLgZmdLl/ohbLvRsyI+I5OFe/bxzbDn7js2/kHuhxDi8SDBrxDiL3Xzh8zXw56rsu72\nH2R3c/vPWIM7pypSwZ81fZu+/q0fgjfHHd88lqIoNPXzZUSnDlW2s71PIqhXOj5BY18fzIyNqy37\nMFlw75VkSFEUuoXW147Rvd3NYG/MUz3p27QJJ69d48jlyyzcu49PBvSn8Y0gYtmoNzhx9RpnomP4\n368raBtYhzEPO4XSbVW88/6pQKflddq6DWQXFvJq54642NhgaKDPmCXLKL+tW/j9WJuZUVCsO6Yw\nNSeX//26gicb1GdYuzZYmZlyJTmFz9as03apvJsgDw9OXrvO3sjzDL1PJvC95y8wa/tORnTqQF0P\nd8yMjVl/8hSHL0U9cP0fxp2ZjFWotNdTrSj4ujjzv359qmxneZ9EUP2aNaVbaAjGhobYW1hUeZ+Z\nGD6aYOFBPkfPt2tDh+AgTl69xslr11iy/yCjunejW2h9/FxdWfbW64Rdu87p6Bimrd+Ij7MzXwwd\n8lBZfG8/vypJ0u747M/duZuwa9d4pVNH3O1sMTY05It1G6iovHcLYl5JCUYGBvcMtKzMTMkvrjrN\n3Kh2Ac0AACAASURBVN3crNOkQQOqJBGr8l1ZDZ3vVv07Owaqqny33qybzY0x+tWxNq36+XsQxoaG\njOnVk9HdnyS7sBA7Cws2nz6DmZER1jfeCzbm5nw68GnKKirIKyrC3tKS+bv3asdjX0hIILeoSBsc\ng+ZzcC42jo1hp9k0fqz24cKD3A8hxONBgl8hxCOx7kyiNiN0TYtkfByqD2T9XFzILihEpVLdtUuy\np4MD528buwuaOUEdrSwfKED+q/m5urD/wkWcra0fOvuunYWFtrXlQXg6OKBWFC4kJGq73BaWlhKd\nln7XLp4Avi4uxKSn3/dYPi7O+Lg4M6hlC8Yv+5UdEedofGPqEGszMzrVC6ZTvWAa+/owZfVaRnXv\nVqV1ytPBnsz8AlJycrStv0nZ2WTm51PzRivdg4iMT+D1rp21SWiyCwrIukcXy+r4ujiTU1REblGR\nNpFWVHIyFZWVvNq5kza4OXb56gPtz8/VlX7NmjJu6S+oVJopX+5a/7h46tSoQe8mtzKaJ9+nlfXP\n4ufqwt7I81ibmT30XKtWpqYP9R51tbXFUF+fyPh43Ow0n/FKtZoLCQnaBEZ3q+ODfI7c7e1wt7ej\nT9PGfLN5K1vPnKVbaH1A8wCtTWAd2gTWoUtIPd5cuIikrCzc7XXH/v7ez9GdIuPj6VQvWDtHrKYH\nS06V490pJi0NPxeXe5bxdXG579jh29V0dMBQX5/U3Fydbum383R0YNvZcIpKS7XfpefjE1ArCp6O\nD/7ZBIhJT8fBUrfV/06+rs7EPsQ53MlAX1+bJG9f5AWa1var8iDDyMAABysrKiorOXjxknY4RssA\n/ypjpr/csIkadnYMadVCJ3P+g9wPIcTjQcb8CiH+sHVnEhm/5hyJOcUoQFFZBZdTcpi3L4KrKSna\nv5ScHBp416KuhwcTV6zkxJWrJGfncCE+gcX79mvHJz7dvCkRsXEs3neAhMxMdp+LZNWx4wx4iEzO\nAPN372XMz8v+hDPW1atxIwpLSpm8ei0XExJJys7m1PVoZmzaTFFp6SM9lru9HS38a/PN5i2cu5EM\n6/O16zE3NrpnYDGoZXOiEpP4ZvMWriSnkJiVxbHLV/h60xYAkrNzmLdrD+fjE0jNyeVsdAzX09K0\nweqivfs5fCmKhMwsYtMzOHTxEq62ttV2y2zgXYtazk5MXbOeqKQkopKSmLpmPX6uLnf9UX63c90d\nEUlsejqXEpOYvHrdQz9c8HVxwcbcXCcJjrudLWpFYc3xEyRna5I1rb4jmU9GXh4v/DCHQ5eqjt0M\nqOHGF88OZuXR4yw9cEi7fN2Jk7zwwxyd+l9JSeHElaskZGax9MBBwm+8x286dOkSL/wwh4y8B+/K\n/Xt0CA7C1sKcictXEh4TS3J2DhGxcczZsYuEzKz77+AhmBoZ0bNRA+bv3sPxK1eJTc/g2y1byS4o\npFejhnfd7n6fo9Lycr7bso2zMbGk5ORwMSGRyPh47bj0VUePsyfyPLHpGSRmZbHnRhb46qb7+r2f\noyr7sbPj0KXLXElO1iSmW7uesoqK+253Li6exr7e9yzTyMe7SvIm0LTw3v69ejUlhei0NMyMjXm6\neTPm7tzN1jNnSczK4mpKChvDTrHp1GlA8z4wudE6fT01jYjYOL7ZvIVWAf4P9YDj5jk08rnPOXh7\nczEhscpY2tj0dK6mpJBbVExJWZn2PG5KyMxkZ8Q5EjKzuJSYyOTVa4lOT+elJ9ppy1xMSOTgxUsk\nZWdzLjaO8cuWo1YUBrbU/D+h6cbupPNnYmiIlalm+e0t/A9yP4QQjwdp+RVC/GFfbo+iuFy3u6ix\nXgErDmxkxYFby1rXCeCjp/sxZchAftq7nxmbtpBTWIithTl1PTzoVK8eoGld+7B/XxbvP8Cvhw5j\na2HOoJbN6X2PKTWqk1VQcN/xjI+Cg6Ul37zwPAv27GX8L8spq6jAydqKht7ev2u82/2M6dWDWdt3\n8uGKldopWqYOGXzPKVG8nZ2ZMWwoP+3dz7uLl6BWFFxsbWjl7w+AiaEBiVlZfLpqNXlFxdiYm9Mh\nKIhBN35IGhros3DvPlKyczAyMKCOew0mDRpQ7bFUKhWfDnyaH7bt4L0bDx8a1PLijW5dHmj+15ve\n69mDrzdt4dV5C7G3tOC5tm0eKtMzaLqtdq0fwu5zkbQM8Ndei9e7dGb5kSP8tHc/dd3dGdGpA5NX\nr9VuV6FWE5+ZSWFJ9Q8vAmrU4ItnBzNu6a+AZoxiblEx8ZmZ2jI9GjbgWkoqU9auR1EUWtcJ4Olm\nTbVjEgEKS0qJz8zUyZ78ZzAxNOTr54cyf/deJq1ac2O6KgtCvGpiafpwLcEPYngHzfRCX27YpJ3q\naOozg++ZwOlBPkf5JSV8uX4jWQUFWJma0rS2LyM6aeaQNTU24rcjR0nMykaF5sHH1CGDdKbnud3v\n+Rzd6dXOnZi+cROjFy3BwsSEvk2b3Df4zcjL40J8gs50PNXpGBzE/F17iElL18lWXlpRwcgfF+iU\ntTI1Zc2Yd3ihfVtsLcxZefQ4323ZhpmxMT7Ozgy8MQWZiaEhU58ZzOztO3ljwU8YGRjQ4sZURw+j\nrKKCQ5ei+PyZwfcs18TPF2NDA05evaYzjdCEX1ZoM5ED2vPZNfF/AFSqFVYdO05CRib6+vrU96rJ\ndy88r5NHoKyigp/27ic5OxtTIyOa+Pkyrk+vh+7Z8KD3QwjxeFD9WePj/kyNGjVSwsLC7l9QCPGX\nqPX+Zqr7JlEB0Z93/6urI4SO7MJCXpo1lx+Gv6gdDyjE32Xuzt0UlpbwTo/7fzfO27WH3KIi3uvV\n4y+o2YNbfzKMI1GX+eLZIfctuzHsFAcuXOLL5575C2r28B7mfgjxT6NSqU4pivJwLQP/cdLtWQjx\nh7nZVJ8w527Lhfgr2Zqb816vHqTd1tIkxN/FxtyMF9rde+qdm4a0bomrrc0/bgoefT093uja5YHK\nPtkglNBaXhSUPHziq7/Cw9wPIcS/n7T8CiH+sJtjfm/v+mxqqM/UvsH0Dr37ND9CCCGEEOL3kZbf\nhydjfoUQf9jNAPdmtmc3G1PGdPGXwFcIIYQQQvxjSPArhHgkeofWkGBXCCGEEEL8Y8mYXyGEEEII\nIYQQjz0JfoUQQgghhBBCPPYk+BVCCCGEEEII8diT4FcIIYQQQgghxGNPgl8hhBBCCCGEEI89CX6F\nEEIIIYQQQjz2JPgVQgghhBBCCPHYeyTBr0ql6qpSqaJUKtVVlUr1fjXrjVUq1Yob64+rVCqv29bV\nU6lUR1Uq1XmVSnVOpVKZPIo6CSGEEEIIIYQQN/3h4FelUukDPwDdgEBgsEqlCryj2EtAtqIovsDX\nwBc3tjUAlgIjFUWpC7QDyv9onYQQQgghhBBCiNs9ipbfJsBVRVGuK4pSBiwHnrqjzFPA4hv/XgV0\nUKlUKqAzEKEoSjiAoiiZiqJUPoI6CSGEEEIIIYQQWo8i+K0BxN/2OuHGsmrLKIpSAeQC9kBtQFGp\nVNtVKtVplUo19hHURwghhBBCCCGE0GHwDzh+K6AxUATsVqlUpxRF2X1nQZVK9QrwCoCnp+dfWkkh\nhBBCCCGEEP9uj6LlNxHwuO21+41l1Za5Mc7XGshE00p8QFGUDEVRioAtQIPqDqIoyo+KojRSFKWR\no6PjI6i2EEIIIYQQQoj/ikcR/J4E/FQqVS2VSmUEDAI23FFmA/D8jX/3B/YoiqIA24FglUpldiMo\nbgtceAR1EkIIIYQQQgghtP5wt2dFUSpUKtUbaAJZfWChoijnVSrVp0CYoigbgAXAEpVKdRXIQhMg\noyhKtkqlmoEmgFaALYqibP6jdRJCCCGEEEIIIW6n0jTA/rs0atRICQsL+7urIYQQQgghhBB/ixu5\nkhr93fX4N3kU3Z6FEEIIIYQQQoh/NAl+hRBCCCGEEEI89iT4FUIIIYQQQgjx2JPgVwghhBBCCCHE\nY0+CXyGEEEIIIYQQjz0JfoUQQgghhBBCPPYk+BVCCCGEEEII8diT4FcIIYQQQgghxGNPgl8hhBBC\nCCGEEI89CX6FEEIIIYQQQjz2JPgVQgghhBBCCPHYk+BXCCGEEEIIIcRjT4JfIYQQQgghhBCPPQl+\nhRBCCCGEEEI89iT4FUIIIYQQQgjx2JPgVwghhBBCCCHEY0+CXyGEEEIIIYQQjz0JfoUQQgghhBBC\nPPYk+BVCCCGEEEII8diT4FcIIYQQQgghxGNPgl8hxH9S/RYerNnwy99djT8kNy+H5h38iYuP/rur\nUq23xgxjwc8z/+5qCCGEEEIAEvwKUcWcBV/T95kOhLbypGl7P0aMGszlqxd0yiiKwndzPqdVp0CC\nm7nx7PCeXLl2UadMbl4O730wkgata9KgdU3e+2Akefm52vWlpSWMm/g6PQe0IrCxE88O7/mH6z5y\n1BACGjpw+NjeByp/Iuwwz43oTZP2vtRrXoMOPRvw7oRXKCjI+8N1+SuEnwtj5KghNG7rTd0mLnTp\n05Tv535BaWnJ3121v8ScBTNo26ojnh61tMsmT3ufvkOeIKipK+2fDKl2uy071tJrYBvqNa9Bu271\nmL/4uyplysrL+HbWFJ7oXp+6TVxo2y2Yn3+Zq1Nm8S9z6NKnKcHN3GjdpS4fTx1DYVGBdv3rr4xl\nzoIZ5Of/O95PQgghhHi8SfArxB1OnDrEMwNeZMWibfz843r09Q0YNrIvObnZ2jLzFn3HT0tm8eG4\nz1m9dBf2dg68MLIfBYX52jLvjH+ZCxfDWTBzJQtmruTCxXDGfDBSu75SXYmxkTHPDBxO21ad/3C9\n09JTOHriAMOeeZXf1i65b/mr1y7x0htPE+AXyJIfN7Bp5WE+/d9XWFpYUVZW9ofr82fbvW8rQ17s\njo2NLYvmrGXHupO8+cpYVqz+mRde7UdZ+T//HP6I4uIiVq5dQv/eQ3WWq9UKvXsOonePgdVut//Q\nTt6d8AoD+z3PppWH+WjCdBYtncOS5fN0yo1+fzgHjuxh0odfs33dCb6b9hP+tetq12/cuopp33zM\nqy+9w9Y1x5g2aTYHDu3ks2njtWX8/QLxqOHF+i2/PcIzF0IIIYT4nRRF+df9NWzYUBHir1JQmK/4\nN7BXdu/bqiiKoqjVaqVFxwBl1rzp2jLFxUVK/RYeyq8rf1IURVGuXLuk+NW3VcLOHNWWOXn6qOJX\n31a5Fn25yjE+njpGeealHn+onrPnz1Bef2eokpAYpwQ1dVWysjPvWf6npbOUVp0D71nm2MmDil99\nW2XP/m1KzwGtlbpNXJTeg9sp586f0ZbJys5U3h73ktKqc6AS1NRV6da3mbJq3VKd/ajVamX+4u+V\njj0bKoGNnZVWnQOVL7/9RLs+OTVRGTX2RaVhay+lYWsvZfgbA5TomKt3rVdRUaHSpJ2vMvLtZ6qs\ni7xwVqkdaqfMW/StdllM7DXlmZd6KHWbuCidn2qs7Nm/TQlp7q6sXr9MURRFGfpyL+XjqWN09pOf\nn6sEN3NTtu3aoCiKomzbtUHp3r+lEtDISQlo6qwEd/FV9kccVqZvn6+8u/hjZeSoIUqjNrWU4GZu\nSufeTZSNW1dp9/Xez58oXZ9rV+35xSfGKrVD7ZSIyNM6x1++epHSuJ2PUlpWWu012LpjndKoTS1F\nrVbrLB+z8nPlhz1LlPmLv1PadatXZbvR7w9XXh39rPZ1Sm660nxEG6V5xwDtvg4e2a2EtvJUMrMy\ntOXyiguUQXNHKYnZqYqiaN6zQ17srrPvb2ZNUZ7s11xn2fdzvlAGDuta7Tk8SvMOrFB+2Lv0/gWF\nEEKIxwQQpvwDYrN/05/B3x18C/FPV1hYgFqtxsrKBoD4xFjSM1Jp2by9toyJiSmNGjTndPgJBvUf\nxtmIk5ibWdAgpKm2TMP6TTEzNedM+Am8vfwe6NgJSXE80b0+n38yk769hty1nKIorF6/jDFvf0wN\nNw9CghqyfvMKhj3z6l23cbB3Iis7k2MnD9Kscet71uPzryfywZgpODu5MnPuNEaMGsyuDacwNTWj\ntKyEDP1SQvv05L0eIzlyfB8TJ7+Dq4s7LZq2BeCr7yfx68qFjH93Mo0btCArO4MLUecor6xgyJy3\nuPjbJrq06sbS+ZswNDRkwc8zGTayD1vXHMPU1KxKfQ4e3UN2TiYvP/8mAEk5aaw4uYnTcefJKc7H\nyt2VeSvm0KLTkwS4ePP6u0OxsrTht8XbKS4p4rNpEygrL9Xub0Cf5/jk8zGMf2cSRkbGAGzatgYz\nU3OeaNOV9IxU3nl/OP2feYmKUE9GtXuelLgY/Jy9aFi7Pm+9O4zKinJ+/nEDFhaWRMdc0e67uLiI\nPYt+xrVWrWrPz93Nk5bN2rF6/TKC64Zqt1u9bhm9uw/AyNCo2nuyZvcaKiyNUalUOss/7PE6+nr6\n/Lp8frXblZWVYnzjHG9S6euTnpFKYnI87m6e7Nq7heDABvy0dBbrNi3HxNgU+1o1Ce3YATcbJ0Dz\nfl65finPfTWSHGM1ZpX6FB+9QNtWnXT2rWdrwZmIk/T6dji2lrb0DHmC/g276ZTZGL6bjeF7SM3L\nwNHSjkFNetCxTkvt+rGrvuBcYlSVc/G0c2Pu0MkA9G/YlRcXv0+f0E64WjtVe+5CCCGE+G+T4FeI\n+/jsy/HU8Q8mtF5jADIyUgFwsNP9ge1g70hqWjIA6Zlp2Nra6wQmKpUKOzsH0jPSHvjYBgYG1PLy\nw8LC6p7lTpw6TG5eNu1aa7pP9+4xkEXLZt8z+O3WqTeHju7huVeewt7OkXpBDWjaqBW9uw/Ezs5B\np+zrL79H6xYdAJj6yUzadAli49ZVDOj7HC5ObtRv24684nw83b3wdB/GsRMH2bRtNS2atqWwqIBF\ny2bzv/em0L/3swDU9PQmNKQJBy6foDIxEyMDQ9oNGEjAjW61kz74muYdarP34Hae7NynSt1jYq8B\n4OPtz+XUaMavmY6HnStvtB+Kh50b32R+yubNq5i9fxkDvVpz9XoUezadxc3VHYAJY6Yw5MUntfvr\n3KEHn04bx449m+jRtR8Aq9YvpXePgRgaGpKWnkJ5RTk169YlJr6cbi26QItb9UlLS6Jzh57U8Q8C\nwKNGTe26zdvXoADtnr77+Q3o8xwfTHqb8e9OxtjYhKvXozh7LozJE7+56/3LykjDwMy0ynJLE4u7\nbgPQqsUTTJn+Pw4d3UOLpu2Ii48m5/xVANLTU3B38yQ+MYZTZ49hZGTEzOmLycjOYNTEERhVAD1f\nA6BH135sDNvBgV9XoygKarWap7oPZMyoj7XHOhkTwZoLe1HUaiZ2Gona1JBvdy/CyMCIXiGa99Om\niL0sPLyKUR2ex9/Fm6iUaL7bvQgLY3OaedcHNAF9eWWldr/lleW8umwibfwaa5fZmFnRwLMumyP2\nMbz1gHteAyGEEEL8N0nwK8Q9TJn+P06dOc4vP21BX1//Lz++i5Mb29cev2+5lWuX0K1Tb20rYdeO\nvfj0i3GEnwsjJLhRtdvo6+vz+Sc/8Pbr/+PYiYOcPRfGgp9nMmfBDJYt2ISfTx1t2fr1bgUZ5mYW\n1PYL5Op1TUtcZWUlp/fs5vKZ02z9+nvKysooLy+jSSNNy93V61GUlZXSvEmbKnXYfv4glqUqinJy\nGfvyYD40uNXKWVxSRFx8zD3PW1EUZuxciIu1I189PQF9PU0aAytTC/T19ZnadwyrV/+Ms5MrpYYw\nfs2XXEi6iqHKAJVKRemNccFGRsZ4BNVl2rypVDhb8fOOX4iMPE2dzk9QUl5KQO0gavj68cWE0ZjV\ncKTFyTC8guryy+sz+WrHAqzr+DB7/lccPLybxo1akmkBUSUpmBgYo38hkcLsbBZO/ICln3yiqTcK\nxSXFTF87ix+vbMfd2hn09NixZxM9u/VnztLvMXawpdAI3l4+iZjMRDztXHmrwzB8nWoSkXCJK8nR\nGFqY0e3bFwF4pmkvnm3Wm7GrvsDLvgY323b3XDrKujM7SchOxsjAiCC32vTrO5RXRz9LRUU5ZmYW\nWPi4k332Eno3rp9arUalUjFjyjwsLa04eCUM95aNObZlDxmZaTjYO3Ei7DDn9u3nkwlfkaZfwrYT\nOzlx6hDfzZ7KqNcmaI598Sj1a9Uljt1YGZlRu1YgAxp1Z2XYFnrWewKVSsWeS0foWrcN7fybAeBq\n7cSV1GhWhm3RBr93BvR7Lh2ltLyMznV1eyw0867PoiNrJPgVQgghRLUk4ZUQdzFl+gQ2b1/D4h/X\n4enupV3u4OAMQEaWbgtuRmY6DvaadY72TmRnZ6IZjqGhKApZWRk4OjzaLpl5+bls372RFWsWU6eR\nI3UaOdK4nQ8lJcUPlPjKxcmN3j0G8vH4L9my+igqlR7zFz/49DQLfp5JxIH91GnZgkVz17F++X46\ntn+S8vLye26XmpdBRGIUrlaOBNQOolafTsyc9Svrl+9n/fL97Fh3kkH9h1W7rVdNHwD2nz5AbGYi\n/Rt01Qa+oAm4vTx9sDDWdJlWFIUP1n2FqaEJ3wz6kAndX0NBE3zfFNC4CSnR0URejSSgwgY//7pc\nLEhk/dld6Ovrs3HJHoa9PRYbZ2ccstVcWr6Ri1GRAPg0CGXPpjP0fWoIe0/vZ+0P3xOQZ8rUvu+R\nU5yPsb0N/UeN1p5bj9deo+0rw5g86jNmP/spnYPboO/hwJKVC6ioqODA3m1Y+dVk0ZHVvNCyP98P\n/ghLEwumbfsRRVGo4+qLv6cflFewbPjXLBv+Nf0adK32WpVXVvBss9788MwnfNJrFPmlhRR42XD2\ncDx7t4Szfu1hjB1sAfCo4QWAo4MLzk6uWFpqehycT7pMgG8gAEkpCQB8PeszenTtq2n9d/fE3seL\nd974kHmLv6eiokJ7bHWp5n1gZ6vpTWBsYERGQTZp+ZnaMkYGhjp1NjIw4nJqNBWVFdWe07bIAzSq\nGYSjpZ3Ocn9nbzILsknKefDeFUIIIYT475DgVwhg3ZlEWn6+h1rvb6bl53t4YcybbNq2hsVz1+FT\nq7ZOWY8aNXF0cObwsX3aZaWlJYSdOUqDkCaApqW0sKiAM+EntGXOhJ+gqLiQ0BtlHpUNW1ZiZ2vP\nhhUHtMHV+uX7mfTh12zZsZai4sIH3pe1lQ1Ojs4U3TZdDWimFLqpqLiQK1cv4uOtuS6nzh6jZp1A\naoXUI9A/GE+PWkTf6JYM4FOrNkZGxhw9cUBnnzsvHKKBRyChwY2IT4ihZZ0mRGTHUNPTW/tnY21b\nbT1bNW+PjY0dy375EQAPO1ftuvMXwzl64gC9nuyvPX5qWgp52dm812U4tRzcUXLyQVG4khZDUo6m\nG7udiwsWzg6YpRaxd88Wnh/wMq39GnM2XjPNlYWJOX4BQXg2bcj6X/fh7OjKlh1rtcd1ca7BUz0H\nod/Il94Dn+Pg7m14ObgzqMPTlOUVYGJuTk1PbwytLDiTeY3PhkygRUATXK2d6BXSgVZPdCX87Al+\n+W0BxcVFWNSqwXPN+xDiUQcPO1eGNO1FfHYyGQXZGOobUMu7NqU5ediZW2Nnbo2pkUm116pL3dY0\nqVUPV2sn/F28eaP9UCKTLpNVlIuLkxuGhkYURCcQUKeetrt7g/pNSEtP0U5blJaXiapYM0a6hqsH\nACUlxejp6faG0NfT13ng06BmXU5FnsTO3hE7OwcSslNYc3o7AFmFOQA09Axix/lDRKVEoygKl1Oj\n2X7+ABXqSvJKdN+HAAnZKZxLjKJrUNsq6+zMNePyU/Myqr0WQgghhPhvk27P4j9v3ZlExq85R3G5\nZkxhypHZpCcf4ZXR32NtZUP6jTG+ZmbmmJtZoFKpeH7ISOYsnIG3lx+1avowa95XmJta0KObZryo\nr7c/rVt0YOJn7zDpg68BmPjZO7Rv00Un2dXVa5coqygnOzuToqJCLkSdAyDQP1hTl7Qknh/Rh3ff\n/JDOT/Sotv6r1i2lS4de1L7RMneTV01fpn39EVu2r9WOtb3d8lWLuBh1jk5PdMfTvRalZSWs27SC\nqCsXeHnYKJ2ys+ZNx87WHidHF2b++CWGhkb07KYJLr08fTix4RiesXFci77MkuXzSEiKJdC/HgAW\n5pY8P2QEX33/KUZGRpqEVzmZLFkxnwmvTqSJRxALf/6BE6vWUubtQFfvZmRmpLFr3xYG939B28p7\nOzNTcyZ/+A2jxr6AWU4NrjW+hFmlPqfDj/PF1xNpWL8Zzw3RTCvVomk77JydyTh0hpheVyktKWbK\n9A8w0DdAT6UiLisJNxtNi31Ak6Ys+Pl7DA0MebJLH9ZG7OZSynXORpzkyPH9lNmaUppfwO59W0lJ\nTcLX25+r5HNq6zYOOAShb2lGYVoG0fFx+Hj7A9Cv52C+mjuF7YsX0bFGKAmlWRSlpPPUG92xreOL\nsbUloGkBtffw4ItvPqJF6w4kGBlSy8Fde872NwK73OJ8HC3tqBMcytpfF5Gdk4Wtza0W0IKsbNJK\nFIzS8ikvL2f70R1sObeXLFUpheXFlJeUknslmtPnT+Fh68LSlQsojEnk5RmTtfvo2a0/s+ZNZ/xH\nb/DmyHEkXr9G+NYddO3YC3s7RwDat+nCT0tnERRYnywKyYlL5Jt1U2jfujMGBpr/WroFtWV+6ZfE\n25vT8/tXMDMypXf9jiw9vl47Hn5w055kFeXy7sopKIqCrZkVHeq0ZNWprajQTeYFmlZfO3NrmtSq\nV2Wd8Y0W5LKKx3uaKyGEEEL8PhL8iv+8L7dHaQNfAP343QD8+OVwfvzyVrk3RozlrZHvA/DysLco\nKS3m08/HkpuXQ0hQQxbOXoWFuaW2/Iyp85j0xThefF0TJHZo242J70/TOfbLbw4kMTle+7r3IE1r\n1uUzWQBUVFQQHXOFgoK8aut+/mI4Fy5FMHHcF1XWGRka8UTbbjfmgq0a/NYLasDp8BN8NOU90tJT\nMDUxpaanN9MmzabXk0/rlH3vrY/4fMaHXI+5ip9PAHO/+5Udl3L4cvtxktLrYWW9g71Ll3F6a8Fm\n9gAAIABJREFU3Sb69hpMr25Pa8cEA7z75kSsLG34Yd50UlOTsLS2QV3DlmnbNC23NK9NQlgkhTsv\n0mNrC1yc3GjauJU2w3Z1Oj/Rg2nTF/DhV+MYN/ZlysvKcHfz5Ok+Qxnxwtva8c96eno89dIrrP95\nAU8P7YSbizvvvzOJdya8fGNPtwKsWkHBXNy1j66demFhbolKpRmfa2Fhxamzxzl97iRFhQV8XuME\nr738Hk91H8BXOxagKAqTvnifpJQEKvWgdouOfHzjXpuamtHy2cHEHD7BW2NfIC8/F0wM6dCqM68O\nGavTur3bdROTPhtDh049WBy1E/3bWlZvBotqRQ1ADU8vTB3t2Lx9Dc8OHK4td2bzVjLjbr2n3nxt\nEACzF6yhtpc/8SnxjNg2mDGjh6FCRWDdENy6tsL/RrIu0IzrXjRnLZO+GEe/ZzuiZ2SIZ506TPn4\ne22Z14a/h0ql4ttZU0lMiUfP2Ij+3QYy+o0PtGXKykqJuRDJvJkrqenjh7WppbYl3cVKE0QbGxjx\nTqcXeeuJ58guysPO3IatkfsxNTLB2uzW5wk0Dwh2XTxM16A2OtfmpvwSTS+HO7cTQgghhAAJfoUg\nKadY53VZF804WRUQ/Xn3ardRqVS8NfJ9bTBcHWsrG6Z/Nveex967Jfye693dPLWBcHXq1gm55/ov\nJ8++67rAgHpMmzTrnse/KTSkCRt/O6R9rdNabmiOWfPu2BiUMbrja/QOrVFlez09PUa8+DYjXnwb\ngM82z0JRFJ5t9tStQi/B+vBdJOek8Xm/sQ9Urx5te7Ip/gQG+gZ8N2iizrhfgILSIiyMzQgJqE9Y\nt9bsfmk6ZkaaDMlLftvFuNXT8Lyty3RZSQklpcVVHhb4evuz4IeVrDq1jY3hu1n84pc66xs92Y1P\nnnqb4rISBsx9k4GdXsLFyQ2AkvJSUktzaD9gIO92fomE7BRe/nkCw/uOIdAjQGc/xfkFeHn6EBgU\nClE773nuBnoGOIQGsuTXHxnc/wVtQrbWQ4fgZV+D19o/y5XUGN5a/ik/DfsCF2tNsBmXlYR797Z8\n0W8s9dwDSM3LYNhPVa+3t5cfP81eA8CqU9vYdfGwzsMdAwMD3hwxjjdHjNNel4/vuC4r1y0lJKgh\nDW/r6r8/6jh1XH2wMdPNYG6gb6Adw7v/8nGaeoWgp9K9n0evnSavuIAudaufmismMxEDPX287N2r\nXS+EEEKI/zYZ8yv+89xsqk4Xc6/lomprOQBKOV/tOMq19Djt382xl9O3z2P69nkA5BTlcSz6LB0D\nW+Dl4K7z16VuayISorQJi346vIr3V+sGVLdTqVS80+lFknPTeG/lVI5fP0tSThrRGQmsDNvKhDWa\nbdv7N8PY0IjpO+YTnZHAucQovtu9mJY+DXGzcaa8vJyi/Dwidu+hjn89GtZv9ruui6mRCZ3rtmbh\n4ZWcjj1PbGYiX+9cSOWN1loAd1sX2vs3Y8bOhRy8EkZybhrhMef5YcN85i/5nueGjHigYzlbOWDk\nak+bTt25EnuZktvmLb7J0dIOQ30DNobvJjk3jRPR4fx8dG01e7u3hjWDiM9KIq9YdwxuUk4q19Lj\nyCrMoUJdob3v5TcSVZWrK2nduy9xWUlcS49jzv5fOHgljBFtBmv3kZCdwu6LR0jMTiUq5TpTt84h\nNjORYS37VanH1sj91Peoc9d5fM8nXaauW21MDI2rXS8eD2MP9mdW+P/+7mr8LiN3dWDpxa/+kmM9\nyHXaGfsbfTbUvmcZ8c90Ju0Qr+xsR6VSef/Cf7HSymKe3dqIaznn/+6qCFGFtPyK/7wxXfx1xvwC\nmBrqM6aL/99Yq3+2O1vLAcyMM4AtvPHLFu2ylr4N+aD766Tl32qd3nPpKIb6BjTwDKqyD39nbxwt\n7dhx/iDDWvYjqzCX5Nx7Z+71d/Hm+0EfseLkJr7fu4TcG11n/Zy9eLWdpgXXxNCYyb3fZe7+X3l7\n+SSMDAxp5h3KyLaaIOx0+HGWTJ6EpZ0dX896+ODwdi+3HkhpeSmTNs/E+MZ8tncGpu90epHlJzex\n8NBvZBRkk3H4LNlXY2jevD2D+g3jQsrV+x4n0M2XJ4PbcehKGIc2fqmd6uh2NmZWvNt5OIuOrGZj\nxB5qOXjwSptBfLBuxkOdUy0Hd2o7e7P/8nF63pifF+CbXYs4l3ire/sbv3wMwKIXpuFs5UDf3kP4\neMN3bFw+6UaWah++6D8Wfxdv7TZqRc2aMztIzE5BX0+fEPcAZgyYgLOV7lzTyblphMdf4v1ud384\nsC/qeJVrIP4dvjo1ml1xKwHQVxlgYWhNTavatKrRnW5ez2Cgdysj+IdN56GvMrzbrh74eHmlWXzS\nYrHO8svZ4Yza151FnY/ibO7xh47xKGyJXsqP5z5hZY/zGOpphnKUq8t4elMgLmY1mdNxt7ZsUkE0\nL+1szZSWywl1alXlOj2/vRk9vYfR32/kX34er+7uSG3bEEY3qBr4n0zZw8SjzzGv4wHcLb2r2VpU\nZ0HkZAYFvIW+StPrJ6M4mfmRk7mac46kgmg61xzI2w2m62xTri5jedR37IlfS2ZxCh6WvrxYdwIN\nnW8lECwsz+fnC9M4mryd3NJMfG3qMbLeJ/jZ3sqzMC3sTfbG6/5fGWjXmK/aapYZ65vSz28EC89P\n4bOWy/6sSyDE76K6PTPnv0WjRo2UsLCw+xcU4gGtO5PIl9ujSMopxs3GlDFd/Kvtvis0Wn6+h8Rq\nAuAaNqYcfv+Jv6FG4s8WFnOOOft/Ye7Qz6p0L/8nOBEdzvxDvzH7mU+rHQ8s/tm+OjWazOIU3mv0\nLWqlktzSLMLTD7Pi8ve4mnvxeasVmBiYPdLj/VnBb7m6TBuo3mnkrg60qvEkz9Z594H2lZB/nZd3\nteHL1msIctAMH4jMOM6UE6+SX57Dkq4nsTG2B2Br9DJmR0xkVY/zGOlXzf5eXfC7M/Y3ZoV/wNpe\nlx/2NB/Kuqvz+fnil/zS7UyV+zj5+CvklmbyZZvVf2odHifnMo7xybEX+aXbae29TiqIYcP1hfhY\nB7M5ejFeVgFVgt955z5lf8J63gqdhruFD2Gpe1kQOZlv2m2klrUmaebk4y8Tn3+NN+pPwc7Eid1x\nq9l4fRFzO+7FzkTT62Za2Jvkl2UzusGtB6mGeoZYGt3KYZFTmsnQrY2Y3WEX7pZVE1eKR0OlUp1S\nFKXR312PfxNp+RUC6B1aQ4LdhyCt5f89jbyC6ZnzBBkFWVVaZf8JSspLeafTixL4/osZ6hlpf1w7\nmLriY1OXBs5teHNPN1ZemcXQOu8Bmu68Xlb+vBbyGaAJNn++8CV749dSUJ6Dp6U/zweOoaFzuz9c\np0qlku/OjCU8/QjZJWk4mLrS1WsI/fxGasek3wyk6zo0YcO1n6hQl7O8ezg5pRl8e3osp9P2Y2Ps\nwJCA0Q99fHdLb+xNnInIOKINfsMzjlDfqSWphfGcyzhK6xqamQAiMo5Qx66BNhi6/TqNPdiftKIE\nFkROZkGkJrP71j4J2uOcSTvE3IiPSCmKw9+2PqMbfIWLuedd67Xmyo/sjPuN5MJYLAytaOTcnuFB\nH2JhZF1t+Q6e/Vh4fioHEjfSueZA7fKc0kyOJ+9kVINbw1ti8i6xIHIykRknMNY3JdSpNa8Ef4St\niSZvwbSwNympKCLIvimrr86lrLKEFm5deS1kMsb6muFKReUFzAwfz9Gk7ZgamNPH92XC0w/jYOqq\nDQjLKkv5+cI09iWso6A8j5pWtRkW+D6hTpqcAhXqcr478z4RGZp772jqRtdaz9DPd4Q2AeGD1EWt\nqFl9ZQ7bYn4hrTgJG2N7Ono+zfOBmlwL6UVJzIv8lDNpmnnnA+0aMaLeJ7hZeN31+u+LX0eoY2ud\nhxxuFl6MrPcpAPsT1lW73Z74NQwJeJsmLpoePL0sXuBM2kHWXJ3Huw2/priikKNJ2/mo+U8EO2iG\n/zwXOIZjyTvYEr1E56GNoZ6x9vNaHRtjewLsGrAvYd0DP+wR4q/wz3t8L4T4x+sdWoOpfYOpYWOK\nCk2L79S+wf/ZBwh7v/2B0789vq0We7/7gZjjJ3mqfqd/XOB75cAhDs6dT5vaTQhwkdaFx42XVQAN\nndtxOHHrXcvMOPUO5zKOMa7xTGZ32E1Hz/58fPQFrude+MPHVxQ19iYujG8ymx877uP5wHGsuDyT\nnbErdMqdyzxGdO5FJrdcytRWywFNUJxUGMOUVsv5sNkCdsevIrUoXme7r06N5vnt984xUM+xBRHp\nR7SvI9KPUM+hOcEOzQm/fXnGMeo5tqh2Hx82nYeDqStDAt5mWbfTLOt2WruuXF3Gb5dnMrrBdL5u\nu56C8jy+Pzv+nnVSqfQYUe8T5nbYw9jGM4nKPsvsiA/vWt7SyJbmrl3Yccd12xO3GmMDU1q5aZJL\nZhQnM/ZAf3ysg/iu/RamtPqVwvI8Jh0frjOHeHj6ERILrvN5qxWMazyTg4mb2XhtkXb9j+c+5nzm\nSSY2W8jUVsu5nB3OxazTOsf+6tTbXMgK4/3Gs5jdYRft3fsw8ejzxORdAkCtVOJk5qa9988Gvscv\nl75hV9wqnf3cry4LIz/jt8s/MMj/LeZ22MP4xrOxN3EBoLiikLGHnsbUwJxprVcyo+16rI3t+d/h\nIZRWVu1ddVNk5gmdbsgPqlxdhpGebk4EI30TzmeeADQBvxo1htWWOamzLCLjKIM2hzB8R2u+OzOO\nnNLMKserbVufcxnHHrqeQvyZpOVXCPG7PGhr+YklvxJzQvOfpkpPD1NrK1zrBhLc80mMzB5dN8a/\nU4vhw9DTf/gWx8gt27iwdQeguTaGJsZYOjvjFhSIb9vWGBr//YmbkiIvUJydg2fjhtpl1w4fJe7U\naXISEikvLqH7xx9gbm+ns112fAIR6zeRFReHSqWHe/16hPR9SuecUqMuE7l5G7lJyRgYGVGzaSOC\nezypvZZpV65yee9+smLjKC8uwcLRAb92bfBu3lS7D+/mzbi4fRfpV6/j6CvjBR9HnpZ+nE0/WO26\npIIY9iesZ1GXYziZab6Pevm8wNn0Q2yJXsob9afcdb9hafuqJHtSUOu8NtAz5LnAMdrXzuYeXM05\nx76E9XTxupW4zVDPmNENvsJIX/P+Tsi/TljqXqa3WUtd+8YAvNvwG17crhuc2pk44Wpe857nH+LQ\nglnhH1BWWQooXMw6zajQaTia1mBuxEcAxOdfJasklRCHltXuw9LIFj2VPqYGFlVa6yqVCl4P+Uzb\nNbWf3wi+Pv0eiqJoWzjv1Mf31vRqzuYevBT0Pz459hLvNvymSpb2m7p6DWbC4cEk5F/Xju3dEbuC\ntu5PYWKgaSXddH0xfrYhDKt7ayaFdxp+zeAtIVzLjcTXJhgACyNrXqv/GfoqfTwsfWnl9iRn0w/R\nv/arFJbnsStuFeMazyTUqRUAoxt8xdBtjbX7TMi/zsHETSzpehJ7U00g2tt3OGfSDrI1ehmvhkzC\nSN9Ep8XS2dyDK9kR7E9YR6eat6YDvF9d1l//iddDJtOp5gBA00IbaK/ppbo3fi0GKgPeDp2uvdaj\nQqcxcEs9wlL20rLGk9Vey7SiBOxNnKtddy8NnNqw5uo8ghya4mruxem0/RxL3o7qxj2zNLKhtm0I\nv0Z9g6elLzbGDuyJX8vl7LN4WPpp99PY+Qna1OiJs5kHKYVx/HxxGhMODeLb9pt1uvzbmzhzuCih\nSj2E+DtJ8CuE+NM5+9emyXNDUCrV5KWkcvKX5ZQVFdP8haF/W50UtRoFzTRMf5Sxufk911dWVKBv\nUP3XraWTE+1GvQYKlBUVkXHtOhd37ib62Anav/0GplZW1W73V7my/wBeTZvoXKfKsjJcAvypERzE\n2TXrq2xTnJvL/pmzcQ8NIfTpvlSUlHBm9TpOLv2VFi8NAyAnIZGDc+YR0LEDTYYOpjgnl1MrVqGo\nFer36QVAxvUYrN1cCej4BCZWVqRcvMSp5SvRNzSgZiNNMK5vaIBnowZc2X9Qgt/HlILC7fNx3+5a\nbiQKCiN2tddZXq4uI8Sx+kDwpmD7prwVqjtHekxeFJOOD9dZtjl6CdtjfiW1KIGyyhIqlAqcTXUf\n/HlZ+WsDX4D4/CvooYe/bX3tMmczd+xMdQOWF+reu4UVIMSxJWXqUi5lnUJBwdrYDjeLWtiZOJNc\nGEtWSRrh6Ucw1jclwC70vvu7k6Gesc6YTHsTZyrUZRSU5+iM4bzd2fTD/BY1k7j8KxRV5KNWKqlQ\nl5FdkqYNJu9U37EVLmae7IhdzotBE7iUdZrY/CjeaXhr3OiVnHNEpB+pNgN1cmGsNvitaVlbm+gJ\nwM7EWdvSn1QQQ6VSgb/trWthZmiB523B29WcCBQUhu9so3OMcnUZDZxuLdt4fRE7Y3/Tufd3Pqy4\nV11i8y5ToS6jvmOraq/J1ZxzJBXG0Hej7pCh0spikgtjq90GoExdWu247vt5LWQy35wew8s726JS\n6VHDvBYdaw5gb/wabZlxjWYy4/S7PLutEXoqfWrbhNDWvZe2RRygvUcf7b9rWdfB1yaYYdubcSp1\nH81cO2vXGembUFZZ8tD1FOLPJMGvEOJPp2dgoA3izGxt8AitT8xx3S5UZcXFRKzbSGJEJJXl5dh6\n1CCkz1PYeXpo159ZuYaUi1GUl5Rgam2FX9vW1G7f9oG2jz52gjMr19D8xecIX7+J/NQ0Qvr0ImLd\nRnp+9rFOABuxYTPJ5y/QZbymxSfhbATnt2wjPz0dYwtLfFo1p07njton9Xu//QFrVxcaDNBMz7Pp\no0l4NW1MUXYOieEROPv70+Kl56u9Nip9Pe21MbW2wtrVBbfgILZPmUbE+k00HToEgMryCiI2bCTu\n1BnKi0uwcXcjpHcvHH1uBXxJkRcIX7uewqxs7Gp64tu6JccWLdG2zN7vGt6pJL+A1KgrhDzVU2f5\nzfJZcfHVbUZS5AVQ6dFgQH9t0NxwUH92TJ1Ofno6lo6OxJ0+i5WLC0HduwJg6ehIyFM9OfrTYup2\n64yhiQmBXTrq7Ne3dUvSrlwl4WyENvgFqBFcl/0/zKGirAwDo+oTDYl/r7j8K7jeZfypWlGjQsW3\n7TZjoKf7k+Z+wYGxviluFrV0lhWU5+m83p+wgbkRHzM86AMC7RthZmDBxuuLOZK8TaeciX71vVhU\ndwnaH4aLuSdOZu5EZBxFQdGOxTQxMMPXJpiIjKOcyzhKXfsmOlmxH9TtgdvtdVbfJSFqalECHx15\njq5eQxha5z0sjWy5mnuOL06+ToW6/K7HUalUdKo5gM3RS3i+7ji2xy7H2zqQ2rYh2jKKoqapa0de\nrDuhyva2t7VY33meKpWqSqv9vahRo6fS5/v2W6u0VN8cq7snfg3zz03i5eCJBNg1wMzAgvXXFnIy\ndY9O+T9SF0VR42cTzNhG31dZd7cHDwBWRrbkl+U80DFuZ2PswMfNf6KssoS8smzsTVyYHzkJF7Nb\nny83i1pMb7OG4opCiisKsTNxYvLxl3Exu3sPBUczN+xMnUksiNZZnl+eg7Wx3V22EuLvIcGvEOIv\nVZCRScrFSzrdhBVF4dCc+RiamNBqxEsYmZsRczyMfd/PotsH4zG1tiJy01Zyk5JpNeIlTKwsKczM\norSg4IG3B00L7IVtO2k06GmMLcwxtrTk0s49xJ8Jx7dVC+2+4k6dxre1ptUoKy6eowsXU6dLJ2o2\nbkBWbDynlq/E0MQEv7at73qel/fuJ7BLJ+qMGQ0PmVTf1NoKz8YNiD0ehqJWo9LTI2L9RuLPnKXx\nkEFYONgTtWcfB2f9SLeJEzC1tqIwK5sjC37Ct3UrvFs2JzcpmfC1uq2y97qG1cm4fh19A32s3Fwf\nqv7qigr09PV0Wov1DTU/EDOuRWPp6Ii6mtZwfUNDKssryI5PwMnPt9p9V5SUYGpjo7PM1tMDpVJN\nZnQMzv4yZ+m/xe1Z9r0DkvF1qfpBicm7xKnUfQz2f6vaffhYB6GgkF2adt+W3t/jfOYJ/G3r08vn\nBe2ye7XI3eRh6YsaNVHZZ7VdXNOKEskqTv1d9QhxaKEd39vB89Yc2PUcmxOefpiIjKP08X35nvsw\nVBmifgRzwl7JDqdCXc4r9T7WBs4nUnY90Ladag5g2cUZHEzcxP6EDQwLHKez3scmiGPJO3A280Bf\n7/f9RHWz8EJfZcDl7LParvDFFYXE5V+hppXm+8HXOhi1UklOaQZBDk2r3c/5zJPUsW9ED+9bDy6T\nCmMeqi41rWpjoGfE2fRDdDUfUmW9j00wh5K2YG3sgLmh5QPv18e6LnH5Vx6qLrcz0jfBwdSVcnUZ\nh5O28oRH3yplTA3MMTUwJ680m9NpBxkR/PFd95ddkk5WSVqVLvWxeVH4WAf/7noK8WeQhFdCiD9d\nysVLrHn3fVa/M5Ytn3xGXkoq/h1vTYmUdvkqOQmJNH/peey9amLp6Ehwj25Y2NsTe1IzrVlRVjY2\nHu7Ye9XE3M4OJz9fPELrP/D2oOnqHPp0Xxy8a2Hp5ISRqSmeDUOJO3lKWybjerRmjGvDBoAmiHX0\n9SGoe1csnZyo2bghtTu049Iu3af/d3L09SGg4xNYOjpi6eT40NfMysWF8pISSgsLqSgt5dqhI9Tr\n1QO3oECsXJxpOOhpjK0suXrwEADXDh3G3N6e+n2fwsrZCY/QELxb6o4vvNc1rE5RVjbGFpYP3TXc\nqbYfpQWFXNyxm8qKCsqKiji3YTMAJXmaljWXOgFkxsYRezIMdWUlRTk5nN+mGf9ckptX7X6TIs+T\nGnUF7xa6CYIMjIwwNDWhMCur2u3EP8+6M4mMX3OOxJxiFKCorJKo1Cx+ORlBZnEK13MvsObKj4w7\n+DS+NsH0u8vctO6W3rT36MOMU+9wMHETyYWxXM4OZ9WVORxO3FLtNg+jhoU313IjOZmyh8SC6/xy\n6ZsHSuDjbulDI+d2fH92HBczT3Et5zwzTo2u0hr90/mpvH9o4F32cks9xxZcyj7Dpewz1HNorl0e\n7NCM/QkbyCnNIMSh+mRXNzmZe3A+4wQZxcnklv7+z0oNi1qoUbPu6nxSCuPYF7+OddfmP9C2jqZu\nNHBuyw9nJ1CpLtfpPgua8dp5ZVl8fvJ1orLOkFwYy+m0A3xz+r17JoC6nbmhFR09+7Mg8jPOph8m\nNu8y35zWZAq/2artaeVHmxq9mH7qbQ4lbialMI6o7LOsvDyLI0maVn13C2+uZEdwKnUfiQXXWXrx\nKy5kPtw0m+aGVvTyHsaCyM/YGbuSpIIYLmWdZkv0UkDzIMPSyIZPj71IZMZxUgrjiMg4ytyIj+/5\nkKWhczsu3JGACuBaznmu5ZynuKKQ/LIcruWcJy7vVpB8MfMUh5O2klwYy7mMY3xw+Bn0Vfo6n6+T\nKXsIS91LcmEsp1L3M+7Q09SyCqCjZ38ACsvzWBA5mYtZp0gtjCc8/TCfHHsBBxMXnS7PiqJwPvME\njR5B1nUhHiVp+RVC/OkcfbxpOPhpKsvLuX7kGIXpmfi1u9Vqmh0fT0V5ORvGT9TZrrKigoKMDAB8\nWrXgyMLFZMfF4xzgj1tQoLZ18EG2B01SKRt33bF6NRs35PK+AxRmZWFuZ0dc2GkcfX0ws9W0Lual\npOJaN1D3fLy9ubB1B+XFJRiaVt+10s7j980RqqXtcqiiICMTdWUlDt63umjq6elh71WTvGRNS1J+\nahp2nrpdQ+29dF/f6xpWp7K8HH3Dh/9vwtrVhSZDBxO+ZgORm7ag0tfDr21rTCwt4UZXcZc6/oT0\n7snp39ZwYuly9AwMCOzSiYxr17VlbpdxPZpji5cS2r8P9l5Vu9/pGxpSWXb3Lpfin+XL7VE6U6UB\nmFpdZEnCkyxL1MfC0IqaVv48E/AO3Wo9c9d5cwHeaTCD5VHfsTByChnFyTeS9tQnJODeweCDeLLW\ns1zPPc+0sDdRUGjp1o2+fq9UyVpcfb2+5tszY3n/0ACsjO14JmB0lYy4WSVpD9SSHOLQggp1GQ6m\nrjpdtevaN6GssgQzA0t875P9d2idd/n+zPu8uKMV5f9n7yyjo7rWBvxMZiITd1cgBsHd3SlavNAC\nhZZCDanRUkqBYqVCWyhuxSW4S4DgkEBcCEmIuyfj34+BCUMChdv2tr3fedbKWjl7tp/JyXn3a2qZ\nXqqjl8HHqj5vN/qKPfG/sCV6KYF2LXgz6Au+uTn1hdr38RrNrezzdHEfjIWRvhWHg9SVbzsFszHq\nGz6/8hpyVRUOpm40d+yMRPTiJt1TGs5jZfgnzLv6BqYSc4bWm0JBVQ6GT/hlz2rxPTtif2B95MJH\n3xsb/G2a0PSRz29/n/E8KI7hm5vvIEJEB9d+DK43ifMPD7zwPAAmBX2OhZENv8WuIL8yCxsTB13w\nK6nEjOWd9rMh8hsWXJ9CubIUexNnGju0w9zw2fEeunu8yqaoxaSV3tf5a6vUSqaf761X70rmCVzM\nvNjQKxQAmbqKzVFLyKp4iFRiSivnHnzc8mc9rXO5ooTN0UvJq8zE0tiWjm79GRc4W6eJNxCJuV8c\nzemUPZQrSrCVOtHYvj2ft16LVFLtPhSVfwOZspJ2rn1far8EBP5qRJpn+HT8k2nRooXm1q2XO30T\nEBD4e7ixdQey8nI6vl0dROb8jz9rtan9tP6eMafPknDhIl0/mF6jvaGJiVZoAmRlZWRGx5ITl0Ba\n+F3cmzam1WujX6j9Y5/fod8urlHnxMIleLVsjn/3rhyaM49GgwboIgqfWvKtNjr1gOp/4Nmx8YT8\nvJohyxZhaGJSq89vvU4dCOjetcZYTxJ57ARp4ffo89lHNT67s2c/KTduMXjJAoozszi1eDn95n6G\nuUN1qqFrm7ehUiho/+YEQtduQGJsQuvx1aZ12XHxhPy0Wi8a87P2sDbuh14l8shxBn0zv9bPC1If\ncmbZd7VGe35MVUkpYmMjRMCB2Z/RZsI4PW2zRqOhqqQEQ6mUioJCTixcQo9ZH2DrVS2F4mRBAAAg\nAElEQVS4595P4tLqtQT16/NM/+R9Mz6i5djReDZ/+YA/Av99fD45Wqs3gAh4sLj/f3s6Av/jyFVV\njDvRitH+7zG43pu/3+BfwNqIr6lUltUI2vZPYf61SQTaNme43zt/91T+pxGJRLc1Gk2Lv3se/yYE\nza+AgMCfzpO+fK9rMmlgp6+1adC3N5dWraFu+7ZIrayw8XCnqrQMkcgAc3u7Z/ZrbG6Od6sWeLdq\ngXP9AK5t3kbzkcNfuP2z8GzRnJRbd7BycUEll+HRpDoAi6WzE/lJ+kE8cpOSkFpbY2jy8tE2X4TK\n4hJSb93BrXFDRAbaNRlIxOQlPdAJv2q1mvzkFJ15toWTIxkRUXr9FKSk1uj7WXtYm4bXxsMdWVkZ\nsrIyjM3N/6O1mFhqDy6Srl7HwNAQJ3/9qKYikQiplRUAqbfvYGpjjbWHu+7z3MT7XFq9jgb9ej9T\n8C3LzUOlUGLzRDuBfzau1lLSi2qasbpaS/+G2Qj8r5FQeI/08gf4WTemQlnKrrifUKhldHQb8HdP\n7U9jtP97HHmwBbVG/cz0Un8XMlUlvtaNGFR30t89FQGBGvyz/loEBP6h/HryZ9p90kyvbMWhpTSb\nUR/PyQ7sCd3xH/e94tBSenz57MBJ/zZq8+WLzSwhOCxdV8fRtx6Wzs5EnzgNaFMh2ft4E7pmPZlR\nMZTl5ZP3IJnIoyfITUwCIPLocdLvRlCak0tJVjbpdyMwt7NFbCh5ofYAKo0Kz8kOFJTqmx56tWxG\nSVY2kUeP4xLUQM+U2b9bF3IT7xN57ASlOTmk3LxN/LkQAnrU1Op+d2gZszbVHpjnWWhUaipLSqgs\nLqE4M4v7oVc5u+IHjMxMaThQqwGTGBtTt0M77h06QmZUNCVZ2dzZtRdZSakuMFfdDu0oy8sj/MAh\nSrJzSAu/x/3Qq9pBRJBXkst7771CRGhIrXtYG9bubhhbmJN3X1/4rywpoTAtndKcHABKsrIoTEtH\nVl6uq5MQcomC1IeU5uSQcPEyYXv2P8rtXC3cxJ45R1FGBsWZWUSdOEXs6XM0HTZE52Ock5DIxVVr\nqduhLZ4tmmn3qaSEqlL9IF2595Mws7f7j3yrBf4eZvf2R2qoH2VYaihmdm//Z7QQEHhxNGjYl7Ca\naed68enlUZTKC1nacd8z0zD9GzE3smKU/7v/OMEXtBGzRwe8r5f+S0Dgn4Kg+RX4nyG3JIdfjv/I\n2XunyCzIwFxqgbejDwNbDmFE+9GYmfxnmqvaiEuP4fvDy1gzdRPN6rbAUvpiuVg9Jzuw6u319G8+\nkBXjVjLg3WpT2sfXfq2e7YP5ZxF1KYboS7EM/0wbbKTdJ81Iy9emrTExkuJp78WE7pMZ22n8S/f9\npC+fRpWLRnYZlWFDlp2MY3DTan9bv26dufnbTgJ6dsPM1pa3ohexpOksbuzYTfJDS0zMHmLmYc7g\nVlprHgOJhIgjxyjPL0BsKMHW24sOb2nN19LyH/JW9CL6SJqQsuo+5phQRhUP1LmcOBhGvqaMz5pP\n41k6YTNbW+zr+JB3P4kGj1LvPMbGw522E18n6tgJYk+dxdjCgoCe3ajXST9vY6W8krWXfuH43PNE\n/LQVgOvxV/j11C9EpNwluyiLb9/4keHt9U2MS3NyODxnHmo0yDQKKk00NGzbiVb9B2FoYsLDvFTa\nf9ocMQb0lzQjd1UOUoxI1xRg06GxLpK1ma0t7Sa9Qfj+g8ScP0+KKoeAjp0gtBCxxBB7S1v8PRtw\nJziYeNWxGntYGwYGBvi0aUXKIy30Y+5fvkL08VO660urtcFuWo4dhU+bVgAUpDwk6thJlHIZFo6O\nNB81HO9W+pZZWdGxxJw6g1qpxMrNlfaTJ+LSIFD3efK1m6jkcuLOXiDu7AVduamtDQO++kJ3nXo7\njDpt9YNgCfyzefwseGwh4motZXZvf71nhIDAf4qfTWNWdj3+d09DQEDgH4gg/Ar8T/AwL5WhS/pj\nYWLBrEGfEuBeHxNDE+Iz4th5eRs25rYMbj3s9zt6QZJztJqw3k376XK9Pk12cg7b5+7GpZ4zo+a+\n+rt9vrVyIsZmf54ZrVwpx0hSM0iMSqkidM9V+k6tDoxhqbDmfbtxWFRZUZZfjtpVxqdbZ2IhtWBg\nS62ALK+UE7rvGom3kqgoqcDRy4Gu4zrhXMdJ18+KcSupucs9uCuFjEcmjuXFFVzaGUpK5ENkFXU4\nse4S3cZ3RoYS49a+9G8+kLBTd9m1eyc+zZx0Zr71e/ekfu+eta7V1daN0OXhuuutFzaxO3Q7h+ec\n4sNHZWbGZtxLuQvLN9XaR7da/IUf496kEe5Nnh1Mpuv70/jp6Hc09mmGl4M3Xo8Es3MRp/F3DWBY\n2xF8uKFm/w369ubzuz8gEon4cuQCLKSWrD29is03FnN2wAAMH63t1vJIvXYnw47x0/aPudRjgf4+\nBDXgcPoFrsZFcC7iDD8q2mNoYoKxhfbgp8fo1xmwoCc3l0dgbfbsHJJP4te1MycWLqUsL19nUh7U\nr4/OX/tZPOl7/Cy6vPd8X7BW40bTalzt/siPKc7IpCg9nbYTX/6gRuDvZXBTN0HYFRAQEBD4ryII\nvwL/E8z5bTYGIgOOfH4aU+PqaIOeDl70aNyLJwO7peenMW/nHC7HhADQsX4Xvhq1CBdbV12dVSdW\nsu70Kspl5fRpOgBPh+rosisOLeX7w8sA8JqizWmXujaXuw/CWBq8iMjUeyiUcvobvErzli3Ji8gn\nP72AV1b2AGDqaq0PzAfoRyY+G3+KpcGLyC/JpX1gJ5aO/w5bi2pd5e7Q7aw++TMPc1NwtXVjXJcJ\nTOw+RWci6jnZga/HLCY05hIhUecZ1+UNPh/+VY29ir+RiMRIgkdg9UunWCPB0FJCx4HtubL3GoGB\nARyu2MOpsOMMbDmE5JwHbFy4GYoNCDE+hZ2bDUMcRrN3cTCvLx6Lha057T5pxquvjGLblXAqysNA\n4oeTLJdBitHEqzajyk9hxNJ2DKl8DZFIxMAP+mFsaszt42HsXRyMRFMdyTOgnT92W51QF71YQD6x\ngRhHq2oh3NzEvEbZk0SnRbH0wEJi02PwdfFj8bhvaehV7ed7K/EGSw4s4G5yOFamVvRs3IdPh83F\nQvrsPIzBN/YzuuNremXdGvakW0OtwD5z47s12jzITuJO0i1OzD1PfY8gABaNXUbzWQ04eGM/ozuO\nq3Udx+8cpUNgZ73vJcCFAzs5FrqTn6ZvoCAqEfndZHzbtNUd0Pi7BeJo7czxO0cY3XHcM9fyJCYW\nFrQcO5KKwsL/yJ/6r6ayuITW48ZgJBV8RQUEBAQEBASezz/PUUBA4CUpLCsgJOo847tO1BN8n+Tx\ny79arebNn8eRV5rLzlnB7JwVTHZRFm/+Ml4nIB++Gczy4G/4cODHHPv8HHWd67Lu9CpdX2/1eocl\n41cAcGt5pE4rV1ZVxtA2w9n70WEOzD6OU4k7P8d+i1dTDyJDojk8R2smumT8ihqavLT8VBJXpjG/\n41K2fbiHqNQIlu9cwtGfTvDzW2v4btJPXN9wh3c7zeDs/FA+HzGfy3uvsPL9X4i9Gs/6mZt5p+pj\nwrdF0tm3K6fmhTC+y0RAa9I84wmtY+zVeOo08dEbv9AoD+PmBgS280dipD0TMzY0QaHSpo4pLSvB\nqtCObmM6s+nrLXRp05Uv781CamvCvbMRLJw9H4VcwbpLq2jXqD4a+0+oNB9IXcloCkR55NmNYMEb\nZ1j26o9kJmbR/fXOuNR1xtbFhh5vdEUpV+KvCuLEfm1eTqm5CflGOSiT/5po9Ev2L+CToV9w7POz\n2JjZ8P66qbr7H5sWzWvfD6dn4z6cnHueNVM3Ef0w8rm+vEXlhSRkxtHI+9k5c2tDrpQB2r1+jIGB\nAUYSI24mXK+1zalzxwmNuciYTvrCa1lVGacuH2CcuAPXf1hLH0ljDP1daTT4Fb16TXyaci3+6kvN\n061h0HNTIj2mvKyc7+Ytp6So9jy9fwXOgf44Bwb818YTEBAQEBAQ+PciaH4F/vUk5zxAo9FQ10n/\n5bzV7EaUVBYDMKT1cL4Zt5zLsReJSYvm0qKbeNhrU6n8OHk1nea04nLMRTrW78yGs2sY1m4kr3V+\nHYB3+8/gSlwoKY9Mnc1MzLE01UanfVIj1z6wOmhV9OVYHF0cqJCXUeJYQNrZDDqMaAuApalVDU2e\nSqX1kXW388Cvbj1GtxtHUXAl4jZiRswZypjvhzHc/jXyjpTi0tEVTwcv4nwTqbgnI+56AgPf78+A\nr3oy3GA8jg898Orprevb08EbR+vq8TLiMwho4/fM/dSgITo1gtj0aBqbN2Xh7PmgBqnGhtunb5GV\nlsHoAeM5c/cUxblFpMdn6tq29mvHTxM/JzgsnRXHovHLjuWaOIx3u09nfPvG5D7U5twVG1U/ekQG\nIsSGYtzK9fPiFhjl4pzt8sx51sbdm+Ec2X2Iu1V3KJIV8f1X3+Li4Uq3ft1xcHbU1Zs16BPaBWh9\ndt9/ZRbDlgwgqzATF1tXVp/8mVdaDGZKr2qT3IVjl9L3627kleRib1kzqFJ6fhoajQYnq5cLplLX\n2Rc3W3eWHljAkvHfYWpsxrrTq8kszCCnOLtGfZVSxdqjq7E2taFXY62/eG5WDhdPhbA27BdEcgP6\nDJpKp15dtP7lzQYilkiQVckIOXmBuMhYUrNSKRQXkPEwHVePau2/XCbn/PGzxEXGUlleiaWNFc3a\nNKd1J60vbWVFJRdPXeBBfBLFhcVIzUzxDfSlc5+umJqZAmBmbkbD5o24eOoCA0YMfKm9EBAQEBAQ\nEBD4qxE0vwL/s+z96DAn5p6niXczZIoqABIz43GydtYJvgBeDt44WTmTkBkHQEJmPM3r6Afmefq6\nNvJKcvlk60w6z2nNxvUbOJK7j/ySPAqMczE0lnD/zoNntnWz00/RYpFnjUqtoveUHhjYQFxpNN+m\nLSC3IIdB7/YnYLoXodEXQSOiz5QeOHjak2mQhk0jS1Kj0vT62jlzP58M1fqgVpXLkFXIMbOpqSFf\nFryIgOleJGTEcy7iLG/1nk4Ht874+Pow+ZO3UVrLySsoYvG1r2kzpwmy+0o0eSLKi6oj/Dby0mo+\nBzd146e2LpgYGBAjvktnf63gaetig4WdBZd3X6WyrAqVUsWNI7cpKyjDDH2T4ipxBZpyXhpDQ0M6\n9OiEpbUlIyaORiFXsGvDDlRKla5OgHt93e+PBda80lwAIlLucuD6XgKme+l+hi7RpsdIyU2udcyq\nR98vY8OXi2xpKDHk13c2kZKTTKMP/PCf5snV2Mt0CequM2d/ksi7EUSW32NExzEYSrRm4gqFgqiy\ne5QbldHHtfb8qEf3HiYp/j4DRw2iRZtWiI0M2L5mGyXF1Rra04dPkRiTwMBRg3lr9ju079aB88fO\nEnH7HgClJaWUFpfSrX8PJs98m0GjB5P6IJXg3/brjdWoZRMiwyKorKiZxkZAQEBAQEBA4O9E0PwK\n/OvxdvRBJBKRmJWgV/7YH9LE6MV8AUXUHrjqRZmxcTp5Jbl83OsL4jYkM/GjN5i4biwKtYKm7fyJ\nDIl6ZluJ2FDvWpGrwkJtxU+Tf0Wj0fCO/BOMlcZo0PB+11n4d69H9Ml40sIyMDatFrikVlIKSp5t\ncqpUKLXjPZViBODNnm8zqsNYzi6/RP/W/Wg3rA2Hdx5ELJHw/cll3DK+yRCzMYxLn4oGDaUmxVQ4\nlWJnYAtqbR+mxloN4LljZ7gbHEOVYQWVVHDz0nUauAUhMZQw8P1+nFp3llVT1wIa1CYqzB3M0eTr\nmzirRCpUcjW/LvuFwoJCrKytaNa2Ba06tEZk8Jx7JQJjE2MMDAxw9XClVafW7Nm4i/zcPF2VA1v3\n4+3uQ58hfXUm8SEnLxAtiUajUTOqw1jsc5ywsbfF2MSI6PAoRCIR2RHZaHw0uvF/WvQDTVo1JSE9\nHoCfV/xI324DaNulnW6sqsoqzh49g0Ku4Pj+o1Tdk9F9QC9cPbQ+5pocDd3kvVk87TvOnzhLZVYl\nl0zP07xezQOXPed2Uq4qY3SHat9iVw83ikwKSS1MYUXBEkQpINqnnd+0Xyezrs5qWha2Zdi4EXjV\n9UZ2tQovN29sNLbcuXqLLn26AZCe/JCgZo3wrqc1ibe2tebuzTDSU9Np2LwRjs6OvPr6CN24tva2\ndO/fg10bdyCrkmFsov0eOjo7YmFpQWxEDE1b66cHExAQEBAQEBD4OxE0vwL/WoLD0mm/+BzNFlzF\n2KQRv55aQ3lV2XPb1HPxI7soi4d5qbqylNxksouz8HXV5pf0dfHjTtJtvXZPX9c2l5CoK0Tlt+Jg\ncCkatYYTC84xLOMN2GvCzcO3SYl4iI3IFpVa9dy+ADQayBfn8NrCUYxbNJqT9vtR96hgwrJxdHql\nE96OdbA2s8HYqKamUfMcN1mpuQmItBrgp7Exs8XbsQ4SAwk8FcH6ZuJ1enfsy8R5r+PTyxVpoIhD\nFjsQacDKoWaaJ0WpCk0ldBqpNQW/n5DI5bOXAHDycaT5iEbIXIppN6EVExaNR6QxoFhUqNeHgVyM\nXFNFp95deHv2O3R/pSdXz4dy6+rN392/x1RVVhEVpvWvNhDXFPhrI8izEfEZcdiZ2JMbn4OLpSvv\nfzCTkcPHEH41jOi7+ocYNy5dp37dIMyNzbH3s+fc0TOkJWvTRmk0GnZt2EFpcQkSiYSOvbrg4ePF\nb79uobSkVNeHUqkk/NIdXh05gj5v9CMmPYpeTfryNCHJ52jo2pg6znX1yj8aModTX4Yw2XsqC3su\n48Tc8wB8Pvwrlr72PRq1RnfgEZceQ5BnIySGEh4+eKjrw93Hk4SYeEqKtK4CackPyc7Ipq6//lhP\nIpPJkIglGBrqH964eriRmpTyu3stICAgICAgIPDfRBB+Bf6VBIel8+n+CNKLKtEAMuOxlFTK6fxF\nFw5e3098RhxJWfc5eH0/MWlRiA20L/4dAzsT6F6f99a9zd3kcO4mh/P+uqkEeTaifYBWUJvQfTL7\nru5i+8WtPMi+z0/Hvif8wbOF38dz0Rg4QdVV3AvyuGYp4oJrCPvMt0BPGeMWjsbe045WRh0JjblU\nqz/nkxjZS7BUWSM1l2LjZM2UoW+zOnQl++7tJKMsjbj0GKIfRlJQlv+7ezXq26Es3v81AGKJGDtX\nWwrSC15wp+F+XCKKPAXbjm/i409nEpZ4mxvSq2jkGkwKzKjbrE6NNpJKY6wcLGnVpSUmRlJUzkpu\n3rpGSYVWK33j0nUatWxMm25tMFCJqciv5L5BnF4fFjIrxHYiAhvVx9rWBr/6/rTr1p47V249d74K\nuYLzJ85RXFjMt3OXEh0ehW99P+wd7V9ovVP7vkt4chjBqXtRWMjwaupFWMZtttzbgHddbx4k6puv\n+/jVoXWHNnRs0JkCST429rYkP6oTExNNZMo9ArsGohFBsbwIh/r2iCxERD4yJ76cFEKa7CFBXRoS\nUxzF9M2T6d20L50adNUbJyn9PqnyZAY1q5lMytnGRRvJ2dgJDytP/N20uXJdbF3xdffDzcud0LOX\nyM7NJiLlHh6GXqSnpFFWWn1Y1HtQH5xcnFi58Ae++XgBW1dtpmu/7vjWr90/vKqyipCTF2jSuhkG\nYv1/JeaW5hQXFr3QfgsICAgICAgI/LcQzJ4F/pUsOxlHpaJagyoSO6Kx+ooK9UmWH/yGzMIMJGIJ\n9Zz9GNdlAm90e1NbTyRi3bStfLnzM0YtHwxAh8DOzB/9jc78dWDLIaTmprAseBGV8gp6Nu7Dmz2n\nsvfKzufORWQ+CZ/iM5ioVYQrNmNqMAh7xyyw0mDvYYd/Gz+KjhexJ3Yjba7sYDqfPXN9pr7GVF6u\n4OB3R2g3rA39/Aci6iHh6uGrrN77M1UmlfQQ96ee+Pej3KbmJuNqU53GybuRJ+nxGbToX22SKtIY\noCrQkJOSi1KhoqK4gpyUXOTlCjx9vPip+xq+37yCiJx7VMoqaFzYnGHy8ShM5TToFMjh49XjKWQK\noi5FY+gk5ueFP9LWuANH7h6kXF3GzZ+vsaDTcvJTCvD3DyTxdhIXtl2kbvM6pEYm0ZSmgDZqsJPa\nldSKByyd8w0A18uucLPiGu/YffDc9RoaGtK6bRseXE2k77D+XA+5Sr9hA353nx4T6N6APbMPMWPl\ndDYmrWXTV+vxdPCiT9N+mBtaUFGm74js6KINJjam43hmbHqX9+rMpLysAoArEZfZVbiNXd9sA2DF\noSWsOLQEP6NA6tdtAEBBRQHnK09z8ucjOFo5MaztCN4bMLPGvHaF/oaRyIjuDWrPdfw8Bo0azJE9\nh/hkwUxMVCZUJlXRoEkQmenVwcpuht4gLSWN4RNGYmVtTeqDFM4eOY21jTV1A/SDycllcnZv3IGF\npQXd+/eoMZ7E0BDFIxN7AQEBAQEBAYF/CoLwK/CvJKOoZjAdkYE1lQYjubSo9qA/j3Gzc2fdtC3P\nrTO93wdM76cvZM0Y+JHu9/7NB5K6NldvLiKJJ0H0I91Yg9x2AQoVhC+cp2vj16oel3ddYcvbe/Fu\n6MmKcSt1/c4Y+JHuGmBklzGUN63g8q4rHFl5HHmlDDNrc/o1HMjiUUuQWki5sv86CTcSdW1S1+YS\ndTGGcxdD9OZ9ZfEdveuGXRqw9fOdVJZVac2ggWOzzrF+xma2HdMK+PfOFXPvXCQVxiIsGpgR5NuQ\n2a98xuXdVygrKEOpVuJYz54RM19FLNFq1be8sYvARvW5tD8UhVxJg9b+BDYLYLzJG8RHx3P2yGnm\nzJ7LnZN3IdeQa9tuY25jTv0OAbQZ3BLLM7uJvKPVhmbdz8YcCwa+Phmvet4AJO9Oom1ZB6ZMnPrc\ne4cIPhw6mw+HzgagrKSM4O37eO3t12nr357UtblsW71FZx/uYe9J6tpcgrfvR1alNQdv7N2EN+pN\nxsHZkT5Dqs2PD+88qJczGkD8KDBV56BueNh5crcgHCcXbZTq+o5BzPD4lPHvvFFjmo99ZAcGDcE4\n0YSPFn763GV9NHQO6lugUbxY+qfH308AG3tbxk19g10LfuPTDnMZ3eU19m/bi7WtNaANmnX++FmG\nvjYcv/pa838nVyeyM7K5FnJVT/iVy+TsXL8dgJETRyMxrPlvpKqiUhcBWkBAQEBAQEDgn4Ig/Ar8\nK3G1lpJeiwDsav1iwa3+qrkcsXPWK38Sa0crZmx9V3f95O+1XZtZmdJ7Sk2t2mPaDW1Nu6Gt9coa\ndAqkQafA587X1tWWes3qcPfMPdoMbgVo/XZnbH1XZ8L9WKveWZ2MaVYJwWHpDG7ti39rXzRqDcvn\nLsGliYNesK3HGNoZYBSgofug7rqy4sJi3e/NejfmXsJtHJwd6f9qtUY2I7U6SnV0SBwGthpKikuw\ntbdFo9FwO/kGO2bsx9be9rnre5rWndpw49I1YiNiCGio3RtTc1M9k1+AnIxsrB4Jg/8p34xbzppN\n1Tmhnd2cKS8rQyQSYWNn84f6FkvEODg6kJedS71A35dun1eSS/8WAxnVeSyVFZUkxd2n2yOtrVql\nRq1SY/BUIDEDkUhP2JdVybSCr0bDqDfHYmRsVOtYudk5ePh4vfQcBQQEBAQEBAT+SgSfX4F/JbN7\n+yN9KmKx1FDM7N7+/6/n8qJ0HNUeI2lNweVpc3IA1Gp+OB5BWUkZedm5nAw+jlwuf6YvqK2DLaUl\nJUTeiaAwv5DbV24RHR6pV6dVh9ZE3LpL2PU7FOTmE3ruMump6QAoFSocPO3oOLw91y5c4frFaxTk\n5nN4xmnK0soIPXf5pdZqbGJMk1ZNuXgqBI1aK8h51/Xhfmwi8VFx5OfkcfrQSb20P/8pge4NaGbX\nUnft41sHD28P9mzaRWJsAkUFhaQlPyTk5IX/KCBUHf+6PEx+qFemUqrISs8iKz0LpVJJWWk5WelZ\nFORV+3Xfj0ukKKOI0a1e40FCEttWb8HO0Z7GLbWpqYxNjPGs48X5Y2dJuZ9MUUEhd2+GE3H7Hv5B\nWtN6WZWMHWu3UVVZxSsjB6GQKygrKaOspEwvjZRCriAzLfO5gbIEBAQEBAQEBP4OBM2vwL+SwU3d\nAK2wllFUiau1lNm9/XXl/1/n8qJY2lvQrHeTGuW1mZO7U4p74Q1++PoGRsZG2DnaM+y14XjV9a61\nb7/6/rTt3I7Th06iUCio41eXTr26cOLAMbYuusS4zzpSv0kDCgsKuXD8HAqFAr/6/rTu1IZ7t+4i\nMRTrNNJSUylXQ65w/vhZDA0NsXdyoEX7lrWO+zxadmjNzcs3iLobSVDThjRu1YSczGyO7D4EQPN2\nLfFvEEBFRUWt7ecM2UWLnnWQ/I7SefGkQ5j7VODwyABAJBIxcuIYQk6e59jeI5SXlWNmbo6HtweN\nmjd66XU0ad2Mdd/9SmVFJVJTrWVBaUkp679fo6tTmH+bsGu38azjxbiprwNawfXY7hPIZBWYWZoR\n0DCQLn26In4iAvaQscM4f/wswdsPUFVRiZWNFZ17d9Htd1Z6pu6AYtXSn/Xm9drb43Xfh/ioOKys\nrfCsI2h+BQSeRUpaEhPeH8TBzaFYmNeMmP93M/advkwYNY0enV48XoKAgIDAvwHR0/5r/wZatGih\nuXXr+RFfBQQEXp72i8/Vak7uZi0l9JNuNcrXfn6O0EPaHLdiiQGmFka41bOlRc86dBkWqJdPuKy4\nCrHEAKlZ7aayL8Laz89RVlTFhz/10yt/EJXDV6P3s+z4GBzc/vwXycfC75B3ni14h19MYfuSUBYf\nGqWLfnxhbzTXjieSEptHZam81vklR+ey5/trJEXlYmAgokWPOoye3Q4T0+r0QUmROez94ToPonOx\n9cvH3MyakW8NpE5DJ12diNCHBK+6RXpiARIjMb5NnBk5ow3O3o/8euUqZvf9jalLe+Lf3OXP3B49\nNvy4jlYdWxPUtOFfNobAv5eCojxWbV7O5etnySvIwcLMkno+AUwYNZ22LToD0J+BIw8AACAASURB\nVHdMS0YNnsjrI37Hv/+/yKrNyzlz8Qj71l/4U/qb9dVk6vkE8PZ4bXA7mbyKBd99TGxCBA9SE2gc\n1JL1K/bXaLczeCO7Dm4gIysNZ0c33hz7Hq/0qs6/rVAq2LB9JYdP7SYnLwtvj7q8P3kO7VvVfH4D\nrN/+IyvXf8PIQRP49L1FuvKQK6dYvnoeBzddxsBAMBIUEPinIhKJbms0mhZ/9zz+TQhPNAEBAR3/\niQl3gzZufH9uPMuPj2HWrwNo0tmL4F9useiNg8gqFLp65lYmf0jw/atRPm3u/ZKc/i2CDoP89dL+\nyCqVBLV1Z/Dbtf9fKswpZ9mUIzi4WzJ321BmrupP+v0C1n1+XlenqkLBt1OPYu1gxhfbhvD6ByOR\nmpmw/O2jVJbLAchNK+GH90/g18yZr3a/yuw1A5DLlKyYdkzXj6GRmDZ9fTm9PeIPrfN5lJeVE9gw\nkAZNgv6yMQT+3cya9yZRsWHMm7WCg5sv8+PCrbRv1Y3iksLfb/ySKBTyP73PP4OsnHQuhJ5gUO+R\nujK1So2xkTEjB0+gQ+vutbbbfWgzP6xdwJRxM9i3/gJTX5/FNz9+RsiVU7o6P29Ywp7Dm/lo+gL2\nbwjh1VfGM+PLScQm1Py7vxd9m31Ht+FXp36Nzzq07k5FRRmXb5z7E1YsICAg8M9BMHsWEBDQ8Z+Y\ncEuMxFjbayP72jiZ4xVgT1BbD74cuZdjG8MZMk2rLf1m4kHc69ky7jNtPmWlQsX+n25y9WgC5SUy\n3OraMHR6Kxq29/jD61Cr1Gycf5GY6+kU51dg62RG56GB9HmjiS6o02Mtsl8zF85sj0SpULEy5A1K\n8ivZ+FUIkVcfYmkrZdAzBNcnKSmoJPpaGiNntNEr7z1Oa9r8ICqn1nZ3L6YgMhAxfk5HndD8+ued\n+OLVPWSnFuPkaUXmg0LKi2UMeacFDu6WgA02doOYfXw7WclF+DRwJDk6F5VSzfD3W+v6GTCpKUve\nPExpYSUWNloT6aZdvFj21hFklQqMpYa1zumPYGZuRtuu7f/0fgX+NygpK+ZOxHVWL91F62ba54Cr\nkwdBAdUuGJNmDCUzO43vfp3Pd7/OByD8bCZFxQUsXjmHOxHXKS4pxM3Fk/EjpjK4zyi9tnU8fZGa\nmHL41G5cnD3Y/ssJUh7eZ/6KWUTEhOHi5M6sd77io/lT+OTdRQzqoxVAf1i7kHOXj5OVk46tjT29\nOg/knQmzMTYy4eCJXfy65VsAmnTXWk18Nft7BvUZSWlZCd+tmc/50BPIZFUE+jZkxttf0sC/plvJ\nY05eOERdnwBcnNx1ZVKpKZ9/uBSAhKQYSstrxiA4cnovQ/uPpW+3IQC4u3oRFRfOxl0/0bldLwCO\nntnLhFHT6dRGG8xuxMDXuX7nIlv2rGbRZ9XuCqVlJXy2aBpfzfqO1Vu/rTGWWCymQ+vunDh3QNeX\ngICAwP8CgvArICCgx+Cmbn/YX9nd15aG7T24dSZJJ/w+zbovzpPzsIS3F3fHxtmce5dS+f7d43y5\nYyie/vZ/aHy1WoONoxnvLO+JhY0JDyJz2Dj/ImbWJnQeWh0NO+5WJlJzI2au6q+Larzui3PkZZbx\n0ZoBGJkYsn1ZKHkZpc8dLyEsC4mRGPd6LxeJWiFXIZYY6GmLjUy0j+X4sEycPK1w9rbGwsaEiwdi\nGfhWcwBC9sVg52KOW13teD5BjoglBoTsj6Xz0ABkVUouH4rDJ8hBJ/gCeDdwQKXScP9uNvXbuPOi\nzFt1GkszE2aM1wosn3x/HC8Xa6aObPtS6xX483n63rwoE77Yw4DOAQzr8d8zTzeVmmEqNSPk6ima\nNmyFsZFJjTor5q1nxJQeDOozihEDX9eVy+QyAnwb8saoaZibWnDtzkUWfPcRLo5uOkEa4OiZfQzr\n/xobvg9Go9GgVqv58MuJ2Ns6suWnI8hkVSz7ZW4NrbDURMq82StwtHchKSWehd9/hJGREdMmfEzv\nrgO5nxzLxWunWffIFNnczAKNRsO7c17D3MySHxduxcrCmsOndjNl1nCCN13Gwc6J2giLuE59v5o+\n/6t2XSUlswirZ9jkKRQyjI30I+wbG5sQGRuOQqnAUGKIXC5HIjFiylf7eG9Me4J8nTE2MiEs8oZe\nu6+/m02PTgNo2bR9rcIvQFBAE9b99mPtk/kDrN9/E7lSxdQRbX6/soCAgMCfjCD8CggI/CW41rUh\n+np6rZ/lPCzm+vFElp8Yi52LBQA9RgcRdS2NC3uiGf95p2f2GxH6kLdar9Mrezp0gcRQzNAnhG4H\nN0uSY/K4fjxRT/g1NBYzaX5XDI20pt5ZyUXcu/yQOZsH4dtUq+GZvKAbs/ttf+5a8zJKsbSV6gmx\nL0L9Vm7sXH6VI+vD6DO+EbJKJXu+vw5Aca42+JbUzIhPNgzkxw9OcmR9GAD2rhbM/nWATlB+fP3z\nrFNsXXQJjVqDZ4A9pj3smLfqNPOm9gTAWGqIqbkRub8jzP8ecyZ3Q/ySa/0ryM4vZeLcvXz/0Sv4\nev2xA5P/VU5fTWD17mvs+27cf2W85x2MSMQS5n/0PfNXzGbfkW0E1AuiSVBLenZ+hYaBzQCwsrTB\nwMAAM1Nz7G0ddW2dHFzo22Oc7n6/OmAcN8NCOXEuWE/4dXP2ZObUeQDci89k2lffkZSSiEL6Kt9t\nj6dJgCsTx37MjC9G6c1tyrgZT/ThwaQx77Fl92qmTfgYE2MpUqkZYrFEb043wi4TlxjF+f2RmBhr\nD5mmTfiYkKunOXJ6LxNGTat1jzKy0/Cr2+AldxbatuhC8PEddOvQnwb+jYmOv8uBY9tRKhUUFRfg\nYOdE25ZdWLf9F/wbvkX9uo5cvRXCucvHUChVzPr2KElpBRTkXMXF4gELP/1Jr//w2Ay2HrlDSkYh\nxkaG+DiWkpOXiVKlRCLWPmtuR6ez/VgYKRmFGErEBNZxZNKQlrg5Wen6ORISw+GQGHIKynCwMWNk\nn8Z0b12dK/zVng2ZNG8vg7s1wMXe4qX3QUBAQOCPIAi/AgICfw3PiaWXHJOHRgOfDd6lV65UqAls\n5frcbv2bufDGl531ytISC1j5wUm9snO7o7i4P5b8zFLkVUpUSjV2rvovWm71bHWCL0DGg0JEBiJ8\ngqpfcO1dLbBxMH3unBQypV4/L4pbPVve/LorO5ZfYd/KG4jFInqMaYilnRTRI/NseZWS9XMvULeh\nE2990x21SsOJzXf54f0TzNsxDGNTQ4ryKtgw7wLtX/GjTV9fqsrl7P/lJrG3MvBs7Kg3pqGJGIXs\nj/k3W5jVzO8sIPAi9Og0gI5tenDn3nXuRd8m9OZ5tuxZzfSJn/Dm2Pef2U6lUrF9/yqyH+xgwrtL\nUKkUKJQKWjTWF7IDH2lUj1+K5Zdd13A2z8XWxpF1898gv6iCC7eSuHtfUyOI0+mQI/y2bw0PM5Kp\nqCxHrVajUj//7yQ6/h5Vskq6DtX3cZfLZaRlJD+znUxWVUOD+yJMGfch+YW5vPHeK2g0GmxtHHil\n1wg27foZA5F2PbPfmc+wt8YSeuELWobMxd3Vm4G9R7H/6HbaNfbCzV7J1t9OsmnxSQwl1a4PJWVV\nfLnqNMN7NmLm+E7kF1ew8Of1aDQa5HIZEqmErLxSvv71LAO7BDJzfCcqZQo2Bt/iy19Os+6rVwE4\nejGWjcG3eHdse/y9HYhPzmXl9lDMTY1o3dATACsLE5oFuHLsYiyThr589H4BAQGBP4Ig/AoICLwU\nwWHpOp/gpjHF+FrWNF0ESL9fiKN77ZGXNWoNIhF8uWMYYon+S6iR8fOFSCOpBCdPK72yilKZ3vX1\nE4lsX3qFUTPbUq+xE1JzI87ujOT2uQd69YyltT8CRSLRc+fwNObWJpSXyH6/Yi207e9L2/6+FOdX\nYCw1RASc3HrvkX8vXD2WQG5aCZ9vGazTLL+9pDvvtN/I7XMPaDfAj7M7IzGWShg5o1oQeGtRd96c\nvpOKJ+a1YsslUp0URBfms+WzXVTJlbRt7MnUkW0xMdLuRZVcyS87rxIaloyJsYSBXWoGw3lau3fu\nxn0OnY8mLbsII0MJQb7OTHm1FfbWZoBWA/fpDydY+G5vNh+6TUpGIR4u1rw7uh31PLUa25KyKlbt\nvkbU/WxKy2U421kwtEcQPdv6vtR+JqcXsGbfDWKScjAyFNO6oSdvDW+N2aO81iu2XKKkvIqmAa7s\nOx1Z6x5oNBr2nYnk+OU4CoorcHGw4NWejejWqjp38fZj4Zy6Ek9haSXmUmOaBboy8/XaLRZUajUr\nt1/hXnwmhSWV2Fub0ru9P0O7B+l80F9kXi9yb57kXnwm32/T5sXuP20jAGP6NWFs/6YAKBQqVm4P\nJeT2A0xNDBnUpT7DelabQZdXyll/4CbX7qYiVyip62HHm0NbvbSW/clnRh2qcDJQUlkhw9rCgy7d\n5uLtsZ3VW77l9RFTKSqTU1xaxbYjdzh4ZQsOtuaM6deEpIRjbNm9GmunAUiMnTAwMEZUGYJCqdAb\nS2piSl5hOav3Xqd/pwAsxAoephjgZGeBk50F9es6UVRSxtYtEHU/my0fbmV4dzsWf/8Wlvbd+OKD\nnwgNzyLh/jWi7u3Q9RsRn0lGbrUfbnJ6AccvxWAgNsfBayoOtloNZ4CPI2q1mh0nYpk4d0+t99va\nypbi0iLW7b/BqSsJAPRoUw+1Wv/EsPbv4XQ+/3ApBYW52Ns6se/oNsxMzbGxtgOgoATMHUexb81Q\nlIoKHO2d+WHtQjzdvRnaI4jlv4agVlUwbGIX3ThaIf8aiHYxYlkSRkbGuDpa0qGpM3GREhBp/3YS\nU/NRqdS8Pqg54keHB8N7N+KzH05QXFaFlbkJ524k0ru9H11a1AHAxd6ChJQ89p6K0Am/AK0bebL5\n0G1B+BUQEPivIwi/AgICL0xwWDqf7o+g8lFk5Aq5ktisUoLD0vX8hNMSCoi88pBXJjertR+vAHs0\nGijOqyCw1Z+fDzk+LIu6DR3pMbpaI5PzsGYAmadx8bZBo9aQFJmDbxNtst78zFIKc2vP//sYr0B7\nSgur9IJLvSxWdlrt8sUDsRgaiWnwyCdXXqUE0GmCQSuci0TaQ4THdZ7WZBmIH9V/4n26qlyO3FxE\nhVjFgvd6k1dYzuL1F3BztGJEb63GbP3+m4THZvDZ5G7YWZuy/Vg4kYnZtGv87Ly9SqWKsf2b4O5s\nTUlZFRuDb7F0QwhLZ+inpNp86DZvDG6BraWUNXuvs2zTRVZ/MQSRSIRcqaKehx2v9myIqdSI8NgM\nftpxBQcbM5oEPN8aQLc+mYIvfj6Fn5cD380eQGmFnB+3h/L9tsvMmVyd6iUqMRtbS9Nn7sGWw3cI\nDUtm6og2uDtZEfsghx+3X8Hc1IhWQR6EhiWz/2wkH03ojLerDcWlVcQ+qD2oGWjN8u2sTflkUhes\nzE2IT85j5Y4rWJgZ07ud3wvP62XvTWAdR6a82orNh+6wbt4wAKTG1dq+4PPRjO3XhGE9GnIrOo1f\n91ynfl0nAus4otFomPfLaUylRnw5tQcWpsacvZ7Ipz+eYM3codhaPd8aQjfGU8+MEpmKfGMpM4c2\nJ8DWmO1rDuJQJkalUiKTy/hl53VEIjG92/vy2rAhpGUXAxAWeYOObXpwv6Ap86f1wtvVmrdmHQOs\na4x5KSwZpVLN8F6NiEuoJDcvm5y8LBzttX/TKQ9jUavVAMiVKvYeP4G9jRObf/gJGytTIpKuUVmR\nh79JPYKXrmXwR5MRiw1Bo9aNsXRTCG6ufsTH7uPLqb2QqcyxsZTi6eaIUqXG3aWYYb08ar3fAfWC\nuHL7DiKLOrw3pj3ebjYcuRjL+VtJ1POw043xe99DgJPng+nYpqfu7z/yfjYu9hbYWVsBViiUCs5e\nOkrPzq8A0CioE4433+OXOUN048xd9gEKtRW2Tt0wNKyOyJ+d8wBDE1cSU/No5OeCn5c9YrEBp0Lj\n6dXeD5lcxdlrifh52WNlrj0EVSjVGD2VMcDISEx8Sh5KlRrJowM8Py978osqyMwtwcXhn5fnWEBA\n4H+Xv99pS0BA4F/DspNxupfYx2iUalYER1GYU05qXB4nttxl8aRDeAXa0/f1xrX24+xtTdv+vqz7\n4jw3T90nJ62EB1E5HN8Uzq0zSX94ns5eVqTE5HHvUipZKUUc/PU2cbczf7edi481Ddt7sHn+RRLv\nZpESm8e6z8/rtNEH/ceSsrs69UdpYhoXBn3K3YHv0av0MvFhWXr9FeVVkBKbR1ay9gU+I6mQ2z8c\n4qDfGF2dYzO3Euw7hqzkIs7sjGTbN5cZ/n5rzCy1ZpEN2rpTWa5gy4JLZCQVkp5YwLq55zEQG+gO\nDhp39CIlJpeDq2+RlVJEcnQu6764gLFUgtRC+zKbezUKr5+3IdHA7Mld8HS2plmgGx2aehMelwFA\nZZWCU1fjmTC4Bc3ru+HtasOHr3XA4Hc04b3a+dEyyAMXewv8vR2YNqotUfezySss16v32oBmNPZz\nwcPZmtF9m5CWXUx+UQVVecVc6zydvkGu1PWww8Xegr4d/GnXxIuQ2y/+fbhwK4kqmZKZr3fC282W\nhr7OvDu6HVfCU8jIqT78MDUxZNrotrXuQZVMQfC5KN4b254WDdxxtregS8u69Gnvx9GQGAByCsqw\ntZTSLNANR1tzfL3seeU5WliJ2IBxA5rh5+WAk50FHZv70LeDPyG39Nf2vHk9eW+aBbhwfc02/HMT\n9O6NQiZn44eLOLNuNwCGEjGmJkaIAFsrU2ytTJGXlLJi1IcEJVyhqZc1r3Spj6ujJQO71MfdVsrx\nL5ayYtSHXD4fRlJaAZ+92RV/bwdcHS0Z90oznO0sOHfj/gvfkyefGSJlGRUPVlGed4NfTl7GyUqJ\ne1EKl7Mv06ppR8zNLKhMTKCHeWs0Iensmb2Q+F17cRHL8XKvQ3TsDWQVyZSWpLNuyTwal/gSmOHJ\ntk+/JS2mek4ZOSWYGYu5e+A44b+eYZTdUFbP+orwOze4F32bb1fNQyKWIKpSElSURPsiQ7qJ2nDy\n11/JzXlIXOwp0lKvkVCVRPaDNNJi7mNp6YisqoCY+HsUFueTnVdM3669adKgJd/8MB21LBFLaRV3\no26xZuu3NPCUP/N+t2vRhQcpkQzpXp+OzX3wcLbmrVdbYyIuoqQ4laLiAsrLy9h19DSDOtnrvoc+\nzuBjn86uo+eJiA3j46/fJvFBHO9O+lS39siYOygqYkjLSOHOvWtM+2QMao2aNx75H5tKLTA0dqae\nT4DuR2piioeLE+n5Rpy/mYRKpSavqJzLNy5jbOZHQYk297ujnTkL3u3FtqPhDH5/CyNmbSM5o5Av\np1ZHg24e6MbpqwnEp+Si0WhISMnjZGgCSpWakrIqXT27R4cn2fllL/xdEhAQEPgzEDS/AgICL0xG\nUWWNMtt8GbYHkph56AGmFsa41bNh8NQWdHk1EInhs02YJ83vwuG1d9j93TUKsssxszKmTpDjczXB\nosoKbCJucLLjUSoz8zE0l2Lm7YJpq8aINUpdva7D65Mal8/qT86gAVr0qEOf8Y24GBz7u2t8c0FX\nNs4LYcmbh7GwNmHQ2y0oKai5boCoZTsQS43peeFHjm2L4urRBJp389F9fn53FAdX39ZdfzftOB6y\nDJqqqtWxuWklSGVKPh+2GxcfG17/ohPtX6nWBrr62PDByj4cXH2br8cdQAR4Btgz45d+2DqbA1C/\ntRtvLe7B8U3hHNsYjpGJhDoNnWjQxh2lgXasyIVbiPP2w9nWErGBAZXZhUR8vQnXazG45RRw60EC\ntjPHolSqCaij9RNWK5Qkrz7A4BOnMd5XwdltB2jwqX7gJEVZJVfnbiDj5A3E5ZUUWFtxq3FDMLcg\np7AMexszNBoNTWPjyHztMsElFdg29cV9lvYAoKi0EntPezyGduLoh79woWFD8osrUChUKFVqGvo6\n/+49e8zDrGJ83GwxNanWbgbWccRAJCI1qwhXR62GydPFWme2CVrBMC45F4DUrCLkChVzfz7NkyK/\nUq3GyVa73x2aeXPwfDQT5+6hWaAbzeu70aahJ4bP+b4fuxTLySvx5BSUIZerUKrVOD7q7zHPm1dm\nXqnu3ogMDOg9dTRbP1pGoGt1IKFL2w+jVmvo/Nqg390rhcQI+9JcvTIXeREiI2M0lRU8zCpGplAy\n5uMdenXkShWZub9vRfGYJ58ZGgNjJFJPTDJPUpXyG++Hu9LENIhSMw+WfrEaAF9zDdckdmSUXqG8\nIAf/grrkpWQy4ospJKUmceXWJn5deomWxo3R1LPkfmkKzfw6cmDxGgytHu2/RoN38UMSbsjp/954\nCssLOPzLZvZ9s4p70gRmTv2SmfMmYRSdjSGGjJr/Prv2rifrzgMWf/AhmVYQ2GAod8M2E9CuGWEn\nLuHn24Grt84wZfYISsuK6dv7Q1Zuv4K/9+sYZJ3iy2UzKS4twM7GgSYNWmJh04zNxw/Ver+bNuoI\nSFBUJABa6xgDAxEPYtdQXv7kPYlgzoIf2HBImwJJXpVNVupuVPI8roea0KJxOzavPISbc3V6uMqq\nShLjgxk6cT2mUlM6tO7Ogk9WYmmu7yryNA425nTs0JJVu67y3dZLiDRlFBfdx9FnMI+NTgqKK/jh\nt1C6t65L5xZ1qKxSsO1oGIvXX2DRe30wMBAxqm9jCksqmbX8KBrAxkJK9zZ12Xc6Us+dxOiRKb/8\nD+ZXFxAQEHhZBOFXQEDghXG1lpL+xMtsbGM7Yhvb4WYtJfSTbs9pCZ9u0H8hlxiKGfJOS4a882I+\nX+UPc3ANOYihhZSAGaOxCvRCbGJESfxDknecYd789ji4Wer6nvRVFyZ91UWvjydz9k5eUPt8rexM\n+WBlX72yzsO0EaIP/vDUnJKzcOnVEjMPR3pPseCzIbvITSvR+evWtr6U3ecI/6JaS9VlWCDh4VdY\nd3vKM9ce1NaDoLbPz3/cpm892vStp/OvPFJUSb3kAuraScm/FUtxQhr3m/hSx00b9EstV2Bsa4my\ndzsqTl6ttc/oZTtI2XeB5C5tMK/nTlNbCdcmL8V0eD9w0Zqb3pr5E0mXoygZ2pMO3RvhcTEMp+2n\n+K1de5RKrZlo0c4zBN1Pwn/FdBzrexP7w26ipi7DsGUbXaTueA8P2HCMIW8OwsffDamxIZsP3ab4\nCW3RH+FJ5fXTkapFInSprh5Zw/Ll291xsNEXTh+bbDrYmLPmy6GEx2USHpvB+v032XEsnBWzB2Bi\nXDN/8sXbSazZe4NJQ1oQWMcRUxMjjlyM4erdVL16z5vX01g72dPptYGc3hQM3p6kRsRz9/QVRsyd\nhqHJ7wdTKrR0RJqYiEaj0Qkl0twMxF7eKGOj0aDB2kLK0g/7UVFUQnjwSTJjEgFwelBFYaYfNi4O\nAFzZc4KE63dpPbQndmGXqLyl4ODDaHpNGan3zJBqwM22C7nO/TGztmCEwQPKRUZYZoqxsrQBYNJX\n7zCosJybUWmEx2Zw7V4KgSVx/B979x0dRdUGcPi32fTee6+UkFBCJ3RCld6RJoKiiKBUGwpIURSU\nolJERaqA9C69dwIhhJBGeu89u/v9sWGTJQlFRJDvPudwTnbmnTt3Z2dD3rkt7V48n01ZzhufbaWT\nfhqOXs4EjRukej/RN+4wrOlIAof0YNuBaxTmp9NwYH9c/HxwATy8arHqvTl89+Fqig1lWGlYIskv\nIdzaGzsPZyZN/4Lbpy5zeOVmvAO7kVVUxq+LFhAXGsG2L3/AxKU2tXzHsuKTiu7C8SnZXAmJ50qo\nEWnFzZk+uDlBLbw5eSWSb387XePnLZVKMbJoy8Gj6xnZv+I99Om7jLSsfBZM6sqdqFQ+XLSHeRM7\nP3QfjkNTqoG1hfq9+YCPVyMKZZ+zeNprj70HHlhTvnwTQO/2dcnILuTnDV+RatuHkEQTbMtnZN57\n8g662pq80afid9qUka0Z+ckWQiNTqOtpg462JpOGt2LC0BZk5RRiZqLHgdN30dPVUnWNBsjNV85F\nYGxY/ZwRgiAIz4tIfgVBeGJTO/uojd8D0NOSMrWzz3M/9/WPViLRkNBu71do6lf8wWTgbINdxwC1\nJKEgPpUbs34m9XQwANaB/vjNHoO+XcV4usjfDxH+404KEtLQt7fE+53euA3tpNqfF5XI1Wk/kHHt\nLvoOVtT7tGLNUYDtTsoxlNm3o7mz5A9qTR7ImC/akhQSR9S8AySfvA6AeSMf/D8fjaHbk41bzYtO\n4ubsX8i4Hk5ZXiGGHvbU+XAwdh0rEvf4/ecJ/XYzeVFJSHW1ManlTJMfPuRAXL7a55NfIuNOUi4n\nVh3AoK4X7o0dVROMGThZ4z97DLf2XqP0+FVAOTmNplSDsKgU7CyNuL/tBO7jevJreB7NzE1wHxFI\nyulgUq7cRFbfE1lhMYkHL3KhYUNmvd9L+UdyWz92Hb1K7egYQJm8ZW0/RrCXJ12DmmBiqEvAt++x\nu/4buMdVLIV1uxhqmRjikZqCW0c/FAoF8Sk5GOpXjEF8HCdbEw6fC6egqFTV+hsamYJcocDJpurY\n0Oo425mipSklJSMff5+aPzNtLU2a+DrRxNeJAUF+vD5zE7cjU2hYu2rPhZCIFHxc1btGJ6Y93XJT\nD382AD6tm7Dt90OYXr/EweDzNOreBoda7mrHaWlqIK8mgc7VN4PCdGJvheNcz5uUqDikxQVIHZwo\nu3MbRxsTss7GICsr5eSK37D3dmXw5+8h1ZRyec8xtn75A6O+mYGWjvLzyUnNIOzcdbK862NnpkfK\n7Wuc3ryPqZ1bqu5JfVkppRIN8gyN+bhnPeKXnkRRxx9Q71lhaWZA11Y+dG3lw5b914hedwsdA300\npVIkCjnZ8Ym06tdJ7RgXPx8S7kYD4GUiJQYFl1NKaAwcPb0PXV19jK3NuHziJJtvbqaWVS10DM0o\nkVbcX67+tZCVlmFQmk9UjvI7ZOPuhFwm535oJKCeqDlYm+BgbULPdnVYCyIDNwAAIABJREFUvvEs\nB8/eJaiF92M/bwM9bRxdWmOhc5PcvByMDI1RKBTcjUlVjaV+0vvwYR6OFuw5EYpcrlBNpvY0JBIJ\nFqb6WFlYY2QRSEpROh7l45CLS8qqlPng9cMPaTSlGliaKSe8O3klkia+TmrHxiRkoinVwNXB7Knr\nKAiC8CzEmF9BEJ5Y7wYOzO9bDwdTPSSAg6ke8/vWU5vs6nkozswl+cR13Ed2UUt8K3vQeqWQyzk3\nZiHFadkEbv6CwM1fUJicwfkxC1V/oMXvv8CNT1fj+WZ3Oh5ZjOeY7lz/eBWJhy+pyjg/9isUcjlt\nd8yj0aJ3Cf12C/KSipllu11ZjaGHPV7jetLtymq83+pJvWZ2JH65Ag0dLVr/MZu2O+aha23GqSFf\nUFb4ZLNBlxUUYdOuAa3Wf0aHg9/g0LUZ58d9Te69OACKUjK5+O5iXPq3o9Ox72i9dQ5O/ZRLP1U3\nJlsuV5By4TYubX0xszZ45Ln1dLUIau7F2h2XuRYaT2lRCcev31dLnqS6OhjFJyvLlslBJkeircWe\nE6EkpuVy8VYsqXnF2GRkAFBwPxlZRg7xVlYVZejpYNLQG5uMTNU2B2tjkk1MiDh8hdikLH7Ycp7k\n9KdLENs29kBHW8q3v50kOj6DW+FJLNt4lhb1XVRdnh9HX1eLvh3rsubPSxw6e5eElBwiYtPZd+oO\n+0+HAcq1cw+euUt0fAZJabkcPh+OplQD+xom7nGwNiYiNp3LIXHEp2Szcf91boUnVRtbk4c/m5iE\nTJb8fpoIU2fITEeqpUmLgd2qHGdtYUhJqYxrofFk5xVRXFo+PEAiwcDLk1vHletK3zx2gWJzWyhf\nz9XbxYo67jYs+2YLRSWl+A/oQZpMk33XErBr15rSomIir4aoziOXy+kyfggyAyPydY1wCPAn8vod\n6lnqMqWNC45GWpRoSNFSyBnjZ0kDCy2KC4oIjs1Sq+9Pf5znckgciWm5RMSmE3boBBJNTTwa+WJq\npIuhVDnRm0xTm/zCkorPzcSIgixld2wtWSlIJOw9H8m3v53kTmQ8Xy6ZSXhcGMdPHEKGOe0ad0ZT\nX33SLj0jAyQaGjib6RIRm8Ghs3dJzS5CoqVFclyyKq64pIwVm88RfDeR5PRc7kSlEhKZjHN5b4gn\n+bx7tfMlMc+XG3cziEvOZuXWC6qxtfBk92F1/LxtKSmTERWfobY9JSOPiNh0kjOU36mI2HQiYtMp\nLKr4nbbt8E2i4zOU6/wat2D/mTjeGtBU1RW/sa8jEbHpbNh3nfiUbO7dT2PxutNYmRng6axMkOOT\nszl64R7xKdmERaey8OfjxCRmMbKn+uSHIRHJ1PWwUc1kLgiC8G8Rv3UEQXgqvRs4PPdk92H50Ymg\nUGDorn7efY3HUpqjnInZuW9rGsx/i5TTN8kOjaHz6eUYOCnHrjZZOomDgRNIPR2MdaA/4St34ty3\nDR6jlMmCkbs9mcER3P1hB3adGpNyKpic8Di6nF2BvoMyafP7fDQn+32iOreutRkaUilSA110rZWt\nF9Gb/kKhUNDo2wmqZLzhgrfYW/8Nko5cxvG1lo99r6Z1XDGt46p6XWtifxKPXCZ+73lqvd+fwuRM\nFKVlOHRvhr6j8v2Z1FIuIVLdmGwAo5xcdG3M4Qny7zF9G1NUUsbclUcJNDPH8fJNGvXqBHIFySdv\nkLD/PFrlCZSWoR7mjXzokpHEgXN32HsilMZ5mdRKTSNLT5lYFKUqk5tCHfWuuFoWJuiFVUxCNqir\nP5s2HuDetQh+Xryfjs08advYg9gk9eSosgcrwzxoUdLV1mTOu0Gs3HqRyV/vQUtTSjM/5VJHT2N4\nj4aYGumx/a9bLN98Dn1dLdwdLejfUTl7uKG+NlsP32TNn5cok8lxtjXl47HtVd1DH9a1lQ+RcRl8\ntfYEAC3qu9Cngy+Hz4U/Vb0qfzY62pq81rY2irAikErJTc8mJyUdcwcbVfz2+T8RfyeSDmUy9s27\ny1ljbwa1rhgjbOjtzb1du8jPyuHOmasUuvqq5k6WSODzdzqxevZKCuOz+H3iF4DyWh+TSikrLSU7\nOV1VlrGlGTr6ypnOT16JIrwoA++CbCYu2AXAqA51ebNvEL/svMzBs3e5fCqYJkBQy1qsPVGxBJlc\noUyAUzMLcC1Jwyknke5T3kSn/KHX6z0acnftLb5cdRTH2jEsmKQ+ROEBiUTCnAmd2XE0hIsxBmhZ\njMcwNxJ7aws+mzqaG9v21nid3RzMGdrNgt92X6W4pIzmGlLquVsTXP790dCQkFdQwuJ1p8nIKcDY\nQIfGvk68Wd4d+Ek+774dfMnMKeT7DWcAaNfEg3YB7sSWz24Nj78Pq2NsqEsLfxeOX4pUtdgC/L7n\nGn9duKd6/eBzmf9+F/y87QC4fDuOzQeDKS2T4eZgzqdvdSCgrqPqGH8fe6aOasO2I7fYdvgm2tpS\narlaM/vdIFV3f5lCwZ9HQ4hPzkYq1cDP245FH3bHxkL9u3HicqRqyS1BEIR/k0h+BUF4aT0Yv6p5\nL4b3gYtR6fSptL/NtrkoZHKuzfgRWZGyFSj3Xhx6NmaqxBfAwMUWXRszcsLjsA70Jzc8HtdB6mN+\nLZrUJvHw5YoybM1ViS+AeQMv0Hh0Z5msm5EUxKawq9brattlhcXkxyTXcJS6soIiQhdvIemvKxSl\nZCIvlSEvLsGktnI5G9M6LlgH+nGk42SsW/tj3coPh+7N0bEwqTImO0FP2RKpJStDqqPFB4MCq5xv\nWPcGnP1jv+q1ro4WH45szYcjoTi9J1en/YDGqi1IJHDDxRaXge2J3nxUtcZvwJKJXJ2ynI6bdyKR\namDq645hr0CMbkbg521H+mXlH/O/zB2AfqXxfXo6WjSsba9aM9ZIX4cWjT1ILsjj7YVDnuhaZZY/\n+Ki87I6rgznz3u9S4zEfjKj+GlT+Q1wikdCzbZ0a19Ft7u9C80cs/fQwLU0pk15vxaTXW6ltH9qt\n/lPV68DtFLYnlpGgY469qR4SRRl68ZH0mvImN46c4cCKDQye875q2ZtObw2irLy3glQq5WMrc7JT\nMljz53Y+e7sDth7ObLp5lb3fr8PA1Ii5nw5R7j+kTAz1dbWo425NMkV0mziiSv10DSuuu4ZUOdnU\ng2Q05PhFjq7dxt7lo9WOGdUrgFG9ApCVlfHd8Gk09LKm/8C2qv3jBzYD4Oq+E5zZcpu+n45X68rd\ntUM9wn/V4LPRrfBuVnH9CrJz0TdV3u8GpsYo5HJ8HEz44t0gVcyvUxbg1cgTawtD9E2N0aWMbYsr\nJnArzM1HIZejb2rEsJZeqmv/3fBptGtZm7dbKF9raUqZNrpNlevxwJN83lKpBuP6N2Vc/5ofzDzu\nPqzJ4C7+zPzuAEO6+qNfvr71ByMCq73HKpv/fvUPEiprE+BOmwD3Gvc725qydOajJ1y7eCsWDQ0J\nrRq4PvZ8giAI/zSR/AqC8FKqvD6ovpExcuDwwWAkzf1VLc8GzspWLqne4yf4AdRmG61+/zNVGYVc\njkkdN5osn1xln7Zp9RPUPOzmnF9JPnGdep+MwNDNDqmuDpcnL0VeUr7er1RKy/WfkXH1LiknbxC9\n6SghC9cT+MecGsdka5oaUZKdX9Mpa6RjYULzNTOQFZVQkpmLrq05IfN/x8Cl4sGCoastrbfOoayg\niNLcQvRszLgw/hv0yz8bXStlW2JRarbaw4SitCxVi/kDJVl56Fg8vntyaZmMlIw8th2+hau9GWbG\nf29t5f+Sh9fLTcrII2TjUZzr1sWtQW2s3Rz4dcpCLu86SpPeyqVnjMwfP87Zt11TDv24idbDela7\n39rNkbCzV9EzMkTX4J+7zlJNTSwcbMiIS8a9gXpyd2Xvcc7+cYA+08dWGcMs1dTExs2RmOAwteQ3\nJvguXk2V6yHbuDuiIZUSExxG7VaNAMhNzyI9PoU23srZ2O29XLnw52Fy07MwsjAtLyMMqZYmNm4V\nk8tlJaUhKy3F2q2iBfRl52Jvxpi+jUlKz8Pd0fxFV6eK4uIyJr0eWGWCN0EQhH+D+M0jCMJLqfL4\n1QIdXe7aOdAsNIQlu28+8jgjT0cKkzPJj01RbcuPSaIoORMjL+UfsEZeDqRfUh83l34xFCMvp4oy\nkjIoSEhT7c+8fq9iKuAamNZzJz8mEW1zYwzd7NT+aZtV3yX2YemX7uDcrw0O3ZpjUtsVPTsL8mPU\nxwtKJBIsGvlQe/JA2u1diK6NOXG7ztQ4Jtu2gSe54bFPdP7qSHW10bOzQFEmI37feew6NakSo6mv\ni56NGSVZeaScvI59kLILqL6zDTrWpqScuqGKlRWVkH4xFPNG6hOl5YTFYurrxuOERqbw3vxd5OQV\nMWVU67/9vv5LHh7P3SLrHhoKGb8rlPe0gakx7d/ox7mtB0iLffya1g/Uad2Y8Svn0LBb9dexdqtG\n6JsYsXPRGmJv3yM7JZ240AhOrNtJZmJqtcc8KVf/WsSHqa91fGn3UU5t2EPQW4Mws7MiPyuH/Kwc\nigsqejQ06t6WkBOXuHn0POnxyRz7ZTv5mdn4d2wBgI6+Hr7tmnJqw25iboaREhXH/uXrsXK2w7me\nchkxF38fLBxtObBiPSlRccTcDOPk+t3Ua99M1cUaIP5OJCbWFqqZrf8rOjT1fCkTX4DARm7Ucvtv\nXU9BEF4douVXEISX0sPjV7c2bs7EQ3sZvGkzsX4GmNRxRaIpJSs4guzb0Vi39gfAOtAPk9ouXJq4\nBP/P3wDgxmdrMPV1x6plPQC83+rFhfHfYFrPHZs2/iQfv07sjlM0WzlVVYaRpz2XJ32P36zRyIpK\nCP5iLRLNmtdxBXDq05rwn3ZxfswCan84GH0HSwoT0kg4dAn34UFPNOOzobsdCQcuYBfUBA1NKaFL\ntiArrpiUJuPqXVJOBWPdpj66ViZk3YqiMCENY29lElTdmOyINvWJ3vRXlXNlhSjHWpbmFoBEQlZI\nFBpamhh7Kx8CZFy7S2FSBqZ1XClMyiB08RYUCjne43urykg+fg2FQoGRhwN50Unc+vI3DD0ccBmo\n7FYukUjwHNODsGXbMfJ0wNDNnrDvt6Kpr4tT74pumGWFxWTdjKDu9KGPvUZ+3nZsXzz8sXGvksrf\nB/uiTPxz4vjTpgEJuRX3Rq0WDQm/EMzBHzYwZM4kVVfkR9HQ0EDPuOZeCVo62gyc9R6nN+5hz5Jf\nKSkoxMDMBKe6ns/cElyvfTPWzVhEYV4+eobKydhuHDyNXCZj73e/qcXWad2YLu8o7w2fFg0ozMvn\nwvZD5GflYOFkR58Z4zC2qkj22o7sg4ZUg73f/UZZSSnOvl50fWeoqku4hoYGfaaP5a81W9k063s0\ntbWo1apRlRbwO2evUq9Ds2d6n4IgCMLLQ1LTGoIvs4CAAMXly5dfdDUEQXiOWi44qjZ+FcCosIBe\n924TmJ1CYWIaEk1NjDwdcOjaDPdRXdEyVP4xXhCfyo3P1pB6RtlKbNXKD/85b6ovdbTuIOE/7aIg\nPhV9B6sqSx3lRiZwrXypIz17S+p9OopL7y2h/pwxqsTuSIdJ2HdvTp0PKtbqLErN4tb830k+eoXS\n3AJ0bcyxau6L78fD0TE3Ll/ndw29wtYDVHldEJfClakryLhyFy0TAzzH9CDtfAjaZkYELH6PnPA4\nbs7+haxbkZTm5KNnZ4nbsE5qCenDSrLy2N94LO32LMTYx1m1/cFyTZXpO1rR5dyPAKSeC+H6xyvJ\nv5+Mpr4utu0bUnfG6+jZViQZcbvPELJgPYVJ6WiZGuLQtRl1pw1Fy7hiZmmFQkHo4i1ErT9EaXY+\n5vW98J87VjVRF0DsjlOELtlC0PGlNb6P/2fVfR+AJ1pj+2W297vfsHC0pVm/oMcH/8vSYhPZOncF\noxd/pJrMSxAE4WUikUiuKBSKgMdHCg+I5FcQhJfSw2McQTl+9d9YWulVdGv+OorTc2i06N0XXZVq\nHesxHc8xPXDq8+hJef5fvarfh5y0TO5dDKZht5onkHpRom/cAZTdswVBEF5GIvl9eqLbsyAIL6UH\nf9B/fTCMhKxC7E31mNrZ5z/9h/6L5DOhHxFr96GQyZA8QXfYf1NRWjYO3Zvj2LvV44P/T72q3wdj\nS7OXMvEFkfQKgiC8ikTLryAIgiAIgiAIwn+MaPl9emK2Z0EQBEEQBEEQBOGVJ5JfQRAEQRAEQRAE\n4ZUnkl9BEARBEARBEAThlSeSX0EQBEEQBEEQBOGVJ5JfQRAEQRAEQRAE4ZUnkl9BEARBEARBEATh\nlSeSX0EQBEEQBEEQBOGVJ5JfQRAEQRAEQRAE4ZX3jyS/Eomki0QiCZNIJPckEsmMavbrSCSSzeX7\nL0gkEteH9jtLJJI8iUQy5Z+ojyAIgiAIgiAIgiBU9szJr0QikQLLga5AHWCIRCKp81DYGCBToVB4\nAouBhQ/t/xbY/6x1EQRBEARBEARBEITq/BMtv02AewqFIlKhUJQAm4BeD8X0An4t/3kr0EEikUgA\nJBJJbyAKCPkH6iIIwissOikVnfZDuRIW+aKr8n/jtwMnMO82+plj/k1vLvyR3h99/aKr8Z9y8kYo\ndUd8gEwmf9FVqaK4pBTPwe+J770gCILwzP6J5NcBiK30Oq58W7UxCoWiDMgGLCQSiSEwHfjicSeR\nSCTjJBLJZYlEcjk1NfUfqLYgCC8TnfZDH/nvzYU/vugqqpLvv0smk7No4y78Rk3BtOsobHq+SfO3\nP2bZ9gP/YC3/Pu8hE/l2856nPm5Au+bcWb/kOdSoZn0/XoRex2EcuXzzXz1vZSeu30an/VDSsnMe\nGffgvtHrOIz7yWlq+zJz8zDpMvKFP9SZ+eN6ZgzrjVSq/LMgMT2TEXOXUW/kh+h1HFbt96+0rIwv\nf9tOrWGTMO48koA3Z3Dw4g21mNyCQj5c9htegydi0mUkbSbM4vKdCLWYvMIiJn3/C+4DJ2DSZSS+\nIz7kuz/2qfbraGsxeWAPPlq58Tm8c0EQBOH/ieYLPv/nwGKFQpFX3hBcI4VCsRJYCRAQEKB4/lUT\nBOHfFLN1hernfeeuMf6bVWrb9LS1yczLfy7nLiktQ1vr+f86nPvbNn7aeZglE0cRUMuDgqJirt+L\nrpIQ/dfo6Wijp6P9r50vMT2TY9dCmNivG2v3HaNjQL1/7dzPwsHSnN8OnOCTkf1U2zYeOYO1qQn3\nU57tHiiTyZBqaPC4/0urc+7WXcJiE+nftplqW3FpGRYmRkwd0pM1e45We9ysn/9g/aFT/DBlLLWc\n7Tl8KZiBn33LiaVfUN/LFYC3F63iZuR9Vs94GwcrczYePk3XqfO4/vPXOFiZAzB1xTqOXr3FzzPH\n42pnzengUMZ/sxpLEyOGBQUCMKRjS2b8tJ7bUXHUcXN86vcoCIIgCPDPtPzGA06VXjuWb6s2RiKR\naAImQDrQFPhKIpFEA5OAjyQSyYR/oE6CIPzH2Jqbqv6ZGupX2WZSvg3gfnIaXafOw7TrKPxHT63S\n+hcaHUevmV9h0f0NHPu+zfA5S0nKyFLtf9AtdtHGXbgPnID7IOWvnZLSMj5auRH3gRMw7TqKFuM/\n4dAl9ZasyrLzChg9bwWOfd/GuPNIfIa9z/dba56+YM/Zq4x9rSMD27fA3d4GX3dnXg9qzUfD+6pi\n5HI589Ztx2PQBIw6j6DhmOnsOnNZtf9BK+KWo2fpOGk2Jl1G0mTcTG5G3CckKpY2E2Zh1m007SZ+\nTlRiykPnv0Kztz7CuPNIvIe+z2drNlNSWgZAp8lziElOY+ZPG1St7ZUdvXqLBm9Mw6zbaII+mKtW\n9sPdnuf8spUGb0xjy9Gz1Bo2CYvub9D/02/UWkjLZDKmLF+HTc83sen5JlOWr2PC4jV0mjynxuv3\nwLqDJwlq7Mc7fYLYc/YK6dm51cbNX/cnTv3exrzbaMYu/JHC4hLVvuKSUj5c9htO/ZSfXeC7n3Hm\n5h3V/upadSt3u49OSiXog7kAOPR5+4l6Jwzv3JrfDp5Eoah4fvvL/uMM79K6SuzHKzfiO+JDTLqM\nxHvIRGb+tIGikor6P7jGvx04Qa1hkzDqPIL1h09h13scxSWlamWN/HIZfT9eVGO9Nv11hnYN6qo9\nwHC1tWLxeyMZ0aUNZsaG1R634fAppgx5jW7NGuBub8NbvTrRpWl9lvyxF4DC4hL+PHmRuWMH06Z+\nHTwdbPl0VH887G1YueuIqpzzIeEM6xRI2wZ1cbW14vWg1jSt7cnF0HuqGHNjQ1rU9Wbz0bM1vg9B\nEARBeJx/Ivm9BHhJJBI3iUSiDQwGdj0UswsYWf5zf+CoQilQoVC4KhQKV2AJME+hUCz7B+okCMIr\n7LM1m3m3T2curZpPgI87w+cuJa+wCFC2CnaYNJu6bk6cXjGH/V9/RF5hEf0/+Qa5vGI846kbodyM\nvM/uhdM5sOgjAMZ+9SOnboTy68fvcnXNQl4PCqTvx4sIjoipth6zft7CrahY/vxyCjd/XcTKqW/h\nYGlWY71tzE04eeM2yRnZNcYs3XaAbzfv5ctxQ7iyeiG9WgUwaNZibtyLVoub/cs2Phz8GhdWzsPU\n0IDhc5cyeemvfDFmIGeWz6GopJQPlv6qij906Qaj5q1gfO8grv38FSunjmP7iYt8unozAJu/mIyj\nlTkfj+hLzNYVaq3uxaVlfLVhJyunjuPk0i/IystnwuI1Nb4HgJikVP44dp4/Zn/A3q9mcCM8hs/W\nbFHtX7x5L+sOnuDHKeM4uWw2coX8iRIbhULBL/uPM7RjK1xsrWhS25P1h09XiTt1I5TgiBgOLPqY\nTV9M4sjlm2rdZmeu3MDW4+f5aepbXFg5D183J16bvpDE9MzH1gHAycqCzZ9PAuD6z18Rs3UF37w7\n4pHHdGlan+KSUo5dU05xcT08msiEFPq3aVYl1kBPh5XTxnHjl0V89/5o/jh2jgW/71CLiU5KZdNf\nZ9k4630ur1pAr1aNkcvl7D57RRWTnVfAztOXGdWtbY31OnMzjEY+7k/0visrLi1DV1u9xV9PR5uz\nN8MA5QMOmVyOrrZW1ZhbYarXLer5sPfsVWJT0gFlS/SNiBiCmvirHRdQy4NTwaFPXU9BEARBeOCZ\nk9/yMbwTgINAKLBFoVCESCSS2RKJpGd52BqUY3zvAR8AVZZDEgRBeFIT+3ejR4tGeDnaMXvMIDJy\n8lTJ4cpdR6jn4cK8cUOo7eJAPQ9nfp45nkt3ItTGVOpqa7Fy6lvUdXPC192ZiPhkNh89x/rPJhLo\nXxt3exve6dOZLk3rs2r3X4CyNaz46AZVGfeT02jg5Urj2p642FrRpn4d+rWtmsg88PX418nIzcdl\nwDvUHz2VtxetZMfJi2otgUu27GXywO4M7tASbyc7Zo0eQKt6tVi8Za9aWe8P6EbXZg2o5ezA+wO6\nERoTzzu9g2jboC513BwZ3zuIE9dvq+IX/r6TDwZ1Z2TXtng42NC2QV2+HDeYVbuPoFAoMDc2RKqh\ngaGerqq1/YEymYzvJo6mcW1P6nk4M3lgd07eCFWr98PKZHJWT3+beh7ONKvrzZge7Tl2tWJew2Xb\nDzBlcE/6tG6Cj7M937w7Ahsz0xrLe+DkjVAyc/Pp2qwBAMOCAvll//EqcVINDVZNf5u6bk4ENfbn\ny3FDWL3nL/ILi8gvLGLlriN8OW4w3Zo1oLaLA8smj8HazIQfdxx+bB0ApFINVYuolZlxld4J1dGU\nShkWFMiv5fVdu+8Y/ds2RV9Pp0rsR8P70sLXB1dbK7o2a8C0ob3YfPScWkxJaRlrZ75DA2836ro5\nYaSvx+AOLdWux6a/zmCsr0e38utVnfvJadhZPP7aP6xTgB9Lt+0n7H4CcrmcI5dvsuPUJRLLe1kY\n6evRrI4XC37fQXxqBjKZnA2HT3P+djiJ6RU9MRZPGImfhzOeg9/DoNNwOk6ew5djh9C9eUO189lZ\nmhGTJOb8EARBEP6+f2SQm0Kh2Afse2jbZ5V+LgIGPKaMz/+JugiC8Oqr514x0sK+vKU1NVPZPfXq\n3ShOB9+pdvbhyIQUGtf2BKCumxM6lVqkrodHoVAoqD96qtoxxaVltG3w8OptSuN6dmTIF99x9W4U\nHRrVo3uLhrT2r11jvWu7OnJtzUKu3o3izM0wTgffYejs7+kYUI8d86aSV1hEQnomzX291Y5r4evD\ngQvXa7wGNmYmyvdUaZu1mQn5RcUUFBWjr6vD1fAoLt2JYNHG3aoYuUJBYXEJSRlZ2FnU3GKto6WF\nj7O96rWdhRklpWVk5uZjXkOXWGcbS7Vk0M7ClNQs5WeUnVdAUkYWAbU8VPslEgmNa3kQl5peYz1A\nmTD2a9NUNUa7b+smTPr+Fy6G3qNJ+WervD7OGOrpql43reNFSWkZkQnK7tqlZTKa1/VR7ZdKNWhW\n14vQmIdH7fyzRnZpQ9O3PiIpI4vNR8+yY97UauO2n7jA0m37iYhPJq+wCJlcjkyuPhOzg5U5NuYm\natvG9GhP07c+Ii41HUcrC349cILXO7dGUyqtsU6FJSVVWnCfxDcTRjD+m1XUf2MqEiS429swoksb\nVXIP8PPMd3jr659wHzQBqYYGDbxcGdS+BVfvRqlilv95kHMh4Wyb+yEuNlacCg5lxo/rcbG1onOl\n1l89bW21ruuCIAiC8LRe9IRXgiD8n9txLZ6vD4aRkFWIvakeUzv7PPYYLc2KX10PJviRl7dCyhUK\nujarz4K3h1U57kGSCKCvq97aJlcokEgknPlhLlqa6omCXg2JQZem9Qnf+B0HL9zg2LUQes/8in5t\nmrJq+ts11l1DQ4OAWh4E1PLg/QHd2HD4NKPnr+BU8B0alE8SVJ2H5zGq7ho88rrI5Xwysi992zSt\nUraVqXGN5wXQlKp3Eqoou+ZlcR6+hhKJRK3b+d+RlZfPnycvUlJWxs97j6m2y+Ry1u49ppb8/l0P\nrrNG+Q+VG7dLy8qeuXwfZ3saeLkyYu4ybMxNaVbXm+iHWjMv3A4xWHiRAAAgAElEQVTn9TlL+WRk\nX75+xx8TQ332nL3KjB/Xq8UZ6FZtMfbzcKGBlxvrDpykZ6sAroRFsnbmO4+sk6Wx0d+aTM7K1Jit\ncz6kqKSE9Ow87C3N+HjVJtzsrFUxHg42HFnyGfmFReQUFGJnYcaw2d+rYgqLS/h09SY2zHqfHi0a\nAVDPw5ngiBgWb9mjlvxm5uZh+Zh7VRAEQRAeRSS/giC8MDuuxTNz+00KS2UAxGcVMnP7TXp5/P0J\n3Rt4ubL1+HlcbCzVksHH8fd0RaFQkJyRRdsGdZ/4OEsTY4YFBTIsKJDOTfwZPncZyyaPUWtVfpTa\nLsqV4fIKizA20Mfewoxzt+7SvqGvKubsrTBquzzbDLcNvNwIu5+Ap4NtjTFaWprPnKA+CRNDfWzN\nTbkSFkG7hsprrVAouBwWodbd+mEbj5zBytSYnfOnqW0/HxLO9B/Xs+jd4RiUt/beirpPfmGR6vXF\n0HC0tTRxt1cmXdpampwLCcPDwQZQLkN1PiScwR1aAKiSrKT0LNXDgeB76mO/tcvvL5ns6e7XUV3b\nMu7rlcx/q/pls87euouDpbnaRGhPMyP4G93b8c2mPaRl59LC11ut1b46/l6uhEbHPXH5D9PV1sbB\nypzSsjL+PHmR/m2rPmAx0NPFQE+XzNw8Dl8KZt5bQwDlA4XSMuVM1ZVpaGigkKtf15CouEc+IBIE\nQRCExxHJryAIL8zXB8NUie8DhaUydl5P+ttlvt0riJ/3HmPY7KVMGfIaliZGRCWmsPX4eb4a/zpG\n+nrVHuftZMeQji0Zu/AnFo4fRn0vVzJz8zlx/Tbudtb0bt2kyjFfrP2D+l6u1HF1pEwmZ8epS7jZ\nWdeY+A7+fAnN63rT3NcbGzMTopNS+XT1JmzMTGheV9nVefKgHsz+ZSueDrY08HZj45HTnL55hws/\nzfvb1wTgoxF96PPRIpxtLOnfthlSqQa3o+K4dCdClYS52Fhx+mYYQzpmoKOtiaXJ82tlm9C3C99s\n3oOXox21XBxYveevx3a//mXfcfq0bkJdNye17V6Odsz8aQN/HD/PqK5tAeWY43Ffr+Tj4X1JSM/k\nk1WbeKNbO1UyPO61jny8chMWxka42lnz/dZ9pGRm81avTgB4OtjgZG3BnF+3MXfsYGKSUpn/0IRT\nzjaWSCQS9l+4RvfmDdHT0Vbral2T14Na071FQ0wNDard7+VoS3xaBhuPnKZpHS8OXwpmy1PMcjyo\nfQumrfidlbuPsGzSG4+N7xTgV+246Qfj6HPzC9GQSLhxLxptTU1quyofxFwMvUdCagZ+ni4kpGUy\n59dtyBVyPhz8mqqMQ5duIJcr8HG2JyI+mZk/bcDH2Z6RXdoAYGygT2v/2nyyahOGero421hy6kYo\n6w+dYt449YcDZ27eYdboR46gEgRBEIRHEsmvIAgvTEJWYbXbMwv+/rg+e0szjn0/i09Xb+a16Qso\nKinFydqSjgH10NF6dGvsqmlvseD3HcxcuYH41AzMjQwJqOVR45hfHS0tZq3ZQnRSKrraWjSp7cn2\nL6fUWH6nAD/+OH6ORZt2kZVXgLWpMc19vfnxw3GqsbMT+nYmr7CQj1ZuIDkzG28nezZ9Pgk/D5e/\nfU0Aghr7s2PeVOb//ieLt+xFUyrFy9GW4Z0rltmZNbo/7367htqvT6a4tFRtcq9/2uRB3UnKyGLs\nVz8hkcCILm3o1aoxyZnVz4R97W4U1+9Fs2TiqCr7tLU06dGiIWv3HlMlv4H+tanj6kjQh3MpKCqm\nT+smai2t88YpWx7Hff0TWXkF1Pd0ZffC6arkW0tTk3WfvMfE79bSeOwM/D1dmP3mIPp89LWqDAcr\ncz4b1Y9Za7bw9qJVvB4UyOpHdHl/QCrVeOSDhR4tGvHBoB5MWb6OwuISOgb48dmo/kz8bu1jywbl\nRFP92zZj+8mLamv31mRop5Z8vGpjlTV0m4z7SC1u77mruNhYcnfj9wAUlZQya+0fRCWkYKinQ5em\n9Vk78x21pD4nv5BPVm0iPk35feod2JjZYwap9cpY9+l7fLpqE6O+XE5Gbh7ONpbMGj2Ad/oEqWLO\nh9wlO7+g2m77giAIgvCkJI+arfNlFRAQoLh8+fLjAwVBeKm1XHCU+GoSYAdTPc7MaP8CaiS8SE3G\nzaSFr0+1Ca7wdF6bsRBHS3N+mDL2ieI/XrmRtOxcfpo67jnX7O8Z8vkS6nu5Mn1Y7xddFUEQhJeG\nRCK5olAoAl50Pf5L/ol1fgVBEP6WqZ190NN6aHIpLekTTXol/LfFJKWyes9fhN1PICQqlg+W/crN\nyPtqLdHC08vMzWP3mSscuRzMhH5dnvi46cN64WZnjUz2/Md8P63iklLqeTgzsX+3F10VQRAE4T9O\ntPwKgvBCVTfbc+8GDi+6WsJzFpuSzoi5S7kVFYtcrqC2iwOzRg+gU2O/F121/zTvIRPJyM1nxrBe\nTBnS80VXRxAEQXiORMvv0xPJryAIgiAIgiAIwn+MSH6fnuj2LAiCIAiCIAiCILzyRPIrCIIgCIIg\nCIIgvPJE8isIgiAIgiAIgiC88kTyKwiCIAiCIAiCILzyRPIrCIIgCIIgCIIgvPJE8isIgiAIgiAI\ngiC88kTyKwiCIAiCIAiCILzyRPIrCIIgCIIgCIIgvPJE8isIgiAIgiAIgiC88kTyKwiCIAiCIAiC\nILzyRPIrCIIgCIIgCIIgvPJE8isIgiAIgiAIgiC88kTyKwiCIAiCIAiCILzyRPIrCMJLbe/0bzm9\ndP2Lrka1/nzvSy6s2faiq/Gf9fvCSVw/ufeRMatmjeHOlZP/Uo1enOLCfH758h2y05NfdFWqkJWV\nsm7B+6TERb7oqgiCIAjCM9F80RUQhP93e6Z9w60/j+DXP4hu8yer7Tv21RourNqKR9smDFj1xQuq\n4dNZ0XYkjV5/jaZv9n/mslLCorh75BzvHP8FAFlpGScX/0rkyctk3U9E21Afl6b+tJk6GhN7a9Vx\nZcUlHF24mtA9JygrKsaleX2CPn8XYzsrVUx2QgqHPl/O/fM30NTVoU6PtrSf8SZSbS1VzP0Lwfw1\nfxVp4TEYWlvQbGx/GgztrtrfcsJQNgybhv/ALugaGTzz+/2vKMzL4dKRbdwPu0F+bhY6evqY2zjS\noM1rOHnVe+Jy+r07G01tnedY00fbuXIuCVF3aNyxHwEd+qjtO7RhKRE3L+DbrBOBvUY+97pcObYT\nZx9/TCxsAEhLjOHa8d0kxtylKD8XQ1MLage0pX5gNyQaFc+t05NiObXrV1JiI9DVN6ROk/Y0at8b\niUSiiom4dZFLh7eSnZ6CiYU1TYIG4F63MQAyWRkXD23l/t0b5KSnoK2ri717HZp1GYSRqSUAUk0t\n6rfuzvkDm+j55kfP/VoIgiAIwvMiWn4F4SVgbGfFnf2nKCkoUm2Tl8m4teMvjCsldf9vrqzbhU/n\nluiUJ5alRcUkh0TQYvxgRu1YRr8fZpGTlMqWNz5BXiZTHffXlz9x9+AZen47nWEbF1GcV8DWcZ8j\nlylj5DIZW8fOoiS/kGEbF9Hz2+mEHTzNXwtWqcrIik3ij7Gf4dCwNqN3LqP52wM5POcH7hw4rYqx\n9nHD1MmOkJ1H/6Ur8nI4uP47UuIiadvvTYZ+uIhuIz7E2dufooK8pypHz9AYreec/MplMhQKRY37\nDU0sCLt6Si2mKD+X6NCrGJpYPNe6PVBaUkzopePUDmir2pYaH42egTEdBr7N4MkLadyxH1eO7uDq\nid2qmJKiAnavWYC+oTH93p1Nyx7DuX5yLzdO71fFJMWEc3jjMrzqt2TgxC/xqt+SQxuWknz/HgBl\npSWkJUTTqF0v+r83hy7DPyAvO529a79SfV8AvOq3IDH6LhnJcc//ggiCIAjCcyJafgXhJWDl40Ze\nSjp39p3Er38QAPeOX0RTRxunxr4UZuaqxQdvPcSF1VvJik3C2N6aBkO703hkL1WL0AKvrgR9/i6R\np64QfeYaRraWdJnzHmYu9uz/aAlxV0Iwc3Gg24LJ2Nb1VJUbd/U2JxatJfFmOLomhni1b0rbqW+o\nks/1w6Zh6emMrrEh1zfvRyKR4NunA+2mjUGiocH6YdPIiU/h2MI1HFu4BoAZ4co/xMMOnuH097+T\nERWHvoUpDYZ0o/n4wWotVJXJZTLu7DtF968+VG3TNTJg8K/z1OK6zH6P1d3eJi3iPtY+bhTl5nNj\n6yG6z5+MW6uGALy2aCor2owk+ux13AMbEXX6KqnhMbxz4ldVa3DbaWPY/9ES2kweiY6RAdc27sXQ\n2oKgz94BwNLTmYQbYVxcs41aXVqpzu/Zvimhe47T6PXXnuYj/88qLswnMTqM18bMwNHTFwAjM0us\nnTzU4n5fOAmfRoFkpycTdfsKWtq61A/sRv3W3dVifJt3Um3LTkvi+PbVJMdGYGhqQYtuw6qcPy87\ng3P7NnD/bjAAti5etOwxHFNLWwAuHdlGxK1L1A/sxpWjO8jNTGXMrFVo6ehW+36cffyIun2FhMhQ\nHDzqAHD3+hmsnTx4+M68H3aDK8d3kpEUh0QiwdrRnZY9XsfM2gGAnMxU1n81maBhE7l94ShJMXcx\nMrOkZY/hj2wRvx92A4lEgq2Lt2pb7YA2ajHG5takJUQTeesSjdr1Kq/nWcpKi2k/4G00tbSxsHUi\nKzWB4NP78W/VFYlEQvCZAzi411Ed08jagfiI2wSfOUAn5wno6Orz2pgZaudq03sMm5dMJzM1AQtb\nJwB09Q2xdfEm/MY5mgYNqPG9CIIgCMLLTLT8CsJLwm9AZ4K3HVK9Dt56iHp9O8FDf4Jf37yfE9/+\nQuD7wxl7YCXtZ7zJhZV/cHX9HrW4sz9sok73Nryxezl2vl7snLSA/R8tocGwHozeuQxDG3P2Tv9G\nFZ8SFsXm0R/j2aEZb+xeTt9ln5AcGsm+mYvVyr296xgSqQbDN39Dp1nvcOmXHYTuVY7J7Lv8U4xs\nLWk5YSgTzq5nwlnlWN2kW+HsmDgP76AWjNn7A22njObcT1u4sm5Xjdcj5U4Uxbn52Pl6PfK6FecV\nAKBrbKg6l7y0TJX4grJl3dLDifirtwGIvxaKpYeTWjdo91YNkZWUkhRyrzzmjloZAO6BjUi6FY6s\ntEy1zd7fh4Tgu5QWFT+ynq8KLW1dtLR1ib59lbLSkkfG3ji9HzNrBwZMmEvjjn25cGgLkbcuVRur\nkMs58PsSFAoFfcbPol2/cVz+azvysoprXVpSzK5V85BqatF73Cf0Hf85+kam7F4zn9KSiuufm5FK\n+PWzBA19jwETlfE10dDQxLtBK+5cPqHadufyySrJJ0BpaTF+LbvQ793Z9Br7Mdq6euz79RtkleoI\ncPHQH9RrEcSAifOwcnDn8MbllBYXVSnvgcToO1g5uNX4IOiBkqJCdPQqutcn37+HnasPmlraqm1O\nXvXIz8kkNzNVFePo5atWjpN3PZLuh9d8nuJCAHT09NW22zi5kxAV+sg6CoIgCMLLTCS/gvCSqPta\nW5JuhpMRHU9eagZRJy9Tr1+nKnFnl2+k3bQx1OoaiKmTLV4dmtFs3IAqya9v7w7Uea0t5q4ONB8/\niIL0LNwCG+HdsTnmbo40HTuA1LBoCjKyAbiwehu1u7Wm6Zh+mLs6YF+/Fp2/mEDYwTPkp2epyrXw\ndKb1pBGYuzlSu1trXJr6E33uOgB6pkZIpBpoG+hhaGWOoZU5ABd/3o5Tk3oEvj8cczdH6vZqT5Mx\n/biw8o8ar0dOQgpIJBham9cYIysp5eiC1Xi2b6pKZPNTM5FINdAzN1GL1bc0Iz81UxmTlom+pZna\nfj1zEyRSDfUYC1P1MixMkZfJKMzMUW0ztLZAXlpGXnJ6jfV8lWhIpbQbMI6718/w8+y32L7ic87u\n26DqRluZjZMnjdr1wtTKjrpNO+DdoJVal9zK4u6FkJkST4dB47Gyd8XO1ZuWPV5HLq/oensv+Dyg\noF3/cVjYOWNmbU+bPmMoLS4m5s41VZxcVkaHgeOxcnDDwtYJDan0ke+pdkAbIkMuU1JUQEpcJLmZ\nqbj7NqkS5+HbBA/fJpha2mJh50y7/uPIzUwlJS5CLc6vZRdcazfE1NKWpp0HUlyYR1piTI3nz81K\nR9/ItMb9AKnxUYRdPUXdZh1U2wpys9A3VL/P9YxMyvcpv9cFeVVj9A1NVPsfJisr49y+9bjUblCl\n27e+kRm5mWmPrKcgCIIgvMxEt2dBeEnomhjh3akFwVsPoWtkgHNTP7VJnAAK0rPISUzlwKdLOThr\nmWq7vEwGD41rtPZxU/1sUJ7EWXm7VtlWkJ6FvrkJybfCyYxJIHRfpZl1y8vMup+oiq9cLoChjTkF\nlZLj6qRHxOLRVj2ZcGpUlzNL11Ocm6/qVl1ZWVEJUk2p2uQ+lcnLZOye8jXFOXn0/3HWI8//PGnq\nKlvdyoof3Qr6KvHwbYKLT30So8NIvn+P+3eDuXFqH02CBqi61wLYOHuqHWfr7EVUyOVqy8xMjcfA\n2Fw1yRKg7HpcqTU0NT6KnMxUVn/+ptqxZaUl5GSkqF4bmJijb1SR8N29doYTO35Wve4+air2brVU\nr82sHbCwcyb8xjnSEu/j6d+s2rHI2enJXDy8lZTYCArzc1AoFCgUCnKz0rGrFGdh61xRF2PlQ5bC\nvBxqIistQdPQuMb9makJ7Pt1EX4tO+NRTVL+T5HLZPy1ZQXFhQV0Hf5Blf2aWtrIHtPaLwiCIAgv\nM5H8CsILsONaPF8fDCMhq5ButxKpZaRsmfLrH8Se6d+gra9L4PvDqxz3YFKezrMn4NiwziPPoaFZ\nqbWrPIHQ0NKstEmiVqZCrsB/YBcaj1af9RbA0KaiBahyGeUloZDXPKHQY9XQ1VPPzBhZaRmlhUVo\n6amP15SXydg5eQGpd6MZ+vtC9MwqEgcDKzMUMjmFGdlqLbcFaZk4BdRVxliaEX/ltlqZhRnZKGRy\nDKzMVDEPJ/UF6VloaErVzleUpRyPrf9QS/OrpvI9a2+qx9TOPvRuUA8nr3oEdOjDsW2ruPzXduoH\ndkeq+Xz+a1EoFFjaudBp8LtV9unoG6p+fngGadc6DbGpNCbZwKRqb4JaAa0JOX+EnIxUeoyeVu35\n9/36DYYm5rTp8wYGxmZINKRsXjwduUy923PlluaHv2fV0dU3orgwv9p9mSkJ7Fr9JZ5+zWnWZbDa\nPn0jUwry1FtwC8tbdB8k//qGVWMK8rLVHg6AMvE9vGk5Gcmx9Br7MboGRlXqUlyYh65BzUm6IAiC\nILzsRLdnQfiX7bgWz8ztN4nPKkQBFJTIuJOUw45r8bi0qI9US5OCzBy8OjavcqyBpRmGNhZk3U/E\nzMW+yr9nYVPXg9TwmGrL1dJ98hl5pVpaKGRytW0WHk7EXVVPNmOvhGBka4mOofq4QlV9arsDkHbv\nvtp2WWkZO96fT2pYFEPXLVR1rX7A1tcLDS1Nos5UdIPNSUwlLSIWh/IHBg4NapMWEUtOYqoqJurM\nNaTaWqoJwBwa1FIrQxlzFVtfL6SVHgCkhsdgZGOBwUPdqF8lD9+z8VmFzNx+kx3X4lUx5tYOyOVy\nZGUVLYMPd4VOjr2HmXX196mZlQP5ORnkZVV0H0+JjVRLGq3sXclOT0bXwAgTS1u1f7qVkt+Haevo\nqcVWHiP7gKdfM7LSkjAwMa/SYg3KGaCzUhNo2LYnjp6+mFk7UFpcqNYt+++ytHchIyWhyvaM5Hh2\nrvoSD9+mtOzxepX9Ns6eJEaHqY29jr13CwNjM4zMrFQxceG31I6LC7+FrXPFWHqZrIxDG5eRnnSf\nnm9+VGMX7IykOKzsXf/OWxQEQRCEl4JIfgXhX/b1wTAKS9X/YJbLFXx9MAyJRMIbu1cw/uhaNHWq\n/oEOEDjxdS6s2srFtX+SHhlH6t1obv55hHM/bn6mejUbN5DE4Lsc+HQpSSH3yIxJ4N7RCxz45Pun\nKsfEwZrYyyHkJqWpxhM3GdOP2Is3OVU+23PIzqNc+nk7TcfWvBawvoUpNnU9ibscotomL5OxY+I8\nEm7coefiGSCBvNQM8lIzVBNO6RoZ4N8/iONfrSH6zDWSQu6xZ+oirH3ccG1RHwC3Vg2x8nJhz7Rv\nSAq5R/SZaxz7ag3+g7qoumA3GNKdvOQ0jsz9kbR797mx5QA3tx+hyZh+avWMvXQLt8BGT3WN/msq\n37O6FDOYv3ArvceqfefIyUgh4uYFrp3ci6NHXbR1Kx5mJMfe4+rxXWSlJXH74jHCrp7Gr2XXas/h\n6FkXUyt7/vrjR9ISYkiKCefs3t/R0KhoRfWq3wI9Q2P2r1tMQmQoORkpJETd4eze9WSlJT3Te9TW\n0WPEzKX0G/95tft19AzQNTDi9qVjZKclkRAZyskda9Xq93c5efuRlRJPUX7FrO4ZyXHsWv0lDu61\nadiuJwW5Wap/D3jVb4Gmlg7Htq4kPSmWyFuXuHZiN37lMz0D+LXsTHzkba4e30VmSgJXj+8iITIU\nv5ZdAGWL76ENS0mJvUenwe8ikUhU53l4QrPE6DCcvP2e+f0KgiAIwosiuj0Lwr8sIavwkdtragl9\nwH9gF7T0dLmweisnFq1FU1cHKy9nGj7jUjvWtdwYtuErTi7+jQ3DpqGQyzF1ssOrU9UW6EcJfH84\nBz5byo8d3kBWUsqM8P3Y1vWk9/cfcfr73zn342YMLExpNm4AjYb3fGRZ9Qd15cYfB1RdsXOS0gg/\ncg6AX3q/pxbbbcEH+JVPENbh47eQaErZMWk+ZUUluDT3p8fXU1TdUTWkUvqv+oJDs5bz++ApaOpq\nU/e1drSbPkZVnqmTLQNWzeaveSu5tmEvhjYWdPrkbbVljsqKSwg/fJaBP899qmv0X1P5ni1FkwQs\nCeAuZrlX2LxkHwbGZnj5N6dR+95qx/m36kp64n2uHNuJlrYOTTr1w6Ne9WNWJRoadHl9Esf/XMO2\nFbMwMrWgebehHNm8QhWjpa1D73Gfcv7gJg5uWEpJUQEGxmY4uNdWmwX579LRrfm7J9HQoNOQCZze\nvY7N383E2MKGFt2GcnD9d898XgtbJ6wdPbgXfB7f5sp7OOLmBQrzcrgXfL58oq8K4+f/rqrva2Nm\ncGrnL2xb/hk6evr4t+qGf6uKBwy2Lt50GjyBi4f/4NKRbRib29BpyARV63ZeTgbRt68AsHXZp2rn\nadd/HLUatQaU6wUXFxXU+PkJgiAIwn+B5FHjkF5WAQEBisuXq580RRBedi0XHCW+mgTYwVSPMzPa\nv4AavbzKiktY2Xksr309FafGvo8/4F925ffdhB85x+Bf5j0++D/s79yzD6/hKzza/bAbnN6zjsGT\nv0KjhkneXqSD67/H0t5FbUIzQRAE4cWSSCRXFApFwIuux3/Jy/c/rCC84qZ29kFPS72rpJ6WlKmd\nfV5QjZ7cx59v4Z1Ja/+182nqaNPjqykUZuc+PvgFkGpK6fTZO6rXy386TO+B377AGj2b+IQMfAOm\nc+t2nNr2//I9+2/JzimgddAc7sf9vSWvnH388W3WifzsjH+4ZkqLvtvLvK92/q1jZWWlWNg6qbUo\nC8L/2Lvr+CqrP4Djn7vtrru7GT0YjBzd3RKCgQUICoqEIogCSrcgKKCEIN2MzpFjjGZj3d0d9/n9\nMbhwWQHKD+O8X6+99D7POc85T2zc73NKEAThn0h0exaE/7N+XnYAFcyca0diUiarfz7Beb8HpKbl\nYmqiR2ufmoz5sBPWVlWvA/pXmDZzO/sOXi+3feeW8dSq+ecm1HpZjk3r43cpiHlj1nLnXgwlJaU4\nOVrQv483w4e0fG2tZPW8p7B47nAautr/X8orLi5h01Y/DvsGEhGZjKaWBs6O5vTr7U2/3t5oar66\nP+dVPbMvo0vvucz+5g2aertVn/gZsXFpdO0zDyMjXXz3TcZAX0e5792P1lDDzYppU/pVcYTn9yLH\n+3nDadr41MTR/snM6D8s3M+NmxGEhCZibmbAsQNTy+XzPX6TnzecJjIyBRMTPYYN1ua9t9sq91f2\nO6mjLefahbLu9lf9Q3lv9NpyafbvnIirc9lyae+93Zbu/ebz1putcLA3K5e2Kuoacrw7lp8FXhAE\nQRD+aUTwKwivQT8vu3KBQ0xsGiPeW4WdnQlzZg7BydGM6Jg0lq3yZejbK9my4WPsbMsv0fJXa97U\nnbnfqS6pYmxc9TjkV2nbjkt8v2Af7wxvw9SJfdDR0eTi5WCWrDjCrdtRLPj+zVdafnFJKXKNPz+p\n0Z+qQ3EJH41bx4OgOMaO7kLjhs4YGOhw5140G7ecx9nJ4qUCyRdR0TNblRFTlr7C2kBBQRG//HqG\nz8a9/tbI/IIidu+9xsol76hslxQSfXs25mFoAhcvPyyX77zfA6Z8vY0vv+iDTwsPwiKSmDl7F9pa\nct4c0hKAqV/0LneOI95fhXcjl3LH27f9c4wMn/yumpg8GQdtaqJPy2Y1+GPXZb4YL7qiC4IgCP9N\nIvgVhL+JOfP2oqYm45dVH6KjXTbTs421Cb+s+pCe/Rcwe94+Vi8bCZS1SLm5WmJgoMPO3VdQU5PR\nu2cjJn7aQ9kSWlxcworVxzjke4PMzHzc3Kz4dEwXfFpU3VVVU1MDc/Pya3xWRJIkNmw8y/bdV0hO\nycLR3pz33mlL7x6NAPjiyy0YGOjwzVcDAFi+6ihr159iy4aPaVDfCYCOPb9nwthuyjxPS0jMYN7i\nA7w5pCUTx/dQbh88sDlmZgaM/2IjnTrUo2snT4a/9yMN6zsx6bNeynQ5OQW07TqLubOG0blDvWqv\nyeMWtFVLR7Jq7XEeBMezdMFbtGtdW6VeXXrPBeDzqVuALdjamKi06h0+GsjyVUdJS8+heRN3vp0+\nCBPjJ4HInv3X2LDpHDGxadhYGzNkYHNGDPOptBV70+8X8A8IZ+tv46hX50lLs72dKV061icvr2xW\n3opaKqfN3E56Ri6rlo5U3rPftpxn+67LxCdkYGqiR68ejRLJEhsAACAASURBVCoMIhUKBd8v2M95\nvwesXfkBTo7mxCek88PCA1y+WhbMtWhWgy+/6KPSM2H7rsts2HSO+IQMbKyNef+dtgzq36zCcwNY\n/fMJdu+7RkpqNoaGOrRs5sEP3w2pND3A8CE+bNnqx5uDW2JlWfEay9U9n1WVPW3mdvwDwvAPCGPr\njrJJ1o7un1LhC6jzFx6ADLwaOKts/2py2fjYDZvOVhj8Hjh8g7atazP0jbJJ5Rzszfjg3fas23iG\nYYNbIJPJMNDXweCpVZwCAiOIiU2r8PqYmuqrPGfPatemDstX+YrgVxAEQfjPEsGvIPwNZGbmceFS\nMJ+M6aIMfB/T0dZkyKAWrPzpGJlZecqWnUNHbjBiWCs2r/+YB8FxTPl6G3Vr2dOjW9lyPl9/u4Po\nmFTmzR6GlaUR5/2CGPvZb2zbOI5aHn9NF+blq45y/ORtvp7SD2cnC27ejmTm7F0YGurQtlVtmjR2\nY/PWC8r0166HYWKsx7XrYTSo70RUdAqJiZk0aexa4fGPnbhNcXEp773drty+ju3q4uRoziHfQLp2\n8qR390asXX+KieOfvAA4fuo2Wppy2raq9ULXZMmKI3zxWU8c7c3Q0yu/xvG2jeNo03kWM78eSLtW\ntVFTlyn3xcan43v8FssWvk1+fhGTvvqd5T/68s20siWSdu65wsqfjvPVpD7UqW1PSGgC38zZhYaG\nurK171kHfQNp3tRdJfB9TE1NDX197QrzVWTpj75s33mZSZ/1wruRC2npuTwIKr/GbHFJKV/N+IOH\nIQlsWvcxlhaGKBQKPvl8I1raGqz/aRQA38/fy6dfbOSPjZ8gk8k4cfoO38/fx+TPe9OyeQ38LgUz\ne+5ezM0MaNemTrlyjp+8za+bzzF/zjA83K1JTcvl1u2ocume1aWTJ9euh7Hyp2PMmvFGhWmqez6r\nKnvqF72JiErGxcmSCWPLlgV6uiX1adcDI6hTy065vNDzKioqQeuZ7upa2nISEzOJi0+vMNDetfcq\n7q5W5QJtgCFvraCoqAQ3V0tGvd+xXG+A+vUcSEzKIiomVaV7tiAIgiD8V4gJrwThbyAyOgVJknB1\nsaxwv5urJZIkERWV+tQ2K8aN7oKzkwXdOjegSWNXLl8LASAqJpXDR2+yaO5wvBu54mBvxptDWtLG\npyY7dl+psi5+l4Jp0nq68mf0p+sqTJeXX8TG38/z7fRBtGpZE3s7U3p282Jg/6Zs217WUtbE25Xw\nyGSSU7LILyjizr1o3h3Rhqv+oQBcvR6Gg71ZpeOZI6JS0NfTwtLCsML9rs6WREQmA9Ctsydp6blc\n9Q9T7j/kG0iXTvXR1NR4oWvy8Ued8GnugYO9GaYm+jzr8TZDfW3MzQ1U0pSWKpgz8w1q1rChoacT\ng/o34/K1UOX+n345yeef9qBLJ0/s7Uxp16YOH7zTjm07L1V4jgBRUSmVPhsvIi+vkE2/X2DCuO4M\n6NsERwdzGno6KVseH8vPL2LcZ78SG5fGbz+PVl7/y1dDCA6JZ/7sYdSrY0+9OvbMmz2M+w/iuHy1\n7Nn7ddM5evVoxJtDWuLsZMHwoT707O7Fut/OKo9/7MBUZWAWF5+OhZkBLZt7YGNtQr069pW+BHjW\n55/2YP+hAEJCy6/x+zzPZ1VlG+jrINfQQEdbjrm5AebmBqirV/xPZnx8eqXPaFV8Wnhw+uw9/C4H\no1AoiIhM5rfN5wBITik/yVt2Tj5Hj99iYH/V5YYszA2ZPrU/S+aPYOmCt3B2suD9MT9z/Ua4SjpL\n87I6xsWlv3BdBUEQBOHfQLT8CsI/lIe7tcpnSwtD0tJyALj/IBZJkujzhurMw8VFJTRtUvXY0MZe\nLsycNkD5WUtLXmG60LBECgtLGP3JOniqxaukpBQ7GxOgLDg1NzPgmn8YJiZ6ONib0a2LJz+tO0lx\nSSnXrodV2ur72PO2phkb69GqhQcHj9ygeVN3kpKzuOofyugPOgIvdk3qVtDC+rxsrY1VJmGytDAg\nLb3svqSl55CQmMl33+9m1tw9yjSlpQqqWnZO4q9Zki40LImiohKaN3WvMt3UGduwMDNg/ZpR6Oo8\n6YkQFpGMhYWhSoukg70ZlhYGhIYn0aJZDcIikujfR3XVBa+Gzpw+d6/Csrp08mTzNj+69ZlLy+Ye\ntGpZk/Zt6jzXBF5NGrvSsrkHS1f6snLJu8+ca/XP558p+2kFhcWYmZZ/SVKdQf2bEh2TyqcTf6Ok\nRIGenhYjhvqwau0J1NTKP/cHD99AIUn0eWaIgIuzBS7OFsrPDT2diItLZ8PGszT2ejI2WEtbrqyv\n8Pe0+IemNG05klZtx7yS4+fmpjLv2/qMHLUTF7fne8n0Op06tpB7tw8xbuLp/3vZMybbMmTEWup6\n9qo+sfCPsv6nQTRqMoSGjSvuNfQ6Xbm4gYdBpxkxcuPrrsq/lgh+BeE12nsjtmwG3aQs9ICDfiF0\nal9+PdvQsCRkMhmODk+6Kmo8MwmTTCZD8SiAUigkZDIZ2zaOKzdZU2XB7GPa2nIcHcyrrfvjYG3l\nknexsVZtuX26bt6NXLh6PRRTE32aerthZ2uKibEed+5G4x8QpuxSWhFnR3OycwpITMqscFxnaHgi\n7q5Wys+9engxc/Yupk/tx5GjgVhbGSu//L/INdHRUe16/iIqvC+KJ/cFYPqX/fFq4PTcx3RytCAs\nPKnadGpqsnJhcklJ6XOX81gbn1ocOBTAjZsR+DT3eK481b2iqOwlho21MQd3fcHlayFcvhLCgiUH\nWb32BL//Nk4l8K7MZ590Y9Cby8q1cj7P8/lny37MxFiPrOzy6yBXRyaT8fmnPRg/thspqdmYmugp\nW9Dt7cp3ed659yqdO9TDyKj6Cejq13PgyLGbKtsyM/MAMK2k+zZAbk4qp44v5OGDk2RnJaGtY4il\ndS1atxuLu0fZLNSvMkBLSQph+cI2vD9mD04uT8aJ/7p2MOGhfkyefgs9/Sd/BxfOaYyX9xA6dp38\nl9flRZw6tpAzJ8ovc6avb8HkGTcryFGxUZ8cQa6pU33C1+zPBoY3/P9gz/bPqkwzctTOlzr2y5Sv\nb2CJk0szuvSYhomp4ysrtyK7/5hAXm4aI957PcHO42thaubChCl+KvuCH5xi8/oRaGrq8vXskNdS\nv79a0P0TZGXG4en15CW//+XN3ArcS0LcHQoKsvhs6hVMTB1U8sXF3OLYkTnERd9EpqZOnXo96NZ7\nJlpaT/6ehj48z6lj80mMf4Cmpi4Nvd+gY9epqKs/Cbfu3NzPuVPLSU0JQ1fPjGYtR9Kq3ZMlExs3\nfZNzJ5cTEX4FZ5fK58oQXp4IfgXhNdl7I5Yvd98mv7gUNOWUmJlw/Mh1tndqyODmzsp0+QVFbNtx\nkVYtaz7Xl16A2jVtkSSJ1NScVzYLsJuLFZqaGsTFp9OsSeUtiU0au/HblnOYmRowYpjPo22u7Np7\ntcrxvgCdO9Zn8YojbNh0lqkT+6jsO3H6DlHRqYx/Knhu36YOM9nF2fP3OeQbSI9uDZVB1199TTQ0\n1ClVvFiLrLmZAZYWhkTHptK3V+Pnzteza0OW/ujLnXsx5cb9KhQK8vKK0NfXxsREj+SULJX9QcHx\n2No+aol3sURTU4PLV0Nwcqz8BcfAfk2pU8uO8RM3snzR27R8FAC7OluQnJxFbFyasvU3OiaVpORs\n3B69hHB1tuTGzUgG9nvSNfdGYARuVXTb1tKS07ZVbdq2qs3777ajXdfZzx14e7jb0KdnIxYvP4xc\n/uSftOd9PqsqWy5/vntcq6Yt+w6UX47oeamrqylf7hw+epMGno7lutvfvhNNUHA8Uz7v/VzHfBAc\nj4W5alfskNBENDTUqfFMr5Gnbdv0AcVF+fQdtAgzcxdyc1IID7tEft5f31W6pKQIDQ3Vlwzmlu4Y\nGFgRHnZJGfyWlBQRHemPoZENEWGXlAFXanIYWZnxuLj5/KV1eFnmFm6MHL1LZZua7MVmin86sP83\nq9egD+412ys/79r2Cbo6xnTvO0u5TUfHmPDQi6+sDnK5DhOmXgJJIjkphAO7p7Dl13f5eMJx1NRe\n7wz//28aGtoUFGQSHnoJF7cnw2ACrm3FyNjulfz+vy6XL/xCQ+/BKve4qDgfd4+21KrbFd8D35TL\nk5WZwG8/D6WuZy969Z1DYWEOh/fPYM/2CQx962cAEuLusnn9W7RuP5YBQ5aTlZnAgT1TUChK6dar\n7JjBD06xc+tYevSZhXvN9iQnPWT/zknI5do083kPAA0NLep79ePKhXUi+H1FRPArCK/JgqNBZYHv\nI4U13dHxD2TOjK04zXkDRwdzomNSWb7qKJIE0x7NHPs8nJ0s6Nndi2kztzNpQk9q17IjMyufa9dD\nsbczo3OH8q3LL0pPT4t3R7Rh4bLDSFJZC29eXhE3b0ehpibjjQFlf7SbeLsya+4e4uIzlIFuk8au\nzJy9q8rxvlDWMjdpQk/mLjqAXEODvr0aoa2tyaUrD1m8/DDdOnvStZOnMr2WlpxOHeqzZv0pgoLj\nVWbE/auviZ2tCVeuhdCkkStyTXWVJWaq8vGozvywYB+G+jq09qlFSUkp9x7EkpScxYcj21eY5603\nW3HO7wEfjf2Fj0d1xtvLBX19be4HxfHr5rOM/7gbTb3daObtxrzFBzh99h7OThbs2H2ZhMQMZfD7\nuFvtsh990dRUp3EjVzIz8rj7IIahg1TH/b4xoBmSJDH+i40sW1gWALdoVgMPdxumfL2NqV+UvYz4\nYcE+ateypdmjruMj327LxCmbqVvbjpbNPbhwMYhDR26wdMFbFZ7b3gP+lJQq8KzngK6OFr7Hb6Kh\noY7Tc/Q+eGzsqC70GrgAgBpuVspzre75rK5sO1sT7tyNJjYuDV1dLYwMdSqckdunhQdLVhwhIyMX\n46dmW46KTiEvr4jk5CyKi0uUE4u5uVoil2uQnpHL0RO3aNLYleKiUvYc8OfYyVv8umZ0uTJ27LmC\nk6N5hS9uNv1+HltbU9xdrSguLuHAkRucOnOXJfNVr/n1G+E09nIuN6neY/n5mUSGX+GdD7fhVqM1\nAMYm9tg5NFSmWf/TQDLSYzh2aBbHDpUFKt/NjyMvN41De6cRGXGVvNx0TMwc8WkzmkZNhqrktbCs\ngVxTh8DrOzA2cWD0p0fK1cPFrSXhoRdp13ECADFRAejomtCg0SDCQ/2UwW946EU0NLRxdC7rZh8b\nHcgJ37nEx96mtLQYK5vadOk5HUenJ93wZ0y2pWe/OYSFXCAk6AxNWrxN5+5f4XvwW+7dOkReXjp6\n+mZ4eg2gS49pFV6nyqipaWBgUPlLnsU/NKVh48GkpUbw4K4vmpp6tGw7WqUF/dlW9WuXN3Hx3Boy\nM2LR1NTFxt6TESM3oa6ugUKh4NypZfhf2UxuTipmFq507DqZ2nWfvBCMjQ5k/+4pJCcGY27pTseu\nU8rVKykxmKOHZhEZdhm5XBtX91Z06/NtlefyZ8nlOsjlT1q4NdS10JDrVFrm7cC9nPCdR25OCq41\nWtF30EL09J68KAi4tg2/s6tJT4vCyNiOJs3fpnmrD6pcB14mkynLMzC0ol2nz9m1bRxpKeGYW5a9\nMMvPy+CPTR8R/OAk+gYWdOgyiQaNBiqPcezwHO7fOUJmRhz6BubU9exNhy5lwQw86bbdtuP4Cut/\n6thCAq9vB8qeTUDZJT0x/j5HDnxDVIQ/crk2Net0oUef79DWKXup9bjF2MmlKZfO/0xxSQFNmr9N\np25fcubEYq5d+g2ZTI0WrT+kdftxVd4PNTU1GjQaxA3/bcrgNzc3leD7J/BpO4ZL51XXEY+KuMbx\nIz8QFxOIto4xtep0oXOPaWhrl60Usf6ngVhYeaCtbcj1K5uRydRo0HgQXXpMV96TmwG7uHThF1KS\nQpDLtXF2bUH3Pt9iaGSjLCc56SHHDs0mIvwykqIUS+va9B04Hyub2i9133NzUgkLOU/XntNVtrds\n/SEAsdEV99IIvn8CmUxGr/4/KIPmPgPm8eOSjqSmhGNm7sLtm/uxsKpBhy6TADAzd6FLj6/Zvnk0\n7TtNREtbn5sBO6lZuzNNW74LgKmZE607jOP8mR9p2nKk8mV9rTpd+e3noRQV5aGp+fqWmvy3EsGv\nILwmcRmq3SQlXR3ym3pRGhbFlzP+IC0tBxMTPVr71GLhD29WGSRWZPY3b7B23SkWrzhCQmImRkY6\n1K/j8Je2BH8ypgtmpvr8uvkcs+buQV9Pm5oeNrz3dltlmsfjfo2NdJWtWU0au1JSqqh2vC/A8KE+\nONibsWHTWf7YdYmSEgVOjuZ8PKozwyuYGKl3Dy/2HvCndk1bZWvkY3/lNZk0oSfzlxyk0/7vsbQ0\nUlnqqCqD+jVFV1uTDZvOsvRHX7S15Li5WjFscItK82hqavDzjx+w6fcL7N53jSUrDqOlKcfZyZx+\nvb2VXaj7921CcEgC07/bAcDQwS3o2L4e6Rm5ymNNGNcNQ0Md1qw7RcL3ezAz0y83hvSxwQObI0mo\nBMArFr/NDwv2897oNQA0b1qDryb1Uf6j3bFdXb6c1JdfN59j3qID2NiY8PXUfhXO9AxgYKDD+t/O\nsGjpIUpKSnF1tWLpgrcq7PZbGRtrY4YP8WH9xrMq26t7Pqsr+90RbZg2czt931hMQWFxpUsdebjb\nUL9uWTfjYYOfPJMzZu3CP+DJBGyDhi8DVJdMOnAogEXLDoMk0cDTiQ1rRlG/nmp3u9zcQo4cu8mY\nR+PXn1VcXMqiZYdITMpES0uOu6sVq5aOpM2jWc4fO3I0kI9Hda70Ompq6qGpqceDe8dwdG6q/AL/\ntKFv/8KqJZ1o1GQoTVo8Wde4pKQQG7v6tGo/Fi0tA8IenufA7ikYGdspA2ko+8Lr3WwE74/ZQ2VD\n2V3cWnJo33RKSgrR0NAiPNQPZ9cWOLu24Mj+Gcp04aF+ODg1RkOjbEb2wsIcGjQaRI8+s0BWNnZu\n8/q3mDDZD129J/ftzPHFdOo2la49ZyCTybh8YR337xzhjeGrMTaxJysznpTkJ5PUPe7S/N388rOi\nv6hL59fSqt1Y2nX6jPDQixze9zWmpk7Uqd+jXNrY6Jsc2vsV/Qcvw8mlKQX5mYSFPOmWevnCL/id\nXU3vAXOxtW/AzYBdbNv4AaPH+2JjW4/Cwlw2r38LZ9cWDBiyjKzMBI4cmKFSRnZWIutX96dR02F0\n6zmDUkUxJ3zn8vuvI/lw7IEqg8f/l4z0aO7c3M+wd9ZRVJTHji1jOOk7jz4D5wPgf2ULp44toGff\n2djae5KY8ID9Oyehrq6hbE17Ho+f91JFiXLbmZNL6Nz9Kzp1/5KAa1vZu+NznFyaYWxS1gNHU1OX\nfoMXY2hoQ3JiMAf2TEFDQ0ulG35V9fdpO4aUpIfk5WcwcOgKoKzFu6goj42/vImdY0NGfXKIvLwM\n9u+axN4dnzP07V+Ux44Mv4yhkQ0jR+8kPvYOu7aNIyHuLjZ29Xj/472Eh/hxYM9U3Gq0wdb+yYvi\nijRuMoy1K3vSs++cskDt+i4cnLwxNVMdopMYf5+Nvwyjfecv6DdoIXn5GRzZ/01Z3R61ggLcurGb\n5j7v88HY/STE3WXn1rHY2nni6dW/7DqXFtGh8xeYW7qTl5vGscNz2PH7x2V/GyhrbV23qh+Ozk14\n54NtaOsYEhsdiEIqfen7HhlxFXV1LSyta1W4vzIlpYWoqctVWos1Hj0vURFXMTN3obSkCA0N1b+Z\ncrk2JSUFxMXewsWt5aM0qitIyDW0ycqMJyM9RtnV2tbeE4WihOjI6yp/P4W/iCRJ/7ifxo0bS4Lw\nT9fyh5OS05SD5X5a/nDydVdNEIQXdN7vgdSz/3yppKT0dVelQmfO35N6D1ooFReXVJnuzq2D0vcz\nakvffuksrVnRSzpyYKYUFXldJc2i75tI58+sqrbMPzaPkvZs/1z5ed3qAdLKRR2qzZeaEi5Nn2Qj\nhYVcVObzv7xZKizMlWZOdZSyshIlSZKked81kE6fWFLpcRQKhTTvuwZS4PWdym3TJ9lIB/d8pZLu\n4N5p0vo1b0gKhaLC41y+sE5aNr9VlXU+eXSBNGOynTRrmpvKz/bNo5VpFn3fRNqwdrBKvj3bP5d+\n/rGPSprH1/burUPS7OkeUkF+doVlzp/lJZ06tkhl27rVA6Qdv4+VJEmSrl3aJM2ZXlMqKMhR7g+8\nvvPRtfWTJEmSTvjOk9aveUPlGHm56dL0STZSdGRApec7fZKNdOfmgUr3v6hN696Sdm0bX277yaML\npG+/dJby8zKV286cWCotmdtC+XnhnMbSDf8dKvn8zq2Vli9oU2l5Ade2SbOmuSk/Z6THSmtW9JIW\nzG4kFRcXSpJUdo7HDs9RpikpKZa++8pF5Xl61tWLv6nU7Xnqv2vbeGnTurdUjnPt8uZy9z4sxE+a\nPslGSkkOU+ZbMLuRVFr65Hd69dKu0srFHVWOVd3v69PX4qflPaRrlzdLkiRJKxa2kwKv7yx3rXZu\n/UTas/0zlWPExd6Wpk+ykbKzkyVJKnsO16zopZJmw9rBKn8PnpWUGCxNn2QjZaTHSpIkSceP/CAt\nnOOtvB/Pepn77ndurbRwjnel+2OiAqXpk2yktNQole2J8Q+kb6Y4SGdPLZeKiwulvNx0aevGD6Tp\nk2yksyeXS5IkSQ+DTkszJttKgdd3SiUlxVJmRpz0y6p+0vRJNtLNgN2SJJX9Tn73lYv0MOi0VFpa\nKiUnhUjLFrSWpk+ykSIjrqmU+f2M2pL/lS2V1vUxwF/6G8Rm/6Qf0fIrCK/JpK41n4z5fURHrs6k\nrjVfY60EQXgZrVrWZOjgliQmZWL7aDbpv5P8/CJmf/NGuQnZnlW3fk88anUkMvwK0ZHXCQk+zcVz\na+jYbSptO3xaaT6FopTzp1dy5+Z+srISKC0ppLS0GGdX1R4Ntvb1q62rqZkzRsZ2hIf6Ye/oRUxU\nAH0HLURTUxdbe08iQi9ibVOXnOwklRmLc3JSOHV0PuGhF8nJSUZSlFJcXEBGRuwzdWig8tmr8WB+\n+2UYy+a3wt2jDTVqdaRGzQ7KVs9mPu89VwuiqZkzI97bpLJNU0t1cjEHR9Wx/g5Ojbl/p3zXbwC3\nGm0wNrZnydxmuHu0w82jLXXq9UBLW5+CgmyysxJwdG6iksfRuSkPH5wEyrqMWtnUVpmQx8FJtfy4\n2NtEhl1m9tflx8WnpUZg7+hVzVmXl5Eew8pF7ZSfW3f4tMpnpzpGxnbKrr5Q1kU5NycFKOvGmpkR\nx4Hdkzm450nvG4WilLK4oHJFRXnM/todSZIoLs7Hxq4+w95epzIG3Mq6tvL/1dU10NUzI+dR2QB3\nbx3k0oWfSUuJoKgoF4VCgSSpTjJYVf0rk5z0ECvr2mhpPxn77+DkjUymRnJiMGbmZRM5Wlh5qLRG\n6hlYoKOtOtZfT9+i2vIea9xkGAHXtmFlU5uszHjq1O/BnZv7VdLExd4iLSVCZfvja52WGoG+ftmw\nEWub2ir5DA2tVeoRF3OLMycWEx93l/y8DB53BcnMiMXI2Jb42Ds4OTetcEz+y973kuKCci2vz8PS\nuiYDhizF98C3nPSdh5qaBs193kNf30LZ68ndox1des7g4N6v2LN9AurqmrTtNIHI8CvIZGV/Sxo3\nG05aWgS///oeCkUxWloGNG/1PqePL1KmeUxDrk1JccEL11Wongh+BeE16edlB5SN/Y3LyMfWWIdJ\nXWsqtwuC8M8yYujLT7z0qnXr3KD6RI/I5dq4e7TF3aMt7Tt/zt4dEzlzfBE+bUZXOjmU39nVXDy3\nhu59vsPKphaamnqc8J1b7ku3/DnHr7m4+RARdgln1xbo6pkqv+w7u7YgPPQS+fmZaGrqYe/wJDjb\n/cd4crOT6dZ7JiYmDqhraPLr2sGUlhSpHPvZMXS29p58PvUKIcFnCAu5wJ4/xmNlW5d3Ptj2Qt1+\n1dXlynr+FbS09Rk9/iiR4ZcJfXiO86dXcMJ3LqM+OVwuqFbxnMvDAUiSAo/aHenac0a5ffr6FhXk\nqJ6BoTVjJhxXftbRfbEhO89SV1edjV8mkyFJCgDlf3sPmIeDk3e5vFWRy3UYM+E4Mpka+gYWFY6t\nrKrs6Mjr7Ph9DO06fU6N3u3R1jbkwb1jHD303XMf46U8dX/V1Z45NjLU/kR59Rr25ciBbzh++Hvq\nN+ynMi77MUlS0LjpMFq0/qjcPkOjJ5Ppqak/G2LIlIFpUVEeG9e9iZt7awYOXYGevhl5uWmsW92f\n0tLql2J72fuuq2dKQX7mc6d/mqfXADy9BpCTnYxcUxeZTMbF82sxeapbuE+bUbRs/RHZWYno6BqR\nkRbDiSM/KLuOy2QyuvT4mk7dviQnOwldPTPCQi4AYGqq2r08Py8DXb3/xgR4/28i+BWE16ifl50I\ndgVBeK2US65V8hLOwsoDhaLk0RhcTdTVNZEUqq1bkRFXqVmnMw0bDwLKWoJSk0PR1im/RNnzcHFr\nyYHdU3j44KRK67Gza0sO7/ua/PwMHF2aqgQWUeFX6dF3FjVrdwIgJzuZnOzqlwiDskCzrmcv6nr2\noqH3YH5e2Yu01HDMLf7a2fJjogLKfX48uVJF1NU1cHVvhat7K9p3/oL533kSfP8E3s1HYGBoTVTE\nNZUxgVERV7G0Kpsl3cKyBjeub1eZNCc6UrV8W7v63Ll5AGMT+3JB2stSV9f4S18CVEXfwAIDQ2vS\nUiNeeM1WmUz2p+oZFXENA0Nr2nV6smRSRkbMCx9HXV2uHMf6mIVlDW5c20ZhQY6y9Tc60h9JUmBh\nWeOl61wdbW0D6nr2IvD6jnKTQj1ma1ufpKdan19GSlIIeblpdOr+pXJpqXu3D6uksbGrx82AXRXO\nyP6y993Gth65uank5qaqTJj2IvQNyl4KBVzbioaGFm412qjsl8lkypcAtwL3YGRsi42dao8XNTV1\n5cRetwP34uDUWGWm97TUCEpKCrC1q76njPDiXv9MDRFv2gAAIABJREFUBoIgCIIgvBaPl1yLzchH\nU8qhTtosVu9Yy++nzpCeFsWdWwfwO7MKF/dWyplcjU3siQy/SlZmPLm5qQCYm7sRFnKByPArJCc9\n5NDer0hPj37perm4taSkpBD/K5txeSr4dXRuQnpaFCFBp1W6PAOYWbhy88ZukhKDiY0OZPuWMc8V\n0PmdW8OtG3tITnxIako4t2/sQUvbQPnl9IrfepYvqH7SGYWihOzspHI/T4uJCuDcqRWkJofhf2UL\ngdd30rKCFjSAoHvHuXThF+Jjb5ORHsPtwD0UFuZgblUW/Pi0HcPFcz9x68YeUpJDOXl0PpHhV/Bp\nUzZbeH2v/qipqbN3+2ckJQQREnyWc6eWqZTRtMW7FBZksX3LaKKjAkhLjST04Tn27ZxEYUFOtef8\nd9Ch80QunFnNxXNrSUkKITHhAYHXd3Du1IpXWq6ZhSvZWQncDNhNWmokVy/9xu3AvS98HGNTB5IS\nHpCSFEJubiqlpcV4evVHLtdh9x+fkhh/n4iwy+zfNZk69Xq88hcLvQfMY+o3d7BzqLi3SKv2Y4mN\nvsH+XVOIj71Nako4QfeOs3/X86+1bWRsh4aGFlf8NpCWGknQ/ROcPDZfJU3TFu9QVJTH9i2jiI0O\nJDUlnFs39hAfdwd4uftuY1cPPX1zosKvqmzPzk4iPu4OqSllE90lJwYTH3eHvKeWeLrit564mFuk\nJIdy5eIGDu2dRufuX6Lz1Au+C2dWkRh/n6SEIM6cWMKFMz/So88sZdf03NxUrl76jeTEh8TH3eHw\nvuncvXWQ7r1VewtEhl/BxNQJM4vqJwUVXpxo+RUEQRCE/6inl1wrRosUXHErOcbto1sIPanAwNCG\n+l79adtxvDJPhy6T2L97CkvnlQWo382Po23H8aSnR7Fp3Qjkcm0aeg/G02sAyYnBL1UvYxN7TEyd\nSE+LxPmpIFdLSw9be09iogJwdWulkqf/G4vZt2syPy3rhoGhFe07TyTvUXBeFS0tffzOriY1JRyZ\nTIa1bT3eem+zsrU0NzdNZfbnyqQkh7JgVsNy27/5IQr1R11AW7T+iMT4e5w7tQy5pi4dunyhXLrp\nWdo6hty/48uZE0soLsrH1MyJvoMWKtf+bO7zPkWFORw7PJvcnBTMLNwY+tbPWNvWVV6r4SM3cnD3\nVFYv64q5pTude0zj91/fVZZhaGTNBx/v47jvD2xaN5yS4kKMjG1x92iL+l+0/vGr1rjZcOSauvid\nXc0J3x/QkGtjaeVBs5YjX2m5tep0waftGI4cmEFJcQFuHm3p0GUSB/d8+ULH8W46nIjQi/y0vDtF\nRbnKpY7e/uB3Dh/4hjUreqIh16JWna706PNd9Qf8k+Ry7Qpnen/M2qYO743ew8mj81j/00AUilJM\nzJxUltiqjp6+Gf0HL+WE71yuXvoVK5vadOs1k03r3lSmMTSy4f3Ruzl6aBYb1gwCZFjZ1KLPo2Xt\nXua+q6mp06jJUG7d2EPtet2V269d2siZE4uVnzdvKFsmrv/gJXh5ly2ZGBMdyKnjiygqzMXc0p3e\nA+Yre7o89jDoNOdOLaekpAhr2zoMe2cDHrU6qKQJvL6TY4dmIUkSDk6NGTl6Z7mx9bcC99K42ZsI\nr4asugkB/o68vb0lf3//110NQRAEQfhHc5l6qMIVh2RA+Nye/+/q/Ks9u4avIAj/fzk5Kaxc2JZR\nnx5Rdrn+O0lMeMCvawczftIFlYnSKiOTya5LkvRiA97/40S3Z0EQBEH4j7I1Lj+hTVXbBUEQ/sn0\n9c3p98ZiMtJjq0/8GmRnJTBgyPLnCnyFlyO6PQuCIAjCf5RYck0QhP+aWnW7vu4qVMrdo93rrsK/\nngh+BUEQBOE/Siy59v/z+ZdXq08kCIIgvFIi+BUEQRCE/zCx5JogCILwXyHG/AqCIAiCIAiCIAj/\neiL4FQRBEARBEARBEP71RPArCIIgCIIgCIIg/OuJ4FcQBEEQBEEQBEH41xPBryAIgiAIgiAIgvCv\nJ4JfQRAEQRAEQRAE4V9PBL+CIAiCIAiCIAjCv54IfgVBEARBEARBEIR/PRH8CoIg/AX679/AlvsB\nf9vjvawWW5dzKurh667Gv9rYk7s4HH7/dVejQn6x4bx95HcUkvS6qyIIgiAIf5rG666AIAjC311a\nfh6/3buGX1w4SXk5GGnp4G5szhseDWhp6/y6q/e3o5Akdj28xYHQu0Rmp6MhU6O2qRXDazeixb/4\neqXl59F//wZMtHXY3WckajJZtXn8YsNJzMuhq1NN5ba9IXc4HhlEcHoyOcVF7O79Ljb6hir5gtKS\n+DHQj/tpiajJ1Gjv4ManXq3RlWsCcCjsHrOvnKiwzHVdhlDHzAqAJdfPcislnrCMVEx1dNnTZ6RK\nWh87F36+fZmjEQ/o7lL7ha6HIAiCIPzdiOBXEAShCvE5WXx0Yge6GpqMbtCSGsYWSJLEtcRo5l87\nxd6+773uKr4SxaWlyNXVXyrvNxd9uRwfyZgGLWlm40RhaQlHwh/wxbkDTGzclgE1PCvMp5AkJElC\nXe2f2SnpcPh9fOxcCMlI4Up85HMF+tuDA+npUlvlnAtKimlq7UhrO1eW3ThfLk9yXg6fnN5DB4ca\nTPRuR25xEUsDzjH7ynG+b9UTgI6OHjS3cVLJtzLwArdT4qltaqncppAkerjUJjQjhSsJURXWsadr\nHXYE3xTBryAIgvCPJ4JfQRCEKizwPw3Ahq5DlK1qAM5GpnRzrlVpvoTcbJYEnMU/IRqAJtaOfN64\nDZa6Bso0F+MiWHfnCiEZKWiry6lvbs2cVj3QUi//p9k3/AEL/E8zs0VXNNTU+NrvCEcHjkJDTY3o\n7AwGH9xIP/d6TGnSAYA1ty5xJyWBFR36A3AjKZaVgRcISU9BT65JF+eajG3gowxwPz65C2dDU7Q1\nNDgSfh8bPUPWdx1arh6b7vmz5X4AC9v2pp65Tbn9J6KCORH1kLmte9LW3k25fWxDH4pKS1kacI5W\ndi5Y6hpwKOwei66fZbZPd34MvEBkVjq/dXuTwtIS1ty6SFBaMsWKUtyNzRnn1Yr6T5XXYutypjTp\nwNWEKC7FRWCqrcuH9ZvTzeXJPbmbksB8/9NEZKbhZGjC6AYtmXh2Pz92GEAjK3sAwjNTWRnoR2BS\nLFrqGnhbOTC+UWvMdPQqvbeVORB2j3FePjxMT+FA2N1qg9/0gjyuJUQzrmErle1Da3kBcD81scJ8\nfnERqCFjknc7ZdA8uUl73jryO9HZGTgYGKOtoYG2xpPnqKCkmAux4Qyv3RjZUy3SE73bAbDlfkCl\nwW9rO1cWXz+rPLYgCIIg/FP9M1+vC4Ig/B9kFhZwOT6SgTU8VQLfxww0tSrMp5AkJp87QFpBHis7\nDGBlhwGk5Ocw5fwhpEdjJy/FRTD53AGaWjvya9eh/NhhAF6W9sr9T/sjKJDF18+ysG0fWtu70sDC\nlsLSUh6klQVHN5JiMNbSJiAxVpknIDGGRpZ2ACTl5fD5mX14mFjwW7dhfNWsE8cjg1l986JKOUcj\nHoAEqzsNYkbzLir7JEli+Y3z7Ai+yapOAysMfAGORQThYGCsEvg+Nrx2I4oVCk5Hhyq3FZWWsOHO\nVSY36cDvPUZgrWdAXnER3Zxr8VOnQazrOoQaJhZMPLOfzMJ8leOtv3OFNnaubOz+Jh0dazDn6gkS\ncrMByCsu4otz+3EyNGFDt6GMa9iKlTcuqORPyc9lzIlduBqZsa7LEJa3709eSRGTzx984TGugUmx\nZBXl08LGiW7ONfGLjSC9IK/KPDeT45Grq+NqZPZCZRUrStFQU1NpLX78wuRWclyFeU5GPSS/pITe\nrnVeqCwAaz0DTLV1uZEUW31iQRAEQfgbE8GvIAhCJWJyMpAAZ0PTF8rnnxBNaGYq37XoRm0zK2qb\nWfFty24EpSVxLbGsJXjD3Wu0d3BnlGcLXIzMcDcxZ3jtRmhryFWOtebWJX67e40VHfrj9SiY1ZVr\nUsvUguuJMQAEJMYyqEYDEvKySMnPpaCkmPtpicrWzd0Pb2Guo8ck7/Y4G5nSys6Fjxu0ZOfDmxSU\nFCvLstEz5NNGrXE2NMXZ6Mk5KySJOVdOcCE2nDWd36gyWIvKzsDZ0KTCfZa6+ujJNYnKSlduK5Uk\nJnq3o4GFLY6GJujJNfG2dqC7S22cjUxxNjRlYuO2aKqrcykuUuV43Zxr0c2lFg4Gxnzk2QJ1mRqB\njwK0o5FBlEoSXzXthKuRGU1tHHmnbhOV/Lsf3sbdxJyxDX1wNjLF3cScGS26cC81kftpFbe6VuZA\n2D06OnqgoaaOrb4RdcysOBz+oMo8CblZmGrpvnA378ZW9mQUFrDxnj/FpaVkFRWw+qYfUBbQV2Rv\n6B187JxfqkUbwFxHj/jcrJfKKwiCIAh/F6LbsyAIQmVecoLbiKw0zHX0VCYpstM3wlxHj4jMNJpa\nOxKcnkzPasZQbg8OJK+4iPVdh5brbtrI0p4bSbG8U7cJN5JjeaNmA64nxRCQGIOxtg7qMjXqmFo9\nqk869cytVSZg8rSwpVihICY7E3cTcwBqPTUW9GkrAi+gLlPjly6DMdXWfalrUhl1mRo1jM1VtqUV\n5LH21mUCkmJIK8hDIUkUlpaQkJetks79qXwaamqYaOmQXljW2hqZlY6bkZlK19+6jyZ5eiwoPYnA\npDg67Fhdrl6x2ZnUNbN+rnPILS7kVNRDVnYYoNzWzbkWW4NuMLx2o0rzFZaWoPkS46pdjcyY3rwz\ny2+cZ82tS6jLZLzh0RBTbd0KJ9kKy0zlTkoCi9r2eeGyHtNS16CwtOSl8wuCIAjC34EIfgVBEJ6x\n90YsC44GEZ+dg1VdOPIggnYO5bvxvgzZc8wA/FgDc1sux0dyLDKI9+s1U9nnZWnHzoe3iMhMI7e4\niFomljSytCMgKQYTbV3qmds834RVT1Xn2Vbnx5pYOXI8KohLcRH0rKbbrKOBMRFPtew+LSkvh9zi\nIpVAXlNdvVzL56zLx0kryGO8V2ts9A2Rq6nz6ak9lChKVdJpPNtiKgPFC7ywUEgSPrbOjPNqVW7f\niwT5RyOCKSgtYdSJHSrbSyWJm8lxNLCwrTCfsZYO2UWFz1/hp3R1rklX55qk5eehraGBTCZjW9AN\nbPWNyqXdF3IHK139chNgvYisogJMtHReOr8gCIIg/B2I4FcQBOEpe2/E8uXu2+QXlwLqFGTrcKbk\nAduvuzO4sWrwkF1UWOG4X2dDU1Lyc4nPyVK2/sbmZJKSn6vsQu1hYoF/YjR93etVWpeappYMreXF\n+NN7kCHjvXpNlfsaWNhSVFrK5vvXaWBhi7qaGo0s7fnh6klMtXVVAh1nQxNORj1EIUnKlsFbyXHI\n1dSwryBYelZLWyfaObgxze8wIKOna+Ut1l2cajL9oi9nY0LLjfvdcv86cjU1Oji6V1nereQ4Pmvc\nFh87F6BsCaGUgoq781bGydCEw+H3KSgpUbb+3ntmAqmaJhacjHqIjZ4BGmovN7M1wMGwuwyq4Uk/\n9/oq21fd9ONA6L1Kg18PEwvSC/PJKMzH+CUDS1OdsiD9QOhdNNXUaWrtqLK/sLSEIxEPGOzR4LmW\nXqpIYWkJsTmZ1DSpuGeAIAiCIPxTiDG/giAIT1lwNOhR4FsmK9YCCVhy9wgnox4SmZVORFYaux/e\n4q0jWyo8RhNrB9yMzPjm0lHupyZyPzWRmRePUtPUEu9H43DfrduEU9EhrLl1ifDMVMIyU9n64IbK\nGFyAOmZWLG3fj60PAthw56py++Nxv74RQTSyLDtmXXNrkvJzuJuaoBzvCzCghicp+bkseDTzsV9s\nOKtuXmRQjQaVtvY+q5WdC3N8ejDf/xSHw+9Xmq6jYw3aO7gz+/Jxdj+8TVxOJuGZqawK9GPnw1tM\naKQ643VFHAyM8Y14QHhmKvdSE5l+8QjyFwxOuzjVRF0mY+7Vk4RnpnI1IYrf7vmX7XwUAw6s4Ulu\ncRFf+/lyNyWB2JxMriZEMffqSXKLi56rnJD0FO6nJdHXrR5uxmYqP92da3Eq+mGlx/IwscBES4eb\nz0xSlZqfS3B6MlHZGQCEZ6URnJ5MZmGBMs2O4Js8SEsiKiudncE3WXT9LGMatCz3MuZ0VAi5xUX0\ncq1bYR2iszMITk8mJT+HEoWC4PRkgtOTKS598jtwNyUBTTV1PC0qnuRMEARBEP4pRPArCILwlLgM\n1RmFS4vkpATbk5upzapAP946soVPTu3hfGy4clmhZ8lkMua36Y2Jlg7jTu1m3KndmOroMq91T2W3\n55a2zsxt1ZNLcRG847uVj0/sIiApRqVb9MbDy7l0+xR1zaxZ2r4fvz8TADeytKdUUihnddZS16Cu\nmTVyNXXleF8om2hqcbu+BKcn87bv78y5coLOTh6MbtCiwvrPWDuGn/ctLLe9lZ0Ls326M+9a5QGw\nTCZjVstufFC/OXtCbjPs8GY+OLadu6kJLGzTu9I1fp82rVkn8kuKeffoNmZcPEIv1zrY6FUdMD9L\nT67Jgja9CctM5R3fray8cYEP6pd1HddSK2sJ1pEpMH3oS1FRPp+d2cebhzezyP8McjV1NB8F2wGJ\nMbTYupyAR5OLPWvbvauoF2ZBbnK5fT52LigkieORwRXmVVdTo5drHY5GBKls3xNym3d8tzLz0lEA\nJp7dzzu+W7kQG6ZMcy81kfGn9zLiyBb2hd5lSpP2DK7ZsFwZ+0Lv4GVmxdjZnQmJKX/Pfrh6knd8\nt7ItKJCU/Fze8d3KO75bVSbOOhYZTBfnms/9ouS/JjMnjZGzu5GamfRc6bef+IUfd85+xbV6OZEJ\nIXz4Q28KivKrTywIgvAPJKtoWY2/O29vb8nf3/91V0MQhH8hn7mniM0o/8XPzlgHv6kVB7svKiM7\nlT1nN+H/4AKpmUnoaOlhY2ZPqwadad+4FzpaZV1ZB37ZnC/e/J4W9f+acp91J+w63/w8lg1f+2Ko\n92Qc7oy1Y3CwcuPDvl+8knIB/jjxM5funGbphN9fWRnPOhcTytTzhzg84EOMtXT47fAKsvMyGDdo\neqV5DobdY1WgH3/0ervCLu5J6XGMmT+AeWM34G5f9QRmFUkryOPNQ5tZ33VIheN1q5OQFsvu079y\nM+QaGdmpGOgaYWvhSPtGPWnVoAtyDfmfqmNaQR7DDm1mQzX1O3X9IOv2L2LLt6erPN7jZ+4xTQ0t\nrM3t6dt6OO0a9XihulXleevzV/n10DJyC3IYO3Balekyc9IYu3AQCz/dhLVp2Uuru+E32H9+C2Gx\nQaRlJTN20Nd0aNxLJV9GdiqbfH/k5sOr5BZkU8fZi/f7fI6t+ZNu7unZqWw8vIJbIVfJK8zFxsyB\nfm1G0MarW7l6FBUXMnXV+0QmhJR7LuZvnoqLjQdvdHzvz1wSQRD+D2Qy2XVJkrxfdz3+ScSYX0EQ\nhKdM6lrzqTG/ZXTk6kzqWrPavPM/XouBsR5jvh8OwHfvrsDB3YaRXw8C4JPO3+LTrwEns9aho6XL\nsM6jcLJ2R1OuRXRiGCf897P3yxv0ebczvUa+moD3ZZzdc4UNc3bxq//8V3L8n6b9joWdKQM/Lv8l\nvToKhQIJCfUKukUfCruPnb4hVroGhGamsjTgPK3sXDDW0qGwqICT1/bz5TsLqjz+tjMX8czWqnRN\n5z/LVFuXac06kZCX/cLBb0jMfb79ZRx2ls580Ptz7CyckclkhMcHc/TybmzM7Knl3OBP1S8+N4tJ\n3u1eKjCvytIJW9HXNaSwuIDLt0+xcucsbM0d8XCsfAz861JSWoKGetVflzo07sXkH0fydvdxGOhW\nfq1OXNuPu30dZeALUFCYj6OVG+28erB8x7fl8kiSxLxNU5CpyZjy1jx0tfU5cGEr3677lGWfbUVb\ns2y8+Irt35KTn8WUt+ZjqG/C1btnWL7jW8yMrajr4qVyzN8Or8DMyJLIhJAKz+WnPXMZ0O5t1Ks5\nb0EQhH8a8VdNEIR/jNVfbSE7I5fJqz56ZWX08yr7UrrgaBBxGfnYGuswqWtN5fYX8fnS91CXqwZl\nl++eQeYoY/64X5VfWgGsTG3xrt2KTzaqfvnNzs9i4ZavCAi6iJG+KUM7f0hbr+7K/ZEJIWw4uJSg\nyNtoyrXwrt2K93p/jp62vsr+kJh7SJKElakdI3t9hpWpDTN/+BLNi80ZtX/mMzXX4iExnPpqAupN\nytbNpdQehUKB2qMZlkfP60f3Fm/Qt81wZa5nW4wv3znNHyd/ISElBk25Fo7WbkwcNpuA4EtsP7kO\ngEFj26PhV5d3V3YCIDM7k9lfzCP2djpSjhx1LRl1mtbgo2nDMbc1UbbofTroO9Z8t4m8EDmaajq4\ne9lTWDeEyMwn52lSsy+L4xPI11CgkaegBoZ83bEjAAFBF5HJZNRyKgsOH1wPY9bIlWibydDsHkZG\ndhqmRhb0qtWDoz/dJXFAClYOqksyVUShULDuwCICgi4y/b1lKi1zjyWkxvDroWU8jL5LfmEethaO\nDO30EVjaV3DEikmSxIod32Fj7sD3o39W3hcAG3MHWtbvyLM9u5Iz4tlydBUPIm9haWLDe70+o0GN\nJ7OI3w2/wabDK4hICEFXW4/WDboyottY5ZJPd8NvsOnISqITw1CTqWFr4cTYgdPIystQduMd+GVz\nAAZ3fJ8hnT6stP5G+ibK3gb92r7F3nObCYsLUga/FfU+WLHjO7JzM/nq3UUvXZ/ikmK2HV/DucCj\n5ORn4WDpyrAuo/DyKEv3uGX6q3cWs/3kL0TEBzNp+FycbWrwy/6F3I+4SVFJIebG1gzp+AGtGnQG\nwNHaDRMDc67cPUOnJn0rPe/zN4+V29+4Vksa12oJwMqds8rliU+JJjj6Dos+3YSzTQ0APuo7mfe/\n78mFp44XFHWb93tPVF7DPq2Hc+jiDkKi76kEv1fvneNO2HUmDf+egKCL5cprUKMZOflZ3AkPoIF7\n03L7BUEQ/slE8CsIgvCUkuJS+nnZvVSw+yx9Yz2Vz5IkEZcSydDBg1QC36rsOLmOEd0+ZnjXMZz0\nP8CqXXOo4+KFhbE1BUX5zFo/AXeHOswdu46cvCxW7/6BH3fOZvKIuQAs3fYNzjbuzP14Pepq6kQl\nhqKpoYmZkRWfjZ3CYv2ZzPpoNbo6Bhxcc5akqDRKvIOISAjFx7MjPdqM4+Te85wMCOCg3zb6tH7z\nueqdnp3Kkm3TGd51DM3rtaegMJ/g6DsA+Hh2IjoxDP8HftSU9UDqJtG+WTckSWLu+kmkR+sy6OPu\nuNVxwu/6ac5vvsmcDzNYuO9LAIpKilg3axvqCWaM+r4HNjZWfP/FUuRh2ny/5RfkcjkR8SFsm3KO\ntpamvDV5ANkZeaz+agu7Uo4wctpA7kUE4mpXE5lMRk5m2b66zdyJCItk4rA5GOob8zD6Hj/tmYt9\n7fac+MOP4V9UHtRAWQvh8u3fEpUYypzRazE1tKgwXUFRPl41WzCsyyg0NbTwu32CBVumsujTzdhb\nOj/X9Q2PDyYmKZzPhs5SCXyf9uyyWr8fW8Pb3cfxYd9J7Dr1K4u3TuenKXvR0dIlNTOJORs+o61X\nd8a9MZ2E1FhW7/4emUzGuz3HU1pawryNk+nYpDcThnxLSWkJ4XFBqKmpUdPRk5G9PuP3o6v5cdIu\ngOd+vhUKBdfunye3IAd3+6qX0Xray9bnx52zSEiLZcLQ7zAzsiTgwUXmbvyCeWM3KANLgM2+P/JO\nj0+xNrdHR1OXH3fNprikiG8//BEdLT3ikiPL1amGQx3uht2oNPjNzsskJikcd7taz32eAMWlZROm\nyTU0ldvU1NSQa8i5H3FTWV4tpwZcvH2CJrVbo6djgP+DC2TlpuPp3kSZLzUzibV75/P1yCVoyivu\nzSDXkONsU4N7YTdE8CsIwr+OCH4FQfjHetwSXL9FTQ6sP0VRQRHeHeoz8utBaOn8j72zDo/iahf4\nb1bi7kIgCZBggQQL7q7BXYoXKy3FKlAKlGKlLQUKxVvcLbhb0OAkRIi7u+3O/WPDJksSpF/vbfvd\n/T0PD+yZd855Z2YT5j2vqV4URVHk5PbLXNh7g6TYVEwsjGjRsyFDPu1JYnQy0zstYuryEVw84EfQ\nozCGzexF52Eteen/it0/niD0aQSGJgY0aFubIZ/1wsBID4D83AK2LNrP7bOP0DXQoevw1mX0ezPs\nWaEogkIpT3YncOzz2egZ6NLjo7YcjVtNTl4WAPKc+hpzNKvRiZdHMth1cQMFeYVIDNy57HWZAf0G\nc+3hGfKy8zF4XIvvNm4jNysPQ3N37lo9JbZLJPZWTiSmxdKr5VC1UWVv5aSe29TEDPQKqVS5EiaG\nZhgaGiCTp4MhWFibMnnobARBoHqlZC5Ln3B4/xGurYwgMTqFIhNbsqpr9qjNCpVwd3881775HCNz\nfUQTexpOb42NuarVT2W7ktZHejr6SJDif/EFH383DF25Hk9C7hGREsSWo6fQlavuc7369QiIGU3c\nviSiQ1WtipT5kBOoy6Ql/WjRVZXqpKgfQqFvTVJD8qnXwpX4F5kkRqQxf/N0LO3NARg6sxe/zd/D\noE+6k5gWh4WxyjjdOH8PLXs3AlEkNSGDak4qI8zG3IHQmEAepAdw07fgrcZvfkEuS7d/TnZeJosm\nrH9r6KuzfXUNQ6t/24+49+I6fk8v0r/d++VZxiZFAOBgXeJZzs7LYsLSnurPfduMol/b0erPPZsP\nplHNlqp70XkSl/19CYt9SU1nT077HcTcxIrxvWchkUioZOPCsC6T2XB4GUM6TqSgKJ/svEwa1miB\nnaXKQ13aUDfQM0QQBMyNLd9L/4+X9wGgsKgAERjRZcoH5SPn5Gd/sD5xyVFcf3yO9bMPY22m8mZ3\nazaAxyF3OXv7MBN8ZqtlB3YYi6dbiVc8MS2OprXbqp+brUXZ9lXmxlaERFdcCT0pLR5RFDGvYFOk\nIhytnbEys2PnmfV83HceejoGnLixm+T0BFK82feSAAAgAElEQVQzk9VyM4cu4YfdXzF6cWekEily\nmQ6fDl6Ei4MbAAqlgh/3LqBXyyE421cnITWmoiWxMLEiITX2g/TUokWLln8DWuNXixYt/2oC7odi\nZmXCl5s+JjkujZ9mbsPO2Rqf8apwxD0/nuD83hsMn+1DzQZVyUjNIuxFtMYce348wfDPezNx0WCk\nMikRL2P4bvx6+k/tyoRvB5Odns2O7w+z4avdfPrjRwD8seIoT2695NMfP8LC1oyD604TcC+ERh3K\nVjM+4h/NijOB2GXmI0+xI9tZxtIDn/PsThDblhxi5Dcz8WhZlV8Pf0946VBVER7vSMHOTpdZa8dj\nZGrAnDmzOPbdHTq06kpUQhiGoe7E5Ccwa+14TK2MiQ1PYPGvM4lKeIW9lRM9Wwxh/aHvuPzAF49q\nDWlSu+17eRfdKtfR8ByKCpGcR4aMWuWDsbEJX4xdxL1dYQzrqzr+6PoL4s/IcOtpxKRxU0iISWbl\n5+uYOWEOXv2dqFutEU3rtMPUyFw9Z1GKjJzMPFxrqwzykOgA8gvzGLO4q4YuBQlyZJhhaGIAmSDN\nMEZRpKRusxIPWq9O/Tl89R4bt6yjbWF90m/r4eBqqzZ8Aeo1r0FhQRGvnkVSUJiPmZEFZ3dfJz0p\nk74/dOLQr6pQ2Nm/jCYxLY6CwnyKFEVYGFQiLV5KfEQStpXLD33+ad83mBtbsXD82nd6PfMKctl3\nYRP3A26QmpGMQllEQVEBVeze3v/4XejrGLBy2g4Almz7jCKFZtus0vO/9kqnZ6UCEJ0YhptTHQ0v\ncs0q9ShSFBKbHImzfXXaNujOoq0z8KjaEI+qDWnq0U5tRH4oC8etxVDfmEJFIcGRz9l8fBX6ugZ0\nbOzzXucbG5h+sD6hMYGIosiM1UM0xguLCqhTVbNeTFVHTUO8e7NBbDyyDP+XfnhUa4h37TZUfcOD\nqyPXpaBQc0OoNK+P6ZTy4L4PMqmM2cO/Z93BJYxe1BmJRErdqo3wcmsKlPy+2H32VzJz0lkwdg0m\nhmbceXaFNfsWsmjirzjbV+fQpe3IpDJ6tnh39IaOTJeCooqvRYsWLVr+rWiNXy1a/sFs+3EhNvZO\ndBv031N18+b549y5coYZi375oPOO7FhHaGAk1rYuGuP6RnqMWzAQiVSCY1U7vDt58swvCJ/xHcnL\nzufUjiuMmNuHtn1VOX12Vaxx89Sco/OwVnh3LmkTs/enEzTt6kWP0W2LR6wZ8/UA5vVfSXpyJrp6\nOlw+5MfExUOo10L1kjxp8VAmtvqCgMf3gJI82NCkbA4UF9CyRYJolsVNg0SapRbiM7A5oU8juXnw\nEZ36tCn2dpa8zApJJiSHZ7Bs9zx09FQvzPpeaQip9lw7dg9soShTwNmzEtXqVgHAzMYY8XgqFBuu\ngzqMp6VnZ/wDb/Ew6Db7L2ymjWUrTPVMqdtZlWd7Zu82CvPzgRLP7JsoFSKmNZIIfHqOfqOnoVcn\nk4RbeoiiiCAIHNl4DhOvQhwaGGJb2QrbylZM+WYsv8zZQRXbqly8d5ydZ9azaMJ6tfdMkSVBEATM\nrE0AEEUlpkYWLJ7wq3rdokIF62bsw6SlEZZ2ZhANskJ9BKkEY/OSsPIe3gM5r/MIM4kNgeFPeHIt\nHgd9N41rMDY3RCKVkJaUgYmBKYnh6fgfOs2iXZ8ikUqIiA8lNTOZnvW7U6OKB/q6hpz2O4if/xUA\nEmNSKjR+G7g357K/LwFhjzU8huWx3fdnHr70Y2S3adhbOqEr12PN/m/LGKtvw744lzg6IRxXB1Ux\nNolEovbsy8ppS1S6eNHrjY336fjwWnZq/6/p0Xww/i9vce/FNXaf3cDsEcvU+bIfgo2Fgzrnt7Kt\nK0GRz9h/cYva+BUECaV/FqA4cqIUH6qPKCoRBIFlU7YglWi+/rwZAvzmBkaHRr3wcmvC/cCbPA6+\nyxfrx9O3zUiNvOas3AyNqulvYmxoWiyXibnJu/PHS1PVsQarpv9Odl4WRUWFmBqZM3ftGKoWe8vj\nkqPwvbVfIy/Y2b46z8Me4ntzH5P7fcmTkLu8CHvEwK9aaMw9b/04mnu0Z8bgbzWuxdpc29dZixYt\n/31ojV8t/wiO7FjHo9tX8Wzaht7DJ2kcO3dkJzfPHad6HS+GfjznL1sz7OUztv+0iFnLNmJgZPIf\nzfXj11NJT0kCQCbXwdzKBu82XWjQosP/uS7/dtKSE/hp/nTGz16CQ5WKjbHXVHK1RSIt8VaZ25gS\n/ESVjxcVEkdhQRF1mrhVdDoAjx+cKGXoQuizKOIjErly5BZyHZ3iF3EV8ZFJ6OrpUFSooHo9Z/W4\nnqEuFnaGKMnUmNs/IpVcN9WLrohArrkcc8UdVp5ugY+XI9XrOXPn3GONc3Kyszi2cwO2CQ6k5Bfx\nUeNZCIKARCqlUFEZQZlLQmQSVTycyat0mVun9Hj1LAqPZu6Yu8lRikoqWZfo5mBVGQerynRvPogN\nR5YRHhXER6O+JCwxRKVXOQZQUOQztWELIJEJ2MsNaNdjIADGFvrkFIns+Gk5yQlhBPrLEZFxxT+a\nG4tmq+ctzCtCGZSLbbQeBplW7N/wA2Mmz0cmlaMsFJHKJCyaVuKJqowxGxfMAqBdzyHcP5tKYa4S\nS694Fk4ZDIBdpimxCgUHtvzEgLEzADA0NsXIxBwhV8GXo3/gs0vzSI1NqvCZV7auzqE1t5k4ZxQ2\nlVShsUlpcejKdenWbIBaLi4lCmSq+1OQV7Fx2r5RL1wc3Vn2x2zmjliuUUjqTQLCHtPaqxtN66gq\nehcU5hOXEqURkv4uXOzdqGTjzNGrf9Csbvtyq11/CI7Wztx8ckGjqNmL8EfIpHLsLEoKcb0O2e7T\neiSLt87g8gNfvNyaIJfKUSqVf3p9iURCfkGe+rOJoRmpmZrPLywuGBszTYPsQ/RxsXdHFEVSM1Pw\nqNrgg3W0NLWhU2MfOjX24fCVHZy8sU/D+I2MD6Wmc9ley6+xs6iEga4hUQmvcHpjE+99eV3ILiYp\ngpDoAAZ3nAhAfqHq3kkEzfxviUSq/vme0v9r8kv1703JSGLR1k+YMegbdeG310TEh+Jdu82f0lGL\nFi1a/slojV8t/xhMzC15/sCPrgNGo6OryvdTKhQ8vn0NU/MP2yX/O2jVtR+NWnakID+Ph7evcGL3\nJnT1DajToNnfrdq/mtchw66xUUgz8lHo5Wkcf7OasiCAqPyw/uXSN+wGUVTSslcDwiNP0mf0FCo5\nl+RnWtiaEhuW+N5zZ+crND6nUw1TXmGavoZrD6WkZOSjFBVce3iWsLggRLEqfhdPUqupNRnSHPRN\nbJi97iMS46J4cvcGTzOf0cy7Cz3bdkPPWM7eyptw8RKoZVCLF3dCOflHMHY1m2Nv5UR+YR47fNfQ\n1KMdNub2pGWmEBD2mOpOtdAzMMTazA5BEEjOSMRQZkBRKc9aSkYSW06spkuTfgRHvUApKjCxscbc\nyhYAFwd34okCXSkNO3bh3vGL6Lkl4dndg0Htx/Iq9iUBYY9IfhhMWnoMHp3as+v8RppZuvH7z0vw\n7N2FzKJkKDRn9KzFmJiYIJPKWfb7bAqTstCPF7ly8BVxEak0nGBLzstkPJu0QdfZkj/++B0wo3VX\nldH8+joL8kUU6TE8CbxLhiIJSYHmRlJmajZKhRIzKxMMdGujSLvPr1/t5tevdgOq4kuIEoZ6fMr4\n5X1I0gnmeag/+qg8diYWhtx+dpk/zqznm7GqVjGl6dTYB4rb0swZsUxtAP+8T1XBe/rABYAq7/r2\n88s0rtUSqVTGvgubKSws0Jjrj9PrCI56zjfjyo+QEASBqf2/ZuHmaXyxfjz92o6mkrUzSlFBQPhj\nktMTkAjvbxB3adKPkzf28tvRFXRvPpD4lBh2nl5H16b90dXRIz4lhrN3DtOoZkssTKyJT4khPC6E\nzt6q3F1rc3sKivJ5FHQbFwd3dOV66OroVbheelYqCqWCwqICgqOec8X/lHozAMCjakO2nviRu8+v\n4mBdhbO3D5OcFq82fv+MPg7WlWnl2ZlfDixidLfpuDi6k5WTwbPQB9haONCkTttydQXYfPwH6rs1\nxd66Mrl52fi/9NNIH8gvyCMkOoChnT6ucA6JRIJHtUa8CHuk0bs7Nz+HuOQoAJSikqS0eF7FvMTI\nwEQdxn3zyQWMDcywNrcjIi6ELcd/oFGtVuooA0drZ+wsK7Hx6ApGdZuGsYEpd55f4XHwHeaMULUo\nezNPWU9Xv3i8ksZ3OSE1hpSMxLdu4GjRokXLvxWt8avlH4OtY2Uy01N59sAPr6ZtAHj51B+ZXE6V\najXJyS7xqIlKJVfPHObB9QtkZ2VgaWNP2x6DqFFPlbf12ns4YNyn3L9+noiQQMwsrenSfxRVa9Yl\nLTmB7T+pWkqsmKNqm1PPuxUu7nU4c3AHny1Zj0xeEjZ4aOsa8vPzGDJpVoX66+rpYWSqCnlr13MQ\nzx7cIvDRPSo5V+OnBZ8wftZiDU/m/RsXuHB0D2NnLixXF5+Rk1XXKopcOLqb+zcuIggC9bxb0tFn\nGEKxdyY3J4szB3YQ+Pg+RUUFOLm606X/KGwcVF6kh7cu47tvK4Mnfs7pA9tJS07EsUpVeg2fhLmV\n5st7aW5dOMlDvyukJsWjp29AtdqedOozHD0Dww+a98a5Y9y6cJKC/DxqejZ+65oAP82fDsBvy78E\nIEFmS7R+J1wAhSgSFR3DklkTkIkK0iIdMTUveaETRZGIkECSE2JZMmMEJma2SGUSnvq9xL7K+xeZ\ncanpRMyrBHRMFFjZm2JXfG58dAR7Nm4g7GUggmDBnrWbmLhgOnr6BuTl5JMSn83rlMPwoBeEB73A\n2NpVY267lCTss10JsDBkz7mNJF/SRdAx4Pj13XT27svxgw8xMDJh7MxvOR3QlaKgAsytrKnhVZOW\nXTsy6XsfjG30EMnl+0/HM6zPR1w5d4SHWb+TbJRDtZ51CD6cy8q5k8nPy0QpF9h8z48YMQFjA1Ma\n1GiOdbohu9YvY+jHcxjUfjx3Tp9EWVCIMj0Tc1RevlaenVEqlcxdNxbxlTkSHGjWoiQXt6VnZ/zY\nzLmIs+inXUHPuDLyAlMMLGXYVbGmSD+L8/67UWYm8Zh4nt4LxqfTSHq3HMbKeZMwzNPBo0EdnlzP\nY+ayiUwe9yntGvTgy/E/8uOiTwkOEMjOCcCoczwpBbUxksmR6+igY6CP0jIbqUxK0INIbBxskAhS\nUuLTSYnJxK5eNpt2LMGljifPHqaTHJemCpcGntwMRK4jw6W2Ezq6chwG59CgZnNa1usEwOldV7l5\n/g5FjQLZfGMxTb1a07PlUM4eP4dUJsWpugMRz58SkxiOQqkZgvuaTt59ENE0gJPS4jRkRnf/hHUH\nl/DVhkkY6hvTo/ngMsZvamaS2iCqiOpOtVkxdTuHruxg87FVpGUloyPTpYp9NYZ2mkSHRr3een5p\nLE1t+PKj1fzuu4aZP4/EUN+IlvU6M6yzypjTlesSmxTBql1fkpGdhpmRBS09O+HTeiQANarUpZN3\nH1bvmU9mTvo7Wx3N+FGVdyuVSLE0taVj4z4M6jBOfbxdw56ExwWz9uASALo06U/j2q3JzE7/j/SZ\n0v9rDl7ayo5Tv5CSkYCRvgnVnGpR5x2eYFFUsun4KpLTE9DXNcCjakNGdZuuPn7n+VWszOyo5VKx\n5xegY2MffjmwiFHdp6u99SHRL1jw2xS1zN7zv7H3/G+0qd+NaQPmA5CakcS2kz+RnpWCmbEVbby6\nahRHk0llfDn6B/44vY6lOz4nLz8XO8tKTOn3lbrI2fty/dE56lXzxkYb9qxFi5b/QrTGr5Z/FF5N\n2/Lw1iW18fvw1iU8m7QhNSleQ87v8ilunj9Bj8FjcajsyuO719n32yomzFmKnZOzWu7i8b107DOM\nboPGcO30YQ5u/ZkZ3/6CibkVA8d/xr7ffmDyVyvRNzBCpqODVCrj9P7tBD6+R+0GTQHIy83hxaO7\n9PtoOh+CTKaDQlGEmaUNVWt44H/rsobx+/DWZeo2boG5tV25urzmyd3reLftytiZC4mLCufgtjXY\nV3bFo2FzAI7uWE9SQiyDJ36OnoEhF4/vZefapUxd8CPy4nkURUVcP3uU3sMnIZPLObJjPSf3bGL4\n1C8q1F8QBLr0H4m5lQ1pKUmc2reNU/u20mf0VLXMu+Z9dv8WF4/vpeuAj3Bxq8Uz/9vcOHcMfQPD\nipZl3OwlbFr+JcOmzGP84UiiM0qMAj1lLkWihCsmnVnfvxqrPtmAqCz5NXbx+F7iIsMwNjVn8ldf\nEvXqJS/v/sGuVUeR68io2aAqmWnZvHoeScfBLcpbHoCeY9szf8hqDCxMiAlNQk83kYiXUfy+egvN\ne1dh4rwl7NY9xYPzL9gkW03v0WM4tP4MYqkoyyrVayKT6+BmlE+QXEpuocoDLE0rIDLKnmHdBuCQ\nlcm2mANMXTYC786exEa+4ojiPs7V6iJIJOzfdJqFI9ewatpmhs7siYOLLZ91Wc2j6wEEFamq/Z5c\nf4VmnXtTu3EdEOH4lquYWr1i+JQZ6OrrExrwBN99W5k2eR2uNTwAVZrB67s6oP0Y5NF55GRnkp9c\nlcjgWL6dsF59HeN7f868JbN4VRSBY5WSgkl6xV69dbMPYWJuxLznY4l4ZIJZRC0ig2KRSA1obObD\nsZA9/LD9B6xsSzYpZDIZ0a+C+WLC93xxbiUtmvrQrkEbALJTMwi9JkGqMGfp1smYW6u8rnt/W8Xj\nO7eQ3IcWxl4keJmxc9VRTCyNMDIzpOCmHVXcTWjQzgWZTEbvEZOZ67eCdfN2MuizbszfNh2j4Kq0\n7d9SXbF7+MCP2HJiNYP6DkcqkWJuZYKVhTUrflil8X2QBDgQkBGKrr4O7Rr0oF2DHupjNuYOHFzq\npyFfu0pDTKVVcK+sKn5W+n6qzrEv49Et3S8ZUBs978Leyokp/b58q0xpHUVRZM6q6QzuNrKs3i5e\nfD9lS7lzmBlbMnv4sreuM9FnDhN93p6aUse1QZl1y0MmlTG+9yzG9y5/w/HP6iOTyhjUYXyFhnlF\n+o3r9Xk50iWcuLGHge9RqdvLrQk2ZvZce3iWNvW7vnXN0nRvPojuzQe9VcbBqrK6xdn7UN53t7Co\ngDN+h/i0VP6vFi1atPw3oTV+tfyj8GjUnHOH/yA5IRZdXX2CXzyi68CPuHRin4bcrfMnaNa+Bx6N\nVAZM2x4DCQ9+wc0LJ+hbyjhr0rYb7h6qHf12vQbz6PZV4qLCqFythtoAMzQ20ciz9WjUHP9bl9XG\n75O719HV08etjtd7XYNSoeDxnWskxETQsKUq57d+s3Yc3/UbnfuNQCbXITEumqhXQfQcOgGJRFKh\nLgDW9pVoW5xnaWnrwIObF3kV+BSPhs1JTogl8Ml9Rs9YQJXqqsInfUZN4cevpvDk7nXqN1eF1imV\nCroNGqM2QJq278Gxnb9q5HS+SZN23dT/NrO0oaPPUPZsXInPyMlqr/O75vW75Es979bq+9CqSx/C\nXj4jJTGu7ILFGBoZA2BgaERYpoAolBSiUQoSUiVmBGXrUbVmPcwsrMlKV0UEFOTn4XfxJG51OxF4\nLxpzKxvMrWzoNiqYO2eCOfzrWTbFpWFqZUyrXo001kxLTuC7T0dpjDl5Sol7qcvGr04AJzE210Wq\nX0ifUVPQ1dNn0qLR/DzrN24efcmjS2voOrw1MWHh5OWnqecwNjVDmZnI0r4erDgTiAwF5pVyMDCr\nzoWvd6BroMOAqV3VxbaSE1StRQyMVd8BQRD4ZPUIvh4xj1Wf/IqiQMDARI+6zWrh2UrlUXaqWp19\ngdshsHhRHaAhzPhxmloPWaoJT+/fVBu/H0oD66aEHcjB2NS8QhljqyL6T2/KoyvBnNh2CalUgl0V\na4zN9bl4bA89h05AR1ePWxdPkpGWQlaG6j61G9CUSwf86DayDQDXT58hK0kPyOWLAZpGaJ/JnWnt\n05jE2CiOHdxOimUMq7/KQpEmpY63G5OXDmPl1i/Jyc6kj3Qqs9dNYMvi/SwZvQ5Doxo069SI4bNK\n2hV5uTelS1IEyekJb/Vy3fR9QP8pXSs8/ia7Tm6jS8ue6rDSvPxcthz6lVdRIUQnROJR3ZN5ExZq\nnCOKIqeuHePczVMkpSZibWFD/05DaObVSi1TWFTIoXN7ufHgMqkZKTjaOjGsxxg83DTzNZPTkth9\ncjsPA+6TX5CPrZUdEwZMw825BoIg0LfjIHad3IZXzYYV/vxreX/Ss1JoWqctLYojCN7FxD5zeBXz\n8n9Zqz9HYmoc/dqOpoZzvXcLa9GiRcu/EK3xq+Ufhb6BETXqNcL/1mX09A1wrl4LUwvNfN/83Bwy\n01NxctUsYlS5ag2CnvlrjNk6lvTAfP3inp2V8VYd6jdvz8bv55KRmoyJuSUPb12mXpNWSN5MDH2D\ni8f3cvnkARRFRUhlMpp16EnD4oJX7vUa4rtvKy8e3sGjUQv8b17CsUpVdWjy27BxqKzx2djUnOxM\n1TUkxUUjCAKVXEtyUvX0DbBxqExiXEnIpFQm1/C8GZuZoygqIi8nG31Do3LXfRX4lOtnj5IYF01+\nbg5KpRJFURFZGWkYm1m817xJcTHUb9ZOY95KLtXfavyWxsFMn+i0kgIt0tq6BBjUx9FMZVR0HF6H\ngEd3AUiMi6aosJCElPOYu6I2ZpVKBZaVrVmweXGZ+a0dLZm4vDlP7t1g2MdzNY7l5mazafmXjPpk\nKs5utTlzcAcx4RJ09VRr6xnoMvOnSSyZMYJBE0biXrchFpUzeO5/Wz3Hwj8+Y/VXk2lgmsWNue3Y\nb/UIQXCk/9ipVES1pom07V8SgmlmYcq3278BYOf67/Fo2JA23QeQlpwAQO/x7RllO1wtf//ZbX47\nsJamZtXJykgl5J4uOjoKdUG20hQpipCVqgD8uh/xm3h3qMOzR/s0UgFqNa7O7mc/asi51Lahz7iB\nGmMxEaEc+2MDy2ePQ5BIcHX3oFotT15X8m3VuzFHfztPwP0Q3DydCQn0Y8zilnTso+kJLY2tY2UK\nJCKPd37P1BX9qF+/ufqYIJGgLHbBWzmYM3vdhArnATS8af2ndC1j5D648gyJRIJ3p/czBuKSYngU\n6M+EASWbDwqlAh25Ll1a9uTeU79yC0P5Xj3KgbO7mThwGi6VqvEy7AUb9v2MkYExdd1VG287T2zl\nzuNbTBg4FTsrBx48v8uKLd+yZMYPONmpqn1nZKUzf80s6rp5MXf8N5gYmhCXFIuRobF6rYa1vflt\n/1qeBj0uYzhr+XBMjSzwaT3iveXf7PP8T8LBurJG72gtWrRo+W9Da/xq+dt4XcgoJi2Xjoo4aliq\njEuvpm05smMdOrp6tOkx4B2zaCKg6cWQljJY1a093lGR1K5SFeydXHjod4Ua9RoRExGqEepbEU3a\ndad+07bIdXQwMjXX8KhIpTLqNm6p8ijXb8rjO9do+57XJi3H6BbF96mqWrJ+6d6dpY9UNE9aciK7\n1i+jfrP2tOk+AANDI2Ijwzi49WeNdiMfOu+HMquzO/OK2wQBKJGgL5cyq7OqtYsglKz1+rkOmTSr\nTIG0d21cSKUyLGw0+4PmvGOTRIMKvGeGxia4ezTA/9ZlLG0cCHxy/61545Y2Ku9jUnwM9k6qarCC\nRKLWrXSrmtfo6OhiZlLikY0MCgCgTScfTExtWXprBy36WpCWl8jgmT2ZMXIOF4L9SM5Jw+6uJ/Vr\nN+ZGmD+JWSmcntsPG0s7fNoNoEVxGDLAngu7iZLnkZeTjbGpOV/99DnVnd2RSqRcun0OmUyGjpCn\nUTX6pv81Dp3fQ3xSHDpyHZxqVmHSgOnY2joy5+sxZFKI9Y2THLmwnwyvDHZdzMOnqAtZGWnUb9YW\npVLBgbO7uXznPBlZ6TjaOjG420i8ajakoLCA5TtV4Z3Ld34PO6Gee32qOLgQmqiq9D14Zk8AFk1f\nQRUHV0bO7cessV/ToFZjouMjmbl8Mp9/9CW+V48RHBGIjaUdH/WZRO1qJd7xu09usencr2TXyGDJ\nxq9p07gD63av5tcFOzTueWlu+l/DtVJVjeOG+kaM66/K4Q8ODyQlPbnMedfuX6JTs240qaeKZrG1\ntCMoLIBjlw6qjd/r9y8zuNsIPGuoNke6terFk5f++F45ysRBqrSMIxf2Y2floP4MYGOp+d2WyeTU\nq1Gfm/5XtMavFi1atGj5f4XW+NXyt3DEP1rDqMkpKCIgLocj/tH09qyDVCYjJzuTGnUblTlXV98A\nY1NzIkNfaoRxRoQEYG3n+N46SGWqr395Xpj6zdtx49xxcrIzcXJ11/BuVoSBoVEZA+rNOdctmsnd\nq2cpyM/TqAL9Nl3ehpWdI6IoEhUapA57zs/NISEmAs+mrT9ortLERISiKCqic/+RagP35VP/d5xV\nnn4ORIUF4dWspIpqdFjwW895beAplUp8vFTPc8WZQIRc0JNLWdrXQz1eGmv7SkhlctJSknBxr/PB\nur4LKztH/G9dJj8vV+39jQwNRBRFrG0r/t7Vb96OfZt+xNzSBiNjM1zdKw49tqvkjJWdIzfPHad2\n/aZlNhfeh+T4aEBVNA1gw7XFbFg6F+QqA33Xye24W7ugK0rwLDYkrQzNcDWxo++IKTx8cZ91e1Zj\nZW5NDdfaAOjo6iGRSkmMjcLaXlUQ6/Kd8/Rs05fFn6wiJOIlv+xcxcuYYLxoS2JKAr/sWsnI3uOp\nX6sRefm5vAx7gYGRMckJsWRlpJGlL3D3iR9zxi0gJy+HjfvW8PvJrdSrXhNLWweOXNjP6WsnGNd/\nCs6OLly6c56VWxaz/PM1ONo6MX3gp/y8bzUTe03Ey6s5MpkcmVSK363z6BkY8cW0pQAYGRpX+HO1\nx3cHw3qOwdbKngOnd/HzH8tZ8+VmdOQ6xCXF8OOOZXRv7UObxh0Iiw7lj+Pl58OWJiD0Ga6VPtyr\nV1RUiFymozEml+vwMuwFSqWqP21hBZHO5GsAACAASURBVDKBr56rP9976od3vRb8sO07Al49x8LE\nkg7NutChqaZHu1plN87eOPnBemrRokWLFi3/Zj78zaocBEHoIghCoCAIwYIgzC3nuK4gCHuLj98W\nBMG5eLyjIAj3BUF4Uvx3uzfP1fLfyYozgWrD9zVKpagycgSBSV8s55OFP2uEWZamWYee3Lxwgif3\nbpAcH8OlE/uICA6gaYee762DqYU1CAJBT/3JzsygIK+khU6dhs3Jykjj3rVzGobbf4KVrQOVq9bg\n3JGd1PLyRlff4L10eRuWNva4123Iid2/ER78gvjoCA5tX4uunj4eDSsu6PTuee0QRRG/i76kJiXw\n5N4N/C75fvA83m278uj2Ve7fuEByQizXzhwh6h3Gr6GxKTK5DiEvHpOVkUaXGubcmNuOfg0q0aya\nZbmGL4Cunj7NOvTg3OE/8L95iZSEOOIiw7h37Rz3r5//YN3fpG6jFsh1dDmyYx3x0RGEB73gxO5N\n1PRs/NZND9cadTEwNOLKqYPUa9JanS9dHoIg4DPiY1KS4tm88msCHt0jOT6GxLhoHty4SEZaylvP\nBzAq9jhGBAeQFBeN776t6hBpgO6tfKhkaouhXA8LU0tsLGxxt3bBVNcIW0s7OrfoTv2ajbj58Fpp\nxTA0NiUiNFA95OJYlR4teyPkFVDNxhkDZARFviQuMozIqBBEUaRJ3eYkhr1CkZlNg+r1iQ5+ye9r\nlmBpY49CqWTy0E+p4uBCTdfaDOo4hNisZKrWU214nbh8GJ/2A2jm1RI9QUYliTGO1pU4dGY3QU/9\nueF7SHV/q9fGzMQcIwMjpIKE/JwcTMwsMDMxx8zEXCOs+016tu2HV82GOFg7MrDrcNIz04iMU3mO\nz9w4iZNdFYb2GI2DTSWaebWiTeN39+1OSk3A3NTinXJvUte9Phf8TvOq+N4FhQdw9e4FCgoLyMnL\nQRAE6rp7cfLKEeKSYlAqlfi/uIf/87ukZqYCqg2jxNQETl87hpNdFb6Y8C0dm3djx9FNXPQ7o7Ge\nuYkFianv37JLixYtWrRo+W/gP/b8CoIgBdYCHYEo4K4gCMdEUXxeSmwskCqKYjVBEAYDy4BBQBLQ\nUxTFGEEQ6gBngPd33Wn51xJTKo+zvPHXnrWK8G7Thfz8XM4f3klWZjpWtg4MHP8ZdpWqvLcOJmYW\ntOnen4vH93Js10bqNW6pbi+kq6dP7fpNef7wNrXrN3nvOd+FV7O2hAe/wKuppkH9Nl3eRe8Rkzhz\nYAd7fl2pbnU0bMo8daXnP4OtYxW69B/FjXPHuHRiL04ubnTqM5wDW376oHnqNGhGalICF4/tpbAg\nH/e6DWjarhsP/a5UeI5EKqXrgNFcOXWQK74HqFytBqNnLHiv9dr2GIihsSk3L5zg5N7N6OrpY1fJ\nmWYfsClSEXIdXYZPmceZA9vZtOJLZDId3Os2oMuA0W89TxAEPJu04bLvAbzewxvv6FyNiXOWcu3s\nEU7t30pWRhpyuQ62jpVp13NQmRzqN6np5c2ll7fYue57ZHIdPJu0xqNRC15FBgHg6lSNZ6HhanmF\nQsHTuCDCU2O48NUQihRFFBUVqkNrX2NuacOz+7fo1FeV21jZwZmYiBB1my6pXCQ8PIgN38/Fo3EL\narjU4tNlk6hkbk9RYgo6uYWYm1hS17slsWST8bQIc5MSIzEjKhoEMLKxIj0zjaycTNxdVNEMUpmM\nV4FPyUtI5EFcFGJINE5V3bj/KByJULIZEPD4HnJdXQyMjHkfKts7q/9tUWywZmSpWunEJEThWlnT\ng1utsvs75ywoKkAuK3/T7m0M7DKMjOx0vvzpM0BlnLZq1J6TV44gKQ6rH9v3Yzbs+5lPv5+EIAg4\nWDvSqmE7/B5dV88jiiJuzjUZ0EWVM+3s6Ep0fCRnb/jSrklntZyOXBeFoqhM3rcWLVq0aNHy38xf\n8T9eYyBYFMVQAEEQ9gC9gdLGb2/gm+J/HwB+EQRBEEWxdBzlM0BfEARdURTz/wK9tPyDebOQ0XV9\nVcGa14WM3uRNQ1CQSGjdtR+tu/YrV97M0oYFa/eUGX9z7G1zZGWkUrt+U3R09Sq+kGJmLPrlnTIA\nmempWNjYqUOU36VLeUbfm/dC38DorYayZ9M2eBa3jnqNs1vtcu9PabzbdsW7rWao5OsK2B8yb8vO\nPrTs7KMx1qb72/Od6zdvp65U/ZryrrFN9wEacwmCgHebLni36fLW+d82x2sMjEzKXIutY2VGfvL1\nB8+VmZ6Kq3sdzCzf3uP4NRY2dvQePumtMmaWNtQbt4oBuwOJSQvAwUyfWZ3dsSv+vs77YZuGfHR8\nJNeXT0ZPR0/jXh4+v4+I7ERGDfgYJ7sq6Oro8vuxLRQVFWqcb2hiimm+nCd3VYaWVCLVeN4//b4c\nhVLBZ6PmAeCjVBIUHsDjQH/uP7tDVGoCE6bNwdHWiV0nNHUDaNWlL1uu7kYiK/vfkqm5FaM/XYD0\n2GaCwgOZPm050fGRHHl0TkPO76IvNsVh2e+DptGnMjCV/2G+urGhCdm5WR98np6uPlOHzmTSwOmk\nZ6VjbmLBqWvHMDYwxkBfVQ3ezMScOeMWUFBYQFZOJhamlmw7slGd0yuRSDA1MsPRVrOQnqOtE1fv\nXdQYy8rJxFDfUGv4atGiRYuW/1f8FWHPjkBkqc9RlPXeqmVEUSwC0gHLN2T6AQ+0hu//D2Z1dkdf\nrlmEqHQho7+T3JwsAh/fI+TFY5q0ff/2Jm+jIC+PhJhIbl8+jXebv2ZOLf988nJziAx9yeM718ps\nJPynvM6bj07LRQSi03KZd+gJd1+VLab0NgJfPadRnSa0qN+GKg4u2FjYEZsYXa5sjyHjNIpavQ2J\nRIK7Sy0GdBnGd5+uxtDASMNDmZiaQFpGqvpzULgq5cHRphKmxmYYGxgT+OrFG7q+oFKxYScr9q6+\nNlazM9Op5eWNpbX9O4vavQ8ONpUIjQjSGAuJeHd7GmcHV6LiI98pVxEymRxLMysEQeDWw+s0qO1d\nRkZHroOFqSUFhQXcfXKLhqVk3FxqEpug+fxiE6OxMrfWGIuMC8fZsSpatGjRokXL/yf+kpzf/xRB\nEGqjCoWe+BaZCYIg3BME4V5iojZP6d+Oj5cjS/t64Gimj4DK41tRIaP/azYsncuh7Wtp12vwe7Ui\neh98921h47J5VHZ1U7c/0vLvY0JjZ+5feP/c5z0bVrDj58V4Nm2DW536f4kON0/sZ1rrWuXmzecW\nKjj6KOaD5rO3duBRoD8vwwKIjo9k04G1pGaklCtr61gFzyaaodtJMZFMaOxMbnxJXvGL0GccubCf\nkMggklIT+Lx7YzKfPsfRtqSFilwmZ93u1YTHvCIg9BlbD/9KI4+mWJmrvOM92vThyIX9+D26Tkxi\nNLtObONVVDDdW6uiCAKvXcL4xjMeBtwnPTMNQS6necdeWFvYEB7zitjEGDKy0lEoNO/R+5Jz2584\nv9vs9t1BTGI0tx5e49Kd4tzxt7TGrVejPkFhAWWKbEXGhRMWHUpWbha5+bmERYcSHvNK4/j1B5eJ\nS4ohKDyA1duXkpASpw5fBtVGxd0nt7h66iBfDGjLkg1foyPXVd8TgB6tfXgW8pjjlw4RlxTDjQdX\nOHfzFJ2ad9fQJyD0eZnQdi1atGjRouW/nb8i3ikaKG0hVCoeK08mShAEGWAKJAMIglAJOAyMFEUx\npKJFRFHcCGwEaNiw4fu5HrT8o/HxcvxHGLtv8r4hzB+Cz8jJ753Dq+X/nq0LZ3Lr5EH1Z0NTc1zr\neNH/ky+wd66mHl/hewcDE9P3nre8sPWtC2eSlZbKtNXvrhz8NirKm0/NLsCq3CPl07/zUJLTkliy\n4Wv0dPRo690R77rNSS2nHc/7YqhvyPPgJ/hePUpuXg4W3h74NO+KwsoC7z8+Z7pZbRysHalfuzHf\n//YNWTlZeNVswIQBUwm8f4tVHw8BVP9BbTnnVzIvsPBKS0bPX4FMJkMmk3Hm+kn2+P5OXTdP5k1Y\nSMdm3Qh89YK5P3xCfkGeutVRaYKOrSujc0CKqi92flEhUcEBBN6+zrilq9l/fi++V45QCUOsYpMp\nCA5kdnsvZq7fjXupNACAhKhw7v++HcWtG0y7UJu6zdsx5PNvMLG0ZvGvX5GemYYkKxe9V3Es2XUA\nBIFWPQYyYMZXKJVKjl08SGxiDLKMLPQCX6En6vDttbZUqeFBnymzyZeJ7D65nYSUePRTEzC8cJwJ\nk79AT7ckXcTdpRafjpzLvtM72Xf6D6zNbRjW8yPaeXdSy8QnxxEWHcKsMV8BkB0XxonR1en48y0s\n3Br+6ef+byTuwQWufNGFPgcS0TEy+7vVITMmGN8xNem09i7mVT3/bnX+T4m9d4arX/Wg7+FU5Prl\n95//3+bcjOZY126O5/jlf8v6N5cOQ1QU0fyrve+UVRTkcaCXMS0XHsHBu/s75f8sioJ8To2vQ9N5\nf2BZo2wkyt/N/XWfIJXr4Tl+2d+tipZ/CX+F8XsXqC4IggsqI3cwMPQNmWPAKOAW0B+4KIqiKAiC\nGXASmCuK4o2/QBctWrT8P2bqhQ3sDbjG0Jqt+andeI1j397cwxr/E3Ss4smuHp+XObdm4xaM+eYH\nANKSEjj483esnz2Rb/ddUMuYWr1fzm5p6u+YwViPjkzx+mtfTt7Mm3+NnkUd9sydXmbc0daJPauO\ns/zOQY5fXs+1Iao+uSZGpswaW3EeM8AnI2ZrfF78ycoyMoO7jcS5Vl1urxxDfkYyX3x7tIxMp/3z\n+bRhL5TBoQAU2duS5FWTBvvXEp4ZSD/DfD7x7MoK3zvqcw6vX8GLgEf4tXEnMiMJJxMrkqrZYxUc\ni0wqY838rYiiyIq7h6izdSrp+dnUt6vKsoGrqWFZkv/beMg4vn5ximfXNlCUl0Xogm3ompRk39S1\ndUWvQwdu5ScQcuIE9dt2pUXj9rRo3B6AW76HuH79NIK8EJ5ohkODqsXYj9NG4FjVnbbTZxIUHkBR\nQg6/zBzH3C2H2fDN76QlxvPNkE40aN+TjkPHkZedxd4fvmXbt58z6fv1LP98DXk52czr1YxaTdrT\nY8JMEGHX/ImsHNeHVeef8MPcXwG4uG87J1fPw7ic4oCNPJrSyKNpmXGA2yvHcD4xkQ5Ne2Bq/L9n\n7OWlxnNsuDONP/0N5w7Dyxx/tHke4Zf20HNHyDsrmP9vYu3Rkl67IpEbvv+m1p9BqShif/e3F3J0\n6fwRNQfNfqvMnyE3OYbjI1zxnrWNKm0Hlznuv3EWUdcP02Pby7/1WdjUa0uvXZHI9Az/V+ZXFOTz\n8vBPhF/eQ1ZMMFIdfYwrueHSaTTOHUYglf/5IpF/FQ2nr4P3TC35vyLo+DqMndw1DN+nvy8k7v45\n0l49RlQqGXC8bJ2D2HtnePr7QjLCnyMzMMG102jqjPxG4zsWdmEnAftXkhUbgp6ZLW59puHmU/b/\nL4B4/4tc+bIrZlU96bTmtnq81qA5+I6rjZvPVAys/5poPS3/3fzHv+WKc3inoqrU/ALYJ4riM0EQ\nvhUEoVex2GbAUhCEYOAz4HU7pKlANWC+IAgPi/98+NulFi1atBTjaGTJ0eDbZBeWtIsqUirYG3iN\nSkZvlhooQSbXwdTKBlMrG6rUqEOHIWOJCwvRaDv1Zthz6FN/Fo3ozuQWbiwa3o0nNy4xobEzgfdv\n/Wn9c7Iy+P27eczs3IBpbWqzYuJAwp4/pkBRpCE30i6RFn4LaX/5Exo++BH93CSNvPkrh3byZd/W\nfNysOl/2bc21I7vV51pfe8RP00eqP187socJjZ25c/aYemzZ+P6c3LwGgJT4GNZ+Po4ZHeoxpWUN\nvh7QTkO2NKIocud5FPN6tyA+QhXWO693czatW0JQagy9q5VUT78Z84IWjrWoZemET7UmdKhSj4/O\nreV5QYr6WaQp8gnKiKe3VwdOf7SS3l4dmHBxI2HpqjDrF3duML1PMwJnzKLn5RD2t5yElb4J/Y99\nT1ZBLo+unWfxyB4ETp+J66ZjDIgUKRSkGobva4bWbMXWx+e5d/4EdVu259S1Y4REBhGfHEehjRkB\nkgyav1G87TXBj+6RHBPJ6PkrGdB/PHW8mjF03neEv3hMwL2bADy+fgFBkDBs9mLsqlTFuVY9hs1d\nwoOLp0iIDAMgLiyE7Ix0+kxRRR3Yu1SjiXd9ChUiceGh6vXqtepApkKHlKSkcvWpCFEUMRQE+nUa\n8kHnfSh65rY4eHfn1dltZY4pFUWEnf8Dl06j/lZjC0Aq10Hfwg5BKD+WXVQqUf7J0PnSSKQyeu2K\nVP9pMG0tgkSqMeY1oeym0l+BvqUD9o26lP8sigoJv7AT186j/6ufhaIgj0tzOxJwYBVVu42n/Q9X\n6fjzLdx6TyXE9zdSgx/8ab0VhQV/+tw30TE0/UdEILxGVCoJPrYO184faYwriwpxatWf6j3Lj2hL\nDrzLtQU+ODbtRad192gyezsRV/fzdMc3apmoG0e488M4qveeQpdfH+I16Qee7/6ekFOby8yXl5bI\nndXjsfEs2+1A39IBa49WhPhu+s8uVsv/G/6S33SiKPqKougmimJVURSXFI/NF0XxWPG/80RRHCCK\nYjVRFBu/rgwtiuJiURQNRVH0LPUn4W1radGiRcvbqGXphKupLUeDS3aGz4U9RE+qQzNHzSrbSlHJ\nqruHORZyh/PhD2m1ey6nQu+Tl53F3fMnsHGphuPmcRwPuUP/oypP6VfXf+dy5BPycrL55bOx2FZ2\nxXD6BE67GfPdwikAbH+mqqzb+/BiIjOT+ObmbqzXDsd6bYkH7E7sS3odXkzlDWPw2DaNWZe3kpGf\nzZpPx5CaGEdYr+bIp44h1sqQb8f3odeOOQBcj3pOXn4uF/cu5mm7Ktzu3A5BVNLw+Sa+61MHHy9H\n/C+dZveKBbQfPIZvdp+h/aCP2Lnsax5dU+Ws5jjZEPz4PoqiIpbfOcgvh9YjNzbm+z2rcd44jpFH\nlhP2/BFuDVSG6q5lXxORHMuzXk0407MeF2pbsjW4pHjVa4qKCrns94z4lGzmbDqIbWUXbq8cQ15q\nAqEPzvPNmcOcGuxIzN1TiEol37UcSZNLR8gNuEvC2e1Unj+In4/t4fyD0wCkhz8n/u4pqqYk4rri\nY5I3zOFjV2+aO9bkcuQTCvJy2b1gInl2RXjb5FAY8oxz82cw4PjvZBXmsenQRjbPn0HbASPpWtea\nzg1roHjygh4X7nNqomZIaejZbRQtGcnUvdvIzcqkKOwO0fFRrNyymM+WTmDnnh/o2rI3Pu1V1bwv\nze5AxOWS0MT762cCqpZYMqmMvh0HYWRsgiCRcGPr91z5sjtFBQWqtk1nt7G3i5yIy3vV1eSPze3H\ns13fYVfFFQNDQzaNaERhQT5Bvpu5vG8LepIibn7agL1d5Lw6ux1LO0d0BAUhzx5zY/FgDvQ25cRo\nN8Iu7KzwZ+Pp798SfuEP7B+ewrefJXu7yEl4VNJ2LDshgsvzunCgtwmnJtQl7oFmf+z08Odc/boX\nB/uYc2SQA7eWDic3Ja7C9Vw7jyHhyVWyYkM1xmPv+JKXFo9rp9EAZEYHcW1BH44MduSgjxlnpzYm\n9u5pjXOODXfm2a7v8FsxmoM+Zhwf4UrktYMUZKZyc8kQDvqY4Tu2NvH+JVWt4x5cYG8XOTG3fTn9\ncX329zTi7LQmpAb7l5EpyEoDIOTUZg71syLa7wSnJtRjfw8DsmKC1Md8x3uwv6cRvmNr8/LImvcu\nAAegb2Gn/qNT7GkuPSY3NFHLZseFcWlup+JnUY/4h5c05koLe8qVr3pw0MdM9SyWjSAvNb7CtV27\njCHh0SWyEyI0xqP9jlOQmYxLp1EAZEQGcG2BT8mzmOZN3H3NqupHh1Ti+Z5l+C0bqXoWI6sSdf0w\n+Zkp3Fg8SPUsxtXR+G7F3jvD3i5yYu+e5vQkL/b3NOLcJ81IDX1URqawuFp68MkNHB5oR/StY5ya\nUJf9PQzIjldtqIX4/obvuDqqZzGuDkHH1r71WQTsX0lKwB3aLj9P9Z4fY17VEyN7Vyq3GUSHH29g\nWqW2WlZUKnj42xwO97fh6JBKPN7ypcbcquv/XvVd7GvB3R/GAZAa7M/FWe050MuYwwNsubN6AoU5\nmerzbi4dxo3FgwjYv4qjQ5w43N+Guz9ORFGQX0amRBclL/Yu5+RHNdjf05Bjw114+vu3FV5ndnw4\nNxYP5lA/Kw73t+Hagj5kxZXUFsiKe8XV+b051N+aA71NOTWhLlHXD1c4X9Lzm+QkRmLfSLNgY92P\nFuPedwamLh7lnhdxeS8W1RtQa/BcjB2qYevZlrqjF/Hy6BqK8lURS2EXduLUoh9Vu47DyN4Vx6Y9\nqdF/JgH7VmjMJYoid1aNoVqPSZhX8yp3PccmPTR+H2vR8jb+EQWvtGjRouWvZFitNux6UfLitevF\nFYbUbFXGo7Dx0Rl+8T9JPWsX7GLSqbn2EPuHD2B62zq8fHAbny9UPWy/89vP+LqqnElnE1smnFnL\n1RP7USoVFPRqz9ncCFaMW8jIyV8AKu8zwLauM3AwsuDzhn14OvoXno5W5ZNnFeYy4NgyujjX59Kg\n79jW5ROeJoUzY/N8ol4+Z9LS9RQ52HAo5QVGXTtg7+TK8AJbHiaEsj/wBoJS5JOvV/PH5JVM7dOH\nX7ZtxSAzGveiMADO7vyNJt360G7gKGyruNJu0Gi8u/Tm9A5VyGyOgxWF+fmEPVe9eOpExpHrXZdq\nqUXs7zWH8Kf+KACX2vUACA4L5LZONn1b9eb0+NWsn7yc2k1aadzL/Lwc1n42lszsPDo1roqZta36\nmKIwn/y0eNLHfkuzebtwfXqBEY4OAHh9vBrLmk1w6TSKXrsi+W3ABAxsnMhNjuXirHakS2UoHKvS\nZulpivKyuL6wL20daxOaFo8oirhKYzAtTKHu11vpNmEWMbGJpAU/pKO+OS8O7afT8AnUa9iQ/LB7\nNBv+CTUHD0Man6/xMhtyahNPtn6Nx8hvuNJEFZ4edepXWuuIrF+wnZWDp9Ap5AZ9OwxAWtwaSG5o\nSsJj1XesKC8HadILdPT0OLDmO/Jzc8jPzeHAT9+hVChQ6puT9PwmbvUbk5WWyvn9vyM3sSLy7nkO\nrVXlqaXEhmNTtxV6hkYMGzuauFw5U1vVZOW3S0iV29Giugl9dqs8hE6tBwKgK1EQcv0kjk170nn9\nfSq3GsDd1ePLGDivce//GU6tBmDr1V7tbbSsVRIe/WTbfKr3nkrndfexcGvAraXD1IbI6+dh6lyb\njj/d1HgeFVXXtmvYGX1LB16d3a4xHnp6K7ae7TC0cwagMCcT+8ZdabP0NJ3W3sWxaS+uf9uPzGjN\n8PKXh3/CqlZTlUxzH26vGI3f8pE4NOlBp7V3sazpjd/yURrGBMCjzXPxHL+cjmv8MLB24toCH/UL\n+P+wd9ZRVWVdAP+9R3d3dwpid6LYXWOO3TXG2DN2jd3d7dgtKnZgYoGiiEgJ0l3v++PhwyehTn8z\n97fWW4t77ol97oHH3Wfvs3dJ5Gdn8Hz/AiqPWkPT9UGoGVoSemItT3ZMp1yv6TTd8BjvfnN5tmcu\nr06tl7W7Nb8nJ3u7ltrvtxC0dSoubUfht/oeeg7e3JzbjbysDAAy4iO5NK4heg7labTiFnXnniY3\nLZlrMzqUqgCaVWmGio5xsbUIO7sFkwqNZO6ieZlpmFdrQb15Z2m8KhDzKs24+nPbYhsYIYeWYORV\nh8ar72JerQW3Fn7P7QW9sKzZhsarAtF3rsitBT2LWUUfbpyAz8BFNFpxC1U9U6791LbYen1KXmYq\nwQcWUXnUOpqse4Savhkvjq7k6e7ZePWeRdMNj/HqM5unu2bx+kzpcRTCL+7BrHJTdEtQ1sQKCiip\nF+UGDzu7FSUNHXyXXce7/wKCD/5C5A35YxzBB35Bz6E8fisD8egxjdz0FC5Pbo6qrjG+y29SY/Je\n3j8K4O4Kecto7H1/0mPfUH/BeaqO38bby/sJPbGmVLkfbhhH8MFFuHebTNN1QVSfuBNVfdMS6+Zm\npHJpvC/KWro0+OUSDRdfRklTh8sTm8qe8d1lg0EiocHCizRZ+wDvfvNRVNcusT+AuCfX0bZ2RVFV\nvdQ6JVGQm42CsnyaSAUVNfIy00gq3PAoyM1GrKzyWR1V0qJfyW2qvTi0lPzsTFw7jCl1PH2XyqRF\nvyIjvuRMBQICnyIovwICAv862jvV4NH7MF4lxRCbnsTFt0F0ca1drN6qh6cY6tMcG20jnH2qMHPP\nOZL6tkc8uAdulWuwe8Jw1NKzGeTdBD87abTm9s41SMxO43nIIyzsXYjMTsFBx5TqZi5UrCQdw9dG\nqjTqqWqiIBKjqayKiYYuJhpSd7Y3ye9p41SNIT7NcNA1paKpIwvq9ib48T1ysjIZ41cBo1+24rst\ngMTJs/kQ/hpJQiLvUj+grKiESCymSpW6eBraMKh8U0wsrNE1NCE6TKosRL8JxdFLPnCRo3dl2X2J\nshI2bp68uH+LnLh4FHPymD9uKenx73FS1KFGjhapJrooFp6Be+xogPOjtyQv38CTvbvR/ZDGsAot\n5PrfPG006SnJNK3ng4qyfDgJkUjMfVMLDO08Ma3YCKva7Xn/UGqhU9bQQayojIKKOrsjHxOan00n\n17qEnlyHrr0Xobp6KKpqoGvvRdWxW0gICcToQwypORkoiMVoqCqyy7sKls6VMXevSH5eHhq2Xri8\nDqYgMoZTW1byY4fGBCRZ8POA77m/ajmiAsjOK1ISnu2eg3ffuVjVbo+apj4oKODWeRyhJ9YBYOhR\nk/ycLBJCAmVtrOp0klm24p/dREVRgQGzV/HkRgAj6nkwskE5MtJSsHb1RE3fjPycLFRzk+n90yKe\nPH/D2XBVdhw8j6G5FZra2ohEYvRdqpCTlcXJQ0fRVc5n4ubD/LjhIEbGRtx6k4VYTRs1fVMUCwNc\niUUSNKzcsG3YDS1zRzx7TUekrbaeAwAAIABJREFUoEjc46sl/l0oqWmioKyKWElFZm389Jyjc9sR\nWFRrgZaFE+W+n0VOagJJrx4CyNbDu+9ctK3d5NYj4eXdEscTKyhg59uTsPPbZQpyZkIM0XfPYN+k\nj6yevlMFHJsPQNeuHFoWTnh0m4KOrWcxi5RZ5SY4Nh+IloUTnt2nkZ+ThZali3T+Fk64d51EVmIM\nKRHyKbI8uk3BtIIvuraeVB2zidzMVCIu7y9RZpC6dFYctgJD9xpoWTqjpKbJsz1zKd9/AVa12qFp\naodF9Va4dhxL6PG1snZqBuZomtmX2u+34Np+NOZVmxWuxUyyk+NICgsCIPT4GvSdKuLVexbaVq7o\n2XtTZcwmPjy/JWfV/hSxgiK2jXoQdm6bTEHOiI8k5t45+bVwroRD037o2npKn3OPn9C2cuHd9SNy\n/ZlXbY5D037S37tuU8nPzkDHxgOb+t9J1+K7iWR+iCI1Uj49mGePaZj4NJCuxdjN5KQmEHH1YKnP\noSA3h0ojVmPoXh1tKxcUVNR5tmcuPgN+wbJmGzRN7bCs0RqXdqMJPbG2xD4kEglp0a/Qtv66jQk9\nRx88uk5Cy8IJ2wZdMXCrTuxD+TzZJj6+uLQbhaa5A1rmjoT5b0ciKaDK2M3o2npiUr4+FYet4G3A\nPjLiilKfKesYUmHIMrStXDGv0hSL6q2KWfU/kp2aQOjxNZTvvwA73x5omjtg5FETx+YDSqz/5sJO\nFFQ1qDxyLbp25dC2dqPK6A1kJcUSc+8cIPXuMCpXG127cmia2WNepSmmFRqW+iwy3oejpm/+Vc/t\nU0wrNibuyVXeXjlAQX4+GXERPN0zB4CsQsXWtGIj3l39ldhHAUgkEpLDn/HiyMrCOtEAJLy8R/DB\nRVQdt7VMt3w1A6mM6bFvvllWgf8eQnZ7AQGBfx26qho0s6/E7ueX0VFRp4aFG5Za8jGQ9wS+IiY9\nkWUnEqj2NAZnHRHGVrZU8qiCf/hDVk+ez/D6nti+iMG9Z1GKHl0VaTCWzLwcFIAubrXpeHQ+VXeN\npbaaNHp5wRdcIVNyMjgRcp0jL2/JlVtIQFVXj8kbDzHo3CrMNfWZWkN6NlNVQxOxpgbrVDUpkBQw\n9Pw66tt50cK+MprKZQfS+Yjokxw9LhWqEXzvFpkOpmRaGGGkZ4SdR3lC7t4k91UYsSZSS0hcRjJB\nNlqMWbsJzbBont+5zvx+7WnSazCtBoyW9VeuZn1unjpErKELRp8ZCcSKSuQV5KOqIM3Nq2Zgzofg\nO3J13iTHMv3GHjY0HoaVtiFhL+8T9/gq1VO1yMxX4tc2n5yDi5emcxKJRShbOpKnIM0Z/tGyb1mr\nPR9OrCBEok7L/iNJvbgai6ptcWo1lAvhQZzZPhnlwmeRlRRHRlwEd1cM4d7KYfhkwON8XR5smoyC\nSLqOSmqa6DlV4H3QFfTEUmXRokYrnl/ZROaHaOKCLmPoVo1ytRpQrlYDUpMSUFBQQF1Lh7FNKlG5\nUUvE8dL27nXaU88shXor7nN+YDl823fh/K4NmHg4oqCkzM1T+0hMSKC2bga27tJNlCZ+dVm7dhsP\nAs5SrWlb2WPILRCjZ25T9JwVFFHRMSI76bedHvrUKvbxZTI7SZpaMLFwPeTWoZC0qNcYuFQpsU87\nv+95tm8eMffPY1bJjzf+O1DS0MGieuuieWSm8XTnDKLunCYrIRpJfh75OVnou1T+TD4v2c/KmrqI\nlZTRsfOUlanqmsjJ/BEDt6Jz5koa2uhYu5PyVl5B/hSxkrLcWJkfosn8EEXg0gHcXTZIVl6Qn4dI\nXJSv3rvfvFL7/FZ0vrAW74MCSlyL9OjX6DuVnFbN3q83wfsXEvvgIqYVGvLm/HaUtQywqNZSVic3\nPYUnO2cQffes3FpkfOZN8OnvioqOISKxAjq2X14Lw0/WQllTFy0r1zLXQkFFDR3bIpfkzPh3ZCe9\n5/aiPtwpdDcG6VooKKmU1EUhX++e/rkrr5qBebF56DvLpwlLiQhGz6G8bGMKpJtmSCSkvA2WWdZ1\nbDzklDg1A3NS35WcPzz5zVMK8nIx8Sl+zrUkEl/eJzUiuNjvRV52BmnR0mQqzm2G82DtD0TeOo5J\n+QZY1mxTZlTx/JxMxJ9ZcL8Gi+otKddrJoFLB3JrXg8UlFVx6zKBhOA7svk7thxCeuwbrkxpgSQ/\nDyVNXZxaDubprlkgFpOXlcHNud2pMHgp6kaWZY6nUPg/MD87q8x6AgIgKL8CAgL/5xx5EMnCsyFE\nJWUiNo3Gxlj6tdbVrS7DLqxDQ0mFH6t0KNbm5+NPodAzNyMnj+CYDI48kLpMiUQiEIkQicUo5OWj\n9MkL7kcFS8PcnFfXr+GmZcb9nku4+PYxF47vBeDn67vZU7EaYlHJO9USpK7Zg7ybyJWHOd5m/6RR\niMRi8vV10DAwx9jKVq7O+Mrt2HH2NkaJ6SxLOM7sWwc4UGcwSfGxsrRMZraOhAbdpVbrorNjoY8C\nMbNzkl07V6zGxf3bUM51JtNK+iCcK1Tj8fWLpIaF8cHPW25cdQND6pSvT522XTmzbQ0X9m2RU35r\nte6CtasnexZMoZ6PvMwAakqqJGWnf3yKcu6ZHzJTuZoey8pOm2UWdomkAPMqzTgYGo1FjiKNP0kN\ntT38AVqPpa5zqoUue3EZyXzUuS1rtiV493SUDM0JfxyI3vsXeLc7jqaZLRrZ70FVAfFHT0uJ1CJZ\ncfgqDN2rM/LEChQ3HsVr/D6sHF1kYxp71eV9UAD5itJRFFXU0HepwvugAN4HXca0kp+srpauPgDB\ngTdITfyAdx1fYnPDeR8UgIqOIUYetTCwsMXYrQqXd61CLALPWo0AyMnKLOae//H6U/fi3OwsMgsU\nMbeyRh7RN51D/RSxolLxMQufz8f18C4hnchHRackNM3sMfauR9jZrZhV8iPs7FZsGnRF4RN3x4fr\nxhD7KIDyfeehae6Agqo6t+b3pOAzl1mR4uevLCLECkqfXMrL/FtRUFaTW4OP/VUauRYDV3klX1RW\n0uffwadr8fm8JJICzKu2wKvvnGLtVPVKdokF0LJwwqhcbcLObcXEpwGvz23F1re73Fj3144m/ukN\nvPvOla6Fiho353ajIE9+LeTkK0vmUlzivxYFFfmdtI/9VflhI3qfKfmiUr5vRSIRmmaOpLwN/qox\ni81NJEJSIB9o65vcgD/5XSqx79/5+/oRiaQAfdcqVB1b3P1bRVu6+evUcjDmVZsTHXia2AcX8d+/\nAM8eP5caZVxZ25D0mDe/SR63zuNx7TSOrIRolLX0SXn7nMdbp6JhagdIPUN8Bi7Cu98CshJjUNU1\nJur2SRCJ0DCxJSPuLWlRodyc152b87rL5ohEwv5mqtSbdw5jL+nxm5xUaW56Fd1vSfQn8F9FcHsW\nEBD4v+XIg0gmHnpMZFImEiAjJ5/g6FSOPIikjqUHymJFEjLTaGYvv0u/8GwI2TkKiPLUyFcpjJab\nl8uSo3cIfPkA51wV9v7yEzmZGcRY6Zc4tkWNWojFCuyYM4GUd+9wTMhB785TAB7FhxOWLA0+oyRW\nJP+zlxvtAgVePX+E0vsPso92Ri4NGrTCwasSq8b2R/lVBPkfEnkVdI9j6xfz8oHUUqogFiNWUET9\n3A22eHREHBPHpp9/wNzeGbcqtQBo3H0At04d5tKB7cS+DePivq3cPnMUv54DZTI4elcmLzeXtIeP\nybCUKi8uFatx1/8kIrGYZCOpUmmkrkO1+5GcO3+IuMi3RLx4ypNbl+UUaYC+2wLpdVsHDSMTLt0P\n49lteddbMw1dQhKjiq/hy1s8T46htrkrrRyLFAs9Rx+Sw5+ho21EUn4uWuaOsk9A3CvsCxUuNUUV\njNV1CIh4Imsr0tYj1MgEN2s9Hl67TLS6G8kZuUS/CSXq9i0UwovOe6rqmaBmYE569Gu0zB25pyJB\n08aGqMgYtMyLcjxrOlTi9cPbvLguDcT0PiIckZknoVeOkPDyLsZedbh+fD+vgu7x/l04t04fZt3E\nIfh+1xdTGweMveoS//QGAb/uRGLsRmz4a6Ix4szhwzhqpGJVRar8ulWtRXZ2Ns+T1YgOCyXq1Qv8\nL15HBLhWqiGT5/WTB4iRYGVnV+yZloVYSbnYi/zX8HE9NIxt5NZCy9xR7rxkSdj79SHy1jHe3ThK\nauQLOTdbgLinN7Dz7Yllrbbo2nuhpm9O+idBen4vH4KLgt/lZqSS/PYZWl/pAgtS65yqngnp0WHF\n5q5p7vCHyfm1yNbCxLb4WnwhP669Xx8ibxwh8voR0qNfF1uL+Kc3sGv8PZY126BrVw41fTPSo//A\ntXhetBY56cmkRgSjbfX1a6FuZIWKjiFpJa1FGS7n1vW7EB14mqSwx8XuFeTny862/1a0rVxJfPVQ\n7ix5/NPrIBKhbeVSRsvS0bH1QKSgKBfErSz0HH1Ii3yJqq5JsWfzaQRpDWNrHJsPpOaUfbh1mcir\n06VHSdZzKE9KxNdtGpSESCRCzcAcBWVV3gbsQ9PMQc5DAKRKsLqhBWJFaRBAY6+6KGvooGFqj9/a\nBzRefVf2sWv8Pdo2HjRefVfO+p785ikKKmpoW7l9LoKAQDEEy6+AgMD/LQvPhpCZK/8iXyCRsPBs\nCG18LLjcZQ4SJKgoyO+2RxXmx1VKdSVH5zESxTQMYoIxOCW1ZIrV1Hlj50T7qfM4HH68xLEV1dQY\ntmgjy34ewZ3uTTGysaNG194cmTkJVVU1zDSkSrO1tiG3okLo6FwT5Y9yhL/DYPM7Zm4uOtNoUbU6\nKe18mb10C0fW/kLEqf2kZPiz3mAfDt4VqdasPefePCDw7WMUlBSp0rkHa6YOp1Lce1TdPBk8e4XM\nWuVTz4/vxv7MuV0b2Ld4BgZmFnT7cSbetX05e+dXAFTVNbBx8yT8VTBZxtIXI3tPH8QKYrQcHZEo\nFO2N+hjb8Wr3XqZs3IGqhiaW3hUQN/MF4NxTqZIfKbqLhBaINLTQ0UtnxZj+DF+0QdaHg545F6NC\nADh//grhr5PJenmTIf5rmW/nhXpUGG/CglBQ1UBDxwinloN5fXoTdklveZKZzcrz66muokvQuS0E\nGusxx6om15BGoR3o3YSl946hZ1oTgIlXtpNu60rH4CDUzVR4J9Jm9vetEIkVUDQyRKIiJjsvh8dx\n4djpmODRfRoP1owiTUGR/JhwqtVtwJX9mzEXxePeRRplO/JDBrfitSFeusGxY440Y5+dehpOOoro\nu1QhNmAxh1ctID0lGQMzS5r1HoZv176A1AWyIC+H8JBnPH4dR87ewxiamOCqnoiFZgH6hW7DZraO\ndOzelTO7NzOvb1tEIhFGRoZU0EtBkhJNtqoSimpa3Dl3DFOVTJSUvy03qYaJLdGBZ0mJCEFF2+Cr\n89t+XI8bc7ri1mksKjpGpEWHEXH1AOX7LyxTAbas2Yb7q0YQuLg/+i6V0f3s5VfLwol3Nw5jXrUZ\nIrECT3bOID+39CBI38rTXbNR1tRHTd+UJztnoKiqiXXdzl9uWIhIJMKj+1Qerh+HkoYWphX9KMjP\nJfHlfbISY3HrNA6ARxsnkPQ6iLpzTn2hx9+HU6uhvD67hZtzu+Pa8QdUtA1Ji37N28v7qTBkmZzr\n7edY1m7P/TWjCFw6EAP36sUUTy0LJ95dP4RZFalXypNtP1NQkFdSV7+JJzuno6Spi4quEU+2/4yS\npi5WdTp8uWEhIrEYj25TeLRpEopqGphVbEx+bjaJL++TnRyPa8eSgyK5dhxLzN2zXBrvi2fPnzH0\nqIGSujaJL6RnSn0GL5Fzyf5W7Hx78mz3HO4s6ot710lkJ8dzb9UIrOt1/s25Z1W09HFsMYiHG8aD\nWIyRew2ykuNIDnuMQ7P+xerb+fbkxeHlXJvRHs/u01AztCDjfQTvrh/Gpd0oNExsuLdqBBbVWqJp\n4UhOaiKx9/3Rti5dYTQp34Cc1ERSPtukSI8NJyctsfA8s4TEwtgAWhbOKKqqU5CXy8ujKzGpKN3U\ni7hykBdHllPrp0Oy/1OZH6KJun0Co3K1ycvK4PWZTUTdOUXDxdJYCgpKysW+K1R0DFFQVilWHvf0\nGsZe9f4RuZoF/vkIyq+AgMD/LR+V2NLKSzsLa66rRmRSJoppLkjEedytq0ygggHKBTpsaNGLZvbS\nYFFvU+JgR5Hyu/7OG+kPwbsBsC9XgUozZrLliT9nk2M5d2sv3sDyDuNQLzx/9mOVDowN2EzlnWPI\nzs8l7qed9P5pEQ/fv2bO7QMERr+kQCLBRtuIZuo6qGpo0mXMz+yxV8TVwIr5dXrJxteOyiLQXIVn\nPetxLPwktl3rM7h8U7q61QXgeuQz2hyZw5E2k6jbvjt12xelViqJiZuPsODOrzx9JQ3kpKSiyupr\nL9jz/Ap7rxRFhZ0xdzM7nwWw5uEpwpJj0VVRw1citZSsupdCaOd2AKgVHotT09LgWt2luFetze2r\nW2hbzx2v4dPZuG04wR/ekZyShrGWElufXCCvIJ/5Ggr0eBlJwtAqKBfkc7TrSHb3/IWGiy9jtGUK\nDvfOk7d0BDdU1YmydGBFj6m0dKmBQ/Q9slM+MNynBVl5OSx8epHkPvWpIMphzsDlBA+pinZ+ChO2\n32dM4EH2BUut0c1CUgiLjqD//skcaTOJmk37oqiqwdXt05j0PgKR6g1S4rVJyCxyH67TrjvZV9aQ\nGhFCm/2xiBUUyM/J4lB7QwzdaqKgpEy7YRNoN2wCJfHx3HD5iBDa7H9UYvuP2Dk6UNUwjfZH3gGQ\nn5PNrQU9CZjoR25aEh4DlnL/wmm8VVNLHKss7Jv05X3QZc6PqEZeZhr15/ujYWLzxXZqBuY0XHyZ\noC1TuDylBQU5WagbWWNS0RdxmWctQUFZFZsGXXl5bFUxSyNAhUGLubOkPxfG1EVZywCXdiPJLyMa\n87fi3Wc2D9ePITXyJTq2ntSefrhMBbEkHJsPRFFVk5BDS6SKl4o62jbuOLUeKquT+SGqWFTkPwN1\nI0saLipci8nNZWthWrFRie7In6KoooZ1/S68OrGu5LUYspQ7i/tzYXRtVLQNcWk/mvzsjD9Mdq/e\nc7i/ehRp0aHo2Jaj9vQjxaICfwmnVkNRVNfmxaGlPNr4I4oqGujYeuDUZnipbRRV1Ki/wJ+QQ0t5\ndXIdjzaMR0FFHS1LZxya9UffqWKpbb8GJQ1t6s4+yYN1Y/EfUR0FFXUsarTGZ+Ci39Vv+QG/oKJt\nyJPt08lKiEJVz7TEdfsoQ8NFATzaNJHrMzuSm5GKmoE5JuXryza5CvJyubtyGJnxkSipa2NSoWGZ\n+aXVDMwwr9aC8It7KNdruqz80eZJckHjzg2Vns9vuOSqdBNBJCLy1nGe7ppFQV4Ouo4+1J5xvFhw\nrddnt/Bg3VhEIhEG7tVp8MvFMs8gl4REIuFtwH58Bv2+Zy3w30H0W88G/Z1UqlRJcvduydElBQQE\n/jvUnHeRyBIUYAtdNa5PKD1IyEd36U+txmpKCsxtV442PhZfPf6NEwcxsrBGz8SMqFcv2PPLT1g6\nuTL0l9LdyP5Mdj+/zKyb+7jZbSE6hYG5/mzsJpwsMZSMCAib11yubMbNvcQnxqG8fBs/7z2Ppq7e\nXyLj15Cdn0vVnWNZ13goVc2ceXH/NhmpyZSv2/jvFq0YYU8fEh8VQeVGLb9c+T9MzP0LXJ7UhLYH\n4+TcPgX+eqLvnuXKlBa0O5z4RddsgX8WCS/vc3Vaa5pvCUZR9a/5v/ItRFw7xLPds2m8MrDMiND/\nVkQi0T2JRFLpyzUFPiJYfgUEBP5vGefnUqISO86v7DNWHxXcj4GyzHXVGOfn8k2KL0BKQjzHNywh\nOT4ObQMjytWsT/tSLH9/Bf7hj5havctfpvhCkRW9pPLPGV2xFRuCzjPy1B0U/mEvKe9S4xldsRVV\nzZwBcK5Q9W+WqHTsPMpj5/Ft1hEBAQGB34K+UwXKfT+D9Jg3cpG3/ykU5GZTefT6/6TiK/DbECy/\nAgIC/9d8Gu35tyqxAr+dP8qKLiDwRyNYfv85CJZfAYE/B8Hy++0Iyq+AgICAwO9C2IAQEBAQEBD4\n6xGU329H8BEQEBD4TzJzzQYmLVn5u/vpPn4K246ckF23HzGO/WfO/+5+/59o42PB9QkNCJvXnOsT\nGnxR8b339Dndf5xC/u/MAfpn8DL8Le1HjiMr+4+LNiwgICAgICDwz0A48ysgIPCvZM66zZy5dqNY\n+aZZ03CysWZ0r278GY4vm2ZNQ1Xlz0+3MHPNBs7fuM2Aju3o3qqZrPzuk2f8MH8xJ9cuR0tD/U+X\n47ewes8BerZqITv3G3DnLscuXubl2whycnOxs7CgZ+vm1PDxlmt38XYgmw8dJfp9PBYmxvTv2Jba\nFX1k9wsKCthy+BgnAq6Smp6Bh6M9o3t1w9bCHIC8/HymLF1FaMQ7klJS0NLQoJKHOwM7t8dQT+oW\n62RjjbOtDQfPXpB7rgL/HZ49fMLsH6ax9vBWtHS0/25xiHkXxfSRk1m0bSXqmv+sgEO5ObmM6TmU\nUdPHY+/i+OUGAgICAn8zgvIrICDwr6WShxuTB/WTK9PRkp4301T/cxRDXe3S853+0SgrKbH75Gla\n1q8jm9c/nYfBL4iOi6Nu5YpyZZU83enfqR2a6uqcu36TyUtXsXzyeMo5S1+oH4W8YMaq9fTr2JZa\nFcoTcOce01asZe1PE3GxswVg5/FTHDx7gQn9v8fS1IQth44xZsESds6fhZqqNB1PRU93erZugb6u\nDnEJCazctZ+py9ew5qeJMnma1a7J0h27+a5Fk39cYK5/CmvnryA1OYVxcybLlb8OCWXq4PEs3b0W\nI1Pjv0m6L3PqwDF2r9tOq+/a0qlvt79bnDLZt3EXvq2ayBTfnJwcNi9Zx5uXr4kKf4ezpytTlsws\n1u7ckdOcP3KKuJg4DI0Nad29PbUb15fdz8vL49juQ1w9e4nE+ATMrMzpMqAH3lUqyPVz/uhpTu47\nStKHRCxsregxtA+uXu4AKCkr0bxTa/au38GkRdMREBAQ+KcjKL8CAgL/WpSUlDDQ1Snx3sw1G8jM\nymbO6GEADJ05D2cba5SVlTl5+SoKYjFNatdkYKd2iAsVoITkZBZs2s7dJ8/Q19Gmd7tWxfptP2Ic\nnZs1plOTRuTl59Pg+4GM79uTW4+ecCfoCfq6OvTr0Abf6kXRhB+/CGXJtl28jY7Gxtycvu1bM2Hx\nClZO+REvF6dS51fJw43I93HsOHaSYd06l1rvdUQka/YeICjkJSrKylTydGdYt07o6+jIPQs3BzsO\nnvUnJzePdo3q06d9G7YcOsbRiwEoiMV0aeZHl2Z+sn5j4j+wbMce7j99jkgkopKnO6N6dpVZUUvC\n/+ZtKnm4o6JclI90VM+ucnX6tm/DjQdBXLv/UKb8HjjjT+VyHnRvKbXGft/WnPvPnnPgrD9TBvWj\noKBAZq39qFhPHtiX1kNHc+HWHVrUq42iggId/Xxl45gaGtC1RROmrVhLXl4eiorSf4lVvDxJTE4h\nKOQFPm6upc5F4P+XgFMXaPVdW66cuUSH77sgVlD4u0UqkQ/v47l3/Q7dBn8vKyvIL0BJWYnGbZry\n8PZ9MtLSi7XzP3qGvet30G/MYBzdnHgVHMrGRavR0NSkQg1pTtYDm3dz7VwA/cYOwcLakqDAhyyZ\ntoCfV8zB1skegJuXrrFj5Wa+HzkAl3Ju+B89zYIJs1iwZRmGJkYA1PStw+5123gX9hZLO+s//6EI\nCAgI/A4E5VdAQECgkDPXbtKpSSPWTJtIyJtwZq3ZiKudLfWrSmNJzFq7iQ9JySydOBYlJUVW7NzL\n+w8JX+x3y+HjDOrcgUFd2nPs4hXmrt+Cl4sTxvr6pGdmMnHJCqp5l2PakP68/5DA8l17v0pesVjM\nwM7t+XnlWto3boiZkWGxOnEJiYyYs4BW9esyrFtncnPzWH/gEJOXrmb1tAmIRCIA7j8LxlBPjxVT\nfiT4dRiz1m4iJCwcFztbVk+byJ3HT1m2fTeVPNxxtLGioKCACYuXo6mmzvLJ48gvKGDp9t1MWbaa\ntT9PKlXmoJCX+NWqXua8JBIJGVlZcm7bT0Nf8d0nijdAlXKenLh8FYDI2PckpaZS2bMoFYeaqgrl\nXJx48vIVLerVLjZOcmoa/jfv4OnkIFN8AVSUlXCwtuThc0H5/SN4/ugpe9Zt5+2rN6hpqlOjQW2+\nG9ADRSXpBsis0VMxt7ZEWVWZK2cuIRaLadO9Aw1b+rFzzRZu+F9BTUOdjn26UrtxPVm/CXEf2LV2\nK0GBDwFw9nChx9A+mFqalynPy6chpKak0K5XZ25dus7DOw+oUL3seDGBV25xcNteYt5Foa2rQ8OW\nfrTu1l729zPyu4HUa+ZLQlw8Ny5eQ01djSbtWtCiSxtZHxlp6exet51712+Tk52DrZM93QZ/X6a7\n8K1L17C0s5YpmgCqaqr0HT0IgLevwktUfq+dv0z95r7UaCj9vTc2N+VVyEuO7z0sU36vnb9My+/a\n4VNNOnff1k14cj+IUweOMWTSKABOHzhObb/6NGjRCIBeI/rzKPAh/sfO0qV/dwA0tbVw9nDlxsVr\ndOrb9XNRBAQEBP5RCP5cAgIC/1ruBD3Br99Q2WfcwqVl1newsqR3u1ZYmZniW70q3q7O3Hv2HIA3\nkVHcffKMH/v2wtPJARdbGyYN6EN2bu4X5WhauyaNalTF0sSE/h3bAvA4JBSAs9duIkLEuD69sLUw\np4qXp8y6+TXUqlAeVzs7Nh48XOL9w/6XcLGzZUCndtiYm+FoY8WkAX14GvqKF+FvZfW0NTUY1fM7\nrM1MaVyzOo7WViSmpNK/Y1usTE1o36gBRnp63H8eDMCdx08Jj4xm6pD+uNjZ4u5gz9TB/Xn+OowH\nhXVKIjb+A4a6ZaedOXjuAkkpqTSqUU1Wlpicgp6OvBVfT0ebhKRkAD4kpwCg/9kZTX1tbRKSk+XK\nVu7eR+O+Q2g5ZBQfkpLKsRSfAAAgAElEQVSYM2pYMRkMdHWJiY8vU06BL5MQ94GFE2dh42TH7PWL\n6D92KDcvXmPvxp1y9a5fuIKamhozVs2j5Xdt2bFqM4unzcPM0pyZaxdSu3E9Ni5aTWLhZlN2Vjaz\nx0xDSVmZqUtmMn3lXHQN9Jgz9meys8oOVnbplD/V69dCUVGRmr51CDjlX2b9sBevWDbjFyrXrsa8\njUvp0r87x3Yf4tzhU3L1zvx6HCs7G2av+4WWXdqyZ/12Xj4NAaQbOgsnzSYx/gNjZ09m9vpFuHq5\nM3vMT7I5lUTw4+fYOTuUKV9J5ObmoqQsH3tAWVmFV8Gh5OXlAZCXm4vSJx4YAMoqyoQ8fi67H/bi\nFV6V5HNKl6vkzcun8n/jDq5OBAc9/WY5BQQEBP5qBMuvgIDAvxYvF2fG9e0hu1ZRKjsQlb2Vpdy1\nga4uiSlSpepNVDQKCgq42tvK7psbG6Gn/eWAOA6f9KukqIiOlqas37fRMdhbWcq5Abs72H+xz08Z\n1KUDw2bOk3NJ/kjIm3AePAvGr9/QYveiYuNwsbUBwNbCXObeDVLF8nNFUk9Hi6SUVADCo6Ix0tfH\nxEBfdt/K1AQ9bS3eREaXajHNyc1FWUmpxHsgDWq1fv8hZgwfJNf3H0n3ls1oXb8u0XHxbDl8jDnr\nNzPvh+EyKx5Irb/ZOV/e2PgvE3TnAX2ayVv6JBL5CN7+x86ga6BP75EDEIvFWNhY0rl/dzYvWUvH\n3l1RKTyLbWlrRfvvuwDQrGMrju85jKKCAk3atwCgbc9OHN97hBdPgqlatwY3L11DIoGB44fJ1q3v\n6EEMbt+bB7fuUq1ezRJlzsrM5HbAdSYvngFArUb1OLp7BEkJiejq65XY5tSBY7h5udOhUD4zK3Ni\n3kVzfO9h/No1l9UrV7E8jdtKN65M2zXn7OFTPLkfhJOHC88ePCE89A1rD29BWUU65459unL/5l2p\nBbZL2xLHjo+Nw8bRrsR7ZeFVuTwBpy9QuXZV7F0cCXvxioBT/uTn5ZGanIKegT7lKvlw5tcTuHl7\nYmppxtP7QQRevUVBYRT21ORUCgoK0NaT33TS0dPl6b0guTJdQ33iYt5/s5wCAgICfzWC8isgIPCv\n4dN8sxbp0TjoKWFpYvLV7RUV5c/9iUQgKfj9IaEVPztPKEJEwR8YatrTyYGaFcuzdt+vxVyDJQUF\n1PDxZlCX9sXa6X9iSS0uYwllIhEFki+nJxKVcU9bU4PU9OJumgAXbt1h3oatTB3cj+rlveTu6elo\nk/iZBTcxOQX9wjPdBoWKekJyityZ44SUFIz05JUaXS0tdLW0sDIzxcrMlM4/TOBp6Gs8nYosbKlp\n6Vibm31xrv9lXL3c6TtmsFzZu7C3LJk2X3YdGf4ORzdnuY0Vl3Ju5OXmERsZjbWDLQDW9jay+yKR\nCG1dHaw+KVNUVERDS4OUQkt/2ItXxEXH0re5fLCqnOxsYqNiSpX55sVr6BsZyFyNTSxMsXdx4OrZ\nS7T8rl2JbaLC31G+WkW5Mpdybhzavp+M9AzUC93zrRxs5OroGejJyZuTnc2gtr3l6uTm5PC+DHlz\ns3OKWWe/hrY9OpKckMT04ZOQSCTo6OlS268eJ/YeQSySrkXPYX3YuGgN4/uMRASYmJtSp0kDLp++\n+M3jKSsrk5Od883tBAQEBP5qBOVXQEDgX8GRB5FMPPSYzNx8ADJy8gmOyeTIg8gv5p39GmzNzcjP\nzyc47I3MMhv1Pk5mwf2tWJuZcuHWHTmL6PNXYd/cz8BO7ek18SecbKzkyp1sbbh+/yGmhobFlNnf\ng425GXEJCcR+SJBZaCNiYklMSZWlFioJJxtr3kRFFyv3v3mbeRu2MmVwP+pUqlDsvoejA4FPntGp\naWNZWeCTZzKF1cLEGF0tLe4+eYqzrTToTlZ2Nk9ehDK8e5dS5ZEUbkLk5slbecMio/CtUbWkJv9Z\nPt1c8noXjZOOAqYW8hsEJZ0/LZVPLO0KCorFbimUsGn0cTNKUiDBxtGOYVN/KNatZhmRzy+d8ic6\nIooevh1kZRKJhNTklFKV37KnUDSHkjaLZPJKCtDR02HqstnF+lBTVyu1f00dLdJTv+GZFqKsosKA\n8cPo88MgkhOT0NPX4+KJ86iqq6GlK90o0tbV4YeZE8jJySEtORU9Q332btiBsZl0w1BLRwuxWExK\novymU3JiEjr68kcX0lNT0db9+9NCCQgICHwJQfkVEBD4V7DwbIhM8f1IQYGEhWdD/hjl18KcSh5u\nLNy0nbF9eqCkqMTKXXtRKcOF92vwq1WdzYeOsnDzdrq1aEpcQiK7TpwG5HSDL2JtZkrzurU4ePaC\nXHn7xg04dfkaM1atp0tzP3S1tIiMfc/F24GM6tkVFeXflpO4SjkPbCzMmLlmA8O7daZAImHJtl24\n2dtR3s2lzHbnb96WKzt3/SZzN2xlWLfOlHNy5EOhtUxZSREtDWl6l45NfBk15xd2nzhNzcJUR0Ev\nXrK2MEWRWCymg19Ddh4/hZWpKRYmxmw9fAxNDXUaVqsCwOMXL3n19h2eTo5oaqgTGfuejQcPY2Fs\nhIdjkdX3XWwsickpVPJ0/03P5t/I55tL6Tn5BMdkfHFzycLGklsBNygoKJBZf0MeP0dRSRETc9Pf\nLI+tkz03L15FS0cbja/Mffsu7C2vnr9k4sKf5JS3nOwcpo+YzPNHT3Hz9ijWztzGkhdP5M+4hjx+\njr6RQZmK6+fyJicmIxaJMP6Geds62hMZHvHV9T9HUVERg8JAeDcvXcOnWiU5KzxIrbb6Rgbk5eUR\neOUWVevVkLZVUsLO2YHH9x7JygCe3HtE5dryQesiwiJkEaIFBAQE/skIAa8EBL7AqUt7aNzd5ssV\n/wZmrxzG+Dnf/d1ifBWb982n5+hasus/WvaopMxiZUo5EWQ/K25pKYmcnGwOnFxHcOiDUutMGtQX\nYwN9Rs5ZyKSlK2lSuwbGBvrk5GTRqq8bkTHfbrHVUFNj7ujhvHr7jr5TZrB236/0KUyhVNbZ2JLo\n3bZVsby0xvr6OFukEB4VytgFS+k5YRpLt+9GVVm5mGXtWxCLxcz7YQRaGhqMmL2QUXN/wVhfn1kj\nh5TZzq9WDcLeRfE2usjV8+jFy+Tn57Ns+27aDh8j+0xbsVZWx9vFmalD+nPqynV6T/oZ/5u3mTF8\nkCzHL0jP8rZr1JBFW3cw4KeZJKelsWj8aFmOX2VlZanSP+8Xuo+fzIJN23CysWbFlB/lnvWFm3eo\n6l0OY/0/58zx/yMlbS7lF24ulYVvqyYkfUhgy7L1RIa/48Gtu+zbsJNGbZrKzvv+Fmr61kFHT5fF\nU+by/NFT3kfH8vzRU3au2ULMu6gS21w65Y+tox2eFb2xsrORfRxcnfCoUK7UwFfNOrbiedAzft26\nl+iIKK77X+bUgWO06NymxPol4VnRG2dPVxZNncfD2/d5Hx3Ly6chHNy6l+CgZ6W286pcntBnL8jP\nl3/2795E8CY0jNSUFLIys3gTGsab0KLvn+iIKK6eCyDmXRSvnr9kxcxFvHvzls79itzEQ5+/IPDK\nLd5HxRAc9IwFP86kQCKhxSfnj5t2bMmVs5e4dPI8keHv2L5yE4nxiTRs2VhOnpDHz/Cq7PPVz0NA\nQEDg70Kw/Ar8a5m9chhnAopSxuho6ePuVJGhvWZgY1F67tTPaVijDdUr+H654u8k+v1bOg2pwIZ5\n53F1/HtfIh48ucaIn9ugrqbJ0Y3PUFUpSjnz5t0LeoySWgGObw5BV9vg7xJTDnNdNSI/UYAT9Coi\n0nbDXEe1xPpTB/eXu54xvDedhqwos46hri7zx4yQK2tWpxartv9EtQq+WJja8evyhQAs2zyJx8G3\nUcoLZvmme9SuVKRUf6xz8cYRdhxaSkTUK3S1Dejbpi9dWw8nIPAeYpEIc2MjDp3exKEzG4mOi8DE\n0IKe7X6gSb3OMtny8nLZcXgpZwL2EZ8QjZW5I4O7T5NLEzSkx1iG/9SK/avuo6lR3DXx83kC/DJ+\ndLGyDTOmyl2bGhowd3TxSMlloaOlSVvf+uw7fY5xfXoCsGrqhK9q26BqZRpUrVzqfbFYTL8ObejX\noWSlxMXWhuWTx5c5RnZOLkcvXmbWiLKV+P8aJW0ulVX+EX0jA8bNncKedduZNOAH1DU1qNGgNp37\ndv9d8qioqjB16Sz2btjB8ukLyUjPQM9AH/fynmiU4Pacl5vLdf8rNO3QosT+qtatwbblG+g1vF+x\ne3bODoycNpaD2/ZydPchdPR0aPldO1lwq69BJBIxbu4UDmzezcZFq0lJSkFHTwdnT1dqN6pXarvy\nVSugrKJMUOADWUoigIUTZxEfGye7njxgDAC7Lh4CoKCggNMHj7M5IhIFRUXcy3vy0/K5GJkay9rk\n5uSyf8tu4qJiUVFTpXzVCgyeOFLOkl69fi3SUlI5svMgSQmJWNpaM27uZLl+Xj4NISM9g6p1y05h\nJiAgIPBPQFB+Bf7VVPKqy5ThqwGIT4xh9fafmbygJzuX3fzqPlRU1FBR+TrXtn8bmho6XLp5jKb1\nis5MnrywExNDS2Lj3/2NkhVnnJ+LnFsmgKqqFuOal/tTx83KzuDEhZ3Mn7BLrrxAUkCTel14/fYZ\ngY8CirW7dd+fGUsHMrLPXDJz9UGSzp6ji4h8n8Wdp3HUquiD/7V9rN01g/GDFuPuVJFnL++zYO1o\ntDR1qFmpCQAb9szhzOV9/Dh4KbaWztx+eJFJC3uxZtYpnO2lQaMcbNwxN7bh3JUDtGva9099Hl9D\nz9YtOHLhkpwr7D+FmPh4erdthbuj4ML5KZ9vLoXa1wHAQlf+u9HexVGmgH3EzduDGavnUxpTlsws\nVjZ/87JiZat/3Sx3raOvy8Afh39ZeKQuvGsPby31fr2mDanXtCEA7uU9i82hcp1qVK5TraSmACzb\ns65Y2efzUlNXo+ewvvQc9vV/g2IFBVp368DpA8fllN+P4+3a95ixU/yJfim/WWVhY8mc9YsAWL72\nDuu33OeHmfLu6W7eHizcsvyLMjRq3ZRGrZuWel9qBW8ti2L9V3Dt5luGjzvL3ct9UVD4Z32HZGfn\n4VNrAzs3tqGCtxA0T0Dgn8Y/6xtDQOAPRklRGQM9Ewz0THCx96ZTi0GER74kO7voJS7uQzQ/Le5H\n014ONO3lwLg5XYiIfiW7/7nb80f3Xf9rh+g8tBKNu9swcX4PklI+yOrk5eexfMtkWZ/Lt0zml/Vj\nGT6t1TfJ/yr8GaOmt6NhV0uafe/I7JXDSEsvHmDpwMl1tB3gSdNeDsxZNZys7AzZveHTWrFowzjW\n7ZpFi97OtOzjyqpt02TpLMqiab0unLxYpNTl5eVy9soBmtaXDyCUn5/PvNUj6TSkAg27WvLdsMrs\nOrL8q8b4SOibJ7Tu58763UVuykfPbaXLsMrU72JGl2GVOXZ+u+ze9KUDmLLwe9l1Gx8L5rT1wDL8\nB7QSz2Chq0Zdpf3cOD1WVkcikbD32Cq+G1aZBl3MaTegHGt3yb+gxsS/Y/SM9vh2taL7qBolKq6f\ncvO+PyKRiHKu8sGRRvedR4dm/bEyKzlH59kr+6lRyY+2TfpQIFHm8MVHpOZV5OTVIGr4eDNpYB/O\nXT5Ai4bd8a3VHnMTW3xrtaNVo57sOrJCrp/ubUdSo2JjzE1saevXh+o+vuw9vlpuvJqVm+B//dDn\nYvwtaGmo06NV83+c4gvSQF4t69f5u8X4xzHOzwU1JXk3eTUlBcb5lX6+W6B03selM+GnC5SvuR4j\n+0XYe63Et9VO1m6+R1q6fNTkBs198ahQ7tuCif0FaFssQNtiAVM3SOgx/rXsetP20o+O/FFMmRXA\n2BHVZYpvTGwafYYep2KdjehaLWTQqFPF2uTm5jNvyXW8akifeQ3fLZy/9FquTmpaNj9Ou4BHlbUY\nOyzGt9VO7j2UD9A3aNQp2Vw/fhq02CG7r6KiyIjBVfhp9uU/YeYCAgK/l3/em4eAwJ9ERmYqF28c\nwd7aXWbJzcrOYMTPrVFWVmXF9GOsnXMGAz0TRk9vL6dAfk5MXAQXbxxh9rhtLJ56kJdhj9mwp0hp\n23tsFacD9vLj4KWsm3MGiUSC/7Vfv0nezKx0xszqiJqqBuvnnmP2uG08CbnDvNXybrdBwbd4/fY5\nS6YdYvrojVy9fZIDJ9fL1Tl/9SAKCgqsnn2K0f3mceDkOi7eOPxFGRrX6cjz0Aeys6w37p1DTVUD\nHw/5HJoSSQGG+qZM/2EjO5feoH/Xyew8tJRTl3Z/1VwfPbvJ8J9a07X1cAZ0nQzAldsnWbJpAh2b\nD2Tb4qt0aDaAxRvHc/3uGZlsN++fl9sMsFF+g2J+EpfmTeb6hAZY6avLjbNu9yy2HVxE97aj2L7k\nGjPGbMbEQN4asmH3bDo068+WRQG4Ofjw85L+ZGSmlSp70PNbuNh7y0V9/Rpyc3NQVpJaSrq3asaB\npQsY06MO+Rmn6dK0NuqqquTkZaOsLO+2raKsxvPQ++QVRif+tJ+PKCur8jhYPqiUu2MFnofel9v4\nERD4Wtr4WDC3XTksdNUQIbX4zm1X7g8JJvdfIzwimdpNtuEfEMaU8bW5eqYXF090Z8zwaly+Fs6p\nc6Fy9T9af9W/MrDXX8mKhX68fDBE7tO1o+efOubtwEhehibQrmXRxkt2Tj4G+mr8MLQqlXxKtrbO\nXHCVTdsfsmBGQ+5c6kufHuXp1u8Ij57EyuoMH3uGC5fDWLu0GTf9e9Ogri2tu+wjKjpVrq/6tW3k\n5nxwRwe5+53aunMzMJLnIfF/4MwFBAT+CATlV+BfzZ2HF2nc3YbG3W3w62HHw2c3+GlUkXvahWuH\nQSJh0tAVONp6YGPhxLgBi8nMSufGvXOl9pufn8ekoStxtPXA06UyrRr15N7jq7L7B06uo1ubEdSr\n1hJrCydG9J6Nvq5xqf2VxPmrv5KVncHUEatxsHHHx6Mm4wcu5vLtE7yLLtqt1lDTYuyARdhaOlOl\nfH3qVW/FvcdX5PqytXShX5eJWJs70qBGG3w8a3H3szoloa2pR61Kfpy8KFViT1zYSbP63yH6LJOr\noqIS/bpMxM2xAmbG1jSo0YbWjb/H/9qXLY3X755l/NzvGNl7Dp1bFuUM3XNsFX51OtG+aT+szR3p\n0Kw/jWp3kFk9K3vXR0Ndm4Bbx2Rtzl09SAXP2hjqFY+mmpGZxoETaxnYbSrNG3bD0sweT5fKtG3S\nR65epxaDqFmpCVZmDgzoOoWUtERC3zwpVf6YuIgSx/sSVcrX51rgGe48lLr/vo0KZV+htfZDovRl\nrIp3A05d3M3z0PtIJBKCQx9w4sJO8vJySUr9IOvnwMl1vI18SUFBAYGPArhy+6Ssj48Y6JmSl5dL\nfGLpOUUFBMqijY8F1yc0IGxec65PaCAovr+R0RPPIRaJuHy6Jx1au+HqbIittS5NGzmyZ3M7OrZx\nk9WNiEyha9/DmDsvwdx5Cd36HSYyKrWM3mHp6ts4ll+FmdMSBow4WcySDLBz32Mq19uEkf0ifGpt\nYOX6QAo+yWmubbGALTsf0nPAUUwdl+BVfR17f31arB8dbVVMjDXlPmpqSqRn5GDhspQjJ+QDol28\n8gZ9m194Hye1YkdFp/L94GNYuy/D2n0ZHXocJPR1Qpnz23/kGXVr2aCmVhSkzsZKh4UzfenWuRx6\nuiXHedj761NGD61KE18H7Gx06dfLh8YN7FmxLhCAzMxcjp56wfRJdaldwxoHOz0mjamFva0eG7c/\nlOtLWVlBbs76evLu//p6alSrZMGBI8/LnIuAgMBfj6D8Cvyr8XavzuaFl9i88BLr552jYrk6/DCz\nA7HxkQCEvH5E9Pu3+PWwlSnJTXvZk5qeRGTMm1L7NTGylAscZKBnSmKyNPhIWnoKCUnvcfskaJVI\nJMLNsXju0rIIj3yBg7UH6mpasjJPlyqIxWLevCt6obCxdJGL2muob0pisvxus4ONfMoWQz1TkpK/\nbke6eYPunL28j9j4SO4GXaZp/ZIjNB85u4V+4xvSoo8LjbvbsP/E2i+eCw55/YjJC3sxYfAymtTr\nLHcvPPIF5VyryJV5uVaVzV1RQZEGNdpw/upBAHJys7l86wSN63Qscaw3716Qk5tNRa+yXVodbIpS\nnRjqS5Xaz5/np2TnZKGs/O1n3Vr69qR9035MXNCDBl3MGDSpCQ1rSqOsikTSr+bvO4yheoVGDJ7c\njPqdTZm4oAdN6kqfk7iwzojec7Ayd6TH6Jo06GLGkk0/SjcoPnMpVlFRlckrICDw9/AhIZMLAWH0\n/94HDfWS04x99CIpKJDwXe9DvI9L58SBLpw40IXomDS69j0ky0/9OYeOBTNzwVUmjanJlTO9cHLQ\nZ9X6u3J1tu56xPR5V5g8thaBAX2ZM60+S1ffYcM2eXfl+Utu0MzPkevnv6ddK1eGjjlNROTX5TXX\nUFemQ2s3dux7LFe+Y28QTXwdMDbSICMzl+Yd96Kqosipg9/hf6w7piYatO6yn4zM3FJ6hpu33+Hj\n9e0bjtnZ+aiqyIe6UVVV5NYd6f+pvPwC8vMlqJRUJ1D+f9mtwEjsvVbiU2sDw8edIS6+uEt6RR8z\nrt/67WmqBAQE/hyEgFcC/yqOPIhk4dkQopIysUiMxkFPhKVZUeAaZztvmvay5/j57fT7biIFkgIc\nbT35efSGYn1pa+qVOo6ignwKGpFIVOrLyJ/Bpy62igryf8YiREgk8mdtP5cXkeirz+NW8qqLSCRm\n9oohVPCsjbGBOZHR8uekLlw/zIqtUxjSczqeLpXRUNPi0JlNXL1T/NzVp5gb26CnY8SpS3uoWblJ\nMffdkvjU6ty4TkcGT25C3Idonr28R15eLnWqNv+qeZXGp89T9hIqKf1Z6Wrpk5qW/M3jiEQiBvf4\niQFdp5CQ9B5dbQOZxd7cRHrGXEVFjYlDlzNu4CISkuMw0DXhmP821NU00dWW5u7U0zFk7o87yM7J\nIiU1EUN9U9bunIG5sXx6rpTUJKm8/5Do3AIC/0Vev0lEIgEnB/k0Wq4VV5Ockg1A53buLJ3vR8C1\ncJ48j+PRjQHYWOkAsGlVS8rXXE/A1XDq17Et1v/qjXfp2tGTPj3KAzBuZHWu3njL6zeJsjoLlt5g\nxuR6tGkhdRu2tdZldHgSG7c9YGDvok3aLh086NJeuhk4ZVxt1my8x/VbEbIygAEjTzJ4tPz3vP+x\n7ni4GdGrmxcNW+4kKjoVczMtEpOyOHk2lG1rpbEvfj36HIlEwpolTWXftcvm+2HvtZIz51/RrpVr\nic8wIjIFM9PiEb2/RMN6dqzeeJfa1a1wsNcn4Fo4x0+9IL/Q4q2lqUKViuYsXHYTdxdDTIw1OHDk\nOXfuRWFvW5QX2re+Ha2aOWFjpcvbiGRmLrhKi077uHK6p5zibGqiyduIb//fICAg8OciKL8C/xqO\nPIiUi/abkZNPcEwaRx5EytzzRCIRIpGIrBzpeV5nOy8uXDuEjrYBWho6f4gcmhra6OsaExz6kIrl\npFbGjy6r3+L6bGPhzKmLu8nITJVZf5+E3KGgoAAbC+c/RNavQSwW07R+F7Ye+IUZYzaXWCco+DZu\nThVo37QoTUhU7Jsv9q2lqcvcCTsZNb0dkxf0Yvb4bTIF2MbCmcfBd2jRsCglSlDwbWwti855uTtV\nwMLUDv9rv/L0xV1qVW6CulrJL0W2lv9j777jqqz+AI5/LpfL3nvJUJYiiCwXuPfOkaMcZWllar/K\nrDRzleZoOHNm7r0XufcCVHCAoijIkr33vb8/0ItXwJWm2Xm/XrxecJ5zzvN9HhXv9znjcUFDpklo\n+LFqN6F6Hi5Onux96JVaz0oqlWJuWr5G7cCJLdR19cfY0Eyljrq6DAtTG6D8QUNj37aVNovS1NDC\n3NSa0tISjp7dRYtG3VSOx8Rdw9zE+pmn3wuC8PLt29qfsjIFo74KprCo/P+wqBtpWFvqKRNfACcH\nI6wt9Yi8kVZl8ns9Oo1B/b1Uyvx9bZTJb2paPncTcvhsTDCff1OxtKe0TM6jz289apsrv1dXV8PM\nVIfUVNW9MCaPa07r5k4qZTVsy2dF+dSzxsPdnDUbL/PlyEZs3HYVYyMt2rYsfyB9ITyZO3FZ2Lj+\nqtI+v6CEmDuZ1d6rgsJSNDWf/R3l0ye1YsToffi3WIZEUn4v3+njyaqHRqcXze7E8C/24u63AKlU\nQj1PS3p1r83F8IrlIr26VUxL96htjreXJR4NFhJ88BZdO1b836ytpU5BYekzxykIwsslkl/hjTEj\nOErlNTcA8rISZuw6S5BjE3LystiydwkFhXk08W0HQNumvVi3cx7f/PQuQ/p8jaWZHffS4jlxfi/d\n2g5+7iSpd6dhrNk+hxo2tXC0c2X7/j9Jy0zG1Njyqfto27QXyzb8xJQ5wxnS52ty8jKZsegLmjXo\nrDKa/U8Y1PMLenb4sNrR8BrWtdh7eC1nwg5ga+3EwRNbuXj1FPq6RlXWf5iRgSm/fr+FURPeYuyM\nQfwwujwB7tftU8bPeh+3mvXw927O2QuH2H98Ez+MXq7Svk1QL3YdXEVSShxTHjn2MB1tfXp1HMrC\nNVOQyTTxrtOIrJwMom5d5K1271fb7kkCvFvy++pJZOWkY6hfMZpzN/EWBYV5pGYkUVJazI2Y8g9Y\njnZuyGQaZGancfj0dup7BFJSUsSew2s5fGYHcyZWrGGOTYjm6o0wPFx9ycnNYv3O+cTERjL203nK\nOleuh5KanoiLU11S0hJZtmE6crmc/t1VXwFz6doZArxbPvd1CoLw99V0NEYigevRqutaHe3Lf1dq\naz/dx7Jn3F9P6cG63l+mtaWB3+PXbMvUVRNMiQTkj2TIlua61HKqfpbUwP5eLFgSypcjG7FqXQT9\ne9VV7tCskCvw8rBg2fzKb0Gobt0ugKmJNpmZRY+NvSpmpjqsXdaDwsJS0jMKsLbS4/sfj+JoX/Fw\noaajMXs39ycvvxKR2foAACAASURBVJicnGKsLPUY/NF25Z9PVayt9LG11udmTIZKeUZmIWam/83X\nJArC60wkv8IbIyGz8i62WgVX4NJQun8IOtp6ONi6MOmLZdSvG1h+XFOHuZN28vvqyYyfNYS8/GzM\nTKyo7xH4VIlbdfp2HU565j2mzhsBEgkdW/QjKKATGZkp1bZ5MFVZen/arZamDrPGbWT2H2MZ+k1b\nNGSaBPp3YNR7Pz53XM9LXV322Omy3doMIvr2ZSb+NgwUCpo17EKfLp+w59DT7fZsZGDKbxO2MmrC\nW4ybMZgpo5fTNKAjn70/lXU75zN7+ViszGvw+QfTle+3faBd094sW/8Txobm+Ndr8djzDHvnO/T1\njPhz0yxmpidgYmhOu2Z9HtvmSWo51KG2sw8HT2xVeYfuTws+4+LVU8qf3x9dHtuG+WFYW9gDEHx0\nAwtWTkShUODh6sfsCdup41Ix7VAul7Nh5wJiE6JRV1envkcgC37Yo2wPUFxSyOJ1P5KYfAdtLV0a\n1m/NdyPnq8xkKCou5Pi53cwat/FvXasgCM/n4SU5ujUMmL3oPMPe90FPt+p1vwBuLqYkJudyJy5L\nOfobcyeTxORc3F3Mqmzj6mzK+bAEBvStGP0NCUtQfm9hrou1lR4xdzJf+q7MUL7r8XeTj7DwjzAu\nRiSzbH4X5bF6npZs2n4NUxNtjAyrT3Yf5eVhQeSN599FWUtLHRtrfUpKyti+5zo9OleeXq2ro4Gu\njgYZmYUcPHqbSWObVdtfWno+CUk5WFqo7sZ9NTKFep5P/8BbEIR/huSfXKf4ovj5+SlCQkKeXFH4\nT2ky7RDxVSTAtkbanPz61Y94vf9lCzxrN+B/Q6ZVeTwi8hyfjOvI9iVXxdTUf5mzFw7y2x/fsvKX\nUyqbj70utuxdyonze/l5/KZXHYog/Oc8uiSnLKeYnOAYLEy0+eHbZnjWsUAqVeNiRBLjpxylZTNH\n5s3qgEKhIKjdn2hry/hpUvn/YaPHHaS0tIwjewYikUhYvT6CL8cdIPHG/4DydbTDPtvDzCmtCWxU\ng+27r/Pz3DMYG2lx+exHAPy55hKjvzvI+DFBtGtZk5JSORcjkklMyuWLEQ2B8t2eVyzsplwXDFC3\nwe8Mfc+HkR8FKOvMmdGO9q1VZ0jp6mqoJPXDRu1m845I/H2s2bu5v7I8v6CEwLbLsbTQZeyXgdjZ\nGhCfkMPu4Bu8P8Ab55qq66If+H1ZKCvXRnBy/2CV8vD7ryz6avxBDA00GftlIBoaUtxdyx8UnA9L\nIDEpF08PCxKTcpg66yR34rI4tm+QMvk+cCQGuVyBq7MJt25n8t3kI2hqSgne2h+ZTEpuXjFTZ52k\na0dX5ZreCVOPEZ+QzfmjQ9DXq9i3om6D3xk7Ooh+vTwQhJdFIpGEKhQKv1cdx7+JGPkV3hij27mp\nfMAA0JZJGd3O7TGtXo6klDjOXTyEd53GlJaVsvPASm7GXuGrj36uVLekpJik1DjWbJ9DTfs6IvH9\nF2pQvxU9EoaQkp6AlXmNVx1OJerq6nw2ZOqrDkMQ/pMeXZIj1dfAoFNNSm5kMmXGCeITcpCpq+Hq\nYsoHg+oz9L3yNwVIJBLW/tGDr747QOfe5fsKNA9yZMbk1tW+V7xnt9rcjs1i0k/HKSgooUNbZ4YP\n9WPNhorXtQ3qXw8dHRmzF5xj4rRjaGup4+5qxtD3nu2NBAAjRgdXKvtyZCPGjwlS/jywnxdrN11R\nGY0G0NGWsW9Lf77/8SgDh+0gO6cIa0s9ghrbP3bac58eHnz/w1GuRaVS261iBDyw3Z8q9fbuv4m9\nnYEy6S8qKmXy9OPcjs1EV0eDti1rsmh2J5VR5+zsIiZMO0ZCYg7GRlp07ejK+DFNkcnKH2pK1SRc\niUxh7aYrZGUXYmVRHu+fv3dVSXzPhsSTnVNE907/3P4cgiA8HTHyK7xRHp5aZmOkzeh2bq/kXZTJ\nqfFM/HUot2KvIpfLle/ZDfCuPC33wuUTfDW1Py5Onnz+wXScHcVTYkEQhDeF09e7qeqTlgSImfb3\ndqf/N9i8/Rqfff0XUWGfoKMte3KDp/D9j0dJTctn3qwOL6S/F23g0O141bXgy5GNXnUowhtOjPw+\nOzHyK7xRute3fSXJ7qMszWyZP2X3U9WtXzeQ/atjX3JEgiAIwqtgY6Rd5ZIcG6M3ezOk/IISku/l\nMWvOGQb193phiS/AFyMasnBZGGVlcuUGWq+LoqJSPGqbM/xDkY8Iwuvo9fqNIQiCIAiC8AYZ3c4N\nbZnqXgCvaknOP+nX+WfxbboEYyMtvvqs8Qvt20Bfk9GjGr12iS+ApqY6Y/7XGO0XmOwLgvDiiGnP\ngiAIgiAIL9HrsiRHEIQ3i5j2/OzEtGdBEARBEISX6HVZkiMIgvBf9/rNFxEEQRAEQRAEQRCEF0wk\nv4IgCIIgCIIgCMIbTyS/giAIgiAIgiAIwhtPJL+CIAiCIAiCIAjCG08kv4IgCNXYMaw9J6Z//tQ/\n/9us7lqHSyt/e9VhPNGrvs8L/fW4dXDrKzs/QNTOVSxtavlKY/gv2D60LTf2bXjVYVTp9tFdbB4Q\nyL/xLR2CIAivC5H8CoLwRru6ZSlLgywoKylWlpWVFLM00JwNffxV6mbF3WShvx53zx0GoO30NQQM\nn/jSYtv6fkuOThmuUnZ9zzoW+utVSkrPLZjI6s7uLy2WFynr7i32jHyLZc2t+aOlHbtHdCPvXsIT\n2yWEHmOhvx4Fman/QJTl8tOSOTlzNGu7e7K4sQkrO7qwZ+RbxJ4M/sdieFle1MONnIQ7LPTXq/QV\n/GXfFxAlyEtLWeivR8yRnS+kv+d1++guCtJScG7bS1l2ZdNidgxrzx/NbVjor0ducnyldilXw9j5\ncSf+aGHLn63tOTZ1JCUFecrj17Ytr/L+LfTXIzXqkrLeiemfs3lgEIsbm7D2La9K53Fs1hlFWRk3\n/9r4gq9cEAThv0O86kgQhDeajW9TSgvzuXclBGvvxgDcu3weDT0DsuJuUpCRgraxOQAJIceQamhi\nVa8RAFqGJi89tlsHtqiUJYQeQ8/SjoSw49QbMKqiPOQ4Nn5NX2o8L8qxHz6lKDuTLgv2INPR496V\nUBRy+asOq5KchDts+6A1Gjp6BAyfgKmLJwqFnPjzRzg+dRTv7Ip81SG+VjrO3oapi6fyZ6mm5iuM\npmplJcVIZRrP1TZi3XzcuryLRK1iXKCsqJAajdrg2LQTp3/9plKb3OR4dg3vgnO73gSN+YXivGxO\nzvqKo5M/ofWPfwLg0r4PDoEdVNqd+mUMqZEXMXOrpyxTKBS4dX6HtOsRJIQerzJG187vErH+d5zb\nvf1c1ygIgvBfJ0Z+BUF4oxk5uKBjbk1CyDFlWULIMWz8m2Ne20flQ2ZC6DEsPQNQ19QCnm26beji\nqZVGkgG2DWnNyZlfVtnG1q8p2XdvkZt0VyU278FfkHThFPKyMgBKCvJIuRqKjV+zinphJ9g6uDlL\nmpiyop0Tp34eozK6vWNYe45P+4yz8ybwZ2t7/mzryOlfv31sEnp9zzqWNbfm9tHdAMSe2s/2D9vw\nR0s7lreqwe4R3ciIeXJCKJGoYdegJea162Pk4IJrx77oWdk9tk1Owh12ftQRgBVtHFnor8fhCcOU\nxxVy+WOvpaykmDNzvmNVJ1eWBpqzZWBT4k4feOw5j//0PwB6rDhOrTY9MXJ0xdjJnbpvf0SvtWdU\n6hZmZbD/63dZGmTBmm51ub5nncrxtOjL7PqkM0sCzVjeqgaHJwyjKDdLpU7UrtVs7BvA4sYmrGjn\nxOEJQyuuPymO4NF9WdbMimXNrAge3a/KUcYHsu7eYt8XfVjRriZLgyzY/G4T7hzfqzy+Y1h7chNj\nOTN7rHKU8YGkS2fYMbQdSwPNWdnRhePTRlGcm/3YewXlD4N0zCyVX5r6RgCUlZZwZNLHrOnmwZJA\nM9b19ObSyt8qTc+N3LGSDX38ldd/ZPInAKzpVgeAv0b3Y6G/nsqo55WNi8pH5RsZs7ZHPSJ3rFAe\nezBifHXzEvZ90YelQRacXzCJ1V3rEL5mnsq5M2IiWeivR9qNy1VeW35qMgkhx3AIUk1Svd4ZQf3B\nX2Dp1aDKdneO7UaqoUHgVz9j5OiKhYcfQWN+4eb+zWTH3wZAXUtb5b7JdHSJPRmMe7dBKn0FjfmF\num9/hIFdzSrPBeDYtCP3Is6Rk3Cn2jqCIAhC9UTyKwjCG8/GtykJoQ8lv6HHsPENwsY3UDUpDj2O\nje/zja66dR1I5p3r3LsSoizLvH2d5PAzuHcdVGUby3oNUZNpKGPLSYwlLyUB187voK6jS2rkBQCS\nLp5GXlqiHPnNu5fA3lE9MHXzoueqkzQbN5/o4I2cm/u9Sv/R+zagJpXSbelBAkfPImLdPG7u31Rl\nLBFr53Fy5pe0/3kjjs06AVBamIdnv+H0WH6ELr/vRUPPgH2fv62SZFfFsVknrm5ZSsrVsKe4c+V0\nLe1o89NqAN5ef54Be2/S+MvpT30tRyZ+RGLYCVpOXkbvdedw7dyffZ/3Ju16RJXnK8xKJ+70fjx6\nD0Wmo1fp+IPE7oGwpdNwaNqZXmtOU6tNT45O/picpDig/OHEnhHdkeno8dbyI7SdvobkiLMcnfSx\nsv3VLUs5PnUkbl0G0HvNGTr8ugXjWuVJn0IuJ/iLPhSkpdBlwR66LNhDfmoSwaP7Vru+szQ/D/vG\nbeg0bwe91pzGqWU3/vqqPxm3o4DyKfu6Frb4fPA1A/beZMDem0B5kr57RDccmnai15rTtJ2+htTr\nERyZ/HGV53kairIy9KzsaP3jCvpsCMVv2FhCl07j+u41yjqXNyzkxPT/4d5tML3XnqXDL5sxdnQD\n4K0/y//+Nx//OwP23qT7H4cAuHlgC6d+HoPXOyPove4cHr2GcuzHEcSe/Evl/CGLfsCxWSd6rz2L\nR68Pce86kKhdK1XqRO5YiXltH0xd6lZ5DYkXT6KurYux07MtLSgrKUZNXUNltFh6/+FZ0qUzVbaJ\n/msTZUWFuHV+55nOBWBg54SWoQkJYSeeua0gCIIgkl9BEP4DbP2akhxxjrLiIkqLCkmOOIeNbxDW\nPkHKxDPjdhT5qUnY+Dd7Qm9V07O0pUajNiojU5E7V2JWuz6mrp5VtpFp6WDh4Uv8/QQ8IeQYFnV8\nkWnpYONTkZgnhBzDwK4m+lY1ALiyaRE65tYEjfkVYyd3HII60ODTSVzeuJCSwnxl/0Y13fH/6DuM\nHFyo1aYnNr5NiT9/tFIc5xdM4sLymXRZsBsbn0Blec2W3anZsjuG9s6YutSl+fjfyUm4rZLgPyr+\n/BHOzv0e3w++Yd+XfYgPqTjf3XOHWdTAgNLCgkrt1KRStAyNAdAyMS8fWdQzfKprybp7i+i/NtJ6\n6gpsfAIxsHOi7tsfYd+kHVe3LK0yzuy7t0ChUCZgT+LSoR+uHftiWKMW/h99h5pUncSwk0B5Yl5a\nkE+LiYsxda6LjW8QTb+dTczhHWTFlSedYUt/wrPvcLzeGYGRoyvmtevjPeAz5T1Lj75MqynLMK/j\ng3kdH1pNXkZq5EXizx2pMh5TV0/q9PwAU+e6GNaohc/7X2Hm7k3MwW3l99DQBIlUioaOvnLEEeDS\nyt+o1aYn9d4diaG9M5Z1/Qka8ysxh7ZTkH7vsfdgx9B2LG1qqfxKvFB+/eqaWvgNHYuFhy/6Ng44\nt+1N7e7vER1cvjZVoVBwYdl0vN4ZgVf/4Rg5uGBex0c5rV/byAwADX1DdMwslT+Hr5qNa+d38Og9\nFCMHF7z6D6dWm15cXPGzSlzO7d7GvetADOyc0LdxwL3rQDJuXVM+fJGXlnJjz1rcuw2s9tpyE+PQ\nMbFQSWKfhq1/c/LTkri08jfKSoopzErn3Lzyh1D5aUlVtrm29Q8cm3VC28Timc71gI65NTmJYuRX\nEATheYg1v4IgvPFs/JpRVlRIcsRZFAoFWkZmGNaohY6ZFdl3Y5RTHtW1dLCoW3nq8tOq3X0whycM\no/H/fkJNpsGNPWvxGTLmibE9GCFLCD2GtW958mntE0TM4R14D/r8/kh1xYh0RkwUlnX9VT6oW3k3\nQl5STHbcLeXolqmzh8q5dM2tKUhPUSmLWDefkvxcevx5FEN7Z5VjWXdvEfL7ZO5dDqEgMxWFXI5C\nLleZpv2os3O/p3aP96n37kjM3Lz4a3R/mo2bS81Wb5EefRXzOr6oa2k/9p5U5XHXkhp5ERQKNrzt\np1JHXlxU7cOMZ90x19Sl4vxq6upoGZtRmFF+/ozbUZi4eKChq6+sY+nVEImaGhm3ItHQ1SfvXgK2\nAc2r7DsjJhIdM2v0bRyUZQZ2TuiaW5MRcw27Bi0qtSkpyCN08VTunNhLfmoy8tISyooLMXnkPj0q\n9doFsu7e4ub+zRWF9+9F1t2YxyZkLacsw+T+aDWArrmN8vvLGxYStWsVuYmxlBYVIi8twcDOCYD8\n1CTy05Kx9a/6+quTcTuKOr0+VCmz9m7E+YVTVMrMa/uo/KxrYUONRm2J3LEC8zo+xJ7cR0leDrXa\n9a72XKVFBUg1nn0N84OHQmd++5az88YjUZPi1e/T8ocPksqJdNr1CFKuhuL/8fhnPtcD6pralBUW\nPnd7QRCE/zKR/AqC8MYzsHVEz9qehNDjKBQKrO+Pbsq0dTGrXZ+EsGMkhB7HyrsRUnXZc5/Hvkl7\n1LW0uXVoOxp6BhTnZOHc/vEb09j6NSVsyTRyEu6QEHqcZuPmA2DjE8iZ376lMCud1MiLePb75OmC\nkFR8q1bpWiQoFKprfq28GxF3+gDRwRvx/VB1Q599/+uFroUtQd/MRtfCGjWpOhve9kP+mGnP6dGX\nqdvno/Jr829Oy8lL2T/mHfLT7nFt2zI8+w6vtu3jPO5aFHI5SCT0+PNopXrqmlUn2oY1aoFEQsbt\nKJye5/wSydNt4iWRPLnOY5tX3f7Mb98Sd/oADUf9gGENZ9S1tDn8/VDkJSWP7U+hkOPebRBe/T+t\ndOzhZLYqeha25fftETf2rufM7LE0GvUjFp4BaOjqc3n9gkrTk1+UR++JurZOpTq1uw/i8MSPaPS/\naUTuWIlTq+4qMwkepWVkSlFO5nPF49qxH64d+5GfmoxMRxeFXM7Flb9gYOtYqe7VrcvQt3HArkHL\n5zoXQGF2BlrGZs/dXhAE4b9MTHsWBOGNtO1CPE2mHcLp6900mXaIUic/EkKOKdf7PmDjE0T8+aMk\nhh3H1u/5pjw/oKaujmvnd4nauYKonStwbNH1sR+4ASw9GyDV1OLa9uXkpyVjWa98Yx0jR1dk2rqE\nr5mDvKwUG9+K2Iyd3Ei+fF4l+Uq6eBo1mcZjN8upirl7fTrN2U74mrmELpmmLC/MTCPz9nXqv/cl\ndg1aYOzkTnF+LvKy0sf2p2tuo5wODOAQ2J4WExdzatZo5CUluHUdUG1bNfXyXXoV9zf6elpmbvVA\noSA/LRnDGrVUvnQtqk7otAxNqNGwNVc2LKQkP7fS8WdJhIwd3UiPvkpxXo6yLDn8DAq5HGMnN7RN\nLNC1sKl2CrOxkzv5qYkqmxhl340hLyURo2rWoCZdPI1Lx37UbNkdU5e66FrYkh1/S6WOVKaBQq56\nL83cvMm4da3SfTKsUeu5RuQBki6dwtKzAR69h2Lu7o1hjVpkxVXEomNmhbaJBfHnq75+iVSKRCqt\nFKuxoxtJl06rlCVePP1U63Ltm7RHXVOLq5uXEHcyGPfH/L2D8r9D+WnJFGVnPLHv6pRvZqVH9F+b\nkGnrVhrpLinMJ3rfBty7Dqz2ocaTlBTmk5NwGzP3ek+uLAiCIFQikl9BEN442y7E882WCOIzC1AA\n8ZkFbM+xITHiHPcuh6gkv9Y+gdzcv5mC9JQX8iqh2t0GkRh2gtjj+x67xvABqYYmlp4BXF7/u3K9\n78OxXV7/O0ZObso1mwAevYaSn5LI8Z8+IyMmkjsn9nF27njq9h6m0v5pWXj40mnudsJXzyFs6U8A\naBoYo2VkSuS25WTF3SQh9DjHp45CTfr4CUPeg78gcsefnP99Mhm3o7h3JZSki6eQamqTmxhL/NlD\n1bbVt7YHiYTYk8EUZKRUmZRWxcjBBef2fTgy8SNuHdxK9t0YUq6GcWnlb9w6tL3adoFf/QwKBVsG\nBnHzwBYyb18n43YUVzYtZlO/hk91bgDnDn3KR14nfEha9GUSwk5w7MdROLXoqhwprf/eaCLWzSN8\nzVwy79wgNSqcS6tmA2Ab0AIT57oc/G4IKVfDSLkaxsHxQzBz9652qrChvTO3j+wkJfIiadGXOTR+\nCGVFRSp19K3tSbx4irx7Ccp3J3sP+pyUK6EcmzqS1KhLZMXd5M7xvRz7ccRTX2/lWFxIvXaBuNMH\nyIqNJmTRDyQ/tNmTRCLB5/3RhK+eQ8TaeWTFRpMadYnw1XOUx/UsaxB/7gj5qRUJaL0Bo7i+azVX\nNi0mKzaa8DXlm5zVG/C/J8akpq6OW5d3OTt3PHrW9lj7BD22vlnt+mgZGFfapCo/NZnUqHDl2u2M\nmEhSo8JVkuTL6xeQEnmRzNvXubx+Aad+/ooGn05CQ89Apa9b+7dQUpCLW5eqE/GsuJukRoWTn5qE\nvKSY1KhwUqPCKSutGM1PvnQWmbYelp5V7z4tCIIgPJ6Y9iwIwhtnRnAUBSWqo0g3DGrTrrQE7Uem\nblp7N6KssAANXQPM3Ov/7XMb2Dlh7RNIbmLcU+8cbePblISQivW+FeVB3Ny/udKItK6FDR1+28LZ\n2ePY9E5jNPUNcW73NgHDJzx33BYefnSau53dn3YDwGfIGFr/+CcnZ45mY98ADOxq0uizqfw15vE7\n1NbuPhgtQxMuLJ9F+Jq5qGtqUaNxW3qvPcuVTYs58O0gui4KVnm/6cPX5Td0LOfnT+TolOG4duxP\niwkLnyr+5t//zoVl0zkz+zvy7sWjaWCMhYffYx9oGNg50WPVSS78MYOzc8aTl5KAlqEJpi6eBH07\n56nOC+Ubl3Wcs41Ts8awdXBzpBpaODbtpLJbtUevD5HKNLi0ejZn53yHpoEx9k3aAeXJX7tZ6zk1\nczQ7Py5/3ZNtQHOafDmr2hHCRv+bxtHJn7Djw7ZoGhjh2Xc4ZcWqya/fsHEcmzqStW95UlZcxLDz\nuZi61KXromDOLZjEjmHtUZSVYWDriGPzLk99vY/y6PUhaTcuc+DbQSCRULNld+r2+4TofRuUder2\n+Rg1mSYRa+dyZvY4NA2McQjq+ND1TOXM7HFEbluOnrU9/baGU7PVW+Sn3SN81WxOzfoKPWt7mn4z\nG/smbZ8qLveug7jwx0zcug544kirVF2Ga5cB3Ni3XuV1R5c3/s6FZTOUP+8ZUf7vo8XEJbh27AtA\ncsQ5QhZPpSQ/F2NHN5qNm49LFcsdrm1bjn3jdtXORjgy8SOVke7N75a/l/ydXVHoWdoCEP3XRlw6\n9FG+jk0QBEF4NpJn3fTjdeDn56cICal+t1FBEP7bnL7eTVW/2SRAzLROL/3869/2xaV9H3ze/+ql\nn0sQhKolXTrNzmEd6L/jarUJ58PyU5PZ0NefnitPlM9CeM3kpyazoY8fPVedfC3jEwThnyeRSEIV\nCoXfk2sKD4hpz4IgvHFsjKpeu1hd+YtSkJHClU2LyU2IpXaP91/quQRBqFpZcRG5SXc5//sUnFp1\nf6rEF8rX7DYbN4/c++9vft3kJN4h6JvfROIrCILwN4hpz4IgvHFGt3Pjmy0RKlOftWVSRrd7une6\nPq8VbZ3QMjIl6NvZyneVCoLwz7q+Zy3Hp47E1NWLlhMXP1Nbp78x/ftls/QMwNIz4FWHIQiC8K8m\npj0LgvBG2nYhnhnBUSRkFmBjpM3odm50r2/7qsMSBEEQBEF4IcS052cnRn4FQXgjda9vK5JdQRAE\nQRAEQUms+RUEQRAEQRAEQRDeeCL5FQRBEARBEARBEN54IvkVBEF4zQW2n82qDf++fQ7WbQ6jYZtf\nX1r/n4/bxpIVZ15a/39H8KFI3n5vOf/GfTUEQRAE4U0l1vwKgvBacQ+Y+tjj3Tt5Mu37zv9QNC9f\naloesxcd48TpW6Sk5WGgr4mbswXD3mtMA1+HVx1elY6fvsmHozY8ts6sKd1eagwRVxM5fe42P4yr\neG/z3v3X2LjjIlcjk8nMKmDd0oF4e6qu+751J40Zsw9xITye0lI5zZrUYtyXbTA20lHWCb+SwKy5\nR7gSmYS6uhodWrvz1ahWaGvJlHUuhN/llwVHuRaVjEQioW4dK74Y3gIPdysA2rZwY+6i4wQfjKR9\n69ov9V4IgiAIgvB0RPIrCMJr5fieEcrvj5yI5rsf96qUaWlV/WurpLQMmbr0pcf3on38xUbU1CT8\nOL4zNWyNSEvP42zIHTKzCl51aNVq4Oeo8mfy028HSUnNY+bkrsoyA30ttu4Kf2kxrFofQoc2tVUS\n0vyCYnzr1aBTWw/GTt5dqU1ubhFDPl2Hl4cNK39/h7IyOb8sOMqnozezatG7SCQS4hOzeP/TdXTr\nWJcJX7cjO6eQH2btZ/yPe5kxqfz6srILGPrZBtq1dGfC1+0pK5Uzf+lJhoxYx5Gdw9HSkiGRSOje\n2YuV60NE8isIgiAIrwkx7VkQhNeKuZme8ktfX6tymZ4Wt26n4R4wlX0HrvHusFV4BU5n266IKqfZ\nHj99E/eAqeTlFwMVU3EPHbtBu56/4x00gxFfbSYvv5hdwVdo89YC/Fv+zLeTd1NcXKrs59DxG/T7\nYAX+LX+mQetfGPrZem7HpiuPP4jp4NHrDPx4Nd5BM+jSdzFnQ+9Ue60pqblEXE3kq5EtaejngK21\nIV4eNnw4qBHtWrqr1C0oKOHbybvxaT6L5p3nsmL9eZXjd+Mz+fiLjfg0m4lvi1mM+norKam5AGRm\nFVC7wVSuXU8GQKFQ0Ljdb3R/Z6my/eHjN/Bv+TNlZfIn/hlpyKQqfyZamjJkMjWVMk3NiocUx0/f\npFOfRfg0STwWAwAAIABJREFUm8l7w9eSkJSl0t9fh6N4691leAVOp3X3BcxZdJyS0rJHT6tUXFLG\nX4ejaBHoolLes2s9hn8QSJMAxyrbnQuL5V5qDlO/74RLLXPcXS2ZOr4zoZfuEnbpLgAHj11HW1vG\nuC/b4ORgSr26tnw3ui27gq+QmJwNQPStVHJyixj5UVNqOpjiUsucTz8MJDOrgNj4TOX5WgY5E3rp\nLkn32wmCIAiC8GqJ5FcQhH+tWfOOMLhfAHvWD6Vpk1pP3S4vv5jVG0P55cfuLJ3Tl9BLdxkxZjP7\nDkQyb2Yvfp36FvsORrJx+yVlm8LCEoa825BNfw5m+fz+yNSlDB+9idJS1WTxl/lHGfJuA7aueh8X\nZ3O+GLudoqLSR0MAQF9PE01NdQ4cva6SaFdl2eqzeNWxZuvK9xjQ158fZx3gSmQSAGVlcj76fCM5\nuUWsXPguy+b05W5CJiO/3gKAkaE2bs4WnLufiN+4lUppqZybt9OUI8znwmLxqWeHVPpi/1vIyy9m\n+ZrzTPu+C6sWvUtqWi5TZu5XHj907AZjJ+9mUD9/dq//kEnftmfH3svMW3yi2j6vXEukoLCEurWt\nnimW4uJS1CQSZLKKGQIaGlIkEgi9n/yWFJehIZMikUiUdTQ1ZSgUKBNk55pmGBposWn7RYpLyigq\nKmXj9kvY2xnhWMNY2c7R3gQDfS3OX4h9pjgFQRAEQXg5RPIrCMK/1uD+AbRu7oqdrRGW5vpP3a6k\npIxJ33agjpsVvt41aN/anfNhcfw4vhOutcxp0sCJ5k1qqYzadmxTh9bNXXGoYUJtV0t+HN+JmzFp\nytHUB4YMaECzJs44OZjy2UfNSE3P4/rNlCrj0NKS8cO4jmzafgn/Vr/Qd8gKZsw+RMTVxEp1mwc6\n07enDw41TBjybgOsLPQ5E1Ie39FTN7kdm86sKd3wcLeiXl1bpk/swoXweEIvxgEQ4GvP2dDyJOxc\n6B0CfOyp42bJ+bAHZbEEvIQ1xg/utWcda+q4WTGoX4AyboAFy07y0XuN6d7Jkxq2xjQOcOKzj5ux\ndnNYtX0mJGWjoSFVWaf7NOrXs0MmkzJr7hEKC0vIyy/mp98OoVCgHCVvFOBIYnI2y9eco6S0jIzM\nfH6ZfwSoqGNooM2f8/uzZWcE3kEzqN9sJoeP32DZnH5oaFSMeEskEszNdIlPyKoUiyAIgiAI/zyx\n5lcQhH+tZx35e0BPVxNba0Plz2YmulhZ6GNwf5o1gKmJLteiKhLbmDtpzF54nIiriWRk5aOQl+/i\nm5icjWcda2U9NxcL5fcWZnoApGfkVRtL53YetGrmSsiFWC5GJHD89E2WrT7LVyNb8d47ARX9Oluo\ntLMw1yM9vbzfWzFp2NoYqjwAqOVkhpGhNtExqfh61yDAx4Hte3Yjlys4FxZLgJ89KSm5nAuLpaG/\nA5E3kpnwdfunu4HP4NF7bWGuR35+MQWFJWhpqnMtKpnrN1OYt6RipFcuV1BYVEpWdgGGBtqV+iws\nKkVD9uz/fVma6/PLj92ZOP0vVqw7j5pEQreOdXGpZY7a/ZHeOm5WTBnXkZlzDjNjziHU1NR4/50G\nhF68i5paeZ3cvCK+nbKHhn4O9O1Zn5KSMhavOMMnozex8Y/BKlO+NTVlFFYz8i8IgiAIwj9LJL+C\nILwWtl2IZ0ZwFAmZBdgYaTO6nRtaT2ijra2h8rNETVLp1TIlpZXXsKqrq056kSCpXCYB+f2+FAoF\nH47aQE1HE6aM7YD5/aS2c9/FlJSork1Vf2jTrQdTZ+Xyx7/uRltLRlCjWgQ1qsWIoUF89f0OZi88\nxqB+/sqEq3J8EmV8j/MgBr/6NcjOKeRqVBIhF+IY/kEg91JymDHnMCEXHNHR1qCOm+UT+3tWVd1X\nKL8nCkX5Pf78o6a0aupSqa2ermaVfRobaZOXX0RZmfyZp2k3a+LMoe3OpGfkI5OpoaujScM2v2Jn\na6Ss06OzFz06e5GSmouOjgalpWUsXH5KWWf7nsukpuUyeexg5f2dNaUbAS1/5vCJaNq3qlivnZVV\ngInxs41QC4IgCILwcojkVxCEV27bhXi+2RJBwf1EMj6zgG+2RNDfweCZ+jEx0iEnt4iiolLl6Fvk\nI9OSn8e9lFzuJmQyY1IX6nvZARAWfpeX9QrXmo5mFJdcpaSkTGUUsdr6TqbEJ2SRnJKjHP29GZNK\nZlYBzk5mQMW639UbQ1EoFLjWMsfOxoiY22kEH4p6Ket9n0RNTYK7qyW3Y9NxqGHy1O3quFqiUMDN\n22m41jJ/rnM/SEiPnowmN6+IFoHOleo8eMixZlMoerqayldPFRaWoCaRqKwLVpNIQCJRzgiA8hHi\nxORs6rg93wwFQRAEQRBeLJH8CoLwys0IjlImvg8UlJSx/VL8M/VT36t8TefP847Qv7cPVyKT2Ljt\n0pMbPoGJiQ4G+lqs33oRE2MdEpOymTn3MA/lPs8lOSWHbybu4q3OXrg6m6OjLSP8SiJ/rj1HUKNa\nT5X4AjRrXAtHexO+/G4HX3/WirIyORN/Csannh0+9eyU9QJ87VmzMYyWzVyQSCTo6mhQx92KXfuu\n8L/hzf/exTynTz8IZOSYLVia69O2hRtqahKuR6dw7UYyn39SdUxWlgY4O5kRdjFOJfnNyMwn6V4O\nafeng9+JS0dTUx0LMz1MTXQB2LjtIq7O5hgZahN26S4//nyADwc2Uhn5XbHuPH71a6ClJePE6VvM\nnHuYsV+0QVenfKZBYMOa/LrgKD/M2k+/Xj6UlJSx8I9T6GjL8PexV/ZzIfwu+nqaeNW1edG3TRAE\nQRCE5yCSX0EQXrmEzKrfaZuRV4ysyiNVMzPV5afvO/Pz/COs23qBhn4OjBgWxLeTKr/z9VnI1KXM\nmtKNab8eoEu/JTjam/Dt/1ozZOS6v9Wvgb4WHu5W/LHmHHF3MygtlWNhrkePzl589H7jp+5HKlXj\n9597M2XWfgYMW4VETUJgg5qM+7KNSr0AHwdWrAsh4KEELcDHnkuXE1TKAD4fu41r15PZu3HY37rG\nJ2nZ1IV5M3uyYNkpFv15Gpm6FCcHE3p2rffYdm+/5c3OfVfo29NHWRZ8MJIJPwUrfx4zYRcAnw9v\nztBBjQCIjknl19+Pkp1diJ2tESOHNWVAHz+Vvi+ExzNvyQnyC0pwdjJj6vjOdGpbR3nczcWCeTN7\nMW/JCbbuikAqlVDHzYrFv/XBzFRXWW9X8FW6dayLhuzf9/5pQRAEQXgTSR5dH/dv4OfnpwgJCXnV\nYQiC8II0mXaI+CoSYFsjbU5+3fIVRCS8/d5y6tW1ZewXbZ5c+RUoKCyhfa+FzJ3eA886r9/IavK9\nHLr2X8L21UOwsny26fuCIAiC8DQkEkmoQqHwe3JN4QHxqiNBEF650e3c0H5kdExbJmV0O7dXFNF/\nW3pGPolJ2YwcFvSqQ6mWtpaMn77vTFp6/qsOpUrxSVlM+raDSHwFQRAE4TUiRn4FQXgtVLXbc/f6\ntq86LEEQBEEQhNeSGPl9dmLNryAIr4Xu9W1FsisIgiAIgiC8NGLasyAIgiAIgiAIgvDGE8mvIAiC\nIAiCIAiC8MYTya8gCIIgCIIgCILwxhPJryAIgiAIgiAIgvDGE8mvIAiCIAiCIAiC8MYTya8gCIIg\nCIIgCILwxhPJryAIgiAIgiAIgvDGE8mvIAiCIAiCIAiC8MYTya8gCP8KRyLDGLR40qsO46mVlpXx\nvzW/ci0h5lWHUqWxmxdw9uaVVx2GIAiCIAjCP0b9VQcgCELV0nOz2RRyiIux18kqyMNAW4f69q70\n9GuJqZ7hqw6vkk9XzeTjFj3wsK35zG3vZWcwcvWsKo993Wkg3vaufze8f9zBa+cx1tWnto0TUH6N\nW0IPczU+hoz8HIx19Gnk7ElPvxZoqMuU7VJzMll2fCdX4m+hoS6jiYsX7zZqj7q04tf11YQYVp7c\ny92Mexjr6NOlfhBtPAKUx68lxLDr4klupcaTkZfDRy160NzdRyW+Hr4tWHlqL/41a6MmEc9BBUEQ\nBEF484nkVxBeQ/ey0xm/dRHm+sZ83LIn1oamJGens+7sfsZuXsCkt4ZhYWD8qsN84b7pNAgHMyuV\nMj1N7VcUzfNTKBTsCz9DD7/myrKEzBTkCgVDmnbFysiU+IwUFh/dRk5hPkObdwdALpfz056V6Glp\nM6H7h+QU5rPg0GYUCngvqDNQ/nfjp90raO7uy6etexGZeIdlx3dioKVLg1oeABSWFGNnYkGQmzfz\nD22uMsb69q4sOrKNi7E38HFwe7k3RBAEQRAE4TUgkl9BeA0tO74LiUTCuC7voSnTAMBM34hxXd7j\ns7W/8MfxnYzpNBAoT7R2XzrJgavnSc3JxEBblyBXb/o1bAuUjyCvPL2X8NgbALha2TOwSUesjcwA\nSMpKY+WpvUQn36WwpAhrIzN6+7fC19FdGc+nq2bSsrYvablZnLoRgbaGJh08G9GlflC117A55BCH\nr4WSmZ+LrqY2XjWcGd6q12OvW09LByMd/ae+T6G3I9l0/hB3M+5hpKNHE5d69PJrgbpUnbVn/iI8\nLpqpvT9RafPdloXUsrBlcGB5MnkkMpSdF09wLzsDUz1D2ngE0MGrkXI0tO+CcXzQrBsRcdFcjL2O\nobYevQNaEeTqXW1ct1ISSMpKU0kqve1dVUawLQ1MeMunORvOHVAmv5fiormbfo85A77ATM8IgP6N\n2rHoyDb6NGiNjoYW+6+cx1jXQJkM2xpbEJ18l12XTiiT3/oObtS/f+4Fh7ZUGaOamhr1HVw5dSNc\nJL/CP2Kjx2rch9bFc1S9l3aOnDs5bKq7hi5He2DmY/7C+7+xOoroNdfpsLvLC+/77ypIKWCr/wa6\nneyJrq3eqw5HEAThtSSSX0F4zeQW5nMp9gZvB7RSJr4PaMo0aOvRgA3nDpJbVICepjbrzu5n/5Vz\nDGjcgdo2jmQX5HE7NRGAopJiJu1YiquVPeO7f4C6mpRdF0/ww84/mNV3FJoyDYpKivG2d6VPQGs0\n1GWcjo7g5+C1TH/7U2yNKz487rl0il7+rZjaO4iLsddZfmI3btYOuFrZV7qGszevsOviSUa0eRt7\nE0uyCvK4kRz3Qu/TpdgbzD2wkUGBHXG3diQtN4slR3dQUlbKgMYdCHL1ZvuFY8RnpCivIzk7nRvJ\ncQxq0gmAg1fPs/H8QQYHdqamuQ1x6fdYdGQbUjUp7T0bKs+1JeQw/Rq2pV/Dthy+Fsrvh7dS29oR\nM32jKmOLTLyNpaEJuk8YtS4oLlSpcyM5Fltjc2XiC1CvhgslZaXEpCTgYVuTG8mxeNk5q/RTz96F\nY9cvUFpWhrpU+tT3sJaFHVtDjzx1feHNdHzYYaLXXAdAIpWgY62LXTt7fL8PQNNY8xVHV+EP/YWP\nPe7c3xXvb/1e2vnLissIm3SeZktbKssyrqVz4YcQ0i6lkns7B+9vfKn/SAwlOcWETTnPnZ23KUwp\nwMTLjAbTG2Pua6GsU3Avn5DvzhJ/6C7FWcVYNbGiwYxADJ1Vl7ikhNwjbNI57p1LBokE4zomtF7f\nDi0zbbTNtXHu58qFH0IInN/8pd0HQRCEfzOR/ArCayYxKw0FCmyNLao8bmtsgQIFSZlp2JmYsyf8\nFAObdKRFbV8ArAxNlQnpqegIAD5u0QOJRALAh826MXT5VMLuRNHI2RMHM2sczKyV/b/l25zQ25Gc\nvXWZHr4tlOVeNZyVCWF7z0bsizjD5fibynPNffdLZd3U3EyMdPTxsnNGXSrFTN+IWha2T7z2iduX\nIEGiUrZg4FfoaGpVqrs17AidvQNp7l5x3f0btWXugU2826g9diYWOJpZc+LGJfoEtAbg5I1LWBua\n4WxpB8CW0CP0b9iOhrXqAmBhYEK3+k3Zf+WsSvIb5OqtHOl9O6AVeyNOcy3xNkH6VY/+puZkYvyE\nEeyUnAx2XTpJd59myrLM/FwMtXVV6ulr6aAmUSMzP0dZx9NOtY6hti5lcjk5hfkY6z79yLmxjj4Z\neTmUycuQqj190iy8eWxa2BK0uCWKUjmZkRmc+OQoxVlFNP+j9asOTalP9ADl93f33uHkiGMqZepa\nUooyi1/a+W9vu4VUW4pVoI2yrDS/FD17fRy6OhE2+XyV7U58epSMy+kELWyBro0uN9ffILjrbt46\n/za6NrooFAoO9g1Goiah1dp2aBhocHluOMFdd/HW+beR6ZbvCZByPpm/3tpD3VH1CJjWGDWZGhlX\n01GTVazZdxngxs6mW/Cf0hBNk8q/NwVBEP7rXkjyK5FI2gO/AVJgiUKhmPbIcU1gBeALpAF9FArF\n7fvHvgGGAGXASIVCEfwiYhKEf5ttF+KZERxFVv496lrDuZg0Ap6wd9Td9BRKykqpW80mUzEpCdzL\nzmDwkskq5cWlJSRnpwPl60M3hxwi7E4UmXk5lMrllJSVYm+quvb20Z+NdfTJLsir8rwNanmwN/wU\nI1fPwquGM972rvg6uiOTPv5XzojWvalhYqlSpqWhUWXdmJQEbt6LZ8eF48oyBQqKS0vIzM/FWFef\nIFdvgi+fUSa/J66HE+jqBUB2QV75aPGxHSw9tlPZh1whR6FQPHLtFTFJ1aQYaOlUe+0AxWUlyNSr\nv9bM/Fym7lqBp10tOno1rrbey6ahLkOBgpKyUpH8/sepaUjRsdQBQNdWD6cetYheHaVSJzcuh7Nf\nnSLhSDxQnjA3nNFEZYptXHAsF6eFknE5DXVtdSwaWNJ8ZRvUtSr/e7i57jqnPz9B08Utse/k+MQY\nH8QHoGGkWakMUCa/uXE5hE44S/KZZPTs9WgwvQm2Le2U9TIjMzg/9gxJpxJR15Ji3dyWgGmNK/X3\nsFsboqnR3kGlzNzXQjmCGz7zQqU2pQWl3NkeQ4tVbbEOKk+a63/rR9zeO0QuuYLv+ACyo7NIOX+P\nbqd6YeJpCkDjX4NYV2sFMRujcR1cG4CzX5/G/UMP6o2u2LzO0EV19olxHRO0rXW4syNG2U4QBEGo\n8LeTX4lEIgXmAW2Au8B5iUSyQ6FQXH2o2hAgQ6FQOEskkr7AT0AfiURSB+gLeAA2wAGJROKqUCjK\n/m5cgvBvsu1CPN9siaCgpAx1NS0UCtgYEomdSU2611cdMY3PuIcECVaGJiRlpT+2X7lCgaOZFSPb\n9Kl07MFGUqtO7eNS3HXebdQBKyNTNNVlzDu4iVK56j/DSsmRpLz/qpjpGfFzv8+4HH+LiLs3WXlq\nL5vOH2JKz4/QklWdzAKY6BpiZWj62Gt6+Np6+rVQjto+zEC7/ANsY2cvVp8O5npSLDKpOgmZKQTe\nH8F9EPsHTbtWOXX7YZWvXVLttQPoa+kqp54/KjM/h8k7llHDxILhrXopR+QBjHT0uJ4Uq1I/pzAf\nuUKuXAttpKNHVr5q4p1VkIdUTQ19reo/uFclt6gAmVQdLdnrM7VVePVyYrKJPxCnMqKokJePTkq1\n1JXrXc98cYKD/YLpcrR8Zsnd/bEc7LMPz8+9CVrQHHmpnPiDd0Fe+d/KlfkRXJwaQusN7VVGUl+U\nsInn8ZvSgIY/B3FpehhHBx+g99V3kOnJyE/KY0+7HbgMdMP/h4bIS+WETTzHwb7BdD7YHYmapMo+\n751JomZv5yqPVUdRKkdRpkBdS/V3iFRLnXunk4Dy6dQAUs2KOhI1CWqaUpJPJ+E6uDYFKQWknEum\n5tvO7G6znezoTAxdjPD+1heb5nYqfZv7WpB0MlEkv4IgCFV4Ee+3CACiFQrFLYVCUQysA7o9Uqcb\n8Of97zcBrSTln/i6AesUCkWRQqGIAaLv9ycI/ykzgqMoKCn/AFQql5FVaISpTgIzg6+q1CsqKeav\ny2fxtndBT0sHW2NzZFJ1LsffqrJfJ3NrkrLS0dfSwcrQVOVL736iFJV0h6au9WlQywMHUytMdA24\nl/34pPppaKjL8HFwY1CTjvzQ82PuZtwjKunO3+73ASdzGxIyUipdl5WhqTJZNdbVx8PWiRM3LnHi\nxiVcLGtgaWAClCeRxrr6JGelV9nH3+FoZk1CZipyhVylPCMvh0nbl2JrZM7INm9XSqpdLO2Jz0gh\nLTdLWRYeF41Mqo6TuY2yTvjdaJV24XHR1DS3fab1vgBx6cnKfoX/tvgDcay0WsoK8yVs8lpLZmQG\nnv+rmNafcCSejMvpNFvWCjMfc8x8zGm2rBVpF1NJvD8SfOmnMBy718R3fABG7saY1DXFc1Q91HVk\nKucKm3ye8JkXaL+ry0tJfAHqfOqJfUdHDJ0N8Z0QQFFGEenhqQBELrmKiacJ/pMbKuMMWtSS1JB7\npIalVNlfUWYRxVnF6Fg/2wMmmb4G5gGWXJoeRl5CHvIyOTfXXSflXDL5SfkAGLkaoVtDj9CJ5yhK\nL6SsuIzwny+SH59HfnJ5nZyYbAAu/hCCywA32m7rhGVjK/7qvof0iDSVc+pY6ZB7J+eZ4hQEQfiv\neBHTnm2Bh3eyuQs0qK6OQqEolUgkWYDp/fIzj7StcmGgRCIZCgwFsLd//CiNIPzbJGQWqPwck+6E\nh9VlDDVDuXy3JlZGpiRnpbP+3AEUKJQ7/WpraNLesxHrzvyFTCrF3dqR3MICbqXE07ZuAwJd6rHr\n4klm7l1N74BWmOkZkpabRcjtSFrX8cfayAxrQ1POx1zFz6k2UjU1NoUcpris9G9dz5HIMORyOc6W\ndmjJNDgdHYFUTYr1E5LK3MJ85drWB3Q0tFTeg/tAT98WTN+7EjN9IxrV8kRNTY249GRu3rvLO43a\nK+sFuXqz8tRe1KVS3vJprtJHb79W/HFiFzqaWtS3d6VMLicmNYH0vGyVtbjPysO2JiWlpcSmJeN4\nfz11el42k7YvxVhXn4GBHckpzFfWN9DSRU1NjXo1nLEzsWD+wU2827gDuUX5rD6zj5a1/dDRKF+/\n18bDn78un+HPE7tp7eFPVGIsR6MuMLL128r+CkuKlLMCFChIy83kdmoiepraKpt0RSbepl4Nl+e+\nTuHNYdnEmiazm1JaWMr15ZHk3Mqm9scVsyqyojLQttZB36FiTbm+kwE61rpkRmZg08KOtPA0nN95\n/M7hVxdEUJpbQucjPSpt5vQimXiYKL9/kLAWpJT/nk27kErSySRWWi2t1C4nJhtzv8r7LZQVlv9O\nfHh09mk1XdyCE58cZYPbKiRSCabeZjj1rkXahfJkXE0mpeXqtpwcfpQ1Dn8ikUqwaWGLbdsacH/Q\nXHF/9Nzt/dq4Dizfid+0nhmJxxKIXHqVxr9W7Lwv1VantPDv/Q4XBEF4U/1rNrxSKBSLgEUAfn5+\n1c83FIR/IRsjbeIfSoCLSrW4nOiJq0Ui8w5tIrsgDwMtXbztXRnVpg+mehUfGvs1bIOephZbQo6Q\nlpeNobYuTd3qA+W7Q3/f/QPWngnm1+B15BcX3h8NrancZXhAkw4sPLyVCdsWo6upTQevxpT8zeRX\nV1OLHReOs+r0PsrkZdgaW/B5u35YGJg8tt3U3X9WKhvarDst61TewbWevQtfdRzAlpAj7Lp0EqlE\nDWsjU5q6+ajUC6hZh6XHdpBfXEQjZ0+VYy3r+KEpk7Hz4gnWnd2PhlQdOxML2tVtyN+hr6VDQM06\nnLh+SZn8hsdFk5SVRlJWGp+unKlSf/Y7X2BhYIyamhpjOg5g6fGdfL9tMRpSdQJd66kk8xYGJozp\nNJAVJ/ew/8o5jHX1GRzYSfmaI4Cb/2fvvsOjKLcADv8mvfdsSAIJLYQSSggdpPduKIIiICoKgl4L\nTa9dscBVRAWlKypICb2E3kFCr6GEkEB6SO9t7h+bLFlIo10g97zPkyfZ2W++OTNbMme+MrERfL5+\nke7xyqBdrAzaRXtvX8Z3HgRob4F1OfoGE7oMeaB9FZWDkbkRNrW03yutZrRlS+8NnP7mxF0zF5dI\nKbmbcElcWlchYscNQlddpclUv/sNt1wGxsW6EBfFV5RIqirVenjQ/Mu7P+fmmpJnaDd1MAOF+5pQ\ny6amLb239ic3PZfc1Bwsqliye9R2rKvb6Mo4+Toz4NBgcpKzKcgpwMzZnA2d1uDkq70lnUUVbQJv\nV1f//u52de1Jv5Gmtyw7MRszp6fv/uhCCPG/8DCS3wigWrHHVQuXlVTmpqIoRoAt2omvKrKuEJXe\npB7eujG/RQwNLHil/cC7xvzeyUAxYEDTDgwopaXSzsKKcYUJT0mcre35d/8xesv6NWmn97j4TM5F\nPh7wSql1Nq9Rn+Y16pcVth6NjT3Lx31RZpmOdZvSsa5+Ytu4mle5LZdmxqb89urHpT7f1qsxbb1K\nv+9oSXGVdDzu9KxfRz5ftwj/Zh2xMDErMf6SOFnbMaX3i2WWqe9Wg6+HvFHq8w3ca5Z7PDefOUQH\nb1+9Cyni/0fRBHuRSZkMO5dMA0v9ZKnJND+2+2/G+6V6WLhaYuttT2ZUBqlhqbrW39TQFDKi0rGr\nq+1N4NjIkai9EXi/VPpYU8cmzjSY0IhtAzaBAk2mPLoEuNQYGjsRuiYEKw8rvSS5LIYmhtjVtScp\nOJFqPe6v95mxpTHGlsZkJ2YTufMmzT67s5McmNhqx98nX03m1ok4mv5be/HBytMaC1cLkq8k65VP\nuZqMfQP9i4pJFxJwaeuKEEKIuz2MMb9BgJeiKDUURTFBO4HV+jvKrAdGFf49GNilaqdTXQ8MUxTF\nVFGUGoAXcPQhxCTEU2Wgrztf+TfE3c4cBXC3M+cr/4blJr7iyVXNwYURbXoSl5L4uEMpka25JUNb\nPDm3sRH/O0UT7EUkZaICGTn5BEensvbk7WvPrs+4YVfXntPfngC0Mzvb+ziw7+WdxJ+II/5EHHtf\n3oljEydcO2i/pxpNasr1Ndc4/tlRkoITSbyYwPmfzpCXkau3fWc/Dd3X9uH8j2c4VVj//1K9sQ3I\nTc5h96gdxAXFkBqaQuTumxycuJfc1NJbdt27VNNNUlUkPyefW2fiuXUmnvzsfDJjMrh1Jp6UkNtJ\nasQUxshEAAAgAElEQVSOG9zcFk7q9RQidt1ka58N2HrZ4fXi7S7ioWtCiNoXQWpoCmEbr7NtwEY8\n+lbHvYu2fUBRFHzeasyFX84RuiaElJBkTs84QWxQLN5jbl9ozMvIJf5UPO5di7crCCGEKPLALb+F\nY3gnAIFob3W0SFXV84qifAYcU1V1PbAQWKooylUgAW2CTGG5FcAFIA94Q2Z6Fv+vBvq6S7JbyRR1\nP38S9fN9pvxColIqPsFekfwClRmBl/S+gxpMbMSBcXto+HYTrDys6bK8B/9MOsSWPtpbg7l1dKfV\nzLa6bsXVenjQ+a/unPr6OOd+OI2xlQmali54v3J3LxDnZtoEeNvATQA0mdyUK39c4sC4PQw+97ze\n2OKHzcLVkt7bB3L8k3/Y5r+Z/Kx8LKta4d6lKgZljOmtM7ou69uuJjshS3cP3YyoDNa3Xa0rc+la\nCpcWXaRKO1d6bekPQE5KDsc/OUp6RBqm9mZ4DqiB30fN9VqdM6MzODrtMFmxmZhXsaD28Do0nqLf\nU6TBG43Izy4g6P0jZCdkYVfPnu4BvXS3RwII3xSGVVUrqkjLrxBClEi5836WT4NmzZqpx44de9xh\nCCGEEE+dGlM3UdJ/fgUI/brP/zocnZNfBnF9bSgDDg/GwOhhdEx7+PaM3oFdPfvH0l27IjZ0DKD+\n+IbUGioT2Qnx/0BRlOOqqlZgcgZR5Mn87yKEEEKIR8LNruTJkEpb/r9yc9sNWn3X7olNfAGafd4S\nY+vS71X+OGXGZVJ9QM17vhexEEL8P5GWXyGEEOL/SNGY3+Jdn82NDWWeASGEeMpIy++9e2pudSSE\nEEKIB1eU4BbN9uxmZ86kHt6S+AohhKj0JPkVQggh/s/IBHtCCCH+Hz25A2uEEEIIIYQQQoiHRJJf\nIYQQQgghhBCVniS/QgghhBBCCCEqPUl+hRBCCCGEEEJUepL8CiGEEEIIIYSo9CT5FUIIIYQQQghR\n6UnyK4QQQgghhBCi0pPkVwghhBBCCCFEpSfJrxBCCCGEEEKISk+SXyGEEEIIIYQQlZ4kv0IIIYQQ\nQgghKj1JfoUQQgghhBBCVHqS/AohhBBCCCGEqPQk+RVCCCGEEEIIUelJ8iuEEEIIIYQQotKT5FcI\nIYQQQgghRKUnya8QQgghhBBCiEpPkl8hhBBCCCGEEJWeJL9CCCGEEEIIISo9SX6FEEIIIYQQQlR6\nkvwKIYQQQgghhKj0JPkVQoj/c9HJCXSeOYlL0TcedygP1cGr53hxwTd0/c8UvtmyvMLrbT0XRO8f\nPniEkT0ad76Op8JD6DxzEskZ6aWu87Tua1mWHNzGmMUzH3cYT42E9BQmrZxH71nv03nmpHtat/PM\nSey9dOYRRVa2iry/78XT+D04fN50/g7aU265d/7+hW3njz36gO7DJ+uXsiJo7+MOQ/wfMXrcAQgh\nxP/aP6uCuLj3IqN/HPm4Q7lLcmwKPw77mbdWTsTa0eqh1PnNluUEnj8OgKGBARprO9p5+TC6TQ/M\nTUxwtrZj1bgPsTW3fOBtDZ83nYG+bXiueccHrutBzQhcSe+GLXnWty3mJiYllvlfx6uqKpvPHmXL\n2aOExsegKOBm50Tnuo3p17g1lqZm9133w3wdn0RbzwXx7dYVZZb5bujrjzSG3Pw8Vh8/wK7gk9xI\niMPEyIiq9s709GlGjwbNMTF6+k6r/g7ay620FOaNehsLE9MSyyw5uI19l8+w6KX3/icxDZ83nZiU\nRAAMFAV7S2va1KrPax36YGFy/5+Rh+3O96SDpTUN3Wswtn0fXO0cHmNktx0JuUhsahJd6jUFICUz\ngyWHtnE87DIxKYnYmlvSqmY9xrTrqffdkZqVwY+71nH46gUAWteuz5udB2JlZq4rcy0uitk71xIc\nHY61mQX9GrXixdZdURQFgD2XTrP86B4ikuLJz8/H3d6JwX7t6eHTTFfHyNZdefvvufRu1AIr09t1\nC/GoPH3f0kL8n3i/6YdlPt+0ny+DP/V/JNu+FX6LbXN2EHYyjPSkDCztLHCr60b3CV2p4lWF3Oxc\nPm79GSNnjaBue+9HEkN5zmw7S1DAMaIuR5Ofm4+mpobOYzvi3bZOmevlZOaw89ddvPjd87plkZei\n2DVvN5HBUSRFJdFjYjc6vNReb72s1Cy2/byDi3svkp6UgXs9d/pN7o1bXTddmZS4FLbOCiQk6BpZ\nadnUbFaDflP64uBurysTdz2OLbMCCT9zg/y8fLzb1aHfpD5Y2mtPOmw1NjTs5sOuebsZMK3fwzhU\nAPh5ejGt9zDy8gs4GxHKzMCVZOXm8Ha3QRgaGOBgaVPm+nn5+RgZGj60eB61tKxMUjIzaF69Ds7W\nto87HJ2vNi9j35WzvNCyM290HoC9hRXX42NYe/IgdhZW9PRpfl/15ubnYWxoVO7r+DTr5N2EFjVu\nf998tXk51mYWTOjcX7fM2syCUzdCHsn2c/PzmLJqAVdiI3ipbQ8autfAytScS9E3WHl8H9XsNTTx\nqHXfdRsbPp5TssikW9RxqUpVe+fHsv3SjGzdlf5NWpNfoBKeEMOMrSsBeLvboMccmT4zI2P+eHUq\nqgrhCbF8v301/167mHkj38bQ4NF0sLyX98vqE/vp0aCZLpZbaSnEpyUztn0fqju6EJ+WzKwda/hi\n45/MGDJWt96XG/8iJjWJrwe/DMDMwFVM37yM6f5jAEjPzmLSynk0qlqTuS+8RXhCLN9uXYGZsQlD\nm3cAwMbckhGtuuDhoMHQ0IAjIReZEbgSWwttwg1Q09kVV1tHdlw4wUDftg/tGAlRGkl+hXhCTds2\nWfd38P5LrPl8nd4yY1PjR7Ld3KxcFo5bgkstDc/PGI61kzUpsclcPnyVzJSsh769vNw8jIzv/aso\n9Ph16rTxosfEbphZm3Ni/QmWvv0nry16lWo+VUtd70zgWSzsLKjWsJpuWW5WLo7VHGnY3Yct3weW\nuN7Kj1aTEJHA0C+HYO1kzfF1J1g4bglvr34TKwcrCvIL+P2tPzG1NGHkrBEYm5uwb8l+Fo1bwlsr\nJ2BsakxWWhaLxv9GNZ+qvDp/DAX5BWz7aQd/vLuMsQtf1l0t9xvQlAWvLtLum9XDaeUonhh1sfHl\nZPhVDl49z9vdBhGdnMDz879i7og38a5SjVPhIbyz4hem+4/ht0PbCYmN5NMBI/Fw1DB39wYuRoWT\nmZNNVQcNL7XtTuta9QF4e/lcYlIS+XXvJn7duwmAXe/NAOBcxHUW7N/CpegbWJmZ06ZWfca276Nr\n6Tx94xrz9m0iND4aQ8WAqg7OTO4xlBrOVUrcn9SsDH7etZ5DIRfIyc/Fx606b3QeQA2nKrr4Ad5d\n8SugbRG8MzEpK16AE2FX+GnXOqKTE6jr6sGkHkP1WnMOhVzgt0PbuB4fg6OlNV3q+TKyTbdST0r3\nBJ9mx8WTfNJ/JO3rNNQtr2LrQKta9UjLygQgOOoGCw9s4UpsBHn5+dR0duW1Dn1o4FZdt07nmZN4\ns8tAToRf5VjoJfo1ac2zvm31XsciF6LCWHRgK+EJcVR3cuHdboOpU0X/M3Io5AK/7NlATEoSDdw8\nea/HENzsHCu8r9svHCfg+AHCE+IwNTKiUbVavNGpv+7CQ9FrMnPIWBbs30JofDSeji68030QdVxK\n/7wWZ2psjKnx7e89Y0MjTI1KT/h3BZ9i4f4tJGWk09SzNu91H4Ktxe2WrS1ng1gRtIfI5ARcbOzo\n17g1g/zaYaCUnLCsPr6f0zeuMWfERL3j62rnQHvvhmTm5ADa91V1pyq81fVZXZlvtiwnOTNDlzi8\nvXwuHo4azIxN2Hb+OFVs7Jn74ltsOH2Ylcf2EZOShLmJCXVcqvKV/xgMDQzvK2aADacP83fQXmJT\nktDY2DGsRSf6NmoJ6LewbrtwnB4N/JjSa5je+lvPBfH74e0Aum7Rk3sO1V2oSc3K4JP1Szl67SL2\nltaMbtudbvX9dOvHpSbzy54NBF2/DEADN0/e6Ny/3GTb3MRU99o6W9vSwbsRZ2+Gllo+OTOd2TvX\ncvZmKClZ6bjaOjK0WQd6Nbx9QUlVVVYe28eG00eITU3E1tyKbvWb8mr73nfVV6AW8OPOtfxzLZhv\nh7xaeryKoovT0cqGka27MX3zMiKS4vFw0JCWncmvezdx8Mo5svPy8HJxZ1zHvrr3UEXiLu39Up6k\njDROhF3l9Q59dctqOFfhswGjdI/d7Z14rUMfPghYTHp2FpamZoTdiuHo9UvMHj5e973zTrdBvLV8\nDuEJsXg4aNhx8QTZeblM7TUMU2NjajhXITwhlpXH9zGkWXsURaGpR229eAb5PUPg+eOcvRmqS34B\n2tSqz67gU5L8iv8JSX6FeEJZO1nr/jazNrtrWZHI4Eg2/WcLN87dxNjMmAad6tPn3V6YWppy5fBV\nfv/XH0wLnIyFnYVunc3fbeH6yTDGL727i2DU5WiSopJ4bdEr2LpoT1zt3ezwbOKpKzOj73cA/P6v\nPwBwqu7EOwHaf8SHlh/h4J+HSIlJwc7Njk4vd6BpP18AXYvxwA/6E7z/EiFHr9FmeGtObT5F+1HP\n0HpYK902oq/GMHvoT7y1aiIuNTV3xXlnq2j3Cd0I3neJi3sulpn8nt56hnp3tFZ7NvbAs7EHANt/\n3nnXOllpWQTvu8SoH1+kRtPqAPSY2I2L+4I5GnCMzq90JCYklsjgSN4OeBPn6tqTpGc/HMCXnb/m\n3I7z+PZpQujxUFLjUhn8qT8m5tpuuIM+9Wd6l68JOxVOdV/tMa5a3x1TS1Mu7g3Gt0+TUvflQZga\nGZNXkF9mmfn7NvN6x7642zlhYWLKrbQUWtSoy5h2PTE1Mmb3pdN8vO53Fox6Bw9HDZ8OGMWrv39H\nL5/m9G/SWlfPtbgoJq+az+g23Xmvx2BSszL5edc6ZmxdwScDRpJfkM+Ha5fQq2Fz3u8znPz8Aq7E\nRmBgoJQa2zdb/uZGYhyfDxyNtZk5Cw9sZerqBfw+ZgoN3D1ZNPo9xiyZySf9R+Lj7om1mcVddZQW\nL2hbVv76ZxeTeg7FxMiIb7b8zfc7VvPt4FcBCAq9xPRNf/FGpwE0qlaD2JQkvt8eQE5+HuM6ltxi\nv+PiCaraO+slvsUVdSfMyM2mW30/JnQegILCmpMHmbZ6EUtfmaLXLfH3Q9t5+ZlevN6hLwqlH6tf\n9m5kQqcBOFnZ8tvh7by/ZhF/vDIVM2MT3b7+fmg7k3sOxdTIhJ92r+Pjdb8xb+TbKIpSoX3Ny89n\nVNvueDhoSM5MZ/6+zXyx6U9+GDZeL5b5+7cwtn1vHC1t+Gn3OqZvWsbil97TXfjpPHMSI1t3Y3Tb\n7qXuT0VEpySyO/gUnw0cRVZuDp9v+JOFB7bwTvfBAGw88w9LDgYysfNA6rhUJfRWNP8JXImRgSHP\nNi35BHzHxZM09aytl/gWMVAM7rnL+o4LJ+nbqCU/DBuPisql6Bv8sGMtU3s9h497DdKzMzkRflVX\n/n5i3n/lLLN3rmV8x/40q16HoOuX+GFHAA6F3YjnjniTLzf9pWtBNzG6+6JqJ+8mhMZHc+TaRb5/\nTvs/w9LkdvfU3w/v4NX2vXj1mV5sPnuUGVtX0qhqTVxs7MnKzeHdFb/QwM2T74e9jrGBESuO7eW9\nFfNYMmaS7j1YnpiURI5dv0yTaqW3rOfk5eGlcWd4i45YmJhxIuwK329fjYuNHU09vQBYsH8L608f\nZnzHfjSqWpOkzDSuxkTeVVdefj5fbVlOaFwUs59/AyerivceKTqG+fkFqKrK+wGLsDQx40v/MdiY\nWRB4/hjvrviV38ZMxtHKpkJxw93vl4o4GxGKsZEh1Z1KvohYJCMnG2MjQ8wKLy5diAzD3NhU74Kb\nj3t1zIxNOB8RhoeDhguRYTR0r6F3Qap5dW8WHwwkOjnxrm7fqqpyMvwqNxNiebldT73n6rpW448j\nO8nOzdWrT4hHQSa8EuIplpWWxeI3fsfSwZLxS1/n+W+GERJ0jbXT1wNQu1UtbJytObXltG6d/Nx8\nTm4+jd8AvxLrtHK0QlEUzu04T0F+QYllipLmIZ8PYtq2yby28BVAm1hu+X4r7Ue1462VE2g5uDmr\nP13DlSNX9dbf8csuGnSuz1srJtBiUHP8+jfl+PoTemWOrz1OtYbVSkx8S6KqKtmZOZjblD5mqCC/\ngPAzN3Cv716hOovk5eajqipGpvrXC41NjAg7GQZAfm4eAEYmt/9xGxoZYmBkQNipcG09OfkoioKh\nkaFeHYqiEHYqTK/uqj7uhJ64fk9xVtTFqHB2Bp+kqYdXmeVGtelG8+reuNk5YmdhRS2NG/2btKam\nsyvu9k6MaNUFLxd39l7WTnhjY26BgWKga7Epag35O2gPnbwbM7R5B6raO1PP1YN/dfNn35WzJKan\nkZ6dTVp2Jm1q1cfdzgkPRw1d6vni6ehSYlw3E+M4FHKBd7oNpnG1mtR0dmVa72FkZGez4+IJjA2N\nsLfQjpe2MbPAwdKmxNbY0uIFyC8o4M2uz1LP1YNazm4MbdaB0zdCUFXtSecf/+zkueba1hl3Oyd8\nPWoztn1vNpw+oitzp4jEeDwcyu9a2tSjNt0b+OHp6IKHo4Y3uwzExMiIo6HBeuU61m1Cn0YtcbNz\nLHN84YututK8hjc1nKswpedQsvNy2XnxpN6+TujcHx/3Gni5uDOt13BC46M5EX6lwvvaq2ELWtWs\nh5udo/b17erP2ZuhxKUm6cUypm0PfD1q4+GoYWTrroQnxBKflqx7vpqD80MZs5xfUMCUXs9Ry9mN\nBm7V6du4lV4i+cfhHYxt34cO3o1wtXOgTa36DG/ZmfWnDpVaZ0RifKnvyfvhamvPuE798HDU4Ono\nom3tNTahTe36VLG1p5bGjSHN2utafe8n5hVBe+lW349nm7almoMz/k3b0bWeL8uP7gbAzsJKrwW9\npDGXpsbGmBubYqgY6D4nxROUbvWb0q2+H+72Toxp1wNDAwPO3LwGwO7gU6gqTO6pfS08HDW83W0Q\nWbk5HAm5WObxWXRgK71/+ICes6YxfN50rMzMeeWZXqWWd7a2ZViLjtTWuONm50jfxq14xsuHXcGn\nAMjMyWbV8f28+kxvejVsgbu9Ew3cqjPAt41ePVm5OXywZhHRyQnMGjb+nhLfuNQkVgTtwdnalqoO\nTpy8EcLV2Eg+6T+Seq4ehceoJ662Dmy/cLxCcRe58/1SETEpSdiZW5XZ/TotK5PFBwLp07Cl7r2W\nkJ6KnYWl7qIUgKIo2FtYkZiRqitjb6l/Qd7eUvu9m5CRcrv+7Ex6//AB3b+fyrSARUzoMpCWNevq\nredoZUNeQT7x6ckI8ahJy68QT7ETG0+hqipDPh2EsZn2ZGTA1H789uZSekzsjl0VW/wG+nF8/Qna\nDNe2bAXvv0RORg6Ne5bc+uTgbk+vt3sS+NN2ts/diXt9d2r4etKoZyM0NbQn7pb22lY0c2tzvdbo\n/b8fpNlAP1oObgFAO08nbpy7yb4l+/Fqdbv7k2/vxvj1b6p77DfAj90L9xJ1OQrXOq66BL3HxG4V\nPhYH/jhEZnImjXs1KrVMemI6uVm52JTQgl4WK3tL3Oq6suvX3Th96YSlvQUnN54iMjgKl9ra5Nyl\nlgs2ztYE/rSNAdP6YWxqzN7F+8hIyiA1Xnuy4NnEA0NjQwJ/3Ea38V0pKChg83dbUVWVlMIyRWyc\nbbgVfuue4izL0dBL9P7hA/ILCsgvyKdN7QZM7DywzHXquOi3cGXm5PD74W0cCbnIrfRU8gryycnL\no6aza5n1XI6JIDIpnt2Xbl+EoTBpikyOp4FbdXo0aMbkVQto6lGbpp61aV+nES429iXWF3YrFgNF\noYHb7d4IVqbm1HCuQtitmDJjqShjQyM8HG5feHG0siE3P5/UrExszC24En2T4KgbLDu6p9guqWTn\n5ZKQnoqj1d1dcSvWVgOJ6WksPriVUzdCSExPI18tICcvl9gU/UTSu4LdhesXO07mJqbUdHLVO04G\nikLdKh66x1Vs7XG0siHsVix+nnUqtK+XY27y+6HtXI2NJDUrU9cyFZOShLO1nW694u8VR0ttUpGY\nkaYr89uY20M7HoSLjb1eIudoaUNSRhqg7Qoam5rE99tXM2tHgK5MfkEBZb1KFW1tqyivO16/ZtW9\ncLGx4/n5X9G8ujfNPOvwTB0fLEzM7jvm8IRYejVsobfMx70Gh0IuPLT9KP6aGhoYYmtuqTvWl2Nu\nEpWcQJ/Z/9ZbJzs3l8jksr/fBvu1p3fDFqioxKYms3D/FqYFLOK7514rsZt3fkEBy47uZk/wKeLT\nUsjJzyMvP5/G1WoCcP1WDLn5eTT1rH3XusVN37wMB0sbvhv6eqkT5RWXlZujnTFdVcnKy8XLxZ1P\n+4/C2NCIy9E3yc7N5dk5n+itk5OXR2TSrQrFXeTO90tF5OTlltiaXyQzJ5sP1izGycqG1zr0uef6\nK8LCxJT5I98mMzebE2FXmbt7A1Vs7PVatU0LY8wpvIgsxKMkya8QT7G40DjcvF11iS+Ap68HqqoS\nFxqnTX77N2XXr7uJuBiJez03jq87gU/XBmWOJW03og3NBjTl2vFQbpy9wbmd59m7eD9DvhhEo+4l\nJ82gncyp3Qj9q+jVm3iyZ9E+vWV3trzau9nh1ao2x9aeoN/kPlzcF0xedl6Z2yru9NYz7Ji7kxdm\nDsfGufQJf3KzC1tnTe/9q2/YV0NZ9ckavu7xLQaGBlT1qYpPtwbEh8UDYGxmzAszhxPw+Vo+7zAd\nA0MD6rTxonbLWiiF3XdtnG0Y/s1zrPtqAwf/OoxioODbpwkutTUYKPrdVo1NjcjNzr3nOIusPRnB\njMBLRCZl4uEQjaejG1/5v4ChgSFOVjYVmrzK/I4uib/s3UBQ6CVtV2h7J8yMTPhqy3Ly8ss+YVFV\nld4NWzDYr/1dzxW1qkzp9RyD/Z7haOglDl29wMIDW/l8wGia17i3CdXK6v57L+5sKSmqt6ilswCV\nUW260aHO3Rdb7CxKbrmsau9EeEJsudv+ZstyEjLSGN+xPy629pgYGvHuil/Jzdfvpl7RLqMVoZRx\n2Mrb18ycHKasWkBTTy+m9R6OvYUVyZnpvLV8Dnl3xGxkcPt9V7TN0lrKH4TRna+fAgVFr13h77e7\n+et16yxPVXvnCl1c0baW6e9TXsHdvWjufP0sTMz4deS/OH0zlOPXL/PX0V0sOLCFuSPe1CV79xpz\nqTE+pM8J6L+moN3/4se6tsaND/u+cNd6JQ1FKM7G3AJ3eydAe+zNOvVnwl8/cSo8RC9xKrIiaC8r\nj+3ljU4DqOlcBXNjUxbs36JLxCuqVc16bDt/nHORoTSvXv73j5mRMfMLhwjYW1jrJcyqqmJvaXVX\n939AN2t1ReO+n8+7jbklaVkZJT6XmZPN1ICFAEz3H6OXJDtYWpOUkY6qqrrWX1VVScxIw97CWlcm\nMV3/om1iujZmB4vb/4cNFAPd61hb4054Qix//rNL7zVMLZzvwLaU704hHiZJfoV4whRPWtzszJnU\nw5v7mj+08NzGVmNDnTZeHF93Ahtnay4fvsLLc18qd3UzazPqd6xH/Y716PZGVxaMXcyOX3ZVOCHV\nC+WO86yi8a7FNXvWj7VfrqfX2z04vu4EDbv5YGpZ8m03iju15TRrPl/HsK+GUKdN2d14LQvHPd/P\nxF1Onk68vvhVsjOyycnIwdrJmqVv/4mD++3uptUaVuOtFRPJTM2kIK8AS3tLZj/3E7W9br+C3u3q\nMHnTu6QlpmNkZIiJpQlfdPoK+6r63VYzkjN1M0Dfq7UnI5gWcJbMXG3ikZGTx9XYPIKuZzPQ9966\nfBd3LuI63Rv40b4wCcrJyyUq6RbVCk9sAIwNDSko0D/x93Jx53p8jO4EqDS1NG7U0rgxvGUnpq5a\nQOD5YyUmv56OGgpUlfORYbrWkfTsLELjou95tuSS4q0IL4074bdiy92n4rrU8+XzjX+y7/LZEsf9\npmVlYmVmztmI60zoPIBWtbQTwiSkp5Jwx0nmvbgYFa6bvCozJ4fQ+Gi6Nbg97KFAVbkYdQMf9+qA\ndnzlrbQUXct3eft6IyGK5Mx0XmnXS9f9et/ls/cd76PmYGmNo5UNkUm36N6gWfkrFOpS11c3adud\n434L1AIyc3KwNDXDzsKKW3e8XiGxkVSxLf/WN4YGhtreDx61Gd22O/5zPuVIyEX6Nm51XzF7OGg4\nF3Gd3sVaf89FhN5z921jQ0NdQnsvvFyqsiv4FLbmlnq3yLkfRRcAsvJKvih4NiKU1jXr073wva2q\nKjcT43Q9ADwdNRgbGnEi7GqZk231btgCL407H639jc8HjqZZ9bLvIICilPrZ8HJxJzE9DUVR9CaQ\nu5e4H4SXxo2kzHSSM9L1EsuMnCymrl6Iqqp8M/gVzO+4xVV9N08yc7M5Hxmm+144HxlGVm4ODdw9\ndWXm79us17p8POwyjlY2VLEtudcOaL9vcu+4YBoaH42TlS0OlvfWK0uI+yFjfoV4ghQlLRFJmahA\nRFIm0wLOEhSaUGJ55xrORF6KIjfr9slA2MlwFEXRTboE0Nzfj9Nbz3A04Bj2rnbU8Kt+T3EZGBjg\n7OlEToZ2NlMDQwPt1f07WjOcqzsTdjpcb9n1U2FoKjBut177uigGCv+sOMqVw1fxG9C03HVObjxF\nwGdree7LwdTrUK/c8qaWpjhUdSD2Wvmtb6XWYWGKtZM1aYnphBy9Rr2Ode8qY25tjqW9JTEhMcRc\njS0xNit7S8yszbhy6CrZ6dnUfUY/yYsJicWtbtndiUszI/CSLvEtkq+qzAi8dF/1Falq78SBK+e4\nHHOTa3FRTN+0jJw8/ZMYFxt7zkaEEpeaTHJGOgDDWnQkOPoG329fzZWYCCIS4zkccoHvtq0CICop\ngXn7NnMu4jrRyYmcDL9KSHxUqSfoVe2daVu7Ad9vX82Zm9e0sWxehoWpKV3q+t7TPpUUb0WMbBiF\nvfUAACAASURBVN2NncEnWXwgkNC4aMJvxbL30hl+3bux1HU6ejemk3djpm/+i6WHtxMcdYPo5ESO\nhgYzbfVCDlw9p90/Byd2XDzB9fgYgqNu8MXGPx/oNlN/HN7BseuXCY2PZkbgCowNDfWOk6GBAT/v\nXs/5yOtcjY3gmy1/U93RBb/Clpny9lVjY4exoRFrTx4kMukWR0IusvhgybOml2fUom9Zc+Lgfe9r\nRY1u053lQXtYeWwf4QmxhMZFs+38Mf76Z1ep6wzyewafqtWZtHI+AScOcDU2gqikBPZdPsuby+Zw\nJSYCAF+PWhwNDebg1fOEJ8QyZ/d64lLLH8t4OOQCq4/v50pMBNHJiey8eJLMnGw8HDX3HfNzzTuy\n/cJx1p48yM3EOAJOHGDHxZM816LjPR2vKrYOxKQkcjnmJskZ6Xd97kvTtZ4v9hbW/HvtEk7fCCEq\nKYHTN64xd/cGbibGlbluZk42Cekp3EpL4WJUOL/u3YiduaXecIfiqtk7cyL8KmdvhhJ+K5bZO9cQ\nnZyoe97CxIxBTduxYP8WtpwNIiIpnotR4awrYcx038atGN+pHx+tXcKxwlmq74efpxc+7tX5cO0S\n/rkWTFRSAucjr7PkYKBuXHR5cT+I2hp37C2sOBtxe5bsjJwsJq+cT2pWJlN6PUdWbg4J6SkkpKfo\nklJPRxdaVPfm++2rOR95nfOR1/l++2pa1aynuyjWpZ4vpkbGfLPlb0Ljotl3+SzLju5miF97XWvx\nH0d2cjzsMpFJtwi7FcOKoL1sv3CcrvX0/7+fvXmN5uVdZBDiIZGWXyGeICUlLZm5+aw7FUmDEso3\n7duE3fP3sOrjADq92pH0xHTWf7OBRj0bYlfl9iQd3u28MTY1Ys/CvXR5rVOZMYSfucG+3/bTpHdj\nNDWcMTAyJOToNU5uPkWzgdor04ZGhti42HD1nxCq+VTFyNQIc2tznhnVllUfBeBapwo1m9ckeF8w\n53acZ/RPI8vdd0NjQ/z6+bJ19jYcqjnoZj4uzYkNJwn4bC39pvShWsNqunG1RiZGZU565dW6NtdP\nhenNLJ2Xk0dsqPZELD8vn5T4VCIvRWFWmCwDXDpwGcVAwcnDkfjwW2z+bgtudV1p0quxrp7TgWew\ndrLGzsWWyEtRbJyxmUY9G+pdbAhac4wqtV2wsLUg7HQ4G2dspsPoZ/TuBZyVlkX05WgGTLt9e4p7\nEZmUeU/LK2pcx/7MDFzBv5bNwcrMgkF+7ci54wr+S2178N321YxY8DW5+Xnsem8GtZzdmDVsHIsO\nbOXtv+dSUFCAq50j7Wr7ANoJdW4mxvHphqWkZKZjb2FN13q+DG9R+nt1cs+h/LxrPf9es0R3q6Ov\nB71yzzOFlhRvRTSv4c10/zH8cXgnK47txdDAgKr2zvQoo1VOURT+3fcFNp35h81nj7Ls6B4MCluE\nOtdtomsNntxjKP/ZtorX/5iFo6UNo9p0v+eum8W90r43v+zZwI3EODwdq/Dls2P0umYaGxoxolVn\nvt78N7GpidRz9eTTAaN0J7Dl7audhRVTez3Hgv1bWHvqEDWdXRnfsR9TVi+451hvJMSRnFnxixD3\nq0+jlpgZm/B30F4W7N+CqZEx1Z1cyrzViomRETMGj2X18f1sPnuUefs2YWJoTDUHZ3r6NNO1iPXy\nacG1uChmBK4AYGCTNrTzakByZsndT4tYmZpz8Op5lh7eQVZeDm62jrzbfQiNqta875jbefkwsfNA\nVhzby8+71+NiY89bXf1pU3h7sop6xqsh+y+f5b0V80jLztS71VFZzIxNmDVsHPP3bebT9UtJz8nC\n0dKGJh61sTYtu9vz74d38PvhHQDYmVviXaUa3w55tdQJ0Ua07kJUSgJTVy/E1MiIHj7N6FLPV6+r\n+ivte2FlZs4fR3YQtz0Ze0srutcvefLHfo1bo6rw0dolfFaRFuASKIrCV4PGsOhAIP/ZtoqkjDTs\nLa3wcauu631Rkbjvl6GBAT19mrPj4knaeWm/by9HR3AhSnuReuTCb/XKF78l3Ad9n+fHnWuZskr7\nOW5Tqz5vdrl9+y4rU3NmDBnLDzvX8PofP2BtZs6QZu0Z0uz28JbMnGxmbV9DXFoSpkbGVHPQMLXX\nMLrUu33xLScvlwNXzvPN4FceeH+FqAjlUYy1edSaNWumHjt27HGHIcRDV2PqphKnLvGIvkW7M1eY\nfuLzu54r61ZHxQX+uJ39vx9g8uZ3yxwXm3orjT0L93Lt2DUSI7UT7NhVsaVRz0a0H9VOd0/eczvP\ns/WHQJKik3Go6lDqrY46jmmvm9yq6FZHI2eNoG77u7uzxofF892zP9Dzze60H/1Mmcdq7shfuXHu\n5l3LvVrX5qWfR5WwhlbU5Sh+GT2f97dP0R2j2NA4Zg2aXWZdJzedYscvu0iJScHCzoKG3XzoNr6L\n3nHe99sBDi07THpCOjYaa5r286XjmA4YGt9utdv0ny2c2nKarJQs7Kva02poS9oUS8QBjq87wcG/\nDvHm3xPKPAalafv1LiJKSHTd7cw5OLXzfdUphBDi6ZOYnsZLS2Yw94W3ypwV/nFZe/IgB6+eZ8aQ\nsY87lKeSoijHVVWt+FgIIcmvEE+SR5m0rPo4gIykDEb+MOKB6nmUrh0PZfG435i8+d0S72n8sCx9\n5088G3vSflS7R7aN+6WqKj8O+5nOYzvh06Wk9v7y3TnmF8Dc2JCv/Bs+0JhfIYQQT5+DV89jZWpG\n4zLuk/y4bDx9hEbVaurNri8qTpLfeydjfoV4gkzq4Y25sf7YPnNjQyb1uLcZb4vLSs0i9Ph1zgSe\npc3zrR80xEciNzuXpOhkdv6yi4bdfR5p4gvQ551eejNkP0lS41Px7et734kvwEBfd77yb4i7nTkK\n2osnkvgKIcT/p7a1GzyRiS9ox1dL4iv+l6TlV4gnTEmzPT9I0jJ35K9EX42h5ZAW9H6750OM9OH5\nZ9VR1n+9Ebe6brz4/QvYOMuMj0IIIYQQZZGW33snya8QQgghhBBCPGUk+b130u1ZCCGEEEIIIUSl\nJ8mvEEIIIYQQQohKT5JfIYQQQgghhBCVniS/QgghhBBCCCEqPUl+hRBCCCGEEEJUepL8CiGEEEII\nIYSo9CT5FUIIIYQQQghR6UnyK4QQQgghhBCi0pPkVwghhBBCCCFEpSfJrxBCCCGEEEKISk+SXyGE\nEEIIIYQQlZ4kv0IIIYQQQgghKj1JfoUQQgghhBBCVHqS/AohhBBCCCGEqPQk+RVCCCGEEEIIUelJ\n8iuEEEIIIYQQotKT5FcIIYQQQgghRKUnya8QQgghhBBCiEpPkl8hhBBCCCGEEJWeJL9CCCGEEEII\nISo9SX6FEEIIIYQQQlR6kvwKIYQQQgghhKj0JPkVQgghhBBCCFHpSfIrhBBCCCGEEKLSk+RXCCGE\nEEIIIUSlJ8mvEEIIIYQQQohKT5JfIYQQQgghhBCVniS/QgghhBBCCCEqPUl+hRBCCCGEEEJUepL8\nCiGEEEIIIYSo9CT5FUIIIYQQQghR6UnyK4QQQgghhBCi0pPkVwghhBBCCCFEpSfJrxBCCCGEEEKI\nSk+SXyGEEEIIIYQQlZ4kv0IIIYQQQgghKj1JfoUQQgghhBBCVHqS/AohhBBCCCGEqPQk+RVCCCGE\nEEIIUSJ/jedif43nR487jpL4azz7+Gs8T/lrPCuU1xo96oCEEEIIIYQQlduPE99l99+rdI+tHeyp\n4+fLqE8+oKpX7QrXs/zb7zm8cTM/7Nv+KMJ8KM4dPMxHzw67a3mfsWN4+YuPH0NEj46/xrMhMBDw\nLLbMH3gNaAo4AZ0CYsP23LFeLWAm0A4wBbYCEwNiw2KKlWkKfAM0B/KB1cA7AbFhacXKqCWENS4g\nNuwXgIDYsE3+Gs/PgBeApeXtj7T8CiGEEEIIIR5Yo/btWHg2iIVng/hoxVJysrL4ZvTYxx3WI/PD\n/u26/V14Nojnp75733Xl5uQ8xMjujb/G06SMpycCqwNiw1KKLbMEDgHvlFKfJbANUIDOQFvABNhQ\n1ELrr/F0A3YA14CWQE+gAbCkhCpfBVyL/fx2x/OLgTfL2AcdafkVQgghhBBCPDBjUxPsXTQA2Lto\n6PfaK0wfMYbszCxMzc0AWPr51/yzOZD4iAhsnZ1p278Pw6a8g4mZGbuWr2TFzFkA+Gu0DY0TZs+k\n87Ah+Gs8GfvNF5zcvZfTe/fj6OrK6zOn41qzBnP+NZmLR4NwrVGDN374llqNGgKQmpDI/GkfceHI\nUdISE3Hx9KD/+LF0GT5UF/OHA5+jap3aWNrasn3pXygGBnQc4s/Ij9/HwKDsdkJbJydsHB1KfO7I\nxi0sn/E9kSGh2Do50mPUCwz61wQURQHgNb+2dHpuMPERERzZFEjjDu2YtHAut6KiWfLxF5zavRcA\n7+Z+jPniY9xq1iAy5BoTWnfi+z2BeNavq9uWv8ZzLDAdcA2IDcv113jWB2YA7YFMYCfwdkBsWHRh\n+SVoW2z3o01uTQDNnfvgr/E0BIYCo4ovD4gNW1r4vFMph6YtUANoFhAbllhYdhSQiDYZ3gH0BQqA\n8QGxYfmFZV4HzvhrPGsHxIZdLVZfUlHspVgP/FjCeneRll8hhBBCCCHEQ5WZlsbBtRvwrFdXl/gC\nmFqY88asb5l9YCdjv/mcA2s3sGrWTwC0HdCP/uNexb12LV1ratsB/XTrrvr+R9oN7Md3u7dSu0lD\nvhs7kTn/mkzPl17kPzs341BFw08T39OVz8nOpmbDBnzwxyJm7dtBn1fH8Ot773Nm3wG9WPevXoeh\noSFfbQrg1a8+Y+O8RRxcu+G+9z3k9FlmvjKeVr17MmtvICP+PYWAH+aweeESvXIbflmAe+3azNi2\ngRc+mEx2RiYfPTsME1NTPl+7gq82r8HeRcMng18gOyMTt1o1qe3bmH2r1965yReAFYWJryuwDzgH\ntAC6AlbAujvGxXYAGqFtce1Syq40AmyBY/d4CEwBFcgqtiwLbbLbrliZ3KLEt1Bm4e926PvBX+MZ\n76/xDPLXeL5+5/jegNiwcCAG7T6VSVp+hRBCCCGEEA/s5K69PF+9HgBZGRk4ubvxwV9L9MoMffct\n3d8aj2oMeusN1s2Zx/NT38PU3AwzS0sMjAx1LcjFdRw6iGf8BwDg/9YE9gesp0mn9rTo1R2AgRNe\n56Nnh5FyKwEbRwccXaswcMLruvWrVH+eswcOsX/Nehq1v51fVa1Tm+GFXZbdatVk+9JlnNl/ULet\n0rzu11bv8Q8HduBc1Z31c+dTv01Lhk15R1dn1LXrrPnxF/q88pKufIM2LXl24u34dv71N6gqE2bP\n1LUQvz7zK16q35Rj23fSdkBfOgx+lnVz5zPi31O0x0Hj6QE8A0wrrGYccDogNmxKUb3+Gs+RQALQ\nDDhauDgLGBMQG5Zdxi56ok1io8o8EHc7AqQBM/w1nkVxfA0You22DLAL+M5f4zkV+A5tV+qvC59z\nLVbXR8Duwvq6AP9B22r9xR3bjASqlxeYJL9CCCGEEEKIB1a/dQvGzdTmL2nJyWxdvJTPho7gm63r\ncHJ3A+DQhk1s/HUR0aFhZKWnU1CQT0F+QYXqL97V185Z2+PWo97dy5Lj47FxdCA/P581s+dwcO1G\nbkVHk5edQ15uLg3atLqj3np6jx2quJAcf6vceD5dsxwrW1u99QBuXrmKX7fOemXrtWzOipmzyEhN\nxcLaGoBajRvplQk5fZaY8Bu8UKO+3vLszEyir4cB0HZgP5Z8/AUXjhTlsAwHQgNiww4VPvYD2vtr\nPNO4Wy1uJ7/nykl8AczRts5W7AUqFBAbFuev8RwCzAXGo23xXQacKPybgNiw84Vdob8DvgTygNlo\nW3ALitX1ebGqTxV2xf6Au5PfzMJ4yyTJrxBCCCGEEOKerT0ZwYzAS0QmZVL3bBS1rRRca1bXPV+z\nkQ8v1vJh29K/eH7qe1w6doLvxk5k6Htv4ft5RyxtbQjaup3fPvmyQtszNL6duhS1jBoVW0bhsoIC\n7QTB636ex/q58xnzxSd41vPGzNKSP6d/e1diq1dHYd1qQfn5notHtVLH/JamKG7QdgEvTi1QqeFT\nn3d+/emu9azs7QBtgt+4Qzv2rdJ1fX4B+LNYUQNgE/Aed4sp9nd6BcKNB0z8NZ4WAbFhGRUorxMQ\nG7YNqFU4LjgvIDYsyV/jGY12gquiMn8Bf/lrPF0K41HRTqJ1raQ6C/0D2PhrPF2KzxwNOABx5cUl\nya8QQgghhBDinqw9GcG0gLNk5mqHbGbk5BMcnc7akxEM9HUHtImeYmBAdoZ2KGfw0WM4uFbR6/oc\ndzNCr14jE2MK8vN5GIKPBtGse1c6DvUHQFVVIkNCsbS1eSj1l6aqV22Cj+oPk734TxCObq6YW1mV\nul7NRj7sX7MeG0d7LIu1KN+p/eBnWTDtIxyNTC2AesDgYk+fQDtJVVhAbFjug+wHcKrwd33ufdwv\nAAGxYfEA/hrPzmgn1VpfQpmYwjJj0HbHLus+V00KyyQVLfDXeJqhbdU+UV48kvwKIYQQQggh7smM\nwEu6xLeImpfLfwKO0sGtLenJyWxe+BtZ6ek079EV0I59TYiKZu+qNXg38+PU7r0cWKOfC2mqVSXu\nZgQhZ87i7O6OuZUlxqam9xWja80aHFy3kYtHgrB2tGfzgiXEht+gRsMG97fTFdR//KtM6d6f5d9+\nT/tBA7hy8jTr587nhQ8mlble+0EDWTdnHl+NfJXhU97Byd2N+Mgojm7ZRo/RI3CrWQOAlr168Mt7\n7+Nr7VAdCAqIDbtcrJqf0d4a6G9/jec3aFtDa6JNiN8NiA1Lreh+FHZfPoF2Aipd8uuv8XQAPAC7\nwkW1/TWeSUB0sRmlXwKCgVigNfAD8H1AbNilYvVMAA4DqUA3tDNUTw2IDUsqfL4fUKWwTCbQCfgM\nmHdHl+1WQDZwsLx9eqDZnhVFcVAUZbuiKFcKf9uXUm5UYZkriqKMKlxmoSjKJkVRghVFOa8oytcl\nrSuEEEIIIYR4skQmZd61zCYyGOdf/8XLDZszpedArp46w3sL5uDTtjUAzXt0ZeAbr7H4w894p2MP\nTu/dz7DJ+reKbd23F027dOKTQc8zup4v+9fc1VBYYUPeeRMv38Z8PnwU/x4wFDMLC54ZVPYkVg9D\nrUYNeW/BHI5s2sK/2nfnjy++wf/NcfR+eXSZ65lamPPFuhW4eHow45XxTGzbhR8nvkN6crLe2GJT\nC3Na9u6BtZGxOfBH8ToCYsMi0d5qqADYCpxHmxBnF/7cq3lou1YX1x84iXYiKoD5hY9fL1bGG1gD\nXEQ7adWX3N0VuwXa+wGfBcYCrwXEhs0u9nwu2jHDh4EzwFuFdd15Q+XhwJ8V6ZqtqKpaXpnSV1aU\nb4EEVVW/VhRlKmCvquqUO8o4oL1S0AxtP+7jaAdiZwMtVVXdrSiKCdr7T01XVXVLedtt1qyZeuzY\nfbW8CyGEEEIIIR5Q2693EVFCAuxuZ87BqZ1LWEM8bIqiHFdVtdmj3EZhl+Jg4MWA2LD9j3Jb98Nf\n46lBm2A3C4gNCy2v/IPe53cA8Fvh378BA0so0wPYrqpqgqqqiWj7cPdUVTVDVdXdAKqq5qDto131\nAeMRQgghhBBCPGKTenhjbmyot8zc2JBJPbwfU0TiUQiIDcsCRqKdUOpJVB0YX5HEFx58zK+LqqpF\n932KBlxKKOMO3Cj2+GbhMh1FUeyAfmj7ggshhBBCCCGeYEWTWhXN9uxmZ86kHt665aLyCIgN2/e4\nYyhNQGzYUW7fvqlc5Sa/iqLsQDvQ+E4fFH+gqqqqKMo996FWFMUI7X2fZquqWuq01oqijEXbFxwP\nD4973YwQQjyxLu5YhamVLTVbdXvcoQghhBAVNtDXXZJd8VQpt9uzqqpdVVX1KeFnHRCjKIorQOHv\n2BKqiACqFXtctXBZkXnAFVVVZ5UTxzxVVZupqtrM2dm5vLBFJbR68lD2zPmw1Mf3Kys1ifnDm5IU\nef2B6yoS+O1bbPzslSemnkfh8p71/NinxiPfzsIRLTi5ZsFDr3fXj9NYM234Q6/3XoUcCiRo+U+4\n1vPTW37nfj+q4/AorHzXn32/fFLh8kmR15ndy4O4kPOPLqj7kJedxcIRLSoc1/nA5ax5/845QZ4M\nIYe3sWxibx5kng8hhBDiafeg3Z7XA6OArwt/ryuhTCAwvdhM0N2BaQCKonwB2AJP5tm9KFHs1bP8\n/VY/qtT1Zch/1jy2OPp8OA8Dwwe/W9exv3+mevNO2LlVByAl5gZLRre9q1zN1t3p+9HTkXw8jQ7/\nNoPQozt5/uetesuH/7QFYzOLR779wG/fwr5aLVoMf1Nv+eV9Gwj8ZiLenZ6l+3vfP9RtJkeFcWjx\n1wz44nfMbcseSvMwjsPKd/2JuqCdLNDAyAQbl6rU7z4Ev8HjUAwedAqI+2fjUo2X/zxW7jG4V+En\n97P2/Rd4beVZTK1Kv19iaYxMzWg6aCwHF33FwC//KLNsXk4WR36fSa/35+qWnd38B8E7A0gI196B\nwrmWD61Hvodrff25SU6vW8zJNQtIT4jFsbo37V/7GLcGzfXq3j//C67sXU9eTjYeTZ+h4/gvsHK6\n3Slrz5wPiQ4+QXzoJaydXRm1SH9Oklqtu/PPH99xee96vDs++plOhRBCiCfRg57tfA10UxTlCtC1\n8DGKojRTFGUBgKqqCcDnQFDhz2eqqiYoilIVbdfp+sAJRVFOKYoiSfBT4PzW5TTsM5Jb1y+TEH7l\nscVhZm2HiUXpNwqviNysTM4HLqNB9+fuem7AF0t5+c9jup9u7/zngbYl7o+FnSPGZuaPbfvnty7H\nb8g4Qg5uITs95aHWbevqyYvzd2NbpfyhHA/rODToOZyX/zzGi/N30ajvixxa8u1jb1E2MDTE0kHz\nUC5mPWzenZ7l5pnDJN4MKbPclX0bMbGw1ktab54+jHengfh//TdDvluLrasHaz8YQXJUmK5M8K41\n7F/wBc2HT2TYj5twqdOYdR+OJDUuSldm79yPuHZ4G72mzWHwjJVkpSSy4dMxqAUFujKqqlKv6xDq\ndvEvNcZ6XQdzet3i+zkMQgghRKXwQMmvqqq3VFXtoqqqV2H36ITC5cdUVX2lWLlFqqrWLvxZXLjs\npqqqiqqq9VRVbVL4I81qT7i87Cwu7VmHT6/nqd2uN+cD/9Z7PiXmBrN7eXB5z3pWTRrCzwO8+OuN\nXsSHXuTW9UuseOdZ5gz0ZuW7/iRHh+ute+3IdpZN7M3P/b1YMroth5Z8S35uTqmx3NntOT83h4ML\np7NwRAvmDKzD8jf7EnZ8b5n7cz1oF6DgWuyEtYiZtR2WDhrdT1HLUX5eLju+e48lo9vy8wAvfn+l\nAydW/Vpid8J//vye+cN8metfjx2zJpOXk6V7rqSuoeV1c1YLCgj6+yeWvKTd9p/junFpz+0OFyV1\nHy3Iz2N2Lw9CDgUCcGHbCuY+W5fEm7eH2B9Y8CWLR7UuM7m7sG0Fi0a2Ys7AOmz4ZAwZyfF3lQk5\nvI1lE26/hod/n6n3Gl7Zv4k/x3Xj5wFe/DqkIasnDyUj6Rbnti4jaPmPxF+7wOxeHszu5UHwrgBA\nv7tv0b6c27qMTV+8xpyB3ix5qZ3eMShJQX4e+379lF8G+/DrkIbsn/+5XuJQmpSYm0RdCMJv8Os4\n127I5Tu2E35yP7N7eRB2fC9/vdGLnwd4sWrSENJuRXPj9CH+HNeduc/WZcMnY8hKTdJb99zWZSwd\n25mf+3vx+ysdObVuUZldUu/s9pydlsyOWZML31/1WT15KLFXz5a7T8am5lg6aLCt4kGTgS/j3rAV\n1w4H6p6/sn8T/2XvrqOjOt4Gjn9XIht3d0dC0ODu7lageFsoUErxQltoX7TFC9SLU5ziWixIkBAs\nBEkgEHfiyWb3/WPpwpIECC2l5Tefc3pK5s6dO3fvJmeffUbWftCCZR19+PndOlzY9K1Ov0obfv2i\nYc4RhzazcUx7VnSrwA99q7Nv9khy0hK1x5993/75uj64HMLGMR20v8/JUTdeeH/l9aLnYGRhjUNA\ntRe+xyKP7cSzdgudsrZTvqVKh3ex9a6ElasPzUbPQaZvwP2LT9YNCdv+A5Va9aZS6z5Yu/vR5MOv\nUJhZcW3fOkAzLSPi0BYaDp+Ga7UG2PlWoeX4hSTfucbD8NPadpp++BVBnQZh4eReZh+96rQk4eYl\nHiU+KLOOIAiCILzN3tw4N+E/6fapPZjZOWPjGUBA827cPLKVYmVRiXpn1y6gZs8R9F22DwMTM/bP\nGcWxFZ9Rd+AEei/+neKiAo6v+Fxb//7F4xyY9xFBHQfRb+Uhmn88nzun9nL613kv3bfDC8bz8Oo5\n2kxaSr8Vh6jQoge7vhjy3A/McddDsfMNRCKRvPR11KpiTOycaDtlOQO+P0qd/p9wbv1ibh7eolPv\nweUQ0mLu0G3uRtpOXcH980fLdT+lOf3LHG4e2UbTUbPo/90RavQcwZFFE14Y5D+tYqteuNdqyoF5\nYyhWFhETdpLLO36i1YRFGBiblXpO/I0LHF40gcD2/em7bD/uNZsSuk53mv690KMc+vpjgjoP1jzD\nsfO4dfx3zq7RZMyzUxI4MHc0FVv1ZsD3R+kxf4t2+GVA065U7TIUK3c/babdp0G7Mu8hdN0ifOq3\n5Z3lB/Cp35ZD33yikyl71sXNK7lxaDPNP5pLzwXbURbkc+v4rhe+VjcO/oZ7zaYYmJgT0Lwb1w9s\nLLXe2TULaDJiBr0W7iQvM5V9s0ZyfsMSWoydT7c5v5EcdYPQ9U8Ws7+yew3n1nxD3XfH0//7I9Qf\nOpXzG5Zybe/zh9b+Sa1SsXP6QPIyUug081f6Lt2DY8UabJvcl9z05Jdq409yfUOKlUoAEiIvs2/2\nSHwbdqDfioPUHTiB0PVLuLrn5fpVluJiJXUGjOedb/fT8fOfyElLZv/cMS887/Sv82gwWUd6sgAA\nIABJREFUbBp9lu7FwNiUA/PG/K1zVl/2Odj7VSX26rky21GrVMTfuIidb+Bzr1dcVEhxUSGGj79I\nUxbkkxJ1A7fqjbR1JBIJbtUbaoenJ966gqpYqVPH3MENC2cv4iMulut+zR3dMTSzJPbK2XKdJwiC\nIAhvCxH8CuVy48BvBDTTDKtzDqyD3EBB1JmDJepV6zYMj+BmWLn6UL3bcNJibhPUaRCuQfWwdven\nSsdBxF45o61/fuNSavR4n4qtemHh5IFrUD3qD5nCtb1rX+rDbkbcPSKP76Td1OU4B9bG3NGdoE6D\n8KjVlGt715V5XlZSLMZWpe3QBVsn9mRF1wDtf7HXNB9+5fqG1Ok/Dnv/IMzsXfFr0onKbd8h8vjv\nOufL5Hq0+PhrrN398ajZhLqDJnF1zxqUBfmlXe6FCnOzubzzF1p8PB/3Go0xd3AjoFk3KrbqzZVd\nq17cwFOajZ5NbnoyJ1Z8zqFvxlG9xwc4V65dZv2wHT/hXqMxtXqPwtLFiyodBpTIcoVuXEqNXiOo\n2LKn5hlWrU+9QZO0gVN2agKqYiW+DTtgZu+KtYc/ldv1w8jCGrmBIXqGRkhlcm2mXa5vWGZ/KrTs\niX/TLlg4eVB34AQA4q+fL7P+5R0/UbPXSHwbtsfK1YcmI78sMb+09cTFOvN91SoVEYe3aN/vvg3b\nk3r/VqlfptQbOAGnysHYelWkctt3iL9xgUbvf469fxD2/kFUaN6dhzrv9yU0GD4dnwbtMHdww7tu\nK2r0+IAru9eUeQ9Piwk7RVrMbdpOXYG9XxAWzp7UGzQJExsHbv6x46XaUKtURIce4cHlU7hW1cxx\nD9v2Pa5VG1C731gsXbyo0Lw71boO4+LmFS9o7fkqt+mLR62mmDu64xBQjaYffkXslTPkpJW2RuIT\n9QZOwKVKHaxcfajV9yPS7t8qd3D/PC/7HIyt7clKfFhmO/lZGRTlZWNsXfrfkj+d/nUuBibmeNRu\nDkBeZipqlQojSxudekYWttr7zE1PQirXx9DUQreOpQ05r/BaGFvZ8yip7HsRBEEQhLfZv2+ClfCv\nlRF3j7jr52k9aQmgyVD4N+3CjYO/4duwvU5dG88K2n8bWWhW57bxCHiqzIai/FyK8vPQM1SQdPsq\niZHhOh+y1WoVyoJ8ctOTygxQ/5R89xqo1ax9v7lOeXFRIS5B9co8T1mQj5GFTanHWk9cirXHk43a\nTayfLC4TvmsVEYc28SgxluLCfIqVSswddedt2nhV1Jmj6VihOsWFBWQmxGDt7vfc+ylN6v1IiosK\n2PHMarLFSuVzhzqWxtDUgpbjvmH71Hew8w2kzoBxz62f/uAOPg10n7FDhercPPpkwbOk21dJvnuN\nCxuXacu0zzAjFTufyjhXqcua95rhVr0hbtUb4lO/3SstcmTj+eS9JNPTR2FuWeowbIC8R+nkZabq\nrKYskUpx8K9KXmZqmde4f+kERXk5eNRqCoCBsRledVpyff9GmoycqVPX+un3u6UtSCRYuT15xkYW\nNuRlaPqXk5ZITmoiRxZN4OjiSdo6quLil150KunOFYryc/ihd5BOubKwQGc+aWmu7FnD9QMbH4/Y\nkFChRXeC39EE/Wkxd/Bp0FanvmOlWpzfuFT7u/oqEm+FE7p+MSnREeRnZWiHnGclx2FsZVfmeU+/\nriaPA8u8zNTnnvOyyvMc5PqGOlMWnvXnMble2V/YXNr6PTcObqLbnA3oK4z/Yu9fndzA8JW/gBME\nQRCE/zoR/ArPtSMsVrt5eZu0XVRQFfPLu3WfqqHJymYlx2Fq66Qt1Vm45vGIYqn86TJNoVqt0v4/\nuN9H+DbsUKIPCnPrF/ZTrVKBRELvxbuQyvV0jj0vg6gwsyI/O7PUYyY2DtoVoJ928+h2Tv34FQ2H\nT8choBr6RqaE7/yZe+f/eGE/nyaRSlGjm9VWFZccQv6nPwOGjjN+1VnlFTRZZkA7fPvpbLnq8ZDW\nZ8VeO4dEKiM3PYXC3OwSmaXyU1On/yd4129b4oihqQVSmYxuczaSEHGR+5dOcG3vek7/Moce87fq\nfMnwMqQyvWdKJC81h7c8ru/fQH5WBsu7PN03NfpGpjQYNlXnfSV76r0tQYJEIkUqkz3VPYn2mahV\nmv83GzMXh4Bqr9Y5lRojSzu6z9tU4pC+kelzT/Vv2oVafUYj0zN4vMiU7Ln1Ae3vK1BqgK4qLv09\nBpoRCzunDcC9RhNaTViEwtya3PQUtk3qheo5c/pB93XV/s34m55zeZ5DQVbGc7+kUZhpjpX1t+TS\nlu84t34xXf5vDXa+VZ6cZ26NRColN133i5vcjGTNlyiAkaUdKmUh+VkZOr+juekpuFUr/7Z/+VkZ\nL/U3VRAEQRDeRiL4Fcq0IyyWKduukldUjERdjGv8Kc46d6VL9+40r/AkE3tg/lhuHNxE7X5jX/la\ndj6VSX9wt9Rg82XYelcGtZqc9GRcn5PpLXleJW4c3lyua8VfP49jhRpU6fCutiwjrmS2LSXqBsqC\nfOQGmiApIeISMj0D7cq+CnNrnWGfarWalKgILF29S72utYc/Urk+WcmxuFSpU2qdPz/U5j7VbnJU\nyT1K429c4MKm5XT4/EfOrv6Go0un0G5q2UNbLV19SLgZplP27M+23pVIfxj13GcokUhwrFgTx4o1\nqd3vY9YMb8rtE7sf35sealVxmee+KoWZJQpzaxJuXsI5UDO0W61SkXgrHDN7l1LPyc1IJfrcYVpP\nXKIzigFg66Re3A3Zj3/TLq/UH2Nre4wsbXmUEENAs66v1IatT2Vy05ORymSY2bu++ISnGBiZlvmM\nrNx8iLt+Qacs/vp5zOxctFlfhbmVzmJVyoJ8MmKjcAyoXmqbaTG3yc/KoN6QydovyFKiI8rV59eh\nPM8h9X6k5m9MGeQGhli6eJMWcwv3Go10jl3cvILQDUvp/OWqEns5yw0MsfGqSEzYSbzrt9GWx4Sd\nxL+ppk/2flWQyuTEhJ3Er1FHQLMQW0ZsVIn2XqQoP49HCQ+w9Sn7XgRBEAThbSaCX6FM8w9Eklek\nCUa8Hl1DoczmkkU97ocr6dX2STbMr3FHru1dR/A7H73ytYLfGcuuzwdjZueCb6MOSGQyUu9Fknjr\nMg2GfvrC8y1dvPBv2pXDCz6hwbBp2PlUJj8rg9grZzFzdMOnlGwkgFuNxoT8Mpu8R+kozCxLrfMs\nCxcvIo/t5P7F45g7uHHzj+3E3yi5R2mxsojDiyZQq89oslPiOb1qHoHt+mmDYZegeoT8NIvoc4ex\ncPbkyu7V5KQllRn8GhibUa3rUE5+PxO1SoVTpVoU5maTcPMSUrkeldv0Rd/IBDvfKlzYvBxTexcK\nsjI4/etcnXYKc7M5MP8jqnQciGdwc8wd3dk4uj0RhzZToWXPUq9dtdNgtkzsycXNK/Cu14YHl08R\nffaQTp3a74xl98xhmNg64tuwPRKpjNR7N0m6fZX6Q6YQf+MCD6+cxa16Q4wsbEi6fZXslHis3HwB\nMLN34VHCA5LvXsfExhE9hTFyfYOXeiYvUrXzEC5sWo65kwdWbr5c2bWK3IzUMoPfm0e2YmhqgV/j\nTiUynd71WnP9wMZXDn4lEgm1+43l5A9fom9kgnvNJqiUSpJuXyEnPZmavUa+sA33Go2x96/K7pnD\nqT9kCpYuXuSkJXH//DHcazYusY/sy6rW7T02fdyZ0PWL8W3UkYTIMMK2/0iDYdO0dVyD6nPzyDY8\ng1tgaGZB6PolqIrLzsaa2bsglesT/vsvBLYfQNr9W5xb+/ful/wiKfduoq/Q3RbNxqviSz0HtVpN\n3PXz1B869bnXcKvRiLjr56nW9clq7ed/W8a5tYtoPXEx5o7u2i+75AYKDIw1GfpqXYdzeOEE7P2C\ncAioxpXdq8nLTKNyW830BkNTCyq07MGpH/8PhZkVBiZmnPhuJrY+lXWmdGTE3aMoL4ectCSKlUXa\nlbOt3P20I0PiIy6gpzDGsULpX1QIgiAIwttOBL9CmeIy8rT/rpwWwgMTf/LlJjrloFkI6PQvc4i5\ndBJLF89XupZ7jcZ0nPEr5zcs5tK275BI5Vi6eFKhRenBWGlajPua8xuXEvLzLLJTEjA0tcDeLwiX\noLplnmPjGYC9X1VuHf+doI4DX+o6ge0HkBIdwb7ZHyKRgE+DdlTtMoTIZxYacq1aHwsnD7ZO7EVx\nYT6+DTtQb/Bk7fHKbfqSdi+SQ9+MA4mUoE4D8azdgqL8nDKvXW/wZIwsbbm4eQVHl0xG38gUW+9K\n1Ow5Qlun5SffcGTxZH77qAPmjh40HjGTbZN6aY8fWz4dPUNj6g3SzHO0cvWh4XvTObbic5wqB2Pu\nWHL+sFPlYJqNmUPoukWcXbsA16r1Ce43lpPff6mt4xHcjA5f/Kx5hltWPn6GXlRspbm2vrEpsdfO\ncXnHTxTmZmNi60id/uPwa9IJAN+GHYg6c5Ctk3pTmPOIVhMWaReb+qtq9BpBbmYKhxdOQCKBCs17\n4Ne4A48SSt/y5fqBjXjXa1PqEF+fBh3YOX0AGXH3Xrk/ge0HoKcw5tLWHwj5eQ5yA0Os3f2o0mnQ\nS50vkUrp/OVqzqyaz+GF48nLTMPIwganSrWoYPXyvzPPcvCvStspyzm3biGhG5ZgZGlLrb6jCWzf\nX1unVp9RZCXHsuuLIegpjAl+ZwzZKWWvtG1kaUvLT77hzKp5hO/8FRuvijQcPp3fP3u537eyqIqV\nLOvgRZ13x+ssVFaarRNKviYjd956qecQdz0UZUEe3vXalGjjaZXbvsNvH3WkIOeRdtX0K7tWo1IW\nsm/WCJ26FVv3ocVYzcrvAc26UpCVwbl1C8lJS8bG05/OX67G1NZRW7/xBzM5+cOX7P2/DyguKsS1\nWgPaTFqq8/489M047QrRABtGab7wG7z6nLatW8d+J6BZ1+dOBREEQRCEt5nk79w24p9Ss2ZN9YUL\nF15cUfhL6s85SuwzgS6As4WCkMnN3kCPXo97F45xYuUX9P/uyMvNfxQE4Y3LiI1m9fAm9Fqw49Xn\nTr+E3TOH41ihOjV6jnhh3T1fvY+dbyC1eo96bf15VTlpSax9vzl9l+0rc8SDIAiC8N8ikUguqtXq\nVxvu9T9KbHUklGlCa38UerrBoEJPxoTW5Vuc6N/Oo2YTqnR897nZK0EQ/j3M7Kvw+y8rqNiq92sN\nfJUF+dj5BhLUechz683+egUjP/qMhsOnoW/45lZyLs3+Qyeo36wnmQkxNBszWwS+giAIwv80EfwK\nZepSzZnZ3QJxtlAgQZPxnd0tkC7VnN901/52VTsPER8KBeENS0pKZfL0eVSt0wFbt5p4VWxMi/YD\nWPnjerJzcnXqmgW10A4d/rudDDmPmX0VMrPzCO475rlzz5OTU1m2YjUTPn4PM3tXgjoPJuTMBXoP\nGI1/UAvM7KuwbuPOEuclJaXywZhp+FVpjr1HMF37fMCdKN2F86LuPeCdQWPxrNgYZ++6DBw+nqQk\n3e250jMeMfzDqbj41MPFpx7DP5xKRuYj7fE2LRshk0k5fj2+1NX0BUEQBOF/iQh+hefqUs2ZkMnN\niJ7TnpDJzd7KwFcQhDfvfkwsDVv25vAfIUyb9CEnD/3G0X3r+OSjYRw/eY69+8u3ldg/ZdW6bdSo\nVhlPjydfnmXn5FExwIe5X01EoSg5v1atVtN30EfcjYph/a+LOHX4N9xcnOjc8z1yHgf5OTm5dOn1\nPmq1mt1bfuDgrlUUFhbRa8BoVE9t9zR0xCTCr0awdcMKtm5YQfjVCN77UHdxrn59urDyx/Wv6RUQ\nnic7LpMNteaSeqP8I4vUKjWhs/aztcViNtSaS+LFGM5+sYfjH295DT3VyIpJY1vrpRRmF7y2a/wV\nBwau5sHRyDfdDUEQ/sPEgleCIAjCG/fxpK+QSiUcP7ABY2MjbbmHuwttWzXm2fUp0tMf8e6wTzh4\n+CR2ttZMnfQhfXo8yWxev3GLKZ/N5+z5yxgaGtCudRPmfjUJczNT7fHJ0+dx6fJ1VCoVnh6uzPly\nIu5uzrTvNhQAz4qNAXindydWLvmq1H5v3raXgf2765S1btGQ1i0aAjBizPQS59yJus/5i1cIObqZ\nwEqaaSQL503Dp3JTtmzfx8D+3Tl7/jL3Y2I5fnAjlhaaBbRWLv0KN78GHD8ZStPGdYi8FcXhoyEc\n3LWK2rWCAFg8fzqtOw3i9p1ofH00CxC2a92ECVNnczc6Bm9Pt5d5HH+7s1/sIXrPNbw6BVJ7ejud\nY5eXHiNi9TmcGnjTeGGP19qPqF1XOTdzLwASqQS5kT6mrpY41PHEv08NDK3++WHriRdjOPrBBrod\nGo2BxZP3flzIXaJ3XaXZyr6YOFugb67A0t8eXuNaLeHLT+Dboxr6JprRDsUFSs7PPkBaZCKPolOx\nDXKm+XfvlDjv1qZL3N58kZz4RxjZm1FpSF082z/ZUkulLObGL2eJ3nON3OQszNytCBrVBKd6Xjpt\n3Nl+mZx4zX7Z5l42VBpSD+cGT3ZAqDy0HpcWHcWliR8S6ZP9xwVBEF6WyPwKgiAIb1RqWgZH/jjN\n8MF9dALfp0kkuh905y5YSbs2TQn5YwvdOrfhw7Gf8eChJruWk5NL1z4jMDY24o9961j/yyLOnQ/n\nw7Gfac8fOmIy9va2/LF/PaeObmbKhBEYGBjg4uzA2p8XABB6Yju3rx5l7leTSu1TWnomN29FUb1q\npXLdb2FBIQCGBvraMqlUioGBPmdCw7R1JBKJTh1DAwOkUilnQi9p+nchHBNjI2rXqqqtUye4GsZG\nCs6dD9eWubo4YmdrTcjpN7tQpJG9KTGHI1HmFWrLVEoV0XuuYeRg9txzi4v+vj3AZYZ6dNn3IZ33\njKTVLwPw61OT2BO32dvnZzKjU/626/xVWQ/SMbQxwTbIBYWNCTI9GfomBuiblr1a9195nXISHvHw\n2G28OlbRlqlVKmQGcvx6VsepQenb8N3eEkb4smNUGlafdhuHEvh+fS7MO0TsiTvaOldWnOT21jCq\nj29B+9+G4dOtGqcmbict8sme4Ub2plQd1Zg2awbRetVA7Gu6c3L8NtJvP9m33rG+F8qcQuJOR73y\nfQqC8L9NZH4FQRCENyoqOga1Wo2vj4dOeUDVFmRmZgHQu0cHFs1/kkXt06OjNtM7bfKHrPhxHSFn\nL9KnRwc2b9tLbm4e3387C1MTTSZvydef0b7bUG3288HDeEaPHIifryY7+nRG1NLCHABbGyusrcve\n//thbDxqtRoHe9ty3a+fryeuLo7MmLWEJd98gYmxEd9+t4bYuEQSEjXBV60aVTAxNmLazAXMnDYW\ngM+/WkxxcTGJj+skJqVgY22p88WARCLB1saKxCTdIM7RwZb7D+LK1c+/m4WvHXnJ2cQcuolXJ02A\nFRdyF5mBHNtqrhRmPtld4OwXeyjIzMO2qgu3Nl1EVaSi28HRPDgaydUfQsh+kI7MQI65ty31Z3dG\nYf3yGVuJBBQ2mn2fFTYmmHlY49LElwMDfuX87IO0+F6T2VSr1Fz/+TR3t4eTn56LqZslVUY0wqWx\nZm/y7LhMdnVeSatV72Jd8cnWVBtqzaX+nM64NQ/QlmXFpHNpwRHSIhIwdjSnxvgWONbxJDsuk6Mf\nbABgW8ulANqMafSea9r2jB3N6PT7CO3r8meG/Mj76zHztEZuqEf0nmsYO5rTevVACrMLuLz4Dx4e\nv01xgRJLf3uqjW2q089nxRyKwNzbBuOnvoiQK/SpNaU1ABl3ksnMyi9x3r291/DuEoRH64oAmLhY\nkHo9gRurz+LcyOdxnetUHFhHm8X17VGNhNB73FwbSr0vOwJoX9c/BY1sxJ2tYaRejcPS1w4AqUyK\nY30v7h+4oZMRFgRBeFki8ysIgiD8K+3f+Sunjm6mRrXK5BfozkGsVPHJB2W5XI6NtSUpKWkARN6O\nplJFX23gC1C7VlWkUimRkXcB+PCDAYweN4MO3YYyf+H33LodXe7+5eVp+mRoWPaCWKXR09Nj7c8L\nib73EI+Ahth7BHMiJJSWzRsgfTyU08bGilU/fs2hI6dw8q6Li299Mh9lUbVKBW2d8jA0NCQ/v2Tg\n8k/z6lSFqF1XtT9H/X4Frw6BlHZHSZcekHE7mSaLe9FseR/yUrI5/enveLavTLtNw2j+3Tt4titf\n1r0sekb6+HSrSnLYA/LTNfOuIzdeIGJtKEGjm9B2wxBcmvhxauJ20p/KVr6sy0v/wL93DdquG4xD\nbQ9Ojt9GblIWRvamNJjbBYB2vw2ly74PqT6+BdXHt6DysHoY2ZnSZd+HtFpV9r7Y9/bdQK2GFj/0\no86M9qjVao6P3UxechaNF3anzdpB2FVz4ejIjeSlZJfZTvLlh1hXcCj3vRUXFSPV182lyA3lpF2P\nR6UsflxHicxAt47MQE5K+MNS21QVq7h/8AbK3EJsquiuNWJdyZHkS6Xv0S4IgvAiIvgVBEEQ3ogd\nYbHUn3OUHmtuAhJ2HA/XOe7h7oK3pxsKhaLEuXp6uh+kJRKJzkJQZfkzSzp1wkhCT26nfdtmnLsQ\nTt2m3Vmzfnu5+m9tbQFARsajF9QsqVpQRUKObubB7RBuXznC9o0rSUvLwMP9ycJZzZvU40roXqKu\nHyM64jg/fDuLuPgkbR17OxtSUtN15kOr1WqSU9Kwt7PRuV56RiY21lbl7uffzaNNRdIiEsiKSSMv\nJZv4M9F4dgwsta5MX0btz9pi4WOLhY8teSnZqJQq3Jr7Y+JkjoWPLd5dgsqV9X0eM0/Na5YTlwHA\nzbWhVOgXjEebipi5W1Hlg4bYVnUhYm1oudv27V4Nt5YVMPOwpsYnLTCyN+XO1jCkMin65pr3t6GV\nEQobE83QZhMD5Eb6SGQSFDYmGFqWPh0AwNjJnOofN8PMwxpzTxsSL8SQcSuJ+nO6YF3JCVNXTcba\nxMmC6L3Xy2wnJ/4RCluTct+bYx1PonZdIfW6ZiRE6o147u64gkqpoiAjT1sncsN5Ht1LRa1SE38u\nmod/3CIvJUenrYw7yWxutIBN9b/m/OyDNJjfDQsf3ZEVChsTcpOzUClf/PsuCILwLDHsWRAEQfjH\n7QiLZcq2q+QVFSMxNEbP2Yetm7bRsnMn+tTz+Utt+/t6snbDDrKyc7TZ33PnL6NSqfDze7LAjo+X\nOz5e7owY3o+PJ37JqnXbGPBOV/T19QAoLn7+h2svD1fMTE24eesuAf6vNgTzzwW47kTdJyz8BtMm\njypR58+h18dPniM5JY12rZsAEFwziOycXEIvhGvn/YZeCCcnN0+7ABZAfn4B0fceEFSlwiv18e+k\nb2aISxNf7v5+FX1TA+xquOoMs32aubctsqcyiha+dtgHu7O3z8841PbAIdgD1+b+zw0My0X7JYKE\nouwC8pKzsQnSzTraVnUhLqT8802tA5+0I5FKsK7kRGZU6nPOeHlWAfY6P6ffTECZX8T2Vkt1yosL\nlWQ/TC+zneICZYkM7suoNLQeeak5HBq6FlBjaGWMZ4fKRKw+pxljDlT/pAWh/7efvb1/AgmYOFvi\n1TFQZxQAgKm7FW3WDaYou4CYI5Gc/WIPzVf21QmAZYZyUGvuRyrXRxAEoTxE8CsIgiD84+YfiCTv\nqcV5jOp24dGelYwa8j6yWZ8QWMkfmVzG5fAbXLsRSbPG9V667V7d2zNr/greH/Upn04cSUbmIz6a\nMJNO7Zvj7elGXl4+n874hq4dW+Hm6kRScipnzoVRs7omA+nq4ohEIuHA4RO0bdUYQ4UhJqUsxCWV\nSmnSqDZnzoXRpWMrbXl2Ti5R0TEAqNRqHsTGc+XaTSwtzHF10cy53P77QaytLHB1ceJGxG0mTZ9L\nh7ZNad7kyX2u3bADXx9PbG2tCL0QzqRpc/nw/QHaVZz9/bxo0aw+H42fyeKvPwfgo/EzadOykbYO\nwPmLVzDQ16fOUwtj/RN2hMUy/0AkcRl5DLgTTyUzzUJNXh2rcHbGHuQKfQLfb1Dm+XKFns7PUpmU\npst6k3o1jvhz0UT9foXwb4/T/Lt3sPSz+8v9zYxOBYkmk/pcj8doa1cbfmrx5T+H+f6T5ArdAFCt\n0gSgLX7oV6KunnHZwaKBhYLCUub0vvD6hnrU+awdwVNbk5+ag6GNCXe3hyM31td+MWFoaUSjr7tR\nXKCkIDMPha0J4cuOl3itZXoyTF01X/ZYVXAg7UY8kRvO66wQXpiZj8xAjp6RCHwFQSg/EfwKgiAI\n/7i4jDydn2WmVph3Gk3+lWN8NfdbYuMS0JPL8fPzYtig3rw3tO9Lt21kpGD7xhVMnj6Ppm37YWig\nT7s2TbWrNstkMjIyHjHio+kkJCZjZWlBm5aN+OqLTwBwcrRn6sSRzJy9lFHjvqBvr45lbnU0aEAP\nRoyZzqwZ45HJZACEXb6u3S4JYNa85cyat1xny6SExGSmfj6fpORUHOxt6dOzI5PGva/T9u079/ji\n/xaTnpGJm6szE8YO58P3B+jU+WnFXCZMnU23Ph8A0LZ1E76ePUWnzpbt++jVvT1GRiWHj78uT2f2\nAXILi7mZ8IgdYbF0DnZHqiejIDMXlya+L2hJl0QiwaaKMzZVnKk8rD57e/9EzKGIvxz8FuUWcmfb\nZeyqu2kDNoWtCSnhsTgEe2jrJV9+iPnj4dEGFprX8+l5tOmRT1YmflrqtTgcarkDmqHpqdfjcW2u\n2eZKKtfMQFMV/z1bGFkG2JOfloNEIsHExeLlz/O351H0q2ejpXIZRvaaLP79gxE4N/AusR2RzECO\nkZ0pKmUxD45G4tYioLSmtNRqNcWFul8oZN5N1mz5JAiC8ApE8CsIgiD845wsFMQ+EwBLjUzxbdOL\nkMnNnnvuo8QrJcquXdiv83Olin7s2vpjqefr6+vx88q5z73GpHHvlwhGS9OiaX3cXJ3YtG0vfXtq\nVq1tWL9WqX182ojh/RgxvGRm7mkzpo9lxvSxz61jaWHGj8tnl3k8OTmVHbsPcfwT0lWHAAAgAElE\nQVTAhue283d7NrMPoFJpyrtUc6bt+sGgRmdY84ukXI0lIfQ+jnU8MbQ2Jj0ykdzELO1c3dTrcZz5\nfA91Z7THupJTme2o1U8C1qLsAlJvJBCx+ixF2QXU/Kabtl5A/2Cufn8KEzdLrAIcuLfvOsmXH9J6\nzSBAk/G0DnQiYvU5TF0sKMwuIPzbE6Ve886WMEzdLLHwtuX2ljByEjLx7a7JxBs7moNEs/K1c0Of\nv5zVdAj2wDbIhRPjt1J1dBPMPKzJT80h/kwU9sEe2FVzLfU8xzqenJ25F5VSpQ3IATKjUlAVFVOQ\nkYsyr0i74NefAeij+2mkXo/DprIThVn53Fx3nsyoZOp80V7bRsq1OPKSsrD0syc3OYtr34egVqmp\n8G5tbZ3LS4/h1MAbI3szlLmF3Nt/g6SLMSX2fk6+/BDHup4IgiC8ChH8CoIgCP+4Ca39dTKDAAo9\nGRNa+7/BXr2axfM/I/xaxJvuRqnuP4hjwZxPdRbS+ic8m9l/tlzPuHwrZAPomRiQEv6QW5suUpRV\ngJG9KZWG1tOu+KzMV5J1Pw1lvvK57RTnF7Gj7bcg0azybOJiiXNDH/z71sTQ6sniWf59aqLMLSR8\nyTHy03IwdbeiwdwuOlnm2tPbEvrVfg4MXI2JiwU1J7XiyHvrS1wzaFRjItedJy0yEWMHcxrO66rN\nkhrZmRL4XgOuLD9B6Ff78GxXWSdwLC+JRELjRT24suIkobP2U5CWi6GVMTZBzng83kapNI71vZAb\nyIk/G62zjdDxsZvJiX+yqNv+/r8C0Pe8ZiSFWqXi5rrzZN1PQyqXYlfTnZY/9sfkqSHNqgIlV1ae\nJDs2A7lCH6f6XtSZ2V5nz+L81BzOfLab/NQc9EwMsPCxpcninjjWfTJPPzcpi5QrsdSd2eGVXx9B\nEP63SZ5eJfK/ombNmuoLFy686W4IgiAIf8HTc0KdLBRMaO1Pl2rOLz5R+NerP+doicw+gLOF4oWZ\nfeHNub01jAeHI2m2os+b7kqpwhb/QVF2AcGftnnTXRGEfwWJRHJRrVbXfNP9+C8RmV9BEAThjehS\nzVkEu2+ptymz/7/Eu0sQhY/yKcwuQN+k/Nn5183QyoiA/sFvuhuCIPyHieBXEARBEIS/1Z9faojM\n/n+LVCal0uC6b7obZaowoPaLKwmCIDyHCH4FQRAEQfjbicy+IAiC8G8jfXEVQRAEQRAEQRAEQfhv\nE8GvIAiCIAiCIAiC8NYTwa8gCIIgCIIgCILw1hPBryAIgiAIgiAIgvDWE8GvIAiCIAiCIAiC8NYT\nwa8gCIIgCIIgCILw1hPBryAIgiAIgiAIgvDWE8GvIAiCIAiCIAiC8NYTwa8gCIIgCIIgCILw1hPB\nryAIgiAIgiAIgvDWE8GvIAiCIAiCIAiC8NYTwa8gCIIgCIIgCILw1hPBryAIgiAIgiAIgvDWE8Gv\nIAiCIAiCIAiC8NYTwa8gCIIgCIIgCILw1hPBryAIgiAIgiAIgvDWE8GvIAiCIAiCIAiC8NYTwa8g\nCIIgCMK/yPK9kxm8uNab7oaO6MQbdPzSmdyC7DfdlRLUajX9vwkiJGLPm+6KIAj/cvI33QFBEARB\nEIT/qroTnp9HaFdjINP7/FKuNgc1n0a/xhNequ6Zm/sZ91M7jnz1CCMDk3Jdpzy+3TOZXg3GaK+R\nW5DN19tHERl7iftJEdT0acGi4ft0zlGr1fx2ajHbz6wkIT0GRysPhrb8jJZV+2jrFCoL+OXwVxwM\nW0/Kozg87Csyqv08avk212krKeMhy/dO4UzkPvILc3Gx9mZyj+8J9KiLRCJhcItpLN8zmXoB7ZBI\nJK/tdRAE4b9NBL+CIAiCIAivaPf0OO2/QyJ2M3vLezplBnqKcrdpZGACrzGQLYuyuAi5TK9E+YOU\nO5y7dYApPb7XlhWrlBjqKejVYDQnru2kWFVc4ryNJxfx06EZTOnxAwEuNbh67zSzNg3D3MiaYL+W\nAHy7ZyLHrm5nco/vcbXxJSRiNxN+6cTPY0LxcqgEQEZOCu99W59gv5YsGLoXSxNbHqbcwdzYWnut\nRpU6M3frB1y4c7RE4CwIgvAnMexZEARBEAThFVmbOWj/M1FYlFJmzqRfu7Jw51jtOUt2jafuBCm3\nYi8Dmgxpuy/sOXplC1By2HNkbBgjVzSl+TQzmk8z492F1QmPPsW9pJuM+6kdAM2nmVF3gpS5Wz8A\nQKVS8euR/6PbLC8aTzGi/zdBHA7fpG3zXtJN6k6QciR8MyNWNKHxFAV7L6wq9R4PX95IgHMNrM0c\ntGWmCgsmdl9B59rDdcqftv/SWrrVHUHzoJ44W3vRpkZ/2tUcyJo/5j1VZx2Dmn9K3YA2uNh407vh\nR9TwbsrGkwu1dVYdmYWLjS9Te/5IJbdgnKw8CfZriZutn7aOnlyfOv5tOHR5w/MelyAI/+NE5lcQ\nBEEQBOE1qubdmL3nnwSWYVHHsTC24VLUMfycqxKVeJ2M3BSqeTUu9fxpa3sT5NGASd1XIpXKuBMX\njp7cAFcbX2a8s47P1/djy+Q7GOoZYahvBMCyPRM4G3mASd1X4mrrS1jUCb7cOAgzhRXBfi20ba/Y\nO4XRHb/G1ykIPZlBqdcPjz5FgGuNct93kbIAA7mhTpmBnoKr90+jUqmQSCQUKQvQ1ytZJzw6RPvz\nies7aValB1NW9SA8+iQ25s50rfM+Xeu+r3NeRbdabD29vNz9FAThf4fI/AqCIAiCILxG1b2acCfh\nCpm5aWTnZXIn/gp9Gn3MpTvHALh09xiedhWxNLEtca5arSYp4wF1/FvjbuePq40PxjJLjp7biUwq\nw1RhCYCliR3WZg4YG5qRlZfB5pBlTOv9C7X9W+Fk5Un7mgNpV/Ndtp1ZodN+n0Yf07hyF5ysPLE1\ndyq1//Hp97ExK/3Ys+JS7vHZ94MpKMqntl8rdpz7gcjYMNRqNdfun2XvhVUUFOWRnZ+JRCIh2K8V\nG44v4EHKHVQqFacj9hISsZvUrHhAk8GOT7/HplNL8HKoxKLhB+hebwSLd43j93M/6lzbxsyJhPT7\nL9VPQRD+N4nMryAIgiAIAKw7sJjQG0cBkEplWJrYUMW3Lm3r9sXgmexcec34aTgNg9rRrGZXbdm5\n60fY8sf3zB/1219qe+HGiThYu9K35Wht2fmIY6zdv5DODQfpXHNPyFpCI/5gxrCf/tI1y8PHsQom\nhhaE3T2OXKaHl0NlGlfuyrpjX6NSqQi7e5xq3qVnfSUSCb0bjuWLDQP4PfQnqnk15s7dSAa3n6it\no5CbsG7/IuJTYkh9lEhV/7ooi4sYtbKZto5UIsPW0ANrI2fGL+mJjaUDxnrmVHCtqa3zKCeDXadW\ncfN+GHkFOXg7V6J70/coLMpD/3EGV6ksYsfJX7h08wRFykL83KpQrHwy39fJxgN3R3+OXdzJ8NYz\nychJYeiSYEATnLarOZANJxYglWjyLxO6fsuszcPoPc8fqUSKm60/bWu8y9Erm7VtqtVqAt3rMbz1\nDAD8nKtyLzGCLaeX06n2MG09Az0FyuKiMucuC4IgiOBXEARBEAQtP7cgBrT5mGKVkruxN9h4aBmF\nRfn0aj6i1PrFxUpksjf7ccLHJZDLt07plN1+cBULUxtuP7ymE/zefnAVX5fAv3zNHWGxzD8QSVxG\nHk4WCia09sdMVnpdqVRKNa9GXLr7B3KZPjW8m+BhF4C+3IBbcWFcjjrB+G7flnmtke1m077mIE7f\n3Mu564fJyy7gblI4Pi6VNe1LZFia2lLNvyF7Q9ahVqsBWDhsH1ammvm4u06sJjk9njZ1++DlVJHD\nF7bgn1QXpVIJaALMn3bNQoKEYZ2mYqhvxLFLv7N862eYG9mSlZcOwLbjP3L17jnebTceY0NTdpz4\nmYzUTNT6T/pbu1Jzfjv8LS2Ce/B539VM7fkj6dlJ2Jg58dupxZgbWWOiMAc086O/GbqbgqJ8HuWm\nYWvuxMKdH+Fk5aV97SxN7PCwr6DzmnjYV2DvxdU6ZY9y0zBVWIjAVxCEMongVxAEQRAELblMDzNj\nzVDamgGNufPgKlfvnKNX8xHcfnCVZVum8V6X6ew/s5HY5GiGdJxMZa9aXLsbyr6zG0lIjcHM2JIa\nAY1oU6cPcpkeSzd/StqjJHae/JWdJ38FYFSPr1h/cAkAHy3sDECbOn2QSCSE3QphyrtLdfq1aOMk\nXO296d70vRJ99nUN5PD5LaRnJWNpqhk6fOfBVVrW6sGuU6tRqYqRSmUUFOUTk3iHeoGttefeeXid\n30/+QmzyPQwNjKjh34hODQdqA6ilmz/F3soFPbkBodePIJFKcXRuxYpQK3wMTxFke4citR5Ldtem\nVZUnKzv/fnIVV++eJf1RCqbGFlgpnLl49zj6cn2GtPyMfWc24GsRzNrDC3A1DmTfiU1E3btFn5aj\nSn0u7nb+uNv58ygtm+ika+wK/ZnW1fuhJ9cnpyiTNnX7YKIw51DoFixN7ZFJ5SRmPCDIswGFygJu\nx1xlSMfJBHrXBqBulZYcubiFq3dCCfKqT3JGHPfiI5nYfxHOtp4A9Gz+AdO/G4SLpR/3EiPIK8jh\n7LXDvNNqNAHuVQHo32YsX/w4DGRPthcKcK9Kbn42dx5cxd+9KnpyfewsXFCr1RwJ30SDSh1L3J+B\nniG25k4UFOVz/NoOOgYP1R6r4lGfmORbOvVjkm/hYOmuUxaVcA0/5+qlvn6CIAgggl9BEARBEJ5D\nT65PsUqpU7br5Gq6NB6MjbkjhvoKIu5dYvX+BXRrMgwf50qkZyWz6cgKlMVKujQazJCOk5m35iNq\nV2pBg6C2ABgZmtC18TD2hKxh+pDvAE0AlFeQw4Gzv3E/4RbuDprVfBPTHhIdf5OezT8otY9eThWQ\nyeTcfnCV4IrNSHuUREZOKsEVm3Hw3CYeJN3F3cGPqNgbFKuU+LhqMr8Z2al8t30GNSs04Z1WH5GS\nmcDGQ8uQSKR0bTxE2/6Fm8dpWr0zH/edz7WoUHae+IUqxq4kFbhwPK0rroa3qGh8jH3hFbXnGOgZ\n0rflGMxNrEhIe8D6g0sozCkkJvcm1TwbcfLyXlBLiYm/A3pKJndbxqq9X7MnZK3OvWXnZfL9gek0\nCeyOo5UHdx5eJSnvHoE+mqHEjpYegGabpWC/VqjVqsdbEI1h0c6xKIuLCHCugUqt4uzN/dxLvU7H\nYM29qdQq4pI1c2SVxUUAOllTqUSKXCbH1MCa43c2EZNwm2KVkgD3agBEJVxHWVyERAaFhUXcir2M\nVCLFx6kKzraeXIg8xr20G1R0DSYzJ4V1x74mLjWKWQOeDGkOjw4hIycZH8cqJGY84IcDn2Ggp6Bv\no3HaOn0bjePDlU1Ye2w+jSt3JeLBebafWcnYzot0Xqvw6FM0CexW6ntEEAQBxIJXgiAIwmuy75ul\nfOJd5bl11oyZwOxmHbQ//zBkJAs79X7dXXtjnr3ff7v7Cbe4ePMEfm66z7FN3T4EuFfDxsIBEyNz\nDoVupnmNrtSp1AIbC0d8XavQscFAQq7sR61WY2xoilQqw1BfgZmxJWbGlshleigMjEAioSA5izHm\nXsRduYmFqQ0BHtU5e+2w9nrnrh/B1c4bC7klY5z8SLobrdMffT0D3O39uP3gKqAZ2uxm74u+ngHe\nLpV1ym3MHbAy02SHT4XvxczEip7NP8DB2pXKXrXo2OBdTobvobCoQNu+o7Ubbev2xc7SiabVO1Og\nMkSFhKi8QHKKzYnMqYEEsNu0C8uLmvG/rev0xsu5Atbm9lTyrEmb2n2wMXLVzP99PORXgoSo9DCq\neNfF0ymAeoGtuBUTrnNvcpke6dnJzNz4Lu/Mq0RhUQE+TpX5sP1cAJytvRjUfCqLd31C+5kOpGYl\nADCq/TwGNJ3EqqOzGbi4OnnKLK7duYCFwhaVqpiI6EuY6FuSk5cFgL2lC5amtuwOWUtOfhbK4iIO\nn99KRnYqCn1TilXFhEefRiqRYqwwA2D0dy0YuKg6mbkppGclM3BRdYYu1WSWzU2syMxOY+0f8+j/\nTRU+/lHzpcd3o0Kws3DR3l9BUS7L906h7/yKTF3dA2drb1aMOK7Z6/ixIM/6/N+Azey7uIb+3wTy\n06GZjGo/j05PZYdjU6O4FRtGu5oDn/eWFgThf5zI/AqCILxGPwwZScjqkvtOzrhwAveqf33eYXms\n6DeUrORUJh7coS27deoMs5q0o/nIYQxYMl9bfvyn1awZPYHlqffQVyhKa+616LdwNo+nKwrlMEhu\nWaLMNagyX148We62bt67xIRlvVGpiilWFRPoHVxiqLGbvY/Ozw8S73I/4TaHL2zTlqnVKoqUhTzK\nScfcxKpcfagX2Ip1BxbTtclQ5FI55yP+oHXt3uya/Q1V2rbEzttTW3fdx5O5ffocMVevITXVp1/i\nR4/n9Wrmw/q6VObo6lUc/2ARDyMiMLAwYW/aEtqNH0Ni2kM8HDQLLR1e/gNHlv9I8r37qEylHJR9\nT4cPNQtoOdl4aK8nkUgoupyG0YaDBHpd42q38aiRUqgyoLhVOzzXZJGbmcmtxGscC9tFSkY8BUX5\nqFUqFHqmrPjooLYta3M7Tn1UqP3ZzMSKrLxMprf7TltmqG/El/01f0Mys9P47IfB9G86EYW+sbbO\n+22+4v02XwEwe7Wmz1KplL6Nx9G3sSaDmpIRz/qDS9ly+Ee2HfkZFztvalZowsOkuwDIZHKGdpzM\nhkPLmLqiP1KJFD+3ICp41ADUvNtsMmeu7+Ppj457PtesyLxsyzRsLZzo3WKk9pieXB8JEtaMu/zc\nZx3s15LfJkY8tw5A48pdaFy5S5nHN55cSJc672FlYvfCtgRB+N8lgl9BEITXrFLzJgxftVKnzNTG\n+rVeU1lUhFxPd9GXCk0asn7cVJSFhcj1NdmpiGOnsHJ15uZx3cWCIo6dxLt2zX808AUwMjf/R6/3\nNhn83WKC2j+Zy/rs8y/L0ws31bOJx8fah1FdxyGTyjA3tip1Matn92VVq9W0qdOHqn71dcqVhYWY\nGJX/mVb0rImeXJ/w22dQ6BuRV5BDoFst1v88grE7dL9MUqlU1B/QF4uzpwg/cJDUzETuPLxG38dz\nZ4si07izZD+9v/6SfSm7aeTckoNfrUBfYQhumjaOrvyJzVNmMPi7RVgEuLF44Uf8PnUOzm6aIF8m\nfbKSVVLUPdT7rlPk7qzTD4kEmjUNJCXkHLuXL+OM4gJt6vQhoPFQFAbG2uHST5NKdV9bCRLtYlWl\nMVaYIkFCbkF2+V5QwMbCkTG9ZlFQlE9+QS7mJlb8umce1ub22jqu9j5M7L+IvIIciouVmBiZs2DD\neFztfehabyhJqXHcjY4kJ++RznPNysnAy6mizvVy87OxMvtnAlG1Wo2tmTOdaw//R64nCMJ/lxj2\nLAiC8JrJDfSxcLDX+U8m13zoLSooYN24KYxx8mOYsQMz67Xk1qkz2nMjjp1ikNySrJRUbVnyvRgG\nyS2JvhCmUyd870Fm1GnOUIUd1w4cKdGPgCYNKczL4+65C9qym8dO0nbcaBJvR/EoKfmp8lNUaNpI\n+3N6bBzL3xnCSBsPRtp4sKBjLxJu39Vpf+/8xYxx9ud9cxe+H/QB+dk5OsdVxcVsnDBd28a6cVNQ\nFRfr1Hl22PPsZh1YPeoTtnw6k1H23ox29GXjhOmoVCptnczEJBZ16ctwE0c+8Qrk5K/r+DSoLttn\nzNHW+eP7X5hUoSbDjB0YZe/N1227U6zUncf6tE1TvmByxVqaNr2r8NukzyjMz9ce3z5jDp8G1eXs\nb1uZ4FeNDyxcWdytn85zepn7fZaquJifho9mvE8Qw00cmRRQg73zF+vcb1mMLMx13mMm1pps67Pv\nlz8Nklvy7de/MGXbVVLvx9D46/4Uht0hes5uJjtX5+v6nYg4qps5Tr59j5yfrvGJY0VGO/qyot9Q\nMhIScbHzIjHtITvGfcnad8cS+v1vzApqwaygFsikMk6v+424WUdZ32wEox19WdZ7EOmxcchkctSl\n3JtMKiO4YnPOXT/M2euHqeJTl1tHQ5BIJPjWr6NTd8DiebQc9R6+QdWRIOHstUM8yk3H00mzOnDE\nziMoAu1R1TBHYqlPq/6DaT/pY/bOX4ydpTP3EiIJWfsbjYe+S50+PcjUy0JRw4nGQwewd/5inWsp\ni4pY2W8Ydt2rYudhj6GeDAngbKHA1ECPKq4WVOvQlvObd2JuYk3rOr1xd/DFztKJ9EdJL3yGLyKX\n6WFv7Upi6oNXbsNAzxBzEyty87O5ef8ygV61S9RRGBhjYmROUnocMYl3CfSujVymx/C2nyOTyrkZ\n8ySbm5GVQmLaQzydAnTaiE+5j4ud9yv3szwkEgnvNpuMufHr/VJREIT/PhH8CoIgvEGbJn9O6Kbt\nDPlhKTMvHMclsCLftO9JRnxCudvaPPULus/8lNnXQ/GqXbPEcQdfbyydnbh5TJPlLSoo4M7Z81Rp\n2xKPGlW12d/4yNtkxCdQoUkDAApyc5nTohN6hoZMObqbaacOYuHowPzWXSjIzQUgdPN2tn72f3T9\nfDIzzh/Dwc+HA4uW61x//4JlHP9pFYNWLGTaqYOoios5s37LC+/rzPrNSOVypp08wIAl8zi4ZAWh\nm54Mr/1h8EhSYx4w6dBOxmxbz+l1m0i9/1B7PPpCGGtGT6Dz9InMuRHKxIM7CGzd/LnXNDA2ZugP\nS5l17RzvLv2ac5u2sWvWNzp1Uu49IHTTdsZsWcP4fVuJuXyFrdO//Ev3q1KpsHRyZOSGX5h17Rzd\nv5zGrjkLOPnruhe+Tq/i98tx5BU9CcgNj1ygqG4Ad0fMx7NmNVb0G0p+tibLmBGfwJreo5E6GDHh\nj51MPLCd/OwclnTtR6vgnlyMPEFsUhQRx09x+8J52i+fSq3ZgwFQFhbh3rcBgfP7MWzjd2QmJbKi\n3zCszewoKi7kbuwNAIqUT4YA163ckjsPr3M9+gJ1K7fg1qkzeFSvikQioTRSqQy5TI/jl3dr5/sC\nFBUUYmpmxfHLu7G3csHM2BJ9hSFpD+OoaBnEo+w0klNiKVQXcj3qArtOraZhUHsMjU2IOn8J9VN7\n2G6d9iU2Hm6Y1/fGXKFPPW9roue0J2RyMwz0NB+pPGtVJzUimoz0JC5EHCMlI4FT4fu4GFn+Ieil\nCXCvRlSc7jBhZXERD5OieJgUhfLxUPOHSVEkZ8Rr60Tcu8SN6IukZiZy8/5llm2Zhp2lM7UrPfld\nCLsVwu0HV0jJSODq3XOs2PY5gd61tQtcKQyMqVO5Bb+fXEXk/cs8TIpizf6FONl64O8WpG0nNTOR\nzOw07YrQgiAI/xZi2LMgCMJrdvXAEd43f7LAi1+DOnyyZwsFOTkcXfkzQ75fQtXHw1UHLV9AxB8n\nOLL8R7p/Oa1c1+n82WQqt2r23DoBTRoQcewknadP5M6Z85jaWGHv40VAo/pEHDtJcM+uRBw7ib5C\ngXedWgCc+20bqNUM++lbbeAxaMVCRjv6Er7nAME9u3Jw8Qrqv9uXpu9pgp1OU8dz89gpEu9Gaa99\ncMlK2o4fQ3BPzZ6r/RbO4drBoy+8L6cKAXSbMRUABz8fjv+4mhtHT1CnTw/iI29z7eARpp06iM/j\n/g77+VvGez/1QfzBQwyMjajWsS0KU1NwB7eg58+37jxtgvbfth5udJg8jv0LltF95qfa8mKlkmE/\nf6sdqt142EBOrVr/l+73/9m77/iar/+B4697s/eQPWRLzCQEsfcoapdSW+1NFbVXrVJU7apRLYra\no2btEXvvhBCZIrLX/f2RuFxJKim+2vzez8fDQ+7nc875nM8nl+R9zznvo62jo77Xl9cOPn+J0+s2\nUaNbx7+tu7Rzb5Z366d+3XnRHCq3b/O3dWISUjVep1YqBT5OhMRa0HrKWI6vWcfDi1coVrUSBxev\nwLa4B88aG2Pn44WxgSk9Vy6mn7Ub+lEKejUfy9ItvUkjjcdV0kiPPUcFv6zAqnrXDhQNK8/6/QtZ\nfWkhKYHpxM8KwizTlCplGrL50FIAzt44RLHArJFIK3M7PJ1KEhMXiadTaXaFPMLcwe5v70dHW4eU\n1CT1el+A0vVrc3HwXvS8lZRvXYOnt++y5/usPXVVcSn0ajGeJQf78dfPq7lmcJvAep9SWr8081fM\nICMtjfQXyWALV/88yJmNW5h07ijzt+X9b9PCwY7MtHQqFq3J5r9+Ii09FR8XPxpVas/vBxfnWS+/\nKpeuz8xfBpOQ/AIjfRMgay3wrLVD1GWirjzlxJW9eDqVYsBnUwFITklk+/E1xMZHYaRngq9XJRpX\n6aAxrT0uIYYtf/3Ei8TnmBpZUL5ELRpU1HwPtazxJUqlFit3fUdaegrFnH3p0HAwytemhp+/dRRv\nF7//2bRnIYTILwl+hRDiA/OuVpkui19tyaFrkLVeMuLeAzLS0vCq/GraoVJLC8/A8jy5cavA13Er\n9/ZRlhK1qrOq3zBSk5O5efgo3tWz1mj61KjKL0NGAllTnr0qV1SvCw4+f5HIByH0NnfWaCs1MVGd\ndffJzdtU795J47xHYHl18Jv4/DmxYU/xDKzw6l6VStwrlCPm0eO/7bNzGc21hOYOduop2mG37qBQ\nKnEL8FefL+LshMVrQVLJujUp4uLMcE8/StWvTal6tSnXoklWIJyHs5u28ue8RYTfe0BKfAKZGRk5\npixbuThrrFG2cLAnLiLqne/34JIVHFmxhuiQR6QmJZORlkYRF+e/rQPQdsZESjeoq35tamv91jqW\nRrpEvvb6hkld4mK9cDQ3wNzBHoC4yKx7Cj5/kUdnLqN9SY9hEzS/JxH3HxBYoTXF3coRrbRh5KAN\nGueDz19i6+QZRFy6QkJMrHpda/TDUNrU6UMtj8YMn+Crsf8uQFzCMwJL1slKMpWUjM5b7klfz4jZ\nQ7ZqHKvxZWci7j1g34Kl7P55LIdNZ1JvQG+2TJqOQqnEw6kkU3/dzZoBw6UcvJgAACAASURBVDkx\nZz07Z5/gqK0NVTt+zq7v5tO92TcolErGla1G71+WY2RuxqhOP7DscF/iX5vmPqXXKgD1coBqJRvS\nrtRQjb683OYJ4JNK7fikUjuN8xVL1tEYic2NraUTpT0qcuziLhoEZi0RKGJmy7w37vtN/t5V8feu\n+rdlavh/Sg3/nHvwvk5bW4fWtXrSOpf9lgHS09M4dnk3nT/56m/bEUKIj0GCXyGE+MB0DQ2w9XQv\nWKXsEValMuvv15PgZKSl5VpFz8go1+Ov86lZjfSUFO6dCuLmX8eo3CHrl2evKhWJvB9MbNhTbh45\nTv0BvdR1VJmZFPUrTZ+1P+Voz8gyZ5bh903rzcRNCkWu60TzYmBiwsSzf3HryAmu7T/Ejhnfs3HM\nZMafOoBFdoD3urunzrKofXeajR1BuwZ1MDQ348L23az/euwb/XrjR2gB+5Wb0xs28+vQb/h85iQ8\nK1XEwNSEAwuXc27rjrfWNbOzzfV9ltt7KD37PdTUz4EFz7V4eUal1MJAR4vhDbzVo/wv70mVmUmZ\nRvX5fOarqd0vvR5o6xkZapxLSUhgdqNWlKhTg54rF2NiY018VDTf1mxEemru7+X4xOdcvHOCmLgI\nKpdpCICxlSUJz56/9Tm8SaFQ0Gb6RFpPHcfzp+GYWFtx/cBfAFi7uwKga2BA9+UL6Lzoe+LCIzC3\nt+PwspXom5hgYm3FrSMniA17ysz6zdTtvnwu3fSsmHr5JPbeXgAkxDwDwMTaqsB9za+m1bpw+e6p\nD9b+u4h5EUH9Cp/h7lj8Y3dFCCFykOBXCCHes9ez5/pfCcPLKPeAyMbDDW1dXe6cOK3euiUzI4O7\np84S+Hlr4NUv0M/DnmKa/fXDS1f+cd+sXYti5VqUy7v/5N7pILot+wHICpxdy/pxYOFy4sIjNJJd\nufj7cmrdJoytimBknnvmXgefYtw7HUT1rh3Ux+6/lljL0MwMc3s77p0+S4naWW2rVCoenD2PmZ1t\njvbyy97bC1VmJsHnLuKRvc45JvQxz55orpnW0tamRO3qlKhdnRYTRqmnbNfs0SVHm3dOnMbC0V5j\n6nP0w4IlGPqn93v7+Ck8KpSjbr9Xo2oR9x/kWT4/1O+hp6+eycOLWe+hCm6WTHMvzffrYgGwNtFj\nYMvSNPd3zNGOi78vZzduoYiLc74zSQOE3bzDi6hoWk8Zh7WbCwBBf2z/2zqjl3TCyMCUtnX6Ypy9\np6yLXxmOrf71b+v9HaWWFhaODgCcWr8Jz8Dy6n9TL2nr6GDplHXvp9dvxq9x/awR+/L+TLl4XKPs\npnFTSXwWS8cfZqnvCyD02g0sHB0ws/1wU34tTa2pWfbvR2g/FhsLR2wscr5/hBDi30CCXyGEeI+2\nXHjMqM1X1EmEElMzuBkXz5YLj3MEFHpGRtTq3Y0NoyZgXMQSazcX9s5bRFx4JHX6dAfAxtMdS2dH\ntkyawWffjicq+CHbv/3unfpYvGY1Di1diamNlcZIoXf1yuxbsBR9ExNcX5tCXan9Z+yZs4D5LdrT\nYsI3FCnqRMyjUM5v202tXl2x8/Kg3sDeLOvSB7cAf3xqVCVo01bunTmHkaW5up16A3qxY8b32BXz\nxKlUCQ4u/onYsPB3Dn5L1a/Dqn5D6bRgNjr6+mwYMQ49Q0P1yOXFHXuIuB+Md7XKGFmac+PwMZJf\nxGPvUyzXNu28PHj2OIwTv27AM7ACV/88wOl1mwrct39yv3Zenhxf9RuXd+/DxtOd0+s3c+vIcQwt\nzPOs8za6BgZ4VCzPzpnzsHF3I/F5HBtHT1Kfb+7vSBWLygyfDT91Lo9bLoEvQJ2+X/LXT6tZ1K4b\njYYPwsTaisj7wZzZuIXPZ03Ocxq5ZVEntPX02P/jMur0/ZInN26xefy3f9vn3Kbwlqpfmw2jJhAf\nHaPOZA0Qfvc+yfEJxD55SkZqGiHZgb1jCW+0dXV5ERXN2Y1b8KlRlbSUVI6tWsvZjVsZdfDVaPrT\n23e5dyYIj4rlSXwWy565PxJ67QZf/rwIyPq36lRKc6q3obkZmenpOY7fPnbyrWvvhRBCfByS7VkI\nId6jWXtvaWTPBchUqZi1N/c1vG2mTaBCmxb89GV/xpWrzqPL1xi283fM7bPWrGrr6NBn7U9EPAhm\nbNlq/DFxOq0mj821rfzyqVmV5Bcv1Ot91cdrZB+vVkm9FROAnqEhow7txNrdlR8/78KokhVY1q0v\nibGxGGUHZRXbtKT5uBFsGjuF8QE1CL16nQaD+2q033Bof6p1/oIVPQcyqXJdMjMzqdS+9TvdC2Ql\nuLJwdGB6nU+Z16Idge0/w8TGCh39rGy/huZmnN+6k5kNmjOqZEX2zPmBbkvn412tcq7t+X/6CZ8M\nG8BvQ79hrH9Vru0/TIsJowrcr39yv7V6dqH8Z81Z3LEHEwNrExXykIZD+hf42m/qvjxrhH9iYB1W\n9R1Cy9cSd+WXhYM9o4/sQaFUMrtxa0aXqcSagcPR1tNFR08vz3qm1lb0+Hkh57ft5JvSgWydPJN2\ns6YU+PrOpUviXr4cp9ZrfhCxoudAxgdUZ++8hcSGPWV8QHXGB1TXGP0/vmY9EwPrMLV6Qx5fu8nI\nA9txr1BOfT4zI4O9cxcyrmw1ZjVsQVpyCmOO7sXatWiB+pianMz5LTuo8cb6dyGEEP8Oir/bTP3f\nKiAgQBUUFPT2gkII8T/mNnInuf2vqgAeTG/8v+7O/0svoqIZ7Fyc3muXU75l04/dHfEeXd6zn1+H\njuLbK6dQamm9vcL/2P6Fy7iwbTfD92x+e2EhhHhHCoXinEqlyrm3ociTTHsWQoj3yMHcgMexSbke\nFx/G9YNHSI6Px6lUCeIiItk0dgomVkUo85a9fMV/T5mGdQm/c4+Y0MdYuRRsVPZ/QVtHhw7zZnzs\nbgghhMiDBL9CCPEeDW/grbHmF1BnzxUfRkZaGpvHTSHifgh6hga4Vwxg1KGd+cp+Lf576r2Wifzf\nJrcEakIIIf49JPgVQoj36GVSq5fZnh3MDRjewDvX7Lkv7bv4LVcebmFo0zMfpE9L9jYiwLMD5Tza\nf5D238WJm0u5/WQfXWr//o/bKN2gDqVllFcIIYQQbyHBrxBC/EMbjvfi3L1XW68Y6llS1Ko8jQOm\ncnzkvyPb643QPTxPfIy/W1v1sdO3V3DxwUaexFwmOe05I1pexdLYRaPe4+iL7Do/jtCo8ygVSkq5\nNKNJwDT0dIzVZe6GHWbvxck8fXYdXW1Dynm0p4H/eLSUWT9aYuJDmLG5VI4+dauzGW/HegBU8OrM\nwSuzeBB+HDfbKjnKCiGEEEK8LxL8CiHEO/C0r8XnVZcBEJcYxs5zY1h9uD1fNTv3kXuW5fiNRZTz\n+AKl8lVyoNT0JIo51KaEc2N2BI3MUScuMYxl+5pS2qU5zSt8R3LaC7afHcGG473pWPMXAJ7EXGHF\ngVbULDWUtlWWEpcYxubTg8hUZdAkQHMbm251/sDBsrT6tYGuhfprbS09/Nw+4/jNxRL8CiGEEOKD\nkuBXCCHegbZSFxODrH1bTQxsqVaiHysPtiEtPQkd7awkV7vPjePqo+3EJoRiom9DGdcW1PMbg46W\nvkZbZ+6sZP+lGSSkRFHMoQ6tKy3ASN9Kff7s3TUcuTaPmBfBmBs5Eej9JVWK90WpyH3XuvjkSO6G\nHaJROc1tZaqV6AdAaNT5XOvdCN2NQqGgRcXv1UFzi8B5zN0eSFTcPaxMPbgcvAlbMx/q+2VtmWNl\n6kGjspNZe6Qz9XxHoafzas9XIz1L9TPKTQnnRizf14zU9ER0tQ3zLCeEEEII8S4k+BVCiPckJe0F\nl4I3Y2deUh34AujoGPFZ5YWYGjoQEXuTzacGo6XUo4H/q/16n8U/5ML99XSutY60jEQ2nRzI7yf6\n0qX2BgBO3/6ZfZem0rTCdzhZ+vE09jqbTg5AS6lDZZ/cEwAFR5xES0sPO/MSBbqP9IxUtJQ6GqPF\nLwP14IiTWJl6kJ6ZgraW5t6uOloGpGckExp9EQ+7aurjqw9/QXpmMlYmHlQt0Z8yLs016jkVKUum\nKp2HkWfwtK9ZoL4KIYQQQuSXBL9CCPEObj/Zz9hf7QBITU/AzNCJbnU2aZSpW2aE+mtLYxdql/6K\nI9fnawS/aRlJtKmyFAtjZwBaBs5j8d4GRMXdxcrUkwOXZ9Ko7GR14Ghp4kr0iwecvLUsz+D3Wfwj\njPWtNYLY/PCwr8GOoFEcujKbaiUGkJqewO7z4wF4kfQUgGIOdTl2/UfO31+Hr2tr4pMjOHB5ukYZ\nPW0jGpebiotNIFoKba6H7uLXI51Jr7KEsu6fq6+nq22Ivo4ZMfEhBeqnEEIIIURBSPArhBDvwM22\nCi0D5wOQlBrLyVvLWL6/Gf0bHcLcyAmAyyFbOH79R6Je3Cc1PYFMVQYqVYZGO6YGDurAF6CodXkU\nCiURz2+hr2vG88RQNp8axB+nh6jLZGamo0KVZ9/SM5JyjM7mh515cdpUWcKOoFHsvTgJpUKbKj69\nMda3QZE9xbqYQx0aBUxly+lh/H68N1paetQp/TUPIk6gIKuMkb4V1UsOVLfrZFWWhORo/ro6VyP4\nhayR5fSM5AL3VQghhBAivyT4FUKIAthy4bF6G6Mark/xtlVgZeqhPu9o6cf4dY6cvv0zDfzHEhJ5\nht+OdKGO7yiaONTFQNeM6492sfPc6HxfU6XKCnBbBM7FxbpivusZ6hUhKTU2/zf3Gn/3Nvi7t+FF\nUgS62oYoUHD0xgIsjd3UZaqXGEC14v15kfQUA11zYuJD2HNhApYmrnm2W9Q6gKB7v+Q4npj6DCM9\nq1xqCCGEEEK8HxL8CiFEPm258JhRm6+QlJY1apuYms7Np/FsufD41T6+CgUKhZK0jEQAQiJOYWro\noDH1+VnCoxxtxyU9ITYhVD1a/CgqCJUqExszb0wMbDA1sCf6xYMC7dXraOlLQnIUCclRGomzCsLE\nwAaAs3dWo62lj5dDLY3zCoUCU0N7AC4Fb8TM0AlHS78823sScwVTAzuNY9Ev7pOekYxjEd9/1Ech\nhBBCiPyQ4FcIIfJp1t5b6sBXTZXG3H2nqONTlcSUZ5y8tZTUtHiKOzUCwMrUk7jEJ1y4v56i1hW4\n/eQAlx78nqNtHS0DNhzvRZOAaaRlJPHHqcH4ODbAytQTgHp+37D1zHAMdM3wcaxPRmY6j2MuEpf4\nhFqlv8q1vw6WvhjrWxMccZKSRT9VH3+RFM6LpHAi4+4CEBF7k+TU55gbOWGoZwnAiZtLKGpdAT0d\nY+48OcSuc2P4pOxEDHTN1e38dXUuxRzroVAoufpwG4evzuGL6qvUa4zP3VuLUqGDg2UZlAol10N3\nc/LWUj4pO0mjnw/CT2Bp7Ka+VyGEEEKID0GCXyGEyKcnsUk5jtkZX8HOuAtTfgc9HROsTYvxRY01\n6mzHJZwbUb3kILafHUFaRjJeDrWp5zeGLa+t3QWwMC6Kr2srVh5sQ0JKNMXsa9Oq8gL1+QpeXdDV\nNuKva/PYc34COtoG2Jr5UCmPZFcASqUWAZ4dufBgg0bwe+rWT+y/PE39+ueDrQH4rPIiAjw7APAo\n6hz7Lk4lJT0BG7NitAycR1mPdhrt33qyj4NXviM9MwV7i1J0qrUOH8f6GmUOXpnJs4RHKBVaWJl6\n0rrywhzrfS8+2EgFr8553ocQQgghxPugeLmW7L8kICBAFRQU9LG7IYT4f6bK9IM8ziUAdjQ34PjI\n2u/lGsV7rKFXo1IMbuH/XtqLT4pk0LIWrDvQnpA1XbEyNXh7pQ/kk9Fb6FDHhy9q+6iPPX12nWX7\nmvBV8wsY6Jp9tL4t2XmFfRcesnFM44/WByGEEKIgFArFOZVKFfCx+/FfIiO/QgiRT8MbeGus+QUw\n0NFieAPvfNUPj01k1u/n2BMUwuOoeIqYGlDKtQi9G5emYYDLB+mzsYE1NUsOYd2B8A/Sfn7tCQom\nNCqez2sUUx9bsfcaq/af4eajr5m+di3Xl3bAxdZUo96Fe5GMXXWS83cj0FIqaFbJg+ndqmBsoKMu\nc+hSKJPXnuZaSAyG+tp8UduHCR0qoq2VlXU6JDyOEj1zJtn6Y3wT6pctCkCX+iWY+fs5jl97QpWS\nDh/iEQghhBDiI5PgVwgh8ullUquX2Z4dzA0Y3sD7VbKrvxESHkedkX9gYqDDxI6BlHYtQqZKxeHL\njxm06C9u/dTpg/XbxSYQ2PrB2s+PH7dfpkMdH7SyA1KAxJR0mlQsw2fVtBnx0/EcdcKiE/h03DZa\nVPFgTs9qvEhK5evlx+k17wBrRzYE4PKDKFpO2sGwVmVZNqQuT6LjGbToLzIyM5nWtYpGe1vGN6G0\n26vEX5bGr7aB0tPRok0NLxbtuCLBrxBCCFFISfArhBAF0NzfMV/B7psGLzkCwNHZn2mMWvo4W2qM\nhr7JqNlCfvm6AS2qvNpO6c2p0c8TUhi98iTbTz8gOSUdPw9rpnWtTFkvmzzbPXUjjPFrTnPuTgTm\nxno0ruDK5M6VMDXUBeDYtSeMWXmS6w+j0VIq8XI0Z9GAWpR0KcLzhBSGLj3K/guPeJGYir2lEX2a\nlKZ/09yzNUc+T+LQpVCmdqmscfxl+fN3InKttzsoGKVCwdxe1dVB87w+Nag4aD33wp7jYW/GpmN3\n8XG2ZEz7CgB42JsxpXNlOs7ayzdty2OSfT8ARUz0sbMwzPOZNK7gxqfjtpGYkoahnk6e5YQQQgjx\n3yTBrxBCfGAxL5LZd/4h47+oqBH4vmT+2ghkQalUKlpN3ompoS6bxjTCwkSftQdv0mjsVi4sbI+9\npVGOOleDo2k6YTuj21Xgx/41efYiha9/Okaf+QdZO7Ih6RmZtJ26m071fFgxtC5pGZlcvBeJllIB\nwKS1Z7gWEs2mMY2wMTckODyOqLica6FfOnk9DD0dLUoWtSzQvaWkZaCtrdQYLTbQy/qxdeJ6GB72\nZqSkZaCvq6VRT19Xi+TUDC7ci6R66VcfVLSbvofktAw87c3o39RX4wMFgLKe1qRnqjh9M5xavk4F\n6qsQQggh/v0k+BVCiA/sfthzVCrwdrJ4723/deUxlx9EEbK6mzowHPdFRXadDea3w7cZ2jJn4qy5\nf1ygVVVPBjV/tR/v3N41qDxkAxGxiWhrKYlNSKFReVfc7bOSUL3e94cRL/BztyagmC0ARW1M/raP\nDyNfYG1moBHE5keNMk6MXHGC7zaeZ2AzXxJS0hi36iQAT58lAFDX35kF2y7x2+FbfFbNi4jYRKav\nD8ouk7XXspGBDt92rUyl4nZoK5XsPBNMp+/+ZGlabdrVfLVe21BPBzNDXR5GxBWon0IIIYT4b5Dg\nVwghPrAPmVT/wt1IElPScem0QuN4cmoGD54+z7XOxXuR3At7zqZjd3P08cHTOCr62NGhtg/NJuyg\nZhlHavo60aKyB87WWUHul5+UpMOMvVy4F0ltPycalXelWqm8p4Inpaajr1PwHzclilqydFBtRq44\nzsS1p9FWKujTpAw25gYoFVmj0HX9i/Jt18oMXXKUXvMOoqejxYg2ARy/Hkb2QDVWpgYagX5ZLxui\nXyTx/eYLGsEvgL6uNkmpb+zlLIQQQohCQYJfIYT4QLZceMysvbcIjY4H4I8zITSt5F6gNhQKUKEZ\nPaelZ6q/zlSpsDE3ZN+0FjnqmuQyxfplnS71StC/Wc41ug7Z06SXDKpNv6Zl2Hf+IbvOBDPxl9Os\nG/UJ9coWpUE5F24s78if5x5y+HIorSbvpEVlT5YMyn27JytTA54lpOT7nl/XtkYx2tYoRnhsIkZ6\nOigU8MO2S7jZvcoKPbCZHwOa+vI0JhFzYz1CIuIYv+aURpk3BRSzZc2BmzmOP4tPxspU/x/1VQgh\nhBD/bhL8CiHEB7DlwmP1tkgKLS10jPTZdOQ2DSq683mg5rZGsfEpea77tTI14GlMovp1eGyiesov\ngJ+HNRGxiSgV4GaXv31yfd2tufEoBg/7vy9fxs2KMm5WDGtVluYTd7D20C3qZW8NZGVqQPta3rSv\n5U39skXpMnsf8/vWQE9HK0c7vm5WRD1PIiou6R/vM2xrnpWoatX+G+jraFHb11njvEKhwL5IVuD+\n+5G7OFkZ4+dunWd7l+9HYWehuR76fthzklMz8PPIu54QQggh/rsk+BVCiA9g1t5bGvsBm9hZEhsc\nTt/v96E7sCalXIqgAo5cecx3G8/nudVRjTKOLN11lUAfO5RaCiasOa0xhbi2rxOVitvT5tvdTOlc\nCW8nC8KfJbLv/ENq+Trlum3P0Fb+1Bq+mYELD9OtYUlMDHS5HfqMXWeD+aFvTYLD4/hpzzUaV3DF\noYgxD57GcTU4mh6flARg8toz+HlYUbyoJekZmWw7eR83W9NcA18AX3crrM0MOHk9jE8DX418P32W\nSPizRO48iQXgxqNnxCak4mxtjKVJ1ujr4p1XqOhti7GBLgcvPmL0ypNM6hSo8WHB95svUK9sUZRK\nBdtO3mf25vOsGV5fvcb4l4M30dFS4utuhVKhYNfZYJbuvsrkTpU0+nn8ehhudqZ4Opjn+X0VQggh\nxH+XBL9CCPEBPInVzH6spauDuZsdSdFxjF11iifR8Via6FPazYof+tXMs53pXavQZ8EhGo7Zgo25\nIVM6V+JW6DP1eYVCweaxjZm49jT9fzxM5PMkbMwMqFTcnva1vHNts7SrFX9+25yJa0/T8JstZGSq\ncLUzpWnFrMDUQE+bu09i6TDzT6LjkrAxN6RtDS918iw9HSUTfzlNcPgL9HW1KO9ty+9jGuV5D1pa\nSjrV9WH9X3c0gt+f9lzl23VB6tetJu8EYPHA2nSs4wNA0O1wpv52hvikNIo5WTC/b40c9/Xn+YfM\n2niOlLQMSrtasf6bT2hQTnN0feaGczyMfIGWUoGnQ9a2TW+u9/39yB261CuR530IIYQQ4r9NofqQ\nmVg+kICAAFVQUNDbCwohxEdSZfpBHsfm3P7H0dyA4yNzXxtbmEXEJhLQfx1HZrfG1Tbvtbgfy7WQ\naBqP3calRe0xM/rnW08JIYQQ/ysKheKcSqUK+Nj9+C8p2L4TQog81Wo2jp9+2f9ObWzecQq/GkPf\nU48Kh9An0RSr0J8r10M+dlcKZHgDbwzemAZsoKPF8AY5R2N/WLaLUZN/+V91rUBu3X1M1cajSUz6\nZwmrXrIxN2TRgFo8inzxnnr2foXFJLBscB0JfIUQQohC7J2mPSsUCktgPeAKBANtVCrVs1zKdQbG\nZL+colKpVr1xfhvgrlKpSr1Lf4T4UGKevWD+0l38deIaEVFxmJoY4OVuT6/O9ahSsfjH7l6hZm9r\nwfFd32JhbvT2wn+jQ++5eHk4MH54m/fUs7/X3D9r659Ze2/xJDYJB3MDhjfwVh9/KTrmBSt+PcjW\nX0aqj509f5ef1u7n6s1HREQ+Z/q4DrRsEqhRLyo6jlkLtnL89A3iXiRR3t+TsV99hmtRG3WZh6GR\nTJ/3B+cu3Sc1LZ3qgcUZ+9VnWBV5NfL6ICScmT9s5dyle6SlpePpbs+AHo2oXilr+q+3pyN+pVz5\n+deD9Ov+yTs9k8YV3d6p/odU17/ox+6CEEIIIT6wdx35HQkcUKlUXsCB7NcasgPk8UBFoAIwXqFQ\nWLx2viUQ/479EOKD6j9iOZevBTN19Bf8uXEcS+b0pkblEjx7nvD2ygKAtPR/tneqlpYSaytTtLVz\nT6b0b9bc35HjI2vzYHpjjo+snSPwBdiw9QRlSrhQ1NFKfSwhKQUvDwfGDG2Nvl7O7YpUKhV9hy8l\n5FEkP87qyZZfRuJgb0mX/j+oR2gTk1LoOuBHVCpYvXAA65YNITUtg17DlpCZ+WqrpF5DF5Oamsaq\nHwewZc1Iyvm60+erpTwMjVSXadUkkN82HSX9H34PhRBCCCH+Dd41+G0GvBzFXQU0z6VMA2CfSqWK\nyR4V3gc0BFAoFMbAUGDKO/ZDiA8m7kUiQRfvMax/MypX8MbR3pIyJVzo3qEuTeprLrNISUln7LTf\n8K/1FdWajGH5Gs1p0CvWHuDT9t/iW30oVRuP5pspa4l7kUhenscl8vmXc+g2YIE6qLl7P4weQxbh\nX3MYgQ1GMmTMz0RGxanr3Lr7mE595+Nf6yv8agzl0/bTOBV0G4DT525TrEJ/Dh29QtMvplGq6mBa\ndJrB1RsPNa57/vJ9vug1lzLVhlC18WjGT19HfPyr9atHTl6nXY/vCagznPJ1v6bbgAXcffBUff7l\nVOUde4Po1Gc+pasNYd3mY/lq+01vTnt+eQ8nztyidddZlKk2hJadZnDt5qM828iPW3cf07nfD5Su\nNoTydb9mxMQ1vMju17FTNyhZeRDPYjU/p5u9cBuftv82388tNzv2BlG7muakl5pVSjKsb1Ma1vFH\nqVTkqBP8MIKLV4MZ/3UbfEu64u5iy8QRbUlOSWPH3nNZfbl0n9An0Uwf1wFvT0e8PR2ZOaEjV288\n5GT2+yEmNp7gR5H06FSP4sWccHG25qt+zcjIyOD6rVD19aoEFic2LpHT5+8U4IkKIYQQQvy7vGvw\na6tSqcKyv34K2OZSxhF4/bfS0OxjAJOB2UDev/1nUygUPRUKRZBCoQiKjIx8W3Eh3htDAz2MDPU4\neOQKKSlpf1t25W8HKebhwJbVI+jRsS4zf9jChcv31eeVSiXfDGnFznWjmTO5C1euhzDpu99zbSs8\nMpYven2PrY05i+f0xtBAj4io57TvNZdi7vb8/vNwVi4YQGJiCn2GvxrNGzZ2JTZWZmz8+Su2/jKK\nAT0aoaerucJh+vwtDO/fjM2rvsbZwYpeQxeTlJwKZAWB3QYsoHb10mxbO4ofZ/Tgxu1QRk1Zq66f\nlJRCl3Y12fjzcNYsGoSJsQG9hy0mNS1d4zqzF26jfetq7Fo3mno1yuSr7fyavXAbX/Vrxh9rRmBu\nZsSwcSv5pwn8EpNS6D7wRwwN9Nj481f8OLMHFy7fV6/DrVTeGwtzdqC6uwAAIABJREFUI/YcuKCu\no1Kp2LE3iKYNywP5e25vin2ewN0HTylVvGBTbl8+Z73XRoWVSiW6Otqcu3RPXUahQON7r6erjVKp\n4NzFrDIWZkZ4uNmxdfcZEhJTyMjIZP2W4xgZ6lPW91VWZl0dbYoXc+Ls+bsF6qcQQgghxL/JW4Nf\nhUKxX6FQXM3lT7PXy6myfuvM92+eCoXCD/BQqVR/5Ke8SqVaqlKpAlQqVYC1tXV+LyPEO9PW1mL6\nuA5s23OWcnWG06bbd0yft5lLV4NzlK0SWJyObWrg4mxNp7Y1cXG25uTZ2+rzXdrVolJ5b5wcilCh\nrBfDBzRn9/4LGtNQAUIeRdLuy+8pW8ad76d0QTd7X9ffNh3Fx8uR4QOa4+lmh4+XIzMndOLytRCu\nZI/ePn76jMoVvPFwtcPF2Zr6tXzxL+Ou0X6/7g2pVqkExTwcmDauA8kpaWzfk5VBffmaAzSqW47u\nX9TBtagNvqVcmTDyc/YevEh0TFayoga1/WlQ2x/Xojb4eDkybVwHQp9Ec/maZlKqDm1q0LCOP86O\nVtjZWuSr7fwa3KsxgQHF8HC1o9+Xn3A/OJzwiNgCtfHS9r1BJCalMmtiJ7w9HalQ1ovJ37Tjz0OX\nCHkUiZaWkkb1yrFtz6ss8+cu3Scs/BmfNgjI93N705PwZ6hUKmyszArUX3dXOxzsLJizcBuxzxNI\nTUtn6ap9PI2IJTLqOQB+pVwxNNBjxg9bSExKITEphenz/iAjI5PI6KyZAgqFgp9/6M/te2GUrfUV\npaoO5odlu1g+t0+OPtlYmREaFl2gfgohhBBC/Ju8NeGVSqWqm9c5hUIRrlAo7FUqVZhCobAHInIp\n9hio+dprJ+AwUAkIUCgUwdn9sFEoFIdVKlVNhPiXaVDbn5pVShF08S4XrgRz9OR1Vqw9yJA+n9Kn\nawN1OW9PB416NlZmRD97FficPHuLJav+5F5wOPHxSWRkZJKWlk5kdBy21uYApKVl0K7HHOrX9mPC\n12012rt68xFBF+7mmhH6UWgUviVd6dquFmOm/sqWnWeoVL4Y9Wv74eFqp1HWr/SrxENGhnoU83Dg\n7oOsSRzXbj4kJDSKXfvPqcu8HFB9GBpJEUsTHoZGMnfxDi5dCyEmNh5VZiaZmSrCnsYAHup6pd8Y\n0cxP2/nl7fVq/ezLQC36WTx2thZ5VcnTvQdP8fZ0xNhIX33Mv4w7SqWCuw/CcHG2ptknFVi17jCP\nw2JwtLdk+56zVPD3Ul/vn9xbSvZou14u63r/jo62Fgtm9OCbKWupUG8EWlpKKpf3pnrlEuprWlqY\nMH9ad8bPWM+vG4+iVCpoXL8cJX2cUSoU2f1TMXHmeszNjPh16WD09XT5fesJBoxczsaVX2NnY66+\npr6ezltnPgghhBBC/Ju9U7ZnYBvQGZie/ffWXMrsBb59LclVfWCUSqWKARYBKBQKV2CHBL7i32TL\nhcc5M/VWLE6VisXp/+UnfDNlLQuW7aJ7hzrqkVmdN5IyKRSQmR2NPA6LoefQxbRpVplBPRtjbmbE\ntVuPGDpmJWlprxIJaWtrUaVicY4cv64OtF7KzFRRo0opRg5qkaO/L4OrgT0b07RheY6cvM7RUzdY\nsHw3E0d+TuumlfJ135kqFZ81q0TXdjn3orW1zgoyew5djJ2NOZNGfY6ttTnaWkoatZ2SI6mVgb5u\ngdvOr9cTYCmyg7k3R9Dfh5dtl/Rxxt3Vlu17z9K9Q112H7jA1wNepTn4J/dmYW4MQFxcYoFHf0sV\nL8q2taN4EZ9EWlo6lhYmtO46S2MKddXA4hz4YwIxsfFoaykxNTGkcsNRONcrB8DJs7c5ePQqZ/fP\nwNTEMPs+23L8zE02bz9F3+4N1W3FxiXi9Np7UQghhBDiv+Zdg9/pwAaFQtEdCAHaACgUigCgt0ql\n+lKlUsUoFIrJwNnsOpOyA18h/rW2XHjMqM1XSMoOSh/HJjFq8xXg1RY2nm52pGdkkpqSpg5+/87V\nGyGkpaXzzZBWaGllrTg4dOxqjnIKBcwY34GvJ66hY595/LJ4EA52WUFHSW8ndh+4gIO9ZY5A+3Wu\nRW1wLWpDp7Y1GT99Hb9vPaER/F668kCdXTgxKYU795/QvHGF7Gs4c/d+1mhnbp7FxnM/OJwJX7cl\nMKAYANduPiI94+2B59va/lg83OzYtP0U8QnJ6tHfC5fvk5mp0hg1b9qwPNv3BFHMw4Gk5FQa1vZT\nn/sn91bUyQpjI33uPniKp7v9P+q7ibEBkJUE6+qNhwzu1SRHGcvsIPvk2VtEP4undvXSACSnZI08\nvxwJfkmpUKg/tHnpzr0n1K/l+4/6KIQQQgjxb/BOCa9UKlW0SqWqo1KpvFQqVd2XQa1KpQpSqVRf\nvlZuhUql8sz+83Mu7QTLHr/i32TW3lvqwJe0VLTPnybl0UOmbTjDo8dR7N5/nuVr9lOpfDGMs4OP\nt3FxtiEzU8XKdYd49DiKHXuDWLXucK5llUolM8d3pGwZdzr0nseTp1mfF33xWXVexCcx+JsVXLoa\nzMPHURw/c5Mx3/5KfEIyycmpTJi5ntPnbhP6JJpLV4M5d+keHm6a054X/ryX46dvcOdeGKMmr0VH\nR1u9drVHp3pcvhbCuGm/cf3WI0IeRXLo6BXGTvsNADNTQyzMjdmw5TghjyI5c/4O46avQ1vr7f+d\nvK3tD+1ZbDzXb4dq/AmPjKVpw/IY6Ovw9YTV3Lr7mLPn7zJu2jrq1/LVCGabNizP3QdPmbt4B7Wr\nltL43v+Te1MqlVSu4K1OUvVSQmKKun+ZmSqePH3G9duh6vcBwO795zkVdJuHj6PY/9dlug5YQN0a\nZaga+Grf6U3bT3Lh8n0ehkaydfcZBo36iS7tauHukpWb0K+0G2amhoyc/As3bofyICScGfP/4NHj\nKGpVffVfcuiTaMIjn1NV9rQWQgghxH/Yu478ClEoPYl9bXsaLS1UZuYoH4UQc/s6jY8dwdbGnCYN\nAujbrWHejbzBx8uRMcNas3T1PuYu3oF/aTdGDGzB4NErci2vVCqZMb4jIyauoWOf+axZNBAHO0vW\nLRvK7IXb6D7oR1JS03GwtaBKRR90s7P6xsUlMnLSL0RExWFhZkjNqqUYOVBzmvRX/Zoyfd4f3A+J\nwMvdjiXZ2aRf9nPtksHMXbyDL3rPIzMjE2fHItSr6avu19ypXZkyeyON203FxcmakYNaMGDk8nw9\ng79r+0Pbte88u/ad1zjW7YvajBzUkp/m92PqnE207voderra1KlehjHDWmuUdbS3pJyvO0EX7zGo\nV2ONc//03to2r8LISb8wclBL9YyAqzdC6NhnvrrM/KU7mb90Jy0aV2TG+I4AREbHMW3uZqJjXmBt\nZUrzRhU1pikD3A+JYPaP23gel4ijvSW9uzaga/tX07ItzY35aV5fvl+0nc5955OWkYmHqy0/zupJ\nSR9ndbkdfwZRtaKPxhR8IYQQQoj/GsU/3RrkYwoICFAFBQW9vaAQ/1CV6Qd5HJtzf1ZHcwOOj8y5\npvO/4vS523TsM59Tf05XT4UVH1+bbt/RvnV1mjeq8LG7kkNqahr1Wk1izpQulPP1eHsFIYQQQvxP\nKBSKcyqVKuBj9+O/5F33+RWiUBrewBsDHc01tQY6Wgxv4P2ReiQKs0mj2n2QZF3vw+OwGPp0bSCB\nrxBCCCH+82TasxC5eJnUKke2Z3/Ht9QUouB8vBzx8fp3vrfcXGxxy14jLIQQQgjxXybTnoUQQggh\nhBDiP0amPRecTHsWQgghhBBCCFHoSfArhBBCCCGEEKLQk+BXCCGEEEIIIUShJ8GvEEIIIYQQQohC\nT4JfIYQQQgghhBCFngS/QgghhBBCCCEKPQl+hRBCCCGEEEIUehL8CiGEEEIIIYQo9CT4FUIIIYQQ\nQghR6EnwK4QQQgghhBCi0JPgVwghhBBCCCFEoSfBrxBCCCGEEEKIQk+CXyGEEEIIIYQQhZ4Ev0II\nIYQQQgghCj0JfoUQQgghhBBCFHoS/AohhBBCCCGEKPQk+BVCCCGEEEIIUehJ8CuEEEIIIYQQotCT\n4FcIIYQQQgghRKEnwa8QQgghhBBCiEJPgl8hhBBCCCGEEIWeBL9CCCGEEEIIIQo9CX6FEEIIIYQQ\nQhR6EvwKIYQQQgghhCj0JPgVQgghhBBCCFHoSfArhBBCCCGEEKLQk+BXCCGEEEIIIUShJ8GvEEII\nIYQQQohCT4JfIYQQQgghhBCFngS/QgghhBBCCCEKPQl+hRBCCCGEEEIUehL8CiGEEEIIIYQo9CT4\nFUIIIYQQQghR6EnwK4QQQgghhBCi0JPgVwghhBBCCCFEoSfBrxBCCCGEEEKIQk+CXyGEEEIIIYQQ\nhZ4Ev0IIIYQQQgghCj0JfoUQQgghhBBCFHoS/AohhBBCCCGEKPQk+BVCCCGEEEIIUehJ8CuEEEII\nIYQQotCT4FcIIYQQQgghRKEnwa8QQgghhBBCiEJPgl8hhBBCCCGEEIWeBL9CCCGEEEIIIQo9CX6F\nEEIIIYQQQhR6EvwKIYQQQgghhCj0JPgVQgghhBBCCFHoSfArhBBCfCSt6o7hm0FL/+fXHdx9Pp2a\nT/mfX/elj3XfH9qJv67ioNuC6Ki4d25r9uT1DOnxw3vo1ft340oIZV27k5iQ/LG7IoQQBSLBrxBC\nCPEBREc+Z9SAJVTw6omr8WeUcepCmwbj+Gv/xY/dtY9u+YYRfDOl4zu1kZGRwYJZm6leuj/uZm0p\nbtOBhoFfsXzBjvfUyyzrVx/E06JdjuMVvHqyaM6W93qtl6IiYlkydyuDR32mPnbq6DU6t/iWsq7d\ncdBtwfrVB3PUiwyPZXD3+fi7dMPdrC3tm0zi/p0nGmWC74XRrfV0Sjl0pliR9vRqN4vI8Fj1+czM\nTDq3+JYAjx64mbTBr2g3+nf+nrDH0eoyxUu7ULZCMZbM3fYB7l4IIT4cCX6FEEKID+DLtjO5cPYO\ns5f059i1H1m9ZTS1GpTlWfSLj921j87C0gRjE4N3amP25PUsmrOFoWPacujCPDYfmEr3fo158Tzx\nPfXy4/l1xX78ynvh4m6nPpYQn4xPyaJMmt0dfQPdHHVUKhXdWk/j/t0wVmwcyZ9n5uBU1Jq2n0xQ\nj9AmJiTTrvFEVCoVv++dxNbD00hNTadzi6lkZmaq26paqzRLfv2Ko1cXsGz914Q8CKf7Z9M1rte2\nc21WL91DenrGB3oKQgjx/ml/7A4IIYQQhc3z2AROH7vOut0TqFa7DABOLjb4BXj9bb3U1DRmjv+N\nP9Yd4VnMC7xLFGXExPbUrO+vLnP7+iMmj1rFqaPX0DfQpWqtMkz8rhs2dhZA1pTmmOg4ylbwZsXC\nnSQmpNCkVWWm/dATAwO9XK+rUqlYOHsLvyzfS/iTZ7h62NHvqxa0+qKmusycKev5beUBIp8+w8zC\nmBp1/Zj/8yAga1RyyqjV3Lz2EC0tJR7FHJiztD8+pVxyvV6rumPwLlmUb+f1BLJGUdt3rceT0Ci2\nrD+Kiakh3fs3pu+wFnk+qz93nKVTjwY0b1tNfax46ZzXW7fqAItmb+Hhg3Acna3o1KshXw5oglKZ\n9fn/krlb2bD6EMH3n2JmbkStBmUZN6MLZuZGnPjrKkO+zJp67KCb1ZehY9py8shVQkMimTxyFZNH\nrgLgSeofufbz7MmbTBuzhotBdzG3MKZ+k/KM/rYTJqaGed7bH+uO8EX3ehrH6nxSjjqflANg8Jc5\np0Pfv/OEc6dvs+/sHEr6ugEwfUEvfJ278sf6o3zRrR5nTtzk4YMIdp/8DnMLYwDmrRhIcZuOHDt0\nhep1fFEqlfQY+Km6XScXG/oPb0nXVtNITk5FXz8r8K5Rz4/YmHhO/HWV6nV887wXIYT4N5GRXyGE\nEOI9MzLWx8hYnz93nCU5OTXf9YZ8uYBTR6/x4+ohHLowj8861qJzi2+5dukBAOFhMbSoMxrvEkXZ\ndXwm63dPJCE+ma6tpmmM3J08co3rlx+wYc9Elq//miP7LzL1mzV5XnfGuLX89vN+vp3Xk8OX5tP/\n61Z83W8x+3cFAbBz80kWf7+VafN7cuz6QlZvGY1f+axAPj09g66tplG+SnH2B81hx7EZfDngU7S0\nCvYrxrL52/Ap5cLe07Pp+1ULpoxaTdCpm3mWt7Gz4MSRqxpTdt+09qc/mT52LcPHt+Ovyz8wbmZX\nfvzuD1Yu3qMuo1QqmTi7G4cvzufH1UO4ePYOYwYvAyCgkjeTZnfDwFCPiw9XcPHhCvoMbcbyDSOw\ndyrCkNFt1Mdzc+NKCO0aTaR+kwrsD/qe5RtGcO3SA4b2WJBnn5/FvOD2jVDKlPN82yPTkJqSDoCe\n/qtRYaVSia6eDmeP38guk4ZCoUBPX0ddRk9fF6VSwZnsMrn1Z/NvRyhboZg68AXQ1dWhpK8bp45c\nK1A/hRDiY5LgVwghhHjPtLW1mLt8IJt//Yvi1h34tNoIJo5Yyfkzt/OsE3wvjC3rj7L4168IrFYS\nF3c7uvVtRO2GZfll+Z8ArFqyh5JlXBkzrRNexZ0pUcaV+T8P4sLZO1w6d1fdlpaWku+XD8CnlAs1\n6/szempHflm2N9cERYkJySydt53ZS/pRq0FZirrZ0rJddb7oXo+Vi3cDEPowAhs7C2rU88OpqDW+\n5Tzp1rcRAC/iEnkem0D9xgG4etjj5eNEy3bV8SruXKBnVr2uH936NsLN057u/Rrj5mnPsYNX8iw/\nYWZXYmPi8SvajZq+AxnW60d2/XESlUqlLvP9t78z5ttONGlVmaJuttRvUp7+w1uyKvu+AHoM/JSq\ntcrg7GpDpeqlGDOtE9s3HiczMxNdXR1MzIxQKBTY2FlgY2eBkbEBFpYmaGkpMTYxUB/PzaI5W2j6\nWRV6D2mGu5cDZSsUY9oPvdn5x0miInIP2h8/jEKlUmFnb1mg5+fp44hjUWumj/2FZzEvSE1NY8Gs\nzYSFRhP+9BkA5SoWw8hYn8kjV5GYkExiQjKTRqwkIyOTiOwyL00ZtRoP888padeJJ48iWbVldI5r\n2tpb8CgkokD9FEKIj0mmPQshhBAfQOOWlajTqBynj13n3KlbHPrzAku+38rISV8wcGTrHOWvXLiP\nSqWipu9AjeOpKWlUqVVaXebU0eu5JmAKvheOf/liABQv7YqR8as1teUCvUlNTSf43lNKlHHVqHf7\nxiOSk1Np32QSCoVCfTw9LR0nFxsAmrSqwvIFOwks1psa9fyoVd+f+p9WQE9PBwtLE9p0qk37xpOo\nWrsMVWuVpnHLyjgVtS7Q8ypRWrNftvYWREU+z7N8sRLOHLo4j8vn73Hm+A1OHb1Or/bfUaOeH6u3\njOZZ9AuePIri636LGDlgibpeRnqGRoB87NBlfpi5mbs3Q4l7nkBGRiapqelEPI3FzqFgAeibLp+/\nR/C9MLb9flx97OW1g+8/xcrGPEed5OQUAI3R2fzQ0dHmpw0jGNpzASXtOqGlpaRaHV9qNyyrvmYR\nazOW/DacUQMWs2rxHpRKBc3bVqO0vztKpUKjvT7DmtOuax1CH0YyZ8p6BnSZy9rtYzXeI/oGeiQn\n5X9mgxBCfGwS/AohhBAfiL6+LjXq+lGjrh9Dx7RlWK8fmT15Pb2HNkNXVzO4ycxUoVAo2H1iJto6\nmj+eXyY4yszMpM4n5Rg3o0uOa1nb5gyk8iMzMyswWvXHNzg6awasOjpaADg6W3H06gKOHbzM0YOX\nmThiJXOmrGfn8ZkYGukzd/kAegxowqE/L/DnjrPMGPcrKzaO1Fir/Dba2dd6SaFQaEzlzo1SqcQv\nwAu/AC96DmrKprWHGdB1HqeOXsfLxwmAGQt6E1DJJ9f6oSERdGo2lfbd6zF8/OdYWJpw5cJ9+nac\nQ1pqer77npfMzEzadatLz4FNc5yzc8w9sLYsYgrA82cJ2BZw9LdMWQ/2B31P3PME0lLTKWJtRuMq\nX1OmnIe6TM16fpy8uZjoqDi0tbUwMzfC17krRd1sNdoqYmVKEStTPIo54uXjRIB7D84cv0HFqiXU\nZWKfvcA5+wMSIYT4L5DgVwghhHhPtlx4zKy9t3gSm4SDuQHDG3jT3N9Rfb5YcSfS0zNISU7LEfyW\n8nNDpVIRER5LlZqlc22/tJ872zedwMnFGh2dvH+E37waQmJCMoZG+gCcP30bXV1tXD3scpQtVtwZ\nPT0dQh9GUrVWmTzb1NfXpW6jAOo2CqD/8Jb4OnflzImb1KznB0BJXzdK+rrRf3hLvvh0EhvWHCpQ\n8Ps+eJXImmqdEJ+Eta05dg6WBN9/ymcda+Va/tK5e6SmpjPxu65oaWUF3y/XOb+ko6NNZkbOIFxX\nR5uMXI6/rrS/B7evP8LN0z7f9+DqYYeJqSG3bzyiWImCTR1/ydTMCMhKgnXp3D2GT2ifo0wRq6wg\n+9ihy0RFPKd+kwp5tvfyA5KUlDSN4zevPaRR88B/1EchhPgYJPgVQggh3oMtFx4zavMVktIyUCUl\nE/z7Toad8SH080Calnfh0rm7LJy9haq1y+Sa6dejmCMt21Vn8Jc/MH5GF0r7uxP7LCubroubLY1a\nVKJLn0asXbGP3u2/o9/wlhSxMiXkQTjbNx5n/Myu6u2D0tMzGNJjAUNHt+FpWAxTx6yhffd66mD4\ndcYmBvQe0ozJI1aiUqkIrFqShPhkzp+5hVKppMOX9Vm/+iDp6RmULZ+1ZnTr78fQ0dHG3dOehw/C\nWbNsL/U/rYC9gyUhD8K5cSWETj0bftDn3aPtTMpX9iGgkg82tuY8DI5g2pg1WNuaq0d6h437nLGD\nl2NmbkTthuVIT0vnyoX7PH0Sw4ARrXDztCczM5Nl83fQqHkg507fZtkPmvsEO7vakJycyl/7L1LK\nzx0DQz0MDfVwcrXhzPHrhLWvga6ejjqYfF2/r1rQpNoIRvRbRIcvG2BsYsDdW6Hs2xnEzIV9cr0v\npVJJtdplOHPiBk1aVVYfT4hP4sHdp0DWiPLjh5FcvfgAc0tj9RTz7RuPY2llilNRa25cDWHcsJ9o\n2LSC+gMKyMp+7entiJW1GedO3WLcsJ/oOehTPL2zPqQJOnWTKxfuU6FycczMjQi+/5SZE37D2dWG\nClWKq9t5FBzB08cx1Kj7qm0hhPi3k+BXCCGEeA9m7b1FUlr2nqc6OijsbUg+e4Xp+08wR6HC3rEI\nLT6vxqBRn+XZxvfLBzBv2kamfLOasNBozC2N8QvwUo8E2zlYsvXwNKaN+YUvmkwiJTkNB2cratTz\nQ1fv1Y/0StVL4l3Cmdb1x5KUmErjFoGMmdY5z+t+PbE9VrbmLJ6zlVH9l2BsakhJXzf6DmsOZI0k\nLvxuM5NHrCQtLYNixZ1ZvuFrirrZEhkey/07T+jVbhYxUXFY2ZrT4vPq9Bue9zZF70PN+n7/1969\nx8hVlnEA/r2xYEGNtEJrbQ01RMDGoJgVgpekamkxaiCKtxSst6Bg4gVFmlAtFg0VKzHGS1M1Bi+o\nQREwJDYVxRgviQtRowZtvBDaAAWLihKr0c8/dopbu73O7ixz9nmSycw58+3OO8mbb/a355xvcuN1\nP8wnPnJ9/vrnv+cJ8x6fZ5/xtGzY+LbMmfu4JMnKN56Zo4+enU9ffUOuXPOlzD7qyJy45Ml5w4Vj\ni3UtOWVx1l39pnxqwzdz1dprM3LGSXn/+tfnrSs3PPw6zz7j5LzughW56Pyr88CfHszFa16d97z/\nNblk7Wtz6UUb85yTL8yuXf+a8KuOlpyyON/87ofy4bXX5hXL1uTf//5Pjn/K/Jx19un7fW/nvXn5\n2D9Brnr9w0ekf37b73Lume97eMyGdV/NhnVfzavOf0E+9rmx68TvveeBXP7ez+f+e/+SeQvm5JUr\nl+adl+3Zb7/7zfZcueZL+fPOv+XJxx+Xt68+Nxe843+nZc+e/ejcfP2Ps+EDX8lDf9+VeQvm5AXL\nT83GL797j9Web/jaD8YWQHPaMzBEavyiD8NiZGSkjY6OHnggAAzIU1bfnIk+USvJH9a/ZGB17P6e\n3y/csGZgr8nke9nzL82qt7w45563dLpL2cuuXf/Kc5dclE998eKc9pynHfgHgClRVbe11kamu45h\n4quOAGASPOmYow5pP+zPhz954QEX/Jou2+7ckXesPlfwBYaO054BYBJcsuKkh6/53e2oIx6VS1ac\nNI1VMayWnLJ4r6+leqQ44cSFOeHEhQceCPAII/wCwCTYvarz/lZ7HoTd138CAHsSfgFgkpxz6sKB\nh10A4OC45hcAAIDOE34BAADoPOEXAACAzhN+AQAA6DzhFwAAgM4TfgEAAOg84RcAAIDOE34BAADo\nPOEXAACAzhN+AQAA6DzhFwAAgM4TfgEAAOg84RcAAIDOE34BAADoPOEXAACAzhN+AQAA6DzhFwAA\ngM4TfgEAAOg84RcAAIDO6yv8VtXcqtpSVVt793P2MW5Vb8zWqlo1bv+RVbWpqn5bVXdU1Sv6qQcA\nAAAm0u+R39VJbmmtPTXJLb3tPVTV3CRrk5ye5LQka8eF5MuS7GitnZhkSZLv91kPAAAA7KXf8Ht2\nkmt6j69Jcs4EY1Yk2dJa29laeyDJliRn9Z57Y5Irk6S19p/W2v191gMAAAB76Tf8zm+t3d17fE+S\n+ROMWZjkrnHb25IsrKpjettXVNXtVXVdVU308wAAANCXA4bfqvpOVf1ygtvZ48e11lqSdgivPSvJ\noiQ/aq09K8mPk2zYTx0XVNVoVY3ed999h/AyAAAAzHSzDjSgtbZsX89V1b1VtaC1dndVLUiyY4Jh\n25MsHbe9KMmtSf6U5KEk1/f2X5fkTfupY1OSTUkyMjJyKCEbAACAGa7f055vSrJ79eZVSW6cYMzm\nJMurak5voavlSTb3jhR/K/8Lxi9K8us+6wEAAIC99Bt+1yc5s6q2JlnW205VjVTVZ5OktbYzyRVJ\nftq7revtS5JLk1xeVb9Icn6Sd/dZDwAAAOylxg7ADpeRkZGHSQ0TAAAErElEQVQ2Ojo63WUAAABM\ni6q6rbU2Mt11DJN+j/wCAADAI57wCwAAQOcJvwAAAHSe8AsAAEDnCb8AAAB0nvALAABA5wm/AAAA\ndJ7wCwAAQOcJvwAAAHSe8AsAAEDnCb8AAAB0nvALAABA5wm/AAAAdJ7wCwAAQOcJvwAAAHSe8AsA\nAEDnCb8AAAB0nvALAABA5wm/AAAAdJ7wCwAAQOcJvwAAAHSe8AsAAEDnVWttums4ZFV1X5I7p7uO\nIXdskvunuwhmBL3GoOg1BkGfMSh6jQM5vrV23HQXMUyGMvzSv6oaba2NTHcddJ9eY1D0GoOgzxgU\nvQaTz2nPAAAAdJ7wCwAAQOcJvzPXpukugBlDrzEoeo1B0GcMil6DSeaaXwAAADrPkV8AAAA6T/jt\nsKqaW1Vbqmpr737OPsat6o3ZWlWrxu2/tap+U1U/693mDa56hkm/vTbu+Zuq6pdTXzHDaBLmtG9X\n1c+r6ldVtbGqHjW46hkm/fRaVR1dVTdX1R29Xls/2OoZJpMwr32oqu6qqr8NrmoYXsJvt61Ocktr\n7alJbult76Gq5iZZm+T0JKclWft/E+/K1toze7cdgyiaodR3r1XVy5P48GZ/+u2zV7XWnpHk6UmO\nS/LKgVTNMOq31za01k5OcmqS51bViwdTNkOo3177Vm8fcBCE3247O8k1vcfXJDlngjErkmxpre1s\nrT2QZEuSswZUH93RV69V1WOTXJzkgwOoleHVV5+11v7aGzMryZFJLHrBvhx2r7XWHmqtfS9JWmv/\nTHJ7kkUDqJnh1O+89pPW2t0DqRQ6QPjttvnjJsR7ksyfYMzCJHeN297W27fb53unPL+vqmqK6mT4\n9dtrVyT5aJKHpqxCuqDvOa2qNifZkeTBJF+fojoZfpPx+ZmqOibJyzJ2RA8mMim9BhycWdNdAP2p\nqu8keeIET102fqO11qrqUI9yrGytba+qxyX5RpLzk3zh8Cpl2E1Vr1XVM5Oc0Fp7V1Ut7qtIht4U\nz2lpra2oqtlJvpzkhRk7gsIMNNW9VlWzknwlycdba78/vCrpgqnuNeDgCb9DrrW2bF/PVdW9VbWg\ntXZ3VS3I2NGO/7c9ydJx24uS3Nr73dt79w9W1bUZu6ZE+J2hprDXzkgyUlV/zNicNK+qbm2tLQ0z\nzlTOaeNe4x9VdWPGTjcUfmeoAfTapiRbW2sfm4RyGWKDmNeAg+O05267KcnuFQFXJblxgjGbkyyv\nqjm9xROWJ9lcVbOq6tgkqaojkrw0iVV42ZfD7rXW2qdba09qrS1O8rwkvxV82Yd+5rTH9v6w3H1E\n7iVJ7hhAzQynw+61JKmqDyZ5fJJ3DqBWhltfvQYcGuG329YnObOqtiZZ1ttOVY1U1WeTpLW2M2PX\nW/60d1vX2/fojP3B+IskP8vYfx0/M/i3wJDop9fgYPXTZ49JctO4OW1Hko2DfwsMicPutapalLHT\nWZckub23bsabp+NNMBT6+vysqquqaluSo6tqW1VdPg3vAYZGtebSAgAAALrNkV8AAAA6T/gFAACg\n84RfAAAAOk/4BQAAoPOEXwAAADpP+AUAAKDzhF8AAAA6T/gFAACg8/4LsOSj2WkoMXsAAAAASUVO\nRK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7f67fa3402b0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "start=50; end=100\n", "X = fac0[start:end]\n", "Y = fac2[start:end]\n", "plt.figure(figsize=(15,15))\n", "plt.scatter(X, Y)\n", "for i, x, y in zip(topMovies[start:end], X, Y):\n", " plt.text(x,y,movie_names()[movies[i]], color=np.random.rand(3)*0.7, fontsize=14)\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Neural net" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Rather than creating a special purpose architecture (like our dot-product with bias earlier), it's often both easier and more accurate to use a standard neural network. Let's try it! Here, we simply concatenate the user and movie embeddings into a single vector, which we feed into the neural net." ] }, { "cell_type": "code", "execution_count": 34, "metadata": { "collapsed": true }, "outputs": [], "source": [ "user_in, u = embedding_input('user_in', n_users, n_factors, 1e-4)\n", "movie_in, m = embedding_input('movie_in', n_movies, n_factors, 1e-4)" ] }, { "cell_type": "code", "execution_count": 35, "metadata": { "collapsed": true }, "outputs": [], "source": [ "x = concatenate([u, m], axis=2)\n", "x = Flatten()(x)\n", "x = Dropout(0.3)(x)\n", "x = Dense(70, activation='relu')(x)\n", "x = Dropout(0.75)(x)\n", "x = Dense(1)(x)\n", "nn = Model([user_in, movie_in], x)\n", "nn.compile(Adam(0.001), loss='mse')" ] }, { "cell_type": "code", "execution_count": 36, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "____________________________________________________________________________________________________\n", "Layer (type) Output Shape Param # Connected to \n", "====================================================================================================\n", "user_in (InputLayer) (None, 1) 0 \n", "____________________________________________________________________________________________________\n", "movie_in (InputLayer) (None, 1) 0 \n", "____________________________________________________________________________________________________\n", "embedding_7 (Embedding) (None, 1, 50) 33550 user_in[0][0] \n", "____________________________________________________________________________________________________\n", "embedding_8 (Embedding) (None, 1, 50) 453300 movie_in[0][0] \n", "____________________________________________________________________________________________________\n", "concatenate_1 (Concatenate) (None, 1, 100) 0 embedding_7[0][0] \n", " embedding_8[0][0] \n", "____________________________________________________________________________________________________\n", "flatten_5 (Flatten) (None, 100) 0 concatenate_1[0][0] \n", "____________________________________________________________________________________________________\n", "dropout_1 (Dropout) (None, 100) 0 flatten_5[0][0] \n", "____________________________________________________________________________________________________\n", "dense_1 (Dense) (None, 70) 7070 dropout_1[0][0] \n", "____________________________________________________________________________________________________\n", "dropout_2 (Dropout) (None, 70) 0 dense_1[0][0] \n", "____________________________________________________________________________________________________\n", "dense_2 (Dense) (None, 1) 71 dropout_2[0][0] \n", "====================================================================================================\n", "Total params: 493,991\n", "Trainable params: 493,991\n", "Non-trainable params: 0\n", "____________________________________________________________________________________________________\n" ] } ], "source": [ "nn.summary()" ] }, { "cell_type": "code", "execution_count": 79, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Train on 80292 samples, validate on 19712 samples\n", "Epoch 1/8\n", "80292/80292 [==============================] - 3s - loss: 2.3960 - val_loss: 0.9385\n", "Epoch 2/8\n", "80292/80292 [==============================] - 2s - loss: 1.4498 - val_loss: 0.8699\n", "Epoch 3/8\n", "80292/80292 [==============================] - 2s - loss: 1.2115 - val_loss: 0.8653\n", "Epoch 4/8\n", "80292/80292 [==============================] - 2s - loss: 1.0385 - val_loss: 0.8551\n", "Epoch 5/8\n", "80292/80292 [==============================] - 2s - loss: 0.9135 - val_loss: 0.8363\n", "Epoch 6/8\n", "80292/80292 [==============================] - 2s - loss: 0.8502 - val_loss: 0.8304\n", "Epoch 7/8\n", "80292/80292 [==============================] - 2s - loss: 0.8197 - val_loss: 0.8268\n", "Epoch 8/8\n", "80292/80292 [==============================] - 2s - loss: 0.8115 - val_loss: 0.8313\n" ] }, { "data": { "text/plain": [ "<keras.callbacks.History at 0x7f67f0073860>" ] }, "execution_count": 79, "metadata": {}, "output_type": "execute_result" } ], "source": [ "nn.fit([trn.userId, trn.movieId], trn.rating, batch_size=64, epochs=8, \n", " validation_data=([val.userId, val.movieId], val.rating))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This improves on our already impressive accuracy even further!" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.2" } }, "nbformat": 4, "nbformat_minor": 1 }
apache-2.0
slundberg/shap
notebooks/tabular_examples/model_agnostic/Iris classification with scikit-learn.ipynb
1
466789
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Iris classification with scikit-learn\n", "\n", "Here we use the well-known Iris species dataset to illustrate how SHAP can explain the output of many different model types, from k-nearest neighbors, to neural networks. This dataset is very small, with only a 150 samples. We use a random set of 130 for training and 20 for testing the models. Because this is a small dataset with only a few features we use the entire training dataset for the background. In problems with more features we would want to pass only the median of the training dataset, or weighted k-medians. While we only have a few samples, the prediction problem is fairly easy and all methods acheive perfect accuracy. What's interesting is how different methods sometimes rely on different sets of features for their predictions." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Load the data" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div align='center'><img src='' /></div><script>!function(t){function e(r){if(n[r])return n[r].exports;var i=n[r]={i:r,l:!1,exports:{}};return t[r].call(i.exports,i,i.exports,e),i.l=!0,i.exports}var n={};return e.m=t,e.c=n,e.i=function(t){return t},e.d=function(t,n,r){e.o(t,n)||Object.defineProperty(t,n,{configurable:!1,enumerable:!0,get:r})},e.n=function(t){var n=t&&t.__esModule?function(){return t.default}:function(){return t};return e.d(n,\"a\",n),n},e.o=function(t,e){return Object.prototype.hasOwnProperty.call(t,e)},e.p=\"\",e(e.s=410)}([function(t,e,n){\"use strict\";function r(t,e,n,r,o,a,u,c){if(i(e),!t){var s;if(void 0===e)s=new Error(\"Minified exception occurred; use the non-minified dev environment for the full error message and additional helpful warnings.\");else{var l=[n,r,o,a,u,c],f=0;s=new Error(e.replace(/%s/g,function(){return l[f++]})),s.name=\"Invariant Violation\"}throw s.framesToPop=1,s}}var i=function(t){};t.exports=r},function(t,e,n){\"use strict\";var r=n(9),i=r;t.exports=i},function(t,e,n){\"use strict\";function r(t){for(var e=arguments.length-1,n=\"Minified React error #\"+t+\"; visit http://facebook.github.io/react/docs/error-decoder.html?invariant=\"+t,r=0;r<e;r++)n+=\"&args[]=\"+encodeURIComponent(arguments[r+1]);n+=\" for the full message or use the non-minified dev environment for full errors and additional helpful warnings.\";var i=new Error(n);throw i.name=\"Invariant Violation\",i.framesToPop=1,i}t.exports=r},function(t,e,n){\"use strict\";function r(t){if(null===t||void 0===t)throw new TypeError(\"Object.assign cannot be called with null or undefined\");return Object(t)}function i(){try{if(!Object.assign)return!1;var t=new String(\"abc\");if(t[5]=\"de\",\"5\"===Object.getOwnPropertyNames(t)[0])return!1;for(var e={},n=0;n<10;n++)e[\"_\"+String.fromCharCode(n)]=n;var r=Object.getOwnPropertyNames(e).map(function(t){return e[t]});if(\"0123456789\"!==r.join(\"\"))return!1;var i={};return\"abcdefghijklmnopqrst\".split(\"\").forEach(function(t){i[t]=t}),\"abcdefghijklmnopqrst\"===Object.keys(Object.assign({},i)).join(\"\")}catch(t){return!1}}/*\n", "object-assign\n", "(c) Sindre Sorhus\n", "@license MIT\n", "*/\n", "var o=Object.getOwnPropertySymbols,a=Object.prototype.hasOwnProperty,u=Object.prototype.propertyIsEnumerable;t.exports=i()?Object.assign:function(t,e){for(var n,i,c=r(t),s=1;s<arguments.length;s++){n=Object(arguments[s]);for(var l in n)a.call(n,l)&&(c[l]=n[l]);if(o){i=o(n);for(var f=0;f<i.length;f++)u.call(n,i[f])&&(c[i[f]]=n[i[f]])}}return c}},function(t,e,n){\"use strict\";function r(t,e){return 1===t.nodeType&&t.getAttribute(d)===String(e)||8===t.nodeType&&t.nodeValue===\" react-text: \"+e+\" \"||8===t.nodeType&&t.nodeValue===\" react-empty: \"+e+\" \"}function i(t){for(var e;e=t._renderedComponent;)t=e;return t}function o(t,e){var n=i(t);n._hostNode=e,e[g]=n}function a(t){var e=t._hostNode;e&&(delete e[g],t._hostNode=null)}function u(t,e){if(!(t._flags&v.hasCachedChildNodes)){var n=t._renderedChildren,a=e.firstChild;t:for(var u in n)if(n.hasOwnProperty(u)){var c=n[u],s=i(c)._domID;if(0!==s){for(;null!==a;a=a.nextSibling)if(r(a,s)){o(c,a);continue t}f(\"32\",s)}}t._flags|=v.hasCachedChildNodes}}function c(t){if(t[g])return t[g];for(var e=[];!t[g];){if(e.push(t),!t.parentNode)return null;t=t.parentNode}for(var n,r;t&&(r=t[g]);t=e.pop())n=r,e.length&&u(r,t);return n}function s(t){var e=c(t);return null!=e&&e._hostNode===t?e:null}function l(t){if(void 0===t._hostNode?f(\"33\"):void 0,t._hostNode)return t._hostNode;for(var e=[];!t._hostNode;)e.push(t),t._hostParent?void 0:f(\"34\"),t=t._hostParent;for(;e.length;t=e.pop())u(t,t._hostNode);return t._hostNode}var f=n(2),p=n(21),h=n(157),d=(n(0),p.ID_ATTRIBUTE_NAME),v=h,g=\"__reactInternalInstance$\"+Math.random().toString(36).slice(2),y={getClosestInstanceFromNode:c,getInstanceFromNode:s,getNodeFromInstance:l,precacheChildNodes:u,precacheNode:o,uncacheNode:a};t.exports=y},function(t,e,n){\"use strict\";function r(t,e,n,a){function u(e){return t(e=new Date(+e)),e}return u.floor=u,u.ceil=function(n){return t(n=new Date(n-1)),e(n,1),t(n),n},u.round=function(t){var e=u(t),n=u.ceil(t);return t-e<n-t?e:n},u.offset=function(t,n){return e(t=new Date(+t),null==n?1:Math.floor(n)),t},u.range=function(n,r,i){var o=[];if(n=u.ceil(n),i=null==i?1:Math.floor(i),!(n<r&&i>0))return o;do o.push(new Date(+n));while(e(n,i),t(n),n<r);return o},u.filter=function(n){return r(function(e){if(e>=e)for(;t(e),!n(e);)e.setTime(e-1)},function(t,r){if(t>=t)for(;--r>=0;)for(;e(t,1),!n(t););})},n&&(u.count=function(e,r){return i.setTime(+e),o.setTime(+r),t(i),t(o),Math.floor(n(i,o))},u.every=function(t){return t=Math.floor(t),isFinite(t)&&t>0?t>1?u.filter(a?function(e){return a(e)%t===0}:function(e){return u.count(0,e)%t===0}):u:null}),u}e.a=r;var i=new Date,o=new Date},function(t,e,n){\"use strict\";var r=!(\"undefined\"==typeof window||!window.document||!window.document.createElement),i={canUseDOM:r,canUseWorkers:\"undefined\"!=typeof Worker,canUseEventListeners:r&&!(!window.addEventListener&&!window.attachEvent),canUseViewport:r&&!!window.screen,isInWorker:!r};t.exports=i},function(t,e,n){\"use strict\";Object.defineProperty(e,\"__esModule\",{value:!0});var r=n(101);n.d(e,\"bisect\",function(){return r.a}),n.d(e,\"bisectRight\",function(){return r.b}),n.d(e,\"bisectLeft\",function(){return r.c});var i=n(18);n.d(e,\"ascending\",function(){return i.a});var o=n(102);n.d(e,\"bisector\",function(){return o.a});var a=n(185);n.d(e,\"descending\",function(){return a.a});var u=n(103);n.d(e,\"deviation\",function(){return u.a});var c=n(104);n.d(e,\"extent\",function(){return c.a});var s=n(186);n.d(e,\"histogram\",function(){return s.a});var l=n(197);n.d(e,\"thresholdFreedmanDiaconis\",function(){return l.a});var f=n(198);n.d(e,\"thresholdScott\",function(){return f.a});var p=n(107);n.d(e,\"thresholdSturges\",function(){return p.a});var h=n(188);n.d(e,\"max\",function(){return h.a});var d=n(189);n.d(e,\"mean\",function(){return d.a});var v=n(190);n.d(e,\"median\",function(){return v.a});var g=n(191);n.d(e,\"merge\",function(){return g.a});var y=n(105);n.d(e,\"min\",function(){return y.a});var m=n(192);n.d(e,\"pairs\",function(){return m.a});var _=n(193);n.d(e,\"permute\",function(){return _.a});var b=n(57);n.d(e,\"quantile\",function(){return b.a});var x=n(106);n.d(e,\"range\",function(){return x.a});var w=n(194);n.d(e,\"scan\",function(){return w.a});var C=n(195);n.d(e,\"shuffle\",function(){return C.a});var M=n(196);n.d(e,\"sum\",function(){return M.a});var k=n(108);n.d(e,\"ticks\",function(){return k.a}),n.d(e,\"tickStep\",function(){return k.b});var E=n(109);n.d(e,\"transpose\",function(){return E.a});var T=n(110);n.d(e,\"variance\",function(){return T.a});var S=n(199);n.d(e,\"zip\",function(){return S.a})},function(t,e,n){\"use strict\";function r(t,e){this._groups=t,this._parents=e}function i(){return new r([[document.documentElement]],D)}var o=n(272),a=n(273),u=n(261),c=n(255),s=n(130),l=n(260),f=n(265),p=n(268),h=n(275),d=n(253),v=n(267),g=n(266),y=n(274),m=n(259),_=n(258),b=n(252),x=n(276),w=n(269),C=n(254),M=n(277),k=n(262),E=n(270),T=n(264),S=n(251),N=n(263),A=n(271),P=n(256),O=n(70),I=n(257);n.d(e,\"c\",function(){return D}),e.b=r;var D=[null];r.prototype=i.prototype={constructor:r,select:o.a,selectAll:a.a,filter:u.a,data:c.a,enter:s.a,exit:l.a,merge:f.a,order:p.a,sort:h.a,call:d.a,nodes:v.a,node:g.a,size:y.a,empty:m.a,each:_.a,attr:b.a,style:x.a,property:w.a,classed:C.a,text:M.a,html:k.a,raise:E.a,lower:T.a,append:S.a,insert:N.a,remove:A.a,datum:P.a,on:O.c,dispatch:I.a},e.a=i},function(t,e,n){\"use strict\";function r(t){return function(){return t}}var i=function(){};i.thatReturns=r,i.thatReturnsFalse=r(!1),i.thatReturnsTrue=r(!0),i.thatReturnsNull=r(null),i.thatReturnsThis=function(){return this},i.thatReturnsArgument=function(t){return t},t.exports=i},function(t,e,n){\"use strict\";var r=null;t.exports={debugTool:r}},function(t,e,n){\"use strict\";Object.defineProperty(e,\"__esModule\",{value:!0});var r=n(59);n.d(e,\"color\",function(){return r.a}),n.d(e,\"rgb\",function(){return r.b}),n.d(e,\"hsl\",function(){return r.c});var i=n(210);n.d(e,\"lab\",function(){return i.a}),n.d(e,\"hcl\",function(){return i.b});var o=n(209);n.d(e,\"cubehelix\",function(){return o.a})},function(t,e,n){\"use strict\";function r(){T.ReactReconcileTransaction&&x?void 0:l(\"123\")}function i(){this.reinitializeTransaction(),this.dirtyComponentsLength=null,this.callbackQueue=p.getPooled(),this.reconcileTransaction=T.ReactReconcileTransaction.getPooled(!0)}function o(t,e,n,i,o,a){return r(),x.batchedUpdates(t,e,n,i,o,a)}function a(t,e){return t._mountOrder-e._mountOrder}function u(t){var e=t.dirtyComponentsLength;e!==y.length?l(\"124\",e,y.length):void 0,y.sort(a),m++;for(var n=0;n<e;n++){var r=y[n],i=r._pendingCallbacks;r._pendingCallbacks=null;var o;if(d.logTopLevelRenders){var u=r;r._currentElement.type.isReactTopLevelWrapper&&(u=r._renderedComponent),o=\"React update: \"+u.getName(),console.time(o)}if(v.performUpdateIfNecessary(r,t.reconcileTransaction,m),o&&console.timeEnd(o),i)for(var c=0;c<i.length;c++)t.callbackQueue.enqueue(i[c],r.getPublicInstance())}}function c(t){return r(),x.isBatchingUpdates?(y.push(t),void(null==t._updateBatchNumber&&(t._updateBatchNumber=m+1))):void x.batchedUpdates(c,t)}function s(t,e){x.isBatchingUpdates?void 0:l(\"125\"),_.enqueue(t,e),b=!0}var l=n(2),f=n(3),p=n(155),h=n(17),d=n(160),v=n(24),g=n(53),y=(n(0),[]),m=0,_=p.getPooled(),b=!1,x=null,w={initialize:function(){this.dirtyComponentsLength=y.length},close:function(){this.dirtyComponentsLength!==y.length?(y.splice(0,this.dirtyComponentsLength),k()):y.length=0}},C={initialize:function(){this.callbackQueue.reset()},close:function(){this.callbackQueue.notifyAll()}},M=[w,C];f(i.prototype,g,{getTransactionWrappers:function(){return M},destructor:function(){this.dirtyComponentsLength=null,p.release(this.callbackQueue),this.callbackQueue=null,T.ReactReconcileTransaction.release(this.reconcileTransaction),this.reconcileTransaction=null},perform:function(t,e,n){return g.perform.call(this,this.reconcileTransaction.perform,this.reconcileTransaction,t,e,n)}}),h.addPoolingTo(i);var k=function(){for(;y.length||b;){if(y.length){var t=i.getPooled();t.perform(u,null,t),i.release(t)}if(b){b=!1;var e=_;_=p.getPooled(),e.notifyAll(),p.release(e)}}},E={injectReconcileTransaction:function(t){t?void 0:l(\"126\"),T.ReactReconcileTransaction=t},injectBatchingStrategy:function(t){t?void 0:l(\"127\"),\"function\"!=typeof t.batchedUpdates?l(\"128\"):void 0,\"boolean\"!=typeof t.isBatchingUpdates?l(\"129\"):void 0,x=t}},T={ReactReconcileTransaction:null,batchedUpdates:o,enqueueUpdate:c,flushBatchedUpdates:k,injection:E,asap:s};t.exports=T},function(t,e,n){\"use strict\";n.d(e,\"e\",function(){return r}),n.d(e,\"d\",function(){return i}),n.d(e,\"c\",function(){return o}),n.d(e,\"b\",function(){return a}),n.d(e,\"a\",function(){return u});var r=1e3,i=6e4,o=36e5,a=864e5,u=6048e5},function(t,e,n){\"use strict\";function r(t,e,n,r){this.dispatchConfig=t,this._targetInst=e,this.nativeEvent=n;var i=this.constructor.Interface;for(var o in i)if(i.hasOwnProperty(o)){var u=i[o];u?this[o]=u(n):\"target\"===o?this.target=r:this[o]=n[o]}var c=null!=n.defaultPrevented?n.defaultPrevented:n.returnValue===!1;return c?this.isDefaultPrevented=a.thatReturnsTrue:this.isDefaultPrevented=a.thatReturnsFalse,this.isPropagationStopped=a.thatReturnsFalse,this}var i=n(3),o=n(17),a=n(9),u=(n(1),\"function\"==typeof Proxy,[\"dispatchConfig\",\"_targetInst\",\"nativeEvent\",\"isDefaultPrevented\",\"isPropagationStopped\",\"_dispatchListeners\",\"_dispatchInstances\"]),c={type:null,target:null,currentTarget:a.thatReturnsNull,eventPhase:null,bubbles:null,cancelable:null,timeStamp:function(t){return t.timeStamp||Date.now()},defaultPrevented:null,isTrusted:null};i(r.prototype,{preventDefault:function(){this.defaultPrevented=!0;var t=this.nativeEvent;t&&(t.preventDefault?t.preventDefault():\"unknown\"!=typeof t.returnValue&&(t.returnValue=!1),this.isDefaultPrevented=a.thatReturnsTrue)},stopPropagation:function(){var t=this.nativeEvent;t&&(t.stopPropagation?t.stopPropagation():\"unknown\"!=typeof t.cancelBubble&&(t.cancelBubble=!0),this.isPropagationStopped=a.thatReturnsTrue)},persist:function(){this.isPersistent=a.thatReturnsTrue},isPersistent:a.thatReturnsFalse,destructor:function(){var t=this.constructor.Interface;for(var e in t)this[e]=null;for(var n=0;n<u.length;n++)this[u[n]]=null}}),r.Interface=c,r.augmentClass=function(t,e){var n=this,r=function(){};r.prototype=n.prototype;var a=new r;i(a,t.prototype),t.prototype=a,t.prototype.constructor=t,t.Interface=i({},n.Interface,e),t.augmentClass=n.augmentClass,o.addPoolingTo(t,o.fourArgumentPooler)},o.addPoolingTo(r,o.fourArgumentPooler),t.exports=r},function(t,e,n){\"use strict\";var r={current:null};t.exports=r},function(t,e,n){\"use strict\";n.d(e,\"a\",function(){return i}),n.d(e,\"b\",function(){return o});var r=Array.prototype,i=r.map,o=r.slice},function(t,e,n){\"use strict\";var r=n(2),i=(n(0),function(t){var e=this;if(e.instancePool.length){var n=e.instancePool.pop();return e.call(n,t),n}return new e(t)}),o=function(t,e){var n=this;if(n.instancePool.length){var r=n.instancePool.pop();return n.call(r,t,e),r}return new n(t,e)},a=function(t,e,n){var r=this;if(r.instancePool.length){var i=r.instancePool.pop();return r.call(i,t,e,n),i}return new r(t,e,n)},u=function(t,e,n,r){var i=this;if(i.instancePool.length){var o=i.instancePool.pop();return i.call(o,t,e,n,r),o}return new i(t,e,n,r)},c=function(t){var e=this;t instanceof e?void 0:r(\"25\"),t.destructor(),e.instancePool.length<e.poolSize&&e.instancePool.push(t)},s=10,l=i,f=function(t,e){var n=t;return n.instancePool=[],n.getPooled=e||l,n.poolSize||(n.poolSize=s),n.release=c,n},p={addPoolingTo:f,oneArgumentPooler:i,twoArgumentPooler:o,threeArgumentPooler:a,fourArgumentPooler:u};t.exports=p},function(t,e,n){\"use strict\";e.a=function(t,e){return t<e?-1:t>e?1:t>=e?0:NaN}},function(t,e,n){\"use strict\";e.a=function(t){return function(){return t}}},function(t,e,n){\"use strict\";function r(t){if(g){var e=t.node,n=t.children;if(n.length)for(var r=0;r<n.length;r++)y(e,n[r],null);else null!=t.html?f(e,t.html):null!=t.text&&h(e,t.text)}}function i(t,e){t.parentNode.replaceChild(e.node,t),r(e)}function o(t,e){g?t.children.push(e):t.node.appendChild(e.node)}function a(t,e){g?t.html=e:f(t.node,e)}function u(t,e){g?t.text=e:h(t.node,e)}function c(){return this.node.nodeName}function s(t){return{node:t,children:[],html:null,text:null,toString:c}}var l=n(81),f=n(55),p=n(89),h=n(171),d=1,v=11,g=\"undefined\"!=typeof document&&\"number\"==typeof document.documentMode||\"undefined\"!=typeof navigator&&\"string\"==typeof navigator.userAgent&&/\\bEdge\\/\\d/.test(navigator.userAgent),y=p(function(t,e,n){e.node.nodeType===v||e.node.nodeType===d&&\"object\"===e.node.nodeName.toLowerCase()&&(null==e.node.namespaceURI||e.node.namespaceURI===l.html)?(r(e),t.insertBefore(e.node,n)):(t.insertBefore(e.node,n),r(e))});s.insertTreeBefore=y,s.replaceChildWithTree=i,s.queueChild=o,s.queueHTML=a,s.queueText=u,t.exports=s},function(t,e,n){\"use strict\";function r(t,e){return(t&e)===e}var i=n(2),o=(n(0),{MUST_USE_PROPERTY:1,HAS_BOOLEAN_VALUE:4,HAS_NUMERIC_VALUE:8,HAS_POSITIVE_NUMERIC_VALUE:24,HAS_OVERLOADED_BOOLEAN_VALUE:32,injectDOMPropertyConfig:function(t){var e=o,n=t.Properties||{},a=t.DOMAttributeNamespaces||{},c=t.DOMAttributeNames||{},s=t.DOMPropertyNames||{},l=t.DOMMutationMethods||{};t.isCustomAttribute&&u._isCustomAttributeFunctions.push(t.isCustomAttribute);for(var f in n){u.properties.hasOwnProperty(f)?i(\"48\",f):void 0;var p=f.toLowerCase(),h=n[f],d={attributeName:p,attributeNamespace:null,propertyName:f,mutationMethod:null,mustUseProperty:r(h,e.MUST_USE_PROPERTY),hasBooleanValue:r(h,e.HAS_BOOLEAN_VALUE),hasNumericValue:r(h,e.HAS_NUMERIC_VALUE),hasPositiveNumericValue:r(h,e.HAS_POSITIVE_NUMERIC_VALUE),hasOverloadedBooleanValue:r(h,e.HAS_OVERLOADED_BOOLEAN_VALUE)};if(d.hasBooleanValue+d.hasNumericValue+d.hasOverloadedBooleanValue<=1?void 0:i(\"50\",f),c.hasOwnProperty(f)){var v=c[f];d.attributeName=v}a.hasOwnProperty(f)&&(d.attributeNamespace=a[f]),s.hasOwnProperty(f)&&(d.propertyName=s[f]),l.hasOwnProperty(f)&&(d.mutationMethod=l[f]),u.properties[f]=d}}}),a=\":A-Z_a-z\\\\u00C0-\\\\u00D6\\\\u00D8-\\\\u00F6\\\\u00F8-\\\\u02FF\\\\u0370-\\\\u037D\\\\u037F-\\\\u1FFF\\\\u200C-\\\\u200D\\\\u2070-\\\\u218F\\\\u2C00-\\\\u2FEF\\\\u3001-\\\\uD7FF\\\\uF900-\\\\uFDCF\\\\uFDF0-\\\\uFFFD\",u={ID_ATTRIBUTE_NAME:\"data-reactid\",ROOT_ATTRIBUTE_NAME:\"data-reactroot\",ATTRIBUTE_NAME_START_CHAR:a,ATTRIBUTE_NAME_CHAR:a+\"\\\\-.0-9\\\\u00B7\\\\u0300-\\\\u036F\\\\u203F-\\\\u2040\",properties:{},getPossibleStandardName:null,_isCustomAttributeFunctions:[],isCustomAttribute:function(t){for(var e=0;e<u._isCustomAttributeFunctions.length;e++){var n=u._isCustomAttributeFunctions[e];if(n(t))return!0}return!1},injection:o};t.exports=u},function(t,e,n){\"use strict\";function r(t){return\"button\"===t||\"input\"===t||\"select\"===t||\"textarea\"===t}function i(t,e,n){switch(t){case\"onClick\":case\"onClickCapture\":case\"onDoubleClick\":case\"onDoubleClickCapture\":case\"onMouseDown\":case\"onMouseDownCapture\":case\"onMouseMove\":case\"onMouseMoveCapture\":case\"onMouseUp\":case\"onMouseUpCapture\":return!(!n.disabled||!r(e));default:return!1}}var o=n(2),a=n(82),u=n(50),c=n(86),s=n(165),l=n(166),f=(n(0),{}),p=null,h=function(t,e){t&&(u.executeDispatchesInOrder(t,e),t.isPersistent()||t.constructor.release(t))},d=function(t){return h(t,!0)},v=function(t){return h(t,!1)},g=function(t){return\".\"+t._rootNodeID},y={injection:{injectEventPluginOrder:a.injectEventPluginOrder,injectEventPluginsByName:a.injectEventPluginsByName},putListener:function(t,e,n){\"function\"!=typeof n?o(\"94\",e,typeof n):void 0;var r=g(t),i=f[e]||(f[e]={});i[r]=n;var u=a.registrationNameModules[e];u&&u.didPutListener&&u.didPutListener(t,e,n)},getListener:function(t,e){var n=f[e];if(i(e,t._currentElement.type,t._currentElement.props))return null;var r=g(t);return n&&n[r]},deleteListener:function(t,e){var n=a.registrationNameModules[e];n&&n.willDeleteListener&&n.willDeleteListener(t,e);var r=f[e];if(r){var i=g(t);delete r[i]}},deleteAllListeners:function(t){var e=g(t);for(var n in f)if(f.hasOwnProperty(n)&&f[n][e]){var r=a.registrationNameModules[n];r&&r.willDeleteListener&&r.willDeleteListener(t,n),delete f[n][e]}},extractEvents:function(t,e,n,r){for(var i,o=a.plugins,u=0;u<o.length;u++){var c=o[u];if(c){var l=c.extractEvents(t,e,n,r);l&&(i=s(i,l))}}return i},enqueueEvents:function(t){t&&(p=s(p,t))},processEventQueue:function(t){var e=p;p=null,t?l(e,d):l(e,v),p?o(\"95\"):void 0,c.rethrowCaughtError()},__purge:function(){f={}},__getListenerBank:function(){return f}};t.exports=y},function(t,e,n){\"use strict\";function r(t,e,n){var r=e.dispatchConfig.phasedRegistrationNames[n];return y(t,r)}function i(t,e,n){var i=r(t,n,e);i&&(n._dispatchListeners=v(n._dispatchListeners,i),n._dispatchInstances=v(n._dispatchInstances,t))}function o(t){t&&t.dispatchConfig.phasedRegistrationNames&&d.traverseTwoPhase(t._targetInst,i,t)}function a(t){if(t&&t.dispatchConfig.phasedRegistrationNames){var e=t._targetInst,n=e?d.getParentInstance(e):null;d.traverseTwoPhase(n,i,t)}}function u(t,e,n){if(n&&n.dispatchConfig.registrationName){var r=n.dispatchConfig.registrationName,i=y(t,r);i&&(n._dispatchListeners=v(n._dispatchListeners,i),n._dispatchInstances=v(n._dispatchInstances,t))}}function c(t){t&&t.dispatchConfig.registrationName&&u(t._targetInst,null,t)}function s(t){g(t,o)}function l(t){g(t,a)}function f(t,e,n,r){d.traverseEnterLeave(n,r,u,t,e)}function p(t){g(t,c)}var h=n(22),d=n(50),v=n(165),g=n(166),y=(n(1),h.getListener),m={accumulateTwoPhaseDispatches:s,accumulateTwoPhaseDispatchesSkipTarget:l,accumulateDirectDispatches:p,accumulateEnterLeaveDispatches:f};t.exports=m},function(t,e,n){\"use strict\";function r(){i.attachRefs(this,this._currentElement)}var i=n(368),o=(n(10),n(1),{mountComponent:function(t,e,n,i,o,a){var u=t.mountComponent(e,n,i,o,a);return t._currentElement&&null!=t._currentElement.ref&&e.getReactMountReady().enqueue(r,t),u},getHostNode:function(t){return t.getHostNode()},unmountComponent:function(t,e){i.detachRefs(t,t._currentElement),t.unmountComponent(e)},receiveComponent:function(t,e,n,o){var a=t._currentElement;if(e!==a||o!==t._context){var u=i.shouldUpdateRefs(a,e);u&&i.detachRefs(t,a),t.receiveComponent(e,n,o),u&&t._currentElement&&null!=t._currentElement.ref&&n.getReactMountReady().enqueue(r,t)}},performUpdateIfNecessary:function(t,e,n){t._updateBatchNumber===n&&t.performUpdateIfNecessary(e)}});t.exports=o},function(t,e,n){\"use strict\";function r(t,e,n,r){return i.call(this,t,e,n,r)}var i=n(14),o=n(92),a={view:function(t){if(t.view)return t.view;var e=o(t);if(e.window===e)return e;var n=e.ownerDocument;return n?n.defaultView||n.parentWindow:window},detail:function(t){return t.detail||0}};i.augmentClass(r,a),t.exports=r},function(t,e,n){\"use strict\";var r=n(3),i=n(401),o=n(96),a=n(406),u=n(402),c=n(403),s=n(27),l=n(404),f=n(407),p=n(408),h=(n(1),s.createElement),d=s.createFactory,v=s.cloneElement,g=r,y={Children:{map:i.map,forEach:i.forEach,count:i.count,toArray:i.toArray,only:p},Component:o,PureComponent:a,createElement:h,cloneElement:v,isValidElement:s.isValidElement,PropTypes:l,createClass:u.createClass,createFactory:d,createMixin:function(t){return t},DOM:c,version:f,__spread:g};t.exports=y},function(t,e,n){\"use strict\";function r(t){return void 0!==t.ref}function i(t){return void 0!==t.key}var o=n(3),a=n(15),u=(n(1),n(176),Object.prototype.hasOwnProperty),c=n(174),s={key:!0,ref:!0,__self:!0,__source:!0},l=function(t,e,n,r,i,o,a){var u={$$typeof:c,type:t,key:e,ref:n,props:a,_owner:o};return u};l.createElement=function(t,e,n){var o,c={},f=null,p=null,h=null,d=null;if(null!=e){r(e)&&(p=e.ref),i(e)&&(f=\"\"+e.key),h=void 0===e.__self?null:e.__self,d=void 0===e.__source?null:e.__source;for(o in e)u.call(e,o)&&!s.hasOwnProperty(o)&&(c[o]=e[o])}var v=arguments.length-2;if(1===v)c.children=n;else if(v>1){for(var g=Array(v),y=0;y<v;y++)g[y]=arguments[y+2];c.children=g}if(t&&t.defaultProps){var m=t.defaultProps;for(o in m)void 0===c[o]&&(c[o]=m[o])}return l(t,f,p,h,d,a.current,c)},l.createFactory=function(t){var e=l.createElement.bind(null,t);return e.type=t,e},l.cloneAndReplaceKey=function(t,e){var n=l(t.type,e,t.ref,t._self,t._source,t._owner,t.props);return n},l.cloneElement=function(t,e,n){var c,f=o({},t.props),p=t.key,h=t.ref,d=t._self,v=t._source,g=t._owner;if(null!=e){r(e)&&(h=e.ref,g=a.current),i(e)&&(p=\"\"+e.key);var y;t.type&&t.type.defaultProps&&(y=t.type.defaultProps);for(c in e)u.call(e,c)&&!s.hasOwnProperty(c)&&(void 0===e[c]&&void 0!==y?f[c]=y[c]:f[c]=e[c])}var m=arguments.length-2;if(1===m)f.children=n;else if(m>1){for(var _=Array(m),b=0;b<m;b++)_[b]=arguments[b+2];f.children=_}return l(t.type,p,h,d,v,g,f)},l.isValidElement=function(t){return\"object\"==typeof t&&null!==t&&t.$$typeof===c},t.exports=l},function(t,e,n){\"use strict\";function r(t){for(var e=arguments.length-1,n=\"Minified React error #\"+t+\"; visit http://facebook.github.io/react/docs/error-decoder.html?invariant=\"+t,r=0;r<e;r++)n+=\"&args[]=\"+encodeURIComponent(arguments[r+1]);n+=\" for the full message or use the non-minified dev environment for full errors and additional helpful warnings.\";var i=new Error(n);throw i.name=\"Invariant Violation\",i.framesToPop=1,i}t.exports=r},function(t,e,n){\"use strict\";e.a=function(t){return null===t?NaN:+t}},function(t,e,n){\"use strict\";Object.defineProperty(e,\"__esModule\",{value:!0});var r=n(211);n.d(e,\"formatDefaultLocale\",function(){return r.a}),n.d(e,\"format\",function(){return r.b}),n.d(e,\"formatPrefix\",function(){return r.c});var i=n(116);n.d(e,\"formatLocale\",function(){return i.a});var o=n(114);n.d(e,\"formatSpecifier\",function(){return o.a});var a=n(215);n.d(e,\"precisionFixed\",function(){return a.a});var u=n(216);n.d(e,\"precisionPrefix\",function(){return u.a});var c=n(217);n.d(e,\"precisionRound\",function(){return c.a})},function(t,e,n){\"use strict\";var r=n(63);n.d(e,\"b\",function(){return r.a});var i=(n(117),n(62),n(118),n(120),n(43));n.d(e,\"a\",function(){return i.a});var o=(n(121),n(223));n.d(e,\"c\",function(){return o.a});var a=(n(123),n(225),n(227),n(122),n(220),n(221),n(219),n(218));n.d(e,\"d\",function(){return a.a});n(222)},function(t,e,n){\"use strict\";function r(t,e){return function(n){return t+n*e}}function i(t,e,n){return t=Math.pow(t,n),e=Math.pow(e,n)-t,n=1/n,function(r){return Math.pow(t+r*e,n)}}function o(t,e){var i=e-t;return i?r(t,i>180||i<-180?i-360*Math.round(i/360):i):n.i(c.a)(isNaN(t)?e:t)}function a(t){return 1===(t=+t)?u:function(e,r){return r-e?i(e,r,t):n.i(c.a)(isNaN(e)?r:e)}}function u(t,e){var i=e-t;return i?r(t,i):n.i(c.a)(isNaN(t)?e:t)}var c=n(119);e.b=o,e.c=a,e.a=u},function(t,e,n){\"use strict\";e.a=function(t){return t.match(/.{6}/g).map(function(t){return\"#\"+t})}},function(t,e,n){\"use strict\";function r(t){var e=t.domain;return t.ticks=function(t){var r=e();return n.i(o.ticks)(r[0],r[r.length-1],null==t?10:t)},t.tickFormat=function(t,r){return n.i(c.a)(e(),t,r)},t.nice=function(r){var i=e(),a=i.length-1,u=null==r?10:r,c=i[0],s=i[a],l=n.i(o.tickStep)(c,s,u);return l&&(l=n.i(o.tickStep)(Math.floor(c/l)*l,Math.ceil(s/l)*l,u),i[0]=Math.floor(c/l)*l,i[a]=Math.ceil(s/l)*l,e(i)),t},t}function i(){var t=n.i(u.a)(u.b,a.a);return t.copy=function(){return n.i(u.c)(t,i())},r(t)}var o=n(7),a=n(31),u=n(45),c=n(243);e.b=r,e.a=i},function(t,e,n){\"use strict\";n.d(e,\"a\",function(){return r}),n.d(e,\"b\",function(){return i}),n.d(e,\"d\",function(){return o}),n.d(e,\"c\",function(){return a});var r=1e-12,i=Math.PI,o=i/2,a=2*i},function(t,e,n){\"use strict\";e.a=function(t,e){if((r=t.length)>1)for(var n,r,i=1,o=t[e[0]],a=o.length;i<r;++i){n=o,o=t[e[i]];for(var u=0;u<a;++u)o[u][1]+=o[u][0]=isNaN(n[u][1])?n[u][0]:n[u][1]}}},function(t,e,n){\"use strict\";e.a=function(t){for(var e=t.length,n=new Array(e);--e>=0;)n[e]=e;return n}},function(t,e,n){\"use strict\";var r={};t.exports=r},function(t,e,n){(function(t,r){var i;(function(){function o(t,e){return t.set(e[0],e[1]),t}function a(t,e){return t.add(e),t}function u(t,e,n){switch(n.length){case 0:return t.call(e);case 1:return t.call(e,n[0]);case 2:return t.call(e,n[0],n[1]);case 3:return t.call(e,n[0],n[1],n[2])}return t.apply(e,n)}function c(t,e,n,r){for(var i=-1,o=null==t?0:t.length;++i<o;){var a=t[i];e(r,a,n(a),t)}return r}function s(t,e){for(var n=-1,r=null==t?0:t.length;++n<r&&e(t[n],n,t)!==!1;);return t}function l(t,e){for(var n=null==t?0:t.length;n--&&e(t[n],n,t)!==!1;);return t}function f(t,e){for(var n=-1,r=null==t?0:t.length;++n<r;)if(!e(t[n],n,t))return!1;return!0}function p(t,e){for(var n=-1,r=null==t?0:t.length,i=0,o=[];++n<r;){var a=t[n];e(a,n,t)&&(o[i++]=a)}return o}function h(t,e){var n=null==t?0:t.length;return!!n&&M(t,e,0)>-1}function d(t,e,n){for(var r=-1,i=null==t?0:t.length;++r<i;)if(n(e,t[r]))return!0;return!1}function v(t,e){for(var n=-1,r=null==t?0:t.length,i=Array(r);++n<r;)i[n]=e(t[n],n,t);return i}function g(t,e){for(var n=-1,r=e.length,i=t.length;++n<r;)t[i+n]=e[n];return t}function y(t,e,n,r){var i=-1,o=null==t?0:t.length;for(r&&o&&(n=t[++i]);++i<o;)n=e(n,t[i],i,t);return n}function m(t,e,n,r){var i=null==t?0:t.length;for(r&&i&&(n=t[--i]);i--;)n=e(n,t[i],i,t);return n}function _(t,e){for(var n=-1,r=null==t?0:t.length;++n<r;)if(e(t[n],n,t))return!0;return!1}function b(t){return t.split(\"\")}function x(t){return t.match(ze)||[]}function w(t,e,n){var r;return n(t,function(t,n,i){if(e(t,n,i))return r=n,!1}),r}function C(t,e,n,r){for(var i=t.length,o=n+(r?1:-1);r?o--:++o<i;)if(e(t[o],o,t))return o;return-1}function M(t,e,n){return e===e?Z(t,e,n):C(t,E,n)}function k(t,e,n,r){for(var i=n-1,o=t.length;++i<o;)if(r(t[i],e))return i;return-1}function E(t){return t!==t}function T(t,e){var n=null==t?0:t.length;return n?O(t,e)/n:Ut}function S(t){return function(e){return null==e?it:e[t]}}function N(t){return function(e){return null==t?it:t[e]}}function A(t,e,n,r,i){return i(t,function(t,i,o){n=r?(r=!1,t):e(n,t,i,o)}),n}function P(t,e){var n=t.length;for(t.sort(e);n--;)t[n]=t[n].value;return t}function O(t,e){for(var n,r=-1,i=t.length;++r<i;){var o=e(t[r]);o!==it&&(n=n===it?o:n+o)}return n}function I(t,e){for(var n=-1,r=Array(t);++n<t;)r[n]=e(n);return r}function D(t,e){return v(e,function(e){return[e,t[e]]})}function R(t){return function(e){return t(e)}}function L(t,e){return v(e,function(e){return t[e]})}function U(t,e){return t.has(e)}function F(t,e){for(var n=-1,r=t.length;++n<r&&M(e,t[n],0)>-1;);return n}function j(t,e){for(var n=t.length;n--&&M(e,t[n],0)>-1;);return n}function B(t,e){for(var n=t.length,r=0;n--;)t[n]===e&&++r;return r}function W(t){return\"\\\\\"+nr[t]}function V(t,e){return null==t?it:t[e]}function z(t){return Kn.test(t)}function H(t){return Gn.test(t)}function q(t){for(var e,n=[];!(e=t.next()).done;)n.push(e.value);return n}function Y(t){var e=-1,n=Array(t.size);return t.forEach(function(t,r){n[++e]=[r,t]}),n}function K(t,e){return function(n){return t(e(n))}}function G(t,e){for(var n=-1,r=t.length,i=0,o=[];++n<r;){var a=t[n];a!==e&&a!==ft||(t[n]=ft,o[i++]=n)}return o}function $(t){var e=-1,n=Array(t.size);return t.forEach(function(t){n[++e]=t}),n}function X(t){var e=-1,n=Array(t.size);return t.forEach(function(t){n[++e]=[t,t]}),n}function Z(t,e,n){for(var r=n-1,i=t.length;++r<i;)if(t[r]===e)return r;return-1}function Q(t,e,n){for(var r=n+1;r--;)if(t[r]===e)return r;return r}function J(t){return z(t)?et(t):_r(t)}function tt(t){return z(t)?nt(t):b(t)}function et(t){for(var e=qn.lastIndex=0;qn.test(t);)++e;return e}function nt(t){return t.match(qn)||[]}function rt(t){return t.match(Yn)||[]}var it,ot=\"4.17.4\",at=200,ut=\"Unsupported core-js use. Try https://npms.io/search?q=ponyfill.\",ct=\"Expected a function\",st=\"__lodash_hash_undefined__\",lt=500,ft=\"__lodash_placeholder__\",pt=1,ht=2,dt=4,vt=1,gt=2,yt=1,mt=2,_t=4,bt=8,xt=16,wt=32,Ct=64,Mt=128,kt=256,Et=512,Tt=30,St=\"...\",Nt=800,At=16,Pt=1,Ot=2,It=3,Dt=1/0,Rt=9007199254740991,Lt=1.7976931348623157e308,Ut=NaN,Ft=4294967295,jt=Ft-1,Bt=Ft>>>1,Wt=[[\"ary\",Mt],[\"bind\",yt],[\"bindKey\",mt],[\"curry\",bt],[\"curryRight\",xt],[\"flip\",Et],[\"partial\",wt],[\"partialRight\",Ct],[\"rearg\",kt]],Vt=\"[object Arguments]\",zt=\"[object Array]\",Ht=\"[object AsyncFunction]\",qt=\"[object Boolean]\",Yt=\"[object Date]\",Kt=\"[object DOMException]\",Gt=\"[object Error]\",$t=\"[object Function]\",Xt=\"[object GeneratorFunction]\",Zt=\"[object Map]\",Qt=\"[object Number]\",Jt=\"[object Null]\",te=\"[object Object]\",ee=\"[object Promise]\",ne=\"[object Proxy]\",re=\"[object RegExp]\",ie=\"[object Set]\",oe=\"[object String]\",ae=\"[object Symbol]\",ue=\"[object Undefined]\",ce=\"[object WeakMap]\",se=\"[object WeakSet]\",le=\"[object ArrayBuffer]\",fe=\"[object DataView]\",pe=\"[object Float32Array]\",he=\"[object Float64Array]\",de=\"[object Int8Array]\",ve=\"[object Int16Array]\",ge=\"[object Int32Array]\",ye=\"[object Uint8Array]\",me=\"[object Uint8ClampedArray]\",_e=\"[object Uint16Array]\",be=\"[object Uint32Array]\",xe=/\\b__p \\+= '';/g,we=/\\b(__p \\+=) '' \\+/g,Ce=/(__e\\(.*?\\)|\\b__t\\)) \\+\\n'';/g,Me=/&(?:amp|lt|gt|quot|#39);/g,ke=/[&<>\"']/g,Ee=RegExp(Me.source),Te=RegExp(ke.source),Se=/<%-([\\s\\S]+?)%>/g,Ne=/<%([\\s\\S]+?)%>/g,Ae=/<%=([\\s\\S]+?)%>/g,Pe=/\\.|\\[(?:[^[\\]]*|([\"'])(?:(?!\\1)[^\\\\]|\\\\.)*?\\1)\\]/,Oe=/^\\w*$/,Ie=/^\\./,De=/[^.[\\]]+|\\[(?:(-?\\d+(?:\\.\\d+)?)|([\"'])((?:(?!\\2)[^\\\\]|\\\\.)*?)\\2)\\]|(?=(?:\\.|\\[\\])(?:\\.|\\[\\]|$))/g,Re=/[\\\\^$.*+?()[\\]{}|]/g,Le=RegExp(Re.source),Ue=/^\\s+|\\s+$/g,Fe=/^\\s+/,je=/\\s+$/,Be=/\\{(?:\\n\\/\\* \\[wrapped with .+\\] \\*\\/)?\\n?/,We=/\\{\\n\\/\\* \\[wrapped with (.+)\\] \\*/,Ve=/,? & /,ze=/[^\\x00-\\x2f\\x3a-\\x40\\x5b-\\x60\\x7b-\\x7f]+/g,He=/\\\\(\\\\)?/g,qe=/\\$\\{([^\\\\}]*(?:\\\\.[^\\\\}]*)*)\\}/g,Ye=/\\w*$/,Ke=/^[-+]0x[0-9a-f]+$/i,Ge=/^0b[01]+$/i,$e=/^\\[object .+?Constructor\\]$/,Xe=/^0o[0-7]+$/i,Ze=/^(?:0|[1-9]\\d*)$/,Qe=/[\\xc0-\\xd6\\xd8-\\xf6\\xf8-\\xff\\u0100-\\u017f]/g,Je=/($^)/,tn=/['\\n\\r\\u2028\\u2029\\\\]/g,en=\"\\\\ud800-\\\\udfff\",nn=\"\\\\u0300-\\\\u036f\",rn=\"\\\\ufe20-\\\\ufe2f\",on=\"\\\\u20d0-\\\\u20ff\",an=nn+rn+on,un=\"\\\\u2700-\\\\u27bf\",cn=\"a-z\\\\xdf-\\\\xf6\\\\xf8-\\\\xff\",sn=\"\\\\xac\\\\xb1\\\\xd7\\\\xf7\",ln=\"\\\\x00-\\\\x2f\\\\x3a-\\\\x40\\\\x5b-\\\\x60\\\\x7b-\\\\xbf\",fn=\"\\\\u2000-\\\\u206f\",pn=\" \\\\t\\\\x0b\\\\f\\\\xa0\\\\ufeff\\\\n\\\\r\\\\u2028\\\\u2029\\\\u1680\\\\u180e\\\\u2000\\\\u2001\\\\u2002\\\\u2003\\\\u2004\\\\u2005\\\\u2006\\\\u2007\\\\u2008\\\\u2009\\\\u200a\\\\u202f\\\\u205f\\\\u3000\",hn=\"A-Z\\\\xc0-\\\\xd6\\\\xd8-\\\\xde\",dn=\"\\\\ufe0e\\\\ufe0f\",vn=sn+ln+fn+pn,gn=\"['’]\",yn=\"[\"+en+\"]\",mn=\"[\"+vn+\"]\",_n=\"[\"+an+\"]\",bn=\"\\\\d+\",xn=\"[\"+un+\"]\",wn=\"[\"+cn+\"]\",Cn=\"[^\"+en+vn+bn+un+cn+hn+\"]\",Mn=\"\\\\ud83c[\\\\udffb-\\\\udfff]\",kn=\"(?:\"+_n+\"|\"+Mn+\")\",En=\"[^\"+en+\"]\",Tn=\"(?:\\\\ud83c[\\\\udde6-\\\\uddff]){2}\",Sn=\"[\\\\ud800-\\\\udbff][\\\\udc00-\\\\udfff]\",Nn=\"[\"+hn+\"]\",An=\"\\\\u200d\",Pn=\"(?:\"+wn+\"|\"+Cn+\")\",On=\"(?:\"+Nn+\"|\"+Cn+\")\",In=\"(?:\"+gn+\"(?:d|ll|m|re|s|t|ve))?\",Dn=\"(?:\"+gn+\"(?:D|LL|M|RE|S|T|VE))?\",Rn=kn+\"?\",Ln=\"[\"+dn+\"]?\",Un=\"(?:\"+An+\"(?:\"+[En,Tn,Sn].join(\"|\")+\")\"+Ln+Rn+\")*\",Fn=\"\\\\d*(?:(?:1st|2nd|3rd|(?![123])\\\\dth)\\\\b)\",jn=\"\\\\d*(?:(?:1ST|2ND|3RD|(?![123])\\\\dTH)\\\\b)\",Bn=Ln+Rn+Un,Wn=\"(?:\"+[xn,Tn,Sn].join(\"|\")+\")\"+Bn,Vn=\"(?:\"+[En+_n+\"?\",_n,Tn,Sn,yn].join(\"|\")+\")\",zn=RegExp(gn,\"g\"),Hn=RegExp(_n,\"g\"),qn=RegExp(Mn+\"(?=\"+Mn+\")|\"+Vn+Bn,\"g\"),Yn=RegExp([Nn+\"?\"+wn+\"+\"+In+\"(?=\"+[mn,Nn,\"$\"].join(\"|\")+\")\",On+\"+\"+Dn+\"(?=\"+[mn,Nn+Pn,\"$\"].join(\"|\")+\")\",Nn+\"?\"+Pn+\"+\"+In,Nn+\"+\"+Dn,jn,Fn,bn,Wn].join(\"|\"),\"g\"),Kn=RegExp(\"[\"+An+en+an+dn+\"]\"),Gn=/[a-z][A-Z]|[A-Z]{2,}[a-z]|[0-9][a-zA-Z]|[a-zA-Z][0-9]|[^a-zA-Z0-9 ]/,$n=[\"Array\",\"Buffer\",\"DataView\",\"Date\",\"Error\",\"Float32Array\",\"Float64Array\",\"Function\",\"Int8Array\",\"Int16Array\",\"Int32Array\",\"Map\",\"Math\",\"Object\",\"Promise\",\"RegExp\",\"Set\",\"String\",\"Symbol\",\"TypeError\",\"Uint8Array\",\"Uint8ClampedArray\",\"Uint16Array\",\"Uint32Array\",\"WeakMap\",\"_\",\"clearTimeout\",\"isFinite\",\"parseInt\",\"setTimeout\"],Xn=-1,Zn={};Zn[pe]=Zn[he]=Zn[de]=Zn[ve]=Zn[ge]=Zn[ye]=Zn[me]=Zn[_e]=Zn[be]=!0,Zn[Vt]=Zn[zt]=Zn[le]=Zn[qt]=Zn[fe]=Zn[Yt]=Zn[Gt]=Zn[$t]=Zn[Zt]=Zn[Qt]=Zn[te]=Zn[re]=Zn[ie]=Zn[oe]=Zn[ce]=!1;var Qn={};Qn[Vt]=Qn[zt]=Qn[le]=Qn[fe]=Qn[qt]=Qn[Yt]=Qn[pe]=Qn[he]=Qn[de]=Qn[ve]=Qn[ge]=Qn[Zt]=Qn[Qt]=Qn[te]=Qn[re]=Qn[ie]=Qn[oe]=Qn[ae]=Qn[ye]=Qn[me]=Qn[_e]=Qn[be]=!0,Qn[Gt]=Qn[$t]=Qn[ce]=!1;var Jn={\"À\":\"A\",\"Á\":\"A\",\"Â\":\"A\",\"Ã\":\"A\",\"Ä\":\"A\",\"Å\":\"A\",\"à\":\"a\",\"á\":\"a\",\"â\":\"a\",\"ã\":\"a\",\"ä\":\"a\",\"å\":\"a\",\"Ç\":\"C\",\"ç\":\"c\",\"Ð\":\"D\",\"ð\":\"d\",\"È\":\"E\",\"É\":\"E\",\"Ê\":\"E\",\"Ë\":\"E\",\"è\":\"e\",\"é\":\"e\",\"ê\":\"e\",\"ë\":\"e\",\"Ì\":\"I\",\"Í\":\"I\",\"Î\":\"I\",\"Ï\":\"I\",\"ì\":\"i\",\"í\":\"i\",\"î\":\"i\",\"ï\":\"i\",\"Ñ\":\"N\",\"ñ\":\"n\",\"Ò\":\"O\",\"Ó\":\"O\",\"Ô\":\"O\",\"Õ\":\"O\",\"Ö\":\"O\",\"Ø\":\"O\",\"ò\":\"o\",\"ó\":\"o\",\"ô\":\"o\",\"õ\":\"o\",\"ö\":\"o\",\n", "\"ø\":\"o\",\"Ù\":\"U\",\"Ú\":\"U\",\"Û\":\"U\",\"Ü\":\"U\",\"ù\":\"u\",\"ú\":\"u\",\"û\":\"u\",\"ü\":\"u\",\"Ý\":\"Y\",\"ý\":\"y\",\"ÿ\":\"y\",\"Æ\":\"Ae\",\"æ\":\"ae\",\"Þ\":\"Th\",\"þ\":\"th\",\"ß\":\"ss\",\"Ā\":\"A\",\"Ă\":\"A\",\"Ą\":\"A\",\"ā\":\"a\",\"ă\":\"a\",\"ą\":\"a\",\"Ć\":\"C\",\"Ĉ\":\"C\",\"Ċ\":\"C\",\"Č\":\"C\",\"ć\":\"c\",\"ĉ\":\"c\",\"ċ\":\"c\",\"č\":\"c\",\"Ď\":\"D\",\"Đ\":\"D\",\"ď\":\"d\",\"đ\":\"d\",\"Ē\":\"E\",\"Ĕ\":\"E\",\"Ė\":\"E\",\"Ę\":\"E\",\"Ě\":\"E\",\"ē\":\"e\",\"ĕ\":\"e\",\"ė\":\"e\",\"ę\":\"e\",\"ě\":\"e\",\"Ĝ\":\"G\",\"Ğ\":\"G\",\"Ġ\":\"G\",\"Ģ\":\"G\",\"ĝ\":\"g\",\"ğ\":\"g\",\"ġ\":\"g\",\"ģ\":\"g\",\"Ĥ\":\"H\",\"Ħ\":\"H\",\"ĥ\":\"h\",\"ħ\":\"h\",\"Ĩ\":\"I\",\"Ī\":\"I\",\"Ĭ\":\"I\",\"Į\":\"I\",\"İ\":\"I\",\"ĩ\":\"i\",\"ī\":\"i\",\"ĭ\":\"i\",\"į\":\"i\",\"ı\":\"i\",\"Ĵ\":\"J\",\"ĵ\":\"j\",\"Ķ\":\"K\",\"ķ\":\"k\",\"ĸ\":\"k\",\"Ĺ\":\"L\",\"Ļ\":\"L\",\"Ľ\":\"L\",\"Ŀ\":\"L\",\"Ł\":\"L\",\"ĺ\":\"l\",\"ļ\":\"l\",\"ľ\":\"l\",\"ŀ\":\"l\",\"ł\":\"l\",\"Ń\":\"N\",\"Ņ\":\"N\",\"Ň\":\"N\",\"Ŋ\":\"N\",\"ń\":\"n\",\"ņ\":\"n\",\"ň\":\"n\",\"ŋ\":\"n\",\"Ō\":\"O\",\"Ŏ\":\"O\",\"Ő\":\"O\",\"ō\":\"o\",\"ŏ\":\"o\",\"ő\":\"o\",\"Ŕ\":\"R\",\"Ŗ\":\"R\",\"Ř\":\"R\",\"ŕ\":\"r\",\"ŗ\":\"r\",\"ř\":\"r\",\"Ś\":\"S\",\"Ŝ\":\"S\",\"Ş\":\"S\",\"Š\":\"S\",\"ś\":\"s\",\"ŝ\":\"s\",\"ş\":\"s\",\"š\":\"s\",\"Ţ\":\"T\",\"Ť\":\"T\",\"Ŧ\":\"T\",\"ţ\":\"t\",\"ť\":\"t\",\"ŧ\":\"t\",\"Ũ\":\"U\",\"Ū\":\"U\",\"Ŭ\":\"U\",\"Ů\":\"U\",\"Ű\":\"U\",\"Ų\":\"U\",\"ũ\":\"u\",\"ū\":\"u\",\"ŭ\":\"u\",\"ů\":\"u\",\"ű\":\"u\",\"ų\":\"u\",\"Ŵ\":\"W\",\"ŵ\":\"w\",\"Ŷ\":\"Y\",\"ŷ\":\"y\",\"Ÿ\":\"Y\",\"Ź\":\"Z\",\"Ż\":\"Z\",\"Ž\":\"Z\",\"ź\":\"z\",\"ż\":\"z\",\"ž\":\"z\",\"IJ\":\"IJ\",\"ij\":\"ij\",\"Œ\":\"Oe\",\"œ\":\"oe\",\"ʼn\":\"'n\",\"ſ\":\"s\"},tr={\"&\":\"&amp;\",\"<\":\"&lt;\",\">\":\"&gt;\",'\"':\"&quot;\",\"'\":\"&#39;\"},er={\"&amp;\":\"&\",\"&lt;\":\"<\",\"&gt;\":\">\",\"&quot;\":'\"',\"&#39;\":\"'\"},nr={\"\\\\\":\"\\\\\",\"'\":\"'\",\"\\n\":\"n\",\"\\r\":\"r\",\"\\u2028\":\"u2028\",\"\\u2029\":\"u2029\"},rr=parseFloat,ir=parseInt,or=\"object\"==typeof t&&t&&t.Object===Object&&t,ar=\"object\"==typeof self&&self&&self.Object===Object&&self,ur=or||ar||Function(\"return this\")(),cr=\"object\"==typeof e&&e&&!e.nodeType&&e,sr=cr&&\"object\"==typeof r&&r&&!r.nodeType&&r,lr=sr&&sr.exports===cr,fr=lr&&or.process,pr=function(){try{return fr&&fr.binding&&fr.binding(\"util\")}catch(t){}}(),hr=pr&&pr.isArrayBuffer,dr=pr&&pr.isDate,vr=pr&&pr.isMap,gr=pr&&pr.isRegExp,yr=pr&&pr.isSet,mr=pr&&pr.isTypedArray,_r=S(\"length\"),br=N(Jn),xr=N(tr),wr=N(er),Cr=function t(e){function n(t){if(sc(t)&&!xp(t)&&!(t instanceof b)){if(t instanceof i)return t;if(bl.call(t,\"__wrapped__\"))return aa(t)}return new i(t)}function r(){}function i(t,e){this.__wrapped__=t,this.__actions__=[],this.__chain__=!!e,this.__index__=0,this.__values__=it}function b(t){this.__wrapped__=t,this.__actions__=[],this.__dir__=1,this.__filtered__=!1,this.__iteratees__=[],this.__takeCount__=Ft,this.__views__=[]}function N(){var t=new b(this.__wrapped__);return t.__actions__=Bi(this.__actions__),t.__dir__=this.__dir__,t.__filtered__=this.__filtered__,t.__iteratees__=Bi(this.__iteratees__),t.__takeCount__=this.__takeCount__,t.__views__=Bi(this.__views__),t}function Z(){if(this.__filtered__){var t=new b(this);t.__dir__=-1,t.__filtered__=!0}else t=this.clone(),t.__dir__*=-1;return t}function et(){var t=this.__wrapped__.value(),e=this.__dir__,n=xp(t),r=e<0,i=n?t.length:0,o=Ao(0,i,this.__views__),a=o.start,u=o.end,c=u-a,s=r?u:a-1,l=this.__iteratees__,f=l.length,p=0,h=Xl(c,this.__takeCount__);if(!n||!r&&i==c&&h==c)return xi(t,this.__actions__);var d=[];t:for(;c--&&p<h;){s+=e;for(var v=-1,g=t[s];++v<f;){var y=l[v],m=y.iteratee,_=y.type,b=m(g);if(_==Ot)g=b;else if(!b){if(_==Pt)continue t;break t}}d[p++]=g}return d}function nt(t){var e=-1,n=null==t?0:t.length;for(this.clear();++e<n;){var r=t[e];this.set(r[0],r[1])}}function ze(){this.__data__=uf?uf(null):{},this.size=0}function en(t){var e=this.has(t)&&delete this.__data__[t];return this.size-=e?1:0,e}function nn(t){var e=this.__data__;if(uf){var n=e[t];return n===st?it:n}return bl.call(e,t)?e[t]:it}function rn(t){var e=this.__data__;return uf?e[t]!==it:bl.call(e,t)}function on(t,e){var n=this.__data__;return this.size+=this.has(t)?0:1,n[t]=uf&&e===it?st:e,this}function an(t){var e=-1,n=null==t?0:t.length;for(this.clear();++e<n;){var r=t[e];this.set(r[0],r[1])}}function un(){this.__data__=[],this.size=0}function cn(t){var e=this.__data__,n=In(e,t);if(n<0)return!1;var r=e.length-1;return n==r?e.pop():Dl.call(e,n,1),--this.size,!0}function sn(t){var e=this.__data__,n=In(e,t);return n<0?it:e[n][1]}function ln(t){return In(this.__data__,t)>-1}function fn(t,e){var n=this.__data__,r=In(n,t);return r<0?(++this.size,n.push([t,e])):n[r][1]=e,this}function pn(t){var e=-1,n=null==t?0:t.length;for(this.clear();++e<n;){var r=t[e];this.set(r[0],r[1])}}function hn(){this.size=0,this.__data__={hash:new nt,map:new(nf||an),string:new nt}}function dn(t){var e=Eo(this,t).delete(t);return this.size-=e?1:0,e}function vn(t){return Eo(this,t).get(t)}function gn(t){return Eo(this,t).has(t)}function yn(t,e){var n=Eo(this,t),r=n.size;return n.set(t,e),this.size+=n.size==r?0:1,this}function mn(t){var e=-1,n=null==t?0:t.length;for(this.__data__=new pn;++e<n;)this.add(t[e])}function _n(t){return this.__data__.set(t,st),this}function bn(t){return this.__data__.has(t)}function xn(t){var e=this.__data__=new an(t);this.size=e.size}function wn(){this.__data__=new an,this.size=0}function Cn(t){var e=this.__data__,n=e.delete(t);return this.size=e.size,n}function Mn(t){return this.__data__.get(t)}function kn(t){return this.__data__.has(t)}function En(t,e){var n=this.__data__;if(n instanceof an){var r=n.__data__;if(!nf||r.length<at-1)return r.push([t,e]),this.size=++n.size,this;n=this.__data__=new pn(r)}return n.set(t,e),this.size=n.size,this}function Tn(t,e){var n=xp(t),r=!n&&bp(t),i=!n&&!r&&Cp(t),o=!n&&!r&&!i&&Sp(t),a=n||r||i||o,u=a?I(t.length,hl):[],c=u.length;for(var s in t)!e&&!bl.call(t,s)||a&&(\"length\"==s||i&&(\"offset\"==s||\"parent\"==s)||o&&(\"buffer\"==s||\"byteLength\"==s||\"byteOffset\"==s)||Fo(s,c))||u.push(s);return u}function Sn(t){var e=t.length;return e?t[ni(0,e-1)]:it}function Nn(t,e){return na(Bi(t),jn(e,0,t.length))}function An(t){return na(Bi(t))}function Pn(t,e,n){(n===it||$u(t[e],n))&&(n!==it||e in t)||Un(t,e,n)}function On(t,e,n){var r=t[e];bl.call(t,e)&&$u(r,n)&&(n!==it||e in t)||Un(t,e,n)}function In(t,e){for(var n=t.length;n--;)if($u(t[n][0],e))return n;return-1}function Dn(t,e,n,r){return _f(t,function(t,i,o){e(r,t,n(t),o)}),r}function Rn(t,e){return t&&Wi(e,Hc(e),t)}function Ln(t,e){return t&&Wi(e,qc(e),t)}function Un(t,e,n){\"__proto__\"==e&&Fl?Fl(t,e,{configurable:!0,enumerable:!0,value:n,writable:!0}):t[e]=n}function Fn(t,e){for(var n=-1,r=e.length,i=al(r),o=null==t;++n<r;)i[n]=o?it:Wc(t,e[n]);return i}function jn(t,e,n){return t===t&&(n!==it&&(t=t<=n?t:n),e!==it&&(t=t>=e?t:e)),t}function Bn(t,e,n,r,i,o){var a,u=e&pt,c=e&ht,l=e&dt;if(n&&(a=i?n(t,r,i,o):n(t)),a!==it)return a;if(!cc(t))return t;var f=xp(t);if(f){if(a=Io(t),!u)return Bi(t,a)}else{var p=Pf(t),h=p==$t||p==Xt;if(Cp(t))return Si(t,u);if(p==te||p==Vt||h&&!i){if(a=c||h?{}:Do(t),!u)return c?zi(t,Ln(a,t)):Vi(t,Rn(a,t))}else{if(!Qn[p])return i?t:{};a=Ro(t,p,Bn,u)}}o||(o=new xn);var d=o.get(t);if(d)return d;o.set(t,a);var v=l?c?wo:xo:c?qc:Hc,g=f?it:v(t);return s(g||t,function(r,i){g&&(i=r,r=t[i]),On(a,i,Bn(r,e,n,i,t,o))}),a}function Wn(t){var e=Hc(t);return function(n){return Vn(n,t,e)}}function Vn(t,e,n){var r=n.length;if(null==t)return!r;for(t=fl(t);r--;){var i=n[r],o=e[i],a=t[i];if(a===it&&!(i in t)||!o(a))return!1}return!0}function qn(t,e,n){if(\"function\"!=typeof t)throw new dl(ct);return Df(function(){t.apply(it,n)},e)}function Yn(t,e,n,r){var i=-1,o=h,a=!0,u=t.length,c=[],s=e.length;if(!u)return c;n&&(e=v(e,R(n))),r?(o=d,a=!1):e.length>=at&&(o=U,a=!1,e=new mn(e));t:for(;++i<u;){var l=t[i],f=null==n?l:n(l);if(l=r||0!==l?l:0,a&&f===f){for(var p=s;p--;)if(e[p]===f)continue t;c.push(l)}else o(e,f,r)||c.push(l)}return c}function Kn(t,e){var n=!0;return _f(t,function(t,r,i){return n=!!e(t,r,i)}),n}function Gn(t,e,n){for(var r=-1,i=t.length;++r<i;){var o=t[r],a=e(o);if(null!=a&&(u===it?a===a&&!bc(a):n(a,u)))var u=a,c=o}return c}function Jn(t,e,n,r){var i=t.length;for(n=Ec(n),n<0&&(n=-n>i?0:i+n),r=r===it||r>i?i:Ec(r),r<0&&(r+=i),r=n>r?0:Tc(r);n<r;)t[n++]=e;return t}function tr(t,e){var n=[];return _f(t,function(t,r,i){e(t,r,i)&&n.push(t)}),n}function er(t,e,n,r,i){var o=-1,a=t.length;for(n||(n=Uo),i||(i=[]);++o<a;){var u=t[o];e>0&&n(u)?e>1?er(u,e-1,n,r,i):g(i,u):r||(i[i.length]=u)}return i}function nr(t,e){return t&&xf(t,e,Hc)}function or(t,e){return t&&wf(t,e,Hc)}function ar(t,e){return p(e,function(e){return oc(t[e])})}function cr(t,e){e=Ei(e,t);for(var n=0,r=e.length;null!=t&&n<r;)t=t[ra(e[n++])];return n&&n==r?t:it}function sr(t,e,n){var r=e(t);return xp(t)?r:g(r,n(t))}function fr(t){return null==t?t===it?ue:Jt:Ul&&Ul in fl(t)?No(t):Xo(t)}function pr(t,e){return t>e}function _r(t,e){return null!=t&&bl.call(t,e)}function Cr(t,e){return null!=t&&e in fl(t)}function kr(t,e,n){return t>=Xl(e,n)&&t<$l(e,n)}function Er(t,e,n){for(var r=n?d:h,i=t[0].length,o=t.length,a=o,u=al(o),c=1/0,s=[];a--;){var l=t[a];a&&e&&(l=v(l,R(e))),c=Xl(l.length,c),u[a]=!n&&(e||i>=120&&l.length>=120)?new mn(a&&l):it}l=t[0];var f=-1,p=u[0];t:for(;++f<i&&s.length<c;){var g=l[f],y=e?e(g):g;if(g=n||0!==g?g:0,!(p?U(p,y):r(s,y,n))){for(a=o;--a;){var m=u[a];if(!(m?U(m,y):r(t[a],y,n)))continue t}p&&p.push(y),s.push(g)}}return s}function Tr(t,e,n,r){return nr(t,function(t,i,o){e(r,n(t),i,o)}),r}function Sr(t,e,n){e=Ei(e,t),t=Qo(t,e);var r=null==t?t:t[ra(ka(e))];return null==r?it:u(r,t,n)}function Nr(t){return sc(t)&&fr(t)==Vt}function Ar(t){return sc(t)&&fr(t)==le}function Pr(t){return sc(t)&&fr(t)==Yt}function Or(t,e,n,r,i){return t===e||(null==t||null==e||!sc(t)&&!sc(e)?t!==t&&e!==e:Ir(t,e,n,r,Or,i))}function Ir(t,e,n,r,i,o){var a=xp(t),u=xp(e),c=a?zt:Pf(t),s=u?zt:Pf(e);c=c==Vt?te:c,s=s==Vt?te:s;var l=c==te,f=s==te,p=c==s;if(p&&Cp(t)){if(!Cp(e))return!1;a=!0,l=!1}if(p&&!l)return o||(o=new xn),a||Sp(t)?yo(t,e,n,r,i,o):mo(t,e,c,n,r,i,o);if(!(n&vt)){var h=l&&bl.call(t,\"__wrapped__\"),d=f&&bl.call(e,\"__wrapped__\");if(h||d){var v=h?t.value():t,g=d?e.value():e;return o||(o=new xn),i(v,g,n,r,o)}}return!!p&&(o||(o=new xn),_o(t,e,n,r,i,o))}function Dr(t){return sc(t)&&Pf(t)==Zt}function Rr(t,e,n,r){var i=n.length,o=i,a=!r;if(null==t)return!o;for(t=fl(t);i--;){var u=n[i];if(a&&u[2]?u[1]!==t[u[0]]:!(u[0]in t))return!1}for(;++i<o;){u=n[i];var c=u[0],s=t[c],l=u[1];if(a&&u[2]){if(s===it&&!(c in t))return!1}else{var f=new xn;if(r)var p=r(s,l,c,t,e,f);if(!(p===it?Or(l,s,vt|gt,r,f):p))return!1}}return!0}function Lr(t){if(!cc(t)||zo(t))return!1;var e=oc(t)?El:$e;return e.test(ia(t))}function Ur(t){return sc(t)&&fr(t)==re}function Fr(t){return sc(t)&&Pf(t)==ie}function jr(t){return sc(t)&&uc(t.length)&&!!Zn[fr(t)]}function Br(t){return\"function\"==typeof t?t:null==t?Ds:\"object\"==typeof t?xp(t)?Yr(t[0],t[1]):qr(t):Vs(t)}function Wr(t){if(!Ho(t))return Gl(t);var e=[];for(var n in fl(t))bl.call(t,n)&&\"constructor\"!=n&&e.push(n);return e}function Vr(t){if(!cc(t))return $o(t);var e=Ho(t),n=[];for(var r in t)(\"constructor\"!=r||!e&&bl.call(t,r))&&n.push(r);return n}function zr(t,e){return t<e}function Hr(t,e){var n=-1,r=Xu(t)?al(t.length):[];return _f(t,function(t,i,o){r[++n]=e(t,i,o)}),r}function qr(t){var e=To(t);return 1==e.length&&e[0][2]?Yo(e[0][0],e[0][1]):function(n){return n===t||Rr(n,t,e)}}function Yr(t,e){return Bo(t)&&qo(e)?Yo(ra(t),e):function(n){var r=Wc(n,t);return r===it&&r===e?zc(n,t):Or(e,r,vt|gt)}}function Kr(t,e,n,r,i){t!==e&&xf(e,function(o,a){if(cc(o))i||(i=new xn),Gr(t,e,a,n,Kr,r,i);else{var u=r?r(t[a],o,a+\"\",t,e,i):it;u===it&&(u=o),Pn(t,a,u)}},qc)}function Gr(t,e,n,r,i,o,a){var u=t[n],c=e[n],s=a.get(c);if(s)return void Pn(t,n,s);var l=o?o(u,c,n+\"\",t,e,a):it,f=l===it;if(f){var p=xp(c),h=!p&&Cp(c),d=!p&&!h&&Sp(c);l=c,p||h||d?xp(u)?l=u:Zu(u)?l=Bi(u):h?(f=!1,l=Si(c,!0)):d?(f=!1,l=Ri(c,!0)):l=[]:yc(c)||bp(c)?(l=u,bp(u)?l=Nc(u):(!cc(u)||r&&oc(u))&&(l=Do(c))):f=!1}f&&(a.set(c,l),i(l,c,r,o,a),a.delete(c)),Pn(t,n,l)}function $r(t,e){var n=t.length;if(n)return e+=e<0?n:0,Fo(e,n)?t[e]:it}function Xr(t,e,n){var r=-1;e=v(e.length?e:[Ds],R(ko()));var i=Hr(t,function(t,n,i){var o=v(e,function(e){return e(t)});return{criteria:o,index:++r,value:t}});return P(i,function(t,e){return Ui(t,e,n)})}function Zr(t,e){return Qr(t,e,function(e,n){return zc(t,n)})}function Qr(t,e,n){for(var r=-1,i=e.length,o={};++r<i;){var a=e[r],u=cr(t,a);n(u,a)&&ci(o,Ei(a,t),u)}return o}function Jr(t){return function(e){return cr(e,t)}}function ti(t,e,n,r){var i=r?k:M,o=-1,a=e.length,u=t;for(t===e&&(e=Bi(e)),n&&(u=v(t,R(n)));++o<a;)for(var c=0,s=e[o],l=n?n(s):s;(c=i(u,l,c,r))>-1;)u!==t&&Dl.call(u,c,1),Dl.call(t,c,1);return t}function ei(t,e){for(var n=t?e.length:0,r=n-1;n--;){var i=e[n];if(n==r||i!==o){var o=i;Fo(i)?Dl.call(t,i,1):mi(t,i)}}return t}function ni(t,e){return t+zl(Jl()*(e-t+1))}function ri(t,e,n,r){for(var i=-1,o=$l(Vl((e-t)/(n||1)),0),a=al(o);o--;)a[r?o:++i]=t,t+=n;return a}function ii(t,e){var n=\"\";if(!t||e<1||e>Rt)return n;do e%2&&(n+=t),e=zl(e/2),e&&(t+=t);while(e);return n}function oi(t,e){return Rf(Zo(t,e,Ds),t+\"\")}function ai(t){return Sn(rs(t))}function ui(t,e){var n=rs(t);return na(n,jn(e,0,n.length))}function ci(t,e,n,r){if(!cc(t))return t;e=Ei(e,t);for(var i=-1,o=e.length,a=o-1,u=t;null!=u&&++i<o;){var c=ra(e[i]),s=n;if(i!=a){var l=u[c];s=r?r(l,c,u):it,s===it&&(s=cc(l)?l:Fo(e[i+1])?[]:{})}On(u,c,s),u=u[c]}return t}function si(t){return na(rs(t))}function li(t,e,n){var r=-1,i=t.length;e<0&&(e=-e>i?0:i+e),n=n>i?i:n,n<0&&(n+=i),i=e>n?0:n-e>>>0,e>>>=0;for(var o=al(i);++r<i;)o[r]=t[r+e];return o}function fi(t,e){var n;return _f(t,function(t,r,i){return n=e(t,r,i),!n}),!!n}function pi(t,e,n){var r=0,i=null==t?r:t.length;if(\"number\"==typeof e&&e===e&&i<=Bt){for(;r<i;){var o=r+i>>>1,a=t[o];null!==a&&!bc(a)&&(n?a<=e:a<e)?r=o+1:i=o}return i}return hi(t,e,Ds,n)}function hi(t,e,n,r){e=n(e);for(var i=0,o=null==t?0:t.length,a=e!==e,u=null===e,c=bc(e),s=e===it;i<o;){var l=zl((i+o)/2),f=n(t[l]),p=f!==it,h=null===f,d=f===f,v=bc(f);if(a)var g=r||d;else g=s?d&&(r||p):u?d&&p&&(r||!h):c?d&&p&&!h&&(r||!v):!h&&!v&&(r?f<=e:f<e);g?i=l+1:o=l}return Xl(o,jt)}function di(t,e){for(var n=-1,r=t.length,i=0,o=[];++n<r;){var a=t[n],u=e?e(a):a;if(!n||!$u(u,c)){var c=u;o[i++]=0===a?0:a}}return o}function vi(t){return\"number\"==typeof t?t:bc(t)?Ut:+t}function gi(t){if(\"string\"==typeof t)return t;if(xp(t))return v(t,gi)+\"\";if(bc(t))return yf?yf.call(t):\"\";var e=t+\"\";return\"0\"==e&&1/t==-Dt?\"-0\":e}function yi(t,e,n){var r=-1,i=h,o=t.length,a=!0,u=[],c=u;if(n)a=!1,i=d;else if(o>=at){var s=e?null:Tf(t);if(s)return $(s);a=!1,i=U,c=new mn}else c=e?[]:u;t:for(;++r<o;){var l=t[r],f=e?e(l):l;if(l=n||0!==l?l:0,a&&f===f){for(var p=c.length;p--;)if(c[p]===f)continue t;e&&c.push(f),u.push(l)}else i(c,f,n)||(c!==u&&c.push(f),u.push(l))}return u}function mi(t,e){return e=Ei(e,t),t=Qo(t,e),null==t||delete t[ra(ka(e))]}function _i(t,e,n,r){return ci(t,e,n(cr(t,e)),r)}function bi(t,e,n,r){for(var i=t.length,o=r?i:-1;(r?o--:++o<i)&&e(t[o],o,t););return n?li(t,r?0:o,r?o+1:i):li(t,r?o+1:0,r?i:o)}function xi(t,e){var n=t;return n instanceof b&&(n=n.value()),y(e,function(t,e){return e.func.apply(e.thisArg,g([t],e.args))},n)}function wi(t,e,n){var r=t.length;if(r<2)return r?yi(t[0]):[];for(var i=-1,o=al(r);++i<r;)for(var a=t[i],u=-1;++u<r;)u!=i&&(o[i]=Yn(o[i]||a,t[u],e,n));return yi(er(o,1),e,n)}function Ci(t,e,n){for(var r=-1,i=t.length,o=e.length,a={};++r<i;){var u=r<o?e[r]:it;n(a,t[r],u)}return a}function Mi(t){return Zu(t)?t:[]}function ki(t){return\"function\"==typeof t?t:Ds}function Ei(t,e){return xp(t)?t:Bo(t,e)?[t]:Lf(Pc(t))}function Ti(t,e,n){var r=t.length;return n=n===it?r:n,!e&&n>=r?t:li(t,e,n)}function Si(t,e){if(e)return t.slice();var n=t.length,r=Al?Al(n):new t.constructor(n);return t.copy(r),r}function Ni(t){var e=new t.constructor(t.byteLength);return new Nl(e).set(new Nl(t)),e}function Ai(t,e){var n=e?Ni(t.buffer):t.buffer;return new t.constructor(n,t.byteOffset,t.byteLength)}function Pi(t,e,n){var r=e?n(Y(t),pt):Y(t);return y(r,o,new t.constructor)}function Oi(t){var e=new t.constructor(t.source,Ye.exec(t));return e.lastIndex=t.lastIndex,e}function Ii(t,e,n){var r=e?n($(t),pt):$(t);return y(r,a,new t.constructor)}function Di(t){return gf?fl(gf.call(t)):{}}function Ri(t,e){var n=e?Ni(t.buffer):t.buffer;return new t.constructor(n,t.byteOffset,t.length)}function Li(t,e){if(t!==e){var n=t!==it,r=null===t,i=t===t,o=bc(t),a=e!==it,u=null===e,c=e===e,s=bc(e);if(!u&&!s&&!o&&t>e||o&&a&&c&&!u&&!s||r&&a&&c||!n&&c||!i)return 1;if(!r&&!o&&!s&&t<e||s&&n&&i&&!r&&!o||u&&n&&i||!a&&i||!c)return-1}return 0}function Ui(t,e,n){for(var r=-1,i=t.criteria,o=e.criteria,a=i.length,u=n.length;++r<a;){var c=Li(i[r],o[r]);if(c){if(r>=u)return c;var s=n[r];return c*(\"desc\"==s?-1:1)}}return t.index-e.index}function Fi(t,e,n,r){for(var i=-1,o=t.length,a=n.length,u=-1,c=e.length,s=$l(o-a,0),l=al(c+s),f=!r;++u<c;)l[u]=e[u];for(;++i<a;)(f||i<o)&&(l[n[i]]=t[i]);for(;s--;)l[u++]=t[i++];return l}function ji(t,e,n,r){for(var i=-1,o=t.length,a=-1,u=n.length,c=-1,s=e.length,l=$l(o-u,0),f=al(l+s),p=!r;++i<l;)f[i]=t[i];for(var h=i;++c<s;)f[h+c]=e[c];for(;++a<u;)(p||i<o)&&(f[h+n[a]]=t[i++]);return f}function Bi(t,e){var n=-1,r=t.length;for(e||(e=al(r));++n<r;)e[n]=t[n];return e}function Wi(t,e,n,r){var i=!n;n||(n={});for(var o=-1,a=e.length;++o<a;){var u=e[o],c=r?r(n[u],t[u],u,n,t):it;c===it&&(c=t[u]),i?Un(n,u,c):On(n,u,c)}return n}function Vi(t,e){return Wi(t,Nf(t),e)}function zi(t,e){return Wi(t,Af(t),e)}function Hi(t,e){return function(n,r){var i=xp(n)?c:Dn,o=e?e():{};return i(n,t,ko(r,2),o)}}function qi(t){return oi(function(e,n){var r=-1,i=n.length,o=i>1?n[i-1]:it,a=i>2?n[2]:it;for(o=t.length>3&&\"function\"==typeof o?(i--,o):it,a&&jo(n[0],n[1],a)&&(o=i<3?it:o,i=1),e=fl(e);++r<i;){var u=n[r];u&&t(e,u,r,o)}return e})}function Yi(t,e){return function(n,r){if(null==n)return n;if(!Xu(n))return t(n,r);for(var i=n.length,o=e?i:-1,a=fl(n);(e?o--:++o<i)&&r(a[o],o,a)!==!1;);return n}}function Ki(t){return function(e,n,r){for(var i=-1,o=fl(e),a=r(e),u=a.length;u--;){var c=a[t?u:++i];if(n(o[c],c,o)===!1)break}return e}}function Gi(t,e,n){function r(){var e=this&&this!==ur&&this instanceof r?o:t;return e.apply(i?n:this,arguments)}var i=e&yt,o=Zi(t);return r}function $i(t){return function(e){e=Pc(e);var n=z(e)?tt(e):it,r=n?n[0]:e.charAt(0),i=n?Ti(n,1).join(\"\"):e.slice(1);return r[t]()+i}}function Xi(t){return function(e){return y(Ns(ss(e).replace(zn,\"\")),t,\"\")}}function Zi(t){return function(){var e=arguments;switch(e.length){case 0:return new t;case 1:return new t(e[0]);case 2:return new t(e[0],e[1]);case 3:return new t(e[0],e[1],e[2]);case 4:return new t(e[0],e[1],e[2],e[3]);case 5:return new t(e[0],e[1],e[2],e[3],e[4]);case 6:return new t(e[0],e[1],e[2],e[3],e[4],e[5]);case 7:return new t(e[0],e[1],e[2],e[3],e[4],e[5],e[6])}var n=mf(t.prototype),r=t.apply(n,e);return cc(r)?r:n}}function Qi(t,e,n){function r(){for(var o=arguments.length,a=al(o),c=o,s=Mo(r);c--;)a[c]=arguments[c];var l=o<3&&a[0]!==s&&a[o-1]!==s?[]:G(a,s);if(o-=l.length,o<n)return so(t,e,eo,r.placeholder,it,a,l,it,it,n-o);var f=this&&this!==ur&&this instanceof r?i:t;return u(f,this,a)}var i=Zi(t);return r}function Ji(t){return function(e,n,r){var i=fl(e);if(!Xu(e)){var o=ko(n,3);e=Hc(e),n=function(t){return o(i[t],t,i)}}var a=t(e,n,r);return a>-1?i[o?e[a]:a]:it}}function to(t){return bo(function(e){var n=e.length,r=n,o=i.prototype.thru;for(t&&e.reverse();r--;){var a=e[r];if(\"function\"!=typeof a)throw new dl(ct);if(o&&!u&&\"wrapper\"==Co(a))var u=new i([],!0)}for(r=u?r:n;++r<n;){a=e[r];var c=Co(a),s=\"wrapper\"==c?Sf(a):it;u=s&&Vo(s[0])&&s[1]==(Mt|bt|wt|kt)&&!s[4].length&&1==s[9]?u[Co(s[0])].apply(u,s[3]):1==a.length&&Vo(a)?u[c]():u.thru(a)}return function(){var t=arguments,r=t[0];if(u&&1==t.length&&xp(r))return u.plant(r).value();for(var i=0,o=n?e[i].apply(this,t):r;++i<n;)o=e[i].call(this,o);return o}})}function eo(t,e,n,r,i,o,a,u,c,s){function l(){for(var y=arguments.length,m=al(y),_=y;_--;)m[_]=arguments[_];if(d)var b=Mo(l),x=B(m,b);if(r&&(m=Fi(m,r,i,d)),o&&(m=ji(m,o,a,d)),y-=x,d&&y<s){var w=G(m,b);return so(t,e,eo,l.placeholder,n,m,w,u,c,s-y)}var C=p?n:this,M=h?C[t]:t;return y=m.length,u?m=Jo(m,u):v&&y>1&&m.reverse(),f&&c<y&&(m.length=c),this&&this!==ur&&this instanceof l&&(M=g||Zi(M)),M.apply(C,m)}var f=e&Mt,p=e&yt,h=e&mt,d=e&(bt|xt),v=e&Et,g=h?it:Zi(t);return l}function no(t,e){return function(n,r){return Tr(n,t,e(r),{})}}function ro(t,e){return function(n,r){var i;if(n===it&&r===it)return e;if(n!==it&&(i=n),r!==it){if(i===it)return r;\"string\"==typeof n||\"string\"==typeof r?(n=gi(n),r=gi(r)):(n=vi(n),r=vi(r)),i=t(n,r)}return i}}function io(t){return bo(function(e){return e=v(e,R(ko())),oi(function(n){var r=this;return t(e,function(t){return u(t,r,n)})})})}function oo(t,e){e=e===it?\" \":gi(e);var n=e.length;if(n<2)return n?ii(e,t):e;var r=ii(e,Vl(t/J(e)));return z(e)?Ti(tt(r),0,t).join(\"\"):r.slice(0,t)}function ao(t,e,n,r){function i(){for(var e=-1,c=arguments.length,s=-1,l=r.length,f=al(l+c),p=this&&this!==ur&&this instanceof i?a:t;++s<l;)f[s]=r[s];for(;c--;)f[s++]=arguments[++e];return u(p,o?n:this,f)}var o=e&yt,a=Zi(t);return i}function uo(t){return function(e,n,r){return r&&\"number\"!=typeof r&&jo(e,n,r)&&(n=r=it),e=kc(e),n===it?(n=e,e=0):n=kc(n),r=r===it?e<n?1:-1:kc(r),ri(e,n,r,t)}}function co(t){return function(e,n){return\"string\"==typeof e&&\"string\"==typeof n||(e=Sc(e),n=Sc(n)),t(e,n)}}function so(t,e,n,r,i,o,a,u,c,s){var l=e&bt,f=l?a:it,p=l?it:a,h=l?o:it,d=l?it:o;e|=l?wt:Ct,e&=~(l?Ct:wt),e&_t||(e&=~(yt|mt));var v=[t,e,i,h,f,d,p,u,c,s],g=n.apply(it,v);return Vo(t)&&If(g,v),g.placeholder=r,ta(g,t,e)}function lo(t){var e=ll[t];return function(t,n){if(t=Sc(t),n=null==n?0:Xl(Ec(n),292)){var r=(Pc(t)+\"e\").split(\"e\"),i=e(r[0]+\"e\"+(+r[1]+n));return r=(Pc(i)+\"e\").split(\"e\"),+(r[0]+\"e\"+(+r[1]-n))}return e(t)}}function fo(t){return function(e){var n=Pf(e);return n==Zt?Y(e):n==ie?X(e):D(e,t(e))}}function po(t,e,n,r,i,o,a,u){var c=e&mt;if(!c&&\"function\"!=typeof t)throw new dl(ct);var s=r?r.length:0;if(s||(e&=~(wt|Ct),r=i=it),a=a===it?a:$l(Ec(a),0),u=u===it?u:Ec(u),s-=i?i.length:0,e&Ct){var l=r,f=i;r=i=it}var p=c?it:Sf(t),h=[t,e,n,r,i,l,f,o,a,u];if(p&&Go(h,p),t=h[0],e=h[1],n=h[2],r=h[3],i=h[4],u=h[9]=h[9]===it?c?0:t.length:$l(h[9]-s,0),!u&&e&(bt|xt)&&(e&=~(bt|xt)),e&&e!=yt)d=e==bt||e==xt?Qi(t,e,u):e!=wt&&e!=(yt|wt)||i.length?eo.apply(it,h):ao(t,e,n,r);else var d=Gi(t,e,n);var v=p?Cf:If;return ta(v(d,h),t,e)}function ho(t,e,n,r){return t===it||$u(t,yl[n])&&!bl.call(r,n)?e:t}function vo(t,e,n,r,i,o){return cc(t)&&cc(e)&&(o.set(e,t),Kr(t,e,it,vo,o),o.delete(e)),t}function go(t){return yc(t)?it:t}function yo(t,e,n,r,i,o){var a=n&vt,u=t.length,c=e.length;if(u!=c&&!(a&&c>u))return!1;var s=o.get(t);if(s&&o.get(e))return s==e;var l=-1,f=!0,p=n&gt?new mn:it;for(o.set(t,e),o.set(e,t);++l<u;){var h=t[l],d=e[l];if(r)var v=a?r(d,h,l,e,t,o):r(h,d,l,t,e,o);if(v!==it){if(v)continue;f=!1;break}if(p){if(!_(e,function(t,e){if(!U(p,e)&&(h===t||i(h,t,n,r,o)))return p.push(e)})){f=!1;break}}else if(h!==d&&!i(h,d,n,r,o)){f=!1;break}}return o.delete(t),o.delete(e),f}function mo(t,e,n,r,i,o,a){switch(n){case fe:if(t.byteLength!=e.byteLength||t.byteOffset!=e.byteOffset)return!1;t=t.buffer,e=e.buffer;case le:return!(t.byteLength!=e.byteLength||!o(new Nl(t),new Nl(e)));case qt:case Yt:case Qt:return $u(+t,+e);case Gt:return t.name==e.name&&t.message==e.message;case re:case oe:return t==e+\"\";case Zt:var u=Y;case ie:var c=r&vt;if(u||(u=$),t.size!=e.size&&!c)return!1;var s=a.get(t);if(s)return s==e;r|=gt,a.set(t,e);var l=yo(u(t),u(e),r,i,o,a);return a.delete(t),l;case ae:if(gf)return gf.call(t)==gf.call(e)}return!1}function _o(t,e,n,r,i,o){var a=n&vt,u=xo(t),c=u.length,s=xo(e),l=s.length;if(c!=l&&!a)return!1;for(var f=c;f--;){var p=u[f];if(!(a?p in e:bl.call(e,p)))return!1}var h=o.get(t);if(h&&o.get(e))return h==e;var d=!0;o.set(t,e),o.set(e,t);for(var v=a;++f<c;){p=u[f];var g=t[p],y=e[p];if(r)var m=a?r(y,g,p,e,t,o):r(g,y,p,t,e,o);if(!(m===it?g===y||i(g,y,n,r,o):m)){d=!1;break}v||(v=\"constructor\"==p)}if(d&&!v){var _=t.constructor,b=e.constructor;_!=b&&\"constructor\"in t&&\"constructor\"in e&&!(\"function\"==typeof _&&_ instanceof _&&\"function\"==typeof b&&b instanceof b)&&(d=!1)}return o.delete(t),o.delete(e),d}function bo(t){return Rf(Zo(t,it,ya),t+\"\")}function xo(t){return sr(t,Hc,Nf)}function wo(t){return sr(t,qc,Af)}function Co(t){for(var e=t.name+\"\",n=sf[e],r=bl.call(sf,e)?n.length:0;r--;){var i=n[r],o=i.func;if(null==o||o==t)return i.name}return e}function Mo(t){var e=bl.call(n,\"placeholder\")?n:t;return e.placeholder}function ko(){var t=n.iteratee||Rs;return t=t===Rs?Br:t,arguments.length?t(arguments[0],arguments[1]):t}function Eo(t,e){var n=t.__data__;return Wo(e)?n[\"string\"==typeof e?\"string\":\"hash\"]:n.map}function To(t){for(var e=Hc(t),n=e.length;n--;){var r=e[n],i=t[r];e[n]=[r,i,qo(i)]}return e}function So(t,e){var n=V(t,e);return Lr(n)?n:it}function No(t){var e=bl.call(t,Ul),n=t[Ul];try{t[Ul]=it;var r=!0}catch(t){}var i=Cl.call(t);return r&&(e?t[Ul]=n:delete t[Ul]),i}function Ao(t,e,n){for(var r=-1,i=n.length;++r<i;){var o=n[r],a=o.size;switch(o.type){case\"drop\":t+=a;break;case\"dropRight\":e-=a;break;case\"take\":e=Xl(e,t+a);break;case\"takeRight\":t=$l(t,e-a)}}return{start:t,end:e}}function Po(t){var e=t.match(We);return e?e[1].split(Ve):[]}function Oo(t,e,n){e=Ei(e,t);for(var r=-1,i=e.length,o=!1;++r<i;){var a=ra(e[r]);if(!(o=null!=t&&n(t,a)))break;t=t[a]}return o||++r!=i?o:(i=null==t?0:t.length,!!i&&uc(i)&&Fo(a,i)&&(xp(t)||bp(t)))}function Io(t){var e=t.length,n=t.constructor(e);return e&&\"string\"==typeof t[0]&&bl.call(t,\"index\")&&(n.index=t.index,n.input=t.input),n}function Do(t){return\"function\"!=typeof t.constructor||Ho(t)?{}:mf(Pl(t))}function Ro(t,e,n,r){var i=t.constructor;switch(e){case le:return Ni(t);case qt:case Yt:return new i(+t);case fe:return Ai(t,r);case pe:case he:case de:case ve:case ge:case ye:case me:case _e:case be:return Ri(t,r);case Zt:return Pi(t,r,n);case Qt:case oe:return new i(t);case re:return Oi(t);case ie:return Ii(t,r,n);case ae:return Di(t)}}function Lo(t,e){var n=e.length;if(!n)return t;var r=n-1;return e[r]=(n>1?\"& \":\"\")+e[r],e=e.join(n>2?\", \":\" \"),t.replace(Be,\"{\\n/* [wrapped with \"+e+\"] */\\n\")}function Uo(t){return xp(t)||bp(t)||!!(Rl&&t&&t[Rl])}function Fo(t,e){return e=null==e?Rt:e,!!e&&(\"number\"==typeof t||Ze.test(t))&&t>-1&&t%1==0&&t<e}function jo(t,e,n){if(!cc(n))return!1;var r=typeof e;return!!(\"number\"==r?Xu(n)&&Fo(e,n.length):\"string\"==r&&e in n)&&$u(n[e],t)}function Bo(t,e){if(xp(t))return!1;var n=typeof t;return!(\"number\"!=n&&\"symbol\"!=n&&\"boolean\"!=n&&null!=t&&!bc(t))||(Oe.test(t)||!Pe.test(t)||null!=e&&t in fl(e))}function Wo(t){var e=typeof t;return\"string\"==e||\"number\"==e||\"symbol\"==e||\"boolean\"==e?\"__proto__\"!==t:null===t}function Vo(t){var e=Co(t),r=n[e];if(\"function\"!=typeof r||!(e in b.prototype))return!1;if(t===r)return!0;var i=Sf(r);return!!i&&t===i[0]}function zo(t){return!!wl&&wl in t}function Ho(t){var e=t&&t.constructor,n=\"function\"==typeof e&&e.prototype||yl;return t===n}function qo(t){return t===t&&!cc(t)}function Yo(t,e){return function(n){return null!=n&&(n[t]===e&&(e!==it||t in fl(n)))}}function Ko(t){var e=Ru(t,function(t){return n.size===lt&&n.clear(),t}),n=e.cache;return e}function Go(t,e){var n=t[1],r=e[1],i=n|r,o=i<(yt|mt|Mt),a=r==Mt&&n==bt||r==Mt&&n==kt&&t[7].length<=e[8]||r==(Mt|kt)&&e[7].length<=e[8]&&n==bt;if(!o&&!a)return t;r&yt&&(t[2]=e[2],i|=n&yt?0:_t);var u=e[3];if(u){var c=t[3];t[3]=c?Fi(c,u,e[4]):u,t[4]=c?G(t[3],ft):e[4]}return u=e[5],u&&(c=t[5],t[5]=c?ji(c,u,e[6]):u,t[6]=c?G(t[5],ft):e[6]),u=e[7],u&&(t[7]=u),r&Mt&&(t[8]=null==t[8]?e[8]:Xl(t[8],e[8])),null==t[9]&&(t[9]=e[9]),t[0]=e[0],t[1]=i,t}function $o(t){var e=[];if(null!=t)for(var n in fl(t))e.push(n);return e}function Xo(t){return Cl.call(t)}function Zo(t,e,n){return e=$l(e===it?t.length-1:e,0),function(){for(var r=arguments,i=-1,o=$l(r.length-e,0),a=al(o);++i<o;)a[i]=r[e+i];i=-1;for(var c=al(e+1);++i<e;)c[i]=r[i];return c[e]=n(a),u(t,this,c)}}function Qo(t,e){return e.length<2?t:cr(t,li(e,0,-1))}function Jo(t,e){for(var n=t.length,r=Xl(e.length,n),i=Bi(t);r--;){var o=e[r];t[r]=Fo(o,n)?i[o]:it}return t}function ta(t,e,n){var r=e+\"\";return Rf(t,Lo(r,oa(Po(r),n)))}function ea(t){var e=0,n=0;return function(){var r=Zl(),i=At-(r-n);if(n=r,i>0){if(++e>=Nt)return arguments[0]}else e=0;return t.apply(it,arguments)}}function na(t,e){var n=-1,r=t.length,i=r-1;for(e=e===it?r:e;++n<e;){var o=ni(n,i),a=t[o];t[o]=t[n],t[n]=a}return t.length=e,t}function ra(t){if(\"string\"==typeof t||bc(t))return t;var e=t+\"\";return\"0\"==e&&1/t==-Dt?\"-0\":e}function ia(t){if(null!=t){try{return _l.call(t)}catch(t){}try{return t+\"\"}catch(t){}}return\"\"}function oa(t,e){return s(Wt,function(n){var r=\"_.\"+n[0];e&n[1]&&!h(t,r)&&t.push(r)}),t.sort()}function aa(t){if(t instanceof b)return t.clone();var e=new i(t.__wrapped__,t.__chain__);return e.__actions__=Bi(t.__actions__),e.__index__=t.__index__,e.__values__=t.__values__,e}function ua(t,e,n){e=(n?jo(t,e,n):e===it)?1:$l(Ec(e),0);var r=null==t?0:t.length;if(!r||e<1)return[];for(var i=0,o=0,a=al(Vl(r/e));i<r;)a[o++]=li(t,i,i+=e);return a}function ca(t){for(var e=-1,n=null==t?0:t.length,r=0,i=[];++e<n;){var o=t[e];o&&(i[r++]=o)}return i}function sa(){var t=arguments.length;if(!t)return[];for(var e=al(t-1),n=arguments[0],r=t;r--;)e[r-1]=arguments[r];return g(xp(n)?Bi(n):[n],er(e,1))}function la(t,e,n){var r=null==t?0:t.length;return r?(e=n||e===it?1:Ec(e),li(t,e<0?0:e,r)):[]}function fa(t,e,n){var r=null==t?0:t.length;return r?(e=n||e===it?1:Ec(e),e=r-e,li(t,0,e<0?0:e)):[]}function pa(t,e){return t&&t.length?bi(t,ko(e,3),!0,!0):[]}function ha(t,e){return t&&t.length?bi(t,ko(e,3),!0):[]}function da(t,e,n,r){var i=null==t?0:t.length;return i?(n&&\"number\"!=typeof n&&jo(t,e,n)&&(n=0,r=i),Jn(t,e,n,r)):[]}function va(t,e,n){var r=null==t?0:t.length;if(!r)return-1;var i=null==n?0:Ec(n);return i<0&&(i=$l(r+i,0)),C(t,ko(e,3),i)}function ga(t,e,n){var r=null==t?0:t.length;if(!r)return-1;var i=r-1;return n!==it&&(i=Ec(n),i=n<0?$l(r+i,0):Xl(i,r-1)),C(t,ko(e,3),i,!0)}function ya(t){var e=null==t?0:t.length;return e?er(t,1):[]}function ma(t){var e=null==t?0:t.length;return e?er(t,Dt):[]}function _a(t,e){var n=null==t?0:t.length;return n?(e=e===it?1:Ec(e),er(t,e)):[]}function ba(t){for(var e=-1,n=null==t?0:t.length,r={};++e<n;){var i=t[e];r[i[0]]=i[1]}return r}function xa(t){return t&&t.length?t[0]:it}function wa(t,e,n){var r=null==t?0:t.length;if(!r)return-1;var i=null==n?0:Ec(n);return i<0&&(i=$l(r+i,0)),M(t,e,i)}function Ca(t){var e=null==t?0:t.length;return e?li(t,0,-1):[]}function Ma(t,e){return null==t?\"\":Kl.call(t,e)}function ka(t){var e=null==t?0:t.length;return e?t[e-1]:it}function Ea(t,e,n){var r=null==t?0:t.length;if(!r)return-1;var i=r;return n!==it&&(i=Ec(n),i=i<0?$l(r+i,0):Xl(i,r-1)),e===e?Q(t,e,i):C(t,E,i,!0)}function Ta(t,e){return t&&t.length?$r(t,Ec(e)):it}function Sa(t,e){return t&&t.length&&e&&e.length?ti(t,e):t}function Na(t,e,n){return t&&t.length&&e&&e.length?ti(t,e,ko(n,2)):t}function Aa(t,e,n){return t&&t.length&&e&&e.length?ti(t,e,it,n):t}function Pa(t,e){var n=[];if(!t||!t.length)return n;var r=-1,i=[],o=t.length;for(e=ko(e,3);++r<o;){var a=t[r];e(a,r,t)&&(n.push(a),i.push(r))}return ei(t,i),n}function Oa(t){return null==t?t:tf.call(t)}function Ia(t,e,n){var r=null==t?0:t.length;return r?(n&&\"number\"!=typeof n&&jo(t,e,n)?(e=0,n=r):(e=null==e?0:Ec(e),n=n===it?r:Ec(n)),li(t,e,n)):[]}function Da(t,e){return pi(t,e)}function Ra(t,e,n){return hi(t,e,ko(n,2))}function La(t,e){var n=null==t?0:t.length;if(n){var r=pi(t,e);if(r<n&&$u(t[r],e))return r}return-1}function Ua(t,e){return pi(t,e,!0)}function Fa(t,e,n){return hi(t,e,ko(n,2),!0)}function ja(t,e){var n=null==t?0:t.length;if(n){var r=pi(t,e,!0)-1;if($u(t[r],e))return r}return-1}function Ba(t){return t&&t.length?di(t):[]}function Wa(t,e){return t&&t.length?di(t,ko(e,2)):[]}function Va(t){var e=null==t?0:t.length;return e?li(t,1,e):[]}function za(t,e,n){return t&&t.length?(e=n||e===it?1:Ec(e),li(t,0,e<0?0:e)):[]}function Ha(t,e,n){var r=null==t?0:t.length;return r?(e=n||e===it?1:Ec(e),e=r-e,li(t,e<0?0:e,r)):[]}function qa(t,e){return t&&t.length?bi(t,ko(e,3),!1,!0):[]}function Ya(t,e){return t&&t.length?bi(t,ko(e,3)):[]}function Ka(t){return t&&t.length?yi(t):[]}function Ga(t,e){return t&&t.length?yi(t,ko(e,2)):[]}function $a(t,e){return e=\"function\"==typeof e?e:it,t&&t.length?yi(t,it,e):[]}function Xa(t){if(!t||!t.length)return[];var e=0;return t=p(t,function(t){\n", "if(Zu(t))return e=$l(t.length,e),!0}),I(e,function(e){return v(t,S(e))})}function Za(t,e){if(!t||!t.length)return[];var n=Xa(t);return null==e?n:v(n,function(t){return u(e,it,t)})}function Qa(t,e){return Ci(t||[],e||[],On)}function Ja(t,e){return Ci(t||[],e||[],ci)}function tu(t){var e=n(t);return e.__chain__=!0,e}function eu(t,e){return e(t),t}function nu(t,e){return e(t)}function ru(){return tu(this)}function iu(){return new i(this.value(),this.__chain__)}function ou(){this.__values__===it&&(this.__values__=Mc(this.value()));var t=this.__index__>=this.__values__.length,e=t?it:this.__values__[this.__index__++];return{done:t,value:e}}function au(){return this}function uu(t){for(var e,n=this;n instanceof r;){var i=aa(n);i.__index__=0,i.__values__=it,e?o.__wrapped__=i:e=i;var o=i;n=n.__wrapped__}return o.__wrapped__=t,e}function cu(){var t=this.__wrapped__;if(t instanceof b){var e=t;return this.__actions__.length&&(e=new b(this)),e=e.reverse(),e.__actions__.push({func:nu,args:[Oa],thisArg:it}),new i(e,this.__chain__)}return this.thru(Oa)}function su(){return xi(this.__wrapped__,this.__actions__)}function lu(t,e,n){var r=xp(t)?f:Kn;return n&&jo(t,e,n)&&(e=it),r(t,ko(e,3))}function fu(t,e){var n=xp(t)?p:tr;return n(t,ko(e,3))}function pu(t,e){return er(mu(t,e),1)}function hu(t,e){return er(mu(t,e),Dt)}function du(t,e,n){return n=n===it?1:Ec(n),er(mu(t,e),n)}function vu(t,e){var n=xp(t)?s:_f;return n(t,ko(e,3))}function gu(t,e){var n=xp(t)?l:bf;return n(t,ko(e,3))}function yu(t,e,n,r){t=Xu(t)?t:rs(t),n=n&&!r?Ec(n):0;var i=t.length;return n<0&&(n=$l(i+n,0)),_c(t)?n<=i&&t.indexOf(e,n)>-1:!!i&&M(t,e,n)>-1}function mu(t,e){var n=xp(t)?v:Hr;return n(t,ko(e,3))}function _u(t,e,n,r){return null==t?[]:(xp(e)||(e=null==e?[]:[e]),n=r?it:n,xp(n)||(n=null==n?[]:[n]),Xr(t,e,n))}function bu(t,e,n){var r=xp(t)?y:A,i=arguments.length<3;return r(t,ko(e,4),n,i,_f)}function xu(t,e,n){var r=xp(t)?m:A,i=arguments.length<3;return r(t,ko(e,4),n,i,bf)}function wu(t,e){var n=xp(t)?p:tr;return n(t,Lu(ko(e,3)))}function Cu(t){var e=xp(t)?Sn:ai;return e(t)}function Mu(t,e,n){e=(n?jo(t,e,n):e===it)?1:Ec(e);var r=xp(t)?Nn:ui;return r(t,e)}function ku(t){var e=xp(t)?An:si;return e(t)}function Eu(t){if(null==t)return 0;if(Xu(t))return _c(t)?J(t):t.length;var e=Pf(t);return e==Zt||e==ie?t.size:Wr(t).length}function Tu(t,e,n){var r=xp(t)?_:fi;return n&&jo(t,e,n)&&(e=it),r(t,ko(e,3))}function Su(t,e){if(\"function\"!=typeof e)throw new dl(ct);return t=Ec(t),function(){if(--t<1)return e.apply(this,arguments)}}function Nu(t,e,n){return e=n?it:e,e=t&&null==e?t.length:e,po(t,Mt,it,it,it,it,e)}function Au(t,e){var n;if(\"function\"!=typeof e)throw new dl(ct);return t=Ec(t),function(){return--t>0&&(n=e.apply(this,arguments)),t<=1&&(e=it),n}}function Pu(t,e,n){e=n?it:e;var r=po(t,bt,it,it,it,it,it,e);return r.placeholder=Pu.placeholder,r}function Ou(t,e,n){e=n?it:e;var r=po(t,xt,it,it,it,it,it,e);return r.placeholder=Ou.placeholder,r}function Iu(t,e,n){function r(e){var n=p,r=h;return p=h=it,m=e,v=t.apply(r,n)}function i(t){return m=t,g=Df(u,e),_?r(t):v}function o(t){var n=t-y,r=t-m,i=e-n;return b?Xl(i,d-r):i}function a(t){var n=t-y,r=t-m;return y===it||n>=e||n<0||b&&r>=d}function u(){var t=sp();return a(t)?c(t):void(g=Df(u,o(t)))}function c(t){return g=it,x&&p?r(t):(p=h=it,v)}function s(){g!==it&&Ef(g),m=0,p=y=h=g=it}function l(){return g===it?v:c(sp())}function f(){var t=sp(),n=a(t);if(p=arguments,h=this,y=t,n){if(g===it)return i(y);if(b)return g=Df(u,e),r(y)}return g===it&&(g=Df(u,e)),v}var p,h,d,v,g,y,m=0,_=!1,b=!1,x=!0;if(\"function\"!=typeof t)throw new dl(ct);return e=Sc(e)||0,cc(n)&&(_=!!n.leading,b=\"maxWait\"in n,d=b?$l(Sc(n.maxWait)||0,e):d,x=\"trailing\"in n?!!n.trailing:x),f.cancel=s,f.flush=l,f}function Du(t){return po(t,Et)}function Ru(t,e){if(\"function\"!=typeof t||null!=e&&\"function\"!=typeof e)throw new dl(ct);var n=function(){var r=arguments,i=e?e.apply(this,r):r[0],o=n.cache;if(o.has(i))return o.get(i);var a=t.apply(this,r);return n.cache=o.set(i,a)||o,a};return n.cache=new(Ru.Cache||pn),n}function Lu(t){if(\"function\"!=typeof t)throw new dl(ct);return function(){var e=arguments;switch(e.length){case 0:return!t.call(this);case 1:return!t.call(this,e[0]);case 2:return!t.call(this,e[0],e[1]);case 3:return!t.call(this,e[0],e[1],e[2])}return!t.apply(this,e)}}function Uu(t){return Au(2,t)}function Fu(t,e){if(\"function\"!=typeof t)throw new dl(ct);return e=e===it?e:Ec(e),oi(t,e)}function ju(t,e){if(\"function\"!=typeof t)throw new dl(ct);return e=null==e?0:$l(Ec(e),0),oi(function(n){var r=n[e],i=Ti(n,0,e);return r&&g(i,r),u(t,this,i)})}function Bu(t,e,n){var r=!0,i=!0;if(\"function\"!=typeof t)throw new dl(ct);return cc(n)&&(r=\"leading\"in n?!!n.leading:r,i=\"trailing\"in n?!!n.trailing:i),Iu(t,e,{leading:r,maxWait:e,trailing:i})}function Wu(t){return Nu(t,1)}function Vu(t,e){return vp(ki(e),t)}function zu(){if(!arguments.length)return[];var t=arguments[0];return xp(t)?t:[t]}function Hu(t){return Bn(t,dt)}function qu(t,e){return e=\"function\"==typeof e?e:it,Bn(t,dt,e)}function Yu(t){return Bn(t,pt|dt)}function Ku(t,e){return e=\"function\"==typeof e?e:it,Bn(t,pt|dt,e)}function Gu(t,e){return null==e||Vn(t,e,Hc(e))}function $u(t,e){return t===e||t!==t&&e!==e}function Xu(t){return null!=t&&uc(t.length)&&!oc(t)}function Zu(t){return sc(t)&&Xu(t)}function Qu(t){return t===!0||t===!1||sc(t)&&fr(t)==qt}function Ju(t){return sc(t)&&1===t.nodeType&&!yc(t)}function tc(t){if(null==t)return!0;if(Xu(t)&&(xp(t)||\"string\"==typeof t||\"function\"==typeof t.splice||Cp(t)||Sp(t)||bp(t)))return!t.length;var e=Pf(t);if(e==Zt||e==ie)return!t.size;if(Ho(t))return!Wr(t).length;for(var n in t)if(bl.call(t,n))return!1;return!0}function ec(t,e){return Or(t,e)}function nc(t,e,n){n=\"function\"==typeof n?n:it;var r=n?n(t,e):it;return r===it?Or(t,e,it,n):!!r}function rc(t){if(!sc(t))return!1;var e=fr(t);return e==Gt||e==Kt||\"string\"==typeof t.message&&\"string\"==typeof t.name&&!yc(t)}function ic(t){return\"number\"==typeof t&&Yl(t)}function oc(t){if(!cc(t))return!1;var e=fr(t);return e==$t||e==Xt||e==Ht||e==ne}function ac(t){return\"number\"==typeof t&&t==Ec(t)}function uc(t){return\"number\"==typeof t&&t>-1&&t%1==0&&t<=Rt}function cc(t){var e=typeof t;return null!=t&&(\"object\"==e||\"function\"==e)}function sc(t){return null!=t&&\"object\"==typeof t}function lc(t,e){return t===e||Rr(t,e,To(e))}function fc(t,e,n){return n=\"function\"==typeof n?n:it,Rr(t,e,To(e),n)}function pc(t){return gc(t)&&t!=+t}function hc(t){if(Of(t))throw new cl(ut);return Lr(t)}function dc(t){return null===t}function vc(t){return null==t}function gc(t){return\"number\"==typeof t||sc(t)&&fr(t)==Qt}function yc(t){if(!sc(t)||fr(t)!=te)return!1;var e=Pl(t);if(null===e)return!0;var n=bl.call(e,\"constructor\")&&e.constructor;return\"function\"==typeof n&&n instanceof n&&_l.call(n)==Ml}function mc(t){return ac(t)&&t>=-Rt&&t<=Rt}function _c(t){return\"string\"==typeof t||!xp(t)&&sc(t)&&fr(t)==oe}function bc(t){return\"symbol\"==typeof t||sc(t)&&fr(t)==ae}function xc(t){return t===it}function wc(t){return sc(t)&&Pf(t)==ce}function Cc(t){return sc(t)&&fr(t)==se}function Mc(t){if(!t)return[];if(Xu(t))return _c(t)?tt(t):Bi(t);if(Ll&&t[Ll])return q(t[Ll]());var e=Pf(t),n=e==Zt?Y:e==ie?$:rs;return n(t)}function kc(t){if(!t)return 0===t?t:0;if(t=Sc(t),t===Dt||t===-Dt){var e=t<0?-1:1;return e*Lt}return t===t?t:0}function Ec(t){var e=kc(t),n=e%1;return e===e?n?e-n:e:0}function Tc(t){return t?jn(Ec(t),0,Ft):0}function Sc(t){if(\"number\"==typeof t)return t;if(bc(t))return Ut;if(cc(t)){var e=\"function\"==typeof t.valueOf?t.valueOf():t;t=cc(e)?e+\"\":e}if(\"string\"!=typeof t)return 0===t?t:+t;t=t.replace(Ue,\"\");var n=Ge.test(t);return n||Xe.test(t)?ir(t.slice(2),n?2:8):Ke.test(t)?Ut:+t}function Nc(t){return Wi(t,qc(t))}function Ac(t){return t?jn(Ec(t),-Rt,Rt):0===t?t:0}function Pc(t){return null==t?\"\":gi(t)}function Oc(t,e){var n=mf(t);return null==e?n:Rn(n,e)}function Ic(t,e){return w(t,ko(e,3),nr)}function Dc(t,e){return w(t,ko(e,3),or)}function Rc(t,e){return null==t?t:xf(t,ko(e,3),qc)}function Lc(t,e){return null==t?t:wf(t,ko(e,3),qc)}function Uc(t,e){return t&&nr(t,ko(e,3))}function Fc(t,e){return t&&or(t,ko(e,3))}function jc(t){return null==t?[]:ar(t,Hc(t))}function Bc(t){return null==t?[]:ar(t,qc(t))}function Wc(t,e,n){var r=null==t?it:cr(t,e);return r===it?n:r}function Vc(t,e){return null!=t&&Oo(t,e,_r)}function zc(t,e){return null!=t&&Oo(t,e,Cr)}function Hc(t){return Xu(t)?Tn(t):Wr(t)}function qc(t){return Xu(t)?Tn(t,!0):Vr(t)}function Yc(t,e){var n={};return e=ko(e,3),nr(t,function(t,r,i){Un(n,e(t,r,i),t)}),n}function Kc(t,e){var n={};return e=ko(e,3),nr(t,function(t,r,i){Un(n,r,e(t,r,i))}),n}function Gc(t,e){return $c(t,Lu(ko(e)))}function $c(t,e){if(null==t)return{};var n=v(wo(t),function(t){return[t]});return e=ko(e),Qr(t,n,function(t,n){return e(t,n[0])})}function Xc(t,e,n){e=Ei(e,t);var r=-1,i=e.length;for(i||(i=1,t=it);++r<i;){var o=null==t?it:t[ra(e[r])];o===it&&(r=i,o=n),t=oc(o)?o.call(t):o}return t}function Zc(t,e,n){return null==t?t:ci(t,e,n)}function Qc(t,e,n,r){return r=\"function\"==typeof r?r:it,null==t?t:ci(t,e,n,r)}function Jc(t,e,n){var r=xp(t),i=r||Cp(t)||Sp(t);if(e=ko(e,4),null==n){var o=t&&t.constructor;n=i?r?new o:[]:cc(t)&&oc(o)?mf(Pl(t)):{}}return(i?s:nr)(t,function(t,r,i){return e(n,t,r,i)}),n}function ts(t,e){return null==t||mi(t,e)}function es(t,e,n){return null==t?t:_i(t,e,ki(n))}function ns(t,e,n,r){return r=\"function\"==typeof r?r:it,null==t?t:_i(t,e,ki(n),r)}function rs(t){return null==t?[]:L(t,Hc(t))}function is(t){return null==t?[]:L(t,qc(t))}function os(t,e,n){return n===it&&(n=e,e=it),n!==it&&(n=Sc(n),n=n===n?n:0),e!==it&&(e=Sc(e),e=e===e?e:0),jn(Sc(t),e,n)}function as(t,e,n){return e=kc(e),n===it?(n=e,e=0):n=kc(n),t=Sc(t),kr(t,e,n)}function us(t,e,n){if(n&&\"boolean\"!=typeof n&&jo(t,e,n)&&(e=n=it),n===it&&(\"boolean\"==typeof e?(n=e,e=it):\"boolean\"==typeof t&&(n=t,t=it)),t===it&&e===it?(t=0,e=1):(t=kc(t),e===it?(e=t,t=0):e=kc(e)),t>e){var r=t;t=e,e=r}if(n||t%1||e%1){var i=Jl();return Xl(t+i*(e-t+rr(\"1e-\"+((i+\"\").length-1))),e)}return ni(t,e)}function cs(t){return th(Pc(t).toLowerCase())}function ss(t){return t=Pc(t),t&&t.replace(Qe,br).replace(Hn,\"\")}function ls(t,e,n){t=Pc(t),e=gi(e);var r=t.length;n=n===it?r:jn(Ec(n),0,r);var i=n;return n-=e.length,n>=0&&t.slice(n,i)==e}function fs(t){return t=Pc(t),t&&Te.test(t)?t.replace(ke,xr):t}function ps(t){return t=Pc(t),t&&Le.test(t)?t.replace(Re,\"\\\\$&\"):t}function hs(t,e,n){t=Pc(t),e=Ec(e);var r=e?J(t):0;if(!e||r>=e)return t;var i=(e-r)/2;return oo(zl(i),n)+t+oo(Vl(i),n)}function ds(t,e,n){t=Pc(t),e=Ec(e);var r=e?J(t):0;return e&&r<e?t+oo(e-r,n):t}function vs(t,e,n){t=Pc(t),e=Ec(e);var r=e?J(t):0;return e&&r<e?oo(e-r,n)+t:t}function gs(t,e,n){return n||null==e?e=0:e&&(e=+e),Ql(Pc(t).replace(Fe,\"\"),e||0)}function ys(t,e,n){return e=(n?jo(t,e,n):e===it)?1:Ec(e),ii(Pc(t),e)}function ms(){var t=arguments,e=Pc(t[0]);return t.length<3?e:e.replace(t[1],t[2])}function _s(t,e,n){return n&&\"number\"!=typeof n&&jo(t,e,n)&&(e=n=it),(n=n===it?Ft:n>>>0)?(t=Pc(t),t&&(\"string\"==typeof e||null!=e&&!Ep(e))&&(e=gi(e),!e&&z(t))?Ti(tt(t),0,n):t.split(e,n)):[]}function bs(t,e,n){return t=Pc(t),n=null==n?0:jn(Ec(n),0,t.length),e=gi(e),t.slice(n,n+e.length)==e}function xs(t,e,r){var i=n.templateSettings;r&&jo(t,e,r)&&(e=it),t=Pc(t),e=Ip({},e,i,ho);var o,a,u=Ip({},e.imports,i.imports,ho),c=Hc(u),s=L(u,c),l=0,f=e.interpolate||Je,p=\"__p += '\",h=pl((e.escape||Je).source+\"|\"+f.source+\"|\"+(f===Ae?qe:Je).source+\"|\"+(e.evaluate||Je).source+\"|$\",\"g\"),d=\"//# sourceURL=\"+(\"sourceURL\"in e?e.sourceURL:\"lodash.templateSources[\"+ ++Xn+\"]\")+\"\\n\";t.replace(h,function(e,n,r,i,u,c){return r||(r=i),p+=t.slice(l,c).replace(tn,W),n&&(o=!0,p+=\"' +\\n__e(\"+n+\") +\\n'\"),u&&(a=!0,p+=\"';\\n\"+u+\";\\n__p += '\"),r&&(p+=\"' +\\n((__t = (\"+r+\")) == null ? '' : __t) +\\n'\"),l=c+e.length,e}),p+=\"';\\n\";var v=e.variable;v||(p=\"with (obj) {\\n\"+p+\"\\n}\\n\"),p=(a?p.replace(xe,\"\"):p).replace(we,\"$1\").replace(Ce,\"$1;\"),p=\"function(\"+(v||\"obj\")+\") {\\n\"+(v?\"\":\"obj || (obj = {});\\n\")+\"var __t, __p = ''\"+(o?\", __e = _.escape\":\"\")+(a?\", __j = Array.prototype.join;\\nfunction print() { __p += __j.call(arguments, '') }\\n\":\";\\n\")+p+\"return __p\\n}\";var g=eh(function(){return sl(c,d+\"return \"+p).apply(it,s)});if(g.source=p,rc(g))throw g;return g}function ws(t){return Pc(t).toLowerCase()}function Cs(t){return Pc(t).toUpperCase()}function Ms(t,e,n){if(t=Pc(t),t&&(n||e===it))return t.replace(Ue,\"\");if(!t||!(e=gi(e)))return t;var r=tt(t),i=tt(e),o=F(r,i),a=j(r,i)+1;return Ti(r,o,a).join(\"\")}function ks(t,e,n){if(t=Pc(t),t&&(n||e===it))return t.replace(je,\"\");if(!t||!(e=gi(e)))return t;var r=tt(t),i=j(r,tt(e))+1;return Ti(r,0,i).join(\"\")}function Es(t,e,n){if(t=Pc(t),t&&(n||e===it))return t.replace(Fe,\"\");if(!t||!(e=gi(e)))return t;var r=tt(t),i=F(r,tt(e));return Ti(r,i).join(\"\")}function Ts(t,e){var n=Tt,r=St;if(cc(e)){var i=\"separator\"in e?e.separator:i;n=\"length\"in e?Ec(e.length):n,r=\"omission\"in e?gi(e.omission):r}t=Pc(t);var o=t.length;if(z(t)){var a=tt(t);o=a.length}if(n>=o)return t;var u=n-J(r);if(u<1)return r;var c=a?Ti(a,0,u).join(\"\"):t.slice(0,u);if(i===it)return c+r;if(a&&(u+=c.length-u),Ep(i)){if(t.slice(u).search(i)){var s,l=c;for(i.global||(i=pl(i.source,Pc(Ye.exec(i))+\"g\")),i.lastIndex=0;s=i.exec(l);)var f=s.index;c=c.slice(0,f===it?u:f)}}else if(t.indexOf(gi(i),u)!=u){var p=c.lastIndexOf(i);p>-1&&(c=c.slice(0,p))}return c+r}function Ss(t){return t=Pc(t),t&&Ee.test(t)?t.replace(Me,wr):t}function Ns(t,e,n){return t=Pc(t),e=n?it:e,e===it?H(t)?rt(t):x(t):t.match(e)||[]}function As(t){var e=null==t?0:t.length,n=ko();return t=e?v(t,function(t){if(\"function\"!=typeof t[1])throw new dl(ct);return[n(t[0]),t[1]]}):[],oi(function(n){for(var r=-1;++r<e;){var i=t[r];if(u(i[0],this,n))return u(i[1],this,n)}})}function Ps(t){return Wn(Bn(t,pt))}function Os(t){return function(){return t}}function Is(t,e){return null==t||t!==t?e:t}function Ds(t){return t}function Rs(t){return Br(\"function\"==typeof t?t:Bn(t,pt))}function Ls(t){return qr(Bn(t,pt))}function Us(t,e){return Yr(t,Bn(e,pt))}function Fs(t,e,n){var r=Hc(e),i=ar(e,r);null!=n||cc(e)&&(i.length||!r.length)||(n=e,e=t,t=this,i=ar(e,Hc(e)));var o=!(cc(n)&&\"chain\"in n&&!n.chain),a=oc(t);return s(i,function(n){var r=e[n];t[n]=r,a&&(t.prototype[n]=function(){var e=this.__chain__;if(o||e){var n=t(this.__wrapped__),i=n.__actions__=Bi(this.__actions__);return i.push({func:r,args:arguments,thisArg:t}),n.__chain__=e,n}return r.apply(t,g([this.value()],arguments))})}),t}function js(){return ur._===this&&(ur._=kl),this}function Bs(){}function Ws(t){return t=Ec(t),oi(function(e){return $r(e,t)})}function Vs(t){return Bo(t)?S(ra(t)):Jr(t)}function zs(t){return function(e){return null==t?it:cr(t,e)}}function Hs(){return[]}function qs(){return!1}function Ys(){return{}}function Ks(){return\"\"}function Gs(){return!0}function $s(t,e){if(t=Ec(t),t<1||t>Rt)return[];var n=Ft,r=Xl(t,Ft);e=ko(e),t-=Ft;for(var i=I(r,e);++n<t;)e(n);return i}function Xs(t){return xp(t)?v(t,ra):bc(t)?[t]:Bi(Lf(Pc(t)))}function Zs(t){var e=++xl;return Pc(t)+e}function Qs(t){return t&&t.length?Gn(t,Ds,pr):it}function Js(t,e){return t&&t.length?Gn(t,ko(e,2),pr):it}function tl(t){return T(t,Ds)}function el(t,e){return T(t,ko(e,2))}function nl(t){return t&&t.length?Gn(t,Ds,zr):it}function rl(t,e){return t&&t.length?Gn(t,ko(e,2),zr):it}function il(t){return t&&t.length?O(t,Ds):0}function ol(t,e){return t&&t.length?O(t,ko(e,2)):0}e=null==e?ur:Mr.defaults(ur.Object(),e,Mr.pick(ur,$n));var al=e.Array,ul=e.Date,cl=e.Error,sl=e.Function,ll=e.Math,fl=e.Object,pl=e.RegExp,hl=e.String,dl=e.TypeError,vl=al.prototype,gl=sl.prototype,yl=fl.prototype,ml=e[\"__core-js_shared__\"],_l=gl.toString,bl=yl.hasOwnProperty,xl=0,wl=function(){var t=/[^.]+$/.exec(ml&&ml.keys&&ml.keys.IE_PROTO||\"\");return t?\"Symbol(src)_1.\"+t:\"\"}(),Cl=yl.toString,Ml=_l.call(fl),kl=ur._,El=pl(\"^\"+_l.call(bl).replace(Re,\"\\\\$&\").replace(/hasOwnProperty|(function).*?(?=\\\\\\()| for .+?(?=\\\\\\])/g,\"$1.*?\")+\"$\"),Tl=lr?e.Buffer:it,Sl=e.Symbol,Nl=e.Uint8Array,Al=Tl?Tl.allocUnsafe:it,Pl=K(fl.getPrototypeOf,fl),Ol=fl.create,Il=yl.propertyIsEnumerable,Dl=vl.splice,Rl=Sl?Sl.isConcatSpreadable:it,Ll=Sl?Sl.iterator:it,Ul=Sl?Sl.toStringTag:it,Fl=function(){try{var t=So(fl,\"defineProperty\");return t({},\"\",{}),t}catch(t){}}(),jl=e.clearTimeout!==ur.clearTimeout&&e.clearTimeout,Bl=ul&&ul.now!==ur.Date.now&&ul.now,Wl=e.setTimeout!==ur.setTimeout&&e.setTimeout,Vl=ll.ceil,zl=ll.floor,Hl=fl.getOwnPropertySymbols,ql=Tl?Tl.isBuffer:it,Yl=e.isFinite,Kl=vl.join,Gl=K(fl.keys,fl),$l=ll.max,Xl=ll.min,Zl=ul.now,Ql=e.parseInt,Jl=ll.random,tf=vl.reverse,ef=So(e,\"DataView\"),nf=So(e,\"Map\"),rf=So(e,\"Promise\"),of=So(e,\"Set\"),af=So(e,\"WeakMap\"),uf=So(fl,\"create\"),cf=af&&new af,sf={},lf=ia(ef),ff=ia(nf),pf=ia(rf),hf=ia(of),df=ia(af),vf=Sl?Sl.prototype:it,gf=vf?vf.valueOf:it,yf=vf?vf.toString:it,mf=function(){function t(){}return function(e){if(!cc(e))return{};if(Ol)return Ol(e);t.prototype=e;var n=new t;return t.prototype=it,n}}();n.templateSettings={escape:Se,evaluate:Ne,interpolate:Ae,variable:\"\",imports:{_:n}},n.prototype=r.prototype,n.prototype.constructor=n,i.prototype=mf(r.prototype),i.prototype.constructor=i,b.prototype=mf(r.prototype),b.prototype.constructor=b,nt.prototype.clear=ze,nt.prototype.delete=en,nt.prototype.get=nn,nt.prototype.has=rn,nt.prototype.set=on,an.prototype.clear=un,an.prototype.delete=cn,an.prototype.get=sn,an.prototype.has=ln,an.prototype.set=fn,pn.prototype.clear=hn,pn.prototype.delete=dn,pn.prototype.get=vn,pn.prototype.has=gn,pn.prototype.set=yn,mn.prototype.add=mn.prototype.push=_n,mn.prototype.has=bn,xn.prototype.clear=wn,xn.prototype.delete=Cn,xn.prototype.get=Mn,xn.prototype.has=kn,xn.prototype.set=En;var _f=Yi(nr),bf=Yi(or,!0),xf=Ki(),wf=Ki(!0),Cf=cf?function(t,e){return cf.set(t,e),t}:Ds,Mf=Fl?function(t,e){return Fl(t,\"toString\",{configurable:!0,enumerable:!1,value:Os(e),writable:!0})}:Ds,kf=oi,Ef=jl||function(t){return ur.clearTimeout(t)},Tf=of&&1/$(new of([,-0]))[1]==Dt?function(t){return new of(t)}:Bs,Sf=cf?function(t){return cf.get(t)}:Bs,Nf=Hl?function(t){return null==t?[]:(t=fl(t),p(Hl(t),function(e){return Il.call(t,e)}))}:Hs,Af=Hl?function(t){for(var e=[];t;)g(e,Nf(t)),t=Pl(t);return e}:Hs,Pf=fr;(ef&&Pf(new ef(new ArrayBuffer(1)))!=fe||nf&&Pf(new nf)!=Zt||rf&&Pf(rf.resolve())!=ee||of&&Pf(new of)!=ie||af&&Pf(new af)!=ce)&&(Pf=function(t){var e=fr(t),n=e==te?t.constructor:it,r=n?ia(n):\"\";if(r)switch(r){case lf:return fe;case ff:return Zt;case pf:return ee;case hf:return ie;case df:return ce}return e});var Of=ml?oc:qs,If=ea(Cf),Df=Wl||function(t,e){return ur.setTimeout(t,e)},Rf=ea(Mf),Lf=Ko(function(t){var e=[];return Ie.test(t)&&e.push(\"\"),t.replace(De,function(t,n,r,i){e.push(r?i.replace(He,\"$1\"):n||t)}),e}),Uf=oi(function(t,e){return Zu(t)?Yn(t,er(e,1,Zu,!0)):[]}),Ff=oi(function(t,e){var n=ka(e);return Zu(n)&&(n=it),Zu(t)?Yn(t,er(e,1,Zu,!0),ko(n,2)):[]}),jf=oi(function(t,e){var n=ka(e);return Zu(n)&&(n=it),Zu(t)?Yn(t,er(e,1,Zu,!0),it,n):[]}),Bf=oi(function(t){var e=v(t,Mi);return e.length&&e[0]===t[0]?Er(e):[]}),Wf=oi(function(t){var e=ka(t),n=v(t,Mi);return e===ka(n)?e=it:n.pop(),n.length&&n[0]===t[0]?Er(n,ko(e,2)):[]}),Vf=oi(function(t){var e=ka(t),n=v(t,Mi);return e=\"function\"==typeof e?e:it,e&&n.pop(),n.length&&n[0]===t[0]?Er(n,it,e):[]}),zf=oi(Sa),Hf=bo(function(t,e){var n=null==t?0:t.length,r=Fn(t,e);return ei(t,v(e,function(t){return Fo(t,n)?+t:t}).sort(Li)),r}),qf=oi(function(t){return yi(er(t,1,Zu,!0))}),Yf=oi(function(t){var e=ka(t);return Zu(e)&&(e=it),yi(er(t,1,Zu,!0),ko(e,2))}),Kf=oi(function(t){var e=ka(t);return e=\"function\"==typeof e?e:it,yi(er(t,1,Zu,!0),it,e)}),Gf=oi(function(t,e){return Zu(t)?Yn(t,e):[]}),$f=oi(function(t){return wi(p(t,Zu))}),Xf=oi(function(t){var e=ka(t);return Zu(e)&&(e=it),wi(p(t,Zu),ko(e,2))}),Zf=oi(function(t){var e=ka(t);return e=\"function\"==typeof e?e:it,wi(p(t,Zu),it,e)}),Qf=oi(Xa),Jf=oi(function(t){var e=t.length,n=e>1?t[e-1]:it;return n=\"function\"==typeof n?(t.pop(),n):it,Za(t,n)}),tp=bo(function(t){var e=t.length,n=e?t[0]:0,r=this.__wrapped__,o=function(e){return Fn(e,t)};return!(e>1||this.__actions__.length)&&r instanceof b&&Fo(n)?(r=r.slice(n,+n+(e?1:0)),r.__actions__.push({func:nu,args:[o],thisArg:it}),new i(r,this.__chain__).thru(function(t){return e&&!t.length&&t.push(it),t})):this.thru(o)}),ep=Hi(function(t,e,n){bl.call(t,n)?++t[n]:Un(t,n,1)}),np=Ji(va),rp=Ji(ga),ip=Hi(function(t,e,n){bl.call(t,n)?t[n].push(e):Un(t,n,[e])}),op=oi(function(t,e,n){var r=-1,i=\"function\"==typeof e,o=Xu(t)?al(t.length):[];return _f(t,function(t){o[++r]=i?u(e,t,n):Sr(t,e,n)}),o}),ap=Hi(function(t,e,n){Un(t,n,e)}),up=Hi(function(t,e,n){t[n?0:1].push(e)},function(){return[[],[]]}),cp=oi(function(t,e){if(null==t)return[];var n=e.length;return n>1&&jo(t,e[0],e[1])?e=[]:n>2&&jo(e[0],e[1],e[2])&&(e=[e[0]]),Xr(t,er(e,1),[])}),sp=Bl||function(){return ur.Date.now()},lp=oi(function(t,e,n){var r=yt;if(n.length){var i=G(n,Mo(lp));r|=wt}return po(t,r,e,n,i)}),fp=oi(function(t,e,n){var r=yt|mt;if(n.length){var i=G(n,Mo(fp));r|=wt}return po(e,r,t,n,i)}),pp=oi(function(t,e){return qn(t,1,e)}),hp=oi(function(t,e,n){return qn(t,Sc(e)||0,n)});Ru.Cache=pn;var dp=kf(function(t,e){e=1==e.length&&xp(e[0])?v(e[0],R(ko())):v(er(e,1),R(ko()));var n=e.length;return oi(function(r){for(var i=-1,o=Xl(r.length,n);++i<o;)r[i]=e[i].call(this,r[i]);return u(t,this,r)})}),vp=oi(function(t,e){var n=G(e,Mo(vp));return po(t,wt,it,e,n)}),gp=oi(function(t,e){var n=G(e,Mo(gp));return po(t,Ct,it,e,n)}),yp=bo(function(t,e){return po(t,kt,it,it,it,e)}),mp=co(pr),_p=co(function(t,e){return t>=e}),bp=Nr(function(){return arguments}())?Nr:function(t){return sc(t)&&bl.call(t,\"callee\")&&!Il.call(t,\"callee\")},xp=al.isArray,wp=hr?R(hr):Ar,Cp=ql||qs,Mp=dr?R(dr):Pr,kp=vr?R(vr):Dr,Ep=gr?R(gr):Ur,Tp=yr?R(yr):Fr,Sp=mr?R(mr):jr,Np=co(zr),Ap=co(function(t,e){return t<=e}),Pp=qi(function(t,e){if(Ho(e)||Xu(e))return void Wi(e,Hc(e),t);for(var n in e)bl.call(e,n)&&On(t,n,e[n])}),Op=qi(function(t,e){Wi(e,qc(e),t)}),Ip=qi(function(t,e,n,r){Wi(e,qc(e),t,r)}),Dp=qi(function(t,e,n,r){Wi(e,Hc(e),t,r)}),Rp=bo(Fn),Lp=oi(function(t){return t.push(it,ho),u(Ip,it,t)}),Up=oi(function(t){return t.push(it,vo),u(Vp,it,t)}),Fp=no(function(t,e,n){t[e]=n},Os(Ds)),jp=no(function(t,e,n){bl.call(t,e)?t[e].push(n):t[e]=[n]},ko),Bp=oi(Sr),Wp=qi(function(t,e,n){Kr(t,e,n)}),Vp=qi(function(t,e,n,r){Kr(t,e,n,r)}),zp=bo(function(t,e){var n={};if(null==t)return n;var r=!1;e=v(e,function(e){return e=Ei(e,t),r||(r=e.length>1),e}),Wi(t,wo(t),n),r&&(n=Bn(n,pt|ht|dt,go));for(var i=e.length;i--;)mi(n,e[i]);return n}),Hp=bo(function(t,e){return null==t?{}:Zr(t,e)}),qp=fo(Hc),Yp=fo(qc),Kp=Xi(function(t,e,n){return e=e.toLowerCase(),t+(n?cs(e):e)}),Gp=Xi(function(t,e,n){return t+(n?\"-\":\"\")+e.toLowerCase()}),$p=Xi(function(t,e,n){return t+(n?\" \":\"\")+e.toLowerCase()}),Xp=$i(\"toLowerCase\"),Zp=Xi(function(t,e,n){return t+(n?\"_\":\"\")+e.toLowerCase()}),Qp=Xi(function(t,e,n){return t+(n?\" \":\"\")+th(e)}),Jp=Xi(function(t,e,n){return t+(n?\" \":\"\")+e.toUpperCase()}),th=$i(\"toUpperCase\"),eh=oi(function(t,e){try{return u(t,it,e)}catch(t){return rc(t)?t:new cl(t)}}),nh=bo(function(t,e){return s(e,function(e){e=ra(e),Un(t,e,lp(t[e],t))}),t}),rh=to(),ih=to(!0),oh=oi(function(t,e){return function(n){return Sr(n,t,e)}}),ah=oi(function(t,e){return function(n){return Sr(t,n,e)}}),uh=io(v),ch=io(f),sh=io(_),lh=uo(),fh=uo(!0),ph=ro(function(t,e){return t+e},0),hh=lo(\"ceil\"),dh=ro(function(t,e){return t/e},1),vh=lo(\"floor\"),gh=ro(function(t,e){return t*e},1),yh=lo(\"round\"),mh=ro(function(t,e){return t-e},0);return n.after=Su,n.ary=Nu,n.assign=Pp,n.assignIn=Op,n.assignInWith=Ip,n.assignWith=Dp,n.at=Rp,n.before=Au,n.bind=lp,n.bindAll=nh,n.bindKey=fp,n.castArray=zu,n.chain=tu,n.chunk=ua,n.compact=ca,n.concat=sa,n.cond=As,n.conforms=Ps,n.constant=Os,n.countBy=ep,n.create=Oc,n.curry=Pu,n.curryRight=Ou,n.debounce=Iu,n.defaults=Lp,n.defaultsDeep=Up,n.defer=pp,n.delay=hp,n.difference=Uf,n.differenceBy=Ff,n.differenceWith=jf,n.drop=la,n.dropRight=fa,n.dropRightWhile=pa,n.dropWhile=ha,n.fill=da,n.filter=fu,n.flatMap=pu,n.flatMapDeep=hu,n.flatMapDepth=du,n.flatten=ya,n.flattenDeep=ma,n.flattenDepth=_a,n.flip=Du,n.flow=rh,n.flowRight=ih,n.fromPairs=ba,n.functions=jc,n.functionsIn=Bc,n.groupBy=ip,n.initial=Ca,n.intersection=Bf,n.intersectionBy=Wf,n.intersectionWith=Vf,n.invert=Fp,n.invertBy=jp,n.invokeMap=op,n.iteratee=Rs,n.keyBy=ap,n.keys=Hc,n.keysIn=qc,n.map=mu,n.mapKeys=Yc,n.mapValues=Kc,n.matches=Ls,n.matchesProperty=Us,n.memoize=Ru,n.merge=Wp,n.mergeWith=Vp,n.method=oh,n.methodOf=ah,n.mixin=Fs,n.negate=Lu,n.nthArg=Ws,n.omit=zp,n.omitBy=Gc,n.once=Uu,n.orderBy=_u,n.over=uh,n.overArgs=dp,n.overEvery=ch,n.overSome=sh,n.partial=vp,n.partialRight=gp,n.partition=up,n.pick=Hp,n.pickBy=$c,n.property=Vs,n.propertyOf=zs,n.pull=zf,n.pullAll=Sa,n.pullAllBy=Na,n.pullAllWith=Aa,n.pullAt=Hf,n.range=lh,n.rangeRight=fh,n.rearg=yp,n.reject=wu,n.remove=Pa,n.rest=Fu,n.reverse=Oa,n.sampleSize=Mu,n.set=Zc,n.setWith=Qc,n.shuffle=ku,n.slice=Ia,n.sortBy=cp,n.sortedUniq=Ba,n.sortedUniqBy=Wa,n.split=_s,n.spread=ju,n.tail=Va,n.take=za,n.takeRight=Ha,n.takeRightWhile=qa,n.takeWhile=Ya,n.tap=eu,n.throttle=Bu,n.thru=nu,n.toArray=Mc,n.toPairs=qp,n.toPairsIn=Yp,n.toPath=Xs,n.toPlainObject=Nc,n.transform=Jc,n.unary=Wu,n.union=qf,n.unionBy=Yf,n.unionWith=Kf,n.uniq=Ka,n.uniqBy=Ga,n.uniqWith=$a,n.unset=ts,n.unzip=Xa,n.unzipWith=Za,n.update=es,n.updateWith=ns,n.values=rs,n.valuesIn=is,n.without=Gf,n.words=Ns,n.wrap=Vu,n.xor=$f,n.xorBy=Xf,n.xorWith=Zf,n.zip=Qf,n.zipObject=Qa,n.zipObjectDeep=Ja,n.zipWith=Jf,n.entries=qp,n.entriesIn=Yp,n.extend=Op,n.extendWith=Ip,Fs(n,n),n.add=ph,n.attempt=eh,n.camelCase=Kp,n.capitalize=cs,n.ceil=hh,n.clamp=os,n.clone=Hu,n.cloneDeep=Yu,n.cloneDeepWith=Ku,n.cloneWith=qu,n.conformsTo=Gu,n.deburr=ss,n.defaultTo=Is,n.divide=dh,n.endsWith=ls,n.eq=$u,n.escape=fs,n.escapeRegExp=ps,n.every=lu,n.find=np,n.findIndex=va,n.findKey=Ic,n.findLast=rp,n.findLastIndex=ga,n.findLastKey=Dc,n.floor=vh,n.forEach=vu,n.forEachRight=gu,n.forIn=Rc,n.forInRight=Lc,n.forOwn=Uc,n.forOwnRight=Fc,n.get=Wc,n.gt=mp,n.gte=_p,n.has=Vc,n.hasIn=zc,n.head=xa,n.identity=Ds,n.includes=yu,n.indexOf=wa,n.inRange=as,n.invoke=Bp,n.isArguments=bp,n.isArray=xp,n.isArrayBuffer=wp,n.isArrayLike=Xu,n.isArrayLikeObject=Zu,n.isBoolean=Qu,n.isBuffer=Cp,n.isDate=Mp,n.isElement=Ju,n.isEmpty=tc,n.isEqual=ec,n.isEqualWith=nc,n.isError=rc,n.isFinite=ic,n.isFunction=oc,n.isInteger=ac,n.isLength=uc,n.isMap=kp,n.isMatch=lc,n.isMatchWith=fc,n.isNaN=pc,n.isNative=hc,n.isNil=vc,n.isNull=dc,n.isNumber=gc,n.isObject=cc,n.isObjectLike=sc,n.isPlainObject=yc,n.isRegExp=Ep,n.isSafeInteger=mc,n.isSet=Tp,n.isString=_c,n.isSymbol=bc,n.isTypedArray=Sp,n.isUndefined=xc,n.isWeakMap=wc,n.isWeakSet=Cc,n.join=Ma,n.kebabCase=Gp,n.last=ka,n.lastIndexOf=Ea,n.lowerCase=$p,n.lowerFirst=Xp,n.lt=Np,n.lte=Ap,n.max=Qs,n.maxBy=Js,n.mean=tl,n.meanBy=el,n.min=nl,n.minBy=rl,n.stubArray=Hs,n.stubFalse=qs,n.stubObject=Ys,n.stubString=Ks,n.stubTrue=Gs,n.multiply=gh,n.nth=Ta,n.noConflict=js,n.noop=Bs,n.now=sp,n.pad=hs,n.padEnd=ds,n.padStart=vs,n.parseInt=gs,n.random=us,n.reduce=bu,n.reduceRight=xu,n.repeat=ys,n.replace=ms,n.result=Xc,n.round=yh,n.runInContext=t,n.sample=Cu,n.size=Eu,n.snakeCase=Zp,n.some=Tu,n.sortedIndex=Da,n.sortedIndexBy=Ra,n.sortedIndexOf=La,n.sortedLastIndex=Ua,n.sortedLastIndexBy=Fa,n.sortedLastIndexOf=ja,n.startCase=Qp,n.startsWith=bs,n.subtract=mh,n.sum=il,n.sumBy=ol,n.template=xs,n.times=$s,n.toFinite=kc,n.toInteger=Ec,n.toLength=Tc,n.toLower=ws,n.toNumber=Sc,n.toSafeInteger=Ac,n.toString=Pc,n.toUpper=Cs,n.trim=Ms,n.trimEnd=ks,n.trimStart=Es,n.truncate=Ts,n.unescape=Ss,n.uniqueId=Zs,n.upperCase=Jp,n.upperFirst=th,n.each=vu,n.eachRight=gu,n.first=xa,Fs(n,function(){var t={};return nr(n,function(e,r){bl.call(n.prototype,r)||(t[r]=e)}),t}(),{chain:!1}),n.VERSION=ot,s([\"bind\",\"bindKey\",\"curry\",\"curryRight\",\"partial\",\"partialRight\"],function(t){n[t].placeholder=n}),s([\"drop\",\"take\"],function(t,e){b.prototype[t]=function(n){n=n===it?1:$l(Ec(n),0);var r=this.__filtered__&&!e?new b(this):this.clone();return r.__filtered__?r.__takeCount__=Xl(n,r.__takeCount__):r.__views__.push({size:Xl(n,Ft),type:t+(r.__dir__<0?\"Right\":\"\")}),r},b.prototype[t+\"Right\"]=function(e){return this.reverse()[t](e).reverse()}}),s([\"filter\",\"map\",\"takeWhile\"],function(t,e){var n=e+1,r=n==Pt||n==It;b.prototype[t]=function(t){var e=this.clone();return e.__iteratees__.push({iteratee:ko(t,3),type:n}),e.__filtered__=e.__filtered__||r,e}}),s([\"head\",\"last\"],function(t,e){var n=\"take\"+(e?\"Right\":\"\");b.prototype[t]=function(){return this[n](1).value()[0]}}),s([\"initial\",\"tail\"],function(t,e){var n=\"drop\"+(e?\"\":\"Right\");b.prototype[t]=function(){return this.__filtered__?new b(this):this[n](1)}}),b.prototype.compact=function(){return this.filter(Ds)},b.prototype.find=function(t){return this.filter(t).head()},b.prototype.findLast=function(t){return this.reverse().find(t)},b.prototype.invokeMap=oi(function(t,e){return\"function\"==typeof t?new b(this):this.map(function(n){return Sr(n,t,e)})}),b.prototype.reject=function(t){return this.filter(Lu(ko(t)))},b.prototype.slice=function(t,e){t=Ec(t);var n=this;return n.__filtered__&&(t>0||e<0)?new b(n):(t<0?n=n.takeRight(-t):t&&(n=n.drop(t)),e!==it&&(e=Ec(e),n=e<0?n.dropRight(-e):n.take(e-t)),n)},b.prototype.takeRightWhile=function(t){return this.reverse().takeWhile(t).reverse()},b.prototype.toArray=function(){return this.take(Ft)},nr(b.prototype,function(t,e){var r=/^(?:filter|find|map|reject)|While$/.test(e),o=/^(?:head|last)$/.test(e),a=n[o?\"take\"+(\"last\"==e?\"Right\":\"\"):e],u=o||/^find/.test(e);a&&(n.prototype[e]=function(){var e=this.__wrapped__,c=o?[1]:arguments,s=e instanceof b,l=c[0],f=s||xp(e),p=function(t){var e=a.apply(n,g([t],c));return o&&h?e[0]:e};f&&r&&\"function\"==typeof l&&1!=l.length&&(s=f=!1);var h=this.__chain__,d=!!this.__actions__.length,v=u&&!h,y=s&&!d;if(!u&&f){e=y?e:new b(this);var m=t.apply(e,c);return m.__actions__.push({func:nu,args:[p],thisArg:it}),new i(m,h)}return v&&y?t.apply(this,c):(m=this.thru(p),v?o?m.value()[0]:m.value():m)})}),s([\"pop\",\"push\",\"shift\",\"sort\",\"splice\",\"unshift\"],function(t){var e=vl[t],r=/^(?:push|sort|unshift)$/.test(t)?\"tap\":\"thru\",i=/^(?:pop|shift)$/.test(t);n.prototype[t]=function(){var t=arguments;if(i&&!this.__chain__){var n=this.value();return e.apply(xp(n)?n:[],t)}return this[r](function(n){return e.apply(xp(n)?n:[],t)})}}),nr(b.prototype,function(t,e){var r=n[e];if(r){var i=r.name+\"\",o=sf[i]||(sf[i]=[]);o.push({name:e,func:r})}}),sf[eo(it,mt).name]=[{name:\"wrapper\",func:it}],b.prototype.clone=N,b.prototype.reverse=Z,b.prototype.value=et,n.prototype.at=tp,n.prototype.chain=ru,n.prototype.commit=iu,n.prototype.next=ou,n.prototype.plant=uu,n.prototype.reverse=cu,n.prototype.toJSON=n.prototype.valueOf=n.prototype.value=su,n.prototype.first=n.prototype.head,Ll&&(n.prototype[Ll]=au),n},Mr=Cr();ur._=Mr,i=function(){return Mr}.call(e,n,e,r),!(i!==it&&(r.exports=i))}).call(this)}).call(e,n(98),n(99)(t))},function(t,e,n){\"use strict\";var r={remove:function(t){t._reactInternalInstance=void 0},get:function(t){return t._reactInternalInstance},has:function(t){return void 0!==t._reactInternalInstance},set:function(t,e){t._reactInternalInstance=e}};t.exports=r},function(t,e,n){\"use strict\";t.exports=n(26)},function(t,e,n){\"use strict\";var r=n(61);e.a=function(t){return t=n.i(r.a)(Math.abs(t)),t?t[1]:NaN}},function(t,e,n){\"use strict\";e.a=function(t,e){return t=+t,e-=t,function(n){return t+e*n}}},function(t,e,n){\"use strict\";var r=n(228);n.d(e,\"a\",function(){return r.a})},function(t,e,n){\"use strict\";function r(t,e){return(e-=t=+t)?function(n){return(n-t)/e}:n.i(h.a)(e)}function i(t){return function(e,n){var r=t(e=+e,n=+n);return function(t){return t<=e?0:t>=n?1:r(t)}}}function o(t){return function(e,n){var r=t(e=+e,n=+n);return function(t){return t<=0?e:t>=1?n:r(t)}}}function a(t,e,n,r){var i=t[0],o=t[1],a=e[0],u=e[1];return o<i?(i=n(o,i),a=r(u,a)):(i=n(i,o),a=r(a,u)),function(t){return a(i(t))}}function u(t,e,r,i){var o=Math.min(t.length,e.length)-1,a=new Array(o),u=new Array(o),c=-1;for(t[o]<t[0]&&(t=t.slice().reverse(),\n", "e=e.slice().reverse());++c<o;)a[c]=r(t[c],t[c+1]),u[c]=i(e[c],e[c+1]);return function(e){var r=n.i(l.bisect)(t,e,1,o)-1;return u[r](a[r](e))}}function c(t,e){return e.domain(t.domain()).range(t.range()).interpolate(t.interpolate()).clamp(t.clamp())}function s(t,e){function n(){return s=Math.min(g.length,y.length)>2?u:a,l=h=null,c}function c(e){return(l||(l=s(g,y,_?i(t):t,m)))(+e)}var s,l,h,g=v,y=v,m=f.b,_=!1;return c.invert=function(t){return(h||(h=s(y,g,r,_?o(e):e)))(+t)},c.domain=function(t){return arguments.length?(g=p.a.call(t,d.a),n()):g.slice()},c.range=function(t){return arguments.length?(y=p.b.call(t),n()):y.slice()},c.rangeRound=function(t){return y=p.b.call(t),m=f.c,n()},c.clamp=function(t){return arguments.length?(_=!!t,n()):_},c.interpolate=function(t){return arguments.length?(m=t,n()):m},n()}var l=n(7),f=n(31),p=n(16),h=n(65),d=n(125);e.b=r,e.c=c,e.a=s;var v=[0,1]},function(t,e,n){\"use strict\";function r(t,e,n){t._context.bezierCurveTo((2*t._x0+t._x1)/3,(2*t._y0+t._y1)/3,(t._x0+2*t._x1)/3,(t._y0+2*t._y1)/3,(t._x0+4*t._x1+e)/6,(t._y0+4*t._y1+n)/6)}function i(t){this._context=t}e.c=r,e.b=i,i.prototype={areaStart:function(){this._line=0},areaEnd:function(){this._line=NaN},lineStart:function(){this._x0=this._x1=this._y0=this._y1=NaN,this._point=0},lineEnd:function(){switch(this._point){case 3:r(this,this._x1,this._y1);case 2:this._context.lineTo(this._x1,this._y1)}(this._line||0!==this._line&&1===this._point)&&this._context.closePath(),this._line=1-this._line},point:function(t,e){switch(t=+t,e=+e,this._point){case 0:this._point=1,this._line?this._context.lineTo(t,e):this._context.moveTo(t,e);break;case 1:this._point=2;break;case 2:this._point=3,this._context.lineTo((5*this._x0+this._x1)/6,(5*this._y0+this._y1)/6);default:r(this,t,e)}this._x0=this._x1,this._x1=t,this._y0=this._y1,this._y1=e}},e.a=function(t){return new i(t)}},function(t,e,n){\"use strict\";function r(t,e,n){t._context.bezierCurveTo(t._x1+t._k*(t._x2-t._x0),t._y1+t._k*(t._y2-t._y0),t._x2+t._k*(t._x1-e),t._y2+t._k*(t._y1-n),t._x2,t._y2)}function i(t,e){this._context=t,this._k=(1-e)/6}e.c=r,e.b=i,i.prototype={areaStart:function(){this._line=0},areaEnd:function(){this._line=NaN},lineStart:function(){this._x0=this._x1=this._x2=this._y0=this._y1=this._y2=NaN,this._point=0},lineEnd:function(){switch(this._point){case 2:this._context.lineTo(this._x2,this._y2);break;case 3:r(this,this._x1,this._y1)}(this._line||0!==this._line&&1===this._point)&&this._context.closePath(),this._line=1-this._line},point:function(t,e){switch(t=+t,e=+e,this._point){case 0:this._point=1,this._line?this._context.lineTo(t,e):this._context.moveTo(t,e);break;case 1:this._point=2,this._x1=t,this._y1=e;break;case 2:this._point=3;default:r(this,t,e)}this._x0=this._x1,this._x1=this._x2,this._x2=t,this._y0=this._y1,this._y1=this._y2,this._y2=e}},e.a=function t(e){function n(t){return new i(t,e)}return n.tension=function(e){return t(+e)},n}(0)},function(t,e,n){\"use strict\";function r(t){this._context=t}r.prototype={areaStart:function(){this._line=0},areaEnd:function(){this._line=NaN},lineStart:function(){this._point=0},lineEnd:function(){(this._line||0!==this._line&&1===this._point)&&this._context.closePath(),this._line=1-this._line},point:function(t,e){switch(t=+t,e=+e,this._point){case 0:this._point=1,this._line?this._context.lineTo(t,e):this._context.moveTo(t,e);break;case 1:this._point=2;default:this._context.lineTo(t,e)}}},e.a=function(t){return new r(t)}},function(t,e,n){\"use strict\";e.a=function(){}},function(t,e,n){\"use strict\";function r(t){return\"topMouseUp\"===t||\"topTouchEnd\"===t||\"topTouchCancel\"===t}function i(t){return\"topMouseMove\"===t||\"topTouchMove\"===t}function o(t){return\"topMouseDown\"===t||\"topTouchStart\"===t}function a(t,e,n,r){var i=t.type||\"unknown-event\";t.currentTarget=y.getNodeFromInstance(r),e?v.invokeGuardedCallbackWithCatch(i,n,t):v.invokeGuardedCallback(i,n,t),t.currentTarget=null}function u(t,e){var n=t._dispatchListeners,r=t._dispatchInstances;if(Array.isArray(n))for(var i=0;i<n.length&&!t.isPropagationStopped();i++)a(t,e,n[i],r[i]);else n&&a(t,e,n,r);t._dispatchListeners=null,t._dispatchInstances=null}function c(t){var e=t._dispatchListeners,n=t._dispatchInstances;if(Array.isArray(e)){for(var r=0;r<e.length&&!t.isPropagationStopped();r++)if(e[r](t,n[r]))return n[r]}else if(e&&e(t,n))return n;return null}function s(t){var e=c(t);return t._dispatchInstances=null,t._dispatchListeners=null,e}function l(t){var e=t._dispatchListeners,n=t._dispatchInstances;Array.isArray(e)?d(\"103\"):void 0,t.currentTarget=e?y.getNodeFromInstance(n):null;var r=e?e(t):null;return t.currentTarget=null,t._dispatchListeners=null,t._dispatchInstances=null,r}function f(t){return!!t._dispatchListeners}var p,h,d=n(2),v=n(86),g=(n(0),n(1),{injectComponentTree:function(t){p=t},injectTreeTraversal:function(t){h=t}}),y={isEndish:r,isMoveish:i,isStartish:o,executeDirectDispatch:l,executeDispatchesInOrder:u,executeDispatchesInOrderStopAtTrue:s,hasDispatches:f,getInstanceFromNode:function(t){return p.getInstanceFromNode(t)},getNodeFromInstance:function(t){return p.getNodeFromInstance(t)},isAncestor:function(t,e){return h.isAncestor(t,e)},getLowestCommonAncestor:function(t,e){return h.getLowestCommonAncestor(t,e)},getParentInstance:function(t){return h.getParentInstance(t)},traverseTwoPhase:function(t,e,n){return h.traverseTwoPhase(t,e,n)},traverseEnterLeave:function(t,e,n,r,i){return h.traverseEnterLeave(t,e,n,r,i)},injection:g};t.exports=y},function(t,e,n){\"use strict\";function r(t){return Object.prototype.hasOwnProperty.call(t,v)||(t[v]=h++,f[t[v]]={}),f[t[v]]}var i,o=n(3),a=n(82),u=n(360),c=n(88),s=n(393),l=n(93),f={},p=!1,h=0,d={topAbort:\"abort\",topAnimationEnd:s(\"animationend\")||\"animationend\",topAnimationIteration:s(\"animationiteration\")||\"animationiteration\",topAnimationStart:s(\"animationstart\")||\"animationstart\",topBlur:\"blur\",topCanPlay:\"canplay\",topCanPlayThrough:\"canplaythrough\",topChange:\"change\",topClick:\"click\",topCompositionEnd:\"compositionend\",topCompositionStart:\"compositionstart\",topCompositionUpdate:\"compositionupdate\",topContextMenu:\"contextmenu\",topCopy:\"copy\",topCut:\"cut\",topDoubleClick:\"dblclick\",topDrag:\"drag\",topDragEnd:\"dragend\",topDragEnter:\"dragenter\",topDragExit:\"dragexit\",topDragLeave:\"dragleave\",topDragOver:\"dragover\",topDragStart:\"dragstart\",topDrop:\"drop\",topDurationChange:\"durationchange\",topEmptied:\"emptied\",topEncrypted:\"encrypted\",topEnded:\"ended\",topError:\"error\",topFocus:\"focus\",topInput:\"input\",topKeyDown:\"keydown\",topKeyPress:\"keypress\",topKeyUp:\"keyup\",topLoadedData:\"loadeddata\",topLoadedMetadata:\"loadedmetadata\",topLoadStart:\"loadstart\",topMouseDown:\"mousedown\",topMouseMove:\"mousemove\",topMouseOut:\"mouseout\",topMouseOver:\"mouseover\",topMouseUp:\"mouseup\",topPaste:\"paste\",topPause:\"pause\",topPlay:\"play\",topPlaying:\"playing\",topProgress:\"progress\",topRateChange:\"ratechange\",topScroll:\"scroll\",topSeeked:\"seeked\",topSeeking:\"seeking\",topSelectionChange:\"selectionchange\",topStalled:\"stalled\",topSuspend:\"suspend\",topTextInput:\"textInput\",topTimeUpdate:\"timeupdate\",topTouchCancel:\"touchcancel\",topTouchEnd:\"touchend\",topTouchMove:\"touchmove\",topTouchStart:\"touchstart\",topTransitionEnd:s(\"transitionend\")||\"transitionend\",topVolumeChange:\"volumechange\",topWaiting:\"waiting\",topWheel:\"wheel\"},v=\"_reactListenersID\"+String(Math.random()).slice(2),g=o({},u,{ReactEventListener:null,injection:{injectReactEventListener:function(t){t.setHandleTopLevel(g.handleTopLevel),g.ReactEventListener=t}},setEnabled:function(t){g.ReactEventListener&&g.ReactEventListener.setEnabled(t)},isEnabled:function(){return!(!g.ReactEventListener||!g.ReactEventListener.isEnabled())},listenTo:function(t,e){for(var n=e,i=r(n),o=a.registrationNameDependencies[t],u=0;u<o.length;u++){var c=o[u];i.hasOwnProperty(c)&&i[c]||(\"topWheel\"===c?l(\"wheel\")?g.ReactEventListener.trapBubbledEvent(\"topWheel\",\"wheel\",n):l(\"mousewheel\")?g.ReactEventListener.trapBubbledEvent(\"topWheel\",\"mousewheel\",n):g.ReactEventListener.trapBubbledEvent(\"topWheel\",\"DOMMouseScroll\",n):\"topScroll\"===c?l(\"scroll\",!0)?g.ReactEventListener.trapCapturedEvent(\"topScroll\",\"scroll\",n):g.ReactEventListener.trapBubbledEvent(\"topScroll\",\"scroll\",g.ReactEventListener.WINDOW_HANDLE):\"topFocus\"===c||\"topBlur\"===c?(l(\"focus\",!0)?(g.ReactEventListener.trapCapturedEvent(\"topFocus\",\"focus\",n),g.ReactEventListener.trapCapturedEvent(\"topBlur\",\"blur\",n)):l(\"focusin\")&&(g.ReactEventListener.trapBubbledEvent(\"topFocus\",\"focusin\",n),g.ReactEventListener.trapBubbledEvent(\"topBlur\",\"focusout\",n)),i.topBlur=!0,i.topFocus=!0):d.hasOwnProperty(c)&&g.ReactEventListener.trapBubbledEvent(c,d[c],n),i[c]=!0)}},trapBubbledEvent:function(t,e,n){return g.ReactEventListener.trapBubbledEvent(t,e,n)},trapCapturedEvent:function(t,e,n){return g.ReactEventListener.trapCapturedEvent(t,e,n)},supportsEventPageXY:function(){if(!document.createEvent)return!1;var t=document.createEvent(\"MouseEvent\");return null!=t&&\"pageX\"in t},ensureScrollValueMonitoring:function(){if(void 0===i&&(i=g.supportsEventPageXY()),!i&&!p){var t=c.refreshScrollValues;g.ReactEventListener.monitorScrollValue(t),p=!0}}});t.exports=g},function(t,e,n){\"use strict\";function r(t,e,n,r){return i.call(this,t,e,n,r)}var i=n(25),o=n(88),a=n(91),u={screenX:null,screenY:null,clientX:null,clientY:null,ctrlKey:null,shiftKey:null,altKey:null,metaKey:null,getModifierState:a,button:function(t){var e=t.button;return\"which\"in t?e:2===e?2:4===e?1:0},buttons:null,relatedTarget:function(t){return t.relatedTarget||(t.fromElement===t.srcElement?t.toElement:t.fromElement)},pageX:function(t){return\"pageX\"in t?t.pageX:t.clientX+o.currentScrollLeft},pageY:function(t){return\"pageY\"in t?t.pageY:t.clientY+o.currentScrollTop}};i.augmentClass(r,u),t.exports=r},function(t,e,n){\"use strict\";var r=n(2),i=(n(0),{}),o={reinitializeTransaction:function(){this.transactionWrappers=this.getTransactionWrappers(),this.wrapperInitData?this.wrapperInitData.length=0:this.wrapperInitData=[],this._isInTransaction=!1},_isInTransaction:!1,getTransactionWrappers:null,isInTransaction:function(){return!!this._isInTransaction},perform:function(t,e,n,i,o,a,u,c){this.isInTransaction()?r(\"27\"):void 0;var s,l;try{this._isInTransaction=!0,s=!0,this.initializeAll(0),l=t.call(e,n,i,o,a,u,c),s=!1}finally{try{if(s)try{this.closeAll(0)}catch(t){}else this.closeAll(0)}finally{this._isInTransaction=!1}}return l},initializeAll:function(t){for(var e=this.transactionWrappers,n=t;n<e.length;n++){var r=e[n];try{this.wrapperInitData[n]=i,this.wrapperInitData[n]=r.initialize?r.initialize.call(this):null}finally{if(this.wrapperInitData[n]===i)try{this.initializeAll(n+1)}catch(t){}}}},closeAll:function(t){this.isInTransaction()?void 0:r(\"28\");for(var e=this.transactionWrappers,n=t;n<e.length;n++){var o,a=e[n],u=this.wrapperInitData[n];try{o=!0,u!==i&&a.close&&a.close.call(this,u),o=!1}finally{if(o)try{this.closeAll(n+1)}catch(t){}}}this.wrapperInitData.length=0}};t.exports=o},function(t,e,n){\"use strict\";function r(t){var e=\"\"+t,n=o.exec(e);if(!n)return e;var r,i=\"\",a=0,u=0;for(a=n.index;a<e.length;a++){switch(e.charCodeAt(a)){case 34:r=\"&quot;\";break;case 38:r=\"&amp;\";break;case 39:r=\"&#x27;\";break;case 60:r=\"&lt;\";break;case 62:r=\"&gt;\";break;default:continue}u!==a&&(i+=e.substring(u,a)),u=a+1,i+=r}return u!==a?i+e.substring(u,a):i}function i(t){return\"boolean\"==typeof t||\"number\"==typeof t?\"\"+t:r(t)}var o=/[\"'&<>]/;t.exports=i},function(t,e,n){\"use strict\";var r,i=n(6),o=n(81),a=/^[ \\r\\n\\t\\f]/,u=/<(!--|link|noscript|meta|script|style)[ \\r\\n\\t\\f\\/>]/,c=n(89),s=c(function(t,e){if(t.namespaceURI!==o.svg||\"innerHTML\"in t)t.innerHTML=e;else{r=r||document.createElement(\"div\"),r.innerHTML=\"<svg>\"+e+\"</svg>\";for(var n=r.firstChild;n.firstChild;)t.appendChild(n.firstChild)}});if(i.canUseDOM){var l=document.createElement(\"div\");l.innerHTML=\" \",\"\"===l.innerHTML&&(s=function(t,e){if(t.parentNode&&t.parentNode.replaceChild(t,t),a.test(e)||\"<\"===e[0]&&u.test(e)){t.innerHTML=String.fromCharCode(65279)+e;var n=t.firstChild;1===n.data.length?t.removeChild(n):n.deleteData(0,1)}else t.innerHTML=e}),l=null}t.exports=s},function(t,e,n){\"use strict\";Object.defineProperty(e,\"__esModule\",{value:!0}),e.default={colors:{RdBu:[\"rgb(245, 39, 87)\",\"rgb(30, 136, 229)\"],GnPR:[\"rgb(24, 196, 93)\",\"rgb(124, 82, 255)\"],CyPU:[\"#0099C6\",\"#990099\"],PkYg:[\"#DD4477\",\"#66AA00\"],DrDb:[\"#B82E2E\",\"#316395\"],LpLb:[\"#994499\",\"#22AA99\"],YlDp:[\"#AAAA11\",\"#6633CC\"],OrId:[\"#E67300\",\"#3E0099\"]},gray:\"#777\"}},function(t,e,n){\"use strict\";var r=n(29);e.a=function(t,e,n){if(null==n&&(n=r.a),i=t.length){if((e=+e)<=0||i<2)return+n(t[0],0,t);if(e>=1)return+n(t[i-1],i-1,t);var i,o=(i-1)*e,a=Math.floor(o),u=+n(t[a],a,t),c=+n(t[a+1],a+1,t);return u+(c-u)*(o-a)}}},function(t,e,n){\"use strict\";function r(){}function i(t,e){var n=new r;if(t instanceof r)t.each(function(t,e){n.set(e,t)});else if(Array.isArray(t)){var i,o=-1,a=t.length;if(null==e)for(;++o<a;)n.set(o,t[o]);else for(;++o<a;)n.set(e(i=t[o],o,t),i)}else if(t)for(var u in t)n.set(u,t[u]);return n}n.d(e,\"b\",function(){return o});var o=\"$\";r.prototype=i.prototype={constructor:r,has:function(t){return o+t in this},get:function(t){return this[o+t]},set:function(t,e){return this[o+t]=e,this},remove:function(t){var e=o+t;return e in this&&delete this[e]},clear:function(){for(var t in this)t[0]===o&&delete this[t]},keys:function(){var t=[];for(var e in this)e[0]===o&&t.push(e.slice(1));return t},values:function(){var t=[];for(var e in this)e[0]===o&&t.push(this[e]);return t},entries:function(){var t=[];for(var e in this)e[0]===o&&t.push({key:e.slice(1),value:this[e]});return t},size:function(){var t=0;for(var e in this)e[0]===o&&++t;return t},empty:function(){for(var t in this)if(t[0]===o)return!1;return!0},each:function(t){for(var e in this)e[0]===o&&t(this[e],e.slice(1),this)}},e.a=i},function(t,e,n){\"use strict\";function r(){}function i(t){var e;return t=(t+\"\").trim().toLowerCase(),(e=x.exec(t))?(e=parseInt(e[1],16),new s(e>>8&15|e>>4&240,e>>4&15|240&e,(15&e)<<4|15&e,1)):(e=w.exec(t))?o(parseInt(e[1],16)):(e=C.exec(t))?new s(e[1],e[2],e[3],1):(e=M.exec(t))?new s(255*e[1]/100,255*e[2]/100,255*e[3]/100,1):(e=k.exec(t))?a(e[1],e[2],e[3],e[4]):(e=E.exec(t))?a(255*e[1]/100,255*e[2]/100,255*e[3]/100,e[4]):(e=T.exec(t))?l(e[1],e[2]/100,e[3]/100,1):(e=S.exec(t))?l(e[1],e[2]/100,e[3]/100,e[4]):N.hasOwnProperty(t)?o(N[t]):\"transparent\"===t?new s(NaN,NaN,NaN,0):null}function o(t){return new s(t>>16&255,t>>8&255,255&t,1)}function a(t,e,n,r){return r<=0&&(t=e=n=NaN),new s(t,e,n,r)}function u(t){return t instanceof r||(t=i(t)),t?(t=t.rgb(),new s(t.r,t.g,t.b,t.opacity)):new s}function c(t,e,n,r){return 1===arguments.length?u(t):new s(t,e,n,null==r?1:r)}function s(t,e,n,r){this.r=+t,this.g=+e,this.b=+n,this.opacity=+r}function l(t,e,n,r){return r<=0?t=e=n=NaN:n<=0||n>=1?t=e=NaN:e<=0&&(t=NaN),new h(t,e,n,r)}function f(t){if(t instanceof h)return new h(t.h,t.s,t.l,t.opacity);if(t instanceof r||(t=i(t)),!t)return new h;if(t instanceof h)return t;t=t.rgb();var e=t.r/255,n=t.g/255,o=t.b/255,a=Math.min(e,n,o),u=Math.max(e,n,o),c=NaN,s=u-a,l=(u+a)/2;return s?(c=e===u?(n-o)/s+6*(n<o):n===u?(o-e)/s+2:(e-n)/s+4,s/=l<.5?u+a:2-u-a,c*=60):s=l>0&&l<1?0:c,new h(c,s,l,t.opacity)}function p(t,e,n,r){return 1===arguments.length?f(t):new h(t,e,n,null==r?1:r)}function h(t,e,n,r){this.h=+t,this.s=+e,this.l=+n,this.opacity=+r}function d(t,e,n){return 255*(t<60?e+(n-e)*t/60:t<180?n:t<240?e+(n-e)*(240-t)/60:e)}var v=n(60);e.f=r,n.d(e,\"h\",function(){return g}),n.d(e,\"g\",function(){return y}),e.a=i,e.e=u,e.b=c,e.d=s,e.c=p;var g=.7,y=1/g,m=\"\\\\s*([+-]?\\\\d+)\\\\s*\",_=\"\\\\s*([+-]?\\\\d*\\\\.?\\\\d+(?:[eE][+-]?\\\\d+)?)\\\\s*\",b=\"\\\\s*([+-]?\\\\d*\\\\.?\\\\d+(?:[eE][+-]?\\\\d+)?)%\\\\s*\",x=/^#([0-9a-f]{3})$/,w=/^#([0-9a-f]{6})$/,C=new RegExp(\"^rgb\\\\(\"+[m,m,m]+\"\\\\)$\"),M=new RegExp(\"^rgb\\\\(\"+[b,b,b]+\"\\\\)$\"),k=new RegExp(\"^rgba\\\\(\"+[m,m,m,_]+\"\\\\)$\"),E=new RegExp(\"^rgba\\\\(\"+[b,b,b,_]+\"\\\\)$\"),T=new RegExp(\"^hsl\\\\(\"+[_,b,b]+\"\\\\)$\"),S=new RegExp(\"^hsla\\\\(\"+[_,b,b,_]+\"\\\\)$\"),N={aliceblue:15792383,antiquewhite:16444375,aqua:65535,aquamarine:8388564,azure:15794175,beige:16119260,bisque:16770244,black:0,blanchedalmond:16772045,blue:255,blueviolet:9055202,brown:10824234,burlywood:14596231,cadetblue:6266528,chartreuse:8388352,chocolate:13789470,coral:16744272,cornflowerblue:6591981,cornsilk:16775388,crimson:14423100,cyan:65535,darkblue:139,darkcyan:35723,darkgoldenrod:12092939,darkgray:11119017,darkgreen:25600,darkgrey:11119017,darkkhaki:12433259,darkmagenta:9109643,darkolivegreen:5597999,darkorange:16747520,darkorchid:10040012,darkred:9109504,darksalmon:15308410,darkseagreen:9419919,darkslateblue:4734347,darkslategray:3100495,darkslategrey:3100495,darkturquoise:52945,darkviolet:9699539,deeppink:16716947,deepskyblue:49151,dimgray:6908265,dimgrey:6908265,dodgerblue:2003199,firebrick:11674146,floralwhite:16775920,forestgreen:2263842,fuchsia:16711935,gainsboro:14474460,ghostwhite:16316671,gold:16766720,goldenrod:14329120,gray:8421504,green:32768,greenyellow:11403055,grey:8421504,honeydew:15794160,hotpink:16738740,indianred:13458524,indigo:4915330,ivory:16777200,khaki:15787660,lavender:15132410,lavenderblush:16773365,lawngreen:8190976,lemonchiffon:16775885,lightblue:11393254,lightcoral:15761536,lightcyan:14745599,lightgoldenrodyellow:16448210,lightgray:13882323,lightgreen:9498256,lightgrey:13882323,lightpink:16758465,lightsalmon:16752762,lightseagreen:2142890,lightskyblue:8900346,lightslategray:7833753,lightslategrey:7833753,lightsteelblue:11584734,lightyellow:16777184,lime:65280,limegreen:3329330,linen:16445670,magenta:16711935,maroon:8388608,mediumaquamarine:6737322,mediumblue:205,mediumorchid:12211667,mediumpurple:9662683,mediumseagreen:3978097,mediumslateblue:8087790,mediumspringgreen:64154,mediumturquoise:4772300,mediumvioletred:13047173,midnightblue:1644912,mintcream:16121850,mistyrose:16770273,moccasin:16770229,navajowhite:16768685,navy:128,oldlace:16643558,olive:8421376,olivedrab:7048739,orange:16753920,orangered:16729344,orchid:14315734,palegoldenrod:15657130,palegreen:10025880,paleturquoise:11529966,palevioletred:14381203,papayawhip:16773077,peachpuff:16767673,peru:13468991,pink:16761035,plum:14524637,powderblue:11591910,purple:8388736,rebeccapurple:6697881,red:16711680,rosybrown:12357519,royalblue:4286945,saddlebrown:9127187,salmon:16416882,sandybrown:16032864,seagreen:3050327,seashell:16774638,sienna:10506797,silver:12632256,skyblue:8900331,slateblue:6970061,slategray:7372944,slategrey:7372944,snow:16775930,springgreen:65407,steelblue:4620980,tan:13808780,teal:32896,thistle:14204888,tomato:16737095,turquoise:4251856,violet:15631086,wheat:16113331,white:16777215,whitesmoke:16119285,yellow:16776960,yellowgreen:10145074};n.i(v.a)(r,i,{displayable:function(){return this.rgb().displayable()},toString:function(){return this.rgb()+\"\"}}),n.i(v.a)(s,c,n.i(v.b)(r,{brighter:function(t){return t=null==t?y:Math.pow(y,t),new s(this.r*t,this.g*t,this.b*t,this.opacity)},darker:function(t){return t=null==t?g:Math.pow(g,t),new s(this.r*t,this.g*t,this.b*t,this.opacity)},rgb:function(){return this},displayable:function(){return 0<=this.r&&this.r<=255&&0<=this.g&&this.g<=255&&0<=this.b&&this.b<=255&&0<=this.opacity&&this.opacity<=1},toString:function(){var t=this.opacity;return t=isNaN(t)?1:Math.max(0,Math.min(1,t)),(1===t?\"rgb(\":\"rgba(\")+Math.max(0,Math.min(255,Math.round(this.r)||0))+\", \"+Math.max(0,Math.min(255,Math.round(this.g)||0))+\", \"+Math.max(0,Math.min(255,Math.round(this.b)||0))+(1===t?\")\":\", \"+t+\")\")}})),n.i(v.a)(h,p,n.i(v.b)(r,{brighter:function(t){return t=null==t?y:Math.pow(y,t),new h(this.h,this.s,this.l*t,this.opacity)},darker:function(t){return t=null==t?g:Math.pow(g,t),new h(this.h,this.s,this.l*t,this.opacity)},rgb:function(){var t=this.h%360+360*(this.h<0),e=isNaN(t)||isNaN(this.s)?0:this.s,n=this.l,r=n+(n<.5?n:1-n)*e,i=2*n-r;return new s(d(t>=240?t-240:t+120,i,r),d(t,i,r),d(t<120?t+240:t-120,i,r),this.opacity)},displayable:function(){return(0<=this.s&&this.s<=1||isNaN(this.s))&&0<=this.l&&this.l<=1&&0<=this.opacity&&this.opacity<=1}}))},function(t,e,n){\"use strict\";function r(t,e){var n=Object.create(t.prototype);for(var r in e)n[r]=e[r];return n}e.b=r,e.a=function(t,e,n){t.prototype=e.prototype=n,n.constructor=t}},function(t,e,n){\"use strict\";e.a=function(t,e){if((n=(t=e?t.toExponential(e-1):t.toExponential()).indexOf(\"e\"))<0)return null;var n,r=t.slice(0,n);return[r.length>1?r[0]+r.slice(2):r,+t.slice(n+1)]}},function(t,e,n){\"use strict\";function r(t,e,n,r,i){var o=t*t,a=o*t;return((1-3*t+3*o-a)*e+(4-6*o+3*a)*n+(1+3*t+3*o-3*a)*r+a*i)/6}e.b=r,e.a=function(t){var e=t.length-1;return function(n){var i=n<=0?n=0:n>=1?(n=1,e-1):Math.floor(n*e),o=t[i],a=t[i+1],u=i>0?t[i-1]:2*o-a,c=i<e-1?t[i+2]:2*a-o;return r((n-i/e)*e,u,o,a,c)}}},function(t,e,n){\"use strict\";var r=n(11),i=n(122),o=n(117),a=n(120),u=n(43),c=n(121),s=n(123),l=n(119);e.a=function(t,e){var f,p=typeof e;return null==e||\"boolean\"===p?n.i(l.a)(e):(\"number\"===p?u.a:\"string\"===p?(f=n.i(r.color)(e))?(e=f,i.a):s.a:e instanceof r.color?i.a:e instanceof Date?a.a:Array.isArray(e)?o.a:isNaN(e)?c.a:u.a)(t,e)}},function(t,e,n){\"use strict\";Object.defineProperty(e,\"__esModule\",{value:!0});var r=n(229);n.d(e,\"scaleBand\",function(){return r.a}),n.d(e,\"scalePoint\",function(){return r.b});var i=n(235);n.d(e,\"scaleIdentity\",function(){return i.a});var o=n(34);n.d(e,\"scaleLinear\",function(){return o.a});var a=n(236);n.d(e,\"scaleLog\",function(){return a.a});var u=n(126);n.d(e,\"scaleOrdinal\",function(){return u.a}),n.d(e,\"scaleImplicit\",function(){return u.b});var c=n(237);n.d(e,\"scalePow\",function(){return c.a}),n.d(e,\"scaleSqrt\",function(){return c.b});var s=n(238);n.d(e,\"scaleQuantile\",function(){return s.a});var l=n(239);n.d(e,\"scaleQuantize\",function(){return l.a});var f=n(242);n.d(e,\"scaleThreshold\",function(){return f.a});var p=n(127);n.d(e,\"scaleTime\",function(){return p.a});var h=n(244);n.d(e,\"scaleUtc\",function(){return h.a});var d=n(230);n.d(e,\"schemeCategory10\",function(){return d.a});var v=n(232);n.d(e,\"schemeCategory20b\",function(){return v.a});var g=n(233);n.d(e,\"schemeCategory20c\",function(){return g.a});var y=n(231);n.d(e,\"schemeCategory20\",function(){return y.a});var m=n(234);n.d(e,\"interpolateCubehelixDefault\",function(){return m.a});var _=n(240);n.d(e,\"interpolateRainbow\",function(){return _.a}),n.d(e,\"interpolateWarm\",function(){return _.b}),n.d(e,\"interpolateCool\",function(){return _.c});var b=n(245);n.d(e,\"interpolateViridis\",function(){return b.a}),n.d(e,\"interpolateMagma\",function(){return b.b}),n.d(e,\"interpolateInferno\",function(){return b.c}),n.d(e,\"interpolatePlasma\",function(){return b.d});var x=n(241);n.d(e,\"scaleSequential\",function(){return x.a})},function(t,e,n){\"use strict\";e.a=function(t){return function(){return t}}},function(t,e,n){\"use strict\";function r(t){return function(){var e=this.ownerDocument,n=this.namespaceURI;return n===a.b&&e.documentElement.namespaceURI===a.b?e.createElement(t):e.createElementNS(n,t)}}function i(t){return function(){return this.ownerDocument.createElementNS(t.space,t.local)}}var o=n(67),a=n(68);e.a=function(t){var e=n.i(o.a)(t);return(e.local?i:r)(e)}},function(t,e,n){\"use strict\";var r=n(68);e.a=function(t){var e=t+=\"\",n=e.indexOf(\":\");return n>=0&&\"xmlns\"!==(e=t.slice(0,n))&&(t=t.slice(n+1)),r.a.hasOwnProperty(e)?{space:r.a[e],local:t}:t}},function(t,e,n){\"use strict\";n.d(e,\"b\",function(){return r});var r=\"http://www.w3.org/1999/xhtml\";e.a={svg:\"http://www.w3.org/2000/svg\",xhtml:r,xlink:\"http://www.w3.org/1999/xlink\",xml:\"http://www.w3.org/XML/1998/namespace\",xmlns:\"http://www.w3.org/2000/xmlns/\"}},function(t,e,n){\"use strict\";e.a=function(t,e){var n=t.ownerSVGElement||t;if(n.createSVGPoint){var r=n.createSVGPoint();return r.x=e.clientX,r.y=e.clientY,r=r.matrixTransform(t.getScreenCTM().inverse()),[r.x,r.y]}var i=t.getBoundingClientRect();return[e.clientX-i.left-t.clientLeft,e.clientY-i.top-t.clientTop]}},function(t,e,n){\"use strict\";function r(t,e,n){return t=i(t,e,n),function(e){var n=e.relatedTarget;n&&(n===this||8&n.compareDocumentPosition(this))||t.call(this,e)}}function i(t,e,n){return function(r){var i=l;l=r;try{t.call(this,this.__data__,e,n)}finally{l=i}}}function o(t){return t.trim().split(/^|\\s+/).map(function(t){var e=\"\",n=t.indexOf(\".\");return n>=0&&(e=t.slice(n+1),t=t.slice(0,n)),{type:t,name:e}})}function a(t){return function(){var e=this.__on;if(e){for(var n,r=0,i=-1,o=e.length;r<o;++r)n=e[r],t.type&&n.type!==t.type||n.name!==t.name?e[++i]=n:this.removeEventListener(n.type,n.listener,n.capture);++i?e.length=i:delete this.__on}}}function u(t,e,n){var o=s.hasOwnProperty(t.type)?r:i;return function(r,i,a){var u,c=this.__on,s=o(e,i,a);if(c)for(var l=0,f=c.length;l<f;++l)if((u=c[l]).type===t.type&&u.name===t.name)return this.removeEventListener(u.type,u.listener,u.capture),this.addEventListener(u.type,u.listener=s,u.capture=n),void(u.value=e);this.addEventListener(t.type,s,n),u={type:t.type,name:t.name,value:e,listener:s,capture:n},c?c.push(u):this.__on=[u]}}function c(t,e,n,r){var i=l;t.sourceEvent=l,l=t;try{return e.apply(n,r)}finally{l=i}}n.d(e,\"a\",function(){return l}),e.b=c;var s={},l=null;if(\"undefined\"!=typeof document){var f=document.documentElement;\"onmouseenter\"in f||(s={mouseenter:\"mouseover\",mouseleave:\"mouseout\"})}e.c=function(t,e,n){var r,i,c=o(t+\"\"),s=c.length;{if(!(arguments.length<2)){for(l=e?u:a,null==n&&(n=!1),r=0;r<s;++r)this.each(l(c[r],e,n));return this}var l=this.node().__on;if(l)for(var f,p=0,h=l.length;p<h;++p)for(r=0,f=l[p];r<s;++r)if((i=c[r]).type===f.type&&i.name===f.name)return f.value}}},function(t,e,n){\"use strict\";function r(){}e.a=function(t){return null==t?r:function(){return this.querySelector(t)}}},function(t,e,n){\"use strict\";var r=n(70);e.a=function(){for(var t,e=r.a;t=e.sourceEvent;)e=t;return e}},function(t,e,n){\"use strict\";e.a=function(t){return t.ownerDocument&&t.ownerDocument.defaultView||t.document&&t||t.defaultView}},function(t,e,n){\"use strict\";function r(t,e,n){var r=t._x1,i=t._y1,a=t._x2,u=t._y2;if(t._l01_a>o.a){var c=2*t._l01_2a+3*t._l01_a*t._l12_a+t._l12_2a,s=3*t._l01_a*(t._l01_a+t._l12_a);r=(r*c-t._x0*t._l12_2a+t._x2*t._l01_2a)/s,i=(i*c-t._y0*t._l12_2a+t._y2*t._l01_2a)/s}if(t._l23_a>o.a){var l=2*t._l23_2a+3*t._l23_a*t._l12_a+t._l12_2a,f=3*t._l23_a*(t._l23_a+t._l12_a);a=(a*l+t._x1*t._l23_2a-e*t._l12_2a)/f,u=(u*l+t._y1*t._l23_2a-n*t._l12_2a)/f}t._context.bezierCurveTo(r,i,a,u,t._x2,t._y2)}function i(t,e){this._context=t,this._alpha=e}var o=n(35),a=n(47);e.b=r,i.prototype={areaStart:function(){this._line=0},areaEnd:function(){this._line=NaN},lineStart:function(){this._x0=this._x1=this._x2=this._y0=this._y1=this._y2=NaN,this._l01_a=this._l12_a=this._l23_a=this._l01_2a=this._l12_2a=this._l23_2a=this._point=0},lineEnd:function(){switch(this._point){case 2:this._context.lineTo(this._x2,this._y2);break;case 3:this.point(this._x2,this._y2)}(this._line||0!==this._line&&1===this._point)&&this._context.closePath(),this._line=1-this._line},point:function(t,e){if(t=+t,e=+e,this._point){var n=this._x2-t,i=this._y2-e;this._l23_a=Math.sqrt(this._l23_2a=Math.pow(n*n+i*i,this._alpha))}switch(this._point){case 0:this._point=1,this._line?this._context.lineTo(t,e):this._context.moveTo(t,e);break;case 1:this._point=2;break;case 2:this._point=3;default:r(this,t,e)}this._l01_a=this._l12_a,this._l12_a=this._l23_a,this._l01_2a=this._l12_2a,this._l12_2a=this._l23_2a,this._x0=this._x1,this._x1=this._x2,this._x2=t,this._y0=this._y1,this._y1=this._y2,this._y2=e}},e.a=function t(e){function n(t){return e?new i(t,e):new a.b(t,0)}return n.alpha=function(e){return t(+e)},n}(.5)},function(t,e,n){\"use strict\";var r=n(44),i=n(19),o=n(48),a=n(138);e.a=function(){function t(t){var i,o,a,p=t.length,h=!1;for(null==s&&(f=l(a=n.i(r.a)())),i=0;i<=p;++i)!(i<p&&c(o=t[i],i,t))===h&&((h=!h)?f.lineStart():f.lineEnd()),h&&f.point(+e(o,i,t),+u(o,i,t));if(a)return f=null,a+\"\"||null}var e=a.a,u=a.b,c=n.i(i.a)(!0),s=null,l=o.a,f=null;return t.x=function(r){return arguments.length?(e=\"function\"==typeof r?r:n.i(i.a)(+r),t):e},t.y=function(e){return arguments.length?(u=\"function\"==typeof e?e:n.i(i.a)(+e),t):u},t.defined=function(e){return arguments.length?(c=\"function\"==typeof e?e:n.i(i.a)(!!e),t):c},t.curve=function(e){return arguments.length?(l=e,null!=s&&(f=l(s)),t):l},t.context=function(e){return arguments.length?(null==e?s=f=null:f=l(s=e),t):s},t}},function(t,e,n){\"use strict\";function r(t){for(var e,n=0,r=-1,i=t.length;++r<i;)(e=+t[r][1])&&(n+=e);return n}var i=n(37);e.b=r,e.a=function(t){var e=t.map(r);return n.i(i.a)(t).sort(function(t,n){return e[t]-e[n]})}},function(t,e,n){\"use strict\";function r(t){return o=n.i(i.a)(t),a=o.format,u=o.parse,c=o.utcFormat,s=o.utcParse,o}var i=n(149);n.d(e,\"c\",function(){return a}),n.d(e,\"a\",function(){return c}),n.d(e,\"b\",function(){return s});var o,a,u,c,s;r({dateTime:\"%x, %X\",date:\"%-m/%-d/%Y\",time:\"%-I:%M:%S %p\",periods:[\"AM\",\"PM\"],days:[\"Sunday\",\"Monday\",\"Tuesday\",\"Wednesday\",\"Thursday\",\"Friday\",\"Saturday\"],shortDays:[\"Sun\",\"Mon\",\"Tue\",\"Wed\",\"Thu\",\"Fri\",\"Sat\"],months:[\"January\",\"February\",\"March\",\"April\",\"May\",\"June\",\"July\",\"August\",\"September\",\"October\",\"November\",\"December\"],shortMonths:[\"Jan\",\"Feb\",\"Mar\",\"Apr\",\"May\",\"Jun\",\"Jul\",\"Aug\",\"Sep\",\"Oct\",\"Nov\",\"Dec\"]})},function(t,e,n){\"use strict\";var r=(n(5),n(306));n.d(e,\"t\",function(){return r.a}),n.d(e,\"h\",function(){return r.a});var i=n(309);n.d(e,\"s\",function(){return i.a}),n.d(e,\"g\",function(){return i.a});var o=n(307);n.d(e,\"r\",function(){return o.a});var a=n(305);n.d(e,\"q\",function(){return a.a});var u=n(304);n.d(e,\"i\",function(){return u.a});var c=n(316);n.d(e,\"p\",function(){return c.a}),n.d(e,\"k\",function(){return c.a}),n.d(e,\"l\",function(){return c.b});var s=n(308);n.d(e,\"o\",function(){return s.a});var l=n(317);n.d(e,\"j\",function(){return l.a});var f=n(312);n.d(e,\"f\",function(){return f.a});var p=n(311);n.d(e,\"e\",function(){return p.a});var h=n(310);n.d(e,\"d\",function(){return h.a});var d=n(314);n.d(e,\"c\",function(){return d.a}),n.d(e,\"m\",function(){return d.a}),n.d(e,\"n\",function(){return d.b});var v=n(313);n.d(e,\"b\",function(){return v.a});var g=n(315);n.d(e,\"a\",function(){return g.a})},function(t,e,n){\"use strict\";function r(t,e){return t===e?0!==t||0!==e||1/t===1/e:t!==t&&e!==e}function i(t,e){if(r(t,e))return!0;if(\"object\"!=typeof t||null===t||\"object\"!=typeof e||null===e)return!1;var n=Object.keys(t),i=Object.keys(e);if(n.length!==i.length)return!1;for(var a=0;a<n.length;a++)if(!o.call(e,n[a])||!r(t[n[a]],e[n[a]]))return!1;return!0}var o=Object.prototype.hasOwnProperty;t.exports=i},function(t,e,n){\"use strict\";function r(t,e){return Array.isArray(e)&&(e=e[1]),e?e.nextSibling:t.firstChild}function i(t,e,n){l.insertTreeBefore(t,e,n)}function o(t,e,n){Array.isArray(e)?u(t,e[0],e[1],n):v(t,e,n)}function a(t,e){if(Array.isArray(e)){var n=e[1];e=e[0],c(t,e,n),t.removeChild(n)}t.removeChild(e)}function u(t,e,n,r){for(var i=e;;){var o=i.nextSibling;if(v(t,i,r),i===n)break;i=o}}function c(t,e,n){for(;;){var r=e.nextSibling;if(r===n)break;t.removeChild(r)}}function s(t,e,n){var r=t.parentNode,i=t.nextSibling;i===e?n&&v(r,document.createTextNode(n),i):n?(d(i,n),c(r,i,e)):c(r,t,e)}var l=n(20),f=n(336),p=(n(4),n(10),n(89)),h=n(55),d=n(171),v=p(function(t,e,n){t.insertBefore(e,n)}),g=f.dangerouslyReplaceNodeWithMarkup,y={dangerouslyReplaceNodeWithMarkup:g,replaceDelimitedText:s,processUpdates:function(t,e){for(var n=0;n<e.length;n++){var u=e[n];switch(u.type){case\"INSERT_MARKUP\":i(t,u.content,r(t,u.afterNode));break;case\"MOVE_EXISTING\":o(t,u.fromNode,r(t,u.afterNode));break;case\"SET_MARKUP\":h(t,u.content);break;case\"TEXT_CONTENT\":d(t,u.content);break;case\"REMOVE_NODE\":a(t,u.fromNode)}}}};t.exports=y},function(t,e,n){\"use strict\";var r={html:\"http://www.w3.org/1999/xhtml\",mathml:\"http://www.w3.org/1998/Math/MathML\",svg:\"http://www.w3.org/2000/svg\"};t.exports=r},function(t,e,n){\"use strict\";function r(){if(u)for(var t in c){var e=c[t],n=u.indexOf(t);if(n>-1?void 0:a(\"96\",t),!s.plugins[n]){e.extractEvents?void 0:a(\"97\",t),s.plugins[n]=e;var r=e.eventTypes;for(var o in r)i(r[o],e,o)?void 0:a(\"98\",o,t)}}}function i(t,e,n){\n", "s.eventNameDispatchConfigs.hasOwnProperty(n)?a(\"99\",n):void 0,s.eventNameDispatchConfigs[n]=t;var r=t.phasedRegistrationNames;if(r){for(var i in r)if(r.hasOwnProperty(i)){var u=r[i];o(u,e,n)}return!0}return!!t.registrationName&&(o(t.registrationName,e,n),!0)}function o(t,e,n){s.registrationNameModules[t]?a(\"100\",t):void 0,s.registrationNameModules[t]=e,s.registrationNameDependencies[t]=e.eventTypes[n].dependencies}var a=n(2),u=(n(0),null),c={},s={plugins:[],eventNameDispatchConfigs:{},registrationNameModules:{},registrationNameDependencies:{},possibleRegistrationNames:null,injectEventPluginOrder:function(t){u?a(\"101\"):void 0,u=Array.prototype.slice.call(t),r()},injectEventPluginsByName:function(t){var e=!1;for(var n in t)if(t.hasOwnProperty(n)){var i=t[n];c.hasOwnProperty(n)&&c[n]===i||(c[n]?a(\"102\",n):void 0,c[n]=i,e=!0)}e&&r()},getPluginModuleForEvent:function(t){var e=t.dispatchConfig;if(e.registrationName)return s.registrationNameModules[e.registrationName]||null;if(void 0!==e.phasedRegistrationNames){var n=e.phasedRegistrationNames;for(var r in n)if(n.hasOwnProperty(r)){var i=s.registrationNameModules[n[r]];if(i)return i}}return null},_resetEventPlugins:function(){u=null;for(var t in c)c.hasOwnProperty(t)&&delete c[t];s.plugins.length=0;var e=s.eventNameDispatchConfigs;for(var n in e)e.hasOwnProperty(n)&&delete e[n];var r=s.registrationNameModules;for(var i in r)r.hasOwnProperty(i)&&delete r[i]}};t.exports=s},function(t,e,n){\"use strict\";function r(t){var e=/[=:]/g,n={\"=\":\"=0\",\":\":\"=2\"},r=(\"\"+t).replace(e,function(t){return n[t]});return\"$\"+r}function i(t){var e=/(=0|=2)/g,n={\"=0\":\"=\",\"=2\":\":\"},r=\".\"===t[0]&&\"$\"===t[1]?t.substring(2):t.substring(1);return(\"\"+r).replace(e,function(t){return n[t]})}var o={escape:r,unescape:i};t.exports=o},function(t,e,n){\"use strict\";function r(t){null!=t.checkedLink&&null!=t.valueLink?u(\"87\"):void 0}function i(t){r(t),null!=t.value||null!=t.onChange?u(\"88\"):void 0}function o(t){r(t),null!=t.checked||null!=t.onChange?u(\"89\"):void 0}function a(t){if(t){var e=t.getName();if(e)return\" Check the render method of `\"+e+\"`.\"}return\"\"}var u=n(2),c=n(26),s=n(366),l=(n(0),n(1),{button:!0,checkbox:!0,image:!0,hidden:!0,radio:!0,reset:!0,submit:!0}),f={value:function(t,e,n){return!t[e]||l[t.type]||t.onChange||t.readOnly||t.disabled?null:new Error(\"You provided a `value` prop to a form field without an `onChange` handler. This will render a read-only field. If the field should be mutable use `defaultValue`. Otherwise, set either `onChange` or `readOnly`.\")},checked:function(t,e,n){return!t[e]||t.onChange||t.readOnly||t.disabled?null:new Error(\"You provided a `checked` prop to a form field without an `onChange` handler. This will render a read-only field. If the field should be mutable use `defaultChecked`. Otherwise, set either `onChange` or `readOnly`.\")},onChange:c.PropTypes.func},p={},h={checkPropTypes:function(t,e,n){for(var r in f){if(f.hasOwnProperty(r))var i=f[r](e,r,t,\"prop\",null,s);if(i instanceof Error&&!(i.message in p)){p[i.message]=!0;a(n)}}},getValue:function(t){return t.valueLink?(i(t),t.valueLink.value):t.value},getChecked:function(t){return t.checkedLink?(o(t),t.checkedLink.value):t.checked},executeOnChange:function(t,e){return t.valueLink?(i(t),t.valueLink.requestChange(e.target.value)):t.checkedLink?(o(t),t.checkedLink.requestChange(e.target.checked)):t.onChange?t.onChange.call(void 0,e):void 0}};t.exports=h},function(t,e,n){\"use strict\";var r=n(2),i=(n(0),!1),o={replaceNodeWithMarkup:null,processChildrenUpdates:null,injection:{injectEnvironment:function(t){i?r(\"104\"):void 0,o.replaceNodeWithMarkup=t.replaceNodeWithMarkup,o.processChildrenUpdates=t.processChildrenUpdates,i=!0}}};t.exports=o},function(t,e,n){\"use strict\";function r(t,e,n){try{e(n)}catch(t){null===i&&(i=t)}}var i=null,o={invokeGuardedCallback:r,invokeGuardedCallbackWithCatch:r,rethrowCaughtError:function(){if(i){var t=i;throw i=null,t}}};t.exports=o},function(t,e,n){\"use strict\";function r(t){c.enqueueUpdate(t)}function i(t){var e=typeof t;if(\"object\"!==e)return e;var n=t.constructor&&t.constructor.name||e,r=Object.keys(t);return r.length>0&&r.length<20?n+\" (keys: \"+r.join(\", \")+\")\":n}function o(t,e){var n=u.get(t);if(!n){return null}return n}var a=n(2),u=(n(15),n(40)),c=(n(10),n(12)),s=(n(0),n(1),{isMounted:function(t){var e=u.get(t);return!!e&&!!e._renderedComponent},enqueueCallback:function(t,e,n){s.validateCallback(e,n);var i=o(t);return i?(i._pendingCallbacks?i._pendingCallbacks.push(e):i._pendingCallbacks=[e],void r(i)):null},enqueueCallbackInternal:function(t,e){t._pendingCallbacks?t._pendingCallbacks.push(e):t._pendingCallbacks=[e],r(t)},enqueueForceUpdate:function(t){var e=o(t,\"forceUpdate\");e&&(e._pendingForceUpdate=!0,r(e))},enqueueReplaceState:function(t,e){var n=o(t,\"replaceState\");n&&(n._pendingStateQueue=[e],n._pendingReplaceState=!0,r(n))},enqueueSetState:function(t,e){var n=o(t,\"setState\");if(n){var i=n._pendingStateQueue||(n._pendingStateQueue=[]);i.push(e),r(n)}},enqueueElementInternal:function(t,e,n){t._pendingElement=e,t._context=n,r(t)},validateCallback:function(t,e){t&&\"function\"!=typeof t?a(\"122\",e,i(t)):void 0}});t.exports=s},function(t,e,n){\"use strict\";var r={currentScrollLeft:0,currentScrollTop:0,refreshScrollValues:function(t){r.currentScrollLeft=t.x,r.currentScrollTop=t.y}};t.exports=r},function(t,e,n){\"use strict\";var r=function(t){return\"undefined\"!=typeof MSApp&&MSApp.execUnsafeLocalFunction?function(e,n,r,i){MSApp.execUnsafeLocalFunction(function(){return t(e,n,r,i)})}:t};t.exports=r},function(t,e,n){\"use strict\";function r(t){var e,n=t.keyCode;return\"charCode\"in t?(e=t.charCode,0===e&&13===n&&(e=13)):e=n,e>=32||13===e?e:0}t.exports=r},function(t,e,n){\"use strict\";function r(t){var e=this,n=e.nativeEvent;if(n.getModifierState)return n.getModifierState(t);var r=o[t];return!!r&&!!n[r]}function i(t){return r}var o={Alt:\"altKey\",Control:\"ctrlKey\",Meta:\"metaKey\",Shift:\"shiftKey\"};t.exports=i},function(t,e,n){\"use strict\";function r(t){var e=t.target||t.srcElement||window;return e.correspondingUseElement&&(e=e.correspondingUseElement),3===e.nodeType?e.parentNode:e}t.exports=r},function(t,e,n){\"use strict\";/**\n", " * Checks if an event is supported in the current execution environment.\n", " *\n", " * NOTE: This will not work correctly for non-generic events such as `change`,\n", " * `reset`, `load`, `error`, and `select`.\n", " *\n", " * Borrows from Modernizr.\n", " *\n", " * @param {string} eventNameSuffix Event name, e.g. \"click\".\n", " * @param {?boolean} capture Check if the capture phase is supported.\n", " * @return {boolean} True if the event is supported.\n", " * @internal\n", " * @license Modernizr 3.0.0pre (Custom Build) | MIT\n", " */\n", "function r(t,e){if(!o.canUseDOM||e&&!(\"addEventListener\"in document))return!1;var n=\"on\"+t,r=n in document;if(!r){var a=document.createElement(\"div\");a.setAttribute(n,\"return;\"),r=\"function\"==typeof a[n]}return!r&&i&&\"wheel\"===t&&(r=document.implementation.hasFeature(\"Events.wheel\",\"3.0\")),r}var i,o=n(6);o.canUseDOM&&(i=document.implementation&&document.implementation.hasFeature&&document.implementation.hasFeature(\"\",\"\")!==!0),t.exports=r},function(t,e,n){\"use strict\";function r(t,e){var n=null===t||t===!1,r=null===e||e===!1;if(n||r)return n===r;var i=typeof t,o=typeof e;return\"string\"===i||\"number\"===i?\"string\"===o||\"number\"===o:\"object\"===o&&t.type===e.type&&t.key===e.key}t.exports=r},function(t,e,n){\"use strict\";var r=(n(3),n(9)),i=(n(1),r);t.exports=i},function(t,e,n){\"use strict\";function r(t,e,n){this.props=t,this.context=e,this.refs=a,this.updater=n||o}var i=n(28),o=n(97),a=(n(176),n(38));n(0),n(1);r.prototype.isReactComponent={},r.prototype.setState=function(t,e){\"object\"!=typeof t&&\"function\"!=typeof t&&null!=t?i(\"85\"):void 0,this.updater.enqueueSetState(this,t),e&&this.updater.enqueueCallback(this,e,\"setState\")},r.prototype.forceUpdate=function(t){this.updater.enqueueForceUpdate(this),t&&this.updater.enqueueCallback(this,t,\"forceUpdate\")};t.exports=r},function(t,e,n){\"use strict\";function r(t,e){}var i=(n(1),{isMounted:function(t){return!1},enqueueCallback:function(t,e){},enqueueForceUpdate:function(t){r(t,\"forceUpdate\")},enqueueReplaceState:function(t,e){r(t,\"replaceState\")},enqueueSetState:function(t,e){r(t,\"setState\")}});t.exports=i},function(t,e){var n;n=function(){return this}();try{n=n||Function(\"return this\")()||(0,eval)(\"this\")}catch(t){\"object\"==typeof window&&(n=window)}t.exports=n},function(t,e){t.exports=function(t){return t.webpackPolyfill||(t.deprecate=function(){},t.paths=[],t.children||(t.children=[]),Object.defineProperty(t,\"loaded\",{enumerable:!0,get:function(){return t.l}}),Object.defineProperty(t,\"id\",{enumerable:!0,get:function(){return t.i}}),t.webpackPolyfill=1),t}},function(t,e,n){\"use strict\";n.d(e,\"b\",function(){return i}),n.d(e,\"a\",function(){return o});var r=Array.prototype,i=r.slice,o=r.map},function(t,e,n){\"use strict\";var r=n(18),i=n(102);n.d(e,\"b\",function(){return a}),n.d(e,\"c\",function(){return u});var o=n.i(i.a)(r.a),a=o.right,u=o.left;e.a=a},function(t,e,n){\"use strict\";function r(t){return function(e,r){return n.i(i.a)(t(e),r)}}var i=n(18);e.a=function(t){return 1===t.length&&(t=r(t)),{left:function(e,n,r,i){for(null==r&&(r=0),null==i&&(i=e.length);r<i;){var o=r+i>>>1;t(e[o],n)<0?r=o+1:i=o}return r},right:function(e,n,r,i){for(null==r&&(r=0),null==i&&(i=e.length);r<i;){var o=r+i>>>1;t(e[o],n)>0?i=o:r=o+1}return r}}}},function(t,e,n){\"use strict\";var r=n(110);e.a=function(t,e){var i=n.i(r.a)(t,e);return i?Math.sqrt(i):i}},function(t,e,n){\"use strict\";e.a=function(t,e){var n,r,i,o=-1,a=t.length;if(null==e){for(;++o<a;)if(null!=(r=t[o])&&r>=r){n=i=r;break}for(;++o<a;)null!=(r=t[o])&&(n>r&&(n=r),i<r&&(i=r))}else{for(;++o<a;)if(null!=(r=e(t[o],o,t))&&r>=r){n=i=r;break}for(;++o<a;)null!=(r=e(t[o],o,t))&&(n>r&&(n=r),i<r&&(i=r))}return[n,i]}},function(t,e,n){\"use strict\";e.a=function(t,e){var n,r,i=-1,o=t.length;if(null==e){for(;++i<o;)if(null!=(r=t[i])&&r>=r){n=r;break}for(;++i<o;)null!=(r=t[i])&&n>r&&(n=r)}else{for(;++i<o;)if(null!=(r=e(t[i],i,t))&&r>=r){n=r;break}for(;++i<o;)null!=(r=e(t[i],i,t))&&n>r&&(n=r)}return n}},function(t,e,n){\"use strict\";e.a=function(t,e,n){t=+t,e=+e,n=(i=arguments.length)<2?(e=t,t=0,1):i<3?1:+n;for(var r=-1,i=0|Math.max(0,Math.ceil((e-t)/n)),o=new Array(i);++r<i;)o[r]=t+r*n;return o}},function(t,e,n){\"use strict\";e.a=function(t){return Math.ceil(Math.log(t.length)/Math.LN2)+1}},function(t,e,n){\"use strict\";function r(t,e,n){var r=Math.abs(e-t)/Math.max(0,n),i=Math.pow(10,Math.floor(Math.log(r)/Math.LN10)),c=r/i;return c>=o?i*=10:c>=a?i*=5:c>=u&&(i*=2),e<t?-i:i}var i=n(106);e.b=r;var o=Math.sqrt(50),a=Math.sqrt(10),u=Math.sqrt(2);e.a=function(t,e,o){var a=r(t,e,o);return n.i(i.a)(Math.ceil(t/a)*a,Math.floor(e/a)*a+a/2,a)}},function(t,e,n){\"use strict\";function r(t){return t.length}var i=n(105);e.a=function(t){if(!(u=t.length))return[];for(var e=-1,o=n.i(i.a)(t,r),a=new Array(o);++e<o;)for(var u,c=-1,s=a[e]=new Array(u);++c<u;)s[c]=t[c][e];return a}},function(t,e,n){\"use strict\";var r=n(29);e.a=function(t,e){var i,o,a=t.length,u=0,c=0,s=-1,l=0;if(null==e)for(;++s<a;)isNaN(i=n.i(r.a)(t[s]))||(o=i-u,u+=o/++l,c+=o*(i-u));else for(;++s<a;)isNaN(i=n.i(r.a)(e(t[s],s,t)))||(o=i-u,u+=o/++l,c+=o*(i-u));if(l>1)return c/(l-1)}},function(t,e,n){\"use strict\";Object.defineProperty(e,\"__esModule\",{value:!0});var r=n(201);n.d(e,\"axisTop\",function(){return r.a}),n.d(e,\"axisRight\",function(){return r.b}),n.d(e,\"axisBottom\",function(){return r.c}),n.d(e,\"axisLeft\",function(){return r.d})},function(t,e,n){\"use strict\";n.d(e,\"b\",function(){return r}),n.d(e,\"a\",function(){return i});var r=Math.PI/180,i=180/Math.PI},function(t,e,n){\"use strict\";var r=n(61);n.d(e,\"b\",function(){return i});var i;e.a=function(t,e){var o=n.i(r.a)(t,e);if(!o)return t+\"\";var a=o[0],u=o[1],c=u-(i=3*Math.max(-8,Math.min(8,Math.floor(u/3))))+1,s=a.length;return c===s?a:c>s?a+new Array(c-s+1).join(\"0\"):c>0?a.slice(0,c)+\".\"+a.slice(c):\"0.\"+new Array(1-c).join(\"0\")+n.i(r.a)(t,Math.max(0,e+c-1))[0]}},function(t,e,n){\"use strict\";function r(t){if(!(e=o.exec(t)))throw new Error(\"invalid format: \"+t);var e,n=e[1]||\" \",r=e[2]||\">\",a=e[3]||\"-\",u=e[4]||\"\",c=!!e[5],s=e[6]&&+e[6],l=!!e[7],f=e[8]&&+e[8].slice(1),p=e[9]||\"\";\"n\"===p?(l=!0,p=\"g\"):i.a[p]||(p=\"\"),(c||\"0\"===n&&\"=\"===r)&&(c=!0,n=\"0\",r=\"=\"),this.fill=n,this.align=r,this.sign=a,this.symbol=u,this.zero=c,this.width=s,this.comma=l,this.precision=f,this.type=p}var i=n(115),o=/^(?:(.)?([<>=^]))?([+\\-\\( ])?([$#])?(0)?(\\d+)?(,)?(\\.\\d+)?([a-z%])?$/i;e.a=function(t){return new r(t)},r.prototype.toString=function(){return this.fill+this.align+this.sign+this.symbol+(this.zero?\"0\":\"\")+(null==this.width?\"\":Math.max(1,0|this.width))+(this.comma?\",\":\"\")+(null==this.precision?\"\":\".\"+Math.max(0,0|this.precision))+this.type}},function(t,e,n){\"use strict\";var r=n(212),i=n(113),o=n(214);e.a={\"\":r.a,\"%\":function(t,e){return(100*t).toFixed(e)},b:function(t){return Math.round(t).toString(2)},c:function(t){return t+\"\"},d:function(t){return Math.round(t).toString(10)},e:function(t,e){return t.toExponential(e)},f:function(t,e){return t.toFixed(e)},g:function(t,e){return t.toPrecision(e)},o:function(t){return Math.round(t).toString(8)},p:function(t,e){return n.i(o.a)(100*t,e)},r:o.a,s:i.a,X:function(t){return Math.round(t).toString(16).toUpperCase()},x:function(t){return Math.round(t).toString(16)}}},function(t,e,n){\"use strict\";function r(t){return t}var i=n(42),o=n(213),a=n(114),u=n(115),c=n(113),s=[\"y\",\"z\",\"a\",\"f\",\"p\",\"n\",\"µ\",\"m\",\"\",\"k\",\"M\",\"G\",\"T\",\"P\",\"E\",\"Z\",\"Y\"];e.a=function(t){function e(t){function e(t){var e,n,a,u=_,l=b;if(\"c\"===m)l=x(t)+l,t=\"\";else{t=+t;var p=(t<0||1/t<0)&&(t*=-1,!0);if(t=x(t,y),p)for(e=-1,n=t.length,p=!1;++e<n;)if(a=t.charCodeAt(e),48<a&&a<58||\"x\"===m&&96<a&&a<103||\"X\"===m&&64<a&&a<71){p=!0;break}if(u=(p?\"(\"===o?o:\"-\":\"-\"===o||\"(\"===o?\"\":o)+u,l=l+(\"s\"===m?s[8+c.b/3]:\"\")+(p&&\"(\"===o?\")\":\"\"),w)for(e=-1,n=t.length;++e<n;)if(a=t.charCodeAt(e),48>a||a>57){l=(46===a?h+t.slice(e+1):t.slice(e))+l,t=t.slice(0,e);break}}g&&!d&&(t=f(t,1/0));var C=u.length+t.length+l.length,M=C<v?new Array(v-C+1).join(r):\"\";switch(g&&d&&(t=f(M+t,M.length?v-l.length:1/0),M=\"\"),i){case\"<\":return u+t+l+M;case\"=\":return u+M+t+l;case\"^\":return M.slice(0,C=M.length>>1)+u+t+l+M.slice(C)}return M+u+t+l}t=n.i(a.a)(t);var r=t.fill,i=t.align,o=t.sign,l=t.symbol,d=t.zero,v=t.width,g=t.comma,y=t.precision,m=t.type,_=\"$\"===l?p[0]:\"#\"===l&&/[boxX]/.test(m)?\"0\"+m.toLowerCase():\"\",b=\"$\"===l?p[1]:/[%p]/.test(m)?\"%\":\"\",x=u.a[m],w=!m||/[defgprs%]/.test(m);return y=null==y?m?6:12:/[gprs]/.test(m)?Math.max(1,Math.min(21,y)):Math.max(0,Math.min(20,y)),e.toString=function(){return t+\"\"},e}function l(t,r){var o=e((t=n.i(a.a)(t),t.type=\"f\",t)),u=3*Math.max(-8,Math.min(8,Math.floor(n.i(i.a)(r)/3))),c=Math.pow(10,-u),l=s[8+u/3];return function(t){return o(c*t)+l}}var f=t.grouping&&t.thousands?n.i(o.a)(t.grouping,t.thousands):r,p=t.currency,h=t.decimal;return{format:e,formatPrefix:l}}},function(t,e,n){\"use strict\";var r=n(63);e.a=function(t,e){var i,o=e?e.length:0,a=t?Math.min(o,t.length):0,u=new Array(o),c=new Array(o);for(i=0;i<a;++i)u[i]=n.i(r.a)(t[i],e[i]);for(;i<o;++i)c[i]=e[i];return function(t){for(i=0;i<a;++i)c[i]=u[i](t);return c}}},function(t,e,n){\"use strict\";var r=n(62);e.a=function(t){var e=t.length;return function(i){var o=Math.floor(((i%=1)<0?++i:i)*e),a=t[(o+e-1)%e],u=t[o%e],c=t[(o+1)%e],s=t[(o+2)%e];return n.i(r.b)((i-o/e)*e,a,u,c,s)}}},function(t,e,n){\"use strict\";e.a=function(t){return function(){return t}}},function(t,e,n){\"use strict\";e.a=function(t,e){var n=new Date;return t=+t,e-=t,function(r){return n.setTime(t+e*r),n}}},function(t,e,n){\"use strict\";var r=n(63);e.a=function(t,e){var i,o={},a={};null!==t&&\"object\"==typeof t||(t={}),null!==e&&\"object\"==typeof e||(e={});for(i in e)i in t?o[i]=n.i(r.a)(t[i],e[i]):a[i]=e[i];return function(t){for(i in o)a[i]=o[i](t);return a}}},function(t,e,n){\"use strict\";function r(t){return function(e){var r,o,a=e.length,u=new Array(a),c=new Array(a),s=new Array(a);for(r=0;r<a;++r)o=n.i(i.rgb)(e[r]),u[r]=o.r||0,c[r]=o.g||0,s[r]=o.b||0;return u=t(u),c=t(c),s=t(s),o.opacity=1,function(t){return o.r=u(t),o.g=c(t),o.b=s(t),o+\"\"}}}var i=n(11),o=n(62),a=n(118),u=n(32);e.a=function t(e){function r(t,e){var r=o((t=n.i(i.rgb)(t)).r,(e=n.i(i.rgb)(e)).r),a=o(t.g,e.g),c=o(t.b,e.b),s=n.i(u.a)(t.opacity,e.opacity);return function(e){return t.r=r(e),t.g=a(e),t.b=c(e),t.opacity=s(e),t+\"\"}}var o=n.i(u.c)(e);return r.gamma=t,r}(1);r(o.a),r(a.a)},function(t,e,n){\"use strict\";function r(t){return function(){return t}}function i(t){return function(e){return t(e)+\"\"}}var o=n(43),a=/[-+]?(?:\\d+\\.?\\d*|\\.?\\d+)(?:[eE][-+]?\\d+)?/g,u=new RegExp(a.source,\"g\");e.a=function(t,e){var c,s,l,f=a.lastIndex=u.lastIndex=0,p=-1,h=[],d=[];for(t+=\"\",e+=\"\";(c=a.exec(t))&&(s=u.exec(e));)(l=s.index)>f&&(l=e.slice(f,l),h[p]?h[p]+=l:h[++p]=l),(c=c[0])===(s=s[0])?h[p]?h[p]+=s:h[++p]=s:(h[++p]=null,d.push({i:p,x:n.i(o.a)(c,s)})),f=u.lastIndex;return f<e.length&&(l=e.slice(f),h[p]?h[p]+=l:h[++p]=l),h.length<2?d[0]?i(d[0].x):r(e):(e=d.length,function(t){for(var n,r=0;r<e;++r)h[(n=d[r]).i]=n.x(t);return h.join(\"\")})}},function(t,e,n){\"use strict\";e.a=function(t,e){t=t.slice();var n,r=0,i=t.length-1,o=t[r],a=t[i];return a<o&&(n=r,r=i,i=n,n=o,o=a,a=n),t[r]=e.floor(o),t[i]=e.ceil(a),t}},function(t,e,n){\"use strict\";e.a=function(t){return+t}},function(t,e,n){\"use strict\";function r(t){function e(e){var n=e+\"\",r=u.get(n);if(!r){if(s!==a)return s;u.set(n,r=c.push(e))}return t[(r-1)%t.length]}var u=n.i(i.a)(),c=[],s=a;return t=null==t?[]:o.b.call(t),e.domain=function(t){if(!arguments.length)return c.slice();c=[],u=n.i(i.a)();for(var r,o,a=-1,s=t.length;++a<s;)u.has(o=(r=t[a])+\"\")||u.set(o,c.push(r));return e},e.range=function(n){return arguments.length?(t=o.b.call(n),e):t.slice()},e.unknown=function(t){return arguments.length?(s=t,e):s},e.copy=function(){return r().domain(c).range(t).unknown(s)},e}var i=n(203),o=n(16);n.d(e,\"b\",function(){return a}),e.a=r;var a={name:\"implicit\"}},function(t,e,n){\"use strict\";function r(t){return new Date(t)}function i(t){return t instanceof Date?+t:+new Date(+t)}function o(t,e,c,s,b,x,w,C,M){function k(n){return(w(n)<n?A:x(n)<n?P:b(n)<n?O:s(n)<n?I:e(n)<n?c(n)<n?D:R:t(n)<n?L:U)(n)}function E(e,r,i,o){if(null==e&&(e=10),\"number\"==typeof e){var u=Math.abs(i-r)/e,c=n.i(a.bisector)(function(t){return t[2]}).right(F,u);c===F.length?(o=n.i(a.tickStep)(r/_,i/_,e),e=t):c?(c=F[u/F[c-1][2]<F[c][2]/u?c-1:c],o=c[1],e=c[0]):(o=n.i(a.tickStep)(r,i,e),e=C)}return null==o?e:e.every(o)}var T=n.i(f.a)(f.b,u.a),S=T.invert,N=T.domain,A=M(\".%L\"),P=M(\":%S\"),O=M(\"%I:%M\"),I=M(\"%I %p\"),D=M(\"%a %d\"),R=M(\"%b %d\"),L=M(\"%B\"),U=M(\"%Y\"),F=[[w,1,h],[w,5,5*h],[w,15,15*h],[w,30,30*h],[x,1,d],[x,5,5*d],[x,15,15*d],[x,30,30*d],[b,1,v],[b,3,3*v],[b,6,6*v],[b,12,12*v],[s,1,g],[s,2,2*g],[c,1,y],[e,1,m],[e,3,3*m],[t,1,_]];return T.invert=function(t){return new Date(S(t))},T.domain=function(t){return arguments.length?N(l.a.call(t,i)):N().map(r)},T.ticks=function(t,e){var n,r=N(),i=r[0],o=r[r.length-1],a=o<i;return a&&(n=i,i=o,o=n),n=E(t,i,o,e),n=n?n.range(i,o+1):[],a?n.reverse():n},T.tickFormat=function(t,e){return null==e?k:M(e)},T.nice=function(t,e){var r=N();return(t=E(t,r[0],r[r.length-1],e))?N(n.i(p.a)(r,t)):T},T.copy=function(){return n.i(f.c)(T,o(t,e,c,s,b,x,w,C,M))},T}var a=n(7),u=n(31),c=n(78),s=n(147),l=n(16),f=n(45),p=n(124);e.b=o;var h=1e3,d=60*h,v=60*d,g=24*v,y=7*g,m=30*g,_=365*g;e.a=function(){return o(c.j,c.o,c.p,c.i,c.q,c.r,c.s,c.t,s.b).domain([new Date(2e3,0,1),new Date(2e3,0,2)])}},function(t,e,n){\"use strict\";Object.defineProperty(e,\"__esModule\",{value:!0});var r=n(66);n.d(e,\"creator\",function(){return r.a});var i=n(247);n.d(e,\"local\",function(){return i.a});var o=n(129);n.d(e,\"matcher\",function(){return o.a});var a=n(248);n.d(e,\"mouse\",function(){return a.a});var u=n(67);n.d(e,\"namespace\",function(){return u.a});var c=n(68);n.d(e,\"namespaces\",function(){return c.a});var s=n(249);n.d(e,\"select\",function(){return s.a});var l=n(250);n.d(e,\"selectAll\",function(){return l.a});var f=n(8);n.d(e,\"selection\",function(){return f.a});var p=n(71);n.d(e,\"selector\",function(){return p.a});var h=n(132);n.d(e,\"selectorAll\",function(){return h.a});var d=n(278);n.d(e,\"touch\",function(){return d.a});var v=n(279);n.d(e,\"touches\",function(){return v.a});var g=n(73);n.d(e,\"window\",function(){return g.a});var y=n(70);n.d(e,\"event\",function(){return y.a}),n.d(e,\"customEvent\",function(){return y.b})},function(t,e,n){\"use strict\";var r=function(t){return function(){return this.matches(t)}};if(\"undefined\"!=typeof document){var i=document.documentElement;if(!i.matches){var o=i.webkitMatchesSelector||i.msMatchesSelector||i.mozMatchesSelector||i.oMatchesSelector;r=function(t){return function(){return o.call(this,t)}}}}e.a=r},function(t,e,n){\"use strict\";function r(t,e){this.ownerDocument=t.ownerDocument,this.namespaceURI=t.namespaceURI,this._next=null,this._parent=t,this.__data__=e}var i=n(131),o=n(8);e.b=r,e.a=function(){return new o.b(this._enter||this._groups.map(i.a),this._parents)},r.prototype={constructor:r,appendChild:function(t){return this._parent.insertBefore(t,this._next)},insertBefore:function(t,e){return this._parent.insertBefore(t,e)},querySelector:function(t){return this._parent.querySelector(t)},querySelectorAll:function(t){return this._parent.querySelectorAll(t)}}},function(t,e,n){\"use strict\";e.a=function(t){return new Array(t.length)}},function(t,e,n){\"use strict\";function r(){return[]}e.a=function(t){return null==t?r:function(){return this.querySelectorAll(t)}}},function(t,e,n){\"use strict\";Object.defineProperty(e,\"__esModule\",{value:!0});var r=n(280);n.d(e,\"arc\",function(){return r.a});var i=n(134);n.d(e,\"area\",function(){return i.a});var o=n(75);n.d(e,\"line\",function(){return o.a});var a=n(299);n.d(e,\"pie\",function(){return a.a});var u=n(300);n.d(e,\"radialArea\",function(){return u.a});var c=n(139);n.d(e,\"radialLine\",function(){return c.a});var s=n(302);n.d(e,\"symbol\",function(){return s.a}),n.d(e,\"symbols\",function(){return s.b});var l=n(140);n.d(e,\"symbolCircle\",function(){return l.a});var f=n(141);n.d(e,\"symbolCross\",function(){return f.a});var p=n(142);n.d(e,\"symbolDiamond\",function(){return p.a});var h=n(143);n.d(e,\"symbolSquare\",function(){return h.a});var d=n(144);n.d(e,\"symbolStar\",function(){return d.a});var v=n(145);n.d(e,\"symbolTriangle\",function(){return v.a});var g=n(146);n.d(e,\"symbolWye\",function(){return g.a});var y=n(282);n.d(e,\"curveBasisClosed\",function(){return y.a});var m=n(283);n.d(e,\"curveBasisOpen\",function(){return m.a});var _=n(46);n.d(e,\"curveBasis\",function(){return _.a});var b=n(284);n.d(e,\"curveBundle\",function(){return b.a});var x=n(135);n.d(e,\"curveCardinalClosed\",function(){return x.a});var w=n(136);n.d(e,\"curveCardinalOpen\",function(){return w.a});var C=n(47);n.d(e,\"curveCardinal\",function(){return C.a});var M=n(285);n.d(e,\"curveCatmullRomClosed\",function(){return M.a});var k=n(286);n.d(e,\"curveCatmullRomOpen\",function(){return k.a});var E=n(74);n.d(e,\"curveCatmullRom\",function(){return E.a});var T=n(287);n.d(e,\"curveLinearClosed\",function(){return T.a});var S=n(48);n.d(e,\"curveLinear\",function(){return S.a});var N=n(288);n.d(e,\"curveMonotoneX\",function(){return N.a}),n.d(e,\"curveMonotoneY\",function(){return N.b});var A=n(289);n.d(e,\"curveNatural\",function(){return A.a});var P=n(290);n.d(e,\"curveStep\",function(){return P.a}),n.d(e,\"curveStepAfter\",function(){return P.b}),n.d(e,\"curveStepBefore\",function(){return P.c});var O=n(301);n.d(e,\"stack\",function(){return O.a});var I=n(293);n.d(e,\"stackOffsetExpand\",function(){return I.a});var D=n(36);n.d(e,\"stackOffsetNone\",function(){return D.a});var R=n(294);n.d(e,\"stackOffsetSilhouette\",function(){return R.a});var L=n(295);n.d(e,\"stackOffsetWiggle\",function(){return L.a});var U=n(76);n.d(e,\"stackOrderAscending\",function(){return U.a});var F=n(296);n.d(e,\"stackOrderDescending\",function(){return F.a});var j=n(297);n.d(e,\"stackOrderInsideOut\",function(){return j.a});var B=n(37);n.d(e,\"stackOrderNone\",function(){return B.a});var W=n(298);n.d(e,\"stackOrderReverse\",function(){return W.a})},function(t,e,n){\"use strict\";var r=n(44),i=n(19),o=n(48),a=n(75),u=n(138);e.a=function(){function t(t){var e,i,o,a,u,g=t.length,y=!1,m=new Array(g),_=new Array(g);for(null==h&&(v=d(u=n.i(r.a)())),e=0;e<=g;++e){if(!(e<g&&p(a=t[e],e,t))===y)if(y=!y)i=e,v.areaStart(),v.lineStart();else{for(v.lineEnd(),v.lineStart(),o=e-1;o>=i;--o)v.point(m[o],_[o]);v.lineEnd(),v.areaEnd()}y&&(m[e]=+c(a,e,t),_[e]=+l(a,e,t),v.point(s?+s(a,e,t):m[e],f?+f(a,e,t):_[e]))}if(u)return v=null,u+\"\"||null}function e(){return n.i(a.a)().defined(p).curve(d).context(h)}var c=u.a,s=null,l=n.i(i.a)(0),f=u.b,p=n.i(i.a)(!0),h=null,d=o.a,v=null;return t.x=function(e){return arguments.length?(c=\"function\"==typeof e?e:n.i(i.a)(+e),s=null,t):c},t.x0=function(e){return arguments.length?(c=\"function\"==typeof e?e:n.i(i.a)(+e),t):c},t.x1=function(e){return arguments.length?(s=null==e?null:\"function\"==typeof e?e:n.i(i.a)(+e),t):s},t.y=function(e){return arguments.length?(l=\"function\"==typeof e?e:n.i(i.a)(+e),f=null,t):l},t.y0=function(e){return arguments.length?(l=\"function\"==typeof e?e:n.i(i.a)(+e),t):l},t.y1=function(e){return arguments.length?(f=null==e?null:\"function\"==typeof e?e:n.i(i.a)(+e),t):f},t.lineX0=t.lineY0=function(){return e().x(c).y(l)},t.lineY1=function(){return e().x(c).y(f)},t.lineX1=function(){return e().x(s).y(l)},t.defined=function(e){return arguments.length?(p=\"function\"==typeof e?e:n.i(i.a)(!!e),t):p},t.curve=function(e){return arguments.length?(d=e,null!=h&&(v=d(h)),t):d},t.context=function(e){return arguments.length?(null==e?h=v=null:v=d(h=e),t):h},t}},function(t,e,n){\"use strict\";function r(t,e){this._context=t,this._k=(1-e)/6}var i=n(49),o=n(47);e.b=r,r.prototype={areaStart:i.a,areaEnd:i.a,lineStart:function(){this._x0=this._x1=this._x2=this._x3=this._x4=this._x5=this._y0=this._y1=this._y2=this._y3=this._y4=this._y5=NaN,this._point=0},lineEnd:function(){switch(this._point){case 1:this._context.moveTo(this._x3,this._y3),this._context.closePath();break;case 2:this._context.lineTo(this._x3,this._y3),this._context.closePath();break;case 3:this.point(this._x3,this._y3),this.point(this._x4,this._y4),this.point(this._x5,this._y5)}},point:function(t,e){switch(t=+t,e=+e,this._point){case 0:this._point=1,this._x3=t,this._y3=e;break;case 1:this._point=2,this._context.moveTo(this._x4=t,this._y4=e);break;case 2:this._point=3,this._x5=t,this._y5=e;break;default:n.i(o.c)(this,t,e)}this._x0=this._x1,this._x1=this._x2,this._x2=t,this._y0=this._y1,this._y1=this._y2,this._y2=e}},e.a=function t(e){function n(t){return new r(t,e)}return n.tension=function(e){return t(+e)},n}(0)},function(t,e,n){\"use strict\";function r(t,e){this._context=t,this._k=(1-e)/6}var i=n(47);e.b=r,r.prototype={areaStart:function(){this._line=0},areaEnd:function(){this._line=NaN},lineStart:function(){this._x0=this._x1=this._x2=this._y0=this._y1=this._y2=NaN,this._point=0},lineEnd:function(){(this._line||0!==this._line&&3===this._point)&&this._context.closePath(),this._line=1-this._line},point:function(t,e){switch(t=+t,e=+e,this._point){case 0:this._point=1;break;case 1:this._point=2;break;case 2:this._point=3,this._line?this._context.lineTo(this._x2,this._y2):this._context.moveTo(this._x2,this._y2);break;case 3:this._point=4;default:n.i(i.c)(this,t,e)}this._x0=this._x1,this._x1=this._x2,this._x2=t,this._y0=this._y1,this._y1=this._y2,this._y2=e}},e.a=function t(e){function n(t){return new r(t,e)}return n.tension=function(e){return t(+e)},n}(0)},function(t,e,n){\"use strict\";function r(t){this._curve=t}function i(t){function e(e){return new r(t(e))}return e._curve=t,e}var o=n(48);n.d(e,\"b\",function(){return a}),e.a=i;var a=i(o.a);r.prototype={areaStart:function(){this._curve.areaStart()},areaEnd:function(){this._curve.areaEnd()},lineStart:function(){this._curve.lineStart()},lineEnd:function(){this._curve.lineEnd()},point:function(t,e){this._curve.point(e*Math.sin(t),e*-Math.cos(t))}}},function(t,e,n){\"use strict\";function r(t){return t[0]}function i(t){return t[1]}e.a=r,e.b=i},function(t,e,n){\"use strict\";function r(t){var e=t.curve;return t.angle=t.x,delete t.x,t.radius=t.y,delete t.y,t.curve=function(t){return arguments.length?e(n.i(i.a)(t)):e()._curve},t}var i=n(137),o=n(75);e.b=r,e.a=function(){return r(n.i(o.a)().curve(i.b))}},function(t,e,n){\"use strict\";var r=n(35);e.a={draw:function(t,e){var n=Math.sqrt(e/r.b);t.moveTo(n,0),t.arc(0,0,n,0,r.c)}}},function(t,e,n){\"use strict\";e.a={draw:function(t,e){var n=Math.sqrt(e/5)/2;t.moveTo(-3*n,-n),t.lineTo(-n,-n),t.lineTo(-n,-3*n),t.lineTo(n,-3*n),t.lineTo(n,-n),t.lineTo(3*n,-n),t.lineTo(3*n,n),t.lineTo(n,n),t.lineTo(n,3*n),t.lineTo(-n,3*n),t.lineTo(-n,n),t.lineTo(-3*n,n),t.closePath()}}},function(t,e,n){\"use strict\";var r=Math.sqrt(1/3),i=2*r;e.a={draw:function(t,e){var n=Math.sqrt(e/i),o=n*r;t.moveTo(0,-n),t.lineTo(o,0),t.lineTo(0,n),t.lineTo(-o,0),t.closePath()}}},function(t,e,n){\"use strict\";e.a={draw:function(t,e){var n=Math.sqrt(e),r=-n/2;t.rect(r,r,n,n)}}},function(t,e,n){\"use strict\";var r=n(35),i=.8908130915292852,o=Math.sin(r.b/10)/Math.sin(7*r.b/10),a=Math.sin(r.c/10)*o,u=-Math.cos(r.c/10)*o;e.a={draw:function(t,e){var n=Math.sqrt(e*i),o=a*n,c=u*n;t.moveTo(0,-n),t.lineTo(o,c);for(var s=1;s<5;++s){var l=r.c*s/5,f=Math.cos(l),p=Math.sin(l);t.lineTo(p*n,-f*n),t.lineTo(f*o-p*c,p*o+f*c)}t.closePath()}}},function(t,e,n){\"use strict\";var r=Math.sqrt(3);e.a={draw:function(t,e){var n=-Math.sqrt(e/(3*r));t.moveTo(0,2*n),t.lineTo(-r*n,-n),t.lineTo(r*n,-n),t.closePath()}}},function(t,e,n){\"use strict\";var r=-.5,i=Math.sqrt(3)/2,o=1/Math.sqrt(12),a=3*(o/2+1);e.a={draw:function(t,e){var n=Math.sqrt(e/a),u=n/2,c=n*o,s=u,l=n*o+n,f=-s,p=l;t.moveTo(u,c),t.lineTo(s,l),t.lineTo(f,p),t.lineTo(r*u-i*c,i*u+r*c),t.lineTo(r*s-i*l,i*s+r*l),t.lineTo(r*f-i*p,i*f+r*p),t.lineTo(r*u+i*c,r*c-i*u),t.lineTo(r*s+i*l,r*l-i*s),t.lineTo(r*f+i*p,r*p-i*f),t.closePath()}}},function(t,e,n){\"use strict\";var r=n(77);n.d(e,\"b\",function(){return r.c}),n.d(e,\"a\",function(){return r.a});n(149),n(148),n(303)},function(t,e,n){\"use strict\";function r(t){return t.toISOString()}var i=n(77);n.d(e,\"a\",function(){return o});var o=\"%Y-%m-%dT%H:%M:%S.%LZ\";Date.prototype.toISOString?r:n.i(i.a)(o)},function(t,e,n){\"use strict\";function r(t){if(0<=t.y&&t.y<100){var e=new Date(-1,t.m,t.d,t.H,t.M,t.S,t.L);return e.setFullYear(t.y),e}return new Date(t.y,t.m,t.d,t.H,t.M,t.S,t.L)}function i(t){if(0<=t.y&&t.y<100){var e=new Date(Date.UTC(-1,t.m,t.d,t.H,t.M,t.S,t.L));return e.setUTCFullYear(t.y),e}return new Date(Date.UTC(t.y,t.m,t.d,t.H,t.M,t.S,t.L))}function o(t){return{y:t,m:0,d:1,H:0,M:0,S:0,L:0}}function a(t){function e(t,e){return function(n){var r,i,o,a=[],u=-1,c=0,s=t.length;for(n instanceof Date||(n=new Date(+n));++u<s;)37===t.charCodeAt(u)&&(a.push(t.slice(c,u)),null!=(i=et[r=t.charAt(++u)])?r=t.charAt(++u):i=\"e\"===r?\" \":\"0\",(o=e[r])&&(r=o(n,i)),a.push(r),c=u+1);return a.push(t.slice(c,u)),a.join(\"\")}}function n(t,e){return function(n){var r=o(1900),u=a(r,t,n+=\"\",0);if(u!=n.length)return null;if(\"p\"in r&&(r.H=r.H%12+12*r.p),\"W\"in r||\"U\"in r){\"w\"in r||(r.w=\"W\"in r?1:0);var c=\"Z\"in r?i(o(r.y)).getUTCDay():e(o(r.y)).getDay();r.m=0,r.d=\"W\"in r?(r.w+6)%7+7*r.W-(c+5)%7:r.w+7*r.U-(c+6)%7}return\"Z\"in r?(r.H+=r.Z/100|0,r.M+=r.Z%100,i(r)):e(r)}}function a(t,e,n,r){for(var i,o,a=0,u=e.length,c=n.length;a<u;){if(r>=c)return-1;if(i=e.charCodeAt(a++),37===i){if(i=e.charAt(a++),o=Ut[i in et?e.charAt(a++):i],!o||(r=o(t,n,r))<0)return-1}else if(i!=n.charCodeAt(r++))return-1}return r}function u(t,e,n){var r=kt.exec(e.slice(n));return r?(t.p=Et[r[0].toLowerCase()],n+r[0].length):-1}function c(t,e,n){var r=Nt.exec(e.slice(n));return r?(t.w=At[r[0].toLowerCase()],n+r[0].length):-1}function tt(t,e,n){var r=Tt.exec(e.slice(n));return r?(t.w=St[r[0].toLowerCase()],n+r[0].length):-1}function nt(t,e,n){var r=It.exec(e.slice(n));return r?(t.m=Dt[r[0].toLowerCase()],n+r[0].length):-1}function rt(t,e,n){var r=Pt.exec(e.slice(n));return r?(t.m=Ot[r[0].toLowerCase()],n+r[0].length):-1}function it(t,e,n){return a(t,yt,e,n)}function ot(t,e,n){return a(t,mt,e,n)}function at(t,e,n){return a(t,_t,e,n)}function ut(t){return wt[t.getDay()]}function ct(t){return xt[t.getDay()]}function st(t){return Mt[t.getMonth()]}function lt(t){return Ct[t.getMonth()]}function ft(t){return bt[+(t.getHours()>=12)]}function pt(t){return wt[t.getUTCDay()]}function ht(t){return xt[t.getUTCDay()]}function dt(t){return Mt[t.getUTCMonth()]}function vt(t){return Ct[t.getUTCMonth()]}function gt(t){return bt[+(t.getUTCHours()>=12)]}var yt=t.dateTime,mt=t.date,_t=t.time,bt=t.periods,xt=t.days,wt=t.shortDays,Ct=t.months,Mt=t.shortMonths,kt=s(bt),Et=l(bt),Tt=s(xt),St=l(xt),Nt=s(wt),At=l(wt),Pt=s(Ct),Ot=l(Ct),It=s(Mt),Dt=l(Mt),Rt={a:ut,A:ct,b:st,B:lt,c:null,d:k,e:k,H:E,I:T,j:S,L:N,m:A,M:P,p:ft,S:O,U:I,w:D,W:R,x:null,X:null,y:L,Y:U,Z:F,\"%\":J},Lt={a:pt,A:ht,b:dt,B:vt,c:null,d:j,e:j,H:B,I:W,j:V,L:z,m:H,M:q,p:gt,S:Y,U:K,w:G,W:$,x:null,X:null,y:X,Y:Z,Z:Q,\"%\":J},Ut={a:c,A:tt,b:nt,B:rt,c:it,d:m,e:m,H:b,I:b,j:_,L:C,m:y,M:x,p:u,S:w,U:p,w:f,W:h,x:ot,X:at,y:v,Y:d,Z:g,\"%\":M};return Rt.x=e(mt,Rt),Rt.X=e(_t,Rt),Rt.c=e(yt,Rt),Lt.x=e(mt,Lt),Lt.X=e(_t,Lt),Lt.c=e(yt,Lt),{format:function(t){var n=e(t+=\"\",Rt);return n.toString=function(){return t},n},parse:function(t){var e=n(t+=\"\",r);return e.toString=function(){return t},e},utcFormat:function(t){var n=e(t+=\"\",Lt);return n.toString=function(){return t},n},utcParse:function(t){var e=n(t,i);return e.toString=function(){return t},e}}}function u(t,e,n){var r=t<0?\"-\":\"\",i=(r?-t:t)+\"\",o=i.length;return r+(o<n?new Array(n-o+1).join(e)+i:i)}function c(t){return t.replace(it,\"\\\\$&\")}function s(t){return new RegExp(\"^(?:\"+t.map(c).join(\"|\")+\")\",\"i\")}function l(t){for(var e={},n=-1,r=t.length;++n<r;)e[t[n].toLowerCase()]=n;return e}function f(t,e,n){var r=nt.exec(e.slice(n,n+1));return r?(t.w=+r[0],n+r[0].length):-1}function p(t,e,n){var r=nt.exec(e.slice(n));return r?(t.U=+r[0],n+r[0].length):-1}function h(t,e,n){var r=nt.exec(e.slice(n));return r?(t.W=+r[0],n+r[0].length):-1}function d(t,e,n){var r=nt.exec(e.slice(n,n+4));return r?(t.y=+r[0],n+r[0].length):-1}function v(t,e,n){var r=nt.exec(e.slice(n,n+2));return r?(t.y=+r[0]+(+r[0]>68?1900:2e3),n+r[0].length):-1}function g(t,e,n){var r=/^(Z)|([+-]\\d\\d)(?:\\:?(\\d\\d))?/.exec(e.slice(n,n+6));return r?(t.Z=r[1]?0:-(r[2]+(r[3]||\"00\")),n+r[0].length):-1}function y(t,e,n){var r=nt.exec(e.slice(n,n+2));return r?(t.m=r[0]-1,n+r[0].length):-1}function m(t,e,n){var r=nt.exec(e.slice(n,n+2));return r?(t.d=+r[0],n+r[0].length):-1}function _(t,e,n){var r=nt.exec(e.slice(n,n+3));return r?(t.m=0,t.d=+r[0],n+r[0].length):-1}function b(t,e,n){var r=nt.exec(e.slice(n,n+2));return r?(t.H=+r[0],n+r[0].length):-1}function x(t,e,n){var r=nt.exec(e.slice(n,n+2));return r?(t.M=+r[0],n+r[0].length):-1}function w(t,e,n){var r=nt.exec(e.slice(n,n+2));return r?(t.S=+r[0],n+r[0].length):-1}function C(t,e,n){var r=nt.exec(e.slice(n,n+3));return r?(t.L=+r[0],n+r[0].length):-1}function M(t,e,n){var r=rt.exec(e.slice(n,n+1));return r?n+r[0].length:-1}function k(t,e){return u(t.getDate(),e,2)}function E(t,e){return u(t.getHours(),e,2)}function T(t,e){return u(t.getHours()%12||12,e,2)}function S(t,e){return u(1+tt.i.count(n.i(tt.j)(t),t),e,3)}function N(t,e){return u(t.getMilliseconds(),e,3)}function A(t,e){return u(t.getMonth()+1,e,2)}function P(t,e){return u(t.getMinutes(),e,2)}function O(t,e){return u(t.getSeconds(),e,2)}function I(t,e){return u(tt.k.count(n.i(tt.j)(t),t),e,2)}function D(t){return t.getDay()}function R(t,e){return u(tt.l.count(n.i(tt.j)(t),t),e,2)}function L(t,e){return u(t.getFullYear()%100,e,2)}function U(t,e){return u(t.getFullYear()%1e4,e,4)}function F(t){var e=t.getTimezoneOffset();return(e>0?\"-\":(e*=-1,\"+\"))+u(e/60|0,\"0\",2)+u(e%60,\"0\",2)}function j(t,e){return u(t.getUTCDate(),e,2)}function B(t,e){return u(t.getUTCHours(),e,2)}function W(t,e){return u(t.getUTCHours()%12||12,e,2)}function V(t,e){return u(1+tt.d.count(n.i(tt.a)(t),t),e,3)}function z(t,e){return u(t.getUTCMilliseconds(),e,3)}function H(t,e){return u(t.getUTCMonth()+1,e,2)}function q(t,e){return u(t.getUTCMinutes(),e,2)}function Y(t,e){return u(t.getUTCSeconds(),e,2)}function K(t,e){return u(tt.m.count(n.i(tt.a)(t),t),e,2)}function G(t){return t.getUTCDay()}function $(t,e){return u(tt.n.count(n.i(tt.a)(t),t),e,2)}function X(t,e){return u(t.getUTCFullYear()%100,e,2)}function Z(t,e){return u(t.getUTCFullYear()%1e4,e,4)}function Q(){return\"+0000\"}function J(){return\"%\"}var tt=n(78);e.a=a;var et={\"-\":\"\",_:\" \",0:\"0\"},nt=/^\\s*\\d+/,rt=/^%/,it=/[\\\\\\^\\$\\*\\+\\?\\|\\[\\]\\(\\)\\.\\{\\}]/g},function(t,e,n){\"use strict\";var r=n(9),i={listen:function(t,e,n){return t.addEventListener?(t.addEventListener(e,n,!1),{remove:function(){t.removeEventListener(e,n,!1)}}):t.attachEvent?(t.attachEvent(\"on\"+e,n),{remove:function(){t.detachEvent(\"on\"+e,n)}}):void 0},capture:function(t,e,n){return t.addEventListener?(t.addEventListener(e,n,!0),{remove:function(){t.removeEventListener(e,n,!0)}}):{remove:r}},registerDefault:function(){}};t.exports=i},function(t,e,n){\"use strict\";function r(t){try{t.focus()}catch(t){}}t.exports=r},function(t,e,n){\"use strict\";function r(){if(\"undefined\"==typeof document)return null;try{return document.activeElement||document.body}catch(t){return document.body}}t.exports=r},function(t,e){function n(){throw new Error(\"setTimeout has not been defined\")}function r(){throw new Error(\"clearTimeout has not been defined\")}function i(t){if(l===setTimeout)return setTimeout(t,0);if((l===n||!l)&&setTimeout)return l=setTimeout,setTimeout(t,0);try{return l(t,0)}catch(e){try{return l.call(null,t,0)}catch(e){return l.call(this,t,0)}}}function o(t){if(f===clearTimeout)return clearTimeout(t);if((f===r||!f)&&clearTimeout)return f=clearTimeout,clearTimeout(t);try{return f(t)}catch(e){try{return f.call(null,t)}catch(e){return f.call(this,t)}}}function a(){v&&h&&(v=!1,h.length?d=h.concat(d):g=-1,d.length&&u())}function u(){if(!v){var t=i(a);v=!0;for(var e=d.length;e;){for(h=d,d=[];++g<e;)h&&h[g].run();g=-1,e=d.length}h=null,v=!1,o(t)}}function c(t,e){this.fun=t,this.array=e}function s(){}var l,f,p=t.exports={};!function(){try{l=\"function\"==typeof setTimeout?setTimeout:n}catch(t){l=n}try{f=\"function\"==typeof clearTimeout?clearTimeout:r}catch(t){f=r}}();var h,d=[],v=!1,g=-1;p.nextTick=function(t){var e=new Array(arguments.length-1);if(arguments.length>1)for(var n=1;n<arguments.length;n++)e[n-1]=arguments[n];d.push(new c(t,e)),1!==d.length||v||i(u)},c.prototype.run=function(){this.fun.apply(null,this.array)},p.title=\"browser\",p.browser=!0,p.env={},p.argv=[],p.version=\"\",p.versions={},p.on=s,p.addListener=s,p.once=s,p.off=s,p.removeListener=s,p.removeAllListeners=s,\n", "p.emit=s,p.binding=function(t){throw new Error(\"process.binding is not supported\")},p.cwd=function(){return\"/\"},p.chdir=function(t){throw new Error(\"process.chdir is not supported\")},p.umask=function(){return 0}},function(t,e,n){\"use strict\";function r(t,e){return t+e.charAt(0).toUpperCase()+e.substring(1)}var i={animationIterationCount:!0,borderImageOutset:!0,borderImageSlice:!0,borderImageWidth:!0,boxFlex:!0,boxFlexGroup:!0,boxOrdinalGroup:!0,columnCount:!0,flex:!0,flexGrow:!0,flexPositive:!0,flexShrink:!0,flexNegative:!0,flexOrder:!0,gridRow:!0,gridColumn:!0,fontWeight:!0,lineClamp:!0,lineHeight:!0,opacity:!0,order:!0,orphans:!0,tabSize:!0,widows:!0,zIndex:!0,zoom:!0,fillOpacity:!0,floodOpacity:!0,stopOpacity:!0,strokeDasharray:!0,strokeDashoffset:!0,strokeMiterlimit:!0,strokeOpacity:!0,strokeWidth:!0},o=[\"Webkit\",\"ms\",\"Moz\",\"O\"];Object.keys(i).forEach(function(t){o.forEach(function(e){i[r(e,t)]=i[t]})});var a={background:{backgroundAttachment:!0,backgroundColor:!0,backgroundImage:!0,backgroundPositionX:!0,backgroundPositionY:!0,backgroundRepeat:!0},backgroundPosition:{backgroundPositionX:!0,backgroundPositionY:!0},border:{borderWidth:!0,borderStyle:!0,borderColor:!0},borderBottom:{borderBottomWidth:!0,borderBottomStyle:!0,borderBottomColor:!0},borderLeft:{borderLeftWidth:!0,borderLeftStyle:!0,borderLeftColor:!0},borderRight:{borderRightWidth:!0,borderRightStyle:!0,borderRightColor:!0},borderTop:{borderTopWidth:!0,borderTopStyle:!0,borderTopColor:!0},font:{fontStyle:!0,fontVariant:!0,fontWeight:!0,fontSize:!0,lineHeight:!0,fontFamily:!0},outline:{outlineWidth:!0,outlineStyle:!0,outlineColor:!0}},u={isUnitlessNumber:i,shorthandPropertyExpansions:a};t.exports=u},function(t,e,n){\"use strict\";function r(t,e){if(!(t instanceof e))throw new TypeError(\"Cannot call a class as a function\")}var i=n(2),o=n(17),a=(n(0),function(){function t(e){r(this,t),this._callbacks=null,this._contexts=null,this._arg=e}return t.prototype.enqueue=function(t,e){this._callbacks=this._callbacks||[],this._callbacks.push(t),this._contexts=this._contexts||[],this._contexts.push(e)},t.prototype.notifyAll=function(){var t=this._callbacks,e=this._contexts,n=this._arg;if(t&&e){t.length!==e.length?i(\"24\"):void 0,this._callbacks=null,this._contexts=null;for(var r=0;r<t.length;r++)t[r].call(e[r],n);t.length=0,e.length=0}},t.prototype.checkpoint=function(){return this._callbacks?this._callbacks.length:0},t.prototype.rollback=function(t){this._callbacks&&this._contexts&&(this._callbacks.length=t,this._contexts.length=t)},t.prototype.reset=function(){this._callbacks=null,this._contexts=null},t.prototype.destructor=function(){this.reset()},t}());t.exports=o.addPoolingTo(a)},function(t,e,n){\"use strict\";function r(t){return!!s.hasOwnProperty(t)||!c.hasOwnProperty(t)&&(u.test(t)?(s[t]=!0,!0):(c[t]=!0,!1))}function i(t,e){return null==e||t.hasBooleanValue&&!e||t.hasNumericValue&&isNaN(e)||t.hasPositiveNumericValue&&e<1||t.hasOverloadedBooleanValue&&e===!1}var o=n(21),a=(n(4),n(10),n(394)),u=(n(1),new RegExp(\"^[\"+o.ATTRIBUTE_NAME_START_CHAR+\"][\"+o.ATTRIBUTE_NAME_CHAR+\"]*$\")),c={},s={},l={createMarkupForID:function(t){return o.ID_ATTRIBUTE_NAME+\"=\"+a(t)},setAttributeForID:function(t,e){t.setAttribute(o.ID_ATTRIBUTE_NAME,e)},createMarkupForRoot:function(){return o.ROOT_ATTRIBUTE_NAME+'=\"\"'},setAttributeForRoot:function(t){t.setAttribute(o.ROOT_ATTRIBUTE_NAME,\"\")},createMarkupForProperty:function(t,e){var n=o.properties.hasOwnProperty(t)?o.properties[t]:null;if(n){if(i(n,e))return\"\";var r=n.attributeName;return n.hasBooleanValue||n.hasOverloadedBooleanValue&&e===!0?r+'=\"\"':r+\"=\"+a(e)}return o.isCustomAttribute(t)?null==e?\"\":t+\"=\"+a(e):null},createMarkupForCustomAttribute:function(t,e){return r(t)&&null!=e?t+\"=\"+a(e):\"\"},setValueForProperty:function(t,e,n){var r=o.properties.hasOwnProperty(e)?o.properties[e]:null;if(r){var a=r.mutationMethod;if(a)a(t,n);else{if(i(r,n))return void this.deleteValueForProperty(t,e);if(r.mustUseProperty)t[r.propertyName]=n;else{var u=r.attributeName,c=r.attributeNamespace;c?t.setAttributeNS(c,u,\"\"+n):r.hasBooleanValue||r.hasOverloadedBooleanValue&&n===!0?t.setAttribute(u,\"\"):t.setAttribute(u,\"\"+n)}}}else if(o.isCustomAttribute(e))return void l.setValueForAttribute(t,e,n)},setValueForAttribute:function(t,e,n){if(r(e)){null==n?t.removeAttribute(e):t.setAttribute(e,\"\"+n)}},deleteValueForAttribute:function(t,e){t.removeAttribute(e)},deleteValueForProperty:function(t,e){var n=o.properties.hasOwnProperty(e)?o.properties[e]:null;if(n){var r=n.mutationMethod;if(r)r(t,void 0);else if(n.mustUseProperty){var i=n.propertyName;n.hasBooleanValue?t[i]=!1:t[i]=\"\"}else t.removeAttribute(n.attributeName)}else o.isCustomAttribute(e)&&t.removeAttribute(e)}};t.exports=l},function(t,e,n){\"use strict\";var r={hasCachedChildNodes:1};t.exports=r},function(t,e,n){\"use strict\";function r(){if(this._rootNodeID&&this._wrapperState.pendingUpdate){this._wrapperState.pendingUpdate=!1;var t=this._currentElement.props,e=u.getValue(t);null!=e&&i(this,Boolean(t.multiple),e)}}function i(t,e,n){var r,i,o=c.getNodeFromInstance(t).options;if(e){for(r={},i=0;i<n.length;i++)r[\"\"+n[i]]=!0;for(i=0;i<o.length;i++){var a=r.hasOwnProperty(o[i].value);o[i].selected!==a&&(o[i].selected=a)}}else{for(r=\"\"+n,i=0;i<o.length;i++)if(o[i].value===r)return void(o[i].selected=!0);o.length&&(o[0].selected=!0)}}function o(t){var e=this._currentElement.props,n=u.executeOnChange(e,t);return this._rootNodeID&&(this._wrapperState.pendingUpdate=!0),s.asap(r,this),n}var a=n(3),u=n(84),c=n(4),s=n(12),l=(n(1),!1),f={getHostProps:function(t,e){return a({},e,{onChange:t._wrapperState.onChange,value:void 0})},mountWrapper:function(t,e){var n=u.getValue(e);t._wrapperState={pendingUpdate:!1,initialValue:null!=n?n:e.defaultValue,listeners:null,onChange:o.bind(t),wasMultiple:Boolean(e.multiple)},void 0===e.value||void 0===e.defaultValue||l||(l=!0)},getSelectValueContext:function(t){return t._wrapperState.initialValue},postUpdateWrapper:function(t){var e=t._currentElement.props;t._wrapperState.initialValue=void 0;var n=t._wrapperState.wasMultiple;t._wrapperState.wasMultiple=Boolean(e.multiple);var r=u.getValue(e);null!=r?(t._wrapperState.pendingUpdate=!1,i(t,Boolean(e.multiple),r)):n!==Boolean(e.multiple)&&(null!=e.defaultValue?i(t,Boolean(e.multiple),e.defaultValue):i(t,Boolean(e.multiple),e.multiple?[]:\"\"))}};t.exports=f},function(t,e,n){\"use strict\";var r,i={injectEmptyComponentFactory:function(t){r=t}},o={create:function(t){return r(t)}};o.injection=i,t.exports=o},function(t,e,n){\"use strict\";var r={logTopLevelRenders:!1};t.exports=r},function(t,e,n){\"use strict\";function r(t){return u?void 0:a(\"111\",t.type),new u(t)}function i(t){return new c(t)}function o(t){return t instanceof c}var a=n(2),u=(n(0),null),c=null,s={injectGenericComponentClass:function(t){u=t},injectTextComponentClass:function(t){c=t}},l={createInternalComponent:r,createInstanceForText:i,isTextComponent:o,injection:s};t.exports=l},function(t,e,n){\"use strict\";function r(t){return o(document.documentElement,t)}var i=n(353),o=n(320),a=n(151),u=n(152),c={hasSelectionCapabilities:function(t){var e=t&&t.nodeName&&t.nodeName.toLowerCase();return e&&(\"input\"===e&&\"text\"===t.type||\"textarea\"===e||\"true\"===t.contentEditable)},getSelectionInformation:function(){var t=u();return{focusedElem:t,selectionRange:c.hasSelectionCapabilities(t)?c.getSelection(t):null}},restoreSelection:function(t){var e=u(),n=t.focusedElem,i=t.selectionRange;e!==n&&r(n)&&(c.hasSelectionCapabilities(n)&&c.setSelection(n,i),a(n))},getSelection:function(t){var e;if(\"selectionStart\"in t)e={start:t.selectionStart,end:t.selectionEnd};else if(document.selection&&t.nodeName&&\"input\"===t.nodeName.toLowerCase()){var n=document.selection.createRange();n.parentElement()===t&&(e={start:-n.moveStart(\"character\",-t.value.length),end:-n.moveEnd(\"character\",-t.value.length)})}else e=i.getOffsets(t);return e||{start:0,end:0}},setSelection:function(t,e){var n=e.start,r=e.end;if(void 0===r&&(r=n),\"selectionStart\"in t)t.selectionStart=n,t.selectionEnd=Math.min(r,t.value.length);else if(document.selection&&t.nodeName&&\"input\"===t.nodeName.toLowerCase()){var o=t.createTextRange();o.collapse(!0),o.moveStart(\"character\",n),o.moveEnd(\"character\",r-n),o.select()}else i.setOffsets(t,e)}};t.exports=c},function(t,e,n){\"use strict\";function r(t,e){for(var n=Math.min(t.length,e.length),r=0;r<n;r++)if(t.charAt(r)!==e.charAt(r))return r;return t.length===e.length?-1:n}function i(t){return t?t.nodeType===D?t.documentElement:t.firstChild:null}function o(t){return t.getAttribute&&t.getAttribute(P)||\"\"}function a(t,e,n,r,i){var o;if(x.logTopLevelRenders){var a=t._currentElement.props.child,u=a.type;o=\"React mount: \"+(\"string\"==typeof u?u:u.displayName||u.name),console.time(o)}var c=M.mountComponent(t,n,null,_(t,e),i,0);o&&console.timeEnd(o),t._renderedComponent._topLevelWrapper=t,j._mountImageIntoNode(c,e,t,r,n)}function u(t,e,n,r){var i=E.ReactReconcileTransaction.getPooled(!n&&b.useCreateElement);i.perform(a,null,t,e,i,n,r),E.ReactReconcileTransaction.release(i)}function c(t,e,n){for(M.unmountComponent(t,n),e.nodeType===D&&(e=e.documentElement);e.lastChild;)e.removeChild(e.lastChild)}function s(t){var e=i(t);if(e){var n=m.getInstanceFromNode(e);return!(!n||!n._hostParent)}}function l(t){return!(!t||t.nodeType!==I&&t.nodeType!==D&&t.nodeType!==R)}function f(t){var e=i(t),n=e&&m.getInstanceFromNode(e);return n&&!n._hostParent?n:null}function p(t){var e=f(t);return e?e._hostContainerInfo._topLevelWrapper:null}var h=n(2),d=n(20),v=n(21),g=n(26),y=n(51),m=(n(15),n(4)),_=n(347),b=n(349),x=n(160),w=n(40),C=(n(10),n(363)),M=n(24),k=n(87),E=n(12),T=n(38),S=n(169),N=(n(0),n(55)),A=n(94),P=(n(1),v.ID_ATTRIBUTE_NAME),O=v.ROOT_ATTRIBUTE_NAME,I=1,D=9,R=11,L={},U=1,F=function(){this.rootID=U++};F.prototype.isReactComponent={},F.prototype.render=function(){return this.props.child},F.isReactTopLevelWrapper=!0;var j={TopLevelWrapper:F,_instancesByReactRootID:L,scrollMonitor:function(t,e){e()},_updateRootComponent:function(t,e,n,r,i){return j.scrollMonitor(r,function(){k.enqueueElementInternal(t,e,n),i&&k.enqueueCallbackInternal(t,i)}),t},_renderNewRootComponent:function(t,e,n,r){l(e)?void 0:h(\"37\"),y.ensureScrollValueMonitoring();var i=S(t,!1);E.batchedUpdates(u,i,e,n,r);var o=i._instance.rootID;return L[o]=i,i},renderSubtreeIntoContainer:function(t,e,n,r){return null!=t&&w.has(t)?void 0:h(\"38\"),j._renderSubtreeIntoContainer(t,e,n,r)},_renderSubtreeIntoContainer:function(t,e,n,r){k.validateCallback(r,\"ReactDOM.render\"),g.isValidElement(e)?void 0:h(\"39\",\"string\"==typeof e?\" Instead of passing a string like 'div', pass React.createElement('div') or <div />.\":\"function\"==typeof e?\" Instead of passing a class like Foo, pass React.createElement(Foo) or <Foo />.\":null!=e&&void 0!==e.props?\" This may be caused by unintentionally loading two independent copies of React.\":\"\");var a,u=g.createElement(F,{child:e});if(t){var c=w.get(t);a=c._processChildContext(c._context)}else a=T;var l=p(n);if(l){var f=l._currentElement,d=f.props.child;if(A(d,e)){var v=l._renderedComponent.getPublicInstance(),y=r&&function(){r.call(v)};return j._updateRootComponent(l,u,a,n,y),v}j.unmountComponentAtNode(n)}var m=i(n),_=m&&!!o(m),b=s(n),x=_&&!l&&!b,C=j._renderNewRootComponent(u,n,x,a)._renderedComponent.getPublicInstance();return r&&r.call(C),C},render:function(t,e,n){return j._renderSubtreeIntoContainer(null,t,e,n)},unmountComponentAtNode:function(t){l(t)?void 0:h(\"40\");var e=p(t);if(!e){s(t),1===t.nodeType&&t.hasAttribute(O);return!1}return delete L[e._instance.rootID],E.batchedUpdates(c,e,t,!1),!0},_mountImageIntoNode:function(t,e,n,o,a){if(l(e)?void 0:h(\"41\"),o){var u=i(e);if(C.canReuseMarkup(t,u))return void m.precacheNode(n,u);var c=u.getAttribute(C.CHECKSUM_ATTR_NAME);u.removeAttribute(C.CHECKSUM_ATTR_NAME);var s=u.outerHTML;u.setAttribute(C.CHECKSUM_ATTR_NAME,c);var f=t,p=r(f,s),v=\" (client) \"+f.substring(p-20,p+20)+\"\\n (server) \"+s.substring(p-20,p+20);e.nodeType===D?h(\"42\",v):void 0}if(e.nodeType===D?h(\"43\"):void 0,a.useCreateElement){for(;e.lastChild;)e.removeChild(e.lastChild);d.insertTreeBefore(e,t,null)}else N(e,t),m.precacheNode(n,e.firstChild)}};t.exports=j},function(t,e,n){\"use strict\";var r=n(2),i=n(26),o=(n(0),{HOST:0,COMPOSITE:1,EMPTY:2,getType:function(t){return null===t||t===!1?o.EMPTY:i.isValidElement(t)?\"function\"==typeof t.type?o.COMPOSITE:o.HOST:void r(\"26\",t)}});t.exports=o},function(t,e,n){\"use strict\";function r(t,e){return null==e?i(\"30\"):void 0,null==t?e:Array.isArray(t)?Array.isArray(e)?(t.push.apply(t,e),t):(t.push(e),t):Array.isArray(e)?[t].concat(e):[t,e]}var i=n(2);n(0);t.exports=r},function(t,e,n){\"use strict\";function r(t,e,n){Array.isArray(t)?t.forEach(e,n):t&&e.call(n,t)}t.exports=r},function(t,e,n){\"use strict\";function r(t){for(var e;(e=t._renderedNodeType)===i.COMPOSITE;)t=t._renderedComponent;return e===i.HOST?t._renderedComponent:e===i.EMPTY?null:void 0}var i=n(164);t.exports=r},function(t,e,n){\"use strict\";function r(){return!o&&i.canUseDOM&&(o=\"textContent\"in document.documentElement?\"textContent\":\"innerText\"),o}var i=n(6),o=null;t.exports=r},function(t,e,n){\"use strict\";function r(t){if(t){var e=t.getName();if(e)return\" Check the render method of `\"+e+\"`.\"}return\"\"}function i(t){return\"function\"==typeof t&&\"undefined\"!=typeof t.prototype&&\"function\"==typeof t.prototype.mountComponent&&\"function\"==typeof t.prototype.receiveComponent}function o(t,e){var n;if(null===t||t===!1)n=s.create(o);else if(\"object\"==typeof t){var u=t,c=u.type;if(\"function\"!=typeof c&&\"string\"!=typeof c){var p=\"\";p+=r(u._owner),a(\"130\",null==c?c:typeof c,p)}\"string\"==typeof u.type?n=l.createInternalComponent(u):i(u.type)?(n=new u.type(u),n.getHostNode||(n.getHostNode=n.getNativeNode)):n=new f(u)}else\"string\"==typeof t||\"number\"==typeof t?n=l.createInstanceForText(t):a(\"131\",typeof t);return n._mountIndex=0,n._mountImage=null,n}var a=n(2),u=n(3),c=n(344),s=n(159),l=n(161),f=(n(391),n(0),n(1),function(t){this.construct(t)});u(f.prototype,c,{_instantiateReactComponent:o}),t.exports=o},function(t,e,n){\"use strict\";function r(t){var e=t&&t.nodeName&&t.nodeName.toLowerCase();return\"input\"===e?!!i[t.type]:\"textarea\"===e}var i={color:!0,date:!0,datetime:!0,\"datetime-local\":!0,email:!0,month:!0,number:!0,password:!0,range:!0,search:!0,tel:!0,text:!0,time:!0,url:!0,week:!0};t.exports=r},function(t,e,n){\"use strict\";var r=n(6),i=n(54),o=n(55),a=function(t,e){if(e){var n=t.firstChild;if(n&&n===t.lastChild&&3===n.nodeType)return void(n.nodeValue=e)}t.textContent=e};r.canUseDOM&&(\"textContent\"in document.documentElement||(a=function(t,e){return 3===t.nodeType?void(t.nodeValue=e):void o(t,i(e))})),t.exports=a},function(t,e,n){\"use strict\";function r(t,e){return t&&\"object\"==typeof t&&null!=t.key?s.escape(t.key):e.toString(36)}function i(t,e,n,o){var p=typeof t;if(\"undefined\"!==p&&\"boolean\"!==p||(t=null),null===t||\"string\"===p||\"number\"===p||\"object\"===p&&t.$$typeof===u)return n(o,t,\"\"===e?l+r(t,0):e),1;var h,d,v=0,g=\"\"===e?l:e+f;if(Array.isArray(t))for(var y=0;y<t.length;y++)h=t[y],d=g+r(h,y),v+=i(h,d,n,o);else{var m=c(t);if(m){var _,b=m.call(t);if(m!==t.entries)for(var x=0;!(_=b.next()).done;)h=_.value,d=g+r(h,x++),v+=i(h,d,n,o);else for(;!(_=b.next()).done;){var w=_.value;w&&(h=w[1],d=g+s.escape(w[0])+f+r(h,0),v+=i(h,d,n,o))}}else if(\"object\"===p){var C=\"\",M=String(t);a(\"31\",\"[object Object]\"===M?\"object with keys {\"+Object.keys(t).join(\", \")+\"}\":M,C)}}return v}function o(t,e,n){return null==t?0:i(t,\"\",e,n)}var a=n(2),u=(n(15),n(359)),c=n(390),s=(n(0),n(83)),l=(n(1),\".\"),f=\":\";t.exports=o},function(t,e,n){\"use strict\";function r(t){var e=Function.prototype.toString,n=Object.prototype.hasOwnProperty,r=RegExp(\"^\"+e.call(n).replace(/[\\\\^$.*+?()[\\]{}|]/g,\"\\\\$&\").replace(/hasOwnProperty|(function).*?(?=\\\\\\()| for .+?(?=\\\\\\])/g,\"$1.*?\")+\"$\");try{var i=e.call(t);return r.test(i)}catch(t){return!1}}function i(t){var e=s(t);if(e){var n=e.childIDs;l(t),n.forEach(i)}}function o(t,e,n){return\"\\n in \"+(t||\"Unknown\")+(e?\" (at \"+e.fileName.replace(/^.*[\\\\\\/]/,\"\")+\":\"+e.lineNumber+\")\":n?\" (created by \"+n+\")\":\"\")}function a(t){return null==t?\"#empty\":\"string\"==typeof t||\"number\"==typeof t?\"#text\":\"string\"==typeof t.type?t.type:t.type.displayName||t.type.name||\"Unknown\"}function u(t){var e,n=k.getDisplayName(t),r=k.getElement(t),i=k.getOwnerID(t);return i&&(e=k.getDisplayName(i)),o(n,r&&r._source,e)}var c,s,l,f,p,h,d,v=n(28),g=n(15),y=(n(0),n(1),\"function\"==typeof Array.from&&\"function\"==typeof Map&&r(Map)&&null!=Map.prototype&&\"function\"==typeof Map.prototype.keys&&r(Map.prototype.keys)&&\"function\"==typeof Set&&r(Set)&&null!=Set.prototype&&\"function\"==typeof Set.prototype.keys&&r(Set.prototype.keys));if(y){var m=new Map,_=new Set;c=function(t,e){m.set(t,e)},s=function(t){return m.get(t)},l=function(t){m.delete(t)},f=function(){return Array.from(m.keys())},p=function(t){_.add(t)},h=function(t){_.delete(t)},d=function(){return Array.from(_.keys())}}else{var b={},x={},w=function(t){return\".\"+t},C=function(t){return parseInt(t.substr(1),10)};c=function(t,e){var n=w(t);b[n]=e},s=function(t){var e=w(t);return b[e]},l=function(t){var e=w(t);delete b[e]},f=function(){return Object.keys(b).map(C)},p=function(t){var e=w(t);x[e]=!0},h=function(t){var e=w(t);delete x[e]},d=function(){return Object.keys(x).map(C)}}var M=[],k={onSetChildren:function(t,e){var n=s(t);n?void 0:v(\"144\"),n.childIDs=e;for(var r=0;r<e.length;r++){var i=e[r],o=s(i);o?void 0:v(\"140\"),null==o.childIDs&&\"object\"==typeof o.element&&null!=o.element?v(\"141\"):void 0,o.isMounted?void 0:v(\"71\"),null==o.parentID&&(o.parentID=t),o.parentID!==t?v(\"142\",i,o.parentID,t):void 0}},onBeforeMountComponent:function(t,e,n){var r={element:e,parentID:n,text:null,childIDs:[],isMounted:!1,updateCount:0};c(t,r)},onBeforeUpdateComponent:function(t,e){var n=s(t);n&&n.isMounted&&(n.element=e)},onMountComponent:function(t){var e=s(t);e?void 0:v(\"144\"),e.isMounted=!0;var n=0===e.parentID;n&&p(t)},onUpdateComponent:function(t){var e=s(t);e&&e.isMounted&&e.updateCount++},onUnmountComponent:function(t){var e=s(t);if(e){e.isMounted=!1;var n=0===e.parentID;n&&h(t)}M.push(t)},purgeUnmountedComponents:function(){if(!k._preventPurging){for(var t=0;t<M.length;t++){var e=M[t];i(e)}M.length=0}},isMounted:function(t){var e=s(t);return!!e&&e.isMounted},getCurrentStackAddendum:function(t){var e=\"\";if(t){var n=a(t),r=t._owner;e+=o(n,t._source,r&&r.getName())}var i=g.current,u=i&&i._debugID;return e+=k.getStackAddendumByID(u)},getStackAddendumByID:function(t){for(var e=\"\";t;)e+=u(t),t=k.getParentID(t);return e},getChildIDs:function(t){var e=s(t);return e?e.childIDs:[]},getDisplayName:function(t){var e=k.getElement(t);return e?a(e):null},getElement:function(t){var e=s(t);return e?e.element:null},getOwnerID:function(t){var e=k.getElement(t);return e&&e._owner?e._owner._debugID:null},getParentID:function(t){var e=s(t);return e?e.parentID:null},getSource:function(t){var e=s(t),n=e?e.element:null,r=null!=n?n._source:null;return r},getText:function(t){var e=k.getElement(t);return\"string\"==typeof e?e:\"number\"==typeof e?\"\"+e:null},getUpdateCount:function(t){var e=s(t);return e?e.updateCount:0},getRootIDs:d,getRegisteredIDs:f};t.exports=k},function(t,e,n){\"use strict\";var r=\"function\"==typeof Symbol&&Symbol.for&&Symbol.for(\"react.element\")||60103;t.exports=r},function(t,e,n){\"use strict\";var r={};t.exports=r},function(t,e,n){\"use strict\";var r=!1;t.exports=r},function(t,e,n){\"use strict\";function r(t){var e=t&&(i&&t[i]||t[o]);if(\"function\"==typeof e)return e}var i=\"function\"==typeof Symbol&&Symbol.iterator,o=\"@@iterator\";t.exports=r},,function(t,e,n){\"use strict\";function r(t){return t&&t.__esModule?t:{default:t}}function i(t,e){if(!(t instanceof e))throw new TypeError(\"Cannot call a class as a function\")}function o(t,e){if(!t)throw new ReferenceError(\"this hasn't been initialised - super() hasn't been called\");return!e||\"object\"!=typeof e&&\"function\"!=typeof e?t:e}function a(t,e){if(\"function\"!=typeof e&&null!==e)throw new TypeError(\"Super expression must either be null or a function, not \"+typeof e);t.prototype=Object.create(e&&e.prototype,{constructor:{value:t,enumerable:!1,writable:!0,configurable:!0}}),e&&(Object.setPrototypeOf?Object.setPrototypeOf(t,e):t.__proto__=e)}Object.defineProperty(e,\"__esModule\",{value:!0});var u=\"function\"==typeof Symbol&&\"symbol\"==typeof Symbol.iterator?function(t){return typeof t}:function(t){return t&&\"function\"==typeof Symbol&&t.constructor===Symbol&&t!==Symbol.prototype?\"symbol\":typeof t},c=function(){function t(t,e){for(var n=0;n<e.length;n++){var r=e[n];r.enumerable=r.enumerable||!1,r.configurable=!0,\"value\"in r&&(r.writable=!0),Object.defineProperty(t,r.key,r)}}return function(e,n,r){return n&&t(e.prototype,n),r&&t(e,r),e}}(),s=n(41),l=r(s),f=n(128),p=n(64),h=(n(7),n(30)),d=n(111),v=n(133),g=n(11),y=n(39),m=n(56),_=r(m),b=function(t){function e(){i(this,e);var t=o(this,(e.__proto__||Object.getPrototypeOf(e)).call(this));return window.lastAdditiveForceArrayVisualizer=t,t.topOffset=28,t.leftOffset=80,t.height=350,t.effectFormat=(0,h.format)(\".2\"),t.redraw=(0,y.debounce)(function(){return t.draw()},200),t}return a(e,t),c(e,[{key:\"componentDidMount\",value:function(){var t=this;this.mainGroup=this.svg.append(\"g\"),this.onTopGroup=this.svg.append(\"g\"),this.xaxisElement=this.onTopGroup.append(\"g\").attr(\"transform\",\"translate(0,35)\").attr(\"class\",\"force-bar-array-xaxis\"),this.yaxisElement=this.onTopGroup.append(\"g\").attr(\"transform\",\"translate(0,35)\").attr(\"class\",\"force-bar-array-yaxis\"),this.hoverGroup1=this.svg.append(\"g\"),this.hoverGroup2=this.svg.append(\"g\"),this.baseValueTitle=this.svg.append(\"text\"),this.hoverLine=this.svg.append(\"line\"),this.hoverxOutline=this.svg.append(\"text\").attr(\"text-anchor\",\"middle\").attr(\"font-weight\",\"bold\").attr(\"fill\",\"#fff\").attr(\"stroke\",\"#fff\").attr(\"stroke-width\",\"6\").attr(\"font-size\",\"12px\"),this.hoverx=this.svg.append(\"text\").attr(\"text-anchor\",\"middle\").attr(\"font-weight\",\"bold\").attr(\"fill\",\"#000\").attr(\"font-size\",\"12px\"),this.hoverxTitle=this.svg.append(\"text\").attr(\"text-anchor\",\"middle\").attr(\"opacity\",.6).attr(\"font-size\",\"12px\"),this.hoveryOutline=this.svg.append(\"text\").attr(\"text-anchor\",\"end\").attr(\"font-weight\",\"bold\").attr(\"fill\",\"#fff\").attr(\"stroke\",\"#fff\").attr(\"stroke-width\",\"6\").attr(\"font-size\",\"12px\"),this.hovery=this.svg.append(\"text\").attr(\"text-anchor\",\"end\").attr(\"font-weight\",\"bold\").attr(\"fill\",\"#000\").attr(\"font-size\",\"12px\"),this.xlabel=this.wrapper.select(\".additive-force-array-xlabel\"),this.ylabel=this.wrapper.select(\".additive-force-array-ylabel\");var e=void 0;\"string\"==typeof this.props.plot_cmap?this.props.plot_cmap in _.default.colors?e=_.default.colors[this.props.plot_cmap]:(console.log(\"Invalid color map name, reverting to default.\"),e=_.default.colors.RdBu):Array.isArray(this.props.plot_cmap)&&(e=this.props.plot_cmap),this.colors=e.map(function(t){return(0,g.hsl)(t)}),this.brighterColors=[1.45,1.6].map(function(e,n){return t.colors[n].brighter(e)}),this.tickFormat=(0,h.format)(\",.4\"),this.xscale=(0,p.scaleLinear)(),this.xaxis=(0,d.axisBottom)().scale(this.xscale).tickSizeInner(4).tickSizeOuter(0).tickFormat(function(e){return t.tickFormat(e)}).tickPadding(-18),this.yscale=(0,p.scaleLinear)(),this.yaxis=(0,d.axisLeft)().scale(this.yscale).tickSizeInner(4).tickSizeOuter(0).tickFormat(function(e){return t.tickFormat(t.invLinkFunction(e))}).tickPadding(2),this.xlabel.node().onchange=function(){return t.internalDraw()},this.ylabel.node().onchange=function(){return t.internalDraw()},this.svg.on(\"mousemove\",function(e){return t.mouseMoved(e)}),this.svg.on(\"mouseout\",function(e){return t.mouseOut(e)}),window.addEventListener(\"resize\",this.redraw),window.setTimeout(this.redraw,50)}},{key:\"componentDidUpdate\",value:function(){this.draw()}},{key:\"mouseOut\",value:function(){this.hoverLine.attr(\"display\",\"none\"),this.hoverx.attr(\"display\",\"none\"),this.hoverxOutline.attr(\"display\",\"none\"),this.hoverxTitle.attr(\"display\",\"none\"),this.hovery.attr(\"display\",\"none\"),this.hoveryOutline.attr(\"display\",\"none\"),this.hoverGroup1.attr(\"display\",\"none\"),this.hoverGroup2.attr(\"display\",\"none\")}},{key:\"mouseMoved\",value:function(t){var e=this,n=void 0,r=void 0;this.hoverLine.attr(\"display\",\"\"),this.hoverx.attr(\"display\",\"\"),this.hoverxOutline.attr(\"display\",\"\"),this.hoverxTitle.attr(\"display\",\"\"),this.hovery.attr(\"display\",\"\"),this.hoveryOutline.attr(\"display\",\"\"),this.hoverGroup1.attr(\"display\",\"\"),this.hoverGroup2.attr(\"display\",\"\");var i=(0,f.mouse)(this.svg.node())[0];if(this.props.explanations){for(n=0;n<this.props.explanations.length;++n)(!r||Math.abs(r.xmapScaled-i)>Math.abs(this.props.explanations[n].xmapScaled-i))&&(r=this.props.explanations[n]);this.hoverLine.attr(\"x1\",r.xmapScaled).attr(\"x2\",r.xmapScaled).attr(\"y1\",0+this.topOffset).attr(\"y2\",this.height),this.hoverx.attr(\"x\",r.xmapScaled).attr(\"y\",this.topOffset-5).text(this.tickFormat(r.xmap)),this.hoverxOutline.attr(\"x\",r.xmapScaled).attr(\"y\",this.topOffset-5).text(this.tickFormat(r.xmap)),this.hoverxTitle.attr(\"x\",r.xmapScaled).attr(\"y\",this.topOffset-18).text(r.count>1?r.count+\" averaged samples\":\"\"),this.hovery.attr(\"x\",this.leftOffset-6).attr(\"y\",r.joinPointy).text(this.tickFormat(this.invLinkFunction(r.joinPoint))),this.hoveryOutline.attr(\"x\",this.leftOffset-6).attr(\"y\",r.joinPointy).text(this.tickFormat(this.invLinkFunction(r.joinPoint)));for(var o=(this.props.featureNames.length,[]),a=void 0,u=void 0,c=this.currPosOrderedFeatures.length-1;c>=0;--c){var s=this.currPosOrderedFeatures[c],l=r.features[s];u=5+(l.posyTop+l.posyBottom)/2,(!a||u-a>=15)&&l.posyTop-l.posyBottom>=6&&(o.push(l),a=u)}var p=[];a=void 0;var h=!0,d=!1,v=void 0;try{for(var g,y=this.currNegOrderedFeatures[Symbol.iterator]();!(h=(g=y.next()).done);h=!0){var m=g.value,_=r.features[m];u=5+(_.negyTop+_.negyBottom)/2,(!a||a-u>=15)&&_.negyTop-_.negyBottom>=6&&(p.push(_),a=u)}}catch(t){d=!0,v=t}finally{try{!h&&y.return&&y.return()}finally{if(d)throw v}}var b=function(t){var n=\"\";return null!==t.value&&void 0!==t.value&&(n=\" = \"+(isNaN(t.value)?t.value:e.tickFormat(t.value))),r.count>1?\"mean(\"+e.props.featureNames[t.ind]+\")\"+n:e.props.featureNames[t.ind]+n},x=this.hoverGroup1.selectAll(\".pos-values\").data(o);x.enter().append(\"text\").attr(\"class\",\"pos-values\").merge(x).attr(\"x\",r.xmapScaled+5).attr(\"y\",function(t){return 4+(t.posyTop+t.posyBottom)/2}).attr(\"text-anchor\",\"start\").attr(\"font-size\",12).attr(\"stroke\",\"#fff\").attr(\"fill\",\"#fff\").attr(\"stroke-width\",\"4\").attr(\"stroke-linejoin\",\"round\").attr(\"opacity\",1).text(b),x.exit().remove();var w=this.hoverGroup2.selectAll(\".pos-values\").data(o);w.enter().append(\"text\").attr(\"class\",\"pos-values\").merge(w).attr(\"x\",r.xmapScaled+5).attr(\"y\",function(t){return 4+(t.posyTop+t.posyBottom)/2}).attr(\"text-anchor\",\"start\").attr(\"font-size\",12).attr(\"fill\",this.colors[0]).text(b),w.exit().remove();var C=this.hoverGroup1.selectAll(\".neg-values\").data(p);C.enter().append(\"text\").attr(\"class\",\"neg-values\").merge(C).attr(\"x\",r.xmapScaled+5).attr(\"y\",function(t){return 4+(t.negyTop+t.negyBottom)/2}).attr(\"text-anchor\",\"start\").attr(\"font-size\",12).attr(\"stroke\",\"#fff\").attr(\"fill\",\"#fff\").attr(\"stroke-width\",\"4\").attr(\"stroke-linejoin\",\"round\").attr(\"opacity\",1).text(b),C.exit().remove();var M=this.hoverGroup2.selectAll(\".neg-values\").data(p);M.enter().append(\"text\").attr(\"class\",\"neg-values\").merge(M).attr(\"x\",r.xmapScaled+5).attr(\"y\",function(t){return 4+(t.negyTop+t.negyBottom)/2}).attr(\"text-anchor\",\"start\").attr(\"font-size\",12).attr(\"fill\",this.colors[1]).text(b),M.exit().remove()}}},{key:\"draw\",value:function(){var t=this;if(this.props.explanations&&0!==this.props.explanations.length){(0,y.each)(this.props.explanations,function(t,e){return t.origInd=e});var e={},n={},r={},i=!0,o=!1,a=void 0;try{for(var u,c=this.props.explanations[Symbol.iterator]();!(i=(u=c.next()).done);i=!0){var s=u.value;for(var l in s.features)void 0===e[l]&&(e[l]=0,n[l]=0,r[l]=0),s.features[l].effect>0?e[l]+=s.features[l].effect:n[l]-=s.features[l].effect,null!==s.features[l].value&&void 0!==s.features[l].value&&(r[l]+=1)}}catch(t){o=!0,a=t}finally{try{!i&&c.return&&c.return()}finally{if(o)throw a}}this.usedFeatures=(0,y.sortBy)((0,y.keys)(e),function(t){return-(e[t]+n[t])}),console.log(\"found \",this.usedFeatures.length,\" used features\"),this.posOrderedFeatures=(0,y.sortBy)(this.usedFeatures,function(t){return e[t]}),this.negOrderedFeatures=(0,y.sortBy)(this.usedFeatures,function(t){return-n[t]}),this.singleValueFeatures=(0,y.filter)(this.usedFeatures,function(t){return r[t]>0});var f=[\"sample order by similarity\",\"sample order by output value\",\"original sample ordering\"].concat(this.singleValueFeatures.map(function(e){return t.props.featureNames[e]})),p=this.xlabel.selectAll(\"option\").data(f);p.enter().append(\"option\").merge(p).attr(\"value\",function(t){return t}).text(function(t){return t}),p.exit().remove();var h=this.props.outNames[0]?this.props.outNames[0]:\"model output value\";f=(0,y.map)(this.usedFeatures,function(e){return[t.props.featureNames[e],t.props.featureNames[e]+\" effects\"]}),f.unshift([\"model output value\",h]);var d=this.ylabel.selectAll(\"option\").data(f);d.enter().append(\"option\").merge(d).attr(\"value\",function(t){return t[0]}).text(function(t){return t[1]}),d.exit().remove(),this.ylabel.style(\"top\",(this.height-10-this.topOffset)/2+this.topOffset+\"px\").style(\"left\",10-this.ylabel.node().offsetWidth/2+\"px\"),this.internalDraw()}}},{key:\"internalDraw\",value:function(){var t=this,e=!0,n=!1,r=void 0;try{for(var i,o=this.props.explanations[Symbol.iterator]();!(e=(i=o.next()).done);e=!0){var a=i.value,c=!0,s=!1,l=void 0;try{for(var f,p=this.usedFeatures[Symbol.iterator]();!(c=(f=p.next()).done);c=!0){var h=f.value;a.features.hasOwnProperty(h)||(a.features[h]={effect:0,value:0}),a.features[h].ind=h}}catch(t){s=!0,l=t}finally{try{!c&&p.return&&p.return()}finally{if(s)throw l}}}}catch(t){n=!0,r=t}finally{try{!e&&o.return&&o.return()}finally{if(n)throw r}}var d=void 0,g=this.xlabel.node().value;if(\"sample order by similarity\"===g)d=(0,y.sortBy)(this.props.explanations,function(t){return t.simIndex}),(0,y.each)(d,function(t,e){return t.xmap=e});else if(\"sample order by output value\"===g)d=(0,y.sortBy)(this.props.explanations,function(t){return-t.outValue}),(0,y.each)(d,function(t,e){return t.xmap=e});else if(\"original sample ordering\"===g)d=(0,y.sortBy)(this.props.explanations,function(t){return t.origInd}),(0,y.each)(d,function(t,e){return t.xmap=e});else{var m=function(){var e=(0,y.findKey)(t.props.featureNames,function(t){return t===g});(0,y.each)(t.props.explanations,function(t,n){return t.xmap=t.features[e].value});var n=(0,y.sortBy)(t.props.explanations,function(t){return t.xmap}),r=(0,y.map)(n,function(t){return t.xmap});if(\"string\"==typeof r[0])return alert(\"Ordering by category names is not yet supported.\"),{v:void 0};var i=(0,y.min)(r),o=(0,y.max)(r),a=(o-i)/100;d=[];for(var u=void 0,c=void 0,s=0;s<n.length;++s){var l=n[s];if(u&&!c&&l.xmap-u.xmap<=a||c&&l.xmap-c.xmap<=a){c||(c=(0,y.cloneDeep)(u),c.count=1);var f=!0,p=!1,h=void 0;try{for(var v,m=t.usedFeatures[Symbol.iterator]();!(f=(v=m.next()).done);f=!0){var _=v.value;c.features[_].effect+=l.features[_].effect,c.features[_].value+=l.features[_].value}}catch(t){p=!0,h=t}finally{try{!f&&m.return&&m.return()}finally{if(p)throw h}}c.count+=1}else if(u)if(c){var b=!0,x=!1,w=void 0;try{for(var C,M=t.usedFeatures[Symbol.iterator]();!(b=(C=M.next()).done);b=!0){var k=C.value;c.features[k].effect/=c.count,c.features[k].value/=c.count}}catch(t){x=!0,w=t}finally{try{!b&&M.return&&M.return()}finally{if(x)throw w}}d.push(c),c=void 0}else d.push(u);u=l}u.xmap-d[d.length-1].xmap>a&&d.push(u)}();if(\"object\"===(\"undefined\"==typeof m?\"undefined\":u(m)))return m.v}this.currUsedFeatures=this.usedFeatures,this.currPosOrderedFeatures=this.posOrderedFeatures,this.currNegOrderedFeatures=this.negOrderedFeatures;var _=this.ylabel.node().value;if(\"model output value\"!==_){d=(0,y.cloneDeep)(d);for(var b=(0,y.findKey)(this.props.featureNames,function(t){return t===_;\n", "}),x=0;x<d.length;++x){var w=d[x].features[b];d[x].features={},d[x].features[b]=w}this.currUsedFeatures=[b],this.currPosOrderedFeatures=[b],this.currNegOrderedFeatures=[b]}this.currExplanations=d,\"identity\"===this.props.link?this.invLinkFunction=function(e){return t.props.baseValue+e}:\"logit\"===this.props.link?this.invLinkFunction=function(e){return 1/(1+Math.exp(-(t.props.baseValue+e)))}:console.log(\"ERROR: Unrecognized link function: \",this.props.link),this.predValues=(0,y.map)(d,function(t){return(0,y.sum)((0,y.map)(t.features,function(t){return t.effect}))});var C=this.wrapper.node().offsetWidth;if(0==C)return setTimeout(function(){return t.draw(d)},500);this.svg.style(\"height\",this.height+\"px\"),this.svg.style(\"width\",C+\"px\");var M=(0,y.map)(d,function(t){return t.xmap});this.xscale.domain([(0,y.min)(M),(0,y.max)(M)]).range([this.leftOffset,C]).clamp(!0),this.xaxisElement.attr(\"transform\",\"translate(0,\"+this.topOffset+\")\").call(this.xaxis);for(var k=0;k<this.currExplanations.length;++k)this.currExplanations[k].xmapScaled=this.xscale(this.currExplanations[k].xmap);for(var E=d.length,T=0,S=0;S<E;++S){var N=d[S].features,A=(0,y.sum)((0,y.map)((0,y.filter)(N,function(t){return t.effect>0}),function(t){return t.effect}))||0,P=(0,y.sum)((0,y.map)((0,y.filter)(N,function(t){return t.effect<0}),function(t){return-t.effect}))||0;T=Math.max(T,2.2*Math.max(A,P))}this.yscale.domain([-T/2,T/2]).range([this.height-10,this.topOffset]),this.yaxisElement.attr(\"transform\",\"translate(\"+this.leftOffset+\",0)\").call(this.yaxis);for(var O=0;O<E;++O){var I=d[O].features,D=((0,y.sum)((0,y.map)(I,function(t){return Math.abs(t.effect)})),(0,y.sum)((0,y.map)((0,y.filter)(I,function(t){return t.effect<0}),function(t){return-t.effect}))||0),R=-D,L=void 0,U=!0,F=!1,j=void 0;try{for(var B,W=this.currPosOrderedFeatures[Symbol.iterator]();!(U=(B=W.next()).done);U=!0)L=B.value,I[L].posyTop=this.yscale(R),I[L].effect>0&&(R+=I[L].effect),I[L].posyBottom=this.yscale(R),I[L].ind=L}catch(t){F=!0,j=t}finally{try{!U&&W.return&&W.return()}finally{if(F)throw j}}var V=R,z=!0,H=!1,q=void 0;try{for(var Y,K=this.currNegOrderedFeatures[Symbol.iterator]();!(z=(Y=K.next()).done);z=!0)L=Y.value,I[L].negyTop=this.yscale(R),I[L].effect<0&&(R-=I[L].effect),I[L].negyBottom=this.yscale(R)}catch(t){H=!0,q=t}finally{try{!z&&K.return&&K.return()}finally{if(H)throw q}}d[O].joinPoint=V,d[O].joinPointy=this.yscale(V)}var G=(0,v.line)().x(function(t){return t[0]}).y(function(t){return t[1]}),$=this.mainGroup.selectAll(\".force-bar-array-area-pos\").data(this.currUsedFeatures);$.enter().append(\"path\").attr(\"class\",\"force-bar-array-area-pos\").merge($).attr(\"d\",function(t){var e=(0,y.map)((0,y.range)(E),function(e){return[d[e].xmapScaled,d[e].features[t].posyTop]}),n=(0,y.map)((0,y.rangeRight)(E),function(e){return[d[e].xmapScaled,d[e].features[t].posyBottom]});return G(e.concat(n))}).attr(\"fill\",this.colors[0]),$.exit().remove();var X=this.mainGroup.selectAll(\".force-bar-array-area-neg\").data(this.currUsedFeatures);X.enter().append(\"path\").attr(\"class\",\"force-bar-array-area-neg\").merge(X).attr(\"d\",function(t){var e=(0,y.map)((0,y.range)(E),function(e){return[d[e].xmapScaled,d[e].features[t].negyTop]}),n=(0,y.map)((0,y.rangeRight)(E),function(e){return[d[e].xmapScaled,d[e].features[t].negyBottom]});return G(e.concat(n))}).attr(\"fill\",this.colors[1]),X.exit().remove();var Z=this.mainGroup.selectAll(\".force-bar-array-divider-pos\").data(this.currUsedFeatures);Z.enter().append(\"path\").attr(\"class\",\"force-bar-array-divider-pos\").merge(Z).attr(\"d\",function(t){var e=(0,y.map)((0,y.range)(E),function(e){return[d[e].xmapScaled,d[e].features[t].posyBottom]});return G(e)}).attr(\"fill\",\"none\").attr(\"stroke-width\",1).attr(\"stroke\",function(e){return t.colors[0].brighter(1.2)}),Z.exit().remove();var Q=this.mainGroup.selectAll(\".force-bar-array-divider-neg\").data(this.currUsedFeatures);Q.enter().append(\"path\").attr(\"class\",\"force-bar-array-divider-neg\").merge(Q).attr(\"d\",function(t){var e=(0,y.map)((0,y.range)(E),function(e){return[d[e].xmapScaled,d[e].features[t].negyTop]});return G(e)}).attr(\"fill\",\"none\").attr(\"stroke-width\",1).attr(\"stroke\",function(e){return t.colors[1].brighter(1.5)}),Q.exit().remove();for(var J=function(t,e,n,r,i){var o=void 0,a=void 0;\"pos\"===i?(o=t[n].features[e].posyBottom,a=t[n].features[e].posyTop):(o=t[n].features[e].negyBottom,a=t[n].features[e].negyTop);for(var u=void 0,c=void 0,s=n+1;s<=r;++s)\"pos\"===i?(u=t[s].features[e].posyBottom,c=t[s].features[e].posyTop):(u=t[s].features[e].negyBottom,c=t[s].features[e].negyTop),u>o&&(o=u),c<a&&(a=c);return{top:o,bottom:a}},tt=100,et=20,nt=100,rt=[],it=[\"pos\",\"neg\"],ot=0;ot<it.length;ot++){var at=it[ot],ut=!0,ct=!1,st=void 0;try{for(var lt,ft=this.currUsedFeatures[Symbol.iterator]();!(ut=(lt=ft.next()).done);ut=!0)for(var pt=lt.value,ht=0,dt=0,vt=0,gt={top:0,bottom:0},yt=void 0;dt<E-1;){for(;vt<tt&&dt<E-1;)++dt,vt=d[dt].xmapScaled-d[ht].xmapScaled;for(gt=J(d,pt,ht,dt,at);gt.bottom-gt.top<et&&ht<dt;)++ht,gt=J(d,pt,ht,dt,at);if(vt=d[dt].xmapScaled-d[ht].xmapScaled,gt.bottom-gt.top>=et&&vt>=tt){for(;dt<E-1;){if(++dt,yt=J(d,pt,ht,dt,at),!(yt.bottom-yt.top>et)){--dt;break}gt=yt}vt=d[dt].xmapScaled-d[ht].xmapScaled,rt.push([(d[dt].xmapScaled+d[ht].xmapScaled)/2,(gt.top+gt.bottom)/2,this.props.featureNames[pt]]);var mt=d[dt].xmapScaled;for(ht=dt;mt+nt>d[ht].xmapScaled&&ht<E-1;)++ht;dt=ht}}}catch(t){ct=!0,st=t}finally{try{!ut&&ft.return&&ft.return()}finally{if(ct)throw st}}}var _t=this.onTopGroup.selectAll(\".force-bar-array-flabels\").data(rt);_t.enter().append(\"text\").attr(\"class\",\"force-bar-array-flabels\").merge(_t).attr(\"x\",function(t){return t[0]}).attr(\"y\",function(t){return t[1]+4}).text(function(t){return t[2]}),_t.exit().remove()}},{key:\"componentWillUnmount\",value:function(){window.removeEventListener(\"resize\",this.redraw)}},{key:\"render\",value:function(){var t=this;return l.default.createElement(\"div\",{ref:function(e){return t.wrapper=(0,f.select)(e)},style:{textAlign:\"center\"}},l.default.createElement(\"style\",{dangerouslySetInnerHTML:{__html:\"\\n .force-bar-array-wrapper {\\n text-align: center;\\n }\\n .force-bar-array-xaxis path {\\n fill: none;\\n opacity: 0.4;\\n }\\n .force-bar-array-xaxis .domain {\\n opacity: 0;\\n }\\n .force-bar-array-xaxis paths {\\n display: none;\\n }\\n .force-bar-array-yaxis path {\\n fill: none;\\n opacity: 0.4;\\n }\\n .force-bar-array-yaxis paths {\\n display: none;\\n }\\n .tick line {\\n stroke: #000;\\n stroke-width: 1px;\\n opacity: 0.4;\\n }\\n .tick text {\\n fill: #000;\\n opacity: 0.5;\\n font-size: 12px;\\n padding: 0px;\\n }\\n .force-bar-array-flabels {\\n font-size: 12px;\\n fill: #fff;\\n text-anchor: middle;\\n }\\n .additive-force-array-xlabel {\\n background: none;\\n border: 1px solid #ccc;\\n opacity: 0.5;\\n margin-bottom: 0px;\\n font-size: 12px;\\n font-family: arial;\\n margin-left: 80px;\\n max-width: 300px;\\n }\\n .additive-force-array-xlabel:focus {\\n outline: none;\\n }\\n .additive-force-array-ylabel {\\n position: relative;\\n top: 0px;\\n left: 0px;\\n transform: rotate(-90deg);\\n background: none;\\n border: 1px solid #ccc;\\n opacity: 0.5;\\n margin-bottom: 0px;\\n font-size: 12px;\\n font-family: arial;\\n max-width: 150px;\\n }\\n .additive-force-array-ylabel:focus {\\n outline: none;\\n }\\n .additive-force-array-hoverLine {\\n stroke-width: 1px;\\n stroke: #fff;\\n opacity: 1;\\n }\"}}),l.default.createElement(\"select\",{className:\"additive-force-array-xlabel\"}),l.default.createElement(\"div\",{style:{height:\"0px\",textAlign:\"left\"}},l.default.createElement(\"select\",{className:\"additive-force-array-ylabel\"})),l.default.createElement(\"svg\",{ref:function(e){return t.svg=(0,f.select)(e)},style:{userSelect:\"none\",display:\"block\",fontFamily:\"arial\",sansSerif:!0}}))}}]),e}(l.default.Component);b.defaultProps={plot_cmap:\"RdBu\"},e.default=b},function(t,e,n){\"use strict\";function r(t){return t&&t.__esModule?t:{default:t}}function i(t,e){if(!(t instanceof e))throw new TypeError(\"Cannot call a class as a function\")}function o(t,e){if(!t)throw new ReferenceError(\"this hasn't been initialised - super() hasn't been called\");return!e||\"object\"!=typeof e&&\"function\"!=typeof e?t:e}function a(t,e){if(\"function\"!=typeof e&&null!==e)throw new TypeError(\"Super expression must either be null or a function, not \"+typeof e);t.prototype=Object.create(e&&e.prototype,{constructor:{value:t,enumerable:!1,writable:!0,configurable:!0}}),e&&(Object.setPrototypeOf?Object.setPrototypeOf(t,e):t.__proto__=e)}Object.defineProperty(e,\"__esModule\",{value:!0});var u=function(){function t(t,e){for(var n=0;n<e.length;n++){var r=e[n];r.enumerable=r.enumerable||!1,r.configurable=!0,\"value\"in r&&(r.writable=!0),Object.defineProperty(t,r.key,r)}}return function(e,n,r){return n&&t(e.prototype,n),r&&t(e,r),e}}(),c=n(41),s=r(c),l=n(128),f=n(64),p=(n(7),n(30)),h=n(111),d=n(133),v=n(11),g=n(39),y=n(56),m=r(y),b=function(t){function e(){i(this,e);var t=o(this,(e.__proto__||Object.getPrototypeOf(e)).call(this));return window.lastAdditiveForceVisualizer=t,t.effectFormat=(0,p.format)(\".2\"),t.redraw=(0,g.debounce)(function(){return t.draw()},200),t}return a(e,t),u(e,[{key:\"componentDidMount\",value:function(){var t=this;this.mainGroup=this.svg.append(\"g\"),this.axisElement=this.mainGroup.append(\"g\").attr(\"transform\",\"translate(0,35)\").attr(\"class\",\"force-bar-axis\"),this.onTopGroup=this.svg.append(\"g\"),this.baseValueTitle=this.svg.append(\"text\"),this.joinPointLine=this.svg.append(\"line\"),this.joinPointLabelOutline=this.svg.append(\"text\"),this.joinPointLabel=this.svg.append(\"text\"),this.joinPointTitleLeft=this.svg.append(\"text\"),this.joinPointTitleLeftArrow=this.svg.append(\"text\"),this.joinPointTitle=this.svg.append(\"text\"),this.joinPointTitleRightArrow=this.svg.append(\"text\"),this.joinPointTitleRight=this.svg.append(\"text\"),this.hoverLabelBacking=this.svg.append(\"text\").attr(\"x\",10).attr(\"y\",20).attr(\"text-anchor\",\"middle\").attr(\"font-size\",12).attr(\"stroke\",\"#fff\").attr(\"fill\",\"#fff\").attr(\"stroke-width\",\"4\").attr(\"stroke-linejoin\",\"round\").text(\"\").on(\"mouseover\",function(e){t.hoverLabel.attr(\"opacity\",1),t.hoverLabelBacking.attr(\"opacity\",1)}).on(\"mouseout\",function(e){t.hoverLabel.attr(\"opacity\",0),t.hoverLabelBacking.attr(\"opacity\",0)}),this.hoverLabel=this.svg.append(\"text\").attr(\"x\",10).attr(\"y\",20).attr(\"text-anchor\",\"middle\").attr(\"font-size\",12).attr(\"fill\",\"#0f0\").text(\"\").on(\"mouseover\",function(e){t.hoverLabel.attr(\"opacity\",1),t.hoverLabelBacking.attr(\"opacity\",1)}).on(\"mouseout\",function(e){t.hoverLabel.attr(\"opacity\",0),t.hoverLabelBacking.attr(\"opacity\",0)});var e=void 0;\"string\"==typeof this.props.plot_cmap?this.props.plot_cmap in m.default.colors?e=m.default.colors[this.props.plot_cmap]:(console.log(\"Invalid color map name, reverting to default.\"),e=m.default.colors.RdBu):Array.isArray(this.props.plot_cmap)&&(e=this.props.plot_cmap),this.colors=e.map(function(t){return(0,v.hsl)(t)}),this.brighterColors=[1.45,1.6].map(function(e,n){return t.colors[n].brighter(e)}),this.colors.map(function(e,n){var r=t.svg.append(\"linearGradient\").attr(\"id\",\"linear-grad-\"+n).attr(\"x1\",\"0%\").attr(\"y1\",\"0%\").attr(\"x2\",\"0%\").attr(\"y2\",\"100%\");r.append(\"stop\").attr(\"offset\",\"0%\").attr(\"stop-color\",e).attr(\"stop-opacity\",.6),r.append(\"stop\").attr(\"offset\",\"100%\").attr(\"stop-color\",e).attr(\"stop-opacity\",0);var i=t.svg.append(\"linearGradient\").attr(\"id\",\"linear-backgrad-\"+n).attr(\"x1\",\"0%\").attr(\"y1\",\"0%\").attr(\"x2\",\"0%\").attr(\"y2\",\"100%\");i.append(\"stop\").attr(\"offset\",\"0%\").attr(\"stop-color\",e).attr(\"stop-opacity\",.5),i.append(\"stop\").attr(\"offset\",\"100%\").attr(\"stop-color\",e).attr(\"stop-opacity\",0)}),this.tickFormat=(0,p.format)(\",.4\"),this.scaleCentered=(0,f.scaleLinear)(),this.axis=(0,h.axisBottom)().scale(this.scaleCentered).tickSizeInner(4).tickSizeOuter(0).tickFormat(function(e){return t.tickFormat(t.invLinkFunction(e))}).tickPadding(-18),window.addEventListener(\"resize\",this.redraw),window.setTimeout(this.redraw,50)}},{key:\"componentDidUpdate\",value:function(){this.draw()}},{key:\"draw\",value:function(){var t=this;(0,g.each)(this.props.featureNames,function(e,n){t.props.features[n]&&(t.props.features[n].name=e)}),\"identity\"===this.props.link?this.invLinkFunction=function(e){return t.props.baseValue+e}:\"logit\"===this.props.link?this.invLinkFunction=function(e){return 1/(1+Math.exp(-(t.props.baseValue+e)))}:console.log(\"ERROR: Unrecognized link function: \",this.props.link);var e=this.svg.node().parentNode.offsetWidth;if(0==e)return setTimeout(function(){return t.draw(t.props)},500);this.svg.style(\"height\",\"150px\"),this.svg.style(\"width\",e+\"px\");var n=50,r=(0,g.sortBy)(this.props.features,function(t){return-1/(t.effect+1e-10)}),i=(0,g.sum)((0,g.map)(r,function(t){return Math.abs(t.effect)})),o=(0,g.sum)((0,g.map)((0,g.filter)(r,function(t){return t.effect>0}),function(t){return t.effect}))||0,a=(0,g.sum)((0,g.map)((0,g.filter)(r,function(t){return t.effect<0}),function(t){return-t.effect}))||0;this.domainSize=3*Math.max(o,a);var u=(0,f.scaleLinear)().domain([0,this.domainSize]).range([0,e]),c=e/2-u(a);this.scaleCentered.domain([-this.domainSize/2,this.domainSize/2]).range([0,e]).clamp(!0),this.axisElement.attr(\"transform\",\"translate(0,\"+n+\")\").call(this.axis);var s=0,l=void 0,h=void 0,v=void 0;for(l=0;l<r.length;++l)r[l].x=s,r[l].effect<0&&void 0===h&&(h=s,v=l),s+=Math.abs(r[l].effect);void 0===h&&(h=s,v=l);var y=(0,d.line)().x(function(t){return t[0]}).y(function(t){return t[1]}),m=function(e){return void 0!==e.value&&null!==e.value&&\"\"!==e.value?e.name+\" = \"+(isNaN(e.value)?e.value:t.tickFormat(e.value)):e.name};r=this.props.hideBars?[]:r;var b=this.mainGroup.selectAll(\".force-bar-blocks\").data(r);b.enter().append(\"path\").attr(\"class\",\"force-bar-blocks\").merge(b).attr(\"d\",function(t,e){var r=u(t.x)+c,i=u(Math.abs(t.effect)),o=t.effect<0?-4:4,a=o;return e===v&&(o=0),e===v-1&&(a=0),y([[r,6+n],[r+i,6+n],[r+i+a,14.5+n],[r+i,23+n],[r,23+n],[r+o,14.5+n]])}).attr(\"fill\",function(e){return e.effect>0?t.colors[0]:t.colors[1]}).on(\"mouseover\",function(e){if(u(Math.abs(e.effect))<u(i)/50||u(Math.abs(e.effect))<10){var r=u(e.x)+c,o=u(Math.abs(e.effect));t.hoverLabel.attr(\"opacity\",1).attr(\"x\",r+o/2).attr(\"y\",n+.5).attr(\"fill\",e.effect>0?t.colors[0]:t.colors[1]).text(m(e)),t.hoverLabelBacking.attr(\"opacity\",1).attr(\"x\",r+o/2).attr(\"y\",n+.5).text(m(e))}}).on(\"mouseout\",function(e){t.hoverLabel.attr(\"opacity\",0),t.hoverLabelBacking.attr(\"opacity\",0)}),b.exit().remove();var x=_.filter(r,function(t){return u(Math.abs(t.effect))>u(i)/50&&u(Math.abs(t.effect))>10}),w=this.onTopGroup.selectAll(\".force-bar-labels\").data(x);if(w.exit().remove(),w=w.enter().append(\"text\").attr(\"class\",\"force-bar-labels\").attr(\"font-size\",\"12px\").attr(\"y\",function(t){return 48+n}).merge(w).text(function(e){return void 0!==e.value&&null!==e.value&&\"\"!==e.value?e.name+\" = \"+(isNaN(e.value)?e.value:t.tickFormat(e.value)):e.name}).attr(\"fill\",function(e){return e.effect>0?t.colors[0]:t.colors[1]}).attr(\"stroke\",function(t,e){return t.textWidth=Math.max(this.getComputedTextLength(),u(Math.abs(t.effect))-10),t.innerTextWidth=this.getComputedTextLength(),\"none\"}),this.filteredData=x,r.length>0){s=h+u.invert(5);for(var C=v;C<r.length;++C)r[C].textx=s,s+=u.invert(r[C].textWidth+10);s=h-u.invert(5);for(var M=v-1;M>=0;--M)r[M].textx=s,s-=u.invert(r[M].textWidth+10)}w.attr(\"x\",function(t){return u(t.textx)+c+(t.effect>0?-t.textWidth/2:t.textWidth/2)}).attr(\"text-anchor\",\"middle\"),x=(0,g.filter)(x,function(n){return u(n.textx)+c>t.props.labelMargin&&u(n.textx)+c<e-t.props.labelMargin}),this.filteredData2=x;var k=x.slice(),E=(0,g.findIndex)(r,x[0])-1;E>=0&&k.unshift(r[E]);var T=this.mainGroup.selectAll(\".force-bar-labelBacking\").data(x);T.enter().append(\"path\").attr(\"class\",\"force-bar-labelBacking\").attr(\"stroke\",\"none\").attr(\"opacity\",.2).merge(T).attr(\"d\",function(t){return y([[u(t.x)+u(Math.abs(t.effect))+c,23+n],[(t.effect>0?u(t.textx):u(t.textx)+t.textWidth)+c+5,33+n],[(t.effect>0?u(t.textx):u(t.textx)+t.textWidth)+c+5,54+n],[(t.effect>0?u(t.textx)-t.textWidth:u(t.textx))+c-5,54+n],[(t.effect>0?u(t.textx)-t.textWidth:u(t.textx))+c-5,33+n],[u(t.x)+c,23+n]])}).attr(\"fill\",function(t){return\"url(#linear-backgrad-\"+(t.effect>0?0:1)+\")\"}),T.exit().remove();var S=this.mainGroup.selectAll(\".force-bar-labelDividers\").data(x.slice(0,-1));S.enter().append(\"rect\").attr(\"class\",\"force-bar-labelDividers\").attr(\"height\",\"21px\").attr(\"width\",\"1px\").attr(\"y\",33+n).merge(S).attr(\"x\",function(t){return(t.effect>0?u(t.textx):u(t.textx)+t.textWidth)+c+4.5}).attr(\"fill\",function(t){return\"url(#linear-grad-\"+(t.effect>0?0:1)+\")\"}),S.exit().remove();var N=this.mainGroup.selectAll(\".force-bar-labelLinks\").data(x.slice(0,-1));N.enter().append(\"line\").attr(\"class\",\"force-bar-labelLinks\").attr(\"y1\",23+n).attr(\"y2\",33+n).attr(\"stroke-opacity\",.5).attr(\"stroke-width\",1).merge(N).attr(\"x1\",function(t){return u(t.x)+u(Math.abs(t.effect))+c}).attr(\"x2\",function(t){return(t.effect>0?u(t.textx):u(t.textx)+t.textWidth)+c+5}).attr(\"stroke\",function(e){return e.effect>0?t.colors[0]:t.colors[1]}),N.exit().remove();var A=this.mainGroup.selectAll(\".force-bar-blockDividers\").data(r.slice(0,-1));A.enter().append(\"path\").attr(\"class\",\"force-bar-blockDividers\").attr(\"stroke-width\",2).attr(\"fill\",\"none\").merge(A).attr(\"d\",function(t){var e=u(t.x)+u(Math.abs(t.effect))+c;return y([[e,6+n],[e+(t.effect<0?-4:4),14.5+n],[e,23+n]])}).attr(\"stroke\",function(e,n){return v===n+1||Math.abs(e.effect)<1e-8?\"#rgba(0,0,0,0)\":e.effect>0?t.brighterColors[0]:t.brighterColors[1]}),A.exit().remove(),this.joinPointLine.attr(\"x1\",u(h)+c).attr(\"x2\",u(h)+c).attr(\"y1\",0+n).attr(\"y2\",6+n).attr(\"stroke\",\"#F2F2F2\").attr(\"stroke-width\",1).attr(\"opacity\",1),this.joinPointLabelOutline.attr(\"x\",u(h)+c).attr(\"y\",-5+n).attr(\"color\",\"#fff\").attr(\"text-anchor\",\"middle\").attr(\"font-weight\",\"bold\").attr(\"stroke\",\"#fff\").attr(\"stroke-width\",6).text((0,p.format)(\",.2f\")(this.invLinkFunction(h-a))).attr(\"opacity\",1),console.log(\"joinPoint\",h,c,n,a),this.joinPointLabel.attr(\"x\",u(h)+c).attr(\"y\",-5+n).attr(\"text-anchor\",\"middle\").attr(\"font-weight\",\"bold\").attr(\"fill\",\"#000\").text((0,p.format)(\",.2f\")(this.invLinkFunction(h-a))).attr(\"opacity\",1),this.joinPointTitle.attr(\"x\",u(h)+c).attr(\"y\",-22+n).attr(\"text-anchor\",\"middle\").attr(\"font-size\",\"12\").attr(\"fill\",\"#000\").text(this.props.outNames[0]).attr(\"opacity\",.5),this.props.hideBars||(this.joinPointTitleLeft.attr(\"x\",u(h)+c-16).attr(\"y\",-38+n).attr(\"text-anchor\",\"end\").attr(\"font-size\",\"13\").attr(\"fill\",this.colors[0]).text(\"higher\").attr(\"opacity\",1),this.joinPointTitleRight.attr(\"x\",u(h)+c+16).attr(\"y\",-38+n).attr(\"text-anchor\",\"start\").attr(\"font-size\",\"13\").attr(\"fill\",this.colors[1]).text(\"lower\").attr(\"opacity\",1),this.joinPointTitleLeftArrow.attr(\"x\",u(h)+c+7).attr(\"y\",-42+n).attr(\"text-anchor\",\"end\").attr(\"font-size\",\"13\").attr(\"fill\",this.colors[0]).text(\"→\").attr(\"opacity\",1),this.joinPointTitleRightArrow.attr(\"x\",u(h)+c-7).attr(\"y\",-36+n).attr(\"text-anchor\",\"start\").attr(\"font-size\",\"13\").attr(\"fill\",this.colors[1]).text(\"←\").attr(\"opacity\",1)),this.props.hideBaseValueLabel||this.baseValueTitle.attr(\"x\",this.scaleCentered(0)).attr(\"y\",-22+n).attr(\"text-anchor\",\"middle\").attr(\"font-size\",\"12\").attr(\"fill\",\"#000\").text(\"base value\").attr(\"opacity\",.5)}},{key:\"componentWillUnmount\",value:function(){window.removeEventListener(\"resize\",this.redraw)}},{key:\"render\",value:function(){var t=this;return s.default.createElement(\"svg\",{ref:function(e){return t.svg=(0,l.select)(e)},style:{userSelect:\"none\",display:\"block\",fontFamily:\"arial\",sansSerif:!0}},s.default.createElement(\"style\",{dangerouslySetInnerHTML:{__html:\"\\n .force-bar-axis path {\\n fill: none;\\n opacity: 0.4;\\n }\\n .force-bar-axis paths {\\n display: none;\\n }\\n .tick line {\\n stroke: #000;\\n stroke-width: 1px;\\n opacity: 0.4;\\n }\\n .tick text {\\n fill: #000;\\n opacity: 0.5;\\n font-size: 12px;\\n padding: 0px;\\n }\"}}))}}]),e}(s.default.Component);b.defaultProps={plot_cmap:\"RdBu\"},e.default=b},function(t,e,n){\"use strict\";function r(t){return t&&t.__esModule?t:{default:t}}function i(t,e){if(!(t instanceof e))throw new TypeError(\"Cannot call a class as a function\")}function o(t,e){if(!t)throw new ReferenceError(\"this hasn't been initialised - super() hasn't been called\");return!e||\"object\"!=typeof e&&\"function\"!=typeof e?t:e}function a(t,e){if(\"function\"!=typeof e&&null!==e)throw new TypeError(\"Super expression must either be null or a function, not \"+typeof e);t.prototype=Object.create(e&&e.prototype,{constructor:{value:t,enumerable:!1,writable:!0,configurable:!0}}),e&&(Object.setPrototypeOf?Object.setPrototypeOf(t,e):t.__proto__=e)}Object.defineProperty(e,\"__esModule\",{value:!0});var u=function(){function t(t,e){for(var n=0;n<e.length;n++){var r=e[n];r.enumerable=r.enumerable||!1,r.configurable=!0,\"value\"in r&&(r.writable=!0),Object.defineProperty(t,r.key,r)}}return function(e,n,r){return n&&t(e.prototype,n),r&&t(e,r),e}}(),c=n(41),s=r(c),l=n(64),f=(n(7),n(30)),p=n(39),h=n(56),d=r(h),v=function(t){function e(){i(this,e);var t=o(this,(e.__proto__||Object.getPrototypeOf(e)).call(this));return t.width=100,window.lastSimpleListInstance=t,t.effectFormat=(0,f.format)(\".2\"),t}return a(e,t),u(e,[{key:\"render\",value:function(){var t=this,e=void 0;\"string\"==typeof this.props.plot_cmap?this.props.plot_cmap in d.default.colors?e=d.default.colors[this.props.plot_cmap]:(console.log(\"Invalid color map name, reverting to default.\"),e=d.default.colors.RdBu):Array.isArray(this.props.plot_cmap)&&(e=this.props.plot_cmap),console.log(this.props.features,this.props.features),this.scale=(0,l.scaleLinear)().domain([0,(0,p.max)((0,p.map)(this.props.features,function(t){return Math.abs(t.effect)}))]).range([0,this.width]);var n=(0,p.reverse)((0,p.sortBy)(Object.keys(this.props.features),function(e){return Math.abs(t.props.features[e].effect)})),r=n.map(function(n){var r=t.props.features[n],i=t.props.featureNames[n],o={width:t.scale(Math.abs(r.effect)),height:\"20px\",background:r.effect<0?e[0]:e[1],display:\"inline-block\"},a=void 0,u=void 0,c={lineHeight:\"20px\",display:\"inline-block\",width:t.width+40,verticalAlign:\"top\",marginRight:\"5px\",textAlign:\"right\"},l={lineHeight:\"20px\",display:\"inline-block\",width:t.width+40,verticalAlign:\"top\",marginLeft:\"5px\"};return r.effect<0?(u=s.default.createElement(\"span\",{style:l},i),c.width=40+t.width-t.scale(Math.abs(r.effect)),c.textAlign=\"right\",c.color=\"#999\",c.fontSize=\"13px\",a=s.default.createElement(\"span\",{style:c},t.effectFormat(r.effect))):(c.textAlign=\"right\",a=s.default.createElement(\"span\",{style:c},i),l.width=40,l.textAlign=\"left\",l.color=\"#999\",l.fontSize=\"13px\",u=s.default.createElement(\"span\",{style:l},t.effectFormat(r.effect))),s.default.createElement(\"div\",{key:n,style:{marginTop:\"2px\"}},a,s.default.createElement(\"div\",{style:o}),u)});return s.default.createElement(\"span\",null,r)}}]),e}(s.default.Component);v.defaultProps={plot_cmap:\"RdBu\"},e.default=v},function(t,e,n){\"use strict\";t.exports=n(345)},function(t,e,n){var r=(n(0),n(398)),i=!1;t.exports=function(t){t=t||{};var e=t.shouldRejectClick||r;i=!0,n(22).injection.injectEventPluginsByName({TapEventPlugin:n(396)(e)})}},function(t,e,n){\"use strict\";e.a=function(t){return function(){return t}}},function(t,e,n){\"use strict\";e.a=function(t,e){return e<t?-1:e>t?1:e>=t?0:NaN}},function(t,e,n){\"use strict\";var r=n(100),i=n(101),o=n(184),a=n(104),u=n(187),c=n(108),s=n(107);e.a=function(){function t(t){var r,o,a=t.length,u=new Array(a);for(r=0;r<a;++r)u[r]=e(t[r],r,t);var s=l(u),p=s[0],h=s[1],d=f(u,p,h);Array.isArray(d)||(d=n.i(c.a)(p,h,d));for(var v=d.length;d[0]<=p;)d.shift(),--v;for(;d[v-1]>=h;)d.pop(),--v;var g,y=new Array(v+1);for(r=0;r<=v;++r)g=y[r]=[],g.x0=r>0?d[r-1]:p,g.x1=r<v?d[r]:h;for(r=0;r<a;++r)o=u[r],p<=o&&o<=h&&y[n.i(i.a)(d,o,0,v)].push(t[r]);return y}var e=u.a,l=a.a,f=s.a;return t.value=function(r){return arguments.length?(e=\"function\"==typeof r?r:n.i(o.a)(r),t):e},t.domain=function(e){return arguments.length?(l=\"function\"==typeof e?e:n.i(o.a)([e[0],e[1]]),t):l},t.thresholds=function(e){return arguments.length?(f=\"function\"==typeof e?e:Array.isArray(e)?n.i(o.a)(r.b.call(e)):n.i(o.a)(e),t):f},t}},function(t,e,n){\"use strict\";e.a=function(t){return t}},function(t,e,n){\"use strict\";e.a=function(t,e){var n,r,i=-1,o=t.length;if(null==e){for(;++i<o;)if(null!=(r=t[i])&&r>=r){n=r;break}for(;++i<o;)null!=(r=t[i])&&r>n&&(n=r)}else{for(;++i<o;)if(null!=(r=e(t[i],i,t))&&r>=r){n=r;break}for(;++i<o;)null!=(r=e(t[i],i,t))&&r>n&&(n=r)}return n}},function(t,e,n){\"use strict\";var r=n(29);e.a=function(t,e){var i,o=0,a=t.length,u=-1,c=a;if(null==e)for(;++u<a;)isNaN(i=n.i(r.a)(t[u]))?--c:o+=i;else for(;++u<a;)isNaN(i=n.i(r.a)(e(t[u],u,t)))?--c:o+=i;if(c)return o/c}},function(t,e,n){\"use strict\";var r=n(18),i=n(29),o=n(57);e.a=function(t,e){var a,u=[],c=t.length,s=-1;if(null==e)for(;++s<c;)isNaN(a=n.i(i.a)(t[s]))||u.push(a);else for(;++s<c;)isNaN(a=n.i(i.a)(e(t[s],s,t)))||u.push(a);return n.i(o.a)(u.sort(r.a),.5)}},function(t,e,n){\"use strict\";e.a=function(t){for(var e,n,r,i=t.length,o=-1,a=0;++o<i;)a+=t[o].length;for(n=new Array(a);--i>=0;)for(r=t[i],e=r.length;--e>=0;)n[--a]=r[e];return n}},function(t,e,n){\"use strict\";e.a=function(t){for(var e=0,n=t.length-1,r=t[0],i=new Array(n<0?0:n);e<n;)i[e]=[r,r=t[++e]];return i}},function(t,e,n){\"use strict\";e.a=function(t,e){for(var n=e.length,r=new Array(n);n--;)r[n]=t[e[n]];return r}},function(t,e,n){\"use strict\";var r=n(18);e.a=function(t,e){if(n=t.length){var n,i,o=0,a=0,u=t[a];for(e||(e=r.a);++o<n;)(e(i=t[o],u)<0||0!==e(u,u))&&(u=i,a=o);return 0===e(u,u)?a:void 0}}},function(t,e,n){\"use strict\";e.a=function(t,e,n){for(var r,i,o=(null==n?t.length:n)-(e=null==e?0:+e);o;)i=Math.random()*o--|0,r=t[o+e],t[o+e]=t[i+e],t[i+e]=r;return t}},function(t,e,n){\"use strict\";e.a=function(t,e){var n,r=0,i=t.length,o=-1;if(null==e)for(;++o<i;)(n=+t[o])&&(r+=n);else for(;++o<i;)(n=+e(t[o],o,t))&&(r+=n);return r}},function(t,e,n){\"use strict\";var r=n(100),i=n(18),o=n(29),a=n(57);e.a=function(t,e,u){return t=r.a.call(t,o.a).sort(i.a),Math.ceil((u-e)/(2*(n.i(a.a)(t,.75)-n.i(a.a)(t,.25))*Math.pow(t.length,-1/3)))}},function(t,e,n){\"use strict\";var r=n(103);e.a=function(t,e,i){return Math.ceil((i-e)/(3.5*n.i(r.a)(t)*Math.pow(t.length,-1/3)))}},function(t,e,n){\"use strict\";var r=n(109);e.a=function(){return n.i(r.a)(arguments)}},function(t,e,n){\"use strict\";n.d(e,\"a\",function(){return r});var r=Array.prototype.slice},function(t,e,n){\"use strict\";function r(t,e,n){var r=t(n);return\"translate(\"+(isFinite(r)?r:e(n))+\",0)\"}function i(t,e,n){var r=t(n);return\"translate(0,\"+(isFinite(r)?r:e(n))+\")\"}function o(t){var e=t.bandwidth()/2;return t.round()&&(e=Math.round(e)),function(n){return t(n)+e}}function a(){return!this.__axis}function u(t,e){function n(n){var p,b=null==c?e.ticks?e.ticks.apply(e,u):e.domain():c,x=null==s?e.tickFormat?e.tickFormat.apply(e,u):h.a:s,w=Math.max(l,0)+_,C=t===d||t===g?r:i,M=e.range(),k=M[0]+.5,E=M[M.length-1]+.5,T=(e.bandwidth?o:h.a)(e.copy()),S=n.selection?n.selection():n,N=S.selectAll(\".domain\").data([null]),A=S.selectAll(\".tick\").data(b,e).order(),P=A.exit(),O=A.enter().append(\"g\").attr(\"class\",\"tick\"),I=A.select(\"line\"),D=A.select(\"text\"),R=t===d||t===y?-1:1,L=t===y||t===v?(p=\"x\",\"y\"):(p=\"y\",\"x\");N=N.merge(N.enter().insert(\"path\",\".tick\").attr(\"class\",\"domain\").attr(\"stroke\",\"#000\")),A=A.merge(O),I=I.merge(O.append(\"line\").attr(\"stroke\",\"#000\").attr(p+\"2\",R*l).attr(L+\"1\",.5).attr(L+\"2\",.5)),D=D.merge(O.append(\"text\").attr(\"fill\",\"#000\").attr(p,R*w).attr(L,.5).attr(\"dy\",t===d?\"0em\":t===g?\"0.71em\":\"0.32em\")),n!==S&&(N=N.transition(n),A=A.transition(n),I=I.transition(n),D=D.transition(n),P=P.transition(n).attr(\"opacity\",m).attr(\"transform\",function(t){return C(T,this.parentNode.__axis||T,t)}),O.attr(\"opacity\",m).attr(\"transform\",function(t){return C(this.parentNode.__axis||T,T,t)})),P.remove(),N.attr(\"d\",t===y||t==v?\"M\"+R*f+\",\"+k+\"H0.5V\"+E+\"H\"+R*f:\"M\"+k+\",\"+R*f+\"V0.5H\"+E+\"V\"+R*f),A.attr(\"opacity\",1).attr(\"transform\",function(t){return C(T,T,t)}),I.attr(p+\"2\",R*l),D.attr(p,R*w).text(x),S.filter(a).attr(\"fill\",\"none\").attr(\"font-size\",10).attr(\"font-family\",\"sans-serif\").attr(\"text-anchor\",t===v?\"start\":t===y?\"end\":\"middle\"),S.each(function(){this.__axis=T})}var u=[],c=null,s=null,l=6,f=6,_=3;return n.scale=function(t){return arguments.length?(e=t,n):e},n.ticks=function(){return u=p.a.call(arguments),n},n.tickArguments=function(t){return arguments.length?(u=null==t?[]:p.a.call(t),n):u.slice()},n.tickValues=function(t){return arguments.length?(c=null==t?null:p.a.call(t),n):c&&c.slice()},n.tickFormat=function(t){return arguments.length?(s=t,n):s},n.tickSize=function(t){return arguments.length?(l=f=+t,n):l},n.tickSizeInner=function(t){return arguments.length?(l=+t,n):l},n.tickSizeOuter=function(t){return arguments.length?(f=+t,n):f},n.tickPadding=function(t){return arguments.length?(_=+t,n):_},n}function c(t){return u(d,t)}function s(t){return u(v,t)}function l(t){return u(g,t)}function f(t){return u(y,t)}var p=n(200),h=n(202);e.a=c,e.b=s,e.c=l,e.d=f;var d=1,v=2,g=3,y=4,m=1e-6},function(t,e,n){\"use strict\";e.a=function(t){return t}},function(t,e,n){\"use strict\";var r=(n(206),n(207),n(58));n.d(e,\"a\",function(){return r.a});n(205),n(208),n(204)},function(t,e,n){\"use strict\"},function(t,e,n){\"use strict\"},function(t,e,n){\"use strict\";n(58)},function(t,e,n){\"use strict\";function r(){}function i(t,e){var n=new r;if(t instanceof r)t.each(function(t){n.add(t)});else if(t){var i=-1,o=t.length;if(null==e)for(;++i<o;)n.add(t[i]);else for(;++i<o;)n.add(e(t[i],i,t))}return n}var o=n(58),a=o.a.prototype;r.prototype=i.prototype={constructor:r,has:a.has,add:function(t){return t+=\"\",this[o.b+t]=t,this},remove:a.remove,clear:a.clear,values:a.keys,size:a.size,empty:a.empty,each:a.each}},function(t,e,n){\"use strict\"},function(t,e,n){\"use strict\";function r(t){if(t instanceof o)return new o(t.h,t.s,t.l,t.opacity);t instanceof u.d||(t=n.i(u.e)(t));var e=t.r/255,r=t.g/255,i=t.b/255,a=(g*i+d*e-v*r)/(g+d-v),s=i-a,l=(h*(r-a)-f*s)/p,y=Math.sqrt(l*l+s*s)/(h*a*(1-a)),m=y?Math.atan2(l,s)*c.a-120:NaN;return new o(m<0?m+360:m,y,a,t.opacity)}function i(t,e,n,i){return 1===arguments.length?r(t):new o(t,e,n,null==i?1:i)}function o(t,e,n,r){this.h=+t,this.s=+e,this.l=+n,this.opacity=+r}var a=n(60),u=n(59),c=n(112);e.a=i;var s=-.14861,l=1.78277,f=-.29227,p=-.90649,h=1.97294,d=h*p,v=h*l,g=l*f-p*s;n.i(a.a)(o,i,n.i(a.b)(u.f,{brighter:function(t){return t=null==t?u.g:Math.pow(u.g,t),new o(this.h,this.s,this.l*t,this.opacity)},darker:function(t){return t=null==t?u.h:Math.pow(u.h,t),new o(this.h,this.s,this.l*t,this.opacity)},rgb:function(){var t=isNaN(this.h)?0:(this.h+120)*c.b,e=+this.l,n=isNaN(this.s)?0:this.s*e*(1-e),r=Math.cos(t),i=Math.sin(t);return new u.d(255*(e+n*(s*r+l*i)),255*(e+n*(f*r+p*i)),255*(e+n*(h*r)),this.opacity)}}))},function(t,e,n){\"use strict\";function r(t){if(t instanceof o)return new o(t.l,t.a,t.b,t.opacity);if(t instanceof p){var e=t.h*v.b;return new o(t.l,Math.cos(e)*t.c,Math.sin(e)*t.c,t.opacity)}t instanceof d.d||(t=n.i(d.e)(t));var r=s(t.r),i=s(t.g),u=s(t.b),c=a((.4124564*r+.3575761*i+.1804375*u)/y),l=a((.2126729*r+.7151522*i+.072175*u)/m),f=a((.0193339*r+.119192*i+.9503041*u)/_);return new o(116*l-16,500*(c-l),200*(l-f),t.opacity);\n", "}function i(t,e,n,i){return 1===arguments.length?r(t):new o(t,e,n,null==i?1:i)}function o(t,e,n,r){this.l=+t,this.a=+e,this.b=+n,this.opacity=+r}function a(t){return t>C?Math.pow(t,1/3):t/w+b}function u(t){return t>x?t*t*t:w*(t-b)}function c(t){return 255*(t<=.0031308?12.92*t:1.055*Math.pow(t,1/2.4)-.055)}function s(t){return(t/=255)<=.04045?t/12.92:Math.pow((t+.055)/1.055,2.4)}function l(t){if(t instanceof p)return new p(t.h,t.c,t.l,t.opacity);t instanceof o||(t=r(t));var e=Math.atan2(t.b,t.a)*v.a;return new p(e<0?e+360:e,Math.sqrt(t.a*t.a+t.b*t.b),t.l,t.opacity)}function f(t,e,n,r){return 1===arguments.length?l(t):new p(t,e,n,null==r?1:r)}function p(t,e,n,r){this.h=+t,this.c=+e,this.l=+n,this.opacity=+r}var h=n(60),d=n(59),v=n(112);e.a=i,e.b=f;var g=18,y=.95047,m=1,_=1.08883,b=4/29,x=6/29,w=3*x*x,C=x*x*x;n.i(h.a)(o,i,n.i(h.b)(d.f,{brighter:function(t){return new o(this.l+g*(null==t?1:t),this.a,this.b,this.opacity)},darker:function(t){return new o(this.l-g*(null==t?1:t),this.a,this.b,this.opacity)},rgb:function(){var t=(this.l+16)/116,e=isNaN(this.a)?t:t+this.a/500,n=isNaN(this.b)?t:t-this.b/200;return t=m*u(t),e=y*u(e),n=_*u(n),new d.d(c(3.2404542*e-1.5371385*t-.4985314*n),c(-.969266*e+1.8760108*t+.041556*n),c(.0556434*e-.2040259*t+1.0572252*n),this.opacity)}})),n.i(h.a)(p,f,n.i(h.b)(d.f,{brighter:function(t){return new p(this.h,this.c,this.l+g*(null==t?1:t),this.opacity)},darker:function(t){return new p(this.h,this.c,this.l-g*(null==t?1:t),this.opacity)},rgb:function(){return r(this).rgb()}}))},function(t,e,n){\"use strict\";function r(t){return o=n.i(i.a)(t),a=o.format,u=o.formatPrefix,o}var i=n(116);n.d(e,\"b\",function(){return a}),n.d(e,\"c\",function(){return u}),e.a=r;var o,a,u;r({decimal:\".\",thousands:\",\",grouping:[3],currency:[\"$\",\"\"]})},function(t,e,n){\"use strict\";e.a=function(t,e){t=t.toPrecision(e);t:for(var n,r=t.length,i=1,o=-1;i<r;++i)switch(t[i]){case\".\":o=n=i;break;case\"0\":0===o&&(o=i),n=i;break;case\"e\":break t;default:o>0&&(o=0)}return o>0?t.slice(0,o)+t.slice(n+1):t}},function(t,e,n){\"use strict\";e.a=function(t,e){return function(n,r){for(var i=n.length,o=[],a=0,u=t[0],c=0;i>0&&u>0&&(c+u+1>r&&(u=Math.max(1,r-c)),o.push(n.substring(i-=u,i+u)),!((c+=u+1)>r));)u=t[a=(a+1)%t.length];return o.reverse().join(e)}}},function(t,e,n){\"use strict\";var r=n(61);e.a=function(t,e){var i=n.i(r.a)(t,e);if(!i)return t+\"\";var o=i[0],a=i[1];return a<0?\"0.\"+new Array(-a).join(\"0\")+o:o.length>a+1?o.slice(0,a+1)+\".\"+o.slice(a+1):o+new Array(a-o.length+2).join(\"0\")}},function(t,e,n){\"use strict\";var r=n(42);e.a=function(t){return Math.max(0,-n.i(r.a)(Math.abs(t)))}},function(t,e,n){\"use strict\";var r=n(42);e.a=function(t,e){return Math.max(0,3*Math.max(-8,Math.min(8,Math.floor(n.i(r.a)(e)/3)))-n.i(r.a)(Math.abs(t)))}},function(t,e,n){\"use strict\";var r=n(42);e.a=function(t,e){return t=Math.abs(t),e=Math.abs(e)-t,Math.max(0,n.i(r.a)(e)-n.i(r.a)(t))+1}},function(t,e,n){\"use strict\";function r(t){return function e(r){function a(e,a){var u=t((e=n.i(i.cubehelix)(e)).h,(a=n.i(i.cubehelix)(a)).h),c=n.i(o.a)(e.s,a.s),s=n.i(o.a)(e.l,a.l),l=n.i(o.a)(e.opacity,a.opacity);return function(t){return e.h=u(t),e.s=c(t),e.l=s(Math.pow(t,r)),e.opacity=l(t),e+\"\"}}return r=+r,a.gamma=e,a}(1)}var i=n(11),o=n(32);n.d(e,\"a\",function(){return a});var a=(r(o.b),r(o.a))},function(t,e,n){\"use strict\";function r(t){return function(e,r){var a=t((e=n.i(i.hcl)(e)).h,(r=n.i(i.hcl)(r)).h),u=n.i(o.a)(e.c,r.c),c=n.i(o.a)(e.l,r.l),s=n.i(o.a)(e.opacity,r.opacity);return function(t){return e.h=a(t),e.c=u(t),e.l=c(t),e.opacity=s(t),e+\"\"}}}var i=n(11),o=n(32);r(o.b),r(o.a)},function(t,e,n){\"use strict\";function r(t){return function(e,r){var a=t((e=n.i(i.hsl)(e)).h,(r=n.i(i.hsl)(r)).h),u=n.i(o.a)(e.s,r.s),c=n.i(o.a)(e.l,r.l),s=n.i(o.a)(e.opacity,r.opacity);return function(t){return e.h=a(t),e.s=u(t),e.l=c(t),e.opacity=s(t),e+\"\"}}}var i=n(11),o=n(32);r(o.b),r(o.a)},function(t,e,n){\"use strict\";n(11),n(32)},function(t,e,n){\"use strict\"},function(t,e,n){\"use strict\";e.a=function(t,e){return t=+t,e-=t,function(n){return Math.round(t+e*n)}}},function(t,e,n){\"use strict\";n.d(e,\"a\",function(){return i});var r=180/Math.PI,i={translateX:0,translateY:0,rotate:0,skewX:0,scaleX:1,scaleY:1};e.b=function(t,e,n,i,o,a){var u,c,s;return(u=Math.sqrt(t*t+e*e))&&(t/=u,e/=u),(s=t*n+e*i)&&(n-=t*s,i-=e*s),(c=Math.sqrt(n*n+i*i))&&(n/=c,i/=c,s/=c),t*i<e*n&&(t=-t,e=-e,s=-s,u=-u),{translateX:o,translateY:a,rotate:Math.atan2(e,t)*r,skewX:Math.atan(s)*r,scaleX:u,scaleY:c}}},function(t,e,n){\"use strict\";function r(t,e,r,o){function a(t){return t.length?t.pop()+\" \":\"\"}function u(t,o,a,u,c,s){if(t!==a||o!==u){var l=c.push(\"translate(\",null,e,null,r);s.push({i:l-4,x:n.i(i.a)(t,a)},{i:l-2,x:n.i(i.a)(o,u)})}else(a||u)&&c.push(\"translate(\"+a+e+u+r)}function c(t,e,r,u){t!==e?(t-e>180?e+=360:e-t>180&&(t+=360),u.push({i:r.push(a(r)+\"rotate(\",null,o)-2,x:n.i(i.a)(t,e)})):e&&r.push(a(r)+\"rotate(\"+e+o)}function s(t,e,r,u){t!==e?u.push({i:r.push(a(r)+\"skewX(\",null,o)-2,x:n.i(i.a)(t,e)}):e&&r.push(a(r)+\"skewX(\"+e+o)}function l(t,e,r,o,u,c){if(t!==r||e!==o){var s=u.push(a(u)+\"scale(\",null,\",\",null,\")\");c.push({i:s-4,x:n.i(i.a)(t,r)},{i:s-2,x:n.i(i.a)(e,o)})}else 1===r&&1===o||u.push(a(u)+\"scale(\"+r+\",\"+o+\")\")}return function(e,n){var r=[],i=[];return e=t(e),n=t(n),u(e.translateX,e.translateY,n.translateX,n.translateY,r,i),c(e.rotate,n.rotate,r,i),s(e.skewX,n.skewX,r,i),l(e.scaleX,e.scaleY,n.scaleX,n.scaleY,r,i),e=n=null,function(t){for(var e,n=-1,o=i.length;++n<o;)r[(e=i[n]).i]=e.x(t);return r.join(\"\")}}}var i=n(43),o=n(226);r(o.a,\"px, \",\"px)\",\"deg)\"),r(o.b,\", \",\")\",\")\")},function(t,e,n){\"use strict\";function r(t){return\"none\"===t?o.a:(a||(a=document.createElement(\"DIV\"),u=document.documentElement,c=document.defaultView),a.style.transform=t,t=c.getComputedStyle(u.appendChild(a),null).getPropertyValue(\"transform\"),u.removeChild(a),t=t.slice(7,-1).split(\",\"),n.i(o.b)(+t[0],+t[1],+t[2],+t[3],+t[4],+t[5]))}function i(t){return null==t?o.a:(s||(s=document.createElementNS(\"http://www.w3.org/2000/svg\",\"g\")),s.setAttribute(\"transform\",t),(t=s.transform.baseVal.consolidate())?(t=t.matrix,n.i(o.b)(t.a,t.b,t.c,t.d,t.e,t.f)):o.a)}var o=n(224);e.a=r,e.b=i;var a,u,c,s},function(t,e,n){\"use strict\";Math.SQRT2},function(t,e,n){\"use strict\";function r(){this._x0=this._y0=this._x1=this._y1=null,this._=\"\"}function i(){return new r}var o=Math.PI,a=2*o,u=1e-6,c=a-u;r.prototype=i.prototype={constructor:r,moveTo:function(t,e){this._+=\"M\"+(this._x0=this._x1=+t)+\",\"+(this._y0=this._y1=+e)},closePath:function(){null!==this._x1&&(this._x1=this._x0,this._y1=this._y0,this._+=\"Z\")},lineTo:function(t,e){this._+=\"L\"+(this._x1=+t)+\",\"+(this._y1=+e)},quadraticCurveTo:function(t,e,n,r){this._+=\"Q\"+ +t+\",\"+ +e+\",\"+(this._x1=+n)+\",\"+(this._y1=+r)},bezierCurveTo:function(t,e,n,r,i,o){this._+=\"C\"+ +t+\",\"+ +e+\",\"+ +n+\",\"+ +r+\",\"+(this._x1=+i)+\",\"+(this._y1=+o)},arcTo:function(t,e,n,r,i){t=+t,e=+e,n=+n,r=+r,i=+i;var a=this._x1,c=this._y1,s=n-t,l=r-e,f=a-t,p=c-e,h=f*f+p*p;if(i<0)throw new Error(\"negative radius: \"+i);if(null===this._x1)this._+=\"M\"+(this._x1=t)+\",\"+(this._y1=e);else if(h>u)if(Math.abs(p*s-l*f)>u&&i){var d=n-a,v=r-c,g=s*s+l*l,y=d*d+v*v,m=Math.sqrt(g),_=Math.sqrt(h),b=i*Math.tan((o-Math.acos((g+h-y)/(2*m*_)))/2),x=b/_,w=b/m;Math.abs(x-1)>u&&(this._+=\"L\"+(t+x*f)+\",\"+(e+x*p)),this._+=\"A\"+i+\",\"+i+\",0,0,\"+ +(p*d>f*v)+\",\"+(this._x1=t+w*s)+\",\"+(this._y1=e+w*l)}else this._+=\"L\"+(this._x1=t)+\",\"+(this._y1=e);else;},arc:function(t,e,n,r,i,s){t=+t,e=+e,n=+n;var l=n*Math.cos(r),f=n*Math.sin(r),p=t+l,h=e+f,d=1^s,v=s?r-i:i-r;if(n<0)throw new Error(\"negative radius: \"+n);null===this._x1?this._+=\"M\"+p+\",\"+h:(Math.abs(this._x1-p)>u||Math.abs(this._y1-h)>u)&&(this._+=\"L\"+p+\",\"+h),n&&(v>c?this._+=\"A\"+n+\",\"+n+\",0,1,\"+d+\",\"+(t-l)+\",\"+(e-f)+\"A\"+n+\",\"+n+\",0,1,\"+d+\",\"+(this._x1=p)+\",\"+(this._y1=h):(v<0&&(v=v%a+a),this._+=\"A\"+n+\",\"+n+\",0,\"+ +(v>=o)+\",\"+d+\",\"+(this._x1=t+n*Math.cos(i))+\",\"+(this._y1=e+n*Math.sin(i))))},rect:function(t,e,n,r){this._+=\"M\"+(this._x0=this._x1=+t)+\",\"+(this._y0=this._y1=+e)+\"h\"+ +n+\"v\"+ +r+\"h\"+-n+\"Z\"},toString:function(){return this._}},e.a=i},function(t,e,n){\"use strict\";function r(){function t(){var t=c().length,r=l[1]<l[0],o=l[r-0],u=l[1-r];e=(u-o)/Math.max(1,t-p+2*h),f&&(e=Math.floor(e)),o+=(u-o-e*(t-p))*d,i=e*(1-p),f&&(o=Math.round(o),i=Math.round(i));var v=n.i(a.range)(t).map(function(t){return o+e*t});return s(r?v.reverse():v)}var e,i,o=n.i(u.a)().unknown(void 0),c=o.domain,s=o.range,l=[0,1],f=!1,p=0,h=0,d=.5;return delete o.unknown,o.domain=function(e){return arguments.length?(c(e),t()):c()},o.range=function(e){return arguments.length?(l=[+e[0],+e[1]],t()):l.slice()},o.rangeRound=function(e){return l=[+e[0],+e[1]],f=!0,t()},o.bandwidth=function(){return i},o.step=function(){return e},o.round=function(e){return arguments.length?(f=!!e,t()):f},o.padding=function(e){return arguments.length?(p=h=Math.max(0,Math.min(1,e)),t()):p},o.paddingInner=function(e){return arguments.length?(p=Math.max(0,Math.min(1,e)),t()):p},o.paddingOuter=function(e){return arguments.length?(h=Math.max(0,Math.min(1,e)),t()):h},o.align=function(e){return arguments.length?(d=Math.max(0,Math.min(1,e)),t()):d},o.copy=function(){return r().domain(c()).range(l).round(f).paddingInner(p).paddingOuter(h).align(d)},t()}function i(t){var e=t.copy;return t.padding=t.paddingOuter,delete t.paddingInner,delete t.paddingOuter,t.copy=function(){return i(e())},t}function o(){return i(r().paddingInner(1))}var a=n(7),u=n(126);e.a=r,e.b=o},function(t,e,n){\"use strict\";var r=n(33);e.a=n.i(r.a)(\"1f77b4ff7f0e2ca02cd627289467bd8c564be377c27f7f7fbcbd2217becf\")},function(t,e,n){\"use strict\";var r=n(33);e.a=n.i(r.a)(\"1f77b4aec7e8ff7f0effbb782ca02c98df8ad62728ff98969467bdc5b0d58c564bc49c94e377c2f7b6d27f7f7fc7c7c7bcbd22dbdb8d17becf9edae5\")},function(t,e,n){\"use strict\";var r=n(33);e.a=n.i(r.a)(\"393b795254a36b6ecf9c9ede6379398ca252b5cf6bcedb9c8c6d31bd9e39e7ba52e7cb94843c39ad494ad6616be7969c7b4173a55194ce6dbdde9ed6\")},function(t,e,n){\"use strict\";var r=n(33);e.a=n.i(r.a)(\"3182bd6baed69ecae1c6dbefe6550dfd8d3cfdae6bfdd0a231a35474c476a1d99bc7e9c0756bb19e9ac8bcbddcdadaeb636363969696bdbdbdd9d9d9\")},function(t,e,n){\"use strict\";var r=n(11),i=n(31);e.a=n.i(i.d)(n.i(r.cubehelix)(300,.5,0),n.i(r.cubehelix)(-240,.5,1))},function(t,e,n){\"use strict\";function r(){function t(t){return+t}var e=[0,1];return t.invert=t,t.domain=t.range=function(n){return arguments.length?(e=i.a.call(n,a.a),t):e.slice()},t.copy=function(){return r().domain(e)},n.i(o.b)(t)}var i=n(16),o=n(34),a=n(125);e.a=r},function(t,e,n){\"use strict\";function r(t,e){return(e=Math.log(e/t))?function(n){return Math.log(n/t)/e}:n.i(p.a)(e)}function i(t,e){return t<0?function(n){return-Math.pow(-e,n)*Math.pow(-t,1-n)}:function(n){return Math.pow(e,n)*Math.pow(t,1-n)}}function o(t){return isFinite(t)?+(\"1e\"+t):t<0?0:t}function a(t){return 10===t?o:t===Math.E?Math.exp:function(e){return Math.pow(t,e)}}function u(t){return t===Math.E?Math.log:10===t&&Math.log10||2===t&&Math.log2||(t=Math.log(t),function(e){return Math.log(e)/t})}function c(t){return function(e){return-t(-e)}}function s(){function t(){return v=u(p),g=a(p),o()[0]<0&&(v=c(v),g=c(g)),e}var e=n.i(d.a)(r,i).domain([1,10]),o=e.domain,p=10,v=u(10),g=a(10);return e.base=function(e){return arguments.length?(p=+e,t()):p},e.domain=function(e){return arguments.length?(o(e),t()):o()},e.ticks=function(t){var e,r=o(),i=r[0],a=r[r.length-1];(e=a<i)&&(f=i,i=a,a=f);var u,c,s,f=v(i),h=v(a),d=null==t?10:+t,y=[];if(!(p%1)&&h-f<d){if(f=Math.round(f)-1,h=Math.round(h)+1,i>0){for(;f<h;++f)for(c=1,u=g(f);c<p;++c)if(s=u*c,!(s<i)){if(s>a)break;y.push(s)}}else for(;f<h;++f)for(c=p-1,u=g(f);c>=1;--c)if(s=u*c,!(s<i)){if(s>a)break;y.push(s)}}else y=n.i(l.ticks)(f,h,Math.min(h-f,d)).map(g);return e?y.reverse():y},e.tickFormat=function(t,r){if(null==r&&(r=10===p?\".0e\":\",\"),\"function\"!=typeof r&&(r=n.i(f.format)(r)),t===1/0)return r;null==t&&(t=10);var i=Math.max(1,p*t/e.ticks().length);return function(t){var e=t/g(Math.round(v(t)));return e*p<p-.5&&(e*=p),e<=i?r(t):\"\"}},e.nice=function(){return o(n.i(h.a)(o(),{floor:function(t){return g(Math.floor(v(t)))},ceil:function(t){return g(Math.ceil(v(t)))}}))},e.copy=function(){return n.i(d.c)(e,s().base(p))},e}var l=n(7),f=n(30),p=n(65),h=n(124),d=n(45);e.a=s},function(t,e,n){\"use strict\";function r(t,e){return t<0?-Math.pow(-t,e):Math.pow(t,e)}function i(){function t(t,e){return(e=r(e,o)-(t=r(t,o)))?function(n){return(r(n,o)-t)/e}:n.i(a.a)(e)}function e(t,e){return e=r(e,o)-(t=r(t,o)),function(n){return r(t+e*n,1/o)}}var o=1,s=n.i(c.a)(t,e),l=s.domain;return s.exponent=function(t){return arguments.length?(o=+t,l(l())):o},s.copy=function(){return n.i(c.c)(s,i().exponent(o))},n.i(u.b)(s)}function o(){return i().exponent(.5)}var a=n(65),u=n(34),c=n(45);e.a=i,e.b=o},function(t,e,n){\"use strict\";function r(){function t(){var t=0,r=Math.max(1,u.length);for(c=new Array(r-1);++t<r;)c[t-1]=n.i(i.quantile)(a,t/r);return e}function e(t){if(!isNaN(t=+t))return u[n.i(i.bisect)(c,t)]}var a=[],u=[],c=[];return e.invertExtent=function(t){var e=u.indexOf(t);return e<0?[NaN,NaN]:[e>0?c[e-1]:a[0],e<c.length?c[e]:a[a.length-1]]},e.domain=function(e){if(!arguments.length)return a.slice();a=[];for(var n,r=0,o=e.length;r<o;++r)n=e[r],null==n||isNaN(n=+n)||a.push(n);return a.sort(i.ascending),t()},e.range=function(e){return arguments.length?(u=o.b.call(e),t()):u.slice()},e.quantiles=function(){return c.slice()},e.copy=function(){return r().domain(a).range(u)},e}var i=n(7),o=n(16);e.a=r},function(t,e,n){\"use strict\";function r(){function t(t){if(t<=t)return f[n.i(i.bisect)(l,t,0,s)]}function e(){var e=-1;for(l=new Array(s);++e<s;)l[e]=((e+1)*c-(e-s)*u)/(s+1);return t}var u=0,c=1,s=1,l=[.5],f=[0,1];return t.domain=function(t){return arguments.length?(u=+t[0],c=+t[1],e()):[u,c]},t.range=function(t){return arguments.length?(s=(f=o.b.call(t)).length-1,e()):f.slice()},t.invertExtent=function(t){var e=f.indexOf(t);return e<0?[NaN,NaN]:e<1?[u,l[0]]:e>=s?[l[s-1],c]:[l[e-1],l[e]]},t.copy=function(){return r().domain([u,c]).range(f)},n.i(a.b)(t)}var i=n(7),o=n(16),a=n(34);e.a=r},function(t,e,n){\"use strict\";var r=n(11),i=n(31);n.d(e,\"b\",function(){return o}),n.d(e,\"c\",function(){return a});var o=n.i(i.d)(n.i(r.cubehelix)(-100,.75,.35),n.i(r.cubehelix)(80,1.5,.8)),a=n.i(i.d)(n.i(r.cubehelix)(260,.75,.35),n.i(r.cubehelix)(80,1.5,.8)),u=n.i(r.cubehelix)();e.a=function(t){(t<0||t>1)&&(t-=Math.floor(t));var e=Math.abs(t-.5);return u.h=360*t-100,u.s=1.5-1.5*e,u.l=.8-.9*e,u+\"\"}},function(t,e,n){\"use strict\";function r(t){function e(e){var n=(e-o)/(a-o);return t(u?Math.max(0,Math.min(1,n)):n)}var o=0,a=1,u=!1;return e.domain=function(t){return arguments.length?(o=+t[0],a=+t[1],e):[o,a]},e.clamp=function(t){return arguments.length?(u=!!t,e):u},e.interpolator=function(n){return arguments.length?(t=n,e):t},e.copy=function(){return r(t).domain([o,a]).clamp(u)},n.i(i.b)(e)}var i=n(34);e.a=r},function(t,e,n){\"use strict\";function r(){function t(t){if(t<=t)return a[n.i(i.bisect)(e,t,0,u)]}var e=[.5],a=[0,1],u=1;return t.domain=function(n){return arguments.length?(e=o.b.call(n),u=Math.min(e.length,a.length-1),t):e.slice()},t.range=function(n){return arguments.length?(a=o.b.call(n),u=Math.min(e.length,a.length-1),t):a.slice()},t.invertExtent=function(t){var n=a.indexOf(t);return[e[n-1],e[n]]},t.copy=function(){return r().domain(e).range(a)},t}var i=n(7),o=n(16);e.a=r},function(t,e,n){\"use strict\";var r=n(7),i=n(30);e.a=function(t,e,o){var a,u=t[0],c=t[t.length-1],s=n.i(r.tickStep)(u,c,null==e?10:e);switch(o=n.i(i.formatSpecifier)(null==o?\",f\":o),o.type){case\"s\":var l=Math.max(Math.abs(u),Math.abs(c));return null!=o.precision||isNaN(a=n.i(i.precisionPrefix)(s,l))||(o.precision=a),n.i(i.formatPrefix)(o,l);case\"\":case\"e\":case\"g\":case\"p\":case\"r\":null!=o.precision||isNaN(a=n.i(i.precisionRound)(s,Math.max(Math.abs(u),Math.abs(c))))||(o.precision=a-(\"e\"===o.type));break;case\"f\":case\"%\":null!=o.precision||isNaN(a=n.i(i.precisionFixed)(s))||(o.precision=a-2*(\"%\"===o.type))}return n.i(i.format)(o)}},function(t,e,n){\"use strict\";var r=n(127),i=n(147),o=n(78);e.a=function(){return n.i(r.b)(o.a,o.b,o.c,o.d,o.e,o.f,o.g,o.h,i.a).domain([Date.UTC(2e3,0,1),Date.UTC(2e3,0,2)])}},function(t,e,n){\"use strict\";function r(t){var e=t.length;return function(n){return t[Math.max(0,Math.min(e-1,Math.floor(n*e)))]}}var i=n(33);n.d(e,\"b\",function(){return o}),n.d(e,\"c\",function(){return a}),n.d(e,\"d\",function(){return u}),e.a=r(n.i(i.a)(\"44015444025645045745055946075a46085c460a5d460b5e470d60470e6147106347116447136548146748166848176948186a481a6c481b6d481c6e481d6f481f70482071482173482374482475482576482677482878482979472a7a472c7a472d7b472e7c472f7d46307e46327e46337f463480453581453781453882443983443a83443b84433d84433e85423f854240864241864142874144874045884046883f47883f48893e49893e4a893e4c8a3d4d8a3d4e8a3c4f8a3c508b3b518b3b528b3a538b3a548c39558c39568c38588c38598c375a8c375b8d365c8d365d8d355e8d355f8d34608d34618d33628d33638d32648e32658e31668e31678e31688e30698e306a8e2f6b8e2f6c8e2e6d8e2e6e8e2e6f8e2d708e2d718e2c718e2c728e2c738e2b748e2b758e2a768e2a778e2a788e29798e297a8e297b8e287c8e287d8e277e8e277f8e27808e26818e26828e26828e25838e25848e25858e24868e24878e23888e23898e238a8d228b8d228c8d228d8d218e8d218f8d21908d21918c20928c20928c20938c1f948c1f958b1f968b1f978b1f988b1f998a1f9a8a1e9b8a1e9c891e9d891f9e891f9f881fa0881fa1881fa1871fa28720a38620a48621a58521a68522a78522a88423a98324aa8325ab8225ac8226ad8127ad8128ae8029af7f2ab07f2cb17e2db27d2eb37c2fb47c31b57b32b67a34b67935b77937b87838b9773aba763bbb753dbc743fbc7340bd7242be7144bf7046c06f48c16e4ac16d4cc26c4ec36b50c46a52c56954c56856c66758c7655ac8645cc8635ec96260ca6063cb5f65cb5e67cc5c69cd5b6ccd5a6ece5870cf5773d05675d05477d1537ad1517cd2507fd34e81d34d84d44b86d54989d5488bd6468ed64590d74393d74195d84098d83e9bd93c9dd93ba0da39a2da37a5db36a8db34aadc32addc30b0dd2fb2dd2db5de2bb8de29bade28bddf26c0df25c2df23c5e021c8e020cae11fcde11dd0e11cd2e21bd5e21ad8e219dae319dde318dfe318e2e418e5e419e7e419eae51aece51befe51cf1e51df4e61ef6e620f8e621fbe723fde725\"));var o=r(n.i(i.a)(\"00000401000501010601010802010902020b02020d03030f03031204041405041606051806051a07061c08071e0907200a08220b09240c09260d0a290e0b2b100b2d110c2f120d31130d34140e36150e38160f3b180f3d19103f1a10421c10441d11471e114920114b21114e22115024125325125527125829115a2a115c2c115f2d11612f116331116533106734106936106b38106c390f6e3b0f703d0f713f0f72400f74420f75440f764510774710784910784a10794c117a4e117b4f127b51127c52137c54137d56147d57157e59157e5a167e5c167f5d177f5f187f601880621980641a80651a80671b80681c816a1c816b1d816d1d816e1e81701f81721f817320817521817621817822817922827b23827c23827e24828025828125818326818426818627818827818928818b29818c29818e2a81902a81912b81932b80942c80962c80982d80992d809b2e7f9c2e7f9e2f7fa02f7fa1307ea3307ea5317ea6317da8327daa337dab337cad347cae347bb0357bb2357bb3367ab5367ab73779b83779ba3878bc3978bd3977bf3a77c03a76c23b75c43c75c53c74c73d73c83e73ca3e72cc3f71cd4071cf4070d0416fd2426fd3436ed5446dd6456cd8456cd9466bdb476adc4869de4968df4a68e04c67e24d66e34e65e44f64e55064e75263e85362e95462ea5661eb5760ec5860ed5a5fee5b5eef5d5ef05f5ef1605df2625df2645cf3655cf4675cf4695cf56b5cf66c5cf66e5cf7705cf7725cf8745cf8765cf9785df9795df97b5dfa7d5efa7f5efa815ffb835ffb8560fb8761fc8961fc8a62fc8c63fc8e64fc9065fd9266fd9467fd9668fd9869fd9a6afd9b6bfe9d6cfe9f6dfea16efea36ffea571fea772fea973feaa74feac76feae77feb078feb27afeb47bfeb67cfeb77efeb97ffebb81febd82febf84fec185fec287fec488fec68afec88cfeca8dfecc8ffecd90fecf92fed194fed395fed597fed799fed89afdda9cfddc9efddea0fde0a1fde2a3fde3a5fde5a7fde7a9fde9aafdebacfcecaefceeb0fcf0b2fcf2b4fcf4b6fcf6b8fcf7b9fcf9bbfcfbbdfcfdbf\")),a=r(n.i(i.a)(\"00000401000501010601010802010a02020c02020e03021004031204031405041706041907051b08051d09061f0a07220b07240c08260d08290e092b10092d110a30120a32140b34150b37160b39180c3c190c3e1b0c411c0c431e0c451f0c48210c4a230c4c240c4f260c51280b53290b552b0b572d0b592f0a5b310a5c320a5e340a5f3609613809623909633b09643d09653e0966400a67420a68440a68450a69470b6a490b6a4a0c6b4c0c6b4d0d6c4f0d6c510e6c520e6d540f6d550f6d57106e59106e5a116e5c126e5d126e5f136e61136e62146e64156e65156e67166e69166e6a176e6c186e6d186e6f196e71196e721a6e741a6e751b6e771c6d781c6d7a1d6d7c1d6d7d1e6d7f1e6c801f6c82206c84206b85216b87216b88226a8a226a8c23698d23698f24699025689225689326679526679727669827669a28659b29649d29649f2a63a02a63a22b62a32c61a52c60a62d60a82e5fa92e5eab2f5ead305dae305cb0315bb1325ab3325ab43359b63458b73557b93556ba3655bc3754bd3853bf3952c03a51c13a50c33b4fc43c4ec63d4dc73e4cc83f4bca404acb4149cc4248ce4347cf4446d04545d24644d34743d44842d54a41d74b3fd84c3ed94d3dda4e3cdb503bdd513ade5238df5337e05536e15635e25734e35933e45a31e55c30e65d2fe75e2ee8602de9612bea632aeb6429eb6628ec6726ed6925ee6a24ef6c23ef6e21f06f20f1711ff1731df2741cf3761bf37819f47918f57b17f57d15f67e14f68013f78212f78410f8850ff8870ef8890cf98b0bf98c0af98e09fa9008fa9207fa9407fb9606fb9706fb9906fb9b06fb9d07fc9f07fca108fca309fca50afca60cfca80dfcaa0ffcac11fcae12fcb014fcb216fcb418fbb61afbb81dfbba1ffbbc21fbbe23fac026fac228fac42afac62df9c72ff9c932f9cb35f8cd37f8cf3af7d13df7d340f6d543f6d746f5d949f5db4cf4dd4ff4df53f4e156f3e35af3e55df2e661f2e865f2ea69f1ec6df1ed71f1ef75f1f179f2f27df2f482f3f586f3f68af4f88ef5f992f6fa96f8fb9af9fc9dfafda1fcffa4\")),u=r(n.i(i.a)(\"0d088710078813078916078a19068c1b068d1d068e20068f2206902406912605912805922a05932c05942e05952f059631059733059735049837049938049a3a049a3c049b3e049c3f049c41049d43039e44039e46039f48039f4903a04b03a14c02a14e02a25002a25102a35302a35502a45601a45801a45901a55b01a55c01a65e01a66001a66100a76300a76400a76600a76700a86900a86a00a86c00a86e00a86f00a87100a87201a87401a87501a87701a87801a87a02a87b02a87d03a87e03a88004a88104a78305a78405a78606a68707a68808a68a09a58b0aa58d0ba58e0ca48f0da4910ea3920fa39410a29511a19613a19814a099159f9a169f9c179e9d189d9e199da01a9ca11b9ba21d9aa31e9aa51f99a62098a72197a82296aa2395ab2494ac2694ad2793ae2892b02991b12a90b22b8fb32c8eb42e8db52f8cb6308bb7318ab83289ba3388bb3488bc3587bd3786be3885bf3984c03a83c13b82c23c81c33d80c43e7fc5407ec6417dc7427cc8437bc9447aca457acb4679cc4778cc4977cd4a76ce4b75cf4c74d04d73d14e72d24f71d35171d45270d5536fd5546ed6556dd7566cd8576bd9586ada5a6ada5b69db5c68dc5d67dd5e66de5f65de6164df6263e06363e16462e26561e26660e3685fe4695ee56a5de56b5de66c5ce76e5be76f5ae87059e97158e97257ea7457eb7556eb7655ec7754ed7953ed7a52ee7b51ef7c51ef7e50f07f4ff0804ef1814df1834cf2844bf3854bf3874af48849f48948f58b47f58c46f68d45f68f44f79044f79143f79342f89441f89540f9973ff9983ef99a3efa9b3dfa9c3cfa9e3bfb9f3afba139fba238fca338fca537fca636fca835fca934fdab33fdac33fdae32fdaf31fdb130fdb22ffdb42ffdb52efeb72dfeb82cfeba2cfebb2bfebd2afebe2afec029fdc229fdc328fdc527fdc627fdc827fdca26fdcb26fccd25fcce25fcd025fcd225fbd324fbd524fbd724fad824fada24f9dc24f9dd25f8df25f8e125f7e225f7e425f6e626f6e826f5e926f5eb27f4ed27f3ee27f3f027f2f227f1f426f1f525f0f724f0f921\"))},function(t,e,n){\"use strict\";e.a=function(t){return function(){return t}}},function(t,e,n){\"use strict\";function r(){return new i}function i(){this._=\"@\"+(++o).toString(36)}e.a=r;var o=0;i.prototype=r.prototype={constructor:i,get:function(t){for(var e=this._;!(e in t);)if(!(t=t.parentNode))return;return t[e]},set:function(t,e){return t[this._]=e},remove:function(t){return this._ in t&&delete t[this._]},toString:function(){return this._}}},function(t,e,n){\"use strict\";var r=n(72),i=n(69);e.a=function(t){var e=n.i(r.a)();return e.changedTouches&&(e=e.changedTouches[0]),n.i(i.a)(t,e)}},function(t,e,n){\"use strict\";var r=n(8);e.a=function(t){return\"string\"==typeof t?new r.b([[document.querySelector(t)]],[document.documentElement]):new r.b([[t]],r.c)}},function(t,e,n){\"use strict\";var r=n(8);e.a=function(t){return\"string\"==typeof t?new r.b([document.querySelectorAll(t)],[document.documentElement]):new r.b([null==t?[]:t],r.c)}},function(t,e,n){\"use strict\";var r=n(66);e.a=function(t){var e=\"function\"==typeof t?t:n.i(r.a)(t);return this.select(function(){return this.appendChild(e.apply(this,arguments))})}},function(t,e,n){\"use strict\";function r(t){return function(){this.removeAttribute(t)}}function i(t){return function(){this.removeAttributeNS(t.space,t.local)}}function o(t,e){return function(){this.setAttribute(t,e)}}function a(t,e){return function(){this.setAttributeNS(t.space,t.local,e)}}function u(t,e){return function(){var n=e.apply(this,arguments);null==n?this.removeAttribute(t):this.setAttribute(t,n)}}function c(t,e){return function(){var n=e.apply(this,arguments);null==n?this.removeAttributeNS(t.space,t.local):this.setAttributeNS(t.space,t.local,n)}}var s=n(67);e.a=function(t,e){var l=n.i(s.a)(t);if(arguments.length<2){var f=this.node();return l.local?f.getAttributeNS(l.space,l.local):f.getAttribute(l)}return this.each((null==e?l.local?i:r:\"function\"==typeof e?l.local?c:u:l.local?a:o)(l,e))}},function(t,e,n){\"use strict\";e.a=function(){var t=arguments[0];return arguments[0]=this,t.apply(null,arguments),this}},function(t,e,n){\"use strict\";function r(t){return t.trim().split(/^|\\s+/)}function i(t){return t.classList||new o(t)}function o(t){this._node=t,this._names=r(t.getAttribute(\"class\")||\"\")}function a(t,e){for(var n=i(t),r=-1,o=e.length;++r<o;)n.add(e[r])}function u(t,e){for(var n=i(t),r=-1,o=e.length;++r<o;)n.remove(e[r])}function c(t){return function(){a(this,t)}}function s(t){return function(){u(this,t)}}function l(t,e){return function(){(e.apply(this,arguments)?a:u)(this,t)}}o.prototype={add:function(t){var e=this._names.indexOf(t);e<0&&(this._names.push(t),this._node.setAttribute(\"class\",this._names.join(\" \")))},remove:function(t){var e=this._names.indexOf(t);e>=0&&(this._names.splice(e,1),this._node.setAttribute(\"class\",this._names.join(\" \")))},contains:function(t){return this._names.indexOf(t)>=0}},e.a=function(t,e){var n=r(t+\"\");if(arguments.length<2){for(var o=i(this.node()),a=-1,u=n.length;++a<u;)if(!o.contains(n[a]))return!1;return!0}return this.each((\"function\"==typeof e?l:e?c:s)(n,e))}},function(t,e,n){\"use strict\";function r(t,e,n,r,i,o){for(var u,c=0,s=e.length,l=o.length;c<l;++c)(u=e[c])?(u.__data__=o[c],r[c]=u):n[c]=new a.b(t,o[c]);for(;c<s;++c)(u=e[c])&&(i[c]=u)}function i(t,e,n,r,i,o,u){var s,l,f,p={},h=e.length,d=o.length,v=new Array(h);for(s=0;s<h;++s)(l=e[s])&&(v[s]=f=c+u.call(l,l.__data__,s,e),f in p?i[s]=l:p[f]=l);for(s=0;s<d;++s)f=c+u.call(t,o[s],s,o),(l=p[f])?(r[s]=l,l.__data__=o[s],p[f]=null):n[s]=new a.b(t,o[s]);for(s=0;s<h;++s)(l=e[s])&&p[v[s]]===l&&(i[s]=l)}var o=n(8),a=n(130),u=n(246),c=\"$\";e.a=function(t,e){if(!t)return m=new Array(this.size()),d=-1,this.each(function(t){m[++d]=t}),m;var a=e?i:r,c=this._parents,s=this._groups;\"function\"!=typeof t&&(t=n.i(u.a)(t));for(var l=s.length,f=new Array(l),p=new Array(l),h=new Array(l),d=0;d<l;++d){var v=c[d],g=s[d],y=g.length,m=t.call(v,v&&v.__data__,d,c),_=m.length,b=p[d]=new Array(_),x=f[d]=new Array(_),w=h[d]=new Array(y);a(v,g,b,x,w,m,e);for(var C,M,k=0,E=0;k<_;++k)if(C=b[k]){for(k>=E&&(E=k+1);!(M=x[E])&&++E<_;);C._next=M||null}}return f=new o.b(f,c),f._enter=p,f._exit=h,f}},function(t,e,n){\"use strict\";e.a=function(t){return arguments.length?this.property(\"__data__\",t):this.node().__data__}},function(t,e,n){\"use strict\";function r(t,e,r){var i=n.i(a.a)(t),o=i.CustomEvent;o?o=new o(e,r):(o=i.document.createEvent(\"Event\"),r?(o.initEvent(e,r.bubbles,r.cancelable),o.detail=r.detail):o.initEvent(e,!1,!1)),t.dispatchEvent(o)}function i(t,e){return function(){return r(this,t,e)}}function o(t,e){return function(){return r(this,t,e.apply(this,arguments))}}var a=n(73);e.a=function(t,e){return this.each((\"function\"==typeof e?o:i)(t,e))}},function(t,e,n){\"use strict\";e.a=function(t){for(var e=this._groups,n=0,r=e.length;n<r;++n)for(var i,o=e[n],a=0,u=o.length;a<u;++a)(i=o[a])&&t.call(i,i.__data__,a,o);return this}},function(t,e,n){\"use strict\";e.a=function(){return!this.node()}},function(t,e,n){\"use strict\";var r=n(131),i=n(8);e.a=function(){return new i.b(this._exit||this._groups.map(r.a),this._parents)}},function(t,e,n){\"use strict\";var r=n(8),i=n(129);e.a=function(t){\"function\"!=typeof t&&(t=n.i(i.a)(t));for(var e=this._groups,o=e.length,a=new Array(o),u=0;u<o;++u)for(var c,s=e[u],l=s.length,f=a[u]=[],p=0;p<l;++p)(c=s[p])&&t.call(c,c.__data__,p,s)&&f.push(c);return new r.b(a,this._parents)}},function(t,e,n){\"use strict\";function r(){this.innerHTML=\"\"}function i(t){return function(){this.innerHTML=t}}function o(t){return function(){var e=t.apply(this,arguments);this.innerHTML=null==e?\"\":e}}e.a=function(t){return arguments.length?this.each(null==t?r:(\"function\"==typeof t?o:i)(t)):this.node().innerHTML}},function(t,e,n){\"use strict\";function r(){return null}var i=n(66),o=n(71);e.a=function(t,e){var a=\"function\"==typeof t?t:n.i(i.a)(t),u=null==e?r:\"function\"==typeof e?e:n.i(o.a)(e);return this.select(function(){return this.insertBefore(a.apply(this,arguments),u.apply(this,arguments)||null)})}},function(t,e,n){\"use strict\";function r(){this.previousSibling&&this.parentNode.insertBefore(this,this.parentNode.firstChild)}e.a=function(){return this.each(r)}},function(t,e,n){\"use strict\";var r=n(8);e.a=function(t){for(var e=this._groups,n=t._groups,i=e.length,o=n.length,a=Math.min(i,o),u=new Array(i),c=0;c<a;++c)for(var s,l=e[c],f=n[c],p=l.length,h=u[c]=new Array(p),d=0;d<p;++d)(s=l[d]||f[d])&&(h[d]=s);for(;c<i;++c)u[c]=e[c];return new r.b(u,this._parents)}},function(t,e,n){\"use strict\";e.a=function(){for(var t=this._groups,e=0,n=t.length;e<n;++e)for(var r=t[e],i=0,o=r.length;i<o;++i){var a=r[i];if(a)return a}return null}},function(t,e,n){\"use strict\";e.a=function(){var t=new Array(this.size()),e=-1;return this.each(function(){t[++e]=this}),t}},function(t,e,n){\"use strict\";e.a=function(){for(var t=this._groups,e=-1,n=t.length;++e<n;)for(var r,i=t[e],o=i.length-1,a=i[o];--o>=0;)(r=i[o])&&(a&&a!==r.nextSibling&&a.parentNode.insertBefore(r,a),a=r);return this}},function(t,e,n){\"use strict\";function r(t){return function(){delete this[t]}}function i(t,e){return function(){this[t]=e}}function o(t,e){return function(){var n=e.apply(this,arguments);null==n?delete this[t]:this[t]=n}}e.a=function(t,e){return arguments.length>1?this.each((null==e?r:\"function\"==typeof e?o:i)(t,e)):this.node()[t]}},function(t,e,n){\"use strict\";function r(){this.nextSibling&&this.parentNode.appendChild(this)}e.a=function(){return this.each(r)}},function(t,e,n){\"use strict\";function r(){var t=this.parentNode;t&&t.removeChild(this)}e.a=function(){return this.each(r)}},function(t,e,n){\"use strict\";var r=n(8),i=n(71);e.a=function(t){\"function\"!=typeof t&&(t=n.i(i.a)(t));for(var e=this._groups,o=e.length,a=new Array(o),u=0;u<o;++u)for(var c,s,l=e[u],f=l.length,p=a[u]=new Array(f),h=0;h<f;++h)(c=l[h])&&(s=t.call(c,c.__data__,h,l))&&(\"__data__\"in c&&(s.__data__=c.__data__),p[h]=s);return new r.b(a,this._parents)}},function(t,e,n){\"use strict\";var r=n(8),i=n(132);e.a=function(t){\"function\"!=typeof t&&(t=n.i(i.a)(t));for(var e=this._groups,o=e.length,a=[],u=[],c=0;c<o;++c)for(var s,l=e[c],f=l.length,p=0;p<f;++p)(s=l[p])&&(a.push(t.call(s,s.__data__,p,l)),u.push(s));return new r.b(a,u)}},function(t,e,n){\"use strict\";e.a=function(){var t=0;return this.each(function(){++t}),t}},function(t,e,n){\"use strict\";function r(t,e){return t<e?-1:t>e?1:t>=e?0:NaN}var i=n(8);e.a=function(t){function e(e,n){return e&&n?t(e.__data__,n.__data__):!e-!n}t||(t=r);for(var n=this._groups,o=n.length,a=new Array(o),u=0;u<o;++u){for(var c,s=n[u],l=s.length,f=a[u]=new Array(l),p=0;p<l;++p)(c=s[p])&&(f[p]=c);f.sort(e)}return new i.b(a,this._parents).order()}},function(t,e,n){\"use strict\";function r(t){return function(){this.style.removeProperty(t)}}function i(t,e,n){return function(){this.style.setProperty(t,e,n)}}function o(t,e,n){return function(){var r=e.apply(this,arguments);null==r?this.style.removeProperty(t):this.style.setProperty(t,r,n)}}var a=n(73);e.a=function(t,e,u){var c;return arguments.length>1?this.each((null==e?r:\"function\"==typeof e?o:i)(t,e,null==u?\"\":u)):n.i(a.a)(c=this.node()).getComputedStyle(c,null).getPropertyValue(t)}},function(t,e,n){\"use strict\";function r(){this.textContent=\"\"}function i(t){return function(){this.textContent=t}}function o(t){return function(){var e=t.apply(this,arguments);this.textContent=null==e?\"\":e}}e.a=function(t){return arguments.length?this.each(null==t?r:(\"function\"==typeof t?o:i)(t)):this.node().textContent;\n", "}},function(t,e,n){\"use strict\";var r=n(72),i=n(69);e.a=function(t,e,o){arguments.length<3&&(o=e,e=n.i(r.a)().changedTouches);for(var a,u=0,c=e?e.length:0;u<c;++u)if((a=e[u]).identifier===o)return n.i(i.a)(t,a);return null}},function(t,e,n){\"use strict\";var r=n(72),i=n(69);e.a=function(t,e){null==e&&(e=n.i(r.a)().touches);for(var o=0,a=e?e.length:0,u=new Array(a);o<a;++o)u[o]=n.i(i.a)(t,e[o]);return u}},function(t,e,n){\"use strict\";function r(t){return t.innerRadius}function i(t){return t.outerRadius}function o(t){return t.startAngle}function a(t){return t.endAngle}function u(t){return t&&t.padAngle}function c(t){return t>=1?h.d:t<=-1?-h.d:Math.asin(t)}function s(t,e,n,r,i,o,a,u){var c=n-t,s=r-e,l=a-i,f=u-o,p=(l*(e-o)-f*(t-i))/(f*c-l*s);return[t+p*c,e+p*s]}function l(t,e,n,r,i,o,a){var u=t-n,c=e-r,s=(a?o:-o)/Math.sqrt(u*u+c*c),l=s*c,f=-s*u,p=t+l,h=e+f,d=n+l,v=r+f,g=(p+d)/2,y=(h+v)/2,m=d-p,_=v-h,b=m*m+_*_,x=i-o,w=p*v-d*h,C=(_<0?-1:1)*Math.sqrt(Math.max(0,x*x*b-w*w)),M=(w*_-m*C)/b,k=(-w*m-_*C)/b,E=(w*_+m*C)/b,T=(-w*m+_*C)/b,S=M-g,N=k-y,A=E-g,P=T-y;return S*S+N*N>A*A+P*P&&(M=E,k=T),{cx:M,cy:k,x01:-l,y01:-f,x11:M*(i/x-1),y11:k*(i/x-1)}}var f=n(44),p=n(19),h=n(35);e.a=function(){function t(){var t,r,i=+e.apply(this,arguments),o=+d.apply(this,arguments),a=y.apply(this,arguments)-h.d,u=m.apply(this,arguments)-h.d,p=Math.abs(u-a),x=u>a;if(b||(b=t=n.i(f.a)()),o<i&&(r=o,o=i,i=r),o>h.a)if(p>h.c-h.a)b.moveTo(o*Math.cos(a),o*Math.sin(a)),b.arc(0,0,o,a,u,!x),i>h.a&&(b.moveTo(i*Math.cos(u),i*Math.sin(u)),b.arc(0,0,i,u,a,x));else{var w,C,M=a,k=u,E=a,T=u,S=p,N=p,A=_.apply(this,arguments)/2,P=A>h.a&&(g?+g.apply(this,arguments):Math.sqrt(i*i+o*o)),O=Math.min(Math.abs(o-i)/2,+v.apply(this,arguments)),I=O,D=O;if(P>h.a){var R=c(P/i*Math.sin(A)),L=c(P/o*Math.sin(A));(S-=2*R)>h.a?(R*=x?1:-1,E+=R,T-=R):(S=0,E=T=(a+u)/2),(N-=2*L)>h.a?(L*=x?1:-1,M+=L,k-=L):(N=0,M=k=(a+u)/2)}var U=o*Math.cos(M),F=o*Math.sin(M),j=i*Math.cos(T),B=i*Math.sin(T);if(O>h.a){var W=o*Math.cos(k),V=o*Math.sin(k),z=i*Math.cos(E),H=i*Math.sin(E);if(p<h.b){var q=S>h.a?s(U,F,z,H,W,V,j,B):[j,B],Y=U-q[0],K=F-q[1],G=W-q[0],$=V-q[1],X=1/Math.sin(Math.acos((Y*G+K*$)/(Math.sqrt(Y*Y+K*K)*Math.sqrt(G*G+$*$)))/2),Z=Math.sqrt(q[0]*q[0]+q[1]*q[1]);I=Math.min(O,(i-Z)/(X-1)),D=Math.min(O,(o-Z)/(X+1))}}N>h.a?D>h.a?(w=l(z,H,U,F,o,D,x),C=l(W,V,j,B,o,D,x),b.moveTo(w.cx+w.x01,w.cy+w.y01),D<O?b.arc(w.cx,w.cy,D,Math.atan2(w.y01,w.x01),Math.atan2(C.y01,C.x01),!x):(b.arc(w.cx,w.cy,D,Math.atan2(w.y01,w.x01),Math.atan2(w.y11,w.x11),!x),b.arc(0,0,o,Math.atan2(w.cy+w.y11,w.cx+w.x11),Math.atan2(C.cy+C.y11,C.cx+C.x11),!x),b.arc(C.cx,C.cy,D,Math.atan2(C.y11,C.x11),Math.atan2(C.y01,C.x01),!x))):(b.moveTo(U,F),b.arc(0,0,o,M,k,!x)):b.moveTo(U,F),i>h.a&&S>h.a?I>h.a?(w=l(j,B,W,V,i,-I,x),C=l(U,F,z,H,i,-I,x),b.lineTo(w.cx+w.x01,w.cy+w.y01),I<O?b.arc(w.cx,w.cy,I,Math.atan2(w.y01,w.x01),Math.atan2(C.y01,C.x01),!x):(b.arc(w.cx,w.cy,I,Math.atan2(w.y01,w.x01),Math.atan2(w.y11,w.x11),!x),b.arc(0,0,i,Math.atan2(w.cy+w.y11,w.cx+w.x11),Math.atan2(C.cy+C.y11,C.cx+C.x11),x),b.arc(C.cx,C.cy,I,Math.atan2(C.y11,C.x11),Math.atan2(C.y01,C.x01),!x))):b.arc(0,0,i,T,E,x):b.lineTo(j,B)}else b.moveTo(0,0);if(b.closePath(),t)return b=null,t+\"\"||null}var e=r,d=i,v=n.i(p.a)(0),g=null,y=o,m=a,_=u,b=null;return t.centroid=function(){var t=(+e.apply(this,arguments)+ +d.apply(this,arguments))/2,n=(+y.apply(this,arguments)+ +m.apply(this,arguments))/2-h.b/2;return[Math.cos(n)*t,Math.sin(n)*t]},t.innerRadius=function(r){return arguments.length?(e=\"function\"==typeof r?r:n.i(p.a)(+r),t):e},t.outerRadius=function(e){return arguments.length?(d=\"function\"==typeof e?e:n.i(p.a)(+e),t):d},t.cornerRadius=function(e){return arguments.length?(v=\"function\"==typeof e?e:n.i(p.a)(+e),t):v},t.padRadius=function(e){return arguments.length?(g=null==e?null:\"function\"==typeof e?e:n.i(p.a)(+e),t):g},t.startAngle=function(e){return arguments.length?(y=\"function\"==typeof e?e:n.i(p.a)(+e),t):y},t.endAngle=function(e){return arguments.length?(m=\"function\"==typeof e?e:n.i(p.a)(+e),t):m},t.padAngle=function(e){return arguments.length?(_=\"function\"==typeof e?e:n.i(p.a)(+e),t):_},t.context=function(e){return arguments.length?(b=null==e?null:e,t):b},t}},function(t,e,n){\"use strict\";n.d(e,\"a\",function(){return r});var r=Array.prototype.slice},function(t,e,n){\"use strict\";function r(t){this._context=t}var i=n(49),o=n(46);r.prototype={areaStart:i.a,areaEnd:i.a,lineStart:function(){this._x0=this._x1=this._x2=this._x3=this._x4=this._y0=this._y1=this._y2=this._y3=this._y4=NaN,this._point=0},lineEnd:function(){switch(this._point){case 1:this._context.moveTo(this._x2,this._y2),this._context.closePath();break;case 2:this._context.moveTo((this._x2+2*this._x3)/3,(this._y2+2*this._y3)/3),this._context.lineTo((this._x3+2*this._x2)/3,(this._y3+2*this._y2)/3),this._context.closePath();break;case 3:this.point(this._x2,this._y2),this.point(this._x3,this._y3),this.point(this._x4,this._y4)}},point:function(t,e){switch(t=+t,e=+e,this._point){case 0:this._point=1,this._x2=t,this._y2=e;break;case 1:this._point=2,this._x3=t,this._y3=e;break;case 2:this._point=3,this._x4=t,this._y4=e,this._context.moveTo((this._x0+4*this._x1+t)/6,(this._y0+4*this._y1+e)/6);break;default:n.i(o.c)(this,t,e)}this._x0=this._x1,this._x1=t,this._y0=this._y1,this._y1=e}},e.a=function(t){return new r(t)}},function(t,e,n){\"use strict\";function r(t){this._context=t}var i=n(46);r.prototype={areaStart:function(){this._line=0},areaEnd:function(){this._line=NaN},lineStart:function(){this._x0=this._x1=this._y0=this._y1=NaN,this._point=0},lineEnd:function(){(this._line||0!==this._line&&3===this._point)&&this._context.closePath(),this._line=1-this._line},point:function(t,e){switch(t=+t,e=+e,this._point){case 0:this._point=1;break;case 1:this._point=2;break;case 2:this._point=3;var r=(this._x0+4*this._x1+t)/6,o=(this._y0+4*this._y1+e)/6;this._line?this._context.lineTo(r,o):this._context.moveTo(r,o);break;case 3:this._point=4;default:n.i(i.c)(this,t,e)}this._x0=this._x1,this._x1=t,this._y0=this._y1,this._y1=e}},e.a=function(t){return new r(t)}},function(t,e,n){\"use strict\";function r(t,e){this._basis=new i.b(t),this._beta=e}var i=n(46);r.prototype={lineStart:function(){this._x=[],this._y=[],this._basis.lineStart()},lineEnd:function(){var t=this._x,e=this._y,n=t.length-1;if(n>0)for(var r,i=t[0],o=e[0],a=t[n]-i,u=e[n]-o,c=-1;++c<=n;)r=c/n,this._basis.point(this._beta*t[c]+(1-this._beta)*(i+r*a),this._beta*e[c]+(1-this._beta)*(o+r*u));this._x=this._y=null,this._basis.lineEnd()},point:function(t,e){this._x.push(+t),this._y.push(+e)}},e.a=function t(e){function n(t){return 1===e?new i.b(t):new r(t,e)}return n.beta=function(e){return t(+e)},n}(.85)},function(t,e,n){\"use strict\";function r(t,e){this._context=t,this._alpha=e}var i=n(135),o=n(49),a=n(74);r.prototype={areaStart:o.a,areaEnd:o.a,lineStart:function(){this._x0=this._x1=this._x2=this._x3=this._x4=this._x5=this._y0=this._y1=this._y2=this._y3=this._y4=this._y5=NaN,this._l01_a=this._l12_a=this._l23_a=this._l01_2a=this._l12_2a=this._l23_2a=this._point=0},lineEnd:function(){switch(this._point){case 1:this._context.moveTo(this._x3,this._y3),this._context.closePath();break;case 2:this._context.lineTo(this._x3,this._y3),this._context.closePath();break;case 3:this.point(this._x3,this._y3),this.point(this._x4,this._y4),this.point(this._x5,this._y5)}},point:function(t,e){if(t=+t,e=+e,this._point){var r=this._x2-t,i=this._y2-e;this._l23_a=Math.sqrt(this._l23_2a=Math.pow(r*r+i*i,this._alpha))}switch(this._point){case 0:this._point=1,this._x3=t,this._y3=e;break;case 1:this._point=2,this._context.moveTo(this._x4=t,this._y4=e);break;case 2:this._point=3,this._x5=t,this._y5=e;break;default:n.i(a.b)(this,t,e)}this._l01_a=this._l12_a,this._l12_a=this._l23_a,this._l01_2a=this._l12_2a,this._l12_2a=this._l23_2a,this._x0=this._x1,this._x1=this._x2,this._x2=t,this._y0=this._y1,this._y1=this._y2,this._y2=e}},e.a=function t(e){function n(t){return e?new r(t,e):new i.b(t,0)}return n.alpha=function(e){return t(+e)},n}(.5)},function(t,e,n){\"use strict\";function r(t,e){this._context=t,this._alpha=e}var i=n(136),o=n(74);r.prototype={areaStart:function(){this._line=0},areaEnd:function(){this._line=NaN},lineStart:function(){this._x0=this._x1=this._x2=this._y0=this._y1=this._y2=NaN,this._l01_a=this._l12_a=this._l23_a=this._l01_2a=this._l12_2a=this._l23_2a=this._point=0},lineEnd:function(){(this._line||0!==this._line&&3===this._point)&&this._context.closePath(),this._line=1-this._line},point:function(t,e){if(t=+t,e=+e,this._point){var r=this._x2-t,i=this._y2-e;this._l23_a=Math.sqrt(this._l23_2a=Math.pow(r*r+i*i,this._alpha))}switch(this._point){case 0:this._point=1;break;case 1:this._point=2;break;case 2:this._point=3,this._line?this._context.lineTo(this._x2,this._y2):this._context.moveTo(this._x2,this._y2);break;case 3:this._point=4;default:n.i(o.b)(this,t,e)}this._l01_a=this._l12_a,this._l12_a=this._l23_a,this._l01_2a=this._l12_2a,this._l12_2a=this._l23_2a,this._x0=this._x1,this._x1=this._x2,this._x2=t,this._y0=this._y1,this._y1=this._y2,this._y2=e}},e.a=function t(e){function n(t){return e?new r(t,e):new i.b(t,0)}return n.alpha=function(e){return t(+e)},n}(.5)},function(t,e,n){\"use strict\";function r(t){this._context=t}var i=n(49);r.prototype={areaStart:i.a,areaEnd:i.a,lineStart:function(){this._point=0},lineEnd:function(){this._point&&this._context.closePath()},point:function(t,e){t=+t,e=+e,this._point?this._context.lineTo(t,e):(this._point=1,this._context.moveTo(t,e))}},e.a=function(t){return new r(t)}},function(t,e,n){\"use strict\";function r(t){return t<0?-1:1}function i(t,e,n){var i=t._x1-t._x0,o=e-t._x1,a=(t._y1-t._y0)/(i||o<0&&-0),u=(n-t._y1)/(o||i<0&&-0),c=(a*o+u*i)/(i+o);return(r(a)+r(u))*Math.min(Math.abs(a),Math.abs(u),.5*Math.abs(c))||0}function o(t,e){var n=t._x1-t._x0;return n?(3*(t._y1-t._y0)/n-e)/2:e}function a(t,e,n){var r=t._x0,i=t._y0,o=t._x1,a=t._y1,u=(o-r)/3;t._context.bezierCurveTo(r+u,i+u*e,o-u,a-u*n,o,a)}function u(t){this._context=t}function c(t){this._context=new s(t)}function s(t){this._context=t}function l(t){return new u(t)}function f(t){return new c(t)}e.a=l,e.b=f,u.prototype={areaStart:function(){this._line=0},areaEnd:function(){this._line=NaN},lineStart:function(){this._x0=this._x1=this._y0=this._y1=this._t0=NaN,this._point=0},lineEnd:function(){switch(this._point){case 2:this._context.lineTo(this._x1,this._y1);break;case 3:a(this,this._t0,o(this,this._t0))}(this._line||0!==this._line&&1===this._point)&&this._context.closePath(),this._line=1-this._line},point:function(t,e){var n=NaN;if(t=+t,e=+e,t!==this._x1||e!==this._y1){switch(this._point){case 0:this._point=1,this._line?this._context.lineTo(t,e):this._context.moveTo(t,e);break;case 1:this._point=2;break;case 2:this._point=3,a(this,o(this,n=i(this,t,e)),n);break;default:a(this,this._t0,n=i(this,t,e))}this._x0=this._x1,this._x1=t,this._y0=this._y1,this._y1=e,this._t0=n}}},(c.prototype=Object.create(u.prototype)).point=function(t,e){u.prototype.point.call(this,e,t)},s.prototype={moveTo:function(t,e){this._context.moveTo(e,t)},closePath:function(){this._context.closePath()},lineTo:function(t,e){this._context.lineTo(e,t)},bezierCurveTo:function(t,e,n,r,i,o){this._context.bezierCurveTo(e,t,r,n,o,i)}}},function(t,e,n){\"use strict\";function r(t){this._context=t}function i(t){var e,n,r=t.length-1,i=new Array(r),o=new Array(r),a=new Array(r);for(i[0]=0,o[0]=2,a[0]=t[0]+2*t[1],e=1;e<r-1;++e)i[e]=1,o[e]=4,a[e]=4*t[e]+2*t[e+1];for(i[r-1]=2,o[r-1]=7,a[r-1]=8*t[r-1]+t[r],e=1;e<r;++e)n=i[e]/o[e-1],o[e]-=n,a[e]-=n*a[e-1];for(i[r-1]=a[r-1]/o[r-1],e=r-2;e>=0;--e)i[e]=(a[e]-i[e+1])/o[e];for(o[r-1]=(t[r]+i[r-1])/2,e=0;e<r-1;++e)o[e]=2*t[e+1]-i[e+1];return[i,o]}r.prototype={areaStart:function(){this._line=0},areaEnd:function(){this._line=NaN},lineStart:function(){this._x=[],this._y=[]},lineEnd:function(){var t=this._x,e=this._y,n=t.length;if(n)if(this._line?this._context.lineTo(t[0],e[0]):this._context.moveTo(t[0],e[0]),2===n)this._context.lineTo(t[1],e[1]);else for(var r=i(t),o=i(e),a=0,u=1;u<n;++a,++u)this._context.bezierCurveTo(r[0][a],o[0][a],r[1][a],o[1][a],t[u],e[u]);(this._line||0!==this._line&&1===n)&&this._context.closePath(),this._line=1-this._line,this._x=this._y=null},point:function(t,e){this._x.push(+t),this._y.push(+e)}},e.a=function(t){return new r(t)}},function(t,e,n){\"use strict\";function r(t,e){this._context=t,this._t=e}function i(t){return new r(t,0)}function o(t){return new r(t,1)}e.c=i,e.b=o,r.prototype={areaStart:function(){this._line=0},areaEnd:function(){this._line=NaN},lineStart:function(){this._x=this._y=NaN,this._point=0},lineEnd:function(){0<this._t&&this._t<1&&2===this._point&&this._context.lineTo(this._x,this._y),(this._line||0!==this._line&&1===this._point)&&this._context.closePath(),this._line>=0&&(this._t=1-this._t,this._line=1-this._line)},point:function(t,e){switch(t=+t,e=+e,this._point){case 0:this._point=1,this._line?this._context.lineTo(t,e):this._context.moveTo(t,e);break;case 1:this._point=2;default:if(this._t<=0)this._context.lineTo(this._x,e),this._context.lineTo(t,e);else{var n=this._x*(1-this._t)+t*this._t;this._context.lineTo(n,this._y),this._context.lineTo(n,e)}}this._x=t,this._y=e}},e.a=function(t){return new r(t,.5)}},function(t,e,n){\"use strict\";e.a=function(t,e){return e<t?-1:e>t?1:e>=t?0:NaN}},function(t,e,n){\"use strict\";e.a=function(t){return t}},function(t,e,n){\"use strict\";var r=n(36);e.a=function(t,e){if((o=t.length)>0){for(var i,o,a,u=0,c=t[0].length;u<c;++u){for(a=i=0;i<o;++i)a+=t[i][u][1]||0;if(a)for(i=0;i<o;++i)t[i][u][1]/=a}n.i(r.a)(t,e)}}},function(t,e,n){\"use strict\";var r=n(36);e.a=function(t,e){if((i=t.length)>0){for(var i,o=0,a=t[e[0]],u=a.length;o<u;++o){for(var c=0,s=0;c<i;++c)s+=t[c][o][1]||0;a[o][1]+=a[o][0]=-s/2}n.i(r.a)(t,e)}}},function(t,e,n){\"use strict\";var r=n(36);e.a=function(t,e){if((a=t.length)>0&&(o=(i=t[e[0]]).length)>0){for(var i,o,a,u=0,c=1;c<o;++c){for(var s=0,l=0,f=0;s<a;++s){for(var p=t[e[s]],h=p[c][1]||0,d=p[c-1][1]||0,v=(h-d)/2,g=0;g<s;++g){var y=t[e[g]],m=y[c][1]||0,_=y[c-1][1]||0;v+=m-_}l+=h,f+=v*h}i[c-1][1]+=i[c-1][0]=u,l&&(u-=f/l)}i[c-1][1]+=i[c-1][0]=u,n.i(r.a)(t,e)}}},function(t,e,n){\"use strict\";var r=n(76);e.a=function(t){return n.i(r.a)(t).reverse()}},function(t,e,n){\"use strict\";var r=n(37),i=n(76);e.a=function(t){var e,o,a=t.length,u=t.map(i.b),c=n.i(r.a)(t).sort(function(t,e){return u[e]-u[t]}),s=0,l=0,f=[],p=[];for(e=0;e<a;++e)o=c[e],s<l?(s+=u[o],f.push(o)):(l+=u[o],p.push(o));return p.reverse().concat(f)}},function(t,e,n){\"use strict\";var r=n(37);e.a=function(t){return n.i(r.a)(t).reverse()}},function(t,e,n){\"use strict\";var r=n(19),i=n(291),o=n(292),a=n(35);e.a=function(){function t(t){var n,r,i,o,p,h=t.length,d=0,v=new Array(h),g=new Array(h),y=+s.apply(this,arguments),m=Math.min(a.c,Math.max(-a.c,l.apply(this,arguments)-y)),_=Math.min(Math.abs(m)/h,f.apply(this,arguments)),b=_*(m<0?-1:1);for(n=0;n<h;++n)(p=g[v[n]=n]=+e(t[n],n,t))>0&&(d+=p);for(null!=u?v.sort(function(t,e){return u(g[t],g[e])}):null!=c&&v.sort(function(e,n){return c(t[e],t[n])}),n=0,i=d?(m-h*b)/d:0;n<h;++n,y=o)r=v[n],p=g[r],o=y+(p>0?p*i:0)+b,g[r]={data:t[r],index:n,value:p,startAngle:y,endAngle:o,padAngle:_};return g}var e=o.a,u=i.a,c=null,s=n.i(r.a)(0),l=n.i(r.a)(a.c),f=n.i(r.a)(0);return t.value=function(i){return arguments.length?(e=\"function\"==typeof i?i:n.i(r.a)(+i),t):e},t.sortValues=function(e){return arguments.length?(u=e,c=null,t):u},t.sort=function(e){return arguments.length?(c=e,u=null,t):c},t.startAngle=function(e){return arguments.length?(s=\"function\"==typeof e?e:n.i(r.a)(+e),t):s},t.endAngle=function(e){return arguments.length?(l=\"function\"==typeof e?e:n.i(r.a)(+e),t):l},t.padAngle=function(e){return arguments.length?(f=\"function\"==typeof e?e:n.i(r.a)(+e),t):f},t}},function(t,e,n){\"use strict\";var r=n(137),i=n(134),o=n(139);e.a=function(){var t=n.i(i.a)().curve(r.b),e=t.curve,a=t.lineX0,u=t.lineX1,c=t.lineY0,s=t.lineY1;return t.angle=t.x,delete t.x,t.startAngle=t.x0,delete t.x0,t.endAngle=t.x1,delete t.x1,t.radius=t.y,delete t.y,t.innerRadius=t.y0,delete t.y0,t.outerRadius=t.y1,delete t.y1,t.lineStartAngle=function(){return n.i(o.b)(a())},delete t.lineX0,t.lineEndAngle=function(){return n.i(o.b)(u())},delete t.lineX1,t.lineInnerRadius=function(){return n.i(o.b)(c())},delete t.lineY0,t.lineOuterRadius=function(){return n.i(o.b)(s())},delete t.lineY1,t.curve=function(t){return arguments.length?e(n.i(r.a)(t)):e()._curve},t}},function(t,e,n){\"use strict\";function r(t,e){return t[e]}var i=n(281),o=n(19),a=n(36),u=n(37);e.a=function(){function t(t){var n,r,i=e.apply(this,arguments),o=t.length,a=i.length,u=new Array(a);for(n=0;n<a;++n){for(var f,p=i[n],h=u[n]=new Array(o),d=0;d<o;++d)h[d]=f=[0,+l(t[d],p,d,t)],f.data=t[d];h.key=p}for(n=0,r=c(u);n<a;++n)u[r[n]].index=n;return s(u,r),u}var e=n.i(o.a)([]),c=u.a,s=a.a,l=r;return t.keys=function(r){return arguments.length?(e=\"function\"==typeof r?r:n.i(o.a)(i.a.call(r)),t):e},t.value=function(e){return arguments.length?(l=\"function\"==typeof e?e:n.i(o.a)(+e),t):l},t.order=function(e){return arguments.length?(c=null==e?u.a:\"function\"==typeof e?e:n.i(o.a)(i.a.call(e)),t):c},t.offset=function(e){return arguments.length?(s=null==e?a.a:e,t):s},t}},function(t,e,n){\"use strict\";var r=n(44),i=n(140),o=n(141),a=n(142),u=n(144),c=n(143),s=n(145),l=n(146),f=n(19);n.d(e,\"b\",function(){return p});var p=[i.a,o.a,a.a,c.a,u.a,s.a,l.a];e.a=function(){function t(){var t;if(a||(a=t=n.i(r.a)()),e.apply(this,arguments).draw(a,+o.apply(this,arguments)),t)return a=null,t+\"\"||null}var e=n.i(f.a)(i.a),o=n.i(f.a)(64),a=null;return t.type=function(r){return arguments.length?(e=\"function\"==typeof r?r:n.i(f.a)(r),t):e},t.size=function(e){return arguments.length?(o=\"function\"==typeof e?e:n.i(f.a)(+e),t):o},t.context=function(e){return arguments.length?(a=null==e?null:e,t):a},t}},function(t,e,n){\"use strict\";function r(t){var e=new Date(t);return isNaN(e)?null:e}var i=n(148),o=n(77);+new Date(\"2000-01-01T00:00:00.000Z\")?r:n.i(o.b)(i.a)},function(t,e,n){\"use strict\";var r=n(5),i=n(13),o=n.i(r.a)(function(t){t.setHours(0,0,0,0)},function(t,e){t.setDate(t.getDate()+e)},function(t,e){return(e-t-(e.getTimezoneOffset()-t.getTimezoneOffset())*i.d)/i.b},function(t){return t.getDate()-1});e.a=o;o.range},function(t,e,n){\"use strict\";var r=n(5),i=n(13),o=n.i(r.a)(function(t){var e=t.getTimezoneOffset()*i.d%i.c;e<0&&(e+=i.c),t.setTime(Math.floor((+t-e)/i.c)*i.c+e)},function(t,e){t.setTime(+t+e*i.c)},function(t,e){return(e-t)/i.c},function(t){return t.getHours()});e.a=o;o.range},function(t,e,n){\"use strict\";var r=n(5),i=n.i(r.a)(function(){},function(t,e){t.setTime(+t+e)},function(t,e){return e-t});i.every=function(t){return t=Math.floor(t),isFinite(t)&&t>0?t>1?n.i(r.a)(function(e){e.setTime(Math.floor(e/t)*t)},function(e,n){e.setTime(+e+n*t)},function(e,n){return(n-e)/t}):i:null},e.a=i;i.range},function(t,e,n){\"use strict\";var r=n(5),i=n(13),o=n.i(r.a)(function(t){t.setTime(Math.floor(t/i.d)*i.d)},function(t,e){t.setTime(+t+e*i.d)},function(t,e){return(e-t)/i.d},function(t){return t.getMinutes()});e.a=o;o.range},function(t,e,n){\"use strict\";var r=n(5),i=n.i(r.a)(function(t){t.setDate(1),t.setHours(0,0,0,0)},function(t,e){t.setMonth(t.getMonth()+e)},function(t,e){return e.getMonth()-t.getMonth()+12*(e.getFullYear()-t.getFullYear())},function(t){return t.getMonth()});e.a=i;i.range},function(t,e,n){\"use strict\";var r=n(5),i=n(13),o=n.i(r.a)(function(t){t.setTime(Math.floor(t/i.e)*i.e)},function(t,e){t.setTime(+t+e*i.e)},function(t,e){return(e-t)/i.e},function(t){return t.getUTCSeconds()});e.a=o;o.range},function(t,e,n){\"use strict\";var r=n(5),i=n(13),o=n.i(r.a)(function(t){t.setUTCHours(0,0,0,0)},function(t,e){t.setUTCDate(t.getUTCDate()+e)},function(t,e){return(e-t)/i.b},function(t){return t.getUTCDate()-1});e.a=o;o.range},function(t,e,n){\"use strict\";var r=n(5),i=n(13),o=n.i(r.a)(function(t){t.setUTCMinutes(0,0,0)},function(t,e){t.setTime(+t+e*i.c)},function(t,e){return(e-t)/i.c},function(t){return t.getUTCHours()});e.a=o;o.range},function(t,e,n){\"use strict\";var r=n(5),i=n(13),o=n.i(r.a)(function(t){t.setUTCSeconds(0,0)},function(t,e){t.setTime(+t+e*i.d)},function(t,e){return(e-t)/i.d},function(t){return t.getUTCMinutes()});e.a=o;o.range},function(t,e,n){\"use strict\";var r=n(5),i=n.i(r.a)(function(t){t.setUTCDate(1),t.setUTCHours(0,0,0,0)},function(t,e){t.setUTCMonth(t.getUTCMonth()+e)},function(t,e){return e.getUTCMonth()-t.getUTCMonth()+12*(e.getUTCFullYear()-t.getUTCFullYear())},function(t){return t.getUTCMonth()});e.a=i;i.range},function(t,e,n){\"use strict\";function r(t){return n.i(i.a)(function(e){e.setUTCDate(e.getUTCDate()-(e.getUTCDay()+7-t)%7),e.setUTCHours(0,0,0,0)},function(t,e){t.setUTCDate(t.getUTCDate()+7*e)},function(t,e){return(e-t)/o.a})}var i=n(5),o=n(13);n.d(e,\"a\",function(){return a}),n.d(e,\"b\",function(){return u});var a=r(0),u=r(1),c=r(2),s=r(3),l=r(4),f=r(5),p=r(6);a.range,u.range,c.range,s.range,l.range,f.range,p.range},function(t,e,n){\"use strict\";var r=n(5),i=n.i(r.a)(function(t){t.setUTCMonth(0,1),t.setUTCHours(0,0,0,0)},function(t,e){t.setUTCFullYear(t.getUTCFullYear()+e)},function(t,e){return e.getUTCFullYear()-t.getUTCFullYear()},function(t){return t.getUTCFullYear()});i.every=function(t){return isFinite(t=Math.floor(t))&&t>0?n.i(r.a)(function(e){e.setUTCFullYear(Math.floor(e.getUTCFullYear()/t)*t),e.setUTCMonth(0,1),e.setUTCHours(0,0,0,0)},function(e,n){e.setUTCFullYear(e.getUTCFullYear()+n*t)}):null},e.a=i;i.range},function(t,e,n){\"use strict\";function r(t){return n.i(i.a)(function(e){e.setDate(e.getDate()-(e.getDay()+7-t)%7),e.setHours(0,0,0,0)},function(t,e){t.setDate(t.getDate()+7*e)},function(t,e){return(e-t-(e.getTimezoneOffset()-t.getTimezoneOffset())*o.d)/o.a})}var i=n(5),o=n(13);n.d(e,\"a\",function(){return a}),n.d(e,\"b\",function(){return u});var a=r(0),u=r(1),c=r(2),s=r(3),l=r(4),f=r(5),p=r(6);a.range,u.range,c.range,s.range,l.range,f.range,p.range},function(t,e,n){\"use strict\";var r=n(5),i=n.i(r.a)(function(t){t.setMonth(0,1),t.setHours(0,0,0,0)},function(t,e){t.setFullYear(t.getFullYear()+e)},function(t,e){return e.getFullYear()-t.getFullYear()},function(t){return t.getFullYear()});i.every=function(t){return isFinite(t=Math.floor(t))&&t>0?n.i(r.a)(function(e){e.setFullYear(Math.floor(e.getFullYear()/t)*t),e.setMonth(0,1),e.setHours(0,0,0,0)},function(e,n){e.setFullYear(e.getFullYear()+n*t)}):null},e.a=i;i.range},function(t,e,n){\"use strict\";function r(t){return t.replace(i,function(t,e){return e.toUpperCase()})}var i=/-(.)/g;t.exports=r},function(t,e,n){\"use strict\";function r(t){return i(t.replace(o,\"ms-\"))}var i=n(318),o=/^-ms-/;t.exports=r},function(t,e,n){\"use strict\";function r(t,e){return!(!t||!e)&&(t===e||!i(t)&&(i(e)?r(t,e.parentNode):\"contains\"in t?t.contains(e):!!t.compareDocumentPosition&&!!(16&t.compareDocumentPosition(e))))}var i=n(328);t.exports=r},function(t,e,n){\"use strict\";function r(t){var e=t.length;if(Array.isArray(t)||\"object\"!=typeof t&&\"function\"!=typeof t?a(!1):void 0,\"number\"!=typeof e?a(!1):void 0,0===e||e-1 in t?void 0:a(!1),\"function\"==typeof t.callee?a(!1):void 0,t.hasOwnProperty)try{return Array.prototype.slice.call(t)}catch(t){}for(var n=Array(e),r=0;r<e;r++)n[r]=t[r];return n}function i(t){return!!t&&(\"object\"==typeof t||\"function\"==typeof t)&&\"length\"in t&&!(\"setInterval\"in t)&&\"number\"!=typeof t.nodeType&&(Array.isArray(t)||\"callee\"in t||\"item\"in t)}function o(t){return i(t)?Array.isArray(t)?t.slice():r(t):[t]}var a=n(0);t.exports=o},function(t,e,n){\"use strict\";function r(t){var e=t.match(l);return e&&e[1].toLowerCase()}function i(t,e){var n=s;s?void 0:c(!1);var i=r(t),o=i&&u(i);if(o){n.innerHTML=o[1]+t+o[2];for(var l=o[0];l--;)n=n.lastChild}else n.innerHTML=t;var f=n.getElementsByTagName(\"script\");f.length&&(e?void 0:c(!1),a(f).forEach(e));for(var p=Array.from(n.childNodes);n.lastChild;)n.removeChild(n.lastChild);return p}var o=n(6),a=n(321),u=n(323),c=n(0),s=o.canUseDOM?document.createElement(\"div\"):null,l=/^\\s*<(\\w+)/;t.exports=i},function(t,e,n){\"use strict\";function r(t){return a?void 0:o(!1),p.hasOwnProperty(t)||(t=\"*\"),u.hasOwnProperty(t)||(\"*\"===t?a.innerHTML=\"<link />\":a.innerHTML=\"<\"+t+\"></\"+t+\">\",u[t]=!a.firstChild),u[t]?p[t]:null}var i=n(6),o=n(0),a=i.canUseDOM?document.createElement(\"div\"):null,u={},c=[1,'<select multiple=\"true\">',\"</select>\"],s=[1,\"<table>\",\"</table>\"],l=[3,\"<table><tbody><tr>\",\"</tr></tbody></table>\"],f=[1,'<svg xmlns=\"http://www.w3.org/2000/svg\">',\"</svg>\"],p={\"*\":[1,\"?<div>\",\"</div>\"],area:[1,\"<map>\",\"</map>\"],col:[2,\"<table><tbody></tbody><colgroup>\",\"</colgroup></table>\"],legend:[1,\"<fieldset>\",\"</fieldset>\"],param:[1,\"<object>\",\"</object>\"],tr:[2,\"<table><tbody>\",\"</tbody></table>\"],optgroup:c,option:c,caption:s,colgroup:s,tbody:s,tfoot:s,thead:s,td:l,th:l},h=[\"circle\",\"clipPath\",\"defs\",\"ellipse\",\"g\",\"image\",\"line\",\"linearGradient\",\"mask\",\"path\",\"pattern\",\"polygon\",\"polyline\",\"radialGradient\",\"rect\",\"stop\",\"text\",\"tspan\"];h.forEach(function(t){p[t]=f,u[t]=!0}),t.exports=r},function(t,e,n){\"use strict\";function r(t){return t===window?{x:window.pageXOffset||document.documentElement.scrollLeft,y:window.pageYOffset||document.documentElement.scrollTop}:{x:t.scrollLeft,y:t.scrollTop}}t.exports=r},function(t,e,n){\"use strict\";function r(t){return t.replace(i,\"-$1\").toLowerCase()}var i=/([A-Z])/g;t.exports=r},function(t,e,n){\"use strict\";function r(t){return i(t).replace(o,\"-ms-\")}var i=n(325),o=/^ms-/;t.exports=r},function(t,e,n){\"use strict\";function r(t){return!(!t||!(\"function\"==typeof Node?t instanceof Node:\"object\"==typeof t&&\"number\"==typeof t.nodeType&&\"string\"==typeof t.nodeName))}t.exports=r},function(t,e,n){\"use strict\";function r(t){return i(t)&&3==t.nodeType}var i=n(327);t.exports=r},function(t,e,n){\"use strict\";var r=function(t){var e;for(e in t)if(t.hasOwnProperty(e))return e;return null};t.exports=r},function(t,e,n){\"use strict\";function r(t){var e={};return function(n){return e.hasOwnProperty(n)||(e[n]=t.call(this,n)),e[n]}}t.exports=r},function(t,e,n){\"use strict\";var r={Properties:{\"aria-current\":0,\"aria-details\":0,\"aria-disabled\":0,\"aria-hidden\":0,\"aria-invalid\":0,\"aria-keyshortcuts\":0,\"aria-label\":0,\"aria-roledescription\":0,\"aria-autocomplete\":0,\"aria-checked\":0,\"aria-expanded\":0,\"aria-haspopup\":0,\"aria-level\":0,\"aria-modal\":0,\"aria-multiline\":0,\"aria-multiselectable\":0,\"aria-orientation\":0,\"aria-placeholder\":0,\"aria-pressed\":0,\"aria-readonly\":0,\"aria-required\":0,\"aria-selected\":0,\"aria-sort\":0,\"aria-valuemax\":0,\"aria-valuemin\":0,\"aria-valuenow\":0,\"aria-valuetext\":0,\"aria-atomic\":0,\"aria-busy\":0,\"aria-live\":0,\"aria-relevant\":0,\"aria-dropeffect\":0,\"aria-grabbed\":0,\"aria-activedescendant\":0,\"aria-colcount\":0,\"aria-colindex\":0,\"aria-colspan\":0,\"aria-controls\":0,\"aria-describedby\":0,\"aria-errormessage\":0,\"aria-flowto\":0,\"aria-labelledby\":0,\"aria-owns\":0,\"aria-posinset\":0,\"aria-rowcount\":0,\"aria-rowindex\":0,\"aria-rowspan\":0,\"aria-setsize\":0},DOMAttributeNames:{},DOMPropertyNames:{}};t.exports=r},function(t,e,n){\"use strict\";var r=n(4),i=n(151),o={focusDOMComponent:function(){i(r.getNodeFromInstance(this))}};t.exports=o},function(t,e,n){\"use strict\";function r(){var t=window.opera;return\"object\"==typeof t&&\"function\"==typeof t.version&&parseInt(t.version(),10)<=12}function i(t){return(t.ctrlKey||t.altKey||t.metaKey)&&!(t.ctrlKey&&t.altKey)}function o(t){switch(t){case\"topCompositionStart\":return E.compositionStart;case\"topCompositionEnd\":return E.compositionEnd;case\"topCompositionUpdate\":return E.compositionUpdate}}function a(t,e){return\"topKeyDown\"===t&&e.keyCode===_}function u(t,e){switch(t){case\"topKeyUp\":return m.indexOf(e.keyCode)!==-1;case\"topKeyDown\":return e.keyCode!==_;case\"topKeyPress\":case\"topMouseDown\":case\"topBlur\":return!0;default:return!1}}function c(t){var e=t.detail;return\"object\"==typeof e&&\"data\"in e?e.data:null}function s(t,e,n,r){var i,s;if(b?i=o(t):S?u(t,n)&&(i=E.compositionEnd):a(t,n)&&(i=E.compositionStart),!i)return null;C&&(S||i!==E.compositionStart?i===E.compositionEnd&&S&&(s=S.getData()):S=v.getPooled(r));var l=g.getPooled(i,e,n,r);if(s)l.data=s;else{var f=c(n);null!==f&&(l.data=f)}return h.accumulateTwoPhaseDispatches(l),l}function l(t,e){switch(t){case\"topCompositionEnd\":return c(e);case\"topKeyPress\":var n=e.which;return n!==M?null:(T=!0,k);case\"topTextInput\":var r=e.data;return r===k&&T?null:r;default:return null}}function f(t,e){if(S){if(\"topCompositionEnd\"===t||!b&&u(t,e)){var n=S.getData();return v.release(S),S=null,n}return null}switch(t){case\"topPaste\":return null;case\"topKeyPress\":return e.which&&!i(e)?String.fromCharCode(e.which):null;case\"topCompositionEnd\":return C?null:e.data;default:return null}}function p(t,e,n,r){var i;if(i=w?l(t,n):f(t,n),!i)return null;var o=y.getPooled(E.beforeInput,e,n,r);return o.data=i,h.accumulateTwoPhaseDispatches(o),o}var h=n(23),d=n(6),v=n(340),g=n(377),y=n(380),m=[9,13,27,32],_=229,b=d.canUseDOM&&\"CompositionEvent\"in window,x=null;d.canUseDOM&&\"documentMode\"in document&&(x=document.documentMode);var w=d.canUseDOM&&\"TextEvent\"in window&&!x&&!r(),C=d.canUseDOM&&(!b||x&&x>8&&x<=11),M=32,k=String.fromCharCode(M),E={beforeInput:{phasedRegistrationNames:{bubbled:\"onBeforeInput\",captured:\"onBeforeInputCapture\"},dependencies:[\"topCompositionEnd\",\"topKeyPress\",\"topTextInput\",\"topPaste\"]},compositionEnd:{phasedRegistrationNames:{bubbled:\"onCompositionEnd\",captured:\"onCompositionEndCapture\"},dependencies:[\"topBlur\",\"topCompositionEnd\",\"topKeyDown\",\"topKeyPress\",\"topKeyUp\",\"topMouseDown\"]},compositionStart:{phasedRegistrationNames:{bubbled:\"onCompositionStart\",captured:\"onCompositionStartCapture\"},dependencies:[\"topBlur\",\"topCompositionStart\",\"topKeyDown\",\"topKeyPress\",\"topKeyUp\",\"topMouseDown\"]},compositionUpdate:{phasedRegistrationNames:{bubbled:\"onCompositionUpdate\",captured:\"onCompositionUpdateCapture\"},dependencies:[\"topBlur\",\"topCompositionUpdate\",\"topKeyDown\",\"topKeyPress\",\"topKeyUp\",\"topMouseDown\"]}},T=!1,S=null,N={eventTypes:E,extractEvents:function(t,e,n,r){return[s(t,e,n,r),p(t,e,n,r)]}};t.exports=N},function(t,e,n){\"use strict\";var r=n(154),i=n(6),o=(n(10),n(319),n(386)),a=n(326),u=n(330),c=(n(1),u(function(t){return a(t)})),s=!1,l=\"cssFloat\";if(i.canUseDOM){var f=document.createElement(\"div\").style;try{f.font=\"\"}catch(t){s=!0}void 0===document.documentElement.style.cssFloat&&(l=\"styleFloat\")}var p={createMarkupForStyles:function(t,e){var n=\"\";for(var r in t)if(t.hasOwnProperty(r)){var i=t[r];null!=i&&(n+=c(r)+\":\",n+=o(r,i,e)+\";\")}return n||null},setValueForStyles:function(t,e,n){var i=t.style;for(var a in e)if(e.hasOwnProperty(a)){var u=o(a,e[a],n);if(\"float\"!==a&&\"cssFloat\"!==a||(a=l),u)i[a]=u;else{var c=s&&r.shorthandPropertyExpansions[a];if(c)for(var f in c)i[f]=\"\";else i[a]=\"\"}}}};t.exports=p},function(t,e,n){\"use strict\";function r(t){var e=t.nodeName&&t.nodeName.toLowerCase();return\"select\"===e||\"input\"===e&&\"file\"===t.type}function i(t){var e=C.getPooled(T.change,N,t,M(t));_.accumulateTwoPhaseDispatches(e),w.batchedUpdates(o,e)}function o(t){m.enqueueEvents(t),m.processEventQueue(!1)}function a(t,e){S=t,N=e,S.attachEvent(\"onchange\",i)}function u(){S&&(S.detachEvent(\"onchange\",i),S=null,N=null)}function c(t,e){if(\"topChange\"===t)return e}function s(t,e,n){\"topFocus\"===t?(u(),a(e,n)):\"topBlur\"===t&&u()}function l(t,e){S=t,N=e,A=t.value,P=Object.getOwnPropertyDescriptor(t.constructor.prototype,\"value\"),Object.defineProperty(S,\"value\",D),S.attachEvent?S.attachEvent(\"onpropertychange\",p):S.addEventListener(\"propertychange\",p,!1)}function f(){S&&(delete S.value,S.detachEvent?S.detachEvent(\"onpropertychange\",p):S.removeEventListener(\"propertychange\",p,!1),S=null,N=null,A=null,P=null)}function p(t){if(\"value\"===t.propertyName){var e=t.srcElement.value;e!==A&&(A=e,i(t))}}function h(t,e){if(\"topInput\"===t)return e}function d(t,e,n){\"topFocus\"===t?(f(),l(e,n)):\"topBlur\"===t&&f()}function v(t,e){if((\"topSelectionChange\"===t||\"topKeyUp\"===t||\"topKeyDown\"===t)&&S&&S.value!==A)return A=S.value,N}function g(t){return t.nodeName&&\"input\"===t.nodeName.toLowerCase()&&(\"checkbox\"===t.type||\"radio\"===t.type)}function y(t,e){if(\"topClick\"===t)return e}var m=n(22),_=n(23),b=n(6),x=n(4),w=n(12),C=n(14),M=n(92),k=n(93),E=n(170),T={\n", "change:{phasedRegistrationNames:{bubbled:\"onChange\",captured:\"onChangeCapture\"},dependencies:[\"topBlur\",\"topChange\",\"topClick\",\"topFocus\",\"topInput\",\"topKeyDown\",\"topKeyUp\",\"topSelectionChange\"]}},S=null,N=null,A=null,P=null,O=!1;b.canUseDOM&&(O=k(\"change\")&&(!document.documentMode||document.documentMode>8));var I=!1;b.canUseDOM&&(I=k(\"input\")&&(!document.documentMode||document.documentMode>11));var D={get:function(){return P.get.call(this)},set:function(t){A=\"\"+t,P.set.call(this,t)}},R={eventTypes:T,extractEvents:function(t,e,n,i){var o,a,u=e?x.getNodeFromInstance(e):window;if(r(u)?O?o=c:a=s:E(u)?I?o=h:(o=v,a=d):g(u)&&(o=y),o){var l=o(t,e);if(l){var f=C.getPooled(T.change,l,n,i);return f.type=\"change\",_.accumulateTwoPhaseDispatches(f),f}}a&&a(t,u,e)}};t.exports=R},function(t,e,n){\"use strict\";var r=n(2),i=n(20),o=n(6),a=n(322),u=n(9),c=(n(0),{dangerouslyReplaceNodeWithMarkup:function(t,e){if(o.canUseDOM?void 0:r(\"56\"),e?void 0:r(\"57\"),\"HTML\"===t.nodeName?r(\"58\"):void 0,\"string\"==typeof e){var n=a(e,u)[0];t.parentNode.replaceChild(n,t)}else i.replaceChildWithTree(t,e)}});t.exports=c},function(t,e,n){\"use strict\";var r=[\"ResponderEventPlugin\",\"SimpleEventPlugin\",\"TapEventPlugin\",\"EnterLeaveEventPlugin\",\"ChangeEventPlugin\",\"SelectEventPlugin\",\"BeforeInputEventPlugin\"];t.exports=r},function(t,e,n){\"use strict\";var r=n(23),i=n(4),o=n(52),a={mouseEnter:{registrationName:\"onMouseEnter\",dependencies:[\"topMouseOut\",\"topMouseOver\"]},mouseLeave:{registrationName:\"onMouseLeave\",dependencies:[\"topMouseOut\",\"topMouseOver\"]}},u={eventTypes:a,extractEvents:function(t,e,n,u){if(\"topMouseOver\"===t&&(n.relatedTarget||n.fromElement))return null;if(\"topMouseOut\"!==t&&\"topMouseOver\"!==t)return null;var c;if(u.window===u)c=u;else{var s=u.ownerDocument;c=s?s.defaultView||s.parentWindow:window}var l,f;if(\"topMouseOut\"===t){l=e;var p=n.relatedTarget||n.toElement;f=p?i.getClosestInstanceFromNode(p):null}else l=null,f=e;if(l===f)return null;var h=null==l?c:i.getNodeFromInstance(l),d=null==f?c:i.getNodeFromInstance(f),v=o.getPooled(a.mouseLeave,l,n,u);v.type=\"mouseleave\",v.target=h,v.relatedTarget=d;var g=o.getPooled(a.mouseEnter,f,n,u);return g.type=\"mouseenter\",g.target=d,g.relatedTarget=h,r.accumulateEnterLeaveDispatches(v,g,l,f),[v,g]}};t.exports=u},function(t,e,n){\"use strict\";var r={topAbort:null,topAnimationEnd:null,topAnimationIteration:null,topAnimationStart:null,topBlur:null,topCanPlay:null,topCanPlayThrough:null,topChange:null,topClick:null,topCompositionEnd:null,topCompositionStart:null,topCompositionUpdate:null,topContextMenu:null,topCopy:null,topCut:null,topDoubleClick:null,topDrag:null,topDragEnd:null,topDragEnter:null,topDragExit:null,topDragLeave:null,topDragOver:null,topDragStart:null,topDrop:null,topDurationChange:null,topEmptied:null,topEncrypted:null,topEnded:null,topError:null,topFocus:null,topInput:null,topInvalid:null,topKeyDown:null,topKeyPress:null,topKeyUp:null,topLoad:null,topLoadedData:null,topLoadedMetadata:null,topLoadStart:null,topMouseDown:null,topMouseMove:null,topMouseOut:null,topMouseOver:null,topMouseUp:null,topPaste:null,topPause:null,topPlay:null,topPlaying:null,topProgress:null,topRateChange:null,topReset:null,topScroll:null,topSeeked:null,topSeeking:null,topSelectionChange:null,topStalled:null,topSubmit:null,topSuspend:null,topTextInput:null,topTimeUpdate:null,topTouchCancel:null,topTouchEnd:null,topTouchMove:null,topTouchStart:null,topTransitionEnd:null,topVolumeChange:null,topWaiting:null,topWheel:null},i={topLevelTypes:r};t.exports=i},function(t,e,n){\"use strict\";function r(t){this._root=t,this._startText=this.getText(),this._fallbackText=null}var i=n(3),o=n(17),a=n(168);i(r.prototype,{destructor:function(){this._root=null,this._startText=null,this._fallbackText=null},getText:function(){return\"value\"in this._root?this._root.value:this._root[a()]},getData:function(){if(this._fallbackText)return this._fallbackText;var t,e,n=this._startText,r=n.length,i=this.getText(),o=i.length;for(t=0;t<r&&n[t]===i[t];t++);var a=r-t;for(e=1;e<=a&&n[r-e]===i[o-e];e++);var u=e>1?1-e:void 0;return this._fallbackText=i.slice(t,u),this._fallbackText}}),o.addPoolingTo(r),t.exports=r},function(t,e,n){\"use strict\";var r=n(21),i=r.injection.MUST_USE_PROPERTY,o=r.injection.HAS_BOOLEAN_VALUE,a=r.injection.HAS_NUMERIC_VALUE,u=r.injection.HAS_POSITIVE_NUMERIC_VALUE,c=r.injection.HAS_OVERLOADED_BOOLEAN_VALUE,s={isCustomAttribute:RegExp.prototype.test.bind(new RegExp(\"^(data|aria)-[\"+r.ATTRIBUTE_NAME_CHAR+\"]*$\")),Properties:{accept:0,acceptCharset:0,accessKey:0,action:0,allowFullScreen:o,allowTransparency:0,alt:0,as:0,async:o,autoComplete:0,autoPlay:o,capture:o,cellPadding:0,cellSpacing:0,charSet:0,challenge:0,checked:i|o,cite:0,classID:0,className:0,cols:u,colSpan:0,content:0,contentEditable:0,contextMenu:0,controls:o,coords:0,crossOrigin:0,data:0,dateTime:0,default:o,defer:o,dir:0,disabled:o,download:c,draggable:0,encType:0,form:0,formAction:0,formEncType:0,formMethod:0,formNoValidate:o,formTarget:0,frameBorder:0,headers:0,height:0,hidden:o,high:0,href:0,hrefLang:0,htmlFor:0,httpEquiv:0,icon:0,id:0,inputMode:0,integrity:0,is:0,keyParams:0,keyType:0,kind:0,label:0,lang:0,list:0,loop:o,low:0,manifest:0,marginHeight:0,marginWidth:0,max:0,maxLength:0,media:0,mediaGroup:0,method:0,min:0,minLength:0,multiple:i|o,muted:i|o,name:0,nonce:0,noValidate:o,open:o,optimum:0,pattern:0,placeholder:0,playsInline:o,poster:0,preload:0,profile:0,radioGroup:0,readOnly:o,referrerPolicy:0,rel:0,required:o,reversed:o,role:0,rows:u,rowSpan:a,sandbox:0,scope:0,scoped:o,scrolling:0,seamless:o,selected:i|o,shape:0,size:u,sizes:0,span:u,spellCheck:0,src:0,srcDoc:0,srcLang:0,srcSet:0,start:a,step:0,style:0,summary:0,tabIndex:0,target:0,title:0,type:0,useMap:0,value:0,width:0,wmode:0,wrap:0,about:0,datatype:0,inlist:0,prefix:0,property:0,resource:0,typeof:0,vocab:0,autoCapitalize:0,autoCorrect:0,autoSave:0,color:0,itemProp:0,itemScope:o,itemType:0,itemID:0,itemRef:0,results:0,security:0,unselectable:0},DOMAttributeNames:{acceptCharset:\"accept-charset\",className:\"class\",htmlFor:\"for\",httpEquiv:\"http-equiv\"},DOMPropertyNames:{}};t.exports=s},function(t,e,n){\"use strict\";(function(e){function r(t,e,n,r){var i=void 0===t[n];null!=e&&i&&(t[n]=o(e,!0))}var i=n(24),o=n(169),a=(n(83),n(94)),u=n(172);n(1);\"undefined\"!=typeof e&&e.env,1;var c={instantiateChildren:function(t,e,n,i){if(null==t)return null;var o={};return u(t,r,o),o},updateChildren:function(t,e,n,r,u,c,s,l,f){if(e||t){var p,h;for(p in e)if(e.hasOwnProperty(p)){h=t&&t[p];var d=h&&h._currentElement,v=e[p];if(null!=h&&a(d,v))i.receiveComponent(h,v,u,l),e[p]=h;else{h&&(r[p]=i.getHostNode(h),i.unmountComponent(h,!1));var g=o(v,!0);e[p]=g;var y=i.mountComponent(g,u,c,s,l,f);n.push(y)}}for(p in t)!t.hasOwnProperty(p)||e&&e.hasOwnProperty(p)||(h=t[p],r[p]=i.getHostNode(h),i.unmountComponent(h,!1))}},unmountChildren:function(t,e){for(var n in t)if(t.hasOwnProperty(n)){var r=t[n];i.unmountComponent(r,e)}}};t.exports=c}).call(e,n(153))},function(t,e,n){\"use strict\";var r=n(80),i=n(350),o={processChildrenUpdates:i.dangerouslyProcessChildrenUpdates,replaceNodeWithMarkup:r.dangerouslyReplaceNodeWithMarkup};t.exports=o},function(t,e,n){\"use strict\";function r(t){}function i(t,e){}function o(t){return!(!t.prototype||!t.prototype.isReactComponent)}function a(t){return!(!t.prototype||!t.prototype.isPureReactComponent)}var u=n(2),c=n(3),s=n(26),l=n(85),f=n(15),p=n(86),h=n(40),d=(n(10),n(164)),v=n(24),g=n(38),y=(n(0),n(79)),m=n(94),_=(n(1),{ImpureClass:0,PureClass:1,StatelessFunctional:2});r.prototype.render=function(){var t=h.get(this)._currentElement.type,e=t(this.props,this.context,this.updater);return i(t,e),e};var b=1,x={construct:function(t){this._currentElement=t,this._rootNodeID=0,this._compositeType=null,this._instance=null,this._hostParent=null,this._hostContainerInfo=null,this._updateBatchNumber=null,this._pendingElement=null,this._pendingStateQueue=null,this._pendingReplaceState=!1,this._pendingForceUpdate=!1,this._renderedNodeType=null,this._renderedComponent=null,this._context=null,this._mountOrder=0,this._topLevelWrapper=null,this._pendingCallbacks=null,this._calledComponentWillUnmount=!1},mountComponent:function(t,e,n,c){this._context=c,this._mountOrder=b++,this._hostParent=e,this._hostContainerInfo=n;var l,f=this._currentElement.props,p=this._processContext(c),d=this._currentElement.type,v=t.getUpdateQueue(),y=o(d),m=this._constructComponent(y,f,p,v);y||null!=m&&null!=m.render?a(d)?this._compositeType=_.PureClass:this._compositeType=_.ImpureClass:(l=m,i(d,l),null===m||m===!1||s.isValidElement(m)?void 0:u(\"105\",d.displayName||d.name||\"Component\"),m=new r(d),this._compositeType=_.StatelessFunctional);m.props=f,m.context=p,m.refs=g,m.updater=v,this._instance=m,h.set(m,this);var x=m.state;void 0===x&&(m.state=x=null),\"object\"!=typeof x||Array.isArray(x)?u(\"106\",this.getName()||\"ReactCompositeComponent\"):void 0,this._pendingStateQueue=null,this._pendingReplaceState=!1,this._pendingForceUpdate=!1;var w;return w=m.unstable_handleError?this.performInitialMountWithErrorHandling(l,e,n,t,c):this.performInitialMount(l,e,n,t,c),m.componentDidMount&&t.getReactMountReady().enqueue(m.componentDidMount,m),w},_constructComponent:function(t,e,n,r){return this._constructComponentWithoutOwner(t,e,n,r)},_constructComponentWithoutOwner:function(t,e,n,r){var i=this._currentElement.type;return t?new i(e,n,r):i(e,n,r)},performInitialMountWithErrorHandling:function(t,e,n,r,i){var o,a=r.checkpoint();try{o=this.performInitialMount(t,e,n,r,i)}catch(u){r.rollback(a),this._instance.unstable_handleError(u),this._pendingStateQueue&&(this._instance.state=this._processPendingState(this._instance.props,this._instance.context)),a=r.checkpoint(),this._renderedComponent.unmountComponent(!0),r.rollback(a),o=this.performInitialMount(t,e,n,r,i)}return o},performInitialMount:function(t,e,n,r,i){var o=this._instance,a=0;o.componentWillMount&&(o.componentWillMount(),this._pendingStateQueue&&(o.state=this._processPendingState(o.props,o.context))),void 0===t&&(t=this._renderValidatedComponent());var u=d.getType(t);this._renderedNodeType=u;var c=this._instantiateReactComponent(t,u!==d.EMPTY);this._renderedComponent=c;var s=v.mountComponent(c,r,e,n,this._processChildContext(i),a);return s},getHostNode:function(){return v.getHostNode(this._renderedComponent)},unmountComponent:function(t){if(this._renderedComponent){var e=this._instance;if(e.componentWillUnmount&&!e._calledComponentWillUnmount)if(e._calledComponentWillUnmount=!0,t){var n=this.getName()+\".componentWillUnmount()\";p.invokeGuardedCallback(n,e.componentWillUnmount.bind(e))}else e.componentWillUnmount();this._renderedComponent&&(v.unmountComponent(this._renderedComponent,t),this._renderedNodeType=null,this._renderedComponent=null,this._instance=null),this._pendingStateQueue=null,this._pendingReplaceState=!1,this._pendingForceUpdate=!1,this._pendingCallbacks=null,this._pendingElement=null,this._context=null,this._rootNodeID=0,this._topLevelWrapper=null,h.remove(e)}},_maskContext:function(t){var e=this._currentElement.type,n=e.contextTypes;if(!n)return g;var r={};for(var i in n)r[i]=t[i];return r},_processContext:function(t){var e=this._maskContext(t);return e},_processChildContext:function(t){var e,n=this._currentElement.type,r=this._instance;if(r.getChildContext&&(e=r.getChildContext()),e){\"object\"!=typeof n.childContextTypes?u(\"107\",this.getName()||\"ReactCompositeComponent\"):void 0;for(var i in e)i in n.childContextTypes?void 0:u(\"108\",this.getName()||\"ReactCompositeComponent\",i);return c({},t,e)}return t},_checkContextTypes:function(t,e,n){},receiveComponent:function(t,e,n){var r=this._currentElement,i=this._context;this._pendingElement=null,this.updateComponent(e,r,t,i,n)},performUpdateIfNecessary:function(t){null!=this._pendingElement?v.receiveComponent(this,this._pendingElement,t,this._context):null!==this._pendingStateQueue||this._pendingForceUpdate?this.updateComponent(t,this._currentElement,this._currentElement,this._context,this._context):this._updateBatchNumber=null},updateComponent:function(t,e,n,r,i){var o=this._instance;null==o?u(\"136\",this.getName()||\"ReactCompositeComponent\"):void 0;var a,c=!1;this._context===i?a=o.context:(a=this._processContext(i),c=!0);var s=e.props,l=n.props;e!==n&&(c=!0),c&&o.componentWillReceiveProps&&o.componentWillReceiveProps(l,a);var f=this._processPendingState(l,a),p=!0;this._pendingForceUpdate||(o.shouldComponentUpdate?p=o.shouldComponentUpdate(l,f,a):this._compositeType===_.PureClass&&(p=!y(s,l)||!y(o.state,f))),this._updateBatchNumber=null,p?(this._pendingForceUpdate=!1,this._performComponentUpdate(n,l,f,a,t,i)):(this._currentElement=n,this._context=i,o.props=l,o.state=f,o.context=a)},_processPendingState:function(t,e){var n=this._instance,r=this._pendingStateQueue,i=this._pendingReplaceState;if(this._pendingReplaceState=!1,this._pendingStateQueue=null,!r)return n.state;if(i&&1===r.length)return r[0];for(var o=c({},i?r[0]:n.state),a=i?1:0;a<r.length;a++){var u=r[a];c(o,\"function\"==typeof u?u.call(n,o,t,e):u)}return o},_performComponentUpdate:function(t,e,n,r,i,o){var a,u,c,s=this._instance,l=Boolean(s.componentDidUpdate);l&&(a=s.props,u=s.state,c=s.context),s.componentWillUpdate&&s.componentWillUpdate(e,n,r),this._currentElement=t,this._context=o,s.props=e,s.state=n,s.context=r,this._updateRenderedComponent(i,o),l&&i.getReactMountReady().enqueue(s.componentDidUpdate.bind(s,a,u,c),s)},_updateRenderedComponent:function(t,e){var n=this._renderedComponent,r=n._currentElement,i=this._renderValidatedComponent(),o=0;if(m(r,i))v.receiveComponent(n,i,t,this._processChildContext(e));else{var a=v.getHostNode(n);v.unmountComponent(n,!1);var u=d.getType(i);this._renderedNodeType=u;var c=this._instantiateReactComponent(i,u!==d.EMPTY);this._renderedComponent=c;var s=v.mountComponent(c,t,this._hostParent,this._hostContainerInfo,this._processChildContext(e),o);this._replaceNodeWithMarkup(a,s,n)}},_replaceNodeWithMarkup:function(t,e,n){l.replaceNodeWithMarkup(t,e,n)},_renderValidatedComponentWithoutOwnerOrContext:function(){var t,e=this._instance;return t=e.render()},_renderValidatedComponent:function(){var t;if(this._compositeType!==_.StatelessFunctional){f.current=this;try{t=this._renderValidatedComponentWithoutOwnerOrContext()}finally{f.current=null}}else t=this._renderValidatedComponentWithoutOwnerOrContext();return null===t||t===!1||s.isValidElement(t)?void 0:u(\"109\",this.getName()||\"ReactCompositeComponent\"),t},attachRef:function(t,e){var n=this.getPublicInstance();null==n?u(\"110\"):void 0;var r=e.getPublicInstance(),i=n.refs===g?n.refs={}:n.refs;i[t]=r},detachRef:function(t){var e=this.getPublicInstance().refs;delete e[t]},getName:function(){var t=this._currentElement.type,e=this._instance&&this._instance.constructor;return t.displayName||e&&e.displayName||t.name||e&&e.name||null},getPublicInstance:function(){var t=this._instance;return this._compositeType===_.StatelessFunctional?null:t},_instantiateReactComponent:null};t.exports=x},function(t,e,n){\"use strict\";var r=n(4),i=n(358),o=n(163),a=n(24),u=n(12),c=n(371),s=n(387),l=n(167),f=n(395);n(1);i.inject();var p={findDOMNode:s,render:o.render,unmountComponentAtNode:o.unmountComponentAtNode,version:c,unstable_batchedUpdates:u.batchedUpdates,unstable_renderSubtreeIntoContainer:f};\"undefined\"!=typeof __REACT_DEVTOOLS_GLOBAL_HOOK__&&\"function\"==typeof __REACT_DEVTOOLS_GLOBAL_HOOK__.inject&&__REACT_DEVTOOLS_GLOBAL_HOOK__.inject({ComponentTree:{getClosestInstanceFromNode:r.getClosestInstanceFromNode,getNodeFromInstance:function(t){return t._renderedComponent&&(t=l(t)),t?r.getNodeFromInstance(t):null}},Mount:o,Reconciler:a});t.exports=p},function(t,e,n){\"use strict\";function r(t){if(t){var e=t._currentElement._owner||null;if(e){var n=e.getName();if(n)return\" This DOM node was rendered by `\"+n+\"`.\"}}return\"\"}function i(t,e){e&&(G[t._tag]&&(null!=e.children||null!=e.dangerouslySetInnerHTML?v(\"137\",t._tag,t._currentElement._owner?\" Check the render method of \"+t._currentElement._owner.getName()+\".\":\"\"):void 0),null!=e.dangerouslySetInnerHTML&&(null!=e.children?v(\"60\"):void 0,\"object\"==typeof e.dangerouslySetInnerHTML&&V in e.dangerouslySetInnerHTML?void 0:v(\"61\")),null!=e.style&&\"object\"!=typeof e.style?v(\"62\",r(t)):void 0)}function o(t,e,n,r){if(!(r instanceof I)){var i=t._hostContainerInfo,o=i._node&&i._node.nodeType===H,u=o?i._node:i._ownerDocument;F(e,u),r.getReactMountReady().enqueue(a,{inst:t,registrationName:e,listener:n})}}function a(){var t=this;C.putListener(t.inst,t.registrationName,t.listener)}function u(){var t=this;S.postMountWrapper(t)}function c(){var t=this;P.postMountWrapper(t)}function s(){var t=this;N.postMountWrapper(t)}function l(){var t=this;t._rootNodeID?void 0:v(\"63\");var e=U(t);switch(e?void 0:v(\"64\"),t._tag){case\"iframe\":case\"object\":t._wrapperState.listeners=[k.trapBubbledEvent(\"topLoad\",\"load\",e)];break;case\"video\":case\"audio\":t._wrapperState.listeners=[];for(var n in q)q.hasOwnProperty(n)&&t._wrapperState.listeners.push(k.trapBubbledEvent(n,q[n],e));break;case\"source\":t._wrapperState.listeners=[k.trapBubbledEvent(\"topError\",\"error\",e)];break;case\"img\":t._wrapperState.listeners=[k.trapBubbledEvent(\"topError\",\"error\",e),k.trapBubbledEvent(\"topLoad\",\"load\",e)];break;case\"form\":t._wrapperState.listeners=[k.trapBubbledEvent(\"topReset\",\"reset\",e),k.trapBubbledEvent(\"topSubmit\",\"submit\",e)];break;case\"input\":case\"select\":case\"textarea\":t._wrapperState.listeners=[k.trapBubbledEvent(\"topInvalid\",\"invalid\",e)]}}function f(){A.postUpdateWrapper(this)}function p(t){Z.call(X,t)||($.test(t)?void 0:v(\"65\",t),X[t]=!0)}function h(t,e){return t.indexOf(\"-\")>=0||null!=e.is}function d(t){var e=t.type;p(e),this._currentElement=t,this._tag=e.toLowerCase(),this._namespaceURI=null,this._renderedChildren=null,this._previousStyle=null,this._previousStyleCopy=null,this._hostNode=null,this._hostParent=null,this._rootNodeID=0,this._domID=0,this._hostContainerInfo=null,this._wrapperState=null,this._topLevelWrapper=null,this._flags=0}var v=n(2),g=n(3),y=n(332),m=n(334),_=n(20),b=n(81),x=n(21),w=n(156),C=n(22),M=n(82),k=n(51),E=n(157),T=n(4),S=n(351),N=n(352),A=n(158),P=n(355),O=(n(10),n(364)),I=n(369),D=(n(9),n(54)),R=(n(0),n(93),n(79),n(95),n(1),E),L=C.deleteListener,U=T.getNodeFromInstance,F=k.listenTo,j=M.registrationNameModules,B={string:!0,number:!0},W=\"style\",V=\"__html\",z={children:null,dangerouslySetInnerHTML:null,suppressContentEditableWarning:null},H=11,q={topAbort:\"abort\",topCanPlay:\"canplay\",topCanPlayThrough:\"canplaythrough\",topDurationChange:\"durationchange\",topEmptied:\"emptied\",topEncrypted:\"encrypted\",topEnded:\"ended\",topError:\"error\",topLoadedData:\"loadeddata\",topLoadedMetadata:\"loadedmetadata\",topLoadStart:\"loadstart\",topPause:\"pause\",topPlay:\"play\",topPlaying:\"playing\",topProgress:\"progress\",topRateChange:\"ratechange\",topSeeked:\"seeked\",topSeeking:\"seeking\",topStalled:\"stalled\",topSuspend:\"suspend\",topTimeUpdate:\"timeupdate\",topVolumeChange:\"volumechange\",topWaiting:\"waiting\"},Y={area:!0,base:!0,br:!0,col:!0,embed:!0,hr:!0,img:!0,input:!0,keygen:!0,link:!0,meta:!0,param:!0,source:!0,track:!0,wbr:!0},K={listing:!0,pre:!0,textarea:!0},G=g({menuitem:!0},Y),$=/^[a-zA-Z][a-zA-Z:_\\.\\-\\d]*$/,X={},Z={}.hasOwnProperty,Q=1;d.displayName=\"ReactDOMComponent\",d.Mixin={mountComponent:function(t,e,n,r){this._rootNodeID=Q++,this._domID=n._idCounter++,this._hostParent=e,this._hostContainerInfo=n;var o=this._currentElement.props;switch(this._tag){case\"audio\":case\"form\":case\"iframe\":case\"img\":case\"link\":case\"object\":case\"source\":case\"video\":this._wrapperState={listeners:null},t.getReactMountReady().enqueue(l,this);break;case\"input\":S.mountWrapper(this,o,e),o=S.getHostProps(this,o),t.getReactMountReady().enqueue(l,this);break;case\"option\":N.mountWrapper(this,o,e),o=N.getHostProps(this,o);break;case\"select\":A.mountWrapper(this,o,e),o=A.getHostProps(this,o),t.getReactMountReady().enqueue(l,this);break;case\"textarea\":P.mountWrapper(this,o,e),o=P.getHostProps(this,o),t.getReactMountReady().enqueue(l,this)}i(this,o);var a,f;null!=e?(a=e._namespaceURI,f=e._tag):n._tag&&(a=n._namespaceURI,f=n._tag),(null==a||a===b.svg&&\"foreignobject\"===f)&&(a=b.html),a===b.html&&(\"svg\"===this._tag?a=b.svg:\"math\"===this._tag&&(a=b.mathml)),this._namespaceURI=a;var p;if(t.useCreateElement){var h,d=n._ownerDocument;if(a===b.html)if(\"script\"===this._tag){var v=d.createElement(\"div\"),g=this._currentElement.type;v.innerHTML=\"<\"+g+\"></\"+g+\">\",h=v.removeChild(v.firstChild)}else h=o.is?d.createElement(this._currentElement.type,o.is):d.createElement(this._currentElement.type);else h=d.createElementNS(a,this._currentElement.type);T.precacheNode(this,h),this._flags|=R.hasCachedChildNodes,this._hostParent||w.setAttributeForRoot(h),this._updateDOMProperties(null,o,t);var m=_(h);this._createInitialChildren(t,o,r,m),p=m}else{var x=this._createOpenTagMarkupAndPutListeners(t,o),C=this._createContentMarkup(t,o,r);p=!C&&Y[this._tag]?x+\"/>\":x+\">\"+C+\"</\"+this._currentElement.type+\">\"}switch(this._tag){case\"input\":t.getReactMountReady().enqueue(u,this),o.autoFocus&&t.getReactMountReady().enqueue(y.focusDOMComponent,this);break;case\"textarea\":t.getReactMountReady().enqueue(c,this),o.autoFocus&&t.getReactMountReady().enqueue(y.focusDOMComponent,this);break;case\"select\":o.autoFocus&&t.getReactMountReady().enqueue(y.focusDOMComponent,this);break;case\"button\":o.autoFocus&&t.getReactMountReady().enqueue(y.focusDOMComponent,this);break;case\"option\":t.getReactMountReady().enqueue(s,this)}return p},_createOpenTagMarkupAndPutListeners:function(t,e){var n=\"<\"+this._currentElement.type;for(var r in e)if(e.hasOwnProperty(r)){var i=e[r];if(null!=i)if(j.hasOwnProperty(r))i&&o(this,r,i,t);else{r===W&&(i&&(i=this._previousStyleCopy=g({},e.style)),i=m.createMarkupForStyles(i,this));var a=null;null!=this._tag&&h(this._tag,e)?z.hasOwnProperty(r)||(a=w.createMarkupForCustomAttribute(r,i)):a=w.createMarkupForProperty(r,i),a&&(n+=\" \"+a)}}return t.renderToStaticMarkup?n:(this._hostParent||(n+=\" \"+w.createMarkupForRoot()),n+=\" \"+w.createMarkupForID(this._domID))},_createContentMarkup:function(t,e,n){var r=\"\",i=e.dangerouslySetInnerHTML;if(null!=i)null!=i.__html&&(r=i.__html);else{var o=B[typeof e.children]?e.children:null,a=null!=o?null:e.children;if(null!=o)r=D(o);else if(null!=a){var u=this.mountChildren(a,t,n);r=u.join(\"\")}}return K[this._tag]&&\"\\n\"===r.charAt(0)?\"\\n\"+r:r},_createInitialChildren:function(t,e,n,r){var i=e.dangerouslySetInnerHTML;if(null!=i)null!=i.__html&&_.queueHTML(r,i.__html);else{var o=B[typeof e.children]?e.children:null,a=null!=o?null:e.children;if(null!=o)\"\"!==o&&_.queueText(r,o);else if(null!=a)for(var u=this.mountChildren(a,t,n),c=0;c<u.length;c++)_.queueChild(r,u[c])}},receiveComponent:function(t,e,n){var r=this._currentElement;this._currentElement=t,this.updateComponent(e,r,t,n)},updateComponent:function(t,e,n,r){var o=e.props,a=this._currentElement.props;switch(this._tag){case\"input\":o=S.getHostProps(this,o),a=S.getHostProps(this,a);break;case\"option\":o=N.getHostProps(this,o),a=N.getHostProps(this,a);break;case\"select\":o=A.getHostProps(this,o),a=A.getHostProps(this,a);break;case\"textarea\":o=P.getHostProps(this,o),a=P.getHostProps(this,a)}switch(i(this,a),this._updateDOMProperties(o,a,t),this._updateDOMChildren(o,a,t,r),this._tag){case\"input\":S.updateWrapper(this);break;case\"textarea\":P.updateWrapper(this);break;case\"select\":t.getReactMountReady().enqueue(f,this)}},_updateDOMProperties:function(t,e,n){var r,i,a;for(r in t)if(!e.hasOwnProperty(r)&&t.hasOwnProperty(r)&&null!=t[r])if(r===W){var u=this._previousStyleCopy;for(i in u)u.hasOwnProperty(i)&&(a=a||{},a[i]=\"\");this._previousStyleCopy=null}else j.hasOwnProperty(r)?t[r]&&L(this,r):h(this._tag,t)?z.hasOwnProperty(r)||w.deleteValueForAttribute(U(this),r):(x.properties[r]||x.isCustomAttribute(r))&&w.deleteValueForProperty(U(this),r);for(r in e){var c=e[r],s=r===W?this._previousStyleCopy:null!=t?t[r]:void 0;if(e.hasOwnProperty(r)&&c!==s&&(null!=c||null!=s))if(r===W)if(c?c=this._previousStyleCopy=g({},c):this._previousStyleCopy=null,s){for(i in s)!s.hasOwnProperty(i)||c&&c.hasOwnProperty(i)||(a=a||{},a[i]=\"\");for(i in c)c.hasOwnProperty(i)&&s[i]!==c[i]&&(a=a||{},a[i]=c[i])}else a=c;else if(j.hasOwnProperty(r))c?o(this,r,c,n):s&&L(this,r);else if(h(this._tag,e))z.hasOwnProperty(r)||w.setValueForAttribute(U(this),r,c);else if(x.properties[r]||x.isCustomAttribute(r)){var l=U(this);null!=c?w.setValueForProperty(l,r,c):w.deleteValueForProperty(l,r)}}a&&m.setValueForStyles(U(this),a,this)},_updateDOMChildren:function(t,e,n,r){var i=B[typeof t.children]?t.children:null,o=B[typeof e.children]?e.children:null,a=t.dangerouslySetInnerHTML&&t.dangerouslySetInnerHTML.__html,u=e.dangerouslySetInnerHTML&&e.dangerouslySetInnerHTML.__html,c=null!=i?null:t.children,s=null!=o?null:e.children,l=null!=i||null!=a,f=null!=o||null!=u;null!=c&&null==s?this.updateChildren(null,n,r):l&&!f&&this.updateTextContent(\"\"),null!=o?i!==o&&this.updateTextContent(\"\"+o):null!=u?a!==u&&this.updateMarkup(\"\"+u):null!=s&&this.updateChildren(s,n,r)},getHostNode:function(){return U(this)},unmountComponent:function(t){switch(this._tag){case\"audio\":case\"form\":case\"iframe\":case\"img\":case\"link\":case\"object\":case\"source\":case\"video\":var e=this._wrapperState.listeners;if(e)for(var n=0;n<e.length;n++)e[n].remove();break;case\"html\":case\"head\":case\"body\":v(\"66\",this._tag)}this.unmountChildren(t),T.uncacheNode(this),C.deleteAllListeners(this),this._rootNodeID=0,this._domID=0,this._wrapperState=null},getPublicInstance:function(){return U(this)}},g(d.prototype,d.Mixin,O.Mixin),t.exports=d},function(t,e,n){\"use strict\";function r(t,e){var n={_topLevelWrapper:t,_idCounter:1,_ownerDocument:e?e.nodeType===i?e:e.ownerDocument:null,_node:e,_tag:e?e.nodeName.toLowerCase():null,_namespaceURI:e?e.namespaceURI:null};return n}var i=(n(95),9);t.exports=r},function(t,e,n){\"use strict\";var r=n(3),i=n(20),o=n(4),a=function(t){this._currentElement=null,this._hostNode=null,this._hostParent=null,this._hostContainerInfo=null,this._domID=0};r(a.prototype,{mountComponent:function(t,e,n,r){var a=n._idCounter++;this._domID=a,this._hostParent=e,this._hostContainerInfo=n;var u=\" react-empty: \"+this._domID+\" \";if(t.useCreateElement){var c=n._ownerDocument,s=c.createComment(u);return o.precacheNode(this,s),i(s)}return t.renderToStaticMarkup?\"\":\"<!--\"+u+\"-->\"},receiveComponent:function(){},getHostNode:function(){return o.getNodeFromInstance(this)},unmountComponent:function(){o.uncacheNode(this)}}),t.exports=a},function(t,e,n){\"use strict\";var r={useCreateElement:!0,useFiber:!1};t.exports=r},function(t,e,n){\"use strict\";var r=n(80),i=n(4),o={dangerouslyProcessChildrenUpdates:function(t,e){var n=i.getNodeFromInstance(t);r.processUpdates(n,e)}};t.exports=o},function(t,e,n){\"use strict\";function r(){this._rootNodeID&&f.updateWrapper(this)}function i(t){var e=this._currentElement.props,n=c.executeOnChange(e,t);l.asap(r,this);var i=e.name;if(\"radio\"===e.type&&null!=i){for(var a=s.getNodeFromInstance(this),u=a;u.parentNode;)u=u.parentNode;for(var f=u.querySelectorAll(\"input[name=\"+JSON.stringify(\"\"+i)+'][type=\"radio\"]'),p=0;p<f.length;p++){var h=f[p];if(h!==a&&h.form===a.form){var d=s.getInstanceFromNode(h);d?void 0:o(\"90\"),l.asap(r,d)}}}return n}var o=n(2),a=n(3),u=n(156),c=n(84),s=n(4),l=n(12),f=(n(0),n(1),{getHostProps:function(t,e){var n=c.getValue(e),r=c.getChecked(e),i=a({type:void 0,step:void 0,min:void 0,max:void 0},e,{defaultChecked:void 0,defaultValue:void 0,value:null!=n?n:t._wrapperState.initialValue,checked:null!=r?r:t._wrapperState.initialChecked,onChange:t._wrapperState.onChange});return i},mountWrapper:function(t,e){var n=e.defaultValue;t._wrapperState={initialChecked:null!=e.checked?e.checked:e.defaultChecked,initialValue:null!=e.value?e.value:n,listeners:null,onChange:i.bind(t)}},updateWrapper:function(t){var e=t._currentElement.props,n=e.checked;null!=n&&u.setValueForProperty(s.getNodeFromInstance(t),\"checked\",n||!1);var r=s.getNodeFromInstance(t),i=c.getValue(e);if(null!=i){var o=\"\"+i;o!==r.value&&(r.value=o)}else null==e.value&&null!=e.defaultValue&&r.defaultValue!==\"\"+e.defaultValue&&(r.defaultValue=\"\"+e.defaultValue),null==e.checked&&null!=e.defaultChecked&&(r.defaultChecked=!!e.defaultChecked)},postMountWrapper:function(t){var e=t._currentElement.props,n=s.getNodeFromInstance(t);switch(e.type){case\"submit\":case\"reset\":break;case\"color\":case\"date\":case\"datetime\":case\"datetime-local\":case\"month\":case\"time\":case\"week\":n.value=\"\",n.value=n.defaultValue;break;default:n.value=n.value}var r=n.name;\"\"!==r&&(n.name=\"\"),n.defaultChecked=!n.defaultChecked,n.defaultChecked=!n.defaultChecked,\"\"!==r&&(n.name=r)}});t.exports=f},function(t,e,n){\"use strict\";function r(t){var e=\"\";return o.Children.forEach(t,function(t){null!=t&&(\"string\"==typeof t||\"number\"==typeof t?e+=t:c||(c=!0))}),e}var i=n(3),o=n(26),a=n(4),u=n(158),c=(n(1),!1),s={mountWrapper:function(t,e,n){var i=null;if(null!=n){var o=n;\"optgroup\"===o._tag&&(o=o._hostParent),null!=o&&\"select\"===o._tag&&(i=u.getSelectValueContext(o))}var a=null;if(null!=i){var c;if(c=null!=e.value?e.value+\"\":r(e.children),a=!1,Array.isArray(i)){for(var s=0;s<i.length;s++)if(\"\"+i[s]===c){a=!0;break}}else a=\"\"+i===c}t._wrapperState={selected:a}},postMountWrapper:function(t){var e=t._currentElement.props;if(null!=e.value){var n=a.getNodeFromInstance(t);n.setAttribute(\"value\",e.value)}},getHostProps:function(t,e){var n=i({selected:void 0,children:void 0},e);null!=t._wrapperState.selected&&(n.selected=t._wrapperState.selected);var o=r(e.children);return o&&(n.children=o),n}};t.exports=s},function(t,e,n){\"use strict\";function r(t,e,n,r){return t===n&&e===r}function i(t){var e=document.selection,n=e.createRange(),r=n.text.length,i=n.duplicate();i.moveToElementText(t),i.setEndPoint(\"EndToStart\",n);var o=i.text.length,a=o+r;return{start:o,end:a}}function o(t){var e=window.getSelection&&window.getSelection();if(!e||0===e.rangeCount)return null;var n=e.anchorNode,i=e.anchorOffset,o=e.focusNode,a=e.focusOffset,u=e.getRangeAt(0);try{u.startContainer.nodeType,u.endContainer.nodeType}catch(t){return null}var c=r(e.anchorNode,e.anchorOffset,e.focusNode,e.focusOffset),s=c?0:u.toString().length,l=u.cloneRange();l.selectNodeContents(t),l.setEnd(u.startContainer,u.startOffset);var f=r(l.startContainer,l.startOffset,l.endContainer,l.endOffset),p=f?0:l.toString().length,h=p+s,d=document.createRange();d.setStart(n,i),d.setEnd(o,a);var v=d.collapsed;return{start:v?h:p,end:v?p:h}}function a(t,e){var n,r,i=document.selection.createRange().duplicate();void 0===e.end?(n=e.start,r=n):e.start>e.end?(n=e.end,r=e.start):(n=e.start,r=e.end),i.moveToElementText(t),i.moveStart(\"character\",n),i.setEndPoint(\"EndToStart\",i),i.moveEnd(\"character\",r-n),i.select()}function u(t,e){if(window.getSelection){var n=window.getSelection(),r=t[l()].length,i=Math.min(e.start,r),o=void 0===e.end?i:Math.min(e.end,r);if(!n.extend&&i>o){var a=o;o=i,i=a}var u=s(t,i),c=s(t,o);if(u&&c){var f=document.createRange();f.setStart(u.node,u.offset),n.removeAllRanges(),i>o?(n.addRange(f),n.extend(c.node,c.offset)):(f.setEnd(c.node,c.offset),n.addRange(f))}}}var c=n(6),s=n(392),l=n(168),f=c.canUseDOM&&\"selection\"in document&&!(\"getSelection\"in window),p={getOffsets:f?i:o,setOffsets:f?a:u};t.exports=p},function(t,e,n){\"use strict\";var r=n(2),i=n(3),o=n(80),a=n(20),u=n(4),c=n(54),s=(n(0),n(95),function(t){this._currentElement=t,this._stringText=\"\"+t,this._hostNode=null,this._hostParent=null,this._domID=0,this._mountIndex=0,this._closingComment=null,this._commentNodes=null});i(s.prototype,{mountComponent:function(t,e,n,r){var i=n._idCounter++,o=\" react-text: \"+i+\" \",s=\" /react-text \";if(this._domID=i,this._hostParent=e,t.useCreateElement){var l=n._ownerDocument,f=l.createComment(o),p=l.createComment(s),h=a(l.createDocumentFragment());return a.queueChild(h,a(f)),this._stringText&&a.queueChild(h,a(l.createTextNode(this._stringText))),a.queueChild(h,a(p)),u.precacheNode(this,f),this._closingComment=p,h}var d=c(this._stringText);return t.renderToStaticMarkup?d:\"<!--\"+o+\"-->\"+d+\"<!--\"+s+\"-->\"},receiveComponent:function(t,e){\n", "if(t!==this._currentElement){this._currentElement=t;var n=\"\"+t;if(n!==this._stringText){this._stringText=n;var r=this.getHostNode();o.replaceDelimitedText(r[0],r[1],n)}}},getHostNode:function(){var t=this._commentNodes;if(t)return t;if(!this._closingComment)for(var e=u.getNodeFromInstance(this),n=e.nextSibling;;){if(null==n?r(\"67\",this._domID):void 0,8===n.nodeType&&\" /react-text \"===n.nodeValue){this._closingComment=n;break}n=n.nextSibling}return t=[this._hostNode,this._closingComment],this._commentNodes=t,t},unmountComponent:function(){this._closingComment=null,this._commentNodes=null,u.uncacheNode(this)}}),t.exports=s},function(t,e,n){\"use strict\";function r(){this._rootNodeID&&l.updateWrapper(this)}function i(t){var e=this._currentElement.props,n=u.executeOnChange(e,t);return s.asap(r,this),n}var o=n(2),a=n(3),u=n(84),c=n(4),s=n(12),l=(n(0),n(1),{getHostProps:function(t,e){null!=e.dangerouslySetInnerHTML?o(\"91\"):void 0;var n=a({},e,{value:void 0,defaultValue:void 0,children:\"\"+t._wrapperState.initialValue,onChange:t._wrapperState.onChange});return n},mountWrapper:function(t,e){var n=u.getValue(e),r=n;if(null==n){var a=e.defaultValue,c=e.children;null!=c&&(null!=a?o(\"92\"):void 0,Array.isArray(c)&&(c.length<=1?void 0:o(\"93\"),c=c[0]),a=\"\"+c),null==a&&(a=\"\"),r=a}t._wrapperState={initialValue:\"\"+r,listeners:null,onChange:i.bind(t)}},updateWrapper:function(t){var e=t._currentElement.props,n=c.getNodeFromInstance(t),r=u.getValue(e);if(null!=r){var i=\"\"+r;i!==n.value&&(n.value=i),null==e.defaultValue&&(n.defaultValue=i)}null!=e.defaultValue&&(n.defaultValue=e.defaultValue)},postMountWrapper:function(t){var e=c.getNodeFromInstance(t),n=e.textContent;n===t._wrapperState.initialValue&&(e.value=n)}});t.exports=l},function(t,e,n){\"use strict\";function r(t,e){\"_hostNode\"in t?void 0:c(\"33\"),\"_hostNode\"in e?void 0:c(\"33\");for(var n=0,r=t;r;r=r._hostParent)n++;for(var i=0,o=e;o;o=o._hostParent)i++;for(;n-i>0;)t=t._hostParent,n--;for(;i-n>0;)e=e._hostParent,i--;for(var a=n;a--;){if(t===e)return t;t=t._hostParent,e=e._hostParent}return null}function i(t,e){\"_hostNode\"in t?void 0:c(\"35\"),\"_hostNode\"in e?void 0:c(\"35\");for(;e;){if(e===t)return!0;e=e._hostParent}return!1}function o(t){return\"_hostNode\"in t?void 0:c(\"36\"),t._hostParent}function a(t,e,n){for(var r=[];t;)r.push(t),t=t._hostParent;var i;for(i=r.length;i-- >0;)e(r[i],\"captured\",n);for(i=0;i<r.length;i++)e(r[i],\"bubbled\",n)}function u(t,e,n,i,o){for(var a=t&&e?r(t,e):null,u=[];t&&t!==a;)u.push(t),t=t._hostParent;for(var c=[];e&&e!==a;)c.push(e),e=e._hostParent;var s;for(s=0;s<u.length;s++)n(u[s],\"bubbled\",i);for(s=c.length;s-- >0;)n(c[s],\"captured\",o)}var c=n(2);n(0);t.exports={isAncestor:i,getLowestCommonAncestor:r,getParentInstance:o,traverseTwoPhase:a,traverseEnterLeave:u}},function(t,e,n){\"use strict\";function r(){this.reinitializeTransaction()}var i=n(3),o=n(12),a=n(53),u=n(9),c={initialize:u,close:function(){p.isBatchingUpdates=!1}},s={initialize:u,close:o.flushBatchedUpdates.bind(o)},l=[s,c];i(r.prototype,a,{getTransactionWrappers:function(){return l}});var f=new r,p={isBatchingUpdates:!1,batchedUpdates:function(t,e,n,r,i,o){var a=p.isBatchingUpdates;return p.isBatchingUpdates=!0,a?t(e,n,r,i,o):f.perform(t,null,e,n,r,i,o)}};t.exports=p},function(t,e,n){\"use strict\";function r(){C||(C=!0,m.EventEmitter.injectReactEventListener(y),m.EventPluginHub.injectEventPluginOrder(u),m.EventPluginUtils.injectComponentTree(p),m.EventPluginUtils.injectTreeTraversal(d),m.EventPluginHub.injectEventPluginsByName({SimpleEventPlugin:w,EnterLeaveEventPlugin:c,ChangeEventPlugin:a,SelectEventPlugin:x,BeforeInputEventPlugin:o}),m.HostComponent.injectGenericComponentClass(f),m.HostComponent.injectTextComponentClass(v),m.DOMProperty.injectDOMPropertyConfig(i),m.DOMProperty.injectDOMPropertyConfig(s),m.DOMProperty.injectDOMPropertyConfig(b),m.EmptyComponent.injectEmptyComponentFactory(function(t){return new h(t)}),m.Updates.injectReconcileTransaction(_),m.Updates.injectBatchingStrategy(g),m.Component.injectEnvironment(l))}var i=n(331),o=n(333),a=n(335),u=n(337),c=n(338),s=n(341),l=n(343),f=n(346),p=n(4),h=n(348),d=n(356),v=n(354),g=n(357),y=n(361),m=n(362),_=n(367),b=n(372),x=n(373),w=n(374),C=!1;t.exports={inject:r}},function(t,e,n){\"use strict\";var r=\"function\"==typeof Symbol&&Symbol.for&&Symbol.for(\"react.element\")||60103;t.exports=r},function(t,e,n){\"use strict\";function r(t){i.enqueueEvents(t),i.processEventQueue(!1)}var i=n(22),o={handleTopLevel:function(t,e,n,o){var a=i.extractEvents(t,e,n,o);r(a)}};t.exports=o},function(t,e,n){\"use strict\";function r(t){for(;t._hostParent;)t=t._hostParent;var e=f.getNodeFromInstance(t),n=e.parentNode;return f.getClosestInstanceFromNode(n)}function i(t,e){this.topLevelType=t,this.nativeEvent=e,this.ancestors=[]}function o(t){var e=h(t.nativeEvent),n=f.getClosestInstanceFromNode(e),i=n;do t.ancestors.push(i),i=i&&r(i);while(i);for(var o=0;o<t.ancestors.length;o++)n=t.ancestors[o],v._handleTopLevel(t.topLevelType,n,t.nativeEvent,h(t.nativeEvent))}function a(t){var e=d(window);t(e)}var u=n(3),c=n(150),s=n(6),l=n(17),f=n(4),p=n(12),h=n(92),d=n(324);u(i.prototype,{destructor:function(){this.topLevelType=null,this.nativeEvent=null,this.ancestors.length=0}}),l.addPoolingTo(i,l.twoArgumentPooler);var v={_enabled:!0,_handleTopLevel:null,WINDOW_HANDLE:s.canUseDOM?window:null,setHandleTopLevel:function(t){v._handleTopLevel=t},setEnabled:function(t){v._enabled=!!t},isEnabled:function(){return v._enabled},trapBubbledEvent:function(t,e,n){return n?c.listen(n,e,v.dispatchEvent.bind(null,t)):null},trapCapturedEvent:function(t,e,n){return n?c.capture(n,e,v.dispatchEvent.bind(null,t)):null},monitorScrollValue:function(t){var e=a.bind(null,t);c.listen(window,\"scroll\",e)},dispatchEvent:function(t,e){if(v._enabled){var n=i.getPooled(t,e);try{p.batchedUpdates(o,n)}finally{i.release(n)}}}};t.exports=v},function(t,e,n){\"use strict\";var r=n(21),i=n(22),o=n(50),a=n(85),u=n(159),c=n(51),s=n(161),l=n(12),f={Component:a.injection,DOMProperty:r.injection,EmptyComponent:u.injection,EventPluginHub:i.injection,EventPluginUtils:o.injection,EventEmitter:c.injection,HostComponent:s.injection,Updates:l.injection};t.exports=f},function(t,e,n){\"use strict\";var r=n(385),i=/\\/?>/,o=/^<\\!\\-\\-/,a={CHECKSUM_ATTR_NAME:\"data-react-checksum\",addChecksumToMarkup:function(t){var e=r(t);return o.test(t)?t:t.replace(i,\" \"+a.CHECKSUM_ATTR_NAME+'=\"'+e+'\"$&')},canReuseMarkup:function(t,e){var n=e.getAttribute(a.CHECKSUM_ATTR_NAME);n=n&&parseInt(n,10);var i=r(t);return i===n}};t.exports=a},function(t,e,n){\"use strict\";function r(t,e,n){return{type:\"INSERT_MARKUP\",content:t,fromIndex:null,fromNode:null,toIndex:n,afterNode:e}}function i(t,e,n){return{type:\"MOVE_EXISTING\",content:null,fromIndex:t._mountIndex,fromNode:p.getHostNode(t),toIndex:n,afterNode:e}}function o(t,e){return{type:\"REMOVE_NODE\",content:null,fromIndex:t._mountIndex,fromNode:e,toIndex:null,afterNode:null}}function a(t){return{type:\"SET_MARKUP\",content:t,fromIndex:null,fromNode:null,toIndex:null,afterNode:null}}function u(t){return{type:\"TEXT_CONTENT\",content:t,fromIndex:null,fromNode:null,toIndex:null,afterNode:null}}function c(t,e){return e&&(t=t||[],t.push(e)),t}function s(t,e){f.processChildrenUpdates(t,e)}var l=n(2),f=n(85),p=(n(40),n(10),n(15),n(24)),h=n(342),d=(n(9),n(388)),v=(n(0),{Mixin:{_reconcilerInstantiateChildren:function(t,e,n){return h.instantiateChildren(t,e,n)},_reconcilerUpdateChildren:function(t,e,n,r,i,o){var a,u=0;return a=d(e,u),h.updateChildren(t,a,n,r,i,this,this._hostContainerInfo,o,u),a},mountChildren:function(t,e,n){var r=this._reconcilerInstantiateChildren(t,e,n);this._renderedChildren=r;var i=[],o=0;for(var a in r)if(r.hasOwnProperty(a)){var u=r[a],c=0,s=p.mountComponent(u,e,this,this._hostContainerInfo,n,c);u._mountIndex=o++,i.push(s)}return i},updateTextContent:function(t){var e=this._renderedChildren;h.unmountChildren(e,!1);for(var n in e)e.hasOwnProperty(n)&&l(\"118\");var r=[u(t)];s(this,r)},updateMarkup:function(t){var e=this._renderedChildren;h.unmountChildren(e,!1);for(var n in e)e.hasOwnProperty(n)&&l(\"118\");var r=[a(t)];s(this,r)},updateChildren:function(t,e,n){this._updateChildren(t,e,n)},_updateChildren:function(t,e,n){var r=this._renderedChildren,i={},o=[],a=this._reconcilerUpdateChildren(r,t,o,i,e,n);if(a||r){var u,l=null,f=0,h=0,d=0,v=null;for(u in a)if(a.hasOwnProperty(u)){var g=r&&r[u],y=a[u];g===y?(l=c(l,this.moveChild(g,v,f,h)),h=Math.max(g._mountIndex,h),g._mountIndex=f):(g&&(h=Math.max(g._mountIndex,h)),l=c(l,this._mountChildAtIndex(y,o[d],v,f,e,n)),d++),f++,v=p.getHostNode(y)}for(u in i)i.hasOwnProperty(u)&&(l=c(l,this._unmountChild(r[u],i[u])));l&&s(this,l),this._renderedChildren=a}},unmountChildren:function(t){var e=this._renderedChildren;h.unmountChildren(e,t),this._renderedChildren=null},moveChild:function(t,e,n,r){if(t._mountIndex<r)return i(t,e,n)},createChild:function(t,e,n){return r(n,e,t._mountIndex)},removeChild:function(t,e){return o(t,e)},_mountChildAtIndex:function(t,e,n,r,i,o){return t._mountIndex=r,this.createChild(t,n,e)},_unmountChild:function(t,e){var n=this.removeChild(t,e);return t._mountIndex=null,n}}});t.exports=v},function(t,e,n){\"use strict\";function r(t){return!(!t||\"function\"!=typeof t.attachRef||\"function\"!=typeof t.detachRef)}var i=n(2),o=(n(0),{addComponentAsRefTo:function(t,e,n){r(n)?void 0:i(\"119\"),n.attachRef(e,t)},removeComponentAsRefFrom:function(t,e,n){r(n)?void 0:i(\"120\");var o=n.getPublicInstance();o&&o.refs[e]===t.getPublicInstance()&&n.detachRef(e)}});t.exports=o},function(t,e,n){\"use strict\";var r=\"SECRET_DO_NOT_PASS_THIS_OR_YOU_WILL_BE_FIRED\";t.exports=r},function(t,e,n){\"use strict\";function r(t){this.reinitializeTransaction(),this.renderToStaticMarkup=!1,this.reactMountReady=o.getPooled(null),this.useCreateElement=t}var i=n(3),o=n(155),a=n(17),u=n(51),c=n(162),s=(n(10),n(53)),l=n(87),f={initialize:c.getSelectionInformation,close:c.restoreSelection},p={initialize:function(){var t=u.isEnabled();return u.setEnabled(!1),t},close:function(t){u.setEnabled(t)}},h={initialize:function(){this.reactMountReady.reset()},close:function(){this.reactMountReady.notifyAll()}},d=[f,p,h],v={getTransactionWrappers:function(){return d},getReactMountReady:function(){return this.reactMountReady},getUpdateQueue:function(){return l},checkpoint:function(){return this.reactMountReady.checkpoint()},rollback:function(t){this.reactMountReady.rollback(t)},destructor:function(){o.release(this.reactMountReady),this.reactMountReady=null}};i(r.prototype,s,v),a.addPoolingTo(r),t.exports=r},function(t,e,n){\"use strict\";function r(t,e,n){\"function\"==typeof t?t(e.getPublicInstance()):o.addComponentAsRefTo(e,t,n)}function i(t,e,n){\"function\"==typeof t?t(null):o.removeComponentAsRefFrom(e,t,n)}var o=n(365),a={};a.attachRefs=function(t,e){if(null!==e&&\"object\"==typeof e){var n=e.ref;null!=n&&r(n,t,e._owner)}},a.shouldUpdateRefs=function(t,e){var n=null,r=null;null!==t&&\"object\"==typeof t&&(n=t.ref,r=t._owner);var i=null,o=null;return null!==e&&\"object\"==typeof e&&(i=e.ref,o=e._owner),n!==i||\"string\"==typeof i&&o!==r},a.detachRefs=function(t,e){if(null!==e&&\"object\"==typeof e){var n=e.ref;null!=n&&i(n,t,e._owner)}},t.exports=a},function(t,e,n){\"use strict\";function r(t){this.reinitializeTransaction(),this.renderToStaticMarkup=t,this.useCreateElement=!1,this.updateQueue=new u(this)}var i=n(3),o=n(17),a=n(53),u=(n(10),n(370)),c=[],s={enqueue:function(){}},l={getTransactionWrappers:function(){return c},getReactMountReady:function(){return s},getUpdateQueue:function(){return this.updateQueue},destructor:function(){},checkpoint:function(){},rollback:function(){}};i(r.prototype,a,l),o.addPoolingTo(r),t.exports=r},function(t,e,n){\"use strict\";function r(t,e){if(!(t instanceof e))throw new TypeError(\"Cannot call a class as a function\")}function i(t,e){}var o=n(87),a=(n(1),function(){function t(e){r(this,t),this.transaction=e}return t.prototype.isMounted=function(t){return!1},t.prototype.enqueueCallback=function(t,e,n){this.transaction.isInTransaction()&&o.enqueueCallback(t,e,n)},t.prototype.enqueueForceUpdate=function(t){this.transaction.isInTransaction()?o.enqueueForceUpdate(t):i(t,\"forceUpdate\")},t.prototype.enqueueReplaceState=function(t,e){this.transaction.isInTransaction()?o.enqueueReplaceState(t,e):i(t,\"replaceState\")},t.prototype.enqueueSetState=function(t,e){this.transaction.isInTransaction()?o.enqueueSetState(t,e):i(t,\"setState\")},t}());t.exports=a},function(t,e,n){\"use strict\";t.exports=\"15.4.2\"},function(t,e,n){\"use strict\";var r={xlink:\"http://www.w3.org/1999/xlink\",xml:\"http://www.w3.org/XML/1998/namespace\"},i={accentHeight:\"accent-height\",accumulate:0,additive:0,alignmentBaseline:\"alignment-baseline\",allowReorder:\"allowReorder\",alphabetic:0,amplitude:0,arabicForm:\"arabic-form\",ascent:0,attributeName:\"attributeName\",attributeType:\"attributeType\",autoReverse:\"autoReverse\",azimuth:0,baseFrequency:\"baseFrequency\",baseProfile:\"baseProfile\",baselineShift:\"baseline-shift\",bbox:0,begin:0,bias:0,by:0,calcMode:\"calcMode\",capHeight:\"cap-height\",clip:0,clipPath:\"clip-path\",clipRule:\"clip-rule\",clipPathUnits:\"clipPathUnits\",colorInterpolation:\"color-interpolation\",colorInterpolationFilters:\"color-interpolation-filters\",colorProfile:\"color-profile\",colorRendering:\"color-rendering\",contentScriptType:\"contentScriptType\",contentStyleType:\"contentStyleType\",cursor:0,cx:0,cy:0,d:0,decelerate:0,descent:0,diffuseConstant:\"diffuseConstant\",direction:0,display:0,divisor:0,dominantBaseline:\"dominant-baseline\",dur:0,dx:0,dy:0,edgeMode:\"edgeMode\",elevation:0,enableBackground:\"enable-background\",end:0,exponent:0,externalResourcesRequired:\"externalResourcesRequired\",fill:0,fillOpacity:\"fill-opacity\",fillRule:\"fill-rule\",filter:0,filterRes:\"filterRes\",filterUnits:\"filterUnits\",floodColor:\"flood-color\",floodOpacity:\"flood-opacity\",focusable:0,fontFamily:\"font-family\",fontSize:\"font-size\",fontSizeAdjust:\"font-size-adjust\",fontStretch:\"font-stretch\",fontStyle:\"font-style\",fontVariant:\"font-variant\",fontWeight:\"font-weight\",format:0,from:0,fx:0,fy:0,g1:0,g2:0,glyphName:\"glyph-name\",glyphOrientationHorizontal:\"glyph-orientation-horizontal\",glyphOrientationVertical:\"glyph-orientation-vertical\",glyphRef:\"glyphRef\",gradientTransform:\"gradientTransform\",gradientUnits:\"gradientUnits\",hanging:0,horizAdvX:\"horiz-adv-x\",horizOriginX:\"horiz-origin-x\",ideographic:0,imageRendering:\"image-rendering\",in:0,in2:0,intercept:0,k:0,k1:0,k2:0,k3:0,k4:0,kernelMatrix:\"kernelMatrix\",kernelUnitLength:\"kernelUnitLength\",kerning:0,keyPoints:\"keyPoints\",keySplines:\"keySplines\",keyTimes:\"keyTimes\",lengthAdjust:\"lengthAdjust\",letterSpacing:\"letter-spacing\",lightingColor:\"lighting-color\",limitingConeAngle:\"limitingConeAngle\",local:0,markerEnd:\"marker-end\",markerMid:\"marker-mid\",markerStart:\"marker-start\",markerHeight:\"markerHeight\",markerUnits:\"markerUnits\",markerWidth:\"markerWidth\",mask:0,maskContentUnits:\"maskContentUnits\",maskUnits:\"maskUnits\",mathematical:0,mode:0,numOctaves:\"numOctaves\",offset:0,opacity:0,operator:0,order:0,orient:0,orientation:0,origin:0,overflow:0,overlinePosition:\"overline-position\",overlineThickness:\"overline-thickness\",paintOrder:\"paint-order\",panose1:\"panose-1\",pathLength:\"pathLength\",patternContentUnits:\"patternContentUnits\",patternTransform:\"patternTransform\",patternUnits:\"patternUnits\",pointerEvents:\"pointer-events\",points:0,pointsAtX:\"pointsAtX\",pointsAtY:\"pointsAtY\",pointsAtZ:\"pointsAtZ\",preserveAlpha:\"preserveAlpha\",preserveAspectRatio:\"preserveAspectRatio\",primitiveUnits:\"primitiveUnits\",r:0,radius:0,refX:\"refX\",refY:\"refY\",renderingIntent:\"rendering-intent\",repeatCount:\"repeatCount\",repeatDur:\"repeatDur\",requiredExtensions:\"requiredExtensions\",requiredFeatures:\"requiredFeatures\",restart:0,result:0,rotate:0,rx:0,ry:0,scale:0,seed:0,shapeRendering:\"shape-rendering\",slope:0,spacing:0,specularConstant:\"specularConstant\",specularExponent:\"specularExponent\",speed:0,spreadMethod:\"spreadMethod\",startOffset:\"startOffset\",stdDeviation:\"stdDeviation\",stemh:0,stemv:0,stitchTiles:\"stitchTiles\",stopColor:\"stop-color\",stopOpacity:\"stop-opacity\",strikethroughPosition:\"strikethrough-position\",strikethroughThickness:\"strikethrough-thickness\",string:0,stroke:0,strokeDasharray:\"stroke-dasharray\",strokeDashoffset:\"stroke-dashoffset\",strokeLinecap:\"stroke-linecap\",strokeLinejoin:\"stroke-linejoin\",strokeMiterlimit:\"stroke-miterlimit\",strokeOpacity:\"stroke-opacity\",strokeWidth:\"stroke-width\",surfaceScale:\"surfaceScale\",systemLanguage:\"systemLanguage\",tableValues:\"tableValues\",targetX:\"targetX\",targetY:\"targetY\",textAnchor:\"text-anchor\",textDecoration:\"text-decoration\",textRendering:\"text-rendering\",textLength:\"textLength\",to:0,transform:0,u1:0,u2:0,underlinePosition:\"underline-position\",underlineThickness:\"underline-thickness\",unicode:0,unicodeBidi:\"unicode-bidi\",unicodeRange:\"unicode-range\",unitsPerEm:\"units-per-em\",vAlphabetic:\"v-alphabetic\",vHanging:\"v-hanging\",vIdeographic:\"v-ideographic\",vMathematical:\"v-mathematical\",values:0,vectorEffect:\"vector-effect\",version:0,vertAdvY:\"vert-adv-y\",vertOriginX:\"vert-origin-x\",vertOriginY:\"vert-origin-y\",viewBox:\"viewBox\",viewTarget:\"viewTarget\",visibility:0,widths:0,wordSpacing:\"word-spacing\",writingMode:\"writing-mode\",x:0,xHeight:\"x-height\",x1:0,x2:0,xChannelSelector:\"xChannelSelector\",xlinkActuate:\"xlink:actuate\",xlinkArcrole:\"xlink:arcrole\",xlinkHref:\"xlink:href\",xlinkRole:\"xlink:role\",xlinkShow:\"xlink:show\",xlinkTitle:\"xlink:title\",xlinkType:\"xlink:type\",xmlBase:\"xml:base\",xmlns:0,xmlnsXlink:\"xmlns:xlink\",xmlLang:\"xml:lang\",xmlSpace:\"xml:space\",y:0,y1:0,y2:0,yChannelSelector:\"yChannelSelector\",z:0,zoomAndPan:\"zoomAndPan\"},o={Properties:{},DOMAttributeNamespaces:{xlinkActuate:r.xlink,xlinkArcrole:r.xlink,xlinkHref:r.xlink,xlinkRole:r.xlink,xlinkShow:r.xlink,xlinkTitle:r.xlink,xlinkType:r.xlink,xmlBase:r.xml,xmlLang:r.xml,xmlSpace:r.xml},DOMAttributeNames:{}};Object.keys(i).forEach(function(t){o.Properties[t]=0,i[t]&&(o.DOMAttributeNames[t]=i[t])}),t.exports=o},function(t,e,n){\"use strict\";function r(t){if(\"selectionStart\"in t&&c.hasSelectionCapabilities(t))return{start:t.selectionStart,end:t.selectionEnd};if(window.getSelection){var e=window.getSelection();return{anchorNode:e.anchorNode,anchorOffset:e.anchorOffset,focusNode:e.focusNode,focusOffset:e.focusOffset}}if(document.selection){var n=document.selection.createRange();return{parentElement:n.parentElement(),text:n.text,top:n.boundingTop,left:n.boundingLeft}}}function i(t,e){if(m||null==v||v!==l())return null;var n=r(v);if(!y||!p(y,n)){y=n;var i=s.getPooled(d.select,g,t,e);return i.type=\"select\",i.target=v,o.accumulateTwoPhaseDispatches(i),i}return null}var o=n(23),a=n(6),u=n(4),c=n(162),s=n(14),l=n(152),f=n(170),p=n(79),h=a.canUseDOM&&\"documentMode\"in document&&document.documentMode<=11,d={select:{phasedRegistrationNames:{bubbled:\"onSelect\",captured:\"onSelectCapture\"},dependencies:[\"topBlur\",\"topContextMenu\",\"topFocus\",\"topKeyDown\",\"topKeyUp\",\"topMouseDown\",\"topMouseUp\",\"topSelectionChange\"]}},v=null,g=null,y=null,m=!1,_=!1,b={eventTypes:d,extractEvents:function(t,e,n,r){if(!_)return null;var o=e?u.getNodeFromInstance(e):window;switch(t){case\"topFocus\":(f(o)||\"true\"===o.contentEditable)&&(v=o,g=e,y=null);break;case\"topBlur\":v=null,g=null,y=null;break;case\"topMouseDown\":m=!0;break;case\"topContextMenu\":case\"topMouseUp\":return m=!1,i(n,r);case\"topSelectionChange\":if(h)break;case\"topKeyDown\":case\"topKeyUp\":return i(n,r)}return null},didPutListener:function(t,e,n){\"onSelect\"===e&&(_=!0)}};t.exports=b},function(t,e,n){\"use strict\";function r(t){return\".\"+t._rootNodeID}function i(t){return\"button\"===t||\"input\"===t||\"select\"===t||\"textarea\"===t}var o=n(2),a=n(150),u=n(23),c=n(4),s=n(375),l=n(376),f=n(14),p=n(379),h=n(381),d=n(52),v=n(378),g=n(382),y=n(383),m=n(25),_=n(384),b=n(9),x=n(90),w=(n(0),{}),C={};[\"abort\",\"animationEnd\",\"animationIteration\",\"animationStart\",\"blur\",\"canPlay\",\"canPlayThrough\",\"click\",\"contextMenu\",\"copy\",\"cut\",\"doubleClick\",\"drag\",\"dragEnd\",\"dragEnter\",\"dragExit\",\"dragLeave\",\"dragOver\",\"dragStart\",\"drop\",\"durationChange\",\"emptied\",\"encrypted\",\"ended\",\"error\",\"focus\",\"input\",\"invalid\",\"keyDown\",\"keyPress\",\"keyUp\",\"load\",\"loadedData\",\"loadedMetadata\",\"loadStart\",\"mouseDown\",\"mouseMove\",\"mouseOut\",\"mouseOver\",\"mouseUp\",\"paste\",\"pause\",\"play\",\"playing\",\"progress\",\"rateChange\",\"reset\",\"scroll\",\"seeked\",\"seeking\",\"stalled\",\"submit\",\"suspend\",\"timeUpdate\",\"touchCancel\",\"touchEnd\",\"touchMove\",\"touchStart\",\"transitionEnd\",\"volumeChange\",\"waiting\",\"wheel\"].forEach(function(t){var e=t[0].toUpperCase()+t.slice(1),n=\"on\"+e,r=\"top\"+e,i={phasedRegistrationNames:{bubbled:n,captured:n+\"Capture\"},dependencies:[r]};w[t]=i,C[r]=i});var M={},k={eventTypes:w,extractEvents:function(t,e,n,r){var i=C[t];if(!i)return null;var a;switch(t){case\"topAbort\":case\"topCanPlay\":case\"topCanPlayThrough\":case\"topDurationChange\":case\"topEmptied\":case\"topEncrypted\":case\"topEnded\":case\"topError\":case\"topInput\":case\"topInvalid\":case\"topLoad\":case\"topLoadedData\":case\"topLoadedMetadata\":case\"topLoadStart\":case\"topPause\":case\"topPlay\":case\"topPlaying\":case\"topProgress\":case\"topRateChange\":case\"topReset\":case\"topSeeked\":case\"topSeeking\":case\"topStalled\":case\"topSubmit\":case\"topSuspend\":case\"topTimeUpdate\":case\"topVolumeChange\":case\"topWaiting\":a=f;break;case\"topKeyPress\":if(0===x(n))return null;case\"topKeyDown\":case\"topKeyUp\":a=h;break;case\"topBlur\":case\"topFocus\":a=p;break;case\"topClick\":if(2===n.button)return null;case\"topDoubleClick\":case\"topMouseDown\":case\"topMouseMove\":case\"topMouseUp\":case\"topMouseOut\":case\"topMouseOver\":case\"topContextMenu\":a=d;break;case\"topDrag\":case\"topDragEnd\":case\"topDragEnter\":case\"topDragExit\":case\"topDragLeave\":case\"topDragOver\":case\"topDragStart\":case\"topDrop\":a=v;break;case\"topTouchCancel\":case\"topTouchEnd\":case\"topTouchMove\":case\"topTouchStart\":a=g;break;case\"topAnimationEnd\":case\"topAnimationIteration\":case\"topAnimationStart\":a=s;break;case\"topTransitionEnd\":a=y;break;case\"topScroll\":a=m;break;case\"topWheel\":a=_;break;case\"topCopy\":case\"topCut\":case\"topPaste\":a=l}a?void 0:o(\"86\",t);var c=a.getPooled(i,e,n,r);return u.accumulateTwoPhaseDispatches(c),c},didPutListener:function(t,e,n){if(\"onClick\"===e&&!i(t._tag)){var o=r(t),u=c.getNodeFromInstance(t);M[o]||(M[o]=a.listen(u,\"click\",b))}},willDeleteListener:function(t,e){if(\"onClick\"===e&&!i(t._tag)){var n=r(t);M[n].remove(),delete M[n]}}};t.exports=k},function(t,e,n){\"use strict\";function r(t,e,n,r){return i.call(this,t,e,n,r)}var i=n(14),o={animationName:null,elapsedTime:null,pseudoElement:null};i.augmentClass(r,o),t.exports=r},function(t,e,n){\"use strict\";function r(t,e,n,r){return i.call(this,t,e,n,r)}var i=n(14),o={clipboardData:function(t){return\"clipboardData\"in t?t.clipboardData:window.clipboardData}};i.augmentClass(r,o),t.exports=r},function(t,e,n){\"use strict\";function r(t,e,n,r){return i.call(this,t,e,n,r)}var i=n(14),o={data:null};i.augmentClass(r,o),t.exports=r},function(t,e,n){\"use strict\";function r(t,e,n,r){return i.call(this,t,e,n,r)}var i=n(52),o={dataTransfer:null};i.augmentClass(r,o),t.exports=r},function(t,e,n){\"use strict\";function r(t,e,n,r){return i.call(this,t,e,n,r)}var i=n(25),o={relatedTarget:null};i.augmentClass(r,o),t.exports=r},function(t,e,n){\"use strict\";function r(t,e,n,r){return i.call(this,t,e,n,r)}var i=n(14),o={data:null};i.augmentClass(r,o),t.exports=r},function(t,e,n){\"use strict\";function r(t,e,n,r){return i.call(this,t,e,n,r)}var i=n(25),o=n(90),a=n(389),u=n(91),c={key:a,location:null,ctrlKey:null,shiftKey:null,altKey:null,metaKey:null,repeat:null,locale:null,getModifierState:u,charCode:function(t){return\"keypress\"===t.type?o(t):0},keyCode:function(t){return\"keydown\"===t.type||\"keyup\"===t.type?t.keyCode:0},which:function(t){return\"keypress\"===t.type?o(t):\"keydown\"===t.type||\"keyup\"===t.type?t.keyCode:0}};i.augmentClass(r,c),t.exports=r},function(t,e,n){\"use strict\";function r(t,e,n,r){return i.call(this,t,e,n,r)}var i=n(25),o=n(91),a={touches:null,targetTouches:null,changedTouches:null,altKey:null,metaKey:null,ctrlKey:null,shiftKey:null,getModifierState:o};i.augmentClass(r,a),t.exports=r},function(t,e,n){\"use strict\";function r(t,e,n,r){return i.call(this,t,e,n,r)}var i=n(14),o={propertyName:null,elapsedTime:null,pseudoElement:null};i.augmentClass(r,o),t.exports=r},function(t,e,n){\"use strict\";function r(t,e,n,r){return i.call(this,t,e,n,r)}var i=n(52),o={deltaX:function(t){return\"deltaX\"in t?t.deltaX:\"wheelDeltaX\"in t?-t.wheelDeltaX:0},deltaY:function(t){return\"deltaY\"in t?t.deltaY:\"wheelDeltaY\"in t?-t.wheelDeltaY:\"wheelDelta\"in t?-t.wheelDelta:0},deltaZ:null,deltaMode:null};i.augmentClass(r,o),t.exports=r},function(t,e,n){\"use strict\";function r(t){for(var e=1,n=0,r=0,o=t.length,a=o&-4;r<a;){for(var u=Math.min(r+4096,a);r<u;r+=4)n+=(e+=t.charCodeAt(r))+(e+=t.charCodeAt(r+1))+(e+=t.charCodeAt(r+2))+(e+=t.charCodeAt(r+3));e%=i,n%=i}for(;r<o;r++)n+=e+=t.charCodeAt(r);return e%=i,n%=i,e|n<<16}var i=65521;t.exports=r},function(t,e,n){\"use strict\";function r(t,e,n){var r=null==e||\"boolean\"==typeof e||\"\"===e;if(r)return\"\";var i=isNaN(e);if(i||0===e||o.hasOwnProperty(t)&&o[t])return\"\"+e;if(\"string\"==typeof e){e=e.trim()}return e+\"px\"}var i=n(154),o=(n(1),i.isUnitlessNumber);t.exports=r},function(t,e,n){\"use strict\";function r(t){if(null==t)return null;if(1===t.nodeType)return t;var e=a.get(t);return e?(e=u(e),e?o.getNodeFromInstance(e):null):void(\"function\"==typeof t.render?i(\"44\"):i(\"45\",Object.keys(t)))}var i=n(2),o=(n(15),n(4)),a=n(40),u=n(167);n(0),n(1);t.exports=r},function(t,e,n){\"use strict\";(function(e){function r(t,e,n,r){if(t&&\"object\"==typeof t){var i=t,o=void 0===i[n];o&&null!=e&&(i[n]=e)}}function i(t,e){if(null==t)return t;var n={};return o(t,r,n),n}var o=(n(83),n(172));n(1);\"undefined\"!=typeof e&&e.env,1,t.exports=i}).call(e,n(153))},function(t,e,n){\"use strict\";function r(t){if(t.key){var e=o[t.key]||t.key;if(\"Unidentified\"!==e)return e}if(\"keypress\"===t.type){var n=i(t);return 13===n?\"Enter\":String.fromCharCode(n)}return\"keydown\"===t.type||\"keyup\"===t.type?a[t.keyCode]||\"Unidentified\":\"\"}var i=n(90),o={Esc:\"Escape\",Spacebar:\" \",Left:\"ArrowLeft\",Up:\"ArrowUp\",Right:\"ArrowRight\",Down:\"ArrowDown\",Del:\"Delete\",Win:\"OS\",Menu:\"ContextMenu\",Apps:\"ContextMenu\",Scroll:\"ScrollLock\",MozPrintableKey:\"Unidentified\"},a={8:\"Backspace\",9:\"Tab\",12:\"Clear\",13:\"Enter\",16:\"Shift\",17:\"Control\",18:\"Alt\",19:\"Pause\",20:\"CapsLock\",27:\"Escape\",32:\" \",33:\"PageUp\",34:\"PageDown\",35:\"End\",36:\"Home\",37:\"ArrowLeft\",38:\"ArrowUp\",39:\"ArrowRight\",40:\"ArrowDown\",45:\"Insert\",46:\"Delete\",112:\"F1\",113:\"F2\",114:\"F3\",115:\"F4\",116:\"F5\",117:\"F6\",118:\"F7\",119:\"F8\",120:\"F9\",121:\"F10\",122:\"F11\",123:\"F12\",144:\"NumLock\",145:\"ScrollLock\",224:\"Meta\"};t.exports=r},function(t,e,n){\"use strict\";function r(t){var e=t&&(i&&t[i]||t[o]);if(\"function\"==typeof e)return e}var i=\"function\"==typeof Symbol&&Symbol.iterator,o=\"@@iterator\";t.exports=r},function(t,e,n){\"use strict\";function r(){return i++}var i=1;t.exports=r},function(t,e,n){\"use strict\";function r(t){for(;t&&t.firstChild;)t=t.firstChild;return t}function i(t){for(;t;){if(t.nextSibling)return t.nextSibling;t=t.parentNode}}function o(t,e){for(var n=r(t),o=0,a=0;n;){if(3===n.nodeType){if(a=o+n.textContent.length,o<=e&&a>=e)return{node:n,offset:e-o};o=a}n=r(i(n))}}t.exports=o},function(t,e,n){\"use strict\";function r(t,e){var n={};return n[t.toLowerCase()]=e.toLowerCase(),n[\"Webkit\"+t]=\"webkit\"+e,n[\"Moz\"+t]=\"moz\"+e,n[\"ms\"+t]=\"MS\"+e,n[\"O\"+t]=\"o\"+e.toLowerCase(),n}function i(t){if(u[t])return u[t];if(!a[t])return t;var e=a[t];for(var n in e)if(e.hasOwnProperty(n)&&n in c)return u[t]=e[n];return\"\"}var o=n(6),a={animationend:r(\"Animation\",\"AnimationEnd\"),animationiteration:r(\"Animation\",\"AnimationIteration\"),animationstart:r(\"Animation\",\"AnimationStart\"),transitionend:r(\"Transition\",\"TransitionEnd\")},u={},c={};o.canUseDOM&&(c=document.createElement(\"div\").style,\"AnimationEvent\"in window||(delete a.animationend.animation,delete a.animationiteration.animation,delete a.animationstart.animation),\"TransitionEvent\"in window||delete a.transitionend.transition),t.exports=i},function(t,e,n){\"use strict\";function r(t){return'\"'+i(t)+'\"'}var i=n(54);t.exports=r},function(t,e,n){\"use strict\";var r=n(163);t.exports=r.renderSubtreeIntoContainer},function(t,e,n){\"use strict\";function r(t,e){var n=l.extractSingleTouch(e);return n?n[t.page]:t.page in e?e[t.page]:e[t.client]+f[t.envScroll]}function i(t,e){var n=r(b.x,e),i=r(b.y,e);return Math.pow(Math.pow(n-t.x,2)+Math.pow(i-t.y,2),.5)}function o(t){return{tapMoveThreshold:g,ignoreMouseThreshold:y,eventTypes:C,extractEvents:function(e,n,o,a){if(!h(e)&&!d(e))return null;if(v(e))_=M();else if(t(_,M()))return null;var u=null,l=i(m,o);return d(e)&&l<g&&(u=s.getPooled(C.touchTap,n,o,a)),h(e)?(m.x=r(b.x,o),m.y=r(b.y,o)):d(e)&&(m.x=0,m.y=0),c.accumulateTwoPhaseDispatches(u),u}}}var a=n(339),u=n(50),c=n(23),s=n(25),l=n(397),f=n(88),p=n(329),h=(a.topLevelTypes,u.isStartish),d=u.isEndish,v=function(t){var e=[\"topTouchCancel\",\"topTouchEnd\",\"topTouchStart\",\"topTouchMove\"];return e.indexOf(t)>=0},g=10,y=750,m={x:null,y:null},_=null,b={x:{page:\"pageX\",client:\"clientX\",envScroll:\"currentPageScrollLeft\"},y:{page:\"pageY\",client:\"clientY\",envScroll:\"currentPageScrollTop\"}},x=[\"topTouchStart\",\"topTouchCancel\",\"topTouchEnd\",\"topTouchMove\"],w=[\"topMouseDown\",\"topMouseMove\",\"topMouseUp\"].concat(x),C={touchTap:{phasedRegistrationNames:{bubbled:p({onTouchTap:null}),captured:p({onTouchTapCapture:null})},dependencies:w}},M=function(){return Date.now?Date.now:function(){return+new Date}}();t.exports=o},function(t,e){var n={extractSingleTouch:function(t){var e=t.touches,n=t.changedTouches,r=e&&e.length>0,i=n&&n.length>0;return!r&&i?n[0]:r?e[0]:t}};t.exports=n},function(t,e){t.exports=function(t,e){if(t&&e-t<750)return!0}},function(t,e,n){\"use strict\";function r(t){var e=/[=:]/g,n={\"=\":\"=0\",\":\":\"=2\"},r=(\"\"+t).replace(e,function(t){return n[t]});return\"$\"+r}function i(t){var e=/(=0|=2)/g,n={\"=0\":\"=\",\"=2\":\":\"},r=\".\"===t[0]&&\"$\"===t[1]?t.substring(2):t.substring(1);return(\"\"+r).replace(e,function(t){return n[t]})}var o={escape:r,unescape:i};t.exports=o},function(t,e,n){\"use strict\";var r=n(28),i=(n(0),function(t){var e=this;if(e.instancePool.length){var n=e.instancePool.pop();return e.call(n,t),n}return new e(t)}),o=function(t,e){var n=this;if(n.instancePool.length){var r=n.instancePool.pop();return n.call(r,t,e),r}return new n(t,e)},a=function(t,e,n){var r=this;if(r.instancePool.length){var i=r.instancePool.pop();return r.call(i,t,e,n),i}return new r(t,e,n)},u=function(t,e,n,r){var i=this;if(i.instancePool.length){var o=i.instancePool.pop();return i.call(o,t,e,n,r),o}return new i(t,e,n,r)},c=function(t){var e=this;t instanceof e?void 0:r(\"25\"),t.destructor(),e.instancePool.length<e.poolSize&&e.instancePool.push(t)},s=10,l=i,f=function(t,e){var n=t;return n.instancePool=[],n.getPooled=e||l,n.poolSize||(n.poolSize=s),n.release=c,n},p={addPoolingTo:f,oneArgumentPooler:i,twoArgumentPooler:o,threeArgumentPooler:a,fourArgumentPooler:u};t.exports=p},function(t,e,n){\"use strict\";function r(t){return(\"\"+t).replace(b,\"$&/\")}function i(t,e){this.func=t,this.context=e,this.count=0}function o(t,e,n){var r=t.func,i=t.context;r.call(i,e,t.count++)}function a(t,e,n){if(null==t)return t;var r=i.getPooled(e,n);y(t,o,r),i.release(r)}function u(t,e,n,r){this.result=t,this.keyPrefix=e,this.func=n,this.context=r,this.count=0}function c(t,e,n){var i=t.result,o=t.keyPrefix,a=t.func,u=t.context,c=a.call(u,e,t.count++);Array.isArray(c)?s(c,i,n,g.thatReturnsArgument):null!=c&&(v.isValidElement(c)&&(c=v.cloneAndReplaceKey(c,o+(!c.key||e&&e.key===c.key?\"\":r(c.key)+\"/\")+n)),i.push(c))}function s(t,e,n,i,o){var a=\"\";null!=n&&(a=r(n)+\"/\");var s=u.getPooled(e,a,i,o);y(t,c,s),u.release(s)}function l(t,e,n){if(null==t)return t;var r=[];return s(t,r,null,e,n),r}function f(t,e,n){return null}function p(t,e){return y(t,f,null)}function h(t){var e=[];return s(t,e,null,g.thatReturnsArgument),e}var d=n(400),v=n(27),g=n(9),y=n(409),m=d.twoArgumentPooler,_=d.fourArgumentPooler,b=/\\/+/g;i.prototype.destructor=function(){this.func=null,this.context=null,\n", "this.count=0},d.addPoolingTo(i,m),u.prototype.destructor=function(){this.result=null,this.keyPrefix=null,this.func=null,this.context=null,this.count=0},d.addPoolingTo(u,_);var x={forEach:a,map:l,mapIntoWithKeyPrefixInternal:s,count:p,toArray:h};t.exports=x},function(t,e,n){\"use strict\";function r(t){return t}function i(t,e){var n=b.hasOwnProperty(e)?b[e]:null;w.hasOwnProperty(e)&&(\"OVERRIDE_BASE\"!==n?p(\"73\",e):void 0),t&&(\"DEFINE_MANY\"!==n&&\"DEFINE_MANY_MERGED\"!==n?p(\"74\",e):void 0)}function o(t,e){if(e){\"function\"==typeof e?p(\"75\"):void 0,v.isValidElement(e)?p(\"76\"):void 0;var n=t.prototype,r=n.__reactAutoBindPairs;e.hasOwnProperty(m)&&x.mixins(t,e.mixins);for(var o in e)if(e.hasOwnProperty(o)&&o!==m){var a=e[o],u=n.hasOwnProperty(o);if(i(u,o),x.hasOwnProperty(o))x[o](t,a);else{var l=b.hasOwnProperty(o),f=\"function\"==typeof a,h=f&&!l&&!u&&e.autobind!==!1;if(h)r.push(o,a),n[o]=a;else if(u){var d=b[o];!l||\"DEFINE_MANY_MERGED\"!==d&&\"DEFINE_MANY\"!==d?p(\"77\",d,o):void 0,\"DEFINE_MANY_MERGED\"===d?n[o]=c(n[o],a):\"DEFINE_MANY\"===d&&(n[o]=s(n[o],a))}else n[o]=a}}}else;}function a(t,e){if(e)for(var n in e){var r=e[n];if(e.hasOwnProperty(n)){var i=n in x;i?p(\"78\",n):void 0;var o=n in t;o?p(\"79\",n):void 0,t[n]=r}}}function u(t,e){t&&e&&\"object\"==typeof t&&\"object\"==typeof e?void 0:p(\"80\");for(var n in e)e.hasOwnProperty(n)&&(void 0!==t[n]?p(\"81\",n):void 0,t[n]=e[n]);return t}function c(t,e){return function(){var n=t.apply(this,arguments),r=e.apply(this,arguments);if(null==n)return r;if(null==r)return n;var i={};return u(i,n),u(i,r),i}}function s(t,e){return function(){t.apply(this,arguments),e.apply(this,arguments)}}function l(t,e){var n=e.bind(t);return n}function f(t){for(var e=t.__reactAutoBindPairs,n=0;n<e.length;n+=2){var r=e[n],i=e[n+1];t[r]=l(t,i)}}var p=n(28),h=n(3),d=n(96),v=n(27),g=(n(175),n(97)),y=n(38),m=(n(0),n(1),\"mixins\"),_=[],b={mixins:\"DEFINE_MANY\",statics:\"DEFINE_MANY\",propTypes:\"DEFINE_MANY\",contextTypes:\"DEFINE_MANY\",childContextTypes:\"DEFINE_MANY\",getDefaultProps:\"DEFINE_MANY_MERGED\",getInitialState:\"DEFINE_MANY_MERGED\",getChildContext:\"DEFINE_MANY_MERGED\",render:\"DEFINE_ONCE\",componentWillMount:\"DEFINE_MANY\",componentDidMount:\"DEFINE_MANY\",componentWillReceiveProps:\"DEFINE_MANY\",shouldComponentUpdate:\"DEFINE_ONCE\",componentWillUpdate:\"DEFINE_MANY\",componentDidUpdate:\"DEFINE_MANY\",componentWillUnmount:\"DEFINE_MANY\",updateComponent:\"OVERRIDE_BASE\"},x={displayName:function(t,e){t.displayName=e},mixins:function(t,e){if(e)for(var n=0;n<e.length;n++)o(t,e[n])},childContextTypes:function(t,e){t.childContextTypes=h({},t.childContextTypes,e)},contextTypes:function(t,e){t.contextTypes=h({},t.contextTypes,e)},getDefaultProps:function(t,e){t.getDefaultProps?t.getDefaultProps=c(t.getDefaultProps,e):t.getDefaultProps=e},propTypes:function(t,e){t.propTypes=h({},t.propTypes,e)},statics:function(t,e){a(t,e)},autobind:function(){}},w={replaceState:function(t,e){this.updater.enqueueReplaceState(this,t),e&&this.updater.enqueueCallback(this,e,\"replaceState\")},isMounted:function(){return this.updater.isMounted(this)}},C=function(){};h(C.prototype,d.prototype,w);var M={createClass:function(t){var e=r(function(t,n,r){this.__reactAutoBindPairs.length&&f(this),this.props=t,this.context=n,this.refs=y,this.updater=r||g,this.state=null;var i=this.getInitialState?this.getInitialState():null;\"object\"!=typeof i||Array.isArray(i)?p(\"82\",e.displayName||\"ReactCompositeComponent\"):void 0,this.state=i});e.prototype=new C,e.prototype.constructor=e,e.prototype.__reactAutoBindPairs=[],_.forEach(o.bind(null,e)),o(e,t),e.getDefaultProps&&(e.defaultProps=e.getDefaultProps()),e.prototype.render?void 0:p(\"83\");for(var n in b)e.prototype[n]||(e.prototype[n]=null);return e},injection:{injectMixin:function(t){_.push(t)}}};t.exports=M},function(t,e,n){\"use strict\";var r=n(27),i=r.createFactory,o={a:i(\"a\"),abbr:i(\"abbr\"),address:i(\"address\"),area:i(\"area\"),article:i(\"article\"),aside:i(\"aside\"),audio:i(\"audio\"),b:i(\"b\"),base:i(\"base\"),bdi:i(\"bdi\"),bdo:i(\"bdo\"),big:i(\"big\"),blockquote:i(\"blockquote\"),body:i(\"body\"),br:i(\"br\"),button:i(\"button\"),canvas:i(\"canvas\"),caption:i(\"caption\"),cite:i(\"cite\"),code:i(\"code\"),col:i(\"col\"),colgroup:i(\"colgroup\"),data:i(\"data\"),datalist:i(\"datalist\"),dd:i(\"dd\"),del:i(\"del\"),details:i(\"details\"),dfn:i(\"dfn\"),dialog:i(\"dialog\"),div:i(\"div\"),dl:i(\"dl\"),dt:i(\"dt\"),em:i(\"em\"),embed:i(\"embed\"),fieldset:i(\"fieldset\"),figcaption:i(\"figcaption\"),figure:i(\"figure\"),footer:i(\"footer\"),form:i(\"form\"),h1:i(\"h1\"),h2:i(\"h2\"),h3:i(\"h3\"),h4:i(\"h4\"),h5:i(\"h5\"),h6:i(\"h6\"),head:i(\"head\"),header:i(\"header\"),hgroup:i(\"hgroup\"),hr:i(\"hr\"),html:i(\"html\"),i:i(\"i\"),iframe:i(\"iframe\"),img:i(\"img\"),input:i(\"input\"),ins:i(\"ins\"),kbd:i(\"kbd\"),keygen:i(\"keygen\"),label:i(\"label\"),legend:i(\"legend\"),li:i(\"li\"),link:i(\"link\"),main:i(\"main\"),map:i(\"map\"),mark:i(\"mark\"),menu:i(\"menu\"),menuitem:i(\"menuitem\"),meta:i(\"meta\"),meter:i(\"meter\"),nav:i(\"nav\"),noscript:i(\"noscript\"),object:i(\"object\"),ol:i(\"ol\"),optgroup:i(\"optgroup\"),option:i(\"option\"),output:i(\"output\"),p:i(\"p\"),param:i(\"param\"),picture:i(\"picture\"),pre:i(\"pre\"),progress:i(\"progress\"),q:i(\"q\"),rp:i(\"rp\"),rt:i(\"rt\"),ruby:i(\"ruby\"),s:i(\"s\"),samp:i(\"samp\"),script:i(\"script\"),section:i(\"section\"),select:i(\"select\"),small:i(\"small\"),source:i(\"source\"),span:i(\"span\"),strong:i(\"strong\"),style:i(\"style\"),sub:i(\"sub\"),summary:i(\"summary\"),sup:i(\"sup\"),table:i(\"table\"),tbody:i(\"tbody\"),td:i(\"td\"),textarea:i(\"textarea\"),tfoot:i(\"tfoot\"),th:i(\"th\"),thead:i(\"thead\"),time:i(\"time\"),title:i(\"title\"),tr:i(\"tr\"),track:i(\"track\"),u:i(\"u\"),ul:i(\"ul\"),var:i(\"var\"),video:i(\"video\"),wbr:i(\"wbr\"),circle:i(\"circle\"),clipPath:i(\"clipPath\"),defs:i(\"defs\"),ellipse:i(\"ellipse\"),g:i(\"g\"),image:i(\"image\"),line:i(\"line\"),linearGradient:i(\"linearGradient\"),mask:i(\"mask\"),path:i(\"path\"),pattern:i(\"pattern\"),polygon:i(\"polygon\"),polyline:i(\"polyline\"),radialGradient:i(\"radialGradient\"),rect:i(\"rect\"),stop:i(\"stop\"),svg:i(\"svg\"),text:i(\"text\"),tspan:i(\"tspan\")};t.exports=o},function(t,e,n){\"use strict\";function r(t,e){return t===e?0!==t||1/t===1/e:t!==t&&e!==e}function i(t){this.message=t,this.stack=\"\"}function o(t){function e(e,n,r,o,a,u,c){o=o||E,u=u||r;if(null==n[r]){var s=w[a];return e?new i(null===n[r]?\"The \"+s+\" `\"+u+\"` is marked as required \"+(\"in `\"+o+\"`, but its value is `null`.\"):\"The \"+s+\" `\"+u+\"` is marked as required in \"+(\"`\"+o+\"`, but its value is `undefined`.\")):null}return t(n,r,o,a,u)}var n=e.bind(null,!1);return n.isRequired=e.bind(null,!0),n}function a(t){function e(e,n,r,o,a,u){var c=e[n],s=m(c);if(s!==t){var l=w[o],f=_(c);return new i(\"Invalid \"+l+\" `\"+a+\"` of type \"+(\"`\"+f+\"` supplied to `\"+r+\"`, expected \")+(\"`\"+t+\"`.\"))}return null}return o(e)}function u(){return o(M.thatReturns(null))}function c(t){function e(e,n,r,o,a){if(\"function\"!=typeof t)return new i(\"Property `\"+a+\"` of component `\"+r+\"` has invalid PropType notation inside arrayOf.\");var u=e[n];if(!Array.isArray(u)){var c=w[o],s=m(u);return new i(\"Invalid \"+c+\" `\"+a+\"` of type \"+(\"`\"+s+\"` supplied to `\"+r+\"`, expected an array.\"))}for(var l=0;l<u.length;l++){var f=t(u,l,r,o,a+\"[\"+l+\"]\",C);if(f instanceof Error)return f}return null}return o(e)}function s(){function t(t,e,n,r,o){var a=t[e];if(!x.isValidElement(a)){var u=w[r],c=m(a);return new i(\"Invalid \"+u+\" `\"+o+\"` of type \"+(\"`\"+c+\"` supplied to `\"+n+\"`, expected a single ReactElement.\"))}return null}return o(t)}function l(t){function e(e,n,r,o,a){if(!(e[n]instanceof t)){var u=w[o],c=t.name||E,s=b(e[n]);return new i(\"Invalid \"+u+\" `\"+a+\"` of type \"+(\"`\"+s+\"` supplied to `\"+r+\"`, expected \")+(\"instance of `\"+c+\"`.\"))}return null}return o(e)}function f(t){function e(e,n,o,a,u){for(var c=e[n],s=0;s<t.length;s++)if(r(c,t[s]))return null;var l=w[a],f=JSON.stringify(t);return new i(\"Invalid \"+l+\" `\"+u+\"` of value `\"+c+\"` \"+(\"supplied to `\"+o+\"`, expected one of \"+f+\".\"))}return Array.isArray(t)?o(e):M.thatReturnsNull}function p(t){function e(e,n,r,o,a){if(\"function\"!=typeof t)return new i(\"Property `\"+a+\"` of component `\"+r+\"` has invalid PropType notation inside objectOf.\");var u=e[n],c=m(u);if(\"object\"!==c){var s=w[o];return new i(\"Invalid \"+s+\" `\"+a+\"` of type \"+(\"`\"+c+\"` supplied to `\"+r+\"`, expected an object.\"))}for(var l in u)if(u.hasOwnProperty(l)){var f=t(u,l,r,o,a+\".\"+l,C);if(f instanceof Error)return f}return null}return o(e)}function h(t){function e(e,n,r,o,a){for(var u=0;u<t.length;u++){var c=t[u];if(null==c(e,n,r,o,a,C))return null}var s=w[o];return new i(\"Invalid \"+s+\" `\"+a+\"` supplied to \"+(\"`\"+r+\"`.\"))}return Array.isArray(t)?o(e):M.thatReturnsNull}function d(){function t(t,e,n,r,o){if(!g(t[e])){var a=w[r];return new i(\"Invalid \"+a+\" `\"+o+\"` supplied to \"+(\"`\"+n+\"`, expected a ReactNode.\"))}return null}return o(t)}function v(t){function e(e,n,r,o,a){var u=e[n],c=m(u);if(\"object\"!==c){var s=w[o];return new i(\"Invalid \"+s+\" `\"+a+\"` of type `\"+c+\"` \"+(\"supplied to `\"+r+\"`, expected `object`.\"))}for(var l in t){var f=t[l];if(f){var p=f(u,l,r,o,a+\".\"+l,C);if(p)return p}}return null}return o(e)}function g(t){switch(typeof t){case\"number\":case\"string\":case\"undefined\":return!0;case\"boolean\":return!t;case\"object\":if(Array.isArray(t))return t.every(g);if(null===t||x.isValidElement(t))return!0;var e=k(t);if(!e)return!1;var n,r=e.call(t);if(e!==t.entries){for(;!(n=r.next()).done;)if(!g(n.value))return!1}else for(;!(n=r.next()).done;){var i=n.value;if(i&&!g(i[1]))return!1}return!0;default:return!1}}function y(t,e){return\"symbol\"===t||(\"Symbol\"===e[\"@@toStringTag\"]||\"function\"==typeof Symbol&&e instanceof Symbol)}function m(t){var e=typeof t;return Array.isArray(t)?\"array\":t instanceof RegExp?\"object\":y(e,t)?\"symbol\":e}function _(t){var e=m(t);if(\"object\"===e){if(t instanceof Date)return\"date\";if(t instanceof RegExp)return\"regexp\"}return e}function b(t){return t.constructor&&t.constructor.name?t.constructor.name:E}var x=n(27),w=n(175),C=n(405),M=n(9),k=n(177),E=(n(1),\"<<anonymous>>\"),T={array:a(\"array\"),bool:a(\"boolean\"),func:a(\"function\"),number:a(\"number\"),object:a(\"object\"),string:a(\"string\"),symbol:a(\"symbol\"),any:u(),arrayOf:c,element:s(),instanceOf:l,node:d(),objectOf:p,oneOf:f,oneOfType:h,shape:v};i.prototype=Error.prototype,t.exports=T},function(t,e,n){\"use strict\";var r=\"SECRET_DO_NOT_PASS_THIS_OR_YOU_WILL_BE_FIRED\";t.exports=r},function(t,e,n){\"use strict\";function r(t,e,n){this.props=t,this.context=e,this.refs=c,this.updater=n||u}function i(){}var o=n(3),a=n(96),u=n(97),c=n(38);i.prototype=a.prototype,r.prototype=new i,r.prototype.constructor=r,o(r.prototype,a.prototype),r.prototype.isPureReactComponent=!0,t.exports=r},function(t,e,n){\"use strict\";t.exports=\"15.4.2\"},function(t,e,n){\"use strict\";function r(t){return o.isValidElement(t)?void 0:i(\"143\"),t}var i=n(28),o=n(27);n(0);t.exports=r},function(t,e,n){\"use strict\";function r(t,e){return t&&\"object\"==typeof t&&null!=t.key?s.escape(t.key):e.toString(36)}function i(t,e,n,o){var p=typeof t;if(\"undefined\"!==p&&\"boolean\"!==p||(t=null),null===t||\"string\"===p||\"number\"===p||\"object\"===p&&t.$$typeof===u)return n(o,t,\"\"===e?l+r(t,0):e),1;var h,d,v=0,g=\"\"===e?l:e+f;if(Array.isArray(t))for(var y=0;y<t.length;y++)h=t[y],d=g+r(h,y),v+=i(h,d,n,o);else{var m=c(t);if(m){var _,b=m.call(t);if(m!==t.entries)for(var x=0;!(_=b.next()).done;)h=_.value,d=g+r(h,x++),v+=i(h,d,n,o);else for(;!(_=b.next()).done;){var w=_.value;w&&(h=w[1],d=g+s.escape(w[0])+f+r(h,0),v+=i(h,d,n,o))}}else if(\"object\"===p){var C=\"\",M=String(t);a(\"31\",\"[object Object]\"===M?\"object with keys {\"+Object.keys(t).join(\", \")+\"}\":M,C)}}return v}function o(t,e,n){return null==t?0:i(t,\"\",e,n)}var a=n(28),u=(n(15),n(174)),c=n(177),s=(n(0),n(399)),l=(n(1),\".\"),f=\":\";t.exports=o},function(t,e,n){\"use strict\";function r(t){return t&&t.__esModule?t:{default:t}}var i=n(41),o=r(i),a=n(182),u=r(a),c=n(183),s=r(c),l=n(181),f=r(l),p=n(180),h=r(p),d=n(179),v=r(d);(0,s.default)(),window.IML={SimpleListVisualizer:f.default,AdditiveForceVisualizer:h.default,AdditiveForceArrayVisualizer:v.default,React:o.default,ReactDom:u.default}}]);</script>" ], "text/plain": [ "<IPython.core.display.HTML object>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import sklearn\n", "from sklearn.model_selection import train_test_split\n", "import numpy as np\n", "import shap\n", "import time\n", "\n", "X_train,X_test,Y_train,Y_test = train_test_split(*shap.datasets.iris(), test_size=0.2, random_state=0)\n", "\n", "# rather than use the whole training set to estimate expected values, we could summarize with\n", "# a set of weighted kmeans, each weighted by the number of points they represent. But this dataset\n", "# is so small we don't worry about it\n", "#X_train_summary = shap.kmeans(X_train, 50)\n", "\n", "def print_accuracy(f):\n", " print(\"Accuracy = {0}%\".format(100*np.sum(f(X_test) == Y_test)/len(Y_test)))\n", " time.sleep(0.5) # to let the print get out before any progress bars\n", "\n", "shap.initjs()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## K-nearest neighbors" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Accuracy = 96.66666666666667%\n" ] } ], "source": [ "knn = sklearn.neighbors.KNeighborsClassifier()\n", "knn.fit(X_train, Y_train)\n", "\n", "print_accuracy(knn.predict)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Explain a single prediction from the test set" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Using 120 background data samples could cause slower run times. Consider using shap.kmeans(data, K) to summarize the background as K weighted samples.\n" ] }, { "data": { "text/html": [ "\n", "<div id='i8XH8BX5TV6QA0SSBWWC6'>\n", "<div style='color: #900; text-align: center;'>\n", " <b>Visualization omitted, Javascript library not loaded!</b><br>\n", " Have you run `initjs()` in this notebook? If this notebook was from another\n", " user you must also trust this notebook (File -> Trust notebook). If you are viewing\n", " this notebook on github the Javascript has been stripped for security.\n", "</div></div>\n", " <script>\n", " if (window.IML) IML.ReactDom.render(\n", " IML.React.createElement(IML.AdditiveForceVisualizer, {\"outNames\": [\"output value\"], \"baseValue\": 0.3250000000000002, \"outValue\": 0.0, \"link\": \"identity\", \"featureNames\": [\"sepal length (cm)\", \"sepal width (cm)\", \"petal length (cm)\", \"petal width (cm)\"], \"features\": {\"0\": {\"effect\": -0.0012499999999999734, \"value\": 5.8}, \"1\": {\"effect\": -0.00874999999999998, \"value\": 2.8}, \"2\": {\"effect\": -0.2979166666666667, \"value\": 5.1}, \"3\": {\"effect\": -0.017083333333333506, \"value\": 2.4}}, \"plot_cmap\": \"RdBu\", \"labelMargin\": 20}),\n", " document.getElementById('i8XH8BX5TV6QA0SSBWWC6')\n", " );\n", "</script>" ], "text/plain": [ "<IPython.core.display.HTML object>" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "explainer = shap.KernelExplainer(knn.predict_proba, X_train)\n", "shap_values = explainer.shap_values(X_test.iloc[0,:])\n", "shap.force_plot(explainer.expected_value[0], shap_values[0], X_test.iloc[0,:])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Explain all the predictions in the test set" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "100%|██████████| 30/30 [00:00<00:00, 38.78it/s]\n" ] }, { "data": { "text/html": [ "\n", "<div id='iQV4Q2FKVTHYH8TB1S7UE'>\n", "<div style='color: #900; text-align: center;'>\n", " <b>Visualization omitted, Javascript library not loaded!</b><br>\n", " Have you run `initjs()` in this notebook? If this notebook was from another\n", " user you must also trust this notebook (File -> Trust notebook). If you are viewing\n", " this notebook on github the Javascript has been stripped for security.\n", "</div></div>\n", " <script>\n", " if (window.IML) IML.ReactDom.render(\n", " IML.React.createElement(IML.AdditiveForceArrayVisualizer, {\"outNames\": [\"output value\"], \"baseValue\": 0.3250000000000002, \"link\": \"identity\", \"featureNames\": [\"sepal length (cm)\", \"sepal width (cm)\", \"petal length (cm)\", \"petal width (cm)\"], \"explanations\": [{\"outValue\": 0.0, \"simIndex\": 1.0, \"features\": {\"0\": {\"effect\": -0.0012499999999999734, \"value\": 5.8}, \"1\": {\"effect\": -0.00874999999999998, \"value\": 2.8}, \"2\": {\"effect\": -0.2979166666666667, \"value\": 5.1}, \"3\": {\"effect\": -0.017083333333333506, \"value\": 2.4}}}, {\"outValue\": -5.551115123125783e-17, \"simIndex\": 14.0, \"features\": {\"0\": {\"effect\": 0.0, \"value\": 6.0}, \"1\": {\"effect\": 0.0, \"value\": 2.2}, \"2\": {\"effect\": -0.32500000000000023, \"value\": 4.0}, \"3\": {\"effect\": 0.0, \"value\": 1.0}}}, {\"outValue\": 1.0, \"simIndex\": 25.0, \"features\": {\"0\": {\"effect\": -0.0008333333333331305, \"value\": 5.5}, \"1\": {\"effect\": 0.005833333333333468, \"value\": 4.2}, \"2\": {\"effect\": 0.6672222222222215, \"value\": 1.4}, \"3\": {\"effect\": 0.00277777777777799, \"value\": 0.2}}}, {\"outValue\": 0.0, \"simIndex\": 4.0, \"features\": {\"0\": {\"effect\": 0.0009722222222222632, \"value\": 7.3}, \"1\": {\"effect\": -0.0009722222222222354, \"value\": 2.9}, \"2\": {\"effect\": -0.3240277777777779, \"value\": 6.3}, \"3\": {\"effect\": -0.0009722222222222632, \"value\": 1.8}}}, {\"outValue\": 1.0, \"simIndex\": 26.0, \"features\": {\"0\": {\"effect\": -0.0012499999999997513, \"value\": 5.0}, \"1\": {\"effect\": 0.00458333333333355, \"value\": 3.4}, \"2\": {\"effect\": 0.6670833333333324, \"value\": 1.5}, \"3\": {\"effect\": 0.004583333333333606, \"value\": 0.2}}}, {\"outValue\": 0.0, \"simIndex\": 18.0, \"features\": {\"0\": {\"effect\": 0.0033333333333334103, \"value\": 6.3}, \"1\": {\"effect\": 0.0, \"value\": 3.3}, \"2\": {\"effect\": -0.3208333333333335, \"value\": 6.0}, \"3\": {\"effect\": -0.007500000000000062, \"value\": 2.5}}}, {\"outValue\": 1.0, \"simIndex\": 23.0, \"features\": {\"0\": {\"effect\": 0.00013888888888907713, \"value\": 5.0}, \"1\": {\"effect\": 0.0009722222222224297, \"value\": 3.5}, \"2\": {\"effect\": 0.6729166666666657, \"value\": 1.3}, \"3\": {\"effect\": 0.0009722222222225962, \"value\": 0.3}}}, {\"outValue\": -5.551115123125783e-17, \"simIndex\": 15.0, \"features\": {\"0\": {\"effect\": 0.0, \"value\": 6.7}, \"1\": {\"effect\": 0.0, \"value\": 3.1}, \"2\": {\"effect\": -0.32500000000000023, \"value\": 4.7}, \"3\": {\"effect\": 0.0, \"value\": 1.5}}}, {\"outValue\": -5.551115123125783e-17, \"simIndex\": 13.0, \"features\": {\"0\": {\"effect\": 0.0, \"value\": 6.8}, \"1\": {\"effect\": 0.0, \"value\": 2.8}, \"2\": {\"effect\": -0.32500000000000023, \"value\": 4.8}, \"3\": {\"effect\": 0.0, \"value\": 1.4}}}, {\"outValue\": -5.551115123125783e-17, \"simIndex\": 12.0, \"features\": {\"0\": {\"effect\": 0.0, \"value\": 6.1}, \"1\": {\"effect\": 0.0, \"value\": 2.8}, \"2\": {\"effect\": -0.32500000000000023, \"value\": 4.0}, \"3\": {\"effect\": 0.0, \"value\": 1.3}}}, {\"outValue\": 0.0, \"simIndex\": 16.0, \"features\": {\"0\": {\"effect\": 0.0004166666666666763, \"value\": 6.1}, \"1\": {\"effect\": -0.00041666666666664853, \"value\": 2.6}, \"2\": {\"effect\": -0.3245833333333335, \"value\": 5.6}, \"3\": {\"effect\": -0.0004166666666667318, \"value\": 1.4}}}, {\"outValue\": -5.551115123125783e-17, \"simIndex\": 11.0, \"features\": {\"0\": {\"effect\": 0.0, \"value\": 6.4}, \"1\": {\"effect\": 0.0, \"value\": 3.2}, \"2\": {\"effect\": -0.32500000000000023, \"value\": 4.5}, \"3\": {\"effect\": 0.0, \"value\": 1.5}}}, {\"outValue\": -5.551115123125783e-17, \"simIndex\": 10.0, \"features\": {\"0\": {\"effect\": 0.0, \"value\": 6.1}, \"1\": {\"effect\": 0.0, \"value\": 2.8}, \"2\": {\"effect\": -0.32500000000000023, \"value\": 4.7}, \"3\": {\"effect\": 0.0, \"value\": 1.2}}}, {\"outValue\": 0.0, \"simIndex\": 17.0, \"features\": {\"0\": {\"effect\": 0.0002777777777778212, \"value\": 6.5}, \"1\": {\"effect\": -0.00027777777777773793, \"value\": 2.8}, \"2\": {\"effect\": -0.32472222222222247, \"value\": 4.6}, \"3\": {\"effect\": -0.0002777777777778212, \"value\": 1.5}}}, {\"outValue\": -5.551115123125783e-17, \"simIndex\": 9.0, \"features\": {\"0\": {\"effect\": 0.0, \"value\": 6.1}, \"1\": {\"effect\": 0.0, \"value\": 2.9}, \"2\": {\"effect\": -0.32500000000000023, \"value\": 4.7}, \"3\": {\"effect\": 0.0, \"value\": 1.4}}}, {\"outValue\": 1.0, \"simIndex\": 27.0, \"features\": {\"0\": {\"effect\": -0.0026388888888886353, \"value\": 4.9}, \"1\": {\"effect\": 0.002361111111111369, \"value\": 3.1}, \"2\": {\"effect\": 0.6662499999999991, \"value\": 1.5}, \"3\": {\"effect\": 0.009027777777777968, \"value\": 0.1}}}, {\"outValue\": -5.551115123125783e-17, \"simIndex\": 8.0, \"features\": {\"0\": {\"effect\": 0.0, \"value\": 6.0}, \"1\": {\"effect\": 0.0, \"value\": 2.9}, \"2\": {\"effect\": -0.32500000000000023, \"value\": 4.5}, \"3\": {\"effect\": 0.0, \"value\": 1.5}}}, {\"outValue\": -5.551115123125783e-17, \"simIndex\": 7.0, \"features\": {\"0\": {\"effect\": 0.0, \"value\": 5.5}, \"1\": {\"effect\": 0.0, \"value\": 2.6}, \"2\": {\"effect\": -0.32500000000000023, \"value\": 4.4}, \"3\": {\"effect\": 0.0, \"value\": 1.2}}}, {\"outValue\": 1.0, \"simIndex\": 22.0, \"features\": {\"0\": {\"effect\": -0.0006944444444442199, \"value\": 4.8}, \"1\": {\"effect\": 0.00013888888888913264, \"value\": 3.0}, \"2\": {\"effect\": 0.6731944444444438, \"value\": 1.4}, \"3\": {\"effect\": 0.002361111111111147, \"value\": 0.3}}}, {\"outValue\": 1.0, \"simIndex\": 20.0, \"features\": {\"0\": {\"effect\": 0.0001388888888889661, \"value\": 5.4}, \"1\": {\"effect\": 0.0023611111111113137, \"value\": 3.9}, \"2\": {\"effect\": 0.6709722222222214, \"value\": 1.3}, \"3\": {\"effect\": 0.0015277777777781276, \"value\": 0.4}}}, {\"outValue\": 0.0, \"simIndex\": 2.0, \"features\": {\"0\": {\"effect\": -0.0002777777777777102, \"value\": 5.6}, \"1\": {\"effect\": -0.005555555555555564, \"value\": 2.8}, \"2\": {\"effect\": -0.31250000000000017, \"value\": 4.9}, \"3\": {\"effect\": -0.00666666666666671, \"value\": 2.0}}}, {\"outValue\": -5.551115123125783e-17, \"simIndex\": 6.0, \"features\": {\"0\": {\"effect\": 0.0, \"value\": 5.6}, \"1\": {\"effect\": 0.0, \"value\": 3.0}, \"2\": {\"effect\": -0.32500000000000023, \"value\": 4.5}, \"3\": {\"effect\": 0.0, \"value\": 1.5}}}, {\"outValue\": 1.0, \"simIndex\": 29.0, \"features\": {\"0\": {\"effect\": 0.006666666666666876, \"value\": 4.8}, \"1\": {\"effect\": 0.020277777777777894, \"value\": 3.4}, \"2\": {\"effect\": 0.6002777777777774, \"value\": 1.9}, \"3\": {\"effect\": 0.0477777777777777, \"value\": 0.2}}}, {\"outValue\": 1.0, \"simIndex\": 24.0, \"features\": {\"0\": {\"effect\": 0.0002777777777778767, \"value\": 4.4}, \"1\": {\"effect\": 0.0002777777777779322, \"value\": 2.9}, \"2\": {\"effect\": 0.6727777777777769, \"value\": 1.4}, \"3\": {\"effect\": 0.0016666666666671492, \"value\": 0.2}}}, {\"outValue\": 0.0, \"simIndex\": 3.0, \"features\": {\"0\": {\"effect\": 0.000694444444444442, \"value\": 6.2}, \"1\": {\"effect\": -0.0018055555555555047, \"value\": 2.8}, \"2\": {\"effect\": -0.32208333333333355, \"value\": 4.8}, \"3\": {\"effect\": -0.0018055555555555602, \"value\": 1.8}}}, {\"outValue\": 1.0, \"simIndex\": 21.0, \"features\": {\"0\": {\"effect\": 0.00041666666666695384, \"value\": 4.6}, \"1\": {\"effect\": 0.001527777777777961, \"value\": 3.6}, \"2\": {\"effect\": 0.6718055555555544, \"value\": 1.0}, \"3\": {\"effect\": 0.0012500000000004174, \"value\": 0.2}}}, {\"outValue\": 1.0, \"simIndex\": 30.0, \"features\": {\"0\": {\"effect\": 0.006250000000000089, \"value\": 5.1}, \"1\": {\"effect\": 0.02986111111111117, \"value\": 3.8}, \"2\": {\"effect\": 0.6059722222222218, \"value\": 1.9}, \"3\": {\"effect\": 0.032916666666666705, \"value\": 0.4}}}, {\"outValue\": -5.551115123125783e-17, \"simIndex\": 5.0, \"features\": {\"0\": {\"effect\": 0.0, \"value\": 6.2}, \"1\": {\"effect\": 0.0, \"value\": 2.9}, \"2\": {\"effect\": -0.32500000000000023, \"value\": 4.3}, \"3\": {\"effect\": 0.0, \"value\": 1.3}}}, {\"outValue\": 0.0, \"simIndex\": 19.0, \"features\": {\"0\": {\"effect\": 0.0005555555555555869, \"value\": 5.0}, \"1\": {\"effect\": -0.0038888888888888307, \"value\": 2.3}, \"2\": {\"effect\": -0.3183333333333336, \"value\": 3.3}, \"3\": {\"effect\": -0.003333333333333355, \"value\": 1.0}}}, {\"outValue\": 1.0, \"simIndex\": 28.0, \"features\": {\"0\": {\"effect\": -0.002083333333333104, \"value\": 5.0}, \"1\": {\"effect\": 0.0065277777777778545, \"value\": 3.4}, \"2\": {\"effect\": 0.6629166666666659, \"value\": 1.6}, \"3\": {\"effect\": 0.007638888888889195, \"value\": 0.4}}}], \"plot_cmap\": \"RdBu\"}),\n", " document.getElementById('iQV4Q2FKVTHYH8TB1S7UE')\n", " );\n", "</script>" ], "text/plain": [ "<IPython.core.display.HTML object>" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "shap_values = explainer.shap_values(X_test)\n", "shap.force_plot(explainer.expected_value[0], shap_values[0], X_test)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Support vector machine with a linear kernel" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Accuracy = 100.0%\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "Using 120 background data samples could cause slower run times. Consider using shap.kmeans(data, K) to summarize the background as K weighted samples.\n", "100%|██████████| 30/30 [00:00<00:00, 38.97it/s]\n" ] }, { "data": { "text/html": [ "\n", "<div id='iOF6F4YD15134NCGWJSF7'>\n", "<div style='color: #900; text-align: center;'>\n", " <b>Visualization omitted, Javascript library not loaded!</b><br>\n", " Have you run `initjs()` in this notebook? If this notebook was from another\n", " user you must also trust this notebook (File -> Trust notebook). If you are viewing\n", " this notebook on github the Javascript has been stripped for security.\n", "</div></div>\n", " <script>\n", " if (window.IML) IML.ReactDom.render(\n", " IML.React.createElement(IML.AdditiveForceArrayVisualizer, {\"outNames\": [\"output value\"], \"baseValue\": 0.3227937304007689, \"link\": \"identity\", \"featureNames\": [\"sepal length (cm)\", \"sepal width (cm)\", \"petal length (cm)\", \"petal width (cm)\"], \"explanations\": [{\"outValue\": 0.011618716914571448, \"simIndex\": 16.0, \"features\": {\"0\": {\"effect\": -0.0007797220415605988, \"value\": 5.8}, \"1\": {\"effect\": -0.00954234382825675, \"value\": 2.8}, \"2\": {\"effect\": -0.266814187288653, \"value\": 5.1}, \"3\": {\"effect\": -0.034038760327727124, \"value\": 2.4}}}, {\"outValue\": 0.010626709837361636, \"simIndex\": 2.0, \"features\": {\"0\": {\"effect\": -0.0008049089666672671, \"value\": 6.0}, \"1\": {\"effect\": -0.02702896411821054, \"value\": 2.2}, \"2\": {\"effect\": -0.2708467831711063, \"value\": 4.0}, \"3\": {\"effect\": -0.013486364307423226, \"value\": 1.0}}}, {\"outValue\": 0.9850138125222081, \"simIndex\": 28.0, \"features\": {\"0\": {\"effect\": 0.0009548106645201893, \"value\": 5.5}, \"1\": {\"effect\": 0.043084877789067055, \"value\": 4.2}, \"2\": {\"effect\": 0.5856660564159661, \"value\": 1.4}, \"3\": {\"effect\": 0.032514337251885905, \"value\": 0.2}}}, {\"outValue\": 0.003252622072219824, \"simIndex\": 11.0, \"features\": {\"0\": {\"effect\": -0.002957075001627424, \"value\": 7.3}, \"1\": {\"effect\": -0.005337244407654679, \"value\": 2.9}, \"2\": {\"effect\": -0.29055739312011664, \"value\": 6.3}, \"3\": {\"effect\": -0.020689395799150356, \"value\": 1.8}}}, {\"outValue\": 0.9638532157403983, \"simIndex\": 25.0, \"features\": {\"0\": {\"effect\": 0.0026947237607137797, \"value\": 5.0}, \"1\": {\"effect\": 0.019355032107238435, \"value\": 3.4}, \"2\": {\"effect\": 0.5735927221789666, \"value\": 1.5}, \"3\": {\"effect\": 0.04541700729271059, \"value\": 0.2}}}, {\"outValue\": 0.0034930873163667164, \"simIndex\": 15.0, \"features\": {\"0\": {\"effect\": -0.0017832515326529907, \"value\": 6.3}, \"1\": {\"effect\": 0.0010992332996067888, \"value\": 3.3}, \"2\": {\"effect\": -0.28407760027844786, \"value\": 6.0}, \"3\": {\"effect\": -0.03453902457290814, \"value\": 2.5}}}, {\"outValue\": 0.9756421674075313, \"simIndex\": 29.0, \"features\": {\"0\": {\"effect\": 0.002096274832095124, \"value\": 5.0}, \"1\": {\"effect\": 0.018848354478208373, \"value\": 3.5}, \"2\": {\"effect\": 0.6019435286443282, \"value\": 1.3}, \"3\": {\"effect\": 0.029960279052130723, \"value\": 0.3}}}, {\"outValue\": 0.0055109941855349676, \"simIndex\": 3.0, \"features\": {\"0\": {\"effect\": -0.004324334734767649, \"value\": 6.7}, \"1\": {\"effect\": -0.0019159438136506501, \"value\": 3.1}, \"2\": {\"effect\": -0.29512062707932096, \"value\": 4.7}, \"3\": {\"effect\": -0.01592183058749469, \"value\": 1.5}}}, {\"outValue\": 0.005203076114538574, \"simIndex\": 9.0, \"features\": {\"0\": {\"effect\": -0.004851845896161361, \"value\": 6.8}, \"1\": {\"effect\": -0.006257165645840723, \"value\": 2.8}, \"2\": {\"effect\": -0.2914094717339019, \"value\": 4.8}, \"3\": {\"effect\": -0.015072171010326318, \"value\": 1.4}}}, {\"outValue\": 0.015168517812670368, \"simIndex\": 18.0, \"features\": {\"0\": {\"effect\": -0.0011986194510841264, \"value\": 6.1}, \"1\": {\"effect\": -0.010978911387844376, \"value\": 2.8}, \"2\": {\"effect\": -0.27696905317049303, \"value\": 4.0}, \"3\": {\"effect\": -0.018478628578677048, \"value\": 1.3}}}, {\"outValue\": 0.009958625463818205, \"simIndex\": 7.0, \"features\": {\"0\": {\"effect\": -0.000806051964996779, \"value\": 6.1}, \"1\": {\"effect\": -0.009437297648861753, \"value\": 2.6}, \"2\": {\"effect\": -0.29000469314841093, \"value\": 5.6}, \"3\": {\"effect\": -0.012587062174681252, \"value\": 1.4}}}, {\"outValue\": 0.007300056619007067, \"simIndex\": 4.0, \"features\": {\"0\": {\"effect\": -0.002670987679431691, \"value\": 6.4}, \"1\": {\"effect\": -0.00043438745238225107, \"value\": 3.2}, \"2\": {\"effect\": -0.29533667546675696, \"value\": 4.5}, \"3\": {\"effect\": -0.017051623183190978, \"value\": 1.5}}}, {\"outValue\": 0.00620317637655976, \"simIndex\": 5.0, \"features\": {\"0\": {\"effect\": -0.0016450136225697742, \"value\": 6.1}, \"1\": {\"effect\": -0.006025617647325898, \"value\": 2.8}, \"2\": {\"effect\": -0.2957730642694142, \"value\": 4.7}, \"3\": {\"effect\": -0.013146858484899326, \"value\": 1.2}}}, {\"outValue\": 0.006606075348589424, \"simIndex\": 10.0, \"features\": {\"0\": {\"effect\": -0.0038348990299435226, \"value\": 6.5}, \"1\": {\"effect\": -0.00689021350243374, \"value\": 2.8}, \"2\": {\"effect\": -0.2882243047686987, \"value\": 4.6}, \"3\": {\"effect\": -0.017238237751103558, \"value\": 1.5}}}, {\"outValue\": 0.008179472904638996, \"simIndex\": 6.0, \"features\": {\"0\": {\"effect\": -0.0018879475311363303, \"value\": 6.1}, \"1\": {\"effect\": -0.004721963732378209, \"value\": 2.9}, \"2\": {\"effect\": -0.29310793134893715, \"value\": 4.7}, \"3\": {\"effect\": -0.01489641488367821, \"value\": 1.4}}}, {\"outValue\": 0.9567243303387063, \"simIndex\": 26.0, \"features\": {\"0\": {\"effect\": 0.0032684204414240026, \"value\": 4.9}, \"1\": {\"effect\": 0.006139146498618686, \"value\": 3.1}, \"2\": {\"effect\": 0.5701061883559966, \"value\": 1.5}, \"3\": {\"effect\": 0.05441684464189822, \"value\": 0.1}}}, {\"outValue\": 0.008785062080100048, \"simIndex\": 13.0, \"features\": {\"0\": {\"effect\": -0.0014610284367682358, \"value\": 6.0}, \"1\": {\"effect\": -0.005488052660179932, \"value\": 2.9}, \"2\": {\"effect\": -0.2895537993119924, \"value\": 4.5}, \"3\": {\"effect\": -0.0175057879117283, \"value\": 1.5}}}, {\"outValue\": 0.008990163290717834, \"simIndex\": 8.0, \"features\": {\"0\": {\"effect\": 0.0009651506777688668, \"value\": 5.5}, \"1\": {\"effect\": -0.010920817093696106, \"value\": 2.6}, \"2\": {\"effect\": -0.2886779088343326, \"value\": 4.4}, \"3\": {\"effect\": -0.015169991859791288, \"value\": 1.2}}}, {\"outValue\": 0.953556118621858, \"simIndex\": 22.0, \"features\": {\"0\": {\"effect\": 0.0034787305158547333, \"value\": 4.8}, \"1\": {\"effect\": 0.0009364270546394771, \"value\": 3.0}, \"2\": {\"effect\": 0.5840216014615722, \"value\": 1.4}, \"3\": {\"effect\": 0.04232562918902261, \"value\": 0.3}}}, {\"outValue\": 0.9810886234813949, \"simIndex\": 30.0, \"features\": {\"0\": {\"effect\": 0.0011382395840231485, \"value\": 5.4}, \"1\": {\"effect\": 0.03132586330484338, \"value\": 3.9}, \"2\": {\"effect\": 0.6012799223594073, \"value\": 1.3}, \"3\": {\"effect\": 0.024550867832352274, \"value\": 0.4}}}, {\"outValue\": 0.01953625099693379, \"simIndex\": 17.0, \"features\": {\"0\": {\"effect\": 0.0006774233304569222, \"value\": 5.6}, \"1\": {\"effect\": -0.007933261785420143, \"value\": 2.8}, \"2\": {\"effect\": -0.2744334638075666, \"value\": 4.9}, \"3\": {\"effect\": -0.021568177141305267, \"value\": 2.0}}}, {\"outValue\": 0.011538739975390566, \"simIndex\": 12.0, \"features\": {\"0\": {\"effect\": 0.0005824900715954151, \"value\": 5.6}, \"1\": {\"effect\": -0.003821051482480964, \"value\": 3.0}, \"2\": {\"effect\": -0.2910430655449965, \"value\": 4.5}, \"3\": {\"effect\": -0.01697336346949635, \"value\": 1.5}}}, {\"outValue\": 0.9242944463299956, \"simIndex\": 20.0, \"features\": {\"0\": {\"effect\": 0.005005067517132589, \"value\": 4.8}, \"1\": {\"effect\": 0.029946976994815244, \"value\": 3.4}, \"2\": {\"effect\": 0.48948372357261277, \"value\": 1.9}, \"3\": {\"effect\": 0.07706494784466611, \"value\": 0.2}}}, {\"outValue\": 0.9541334553806362, \"simIndex\": 23.0, \"features\": {\"0\": {\"effect\": 0.004672029171272629, \"value\": 4.4}, \"1\": {\"effect\": -0.003462808764710168, \"value\": 2.9}, \"2\": {\"effect\": 0.5829274183918229, \"value\": 1.4}, \"3\": {\"effect\": 0.047203086181481946, \"value\": 0.2}}}, {\"outValue\": 0.017490505308040527, \"simIndex\": 19.0, \"features\": {\"0\": {\"effect\": -0.0015704486696745679, \"value\": 6.2}, \"1\": {\"effect\": -0.006785710778741072, \"value\": 2.8}, \"2\": {\"effect\": -0.27870647760465556, \"value\": 4.8}, \"3\": {\"effect\": -0.01824058803965717, \"value\": 1.8}}}, {\"outValue\": 0.98862813679198, \"simIndex\": 27.0, \"features\": {\"0\": {\"effect\": 0.0020760404661787635, \"value\": 4.6}, \"1\": {\"effect\": 0.015885690921210727, \"value\": 3.6}, \"2\": {\"effect\": 0.6273518736232736, \"value\": 1.0}, \"3\": {\"effect\": 0.020520801380548015, \"value\": 0.2}}}, {\"outValue\": 0.9359768783009383, \"simIndex\": 21.0, \"features\": {\"0\": {\"effect\": 0.0034815823393776757, \"value\": 5.1}, \"1\": {\"effect\": 0.055821216395317674, \"value\": 3.8}, \"2\": {\"effect\": 0.4954376084117229, \"value\": 1.9}, \"3\": {\"effect\": 0.05844274075375122, \"value\": 0.4}}}, {\"outValue\": 0.00907453999836444, \"simIndex\": 14.0, \"features\": {\"0\": {\"effect\": -0.001399014509811003, \"value\": 6.2}, \"1\": {\"effect\": -0.006088858957455229, \"value\": 2.9}, \"2\": {\"effect\": -0.29034053993638687, \"value\": 4.3}, \"3\": {\"effect\": -0.01589077699875141, \"value\": 1.3}}}, {\"outValue\": 0.06712660730408726, \"simIndex\": 1.0, \"features\": {\"0\": {\"effect\": 0.003441817078706305, \"value\": 5.0}, \"1\": {\"effect\": -0.05994632536090298, \"value\": 2.3}, \"2\": {\"effect\": -0.18708113937512985, \"value\": 3.3}, \"3\": {\"effect\": -0.012081475439355116, \"value\": 1.0}}}, {\"outValue\": 0.947285423794743, \"simIndex\": 24.0, \"features\": {\"0\": {\"effect\": 0.0031479758863457996, \"value\": 5.0}, \"1\": {\"effect\": 0.022201532695871495, \"value\": 3.4}, \"2\": {\"effect\": 0.5544230340339906, \"value\": 1.6}, \"3\": {\"effect\": 0.044719150777766226, \"value\": 0.4}}}], \"plot_cmap\": \"RdBu\"}),\n", " document.getElementById('iOF6F4YD15134NCGWJSF7')\n", " );\n", "</script>" ], "text/plain": [ "<IPython.core.display.HTML object>" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "svc_linear = sklearn.svm.SVC(kernel='linear', probability=True)\n", "svc_linear.fit(X_train, Y_train)\n", "print_accuracy(svc_linear.predict)\n", "\n", "# explain all the predictions in the test set\n", "explainer = shap.KernelExplainer(svc_linear.predict_proba, X_train)\n", "shap_values = explainer.shap_values(X_test)\n", "shap.force_plot(explainer.expected_value[0], shap_values[0], X_test)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Support vector machine with a radial basis function kernel" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Accuracy = 100.0%\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "Using 120 background data samples could cause slower run times. Consider using shap.kmeans(data, K) to summarize the background as K weighted samples.\n", "100%|██████████| 30/30 [00:00<00:00, 41.21it/s]\n" ] }, { "data": { "text/html": [ "\n", "<div id='i5G13BG6DNSBOTIPOXE2Z'>\n", "<div style='color: #900; text-align: center;'>\n", " <b>Visualization omitted, Javascript library not loaded!</b><br>\n", " Have you run `initjs()` in this notebook? If this notebook was from another\n", " user you must also trust this notebook (File -> Trust notebook). If you are viewing\n", " this notebook on github the Javascript has been stripped for security.\n", "</div></div>\n", " <script>\n", " if (window.IML) IML.ReactDom.render(\n", " IML.React.createElement(IML.AdditiveForceArrayVisualizer, {\"outNames\": [\"output value\"], \"baseValue\": 0.3195478206215178, \"link\": \"identity\", \"featureNames\": [\"sepal length (cm)\", \"sepal width (cm)\", \"petal length (cm)\", \"petal width (cm)\"], \"explanations\": [{\"outValue\": 0.011706657435265, \"simIndex\": 29.0, \"features\": {\"0\": {\"effect\": -0.0059240031266323545, \"value\": 5.8}, \"1\": {\"effect\": -0.007490477937771675, \"value\": 2.8}, \"2\": {\"effect\": -0.21284225241709898, \"value\": 5.1}, \"3\": {\"effect\": -0.08158442970474983, \"value\": 2.4}}}, {\"outValue\": 0.010770416747575728, \"simIndex\": 19.0, \"features\": {\"0\": {\"effect\": -0.014580200710078234, \"value\": 6.0}, \"1\": {\"effect\": -0.01855506215144226, \"value\": 2.2}, \"2\": {\"effect\": -0.2646063118125412, \"value\": 4.0}, \"3\": {\"effect\": -0.011035829199880387, \"value\": 1.0}}}, {\"outValue\": 0.9520597717808594, \"simIndex\": 8.0, \"features\": {\"0\": {\"effect\": 0.03868987170622856, \"value\": 5.5}, \"1\": {\"effect\": 0.030607101725130037, \"value\": 4.2}, \"2\": {\"effect\": 0.47780729140422473, \"value\": 1.4}, \"3\": {\"effect\": 0.08540768632375828, \"value\": 0.2}}}, {\"outValue\": 0.01100333827746508, \"simIndex\": 28.0, \"features\": {\"0\": {\"effect\": -0.06272490002097354, \"value\": 7.3}, \"1\": {\"effect\": -0.006403330407871, \"value\": 2.9}, \"2\": {\"effect\": -0.19142283923796977, \"value\": 6.3}, \"3\": {\"effect\": -0.047993412677238445, \"value\": 1.8}}}, {\"outValue\": 0.963503817922015, \"simIndex\": 3.0, \"features\": {\"0\": {\"effect\": 0.04905275143926602, \"value\": 5.0}, \"1\": {\"effect\": 0.015364921506873519, \"value\": 3.4}, \"2\": {\"effect\": 0.4891175799686943, \"value\": 1.5}, \"3\": {\"effect\": 0.09042074438566328, \"value\": 0.2}}}, {\"outValue\": 0.01597319889934079, \"simIndex\": 30.0, \"features\": {\"0\": {\"effect\": -0.01702202188105882, \"value\": 6.3}, \"1\": {\"effect\": 0.0005380204840959024, \"value\": 3.3}, \"2\": {\"effect\": -0.19863335195418516, \"value\": 6.0}, \"3\": {\"effect\": -0.08845726837102896, \"value\": 2.5}}}, {\"outValue\": 0.9668762334496417, \"simIndex\": 10.0, \"features\": {\"0\": {\"effect\": 0.04840091312119904, \"value\": 5.0}, \"1\": {\"effect\": 0.015069607424646358, \"value\": 3.5}, \"2\": {\"effect\": 0.5032943753592177, \"value\": 1.3}, \"3\": {\"effect\": 0.08056351692306074, \"value\": 0.3}}}, {\"outValue\": 0.01444004050375508, \"simIndex\": 24.0, \"features\": {\"0\": {\"effect\": -0.03172231322290481, \"value\": 6.7}, \"1\": {\"effect\": -0.003707804676693127, \"value\": 3.1}, \"2\": {\"effect\": -0.2408605147844189, \"value\": 4.7}, \"3\": {\"effect\": -0.028817147433745915, \"value\": 1.5}}}, {\"outValue\": 0.015281263168769599, \"simIndex\": 23.0, \"features\": {\"0\": {\"effect\": -0.037033395895673116, \"value\": 6.8}, \"1\": {\"effect\": -0.00923871902836576, \"value\": 2.8}, \"2\": {\"effect\": -0.233429553006348, \"value\": 4.8}, \"3\": {\"effect\": -0.024564889522361355, \"value\": 1.4}}}, {\"outValue\": 0.009021411543338631, \"simIndex\": 14.0, \"features\": {\"0\": {\"effect\": -0.014012716706142486, \"value\": 6.1}, \"1\": {\"effect\": -0.009258906878566592, \"value\": 2.8}, \"2\": {\"effect\": -0.2660259399630432, \"value\": 4.0}, \"3\": {\"effect\": -0.02122884553042692, \"value\": 1.3}}}, {\"outValue\": 0.013327461325600476, \"simIndex\": 16.0, \"features\": {\"0\": {\"effect\": -0.015179239165020397, \"value\": 6.1}, \"1\": {\"effect\": -0.011748993952102521, \"value\": 2.6}, \"2\": {\"effect\": -0.25013077570448583, \"value\": 5.6}, \"3\": {\"effect\": -0.029161350474308623, \"value\": 1.4}}}, {\"outValue\": 0.012676209234548874, \"simIndex\": 17.0, \"features\": {\"0\": {\"effect\": -0.020869224055330787, \"value\": 6.4}, \"1\": {\"effect\": -0.0013916359771895537, \"value\": 3.2}, \"2\": {\"effect\": -0.2559502726776373, \"value\": 4.5}, \"3\": {\"effect\": -0.02866047867681132, \"value\": 1.5}}}, {\"outValue\": 0.011194850050301408, \"simIndex\": 20.0, \"features\": {\"0\": {\"effect\": -0.013956833042012173, \"value\": 6.1}, \"1\": {\"effect\": -0.007866159273716256, \"value\": 2.8}, \"2\": {\"effect\": -0.2709054407895401, \"value\": 4.7}, \"3\": {\"effect\": -0.015624537465947885, \"value\": 1.2}}}, {\"outValue\": 0.011704967011271383, \"simIndex\": 25.0, \"features\": {\"0\": {\"effect\": -0.02565991202738485, \"value\": 6.5}, \"1\": {\"effect\": -0.009169796392967278, \"value\": 2.8}, \"2\": {\"effect\": -0.2434355138018521, \"value\": 4.6}, \"3\": {\"effect\": -0.029577631388042203, \"value\": 1.5}}}, {\"outValue\": 0.010786133054388358, \"simIndex\": 13.0, \"features\": {\"0\": {\"effect\": -0.013787669100609773, \"value\": 6.1}, \"1\": {\"effect\": -0.006586908053431734, \"value\": 2.9}, \"2\": {\"effect\": -0.26451158144948683, \"value\": 4.7}, \"3\": {\"effect\": -0.023875528963601123, \"value\": 1.4}}}, {\"outValue\": 0.9604055246472061, \"simIndex\": 6.0, \"features\": {\"0\": {\"effect\": 0.053396548290071844, \"value\": 4.9}, \"1\": {\"effect\": 0.006960266974311957, \"value\": 3.1}, \"2\": {\"effect\": 0.4846321526006456, \"value\": 1.5}, \"3\": {\"effect\": 0.09586873616065872, \"value\": 0.1}}}, {\"outValue\": 0.009622513017960688, \"simIndex\": 12.0, \"features\": {\"0\": {\"effect\": -0.011431635201472307, \"value\": 6.0}, \"1\": {\"effect\": -0.006692939702733602, \"value\": 2.9}, \"2\": {\"effect\": -0.26338785097177464, \"value\": 4.5}, \"3\": {\"effect\": -0.028412881727576556, \"value\": 1.5}}}, {\"outValue\": 0.008995314648366948, \"simIndex\": 21.0, \"features\": {\"0\": {\"effect\": -0.0034868632044175174, \"value\": 5.5}, \"1\": {\"effect\": -0.01004252046566148, \"value\": 2.6}, \"2\": {\"effect\": -0.28158699431140166, \"value\": 4.4}, \"3\": {\"effect\": -0.015436127991670212, \"value\": 1.2}}}, {\"outValue\": 0.9615487360647108, \"simIndex\": 5.0, \"features\": {\"0\": {\"effect\": 0.05502235015988016, \"value\": 4.8}, \"1\": {\"effect\": 0.0033852698599238784, \"value\": 3.0}, \"2\": {\"effect\": 0.4959033912390808, \"value\": 1.4}, \"3\": {\"effect\": 0.08768990418430811, \"value\": 0.3}}}, {\"outValue\": 0.9614111592671171, \"simIndex\": 9.0, \"features\": {\"0\": {\"effect\": 0.04125776630667205, \"value\": 5.4}, \"1\": {\"effect\": 0.02435439938325501, \"value\": 3.9}, \"2\": {\"effect\": 0.49889866108417147, \"value\": 1.3}, \"3\": {\"effect\": 0.0773525118715006, \"value\": 0.4}}}, {\"outValue\": 0.010854090643745984, \"simIndex\": 26.0, \"features\": {\"0\": {\"effect\": -0.003827033249986636, \"value\": 5.6}, \"1\": {\"effect\": -0.008334857439628807, \"value\": 2.8}, \"2\": {\"effect\": -0.23849799100374586, \"value\": 4.9}, \"3\": {\"effect\": -0.05803384828441055, \"value\": 2.0}}}, {\"outValue\": 0.010576050436093887, \"simIndex\": 22.0, \"features\": {\"0\": {\"effect\": -0.004017382389662094, \"value\": 5.6}, \"1\": {\"effect\": -0.00454863742982814, \"value\": 3.0}, \"2\": {\"effect\": -0.2734527305203114, \"value\": 4.5}, \"3\": {\"effect\": -0.026953019845622317, \"value\": 1.5}}}, {\"outValue\": 0.9339442810991136, \"simIndex\": 1.0, \"features\": {\"0\": {\"effect\": 0.0500300739100821, \"value\": 4.8}, \"1\": {\"effect\": 0.023258379394018647, \"value\": 3.4}, \"2\": {\"effect\": 0.4251432891165823, \"value\": 1.9}, \"3\": {\"effect\": 0.11596471805691277, \"value\": 0.2}}}, {\"outValue\": 0.9512303173807564, \"simIndex\": 7.0, \"features\": {\"0\": {\"effect\": 0.05345383309323276, \"value\": 4.4}, \"1\": {\"effect\": 0.0012801156268335001, \"value\": 2.9}, \"2\": {\"effect\": 0.483603936712646, \"value\": 1.4}, \"3\": {\"effect\": 0.09334461132652616, \"value\": 0.2}}}, {\"outValue\": 0.012323949220468255, \"simIndex\": 27.0, \"features\": {\"0\": {\"effect\": -0.015841736895244193, \"value\": 6.2}, \"1\": {\"effect\": -0.008972971360039605, \"value\": 2.8}, \"2\": {\"effect\": -0.2371058011766951, \"value\": 4.8}, \"3\": {\"effect\": -0.045303361969070644, \"value\": 1.8}}}, {\"outValue\": 0.9538743277209372, \"simIndex\": 11.0, \"features\": {\"0\": {\"effect\": 0.047143686442583044, \"value\": 4.6}, \"1\": {\"effect\": 0.01250873476952541, \"value\": 3.6}, \"2\": {\"effect\": 0.49381531895642217, \"value\": 1.0}, \"3\": {\"effect\": 0.08085876693088867, \"value\": 0.2}}}, {\"outValue\": 0.9371998687980791, \"simIndex\": 2.0, \"features\": {\"0\": {\"effect\": 0.04564600454719442, \"value\": 5.1}, \"1\": {\"effect\": 0.04067494099083532, \"value\": 3.8}, \"2\": {\"effect\": 0.4302699339274991, \"value\": 1.9}, \"3\": {\"effect\": 0.10106116871103243, \"value\": 0.4}}}, {\"outValue\": 0.009461978405197191, \"simIndex\": 15.0, \"features\": {\"0\": {\"effect\": -0.015899041719790785, \"value\": 6.2}, \"1\": {\"effect\": -0.006856793841359676, \"value\": 2.9}, \"2\": {\"effect\": -0.2670300753364806, \"value\": 4.3}, \"3\": {\"effect\": -0.020299931318689568, \"value\": 1.3}}}, {\"outValue\": 0.024045548647083415, \"simIndex\": 18.0, \"features\": {\"0\": {\"effect\": -0.00041922393487922593, \"value\": 5.0}, \"1\": {\"effect\": -0.027676948492529496, \"value\": 2.3}, \"2\": {\"effect\": -0.2518265747090929, \"value\": 3.3}, \"3\": {\"effect\": -0.015579524837932734, \"value\": 1.0}}}, {\"outValue\": 0.9578875433903258, \"simIndex\": 4.0, \"features\": {\"0\": {\"effect\": 0.04921882333469929, \"value\": 5.0}, \"1\": {\"effect\": 0.017246111763748795, \"value\": 3.4}, \"2\": {\"effect\": 0.48266173401406376, \"value\": 1.6}, \"3\": {\"effect\": 0.08921305365629606, \"value\": 0.4}}}], \"plot_cmap\": \"RdBu\"}),\n", " document.getElementById('i5G13BG6DNSBOTIPOXE2Z')\n", " );\n", "</script>" ], "text/plain": [ "<IPython.core.display.HTML object>" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "svc_linear = sklearn.svm.SVC(kernel='rbf', probability=True)\n", "svc_linear.fit(X_train, Y_train)\n", "print_accuracy(svc_linear.predict)\n", "\n", "# explain all the predictions in the test set\n", "explainer = shap.KernelExplainer(svc_linear.predict_proba, X_train)\n", "shap_values = explainer.shap_values(X_test)\n", "shap.force_plot(explainer.expected_value[0], shap_values[0], X_test)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Logistic regression" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Accuracy = 96.66666666666667%\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "Using 120 background data samples could cause slower run times. Consider using shap.kmeans(data, K) to summarize the background as K weighted samples.\n", "100%|██████████| 30/30 [00:00<00:00, 34.30it/s]\n" ] }, { "data": { "text/html": [ "\n", "<div id='iF65JQYQS7AEKF1WCKS5B'>\n", "<div style='color: #900; text-align: center;'>\n", " <b>Visualization omitted, Javascript library not loaded!</b><br>\n", " Have you run `initjs()` in this notebook? If this notebook was from another\n", " user you must also trust this notebook (File -> Trust notebook). If you are viewing\n", " this notebook on github the Javascript has been stripped for security.\n", "</div></div>\n", " <script>\n", " if (window.IML) IML.ReactDom.render(\n", " IML.React.createElement(IML.AdditiveForceArrayVisualizer, {\"outNames\": [\"output value\"], \"baseValue\": 0.29490409873357165, \"link\": \"identity\", \"featureNames\": [\"sepal length (cm)\", \"sepal width (cm)\", \"petal length (cm)\", \"petal width (cm)\"], \"explanations\": [{\"outValue\": 0.0008485517765672856, \"simIndex\": 18.0, \"features\": {\"0\": {\"effect\": -0.0005270379782592594, \"value\": 5.8}, \"1\": {\"effect\": -0.011485556239406086, \"value\": 2.8}, \"2\": {\"effect\": -0.2956080859761362, \"value\": 5.1}, \"3\": {\"effect\": 0.013565133236797144, \"value\": 2.4}}}, {\"outValue\": 0.02553498322276959, \"simIndex\": 13.0, \"features\": {\"0\": {\"effect\": -0.0009202234197583786, \"value\": 6.0}, \"1\": {\"effect\": -0.10081934986145345, \"value\": 2.2}, \"2\": {\"effect\": -0.1866352849679997, \"value\": 4.0}, \"3\": {\"effect\": 0.019005742738409437, \"value\": 1.0}}}, {\"outValue\": 0.938770401584414, \"simIndex\": 1.0, \"features\": {\"0\": {\"effect\": -0.0026384407085977, \"value\": 5.5}, \"1\": {\"effect\": 0.14229321224802066, \"value\": 4.2}, \"2\": {\"effect\": 0.5246883916476248, \"value\": 1.4}, \"3\": {\"effect\": -0.020476860336205327, \"value\": 0.2}}}, {\"outValue\": 0.00019559585545392277, \"simIndex\": 16.0, \"features\": {\"0\": {\"effect\": 0.0010542173692492662, \"value\": 7.3}, \"1\": {\"effect\": -0.005646413146663393, \"value\": 2.9}, \"2\": {\"effect\": -0.30908358334190733, \"value\": 6.3}, \"3\": {\"effect\": 0.0189672762412037, \"value\": 1.8}}}, {\"outValue\": 0.8593202840628422, \"simIndex\": 8.0, \"features\": {\"0\": {\"effect\": 0.0034001375721067206, \"value\": 5.0}, \"1\": {\"effect\": 0.04567256087111082, \"value\": 3.4}, \"2\": {\"effect\": 0.5511826954813006, \"value\": 1.5}, \"3\": {\"effect\": -0.035839208595247474, \"value\": 0.2}}}, {\"outValue\": 0.0002668752509267791, \"simIndex\": 15.0, \"features\": {\"0\": {\"effect\": 0.000885322156127466, \"value\": 6.3}, \"1\": {\"effect\": 0.01155359840180964, \"value\": 3.3}, \"2\": {\"effect\": -0.3169071144996134, \"value\": 6.0}, \"3\": {\"effect\": 0.009830970459031418, \"value\": 2.5}}}, {\"outValue\": 0.8951171247799141, \"simIndex\": 10.0, \"features\": {\"0\": {\"effect\": 0.0025249172071374337, \"value\": 5.0}, \"1\": {\"effect\": 0.054634295793287324, \"value\": 3.5}, \"2\": {\"effect\": 0.5674361748866623, \"value\": 1.3}, \"3\": {\"effect\": -0.024382361840744604, \"value\": 0.3}}}, {\"outValue\": 0.02352432072370514, \"simIndex\": 17.0, \"features\": {\"0\": {\"effect\": 0.005622578995148758, \"value\": 6.7}, \"1\": {\"effect\": -0.0010316851190881604, \"value\": 3.1}, \"2\": {\"effect\": -0.2897992146818932, \"value\": 4.7}, \"3\": {\"effect\": 0.01382854279596607, \"value\": 1.5}}}, {\"outValue\": 0.01088331160524214, \"simIndex\": 24.0, \"features\": {\"0\": {\"effect\": 0.0030180485051883865, \"value\": 6.8}, \"1\": {\"effect\": -0.01936411216868336, \"value\": 2.8}, \"2\": {\"effect\": -0.28389711816457736, \"value\": 4.8}, \"3\": {\"effect\": 0.016222394699742793, \"value\": 1.4}}}, {\"outValue\": 0.07004136685522863, \"simIndex\": 14.0, \"features\": {\"0\": {\"effect\": 0.002480410903449304, \"value\": 6.1}, \"1\": {\"effect\": -0.04920595186454768, \"value\": 2.8}, \"2\": {\"effect\": -0.19594211631873307, \"value\": 4.0}, \"3\": {\"effect\": 0.017804925401488425, \"value\": 1.3}}}, {\"outValue\": 0.0005206569084255652, \"simIndex\": 23.0, \"features\": {\"0\": {\"effect\": -0.0014817096394166562, \"value\": 6.1}, \"1\": {\"effect\": -0.01997846355457497, \"value\": 2.6}, \"2\": {\"effect\": -0.29069194946211374, \"value\": 5.6}, \"3\": {\"effect\": 0.017768680830959283, \"value\": 1.4}}}, {\"outValue\": 0.04267104470741506, \"simIndex\": 22.0, \"features\": {\"0\": {\"effect\": 0.005585037055591491, \"value\": 6.4}, \"1\": {\"effect\": 0.006219589358585548, \"value\": 3.2}, \"2\": {\"effect\": -0.2759397834388761, \"value\": 4.5}, \"3\": {\"effect\": 0.011902102998542441, \"value\": 1.5}}}, {\"outValue\": 0.01094320757588213, \"simIndex\": 29.0, \"features\": {\"0\": {\"effect\": -0.0006583215389061592, \"value\": 6.1}, \"1\": {\"effect\": -0.020404316849540305, \"value\": 2.8}, \"2\": {\"effect\": -0.2785459792611429, \"value\": 4.7}, \"3\": {\"effect\": 0.015647726491899827, \"value\": 1.2}}}, {\"outValue\": 0.014071244095451352, \"simIndex\": 30.0, \"features\": {\"0\": {\"effect\": 0.0027117020965642114, \"value\": 6.5}, \"1\": {\"effect\": -0.02254296007928583, \"value\": 2.8}, \"2\": {\"effect\": -0.2757739132741845, \"value\": 4.6}, \"3\": {\"effect\": 0.014772316618785808, \"value\": 1.5}}}, {\"outValue\": 0.010671421653735913, \"simIndex\": 25.0, \"features\": {\"0\": {\"effect\": -0.0004793640946767208, \"value\": 6.1}, \"1\": {\"effect\": -0.013349543429888366, \"value\": 2.9}, \"2\": {\"effect\": -0.2849602233476376, \"value\": 4.7}, \"3\": {\"effect\": 0.014556453792366975, \"value\": 1.4}}}, {\"outValue\": 0.8014985473381948, \"simIndex\": 4.0, \"features\": {\"0\": {\"effect\": 0.005566969301539326, \"value\": 4.9}, \"1\": {\"effect\": 0.007886084170613095, \"value\": 3.1}, \"2\": {\"effect\": 0.5438198581575491, \"value\": 1.5}, \"3\": {\"effect\": -0.05067846302507828, \"value\": 0.1}}}, {\"outValue\": 0.015845119588902, \"simIndex\": 28.0, \"features\": {\"0\": {\"effect\": -0.0009912173223413645, \"value\": 6.0}, \"1\": {\"effect\": -0.01676271003814564, \"value\": 2.9}, \"2\": {\"effect\": -0.2740202785736299, \"value\": 4.5}, \"3\": {\"effect\": 0.01271522678944731, \"value\": 1.5}}}, {\"outValue\": 0.010960257036508048, \"simIndex\": 20.0, \"features\": {\"0\": {\"effect\": -0.0050652453042208945, \"value\": 5.5}, \"1\": {\"effect\": -0.03835247743240078, \"value\": 2.6}, \"2\": {\"effect\": -0.25561520999631065, \"value\": 4.4}, \"3\": {\"effect\": 0.015089091035868696, \"value\": 1.2}}}, {\"outValue\": 0.8240551327889951, \"simIndex\": 5.0, \"features\": {\"0\": {\"effect\": 0.006551726295184912, \"value\": 4.8}, \"1\": {\"effect\": -0.003889843782124036, \"value\": 3.0}, \"2\": {\"effect\": 0.561214345395976, \"value\": 1.4}, \"3\": {\"effect\": -0.03472519385361339, \"value\": 0.3}}}, {\"outValue\": 0.9349753324042187, \"simIndex\": 2.0, \"features\": {\"0\": {\"effect\": -0.0015494436335842243, \"value\": 5.4}, \"1\": {\"effect\": 0.10038405388252047, \"value\": 3.9}, \"2\": {\"effect\": 0.5540812127215047, \"value\": 1.3}, \"3\": {\"effect\": -0.012844589299793818, \"value\": 0.4}}}, {\"outValue\": 0.0017883501202933805, \"simIndex\": 19.0, \"features\": {\"0\": {\"effect\": -0.0018467703405370128, \"value\": 5.6}, \"1\": {\"effect\": -0.012674258219361828, \"value\": 2.8}, \"2\": {\"effect\": -0.2925023029100893, \"value\": 4.9}, \"3\": {\"effect\": 0.013907582856709844, \"value\": 2.0}}}, {\"outValue\": 0.01397333186194566, \"simIndex\": 27.0, \"features\": {\"0\": {\"effect\": -0.004948564477160966, \"value\": 5.6}, \"1\": {\"effect\": -0.00883091787720236, \"value\": 3.0}, \"2\": {\"effect\": -0.27828778234314067, \"value\": 4.5}, \"3\": {\"effect\": 0.011136497825878, \"value\": 1.5}}}, {\"outValue\": 0.8331272879168006, \"simIndex\": 7.0, \"features\": {\"0\": {\"effect\": 0.0028260818813675703, \"value\": 4.8}, \"1\": {\"effect\": 0.05210522241944021, \"value\": 3.4}, \"2\": {\"effect\": 0.5196841442760773, \"value\": 1.9}, \"3\": {\"effect\": -0.03639225939365609, \"value\": 0.2}}}, {\"outValue\": 0.8025158617099817, \"simIndex\": 6.0, \"features\": {\"0\": {\"effect\": 0.01015565174214439, \"value\": 4.4}, \"1\": {\"effect\": -0.016788860312015597, \"value\": 2.9}, \"2\": {\"effect\": 0.5564830422518592, \"value\": 1.4}, \"3\": {\"effect\": -0.042238070705577835, \"value\": 0.2}}}, {\"outValue\": 0.004202593572507407, \"simIndex\": 26.0, \"features\": {\"0\": {\"effect\": -0.00011845967973811433, \"value\": 6.2}, \"1\": {\"effect\": -0.015033335124967628, \"value\": 2.8}, \"2\": {\"effect\": -0.2895273849404595, \"value\": 4.8}, \"3\": {\"effect\": 0.013977674584100985, \"value\": 1.8}}}, {\"outValue\": 0.9166741099496956, \"simIndex\": 11.0, \"features\": {\"0\": {\"effect\": 0.003786024812351907, \"value\": 4.6}, \"1\": {\"effect\": 0.061914803506107174, \"value\": 3.6}, \"2\": {\"effect\": 0.5803389879686338, \"value\": 1.0}, \"3\": {\"effect\": -0.024269805070968875, \"value\": 0.2}}}, {\"outValue\": 0.904522737860127, \"simIndex\": 3.0, \"features\": {\"0\": {\"effect\": -0.0007641975622099118, \"value\": 5.1}, \"1\": {\"effect\": 0.10293724111415942, \"value\": 3.8}, \"2\": {\"effect\": 0.5240928816503081, \"value\": 1.9}, \"3\": {\"effect\": -0.016647286075702095, \"value\": 0.4}}}, {\"outValue\": 0.04094286330825897, \"simIndex\": 21.0, \"features\": {\"0\": {\"effect\": 0.0025789267142311, \"value\": 6.2}, \"1\": {\"effect\": -0.025637402410820465, \"value\": 2.9}, \"2\": {\"effect\": -0.24676040961291668, \"value\": 4.3}, \"3\": {\"effect\": 0.01585764988419336, \"value\": 1.3}}}, {\"outValue\": 0.10460163948054485, \"simIndex\": 12.0, \"features\": {\"0\": {\"effect\": -0.03013432509394686, \"value\": 5.0}, \"1\": {\"effect\": -0.16754842266258785, \"value\": 2.3}, \"2\": {\"effect\": -0.020971263224897785, \"value\": 3.3}, \"3\": {\"effect\": 0.0283515517284057, \"value\": 1.0}}}, {\"outValue\": 0.8763974572809365, \"simIndex\": 9.0, \"features\": {\"0\": {\"effect\": 0.002672005841727332, \"value\": 5.0}, \"1\": {\"effect\": 0.046357078672041974, \"value\": 3.4}, \"2\": {\"effect\": 0.55425126161897, \"value\": 1.6}, \"3\": {\"effect\": -0.02178698758537434, \"value\": 0.4}}}], \"plot_cmap\": \"RdBu\"}),\n", " document.getElementById('iF65JQYQS7AEKF1WCKS5B')\n", " );\n", "</script>" ], "text/plain": [ "<IPython.core.display.HTML object>" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "linear_lr = sklearn.linear_model.LogisticRegression()\n", "linear_lr.fit(X_train, Y_train)\n", "print_accuracy(linear_lr.predict)\n", "\n", "# explain all the predictions in the test set\n", "explainer = shap.KernelExplainer(linear_lr.predict_proba, X_train)\n", "shap_values = explainer.shap_values(X_test)\n", "shap.force_plot(explainer.expected_value[0], shap_values[0], X_test)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Decision tree" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Accuracy = 100.0%\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "Using 120 background data samples could cause slower run times. Consider using shap.kmeans(data, K) to summarize the background as K weighted samples.\n", "100%|██████████| 30/30 [00:00<00:00, 40.56it/s]\n" ] }, { "data": { "text/html": [ "\n", "<div id='iB2ZJNCECYWGQ53L11SSV'>\n", "<div style='color: #900; text-align: center;'>\n", " <b>Visualization omitted, Javascript library not loaded!</b><br>\n", " Have you run `initjs()` in this notebook? If this notebook was from another\n", " user you must also trust this notebook (File -> Trust notebook). If you are viewing\n", " this notebook on github the Javascript has been stripped for security.\n", "</div></div>\n", " <script>\n", " if (window.IML) IML.ReactDom.render(\n", " IML.React.createElement(IML.AdditiveForceArrayVisualizer, {\"outNames\": [\"output value\"], \"baseValue\": 0.3250000000000002, \"link\": \"identity\", \"featureNames\": [\"sepal length (cm)\", \"sepal width (cm)\", \"petal length (cm)\", \"petal width (cm)\"], \"explanations\": [{\"outValue\": -5.551115123125783e-17, \"simIndex\": 29.0, \"features\": {\"0\": {\"effect\": 0.0, \"value\": 5.8}, \"1\": {\"effect\": 0.0, \"value\": 2.8}, \"2\": {\"effect\": -0.32500000000000023, \"value\": 5.1}, \"3\": {\"effect\": 0.0, \"value\": 2.4}}}, {\"outValue\": -5.551115123125783e-17, \"simIndex\": 30.0, \"features\": {\"0\": {\"effect\": 0.0, \"value\": 6.0}, \"1\": {\"effect\": 0.0, \"value\": 2.2}, \"2\": {\"effect\": -0.32500000000000023, \"value\": 4.0}, \"3\": {\"effect\": 0.0, \"value\": 1.0}}}, {\"outValue\": 0.9999999999999991, \"simIndex\": 10.0, \"features\": {\"0\": {\"effect\": 0.0, \"value\": 5.5}, \"1\": {\"effect\": 0.0, \"value\": 4.2}, \"2\": {\"effect\": 0.6749999999999989, \"value\": 1.4}, \"3\": {\"effect\": 0.0, \"value\": 0.2}}}, {\"outValue\": -5.551115123125783e-17, \"simIndex\": 28.0, \"features\": {\"0\": {\"effect\": 0.0, \"value\": 7.3}, \"1\": {\"effect\": 0.0, \"value\": 2.9}, \"2\": {\"effect\": -0.32500000000000023, \"value\": 6.3}, \"3\": {\"effect\": 0.0, \"value\": 1.8}}}, {\"outValue\": 0.9999999999999991, \"simIndex\": 11.0, \"features\": {\"0\": {\"effect\": 0.0, \"value\": 5.0}, \"1\": {\"effect\": 0.0, \"value\": 3.4}, \"2\": {\"effect\": 0.6749999999999989, \"value\": 1.5}, \"3\": {\"effect\": 0.0, \"value\": 0.2}}}, {\"outValue\": -5.551115123125783e-17, \"simIndex\": 27.0, \"features\": {\"0\": {\"effect\": 0.0, \"value\": 6.3}, \"1\": {\"effect\": 0.0, \"value\": 3.3}, \"2\": {\"effect\": -0.32500000000000023, \"value\": 6.0}, \"3\": {\"effect\": 0.0, \"value\": 2.5}}}, {\"outValue\": 0.9999999999999991, \"simIndex\": 9.0, \"features\": {\"0\": {\"effect\": 0.0, \"value\": 5.0}, \"1\": {\"effect\": 0.0, \"value\": 3.5}, \"2\": {\"effect\": 0.6749999999999989, \"value\": 1.3}, \"3\": {\"effect\": 0.0, \"value\": 0.3}}}, {\"outValue\": -5.551115123125783e-17, \"simIndex\": 26.0, \"features\": {\"0\": {\"effect\": 0.0, \"value\": 6.7}, \"1\": {\"effect\": 0.0, \"value\": 3.1}, \"2\": {\"effect\": -0.32500000000000023, \"value\": 4.7}, \"3\": {\"effect\": 0.0, \"value\": 1.5}}}, {\"outValue\": -5.551115123125783e-17, \"simIndex\": 25.0, \"features\": {\"0\": {\"effect\": 0.0, \"value\": 6.8}, \"1\": {\"effect\": 0.0, \"value\": 2.8}, \"2\": {\"effect\": -0.32500000000000023, \"value\": 4.8}, \"3\": {\"effect\": 0.0, \"value\": 1.4}}}, {\"outValue\": -5.551115123125783e-17, \"simIndex\": 24.0, \"features\": {\"0\": {\"effect\": 0.0, \"value\": 6.1}, \"1\": {\"effect\": 0.0, \"value\": 2.8}, \"2\": {\"effect\": -0.32500000000000023, \"value\": 4.0}, \"3\": {\"effect\": 0.0, \"value\": 1.3}}}, {\"outValue\": -5.551115123125783e-17, \"simIndex\": 23.0, \"features\": {\"0\": {\"effect\": 0.0, \"value\": 6.1}, \"1\": {\"effect\": 0.0, \"value\": 2.6}, \"2\": {\"effect\": -0.32500000000000023, \"value\": 5.6}, \"3\": {\"effect\": 0.0, \"value\": 1.4}}}, {\"outValue\": -5.551115123125783e-17, \"simIndex\": 22.0, \"features\": {\"0\": {\"effect\": 0.0, \"value\": 6.4}, \"1\": {\"effect\": 0.0, \"value\": 3.2}, \"2\": {\"effect\": -0.32500000000000023, \"value\": 4.5}, \"3\": {\"effect\": 0.0, \"value\": 1.5}}}, {\"outValue\": -5.551115123125783e-17, \"simIndex\": 21.0, \"features\": {\"0\": {\"effect\": 0.0, \"value\": 6.1}, \"1\": {\"effect\": 0.0, \"value\": 2.8}, \"2\": {\"effect\": -0.32500000000000023, \"value\": 4.7}, \"3\": {\"effect\": 0.0, \"value\": 1.2}}}, {\"outValue\": -5.551115123125783e-17, \"simIndex\": 20.0, \"features\": {\"0\": {\"effect\": 0.0, \"value\": 6.5}, \"1\": {\"effect\": 0.0, \"value\": 2.8}, \"2\": {\"effect\": -0.32500000000000023, \"value\": 4.6}, \"3\": {\"effect\": 0.0, \"value\": 1.5}}}, {\"outValue\": -5.551115123125783e-17, \"simIndex\": 19.0, \"features\": {\"0\": {\"effect\": 0.0, \"value\": 6.1}, \"1\": {\"effect\": 0.0, \"value\": 2.9}, \"2\": {\"effect\": -0.32500000000000023, \"value\": 4.7}, \"3\": {\"effect\": 0.0, \"value\": 1.4}}}, {\"outValue\": 0.9999999999999991, \"simIndex\": 8.0, \"features\": {\"0\": {\"effect\": 0.0, \"value\": 4.9}, \"1\": {\"effect\": 0.0, \"value\": 3.1}, \"2\": {\"effect\": 0.6749999999999989, \"value\": 1.5}, \"3\": {\"effect\": 0.0, \"value\": 0.1}}}, {\"outValue\": -5.551115123125783e-17, \"simIndex\": 18.0, \"features\": {\"0\": {\"effect\": 0.0, \"value\": 6.0}, \"1\": {\"effect\": 0.0, \"value\": 2.9}, \"2\": {\"effect\": -0.32500000000000023, \"value\": 4.5}, \"3\": {\"effect\": 0.0, \"value\": 1.5}}}, {\"outValue\": -5.551115123125783e-17, \"simIndex\": 17.0, \"features\": {\"0\": {\"effect\": 0.0, \"value\": 5.5}, \"1\": {\"effect\": 0.0, \"value\": 2.6}, \"2\": {\"effect\": -0.32500000000000023, \"value\": 4.4}, \"3\": {\"effect\": 0.0, \"value\": 1.2}}}, {\"outValue\": 0.9999999999999991, \"simIndex\": 7.0, \"features\": {\"0\": {\"effect\": 0.0, \"value\": 4.8}, \"1\": {\"effect\": 0.0, \"value\": 3.0}, \"2\": {\"effect\": 0.6749999999999989, \"value\": 1.4}, \"3\": {\"effect\": 0.0, \"value\": 0.3}}}, {\"outValue\": 0.9999999999999991, \"simIndex\": 6.0, \"features\": {\"0\": {\"effect\": 0.0, \"value\": 5.4}, \"1\": {\"effect\": 0.0, \"value\": 3.9}, \"2\": {\"effect\": 0.6749999999999989, \"value\": 1.3}, \"3\": {\"effect\": 0.0, \"value\": 0.4}}}, {\"outValue\": -5.551115123125783e-17, \"simIndex\": 16.0, \"features\": {\"0\": {\"effect\": 0.0, \"value\": 5.6}, \"1\": {\"effect\": 0.0, \"value\": 2.8}, \"2\": {\"effect\": -0.32500000000000023, \"value\": 4.9}, \"3\": {\"effect\": 0.0, \"value\": 2.0}}}, {\"outValue\": -5.551115123125783e-17, \"simIndex\": 15.0, \"features\": {\"0\": {\"effect\": 0.0, \"value\": 5.6}, \"1\": {\"effect\": 0.0, \"value\": 3.0}, \"2\": {\"effect\": -0.32500000000000023, \"value\": 4.5}, \"3\": {\"effect\": 0.0, \"value\": 1.5}}}, {\"outValue\": 0.9999999999999991, \"simIndex\": 5.0, \"features\": {\"0\": {\"effect\": 0.0, \"value\": 4.8}, \"1\": {\"effect\": 0.0, \"value\": 3.4}, \"2\": {\"effect\": 0.6749999999999989, \"value\": 1.9}, \"3\": {\"effect\": 0.0, \"value\": 0.2}}}, {\"outValue\": 0.9999999999999991, \"simIndex\": 4.0, \"features\": {\"0\": {\"effect\": 0.0, \"value\": 4.4}, \"1\": {\"effect\": 0.0, \"value\": 2.9}, \"2\": {\"effect\": 0.6749999999999989, \"value\": 1.4}, \"3\": {\"effect\": 0.0, \"value\": 0.2}}}, {\"outValue\": -5.551115123125783e-17, \"simIndex\": 14.0, \"features\": {\"0\": {\"effect\": 0.0, \"value\": 6.2}, \"1\": {\"effect\": 0.0, \"value\": 2.8}, \"2\": {\"effect\": -0.32500000000000023, \"value\": 4.8}, \"3\": {\"effect\": 0.0, \"value\": 1.8}}}, {\"outValue\": 0.9999999999999991, \"simIndex\": 3.0, \"features\": {\"0\": {\"effect\": 0.0, \"value\": 4.6}, \"1\": {\"effect\": 0.0, \"value\": 3.6}, \"2\": {\"effect\": 0.6749999999999989, \"value\": 1.0}, \"3\": {\"effect\": 0.0, \"value\": 0.2}}}, {\"outValue\": 0.9999999999999991, \"simIndex\": 2.0, \"features\": {\"0\": {\"effect\": 0.0, \"value\": 5.1}, \"1\": {\"effect\": 0.0, \"value\": 3.8}, \"2\": {\"effect\": 0.6749999999999989, \"value\": 1.9}, \"3\": {\"effect\": 0.0, \"value\": 0.4}}}, {\"outValue\": -5.551115123125783e-17, \"simIndex\": 13.0, \"features\": {\"0\": {\"effect\": 0.0, \"value\": 6.2}, \"1\": {\"effect\": 0.0, \"value\": 2.9}, \"2\": {\"effect\": -0.32500000000000023, \"value\": 4.3}, \"3\": {\"effect\": 0.0, \"value\": 1.3}}}, {\"outValue\": -5.551115123125783e-17, \"simIndex\": 12.0, \"features\": {\"0\": {\"effect\": 0.0, \"value\": 5.0}, \"1\": {\"effect\": 0.0, \"value\": 2.3}, \"2\": {\"effect\": -0.32500000000000023, \"value\": 3.3}, \"3\": {\"effect\": 0.0, \"value\": 1.0}}}, {\"outValue\": 0.9999999999999991, \"simIndex\": 1.0, \"features\": {\"0\": {\"effect\": 0.0, \"value\": 5.0}, \"1\": {\"effect\": 0.0, \"value\": 3.4}, \"2\": {\"effect\": 0.6749999999999989, \"value\": 1.6}, \"3\": {\"effect\": 0.0, \"value\": 0.4}}}], \"plot_cmap\": \"RdBu\"}),\n", " document.getElementById('iB2ZJNCECYWGQ53L11SSV')\n", " );\n", "</script>" ], "text/plain": [ "<IPython.core.display.HTML object>" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import sklearn.tree \n", "dtree = sklearn.tree.DecisionTreeClassifier(min_samples_split=2)\n", "dtree.fit(X_train, Y_train)\n", "print_accuracy(dtree.predict)\n", "\n", "# explain all the predictions in the test set\n", "explainer = shap.KernelExplainer(dtree.predict_proba, X_train)\n", "shap_values = explainer.shap_values(X_test)\n", "shap.force_plot(explainer.expected_value[0], shap_values[0], X_test)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Random forest" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Accuracy = 100.0%\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "Using 120 background data samples could cause slower run times. Consider using shap.kmeans(data, K) to summarize the background as K weighted samples.\n", "100%|██████████| 30/30 [00:01<00:00, 21.58it/s]\n" ] }, { "data": { "text/html": [ "\n", "<div id='iUWASR1BXD71OIPN6X0ZL'>\n", "<div style='color: #900; text-align: center;'>\n", " <b>Visualization omitted, Javascript library not loaded!</b><br>\n", " Have you run `initjs()` in this notebook? If this notebook was from another\n", " user you must also trust this notebook (File -> Trust notebook). If you are viewing\n", " this notebook on github the Javascript has been stripped for security.\n", "</div></div>\n", " <script>\n", " if (window.IML) IML.ReactDom.render(\n", " IML.React.createElement(IML.AdditiveForceArrayVisualizer, {\"outNames\": [\"output value\"], \"baseValue\": 0.3245833333333335, \"link\": \"identity\", \"featureNames\": [\"sepal length (cm)\", \"sepal width (cm)\", \"petal length (cm)\", \"petal width (cm)\"], \"explanations\": [{\"outValue\": 0.0, \"simIndex\": 17.0, \"features\": {\"0\": {\"effect\": -0.010847222222222272, \"value\": 5.8}, \"1\": {\"effect\": -0.007097222222222324, \"value\": 2.8}, \"2\": {\"effect\": -0.14988888888888893, \"value\": 5.1}, \"3\": {\"effect\": -0.15674999999999997, \"value\": 2.4}}}, {\"outValue\": 0.0, \"simIndex\": 13.0, \"features\": {\"0\": {\"effect\": -0.012597222222222162, \"value\": 6.0}, \"1\": {\"effect\": -0.009305555555555553, \"value\": 2.2}, \"2\": {\"effect\": -0.14287500000000009, \"value\": 4.0}, \"3\": {\"effect\": -0.1598055555555557, \"value\": 1.0}}}, {\"outValue\": 1.0, \"simIndex\": 26.0, \"features\": {\"0\": {\"effect\": 0.008555555555555705, \"value\": 5.5}, \"1\": {\"effect\": 0.035416666666666596, \"value\": 4.2}, \"2\": {\"effect\": 0.3016666666666666, \"value\": 1.4}, \"3\": {\"effect\": 0.32977777777777767, \"value\": 0.2}}}, {\"outValue\": 0.0, \"simIndex\": 18.0, \"features\": {\"0\": {\"effect\": -0.01786111111111116, \"value\": 7.3}, \"1\": {\"effect\": -0.004069444444444528, \"value\": 2.9}, \"2\": {\"effect\": -0.1487222222222222, \"value\": 6.3}, \"3\": {\"effect\": -0.15393055555555563, \"value\": 1.8}}}, {\"outValue\": 1.0, \"simIndex\": 24.0, \"features\": {\"0\": {\"effect\": 0.03554166666666689, \"value\": 5.0}, \"1\": {\"effect\": 0.005458333333333454, \"value\": 3.4}, \"2\": {\"effect\": 0.30583333333333323, \"value\": 1.5}, \"3\": {\"effect\": 0.328583333333333, \"value\": 0.2}}}, {\"outValue\": 0.0, \"simIndex\": 15.0, \"features\": {\"0\": {\"effect\": -0.021277777777777868, \"value\": 6.3}, \"1\": {\"effect\": 0.00018055555555557268, \"value\": 3.3}, \"2\": {\"effect\": -0.14818055555555557, \"value\": 6.0}, \"3\": {\"effect\": -0.15530555555555564, \"value\": 2.5}}}, {\"outValue\": 1.0, \"simIndex\": 29.0, \"features\": {\"0\": {\"effect\": 0.027444444444444382, \"value\": 5.0}, \"1\": {\"effect\": 0.011777777777778026, \"value\": 3.5}, \"2\": {\"effect\": 0.3064722222222222, \"value\": 1.3}, \"3\": {\"effect\": 0.3297222222222219, \"value\": 0.3}}}, {\"outValue\": 0.0, \"simIndex\": 6.0, \"features\": {\"0\": {\"effect\": -0.018736111111111148, \"value\": 6.7}, \"1\": {\"effect\": -0.0031527777777777682, \"value\": 3.1}, \"2\": {\"effect\": -0.14233333333333337, \"value\": 4.7}, \"3\": {\"effect\": -0.16036111111111123, \"value\": 1.5}}}, {\"outValue\": 0.0, \"simIndex\": 19.0, \"features\": {\"0\": {\"effect\": -0.015250000000000027, \"value\": 6.8}, \"1\": {\"effect\": -0.007333333333333428, \"value\": 2.8}, \"2\": {\"effect\": -0.14775000000000005, \"value\": 4.8}, \"3\": {\"effect\": -0.15425, \"value\": 1.4}}}, {\"outValue\": 0.0, \"simIndex\": 11.0, \"features\": {\"0\": {\"effect\": -0.015250000000000014, \"value\": 6.1}, \"1\": {\"effect\": -0.007333333333333428, \"value\": 2.8}, \"2\": {\"effect\": -0.14287500000000003, \"value\": 4.0}, \"3\": {\"effect\": -0.15912500000000002, \"value\": 1.3}}}, {\"outValue\": 0.0, \"simIndex\": 16.0, \"features\": {\"0\": {\"effect\": -0.01498611111111113, \"value\": 6.1}, \"1\": {\"effect\": -0.007805555555555607, \"value\": 2.6}, \"2\": {\"effect\": -0.1546944444444445, \"value\": 5.6}, \"3\": {\"effect\": -0.14709722222222227, \"value\": 1.4}}}, {\"outValue\": 0.0, \"simIndex\": 7.0, \"features\": {\"0\": {\"effect\": -0.018736111111111148, \"value\": 6.4}, \"1\": {\"effect\": -0.0031527777777777682, \"value\": 3.2}, \"2\": {\"effect\": -0.14233333333333337, \"value\": 4.5}, \"3\": {\"effect\": -0.16036111111111123, \"value\": 1.5}}}, {\"outValue\": 0.0, \"simIndex\": 8.0, \"features\": {\"0\": {\"effect\": -0.015722222222222262, \"value\": 6.1}, \"1\": {\"effect\": -0.007805555555555635, \"value\": 2.8}, \"2\": {\"effect\": -0.142875, \"value\": 4.7}, \"3\": {\"effect\": -0.1581805555555556, \"value\": 1.2}}}, {\"outValue\": 0.0, \"simIndex\": 12.0, \"features\": {\"0\": {\"effect\": -0.015250000000000014, \"value\": 6.5}, \"1\": {\"effect\": -0.007333333333333428, \"value\": 2.8}, \"2\": {\"effect\": -0.14287500000000003, \"value\": 4.6}, \"3\": {\"effect\": -0.15912500000000002, \"value\": 1.5}}}, {\"outValue\": 0.0, \"simIndex\": 10.0, \"features\": {\"0\": {\"effect\": -0.015250000000000014, \"value\": 6.1}, \"1\": {\"effect\": -0.007333333333333428, \"value\": 2.9}, \"2\": {\"effect\": -0.14287500000000003, \"value\": 4.7}, \"3\": {\"effect\": -0.15912500000000002, \"value\": 1.4}}}, {\"outValue\": 1.0, \"simIndex\": 22.0, \"features\": {\"0\": {\"effect\": 0.035750000000000254, \"value\": 4.9}, \"1\": {\"effect\": 0.0052500000000001434, \"value\": 3.1}, \"2\": {\"effect\": 0.30583333333333323, \"value\": 1.5}, \"3\": {\"effect\": 0.3285833333333329, \"value\": 0.1}}}, {\"outValue\": 0.0, \"simIndex\": 14.0, \"features\": {\"0\": {\"effect\": -0.013624999999999943, \"value\": 6.0}, \"1\": {\"effect\": -0.007333333333333414, \"value\": 2.9}, \"2\": {\"effect\": -0.14287500000000009, \"value\": 4.5}, \"3\": {\"effect\": -0.16075000000000006, \"value\": 1.5}}}, {\"outValue\": 0.0, \"simIndex\": 2.0, \"features\": {\"0\": {\"effect\": -0.003916666666666721, \"value\": 5.5}, \"1\": {\"effect\": -0.01325000000000004, \"value\": 2.6}, \"2\": {\"effect\": -0.1456666666666667, \"value\": 4.4}, \"3\": {\"effect\": -0.16175000000000006, \"value\": 1.2}}}, {\"outValue\": 1.0, \"simIndex\": 21.0, \"features\": {\"0\": {\"effect\": 0.03501388888888923, \"value\": 4.8}, \"1\": {\"effect\": 0.002888888888889024, \"value\": 3.0}, \"2\": {\"effect\": 0.308472222222222, \"value\": 1.4}, \"3\": {\"effect\": 0.32904166666666634, \"value\": 0.3}}}, {\"outValue\": 1.0, \"simIndex\": 27.0, \"features\": {\"0\": {\"effect\": 0.01740277777777771, \"value\": 5.4}, \"1\": {\"effect\": 0.020236111111111538, \"value\": 3.9}, \"2\": {\"effect\": 0.30705555555555547, \"value\": 1.3}, \"3\": {\"effect\": 0.3307222222222218, \"value\": 0.4}}}, {\"outValue\": 0.0, \"simIndex\": 3.0, \"features\": {\"0\": {\"effect\": -0.007611111111111138, \"value\": 5.6}, \"1\": {\"effect\": -0.007500000000000076, \"value\": 2.8}, \"2\": {\"effect\": -0.14773611111111115, \"value\": 4.9}, \"3\": {\"effect\": -0.16173611111111114, \"value\": 2.0}}}, {\"outValue\": 0.0, \"simIndex\": 4.0, \"features\": {\"0\": {\"effect\": -0.006888888888888958, \"value\": 5.6}, \"1\": {\"effect\": -0.006972222222222144, \"value\": 3.0}, \"2\": {\"effect\": -0.1440416666666667, \"value\": 4.5}, \"3\": {\"effect\": -0.1666805555555557, \"value\": 1.5}}}, {\"outValue\": 1.0, \"simIndex\": 25.0, \"features\": {\"0\": {\"effect\": 0.03554166666666689, \"value\": 4.8}, \"1\": {\"effect\": 0.005458333333333454, \"value\": 3.4}, \"2\": {\"effect\": 0.30583333333333323, \"value\": 1.9}, \"3\": {\"effect\": 0.328583333333333, \"value\": 0.2}}}, {\"outValue\": 0.98, \"simIndex\": 20.0, \"features\": {\"0\": {\"effect\": 0.03198611111111127, \"value\": 4.4}, \"1\": {\"effect\": -0.008847222222222423, \"value\": 2.9}, \"2\": {\"effect\": 0.30847222222222237, \"value\": 1.4}, \"3\": {\"effect\": 0.32380555555555535, \"value\": 0.2}}}, {\"outValue\": 0.0, \"simIndex\": 5.0, \"features\": {\"0\": {\"effect\": -0.01634722222222229, \"value\": 6.2}, \"1\": {\"effect\": -0.005236111111111191, \"value\": 2.8}, \"2\": {\"effect\": -0.14177777777777775, \"value\": 4.8}, \"3\": {\"effect\": -0.16122222222222227, \"value\": 1.8}}}, {\"outValue\": 1.0, \"simIndex\": 30.0, \"features\": {\"0\": {\"effect\": 0.02472222222222223, \"value\": 4.6}, \"1\": {\"effect\": 0.01393055555555578, \"value\": 3.6}, \"2\": {\"effect\": 0.3064722222222221, \"value\": 1.0}, \"3\": {\"effect\": 0.33029166666666643, \"value\": 0.2}}}, {\"outValue\": 1.0, \"simIndex\": 28.0, \"features\": {\"0\": {\"effect\": 0.01981944444444439, \"value\": 5.1}, \"1\": {\"effect\": 0.01781944444444475, \"value\": 3.8}, \"2\": {\"effect\": 0.30705555555555547, \"value\": 1.9}, \"3\": {\"effect\": 0.3307222222222219, \"value\": 0.4}}}, {\"outValue\": 0.0, \"simIndex\": 9.0, \"features\": {\"0\": {\"effect\": -0.015250000000000014, \"value\": 6.2}, \"1\": {\"effect\": -0.007333333333333428, \"value\": 2.9}, \"2\": {\"effect\": -0.14287500000000003, \"value\": 4.3}, \"3\": {\"effect\": -0.15912500000000002, \"value\": 1.3}}}, {\"outValue\": 0.0, \"simIndex\": 1.0, \"features\": {\"0\": {\"effect\": 0.0033055555555555616, \"value\": 5.0}, \"1\": {\"effect\": -0.013777777777777778, \"value\": 2.3}, \"2\": {\"effect\": -0.15061111111111114, \"value\": 3.3}, \"3\": {\"effect\": -0.16350000000000015, \"value\": 1.0}}}, {\"outValue\": 1.0, \"simIndex\": 23.0, \"features\": {\"0\": {\"effect\": 0.03554166666666689, \"value\": 5.0}, \"1\": {\"effect\": 0.005458333333333454, \"value\": 3.4}, \"2\": {\"effect\": 0.30583333333333323, \"value\": 1.6}, \"3\": {\"effect\": 0.328583333333333, \"value\": 0.4}}}], \"plot_cmap\": \"RdBu\"}),\n", " document.getElementById('iUWASR1BXD71OIPN6X0ZL')\n", " );\n", "</script>" ], "text/plain": [ "<IPython.core.display.HTML object>" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from sklearn.ensemble import RandomForestClassifier\n", "rforest = RandomForestClassifier(n_estimators=100, max_depth=None, min_samples_split=2, random_state=0)\n", "rforest.fit(X_train, Y_train)\n", "print_accuracy(rforest.predict)\n", "\n", "# explain all the predictions in the test set\n", "explainer = shap.KernelExplainer(rforest.predict_proba, X_train)\n", "shap_values = explainer.shap_values(X_test)\n", "shap.force_plot(explainer.expected_value[0], shap_values[0], X_test)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Neural network" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Accuracy = 100.0%\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "Using 120 background data samples could cause slower run times. Consider using shap.kmeans(data, K) to summarize the background as K weighted samples.\n", "100%|██████████| 30/30 [00:00<00:00, 46.62it/s]\n" ] }, { "data": { "text/html": [ "\n", "<div id='iBMZF960UXUNLUXJFVKM5'>\n", "<div style='color: #900; text-align: center;'>\n", " <b>Visualization omitted, Javascript library not loaded!</b><br>\n", " Have you run `initjs()` in this notebook? If this notebook was from another\n", " user you must also trust this notebook (File -> Trust notebook). If you are viewing\n", " this notebook on github the Javascript has been stripped for security.\n", "</div></div>\n", " <script>\n", " if (window.IML) IML.ReactDom.render(\n", " IML.React.createElement(IML.AdditiveForceArrayVisualizer, {\"outNames\": [\"output value\"], \"baseValue\": 0.3256232550695577, \"link\": \"identity\", \"featureNames\": [\"sepal length (cm)\", \"sepal width (cm)\", \"petal length (cm)\", \"petal width (cm)\"], \"explanations\": [{\"outValue\": 3.9981953520729085e-06, \"simIndex\": 13.0, \"features\": {\"0\": {\"effect\": 0.016683179333786435, \"value\": 5.8}, \"1\": {\"effect\": -0.009971786039295272, \"value\": 2.8}, \"2\": {\"effect\": -0.2643422553421758, \"value\": 5.1}, \"3\": {\"effect\": -0.06798839482652097, \"value\": 2.4}}}, {\"outValue\": 0.007136638525963301, \"simIndex\": 28.0, \"features\": {\"0\": {\"effect\": 0.006767997284734456, \"value\": 6.0}, \"1\": {\"effect\": -0.024191192052454014, \"value\": 2.2}, \"2\": {\"effect\": -0.29147638832604894, \"value\": 4.0}, \"3\": {\"effect\": -0.009587033449825866, \"value\": 1.0}}}, {\"outValue\": 0.9997164745884908, \"simIndex\": 3.0, \"features\": {\"0\": {\"effect\": -0.007922322222060962, \"value\": 5.5}, \"1\": {\"effect\": 0.028602238700117022, \"value\": 4.2}, \"2\": {\"effect\": 0.6198724640837557, \"value\": 1.4}, \"3\": {\"effect\": 0.03354083895712123, \"value\": 0.2}}}, {\"outValue\": 3.9981953520729085e-06, \"simIndex\": 24.0, \"features\": {\"0\": {\"effect\": 0.02369120665026489, \"value\": 7.3}, \"1\": {\"effect\": -0.0014612510898511788, \"value\": 2.9}, \"2\": {\"effect\": -0.32199906710060866, \"value\": 6.3}, \"3\": {\"effect\": -0.0258501453340107, \"value\": 1.8}}}, {\"outValue\": 0.9969475247040005, \"simIndex\": 8.0, \"features\": {\"0\": {\"effect\": -0.02580393676382786, \"value\": 5.0}, \"1\": {\"effect\": 0.014173418228642265, \"value\": 3.4}, \"2\": {\"effect\": 0.6231087268336446, \"value\": 1.5}, \"3\": {\"effect\": 0.0598460613359838, \"value\": 0.2}}}, {\"outValue\": 3.9981953520729085e-06, \"simIndex\": 14.0, \"features\": {\"0\": {\"effect\": 0.024605440716419222, \"value\": 6.3}, \"1\": {\"effect\": 0.0009641926780746546, \"value\": 3.3}, \"2\": {\"effect\": -0.28834782607881987, \"value\": 6.0}, \"3\": {\"effect\": -0.06284106418987961, \"value\": 2.5}}}, {\"outValue\": 0.9982933463249184, \"simIndex\": 5.0, \"features\": {\"0\": {\"effect\": -0.01681589399543426, \"value\": 5.0}, \"1\": {\"effect\": 0.012528734750317072, \"value\": 3.5}, \"2\": {\"effect\": 0.6407021147836462, \"value\": 1.3}, \"3\": {\"effect\": 0.0362551357168317, \"value\": 0.3}}}, {\"outValue\": 0.0025223192478118772, \"simIndex\": 26.0, \"features\": {\"0\": {\"effect\": 0.016398284329854212, \"value\": 6.7}, \"1\": {\"effect\": 3.3223733801490685e-05, \"value\": 3.1}, \"2\": {\"effect\": -0.3191738713111195, \"value\": 4.7}, \"3\": {\"effect\": -0.020358572574281975, \"value\": 1.5}}}, {\"outValue\": 0.001718822761365757, \"simIndex\": 25.0, \"features\": {\"0\": {\"effect\": 0.016098095455016892, \"value\": 6.8}, \"1\": {\"effect\": -0.0034563277465735898, \"value\": 2.8}, \"2\": {\"effect\": -0.3206186429228596, \"value\": 4.8}, \"3\": {\"effect\": -0.015927557093775635, \"value\": 1.4}}}, {\"outValue\": 0.01007497558493653, \"simIndex\": 29.0, \"features\": {\"0\": {\"effect\": 0.011269520938828131, \"value\": 6.1}, \"1\": {\"effect\": -0.01092909962094435, \"value\": 2.8}, \"2\": {\"effect\": -0.2909637361248524, \"value\": 4.0}, \"3\": {\"effect\": -0.024924964677652595, \"value\": 1.3}}}, {\"outValue\": 3.9981953520729085e-06, \"simIndex\": 16.0, \"features\": {\"0\": {\"effect\": 0.008043955617830556, \"value\": 6.1}, \"1\": {\"effect\": -0.004103449202651294, \"value\": 2.6}, \"2\": {\"effect\": -0.3172688434679616, \"value\": 5.6}, \"3\": {\"effect\": -0.01229091982142333, \"value\": 1.4}}}, {\"outValue\": 0.0034788583912295223, \"simIndex\": 27.0, \"features\": {\"0\": {\"effect\": 0.0136665029623797, \"value\": 6.4}, \"1\": {\"effect\": 0.0008050958157595489, \"value\": 3.2}, \"2\": {\"effect\": -0.31457749623495185, \"value\": 4.5}, \"3\": {\"effect\": -0.022038499221515573, \"value\": 1.5}}}, {\"outValue\": 0.0012000918017874285, \"simIndex\": 15.0, \"features\": {\"0\": {\"effect\": 0.006334678973984265, \"value\": 6.1}, \"1\": {\"effect\": -0.0025449230606634787, \"value\": 2.8}, \"2\": {\"effect\": -0.3200492423963904, \"value\": 4.7}, \"3\": {\"effect\": -0.008163676784700702, \"value\": 1.2}}}, {\"outValue\": 0.001571061976274768, \"simIndex\": 21.0, \"features\": {\"0\": {\"effect\": 0.014422944692342343, \"value\": 6.5}, \"1\": {\"effect\": -0.004557209112642374, \"value\": 2.8}, \"2\": {\"effect\": -0.3141412999937368, \"value\": 4.6}, \"3\": {\"effect\": -0.019776628679246122, \"value\": 1.5}}}, {\"outValue\": 0.0008368081598376098, \"simIndex\": 17.0, \"features\": {\"0\": {\"effect\": 0.007752631515989317, \"value\": 6.1}, \"1\": {\"effect\": -0.002066928307944832, \"value\": 2.9}, \"2\": {\"effect\": -0.3175070386067914, \"value\": 4.7}, \"3\": {\"effect\": -0.012965111510973182, \"value\": 1.4}}}, {\"outValue\": 0.9955089186011943, \"simIndex\": 10.0, \"features\": {\"0\": {\"effect\": -0.032637470318044426, \"value\": 4.9}, \"1\": {\"effect\": 0.006554786578602589, \"value\": 3.1}, \"2\": {\"effect\": 0.6173591685935874, \"value\": 1.5}, \"3\": {\"effect\": 0.07860917867749095, \"value\": 0.1}}}, {\"outValue\": 0.00107992849691263, \"simIndex\": 22.0, \"features\": {\"0\": {\"effect\": 0.00842860554330746, \"value\": 6.0}, \"1\": {\"effect\": -0.0032338197423903425, \"value\": 2.9}, \"2\": {\"effect\": -0.31209341196513846, \"value\": 4.5}, \"3\": {\"effect\": -0.017644700408423697, \"value\": 1.5}}}, {\"outValue\": 0.0008576011678887996, \"simIndex\": 18.0, \"features\": {\"0\": {\"effect\": 0.001562466129658352, \"value\": 5.5}, \"1\": {\"effect\": -0.006049480914336769, \"value\": 2.6}, \"2\": {\"effect\": -0.3107535313132994, \"value\": 4.4}, \"3\": {\"effect\": -0.00952510780369109, \"value\": 1.2}}}, {\"outValue\": 0.9926219791546896, \"simIndex\": 11.0, \"features\": {\"0\": {\"effect\": -0.03153868882352856, \"value\": 4.8}, \"1\": {\"effect\": 0.0027994210267502373, \"value\": 3.0}, \"2\": {\"effect\": 0.627068833921483, \"value\": 1.4}, \"3\": {\"effect\": 0.06866915796042716, \"value\": 0.3}}}, {\"outValue\": 0.9994082891029026, \"simIndex\": 4.0, \"features\": {\"0\": {\"effect\": -0.007009082570846592, \"value\": 5.4}, \"1\": {\"effect\": 0.017764845838633636, \"value\": 3.9}, \"2\": {\"effect\": 0.6401792006007343, \"value\": 1.3}, \"3\": {\"effect\": 0.022850070164823544, \"value\": 0.4}}}, {\"outValue\": 3.9981953520729085e-06, \"simIndex\": 30.0, \"features\": {\"0\": {\"effect\": 0.010237192138705914, \"value\": 5.6}, \"1\": {\"effect\": -0.007676812099377456, \"value\": 2.8}, \"2\": {\"effect\": -0.2875213860065451, \"value\": 4.9}, \"3\": {\"effect\": -0.04065825090698899, \"value\": 2.0}}}, {\"outValue\": 0.0006244427696139865, \"simIndex\": 19.0, \"features\": {\"0\": {\"effect\": 0.004209985913508102, \"value\": 5.6}, \"1\": {\"effect\": -0.002019129321466251, \"value\": 3.0}, \"2\": {\"effect\": -0.3109821262505876, \"value\": 4.5}, \"3\": {\"effect\": -0.016207542641397954, \"value\": 1.5}}}, {\"outValue\": 0.9834147672589125, \"simIndex\": 1.0, \"features\": {\"0\": {\"effect\": -0.056747693742183636, \"value\": 4.8}, \"1\": {\"effect\": 0.02414938359062352, \"value\": 3.4}, \"2\": {\"effect\": 0.5591453019413346, \"value\": 1.9}, \"3\": {\"effect\": 0.13124452039958034, \"value\": 0.2}}}, {\"outValue\": 0.9867784371162099, \"simIndex\": 7.0, \"features\": {\"0\": {\"effect\": -0.05158218231266304, \"value\": 4.4}, \"1\": {\"effect\": -4.1028668313847216e-05, \"value\": 2.9}, \"2\": {\"effect\": 0.6107426116121428, \"value\": 1.4}, \"3\": {\"effect\": 0.1020357814154863, \"value\": 0.2}}}, {\"outValue\": 7.629754676979905e-05, \"simIndex\": 20.0, \"features\": {\"0\": {\"effect\": 0.014135704138092148, \"value\": 6.2}, \"1\": {\"effect\": -0.005037236976130677, \"value\": 2.8}, \"2\": {\"effect\": -0.3070351705238493, \"value\": 4.8}, \"3\": {\"effect\": -0.027610254160900072, \"value\": 1.8}}}, {\"outValue\": 0.9985217175280204, \"simIndex\": 6.0, \"features\": {\"0\": {\"effect\": -0.017718517712236703, \"value\": 4.6}, \"1\": {\"effect\": 0.012306865057282068, \"value\": 3.6}, \"2\": {\"effect\": 0.6482136017698437, \"value\": 1.0}, \"3\": {\"effect\": 0.03009651334357366, \"value\": 0.2}}}, {\"outValue\": 0.9911242170979903, \"simIndex\": 2.0, \"features\": {\"0\": {\"effect\": -0.036655738367996016, \"value\": 5.1}, \"1\": {\"effect\": 0.03848306801515827, \"value\": 3.8}, \"2\": {\"effect\": 0.5771211776586336, \"value\": 1.9}, \"3\": {\"effect\": 0.08655245472263673, \"value\": 0.4}}}, {\"outValue\": 0.005064607909623875, \"simIndex\": 23.0, \"features\": {\"0\": {\"effect\": 0.010386183703014085, \"value\": 6.2}, \"1\": {\"effect\": -0.004706673489498603, \"value\": 2.9}, \"2\": {\"effect\": -0.309194785577462, \"value\": 4.3}, \"3\": {\"effect\": -0.017043371795987305, \"value\": 1.3}}}, {\"outValue\": 0.01609039452397726, \"simIndex\": 12.0, \"features\": {\"0\": {\"effect\": -0.053296423173691904, \"value\": 5.0}, \"1\": {\"effect\": -0.04914394713761405, \"value\": 2.3}, \"2\": {\"effect\": -0.19981018198551387, \"value\": 3.3}, \"3\": {\"effect\": -0.007282308248760583, \"value\": 1.0}}}, {\"outValue\": 0.9928764497465659, \"simIndex\": 9.0, \"features\": {\"0\": {\"effect\": -0.029873494392239464, \"value\": 5.0}, \"1\": {\"effect\": 0.01590512436842617, \"value\": 3.4}, \"2\": {\"effect\": 0.6157058077130951, \"value\": 1.6}, \"3\": {\"effect\": 0.06551575698772627, \"value\": 0.4}}}], \"plot_cmap\": \"RdBu\"}),\n", " document.getElementById('iBMZF960UXUNLUXJFVKM5')\n", " );\n", "</script>" ], "text/plain": [ "<IPython.core.display.HTML object>" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from sklearn.neural_network import MLPClassifier\n", "nn = MLPClassifier(solver='lbfgs', alpha=1e-1, hidden_layer_sizes=(5, 2), random_state=0)\n", "nn.fit(X_train, Y_train)\n", "print_accuracy(nn.predict)\n", "\n", "# explain all the predictions in the test set\n", "explainer = shap.KernelExplainer(nn.predict_proba, X_train)\n", "shap_values = explainer.shap_values(X_test)\n", "shap.force_plot(explainer.expected_value[0], shap_values[0], X_test)" ] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.5" } }, "nbformat": 4, "nbformat_minor": 1 }
mit
Benedicto/ML-Learning
Clustering_3_em-for-gmm_blank.ipynb
1
1610398
null
gpl-3.0
CDNoyes/EDL-Py
DAUQ.ipynb
1
1785590
null
gpl-3.0
eogasawara/mylibrary
R-Basics.ipynb
1
168874
{ "cells": [ { "cell_type": "markdown", "id": "5cc55905", "metadata": {}, "source": [ "### Part #1" ] }, { "cell_type": "markdown", "id": "fc97424a", "metadata": {}, "source": [ "#### Package Installation" ] }, { "cell_type": "code", "execution_count": 1, "id": "8927a6a3", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Carregando pacotes exigidos: ISwR\n", "\n" ] } ], "source": [ "available <- require(ISwR)\n", "if (!available) \n", " install.packages(\"ISwR\")" ] }, { "cell_type": "markdown", "id": "7a3dd0ec", "metadata": {}, "source": [ "#### Package loading" ] }, { "cell_type": "code", "execution_count": 2, "id": "f8604d02", "metadata": {}, "outputs": [], "source": [ "library(ISwR)" ] }, { "cell_type": "markdown", "id": "aeb1b67c", "metadata": {}, "source": [ "#### Variable definitions" ] }, { "cell_type": "code", "execution_count": 3, "id": "fc3ed669", "metadata": {}, "outputs": [], "source": [ "weight <- 60\n", "height = 1.75\n", "subject <- \"A\"\n", "healthy <- TRUE" ] }, { "cell_type": "markdown", "id": "395d84fa", "metadata": {}, "source": [ "#### Variable evaluation" ] }, { "cell_type": "code", "execution_count": 4, "id": "8edb34b2", "metadata": {}, "outputs": [ { "data": { "text/html": [ "60" ], "text/latex": [ "60" ], "text/markdown": [ "60" ], "text/plain": [ "[1] 60" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "weight" ] }, { "cell_type": "markdown", "id": "37fa24ae", "metadata": {}, "source": [ "#### Variable type checking" ] }, { "cell_type": "code", "execution_count": 5, "id": "2cadd098", "metadata": {}, "outputs": [ { "data": { "text/html": [ "TRUE" ], "text/latex": [ "TRUE" ], "text/markdown": [ "TRUE" ], "text/plain": [ "[1] TRUE" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "TRUE" ], "text/latex": [ "TRUE" ], "text/markdown": [ "TRUE" ], "text/plain": [ "[1] TRUE" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "FALSE" ], "text/latex": [ "FALSE" ], "text/markdown": [ "FALSE" ], "text/plain": [ "[1] FALSE" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "TRUE" ], "text/latex": [ "TRUE" ], "text/markdown": [ "TRUE" ], "text/plain": [ "[1] TRUE" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "is.numeric(weight) # variable \n", "is.double(weight)\n", "is.integer(weight)\n", "is.character(subject)" ] }, { "cell_type": "markdown", "id": "d4169556", "metadata": {}, "source": [ "#### Variable conversion" ] }, { "cell_type": "code", "execution_count": 6, "id": "c02f573b", "metadata": {}, "outputs": [ { "data": { "text/html": [ "TRUE" ], "text/latex": [ "TRUE" ], "text/markdown": [ "TRUE" ], "text/plain": [ "[1] TRUE" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "weight <- as.integer(weight)\n", "is.integer(weight)" ] }, { "cell_type": "markdown", "id": "5ef47e7c", "metadata": {}, "source": [ "#### Formulas" ] }, { "cell_type": "code", "execution_count": 7, "id": "fd670e0a", "metadata": {}, "outputs": [ { "data": { "text/html": [ "19.5918367346939" ], "text/latex": [ "19.5918367346939" ], "text/markdown": [ "19.5918367346939" ], "text/plain": [ "[1] 19.59184" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#Body mass index (BMI)\n", "bmi <- weight/height^2 \n", "bmi " ] }, { "cell_type": "markdown", "id": "86608974", "metadata": {}, "source": [ "#### String formatting" ] }, { "cell_type": "code", "execution_count": 8, "id": "881fece6", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[1] \"19.6\"\n" ] } ], "source": [ "message <- sprintf(\"%.1f\", bmi)\n", "print(message)" ] }, { "cell_type": "markdown", "id": "2a063640", "metadata": {}, "source": [ "#### Vector definition" ] }, { "cell_type": "code", "execution_count": 9, "id": "d10355f1", "metadata": {}, "outputs": [], "source": [ "weight <- c(60, 72, 57, 90, 95, 72) \n", "height <- c(1.75, 1.80, 1.65, 1.90, 1.74, 1.91)\n", "subject <- c(\"A\", \"B\", \"C\", \"D\", \"E\", \"F\")" ] }, { "cell_type": "markdown", "id": "44aba8e2", "metadata": {}, "source": [ "#### Vector evaluation" ] }, { "cell_type": "code", "execution_count": 10, "id": "0123107e", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<style>\n", ".list-inline {list-style: none; margin:0; padding: 0}\n", ".list-inline>li {display: inline-block}\n", ".list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex}\n", "</style>\n", "<ol class=list-inline><li>60</li><li>72</li><li>57</li><li>90</li><li>95</li><li>72</li></ol>\n" ], "text/latex": [ "\\begin{enumerate*}\n", "\\item 60\n", "\\item 72\n", "\\item 57\n", "\\item 90\n", "\\item 95\n", "\\item 72\n", "\\end{enumerate*}\n" ], "text/markdown": [ "1. 60\n", "2. 72\n", "3. 57\n", "4. 90\n", "5. 95\n", "6. 72\n", "\n", "\n" ], "text/plain": [ "[1] 60 72 57 90 95 72" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "<style>\n", ".list-inline {list-style: none; margin:0; padding: 0}\n", ".list-inline>li {display: inline-block}\n", ".list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex}\n", "</style>\n", "<ol class=list-inline><li>1.75</li><li>1.8</li><li>1.65</li><li>1.9</li><li>1.74</li><li>1.91</li></ol>\n" ], "text/latex": [ "\\begin{enumerate*}\n", "\\item 1.75\n", "\\item 1.8\n", "\\item 1.65\n", "\\item 1.9\n", "\\item 1.74\n", "\\item 1.91\n", "\\end{enumerate*}\n" ], "text/markdown": [ "1. 1.75\n", "2. 1.8\n", "3. 1.65\n", "4. 1.9\n", "5. 1.74\n", "6. 1.91\n", "\n", "\n" ], "text/plain": [ "[1] 1.75 1.80 1.65 1.90 1.74 1.91" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "<style>\n", ".list-inline {list-style: none; margin:0; padding: 0}\n", ".list-inline>li {display: inline-block}\n", ".list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex}\n", "</style>\n", "<ol class=list-inline><li>'A'</li><li>'B'</li><li>'C'</li><li>'D'</li><li>'E'</li><li>'F'</li></ol>\n" ], "text/latex": [ "\\begin{enumerate*}\n", "\\item 'A'\n", "\\item 'B'\n", "\\item 'C'\n", "\\item 'D'\n", "\\item 'E'\n", "\\item 'F'\n", "\\end{enumerate*}\n" ], "text/markdown": [ "1. 'A'\n", "2. 'B'\n", "3. 'C'\n", "4. 'D'\n", "5. 'E'\n", "6. 'F'\n", "\n", "\n" ], "text/plain": [ "[1] \"A\" \"B\" \"C\" \"D\" \"E\" \"F\"" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "weight\n", "height\n", "subject" ] }, { "cell_type": "markdown", "id": "7a78ef70", "metadata": {}, "source": [ "#### Creating a vector with a particular size" ] }, { "cell_type": "code", "execution_count": 11, "id": "ae22d267", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<style>\n", ".list-inline {list-style: none; margin:0; padding: 0}\n", ".list-inline>li {display: inline-block}\n", ".list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex}\n", "</style>\n", "<ol class=list-inline><li>0</li><li>0</li><li>0</li><li>0</li><li>0</li><li>0</li><li>0</li><li>0</li><li>0</li><li>0</li></ol>\n" ], "text/latex": [ "\\begin{enumerate*}\n", "\\item 0\n", "\\item 0\n", "\\item 0\n", "\\item 0\n", "\\item 0\n", "\\item 0\n", "\\item 0\n", "\\item 0\n", "\\item 0\n", "\\item 0\n", "\\end{enumerate*}\n" ], "text/markdown": [ "1. 0\n", "2. 0\n", "3. 0\n", "4. 0\n", "5. 0\n", "6. 0\n", "7. 0\n", "8. 0\n", "9. 0\n", "10. 0\n", "\n", "\n" ], "text/plain": [ " [1] 0 0 0 0 0 0 0 0 0 0" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "vec <- rep(0, 10)\n", "vec" ] }, { "cell_type": "markdown", "id": "8a070ae4", "metadata": {}, "source": [ "#### Vector length" ] }, { "cell_type": "code", "execution_count": 12, "id": "94630b33", "metadata": {}, "outputs": [ { "data": { "text/html": [ "6" ], "text/latex": [ "6" ], "text/markdown": [ "6" ], "text/plain": [ "[1] 6" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "length(weight)" ] }, { "cell_type": "markdown", "id": "0e7af626", "metadata": {}, "source": [ "#### Vector indexes" ] }, { "cell_type": "code", "execution_count": 13, "id": "0d60deec", "metadata": {}, "outputs": [ { "data": { "text/html": [ "60" ], "text/latex": [ "60" ], "text/markdown": [ "60" ], "text/plain": [ "[1] 60" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "72" ], "text/latex": [ "72" ], "text/markdown": [ "72" ], "text/plain": [ "[1] 72" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "weight[1]\n", "weight[length(weight)]" ] }, { "cell_type": "markdown", "id": "8c5d0c66", "metadata": {}, "source": [ "#### for loop" ] }, { "cell_type": "code", "execution_count": 14, "id": "79f79f15", "metadata": {}, "outputs": [], "source": [ "bmi <- 0\n", "for (i in 1:length(weight)) {\n", " bmi[i] <- weight[i]/height[i]^2\n", "}" ] }, { "cell_type": "code", "execution_count": 15, "id": "c3c2b7b4", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<style>\n", ".list-inline {list-style: none; margin:0; padding: 0}\n", ".list-inline>li {display: inline-block}\n", ".list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex}\n", "</style>\n", "<ol class=list-inline><li>19.5918367346939</li><li>22.2222222222222</li><li>20.9366391184573</li><li>24.9307479224377</li><li>31.3779891663364</li><li>19.7363010882377</li></ol>\n" ], "text/latex": [ "\\begin{enumerate*}\n", "\\item 19.5918367346939\n", "\\item 22.2222222222222\n", "\\item 20.9366391184573\n", "\\item 24.9307479224377\n", "\\item 31.3779891663364\n", "\\item 19.7363010882377\n", "\\end{enumerate*}\n" ], "text/markdown": [ "1. 19.5918367346939\n", "2. 22.2222222222222\n", "3. 20.9366391184573\n", "4. 24.9307479224377\n", "5. 31.3779891663364\n", "6. 19.7363010882377\n", "\n", "\n" ], "text/plain": [ "[1] 19.59184 22.22222 20.93664 24.93075 31.37799 19.73630" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "bmi" ] }, { "cell_type": "markdown", "id": "6fc03098", "metadata": {}, "source": [ "#### while loop" ] }, { "cell_type": "code", "execution_count": 16, "id": "5559a80e", "metadata": {}, "outputs": [], "source": [ "i <- 1\n", "while (i <= length(weight)) {\n", " bmi[i] <- weight[i]/height[i]^2\n", " i <- i + 1\n", "}" ] }, { "cell_type": "code", "execution_count": 17, "id": "84c44c14", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<style>\n", ".list-inline {list-style: none; margin:0; padding: 0}\n", ".list-inline>li {display: inline-block}\n", ".list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex}\n", "</style>\n", "<ol class=list-inline><li>19.5918367346939</li><li>22.2222222222222</li><li>20.9366391184573</li><li>24.9307479224377</li><li>31.3779891663364</li><li>19.7363010882377</li></ol>\n" ], "text/latex": [ "\\begin{enumerate*}\n", "\\item 19.5918367346939\n", "\\item 22.2222222222222\n", "\\item 20.9366391184573\n", "\\item 24.9307479224377\n", "\\item 31.3779891663364\n", "\\item 19.7363010882377\n", "\\end{enumerate*}\n" ], "text/markdown": [ "1. 19.5918367346939\n", "2. 22.2222222222222\n", "3. 20.9366391184573\n", "4. 24.9307479224377\n", "5. 31.3779891663364\n", "6. 19.7363010882377\n", "\n", "\n" ], "text/plain": [ "[1] 19.59184 22.22222 20.93664 24.93075 31.37799 19.73630" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "bmi" ] }, { "cell_type": "markdown", "id": "b23e3918", "metadata": {}, "source": [ "#### Removing variable" ] }, { "cell_type": "code", "execution_count": 18, "id": "676d0198", "metadata": {}, "outputs": [ { "data": { "text/html": [ "FALSE" ], "text/latex": [ "FALSE" ], "text/markdown": [ "FALSE" ], "text/plain": [ "[1] FALSE" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "rm(bmi)\n", "exists(\"bmi\")" ] }, { "cell_type": "markdown", "id": "f46a8ade", "metadata": {}, "source": [ "#### Manipulating vectors efficiently" ] }, { "cell_type": "code", "execution_count": 19, "id": "953969dd", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<style>\n", ".list-inline {list-style: none; margin:0; padding: 0}\n", ".list-inline>li {display: inline-block}\n", ".list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex}\n", "</style>\n", "<ol class=list-inline><li>19.5918367346939</li><li>22.2222222222222</li><li>20.9366391184573</li><li>24.9307479224377</li><li>31.3779891663364</li><li>19.7363010882377</li></ol>\n" ], "text/latex": [ "\\begin{enumerate*}\n", "\\item 19.5918367346939\n", "\\item 22.2222222222222\n", "\\item 20.9366391184573\n", "\\item 24.9307479224377\n", "\\item 31.3779891663364\n", "\\item 19.7363010882377\n", "\\end{enumerate*}\n" ], "text/markdown": [ "1. 19.5918367346939\n", "2. 22.2222222222222\n", "3. 20.9366391184573\n", "4. 24.9307479224377\n", "5. 31.3779891663364\n", "6. 19.7363010882377\n", "\n", "\n" ], "text/plain": [ "[1] 19.59184 22.22222 20.93664 24.93075 31.37799 19.73630" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "bmi <- weight/height^2 \n", "bmi " ] }, { "cell_type": "markdown", "id": "198a6da0", "metadata": {}, "source": [ "#### Function definition" ] }, { "cell_type": "code", "execution_count": 20, "id": "d624f2af", "metadata": {}, "outputs": [], "source": [ "compute_bmi <- function(weight, height) {\n", " bmi <- weight/height^2 \n", " return(bmi)\n", "}" ] }, { "cell_type": "markdown", "id": "adfa9ada", "metadata": {}, "source": [ "#### Using with scalar" ] }, { "cell_type": "code", "execution_count": 21, "id": "bd1d84a0", "metadata": {}, "outputs": [ { "data": { "text/html": [ "19.5918367346939" ], "text/latex": [ "19.5918367346939" ], "text/markdown": [ "19.5918367346939" ], "text/plain": [ "[1] 19.59184" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "bmi <- compute_bmi(60, 1.75)\n", "bmi" ] }, { "cell_type": "markdown", "id": "b262df12", "metadata": {}, "source": [ "#### Using with vectors" ] }, { "cell_type": "code", "execution_count": 22, "id": "432333e7", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<style>\n", ".list-inline {list-style: none; margin:0; padding: 0}\n", ".list-inline>li {display: inline-block}\n", ".list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex}\n", "</style>\n", "<ol class=list-inline><li>19.5918367346939</li><li>22.2222222222222</li><li>20.9366391184573</li><li>24.9307479224377</li><li>31.3779891663364</li><li>19.7363010882377</li></ol>\n" ], "text/latex": [ "\\begin{enumerate*}\n", "\\item 19.5918367346939\n", "\\item 22.2222222222222\n", "\\item 20.9366391184573\n", "\\item 24.9307479224377\n", "\\item 31.3779891663364\n", "\\item 19.7363010882377\n", "\\end{enumerate*}\n" ], "text/markdown": [ "1. 19.5918367346939\n", "2. 22.2222222222222\n", "3. 20.9366391184573\n", "4. 24.9307479224377\n", "5. 31.3779891663364\n", "6. 19.7363010882377\n", "\n", "\n" ], "text/plain": [ "[1] 19.59184 22.22222 20.93664 24.93075 31.37799 19.73630" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "bmi <- compute_bmi(weight, height)\n", "bmi" ] }, { "cell_type": "markdown", "id": "87013373", "metadata": {}, "source": [ "#### Average function" ] }, { "cell_type": "code", "execution_count": 23, "id": "4fa56b2d", "metadata": {}, "outputs": [], "source": [ "average <- function(vec) {\n", " s <- 0\n", " n <- length(vec)\n", " for (x in vec) {\n", " s <- s + x \n", " }\n", " return(s/n)\n", "}" ] }, { "cell_type": "code", "execution_count": 24, "id": "d24c0640", "metadata": {}, "outputs": [ { "data": { "text/html": [ "23.1326227087309" ], "text/latex": [ "23.1326227087309" ], "text/markdown": [ "23.1326227087309" ], "text/plain": [ "[1] 23.13262" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "avg_bmi <- average(bmi)\n", "avg_bmi" ] }, { "cell_type": "markdown", "id": "c4b3d6a7", "metadata": {}, "source": [ "#### Average function: improved version" ] }, { "cell_type": "code", "execution_count": 25, "id": "05627c86", "metadata": {}, "outputs": [], "source": [ "average <- function(vec) {\n", " s <- sum(vec)\n", " n <- length(vec)\n", " return(s/n)\n", "}" ] }, { "cell_type": "code", "execution_count": 26, "id": "8988d664", "metadata": {}, "outputs": [ { "data": { "text/html": [ "23.1326227087309" ], "text/latex": [ "23.1326227087309" ], "text/markdown": [ "23.1326227087309" ], "text/plain": [ "[1] 23.13262" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "avg_bmi <- average(bmi)\n", "avg_bmi" ] }, { "cell_type": "markdown", "id": "0368003e", "metadata": {}, "source": [ "#### Average function: major statistical functions already exists" ] }, { "cell_type": "code", "execution_count": 27, "id": "885caab2", "metadata": {}, "outputs": [], "source": [ "average <- function(vec) {\n", " return(mean(vec))\n", "}" ] }, { "cell_type": "code", "execution_count": 28, "id": "439ffc1b", "metadata": {}, "outputs": [ { "data": { "text/html": [ "23.1326227087309" ], "text/latex": [ "23.1326227087309" ], "text/markdown": [ "23.1326227087309" ], "text/plain": [ "[1] 23.13262" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "avg_bmi <- average(bmi)\n", "avg_bmi" ] }, { "cell_type": "markdown", "id": "07a46006", "metadata": {}, "source": [ "#### NA definition" ] }, { "cell_type": "code", "execution_count": 29, "id": "0f51d175", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<style>\n", ".list-inline {list-style: none; margin:0; padding: 0}\n", ".list-inline>li {display: inline-block}\n", ".list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex}\n", "</style>\n", "<ol class=list-inline><li>10</li><li>&lt;NA&gt;</li><li>13</li></ol>\n" ], "text/latex": [ "\\begin{enumerate*}\n", "\\item 10\n", "\\item <NA>\n", "\\item 13\n", "\\end{enumerate*}\n" ], "text/markdown": [ "1. 10\n", "2. &lt;NA&gt;\n", "3. 13\n", "\n", "\n" ], "text/plain": [ "[1] 10 NA 13" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "x <- c(10, NA, 13)\n", "x" ] }, { "cell_type": "markdown", "id": "f392d2fe", "metadata": {}, "source": [ "#### Evaluation with NA leads to NA" ] }, { "cell_type": "code", "execution_count": 30, "id": "ff804491", "metadata": {}, "outputs": [ { "data": { "text/html": [ "&lt;NA&gt;" ], "text/latex": [ "<NA>" ], "text/markdown": [ "&lt;NA&gt;" ], "text/plain": [ "[1] NA" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "average(x)" ] }, { "cell_type": "markdown", "id": "c5eac371", "metadata": {}, "source": [ "#### Addressing NA" ] }, { "cell_type": "code", "execution_count": 31, "id": "54dc268a", "metadata": {}, "outputs": [], "source": [ "average <- function(vec) {\n", " return(mean(vec, na.rm=TRUE))\n", "}" ] }, { "cell_type": "code", "execution_count": 32, "id": "504f55d3", "metadata": {}, "outputs": [ { "data": { "text/html": [ "11.5" ], "text/latex": [ "11.5" ], "text/markdown": [ "11.5" ], "text/plain": [ "[1] 11.5" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "average(x)" ] }, { "cell_type": "markdown", "id": "8c192654", "metadata": {}, "source": [ "### Part #2" ] }, { "cell_type": "markdown", "id": "3a567ccc", "metadata": {}, "source": [ "#### Setup variables" ] }, { "cell_type": "code", "execution_count": 33, "id": "2c2adf10", "metadata": {}, "outputs": [], "source": [ "weight <- c(60, 72, 57, 90, 95, 72) \n", "height <- c(1.75, 1.80, 1.65, 1.90, 1.74, 1.91)\n", "subject <- c(\"A\", \"B\", \"C\", \"D\", \"E\", \"F\")" ] }, { "cell_type": "markdown", "id": "556af8d6", "metadata": {}, "source": [ "#### Basic plot" ] }, { "cell_type": "code", "execution_count": 34, "id": "9de7d55a", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAMAAADKOT/pAAAAMFBMVEUAAABNTU1oaGh8fHyM\njIyampqnp6eysrK9vb3Hx8fQ0NDZ2dnh4eHp6enw8PD////QFLu4AAAACXBIWXMAABJ0AAAS\ndAHeZh94AAATXklEQVR4nO3d6ULizBaG0QqzCOT+7/aQ4AB+6ulu3lQSWOuHjT1tCnkMGdTS\nAncrY98BeARCggAhQYCQIEBIECAkCBASBAgJAoQEAUKCACFBgJAgQEgQICQIEBIECAkChAQB\nQoIAIUGAkCBASBAgJAgQEgQICQKEBAFCggAhQYCQIEBIECAkCBASBAgJAoQEAUKCACFBgJAg\nQEgQICQIEBIECAkChAQBQoIAIUGAkCBASBAgJAgQEgQICQKEBAFCggAhQYCQIEBIECAkCBAS\nBAgJAoQEAUKCACFBgJAgQEgQICQIEBIECAkChAQBQoIAIUGAkCBASBAgJAgQEgQICQKEBAFC\nggAhQYCQIEBIECAkCBASBAgJAoQEAUKCACFBgJAgQEgQICQIEBIECAkChAQBQoIAIUGAkCBA\nSBAgJAgQEgQICQKEBAEVQiowM//wLM+HM8IISBISBAgJAoQEAUKCACFBgJAgQEgQICQIEBIE\nCAkChAQBQoIAIUGAkCBASBAgJAgQEgQIaTr+6euVmQYhTUVfkZTmSkhTUa7eMjtCmojy5Vfm\nRUgTIaR5E9JECGnehDQV9pFmTUhT4ajdrAlpOpxHmjEhQYCQIEBIECAkCBASBAgJAoQEAUKC\nACFBgJAgQEgQICQIEBIECAkChAQBQoIAIUGAkCBASBAgJAgQEgQICQKEBAFCggAhQYCQIEBI\nECAkCBASBAgJAoQEAUKCACFBgJAgQEgQICQIEBIECAkChAQBQoIAIUGAkCBASBAgJAgQEgQI\nCQKEBAFCggAhQYCQIEBIECAkCBASBAgJAoQEAUKCACFBgJAgQEgQICQIqBrS63ZVOqvN61Aj\nYBQVQzotyqflICNgJBVD2pTm5dDfOu6bshliBIykYkhNOXzcPpRmiBEwkoohlfLTO7ERMBJb\nJAiou4+0P/a37CMxaeX3F0zf/pN/mPL3/+RieXXUbnEaZATcra/ob1Oqex5p059HalZb55GY\nrHL19i//0dD/ZIIj4Hvly69/96+G/Sd/9N9eG2YE/H8zCOmwuewmLVYvQ42AO00/pO3VJmc1\nzAi429T3kfZlfWzb1+WqPewWZT/ECLjf1I/aLUt/yPtQtuecft8kCYkxTfs80vud6y9qcIkQ\nD6XqJUL9Fun0B1tOITEzVS8RWr627XFV1u1pfX4zwAgYyQiXCDWn8/aoOQ4yAsZR9TzS7pzS\nYnu+0Wx+vdROSMzNdK5sqDwCkoQEAUKCACFBgJAgQEgQICQIEBIECAkChAQBQoIAIUGAkCBA\nSBAgJAgQEgQICQKEBAFCggAhQYCQIEBIECAkCBASBAgJAoQEAUKCACFBgJAgQEgQICQIEBIE\nCAkChAQBQoIAIUGAkCBASBAgJAgQEgQICQKEBAFCggAhQYCQIEBIECAkCBASBAgJAoQEAUKC\nACFBgJAgQEgQICQIEBIECAkChAQBQoIAIUGAkCBASBAgJAgQEgQICQKEBAFCggAhQYCQIEBI\nECAkCBASBAgJAoQEAUKCACFBgJAgQEgQICQIEBIECAkChAQBQoIAIUGAkCBASBAgJAgQEgQI\nCQKEBAFCggAhQYCQIEBIECAkCBASBAgJAoQEAUKCACFBgJAgQEgQICQIEBIECAkChAQBQoIA\nIUGAkCBASBAgJAgQEgQICQKEBAFCggAhQYCQIEBIECAkCBASBAgJAoQEAUKCACFBgJAgQEgQ\nICQIEBIECAkChAQBQoKAqiG9blels9q8DjUCRlExpNOifFoOMgJGUjGkTWleDv2t474pmyFG\nwEgqhtSUw8ftQ2mGGAEjqRhSKT+9ExsBI7FFgoC6+0j7Y3/LPhKPpubh7+XVUbvFaZARMI66\n55E2/XmkZrV1HonH4soGCJhOSOXaMCNgKDVDOq5Ls23b3aI0vx5qsEVidmpeItR025rd1iVC\nPJ6qh7/P26FNU9an9rRx+JuHUvWEbP+vS3/g2wlZHkr1S4TeDiS4RIiHMsIWqXt7skXioYyw\nj7Q5vd3Oj4CROGoHAc4jQcB0rmyoPAKShAQBQoIAIUGAkCBASBAgJAgQEgQICQKEBAFCggAh\nQYCQIEBIECAkCBASBAgJAoQEAUKCACFBgJAgQEgQICQIuDOkj2/h3fz6LYjvGQEzEArpmP0h\ne0JiZu4IaX/zwyoXI98rGNM9W6TFdUf/5+eUD36vYEypfaQsITEzjtpBgJAg4N6Qdh87Sql7\n9J8RMH13hrT9PNwQu0utkJidO0Nqyi52V34YATPgqB0E3BnSppxid+WHETAD9x5sWC2jZ2K/\nGwHTd0dI5dbI9wrGJCQIcEIWAoQEAXcf/v6w3MTulJCYm1xIpeS+SFZIzMy9L+3Wzf78dt+U\n13ZVYtskITEzd5+QPfS/HsqyPeW+SlZIzEzqEqHuRu4QuJCYmbsvWn3fIjVC4ond/dLufR9p\n076cX96Nd69gTPcebFi+H/zuNkixL6kQEjNz9wnZ/eqc0arbLJVt5i79ZwRMnisbIEBIEHDX\n1d83VzaMfK9gTEKCAC/tIEBIEBA5/N22q2Po/nw3AiYvckL2/HtNtCQhMTN3hrQry1MX0q6s\nY3epFRKzc/dFq6fLtaqO2vHUAl9GISS4M6TF2xbp4Edf8tQy+0j78DfTFxIzc/e3LP78Moog\nITEzd4b0+vZlFC+xO/SfETAD9x5saLbZU7H/HQEzcGdI6+5V3Uv8R7sIiZm5+xKhl+7ahvU+\ndHe+HQGTF7ho9bhdlNIEv2GxkJidyNXfp7WvR+K53R/SodsglWXuO5/8dwRM3Z0h7TdNKYtN\neBdJSMzN/T+NYnWI3ZlvR8AM3LtF6vaOzluk8AFwITEz9+8jvXav7s4xZe7PtyNg6iJH7V4d\ntePJBUI6dYftFo7a8cwyVzZsXkN359sRMHmJa+3SB7+FxOy4+hsC7v56pEEIiZnxnVYhQEgQ\nICQIEBIECAkChAQBQoIAIUGAkCBASBAgJAgQEgQICQKEBAFCggAhQYCQIEBIECAkCBASBAgJ\nAoQEAUKCACFBgJAgQEgQICQIEBK/Cf8EuZn75dEQEj/rnzdSevProyEkflau3vLroyEkflS+\n/Prcfn80hMSPhHRNSPwjIV0TEv/KPtI1+0j8I0ftrjlqxz9zHuma80gwLCFBgJAgQEgQICQI\nEBIECAkChAQBQoIAIUGAkCBASBAgJAgQEgQICQKqhvS6XZXOavM61AgYRcWQTovyaTnICBhJ\nxZA2pXk59LeO+6ZshhgBI6kYUlMOH7cPpRliBIykYkg3X+/++7cCEBIzY4sEAXX3kfbH/pZ9\nJB5NzcPfy6ujdovTICNgHHXPI23680jNaus8Eo/FlQ0QMJ2QyrVhRsBQah7+bv7PC7r7R8BI\nqp5HKqtfDzHcPwJGUjWk7qj3H6UkJGam7pUNp1Up6/1wI2AktS8ROnQHwFe7w+8bJiExM/Wv\ntTtsmv97YE5IzMwoF60edquFkHgkY139PcwIGImQIGA6VzZUHgFJQoIAIUGAkCBASBAgJAgQ\nEgQICQKEBAFCggAhQYCQIEBIECAkCBASBAgJAoQEAUKCACFBgJAgQEgQICQIEBIECAkChAQB\nQoIAIUGAkCBASBAgJAgQEgQICQKEBAFCggAhQYCQIEBIECAkCBASBAgJAoQEAUKCACFBgJAg\nQEgQICQIEBIECAkChAQBQoIAIUGAkCBASBAgJAgQEgQICQKEBAFCggAhQYCQIEBIECAkCBAS\nBAgJAoQEAUKCACFBgJAgQEgQICQIEBIECAkChAQBQoIAIUGAkCBASBAgJAgQEgQICQKEBAFC\nggAhQYCQIEBIECAkCBASBAgJAoQEAUKCACFBgJAgQEgQICQIEBIECAkChAQBQoIAIUGAkCBA\nSBAgJAgQEgQICQKEBAFCggAhQYCQIEBIECAkCBASBAgJAoQEAUKCACFBgJAgQEgQICQIEBIE\nCAkChAQBQoIAIUGAkCBASBAgJAgQEgQICQKEBAFCggAhQUDVkF63q9JZbV6HGgGjqBjSaVE+\nLQcZASOpGNKmNC+H/tZx35TNECNgJBVDasrh4/ahNEOMgJFUDKmUn96JjYCR2CJBQN19pP2x\nv2Uf6e+U37ffTEDNw9/Lq6N2i9MgIx5RX5GUJq7ueaRNfx6pWW2dR/pz5eotU+XKhqkrX35l\nkqYTUrk2zIhZEtIs1AzptOkO1W0XpSxfBhrxgIQ0CxVDOjbnLc2pcYnQX7KPNAcVQ1qX1en8\nZn08N7V2+PuPOWo3B1WvbDi9vTm/ynNC9i/YaZy+2pcINeXqnfgIGEnVl3aHtt1erhM6/b6T\nJCRmpmJIh9JsDu2qOZe0X5T9ECNgJDUPf++bzxNF22FGwDjqnpB9WfdfJbvaHgcbAWOYzpUN\nlUdAkpAgQEgQICQIEBIECAkChAQBQoIAIUGAkCBASBAgJAgQEgQICQKEBAFCggAhQYCQIEBI\nECAkCBASBAgJAoQEAUKCACFBgJAgQEgQICQIEBIECAkChAQB8wrJTyVmouYUUl+RlJiiWYVU\nazz8rRmFVH77QxiVkCBASBAwo5DsIzFdswrJUTumak4hOY/EZM0rJJgoIUGAkCBASBAgJAgQ\nEgQICQKEBAFCggAhQYCQIEBIECAkCBASBAgJAoQEAUKCACFBwERDgpn5h2d5PhyzjX6+0U/6\nZH74j6vRlUc/6ZP54T+uRlce/aRP5of/uBpdefSTPpkf/uNqdOXRT/pkfviPq9GVRz/pk/nh\nP65GVx79pE/mh/+4Gl159JM+mR/+42p05dFP+mR++I+r0ZVHP+mT+eE/rkZXHv2kT+aH/7ga\nXXm0S7MhQEgQICQIEBIECAkChAQBQoIAIUGAkCBASBAgJAgQEgQICQKEBAFCggAhQUDVkHa3\n0w7rUtbH/l7867cu/8fZN98sfdOUZnMaY/Twy759xE9XS6276uvRtVfdLXW5/7g50KprhnS4\nffT2/ePZnPo/GPqxvZ39/mRuzreX/a3FCKOHX/bt6GNzmdx97qq86qvRtVf9ttTt581BVl0x\npENzu8CmObSnVdl0K19Vnt3bl9e2fS3nu3H+49f6owdf9pfR6+6xbjdlXX/VV6Nrr3pXlqf2\ntC6HYVddL6Tzgm4W+NI/tqfuU/Pu8vmi3uzeqek+opuy7+/MUPfgl9FDL/vr6Ld3ul9qr/pq\ndO1VL/tujt2zbchV1wvpvJIvn6QO7zd3ZVd3dm9VTv3b7pXOcJ8mfxk99LK/jm7ens1N/VVf\nja696veGl8Ouul5Ih/Z2gYvSbpuyvjyZ9+vzTmC92f3v9VvE68+VtUcPveyvo7dvr6+29Vd9\nNbr2qq+WOuSqqx61+7LA1fv+/uqy+7msNrtt37cKgz+lfhldYdm3o3fdLn+za0dY9efo2qte\n9Juh10cOqTvYsL58fnzpDpAOus3/+ugduh3fdpSQPkcPvuzb0duP41fVV309uu6qt2V1ag/L\nRw6p20c6fh6MPA15NPY/j95lx3OUkN5HXwy67C/Hr84vqM6funb1V301+qLeqtv+yPvqkUP6\n+nuDnkj6+p+/7f5+7AZXDKkpv/7xYKMX/SvK/ilce9VXo7/74yFHd/022/73hlz1eCGtRg3p\n49DN5UjOcciTGz+N/v6Phxt99amr9qrrftb85v8+dA0PuerxQtr2L3CO3V5n03++GvTD+vXB\n/TgIe7kb+zLgMcOfRldY9jfHoPszd7VXfTW6/qovpxpWw656vJDOe0f9GeeXbqdh0+9/7n/8\nl+HZ3Sent7NYg5/j/3l0hWXfjD7PO71Nrb3qq9H1V91dybHonmePcWVD+7nAy6/bj8Ogp8uV\nWAN+evw6++1F++VWraOxX0dXWPbt6OXnUmuvelnzg30z+m1evwEccNUjhtTul+8n5rprgxcD\nn/C+nf35SetyXfJoo4dd9pfRn0utvurb0TVXfVyfM9p/jB5o1VVDgkclJAgQEgQICQKEBAFC\nggAhQYCQIEBIECAkCBASBAgJAoQEAUKCACFBgJAgQEgQICQIEBIECAkChAQBQoIAIUGAkCBA\nSBAgJAgQEgQICQKEBAFCggAhQYCQIEBIECCkyfv2539/+c2rd4f8Qbz8SEiT93chLXxER+Fh\nn7xvQ/rx7/zJ3ybPwz55QpoDD/vkndPYlGbb394tSrN7+822/1Hhm/7mx98pnRHv7NPyoE9e\nKauujq6f/kZZtm8hLbv31peQ3v6OkEbiQZ+8czmndlcWbbvvbp2WZX8JaV+aQ3toLiG9/x0Z\njcPDPnmlvLaXQFbldL51Kqv3d7tD3ftLSO9/R0jj8LBP3iWNSyRvbpr5vCmk8XjYJ09Ic+Bh\nn7xvIxHSxHjYJ+8zkstOUXv77l5IU+Bhn7zPSF66w3Tt7v1gw81Ru/e/U8px3Lv7pIQ0eZ+R\nXE4cleZ48+5tSIvzn495b5+VkCbvKqTuyoayPn68u2nK8vU2pNeFkMYgpNnrr3RgZEKar1Je\n2va0Kpux7whCmrPtZQ/JK7kpENKM7ZalLGyPJkFIECAkCBASBAgJAoQEAUKCACFBgJAgQEgQ\nICQIEBIECAkChAQBQoIAIUGAkCBASBAgJAgQEgQICQKEBAFCggAhQYCQIEBIECAkCBASBPwP\ngj1i/OZO9ogAAAAASUVORK5CYII=", "text/plain": [ "plot without title" ] }, "metadata": { "image/png": { "height": 420, "width": 420 } }, "output_type": "display_data" } ], "source": [ "#options(repr.plot.width=5, repr.plot.height=5)\n", "plot(height, weight)" ] }, { "cell_type": "markdown", "id": "27f31ad9", "metadata": {}, "source": [ "#### Changing default values" ] }, { "cell_type": "code", "execution_count": 35, "id": "0e114137", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAMAAADKOT/pAAAAMFBMVEUAAABNTU1oaGh8fHyM\njIyampqnp6eysrK9vb3Hx8fQ0NDZ2dnh4eHp6enw8PD////QFLu4AAAACXBIWXMAABJ0AAAS\ndAHeZh94AAATqElEQVR4nO3d6ULaWhiG0R1GRSD3f7eHBAewao/lzU4Ca/2wWGs/NvAIGdTS\nAjcrY18BuAdCggAhQYCQIEBIECAkCBASBAgJAoQEAUKCACFBgJAgQEgQICQIEBIECAkChAQB\nQoIAIUGAkCBASBAgJAgQEgQICQKEBAFCggAhQYCQIEBIECAkCBASBAgJAoQEAUKCACFBgJAg\nQEgQICQIEBIECAkChAQBQoIAIUGAkCBASBAgJAgQEgQICQKEBAFCggAhQYCQIEBIECAkCBAS\nBAgJAoQEAUKCACFBgJAgQEgQICQIEBIECAkChAQBQoIAIUGAkCBASBAgJAgQEgQICQKEBAFC\nggAhQYCQIEBIECAkCBASBAgJAoQEAUKCACFBgJAgQEgQICQIEBIECAkChAQBQoIAIUGAkCBA\nSBAgJAgQEgQICQKEBAEVQiowM//wKM+HM8IISBISBAgJAoQEAUKCACFBgJAgQEgQICQIEBIE\nCAkChAQBQoIAIUGAkCBASBPyoMu+C0KajvKg674LQpoOIc2YkCajtA+68LsgpMkQ0pwJaSrK\nxVtmR0gTUT79ybwIaSKENG9CmobyxSVmREjTIKSZE9Ik3PgzOxmdkCBASBAgJAgQEgQICQKE\nBAFCggAhQYCQIEBIECAkCBASBAgJAoQEAUKCACFBgJAgQEgQICQIEBIECAkChAQBQoIAIUGA\nkCBASBAgJAgQEgQICQKEBAFCggAhQYCQIEBIECAkCBASBAgJAoQEAUKCACFBgJAgQEgQICQI\nEBIECAkChAQBQoIAIUGAkCBASBAgJAgQEgQICQKEBAFCggAhQYCQIEBIECAkCBASBAgJAqqG\n9LJdlc5q8zLUCBhFxZCOi/JhOcgIGEnFkDaled73lw67pmyGGAEjqRhSU/bvl/elGWIERPz+\nAVgxpFK+eyc2AhLK7x+BnpHgs2mHdNpG2h36S7aRmLLS/v4hWHP39/Jir93iOMgIuN3UQ2pf\nNv1xpGa1dRyJySoXb3/5SUN/ygRHwDdmHlK5NMwI+Lvy6c/ffdawn/JqvzlvJi1Wz0ONgBtN\nP6TtxVPOapgRcKPyxaVffdqQn9LblfWhbV+Wq3b/tCi7IUbAraYf0rL0u7z3ZXvK6eenJCEx\nkn/dVB/hFKH+pAanCHFXqp4i1D8jHfuGhMRdqXqK0PKlbQ+rsm6P69ObAUbASEY4Rag5np6P\nmsMgI2AcVY8jPZ1SWmxPF5rNj6faCYm5mc6ZDZVHQJKQIEBIECAkCBASBAgJAoQEAUKCACFB\ngJAgQEgQICQIEBIECAkChAQBQoIAIUGAkCBASBAgJAgQEgQICQKEBAFCggAhQYCQIEBIECAk\nCBASBAgJAoQEAUKCACFBgJAgQEgQICQIEBIECAkChAQBQoIAIUGAkCBASBAgJAgQEgQICQKE\nBAFCggAhQYCQIEBIECAkCBASBAgJAoQEAUKCACFBgJAgQEgQICQIEBIECAkChAQBQoIAIUGA\nkCBASBAgJAgQEgQICQKEBAFCggAhQYCQIEBIECAkCBASBAgJAoQEAUKCACFBgJAgQEgQICQI\nEBIECAkChAQBQoIAIUGAkCBASBAgJAgQEgQICQKEBAFCggAhQYCQIEBIECAkCBASBAgJAoQE\nAUKCACFBgJAgQEgQICQIEBIECAkChAQBQoIAIUGAkCBASBAgJAgQEgQICQKEBAFCggAhQYCQ\nIEBIECAkCBASBAgJAoQEAUKCACFBgJAgQEgQUDWkl+2qdFabl6FGwCgqhnRclA/LQUbASCqG\ntCnN876/dNg1ZTPECBhJxZCasn+/vC/NECNgJBVDKuW7d2IjYCSekSCg7jbS7tBfso3Evam5\n+3t5sdducRxkBIyj7nGkTX8cqVltHUfivjizAQKmE1K5NMwIGErNkA7r0mzb9mlRmh93NXhG\nYnZqniLUdM81T1unCHF/qu7+Pj0PbZqyPrbHjd3f3JWqB2T7zy79jm8HZLkr1U8Ret2R4BQh\n7soIz0jd26NnJO7KCNtIm+Pr5fwIGIm9dhDgOBIETOfMhsojIElIECAkCBASBAgJAoQEAUKC\nACFBgJAgQEgQICQIEBIECAkChAQBQoIAIUGAkCBASBAgJAgQEgQICQKEBAFCgoAbQ3r/Ed7N\njz+C+JYRMAOhkA7ZX7InJGbmhpB2V7+scjHytYIx3fKMtLjs6C+/p3zwawVjSm0jZQmJmbHX\nDgKEBAG3hvT0vqGUukZ/jIDpuzGk7cfuhthVaoXE7NwYUlOeYlflmxEwA/baQcCNIW3KMXZV\nvhkBM3DrzobVMnok9qsRMH03hFSujXytYExCggAHZCFASBBw8+7vd8tN7EoJibnJhVRK7ptk\nhcTM3PrSbt3sTm93TXlpVyX2nCQkZubmA7L7/s99WbbH3HfJComZSZ0i1F3I7QIXEjNz80mr\nb89IjZB4YDe/tHvbRtq0z6eXd+NdKxjTrTsblm87v7snpNi3VAiJmbn5gOxudcpo1T0tlW3m\nKv0xAibPmQ0QICQIuOns76szG0a+VjAmIUGAl3YQICQIiOz+btvVIXR9vhoBkxc5IHv6uyZa\nkpCYmRtDeirLYxfSU1nHrlIrJGbn5pNWj+dzVe2146EFvo1CSHBjSIvXZ6S9X33JQ8tsI+3C\nP0xfSMzMzT+y+OPbKIKExMzcGNLL67dRPMeu0B8jYAZu3dnQbLOHYv8cATNwY0jr7lXdc/xX\nuwiJmbn5FKHn7tyG9S50db4cAZMXOGn1sF2U0gR/YLGQmJ3I2d/Hte9H4rHdHtK+e0Iqy9xP\nPvlzBEzdjSHtNk0pi014E0lIzM3tv41itY9dmS9HwAzc+ozUbR2dnpHCO8CFxMzcvo300r26\nO8WUuT5fjoCpi+y1e7HXjgcXCOnY7bZb2GvHI8uc2bB5CV2dL0fA5CXOtUvv/BYSs+Psbwi4\n+fuRBiEkZsZPWoUAIUGAkCBASBAgJAgQEgQICQKEBAFCggAhQYCQIEBIECAkCBASBAgJAoQE\nAUKCACFBgJAgQEgQICQIEBIECAkChAQBQuJH7opL398aQuInxX1x4YdbQ0j8REiXhMS/Ka07\n48NPt4aQ+IGQLpX3N9987B/+u2G576ahXLzlx1tDSHyrfPrzsf18awiJbwnpUvnjwpcf/Yf/\ncDjuuSkoX1x6XOXLiz/+3f//H4fijpsCIV0SEv+mXBr7yoyu/OXmEBIECAkChAQBQoIAIUGA\nkCBASBAgJAgQEgQICQKEBAFCggAhQYCQIEBIECAkCKga0st21X9b1GrzMtQIGEXFkI6Li28x\nXA4yAkZSMaRNaZ73/aXDrimbIUbASCqG1JT9++V9aYYYASOpGNLVj4z4+cdpCImZ8YwEAXW3\nkXaH/pJtJO5Nzd3fy4u9dovjICNgHHWPI23640jNaus4EvfFmQ0QMJ2Q/IRcZqzm7u/mLy/o\nbh8BI6l6HKmsftzFcPsIGEnVkLq93v8rJSExM3XPbDiuSlnvhhsBI6l9itC+2wG+etr//MQk\nJGam/rl2+03z1x1zQmJmRjlpdf+0WgiJezLW2d/DjICRCAkCpnNmQ+URkCQkCBASBAgJAoQE\nAUKCACFBgJAgQEgQICQIEBIECAkChAQBQoIAIUGAkCBASBAgJAgQEgQICQKEBAFCggAhQYCQ\nIEBIECAkCBASBAgJAoQEAUKCACFBgJAgQEgQICQIEBIECAkChAQBQoIAIUGAkCBASBAgJAgQ\nEgQICQKEBAFCggAhQYCQIEBIECAkCBASBAgJAoQEAUKCACFBgJAgQEgQICQIEBIECAkChAQB\nQoIAIUGAkCBASBAgJAgQEgQICQKEBAFCggAhQYCQIEBIECAkCBASBAgJAoQEAUKCACFBgJAg\nQEgQICQIEBIECAkChAQBQoIAIUGAkCBASBAgJAgQEgQICQKEBAFCggAhQYCQIEBIECAkCBAS\nBAgJAoQEAUKCACFBgJAgQEgQICQIEBIECAkChAQBQoIAIUGAkCBASBAgJAgQEgQICQKEBAFC\nggAhQYCQIEBIECAkCBASBAgJAoQEAUKCACFBgJAgQEgQICQIEBIEVA3pZbsqndXmZagRMIqK\nIR0X5cNykBEwkoohbUrzvO8vHXZN2QwxAkZSMaSm7N8v70szxIh75faYvIohlfLdO7ERd6q4\nQSbPM9IMCGn66m4j7Q79JdtIv1Jat8jk1dz9vbzYa7c4DjLiLglpBuoeR9r0x5Ga1dZxpP+v\nXLxlqpzZMHXl059M0nRCKpeGGTFLQpqFmiEdN92uuu2ilOXzQCPuT/niEtNTMaRDc3qmOTZO\nEfoVIc1DxZDWZXU8vVkfTk2t7f7+f7zgnYmqZzYcX9+cXuU5IMtdqX2KUFMu3omPgJFUfWm3\nb9vt+Tyh488bSUJiZiqGtC/NZt+umlNJu0XZDTECRlJz9/eu+dhu3g4zAsZR94Ds87r/LtnV\n9jDYCBjDdM5sqDwCkoQEAUKCACFBgJAgQEgQICQIEBIECAkChAQBQoIAIUGAkCBASBAgJAgQ\nEgQICQKEBAFCggAhQYCQIEBIECAkCBASBAgJAoQEAUKCACFBwMxCUhjTNK+QipKYJiFBwKxC\nKnWmw6/NLiQlMUVzCqnUGg+/Nb+QlMQEzSik8tMHYVQzDElJTM98Qio/fxjGJCQImE1I5crw\nVwF+YzYhwZQJCQKEBAFCggAhQYCQIEBIECAkCBASBAgJAoQEAUKCACFBgJAgQEgQICQIEBIE\nCAkCJhoSzMw/PMrz4Zht9OONftAH893fr0ZXHv2gD+a7v1+Nrjz6QR/Md3+/Gl159IM+mO/+\nfjW68ugHfTDf/f1qdOXRD/pgvvv71ejKox/0wXz396vRlUc/6IP57u9XoyuPftAH893fr0ZX\nHv2gD+a7v1+Nrjz6QR/Md3+/Gl15tFOzIUBIECAkCBASBAgJAoQEAUKCACFBgJAgQEgQICQI\nEBIECAkChAQBQoIAIUFA1ZCerqft16WsD/21+NcfXf6Ps69+WPqmKc3mOMbo4Zd9fYsfL5Za\nd9WXo2uvulvqcvd+caBV1wxpf33r7frbszn2Hxj6tr2e/fZgbk6Xl/2lxQijh1/29ehDc57c\nfe2qvOqL0bVX/brU7cfFQVZdMaR9c73Aptm3x1XZdCtfVZ7d25WXtn0pp6tx+vBL/dGDL/vT\n6HV3W7ebsq6/6ovRtVf9VJbH9rgu+2FXXS+k04KuFvjc37bH7kvz0/nrRb3ZvWPT3aObsuuv\nzFDX4IfRQy/78+jXd7o/aq/6YnTtVS/7bg7do23IVdcL6bSST1+k9m8Xn8pT3dm9VTn2b7tX\nOsN9mfxh9NDL/jy6eX00N/VXfTG69qrfGl4Ou+p6Ie3b6wUuSrttyvr8YN6tTxuB9Wb3f9c/\nI15+raw9euhlfx69fX19ta2/6ovRtVd9sdQhV111r92nBa7etvdX583PZbXZbfv2rDD4Q+qH\n0RWWfT36qdvkb57aEVb9Mbr2qhf909DLPYfU7WxYn78+Pnc7SAd9zv986+27Dd92lJA+Rg++\n7OvR2/f9V9VXfTm67qq3ZXVs98t7DqnbRjp87Iw8Drk39o9b77zhOUpIb6PPBl32p/1XpxdU\npy9dT/VXfTH6rN6q237P++qeQ/r8d4MeSPr8n79u/r5vBlcMqSk/fniw0Yv+FWX/EK696ovR\nX314yNFdv822/7shVz1eSKtRQ3rfdXPek3MY8uDGd6O//vBwoy++dNVedd2vml/83/uu4SFX\nPV5I2/4FzqHb6mz6r1eD3q2fb9z3nbDnq7ErA+4z/G50hWV/sQ+6P3JXe9UXo+uv+nyoYTXs\nqscL6bR11B9xfu42Gjb99ufu288Mz+6+OL0exRr8GP/3oyss+2r0ad7xdWrtVV+Mrr/q7kyO\nRfc4u48zG9qPBZ7/3L7vBj2ez8Qa8Mvj59mvL9rPl2rtjf08usKyr0cvP5Zae9XLmnf21ejX\nef0T4ICrHjGkdrd8OzDXnRu8GPiA9/Xsjy9a5/OSRxs97LI/jf5YavVVX4+uuerD+pTR7n30\nQKuuGhLcKyFBgJAgQEgQICQIEBIECAkChAQBQoIAIUGAkCBASBAgJAgQEgQICQKEBAFCggAh\nQYCQIEBIECAkCBASBAgJAoQEAUKCACFBgJAgQEgQICQIEBIECAkChAQBQoIAIU3el7//+9Nf\nXrw75C/i5VtCmrzfhbRwj47CzT55X4b07b/5P/+aPDf75AlpDtzsk3dKY1OabX/5aVGap9e/\nbPtfFb7pL77/m9IZ8co+LDf65JWy6uro+ukvlGX7GtKye299Dun13whpJG70yTuVc2yfyqJt\nd92l47LsziHtSrNv9805pLd/I6NxuNknr5SX9hzIqhxPl45l9fZut6t7dw7p7d8IaRxu9sk7\np3GO5NVVMx8XhTQeN/vkCWkO3OyT92UkQpoYN/vkfURy3ihqr9/dCWkK3OyT9xHJc7ebrn16\n29lwtdfu7d+Uchj36j4oIU3eRyTnA0elOVy9ex3S4vTxMa/toxLS5F2E1J3ZUNaH93c3TVm+\nXIf0shDSGIQ0e/2ZDoxMSPNVynPbHldlM/YVQUhztj1vIXklNwVCmrGnZSkLz0eTICQIEBIE\nCAkChAQBQoIAIUGAkCBASBAgJAgQEgQICQKEBAFCggAhQYCQIEBIECAkCBASBAgJAoQEAUKC\nACFBgJAgQEgQICQIEBIECAkC/gMAWV/ScE8QGwAAAABJRU5ErkJggg==", "text/plain": [ "plot without title" ] }, "metadata": { "image/png": { "height": 420, "width": 420 } }, "output_type": "display_data" } ], "source": [ " plot(height, weight, pch=2)\n" ] }, { "cell_type": "markdown", "id": "c5386e1e", "metadata": {}, "source": [ "#### Discovering default values" ] }, { "cell_type": "code", "execution_count": 36, "id": "735d862f", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<pre class=language-r><code>function (x, y = NULL, type = \"p\", xlim = NULL, ylim = NULL, \n", "<span style=white-space:pre-wrap> log = \"\", main = NULL, sub = NULL, xlab = NULL, ylab = NULL, </span>\n", "<span style=white-space:pre-wrap> ann = par(\"ann\"), axes = TRUE, frame.plot = axes, panel.first = NULL, </span>\n", "<span style=white-space:pre-wrap> panel.last = NULL, asp = NA, xgap.axis = NA, ygap.axis = NA, </span>\n", "<span style=white-space:pre-wrap> ...) </span>\n", "NULL</code></pre>" ], "text/latex": [ "\\begin{minted}{r}\n", "function (x, y = NULL, type = \"p\", xlim = NULL, ylim = NULL, \n", " log = \"\", main = NULL, sub = NULL, xlab = NULL, ylab = NULL, \n", " ann = par(\"ann\"), axes = TRUE, frame.plot = axes, panel.first = NULL, \n", " panel.last = NULL, asp = NA, xgap.axis = NA, ygap.axis = NA, \n", " ...) \n", "NULL\n", "\\end{minted}" ], "text/markdown": [ "```r\n", "function (x, y = NULL, type = \"p\", xlim = NULL, ylim = NULL, \n", " log = \"\", main = NULL, sub = NULL, xlab = NULL, ylab = NULL, \n", " ann = par(\"ann\"), axes = TRUE, frame.plot = axes, panel.first = NULL, \n", " panel.last = NULL, asp = NA, xgap.axis = NA, ygap.axis = NA, \n", " ...) \n", "NULL\n", "```" ], "text/plain": [ "function (x, y = NULL, type = \"p\", xlim = NULL, ylim = NULL, \n", " log = \"\", main = NULL, sub = NULL, xlab = NULL, ylab = NULL, \n", " ann = par(\"ann\"), axes = TRUE, frame.plot = axes, panel.first = NULL, \n", " panel.last = NULL, asp = NA, xgap.axis = NA, ygap.axis = NA, \n", " ...) \n", "NULL" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "args(plot.default)" ] }, { "cell_type": "code", "execution_count": 37, "id": "e824df5d", "metadata": {}, "outputs": [], "source": [ "?plot" ] }, { "cell_type": "markdown", "id": "733660a6", "metadata": {}, "source": [ "#### Adding a line" ] }, { "cell_type": "code", "execution_count": 38, "id": "30d2f639", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAMAAADKOT/pAAAAMFBMVEUAAABNTU1oaGh8fHyM\njIyampqnp6eysrK9vb3Hx8fQ0NDZ2dnh4eHp6enw8PD////QFLu4AAAACXBIWXMAABJ0AAAS\ndAHeZh94AAAWy0lEQVR4nO3d60KqWhiGUVDTMtP7v9vtoYO2y2X6MpnAGD9atk6fkE/KhKrZ\nAQ9r+r4DMAZCggAhQYCQIEBIECAkCBASBAgJAoQEAUKCACFBgJAgQEgQICQIEBIECAkChAQB\nQoIAIUGAkCBASBAgJAgQEgQICQKEBAFCggAhQYCQIEBIECAkCBASBAgJAoQEAUKCACFBgJAg\nQEgQICQIEBIECAkChAQBQoIAIUGAkCBASBAgJAgQEgQICQKEBAFCggAhQYCQIEBIECAkCBAS\nBAgJAoQEAUKCACFBgJAgQEgQICQIEBIECAkChAQBQoIAIUGAkCBASBAgJAgQEgQICQKEBAFC\nggAhQYCQIEBIECAkCBASBAgJAoQEAUKCACFBgJAgQEgQICQIEBIECAkChAQBQoIAIUGAkCBA\nSBAgJAgQEgQICQKEBAEFQmpgYO54lOfD6WEEJAkJAoQEAUKCACFBgJAgQEgQICQIEBIECAkC\nhAQBQoIAIUGAkCBASBAgJAgQEgQICQKEVI+7vl6ZOgipFseKpDRUQqpFc/aWwRFSJZpvvzIs\nQqqEkIZNSJUQ0rAJqRaOkQZNSLWwajdoQqqH80gDJiQIEBIECAkChAQBQoIAIUGAkCBASBAg\nJAgQEgQICQKEBAFCggAhQYCQIEBIECAkCBASBAgJAoQEAUKCACFBgJAgQEgQICQIEBIECAkC\nhAQBQoIAIUGAkCBASBAgJAgQEgQICQKEBAFCggAhQYCQIEBIECAkCBASBAgJAoQEAUKCACFB\ngJAgQEgQICQIEBIECAkChAQBQoIAIUGAkCBASBAgJAgQEgQICQKEBAFFQ3pdLZqDxfK1qxHQ\ni4IhbWfNl3knI6AnBUNaNu3L5njrbd02yy5GQE8KhtQ2m8/bm6btYgT0pGBITfPbO7ER0BPP\nSBBQ9hhp/Xa85RiJqjXXXzD9+E/umPL3f3IyP1u1m207GQEPO1b015TKnkdaHs8jtYuV80hU\nqzl7+8d/1PU/qXAE/Kz59uvf/lW3/+Sm//ZcNyPg3wYQ0mZ5OkyaLV66GgEPqj+k1dlTzqKb\nEfCw2o+R1s3T2273Ol/sNs+zZt3FCHhc7at28+a45L1pVvucrj8lCYk+1X0e6ePOHS9qcIkQ\no1L0EqHjM9L2hmdOITEwRS8Rmr/udm+L5mm3fdq/6WAE9KSHS4Ta7f75qH3rZAT0o+h5pOd9\nSrPV/ka7vHqpnZAYmnqubCg8ApKEBAFCggAhQYCQIEBIECAkCBASBAgJAoQEAUKCACFBgJAg\nQEgQICQIEBIECAkChAQBQoIAIUGAkCBASBAgJAgQEgQICQKEBAFCggAhQYCQIEBIECAkCBAS\nBAgJAoQEAUKCACFBgJAgQEgQICQIEBIECAkChAQBQoIAIUGAkCBASBAgJAgQEgQICQKEBAFC\nggAhQYCQIEBIECAkCBASBAgJAoQEAUKCACFBgJAgQEgQICQIEBIECAkChAQBQoIAIUGAkCBA\nSBAgJAgQEgQICQKEBAFCggAhQYCQIEBIECAkCBASBAgJAoQEAUKCACFBgJAgQEgQICQIEBIE\nCAkChAQBQoIAIUGAkCBASBAgJAgQEgQICQKEBAFCggAhQYCQIEBIECAkCBASBAgJAoQEAUKC\nACFBgJAgQEgQICQIEBIECAkChAQBQoIAIUGAkCBASBAgJAgQEgQICQKEBAFCggAhwf/8/QEo\nJPimKVOFkBizezISEly4LyMhwZl7MxISfLo/IyHBu0cyEhIcPZZR4ZBeV4vmYLF87WoE3OHR\njIqGtJ01X+adjIA7PJ5R0ZCWTfuyOd56W7fNsosR8GeJjIqG1Dabz9ubpu1iBPxRJqOiIV3c\n5ev3X0gUkcrIMxITlsuo9DHS+u14yzES/UtmVHb5e362ajfbdjICbpPNqPR5pOXxPFK7WDmP\nRJ/SGbmygQnKZ1RTSM25bkZANxmVDentqWlXu93zrGmvLjV4RqIzXX2SLnmJUHt4rnleuUSI\nvnT3Wqfo8vf+eWjZNk/b3XZp+ZvyOnxcFT0he/zXzXHh2wlZSuv00Lv4JULvW+MSIcrqeAWr\nh2ekw9utZyRK6nwhuIdjpOX2/XZ+BPykwPkUq3aMXZHTks4jMW6Fzu7Xc2VD4RFMQrGLZITE\neBW81kxIjFXRSzaFxDgVvvJZSIxR8S8gEBLj08PX4QiJsenly9mExLj09FWhQmJMevviaiEx\nHj1+jwIhMRa9fqsPITEOPX/HHCExBr1/4ykhMXy9ZyQkRqCGh4uQGLgKno52QmLg6shISAxa\nLRkJiQGrJyMhMVg1ZSQkBqqujITEINWWkZAYoPoyejikz01qr34L4kdGwIUaM4qF9Nb7j4hm\nGurM6KGQ1hc/rHLW871iCmrN6LFnpNl5R//4OeWd3yvGr96McsdIWRXvMPpSc0ZW7RiIujMS\nEoNQe0aPh/T8eaCUukf/G8HU1Z/RwyGtvpYbYndpJyTODCGjh0Nqm+fYXfllBJM2jIys2lG1\noWT0cEjLZhu7K7+MYLKGk9Hjiw2LefRM7E8jmKhBPQoeCKm51PO9YmSG9HS0ExJ1GlhGTshS\no8FlJCTqM8CMAsvfn+bL2J0S0oQNMqNkSE2T+yLZYe5LHjfQjB5/affUrvdv123zuls0seek\noe5NHjPYjAInZDfHXzfNfLfNfZXscPcn9xtwRrlLhA43cjtiyHuU+ww6o8BFqx/PSK2QuN/A\nMwq8tPs4RlruXvYv7/q7VwzY4DN6fLFh/rH4fdgbsS+pGP5+5XYjyChwQna92Ge0ODwtNavM\nXfrfCMZsFBm5soF+jSQjIdGn0WT04NXfF1c29HyvGJwRZSQk+jKqjLy0ox8jy0hI9GF0GYWW\nv3e7xVvo/vw0gnEZYUahE7L732ujJY1xT3MyyoweDum5mW8Pe+a5eYrdpZ2QxmukGQUuWt2e\n9o1VO/5ttBlFvoxCSNxkxBk9HNLs/Rlp40dfct2oM0odI63D30x/3Pt8ikaeUeBbFn99GUXQ\n2Pf61Iw+o4dDen3/MoqX2B363wiGbgIZPb7Y0K6yp2L/P4Jhm0RGD4f0dHhV9xL/0S7T2PdT\nMJGMApcIvRyubXhah+7OjyMYqslkFLlo9W01a5o2+A2LhTQOE8oodPX39snXI/HNpDJKhLQ5\nPCE189x3Pvn/CAZnYhk9HNJ62TbNbBk+RBLSwE0uo8C1ds1iE7szP45gaCaY0ePPSIejo/0z\nUngBfIofibGYZEaJY6TXw6u7fUyZ+/PjCAZjohmFVu1erdpxMNmMIiFtD8t2M6t2kzfhjFJX\nNixfQ3fnxxEMwaQzylxrl178FtLwTDwjV3+TMPmMAl+P1AkflyGR0c53WuVRMjoSEo+Q0Tsh\ncT8ZfRIS95LRGSFxHxldEBL3kNE3QuLvZPQ/QuKvZPQDIfE3MvqRkPgLGf1CSNxORr8SEreS\n0RVC4jYyukpI3EJG/yAk/k1G/yQk/kVGNxAS18noJkLiGhndSEj8TkY3ExK/kdEfCImfyehP\nhMRPZPRHQuL/ZPRnQuI7Gd1BSFyS0V2ExDkZ3UlIfJHR3YTEh58yCv8EuYG7sjeExMnPGf3y\nB5N0dW8IiYOfHx/N2Vuu7g0h8eun2ebbr9N2fW8IiV9fuwnpnJC45sohkJDOCYnfXV9JcIx0\nzjESv/jXgpxVu3NW7fjRLYU4j3TOeST+RyFRQpomGYUJaYpkFCek6ZFRB4Q0NTLqhJCmRUYd\nEdKUyKgzQpoOGXVISFMho04JaRpk1DEhTYGMOiek8ZNRAUIaOxkVIaRxk1EhQhozGRVTNKTX\n1aI5WCxfuxrBFxkVVDCk7az5Mu9kBF9kVFTBkJZN+7I53npbt82yixF8kFFhBUNqm83n7U3T\ndjGCExkVVzCki4/uLd+9hvvIqAeekcZGRr0oe4y0fjvecozUGRn1pOTy9/xs1W627WTExMmo\nN2XPIy2P55Haxcp5pA7IqEeubBgLGfWqnpCac92MGDG7rGcll7/bf7yge3zEVMmod0XPIzWL\nq0sMj4+YJhlVoGhIh1Xvm1LyyLidjKpQ9sqG7aJpntbdjZgeGVWi9CVCm8MC+OJ5c/2JyaPj\nNjKqRvlr7TbL9p8Lcx4ft5BRRXq5aHXzvJgJ6UEyqkpfV393M2I6ZFQZIQ2RjKpTz5UNhUcM\nmIwqJKShkVGVhDQsMqqUkIZERtUS0nDIqGJCGgoZVU1IwyCjyglpAHylY/2EVD0VDYGQKiej\nYRBS1WQ0FEKqmIyGQ0jVktGQCKlSMhoWIVVJRkMjpPo4bTRAQqqNigZJSHWR0UAJqSYyGiwh\n1UNGAyakWsho0IRUBxkNnJBqIKPBE1L/ZDQCQuqZs6/jIKReqWgshNQjGY2HkHojozERUk9k\nNC5C6oWMxkZIPZDR+AipOBmNkZDKctpopIRUkopGS0jlyGjEhFSKjEZNSGXIaOSEVIKMRk9I\n3ZPRBAipazKaBCF1ymmjqRBSh1Q0HULqjIymREgdkdG0CKkTMpoaIXVARtMjpDgZTZGQwmQ0\nTUJKctposoSUo6IJE1KKjCZNSBkymjghJcho8oT0OBkhpIfJiJ2QHiUjjoT0CBnxTkh3c/aV\nL0K6k4o4J6S7yIhLQrqDjPhOSH8mI/5PSH8kI34ipD+RET8T0h/IiN8I6VZOG3GFkG6jIq4S\n0i1kxD8I6d9kxD8J6V9kxA2EdJ2MuImQrrBQx62E9CsVcTsh/XYXKrgPDIeQfr4Dvd8DhkVI\nP42XEX8kpP/NlhF/J6Rvk1XEPYR0MVdG3EdIZ1NlxL2E9DlTRtxPSO8TZcQjhLSzUMfjhOTJ\niIDJhyQjEiYekozImHRIMiJlwiHJiJyphmShjqhphqQiwqYYkoyIm15IMqIDUwtJRnRiUiFZ\nYaArEwpJRXRnMiHJiC5NJCQZ0a1JhCQjujaBkGRE98YekoU6ihh3SCqikDGHJCOKGW9IMqKg\nsYYkI4oaZ0gyorARhmShjvJGF5KK6MPIQpIR/RhVSDKiLyMKSUb0ZzQhyYg+jSMkC3X0bAwh\nqYjeDT8kGVGBoYckI6ow7JBkRCUGHJIVBuox2JBURE0GGpKMqMsgQ5IRtRlgSDKiPoMLSUbU\naGAhyYg6DSwkqJOQIEBIECAkCBASBAgJAoQEAUKCgKIhva4WzcFi+drVCOhFwZC2s+bLvJMR\n0JOCIS2b9mVzvPW2bptlFyOgJwVDapvN5+1N03YxAnpSMKSLC06vX30qJAbGMxIElD1GWr8d\nbzlG+hvf5qV+JZe/52erdrNtJyPG6FiRlCpX9jzS8ngeqV2snEe6XXP2llq5sqF2zbdfqVI9\nITXnuhkxSEIahJIhbZeHpbrVrGnmLx2NGCEhDULBkN7a/TPNtnWJ0B85RhqCgiE9NYvt/s3T\n276pJ8vfN7NqNwRFr2zYvr/Zv8pzQvYPHDTWr/QlQm1z9k58BPSk6Eu7zW63Ol0ntL1+kCQk\nBqZgSJumXW52i3Zf0nrWrLsYAT0pufy9br9OFK26GQH9KHtC9uXp+FWyi9VbZyOgD/Vc2VB4\nBCQJCQKEBAFCggAhQYCQIEBIECAkCBASBAgJAoQEAUKCACFBgJAgQEgQICQIEBIECAkChAQB\nQoIAIUGAkCBASBAgJAgQEgQICQKEBAFCggAhQYCQIEBIEDCskPxUYio1pJCOFUmJGg0qpFLj\n4a8GFFJz7Q+hV0KCACFBwIBCcoxEvQYVklU7ajWkkJxHolrDCgkqJSQIEBIECAkChAQBQoIA\nIUGAkCBASBAgJAgQEgQICQKEBAFCggAhQYCQIEBIECAkCKg0JBiYOx7l+XDMNnp6oyf6YB79\nx9XowqMn+mAe/cfV6MKjJ/pgHv3H1ejCoyf6YB79x9XowqMn+mAe/cfV6MKjJ/pgHv3H1ejC\noyf6YB79x9XowqMn+mAe/cfV6MKjJ/pgHv3H1ejCoyf6YB79x9XowqMn+mAe/cfV6MKjXZoN\nAUKCACFBgJAgQEgQICQIEBIECAkChAQBQoIAIUGAkCBASBAgJAgQEgQICQKKhvR8OW3z1DRP\nb8d7ce+3Lr9z9sU3S1+2Tbvc9jG6+82+3OPbs00tu9Xno0tv9WFT5+vPmx1tdcmQNpd7b33c\nn+32+Add79vL2R8P5nZ/e368NethdPebfTn6rT1NPnzuKrzVZ6NLb/X7pq6+bnay1QVD2rSX\nG9i2m9120SwPW74oPPto3bzudq/N/m7s//i1/OjON/vb6KfDvt4tm6fyW302uvRWPzfz7W77\n1Gy63epyIe036GIDX477dnv41Px8+nxRbvbRtj18RJfN+nhnuroHV0Z3vdnfR7+/c/il9Faf\njS691fNjN2+HR1uXW10upP2WfPsktfm4+dw8l519tGi2x7eHVzrdfZq8Mrrrzf4+un1/NLfl\nt/psdOmt/mh43u1Wlwtps7vcwFmzW7XN0+nBvH7aHwSWm338veMz4vnnytKju97s76NX76+v\nVuW3+mx06a0+29Qut7roqt23DVx8HO8vToef82Kzd7uPZ4XOH1JXRhfY7MvRz4dD/vZ518NW\nf40uvdWz49PQ65hDOiw2PJ0+P74cFkg7fc7/vvc2hwPfXS8hfY3ufLMvR68+16+Kb/X56LJb\nvWoW291mPuaQDsdIb1+LkdsuV2P/t/dOB569hPQx+qTTzf62frV/QbX/1PVcfqvPRp+U2+rd\nceV9MeaQvv9epyeSvv/n74e/n4fBBUNqm6t/3Nno2fEV5fEhXHqrz0b/9Mddjj70266Ov9fl\nVvcX0qLXkD6Xbk4rOW9dntz4bfTPf9zd6LNPXaW3uuxnzR/+782h4S63ur+QVscXOG+Ho872\n+Pmq0w/r9537uQh7uhvrpsM1w99GF9jsH9agj2fuSm/12ejyW3061bDodqv7C2l/dHQ84/xy\nOGhYHo8/17/+y/Dswyen97NYnZ/j/310gc2+GL2ft32fWnqrz0aX3+rDlRyzw+NsHFc27L42\n8PTr6nMZdHu6EqvDT4/fZ7+/aD/dKrUa+310gc2+HD3/2tTSWz0v+cG+GP0+7/gE2OFW9xjS\nbj3/ODF3uDZ41vEJ78vZX5+0Ttcl9za6283+NvprU4tv9eXoklv99rTPaP05uqOtLhoSjJWQ\nIEBIECAkCBASBAgJAoQEAUKCACFBgJAgQEgQICQIEBIECAkChAQBQoIAIUGAkCBASBAgJAgQ\nEgQICQKEBAFCggAhQYCQIEBIECAkCBASBAgJAoQEAUKCACFBgJCq9+PP//72m2fvdvmDePmV\nkKr3t5BmPqK9sNur92NIv/6dW/42eXZ79YQ0BHZ79fZpLJt2dbz9PGva5/ff3B1/VPjyePPz\n7zQHPd7ZybLTq9c0i0Mdh36ON5r57j2k+eG9p1NI739HSD2x06u3L2e7e25mu936cGs7b9an\nkNZNu9lt2lNIH39HRv2w26vXNK+7UyCLZru/tW0WH+8elrrXp5A+/o6Q+mG3V++UximSdxfN\nfN0UUn/s9uoJaQjs9ur9GImQKmO3V+8rktNB0e7y3bWQamC3V+8rkpfDMt3u+WOx4WLV7uPv\nNM1bv3d3ooRUva9ITieOmvbt4t3LkGb7P+/z3k6VkKp3FtLhyobm6e3z3WXbzF8vQ3qdCakP\nQhq845UO9ExIw9U0L7vddtEs+74jCGnIVqcjJK/kaiCkAXueN83M81EVhAQBQoIAIUGAkCBA\nSBAgJAgQEgQICQKEBAFCggAhQYCQIEBIECAkCBASBAgJAoQEAUKCACFBgJAgQEgQICQIEBIE\nCAkChAQBQoIAIUHAf9lCPtXZOcSjAAAAAElFTkSuQmCC", "text/plain": [ "plot without title" ] }, "metadata": { "image/png": { "height": 420, "width": 420 } }, "output_type": "display_data" } ], "source": [ "plot(height, weight)\n", "hh = c(1.65, 1.70, 1.75, 1.80, 1.85, 1.90)\n", "lines(hh, 22.5 * hh^2)" ] }, { "cell_type": "markdown", "id": "1783a939", "metadata": {}, "source": [ "#### Factors" ] }, { "cell_type": "code", "execution_count": 39, "id": "6055e3d2", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<style>\n", ".list-inline {list-style: none; margin:0; padding: 0}\n", ".list-inline>li {display: inline-block}\n", ".list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex}\n", "</style>\n", "<ol class=list-inline><li>0</li><li>3</li><li>2</li><li>2</li><li>1</li></ol>\n", "\n", "<details>\n", "\t<summary style=display:list-item;cursor:pointer>\n", "\t\t<strong>Levels</strong>:\n", "\t</summary>\n", "\t<style>\n", "\t.list-inline {list-style: none; margin:0; padding: 0}\n", "\t.list-inline>li {display: inline-block}\n", "\t.list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex}\n", "\t</style>\n", "\t<ol class=list-inline><li>'0'</li><li>'1'</li><li>'2'</li><li>'3'</li></ol>\n", "</details>" ], "text/latex": [ "\\begin{enumerate*}\n", "\\item 0\n", "\\item 3\n", "\\item 2\n", "\\item 2\n", "\\item 1\n", "\\end{enumerate*}\n", "\n", "\\emph{Levels}: \\begin{enumerate*}\n", "\\item '0'\n", "\\item '1'\n", "\\item '2'\n", "\\item '3'\n", "\\end{enumerate*}\n" ], "text/markdown": [ "1. 0\n", "2. 3\n", "3. 2\n", "4. 2\n", "5. 1\n", "\n", "\n", "\n", "**Levels**: 1. '0'\n", "2. '1'\n", "3. '2'\n", "4. '3'\n", "\n", "\n" ], "text/plain": [ "[1] 0 3 2 2 1\n", "Levels: 0 < 1 < 2 < 3" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "pain <- c(0,3,2,2,1)\n", "fpain <- factor(pain,levels=0:3, ordered=TRUE)\n", "fpain" ] }, { "cell_type": "markdown", "id": "0dc0d349", "metadata": {}, "source": [ "#### Labeling categories" ] }, { "cell_type": "code", "execution_count": 40, "id": "0da23829", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<style>\n", ".list-inline {list-style: none; margin:0; padding: 0}\n", ".list-inline>li {display: inline-block}\n", ".list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex}\n", "</style>\n", "<ol class=list-inline><li>none</li><li>severe</li><li>medium</li><li>medium</li><li>mild</li></ol>\n", "\n", "<details>\n", "\t<summary style=display:list-item;cursor:pointer>\n", "\t\t<strong>Levels</strong>:\n", "\t</summary>\n", "\t<style>\n", "\t.list-inline {list-style: none; margin:0; padding: 0}\n", "\t.list-inline>li {display: inline-block}\n", "\t.list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex}\n", "\t</style>\n", "\t<ol class=list-inline><li>'none'</li><li>'mild'</li><li>'medium'</li><li>'severe'</li></ol>\n", "</details>" ], "text/latex": [ "\\begin{enumerate*}\n", "\\item none\n", "\\item severe\n", "\\item medium\n", "\\item medium\n", "\\item mild\n", "\\end{enumerate*}\n", "\n", "\\emph{Levels}: \\begin{enumerate*}\n", "\\item 'none'\n", "\\item 'mild'\n", "\\item 'medium'\n", "\\item 'severe'\n", "\\end{enumerate*}\n" ], "text/markdown": [ "1. none\n", "2. severe\n", "3. medium\n", "4. medium\n", "5. mild\n", "\n", "\n", "\n", "**Levels**: 1. 'none'\n", "2. 'mild'\n", "3. 'medium'\n", "4. 'severe'\n", "\n", "\n" ], "text/plain": [ "[1] none severe medium medium mild \n", "Levels: none < mild < medium < severe" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "levels(fpain) <- c(\"none\",\"mild\",\"medium\",\"severe\")\n", "fpain" ] }, { "cell_type": "markdown", "id": "1c70d97b", "metadata": {}, "source": [ "#### Convert double to factor" ] }, { "cell_type": "code", "execution_count": 41, "id": "fe40ecbd", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<style>\n", ".list-inline {list-style: none; margin:0; padding: 0}\n", ".list-inline>li {display: inline-block}\n", ".list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex}\n", "</style>\n", "<ol class=list-inline><li>medium</li><li>medium</li><li>short</li><li>tall</li><li>medium</li><li>tall</li></ol>\n", "\n", "<details>\n", "\t<summary style=display:list-item;cursor:pointer>\n", "\t\t<strong>Levels</strong>:\n", "\t</summary>\n", "\t<style>\n", "\t.list-inline {list-style: none; margin:0; padding: 0}\n", "\t.list-inline>li {display: inline-block}\n", "\t.list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex}\n", "\t</style>\n", "\t<ol class=list-inline><li>'medium'</li><li>'short'</li><li>'tall'</li></ol>\n", "</details>" ], "text/latex": [ "\\begin{enumerate*}\n", "\\item medium\n", "\\item medium\n", "\\item short\n", "\\item tall\n", "\\item medium\n", "\\item tall\n", "\\end{enumerate*}\n", "\n", "\\emph{Levels}: \\begin{enumerate*}\n", "\\item 'medium'\n", "\\item 'short'\n", "\\item 'tall'\n", "\\end{enumerate*}\n" ], "text/markdown": [ "1. medium\n", "2. medium\n", "3. short\n", "4. tall\n", "5. medium\n", "6. tall\n", "\n", "\n", "\n", "**Levels**: 1. 'medium'\n", "2. 'short'\n", "3. 'tall'\n", "\n", "\n" ], "text/plain": [ "[1] medium medium short tall medium tall \n", "Levels: medium short tall" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "lev <- rep(\"\", length(height))\n", "\n", "for (i in 1:length(height)) {\n", " if (height[i] < 1.7)\n", " lev[i] <- \"short\"\n", " else if (height[i] < 1.9)\n", " lev[i] <- \"medium\"\n", " else \n", " lev[i] <- \"tall\"\n", "}\n", "lev <- as.factor(lev)\n", "lev" ] }, { "cell_type": "markdown", "id": "157f7b04", "metadata": {}, "source": [ "#### Using cut function" ] }, { "cell_type": "code", "execution_count": 42, "id": "7de75ea3", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<style>\n", ".list-inline {list-style: none; margin:0; padding: 0}\n", ".list-inline>li {display: inline-block}\n", ".list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex}\n", "</style>\n", "<ol class=list-inline><li>(1.7,1.9]</li><li>(1.7,1.9]</li><li>(0,1.7]</li><li>(1.7,1.9]</li><li>(1.7,1.9]</li><li>(1.9,1.8e+308]</li></ol>\n", "\n", "<details>\n", "\t<summary style=display:list-item;cursor:pointer>\n", "\t\t<strong>Levels</strong>:\n", "\t</summary>\n", "\t<style>\n", "\t.list-inline {list-style: none; margin:0; padding: 0}\n", "\t.list-inline>li {display: inline-block}\n", "\t.list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex}\n", "\t</style>\n", "\t<ol class=list-inline><li>'(0,1.7]'</li><li>'(1.7,1.9]'</li><li>'(1.9,1.8e+308]'</li></ol>\n", "</details>" ], "text/latex": [ "\\begin{enumerate*}\n", "\\item (1.7,1.9{]}\n", "\\item (1.7,1.9{]}\n", "\\item (0,1.7{]}\n", "\\item (1.7,1.9{]}\n", "\\item (1.7,1.9{]}\n", "\\item (1.9,1.8e+308{]}\n", "\\end{enumerate*}\n", "\n", "\\emph{Levels}: \\begin{enumerate*}\n", "\\item '(0,1.7{]}'\n", "\\item '(1.7,1.9{]}'\n", "\\item '(1.9,1.8e+308{]}'\n", "\\end{enumerate*}\n" ], "text/markdown": [ "1. (1.7,1.9]\n", "2. (1.7,1.9]\n", "3. (0,1.7]\n", "4. (1.7,1.9]\n", "5. (1.7,1.9]\n", "6. (1.9,1.8e+308]\n", "\n", "\n", "\n", "**Levels**: 1. '(0,1.7]'\n", "2. '(1.7,1.9]'\n", "3. '(1.9,1.8e+308]'\n", "\n", "\n" ], "text/plain": [ "[1] (1.7,1.9] (1.7,1.9] (0,1.7] (1.7,1.9] (1.7,1.9] \n", "[6] (1.9,1.8e+308]\n", "Levels: (0,1.7] < (1.7,1.9] < (1.9,1.8e+308]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "<style>\n", ".list-inline {list-style: none; margin:0; padding: 0}\n", ".list-inline>li {display: inline-block}\n", ".list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex}\n", "</style>\n", "<ol class=list-inline><li>medium</li><li>medium</li><li>short</li><li>medium</li><li>medium</li><li>tall</li></ol>\n", "\n", "<details>\n", "\t<summary style=display:list-item;cursor:pointer>\n", "\t\t<strong>Levels</strong>:\n", "\t</summary>\n", "\t<style>\n", "\t.list-inline {list-style: none; margin:0; padding: 0}\n", "\t.list-inline>li {display: inline-block}\n", "\t.list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex}\n", "\t</style>\n", "\t<ol class=list-inline><li>'short'</li><li>'medium'</li><li>'tall'</li></ol>\n", "</details>" ], "text/latex": [ "\\begin{enumerate*}\n", "\\item medium\n", "\\item medium\n", "\\item short\n", "\\item medium\n", "\\item medium\n", "\\item tall\n", "\\end{enumerate*}\n", "\n", "\\emph{Levels}: \\begin{enumerate*}\n", "\\item 'short'\n", "\\item 'medium'\n", "\\item 'tall'\n", "\\end{enumerate*}\n" ], "text/markdown": [ "1. medium\n", "2. medium\n", "3. short\n", "4. medium\n", "5. medium\n", "6. tall\n", "\n", "\n", "\n", "**Levels**: 1. 'short'\n", "2. 'medium'\n", "3. 'tall'\n", "\n", "\n" ], "text/plain": [ "[1] medium medium short medium medium tall \n", "Levels: short < medium < tall" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "lev <- cut(height, breaks=c(0, 1.7, 1.9, .Machine$double.xmax), ordered=TRUE)\n", "lev\n", "levels(lev) <- c(\"short\", \"medium\", \"tall\")\n", "lev" ] }, { "cell_type": "markdown", "id": "a644c9b3", "metadata": {}, "source": [ "#### Matrix" ] }, { "cell_type": "code", "execution_count": 43, "id": "f75bdd6e", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<style>\n", ".list-inline {list-style: none; margin:0; padding: 0}\n", ".list-inline>li {display: inline-block}\n", ".list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex}\n", "</style>\n", "<ol class=list-inline><li>1</li><li>2</li><li>3</li><li>4</li><li>5</li><li>6</li><li>7</li><li>8</li><li>9</li></ol>\n" ], "text/latex": [ "\\begin{enumerate*}\n", "\\item 1\n", "\\item 2\n", "\\item 3\n", "\\item 4\n", "\\item 5\n", "\\item 6\n", "\\item 7\n", "\\item 8\n", "\\item 9\n", "\\end{enumerate*}\n" ], "text/markdown": [ "1. 1\n", "2. 2\n", "3. 3\n", "4. 4\n", "5. 5\n", "6. 6\n", "7. 7\n", "8. 8\n", "9. 9\n", "\n", "\n" ], "text/plain": [ "[1] 1 2 3 4 5 6 7 8 9" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "x <- 1:9\n", "x" ] }, { "cell_type": "markdown", "id": "512b1d1f", "metadata": {}, "source": [ "#### Vector to matrix" ] }, { "cell_type": "code", "execution_count": 44, "id": "460711dd", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<table class=\"dataframe\">\n", "<caption>A matrix: 3 × 3 of type int</caption>\n", "<tbody>\n", "\t<tr><td>1</td><td>4</td><td>7</td></tr>\n", "\t<tr><td>2</td><td>5</td><td>8</td></tr>\n", "\t<tr><td>3</td><td>6</td><td>9</td></tr>\n", "</tbody>\n", "</table>\n" ], "text/latex": [ "A matrix: 3 × 3 of type int\n", "\\begin{tabular}{lll}\n", "\t 1 & 4 & 7\\\\\n", "\t 2 & 5 & 8\\\\\n", "\t 3 & 6 & 9\\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "A matrix: 3 × 3 of type int\n", "\n", "| 1 | 4 | 7 |\n", "| 2 | 5 | 8 |\n", "| 3 | 6 | 9 |\n", "\n" ], "text/plain": [ " [,1] [,2] [,3]\n", "[1,] 1 4 7 \n", "[2,] 2 5 8 \n", "[3,] 3 6 9 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "dim(x) <- c(3,3)\n", "x" ] }, { "cell_type": "code", "execution_count": 45, "id": "ef59965a", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<table class=\"dataframe\">\n", "<caption>A matrix: 3 × 3 of type int</caption>\n", "<tbody>\n", "\t<tr><td>1</td><td>4</td><td>7</td></tr>\n", "\t<tr><td>2</td><td>5</td><td>8</td></tr>\n", "\t<tr><td>3</td><td>6</td><td>9</td></tr>\n", "</tbody>\n", "</table>\n" ], "text/latex": [ "A matrix: 3 × 3 of type int\n", "\\begin{tabular}{lll}\n", "\t 1 & 4 & 7\\\\\n", "\t 2 & 5 & 8\\\\\n", "\t 3 & 6 & 9\\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "A matrix: 3 × 3 of type int\n", "\n", "| 1 | 4 | 7 |\n", "| 2 | 5 | 8 |\n", "| 3 | 6 | 9 |\n", "\n" ], "text/plain": [ " [,1] [,2] [,3]\n", "[1,] 1 4 7 \n", "[2,] 2 5 8 \n", "[3,] 3 6 9 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "x" ] }, { "cell_type": "code", "execution_count": 46, "id": "779a356f", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[1] 1\n", "[1] 4\n", "[1] 7\n", "[1] 2\n", "[1] 5\n", "[1] 8\n", "[1] 3\n", "[1] 6\n", "[1] 9\n" ] } ], "source": [ "for (i in 1:nrow(x)) \n", " for (j in 1:ncol(x))\n", " print(x[i,j])" ] }, { "cell_type": "code", "execution_count": 47, "id": "26f92d3f", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<table class=\"dataframe\">\n", "<caption>A matrix: 3 × 3 of type dbl</caption>\n", "<tbody>\n", "\t<tr><td>3</td><td>12</td><td>21</td></tr>\n", "\t<tr><td>6</td><td>15</td><td>24</td></tr>\n", "\t<tr><td>9</td><td>18</td><td>27</td></tr>\n", "</tbody>\n", "</table>\n" ], "text/latex": [ "A matrix: 3 × 3 of type dbl\n", "\\begin{tabular}{lll}\n", "\t 3 & 12 & 21\\\\\n", "\t 6 & 15 & 24\\\\\n", "\t 9 & 18 & 27\\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "A matrix: 3 × 3 of type dbl\n", "\n", "| 3 | 12 | 21 |\n", "| 6 | 15 | 24 |\n", "| 9 | 18 | 27 |\n", "\n" ], "text/plain": [ " [,1] [,2] [,3]\n", "[1,] 3 12 21 \n", "[2,] 6 15 24 \n", "[3,] 9 18 27 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "y <- x\n", "for (i in 1:nrow(y)) \n", " for (j in 1:ncol(y))\n", " y[i,j] <- 3 * y[i, j]\n", "\n", "y" ] }, { "cell_type": "markdown", "id": "61cdc0f1", "metadata": {}, "source": [ "#### Multiplying matrix by 3" ] }, { "cell_type": "code", "execution_count": 48, "id": "22093767", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<table class=\"dataframe\">\n", "<caption>A matrix: 3 × 3 of type dbl</caption>\n", "<tbody>\n", "\t<tr><td>3</td><td>12</td><td>21</td></tr>\n", "\t<tr><td>6</td><td>15</td><td>24</td></tr>\n", "\t<tr><td>9</td><td>18</td><td>27</td></tr>\n", "</tbody>\n", "</table>\n" ], "text/latex": [ "A matrix: 3 × 3 of type dbl\n", "\\begin{tabular}{lll}\n", "\t 3 & 12 & 21\\\\\n", "\t 6 & 15 & 24\\\\\n", "\t 9 & 18 & 27\\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "A matrix: 3 × 3 of type dbl\n", "\n", "| 3 | 12 | 21 |\n", "| 6 | 15 | 24 |\n", "| 9 | 18 | 27 |\n", "\n" ], "text/plain": [ " [,1] [,2] [,3]\n", "[1,] 3 12 21 \n", "[2,] 6 15 24 \n", "[3,] 9 18 27 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "y <- x\n", "for (i in 1:nrow(y)) \n", " for (j in 1:ncol(y))\n", " y[i,j] <- 3 * y[i, j]\n", "\n", "y\n" ] }, { "cell_type": "code", "execution_count": 49, "id": "5c1b1f34", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<table class=\"dataframe\">\n", "<caption>A matrix: 3 × 3 of type dbl</caption>\n", "<tbody>\n", "\t<tr><td>3</td><td>12</td><td>21</td></tr>\n", "\t<tr><td>6</td><td>15</td><td>24</td></tr>\n", "\t<tr><td>9</td><td>18</td><td>27</td></tr>\n", "</tbody>\n", "</table>\n" ], "text/latex": [ "A matrix: 3 × 3 of type dbl\n", "\\begin{tabular}{lll}\n", "\t 3 & 12 & 21\\\\\n", "\t 6 & 15 & 24\\\\\n", "\t 9 & 18 & 27\\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "A matrix: 3 × 3 of type dbl\n", "\n", "| 3 | 12 | 21 |\n", "| 6 | 15 | 24 |\n", "| 9 | 18 | 27 |\n", "\n" ], "text/plain": [ " [,1] [,2] [,3]\n", "[1,] 3 12 21 \n", "[2,] 6 15 24 \n", "[3,] 9 18 27 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "y <- 3*x\n", "y" ] }, { "cell_type": "markdown", "id": "256cacb7", "metadata": {}, "source": [ "#### Vector to matrix by row" ] }, { "cell_type": "code", "execution_count": 50, "id": "a1e4d6c1", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<table class=\"dataframe\">\n", "<caption>A matrix: 3 × 3 of type int</caption>\n", "<tbody>\n", "\t<tr><td>1</td><td>2</td><td>3</td></tr>\n", "\t<tr><td>4</td><td>5</td><td>6</td></tr>\n", "\t<tr><td>7</td><td>8</td><td>9</td></tr>\n", "</tbody>\n", "</table>\n" ], "text/latex": [ "A matrix: 3 × 3 of type int\n", "\\begin{tabular}{lll}\n", "\t 1 & 2 & 3\\\\\n", "\t 4 & 5 & 6\\\\\n", "\t 7 & 8 & 9\\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "A matrix: 3 × 3 of type int\n", "\n", "| 1 | 2 | 3 |\n", "| 4 | 5 | 6 |\n", "| 7 | 8 | 9 |\n", "\n" ], "text/plain": [ " [,1] [,2] [,3]\n", "[1,] 1 2 3 \n", "[2,] 4 5 6 \n", "[3,] 7 8 9 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "x <- matrix(1:9,nrow=3,byrow=T)\n", "x" ] }, { "cell_type": "markdown", "id": "398194aa", "metadata": {}, "source": [ "#### Transpose matrix" ] }, { "cell_type": "code", "execution_count": 51, "id": "a88b10f7", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<table class=\"dataframe\">\n", "<caption>A matrix: 3 × 3 of type int</caption>\n", "<tbody>\n", "\t<tr><td>1</td><td>4</td><td>7</td></tr>\n", "\t<tr><td>2</td><td>5</td><td>8</td></tr>\n", "\t<tr><td>3</td><td>6</td><td>9</td></tr>\n", "</tbody>\n", "</table>\n" ], "text/latex": [ "A matrix: 3 × 3 of type int\n", "\\begin{tabular}{lll}\n", "\t 1 & 4 & 7\\\\\n", "\t 2 & 5 & 8\\\\\n", "\t 3 & 6 & 9\\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "A matrix: 3 × 3 of type int\n", "\n", "| 1 | 4 | 7 |\n", "| 2 | 5 | 8 |\n", "| 3 | 6 | 9 |\n", "\n" ], "text/plain": [ " [,1] [,2] [,3]\n", "[1,] 1 4 7 \n", "[2,] 2 5 8 \n", "[3,] 3 6 9 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "x <- t(x)\n", "x" ] }, { "cell_type": "markdown", "id": "f1d054d5", "metadata": {}, "source": [ "#### Determinant of a matrix" ] }, { "cell_type": "code", "execution_count": 52, "id": "72eaf8ea", "metadata": {}, "outputs": [ { "data": { "text/html": [ "0" ], "text/latex": [ "0" ], "text/markdown": [ "0" ], "text/plain": [ "[1] 0" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "det(x)" ] }, { "cell_type": "code", "execution_count": 53, "id": "4949ab28", "metadata": {}, "outputs": [], "source": [ "?det" ] }, { "cell_type": "code", "execution_count": 54, "id": "111d0475", "metadata": {}, "outputs": [], "source": [ "a <- c(5260,5470,5640,6180,6390,6515,6805,7515,7515,8230,8770)\n", "b <- c(3910,4220,3885,5160,5645,4680,5265,5975,6790,6900,7335)" ] }, { "cell_type": "markdown", "id": "5a715620", "metadata": {}, "source": [ "#### Creating a list" ] }, { "cell_type": "code", "execution_count": 55, "id": "7e94d0a3", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<ol>\n", "\t<li><style>\n", ".list-inline {list-style: none; margin:0; padding: 0}\n", ".list-inline>li {display: inline-block}\n", ".list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex}\n", "</style>\n", "<ol class=list-inline><li>5260</li><li>5470</li><li>5640</li><li>6180</li><li>6390</li><li>6515</li><li>6805</li><li>7515</li><li>7515</li><li>8230</li><li>8770</li></ol>\n", "</li>\n", "\t<li><style>\n", ".list-inline {list-style: none; margin:0; padding: 0}\n", ".list-inline>li {display: inline-block}\n", ".list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex}\n", "</style>\n", "<ol class=list-inline><li>3910</li><li>4220</li><li>3885</li><li>5160</li><li>5645</li><li>4680</li><li>5265</li><li>5975</li><li>6790</li><li>6900</li><li>7335</li></ol>\n", "</li>\n", "\t<li>0</li>\n", "\t<li>'a'</li>\n", "</ol>\n" ], "text/latex": [ "\\begin{enumerate}\n", "\\item \\begin{enumerate*}\n", "\\item 5260\n", "\\item 5470\n", "\\item 5640\n", "\\item 6180\n", "\\item 6390\n", "\\item 6515\n", "\\item 6805\n", "\\item 7515\n", "\\item 7515\n", "\\item 8230\n", "\\item 8770\n", "\\end{enumerate*}\n", "\n", "\\item \\begin{enumerate*}\n", "\\item 3910\n", "\\item 4220\n", "\\item 3885\n", "\\item 5160\n", "\\item 5645\n", "\\item 4680\n", "\\item 5265\n", "\\item 5975\n", "\\item 6790\n", "\\item 6900\n", "\\item 7335\n", "\\end{enumerate*}\n", "\n", "\\item 0\n", "\\item 'a'\n", "\\end{enumerate}\n" ], "text/markdown": [ "1. 1. 5260\n", "2. 5470\n", "3. 5640\n", "4. 6180\n", "5. 6390\n", "6. 6515\n", "7. 6805\n", "8. 7515\n", "9. 7515\n", "10. 8230\n", "11. 8770\n", "\n", "\n", "\n", "2. 1. 3910\n", "2. 4220\n", "3. 3885\n", "4. 5160\n", "5. 5645\n", "6. 4680\n", "7. 5265\n", "8. 5975\n", "9. 6790\n", "10. 6900\n", "11. 7335\n", "\n", "\n", "\n", "3. 0\n", "4. 'a'\n", "\n", "\n" ], "text/plain": [ "[[1]]\n", " [1] 5260 5470 5640 6180 6390 6515 6805 7515 7515 8230 8770\n", "\n", "[[2]]\n", " [1] 3910 4220 3885 5160 5645 4680 5265 5975 6790 6900 7335\n", "\n", "[[3]]\n", "[1] 0\n", "\n", "[[4]]\n", "[1] \"a\"\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "mybag <- list(a, b, 0, \"a\")\n", "mybag\n" ] }, { "cell_type": "markdown", "id": "b294dfee", "metadata": {}, "source": [ "#### Adding an element in a list" ] }, { "cell_type": "code", "execution_count": 56, "id": "0798d25c", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<ol>\n", "\t<li><style>\n", ".list-inline {list-style: none; margin:0; padding: 0}\n", ".list-inline>li {display: inline-block}\n", ".list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex}\n", "</style>\n", "<ol class=list-inline><li>5260</li><li>5470</li><li>5640</li><li>6180</li><li>6390</li><li>6515</li><li>6805</li><li>7515</li><li>7515</li><li>8230</li><li>8770</li></ol>\n", "</li>\n", "\t<li><style>\n", ".list-inline {list-style: none; margin:0; padding: 0}\n", ".list-inline>li {display: inline-block}\n", ".list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex}\n", "</style>\n", "<ol class=list-inline><li>3910</li><li>4220</li><li>3885</li><li>5160</li><li>5645</li><li>4680</li><li>5265</li><li>5975</li><li>6790</li><li>6900</li><li>7335</li></ol>\n", "</li>\n", "\t<li>0</li>\n", "\t<li>'a'</li>\n", "\t<li>'b'</li>\n", "</ol>\n" ], "text/latex": [ "\\begin{enumerate}\n", "\\item \\begin{enumerate*}\n", "\\item 5260\n", "\\item 5470\n", "\\item 5640\n", "\\item 6180\n", "\\item 6390\n", "\\item 6515\n", "\\item 6805\n", "\\item 7515\n", "\\item 7515\n", "\\item 8230\n", "\\item 8770\n", "\\end{enumerate*}\n", "\n", "\\item \\begin{enumerate*}\n", "\\item 3910\n", "\\item 4220\n", "\\item 3885\n", "\\item 5160\n", "\\item 5645\n", "\\item 4680\n", "\\item 5265\n", "\\item 5975\n", "\\item 6790\n", "\\item 6900\n", "\\item 7335\n", "\\end{enumerate*}\n", "\n", "\\item 0\n", "\\item 'a'\n", "\\item 'b'\n", "\\end{enumerate}\n" ], "text/markdown": [ "1. 1. 5260\n", "2. 5470\n", "3. 5640\n", "4. 6180\n", "5. 6390\n", "6. 6515\n", "7. 6805\n", "8. 7515\n", "9. 7515\n", "10. 8230\n", "11. 8770\n", "\n", "\n", "\n", "2. 1. 3910\n", "2. 4220\n", "3. 3885\n", "4. 5160\n", "5. 5645\n", "6. 4680\n", "7. 5265\n", "8. 5975\n", "9. 6790\n", "10. 6900\n", "11. 7335\n", "\n", "\n", "\n", "3. 0\n", "4. 'a'\n", "5. 'b'\n", "\n", "\n" ], "text/plain": [ "[[1]]\n", " [1] 5260 5470 5640 6180 6390 6515 6805 7515 7515 8230 8770\n", "\n", "[[2]]\n", " [1] 3910 4220 3885 5160 5645 4680 5265 5975 6790 6900 7335\n", "\n", "[[3]]\n", "[1] 0\n", "\n", "[[4]]\n", "[1] \"a\"\n", "\n", "[[5]]\n", "[1] \"b\"\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "n <- length(mybag)\n", "mybag[[n+1]] <- \"b\"\n", "mybag" ] }, { "cell_type": "markdown", "id": "8a5a3e20", "metadata": {}, "source": [ "#### Slicing a list" ] }, { "cell_type": "code", "execution_count": 57, "id": "5563384b", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<ol>\n", "\t<li><style>\n", ".list-inline {list-style: none; margin:0; padding: 0}\n", ".list-inline>li {display: inline-block}\n", ".list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex}\n", "</style>\n", "<ol class=list-inline><li>5260</li><li>5470</li><li>5640</li><li>6180</li><li>6390</li><li>6515</li><li>6805</li><li>7515</li><li>7515</li><li>8230</li><li>8770</li></ol>\n", "</li>\n", "</ol>\n" ], "text/latex": [ "\\begin{enumerate}\n", "\\item \\begin{enumerate*}\n", "\\item 5260\n", "\\item 5470\n", "\\item 5640\n", "\\item 6180\n", "\\item 6390\n", "\\item 6515\n", "\\item 6805\n", "\\item 7515\n", "\\item 7515\n", "\\item 8230\n", "\\item 8770\n", "\\end{enumerate*}\n", "\n", "\\end{enumerate}\n" ], "text/markdown": [ "1. 1. 5260\n", "2. 5470\n", "3. 5640\n", "4. 6180\n", "5. 6390\n", "6. 6515\n", "7. 6805\n", "8. 7515\n", "9. 7515\n", "10. 8230\n", "11. 8770\n", "\n", "\n", "\n", "\n", "\n" ], "text/plain": [ "[[1]]\n", " [1] 5260 5470 5640 6180 6390 6515 6805 7515 7515 8230 8770\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "TRUE" ], "text/latex": [ "TRUE" ], "text/markdown": [ "TRUE" ], "text/plain": [ "[1] TRUE" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "slice <- mybag[1]\n", "slice\n", "is.list(slice)" ] }, { "cell_type": "code", "execution_count": 58, "id": "c0f66d9b", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<ol>\n", "\t<li><style>\n", ".list-inline {list-style: none; margin:0; padding: 0}\n", ".list-inline>li {display: inline-block}\n", ".list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex}\n", "</style>\n", "<ol class=list-inline><li>5260</li><li>5470</li><li>5640</li><li>6180</li><li>6390</li><li>6515</li><li>6805</li><li>7515</li><li>7515</li><li>8230</li><li>8770</li></ol>\n", "</li>\n", "\t<li>0</li>\n", "</ol>\n" ], "text/latex": [ "\\begin{enumerate}\n", "\\item \\begin{enumerate*}\n", "\\item 5260\n", "\\item 5470\n", "\\item 5640\n", "\\item 6180\n", "\\item 6390\n", "\\item 6515\n", "\\item 6805\n", "\\item 7515\n", "\\item 7515\n", "\\item 8230\n", "\\item 8770\n", "\\end{enumerate*}\n", "\n", "\\item 0\n", "\\end{enumerate}\n" ], "text/markdown": [ "1. 1. 5260\n", "2. 5470\n", "3. 5640\n", "4. 6180\n", "5. 6390\n", "6. 6515\n", "7. 6805\n", "8. 7515\n", "9. 7515\n", "10. 8230\n", "11. 8770\n", "\n", "\n", "\n", "2. 0\n", "\n", "\n" ], "text/plain": [ "[[1]]\n", " [1] 5260 5470 5640 6180 6390 6515 6805 7515 7515 8230 8770\n", "\n", "[[2]]\n", "[1] 0\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "TRUE" ], "text/latex": [ "TRUE" ], "text/markdown": [ "TRUE" ], "text/plain": [ "[1] TRUE" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "slice <- mybag[c(1,3)]\n", "slice\n", "is.list(slice)" ] }, { "cell_type": "code", "execution_count": 59, "id": "6ea5ffb5", "metadata": {}, "outputs": [ { "data": { "text/html": [ "TRUE" ], "text/latex": [ "TRUE" ], "text/markdown": [ "TRUE" ], "text/plain": [ "[1] TRUE" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#list is also a vector\n", "is.vector(slice)\n" ] }, { "cell_type": "markdown", "id": "ec249d27", "metadata": {}, "source": [ "#### Extracting an element from a list" ] }, { "cell_type": "code", "execution_count": 60, "id": "933e09fc", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<style>\n", ".list-inline {list-style: none; margin:0; padding: 0}\n", ".list-inline>li {display: inline-block}\n", ".list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex}\n", "</style>\n", "<ol class=list-inline><li>5260</li><li>5470</li><li>5640</li><li>6180</li><li>6390</li><li>6515</li><li>6805</li><li>7515</li><li>7515</li><li>8230</li><li>8770</li></ol>\n" ], "text/latex": [ "\\begin{enumerate*}\n", "\\item 5260\n", "\\item 5470\n", "\\item 5640\n", "\\item 6180\n", "\\item 6390\n", "\\item 6515\n", "\\item 6805\n", "\\item 7515\n", "\\item 7515\n", "\\item 8230\n", "\\item 8770\n", "\\end{enumerate*}\n" ], "text/markdown": [ "1. 5260\n", "2. 5470\n", "3. 5640\n", "4. 6180\n", "5. 6390\n", "6. 6515\n", "7. 6805\n", "8. 7515\n", "9. 7515\n", "10. 8230\n", "11. 8770\n", "\n", "\n" ], "text/plain": [ " [1] 5260 5470 5640 6180 6390 6515 6805 7515 7515 8230 8770" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "\n", "h <- mybag[[1]]\n", "h" ] }, { "cell_type": "code", "execution_count": 61, "id": "011f4009", "metadata": {}, "outputs": [ { "data": { "text/html": [ "TRUE" ], "text/latex": [ "TRUE" ], "text/markdown": [ "TRUE" ], "text/plain": [ "[1] TRUE" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "FALSE" ], "text/latex": [ "FALSE" ], "text/markdown": [ "FALSE" ], "text/plain": [ "[1] FALSE" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "is.vector(h)\n", "is.list(h)" ] }, { "cell_type": "markdown", "id": "af61dbb9", "metadata": {}, "source": [ "#### Adding, accessing, and removing elements" ] }, { "cell_type": "code", "execution_count": 62, "id": "f49bc2ea", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<dl>\n", "\t<dt>$x</dt>\n", "\t\t<dd><style>\n", ".list-inline {list-style: none; margin:0; padding: 0}\n", ".list-inline>li {display: inline-block}\n", ".list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex}\n", "</style>\n", "<ol class=list-inline><li>5260</li><li>5470</li><li>5640</li><li>6180</li><li>6390</li><li>6515</li><li>6805</li><li>7515</li><li>7515</li><li>8230</li><li>8770</li></ol>\n", "</dd>\n", "\t<dt>$y</dt>\n", "\t\t<dd><style>\n", ".list-inline {list-style: none; margin:0; padding: 0}\n", ".list-inline>li {display: inline-block}\n", ".list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex}\n", "</style>\n", "<ol class=list-inline><li>3910</li><li>4220</li><li>3885</li><li>5160</li><li>5645</li><li>4680</li><li>5265</li><li>5975</li><li>6790</li><li>6900</li><li>7335</li></ol>\n", "</dd>\n", "\t<dt>$const</dt>\n", "\t\t<dd>0</dd>\n", "\t<dt>$lit</dt>\n", "\t\t<dd>'a'</dd>\n", "</dl>\n" ], "text/latex": [ "\\begin{description}\n", "\\item[\\$x] \\begin{enumerate*}\n", "\\item 5260\n", "\\item 5470\n", "\\item 5640\n", "\\item 6180\n", "\\item 6390\n", "\\item 6515\n", "\\item 6805\n", "\\item 7515\n", "\\item 7515\n", "\\item 8230\n", "\\item 8770\n", "\\end{enumerate*}\n", "\n", "\\item[\\$y] \\begin{enumerate*}\n", "\\item 3910\n", "\\item 4220\n", "\\item 3885\n", "\\item 5160\n", "\\item 5645\n", "\\item 4680\n", "\\item 5265\n", "\\item 5975\n", "\\item 6790\n", "\\item 6900\n", "\\item 7335\n", "\\end{enumerate*}\n", "\n", "\\item[\\$const] 0\n", "\\item[\\$lit] 'a'\n", "\\end{description}\n" ], "text/markdown": [ "$x\n", ": 1. 5260\n", "2. 5470\n", "3. 5640\n", "4. 6180\n", "5. 6390\n", "6. 6515\n", "7. 6805\n", "8. 7515\n", "9. 7515\n", "10. 8230\n", "11. 8770\n", "\n", "\n", "\n", "$y\n", ": 1. 3910\n", "2. 4220\n", "3. 3885\n", "4. 5160\n", "5. 5645\n", "6. 4680\n", "7. 5265\n", "8. 5975\n", "9. 6790\n", "10. 6900\n", "11. 7335\n", "\n", "\n", "\n", "$const\n", ": 0\n", "$lit\n", ": 'a'\n", "\n", "\n" ], "text/plain": [ "$x\n", " [1] 5260 5470 5640 6180 6390 6515 6805 7515 7515 8230 8770\n", "\n", "$y\n", " [1] 3910 4220 3885 5160 5645 4680 5265 5975 6790 6900 7335\n", "\n", "$const\n", "[1] 0\n", "\n", "$lit\n", "[1] \"a\"\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "mybag <- list(x=a, y=b, const=0, lit=\"a\")\n", "mybag" ] }, { "cell_type": "code", "execution_count": 63, "id": "90d10f7b", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<dl>\n", "\t<dt>$x</dt>\n", "\t\t<dd><style>\n", ".list-inline {list-style: none; margin:0; padding: 0}\n", ".list-inline>li {display: inline-block}\n", ".list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex}\n", "</style>\n", "<ol class=list-inline><li>5260</li><li>5470</li><li>5640</li><li>6180</li><li>6390</li><li>6515</li><li>6805</li><li>7515</li><li>7515</li><li>8230</li><li>8770</li></ol>\n", "</dd>\n", "\t<dt>$y</dt>\n", "\t\t<dd><style>\n", ".list-inline {list-style: none; margin:0; padding: 0}\n", ".list-inline>li {display: inline-block}\n", ".list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex}\n", "</style>\n", "<ol class=list-inline><li>3910</li><li>4220</li><li>3885</li><li>5160</li><li>5645</li><li>4680</li><li>5265</li><li>5975</li><li>6790</li><li>6900</li><li>7335</li></ol>\n", "</dd>\n", "\t<dt>$c</dt>\n", "\t\t<dd><style>\n", ".list-inline {list-style: none; margin:0; padding: 0}\n", ".list-inline>li {display: inline-block}\n", ".list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex}\n", "</style>\n", "<ol class=list-inline><li>1350</li><li>1250</li><li>1755</li><li>1020</li><li>745</li><li>1835</li><li>1540</li><li>1540</li><li>725</li><li>1330</li><li>1435</li></ol>\n", "</dd>\n", "</dl>\n" ], "text/latex": [ "\\begin{description}\n", "\\item[\\$x] \\begin{enumerate*}\n", "\\item 5260\n", "\\item 5470\n", "\\item 5640\n", "\\item 6180\n", "\\item 6390\n", "\\item 6515\n", "\\item 6805\n", "\\item 7515\n", "\\item 7515\n", "\\item 8230\n", "\\item 8770\n", "\\end{enumerate*}\n", "\n", "\\item[\\$y] \\begin{enumerate*}\n", "\\item 3910\n", "\\item 4220\n", "\\item 3885\n", "\\item 5160\n", "\\item 5645\n", "\\item 4680\n", "\\item 5265\n", "\\item 5975\n", "\\item 6790\n", "\\item 6900\n", "\\item 7335\n", "\\end{enumerate*}\n", "\n", "\\item[\\$c] \\begin{enumerate*}\n", "\\item 1350\n", "\\item 1250\n", "\\item 1755\n", "\\item 1020\n", "\\item 745\n", "\\item 1835\n", "\\item 1540\n", "\\item 1540\n", "\\item 725\n", "\\item 1330\n", "\\item 1435\n", "\\end{enumerate*}\n", "\n", "\\end{description}\n" ], "text/markdown": [ "$x\n", ": 1. 5260\n", "2. 5470\n", "3. 5640\n", "4. 6180\n", "5. 6390\n", "6. 6515\n", "7. 6805\n", "8. 7515\n", "9. 7515\n", "10. 8230\n", "11. 8770\n", "\n", "\n", "\n", "$y\n", ": 1. 3910\n", "2. 4220\n", "3. 3885\n", "4. 5160\n", "5. 5645\n", "6. 4680\n", "7. 5265\n", "8. 5975\n", "9. 6790\n", "10. 6900\n", "11. 7335\n", "\n", "\n", "\n", "$c\n", ": 1. 1350\n", "2. 1250\n", "3. 1755\n", "4. 1020\n", "5. 745\n", "6. 1835\n", "7. 1540\n", "8. 1540\n", "9. 725\n", "10. 1330\n", "11. 1435\n", "\n", "\n", "\n", "\n", "\n" ], "text/plain": [ "$x\n", " [1] 5260 5470 5640 6180 6390 6515 6805 7515 7515 8230 8770\n", "\n", "$y\n", " [1] 3910 4220 3885 5160 5645 4680 5265 5975 6790 6900 7335\n", "\n", "$c\n", " [1] 1350 1250 1755 1020 745 1835 1540 1540 725 1330 1435\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "mybag$c <- mybag$x - mybag$y\n", "mybag[[4]] <- NULL\n", "mybag$const <- NULL\n", "mybag" ] }, { "cell_type": "markdown", "id": "cd07951f", "metadata": {}, "source": [ "### Part #3" ] }, { "cell_type": "code", "execution_count": 64, "id": "c5ac1c06", "metadata": {}, "outputs": [], "source": [ "a <- c(5260,5470,5640,6180,6390,6515,6805,7515,7515,8230,8770)\n", "b <- c(3910,4220,3885,5160,5645,4680,5265,5975,6790,6900,7335)" ] }, { "cell_type": "code", "execution_count": 65, "id": "7f8a760e", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<table class=\"dataframe\">\n", "<caption>A data.frame: 6 × 2</caption>\n", "<thead>\n", "\t<tr><th></th><th scope=col>A</th><th scope=col>B</th></tr>\n", "\t<tr><th></th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th></tr>\n", "</thead>\n", "<tbody>\n", "\t<tr><th scope=row>1</th><td>5260</td><td>3910</td></tr>\n", "\t<tr><th scope=row>2</th><td>5470</td><td>4220</td></tr>\n", "\t<tr><th scope=row>3</th><td>5640</td><td>3885</td></tr>\n", "\t<tr><th scope=row>4</th><td>6180</td><td>5160</td></tr>\n", "\t<tr><th scope=row>5</th><td>6390</td><td>5645</td></tr>\n", "\t<tr><th scope=row>6</th><td>6515</td><td>4680</td></tr>\n", "</tbody>\n", "</table>\n" ], "text/latex": [ "A data.frame: 6 × 2\n", "\\begin{tabular}{r|ll}\n", " & A & B\\\\\n", " & <dbl> & <dbl>\\\\\n", "\\hline\n", "\t1 & 5260 & 3910\\\\\n", "\t2 & 5470 & 4220\\\\\n", "\t3 & 5640 & 3885\\\\\n", "\t4 & 6180 & 5160\\\\\n", "\t5 & 6390 & 5645\\\\\n", "\t6 & 6515 & 4680\\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "A data.frame: 6 × 2\n", "\n", "| <!--/--> | A &lt;dbl&gt; | B &lt;dbl&gt; |\n", "|---|---|---|\n", "| 1 | 5260 | 3910 |\n", "| 2 | 5470 | 4220 |\n", "| 3 | 5640 | 3885 |\n", "| 4 | 6180 | 5160 |\n", "| 5 | 6390 | 5645 |\n", "| 6 | 6515 | 4680 |\n", "\n" ], "text/plain": [ " A B \n", "1 5260 3910\n", "2 5470 4220\n", "3 5640 3885\n", "4 6180 5160\n", "5 6390 5645\n", "6 6515 4680" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "d <- data.frame(A=a, B=b)\n", "head(d)" ] }, { "cell_type": "code", "execution_count": 66, "id": "0022326a", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<table class=\"dataframe\">\n", "<caption>A data.frame: 6 × 3</caption>\n", "<thead>\n", "\t<tr><th></th><th scope=col>A</th><th scope=col>B</th><th scope=col>C</th></tr>\n", "\t<tr><th></th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th></tr>\n", "</thead>\n", "<tbody>\n", "\t<tr><th scope=row>1</th><td>5260</td><td>3910</td><td> 9170</td></tr>\n", "\t<tr><th scope=row>2</th><td>5470</td><td>4220</td><td> 9690</td></tr>\n", "\t<tr><th scope=row>3</th><td>5640</td><td>3885</td><td> 9525</td></tr>\n", "\t<tr><th scope=row>4</th><td>6180</td><td>5160</td><td>11340</td></tr>\n", "\t<tr><th scope=row>5</th><td>6390</td><td>5645</td><td>12035</td></tr>\n", "\t<tr><th scope=row>6</th><td>6515</td><td>4680</td><td>11195</td></tr>\n", "</tbody>\n", "</table>\n" ], "text/latex": [ "A data.frame: 6 × 3\n", "\\begin{tabular}{r|lll}\n", " & A & B & C\\\\\n", " & <dbl> & <dbl> & <dbl>\\\\\n", "\\hline\n", "\t1 & 5260 & 3910 & 9170\\\\\n", "\t2 & 5470 & 4220 & 9690\\\\\n", "\t3 & 5640 & 3885 & 9525\\\\\n", "\t4 & 6180 & 5160 & 11340\\\\\n", "\t5 & 6390 & 5645 & 12035\\\\\n", "\t6 & 6515 & 4680 & 11195\\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "A data.frame: 6 × 3\n", "\n", "| <!--/--> | A &lt;dbl&gt; | B &lt;dbl&gt; | C &lt;dbl&gt; |\n", "|---|---|---|---|\n", "| 1 | 5260 | 3910 | 9170 |\n", "| 2 | 5470 | 4220 | 9690 |\n", "| 3 | 5640 | 3885 | 9525 |\n", "| 4 | 6180 | 5160 | 11340 |\n", "| 5 | 6390 | 5645 | 12035 |\n", "| 6 | 6515 | 4680 | 11195 |\n", "\n" ], "text/plain": [ " A B C \n", "1 5260 3910 9170\n", "2 5470 4220 9690\n", "3 5640 3885 9525\n", "4 6180 5160 11340\n", "5 6390 5645 12035\n", "6 6515 4680 11195" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "d$C <- d$A + d$B\n", "head(d)" ] }, { "cell_type": "code", "execution_count": 67, "id": "98204539", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<table class=\"dataframe\">\n", "<caption>A data.frame: 6 × 2</caption>\n", "<thead>\n", "\t<tr><th></th><th scope=col>B</th><th scope=col>C</th></tr>\n", "\t<tr><th></th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th></tr>\n", "</thead>\n", "<tbody>\n", "\t<tr><th scope=row>1</th><td>3910</td><td> 9170</td></tr>\n", "\t<tr><th scope=row>2</th><td>4220</td><td> 9690</td></tr>\n", "\t<tr><th scope=row>3</th><td>3885</td><td> 9525</td></tr>\n", "\t<tr><th scope=row>4</th><td>5160</td><td>11340</td></tr>\n", "\t<tr><th scope=row>5</th><td>5645</td><td>12035</td></tr>\n", "\t<tr><th scope=row>6</th><td>4680</td><td>11195</td></tr>\n", "</tbody>\n", "</table>\n" ], "text/latex": [ "A data.frame: 6 × 2\n", "\\begin{tabular}{r|ll}\n", " & B & C\\\\\n", " & <dbl> & <dbl>\\\\\n", "\\hline\n", "\t1 & 3910 & 9170\\\\\n", "\t2 & 4220 & 9690\\\\\n", "\t3 & 3885 & 9525\\\\\n", "\t4 & 5160 & 11340\\\\\n", "\t5 & 5645 & 12035\\\\\n", "\t6 & 4680 & 11195\\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "A data.frame: 6 × 2\n", "\n", "| <!--/--> | B &lt;dbl&gt; | C &lt;dbl&gt; |\n", "|---|---|---|\n", "| 1 | 3910 | 9170 |\n", "| 2 | 4220 | 9690 |\n", "| 3 | 3885 | 9525 |\n", "| 4 | 5160 | 11340 |\n", "| 5 | 5645 | 12035 |\n", "| 6 | 4680 | 11195 |\n", "\n" ], "text/plain": [ " B C \n", "1 3910 9170\n", "2 4220 9690\n", "3 3885 9525\n", "4 5160 11340\n", "5 5645 12035\n", "6 4680 11195" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "d$A <- NULL\n", "head(d)" ] }, { "cell_type": "code", "execution_count": 68, "id": "a4de7de1", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<table class=\"dataframe\">\n", "<caption>A data.frame: 6 × 14</caption>\n", "<thead>\n", "\t<tr><th></th><th scope=col>X1</th><th scope=col>X14.23</th><th scope=col>X1.71</th><th scope=col>X2.43</th><th scope=col>X15.6</th><th scope=col>X127</th><th scope=col>X2.8</th><th scope=col>X3.06</th><th scope=col>X.28</th><th scope=col>X2.29</th><th scope=col>X5.64</th><th scope=col>X1.04</th><th scope=col>X3.92</th><th scope=col>X1065</th></tr>\n", "\t<tr><th></th><th scope=col>&lt;int&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;int&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;int&gt;</th></tr>\n", "</thead>\n", "<tbody>\n", "\t<tr><th scope=row>1</th><td>1</td><td>13.20</td><td>1.78</td><td>2.14</td><td>11.2</td><td>100</td><td>2.65</td><td>2.76</td><td>0.26</td><td>1.28</td><td>4.38</td><td>1.05</td><td>3.40</td><td>1050</td></tr>\n", "\t<tr><th scope=row>2</th><td>1</td><td>13.16</td><td>2.36</td><td>2.67</td><td>18.6</td><td>101</td><td>2.80</td><td>3.24</td><td>0.30</td><td>2.81</td><td>5.68</td><td>1.03</td><td>3.17</td><td>1185</td></tr>\n", "\t<tr><th scope=row>3</th><td>1</td><td>14.37</td><td>1.95</td><td>2.50</td><td>16.8</td><td>113</td><td>3.85</td><td>3.49</td><td>0.24</td><td>2.18</td><td>7.80</td><td>0.86</td><td>3.45</td><td>1480</td></tr>\n", "\t<tr><th scope=row>4</th><td>1</td><td>13.24</td><td>2.59</td><td>2.87</td><td>21.0</td><td>118</td><td>2.80</td><td>2.69</td><td>0.39</td><td>1.82</td><td>4.32</td><td>1.04</td><td>2.93</td><td> 735</td></tr>\n", "\t<tr><th scope=row>5</th><td>1</td><td>14.20</td><td>1.76</td><td>2.45</td><td>15.2</td><td>112</td><td>3.27</td><td>3.39</td><td>0.34</td><td>1.97</td><td>6.75</td><td>1.05</td><td>2.85</td><td>1450</td></tr>\n", "\t<tr><th scope=row>6</th><td>1</td><td>14.39</td><td>1.87</td><td>2.45</td><td>14.6</td><td> 96</td><td>2.50</td><td>2.52</td><td>0.30</td><td>1.98</td><td>5.25</td><td>1.02</td><td>3.58</td><td>1290</td></tr>\n", "</tbody>\n", "</table>\n" ], "text/latex": [ "A data.frame: 6 × 14\n", "\\begin{tabular}{r|llllllllllllll}\n", " & X1 & X14.23 & X1.71 & X2.43 & X15.6 & X127 & X2.8 & X3.06 & X.28 & X2.29 & X5.64 & X1.04 & X3.92 & X1065\\\\\n", " & <int> & <dbl> & <dbl> & <dbl> & <dbl> & <int> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <int>\\\\\n", "\\hline\n", "\t1 & 1 & 13.20 & 1.78 & 2.14 & 11.2 & 100 & 2.65 & 2.76 & 0.26 & 1.28 & 4.38 & 1.05 & 3.40 & 1050\\\\\n", "\t2 & 1 & 13.16 & 2.36 & 2.67 & 18.6 & 101 & 2.80 & 3.24 & 0.30 & 2.81 & 5.68 & 1.03 & 3.17 & 1185\\\\\n", "\t3 & 1 & 14.37 & 1.95 & 2.50 & 16.8 & 113 & 3.85 & 3.49 & 0.24 & 2.18 & 7.80 & 0.86 & 3.45 & 1480\\\\\n", "\t4 & 1 & 13.24 & 2.59 & 2.87 & 21.0 & 118 & 2.80 & 2.69 & 0.39 & 1.82 & 4.32 & 1.04 & 2.93 & 735\\\\\n", "\t5 & 1 & 14.20 & 1.76 & 2.45 & 15.2 & 112 & 3.27 & 3.39 & 0.34 & 1.97 & 6.75 & 1.05 & 2.85 & 1450\\\\\n", "\t6 & 1 & 14.39 & 1.87 & 2.45 & 14.6 & 96 & 2.50 & 2.52 & 0.30 & 1.98 & 5.25 & 1.02 & 3.58 & 1290\\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "A data.frame: 6 × 14\n", "\n", "| <!--/--> | X1 &lt;int&gt; | X14.23 &lt;dbl&gt; | X1.71 &lt;dbl&gt; | X2.43 &lt;dbl&gt; | X15.6 &lt;dbl&gt; | X127 &lt;int&gt; | X2.8 &lt;dbl&gt; | X3.06 &lt;dbl&gt; | X.28 &lt;dbl&gt; | X2.29 &lt;dbl&gt; | X5.64 &lt;dbl&gt; | X1.04 &lt;dbl&gt; | X3.92 &lt;dbl&gt; | X1065 &lt;int&gt; |\n", "|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n", "| 1 | 1 | 13.20 | 1.78 | 2.14 | 11.2 | 100 | 2.65 | 2.76 | 0.26 | 1.28 | 4.38 | 1.05 | 3.40 | 1050 |\n", "| 2 | 1 | 13.16 | 2.36 | 2.67 | 18.6 | 101 | 2.80 | 3.24 | 0.30 | 2.81 | 5.68 | 1.03 | 3.17 | 1185 |\n", "| 3 | 1 | 14.37 | 1.95 | 2.50 | 16.8 | 113 | 3.85 | 3.49 | 0.24 | 2.18 | 7.80 | 0.86 | 3.45 | 1480 |\n", "| 4 | 1 | 13.24 | 2.59 | 2.87 | 21.0 | 118 | 2.80 | 2.69 | 0.39 | 1.82 | 4.32 | 1.04 | 2.93 | 735 |\n", "| 5 | 1 | 14.20 | 1.76 | 2.45 | 15.2 | 112 | 3.27 | 3.39 | 0.34 | 1.97 | 6.75 | 1.05 | 2.85 | 1450 |\n", "| 6 | 1 | 14.39 | 1.87 | 2.45 | 14.6 | 96 | 2.50 | 2.52 | 0.30 | 1.98 | 5.25 | 1.02 | 3.58 | 1290 |\n", "\n" ], "text/plain": [ " X1 X14.23 X1.71 X2.43 X15.6 X127 X2.8 X3.06 X.28 X2.29 X5.64 X1.04 X3.92\n", "1 1 13.20 1.78 2.14 11.2 100 2.65 2.76 0.26 1.28 4.38 1.05 3.40 \n", "2 1 13.16 2.36 2.67 18.6 101 2.80 3.24 0.30 2.81 5.68 1.03 3.17 \n", "3 1 14.37 1.95 2.50 16.8 113 3.85 3.49 0.24 2.18 7.80 0.86 3.45 \n", "4 1 13.24 2.59 2.87 21.0 118 2.80 2.69 0.39 1.82 4.32 1.04 2.93 \n", "5 1 14.20 1.76 2.45 15.2 112 3.27 3.39 0.34 1.97 6.75 1.05 2.85 \n", "6 1 14.39 1.87 2.45 14.6 96 2.50 2.52 0.30 1.98 5.25 1.02 3.58 \n", " X1065\n", "1 1050 \n", "2 1185 \n", "3 1480 \n", "4 735 \n", "5 1450 \n", "6 1290 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "wine = read.table(\n", " \"http://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data\", \n", " header = TRUE, sep = \",\")\n", "head(wine)" ] }, { "cell_type": "markdown", "id": "04982498", "metadata": {}, "source": [ "#### Saving RData file" ] }, { "cell_type": "code", "execution_count": 69, "id": "32bcaaf6", "metadata": {}, "outputs": [], "source": [ "# in Linux the default is not to compress\n", "save(wine, file=\"wine.RData\", compress=TRUE)" ] }, { "cell_type": "code", "execution_count": 70, "id": "27620e9d", "metadata": {}, "outputs": [], "source": [ "rm(wine)" ] }, { "cell_type": "markdown", "id": "4eb4e2c3", "metadata": {}, "source": [ "#### Load RData file" ] }, { "cell_type": "code", "execution_count": 71, "id": "751207ba", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<table class=\"dataframe\">\n", "<caption>A data.frame: 3 × 14</caption>\n", "<thead>\n", "\t<tr><th></th><th scope=col>X1</th><th scope=col>X14.23</th><th scope=col>X1.71</th><th scope=col>X2.43</th><th scope=col>X15.6</th><th scope=col>X127</th><th scope=col>X2.8</th><th scope=col>X3.06</th><th scope=col>X.28</th><th scope=col>X2.29</th><th scope=col>X5.64</th><th scope=col>X1.04</th><th scope=col>X3.92</th><th scope=col>X1065</th></tr>\n", "\t<tr><th></th><th scope=col>&lt;int&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;int&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;int&gt;</th></tr>\n", "</thead>\n", "<tbody>\n", "\t<tr><th scope=row>1</th><td>1</td><td>13.20</td><td>1.78</td><td>2.14</td><td>11.2</td><td>100</td><td>2.65</td><td>2.76</td><td>0.26</td><td>1.28</td><td>4.38</td><td>1.05</td><td>3.40</td><td>1050</td></tr>\n", "\t<tr><th scope=row>2</th><td>1</td><td>13.16</td><td>2.36</td><td>2.67</td><td>18.6</td><td>101</td><td>2.80</td><td>3.24</td><td>0.30</td><td>2.81</td><td>5.68</td><td>1.03</td><td>3.17</td><td>1185</td></tr>\n", "\t<tr><th scope=row>3</th><td>1</td><td>14.37</td><td>1.95</td><td>2.50</td><td>16.8</td><td>113</td><td>3.85</td><td>3.49</td><td>0.24</td><td>2.18</td><td>7.80</td><td>0.86</td><td>3.45</td><td>1480</td></tr>\n", "</tbody>\n", "</table>\n" ], "text/latex": [ "A data.frame: 3 × 14\n", "\\begin{tabular}{r|llllllllllllll}\n", " & X1 & X14.23 & X1.71 & X2.43 & X15.6 & X127 & X2.8 & X3.06 & X.28 & X2.29 & X5.64 & X1.04 & X3.92 & X1065\\\\\n", " & <int> & <dbl> & <dbl> & <dbl> & <dbl> & <int> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <int>\\\\\n", "\\hline\n", "\t1 & 1 & 13.20 & 1.78 & 2.14 & 11.2 & 100 & 2.65 & 2.76 & 0.26 & 1.28 & 4.38 & 1.05 & 3.40 & 1050\\\\\n", "\t2 & 1 & 13.16 & 2.36 & 2.67 & 18.6 & 101 & 2.80 & 3.24 & 0.30 & 2.81 & 5.68 & 1.03 & 3.17 & 1185\\\\\n", "\t3 & 1 & 14.37 & 1.95 & 2.50 & 16.8 & 113 & 3.85 & 3.49 & 0.24 & 2.18 & 7.80 & 0.86 & 3.45 & 1480\\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "A data.frame: 3 × 14\n", "\n", "| <!--/--> | X1 &lt;int&gt; | X14.23 &lt;dbl&gt; | X1.71 &lt;dbl&gt; | X2.43 &lt;dbl&gt; | X15.6 &lt;dbl&gt; | X127 &lt;int&gt; | X2.8 &lt;dbl&gt; | X3.06 &lt;dbl&gt; | X.28 &lt;dbl&gt; | X2.29 &lt;dbl&gt; | X5.64 &lt;dbl&gt; | X1.04 &lt;dbl&gt; | X3.92 &lt;dbl&gt; | X1065 &lt;int&gt; |\n", "|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n", "| 1 | 1 | 13.20 | 1.78 | 2.14 | 11.2 | 100 | 2.65 | 2.76 | 0.26 | 1.28 | 4.38 | 1.05 | 3.40 | 1050 |\n", "| 2 | 1 | 13.16 | 2.36 | 2.67 | 18.6 | 101 | 2.80 | 3.24 | 0.30 | 2.81 | 5.68 | 1.03 | 3.17 | 1185 |\n", "| 3 | 1 | 14.37 | 1.95 | 2.50 | 16.8 | 113 | 3.85 | 3.49 | 0.24 | 2.18 | 7.80 | 0.86 | 3.45 | 1480 |\n", "\n" ], "text/plain": [ " X1 X14.23 X1.71 X2.43 X15.6 X127 X2.8 X3.06 X.28 X2.29 X5.64 X1.04 X3.92\n", "1 1 13.20 1.78 2.14 11.2 100 2.65 2.76 0.26 1.28 4.38 1.05 3.40 \n", "2 1 13.16 2.36 2.67 18.6 101 2.80 3.24 0.30 2.81 5.68 1.03 3.17 \n", "3 1 14.37 1.95 2.50 16.8 113 3.85 3.49 0.24 2.18 7.80 0.86 3.45 \n", " X1065\n", "1 1050 \n", "2 1185 \n", "3 1480 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "load(\"wine.RData\")\n", "head(wine, 3)" ] }, { "cell_type": "markdown", "id": "a49a5e9a", "metadata": {}, "source": [ "#### Export data.frame into csv file" ] }, { "cell_type": "code", "execution_count": 72, "id": "c3ec941b", "metadata": {}, "outputs": [], "source": [ "write.table(wine, file=\"wine.csv\", row.names=FALSE, quote = FALSE, sep = \",\")" ] }, { "cell_type": "markdown", "id": "8544c102", "metadata": {}, "source": [ "#### Filtering" ] }, { "cell_type": "code", "execution_count": 73, "id": "30bc2e64", "metadata": {}, "outputs": [], "source": [ "a <- c(5260,5470,5640,6180,6390,6515,6805,7515,7515,8230,8770)\n", "b <- c(3910,4220,3885,5160,5645,4680,5265,5975,6790,6900,7335)" ] }, { "cell_type": "code", "execution_count": 74, "id": "0348646f", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<style>\n", ".list-inline {list-style: none; margin:0; padding: 0}\n", ".list-inline>li {display: inline-block}\n", ".list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex}\n", "</style>\n", "<ol class=list-inline><li>FALSE</li><li>FALSE</li><li>FALSE</li><li>FALSE</li><li>FALSE</li><li>FALSE</li><li>FALSE</li><li>TRUE</li><li>TRUE</li><li>TRUE</li><li>TRUE</li></ol>\n" ], "text/latex": [ "\\begin{enumerate*}\n", "\\item FALSE\n", "\\item FALSE\n", "\\item FALSE\n", "\\item FALSE\n", "\\item FALSE\n", "\\item FALSE\n", "\\item FALSE\n", "\\item TRUE\n", "\\item TRUE\n", "\\item TRUE\n", "\\item TRUE\n", "\\end{enumerate*}\n" ], "text/markdown": [ "1. FALSE\n", "2. FALSE\n", "3. FALSE\n", "4. FALSE\n", "5. FALSE\n", "6. FALSE\n", "7. FALSE\n", "8. TRUE\n", "9. TRUE\n", "10. TRUE\n", "11. TRUE\n", "\n", "\n" ], "text/plain": [ " [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# logical vector\n", "i <- (a > 7000)\n", "i" ] }, { "cell_type": "code", "execution_count": 75, "id": "53887e35", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<style>\n", ".list-inline {list-style: none; margin:0; padding: 0}\n", ".list-inline>li {display: inline-block}\n", ".list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex}\n", "</style>\n", "<ol class=list-inline><li>7515</li><li>7515</li><li>8230</li><li>8770</li></ol>\n" ], "text/latex": [ "\\begin{enumerate*}\n", "\\item 7515\n", "\\item 7515\n", "\\item 8230\n", "\\item 8770\n", "\\end{enumerate*}\n" ], "text/markdown": [ "1. 7515\n", "2. 7515\n", "3. 8230\n", "4. 8770\n", "\n", "\n" ], "text/plain": [ "[1] 7515 7515 8230 8770" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "a[i]" ] }, { "cell_type": "code", "execution_count": 76, "id": "ccff301a", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<style>\n", ".list-inline {list-style: none; margin:0; padding: 0}\n", ".list-inline>li {display: inline-block}\n", ".list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex}\n", "</style>\n", "<ol class=list-inline><li>3910</li><li>4220</li><li>3885</li><li>5975</li><li>6790</li><li>6900</li><li>7335</li></ol>\n" ], "text/latex": [ "\\begin{enumerate*}\n", "\\item 3910\n", "\\item 4220\n", "\\item 3885\n", "\\item 5975\n", "\\item 6790\n", "\\item 6900\n", "\\item 7335\n", "\\end{enumerate*}\n" ], "text/markdown": [ "1. 3910\n", "2. 4220\n", "3. 3885\n", "4. 5975\n", "5. 6790\n", "6. 6900\n", "7. 7335\n", "\n", "\n" ], "text/plain": [ "[1] 3910 4220 3885 5975 6790 6900 7335" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "b[a < 6000 | a > 7000]" ] }, { "cell_type": "code", "execution_count": 77, "id": "c7d81c60", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<style>\n", ".list-inline {list-style: none; margin:0; padding: 0}\n", ".list-inline>li {display: inline-block}\n", ".list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex}\n", "</style>\n", "<ol class=list-inline><li>5160</li><li>5645</li><li>4680</li><li>5265</li></ol>\n" ], "text/latex": [ "\\begin{enumerate*}\n", "\\item 5160\n", "\\item 5645\n", "\\item 4680\n", "\\item 5265\n", "\\end{enumerate*}\n" ], "text/markdown": [ "1. 5160\n", "2. 5645\n", "3. 4680\n", "4. 5265\n", "\n", "\n" ], "text/plain": [ "[1] 5160 5645 4680 5265" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "b[6000 <= a & a <= 7000]" ] }, { "cell_type": "markdown", "id": "837a9fa4", "metadata": {}, "source": [ "#### Filtering data frames" ] }, { "cell_type": "code", "execution_count": 78, "id": "c16b77ff", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<table class=\"dataframe\">\n", "<caption>A data.frame: 11 × 3</caption>\n", "<thead>\n", "\t<tr><th></th><th scope=col>a</th><th scope=col>b</th><th scope=col>c</th></tr>\n", "\t<tr><th></th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th></tr>\n", "</thead>\n", "<tbody>\n", "\t<tr><th scope=row>1</th><td>5260</td><td>3910</td><td>1350</td></tr>\n", "\t<tr><th scope=row>2</th><td>5470</td><td>4220</td><td>1250</td></tr>\n", "\t<tr><th scope=row>3</th><td>5640</td><td>3885</td><td>1755</td></tr>\n", "\t<tr><th scope=row>4</th><td>6180</td><td>5160</td><td>1020</td></tr>\n", "\t<tr><th scope=row>5</th><td>6390</td><td>5645</td><td> 745</td></tr>\n", "\t<tr><th scope=row>6</th><td>6515</td><td>4680</td><td>1835</td></tr>\n", "\t<tr><th scope=row>7</th><td>6805</td><td>5265</td><td>1540</td></tr>\n", "\t<tr><th scope=row>8</th><td>7515</td><td>5975</td><td>1540</td></tr>\n", "\t<tr><th scope=row>9</th><td>7515</td><td>6790</td><td> 725</td></tr>\n", "\t<tr><th scope=row>10</th><td>8230</td><td>6900</td><td>1330</td></tr>\n", "\t<tr><th scope=row>11</th><td>8770</td><td>7335</td><td>1435</td></tr>\n", "</tbody>\n", "</table>\n" ], "text/latex": [ "A data.frame: 11 × 3\n", "\\begin{tabular}{r|lll}\n", " & a & b & c\\\\\n", " & <dbl> & <dbl> & <dbl>\\\\\n", "\\hline\n", "\t1 & 5260 & 3910 & 1350\\\\\n", "\t2 & 5470 & 4220 & 1250\\\\\n", "\t3 & 5640 & 3885 & 1755\\\\\n", "\t4 & 6180 & 5160 & 1020\\\\\n", "\t5 & 6390 & 5645 & 745\\\\\n", "\t6 & 6515 & 4680 & 1835\\\\\n", "\t7 & 6805 & 5265 & 1540\\\\\n", "\t8 & 7515 & 5975 & 1540\\\\\n", "\t9 & 7515 & 6790 & 725\\\\\n", "\t10 & 8230 & 6900 & 1330\\\\\n", "\t11 & 8770 & 7335 & 1435\\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "A data.frame: 11 × 3\n", "\n", "| <!--/--> | a &lt;dbl&gt; | b &lt;dbl&gt; | c &lt;dbl&gt; |\n", "|---|---|---|---|\n", "| 1 | 5260 | 3910 | 1350 |\n", "| 2 | 5470 | 4220 | 1250 |\n", "| 3 | 5640 | 3885 | 1755 |\n", "| 4 | 6180 | 5160 | 1020 |\n", "| 5 | 6390 | 5645 | 745 |\n", "| 6 | 6515 | 4680 | 1835 |\n", "| 7 | 6805 | 5265 | 1540 |\n", "| 8 | 7515 | 5975 | 1540 |\n", "| 9 | 7515 | 6790 | 725 |\n", "| 10 | 8230 | 6900 | 1330 |\n", "| 11 | 8770 | 7335 | 1435 |\n", "\n" ], "text/plain": [ " a b c \n", "1 5260 3910 1350\n", "2 5470 4220 1250\n", "3 5640 3885 1755\n", "4 6180 5160 1020\n", "5 6390 5645 745\n", "6 6515 4680 1835\n", "7 6805 5265 1540\n", "8 7515 5975 1540\n", "9 7515 6790 725\n", "10 8230 6900 1330\n", "11 8770 7335 1435" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "data <- data.frame(a=a, b=b)\n", "data$c <- data$a - data$b\n", "head(data, nrow(data))" ] }, { "cell_type": "code", "execution_count": 79, "id": "90784f29", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<table class=\"dataframe\">\n", "<caption>A data.frame: 4 × 3</caption>\n", "<thead>\n", "\t<tr><th></th><th scope=col>a</th><th scope=col>b</th><th scope=col>c</th></tr>\n", "\t<tr><th></th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th></tr>\n", "</thead>\n", "<tbody>\n", "\t<tr><th scope=row>8</th><td>7515</td><td>5975</td><td>1540</td></tr>\n", "\t<tr><th scope=row>9</th><td>7515</td><td>6790</td><td> 725</td></tr>\n", "\t<tr><th scope=row>10</th><td>8230</td><td>6900</td><td>1330</td></tr>\n", "\t<tr><th scope=row>11</th><td>8770</td><td>7335</td><td>1435</td></tr>\n", "</tbody>\n", "</table>\n" ], "text/latex": [ "A data.frame: 4 × 3\n", "\\begin{tabular}{r|lll}\n", " & a & b & c\\\\\n", " & <dbl> & <dbl> & <dbl>\\\\\n", "\\hline\n", "\t8 & 7515 & 5975 & 1540\\\\\n", "\t9 & 7515 & 6790 & 725\\\\\n", "\t10 & 8230 & 6900 & 1330\\\\\n", "\t11 & 8770 & 7335 & 1435\\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "A data.frame: 4 × 3\n", "\n", "| <!--/--> | a &lt;dbl&gt; | b &lt;dbl&gt; | c &lt;dbl&gt; |\n", "|---|---|---|---|\n", "| 8 | 7515 | 5975 | 1540 |\n", "| 9 | 7515 | 6790 | 725 |\n", "| 10 | 8230 | 6900 | 1330 |\n", "| 11 | 8770 | 7335 | 1435 |\n", "\n" ], "text/plain": [ " a b c \n", "8 7515 5975 1540\n", "9 7515 6790 725\n", "10 8230 6900 1330\n", "11 8770 7335 1435" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "head(data[data$a > 7000,])" ] }, { "cell_type": "code", "execution_count": 80, "id": "00a2e7db", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<table class=\"dataframe\">\n", "<caption>A data.frame: 4 × 2</caption>\n", "<thead>\n", "\t<tr><th></th><th scope=col>a</th><th scope=col>b</th></tr>\n", "\t<tr><th></th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th></tr>\n", "</thead>\n", "<tbody>\n", "\t<tr><th scope=row>8</th><td>7515</td><td>5975</td></tr>\n", "\t<tr><th scope=row>9</th><td>7515</td><td>6790</td></tr>\n", "\t<tr><th scope=row>10</th><td>8230</td><td>6900</td></tr>\n", "\t<tr><th scope=row>11</th><td>8770</td><td>7335</td></tr>\n", "</tbody>\n", "</table>\n" ], "text/latex": [ "A data.frame: 4 × 2\n", "\\begin{tabular}{r|ll}\n", " & a & b\\\\\n", " & <dbl> & <dbl>\\\\\n", "\\hline\n", "\t8 & 7515 & 5975\\\\\n", "\t9 & 7515 & 6790\\\\\n", "\t10 & 8230 & 6900\\\\\n", "\t11 & 8770 & 7335\\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "A data.frame: 4 × 2\n", "\n", "| <!--/--> | a &lt;dbl&gt; | b &lt;dbl&gt; |\n", "|---|---|---|\n", "| 8 | 7515 | 5975 |\n", "| 9 | 7515 | 6790 |\n", "| 10 | 8230 | 6900 |\n", "| 11 | 8770 | 7335 |\n", "\n" ], "text/plain": [ " a b \n", "8 7515 5975\n", "9 7515 6790\n", "10 8230 6900\n", "11 8770 7335" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "head(data[data$a > 7000,c(1,2)])" ] }, { "cell_type": "markdown", "id": "c7395061", "metadata": {}, "source": [ "#### Benchmarking matrix and data.frames" ] }, { "cell_type": "code", "execution_count": 86, "id": "770a73bb", "metadata": {}, "outputs": [], "source": [ "lib <- require(pryr)\n", "if (!lib)\n", " install.packages(\"pryr\")\n", "library(pryr)" ] }, { "cell_type": "code", "execution_count": 87, "id": "30cfc53f", "metadata": {}, "outputs": [], "source": [ "rheight <- rnorm(100000, 1.8, sd=0.2)\n", "rweight <- rnorm(100000, 72, sd=15)" ] }, { "cell_type": "markdown", "id": "07603ab8", "metadata": {}, "source": [ "#### Computing an entire column at once" ] }, { "cell_type": "code", "execution_count": 90, "id": "8ef76230", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Time difference of 0.01570988 secs" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "2,400,984 B" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "start_time <- Sys.time()\n", "hw <- data.frame(height=rheight, weight=rweight)\n", "hw$bmi <- hw$weight/hw$height^2\n", "end_time <- Sys.time()\n", "end_time - start_time\n", "object_size(hw)" ] }, { "cell_type": "markdown", "id": "1880db1e", "metadata": {}, "source": [ "#### Processing element by element" ] }, { "cell_type": "code", "execution_count": 89, "id": "955566ba", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Time difference of 11.97988 secs" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "start_time <- Sys.time()\n", "hw <- data.frame(height=rheight, weight=rweight)\n", "for (i in 1:nrow(hw)) {\n", " hw$bmi[i] <- hw$weight[i]/hw$height[i]^2\n", "}\n", "end_time <- Sys.time()\n", "end_time - start_time" ] }, { "cell_type": "markdown", "id": "edb7a9d2", "metadata": {}, "source": [ "#### Convert the entire data.frame" ] }, { "cell_type": "code", "execution_count": 92, "id": "2aeb83e4", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Time difference of 0.2502141 secs" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "start_time <- Sys.time()\n", "hw <- data.frame(height=rheight, weight=rweight)\n", "hw <- as.matrix(hw)\n", "hw <- cbind(hw, 0)\n", "for (i in 1:nrow(hw)) {\n", " hw[i,3] <- hw[i,2]/hw[i,1]^2\n", "}\n", "end_time <- Sys.time()\n", "end_time - start_time" ] }, { "cell_type": "markdown", "id": "9236cc80", "metadata": {}, "source": [ "#### apply family" ] }, { "cell_type": "code", "execution_count": 93, "id": "522b62cf", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<table class=\"dataframe\">\n", "<caption>A data.frame: 6 × 2</caption>\n", "<thead>\n", "\t<tr><th></th><th scope=col>blood.glucose</th><th scope=col>short.velocity</th></tr>\n", "\t<tr><th></th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th></tr>\n", "</thead>\n", "<tbody>\n", "\t<tr><th scope=row>1</th><td>15.3</td><td>1.76</td></tr>\n", "\t<tr><th scope=row>2</th><td>10.8</td><td>1.34</td></tr>\n", "\t<tr><th scope=row>3</th><td> 8.1</td><td>1.27</td></tr>\n", "\t<tr><th scope=row>4</th><td>19.5</td><td>1.47</td></tr>\n", "\t<tr><th scope=row>5</th><td> 7.2</td><td>1.27</td></tr>\n", "\t<tr><th scope=row>6</th><td> 5.3</td><td>1.49</td></tr>\n", "</tbody>\n", "</table>\n" ], "text/latex": [ "A data.frame: 6 × 2\n", "\\begin{tabular}{r|ll}\n", " & blood.glucose & short.velocity\\\\\n", " & <dbl> & <dbl>\\\\\n", "\\hline\n", "\t1 & 15.3 & 1.76\\\\\n", "\t2 & 10.8 & 1.34\\\\\n", "\t3 & 8.1 & 1.27\\\\\n", "\t4 & 19.5 & 1.47\\\\\n", "\t5 & 7.2 & 1.27\\\\\n", "\t6 & 5.3 & 1.49\\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "A data.frame: 6 × 2\n", "\n", "| <!--/--> | blood.glucose &lt;dbl&gt; | short.velocity &lt;dbl&gt; |\n", "|---|---|---|\n", "| 1 | 15.3 | 1.76 |\n", "| 2 | 10.8 | 1.34 |\n", "| 3 | 8.1 | 1.27 |\n", "| 4 | 19.5 | 1.47 |\n", "| 5 | 7.2 | 1.27 |\n", "| 6 | 5.3 | 1.49 |\n", "\n" ], "text/plain": [ " blood.glucose short.velocity\n", "1 15.3 1.76 \n", "2 10.8 1.34 \n", "3 8.1 1.27 \n", "4 19.5 1.47 \n", "5 7.2 1.27 \n", "6 5.3 1.49 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "library(ISwR)\n", "data(thuesen)\n", "head(thuesen)" ] }, { "cell_type": "code", "execution_count": 94, "id": "96c3055d", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<dl>\n", "\t<dt>$blood.glucose</dt>\n", "\t\t<dd>10.3</dd>\n", "\t<dt>$short.velocity</dt>\n", "\t\t<dd>1.32565217391304</dd>\n", "</dl>\n" ], "text/latex": [ "\\begin{description}\n", "\\item[\\$blood.glucose] 10.3\n", "\\item[\\$short.velocity] 1.32565217391304\n", "\\end{description}\n" ], "text/markdown": [ "$blood.glucose\n", ": 10.3\n", "$short.velocity\n", ": 1.32565217391304\n", "\n", "\n" ], "text/plain": [ "$blood.glucose\n", "[1] 10.3\n", "\n", "$short.velocity\n", "[1] 1.325652\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "lapply(thuesen, mean, na.rm=T)" ] }, { "cell_type": "code", "execution_count": 95, "id": "8dba1848", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<style>\n", ".dl-inline {width: auto; margin:0; padding: 0}\n", ".dl-inline>dt, .dl-inline>dd {float: none; width: auto; display: inline-block}\n", ".dl-inline>dt::after {content: \":\\0020\"; padding-right: .5ex}\n", ".dl-inline>dt:not(:first-of-type) {padding-left: .5ex}\n", "</style><dl class=dl-inline><dt>blood.glucose</dt><dd>10.3</dd><dt>short.velocity</dt><dd>1.32565217391304</dd></dl>\n" ], "text/latex": [ "\\begin{description*}\n", "\\item[blood.glucose] 10.3\n", "\\item[short.velocity] 1.32565217391304\n", "\\end{description*}\n" ], "text/markdown": [ "blood.glucose\n", ": 10.3short.velocity\n", ": 1.32565217391304\n", "\n" ], "text/plain": [ " blood.glucose short.velocity \n", " 10.300000 1.325652 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "sapply(thuesen, mean, na.rm=T)" ] }, { "cell_type": "code", "execution_count": 96, "id": "150ca39c", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<style>\n", ".list-inline {list-style: none; margin:0; padding: 0}\n", ".list-inline>li {display: inline-block}\n", ".list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex}\n", "</style>\n", "<ol class=list-inline><li>1.76</li><li>1.34</li><li>1.27</li><li>1.47</li><li>1.27</li><li>1.49</li><li>1.31</li><li>1.09</li><li>1.18</li><li>1.22</li><li>1.25</li><li>1.19</li><li>1.95</li><li>1.28</li><li>1.52</li><li>8.6</li><li>1.12</li><li>1.37</li><li>1.19</li><li>1.05</li><li>1.32</li><li>1.03</li><li>1.12</li><li>1.7</li></ol>\n" ], "text/latex": [ "\\begin{enumerate*}\n", "\\item 1.76\n", "\\item 1.34\n", "\\item 1.27\n", "\\item 1.47\n", "\\item 1.27\n", "\\item 1.49\n", "\\item 1.31\n", "\\item 1.09\n", "\\item 1.18\n", "\\item 1.22\n", "\\item 1.25\n", "\\item 1.19\n", "\\item 1.95\n", "\\item 1.28\n", "\\item 1.52\n", "\\item 8.6\n", "\\item 1.12\n", "\\item 1.37\n", "\\item 1.19\n", "\\item 1.05\n", "\\item 1.32\n", "\\item 1.03\n", "\\item 1.12\n", "\\item 1.7\n", "\\end{enumerate*}\n" ], "text/markdown": [ "1. 1.76\n", "2. 1.34\n", "3. 1.27\n", "4. 1.47\n", "5. 1.27\n", "6. 1.49\n", "7. 1.31\n", "8. 1.09\n", "9. 1.18\n", "10. 1.22\n", "11. 1.25\n", "12. 1.19\n", "13. 1.95\n", "14. 1.28\n", "15. 1.52\n", "16. 8.6\n", "17. 1.12\n", "18. 1.37\n", "19. 1.19\n", "20. 1.05\n", "21. 1.32\n", "22. 1.03\n", "23. 1.12\n", "24. 1.7\n", "\n", "\n" ], "text/plain": [ " [1] 1.76 1.34 1.27 1.47 1.27 1.49 1.31 1.09 1.18 1.22 1.25 1.19 1.95 1.28 1.52\n", "[16] 8.60 1.12 1.37 1.19 1.05 1.32 1.03 1.12 1.70" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "<style>\n", ".dl-inline {width: auto; margin:0; padding: 0}\n", ".dl-inline>dt, .dl-inline>dd {float: none; width: auto; display: inline-block}\n", ".dl-inline>dt::after {content: \":\\0020\"; padding-right: .5ex}\n", ".dl-inline>dt:not(:first-of-type) {padding-left: .5ex}\n", "</style><dl class=dl-inline><dt>blood.glucose</dt><dd>4.2</dd><dt>short.velocity</dt><dd>1.03</dd></dl>\n" ], "text/latex": [ "\\begin{description*}\n", "\\item[blood.glucose] 4.2\n", "\\item[short.velocity] 1.03\n", "\\end{description*}\n" ], "text/markdown": [ "blood.glucose\n", ": 4.2short.velocity\n", ": 1.03\n", "\n" ], "text/plain": [ " blood.glucose short.velocity \n", " 4.20 1.03 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "m <- as.matrix(thuesen)\n", "apply(m, 1, min, na.rm=TRUE)\n", "apply(m, 2, min, na.rm=TRUE)" ] }, { "cell_type": "code", "execution_count": 97, "id": "12550128", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<table class=\"dataframe\">\n", "<caption>A data.frame: 6 × 2</caption>\n", "<thead>\n", "\t<tr><th></th><th scope=col>blood.glucose</th><th scope=col>short.velocity</th></tr>\n", "\t<tr><th></th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th></tr>\n", "</thead>\n", "<tbody>\n", "\t<tr><th scope=row>1</th><td>15.3</td><td>1.76</td></tr>\n", "\t<tr><th scope=row>2</th><td>10.8</td><td>1.34</td></tr>\n", "\t<tr><th scope=row>3</th><td> 8.1</td><td>1.27</td></tr>\n", "\t<tr><th scope=row>4</th><td>19.5</td><td>1.47</td></tr>\n", "\t<tr><th scope=row>5</th><td> 7.2</td><td>1.27</td></tr>\n", "\t<tr><th scope=row>6</th><td> 5.3</td><td>1.49</td></tr>\n", "</tbody>\n", "</table>\n" ], "text/latex": [ "A data.frame: 6 × 2\n", "\\begin{tabular}{r|ll}\n", " & blood.glucose & short.velocity\\\\\n", " & <dbl> & <dbl>\\\\\n", "\\hline\n", "\t1 & 15.3 & 1.76\\\\\n", "\t2 & 10.8 & 1.34\\\\\n", "\t3 & 8.1 & 1.27\\\\\n", "\t4 & 19.5 & 1.47\\\\\n", "\t5 & 7.2 & 1.27\\\\\n", "\t6 & 5.3 & 1.49\\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "A data.frame: 6 × 2\n", "\n", "| <!--/--> | blood.glucose &lt;dbl&gt; | short.velocity &lt;dbl&gt; |\n", "|---|---|---|\n", "| 1 | 15.3 | 1.76 |\n", "| 2 | 10.8 | 1.34 |\n", "| 3 | 8.1 | 1.27 |\n", "| 4 | 19.5 | 1.47 |\n", "| 5 | 7.2 | 1.27 |\n", "| 6 | 5.3 | 1.49 |\n", "\n" ], "text/plain": [ " blood.glucose short.velocity\n", "1 15.3 1.76 \n", "2 10.8 1.34 \n", "3 8.1 1.27 \n", "4 19.5 1.47 \n", "5 7.2 1.27 \n", "6 5.3 1.49 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "library(ISwR)\n", "data(thuesen)\n", "head(thuesen)" ] }, { "cell_type": "code", "execution_count": 98, "id": "935337e0", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<style>\n", ".list-inline {list-style: none; margin:0; padding: 0}\n", ".list-inline>li {display: inline-block}\n", ".list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex}\n", "</style>\n", "<ol class=list-inline><li>4.2</li><li>4.9</li><li>5.2</li><li>5.3</li><li>6.7</li><li>6.7</li><li>7.2</li><li>7.5</li><li>8.1</li><li>8.6</li><li>8.8</li><li>9.3</li><li>9.5</li><li>10.3</li><li>10.8</li><li>11.1</li><li>12.2</li><li>12.5</li><li>13.3</li><li>15.1</li><li>15.3</li><li>16.1</li><li>19</li><li>19.5</li></ol>\n" ], "text/latex": [ "\\begin{enumerate*}\n", "\\item 4.2\n", "\\item 4.9\n", "\\item 5.2\n", "\\item 5.3\n", "\\item 6.7\n", "\\item 6.7\n", "\\item 7.2\n", "\\item 7.5\n", "\\item 8.1\n", "\\item 8.6\n", "\\item 8.8\n", "\\item 9.3\n", "\\item 9.5\n", "\\item 10.3\n", "\\item 10.8\n", "\\item 11.1\n", "\\item 12.2\n", "\\item 12.5\n", "\\item 13.3\n", "\\item 15.1\n", "\\item 15.3\n", "\\item 16.1\n", "\\item 19\n", "\\item 19.5\n", "\\end{enumerate*}\n" ], "text/markdown": [ "1. 4.2\n", "2. 4.9\n", "3. 5.2\n", "4. 5.3\n", "5. 6.7\n", "6. 6.7\n", "7. 7.2\n", "8. 7.5\n", "9. 8.1\n", "10. 8.6\n", "11. 8.8\n", "12. 9.3\n", "13. 9.5\n", "14. 10.3\n", "15. 10.8\n", "16. 11.1\n", "17. 12.2\n", "18. 12.5\n", "19. 13.3\n", "20. 15.1\n", "21. 15.3\n", "22. 16.1\n", "23. 19\n", "24. 19.5\n", "\n", "\n" ], "text/plain": [ " [1] 4.2 4.9 5.2 5.3 6.7 6.7 7.2 7.5 8.1 8.6 8.8 9.3 9.5 10.3 10.8\n", "[16] 11.1 12.2 12.5 13.3 15.1 15.3 16.1 19.0 19.5" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "sort(thuesen$blood.glucose)" ] }, { "cell_type": "code", "execution_count": 99, "id": "86b1b43a", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<style>\n", ".list-inline {list-style: none; margin:0; padding: 0}\n", ".list-inline>li {display: inline-block}\n", ".list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex}\n", "</style>\n", "<ol class=list-inline><li>17</li><li>22</li><li>12</li><li>6</li><li>11</li><li>15</li><li>5</li><li>9</li><li>3</li><li>16</li><li>23</li><li>7</li><li>24</li><li>18</li><li>2</li><li>8</li><li>10</li><li>19</li><li>21</li><li>14</li><li>1</li><li>20</li><li>13</li><li>4</li></ol>\n" ], "text/latex": [ "\\begin{enumerate*}\n", "\\item 17\n", "\\item 22\n", "\\item 12\n", "\\item 6\n", "\\item 11\n", "\\item 15\n", "\\item 5\n", "\\item 9\n", "\\item 3\n", "\\item 16\n", "\\item 23\n", "\\item 7\n", "\\item 24\n", "\\item 18\n", "\\item 2\n", "\\item 8\n", "\\item 10\n", "\\item 19\n", "\\item 21\n", "\\item 14\n", "\\item 1\n", "\\item 20\n", "\\item 13\n", "\\item 4\n", "\\end{enumerate*}\n" ], "text/markdown": [ "1. 17\n", "2. 22\n", "3. 12\n", "4. 6\n", "5. 11\n", "6. 15\n", "7. 5\n", "8. 9\n", "9. 3\n", "10. 16\n", "11. 23\n", "12. 7\n", "13. 24\n", "14. 18\n", "15. 2\n", "16. 8\n", "17. 10\n", "18. 19\n", "19. 21\n", "20. 14\n", "21. 1\n", "22. 20\n", "23. 13\n", "24. 4\n", "\n", "\n" ], "text/plain": [ " [1] 17 22 12 6 11 15 5 9 3 16 23 7 24 18 2 8 10 19 21 14 1 20 13 4" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "order(thuesen$blood.glucose)" ] }, { "cell_type": "code", "execution_count": 100, "id": "40bd7159", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<table class=\"dataframe\">\n", "<caption>A data.frame: 6 × 2</caption>\n", "<thead>\n", "\t<tr><th></th><th scope=col>blood.glucose</th><th scope=col>short.velocity</th></tr>\n", "\t<tr><th></th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th></tr>\n", "</thead>\n", "<tbody>\n", "\t<tr><th scope=row>17</th><td>4.2</td><td>1.12</td></tr>\n", "\t<tr><th scope=row>22</th><td>4.9</td><td>1.03</td></tr>\n", "\t<tr><th scope=row>12</th><td>5.2</td><td>1.19</td></tr>\n", "\t<tr><th scope=row>6</th><td>5.3</td><td>1.49</td></tr>\n", "\t<tr><th scope=row>11</th><td>6.7</td><td>1.25</td></tr>\n", "\t<tr><th scope=row>15</th><td>6.7</td><td>1.52</td></tr>\n", "</tbody>\n", "</table>\n" ], "text/latex": [ "A data.frame: 6 × 2\n", "\\begin{tabular}{r|ll}\n", " & blood.glucose & short.velocity\\\\\n", " & <dbl> & <dbl>\\\\\n", "\\hline\n", "\t17 & 4.2 & 1.12\\\\\n", "\t22 & 4.9 & 1.03\\\\\n", "\t12 & 5.2 & 1.19\\\\\n", "\t6 & 5.3 & 1.49\\\\\n", "\t11 & 6.7 & 1.25\\\\\n", "\t15 & 6.7 & 1.52\\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "A data.frame: 6 × 2\n", "\n", "| <!--/--> | blood.glucose &lt;dbl&gt; | short.velocity &lt;dbl&gt; |\n", "|---|---|---|\n", "| 17 | 4.2 | 1.12 |\n", "| 22 | 4.9 | 1.03 |\n", "| 12 | 5.2 | 1.19 |\n", "| 6 | 5.3 | 1.49 |\n", "| 11 | 6.7 | 1.25 |\n", "| 15 | 6.7 | 1.52 |\n", "\n" ], "text/plain": [ " blood.glucose short.velocity\n", "17 4.2 1.12 \n", "22 4.9 1.03 \n", "12 5.2 1.19 \n", "6 5.3 1.49 \n", "11 6.7 1.25 \n", "15 6.7 1.52 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "o <- order(thuesen$blood.glucose)\n", "sorted <- thuesen[o,]\n", "head(sorted)" ] }, { "cell_type": "markdown", "id": "2335d934", "metadata": {}, "source": [ "### Part #4" ] }, { "cell_type": "code", "execution_count": 101, "id": "05475c18", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<table class=\"dataframe\">\n", "<caption>A data.frame: 6 × 4</caption>\n", "<thead>\n", "\t<tr><th></th><th scope=col>Year</th><th scope=col>Quarter</th><th scope=col>Flights</th><th scope=col>Delays</th></tr>\n", "\t<tr><th></th><th scope=col>&lt;int&gt;</th><th scope=col>&lt;int&gt;</th><th scope=col>&lt;int&gt;</th><th scope=col>&lt;int&gt;</th></tr>\n", "</thead>\n", "<tbody>\n", "\t<tr><th scope=row>1</th><td>2016</td><td>1</td><td>11</td><td>6</td></tr>\n", "\t<tr><th scope=row>2</th><td>2016</td><td>2</td><td>12</td><td>5</td></tr>\n", "\t<tr><th scope=row>3</th><td>2016</td><td>3</td><td>13</td><td>3</td></tr>\n", "\t<tr><th scope=row>4</th><td>2016</td><td>4</td><td>12</td><td>5</td></tr>\n", "\t<tr><th scope=row>5</th><td>2017</td><td>1</td><td>10</td><td>4</td></tr>\n", "\t<tr><th scope=row>6</th><td>2017</td><td>2</td><td> 9</td><td>3</td></tr>\n", "</tbody>\n", "</table>\n" ], "text/latex": [ "A data.frame: 6 × 4\n", "\\begin{tabular}{r|llll}\n", " & Year & Quarter & Flights & Delays\\\\\n", " & <int> & <int> & <int> & <int>\\\\\n", "\\hline\n", "\t1 & 2016 & 1 & 11 & 6\\\\\n", "\t2 & 2016 & 2 & 12 & 5\\\\\n", "\t3 & 2016 & 3 & 13 & 3\\\\\n", "\t4 & 2016 & 4 & 12 & 5\\\\\n", "\t5 & 2017 & 1 & 10 & 4\\\\\n", "\t6 & 2017 & 2 & 9 & 3\\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "A data.frame: 6 × 4\n", "\n", "| <!--/--> | Year &lt;int&gt; | Quarter &lt;int&gt; | Flights &lt;int&gt; | Delays &lt;int&gt; |\n", "|---|---|---|---|---|\n", "| 1 | 2016 | 1 | 11 | 6 |\n", "| 2 | 2016 | 2 | 12 | 5 |\n", "| 3 | 2016 | 3 | 13 | 3 |\n", "| 4 | 2016 | 4 | 12 | 5 |\n", "| 5 | 2017 | 1 | 10 | 4 |\n", "| 6 | 2017 | 2 | 9 | 3 |\n", "\n" ], "text/plain": [ " Year Quarter Flights Delays\n", "1 2016 1 11 6 \n", "2 2016 2 12 5 \n", "3 2016 3 13 3 \n", "4 2016 4 12 5 \n", "5 2017 1 10 4 \n", "6 2017 2 9 3 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "flight_data <- read.table(text = \"Year Quarter Flights Delays\n", " 2016 1 11 6\n", " 2016 2 12 5\n", " 2016 3 13 3\n", " 2016 4 12 5\n", " 2017 1 10 4\n", " 2017 2 9 3\n", " 2017 3 11 4\n", " 2017 4 25 15\n", " 2018 1 14 3\n", " 2018 2 12 5\n", " 2018 3 13 3\n", " 2018 4 15 4\",\n", " header = TRUE,sep = \"\") \n", "head(flight_data)\n" ] }, { "cell_type": "code", "execution_count": 103, "id": "b167994e", "metadata": {}, "outputs": [], "source": [ "lib <- require(dplyr)\n", "if (!lib)\n", " install.packages(\"dplyr\")\n", "library(dplyr)" ] }, { "cell_type": "code", "execution_count": 104, "id": "97b27add", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<table class=\"dataframe\">\n", "<caption>A data.frame: 2 × 3</caption>\n", "<thead>\n", "\t<tr><th></th><th scope=col>Year</th><th scope=col>Quarter</th><th scope=col>Flights</th></tr>\n", "\t<tr><th></th><th scope=col>&lt;int&gt;</th><th scope=col>&lt;int&gt;</th><th scope=col>&lt;int&gt;</th></tr>\n", "</thead>\n", "<tbody>\n", "\t<tr><th scope=row>1</th><td>2016</td><td>1</td><td>11</td></tr>\n", "\t<tr><th scope=row>2</th><td>2017</td><td>4</td><td>25</td></tr>\n", "</tbody>\n", "</table>\n" ], "text/latex": [ "A data.frame: 2 × 3\n", "\\begin{tabular}{r|lll}\n", " & Year & Quarter & Flights\\\\\n", " & <int> & <int> & <int>\\\\\n", "\\hline\n", "\t1 & 2016 & 1 & 11\\\\\n", "\t2 & 2017 & 4 & 25\\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "A data.frame: 2 × 3\n", "\n", "| <!--/--> | Year &lt;int&gt; | Quarter &lt;int&gt; | Flights &lt;int&gt; |\n", "|---|---|---|---|\n", "| 1 | 2016 | 1 | 11 |\n", "| 2 | 2017 | 4 | 25 |\n", "\n" ], "text/plain": [ " Year Quarter Flights\n", "1 2016 1 11 \n", "2 2017 4 25 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "result <- flight_data %>% \n", " filter(Delays > 5) %>% \n", " select(Year, Quarter, Flights)\n", "head(result)" ] }, { "cell_type": "code", "execution_count": 106, "id": "3a51596f", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<table class=\"dataframe\">\n", "<caption>A tibble: 3 × 3</caption>\n", "<thead>\n", "\t<tr><th scope=col>Year</th><th scope=col>mean</th><th scope=col>sd</th></tr>\n", "\t<tr><th scope=col>&lt;int&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th></tr>\n", "</thead>\n", "<tbody>\n", "\t<tr><td>2016</td><td>12.00</td><td>0.8164966</td></tr>\n", "\t<tr><td>2017</td><td>13.75</td><td>7.5443135</td></tr>\n", "\t<tr><td>2018</td><td>13.50</td><td>1.2909944</td></tr>\n", "</tbody>\n", "</table>\n" ], "text/latex": [ "A tibble: 3 × 3\n", "\\begin{tabular}{lll}\n", " Year & mean & sd\\\\\n", " <int> & <dbl> & <dbl>\\\\\n", "\\hline\n", "\t 2016 & 12.00 & 0.8164966\\\\\n", "\t 2017 & 13.75 & 7.5443135\\\\\n", "\t 2018 & 13.50 & 1.2909944\\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "A tibble: 3 × 3\n", "\n", "| Year &lt;int&gt; | mean &lt;dbl&gt; | sd &lt;dbl&gt; |\n", "|---|---|---|\n", "| 2016 | 12.00 | 0.8164966 |\n", "| 2017 | 13.75 | 7.5443135 |\n", "| 2018 | 13.50 | 1.2909944 |\n", "\n" ], "text/plain": [ " Year mean sd \n", "1 2016 12.00 0.8164966\n", "2 2017 13.75 7.5443135\n", "3 2018 13.50 1.2909944" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "result <- flight_data %>% \n", " group_by(Year) %>% \n", " summarize(mean = mean(Flights), sd = sd(Flights))\n", "head(result)" ] }, { "cell_type": "code", "execution_count": 107, "id": "c841154b", "metadata": {}, "outputs": [ { "data": { "text/html": [ "12" ], "text/latex": [ "12" ], "text/markdown": [ "12" ], "text/plain": [ "[1] 12" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "<table class=\"dataframe\">\n", "<caption>A data.frame: 6 × 4</caption>\n", "<thead>\n", "\t<tr><th></th><th scope=col>Year</th><th scope=col>Quarter</th><th scope=col>Flights</th><th scope=col>Delays</th></tr>\n", "\t<tr><th></th><th scope=col>&lt;int&gt;</th><th scope=col>&lt;int&gt;</th><th scope=col>&lt;int&gt;</th><th scope=col>&lt;int&gt;</th></tr>\n", "</thead>\n", "<tbody>\n", "\t<tr><th scope=row>1</th><td>2016</td><td>1</td><td>11</td><td>6</td></tr>\n", "\t<tr><th scope=row>2</th><td>2016</td><td>2</td><td>12</td><td>5</td></tr>\n", "\t<tr><th scope=row>3</th><td>2016</td><td>3</td><td>13</td><td>3</td></tr>\n", "\t<tr><th scope=row>4</th><td>2016</td><td>4</td><td>12</td><td>5</td></tr>\n", "\t<tr><th scope=row>5</th><td>2017</td><td>1</td><td>10</td><td>4</td></tr>\n", "\t<tr><th scope=row>6</th><td>2017</td><td>2</td><td> 9</td><td>3</td></tr>\n", "</tbody>\n", "</table>\n" ], "text/latex": [ "A data.frame: 6 × 4\n", "\\begin{tabular}{r|llll}\n", " & Year & Quarter & Flights & Delays\\\\\n", " & <int> & <int> & <int> & <int>\\\\\n", "\\hline\n", "\t1 & 2016 & 1 & 11 & 6\\\\\n", "\t2 & 2016 & 2 & 12 & 5\\\\\n", "\t3 & 2016 & 3 & 13 & 3\\\\\n", "\t4 & 2016 & 4 & 12 & 5\\\\\n", "\t5 & 2017 & 1 & 10 & 4\\\\\n", "\t6 & 2017 & 2 & 9 & 3\\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "A data.frame: 6 × 4\n", "\n", "| <!--/--> | Year &lt;int&gt; | Quarter &lt;int&gt; | Flights &lt;int&gt; | Delays &lt;int&gt; |\n", "|---|---|---|---|---|\n", "| 1 | 2016 | 1 | 11 | 6 |\n", "| 2 | 2016 | 2 | 12 | 5 |\n", "| 3 | 2016 | 3 | 13 | 3 |\n", "| 4 | 2016 | 4 | 12 | 5 |\n", "| 5 | 2017 | 1 | 10 | 4 |\n", "| 6 | 2017 | 2 | 9 | 3 |\n", "\n" ], "text/plain": [ " Year Quarter Flights Delays\n", "1 2016 1 11 6 \n", "2 2016 2 12 5 \n", "3 2016 3 13 3 \n", "4 2016 4 12 5 \n", "5 2017 1 10 4 \n", "6 2017 2 9 3 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "nrow(flight_data)\n", "head(flight_data)" ] }, { "cell_type": "code", "execution_count": 110, "id": "757eefa0", "metadata": {}, "outputs": [], "source": [ "lib <- require(reshape)\n", "if (!lib)\n", " install.packages(\"reshape\")\n", "library(reshape)" ] }, { "cell_type": "code", "execution_count": 109, "id": "62a6183a", "metadata": {}, "outputs": [ { "data": { "text/html": [ "24" ], "text/latex": [ "24" ], "text/markdown": [ "24" ], "text/plain": [ "[1] 24" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "<table class=\"dataframe\">\n", "<caption>A data.frame: 6 × 4</caption>\n", "<thead>\n", "\t<tr><th></th><th scope=col>Year</th><th scope=col>Quarter</th><th scope=col>variable</th><th scope=col>value</th></tr>\n", "\t<tr><th></th><th scope=col>&lt;int&gt;</th><th scope=col>&lt;int&gt;</th><th scope=col>&lt;fct&gt;</th><th scope=col>&lt;int&gt;</th></tr>\n", "</thead>\n", "<tbody>\n", "\t<tr><th scope=row>1</th><td>2016</td><td>1</td><td>Flights</td><td>11</td></tr>\n", "\t<tr><th scope=row>2</th><td>2016</td><td>2</td><td>Flights</td><td>12</td></tr>\n", "\t<tr><th scope=row>3</th><td>2016</td><td>3</td><td>Flights</td><td>13</td></tr>\n", "\t<tr><th scope=row>17</th><td>2017</td><td>1</td><td>Delays </td><td> 4</td></tr>\n", "\t<tr><th scope=row>18</th><td>2017</td><td>2</td><td>Delays </td><td> 3</td></tr>\n", "\t<tr><th scope=row>19</th><td>2017</td><td>3</td><td>Delays </td><td> 4</td></tr>\n", "</tbody>\n", "</table>\n" ], "text/latex": [ "A data.frame: 6 × 4\n", "\\begin{tabular}{r|llll}\n", " & Year & Quarter & variable & value\\\\\n", " & <int> & <int> & <fct> & <int>\\\\\n", "\\hline\n", "\t1 & 2016 & 1 & Flights & 11\\\\\n", "\t2 & 2016 & 2 & Flights & 12\\\\\n", "\t3 & 2016 & 3 & Flights & 13\\\\\n", "\t17 & 2017 & 1 & Delays & 4\\\\\n", "\t18 & 2017 & 2 & Delays & 3\\\\\n", "\t19 & 2017 & 3 & Delays & 4\\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "A data.frame: 6 × 4\n", "\n", "| <!--/--> | Year &lt;int&gt; | Quarter &lt;int&gt; | variable &lt;fct&gt; | value &lt;int&gt; |\n", "|---|---|---|---|---|\n", "| 1 | 2016 | 1 | Flights | 11 |\n", "| 2 | 2016 | 2 | Flights | 12 |\n", "| 3 | 2016 | 3 | Flights | 13 |\n", "| 17 | 2017 | 1 | Delays | 4 |\n", "| 18 | 2017 | 2 | Delays | 3 |\n", "| 19 | 2017 | 3 | Delays | 4 |\n", "\n" ], "text/plain": [ " Year Quarter variable value\n", "1 2016 1 Flights 11 \n", "2 2016 2 Flights 12 \n", "3 2016 3 Flights 13 \n", "17 2017 1 Delays 4 \n", "18 2017 2 Delays 3 \n", "19 2017 3 Delays 4 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "result <- melt(flight_data[,c('Year', 'Quarter', 'Flights', 'Delays')], \n", " id.vars = c(1,2))\n", "nrow(result)\n", "head(result[c(1:3,17:19), ])" ] }, { "cell_type": "code", "execution_count": 111, "id": "5f1366e0", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<table class=\"dataframe\">\n", "<caption>A data.frame: 5 × 2</caption>\n", "<thead>\n", "\t<tr><th></th><th scope=col>city</th><th scope=col>value</th></tr>\n", "\t<tr><th></th><th scope=col>&lt;chr&gt;</th><th scope=col>&lt;dbl&gt;</th></tr>\n", "</thead>\n", "<tbody>\n", "\t<tr><th scope=row>1</th><td>Rio de Janeiro</td><td>10</td></tr>\n", "\t<tr><th scope=row>2</th><td>Sao Paulo </td><td>12</td></tr>\n", "\t<tr><th scope=row>3</th><td>Paris </td><td>20</td></tr>\n", "\t<tr><th scope=row>4</th><td>New York </td><td>25</td></tr>\n", "\t<tr><th scope=row>5</th><td>Tokyo </td><td>18</td></tr>\n", "</tbody>\n", "</table>\n" ], "text/latex": [ "A data.frame: 5 × 2\n", "\\begin{tabular}{r|ll}\n", " & city & value\\\\\n", " & <chr> & <dbl>\\\\\n", "\\hline\n", "\t1 & Rio de Janeiro & 10\\\\\n", "\t2 & Sao Paulo & 12\\\\\n", "\t3 & Paris & 20\\\\\n", "\t4 & New York & 25\\\\\n", "\t5 & Tokyo & 18\\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "A data.frame: 5 × 2\n", "\n", "| <!--/--> | city &lt;chr&gt; | value &lt;dbl&gt; |\n", "|---|---|---|\n", "| 1 | Rio de Janeiro | 10 |\n", "| 2 | Sao Paulo | 12 |\n", "| 3 | Paris | 20 |\n", "| 4 | New York | 25 |\n", "| 5 | Tokyo | 18 |\n", "\n" ], "text/plain": [ " city value\n", "1 Rio de Janeiro 10 \n", "2 Sao Paulo 12 \n", "3 Paris 20 \n", "4 New York 25 \n", "5 Tokyo 18 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "stores <- data.frame(\n", " city = c(\"Rio de Janeiro\", \"Sao Paulo\", \"Paris\", \"New York\", \"Tokyo\"),\n", " value = c(10, 12, 20, 25, 18))\n", "head(stores)" ] }, { "cell_type": "code", "execution_count": 112, "id": "79b28ce6", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<table class=\"dataframe\">\n", "<caption>A data.frame: 5 × 2</caption>\n", "<thead>\n", "\t<tr><th></th><th scope=col>city</th><th scope=col>country</th></tr>\n", "\t<tr><th></th><th scope=col>&lt;chr&gt;</th><th scope=col>&lt;chr&gt;</th></tr>\n", "</thead>\n", "<tbody>\n", "\t<tr><th scope=row>1</th><td>Rio de Janeiro</td><td>Brazil</td></tr>\n", "\t<tr><th scope=row>2</th><td>Sao Paulo </td><td>Brazil</td></tr>\n", "\t<tr><th scope=row>3</th><td>Paris </td><td>France</td></tr>\n", "\t<tr><th scope=row>4</th><td>New York </td><td>US </td></tr>\n", "\t<tr><th scope=row>5</th><td>Tokyo </td><td>Japan </td></tr>\n", "</tbody>\n", "</table>\n" ], "text/latex": [ "A data.frame: 5 × 2\n", "\\begin{tabular}{r|ll}\n", " & city & country\\\\\n", " & <chr> & <chr>\\\\\n", "\\hline\n", "\t1 & Rio de Janeiro & Brazil\\\\\n", "\t2 & Sao Paulo & Brazil\\\\\n", "\t3 & Paris & France\\\\\n", "\t4 & New York & US \\\\\n", "\t5 & Tokyo & Japan \\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "A data.frame: 5 × 2\n", "\n", "| <!--/--> | city &lt;chr&gt; | country &lt;chr&gt; |\n", "|---|---|---|\n", "| 1 | Rio de Janeiro | Brazil |\n", "| 2 | Sao Paulo | Brazil |\n", "| 3 | Paris | France |\n", "| 4 | New York | US |\n", "| 5 | Tokyo | Japan |\n", "\n" ], "text/plain": [ " city country\n", "1 Rio de Janeiro Brazil \n", "2 Sao Paulo Brazil \n", "3 Paris France \n", "4 New York US \n", "5 Tokyo Japan " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "divisions <- data.frame(\n", " city = c(\"Rio de Janeiro\", \"Sao Paulo\", \"Paris\", \"New York\", \"Tokyo\"),\n", " country = c(\"Brazil\", \"Brazil\", \"France\", \"US\", \"Japan\"))\n", "head(divisions)" ] }, { "cell_type": "code", "execution_count": 113, "id": "67146fcc", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<table class=\"dataframe\">\n", "<caption>A data.frame: 5 × 3</caption>\n", "<thead>\n", "\t<tr><th></th><th scope=col>city</th><th scope=col>value</th><th scope=col>country</th></tr>\n", "\t<tr><th></th><th scope=col>&lt;chr&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;chr&gt;</th></tr>\n", "</thead>\n", "<tbody>\n", "\t<tr><th scope=row>1</th><td>New York </td><td>25</td><td>US </td></tr>\n", "\t<tr><th scope=row>2</th><td>Paris </td><td>20</td><td>France</td></tr>\n", "\t<tr><th scope=row>3</th><td>Rio de Janeiro</td><td>10</td><td>Brazil</td></tr>\n", "\t<tr><th scope=row>4</th><td>Sao Paulo </td><td>12</td><td>Brazil</td></tr>\n", "\t<tr><th scope=row>5</th><td>Tokyo </td><td>18</td><td>Japan </td></tr>\n", "</tbody>\n", "</table>\n" ], "text/latex": [ "A data.frame: 5 × 3\n", "\\begin{tabular}{r|lll}\n", " & city & value & country\\\\\n", " & <chr> & <dbl> & <chr>\\\\\n", "\\hline\n", "\t1 & New York & 25 & US \\\\\n", "\t2 & Paris & 20 & France\\\\\n", "\t3 & Rio de Janeiro & 10 & Brazil\\\\\n", "\t4 & Sao Paulo & 12 & Brazil\\\\\n", "\t5 & Tokyo & 18 & Japan \\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "A data.frame: 5 × 3\n", "\n", "| <!--/--> | city &lt;chr&gt; | value &lt;dbl&gt; | country &lt;chr&gt; |\n", "|---|---|---|---|\n", "| 1 | New York | 25 | US |\n", "| 2 | Paris | 20 | France |\n", "| 3 | Rio de Janeiro | 10 | Brazil |\n", "| 4 | Sao Paulo | 12 | Brazil |\n", "| 5 | Tokyo | 18 | Japan |\n", "\n" ], "text/plain": [ " city value country\n", "1 New York 25 US \n", "2 Paris 20 France \n", "3 Rio de Janeiro 10 Brazil \n", "4 Sao Paulo 12 Brazil \n", "5 Tokyo 18 Japan " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "stdiv <- merge(stores, divisions, by.x=\"city\", by.y=\"city\")\n", "head(stdiv)" ] }, { "cell_type": "code", "execution_count": 114, "id": "d0f3323d", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<table class=\"dataframe\">\n", "<caption>A tibble: 4 × 3</caption>\n", "<thead>\n", "\t<tr><th scope=col>country</th><th scope=col>count</th><th scope=col>amount</th></tr>\n", "\t<tr><th scope=col>&lt;chr&gt;</th><th scope=col>&lt;int&gt;</th><th scope=col>&lt;dbl&gt;</th></tr>\n", "</thead>\n", "<tbody>\n", "\t<tr><td>Brazil</td><td>2</td><td>22</td></tr>\n", "\t<tr><td>France</td><td>1</td><td>20</td></tr>\n", "\t<tr><td>Japan </td><td>1</td><td>18</td></tr>\n", "\t<tr><td>US </td><td>1</td><td>25</td></tr>\n", "</tbody>\n", "</table>\n" ], "text/latex": [ "A tibble: 4 × 3\n", "\\begin{tabular}{lll}\n", " country & count & amount\\\\\n", " <chr> & <int> & <dbl>\\\\\n", "\\hline\n", "\t Brazil & 2 & 22\\\\\n", "\t France & 1 & 20\\\\\n", "\t Japan & 1 & 18\\\\\n", "\t US & 1 & 25\\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "A tibble: 4 × 3\n", "\n", "| country &lt;chr&gt; | count &lt;int&gt; | amount &lt;dbl&gt; |\n", "|---|---|---|\n", "| Brazil | 2 | 22 |\n", "| France | 1 | 20 |\n", "| Japan | 1 | 18 |\n", "| US | 1 | 25 |\n", "\n" ], "text/plain": [ " country count amount\n", "1 Brazil 2 22 \n", "2 France 1 20 \n", "3 Japan 1 18 \n", "4 US 1 25 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "result <- stdiv %>% group_by(country) %>% \n", " summarize(count = n(), amount = sum(value))\n", "head(result)" ] }, { "cell_type": "code", "execution_count": null, "id": "990ba9d3", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "R", "language": "R", "name": "ir" }, "language_info": { "codemirror_mode": "r", "file_extension": ".r", "mimetype": "text/x-r-source", "name": "R", "pygments_lexer": "r", "version": "4.1.2" } }, "nbformat": 4, "nbformat_minor": 5 }
mit
HCsoft-RD/shaolin
examples/Dashboards.ipynb
1
121050
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "In order to use the shaolin framework more comfortably we will use a little screen hack." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<style>\n", ".container { width:100% !important; }\n", ".input{ width:60% !important;\n", " align: center;\n", " }\n", ".text_cell{ width:70% !important;\n", " font-size: 16px;}\n", ".title {align:center !important;}\n", "</style>" ], "text/plain": [ "<IPython.core.display.HTML object>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "%%HTML\n", "<style>\n", ".container { width:100% !important; }\n", ".input{ width:60% !important;\n", " align: center;\n", " }\n", ".text_cell{ width:70% !important;\n", " font-size: 16px;}\n", ".title {align:center !important;}\n", "</style>" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Shaolin Dashboard Introduction" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<a id='index'></a>" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Index " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "- [1 Introduction](#intro)\n", "- [2 Structure](#structure)\n", " - [2.1 Attributes](#attributes)\n", " - [2.2 Functions](#functions)\n", " \n", "- [3 Syntax](#syntax)\n", " - [3.1 Examples](#syntax_examples)\n", "\n", "- [4 Interactivity](#interactivity)\n", " - [4.1 Default values](#interactivity_default)\n", " - [4.2 Syntax](#interactivity_syntax)\n", "- [5 Styling](#styling) \n", " - [5.1 State manager](#state_manager)\n", " - [5.2 Accessing, loading and changing the layout](#load_and_save)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<a id='introduction'></a>" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# 1 Introduction" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "[Back to top](#index)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The Dashboard is the main tool of the Shaolin frameowrk. It can be seen as an interactive code box and it has all the functionalities needed for controlling the interactivity of its components.\n", "\n", "A Dashboard can be build combining widgets and other dashboards. It can be used as a standalone object or in combination with other Dashboards, and its main goal is to offer a simplified interface for managing all the ipywidets functionality in a simpler and scalable way." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<a id='structure'></a>" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# 2 Structure" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This is a description of the Dashboard capabilities. A detailed explanation can be seen in further sections." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<a id='attributes'></a>" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 2.1 Attributes" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "[Back to top](#index)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Here we will describe the attributes of a Dashboard. They are all related to managing interactivity and the same functionality offered by the ipywidgets package:" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "- Init parameters:\n", " - **dasboard**: list representing the syntax of the Dasboard components.\n", " - **func**(None): function to mimic the interactive behaviour of the ipywidgets package. It will interact with the widgets defined in the dashboard.\n", " - **data**(None): The data the Dashboard will use.\n", " - **name**(None): Name of the Dasboard. Each component of a Dashboard must have a unique name. \n", " - **mode**('active'): interactivity mode of the Dashboard.\n", "\n", " - **visible**(True): Displays all the dashboard's components when True and hides its components when False.\n", " - **state**(None): dict containing all the layout parameters of the dashboard components. (soon it will contain the vaue information also)\n", "- Parameters created at instantiation:\n", " - **widget**: Graphic interface of the Dashboard.\n", " - **mode_dict**: dict containing the information regarding the interactivity of every component.\n", " - **value**, **kwargs**: dictionary of kwargs containing all the interactive and active components as a key-value pairs.\n", " - **interactive_kwargs**: dict containing the name and value of the interactive components stored as key-value pairs.\n", " - **state_manager**: Dashboard for customizing, loading and saving the state of the Dashboard.\n", " - **output**(kwargs): When working with data this attribute contains the processed value that the Dashboard will output. If there is no data it's just an alias for kwargs.\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<a id='functions'></a>" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 2.2 Functions " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "[Back to top](#index)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "A Dashboard has its own functions for mimicking the ipywidgets functionality:\n", "\n", "- **name_from_shaoscript**: Returns the name of a shaoscript string notation element.\n", "- **read_shaolist**: reads a Dashboard component from its list representation and returns its shaoscript description, its kwargs and its children.\n", "- **observe**: Same functionality as ipywidgets. It will trigger the observer function when any interactive component changes its value.\n", "\n", "- **link**: Links the values of two components.\n", "- **dlink**: Stablishes a direct link between two components.\n", "- **unlink**: Removes a link.\n", "- **interact**: Applies the dashboard func to the Dashboard's output.\n", "- **apply_state**: Sets the state dict of a widget and updates its layout accordingly." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<a id='syntax'></a>" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# 3 Syntax" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "[Back to top](#index)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We will use a custom notation for defining tha layout of the dashboard components. Each component defined in the layout will be accessible as an attribute with the same name as the widget (we can set it directly as a parameter or indirectly with the description as seen early).\n", "\n", "A dashboard component will be a list contaning a shaoscript string notation. If the widget can have child the component will be stated as a list of two elements: The first one will be a string containing the widget shaoscript notation and the second one will be a list containing its children elements, where every element will be an item of that list.\n", "\n", "This allows for stacking widgets and creating complex boxes more easily than using multiple ipywidgets boxes." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<a id='syntax_examples'></a>" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 3.1 Examples" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "[Back to top](#index)" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [], "source": [ "from IPython.display import Image #this is for displaying the widgets in the web version of the notebook\n", "from shaolin.core.dashboard import Dashboard" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "- **Dashboard containing a single widget.**" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAATIAAAAvCAIAAADvm9FjAAAAA3NCSVQICAjb4U/gAAAAGXRFWHRT\nb2Z0d2FyZQBnbm9tZS1zY3JlZW5zaG907wO/PgAABf9JREFUeJzt3D9w01YcB/CfbC56yZKX44h1\ncFzUBBJxMIhjQEyYTUwVmzvVnRBTNYrNW82EO+FOdSe8VVvdCXeKFi7qES4iB0aaKu7I5eU44mef\nCR1MXSc4Lo6TWHV+nymRZet3vvfV+yNZwsePHwEhFCeJUReAENoLY4lQ7GAsEYodjCVCsYOxRCh2\nMJYIxQ7GEqHY6R3LVqtVq9VarVb3xjAM379/fyxVIXSiCT1vJ3j+/DnnfHJycmlpKZlMAkCtVtvc\n3EwkEpcvX56YmDj2OuOo2Wy+evXqw4cPPV9NJBKyLE9NTR1zVWgM9O4tz549KwhCvV5/8eJFu+fc\n3NwEgDNnzmAmO16+fCkIwsQ+EolEGIajrhH9L53quXVmZkYQhFqtVq/Xnz17trOzAwCSJJ07d+54\ny4u1nZ2dU6d6f4EAkEgkms3mcdaDxsa+Sz6U0vn5eQBoZ3J2dhYzidDx6LcSyxjr/P3u3bv9JlEI\nocO1byyDINjY2ACA6elpAKjX6+vr62ObzMjJqkQQBMXy+KhrQfEROFZaEgRBkNJmOejVNJhbMBQq\nCAJVjILb6ce4X8qqVBAEIut2JRr0uL1jGYZhO5OpVOrChQuyLAPA9vb2uCbTL9m/BPqj356ULYWM\nuhgUE9zPG3fKNLe8tvbEJuVv9Nxn52zmmLod6KWVteViOrD1rBMBAHDX0r+rqsWVtRUnwwuGUQwG\nO3TvCyRhGL59+3Z2dvb8+fPtLRsbG0EQTE1NLS4uti+ZjBHuWYrmFaKqQQd52+rqav916WazeeXK\nlSGLQyPC3ayc9vOBm5UAgDm6ZEqVoJTuOm9HJU221WpQ1AgA92xFq9i+Z9KKLmWIEzg6BYCgqCp5\n3fXz6pef8Xv3lnNzc/Pz851MAsDp06cXFhbGMpNVg179MWz8cWdGUAtBZ1AiUEW3nYGHH2hcRK77\nRjY0qf0fVQ2FuW7QvQf3HQ9U49MAiyi6RvyKz3lQ8RqKoX46x0taWoqqHoMB7Du3nJmZ2bOFUjp2\nmQQAknai5bsp8ebjv+qeyeyMHRjltdevV0pGVMhknYG+TjQ2eOQzoHJn/EQlCsxn3cNYFkQNKtNO\nJ0hlClHEIPKZKHXeSahCgfkDtaN9L7udJIQQAkAIAYiCCKgsy7JM5JxT1ZmMc82TivN2m2gjhADn\nvO8elDQ45wC8QbqmQ4SQBuecA3xxW8JY7kK0nKXcuHdp0l66qRsZ08xKw8Xy6dOnh1TaiSOK4uLi\n4gjvKiMEumLYztXu1kD37MG4SAgBQsXu/HLORULIIA0JY7kb1fJe3ayWy2XHKd279aD4w5pnKwf/\nvGvXrh1ecScLY2x9fX1ka2ZEUiWxGkQA7Y6PRQwkhXaHi0ryNIv+XX5gAQMqUaCyBG7AACQAAM58\nBlQZaDURf9i1S1QtWHmPprN20XGD5bupP8vVYNRFnVCU0kajMbrjS6pGg4r3KXXMc3yianL3HkTR\nVfAqfrtn5H7F5YqhECLrKvEr/yzyRG41ktLqQLHE3nIXCl75foHJTi4tcbdUfZPSVKnP/ltbW31e\nnZycPOwCTxDGmCiKozs+0SxLuWRm8zRvkKpt/i6bKxoBAFYt5l3JtA1ZMmzDup2xtJIlBwWzwPSy\nIQNA2s7QG1kzXc5pvGRZvlpwBrg6AhjLPUi64Dw0TfPqV1sAqevfPqoUtX7fpyAI/T8Q55YHJori\nxYsXR1mBYju/Rlnz9tX7kLp+93El185W5BYe5FXdMmRC9WLlYTZr3vhpS1z6OlcpGRIAANEKlZ95\nxrp1aQvmbn7vOKY82JF7306AvsTq6mr/UZYoing7AToA7C2H8p+9JUIHgLEcSiKBa2bo8GEsh4Kx\nREcBYzkUjCU6ChjLofSPZfvBDggNCmM5FIwlOgoYy6HgIBYdBYzlUDCW6ChgLIeCsURHAWN5cMlk\nss+jYlut1jj+ahwdB7z57uC2t7fDMNzvmWPJZHJhYQEfQo8OAGOJUOzg1Aih2MFYIhQ7GEuEYgdj\niVDsYCwRih2MJUKxg7FEKHYwlgjFDsYSodj5Gw98OvwL9PqLAAAAAElFTkSuQmCC\n", "text/plain": [ "<IPython.core.display.Image object>" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dash = Dashboard(['fs$D=fs'])\n", "dash.widget\n", "Image(filename='dashboards_data/img_1.png')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "- **Dashboard containing three components in a row**" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAA9CAIAAADwC/4kAAAAA3NCSVQICAjb4U/gAAAAGXRFWHRT\nb2Z0d2FyZQBnbm9tZS1zY3JlZW5zaG907wO/PgAAD6ZJREFUeJzt3U9MG9e+B/DvmOCZm4AYZBpM\n0tTTpAVHShRHIOHkLjJswFd6bV1RqU42cTbFlZoX51KpJl08smhCpObVvVQqdBOzeMVPalS3WXTo\nhsmixZGKYpRI2KgJ40oNgwRiEHlhbBL7LQzEECA0N7b58/uszHhmOAjL3zlnzvwOk06nQQghhOSM\nodANIIQQssXtKHQDCCFkORpr2YwYhlntLUoaQshGkV5JoRtFnoNZybJ9KGkIIRtFOp1OpVK6riuK\nkkgkCt0c8hcYjcbXX3+d4ziDwUBJQwjZuNLp9JMnT0ZHR/ft28fzfKGbQ/4CTdNGR0erq6tXHEOj\nGQGEkA0hM1aWTCaTySTFzKbD83wymZybm1txzPP5fZrHjx//8ccfr7322o4dT3eOx+MVFRW7du16\nyY0leZFMJu/du/fkyZMV3zUYDIIg7Ny5M8+tIiSdTs/NzRW6FeTFJZNJlmWf3f78Pk0sFpuamhoZ\nGVn8Yrp///7ExMTIyEgymXzJzSR58fvvvzMMY1yFwWCIx+OFbiPZjihpNrvHjx+vOInj+UmzZ88e\nhmFmZ2djsdjjx4/v378/NTUF4JVXXjEajS+/pST3UqmUwbDqv95gMKzW3SEkp2iy2WaXSqVW/A8+\nf/SsvLycYZj79+/Pzs7euXMnlUoBMJvNe/fuffnNJIQQsuWsa0YAz/P79+8HkImZ3bt3U8wQQghZ\np/XOPdM0bfH1zMwMja4QQghZp3UljaIok5OTAMrKygDMzs5mTxAghaSG3DaOYRirN6IXui1k41BC\nXtHMMAxjFj1BZaWPhhb2O608wzC81ekPL15I6tGA28YzDMMJDp+k5rHJZCt7ftLE4/FMzFRWVr7x\nxhuCIAB49OgRhc1GEA34ehTH1z/1B71WrtCNIRuEHu1wvhvk2weGh/t9XPCko/2ZyxAt5HH4FEfg\n9vBAl6j4HO6QCgB62Os4I9u6bg/fDrl0v9PZpeS/+WQLWm+NgN27d7/66qsATCYTAEVRctcmsm66\nruqsze1yiPScG1mgRzr80foOyWM3A9ZgQDJ7/OH2gJh1KaKGOkKcW+5w2jjY/IGIZG8PKU4PL7cH\ntHdCfpeNBzoCfsna0RVxd9joIma5xGBrQ8vNZ57ysPzzx+un9rz4WWNX3zujtPV3Hl/hiZTN7fl9\nGovFsn///n379i1uMZlMBw4cqK6uLioqymXbyNp02ckf/TKeuPluOWPzK4ujIQxvdfhCNO6xbanh\n8LjgtJszP/E2p1ULh5XsPfRoKAKbc74bzFkddi4qRXVdkSIJq9M2f9litotmVY5oIM9ga9t/lCRJ\nkn78vLEE1W3/I0mSJEndzS8eM1vbuu7TlJeXL9vC8zzFTKFxYkgdaKlkT/SOzUY8ms/lU5zB4dHR\n2wGn6ne5Q/QNsT3palQDLyz2cnkzDy2qZY+faYqa4AV+savCCzxUVYMa1Vjz4pEcb+WhRelztKLS\nioqKiooKk6mEhbFkT+an0sm+Sy1Nx+vq6o43uS/1PcjUCE3Errc2i3V1deKpC5fONr11KZYAMDMY\nOPvW8bq6uiZ3+yW32PztgyXnn7kTyBxUl3WmzYvqnm1qHMdxAMdxgKqo4AVBEASbsz0kSx12GvLY\nrnQ985nI4DgOuq6vuQfPJXRdB/QEl/Wx4TguoS8/lKwqEfuq5dOBqn9+98tvv3zXJgx82nL1TgIz\ngxf/8+rkW53Sb798+4FxYGAyCQATfRdaA3Bf6/+tv7t55ue7D5eeauLGxy3fPGzu7P/tF+m/Dg9e\nbPkqtrmzhmo5bxGcvd1rPfbhwb/5ak44nC6Px23+95JmcHDwJTVt22FZtrq6uoAVNDgOWfGg6zrA\nLf008Mv20HSW4zhwPJudK7qusxzH0SXL+iSU6z9P1ra1Nu1hgT1ia9uxpgvXRz5o/PZXNHaePFwB\nQGxtrf35MoCJgd5Bk/vb5ppSoPSt1rO9N7/NPtWDm72DppPfnTpcCpQe/6D12I2LvSMftR/evLdv\nKGm2Ct7eEZn1yMFgMBQKfNhwpevycMRnffHz1dbWvrzGbS+apo2MjBw6dKgwv54z28ysrKhAZhhM\nUzWYrXx2XvBmoUxTn97K0xQNvJkHL5gRVjTADAC6FtXAW2myyXpNjs2UWkwLFxhGk1CaHJn5v8mx\nZEmtiV3YWFVqBPBQmURplWl+V1OVqST7RIkZZRJjPe/V9SxuMtZOJoHNmzQ0erZFqLLf2xHhRbev\nKxRWBloqh4Kyssb+02vKV6u3Jp7nC7qKl9lm5xUpMh8kWiQU5Wx2IXsPzuqwISJFM/0XPSqFdavT\nynGCw8ZFpYU5AGpYVs2ijZJmvUqrSmfGJhcmpCXHlBljVekukwkPRybnPw/JybGZJIASwYTJscn5\nXbOOAgCwpVUlRkvbj7/N+0X68bvPxdK8/SE5QEmzRfCIBNtc3mBEUdWoFJDHK2028xr7r7gg62or\ns5K/RNO0FQun5wtn93qtNz3uDikSlf1uT5/g8dk5AJrc5esIKQDMTp9T+9LlDYaj4aDX7dcc7U4B\n4EWfi/9ft6dLjkYkn9sbtfk8NMV5vdjq5kbTwNWr8oMEEg/kq1cHShubqysOnxQTP1/tvTODxMSv\nnZ2DSQCoONZ8eDLQeUOZQULp++9vRpZOmN4jnqoe67x6PTYDJJQbH7/39sc/P1jxl24WNHq2RXCi\nP/SFx+M5+vo0UFl/+mupa80pAc+NE7pP88JYln3zzTcL2QKrL/S96vb842gbKutbeqX2TFyoYf+V\nDpvD6xQ43tElfeF2e451T7M177RLAacZADi7X7qmu7wNB6dhOXEuFPIIhfw7Nhm25qPuzxIXLr/9\n949hrKr9j8+utR5mgeNtnR9cuNDS8FWypLrxuAV3WAAVb332ufLpxfcaLsJ0qPGQCcqSa5M9zZ93\nzly8dKbhchLGqtrmf/1rk8+fZnJYo1uPeISj3eOr78BWWqw20eH2+lzURc+nu3fvrr22kNFoLNht\nBrJdZRbcnJqa+vPPP7fQbcIZZVAxHjq8hwWAiRvutwON310/VRobfFB6qCazVQk0nxo429e9uQfI\ngMHBwb1795aXlxuNxmXXsgUdPUuMx4f6eq6cPCo4uqI0lTKvDGsqdOsI2TISdzpbzlz+dSIBTAz2\nBEZMx2tNwOTApTNnv7kzAyQeyIHeMaGxepPHzNryMnpWf2045FjWadF1TY3IAb+v++Y0pvs+dPnF\nf2uqFPlrKE4IyYuKxva2wQsXHH9/CKPpUGNb50c1LCCcvNR658LZhp6HMFbVNl/6fJOPjj1PXkbP\nTnw/JTtXGR5Tgw7ryb5poOx0v7qkNBPJmbt37z53Hxo9I3m2RUfPtpGNOnoGAGZnh9sCANOypBS4\nLdsJjZ4RQvKm8N8pnHn+0TBd05bdq9GjIb/bYRO4zNRbXrA7PV2ymvVss+ziGYZhBN+yquhKly1z\niEte+oYWcnAMw3BOaZtXc6KkIYTkTeG/U/TofJlZ3ppdP0UL+x3CwXfP9/QNxecfepqO3/qh+8OG\nKpt7YWknzuYWWQBxSV5SulgNB4cyh8ihJVMNtHBATgCsw2Pf5pPdKGkIIXlT6O8UPeL39kwDQI3T\nISxuVgIu8XzfOMDWn+sdGJtNp9Pp2dH+r0/XAIj1nBQ9mT4Jb89EzVAwO2q0SDA8/3Jcyh6T0yOZ\noBHd2z1oKGkIIfmTl7lnmhKNRpd8teu6pqlKRAr4v+yLA0Dlaf/TmWea5PP2JQDUX47IvoW1JDlB\n9ATCVs7W0B2P93javVG/jeNFtx19NxEJhjX3/KwDPRoMJ4AyS9l0fDoWCqs+a+ZpeT0SlKcB2Clo\naO4ZISR/8vJ1M3T+2MGljh491vCPk+fnY6bmdG+46+k0aC3cFZoGUHna/8ySxbzY4W9iAcSDXREd\nAC+6TwBIhIMLt2r0aFAeByzudmclgEhooYyTHg1K4wBOeMS16rRsA0VFRalUarUOTSqVosWHSEFQ\nJaTNbrVyVoW8sGVrmk5/8vVPw1PRgEt4mii6KkcSAFi7a3nOAABvd9kAYDycKSFodrjrAUzLC1Gj\nylIcKBNdDpedBRLh4PytGkWS4gDq3ds9aGCxWObm5h6uYm5u7sCBA4VuI9mOGIYxGAw7duzQtG0+\nZWfz0TStqKhotaTJy+jZkudpNEUOdvi83bcSiVhUM9vtz1QlVxUNAMzCyius8IKZBRLQFE0HOJhF\n1xHcGhqXQgrsVqhyMJaJKbPNaccPN8fDmTcUKRgDcISCBjt37jx48GChW0HIcgzDFBUVlZSU3Lt3\nr9BtIX+NwWAoKSnJhM2z7+a/wiYviJ4uWbQ57R/2xX84f9ShDkgdL3LfhOPnl2gSHK6a80OxuCQp\nHVY+HIwAsLlsPMyi8whuDsUkWemwQgoOATjizpp4QAjZMDKXw8XFxUaj0WAwTExMPHr0qNCNIuuy\nc+fOiooKjuOKi4tX7NYUqJYzZ/UEQxFbQ3cct6443LZoyPW0o2EWeGAaqqLqwLPdGk1RE0BmefQM\nq9NZ03YlNhSUVbcQDCeAGpdoBmAWRQuG4kPBiOrUg7cA1FDQELJhZZKmpKQknU5zHDc3N5cpYkL3\nbzaydDptNBp37dpVUlLybHWAjMKtGsCL/tAn4aNXhjD9g9vVZZcX6pNzZtHGXoknEuFgVHc8U/pe\nlYMRAKi0PR12E1wOy5VYPBKUI9bwNGBxZEbIOKtLLPuyZzoSlCUtDKDG7aDaaoRsVAzDZDo0xcXF\npaWlqVQqh+WyyEuSubtWXFy8Y8eOTJ9mhZ3SuTN7u6USAHDi+6lV9hi+fGS+HfVfDC9unvrp/bKF\njbNLj5jqP2cBAFjODWS9NTvQUgmArX/HAqDs/f7ZxVM1sQDYGgsAWD5Zfj5CyAaUIpvQGv/QwiZN\nOj07/EX906xZjIHRa02ZdYHKTpzrvZ05enZs4Nrp+WCqfH/ZKWcHTlcuhCfblPXm2LWF8wOWc7cp\naAghJN8K/fgeZ/UG5rPm1nmXf6F0jOAOyl80lQHTN788ebScYRiG+VvVsTM9QwAs71+TA8tqQ3M2\nt1g2/9rmyppgYBZdC92mSod7pWnThBBCcqrQSQPA6g1+fYIFgKE2l3/h+Uve7pWU4e8vn246Upnp\n3rCVNfXvf3KtfzQaXCExFkqgATVOe/Y0ZrMoZsbbKp0UNIQQUgC5XJ+GEEII2RB9GkIIIVsaJQ0h\nhJDcoqQhhBCSW5Q0hBBCcouShhBCSG5R0hBCCMktShpCCCG5RUlDCCEktyhpCCGE5BYlDSGEkNyi\npCGEEJJblDSEEEJyi5KGEEJIblHSEEIIyS1KGkIIIblFSUMIISS3KGkIIYTk1v8DT+VyIV2g4a8A\nAAAASUVORK5CYII=\n", "text/plain": [ "<IPython.core.display.Image object>" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dash = Dashboard(['r$N=row',['##Row$N=text','fs$D=fs','tog$d=Toggle']])\n", "#dash.widget\n", "Image(filename='dashboards_data/img_2.png')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "- **A column with two rows of components**" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaYAAABRCAIAAAAW85VBAAAAA3NCSVQICAjb4U/gAAAAGXRFWHRT\nb2Z0d2FyZQBnbm9tZS1zY3JlZW5zaG907wO/PgAAEptJREFUeJzt3W9s2+adB/Cf7MF6HNQT0/Qm\nbmtmtg1qBmsWZg4uVN+YK7AzAyRntR0QZW9M70XCAgPG2waEAQpMw3CLAqSIdvci7CsrL1IzwA7R\n2hdh1hdWXvSsoM6szllNt51Fp7uYQWKIrjuLMtzwXkh2bEdW4z+Rouj3eWXRDx/99Fj88iEp0T7P\n8wAhhBpDU60LQAih6sHIQwg1EIw8hFADKRN5CwsLExMTCwsLyxdOTk7+85//rFZVCCH0SPgevHzx\nt7/9zXXd1tbWjo6O5uZmAJiYmMjlck1NTd///vdbWlpqUedjZ35+/u9///tXX31V9rdNTU0Mw2zb\ntq3KVdURHEBUE2UiL5fLZbNZz/NaW1tffPHFmzdv5nI5AAgGg88++2wtinwcffzxx01NTU1N5c8M\n3Lt3z/O83bt3V7mqOoIDiGriGw8u2r59u8/nm5iYyOfzo6Oj9+7dAwCapr/73e9WvbzH1717977x\njTKjV9TU1DQ/P1/NeuoODiCqifL7WIqinn/+eQAo5t23vvUtzDuE0BNgzSu2juMs/Tw7O7vWOReE\nEKoj5SPPsqzp6WkACAQCAJDP5z/55BNMPVQXXDMhcZTP5yOMqBp2uSZOShUZ4vP5KE5KmO7S4nQ8\nzFI+n49iw/G0U27NJXZCpPnEst433udaBVtJRaB9Pp+PFmTdcsutitatTORNTk4W8y4YDO7atYth\nGACYm5vD1EN1wE0rYl+K00bGRpIRNx4Oa9bqJlYiLGqubIyNDcXZVJ+gpFwAACcpi6olJkbGhjTB\nUkUpWTYuAQBsQxb6rtzekj7XKNg1Y+FXdSo6NDY2qBL9qBjNYOhtCe8BlmUNDw/fvHlzacndu3eH\nh4c//vjjhYWFB9s3ptHR0fGKRkdHa13jY+0RDWDucrc/0HM5V3yUPbfX335iJL+iydipDug4NVZ8\nkB/sDfq7L+U8b6r/gD94fKjYNj9yot2/91y2zDNMXf5FVwD87e0AB/qnNt3nGgXnh3qD/qX+c5e6\n/cHewZWvA21ImUtm7e3t3/zmN7dv3760ZMeOHc3NzW1tbcWP6dWem1FYwYxEHO3ta1TvoKnRuiLH\n9KvjMwDBvb0xXZNYAq4hUAobE824dnWyENjbG09qEkMAwE6pkhy/Ml4Idh1X2ZRqxuxUmALX0lVJ\n1a5OFvztXXI8EQszZDNlptNpnBevpXjOZKu5lpEpsDGOKj6keYG2UxkHOHqpiZMxxoO8wBQfES7M\ngmyYrugmM8BF2eJfnLAiT+KG6cqr3wKuqWfo6KDJJwUhvfk+1yqYSqdvMxJfKpviwqwTT1sgsFsz\nTg2s/Lm85XlXRFHU45J3JTNXNDOcGLysKWxGEfoMRjWyU9mRSxLR+yS9dPhQGH9bcxXD8XIjUUqX\ni4cVlhYW446oj4yNaLypvj1eAAAAJyXzksGoxlh2zFDp5KuCmt7coQTmXfXZpuOnmVKAAKFYChxz\nxRk027KBYimy1IQmjuWAY9kFillaDBRDgW0/eO6NCImUrgj0iiTcRJ/lC3Zt0wFqaTFQdHHx+gYD\nlVHH37ENRuJKWBBFjhBePafHJZ6hGS6sKpzfytiLb46uaCzMEqA4SeYLZspywdRi19iYHg9zLBeO\n6VpXsaFjRHWIJDRZYBlWkDWtx0nENpl5qPrcAlmWRoSQguu6K/6MjgvkfgwtNgHXBXJ/VUKo4mJw\nnSVrvxvW2edDFLx6VQIPrIk2oo4jj+FLe1qKk2TBScYUKSLyLHv0WgEW3xz+ALN4EEEo4nddAMdM\n2wFu8YgBaJ5v9wOAa6Wtwu3zoVZf0faDf5qZscw1T2CjxxOh/MuTwXVdPyFkxZSMIlCmyarFruu4\nfkKIm5bZ7SWssuYucF19PlTBZNWqLgDZ1GkWVLTmx98fe/6lnxxDYg/qdI8kCpGwHLXVULTyqgUo\nt790Xeg4NZiMLDvRQihma4pF1UIxNKQtB4AGAHAd0wGKpZa3oFna75i2C8U/tOvYLsVSQBEm4Nj3\nd3GO5QBFU4RTk4NS8e1CaG6N0Flfnw9RMKE52p+ybIBia8d2gGYpzLzNq+NZ3iLHiJ13epKppBZT\npDBPrMozM8Lw7TNmZrGRnUlPFgCA0DwDVsqhmSLK0hQVPwxVbwgjcsQ0MqXzZXY6ZdMCtyJkKFZk\nnFS69AZwM0kTOJElhBU5yBilD9S5ppF22TBLgLC8UMKza0XOOvt8iIJpjqcsY/Ft6mSSJuF4ZnOD\ngwDqeZZ3H0UFCplk2uJ5YhlRKT4JpEJSEU5WDsTViMpoEmMnVfkqQBcA0OHoEeWgFInp8QjrGErk\ndEq4XPGK7czMTIXftra2bvD1NIxHMYCUoEaokCQLepR3E4picvEkRwDATsbiFq8oAs1GVD4qR1RG\nk+hMVDoPkUGBAoCwGlYORhQ+oTBWXI47oh5mHvZp19unm0lEdZCiErtWwbyisLtlKUbFwiSlylcY\neYTHSd4WeAJmeZSoJY7TyYPPbd/ORBJETZ7ocDOZClM9RkkmFaJH9u3eJxmM1B0onl+hxES6P+Jq\n4d3PPReK2uK5VEKk1u4FwFfRVr/MJ9AjGUDCx41+0VR/tHvfQR3kZFJmAABcKxk/HTdsFwAYSTcU\nSo/s2x1STP6coQkUAAAlasZZNiWHdoekFBM1EmG60hOttM4+nYx2+nTxOxprFAysmrwkufGD+3b/\nKGaHB4zoWkfVaF3K3DzqSeeaqZTDiqULGE5SpGUmZWnr3IXeuHGjUChUaOD3+yvPYhpcIBD42gF8\n6aWXqlYPahBPwoHtOrlWPBK25WRC5ohtRJUrVHhwQztQnMptEg4gqr4GjDxK1HRFUiK7T8+Av/2A\n1J+KCxs6ZFjr9pboIeEAouprwAPbrXHjxo3izQTX0tTU9OWXX+IXMNYSCAS+dgDxwBZtuQac5W2Z\nr52k8DxfnUrq0Y0bN3CWh6oPI2/jKm+xlacwCHAAUS1g5G0cbrGbhAOIqg8jb+PwuGyTcABR9WHk\nbRxusZuEA4iqDyNv43CL3SQcQFR9GHkb1NzcXOE/sS4sLDxmd1R97OAAoprAz+Vt0Nzc3OTk5Fof\nu2tubn7hhRdaWlqqXFUdwQFENYGRhxBqIHgyBSHUQDDyEEINBCMPIdRA8IrtBjmOc+vWrXw+X+tC\nEIKWlpadO3dSVMVb2iIAwMjbsM8//5xhmLa2tloXgurY9evXOzs7N9/P7Ozs559/jpH3MPDAdoPm\n5+cx79Bjoq2tDQ84HhJGHkKogWDkIYQaCEYeQqiBYOQhhBoIRh5CqIFg5CGEGkjdR56ji8Tn4+LW\nxruw4hxhN9MBQuhhuVZSDXM08fl8PooVJC3trL+TTWyz9f5RZNvQUtDu/0jTTUVla10NQo+J+fn5\nkZGR6enpB2/P1dzc/PTTT//whz+sxb25nJTMv6ozvbFElKXAMrToGyHRHUsrVdt46zzybENLk3Bc\nyryhaRklzm3oX3Aj9MT5y1/+4vP51vq3op9++un169dDoVCVqwI3oyVvH0hkEhEaAABEkSfsvriW\nkau28db3ga1taFdBkMKS2D6paxm3tNhUWYpXFJGhKIpieFk3XQAAO8ERVlHDLEVRFM1FtMyKGbWb\nilBESNiLDzMKQwTdBoTqz927d3ft2uWtlM1mT548mc1md+3aNT09XYu6CCHgZGx36TGnJgd1hSUA\nAK6ZkAWG+Hw+woZjqeLmaadii8fBhBFV44Et0rV0pbQWIyhJy13dYKW6jjwrqV3zCxJPs1I4eFuP\np5derDtzTcuISdtxrISQlkSl9KvC+B8MVrMcxzYkWxVkY1noEV4OU+lEaUhdM5G0eVmgq/uS6s3s\n6Du/el3Yv3//fuH1X70zOgsAYCVe7z7++6h0uFt4+eVu6a3/vVtqmig17ZZ+f+VWoaZ1P/Hy+Xxh\npVwu99Zbb01MTPzud7/7xz/+UZsvqBFOVbus0/toTpRVLZm2HKA4gWcIADiGJPQZtGqMZUd00Top\nRnQbrEREjDqRRCY7lR3S+MxpSU2vyDQnJfOSwajGWHbMUOnkq8KqBg/w6lf23F7wdw3kPM/LDx0P\ngr/ncs7zPM8bO9EOHSfGSs1yl3sCgSODeW+qfy8Ee4fyxcX5kePt/q6BKc/Lnt3r7zib9bz8UG/Q\n39U/VeywPdB9Kbfmkw8PDz/K11Yf7hg/D4WO9f/1jud98dcLx0KhY+/e8bxs/6HOzqP95hee5/3f\nH3tD//afpuvdefdYKHTswl+/8Nw7H5x5LXTojOnWuvza28J30aquLly4MLHSG2+88corr7zyyitn\nz56dmJi4cOHCVj31OuWnBs/9oudAsBhAgb29/WN5z/Nyl7r8gcVN2MuPnfvFqUtZb+ryubOXsotr\njhwP+g8M5JZts7mBLv/9jbq4sfcM5h940vvqeJZnJbWPgJcFCgAIJ4nBghFfnPWSACMwpXYUw9Ou\nmbEBAPyMwJROGRBaoMFK28v2CISTw1RaM2xwMwnDKfWN1nL3+sD1HUdPSnueAWjb89OTx3ZcHxgq\nTulePHqoow0AvtPZuWN2cnr+1tWB6zuOnvzpnjbwP/PysV+FZv888AlO9Cp477339j8gGo2uq5O5\nubn+/v65uTld18fHxwFg3759PT09j6Tih0VoQY4n07aXzw5dOiu65/t4KeW4VtoqMCJb2uQIK8fV\nMAO0KEfodFyVpbDAsfzbtwsAyzZZ10pbhdvnQ62+ou0H/zQzY5mVTkfV7+ULU9c+AoCj3/YdXVp2\nRTPsiPTAsagDBShzbtSF1dsc4eQIzScMi00bjqBh4lX25dQs7HjxqcWHO769o2XW+hL2ALS0tfmX\nNZyfn7WmYer8T/afX1rW0jk9D7C8FVru8OHDAPDb3/52acmhQ4fWFXlzc3Nnzpy5efPm+Pj43bt3\nAWDnzp19fX1bXek6uJmYFCNqQuEIABCGDys6B+Zz0YTpKmVXMOMC9x8WfyQiinJEVfRwxFzVwoWO\nU4PJCHN/CycUU6GGup3lmcnEOBw4OzQyVjJyqTcIV+NJCwDAnTENs7QzsNNpK8CxNABA4f5iJ2OY\nflZgVmQhYaUIndHiccMRZB4Tr7KndrTB9CdfLj6c/mR6vo15qlzLlrZvP9XSfvLd4ZIPjHf/eEbA\ne29Vdvjw4d/85jfFn9ebdwCwbdu2Z599FgCKebdt27a+vr5t27ZtdZnr4qQvRhcvTAAAgOvaLlAU\nIQzH+K3U4sUHN6NwTOTdD7X4NeZUKqXHVTkismA7K6cphOYZsFIOzRRRlqaoesUrGPUaeWYiMe7v\niUo8x5Zw4ai6Fz6K68W9wOQfJEXPWKYRiyhXGVnhi9E2c1GSEmnTTGmSdJFE1NUTOcJJEfraHy46\nooKJ93WeCb2+Z3rg1DujswCzo++cGph+6WjnM2Wbfkf46YtT//3W/4zPAhSs9379k3//9Z9vVbnc\nelRMvQ3kXdHPfvazl19+ufhzX1/f9773va0sbv0Ip8R64OJBTlTiiWQyqcdlUThtdakKRyhRDZPi\n5mllklFZs9jwv/4LTcAyUhnbcaxUXJKvFMBd8TkLOhw9Qq5IkZhhWlZakyKnU8AyFT/v8qjOUT5S\n+ZET7RDoXX2WcmqgC6D9xEjmRDt09B7vbvcD+Nu7T1yaKv66fy8Ee44f2esH8Ld3HR8YK66/dCq0\naOxUBwSOVDwD6uHli5Ivhvt/+VpXZ2dnZ9fRX14Y/sLzPC/bfyh0bPCLYoPsfy0+uDPc//PXQp2d\nnZ2hQ8fOfHCnhlU/Nh7d5YuLFy8uXbh48803i5csltN1faueen3y2UsnevYGi6c0Ah3dx/tHFq8S\n5sf6e4uXNQIdPWeHcp7n5UfO9nT4AQCCB46cvdzf7Q/2DuZXbLP5sf7jXe2lNr3nRr5my30i/4+t\nqTJcKmqlV53VsxMcExMzZqziB73dlMREQLcSQsVdxVbdwhs1si18F63q6v333weAXbt2lW382Wef\nAcCPf/zjLXnq+lK/ly8eASdjpDLJqE4iaR6/x4Hq2Z49e0ZHRz/88MN79+6t+lVzczNFUT/4wQ9q\nUljNYeQtYxvqqyetAyeSUfzmGqpvTz/99P79+xcWFsr+trm5+amnyl5oevI9kZHHxspesqGljCtV\nXE/NeOqjKQmhqmppaanFXQPqQL1esUUIoQ3AyEMINRCMPIRQA8HIQwg1EIw8hFADwchDCDUQjLwN\namlpmZ2drXUVCAEAzM7Otra21rqK+vBEfuGsGhzHuXXrVm1uLYvQSi0tLTt37qQovBPG18PIQwg1\nEDywRQg1EIw8hFADwchDCDUQjDyEUAPByEMINRCMPIRQA8HIQwg1EIw8hFADwchDCDUQjDyEUAPB\nyEMINZD/B+SkODc1rm55AAAAAElFTkSuQmCC\n", "text/plain": [ "<IPython.core.display.Image object>" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ " #Column that gives a name to the Dashboard. \n", "test_dash = ['c$N=array_scaler',\n", " #first row only has one widget. This element can be just a string \n", " ['@(0,100,1, (0., 100.))$N=scale_slider&d=range',\n", " #Two widgets in the second row. As this element has childrens it has to be a list.\n", " ['r$N=main_row',['@dd$d=Apply&N=dd_sel&val=one&o=[\"one\",\"two\",\"three\"]','@True$N=scale_chk&d=Scale']]\n", " ]\n", " ]\n", "dboard = Dashboard(test_dash)\n", "#dboard.widget\n", "Image(filename='dashboards_data/img_3.png')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<a id='interactivity'></a>" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# 4 Interactivity" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "[Back to top](#index)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "There are 3 modes of interactivity that determines how a given component behaves when its value changes. The mode attribute of a Dashboard holds one interactivity value of the following:\n", "\n", "- **Passive**: changing the value of the widget won+t have any additional effect. Markdown and display components are a good example of widgets that can exibit a passive behaviour.\n", "\n", "- **active**: If a component is active it will be included in the kwargs dict but changing its value won't trigger the update function.\n", "\n", "- **Interactive**: Once the observe function is called on a Dashboard, the target function will be applied each time an interactive component changes its value." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Accessing the mode_dict attribube of a Dashboard the mode of every component can be viewed and changed." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<a id='default_int'></a>" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "{'active': [],\n", " 'all': ['array_scaler', 'scale_slider', 'main_row', 'dd_sel', 'scale_chk'],\n", " 'interactive': ['scale_slider', 'dd_sel', 'scale_chk'],\n", " 'passive': ['array_scaler', 'main_row']}" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dboard.mode_dict" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<a id='interactivity_default'></a>" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 4.1 Default values" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Each widget and Dashboard will be assignes by default the active mode. An exception to this rule are the widget boxes and Markdown Widgets." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<a id='interactivity_syntax'></a>" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 4.2 Syntax" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "[Back to top](#index)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The interactivity value can be set writing the character @ at the begining of a shaoscript string. Note that this is a shaoscript syntax feature and will also set the mode as interactive when a widget is created using the function shaoscript (not only with the Dashboard object)" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Interactive dropdown {'all': ['dd_sel'], 'active': [], 'passive': [], 'interactive': ['dd_sel']} \n", " Active dropdown {'all': ['dd_sel'], 'active': ['dd_sel'], 'passive': [], 'interactive': []}\n" ] } ], "source": [ "A = Dashboard(['@dd$d=Dropdown&N=dd_sel&val=one&o=[\"one\",\"two\",\"three\"]'])\n", "B = Dashboard(['dd$d=Dropdown&N=dd_sel&val=one&o=[\"one\",\"two\",\"three\"]'],mode='interactive')\n", "print(\"Interactive dropdown\",A.mode_dict,\"\\n Active dropdown\",B.mode_dict)\n" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "('active', 'interactive')" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "A.mode, B.mode" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<a id='styling'></a>" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# 5 Styling" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "[Back to top](#index)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Although it is possible to style a Dashboard accessing the layout attribute of the widgets of any component (the target widget and the box widget wrapping the target) the recommended way of styling a Dashboard is using its state_manager attribute.\n", "\n", "The state_manager is a widget that allows to modify, load, and save any change to the Dashboard styling in an interactive way." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<a id='state_manager'></a>" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 5.1 State Manager" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "[Back to top](#index)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The state manager is a Dashboard that allows to modify in an interactive way any visual property of a given Dashboard. Following the former example we will show how to customize a the Dashboard that we created before.\n", "\n", "This is a relatively complex Dashboard which can be seen as a colum that has three different rows:\n", "\n", "- ### **Css modifier**: \n", "This part is in charge of seting a group of css attributes for a selected widget. There are two groupc of css attributes:\n", " - **Text attribute**: Its widge will display the available values in a dropdown or a text input for non-common values. A custom value can be set by deactivating the Default checkbox for a given attribute. Each selection can either be applied to the target widget of a component or to its box.\n", " - **Numeric attribute**: Its Dashboard will allow to select the units in which the value will be expressed using a text input or a slider for selecting the numeric value and a togglebutton for selecting the units. \n", "- ### **Control Panel**: \n", "This row has the following elements:\n", " - **Component selector**: This allows to select the component that will be modified.\n", " - **Layout attribute selector**: This toggle buttons allow to select which layout attribute will be modified:\n", " - **Grid**: Attributes regarding alignment, padding and margin. The alignment attributes will be applied only to the target or the box of a component only when they will haev a meaningful effect.\n", " - **W&H**: width and height css related attributes.\n", " - **Other**: The rest of the layout attributes.\n", " - **Widget**: Component target's attributes that influence the widget appearance.\n", " - **Selected attribute display**\n", " - **Layout saver**\n", "- ### **Target Dashboard**: \n", "The Dashboard that is currently modifying the state manager. " ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false, "scrolled": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABXMAAAHCCAIAAAAil82XAAAAA3NCSVQICAjb4U/gAAAAGXRFWHRT\nb2Z0d2FyZQBnbm9tZS1zY3JlZW5zaG907wO/PgAAIABJREFUeJzs3W9sG/eZL/pnkkKcBHE5abLV\nONusxr3Birm3WdFr42qUHoDjXpxoghNX9KaARtkXGi8OIhpo1nRTQHQuzi2LRSMaSNbMJoCpnANo\n/CIVBTSrcdoDUd0DaISLjai79YratBCVzUajdmtRqA0No2w5dJPMfTGUREmk/tD6a38/LwyJ8+83\nI/Mh55nf7/kxjuMQAAAAAAAAAEBN7tvvBgAAAAAAAADAIYbMAgAAAAAAAADUDpkFAAAAAAAAAKgd\nMgsAAAAAAAAAUDtkFgAAAAAAAACgdsgsAAAAAAAAAEDtqmYWPvvss48//vizzz4rf3F2dvY//uM/\ndr9VAAAAAAAAAHA4VM0sTE9PLywsfPjhh59//rn7yscff3zz5s0PP/zw9u3be9U8AAAAAAAAADjQ\nqmYWHnvsMYZhCoXC9PS0239hYWGBiP7oj/6orq5uD1sIAAAAAAAAAAcX4zhOtWWWZX388ceO49x3\n331ffPEFEfE8/8d//Md72DwAAAAAAAAAONA2quDIcdzXv/51InLTCl/96leRVgAAAAAAAACAcpvM\nDWFZ1vLPi4uLyzUXAAAAAAAAAABo48yCaZq3bt0iIq/XS0SFQqG8oCMAAAAAAAAAQNXMwuzsrJtW\nqK+vf+KJJwRBIKLf//73SC4AAAAAAAAAwLJNRkN89atf/drXvkZEjzzyiJtcAAAAAAAAAABYttHc\nEAsLCw8//HD5K5ZlHTly5P7779/9hgEAAAAAAADAIbBRZgEAAAAAAAAAYGObjIYAAAAAAAAAANgA\nMgsAAAAAAAAAUDtkFgAAAAAAAACgdsgsAAAAAAAAAEDtkFkAAAAAAAAAgNohswAAAAAAAAAAtUNm\nAQAAAAAAAABqtzeZBTuXTsZDiuQXOJZxsbxPlNWIZpj2njRh2+x0iGdWsLJubWWznCaWbSWnDujZ\nAQAAAAAAAOyMXc8s5Iy44ueOtnRc6B0YnZzNF0uvF+enx4evXjp76hgnhpLZA38DXjQ0YwuphVwq\nMb77jQEAAAAAAAA4KHY1s2AZEVE4dWFgsrj8kqe+obGxqbGh3rP8UnG8t+NJfyiV282m3LliSktv\nmlpAYgEAAAAAAADuMbuXWbCMsHjq0ngpqdDQ1t0/NlNw7JyZzWayZs52FqaGLrc3ltae7n1WjmUO\ndM+FYiqxWWoBiQUAAAAAAAC41+xWZiGXVINvTLs/N3YOzmT1mCIKbPkqnE8OJzNTfa1e9/fJi2o8\nu0vNuSMNrQEv0RZSC6buJhbqm+v3ol0AAAAAAAAA+293MguWEQlfyxMRkbet39CCq3MKZVifmtQ7\nSzfik7FIaktlEvcW61eD9USbphbMlDZORNSkKsKeNAwAAAAAAABg3+1KZsHUI1fniYjI05pIKPzG\na3NSLBZwf8wb627drYweDwVF39KkEiwn+GU1lkxXK8tg5wwtokh+gVuZhUJSwvFU7VUiuS2lFszS\nUIimkMJXS6SUzimbSoRXzZTBsLxPDIbieoVG5jQ/wzAMI4QzNpGdMxKh4NLZsZxPVMIJI7fBudmm\noUVUWfTxK0fjBFFWY8nMBnkS20zFQ7JfYEvt88uheMq0iaykVJoto/LEF3Y2FQ8Flw/HcoIYDMUq\nnRmRbSjuWlLKJjurhSSBLV0NJaKbG15FAAAAAAAAOBicnTdzpam0c2/nSGErWxQm+q/0D43NLKx+\neWGsO+Cp2vKG9r6ZNXsvzPS3N1TdwBvoHllzhI3aNNZV6krR2DO1sPSLt22oyi6WzrrpyszCYClT\nQq1D61vY1VT9nIi8gcsTq7eZ63N33HB+bGawq7HyZo1dQ3MVGjU3dL7Zu8HRPM0VL0lh4kpb5QEd\njZ39E33u2XnWnZzjzA11Vz2ep/n8ujYWRtrdixEYnOpvW71l85VKZwQAAAAAAAAHzJc2uO2skZVJ\nTro/eSVV3PjpfQnrV0L+tS/mkop0abRIRORpDAQlvyDwnGWmDf3a+DwRzQ6clXl/Ju5fOoSdjsgd\nA7NERFTf1CZLPh/PWblsJpUcni4S5UcvyYrfTG3WiaICzq8G63t75ylvaGlLlrl1a5ipxCQRUXNI\nFihTZTc5XRU7BtzuHNQQaJP8Pp4l28pl0/rwZJ6IKD96IRgRs/H1F85KR6Q3Rmfds2sVfRzlssao\nuxVN9wZVac2pWemw9OxSsYv65jZZFHiWJTuXTafcS0jF8UvBkGQmV52QqQXFc8NLpTcD7bJfYG0z\nk9JHZ4vTVzukVJXMSE5XxDOl6+8ez+djbdPMpAZGZ4mK428868/1Z5KVrn8uqaql8TMlzaq8/b8T\nAAAAAAAA7L0dz1UUJs4vdRto7qv9qXNhoru0m8bzax6rF2b6lh5ve9oGl5ctDLa6t7ye1itTq5+m\nL4ycX+pG0dgztcUGlPdZKPvV217pKf/M5aaVU67SZ2Flj9S0vqvA3ND5pf4I3vbyrh5LfRZKW3b1\nl5/c3Eh38/KiyzPlO5zqWdquYX2HhoWxnualBEGgv3zpTF9geYerOxksjPUEyroVrOmzMHNlqX+J\nJ9Azsvp4C2OXl+p0egJ9Za1c7rPgnnegu39samZmaqS/p2cQPRYAAAAAAAAOhV2os5DLlkogeAVh\n/bP9rbKyhvv0uykcllbvhhXURNy9/S1mDLM0ft/OpjJFIiJvMKL6Vj/x56RYonRXb6Yy1So0bGi5\njGM+lVg/O6apa0s9Fqo+aLfT8aTbXaGxJxmT1l4aXo4l2t3b73ymShu9bYOphFJ+crwU0y6XMhKT\nelkRCDujuZ0oqL4rGV/XKk4MJ0Kl1E22rEyDnY5FRt1jtQ8aq7fjxEgq1V15OIZtRCNu/5KG80Yq\nIq0+HieGdcPdsjgaiaUr1mdo7DZSMUX0CYJPUiKRIHosAAAAAAAAHAo7n1mwbbvUkZ7lak8sEEul\n++eKqQBeSU5NzS0UHHNlMARb+iGfSa+vFsiKMWNqZq7g2EYNgyGIVqcW1t4abyWxQMQrsZ7urs72\nrqjqq3gEQRLcn2zTqnTzXa9EKuxfkORSiiCXW8kssLwU7enu6mzvjIYrDkkpO5q1vJmdSZSyH03R\nWHD9n48VI7G2CoMhLCOedMcyBGKRyofzhyNu74p5vUJqhqg5EvZvaegMAAAAAAAAHCi70Geh7Paw\n5tkYiDi/7D4dz18745dC8WTaLJ/IgOV9Pp4rvxNlBVl0H/lPXxT9SkRLZVbNmMD5fMImczZsrHpq\nYSmxENgwscD6gqFILKElq82WYeXMDS+Yxx/0VTgBlvMtpQDssu15WY3EElpSC1VMY5BlLl2esq1M\n3XATBI2KLFTcjJNUaV1qwc7qaTed1BQUq10CXgy6f9H5tGGuW9ogiXeQhwIAAAAAAIB9s/OZBZbl\nS0PqrY3mQtyULxTvLJUlmB/tvdDRcuxhhvfLaiSxJmWwhJNj0VLNgeL0wKWzzx4/+gDrk5RwPGlk\nN5heccuqpRayemILiYW1rFw2behJLR4Jq0HJL7DMwy2XpjfagquSGWGXemvY1c/SzmUzRiqpxWPh\nkCKLPo55+Pi58XVtymbcISgen1+o1ooKi2wzWypLOXnhGFPNkxdLp5er8AcU/HeU9gEAAAAAAID9\nsvNzQ7C8n6eBPBEVzaxFUs3D5Tk5kR7kFPWN8eU5A+Ynh69ODl+9dI7qm9rUcCSirnrQ7QunxkhV\nLlybXXqlOD06MD068MYF8jQElHAkGpKF2m9g2eUZIlKJtC1J7p6yemKaiCgQ2sq52lk9Ho0n9NHZ\n4rYPz7HbbbttphKxWEIbnd7S0WyrNPCE22AgC7e+44SV21bmxl4/1sPDckgsAAAAAAAAHEq7MOuk\nIPq9NJ0nomwqY4UqzNC4np3VEmlOlCSxvOgjKwTj6Vwkk0pqWlJPjZfdjM9PXrt09lpCu2ykyofn\nc2JYN0NZI6lpmq6PTq/MY1icHb16YfRqvHMwrdVcHLAstaAtpRayujZNRJ4tJBbsbCIonRueX/2q\np77RL4qSJMv+XPjUhcka27aemVSkpVk4Vx3N7xflYFCkaEvH6OoGLt3x19zZpKmzR6k8+qIM51uf\nnNh20gQAAAAAAAAOhl3ILLB+RfQMDBeJioaWsWVp83tGOx0LX7iaJyJPoN9cXWOR5f3BcDwYjpOd\nyxiplK7r+rVx9+48P3ohGJGy8dWl/1ifpMYkNUZkZQ3DSOm6rg+XkgyzVxVVNlM1VnEsSy3opdTC\nUmJBCm82FMI2wvJSWsHb3BlSg7Lo9/uElYf1ZqK2VlU8WiYWXEoreJraw6GgLIqrjmbp6zbi+FJe\nx85Z9qqKGWUqDHJZ6XDAK6HIlnJJAAAAAAAAcJfYhQqOxEkh2S3yl9ej+hbmeLRSsdLMAuSrXgGQ\nWLfMgp7OFab6O0vzIczq2vqZIJZb4pOCoZiWyloLYz3NbpuKwwmj9qoLZbUWtIy90mNBCq2bRnKN\nXDLa697o17cPZtNaLBSU/EL5GADbXipSeSf1KVyWEY25vR88rX3ZTDIWUtYcjez1QxhYwe9e1qJZ\ndW5Oy0yba1/jBKFUWyOb2qAKZYVREAAAAAAAAHDY7UZmgTg5opbuUEdDoeQmuQXLCIeG3XEOnkBE\nEYiIKKeHg5Jf4DgxYa7fhPUpy9Uac2aOiMjOxBVJ9PGcoK6dE5KIiBPDcbV+1Ra1WU4tzKe0jLX1\nxIKdTWXcnxrUSnNHEpGVTi8NXbDv8BbcNlMZN1fjDS5d0rVHy6Sya19jfcGl+TWSKbPynjOasa5m\nA+sP+t2fZpMVp5QkIsol5YcfYBiG8ymb/ZcAAAAAAACAw2NXMgvEitFYm3uLmr/WIYX0qg+yrXQs\nKF8tVR5oDMeXSiCwrJkanZzN58cT+robYKKyooGlHvwsa2dGx6fn87N6vGKfBHtlC+FOuuuz/lAp\ntaAndM1NLMibJhZo0yIGlhGLLlc92IFn+xvvws4kItdKGYLiSh6DFUsnR5OxaKrCZcwmIgP59S9z\ncrjV7RIy3xtOVOpEYhnRiHt6eVb011zWEwAAAAAAAA6a3cksEPFKQmsv9RGY7j1zzBeMaOlV+QXb\nNLSwJLRcHC3d4Db1JKPLBRM4KayUbnEvKOHUmmfcdiYeirpTGNYHVXcjnxJ2ezHkBxR13QiJnB4O\nle6km7c0h0N1rG8ptXA1fGnLiQVWkEqVDWe19UNEcqmILL+xXGzRvtM+Cywvlo6W16PrLoaVjgel\niyulIssOx0rRUmeQ+atBObYqR2NnNUW6sG6qSiIi4uR4tMn9cfyCpCQyq7ISViauBEtjQbztMXXT\nGo8AAAAAAABwaOxCBccSPqgZfbZ09to8EdHstUtnr106S96GRp4jsnLTs6sefTeeH0pFygsxslIs\n3qp3DOeJJt949miyuS0o+gSes3KZTEofLs2i6G1PRMXSVoIa7463XJomyl87+yQXaw3Kfj/PWTkz\nm16u+UhNPYlayzcuN80Xcss4Up6IyCOHxC10ghCUSGukY7hIlL/WIfj1kCqLPGtbZsbQkwPj80Tk\nbWy0p6eLRPkNCihuDS9H2utHB+aJiqPnnvSnzquyX+DIymXSun51dJaIPI1N7PRknkr9P5ZOQQgl\nryR950aLVBy/eOrhRKBd9gsc5TKGPjy56m+2pmxmOHkl5T83WiSav3bu+MOxQLssCgLZ2UwqufT3\noobOZAIVHgEAAAAAAO4qzu5aGLvc3rhxC7zN5wenCpU2LkxcbvVW37ChvW/tdnODXRsczRvoHlnY\nassLY12lPheNPVPrGna+fnmn7UNr97kwGCgtbB0qb+DcUPXWNbT2jCwsDLaWfjs/sbzhXF+pM0BD\n99p2LK3QXGmFhbHuUtHK9eoD3UNzC2Od3tIpjKy+jgtjPYHKF76pq7+vNO7Bs3YrxylM9XVWv/6e\n5vNDc2s2GGkv7axt3c4AAAAAAADgUNit0RBLODGczBamhvq6O9uaGxu8y7e6nvrGQFtXT//YXC4d\nD/oqPp9n/eFUbmrocldbc2P98pbehqbWzu6+sTkzqa7djg8msnNjfd2drU0rx/LUNza3nb88NJUz\nYluoh7AFrE9VSnNTeLfWY8FtnZzIzIxc6Wprbijdt3u8DU2tnT39YwtmKiJxnKi4SYINCiFuGSfG\n0uZY3/m25salS+Gtbwq0d/eNzJlGTOY5X1D0EBHlU2tKU3BixDAn+nvaA0vX3VPf1Np1ZWQukwjy\n5PY/4Nh1fzTWp2rZhYn+ns7WpqVTJI+3obm1q2dwIpeObzYzJwAAAAAAABw6jOM4+90GOExySfFo\nxzgRNfZMZSOomAAAAAAAAHCv2706C3AY5VJxLcsJPp9fEit2JLFNwyQiIo/gQwcEAAAAAAAAQGYB\nVrGziYsXpqlqjwTLiCfdWpi+oB+VGAEAAAAAAGDXZp2Ew4kXJbc25XQ0vK7Ug5WOBYMD7oQYrZGg\nsNeNAwAAAAAAgAMIdRZgNTMhHTs36v7saQwEJb/AsWTnsmnj2vis+7q3tS+TUoV9ayMAAAAAAAAc\nHMgswFqWEQkGL43mqyxu7OzTE+tm5QAAAAAAAIB7FDILUImdTWmJRDKVTk/PF4mIPN4GvygF1XBI\nQX0FAAAAAAAAWIHMAgAAAAAAAADUDhUcAQAAAAAAAKB2yCwAAAAAAAAAQO2QWQAAAAAAAACA2iGz\nAAAAAAAAAAC1Q2YBAAAAAAAAAGqHzAIAAAAAAAAA1A6ZBQAAAAAAAACoHTILAAAAAAAAAFA7ZBYA\nAAAAAAAAoHbILAAAAAAAAABA7ZBZAAAAAAAAAIDaIbMAAAAAAAAAALVDZgEAAAAAAAAAaofMAgAA\nAAAAAADUDpkFAAAAAAAAAKgdMgsAAAAAAAAAUDtkFgAAAAAAAACgdsgsAAAAAAAAAEDtkFkAAAAA\nAAAAgNohswAAAAAAAAAAtUNmAQAAAAAAAABqh8wCAAAAAAAAANQOmQUAAAAAAAAAqB0yCwAAAAAA\nAABQO2QWAAAAAAAAAKB2yCwAAAAAAAAAQO2QWQAAAAAAAACA2iGzAAAAAAAAAAC1Q2YBAAAAAAAA\nAGqHzAIAAAAAAAAA1G73Mwu5dDIeCkp+gWMZF8v7RFmNaYZpb2tPdibMMwzDCJHM5hvaRpBlGIYR\ntVytLb9jdjYZ17Lr2pozEnHDKlttO+cFAAAAAAAAcKDsZmbBzibDIne0peNC77XRydl8sfR6cX56\nfPjqxbOnjvFiOLV/N/67ykpHRP7Jjmh5CoGITE0Rjp46p20zqQIAAAAAAABwQH1pt3ZsGRHp1KVJ\nIiLyNrWpqiKLPoFjybbMbDqV1BLXJov58Tee9ecGM8kgv4Vdspw/2NZqkuDn2N1q9o6x0qnxPJF3\n9au2qeuza1c9VOcFAAAAAAAAsMouZRZMTZHdtEJjV78eV3zlt8w+vygr4VgmEZTODefnB9SwaiZl\nbvO9CmpCV3enwfvqbj0vAAAAAAAAuAfsymgISw+Hh4tEVN85lE6sTissY/2hZLKznojyA9GkuRvt\nAAAAAAAAAIBdthuZBVOLXssTkbddi2/YFYGTo9HW5kD7eUVYTj7YaZVjGIYPpS1TD0s8yzAMJ4hK\nIlu90qGVSYaDosAyDMOwnE8OJdKWvZ1CBlYmGVEkH88ul5iUlIiWtiqta2f1mCr5S+uynE9Swlq6\nrFqEnQkLDHPswiQRUf5qywMMw7ByKpeUGOaBU9eKRESTZ48yDMP4YlmqVMHRTod4hmE4xbApZ8RV\nycctH02N6euLQi6dgyi4K3KCqMR007ZSMsMwDB9GbUgAAAAAAADYHbswGsLUtUkionolLG02xEEI\npdKhikusdES60OvWJMjPjuc4jqhSsUc7mwiK54bzS78X89PDveeG9WQ7X6ywegU5XRHPDJRXPyjO\nT48OXBodiGuXM6lwWZcLOxMPShdWDkZUzE+PDkyPDiQS53U9LvNExLKCr7GBcrOzeSKi+oZGjuV8\nHHFCU6OZm56dJyLyNjTyLOvjNy6sYGeiknxpdPlEivnp0asXR68mu8fSMbGsXaamiGevzS+/kJ8d\nH7h4ZkDr7ELlBgAAAAAAANhVO99nwcrok0REHlHx135bOz9woXeWGtvO91zu6e5s64rIFWs82kZY\nPjecJ/I0nx+cWnAcxynMjFxua5gfHZjcWnP1kDIwS1TffmVsruA4juM4C1OD3c0eouLohVByJZ1h\nakHxwnCePM1dfUvrFuYm+s83e6k4/sazcsztTOALp7KmEW0iIvJ26tlsNpuOi7ysZbLZZJuHiKgp\nns5msxldFTZqW/7ahUuj1NR1ZWRqoeAU5qaGetrqiYgmL4U1c+UipCOSm1Zo6uqfcC/C3MiV9kaa\nvtq7tasAAAAAAAAAUKOd77OQS5tERCSImzyQ30xj90QmVp6cWN+h39QivbNE1HDeMOKlZ/isIIX1\nNC8LHcNb6LRgZ3WjSETNsXhIXEpecL5gTI8bR8+Ne3JG1lJ5joisVCQ8XCRq6k4bK81ieb8SN/y8\n+OTFycloWFdTylamudiyxu50eulovE+OJHVTaOmdp/FkOhcSePcihN9wL8KIES/1EmF5KZRMC6zv\n2avzVfcNAAAAAAAAcOd2vM+CbVluBoCtMIWinQnxTEVyam3eoCkc2qzPg5lKjBMRBaIRcfWqfDAW\nbthSe1mOIyLKJJKZVWUV+FDacRw7q5Xu1S0jrueJKBAJr2sW61PDzURUNKrUZqhZ89qjsf6g6CEi\nypmlIy1fhFhkzeATTo5Gm3e0OQAAAAAAAABr7fxoCJZ1b4Vt646KBtaL/s0e/ttmKktE1CiL61Zl\nfUHJu4XDsD5VaSSi4viF4w9zPkkJx5NGNreu6XY2lSkSEY12COx6wtlxIqJiNm3uZKnEer9vXaUK\njlv1kpXVs0RETcH1F4EEKdi4g80BAAAAAAAAWGfHMwssX8oI5DLr789ZXyQ1Vm6kr72+8n44oUKf\nh9UsM1ckIuL4CoUiWc63pWEJrD9mDJ5v9hIR5adHB9640HHqyaMPcD5Zjell3Rgsc2lYQbGS0rI7\nTKesP4kKF6H0irXUrtJFECpVy+SFHR2bAQAAAAAAALDWzvdZ4EWpgYgobyTXT3XICn5xFX/VYgzs\nHc5qwG55B3wwnrbmJoaudHe2NpUSHfnp4asXzxwX5IRbldEuVXlo6J5yNpBLiDs5GcNW9oXpJAEA\nAAAAAGA/7XxmgUrjC2g+GUvtbNWBNTiB9xARWdkKh7Etc1sH5/1yKKalMjmnMDcx1Nfd3uQhovzw\nOXd2CJYTvEREuUylg+2jpb4KlU83Z1aaqRMAAAAAAABgx+xCZoF84Wirh4jy11Q1aW68rm3X/syd\n9QX9RETThrH+KDnDmN3CPnKGFo+EQjFj5b6c5f2yGksaqXYvEVEmlbWJWEHyExEVDc1YfwtvZyN+\njhP8UrjCwt3F+d1SCpN6en0SIZdOTe9xewAAAAAAAOAesxuZBeKVRKKUW+jwy7FUxaqGdi6dUEWp\n9w5mReTlcMBDROPR6JreEZYRjU1uZRd2Jn7hUm/vxUjVFEipigMvh1o9RFS8Fo6sTR/k9HB8Mp+f\nnaSyioulkQxrMyelMRo7V49BCIabiYhGo/H06p1a6Vh0dKcOAwAAAAAAAFDRrmQWiARVN3oC7niC\ni88ee0CQlHAsoSX1lJ7UErGwIgnc0ZZzVyeLRORp6uyLS7XUJ+CDiWgTEc1ffVZUtdJDeyuTDEmn\nrm4tYyEokVYPEY2fk5VEeqnmpG0acVUZyBNRo6L6WPdY8VgzEdFs7ylR1Urr2rl0QhE7hotE1Ngd\nV5YLJpamcMgbcc3IZJbHUJTyFJNaXE9nMhUmodg+QY2fbyCi6UuSFF6aOzOXSYYk6Y1St42drP0A\nAAAAAAAAsMpG9Qjv1NxIT1vDhkf3NndeGZkr36Yw1uklImq8PLN2d4WJ8/VERA3dE4Wygwx2VZhZ\n0dPc2d5ARNTcN7d2P2tbOdhZ3kiPp6x5rVemyg7lLIx0N3uooobO/tUNnuopb1bTFXfpwlBb+f7b\nRwqVzqsw1lVPRNS4vl5kxUWFmb62CnNseJpa3eY2nC+/YgAAAAAAAAA7Z5f6LLh4KaKbhamhK92d\nrc2N9Uu31N76hqbWzu4rgxNzVloLSXc2MSIfTGRmRq50tTY1eImIPA3N7T1DWSPi3+KTej6oZacG\nezpLOygWiTz1jYHOnv4JMxXyle+Fk2Lp3ER/d3ugaelsPA1NrV2Xh2aymiKs2q0vnOrvCjS4q3nI\ndMc/cLKW6mlr8rrrsDs0SyUrqHp2ou98W7N7DchbughRP+cu33QKTwAAAAAAAICaMI7j7HcbYLdY\nKZl/drhIgcEFI8htvj4AAAAAAADAdu1qnwXYA7YR5BiW9ynJdXND5FJxo0hETUE/0goAAAAAAACw\nO5BZOOxYX9BPxfnpgZAS0TNLs1bYppFQpY7hIpG3LbpmoAYAAAAAAADAjsFoiMPPziZk8dxovtIy\nT6DH0CMiuiwAAAAAAADALkGfhcOP9YUMc6K/uzPQ1LBUJdNT3xho7+6fyBlIKwAAAAAAAMBuQp8F\nAAAAAAAAAKgd+iwAAAAAAAAAQO2QWQAAAAAAAACA2iGzAAAAAAAAAAC1Q2YBAAAAAAAAAGqHzAIA\nAAAAAAAA1A6ZBQAAAAAAAACoHTILAAAAAAAAAFA7ZBYAAAAAAAAAoHbILAAAAAAAAABA7ZBZAAAA\nAAAAAIDaIbMAAAAAAAAAALX70n43AA43y7Ju3LhRKBT2uyEAVFdX9/jjj3Mct98NgcMHoQwODoQy\nqBlCGRwcCGX3IGQW4I785je/EQThyJEj+90QOMSuX79+4sSJO9/P4uLib37zG3yGQQ0QyuDOIZTB\nvkMogzuHUAY1w2gIuCO3b9/GBxgcEEeOHMGDGqgNQhkcHAhlUDOEMjg4EMruQcgsAAAAAAAAAEDt\nkFkAgLuYpUtMOVYQ1Xja2nQzIyIIp0mXAAAgAElEQVRyDMPwimFv53C2oXBs0N3Gzuqakau14QAA\nK2oMZZTTVT/LMIwvnNlOLEMoA4DdsMehjCxdYvlQxqbDHsrsTERgKvEnzK3vxUpryey2LuB2oc4C\nANztmnoG4yJHtm1Z2VQieqElnRvLxES26gY5PXIp4+8ZjEr+DdbamKkpSlzNqlKN2wMArLbtUEZZ\nLXLVlK8MhUWfr8ZYhlAGADsLoWz7WF8oOSK7GZKYci4b7EuoAktErI/f6j5sIySHbV1RfLvXTmQW\nAOBux/tlSXI/iuRgUBbEJy+GtVA6JFTbwLZsj09RglLVNQAA9tr2Q5mdsz1+VZEllFADgIMCoawG\nrCC6X0ptLsmS6ZfkA/kdFaMhAOCewvpC0VbPeKlLnG0mw5LAMgzDClJYN22yMyH+2IXJ4uSFY4wQ\nzthkpROqKLAMwzAsL4WSJtGq/nVEZCVFVijvoWenpGPnJovTF44xkr55Lz8AgG3aLJSRbQS542/M\nFkfPPMz44yZCGQAcQKtDGdkZTRV5hmEYzheMGbn1oYxyRizo591YJsiRVI6IyIz7WV/cLO3UjPtY\n//Jvd3coW3/FyM7G/Awraaa7POJjeOW9/y/iOzWQz1879YCwzSEl24HMAgDcYzifJJCZNm2yjJCo\npoRIampmKhXh9TNSJE3+hDnV0+hpujxVMON+O6XK5zJiPD0zNzOhBXO9aii1+YcSK6emLjd5Gnum\nCkbw3s2wA8Au2jiU2ayk58a66j2B/rlCJswhlAHAgbQSyiiXVKRQxh8fm5qZ0kN2TJZj2dWhTDA1\nRY5aipaZmZsZS4iZS2okvel98t0byipdMWJ9Ya1bGA2H9ZydiSuXcu1a4tv/Zywz0u71tA0tmHF/\nrSN9N7WLmYVszOeWluBDa/7idiYsMAzD+GJZIiIz7q+4GuwQ29QjS8k9ziepiU0qpdiZsMCKSYuo\n9oopAAcYy7FkWzZZqWiSFC0RknyCTwolEm2WFkvbxLIsS0QsS0Q2K0f7krGgX+AFvxIJNZKZ3Uq6\ne2kXuxa870KWLjFLRePIyiQ1RB2AjWwWykqxjGVZhLK9YadkhpFT245cds7QdJOIKBvzsaLmPrw1\nNUVgGYYRyx69AtyFlkIZmclYio8mE4roE3xSWIv7s4lExi4PZcTySiypRWSfwAuiEgnWW1lzC2+5\nuzSUVb1i/qh2nrsWUhTlYq5dS8gcEbFExNLuXoJdq7NgZxKJaffH+WTciCXluypDdIhYRkg8kxQ6\nY1rUx5GZSkTPtcj2VDq8lfIdO1AxBaoo3rxx+9HHtjrrdPHGjduPbXlt2Jht2sRynG3qZnF+tOWB\nq2XLmrI5ksp+56WQmtG1SCKdzWaz6fHpYqN9EO53b9++PTExcevWrc8//3zNovvvv/8rX/nKn//5\nn9fV1e1L23aAnYkFVSOWU3cvrw47ZVvRCaFsJ20aysoKeyGUHWBWSpEjvrQSJJYXw1HOzxGRnY5F\nBkjpGwn5fcJ+t/CesL3otHjjZt1jj3p2tUX3jFIoI9s0ssXpi08yF8sWsqZN5bcsvBxS0sl4JJbJ\nZjOZ9OR8sZkOQCzbn1BW9Yr5WVaMaV3JU71m6+DG3TR2tuW7lVmw03FtdumXvB5L5WSlWulKQU3N\nBG0ijsdXyJ1nZxL6fLOW0UrXX5ZF1nc8nsiEttAV5t6umFI0f/zXXX97/Rb9752BX//syJvvRZ/a\nuY8QUzvb9cF333v96a3ssvjBq995hV77ySuN+AzbCblMepp8UZ4l26bGnhFdEVbeCywnEJkrK5ua\n7D+b9rWrQUlRwhEjdEpfWbj0WWbbVNzRJtrmR0aOl8WHqq7xz//8zwzDiKJYcem//uu/Xr9+vaWl\nZUdbtacOwPeEu8VyKPtG9/9Dl/+79OOfqsLO7Xw70QmhbGdtHsrK3kYIZYcDJ4UikvujnbO9oqpI\nNc9QdNdZ/ODNl166+stP6775X/+3f/qf/9f+hTJafP/l068/9eN31cd2rAH3spVQZhFR85WJVY+j\nWX7VPYidjUv+C6bYrshySImEk0Elu7Jw12KZlUulSZT5qvdD+xjKql2xXDYzT0QZPWsFqzd8h1u+\nS6MhrFQ8mSeiwOXLAQ9RcTTm9vKqyNTkY8eOHRMjSz1f7awWKhUi8skR3Yj4GIZhxGSOlsdYiAlj\naR2GF5VE5i6rxrGDWJYlK5Nb/n7B+iP6SDJc6oJQoezHknUVU+41t95/9/pD330nNXJ5S7f/21Is\n3rq1jZh3+9bi7Z1uwj3LzmqxUU8gJPEsLwpkGhYvuDgzEY4kV3eqM/X4MNuVMpLxSFiVRcqVvUds\naylk5TJVZkiu6Zmgnflfku+dZ1sS6gZlhm7evPnEE084q83MzFy8eHFmZuaJJ564detWDcc+GHIJ\n8fgbs8XxjodZxbCJrHRc8XMMwzCcXylNfG2nVV5QYmFZYBmG4cWwnknF3F8EOVYa8pVLRdyXGM4f\njBn36OfEcih7U/7yzu99W9EJoWwHIZQdaFVLY5rJpW+4vKgkMjbZaVU4M1qc7z3+gD9ulkZDWEnx\ngVPX8vmBUw8wT7/8n1guuFwVwzIUjlO2UCTjrlO88dOffShc/MnI8H/z3b/je99edFq8hVC2U1ZC\nGbmxLL0cy9hMLBxN5VavnYiPCz2GkYxHQorso5xV+jrNUtHOlUJV1VhWW08t66Ow2Pvss71i+KOq\nb7z9CWUbXDFTU8OZ1iuDXezVjStRVGz5su22fHcyCzk9fq1I5GkNq2ok6CWiyVhiqyNmTS3oP9s7\nOlskTz2fG7505lR8et1K4+dOndVtf7C10UPz4wPnpLCBJ1wVsf5IJGBeOs775VAkoadNizi/JLoP\nNiqW/VjecnXFlP06gX1y4131hb+dpdm3zv5l9Jdlnx8333/zpdNPnzx58unTXa+/f5OIFq+/2nry\n9OsfFIno5vDL0tNd795Yva/i9LsvPy+5G7305vVFWnz/la7+W5+O/nVr17s33H0+L5086a6gfbBI\nRDfffUF6Ifry80+flNS/6Xp59NNbf/+X337ZWNzDS3AXyRkpl67FVEm8ONkUjQd5Ij4YbWeHVSWW\nyppmOqEqlwzyCaseD7EcR/NpI52zLDOtqerVPNkWEXE+Wcjr0XgqkzG0sLrSRatsS7aYM1Kpat/U\nq7Az/0sS/3G8SET/cTWSzlZbr1AoFFdbWFh4/fXXP/7447/5m7/593//90KhsK0DHyR8KD12vsHT\n3DdnJSXWTMhSNCdrEzMzE5psRmSlNAjZnh2I59SU5SwMyeYbZ8SwGTKswtygmLkY0kwiKxVSEnY4\nNTUzM5EQMxeV8D1YzKc8lH1Qls6sJZTR4nXtpdPSyZMnT0rPv/zjDxbpxk//uiw6IZTtNoSyQy+n\nqarOR42ZmRkjKhjnlGiWFbXsYMBT3zW2sPJdi1PSC0NtXm/b0ELh/f/2fck2lkpkWelEiuTQPdeV\ntDj95tmzf3/r9i97VPXNf/vDyus3hl9VW5eizvVFIrppvCydfMEti3/jXfVp6WXj5uqd3Vko6+r7\nu64f/vL27FvfOb0qqsKWVQtl5FMiAeuqqiaMrJk1Yoram2F9q/q8syzPkpkyMjnLMo24GhouurGM\n9/vrZ7WoZmQyRkIN6fm1B60xlJH1UVh8541pIqLpN1J6ta33KZRVu2K5ZCiU9scToWAs0Wn3lnIL\nLMfms7puZMu/DK1v+Rrba3m1FMWdmLncRETkbR8pOE5hrKueiKi+c6xQWl6YON9ARNTYM1W2en3X\nWNnqnsCVqYLjOAtj3U1uS5v75xzHmeppJHftkQXHcZyFoXYvEVFD90ShSnOgMDdy5Xxbc717Ib1N\nnX1TBcdxnBm3TOrSanN9zZ6G8xOFwsT5Bk9z/4L7l/IEBheq7/oXv/jF7rd/n8z0/UVL58gnjmP/\n4mLgmR/8i+04M30dLc98772ZTxz7tyM/eK6l450Zx3Hsf/nRcyee+7t/mXnvuy2B76Z+t2Y/v/tJ\nR0tHX9Z2HDv7TmfLc69lbcfOvvZM4Hv/aDuO88nIdwOB7773W9txnN+NXAyc6Hjvd47zu590nDjx\n3I9GZn77299+Yv/ie4FnfpS19/wS7JEd/F+0blcLg4FVEc/bGOi6MrbyX7ow1dcVaPAQEdU3d14p\nhZGZy02epsszpRXam7zuO6etZ3Cws97TOrjgOM7C2OW2Rg8ReZs7+/raGxrOTxScwki719M24r6/\n+tsbiKi0n0oKc/09/+/QXNkLE//Q7IkSRYmi5LnSM1Y9qr3zzjsfr3bu3Llvfetb3/rWty5fvvzx\nxx+/88472716+21hMEClq7cmCjX3LV+lqZ5Garo84xTGOr3UWLq4hZE2Dy2ttDDU6vG2jxScub5m\nqm8fnCk4juMUpkZGpqrHsnsilDmfjHS2PNc3U2Moc2b+7rnAi+/91nacT/7l7/6ipeOd3zrOSnRC\nKDuAoazsQxyhbC8UhlqJWocKjrMwGPDUdy19M13od79fOVM9jdRwfqQUqyZGxqYWnFUrT/U0lgJe\nYaTN636RdhYG3SSD4zgLQ23e+s6Rqhf0bg5l9r/86JnA935hl4UyN2j9aOS3tvPJzHvfC7S8+N7v\nHMf5ZORioKXjnZnsOx0tz/zgHz9Zs6M7DmXOJ6nOlr/o++3eX4O9sZ+hzFkYu9Lu3rF4GgJd/aVP\n8LL7kcJEKWRRfXP75aG+Vk/pHbEw0t3a4CGi+sD5/r6At+nyzKo31+ahzCmM9f3DlbHFstb86/nG\npVBGf9N65XdV33p7F8oKE131y19/nIpXbG6wzUuNPaUANNff5qXG7omCUxjrbvYu3aFXb/ka22r5\nbtRZyCbik0RUr4RFloj8IbWh99LsfDJmxPVN6ziahjFPRN5gVPWxRMSJkUjgUsfomtW8kiJyRESc\nTxRoYJLs3L33LGrLWF4KxaVQnGwzndLjkQtnRVswk2K1sh/CfjX0oDN/+u6Hwot/d1o4QnRE+u6L\nf/rttw3zBVV46uVXO75ztkulupbXftL66NrNHjpCpvHuu8JpqeUF7f0XiKh89NeRlh/8+Meexx7z\nFBdv3KJHjtAH5qdEDxHR0WdekITHiKg4t1dneOD89Kc//eEPf7jmxeeeey4ajW5tB1zQcJwNlrM+\nNWGoiTWvCuGMHV5eIZlRkyvLgqVQw4lhPRtefllViYhISi71KyZBSZpK2YZr2Lm43HthlCj+7/1p\nRRHKH/EReep7DDWy6fDa3//+9wMDA+3t7e+999709DQRHT9+vK2tbZPNDhM7m5ktjp89ypxdec2b\nNu0QS+ThhaWPFJb1cKVhhMsXjQ9GO2PPnjk24G1qDSpKSFXvtad81dQYyuoeqft0+mf9P3vkucCJ\nl959/yWi8liGULaRfQplrD++NCgCoexA8CmRtvjZU0ffqG9uCwaVUEjZSlTipJBESiJtyWI6YbBy\nCqUXXMUP+39+qyX6kvSYh0g4/ZKqvdA/dvP06Ueli69K3/nrF87SI8/1vvz02qKMdxzK6N7tdbXr\noYw4MZRMh9ZEnLJQRqx/VciisK2WtpRiKTO2/Lrivhw07KD7wiahjGwj/D9OvXGL6JeZof+akB8q\n761AdH/rlZAeenSTt95ehDLWn8iVX8IKV4wP6tbKKryiW4r7oxhLWzHaTTufWViu3Tjf2/JAb9mC\n4rWYnpPVanUcS1uXMgTcSqUJlue9RGs6tbDc8p8W4XUjdiamxtiIFvazRMQKYjCc9FP2WFTL2iJR\n5bIfVXst3uOKt8xb9GGPfLJn+aWHHrtVJMHjeer55xv637olvXDiUSIqXn+ltevnnxIRPfRM7/Cr\nP3rz1ltv90fP/u2ndUdbOqKvvnSivMTq7bmfvx7VRmdvP9Lwp396ZOXjqu7IY9WLXt0rTp8+TUTl\nH2Pb+QA70HIfJd2M6fx0h5i0EpymjG/7u/hrr73261//enp6+ubNm0T0+OOPnz17dpPNDh2bvG39\nRlxcFadYytCm80dxspZdiKR0LZlMxc62RJN92dQOVvw6tGoOZc+/+dqt1zXt+/09t+saAt99NfpC\nY1ksQyjbAELZBg55KLNNI5UVZNkdfmKTp+x815eTE1TdlDMpPakn9WhHb1wfyiblTY/BiWGZgom0\nSQmDDaYwZ07J7Vs3Pr39y++fOrny0lHzVpEe9Rw50RF45Od/Xyc9/40jRLRodJ36/nV3hY53fvJd\nhLJa3cWhzLZ03a0nkO999n9Qv8RGr207rXCYQ9nO2PHMgmXEk/NVlo3Gk6a68YB9lnUniMiZObuU\nNLBMc91YmbtvPtLdY6UHEjFVXUkf2HbOJo5jieVEgeJpiw+5H1I5PRTSxbim7GNrD7aHHnuk7sTL\nw72Sm/8u3rixeOQxDxHdeLfn7VsnAo8Y0Tc/+PErTx35xve0n7xY2ubobfPDuqcv9r4QpUVz+M2X\n/u9X3n7mve8u77P4wesvvTWnvjOiNh4huvnuC7K2vOwun2dri8o/xu6aDzAiEv6TPpgTz/xqlojm\np8+dWXp9i9/FiejBBx/82te+9utf/9r9AHvwwQfPnj374IMP7l6b91LpSzpxgr8+b2RYQRGIqFST\nKJiIb/5dnEw9Fs8FYyE1JqsxKxXkn9Uyliqg40KNocyzOHfrkedf1V7yFG9+8PO/femHr/xUevf5\npX0ilG0GoayaQx7KzGTojKZOZSM+Isu0yJ0zkqhSaUw7q0U1NhRTQv5gKBbTxKNhLWPLfnfhBgfh\nxJDMKomEneaCOhILS+qOPPLQQ8+8PvzqCbfQ9uKNG8VHHvMQFaf7oz+ra2mhd3/Y/3yfKhxp+cFP\nfuLWzKp76OjtuQ8Rymp3t4Yylo+l/osp/s9reSLK93ZcW1qwtbQCHfpQtjN2uoJjLhXX80TU2DOx\nUFgx0xcgIpqMxzer4yhIUj0RFa9FE2mLyDb1SHR8hxt5L2H94VgbDTzrl8NxTdf1ZDwkS5fMQCTs\nZ7dQKAXKeYTnnjn6weuvD5tFosUPtK7vfOeH798kuvHuK69PS6++9urrL9b97PtvXl8kz6PCkkc9\nt34a7Xrpres3iY488tiRurqHHvF4PJ66uttzpnmzeHvx1u26I48cOUJUvDH81tsf0u3bxbUVgeo8\ntDj34dzivVop6PTp0z/4wQ/upg8wIiLig99JD/4fDeUvbf27uOuv/uqvnn76affns2fP/smf/MnO\nNnHfsCzHFk09ZWRsMRxumr4UVLW0aWb0cDB01eR9W8oOsLaRCCsRPZvLmRldSxcbxa1teLerMZQV\nTe37Xa/0f7BInkePPlLnqTtypG4lOi0ilG0OoayawxzKBEmqn46FIlpSi6nRSY8Y9LHVSmOyrG1c\nCqkxI5vLmelkMuvxSQLr1tfM6Km0WfU7MiuGZbp2aZgNhpBYWOb5xguSx3j9rfdvFIluvv+6+u0X\n3vplkYrTb7/y9u3nX33t1VefW3z75beni+R5bCmUPfYo3XkoI4+HPjXNG/dqLLtLQxnrO5lM/5c2\nb/lrW04ruA5zKNsZO5xZMPX4cJGImkKKn2NXCMFwq4eIZrXYJrW5WTESa/UQ0fjFlocZ5oFjZ65u\ns4YnrMYrycxgtz+XjJw9c+ZMR9Rgg31pPSQQEQmqblwRzeipJ489KSdI6TfiGLy3AU/jS2++Ks29\n9cI3T5481fXTR15889XWR2+8+8rrZkv0e08f8Qgdr3Y89PevvH591Qg84cVXX37q/ZflkydPnvr+\n2FMXX+8QiI5Kzwjm3/7l2bdufOPli9LNnm+ffFr69vdHhRf/4mjRnFszmZFHeE46OvbD76wv1X7v\nOH369N31AeZa9Y18W9/Fv/SlUo8z92Ps9OnTx48fL1/h/vt3flauPSQEQ600cFYOpyxfJDXS48uE\nW44dO67ofHgoFfFt6SLxiqaH+ZT65NGjx8RoLtifivp2u92HQ22hzPPUy6+9eOTdrlMnT5789g/n\nnnn11dOPrkSnnz+GULYVCGVrHP5QxooxvUfKxc92nI1m/d16IsgREflC2mU5F332+PFgwg7H292L\nI4SSgyol5CePHj0mJyik6yGBiPWH1KbMpTNKPFv1TpX1h4L11BBUtxb+7hGeExd7L/7pBz/89jdP\nnpRfud54sffiCZp++5Wrnz4XffEpz5GnXoo+8+nVV96eLr+udx7K6Mg3/qKFfvbX3/7+2D1bceEu\nDWWrkwvbSSsc3lC23PJqttVyxtm4jsb2ZGO+Jy9OEzVdnlk7TaGlB/kz14rkaR3M6ULUd/yNWWrs\nmcpGfGTG/ccuTFJ915iZEFkisjNaKBS5Oj5P3qb2aFwx5DPXihQYXDCCXOkQDecnsnE/S0Rmwn/s\n3CTVd46ZGu6K99z169dPnDix362Aw20H/xcdzv+QOV0PRqygpmzjEd8//MM/ENETTzxRcelHH31E\nRP/5P//nHWrh3e9w/s+BgwWhDKFsF1m6LET86WxswwTp4fyfAwfLPR/KbPMXajBNYUVTt9xb4fCG\nsp1t+c7WWfBFsk6k8iIuqNsrOYy46cSXfxHCGWelxqeZjMTT5FPiYylF5IjsbFwrElG9OzfzukMI\noYwT2tGzAADYS3wwmA5uc5unnnrqgw8++Kd/+qcvvvhizaL777+f47g/+7M/26n2AQBsAULZLsml\nU+mMFjaEcAL9rgB2HSucTGZObr5eucMbyna25bsx6+SdYSmTeGO4SESRSKPA2ub0bJGIGtUQOoAB\nALi+8pWvnDx58rPPPqu49P7773/oIRSxBoCDDqFsc7aphc702q2XU+5IVgA4cA5vKNvZlh+8zAKv\nJNN2JBLXjcnZ6Wki8jQ0B0OxeAQlawAASurq6urqUKcaAA43hLLNsWLCdBL73QoA2MDhDWU72/KD\nl1kg4vxqIqUihgIAAAAAAAAcfDs96yQAAAAAAAAA3EuQWQAAAAAAAACA2u1+ZsFKSgzDMIycsnf9\nWEREZBtBlmEYRtRye3NAAAAAAAAAgHsX+iwAAAAAAAAAQO2QWQAAAAAAAACA2u1GZsEy4oqfZxiG\n4fxK3LDKR0FYSZFhGMYXToQlnmEYXopniYistBaW/TzLMAzDCZIaN5aHMli6xDAMI4T1ZFj2cQzD\nsLyoapmV3doZTRUFlmEYzidHdHNdi3JGPCT5OIZhGIbzSaFE2iIisg2FYxiGlVMWERGZcT9TPo4i\np4kMwzB8KG3nSu2OpJIRtxEM5w/GDGvnL9/hUldXt7i4uN+tACAiWlxcfOCBB/a7FXAoIZTBwYFQ\nBjVDKIODA6HsHsQ4jrOjO7QzEf/xS9NERJ76BnZ+Nl9a0DpUSMmslRQf7hhfWb2+a8xM+AzV/+zV\n2dU78rb1ZXRVILJ06eEzo+6LDc0BwcqMTueJPIErWSMkEJkJyXdutLjugM19c2mVJzK1oP/stfzq\nvTd0DqU1mU0F+WevFb3tI7mkxOaS0tGOUSLytA3ldJmzdJk/M1z0do7kNJ8uHi2129vUJgtm6tpk\nnsjT2m+mFH4Hr99hY1nWjRs3CoXCfjcEgOrq6h5//HGO4/a7IXD4IJTBwYFQBjVDKIODA6HsXuTs\nrIXBVg8Rkbe9f8ZxHGduqLPBPVDrUMFxnIX+ZvfXpp6JguMszBWcwlhXvftS99Cc4zgLE1davURE\nntb+OcdxFgYD7ibNl6cKjuM4C0Od9URE3s6RglMY63RXDlyZKjiOszDW3VhavW/OcZyFobbS8stj\nC47jzI10N3tKWy84C0OtHiKq7xorOAtDbZ7SRSn/3ds+UnCcuVK7vW2Dc47jOIWJ8w20vBQAAAAA\nAADgXrXDoyHsbCpTJKIGNRIUiIh4ORJqrLBiU0jxs0Qcz9oZTZ8novquRFTmiYjzhxLRJiIqDmvp\nstEGzWHFxxIRcVI4WE9EeSNl2qaRzhORNxhVfSwRcWI40lzWoHQilSeixmgiLHJExEvRRKiBiPK6\nlrU5MSR5iOZTumll9XSRyNvoJZo3DNPKJI0ikVdW/ezK/vyqxBMRsYIoEBHlrT2a8QIAAAAAAADg\nQNrpOgt2ziIi4nzc0u04L1QaLMALy11jLHcT3s8v38HzPt5DRJTLlWUWVnrTsKy7tZ2zbDtnExFx\nK/vjBN6zvJFl5YqlPS69xPJ+nogob+Zs4kRVJKLZlJ7WjXmixlBUqSea1g0jaeSJPJIqlnXi8XDL\n51WWbgAAAAAAAAC4Z+10ZoHjOSIiy1x+lm9ZFaocelh2JY3gbpLL5JYf/+eyuSIReUqLXGZ2qaij\nnXN/5HiO4wSWiMha2di2rGJZe0o5iuWNyc5lckREXoFniXhJbSaiyURUmyZqkBVJkbxE47FocnZd\nYgEAAAAAAAAAVtvhzAIrBCUvEc0mS3M32OlEfHLjTXyK7CWi+d5Q1MgRkZVJhKKTROSRQuW39dPR\nsJa1ieysFk3miaheDArES1I9EeX1uDvBg51NxkbL9u5XJQ8RTUdD8bRF7jQRiVkiqg+6wxxKqYXZ\n8Xkirxj08X7FT0Szk3kijxSSkFgAAAAAAAAAqG7H+yxI0WgzEc2+0SKIsuQXWtx5IjbASjGtvZ6I\nJi+dOsowzMPHzw3nierbNC24aiBF/trZJx9g2QeePDdaJPK0xqIiS6w/Gm/zEuUHzgh+SRZ9T54b\nL9+ICybirR6i4uiFlocZhjl66uJ4kaihS4tLbrcJQVaaSiv7FT9LnH/5dxE9FgAAAAAAAAA2tNOZ\nBWJ94dTElc7mepofH87YYvfgYFfDJtvwwWR27Mr51qZ6d9aGhkDn5ZGMvmY2x0D/0OW2RrZI5GkI\ndJWmpCQiXkmm+7sCDZ785KiRE873DfU0lW8nhHRz5HJnoNFLRETextauvolMQl7OGQiy4haZbFL8\nHBEJkuz+HiiVawQAAAAAAACAKhjHcfa7DZuwdOnhM6NErUOFlIy6iQAAAAAAAAAHyY73WQAAAAAA\nAACAewgyCwAAAAAAAABQu1Q2Yb8AACAASURBVEMwGgIAAAAAAAAADiz0WQAAAAAAAACA2iGzAAAA\nAAAAAAC1Q2YBAAAAAAAAAGqHzAIAAAAAAAAA1A6ZBQAAAAAAAACoHTILAAAAAAAAAFA7ZBYAAAAA\nAAAAoHbILAAAAAAAAABA7b603w0AANg2x3H2uwmwixiG2e8mwKGBaLA38K4EAICNIbMAAIeJexdR\n/i/cTcrvXnAnAxtDNNgbeFcCAMBWILMAAIeG4ziO43zxxRfuD4TbibuLe9PCMAzDMPfddx/hNgaq\nQzTYG3hXAgDAFiGzAACHg3v/8Nlnn928efNXv/rV4uLinh26oaFhz44FdXV1jz/++IMPPvilL32J\ncBsDlSxHg9///vc3btwoFAr73aJazM7O7ncTtuqBBx5oamp69NFH8a4EAIBqkFkAgEPj888//+yz\nzyYnJ7/+9a9/+ctf3puDjo2NnThxYm+O5bp+/foeH/FANWBxcfE3v/mNIAgMw7i3MQDrudHA/a9y\n5MiR/W5OLWZnZ1taWva7FVvyySef/OpXv/rmN7+JdyUAAFSDuSEA4BBY7vl8+/btQqGwZ2kF2HtH\njhwpFAq3b98u7+gOsKw8Gty+ffuQphUOly9/+cuLi4t4VwIAwAaQeIba3b59+9/+7d8+//zzikvv\nu+8+QRAefPDBPW4V3MW++OKLP/zhD/vdCtgLf/jDHzwez363Ag4uRIO9h3clAABsAH0WoHYfffQR\nwzB1Vdx3332HaBApHHwo0nZPwZ/7ILENhWMYIZyxa96FpUssH9raDuysrhm5jdbAf499gcsOAAAb\nQGYBavfFF1+4laIruu+++6p1ZwCoDXrh3jvwtz5ArHQiZdd7Z5OJO0gtbJ2pKUps0yPhf8jewzUH\nAIANILMAAAAAVVnpeMoWo5Hm+WQ8vRepBQAAADh8kFkAgMPBWbLfDYG9gD/3gWGlE6m8X5UVtSmv\nxw2r9HLu/2fv7uOaONOF8V+pkpkKyFhciVSXUbcSn5WSHthjYD9nGX+7K7ErJS2uBj3nOGy3JW7X\nGo+2Rj2fj/E5q8Sqa6xtDeoeQ3+nEru6jbWtge4eh32eStiWGhb3EOhWhlYhWChDAzoTqjx/JCDv\nIoYX9fr+0cq8XjOZt/ua+77HpiKVBqNWSVEUpVDprG4BAEB0MiTNGnUqBUWRlFJr7p4BAABEt4GW\nKc2err95i4pUWfgeEziZOWsrpOoNc2SMQwAQXBadSiGTyWSUUmvuaiOBh8e4wN2OEEJoCJhZQAgh\nhNAgBM7ilBaxDE1r2HjJaXHe6gBBqj7gVFp5QfA6Wa+R0TsDSQSprsBOmdyCILiNYNFobfytpZFK\nVhdXbXMEUwu8w+ZRslq6xwQaZ9X+RCI+r+o6p6V4q5bZ4FaZS6uqSq0a3rRYY/ZgrQmEEEJoIgp5\nZsFrU8tkMpmM0jl6vKcQHExgIDfujwSCnZHJZDJSO/6hIDSWPGalrAeKDVZrFjijhiZlMhmlYm0D\nP7QLLotWSQVeGlpc3We26LGxKkomk5G0xugcsr+1u9DZzyitCE0o+LtPEAJn5aREVkMD0Bo2Xirq\nmVqIWWM1MRQAqdJbdJTDHBxFpFvMWgUASbMWI+2yOPhbyyNVrD6+K7XgcVg9Sn3PxAIAkCQZ/K/o\ntppL6DyHjVUrlWqdxbH/8Yr9eReu41ExTvCsRAghNIRRq7PQekJv6F0HEiE0jgSe46MyD509F+Q0\nKkkA4G1ajVXUO6uqSi1KLocx9E+5CQ69xshrbBeqSq0Mb9SwDi8AgOgyaHI4lfVC1QWHTrRotVZ+\nrLcJPbBEt5HumSiTKVQag4O/bb5YdFs0CplMRmrsd3R/4i0qUhmssy+4bPaxe2/u9/vLyso++OCD\nM/188MEHLpfL7/eP5vq9TkuRFM9qaAAApZaNh7JbiQKCZmgy8E9SwSiAd3nFwGAlFZxEoVQC7+r1\nyyi1bDC14HFYeZU+sOyBiF6XN0ql7h6vUDPfverxTOxHC199kxT6pfobG9tCv1QAf0volstbVbKB\n3NE3RQS33TaMycf7vLjPffHFF+fPn3c6nU6n8/z5819++eXork/ktBTV/4Wf6DYoSMYuAHhtalJp\n9Aw4M0JoApk8eotuLGBNeo9FTY7eKkaC0tpra0UAUjHBAkNoVHndPCiNWg2j6DnUYzeX0MYqI6ME\nUNpsHK0xO82Mluo5o8PsIFnOrFWRoLLY3E61ycFr9RRnsgmZDotORQGYbRan0mx1s2bVRDqvGv/8\nyvYjlR3y8FlPvbwtc64cAC6f3vRKy6/2snPl4x0cumsxK4/Z9DQpiqLoddvNW55W8YUeh04x+Bwi\nZzQWKdYX2nUqFTX4ZEMROb3GIDp0OuXI5u9D8DpdoNYoBo3m008/lclkarV6wLGfffZZeXl5SkpK\nSIIZgNdpLQGADXNkG24NtNg9emO/7RdhoAK1CCJAn6uCUqdPNFkdHi3YeJWxT42F2xiVlE7TmVVP\nFWadPJ4V22Ogj2PT9zHHz7D0HSzJd35jxr6E46fY2NtPO3x+z+tr98C2Qy9EhPi61fLH7WudS4/u\n/VFEKJam0NrOKQUAEHkbm+NQH7IblCQAkLRyuPcF0W3WspzZy97uTjLO58X96+bNm263+8aNGwqF\nYu7cuQDQ3t5eX1/f1NSUmJg4xOfARhel0pv09BDXdoTQxDCq14i6A6xpoNSz6GIpmUwmU1m9XQP0\nCplMJgt04yS6DYF3SjaHWauiZDKZjFJpLS6vx27QKEmZTEbSan2Pd0aix6ZnlJQsMIa91cGUyGlJ\nmUymYK1mDS2TySiVweV16ObMmTNHqe/u4VpwWbtml1E0w1pdE/uFCEIjIPIuL6VU9im/CG5ndYya\noQN/kSqtEtzO3q9jRY/DDSpt8MmQVGrUpMfpEUXe6ZaU2q7imULNKLyce0KdOv5LJwuqk3b87nd7\nV7UXHvm0DQBa/nzk7KznlmNa4f5A0WoNwzAajUbLGu2ud1bCaYNxyHZuoiBCHMNqGXXfU2FcCH83\nqPOXLs1XG/4+6KnT1NT0ve99r08V9Nra2i1bttTW1n7ve99rbm4evQi9TmsJxG8+e6Eq6MLZzfFQ\nbQ2+VZY83ZcLwe30EMpAFQaJ774WiB6nR7pVsyGI1uqVvN1isXnVes0gpQVRBCAVakWr28V3h+Pi\nrk7tdxm7e5FJG3dtTIkOxaJ8zaPxqryjpX1U3sD721tCuFxSoWIYhmEYDaOigKTVgb8YNX0HCedh\npo4GPC+6jfZ5cR+7cOHCjRs35s6dGxUVFRYWFhYWRlHU9773Pb/fX1FRMW5hkSrWaGAmwlUbITSk\n0cosEPGJUQBQvZu1jLTWqFSU87SZV2gyF0VBa8XpDSkzF2RbvbQ2PZGQ6srys3UWDwCA6LEwqpz8\nkupWIiYuRqorK9iwWNW7IUZjwdotRXUAALSmb+Zc4AzqlLX5JdWtEBUTBa11JQVrUxjsIgrdb3i3\np1XkzRqakslImglWHPfyXqCUVNdZQVIKUuB7l3EE3itRdPckQNEUeL0CeD0CoaCp7jmVFAgTq5ay\nXB4eBu3tfvC3+0EOAG2VBcdh+ZqEkLye60s6vy41Y6spNysjKyMjI3cf1wQATdxGJnlVoP+6+lNs\nKrORawrtapvOH1yXkZqcnJyakbvvfFMwEibDtGtdVkY6k8qwu4rO2zauykhPTU1nD1b6Qrt6AIk/\nY2LTU5OTk1OzNh6v9AHwtqz03F1b2Yx0JjU1Y+Px82d2Bf6dtfVMfahX3wOlNRnjG53BMq/gsui6\nEtO6QOcgvEU5LbtEqjvwxMOkjhOBdxg1XTnlrg5ERLeBJtVdLSVu1cUNEj1G5eITra2nFz98RzW8\nByL83aB+60A1AED1AadjsH5Krl+/LvXW0tKyb9++S5cu/cd//Mfly5evX79+V3EMhXdYyyDNaNCo\nlEEqjcGURtTZrIGtbz3BsjaXx8NZWfYEqTMGH/2lIgNr4Ty8y65nDwiZpn7VEmiNXlWRn8+rBkws\nkBQpeTmn0y2o9MZFvEmnt7s8vNth0Bn+Ol9vGEHFKKnSxDAbyyUAgPrjWcnJuZwPAKDpDMuwZ5p8\n5fu27ittBgBf9fGNWanJycnp7D6uO0ngK7cFTrN01rSLZbKO1wMA+CptG7OY5OTk5HR2V1G9BMDb\ncndc9Ne9tjzDVBm6FhGNf9y+s6xdcK5/9jeuNmgpt23X6zIyMjIynnl2+0lPGwC0nH1R96LlN/pn\nMnRb/tgILa4jm/4lMP711/XPbPpzGwBAS7lt+7PPZGRkPPPsliPlLQB+z+tbj17pqN7zyxdtl0a1\n6YDI2w0MHXgv1HXz4W0MKVMFH7Z4i5okGdvHVvUTB+qksuxp5O165ep/XvQxmufFfau2tvbatWuP\nPvqoJEllZWVvvvnm4cOH//KXv0iSNHv27NbW1tra2sHmHfyjMD3e/skUPbpz8joDfTyRtMboFLp/\n7+5+nRSMwc4HB3a3hvDaVKTKaGHVCllgku5Lp+ixBYaSSp3ZzFB3fYlGCI3AaGUWKMZsXRkFABVb\n2J7dQt+RxP0ut9PucNrSCQAAiM9zu5x2p9OWBgBQ4XB7AQSnwVgmAcRvLvV6eW/Ludw4gLoDht4r\njcs919LZed1j0/TJePI2w4FqAFi0/8J1wSu0lK6PAwCP3YqpBXRfEb0uHgCUepuz9JxVI1ifZowu\nEUAQgbyVNQCSJCVR7H3wi2KwR7XgFFRwElEiezzgB+ecUOfNrMzn/qnl9fXPbv/T3F/+6h/kl51H\nLv/kuZ9MG7X1+RvO+57JP3PqzMm9C8tNm07Vw3TGZFpSf3jrcb76+KZ9DUt2mZjpoVwjb3tx03vy\n54+f++SjkxtncptePM4DAEBbA9eWlX+mqOhYRvMftu3gs149U3Tu2LLmwn0hzmxIlfty8yoTtp/8\n6JNz+RkNr23aVykB+JvLL87fcrKIe3d7bOlvXzxFmwL/5l47HMLyVn+0Skk0ejwCAG/VMCavxnah\ntvaCTcMbNTqbF2iDu6FwERG3vrRFtDO8WfO0lTQ4qhpqq86ZaG4Da719I15SaXafWxlFZJ5t4S13\nUMAVXbY/Wl092rP3SCsATEo/pBu0DUdHR0efItNvf/vbxsbGmzdvMgwzderUjo6OYcdxh3intYxI\nN2h7xabQGLVRjXarSwSAmEwNWJgFCzRmQVvIWYOJBSIqTUvZtQvmpBg86kOcTdt/42itfhEQaj0z\n0HYr1IaVVNGGpaydp/VOzqx06VMWzHmC5RSm/+ZG1OKKoJckwcUiXgJoqixuAKgu5iUAX/l7fGxG\nUvdJ6Tufl/tac0b+uU8+OpbtL20IDG0q2rrRBuyxc5+cy8/yFV8M/I5NZzblHm7LOnjuk4+c2xPK\nd+S+Vi3RbP72hfK4X588Y0og7jzKQcT8ZMe2ReGU5sDv/l0NLsseJyw/cOrMmTNvvhxfXfCGqwUA\nANprK6exrx49YFDD6e2v/HnGc0dPnXnzpX+4/KcrgcPj8sntO/8Ulv1q4ZlTh56Lce3cfvqyXPnC\nrl8+Ghb/0tFXR7V5mMDp1ayTNjqraqucRoUjcPOhWZtlkcekt/Eib2WNbrXVxv5A7ypdH0csOtYg\n2Jmhf+b+50Ufo3he3L8+//zzyMhISZI+/vjj06dPezwenucdDsfHH38sSVJUVNTnn38+xOwDfhRG\ndBmYHCdtdNY21F54hyXtOazdCwC8RbvUImjtF6pcFpXLUiIFnh68dh2zwcNYS6su2DS89XRj/1uG\nVGGxK0yu650tpaxwgDU4BQAQOQOT41SYzlVVOY1g3VLSOgr7ByF0W6PXzwKltVgzndmnW8sMepua\nHcES4phAJW1SQVMAjRCn0dAkAFAKRRRAK4iCCKLH7pIAIJ7VKkSv1wu0VhOTn99YYXd5Dd3vU+O0\nejUFAAoKoNdLVa/LUQEAkGYMNOqj1GZ3i5mi+t7R/H5/TU2NJI3mQ/E9iCBu/+xUXl4+BpHcWwiC\nmD9/vlw+llXyScbubYHgoa1WO0TXHKPFZTZRJPTMBoiiSJBk7+O/9ySiKAQmISligDknUi8LANOS\n2B1JbODfLX/c/sf4NXn+07/Rv1sLM9TPvfxcUoiTDPKZGc8z0wGAiM/OpgttXH3Wqlhmyy5m+Yur\nciB6Wf7G1MiQrpA/c6qGfv7VDDoSIJL59fPznzrM8auyAeQRTHbKdACITYmVF8dlJ00HgNikWCjm\n2wBCl9yQas6U+JK2P58aSwAksK8eS2mLJaAcYH72sngCgIhfGC2XsjNoAoCInx/tu+jzA4SuyNUX\nSZIgiqLotpjdKgtv1ioAgDbbTI4FFjvPGmgSAl8dABCB1h+y6wIlW4XeyBi1Lq8I9O3XAQAk3MmR\nLnKGo4sPNANcdJ/9pVUT0S+toHfop99medeuXTtx4sTKlSvffffd6upqAHjiiScyMzOHH8VI0Hp3\np77fUEpjFzoBwGsDglIa7A6rvf+crNVmtfWeTcuJ2lt/Ch4hijEP0hSC1tl5XddS1Qa72xD8Y8Qf\nI4hMyEiQDpY2QGx9ccP8Z1IaSrkGia4vro5etj0WIHCbkipPccDkZydEAkSm/9uvCzkbADSVFpZH\ns8ez4iMBIjM2rissOQ4A9SWF5dHZJ1clRAJEpj6/MeXMjsKaX5vokYU3bBH/YDhwICwmRu5va2yB\naeFQfbkdIBwAZvxTpnpWDMDlk2cvz12z40cxcgBl5nNL311fDQCX/3i2dtaqHT+ZFQEQoV6TPffZ\nQtflzOVhoxwuAIDgNNlBx1n1ahJAqbdanbTO7DI7GFpvM1sXGHU6q9ultnoC/VmQAAAT7U7ywGht\nbf3ud78LAJWVlT2Hf/bZZ48//viUKVMuXbo01PxdH4UBmrUYzUqLg2cNFKk2HmJZVk0BgNZoUFkM\nbq8IgtVaFm+qsmiVACqz3eKcYwAI9BhL5ZZadGoSwGi3cYqn+7+viNKaTRqaBFDr2cTdVrcXNOA0\n28SVDpueoQCUNruLS3GGbr8ghIZtFHtwBIXOarE6c0qkIoOBHPjx4VZXCQO86iQVwZsL2ffvW/cc\nUfC2AgBUb0mZs6XnzF63ALquzAKlGqS7RtErAAAQVI/q4AO146qpqZk1axY14LgH2MWLF287TVJS\n0hhEcm8RBKGmpmbhwoVjutZeh7ZCqYxq9XpFhVJBCB6vCIF2sKLgFak+jZgpBR0leG9V1RZ4ASgF\nBRStABcvACgCc3oE6DvrBNJWfuRk2Kq8Ga6dr3Swrx6a9acXtxxR/+7lhJBmd+SRdHSw1BwZHQlt\nvE8CICKTstOii/8gZ7IWhjavAFIz3ww1eZrkvO5BEbHNEgBAZGRgy+QgB3kwJjmEPpfla/BFzozu\nWu70+PjpADyAPDKya0cAdCcgQ7z5/Ymi0AokRYked51UljNTlnNrXJSL75U3IJU6PcnZzQaXm/d4\nXCUVEjFKxXRRcDgCLb5b85cehUKGNJ2+47TC3r17v/jii+rq6qamJgCYPXt2Tk7O0HNNWIKH41xO\ni1XQOMaw3XTkwmXxzQXlfFJlTfSSvVmlxYfLG1LLL0Yz62IBgjV5fM0N/sgl3cdubODIbuObIXJm\nVycM0TOjIwBA8vHN0FCwPLmgew3ypGb/MFJTd8nf+H+OWE6WXfFTj86dG9HePTwsPCYcAMDfdlmQ\nU4F/A8C0OeFh1QD+lsstUPvGv2a80T1D+IwWP8wY7XABRN7FS40lKQ8X9BiY6PECQ4NSb8uzPrGl\nYtGh2jvqJxONkttm7m7evDnE2AE/CsOoWD3ptJsNnNvjcbvLqqUYlQii180Tyu7PvihU6hjSCyDy\nHA9KQ1e7ZUrJ0ES/DAFB0V3P9CRFEqIAIPKcR6KNXR0/kUqtsv98CKExMJqZBQAFa7NY56wtay05\n3adeEgnQ2iOdIAgDVaLum7UeIItNUhQBIEFc7jGLtmf6gKTpIWcMjgh0yC15uwtIXs7m4CmlWs0o\neyRDJEnCtMKAWluHqnH28MMPj1kk9xCKooauUjgKPGaV2qbh3MGaxF63pzVGrSQpUkMLNpcX1DQA\niG6HB1SG3p2RkEqNCkxOj6hRkQCix+kSlUYlSVIaFWlzugVWQwGA18V5FZqRdrc/2vyXThZcXfry\nj8JbLC3hCbOmyWfEz4U/X26BhJiQrqaZb5ZgOgEAzXw9RDORBIBUXWh6T56SAqd2FGYdY+lQvrCP\niI2WJ20symcCZXapvt4XGUvA+RCu4jYioyN9Dc3BeggSf+rweZpNHbvV9ybyTg/EaZUkeESIyizk\nLOoeBySpIHv2Die6DKqUA2L6Gh2j0euNejPD9lxU1/8H/t7BHSEVZufPePX7p1sBoDU/+3TXiOGl\nFQBgypQps2bN+uKLLwJphSlTpuTk5EyZMuVuIxsnosuky3Epc+32Me2QbXrSMjrvFHfGJ0/KphdG\nxtafOnWqWZ66ZuatSSKjZ8p9Nc0S0AQA+JoC/SxE0NFQ3NAcTI0FjncgImdGyOOeP3kq+DkJqam+\nmYiNhJB3ZNKb33PUVHB1+YHC5XMjAFrOvvivJ7vHBeofyCNmUX5XYzsE0qbtlwPJh/CYaWELn3sz\nTx3oZcbf2NgeHiOHxtENN0AUIT7vnEPXox9HkqIBAEDwuLwA4HG6vNjx/wQwderU9vZ2iqISEhJ6\nfmnyscceA4Br165FRUUNc1HdH4URnKxyqV2RyWoYnVZv8hpTTANMPkg1lYEHD3rNFIcxDUJoVI32\n92NovW1/Yr+hwS8+8k6XFwBE3m7hRvj0Rip1agAAr0dUMhqNhqF5i9FotnZ/brtruoFnV6i1iQAA\nZWYz5wUAgTOxOWtzntYYe3dyTxCEIEyozukmigE/Xt1tvKOboARBGE5DkpBSanV0tUVvdLh5j8uu\n1xo9i4xGFQlKnVHNG3VGh9vjsrFsAQT7YBPdNqMx0NGSQmvUCgd0BrvL47IbWIugMWlpAIox6qgT\nrN7KedxOI2vwqIz6CfXJyVsa/3Tk0/hfLp0F8mlzwtsvNbZBy+WrMGNG+O1nvSP+5lO/PVXtAx9/\nZt/hhvlZKbEgVR/eetiftWvvrl3LfIc3Hq4OZYsqgl62ZGblvn1FvATgq7TlLl++43yIe4i8TQTz\ns9Iiy/cdPt8kga/6lGnfezVj2sinF4Ez2+ritKySJGlVTKvHTdJBwJkMlt7f/BFdZmv1omMup81s\n1OsYheCVgo+lJEiit+t7B7wnFEUvUplsd/0ss9cj+bDTCgG/+MUvUlODOZucnJxAjeVxpmDdosfc\n7+OTpIYTBdsQ35tWsJzYKbqtA/S+MKqmJy2JrTn8h+Z4hiamJyyJvlhY7E9Z0jPXRySsWkJw+w6X\nN4FUz7322kW/HwCmp2QlNNsOnuF9IPFFvz1c4wcAiGVWzW84uO9UtQ9A4s9sWv7UpuJ6ACAIaOP5\nel9o206GyaH96qWrbe3tLf6wcCo8AsDf+OeC47Xg7/D37nxxlnrprEuFBa5GP7RdOnvk3asdACCf\n9eN/mlF95OifL/sB2jwnt65da/m0BUAul3e0XLrc0jbwakOBVKhp4DlBETwbKd5qMNp5EQAEh0Hv\npPPeyaNP6w2O4AkaqD43evGgIcyaNevrr78GgMcff/zJJ5987LHHZs+e/eSTTz7++OMA0NTUNGvW\nrCFmH+ijMILTXCBkOjiH1WxgtWqSD1SAJGmGljzdn30R3K46MTgYenxxxsN5hnUmkTSjJHiuq/9p\nkXcObz6EUKiNbp0FAACl3rbZ+sTu6h6DSKWWidld0CgVZdMKo0Koq4MYgJH1tqLQWjYnPrG7omTt\nAsocT4vV1Y0AIGrMNDmcmxPNWnIti/Prqg8snnmge2iiydT7Xcpjjz322Wefjfl75omOIIjbpg+w\nn4X+CIIIvAEYS0qj86zAGnRPHJAgKnGlmbMaaAAAmrU7PSyre2K3FJW48pAz2Aeb4Lbu3k2qjayS\nBEpjde5nWX1KfisRn2lyBvtjI9UW5zFRZ1i8oBXi0tY7HHp6jLdpeNpcR06Hr9qrlANAzI9/9WPX\nnvXPQnj8mm1Jof5GhDwiIbrkxcW/bZbPTMneuzcrVqo+uLWgbVn+8wlEJKwzLVmeu/XwkuPr4kOV\nViLi1x3c5d+xb9UPt/lBHpf2/EFT+nSQakK0+OFEkLAxf0ve1q2aH7ZBxPxlW17dkkA0jNkpL/Cc\nw8mTAKLAu+zm3adh5TtGFQmgNhgS87doWaXNxJBuC6svAJOxbysfClxOzqPVUF6XRW+oAIkCEUha\nrSR2W0w2tUElOE1GF4C6z1pJimzlHA5OoWX6fmtocKQy2e4CXbDmwp2kFSZPDt6mf/GLXwBAdHT0\nE0880XOCSZMmDTeKB1xs6pLo39bELplPAMxMSoiA5qSM+b1OxsikLflbdmzdqCloi5i/ZMnCiHIA\ngOkZO/fy23YsX7wDohcuWRgNPAEAsVl7D/p27MpZnOcH+cykrFdfzYoFgIXPpMC2F59q2Huuqy5R\nCMhn/Vg9w3Rg7dZfHnr5V+rfvPHLjDfCqVn/kLlKM6Pg8lU/9OoxZlbmNsPlPZZfZrWHzVioTggP\n88sB5HPZHS93WI68mLWnA8IeXbRqh+FH0wAg4ccLC46+tPbqrjdD3DbsFoXWtNKwlNWZ7RadUnAa\ndLs55ixNguA06E8oDBcMWqVmvfUJvYFlbBqKpEiJdzg5pZYZsg5c93kxGDwvRmDevHlNTU21tbVz\n5sx5/PHHAwmFgEuXLhEEMW/evKHml4oMrEVh1pJuE3tAyHxHSwN4qCjJ7XDxajXJO02spQ5IEQCU\nrDHNpNcZlDaDUrAbDGUAmRA4WoxLdXrGblQDZ9KfliBtOJFTjFFHLmb1jM3EkC4Le6AO4ibmmw6E\n7neDfQ14pBqOLQIAiMktvd497HrgiwsAUSvPBYe2XDi0clEMAEBMYmbe2dJDiwAAEvfXdnZ2Xr+w\nPgYAIH5/bWD2C7m9RmCrogAAIABJREFU/y5dEwUAkHioNriw0kO5afGB90FE3KI1+0tbgis+l0kA\nACwqbOkOpqUwDQCAyOwKpbOl9NCatLjA40VUXNqaQ6W3pkZDqaysLB9SZWXleMeI7nk3b968efPm\njRs3/H6/z+err68/depU/Rg6derUMMIUP/p1yrK9HjEUm/zJJ5+EYjH3dgD19fU+n8/v99+4cSNw\nDPSc4PqFzXE972RE3KLMze/U3rrtNJzLy0yMCoxK33y2ITC0pTCNiFt/4XpnZ2fLuc2B6z4Rl5Z7\n7Oz+RUTc5qrrnZ2dte+sT4sJzJdXuD8xKq2wpbOzdn8iEbwFXS/dvCiq5+1s+K7Xfrwy8eDKY1/d\nwZzFxcUffvjhpUEUFxcXFxffaRz3rv5XgzE4Vr/xfOK50nVm1x57JuX5c9+EZsmjcin7238X/d+/\nBf/N//e2H//oV0V8SBYciHaIs/KW2v3xEBM40To7OzuvVx3LDT5lxSxac+jC9c7OlnO5MRCTGzyJ\nWs6tiYGY3HMtnder9qfHABBphUM/iAWOfDwvQu7rr7/mOK64uPjTTz/1eDwej+fTTz8tLi4uKSn5\n+uuvh5jx+tk0Iiotd82iqK6fOfgLNryTG3jcJ+LT1xee3RxPBJ/eW0r3Z8ZHAUBM2vq8lXFRwcfy\n6xeOrUmMAYCoxDV5ufGBQ6Hh2CIifnNVZ2fDscTAPwLLPraIiAv+df3CoZWJUQBAxK/cnBsP8XlV\n/YJECI02WedIe1pG6OLFi99+++0QE0yePHms+ylE953ANaqzs/PGjRuSJPl8vtLS0pSUlDELoLS0\n9JlnnrndVNL5dYvz6GMnN4agRkJ5efn4dn06EQKIjY2NjIwkCGLSpEmBulEPZgMrr9dbWVkpCMKN\nGzf6jJo0aRJFUY8//nhMTEg7DJnA+l8N6uvrR/tY5W1Zq84w+bZ1CfJ6Li9na83zJ48Hu1e4S3/4\nwx9CfinzeyzPbr28fK8pc6788h93bnoDfvW7HT8KxXdwAhfeCXJWBs6LlpaW/n0KPoDnRQh1dnZ+\n8803dXV1DQ0N33zzDQBMnTp15syZcXFxU6dOHeLnFp0MpaM571AtoUaR1+X0UEywHpnoNirVnIl3\nsdh5B0JjbPRbQ6D72kMPjXZXHQgh9OB65JFHkpOTB8vhTpo0KSIi1M16UG909q6NlVvXLS5oA/nM\npKxde0OTVhglcuUvX161x7Ip+2gHhD+6aPmOF0KSVpho8LwYJTKZLCoqKj4+Pi4uLrB7J0+eTJLk\nmHcOdYcEzrDYojrmMGsUottusHhVFgbTCgiNPcwsoLuCmQWEAACASD14/sx4B4HuP3K5XD5+3WIi\nAAAiPmvfqazxjmLYIhKW7/jd8vGOYpTheTGqCIKY6KmEPpQG+zGP3pgyJwcgKj7T5LRO0J6fELrP\nYWYB3ZWhMwtDf/oYIYQQQgjd60gNJ47nJ9RIFWtzsbZxjAAhBJhZQHcJMwsIIYQQQggh9IDDzAK6\nK9gaAiGEEEIIIYQecJhZQHcFMwtotHV3Ri3rMr7xoLEh6228w0ETAl4NxheelQ+IL7744vLly93f\nhpg9e/bs2bPHNyTRqaFYBceP07cnEELDg5kFdFcws4AQQgghdB+4efOm2+2+ceOGQqGYO3cuALS3\nt9fX1zc1NSUmJo7jIx+pZE1Gksa0AkITG2YW0MhNmjTp5s2bkycPfBR9++23kyZNGuOQ0P0NX5Q9\nOPC3RkPDI2Ts4T6/7124cOHmzZuBnEIARVEURf3973+vqKh44oknxi0yWmc0jNvKEULDhC+c0cjF\nxcV1dHS0DaKjo2PevHnjHSO6f3Q/0T788MOBWprovuTz+R5++OHAv7EYgwbUfWDI5XKfzze+wTwI\nvvnmm8jIyMC/8ay8X9XW1l67du3RRx+V+pk9e3Zra2ttbe1g84pOhlTqzXqGJmUyktaYObfDwChI\nmYxUaq0eMTAV7zBqlJRMJpPJKKXW4hIAQHQbaEpj1KspmYxmORFEj41VK2QyGanUmc0MRRvcIohO\nDalgXWJwRRYDQ5MymYxSsTZeHKP9gxC6LayzgEZuypQpCxYsGO8o0INCJpM99NBDkyZNSkxM/Nvf\n/jaWxYny8vIxW9d4rXHiBCCXy2fPnv3tt98+9NBDWIZBA+q+GsyePfvLL7+8fv36eEc0QqWlpeMd\nwrA8/PDDiYmJkyZNwrPyPvb5559Pnz5dkqQBx0ZFRX3++edz5swZbHapOt/GnOUEjnRoldmL1Ys2\nO92CWrBpVAa9Q8vpFB6z5mmr8pCjSkuDx2HQbmCtGo+RBoDWIqsnz3bORFIq4AxMjlN96FwVAy4T\nm1PSGqfqvyIr845T4BQei1atZzUaTqcI3W5ACI0cZhYQQveAwLOsTCabNGmS3++Pjo6WyWTdxYnR\nftJtaGgY1eWjgM7OzocffviRRx4RBCEqKgo7ikMD6nk1EARBFMWWlpYxuxqEkFwuH+8Qbq/7rPT7\n/Q8//DCelfex1tbW7373u4ONnTJlyqVLl4ZcQJrJpKFJAEanBCdlMjIKEhRaVmUwub2ijgJaf8iu\n0zMKAFDojYxR6/KKQAMAxOgsBq2KBBAcGpu40mHTMxSA0mZ3cSnOgVZk1ipJABWrV28wcLyoU2AP\nDAhNBJhZQAjdMyZNmhQWFjZlyhQAIAjixo0bnZ2dcE+VJdDQJk2aFB4ePmXKlLCwMOyoBQ0BrwZj\nBs/KB0TgDBrCzZs3hxhLRCkUFAAAkCRJUDTVo7AvAgCp1OlJzm42uNy8x+MqqZCIzK7xtDqQGhB5\nziPRRlVgOUAqtUqiX2aBiKK7unIkKZIQsTUEQhMGZhYQQveGQP1ngiBkMhlBEFOnToVhPAmhe0ig\nTDhp0qTJkyfL5XKsd40Gg1eDMYNn5YNj6tSp7e3tFEUNOPbatWtRUVFDLoAcsuKA6DKoUg6I6Wt0\njEavN+rNDNs1iug7aY9lDh0zQmhCwcwCQuieEfjkFUmSgTcnWJC4/wQKLYHSC37UFg0BrwZjBs/K\nB8SsWbMaGhoGyyw0NTXNmjVr5EsXXWZr9aJjDU5WAQDAWw0S0H2rG5A0oyRsHC/oaQoARN7pkUA5\n8pUihMYWZhYQQveSwHMtPt3e3/ClKBoOvBqMJTwr73vz5s1ramqqra3t303jpUuXCIK4uw9+UQoK\nXE7Oo9VQXpdFb6gAiYK+qQWKMerIxayesZkY0mVhD9RBHFZbQOiegZkFhNC9B59xEUIBeDVAKCQI\ngkhISPjrX//697//ffr06YFOTK5du9bU1BQYRRB9my3cAVJltm/2sOyCaRIRl8aaHPtFrYXzikzv\nySjG6jzEssbFC1qJ+JWG3PjdHDV0KwuE0MQhwwqECCGEEEIIPeA6Ozu/+eaburq6hoaGb775BgCm\nTp06c+bMuLi4qVOnjkUWz+tyeiiGUQY6dHQblWrOxLtY/KokQvcEzCwghBBCCCGEAAAkSRJF8dtv\nvwWAyZMnkyR5V7UV7ojHrFxgUR1zmDUK0W3Xa02ixePS02O0doTQ3cHMAkIIIYQQQmjciW6bXm8s\nKGsEiIrPNFqtRgYrLCB0r8DMAkIIIYQQQgghhEYOe1RGCCGEEEIIIYTQyGFmASGEEEIIIYQQQiOH\nmQWEEEIIIYQQQgiNHGYWEEIIIYQQQgghNHKYWUAIIYQQQgghhNDIYWYBIYQQQgghhBBCI4eZBYQQ\nQgghhBBCCI0cZhYQQgghhBBCCCE0cphZQAghhBBCCCGE0MhhZgEhhBBCCCGEEEIjh5kFhBBCCCGE\nEEIIjRxmFhBCCCGEEEIIITRymFlACCGEEEIIIYTQyGFmASGEEEIIIYQQQiOHmQWEEEIIIYQQQgiN\nHGYWEEIIIYQQQgghNHKYWUAIIYQQQgghhNDIYWYBIYQQQgghhBBCI4eZBYQQQgghhBBCCI0cZhYQ\nQgghhBBCCCE0cphZQAghhBBCCCGE0MhhZgEhhBBCCCGEEEIjh5kFhBBCCCGEEEIIjRxmFhBCCCGE\nEEIIITRymFlACCGEEEIIIYTQyGFmASGEEEIIIYQQQiOHmQWEEEIIIYQQQgiN3OTxDgAhhO4ZnZ2d\n4x0CQrcnk8nGOwSEEEIIPVgws4AQQrcXyCn0/C9CE1DPnALmFxBCCA0GH2buRRP8zo6ZBYQQuo3O\nzs7Ozs6bN28G/gF4P0YTUuCBQyaTyWSyhx56CCb8IwhCCKEx1jmQ8Q4K3YZsIOMd1AAwszBu/H5/\nTU2NJEnjHQhCDxyCIObPny+Xy4czceCm++233zY1Nf3tb3/z+XyjHd6diouLG+8Q0AQil8tnz549\nZcqUyZMnAyYXEHqw4dPmeLmjJ42xFHhTIooiz/N4YNxb5HL5nDlzSJJ86KGHJubNHTML46ampiY6\nOjo8PHy8A0HoQVRTU7Nw4cJhTnzjxo1vv/22oqJi7ty5U6dOHdXA7lRpaWlSUtJ4R3Eb5eXlEz/I\ngHso1MH4fL4vv/ySpmmZTBZILiCEHlj4tDle2tvb7+hJY8x0dnbeuHGjtrZ29uzZFEWNdzjoDgiC\nUFtbO3/+/ImZVgDMLIwjSZIoigoLCxvvQBC6T1y7dm34Ew8zT9/dDsLv91+/fn2ipRUQ6i8yMvL6\n9et+v3/SpEmBOq4T9hEEITTa8GlzvISFhdXX1493FH0Fnmr8fr/f78e0wj2HoqjPP/+8o6MjcH+f\ngDd3zCyMp7CwMHyhhNDEd/PmzY6OjvGOAqE70NHRQRDEeEeBEBp/+LSJeurs7MRHmnua3++fsPf3\nh8Y7AIQQmtCwy0Z0L8LjFiGEUH+YWbjXffvttxP25o6ZBYQQug3sORndc/CgRQgh1B/eHe51gU+V\njXcUA8PMAkIIIYQQQgghhEYOm11NdPWXvxjvEBAaf7GzvjuyGd99992nnnrqblaNX3tG9yI8bhFC\nCCE0lrDOAkLovvXuu+92/xchhBBCCCE0SjCzgBC6P/VMKIwgudDZT0ijQ2h0PcAHsOg20DKZTKY0\ne8ZupbxFJZPJZAq9SxwwJk5LymQymdrmvft1eTmLTq1zCne/pHuLYGdkMpmM1HID7uNQ4K0qWT8a\npwges5JU27wgug00qbYPb9+LnI6SkYyV7znMqSFJjXPUtgAhhMYRZhZQqPn/uvOZVXuq/OMdB3qg\n9U8lYM2F+4FUX+8b7xjGja++SRrvGNC4EzktvXjDiTJvqMqmosfhcIUg33HfiErff/ZcT2Y1CQq1\nwcSqqBEsTiox6O24fxFCDwTMLCCE7kNPDWQsA2jxnH19u173TEZGRkaGTr/l9T9eaus/lb98+zPP\nHrnUJw/X5tr0zLMnL4cuGKlyV3oye6ap+08Tk5zMmCq7yqlNp1YlZxzkAQDAV2lbl5GanJycnnuw\nvLsUX2/LSs46Xt9jmU1nViWn76sehaJu03nbVjY9NTk5OTk1fdXGfUW81L0Zy3Nt9VJg7amrTtUP\nuZxRNcxdOnCc9cezUld1zzs8vvMbM9a913y3caPRQrPO2traWpdZRY7uikRBCO1ZJ7jMT6fMpFRa\no32CJxgorb22trbWY1WP6j4maTXTi4oCoBi9UT+i35aIgSK94cGrYTKq2v+ybfULb10JwZKuvPXC\n6m1/aR+dhaPQ81Ue73pASGay1u0rqseE+8SCmYV7hf+L4n3rdE/9NH3pT9OX6/eWeAHAX7VTt2b7\n3g0r0pf+86uflr701D/vzdM/s/TJtW9/MdD0XxdveFKX//dgIebrcy8t/8WJLwdZW2PR3hdWLFv6\n0/SnVqw/+FHgYcP/ZdHeDYGBvzC9U9U2SFQ9tFW9vf3Z5T9NX/pT3QYL1+jvGzNWbED3pxbXKy++\ndKR2xvJtrx598803D23LjKl+Y5PpbGPfCeVzs1/+1dIZ8lGOh5ifvjCihqsJ3IAlvrgc4mb6y4uD\nRXbfxWI+OmXJTACQqg9vPdycffyjj95aVl9gOsWPcmT91J9Zt/zFQl/Sv+WffNf57rEty4jz25av\nOhgosfubfRPlmjHMXRqZtHHXxpToUKzR13x32y64rSxDU4Hq3aRCpTU6+OAYu1omk8mUBquBUchk\nMgVjqXDrFTKZjNRYLTolKZORStYpAPBOo1alIAPLoGiGtboFAPAGKqnLVBa+a21eq1omk8lIjeN2\nBSrRYzdolMGFkgqlxmDz9HgbL7isekZJ3Vqjq3uBg29R/413WVk1TcpkMhmlZPQ2d9dCBtj2ni0o\ngtXvFWygiUNXMwtSGywneszKrmYXvE0zZ86cOWqjOxi96LYF10kpNQOE5uXMWhUlk8lkCjVr4+wa\nsmdjCpF3GLWB7SYVKp3Z6Q3uV9W0p0sAAKDk6WkySheCdgGkQhEF0Fpxend2ykxKpRsqwRBs1KFg\n7XaDRtkdvdvrtukZmpTJZCStMThuzS9wFl1wz8tkJK3WmbngSN6ilMlkMrXFqldRMhlJa+3e2+wW\nwaGbM2fOHKXeJQKIruAxand2/bgkzehvHT2ii6VkMplMZQ1FvqSrNUTv3eG2sWpF4LDSdm9ZH2qz\ndSWc0BsHaibj5cxdZxRJa4yBX9lrU5EqozmwZFKptbrcNlZFyWQySsXa+eCsgsuiC+woSqWzuDBx\ngR4ETUVbc1/jEwIPCG/typIXb8vZV4m5hYkEMwv3iC8dplc9C7Yf/7Do7DtvrIAPD/7/gVK5/+rH\njT/aUWDb+8/0ZOhoPN/x9B7bf25/8rsDTf9IsnZBW8l7X/oBAL6ufK9q2rK02QOure2Tgwf++vg2\n+9kPzxx5dlrJnv/8qx/8VdbNB6qULx09/eGp3Usaj223VvkHiyrg6w+3v/Rfbcv+452i0yc2Kv+6\n9+Wjn/eJed5oF6gQGgd+T8Hr/0eetXfXCz9JmBUzbdq0WQlLDTteXjrH3+4H8Hte+Zdnf2PZ9C8Z\nGc++XllT+MobZ6/6AaDt0unf6J/JyMj4l01HXS0doQ2JmJ8RDxe5QLG3ofS8P3Xdr5N850sbAACk\nmuJqeVI6TQAAQUTL/b7mwH1aHh0dEdo4bsd3fl9eOb3l2MF16Ql07PTYeGbVLturS5oLTIV8/ZkX\nN5a0Nf9h9VMbOR8AgK88WLuCWWU6E6wW4Ku0bcxikpOTk9PZXYF3GVLl1vSMjSY2PTk5Y1fonkCG\nt0t95fu27ittDoR7MBBuRu7h8rbglbJ7G9JZ0y6WCVYL6b8VvC13x0V/3WvLM0wj2wSvTateW1BS\n10rExcfHgNRYcXr309pbmQAAqD6w9kBJIwCAUh0XGCQVrd1woloCkBSMinQZmKW7T1c0SjFx8XFR\n0FpXUrCW0XMiKDTGzCgAqLB1lZ95h60MAKK0Bmbo+uOCk1VnHyiqFuhFaelpiWRjddGBHDUbLLgL\nnEGdsja/pLoVomKCa0xhzB5xeFsUJLoM6pS1BWV1EhETF9VaXZKf8wRjdvcs5/XcdrrHcIrRpwFA\nI2cPrJNz1gEASC6HRwQAnrNXA0CcVqvsu1LeqlHnFJTVSUDEUN6i3dk5p3v+cKLLoF685XRFK0BU\nHLgLchazRT3G8zat6undp6tbISouBhorTmxZqtI5vABA0XFEcCIiJoZWhODlPaVxeBtKC/PWpMUA\ntFac6E4wuActkTcWZGfbBaUmPZ6AxrKCnCdmPpFjF1Xa9HiQ6ooOPK0LFsE9ZmbxhhNldVJUXHxc\nFEh1ZSe2aNheTQPKNqzNr2gFkEi1SnGb3TIQqSh7qYEj1dq0OJDqSvJzNCb33WZbxF4Gncxr1zF6\nt8pSWlVb5dCLZo1m4I49KK3Fmu7NZ/sFxtt0GpOgs7lrG2pLrWr3brYr/SBV7HYozO7O61UW6vTa\nFMamsvLXWy4YoUBv5EQA4K0axuTV2C7U1l6waXijRheKDjxAcL+108CuWLFixYrVL+x01LQDgFD8\nEvvS63sMq1esNnF/feuF50yvm55bseK5PX9pb695f89L7OoVK1asWP2cyeYWAK44DCsM718NLu/q\n+4bV27hBsh5+/v09Bnb1ihUrVr9gessdqDYQWOSKFStWsAYLd8XfPajXWnrHbDO9sLrXyPa/mFa/\nYLG8tHrF6pcc3XUPBO6l1QaLZdsLLxheeMGw862/9aqoAH7esW01u7P4ykRJX6P+pObyGkh4/vng\nA0LqKtP27IX++sAttvL41lVdtR1z951vAuAPZqR2Vy2UqvdlpK7jfAM+J6DQwczCPWL2k7uO7v7l\nggho+/rrtvBp4f6vgzWrwxJX/HSBIkbxiBwAwlN/vnhejEIRMfD0jyQ9k9h2/v0v/QBff+Komq1N\nVQy8Nnm4XN74yXvvl1R8HZ5uOunY+rjc/3nR+bZE/eofKOQQsUC3c/+ulbPlg0YFAOA97/jrI9r1\nTy+IAPkjP1i9NrmdeyeQWugVM0L3Gf/lP5ULc5Yvndvr+J6mfu6FzOCgjqufNv7TtqNHd62a0/Xh\n37byN7YWCD/ZVXjm1N6n/OVX+y70bkUuXDbfV17eDAD154ub5y9LSlpGNxSfrwcAnquEhGXzA+UV\nOmvrM/6C1enpL5an7NqbMb3HMup++1TyLZodNaEOEqSa90r9CdlLYnuFnrRmSXTdmXLIeHVfWkT0\nM2+9u4+JBAB/w/lmZm/RR+feel5enLfvvA+g6cym3MNtWQfPffKRc3tC+Y7c1wKtNaSG0oYle999\nN//5+cSAKx6JYe9SAABoKtq07hSwx899cm7vkuby5uDArRttwB4798m5/Cxf8cXA9XOgraDZ/O0L\n5XG/PnnGlDCSTRB5gWYWJablXRB4j8fbcGwRAECF09OrqJOYd+F6Z2eL23KrsnnUyncaOjuvNzh0\nCi8PqrTExJXvNHh5D+8tzY0BgFa3iwegGKM2BgAqrHYPAADvtJYBQMxtEwui2+ZsBSDSbJyLc3Ju\n/tzmNbnrjZrAXLzNcKAaABbtv3Bd8AotpevjAMBjt3rEYW5Rj6UQaYeqBC8vNBSujAKoMPV8sT7w\ntgMAKBh2EQDUOZ08gNflqA4MbuQ4HsDL2SsAIE6ro/tul8tkLJFurbSldHN8z/Feu+FAHQDE5Z5t\nEXivUHsss8dqRc5kLGq9NbY0LxGg8YTB7BYVOofbngYAAGl2j7dvuCNFKtQ6o43zXq89d2zzysSo\nQIJBzQ7azyCRdsztctidnDUxMCD4tyMvHgAgmHnx8oIyLTEx81CtwHt4oSovHgAkt5MXey3qUO31\nzustnEE59G4ZTHyey8PZ7ZyrMA0AoM4ZrHJBKg32dwoL37Fo7rB3hMaCxdMe7qYYrF4Ibzc7FSa7\nVadW0krGYLOoPFbrwFkNhc5qWVS9m7X2zjyQCp3ZbjNqlLSCVuuM2hjB07VriEyziVEAqWS08RCj\nNevVFEmptJp40ePxgui2mN0qi92sVdG0Smu2mRRFlu7aDCPW/pfX93wI2p3/9fbbbx9e/9hnx498\nFCjFX6v7H2rVK6/t/9UPogFa/4d/zPDaazuf+19XbHuOC4zp2Ntvv31s6z9+9cGR96/Ao6k/jf3q\nw/OB4vzV8x9+RT85SO8UAvf68SuM6djbb//Xzic7Pjjye94P7e43dh0XVC8dfvvtw4bvf3Zk1++v\n+GsGWMstVxymPR+F//yVY2//1372Ox/v2RnMJHR85e742c7X9r/000d7TN1R/7fwn7/yuuX1V9gZ\n5/dYPupOUnRceX+XyTFlzc6XljyKT6YTF0FnLZtZvjV368FTXDnfJEFk6sZ9pvRYAKly36bX6pe9\neu6TTz45d3BJfWFeIQ90VvbMmlOlTQAAEv9esS8lOylysOcEFCKTbz8Jmgj87VVv7/tdcWWjfMa8\neTH+dpgGgbSqPCKi+yoYFjGt64+Bp49I1Cb7933wuX71F+9/+d2fpQySWAB54r/lrTv25jsHN/1n\nO0xLePpF46+S2xvbImK6cwGPzPveIwD+xkGiAgB/25ct0Pj7Z9N/373YsMdb/DCtd8wI3XdarrZD\n+IzwwB/+8t/8q6ks8G4kfNGuN/89HgDCEpb/WBkTAeAPdqbgrz7rAvWup5QRABE/em7Nu66TIQ5q\netKSmXklNb5V8vLi+vjs+ZHTIYPecaa8aRVcLPfFr5kfCQAg8WfydhXD/Dh/jX9+etJ0qam+mYiN\njQQAgJnZrx7M6i70N3MbcwtDHKS/qd4fERvb5/JARMZHQwnv63vzn5m1Lis+EiB+SRb9WmGDBPUl\nheXR2SdXJUQCRKY+vzHlzI7Cml9vAQB50pqMhOBmhMxwdml3twvlhZXRWcez6EiA+KyNrG1VMUBT\naWF5NHs8Kz4SIDJj47rCkuMAg2yFib6rWEm1webcIJMJvJtzuFyOYCFEFESA7rJbol6nIgFIBQld\nxaMojV6jAAAFBUDpLA4dgCh4XE6ny+ngGgEARK8oApAqgy6u4EBdtc3hMRpJp7UCAOJ0htu1Sydp\nRgknyqSS7JmkcZGGYRiN3qhV0yQAgNflqAAASDOyKhIAKLXZ3WKmqMAy1Qab0wAw5BYBAAhuexkA\ngErHUILXC6DSMcSJ05LL7hZ1mgG2vTcFwyZCWUW1g+P1tN0FADFxRGNdtcPl1VN2FwDEaVll37l4\nztUKAFFaU2AcpTYYF+3OKQuOFj0ONwBAoiGQRCFpnYk1nT5Q1zWWawSAGI1WKXq9XlAwunioqK5z\nOnlQ9asd0YfgdnIeIfgDkgpGo/Q4ua7eHklKxWgUHgfHB1/FkxTNaNR9Sn7DKM0rtYwCAIBSKAio\nkCBRy9AAAAqlAqAaJEEQAUiFxmzXmAEE3u20c5wjUKVFEHqVvtUGHU0CkAoQuaF2y2DiNJrA/qeU\nqjgoqQscAwAAlEqjVd1+W/qJyjzkMN46dBUDH8Uiz3mk6i0LZFt6DCR5EQacnGZtedYFRr1N67j1\n4KXQ6HUuu8Vodns8brerolFa1HXqKZTBH4WkSIJSBg96CA4UPe46qSxnpiynR9QuXgT6rhJN4aoX\n9r8SNmOG3N9SIyStAAAgAElEQVR+VQAqHD77qh0gHAC+k/rkPz46AwCuAEDcz372/RkUAFCrd+4P\nTv5Vx3emhLUL7X6Y/4MnY49/8PEV7aOPXjnPCY/9fNBuL8PD4auP3v8w9qc/UP1s51s/A4B29/tu\nSN3+8+9TAKBas33nT+E78gHX0rVM/sMP62N/bmIeDQcI/+Hqn3/wwu+5K1otAEz5QWYq3belYVjs\nzzNV4QAQrnryp+Evf/C39h/SAB1XP9yzrUJgXtmPaYWJjohfd/zdpPcK3ys+uDGvrk0+M2nZr7ds\nTKcJYv6vj50kYmMJyVdfL0VHyn3NPgkSmFX0a4UlTRlZkTWniqXUXQmR9cUD3mFHlLJHA8HMwr3B\nW/y/d52fZTp6+ocKOfirduo2fx0cIx/wMjjY9BELnkz0/7bok7mffzn76dRHBlud3/slLMjJW7YO\n2r78+IR56978H76pfSSirfFrP8yTA4D/y/ff/GT2/xeWP0hUACCPUISHzVr9n7/7WeA26v+68Wt5\nTARUDRYzQveJ8Gly8FxtB4gAAHnCCweOPgfQXn1kk6UjmHmTh4f3PgnaW652hP+oK+MWHkOF/hyJ\nTkqNLiiuqZfe42OXJU0HgJQlMw8WX+TlxfWxS5KmA4BU/dq6HdVL3np3Hc0fzFm9bh2RBafO0PlF\npgQAAPlMmqa7MwsR0aG/EcunR8v9zc1+gJ7Llnx8M0TMjCSgVx+Y8sieKQhJ8ks+vhkaCpYnF9ya\nJqnZD9EA8sjIUbjqDGOXdmlraPZH0l1tS6LpaACANr4ZImd2dcIQPTM6omtrB9gK+u5iFXm7IWfD\n4ZJgVx9d+7f3+3m6XxGA6lndXuAsrN50uro1sIhevz+pMhgSD2yoqLba3FqFtQIA4vXD6PCOZu2F\nbp0+v6xVqis7XVB2umD3BiIx1+60ahWiVwAAILpyCQAkdStCkbcbWEP+kFsEACDwgfeSZWsXzFzb\nY7jE88KtyQfY9q4INWwibKgos3Mc7ZIA0kwmypBz2u3gnOCSAGI0un6JBVEMFOWpW0ulaAXRnWkS\nvYFOGG+NJyklBRAsQguBDW/MXzonv+divR5hsDoEt1btsbJP53f36JJW6NFbns7uSmlA3PoLbq1Z\n93R30wwi85zgYEiv22GzWKwFJcEQiMRMg9Fo0Az2A3anYEiy199k7xlEt1WvNxaUtQaXGpyn5yRR\ntw6x2+yWwUMJcX+OpEKlVg+vMsiiQxfsPatEkIrBjiNSabCut6YYDA5L1yDRY2FUG3j1Sp1Go9cZ\nDXatrqtOA0H23ZV9iBCVWchZ1L3Wfdf7oePK+YIjjo/rO6Z8h6apW40FwqZ8J/zWH+FTwoL/FNzH\nX//9x3XXwr4TS1NCsA3fjH/8GV3g+PjKk8B9KDy2RhUOA6N+aNj6le33Hxz494KOsO8kPvkrw+pH\nBQGo73fdHeUzaBoA/PUDrSXA3/6VAHVHn19xtHvQlO8IfgAIC6fCB7joU1RXOOHUFGgXAtvY+j/t\nj0V99fGH/Krn5uPz6QQnQWxq1sbUrI0AUlNl8Wtbt7F508+YkuTNpa/tOMzV+OQz6fjYrm6JYtOy\n5x8sLKlfMv9UCTB7F0ZK/MB3WMDMQqhgZuHe4G/3A0Q8EiEHaKt65/BH7R0LhmyHPej0EY8/kwzb\nf/cWzMv9waCJBWj76+GN/zljm2XjDxUx0x6Rh8kjwuXzlqVGbLS+9fG8nB/Iv3xvb37x7N2LZw8V\nlSJFO+93xw69p3xp2Tz5lx9uX//bll/YrEtCs0MQmrDkc3+sDv/TyXcv/fi5uXIA+bSYGADwX5XL\noev8COv78BI+bUZY+6UWP8ySA0B7ixD6lp4EvSQJTBznq45etn06AEAsw0QWnuGK+eglKdMBAJov\nljdEpy6hCSDi1726t2H1psLmuLHM5RPzM1Jgq624nrlVNwJ8FwuLm+OyU2MBGoaeO3JmhDzu+ZOn\ngjMHKlxEQiUAMSpPi8PYpV0iZkbLfTXNANMBAHyBT2dG0NFQ3NAMEAkA4Gto9g+xFXf1sU3RbWJW\nHf4CiEXrrWZWo6Y9LL34RGufzSH7l2XIWwUXr0On2VAkQdzK/RaDllGBXT1nbcWtSWmdYdGGnLI6\nm8lEVQBAokF3u9frAAAkrbO6dBbe5XRyTs7JOUqqpYp8vUmvsSoCpTTJywsACgAAL2dz8JRSrWZo\nr4nJzq8beosCKwiW9RI3F5p7tc2glBR0vSEeaNu7N0yji99QUV1iMrkbARK1jEahhtMlTpMJWgFi\nNGz//AlJBd4dC7e+DNnriw4kRREAEng93uBraNHbo1MDiiIBWiFm5SEr2/MlNKlQkt0hh47g1CmX\ndu07Ij7TYDQadOrbFVP7jh5gcpHTa9YWNEJU+markdWoFZxm2tMlfabsseNvs1sGCyTUiYVhIhVq\nGiwuQRFMoHkder1DbbGx9GAzqE22NfbFeiMhAQMAosdqKaPzqjijEgBAcFiG/dEPklbFtHJukg62\nw+FtrMGttVq0g1VEHRZ/zZE9x69qXzmmpcMBhOKXnj898ITByyn/+z1HP/vB9tf3fJ8CaP+L6fk3\nAnc4SvXkY0d+/7G7/eP2x9jvD5ZYgPYrV8N+8CuTVg7t/EfH9xyw/P6Hr6goaL/S7g+sor3m/d/z\n3//hVwOvJSD8O1PC/hd72PTD/9fe/Uc1def7wv9ETLJLdNitBSKcHnbvFInaDumh1ajrPGzXutbY\nTod0HKdRux438wxtqtMxrqmdqPcu4zpHjaWtYVpplLnXsG7FqDOnsT21ody1jM+z1KjDMT6tGuDM\nuJkZaND6dCOF7iStPH8EERBQw8/A+/WHyyTf/d2fbAjJfuf7/e74bqJXr3ZoMlR0dqCdSrdGYUQl\nUSI2Hpgoc9du35p+ZMN/K6sq3C0gWxi/InVv/2R17csfVcXfHtUPP/H8r4SD/171+XWa8fHrOz/n\n935UVfAwUZv/laX2+CYPL1iZ93al/xR3mgrfmqUe8B0Whg3WWUgO//jcay9mnv718mXP/nTd7/+/\n//pLnbLl8tcJtVfNfqGA/v71D58rGDhYoId428an/l62pmjJ0qLX//3BX24vfkylmm3ZtX72/7t9\nZdGS5b/97JHXdvx69g8Hr0r73LbtP49+uOGFpcuee/WD6JJ/2fHjzOE5HADjmeqJNdZ/jn70+q/f\n/MP//flf/v73v4QCR/ds3v7/tGc8+uBAm+QV/R/KQEXV519TtCVQWVkXG+YlHIlIzT3z+PU/7qud\nwS/sOm2fyS+g0+7TqoVdFy+Y8fiCmdc/fu/f69oibeIXtc1tRNT4R7f//i6POBTT+d9sKhB3Fr/m\n9tc1f9X2lVj7R/srr/27aqV9OUdEKjW1fVn/5R3zIrpk8atmffnu23+sayOKiB+//rOfvP7ZiF6Y\n8u6H9JaHC4QFbR+/U1XXRhHx47f3NUaJ6OEFy5+47n73Y7GNImL1O/vqo4M9C7WavhHF5oGe/KDk\nkP+vRKTm7XaB12sZKRTq7yS8H8zt75P9wQgR5ZntVpOBY2XRL/ZuqjXZlqqJWo4eqiOiQquJu3v3\nYY9Zz7EK1hzgTBaby+P3OfKIiGRJItIaTPlERGcc8VX3Jb9dKH61+AWjLSjJIX/jvT2jW72IIdIZ\njUYjz/odNrvD5Qvf6xmpzmTKIaLGC61EOTzPaQ3mfKJIXV2EKI3vJ1gg0vJ8JhG1ep3xtSjlkMdx\n4vbDjD4+Sr/OafeIMpEUcFrd3eMMGM7EpxFRS1DU8kaj0aiX3Dabw+kJEkO3z6RlSaY7lxdkDK5w\n521+c5450OO26NSzvFe+fYfs5SksthKp84rW7z/9pRTyOoS7xgr3JhwMtBBRpsluN/M6lsSA2E+r\n2z+GwQ/L/ZOCPq/H4/WLwx7GEBGRzmwrlCoFweUPiSG/wyzsDTK6QU/tWd7pKmJaul7CDKNlSPT5\ng2FJEv1OwVIdIfneLvHAGKzW/LpdJsEdEMWg12qyVIrd8ycSFutojyk1bKqGKNp00n2kkaKx2MAh\ndzQqRUnJalKJolLwSNWlWCx2O1qQvFU10tzncgcMFkjyl23bURWUiDTp6UpSaljlg7lL9LFTlcfq\n24mki0fKq85do86B9kJEpMriebahyn2yKUrUXu/dtmHDnr4rPLaLZ89evBp/HrHmI5X+pii11x+r\nqInNefZW7qEk1awVawujx8qOiFjAcfxS5y1fOat+52ubq/yfi83N4ufV7257t37mwgUzI21tUVLN\nmDGdKPLVqX3v1kaj0fhP8uGFK59ofm+nX/XM8llqGoPPCZMOxiwkiWk/+mVZ1S9v337up0REtOXf\nqrpbPF360Qd3a09Eqgf/y0Oagp8+Neia76rMxa/vWfx6nzsfWfr6nqU971T1u5dHuqt6KP/nO//H\nz3t3MrtHzQAT04OGN94v/d8H//BRxdZKKUakyXjcsNK+cVlBpor6/9gy7Ym1O9c639z+f/6xXfPo\nP/9znubz4a9q+hPP5EVPiAXPzOy6Qz1raYHq304VPMPFRyWo817eu71t8zurF+8k1cyCH2/9w1vc\nqW2vHzzRzC8Y/nL6l/X8u3+Y4X5n39vF730ZJdW0nILnNx14+fm86USk5n7Mz/z1tp+90vbR7/r9\niiFr+Vvvtm3bUbx4Z5RUMwuW/+53y7Mocn3kqr3rIe32MG9/92W7vXjxO9EZBT99Jkf1BRE9/Pz2\nt8Qt2362eBvNePyZx2eQqB7oWRA9/tMFtOXXP/nyreN7+fv9goXV87PobH2kWjBZBIMccFfGBxtI\nYal76vZdMBxvUJcdjdQ5zWbZqBW9ZUdbu7vo2ovRZkqrPtRKROql1nv6+lTLG7XSoQutR1dyOqdB\nS+HAmToiyhOsBoaIE5yvOBfvbawrWzyzrHubfLudZ1mRz6Mzdf0/o957vtXL0ZWPsrY8VqprbCVS\nM+bBTwJ79WA25ewqaySiNINJxxAZjDl0oZGI0oyWfkfNM3q7s8iz8mjroRe4UKGBEavP9BrSrzU7\n19sXlDW2HFr56KGVRNRrLC5rtDsKva+eqNu1gHXncVRX10JEYb0tPoBBy2UStdCZ4pkKy9JPw777\nXaCwL1ZvPXjcYOKHNke/H1oDn0l1LS2VZjNr5sI+16FGIqLW8B2LYdzaYNDDcr/kkNP8QmUr5b//\nZdAypC/zB8AJXr9ssdoXz36V1DmFwkH/XRfUZE0u51JfsZ+IiHRWz+6A2frkzFcpc/6LNvd+2WQL\nhGTLvYz10dl8x8litS54tJXUOUutn7ptd0zKuV+aOcIafWnFr35eoUzL0j+3orChUrwaG/APhGrW\n6pLC7eVvvFSlTM2as+TZoqzKYFMHzVURaeY+mxt7q+HpkjkDBwuUvWLjmman8+WfdxCl5hSWbHw2\nm1TZazevKi/fVlwVU6bl8mu3ruAyOvrbC3erCG711vWx8so3XiqLkTI9f8Vm6yKWel70Idr0Sflb\n4qp9pc8QEaXlUs2Wl8o7lFlPr9q8dp6GqPvvl2ausG7huh3OI4u25g7tQMLI4YS9+1U73z64ufid\nKBFNm1W4/Hf7X8tTE7286ce/tv9s0XuqGTkFPxbW5Ow8LbZRgZpoesHKAjpd/8zyvPhfkwHeYWG4\nKDo7O4evNzlo5Z4sayGav//LgHDnH3I5YOEWxCcA5v32cshx559POWjVPVnWeKsHyWN4cOUZosIP\nv/ab7vbmGXLoZm+qo8w1p0X38CyXfDdhv8tD5rstfj2A2tra/Pz8qVPvEu40//2vifTev2/Cf2u5\n8L/++/8g2webf4QBX5BEsv7hH+/a5saNG/feYUNDQ0FBwSAN4n8bOzs7v//++0gk0tbWdvr06QUL\nRu0U+16dPn36pz/96d3bjana2trBj/b4MZqlttXVNk9/PC9LTUQkupevOv1a9f3HBv2pra3Nysqa\nPn26Wq1OSUlRKCKix7pyw74zLURpeUsFm0m0vnq0Vb30w7DPRPE32q4Z90REJAct3JN7Wyhv95WQ\nlevqVPI7BIvjaF0rqXPmm60Wrbt41wXK+e35kKPre3vZZ2KXHY1QWtGnovceT3hl0eu0OVzeM40R\nIkrLKTRZ7Q4rf+sDhBRwWW0Oz4nGSPxBm8NpMbAUX2fBbN3b3zMyivEPEnk7L4fiI83DfqfN5vSc\naYwQpeUVmm1OZ3ysgXTnc++vxq7PLvHjxZIcELQLKltJXfRp+NbzFJ36RzdcoMxXTosuA0NEcshj\ntdjcJxoj6pxCi92mdS7bdKHHp6OwzyZYXdV1reqcQovDprUv21R3+2jKIY/N6vBUX2ghUmfmm6wO\np83YdVBEj2CyVF5oJXXeGm/APdRk4X7IfhO7+GiE5h/8OmBm+7nt4x9YdqL7Q5scdAmC/dCFFqLM\n/BetVoOveMMJSltzPOzmw07doxvqKHP9edHZY9zHYIdF8vAPrjzR9dOirh9K/u4rQStHtz8/3vqx\n3/opjViykCzu8dPmcIqKFRu2R9fvWTeephZI/o3rvEt2O5/JGK09fvfddxcuXBhv732dnZ3RaPTr\nr79uamoab7XBvaitrc3Ozn7wwQdVKpVCoRjrcvoa3mSBZL9Zu/hQ77fbHkI2bvauruC++82gF9Gl\nf/TVC0T5718JWjgax8mC6DbzxYca8/d/GewnQ7kHY5AsRP+01fzfTz34X+2lv1n0EBFR+LP/9vr/\n/Evf71BV/+X/evNfl07m92EYf5AsDATJwvAazVJF9/JVH/N73a89oWr27yzeXP/yH6qG59uTO5IF\nBRGN+EcQ0W3UFVdHus4cx2b2e3KQAk67J6zlOL1JMHIMkeQzc8sOtVLhwS/95kn77ovDMiJGN1mI\ntl+91nSuYscxzr5b4MZRsIBkoQuShWQ3zpOFYf5Dw+jNBvWh6kgk4BVlY9/Zh6LP20hE6kx1pCVy\nweMPW/uek0tBzwUiojxj/AJGDMcXLWVldvhH6Q2VLHq9g69XPA6pntr2b5/2vEP7zL9+gCUVAQDG\nArdyx28+3/za4spvSDWzYPmOt5J1UKYcsOhNnrqW+FIH+Tbb7Vgh5HG4AgOswsfoLfY7r9g4GTCM\n6C0raySiDbacPC2F6xpbiSit6PZgjckIh2UC6DhX9ka5mPXs5hXxWCEqerdt/+Rq32aqWSVvbpw3\nyGQJAEhKwx1hsgaznqrPUEvAHyY91+uxsN9TR0T5VjvnevVo6xm3XxLMvQYiyEFPkIgok+9a75Yx\nOLy+YS4xydzLV7UAAJB81HnL3/7j8rGuYugYVsdKrUSkzllqcbpst2c6yqJ7U1n1QNsVGmyTNFnQ\nO/2fam12l+9MY2NdKxFl5i0125yOoS3un+xwWCYAlt9+gO9xW8WZtleYxqqanli+tFdlADAChn1w\nlJY359GZOrrgDUrWXheIDvvdZ4gohzeb+KD1aHUk4AlI5p5TJuSQL9BKRGn8nZeHBgAAgPFIZw3I\n1v4eYIy+YZ1yOXFwRpvHaBvrKsYdHBYAgCQ2/Fed1PLGHCKioDfU60I/UtAdIKJM3qzTGsx6Ior4\n3cFeTcIBXyMRqQ3dV3GSPAaFQqFQ8N7eV5GRRZ9T4HVahUKhUDCcwezwigNeq0cO+50Wo17LKBQK\nBaPVGy2ugCSHHDqFQqEwePpuF/a7rCYDxzJdneuNgtPX87lIHl6heGDx0QgR0YXimQqFQqFzhO7r\nKAEAAAAAAABMDMOfLDC6+JWYWwO9LnYtB92B7ms/a3lzPhG1+j09owUp6L1ARGQQ9IMu1hj2WQ2P\nLttQeaIufp3jSOOZQ5teeNRg8/cTLkh+q2Hm4g17qy/ELyEcablQvffVBZzRGeinddhr0c1c/GrZ\n0TONrZGuzi9UV25YNpszubrTBZbLz8vJ7LqRlpOXl5evG56rP9+bqOguWb092GfhxejFUqFkT/2Q\nr8TbfnbL6nUHmobaDQAAAAAAAEwOw58sxFdxJKI6b49Vm+Sgx99KpDaY9QwRcUZjHhG1+HoMbJCD\n3gARUb7ZMNiMOtFtNpVdIKKcF98/fuXbzs7Ozq/PH1w/X113tLqlb+Ow22wsu0BEmUU7P+1qfPnD\n3xamtZ7Ye7RvaylgNbywt44op2jnh5e/7uyMN/9094s5RC1HX+WF+MgJ1ugOhkKeIjURUb4zEAqF\ngl6BS+hgAcA4pbjDWFcEcB/wCwwAAACjaSQuQsPqzQaqPkFBb1AWjAwRkRzy+FqIyCAY4sMRODOf\nuauupdHrDzviCz3Kos/fSkR55vhlIfon++22ExEi9dL9Ac+tK0uwerPTzzH6BbvqejcO2GzVESJ1\n4f5A96k/qzM5fAEtP3vDmd5dh1xCWSNRWtGHAe/t1YJYndHqCXLEvXCo5ZDVYTM6+l7xYrRcPVtR\nVlHT0KpMz1+YHiMlERFFm/zlTvepxo7UnIVPU4y4gbeXzlaUVvgbWmOUmrNQsK7ls1VEUtDtrKi5\ndC2mTJuzZJ31LqNFAAAAAAAAAPoagTELRFrelE9EkWD38gSiz9dIPYcjMDozn0ZEdR5f18CGsN/X\nSEQ5RiM3cM9ywO1tIaJMwd7n0saMweZYqu7T2OltIaIci9Pcu09GZ3GuyezdOOh21RFRjmA33jFk\ngjVazZlE1Ojx9F48YvQ0fVJadjZdeO+Dw/vWz21u6IgREUXFqh0V4izrvg8+cK7WNDTGYgNuH613\nV5xkS/YcPnx4n5W7WFFxTiJq8tpLT2pWvLn/8Ae7hfRzpdu9mAQB0A985QtJB7+0AABwJ7w1JLvx\n/P4+IsnCrVUcG/1d8yHE+PUmew5HYPQCryaiM5746ghS0BsiojTeNNhlIcLBQCsRqfX9tGINJl2v\nO0RfsJWI0gz9NGZ08Skb3aSgv5GIqLHMwDJ3YPm9LUREjQFxbJKFpnPHGrNWCIsyVKSZ9eyahWlK\nIoqKNSel3FWr9KxKxepXCflK5cA9qDTUUV/ziT/YRHPWVRywL2JJrKlpzlpRwmdrSJWxaPUKrrnG\nj2gBoI/uP98PPPDAjRs3xrYYgLtqa2t74IEH4v8ftx8+AGB0qNVqvHONiRs3bqjV6ru3G3UKhWLK\nlClTp06VpAFXv4fxSZKklJSU8ZwsjMRsiPgqjpm7KltC3qBk4dhwwHOB+g5HYPVmAx09QQFPQDYb\nKeQNRIjUvHmwyQZyOBRf6YBj+2nFcpyaLkRuNxbDXY37K1HLaYkau29LoVuvrkgk0k/7W53KY5Is\nRNub2pWajNT4LRXLaZRBIuq42qFMZ7viBCWbzVL7QD2ouDX29Uq398COo+WUmlMoWEsWtl+TqPH3\nL//8992tUtOlIa8ACTDBxN+DU1JS8vPzL1682NbWNtYV9VVbWzvWJdxdUhQZl0Sl9kulUj3yyCPf\nfffdlClTxu2HDwAYHbm5uQ0NDVeuXBnrQiYdtVqdm5s71lX0Q6FQpKSkTJs27c9//vNY1wL3Z8qU\nKdOmTYuHC2NdS/9GJlmIDwmoPBoJekOySRfovt5kzzxAy5vn04kzkaAvJBsZb6CViAzmoUz0vyNt\nkHv8OzhZ7mq29NOvfcZxt9iASpPNxhquSkQZRBTtaG6PERGlZqTGmqQYkYqISLrWTqkD9RCVmqV0\n05ZSgaJXL9aU76io0OuF9FTlHGGffZEm3uTq1Q5NhorOjsYzAkgO8b/d8bfhaDQ6Y8YMhULx7bff\n9nx0zH355ZdjXQKMC52dnQ888MBDDz0kSVJaWhrWbgQAtVr9+OOPj3UVMF7E3xSUSqVKpZoyZcpX\nX33V0dEx1kXBPUlNTX344YcZhlEqleP2zX2EkoVbIxJaAn5Rkj2BCJHaYO4zKUHLm/LoTF2jPxAW\nGX8dEc0384NdFoIYrY4laiFJDMt3BglyWOo12oCNj0oIh/sd69M1oqG7Z44laiQK+cM0/pIFyl74\nbO6RI5X+uet5trnG7W+NzSFScUt4dktl1VluzTxVQ9WBcx2xwoE6iNUf2FFOa7ZvfCabTdcolUqV\nRpnF8+yWKvdJrmRRdqzeu2PbkdS1e7boR/N5ASSFlJQUpVKZmppKRGq1+vvvv+/s7KRxkywAdEtJ\nSdFoNKmpqUqlMiUlZazLAQCA8SWeLEybNq2zs5NhmFgsho80419nZ6dKpdJoNNOmTVOpVOP2hzVS\nyQJpDeZ8OnGhzhcMhgOtRGr+1mUhbuOMxpxNdY0hXyAgB4kozzR4sECkNRgyqa4lEvAGZRPfO1qQ\ng95gz9sMx+vVuxojkYA3JPP6OxoHescQekMmXWihRq835LD1XrCBSPKadEKA1fE2j2dsri+Z8czG\njdece954qTyWPmfJ0+liOxGpuNVb13aUlf/qpbeUWU/z+WkDz5fSzFu3/lJpxRsv/T5GyvQ5z260\n6jUqWr11fay88o2XymKkTM9fsdm6aJAJFQCTU3w2hFqtVigUarX6Bz/4ARHF34YBxpX4R42UlJSp\nU6fGv48atx8+AABgTCgUivgbhFKpnD59+s2bN/GRZvyLfxZVKpVTp06Nj1kY64r6pxi5X6aQTTd7\nV13m0hfZ6kN1NH//lwGhb24gBwRuQWVLTlGhdPREa8768yFn7wRA8hgeXHmGqPDDr/0mlojkoFX3\nZFkj0fzdl/3WnoMgQk5D/EKSmWtOi24DQ0SyX+AWV7aQeulB0dfrWhKim9cVn4gQ0fyDXwfMvXpW\nF74f8lu4XmVa9QvK6ogyXzktugzx62j6zdrFh1opf/eVoLVn43tWW1ubn58/deqIhTsAk8x9LVLV\n0NBQUFBw7+3jb703b94kxAowjsU/bcQzhSlTRmaRZgAASH74MJOMxm2mEDeCp7Wcic/cVddSfaiF\niPL7nefA6AU+rfJQ49ETdOc6DP1i9Hbni54XDrWc2WAwyh631cgxJIs+p0XYdOaOxrzdsdRTXB2p\nXmkwh90OC9/V2CpsOtE1YoHp0bPrRc+yQy2RE6/qjaLbaTPpWCIp5HVYhLI6IkorctoN3e1ZLUvU\nShfcTpGyKygAACAASURBVK9B4FitTqe9a/UAkKziJ2k4VYOkMM4/eQAAwJjDOwUMuxFMFhi92ZC2\n92grEVFer8tC9G6jPlQdof7WYegfa3L7dkv8hurWE5uWPbrp9gM5L76iPbS3d7zACR5fkF9cdqHx\n0IbFhzbcfiCzcClzorqReq7WwBrd/v1kLD7U2Fq964XZu3r1pC7c6XP3GPfAcEa9uqwxQhfKXlhQ\nRmkvHg97+HEQLbSfLX2jov6OCzxk8Fu2ruZUY1ERwASCt2EAAAAAgDuN5PdvjF7oWg0w02jm+m/D\nGsxdbQx3rsMwYL9Wn3j+4M4X5+dlqomI0vKWvrL/dNBlYu+8bCzLOwNXPt29ZmlXW3Vm/tL1+8+H\nPPGUQM32vH4loxM8oSvH33+laH5OWldfaXnzX/zt/tNhv613fazR7dtZlJ/WtaUsjcnlKO+gmbdx\nT8WdtiNWAAAAAAAAgBExgussjG8hh272pjrK+e35kEM/JmMNsM4CwPAa0XUWAAAAAABgIBN6zrDo\n1CsULMfbgn3HE8hBt7uOiNIMxnuaggEAAAAAAAAA/ZrQyYLWYMik1sYTu0yCyy92pQtyOOi1mfhd\ndUSUZ7EZECwAAAAAAAAAJG5CJwuMweF+JY+IGg+9uvjRBxQKhUKheGDmky/sqm4lyllz0DdGEyFG\nTdOBdau3nG0f6zIAAAAAAABg4prQyQIRa3QFrxx/f33R/LxbKzJSWs78olfeP34l5B5oWcmJI50v\nWb9qlmasywAAAAAAAICJa+IvH8hwvMXJW8a6jKFqOmC1N8ydGwtebJI6NHNWlSxqPnLkbJPUoXm6\nZKuVzyCKNvkryg+camiNEaXmFJZsXLco45q/ouzSmn3b50kHrFsa5urjmys5vmRjybwBLsXRftb+\nciX7dOq5U81Zq94sXdL+SXn5kXPNHZSa9bRp7VrTLOnAujcurdq3fZGGpJNbXi6L/nJf6TMstZ/d\nvq5q7nanKXt0jwwAAAAAAACMqQk+ZmEiibVequdKdle496xNv1S5oyZrbfz/5w4cqY8SNR3ZUXEp\n17rv8OHD+9800YmKqvpor807LtVza96scB/YbYr6K470frTPrq4FY89tf2/3xiWak6XbqiR+877D\nh/dv5tuPbCv1S+mL9KlN/oZ2oqh4qomo+VR9O1FUPNGg0esRKwAAAAAAAEwySBaSSM4SnlMRsVwu\nq8x5ls/u+n/HtY4YUbZp6+7tq+ZqqF2S2pWsMiZ19N38OX6Whogy5s5lO5qk2CB7Sn26aCGXkZER\nCx5rYJeUmGaxRJpZppJn2UufnO3IKpyrFE82RaPiOZEtXMg2nRKjUdFfr9HzWSP49AEAAAAAAGA8\nmvizISYOpYpVdt9QKfs8Gm1vOFrm9je0KtOysrNjMUqnWJ/NU7u2Ufbd9o49aViNioioXZIoleue\nNsFyrPLUtXYVz8+KVZxrbtZcJP1aXgpWnBNFukRz1mepEn96AAAAAAAAkJSQLEwQV/2lZSezX9+9\ndV6GiqL1zpe3ScPQq4ZlqaOpnSgeLkiiFEtN15CKLcxtr/KfVLZzApfbzrVXnaih6NwSDsECAAAA\nAADApIPZEBNErKODlBqNRkXUXn+s8lxHLDbIQgr3itUvyZWOVXxS307UXv9JxTEpd4meJdLM4rlr\nx441Zy/kVJpZi9Kba05c43gECwAAAAAAAJMQxixMENlL1j57zrmtuEaZmp67qGhVrnisQaIhr6fI\n8hs3S86KbcWVMUrNenrF5rXPZBARsXP5LLoUezpXQ0S5i9KpMX1JLq5uCQAAAAAAMAkpOjs7x7qG\nSaq2tjY/P3/qVIQ7AMPjxo0b9964oaGhoKBg5IoBAAAAAJg8MBsCAAAAAAAAABKHL8wnq2h9xRul\nZ9v73q3Rb3xz3SwsmAAAAAAAAAD3CMnCZKWaVeKsKBnrKgAAAAAAACDZYTYEAAAAAAAAACQOyQIA\nAAAAAAAAJA7JAgAAAAAAAAAkDsnCJBC9WCqU7KmPDrmf+j0lgvNi9O53AgAAAAAAwKSBZAEAAAAA\nAAAAEodrQySJ6FV/RemBU42tMWVaLl+yvmReBlG0yV9RfuBUQ2tMmZ6/ar31uVma23cRpeYUlmxc\ntyijZz9S0O2sqLl0LaZMm7NknVXQswPusr3+k/KKI+caOyg1a6GwcS2fTkSxa6fKt5SeauigtDlF\n1o2r5ypvt7/o3rLjJLe21Lpo4E4BAAAAAABggsGYheTQHiyvuDTLuu/w4Q92r049WV51MUrR+kp7\nRQO3bvcHh/dvXSJVlbrro01HdlRcyrXuO3z48P43TXSioqrXJIgmr730pGbFm/sPf7BbSD9Xut3b\nNMged1RJ+o37Dh/eZ53bULHjSBMRxWINF9kVb+7/4L3X9U1HK2q6N++oP2BHrAAAAAAAADAJYcxC\nclCqNMprF2tqTtLTen6LmyeiaH3N2Y4561bpM1REs0xbtuvb01XZ2Vt3P8dmaKhdktqVrDImdfTo\nRaypac5aYeezNUSaRatXHFt3xN9kWp3dzw7bGz4J0sKtK+ayRKRfs3X7EkoniUg5Z9UKfYaGSL9k\nbuo5UYqSkmIx0bt92wVa9R5iBQAAAAAAgEkHyUJyUOnXbv6lu+pYxbaqDkrLXVKysUTfca0jNTv1\n1mwEluNYoujVhqNlbn9DqzItKzs7FqN0inV3Em2/JlHj71/++e+770pNl6KUrbpzhzFJInaupusR\nVQbHEUUlUipZza09KpXUFVvEmhsoJ7XZf6rpOVN/MQUAAAAAAABMXEgWkkP0alNslmB/Zh21NwW9\nzh3lFQvfK0pP7bjaESNSEVG06bOqYPZipbvsZPbru7fOy1BRtN758japZy+a9FTlHGGffZGmq9Or\nHZqMfmIFIlKyLLU3tUfjvbfXf3JEnPszboDqUp+22tdSxbpS5ydPlz6HbAEAAAAAAGAywToLyaEj\nWLlje8XZq1HSpLOsSqlkNSpuybzUS+4jQSlK7WJNeeVJUdnZ0UFKjUajImqvP1Z5riMW67HMgiqL\n59mGKvfJpihRe71324YNe4JS/zvU5C7Rx05VHqtvJ5IuHimvOndN2X8GQaQkpVKp0Qtr51yrKv/s\n6rA/eQAAAAAAABjHMGYhObD8+pKG0vJfvfQWUWrW06u2rOJUKlpjLyl3Ol9+qYNScxau2VIyi4ut\nffacc1txjTI1PXdR0apc8ViDRPpbvai41VvXx8or33ipLEbK9PwVmwdeGEEzb+3mVeXl24qrYsq0\nXH7t1hXZJA5e47x1Qu66irLP9NufyRi0JQAAAAAAAEwcis7OzrGuYZKqra3Nz8+fOhXhDsDwuHHj\nxr03bmhoKCgoGLliAAAAAAAmD8yGAAAAAAAAAIDE4QvzSa79bOkbFfXRvndn8Fu2ruYGWlgBAAAA\nAAAA4BYkC5OcZt7GPfPGuggAAAAAAABIXpgNAQAAAAAAAACJQ7IAAAAAAAAAAIlDsgAAAAAAAAAA\niUOyMAlEL5YKJXvuXKYx4X6aDqxbveVse59HRXfJ6u3BIe8FAAAAAAAAkgpWcIT7l86XrNdzmrEu\nAwAAAAAAAMYBJAtJInrVX1F64FRja0yZlsuXrC+Zl0EUbfJXlB841dAaU6bnr1pvfW6W5vZdRKk5\nhSUb1y3K6NmPFHQ7K2ouXYsp0+YsWWcV9OxAe5TOVpRW+BtaY5Sas1CwruWzux+65q8ou7Rm3/Z5\nGrp6tqKsoqahVZmevzA9RsqB9hKtd64ri81lL55q0Cz5190ls3BFSwAAAAAAgIkBsyGSQ3uwvOLS\nLOu+w4c/2L069WR51cUoResr7RUN3LrdHxzev3WJVFXqro82HdlRcSnXuu/w4cP73zTRiYqqXpMg\nmrz20pOaFW/uP/zBbiH9XOl2b9MAO4zWuytOsiV7Dh8+vM/KXayoOCf106rpk9Kys+nCex8c3rd+\nbnNDR2ywvcSuBaWFm997b+sKDrECAAAAAADAhIFkITkoVRrltYs1NScvXtPwW9xu61xVVKw52zFH\nWKXPUJFmlmnL9i2mbFW2aevu7avmaqhdktqVrDImdfToRaypac5aUcJna0iVsWj1Cq65xj9QtKDS\nUEd9zSf+YBPNWVdxwL6on8ENTeeONWatEBZlqEgz69k1C9OUg+5FmfssPysjI4NFsAAAAAAAADBx\nYDZEclDp127+pbvqWMW2qg5Ky11SsrFE33GtIzU7tWv+AbEcxxJFrzYcLXP7G1qVaVnZ2bEYpVOs\nu5No+zWJGn//8s9/331XaroUpex+zvRV3Br7eqXbe2DH0XJKzSkUrCV8ep820famdqUmI7VrC5bT\nKIMD74VIybJKAgAAAAAAgIkFyUJyiF5tis0S7M+so/amoNe5o7xi4XtF6akdVztiRCoiijZ9VhXM\nXqx0l53Mfn331nkZKorWO1/e1msOgyY9VTlH2GdfpOnq9GqHJqP/AQRRqVlKN20pFSh69WJN+Y6K\nCv3Tm/sMW1BpstlYw1WJKIOIoh3N7bGB99JUM8yHBAAAAAAAAMYFzIZIDh3Byh3bK85ejZImnWVV\nSiWrUXFL5qVech8JSlFqF2vKK0+Kys6ODlJqNBoVUXv9scpzHbFYj2UWVFk8zzZUuU82RYna673b\nNmzYE+xv+QQiitUf2LFjz2dNUVKx6RqlUqnp51IQ2Qufzb12pNLfFKV2scbtb43d514AAAAAAAAg\n6WHMQnJg+fUlDaXlv3rpLaLUrKdXbVnFqVS0xl5S7nS+/FIHpeYsXLOlZBYXW/vsOee24hplanru\noqJVueKxBon0t3pRcau3ro+VV77xUlmMlOn5KzZb+1s+gYhIM2/d+kulFW+89PsYKdPnPLvRqtfQ\nxb6tMp7ZuPGac88bL5XH0ucseTpdbB9wL/UjdmwAAAAAAABgLCk6OzvHuoZJqra2Nj8/f+pUhDsA\nw+PGjRv33rihoaGgoGDkigEAAAAAmDwwGwIAAAAAAAAAEocvzCe59rOlb1TUR/vencFv2bqaw9Uh\nAQAAAAAA4G6QLExymnkb98wb6yIAAAAAAAAgeWE2BAAAAAAAAAAkDskCAAAAAAAAACQOyQIAAAAA\nAAAAJA7JAgAAAAAAAAAkDskCAAAAAAAAACQOyQIAAAAAAAAAJA7JAgAAAAAAAAAkDskCAAAAAAAA\nACQOyQIAAAAAAAAAJA7JAgAAAAAAAAAkDskCAAAAAAAAACQOyQIAAAAAAAAAJA7JAgAAAAAAAAAk\nbupYFwAAMPw++uijO+/8yU9+MvqVAAAAAABMeBizAAAT0J0hAmIFAAAAAIARgmQBACamnlECYgUA\nAAAAgJGDZAEAJqx4oIBYAQAAAABgRCFZAICJDLECAAAAAMBIQ7IAAAAAAAAAAIlDsgAAAAAAAAAA\niUOyAAAAAAAAAACJQ7IwZtRq9Y0bN8a6CoBJSq1Wj3UJAAAAAAAThKKzs3Osa5ikIpFIQ0NDJBIZ\n60IAJh21Wp2bm4twAQAAAABgWCBZAAAAAAAAAIDEYTYEAAAAAAAAACQOyQIAAAAAAAAAJA7JAgAA\nAAAAAAAkDskCAAAAAAAAACQOyQIAAAAAAAAAJA7JAgAAAAAAAAAkbupYF5DcotHon//85++//77f\nR6dMmcJxXGpq6ihXlURwAAEAAAAAAJKdorOzc6xrSGKXLl2aMmXKlCn9D/24efNmZ2fn7NmzR7mq\nJIIDCAAAAAAAkOwwG2JIbt68OdBZMRFNmTJloG/jIQ4HEAAAAAAAINkhWQAAAAAAAACAxCFZAAAA\nAAAAAIDEIVkAAAAAAAAAgMQhWYCJSQ65BT2rUCgYzmjzhftrIvltRo5RKBSsXnCH5O67A06TjlUo\nFKzO5AxIg+4l7DZqDe4evSfe50AFi14rr1UoFAotb/GIcn+bAgAAAAAAjCUkCzARyQGrsdivd52/\nfN5rlp0mk0vs20R0m4wu2eK7fPm0U+cv5q1+mYhI8lqMNtHoPn/5tIsXbUbB228qQUQU9ln44uqW\nYelzgILlkMP0goe1n758+biN8aw02oPIFgAAAAAAYJzBVSeH5IsvvlCpVIM0iEajjz/++KjVk3RG\n6ABKPqPWzHhFr5ElItGl1zmMgZBDz9xuEnLoZruFyyGbjohkv8AZw66wzyS7DZxN7xddBoZIDtp0\nBp8tFLRwffcQ9lnN5rIAmxNp1O7/MiBoh9bnAAXrggLHhxxivH/Ja9RatD7RzTN9ywEAAAAAABg7\nU8e6gCGQg1YdHzKbJdfeM+ya4yGX1mO1ODwn6lqJMvPXODwuQceQ7ONZq85hDDldJxojaflrnF6X\nwDFEFPbbBIuzui6SWfiKTee3hRxhv4klWfTYBJvrRGNEnVNocbodJm5IJ3KBQACXThxIWlraCPQq\ni75gROfQs/GbWgOvDfuDEum13U2koK8u08Bz8VuM3qQjiy8kG2VvkPR2XfwnzuiMBsbpC8mWvr8C\ncsgT1NqPhwxeng8Mvc+BCmYDgRZOMHSVzepNOskZEInXDc9xAgAAAAAAGA7JPhuitdoVMrmPf+qy\n6oJWvtjH2XxXvrxy/kOB8RQLnq4x55G6vS7Z6pM6vz5vZz2W+Fh00WUyOiWj5/zl8y5DyLa3LkJE\nRJLfYhB8nM13+cpln03rfYG3BYY2/hyxwugLhyS1lus6TyeG1bEkhXqtbhAWw8TqWKa7iZaRRIkk\nMRxhue67ieVYCofvXBeB4d1+j5XX9gochtBn/wXL4ZBEbPfdxGrjd9/fwQAAAAAAABhZyZ4sUKbZ\naTXxRqOeYQy29z1OwcBpOb3JZtWrxWD41jlYod1h0jHE6gWLIRLyizKFXI4zOofHadLr9CaHx1UY\nbyj57B4yu10WXsfpeIvLVSS5HUOMFmD0yRGmx0k/wzARWZZ7/RglmZjbZ/u3mpAsE3N7U4Zh43eT\nLHUb+LfhPvu8h4L7bsrQHVsCAAAAAACMsaRPFjhD1/fGrF6w8JLXYRXMRoNOt/JMhG6dg6nTuFsj\nzxmWUcsykRQKhNP0t4aZk9ZgyFETkSwGxEhL5YIHFHEPLjva2iqGBlzDD8YnhlX3PAGXZVnNMEyv\nAQYsQ/006XO3LEuymmEYOWDRPdhFZx0wabqvPu+pYKbPpjIRg0UWAAAAAABgfEnmdRaIiNTd/5N8\ngm6ZR1skGHmzyWIP2xbYB980Qv19+yvLlLfzuNfcYxI8w3LDUyyMFpbTUkCUiLRERLIUkojVsT1b\naHVatRQKyxT/QctSWGZ1LLEMlyaFbydJkigRq2UZvc17XIj/ujBa/QDn9vfX5z0UzGj1WrVfDBPF\nW0thibQ6FtECAAAAAACMK0k/ZuEWyeeolIq8fq/LYRVMBkYcfJwBwxlyWkPBW43CwUBjhIgYrYEj\n0S9puThWdFltHnGw8eetgxqupzeBjcABZDijngn5gl1rGYQD/rCW1/c6l2d1Rk7yB7p+AeSgN0R6\no45hdEY9BX2h+E9cDvkCss6kY4jRGfguBt1AZ/b32ec9FKzVG1jRd+vXVAp6Q4zewCV0TAAAAAAA\nAEbKhEkWiGXTIkFvQJSkcNBjFZyN/Q5JuIXRW6zzQzazzRsMBX0OwXIifr/WZH+RqRbMDl9IFAMu\nwbzLT7pBrw2hGNSwPsWJaSQOIMvbzOwhweLyh4I+m2AN6W0WPUNEYa/D5vSHiUhnthnE+C9AwC0I\nlWS28SyR1mQzSWVmqycQCnisglMy2k3cve72fvuUg26bzR2SByyYMVituhMWweELhvxOwVLNWWwG\nDFkAAAAAAIDxZcIkC6zR5X5F61326IMPcmY3Y/P+Nk8OBgcZuMBZvV4r4zE/OftJwccJS9Pic99Z\nozuw3yy7TLMffXSBPWx83+82sgP3gmRhyEbkADIGp2+/MWRbPPvJZR6yeL0WjohIFr3OXU5fWCYi\nTvD4rKzH/OTsBdaQ4X2fi2eJiFijy7db57csmL1A8HN2n9ukHWxHvd1nn1LQtWuXOyQPXDDpbN4P\nBdm57MnZix1h00GffaCpGAAAAAAAAGNF0dnZOdY1jAk55PdLOmPXGo6S16i1cH7RdZ9fCH/xxRfR\naHSQBiqVCnMiBpGWlnbXA/j444+PWj0AAAAAAABwv5J9BceEyaLTbApbvG6Lngn77NZq1nQ8oa+D\np0yZMOM+xgYOIAAAAAAAQFKbtMkCa3R5rILVPHtXK6lz5gv7/U4+oXHmODEeIhxAAAAAAACApDZp\nZ0MMjy+++OKubb755pvvv/9+FIpJRmlpaXdtg9kQAAAAAAAA49mkHbMwbAb/yv3mzZsGg2HUikk6\nX3zxxV0P4KgVAwAAAAAAAAlAsjBUODEeIhxAAAAAAACApIZkYaiwTMAQ4QACAAAAAAAkNSQLQ4UT\n4yHCAQQAAAAAAEhqSBaGCifGQ4QDCAAAAAAAkNSQLAxJSkrKzZs3p07t/zB+9913KSkpo1xScsEB\nBAAAAAAASHa46uSQdHR0NDY2DnRRyZSUlB/+8IcqlWqUq0oiOIAAAAAAAADJDskCAAAAAAAAACQO\nU9wBAAAAAAAAIHFIFgAAAAAAAAAgcUgWAAAAAAAAACBxSBYAAAAAAAAAIHG46uSQSJLU3Nz87bff\njnUhAKRSqR555BGWZce6EAAAAAAAmFyQLAzJ3/72N47jpk+fPtaFQBKrra0tKCgYej9tbW1/+9vf\nkCwAAAAAAMAow2yIIYlGo4gVYJyYPn06hs8AAAAAAMDoQ7IAAAAAAAAAAIlDsgAAAAAAAAAAiUOy\nAAAAAAAAAACJQ7IAAAAAAAAAAIlDsgAAAAAAAAAAiUOyAAAAAAAAAACJmyDJguQxMgqF3ikm3oXo\n1DO6oXQAAPdKFr02k17LKBQKBavjBVdAuv9O8JoFAAAAABgfpo51AcMi7HP5KUd9weUJWW26sa4G\nYJyIRqPnz5+/fv36999/3+ehlJSUhx566J/+6Z9UKtWo1yX5LYYXPNwah9uuY0n0ueyvLjDKlwNW\nvHgBAAAAAJLRhEgWwj5XgDE5heCrLlfQ6tQzY10QwLjwH//xHwqFwmAw9PtoQ0NDbW3tggULRrkq\nkoMub8t8d9Bt1hIRkdFoYHRPOl1BC168AAAAAADJaCLMhgj7XCeIF0yCMafR4wrKXXeHbDrWYLUa\nOZZlWc5g8YRkIqKwW8/orDaTjmVZVqs3u4K9hmHLfjPL8O7wrZtBK8fwnjABJJ+vvvrqscce6+zt\nypUrmzZtunLlymOPPXb9+vWxqIthGJKCYbn7tt7mPe6x6hgiIjnktvAco1AoGJ3J4Y+/PMN+x63J\nEwxntPnueEXKosfatRXHW72i3LcBAAAAAACMmAmQLIhe1xk1Lxi0OsGU2eJxBrrPKeTWM66g0RuW\nJNHNBwSjteuhSF2ZT+cSJSnsE8I23uLrkS0wBouJDbi7zlzkkNsbNlh47eg+pWTT9nnVb5bzTz31\n1FP88t9Ufd5GRCS6ly99ZYddeH4pv3DhUuHtU191NXV3NV0q7Khujoxp3RPet99+G+nt66+/fvvt\nt//yl7/8y7/8y9///vdvv/12DMpi9DZbobjrSa3eaLG5vAFRIlbPGziGiCSfwBf7tDbf5SvnPUZx\nk9HsCZPoNhvtktkdvPLlldMuQ3CXYAv0ig4kv8Ug+Dib7/KVyz6b1vsC36cBAAAAAACMoORPFkSf\n64zaIPAsMTqzKbPV6/TfDgryrC6rniFieZvDKHWnDplrXHaeJWL0FqeZ9Tp6fgPKGCzGW9GCHHR5\nJd5qRLAwmK+qN7/y3jfPv+v705+Ov7v8m/deef3jr4iIotdrv+A2VVX7T/3hZfrjtn11Efrq49df\n2ffN8neP/+mkb+sTtdteea8O2cIIisVifZKFd955p6Wl5ebNmzzP/+AHP4jFYmNRF6Oz+sTj7wuc\n5N316gsLHn2Q1QvukExEkt/hlYtcLguv4/Qmh+d9C8/IxGjNDo/bZtRxWs5gtpkypVCvQQmSz+4h\ns9tl4XWcjre4XEWS24FoAQAAAABgtCR9siB6XRfIYOFZImL0gjEz4nPeCgqYNI7nutqxnEErh4Jh\nIiI1x3Nd07kZLa8lMRDucRLC6C0mNuDyhUkOun1SV98wkK9qD9bOWLlJeOJhoulPrNr08ozag6fj\nAxRmrfxx3nQiyioomNHWeD3afOJg7YyVm1Y9MZ3UDy98+TcL2j47WI9oYRAff/zxU3ew2+331UlH\nR8f+/fs7Ojo8Hk9dXR0RPfnkk0VFRSNS8b1itLzF6Q2EO7+9cvrD3Ua5stgg+CVZDIgRzqjreskx\nOovTZuJIa7SYtQGnzSKYeL3OsLclQtTjJSuLATHSUrngAUXcg8uOtraKIcxhAgAAAAAYJcm+gmPI\n47pARCtnKlZ231ft8oXNwh3jDCSKUD/Lw8nU99SW0VvMWoPbJ+oCPol3IVgY3DdfttGMWdNu3Zwx\nc4aqTfyGniBSTZ+u7tEwGm0Tr9OXlT97qrL7PlXB9ShRz1bQ0/PPP09E27Zt677nxz/+8X0lCx0d\nHW+99dZf//rXurq6r776iogeeeSR4uLi4a70PshBh+BgbG6rniEihjOYrB49hR61u0Oytd8NQk5e\nv0E0vGg2Gi1mm9VjMof6tJApb+dxr5m7/QpnWG4EnwMAAAAAAPSQ5GMWQl53Hc3fffr85S7nP1yT\nSSecXpGISG4N+UJdX22GAwExTa/TEhFFbt8tBX0htY7nekUOjE4wa4Mup9Mn8RYDgoXBTZsxna7X\nf3Pr5vX669Hp3LT+Wqqmz5ymytn00Z+6nPR99Ie3+OmjV2pSev7557du3Rr///3GCkSUmpr6D//w\nD0QUjxVSU1OLi4tTU1OHu8z7IgUO2R09Zi2RLIdlYlmG4fScWvTfmuogB616zvzROZfzDLfT7/c4\nbRazUUdhqXcayGgNHIl+ScvFsaLLavNgEUcAAAAAgNGS3MlCyO2uUxfZBYNe10Vvstvy6YLTE/9O\nOU6uxAAABCFJREFUs7FMsHqCYsjnMFtPcBarIZ4gtB4SBHcgFPK7BOEQY7b1HZbA6AWz9kzZIclo\nRbBwNw8vWP7E9YM7qz5vI2r7vGrnweuPryx4uN+mWfyqWV+++/Yf69qIIuLHr//sJ69/1jzK5Saj\neLiQQKwQ94tf/GLhwoXx/xcXF//jP/7jcBZ3/xi91VFEh5bpjVan2+v1epwWI79LLLRZ9QxrtJmY\n+MtTDHrtFpeoM81L1zIk+vzBsCSJfqdgqY6Q3OuKLlqT/UWmWjA7fCFRDLgE8y4/6ThcwBIAAAAA\nYJQk82wIOej21KWZ+0xX4My2wg0rXe7gMiLKW2MQbYZHGylnqfVDv0Pfda6RWWQkJz/7AuUUCgf9\nzn7mO+gEIW+XQ48RC/fg4effeve6fcdri9/5hqbNKvzVu289n0Uk9tc0a/lb77Zt21G8eGeUVDML\nlv/ud8uzRrnaJPX888/HZ0bcl6lTu17gv/jFL4hoxowZTz75ZM8GKSkpw1LefdKaPUHGbrW7bcVl\nEaK0vKXm/QGHwBERa3T791sE24LZLZSWV+Twuc1aVvbsDpitT858lTLnv2hz75dNtkBItnDdHbJG\nd2C/1WI3zd4Uocz5a973u4x46QIAAAAAjBZFZ2fnWNcwQkI2Tu+3i4E+Ky6E3XrOYQyGHLrBNpb9\nAmcmj+jmB/3is7a2tqCgYBiKhUlsGH+L+nRVU1NDRI899li/jf/zP/+TiJYsWTIsuwYAAAAAgEkr\nmccsjBAp6PMHvXYPYw4YMJ4aktkTTzzx+eefnzt37ubNm30eSklJYVn2Rz/60ZgUBgAAAAAAEwmS\nhTuEfbYXNonzf+u16xEsQFJ76KGHnnrqqe+++67fR1NSUqZN63etTQAAAAAAgPswgZMFnaPfxeG1\nQlAWBt3OFuy0jUxJAKNKpVKpVKqxrgIAAAAAACa45L42BAAAAAAAAACMLSQLAAAAAAAAAJA4JAsA\nAAAAAAAAkDgkCwAAAAAAAACQOCQLAAAAAAAAAJA4JAsAAAAAAAAAkDgkC0OiUqna2trGugoAIqK2\ntrYHHnhgrKsAAAAAAIBJR9HZ2TnWNSQxSZKam5u//fbbsS4EgFQq1SOPPMKy7FgXAgAAAAAAkwuS\nBQAAAAAAAABIHGZDAAAAAAAAAEDikCwAAAAAAAAAQOKQLAAAAAAAAABA4pAsAAAAAAAAAEDikCwA\nAAAAAAAAQOKQLAAAAAAAAABA4pAsAAAAAAAAAEDikCwAAAAAAAAAQOKQLAAAAAAAAABA4pAsAAAA\nAAAAAEDikCwAAAAAAAAAQOKQLAAAAAAAAABA4pAsAAAAAAAAAEDikCwAAAAAAAAAQOKQLAAAAAAA\nAABA4pAsAAAAAAAAAEDikCwAAAAAAAAAQOKQLAAAAAAAAABA4v5/q8Qx3lODSW4AAAAASUVORK5C\nYII=\n", "text/plain": [ "<IPython.core.display.Image object>" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#dboard.state_manager\n", "Image(filename='dashboards_data/img_4.png')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In this example we are going to modify the following:\n", "\n", "- **Padding of every component**: 0.5em, dropdown and checkbox 0.25em.\n", "- **Justify value of the checkbox**: center\n", "- **width of the dropdown**: 100%\n", "- **width of the Dashboard**: 22em\n", "- **border of the whole Dashboard**: blue solid 0.1em" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<a id='load_and_save'></a>" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 5.2 Accessing, loading and changing the layout" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "[Back to top](#index)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The modified layout can be read and changed accesing the *state* attribute of a dashboard, and can be saved as a dict by clicking the save button in the state manager. This way the state dict will be saved as a pickle file. \n", "\n", "The folowing example illustrates this process. Note that the A widget behaves on its own and the B and C are linked. This is due to both having the same name (the name of the first element of the Dashboard)" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false, "scrolled": true }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA8MAAABaCAIAAAATlhN3AAAAA3NCSVQICAjb4U/gAAAAGXRFWHRT\nb2Z0d2FyZQBnbm9tZS1zY3JlZW5zaG907wO/PgAAFyZJREFUeJzt3U9s2+bdB/Cf7MJighpim7Vm\nu2Zm16xmgGVR5uCN3PcQtsBqFkhmFT1E3XuwvMPCAntRDj2EGQZUw7BFAZo36i5RT1YPQZRDEbV7\ngTDbwdqhr1m0mdUlmOlstel1TRQsgem6tSgjNd+DbMd2LFuWROuPv59L4sfUo8ePny/9I0VKHsdx\nCAAAAAAANqml1gMAAAAAAGhIqKQBAAAAAMrxUNV79Hiq3iUAAAAAwJYq5Qro6lfSJT4xAGylwiEu\nsglQb5BNgPpU4qlhXN0BAAAAAFAOVNIAAAAAAOVAJQ0AAAAAUI6NK+l79+6Nj4/fu3dveePk5OTX\nX3/t2qgAAAAAAOrdxpX02NjY1NTUjRs3vvnmm0LL+Pj4nTt3bty4MTc35/LwAAAAAADq1MaV9JNP\nPunxeHK53NjYWOH89NTUFBE99thjbW1t7o8QAAAAAKAeeUr5tHDLssbHxx3HaWlpmZ+fJyKO4779\n7W+v3aNn+76bz9zc3GeffbZ08n6VlpYWnud37ty5xaNqIJhA92zzd9rC0qoQJtA9yCaWViUwge4p\nsaAtqZImIsuyPvvss8L/H3/88d27d1f4xE3pb3/7W0tLS0vL2mf65+fnHcfZu3fvFo+qgWAC3bPN\n/1pjaVUIE+geZBNLqxKYQPeUWNCW+t4dlmUt/X9mZqbY0c82Nz8/X2w1E1FLSwvmbX2YQHAJllaF\nMIHgEiytCmECa66kSto0zbt37xKRz+cjolwut/wGRAAAAACAbWjjSnpycrJQRnd0dOzZs4fneSKa\nnZ1FMQ0AAAAA21mpV3c8/vjjTz31FBHt2rWrUEwDNBQrrUo84/F4WH84YdhrbGEbibCf9Xg8DC+p\nWnap3UwpIufxeDycKCfNtR55vwtdEXhZv79NsT6LtW88YEuPBQXW4/GwQjCmW2s9EqChIJsA9QnZ\nLMnGlXRnZ+d3v/vd5bcY7tq165lnnnn22WdbW1urPR4AV5iJoBS3ZW10dDgmpAdEJb062bauSANp\nf3xkdCQVsmPBYNwkIrKNaPDlJBsZHh0dUpnkq1IkU2yfYGfiQentMXvDPou2bzxgKyVLqiklRkaH\n46KpSuHUmnsTgIaBbALUJ2SzVE61udBlw7h27drYuq5du1brMdY11yZw9FQXdZ0aLXyRG+rv8PZe\nmlqxxdTlXq+v7/JC48S5/d7OEyM5Jzfc3+E9NHhrYaNLvd6O/qHcg0+QGzl3rIuos8tHHceHc+v2\nWbR94wHfGjzkXeo/N3Ki07v/3ERpU0CEbCKb5UM2NxgwslkuZLNCyOYGA64sm6V4qMqFeU1ZKZFT\nBUXQYu9nA+eMtEwpVVbjV8amiXxdfZFEQgmwZKhCQA+rXDJ68dNpb2dvJJFURZaIbCMhh9V3P7rt\n7ToWCWejcX/aiPkZsvSYLEcufjpNvv3HIvG4EmArGOT169e/+uorXGK+psItrdVnZbSxjoDIF75i\n/EGBZM2wgwFmcQvb1DJ5Iepf+NVyAZHLpjMWsbp+mw8HuEIz6w8KVkw3SRRWPYOZTlnShVGVkXl5\noz6F7Nrtfm6jAUt2KkP+iFAYNiNIASamGbbML/0c9QrZbHTI5voDRjaRzVpBNtcf8BZks9TrpBtF\nfuydFBtJXU5FgrwRlV6OM0pq9NbE6FCET/8iHDeIiMie/nNUC8SNXO5WSjJOhiMZm8hOK+KAxkWG\nRkc1leIn/zxd6NGMS2IkKyVGJiZGEpKpSqFERa8LTE9PY3ew1bJmlliBXcwNw3KMZa68VCprWF6O\nZ5e2EFiyDMvOGhaxS83EcoXmB55BUDQtFhJWJnPtPou3bzhgy8zmWX6pmViepWy2Qa7HRDZhDchm\nHUA2YQ3IZsma6pw0EREdikTDEkdEtsHL55IhWeSIiJNVUQ3qWZsEIqLOcEwOcAyRKAc739EzFvF6\nNGEfSyVkkSUSEkk93aMRkZ2JRTP+mBkNckTERxOR1N5Y0gwrfA1/RNg0yybmfpCIYZi8bdtEyxJs\n55ll50wWtrDJtolhmGXNZNs2EdnW4n6BYdlih7ZF+izafr+fIgNePRp24edoDMgmPAjZrAfIJjwI\n2SxVs52TJp+weMzCCCFZYrSoIoeCop9//v380sx5WYFbONHPMIzXJrLNtJHnRf/SY4OCl4jINjKT\n+Y8GnvAs2HtyjEx9/ftQwVVzc3ObfxDL0PLg2LbtXZYsIiKG9a6xBUPMikcWcstQNiE+skgserKl\naJ9F2jceMLtqNNYDP0cdQzabHbK5rBXZRDbrCLK5rLX62Wy2c9Le+9Nj64q/5227tz8kSrKsylEx\nvLRZsUlc9jtglpp8fRfSseXXeDFco+wfm9GNGze+//3vb+4xnMB5LSNrU+HCKNvK2qyw8qo9ludI\nNy0irrCFYRErsAzn57xpM0tU2NrKWsQJLMNJ8aGhhVeHWIGjta3dJ5FdpH3DAbMM77Oy93dAlmkR\ny1Vy+eEWQjabHrKJbC41IZt1Bdl0NZtNd056ia1H42OHBnUtEVXlkMhZ2fyKxK/E8KLgNdOL1wDZ\npmbkC+3+jmkjw/ALKB1R8EahNZXP5zf9GFaQeCutL0TJzqQM8ksrLs5ieMnPGFpm4Veb1dNZTvSz\nxPkDrKllFh5pZVIG4w/wRJxfXOQvtkMo1mex9o0HzAiSnzLawptk2oam20JQaLi/T8hmk0I2kU1k\nsz4hm65ms9nOSS/DcizpWtoISmxWj8nKp5Rni+8SWFENMc+HZTERERk9Fn57kjoZIiagKPvfORkM\nC4mIyGRiYfldiqjrHMxMT0+vM6YdO3ZU8BNtCxtOoNfr3XyvQkgNROSQysfDXCYSfpdCQ4X7zjOJ\nSJLCkbDAimqI7QnLYjISsBOKYvhjKT9DFFAUYa8cjrLRIJNW5Su8PBIoNYLF+mSKtFM2FY2ZAUUR\nuWIDDqpB5aWQEkgovBmTY5aUDPKbn45aQzYbErKJbK7eGtmsD8hmbbPZvOekGX80eULQw3sfeYSX\nolY4dfaQ10xn19klxLVzAUN9fu9eMWoFj3cRwzIMkaBqQ6eEjNLz9NMHQilOuayp6x3MeNblxg/a\nZDacwO9973tldMuHk5rCJkMH9vYoRuCcFhdZIiIrEz99uvBBSEwgpg1Khvr83gMvJUlOpWSeiIgE\nNXUpbMdeOrD3+Wg2eEGL+Es/li3WZ5F220zFTse0rF18wKwU184Kablnb084zUe0RLDYkX0dQzYb\nE7KJbK6GbNYHZLO22fQ4jlPlHj1U7S63RFbXDFYUC2m3M6oQSEdMPbyp+b5+/fr6r6F4vd71jx23\nOZ/Pt+EEbvpiLyAiosLfI2SzGGRzfcime5BNZLMSyKZ7Sixom/ec9GZZaeV5MZzQzaxpaDEllvWH\nxTIOW3BsXSFMIKyGbNYHTCCshmzWB0xgbTXxddKbJCjJQUNWe54eKHywkxZfeEVhc1pacHBSEUwg\nrIZs1gdMIKyGbNYHTGBt4eqOarp+/fr8/Pw6G7S0tDiO8/XXX+Pjmtbk8/k2nEC8SlWeBn4FuRqQ\nzQohm+5BNpHNSiCb7imxoMU56Srb8NBw3759WzOSRnT9+nUcW4NLkM1KIJvgHmSzEshmzaGSrrL1\nF/T6B45AmEBwDZZWhTCB4BIsrQphAmsLlXSVYUFXCBMILsHSqhAmEFyCpVUhTGBtoZKuMrzIUiFM\nILgES6tCmEBwCZZWhTCBtYVKusqwoCuECQSXYGlVCBMILsHSqhAmsLZQSVcZFnSFMIHgEiytCmEC\nwSVYWhXCBNYWKulqam1tnZ+ff+ihtWf13r17ra2tWzykxoIJBJdgaVUIEwguwdKqECaw5vB+0tU0\nOzs7OTlZ7D0vW1tbn3nmmba2ti0eVQPBBLpnm79nLZZWhTCB7kE2sbQqgQl0T4kFLSppgG1hm/+1\nBqhbyCZAfSqxoMW1NQAAAAAA5UAlDQAAAABQDlTSAAAAAADlQCUNAAAAAFAOVNIAAAAAAOVAJQ0A\nAAAAUA5U0gAAAAAA5cBnHFaZZVk3b97M5XK1Hohb2tradu/ezbJsrQcCsDnIJkB9QjahoaGSrrLP\nP/+c5/n29vZaD2S1q1evdnd3V97PzMzM559/jj0CNBxkE6A+IZvQ0HB1R5XNzc3V4e6gitrb25v4\nzAE0MWQToD4hm9DQUEkDAAAAAJQDlTQAAAAAQDlQSQMAAAAAlAOVNAAAAABAOVBJAwAAAACUA5U0\nAAAAAEA5mreSNuN+j4cRk9mye7AzCs8EklYVBwWNyjZTatDPMR6Px8MKYjiul7EuzJifEWJm1QfX\naJBNqCJks4qQTaiibZPNpv1kFjMV/9Tb6dVjWjYU5mo9GijN3NzcyMjI3bt3v/nmm1Xfam1tffTR\nR3/4wx+2tbVt+bistBx4Ocn3RxMRgSVTi0de65HsUV0RtnwoTQDZbETI5naAbDYiZLPmmrWSNpLx\nTzvlc4Hka7GkGVb4Wo8HSvKXv/zF4/EEAoE1v/v3v//96tWrPT09WzwqsjPx1O1DiUwiVPjbIkkB\nRjgQi2fkmJ/Z6sE0PGSzISGb2wCy2ZCQzZpr0qs7jFRirEMKBWXR92k8aSy02nqY44KqLPIsy7C8\npKQKL2EZqsAGFEXiWZZl+YCcNOzlnWWTIsMGtcVXJax0iGVDGl68csGdO3f27NnjrDQxMXHy5MmJ\niYk9e/bcvXu3FuNiGIasTHZpWTB+NTWUVASGiMg2ErLIMx6PhxGC0XRhYWTT0cUXtRheUrUHXiy1\nzaSy8CheVFKmvXqDZoVsNiZks/khm40J2ay55qykjUR8rEMK+zl/WPSNxeOZpem2b78fz4bTWcs2\nYlwqJEULewt7+qN4RkplLctMiHpYUvRlvyBOUkQ7vXiBj6XHNZJkka3OUPM3r/zueO9zBw8efK43\n/LsrN/NElP+//xaPRn73xiu9veJz4itvvDeWL2w79t4vfyIePHjwoPiTXy42NpVcLpdfaWpq6syZ\nM+Pj47/5zW/+9a9/1eYDVxm/qh42Tx/g/JKsxlO6aRHrFwM8Q0SWFhYHNE7VRidGkpJ5Ugols2Qm\nQlLECiUyE7cmhuOBzOmwqq+IvJWWA2GNV7XRiVFN5VIvi6s2aFrIZoNCNpsestmgkM3ac6rNhS43\nKTdyopN8x4ZyjuNMXe7zUsfx4ZzjOE5uuN9Hh87dWtju1oXD3s7XR3LO6IlO6joxutA8dbnP5zs2\nlHNyI693eg9dmHKcqUt9Pl/f5amF73b0D+WKPfknn3yyiaHaxltHuo+8qX1hO/YXQ28e6T7y27/a\njv3hz7u7D58c+rfjOF9+8uaLPf0f/Ntxvvzw5OGeV3//yb9t58u/Dvb3HD754ZebeKrNDWyrulrl\n/Pnz4yu99tprL7zwwgsvvHD27Nnx8fHz58+79NQbyd0aOvd636GOQmx8+/sHR3OO40xdOuxdWBqO\n4+RGz71+6tKEc+vyubOXJhYfOXK8o7COJs7u93adnXCcqQuHvR39w4uraOpyn8/XV3xRVQURsols\nlg/ZdA+yiWxWAtl0T4nBbMJz0raRSE76pLCfISI2IIve28nY4oEL0+H3Lx4Vs7zAZjOmTUSMjxf5\npeYAZxuZ5S8rsKIsUjquW2Tp8TQjyYHqXOWTN9/7493uN97ofdJL3ifFN0723P3jezfyRNT2sPhq\nz7eIqP1Zkae75lc0c/XdNL148mfd3/JS+75X3zjiTV+4NlOVYfzhD384+IBIJFKVzsswOzs7ODg4\nOzubTCbHxsaI6MCBA319fbUaDxERMZwox1J61slNDF86K9nvDgTCacs2dTPPS8LCmmIEOaYGeeIk\nOcTpMVUOB0W/EHjndp5o2aGzbepm/va7PTs8BY+89P70tGmUf7t8o0A2NwvZLAGyWQXI5mYhmyXY\nLtlsvjsO7Uw8OUnTky89cvF+YyqWtkSpcHXO8m3XfmHAojytjDwbUCQKxnWT4mkmqFXtcvm7t2ba\nO3ct3lPbtotvn7sxM0dE1N6+1Fr4Z+bmnbmvrg785//ef/Szt2aI2isfxdGjR4no17/+9VLLkSNH\narVHmJ2dfeutt/75z3+OjY3duXOHiHbv3j0wMFCTwRTYmWg4yqgJxc8QEcMHgkrST8bTkYRhK2s+\nwIiJ/l+YgWMhSZJDqpIMhoxVW9jUdWooFeLvrySG5V38GeoCsrlpyOb6kM0qQTY3Ddlc37bKZtOd\nk7YzidRtX9/g8Oii4cE+X16LFa5ot29nlo6as7o+zRUu2rGnDW3xdomsrps+v7DyHYDYgCwxejwe\n09lguHr3nbY/0T5z6+7cwldzt8yZtifa136zmvZd32p74tXzH35S8KH2wQfvHHmyWgM5evTom2++\nWfh/DXcHRLRz586nnnqKiAq7g507dw4MDOzcubNW4yEiIku/GFm8J4KIiGw7axPLMgzv571mevG+\nBzuj+PnQBx/HYx/xp9LpZEyVQ5JAWWvltXkMF+DJTFscX8CacUVN1s3NE25BNsuCbK4L2awGZLMs\nyOa6tlE2m62StjPx1O2OkBoKCIsCoUi4M38ltnDD8adKWNUyZialhFTzkCovxHvy7bCSzJiGFg0p\nf+ZlZfXrUExAkej901eYoFy9HYL32Vde3DV85kz6Zp7yN9Nnzgy3v/jKs941t23vfrV75r3/uXDt\nDlH+ZvrUf/34eMKs5s0ThZ1CbXcHBT/96U+fe+65wv8HBga+853v1HY8jF+J9tHFl/ySEkukUqlk\nTJbE0+ZhVfEzrKQGmYvhcEI3zEwqIsdNIfgfj3EMmVo6k7UsMx0Ly1fyZK+4Z50LRo4xV8KhqGaY\nph4Ph06nSeCrtq7qE7JZNmSzGGSzKpDNsiGbxWyvbNbqAm135IaO+ajzxMiqa9Anzu4n2n/OGO73\n0f7jxw93EJGvq+/UUOGC99ETndTVf7y300vk7ew9calwb8X9OycKXw4f76DO11f3vcpm7yqwv9B+\n2/9id3d3d8+Rn/1W+8J2HMf+8Oc9R94ybMdxHOfLD3/Wc+T3E47jOF/+9fzJVw93d3d3d7/Yv7Bt\nyRrizomLFy8u3TPxq1/9qnC3xHLJZNKlp95AbuLSib79HYW9ta+r9/jgyNLCGB3sL9xR4evqOzs8\n5ThObuRsX5eXiKjj0LGzlwd7vR39Q7n7d04UHnX8cOfCNv3nNlhWVVDru5qQzaoNbGu6WgXZdA+y\niWxWAtl0T4nB9DiOU93S3OOhandZLbYe5sRs0tKklUcxhsr70xFTX/8znayUxKt+3Yiu+/k8V69e\n7e7ursJgq62KA3PvZ/zTn/5ERHv27Fnzu//4xz+I6Ec/+pEbT930PB4iQjaRzTIhm+5BNpHNSiCb\n7imxoG2+Ow7dkNU1PZNQ0rwSb76Puawn+/btu3bt2scffzw/P7/qW62trSzL/uAHP6jJwKBeIZtb\nBNmETUI2twiyWXOopEtgmwn55Xfs3rOazNd6LM3t0UcfPXjw4L1799b8bmtr68MPP7zFQ4K6hmxu\nFWQTNgfZ3CrIZs1tq0qaCSSste7zFKLr3/7JBOKmE3dpULBMW1tbW9va92BDU0M26x2yuV0hm/UO\n2ay5ZnvvDgAAAACArYFKGgAAAACgHKikAQAAAADKgUoaAAAAAKAcqKQBAAAAAMqBShoAAAAAoByo\npKusra1tZmam1qNw0czMzI4dO2o9CoBNQzYB6hOyCQ1tW31a+FawLOvmzZu5XK7WA3FLW1vb7t27\nWZat9UBgc+r7E4m3ArIJ9QnZRDahPpVY0KKSBtgW8NcaoD4hmwD1qcSCFld3AAAAAACUA5U0AAAA\nAEA5UEkDAAAAAJQDlTQAAAAAQDkecqPTwv0TAFBvkE2A+oRsAjSo6lfSuAEZAAAAALYDXN0BAAAA\nAFAOVNIAAAAAAOVAJQ0AAAAAUA5U0gAAAAAA5fh/Q7t/TrL4tp4AAAAASUVORK5CYII=\n", "text/plain": [ "<IPython.core.display.Image object>" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "A= Dashboard(test_dash,state='array_scaler.pkl',name='A') #instantiating with the path of a saved layout.\n", "custom_layout = dict(A.state)\n", "B = Dashboard(test_dash,state=custom_layout) #instantiating with a dict \n", "C = Dashboard(test_dash)#Init with default layout.\n", "C.state = custom_layout #dinamically changing the layout\n", "#Dashboard(['r$N=row',[A,B,C]]).widget #This is the new widgets.Hbox(children=[A.widget, B.widget, C.widget])\n", "Image(filename='dashboards_data/img_5.png')" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "{'array_scaler': {'css_traits': {'align_content': {'target': 'blue solid 0.1em',\n", " 'widget': ''},\n", " 'align_items': {'target': 'blue solid 0.1em', 'widget': ''},\n", " 'align_self': {'target': 'blue solid 0.1em', 'widget': ''},\n", " 'border': {'target': 'blue solid 0.1em', 'widget': ''},\n", " 'bottom': {'target': 'blue solid 0.1em', 'widget': ''},\n", " 'display': {'target': 'blue solid 0.1em', 'widget': ''},\n", " 'flex': {'target': 'blue solid 0.1em', 'widget': ''},\n", " 'flex_flow': {'target': 'blue solid 0.1em', 'widget': ''},\n", " 'height': {'target': '', 'widget': ''},\n", " 'justify_content': {'target': 'blue solid 0.1em', 'widget': ''},\n", " 'left': {'target': 'blue solid 0.1em', 'widget': ''},\n", " 'margin': {'target': 'blue solid 0.1em', 'widget': ''},\n", " 'max_height': {'target': '', 'widget': ''},\n", " 'max_width': {'target': '', 'widget': ''},\n", " 'min_height': {'target': '', 'widget': ''},\n", " 'min_width': {'target': '', 'widget': ''},\n", " 'overflow': {'target': 'blue solid 0.1em', 'widget': ''},\n", " 'padding': {'target': 'blue solid 0.1em', 'widget': ''},\n", " 'right': {'target': 'blue solid 0.1em', 'widget': ''},\n", " 'top': {'target': 'blue solid 0.1em', 'widget': ''},\n", " 'visibility': {'target': 'blue solid 0.1em', 'widget': ''},\n", " 'width': {'target': '22.0em', 'widget': ''}},\n", " 'widget_attrs': {'visible': True}},\n", " 'dd_sel': {'css_traits': {'align_content': {'target': '', 'widget': ''},\n", " 'align_items': {'target': '', 'widget': ''},\n", " 'align_self': {'target': '', 'widget': ''},\n", " 'border': {'target': '', 'widget': ''},\n", " 'bottom': {'target': '', 'widget': ''},\n", " 'display': {'target': '', 'widget': ''},\n", " 'flex': {'target': '', 'widget': ''},\n", " 'flex_flow': {'target': '', 'widget': ''},\n", " 'height': {'target': '', 'widget': ''},\n", " 'justify_content': {'target': 'center', 'widget': ''},\n", " 'left': {'target': '', 'widget': ''},\n", " 'margin': {'target': '', 'widget': ''},\n", " 'max_height': {'target': '', 'widget': ''},\n", " 'max_width': {'target': '', 'widget': ''},\n", " 'min_height': {'target': '', 'widget': ''},\n", " 'min_width': {'target': '', 'widget': ''},\n", " 'overflow': {'target': '', 'widget': ''},\n", " 'padding': {'target': '', 'widget': '0.25%'},\n", " 'right': {'target': '', 'widget': ''},\n", " 'top': {'target': '', 'widget': ''},\n", " 'visibility': {'target': '', 'widget': ''},\n", " 'width': {'target': '100.0%', 'widget': ''}},\n", " 'widget_attrs': {'visible': True}},\n", " 'main_row': {'css_traits': {'align_content': {'target': '', 'widget': ''},\n", " 'align_items': {'target': '', 'widget': ''},\n", " 'align_self': {'target': '', 'widget': ''},\n", " 'border': {'target': '', 'widget': ''},\n", " 'bottom': {'target': '', 'widget': ''},\n", " 'display': {'target': '', 'widget': ''},\n", " 'flex': {'target': '', 'widget': ''},\n", " 'flex_flow': {'target': '', 'widget': ''},\n", " 'height': {'target': '', 'widget': ''},\n", " 'justify_content': {'target': '', 'widget': ''},\n", " 'left': {'target': '', 'widget': ''},\n", " 'margin': {'target': '', 'widget': ''},\n", " 'max_height': {'target': '', 'widget': ''},\n", " 'max_width': {'target': '', 'widget': ''},\n", " 'min_height': {'target': '', 'widget': ''},\n", " 'min_width': {'target': '', 'widget': ''},\n", " 'overflow': {'target': '', 'widget': ''},\n", " 'padding': {'target': '', 'widget': '0.5%'},\n", " 'right': {'target': '', 'widget': ''},\n", " 'top': {'target': '', 'widget': ''},\n", " 'visibility': {'target': '', 'widget': ''},\n", " 'width': {'target': '', 'widget': ''}},\n", " 'widget_attrs': {'visible': True}},\n", " 'scale_chk': {'css_traits': {'align_content': {'target': '', 'widget': ''},\n", " 'align_items': {'target': '', 'widget': ''},\n", " 'align_self': {'target': '', 'widget': ''},\n", " 'border': {'target': '', 'widget': ''},\n", " 'bottom': {'target': '', 'widget': ''},\n", " 'display': {'target': '', 'widget': ''},\n", " 'flex': {'target': '', 'widget': ''},\n", " 'flex_flow': {'target': '', 'widget': ''},\n", " 'height': {'target': '', 'widget': ''},\n", " 'justify_content': {'target': 'center', 'widget': ''},\n", " 'left': {'target': '', 'widget': ''},\n", " 'margin': {'target': '', 'widget': ''},\n", " 'max_height': {'target': '', 'widget': ''},\n", " 'max_width': {'target': '', 'widget': ''},\n", " 'min_height': {'target': '', 'widget': ''},\n", " 'min_width': {'target': '', 'widget': ''},\n", " 'overflow': {'target': '', 'widget': ''},\n", " 'padding': {'target': '', 'widget': '0.25%'},\n", " 'right': {'target': '', 'widget': ''},\n", " 'top': {'target': '', 'widget': ''},\n", " 'visibility': {'target': '', 'widget': ''},\n", " 'width': {'target': '', 'widget': ''}},\n", " 'widget_attrs': {'visible': True}},\n", " 'scale_slider': {'css_traits': {'align_content': {'target': '', 'widget': ''},\n", " 'align_items': {'target': '', 'widget': ''},\n", " 'align_self': {'target': '', 'widget': ''},\n", " 'border': {'target': '', 'widget': ''},\n", " 'bottom': {'target': '', 'widget': ''},\n", " 'display': {'target': '', 'widget': ''},\n", " 'flex': {'target': '', 'widget': ''},\n", " 'flex_flow': {'target': '', 'widget': ''},\n", " 'height': {'target': '', 'widget': ''},\n", " 'justify_content': {'target': '', 'widget': ''},\n", " 'left': {'target': '', 'widget': ''},\n", " 'margin': {'target': '', 'widget': ''},\n", " 'max_height': {'target': '', 'widget': ''},\n", " 'max_width': {'target': '', 'widget': ''},\n", " 'min_height': {'target': '', 'widget': ''},\n", " 'min_width': {'target': '', 'widget': ''},\n", " 'overflow': {'target': '', 'widget': ''},\n", " 'padding': {'target': '', 'widget': '0.5%'},\n", " 'right': {'target': '', 'widget': ''},\n", " 'top': {'target': '', 'widget': ''},\n", " 'visibility': {'target': '', 'widget': ''},\n", " 'width': {'target': '', 'widget': ''}},\n", " 'widget_attrs': {'visible': True}}}" ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "C.state" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.1" }, "widgets": { "state": { "46b6c5b2d66746129c3f0d755d86aef0": { "views": [] }, "6828e1f3b55c4002a8831991e311365b": { "views": [] }, "6ef24376a6474f01aa9ab59fc42e7d26": { "views": [] }, "72ad815ad1584214a0dc04ae4c2804a2": { "views": [] }, "b648634f9b4b4d83b41974996754d6c5": { "views": [] }, "b8de3f9071b44167b37fc88397d9d6c0": { "views": [] }, "d674f23d381e47d68c3179054f5c9155": { "views": [] }, "e9edc537fa52415ab9d9b10f4d5fff1e": { "views": [] } }, "version": "1.1.2" } }, "nbformat": 4, "nbformat_minor": 0 }
agpl-3.0
cggh/scikit-allel
notebooks/profiling/misc_plotting.ipynb
1
24362
{ "cells": [ { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import numpy as np\n", "np.random.seed(42)\n", "import sys\n", "import cProfile\n", "import humanize\n", "sys.path.insert(0, '../..')\n", "%reload_ext memory_profiler\n", "%reload_ext autoreload\n", "%autoreload 1\n", "%aimport allel.model\n", "%aimport allel.stats\n", "%aimport allel.plot\n", "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true }, "outputs": [], "source": [ "pos = np.unique(np.random.randint(0, 100000, size=1000))" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAA3CAYAAADNE3cQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHz1JREFUeJztnWmwHcV1x3/9Fu379rTrScgIsQiMBBK22QUBvG8xqbLL\nlXxInM1JOWWDyVL+kIqdpGJnqThxUilX4jjxgh2Wik0MGNnYmM1ml2QQuwRa0AoSEnpS58M5PXOm\n78zcuVfwHoI+Va9ez+175053nz6nz/9/uq/z3pMkSZIkSZJ0Iz0j/QBJkiRJkuT4leREkiRJkiRJ\n15KcSJIkSZIk6VqSE0mSJEmSJF1LciJJkiRJkqRrSU4kSZIkSZJ0LX1N3+icS7nASZIkSfImFu+9\nK3ux0R94r/+Xgt9kXv8G+Cu1vBz8BlN3E/jLtHwh+NtM3SPgT9Pyp8F/UcsTwB8A36vXXwX/CS2v\nBv+gucf/gP+Ils8Df7epuxX85Vr+CPgbtTwK/E7w8/T6N8H/p5Yd+K3gF+v1O8H/n7nnjeDfo+VL\nwd9s6u4Bv9p837Wm7mnwS7T8XvDXm7pt4Odo+Rrwf6nlqeBfBN+j198H/wFz/++be9wH/h1a/kD0\nzI+CP0PLV4K/wdTdDv4iLZ8K/hFT91Xwv67lGeBfMHVfAH+NlgfBP2Xqvg7+o1o+Gfx6U3c9+Pdp\n+X3grzN1j4E/UcufAP8vpm4z+IVa/iD475q6neBnaPmT4P/B1B0AP17Lvwv+H03dK+BHafmPgv7p\n9X7wE7T8++C/rOUe8IfB9+v1n4P/My3Pivrou+A/qOVzwP8s6vfztPzhSFf2gJ+u5c+D/1MtjwN/\n0MyLPwb/F+a5hiqeaz7458z9v2Lm0wzwO03d1Ub/xoA/FM3zX9PyGopzzep+PM/vAX+2ln8b/FdM\n3cPkNuC3ojF/Dvx8LX8R/KdN3Q7wMys+9yT5/L0S/LdM3TPgBys+dz/4lVr+OLlN6AV/hHwe/h74\nf9Jyn+pDn17/CfjPm/m7N9L992r5LPD3mLp7wa8y3/0fpu5x8EvjZwbfH333X4O/ysy7xyK79X4z\nPj81dbeQ2+iV4O83dV8C/6lwXfXXDZzVDwyZ617gqJaP6nWQPvPeUcBhUzcJ2KvlxcCTWj4Z2Og9\nR/T6LOAeLV8E3AbgHA5YA9ypde8Abte6Xv3c3Vq3FrjZ3GOj92zR60uBH5jvPuB99iwnARvMM08H\ndml5PrDZ1M0FntfyAuAZfZY+YI557yRgn9aNAqYC27XuBOBxLZ8GPOw9R51jNPD20HbgV4Fv6z3m\nAQtNP1wOfF/rlgITgAdM22/Vuh5ghambBzxn2jMB2K/loxShz9363CDjayPaVxAdCeXRpu6QuZ4A\nvGTqrD5MB3aauvHmWQ5G9xyt90Wf8Yip6zXXB4Bxpu6Iee69wGRTt0ufAeBpYBGA9xzVuhlatxUY\nsPdQvQTwkJXtHAHpnzAXJgIvAjjHeG1P0LFlwEYtLwGeMvNiBvCCuccB77N7TkXGCEQ3njXfPUCu\nb9l3q+zT10DGbpRpj31vPD52LkwB9pi6aaY9S4FNpm4y+ZjPBraZOtuGk4H1ps7qph1jEP0Yq+Wd\n5OMIRb3dFdVt0O9Bn3EpgPb3AfJ+sXVDyBjM0rrHkXEC6YMxzjFGr62+vYLYwyCj9DUo9gnalpe1\nbOfBALBDnwFk/gabdirwkLnHCuBBLa8Efm7qTgEe0fJCRN+DWB2ulG6cSB9FZ2An7pHontbh9JN3\nFEhn7dOydSKnAg8DOMdErQsdciHwQy0v1P/P6P9zgZ9oeTmw1Xt26iS4BLhF6z4EXKv370UMa6i7\n2Nw/3GejuZ5GPnmyiaP3mYUYlfBsYeLOA7Z7n7U9cyKIc9lmDEPsRMLAr0Ec327nmIA4xeu07p3A\nTd4zpG3NnEgoe0+AIi9GnQgwCOzzPmvPXHIlBFHYYOTjxUGdEzlMPkEOUZwssRPZb+qsPth+Ds8S\n3nsIsokJRScSG2trYF6m6ESGTJtiJ7JTnwGME1HZDszU8jbE+OE9h/S7ggGzEzB2btaJTCA3zvOA\n58x4nQT8UstWN6DoRKaRG1wQQx6uswWNyixyYx07kRcR/QwOc4h8QVDqRHQhNJ1c97t1IgPhHmp4\nexHjDWLo1mtdL6JTwbDGTuRlcv14gaKj2EWut3aM0fsv13LmKFT2ov1SUvc8MncAnkDGCR3D7eSL\nDKtvr4YTmUtx0TeP3JGfRm5Dp2g7g31dCdyrddP0nuFziyjqymvmROJIpIdiJGLvaR1OFonoKng8\nuVKWOhHgTOAh73lFV+PnAD/WujXAnd7jVbHOIXcia4C7tLxUn3mDc/QD7wO+o3WrgC3eZ4ORrdRV\nllOMROyEsKuvmcBu4ygWkDuRRcBT5h7WicTRzBJyQ2FXD2vJHd27gJ96nz3HO4H/1fKpiDI+qtdX\nAN8DcI5BxGCFVcfpwP3mu2OltEY+XhxYJ2JXWCBjbCORKieSOSkd2x5kFQkm4tMx6yV3FNk9VI96\nyXUsMyjqUONIJBh4KDq/skik4ETMinwH+crTRiLxfWInUheJBGedrSY1gl0CPKZ1dU5kKrlehutg\nyONIZBbNIhEojl9VJDKX4kIocyI6LyeSG8XMiZTYABuJTEXmk3eOSXodVsjjgf3G0cYO+iC5E9lJ\nHjWC6G0Y1zgSWU8eiWwHRjuX6fg+cifyNDBXdRbEiczR8uOoE1HZRtGJVEUiozl2JzKf8kgkQzT0\nehV5JHIysN705SJGKBJpCmfZSCSE30dUmRZR7kQslHU28EvvsxWWhbJOA573nh16vdrUrQVu1o66\nAHjc+8zbXoLCXDppz6cIl2WRiF7bENs6gDnkUBYUV3+DFAfGOhFrNEYjEzzccwW5IlgnYqGsMdqm\nm7TuMjTycI5xCMQXPncR8EOjMGeQQ1nhWaxSxpFIHZxlx7wbOGsSEhWFZ7NGahxFo2HhrNHAoQqD\n0gN4M3m6grO8Z4+2f4rWlUYiJffpGM6iCEkMIjodDEjsRGZSHYlYPY0jkQFyY211EUwkotLEicyn\n6KRsJDIFGdcwz5cgq/Vwv/1mfLJIJHr+5UgUHt4XR7Bx3zaFs+JIJIOzVJ82kTuEfei4KmT4LLLw\nBZkzIRLZCfQa52OdSDs4KyySJpM74R6tC4urUieitskiCVkkglmMOsdkxFYFdMVCWTCMcFZZJFIF\nZ1VxIhb/ngPs9T4LXaucSMaHqFgnYqGsUBcikRjK+rZ5n+VD3opEJUGRg6EIq7ZJwMsm2rBOJF4V\n2NVf7N1LnQiilM8qLNWDriZ04E8F7lB472JyKOsC4EETlVxO7lAuAH7ufdbPFsqC8kjEwlkxJ/Ja\nwllWH6BopOzECfcIK80x5JMPigalDOboBs4CMcIB0uo2EmkKZ4UxsFAWlEciYdFUFom0cCK6sOg3\n39cuErHjVedEbDRtnYiN3OcBu7zPxjJecbdEIlqO+RC7uIF6OOsA4LTdUM+JbAIWmAjDwlYWzgKJ\nDkNdFomo87HRSByJNIGzppD3yxiKi6Tx5BCftTnTgIPec0B5tXnkEaxFNM4E7jdRY+xEhg3OaheJ\nNOFESvkQ55iOTKpggC05nvEhOtArUGwPcSKBVA88yoMaTl8I3KKRxvtRKEvf91ZyeCzmQ05CVkBh\nAO2EgIpIxDnGavvChGjqRKyRGETC+d36/D/znoMIlPUTE41lUJa25yzThivICXaHRiLmOeJIJHaE\ndrLWwVndEuv2/lYfoMiJlDmRQiRi6qyxjo1LDGc1JdahyIvYSORFoE8nbrhPMDbdwllBp5bR3ol0\nyonMQqCnoNOVnIhK00ikyonYRJSl0fPHTqQqEsn4EJWySKSUWNd2Wl7EciLBwYT3voLAzidqvXUi\nWSRSUmcjEZBIK5DrdpFh9c0utKCaExlDDmWBRuVatvPVjsHJCGIT7K51IhbKCu8dkUjERhfhHmEQ\ny+CsFk6E6sysUxD8zjvHTGTwH9WBXkUebZwBPOo9+9VAZplZiCF9QJViFbBZo4tzgWdM5tUFwN0m\nAmrHh1gycTyiqGGCxAO6xYTfdU7E4pjWSMRQVsgss1CWo8iHXIxwRKFPLkf5EG3LQe8FSlCybTrF\nSf1qZWdlEyQosjpzqIazYoNijY9dfUEJnGXq6iKRGM7qJBKJncgsbZ+nJENLy93AWVYfsswsXQAt\nJF9sjdV7hP7LjK6BXcs4EcuHxN+Nlls4Ef3+0eTj0EkkEt5XSaprskhPWXtoNXSdRCJQ5EUyTkTH\nznJfUORF6iIRW2c5EWiNRALcGUci/eYzVU5kLDmUBdWciF2MnobaDotoaF1ZZlZIWBinbbT6MSLE\neh2cFUciZU7EQlmrEDjmKPA2BLYJCm+hrCVIY5/Sa8uHZJwH8GE0KyuuM6T9j0x9Hak+D3FOYUVn\nB9SS6lBPrNuVpyXVbWbWWiSSmog4uuvN8/WS95fNyjoRUcxQVwZlPRQcnRr5meTZMY6iwsaLg73A\nBP1cHbEOxdVsWzhLFd/CM3VwVpkTsZGI1dMyOKvP1PVpphG0GpenybMBLZwFRUPxWsFZC5AMP5t4\n8ILRP9tfYxEu6GV1NhPJDUM7J1IFZ00AXqrgrBbQDM6KnYhdSA4g2ZS2PXXpvdaJ1BHrUORF7OIn\nroPqDC1LrMd17ZxILbGuc62KWLekOjRzItZpLEYgxDAecWbWOPKxW4jA6Xax87qAs+o4kdr0Xjrj\nQ243Cmj5kLXAzWrsPkCelQVFPmQNsMF0NiicZa6rMrOgSKzbPSI9yOBYnLEOzgqk4woEjluArKIe\nAN6t7SxAWRq1xam9V9Ca2muhrNMpQlmzEGWzUaMP/I9xNs5c7wOmaNlrW6F1lWUhrSZw1mSEcD1s\n3tcNnNVHQzhL+8k6gKZwFjSLRDrOzqIIZ9VBWVCEs2JS3UbFllQH0UXrRPYDY03kGIxd7GyaEuvt\n0nvDmJfuEdEIZRbFRVgnxDrUO5F4sVC6V4Tu4awqYv0w0G8yCI8anqIbJ2Ij2CpSfQrSz0GnTqGY\nmRVDWTBCxHq8Yq3jRGwkEoxn7ERa+BCVqk2GDo1EVAFXIpzH25GVzmP6voWIYgViOV6pQw2cRflG\nwzCgFj4YQLJTLBwzCdhXklFRBmddDNyqRiCDslQslLUc6fvg9DIoSw3C+bTyIZZUr8vMChIvECy+\nbFdZMd5ryXVbjrOzgj7Ee0QsDgytcJYN97uFs6DoAOrgrKaRyFE6gLPMXqPnNbtnHPmY1GVmQTES\nabdHJI5EMi5KDcpLyNhAvRMJ3x/PBQuldbxHJGrPcgTft+PYKZxVxYlAeSQSnMjzwCRFAGI460mE\nhO9Hxn+mcbxtiXXt5xCxWygLTHYWFU5EkZNJ5GNgEQ0biZxOkVR/wPRlDBPGpDqMUCRSBmdVcSJB\neZcAT6pRPQV4WMtnA/foIK4A7gBwjtlIR4fsA5uZtQhp+LP6+s81GyTOyroEuMWs0Aqks3Ie8Qqo\n40iEVj7Etn0Gkub8sq7iFwNPKDa5EFkxBChrEuJIr9fnm4ooRYjOLkc2HHp1nueQO8UzKWadQWsk\nUpeZFaSMFwmGNg7VqyIRW445kaAPlg+BikhEdSTOzqoj1g8iO4hDG2IYri4SsdlZdZGIXbF68v6q\ng7OCgR4g32u0DDGeYZVYl5kFrZFI1R6ROBKJnQMUyfXg9LNoSfWzBzigRjSDQVWsE5sG7NKxitvQ\nZLd6bOigA2JdpZQTUYkjkV8CJzhHn9qGsAO9EInoGG0BBjVi3kW+sHgWmK3QaFUkArmDzpyIfqaf\n3HGUOZEDiL3ZauzXPGCLc8zQz9htAmGeV/IhKq+rSKQxJ6KdNoB2PHDEe7Yjhhh9/R3AvSZffjVw\nlx4HMoAM3sOm7k6dfJcgBrgH+CDVfMgEZGX+U1O/DHgsWgF1s1s95kMgdyJ29TAH2KMO72REmYfI\n94e8G/ixgdsu1esQ4Vgo60IkYSAYh0KUpRN/OcVjEeoys4LUpfnWZZ7EkUi7FN+6I08ClHYE0ad2\nxPpQ9DnLp3QSiWxFjjQZixjo8SYVtCknYiHBMk6kCsqC9nCWjUTq9oi040Sg9eiT0ZRkZukcm4Mc\nvRE2EfchEVTQnbDwGkAWTDZ5ooUTidoTnIg1dNCqm7GDLiPWG3EiamOeI48kAmwVRyK2DoppvoeR\neT2o3xd0pWw/1ShK+BCzeKiCs8p2q29BkRzz+fi4k3vNZ9ql98IwH3vS6dlZwZAuRI55GKKED9HO\nqOND3g7cYYx9vD/kZmRVvst7mZTqVGzG07mIk7KQU3zcCVSfmzUDcQBlu9UHMd5dnWYfslqq40Me\nQgZ5v2aTVUJZ6gRXU0zt/Z55b5zauwwh0Oxqri4zK0i7NN8w7k2J9SpOpNaJqARIq45YjzkRKPIi\ncVaZdQC7gWkRB7QZWKA6uYOa87O0XJWdFTDwcB1W+bETsfrXLSdStlu9jhOBYiRSBmfV8SFh02ho\nW3AiMZQFDTgRyp1ITKyXcSJVTmQPAlEFPY4jESjP0IqJdVsHxaNPQI8/0X4I8GdZKnyIROxGw6rd\n6lDtRAInYo87mYA4ttDvcXpvmRMZtkgkTvGtg7PacSJ1pHoTPiTeZBj4kNlIx96LOStL5a3I6iko\nfxkfEh+8CNVwVnbwohodS6THAzORfGd21R6RkJkVIqlJSDryDfodvUjkEfiQi9DIQ7/f7g8pyzqL\n94eENlSdmxWkaZpvU2K9KsW37tysICGi6GSfCBR5kUo4y8s5WIcoZiqVpvnSGolU7RMJz5JFISGa\n0e+zkWmWmVUBBZVFIsFx1HEi9vBFqIazQrstnNXpHpHw3uBE7PNDe05kN62QC3QOZ2WciC42X6Q6\n4gSZ93GGVkys2zoQgx5naMV7RcqyGAtwFq1OJNsnonowFtFhu1t9LKLTL2DSexF7ukE3L0/RZwg6\nNV3vZef86xrOqtsnUuVEAh8yFVmV3Q1ZuLyK3MHYTYajEKz/XiTSuA3phNiJ2KwsaN0fAq2kOlTA\nWRRXBUHRgiJ0u0fkQfJo6T3AjwyUdTZyHEYwDhbKWq5tDs9+DpKBYSd2vFM9bgNUcyJNdq23hbN0\nJTiOfN9BDGfFnIiNErP70Nk+ESim+dbBWdCcXO80O6sqvTfeIxLgrJnAYZOVB8aJKDw5jlyvmp6b\nBccAZ5lnrnMiYc5URSJ1nMhBff2J6HPHsk8E6s/PgvJIpDGcpVK2V6TqeKB2hy8eNOVD6gjj9N5w\naKcl1et2qhfOzNKF6VyKYwmv87OzQijbkpmlBmYlkt57HrJbOxiKU5D9GbuVcD+JPA34dGCT97xE\nboDPQhTOrmYsHzIdGex7KEqc3gtq3JycVzWZnNhsIdUNJtnRbnVdbazQ7z4XcYR1UJZDz8vSuji1\nN4ayoDwSaZKd1XTXepNIZCxyhEzQmzo4K87OgiKcZbOzmkQiYZVaR6xD8zTfbQiR6mgGZ9Wm97r2\nBy9CMTtrCoKjh/uH9FhHMd28FzGeNoIpZGepdApntXMidXBWXSQyE+Elh6LPdUOsNz0/C8rTfKsi\nkbdouUmab1tinWJmFjQ7fHE+ojeO4kK8bqd6DGXNQXguuyCDkT47y7WeoloWiYTMrB7yTIwTEQ7j\nBer5kDXAfabha4C7XPHo9w8D3zYedzziWNbpZy5AjhHJnKJO4hPIT8INElZVcxHPHyZtaXqvPkc7\nJxJvNByADBJ7FOnn81EoS+Vd5FDWMkQxg5O0u9ShlVR3VEci3WRndUusd/tbIvaeY2h/dlZsgCyc\n1Wkk8gwlGw510XJU29Rks2G7wxcHkaNJQvRV5kSanJs1FUlUsc55T2SU20Ui7eCsyo2GOqeDUSxz\nIpOQ5BqHiUQU4guONIay4NiIdag/PwvEiSzT59+M9PUhWiORJ5DTnftotuGwCbFuz82CVidSdm5W\n0JuFwIs+P0cvJtXb8SExqQ4jQawbY+30fUfMqrgqEnkSacRuzd7ohA+53dSFnerL9fk20QplnQf8\nQic+tG7CA1HerZZoN7uod1Oe3lu2W32att+uLNptNLRQ1i0IlLUuZLU4x3z9jsIPUPn8yOyzyc8X\nm4g4DJt1NgcZryzq0Ek7kVbD3Ul2VqfEere/JRKkDs6qI9ZjOKtdJFJ39IlN8w2QxbHAWUEf2mVm\nQbNzs8oyszLISCOTsigvjkTawVlVGw0nIzp0hHpifSIwZBI96vgQ6JxY3wuMU9gP6n9TBHW6u4BF\nCv88hTiBMeowwvsOItHTQsqJ9SVqB60TORZivW63+maKpHpANOxxJzYzq2yPSMyHwDBGIvEgBmMT\nO5s6TqSMD5mJNM560NJNhqbuLnIoayUyUDaVtQkfUkaqT0IypYZo+IuG1O8RgTwMnYxM1O3kAx+c\nSAxlXYH+AJVeWz7kYgT6C4p2LpLhZrM7TkewUW9em0sx5xy6y87qBM6KnVQ7TqRpdtZwwVnxhsPA\nixwEetQxdwVn0SYzSw3EDHJDXhaJ7KH+Fw1Bxzgadyj5dUOO7QTf6ZCdU2UlGMxO9ohkz22ua+Es\nbd9uimm+BU4kZOEZKYO04sMpbV2BWFdHdIB8X04ncFanTiRwaZYPWYCkVO9QXnmAIrLSZI8IjNAv\nG0JubOIsrjgSOYJ0zDbKjzu5ADnmIxziNxXpsEeURD8L+JnWzUBWhhvIoawPAddGBtPyIfOQyfgg\nRSlL760i1aEYicR7REqdiG7YGqv3PAF4Qp/zNGSwV2h/nEcFlKXQnN1UWAtlqTTJzIJjy87qCM7S\nCVxlpMKzNM3OakesHwuc9SzyY0S9VEQi0fEpjeEsjSJ79LPtjoCfiBCsgQuKI5FghGsjEcqhLKje\nbFgYH12VD1D8HZ0yJ7IU4SqzeahjHhYOnewRgc6JdajYK6J9OETxJAMoP0OrjlzfCgyYXeuQ/8ph\nOzirIyei834M+ZiHxUfpcSdEpLrywGMozvkRgbOqDmCEYiRi3zcKOGz2SsxGfjM6ZBUE53Aa8Ata\n+ZCzkf0cQ0ia7uMGKlqNOJ5exPDeSgRlqdOYSx7ZXATcVrISa5LeawcgjkTaOZGwsSxkVNiDF1cg\nhvEuJGpaFzBt1/oDVBdof4QjVLLUXtO+2InEO9XD8z8XvdYkO6vq2JMmkYi9/3jkhOGgK+2OPYFj\ni0Q6gbPsRrRXEAhpLsUUXyjP0LLHntg5YhdhhY2Gqg/dbDQsg7O6ycyC8uwsC7sFJz+AkLH2yI4q\nJxLDcWORjLPDlEcie5F5Fn8OWnWz7ADGsRSl7uiTphlaleS69sEeillggRcJulEHZ7VN8SWfB3Mo\n/oSy3WhYlpkV8yHxrxnCMUYiznvf7j3yRueavTFJkiRJkrwhxXvf4lQaO5EknYtz7nPe+8+N9HMc\nT5L6rHNJfda5pD579aQbOCtJkiRJkiQBkhNJkiRJkiTHIMmJvLaybqQf4DiUdSP9AMehrBvpBzgO\nZd1IP8AbRRInkiRJkiRJupYUiSRJkiRJkq4lOZEkSZIkSdK1tHUizrnLnHMbnXOPOeeuGo6Hej2J\nc26Bc+4259wjzrmHnXOf1NenOeduds496pz7gXNuivnMZ7W/NjrnLjWvr3TOPaR1f2deH+2c+6a+\nfqdzbhFvAHHO9Trn7nPO3ajXqc9qxDk3xTl3rXNug3NuvXNudeqzetE+eETb+1/axtRnwyne+8o/\nZNfvJuRk0X7k9NfldZ95o/0hO2rP0PIEZDfxcuCvgM/o61cBX9DyydpP/dpvm8i5p7uBs7X8PeAy\nLf8O8GUtfwT4xki3+1Xqu08BXwdu0OvUZ/X99e/Ab2i5D9nBnPqsur8GkeNFRuv1N4GPpz4b5nFo\nM0jnADeZ66uBq0f6oUe0w+A65IDEjcCAvjYb2KjlzwJXmfffhBwOOQfYYF6/Evhn857VWu4Ddox0\nO1+FfpqPnGF2IXCjvpb6rLq/JgNPlLye+qy6z6Yhi7qp2p4bkfPxUp8N4187OGsexfN3Nutrb0px\nzg0i53bdhShpOPMnHLIGrb8QFvosfn0LeV9m/ey9HwL2OufiH8s53uRLwKcpnquW+qxaFgM7nHNf\ndc79wjn3r8658aQ+qxTv/S7gb5DDA58D9njvbyb12bBKOyeS8n9VnHMTgO8Af+C9Lxxc52WZkvpK\nxTn3LmC79/4+Kg5wS33WIn3Iiatf9t6fiRy2d7V9Q+qzojjnTgD+EIGm5gITnHMfte9JffbaSzsn\nsgU5mTZI/EtmbwpxzvUjDuRr3vvr9OVtzrnZWj+H/ITUuM/C0fFbtBy/Hj6zUO/VB0zWVdbxKm8D\n3uOcexL4b+Ai59zXSH1WJ5uBzd778FPN1yJOZWvqs0pZBdzhvd+pUcJ3EQg+9dkwSjsnci/wFufc\noHNuFEIs3dDmM28occ454N+A9d77vzVVNyAkHvr/OvP6lc65Uc65xcjvMN/tvd8K7NOMGwd8DLi+\n5F4fovUI9+NKvPfXeO8XeO8XI/jyD733HyP1WaVoW591zp2oL61FfpTpRlKfVclGYI1zbqy2dS1y\njHvqs+GUBuTV5Qh5tQn47EiTOMP9h/yC4lEkq+M+/bsMIfVuQX5E6gfAFPOZa7S/NgK/Yl5fiZz5\nvwn4e/P6aOBbwGPILzcOjnS7X8X+O588Oyv1WX1fnY78Ls4DyKp6cuqztn32GcTZPoRkt/WnPhve\nv3TsSZIkSZIk6VrSjvUkSZIkSdK1JCeSJEmSJEm6luREkiRJkiRJ15KcSJIkSZIk6VqSE0mSJEmS\nJF1LciJJkiRJkqRrSU4kSZIkSZJ0LcmJJEmSJEmSruX/AcYL5wYk/+FDAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7fa1427722e8>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "allel.plot.variant_locator(pos);" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAA3CAYAAADNE3cQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAH6RJREFUeJztnWnUXlV1x38nc0JmIIFAIIRJEARkCCAWUFCsVusShy7r\nauuXWu3qYFsRrf3QLmsHp/ZDLe3qclnbOqEiyFAgAcRiIMiYwIshIQMJGcj4ZiLT6Ye993P3Pc+9\n9xmSvC/o2Wu96z13fO4903/v/9773BBjJEuWLFmyZOlHRgz3A2TJkiVLlteuZBDJkiVLlix9SwaR\nLFmyZMnSt2QQyZIlS5YsfUsGkSxZsmTJ0rdkEMmSJUuWLH1LRxAJIVwXQhgIISwNIdwwFA/1apIQ\nwuwQwn0hhCUhhMUhhD/S/dNDCPeEEH4RQrg7hDDVXXOj1tdACOFtbv+FIYSn9dg/uf1jQwjf0f0L\nQwgnD+1bHhkJIYwMITweQrhNt3OdNUgIYWoI4eYQwrMhhGdCCPNynTWL1sESfd//0XfMdTaUEmOs\n/QNGAs8Dc4DRwBPAWU3X/LL9AccB52t5IvAccBbwD8CndP8NwN9p+Wytp9Fab88DQY89Alyi5TuA\n67T8ceBftPxB4NvD/d6Hqe4+Cfw3cKtu5zprrq9vAB/V8ihgSq6zxvqaAywHxur2d4DfyXU2xO3Q\noZEuA+5y258GPj3cDz2sFQa3ANcAA8BM3XccMKDlG4Eb3Pl3AZcCxwPPuv0fAv7VnTNPy6OAjcP9\nnoehnk4E7gWuBm7TfbnO6utrCrC8Yn+us/o6m44oddP0fW4Drs11NrR/neisE4DVbvtF3fcrKSGE\nOcAFwMNIJ12vh9YDM7U8C6knE6uzdP8airps1XOMcT+wLYQw/fC/wZDKV4C/AA66fbnO6uUUYGMI\n4eshhMdCCP8eQjiKXGe1EmPcDHwJWAWsBbbGGO8h19mQSicQyWuiqIQQJgLfB/44xjjoj0VRU3Jd\nqYQQ3gVsiDE+DoSqc3Kdtcko4I0IdfJGYCdi+bck11lZQginAn+CUFOzgIkhhN/25+Q6O/LSCUTW\nALPd9mzKiP0rISGE0QiAfDPGeIvuXh9COE6PHw9s0P1pnZ2I1NkaLaf77ZqT9F6jgCmqZb1W5XLg\n3SGEF4BvAW8JIXyTXGdN8iLwYoxxkW7fjIDKulxntXIR8FCMcZNaCT9AKPhcZ0MonUDkUeD0EMKc\nEMIYxLF065F/rFePhBAC8B/AMzHGr7pDtyJOPPT/LW7/h0IIY0IIpwCnA4/EGNcB2zXiJgAfAX5U\nca/rgflH7IWGQGKMn4kxzo4xnoLwywtijB8h11mt6LuuDiGcobuuAZYgPH+us2oZAC4NIYzXd70G\neIZcZ0MrXTiv3oE4r54HbhxuJ85Q/wFXILz+E8Dj+ncd4tS7F/gFcDcw1V3zGa2vAeDtbv+FwNN6\n7J/d/rHAd4GlwEJgznC/92GsvysporNynTXX1XnAIuBJRKuekuusY519CgHbp5HottG5zob2z8Lb\nsmTJkiVLlp4lZ6xnyZIlS5a+JYNIlixZsmTpWzKIZMmSJUuWviWDSJYsWbJk6VsyiGTJkiVLlr4l\ng8gRlBDCVcP9DK81yXXWu+Q6611ynR0+ySByZOWq4X6A16BcNdwP8BqUq4b7AV6DctVwP8Avi2QQ\nyZIlS5YsfUsGkSxZsmTJ0rd0nbEeQsip7VmyZMnyKywxxvZVubtfoyZG/f85iH/j9g9AfJ3b3gtx\nDMRJEAfd/h9CfK+Wd0M8Vv8HiDdC/Ec99jOIV0K8HuKP3fVTIQ5CHAVxtJan6rFjIG6DOBLirRA/\nBPELEL+QvMPTEPUDM3EWxE0QRyTnfAril5N9cyG+4I5/0R17BOKlWv5PiL+n5fdCvDW5z+9D/DeI\n4yHu0Xe/AOJTevwbED8OcQfE4/SdprjrfwTxw1qeoHUwWbdvgvin7twvQvxc8vufhvilZN+bIP4s\n2fd5iJ9N9q2FOMttXwjxcS0vhniOli+DuNCd912IH9DyGRCXQrwc4kO6L0DcD3GUbi+HeKq7fj7E\na5JnuR/i1RD/EuLn3f5vQPxdLV8CcVFy3XcgflDLt0J8tzv2doh319UBxLEQX9E+9h7fthB/APF6\nLW+EOEPb42O672MQ9SNH8UyIv9Dy+3RcTIK4U+viJoifcPf+KcQr3fZkyuPqwxC/5bafgnie9qOb\n3P7fgvhtt30ixLUV4/wTEPVLfvHvId4A8XuuDW+H+BtaD3shjnHX/jXEv9LyxRAfhTivoh0CxH3I\nOH4zxJ+6Y5cjc8BSiG1fUUXG8Llu++sQP+q250F8OLnmWYhnu3e60R3bBfGo5PyvQvwzX4a4EuLJ\nyXk3QfwDZL7bi5tLID6s73INxAV63tfc8fu0D18H8S7d92WIf+7O+QrET2r5KogPION+D0Q1AOL3\nIX4A4n+5vv9OiP+r5bdCfNDdczoyrwS372sQ/7Cirj8L8W/T/elfP3TWfmSRM5ODyGd0TUbqvv3I\nNxJM9gFjtLxNzxtEvjy2GDhHjy0CLgbuB94cgtwjRrYiH4c5J0b2IZ+zvFyPvQxsBF4H3IOs5nkz\ncH0Ipe9Z3IN8+YwYWYssEX1e8n7P6n28bAaO1vKLlJeNfgn5lgHIx3FsqemVwMnJfbYDk2NkN7BL\n77kMmKvP+RRwJrLY47nAA8C73fU/Bt6pz78LeEjfFeBO4NfdufOBtya//0TF+651z2+yE/kUsJcR\nlD8wNQ3YouVRSHuD9I297ryxbnss8Aqww+4fIxHpB5P0nE0UdW3PclTyLGOBPXqvsW7/AQqK9gDl\nfgkwAal3e+YD7tgUpF+aHI20u8lsYG2MHABmIP3NZCawTtvQ7hOg9R0LP0b2UYyfQWBijAzqs0xB\nFjs90917GXCq2x4ExobAON3ejLSFyRbd9n0RpK/PdNu+zr1MQvopFG3X1j5aD+uRrwKabAXse+ab\nkYUQnwdO9+NQ23y7vu96ZA5In/8Z5HO2qaR9M23n8Ujf8HK0Pje4fhsC4/XaXcn5ZyPzAMBp+g5T\nKOqF5NhxwPoYS+NjLtJ2M/Ud0/42BqnbvZTnxSnunN36PqDjQMf9boo2tw9oPU0xhz4FvEHLjwHn\nhyB1FCOb9X39HLYSXe4+Ed+Ha6UfENlHGRz8wLV7HqAdbPa6betALyBfdPMg8ghwsQLDCmR1TZOF\nyOcsAX4KvDk5Ng9ZvfNapPJGUVQmyIqeb3PbC2ifaAeQb6h72QZMCIHRtIPIWoqBtJqiMVZQAyJa\nXgOcECPbkU4xE+kIb9B3uAZZPfT97vo7gOsMWBHgeIeW5wOXhtAaYA8CF4XABHf9k0iH8sC6Fjg+\nhFIb7qB94jblwKQORMYgfQS3/YqWDUTSicD6A8hg91+OqwKRcXqfFET8ZF0HIrvd++x3x1IQmU4x\n8YC05UotH0vxjQrQSUSf62CMvEJ5APoxkoKITc42GQzQACI6Ab9MAbRbKNfXFmQi930Rfb4ZbnsH\ncFTS7iD90z66Zm1XB/LpWKgCkc1IPaRfA7QJcx1lcPMg8nraJe2baTuPo2hj9P2mUSgEvjwd2KR1\n6uUs/X0ogMKDK8mxWYgyab85GZn8DbjX097f+gIRLXvFz77OuBhRPG3fuBCYESNb9PftEwMgqx57\ngF5F+1wFRxBEqiyREQA2OWmj7AdGugkrtUQmU4DISmBaCExFLJFL9Lz7gLe43/Ig8iBlEHlYjw0g\nDXY6ao24c34CXBBCa0DMT+6PPtNxfvLV97HOXQUi1qCrKbS/Lfr+U925HkT8fZYjmstTSEcwELkV\nuNLuESNrkLq6TK+7E3hHCATVZh+294mRHYjl8Sb3++uQQdeyPHTC2w4c486rs0S8JpWCiB0bTTuI\nVFkifiKw/gBlq8+epcoSqQIRP1nvpx1ExlO2RDqBiLdETqIAkRmUQWQmUrf+HqklUgUiO2gHkeco\nW8KpJQICItZeqSWylXpLpAUiaknsor1u/WRpbVcHIr6/229bf9+G9KGRyER7WvI71uaDwKgQWs9h\n4yyd6ExaVqxKqsSOo2yJTAF2KnsB0q7Wb1Nr0wBgGrBKtfc5yCS8W+vMzhuHtPtqRIl8yd3mVGC5\nzhveEqkDEevD/YCIfVCrZYno79pcAvBz5ANeJilAV7EmMISWiNf+WtqqvojXEqoskeXAKWoGLkFe\nbCkCKMcilsLV7rc8iCxEAGGc256nv2uU1veA9ztw24VYOlfpNfcDV4TQAjdiZD/S6T1yQzG5rQVm\nOQ3uJQpLpDVw9TnSxmmzRLRsE8V6rb9VyKAbo89YSWkh30vYS9EhGiktfaYngfOTd0sprSpLpInO\n8lpWT3SWSmqJdEtn7aHZEhmVXHcodNbJSLuAo7PU8huh79QEIrV0lpatP6wAZjglpgpENiLWEFRb\nItOQCX1kCKV6neqsWPv9lNLylkgtnaXlWktEx/Q23a4Cke3AFO2TLWtElZr9yNzQDZ2V0ukpneWp\nLCj329TaBLFCntPnn43U9VjarZC5wEqdL45HxpA/tlzLneisVyiU6600g4j1iRRE7DvwE0No9QVP\naf2cMqNjc63JkNNZqSXiNYFUW/V+kTpLZK7uW4z4Ow5SIOdPgMtCaE0US5AJfLpq2s8g/hOQyfE0\nHdRGaS1CKt5XmPeLbEZA62LKUkVpbQKmx8gepLFNq0stkZOc9dUTiOiAehoZPA8iAJpSWrcD79Ln\nj8BdFJTWHahlotsLaLe0qvwi/lmg2hI5nHTWbmC88bSULZEURKq0ZU9njXP7u/GJHG46ayawTtui\nDkS6prNU212GWNLQ2RLZAkxxSs0WYJo+j1dqDiCg6C3OQYp6N0ktkX7pLCj7RaosEZswq/wiGxBf\nSqoI9ERn0QwibZYI1VTWZMp9w44t1XKJzkLaa5mWDxed5cdBG52l7e3dAh5EHqUZRF4CjnbzrMmw\nWCKptuoBp8knAu1+kUvUmT6A0ls6EB6loLtalFaM7EWA5CIERK7S50oprW78InXOdUN5P3halkiM\nbNP3t4G0gt4sEShTWtcin/r8NUeLLUI0Vbuv94sMII1uGtxC4HUJpXYolkgTndW1JaKKwi4KzaqT\nT8T7dVr3oXefSEpn9WqJeDrLHOvmD0nv0TWdpaBv3DaUKa2XEbrHU1YtEFFNeBdFv/ITeeoX6ca5\nnvpE+rJEVMx6X0YziFT5RcYjYysF0F4d60cj9WXS5hNJ7n827SDS5FSHzpbIOqotkX10BpFxrjxW\nFa/UEpmlfcj7RWqd6/p+ZzuG5oDe01OTcIQtkTrHeqqtesBJLZEmELEILejsF7kiPRYj65EBdBHt\nIPIEgro2uKr8IlWWSF2EVjoBpxFac9yxQWCyNp5xmSAdzoPIG1BKTh3v9wHvgVaD30lBaS0ALg6B\nSaqN3IGCilIDP6O8xEM3EVqHEp3VjSUCZaDyg6dbn0hddFYnx7qBSK0lohrZGH1Gk0ZLxN3DJpuO\ndJa2T9Tf8v2hFaGlbZpaI94SgYLCSsupXyR1rleByCS6p7NW0wwiphD0Y4nU+UV6tUSO0edAJ9FJ\nFECf+r2gOjJrMs0g0mSJmJKR9jdTtlIQ8fW3B7VEtB+Y4tUary7S8xiExTAQWQKcFQKjVBlfT9Gn\nNiPjqlOE1tA71mmms7wlYvTFKiQyaDSKojrBLkImxkA7JeNB5P+Ayx3CPuyOGW21EOGCz4IWV2ta\nPkiUVxrF9Cw1dJaWPYhsROgE6whe+yvRWWot7UM6htc8l1HQehah9QxC+cylmdLaqe9o1tQdlP0i\naf09B8x2jkxop7P6ic7qxbEOZaBqorN6ic7q5Fj3dFaTY30asNmidpQqOhFYreVj6c0SSWm2EY5+\nsgnat0FjhBbtIOKd6x5EqiwRDyLbqQaRXugsD1LbESXJ3q0TnWVtvo7uw3x7dax7OmsqsN2F4h4q\nneUtkTYQcX1lA4fuWIdiLKRKn4/QMuf6DqRPGS3aidKqitB61dBZVZaIOdX2IR1otv4PSCd/UR/+\nJGSSv9BN8g8D80JgRIxs0OsMfRfqsUChyR8Evg+8zz2X94vsAB6nHMX0HOJf8ZNQJZ2l999AMQh8\nxEptrgjlSeMlZPBNRDrwGVpvFqV1G5IzY5PD3UhAgNWJp7TuQwDYBmjqXN+vv2F1Bt1bInV0Vq+O\ndShPBl071nVgjkT6Uyc6a1RynVkw0ExnpZPLccBW1fqmItE+9k6pJdJIZykwVUVo+f7QKUJrI+2W\niPVNi86C/nJFuqKzdIytA45VJdBTa9auNmbWIwpRGqnoLZG6MN8URA7Fse77LCR0lo6nWRRUVM90\nltbFCcjYnw4Mal/pxrG+DVFIzafZLYhY31kMnOOuT53rvUZoDYtjPdVW63wiXguxCK2WY0jLli+y\nA+HxLbFwPdIRLHrKU1qrkBc/Sfe/USfmmylr8vcA1ziNqeQX0Siu9RRUGzQnHPpG9QN3BfUgsgnJ\nPZmgQPQCMFd/eyWiid6LAOGgPqNRWluRTmEWxp1I/khQy+Qh9z6PI9aeTwpL/SL9RmfZRNstneXL\nHkRSS6QpT8T8KpH26Kwmx/o4YI/TQpsc6ynN0U2OCJQ11kBRX+lEVxWhtQGJShyDgMgZbjKoskSO\nddupJVLnE+mWzqpKNrTk0F36PhNUCdxI2YrwILYZCUaJyITr3yH1ifh72PtU5Yr041g3n4jvs3bM\nb58JPB8j+3VusITBEp2lbTQLWKmgMZ3CMj0JeEmBw5zq0IVjXa/ZS+EDrAKRCWh9ufnLgjJe1mts\nbnqKgrquitDyAD2kdFYnS+RAzbltloiW2yK0tJz6RepCfVtJh9pZLdR3J2LC/Royqc4IQYAnRlYj\njX6B3qPKL5I61+voLCiH+fqBuwFxnPpOb1nrEZm8Tfus8ovMB96inaWW0kLoDygouFaor/pQHkje\nL/WLrKF3n4iPt+/FsW5lPxn4/pD6RNLoLKOyoD06q8mx7v0h9sxNlkhdZFZltnrFPUZQTWdBRYSW\nzwBXJWEXRZt04xOZ7sq9WCKt6CwFrYkUviADfZ/PAlI39vupX8SDmLfem0CkyhKZjozBMxJGoFfH\nessnQrnP2rZvZ09lHQ9sUyU2Dbo4BVitIDoT2OBySKrCe8H1N61no329TwTK9ZKCyC4ka/0VPc/a\nwPvTvF/kScrO9fNcXQ4rndUpxLeOzqqzRLpxrjf5RR5EqB7T2rxf5F7gWm3gH1CmtHyU1sO0RzGl\nzvW66CyoSThUrTfVBtOEw1q/SIy8iExY5yP5IVc4Sut24J1qfUTKlFYa6puCZGqJbACmGy2BtFUw\nP49pPImPYDKwVcvBafjdOtbrfCJ+dQA7r80S0XIvPhHvDwGnGSbLlUBzomGTJdJNdBZ0zlqHsl+k\nX5/Ii8CJTmNNLZHUJ3IU5aS6KjoLmv0iVVnr0O4X6egT0Ql8A2VGoMoSSX0idSG+KZ2VWiJVkVnQ\n7ljv1qleZ4mMBva5XLoRSbh7HYh0ylqHmjBfVUzWUfSpUoQWQ0xnVVkiTXRWN5ZIFYg8iji8RyAR\nRue6THMPIi8gL3qKOzZPyy3fB5J46KO0vF/EopiudMdT57rXkNcgg9MawC99kmp/vSYcQjnb1FNa\n84Hf1P0DyAC38zyILEW0MTs2H3ire94nEe7U1tM5gKMltHP7DptamFOAHXpdVdRJN471Sp+IWx3A\nJp8qEDFNs2ufCOXwXihbT+OB/c7PUUVn+UTDqmx16C7ZENp9ImnCIZT9IqsR34NZXS8Dx7j29PW1\nB1EAxqsPZxsFcKSO9RQcvD8ECstxB5LIZr/X69In0A4ibT6R5H0MCFO/SOpYT+u2ybHe6BOhOjIL\nmkGkMltdy6kl4infvdDq721+ES13CyK+33hLZAVCkVpdtvwiLkLL5qpVlBUOGMIQ3yY6q8knUgUi\nS4DXq3ZtiyqeqYNhEcUyJ08giUgTtRH8OlqPIjHRY5BKm6X+gAeRSjJt/37EAW2NkuaL1NJZSpXZ\nAopQXoTxReAE1xgr6A9EzAz1kWQtSkvf21NaC5CggonOMrEorQGkk87Va7chE5HXblNKy2t83Yb3\ngqOzQrF4pvWJOhBJo1I8dZjmiaR0Vrchvk10VlWOSEc6Sye9XqOzoN4SSXNFLCTzADLIT9HtPUgd\nW/21Jl0HwlV+kU6OdR/eC2pFqsP8FYp26AVE7Lw0V6TV5mpxHHTPkoKIp10OJU+k5RPRtkuVharI\nLGjvH51yRLwlYgqG72+ptV6XK+LzRKA7EGnliig74EGl1i+ic+x2yv3jVUFnNeWJtNFZio6DFJ2+\nMl8kSSyEctLhINKI5+nguw/R5A8AP0QpLe24jyE+E2infAaQOGvTjrxWBTW5IjrAt1E0RporkoJI\nVa7ISiRKYxoCdpcGWXH0x8Cb3NIGt1Os6juIBCPYO/h8kUg7JZj6Rbx/BsqDtdtsdSgPEE9lQTud\n5fNEfOa0n3z6pbOqQKSSzqLzull1jvVJiAWz092nLk+kWzrL+kMvYb51K/lC2TLegPgGrU9XgYjX\nuL0V2U+uiFcGqugsrzj4XBH//KkDuGvHur5nnU9kAhB18jRn+RyKLPTDQWd5BaMpgrEuV6SVJ6LS\nRGdZGzwDnOky/XvJXE9Zk+FdO0ulzifiTdl1SHirVU7qF7Hs9KZ1tKqSDj2ldY2W0ygt7xd5HLFa\njNLZCK1lv+2Zx7t8kMqsdZU04bAbS+QFJH9jlGoQi4Fz1Wp4Grhcge9eCkrrAYSWssnkTuA6Ld+P\nrC1mHbIU6ktvEVrdZqtDeYB4R7ptdwrxhfIk1URndVo7K9VQe7FEvMbaTbZ6ep/DSWdBc4RWun6W\nj5BqWSIaWbWPov91S2el5/ZDZ61BqJWqBFMoZ6030Vm9WCITkFWVTXloWjfrdGCVUtvQbolsT86t\nCu8NdOFYpwzOUAYRv37WHiRL3UC/bv2szciqvRNUofH5IZ0y15vW0HpVr521A3GejtQJcwWdneuP\nIJEa1ik9iCxGQt5swm9zrmtD3A+cEoolQ7xfxKKYPFC1nOuOJig5LbWcTsC1CYfUONa1866nAJ+U\n0jIg9JTWHsTSMuC4i2JV390IzWfXLaCI9ILeIrQ60VlVyzlYuc4SSUFkcqjm3HchS5bbsTY6yx3z\nffEg4huw7ZTO6mSJbHLHQAY31Gerp/fph87yILIC6dOmiR4OSwTKznXfF6HaErG67jbh0IPIVqRd\nbZx7a3uQ8lL0dZbIs0jQi53Xi2O9l3WzWlSW9qfTKCyKVui2BnyciCh9ULZEjkEsU/uNOsd6FYi0\nJRxqne2loLQq18+qiPSs/LaIKqQvUSgnnSK0hsWx3tXaWVo5Pmywzrn+GKJpj1EK6yEK+mkhQvME\nBYCHKKwRb4ksQwbC2crt3kIRpfVzJIfCKr/KL9JNhFZV1npdrkidJWLPaoPMMtehDCK3I1n6R7tt\nWwJlCdI2RoO0stdjZKX+tnWaKkukLmu9ic5qcqyng6UyOksB9CDFYPH+p33IRDE2vYf2owMUfayl\n8bvIF9O6UjrLW1BNdNbJiIZqg8k71nuxRHoCEe2ry6hfiNEnHKaWSFOuiHeud7JEuqGz1iJOcZsT\n/Eq+B/Q6A+IWpaVtt9Pds80S0bG9HWmLOXpsJ2Wlosmx3su6WT4yawaSU2SKg6ezTkY+Tmb14h3r\n3qkOXTjWVeoc69DdcvDQHqFlfpCnkTnU+p+ntDpFaA3psid1dFadTwS6CPNV+mY5xWTq19Farb9l\nL+0prQGE+z0mlpeGB7eWlnbyBe5Y6hdJneuVCYcVWete+1uLRNb4yDR775eQAWj1l+aK+Ez8M0Ox\nevE9FJTWHcDblQZLQ33teyPWzp7SWoFE3NhE1JS1fqTorH6+KeLpLCj7RVKt1INIX3QWZSoLynRW\nyxIJst7WSAqg6pfOmuUGtae0erFEus1ar/WJhGJlgP0V57ZAREH+ZXfPupV8odkv0rJEYrEcvFE3\n3gF8AOlTNrE20VneHwLN3xKpi8yCMp2VHvOO9ZZTXdvQKxzd0ln9gkiaK2JzqAXRWEBRGqG1gzL1\nPiR0VtOXDbtdOwvqw3xTx1CaL3I1lBILq5IOD1D2p/gIpwV6f6tw7xd5FvF72LOkuSJNCYc+zNfz\n0PsRsLCGaoGIajNbKAZgaomcE2R5l736fka1eUprDQIIl+uxFojEyDL9PaOtWpZWLD5cY8cOV3RW\nP3QWdL/0iaezoAwi6WSdWiL90FktEFGwn0ah3bZFZjmLpWc6S30Weyj6mP9U7nJgjlM4PIgMUs6t\naVo/y9NZTZbIGGCve586SwTKY6FfEKn7wiFUh/laf2jKWG+is5oSDVtAofU9gaJe/LFRSBsYUHhL\nZBqwSyln6Exn9Qoi65Ewb5snKyO0VNLlT+qc60NGZzVZIp3orLrMzOUUEVo7KS8B/QgFiDyGOJ+t\ns3kQWYREU02sODYfSUgco5rTrRSUVmsJFBfFZNp6U65It0ufQJnSSnnoNOHwVK2Hrfp7BmgeCG9H\nvrNiz+I/VDVfj1ln8wsyLkCWlbeO5/0iVXRWPz6RJjqrbtkTKPeHJhDxQARl53o6ofiEwyo6y57b\nc97j9B0s4sonGk5HFvCzycDTFekifd1aIulE7vtDK0JLfVwvu2Mtx7pawn7y9hNw+q2INkvEWT4+\nxDdtO/+c/vO89szW370VBOUx0wlEqpY+gXYHsO87VSDi6awmELHgiZHIMkrP6THvD5mIrJV20B0z\nS2QG8nld6w9peK+nOjuF+Fr7dPow1VHQUk43USgEvt8sRdIMbMx4ZdEy120O8CBSlXDYEURCjB3P\nkRND6O7ELFmyZMnySykxxpDu6xpEsmTJkiVLllT6obOyZMmSJUsWIINIlixZsmQ5BMkgkiVLlixZ\n+pYMIlmyZMmSpW/JIJIlS5YsWfqW/wd7c89G9T7RpwAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7fa143855080>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "allel.plot.variant_locator(pos, flip=True);" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.1" } }, "nbformat": 4, "nbformat_minor": 0 }
mit
dnlglsn/ctci
Chapter 8 - Recursion and Dynamic Programming.ipynb
1
6863
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "https://networkx.github.io/documentation/networkx-1.10/reference/generators.html" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# Imports\n", "import random\n", "import unittest\n", "from binarytree import Node, bst as generate_bst, stringify\n", "import networkx as nx\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false, "scrolled": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0 0\n", "1 1\n", "2 2\n", "3 4\n", "4 7\n", "5 13\n", "6 24\n", "7 44\n", "8 81\n", "9 149\n", "\n", "0 1\n", "1 1\n", "2 2\n", "3 4\n", "4 7\n", "5 13\n", "6 24\n", "7 44\n", "8 81\n", "9 149\n" ] } ], "source": [ "# 8.1 - Triple Step - Staircause with n steps. Can hope 1, 2, or 3 steps.\n", "# How many ways can the child run up the stairs?\n", "\n", "def memoize(f):\n", " cache = {}\n", " def decorated_function(*args):\n", " if args in cache:\n", " return cache[args]\n", " else:\n", " cache[args] = f(*args)\n", " return cache[args]\n", " return decorated_function\n", "\n", "@memoize\n", "def count_hops(numSteps, i=0):\n", " ways = 0\n", " for skip in [x for x in [1, 2, 3] if x <= numSteps]:\n", " if numSteps-skip == 0:\n", " ways += 1\n", " elif numSteps-skip > 0:\n", " ways += count_hops(numSteps-skip, i+1)\n", " return ways\n", "\n", "for x in range(10):\n", " print x, count_hops(x)\n", "print ''\n", "\n", "def count_hops2(x):\n", " memo = [1, 1, 2, 4]\n", " if x < 3:\n", " return memo[x]\n", " for i in xrange(3, x):\n", " memo[3], memo[2], memo[1], memo[0] = sum(memo[-3:]), memo[3], memo[2], memo[1]\n", " return memo[3]\n", "\n", "for x in range(10):\n", " print x, count_hops2(x)" ] }, { "cell_type": "code", "execution_count": 27, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "[8, 10]" ] }, "execution_count": 27, "metadata": {}, "output_type": "execute_result" } ], "source": [ "map(sum, zip([3,4],[5,6]))" ] }, { "cell_type": "code", "execution_count": 171, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ ". . . . . .   .  .  .   . . . . . \n", ". . .   .  . . . .    . . .  . . \n", ".   . .  . . . . . . . .  . .   . \n", ". . . . .  . . . . . . .   . . . .  \n", ". . . . . . . . . . . . . . . .  . . . \n", ". .   . .    . .  . .  . .   . \n", ". .  . . . . . . . . .  .   . . .  \n", ". .  . . .   .    . . .  . . . . \n", " . . . .  . .  . . . . .   . . . . \n", " . . . . . . . . .  . . . . . . . . . \n", "True\n", "o . . . . .   .  .  .   . . . . . \n", "o . .   .  . . . .    . . .  . . \n", "o   . .  . . . . . . . .  . .   . \n", "o o o o o  . . . . . . .   . . . .  \n", ". . . . o o o o o o o o o o o o  . . . \n", ". .   . .    . .  . .  o o   . \n", ". .  . . . . . . . . .  .   o o o  \n", ". .  . . .   .    . . .  . . o o \n", " . . . .  . .  . . . . .   . . . o \n", " . . . . . . . . .  . . . . . . . . o \n" ] } ], "source": [ "# 8.2 - Robot in a Grid - Grid with R rows and C cols. Robot can move in 2 directions: right and down.\n", "# Certain cells are off limits. Design an algorithm to find path from top/left to bottom/right.\n", "\n", "import copy\n", "\n", "RIGHT = (0, 1)\n", "DOWN = (1, 0)\n", "LEFT = (0, -1)\n", "UP = (-1, 0)\n", "\n", "def make_grid(r, c, densityOfOffLimits=0.3):\n", " grid = (np.random.random((r,c)) > densityOfOffLimits).astype(np.int)\n", " grid[0, 0] = 1\n", " grid[-1, -1] = 1\n", " return grid\n", "\n", "def is_good_pos(pos, grid):\n", " return pos[0] < grid.shape[0] and pos[1] < grid.shape[1] and grid[pos[0], pos[1]]\n", "\n", "def get_result(direction, pos, path):\n", " axis = {UP: 0, DOWN: 0, RIGHT: 1, LEFT: 1}[direction]\n", " newPos = map(sum, zip(pos, direction))\n", " if is_good_pos(newPos, grid):\n", " newPath = copy.copy(path)\n", " newPath.append(pos)\n", " path = find_path(grid, newPos, newPath)\n", " if path:\n", " return path\n", "\n", "def find_path(grid, pos=None, path=None):\n", " if pos is None:\n", " pos = [0, 0]\n", " if path is None:\n", " path = []\n", " if pos == map(sum, zip(grid.shape, [-1, -1])):\n", " path.append(pos)\n", " return path\n", " for direction in [RIGHT, DOWN]:\n", " result = get_result(direction, pos, path)\n", " if result:\n", " return result\n", " print 'returning', path, result\n", " path.append(result)\n", " return path\n", "\n", "def draw_grid(grid):\n", " for r in grid:\n", " for c in r:\n", " if c == 1:\n", " print '.',\n", " elif c > 1:\n", " print 'o',\n", " else:\n", " print chr(127),\n", " print ''\n", "\n", "grid = make_grid(10, 20)\n", "draw_grid(grid)\n", "result = find_path(grid)\n", "print result is not None\n", "if result is not None:\n", " result = np.array(result)\n", " grid[result[:,0], result[:,1]] = 8\n", " draw_grid(grid)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.13" } }, "nbformat": 4, "nbformat_minor": 2 }
gpl-3.0
WormLabCaltech/mprsq
src/stats_tutorials/Sleuth Beta Factors.ipynb
1
104436
{ "cells": [ { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true, "toc": "true" }, "source": [ "# Table of Contents\n", " <p>" ] }, { "cell_type": "code", "execution_count": 28, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np\n", "\n", "import matplotlib as mpl\n", "import matplotlib.pyplot as plt\n", "import seaborn as sns\n", "from matplotlib import rc\n", "\n", "# set to use tex, but make sure it is sans-serif fonts only\n", "rc('text', usetex=True)\n", "rc('text.latex', preamble=r'\\usepackage{cmbright}')\n", "rc('font', **{'family': 'sans-serif', 'sans-serif': ['Helvetica']})\n", "\n", "# Magic function to make matplotlib inline;\n", "# other style specs must come AFTER\n", "%matplotlib inline\n", "\n", "# This enables SVG graphics inline. \n", "# There is a bug, so uncomment if it works.\n", "%config InlineBackend.figure_formats = {'png', 'retina'}\n", "\n", "# JB's favorite Seaborn settings for notebooks\n", "rc = {'lines.linewidth': 2, \n", " 'axes.labelsize': 18, \n", " 'axes.titlesize': 18, \n", " 'axes.facecolor': 'DFDFE5'}\n", "sns.set_context('notebook', rc=rc)\n", "sns.set_style(\"dark\")\n", "\n", "mpl.rcParams['xtick.labelsize'] = 16 \n", "mpl.rcParams['ytick.labelsize'] = 16 \n", "mpl.rcParams['legend.fontsize'] = 14" ] }, { "cell_type": "code", "execution_count": 39, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [], "source": [ "n2_1= pd.read_csv('../../sleuth_all_adjusted/kallisto/results/Project_17434_indexN704-N517/kallisto/abundance.tsv', sep='\\t')\n", "n2_2= pd.read_csv('../../sleuth_all_adjusted/kallisto/results/Project_17435_indexN704-N502/kallisto/abundance.tsv', sep='\\t')\n", "n2_3= pd.read_csv('../../sleuth_all_adjusted/kallisto/results/Project_17436_indexN704-N503/kallisto/abundance.tsv', sep='\\t')\n", "\n", "egl_1= pd.read_csv('../../sleuth_all_adjusted/kallisto/results/Project_17437_indexN704-N504/kallisto/abundance.tsv', sep='\\t')\n", "egl_2= pd.read_csv('../../sleuth_all_adjusted/kallisto/results/Project_17438_indexN704-N505/kallisto/abundance.tsv', sep='\\t')\n", "egl_3= pd.read_csv('../../sleuth_all_adjusted/kallisto/results/Project_17439_indexN704-N506/kallisto/abundance.tsv', sep='\\t')\n", "\n", "egl9_beta = pd.read_csv('../../sleuth_all_adjusted/kallisto/betasB.csv')" ] }, { "cell_type": "code", "execution_count": 30, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [], "source": [ "frames = []\n", "\n", "for df in [n2_1, n2_2, n2_3]:\n", " df['genotype'] = 'wt'\n", " frames += [df]\n", "\n", "for df in [egl_1, egl_2, egl_3]:\n", " df['genotype'] = 'egl-9'\n", " frames += [df]" ] }, { "cell_type": "code", "execution_count": 31, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "tidy = pd.concat(frames)" ] }, { "cell_type": "code", "execution_count": 158, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [], "source": [ "plot_up = tidy[tidy.target_id == 'R08E5.3'].copy()\n", "plot_up['logtpm'] = plot_up.tpm.apply(np.log)\n", "plot_up['logcounts'] = plot_up.est_counts.apply(np.log)\n", "plot_up['estcounts'] = plot_up['est_counts']\n", "\n", "plot_down = tidy[tidy.target_id == 'F15E11.15a'].copy()\n", "plot_down['logtpm'] = plot_down.tpm.apply(np.log)\n", "plot_down['logcounts'] = (plot_down.est_counts + .5).apply(np.log)\n", "plot_down['estcounts'] = plot_down['est_counts']" ] }, { "cell_type": "code", "execution_count": 143, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [], "source": [ "bup = egl9_beta[egl9_beta.target_id == 'R08E5.3'].b.values[0]\n", "bdown = egl9_beta[egl9_beta.target_id == 'F15E11.15a'].b.values[0]" ] }, { "cell_type": "code", "execution_count": 197, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABQEAAAVsCAYAAACIEFvoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAIABJREFUeJzs3X1wHOdh5/kfSJCiJLJBWaZe2ZBk2abDIeNsElhmM7Gz\nJ+QAMPFeMlvL4V3dJpxbQKraqyLqtoCqqztirgriVe0dprYOvLqrI4EtcOtuE46SRbK2V5hJoLzY\nYcMOvXYcoWXJji2KTeuNloxpSjbFt7k/UD0aADPAzKAH09P4fqpcpjDdTz/dPRg8/Zvnpa1QKBQE\nAAAAAAAAILK2NLsCAAAAAAAAABqLEBAAAAAAAACIOEJAAAAAAAAAIOIIAQEAAAAAAICIIwQEAAAA\nAAAAIo4QEAAAAAAAAIg4QkAAAAAAAAAg4ggBAQAAAAAAgIgjBAQAAAAAAAAijhAQAAAAAAAAiDhC\nQAAAAAAAACDiCAEBAAAAAACAiGtvdgUAAGhlnufJdV3l83l5nifTNGWapgzDaHbVAACbSOnfo46O\njob/LXIcR7Zty7Ztua4r13UlSaZpyrIsJRIJxWKxhh0fAFC7tkKhUGh2JQAAaBWe52lmZkbZbFa2\nba+6bSwWUyKRUF9fX0MfxCYmJpROpyVJr776asOOE6RWqHMr1BFLdXV1yfM8JRIJjY6ONrs6WAW/\nX8HJZDKamJgohnClZmdnZZrmhh1vuaGhIQ0MDAR6fABA/egJCABAlUofWn2GYcg0TXV0dCifz8t1\nXXmeJ2mxl0QqlZLjOAQSAIBAeZ6n48ePy3Gc4s/8wM/vnR4kx3E0MjJSPJ5lWert7ZVlWcXjep4n\n27Z19uxZOY6jdDot0zTV29sbaF0AAPUhBAQAYA2u62pwcLD44GOaphKJhBKJRNkefq7ryrbtYk+J\noHthYGNYlqWhoaFmVwOIJH6/1s//uxSLxfTcc8+tGHrreV5gvdCz2awGBwclfXTvyg31NQxDvb29\n6u3tVXd3t1zXVTqdJgQEgJAgBAQAYBWe5ymZTBaHPfX392t4eHjVfUpDwmw2SwgYEslkUrZtq6en\nR6dPn15z+1gsxnxWQIPw+7U+/lx8hmHo3LlzZcO+RgSA1fwN9CUSCaXT6aqGDQMANgYhIAAAFXie\np3g8XnyAGR8fr7k3A70fAABBy2azkqRDhw41dM5Zvye8VPv8fgsLC42qFgCgTluaXQEAAMLq5MmT\nxQBwdHSUQA8AEAob1bsumUxKWuy5WesCHy+//HJxXwBAOBACAgBQhm3byuVykhbnP0okEk2uEQAA\ni/L5fMOPYdv2kp7wtfDnxpXE3I8AECKEgAAAlDExMVH8Nyv7AgA2m/Pnz0ta7MlX69y2pXMIWpYV\neN0AAPVhTkAAAJbxPK/Yg8GyrEgu7OE4jl544QW5rqtr165JWlzQJBaLqa+vr6FzTEWZf12vXbum\nhYUFHTx4ULFYjIfgADmOI9u2tbCwoM7Ozk3zfrVtW+fPn9fLL78s13VlGIYOHDig3t5eeiq3mFb5\nnPB7wx86dGjJz7PZrF544QVduXKluAJxR0eH9u/fr87OTk1MTMh13ZrnEAQANB4hIAAAy2QymeK/\nG/0A4ziOMpmM5ufn5bquPM+TpOID/sDAQKAPho7jaGRkRI7jVNwmlUrJsiwNDQ0tmctpYmJC6XRa\nknTx4sU1g5euri55nqdEIlF3b8r1XJ9UKrXkXvpyuZz27du34uemaWp2drb436Xn++qrr65aT9u2\nlUqlVszT5T9EG4ah5557btV5JSsdL5PJKJPJyPM85fN5maapvr4+JRKJwMOvIN6PjTqPbDarkZGR\nYp18qVSqYWFDuXPxPE9nzpxRLpcr3m//+iz/nZE+Cu/m5uaKdTdNUz09PXr22WfXPHfP8zQ4OFj8\nYqL05/4KsRMTE5qamlr1C4uw3du1fr8a+fvgOI7OnDmzJFA9evRocdXbID67ylnP54TjOIrH4yt+\nXu7zrNoV0FdT+jfi8OHDS37u9/JbrvQ9Oj09zVyAABBChIAAACwzMzNT/PeBAwcadpzu7u4lD4OG\nYRQf4vP5fPEB37IsTU1Nrft42Wx2ycNbIpFQLBZTR0eHJOmll17Syy+/XDzumTNn1v0guR7rvT67\ndu2q6Xj1BmqlYYW02HvUsiwtLCzIdV3lcrlikFNLqOC6rpLJ5IrAwHEcOY6jdDod6IN2o96PQZzH\n8kDXv8aGYejy5cs6e/asXnrpparrVC/btpVMJovXxjTNYqBm27bi8bhGR0eLPfPGxsY0OTm5YlvX\ndTU5Oannn39eL774YsX33vIVyvv7+3Xs2LFiWbZtK51Oy3VdxePximWF+d5u9LFOnDhRDN18nudp\ncnJSc3NzOnfu3LrrWk6jPifK2b1797rrOz8/X/x36d/BWCym8fHxFaG0pOL7MpPJaGRkROfOndsU\nvXQBoJUQAgIAsExpb51GPsC4rltcdMQPNErZtl3sARSPxzU9PV33sfyypMVeIqdOnVpxPL/3ieu6\nmpiYaPow6PVen+Hh4WLPHkmKx+NyHCeQXjK+0gf7/v7+Jccrt50fZK31gO+HOn19fRoYGJBpmvI8\nT/Pz8zp//nwxxDh+/LguXrwYyLk04v0YxHn4Pb+kxeBkfHx8Rd2Gh4cVj8dX9BIMkt8Danx8fEVP\nrdKAPZVKqa+vT2fOnNHc3JxmZ2eX/C55nqeTJ08WQ5+TJ09WfD8eP3682FPt3LlzSwIu0zSVSCTU\n19dXDAorlRXWe1utII7leZ6OHz9e7OFmmqYGBgaKw8ld19XY2FjFXm7rEcTnRCwWW9Ij0v88C+pL\nouUuXLggaTEwLve3YrVezdLi7206nWZOXQAIGRYGAQBgGX/VxUb3YJidndXU1JR6e3vLHsuyrOLD\nuD+Urx5+7xLpo2Fiq52baZoaHR1t+lxOG3V96uW6blUP9tLisHJ/dc1MJlO2F02pVCqlZ555RqOj\no8UAyTAMWZal06dPF3ualc5fuV6NuN7rPQ/XdZVKpYrHn5qaqvjerXX10lqNjIyUDQClxVCkdAVU\nP+Sbnp5eEaYbhqHTp08Xf768V5ovm80WA6vx8fGKPdwMwyieux8sLhfGe1uLII6VTqeL17Onp0ez\ns7NLhhCbpqnTp08vGSodhEZ+TjTSyy+/LGnlfIDV8H8XMpnMip6bAIDmIgQEAGAZ/wHQHybbKNX0\ntDNNszhPV70hlz9/liSdOnWqrjKaYaOuT738cMo0zVUf7H29vb3q6elZsm8l+Xx+1RC29DW/x856\nNeJ6r/c8/NVJpbVDvkb3XO3o6Fh1zrzSc8nlcmv2gCpdzKNcUOIHRz09PWvO1ReLxYohYel0Br4w\n3ttarPdYpcFmLBZbtSdw0D3XGvk50Uj+e/LgwYM17+sHtNJimA0ACA9CQAAAKvB7BDab/wBfb4+K\ns2fPSlJDFpIIg/Ven3qU9jiqpcfks88+K2mxrqstzrLWaq+loY6/uvNGqeV6r/c8nn/++WI51bx3\nG/n+rmYFXv/4pSFIJcuHCJdyXbd4fY8dO1ZV/fr6+iStL3DbyHtbi/Ueq3QuvrXC5CAXYmr050Sj\nlPZArHc+x/3790sqH0oDAJqHOQEBAFgmFovJcZzQDWOqZ4ha6dC2IB9uw6iR88EtV/pgW8t1LX2g\nfuGFFyo+YFezII1hGBt6zstVc+z1nIfjOKF679bS07CabVcLLEtDmAsXLlQV7PmfV1euXKmihqtr\n9L2t1XqP5V9Py7KqvjdB1LvRnxONUho81rs4lr84Sdj+jgLAZkcICADAMgcOHCgGEJ7nbVjvOcdx\nZNt2cZXefD6/7gfR0oe5Zi/0sV6NuD7rqYuv1uvqh8z+nFvlhOFeBXG913MepT1xNzoEKaeWc1nv\nVAKXL18u/ntycrKmfau5R82+t7Vaz7FKf1fXWswiaI3+nGgUf6XtIBbHauYXFQCAlQgBAQBYpjRw\nmJmZqWoYYL08z9OZM2f0/PPPy/O84rxc/vBH0zSXrH5Zq9IgpRWHAjf6+tRrYWFBUn3X1A+IwjLc\nvFSYrndpD6JGz88ZtF27dq1rf39IaywWW9eq4KXCdG830vz8fPHfG92jtFU/J+bm5iR9NKS3Hv65\nAwDChRAQAIBl+vr6ihOyZzKZhoWAtm1rcHBQnuepp6dHw8PDZXuLbNaJ1aN6fcIY/knhvt75fL4l\nQ+x6+SFiUEMpw3xvN1K1vdLC0HutWZ8Tfg94STp8+HDd5fjv3TD0agYAfIQQEACAZQzDUCKRUCaT\nKQ6bC7oHieM4SiaTkhYnqm/UMLXS+Zxc122ZB7KNuj718q9jPUPG/YfjvXv3NqRu9Qjj9V5t4Yyo\n81dkDWJKgjDe243UzF6krfg5Udpzcj1/L/zehK3yNwcANgtWBwYAoIyhoaHiv/1egUEaGRmRJPX0\n9DT0obx0aPN6Vg2tx3qCm426PvXyQxpp6UPzWkp72ZSW0WxhvN6lAXYt1zgKSn9vSxcJqUcY7+1G\nKg2hqrmWQa7G24qfE6V/J+oN8EoXpNqM7zkACDNCQAAAyjAMQ/39/ZIWH2hOnDgRaPn+g+aRI0fW\n3Ha9cyv5vRiDnOtrrR4tQS1oEuT1CbJHUOmDbS3hamkI0ci5Jmu1ke/Havnz1EkbH2A3m2maxSDw\n7Nmz6yorjPd2I8ViseL7KJPJrLl9kIFzK35OlC5EUu9w9PPnzxf/3dfXt+46AQCCQwgIAEAFw8PD\nSwK0eoPA5Q9SpQHZWg9ZnuetO7zzezW6rlvVQ3DpsUuVBn9rhXy1HGe14zbi+viLLqyXHxI///zz\nVe/jBzo9PT2hmeNuo9+PtRgYGJC0+PtXTSARpWHDzz33nKTFEK/e39sw39uN5AdprutqYmJi1W2D\nnhex1T4nSkPQenpFep5XXNF6aGgoNJ9zAIBFhIAAAKxiampqSRDY3d1d04PR2NiYuru7l/zMMIzi\ng1E6na44RM11XcXj8Tpr/pFYLKaenp7i8aoJUzKZzIpjl/akW60M27Z19uzZuh/+GnV9/MUWKvX0\nqTVA8hdX8DyvqoB4bGxMjuPIMAydOnWqpmM10ka/H2uRSCSKvbiSyeSq9yjo3rrNVvp7m0ql1gyn\nPM9TKpXSyZMniz8L873dSAMDA8X3UTqdrhiq+tc4yOCqlT4nSofxSvV9mTM4OChpsTerH+IDAMKD\nEBAAgDVMTU0t6UkSj8d14sQJZbPZFb1u/N52yWRS+/btK/aIWB5eHD16tPjvZDKpeDyuiYmJ4v/i\n8bi6u7uVz+eLQcB6nDp1qvgg2t3drYmJibKBSjabVTweVyqVWrE6ZeniKCMjI2V7OI6NjSmZTOrc\nuXPrqm8jrk/pYgtjY2NL6j0xMaGnn3665p4vU1NTMgxDuVxO8Xi87P5+OOO/F86dOxe63jEb/X6s\nxejoqKSPfveWB1l+uHLlypUNrddGOH36dHFY8ODgoE6cOLHiPea6rsbGxvT0008rk8lo9+7dS14P\n873dSFNTU8V/p1IpJZNJ2bZdnH8vk8loZGRkyXywQR67FT4nyr23apkT98SJE7JtW4ZhLLneAIDw\nYHVgAACqMDo6qt7eXqXTaTmOo1wuV9XQOdM0yw6JevbZZ5cMcXQcZ8UDWE9Pj06dOqUzZ86su/6G\nYWh6elqDg4OybVvpdFrpdHrJxO+loV4sFtP4+PiKMvr7+zU5OSnHcdTd3S3DMNTR0aF8Pi/P82Sa\npqanp5csbFCPRlyfRCKhdDotSZqcnNTk5KQMwyiGofU8cPvnOzg4KMdxFI/HZZqm9u/fL2lxfi3/\nHEzT1NTUVChXy9zo92MtLMvS+Pi4BgcH5bquksnkkvkCHccp3oenn346UkOCJWl6elonTpwofub4\nnzul711fIpEohqa+MN/bjWSapmZnZ5VMJuW6rmzbXhEoj4+Pr/uzq9KxW+FzovR6mKZZ/FJrfn5e\n4+PjFetk27ZSqZRc1y3+rQnj5xwAgBAQAICqWZal6elp2batbDar+fn5FQ/Tfjhx4MABJRKJig+U\n/oNSOp3WzMyMpMXhtvv379fBgweVSCQC7wXi987IZrM6e/asHMdZEvwZhqG+vj719vYu6fVXanh4\nWJ2dncpkMnIcpxhCHDp0SEeOHAlsJchGXJ/SILT0vC3LUm9vb90T8PsP+JlMpnhdlgeqfX19oR4a\n14z3Yy16e3s1OzursbEx5XI5eZ5XHDLZ39+v4eHhptVtI5w+fVq2bev8+fPFEND/3fPfv319fWXv\nUdjv7Ubyg8BsNqtMJlP8PbUsa8mQ4UYdO+yfE/5UCbFYTOfOndPx48eLoXF3d7dM01RPT0+xt6nr\nupqZmSm+F/0webO8nwCgFbUVCoVCsysBAACaw58DqrRnFdbPD4dN0+SBuAFc11VHR8emvrb+7y2C\nt2/fPknle1YGKWyfE/55lwbrExMTOnv27Ko9bP0QtdKXRwCA8KAnIAAAmxjBX2M0YkghPsL7NtjF\nK/CR0rCr0e+zMH1OlPZq9+dPlRYXVRkYGJDjOLJtWwsLC7p27Zp27dqlzs7Oij1QAQDhRAgIAAAA\nAFq6eniYQrpGKz3vcj36YrHYproeABBVrA4MAAAAAFJxNVzDMDbV8Fa/J6BhGPTsA4AIIwQEAAAA\nEFmZTEbxeFyZTGbV7fwVbiVpaGhoI6oWGv7KwAcOHGhyTQAAjcRwYAAAAACR1dHRIcdxlEqllEql\nFIvFdODAAe3atUu7d+/WwsKCcrlcMQBMJBJ1rxbeqvxz379/f5NrAgBoJEJAAAAAAJHV29ur8fFx\n2bYt27blOM6ShTB8hmHomWee0cDAQBNq2Tyl1+Lw4cNNrAkAoNHaCoVCodmVAAAAAICN4LquHMeR\n67paWFjQ7t27ZZqment7m121pvFXRWY+QACINkJAAAAAAAAAIOJYGAQAAAAAAACIOEJAAAAAAAAA\nIOIIAQEAAAAAAICIIwQEAAAAAAAAIo4QEAAAAAAAAIg4QkAAAAAAAAAg4ggBAQAAAAAAgIgjBAQA\nAAAAAAAijhAQAAAAAAAAiDhCQAAAAAAAACDiCAEBAAAAAACAiCMEBAAAAAAAACKOEBAAAAAAAACI\nOEJAAAAAAAAAIOIIAQEAAAAAAICIIwQEAAAAAAAAIo4QEAAAAAAAAIg4QkAAAAAAAAAg4ggBAQAA\nAAAAgIgjBAQAAAAAAAAijhAQAAAAAAAAiDhCQAAAAAAAACDiCAEBAAAAAACAiCMEBAAAAAAAACKO\nEBAAAAAAAACIOEJAAAAAAAAAIOIIAQEAAAAAAICIIwQEAAAAAAAAIo4QEAAAAAAAAIg4QkAAAAAA\nAAAg4ggBAQAAAAAAgIgjBAQAAAAAAAAijhAQAAAAAAAAiDhCQAAAAAAAACDiCAEBAAAAAACAiCME\nBAAAAAAAACKOEBAAAAAAAACIOEJAAAAAAAAAIOIIAQEAAAAAAICIIwQEAAAAAAAAIo4QEAAAAAAA\nAIg4QkAAAAAAAAAg4ggBAQAAAAAAgIgjBAQAAAAAAAAijhAQAAAAAAAAiDhCQAAAAAAAACDiCAEB\nAAAAAACAiCMEBAAAAAAAACKOEBAAAAAAAACIOEJAAAAAAAAAIOIIAQEAAAAAAICIIwQEAAAAAAAA\nIo4QEAAAAAAAAIg4QkAAAAAAAAAg4ggBAQAAAAAAgIgjBAQAAAAAAAAijhAQAAAAAAAAiDhCQAAA\nAAAAACDiCAEBAAAAAACAiCMEBAAAAAAAACKOEBAAAAAAAACIOEJAAAAAAAAAIOIIAQEAAAAAAICI\nIwQEAAAAAAAAIo4QEAAAAAAAAIg4QkAAAAAAAAAg4ggBAQAAAAAAgIgjBAQAAAAAAAAirr3ZFQCA\nKHFdV93d3VVta5qmTNNUb2+vEolEg2sWvFrOtZLx8XH19vYGVCMAABBG620zxGIxTU9PB1ijYNEm\nAtAqCAEBoElc15XrurJtW6lUSkNDQxoYGKh6f8/zNDMzo8uXL+vatWuKxWLq6+uTYRg11eH8+fOa\nm5uT67qSpI6ODlmWpd7eXlmWVfN5tTLP82TbtlzX1cLCgjo7O3XgwAHFYrFmVw0AAFTB8zzNz89H\nug0T1Dlu9LXaDPcGCDtCQABokLW+0XUcR/Pz88pms7JtW+l0WjMzMzp37tyaQd7Y2JgmJydX/DyV\nSqmnp0enT59es36lZViWpUOHDunatWtyXVczMzPKZDKyLEvj4+Nr1md0dDSw3oz79u2rafsgvjl3\nXVdjY2PK5XJlX4/FYhoaGqLRCgDAOgXZZljOcRwNDg7KNM2q/2YH3e5o5PlJ9Z1jI8tp5PGa0SYE\noo4QEACaJBaLKRaLKZFIyHEcHT9+vPj/qw15OXHihHK5nAzDUF9fX7Gx4ziOMpmMcrmcuru7NT09\nXTG888tIJBIaGhoqu10mk1EqlVI8Hl+1rGbL5/Pr2j+bzWpwcFCSitfUb5z6gajjOEomkw1v2AMA\ngOr5oypc1y1+qSotTrnSKOttd9QqqHPc6Gu1Ge4N0IoIAQEgBPy5brq7u+U4jiYmJsoODZ6YmFAu\nl5NpmpqamlrSkLIsSwMDA8WAb3BwUFNTUyvKyGazyuVy6unp0ejoaMU6JRIJeZ6ndDqtdDq96raN\nMD093fBhuLZtFwPASsOxBwYGir0mU6kUw4MBAAiBSqMi6rUR7Y5aBXWOQV+rjT5eGO8N0KpYHRgA\nQsI0TfX390ta7IW3nB/ISVoRAJY6deqUDMOQbdtyHGfF634Zzz777Jp18kOxTCYjz/OqO5EW4geA\n4+Pjq87HODw8XLzeZ86c2ZC6AQCAyjo7O2VZVvFLzYsXL0aut35Q57jR12oz3BugVdETEABC5ODB\ng5IWh1B4nrdkCO7MzIwkqaenZ9WhFIZh6JlnnlE6ndaZM2dWzA/oLwBS7TeqsVisOH9h1ObEM01z\nyZDq1ViWpUwmoytXrmxAzQAAwGoSiUTkg6WgznGjr9VmuDdAqyIEBIAQWW3ePb934JEjR9Ysxw/r\n5ubmlvzcDwBr4fcAjGJPwGoWYVkuitcBAAAAQPQxHBgAQuTChQuSFsPA5eGUP7S3mh58/jae5y0J\nrUp7EPoTNK/G87yaew62kloCQP96Ra03JAAAAIDNgRAQAELC8zw9//zzkqRnnnlmyWulPfiqXVXN\nD7jm5+eX/Nyfd9CfG3A1/jaWZTV0Nbewy2azxXtQzdBhAAAAhIPnecpkMkomk+ru7ta+ffu0b98+\ndXV1KZlMlp1DG4gqQkAACAHXdRWPx+V5nmKx2IpFKuoZgtrR0SFJKxo2w8PDsixLjuMoHo+Xbfh4\nnqdkMqlMJiPTNDU+Pl7z8YPk90hsxlBcx3E0MjIiaXE+RnoCAgAQbc1sd2B1td4bx3HU1dWlVCpV\nHNURi8VkWZY6Ojpk27bi8bjGxsYaWW0gNJgTEACayHEcvfDCC5qcnJS02Cg5d+7ciu3y+XzNZfs9\nARcWFla8NjU1pVQqpUwmo3g8LsMwZJqmOjo65LpusddbT09PcbXhZrBtW6lUakVPyJ6eHg0PDzfs\nuH4DM5PJFOditCxrxSIrAAAgOprV7sDa6r03+Xy+uGheIpFY0aa1bVvJZFKTk5PavXv3ii/igagh\nBASABhkZGSk75Dafz5f99rK/v79iI8bfvpYwzu8JeO3atbKvj46OamhoSMePH5fjOEt6BBqGofHx\n8ap7vaVSKaVSqarrJknj4+OrDq0dGRlZMg/i3r17deXKFTmOo8nJSeVyOU1NTQU6TLmrq6vsvRka\nGqJRCABAAGptM0xPT2/IvMRBtTsa0Sba7NZzbyzL0sWLFyuWbVmWxsfHNTg4qLNnz9LeQ+QRAgJA\ngyxflKMcy7KUSCTWbPjV0xNw165dq76eyWSUTqeLQ5APHTok13WLjapkMrlqMLleawWajuMokUho\naGhoybae5xWDy2Qyqenp6cB6Kpa7X4ZhFHtHbuZ5EQEAiLJmtDt8zRpx0SoafW/8drjnebJtm6lf\nEGmEgADQIKt9q5tMJmXbtvL5fFO++fWP73/7ubzB5Hme0ul08dvVtRpVo6OjSiQSgdaxUu87wzA0\nPT2trq4uua6rdDqt0dHRQI756quvFv/tB38XLlzQ5OSkMplMQ84TAIDNJKx/S4Nqd4T1/FrZRrQJ\nTdNcMiUOEFUsDAIATeAvtOE4TnHOudX4Q3vrmaB6eY9Af2Jky7I0NTVVNtwzDKPYiHVdV4ODgzUf\nt16zs7OanZ1dczjG0NCQJFV1/ephmqYsy9Lw8LBmZ2dlGEZxHkUAABANYWl3YKVm3BsWg0HUEQIC\nQBP4IZu0GMo1osHhzwW4e/fu4s9KQ8dqvin1h13Ytq1sNht4HcsxTbOqYbd9fX3Ffze6bqZpFhuY\njbpfAABg44Wx3YFFjbg3juNoYmJCqVRK8Xhc3d3dxZ6EwGZACAgATZJIJIoTXa/V066euej8eQRL\ne/rZtl0sr5oyDcPQoUOHJIXvm+/S83rppZcafrzSFeXOnDnT8OMBAIDw2Oh2B6pXzb3JZDLq7u5W\nPB4vtmn7+vo0NDSkc+fOMe8zNg3mBASAJhofH1d3d3exp12l+QFLGyae51U16bH/jaY/lFj6qGFU\nS0Pn4MGDyuVyofyG1DAMeZ5XcQXkoB04cEC2bWtubm5DjgcAAMJjo9sdqF6le+N5ngYHB2XbtmKx\n2IatNg2EFT0BAaCJSoeZjoyMVBxmahhGMfibn59fs9zSlYnLNXRqWW14YWGh6m03mn+Oa62EHBT/\nOGEMRAEAQGNtdLsD1at0b06ePFmcC5sAECAEBICmGxgYkGma8jxPJ0+erLidPyz3woULa5bpD/s1\nDGNJr7+DBw9KWpwPpVp+4LV///6q99kIpUGcf161qGdevytXrkiqb3g2AABoXettd6BxKt0bz/OU\ny+UkfbQoH7DZEQICQAj4DZNcLlcM8JY7cuRIcZu1nD17VpJ09OjRJT9PJBLFf1czqXVp48k/fiNN\nTExUvW3pdbIsq+ZjnTlzpqbjeZ5XDE/9QBYAALSujWx3oDZB3Bt/9EzpiJpKGOWBzYIQEABCIBaL\nFQO6Souf5jnsAAAgAElEQVSE9Pb2yjAMua676iIdtm0Xw6pjx44tec0wDPX390taHH68VoPHr4tl\nWRXnKwyKbdtKp9NKpVJrbut5ntLptCSpv7+/qjkSy0mn0xobG6tq29JemsuvKwAAaC3NaHegOkHd\nG3/kRukXueXUEjgCrY4QEABCYnR0tDipcaVGj99jMJVKle0x6DhOMbgbGhoqO2x1eHhYlmXJ8zzF\n43FNTEysCANt2y4uWGKaZlVDKPx5CGv5XynTNGUYhjKZjOLxeMWA0nEcxeNxeZ4n0zQ1PDxcdrtM\nJqOuri51dXWVvVbDw8OKxWKanJxUPB5fs3Ho94isdF0BAEDrCLrdUWq9baKwWqttFZSg7o1pmsU2\n2/Hjx1fU2XVdpVIpnT17lmAXm0ZboVAoNLsSABAVruuqu7tb0mJgV2vvOdu2lUwmJani5MVjY2Oa\nnJyUtNhDb//+/dq9e7deeumlYlBlWZampqZWPVZpOT4/hPT19PTo1KlTZRtGpedaL9M0NTs7W/xv\nP5j0G3uxWEyHDh3S7t27JS1eH78BF4vFdO7cuYqNtomJieI3w6vdixMnThSvm2masixLsVhMnudp\nYWFhycrI/f39VTX+AQDAR0rbDKOjo0umJ6mXbdsrvjQtDYuWf2E3NDS0oi0QVLujEW0i//jrPccg\ny6m2bRWme1PatpYW27odHR3K5/PyPE+WZWl0dFTJZFKu62poaEgDAwNlzwuIgvZmVwAA8BHLspRI\nJJTJZDQ4OLiiMSgt9mA7ePCg0un0kgaQtNiweeaZZ6pqvAwPD+vYsWM6f/685ubm5LquPM9TLBbT\n3r17dezYsQ2f88YwDM3OzmpiYkJnz56V4zgreujVco7VOH36tBzHKV7PckOtTdPU6OgocwABABAS\nnuetOq3J8tfy+fyKbZrR7qhFEOcYZDnVCtO98b8YT6fTxeOapqmenh4dO3aM0R3YdOgJCAAtzHEc\nua6rfD6vAwcOlO052Mocx9H8/Lw8zyuudNzIIM51XTmOo5deekmStHv37mLPQAAAEG0b3e5A9bg3\nQDAIAQEAAAAAAICIY2EQAAAAAAAAIOIIAQEAAAAAAICIIwQEAAAAAAAAIo4QEAAAAAAAAIg4QkAA\nAAAAAAAg4ggBAQAAAAAAgIgjBAQAAAAAAAAijhAQAAAAAAAAiDhCQAAAAAAAACDiCAEBAAAAAACA\niCMEBAAAAAAAACKOEBAAAAAAAACIuPZmVwDRdfXqtWZXAQAANNCePbuaXQWUQRsMAIBoq7cNtmlC\nQM/zND8/L8/zZJqmYrFYs6sEAAAAAAAAbIjIh4DZbFbpdFqu6654LZFIaGhoSIZhVNw/mUxWdZxd\nu3bp9OnTq27juq7Onz+vubm5YhjZ29urRCJR1THCVAYAAAAAAABaR1uhUCg0uxKNMjY2psnJSRmG\nob6+Pu3atUuu6xbDL0kyTVPT09Nlg0DP89TV1VXVsQzD0MWLFyu+nslklEqlitt2dHQUg0nTNDU1\nNSXTNFc9RljKqBZDUQAAiDaGA4cTbTAAAKKt3jZYZEPAbDarwcFB9fT0lO2hl81mNTIyIs/zFIvF\nND09vWIbPwQ0TVOzs7PrrothGBofH5dlWcXXSoPKF198sWKvxLCUUQsaoAAARBshYDjRBgMAINoI\nAZfp6upSR0fHquGd67rq7u6WJI2Pj6u3t3fJ60GFgH5vwunp6bK97NYKLMNURi1ogAIAEG2EgOFE\nGwwAgGirtw22JeB6hEI2m5XneRoaGlp1O9M0i/PgZTKZhtQlk8nI8zwdPXq04jDb3t5emaapXC5X\nHKYcxjIAAAAAAADQmiIZAubzeUla0bOvHH+b+fn5htQlm81Kko4dO7bqdj09PZKkmZmZ0JYBAAAA\nAACA1hTJ1YETiYQ6Ojqq2tbvFdeonm+2bS85TiUHDx6UJDmOE9oyAAAAAAAA0Joi2RNQqq4XoKQl\nqwQHrZayY7GYpJU9EsNSBgAAAAAAAFpXJHsC1sLvIVe6Um4lmUxGmUxGrutKkg4dOqRjx45V3Nff\nrpqVdv2ei/4+YSsDAAAAAAAArWvTh4D+giD+AiHl5PN5xeNxOY4jwzB04MABua6rXC6nXC6n/v5+\nDQ8Pl92vVsuHJYelDAAAAAAAALSuTR0Cjo2NyXVdJRKJ4jDYcjzPk+u6mpqaWtLrz3VdJZNJTU5O\navfu3RoYGFixn6Sq5ies1EsvLGUAAFDq+q3runztx3rjg7d08/ZN7Wi/S4/ufETmzke0beu2ZlcP\nADaFn12/pdfe8nTlnff14Y3b2r5tq8wHduqJh3fpnh18FgMAltq0IaBt25qcnFQsFtPo6Oiq2xqG\noenp6RVz6pmmqenpaXV1dSmdTiuRSBCiAQAi7cfvv6k/f/2v9Z2rf69bd26teH3H1h166uFfVnfn\nF/WxHfc1oYYAEH1v/OQDvfCN13XxlXd089adFa+3b92iX/3MHh35/GPau2dnE2oIAAijTRkCOo6j\nZDKpWCymc+fOVdzOMAxdvHhx1WDPMAz19PQol8spk8ks6Q1YSyBYafhtWMoAAGxudwp3NPParLKv\n/4XuFFY+cPqu376uv75i65tv/mfFP/XbOvzIUxtYSwCItkKhoJlvXtaffv013bpd+bP41u07+obz\nti5+7x196fDj+m3rcW1pa9vAmgIAwiiyqwNX4jiO4vG4LMvS9PT0mgFZNQHa4cOHJUkzMzNlX69m\nTj5/m0rHC0sZAIDN507hjqacP9ALl2ZXDQBLXb/9of7glf+gL/8w2+DaAcDmUCgU9O+yr+iP/+qH\nqwaApW7fKehPv/6a/u1Xv6c7hUKDawgACLtNFQJms1nF43ElEglNTU0FVq4/THj5irr+HHy19K5b\nPm9fWMoAAGxeX/5hVt9+5+/r2jf3+l9o7s1vBVwjANh8st+8rK9998269p1z3tJXL1wKtkIAgJaz\naULATCajwcFB9ff3rzkHYL2Wh2z+YiPV9MDz992/f38oywAAbE6XvMt60f3ausr4Dz/4shY+rH2l\negDAojff/UB/8vXX1lXGV+xLuvLO+wHVCADQijZFCDgxMaFUKqWhoSENDw8HXr4fnC1fOERaHFbr\ned6avfDm5+clSQcPHgxtGQCAzSd76cWqhwBX8vNb1/UX7tcDqhEAbD4z37hc9RDgSm7fKeiFb7we\nUI0AAK0o8iHgxMSE0um0RkdHlyzaUY1qh8/ati2pfO+5vr4+SR+Fa5VcuHBBkmRZVmjLAABsLgsf\n5jX/k1cCKesbb35Lt+/cDqQsANhMrt+4pb/93tuBlPWtV9/RB9dvBlIWAKD1RDoEHBsbUzqd1vj4\nuBKJRE37ep6np59+esU8f+W2y2QykqRnn312xeu9vb2SFsPI1crI5XIyTbM4dDeMZQAANpcfLlxS\nQcFMJP/BzZ/prZ+9E0hZALCZXHrzmm7cWl8vQN+t2wW99kb184QDAKIlsiFgKpXS5OSkpqamigFY\nLVzXled5isfjxZ5+y3mep8HBQUlST09P2eDMsizFYjHZtl2xHL+MoaGhsq+HpQwAwObyxvv1TUBf\nyZVrbwRaHgBsBu7VYOfxC7o8AEDraCsUordWvG3bSiaTMgyjplVuZ2dny5YjLYZovb29xXn/HMfR\n2bNn5XmeYrGYpqenK5bruq66u7slSf39/Tpy5IhM09T8/LwmJiZk27Ysy1p1xeKwlFGLq1evBVIO\nAKA5/uj7/1F/deVCYOUlPv07+sJeppuIkj17djW7CiiDNli0fNW+pOmv/Siw8v7J4cf1O7/+icDK\nAwBsvHrbYJEMAbPZbLFXWy1effXVFT/zPE8nT55ULpcru09/f39Vi424rqvBwUE5jrPitUQiUdWK\nxWEpo1o0QAGgtf3HH87oz17/y8DK++e/cFSff/hXAysPzUcIGE60waLlz7/l6g9nfxBYef/sHz+p\nvqceC6w8AMDGIwRsMM/zND8/XxwmbJqmLMuSYRg1leM4jmzb1sLCgjo7O9XX19eyZayFBigAtLZv\nvfUdTb38h4GV9z92Dcrc9Whg5aH5CAHDiTZYtLzy+k/1v//hdwIr718lPqsDT9wfWHkAgI1Xbxus\nPeB6RJZhGIGsmBuLxda96EZYygAARNsTHY+rTW2BLA5yd/sOPXLvQwHUCgA2l8cf3qXt7VsCWRyk\nfWubnng42C/+AQCtI7ILgwAAgPW5/+779JmPfSqQsp566Fe0dcvWQMoCgM1kx/Z2fe4XHgykrF/d\n94Du3bEtkLIAAK2HEBAAAFTU+/jTalPbusrYvnW7/gvz1wOqEQBsPn2f71T71vU9um3d0qYjn2cu\nQADYzAgBAQBARZ/c/cS6V/T9nSeP6P67PxZQjQBg83n4/nv1u194Yl1lfOnw49r7wM6AagQAaEWE\ngAAAYFXxT/6WYvd/pq59v7jX0hfXGSICAKTez3XqC599pK59rQMP6UvW48FWCADQclgdGA3DynQA\nEB2379zWn/7wBf2l+zdVLRSybUu7vvSJXj3d+YUNqB2ahdWBw4k2WHQVCgVlv3lZf/L113Tr9toL\nhbRvbdOXrMf129bjamtb39QOAIDwqLcNRgiIhqEBCgDR86P86/qz1/9Szruv6E5h5QPoti3t+uUH\nPquex/6xHrz3gSbUEBuJEDCcaINF35vvfqAX5l7X377yjm6WWTW4fesWdX1mj/o+/5j27mEIMABE\nDSEgQocGKABEl3fjmi7lL+uND97Szds3taN9hx7d+bAeNzp1z7a7m109bBBCwHCiDbZ5/PzDW7r0\npif36ge6fuOWdmzbqr0P7NTjDxm6Z0d7s6sHAGgQQkCEDg1QAACijRAwnGiDAQAQbfW2wVgYBAAA\nAAAAAIg4QkAAAAAAAAAg4pgoAgAAAABaTKFQ0Cuv/1Tfv5LXlXfe1/Wbt3XXtq3au+defcrcrV94\n7D5tYUVgAEAJQkAAAAAAaCH2/Jv68oVLeuenP1/x2re/f1WStGf3Dv32ocf16599ZKOrBwAIKRYG\nQcMwKTUAANHGwiDhRBssun7+4S1NfOVl/d0//KTqfQ584mN69p/EdO+ObQ2sGQBgI7EwCAAAAABE\n1PUbt5Q+/3c1BYCSNP+j9zT2h9/Rz67falDNAACtghAQAAAAAELu3//59/Xam15d+15++339v3/2\nasA1AgC0GkJAAAAAAAixly+9pwsvvbWuMr758tv6+x/W1osQABAthIAAAAAAEGLZv70cTDnfDKYc\nAEBrIgQEAAAAgJDKf3BDzo/eC6SsVy4v6D3veiBlAQBaDyEgAAAAAITUa296KgRcHgBgcyIEBAAA\nAICQeuvdnwVa3hsBlwcAaB2EgAAAAAAQUrfv3Am2vNvBlgcAaB2EgAAAAAAQUvfevS3Q8nYGXB4A\noHUQAgIAAABASD324K5gy3so2PIAAK2DEBAAAAAAQsp8YKeMe4LpvXfvjnY9TggIAJsWISAAAAAA\nhFT71i369c8+EkhZhw8+rG3tWwMpCwDQeggBAQAAACDEej7XqY57t6+rjJ13b9ORzz8WUI0AAK2I\nEBAAAAAAQmzn3dv0+32fUVtbffu3Sfq9nn0y1hkkAgBaGyEgAAAAAITcL33y4/r93tqDwDZJ/+1/\n+Wn96mceaEi9AACto73ZFQAAAAAArO0Ln31ED953t6ZeeEXvLPx8ze0/3rFDyb7P6Bce/9gG1A4A\nEHZthUKh0OxKIJquXr3W7CoAAIAG2rOHVUbDiDZY9N24eVtzzlv62nff0Otvva87JY90bW1S5wO7\n9IVfekRW7CHdtZ2FQAAgauptgxEComFogAIAEG2EgOFEG2xz+fDmbb3xkw90/cNbumt7ux79+L0E\nfwAQcfW2wRgODAAAAAAt6q5tW/XEw0azqwEAaAEsDAIAAAAAAABEHD0BAQAAsCl4nqf5+Xl5nifD\nMGSapkzTbHa1AAAANgQhIAAAACLNcRyNjIzIcZwVr1mWpampqVX3d11X58+f19zcnDzPk2ma6u3t\nVSKRqLoOQZQBAACwHiwMgoZhUmoAAKKtFRYGmZiYUDqdliQlEglZliXDMOR5nl566SW5rqvTp09X\n3D+TySiVSkmSDMNQR0eHXNeVJJmmqampqTV7EwZRRi1ogwEAEG2sDozQoQEKAEC0hT0E9MO3WCym\nc+fOyTBqWzwhm81qcHBQhmFofHxclmUVXxsbG9Pk5KQMw9CLL75YsewgyqgVbTAAAKKNEBChQwMU\nAIBoC3MI6DiO4vG4YrGYpqen6yqjq6tLkjQ9PV22p54f8PX09FTsTRhEGbWiDQYAQLTV2wZjdWAA\nAABEzsjIiCRpfHy8rv0zmYw8z9PRo0crDtXt7e2VaZrK5XLyPK8hZQAAAASFEBAAAACRYtu2HMeR\nZVl1z7WXzWYlSceOHVt1u56eHknSzMxMQ8oAAAAICiEgAAAAIsUP38qtvFttbzvbtiVpzRDx4MGD\nklR25eEgygAAAAgKISAAAAAixe9RF4vFJC2Ga8lkUvv27VNXV5f27dunZDJZMRD0f15NL0L/GPPz\n84GXAQAAECRCQAAAAESG53lLAriJiQkdP35cu3btUn9/v3p6emQYhmzbVjweLxsEuq4rSVWt1tvR\n0bFknyDLAAAACFJ7sysAAAAABKU0fMtms7JtWy+++OKKMC6VSimTySidTmt0dHTJa/l8vubjLg8T\ngygDAAAgSPQEBAAAQCSdPXtWU1NTZXvjjY6OyjAMZTKZFT3w/DDO76G3mko9/YIoAwAAIEiEgAAA\nAIgcz/PKLgxS6ujRo5Kk8+fPb0SVAAAAmooQEAAAAJG0Vgh4+PBhSdLc3NySn9fSM6/SEN4gygAA\nAAgSISAAAAAiww/fgliQo5p5/fxtKh0viDIAAACCwMIgAACgJu/+/D3NvfktvZZ/XW988JZu3L6p\nHe13ae/Oh/Wp+57UUw/9inZt39nsamKTMk1TUnW96/zQbfm2fjhYSw+95XP/BVEGAABAkAgBAQBA\nVd6/+YH++Ptf0bfe/o4KKix57frt61r4MK/5d1/RV36U0xf3WvrSEz3atnVbk2qLzcwwDHmeJ8/z\nVu1d5wd0y7eJxWKSquvF55exf//+wMsAAAAIEsOBAQDAmi55l/W/fvPf6OLb314RAC53684tvXj5\na/rXF8f17s/f26AaAh85dOiQJGl+fn7V7fyA7sCBAyteKw0SV+Mf4+DBgw0pAwAAICiEgAAAYFU/\nfv9N/Z/fmZR341pN+731s3f0f3znjPIf1rYfsF5HjhyRtPaqv9lsVpJkWdaK1/r6+iStHSReuHCh\noWUAAAAEhRAQAABUdPPOLU05f6Drt6/Xtf9713+qP3jljwOuFbC63t5eGYahXC5XsRee67rKZDIy\nDEMDAwNly5CkiYmJisfxPE+5XE6maRaH/wZdBgAAQFAIAQEAQEV/6X5db37w9rrKmH/3e/ru1dV7\nQgFBGxoakiTF4/EVq/+6rqtkMilJeu6558rub1mWYrGYbNuWbdtltxkcHFxyrEaUAQAAEJS2QqGw\n+sQ+QJ2uXmX4FwC0sjuFO0rZ/1o//XBh3WV9eveTGvzlZwOoFcJkz55dza7CqlKplDKZjKTFhTr2\n7t2rK1euyHEcSVIikdDo6GjF/V3XVXd3tySpv79fR44ckWmamp+f18TEhGzblmVZmpqaamgZtaIN\nBgBAtNXbBiMERMPQAAWA1vbDhUv6N9/+vwMr73/7tf9FO7ffG1h5aL6wh4CSlMlklEqllvzMMAwN\nDQ0pkUisub/ruhocHCwGh6XWChGDLKMWtMEAAIg2QkCEDg1QAGhtf+n+jf74B18OrLz//rP/Qvvv\n3xdYeWi+VggBfY7jKJ/Pq6Ojo6659xzHkW3bWlhYUGdnp/r6+mQYxoaXUQ3aYAAARFu9bbD2gOsB\nAAAi4r3rPw20vHcDLg+oxXoX3YjFYqEoAwAAoF4sDAIAAMoqKOjBAgw+AAAAAJqFEBAAAJS1+66O\nUJcHAAAAoHqEgAAAoKzOXXtDXR4AAACA6hECAgCAsj7R8Zh2bdsZSFmPG53quCv4BRAAAAAAVIcQ\nEAAAlNW+pV2HH30qkLK+8OihQMoBAAAAUB9CQAAAUNFvdv6G7t9x37rKeLLjCX3uoV8OqEYAAAAA\n6kEICAAAKtrRfpd+b/8xtW9pr2v/ndvu1e/tP6q2traAawYAAACgFoSAAABgVZ/c/YSePfj7umvr\n9pr269hu6MQ/ekYfv/v+BtUMAAAAQLXaCoVCodmVQDRdvXqt2VUAAATo3Z+/p3//yh/r1Z/+w6rb\ntalNv/rgL+mfffq/0r3b7tmg2qEZ9uzZ1ewqoAzaYAAARFu9bTBCQDQMDVAAiKZL3mXZb1zUj/KX\n9PbPrupO4Y7a27bqkZ0P6ZO7P6Ffe+QpPXjvA82uJjYAIWA40QYDACDa6m2D1TfBDwAA2LQeNzr1\nuNEpSbpTuKNbd26rfctWbWljlhEAAAAgrAgBAQBA3ba0bdH2rYR/AAAAQNjRagcAAAAAAAAijhAQ\nAAAAAAAAiDhCQAAAAAAAACDiCAEBAAAAAACAiCMEBAAAAAAAACKOEBAAAAAAAACIOEJAAAAAAAAA\nIOIIAQEAAAAAAICIIwQEAAAAAAAAIo4QEAAAAAAAAIg4QkAAAAAAAAAg4ggBAQAAAAAAgIhrb3YF\nAABAa3nrg7dlv3FRP8q/rjc/eEs37tzUjq136dGdD+tT9z0p6+Eu3bdjd7OrCQAAAKBEW6FQKDS7\nEoimq1evNbsKAIAA5T/0lHn1T/TdnzirbrelbYsOP/KUfufJI9rRftcG1Q7NsGfPrmZXAWXQBgMA\nINrqbYPRExAAAKzpHxZe09m//3f64NbP1tz2TuGOvv7jOX3v3Vf1L3/pX+jBe/ZsQA0BAAAArIY5\nAQEAwKpe91z9X9/9t1UFgKV+cv09jX/7jH56faFBNQMAAABQLUJAAABQ0Y3bN3Xu5T/Ujds36to/\nf8PT//e9Pwq4VgAAAABqRQgIAAAqevHy1/TOz36yrjJe+ekP9J/f/m5ANQIAAABQD0JAAABQ1u07\nt/X1H88FUtZfX7kQSDkAAAAA6kMICAAAynrNu6z8DS+Qsn6Yv6RrN94PpCwAAAAAtSMEBAAAZV32\n3GDLu3Yl0PIAAAAAVI8QEAAAlPXTD/OBlvceqwQDAAAATUMICAAAyiqoEHiJAAAAAJqjvdkVAAAA\n4fSxu3YHW96O+wItDwA2O+9nN/TDH+d15Z33df3mbd21bavMPTv15KMdMu7d3uzqAQBChhAQAACU\nZe7aG2h5nQGXBwCb1eW3r+mr9iV95wc/0e07K3tZb93Sps9+8uP6rUOP6YmHjSbUEAAQRoSAAACg\nrE90PKaO7buUv3EtgLIe167tOwOoFQBsXncKBX35b17Tf5p7vWz457t9p6Bvf/+q/u4HP1HvU52K\nf+ET2rKlbQNrCgAII+YEBAAAZW3dslW/9ujnAynrN/ZagZQDAJvVnUJBk199WV++cGnVAHD5Pi98\n43X9P192dKfKfQAA0UUICAAAKuru/A09cPfH11XGvvs+qV9+4LMB1QgANqev2pf0Deftuvb91ivv\n6E++/qOAawQAaDWEgAAAoKLtW7fpeOy/1vYt2+rav2O7oX/+C0fV1sYwNACo15Wr7+srFy6tq4yZ\nb1zW62+tf3oHAEDrIgQEAACresww9S8/+9/pnva7a9rv/h33afAfPaP7dgS7yjAAbDYz31h9DsBq\n3CkU9J++8XpANQIAtCJCQAAAsKZP3fek/uen/pV+8eOxNbfd0rZFv/bIU/qfPvc/6MF7H9iA2gFA\ndP38w1u6+MrVQMr6zvev6v2f3wykLABA62F1YAAAUJXdd3Xo2V/8fb3x/luae/OifpR/XW+8/6Zu\n3rmlHe13ae/OR/TJ3Z/Q4Uc+R+8/AAjIpTc93bp9J5Cybt8p6EdvePrFJ+8PpDwAQGshBAQAADV5\nZOdD+qef+lKzqwEAm8KVqx8EWt6Pr75PCAgAmxTDgQEAAAAgpD68eTvU5QEAWgchIAAAAACE1I7t\nWwMuj8FgALBZEQICAAAAQEiZD+wMdXkAgNZBCAgAAAAAIfX4Q4bu2hZMb8Bt7Vv0xMNGIGUBAFoP\nISAAAAAAhNRd27fqqf0PBlJW12ce0D07GA4MAJsVISAAAAAAhNiRz3dqe/v6Ht3at27Rbx16LKAa\nAQBaESEgAAAAAITYA/fdo3/6xSfXVcbv/voTevj+ewOqEQCgFRECAgAAAEDI/WaXqe5f2VvXvr/x\nS4+o7/P0AgSAzY4JIQAAAACgBfw3v/lpPfixe/RHf/UPunHzzprbb2/fot/9wifU87nODagdACDs\nCAEBAAAAoEU8/St7dfDJ+5X75mXNOW/p+o3bK7a5a9tWfT72oHo/16kHP3ZPE2oJAAijtkKhUGh2\nJRBNV69ea3YVAABAA+3Zs6vZVUAZtME2j5u3buvy2+/Lvfq+rn94Wzu2b9XeB3aq84Gd2r5ta7Or\nBwBokHrbYPQEBAAAAIAWtK19q558tENPPtrR7KoAAFoAC4MAAAAAAAAAEUcICAAAAAAAAEQcISAA\nAAAAAAAQcYSAAAAAAAAAQMQRAgIAAAAAAAARRwgIAAAAAAAARBwhIAAAAAAAABBxhIAAAAAAAABA\nxBECAgAAAAAAABFHCAgAAAAAAABEHCEgAAAAAAAAEHGEgAAAAAAAAEDEEQICAAAAAAAAEUcICAAA\nAAAAAEQcISAAAAAAAAAQcYSAAAAAAAAAQMQRAgIAAAAAAAARRwgIAAAAAAAARBwhIAAAAAAAABBx\nhIAAAAAAAABAxBECAgAAAAAAABFHCAjg/2fvboPrPM/7wP8PJdmWLRxKjii/CIeJ7cYWAdIvaRSH\nULZu16IIaqdNTMWEttPuhBIVbzu7gV2D0y8SZdOa2Q9kZk11PyQhKTgzbVegWkz6YhM0qbSbhgeJ\nmXg+CREAACAASURBVDqOBZCSUzuWDuTYZmyTB5Qt64VnPzCARRMgAfA5BPjg95vRjHSe577OJVtD\n3vzjfgEAAABKTggIAAAAACUnBAQAAACAkhMCAgAAAEDJCQEBAAAAoOSEgAAAAABQckJAAAAAACg5\nISAAAAAAlJwQEAAAAABKTggIAAAAACUnBAQAAACAkhMCAgAAAEDJCQEBAAAAoOQWPQScmJjI6Oho\nzpw5s9itAAAAAEApXduOoidOnEi9Xk9PT0/WrFkz4zujo6N5+OGH02g0pj/r7u7OI488kttuu60d\nbQEAAADAstSWlYC/8zu/k927d58X8L3W6Oho7rvvvjQajbRarXR2dqbVamVsbCwf+chH8vTTT7ej\nLQAAAABYlgoPAScnJ3Po0KEkyV133TXjO/39/Wm1WqnVajl27FgOHz6cp59+Olu2bEmr1cqDDz5Y\ndFsAAAAAsGwVHgKOjY0lSTZu3Djj8wMHDqTZbKZSqeSxxx5LR0fH9LOdO3emWq1mfHw8ExMTRbcG\nAAAAAMtS4SFgs9lMkqxbt27G50ePHk2SdHV1pbOz84Lnvb29Sc5tGQYAAAAALl/hIWCj0UilUkmt\nVpvx+fHjx1OpVHL33XfP+Hz16tVJfhImAgAAAACXp/AQsFqtptVq5fTp0xc8m5ycnL4spKur65J1\nAAAAAIDLV3gIOLUCcKaVfAcPHpz++/Xr1884/rnnnkuSGbcKAwAAAADzV3gIuHbt2iTnB35T9u7d\nm0qlkp6enlnHT50FONuZggAAAADA/BQeAnZ0dKSrqyvj4+P5xCc+kYmJiUxMTOTjH//49FbggYGB\nGcc2Go00Go1Uq9XccMMNRbcGAAAAAMvSte0oumfPnmzYsCEjIyMZGRk579m2bduyZs2aGcdNrRTc\nsmVLO9oCAAAAgGWp8JWAyblzAQ8fPpwNGzak1Wql1Wqls7MzO3fuzCc/+ckZxzQajRw4cCBJ8rGP\nfawdbQEAAADAslRptVqtxW7itRqNxvTlIlzdTp6cXOwWAIA2WrWqY7FbYAbmYABQbgudg7VlJeDl\nEAACAAAAQLHaEgI+/PDD2b9//7zHbdiwIRs3bmxDRwAAAACwfLUlBBwaGsrQ0NC8x23bti3PPvts\nnnjiiTZ0BQAAAADLU1tuB16ovr6+PPzwwxkZGclHP/rRxW4HAIASGhkZyRe+8IUkySOPPJJqtXrJ\nMY1GI48//nhGR0fTbDZTq9XS29ubvr6+OX9vETUAABaqLReD3HbbbVm9enW++MUvznvs5s2b8/zz\nz+dP//RPi26LK8yh1ABQblfjxSDNZjO333779D8fO3bskiHg0NBQduzYkSSpVqtZuXJlGo1GknPn\nWQ8ODl7yXOsiasyVORgAlFtpLgaZmJhIs9lc7DYAACihBx98MEnmtPovObdqcMeOHalWqxkcHMyx\nY8dy5MiRPPPMM9m2bVsajUY2b9580flrETUAAC7XkgkBT5w4kY9//OMmPwAAtEW9Xs+hQ4eybdu2\nOa+6e+ihh1KtVjM8PJyenp7znm3fvj179uxJs9mcDhfbVQMA4HJd1pmAu3fvnvUW4EajkTVr1iyo\nrhuCAQAoWn9/f6rVarZv357Nmzdf8v2hoaE0m82Lhoa9vb2p1Wo5dOhQms3mBSsMi6gBAFCEy14J\n2Gq1Lvhrts8v9VdHR0e2bNmSz372s5f9LwYAAFN27dqVZrOZz3zmM3MeMzIykiS59957L/re1A+w\nDx482JYaAABFuKyVgB/72MdmvM1sw4YNWb169ayrBGdy4403pqPj6jtcGgCApW18fDz79u1LT09P\nent75zyuXq8nySW3Dq9bt276e9pRAwCgCJcVAnZ0dFw0uCvqhjMAAFiohx56KEmyc+fOOY+ZOqd6\nLvPZ7u7uJMnY2FjhNQAAirJkLgYBAICi7d27N+Pj4/O6DCQ5d751MrdbhFeuXHnemCJrAAAU5bJW\nAs5my5YtDjQGAGBRNZvN7N69O7VaLdu3b5/X2NOnTy/o+4quAQBQlLaEgPPZagEAAO3Q39+fZGFz\n06kwbmqF3sXM9sPvImoAABTFdmAAAEpnZGQk9Xo9GzduTE9Pz2K3AwCw6NqyEnDK/v3784UvfCHH\njx+f17hKpTLvMQAAkJxbgTd1GcgjjzyyoBrzWZk32xbeImoAABSlbSHgPffck+PHj6fVarXrKwAA\n4AK7d+9Os9nMwMDAZW+zncu5flPvzPZdRdQAALhcbQkBDxw4kPHx8SRJV1dX7r333qxcudKkBgCA\nthsaGkqS1Ov11Ov1Gd+Zmqv+xm/8xvSZfV1dXdMXiEx9Np8Vej999l8RNQAAitKWEHBkZCRJcscd\nd2T//v3t+AoAALjAawO32QLA15oKA39ad3d3krmt4pv6zq6ursJrAAAUpS0h4NjYWCqVSj796U+3\nozwAAMyoWq3mmWeeueR7t99+e5rNZo4dOzbrbpVqtZpms5lms3nRHS1jY2NJknXr1rWlBgBAEdpy\nO/DUNobOzs52lAcAgLbbtGlTkp8EdLM5evRoksx4C3ERNQAAitCWELCjo8P5fwAAXNV6e3uTJHv3\n7p31nWazmUOHDqVWq01v/y26BgBAEdoSAvb19aXZbObMmTPtKA8AAG3X09OT7u7ui14w0t/fnyQZ\nGBhoWw0AgCK0LQRcs2ZNHnrooXaUBwCAK2LPnj1Jkq1bt2bXrl0ZHx9Ps9lMvV7P1q1bU6/X09PT\nM73ir101AAAuV6XVarXaVfy+++5LpVLJzp07c+utt7bra1iiTp6cXOwWAIA2WrWqY7FbWLC5XAwy\npdFopL+/f8abhPv6+rJz585Lfl8RNebKHAwAym2hc7C2hID79++f/vvPf/7zOXHiRGq1Wrq6uqYv\nDbloU5VKPvWpTxXdFleYCSgAlNvVHAIuxPj4eOr1ek6dOpXVq1dn06ZN8z4Hu4gal2IOBgDltqRC\nwNtuuy2VSmX6n6e+4rWfzabVaqVSqeTEiRNFt8UVZgIKAOW23ELAq4U5GACU20LnYNcW3EeSZP36\n9XMK/AAAAACA9mvrmYAsb34KDQDlZiXg0mQOBgDlttA5WFtuBwYAAAAAlg4hIAAAAACUnBAQAAAA\nAEquLReDrFmz5rLGVyqVHD9+vKBuAAAAAGB5a0sI6K4RAAAAAFg62hICDg4OzvndRqORP/7jP86f\n/Mmf5JFHHklnZ2c7WgIAAACAZavSWiLL9kZGRvLwww9neHg4t95662K3QwFOnpxc7BYAgDZatapj\nsVtgBuZgAFBuC52DtWUl4EL09vam0Whk69at+eIXv7jY7QAAAABAaSyp24EfeOCBnDp1KocPH17s\nVgAAAACgNJZUCJgknZ2defzxxxe7DQAAAAAojSUXAibJ2NjYYrcAAAAAAKWx5ELAycnJNJvNxW4D\nAAAAAEpjSYWAo6OjaTQaqdVqi90KAAAAAJRGW24Hfvjhh+c95vTp0zl06FAqlUrWr1/fhq4Wrtls\nZmxsLM1mM7VaLd3d3YvdEgAAAADMWaXVarWKLnrbbbelUqnMa8xUGytXrsyTTz6ZG264odCeRkZG\nMjQ0lMHBwXmN2b17dxqNxgXP+vr6MjAwkGq1Ouv4rVu3zul7Ojo68uijj170nUajkccffzyjo6PT\nYWRvb2/6+vrm9B1F1ZiPkycn21IXAFgaVq3qWOwWmIE5GACU20LnYG0JAbdu3TrvELCzszNr167N\npk2b0tFR3IRyfHw8u3fvTr1eT3d3d4aHh+c0bteuXdm3b1+q1ep0T41GYzpAS5JarZbh4eEZg8Bm\ns5nbb799Tt9VrVZz7NixWZ8PDQ1lx44d0++uXLlyOpis1WoZHBy85BbqImrMlwkoAJSbEHBpMgcD\ngHJbUiHgYtu7d28OHjyY8fHx8z6fawg4MjKS/v7+bNy4ccYVeiMjI3nooYfSbDZnrTkVAtZqtRw5\ncmTB/y5TvVSr1ezZsyc9PT3Tz14bVD755JOzrkososZCmIACQLkJAZcmczAAKLeFzsGW1MUgRXnq\nqafSaDTS3d2dgYGBDAwMzGv8Qw89lFqtNusW3d7e3ungb3x8PCMjI5fd88V6qVarGR4ePi+8S5Lt\n27dnz549aTabefDBB9taAwAAAICrVylDwEcffTTHjh3L8PBwHnjggXltcx0ZGUmz2bxkcFir1abP\n0hsaGrqsfmczNDSUZrOZLVu2zPrv0Nvbm1qtlkOHDk1vUy66BgAAAABXtysSAp44cSL79+/PPffc\nkzVr1mTNmjX54Ac/mHvuuSePPfZYzpw5cyXamJPTp08nOReMXcrUO2NjY23pZWqF4b333nvR9zZu\n3JgkOXjwYFtqAAAAAHB1u7adxScmJtLf35/jx48n+ckNwMm5sO306dM5fvx4du3ale3bt+e+++5r\nZztz0tfXl5UrV87p3amVde1aPVev18/7ntmsW7cuSS44A7GoGgAAAABc3doWAo6Ojua+++6bDv62\nbNmStWvXTodRjUYjY2NjGRsbmw4Cjx49mv3797erpTmbyyrAJOfdEly0+dTu7u5OcuGKxCJqAAAA\nAHD1a0sIePz48WzdujVJsm3bthnP11u/fn22bNmS5Fwg2N/fn3q9nk996lP51Kc+1Y62Cje1yu6n\nL9uYydDQUIaGhtJoNJKc+/e/9957Zx079d5cbuudWrk4NabIGgAAAABc/dpyJmB/f38qlUq2b98+\np5t5a7VahoeHc+utt2ZoaCiHDx9uR1uFm7oQZOqCkJmcPn06mzdvzo4dO9JoNLJ27dqsXLkyhw4d\nytatW7Nr165Zx83XT29LLqIGAAAAAFe/wkPA0dHRNBqN1Gq13H///fMaOzg4mFarlccff7zotgq3\na9euNBqN9PX1TW+lnUmz2Uyj0cjg4GCOHTuWwcHBHDlyJEeOHEmtVsu+ffuyd+/eGcclmdP5hLOt\n9CuiBgAAAABXv8JDwKNHj6ZSqVx0ddxsarVaurq6prfZLlX1ej379u1Ld3d3du7cedF3q9VqhoeH\nL9j2O7X6MUl2795tBR4AAAAAbVN4CDh1E3BXV9eCxq9duzZJcuLEicJ6KtL4+Hi2bt2a7u7ufO5z\nn5v1vWq1mmPHjuXYsWOzXsxRrVazcePGJD/ZWvzaZ3M1W4BYRA0AAAAArn6Fh4AdHR2XNX7qHLvL\nrdMO4+Pj2bx5c3p6ejI8PHzJkG0uIdwdd9yRJDl48OCMz+dyrt/UO7N9XxE1AAAAALh6FR4CTq16\nGx0dXdD4qZWEnZ2dhfVUhJGRkWzevDl9fX0ZHBwsrO7U/14/fSvv1Dl+81mh99Nn/xVRAwAAAICr\nX+EhYF9fX1qtVoaGhnLmzJl5jT106FAajcYF5+cttqGhofT392fbtm2XPANwoX46qJu6bGQuq/im\nxv70FuwiagAAAABw9WvLSsD169en2WzmoYcemvO4iYmJPPTQQ6lUKhkYGCi6rQXbu3dvduzYkYGB\ngWzfvr3w+lPh20znBlar1TSbzUuu5BsbG0uSrFu3ri01AAAAALi6FR4CJsmjjz6aG264ISMjI/n1\nX//1PP300xd9f//+/dmwYUMmJyezbdu2rFmzph1tzdvevXuze/fu7Ny5Mw888MC8xs51C+7UTcgz\nrcDbtGlTkp8EdLM5evRoksy4grKIGgAAAABc3a5tR9GOjo4MDw9n8+bNGRsby0c+8pHUarV0dXVN\nr3hrNpsZGxubPgOw1WrlgQceyCc/+cl2tDRvu3btyr59+7Jnz5709vbOa2yz2cyHP/zhDA8Pz3oz\n8NR7U7cCf+xjH7vgeW9vb4aGhrJ3795Zw7lms5lDhw6lVqtNb/8tugYAAAAAV7e2hIDJue2tf/iH\nf5hdu3blwIEDee655/Lcc8+lUqlMv9NqtZKc27L6mc98Jhs3bmxXO/OyY8eODA0NZXBwcEEr4xqN\nRprNZjZv3pw9e/bMWKPZbKa/vz9JsnHjxhnDt56ennR3d6der6der89YZ6rGbFuoi6gBAAAAwNWt\n0ppK4tpocnIyBw8ezNGjR6dvwb3xxhvT1dWVO+64I+vXry/0++r1eh5//PHzvr9er6darZ73XTfe\neOMFF33U6/Vs3bo11Wp1XjflHjlyZMY6ybkgrre3d3pV4Pj4eH7v934vzWYz3d3dGR4enrVuo9HI\nnXfemSTZtm1b7r777tRqtYyNjWXv3r3Twd7FbiwuosZCnDw5WWg9AGBpWbWqY7FbYAbmYABQbgud\ng12REPBKmzrL71Kq1WqOHTt23mcjIyPTK+Pm45lnnrngs2azmQcffDCHDh2accy2bdvmdNlIo9FI\nf39/xsfHL3jW19c3pxuLi6gxXyagAFBuQsClyRwMAMrtqg8BT5w4kVOnThW+KnApmDr/cGqbcK1W\nS09PT6rV6rzqjI+Pp16v59SpU1m9enU2bdq0KDXmygQUAMpNCLg0mYMBQLktqRBw9+7d2b9/f7Zt\n2zbniz527NiRJ554Ig888ED+xb/4F0W3xCIwAQWAchMCLk3mYABQbksqBLzttttSqVRy+PDhdHZ2\nznncnXfemeeff37e41iaTEABoNyEgEuTORgAlNtC52ArCu5j+vy7jRs3zjvIGxgYSKvVyoEDB4pu\nCwAAAACWrcJDwKNHj6ZSqeSOO+6Y99je3t4k5y7nAAAAAACKUXgIODExkSRZu3btgsZ3dXWl0Wjk\nzJkzRbYFAAAAAMtW4SHg5brxxhuTJI1GY5E7AQAAAIByKDwE7Og4dzjhqVOnFjR+atxUHQAAAADg\n8hQeAtZqtSTJ6OjogsYfP348SdwODAAAAAAFKTwE7OvrS6vVytDQ0LzP9du3b1+SczcLAwAAAADF\naMtKwLvuuiunT5/Ob/zGb8w5CHziiSeye/fuVCqVDAwMFN0WAAAAACxbbbkY5NFHH01nZ2fGxsby\n4Q9/OI899tisYeDo6Gjuueee7NixI0ny6U9/2lZgAAAAAChQpdVqtdpReHJyMr/1W7+V0dHRVCqV\nJOdWCXZ0dOTGG29Mo9GYvgF4qoXPfOYz+ehHP9qOdlgEJ09OLnYLAEAbrVrlIrelyBwMAMptoXOw\ntoWAU4aGhrJ3795MTEzM+s6WLVuyfft2NwKXjAkoAJSbEHBpMgcDgHJbsiHglOPHj2dsbCzPPfdc\nms1mVq9ene7u7qxdu1b4V1ImoABQbkLApckcDADKbcmHgCw/JqAAUG5CwKXJHAwAym2hc7C2XAwC\nAAAAACwdQkAAAAAAKDkhIAAAAACU3LWL3cBrjY6OZnLy3Bkmd9111yJ3AwAAAADlsKRCwP7+/kxO\nTqZSqeT48eOL3Q4AAAAAlMKSCgGTxGXFAAAAAFCsJRUCDgwMpNlsLnYbAAAAAFAqlZald7TJyZOT\ni90CANBGq1Z1LHYLzMAcDADKbaFzMLcDAwAAAEDJCQEBAAAAoOSEgAAAAABQcm0JAR9++OHs379/\n3uM2bNiQjRs3tqEjAAAAAFi+2hICDg0NZWhoaN7jtm3blmeffTZPPPFEG7oCAAAAgOVpSW0H7uvr\nS5KMjIwscicAAAAAUB5LKgRMkq6uroyNjS12GwAAAABQGtcudgM/bWJiIpOTk4vdBgAAAACUxpIJ\nAU+cOJHf/d3fTbPZTKVSWex2AAAAAKA0LisE3L1796y3ADcajaxZs2ZBdd0QDAAAAADFueyVgK1W\na16fX0y1Wk1vb2927tx5uW0BAAAAAH+r0lpIWve3Jicnc+rUqQs+37BhQ1avXj3rKsGZ3Hjjjeno\n6FhoKyxBJ0862xEAymzVKnO3pcgcDADKbaFzsMtaCdjR0XHR4K5Wq11OeQAAAACgACsWuwEAAAAA\noL3acjvwli1bUq1W21EaAAAAAJinyzoTsAgTExNpNBpZt25dbrjhhsVshYI5jwYAys2ZgEuTORgA\nlNuinAk4mxMnTqRer6enpydr1qyZ8Z3R0dE8/PDDaTQa0591d3fnkUceyW233daOtgAAAABgWWrL\nmYC/8zu/k927d58X8L3W6Oho7rvvvjQajbRarXR2dqbVamVsbCwf+chH8vTTT7ejLQAAAABYlgoP\nAScnJ3Po0KEkyV133TXjO/39/Wm1WqnVajl27FgOHz6cp59+Olu2bEmr1cqDDz5YdFsAAAAAsGwV\nHgKOjY0lSTZu3Djj8wMHDqTZbKZSqeSxxx5LR8dP9jHv3Lkz1Wo14+PjmZiYKLo1AAAAAFiWCg8B\nm81mkmTdunUzPj969GiSpKurK52dnRc87+3tTXJuyzAAAAAAcPkKDwEbjUYqlUpqtdqMz48fP55K\npZK77757xuerV69O8pMwEQAAAAC4PIWHgNVqNa1WK6dPn77g2eTk5PRlIV1dXZesAwAAAABcvsJD\nwKkVgDOt5Dt48OD0369fv37G8c8991ySzLhVGAAAAACYv8JDwLVr1yY5P/Cbsnfv3lQqlfT09Mw6\nfuoswNnOFAQAAAAA5qfwELCjoyNdXV0ZHx/PJz7xiUxMTGRiYiIf//jHp7cCDwwMzDi20Wik0Wik\nWq3mhhtuKLo1AAAAAFiWrm1H0T179mTDhg0ZGRnJyMjIec+2bduWNWvWzDhuaqXgli1b2tEWAAAA\nACxLha8ETM6dC3j48OFs2LAhrVYrrVYrnZ2d2blzZz75yU/OOKbRaOTAgQNJko997GPtaAsAAAAA\nlqVKq9VqLXYTr9VoNKYvF+HqdvLk5GK3AAC00apVHYvdAjMwBwOAclvoHKwtKwFncubMmUxMTOTM\nmTMXfU8ACAAAAADFamsI+MUvfjH3339/1qxZk9tvvz0bNmxIvV6/4L1Go5HbbrstH/zgBzMxMdHO\nlgAAAABg2WlLCDgxMZF77rkn/f39OXr0aDo6Oma9DCQ5t/rvs5/9bE6fPp3f/u3fbkdLAAAAALBs\ntSUE3Lp1a8bHx9PZ2ZnBwcF86Utfyp49e3Kx4wd7e3vT1dWVkZGRS24ZBgAAAADmrvAQcPfu3Wk0\nGrnjjjty+PDhrF+/fs5jf/M3fzOtVisHDx4sui0AAAAAWLYKDwEPHDiQSqWSPXv2zHtsd3d3kmRk\nZKTotgAAAABg2So0BJycnEyz2UxXV1duuOGGeY+fuhm40WgU2RYAAAAALGuFhoBT4d1UmLfQ8R0d\nHYX1BAAAAADLXaEh4FT4d/z48QWNHx0dPa8OAAAAAHD5Cg0BOzo60tnZmUajkcOHD897/O7du1Op\nVHL33XcX2RYAAAAALGuFXwwyMDCQVquV/v7+PP/883Med//996fZbKZWq+Wuu+4qui0AAAAAWLYK\nDwF7e3tz11135ezZs7nzzjvz2GOPXfT90dHR3HXXXTl69Ggqlcol3wcAAAAA5qfSarVa7Si8Y8eO\nHDhwIJVKJUnS1dWV48ePZ8uWLalWq2k0GhkdHU2z2Uyr1Uq1Ws3nPve5dHV1taMdFsHJk5OL3QIA\n0EarVrnMbSkyBwOAclvoHKxtIWCSjIyMZPfu3ZmYmPjJF/5tKPjar92+fXvuv//+drXBIjEBBYBy\nEwIuTeZgAFBuSzIEnHL8+PHU6/U89dRTmZw8Nynp6urKunXr0tPTk44OE8gyMgEFgHITAi5N5mAA\nUG5LOgRkeTIBBYByEwIuTeZgAFBuC52DFX4xCAAAAACwtFy72A0AAEA7NZvNjI2Npdlsplarpbu7\ne7FbAgC44oSAAACU0tQldY1G44JnfX19GRgYSLVavWSdRqORxx9/PKOjo9NBYm9vb/r6+ubcSxE1\nAAAuhzMBaRvn0QBAuS3lMwF37dqVffv2pVqtZtOmTeno6Eij0ZgO4ZKkVqtleHj4okHg0NBQduzY\nkSSpVqtZuXLldKhYq9UyODiYWq120V6KqDEf5mAAUG4uBmHJMQEFgHJbqiHgyMhI+vv7s3Hjxjz6\n6KMzPn/ooYfSbDbT3d2d4eHhi9apVqvZs2dPenp6pp+9NmR88sknZw0Si6gxX+ZgAFBuQkCWHBNQ\nACi3pRoC3n777Vm5cmWOHDky6zuNRiN33nlnkmTPnj3p7e2dsU6SDA8Pz7hS71JhY1E15sscDADK\nze3AAAAseyMjI2k2mxkYGLjoe7Vabfo8vqGhoQueDw0NpdlsZsuWLbNu1e3t7U2tVsuhQ4emtxgX\nXQMAoChCQAAASuP06dNJMuPKvp829c7Y2NgFz0ZGRpIk995770VrbNy4MUly8ODBttQAACiK24EB\nACiNvr6+rFy5ck7vTq3Om2kFXr1eP++d2axbty5JMj4+3pYaAABFsRIQAIBSmcsqwCTn3RI8l89n\n0t3dneTC1YRF1AAAKJIQEACAZWlqpd5rb+xNzl0akmROt/VOrTqcGlNkDQCAIgkBAQBYlqYuBJm6\nIGTK1LmC8/HTW4qLqAEAUCQhIAAAy86uXbvSaDTS19c3vR13ylQYN5ezBWdb6VdEDQCAIgkBAQBY\nVur1evbt25fu7u7s3LlzsdsBALgihIAAACwb4+Pj2bp1a7q7u/O5z31uxnfmszJvti28RdQAACiS\nEBAAgGVhfHw8mzdvTk9PT4aHhy8Z1M3lXL+pd2arVUQNAIAiCAEBACi9kZGRbN68OX19fRkcHLzo\nu1Pn+M1nhd5Pn/1XRA0AgCIJAQEAKLWhoaH09/dn27ZtczoDcOqikLms4psK+bq6ugqvAQBQJCEg\nAACltXfv3uzYsSMDAwPZvn37nMdVq9U0m81LruQbGxtLkqxbt64tNQAAiiIEBACglPbu3Zvdu3dn\n586deeCBB+Y1dtOmTUl+EtDN5ujRo0mSnp6ettQAACiKEBAAgNLZtWtXdu/enT179qSvr2/e43t7\ne5OcCxJn02w2c+jQodRqtentv0XXAAAoihAQAIBS2bFjR/bt25fBwcHpIG6+enp60t3dnXq9nnq9\nPuM7/f39SZKBgYG21QAAKEql1Wq1FrsJyunkycnFbgEAaKNVqzoWu4UL1Ov1bN26NdVqdV63r875\nsgAAIABJREFU7R45cuSCzxqNRu68884kybZt23L33XenVqtlbGwse/fuTb1eT09Pz0VvGy6ixnyZ\ngwFAuS10DiYEpG1MQAGg3JZiCDgyMjK9um4+nnnmmRk/bzQa6e/vz/j4+AXP+vr65nTbcBE15sMc\nDADKTQjIkmMCCgDlthRDwHYZHx9PvV7PqVOnsnr16mzatCnVavWK15gLczAAKDchIEuOCSgAlNty\nCgGvJuZgAFBuC52DuRgEAAAAAEpOCAgAAAAAJScEBAAAAICSEwICAAAAQMkJAQEAAACg5ISAAAAA\nAFByQkAAAAAAKDkhIAAAAACUnBAQAAAAAEpOCAgAAAAAJScEBAAAAICSEwICAAAAQMkJAQEAAACg\n5ISAAAAAAFByQkAAAAAAKDkhIAAAAACUnBAQAAAAAEpOCAgAAAAAJScEBAAAAICSEwICAAAAQMkJ\nAQEAAACg5ISAAAAAAFByQkAAAAAAKDkhIAAAAACUnBAQAAAAAEpOCAgAAAAAJScEBAAAAICSEwIC\nAAAAQMkJAQEAAACg5ISAAAAAAFByQkAAAAAAKDkhIAAAAACUnBAQAAAAAEpOCAgAAAAAJScEBAAA\nAICSEwICAAAAQMkJAQEAAACg5ISAAAAAAFByQkAAAAAAKDkhIAAAAACUnBAQAAAAAEpOCAgAAAAA\nJScEBAAAAICSEwICAAAAQMkJAQEAAACg5ISAAAAAAFByQkAAAAAAKDkhIAAAAACUnBAQAAAAAEpO\nCAgAAAAAJScEBAAAAICSEwICAAAAQMkJAQEAAACg5ISAAAAAAFByQkAAAAAAKDkhIAAAAACUnBAQ\nAAAAAEpOCAgAAAAAJScEBAAAAICSEwICAAAAQMkJAQEAAACg5ISAAAAAAFByQkAAAAAAKDkhIAAA\nAACUnBAQAAAAAEpOCAgAAAAAJScEBAAAAICSEwICAAAAQMkJAQEAAACg5ISAAAAAAFByQkAAAAAA\nKDkhIAAAAACUnBAQAAAAAEpOCAgAAAAAJScEBAAAAICSEwICAAAAQMkJAQEAAACg5ISAAAAAAFBy\nQkAAAAAAKDkhIAAAAACUnBAQAAAAAEpOCAgAAAAAJScEBAAAAICSEwICAAAAQMkJAQEAAACg5ISA\nAAAAAFByQkAAAAAAKDkhIAAAAACUnBAQAAAAAEpOCAgAAAAAJScEBAAAAICSEwICAAAAQMkJAQEA\nAACg5ISAAAAAAFByQkAAAAAAKDkhIAAAAACUnBAQAAAAAEpOCAgAAAAAJScEBAAAAICSEwICAAAA\nQMkJAQEAAACg5ISAAAAAAFByQkAAAAAAKDkhIAAAAACUnBAQAAAAAEpOCAgAAAAAJScEBAAAAICS\nEwICAAAAkFartdgt0EbXLnYDAABQdo1GI48//nhGR0fTbDZTq9XS29ubvr6+xW4NgGXq5bOv5M+/\n+9V85eRYnmtO5NSPTydJbnz9yqzuuDXvv2VdPnDLe3PdCtFRWVRaYl7a5OTJycVuAQBoo1WrOha7\nhavC0NBQduzYkSSpVqtZuXJlGo1GkqRWq2VwcDC1Wq2w7zMHA+BSvvzdr+aJr/2HNF+6+O8Z1dd1\n5KPv/tX8wi3vvUKdMRcLnYMJAWkbE1AuV6vVysnTL+aHL76ca1esyFvefH2uu/aaxW4LgL8lBLy0\nkZGR9Pf3p1qtZs+ePenp6Zl+tmvXruzbty/VajVPPvlkqtVqId9pDgaw+F49+2r+8tQ38myzkZM/\n+l7Ots6m+rqO1DpuzXve/Hdyw3VvWpSaZ1tn8/gzwzn6rS/N67t73vZL+V9v25wVFafKLQVCQJYc\nE1AWavyb389//fLzOf7sD/KjH78y/fk1KyrpvOWG/Mq6t6Vn7Vtz/estSwdYTELAS7v99tuTJMPD\nwzOu9psKCTdu3JhHH320kO80BwNYPK+cfSVHnvuj/NHE0ZyeZZXddSuuzS/c8r78w3duzE1vuPGK\n1vy3T/+7eQeAU+54+y/lH9/26wsaS7EWOgfzJ2hYZl548eU889ypPPvtyUz+8KWsWFHJW978xrzz\nbdW88+3VVCqVBdU922rlr7/3w5x5Tc3qG183rxrfO/1iBg+eyPFv/mDG56+ebeXZb0/m2W9P5j/V\nv5n/beN78gvvXrWgfgGg3YaGhtJsNrNt27ZZt/v29vamVqvl0KFDaTabha0GBODK+9aZb2dw/N/m\nWy98+6LvvXz2lfzpt/97/uLkePre82v5pbf+whWp+ZXvPrXgADBJjn7rS1nz5vfkA7esW3ANFpcQ\ncJlxKPXy9f3mi/mD//ZX+dKJ7+SlV87O+M5bbro+G26v5e9/4NasmGMYOP5X388ffnkix7/5g/z4\n5VfPe3bzyjfkl7vfmn/wgVtzU8frL1rn6986nc8e+Iu88OIrF31vSvOFl/L/DD+V/2X9z+aeD71r\nTmMA4EoaGRlJktx7770XfW/jxo3Zt29fDh48aE4GcJWamPxWHv3z38sLr/xwzmNefPXF/P7xx/Pi\nKy/m73X2XPC8yJqvnH0lB772B3OuM5snvvYHWXfzmlzrspCrkv/XlpGZDqWu1+up1+vZu3dv4YdS\ns3Qcfeqv82+PfC0/+vGrF33vOz/4Uf71F7+WPxn/Tn7zH3Xl5pXXz/ruDyZ/nM8dfDpPfeN7s77z\nN6dfzH+ufzNfPPZc7vnQu3Ln3+2ccaXhd37ww/zfQ3+RH/54bgHga31+9Nm86Q3XpfeDq+c9FgDa\nqV6vJ8kl51fr1p1bUTE+Pt72ngAo3ouv/Di/99Tvzyuse60DX/sPufWGt+ddN/5c22p+5btPzbqV\neD5OvzSZr3z3qfziWz9w2bW48pzouEyMjIxkx44dqVarGRwczLFjx3LkyJE888wz2bZtWxqNRjZv\n3pxms7nYrVKwLx5rZP/nT1wyAHyt//H86fxf//rLOXnqRzM+b3z3TD49+KWLBoCv9dLLZ/P/HvnL\n/O5/HM/Zs+cfQ3q21cpjnz+xoABwyvAffT3Pnzyz4PEAULSpOdVcfsDa3d2dJBkbG2trTwC0x3/8\nxki+9+LMRxrNRSut/OsTB/Lq2Z/8ma3oml85WdzvMUXW4soSAi4TDz30UKrVaoaHh8+7lS5Jtm/f\nnj179qTZbObBBx9cpA5ph+Pf/H6GnvzLBY39weSP86/+/VN55dXztw6fOvPj/Pbjf57mD1+ed80v\nnfhu/s2Rr5332ZefOZm/nDi9oB6nvPJqK//uv379smoAQJEajUaSzOmMv5UrV543BoCrxwsv/zD1\nb/3pZdf57o/+Jl85+VTbaj43+fxl15tSZC2uLCHgMjB1KPWWLVvmfCg1V7+XXn41g194Opdz/ffE\nyTP5wuiz5332+wefXlAAOOW/fPn5jP3VT1YQ/pc/L+Y3kK9+43v5m9Mzr1wEgCvt9On5/4DLHAzg\n6vNn3/lKXj678F1NrzX613/Wtpo/+PGpQuoVXYsrSwi4DMznUOokOXjwYNt7ov3+5Ph38r3mi5dd\n5/CfNfLS31748cxzP8hffH1uW4Av5sAf/o8k54LKZ54r5jeQViuz3ioMAFfaVKA3tcrvYtwIDHD1\n+sbpbxZW65vN59JqtdpSs5K5XfxIuQkBlwGHUi9P/+2r3yqkzgsvvpIvf+1kkuJW7U2cfCF/OXEq\njZNncrZ1OWsVz/fNb1/+QbcAAABz9e0XvltYrR+98mJO/fh0W2re9IYbC6v55jfcVFgtriwhYMk5\nlHp5euXVs3m2wEDs68+f++9o/K++X1jN8b/6fiZfWPi24plMvvBSofUAYKHms7rPNmCAq1dR23Zf\nW68dNX+2o7Oweqs7bi2sFleWELDkHEq9PH3nBz/KK68Wt8Lu+b85k7859aO88GJxvxk9950zWbGi\n2CXp11xjiTsAS8tczgacese2YICrzxuvvb7Yetdd35aa779lXWH1PnDLewurxZUlBCw5h1IvTy+/\n8uqlX5pXvbM582LBq/Z++FLe+uZif3N7y01vLLQeACzU1A9X5zOvmsv5gQAsLZ0dby+s1k2vvzE3\nXPemttR8383duen1l78l+MbXr8z7bu4uoDMWgxCw5BxKvTxd//prC693zYpif7m45poVueWmN+aG\n668rrOY73u6/YQCWhqljVubyA9mp+VpXV1dbewKgeO++6V2F12pHzWtWXJO+9/zaZde79z0fyTUr\nrrnsOiwOISCU0C03Xp83vK64X5hrb7kht9x0fVZUittu+7afObdq75e73lJIveobr8vad7y5kFoA\nUIRqtZpms3nJ1YBT5zFPXdIGwNXjfTd3Z+XrOgqp9Su3/nLbaibJupu78qHOOxZc60OdPVl3sx9Y\nXc2EgCXnUOrlqVKp5N214m5/um31TXn9ddfk1lVvKqzmO9527r/ND/9iZ64t4Cy///kXOnPtNX5J\nA2Dp2LRpU5JLX7p29OjRJElPT0/bewKgWNesuCZ3v2PDZddZ+zNr8s6VP9u2mlM++vP/KH9/AUHg\nhzrvyK///D+67J5YXP7EvEw4lHr5+fvvL+bGpptXviHdf7vCrmftWwup+brrVuQX33NLknPn+P3D\nnp+7rHq33vym3L3+Zy/9IgBcQb29vUmSvXv3zvpOs9nMoUOHUqvVprcQA3B1+ZVbfzlr3vzuBY+/\n4bo35R/fdk/baybnFox89N2/mn/23q1zOiPwptffmH/23q3Z8u5fzYqKCOlq5//BknMo9fL13r/z\nM3nXrZcf6P7a//SO6W3Av/Let+VNb7j88wb/3nvfnje+ps7d63827/87Ny+o1g3XX5f//dfWWgUI\nwJLT09OT7u7u1Ov11Ov1Gd/p7+9PkgwMDFzJ1gAo2P1r/0neUZ3/woQ3Xnt9/vn77svK11/4Z7d2\n1Jyy9uY1+fT6f5kH1v7T/OJb3p+3vHFVrltxXa5bcW3e8sZV+cW3vD8PrP2n+fT6f5m1N6+Zdw8s\nTZVWq9Va7CZor/e85z2pVqs5duzYRd8bHx/P5s2bs3Hjxjz66KOX/b0nT05edg0uz19/74Xs/Nyf\n5ccvL+y24A/8/M35P+85//r30fFvZ+9/Or7gnn6m+obsvP+XLri85JVXz+b3Dz6do2PfnnOtt9x0\nff6Pzety66obFtwPAAu3alUx5xWVWaPRyJ133pkk2bZtW+6+++7UarWMjY1l7969qdfr6enpyeDg\nYGHfaQ4GsDheevWl/MHXD+aPJupp5dJRy7tW/lz+yZotueWNsy+IaEdNrn4LnYMJAZeB22+/Pc1m\nM8eOHbvoVt+hoaHs2LEjAwMDeeCBBy77e01Al4bxb34//+rffzUvvXx2XuN+vnNlPrHlfXnD6y5c\n+fdvDn8tT/73iXn3cv3rr8nAvR+YPg9wJn/+tZP5d//f1/PX3/vhrO+84XXX5B984Nb86q+8I6+7\nzs1UAItFCDg3jUYj/f39GR8fv+BZX19fdu7cWej3mYMBLK5nm43814mj+fPvfjUvn33lvGeVVPLO\nlT+XD3Wuzwduee+ct9i2oyZXLyEgs9qxY0eGhoYyODh40QOnf+u3fiuHDh3K8PBwIWfSmIAuHc9+\nezL7P388EydfuOS7lZy7rOPXP/SuiwZsf/DfvpH/XH82Z+f4S8iqG9+Qf/5r6/Kzb53bL1ZPP/uD\nHH/2B3nuO5N54Ucv59prVuTtN78p73x7NX/3PatmDCcBuLKEgPMzPj6eer2eU6dOZfXq1dm0aVNb\nzmI2BwNYGl49+2q+9cK3c/JH38vZ1tlUX9eRWsfbc/211y+pmlx9hIDMql6vZ+vWrRfdatJsNnP7\n7benVqvlyJEjhXyvCejS8sqrZ/PHX/3r/OGXn8/EyTMXPL/2mkp+8T23ZMPttYuu1Hutb3yrmQP/\n5X/ka41Ts75z/euvyd9739vza7/yzrz+dVbtAZSJEHBpMgcDgHITAnJRmzdvzvj4+KyrAbdu3Zp6\nvZ49e/ZM32R3uUxAl65TZ36cZ789meYPX8o1Kyp565vflNotb8p11y4spHv+5JmM/dX38+x3JjP5\nwktZsWJF3vrmN+Ydb+vI+3/+Zqv2AEpKCLg0mYMBQLkJAbkoh1IDAEUTAi5N5mAAUG5CQC7JodQA\nQJGEgEuTORgAlJsQkDlzKDUAUAQh4NJkDgYA5SYEZMkxAQWAchMCLk3mYABQbgudg60ouA8AAAAA\nYIkRAgIAAABAyQkBAQAAAKDkhIAAAAAAUHJCQAAAAAAoOSEgAAAAAJScEBAAAAAASk4ICAAAAAAl\nV2m1Wq3FbgIAAAAAaB8rAQEAAACg5ISAAAAAAFByQkAAAAAAKDkhIAAAAACUnBAQAAAAAEpOCAgA\nAAAAJScEBAAAAICSEwICAAAAQMkJAQEAAACg5ISAAAAAAFByQkAAAAAAKDkhIAAAAACUnBAQAAAA\nAEpOCAgAAAAAJScEBAAAAICSEwICAAAAQMkJAQEAAACg5ISAAAAAAFByQkAAAAAAKDkhIAAAAACU\nnBAQAAAAAEpOCAgAAAAAJScEBAAAAICSEwICAAAAQMkJAQEAAACg5ISAAAAAAFByQkAAAAAAKDkh\nIAAAAACUnBAQAAAAAEpOCAgAAAAAJScEBAAAAICSEwICAAAAQMkJAQEAAACg5ISAAAAAAFByQkAA\nAAAAKDkhIAAAAACUnBAQAAAAAEpOCAgAAAAAJScEBAAAAICSEwICAAAAQMkJAQEAAACg5ISAAAAA\nAFByQkAAAAAAKDkhIAAAAACUnBAQAAAAAEpOCAgAAAAAJScEBAAAAICSEwICAAAAQMkJAQEAAACg\n5ISAAAAAAFByQkAAAAAAKDkhIAAAAACUnBAQAAAAAEpOCAgAAAAAJScEBAAAAICSEwICAAAAQMkJ\nAQEAAACg5ISAAAAAAFByQkAAAAAAKDkhIAAAAACUnBAQAAAAAEpOCAgAAAAAJScEBAAAAICSEwIC\nAAAAQMkJAQEAAACg5ISAAAAAAFByQkAAAAAAKDkhIAAAAACUnBAQAAAAAEpOCAgAAAAAJScEBAAA\nAICSEwICAAAAQMkJAQEAAACg5ISAAAAAAFByQkAAAAAAKDkhIAAAAACUnBAQAAAAAEpOCAgAAAAA\nJScEBAAAAICSEwICAAAAQMkJAQEAAACg5ISAAAAAAFByQkAAAAAAKDkhIAAAAPD/s3fn4VHVZ//H\nPxOSsCUBlEVMJmwqEqA+LjxKaJUtJOBW0Bq72D4gYA1LEIKyyCKySQBJBFRCxP5sK2GJ9rGVpCot\nWwLS2lazYN2ZIKuazIQ9yfn94ZPRUwJkmeTM8n5dl9fVuTPnnI//2G/ufM/3BuDnaAICAAAAAAAA\nfi7Y6gAAAABAU8nIyFBWVladr0tLS1Pv3r3r/VyHw6GNGzcqPz9fTqdTdrtdCQkJSkxMrPc9AQAA\n6oImIAAAAAKGw+GQw+Go83VlZWX1fmZWVpbmzp0rSYqIiFCbNm2Ul5envLw8ZWRkaMOGDbLb7fW+\nPwAAQG3YDMMwrA4BAAAAeKO5c+fK4XBow4YN9bo+JydHycnJioiIUFpammJjY90/S01N1fr16xUR\nEaF33nlHERERnooNAABwAZqAAAAAQA3mzp2rbdu2NahB169fP0lSdnZ2jbv9qpuE8fHxSk9Pb1Be\nAACAS2EwCAAAAPAfsrKylJWVpZdffrneDcCsrCw5nU498MADF33dNyEhQXa7Xbm5uXI6nQ2JDAAA\ncEk0AQEAAIDvKSws1Ny5czV27NgGDQPJycmRJD344IOX/F58fLwkadu2bfV+FgAAwOXQBAQAAAC+\nJzk5WXa7XdOnT2/QffLy8iTpskM/+vbtK+nb5iMAAEBjYTowAAAA8H8yMjIaNAikWvWrvbWZ+lu9\n27CgoKBBzwQAALgUdgICAAAA+rZxt3z5cvXu3ds0xbc+HA6HJNXqPME2bdqYrgEAAGgMNAEBAAAA\nSU8++aQkafz48Q2+V1lZWZ2vYTAIAABoTDQBAQAAEPCcTqdyc3Nlt9uVkJDgkftJ3+3yu5T6Th8G\nAACoC5qAAAAACHhZWVmSpMTERIuTAAAANA6agAAAAAh41U1AT+wClOq2u4/XgAEAQFNgOjAazfHj\nLqsjAACARtShQ7jVETwiLy9PDodDdru9VtN866I2ZwNWf8dTrwWzBgMAwL/Vdw3GTkAAAAAEtD17\n9kiS4uPjPXbP6rMA67LLrzbnBwIAANQXTUAAAAAEtPz8fEnSgAEDPHbP3r17S6rdTsDqRmFMTIzH\nng8AAPCfaAICAAAgoBUWFkqS+vTp49H7RkREyOl0XnY3YEFBgSSpb9++Hn0+AADA99EEBAAAQMCq\nbgBGRER47Ey+asOHD5f0XZPvYqpfR46NjfXo8wEAAL6PJiAAAAAClsPhkCSPDwSRvps0nJGRcdHv\nOJ1O5ebmym63u18hBgAAaAw0AQEAABCwqs/si4qKqvO1OTk5Sk1NvWiTLzY2Vr1791ZeXp7y8vJq\n/E5ycrIkKSUlpc7PBwAAqAuagAAAAAhY1ef1tW3bts7X5uXlaf369Vq3bt1Fv5OWliZJGj16tFJT\nU1VYWCin06m8vDyNHj1aeXl5io2Nde8aBAAAaCzBVgcAAAAArFJaWtqo97fb7Xr77beVnJys9evX\na/369aafJyYmasGCBY2aAQAAQJJshmEYVoeAfzp+3GV1BAAA0Ig6dAi3OoJPKSwsVF5enkpLSxUd\nHa3hw4d7fBiJxBoMAAB/V981GE1ANBoWoAAA+DeagN6JNRgAAP6tvmswzgQEAAAAAAAA/BxNQAAA\nAAAAAMDPMRgEAADU2ZmKs3K4DunwySM6V3VeLZo1V1T41YoMu1ohQSwvAAAAAG/DKh0AANTal+VH\n9PbBHXrv2L90vqrigp+3DG6p2666WUOib1e7Fm0tSAgAAACgJgwGQaPhUGoA8B9VRpVyPn9HOZ9v\nV6VRednvt2jWQvdde7dir+7XBOlgFQaDeCfWYAAA+Lf6rsHYCQgAAC6pyqjSy4Wv6u/H/lXra85U\nntHvDmzW12e+1l3d4xsxHQCgtr52ntEXR1wqO3lOQUE2dWjbUl2vClfL5vxaCACBgP/aAwCAS3rj\n09w6NQC/b9vn76h9yyt1W+dbPJwKAFAblVVV2v3+Yf3lvUM6eKz8gp/bbNINPdor7pYo9ep6hQUJ\nAQBNhSYgAAC4qC+cDr19cEeD7rHlo//V9Vdcq7bN23goFQCgNkqOl2v9H4t08OiFzb9qhiH98+MT\n+ufHJ9S/dyf9PO46tWoR0oQpAQBNhSYgAAC4qG2fv6Mqo6pB9zhdcUZ/cezWyGvu9FAqAPB/FZVV\nchwr15cnTupcRZVaNm+m6I7huurKVgqy2S57/UclpXp207905tzlz3Gtll94VI5jJzX9p/+l8Fah\nDYkPAPBCNAEBAECNSs+WqeBEsUfulX94v+7pnqBmQc08cj8A8FdHvz6l3P0O5Rce0dkaGnhtwkJ1\n+w+uVlw/u8Ja1rxj76uyM0rb/H6dGoDVSo6Xa3X2B3ri5zfVqtkIAPAdNAE9JCcnR1lZWdqwYUOd\nrnM4HNq4caPy8/PldDplt9uVkJCgxMREj+ZrqucAAPzHJ6Wfy5DhkXudPH9KR04dU2RYZ4/cDwD8\njWEYytl3UK/t+kwVlRffgV1Wfk5v5H2uHf88pIfie+rmnh0v+M7L24p16mxFvbN8VFKmt/c7NOy/\no+t9DwCA9wmyOoCvKyws1OjRo5WcnKyysrI6XZuVlaWhQ4dq/fr1cjgckqS8vDzNnTtXQ4cOddca\nqqmeAwDwL1+WH/bo/UpcX3r0fgDgL6oMQ+v/WKzNf/3kkg3A73OeOq81rxXoz+8eNNX/7ShV4eff\nNDjTH/O/0PmKuu8kBAB4L5qA9ZCRkaFRo0apZ8+eGjVqlPLy8up8j5ycHM2dO1cRERHasGGD9u/f\nr7ffflsffvihxo4dK4fDoVGjRsnpdDYoa1M9BwDgf85UnvXo/c56+H4A4C9e3/Wp8guP1Ovajds/\n1t8/PO7+vOOfhzySqfz0ef3te/cFAPg+moD18MEHH8jhcKh3795KSUlRSkpKne8xZ84cRUREKDs7\nW7GxsaafTZ8+XWlpaXI6nXryyScblLWpngMA8D+hzTx7KLyn7wcA/uCzw069mX/w8l+8hFdyD6j8\n9HlJ0oGDpZ6IJUn68GDDdxQCALwHZwLWQ3p6uulzTk5Ona7PysqS0+nU2LFjZbfba/xOQkKC7Ha7\ncnNz5XQ6FRERUeecTfUcAIB/urr1VZ69X5hn7wcA/uB/d3+mKqNh5686T53X9r+XaPDNUfrG5bld\n1wePlnvsXgAA67ET0ALVTcMHH3zwkt+Lj4+XJG3bts2rnwMA8B2uc+X66JtPdeDrj+RwfanKqouf\n99S9TVfZ5JnJkC2DW3i8qQgAvu5r5xm9/+lXHrnXjn99qVNnznvkXtVO12O6MADAe7ET0ALVZwhe\nbHdetb59+0r6dviINz8HAODdSs+Wafehvdp35D19fcb8alewrZmubddDP4q8TX3bxyjI9t3fB69s\n2U49212jA9981OAM/33VzQoOYtkBAN/3b0epGrgJ0O0b11k5T53zzM3+T2gwe0YAwJ+wGm9i1QM4\nLteYk6TevXtLkgoKCrz2OQAA72UYhnYd2qvXP/mTzlbW/IthhVGp4q//reKv/60ebbrpF71+oo6t\n2rt/ntB1iD785mMZqv9vqaFBIRps/1G9rwcAf+U45tnXbUtd5xTWMsR9PmBDRXZo7ZH7AAC8A3/a\naWIOh0OSanX2Xps2bUzXeONzAADeqcqo0m+LNyvr369dtAH4nz4p+0zL/pauT8s+d9eubdddP4rs\n36As9/YYofYtr2jQPQDAH50+W+HR+506W6FrItt47H7XevBeAADr0QRsYmVlZXW+pnpXnzc+BwDg\nnf7wyTbtPfK3Ol93uuKM1v7rJR07dcJdu+/auxRzRc965bg9sr8G2gfU61oA8HehIc1C4qaDAAAg\nAElEQVQ8er+TrlL96AedPXKv0JAg3RrTySP3AgB4B5qATay60Va9++5SGjKpt6meAwDwPh+XfqZ3\nDu6s9/WnK87ot8WbZfzfQVXBQcF65Ae/0sCoAbUeFBIcFKwf9xihxJ4j650DAPzd1e09+7rtsmfT\ndeLIZx55jXfQjZFq1SLEA6kAAN6CMwEBAPAzf/jkzQad4Sd9+2rw+yeKdEOHb8+NDQ4K1k+uu1c3\ndbxB6blrdf7KKtmCLvxbYnBQsG7s8AMldB2kq1qzgwQALuXaKM++btut3wN6Na9cLUKbyWZTvYeO\ndGzXUiN/1N2j2QAA1qMJ2MTqsuuuIa/nNtVzAADe5VD5YX1a9oVH7rX70F53E7Da6RKXspLXKTSi\nha64tqPa2K9U7I9+qIEDBikq/Gp1i4hWq5BWHnk+APi7zle21jWRbfTxobof5XMpZ85V1vvaiNah\nSr7/Bx5/VRkAYD2agBapzZl91d9pyOu6TfUcAIB3KP763x6710eln6iyqlLNgr79RdAwDM2YMU1V\nVVU6U3pKX+7/XCFfBSkl9TG1aR2h4CCWFQBQV3f276K0Le9bHUOS1K1zuMbf01ud2vHHHADwR6zW\nm1j1GX112X1Xm3P9rHoOAMC7OFyHPHav81UVOnzyqKLCr5Ykbdr0qt59d6/aX99Z3QZdr/Y9r1JY\npzaau3+pgmxB6tSqg65t20M/jLxVkWGeOZgeAPzdDde0V//enZRfeLRRnxMSHKTzFVU1/qxju5Ya\nenOUBt8UpaCg2p39CgDwPTQBm1jv3t++VlWbHXrVDbyYmBivfQ4AwLucPH+qUe5XVlaqZWuf0cD5\n96rD9Rc2+KqMKh0+eVSHTx7VzkN5urFDXyX2HKnw0DCP5gEAf/TL+Ot1vOyMPi7x7GvBZobGjLhe\nZSfPqbT8nIJsNnVs11JdO4ere+cI2Ww0/wDA39EEtEBERIScTqecTuclX8EtKCiQJPXt29ernwMA\n8B7NbJ49w6n6VeBFLy3WLU8MVnAtJ0X+4/gH+rj0MyX91xhFh0d5NBMA+Jvmoc00LfG/9Eruh8or\nONIozzhfYejjQ2X6n+G9GuX+AADvd+FYPzS64cOHS/qu+XYxe/bskSTFxsZ69XMAAN6jU+sOHr3f\nVa06Kve9t+SMqax1A7Ca63y5Vv9jvY6eOu7RTADgj5qHNNPYu2I05Sc36DoPTw2utrfoqE6frWiU\newMAvB9NQAskJCRIkjIyMi76HafTqdzcXNntdvervd76HACA9+gW0cVj92rf4goF2YKUffBPalbP\nKZEnK07plaJNqjJqPocKAGD2gx5XasYvbtaS8bfp4Tt76daYjh6797nzVfr8cO3PDAcA+BeagBaI\njY1V7969lZeXp7y8vBq/k5ycLElKSUm56H1ycnKUmpp60Safp54DAPAdfa68Xq1DPDPV8dbONys9\nd42CI0IbdJ/PnF9o35H3PJIJAAJFpytaaUDfzromsq1H73vwWLlH7wcA8B2cCVgPeXl52rhxo/uz\ny+WSJDkcDk2ePNldb9u2rRYsWFDjPdLS0jR06FCNHj1aY8eO1YgRI2S321VQUKCMjAzl5eUpNjbW\nvZvvYjmysrIUERGhcePGNdpzAAC+I6RZiO6IjNWbn7/doPu0aNZcMa2v1WuVf1Somjc4186SPerf\n+ZYG3wcAAo2nX9/ldWAACFw0AeuhsLBQubm5F9SrX62tFhERcdEmoN1u19tvv63k5GStX79e69ev\nN/08MTHxotfWRVM9BwDgPYZ1Hax/HP9Ah08erfc9Rl5zp9b+v7UKvanhDUBJOug6pNKzZWrbvHHO\nuQIAfxUa7NmXt4JshkfvBwDwHTbDMPh/AYsVFhYqLy9PpaWlio6O1vDhwy85zdfbn1Pt+HFXo90b\nAHBpR04e07PvPa/y8yfrfG1s5366ofJ6Ja2aoL4/u81jmX79g/9R3/YxHrsfrNehQ7jVEVAD1mD+\npfCzr7Ui658eu1+nig+05Mlkj90PAND06rsGYyegF+jdu3eTDOVoqucAAKx3VeuOeuymR7W+4JVa\n7wi0yaa4LgN1d7d43XvvcDXv6ZmzBauVni3z6P0AIBB06xyuZkE2VVY1fO9GVVWlfrt+ue4d2k+3\n3RbrgXQAAF/CYBAAAPzUVa076ol+yRrRdehlh4X0aNNVU29+VPf2GK4tW7K0b1++5PGXBWwevh8A\n+L9WLUJ0c88OHrnXsU/36+ypMk2c+IhcLqYEA0CgYScgAAB+LCQoWHd2H6ZhXQap8KsD+tzp0JFT\nx1RZVanWIa0VHX61rr/iOl0ddpUkqaysVPPnPylJOnnMs68Utm95hUfvBwCBYvitXfS3A8dV1YA/\nzhhVlfp4f7Yk6eDBLzR79hNKT3/eUxEBAD6AJiAAAAEgpFmI/qtjX/1Xx76X/N6yZYt14sRxSdLX\nnx732PNtsskeHumx+wFAIOlyVbgSbo3Wm3u/qPc9wiodKj38b/fnjRt/p/j4Ebrzzrs9EREA4AN4\nHRgAAEiSCgo+UGbmOvfnrz8+qmZnPfMKb8921ygspLVH7gUAgWjk7d1047Xt63Vt3+5XasljierZ\n83pTPSVlso4erf8keQCAb6EJCAAAZBiGZs5MUVVVlbsWbe+q4dfFeeT+A+0DPHIfAAhUzYKClDSy\nj+Jusdf6hFWbpEE3RWrSfX0VFtZaa9dmKDj4u5fBvvrqK02dOlGGx8+ABQB4I5qAAABAmzdv/HYY\nyPcsWvSMhnUbpMiwzg269w3te6tv+5gG3QMA8G0j8KdDr9UTP79JvbtdcdFmoE1Sry7tNP2nN+qh\nYT0V3OzbX/v69r1Bjz8+y/Tdt97K1SuvvNyouQEA3sFm8GcfNJLjxz17oDwAoHE4nWXq3/9mHT9+\nzF0bNixBv/3tJknS4ZNHtfLva3Wq4nSd792+5ZVKuXmCwkPDPJYX3qNDh3CrI6AGrMECx4nS0/ro\nUJlKjpXrzLlKNQ9tJnuHMPWIaqOObVvWeE1FRYXuvXe49u/f5661atVK27fvUffuPZoqOgCgAeq7\nBqMJiEbDAhQAfMOTTz6hdeu+mxDZvHlz7dr1rrp27eauOVyH9ML7L6v0bFmt7xsZ1lmP/mC02rVo\n69G88B40Ab0TazBczmeffapBgwbo1KmT7trNN/fTG2/kml4XBgB4p/quwXgdGACAAFZYWKD16180\n1SZNeszUAJQke3iknrx1qmI7/7eCbJdePoQGhSih6xA9fsskGoAA4IW6deuuhQuXmmp///t+paev\ntCgRAKApsBMQjYa/QgOAdzMMQ/fck2A6CzA6uqt27dqnli1rfo1MkkrPlmnf4b/r07Iv9OXJIzpf\neV4tgpsrKuxqXdOuu/67001qFXLx6+E/2AnonViDoTYMw9Avf/mgcnO3uWvBwcHatu0d3XDDjRYm\nAwBcDq8Dw+uwAAUA77Zp06uaOPERU+2VV7IUHz/cokTwNTQBvRNrMNTWsWPHNHDgbTpx4oS7du21\n1+ntt3dd8o9BAABr8TowAACoNaezTE89NcdUGzYsgQYgAASQjh07asWK50y1jz76txYunGdRIgBA\nY6IJCABAAFq2bLFpGnDz5s21cOEzFiYCAFhh+PA79bOfPWSqZWS8oL/+dbtFiQAAjYUmIAAAAaao\nqFCZmetMtZqGgQAAAsPChUsVHd3VVJs8+VF9883X1gQCADQKmoAAAAQQwzD0xBNTVVlZ6a5FR3fV\npEmPWZgKAGClsLBwrV79omw2m7t25MhhzZgxzcJUAABPowkIAEAA2bIlyzQNWJIWLXqGA+ABIMDd\ndlv/C/4g9NprW5WdvdmiRAAAT2M6MBoNk+kAwLs4nWXq3/9m01mAcXHx+t3v+AUP9cN0YO/EGgz1\nde7cOcXHD1Jh4QfuWps2bbVjR76uvjrSwmQAgO9jOjAAALgkhoEAAC4lNDRUa9dmqHnz5u5aWVmp\nJk16VFVVVRYmAwB4Ak1AAAACQGFhwQXDQCZOnKJu3bpblAgA4I169YrR7NnzTLVdu/6qzMwXLUoE\nAPAUXgdGo+FVFADwDoZh6J57EkxnAUZHd9GuXe9yFiAahNeBvRNrMDRUVVWV7r//Hu3evdNda9Gi\nhd56a6d69rzewmQAAInXgQEAwEXUNAxk4UKGgQAAahYUFKT09OcVEdHGXTtz5owmTBivc+fOWZgM\nANAQNAEBAPBjTmeZ5s9/0lSLi4tXfPxwixIBAHxBVJRdS5cuN9Xef/+fWrFiqUWJAAANRRMQAAA/\ndrFhIDabzcJUAABfcN99D+iee0aaamlpK/Xuu/ssSgQAaAiagAAA+CmGgQAAGsJms2nZspXq1Okq\nd62qqkoTJoxTeXm5hckAAPVBExAAAD9kGIZmzJimyspKdy06uosmT55qYSoAgK+54oorlZa21lT7\n4ovPNW/ebIsSAQDqiyYgAAB+iGEgAABPGTx4qMaMGWeqvfLKBv35z9ssSgQAqA+bYRiG1SHgn44f\nd1kdAQACktNZpv79bzadBRgXF6/f/nYTZwHCozp0CLc6AmrAGgyN4dSpUxoy5If65JOP3bX27Tto\n5859at++vYXJACDw1HcNxk5AAAD8DMNAAACe1qpVK61dm6FmzZq5aydOHNe0aZPFvhIA8A00AQEA\n8CM1DQOZMCGZYSAAgAa78cabNW3aE6batm1/1MaNv7MoEQCgLngdGI2GV1EAoGkZhqF77kkwnQUY\nHd1Fu3a9y1mAaBS8DuydWIOhMVVUVOiuu+L03nt/d9datw7TX/+apy5duloXDAACCK8DAwAQ4DZv\n3sgwEABAowoODtaaNevUqlUrd+3kyXJNnPiIaSI9AMD70AQEAMAPOJ1leuqpOaba0KHDFB8/3KJE\nAAB/1aPHtZo/f5Gptm9fvtasSbcoEQCgNmgCAgDgB2oaBrJo0TKGgQAAGsWvfjVGQ4bEmWrPPLNQ\nBQUfWJQIAHA5NAEBAPBxNQ0DmThxCsNAAACNxmazadWqNbriiivctfPnz2vChHE6c+aMhckAABdD\nExAAAB9mGIZmzJhmOocpOrqLJk+eamEqAEAg6NTpKqWmpplqxcVFWrLkaYsSAQAuhSYgAAA+bMuW\nLIaBAAAsc/fd9+qBB35qqr3wwmrt3r3TokQAgIuxGYZhWB0C/un4cZfVEQDArzmdZerf/2bTWYBD\nhw7T7363mbMA0SQ6dAi3OgJqwBoMTc3pLNPAgbEqKXG4a5GRUdqxI18REW0sTAYA/qm+azB2AgIA\n4KNSU5cwDAQAYLmIiDZavfpF0///HDpUopkzp1uYCgDwn2gCAgDgg4qKCrV+/YumGsNAAABWiY39\noR59dJKptnnzRr3xxusWJQIA/CdeB0aj4VUUAGgchmHo3nuHa+/ePHctOrqLdu16l7MA0aR4Hdg7\nsQaDVc6ePathwwaquLjQXWvXrp127tynTp2usjAZAPgXXgcGACBAbNmSZWoASgwDAQBYr3nz5lq7\nNkMhISHu2jfffKPk5CSx9wQArEcTEAAAH+J0lmn+/CdNtaFDhyk+frhFiQAA+E7v3n00Y8YcU237\n9rf18suZFiUCAFSjCQgAgA+paRjIwoXPMAwEAOA1kpIm6bbbYk21+fNn65NPPrIoEQBAogkIAIDP\nuNgwkO7de1iUCACACzVr1kyrV7+osLDvzqw6ffq0kpLG6fz58xYmA4DARhMQAAAfYBiGZsyYpsrK\nSnctOrqLJk+eamEqAABqFh3dRYsXLzPV/vGP97Rq1XKLEgEAaAICAOADGAYCAPA1iYk/04gRd5tq\nK1cu03vv/c2iRAAQ2GgCAgDg5ZzOMj31lPmQdYaBAAC8nc1m0/LlaerQoaO7VllZqQkTxuvUqVMW\nJgOAwEQTEAAAL5eaukTHjh11f27evLkWLVrGMBAAgNdr3769Vq1abap98snHWrBgzkWuAAA0FpqA\nAAB4sZqGgUyYkKxu3bpblAgAgLqJi0vQQw+NNtVeeilD27e/ZVEiAAhMNsMwDKtDwD8dP+6yOgIA\n+DTDMHTvvcNNZwFGR3fRzp371KpVKwuTAd/q0CH88l9Ck2MNBm9UXl6uwYMH6PPPP3PXOnW6Sjt2\n5OuKK660MBkA+J76rsHYCQgAgJfaunXTBcNAnn56KQ1AAIDPCQsL05o16xQU9N2voEePHtH06Y+J\nfSkA0DRoAgIA4IWczjLNn/+kqTZ06DAlJIywKBEAAA3Tr9+tmjJlmqn2xhuva8uWLIsSAUBgoQkI\nAIAX+s9hIKGhoVq48BmGgQAAfNq0aTN0ww03mmozZqSopMRhUSIACBw0AQEA8DI1DQOZOHGKunfv\nYVEiAAA8IyQkRGvWrFOLFi3cNZfLqUmTfq2qqioLkwGA/6MJCACAFzEMQzNmTFNlZaW7ZrdHa/Lk\nqRamAgDAc667rqfmzl1gqu3Zs0svvrjWokQAEBhoAgIA4EVqGgaycOEzDAMBAPiVMWPG6447Bplq\nixbNV3FxkUWJAMD/0QQEAMBL1DQMZMiQOIaBAAD8TlBQkNLTn1fbtm3dtXPnzikpaZzOnj1rYTIA\n8F80AQEA8BI1DQNZtGgZw0AAAH6pc+ertWzZs6ZaYeEHWrZssUWJAMC/0QQEAMAL1DwMJJlhIAAA\nv/bjH9+nUaN+YqqtXr3qgqMxAAANZzMMw7A6BPzT8eMuqyMAgE8wDEP33jvc9AuP3R6tXbve5SxA\neLUOHcKtjoAasAaDrykt/UYDB8bqyy8PuWvR0V30l7/sUXh4hIXJAMA71XcNxk5AAAAstmVL1gU7\nHp5+eikNQABAQGjbtp3S05831Q4e/EKzZz9hUSIA8E80AQEAsJDTWaannppjqg0ZEqfhw++0KBEA\nAE3v9tsH6pFHkky1jRt/pzff/KNFiQDA/9AEBADAQgwDAQDgW7NmzVPPntebatOmTdKxY8csSgQA\n/oUmIAAAFmEYCAAA32nZsqXWrs1QcHCwu/bVV19p6tSJ4ih7AGg4moAAAFjAMAzNmDFNlZWV7prd\nHq3Jk6dZmAoAAGv17XuDHn98lqn25z/n6Le//Y1FiQDAf9AEBADAAgwDAQCgZhMnTlG/freaanPm\nzNSnn35iUSIA8A80AQEAaGIMAwEA4OKCg4O1evWLatWqtbt26tRJTZz4iCoqKixMBgC+jSYgAABN\njGEgAABcWrdu3bVw4VJT7W9/e1fPPfesRYkAwPfRBAQAoAkxDAQAgNr5+c9/qfj44aZaauoS/etf\n/7AoEQD4NpqAAAA0EYaBAABQezabTStWPKf27du7axUVFUpKGqfTp09bmAwAfBNNQAAAmsjWrZsu\nGAaycOEzDAMBAOAiOnbsqBUrnjPVPvro31q4cJ5FiQDAd9EEBACgCTidZZo//0lTbciQOCUkjLAo\nEQAAvmH48Dv1s589ZKplZLygv/51u0WJAMA30QQEAKAJMAwEAID6W7hwqaKju5pqyclJKi39xppA\nAOCDaAICANDIah4GMoVhIAAA1FJYWLhWr37R9Mezw4e/1IwZnKsLALVFExAAgEZkGIZmzkypYRjI\nVAtTAQDge267rb8mTXrMVMvO3qLs7M0WJQIA30ITEACARrR16ybl5+8x1RgGAgBA/Tz++Cz17t3X\nVHviiWk6dKjEokQA4DtoAgIA0EhcLifDQAAA8KDQ0FCtXZuh5s2bu2tlZaWaPDlJVVVVFiYDAO9H\nExAAgEaybBnDQAAA8LRevWI0e/Y8U23Xrr8qM/PFi1wBAJBoAgIA0Ci+HQbygqk2cWIyw0AAAPCA\n8eOT9MMf3m6qPf30PH344QGLEgGA96MJCACAhxmGoRkzptUwDIQJhgAAeEJQUJDS059XeHiEu3bm\nzBlNmDBe586dszAZAHgvmoAAAHjY1q2btHdvnqn29NNLGQYCAIAHRUXZtXTpclPt/ff/qRUrllqU\nCAC8G01AAAA86GLDQIYPv9OiRAAA+K/770/UPfeMNNXS0lbq3Xf3WZQIALwXTUAAADyIYSAAADQd\nm82mZctWqlOnq9y1qqoqTZgwTuXl5RYmAwDvQxMQAAAPYRgIAABN74orrlRa2lpT7YsvPte8ebMs\nSgQA3okmIAAAHmAYhmbOTGEYCAAAFhg8eKjGjBlnqr3yysv685+3WZQIALwPTUAAADxg69ZNys/f\nY6oxDAQAgKYzd+7T6tHjGlNtypSJOnHihEWJAMC70AQEAKCBGAYCAID1WrVqpbVrM9SsWTN37cSJ\n45o2bbIMw7AwGQB4B5qAAAA0EMNAAADwDjfeeLOmTn3cVNu27Y/auPF3FiUCAO9BExAAgAZgGAgA\nAN5lypQU3XTTzabarFmP64svPrcmEAB4CZqAAADUE8NAAADwPiEhIVqzZp1atmzprp08Wa6JEx8x\n/X82AAQamoAAANQTw0AAAPBOPXpcq/nzF5lq+/bla82adIsSAYD1bAYnpKKRHD/usjoCADQal8up\n/v1vNp0FOGRInH7/+y2cBYiA0aFDuNURUAPWYMC3DMPQT396n7Zvf9tdCwkJUW7uX9WnT18LkwFA\nw9R3DcZOQAAA6qHmYSDP0AAEAMBL2Gw2paWtVbt27dy18+fPa8KEcTpz5oyFyQDAGjQBAQCoo+Li\noosMA7nGokQAAKAmnTpdpeXLza8AFxcXacmSpy1KBADW8anXgfPz85WXlyeHwyGHw6GSkhI5nU7T\nd+x2u+x2u8LDw2W32xUbG6v+/ftblDiw8SoKAH9kGIZ+/OMRprMA7fZo7dr1LmcBIuDwOrB3Yg0G\nXGjChPHavHmj+7PNZtPWrW/ohz+83cJUAFA/9V2DeX0TcPPmzdq4caOKiorctdpG/v4rWbGxsUpI\nSNDw4cMVFhbm8Zy4EAtQAP5o69ZNevTRsabayy//XiNG3GVRIsA6NAG9E2sw4EJOZ5kGDoxVSYnD\nXYuMjNKOHfmKiGhjYTIAqDu/agKWl5crNTVVmzZtkmRu+sXExLh3+7Vt21Z2u10RERGmHYEOh0MH\nDx5USUmJCgoK3D+rbgqOGzdO48ePpxnYyFiAAvA3NQ0DGTx4qF59dStnASIg0QT0TqzBgJrt2bNL\no0bdZfr98ic/eVBr1qyzMBUA1J3fNAE3b96s5cuXy+l0yjAMxcTEKDY2VgMGDKj3a70Oh0P5+fna\ntm2b8vPzJX3bEBw3bpymTp3qyfj4HhagAPzN3Lmz9MILq92fQ0NDtXPnXs4CRMCiCeidWIMBFzdv\n3mw9//xzptr69b/RPfeMtCgRANSdzzcBy8vLlZycrLy8PBmGofj4eD3yyCOKiYnx6HMcDoc2btyo\nTZs2qby8XL1799bLL7/MrsBGwAIUgD8pLi7S4MEDVFlZ6a499liKZs6ca2EqwFo0Ab0TazDg4s6c\nOaP4+IEqLv7uuKl27dppx469uuqqzhYmA4Da8+kmYElJicaMGaODBw8qPj5eKSkpstvtjf7c1NRU\nZWZmqk2bNvrNb36j66+/vtGfGUhYgALwFzUNA4mKsmv37v0MA0FAownonViDAZdWUPCB4uMH6vz5\n8+4ax3sA8CX1XYMFeThHnblcLo0aNUoHDx5UWlqa0tLSmqQBKEnTp0/XW2+9pfDwcI0cOVIHDhxo\nkucCAHxLdvZmUwNQkhYufIYGIAAAPqhPn76aMWOOqbZ9+9t6+eVMixIBQNOwfCfgqFGjJEm/+c1v\nFB5u3V+TR48eraKiIu3bt8+yDP6Gv0ID8AcMAwEujp2A3ok1GHB5lZWVGjnyTu3dm+eutWzZUtu3\n71aPHtdamAwALs9ndwLa7XZlZ2db2gCUpA0bNui2226zNAMAwPukpi41NQBDQ0O1ePEyGoAAAPiw\nZs2aafXqFxUW9t3voadPn1ZS0jjTa8IA4E8sbwKmpaVZHcHNm7IAAKxXXFykjIznTbUJEyYzDRgA\nAD8QHd1FixcvM9X+8Y/3tGrVcosSAUDjsrwJCACANzIMQzNnppimAUdF2ZWcnGJhKgAA4EmJiT/T\niBF3m2orVy7Te+/9zaJEANB4aAICAFCD7OzNysvbbao9/fRShoEAAOBHbDabli9PU4cOHd21yspK\nTZgwXidPnrQwGQB4nt82AUtKSpSfn6/y8nKrowAAfIzL5dS8ebNNtUGDhmjEiLssSgQAABpL+/bt\ntWrValPtk08+1oIFcy5yBQD4Jp9qAhYXFyszM1PFxcUX/U5+fr6GDRumuLg4jRkzRv369dP999+v\nAwcONGFSAIAvq2kYyJIlqQwDAQDAT8XFJeihh0abahs2rNf27W9ZlAgAPM+nmoAvvPCCli9fLofD\nUePP8/PzNWbMGDkcDhmGoaioKBmGoYKCAo0cOZJGIADgshgGAgBAYHrqqUXq2rWbqZacPEFff/2V\nRYkAwLN8pgnocrmUm5srSRo2bFiN30lOTpZhGLLb7dq/f7/eeustHThwQA888IAMw9CTTz7ZlJEB\nAD6GYSAAAASusLAwrVmzTkFB3/2afPToEU2f/pgMw7AwGQB4hs80AQsKCiRJ8fHxNf5806ZNcjqd\nstlseumllxQeHu7+2YIFCxQREaHCwkKVlJQ0SV4AgO9hGAgAAIGtX79bNWXKNFPtjTde15YtWRYl\nAgDP8ZkmoNPplCT17du3xp/v2bNHkhQTE6OoqKgLfp6QkCDp21eGAQD4Ty6XU/Pnm3eMDx48lGEg\nAAAEmGnTZuiGG2401WbMSFFJSc3HUgGAr/CZJqDD4ZDNZpPdbq/x50VFRbLZbBoxYkSNP4+Ojpb0\nXTMRAIDvS01dqqNHj7g/h4aGavHiZQwDAQAgwISEhGjNmnVq0aKFu+ZyOTVp0q9VVVVlYTIAaBif\naQJGRETIMAyVlZVd8DOXy+UeFhITE3PZ+wAA8H0MAwEAAN933XU9NXfuAlNtz55devHFtRYlAoCG\n85kmYPUOwJp28m3bts39v/v371/j9QcPHpSkGl8VBgAELoaBAACAmowZM1533NEtnGMAACAASURB\nVDHIVFu8+CkVFxdZlAgAGsZnmoB9+vSRZG74VcvIyJDNZlNsbOxFr68+C/BiZwoCAALTa69tYRgI\nAAC4QFBQkNLTn1fbtm3dtbNnzyopaZzOnj1rYTIAqB+faQKGh4crJiZGhYWFeuyxx1RSUqKSkhJN\nmTLF/SpwSkrNuzYcDoccDociIiIUFhbWlLEBAF7M5XJq3rzZphrDQAAAQLXOna/WsmXPmmqFhR8o\nNXWJRYkAoP58pgkoSWlpaTIMQzk5OYqLi1NcXJxyc3MlSWPHjlWvXr1qvK56p+ADDzzQlHEBAF6O\nYSAAAOByfvzj+zRq1E9Mteeee1Z79+ZblAgA6senmoB2u11vvfWW4uLiZBiGDMNQVFSUFixYoGnT\nptV4jcPh0KZNmyRJjzzySFPGBQB4MYaBAACA2lq6dLmuvjrS/dkwDE2cOF4u14Vn1gOAt7IZhmFY\nHaIpOBwO93ARNI3jx11WRwCAGhmGoZEj7zSdBRgVZdfu3fs5CxCogw4dwq2OgBqwBgMax86df9X9\n999jqv3sZw9p1ao1FiUCEKjquwbzqZ2ADUEDEABQjWEgAACgrm6/faAeeSTJVPv971/Rm2/+0aJE\nAFA3PrUTcN68eYqOjtbDDz9cp+vi4uIUFBTkPj8QTYO/QgPwRuXlLvXvf7PpLMDBg4fq1Ve3chYg\nUEfsBPROrMGAxnP69GkNG3aHPvzwgLt25ZVXaseOferYsaOFyQAEkoDYCZiVlaWsrKw6Xzd27Fh9\n8cUX2rx5cyOkAgD4EoaBAACA+mrZsqXWrs1QcHCwu/bVV19p6tSJ8qH9NQAClE81AesrMTFRkpST\nk2NxEgCAlYqLi7Ru3VpTLSmJYSAAAKD2+va9QY8/PstU+/Ofc/Tb3/7GokQAUDsB0QSUpJiYGBUU\nFFgdAwBgEcMwNHNmiiorK921qCi7pkxJsTAVAADwRRMnTlG/freaanPmzNSnn35iUSIAuLyAaQKW\nlJTI6WR8OwAEquzszQwDAQAAHhEcHKzVq19Uq1at3bVTp05q4sRHVFFRYWEyALg4v28CFhcXa8qU\nKTQAASCAuVxOzZ//pKk2ePBQjRhxl0WJAACAr+vWrbsWLlxqqv3tb+/queeetSgRAFxa8OW/0vSW\nL1+uzMzMGn/mcDjUq1evet03Pj6+IbEAAD6KYSAAAKAx/Pznv1Ru7pvKzd3mrqWmLtHgwUN1ww03\nWpgMAC7ktTsBDcO44J+L1S/3T3h4uB544AGtWrXK4n8rAEBTKy4uUkbG86bahAkMAwEAAA1ns9m0\nYsVzat++vbtWUVGhpKRxOn36tIXJAOBCNsML55i7XC6VlpZeUI+Li1N0dPRFdwnWpG3btgoPD/dk\nPNTS8eMuqyMACHCGYWjkyDtNZwFGRdm1e/d+zgIEPKBDB9ZY3og1GND0tm37k371q5+aauPG/VqL\nFi2zKBEAf1bfNZhXvg4cHh5+ycad3W5vwjQAAF/FMBAAANAUhg+/Uz//+S/1u9/9P3ctI+MFDRs2\nXHfcMcjCZADwHa99HRgAgIaoaRjIoEFDGAYCAAAaxdNPL1F0dFdTbfLkR1Va+o01gQDgP/hUE/CB\nBx7QsGHDrI4BAPABNQ0DWbIklWEgAACgUYSFhWv16hdNa43Dh7/UjBnTLEwFAN/xyjMB4R84jwaA\nVYqLizR48ABVVla6a1OmpGjWrLkWpgL8D2cCeifWYIC1Fi6cr/T0labaCy9katSon1iSB4D/qe8a\njCYgGg0LUABWuNgwkF273lXr1q0tTAb4H5qA3ok1GGCtc+fOKT5+kAoLP3DX2rRpqx078nX11ZEW\nJgPgL+q7BvOp14EBALic117bUuMwEBqAAACgKYSGhmrt2gw1b97cXSsrK9XkyUmqqqqyMBmAQOeT\nOwEzMzP15ptvqqioqE7X2Wy2Ol+D+uOv0ACamsvlVGzsLaazAAcNGqKNG7M5CxBoBOwE9E6swQDv\n8MILqzV37ixTbdGiZzRu3KMWJQLgLwLmdeD77rtPRUVFqk9sm82m4uLiRkiFmrAABdDU5s6dpRde\nWO3+HBoaqh078tWjx7UWpgL8F01A78QaDPAOVVVVuv/+e7R79053rUWLFnr77V267rqeFiYD4Ovq\nuwYL9nCORrVp0yYVFhZKkmJiYvTggw+qTZs2ioiIsDgZAMBqxcVFysh43lRLSppMAxAAAFgiKChI\n6enP6447+svlckqSzpw5o6SkcXrzzbcVGhpqcUIAgcanmoA5OTmSpAEDBigzM9PiNAAAb2EYhmbN\nmm6aBhwVZVdy8jQLUwEAgEAXFWXX0qXLNWHCeHft/ff/qZUrn9GMGXMsTAYgEPnUYJCCggLZbDY9\n9dRTVkcBAHiR117boj17dplqDAMBAADe4P77E3XPPSNNtVWrVmj//n0WJQIQqHyqCdimTRtJUlRU\nlMVJAADewuVyat682abaoEFDNGLEXRYlAgAA+I7NZtOyZSvVqdNV7lpVVZUmTBiv8vJyC5MBCDQ+\n1QQMDw/n/D8AgMny5c+YpgGHhoZqyZJUpgEDAACvccUVVyotba2p9vnnn2nevFkXuQIAPM+nmoCJ\niYlyOp38tQQAIEk6cKBY69aZF9QTJkxW9+7XWJQIAACgZoMHD9WYMeNMtVdeeVl//vM2ixIBCDQ2\nwzAMq0PUxahRo9SlSxc9++yzVkfBZRw/7rI6AgA/ZhiGRo26y3QWYFSUXbt371erVq0sTAYEjg4d\nwq2OgBqwBgO816lTpzRkyA/1yScfu2vt23fQzp371L59ewuTAfAl9V2D+dROQEnKzs5WWVmZHn74\nYR06dMjqOAAAi1xsGAgNQAAA4K1atWqltWsz1KxZM3ftxInjmjZtsnxsfw4AH+RTOwEzMzPd//tP\nf/qTiouLZbfbFRMT4x4acik2m03z589vxIT4Pv4KDaCxuFxOxcbeYjoLcNCgIdq4MZuzAIEmxE5A\n78QaDPB+qalLlJq6xFRLT39eDz74c4sSAfAl9V2D+VQT8Prrrzf9clcdvTa/8BmGIZvNpuLi4kbL\nBzMWoAAay7x5s/X888+5P4eGhmrnzr2cBQg0MZqA3ok1GOD9zp8/r7vvHqb33vu7uxYWFq6//GWP\nunTpal0wAD6hvmuwYA/naFT9+/dnhwcABDiGgQAAAF8XEhKiNWvWafDgH+r06dOSpPJylyZN+rVe\ne+1PpteFAcBTfGonIHwLf4UG4GkMAwG8CzsBvRNrMMB3bNiwXk88MdVUmzNngSZNmmJRIgC+IGAG\ngwAAAhfDQAAAgD/5n/95WIMHDzXVli59WgUFH1iUCIA/owkIAPAJ5eUuzZ//pKk2aNAQjRhxl0WJ\nAAAAGsZmsyktba3atWvnrp0/f14TJozTmTNnLEwGwB/RBAQA+ITU1KU6cuSw+3NoaKiWLEnlrFgA\nAODTOnW6SsuXp5tqxcVFWrLkaYsSAfBXPnUmYK9evRp0vc1mU1FRkYfS4HI4jwaApxw4UKzBgweo\noqLCXZsyJUWzZs21MBUAzgT0TqzBAN80ceIj2rTpVfdnm82m7Ow/asCAH1mYCoA3CogzAQ3DaPA/\nAADfYhiGZs5MMTUAo6LsSk6eZmEqAAAAz1q8eJmiouzuz4ZhaNKkX8vpLLMwFQB/Emx1gLrYsGFD\nrb/rcDi0e/du7d27VwsXLlRUVFQjJgMANJaahoEsWLBErVu3tigRAACA50VEtNFzz72gUaPucm9g\nKSlxaNasx7V69YsWpwPgD3zqdeD6yMnJ0bx585Sdna3IyEir4wQUXkUB0FDl5S7173+zjh494q4N\nGjREGzdmcxYg4AV4Hdg7sQYDfNu8ebP1/PPPmWqZmf9Pd9/9Y4sSAfA2AfE6cH0kJCRo7NixGj16\ntNVRAAB1lJq61NQADAkJ0eLFy2gAAgAAvzVz5hz16hVjqqWkJJvWRABQH37fBJSkcePGqbS0VG+9\n9ZbVUQAAtXTgQLEyMp431SZMSFaPHtdalAgAAKDxtWjRQmvWZCgkJMRd++abb5ScnMQ59wAaJCCa\ngJIUFRWljRs3Wh0DAFALNQ0DiYyMYhgIAAAICH369NWMGXNMte3b39bLL2dalAiAPwiYJqAkFRQU\nWB0BAFALr7++9YJhIE8/vZRhIAAAIGAkJU3SbbfFmmrz58/WJ598ZFEiAL4uYJqALpdLTqfT6hgA\ngMsoL3dp3rzZptrAgYN15513W5QIAACg6TVr1kyrV7+osLDvBgCcPn1aSUnjdP78eQuTAfBVAdEE\nzM/Pl8PhkN1utzoKAOAyli9/RkeOHHZ/DgkJ0ZIlqQwDAQAAASc6uosWLXrGVPvHP97TqlXLLUoE\nwJcFWx2gLubNm1fna8rKypSbmyubzab+/fs3QioAgKccOFCsdevWmmpJSZMZBgIAAALWgw/+XDk5\nb2rbtj+6aytXLtOQIXG66aZbLEwGwNfYDB8aL3T99dfXeSdI9b9emzZt9M477ygsLKwxoqEGx4+7\nrI4AwIcYhqFRo+4ynQUYGRml3bv3cxYg4KU6dAi//JfQ5FiDAf7nxIkTuv32W3XixHF3rXv3Hnrn\nnd2sk4AAVN81mE/tBOzfv3+dm4BRUVHq06ePhg8fTgMQALxYTcNAFixYwsIWAAAEvPbt22vVqtX6\nxS8S3bVPP/1ECxbM0TPPrLQwGQBf4lM7AeFb+Cs0gNoqL3cpNvYW01mAAwcOVlbWa5wFCHgxdgJ6\nJ9ZggP+aNi1Zr7yywVTbuHGrBg+OsygRACvUdw0WEINBAADejWEgAAAAl/fUU4vUtWs3Uy05eYK+\n/vorixIB8CU0AQEAlvrwwwMMAwEAAKiFsLAwrVmzTkFB3/0qf/ToEU2f/ph4yQ/A5fh0E7C4uFiZ\nmZm677771KtXL/Xq1Uu33nqr7rvvPr300ksqLy+3OiIA4BIMw9DMmSmqqKhw1yIjozRlSoqFqQAA\nALxXv363Kjl5qqn2xhuva8uWLIsSAfAVPnkmYElJiZKTk1VUVCRJNf7Fo/oVsunTp2vMmDFNmg/f\n4jwaAJfz2mtb9Mgj5v9GZ2a+orvvvteiRADqgjMBvRNrMMD/nTt3TiNGDNX77//TXQsPj9COHfmK\nirJbmAxAU6jvGsznmoD5+fkaM2aMu/H3wAMPqE+fPrLbv/0PncPhUEFBgQoKClRUVCSbzabY2Fhl\nZmZaGTsgsQAFcCk1DQO5445B2rTpdc4CBHwETUDvxBoMCAwffnhAcXG368yZM+7agAE/0tatb5he\nFwbgfwKiCVhUVKRRo0ZJksaOHauUlEu/LuZwOJScnKzi4mIlJiZq/vz5TZAS1ViAAriU+fOf1Nq1\n6e7PISEh2rlzL2cBAj6EJqB3Yg0GBI6MjOc1e/YTptr8+YuUlDTJokQAmkJATAdOTk6WzWbT9OnT\nL9sAlCS73a7s7GxFRkYqKytLb731VhOkBABcDsNAAAAAGu7hhx/R7bcPMtUWL35KxcVFFiUC4M18\npgmYn58vh8Mhu92uhx9+uE7XbtiwQYZhaOPGjY2UDgBQWwwDAQAA8IygoCClp69VmzZt3bVz584p\nKWmczp49a2EyAN7IZ5qAe/bskc1mU2JiYp2vtdvtiomJUV5eXiMkAwDUxeuvb9Xu3TtNtQULlqh1\n69YWJQIAAPBdV18dqWXLVppqhYUfKDV1iUWJAHgrn2kCVk8CjomJqdf1ffr0kSQVFxd7LBMAoG7K\ny12aN2+2qTZw4GDdddc9FiUCAADwfSNH3q9Ro+431Z577lnt3ZtvUSIA3shnmoDh4Q07eLqsrMwj\n9wEA1N/y5c+YpgGHhIRoyZJUpgEDAAA00NKlK9S589Xuz4ZhaOLE8XK5nBamAuBNfKYJaLfbJX17\nNmB9VO8kjIqK8lgmAEDtMQwEAACg8bRt207p6c+bagcPfqE5c2ZalAiAt/GZJmBiYqIMw1BWVpbK\ny8vrdG1ubq4cDodiY2MbKR0A4FIYBgIAAND47rhjkMaPf9RU+/3vX9Gbb/7RokQAvInPNAHtdrv6\n9+8vp9OpOXPm1Pq6kpISzZkzRzabTSkp/LIJAFb4wx+yGQYCAADQBGbPnq/rrutpqk2bNknHjh2z\nKBEAb+EzTUBJSk9PV1hYmHJycnT//ffrwIEDl/x+Zmam4uLi5HK5NHbsWPXq1auJkgIAqpWXuzR3\n7ixTjWEgAAAAjaNly5ZauzZDwcHB7tpXX32lqVMnyjAMC5MBsJrN8LH/CjgcDo0aNUoul0s2m012\nu10xMTHuMwOdTqcKCgrcZwAahqFx48Zp2rRpVsYOSMePu6yOAMALzJ//pNauTXd/DgkJ0c6dezkL\nEPADHTowcM0bsQYDIEmrVi3X4sULTLUVK9L10EP/Y00gAB5T3zWYzzUBJcnlcik1NVWbNm1y174/\nWbL6XykiIkJPP/204uPjmzwjWIAC+HYYyKBBsaazAJOTp2n27HkWpgLgKTQBvRNrMACSVFFRoXvv\nHa79+/e5a61atdb27bvVvXsPC5MBaKiAagJWc7lc2rZtm/bs2SOHwyFJatu2rWJiYjRgwAD179/f\n4oSBjQUoENgMw9B9991tOgswMjJKu3fv5yxAwE/QBPROrMEAVPvss081aNAAnTp10l275Zb/1v/+\nb47pdWEAviUgm4DwbixAgcD2+utbNX78aFMtM/MV3X33vRYlAuBpNAG9E2swAN/3yisva9q0yaba\nzJlz9Nhj0y1KBKCh6rsG86nBIPVRXFys/Px8q2MAQEBhGAgAAIB3+MUvfqVhwxJMtdTUJfrXv/5h\nUSIAVvGpJuDy5cvVq1cvrVixotbXvPrqqxozZoxWrlzZiMkAAN+3YsUyHTly2P05JCRES5akms5v\nBQAAQOOz2WxauXK1rrzySnetoqJCSUnjdPr0aQuTAWhqPtUEXL9+vSQpMTGx1tcsWLBAkZGRysjI\nUElJSWNFAwD8nw8/PKAXX1xjqiUlTWYaMAAAgEU6duyoFSueM9U++ujfWriQYW1AIPGZJmBubq4k\nKT4+XlFRUXW6NiUlRYZhmKYJAwA8zzAMzZo13TQNODIySlOmpFiYCgAAACNG3KWf/ewhUy0j4wXt\n2PEXixIBaGo+0wTcs2ePbDabBgwYUOdrExK+Pf8gJyfH07EAAN/zhz9ka9euHabaggVLmAYMwKs5\nnU7l5eUpJydHhYWFVscBgEazcOFSRUd3NdUmT35UpaXfWBMIQJPymZng1a/y9unTp17Xx8TEqLi4\nWOXl5QoLC/NkNACAGAYCwPfk5ORo+fLlcjgcF/wsMTFRKSkpioiIaNAzRo8effkvSQoPD1d6enqD\nngUAlxMWFq7Vq1/UvfcmyDAMSdLhw19qxoxpeuGFlyxOB6Cx+UwTsKHatm0rSXI4HOrVq5fFaQDA\n/9Q0DGTxYoaBAPBOqampWr9+vSIiIpSYmKjw8HA5HA7l5+fL6XQqKytLeXl5ys7OrncjsHqHYW00\ntNkIALV12239NWnSY0pP/254Znb2Fg0bNlyjRv3EwmQAGpvPNAHDw8Ol/8/enYdHVZ/9H/9MFgQk\nkyAgATK4K0nAp1qpElaVTesaEezTjcgqIEFJVCiEVVEJSBAQZW37a2sQcYFKEBdQSbBR20oWQVFg\ngoqgkMmELZDz+4Mno0cCZJnJmeX9ui6vq7lnznc+eLX0m3vO+d6SDh06VKfrq66rWgcA4D1nGgZy\n+eUMAwHgf3JycrR06VL169ev2rvvcnJyNHnyZDmdTg0ePFhr1qyp1+c5HA699dZb9VoDALzpkUcm\n6u23N6qwcJun9uij43XDDUlq27adhckA+FLAnAnocDgkSXl5eXW6vqioSJJqPVQEAHB2DAMBEGgm\nT54sh8Nxxsdv+/fv72n8FRYWcq40gKDTqFEjLVq0ROedd56nVlp6SA8++IAqKystTAbAlwKmCTho\n0CAZhqHs7Gy53e5aXbt06VJJpyYLAwC8i2EgAAJJTk6OXC6X0tLO/kWFw+HQoEGDJEnZ2dkNEQ0A\nGlR8fIL+9Kcpptr772/S0qWLLUoEwNcCpgnocDjUt29flZaWavDgwTVuBL700kvKzMyUzWY752YP\nAFA71Q0D6dnzRoaBAPBbpaWlkk7d7XcuVe8pKCjwaSYAsMrw4aPUrVsPU23mzKnasWO7JXkA+FbA\nNAElaf78+YqLi1NBQYFuvvlmLV++/IzNwLy8PN1zzz3KyMiQJE2bNo1HgQHAy6obBjJrVibDQAD4\nrUGDBikrK6tG7606jsblcvkyEgBYJiwsTPPnPye7PdpTO3r0qEaNGqbjx49bmAyAL9iMqrngAaKs\nrExjx45VXl6e55dMh8OhqKgoxcTEyOl0yul0SpJn5PmMGTN0771MOWpo+/eXWR0BgA/t2LFdvXp1\nMZ0FOHbsw5o0aap1oQA0qFatgnvgWmFhoZKTk+s82MPlcqlz584NPhiEPRiA2nrppRc1evRwU+3h\nh9P12GOTLUoE4GzqugcLqDsBpVPTfVesWKFp06apXbt2MgxDe/bsUWFhobZs2aI9e/bIMAwZhqGB\nAwcqPz+fBiAAeJlhGJowIe20YSAPPZRuYSoA8K7c3FxJUlJSklfWy87OVnJysjp37qzOnTtr7Nix\nns8AACsNGDBId9xxt6k2b94c5ed/aFEiAL4QcHcC/lxRUZEKCgq0Z88euVwutW/fXomJierYsaOi\nooL722l/x7fQQPB69dWXNXx4iqm2bNlfdfvtd1qUCIAVgv1OwN69e8vpdGrNmjVKTEys9fVVdwLa\n7XY5HA4VFhbKbrerY8eOpqdXhg4dqvR0732Jwh4MQF388MP36tmzi/bt+9ZTu/jiS/TOO1vUrFkz\nC5MB+Lm67sEivJyjwSUkJCghIcHqGAAQMhgGAiAUzJ49W06nU4MGDapTA/CnXC6XnE6nVqxYYbqr\n0Ol0KiUlRUuXLlVMTIyGDRtW39gAUGcXXNBCWVmLdN99yZ7arl1facqUP2nOnJqdpQrAvwX8nYCB\nasmSJcrOzq71dVlZWXXaiKakpJz7TTr1uPX8+fNrvX51+BYaCE7Tpk3WwoU/bgQjIyO1efNWXX75\nFRamAmCFYL0TMDc3VykpKUpMTNSaNWvqvM5P7wRcs2aNZ9BIde+RpPz8fNnt9jp/XhX2YADq47HH\nxmv58iWm2v/7f9nq2/cWixIB+LmQvRMwUP30EZDaKC0trfU1LperxufNeGPjCSB4bd/+mZ5/fqGp\n9sADD9IABBA0CgsLPQ3AlStX1mstu91+zsae3W5Xv379tGHDBmVnZ3M3IADLZWTM0ObN72rnzi88\ntXHjxui99z5Uy5YtLUwGoL64EzBAZGRkeB4jqS0m0wHwBsMwNGDAHXr//c2eWrt2cfrgg3ydf/75\nFiYDYJVguxOwahpwUlJSnfZcdZWdna2MjIx633lYhT0YgPr6978/1q239tbJkyc9tVtuuU0rV/5N\nNpvNwmQApBCaDlwXc+bM0bhx4/TQQw9ZHaVOMjIytH79emVlcQ4DAOu89toaUwNQkqZPf4IGIICg\nkJOTo+TkZA0aNKhBG4CSPI8J1+UpEQDwhWuu+aXGj3/UVFu/fp2ys/9uUSIA3hASTcDs7Gxt2LBB\nOTk5VkeptezsbGVnZ2vlypU8qgvAMmceBsI0YACBLzs7W6mpqRo6dKimT59uWQ6Xy2XZZwPAz40b\nl6Zrr/2lqTZx4iPavXuXNYEA1FtINAENw1AgPvVcWFiojIwMDR06tN5T6QCgPubMeVrffvuN5+fI\nyEjNmpXJ4yAAAt6SJUuUkZGhtLQ0paenW5KhqvlX3eAQALBKRESEFi58QU2aNPHU3O4yPfjgSNNj\nwgACR0g0AdesWaONGzfqzTfftDpKraSmpsrhcFi2IQUASdqxYzvDQAAEpSVLligzM1PTp0/3yUCO\nmt7ZVzXALSEhwesZAKA+LrvsCk2d+riptnVrrhYtetaiRADqIySagA6Hw/NPoFiyZImcTqelj6QA\ngGEYmjAhTSdOnPDU2rWL00MP8eUEgMA2e/ZsZWZmKisrS4MGDfL6+i6XSzfffPM5z/lzuVzKzs6W\nJI0YMcLrOQCgvgYPHqKbbuptqj355AwVFGyzKBGAugqJJmCgcblcyszMVGJiopKSkry+fnZ2tpKT\nk9W5c2d17txZY8eO9XwDDQA/xTAQAMEoIyNDS5cu1YoVK9S/f/86r5OTk6PZs2dryZIlp73mdDrl\ncrmUnJx8xn2Wy+VSamqqJKlfv34c/wLAL9lsNmVlLVLz5s09tYqKCo0ePUxHjx61MBmA2rIZgXhY\nXpAbO3asNmzYoKysrHptTKu4XC517txZdrtdDodDhYWFstvt6tixo5xOp+cb6qFDh3r10eP9+8u8\nthaAhud2lykp6TrTWYA9e96oVate5SxAAJKkVq2irI5Qa7m5uUpJSZHdbld0dHSNr3vrrbdOq2Vk\nZCg7O1t2u135+fln/CxJSkpKUv/+/T1PphQWFuqFF16Qy+VSYmKi1qxZU8c/0enYgwHwhbVrX9OQ\nIb831R544EFNm/b4Ga4A4Ct13YNFeDkH6snlcmnDhg1yOBxeaQD+fG2n06kVK1aY7jB0Op1KSUnR\n0qVLFRMT45MzcQAEHoaBAAhGVef0uVwun0/jTUpKUn5+viZNmqQNGzZUe0egt7+EBQBfuf32OzVw\n4G+0atU/PLXFixeob9/+6tq1u4XJANRUQN0JOGXKFLVv315Dhgyp1XV9+vRRWFiYNmzY4KNk3lN1\nQHVaWprXmnE/vRNwzZo11Z6NWPUeScrPz5fdbq/35/ItNBC4tm//TDfemGQ6C3Ds2Ic1adJU60IB\n8DuBeCegVVwulwoKCjyPCTscDiUlJXllz/Vz7MEA+IrLVapevZJUUvLjeadxcQ5t2pQru73md1cD\nqJ+67sEC6kzA7Oxsz8HJtTF06FDt3r1bL730kg9SeVfVn8+bdwFWPaKSogVsWgAAIABJREFUn59/\nxuEodrtd/fr1M2UAEJoMw9DEiekMAwEAL7Lb7UpKStKgQYM0bNgw9e/f3ycNQADwJbs9Ws8+u9j0\nZEhJiVMTJz5iYSoANRVQTcC6qpr4lpOTY3GSs8vNzZXT6fTJJOOabDK7du0qSVq/fr1XPxtAYKl+\nGMgshoEAAABAXbt218iRY0y1Vav+obVrX7UoEYCaCokmoCQlJCSooKDA6hhntWXLFkny3JHX0Koa\nj1WDQgCEHrfbrSlT/mSq9ex5o2677Q6LEgEAAMDfTJgwWfHxCaZaWlqq9u371qJEAGoiZJqAJSUl\nPj/8ub7y8vIk/XhHnlX8/d8TAN+ZM+cpffPN156fGQYCAACAn2vcuLEWLlyiyMhIT+3gwYNKTR2l\nABo7AIScoG8CFhcXa9y4cQHR2CosLJQkdezY0ZLPr/p35O1HkQEEhu3bP9Pzzy801R544EFdfvkV\nFiUCAACAv+rYsZMee2yyqfbOO29p5cplFiUCcC4RVgeoTmZmppYtq/4vDqfTqfj4+Dqta9VjtjVR\n1QC02+1ePyTa5XLVaM3c3FxJpx6dBhBaGAYCAACA2ho16kFt3JijrVtzPbWpU/+kHj166rLL+CIZ\n8Dd+eyegYRin/XOm+rn+iYqK0sCBAzVv3jyL/1RnVnUOn7fvwnO5XLr55pvPec6fy+XyTAUeMWKE\nVzMA8H8MAwEAAEBthYeHa8GC59WsWZSnduTIEY0ePdz05TIA/+CXdwKOGDHCM9H3p/r06aP27duf\n8S7B6sTExCgqKurcb7RYaWmpJCkuLq7W1+bk5Gjbtm2KiYnRsGHDTK85nU65XC4lJycrKytLSUlJ\np13vcrmUmpoq6dTdkomJiXX4EwAIVG53mTIyJppqDAMBAABATbRvf5Eef/wppaaO8tQ++eRjzZuX\nqbS0xyxMBuDn/LIJGBUVddbGXTCeWVd1Hl9MTEytr83NzVV2drbsdvtpTcDExEStWLFCKSkpSklJ\nUVJSkvr37+/5d1hYWKgXXnhBLpdLiYmJmj9/fv3/MAACypw5T+vbb7/x/MwwEAAAANTGfff9Vjk5\nb2j9+nWe2pw5T+nmm/vommt+aWEyAD/ll03AUHTo0CGfrZ2UlKT8/HxNmjRJGzZs8Jz991NDhw5V\nejpnfwGhhmEgAAAAqC+bzaY5c+YrP/9DHTiwX5J08uRJjRo1TG+//YGaNm1qcUIAkmQzAmh+d0ZG\nhux2u9LS0qyOErBcLpcKCgo8jwk7HA4lJSV5fRiJJO3fX+b1NQF4j2EYGjDgDtNZgO3axemDD/I5\nCxBAjbRq5f9HroQi9mAArPLmm+v1u9+Zj/ZKSRmqp56aa1EiIDjVdQ8WUE3A2igpKZHT6VSnTp3U\nrFkzq+OEJDaggH979dWXNXx4iqm2bNlfdPvtd1mUCECgoQnon9iDAbDS+PGp+utfV5hqL774sm66\nqY9FiYDgExJNwOLiYuXm5iopKUnx8fHVvicvL09TpkwxTcNNTEzUzJkz1aFDh4aKCrEBBfyZ212m\npKTrTGcB9ux5o1atepWzAAHUGE1A/8QeDICV3G63brqpq3bt+spTa906Vps35+mCC1pYmAwIHnXd\ng4V5OYdPLV68WJmZmaYG30/l5eXp/vvvl9PplGEYiouLk2EYKigo0N13363PPvusgRMDgH9iGAgA\nAAB8oVmzZlq48AWFhf3Ybti371s98sjDCqB7kICgFDBNwLKyMm3YsEGS1Ldv32rfk5qaKsMw5HA4\nlJ+fr40bN+qzzz7TwIEDZRiGJk2a1JCRAcAvMQwEAAAAvtS58/UaN268qfb666/o5ZdXWZQIgBRA\nTcCCggJJUr9+/ap9fdWqVXK5XLLZbFq+fLmion68NXL69Omy2+0qLCxUSUlJg+QFAH9kGIYmTkzX\niRMnPLV27eL00ENMBwcAAID3jB//mK6++hem2mOPpamkpPon+wD4XsA0AV0ulySpU6dO1b6+ZcsW\nSVJCQoLi4uJOe71///6STj0yDACh6rXX1pimAUvS9OlPMA0YAAAAXhUZGamFC19Q48aNPTWXq1Rj\nxz6gyspKC5MBoStgmoBOp1M2m00Oh6Pa14uKimSz2XTrrbdW+3r79u0l/dhMBIBQ43aXKSNjoqnW\ns+eNuu22Oy1KBAAAgGB21VUdNHnyNFPtgw/e0wsvLLIoERDaAqYJaLfbZRiGSktLT3utrKzMMywk\nISHhnOsAQChiGAgAAAAa2pAhI9Sjx42m2uOPT1NxcZFFiYDQFTBNwKo7AKu7k2/9+vWe/9ylS5dq\nr9+zZ48kVfuoMAAEux07tjMMBAAAAA0uLCxM8+cvUnR0jKd27NgxjRo1TMeOHbMwGRB6AqYJ2LFj\nR0nmhl+VJUuWyGazKSkp6YzXV50FeKYzBQEgWBmGoQkT0kzDQNq2bccwEAAAADSItm3b6emn55pq\nhYXbNHv2LIsSAaEpYJqAUVFRSkhIUGFhoR566CGVlJSopKRE48aN8zwKnJaWVu21TqdTTqdTdrtd\nzZo1a8jYAGC5119/5bRhIDNmzGIYCAAAABrM3XcPUHLyAFPt2Wef0datDO8EGkrANAElKSsrS4Zh\nKCcnR3369FGfPn20YcMGSdLQoUMVHx9f7XVVdwoOHDiwIeMCgOXc7jJNnjzBVOvRg2EgAAAAaHhP\nPjlHbdq09fxsGIbGjBkht7vMwlRA6AioJqDD4dDGjRvVp08fGYYhwzAUFxen6dOna/z48dVe43Q6\ntWrVKknSiBEjGjIuAFiu+mEgsxkGAgAAgAYXE9Nc8+c/Z6rt2bPrtC+tAfiGzTAMw+oQDcHpdHqG\ni6Bh7N/PtzmAlXbs2K5evbqYzgIcO/ZhTZo01bpQAIJKq1ZRVkdANdiDAfB3kyY9qhdeMDcD//zn\nf+iWW35tUSIgsNR1DxbwTUC3261Dhw4pJiaG8/78DBtQwDqGYWjAgDtMZwG2bdtOW7Z8xFmAALyG\nJqB/Yg8GwN8dOXJEffr00I4d2z21li1batOmrbrwwgstTAYEhrruwQLqceAqb775poYMGaL4+Hh1\n7txZffr0UW5u7mnvczqd6tChg66//nqVlJRYkBQArMEwEAAAAPirJk2aaNGiJYqIiPDUDhw4oPHj\nH1SA36cE+LWAagKWlJTonnvuUWpqqrZs2aKoqKgzDgORTp0hOG/ePJWWlmrOnDkNmBQArON2u5WR\nMdFUYxgIAAAA/MnVV/9Cjzxi3rNu2LBef/vbXyxKBAS/gGoCpqSkqLCwUHFxcVqxYoX+9a9/eSYG\nn0n//v2VkJCgnJwcud3uBkwLANaYO/dpffPN156fGQYCAAAAfzRmzDh17ny9qTZp0mP66qsvLUoE\nBLeAaQJmZmbK6XSqa9eu2rhxo7p06VLja4cPHy7DMLR+/XofJgQA6+3YsV2LFy8w1UaOHKMrrrjS\nokQAAABA9SIiIrRgwfNq2vTHI2sOHy7X6NHDTcPtAHhHwDQBV61aJZvNpqysrFpfm5iYKEnKycnx\ndiwA8BuGYWjChHTThqlt23Z66KF0C1MBAAAAZ3bJJZdq5swnTbWPPvqXFiyYZ1EiIHgFRBOwrKxM\nLpdLCQkJdZoA7HA4JJ0aFAIAwerUMJBNptr06U8wOR0AAAB+7be//YP69bvFVHv66Sf06af/sSgR\nEJwCoglY1byraubV9fqoqLqNUAYAf3emYSC3336XRYkAAACAmrHZbJoz51m1aNHCUztx4oRGjRqm\nI0eOWJgMCC4B0QSsav4VFRXV6fq8vDzTOgAQbBgGAgAAgEB24YUXas6cZ021HTu2a+bMKRYlAoJP\nQDQBo6KiFBcXJ6fTqY0bN9b6+szMTNlsNt16660+SAcA1mIYCAAAAILBrbfepv/939+bakuWLNbm\nze9alAgILgHRBJSktLQ0GYah1NRU7d27t8bXDRkyRC6XSw6HQ3379vVhQgBoeAwDAQAAQDCZOfNJ\ntW9/sak2duwDOnTooDWBgCASME3A/v37q2/fvqqsrFTv3r21fPnys74/Ly9Pffv21ZYtW2Sz2c75\nfgAIRAwDAQAAQDBp1ixKCxY8bzrW5ptvvtZjj423MBUQHGyGYRhWh6iNjIwMrVq1yvMXQkJCgoqK\nijRw4EDZ7XY5nU7l5eXJ5XLJMAzZ7XatXLlSCQkJFicPPfv3l1kdAQhqbrdbXbteZzoLsEePG/XS\nS69yFiCABtGqFUPX/BF7MADBYObMqZo/f66ptnjxMiUn32tJHsCf1HUPFnBNQEnKyclRZmamSkpK\nPLWqX3h/+sdJT0/XkCFDGjwfTmEDCvjW9OkZWrBgnufnyMhIbdqUx1mAABoMTUD/xB4MQDA4fvy4\n+vW7UYWF2zy16OgYbd6cp7Zt21mYzBqGYeizHz5X/r5/a3dZiQ4cPqBKGbI3ipIjqp06tYjXdbHX\n6LzwRlZHRQMIqSZglaKiIuXm5mrbtm0qKzu12UlISFCnTp2UlJSkqCg2plZiAwr4zo4d29WrVxfT\nWYBjxoxTRsZ0C1MBCDU0Af0TezAAwaK4uEh9+vTQ8ePHPbXu3XvppZdeVVhYwJxuVm9flu7W3z9b\nrW/K9531fU0iGuuOS29R93Y38GRQkAvJJiD8GxtQwDcMw9CAAXeazgJs27adPvggn7MAATQomoD+\niT0YgGDy3HMLNGXKRFNt5swnNXz4KIsSNay39mzWq1+8IUM1b90ktuigoR1/p0bcFRi06roHC53W\nOQAECYaBAAAAIFSMGDFK3br1MNVmzpyq7ds/syRPQ3rX+YFe+eKftWoASlLh95/phW1/UaVR6aNk\nCFQ0AQEggLjdbmVkmL8J7dHjRt1++10WJQIAAAB8JywsTPPnPye7PdpTO3r0qEaPHm56TDjYlJR9\nrVe++Gedry/+YYfe3vOeFxMhGFjeBBw3bpzcbrfVMSSJISIA/N7cuU+bpgFHRkZq1qzZnPkBAACA\noBUX59CsWbNNtU8//Y/mzn3KokS+t2rHqzppnKzXGuu+elOlxzgiAj+yvAlYWlqqe+65R3v37rUs\ng9vt1pAhQ1RQUGBZBgA4lx07tmvx4gWm2siRY5gGDAAAgKA3YMAg3XHH3abavHlzlJ//oUWJfMdZ\n9rV2lu6q9zonKk8o9+vg+/eDurO8CTh//nydPHlSycnJ2rp1a4N//ptvvqmbb75Zubm5evnllxv8\n8wGgJgzD0IQJ6aZpwG3bttNDD6VbmAoAAABoGDabTU8/PVetW8d6apWVlRo9erjfPF3oLf/dv81r\na/3bi2sh8FneBIyKitKKFSvUrl07paSkaMiQIQ1yV6Db7da4ceOUmpoqwzD08ssvKy4uzuefCwB1\nsXbtqwwDAQAAQEi74IIWyspaaKrt2vWVpkz5k0WJfGO3q8Rra31Tvk8VJyu8th4Cm+VNQElyOBxa\ns2aN7r33Xm3ZskW9e/fW1KlTVVxc7PXPKi4u1rhx49S5c2fl5OQoPj5eb7/9thISErz+WQDgDW63\nW5MnTzDVunfvxTAQAAAAhJybbuqjlJShptpf/7pCb7653qJE3nfw2CGvrVVpVKr0OOcC4hSbYRi1\nmzXtY9nZ2crMzFRZWZlsNpsSEhKUlJSkW2+9VfHx8XVaMy8vT0VFRcrOzpbT6VTVHzktLU1Dhw49\nx9Woq/37+YsG8IYZM6bo2Wef8fwcGRmpTZvyOAsQgOVatYqyOgKqwR4MQLArLy9X797dtXPnF55a\ny5at9N57H6ply5YWJvOOmR/O0Tfl+7y23rQuj6plkxZeWw/Wq+sezO+agFV+3gyskpCQIIfDIYfD\noZiYGDkcDkmnBoxIksvl0qFDh+R0OlVUVCSn0+m5tuqPOnDgQKWnpysqio2rL7EBBepvx47t6tWr\ni+kswDFjxikjY7qFqQDgFJqA/ok9GIBQ8MknH+nXv+6jkyd/nKB7yy23aeXKv5l6CIFo4X+WqeiH\n7V5ZK8wWprk9ZigyPNIr68E/BF0TsEpOTo7eeOMNbd26VS6Xy1M/1/+of/7HSkhI0H333aeBAwf6\nJCdOxwYUqB/DMDRgwJ2mswDbtGmrLVs+4ixAAH6BJqB/Yg8GIFTMnj1Ls2fPMtWyshbpN7/5nUWJ\nvGPtlxuUs+ttr6zVrlkbTfzVQ15ZC/4jaJuAP1VUVKTc3Fzt2bNHpaWlcjqdKikp8TQH7Xa7oqOj\nFRUVJYfDoU6dOikxMVFdunSxOHloYgMK1M/rr7+ioUP/aKotXfpn3XHH3RYlAgAzmoD+iT0YgFBR\nUVGh22/vq08++dhTa9YsSu++u0UXXXSxdcHqyVm2V0/mZ3llrV9f0ke3XtLHK2vBf4REExCBhQ0o\nUHdut1tdu16nb7752lPr3r2XVq9+LeAfbwAQPGgC+if2YABCyc6dn+umm7rpyJEjntoNNyTplVf+\nqfDwcAuT1c+cjxfpy9Jd9VojIixC07s8pujz7N4JBb9R1z2YX0wHBgCYPfPMbFMDMDIyUk8+mUkD\nEAAAAPiJyy67QlOnPm6qbd2aq0WLnrUokXcMuvIuhdvq18T89SV9aADChCYgAPiZzz/focWLF5hq\nI0aMZhowAAAAUI3Bg4foppt6m2pPPjlDBQXbLEpUf3FRbXXX5bfW+foOza9Q7/Y9vZgIwYAmIAD4\nEcMwNGFCuioqKjy1Nm3a6uGHH7EwFQAAAOC/bDab5s1bqObNm3tqFRUVGj16mI4ePWphsvq5ydFd\nd112q2yq3dNACS2u0oir/6gwGy0fmPHfCADwI2vXvqr33nvXVJs+/QmmAQMAAABnERvbRpmZ5mEa\nxcVFmjVrhkWJvKPPRb308C9HKbbphed8b+Pwxhp05V0adfX9ahTeqAHSIdAwGAQ+w6HUQO0wDARA\noGEwiH9iDwYglI0ePVwvvfSi52ebzaY1a9apa9fuFqaqP8MwVPzDDn207z/aXVai/YcPqNKolL1R\nlNrb2ymxRbw6t75GjSPOszoqGgDTgeF32IACtTNjxhQ9++wznp8jIiK0aVOerrzyKgtTAcCZ0QT0\nT+zBAIQyl6tUvXolqaTE6anFxTm0aVOu7PZoC5MB3sN0YAAIYDt2bNdzz5knmI0cOYYGIAAAAFAL\ndnu0nn12selJmpISpyZO5IxtgCYgAFisahjIiRMnPDWGgQAAAAB107Vrd40cOcZUW7XqH1q79lWL\nEgH+gSYgAFhs7dpX9f77m0w1hoEAAAAAdTdhwmTFxyeYamlpqdq371uLEgHWowkIABZyu92aPHmC\nqda9ey/dccfdFiUCAAAAAl/jxo21cOESRUZGemoHDx5UauooMRoBoSrC6gC1ER8f77W1kpKS1LVr\nV91///1eWxMAamvu3KdN04AjIiI0a9ZspgEDAAAA9dSxYyc9+ugkzZw5xVN75523tHLlMqWkDLUw\nGWCNgJoO3KFDB6+uZ7PZZLfb9ec//9nra4PJdMC57NixXb16dTGdBThmzDhlZEy3MBUA1BzTgf0T\nezAA+NHJkyd111236sMP8zy1Jk2a6J13PtBll11hYTKg7uq6BwuoJmBRUZEk6fnnn1deXp6GDx+u\nxMRERUdHq7S0VJLkcrnkdDq1bds25eXlKSYmRsOGDVNcXJxnHZfLpS1btmjVqlWSTjUDX3nlFRqB\nXsYGFDgzwzA0YMCdprMA27Rpqy1bPuIsQAABgyagf2IPBgBmu3fvUq9eSSovd3tq1177S61bt1ER\nEQH1gCQgKUSagJI0btw4lZWVad68eYqKOvcfOjs7W3PnztXMmTPVp08f02sul0upqanKy8tTx44d\ntXr1al/FDklsQIEze/31VzR06B9NtSVLVurOO5MtSgQAtUcT0D+xBwOA0/3jH/9PqamjTLVHHpmo\ntLTHLEoE1F1INAGXLl2qOXPmKD8/v1Z3yhQWFmrAgAFasWKFbrjhhtNe7927t/bu3auNGzea7hhE\n/bABBarndrvVtet1prMAu3fvpdWrX+MsQAABhSagf2IPBgCnMwxDgwf/VuvXr/PUwsPD9cYbb+ma\na35pYTKg9uq6Bwuo6cDZ2dmy2+21flQuMTFRUVFRyszMrPb1/v37S/rxcWMA8KVnnpnNMBAAAACg\nAdlsNs2ZM18tW7by1E6ePKlRo4bp8OHDFiYDGk5ANQGdTqdcLledry8sLKy2HhMTI0mecwUBwFd2\n7Niu55571lQbOXKMrrzyKosSAQAAAKGhZcuWmjdvgam2c+cXmj59skWJgIYVUE3AhIQESdLGjRtr\ndd25moeHDh2SJEVHR9c9HACcg2EYmjAh3TQNuE2btnr44UcsTAUAAACEjr59b9Hvf59iqi1fvkTv\nvFO7PgMQiAKqCdilSxcZhqHMzEy53e5zX/B/qh4Drmoi/pzT6ZQkORyO+ocEgDNYu/ZV0zRgSZo+\n/QmmAQMAAAANaNq0x3XxxZeYaqmpo/XDD99blAhoGAHVBBw5cqQkac+ePRo8eLD27t17zmuWLVum\nDRs2yGaz6b777qv2PUVFRbLb7YqPj/dqXgCo4na7NXnyBFOte/deuuOOuy1KBAAAAISmZs2aaeHC\nFxQW9mNLZN++b5We/pACaHYqUGsB1QSMiorSvHnzZBiGCgsL1bt3by1fvlwlJSWnvbe4uFhDhgzx\n3AWYlJSke++997T3FRUVyel0qkuXLj7PDyB0MQwEAAAA8B+dO1+vcePGm2pr176q1auzLUoE+J7N\nCMA2d05OjsaNGydJnl+gHQ6HoqJOjUguKSnxnAFoGIaSkpKUlZXlef2nMjIy9NJLLykrK0t9+/Zt\noD9BaNi/v8zqCIBf+PzzHerZ8wbTWYBjxoxTRsZ0C1MBQP21anX63grWYw8GADVTUVGhW2/trf/+\n99+emt0erU2bchUXx3Fh8F913YMFZBNQksrKyjR79mytWrXqjO9xOBwaNmyYBg4ceMb3pKamKjo6\nWtOn88u4t7EBBU59EXHvvXfpvffe9dTatGmrLVs+4ixAAAGPJqB/Yg8GADW3Y8d29e7dXUePHvXU\nunXrodWrXzc9Lgz4k5BrAv5UXl6eCgsLtWfPHtntdsXExCgpKemMg0DQMNiAAtLrr7+ioUP/aKot\nWbJSd96ZbFEiAPAemoD+iT0YANTOkiXP6U9/etRUmz79CY0cOcaiRMDZhXQTEP6JDShCndvtVrdu\nnfX11z8OMerevZdWr36NswABBAWagP6JPRgA1E5lZaUGDrzb9PTOeeedpzff3Kz4eG4ugv+p6x6M\ne1sBwEeeeWa2qQHIMBAAAADA/4SFhWn+/EWKjo7x1I4dO6ZRo4bp2LFjFiYDvCugm4DFxcVatmyZ\n7rnnHsXHxys+Pl7XX3+97rnnHi1fvlxut9vqiABC1Oef79Bzzz1rqo0cOUZXXnmVRYkAAAAAnEnb\ntu309NNzTbXCwm2aPXuWRYkA7wvIx4FLSkqUmpqqoqIiSacO3v+5qjtt0tPTdf/99zdoPpzCoygI\nVQwDARAqeBzYP7EHA4C6Gznyfq1Zs9rzs81m02uv5eiGG7pYmAowC5kzAfPy8nT//fd7Gn8DBw5U\nx44d5XCcGt/tdDpVUFCggoICFRUVyWazKSkpScuWLbMydkhiA4pQxTAQAKGCJqB/Yg8GAHV36NBB\n9ezZRd9887Wn1r79xdq0aYuaNeP/9+AfQqIJWFRUpOTkU79EDx06VGlpaWd9v9PpVGpqqoqLizVo\n0CBNnTq1AVKiChtQhKLqh4H01OrVr3MWIICgQxPQP7EHA4D62bz5Xd17752m2m9/+wc988wCixIB\nZiExGCQ1NVU2m03p6ennbABKksPh0Jo1a9SuXTtlZ2dr48aNDZASQCirfhhIJg1AAAAAIED07Hmj\nhg0baar97W9/0fr1/7QoEeAdAdMEzMvLk9PplMPh0JAhQ2p17YoVK2QYhl588UUfpQOAU8NAFi82\nfzvIMBAAAAAg8EyaNE1XXHGlqTZ+/IP67rvvLEoE1F/ANAG3bNkim82mQYMG1fpah8OhhIQE5ebm\n+iAZAJwaBjJhQroqKio8tTZt2urhhx+xMBUAAACAumjSpIkWLVqiiIgIT+3AgQMaP/7BaoeTAoEg\nYJqAVZOAExIS6nR9x44dJUnFxcVeywQAVdate800DViSpk9/gmnAAAAAQID6n/+5RunpE0y1DRvW\n629/+4tFiYD6CZgmYFRU/Q6eLi0t9co6APBzbrdbkyebNwfdu/fUHXfcbVEiAAAAAN7w4IMP6brr\nfmWqTZr0mL766kuLEgF1FzBNQIfDIenU2YB1UXUnYVxcnNcyAYDEMBAAAAAgWEVERGjBgufVtOn5\nntrhw+UaM2aETp48aWEyoPYCpgk4aNAgGYah7Oxsud3uWl27YcMGOZ1OJSUl+SgdgFDFMBAAAAAg\nuF166WWaMWOWqZaf/6EWLJhnUSKgbgKmCehwONSlSxe5XC5Nnjy5xteVlJRo8uTJstlsSktL82FC\nAKGGYSAAAABAaPjd7/6ovn37m2pPPfW4tm37r0WJgNoLmCagJM2fP1/NmjVTTk6OBgwYoM8+++ys\n71+2bJn69OmjsrIyDR06VPHx8Q2UFEAoqG4YyLRpjzMMBAAAAAgyNptNc+cuUIsWLTy1EydOaNSo\nYTpy5IiFyYCasxkBNtva6XQqOTlZZWVlstlscjgcSkhI8JwZ6HK5VFBQ4DkD0DAMDRs2TOPHj7cy\ndkjav7/M6giAz7jdbnXr1tl0FmD37j21evXrnAUIIGS0asXANX/EHgwAfOeNN9Zp8OD/NdWGD39A\nM2c+ZVEihKK67sECrgkoSWVlZZo9e7ZWrVrlqf30l+6qP5LdbteMGTPUr1+/Bs8INqAIbjNnTtX8\n+XM9P0dERGjTpjzOAgQQUmgC+if2YADgW+PGjdbf//5XU2316tfVo0cvawIh5IRUE7BKWVmZ1q9f\nry1btsjpdEqSYmJilJCQoK5du6pLly4WJwxtbEARrL744nP17HmkxfMMAAAgAElEQVSD6SzA0aNT\nNWXKDAtTAUDDownon9iDAYBvud1l6tWrq/bs2eWptW3bTps25Somprl1wRAyQrIJCP/GBhTByDAM\nDRx4lzZv/vEswDZt2mrLlnw1a8YvwwBCC01A/8QeDAB8b+vWPN15Z3/9tKWSnHyvFi9eZmEqhIq6\n7sECajAIAFht3brXTA1AqWoYCL8IAwAAAKHihhu66MEHHzLV1qx5Sa+8stqiRMC5cScgfIZvoRFs\nysvL1bXrdQwDAYD/w52A/ok9GAA0jOPHj6tfvxtVWLjNU4uOjtF7721VmzZtLUyGYFfXPViEl3PU\n2Zw5cxrkc5gSDKCunnlmtqkBGBERoVmzMmkAAgAAACGoUaNGWrRoifr06aHjx49LkkpLD2ns2AeU\nnf2KwsJ4+BL+xW/uBOzQoYNPf5E2DEM2m03FxcU++wyY8S00ggnDQADgdNwJ6J/YgwFAw3ruuQWa\nMmWiqfbEE09r6NCRFiVCsAv4wSApKSkNcjfN8uXLff4ZOIUNKIIFw0AAoHo0Af0TezAAaFiVlZUa\nMOAOffDBe55a48aN9dZb7+vKK6+yMBmCVcA3ARF82IAiWKxd+6qGDPmDqfbCCyt01133WJQIAPwD\nTUD/xB4MABpeSYlTPXt2UVmZy1O7+upf6I033lKjRo0sTIZgxHRgAPCB8vJyTZ48wVTr3r2n7rwz\n2aJEAAAAAPxNXJxDTz6Zaap9+ul/NHfuUxYlAk5HExAAzoJhIAAAAABqYsCAQbrjjrtNtXnz5ig/\n/0OLEgFmNAEB4Ay++OJzPffcs6baiBGjOdcDAAAAwGlsNpuefnquWreO9dQqKys1evRwud1uC5MB\np9AEBIBqGIahCRPSTNOAY2PbaPz4RyxMBQAAAMCfXXBBC2VlLTLVdu36SlOnTrIoEfAjmoAAUI11\n614zTQOWpOnTn2AaMAAAAICzuumm3kpJGWqq/eUvy7VxY45FiYBTmA4Mn2EyHQJVeXm5una9znQW\nYPfuPbV69eucBQgAP8F0YP/EHgwArFdeXq7evbtr584vPLVWrS7U5s1b1bJlSwuTIRgwHRgAvKS6\nYSBPPDGbBiAAAACAGjn//PO1cOELCg8P99T27/9O48ePFfdiwSo0AQHgJ840DOSqqzpYlAgAAABA\nILr22uv08MPmM8XXr1+n7Oy/W5QIoY7HgeEzPIqCQGMYhgYOvMt0FmBsbBvl5n7EWYAAUA0eB/ZP\n7MEAwH9UVFTo9tv76pNPPvbUmjWL0rvvbtFFF11sXTAENB4HBoB6WrfudYaBAAAAAPCayMhILVz4\ngpo0aeKpud1levDBkTp58qSFyRCKaAICgE4d3JuRMcFU6969p+68M9miRAAAAACCwWWXXaGpUx83\n1bZuzdWiRc+e4QrAN2gCAoCkefMytXdviednhoEAAAAA8JbBg4foppt6m2pPPjlDBQXbLEqEUEQT\nEEDI++KLz7Vo0XxTbfjwUQwDAQAAAOAVNptN8+YtVPPmzT21iooKjR49XEePHrUwGUIJTUAAIc0w\nDE2cmK6KigpPLTa2jdLSHrUwFQAAAIBgExvbRpmZWaZacXGhZs2aYVEihBqagABC2rp1r2vTpndM\ntWnTHmcYCAAAAACvu/32u3TvvfeZaosXL9CWLe9blAihxGYYhmF1CASn/fvLrI4AnFV5ebm6dets\nOguwW7ceevnltZwFCAA10KoVX5j4I/ZgAODfXK5S9eqVpJISp6cWF+fQpk25stujLUyGQFHXPRh3\nAgIIWdUNA5k1K5MGIAAAAACfsduj9eyzi02/d5SUODVx4iMWpkIooAkIICQxDAQAAACAVbp27a6R\nI8eYaqtW/UNr175mUSKEAh4Hhs/wKAr8lWEYGjTobtNZgLGxbZSb+xFnAQJALfA4sH9iDwYAgeHo\n0aPq16+XiouLPLULLrhAmzdvVevWsRYmg7/jcWAAqCGGgQAAAACwWuPGjbVw4RJFRkZ6aj/88IPG\njRst7teCL9AEBBBSysvLlZExwVTr1q2H7rrrHosSAQAAAAhVHTt20qOPTjLV3n57o1auXGZRIgQz\nmoAAQgrDQAAAAAD4k9Gjx+r667uYatOmTdLOnZ9blAjBiiYggJDBMBAAAAAA/iY8PFwLFjyv889v\n5qkdPnxYo0cP14kTJyxMhmBDExBASDAMQxMnpquiosJTa906Vmlpj1qYCgAAAACkiy66WE888bSp\n9sknH2vevEyLEiEY0QQEEBKqGwYyffoTDAMBAAAA4Bfuu++3uuWW20y1OXOe0r///bFFiRBsbAYj\nZ+Aj+/eXWR0BkHRqGEi3bp1NZwF269ZDL7+8lrMAAaAeWrXiixR/xB4MAALXgQMH1KPH9TpwYL+n\ndtlll+vttz9Q06ZNLUwGf1LXPRh3AgIIegwDAQAAABAIWrZsqXnzFphqO3d+oenTJ1uUCMGEJiCA\noMYwEAAAAACBpG/fW/T73w821ZYvX6J33tloTSAEDR4Hhs/wKAqsZhiGBg68S5s3v+upxca2UW7u\nR5wFCABewOPA/ok9GAAEPrfbrRtvTNLu3bs8tdatY7V5c54uuKCFdcHgF3gcGAB+Zt26100NQEma\nNu1xGoAAAAAA/FqzZs20cOEShYX92LbZt+9bpac/JO7lQl3RBAQQlMrLy5WRMcFU69ath+666x6L\nEgEAAABAzf3qV9crNfVhU23t2le1enW2RYkQ6GgCAghK1Q0DeeKJ2QwDAQAAABAwxo9/TFdf/QtT\n7bHH0lRS4rQoEQIZTUAAQae6YSDDhj2gDh3iLUoEAAAAALXXqFEjLVz4gho3buyplZW5NHbsA6qs\nrLQwGQIRTUAAQcUwDE2YkKaKigpPLTa2jdLTH7MwFQAAAADUzVVXddDkydNMtQ8+eE8vvLDIokQI\nVDQBAQQVhoEAAAAACDZDhoxQjx43mmqPPz5NxcVFFiVCIKIJCCBoMAwEAAAAQDAKCwvT/PmLFB0d\n46kdO3ZM48ePtTAVAg1NQABBo7phILNmZTIMBAAAAEDAa9u2nZ56ao6p9tFH/9LBgz9YlAiBhiYg\ngKBQ3TCQ4cNH6aqrOliUCAAAAAC8Kzn5Xg0c+BvPz/HxCYqJaW5hIgQSm2EYhtUhEJz27y+zOgJC\nhGEYGjTobm3a9I6nFhvbRrm5H3EWIAD4UKtW/B3rj9iDAUBwq6ys1Isv/k0HDuzX738/WM2bX2B1\nJDSwuu7BIrycAwAa3Lp1r5sagBLDQAAAAAAEp7CwMP3v//7e6hgIQDwODCCgMQwEAAAAAIBzowkI\nIKAxDAQAAAAAgHOjCQggYDEMBAAAAACAmqEJCCAgGYahiRPTVVFR4anFxrZRWtqjFqYCAAAAAMA/\n0QQEEJAYBgIAAAAAQM3RBAQQcBgGAgAAAABA7dAEBBBwGAYCAAAAAEDt0AQEEFB27mQYCAAAAAAA\ntUUTEEDAMAxDEyYwDAQAAAAAgNqiCQggYPzzn2tPGwYydepMhoEAAAAAAHAONAEBBITy8nJNnvyY\nqdatWw/dffcAixIBAAAAABA4IqwOAAA1Ud0wkCeemM0wEAAAAAB+6Zvyfdrtcmr/ke9VaVTK3ihK\n7aPidJE9ThFhdWvH+GJNhA7+GwLA751pGEiHDvEWJQIAAACA0xmGoa3ffqx3ne9rr/ubat8TFdlM\nSW1/pT4X9VSTiCaWrInQZDMMw7A6BILT/v1lVkdAEDAMQ4MG3W06CzA2to1ycz/iLEAAsFirVvw9\n7I/YgwGANQ4ePaS/FGVrx6GdNXp/zHnR+n38QHW44IoGXROBr657MM4EBODXqhsGMm3a4zQAAQAA\nAPiN74/8oDkfL6pxs06SDh0r1cL/LtMn333aYGsitNEEBOC3zjQM5K677rEoEQAAAACYnag8ocWf\nrtTBY4dqfW2lUak/F/7jtMd8fbEmwJmAAOrleMVJ/av4OxV89b12f1sm1+EKhYfZFHtBU13Sxq4u\nHVvr4lh7ndbOyprDMBAAAAAAfi1n19v6uvzbOl9/wjipvxav0iPXPagwW5jP1gRoAgKoE8MwtOk/\nX2vN5p0qP3ritNe/2FuqL/aWauNHTl3piNEf+1+lNi3Or/H6O3d+roULs0y1YcMeYBgIAAAAAL9x\n9MQxvev8oN7rOMv2qvD7z9SpZYJP1gQkHgcGUAfHjp9U1upP9dcN26ttAP7cDuchTV2Rr7zCmn2T\nZRiGJkxIV0VFhacWG9tG6emPneUqAAAAAGhYn3z3Xx09ecwra+V+ne+zNQGJOwEB1NLJykrNf/lT\nFe8+WKvrKk5Uaum6IoWH2fSr+NZnfW91w0CmTp3JMBAAAAAAfmXnoV1eW+vL0l0+WxOQuBMQQC39\nM293rRuAVQxDWrn+M31fevSM76luGEjXrt11990D6vSZAAAAAOArX5d7b/iGu6JcpcdcPlkTkGgC\nAqiFA6VHtHbLrnqtcfT4Sb349udnfL26YSCzZmUyDAQAAACA3zl2suLcb6rVesd9siYg0QQEUAvv\n/nuvTlYa9V7n358fqPZuQIaBAAAAAAgkjcPP8+56Eef5ZE1AogkIoBY++uw7r6xTaRj6eMd+U41h\nIAAAAAACTbtmsV5bK6pRM9kbRflkTUCiCQightxHKrT/0JnP8qut3d+az6VgGAgAAACAQHN5zKXe\nWyv6Ep+tCUg0AQHU0NmGedTF/p+sV15eroyMCabXGQYCAAAAwN9dc+HVahrRxCtrdW13vc/WBCSa\ngACs8pOjBbOy5qikxOn5OTw8nGEgAAAAAPxeo/BI9bmoV73XuSz6YnVofoXP1gQkmoAAaigmyruH\nyTb/v/V27vxcixbNN702fPgohoEAAAAACAi92/fURXZHna9vFN5Iv4sfaLoJwhdrAjQBAdRI9PmN\nPI07b7g4NkqGYWjixEd0/PiPI+tbt45lGAgAAACAgBFmC9OIToPVummrWl8bGRap4R3/oAubtvT5\nmgBNQAA1du0Vtf8/oOrYJF1zZSu98cY6vfvu26bXpk17nGEgAAAAAAJK9HlRevjaUfpFq441vqZ1\n01Yad+0Ixbe4ssHWRGizGYZhnPttQO3t319mdQR42dcHyjV52Yeq798aiRc318jbr1T37r8ynQXY\ntWt3rVmzjlvWASBAtGrFlzb+iD0YAFhr24EivbPnfe04tLPa11s1aaHu7bqoR7suigyPtGxNBK66\n7sEivJwDQBBr2/J89f6lQxs/cp77zWcQER6m3/S+8rRhIBEREQwDAQAAABDwOrVMUKeWCSo9ViZn\nWYm+O3JAlUal7I2i1D4qTq2btqr17z2+WBOhhyYggFq5p+el2u48qD373HW6ftBNl+tI6denDQMZ\nNuwBhoEAAAAACBrR50Up+jzv/o7jizUROjgTEECtNIoM1/hBv9AlbWp3+7HNJg288XLddG07hoEA\nAAAAANDAaAICqLWopo004Xe/1B1dL1ZE+LlvOY+9oKke++216n99e4aBAAAAAABgAQaDwGc4lDo0\nlJYf1/v//VoFX36v3d+5dez4SUlSy+jGuriNXUmJsbr68hYKs9l0+PBhdevW2XQWYFJSN73yyj85\nvwIAAhCDQfwTezAAAIIbg0EAWCL6/Ea6Leli3ZZ0sQzD0PETlQoPsyki/PQbjbOyMk0NwPDwcD35\n5BwagAAAAAAA+BhNQABeY7PZdF5keLWvffnlF1q4kGEgAAAAAABYgTMBAficYRiaMCGdYSAAAAAA\nAFiEJiAAn6tuGMjUqTMVFWW3KBEAAAAAAKGFJiAAnzp8+LAmTzbf8ZeU1E3JyfdalAgAAAAAgNBD\nExCATzEMBAAAAAAA69EEBOAzDAMBAAAAAMA/0AQE4BMMAwEAAAAAwH/QBATgEwwDAQAAAADAf9AE\nBOB1DAMBAAAAAMC/0AQE4HXVDQOZNSuTYSAAAAAAAFiEJiAArzrTMJD4+ASLEgEAAAAAAJqAALym\numEgF17YmmEgAAAAAABYLMLqAACsU2kY+vb7w9p38LAqK6Xo8xvJ0bqZzosMr9N61Q0DmTbtcYaB\nAAAAAABgMZqAQAjau9+ttz4u0b+K9+nIsZOm18JsNl3VPkY3XtNOv7yqVY3P8TMMQ1OmTDTVGAYC\nAAAAAIB/oAkIhJATJyv16vtfKefDPao0jGrfU2kYKt59UMW7D+oqR4xSfh2vC2OanHPtPXt2a8+e\n3Z6fGQYCAAAAAID/4ExAIEQcrzipZ1b9V29s3X3GBuDPbXce0oyV+dr1reuc742Lc+iSSy71/Jya\nOp5hIAAAAAAA+AmbYdSwGwDU0v79ZVZHwE8sXLNNH+/YX6drmzWJ1LT7f6XmUeed9X0//PC9Xnzx\n73I4HLrttju5CxAAglyrVlFWR0A12IMBABDc6roHowkIn2ED6j/yCr/VkrVF9Vrj6staaNy9/+Ol\nRACAYEAT0D+xBwMAILjVdQ/G48BAkKs0DK3Z/GW91/l05/fa4TzkhUQAAAAAAKCh0QQEgty2nd/r\ne9dRr6y16T97vbIOAAAAAABoWDQBgSBXvPug99ba5b21AAAAAABAw6EJCAS5Pfu8dy5QaflxHXIf\nO+PrlYahI8dO6HjFSa99JgAAAAAAqL8IqwMA8K3yoye8vl5Msx+nBB9yH9N7//la2776Xs7v3Dpe\nUSlJah51ni5tY9cNia11zRWtFBbGpGAAAAAAAKxCExAIchHh3m2+Rf7feidOVuq1D75Szod7dLLy\n9CHjB8uO6eOy/fp4x35d2LyJUm7poKvaN/dqFgAAAAAAUDM8DgwEubYtzvfaWo0iw9Qyuolc5cf1\n+F8+1j/zdlfbAPy57w4e0dN//7f+mbfLa1kAAAAAAEDN0QQEgtyl7aK9ttbFsXZVnKzUnOz/aHct\nzxo0JL28+Utt/MjptTwAAAAAAKBmaAICQe5X8ReqUYR3/qfetVOsVm/aKed37jqv8dK7X2jv/rpf\nDwAAAAAAao8mIBDkzm8cqR7/07be67SwnyfHhVF65+OSeq1z4qShf7z9eb3zAAAAAACAmqMJCISA\n5J6XqmV043qtMfiWeL3/6dc69wmA51a066C++b7cCysBAAAAAICaoAkIhIDGjSI0JrmTzm9ct4Hg\n9/S8VImXXKD/fH7Aa5m8uRYAAAAAADg7moBAiGjfOkqP/vZatWnRtMbXNIoM0x/6XaVfd7lYpeXH\ndbDsmNfy7Pq2doNFAAAAAABA3dXttiAAASmuVTNNTfmV3ti6W+9+UiLX4Ypq3xceZtM1V7bSgJ6X\n6sLmp5qGh7zYAJTk1YYiAAAAAAA4O5qAQIiJjAjTnd0u0a+7XKSiXT/oq2/KtO/gYVVWGrI3baSL\nYqOUeMkFiml2nm+D2Hy7PAAAAAAA+BFNQCBERYSH6erLWurqy1rW6P0t6jlY5OdaeXk9AAAAAABw\nZjQBLZaSklKj90VFRWn+/Pn1/jyn06kXX3xReXl5crlccjgc6t+/vwYNGlTvtRHcmjWJVKuYxtp/\n6KhX1rs41u6VdQAAAAAAwLnRBLSQy+VSbm5ujd5rt9e/YZKdna2MjAzPetHR0crNzVVubq6WLFmi\nFStWyOFw1PtzELw6d2itN7burvc6YTabfnlVKy8kAgAAAAAANUET0A84HA699dZbPv2MnJwcZWRk\nyG63KysrS0lJSZ7XZs+eraVLlyo5OVlvv/22VxqOCE43XtNOb+bv0YmTRr3WufbKlrrAzuPAAAAA\nAAA0lDCrA6BhTJ48WXa7XWvWrDE1ACUpPT1dWVlZcrlcmjRpkkUJEQhaRDfW7V0vqdcaTc4L1303\nX+GlRAAAAAAAoCZoAoaA7OxsuVwuDRw48IyP+/bv318Oh0MbNmyQy+Vq4IQIJLfe0F6JFzev07U2\nm5RySzx3AQIAAAAA0MBoAoaAnJwcSdJ999131vf169dPkrR+/XqfZ0LgCg8L04P3XK1fXF6zqcJV\nGkWGafjtibquw4U+SgYAAAAAAM6EMwFDQNXwkXMN/ejUqZMkqbCw0OeZENgaRYZr7ICr9d5/v9bq\nTTvlPlJx1vfHX9Rcf+h/lVo3b9pACQEAAAAAwE/RBAxyVY/21mTqb2JioiSpoKDAp5kQPHr8T1t1\nSYzVR9u/U8GX32vXt2UqO1yh8DCbWl/QVJe2seuGxNZq3zrK6qgAAAAAAIQ0moB+JDs7W9nZ2XI6\nnZKkLl266L777jttkEdtVK1Vk4m/0dHRpmuAmoiMCFOXxFh1SYy1OgoAAAAA/P/27t+njaz9+/jn\nfnS3DDTfcraNxEBJkaEMkg2li52UsWQ2HW5MR1yw6ezG6RJbcspMCpdhLJGS2YIynpW2vU/+gDD5\nA/IU6MzaYBsD5oeH90taaQXjmePZBV985jrnAJiAEPARODs7U6lUUpIkchxHa2trMsao3++r3++r\nUqlof3//xue+LjYGAQAAAAAAyBdCwEcgTVMZY9Ttdke6/owxKpfL6nQ6WllZ0e7u7o3OLf3b5TfN\nLN2CAAAAAAAAWDzsDvwIOI6jXq93adqv67rq9XqSpGazSYceAADAnKVpqjiOFUURm6MBAIBcoxPw\nATmOo9PT06kdeI7jqFAoqN/vKwzDa3cDXqe7j5ARAAA8FVEUqdlsjl0LOQgC1Wq1uc2SMMbo06dP\n+uuvv5SmqVzXVbFYVBAEczk/AADALOgEfGCzFJebm5uSpKOjoxtfZ5a1Ae0xTAsGAAB51mg0VK1W\ndXZ2piAIVKlUVCgUshooDEOVSqW5PCANw1BbW1vqdDpZ4BjHser1ura2ttiQDQAA3Bs6AReA67qS\nbrZrr10L8DpF7CzrBwIAACyiKIrU6XRUKBT07t27sd9/8+aNjDF69epVtjTLTa9Vr9flOI5ardbI\n0i+NRkOdTkelUklfv37lISwAALhzdAIukJs8jfY8T9JsnYD2/Kurq9e+DgAAwCJ48+aNXNcdGwBK\nUrFYzIK/JEkURdGtrjVp7ef9/X21Wi2laaqDg4MbXwMAAGBWhIALwIZztiPwuhzHUZqmV4aIg8FA\nkrS+vn6j6wAAADxmURQpTVPVarWpx7mum63XF4bhja4VhqHSNNXvv/8+sYYrFotyXVf9fp+1mQEA\nwJ0jBHxAsxZ7cRxLunmH3vb2tqR/Q75JTk5OJOnSk2oAAIA8sDMjisXilcfaY66qnyaxHYQvX76c\nelyhUJB0u7WfAQAAZkEI+EDSNNWLFy+uXOcvTdPsCfTr169vdC1bxLbb7anX6ff7cl03m0IMAACQ\nJ0EQqNVqzXSs7d67aYeefYh71UwOOwMjSZIbXQcAAGBWhIAPxBijNE1VKpWyIvGiNE1VrVYlnT8l\nnhTORVGkRqMxMeTzfV+e5ymO44nXste5anoMAADAIpulC1C63XIs13mtre9u2nEIAAAwK3YHfiCe\n56nb7apcLqtcLsv3/WxdGOn8afCHDx+Upqk8z5u4eLV0/qQ5DEM5jqPd3d2xx7RaLW1tbalcLqtS\nqWhnZ0eu62owGKjdbiuO42wMAAAAT519cHqTZVLsTI9ZdvxdXl4eeQ0AAMBdIQR8QL7v6/T0VAcH\nB+r3+2O79CqVivb39299Ldd1dXx8rGq1qk6no06nM/L9IAh0eHh46+sAAADkgV2OxW4Qch127cHr\nYGMQAABw1wgBH5jjOHr37p3SNNVgMMimCbuuK9/3Z3qCfHh4OFOA57quer2ekiRRHMf68eOHfvvt\nN21vb890nev6v/9bmvs5AQAA7lqj0ZAxRkEQ3GitZBvo2S6/aajBAADAfSEEfCQcx7m3XXk9z2Pz\nDwAAgDHiOFan05HnecySAAAAucLGIAAAAIDO12Qul8vyPE8fP3688Xmu093HNGAAAHBf6AQEAADA\no5AkiUql0lzO5TiOTk9Pr31t3/fV7XbnMoZZ1ga0x9zFtGAAAIBhhIAAAAB4FDzPU6/Xm8u5rhOq\nRVGkarU6t43S7FqA1+nym2X9QAAAgNsgBAQAAMCjcd/rFodhqHq9rkqlov39/bmc076HWToBbVC4\nuro6l2sDAABMQggIAACAJ6ndbqvZbKpWq2l3d3eu53YcR2maKk3TqV2Jg8FAkrS+vj7X6wMAAFzE\nxiAAAAB4cmwAeHh4OPcAUJK2t7cl/RvyTXJyciJJ8n1/7mMAAAAYRggIAACAJ6XRaKjZbKrVaikI\ngju5RrFYlHQeNk6Spqn6/b5c1733adAAAODpYTowAAAAnox6va4wDNXtdm/VfRdFkb59+6aVlZWx\nnYS+78vzPMVxrDiOx16rWq1Kkmq12o3HAQAAMKv//Pr169dDDwIAAAC4a3Ecq1wuy3Gca+3Ge3x8\nfOlrNkx0HEenp6djX2eM0dbWliSpUqloZ2dHrutqMBio3W5n4WC3273ZGwIAALgGOgEBAADwJNid\neO2GHXfNdV0dHx+rWq2q0+mo0+mMfD8IAh0eHt75OAAAACQ6AQEAwC3YzRUqlYr29/fnem5jjCRp\neXl56u6qwCJIkkRxHOvHjx/67bfftL29zf/XAIAbowbDTdAJCAAAHpUwDNVut7MCVDpfX61Wq7F5\nAhaW53n8/wsAeNSowfKPEBAAADwa5XJZcRzLcRwVCgWtrKxkGyuUSqVbb+YAAACAy6jBngZCQAAA\n8Cjs7e0pjuOx66TZDR3K5bJOT0+ZmgIAADAn1GBPx/976AEAeHrSNFUURUqS5KGHAuCRiKJI/X5f\nhUJh7EYJvu+r1WpJkg4ODu57eACw8Ki/AIxDDfa0EAICuHdxHKtarSoMw4ceCoBHwv4+eP369cRj\nisWiHMdRv9+/l51dASBPqL8AjEMN9rQQAgIAgAeVpqniOJakKxed3t7elqTseAAAANwMNdjTQwgI\nAEDOGGMURZGiKBrZ3e2xOjs7k6SZ1phxXVcSBSgAAHh8qMHw2LExCAAAOZEkid68eXNpvSfP89Rq\ntbLibZIoivThwwcZY7S8vKwgCLS7uytjjLa2tuS6ro6Pj+7s6eYAABNnSURBVOc+blskLy8vX3ms\nfUq9CIU1AAB4GqjBsCjoBAQwIooiPXv2TI1GY+Ixxhg9e/ZMz549m3quer2uZ8+eKYoihWGYvaZa\nrUrSyNfsP9OuC2CyOI5VKpWUJImCIFCr1VKr1VIQBEqSRFtbW1OLtnK5rGq1quXlZX38+FHHx8cq\nFotqNBp3vvbLLIXnRRSgAPKE+gtYXNRgWCR0AgIY4fu+JKnf72t/f3/sMcMt4FEUqVgsjj3u6Ogo\nO+dgMFChUJAkff/+XUmSyHVdra6ujrxmfX391u8BeGqMMSqXy5KkXq83sqZLsVhUsVjMCsxer3fp\n9eVyWXEc6/DwUEEQZF93XVf7+/va29u70/Hbp+N2Sso09gn7LMcCwKKg/gIWEzUYFg0hIIARjuPI\n8zwlSaIkScYuEBtFUXZMHMdji1BjjNI0le/7chxHvu9nBW4URapWq/J9f+w29ACux3ZwHB4ejv2Z\n9X1fQRAoDMNLP9dRFCmOYxUKhZHic9jm5qb6/f7dDF7nv3dc15UxZuLvHcv+cQsAeUL9BSwmajAs\nGqYDA7jE7vz05cuXsd+P41jb29vyPG/ih0EURZI08Sk1gPlI01T9fl+u604sICVl37v4c91sNiVJ\nb9++nfjatbW1OYx0Oju+9+/fTzwmDMMbTVsBgEVA/QUsFmowLCJCQACX2MJx3FMnOxXF9309f/5c\naZpeWgBXGp2KAuDuDP9MTjNuMWdjjIwx8jxv6q5ws+wYd1tBEMhxHPX7/bFrU0VRpHa7rd3dXUk3\nW8MGAB4z6i9gsVCDYRExHRjAJa7rZm3haZqOfPhEUZRNWZGkTqejL1++jLSO28LUngfA3fn27Zuk\n8ye0YRheefz379+zf7fF61VPma+7KHUYhjo5OZl6zP7+/sjvB8dx9PHjR5VKJXU6HX3+/Flra2ta\nWlrS33//LUnqdrtZAc3vFgB5Q/0FLBZqMCwiQkAAYxUKBXU6HR0dHY20tx8dHen58+eSlD25uriI\ntf1QswtRA7g7P3/+lCTVarVrd37MWlhedwHok5OTK9evefny5aUi0vM8HR8fq1qtyhijOI7leZ6C\nIMiePtupbhcXtQeAPKD+AhYHNRgWESEggLF2dnbU6XQURVFWhNon05ubm9lxz58/V7/flzEm+zCx\n613s7Ozc/8CBJ2ZpaUmSRjpEruvHjx9Tv3/dp9Dv3r270Tik86fL43bPs+xT9+HfQwCQF9RfwOKg\nBsMiYk1AAGPZp8z2qbL079Mfu3C19G+hOXxcv9+/1YchgNmtr69L0ti1oa5i/3C86onx8M/3Q7IL\ncNsdLwEgb6i/gMVBDYZFRAgIYCJbbNoPn6Ojo0uL19pFrG2Bao8dLlQB3B37x95NisThIq7dbk88\n7rEUoHa9nT/++OOBRwIAd4f6C1gM1GBYRISAACayH05RFGWLTY8rLn3fzz6g7EK0tjgFcLdc11Wh\nUJAxZqZFqYcNP81tNpvZH5PD2u32yG52DyVJEjWbTbmum61NAwB5RP0FLAZqMCwiQkAAE9lCMo7j\nrMgcV1zaD7A4jrOWdtrEgftjF4av1+tTp6SEYahGozHytVarlXWXVKtV7e3tKYoiJUmiRqOhZrOp\nWq12d4Mf0mg0xq59kySJXr16lY0XAPKM+gtYHNRgWDSEgACm8n1fxhh9+PBBruuO3RLeFqb2adVV\nBaj9sBsMBpe+d93FbwGcP4nudruSpFKppEajkT05NsYoiiKVSiXV6/VLr3UcZ6QI7ff7qlarKpVK\n6nQ6CoLgXv6oDMNQnU5HGxsb2tvbU7vdVqPRUKlUUqlUkiT1ej3WugLwJFB/AYuBGgyLht2BAUxV\nLBYVx7GSJFGlUhl7jC1Opz2tHra2tibp/MlSGIba3t7O2ujjONbx8fF83wTwBPi+r263q3q9rk6n\no06nM/J913V1eHiY7TZ58bVfv37VwcHByALVtVpNu7u7N1rw+rrsuNrttvr9/sg4CoWC3r59O7Ie\nFgDkGfUXsDiowbBI/vPr169fDz0IAI9Xmqba2NiQNP0JUKPRyD7wTk9Pr/yg2NvbG7sbVqVSydrq\nAdxMHMc6OTnRz58/tbS0pJ2dnWs9vU3TdORnOI5jlctlua57L38kpmkqY4wcxxnb/QIAeUf9BSwm\najA8doSAAB6Mnb6ytLSk9fV1+b7PUybgEYqiSNVqNXvSDQBYXNRfwOKgBsO8MR0YwINhdylgMXz5\n8kWStLq6+sAjAQDcFvUXsDiowTBvbAwCAMATZteSmsQYk00de/ny5X0MCQAAIPeowfAQCAEBAHjC\nPn36pI2NDTUaDSVJku0QObyjnXS+XhRrwwAAAMwHNRgeAmsCAgDwhCVJojdv3kzdfY4F4wEAAOaL\nGgwPgRAQAADIGKM4jvW///1PxhitrKzIdV0Vi0WePgMAANwRajDcJ0JAAAAAAAAAIOdYExAAAAAA\nAADIOUJAAAAAAAAAIOcIAQEAAAAAAICcIwQEAAAAAAAAco4QEAAAAAAAAMg5QkAAAAAAAAAg5wgB\nAQAAAAAAgJwjBAQAAAAAAAByjhAQAAAAAAAAyDlCQAAAAAAAACDnCAEBAAAAAACAnCMEBAAAAAAA\nAHKOEBAAAAAAAADIOUJAAAAAAAAAIOcIAQEAAAAAAICcIwQEAAAAAAAAco4QEAAAAAAAAMg5QkAA\nAAAAAAAg5wgBAQAAAAAAgJwjBAQAAAAAAAByjhAQAAAAAAAAyDlCQAAAAAAAACDnCAEBAAAAAACA\nnCMEBAAAAAAAAHKOEBAAAAAAAADIOUJAAAAAAAAAIOcIAQEAAAAAAICcIwQEAAAAAAAAco4QEAAA\nAAAAAMg5QkAAAAAAAAAg5wgBAQAAAAAAgJwjBAQAAAAAAAByjhAQAAAAAAAAyDlCQAAAAAAAACDn\nCAEBAAAAAACAnCMEBAAAAAAAAHKOEBAAAAAAAADIOUJAAAAAAAAAIOcIAQEAAAAAAICcIwQEAAAA\nAAAAco4QEAAAAAAAAMg5QkAAAAAAAAAg5wgBAQAAAAAAgJwjBAQAAAAAAAByjhAQAAAAAAAAyDlC\nQAAAAAAAACDnCAEBAAAAAACAnCMEBAAAAAAAAHKOEBAAAAAAAADIOUJAAAAAAAAAIOcIAQEAAAAA\nAICcIwQEAAAAAAAAco4QEAAAAAAAAMi5/z70AAAAADBfSZIoDEMZYzQYDJSmqRzH0fLyslzX1erq\nqnZ2duR53kMPFQAAAPfkP79+/fr10IMAAADA7cVxrGazqSRJsq+5rivHcZSmqYwxI8e7rqvd3V0F\nQXDfQwUAAMA9IwQEAADIgXa7rWazKWl6uBfHsaIo0tHRkdI0led56vV69z1cAAAA3DNCQAAAgAW3\nt7enfr8vSapUKtrf35/pdfV6XZJ0eHh4Z2N7LNI01fv37yVp5vsDAACQJ4SAAAAAC6zRaKjT6UiS\nWq2WisXiA4/ocTLGaGtrS5L0zz//PPBoAAAA7h+7AwMAACyoJEmyALBWqxEAAgAAYCJCQAAAgAV1\ncQ1AAAAAYBJCQAAAgAWUJIniOJZ0f2v6pWmqJEmUpum9XA//4t4DAIDb+u9DDwAAAADXZze5cBxH\nvu/f6bWiKFKz2ZQxJvua4zj6/fff73WTDWOMPn36JGOMfv78qdXVVW1ubt75+39Ij+XeAwCAxcfG\nIAAAAAtoa2tLxhgFQXCnnYDDOw+7rqvV1VV9//5dSZJkX+t2u3Jdd+R15XJZcRyrVqtlU5XDMFQY\nhkrTVGdnZ1pbW1OxWFQQBFPHkKapqtVq1vl4keu6arVa8jxv5Ov1el1hGM70PoMg0NLSkjqdjnzf\nV7fbvfI1YRiqXq/L8zz1ej1J/75vu0uz3ZX477//1mAw0PLysnzfV61Wk+M4U89/03sPAAAwDp2A\nAAAAC8h2hl0MvuapXq9nIdTFnYeHg7lqtZqFYJOUSiUlSSLHcbIprXEcK45jhWE48fXGGJVKJaVp\nmnXAbW5uSjqfEh2GYXZMt9sd6QpcWloaCcjsPRsXmrmuq2KxqE6noziOZYy5MlyzAeOkELPdbuvb\nt2/a2dnR5uamkiTRhw8fFIahjo6O9PHjx4n//eZ57wEAACQ6AQEAABZOkiQqlUqSpF6vdydBYBRF\nqlarkqTj4+OJgZjtSLwYVA13AsZxrKWlJb19+zbrfjPGqF6vZ919wx2DVpqmevHihdI0VaFQGHn9\nsHa7nW2SMmmsxhhtbW1Jkv7555+J79uGlbaTb5Lh852enmbjsu/bcRz98ccfY9/Tq1evskD069ev\nl97Tbe89AADAOGwMAgAAsGDOzs7u/Bo2VKvValM74uxU5EnTbo+OjiRJ7969Gwm77FRWG2Da4y6O\nIU1TeZ536fXDdnd3ValUJCkLz27KdvV9/vx56nGfPn2SJPm+P3Zca2trY3dsdhxHvV5PrusqTVMd\nHBxcOmZe9x4AAGAYISAAAMCCWV5evtbxe3t7evbs2cR/Lq61lyRJNnV2XJA1zIZgk9brS5Jk6pqF\nNnSz69xZaZpm4daff/45/Q1KWddekiSXznUddjxpmk58T5KyqbqTpgJfNZXY3pN+vz+y4+887z0A\nAMAwQkAAAIAFM9x5Nrxr7LzYUMnzPBljrvzHBl7DYZbluu7UQGxSoGk7A13XnXm6sw3kbhuK2fPY\nbr+LbFDnOM6Np+H6vp/dl+EuyHneewAAgGFsDAIAALBghoOzWULAd+/ejf36s2fPxn7927dvks7D\nLrvu3SzOzs4uTY1dXV2d+ppJU3xPTk5mev2w4anFV3XRTRMEgcIwzLr0Lo7Rdihub2/f+BrS+Xsz\nxiiKoix4nOe9BwAAGEYICAAAsGAcx5HneUqS5NaB1zg/f/6UdB6GDe+2e5VxXX0rKys3GsP3798l\nXT2tdpg99jbTgaXzMNF1XRljdHR0dGnKr+3cmzQVeFZ2vMNB7jzvPQAAwDBCQAAAgAUUBIHq9Xo2\nNfU6YdmslpaWnuyus7u7u6rX62q32yNhXxzHStP0WtOUJ5kWkD7lew8AAO4GawICAAAsoOGpqO12\ne67ntlNw72K9wVnZzjbbGTcLO955TIu199cYM9JZaNcJvG0XoD33RY/h3gMAgHwiBAQAAFhAjuNk\nQVQYhreeAjtsfX1dkvTXX3/N7ZzXZcOwwWAw82vsPZhHV6TjOCoUCpKkL1++ZF+/alfg67BB3/C6\nh4/h3gMAgHwiBAQAAFhQtVot63p79erV3HaItWvRpWl66512b2pzc1PS9db3s4HhbTfssF6+fCnp\n3+AviiJJ5/fntt2Gw/fWvld77ovfBwAAmAdCQAAAgAXlOI4+fvwo6Tw0KpVKc5lG6jiOarWaJKle\nr8/0mnlPXx0O2maZ7jw8bXceXXp2DHaDEGNM1hE4y/l//Pgx9fvv37/P/n04tHwM9x4AAOQTISAA\nAMAC8zxP3W5X0nkYtLW1NVNodlWX2e7urhzHkTFG5XJ56rFRFGlra2v2Qc/ozz//lCQ1m80rg65q\ntSpptDty2PDuudfpLrSBXxRF2RTdWTbsmDadN45jdTodSVKlUrk03sdw7wEAQP4QAgIAACw43/d1\nfHycrYXXbDa1sbGhvb09hWGoKIoUhqEajYbK5bI2NjZGwqXhgGyY7TKM41gbGxsKwzAL44wxiqJI\npVJJ1Wp1LptxXFQsFlWpVCRJpVIpm447zAafSZLI933t7u6OPZfjONkYh7vwpPM1FScFaTYE/PDh\ng9I0zdYJvEqaptrb27s0Rbvdbmf33nVd7e/vj339Q997AACQP/996AEAAADg9lzX1fHxscIwVLvd\nljFG/X4/W89unEKhoP39/YkbaXiep+PjY5XLZRljJk5Ptee5C/a8nU5H1WpVrutqdXVVKysrGgwG\nI1OADw8Pp55re3tbYRiq3+9rY2NDruteuZmI4zjyfT/rnLTrBF4lCAINBgO9ePFCa2trks7XLLSh\noOu66vV6E1//GO49AADIF0JAAACAHAmCQEEQKEkSxXEsY0y2Pt3Kyopc15Xv+/I8b6bz2XAxiiJ9\n+fJF379/V5qmcl1XxWJR29vbd96Jtr+/r52dHTWbzew9Wb7vKwiCmaboHh4e6sePH+r3+0rTVMYY\n+b6vYrE4dZ2/IAgUx3EWCM6q1+up0Wjo8+fPIx2BlUpFr1+/vvK+PYZ7DwAA8uM/v379+vXQgwAA\nAABmZYxRmqYzB5m3FYah6vW6KpXKlV135XJZcRxf6kxMkkSO40zsOAQAALhrdAICAABgodx3kBaG\noaTZpwKPc1+BJQAAwCRsDAIAAABMkCRJtukIXXwAAGCREQICAAAA0qWdfI0xevXqlSSpVqs9wIgA\nAADmh+nAAAAAgKSDgwP1+315npdtHCKdbyjCdF4AALDo6AQEAAAAJK2vr8txHCVJImOMXNdVt9ud\nunMwAADAomB3YAAAAAAAACDn6AQEAAAAAAAAco4QEAAAAAAAAMg5QkAAAAAAAAAg5wgBAQAAAAAA\ngJwjBAQAAAAAAAByjhAQAAAAAAAAyDlCQAAAAAAAACDnCAEBAAAAAACAnCMEBAAAAAAAAHKOEBAA\nAAAAAADIOUJAAAAAAAAAIOcIAQEAAAAAAICcIwQEAAAAAAAAco4QEAAAAAAAAMi5/w+Gk4wsCjcf\nxgAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x134afa5c0>" ] }, "metadata": { "image/png": { "height": 694, "width": 640 } }, "output_type": "display_data" } ], "source": [ "x = np.linspace(0, 1)\n", "\n", "fig, ax = plt.subplots(nrows=2, ncols=2, sharex=True, sharey=False, figsize=(10, 10))\n", "\n", "fig.suptitle(r'Calculation and meaning of \\beta', fontsize=20)\n", "\n", "\n", "sns.swarmplot(x='genotype', y='estcounts', data=plot_up, size=10, ax=ax[0, 0])\n", "ax[0, 0].set_yticks([0, 12500, 25000])\n", "ax[0, 0].set_ylabel('est.counts')\n", "ax[0, 0].set_xlabel('')\n", "ax[0, 0].set_title('R08E5.3')\n", "\n", "\n", "sns.swarmplot(x='genotype', y='logcounts', data=plot_up, size=10, ax=ax[1, 0])\n", "plt.ylim([5, 11])\n", "ax[1, 0].set_yticks([5, 7.5, 10])\n", "ax[1, 0].plot(x, x*bup + plot_up[plot_up.genotype == 'wt'].logcounts.mean(), 'k')\n", "ax[1, 0].set_xlabel('')\n", "ax[1, 0].set_ylabel(r'$\\log{(\\mathrm{est.counts})}$')\n", "ax[1, 0].set_xticks([0, 1])\n", "\n", "\n", "sns.swarmplot(x='genotype', y='estcounts', data=plot_down, size=10, ax=ax[0, 1])\n", "ax[0, 1].set_xlabel('')\n", "ax[0, 1].set_ylabel('')\n", "ax[0, 1].set_title('F15E11.15a')\n", "\n", "\n", "sns.swarmplot(x='genotype', y='logcounts', data=plot_down, size=10, ax=ax[1, 1])\n", "plt.ylim([-2, 7])\n", "ax[1, 1].set_yticks([-2, 2.5, 7])\n", "ax[1, 1].plot(x, x*bdown + plot_down[plot_down.genotype == 'wt'].logcounts.mean(), 'k')\n", "ax[1, 1].set_xlabel('')\n", "ax[1, 1].set_ylabel('')\n", "\n", "fig.text(0.5, 0.04, 'Genotype', ha='center', size=18)\n", "\n", "plt.savefig('../../output/meaningofbeta.svg', bbox_inches='tight')" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "\\begin{cases} \n", " H_0: \\beta_{i,\\mathrm{egl-9}} = 0\\\\\n", " H_1: \\beta_{i,\\mathrm{egl-9}} \\neq 0 \\\\\n", "\\end{cases}\n", "\n", "$$\n", " \\mathrm{iff}~q_{i, \\mathrm{egl-9}}<0.1,~\\mathrm{reject}~ H_0 \\\\\n", "$$\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python [default]", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.3" }, "nav_menu": {}, "toc": { "navigate_menu": true, "number_sections": true, "sideBar": true, "threshold": 6, "toc_cell": true, "toc_section_display": "block", "toc_window_display": true } }, "nbformat": 4, "nbformat_minor": 2 }
mit
ZhuiFengChaseWind/Self-Driving_Car_Capstone
ros/src/tl_detector/ipynb/train_model.ipynb
1
12307
{ "cells": [ { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", "%matplotlib inline\n", "import tensorflow as tf\n", "import glob\n", "from scipy.misc import imread \n", "from scipy.misc import imresize\n", "from keras.models import Sequential\n", "from keras.layers import Dense, Dropout, Activation, Flatten, Convolution2D, MaxPooling2D, Conv2D, MaxPool2D, Lambda\n", "from keras.layers import BatchNormalization, LeakyReLU\n", "from keras.utils import np_utils\n", "import numpy as np\n", "from keras.preprocessing.image import ImageDataGenerator" ] }, { "cell_type": "code", "execution_count": 47, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# load data\n", "file_names_dict = dict()\n", "for i in [0, 1, 2]:\n", " image_files = glob.glob(f\"/tmp/tl_training/{i}/*[!a-z].jpg\")\n", " image_files = image_files[0:min(550, len(image_files))]\n", " file_names_dict[i] = image_files\n", "\n", " " ] }, { "cell_type": "code", "execution_count": 48, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "550\n", "550\n", "550\n", "550\n" ] } ], "source": [ "data_dict = dict()\n", "for key in file_names_dict:\n", " print(len(file_names_dict.get(key)))\n", " fnames = file_names_dict.get(key)\n", " images = [imresize(imread(x),(300, 400)) for x in fnames]\n", " data_dict[key] = images\n", " \n", " " ] }, { "cell_type": "code", "execution_count": 49, "metadata": {}, "outputs": [], "source": [ "X = []\n", "Y = []\n", "for key in data_dict:\n", " x = np.array(data_dict.get(key))\n", " y = np.ones(shape=x.shape[0]) * key\n", " X.append(x)\n", " Y.append(y)" ] }, { "cell_type": "code", "execution_count": 50, "metadata": {}, "outputs": [], "source": [ "X_train = np.vstack((X[0], X[1], X[2], X[3]))\n", "Y_train = np.hstack((Y[0], Y[1], Y[2], Y[3]))" ] }, { "cell_type": "code", "execution_count": 51, "metadata": { "collapsed": true }, "outputs": [], "source": [ "Y_train = np.hstack((Y[0], Y[1], Y[2], Y[3]))" ] }, { "cell_type": "code", "execution_count": 52, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(2200, 300, 400, 3)\n", "(2200,)\n" ] } ], "source": [ "print(X_train.shape)\n", "print(Y_train.shape)" ] }, { "cell_type": "code", "execution_count": 53, "metadata": {}, "outputs": [], "source": [ "del X\n", "#del Y\n", "del data_dict\n", "del file_names_dict" ] }, { "cell_type": "code", "execution_count": 54, "metadata": {}, "outputs": [ { "ename": "NameError", "evalue": "name 'red' is not defined", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m<ipython-input-54-8a348e3142ff>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mtest_img\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mimread\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mred\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m6\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0;31m#img = imresize(arr=test_img, size=(600,600))\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;31m#plt.imshow(test_img)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;31mNameError\u001b[0m: name 'red' is not defined" ] } ], "source": [] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(None, 3)\n" ] } ], "source": [ "model = Sequential\n", "\n", "model = Sequential([\n", " Lambda(lambda x: x / 255 - 0.5, input_shape=(300, 400, 3)),\n", " Conv2D(8, kernel_size=(5, 5), strides=(2,2)),\n", " LeakyReLU(alpha=0.1),\n", " BatchNormalization(),\n", " MaxPool2D(pool_size=(2,2), strides=(2,2)),\n", " Conv2D(16, kernel_size=(3, 3), strides=(1,1)),\n", " LeakyReLU(alpha=0.1),\n", " BatchNormalization(),\n", " MaxPool2D(pool_size=(2,2), strides=(2,2)),\n", "\n", " Conv2D(32, kernel_size=(3, 3), strides=(2, 2)),\n", " LeakyReLU(alpha=0.1),\n", " BatchNormalization(),\n", " Flatten(),\n", " Dense(55),\n", " Dense(4, activation='softmax')\n", "])\n", "\n", "model = Sequential([\n", " Lambda(lambda x: x / 255 - 0.5, input_shape=(300, 400, 3)),\n", " Conv2D(3, kernel_size=(5, 5), strides=(2,2)),\n", " LeakyReLU(alpha=0.1),\n", " BatchNormalization(),\n", " MaxPool2D(pool_size=(2,2), strides=(2,2)),\n", " Conv2D(9, kernel_size=(3, 3), strides=(2,2)),\n", " LeakyReLU(alpha=0.1),\n", " BatchNormalization(),\n", " MaxPool2D(pool_size=(2,2), strides=(2,2)),\n", " Dropout(0.25),\n", "\n", " Conv2D(18, kernel_size=(3, 3), strides=(1, 1)),\n", " LeakyReLU(alpha=0.1),\n", " BatchNormalization(),\n", " Flatten(),\n", " Dense(45),\n", " Dense(3, activation='softmax')\n", "])\n", "\n", "\n", "model.compile(loss='categorical_crossentropy',\n", " optimizer='adam',\n", " metrics=['accuracy'])\n", "print(model.output_shape)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "# training\n", "datagen = ImageDataGenerator(\n", " rotation_range = 30,\n", " width_shift_range = 0.2,\n", " height_shift_range = 0.2,\n", " shear_range = 0.1,\n", " zoom_range = 0.4,\n", " horizontal_flip=True,\n", " vertical_flip=True\n", ")\n", "test_datagen = ImageDataGenerator()" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Found 360 images belonging to 3 classes.\n", "Found 3264 images belonging to 3 classes.\n" ] } ], "source": [ "data_generator = datagen.flow_from_directory('/home/michael/tl_training',\n", " target_size=(300,400),\n", " batch_size=32,\n", " class_mode=\"categorical\")\n", "\n", "val_generator = test_datagen.flow_from_directory('/home/michael/tl_val',\n", " target_size=(300,400),\n", " batch_size=32,\n", " class_mode=\"categorical\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Epoch 1/10\n", "210/210 [==============================] - 177s - loss: 2.3665 - acc: 0.3695 - val_loss: 1.1524 - val_acc: 0.3334\n", "Epoch 2/10\n", "210/210 [==============================] - 174s - loss: 0.9596 - acc: 0.5537 - val_loss: 4.9118 - val_acc: 0.3343\n", "Epoch 3/10\n", "210/210 [==============================] - 173s - loss: 0.3446 - acc: 0.8662 - val_loss: 2.2566 - val_acc: 0.5578\n", "Epoch 4/10\n", "210/210 [==============================] - 173s - loss: 0.1728 - acc: 0.9414 - val_loss: 1.4255 - val_acc: 0.7455\n", "Epoch 5/10\n", "210/210 [==============================] - 173s - loss: 0.0984 - acc: 0.9649 - val_loss: 0.6595 - val_acc: 0.7995\n", "Epoch 6/10\n", "210/210 [==============================] - 173s - loss: 0.1196 - acc: 0.9630 - val_loss: 0.8235 - val_acc: 0.8182\n", "Epoch 7/10\n", "210/210 [==============================] - 173s - loss: 0.0596 - acc: 0.9807 - val_loss: 0.4631 - val_acc: 0.8693\n", "Epoch 8/10\n", "210/210 [==============================] - 172s - loss: 0.0458 - acc: 0.9853 - val_loss: 0.4336 - val_acc: 0.9065\n", "Epoch 9/10\n", "210/210 [==============================] - 172s - loss: 0.1019 - acc: 0.9802 - val_loss: 0.6623 - val_acc: 0.8332\n", "Epoch 10/10\n", "210/210 [==============================] - 172s - loss: 0.0889 - acc: 0.9753 - val_loss: 0.4305 - val_acc: 0.8917\n", "Epoch 1/10\n", "210/210 [==============================] - 186s - loss: 0.0583 - acc: 0.9817 - val_loss: 0.4785 - val_acc: 0.8451\n", "Epoch 2/10\n", "210/210 [==============================] - 205s - loss: 0.0378 - acc: 0.9896 - val_loss: 0.3032 - val_acc: 0.9130\n", "Epoch 3/10\n", "210/210 [==============================] - 198s - loss: 0.0507 - acc: 0.9875 - val_loss: 0.3675 - val_acc: 0.9239\n", "Epoch 4/10\n", "210/210 [==============================] - 178s - loss: 0.0605 - acc: 0.9825 - val_loss: 0.3106 - val_acc: 0.8894\n", "Epoch 5/10\n", "210/210 [==============================] - 175s - loss: 0.0368 - acc: 0.9893 - val_loss: 0.2538 - val_acc: 0.9368\n", "Epoch 6/10\n", "210/210 [==============================] - 196s - loss: 0.0240 - acc: 0.9917 - val_loss: 0.3625 - val_acc: 0.9093\n", "Epoch 7/10\n", "209/210 [============================>.] - ETA: 0s - loss: 0.0406 - acc: 0.9889" ] } ], "source": [ "for i in range(100):\n", " model.fit_generator(data_generator, steps_per_epoch=210, epochs=10,\n", " validation_data=val_generator, validation_steps=300)\n", "\n", " model.save('../light_classification/models/whole_image_model_gpu{}.h5'.format(i))" ] }, { "cell_type": "code", "execution_count": 69, "metadata": { "collapsed": true }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 70, "metadata": { "collapsed": true }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 71, "metadata": { "collapsed": true }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 79, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "output node names are: ['output_node0', 'output_node1', 'output_node2', 'output_node3']\n" ] } ], "source": [ " " ] }, { "cell_type": "code", "execution_count": 86, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "TensorShape([Dimension(None), Dimension(None)])" ] }, "execution_count": 86, "metadata": {}, "output_type": "execute_result" } ], "source": [] }, { "cell_type": "code", "execution_count": 84, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "INFO:tensorflow:Froze 18 variables.\n", "Converted 18 variables to const ops.\n" ] }, { "data": { "text/plain": [ "'./tl_dector.pb'" ] }, "execution_count": 84, "metadata": {}, "output_type": "execute_result" } ], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.12" } }, "nbformat": 4, "nbformat_minor": 2 }
mit
Tsiems/machine-learning-projects
Lab3/Lab3.ipynb
1
105522
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Deep-Learning Classification of Play Type in NFL Play-By-Play Data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Ian Johnson, Derek Phanekham, Travis Siems" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Introduction" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The NFL (National Football League) has 32 teams split into two conferences, the AFC and NFC. Each of the 32 teams plays 16 games during the regular season (non-playoff season) every year. Due to the considerable viewership of American football, as well as the pervasiveness of fantasy football, considerable data about the game is collected. During the 2015-2016 season, information about every play from each game that occurred was logged. All of that data was consolidated into a single data set which is analyzed throughout this report.\n", "\n", "In this report, we will attempt to classify the type of a play, given the game situation before the play began. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### The Classification Task\n", "\n", "We will attempt to classify plays based on play type using information about the state of the game prior to the start of the play. This is expected to be an exceptionally difficult classification task, due to the amount of noise in the dataset (specifically, the decision to run vs pass the ball is often a seemingly random one). A successful classifier would have huge value to defensive coordinators, who could call plays based on the expected offensive playcall. Because it may be very difficult to identify what play will be called, it is relevant to provide a probability of a given playcall in a situation. For example, it would be useful to provide the probability of a 4th down conversion attempt, even if the overall prediction is that a punt occurs. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Data Preparation\n", "\n", "In order to prepare the data for classification, a number of variables from the original dataset will be removed, as they measure the result of the play, not the state of the game prior to the start of the play. The dataset being included in this report has had previous cleaning and preprocessing performed in our previous report." ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "<class 'pandas.core.frame.DataFrame'>\n", "Int64Index: 38600 entries, 0 to 42875\n", "Data columns (total 13 columns):\n", "Drive 38600 non-null int64\n", "qtr 38600 non-null int64\n", "down 38600 non-null int64\n", "TimeSecs 38600 non-null float64\n", "yrdline100 38600 non-null float64\n", "ydstogo 38600 non-null float64\n", "ydsnet 38600 non-null float64\n", "GoalToGo 38600 non-null int64\n", "posteam 38600 non-null object\n", "DefensiveTeam 38600 non-null object\n", "PosTeamScore 38600 non-null float64\n", "ScoreDiff 38600 non-null float64\n", "PlayType 38600 non-null object\n", "dtypes: float64(6), int64(4), object(3)\n", "memory usage: 4.1+ MB\n" ] } ], "source": [ "#For final version of report, remove warnings for aesthetics.\n", "import warnings\n", "warnings.filterwarnings('ignore')\n", "\n", "#Libraries used for data analysis\n", "import pandas as pd\n", "import numpy as np\n", "from sklearn import preprocessing\n", "\n", "df = pd.read_csv('data/cleaned.csv') # read in the csv file\n", "\n", "\n", "\n", "colsToInclude = [ 'Drive', 'qtr', 'down',\n", " 'TimeSecs', 'yrdline100','ydstogo','ydsnet',\n", " 'GoalToGo','posteam','DefensiveTeam',\n", " 'PosTeamScore','ScoreDiff', 'PlayType']\n", "\n", "df = df[colsToInclude]\n", "df = df[[p not in [\"Sack\", \"No Play\", \"QB Kneel\", \"Spike\"] for p in df.PlayType]]\n", "df.info()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Neural Network Embeddings\n", "\n", "We will use neural network embeddings from TensorFlow for the posteam and DefensiveTeam. However, we will be building these embeddings manually using one-hot encoding and additional fully-connected layers in each of the deep architectures. The following Python function was used for one-hot encoding, and was adapted from the website referenced in the code." ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": false }, "outputs": [], "source": [ "from sklearn.feature_extraction import DictVectorizer\n", "\n", "#Simple function for 1 hot encoding\n", "def encode_onehot(df, cols):\n", " \"\"\"\n", " One-hot encoding is applied to columns specified in a pandas DataFrame.\n", " \n", " Modified from: https://gist.github.com/kljensen/5452382\n", " \n", " Details:\n", " \n", " http://en.wikipedia.org/wiki/One-hot\n", " http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html\n", " \n", " @param df pandas DataFrame\n", " @param cols a list of columns to encode\n", " @return a DataFrame with one-hot encoding\n", " \"\"\"\n", " vec = DictVectorizer()\n", " \n", " vec_data = pd.DataFrame(vec.fit_transform(df[cols].to_dict(outtype='records')).toarray())\n", " vec_data.columns = vec.get_feature_names()\n", " vec_data.index = df.index\n", " \n", " df = df.drop(cols, axis=1)\n", " df = df.join(vec_data)\n", " return df\n", "\n", "df = encode_onehot(df, cols=['posteam', 'DefensiveTeam'])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The following are descriptions of the remaining data columns in the play-by-play dataset. Note that the one-hot encoded columns do not follow the structure listed below, but for the sake of readability they are presented as if they were not one-hot encoded.\n", "\n", "* **GameID** (*nominal*): A unique integer which identifies each game played \n", "* **Drive** (*ordinal*): The number of the drive during a game when the play occurred (indexed at one, so the first drive of the game has Drive 1 and the nth drive has Drive n)\n", "* **qtr** (*interval*): The quarter of the game when the play occurred\n", "* **down** (*interval*): The down when the play occurred (1st, 2nd, 3rd, or 4th)\n", "* **TimeSecs** (*interval*): The remaining game time, in seconds, when the play began\n", "* **yrdline100** (*ratio*): The absolute yard-line on the field where the play started (from 0 to 100, where 0 is the defensive end zone and 100 is the offensive end zone of the team with the ball)\n", "* **ydstogo** (*ratio*): The number of yards from the line of scrimmage to the first-down line\n", "* **ydsnet** (*ratio*): The number of yards from the beginning of the drive to the current line of scrimmage\n", "* **GoalToGo** (*nominal*): A binary attribute whose value is 1 if there is no first down line (the end-zone is the first down line) or 0 if there is a normal first down line\n", "* **posteam** (*nominal*): A 2-or-3 character code representing the team on offense\n", "* **PosTeamScore** (*ratio*): The score of the team with possesion of the ball\n", "* **DefensiveTeam** (*nominal*): A 2-or-3 character code representing the team on defense\n", "* **ScoreDiff**: (*ratio*) The difference in score between the offensive and defensive at the time of the play.\n", "* **PlayType**: (*nominal*) An attribute that identifies the type of play (i.e. Kickoff, Run, Pass, Sack, etc)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Performance Metrics\n", "\n", "The value of a classifier will be evaulated using the following cost matrix. Costs in the matrix which are set to 1 represent play predictions that would never actually occur in the context of a football game. For example, if we predicted a pass play and a kickoff occurs, then the classifier has a significant flaw. \n", "\n", "Bolded weights represent actual mispredictions that could occur.\n", "\n", "| | Actual Play | Pass | Run | Kickoff | Punt | Extra Point | Field Goal | Onside Kick |\n", "|----------------|-------------|------|-----|---------|-------------|------------|-------------|-------------|\n", "| Predicted Play | | | | | | | | |\n", "| Pass | | 0 | **0.1** | 1 | **0.15** | **0.15** | **0.1** | 1 | \n", "| Run | | **0.1** | 0 | 1 | **0.15** | **0.15** | **0.1** | 1 | \n", "| Kickoff | | 1 | 1 | 0 | 1 | 1 | 1 | **0.75** |\n", "| Punt | | **0.25** | **0.25** | 1 | 0 |1 | **0.15** | 1 |\n", "| Extra Point | | **0.4** | **0.4** | 1 | 1 | 0 | 1 | 1 |\n", "| Field Goal | | **0.4** | **0.4** | 1 | **0.1** | 1 | 0 | 1 |\n", "| Onside Kick | | 1 | 1 | **0.25** | 1 |1 | 1 | 0 |\n", "\n", "\n", "This performance metric is the best for this classification problem because the actual potential cost of an incorrect play prediction varies significantly based on the nature of the misclassification. In an actual football game, it would be very costly to predict an extra point and have the opposing team run a pass play. This means that they ran a fake extra point and went for a two-point conversion. However, if a pass play is predicted and a run play occurs, the cost of the error is minimal because the defensive strategy for defending against run and pass plays.\n", "\n", "Because the goal of this classification is to help inform defensive play-calling, a cost matrix is helpful because it allows a defensive coordinator to set his own costs to produce his own classifier, without any knowledge of the actualy computation that occurs." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Cross Validation Methodology\n", "\n", "We use a sequential k-fold partition of the data because this mirrors how data will be collected and analyzed. For our use, we assume that it is okay to use data in the “future” to predict data “now” because it can represent data from a previous football season. For example, if we use the first 90% of data for training and the remaining 10% of data for testing, that would simulate using most of the current season's data to predict plays towards the end of this season. If we use the first 50% and last 40% of data for training and the remaining 10% for testing, this would simulate using 40% of the previous season's data and the first 50% of this season's data to predict plays happening around the middle of the current season. " ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "collapsed": false }, "outputs": [], "source": [ "from sklearn.model_selection import KFold\n", "\n", "#Using a 10-fold sequential split.\n", "#Note that this cv object is unused, but is here for reference\n", "cv = KFold(n_splits=10)\n", "\n", "y,levels = pd.factorize(df.PlayType.values)\n", "X = df.drop('PlayType', 1).values.astype(np.float32)\n", "\n", "\n", "num_classes = len(levels)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Modeling\n", "\n", "Before we build any models, we define a cost function in Python below, which is used to test all of our forthcoming models. It computes the item-wise product of a confusion matrix and our cost matrix, and returns the sum of all of the elements in the resulting matrix. We also define a function to calculate area under roc curve for a multiclass classification problem." ] }, { "cell_type": "code", "execution_count": 36, "metadata": { "collapsed": false }, "outputs": [], "source": [ "from sklearn.metrics import confusion_matrix\n", "from sklearn.metrics import roc_curve, auc,make_scorer\n", "from scipy import interp\n", "\n", "import matplotlib.pyplot as plt\n", "%matplotlib inline \n", "plt.style.use('ggplot')\n", "\n", "cost_mat = [[0 ,.1 , 1 , .15 , 0.15, .1 , 1 ],\n", " [.1 , 0 , 1 , 0.15, 0.15, 0.1, 1 ],\n", " [1 , 1 , 0 , 1 , 1 , 1 , 0.75],\n", " [.25,0.25, 1 , 0 , 1 ,0.15, 1 ],\n", " [0.4, 0.4, 1 , 1 , 0 , 1 , 1 ],\n", " [0.4, 0.4, 1 , 0.1 , 1 , 0 , 1 ],\n", " [1 , 1 , 0.25, 1 , 1 , 1 , 0 ]]\n", "\n", "def cost(Y, yhat):\n", " return np.sum(np.multiply(confusion_matrix(Y,yhat), cost_mat))\n", "\n", "def auc_of_roc(Y,yhat, levels=['Pass', 'Run', 'Kickoff', 'Punt', 'Extra Point', 'Field Goal', 'Onside Kick']):\n", " \n", " mean_tpr = 0.0\n", " mean_fpr = np.linspace(0, 1, 100)\n", " for c in levels:\n", " tempY = [x==c for x in Y]\n", " tempYhat = [x==c for x in yhat]\n", " \n", " fpr, tpr, thresholds = roc_curve(tempY, tempYhat)\n", " mean_tpr += interp(mean_fpr, fpr, tpr)\n", " mean_tpr[0] = 0.0\n", "\n", " roc_auc = auc(fpr, tpr)\n", "\n", " mean_tpr /= len(levels)\n", " mean_tpr[-1] = 1.0\n", " mean_auc = auc(mean_fpr, mean_tpr)\n", " \n", " return mean_auc\n", "\n", "#For use in the final deployment section\n", "scorer = make_scorer(cost)\n", "auc_roc_scorer = make_scorer(auc_of_roc)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Some Setup Code for TensorFlow" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Imports" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import tensorflow as tf\n", "from tensorflow.contrib import learn\n", "from tensorflow.contrib import layers\n", "\n", "#Suppress all non-error warnings\n", "tf.logging.set_verbosity(tf.logging.ERROR)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Calculating Costs for a Model\n", "\n", "The following code performs cross validation on a model with a given step count and learning rate. This will be used as part of the grid search, as well as for evaluating the final classifier after the gridsearch is complete." ] }, { "cell_type": "code", "execution_count": 35, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def get_scores_for_model(model_fn, X, y, steps=1000, learning_rate=0.05, num_splits = 10):\n", "\n", " auc = []\n", " costs = []\n", " \n", " for train_index, test_index in KFold(n_splits=num_splits).split(X, y):\n", " classifier = learn.TensorFlowEstimator(model_fn=model_fn, \n", " n_classes=7, batch_size=1000,\n", " steps=steps, learning_rate=learning_rate)\n", " classifier.fit(X[train_index], y[train_index])\n", " yhat = classifier.predict(X[test_index])\n", "\n", " costs.append(cost(y[test_index], yhat))\n", " auc.append(auc_of_roc(y[test_index], yhat, levels=range(0,7)))\n", "\n", " return costs, auc" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Grid Search\n", "\n", "Because we're performing a grid search on a TensorFlow estimator, we use our own grid search function, instead of the one provided in sklearn, for the sake of simplicity. Our grid search will search for optimal values of *steps* and *learning_rate*. During the grid search, a subsample of 5000 items will be used, and only 3 folds of cross validation will occur. This is done to decrease computation time, which is otherwise many hours per grid search.\n", "\n", "Note that the grid search function itself is not parallelized. This is because the underlying TensorFlow modelling is all parallelized, so maximal CPU usage is already being achieved." ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def grid_search(model_fn, steps_list, learning_rate_list):\n", " \n", " costs = []\n", " \n", " for steps in steps_list:\n", " \n", " step_costs = []\n", " \n", " for rate in learning_rate_list:\n", " \n", " step_costs.append(np.mean(get_scores_for_model(model_fn, X[0:5000, :], y[0:5000], steps, rate, 3)[0]))\n", " print(step_costs)\n", " print(costs)\n", " \n", " costs.append(step_costs)\n", " \n", " min_idx = np.argmin(costs)\n", " \n", " return costs, steps_list[min_idx//len(costs[0])], learning_rate_list[min_idx%len(costs[0])]" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import seaborn as sns\n", "\n", "def grid_search_heatmap(costs, steps, rates):\n", " \n", " ax = sns.heatmap(np.array(costs))\n", " ax.set(xlabel='Learning Rate', ylabel='Step Count')\n", " ax.set_xticklabels(rates[::-1])\n", " ax.set_yticklabels(steps[::-1])\n", " ax.set_title(\"Grid Search Heatmap\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### First Deep Learning Architecture\n", "\n", "The first deep learning architecture will be adapted from a model designed by PayPal that is used for anomaly detection. Because the vast majority of football plays are either runs or passes, and there are only a few anomalous plays, like onside kicks, etc., it stands to reason that an anomaly detection architecture would perform well for this classification task.\n", "\n", "The architecture is quite simple: it consists of a set of 6 fully connected layers of 700 neurons, followed by a hyperbolic tangent activation function and then a single fully connected layer for output. We will adapt this model slightly to allow for the embedding of the team attributes. We will split the data into embedding and non-embedding data, run each subset of data through 6 fully connected layers of 700 neurons, and then combine their output as the input into a single final layer, used for classification. A simple drawing of the architecture is shown below.\n", "\n", "<img src=\"NetworkDrawings/network1.png\">\n", "\n", "<a href=\"http://university.h2o.ai/cds-lp/cds02.html?mkt_tok=3RkMMJWWfF9wsRonvanAZKXonjHpfsX56%2BkqUaG0lMI%2F0ER3fOvrPUfGjI4ATsBlI%2BSLDwEYGJlv6SgFTLTBMbBrwrgKXBk%3D\">\n", "The original talk about this architecture can be found here.\n", "</a>\n", "\n", "##### Defining the Model" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false, "scrolled": false }, "outputs": [], "source": [ "def deep_model_1(X, y):\n", "\n", " #Embeddings layer\n", " teamembeddings = layers.stack(X[:,11:75], layers.fully_connected, [700 for _ in range(6)])\n", " teamembeddings = tf.nn.tanh(teamembeddings)\n", " \n", " #Non-embeddings features\n", " otherfeatures = X[:,0:10]\n", " otherfeatures = layers.stack(otherfeatures, layers.fully_connected, [700 for _ in range(6)])\n", " \n", " tensors = tf.concat(1, [teamembeddings, otherfeatures])\n", " tensors = tf.nn.tanh(tensors)\n", " \n", " pred,loss = learn.models.logistic_regression(tensors, y)\n", "\n", " return pred, loss" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##### Grid Searching on the Model\n", "\n", "A grid search is performed on the model to find the approximately optimal step count and learning rate for the TensorFlowEstimator. Note that this particular grid search takes about 14 hours to run, so it should not be re-run." ] }, { "cell_type": "code", "execution_count": 48, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(500, 0.01)\n" ] } ], "source": [ "costs, optimal_steps, optimal_rate = grid_search(deep_model_1, [250,500,1000,1500,2000], [.05, .01, .005, .001, .0005])\n", "print((optimal_steps, optimal_rate))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Although the grid search returned the optimal step count and rate, it is meaningful to visualize the grid that was generated, to get an idea for how much better these particular hyperparameters are than the other possible combinations in the grid." ] }, { "cell_type": "code", "execution_count": 63, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdMAAAFuCAYAAADaqvIGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlUFGe6P/BvQ4sxuAWBRsGQI8SgRkgmTDTuAyqCtIIQ\nzU3igrmCEyUhi8kYvYJR3EJCxuUacBSVuRMnuC+gBlwQHTVGDWo0LtGwdssmsimBrt8f/uyRUWjt\nprq64Ps5p8+Boqqep2uc8+R56623FIIgCCAiIiKjWUmdABERkdyxmBIREZmIxZSIiMhELKZEREQm\nYjElIiIyEYspERGRiVhMySKkpKRg/PjxGD16NEaOHIl33nkH2dnZje4fERGBa9euPbR93759mDhx\n4iOPOXv2LCZNmoSxY8dCrVYjPDwcV69ebbbv0BQfHx9cuHDB4H6zZ89GUlLSQ9s9PDxw69Yto+On\npKTg22+/Nfp4ImqaUuoEiL766iv8+OOPWL58OZycnAAAx48fR0REBLZt26bf9qCEhIRGz6dQKB7a\nVltbi+nTp2P9+vXw8PAAAOzcuRPh4eHIyMh45DGWxNT8Tp8+jZ49ezZTNkT0n1hMSVIlJSXYuHEj\nMjIy0KVLF/32/v37Y/bs2aiurgZwr7Pz8vLC5cuX8cEHH2DRokVYsWIF+vTpg7/+9a/YvXs3nnnm\nGTz77LOPjHPnzh1UVlaisrJSv23MmDHo0KED6uvroVQqcfDgQaxevRp1dXV46qmn8Mknn+Cll15C\nSUkJ5s2bh5KSEhQXF6Nbt274+uuvYWdn91Be7u7umDdvHkpLS2FlZYXp06cjICAAALBp0yb8/PPP\nKCsrg1qtxgcffPDY1+nBtVWeNM/Tp0/jwIEDOHbsGNq2bYvS0lLk5OQgJycHRUVF8PT0xMCBA7F9\n+3bk5+dj1qxZCAgIMPi9R4wYgVOnTqGyshJTpkzBf/3Xfz3R//ZELYpAJKHvv/9eGDdunMH9/vSn\nPwn/+7//q//dx8dHOH/+vJCeni4EBgYK1dXVQn19vRARESFMnDjxkedISkoSvLy8hOHDhwuzZs0S\nNm/eLNTU1AiCIAg3btwQAgMDhVu3bgmCIAhXrlwRBg4cKNTU1AgbNmwQ1qxZoz/PtGnThKSkpEfm\nFRwcLHz77beCIAhCYWGhMGLECKGyslL405/+JCxYsEAQBEEoKioS+vbtK2g0mody/Mtf/iIMHjxY\nCAoK0n/Gjh0reHh4CGVlZUbn+Ze//EVYt26dIAiCsGLFCsHX11eorKwU7ty5I7z66qvCkiVLBEEQ\nhPT0dMHPz08QBMHg9543b54gCIKg0WiE/v37C5cvX370/3hErQA7U5Lcg0OYVVVVeOutt6BQKFBV\nVQV/f399B+ft7a3fT/j/ndq//vUvjBgxAu3atQMAhISEIDk5+ZFxpkyZgvHjx+OHH37ADz/8gDVr\n1uBvf/sbUlJScPToURQXF2PKlCn6cyuVSvz222+YNGkSTp06hfXr1+PGjRu4evUqvLy89Oe9n1d5\neTl++eUXhIaGAgCcnJywf/9+/X5qtRoAYG9vD3t7e5SUlEClUj2UZ1hYGMLCwhps69WrFwCYlOeD\nBgwYAFtbWwCAo6MjhgwZAgB49tlnUV5eDgAGz/fWW28BAFQqFQYPHoyjR4/i+eeff2Q8opaOxZQk\n5enpiV9//RXl5eXo1KkTbG1tsX37dgDAypUrG0y6efrppx95DuGBIVBra+tH7nP69GmcOXMG77zz\nDoYOHYqhQ4fiww8/RGBgII4dOwadTofXXnsNX331lf4YjUYDR0dHfPHFFzh//jxCQkLQv39/1NXV\nNYh5P6/7sR/8j4Pr16+jW7duAO4Vvcbyflym5PkgGxubBr//Z24ADJ7vwWut0+lgZcX5jNR68V8/\nScrR0RGTJk3C+++/j8LCQv32goICnD59utHieN/gwYOxd+9eVFRUQKfTYceOHY/cz87ODt988w1O\nnz6t36bVanHnzh307NkT/fv3x9GjR/Hrr78CAA4fPoyxY8eitrYWR48exeTJkzFmzBg888wz+uL7\nn9q3b48+ffpg27ZtAIDCwkK8+eabDe7TGut+ETM2T2tra/z+++9PFNPQ975/rQsKCnDs2DF9d0vU\nGrEzJclFRUVh9+7d+Pjjj1FTU4Pff/8dbdu2RUBAgH4o8T9ns97/fejQobhy5QpCQkLQqVMneHh4\noKys7KEYzz33HFatWoWvvvoKWq0Wbdu2Rfv27bFgwQI899xzAIDPP/8cH374IYB7xWf16tV46qmn\nMGPGDCxduhSrVq2CUqnEK6+8gt9+++2ReX355ZeIiYlBcnIyrKysEBsbiy5dujSa/+O6v7+7u7tR\neQ4ZMgQLFix4ophNnQ8A8vLyMG7cONTW1mLu3Ln660jUGikEY8aaiKhV8/Hx0c+mJiIO8xKRESz9\nuVwic2NnSkREZCJ2pkRERCZiMSUiIjKRRc/mPbHk4QW/6Z7qylqpU7Bo7WxtDO/USvF2Z+Nq79RJ\nnYJFGxwzTbRze7oONfrY7N8ON2MmxmFnSkREZCKL7kyJiKh1kPsMcRZTIiKSnEIh74FSeWdPRERk\nAdiZEhGR5KzAYV4iIiKTyP2eKYd5iYiITMTOlIiIJGfFCUhERESmUSgURn8ex4YNG6BWq6FWq7Fh\nwwb99uTkZPj7+0OtViMuLk6/PSEhASNHjoS/vz+ysrIMnp+dKRERtWhXrlzB5s2bsWXLFlhbW2Pa\ntGnw8fFBQUEBDh48iF27dkGpVKK0tBQAcO3aNaSlpSE1NRUajQZhYWHYv39/k4WbxZSIiCSnEHE2\n77Vr1+Dl5QUbm3vLjHp7e2Pfvn04f/48pk2bBqXyXim0s7MDAGRkZCAgIABKpRIuLi5wdXVFdnY2\nvLy8Go3BYV4iIpKclcLK6I8hzz//PE6dOoXy8nLU1NQgMzMTGo0Gv/32G06dOoXx48dj4sSJOH/+\nPABAq9Wia9eu+uNVKhW0Wm2TMdiZEhFRi+bm5oZp06YhLCwMtra26NWrF6ysrFBXV4fy8nJ89913\nyM7Oxvvvv4+MjAyjYrCYEhGR5MR+zjQkJAQhISEAgPj4eDg5OeH69esYOXIkAMDT0xPW1tYoKyuD\nSqVCYWGh/liNRgOVStXk+TnMS0REkrNSKIz+PI77k4sKCgrw/fffQ61Ww9fXF8ePHwcAXL9+Hb//\n/jueeeYZ+Pj4IDU1FbW1tcjNzUVOTg48PT2bPD87UyIiavEiIyNRXl4OpVKJ6OhotG/fHiEhIfjs\ns8+gVqvRpk0bLF26FADg7u4Of39/jB49Wr+/oc5ZIQiCYI4vYgy+HLxxfDl40/hy8MbJfNU2UfHl\n4E0T8+Xgg18YY/SxR37Z2YyZGIedKRERSY5r8xIREbVy7EyJiEhyjzuRyFKxmBIRkeTEXAHJHDjM\nS0REZCJRO1NBEJCdna1fhkmlUsHT01P2N5qJiKh5yf0VbKIV06ysLMyfPx+urq76lSM0Gg1ycnIQ\nHR2NQYMGiRWaiIhkRu5NlmjFNDY2FklJSXBxcWmwPTc3F+Hh4UhLSxMrNBERkVmJVkzr6+vh5OT0\n0HaVSoW6Oj4YTURE/8bZvI0ICQlBaGgoAgIC9K+yKSwsRGpqKkJDQ8UKS0REMiT32byiFdOIiAgM\nHz4cGRkZOHv2LIB7XWlcXBzc3d3FCktERGR2os7mdXNzg5ubm5ghiIioBZD7bF7Rss/MzNT/XFFR\ngTlz5kCtVuOjjz5CcXGxWGGJiEiGFAqF0R9LIFoxjY+P1/+8ZMkS2Nvb45tvvkHfvn0xb948scIS\nERGZnVmWEzx//jx27NgBAJgyZQq2bdtmjrBERCQTnM3biJKSEiQlJUEQBFRUVEAQBH07rtPpxApL\nREQyJPfZvKIN844fPx5VVVWorq7GuHHjUFZWBgAoKipCr169xApLRERkdqJ1pjNnzsS1a9dw8+ZN\neHp6wtbWFgDg4OCAwMBAscISEZEMWcpEImOJ1pkmJyfj3XffRXJyMtRqNdLT0/V/e3ByEhERkZVC\nYfTHEojWmX733XfYunUrbG1tkZeXh/feew/5+fmYPHkyBEEQKywREZHZiVZMdTqdfmjXxcUFycnJ\neO+991BQUMBiSkREDXACUiO6dOmCixcv6n+3tbVFQkICysrKcPnyZbHCEhGRDFkprIz+WALROtNl\ny5bB2tq6YTClEsuWLcOECRPECktERGR2ohXTR71+7b5XXnlFrLBERCRDcp/Na5YVkIiIiJpiKbNy\njWUZg81EREQyxs6UiIgkJ/fZvCymREQkOQ7zEhERtXLsTImISHKczUtERGQiDvMSERG1cuxMiYhI\ncpzNS0REZCIO8xIREbVy7EyJiEhynM1LRERkIrkP87KYEhGR5OQ+AYn3TImIiEzEzpSIiCQn92Fe\ndqZEREQmYmdKRESS42xeIiIiE8l9mJfFlIiIJMfOVEQuL3eTOgWL5fCat9QpWLTTq3ZKnYLFsu3U\nVuoULFZ56R2pUyCZsuhiSkRErQOfMyUiImrl2JkSEZHkrOTdmLKYEhGR9DgBiYiIyERyfzSG90yJ\niIhMxM6UiIgkJ/dhXnamREREJmJnSkREkrOS+XOmLKZERCQ5uQ/zspgSEZHkOJuXiIiolWNnSkRE\nkpN5Y8rOlIiIyFTsTImISHJyv2fKYkpERJKT+yvYWEyJiEhycn80hvdMiYioxduwYQPUajXUajU2\nbtwIAFi2bBn8/f0xduxYREZGorKyUr9/QkICRo4cCX9/f2RlZRk8P4spERFJzkqhMPpjyJUrV7B5\n82Zs2bIF27dvx6FDh5Cbm4tBgwZhz5492LFjB1xdXZGQkAAAuHr1KtLS0pCamoo1a9Zg/vz5EASh\n6fyb5SoQERGZQKEw/mPItWvX4OXlBRsbG1hbW8Pb2xv79+/HgAEDYGV1rwy+9NJL0Gg0AIADBw4g\nICAASqUSLi4ucHV1RXZ2dpMxWEyJiKhFe/7553Hq1CmUl5ejpqYGmZmZKCwsbLDP5s2bMXToUACA\nVqtF165d9X9TqVTQarVNxuAEJCIikpyYj8a4ublh2rRpCAsLg62tLXr16gVra2v931evXo02bdog\nMDDQ6BiiFlNBEJCdna2v6CqVCp6enrKftUVERM1L7EdjQkJCEBISAgCIj4+Hk5MTAGDr1q04fPiw\nflIScK9WPdi5ajQaqFSqJs8v2jBvVlYWRo4ciRUrVuDw4cM4fPgwli9fjpEjRz7WzCgiIqLmUlpa\nCgAoKCjA999/D7VajczMTKxduxarV6+GjY2Nfl8fHx+kpqaitrYWubm5yMnJgaenZ5PnF60zjY2N\nRVJSElxcXBpsz83NRXh4ONLS0sQKTUREMiP2CkiRkZEoLy+HUqlEdHQ02rdvj4ULF+L333/H1KlT\nAQBeXl6IiYmBu7s7/P39MXr0aP3+hkZURSum9fX1+jb6QSqVCnV1dWKFJSIiGRL77t///d//PbRt\n//79je4fERGBiIiIxz6/aMU0JCQEoaGhCAgI0M+KKiwsRGpqKkJDQ8UKS0REZHaiFdOIiAj4+vri\nwIEDOHv2LIB7XWlcXBzc3d3FCktERDIk94mpos7mdXd3Z+EkIiKD+NaYRlRUVCAhIQHp6ekoLS2F\nQqGAnZ0dfH19ER4ejo4dO4oVmoiIyKxEezQmKioKHTt2RHJyMk6ePIkTJ05g48aN6NixI6KiosQK\nS0REMiTmcoLmIFoxzcvLQ3h4OBwcHPTbHBwcEB4ejvz8fLHCEhGRDIm50L05iFZMnZ2dsWbNGhQX\nF+u3FRcXIzExscGah0RERHIn2j3T+Ph4JCYm4u2330ZJSQkUCgW6dOkCHx8ffP3112KFJSIiGRJ7\nOUGxiVZMO3XqhFmzZmHWrFkAgFOnTiE7Oxs9e/ZE586dxQpLREQyJPdHY0Qb5n1wYYaUlBQsXLgQ\n1dXVWLlyJRITE8UKS0REZHaiFdMHlwzctGkT1q1bh5kzZ2LdunXYtWuXWGGJiEiGrBTGfyyBaMO8\nOp0O5eXl0Ol00Ol0sLOzAwA8/fTTDd4jR0REJPdhXtGKaWVlJcaNGwdBEKBQKHDz5k04OjqiqqoK\ngiCIFZaIiMjsRCumBw4ceOR2KysrrFy5UqywREQkQ+xMn1C7du3QvXt3c4clIiILZin3Po0l2gQk\nIiKi1sLsnSkREdF/4jAvERGRiWReSznMS0REZCp2pkREJDlLefuLsVhMiYhIcnJf6J7DvERERCZi\nZ0pERJKT+SgviykREUlP7vdMOcxLRERkInamREQkOS7aQEREZCKZ11IO8xIREZmKnSkREUmOw7xE\nREQm4ivYiIiIWjl2pkREJDkO8xIREZlI5rWUw7xERESmsujO1LptG6lTsFi5ezKlTsGivTTNT+oU\nLNYPK/dInYLFamPD/kIqcl9O0KKLKRERtQ5yv2fK/wwjIiIykVGdaW1tLWxsbJo7FyIiaqVk3pga\n7kwnTJjQ4HedToeQkBDREiIiotZHoVAY/bEEjXamkyZNwsmTJwEAHh4e/z5AqYSPj4/4mREREclE\no8V048aNAICFCxdi7ty5ZkuIiIhaHwtpMI1m8J7pp59+ikOHDuHWrVsNtgcFBYmWFBERtS4t/tGY\njz/+GAUFBXBzc2swNs1iSkREdI/BYvrLL79g79695siFiIhaKZk3poZn87q5ueHmzZvmyIWIiFqp\nFjub9747d+5g1KhR6NmzZ4NnS+9PUCIiImrtDBbTiIgIc+RBREStmIU0mEYzWEwtpYUmIqKWS+61\nxmAxXb58uf7nuro6/PLLL/D29sYf//hHURMjIiKSC4PFNDk5ucHvubm5WLx4sWgJERFR6yPzxvTJ\nF7rv3r07fv31VzFyISKiVqrFL9owe/bsBr9fu3YNPXv2FC0hIiIiuTFYTF999VX9zwqFAqNGjcJr\nr70malJERNS6yLwxNbxoQ3BwMPr06YOqqircunULjo6OfJcpERE1K7kv2mCwmG7fvh3vvvsu8vLy\nUFBQgJkzZ2Lz5s3myI2IiEgWDA7zJiUlISUlBc888wwAYPr06Zg0aRJCQ0MNnvzIkSNIT0+HVqsF\nAKhUKvj6+mLIkCEmpk1ERC2JhTSYRjNYTHU6nb6QAoCdnd1jtdWxsbG4ceMGgoKCoFKpAABarRbJ\nycnIzMzkO1KJiEjPUoZrjWWwmL7wwguIjY3Vd6KbN2+Gh4eHwRNnZmZi3759D20PCAiAn5+fEakS\nERFZJoP3TBcuXAgbGxt89tlnmD17NpRKJaKjow2e2MbGBtnZ2Q9tP3fuHNq2bWtctkRE1CIpFMZ/\nLIHBztTGxgazZs0CAJSUlKBLly6PdeIlS5YgJiYGVVVVcHJyAgAUFhaiQ4cOXEGJiIgaaLHDvGVl\nZYiMjMSbb76JgIAAAEBMTAxKS0uxatUqdO7cuckT9+nTBykpKSgqKmowAcnBwaEZ0yciIpJeo8O8\nsbGxGDx4MEaNGqXftnz5crz22mtYtGjRY51cEAQUFBQ0+AiCYHrWRETUorTYYd7Lly8jLi6uwTaF\nQoGZM2ciMDDQ4ImzsrIwf/58uLq66mfzajQa5OTkIDo6GoMGDTIxdSIiainEHuZdv349Nm/eDIVC\ngZ49e2Lx4sX49ddfER0djbt37+rnA/Xt2xcAkJCQgC1btsDa2hpz5swxWLOeeKF7ALCyMjhvCbGx\nsUhKSoKLi0uD7bm5uQgPD0daWpoxoYmIiJ7I/ccy09LSYGNjg6ioKOzZswe7d+9GZGQkBg0ahMOH\nD2PZsmVITk7G1atXkZaWhtTUVGg0GoSFhWH//v1NFvxGq6KzszMOHz780PbMzEzY2dkZTL6+vl4/\n8ehBKpUKdXV1Bo8nIqLWQ+xhXp1Oh5qaGtTV1eHOnTtQqVRQKBSoqKgAAFRUVOhHUQ8cOICAgAAo\nlUq4uLjA1dX1kU+nPKjRznTWrFmYPHkyBg0aBC8vLwiCgHPnziEzMxNr1qwxmHhISAhCQ0MREBCA\nrl27Arg3mzc1NfWxVk8iIqLWQ8xXsKlUKoSFhWHYsGFo164dBg4ciAEDBkClUuG///u/sXTpUgiC\ngE2bNgG418m+9NJLDY6/P5G2MY0W0x49emDLli349ttvcejQISgUCrz44ovYvn077O3tDSYfEREB\nX19fHDhwAGfPntUnFBcXB3d398e6AERE1DqIecv09u3byMjIwMGDB9GhQwe8//772LlzJ7KzszFn\nzhwMHz4ce/fuxWeffYakpCSjYjR5z9TR0RHvv/++UScGAHd3dxZOIiKS1LFjx9C9e3f9I53Dhw/H\nmTNnsHv3bv3StqNGjdL/rFKpUFhYqD9eo9Hoh4AbY3gmkZEqKioQFxeHUaNG4dVXX0W/fv3g7++P\nuLg43L59W6ywREQkQ2K+gq1bt2746aefcPfuXQiCgOPHj8Pd3R2Ojo44efIkAOBf//oXXF1dAQA+\nPj5ITU1FbW0tcnNzkZOTA09PzyZjGDWb93FERUWhX79+SE5O1i/UUFRUhG3btiEqKgrr1q0TKzQR\nEZGep6cn/Pz8EBQUBKVSid69e2P8+PHw8PBAbGwsdDod2rZtiwULFgC4N6rq7++P0aNH6x+ZMVS0\nFcJjrKJQUlKCH3/8EdbW1vD29kanTp0MJu/n5/fIhe4N/e1BmkMHDO7TWlUVlkudgkVzHtFP6hQs\n1g8r90idgsWqq9NJnYJF+9PCCNHOnTH7G6OP9V08vRkzMY7BYd4dO3ZgzJgx2L17N7Zu3YrAwMBH\nPjLzn5ydnbFmzRoUFxfrtxUXFyMxMVE/u5eIiAgAFFYKoz+WwOAw7+rVq7F161b9zdf8/HxMnz4d\nQ4cObfK4+Ph4JCYm4u2330ZpaSkAoEuXLvDx8cFf//rXZkidiIhaCktZFtBYBotp+/btGyxO7+zs\njDZt2hg8cadOnTBr1iz9G2cetGXLFoSEhDxhqkRERJbJYDHt2bMnpk2bhpCQEFhbWyMtLQ2Ojo7Y\nvn07ACAoKOiJg65YsYLFlIiI9FrsK9juEwQBjo6OOHLkCACgXbt2aNeuHU6cOAGg8WKqVqsbPeeD\n91GJiIjkzmAxvf8i7/Ly8seaxXtfSUkJ1q5di44dOzbYLggC3njjjSdMk4iIWjKZN6aGZ/NeunQJ\no0aNwtixY6HVajFixAhcuHDB4ImHDRuGqqoqODs7N/i4uLigXz8+tkBERP8m5qIN5mCwmC5YsACr\nVq1C586doVKpEBMTg+joaIMnXrRoEby9vR/5ty+//PLJMyUiohZL7i8HN1hMa2pq4Obmpv994MCB\nqK2tFTUpIiIiOTF4z7Rz5864dOmSvpXeuXPnE907JSIiMshSWkwjGSymMTEx+PTTT3HlyhV4e3vD\n1dUVcXFx5siNiIhIFgwW07t37+Lbb79FdXU1dDod2rdvr38/KRERUXOwlIlExmq0mP7444/Q6XSY\nO3cuYmNjcX89/Lq6OsTExDzWQvVERESPQ+a1tPFieuzYMZw8eRI3b95ssJauUqnEhAkTzJIcERG1\nDpayYL2xGi2mkZGRAIDt27cbtWQgERFRa9HkozEHDx7EK6+8AgBIT0/H9OnTsXz5ctTV1ZklOSIi\nah1a7HOma9euxcqVK3H37l1cunQJH3/8MXx9fVFVVYWlS5eaM0ciIiKL1ugw744dO/DPf/4T7dq1\nQ1xcHHx8fPD6669DEAQEBASYM0ciImrh5D6bt9HOVKFQoF27dgCAEydOYPDgwfrtREREzUnuw7yN\ndqbW1ta4ffs2qqurcfHiRQwcOBAAkJ+fD6XS4OOpREREj03ujVqjVTE8PBxBQUGoq6tDaGgoHB0d\nkZqaivj4eMyYMcOcORIREVm0RovpqFGj8PLLL6OsrAweHh4AAFtbWyxcuJCvUCMiomYl88a06eUE\nVSoVVCqV/vehQ4eKnhAREZHc8OYnERFJrsXeM7UEF9OvSJ2CxXq6vY3UKVi01BlJUqdgsd74gCNM\njbmw52epU2i9DL5d27JZdDElIqLWQe6dqcz/W4CIiEh67EyJiEhyMm9M2ZkSERGZip0pERFJTu73\nTFlMiYhIcjKvpSymRERkAWReTXnPlIiIyETsTImISHIKK3amRERErRo7UyIikpzMb5mymBIRkfT4\naAwREZGJZF5Lec+UiIjIVOxMiYhIejJvTdmZEhERmYidKRERSU7uz5mymBIRkeRkPsrLYkpERBZA\n5tWU90yJiIhMxM6UiIgkJ/PGVNxieuTIEaSnp0Or1QIAVCoVfH19MWTIEDHDEhERmZVoxTQ2NhY3\nbtxAUFAQVCoVAECr1SI5ORmZmZmYO3euWKGJiEhmOJu3EZmZmdi3b99D2wMCAuDn5ydWWCIikiG5\nr80r2gQkGxsbZGdnP7T93LlzaNu2rVhhiYhIjhQmfCyAaJ3pkiVLEBMTg6qqKjg5OQEACgsL0aFD\nByxevFissERERGYnWjHt06cPUlJSUFRU1GACkoODg1ghiYhIpuQ+zCvqbF5BEFBQUKAvpvX19bC3\nt5f9RSMiInqQaMU0KysL8+fPh6urq342r0ajQU5ODqKjozFo0CCxQhMRkczIvckS9dGYpKQkuLi4\nNNiem5uL8PBwpKWliRWaiIjkRubr8YlWTOvr6/UTjx6kUqlQV1cnVlgiIpIhdqaNCAkJQWhoKAIC\nAtC1a1cA92bzpqamIjQ0VKywREREZidaMY2IiMDw4cORkZGBs2fPArjXlcbFxcHd3V2ssEREJEPs\nTJvg5uYGNzc3MUMQERFJTrRbvpmZmfqfKyoqMGfOHKjVanz00UcoLi4WKywREcmRzFdAEq2YxsfH\n639esmQJ7O3t8c0336Bv376YN2+eWGGJiEiGFFYKoz+WwCyTkc+fP48PPvgAzs7OmDJlCvLz880R\nloiI5EKhMP7zGNavX4/AwED9CGltba3+b+vWrYOHhwdu3bql35aQkICRI0fC398fWVlZBs8v2j3T\nkpISJCUlQRAEVFRUQBAE/Q1mnU4nVlgiIqIG7r/+My0tDTY2NoiKikJqaiqCgoKg0Whw9OhRdOvW\nTb//tWumf0jmAAASpUlEQVTXkJaWhtTUVGg0GoSFhWH//v1NTpISrTMdP348qqqqUF1djXHjxqGs\nrAwAUFRUhF69eokVloiIZEjkxhQ6nQ41NTWoq6vDnTt34OjoCABYtGgRPvnkkwb7ZmRkICAgAEql\nEi4uLnB1dX3kW9AeJFpnOnPmzEdud3BwQL9+/cQKS0RE1IBKpUJYWBiGDRuGdu3aYeDAgRgwYADS\n09PRtWtXvPDCCw3212q1eOmllxocf3+N+cZIsoDTihUrpAhLREQWSqFQGP0x5Pbt28jIyMDBgwdx\n5MgR1NTUYPv27UhMTERkZGSz5C9aZ6pWqxv9Gx+NISKiBkSclXvs2DF0794dnTt3BgAMHz4cW7du\nRX5+PsaOHQtBEKDVajFu3DikpKRApVKhsLBQf7xGo9G/sKUxok5AWrt2LTp27NhguyAIeOONN8QK\nS0REMiTmCkjdunXDTz/9hLt378LGxgbHjx+Hn58f3nrrLf0+Pj4+2LZtGzp16gQfHx98/PHHmDJl\nCrRaLXJycuDp6dlkDNGK6bBhw1BVVfXIyUa8Z0pERObi6ekJPz8/BAUFQalUonfv3hg/fnyDfRQK\nBQRBAAC4u7vD398fo0ePhlKpRHR0tMFirxDuH22BDs5NkDoFi/V0exupU7BoJ88USJ2CxXrjg6FS\np2CxLuz5WeoULNqwBeGinfu3HbuNPtZ1bGAzZmIcmb9BjoiISHqiLnRPRET0OPjWGCIiIhNZyhq7\nxmIxJSIi6bEzJSIiMo3ch3k5AYmIiMhELKZEREQm4jAvERFJT96jvCymREQkPc7mJSIiMpXMJyCx\nmBIRkeQ4m5eIiKiVYzElIiIyEYd5iYhIepyAREREZBq53zNlMSUiIunJu5ZadjF9P/kfUqdgsT4Z\nPkbqFCza639+TeoULFbRuTypU7BYvUd5SJ1CqyX3zpQTkIiIiEzEYkpERGQiix7mJSKiVoKzeYmI\niEwj93umLKZERCQ9FlMiIiLTyL0z5QQkIiIiE7GYEhERmYjDvEREJD3O5iUiIjKN3O+ZspgSEZH0\nWEyJiIhMo5D5MC8nIBEREZmInSkREUlP5sO87EyJiIhMxM6UiIgkx9m8REREpmIxJSIiMg1n8xIR\nEbVyonamR44cQXp6OrRaLQBApVLB19cXQ4YMETMsERHJDYd5Hy02NhY3btxAUFAQVCoVAECr1SI5\nORmZmZmYO3euWKGJiIjMSrRimpmZiX379j20PSAgAH5+fmKFJSIiOZJ5ZyraPVMbGxtkZ2c/tP3c\nuXNo27atWGGJiEiGFAqF0R9LIFpnumTJEsTExKCqqgpOTk4AgMLCQnTo0AGLFy8WKywREcmRzGfz\nilZM+/Tpg5SUFBQVFTWYgOTg4CBWSCIiIkmIOptXEAQUFBToi2l9fT3s7e0tpi0nIiLLoFDI+0lN\n0YppVlYW5s+fD1dXV/1sXo1Gg5ycHERHR2PQoEFihSYiIjIrUR+NSUpKgouLS4Ptubm5CA8PR1pa\nmlihiYhIbmQ+YilaMa2vr9dPPHqQSqVCXV2dWGGJiEiG5H77T7RiGhISgtDQUAQEBKBr164A7s3m\nTU1NRWhoqFhhiYhIjjib99EiIiLg6+uLAwcO4OzZswDudaVxcXFwd3cXKywREZHZiTqb193dnYWT\niIgM4jBvIyoqKpCQkID09HSUlpZCoVDAzs4Ovr6+CA8PR8eOHcUKTUREZFaiPdgTFRWFjh07Ijk5\nGSdPnsSJEyewceNGdOzYEVFRUWKFJSIiOVIojP9YANGKaV5eHsLDwxuseOTg4IDw8HDk5+eLFZaI\niORIYWX8xwKIloWzszPWrFmD4uJi/bbi4mIkJibqZ/cSEREBgMJKYfTHEoh2zzQ+Ph6JiYl4++23\nUVJSAoVCgS5dusDHxwdff/21WGGJiIjMTrRi2qlTJ4wbNw4DBw6El5cXbG1t9X/LzMzEkCFDxApN\nRERyYyH3Po0l2jDvxo0b8e677+Lvf/871Go10tPT9X+Lj48XKywREZHZidaZpqSkYOvWrbC1tUVe\nXh7ee+895OfnY/LkyRAEQaywREQkQ3zOtBE6nU4/tOvi4oLk5GS89957KCgoYDElIqKGLGRWrrFE\ny75Lly64ePGi/ndbW1skJCSgrKwMly9fFissERHJEGfzNmLZsmWwtrZuGEypxLJlyzBhwgSxwhIR\nEZmdaMX0Ua9fu++VV14RKywREcmRzO+ZynuQmoiIyAKwmBIRkeQUCoXRn8exfv16BAYGQq1W46OP\nPkJtbS3Ky8sxdepU+Pn54Z133kFFRYV+/4SEBIwcORL+/v7IysoyeH4WUyIikp6Ia/NqtVokJydj\n69at2LVrF+rr67Fnzx4kJibitddew759+9CvXz8kJCQAAK5evYq0tDSkpqZizZo1mD9/vsGnUFhM\niYhIelYK4z+PQafToaamBnV1dbhz5w5UKhUyMjIQHBwMAAgODtYvLnTgwAEEBARAqVTCxcUFrq6u\nyM7Objp90749ERGRZVOpVAgLC8OwYcMwZMgQdOjQAQMGDEBJSQns7e0B3HurWWlpKYB7neyDL2RR\nqVTQarVNxmAxJSIiyYl5z/T27dvIyMjAwYMHceTIEdTU1GDnzp0PHWvKKkwspkRE1KIdO3YM3bt3\nR+fOnWFtbY3hw4fjzJkz6NKli/41oUVFRbCzswNwrxMtLCzUH6/RaKBSqZqMwWJKRETSE3ECUrdu\n3fDTTz/h7t27EAQBx48fh7u7O3x8fLB161YAwLZt2+Dr6wsA8PHxQWpqKmpra5Gbm4ucnBx4eno2\nGUO0RRuIiIgel5gL3Xt6esLPzw9BQUFQKpXo3bs3xo8fj6qqKkRFRWHLli1wdnbWv2vb3d0d/v7+\nGD16NJRKJaKjow3mpxAseNV5T9ehUqdgsT4ZPkbqFCza8IkvS52CxSq9clPqFCyWfe9uUqdg0RwH\nivce6jslGqOPfapL4yvumQuHeYmIiEzEYV4iIpKcpbz9xVjsTImIiEzEzpSIiKQn87fGsJgSEZHk\nFI/xiIslYzElIiLpybwztehHY4iIiORA3n01ERGRBWAxJSIiMhGLKRERkYlYTImIiEzEYkpERGQi\nFlMiIiITtapimpmZiVGjRsHPzw+JiYmP3GfhwoUYOXIkxo4di4sXLxo8try8HFOnToWfnx/eeecd\nVFRUAADy8/Ph5eWF4OBgBAcHIyYmRtTv1tzEuFZ79+5FYGAgevXqhQsXLoj+HcQixrVZuXIlhgwZ\nov/3kpmZKfr3MIcnvVY///yzfvtnn32GAQMGQK1WmytdszLl2vj4+GDMmDEICgpCaGiouVKmpgit\nRH19vTB8+HAhLy9PqK2tFcaMGSNcvXq1wT6HDh0Spk2bJgiCIJw9e1Z4/fXXDR67bNkyITExURAE\nQUhISBC++OILQRAEIS8vTwgMDDTX12tWYl2ra9euCdevXxcmTpwonD9/3rxfqpmIdW1WrFghrFu3\nzrxfRmSmXCtBEIQffvhB+Pnnn2X7/6OmmHptfHx8hFu3bpk1Z2paq+lMs7Oz4erqCmdnZ7Rp0waj\nR49GRkZGg30yMjIQFBQEAPDy8kJFRQWKi4ubPDYjIwPBwcEAgODgYKSnp5v3i4lArGvVo0cPPPfc\ncxBkvE6IWNcGgKyvy6OYcq0AwNvbGx07djR73uZg6rURBAE6nc7seVPjWk0x1Wq16Nq1q/53lUqF\nmzcbviT55s2bcHL690tmnZycoNVqmzy2pKQE9vb2AAAHBweUlpbq98vLy0NwcDAmTpyIU6dOifK9\nxCDWtWoJxLw2f//73zF27FjMmTNHf7tAzoy5ViqVClqt1mw5SsXUa6NQKDB16lSEhITgu+++M0/S\n1CSuzdsEYzoFxf9fX9LBwQGHDh1Cp06dcOHCBcyYMQN79uyBra1tc6dpEVpaV9WcHufavPnmm5gx\nYwYUCgXi4+OxePFiLFq0yAzZkRx9++23cHR0RGlpKcLCwtCjRw94e3tLnVar1mo6U5VKhYKCAv3v\nWq0Wjo6ODfZxdHSERqPR/67RaKBSqZo81t7eXj/0UlRUBDs7OwCAjY0NOnXqBADo06cPunfvjhs3\nbojy3ZqbWNeqJRDr2tjZ2en/Q2z8+PE4d+6cmF/DLEy5Vi2dqdfmwX83I0aMaBH/XuSu1RTTvn37\nIicnB/n5+aitrcWePXvg6+vbYB9fX19s374dAHD27Fl07NgR9vb2TR7r4+ODrVu3AgC2bdum315a\nWqq/p5Gbm4ucnBx0797dXF/XJGJdqwfJtZMV69oUFRXpj//+++/Rs2dP830pkZhyre6T678TQ0y5\nNjU1NaiqqgIAVFdXIysrC88//7zZvwM11GqGea2trfE///M/mDp1KgRBQGhoKNzc3LBp0yYoFApM\nmDABQ4cOxeHDhzFixAi0a9cOixcvbvJYAJg2bRqioqKwZcsWODs74+uvvwYAnDp1CsuXL0ebNm2g\nUCjw+eefy2YyhVjXKj09HQsWLEBZWRmmT58ODw8P/O1vf5Pyqz4xsa7NF198gYsXL8LKygrOzs74\n/PPPpfyazcKUawUAH330EU6cOIFbt25h2LBhiIyMREhIiITfqPmYcm2Ki4sxc+ZMKBQK1NfXQ61W\nY9CgQRJ/I+Ir2IiIiEzUaoZ5iYiIxMJiSkREZCIWUyIiIhOxmBIREZmIxZSIiMhELKZEREQmYjGl\nFuvkyZOYOHGi2eLdvHkTERERJp/n5MmTePnllxEcHIygoCCo1WoMHz4cmzZtavK4yspKzJgxw+T4\nRPTkWs2iDdQ63V+izxwcHR2RkJDQLOfq27cvNm7cqP/90qVLCA0NhVqtbnR951u3buHSpUvNEp+I\nngyLKbVKiYmJ2Lt3L3Q6HQYNGoSPP/4YABAfH4/jx4+jvLwczzzzDFauXIkuXbqgf//+ePHFF1FS\nUoJZs2Zh7dq1eOqpp3Dt2jW88MIL+PLLL6HVajFx4kQcOHAAs2fPRvv27XHhwgVotVrMmDED48aN\nQ2VlJT755BPk5ubC2dkZWq0Wq1atQrdu3ZrMNy8vD08//TRsbGxQWVmJOXPmQKvV4ubNm/jjH/+I\npUuXIjY2Fjdv3kRkZCRWrFiB7du3Y+PGjRAEAX369MG8efNgY2NjjstL1OpwmJdanSNHjuDChQvY\nsmULtm3bBo1Gg127diEnJwfXr1/HP//5T+zduxfPPvssdu3aBeBe1zd9+nRs27YNSqUSZ86cQXR0\nNPbu3YuCggJkZWUBaNgJa7Va/OMf/8Dq1auxdOlSAMDKlSvRo0cP7Nq1CzNnzsTly5cfmeO5c+cQ\nHBwMPz8/9O/fH7t27UJSUhLatGmDw4cPo3fv3ti0aRP27duHM2fO4Oeff8bcuXPh6OiIFStW4OrV\nq0hJScGmTZuwbds22NnZYe3atSJfWaLWi50ptTrHjh3DuXPnMG7cOAiCgLt378LZ2RlqtRqffvop\nvvvuO1y/fh1nz57Fs88+qz/O09NT/3PPnj31b+5wc3PDrVu3HoozcOBA/b63b9/Wx/7yyy8BAC++\n+CJeeOGFR+Z4f5j3999/xyeffIK2bduiT58+AIDRo0cjOzsbGzZswLVr11BeXo7q6mr9W4oA4MSJ\nE/jtt98wYcIECIKAuro69O7d25TLRkRNYDGlVken02HSpEmYMmUKgHsTd6ytrXHhwgV8+OGHmDp1\nKkaNGgUrK6sGby15cIj0wZ8buy/btm3bh7ZZW1vr3yYEGH4rSps2bbBgwQL4+fkhNTUVAQEBSE5O\nxv79+/HGG29g4MCBuHLlykPnqa+vh7+/P+bMmQMAqKmpQX19fZOxiMh4HOalFu1Rxap///7YuXMn\nqqurUVdXhz//+c/Yt28ffvjhB/Tr1w8TJkxAjx49cPTo0QaFrznyGDBgAHbv3g0A+OWXX3DlyhWD\nk6Tat2+PyMhIxMXF4e7duzh27BjeeOMNjB49GoIg4NKlS6ivr4dSqdQXzFdffRXp6ekoLS2FIAiI\njo7G+vXrm+W7ENHD2JlSi3b69Gn84Q9/gCAIUCgUGDNmDGJiYnDp0iWMHz8eOp0OQ4YMQVBQELRa\nLSIjIzF27FgolUp4eHggLy8PgOmzgu8f/+c//xmfffYZxo4di2effRYODg6P7GD/0+uvv47k5GQk\nJSVhypQpiI6Oxtq1a2Fra4s//OEPyMvLg7e3N5ycnDB58mRs2LAB7777LiZPngxBENCrVy+Eh4eb\n9B2IqHF8BRuRGe3cuRPdu3fHyy+/jMLCQkycOBHp6elSp0VEJmJnSmRGPXr0QHR0NHQ6HaytrbFg\nwQKpUyKiZsDOlIiIyEScgERERGQiFlMiIiITsZgSERGZiMWUiIjIRCymREREJmIxJSIiMtH/A61F\nFczA83q5AAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x119e69240>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "grid_search_heatmap(costs, [250,500,1000,1500,2000], [.05, .01, .005, .001, .0005])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The above grid search shows that, while there is no obvious pattern with respect to the performance, it seems that the major diagonal generally has the lowest costs. Interestingly, the lower-left tile has a significantly higher score than all of the others. This is likely due to overlearning, as it comes from a section in the grid with the highest possible step count.\n", "\n", "The optimal parameter pair, of 500 steps and a learning rate of .001, is only marginally better than the second-best option, which falls at 1000 steps and a learning rate of .005." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##### Calculating Costs and Area under ROC Curve Scores for the Model\n", "\n", "With the optimal step count and learning rate, the costs of the model built with the given step count and rate are computed." ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[1843.45, 2005.0, 2017.0, 1971.05, 2069.25, 2021.75, 1942.8499999999999, 2048.25, 2022.0, 2042.0999999999999]\n", "[0.51052936522990444, 0.50011988848000888, 0.49999999999999994, 0.50082942390789931, 0.49999999999999994, 0.49999999999999994, 0.50244062722123584, 0.49999999999999994, 0.50046048738783466, 0.49987541305436189]\n" ] } ], "source": [ "costs_model_1, auc_roc_model_1 = get_scores_for_model(deep_model_1, X, y, optimal_steps, optimal_rate)\n", "\n", "print(costs_model_1)\n", "print(auc_roc_model_1)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The costs and auc scores computed above are hard-coded below for later use, so that they don't need to be computed again." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "costs_model_1 = [1843.45, 2005.0, 2017.0, 1971.05, 2069.25, 2021.75, 1942.8499999999999, 2048.25, 2022.0, 2042.0999999999999]\n", "auc_roc_model_1 = [0.51052936522990444, 0.50011988848000888, 0.49999999999999994, 0.50082942390789931, 0.49999999999999994, 0.49999999999999994, 0.50244062722123584, 0.49999999999999994, 0.50046048738783466, 0.49987541305436189]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Second Deep Learning Architecture\n", "\n", "The second deep learning architecture will be adapted from a model designed by O'Shea Research that is used for radio modulation recognition. Because the majority of the football data is ordinal numerical data, an architecture that uses similar data for a classification task poses as a candidate model for the football play classification task.\n", "\n", "The architecture consists of a set of two convolutional reLu neurons, followed by a dense relu and dense softmax activation function. The result is a single fully connected layer for output. We will adapt this model slightly to allow for the embedding of the team attributes. We will split the data into embedding and non-embedding data, run each subset of data through the convolutional neurons, combine their output and run it through the dense neurons, and take a logistic regression for the input into a single final layer, used for classification. A simple drawing of the architecture is shown below.\n", "\n", "<img src=\"NetworkDrawings/network2.png\">\n", "\n", "<a href=\"https://oshearesearch.com/index.php/tag/deep-learning/\">\n", "The original discussion about this architecture can be found here.\n", "</a>\n", "\n", "#### Defining the Model" ] }, { "cell_type": "code", "execution_count": 42, "metadata": { "collapsed": false }, "outputs": [], "source": [ "def deep_model_2(X, y):\n", " \n", " \n", " #Embeddings layer\n", " teamembeddings = layers.stack(X[:,11:75], layers.fully_connected, [200,1,3], activation_fn=tf.nn.relu)\n", " teamembeddings = layers.stack(teamembeddings, layers.fully_connected, [50,2,3], activation_fn=tf.nn.relu)\n", " \n", " #Non-embeddings features\n", " otherfeatures = X[:,0:10]\n", " otherfeatures = layers.stack(otherfeatures, layers.fully_connected, [50,1,3], activation_fn=tf.nn.relu)\n", " otherfeatures = layers.stack(otherfeatures, layers.fully_connected, [12,2,3], activation_fn=tf.nn.relu)\n", "\n", " #combine the team and play data\n", " tensors = tf.concat(1, [teamembeddings, otherfeatures])\n", " \n", " tensors = layers.stack(tensors, layers.fully_connected, [100], activation_fn=tf.nn.relu)\n", " tensors = layers.stack(tensors, layers.fully_connected, [7], activation_fn=tf.nn.softmax)\n", " \n", "\n", " \"\"\" # This section is doing all layers before combining team and play data\n", " #Embeddings layer\n", " teamembeddings = layers.stack(X[:,11:75], layers.fully_connected, [200,1,3], activation_fn=tf.nn.relu)\n", " teamembeddings = layers.stack(teamembeddings, layers.fully_connected, [50,2,3], activation_fn=tf.nn.relu)\n", "\n", " teamembeddings = layers.stack(teamembeddings, layers.fully_connected, [100], activation_fn=tf.nn.relu)\n", " teamembeddings = layers.stack(teamembeddings, layers.fully_connected, [7], activation_fn=tf.nn.softmax)\n", " \n", " #Non-embeddings features\n", " otherfeatures = X[:,0:10]\n", "\n", " otherfeatures = layers.stack(otherfeatures, layers.fully_connected, [50,1,3], activation_fn=tf.nn.relu)\n", " otherfeatures = layers.stack(otherfeatures, layers.fully_connected, [12,2,3], activation_fn=tf.nn.relu)\n", "\n", " otherfeatures = layers.stack(otherfeatures, layers.fully_connected, [100], activation_fn=tf.nn.relu)\n", " otherfeatures = layers.stack(otherfeatures, layers.fully_connected, [7], activation_fn=tf.nn.softmax)\n", "\n", " #combine the team and play data\n", " tensors = tf.concat(1, [teamembeddings, otherfeatures])\n", " \"\"\"\n", "\n", " \n", " \n", " pred, loss = learn.models.logistic_regression(tensors, y)\n", " \n", " return pred, loss" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##### Grid Searching on the Model\n", "\n", "A grid search is performed on the model to find the approximately optimal step count and learning rate for the TensorFlowEstimator." ] }, { "cell_type": "code", "execution_count": 64, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(1500, 0.005)\n" ] } ], "source": [ "costs, optimal_steps, optimal_rate = grid_search(deep_model_2, [250,500,1000,1500,2000], [.05, .01, .005, .001, .0005])\n", "print((optimal_steps, optimal_rate))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Although the grid search, once again, gave us the optimal step count and rate, it is worthwhile to visualize the grid that was generated, to get an idea for how much better these particular hyperparameters are than the other possible combinations in the grid." ] }, { "cell_type": "code", "execution_count": 63, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdAAAAFtCAYAAAC3CTurAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl4FFW6x/FfZ4WkE1RCUBkgFyYIIiAmIzgZgoNw2fc1\nYAAvKijweE1QQZA9Rq4iiGwOoyDohEUFxUfBQQ2MwAgEGRAlAhEYFoMgaLohG133Dy99jSwNbSqV\nSr4fn34eurrrnLeKyJv31KlTDsMwDAEAgOsSYHUAAADYEQkUAAA/kEABAPADCRQAAD+QQAEA8AMJ\nFAAAP5BAYblVq1apX79+6ty5s/7zP/9Tw4YN0+7du6/4/eHDh+vgwYOXbF+/fr2Sk5Mvu8+uXbs0\nePBgde/eXV27dtXDDz+sAwcOlNoxXE2bNm20d+9en98bN26cFi9efMn2hg0b6uzZs373v2rVKmVk\nZPi9P4DLC7I6AFRuL774orKysjRnzhzdfPPNkqR//vOfGj58uFavXu3d9kuvvPLKFdtzOByXbCss\nLNSIESO0ZMkSNWzYUJL03nvv6eGHH9bHH3982X3Kk98a386dO9WgQYNSigbARSRQWOb06dNaunSp\nPv74Y1WvXt27vWXLlho3bpzOnTsn6ecKrlmzZvrmm2/0+OOP69lnn9XLL7+sxo0b66WXXtL777+v\nG2+8UXXq1LlsP/n5+XK5XHK5XN5t3bp1U0REhC5cuKCgoCB9+umnWrBggYqLi1WlShU9+eSTuvPO\nO3X69GlNnDhRp0+f1qlTp3Trrbdq9uzZuummmy6J6/e//70mTpyoH374QQEBARoxYoQ6deokSVq+\nfLm++uornTlzRl27dtXjjz9+zefpl2udXG+cO3fu1CeffKItW7YoNDRUP/zwg44cOaIjR47o+++/\nV9OmTZWQkKA1a9bo2LFjeuKJJ9SpUyefx92uXTvt2LFDLpdLQ4cOVVJS0nX93QMVggFY5O9//7vR\nq1cvn9/785//bMyfP9/7vk2bNsaXX35pbNiwwejSpYtx7tw548KFC8bw4cON5OTky7axePFio1mz\nZkbbtm2NJ554wnjrrbeM8+fPG4ZhGIcOHTK6dOlinD171jAMw9i/f7+RkJBgnD9/3nj99deNRYsW\nedt56KGHjMWLF182rp49exoZGRmGYRjGiRMnjHbt2hkul8v485//bEybNs0wDMP4/vvvjSZNmhjf\nfffdJTGOHTvWaNWqldGjRw/vq3v37kbDhg2NM2fO+B3n2LFjjddee80wDMN4+eWXjfvuu89wuVxG\nfn6+cffddxvPPfecYRiGsWHDBqN9+/aGYRg+j3vixImGYRjGd999Z7Rs2dL45ptvLv+XB1RgVKCw\n1C+HJ91utwYNGiSHwyG3262OHTt6K7X4+Hjv94z/q8i2bt2qdu3aqWrVqpKk3r17a9myZZftZ+jQ\noerXr5+2b9+u7du3a9GiRfrrX/+qVatWafPmzTp16pSGDh3qbTsoKEiHDx/W4MGDtWPHDi1ZskSH\nDh3SgQMH1KxZM2+7F+P68ccflZ2drT59+kiSbr75Zn300Ufe73Xt2lWSFBUVpaioKJ0+fVo1a9a8\nJM4HHnhADzzwQIltjRo1kqTfFOcv/fGPf1R4eLgkKTo6WomJiZKkOnXq6Mcff5Qkn+0NGjRIklSz\nZk21atVKmzdvVmxs7GX7AyoqEigs07RpU+Xk5OjHH39UtWrVFB4erjVr1kiS5s6dW2LiTFhY2GXb\nMH4xvBkYGHjZ7+zcuVNffPGFhg0bptatW6t169ZKSUlRly5dtGXLFnk8Ht1zzz168cUXvft89913\nio6O1vPPP68vv/xSvXv3VsuWLVVcXFyiz4txXez7l78QfPvtt7r11lsl/ZzorhT3tfotcf5SSEhI\nife/jk2Sz/Z+ea49Ho8CApiPiMqHn3pYJjo6WoMHD9Zjjz2mEydOeLcfP35cO3fuvGJCvKhVq1Za\nt26d8vLy5PF49O677172ezfddJMWLlyonTt3erfl5uYqPz9fDRo0UMuWLbV582bl5ORIkjZu3Kju\n3bursLBQmzdv1pAhQ9StWzfdeOON3oT7a06nU40bN9bq1aslSSdOnNDAgQNLXHf118XE5W+cgYGB\nKioquq4+fR33xXN9/PhxbdmyxVvFApUJFSgs9d///d96//33NWbMGJ0/f15FRUUKDQ1Vp06dvMOE\nv56FevF969attX//fvXu3VvVqlVTw4YNdebMmUv6iImJ0bx58/Tiiy8qNzdXoaGhcjqdmjZtmmJi\nYiRJU6dOVUpKiqSfE86CBQtUpUoVjRw5UjNmzNC8efMUFBSkuLg4HT58+LJxzZw5U5MnT9ayZcsU\nEBCgtLQ0Va9e/YrxX6uL3//973/vV5yJiYmaNm3adfV5tfYk6ejRo+rVq5cKCws1YcIE73kEKhOH\n4c9YEoBKq02bNt5Z0EBlxhAugOtS3u+bBcoKFSgAAH6gAgUAwA8kUAAA/FBuZ+G+9ehLVodQbhUU\nXrA6hHLthshQq0Mot77M+d7qEMqtG8KqWB1CuTb8b2NNa7tp3dZ+77v78MZSjOT6UIECAOCHcluB\nAgAqB7vO7CaBAgAs5XDYczDUnlEDAGAxKlAAgKUCxBAuAADXza7XQBnCBQDAD1SgAABLBdh0EhEJ\nFABgKYZwAQCoRKhAAQCWcjALFwCA62fXa6D2jBoAAItRgQIALGXXSUQkUACApQJsmkAZwgUAwA9U\noAAASzlsWsuRQAEAlrLrNVB7pn0AACxGBQoAsJRdJxGRQAEAlrLrSkQM4QIA4AcqUACApey6lJ+p\nCbSoqEjZ2dnKy8tTZGSkYmNjFRISYmaXAACbsessXNMSaGZmpmbOnKmYmBiFhYXJ7XYrJydHKSkp\natu2rVndAgAgSSosLNS4ceN09OhROZ1OTZo0SU6nUxMmTFBeXp4uXLigGTNmqHbt2lq5cqVWrFih\n4OBgjRgxQvfee6/P9k1LoAsXLlRGRoacTqd3W15enoYOHUoCBQB4mTULd9WqVQoPD9eKFSt06NAh\nTZkyRdHR0erWrZs6dOigzz//XDk5OapataqWLVum1atXKz8/X0lJSUpISFBwcPDV4zYlav08fFul\nSpUS20JDQ21bqgMAzOH4Df9dzYEDB5SYmChJiomJUU5Ojnbu3KnvvvtODzzwgN5//321aNFCu3fv\nVlxcnIKCguR0OhUTE6Ps7GyfcZtWgfbv3189e/ZUXFycIiIi5HK5lJWVpeTkZLO6BADAq1GjRsrM\nzFTbtm21a9cu5ebmKiAgQNWqVdPixYs1b948/eUvf1FMTIwiIiK8+4WFhSkvL89n+6Yl0H79+qlN\nmzbavXu3XC6XIiIiNHLkSEVFRZnVJQDAhsyahdu7d28dPHhQgwYN0l133aXGjRvrxIkTatOmjSSp\nTZs2mjVrlpo0aSKXy+Xdz+12KzIy0nfcpkQt6cMPP1RUVJRatGihr7/+WkuXLtWSJUvkdrvN6hIA\nYEMOh8Pv19Xs2bNH99xzj9588021b99ederUUVxcnDIzMyVJ27dvV2xsrJo0aaKsrCwVFhYqLy9P\nOTk5io2N9Rm3aRVoRkaGOnbsqPT0dNWuXVsTJkzQ1q1bNXHiRM2cOdOsbgEAkCTVrVtXL730khYu\nXKjIyEilpaWpqKhIEyZM0PLlyxUREaGZM2cqIiJCycnJGjhwoAzDUEpKyjXdcmn6QgqHDh3S9OnT\nJUn169fXRx99ZHaXAAAbMWsW7o033qjFixdfsv211167ZFvfvn3Vt2/f62rftCHcQ4cOacmSJQoM\nDNRXX30l6edyuqioyKwuAQA2ZNYsXLOZlkBfeeUVOZ1O1atXz7sa0bRp0/Tkk0+a1SUAAGXGtAR6\n4sQJzZs3T5999plCQkIUERGhlStXatasWWZ1CQCwIbMmEZnN1JWI1qxZI4/Ho8cee0yFhYXq2bOn\nDMMwq0sAgA3xPNBfCQ4OVrVq1SRJ8+fP15AhQ3TLLbdY/hsDAAClwbQh3Fq1aik9PV3nzp2T0+nU\n3LlzNXXqVOXk5JjVJQDAhphE9CvPPvusbrvtNm/Fecstt2jp0qXq2LGjWV0CAGwowBHg98tKpg3h\nBgUFqVevXiW2RUVFafz48WZ1CQBAmTF9IQUAAK7GrnNjSKAAAEvZdRautQPIAADYFBUoAMBSVs+m\n9RcJFABgKYZwAQCoRKhAAQCWYhYuAAB+YAgXAIBKhAoUAGApZuECAOAHhnABAKhEqEABAJZiFi4A\nAH6w6xAuCRQAYCm7TiLiGigAAH6gAgUAWMquQ7hUoAAA+IEKFABgKWbhAgDgB7sO4ZJAAQCWogIt\nZVHVq1odQrlVu3ENq0Mo177YdMTqEMqt30VFWh1CueU+X2R1CLCZcptAAQCVA/eBAgBQiVCBAgAs\nFWDPApQECgCwFpOIAADwg11vY+EaKAAAfqACBQBYyq5DuFSgAAD4gQoUAGCpAJveB0oCBQBYyq5D\nuCRQAIClmIULAEAlQgUKALCUTQtQKlAAAPxBBQoAsJRdr4GSQAEAlrLr48xIoAAAS9n1NhaugQIA\n4AcqUACApbgGCgCAH2yaPxnCBQDAH1SgAABLmTWEW1hYqHHjxuno0aNyOp2aNGmSCgsLNXHiRElS\n3bp1lZaWpoCAAK1cuVIrVqxQcHCwRowYoXvvvddn+yRQAIClzLqNZdWqVQoPD9eKFSt06NAhTZky\nRVWrVlVqaqri4uI0btw4ffLJJ7rzzju1bNkyrV69Wvn5+UpKSlJCQoKCg4Ov2r6pCbSoqEjZ2dnK\ny8tTZGSkYmNjFRISYmaXAABIkg4cOKDExERJUkxMjHJycvTpp59K+rk6/f777xUREaHdu3crLi5O\nQUFBcjqdiomJUXZ2tu64446rtm9aAs3MzNTMmTMVExOjsLAwud1u5eTkKCUlRW3btjWrWwCAzZg1\nhNuoUSNlZmaqbdu22rVrl06ePCnDMHTixAk98MADioiIUMOGDbVx40ZFRER49wsLC1NeXp7P9k1L\noAsXLlRGRoacTqd3W15enoYOHUoCBQB4mTULt3fv3jp48KAGDRqku+66S40bN5bD4dCtt96q9evX\na9WqVUpPT1f79u3lcrm8+7ndbkVGRvps37RZuEVFRapSpUqJbaGhobZdcQIAYC979uzRPffcozff\nfFPt27dX7dq19eijj+rw4cOSpPDwcAUEBKhJkybKyspSYWGh8vLylJOTo9jYWJ/tm1aB9u/fXz17\n9lRcXJwiIiLkcrmUlZWl5ORks7oEANiQWYVV3bp19dJLL2nhwoWKjIxUWlqajh07prFjxyokJERV\nq1bV9OnTFRUVpeTkZA0cOFCGYSglJeWa5us4DMMwTIlc0qlTp7R792653W45nU41adJEUVFR17Rv\n5jN/MSss26vduIbVIZRrX2w6YnUI5VZB4QWrQyi33OeLrA6hXHv4zadMa/vZbpP83vfp96aUYiTX\nx9RZuLt27dKWLVvkcrkUGRmp/Px8dejQgWFcAIDtmZZAp0yZIo/Ho8TERIWHh8vtdmvTpk367LPP\nlJaWZla3AACbsWtNZVoC3b9/v954440S2+677z4NGDDArC4BADZk18XkTZuF6/F4tGPHjhLbtm3b\n5nNlBwAA7MC0CvS5555Tenq6UlNTZRiGTp8+rYSEBE2fPt2sLgEANmTWUn5mM60CXbhwoRYsWKA5\nc+YoNDRUt99+u/7973/r7NmzZnUJALAhh8Ph98tKplWgR48elSTNmjVLixYtUkxMjHJzc5WamnrJ\ntVEAAOzG9KexBAYGKiYmRpJUs2ZNeTwes7sEANhIgD1HcM0bwnW5XOrVq5eOHTumVatWqaCgQFOm\nTNGtt95qVpcAABtiCPdX3nnnHRUWFmrfvn2qUqWKHA6HGjRooD59+pjVJQAAZcbUIdyQkBA1bdrU\n+z4pKcnM7gAANmR1Jekv06+BAgBwNVwDBQCgEqECBQBYiiFcAAD8YNP8yRAuAAD+oAIFAFjKrk9j\nIYECACzFYvIAAFQiVKAAAEvZdASXBAoAsJZdr4EyhAsAgB+oQAEAlmIhBQAA/GDT/MkQLgAA/qAC\nBQBYiiFcAAD8wOPMAACoRKhAAQCWYggXAAA/2DR/MoQLAIA/ym0F+vt76lgdQrkVdXdTq0Mo1yL/\nI9rqEMqt/RuyrQ6h3CrML7Y6hErLrkv5ldsECgCoHOx6DZQhXAAA/OBXBVpYWKiQkJDSjgUAUAnZ\ntAD1XYH279+/xHuPx6PevXubFhAAoHJxOBx+v6x0xQp08ODB2rZtmySpYcOG/79DUJDatGljfmQA\nAJRjV0ygS5culSRNnz5dEyZMKLOAAACVi12HcH1eA33qqaeUmZmps2fPltjeo0cP04ICAFQeFfY2\nljFjxuj48eOqX79+ifFmEigAoDLzmUCzs7O1bt26sogFAFAJ2bQA9T0Lt379+jp58mRZxAIAqIQq\n3Czci/Lz89WhQwc1aNCgxL2fFycZAQBQGflMoMOHDy+LOAAAlZRdh3B9JlCrS2QAQMVm1zzjM4HO\nmTPH++fi4mJlZ2crPj5ef/jDH0wNDACA8sxnAl22bFmJ9//+97+Vnp5uWkAAgMrFpgXo9S8mX7t2\nbeXk5JgRCwCgEqqwCymMGzeuxPuDBw+qQYMGpgUEAIAd+Eygd999t/fPDodDHTp00D333GNqUACA\nysOmBajvhRR69uypxo0by+126+zZs4qOjuZZoACAUmPXhRR8JtA1a9bo0Ucf1dGjR3X8+HGNGjVK\nb731VlnEBgCA3woLC5Wamqr+/ftr2LBhOnLkiI4cOaKBAwfq/vvv15QpU7zfXblypXr37q0BAwYo\nMzPzmtr3OYS7ePFirVq1SjfeeKMkacSIERo8eLD69Onj3xEBAPALZhWSq1atUnh4uFasWKFDhw5p\nypQpCgkJUUpKiuLj4zVp0iRt2LBBd955p5YtW6bVq1crPz9fSUlJSkhIUHBw8FXb95lAPR6PN3lK\n0k033WR52QwAqDjMyikHDhxQYmKiJCkmJkY5OTnyeDyKj4+XJCUmJmrz5s0KCAhQXFycgoKC5HQ6\nFRMTo+zsbN1xxx1Xbd9nAr3tttuUlpbmrTjfeustNWzY0GfgZ86c0fz587V161a5XC5FREQoPj5e\no0aNUvXq1X3uDwDAb9GoUSNlZmaqbdu22rVrl3Jzc0vkn/DwcLlcLrndbkVERHi3h4WFKS8vz2f7\nPq+BTp8+XSEhIXr66ac1btw4BQUFadKkST4bHjt2rJo3b67ly5fr008/VUZGhuLj45WamupzXwBA\n5eFw+P+6mt69eys8PFyDBg3Sxx9/rMaNGyswMND7udvtVmRkpJxOp1wu1yXbffFZgYaEhOiJJ56Q\nJJ0+ffqaq0eXy6VOnTp53zudTnXu3FlvvvnmNe0PAKgczBrC3bNnj+655x6NGzdOX375pY4fP66o\nqCht27ZNd999tzZt2qSWLVuqSZMmmjVrlgoLC1VQUKCcnBzFxsb6bP+KCfTMmTMaPXq0Bg4c6E2E\nkydP1g8//KB58+bphhtuuGrD1atX19y5c5WYmCin0ym3262NGzeqRo0a13kKAAC4fnXr1tVLL72k\nhQsXKjIyUmlpaXK73XrmmWdUVFSk+vXrq0OHDnI4HEpOTtbAgQNlGIZSUlKu6XZNh2EYxuU+GDNm\njGJjY/XQQw8pIODnkV7DMDRv3jwdOXJE//M//3PVhgsKCpSRkaGsrCy53W45nU41b95cSUlJqlKl\nis/Ajn6wzud3Kquou5taHUK5lnfwW6tDKLf2b8i2OoRyqzC/2OoQyrV7pz1sWtsfpM7ze99OM0eW\nYiTX54oV6DfffKMXXnihxDaHw6FRo0apS5cuPhsODQ3VoEGDFBcXJ5fLpcjISMXGxrIIAwCgBLve\n2XHdi8lL8lakV5OZmamZM2cqJiZGYWFhcrvdysnJUUpKitq2betPtwAAlBtXTKC1atXSxo0b1bp1\n6xLbN23apJtuuslnwwsXLlRGRoacTqd3W15enoYOHUoCBQB42bQAvXICfeKJJzRkyBD96U9/UrNm\nzWQYhvbs2aNNmzZp0aJFPhsuKiq65FpnaGiobUt1AIA5KtzjzOrVq6e3335bGRkZyszMlMPh0B13\n3KE1a9YoKirKZ8P9+/dXz549FRcXp4iICLlcLmVlZSk5OblUDwAAYG82zZ9XvwYaHR2txx57zK+G\n+/XrpzZt2mj37t3eWbgjR468puQLAEB559ckomu1a9cubdmyxTsLNz8/33vPDQAAUiWbhXstpkyZ\nIo/Ho8TERIWHh8vtdmvTpk367LPPlJaWZla3AACUiWtKoKdPn1ZWVpYCAwMVHx+vatWq+dxn//79\neuONN0psu++++zRgwAD/IgUAVEg2LUB9Lyb/7rvvqlu3bnr//ff1zjvvqEuXLtq4caPPhj0ej3bs\n2FFi2/bt230+Xw0AULk4Ahx+v6zkswJdsGCB3nnnHdWsWVOSdOzYMY0YMeKS+0N/7bnnnlN6erpS\nUlJkGIYCAgJ0++23a9q0aaUTOQCgQrBrBeozgTqdzhILwNeqVeuaqsg6depowYIFvy06AADKKZ8J\ntEGDBnrooYfUu3dvBQYG6sMPP1R0dLTWrFkjSerRo8dl90tOTlZRUdFlP1u+fPlvCBkAUJFU2Fm4\nhmEoOjpa//jHPyRJVatWVdWqVfX5559LunICHTNmjCZMmKB58+aVeIApAAAVgc8Emp6eLkn68ccf\nr2n27UXNmjVT9+7dlZ2drXbt2vkfIQCgQrNpAep7Fu6+ffvUoUMHde/eXbm5uWrXrp327t17TY0/\n+OCDJE8AwFU5HA6/X1bymUCnTZumefPm6YYbblDNmjU1efJkTZo0qSxiAwBUAg6H/y8r+Uyg58+f\nV/369b3vExISVFhYaGpQAACUdz6vgd5www3at2+ft1R+7733rutaKAAAV2V1Keknnwl08uTJeuqp\np7R//37Fx8erbt26euGFF8oiNgAAyi2fCbSgoEAZGRk6d+6cPB6PnE6ndu3aVRaxAQAqAasnA/nr\nigk0KytLHo9HEyZMUFpamgzDkCQVFxdr8uTJWr9+fZkFCQCouGyaP6+cQLds2aJt27bp5MmTeuml\nl/5/h6Ag9e/fv0yCAwBUfFYvCu+vKybQ0aNHS5LWrFlzxdWGAACorK56G8unn36quLg4SdKGDRs0\nYsQIzZkzR8XFxWUSHACg4qtw94G++uqrmjt3rgoKCrRv3z6NGTNG9913n9xut2bMmFGWMQIAUO5c\ncQj33Xff1YoVK1S1alW98MILatOmjfr27SvDMNSpU6eyjBEAUIHZdRbuFStQh8OhqlWrSpI+//xz\ntWrVyrsdAIDSYtch3CtWoIGBgfrpp5907tw5ff3110pISJAkHTt2TEFBPm8fBQDgmti1MLtiJnz4\n4YfVo0cPFRcXq0+fPoqOjtYHH3ygWbNmaeTIkWUZIwAA5c4VE2iHDh3UvHlznTlzRg0bNpQkhYeH\na/r06WrRokWZBQgAqNhsWoBefSm/mjVrqmbNmt73rVu3Nj0gAADsgIuZAABLVbhroFb74dvTVodQ\nbgWF7bM6hHLtpruaWR1CuVXvfIHVIZRbmX/7l9UhVF4+n0xdPpXbBAoAqBzsWoHaNO8DAGAtKlAA\ngKVsWoBSgQIA4A8qUACApex6DZQECgCwlE3zJwkUAGAxm2ZQroECAOAHKlAAgKUcAVSgAABUGlSg\nAABL2fQSKAkUAGAtbmMBAMAPNs2fXAMFAMAfVKAAAGvZtASlAgUAwA9UoAAAS9n1PlASKADAUmaN\n4BYXF+upp57SsWPHFBQUpKlTp2ru3Lk6deqUDMPQsWPH1Lx5c82cOVMrV67UihUrFBwcrBEjRuje\ne+/12T4JFABgLZMy6MaNG+XxeLR8+XJt2bJFs2fP1pw5cyRJP/30k4YMGaKnn35ap06d0rJly7R6\n9Wrl5+crKSlJCQkJCg4Ovmr7XAMFAFRIMTExunDhggzDUF5eXomEOGfOHN1///2qXr26du/erbi4\nOAUFBcnpdComJkbZ2dk+26cCBQBYyqwh3PDwcB09elQdOnTQ2bNn9corr0iSfvjhB33++ecaP368\nJMnlcikiIsK7X1hYmPLy8ny2TwUKAKiQlixZolatWmn9+vV677339NRTT6mwsFDr1q1Tly5dvCsg\nOZ1OuVwu735ut1uRkZE+2zetAj1z5ozmz5+vrVu3erN7fHy8Ro0aperVq5vVLQDAZsyahVutWjUF\nBf2c5iIiIlRcXCyPx6OtW7fq0Ucf9X6vadOmmj17tgoLC1VQUKCcnBzFxsb6bN+0BDp27Fh1795d\njz32mMLDw+V2u7Vx40alpqZqyZIlZnULALAZs9bCvThJaNCgQSouLlZqaqqqVKmiQ4cOqXbt2t7v\nRUVFKTk5WQMHDpRhGEpJSVFISIjP9k1LoC6XS506dfK+dzqd6ty5s958802zugQA2JFJ10DDwsI0\ne/bsS7avXbv2km19+/ZV3759r6t90xJo9erVNXfuXCUmJsrpdHor0Bo1apjVJQAAZca0BPr8888r\nIyNDixYtktvtltPpVPPmzTVjxgyzugQA2BCPM/uV0NBQDRo0SHFxcXK5XIqMjFRsbOw1jSsDAFDe\nmZZAMzMzNXPmTMXExCgsLExut1s5OTlKSUlR27ZtzeoWAGAzVKC/snDhQmVkZMjpdHq35eXlaejQ\noSRQAMD/s+mKBKYl0KKiIlWpUqXEttDQUNv+pgEAMIdd84JpCbR///7q2bOn4uLiFBERIZfLpays\nLCUnJ5vVJQAAZca0BNqvXz+1adNGu3fv9q5ENHLkSEVFRZnVJQDAhuxagZo28vzhhx8qKipKLVq0\n0Ndff62lS5dqyZIlcrvdZnUJAECZMS2BZmRkSJLS09N1ww03aMKECbr55ps1ceJEs7oEANiR4ze8\nLGT648wOHTqk6dOnS5Lq16+vjz76yOwuAQA2YtZi8mYzrQI9dOiQlixZoqCgIH311VeSpD179qio\nqMisLgFzXednAAAQnUlEQVQAduRw+P+ykGkJ9JVXXlF4eLj3yd55eXmaNm2annnmGbO6BACgzJg2\nhNuoUSM1atSoxOr2K1euNKs7AIBN2XQSrnkJNDk5+YrDtcuXLzerWwAAyoRpCXTMmDGaMGGC5s2b\np8DAQLO6AQDYnF3vAzUtgTZr1kzdu3dXdna22rVrZ1Y3AAC7s+ksXFNvY3nwwQfNbB4AUAHYtQK1\n6Rr4AABYy/SFFAAAuCp7FqBUoAAA+IMKFABgKbteAyWBAgAsZde1cEmgAABrUYECAHD97DqEyyQi\nAAD8QAIFAMAPDOECAKxlzxFcEigAwFrMwgUAwB82nUREAgUAWIpZuAAAVCIkUAAA/MAQLgDAWkwi\nAgDg+tn1GigJFABgLXvmz/KbQO//n79YHUK59WJSktUhlGsF731tdQjl1vn8YqtDKLdyz7itDqHS\nsmsFyiQiAAD8QAIFAMAP5XYIFwBQSTALFwCA62fXa6AkUACAtUigAABcP7tWoEwiAgDADyRQAAD8\nwBAuAMBazMIFAOD62fUaKAkUAGAtEigAANfPYdMhXCYRAQDgBypQAIC1bDqESwUKAKiQiouLlZqa\nqgEDBuj+++/Xt99+6/1s7dq1GjBggPf9ypUr1bt3bw0YMECZmZnX1D4VKADAUmbNwt24caM8Ho+W\nL1+uLVu2aNasWZozZ46++uorvf32297vnTp1SsuWLdPq1auVn5+vpKQkJSQkKDg4+KrtU4ECAKzl\ncPj/uoqYmBhduHBBhmEoLy9PwcHBOnv2rGbPnq3x48d7v7d7927FxcUpKChITqdTMTExys7O9hk2\nFSgAwFJmzcINDw/X0aNH1aFDB509e1YLFizQ+PHjNXbsWIWEhHi/53K5FBER4X0fFhamvLw8n+2T\nQAEAFdKSJUvUqlUrPf7448rNzVXr1q1Vp04dTZ48WQUFBTp48KDS09PVokULuVwu735ut1uRkZE+\n2yeBAgCsZdI10GrVqiko6Oc0FxERoVq1amnt2rUKDQ3VsWPHlJqaqnHjxunUqVOaPXu2CgsLVVBQ\noJycHMXGxvpsnwQKAKiQhgwZoqefflqDBg3yzsgNDQ295HtRUVFKTk7WwIEDZRiGUlJSSgzxXonD\nMAzDjMDPnDmj+fPna+vWrd7x5fj4eI0aNUrVq1f3uX/Tuq3NCKtCeDEpyeoQyrWCwgtWh1Bunc8v\ntjqEcuvY976veVVmj62aYFrbP+ze4fe+NzWNL8VIro9ps3DHjh2r5s2ba/ny5fr000+VkZGh+Ph4\npaammtUlAMCGHA6H3y8rmZZAXS6XOnXqJKfTKYfDIafTqc6dO6uwsNCsLgEAdhTg8P9lIdOugVav\nXl1z585VYmKinE6n3G63Nm7cqBo1apjVJQAAZca0BPr8888rIyNDixYtktvtltPpVPPmzTVjxgyz\nugQA2JDDYc81fUxLoKGhoRo0aJDi4uLkcrkUGRmp2NjYa5rZBABAeWdaAs3MzNTMmTMVExOjsLAw\nud1u5eTkKCUlRW3btjWrWwCA3dj0aSymJdCFCxcqIyNDTqfTuy0vL09Dhw4lgQIAvKyeTesv0xJo\nUVGRqlSpUmJbaGiobU8UAMAkFs+m9ZdpCbR///7q2bOn4uLiFBERIZfLpaysLCUnJ5vVJQAAZca0\nBNqvXz+1adNGu3fv9s7CHTlypKKioszqEgBgQ3YdmTR1Ldxdu3Zpy5Yt3lm4+fn56tChg21PFgAA\nF5mWQKdMmSKPx6PExESFh4fL7XZr06ZN+uyzz5SWlmZWtwAAu7FpUWVaAt2/f7/eeOONEtvuu+8+\nDRgwwKwuAQB2ZNOFFEyL2uPxaMeOkivsb9++XcHBwWZ1CQCwIUeAw++XlUyrQJ977jmlp6crNTVV\nhmEoICBAjRo10oQJ5j0SBwCAsmJaAj1w4ID27dun4OBgPf744+rcubMkafDgwVq6dKlZ3QIA7IZr\noCUtXLhQ7777ri5cuKDHHntMhYWF6tmzp0x6fjcAAGXKtAQaHBysyMhISdL8+fM1ZMgQ3XLLLdzC\nAgAowa55wbRJRLVq1VJ6errOnTsnp9OpuXPnaurUqcrJyTGrSwCAHTkC/H9ZyLTen332Wd12223e\n3yxuueUWLV26VB07djSrSwCADTEL99cNBwWpV69eJbZFRUVp/PjxZnUJAECZMXUpPwAAfOIaKAAA\nlQcVKADAUnadhUsCBQBYy6Zr4ZJAAQDWsng2rb/smfYBALAYFSgAwFJ2vQZKBQoAgB+oQAEA1mIS\nEQAA18+uQ7gkUACAtWxagdozagAALEYFCgCwlNVPVfEXFSgAAH6gAgUAWItJRAAAXD+HTScRkUAB\nANayaQXqMAzDsDoIAADsxp51MwAAFiOBAgDgBxIoAAB+IIECAOAHEigAAH4ggQIA4IdKdR+oYRia\nPHmysrOzFRISorS0NNWuXdv7+SeffKL58+crKChIvXv3Vt++fa+4z5EjRzR27FgFBAQoNjZWkyZN\nkiSlpaVp586dCg8PlyTNnz9fTqfTkuP1V2mep4vS09NVr1499e/f34pDKlWleX6+/vprDR8+XDEx\nMZKkpKQkdezY0aIjK13+nKeL/vWvf+mFF17QsmXLrAjddP6em169enn/Pfnd736nZ5991pL48X+M\nSuSjjz4yxo4daxiGYezatct45JFHvJ8VFRUZ7dq1M/Ly8ozCwkKjd+/exunTp6+4z4gRI4zt27cb\nhmEYEydONP7+978bhmEYSUlJxpkzZ8rysEpdaZ6n06dPGw8++KDRrl07Y/ny5WV/MCYozfOzcuVK\nY/HixWV+DGXBn/NkGIaxaNEio0uXLkb//v0tibss+HNuCgoKjJ49e1oVMi6jUg3hZmVlqVWrVpKk\nZs2a6csvv/R+dvDgQdWtW1dOp1PBwcGKj4/Xtm3bLtln7969kqS9e/cqPj5ekpSYmKitW7fKMAwd\nPnxYEydOVFJSkt5+++0yPsLSUZrn6dy5cxo9erS6detW9gdiktL+OcrMzNT999+v8ePH69y5c2V/\nQCa5nvMUFxen7du3S5Lq1q2refPmWRJzWfHn3Ozbt0/nzp3TsGHDNHToUP3rX/+yKnz8n0qVQF0u\nlyIiIrzvg4KC5PF4LvtZWFiY8vLy5Ha7S2wPDAzUhQsXZPxiAafw8HDl5eXp/PnzSk5O1vPPP6+/\n/vWv+tvf/qZvvvmmDI6sdJXWefJ4PPrd736npk2bll3wZaA0z0+zZs305JNP6o033lDt2rX18ssv\nl92BmOx6ztPF/4ckqV27dgoMDCzbYMuYP+ematWqGjZsmF599VVNnjxZY8aM8e4Da1SqBOp0OuV2\nu73vPR6PAgICvJ+5XC7vZ263W9WqVbvsPoGBgd79Ln43MjJSVatWVXJyskJDQxUeHq6WLVtq3759\nZXBkpau0ztMvz1FFUprnp23btrr99tsl/Zw47PjzciXXe54iIyPLPEar+HNu6tat6x3JiYmJ0Q03\n3KDvv/++bANHCRXzX7gruOuuu7Rx40ZJ0q5du9SgQQPvZ/Xr19fhw4f1008/qbCwUDt27NCdd96p\n5s2bX3af22+/3TvktGnTJsXFxSknJ0dJSUkyDENFRUXKyspS48aNy/gof7vSPE8VUWmen2HDhmnP\nnj2SpK1bt9ry5+VKruc8bd++XXfeeWeJ/Y0KvEy3Pz9Db7/9tp577jlJUm5urtxut2rUqGFJ/PhZ\npVpM3vjFzDfp55mhe/fu1fnz59W3b19lZmZq7ty5MgxDffr08SbDX+/zH//xHzp06JCeeeYZFRUV\nqX79+po+fbocDodee+01ffDBBwoODlaPHj1sOeu0NM/TRXPnzlWNGjVseT5+rTTPz9dff62pU6cq\nODhYNWrU0NSpU70zuO3On/N00bFjx5Samqrly5dbFb6p/Dk3RUVFGjdunI4fP66AgACNGTPmkl86\nULYqVQIFAKC0VKohXAAASgsJFAAAP5BAAQDwAwkUAAA/kEABAPADCRQAAD+QQFEhbdu2TcnJyWXW\n38mTJzV8+PDf3M62bdvUvHlz9ezZUz169FDXrl3Vtm1bn/dDulwujRw58jf3D+DaVarHmaFycTgc\nZdZXdHS0XnnllVJpq0mTJlq6dKn3/b59+9SnTx917dr1iossnD17tkItAwjYAQkUlc5f/vIXrVu3\nTh6PR3/60580ZswYSdKsWbP0z3/+Uz/++KNuvPFGzZ07V9WrV1fLli11xx136PTp03riiSf06quv\nqkqVKjp48KBuu+02zZw5U7m5uUpOTtYnn3yicePGyel0au/evcrNzdXIkSPVq1cvuVwuPfnkk/r3\nv/+tWrVqKTc3V/PmzdOtt9561XiPHj2qsLAwhYSEyOVyafz48crNzdXJkyf1hz/8QTNmzFBaWppO\nnjyp0aNH6+WXX9aaNWu0dOlSGYahxo0ba+LEiQoJCSmL0wtUGgzholL5xz/+ob179+rtt9/W6tWr\n9d1332nt2rU6cuSIvv32W61YsULr1q1TnTp1tHbtWkk/V3cjRozQ6tWrFRQUpC+++EKTJk3SunXr\ndPz4cX322WeSSla8ubm5+tvf/qYFCxZoxowZkn5ezrBevXpau3atRo0adcUn9ezZs0c9e/ZU+/bt\n1bJlS61du1aLFy9WcHCwNm7cqNtvv13Lly/X+vXr9cUXX+irr77ShAkTFB0drZdfflkHDhzQqlWr\ntHz5cq1evVo33XSTXn31VZPPLFD5UIGiUtmyZYv27NmjXr16yTAMFRQUqFatWurataueeuoprVy5\nUt9++6127dqlOnXqePf75SPZGjRooOjoaEk/L/x99uzZS/pJSEjwfvenn37y9j1z5kxJ0h133KHb\nbrvtsjFeHMItKirSk08+qdDQUO8i8507d9bu3bv1+uuv6+DBg/rxxx917tw5VatWzbv/559/rsOH\nD6t///4yDEPFxcXeJ74AKD0kUFQqHo9HgwcP1tChQyX9PPkmMDBQe/fuVUpKiv7rv/5LHTp0UEBA\nQImngfxy+POXf77SddbQ0NBLtl18BuhFvpahDg4O1rRp09S+fXt98MEH6tSpk5YtW6aPPvpIAwYM\nUEJCgvbv339JOxcuXFDHjh01fvx4SdL58+d14cKFq/YF4PoxhIsK63IJqmXLlnrvvfd07tw5FRcX\n65FHHtH69eu1fft2tWjRQv3791e9evW0efPmUntY8cU4/vjHP+r999+XJGVnZ2v//v0+Jzo5nU6N\nHj1aL7zwggoKCrRlyxYNGDBAnTt3lmEY2rdvny5cuKCgoCBvkrz77ru1YcMG/fDDDzIMQ5MmTdKS\nJUtK5VgA/D8qUFRYO3fu1F133SXDMORwONStWzdNnjxZ+/btU79+/eTxeJSYmKgePXooNzdXo0eP\nVvfu3RUUFKSGDRvq6NGjkn77bN6L+z/yyCN6+umn1b17d9WpU0c1atS4bKX6a3379tWyZcu0ePFi\nDR06VJMmTdKrr76q8PBw3XXXXTp69Kji4+N18803a8iQIXr99df16KOPasiQITIMQ40aNdLDDz/8\nm44BwKV4nBlQRt577z3Vrl1bzZs314kTJ5ScnKwNGzZYHRYAP1GBAmWkXr16mjRpkjwejwIDAzVt\n2jSrQwLwG1CBAgDgByYRAQDgBxIoAAB+IIECAOAHEigAAH4ggQIA4AcSKAAAfvhffJNGUpO9Oh4A\nAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x12af33668>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "grid_search_heatmap(costs, [250,500,1000,1500,2000], [.05, .01, .005, .001, .0005])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This heatmap shows a stronger pattern than the map for model 1. It shows the optimal to be centered around 1500 steps and a learning rate of 0.005, with somewhat constant cost increase as the two parameters grow greater or smaller than thoses values.\n", "\n", "There is, however, still an abnormality with very high step count and very low learning rate, once again presumably due to overtraining. This may be something that could be fixed by changing the batch size for the tensorflow estimator function, but this grid search already took about 10 hours to run, so adding a 3rd parameter is not feasible with the compute power available to us." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##### Calculating Costs and Area under ROC Curve Scores for the Model\n", "\n", "With the optimal step count and learning rate, the costs of the model built with the given step count and rate are computed." ] }, { "cell_type": "code", "execution_count": 69, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[2042.75, 2007.5, 2017.0, 1978.0, 2069.25, 2021.75, 1974.0, 2048.25, 2027.0, 2041.25]\n", "[0.5085592, 0.4820538, 0.48592543, 0.48381174, 0.47515301, 0.475777, 0.47903248, 0.48797259, 0.47638676, 0.4891856]\n" ] } ], "source": [ "costs_model_2, auc_roc_model_2 = get_scores_for_model(deep_model_2, X, y, optimal_steps, optimal_rate)\n", "\n", "print(costs_model_2)\n", "print(auc_roc_model_2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The costs and auc scores computed above are hard-coded below for later use, so that they don't need to be computed again." ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [], "source": [ "costs_model_2 = [2042.75, 2007.5, 2017.0, 1978.0, 2069.25, 2021.75, 1974.0, 2048.25, 2027.0, 2041.25]\n", "auc_roc_model_2 = [ 0.5085592, 0.4820538, 0.48592543, 0.48381174, 0.47515301, 0.475777, 0.47903248, 0.48797259, 0.47638676, 0.4891856]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Third Deep Learning Architecture\n", "\n", "Due to the poor performance of the two architectures we used in the previous two deep models, we have elected to build our own model to test on the data. This third deep learning architecture was primarily the product of trial and error. Many different cofigurations of layers and activation functions were tried, and in the given time, this the setup that resulted in the lowest cost for the model. \n", "\n", "We explored a number of different architectures, of varying complexity, including an LSTM network from TensorFlow, and we discovered that, generally speaking, simple networks which look like just a multi-layer perceptron seem to provide the lowest cost. We tuned the sizes of the hidden layers with trial and error, and we discovered that the network shown below is the most efficient. \n", "\n", "Note that the team embeddings are not shown in the main drawing, as they are computed using a very small network prior to the main MLP. Interestingly, we found that the smallest networks were the best for the team embeddings. We beleive that this is due to overlearning that may occur if the embeddings have too much weight in the overall network architecture.\n", "\n", "The architecture consists of 6 fully connected layers. The first 3 layers have 1000 nodes, followed by a 500 node layer, a 200 node layer, and another 1000 node layer. This is followed by a relu activation function. The output of this network is then used for classifcation.\n", "\n", "<img src=\"NetworkDrawings/network3.png\">\n" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false, "scrolled": false }, "outputs": [], "source": [ "def deep_model_3(X, y):\n", "\n", " #Embeddings layer\n", " teamembeddings = layers.stack(X[:,11:75], layers.fully_connected, [20,4])\n", " #teamembeddings = tf.nn.relu(teamembeddings)\n", " \n", " #Non-embeddings features\n", " otherfeatures = X[:,0:10]\n", "\n", " #Concatenate the embeddings with the non-embeddings\n", " tensors = tf.concat(1, [teamembeddings, otherfeatures])\n", " \n", " #[500,200,100,500][1000,1000,1000,500,200,1000]\n", " tensors = layers.stack(tensors, layers.fully_connected, [1000,1000,1000,500,200,1000])\n", " \n", " #Relu activation function\n", " tensors = tf.nn.relu(tensors)\n", "\n", " pred, loss = learn.models.logistic_regression(tensors, y)\n", " \n", " return pred, loss" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##### Grid Searching on the Model\n", "\n", "A grid search is performed on the model to find the approximately optimal step count and learning rate for the TensorFlowEstimator." ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(2000, 0.005)\n" ] } ], "source": [ "costs, optimal_steps, optimal_rate = grid_search(deep_model_3, [250,500,1000,1500,2000], [.05, .01, .005, .001, .0005])\n", "print((optimal_steps, optimal_rate))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Although the grid search returned the optimal step count and rate, it is meaningful to visualize the grid that was generated, to get an idea for how much better these particular hyperparameters are than the other possible combinations in the grid." ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdEAAAFvCAYAAAAVA/GeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtYlHX+//HnDCcVFB0UzFJzrXS/2mxKrgci0xANN10T\nD5uCJbVZqW0XecwOu5onVk1bXOub5qodwVUpFTbXdNs0dQMxLDttB0XFgRAVUU7z+8Nf8w0BsYmb\nm4HXo2uui7ln7s/nfd+XV+95f+7P/bktTqfTiYiIiPxkVrMDEBER8VRKoiIiIm5SEhUREXGTkqiI\niIiblERFRETcpCQqIiLiJiVRqRfWrVvH8OHDGTp0KIMHD+ahhx7i8OHD1X5/xowZ7Nq1q9L2nJwc\nunbtWuU+R48e5eGHH2bIkCEMGTKEe+65hx07dtTWIVzRrFmzWLVqVY3f27RpE/fff3+l7TExMbz9\n9ttu919cXMzmzZvd3l9EquZtdgAiS5cuZf/+/axZs4agoCCcTidvvfUWEydOJDU1lVatWlXaZ9Gi\nRdW2Z7FYqtz+xBNP8Nvf/pa//vWvABw6dIgJEyaQmppKSEhI7RxMLagu/p/jk08+YcuWLfz2t7+t\n9bZFGjNVomKqgoIC1q1bR0JCAkFBQcClJDJmzBjee+89VwKNiYlh2bJlDB06lIMHD1aozJKTkxk4\ncCDDhg1jy5Yt1fb1+eef86tf/cr13m63k5aW5kqgO3bs4O6772bQoEHExcVx+vRpAC5cuMAf/vAH\nhgwZQkRERIUEfnlc+fn5TJo0iYiICIYPH84HH3zg+u7p06f5/e9/z4ABA3jggQc4f/68W+csJyeH\nSZMmMXjwYIYMGcK//vUv12dJSUlERUUxePBgYmJiOHHiBHl5eUyePJmDBw8yfvx4ALp27UpSUhJ3\n3303AwYM4MMPPyQ+Pp6BAwfy4IMPUl5eDsA///lP7r77boYMGcLIkSM5cuQIcKli/v3vf8/06dMZ\nNGgQd999N999951bxyPiyZRExVQHDx6kXbt2tG/fvtJnzZo1q/D+k08+YevWrdxyyy2ubWfOnOG5\n555j9erVpKSkcOrUqWr7uv3225kyZQrr16/nq6++AiA4OBi4NNQ7Y8YMnn/+ed5991169+7N008/\nDcDrr79OUVERqampbNq0iU2bNpGenl5lXEuWLOHGG29kx44dLFy4kPj4eEpKSgD44IMPWLJkCf/8\n5z/Jy8tzeyh5xowZdOvWjbS0NP73f/+XadOmUVBQwPfff8+8efNYu3YtaWlptG/fnpUrVxIUFER8\nfDw9evRgw4YNrnZOnz7N22+/zZAhQ5g6dSqPPfYYqampfP755+zfv5+ysjJmz57Nc889R2pqKgMH\nDmTx4sWu/ffs2cP48eN59913ufPOOyt8JtJYKImKqc6cOYPNZnO9P3v2LHfddRdRUVH079+f1atX\nuz7r379/pf0zMzPp1KkTnTp1AmDEiBHV9pWQkMD48eN55513GDZsGHfeeSdvvPEGAO+//z69e/em\nc+fOAIwZM4adO3fidDq5//77SUxMBKB58+bceOONHD16tMq4du/ezdChQwH45S9/yc6dO/Hx8XF9\nr3nz5litVm688UZOnjxZZZwZGRlERUW5XnfddRdZWVkAFBUVsW/fPiZMmABA+/btufXWW9m1axc2\nm42PPvrI9cPg1ltvrRDn5SIiIgDo0qULHTp0oEOHDvj6+tKxY0dOnTqFl5cXe/bswW63AxAaGlqh\nvRtuuMH12eDBgzl48GC1fYk0VLomKqay2WwVqsfmzZuzfft2AObMmUNRUZHrs8DAwEr7FxQUEBAQ\n4HrfokWLavvy9fXl/vvv5/777+fcuXNs376d+fPn0759e86ePcuBAweIiooCwOl0EhgYSH5+PmfP\nnmXBggV8/fXXWK1WTp48yciRI6uMKz8/v0IMP66mfxynl5eXa8j0cj169GDNmjUVtsXExACXfmQ4\nnU7Gjh3rirOoqIi+fftSXl7O888/z3vvvUd5eTnnzp1z/bioyg+xWa3WCnH+OLa//e1vbN68mZKS\nEi5evFjheu2Pj7tFixYUFBRU25dIQ6UkKqa65ZZbyMvL48iRI9XOqr2SFi1acPbsWdf777//vsrv\n5efn8+mnn9KvXz/gUkIbNWoU77//Pp9//jnBwcH069eP5cuXV9p32rRpdO/e3TW79ne/+1218dhs\nNvLz82nXrh0A2dnZtTppKSgoCG9vb/7+97/TpEmTCp+988477Nq1i9dee43AwECSkpJ+1ozejIwM\nXn75ZTZu3Mg111zDnj17eOqpp1yf5+fnu/4uKCio8keOSEOn4Vwxlb+/Pw8//DDTpk1zTUxxOp1s\n3bqV1NRUrr/++ivu3717d7755hvXvps2baryexcuXGDq1KkVJvp8++23HDp0iFtvvZXbbruNjz76\nyDVceejQIebPnw9AXl4ev/zlL4FL1zW//fZbCgsLq+xn4MCBrhi+/PJL7rnnnmorTnd4eXnRv39/\nXnvtNeDS8O7s2bPJyckhLy+Pa6+91lVBb9++3TV5ydvbu8KPjauRl5dHUFAQbdu2paioiE2bNlUY\nGfj6669dE41SU1O59dZba+koRTyHKlEx3QMPPEDLli2ZOnUqxcXFXLx4kU6dOvHCCy/Qt29foPJt\nHz+8t9lszJgxg/vuuw9/f39Gjx5dZR/XXHMNq1atYvny5cydOxen00lAQACzZ8/m5ptvBmDu3LlM\nnjyZ0tJS/P39mT17NgAPP/wwCxYsIDExkYiICCZPnsyKFSv4n//5n0pxPfHEE8yYMYOBAwcSEBDA\n0qVL8fX1/dnn6Mf9PPPMMzz99NMkJSVhsVgYNmwYISEh/OY3v2Hr1q0MHjyY6667jj/84Q888sgj\nLFq0iJiYGP785z8THh7O7t27r3gbzQ+f3X777bz++utERETQtm1bZs+ezaFDh5g6dSoDBgygR48e\nrF27lgMHDtCsWTPXrUMijYlFzxMVkZ9q06ZNvP3225Wu3Yo0NhrOFRERcZOSqIiIiJs0nCsiIuIm\nVaIiIiJuqtezcyO7jzI7hHqrs62d2SHUawdPfGF2CPWWj5eP2SHUW6eLTpsdQr126NvdhrVt71h5\nRbKrZWRcNVElKiIi4qZ6XYmKiEjjYMQjAOuCkqiIiJjOYvHMgVHPjFpERKQeUCUqIiKms6LhXBER\nEbd46jVRDeeKiIi4SZWoiIiYzuqhE4uUREVExHQazhUREWlkVImKiIjpLJqdKyIi4h5PvSbqmVGL\niIjUA6pERUTEdJ46sUhJVERETGf10CSq4VwRERE3qRIVERHTWTy0plMSFRER03nqNVHPTP0iIiL1\ngCpRERExnadOLFISFRER03nqikUazhUREXGTKlERETGdpy77Z2gSPXPmDOnp6TgcDgCCg4MJDQ0l\nICDAyG5FRMTDaHbuZZKTkxk3bhzvvfcex48fJzs7m9TUVKKjo9m6datR3YqIiNQZwyrRpKQkkpOT\n8fPzq7C9sLCQuLg4hg4dalTXIiLiYTQ79zJlZWWUlpZWSqJOp5Py8nKjuhUREQ/kqbNzDUuisbGx\njBw5Ervdjs1mA8DhcJCVlUV8fLxR3YqIiNQZw5LosGHDGDRoEJmZmeTm5gIQEhKC3W6vVJ2KiEjj\n5qmzcw2Levfu3TRt2pQ+ffoQFhZGRkYGK1asYPHixXz//fdGdSsiIh7IYrG4/TKTYUl09erVrr/n\nzZtH27ZtefbZZ+ncuTOzZ882qlsREZE6UyeLLeTm5vLggw8C0LlzZ7Zv314X3YqIiIfQ7NzL5Ofn\ns3v3bpxOJz4+Phw5coSuXbty9OhRioqKjOpWREQ8kGbnXqZ79+6kpqZSXl5OmzZtOH36NAAJCQmM\nHz/eqG5FRETqjGHXRAcOHMiHH37Irl27KC8vp3v37gCsWLGCv//970Z1KyIiHkgTiy7z0ksvsWnT\nJvbu3UvPnj2Ji4vj7NmzwKUFF0RERH5gtVjcfpkat1ENe3l50bJlS6xWK2PGjOHBBx8kLi6O77//\n3vRfDiIiIrXBsGuiPXv25KGHHmL58uU0adKEiIgI/Pz8uO+++1zXR0VEREATiyqZPn06+/btq7A6\nUXh4OD169GDbtm1GdSsiIh7IU1csMvQ+0d69e1faFhAQwOjRo43sVkREpE7UyWILIiIiV+Kpc2WU\nREVExHRmz7J1l2cOQouIiNQDqkRFRMR0mp0rIiLiJg3nioiINDKqREVExHSanSsiIuImDeeKiIg0\nMqpERUTEdJqdKyIi4iYN54qIiDQyqkRFRMR0njo7V5WoiIiYzmqxuP26kvPnzzNlyhRiY2P53e9+\nx7///W/XZ++//z5du3Z1vU9JSSE6OpoxY8aQnJx8VXGrEhURkQZr06ZN/OIXv+Dxxx/n1KlTTJgw\nge3bt1NcXMxLL71EcHAwAEVFRaxcuZKNGzfi7e1NdHQ0kZGRtGjR4ortqxIVERHTWX7Gf1fSqlUr\n8vPzASgoKMBmswGwatUqxo8fj4+PDwCZmZnY7Xb8/f3x8/OjZ8+epKen1xi3kqiIiJjOqOHcqKgo\njh8/TmRkJDExMcyYMYNvvvmGzz77jMGDB7u+l5ub60qwADabDYfDUWPcGs4VEZEGKyUlhXbt2vHy\nyy/z2WefMXv2bFq3bs2cOXMAcDqdVe5X3fbLqRIVERHTWSwWt19Xkp6eTnh4OABdunTh8OHDfPXV\nV0ybNo0xY8bgcDiIiYkhJCSkQuWZk5Pjul56JUqiIiJiOqOGczt27MjBgwcByM7O5vrrr2fHjh28\n8cYbvPnmm7Rp04b169djt9vJysri3LlzFBYWkpGRQWhoaI1xazhXREQarDFjxjB79mxiYmIoKyvj\nj3/8Y4XPf6hk/fz8iI+PZ+LEiVitVqZMmUJAQECN7VucVzvwa4JPXn7T7BDqrWdXpZkdQr0Wel0H\ns0Oot1I/yzQ7hHqruZ+/2SHUaykHNxjW9sO3P+b2vn/91/JajOSnUSUqIiKm89QF6HVNVERExE2q\nREVExHRWzyxElURFRMR8WoBeRESkkVElKiIipvPUh3IriYqIiOk0nCsiItLIqBIVERHTWT30PlEl\nURERMZ2Gc0VERBoZVaIiImI6zc4VERFxk4fmUA3nioiIuEuVqIiImE7DuSIiIm7So9BEREQaGVWi\nIiJiOk+9T1RJVERETKdroiIiIm7y0Byqa6IiIiLuUiUqIiKm89ThXFWiIiIibjK0Ej1z5gzp6ek4\nHA4AgoODCQ0NJSAgwMhuRUTEw+g+0cskJyczbtw43nvvPY4fP052djapqalER0ezdetWo7oVEREP\nZLVY3H6ZybBKNCkpieTkZPz8/CpsLywsJC4ujqFDhxrVtYiIeBgPvSRqXCVaVlZGaWlppe1Op5Py\n8nKjuhUREakzhlWisbGxjBw5Ervdjs1mA8DhcJCVlUV8fLxR3YqIiAfSikWXGTZsGIMGDSIzM5O8\nvDzg0sQiu91eaYhXRETEExmWREtKStiyZQt79uzh1KlTAISEhBAeHs6IESPw8vIyqmsREfEwZk8Q\ncpdhSXT69Ol06NCBiRMnEhQUhNPpJCcnh7S0NGbNmsXixYuN6lpERDyMh+ZQ45Kow+Fg2bJlFbZ1\n6NCBXr16MX78eKO6FRERD+Splahhs3MtFgv/+Mc/KCkpcW0rLi4mJSUFX19fo7oVERGpM4ZVogkJ\nCSxfvpxFixZx4cIFSktLOXPmDPfccw+LFi0yqlsREfFAWrHoMi+//DILFizgn//8JwkJCTRr1ozu\n3buzd+9ejhw5YlS3IiIidcawSvSzzz5z/Z2YmMi6deto3749DoeDyZMnEx4eblTXIiLiYXSf6GV+\nfEICAwNp3749AG3atMHbW09gExGR/2P1zBxqXBL94osveOyxx3A6nXz77bds376du+66izVr1tC8\neXOjuhUREQ+kSvQyy5cvr/C+Y8eOwKVKdMmSJUZ1KyIiUmcMS6K//vWvq9x+9913G9WliIh4KFWi\nIiIibvLUa6KG3eIiIiLS0KkSFRER02k4V0RExE0emkM1nCsiIuIuVaIiImI6T32Ki5KoiIiYTgvQ\ni4iINDKqREVExHQeOpqrJCoiIubz1GuiGs4VERFxkypRERExnVGLLZw/f54ZM2ZQUFBASUkJjz76\nKDfccAPTpk3D6XTSpk0bFi9ejI+PDykpKaxbtw4vLy9GjRpFdHR0je0riYqIiOmMGs3dtGkTv/jF\nL3j88cc5deoUEyZM4JZbbmH8+PEMHjyYZcuWsXHjRoYPH87KlSvZuHEj3t7eREdHExkZSYsWLa7Y\nvoZzRUSkwWrVqhX5+fkAFBQUYLPZOHDgAAMHDgRgwIAB7Nmzh8zMTOx2O/7+/vj5+dGzZ0/S09Nr\nbF9JVERETGexWNx+XUlUVBTHjx8nMjKSmJgYpk+fTlFRET4+PgAEBQVx6tQp8vLysNlsrv1sNhsO\nh6PGuDWcKyIipjPqUWgpKSm0a9eOl19+mc8++4xZs2ZV+NzpdFa5X3XbL6dKVEREGqz09HTCw8MB\n6NKlCw6Hg6ZNm1JcXAxATk4OISEhBAcHV6g8c3JyCA4OrrF9JVERETGdUcO5HTt25ODBgwBkZ2fj\n7+9Pv379SE1NBSAtLY3w8HDsdjtZWVmcO3eOwsJCMjIyCA0NrTFuDeeKiIjpjJqdO2bMGGbPnk1M\nTAxlZWX86U9/olOnTsyYMYO33nqLdu3aMWLECLy8vIiPj2fixIlYrVamTJlCQEBAje0riYqISIPV\nrFkznn/++Urb16xZU2lbZGQkkZGRP6n9ep1Erx/ax+wQ6q0FAb5mh1Cv7X33v2aHUG/179TN7BDq\nrU9PnTA7hEbLU5f9q9dJVEREGgejViwymiYWiYiIuMmtSvTChQs0adKktmMREZFGykML0Zor0bi4\nuErbxo0bZ0gwIiLSOBl1i4vRqq1EU1JSSExM5Pjx49xxxx2u7SUlJbRu3bouYhMREanXqk2iw4YN\nY+jQoTz55JNMmTLFtd1qtV7VKg4iIiJXy1OHc694TdTLy4uFCxdy5MgRTp8+7VpL8JtvvqFv3751\nEqCIiDR8DfYWl6lTp/Lpp5/Stm1b1zaLxaIkKiIijV6NSfTYsWO8++67dRGLiIg0Uh5aiNacRDt1\n6kRxcTG+vlohR0REjGH2LFt31ZhErVYrQ4cOxW634+Xl5dq+ePFiQwMTERGp72pMov369aNfv351\nEYuIiDRSHlqI1pxEb7311rqIQ0REGrEGO5w7YcIELBYLTqeTkpIS8vPzueGGG9i8eXNdxCciIlJv\n1ZhEd+7cWeH9F198QXJysmEBiYhI4+OhhehPX4D+xhtv5PDhw0bEIiIijVSDXWxh+fLlFd6fPHmS\nM2fOGBaQiIiIp6gxif74thaALl268Ic//MGwgEREpPHx0EK05iQ6efJkzp8/z9dff43FYqFTp040\nbdq0LmITEZFGosHOzt2xYwfPPvssbdu2pby8nNzcXObOnUv//v3rIj4REZF6q8Yk+vLLL5OSkoLN\nZgMgJyeHxx577Ccl0dLS0kudef/keUwiItIIeGghWnMS9fHxcSVQgJCQEHx8fGps+NixYyxZsoT0\n9HSsVivl5eUA9O7dm/j4eEJCQn5G2CIi0pA02OFcf39/1qxZ41r67/3338ff37/GhmfNmsWkSZNY\nunSp6+SUlpayc+dOZs6cySuvvPIzQxcRETGXtaYvPPfcc3zzzTfMnDmTWbNmkZ2dzfz582tsuKys\njLCwsAq/Lry9vYmMjOTixYs/L2oREWlQLBb3X2a6YiVaXl5OUFAQf/rTn1zbSkpKrmo4t127dsyd\nO5eIiAjXcHBubi6pqal07NjxZ4YtIiINSYMbzj127BgPPPAASUlJNG/eHIBDhw7x5JNP8re//a3C\nddKqLFy4kHfeeYfNmzeTm5sLQHBwMGFhYURFRdXiIYiIiJij2iS6YMECJk+e7EqgAHa7nYcffpiF\nCxfW+DxRb29vBg4cSGBgIA6HA7g0KSk0NBSrtcZRZBERaUQ8tBCt/ppobm4uv/nNbyptj4qKIjs7\nu8aGk5OTGTduHLt27eLEiRMcP36c1NRUoqOj2bp168+LWkREGhSLxeL2y0zVVqI/3NtZlaKiohob\nTkpKIjk5GT8/vwrbCwsLiYuLY+jQoT8hTBERkfqn2kq0RYsWHDp0qNL2/fv306pVqxobLisrqzIR\nO51O1z2jIiIi0ABn5z7++ONMmTKF4cOHc/PNN1NWVsZHH31EWloaGzZsqLHh2NhYRo4cid1ud01C\ncjgcZGVlER8fX3tHICIiHq/BPQrNbrezceNGNmzYwJYtW7Bardx0001s2bLlqirRYcOGMWjQIDIz\nM8nLywMuzc612+2VhnhFRKRx89AceuX7RFu3bu32Y89KSkrYsmULe/bs4dSpU8Cl2bnh4eGMGDGi\n0iPWREREPI1hK8JPnz6dDh06MHHiRIKCgnA6neTk5JCWlsasWbNqvEVGREQaD7Nn2brLsCTqcDhY\ntmxZhW0dOnSgV69ejB8/3qhuRURE6sxVrXpQUFDAoUOHOHToEOfOnbuqhi0WC//4xz8oKSlxbSsu\nLubtt9/G19fXvWhFRKRBanCzc3+wdu1a/vrXv9KpUyfKy8v57rvvmDp1Kvfee+8V90tISGD58uUs\nWrTIdV+pv78/ffv2ZeHChbUTvYiINAgWawMdzt20aRM7duxwLf9XUFBAbGxsjUm0bdu2LFiwoMrP\nYmNjWbdunRvhiohIQ2R2RemuGpNo69atK6yfGxgYyHXXXVdjw6+++mq1n+Xk5FxleCIiIvVXjUm0\nffv2PPLII4SFheF0Otm3bx8tW7YkOTkZgOjo6Cr3W7t2LX379iU4OLjSZ1daUlBERBqfBjs79+LF\niwQGBpKVlQVAQEAA5eXlfPTRR0D1STQxMZF58+YxZ86cShOJ9u3b93PjFhERMV2NSXTBggWUl5eT\nl5dHmzZtrrrhm266iRdffBFv78pdzJw586dFKSIiDZqHFqI13+Kyd+9eIiIiiImJAWD+/Pns2rXr\nqhpv2rRplc8O7dat20+LUkREGjRPfRRajUl02bJlvPXWW64qdNKkSaxcudLwwEREpPHw1PtEa0yi\nzZo1o3Xr1q73NpsNHx8fQ4MSERHxBDVeE23SpAn79+8HLt0junXrVj2FRUREapfZJaWbaqxEn3nm\nGVavXs3HH39MZGQk77//PnPnzq2L2EREROq1GivR7777jhdffLHCth07dnDttdcaFpSIiDQuZk8Q\ncle1SfTYsWMcPXqURYsWMXPmTJxOJ3BpoYT58+cTERFRZ0GKiEjD5qE5tPok6nA42LZtG9nZ2SQm\nJrq2W61Wxo4dWyfBiYhI42DUAvTJycls2bIFi8WC0+nk8OHDHDhwgOnTp/Pdd98REBDAihUraN68\nOSkpKaxbtw4vLy9GjRpV7WJCP1ZtEu3Rowc9evSgf//+qjpFRMQjRUdHu5LhgQMHSE1N5c033yQo\nKIglS5aQlJTEf/7zH/r06cPKlSvZuHEj3t7eREdHExkZSYsWLa7YfrUTi86dO8fatWtdCfSNN95g\n+PDhTJ06ldzc3Fo8RBERaezq4j7RxMREHnnkEd577z3uvvtuAEaNGsWAAQPIzMzEbrfj7++Pn58f\nPXv2JD09vcY2q02iTz/9NHl5eQB8/fXXLF26lBkzZtCvXz+ee+65q49aRETEZB9//DHXXHMNQUFB\nZGdns3v3bmJiYoiPj6egoIDc3FxsNpvr+zabDYfDUWO71SbRo0ePEh8fD0BaWhpDhgyhX79+jB07\nVpWoiIjUKqOX/UtKSuKee+4BwOl00rlzZ9avX88NN9xQ6Q6UH75zNapNos2aNXP9vX//fvr06VPh\nYEVERGqL0cO5+/fvp0ePHsCl52T36tULgNtuu42vvvqKkJCQCpVnTk5OlY/yvFy1SbSsrIy8vDy+\n++47MjIyCAsLA6CwsJCioqKri1pEROQqGFmJnjp1Cn9/f9dTxW6//Xb+9a9/AXD48GE6deqE3W4n\nKyuLc+fOUVhYSEZGBqGhoTW2Xe3s3AcffJCoqCguXLjA5MmTCQwM5MKFC9x7772MHj36as+LiIiI\nqRwOB0FBQa73MTExzJgxg+TkZPz9/Vm0aBF+fn7Ex8czceJErFYrU6ZMISAgoMa2Lc4rDPyWlJRw\n8eLFCg39+9//5rbbbvuZh3R1zp/4tk768UQndtc8a6wx2/vuf80Ood768kS+2SHUW5+eOmF2CPXa\nm/9ZbVjbBxavdXvfXtPvq7U4fqorLvvn4+NT6YktdZVARURE6rsa184VERExmqdOWFUSFRER89X4\nTLH6qV4n0XP/1TXR6pSXlZsdQr12001BNX+pkcr8NsfsEOqtO7vcZHYIjZanVqIemvtFRETMV68r\nURERaRw8tBBVJSoiIuIuVaIiImI6T70mqiQqIiKm89AcqiQqIiL1gIdmUV0TFRERcZMqURERMZ3F\nqkpURESkUVElKiIipvPQS6JKoiIiYj7d4iIiIuImD82huiYqIiLiLlWiIiJiPg8tRVWJioiIuEmV\nqIiImM5T7xNVEhUREdN56GiukqiIiNQDHppFdU1URETETXVSiZaWll7qzFuFr4iIVOahhahxSfTY\nsWMsWbKE9PR0rFYr5eXlAPTu3Zv4+HhCQkKM6lpERKROGJZEZ82axaRJk1i6dKlrOafS0lJ27tzJ\nzJkzeeWVV4zqWkREPIynzs417JpoWVkZYWFhFdZD9Pb2JjIykosXLxrVrYiIeCCLxeL2y0yGVaLt\n2rVj7ty5REREYLPZAMjNzSU1NZWOHTsa1a2IiHgizyxEjUuiCxcu5J133mHz5s3k5uYCEBwcTFhY\nGFFRUUZ1KyIiUmcMS6Le3t4MHDiQwMBAHA4HACEhIYSGhmK16s4aERH5P2YPy7rLsGyWnJzMuHHj\n2LVrFydOnOD48eOkpqYSHR3N1q1bjepWRESkzhhWiSYlJZGcnIyfn1+F7YWFhcTFxTF06FCjuhYR\nEQ/jqZUct3G+AAATvElEQVSoYUm0rKyM0tLSSknU6XS67hkVEREBPHb9PMOSaGxsLCNHjsRut7tm\n5zocDrKysoiPjzeqWxER8UCqRC8zbNgwBg0aRGZmpmt2bkhICHa7vVJ1KiIi4okMK6B3795N06ZN\n6dOnD2FhYWRkZLBixQoWL17M999/b1S3IiLigTx1sQXDkujq1atdf8+bN4+2bdvy7LPP0rlzZ2bP\nnm1UtyIiInWmTh6rkpuby4MPPghA586d2b59e110KyIinsIzL4kal0Tz8/PZvXs3AL6+vhw5coSu\nXbty9OhRioqKjOpWREQ8kKcuQG9YEu3evTupqakAtG7dmtOnTwOQkJDAQw89ZFS3IiLiiTQ7t6IF\nCxZUuX3FihXExsYyaNAgo7oWERGpE4Yl0VdffbXaz3JycozqVkREPJCHFqLGJdG1a9fSt29fgoOD\nK31WWlpqVLciIiJ1xrAkmpiYyLx585gzZw6+vr4VPtu3b59R3YqIiAcy+35PdxmWRG+66SZefPFF\nvL0rdzFz5kyjuhUREU+k2bmVNW3atMrt3bp1M7JbERHxMJ5aiXrouvkiIiLmq5MVi0RERK7IMwtR\nVaIiIiLuUiUqIiKm89RrokqiIiJiOqPWzk1OTmbLli1YLBacTieHDx9m27ZtzJo1i9LSUnx8fEhI\nSCAoKIiUlBTWrVuHl5cXo0aNIjo6usb2lURFRMR8BlWi0dHRrmR44MABUlNTWb58OWPHjmXw4MG8\n+uqrvPLKKzz66KOsXLmSjRs34u3tTXR0NJGRkbRo0eKK7SuJioiI6epiODcxMZElS5bg7++Pn58f\nADabjU8//ZTMzEzsdjv+/v4A9OzZk/T0dO64444rtqmJRSIi0uB9/PHHXHPNNQQFBdGkSRMsFgvl\n5eW89tpr/OY3vyE3Nxebzeb6vs1mw+Fw1NiukqiIiDR4SUlJ3HPPPa735eXlTJs2jb59+9KnT59K\n33c6nVfVrpKoiIiYz/IzXldh//799OjRw/V+1qxZdOrUiUceeQSA4ODgCpVnTk5OlQ9QuZySqIiI\nmM5itbj9qsmpU6fw9/d3reWekpKCr68vkydPdn3nV7/6FVlZWZw7d47CwkIyMjIIDQ2tsW1NLBIR\nEfMZOLHI4XAQFBTkev/aa69RXFxMTEwMFouFG264gaeffpr4+HgmTpyI1WplypQpBAQE1Ni2kqiI\niJjOyNm53bp146WXXnK9f+ONN6r8XmRkJJGRkT+pbQ3nioiIuElJVERExE0azhUREfPpodwiIiLu\n0QL0IiIi7vLMHFq/k2jLm7uZHUK95d/xtNkh1Gu2nJqX62qs7sgpNDuEeuuEQ+fGLJ5aiWpikYiI\niJuUREVERNxUr4dzRUSkkdDsXBEREfd46jVRJVERETGfkqiIiIh7PLUS1cQiERERNymJioiIuEnD\nuSIiYj7NzhUREXGPp14TVRIVERHzKYmKiIi4x+Khw7maWCQiIuImJVERERE3aThXRETMp2uiIiIi\n7tHsXBEREXcpiYqIiLhHs3NFREQaGSVRERERN9XJcG5paemlzrw1eiwiIlXQNdGKjh07xpIlS0hP\nT8dqtVJeXg5A7969iY+PJyQkxKiuRUTE0yiJVjRr1iwmTZrE0qVLXVOXS0tL2blzJzNnzuSVV14x\nqmsREfEwnnqLi2HXRMvKyggLC6twYry9vYmMjOTixYtGdSsiIp7IanH/ZSLDKtF27doxd+5cIiIi\nsNlsAOTm5pKamkrHjh2N6lZERKTOGJZEFy5cyDvvvMPmzZvJzc0FIDg4mLCwMKKioozqVkREpM4Y\nlkS9vb0ZOHAggYGBOBwOAEJCQggNDcVq1Z01IiLyfywWz8wLhkWdnJzMuHHj2LVrFydOnOD48eOk\npqYSHR3N1q1bjepWREQ8kcXi/stEhlWiSUlJJCcn4+fnV2F7YWEhcXFxDB061KiuRUTEw3jq7FzD\nkmhZWRmlpaWVkqjT6XTdMyoiIgKYPsvWXYYl0djYWEaOHIndbnfNznU4HGRlZREfH29UtyIiInXG\nsCQ6bNgwBg0aRGZmJnl5ecCl2bl2u71SdSoiIuKJDEuiJSUlbNmyhT179nDq1Cng0uzc8PBwRowY\ngZeXl1Fdi4iIh9E10ctMnz6dDh06MHHiRIKCgnA6neTk5JCWlsasWbNYvHixUV2LiIinURKtyOFw\nsGzZsgrbOnToQK9evRg/frxR3YqIiCfSfaIVWSwW0tLSKCkpcW0rLi7m7bffxtfX16huRUTEA1ms\nFrdfZjKsEk1ISGD58uUkJCRQVFSE0+nE39+fvn378txzzxnVrYiISJ0xLIl+/PHHfPjhh5w/f547\n7riDp556ioCAAODS7S/r1q0zqmsREZE6Ydhw7ksvvcSmTZvYu3cvoaGhxMXFcfbsWeDSggsiIiIu\nWvavIi8vL1q2bAnA6NGjsdlsxMXFsWrVKo+dyiwiIsbw1LxgWBLt2bMnDz30EMuXL6dJkyZERETg\n5+fHfffdx+nTp43qVkREPJGHzs419D7Rffv2VVidKDw8nB49erBt2zajuhUREQ9k9ixbdxmWRAF6\n9+5daVtAQACjR482slsREZE64Zn1s4iISD1gaCUqIiJyVTSxSERExD1Gzs5NSUlh9erVeHt7M3Xq\nVPz9/Vm6dCne3t40a9aMhIQEmjdvTkpKCuvWrcPLy4tRo0YRHR1dY9tKoiIiYj6DZueePn2axMRE\nNm/eTGFhIStWrODw4cMsXbqUjh078uKLL/LGG28wfvx4Vq5cycaNG/H29iY6OprIyEhatGhxxfZ1\nTVRERMxntbj/uoI9e/YQFhZG06ZNad26NX/605+w2Wx8//33ABQUFNCqVSsyMzOx2+34+/vj5+dH\nz549SU9PrzFsVaIiItJgZWdnU1RUxMMPP8zZs2d59NFHmTlzJjExMQQGBhIYGMgTTzzBtm3bsNls\nrv1sNhsOh6PG9pVERUSkwXI6na4h3ezsbGJjY+nYsSMrV67klltuYfHixbz66qu0atWq0n5XQ8O5\nIiJiOovF4vbrSlq3bk2PHj2wWq20b98ef39/9u/fzy233AJAv379OHz4MCEhIRUqz5ycHIKDg2uM\nW0lURETMZ7G6/7qCsLAw9u3bh9PpJD8/n/Pnz3PjjTfy1VdfAZeeONaxY0fsdjtZWVmcO3eOwsJC\nMjIyCA0NrTFsDeeKiIjpjLrFJSQkhMGDBzN69GgsFgtPPfUUrVq1Ys6cOfj4+NCyZUvmz5+Pn58f\n8fHxTJw4EavVypQpU1yP77xi3M56/Fyy4jN5ZodQb5Wc0SL+V3Ihp+YJAY3Vh69+ZHYI9dYJR6HZ\nIdRrD6yfbljbF/JOur1vk6C2tRjJT6PhXBERETcpiYqIiLhJ10RFRMR0ehSaiIiIu7QAvYiIiHss\nBq2dazQlURERMZ+HVqL1+hYXERGR+swz62cREZF6QElURETETUqiIiIiblISFRERcZOSqIiIiJuU\nREVERNzUKO8TXbBgAZmZmVgsFmbPns3NN9/s+mzPnj0sW7YMLy8vbr/9dh555JFq9zl58iTTpk3D\n6XTSpk0bFi9ejI+PD926dSM0NBSn04nFYuFvf/ubYY/5MVJtnSeAdevWsXjxYg4cOEDTpk1NOZ7a\n9nPPz5NPPkn37t2ZNWsWWVlZtGrVCoC4uDj69+9vyjEZwZ3z9Pnnn/Poo49y3333MW7cOLNCN9xP\nPTf79+/nscce48Ybb8TpdNKlSxfmzJlj4hEIzkZm//79zoceesjpdDqdX375pXPMmDEVPo+KinKe\nPHnSWV5e7rz33nudX375ZbX7zJw505mWluZ0Op3OpUuXOl9//XWn0+l09unTp64OxzC1eZ42bdrk\nXLp0qXPAgAHO8+fP1+2BGKS2/x3t2rWrbg+gjrhzns6fP++MiYlxPvXUU84NGzaYEXadcOfc7Nu3\nzzl16lQzwpVqNLrh3L179xIREQFA586dOXPmDIWFl54hePToUVq2bElISAgWi4X+/fuzd+/eKvc5\nd+4c+/fvZ8CAAQAMGDCAPXv2AOBsAOtX1NZ5KiwsJDIykscff9y0YzFCbZ6fhuynnqcPP/wQPz8/\nXn75ZYKDg80M3XDunBtoGP9/aUgaXRLNzc3FZrO53rdq1Yrc3NwqP7PZbDgcjiq35+bmcuHCBXx8\nfAAICgrC4bj0IOiLFy/yxBNPcO+997J27do6OKraVxvn6Yd9mjVrVneB15Ha/HcEsGHDBiZMmEB8\nfDynTzecB67/1PN06tQprFYrvr6+dR5rXXPn3AB89dVXPPLII4wbN871w13M0yivif7YlX7VVfdZ\nVdt/vG3mzJkMGzYMgHHjxtGrVy+6dev2MyM1V22dp4bKnfNTXl4OwPDhw2nZsiVdu3blpZde4oUX\nXuCpp54yJE6zuXOeGourOTfXX389kydP5q677uLo0aPExsby7rvv4u3d6P9XbppGV4kGBwe7fu0B\nnDp1ijZt2rg++6GaBMjJySE4OLjKfYKDg2nWrBnFxcUVvgswZswYmjZtStOmTenbty+ff/55XRxa\nraqt8/TDPoBHTq6qTm2enz59+tC1a1cA7rzzTo/891Idd85TY+Huv6G77roLgPbt29O6dWtycnLq\nNnCpoNEl0bCwMNLS0gA4fPgwISEhruHGa6+9lsLCQo4fP05paSm7du3itttuq7TPDwm0b9++ru1p\naWmEh4fz9ddfEx8fD0BpaSnp6enccMMNJhzpz1Mb5+nH+0DDqjRq8/xMnTqVo0ePArBv3z5uuukm\ncw7KAO6cp8bCnXPz9ttvs2bNGgAcDgd5eXmEhISYdgzSSJ/isnTpUvbv34+XlxdPP/00n3zyCc2b\nNyciIoL//Oc//PnPfwZgyJAh3HfffVXu06VLFxwOBzNmzKC4uJh27dqxYMECvLy8WLJkCXv37sXL\ny4s777yT3//+9yYerft+7nl65plnuOmmm1i1ahUffPABhw4d4uabb+aWW27hiSeeMPHIakdt/Tva\nt28fCQkJNG3aFH9/f+bPn1/hepin+6nn6fDhwyxcuJDjx4/j7e1NSEgIf/nLX2jRooXJR1L7fuq5\nKSwsJD4+nrNnz1JaWsrkyZMJDw83+Sgat0aZREVERGpDoxvOFRERqS1KoiIiIm5SEhUREXGTkqiI\niIiblERFRETcpCQqIiLiJiVRabCys7Pr/JFisbGxtbKoRNeuXYmJiSE2NpaYmBjGjh3Lu+++W+N+\n77zzzs/uW0SunhZclAatrpcaXLduXa20Y7FYWLdunSv+vLw8hg8fTu/eva+46MALL7xAVFQUVqt+\nH4vUBSVRaZS2b9/Ohg0bgEtPyJg3bx6BgYG8/vrrbNmyBR8fH/z8/Hj++ecJCAhg4MCBREVFcezY\nMaZNm8bDDz9MeHg4mZmZnD9/nhdffJE2bdrQtWtXPvnkE1auXMnp06c5efIk3377Lb1792bOnDkU\nFxczY8YMjh8/TkhICF5eXoSFhREdHV0pRuf/f6g7XHpKUJs2bfjuu+/o1q0bzzzzDF9//TXFxcXY\n7XaefPJJXnjhBb799lsmTJhAYmIin3zyCYmJiQD4+Pgwd+5crr322ro7ySKNgH6uSqNz8uRJVq1a\nxdq1a3n11Vfp1asXq1atAi49xm7NmjWsX7+edu3asWXLFtd+119/Pc8//zwA//3vf7nnnnvYsGED\nXbp0Ydu2bUDFyvfTTz/lL3/5C8nJyWzcuJGzZ8+yZcsWysrKePPNN3n66af54IMPrirmrKwsHA4H\nnTt3pqCggC5durB+/XrefPNN/v3vf/Pll18yZcoU4FI17Ovry7PPPktiYiLr169n3LhxLFq0qFbO\nn4j8H1Wi0uhkZGTgcDiIi4vD6XRSUlJC+/btAWjZsiUPPvggVquV7OzsCk8V6dGjh+vvli1b0rlz\nZ+DSYuEFBQWV+gkNDQXAz88Pm83G6dOnOXLkCL/+9a8BaN26NT179qwyRqfTyYQJE4BLQ7lNmjRh\n1apVNG3aFD8/P06cOMHYsWPx8fEhNzeX/Px84FISdzqdfP755zgcDiZPnozT6axQ1YpI7VESlUbH\n19cXu93uqj5/kJOTw6JFi9i2bRutWrWqVLn9+EHRlz+/sarJRF5eXpW2lZeXV0hmVX0HKl4T/fjj\nj5k5c6br6S5bt24lKyuL119/HYvFwsiRIyvF4evrS7t27WrtGq2IVE3DudKgVZXcbr75Zj7++GPX\nsxxTU1PZuXMneXl52Gw2WrVqxenTp/nggw8oKSm56navZvsvfvELMjIygEsV5kcffVTt93/Y5+ab\nb+a2225j2bJlrv06deqExWIhKyuLo0ePup5ra7VaKS0tpVOnTuTn5/PFF18AcODAAd56660q+xIR\n96kSlQYtPz/fdduJxWLBbrfzxBNP8OSTT/LQQw/RrFkzmjRpwqJFi2jVqhUdO3Zk9OjRtG/fnqlT\np/Lss89y++23VxoKrW5otKbtI0aMYNeuXYwdO5brrruOXr16Vapqq2rnscceY/jw4QwZMoQhQ4Yw\nadIkYmJi6NmzJxMnTmTevHm89dZb3HbbbYwcOZKVK1eSkJDAk08+iZ+fHwBz5879yedPRK5Mj0IT\nqUM5OTlkZGQwZMgQnE4nI0aM4I9//CO/+tWvzA5NRNygSlSkDrVo0YJt27axevVqrFYr/fv3VwIV\n8WCqREVERNykiUUiIiJuUhIVERFxk5KoiIiIm5RERURE3KQkKiIi4iYlURERETf9P9ISWa4xHCW3\nAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7f2029534940>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "grid_search_heatmap(costs, [250,500,1000,1500,2000], [.05, .01, .005, .001, .0005])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The grid search for model 3, interestingly, shows a significant trend toward lower costs in the lower-left part of the map (higher step count and lower learning rate). This stands to reason, and aligns much more with what is expected than the unruly heatmap that was generated by the model 1 grid search. This also aligns with what one might expect of a simple multi-layer perceptron model, which this network architecture closely resembles.\n", "\n", "This grid search showed 2000 steps with a learning rate of 0.0005 as an optimal. This optimality only slightly outperforms the same learning rate with only 1000 steps, but significantly outperforms every hyper-parameter pair above the major diagonal of the heatmap. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##### Calculating Costs and Area under ROC Curve Scores for the Model\n", "\n", "With the optimal step count and learning rate, the costs of the model built with the given step count and rate are computed." ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[1750.0, 1722.85, 1709.0, 1710.75, 1716.25, 1742.0, 1650.0, 1714.0, 1699.5, 1684.5]\n", "[0.62998537, 0.61758681, 0.61135905, 0.61209804, 0.6146912, 0.62633358, 0.5845431, 0.61362667, 0.60702243, 0.60023413]\n" ] } ], "source": [ "costs_model_3, auc_roc_model_3 = get_scores_for_model(deep_model_3, X, y, optimal_steps, optimal_rate)\n", "\n", "print(costs_model_3)\n", "print(auc_roc_model_3)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The costs and auc scores computed above are hard-coded below for later use, so that they don't need to be computed again." ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": true }, "outputs": [], "source": [ "costs_model_3 = [ 1750.0 , 1722.85, 1709.0, 1710.75, 1716.25, 1742.0, 1650.0 , 1714.0, 1699.50, 1684.50]\n", "auc_roc_model_3 = [0.62998537, 0.61758681, 0.61135905, 0.61209804, 0.6146912 , 0.62633358, 0.5845431 , 0.61362667, 0.60702243, 0.60023413]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Architecture Comparison\n", "\n", "The following getDifference function is used to create a tuple of the range of possible differences of mean for two sets of scores (cost or auc_roc), with 95% confidence. We use the second of the two confidence interval tests proposed in the ICA3 reversed assignment, because the datasets cannot be assumed to be independent, so the binomial approximation to the normal distribution does not hold." ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def getDifference(cost1,cost2,z_val=2.26,size=10):\n", " cost1 = np.asarray(cost1)\n", " cost2 = np.asarray(cost2)\n", " diff12 = cost1 - cost2\n", " sigma12 = np.sqrt(np.sum(diff12*diff12) * 1/(size-1))\n", " d12 = (np.mean(diff12) + 1/(np.sqrt(size)) * z_val * sigma12, np.mean(diff12) - 1/(np.sqrt(size)) * z_val * sigma12)\n", " return d12" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Cost Difference\n", "\n", "The getDifference function is now used to create confidence intervals for the cost differences of the 3 possible pairs of two architectures created from the set of 3 architectures." ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Average Model 1 vs Model 2 Difference: [ 23.69702196 -72.50702196]\n", "Average Model 1 vs Model 3 Difference: [ 512.26558725 64.50441275]\n", "Average Model 2 vs Model 3 Difference: [ 549.47453987 76.10546013]\n" ] } ], "source": [ "d_one_two = np.array(getDifference(costs_model_1, costs_model_2))\n", "d_one_three = np.array(getDifference(costs_model_1, costs_model_3))\n", "d_two_three = np.array(getDifference(costs_model_2, costs_model_3))\n", "\n", "print(\"Average Model 1 vs Model 2 Difference:\", d_one_two)\n", "print(\"Average Model 1 vs Model 3 Difference:\", d_one_three)\n", "print(\"Average Model 2 vs Model 3 Difference:\", d_two_three)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The above 3 confidence intervals show that the first two architectures performed similarly, as the model 1 to model 2 difference confidence interval contains zero. However, the third architecture, which we created specifically because of how poorly the first two architectures performed, did significantly outperform both of the first two models, as zero does not appear in either of the confidence intervals including model 3. Therefore, it can be concluded that, with respect to cost, our \"home-grown\" model 3 does significantly outperform the other architectures." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Area Under Multiclass ROC Curve Difference\n", "\n", "The same process is now used for confidence intervals for the auc_roc metric." ] }, { "cell_type": "code", "execution_count": 79, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Average Model 1 vs Model 2 Difference: [ 0.0309479 0.00313162]\n", "Average Model 1 vs Model 3 Difference: [-0.02675915 -0.19388588]\n", "Average Model 2 vs Model 3 Difference: [-0.03095869 -0.22376586]\n" ] } ], "source": [ "d_one_two = np.array(getDifference(auc_roc_model_1, auc_roc_model_2))\n", "d_one_three = np.array(getDifference(auc_roc_model_1, auc_roc_model_3))\n", "d_two_three = np.array(getDifference(auc_roc_model_2, auc_roc_model_3))\n", "\n", "print(\"Average Model 1 vs Model 2 Difference:\", d_one_two)\n", "print(\"Average Model 1 vs Model 3 Difference:\", d_one_three)\n", "print(\"Average Model 2 vs Model 3 Difference:\", d_two_three)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The confidence intervals for area under ROC curve provide the same insight as the confidence intervals for the cost function. The first 2 models are statistically similar with 95% confidence, but the third model statistically outperforms both of the first 2, with 95% confidence, because zero does not fall in the ROC difference confidence interval for model 3 vs the other 2 models. \n", "\n", "With the ROC curve score's confirmation, we can confidently declare that architecture 3 is better for this classification task than models 1 and 2. However, in our deployment section, we will address the possibility that even our best deep learning architecture may be outperformed by conventional machine learning algorithms which were explored in Project 2." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Deployment" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "Given the performances of the three above deep learning models for classifying NFL play types, we beleive that model 3 would be the best choice, as it, with statistical significance, outperformed both other models with respect to both cost and AUC_ROC score. However, the costs for the models generated, as well as the AUC_ROC scores, seemed to, in general be inferior to the scores from the conventional algorithms. \n", "\n", "In our previous report, we declared random forests to be our preffered model, due to their superior performance, and ease of use / computational inexpense. Therefore, for the purpose of comparison, we will compare the performance of random forests to the performance of our best deep learning architecture.\n", "\n", "Note that we (mistakenly) used an incorrect cross-validation strategy for Lab 2, so random forest scores must be re-generated. The code below, to generate the new scores, is adapted from Lab 2 for use with our new cross validation strategy. \n", "\n", "First, we perform some setup that is needed to use the original SKLearn library for classification." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from sklearn.ensemble import RandomForestClassifier\n", "from sklearn.preprocessing import StandardScaler\n", "from sklearn.pipeline import Pipeline\n", "from sklearn.model_selection import cross_val_score\n", "\n", "#Building the class weight map\n", "PlayTypes = df.PlayType.value_counts().index.tolist()\n", "Costs = [sum(x) for x in cost_mat]\n", "y = df.PlayType.values\n", "\n", "ClassWeights = dict(zip(PlayTypes, Costs))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Next, we produce cost scores for the random forest classifier." ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "collapsed": false }, "outputs": [], "source": [ "#Pipeline for cost evaluation\n", "clf = Pipeline([('sca',StandardScaler()),\n", " ('clf',RandomForestClassifier(class_weight=ClassWeights, n_estimators=250))])\n", "\n", "per_fold_eval_criteria = cross_val_score(estimator=clf,\n", " X=X,\n", " y=y,\n", " cv=cv,\n", " scoring=scorer,\n", " n_jobs=-1\n", " )\n", "\n", "RFCosts = per_fold_eval_criteria" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Finally, we produce AUC_ROC scores for the random forest classifier." ] }, { "cell_type": "code", "execution_count": 37, "metadata": { "collapsed": true }, "outputs": [], "source": [ "#Pipeline for cost evaluation\n", "clf = Pipeline([('sca',StandardScaler()),\n", " ('clf',RandomForestClassifier(class_weight=ClassWeights, n_estimators=250))])\n", "\n", "per_fold_eval_criteria = cross_val_score(estimator=clf,\n", " X=X,\n", " y=y,\n", " cv=cv,\n", " scoring=auc_roc_scorer,\n", " n_jobs=-1\n", " )\n", "\n", "RF_auc = per_fold_eval_criteria" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The cost and auc scores for the random forest are saved below so that they don't need to be re-computed." ] }, { "cell_type": "code", "execution_count": 40, "metadata": { "collapsed": false }, "outputs": [], "source": [ "RFCosts = [ 988.05, 1007.9 , 976.75, 956.75, 971.75, 949.55, 919. , 992.5 , 985.75, 956. ]\n", "RF_auc = [ 0.89186154, 0.84936065, 0.85641263, 0.84052327, 0.84994278, 0.84799384, 0.86985361, 0.88280675, 0.87433496, 0.85303625]" ] }, { "cell_type": "code", "execution_count": 41, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Deep Learning vs Random Forests (Cost): (1296.8375953662744, 182.13240463372551)\n", "Deep Learning vs Random Forests (AUC_ROC): (-0.061045371130097753, -0.43868380886990221)\n" ] } ], "source": [ "auc_diff = getDifference(auc_roc_model_3, RF_auc)\n", "cost_diff = getDifference(costs_model_3, RFCosts)\n", "\n", "print(\"Deep Learning vs Random Forests (Cost):\", cost_diff)\n", "print(\"Deep Learning vs Random Forests (AUC_ROC):\", auc_diff)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The above confidence intervals, neither of which contain zero, show that random forest classification is statistically significantly better than even our best deep learning model. Therefore, we, given the deep architectures we've explored, can determine that conventional machine learning algorithms are superior for this classification task.\n", "\n", "This does not rule out the possibility that there is a deep learning architecture which would perform well for this task, but simply states that the models we persued were inferior to the random forest model. We believe that one possible reason for the inefficacy of deep learning for this task is the size of the data. Deep learning thrives on extremely large datasets, and, with only one year of NFL data, the dataset used in this report can only be classified as \"medium,\" at best.\n", "\n", "Nonetheless, we beleive that the original random forest model may prove useful in a real-world application. We stand by the deployment strategy we proposed in our previous report, which is re-iterated below.\n", "\n", "*\n", "Given that the mean ROC_AUC score for the random forest model was approximately 0.85, we are confident that our model can provide meaningful insight to football organizations, and we think that it has considerable value to a defensive coordinator. However, we do not beleive that our model can in any way replace a defensive coordinator, because it fails to consider a number of factors which exist in a real-game situation.*\n", "\n", "*The model only considers basic metrics of the game, and does not in any way consider the intricacies of a football game, such as the location of the game, the weather, the crowd, any injuries that may exist on a team, and so on.*\n", "\n", "*Considering the available data to train the model, we beleive that our model is high-performing and viable for use in an actual professional football setting. It can, with reasonable 'accuracy,' predict what type of play will be called in a given game situation.*\n", "\n", "*In order to ultimately determine the viability of our model, we would like to implement it alongside a defensive coordinator, and keep track of the predictions of the defensive coordinator and the predictions of the model, and see if one is better than the other, with statistical significance.*\n" ] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python [Root]", "language": "python", "name": "Python [Root]" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.2" } }, "nbformat": 4, "nbformat_minor": 0 }
mit
takashi-suehiro/rtmtools
rtc_handle_example/script/basic.ipynb
1
26441
{ "cells": [ { "cell_type": "markdown", "id": "89e8c404", "metadata": {}, "source": [ "# rtc_handle.py(basic)\n", "\n", "- this ipnb shows a basic usage of rtc_handle.py\n", "- precondition: rtcs(cin and cout) are prelaunched separetely\n", "- you can monitor the behavior of the system with openrtp\n", "\n", "you can access and control rtcs of OpenRTM-aist (written in any languages, ie., c++, python, java) \n", "by using rtc_handle.py" ] }, { "cell_type": "code", "execution_count": 1, "id": "901dde07", "metadata": {}, "outputs": [], "source": [ "#!/usr/bin/env python\n", "# -*- Python -*-\n", "\n", "import sys\n", "import time\n", "import subprocess" ] }, { "cell_type": "markdown", "id": "d43f7ab1", "metadata": {}, "source": [ "## setup user environmet\n", "\n", "- path for rtc_handle \n", "- path for rtcs and user tools\n", "- nameservers\n", "\n", "you may provide a file (ex. set_env.py) for this." ] }, { "cell_type": "code", "execution_count": 2, "id": "0a7f8eee", "metadata": {}, "outputs": [], "source": [ "#\n", "# set up user environment\n", "# RtmToolsDir, MyRtcDir, etc.\n", "#\n", "# from set_env import * : you may provide a setup file like this\n", "#\n", "RtmToolsDir=\"../..\"\n", "MyRtcDir=\"..\"\n", "NS0=\"localhost:9876\"\n" ] }, { "cell_type": "markdown", "id": "1c7b93b5", "metadata": {}, "source": [ "## import user tools \n", "\n", "path is modified temporaly to import tools\n", "\n", "stubs for rtc service ports might be imported (this will be explained another example)." ] }, { "cell_type": "code", "execution_count": 3, "id": "f1c5db65", "metadata": {}, "outputs": [], "source": [ "#\n", "# import user tools\n", "#\n", "sys.path.append(\".\")\n", "save_path = sys.path[:]\n", "sys.path.append(RtmToolsDir+'/rtc_handle')\n", "from rtc_handle import *\n", "# from rtc_handle_util import *\n", "# sys.path.append(RtmToolsDir+'/embryonic_rtc')\n", "# from EmbryonicRtc import *\n", "sys.path = save_path\n", "\n", "#\n", "# import stub files\n", "# \n", "#import _GlobalIDL\n" ] }, { "cell_type": "markdown", "id": "197d749d", "metadata": {}, "source": [ "## RtmEnv: rtm environment holder \n", "\n", "RtmEnv class object contains an orb, name-servers, rtcs, connectors and other rtm environment information.\n", "\n", "the second arg is a list of cos nameservers." ] }, { "cell_type": "code", "execution_count": 4, "id": "09a72ee1", "metadata": {}, "outputs": [], "source": [ "#\n", "# user program \n", "# \n", "\n", "#\n", "env = RtmEnv(sys.argv,[NS0])\n" ] }, { "cell_type": "markdown", "id": "ab045b14", "metadata": {}, "source": [ "## NameSpace\n", "\n", "NameSpace.env.list_obj() retrieves a list of corba objects in the nameserver \n", "and put them into the NameSpace.obj_list dictionary.\n", "\n", "if an object is an rtc, its proxy object(RtcHandl) is created \n", "and put into the NameSpace.rtc_handle dictionary." ] }, { "cell_type": "code", "execution_count": 5, "id": "af42d470", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "objcet cin0.rtc was listed.\n", "port_name: str_out\n", "handle for cin0.rtc was created.\n", "objcet cout0.rtc was listed.\n", "port_name: str_in\n", "handle for cout0.rtc was created.\n" ] }, { "data": { "text/plain": [ "[['cin0.rtc', <OpenRTM._objref_DataFlowComponent at 0x7fdbdc4fc970>],\n", " ['cout0.rtc', <OpenRTM._objref_DataFlowComponent at 0x7fdbcde64be0>]]" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "env.name_space[NS0].list_obj()" ] }, { "cell_type": "code", "execution_count": 6, "id": "34028680", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'cin0.rtc': <OpenRTM._objref_DataFlowComponent at 0x7fdbdc4fc970>,\n", " 'cout0.rtc': <OpenRTM._objref_DataFlowComponent at 0x7fdbcde64be0>}" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "env.name_space[NS0].obj_list" ] }, { "cell_type": "code", "execution_count": 7, "id": "ac0c953f", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'cin0.rtc': <rtc_handle.RtcHandle at 0x7fdbdc50e3a0>,\n", " 'cout0.rtc': <rtc_handle.RtcHandle at 0x7fdbcde662e0>}" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "env.name_space[NS0].rtc_handles" ] }, { "cell_type": "markdown", "id": "6216ad18", "metadata": {}, "source": [ "## RtcHandle: proxy of rtc\n", "\n", "RtcHandle is a proxy class of rtc and the center object of this module. \n", "an rtc can be accessed by its object reference and information of the rtc can be gathered throug the reference.\n", "an RtcHandle object holds those information and proxy the rtc." ] }, { "cell_type": "markdown", "id": "f1b50858", "metadata": {}, "source": [ "## assign rtc proxies to valiables\n", "\n", "to ease access to rtc proxies, it may be a good idea assigning them to valiables." ] }, { "cell_type": "code", "execution_count": 8, "id": "29c8e4f2", "metadata": {}, "outputs": [], "source": [ "cin=env.name_space[NS0].rtc_handles['cin0.rtc']\n", "cout=env.name_space[NS0].rtc_handles['cout0.rtc']" ] }, { "cell_type": "markdown", "id": "44b5c27d", "metadata": {}, "source": [ "## activate and deactivate rtcs" ] }, { "cell_type": "code", "execution_count": 9, "id": "cdf52596", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "RTC_OK" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cout.activate()" ] }, { "cell_type": "code", "execution_count": 10, "id": "447b95af", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "RTC_OK" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cout.deactivate()" ] }, { "cell_type": "code", "execution_count": 11, "id": "fb9af51a", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "RTC_OK" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cout.activate()" ] }, { "cell_type": "markdown", "id": "078835e4", "metadata": {}, "source": [ "deactivation of some rtcs may fail. \n", "those rtcs may wait for resorces(ex. waiting for user input) in onExecute loop.\n", "for example," ] }, { "cell_type": "code", "execution_count": 12, "id": "511e6f35", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "RTC_OK" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cin.activate()" ] }, { "cell_type": "code", "execution_count": 13, "id": "ce2e9a41", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "RTC_ERROR" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cin.deactivate()" ] }, { "cell_type": "markdown", "id": "f9e43784", "metadata": {}, "source": [ "but it usually recovers after the resorce is available. please input something at the cin console. then," ] }, { "cell_type": "code", "execution_count": 14, "id": "9267bf8f", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "RTC_OK" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cin.activate()" ] }, { "cell_type": "markdown", "id": "510924a1", "metadata": {}, "source": [ "## direct access to Inports and Outports\n", "\n", "if the interface_type of the ports is corba_cdr,\n", "you can put data to inports and get data from outpors by using rtc_handle.py." ] }, { "cell_type": "markdown", "id": "dc2db3e8", "metadata": {}, "source": [ "### put data to inport" ] }, { "cell_type": "code", "execution_count": 15, "id": "83513ebc", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'str_in': <rtc_handle.RtcInport at 0x7fdbcde6f6a0>}" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cout.inports" ] }, { "cell_type": "code", "execution_count": 16, "id": "0c79a9d2", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "RTC_OK" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cout.inports['str_in'].open()" ] }, { "cell_type": "code", "execution_count": 17, "id": "cc0213b1", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "PORT_OK" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cout.inports['str_in'].write('abc')" ] }, { "cell_type": "code", "execution_count": 18, "id": "ca53fe40", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "RTC_OK" ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cout.inports['str_in'].close()" ] }, { "cell_type": "markdown", "id": "7028ba7c", "metadata": {}, "source": [ "### get data from outport\n", "\n", "by connecting to outport with setting 'datapot.dataflow_type' : 'pull' ,\n", "you can get 'dataport.corba_cdr.outport_ref'.\n", "\n", "\n", "you can directly get the last data (and if not consumed other rtcs) by the ref." ] }, { "cell_type": "code", "execution_count": 19, "id": "9d4ef2bf", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'str_out': <rtc_handle.RtcOutport at 0x7fdbcde66220>}" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cin.outports" ] }, { "cell_type": "code", "execution_count": 20, "id": "3178f54e", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "RTC_OK" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cin.outports['str_out'].open()" ] }, { "cell_type": "code", "execution_count": 21, "id": "0d5665bd", "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/plain": [ "{'dataport.dataflow_type': 'pull',\n", " 'dataport.interface_type': 'corba_cdr',\n", " 'dataport.subscription_type': 'new',\n", " 'dataport.publisher.push_policy': 'new',\n", " 'dataport.inport.buffer.length': '1',\n", " 'dataport.inport.buffer.read.empty_policy': 'do_nothing',\n", " 'dataport.inport.buffer.write.full_policy': 'overwrite',\n", " 'dataport.outport.buffer.length': '1',\n", " 'dataport.outport.buffer.write.full_policy': 'overwrite',\n", " 'dataport.outport.buffer.read.empty_policy': 'do_nothing',\n", " 'dataport.data_type': 'TimedString',\n", " 'dataport.serializer.cdr.endian': 'little,big',\n", " 'dataport.corba_cdr.outport_ior': 'IOR:010000001b00000049444c3a4f70656e52544d2f4f7574506f72744364723a312e300000010000000000000064000000010102000e0000003139322e3136382e35302e33350063cd0e000000fe37b1886100008405000000000a00000200000000000000080000000100000000545441010000001c00000001000000010001000100000001000105090101000100000009010100',\n", " 'dataport.corba_cdr.outport_ref': <OpenRTM._objref_OutPortCdr at 0x7fdbcce03550>}" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cin.outports['str_out'].con.prop_dict" ] }, { "cell_type": "code", "execution_count": 22, "id": "99b51c72", "metadata": {}, "outputs": [], "source": [ "cin.outports['str_out'].read()" ] }, { "cell_type": "code", "execution_count": 23, "id": "5712762a", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "RTC_OK" ] }, "execution_count": 23, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cin.outports['str_out'].close()" ] }, { "cell_type": "markdown", "id": "fa870602", "metadata": {}, "source": [ "## IOConnector : connect and disconnect io-ports\n", "\n", "IOConnector contains information for connecting io-ports" ] }, { "cell_type": "markdown", "id": "0846ee47", "metadata": {}, "source": [ "create a connector between cin.outports['str_out'] and cout.inports['str_in']" ] }, { "cell_type": "code", "execution_count": 24, "id": "3af10163", "metadata": {}, "outputs": [], "source": [ "con = IOConnector([cin.outports['str_out'], cout.inports['str_in']])" ] }, { "cell_type": "markdown", "id": "9311dfb9", "metadata": {}, "source": [ "default properties of the connector is as follows" ] }, { "cell_type": "code", "execution_count": 25, "id": "7c9026a5", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'dataport.dataflow_type': 'push',\n", " 'dataport.interface_type': 'corba_cdr',\n", " 'dataport.subscription_type': 'new',\n", " 'dataport.publisher.push_policy': 'new',\n", " 'dataport.inport.buffer.length': '1',\n", " 'dataport.inport.buffer.read.empty_policy': 'do_nothing',\n", " 'dataport.inport.buffer.write.full_policy': 'overwrite',\n", " 'dataport.outport.buffer.length': '1',\n", " 'dataport.outport.buffer.write.full_policy': 'overwrite',\n", " 'dataport.outport.buffer.read.empty_policy': 'do_nothing'}" ] }, "execution_count": 25, "metadata": {}, "output_type": "execute_result" } ], "source": [ "con.def_prop" ] }, { "cell_type": "markdown", "id": "d66e02ff", "metadata": {}, "source": [ "connect ports" ] }, { "cell_type": "code", "execution_count": 26, "id": "e928b410", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "RTC_OK" ] }, "execution_count": 26, "metadata": {}, "output_type": "execute_result" } ], "source": [ "con.connect()" ] }, { "cell_type": "code", "execution_count": 27, "id": "9c39622a", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "RTC.ConnectorProfile(name='cin0.str_out_cout0.str_in', connector_id='83a8f542-408b-11ec-b42d-594718fca3b7', ports=[<RTC._objref_PortService object at 0x7fdbcde71d90>, <RTC._objref_PortService object at 0x7fdbcde71ca0>], properties=[SDOPackage.NameValue(name='dataport.dataflow_type', value=CORBA.Any(CORBA.TC_string, 'push')), SDOPackage.NameValue(name='dataport.interface_type', value=CORBA.Any(CORBA.TC_string, 'corba_cdr')), SDOPackage.NameValue(name='dataport.subscription_type', value=CORBA.Any(CORBA.TC_string, 'new')), SDOPackage.NameValue(name='dataport.publisher.push_policy', value=CORBA.Any(CORBA.TC_string, 'new')), SDOPackage.NameValue(name='dataport.inport.buffer.length', value=CORBA.Any(CORBA.TC_string, '1')), SDOPackage.NameValue(name='dataport.inport.buffer.read.empty_policy', value=CORBA.Any(CORBA.TC_string, 'do_nothing')), SDOPackage.NameValue(name='dataport.inport.buffer.write.full_policy', value=CORBA.Any(CORBA.TC_string, 'overwrite')), SDOPackage.NameValue(name='dataport.outport.buffer.length', value=CORBA.Any(CORBA.TC_string, '1')), SDOPackage.NameValue(name='dataport.outport.buffer.write.full_policy', value=CORBA.Any(CORBA.TC_string, 'overwrite')), SDOPackage.NameValue(name='dataport.outport.buffer.read.empty_policy', value=CORBA.Any(CORBA.TC_string, 'do_nothing')), SDOPackage.NameValue(name='dataport.data_type', value=CORBA.Any(CORBA.TC_string, 'TimedString')), SDOPackage.NameValue(name='dataport.serializer.cdr.endian', value=CORBA.Any(CORBA.TC_string, 'little,big')), SDOPackage.NameValue(name='dataport.corba_cdr.inport_ior', value=CORBA.Any(CORBA.TC_string, 'IOR:010000001a00000049444c3a4f70656e52544d2f496e506f72744364723a312e30000000010000000000000064000000010102000e0000003139322e3136382e35302e33350041cb0e000000fe37b1886100008404000000001900000200000000000000080000000100000000545441010000001c00000001000000010001000100000001000105090101000100000009010100')), SDOPackage.NameValue(name='dataport.corba_cdr.inport_ref', value=CORBA.Any(CORBA.TypeCode(\"IDL:OpenRTM/InPortCdr:1.0\"), <OpenRTM._objref_InPortCdr object at 0x7fdbcce08910>))])" ] }, "execution_count": 27, "metadata": {}, "output_type": "execute_result" } ], "source": [ "con.profile" ] }, { "cell_type": "code", "execution_count": 28, "id": "9b6fdf03", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'dataport.dataflow_type': 'push',\n", " 'dataport.interface_type': 'corba_cdr',\n", " 'dataport.subscription_type': 'new',\n", " 'dataport.publisher.push_policy': 'new',\n", " 'dataport.inport.buffer.length': '1',\n", " 'dataport.inport.buffer.read.empty_policy': 'do_nothing',\n", " 'dataport.inport.buffer.write.full_policy': 'overwrite',\n", " 'dataport.outport.buffer.length': '1',\n", " 'dataport.outport.buffer.write.full_policy': 'overwrite',\n", " 'dataport.outport.buffer.read.empty_policy': 'do_nothing',\n", " 'dataport.data_type': 'TimedString',\n", " 'dataport.serializer.cdr.endian': 'little,big',\n", " 'dataport.corba_cdr.inport_ior': 'IOR:010000001a00000049444c3a4f70656e52544d2f496e506f72744364723a312e30000000010000000000000064000000010102000e0000003139322e3136382e35302e33350041cb0e000000fe37b1886100008404000000001900000200000000000000080000000100000000545441010000001c00000001000000010001000100000001000105090101000100000009010100',\n", " 'dataport.corba_cdr.inport_ref': <OpenRTM._objref_InPortCdr at 0x7fdbcce08910>}" ] }, "execution_count": 28, "metadata": {}, "output_type": "execute_result" } ], "source": [ "con.prop_dict" ] }, { "cell_type": "markdown", "id": "8596fffa", "metadata": {}, "source": [ "disconnect ports" ] }, { "cell_type": "code", "execution_count": 29, "id": "eb8db1e2", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "RTC_OK" ] }, "execution_count": 29, "metadata": {}, "output_type": "execute_result" } ], "source": [ "con.disconnect()" ] }, { "cell_type": "markdown", "id": "01d839cf", "metadata": {}, "source": [ "### change properties\n", "\n", "you can change properties by giving prop_dict" ] }, { "cell_type": "code", "execution_count": 30, "id": "bf21058e", "metadata": {}, "outputs": [], "source": [ "con = IOConnector([cin.outports['str_out'], cout.inports['str_in']], \n", " prop_dict={'dataport.inport.buffer.length': '8'})" ] }, { "cell_type": "code", "execution_count": 31, "id": "c2010d12", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'dataport.dataflow_type': 'push',\n", " 'dataport.interface_type': 'corba_cdr',\n", " 'dataport.subscription_type': 'new',\n", " 'dataport.publisher.push_policy': 'new',\n", " 'dataport.inport.buffer.length': '8',\n", " 'dataport.inport.buffer.read.empty_policy': 'do_nothing',\n", " 'dataport.inport.buffer.write.full_policy': 'overwrite',\n", " 'dataport.outport.buffer.length': '1',\n", " 'dataport.outport.buffer.write.full_policy': 'overwrite',\n", " 'dataport.outport.buffer.read.empty_policy': 'do_nothing',\n", " 'dataport.data_type': 'TimedString'}" ] }, "execution_count": 31, "metadata": {}, "output_type": "execute_result" } ], "source": [ "con.prop_dict_req" ] }, { "cell_type": "code", "execution_count": 32, "id": "2f5beb04", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "RTC_OK" ] }, "execution_count": 32, "metadata": {}, "output_type": "execute_result" } ], "source": [ "con.connect()" ] }, { "cell_type": "code", "execution_count": 33, "id": "76f04bf1", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'dataport.dataflow_type': 'push',\n", " 'dataport.interface_type': 'corba_cdr',\n", " 'dataport.subscription_type': 'new',\n", " 'dataport.publisher.push_policy': 'new',\n", " 'dataport.inport.buffer.length': '8',\n", " 'dataport.inport.buffer.read.empty_policy': 'do_nothing',\n", " 'dataport.inport.buffer.write.full_policy': 'overwrite',\n", " 'dataport.outport.buffer.length': '1',\n", " 'dataport.outport.buffer.write.full_policy': 'overwrite',\n", " 'dataport.outport.buffer.read.empty_policy': 'do_nothing',\n", " 'dataport.data_type': 'TimedString',\n", " 'dataport.serializer.cdr.endian': 'little,big',\n", " 'dataport.corba_cdr.inport_ior': 'IOR:010000001a00000049444c3a4f70656e52544d2f496e506f72744364723a312e30000000010000000000000064000000010102000e0000003139322e3136382e35302e33350041cb0e000000fe37b1886100008404000000001a00000200000000000000080000000100000000545441010000001c00000001000000010001000100000001000105090101000100000009010100',\n", " 'dataport.corba_cdr.inport_ref': <OpenRTM._objref_InPortCdr at 0x7fdbcce08f70>}" ] }, "execution_count": 33, "metadata": {}, "output_type": "execute_result" } ], "source": [ "con.prop_dict" ] }, { "cell_type": "code", "execution_count": 34, "id": "365f8875", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "RTC_OK" ] }, "execution_count": 34, "metadata": {}, "output_type": "execute_result" } ], "source": [ "con.disconnect()" ] }, { "cell_type": "markdown", "id": "e093a9bd", "metadata": {}, "source": [ "### conflict of connections\n", "\n", "only one connection is permitted between the same ports.\n", "\n", "so, if another connection exists, you can not control the connection by your connector.\n", "\n", "for example, " ] }, { "cell_type": "code", "execution_count": 35, "id": "eceb15cb", "metadata": {}, "outputs": [], "source": [ "b = IOConnector([cin.outports['str_out'], cout.inports['str_in']])" ] }, { "cell_type": "code", "execution_count": 36, "id": "4e0c4672", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "RTC_OK" ] }, "execution_count": 36, "metadata": {}, "output_type": "execute_result" } ], "source": [ "b.connect()" ] }, { "cell_type": "code", "execution_count": 37, "id": "71736ec7", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "there exists another connection. please try force=True.\n" ] }, { "data": { "text/plain": [ "'NO'" ] }, "execution_count": 37, "metadata": {}, "output_type": "execute_result" } ], "source": [ "con.connect()" ] }, { "cell_type": "code", "execution_count": 38, "id": "35ee7506", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "there exists another connection. please try force=True.\n" ] }, { "data": { "text/plain": [ "'NO'" ] }, "execution_count": 38, "metadata": {}, "output_type": "execute_result" } ], "source": [ "con.disconnect()" ] }, { "cell_type": "markdown", "id": "02a0a50e", "metadata": {}, "source": [ "you can handle this situation by forcing connect/disconnect operation" ] }, { "cell_type": "code", "execution_count": 39, "id": "e7abacc6", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "RTC_OK" ] }, "execution_count": 39, "metadata": {}, "output_type": "execute_result" } ], "source": [ "con.connect(force=True)" ] }, { "cell_type": "code", "execution_count": null, "id": "ac1d3a7a", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.10" } }, "nbformat": 4, "nbformat_minor": 5 }
mit
danlamanna/scratch
tests/integration/Layer subsetting.ipynb
1
5546
{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "%matplotlib inline\n", "from matplotlib import pylab as plt\n", "from matplotlib.colors import LinearSegmentedColormap\n", "from geonotebook.wrappers import RasterData, VectorData\n", "import numpy as np\n", "from IPython.display import display, Image" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Subsetting points" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "EXPECTED=\"https://data.kitware.com/api/v1/item/58a3290d8d777f0721a5ce45/download\"\n", "# Set the center of the map to the location the data\n", "M.set_center(-120.32, 47.84, 8)\n", "\n", "# Clean up any layers that might already exist\n", "M.layers.annotation.clear_annotations()\n", "for l in M.layers:\n", " M.remove_layer(l)\n", "\n", "rd = RasterData('data/WELD.tif')\n", "\n", "M.add_layer(rd[1, 2, 3])\n", "M.add_annotation('point', [-120.32, 47.84])\n", "\n", "display(Image(EXPECTED, format=\"png\"))" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "layer, data = next(M.layers.annotation.points[0].data)\n", "assert layer == M.layers[0]\n", "assert all(np.isclose(data, [0.302, 0.3003, 0.2517], atol=10e-4))\n", "data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Subsetting rectangles" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "EXPECTED=\"https://data.kitware.com/api/v1/item/58a329148d777f0721a5ce69/download\"\n", "# Set the center of the map to the location the data\n", "M.set_center(-120.533, 47.975, 12)\n", "\n", "# Clean up any layers that might already exist\n", "M.layers.annotation.clear_annotations()\n", "for l in M.layers:\n", " M.remove_layer(l)\n", "\n", "rd = RasterData('data/WELD.tif')\n", "\n", "M.add_layer(rd[1, 2, 3])\n", "M.add_annotation('rectangle', [[-120.588, 47.932], [-120.588, 48.017], [-120.478, 48.017], [-120.478, 47.932]])\n", "\n", "display(Image(EXPECTED, format=\"png\"))" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "layer, data = next(M.layers.annotation.rectangles[0].data)\n", "assert layer == M.layers[0]\n", "assert data.shape == (113, 146, 3)\n", "assert all(np.isclose(data[0, 0, :], [0.0712, 0.0848, 0.0701], atol=10e-4))\n", "plt.imshow(data)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Subsetting polygons" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false, "scrolled": true }, "outputs": [], "source": [ "EXPECTED=\"https://data.kitware.com/api/v1/item/58a346848d777f0721a61039/download\"\n", "# Set the center of the map to the location the data\n", "M.set_center(-120.533, 47.975, 12)\n", "\n", "# Clean up any layers that might already exist\n", "M.layers.annotation.clear_annotations()\n", "for l in M.layers:\n", " M.remove_layer(l)\n", "\n", "rd = RasterData('data/WELD.tif')\n", "\n", "M.add_layer(rd[1, 2, 3])\n", "M.add_annotation('polygon', [\n", " [-120.588, 47.932], [-120.643, 47.975], [-120.588, 48.017], [-120.478, 48.017], [-120.423, 47.975], [-120.478, 47.932]\n", "])\n", "\n", "display(Image(EXPECTED, format=\"png\"))" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "layer, data = next(M.layers.annotation.polygons[0].data)\n", "assert layer == M.layers[0]\n", "assert data.shape == (113, 292, 3)\n", "assert all(np.isclose(data[55, 150, :], [0.0777, 0.0855, 0.0752], atol=10e-4))\n", "plt.imshow(data)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Subsetting vector data" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "M.set_center(-119.63, 47.686, 8)\n", "\n", "M.layers.annotation.clear_annotations()\n", "for l in M.layers:\n", " M.remove_layer(l)\n", " \n", "rd = RasterData('data/WELD.tif')\n", "M.add_layer(rd[1, 2, 3])\n", "\n", "v = VectorData('data/wa_county')\n", "M.add_layer(v)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "county = v.polygons.next()\n", "_, data = county.data.next()\n", "plt.imshow(data)" ] } ], "metadata": { "kernelspec": { "display_name": "Geonotebook (Python 2)", "language": "python", "name": "geonotebook2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.12" } }, "nbformat": 4, "nbformat_minor": 2 }
apache-2.0
pacoqueen/ginn
extra/install/ipython2/ipython-5.10.0/examples/IPython Kernel/Beyond Plain Python.ipynb
1
132729
{ "cells": [ { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "# IPython: beyond plain Python" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "When executing code in IPython, all valid Python syntax works as-is, but IPython provides a number of features designed to make the interactive experience more fluid and efficient." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "## First things first: running code, getting help" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In the notebook, to run a cell of code, hit `Shift-Enter`. This executes the cell and puts the cursor in the next cell below, or makes a new one if you are at the end. Alternately, you can use:\n", " \n", "- `Alt-Enter` to force the creation of a new cell unconditionally (useful when inserting new content in the middle of an existing notebook).\n", "- `Control-Enter` executes the cell and keeps the cursor in the same cell, useful for quick experimentation of snippets that you don't need to keep permanently." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Hi\n" ] } ], "source": [ "print(\"Hi\")" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "Getting help:" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [], "source": [ "?" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "Typing `object_name?` will print all sorts of details about any object, including docstrings, function definition lines (for call arguments) and constructor details for classes." ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import collections\n", "collections.namedtuple?" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [], "source": [ "collections.Counter??" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [], "source": [ "*int*?" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "An IPython quick reference card:" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [], "source": [ "%quickref" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "## Tab completion" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Tab completion, especially for attributes, is a convenient way to explore the structure of any object you’re dealing with. Simply type `object_name.<TAB>` to view the object’s attributes. Besides Python objects and keywords, tab completion also works on file and directory names." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "collections." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "## The interactive workflow: input, output, history" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "12" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "2+10" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "22" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "_+10" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "You can suppress the storage and rendering of output if you append `;` to the last cell (this comes in handy when plotting with matplotlib, for example):" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [], "source": [ "10+20;" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "22" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "_" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "The output is stored in `_N` and `Out[N]` variables:" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "True" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "_10 == Out[10]" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "And the last three have shorthands for convenience:" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "last output: True\n", "next one : 22\n", "and next : 22\n" ] } ], "source": [ "from __future__ import print_function\n", "\n", "print('last output:', _)\n", "print('next one :', __)\n", "print('and next :', ___)" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false, "slideshow": { "slide_type": "-" } }, "outputs": [ { "data": { "text/plain": [ "'_10 == Out[10]'" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "In[11]" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "'In[11]'" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "_i" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "'In[11]'" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "_ii" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": false, "slideshow": { "slide_type": "subslide" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "last input: _ii\n", "next one : _i\n", "and next : In[11]\n" ] } ], "source": [ "print('last input:', _i)\n", "print('next one :', _ii)\n", "print('and next :', _iii)" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " 1: print(\"Hi\")\n", " 2: ?\n", " 3:\n", "import collections\n", "collections.namedtuple?\n", " 4: collections.Counter??\n", " 5: *int*?\n" ] } ], "source": [ "%history -n 1-5" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "**Exercise**\n", "\n", "Write the last 10 lines of history to a file named `log.py`." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "## Accessing the underlying operating system" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "/Users/minrk/dev/ip/mine/examples/IPython Kernel\r\n" ] } ], "source": [ "!pwd" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "My current directory's files:\n", "['Animations Using clear_output.ipynb', 'Background Jobs.ipynb', 'Beyond Plain Python.ipynb', 'Capturing Output.ipynb', 'Cell Magics.ipynb', 'Custom Display Logic.ipynb', 'Index.ipynb', 'Old Custom Display Logic.ipynb', 'Plotting in the Notebook.ipynb', 'Raw Input in the Notebook.ipynb', 'Rich Output.ipynb', 'Script Magics.ipynb', 'SymPy.ipynb', 'Terminal Usage.ipynb', 'Third Party Rich Output.ipynb', 'Trapezoid Rule.ipynb', 'Working With External Code.ipynb', '__pycache__', 'data', 'example-demo.py', 'gui', 'ipython-completion.bash', 'ipython-get-history.py', 'ipython-qtconsole.desktop', 'ipython.desktop', 'mod.py', 'test.txt']\n" ] } ], "source": [ "files = !ls\n", "print(\"My current directory's files:\")\n", "print(files)" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[Animations Using clear_output.ipynb, Background Jobs.ipynb, Beyond Plain Python.ipynb, Capturing Output.ipynb, Cell Magics.ipynb, Custom Display Logic.ipynb, Index.ipynb, Old Custom Display Logic.ipynb, Plotting in the Notebook.ipynb, Raw Input in the Notebook.ipynb, Rich Output.ipynb, Script Magics.ipynb, SymPy.ipynb, Terminal Usage.ipynb, Third Party Rich Output.ipynb, Trapezoid Rule.ipynb, Working With External Code.ipynb, __pycache__, data, example-demo.py, gui, ipython-completion.bash, ipython-get-history.py, ipython-qtconsole.desktop, ipython.desktop, mod.py, test.txt]\r\n" ] } ], "source": [ "!echo $files" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "ANIMATIONS USING CLEAR_OUTPUT.IPYNB\r\n" ] } ], "source": [ "!echo {files[0].upper()}" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Note that all this is available even in multiline blocks:" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "00 - Animations Using clear_output\n", "01 - Background Jobs\n", "02 - Beyond Plain Python\n", "03 - Capturing Output\n", "04 - Cell Magics\n", "05 - Custom Display Logic\n", "06 - Index\n", "07 - Old Custom Display Logic\n", "08 - Plotting in the Notebook\n", "09 - Raw Input in the Notebook\n", "10 - Rich Output\n", "11 - Script Magics\n", "12 - SymPy\n", "13 - Terminal Usage\n", "14 - Third Party Rich Output\n", "15 - Trapezoid Rule\n", "16 - Working With External Code\n", "--\n", "--\n", "--\n", "--\n", "--\n", "--\n", "--\n", "--\n", "--\n", "--\n" ] } ], "source": [ "import os\n", "for i,f in enumerate(files):\n", " if f.endswith('ipynb'):\n", " !echo {\"%02d\" % i} - \"{os.path.splitext(f)[0]}\"\n", " else:\n", " print('--')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Beyond Python: magic functions" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The IPyhton 'magic' functions are a set of commands, invoked by prepending one or two `%` signs to their name, that live in a namespace separate from your normal Python variables and provide a more command-like interface. They take flags with `--` and arguments without quotes, parentheses or commas. The motivation behind this system is two-fold:\n", " \n", "- To provide an orthogonal namespace for controlling IPython itself and exposing other system-oriented functionality.\n", "\n", "- To expose a calling mode that requires minimal verbosity and typing while working interactively. Thus the inspiration taken from the classic Unix shell style for commands." ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "collapsed": false }, "outputs": [], "source": [ "%magic" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Line vs cell magics:" ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "10000 loops, best of 3: 19.3 µs per loop\n" ] } ], "source": [ "%timeit list(range(1000))" ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "100000 loops, best of 3: 2.78 µs per loop\n" ] } ], "source": [ "%%timeit\n", "list(range(10))\n", "list(range(100))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Line magics can be used even inside code blocks:" ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "size: 100 100000 loops, best of 3: 1.86 µs per loop\n", "size: 200 100000 loops, best of 3: 2.49 µs per loop\n", "size: 300 100000 loops, best of 3: 4.04 µs per loop\n", "size: 400 100000 loops, best of 3: 6.21 µs per loop\n" ] } ], "source": [ "for i in range(1, 5):\n", " size = i*100\n", " print('size:', size, end=' ')\n", " %timeit list(range(size))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Magics can do anything they want with their input, so it doesn't have to be valid Python:" ] }, { "cell_type": "code", "execution_count": 27, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "My shell is: /usr/local/bin/bash\n", "My disk usage is:\n", "Filesystem Size Used Avail Capacity iused ifree %iused Mounted on\n", "/dev/disk1 233Gi 216Gi 16Gi 94% 56788108 4190706 93% /\n", "devfs 190Ki 190Ki 0Bi 100% 656 0 100% /dev\n", "map -hosts 0Bi 0Bi 0Bi 100% 0 0 100% /net\n", "map auto_home 0Bi 0Bi 0Bi 100% 0 0 100% /home\n" ] } ], "source": [ "%%bash\n", "echo \"My shell is:\" $SHELL\n", "echo \"My disk usage is:\"\n", "df -h" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Another interesting cell magic: create any file you want locally from the notebook:" ] }, { "cell_type": "code", "execution_count": 28, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Overwriting test.txt\n" ] } ], "source": [ "%%writefile test.txt\n", "This is a test file!\n", "It can contain anything I want...\n", "\n", "And more..." ] }, { "cell_type": "code", "execution_count": 29, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "This is a test file!\r\n", "It can contain anything I want...\r\n", "\r\n", "And more..." ] } ], "source": [ "!cat test.txt" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's see what other magics are currently defined in the system:" ] }, { "cell_type": "code", "execution_count": 30, "metadata": { "collapsed": false }, "outputs": [ { "data": { "application/json": { "cell": { "!": "OSMagics", "HTML": "Other", "SVG": "Other", "bash": "Other", "capture": "ExecutionMagics", "debug": "ExecutionMagics", "file": "Other", "html": "DisplayMagics", "javascript": "DisplayMagics", "latex": "DisplayMagics", "perl": "Other", "prun": "ExecutionMagics", "pypy": "Other", "python": "Other", "python2": "Other", "python3": "Other", "ruby": "Other", "script": "ScriptMagics", "sh": "Other", "svg": "DisplayMagics", "sx": "OSMagics", "system": "OSMagics", "time": "ExecutionMagics", "timeit": "ExecutionMagics", "writefile": "OSMagics" }, "line": { "alias": "OSMagics", "alias_magic": "BasicMagics", "autocall": "AutoMagics", "automagic": "AutoMagics", "autosave": "KernelMagics", "bookmark": "OSMagics", "cat": "Other", "cd": "OSMagics", "clear": "KernelMagics", "colors": "BasicMagics", "config": "ConfigMagics", "connect_info": "KernelMagics", "cp": "Other", "debug": "ExecutionMagics", "dhist": "OSMagics", "dirs": "OSMagics", "doctest_mode": "BasicMagics", "ed": "Other", "edit": "KernelMagics", "env": "OSMagics", "gui": "BasicMagics", "hist": "Other", "history": "HistoryMagics", "install_default_config": "DeprecatedMagics", "install_profiles": "DeprecatedMagics", "killbgscripts": "ScriptMagics", "ldir": "Other", "less": "KernelMagics", "lf": "Other", "lk": "Other", "ll": "Other", "load": "CodeMagics", "load_ext": "ExtensionMagics", "loadpy": "CodeMagics", "logoff": "LoggingMagics", "logon": "LoggingMagics", "logstart": "LoggingMagics", "logstate": "LoggingMagics", "logstop": "LoggingMagics", "ls": "Other", "lsmagic": "BasicMagics", "lx": "Other", "macro": "ExecutionMagics", "magic": "BasicMagics", "man": "KernelMagics", "matplotlib": "PylabMagics", "mkdir": "Other", "more": "KernelMagics", "mv": "Other", "namespace": "Other", "notebook": "BasicMagics", "page": "BasicMagics", "pastebin": "CodeMagics", "pdb": "ExecutionMagics", "pdef": "NamespaceMagics", "pdoc": "NamespaceMagics", "pfile": "NamespaceMagics", "pinfo": "NamespaceMagics", "pinfo2": "NamespaceMagics", "popd": "OSMagics", "pprint": "BasicMagics", "precision": "BasicMagics", "profile": "BasicMagics", "prun": "ExecutionMagics", "psearch": "NamespaceMagics", "psource": "NamespaceMagics", "pushd": "OSMagics", "pwd": "OSMagics", "pycat": "OSMagics", "pylab": "PylabMagics", "qtconsole": "KernelMagics", "quickref": "BasicMagics", "recall": "HistoryMagics", "rehashx": "OSMagics", "reload_ext": "ExtensionMagics", "rep": "Other", "rerun": "HistoryMagics", "reset": "NamespaceMagics", "reset_selective": "NamespaceMagics", "rm": "Other", "rmdir": "Other", "run": "ExecutionMagics", "save": "CodeMagics", "sc": "OSMagics", "set_env": "OSMagics", "store": "StoreMagics", "sx": "OSMagics", "system": "OSMagics", "tb": "ExecutionMagics", "tic": "TimerMagics", "time": "ExecutionMagics", "timeit": "ExecutionMagics", "toc": "TimerMagics", "unalias": "OSMagics", "unload_ext": "ExtensionMagics", "who": "NamespaceMagics", "who_ls": "NamespaceMagics", "whos": "NamespaceMagics", "xdel": "NamespaceMagics", "xmode": "BasicMagics" } }, "text/plain": [ "Available line magics:\n", "%alias %alias_magic %autocall %automagic %autosave %bookmark %cat %cd %clear %colors %config %connect_info %cp %debug %dhist %dirs %doctest_mode %ed %edit %env %gui %hist %history %install_default_config %install_profiles %killbgscripts %ldir %less %lf %lk %ll %load %load_ext %loadpy %logoff %logon %logstart %logstate %logstop %ls %lsmagic %lx %macro %magic %man %matplotlib %mkdir %more %mv %namespace %notebook %page %pastebin %pdb %pdef %pdoc %pfile %pinfo %pinfo2 %popd %pprint %precision %profile %prun %psearch %psource %pushd %pwd %pycat %pylab %qtconsole %quickref %recall %rehashx %reload_ext %rep %rerun %reset %reset_selective %rm %rmdir %run %save %sc %set_env %store %sx %system %tb %tic %time %timeit %toc %unalias %unload_ext %who %who_ls %whos %xdel %xmode\n", "\n", "Available cell magics:\n", "%%! %%HTML %%SVG %%bash %%capture %%debug %%file %%html %%javascript %%latex %%perl %%prun %%pypy %%python %%python2 %%python3 %%ruby %%script %%sh %%svg %%sx %%system %%time %%timeit %%writefile\n", "\n", "Automagic is ON, % prefix IS NOT needed for line magics." ] }, "execution_count": 30, "metadata": {}, "output_type": "execute_result" } ], "source": [ "%lsmagic" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Running normal Python code: execution and errors" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Not only can you input normal Python code, you can even paste straight from a Python or IPython shell session:" ] }, { "cell_type": "code", "execution_count": 31, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "1\n", "1\n", "2\n", "3\n", "5\n", "8\n" ] } ], "source": [ ">>> # Fibonacci series:\n", "... # the sum of two elements defines the next\n", "... a, b = 0, 1\n", ">>> while b < 10:\n", "... print(b)\n", "... a, b = b, a+b" ] }, { "cell_type": "code", "execution_count": 32, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0 1 2 3 4 5 6 7 8 9 " ] } ], "source": [ "In [1]: for i in range(10):\n", " ...: print(i, end=' ')\n", " ...: " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "And when your code produces errors, you can control how they are displayed with the `%xmode` magic:" ] }, { "cell_type": "code", "execution_count": 33, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Overwriting mod.py\n" ] } ], "source": [ "%%writefile mod.py\n", "\n", "def f(x):\n", " return 1.0/(x-1)\n", "\n", "def g(y):\n", " return f(y+1)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now let's call the function `g` with an argument that would produce an error:" ] }, { "cell_type": "code", "execution_count": 34, "metadata": { "collapsed": false }, "outputs": [ { "ename": "ZeroDivisionError", "evalue": "float division by zero", "output_type": "error", "traceback": [ "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[1;31mZeroDivisionError\u001b[0m Traceback (most recent call last)", "\u001b[1;32m<ipython-input-40-a54c5799f57e>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m()\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[1;32mimport\u001b[0m \u001b[0mmod\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 2\u001b[1;33m \u001b[0mmod\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mg\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;36m0\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", "\u001b[1;32m/Users/minrk/dev/ip/mine/examples/IPython Kernel/mod.py\u001b[0m in \u001b[0;36mg\u001b[1;34m(y)\u001b[0m\n\u001b[0;32m 4\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 5\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0mg\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0my\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 6\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mf\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0my\u001b[0m\u001b[1;33m+\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", "\u001b[1;32m/Users/minrk/dev/ip/mine/examples/IPython Kernel/mod.py\u001b[0m in \u001b[0;36mf\u001b[1;34m(x)\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 2\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0mf\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mx\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 3\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[1;36m1.0\u001b[0m\u001b[1;33m/\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mx\u001b[0m\u001b[1;33m-\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 4\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 5\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0mg\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0my\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;31mZeroDivisionError\u001b[0m: float division by zero" ] } ], "source": [ "import mod\n", "mod.g(0)" ] }, { "cell_type": "code", "execution_count": 35, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Exception reporting mode: Plain\n" ] }, { "ename": "ZeroDivisionError", "evalue": "float division by zero", "output_type": "error", "traceback": [ "Traceback \u001b[1;36m(most recent call last)\u001b[0m:\n", " File \u001b[0;32m\"<ipython-input-41-8932f4bf53fa>\"\u001b[0m, line \u001b[0;32m2\u001b[0m, in \u001b[0;35m<module>\u001b[0m\n mod.g(0)\n", " File \u001b[0;32m\"/Users/minrk/dev/ip/mine/examples/IPython Kernel/mod.py\"\u001b[0m, line \u001b[0;32m6\u001b[0m, in \u001b[0;35mg\u001b[0m\n return f(y+1)\n", "\u001b[1;36m File \u001b[1;32m\"/Users/minrk/dev/ip/mine/examples/IPython Kernel/mod.py\"\u001b[1;36m, line \u001b[1;32m3\u001b[1;36m, in \u001b[1;35mf\u001b[1;36m\u001b[0m\n\u001b[1;33m return 1.0/(x-1)\u001b[0m\n", "\u001b[1;31mZeroDivisionError\u001b[0m\u001b[1;31m:\u001b[0m float division by zero\n" ] } ], "source": [ "%xmode plain\n", "mod.g(0)" ] }, { "cell_type": "code", "execution_count": 36, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Exception reporting mode: Verbose\n" ] }, { "ename": "ZeroDivisionError", "evalue": "float division by zero", "output_type": "error", "traceback": [ "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[1;31mZeroDivisionError\u001b[0m Traceback (most recent call last)", "\u001b[1;32m<ipython-input-42-539f73e80e01>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m()\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[0mget_ipython\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mmagic\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m'xmode verbose'\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 2\u001b[1;33m \u001b[0mmod\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mg\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;36m0\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m \u001b[1;36mglobal\u001b[0m \u001b[0;36mmod.g\u001b[0m \u001b[1;34m= <function g at 0x105887d08>\u001b[0m\n", "\u001b[1;32m/Users/minrk/dev/ip/mine/examples/IPython Kernel/mod.py\u001b[0m in \u001b[0;36mg\u001b[1;34m(y=0)\u001b[0m\n\u001b[0;32m 4\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 5\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0mg\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0my\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 6\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mf\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0my\u001b[0m\u001b[1;33m+\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m \u001b[1;36mglobal\u001b[0m \u001b[0;36mf\u001b[0m \u001b[1;34m= <function f at 0x105887d90>\u001b[0m\u001b[1;34m\n \u001b[0m\u001b[0;36my\u001b[0m \u001b[1;34m= 0\u001b[0m\n", "\u001b[1;32m/Users/minrk/dev/ip/mine/examples/IPython Kernel/mod.py\u001b[0m in \u001b[0;36mf\u001b[1;34m(x=1)\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 2\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0mf\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mx\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 3\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[1;36m1.0\u001b[0m\u001b[1;33m/\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mx\u001b[0m\u001b[1;33m-\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m \u001b[0;36mx\u001b[0m \u001b[1;34m= 1\u001b[0m\n\u001b[0;32m 4\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 5\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0mg\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0my\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;31mZeroDivisionError\u001b[0m: float division by zero" ] } ], "source": [ "%xmode verbose\n", "mod.g(0)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The default `%xmode` is \"context\", which shows additional context but not all local variables. Let's restore that one for the rest of our session." ] }, { "cell_type": "code", "execution_count": 37, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Exception reporting mode: Context\n" ] } ], "source": [ "%xmode context" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Running code in other languages with special `%%` magics" ] }, { "cell_type": "code", "execution_count": 38, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "July" ] } ], "source": [ "%%perl\n", "@months = (\"July\", \"August\", \"September\");\n", "print $months[0];" ] }, { "cell_type": "code", "execution_count": 39, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Hello World!\n" ] } ], "source": [ "%%ruby\n", "name = \"world\"\n", "puts \"Hello #{name.capitalize}!\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Raw Input in the notebook" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Since 1.0 the IPython notebook web application support `raw_input` which for example allow us to invoke the `%debug` magic in the notebook:" ] }, { "cell_type": "code", "execution_count": 40, "metadata": { "collapsed": false }, "outputs": [ { "ename": "ZeroDivisionError", "evalue": "float division by zero", "output_type": "error", "traceback": [ "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[1;31mZeroDivisionError\u001b[0m Traceback (most recent call last)", "\u001b[1;32m<ipython-input-46-5e708f13c839>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m()\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0mmod\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mg\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;36m0\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", "\u001b[1;32m/Users/minrk/dev/ip/mine/examples/IPython Kernel/mod.py\u001b[0m in \u001b[0;36mg\u001b[1;34m(y)\u001b[0m\n\u001b[0;32m 4\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 5\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0mg\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0my\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 6\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mf\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0my\u001b[0m\u001b[1;33m+\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", "\u001b[1;32m/Users/minrk/dev/ip/mine/examples/IPython Kernel/mod.py\u001b[0m in \u001b[0;36mf\u001b[1;34m(x)\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 2\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0mf\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mx\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 3\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[1;36m1.0\u001b[0m\u001b[1;33m/\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mx\u001b[0m\u001b[1;33m-\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 4\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 5\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0mg\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0my\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;31mZeroDivisionError\u001b[0m: float division by zero" ] } ], "source": [ "mod.g(0)" ] }, { "cell_type": "code", "execution_count": 41, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "> \u001b[1;32m/Users/minrk/dev/ip/mine/examples/IPython Kernel/mod.py\u001b[0m(3)\u001b[0;36mf\u001b[1;34m()\u001b[0m\n", "\u001b[1;32m 2 \u001b[1;33m\u001b[1;32mdef\u001b[0m \u001b[0mf\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mx\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[0m\u001b[1;32m----> 3 \u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[1;36m1.0\u001b[0m\u001b[1;33m/\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mx\u001b[0m\u001b[1;33m-\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[0m\u001b[1;32m 4 \u001b[1;33m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[0m\n", "ipdb> up\n", "> \u001b[1;32m/Users/minrk/dev/ip/mine/examples/IPython Kernel/mod.py\u001b[0m(6)\u001b[0;36mg\u001b[1;34m()\u001b[0m\n", "\u001b[1;32m 4 \u001b[1;33m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[0m\u001b[1;32m 5 \u001b[1;33m\u001b[1;32mdef\u001b[0m \u001b[0mg\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0my\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[0m\u001b[1;32m----> 6 \u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mf\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0my\u001b[0m\u001b[1;33m+\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[0m\n", "ipdb> down\n", "> \u001b[1;32m/Users/minrk/dev/ip/mine/examples/IPython Kernel/mod.py\u001b[0m(3)\u001b[0;36mf\u001b[1;34m()\u001b[0m\n", "\u001b[1;32m 2 \u001b[1;33m\u001b[1;32mdef\u001b[0m \u001b[0mf\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mx\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[0m\u001b[1;32m----> 3 \u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[1;36m1.0\u001b[0m\u001b[1;33m/\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mx\u001b[0m\u001b[1;33m-\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[0m\u001b[1;32m 4 \u001b[1;33m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[0m\n", "ipdb> bt\n", " \u001b[1;32m<ipython-input-46-5e708f13c839>\u001b[0m(1)\u001b[0;36m<module>\u001b[1;34m()\u001b[0m\n", "\u001b[1;32m----> 1 \u001b[1;33m\u001b[0mmod\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mg\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;36m0\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[0m\n", " \u001b[1;32m/Users/minrk/dev/ip/mine/examples/IPython Kernel/mod.py\u001b[0m(6)\u001b[0;36mg\u001b[1;34m()\u001b[0m\n", "\u001b[0;32m 2 \u001b[0m\u001b[1;32mdef\u001b[0m \u001b[0mf\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mx\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[0;32m 3 \u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[1;36m1.0\u001b[0m\u001b[1;33m/\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mx\u001b[0m\u001b[1;33m-\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[0;32m 4 \u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[0;32m 5 \u001b[0m\u001b[1;32mdef\u001b[0m \u001b[0mg\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0my\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32m----> 6 \u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mf\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0my\u001b[0m\u001b[1;33m+\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[0m\n", "> \u001b[1;32m/Users/minrk/dev/ip/mine/examples/IPython Kernel/mod.py\u001b[0m(3)\u001b[0;36mf\u001b[1;34m()\u001b[0m\n", "\u001b[1;32m 1 \u001b[1;33m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[0m\u001b[1;32m 2 \u001b[1;33m\u001b[1;32mdef\u001b[0m \u001b[0mf\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mx\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[0m\u001b[1;32m----> 3 \u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[1;36m1.0\u001b[0m\u001b[1;33m/\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mx\u001b[0m\u001b[1;33m-\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[0m\u001b[1;32m 4 \u001b[1;33m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[0m\u001b[1;32m 5 \u001b[1;33m\u001b[1;32mdef\u001b[0m \u001b[0mg\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0my\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[0m\n", "ipdb> exit\n" ] } ], "source": [ "%debug" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Don't foget to exit your debugging session. Raw input can of course be use to ask for user input:" ] }, { "cell_type": "code", "execution_count": 42, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Are you enjoying this tutorial? yes\n", "enjoy is: yes\n" ] } ], "source": [ "enjoy = input('Are you enjoying this tutorial? ')\n", "print('enjoy is:', enjoy)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Plotting in the notebook" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This magic configures matplotlib to render its figures inline:" ] }, { "cell_type": "code", "execution_count": 43, "metadata": { "collapsed": false }, "outputs": [], "source": [ "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": 44, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt" ] }, { "cell_type": "code", "execution_count": 45, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": [ "iVBORw0KGgoAAAANSUhEUgAABK8AAAMQCAYAAADhP0bKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\n", "AAAWJQAAFiUBSVIk8AAAIABJREFUeJzs3Xm8JGV97/FPMTMMM8My7DsOggIiIpoS96XcjXG3o6Ci\n", "YlySGDVJZfHqjWYxNymviTc3iV6jaNSIjUZNTNyw3KOxFFBRFAGRfWeAgRlmq/vH8zzn9Jw5p08v\n", "VfU81fV9v16+yj6nTvdvzgzndH/79/tVVJYlIiIiIiIiIiIiIdrDdwEiIiIiIiIiIiJLUXglIiIi\n", "IiIiIiLBUnglIiIiIiIiIiLBUnglIiIiIiIiIiLBUnglIiIiIiIiIiLBUnglIiIiIiIiIiLBUngl\n", "IiIiIiIiIiLBUnglIiIiIiIiIiLBUnglIiIiIiIiIiLBUnglIiIiIiIiIiLBUnglIiIiIiIiIiLB\n", "UnglIiIiIiIiIiLBUnglIiIiIiIiIiLBUnglIiIinRNF0VejKNoZRdExHmu4Moqinb4ef1xRFL3N\n", "fs/O8l2LiIiIdIvCKxEREQlWFEVn2MBkaxRFh1d89+Uij7cmiqJvRlH0yyiKTqz48UaqoQUmqjmK\n", "ogdEUXRVFEVfj6JoddVFiYiIyOxSeCUiIiIh+217XAm8puL7jhb52AOARwJHA0+v+PG67unAUcCj\n", "MN9nERERkZEovBIREZEgRVF0GvBw4Hb7oVdHUbSy5oe9EPgg8CXgYzU/Vtd8DPgy8AHgIs+1iIiI\n", "SIsovBIREZFQvd4e3w18FzgMeEGdD1iW5c6yLF9ZluVTy7K8YeHnoyjaYMcYvzLsfqIo+qA977H1\n", "VdsuZVleV5blk8uy/I2yLNs4LikiIiKeKLwSERGR4ERRdADwImAHcA7wfvup317yi5ql8EVERESk\n", "IQqvREREJESvAvYCzi/L8mrgXGAz8Mgoik71WJdCKxEREZGGKbwSERGRoERRtAfwOnvz/QBlWd4F\n", "nGc/5rP7arEl71WeLyIiIiILKLwSERGR0DwTuA9wC/DpgY+70cEzoihaX9eDR1H0Vbuv6piBj+2M\n", "omgncIX90OPdx+z/zomi6G0D573MnveVBecds/DxlqnlYXZ/1pVRFG2JoujmKIq+GEXRmRX9WR8a\n", "RdF7oyi6NIqiu6MoujOKoiKKot+PomivZb72hVEU5VEUbYyiaFMURT+MouitURStGfI1O6Mo+sUi\n", "H3+5/dybI+OVURR9N4qiO+zHT7TnXWm/v0RRtEcURS+LouhzURTdGEXRvVEUXR1F0blRFD1j2u+N\n", "iIiIhKPuK/aIiIiIjMt1Vn2kLMvt7oNlWX4jiqKfA/cDzgb+d401LBwP/Jr92BrgdOAOzJUJnUuA\n", "G4Gv2tsnAYdirqq3ceC8LaM8eBRFK4B3Mb+0/ibge8A+wBOAJ0VR9Grg2WVZblz8Xobe/yrg/wCv\n", "sR+6A7gYWAWcAjwUeF0URc8oy/JnC758ZRRFHwdeiAkYL8Ys03+g/d/Toyh6XFmW25Z4+GGjlxHw\n", "z8CZmO/bT4A9yrL86eDXR1F0EPBZ4GHANsz3/zLgGKAH9KIoOh94cVmWtw79ZoiIiEjw1HklIiIi\n", "wYii6ATgSZiA4/2LnHKOPb4uiqI6R/J2ue+yLJ9QlmWCWSIPcGFZlsnA//66LMsPudvAF+x5b1xw\n", "3k0jPv7fYYKrGzABzGFlWT66LMtTgcMx34fHAJ+a8PvwT5jg6hbgDOCgsixPL8vyIcBRmADpWObH\n", "Nwf9EfAs4OyyLA+xdR0PPAq4FXg4k492Ps/W8xbgsLIsH1GW5ekLzokw39/TgD8BDi7L8sFlWT6q\n", "LMujMd+XH2D+HX1xWCeYiIiItIPCKxEREQnJb9ljUZbljxf5/IeAncB9gac3VtW82ndYRVH0OOC1\n", "wJXAg8uy/Pjg58uyvKUsy7OBTwKPw3QpjXP/TwVeCtwFPK4sy3PLstyx4P5fDjylLMs3LnIXxwOv\n", "KMvynMEPlmX5beDN9mZvnJoGnAb8SVmW7yjLcuuQ8x4IPKssyz8ry/LOBXV8C3g0JsA6DXjrhLWI\n", "iIhIIBReiYiISBCiKNobOMveXKzrirIsrwf+0970ubi9Tm+yx99dplPrT+3xVWPe/xvsMSvL8pKl\n", "TirL8vwlPnVRWZbnLvG5T9rjiWPW5NwK/NUI5/2fsiy/sNQny7K8GzNaCvD65fZ3iYiISNgUXomI\n", "iEgoXobZ6XQ38LEh57lg66lRFB1Xe1UNsldafBKwA/iPYeeWZfkjzL6n0+3XjXr/j8OMZQ77Hg+z\n", "ZF1lWd4G3I75e5zEBUN2Zc09DPCe5e6oLMsLMLuw1gGPnbAeERERCYDCKxEREQmFGxn8RFmWm4ac\n", "9x+YBebRwNfMigOBtcAK4N4FVyrc7X+YBet7AgeNcf9rgB1lWV4+YY3XLfP5TUw+XnntCOdsGaP2\n", "n9jjfSasR0RERAKgqw2KiIiId1EUJZgr9AGcFUXRWcPOH/DyKIreUpblPTWV1jR3Jb5twLd8FjLE\n", "3ct8ftjVBEVERETGpvBKREREQuD2V92LWSQ+igOB9ZiF5e+roygPbsWEQ6uBXy3LcnMN978FWB1F\n", "0XFTdF/5tNcYtbtA9Moa6xEREZGaaWxQREREvIqi6GjgWfbm68uyPGSU/wGfsV8zM6ODZVmWwBcw\n", "bzC+uIb73wl8FTPW96Kq778hEfDqZU+KotOAB2DGGL9ed1EiIiJSH4VXIiIi4tvrMM9JbgE+PMbX\n", "vcseHxRF0WMqr2px2+1xuYXk7rx9J3iMd9rjX0RRdMxSJ0VR9Ogoij5ir9I4jnfb4x9EUXTCkPv/\n", "tTHvt0lviqLoyUt9MoqidcA/2Zt/V5blvc2UJSIiInVQeCUiIiLeRFG0GniVvfnecUKGsiy/CXzf\n", "3vztYecudRcTfO5mYCtwahRFD3QfjKLo0AXnXWWPZwycs08URWuXLaosvwP8LXAo8O0oip4/eDVB\n", "ez+/D3wJ+HXgCcvd54L7/wImJNwH+EYURS+OomjFwP0fHEXRh4HPRFH0f8e57wb9APhsFEVvjaJo\n", "v8FPRFH0aOCbwGnABcCfeahPREREKqTwSkRERHz6dcyV8rYCfz/B17vuq+dGUXT4mF877Ip4i37O\n", "hmvnYsb6vhtF0XeiKLoceM+CU8/FLF1/URRFV0RRVGCu0nf8iLX9HqYD6zDgPOAW+1g/Am4E/hq4\n", "B3hxWZb/PuJ9DjobeC/me/9R4LYoioooii4ErsHsEbsM+JsJ7rtuJfB04IfA24Gboyj6YRRF/xVF\n", "0bWYEcFTgfOBp5RlucVfqSIiIlIFhVciIiLi029hwoh+WZY3TPD15wHXAiuA14zxdSVLd1cN+xyY\n", "ms8B7gROwYRUX9zlDsryUuC5mIDlUGADphvoxgWPs3gBxh8ADwXej1m0fgpwJPAT4E+BE8uy/MSQ\n", "OpdUluX2sixfB5wOfAC4ATgROBa4CEiBUxYsRV/u+zJ43tgljXVyWd6Cqf1s4GuYkO80YAfwSeDZ\n", "ZVk+pSzL2yaoRURERAITmb2gzev1ekcA/wFs6Pf7+4/xdYdi2r+fDhwAXAH8336//95aChURERGR\n", "IERRdCVwdFmWK5Y7V0RERGaHl86rXq/3QOA7wIMY4522Xq+3HtMK/gTgbcALgM8C7+71en9ZfaUi\n", "IiIiIiIiIuLTyqYfsNfrPRHTzv1T4NPAS8f48j8F1gOn9vt9N1rwuV6v93Pg//V6vXP7/f4PKi1Y\n", "RERERERERES88dF59TLMlYGeCIy8h6DX660GzsKMCC7ciXEOcCXw6opqFBERERERERGRAPgIr14L\n", "PL3f79895tc9BHNJ5/9Y+Il+v18CnwMeP3V1IiIiIiIiIiISjMbHBvv9/uYJv9RdWvqnS3z+UuA3\n", "JrxvEREREREREREJkJeF7RM6ANje7/fvWeLzG4E9e73e2gZrEhERERERERGRGrUpvNoH2DLk8y7U\n", "2q+BWkRERESkeSNfpVpERERmR+Njg1O4C9hryOddx9UdDdQiIiIiIg0ry/JY3zWIiIhI89oUXt0G\n", "rOz1emuXGB3cD9g6ZKxwUV/+8pf1Dp6IiIiIiIiISA2e+MQnRtPeR5vGBi+3xxOW+PyJA+eIiIiI\n", "iIiIiMgMaFPn1QWY0cFnAhcOfqLX60XA04AvTHrnVSSBIpPo9Xplv9/38u8vzvKHAe8GHm4/dAPw\n", "GeDTwH8BdxdpsiPO8jXA6cDjgecAp9rzfwi8qUiTvMm6pRo+/+1J8+IsfxPwLmAz8AbgPsATgEcC\n", "PwFOK9Jka1P16N/f7ImzfC3mudijgcuAw4F1QK9Ik/N81jZI//amE2f5U4HPD3zoG8DjijTRNMMy\n", "mvi3F2f5a4D3DHzoPkWaXFXnY3ZVnOWnYV6jAvwIeGyRJhs9ljRU6D/74iz/C+DN9ubLijT5sM96\n", "pBpVTroF23nV6/X26/V6a9ztfr+/BfgQ8Pper3fogtNfDhwLvK+5CkXaK87ylXGW/w3w35jg6gbg\n", "FcBRRZq8tkiTzxdpcmeRJjsAijTZXKTJV4s0eRvwEOAlwNXAg4Dz4yx/U5zlwf4yFOk6+2Lznfbm\n", "WUWavK9Ik7cAT8SEDA8A3uirPmm/OMtXAh/HBFfXAk8CUvvpf4yzfOFzN2kh+7v+bfbmXwI3A48B\n", "XuSrJpkXZ/lq4C325rX2qL+b+sQD//8U4FP270Am8ysD///NcZYHm1WIH0H+g+j1euuAK1jQYQX8\n", "T2Aj8I1er3d2r9d7Rq/X+wvgH4B39vv9ixouVaR14izfH/hPzAvVbcBfAfcv0uSDLqwapkiTnUWa\n", "fBQzwvvnQITp5nh3nOUr6qtcRCYRZ/l9MaHCHsCfDXbAFGmyBfgte/NP4iw/xkOJMhueg+mOvw14\n", "SpEmvwTeC3wZOBB4j97kmAlPwbzpdQvwDuCP7cezOMv39laVOGcDR2G6gF5vP3aGv3Jmnguv/ha4\n", "HjOh8M8KXcZnfz881N68FbMS6Hn+KpIQ+f4Pq2TxSx5vw/wA2KXFtd/vbwQeC3wd+FPgPOBZwO/1\n", "+/0/rLdUkfaLs/xETLfVk4GbgCcUafJHRZrcNe592W6stwJnAlsxT5I+aUcMRSQcv4e5qMm/Md8x\n", "MadIky9ifp+uxTwBF5nEM+wxK9LkJ2De7ABeiVn78Bzg6Z5qkwrYF5dvtzf/ukiTTcA5wPeAI5kf\n", "9xEP4izfC/gf9ubbMG9UbgROjbP8JF91zbiH2eMnMD/f7gJ6mOfZMp5jMG903IppWAH4H3rTQwZ5\n", "Da/6/f7b+/3+AYt8fGu/339gv99/yiKfu6Hf77+q3+8f2e/31/X7/VP6/f4/NFOxSHvFWf4gzB6r\n", "+wE/AOIiTb417f0WafIvmHdiNwLPBj6kd5xEwmDD5DPtzbfYMGExbwI2Ac+Ns/xXGylOZoZ9cfFU\n", "e/Nzg5+zu3beZW/q31a7PRWz//IWzNSDCyhdh8+bNDLl1W8AR2Ce4326SJN7gX+1n3uxt6pmlN3x\n", "dzKwA7iwSJMfYFbcgBkhlPG4rqvvAx/ArDR5MPNvjIh477wSkQbEWX4C8CVgf+CzwKOqXN5ZpMnX\n", "MF2RdwIvBN5a1X2LyFSej+m6Koo0+dFSJxVpci3zHRW/20RhMlNOxrxovgFzIY+FvmyPj2usIqnD\n", "a+0xK9LkbvfBIk2+A/wc2AtQh48/r7HHtw+8UfEv9niGOlgqdxqwAvhxkSb32I/93B6P91NSq7nw\n", "6nt2pYHb0/kW/dsVR+GVyIyLs3wDcD5wCPBF4AWDTzqrYl8YvwjYCbwtzvIXVv0YIjK2s+3x/SOc\n", "+35gO/C4OMsPqq8kmUFPs8cvLHHFue8CW4CT4yw/uLmypGKn2eNnFvmc2zv74IZqkQFxlq/C7CKF\n", "Xa8E+VVMqHwcuy7Dlum5fVfFwMcus0eFV+Nz/z6/b4/vxYwQPpxdF+NLhym8Eplh9upO52OWd34T\n", "eK5tI69FkSafA37f3vxQnOUPHXa+iNQnzvLjMMtjNwPnLnd+kSa3AznmneRn1VqczBo3MviFxT5p\n", "f+982958bCMVSaXiLF+P2UmzhfkX6IN+YI+nNlaUDNoArASuKtJks/ugvRBP397U6GC1XKDy3YGP\n", "uc6r+zVcS6stWNb+fQC7U++3gccXafLdpb5WukXhlciMsu/CnYd5t+37wDMH2prr9LeYDo41QN/u\n", "BBCR5r3SHs8r0uSOEb/mk/b4/BrqkRkUZ/k6TCBVYsbTl/I1e9ToYDu5HT4XL3FlYnVe+XV/e7x0\n", "kc+5Ny+e2VAtXeGWtQ92Xv0SswPraLtAX0YzuKx9bq1JkSbn2tUkIoDCK5FZlgGPAa7DBFejvnid\n", "ih0Z+U3M3pP7Yq4MKiINirN8JfBye3OUkUHn05jR3yfHWb5f1XXJTHocsCdmT8ktQ85TeNVuD7LH\n", "xXaawUDnlfbTeOFGBn+2yOcutMdj7e8GmVKc5ftjRgO3ABe7jxdpshUTYEXAsX6qa6W5rqslRs9F\n", "AIVXIjMpzvIzgTcA2zA7rm5o8vHtL++zMS+C3xRnuWbVRZr1VMwC7Z8D3xj1i4o0ucmevwq9Sy+j\n", "GToyOOC/ga3AKXGW73alaQnecuHVtZiuif2BoxupSAYt2Xlll19fhxkrPKrJomaY2890UZEm2xZ8\n", "TqOD43Pfz+95rUKCp/BKxL+3L3/K6OIsPxV4n735O0WafHvY+XUp0uR7mMuj7wG8P87yPX3UIUNV\n", "+m9PgvJye/zABO9iukur1z06qH9/s8GFV58fdpLdw/PfmI6Ex9Rd1DL0b298Q8Mr+3NGe6+WV9e/\n", "vWGdVwBX2KO6gaqx2L4rJ+Sl7aH+7Ntl35XIUhReiXjW7/ffVtV9xVm+Bvg4Zt/UBzFX6vDpT4DL\n", "Mbsy/tBzLbJAlf/2JBx2LOQp9ubHJrgLF149ze4zqoX+/bWfvZrtCcAdmGBqOUGMDurf3njiLN+D\n", "+Z1XPxpyqvZeLaPGf3vDdl4B/MIe71vT43fNYvuunGDDqxB/9i22rF1kKQqvRGbLOzAvJC4BftP3\n", "3LhdEP8b9uZb4yzXkyaR+p0G7AtcVqTJL8f94iJNrsEEEWuAp1Vcm8wW13V1fpEm20c4P4jwSsZ2\n", "LLAOuG6ZvWbqvPIgzvJ9MGPi9zKw7HoB13ml52HVcJ1Xi4VXbmwwuPAqUIsuaxdZjMIrkRkRZ/nj\n", "gTdirnLyssFLJftUpMlXgA9jduiE2q4sMksSe8ynuA9ddVBG8QR7/OKI538bs4vxwbogQKsst+/K\n", "cZ1XCq+a5XYrXbbElSBhvvNKY4NTirP8CExYeCfzQdUg13mlnVej0bJ2GZnCK5EZYN91O8fe/Au7\n", "byok/xPzguXMOMtPWe5kEZlKleHVM3V1KhnC/Twf6XdOkSZ3YzoV9gAeXVdRUrlRw6ufYn7XH2+f\n", "l0gzlhsZBHVeVWmu66pIk52LfP5KzAWLjomzfHVjVbWXlrXLyBReicyGdwIbMJdD/gu/peyuSJMr\n", "Mfu3IgKsT2RW2AsjuGXYX530foo0uQLzYmcf4OTpK5NZY/+t3R8oMaHFqDQ62D4jhVf2SsM/tjf1\n", "RlVz3LL2YeGVOq+q4wLAnyz2ySJN3PjmHpjn5jKcG6/88dCzRFB4JdJ6cZY/Dng15hLkL7NPHkP0\n", "58A9wK/FWf5I38WIzKjTMbuqLi7S5MYp7+s79viIKe9HZtP9gJXAFXa/4ai+bo/6d9Ueo3Zewfze\n", "Ky1tb47rvFrqSoMA12GeJx4SZ/ne9Zc00w63x+uHnKO9V6M7xB5v8FqFtILCK5EWi7N8FfD39uY7\n", "ijS52Gc9w9gX0n9jb77DXl1ERKrlRga/UsF9fdseH17BfcnscR15i3YfDOHeXT+xwlqkJjboOA4z\n", "DjgsHHG096p5y3Ze2fE2dV9V4zB7HBZeae/V6Fx4dZPXKqQVFF6JtNsbMC8gLgf+ynMto3gncDtm\n", "XOTJnmsRmUVV7Lty1Hklw7jwatxRj2sxXbgHxVl+QLUlSQ1Oxoz8XzJiZ7c6rxpk3wgcpfMKFF5V\n", "xXVeDesUcuGVOq+Wp/BKRqbwSqSl4iw/Cnibvfn6Ik22eCxnJEWabAT+2t78A5+1iMyaOMvXYoKm\n", "kvm9QtP4AbAFuH+c5QdWcH8yWyYKr2wHiOsQOWHYuRKEcUYGYT68OiXO8hU11CO7OhSzm/B24NZl\n", "ztXS9mqM0nmlscER2AvCHIh53rLcv18RhVciLfYuYB3wr0WafM53MWN4D3A38MQ4yx+03MkiMrJH\n", "AauAC4o0uX3aOyvSZBvzV/85fdr7k5kzaecVzHeIKLwK31jhVZEmtwFXY3bvaWSqfnMjg0WalMuc\n", "q86raozTeaX/BoY7yB5vKdJkh9dKpBUUXom0UJzlTwJeiBm9eKPncsZiu68+YG++yWctIjOmypFB\n", "R3uvZDf28u/3w1wOfpwrDToKr9pj3M4rGOi+qrgW2d2oI4Ogzqup2ausHgjsAG4ecuovMN1EG+zX\n", "yOI0MihjUXgl0jK2Df+d9uafF2lytc96JvRuzC/1M+IsP2y5k0VkJHWEV9p7JYu5P7ACc6XBzRN8\n", "vcKrFrD7lCYJry63x/tUW5EsYtll7QPUeTW9Q+3xRjsCvSi7yuMqzGtt/XewNIVXMhaFVyLtcybm\n", "Kj5XMX/1vlYp0uRy4NPAnsBvei5HpPXiLN8P+BVgO/DNCu/ahVena3+NDJhmZBDmu7UUXoXtYGA9\n", "sJHxLmPv3lQ7uvKKZKGJOq90xeeJjTIy6Ghp+/IUXslYFF6JtEic5WuAP7c339KGJe1DuODtdfbP\n", "JSKTewjmd/qFRZpsqupOizS5DhOU7wOcVNX9SutNG165LpHjFYoGzYVPV42wT2nQNfZ4VMX1yO5G\n", "7rwq0uQOzGL3Ncx3EMl4RlnW7mjv1fIUXslYFF6JtMvvYJ5MXgR81HMt0/omZhn0QcBLPNci0nYP\n", "scfv13Df2nslC00VXtmA9VpM9+2GimqS6rnwatz1BOq8akCc5auY31912bBzB7juK40OTmaczitd\n", "cXB5Cq9kLAqvRFoizvKDgDfbm+mwWfs2sO/ivsve/B21sItMxYVXF9Rw39p7JQtN23kF82NO9x96\n", "lvik8CpsG4CVmM64e0b8Grf3SkvbJ+PCq1E6r9z3WjuvlubCq2HL70XmKLwSaY+3APsCny/S5Hzf\n", "xVTkk5hfWA/E7OsRkcnUGV6p80rmxFm+F6aTYCej7dlZipa2h8+N/V0z9KzdXY/593GorrRWK/f3\n", "c9UYX6POq+mMMzboApmDaqplFqjzSsai8EqkBeIsPwp4HeYKfX/ouZzKFGmyFfiwvfkKn7WItFWc\n", "5ftgAoDtwMU1PMRFwFbgAXGWr6/h/qVdTsA8f7xsyr2LCq/CN1HnVZEm2zEv7iPgiKqLkjlub9U4\n", "y/TnlrZXXEtXjDM2eIs9Krxa2sH2qPBKRqLwSqQd3ozZDdIv0mScy1W3wTn2eIYWt4tM5FTMi8SL\n", "izS5t+o7t/fpOroeVvX9S+tUMTIICq/aYNKxQZjv1tLoYH1ceHXjGF+jscHpjNN5pfBqeeq8krEo\n", "vBIJXJzl9wFehem6ervncipXpMnFQAHsBzzXczkibVTnyKDjFsE/qMbHkHZQeNUd04RX7mt0xcH6\n", "uCBlnPBKY4PTGafz6jbMc/f94yxfWV9JrabwSsai8EokfG8GVgH/UqTJJb6LqckH7FGjgyLjq/NK\n", "g44LKk4eepZ0QVXh1VXAvcARdvRVAhJn+R7AkfbmtRPchZa212+SscGrMIHK0dpHNh57YaGRO6+K\n", "NNmBCbAi4IAaS2ulOMvXAntj1hLc6bkcaQmFVyIBi7P8WOCVmMWnf+q5nDqdC2wBnhhn+QbPtYi0\n", "TROdVwqvxKkkvLIv7Nyl5HXFwfAcirmS3S1Fmmye4Os1Nli/sccG7a7RqzGBiq6CN54DMG8mbxxj\n", "359GB5c2t+/KXoFcZFkKr0TC9hbMk8ePFGlyqe9i6lKkyUbgXzFPps7yXI5Ia9g9cQ/ABNx17sOb\n", "C69sR4Z0UJzlqzG7cnYCVfxO0uhguKYZGRz8Oo0N1meSsUGY/7s5cuhZstA4I4OOwqulaWRQxqYn\n", "oCKBirP8vpggZwfwZ57LacLc6KBeHIuM7EHACuCSIk3uqetBijS5FfOEfS16t77LjsY8d7ymoosD\n", "KLwKV1XhlTqv6jPJ2CDMhwUHDz1LFnLh1SjL2p2b7VHh1e4UXsnY9AJRJFwp5kXpR4s0ucx3MQ34\n", "CvBLzAvjR3uuRaQtmhgZdDQ6KC64vLKi+1N4FS7XMXXN0LOW5r5OnVc1sG/yuRf/43ZeuUBF4dV4\n", "xrnSoOM6r/S93p3CKxmbwiuRAMVZfhhmeXkJ/C/P5TSiSJOdwMftzRf6rEWkRRReSZM22OMvK7o/\n", "hVfhmrbz6npM5/ihdtxUqrU/Zv/SnWPsX3IUXk1GY4PVUnglY1N4JRKmNwGrgU/P8BUGF9O3xxfE\n", "Wb7CayUi7dDElQYdhVdSV+fV/TUuHpypwiu7kP86e1O7lao36cggKLya1CSdVxobXJrCKxmbniiI\n", "BCbO8v2B19mbf+mzFg8uAH6BeYLwKM+1iATNdjOcYm9e1MBDKrySDfZYSeeVvVjHzZhdaocvc7o0\n", "a9rOK9DoYJ3GvtLgABeoHDL0LFloms4rBYW7U3glY1N4JRKe3wL2Ab5cpEnhu5gm2Uvluu6rns9a\n", "RFrgZMzYyKVFmtzVwOO58Ookdcl0VtWdVwBX2aMWe4dl2p1XoKXtdZomvNLC9slMsrBdY4NLU3gl\n", "Y9OTT5GAxFm+FniDvfkOn7V4dJ49Pl+jgyJDNbnvynXJXAesAY5t4jElOBvssaqdVzAfcKg7JxD2\n", "d+8R9ua1U9yVwqv6uBG2aTqvFF6NZ5qF7QqvdqfwSsam8EokLGdjfsF9F3P1vS66ALgC8yRBVx0U\n", "WdoD7fEHDT7mxQseWzoizvKVmN1FJdONki2kgCM8h2OudnxjkSb3TnE/Ghusj3ZeNW+SsUHtvFqa\n", "wisZm8IrkUDYdzrfaG/+lR2h65wFo4O66qDI0k6yxyYv6qC9V911JCbQuH7KQGMhBRzhcUHiNCOD\n", "oGCyTtMLQem7AAAgAElEQVSMDbpuoAM1Aj4aOxmxL7AVuH2ML9XOq0XEWR4xH17dPOxckUH6gSUS\n", "jmcD98V0HX3Gcy2+udFBXXVQZGkPsEeFV9KEDfZY5cggKOAIURXL2ge/Xn+31Zt4bLBIk63AHZgw\n", "ev8qi5ph7vt9w5hvLm/CBF5rbQAmxnpgJXBnkSZbfBcj7aHwSiQcv2ePf2svMd1lFwKXY95ZfIzn\n", "WkSCE2f5PphOla2YwLspCq+6q45l7TDf3aOAIxyuC27a8EpddfWZZmwQdMXBcU2yrN1NE8x1ulVa\n", "UbtpZFAmovBKJABxlj8ceCSwETjHczne2V/2rvvqeT5rEQnUifZ4aZEm2xt83J+4x1dXZOdssMe6\n", "Oq8UcISjqs6rG4HtwMFxlu815X3JrqYZGwRdcXBckyxrd7RjbHcaGZSJKLwSCcPv2uN7izTZ5LWS\n", "cLjRyWfa2XgRmedj3xVFmtyJeUG7GjiuyccW7+rqvLoOswT+CLsUXvyrZOeV7SK/zt5UOFkRu6dq\n", "2vBKgcp4JlnW7uiKg7tT55VMROGViGdxlh8LPB/z7uTfeS4nJAXmydWxzL9QFxHDS3hlaXSwmzbY\n", "Y6WdV3b/zo2Y56SHLXO6NKOqzqvB+1B4VZ39MfuC7phiX5DCq/FM03ml8Gp3Cq9kIgqvRPz7Hcx/\n", "i+cWaXKt72JCYd+x/U9785k+axEJkM/w6mJ7VHjVLXV1XoEWe4emqp1Xg/ehv9vqTNt1BQqvxjVN\n", "55X7Xiu8mqfwSiai8ErEI7t0+Wx7810+awnUZ+1R4ZXIrtR5JY2xY0rH2JtX1fAQWtoeiDjLV2Fe\n", "qJfMj/xNQ3+31Zv4SoMDtLB9PFV0XikonOe+FwqvZCwKr0T8OgvYB/hGkSYX+i4mQF/EjFM+Ks7y\n", "A3wXIxKCOMv3xOybKoFLPZTgHvN+Hh5b/DgcWAXcVKTJPTXcv0bLwnEEEAE3FGmyrYL7099t9aro\n", "vNLC9vG4KwXeMvSsxWlscHfqvJKJKLwS8cS+k/3b9qZ2XS3CLof+GuZn1dM8lyMSivsBK4ArijTZ\n", "7OHxL7dHLWzvjg32WPWVBh1154Sjyn1Xg/ej8Ko6LryaZITN0djgePa3x9sn+FqFV7tTeCUTUXgl\n", "4s+TgBOAa4FPe64lZBodFNmVz5FBME827wbWqyOyM+rcdwXaixSSKvddwfyLU42nVUc7r5rnwquN\n", "E3ytdl7tTuGVTEThlYg/r7fHf6yoNX9WufDq6bqMugjgObwq0qQELrM31X3VDRvsse7OK3Xn+OcW\n", "U1ex7woUktShyp1X+ntZRpzlEbDe3pym80rf63kKr2QiCq9EPIiz/L7ArwJbgfd5LidoRZpcBvwM\n", "88ThkZ7LEQnBA+zRV+cVaHSwa9R51R1Vv6hUSFK9KscGD7JrLGRpazE7/zYXaXLvBF+vscEB9t+b\n", "69q+zWct0j76YSXix29hFqKeW6SJ3nVYnkYHReb5HhuE+fDqeI81SHNceFVX59V1mAsQHG6vdif+\n", "VH0VsI2YC6/sE2f56orus+umHhu0IcxdwErmu4pkcdOMDALcao8H2S6urtsH8xpoU5Em230XI+2i\n", "8EqkYXGWrwNeaW9qUftoFF6JAHGWr8DsyoMwwit1XnXDBnusJbyyo/M3YF7QHL7M6VIv13l189Cz\n", "RmTHjDU2Va0qxgZBVxwc1TQjgy4ovBNzoRUFhbCvPd7htQppJYVXIs07A/PL6ztFmnzPdzEt8S1g\n", "E3BSnOVH+i5GxKP7AHsB1xVp4vOJn8KrjrCdAnV3XoFGB0NRdecVaHSwMnbkygWM04ZX+nsZzTRX\n", "GnQ0OjhvP3u802sV0koKr0QaZF8EvM7e/AeftbSJfVf+a/bmk3zWIuJZCCODoIXtXXIIJjC9vUiT\n", "Ol9saGl7GCrtvFpwXwpJprc/ZtTvjiJNtkx5X/p7Gc20Y4Og8GqQC6/UeSVjU3gl0qwYOA2zoPA8\n", "z7W0zZfsUeGVdFko4dXVwDbgiDjL13iuRepV97J2R51XYVDnVdiqGhkE/b2MqorOq7kF+VPWMgvc\n", "2KA6r2RsCq9EmuW6rs6p4B2zrjnfHp+khZfSYUGEV0Wa7GA+zLivx1Kkfk2MDII6r7yLs3wvzDLl\n", "bVTbFaGQpDpTL2sfoL+X0Uy188rS3rd56rySiSm8EmlInOUHAC+yN9/rs5aW+glwPeZdx5M91yLi\n", "SxDhlaUrDnaD2zN4zdCzpqfOK//cC+ub7aL1qigkqY4Lr26o4L5cd90hQ88S7byqlsIrmZjCK5Hm\n", "nIXZG/KlIk1+7ruYtrFPpOe6r3zWIuLR/ezxUq9VGFra3g3u6n/X1/w4Cq/8q2Pf1eD9Kbyanjqv\n", "mqedV9XS2KBMTOGVSAPsmNtr7c1/9FlLyym8ks6Ks3xfzBPfzcB1nssBhVddcYQ91v1vTmOD/rnw\n", "qsp9V6CQpEoKr5pXxdigvtfz1HklE1N4JdKMJwD3B64F/t1zLW3mwqvHx1m+p9dKRJrnQqIrKh7p\n", "mZSuONgNTXVeXQ/sBA7Tz3dv5sYGK75fvXCvzoH2eGsF96W/l9FobLBaCq9kYgqvRJrxant8X5Em\n", "271W0mJFmlyH2X21DjjdczkiTXO7pS4belZz1HnVDa7zqtbwqkiTbZg9PhHzgZk0S51X4XNBym0V\n", "3Jf+XkajscFqaWxQJqbwSqRmcZYfBDwX847yBzyXMws0Oihd5UKiy4ee1Zxf2OOGOMtXeq1E6uSC\n", "pCZGVbX3yi8XYii8CtcB9jhNF5Az9/eiqzgPVeXVBhVeqfNKpqDwSqR+LwH2BD5fpMnVy50sy/qS\n", "PT7ZaxUizQsqvCrSZDNmFHolcIzncqQGcZavwbxw20Y1Y0rLcXuvFF75UdfC9tuAEtg/zvJVFd93\n", "11TWeWV/hm8CVjEfKMjuqhgbVIA7T+GVTEzhlUiN7DtZr7I3/8lnLTPka8AO4GFxluvJlnRJaGOD\n", "oNHBWee6rm5oaM+alrb7VUvnVZEmO5gPPw8cdq4sq4ogZZBCleVVMTa4ETOBsZ8CXI0NyuQUXonU\n", "6+HAyZgngp/1XMtMKNLkLuA7wArgMZ7LEWlSUJ1Xlpa2z7YmRwbB7LyC+SuqSbPq6rwavE+FJNOp\n", "cmwQ9PcylL14xFrMm6abJr2fIk12Mh/W7Dvs3A5Q55VMTOGVSL1c19UH7TJaqcbX7PGxXqsQaUic\n", "5XthulF2AFd5LmeQOq9mW1NXGnRutEeFV37UtfMKFJJMLc7yFZjgo6S6F/76exlubt9VBd2n7u9M\n", "4ZWh8ErGpvBKpCZxlu8LvMjefL/PWmbQ1+1R4ZV0xbGYq7BdGVgQ7sKr44eeJW3VyJUGByi88kud\n", "V2FzQcoddhSzCvp7Ga6KkUHHdV51feWFxgZlYgqvROrz65hW468XaXKp72JmzH9hdgc8NM7yvX0X\n", "I9KAEEcGQZ1Xs67psUEXXh0y9CypXJzl6zDPWe4F7qrhIRSSTK/qkUGY77LTf3OLq+JKg07nO69s\n", "F/memIuAbPFcjrSQwiuR+mhRe03s3qsLMFc5e7jnckSa4DqbQg2v7qtLrc8kjQ12hwuVbq5pOb/C\n", "q+lVdqXBAe7v5aAK73OWVLkgX51X88HdHQ1dBERmjMIrkRrEWf4g4GGYd1k+6bmcWaW9V9IlrrMp\n", "pCsNUqTJ7ZhxinXoReksanps0HWBHBxnuZ6jNst13tSx7woUXlWh6isNDt7X+qFndVeVY4Ou86rL\n", "4ZX7s2tkUCaiJwYi9TjbHj9apMk9XiuZXdp7JV0S6tggwC/t8WivVUgdGh0bLNJkK+bF9ArgwCYe\n", "U+bMdV7VdP8Kr6ZXx9igC2UUXi2uysCw82ODaFm7TEnhlUjF7Dz3S+1NjQzW55v2+PA4y1d7rUSk\n", "fqGODcL81Q+P8VqF1KHpsUHQ6KAv6rwKXx1jgwqvhqty55XGBgfGBr1WIa2l8Eqkes/FPMG4oEiT\n", "C30XM6uKNLkN+BGwGjOiKTKT4ixfCWywN6/wWMpSFF7NIPumwIHADurrxlmMwis/XKik8CpcdYwN\n", "KrwaTmOD1dLYoExF4ZVI9bSovTkaHZQuOBpYBVwX6Bjy1fao8Gq2HGaPNxRpsrPBx1V45YfrvNLY\n", "YLg0Ntg8jQ1WS2ODMhWFVyIVirP8OCABNgMf81xOFyi8ki4Ied8VqPNqVjW9rN1ReOVH3Z1Xt9jj\n", "gVrGPzGNDTZPY4PVcsGdOq9kIvrlIVKtV9rjeUWaVNFiLMO58OpRdrRKZBYFeaXBAQqvZlOjy9oH\n", "KLzyo9bOqyJNtmGCkj2Y7yCS8dQxNjg3yqZQcVF1jA2q80qdVzIh/ZASqYgNT15hb77fZy1dUaTJ\n", "DcClwDrgNM/liNQl5GXtoPBqVvlY1g4Kr3ypu/MKNDo4LRf6VdZ5VaTJdmAT5jXh3lXd7wypMjBU\n", "55XCK5mSwiuR6jwN82T/58A3PNfSJa776nFeqxCpT+hjg9djlnofpit/zhSNDXZL3TuvBu9b4dVk\n", "6ui8Ao0ODlPl2KAWtmtsUKak8EqkOmfZ4weKNCm9VtItLih8lNcqROrjOq+CHBu079xfa28e5bMW\n", "qZTGBjsizvKI+fBKnVfhUnjVPC1sr5Y6r2QqCq9EKhBn+YHAs4AS+Ijncrrm2/b4CPsEXGRm2H/T\n", "97U3Q+28Ao0OziKNDXbH3sBqYHORJnfX+DgKr6ZT+digpfBqEXYHWJVhi8YGFV7JlBReiVTjRcCe\n", "wJeKNLnGdzEdcxnmKkaHAhv8liJSuUMxO91uK9Kk6nfbq6Twavb4Hhs8RG9INKaJritQeDWxOMv3\n", "BNZiRrQ3VXz3Cq8Wty8QAXcWabKjgvtz4dW+Hf7ZprFBmYrCK5FquJHBD/osoovsiOZ37M1H+KxF\n", "pAau6+oXXqtYnsKr2eNlbLBIky2YFzarmB/ZkXq5MKnOfVeD96/wanxz42s1rKZQeLW4Ssc0izTZ\n", "CmwBVmCCyC5S55VMReGVyJTiLD8ZiDFPtj/tuZyuUngls+o+9nilzyJGoPBqhsRZvgoTMOyk/m6c\n", "xWh0sFnqvApfXSODoPBqKS682jj0rPF0fWm7wiuZisIrkem5rqtzizTZ7LWS7prbe+W1CpHqKbwS\n", "Hw6zx5sqGpcZl8KrZrkwSeFVuOpa1g4Kr5ZSx/e860vbNTYoU1F4JTKFOMtXAi+xNz/ks5aO+y6m\n", "Q+DUOMu72oots2mDPf7SZxEjUHg1W3xdadBReNUs13mlscFwKbxqnvt+VPk97+zS9jjLVwD72Jt3\n", "+axF2kvhlch0nox5kv9z5rt/pGFFmmwCfgSsBH7FczkiVWpd51WHF9HOEl9XGnQUXjVLnVfh09hg\n", "8+ocG+xi59VccOWpo1dmgMIrkem83B4/WMMCTRmPCw8f7rUKkWptsMegO6+KNLkD847yWuZfZEl7\n", "+brSoKPwqllNd14dpJB7bOq8al4d3/POdl6hkUGpgMIrkQnFWb4/8BygBD7suRzR3iuZMfbFneu8\n", "Cjq8sjQ6ODs0NtgtjVxt0F5JchPmSpJd7DyZhntTQOFVc+oYG+zywnYta5epKbwSmdyvA3sCXy7S\n", "5Grfxch8eKV3dGVGHAysATbazqbQKbyaHRob7JYD7fGWBh7LBQH7Dz1LFnLfL40NNkdjg9VSeCVT\n", "U3glMrmX2+MHPdYg8y7DPPE+lPlRK5E2a1PXFcyHV0d7rUKqoPCqW+rcp7SQwqvJaGyweRobrJbG\n", "BmVqCq9EJhBn+YnA6ZirZXzKczkC2J1j37E3NToos2CDPV7psYZxqPNqdrgdSDcOPas+Cq+apfAq\n", "fFrY3jyNDVZLnVcyNYVXIpM5yx4/XqTJPV4rkUHaeyWzpK2dVwqv2s+FV3VffW4pc+GVxsDrZS9f\n", "vx9mf2cTLyoVXk2mzs6ruUAlznK9NpxXx9ig6zrS2KDIBPQDSmRM9oney+zND/msRXaj8EpmiQuv\n", "rvRZxBgUXs0AGxZ5Da+KNLkbuBtYTTdf5DXJdZfc0dDl6xVeTaa28KpIk+2YRfp7AHtXff8tVsf3\n", "vMudVxoblKkpvBIZ35MwlxG/HPiW51pkVwWwEzg1zvK9fBcjMqUN9qjOK2nSOsyFArZgAiRfNDrY\n", "jCZHBkHh1aTq/nvS6ODu6hwb7GIor84rmZrCK5HxuZHBD9o9SxKIIk02AZcAK4FTPZcjMq22jQ1e\n", "hwmPj4izfJXvYmRiB9vjTZ5/xym8aobCq8DZbsg6xwZB4dUuFnzP6xgb7GLnlcIrmZrCK5ExxFm+\n", "H/Bce/PDPmuRJX3PHmOvVYhMwT5x3mBvXumvktEVabINE2BFwJGey5HJ+d535Si8aobCq/CtAfYE\n", "7i3SZHNNj6HwaldrgVXAliJNtlR4vxob1NigTEHhlch4ng/sBXy1SJO2dEN0TWGPCq+kzdYD+2DG\n", "tpp6UVkFjQ62nwuvbvZahcKrpii8Cl8Tf0cKr3blwqUqu65AC9tBnVcyBYVXIuN5qT2q6ypcLrz6\n", "Fa9ViExngz1e2bLx5Kvt8T5Dz5KQqfOqW+oeR1tI4dX4mvg7Uni1Kxcu3VXx/Xa588r9mdV5JRNT\n", "eCUyojjLjwEej1li+wm/1cgQPwS2AyfFWb6P72JEJtS2fVfONfZ4hNcqZBpzO6+8VqHwqinqvAqf\n", "wqvmueePVYdXm4ASWBtn+cqK7zt0LhBU55VMTOGVyOjOtMfPFGmidw0CZXcT/BCzd+chnssRmZQL\n", "r670WcQErrVH7bxqL3VedYvCq/BpbLB5Lryq9Pm+7aTu6uigxgZlagqvREZglydrZLA9NDoobbfB\n", "HtvWeXWdParzqr2086pbFF6FT51Xzaur8wq6OzqosUGZmsIrkdE8BDgJ82T+i55rkeXpioPSdm0d\n", "G1R41X6hjA268Owgr1XMPheMNB1erbdvDMryFF41r87wqnOdV/a/dY0NytQUXomMxnVdfcxeDl7C\n", "pisOStttsMcrPdYwCY0Ntl8oY4O32OOBXquYfa7zqpGF7fY51N3ACuYDAhlOY4PNq2thO3Sz82ov\n", "YBWw1a73EJmIwiuRZdiFii+2NzUy2A4/xizWv2+c5Qcsd7JIgNraeXW9PR4eZ7meY7RTKOHVRsxi\n", "4/07uNi4SU2PDYJGB8elzqvm1bLzynLhVWc6r9DIoFRETyxFlvcUzJP5nwHf91yLjKBIk+3Ahfam\n", "9l5Jq9irZB6ACWBvXOb0oBRpshnzIngVGvdqHTva4cYGve68KtJkB/OBikKO+ii8Cp/Cq+Y1MTbY\n", "pc4rjQxKJRReiSxvblG7vUqItIOWtktbua6rq1r6M0d7r9prP0zweFcgox232qOC0BrYsLLRscEF\n", "j6XO6NFobLB5WtheLV1pUCqh8EpkiDjL9wWeY29+1GctMjbtvZK2cuHVlT6LmILCq/YKZWTQcXuv\n", "FF7VYx2wErin4bBSnVfjUedV8+rcedW5he3M/1k1NihTUXglMtzzMUsGv16kyZWea5Hx6IqD0lYb\n", "7LFt+64cLW1vLxdeeR0ZHKCl7fXy0XU1+HgKr0bTxBUh57qBtK8QaGbnlTqvRMakH04iw82NDHqt\n", "QiZxKeZJx5Fxlh/uuxiRMbR1Wbujzqv2Cq3zSmOD9fKx7woUXo3LdUNtHHrWFOyu0E2Y14Z71/U4\n", "LaKxwWq5f1N1fD+lQxReiSwhzvKjgccD9wKf8FuNjKtIk53ML9h/qM9aRMZ0lD1e7bWKyanzqr3c\n", "svZQwit1XtVL4VU7NNW1otHBeU0sbO/S2KALr+72WoW0nsIrkaWdCUTAvxVpUtu7XVIrd8XB07xW\n", "ITKeo+2xreGVOq/aS51X3dLEONpiFF6NKM7y1cCewDbMm6l1Ung1r86dV13svFpnj5u8ViGtp/BK\n", "ZBH2CjwaGWw/hVfSRi68usZrFZNTeNVeoe68UnhVD3VehW9u0XUDV59VeDVPnVfVUueVVELhlcji\n", "TgMegHni/HnPtcjkFF5Jq8RZvoL5cbu2hlcaG2yvUDuvNDZYDy1sD1+Ti64VXs3TwvZqufBKnVcy\n", "FYVXIotzXVfnFmmyzWslMo2fAVuADXGWH7DcySIBOARz6fpbijTZ7LuYCd0E7AQOibN8le9iZCyh\n", "7rxS51U91HkVvrnOqwYeS+EVc9MXWtheLY0NSiUUXoksEGf5SuDF9qZGBlvMXj3nh/bmg33WIjKi\n", "tu+7cv/d3WBv6kqf7RLq2KA6r+qh8Cp8LuBQeNWc1Zg3kbYWabK1hvvX2KDIhBReiezuycChwKVA\n", "4bkWmZ5GB6VN2r7vytHeq3YKdWxQnVf10ML28LmAQ2ODzalzWTvMh1f72S6vLtDYoFRC4ZXI7uYW\n", "tTewHFPqp/BK2uQoe2xt55Xl9l4pvGoJu2/NhUS3DDu3QbcDJbC/rU+q5Xvn1foOvXiflMYGm1fn\n", "viuKNLkXc+XIFcCaOh4jQBoblEoovBIZEGf5PsBz7M2P+KxFKqPwStqk9WODluu80tL29jgAiIDb\n", "Qtn1aEdQN2LqUpdO9byMDdpRrLsxL973Web0rtPC9ubVue/K6dreK40NSiUUXons6vmYd0G+UaTJ\n", "lZ5rkWr8CNgBnBhn+VrfxYgsQ2OD4kto+64cLW2vj6+dV6DRwVGp86p5Cq+qp84rqYTCK5FduZFB\n", "dV3NCHvFtp9ift6d4rkckeXM2tigOq/aI7R9V47be6Wl7dVTeBU+hVfNq3vnFXRvabs6r6QSCq9E\n", "rDjLjwKeAGwFzvNcjlTrAnvU6KCEbtbGBtV51R4H22No4ZU6r2oQZ/memG6IHdT7In0pCq9Go7HB\n", "5tW688rqWueVFrZLJRReicw7E7NX49+LNGl6eanUS3uvJHh2IbULe64ddm4LaGF7+4TaeaXwqh4u\n", "NLrd08VpFF6NRp1XzWtibLBrnVcaG5RKKLwSAezVbuauMuizFqmFwitpg8MwC4xvslcjajMtbG+f\n", "UHdeaWywHj5HBkHh1aiaDK9cN5DCK6OJ8GrmO6/sG3Nu5+w9PmuR9lN4JWKcCpyMeRL3Oc+1SPUu\n", "sscHxVm+ymslIkublZFBMC9M7wX2jbN87+VOliCo86pbFF61Q5Njgy6s2ce+qdtVTey8cve9buhZ\n", "s2EuuCrSZKfXSqT1FF6JGK7r6lx7CWeZIUWabAR+AawGTvRcjshSZia8smNIGh1sl1B3Xqnzqh4u\n", "NFJ4FbbGOq9sx+9WYCXm+VJXNbHzyo3PdeHNHY0MSmUUXknnxVm+EjjD3tTI4OzS6KCEzoVX13it\n", "ojpa2t4uoY4NqvOqHuq8agfXedXE2CAMdF819HghamJssEvhla40KJVReCUCCWbXzGXAf3uuReqj\n", "8EpCd5Q9tr7zylLnVbtobLBbXHjl6wI1Cq9G4zqvmhgbhO4tEl+MwqtqqfNKKqPwSmR+ZPAjnq64\n", "I82Y23vltQqRpc3M2KClpe3tEmp4pbHBeqjzKnB271STC9tBnVeg8Kpq6rySyii8kk6zi4SfZ29+\n", "xGctUrsf2uOpHV9EKuGa1fBKnVeBsxeyWA/sxF+YsRR1XtVD4VX41mD2T21pcB+rwqtmFra7IKdL\n", "4ZU6r2RqCq+k656DuQrGt4s0udx3MVKrqzFt9wdixkRFQuPGBmdl55XGBtvDBUO3Bng1KBeu7G8v\n", "uS7V0ML28DXddTX4WBob1ML2qmhsUCqj8Eq6zo0MalH7jLMjoa77SqODEhR74YjDgcGr9LWdxgbb\n", "w43k3TL0LA+KNNkObMQ8Z13vuZxZos6r8PkIr9R5pbHBqmlsUCqj8Eo6K87yw4EnAduAvudypBkK\n", "ryRUR2B+J99QpMk238VU5AZ7PNRrFTKKuc4rr1UsTXuvqhfMwnaN8i/JXWmwqWXtoPAKmg2v1g09\n", "azao80oqo/BKuuzFmP8G/rNIk1CfsEu1FF5JqGZtZBDmwyuN6YYv2M4rS3uvque188rucLoHWEE3\n", "uk8m4bPzqstjg03svOpi55XCK5mawivpMo0Mdo/CKwnVrC1rB/OCawuwd5zlXXh3uc1C77xSeFU9\n", "3zuvQKODy/G586qTnVd2hH8vzMUr7qnxoboYXmlsUKam8Eo6Kc7yBwIPxuzR+KzncqQ5F9vjSXGW\n", "7+m1EpFdzVx4ZffM3WhvanQwbKF3XmlssEJxlu/BfGDka2xw8LEVXi1OY4PNmxsZtL/D6tKl8Epj\n", "g1IZhVfSVS+xx36RJvd6rUQaU6TJJuByYBVwgudyRAbN4tggaHSwLdR51S37Yl4D3GkX4vui8Go4\n", "jQ02r4l9VzDfhbR3B3a+qfNKKqPwSjrHvuN4pr35EZ+1iBcaHZQQzVznlaXwqh3UedUtLiza6LUK\n", "hVfL0dhg8xoJr+zOt62YnW+r63ysAGjnlVRG4ZV00eMxXQ5XAt/yWon4oPBKQqTwSnxS51W3uHE0\n", "hVdh09hg85oMDLsyOqixQamMwivpIjcy+JEiTXZ6rUR8UHglIdLYoPjUls4rhVfVWG+PvsMr9/j7\n", "DT2ruzQ22LymxgahO+GVxgalMgqvpFPiLF8LvMDe1MhgNym8kqDYqxsdCpTA9Z7LqZrCq3ZoS+eV\n", "xgar4cKrJjt6FuMeX+HV4nx0Xmls0FB4VR11XkllFF5J1zwL84upKNLkZ76LES+uwFz++Ig4y/VC\n", "SEJwKOb38U1FmmzzXUzFdLXBdnA/C0MPr9R5VY1QxgZdUKLwanE+O68UXtWvK+GVdl5JZRReSde4\n", "kcEPe61CvLGjoj+yN0/xWYuIdaQ9Xuu1inqo8ypwtvNvPabz7/ZlTvdFC9urFcrYoDqvhtPYYPPc\n", "n1vhVXU0NiiVUXglnRFn+SHA04AdwMc9lyN+aXRQQuLCq+u8VlEPhVfhO8Aeby/SZIfXSpY2F17Z\n", "KwbLdEIbG+xqULIcjQ02z/25tbC9OhoblMroCYB0yYswl6T9fJEmN/kuRrxSeCUhmeXOKzc2eFic\n", "5ZHXSmQpoS9rx47T3ol53rp+mdNleaGMDarzajgfnVdbMG/yro6zfM8GHzcUGhusnjqvpDIKr6RL\n", "NEHm2fUAACAASURBVDIojhsbVHglITjCHmcuvCrS5B7MC689UegQqtCXtTta2l6dUDqvtPNquMbD\n", "qyJNSrq990rhVYVsp+xae/Men7XIbFB4JZ0QZ/kJQIz5ZfRvnssR/1zn1QPjLF/htRKR2R4bBI0O\n", "hi74zivrNns8YOhZMgp1XgXOdqr66LwafLwuhlfaeVWtueAq4LF0aRGFV9IVL7XHTxRpstlrJeJd\n", "kSa3Y4KCNcCxnssRmeWxQVB4Fbq2dF65ZfL7e61iNoS2sF07r3a3DvM67Z4iTbY3/NjqvNLOq6po\n", "ZFAqpfBKZp5tWT3T3tTIoDgX2+PJXqsQmf3wyu29OtRrFbKUtnReKbyqTihjg+q8Wpqvrivo9hUH\n", "NTZYLS1rl0opvJIueBSwAbgG+JrfUiQgP7bHB3qtQmSGd15Z6rwKW1s6rzQ2WJ1QxgbvwSwHXxNn\n", "+SrPtYTGx5UGnS6PDfoIr9YNPavdXDCn8EoqofBKusCNDH60SJOdXiuRkKjzSryLs3xvzLvb9zLf\n", "WTJrFF6FTZ1X3RNE55VdDq6l7YsLofNK4VW9utB5pbFBqZTCK5lpcZbvBfTsTY0MyiDXeaXwSnya\n", "Gxm0L+RmkcKrsKnzqkPsInCfXT0Lae/V4tz3w8ffUZfHBpsMDbsQXmlsUCql8Epm3a9inqRdVKTJ\n", "j5c7WTrlJ/Z4YpzlK71WIl026/uuQOFV6NR51S1rgZXA5iJN7vVdDNp7tRT3/fDReaWxwWY6r1w3\n", "0iyHV+q8kkopvJJZ50YG1XUluyjS5C7gl8CewPGey5HumvV9V6DwKnTqvOqWIEYGB2hscHEhjA12\n", "qvPKdiU2uaOpC51X2nkllVJ4JTMrzvIDgWcAO4GPeS5HwqTRQfHNdV5d57WKermrDSq8CpM6r7ol\n", "lGXtjjqvFudztLOrO6/WARFwT5EmOxp4vC6EVxoblEopvJJZ1gNWAecXaXK972IkSG5pu644KL50\n", "YWzwJns8OM7yFV4rkV3Yvw/XyXTbsHMD4OpTeDWd0DqvFF4tzmfnVVfHBpv+nnchvNLYoFRK4ZXM\n", "Mo0MynLUeSW+zXx4VaTJNkxXzx7Mj6hJGNZjOg3uKNJku+9iluE6rzQ2OJ3QOq9cUNCpEbURaGyw\n", "eU3uu4JuhFfqvJJKeVtS3Ov1VgJ/ALwC8+T9RuA84O39fn9oOtvr9R4P5ENOWd/v9338sJdAxFl+\n", "HPAITNL/Kc/lSLhceKXOK/HF7bya5bFBMHuvDsKMDt64zLnSnLaMDILGBqviOq9CCa/UebU4jQ02\n", "T+FV9bTzSirls/Pqo8AfAR8Ange8C9Mp87lerzfqWMGrgMcv8j+1JspL7PFTRZro34Ms5RKgBO4X\n", "Z/mevouRTpr5zitLS9vD1JZl7WCe220D1sRZvpfvYlpMY4PtoLHB5jUdXm3GPAfda4aveq2xQamU\n", "l/9Qer3e84AXAk/p9/vn2w9/vtfrnQ9cAPwm8Hcj3NX3+v3+D2sqU1rKXi1EI4OyrCJN7omz/Arg\n", "OOD+zO/AEqldnOV7AIfbm13ovAKFV6FpTedVkSZlnOW3A4dguq+0y3IyoY0NKrxanMYGm+f+vI2E\n", "V/Zn2iZMaLaOcALlKmlsUCrlq/PqNcBXBoIrAPr9/iWYq8K91ktVMitOx4QR1wNf9lyLhE9L28WX\n", "gzFvIt1apMkW38XUTFccDFObOq9gfmm79l5NLrTOK+28WpzGBpvn/rxNBoazPjqoziupVOPhld11\n", "9SjgP5Y45T+Bk3q93ihLXaPKCpNZcpY9fqyhS91Ku2lpu/jiRgZnvesK1HkVqtZ0XlnaezU9dV61\n", "g8YGm9f02CDMfnilziuplI+xwcOBtcBPl/j8z+zxOJZ/MvXPvV7vWEwI9z3gzxd2c0m32D0YL7I3\n", "P+SzFmkN13ml8Eqa1pV9V6DwKlRt7bxSeDU5LWxvBxde+ey86lo3nI/l4rMeXmlhu1TKx9iga/Ve\n", "6pem+/iBS3wezHK77wPvwSx7/01gT+ALvV7vjCqKlNZ6JuaJ2UVFmmgfmoxCVxwUX7oYXh3qtQpZ\n", "qK2dVxobnFxoY4MKrxbnvh8+Oq/uxrzWWjPDi8QXo/CqehoblEr5CK9cS+bmJT5/jz0O+yX2rX6/\n", "H/f7/X/s9/vn9/v9fwYeA3wD+Ider9e1dwpknhsZVNeVjOpnwA7guDjL1/guRjrlCHvU2KD4os6r\n", "7gltbFA7rxawF/Nwr5ca71gp0qRkvvtqVkOVxfgYcZv18Epjg1IpH+GV+2G41IvEtfa45DtC/X5/\n", "+yIf2wH8HuaX37OnKVDaKc7yQ4GnA9uBf/FcjrREkSb3Aj/H/Dw80XM50i1d7LxSeBUWdV51j8YG\n", "wze3e8nj7tYujg766BJyoc66oWe1l8YGpVI+wiv3rtn6JT7vfnmN/S5gv9//PuaX8QkT1CXtdwaw\n", "AvhckSY3+S5GWkVL28WHLoVXt2HeWNg/zvLVvouROeq86h6fV7FbzNxycNtxJH6XtTtdvOKgOq+q\n", "p7FBqZSPXxLXY0YGl+pwcB+/YsL734oZAZLu0cigTOoSezzJaxXSNZ0Jr4o02Qm4NxW09yoc6rzq\n", "nqA6r2xn0SbMFcS7FJQMo/DKD5+dVzMXXtkw2k1U3TPsXJFRNR5e2ZG/bwK/usQpzwAu6ff7Ny91\n", "H71e78Ber7fbu269Xu9+wCHMXz1MOiLO8lOBUzFPbD/ruRxpH4VX4kOXdl7BfHh1sNcqBIA4yyPm\n", "w6u2dF658EqdVxOIs3wV5sXkDsLqhNDeq135XNbudPHvRJ1X1XLB1WaP468yY3y1574XeEKv13vi\n", "4Ad7vd5JwIvt593H9uv1emsGbh8MXA68e8HXrgT+FrNX49/rK10C5bquPmZ3GImM4yf2qPBKGmEv\n", "DnAAsA1Y8s2aGePCq0O8ViHOfphR+7uKNNnqu5gRaWxwOnMjg3Ypdyi092pXrttJnVfNUudVtbSs\n", "XSrn5fKn/X7/X3u93ieBT/Z6vf8F/AA4Hvhj4PvA3wP0er11mPHBm7HjhP1+/+Zer/f3wB/3er19\n", "gH/G/DneAJwGPLvf729p+I8kHtl3Es+0NzUyKJP4Geay0MfHWb6qSJNtvguSmee6rq63I3VdoPAq\n", "LG3rugKNDU4rqJHBAQqvdjW3sN1jDV0Mr9R5VS0ta5fK+VyM+GLgfwNnA58Efhdzhbin2isHgnlH\n", "+nrgqsEv7Pf7/wPTaXMk8GHgPcCNwCP6/f75jVQvIXkq5sXQT4HCcy3SQkWabAauxAThx/utRjqi\n", "ayODoPAqNG1b1g7qvJpWaMvaHYVXu3KBkc8X/V0cG1TnVbW0rF0q56XzCuZ2X/2Z/d9S52wFHrjE\n", "5z6MCa5E5ha1B9YGL+1yCXAsZnTwkmXOFZmWwivxrW3L2mGg8yrO8ki/88cWaudVF4OSYdyLfnVe\n", "NUudV9XS2KBUTpeklVaLs/wA4FmYka+PeC5H2s0FVg/wWoV0xeH2eL3XKpql8Cosreu8sru57sbs\n", "6prFF3t1c+GVOq/CprFBP9R5VS2NDUrlFF5J2/06sCdwfpEm1/guRlpNVxyUJrnwSp1X4ovbG9Wa\n", "8MrSFQcn58Kh0DqvFF7tKoTwqlPdcHGW78H81fHuafChuxBeaWxQKqPwStpubmTQaxUyCxReSZPm\n", "FrZ7raJZCq/C0tbwyu290tL28YU+NqjwygghvOpa59UaIAI2F2myY7mTK+SCnVkMrzQ2KJVTeCWt\n", "FWf5CcDpmF+wn/JcjrSfC69OtO/AidSpi2ODN9qjwqswuPDntqFnhUedV5MLfWF7J7p8RhDCwvau\n", "hVe+ghZ1XomMQS/QpM1c19V5RZo02eIrM6hIk9uBGzDvvh3juRyZfV0cG7zZHg+JszzyWolA+8Mr\n", "dV6NL9TOK40N7iqEhe2dGhvEX9Ayy+GVOq+kcgqvpJVsZ8xL7U2NDEpVtLRdmtK5scEiTTZjXozt\n", "iV6khqCt4ZWrV51X49PC9nbQ2GDz1HlVPS1sl8opvJK2eiJwFPAL4Juea5HZob1XUrs4y9dgXkRu\n", "o337hqalvVfhaGt4pc6ryYW6sF07r3al8Kp5vjqv5nZezWBHssYGpXIKr6StXmmP5xRpstNrJTJL\n", "FF5JEw6zxxs6+PNL4VU42hpeqfNqcqGPDXZlRG05IYRXXRsb9NJ5VaTJdmALZln8miYfuwEaG5TK\n", "KbyS1omz/ADguUCJRgalWgqvpAmdGxkcoPAqHG0Nr7SwfXIaG2wHLWxvns8uoVkdHdTYoFRO4ZW0\n", "0YuB1cCXijS5yncxMlN+Yo8nzWD7toSji8vaHYVXAYizfAXhduEsx4VtGhscX6hjgwqvdhXCwva5\n", "QKUjV2D22SXkHnPd0LPax/15NDYolenCDyOZPW5k8ANeq5BZdAPmSfT+6MW11MeFV+q8El/2w4yp\n", "bCzSZIfvYsakzqvJhdp5NbfzSm8cAQGMDdqfC3P7mHzV0SB1XlVvrT3qivBSGYVX0ipxlp8KPATz\n", "ruFnPJcjM6ZIkxJdcVDqp7FBhVe+tXVkENR5NRHbPeP2FwUVXhVpsgXYCqwE9vJcjldxlq8GVgHb\n", "ijS513M5XRod9DnipvBKZEQKr6RtXmGPH7VPdkSqpr1XUjeNDSq88q3N4ZU6ryazN+Z5/ya7JDo0\n", "Gh00vHddDehSeOVzxE3hlciIFF5Ja9h3o15ib2pkUOqi8ErqprFBhVe+tTm8UufVZEIdGXQUXhkh\n", "Lbnu0hUH1XlVPYVXUjmFV9ImvwYcCPwAuNBzLTK7XHh1otcqZJa5sUF1XokvbQ6v7sBcbXg/u3he\n", "RhPqsnZnbu+V1yr8U+eVH+q8qp7CK6mcwitpk7lF7XY3kUgdfmaPJ3itQmaZOq8UXvnW2vCqSJOd\n", "qEtnEqFfXdL9nXahy2eYkMKrWQ1VFqPOq+opvJLKKbySVoiz/CjgqZiFnh/1XI7Mtl8A24Cj4yyf\n", "tcsWi2d2/PlAYAdws+dyfLgV0zVzYJzlK30X02GtDa8sjQ6OzwV9GhsMW4jhVReeC6nzqnoKr6Ry\n", "Cq+kLV6G+ff6mSJNbvVdjMwuu8j2Mnvz/j5rkZl0mD3eYDtIOsVefv0We/Mgn7V0XNvDKy1tH19b\n", "Oq8UXhkh7Lya1VBlMeq8qlCc5RHz4dVmn7XIbFF4JcGzPwDnRgZ91iKdodFBqUuXRwYdjQ761/bw\n", "Sp1X4wt9Ybt2XhkuwAip82pmQpUh1HlVrdVABGwN9Oqm0lIKr6QNHgMcB1wLfMlzLdINP7VHLW2X\n", "qim8UngVgraHV+q8Gl9bxga188pQeNUsdV5Va409amRQKqXwStrAdV19yI6ciNRNnVdSly5fadBR\n", "eOVf28MrdV6Nz4VCoYdXXe+8UnjlhzqvqqWRQamFwisJWpzl+wAvtDfP8VmLdIrCK6mLOq/gRntU\n", "eOVP28MrdV6Nz4VXdw49yx+NDRoKr/wIofNqn6FntYuWtUstFF5J6HqYH4BfL9LksuVOFqnIXHgV\n", "Z7l+TkqVXHilziuFVz7NSni1fuhZMqgtY4MKrwwtbG+Wz84r95hrh57VLgqvpBZ6USahO9setahd\n", "GlOkyW3AzZhfvkd6Lkdmixsb7HLnlcIrj+xFUFx4dfuwcwPmrpin8Gp0oXdeKbwytLC9YfZnovsz\n", "+givXMCzbuhZ7aLwSmqh8EqCFWf5KcAjME+0PuG5HOkejQ5KHTQ2qPDKt32AFcCmIk22+i5mQgqv\n", "xhd6eOXqmqXRqUlobLB5qzGvibcWabLNw+O7wEzhlcgyFF5JyH7DHj9apImPd0Kk2xReSR00Nqjw\n", "yre2jwyCwqtJhD426MIrXW3QCCG8cs+9Zz288rnvCjQ2KDIyhVcSpDjL1wAvtTf/n89apLN+ao8n\n", "eq1CZkac5aswgc1O5gOcLnJ/9kO9VtFdCq+6KfTOKxfWqPPKCCG8cmHOLHUELcbnvivQ2KDIyBRe\n", "SahegHlSWhRpcpHvYqST1HklVXNhzU1FmuzwWolf6rzyS+FVN6nzqh18dwEN6srYoO/vuTqvREak\n", "8EpC9Wp7VNeV+KLwSqqmkUFjE7AFWBtn+Sy909wWsxRe7e+1ipawC6ldKBRCR89iXF1723q7KsTO\n", "q1kPr4LpvJqhf/sKr6QWCq8kOHGWPwB4NOaX5rmey5Hu+gWwHThGL7ClIrrSIFCkSYm6r3yahfDK\n", "dQ+tn6EXe3Vag1nSvyXUJf1FmmzHhNp7MFsdKP+fvXuPsuw86zv/K/W1Wi2puyVZkmVbMrIMuc0Q\n", "YM/AwHDZWYtbmBBDfAjMeALYXBMgBvYYFgyYSxJgBzOBGGM8wSYM2BzHDMkMGIJn4zDADNlczCwS\n", "jG0J2ZYl69ZqSa2+X+aP/b5V1dXnnDqnau/9Pu/7fj9rae11uk93PX3UXXX2r57neVdFeDW+oJ1X\n", "bkn8RXX/Rg+GqGEAhFcYBOEVLPKL2n+prUoLbdPIkHsz8SH38P6QtSAZnDS4ifAqnOjDKxfAnFF3\n", "s8c3F3ZmfWTQY3TQVnjlg4cjRd3sC1rJsEJ3Xm392KkEt+vuSniFXhFewZSibg5L+h/dQ0YGERqj\n", "g+gTY4ObCK/CiT68cth7tTzry9q9rJe2F3VzSNIBSRfbqjwfup62Kq8ovVBlltA7r6T0lrb7vy9n\n", "g1aB5BBewZovU/fG+o/bqvyj0MUgez684sRB9IHOq02EV+GkEl497a6EVzuj8yoOFkKU7XIYHbTU\n", "eZVaeEXnFXpFeAVrWNQOS+i8Qp8IrzY94a6EV+NLJbyi82p5dF7FwdLIoJdDeGUhNEytw43wCoMg\n", "vIIZRd18oqTPUfeJ7u2BywEk6f3uSniFPtzprh8PWoUNPry6LWgVeSK8yk8s4VXunVeEV2FY6LxK\n", "dWyQ8Aq9IryCJX5R+9vbqrT+Bgt52Oi84kQr9MB3XhFebYZXtwetIk+EV/mJZWyQzqsO4dW4LHVe\n", "EV4BCxBewQS3pPKr3UNGBmFCW5VPSXpK3ZuJFwYuBxEr6uYGSXe4h4RXhFchEV7lJ7bOK8IrO3II\n", "ryx0XjE2CCyB8ApWvELSrZL+VFIbuBZgqw+46/1Bq0DsbpW0X9LTFk6RMuBJdyW8GpHrICW8yk8s\n", "4ZUPbXIdG7TQAbSdryWVjqBZLLzujA0CSyC8ghV+ZPBn26q8GrQS4Fo+vHp50CoQO7/vimXtHXZe\n", "hbEu6ZCkc21Vxn6EOeHV8hgbjIPFzivfEUTn1bDovAKWQHiF4Iq6uV9SKemspF8MXA6w3QfdlfAK\n", "e8Gy9msxNhhGKl1XEuHVKmLpvGJhe8dSeJXD2KCFzit2XgFLILyCBV/vrtO2Kq1/VxD5YWwQfWBZ\n", "+7VOSzov6UhRN6l8pzkGKYZXx4NWEQc6r+JAeBWGhc4rxgaBJRBeIaiibtYlfa17+KaQtQBzMDaI\n", "PjA2uIUbD2fv1fhSDK/ovNoZnVdx8OGVxZ1XKYdXljqvUvlmzrq7xj6eDmMIrxDa31f3ZvqPJP3H\n", "wLUAs3zIXe8r6mZ/0EoQMzqvrsfo4PgIr/IUS3iVe+eVD1HovBoXnVf9o/MKgyC8QjDu1KN/6B6+\n", "kUXtsKityuclfUzSAUn3BC4H8aLz6nosbR8f4VWeYhkb9OFaruEVY4NhWOq8ij68cvd3Pryi8wq9\n", "IrxCSP+VpE9V9yb6HYFrARZh7xX2is6r69F5NT7CqzzF1nmV+9gg4dW4LHRepTQ2eNhdz7dVeTlo\n", "JUgO4RVC8l1XP5fAkd1IG3uvsFecNng9dl6NL6XwyncRHXPf6cd8dF7FgfAqDAudVymNDTIyiMEQ\n", "XiGIom5uk/QVkq6KRe2wj/AKe8XY4PXovBpfMuFVW5UX1d1s3qC0b6z3pKibG2QzFJkl984rCyHK\n", "dkmHV0XdHFS3FuKypAsBS0lmbFCEVxgQ4RVCebWkg5Le3Vblg6GLAXbwQXclvMLK3Kmqt6h7Y/x0\n", "4HIsYefV+JIJrxxGB3d2o6Q1Sc9HMMKzsbA90246iyGjD69SCFVm8X+u04F376Y0Nkh4hcEQXmF0\n", "Rd3sk/RN7uEbQ9YCLImdV9iLjZFBDqa4Bp1X4/PhVSohKuHVzmIZGfTddOfU3Z+kcBO/KsvhVZKd\n", "V7Kx70pibBBYCuEVQvhidae2PSjpNwLXAizjL9W1lN9T1M3hnZ4MbMOy9tnYeTU+Oq/yE8uydm+j\n", "+ypoFWEQXo3PyqgmnVfAEgivEIJf1P6mtiqvBK0EWEJblRfUBVhrku4LXA7iw76r2ei8Gt9xd6Xz\n", "Kh/RdF45OS9ttxhe+VAl1fDKSucVO6+AJRBeYVRF3dwv6QvUtYX/XOBygFX4vVeMDmJVdF7NRng1\n", "vlTDq+MLn5W3WDuvslravmVx+CWFXRy+3UbnVaJ7yKx0XqU0NrjuroRX6B3hFcbmd129va3KVMYW\n", "kAdOHMRubey8ClqFPU9LuiLpWFE3B0IXk7qibvar6+y4qniCjJ3QebWz2MKrXDuvNrquLO1GdJ3n\n", "FyXtV3fQUmp8eGWl8yqlscGzQatAkgivMJqibo5I+hr3kEXtiA3hFXaLscEZ3Mln/psYt4asJRM+\n", "4HkmoZF9wqudxTY2mGXnlWyODHop773aOG0wZBHusIJLkva7LryYMTaIwRBeYUxfpe4N5h+0VflH\n", "oYsBVuTHBgmvsCrGBudjdHA8qY0MSoRXy6DzKg6EV2FY6byS0tl7RXiFwRBeYRRuTt4vaqfrCjHy\n", "nVfsvMKq6Lyaj/BqPIRXeYotvKLzyp6UwysTnVdOKqODhFcYDOEVxvKZkj5Z3dHo7wxcC7AbH5V0\n", "XtKdRd3k9qYae0Pn1Xw+vLotaBV5ILzKU6xjg7l1XllZHD5LyuGVpc6rVJa2E15hMIRXGMtr3fXN\n", "bVWeC1oJsAtuRwwnDmIlRd3cIOkO9/CxkLUY9aS70nk1PMKrPMXWecXYoD0+vIo9VJnFYudV7K8z\n", "4RUGQ3iFwRV181JJf1fdaSWMDCJm7L3Cqm6TtE/SybYqz4cuxiDGBsdDeJWnWDuvcutwjiG8ovNq\n", "WIwNAjsgvMIYvlXd37W3t1XJzhfEzIdXLwtaBWLi910xMjgb4dV4fMBDeJUXOq/iQHgVhqXOK8YG\n", "gR0QXmFQRd3cIuk17uFPhKwF6MGH3PW+oFUgJixrX4ydV+Oh8ypPsYVXuXdeWQhRtks5vKLzqn+E\n", "VxgM4RWG9mp1Xxje21bl+0IXA+yRD6/ovMKyWNa+GJ1X40kxvPKjcLe4/XK4Xmxjg7l2XvkQhc6r\n", "cVnqvGLnFbADvtBjMEXd7Fc3MihJbwhZC9ATwiusirHBxVjYPp7kwqu2Ki+pu9m/QfmFHcui8yoO\n", "lscGfaiSYnhlqfMqlbHBdXclvELvCK8wpFdIukfdnqBfC1wL0IePSTov6Y6ibrhRwjJ85xVjg7PR\n", "eTWe5MIrh9HBxei8igOdV2H4oMhCeJXa2ODZoFUgSYRXGNJr3fVftFV5JWglQA/c3+MH3UP2XmEZ\n", "dF4t5juvbmPsa3CEV5kp6mafupvzq7Jxc74MH97kGl5ZGF/bjvBqHIwNAjvgjSIGUdTNp0v6DHVv\n", "kt8WthqgV4wOYhV0Xi3QVuV5dZ0W+7TZIYJhEF7lZ2MULaJvIuY6Nkh4FYal8CqVsUHCKwyG8ApD\n", "8V1XP9tWpYUvCEBfOHEQq6DzamfsvRoH4VV+YhsZlLZ0XhV1sxa0knERXoXhgxYL9yqpjQ0SXqF3\n", "hFfoXVE390j6ckmXJP3LwOUAfaPzCqsgvNoZe68G5sbHYgwylkF4NV9sy9rVVuUFdbsl92lz8XMO\n", "YgivYu8ImsX/mSwELXReATsgvMIQvkXdm45pW5UPhy4G6BnhFZZS1M0RdTePF5Vet0ufCK+GtxFc\n", "tVV5OWgl/SO8mi/WwDLHpe0xhFdJdV65zj6LnVeEV8AchFfolTuB7evcw58IWQswEMIrLOsOd/14\n", "W5VXg1Zimw+vbgtaRdpSHRmUCK8Wia7zyslx7xXh1fgOS1qTdN5IqB/92KA7eOWwe3guZC1IE+EV\n", "+vY16t5s/G5blX8YuhhgAB9RNxL7oqJuchppwOp8ePVY0CrsY+fV8Aiv8hRreEXnlS2phleWRgal\n", "NMYG/fvisxEdEoGIEF6hN0Xd7Jf0j93DN4SsBRhKW5WXJD3kHn5CwFJgH/uulsPY4PAIr/IU69jg\n", "xtL2oFWMxHWrWAtStko9vLIwMiilMTbIyCAGRXiFPk0kvVTdWNW/C1wLMCROHMQyCK+WQ3g1PMKr\n", "PMXeeZXL2OC6uvG1M0bG17ZLNbyytO9KSmBsUIRXGBjhFXrhvmv03e7hjxr94gv0hb1XWAZjg8sh\n", "vBoe4VWeYg2vsuq8ku2RQUk6K+mqpCPu5NJUWOt2S2psMGgVSBbhFfrytyX9dUmPSPqFwLUAQyO8\n", "wjLovFoOO6+Gl0N4dXzhs/IU+9hgLp1XpsMrt7vIBysxdwVtZ3VsMObXmM4rDIrwCnvmjpr1XVc/\n", "3lbl+ZD1ACMgvMIyCK+W48OrW4NWkbYcwis6r64Xa+dVbgvbTYdXToqjg1bHBmPuvCK8wqAIr9CH\n", "z5b0GZJOSvrZwLUAYyC8wjIYG1wO4dXwfHh1auGz4uS7im5Z+Kw80XkVB8KrMBgb7B/hFQZFeIU+\n", "+K6rn2yr0vIXXqAvD0m6Iumeom4OBq4FdtF5tZxnJV2SdLSom8Ohi0lUyp1XG8u9XSc4NtF5FQfC\n", "qzBMjQ22VXlB3dfC/UXdHAhdzy4RXmFQhFfYk6JuPlXSF6j7xP9TgcsBRuFGYz+q7nPovWGrgUXu\n", "JprwagltVV6V9JR7SPfVMJINr9qqvKjuRukGpXVj3YdYwysWttvja4u5K2g7a2ODUvzdV4RXGBTh\n", "Ffbqu9z1zW1VngxaCTAuPzp4X9AqYNVRdafunJXtGxIrGB0cVrLhlcPo4Gyxhlcb3XRBqxhPTOFV\n", "SgGxtbFBKf69V4RXGBThFXatqJtPlPTlki5KekPgcoCxsfcKi2x0XbnOIizmO69uC1pFugivBAOA\n", "JgAAIABJREFU8hRreEXnlT0ph1eWOq9iP3GQ8AqDIrzCXrxO0pqkn2+r8mOhiwFGRniFRRgZXI3v\n", "vCK8Gkbq4ZVfRE94da1Ywys6r+xJMbxibLB/hFcYFOEVdqWomxdLepW6pdU/FrgcIATCKyzCSYOr\n", "YWxwIEXd3KDNUCfF0wYlOq+uU9TNPnU3kldl6+Z8GXRe2ZNieMXYYP8IrzAowivs1ndI2i/pnW1V\n", "fjB0MUAAhFdYhM6r1TA2OJyb1XVJP9dW5aXQxQzEh1fHglZhiw9+notwdJnOK3tSDq8shbuxjw2u\n", "uyvhFQZBeIWVFXVzu6Svcw9/JGQtQEAPuutL3Xe4ga0Ir1bD2OBwUh8ZlOi8miXWkUGJziuLUgyv\n", "GBvsn39NzwatAskivMJufJu6T07vbqvyfaGLAUJoq/KMpEckHZD04sDlwB7GBlfD2OBwCK/ylER4\n", "VdTNWtBKxkF4FYblscFYO68YG8SgCK+wkqJuTkj6Vvfwn4SsBTCA0UHMQ+fVahgbHA7hVZ6iDa/a\n", "qrwg6by69RSHA5czhhjCKx+qpBheWeq8YucVsADhFVb1WnVt3O9pq/L3QhcDBEZ4hXkIr1ZD59Vw\n", "CK/y5EfuoguvHN99lcPeqxjCK19brKHKLIwN9o/wCoMivMLSXNfVt7mHrw9YCmAF4RXmYWxwNey8\n", "Gg7hVZ586PPcwmfZ5etOqdNnnhjCq5Q7rywFLYwNAgsQXmEV367uO3m/RdcVIInwCjO4HS2+84rw\n", "ajmMDQ6H8CpP0Y4NOjktbY8pvIq1I2gWi2ODdF4BCxBeYSlF3dyqzV1Xrw9YCmAJ4RVmOa5ukf+z\n", "brE/dvaMpMuSjhZ1cyh0MYnJIbw65a6EV5sIr+IRQ3jF2OA4Yg8JCa8wKMIrLMvvuvr3bVX+fuhi\n", "ACMecNdPKOqGz6fwGBlcUVuVV8Xeq6HkEF75zqtjQauwhfAqHjGEV4wNjoOxQWABbrawo6Jubtfm\n", "rqsfCFkLYElblc9KekLSuqS7ApcDO1jWvjuMDg4jp/CKzqtNPvSJdeeVD3KSDq/cmLkPhCx1AG2X\n", "VOeVe90tdl4xNggsQHiFZXyXui+sv0HXFXAdRgexHeHV7tB5NQzCqzyl0nmVUqfPLIck7Zd0oa3K\n", "C6GLWSC1zqvDktYknW+r8nLoYrZgbBBYgPAKCxV18yJJ/9A9/J6QtQBGEV5hO8YGd4cTB4eRQ3jl\n", "A5qbGeHekEp4lXTnleIYGZTiD1W2szgyKMU/NrjurtZeVySCL/DYyfeq+67QO9uq/OPQxQAGEV5h\n", "OzqvdoexwWEkH161VXlJ3U3f1hGs3BFexSGW8OqspKuSDhd1sy90MT2weNKgFPHYoPt7cUjd35Pz\n", "gctBogivMFdRNy+T9GpJVyR9X+ByAKsIr7Ad4dXuMDY4jOTDK4fRwWvFvvOK8MoQd6hGSt1XFvdd\n", "SXF3Xvmuq7Pu7wvQO8IrLPJ6dXP4/7qtyvcHrgWwivAK2zE2uDuMDfbMjdD5E/hOhaxlBIRX16Lz\n", "Kg5RhFdOSuGV9bHBGF9j9l1hcIRXmKmom78h6askXRQnDAKLPOCu97nTawA6r3aHscH+3aTuvd7p\n", "tiovhi5mYD6cO7bwWfmIPbzK4rRBxRVepXTiIGOD/SO8wuAIrzDPj6jbHfHmtiofClwLYNlJdTdN\n", "N0m6PXAtsIHwancYG+xfLiODEp1X28UeXuVy2mBM4VVKJw4yNtg/wisMjvAK1ynq5vMkfbG6Nw4/\n", "FLgcwDQ318/oICRtLCz1IebjIWuJEGOD/SO8ypDrAvbhFTuvbIspvEqx88pa0ELnFbAA4RWu4fZj\n", "/Jh7+KNtVXLzBeyM8ArerZL2STrZVuWF0MVEhrHB/vnwKvV9VxLh1VaH1O0svdBWZaynfhFe2ZNS\n", "55XVscELki5LOlDUzYHQxayI8AqDI7zCdhNJnybpEUk/EbgWIBaEV/AYGdw9xgb7R+dVnmIfGZQI\n", "ryyKeZn4dibHBiM/1ZHwCoMjvMKGom4OSfqn7uH3t1XJJx9gOYRX8DhpcPeeUfcd55vc1yPsHeFV\n", "nlIIr1jYbg9jg+PwNa0HrWJ1hFcYHOEVtvomSS+V9J8lvS1sKUBUfHh1X9AqYAGdV7vkvuPsRwfp\n", "vuoH4VWeYt93JbGw3SLGBsfhw5/Ylrb7sI3wCoMhvIIkqaibWyV9n3v4urYqL4WsB4jMA+5K5xUI\n", "r/aG0cF+EV7lyXcrxdx5tTE26BbQpyqm8CqlziuTY4NO7GODZ4NWgaQRXsF7vbo3ue+R9GthSwGi\n", "85i6Nxsniro5EboYBMXY4N5w4mC/jrlrDuGVX0p/bOGz8hD92KD7Juo5dfcqsY1PrSKm8CrFziuL\n", "XUKxdl4xNojBEV5BRd38NXUjg1ckvdaNbgBYkvs347uvXhqyFgRH59XecOJgv+i8ylP04ZWTw9L2\n", "GMOr2DqCZmFssH+EVxgc4VXmXCv2G9Qd7f7mtir/LHBJQKwedNdPCFoFQiO82hvGBvtFeJUnwqt4\n", "xBReMTY4DsIrYA7CK3yxpM9X96bv+3Z4LoD5CK8gMTa4V4wN9ovwKk8pLGyXNsOSFMbU5okpvGJs\n", "cByEV8AchFcZK+rmoLquK0n6gbYqn1z0fAAL+fCKEwfzRufV3jA22C/CqzylsLBdovPKGsYGxxHr\n", "60x4hcERXuXttZJeLukDkt4YuBYgdnReZa6omwPqQpcrkp4IXE6sGBvsV07hlQ9qbirqJvf3t4wN\n", "xiOm8IqxwXHQeQXMkfsX92wVdfNibY4J/qO2Ki+ErAdIAOEVbnfXJ9uqvBy0kngxNtgTt9Mym/DK\n", "/Zs7LWlNaYcdyyC8ikdM4RVjg+MgvALmILzK1xvUfZJ5Z1uVvxW6GCABD0m6KuklrgMH+WFkcO8Y\n", "G+zPUXWHsZzJ6BtUjA52Utl5RXhlS0qdV5bHBgmvgDkIrzJU1M3nS/p76j5hf3vgcoAktFV5XtLD\n", "6m4WXxy4HIRBeLV3jA32J5uuqy18eHUsaBXhpbLzyoclSYZX7htdh9SNmp8LXM4yUuq8Ymywf4RX\n", "GBzhVWaKujkk6afcwx9sq/LhkPUAiWF0MG+cNLh3jA32J8fw6pS70nnViT288p1XKYQls/jun9Nt\n", "VV4NWslyYl0kPgtjg/1bd1eLrykSQXiVn9epW9L+fkn/S+BagNQQXuWNzqu9e0bSZXVLtw+GLiZy\n", "OYZXjA12Uguvkuy8Ulwjg1IiY4NuH6DlzqtYQ0L/mp4NWgWSRniVkaJuPknS97iH35zRDgxgLD68\n", "ui9oFQiF8GqPXPeB33vF6ODeEF7li51XcYgtvNoYG3QBUKwOqzvY4bzRw1Vi7bxibBCDI7zKhDs2\n", "+mclHZT0c21V/nbgkoAU0XmVN8YG+8HoYD8Ir/JF51Ucogqv2qq8JOmCuvvHQ4HL2QvLI4MS4RUw\n", "F+FVPl4t6b+V9LikKnAtQKoIr/JG51U/OHGwH4RXGXLfrIwqFFkg6YXtivP/Uwqjg5ZPGpQIr4C5\n", "CK8yUNTNXZJq9/Db2qo8GbIeIGGEV3kjvOoHJw72g/AqTxuBiNGRqFWkvrA9xvAqhRMHLe+7kgiv\n", "gLkIrxLnZtJ/St0buV+X9MthKwKS9oS6N6HHiro5vtOTkRw/Nkh4tTeMDfaD8CpPqey7khgbtCil\n", "ziurIUt04VVRNwckHZB0Rd1oKTAIwqv0TSR9ubovNt8cyVG8QJTcvy+6rzJU1M1hScckXVJeYcEQ\n", "GBvsR87h1bGgVYSVyr4rifDKohQ6r6yPDcZ42uC6u57hXhNDIrxKWFE3d0r6affwO9qq/HDIeoBM\n", "EF7laWNZe1uVV4JWEj/GBvuRY3h1yl1z7rzyQQ/hlX0xh1cxBSvbMTbYP0YGMQrCq0S5ccGfkXRC\n", "0m9JekvYioBsEF7liZHB/jA22I8cwyvGBum8ikmM4RVjg8MjvALmILxK11dJ+lJ1b15eTQsnMBof\n", "Xt0XtAqMzS9rfyxoFWlgbLAfPrw6tfBZaSG8Siu88kHJUfdN2dTEGF4xNjg8witgDsKrBBV18yJ1\n", "S9ol6bVtVX40ZD1AZui8yhMnDfaHscF+0HmVp2QWtrdVeUnSOXX3K+s7PD1GMYZXKXReWR8bvKBu\n", "8fnBom72hy5mSRs7r4JWgeQRXiWmqJt9kn5B3ZvWX5P01rAVAdkhvMoTY4P9YWxwj1yXCuFVnlLq\n", "vJLSHh2MMbxKqfPKZNDipmX86xxL95Wv82zQKpA8wqv0fKekz5X0uKSvZVwQGN1Dkq5Keok7Ohh5\n", "YGywP4wN7t2NkvZLOtdW5bnQxYxoI+hw38zLUUoL2yXCK2tSWNhufWxQim90kLFBjILwKiFF3Xya\n", "pB92D7+6rcrHQ9YD5KityvOSHpa0T9KLA5eD8TA22J9nJF1WF0AcDF1MpHLsulJblZeVdtixDDqv\n", "4hFjeMXY4DgIr4AZCK8SUdTNjZJ+Sd13Wn+yrcp3By4JyBmjg/lhbLAnbVVe0Wb3FXuvdueYu2YV\n", "Xjl+dPDYwmelK5mdV44PSwivbGBscByEV8AMhFcJcLst3iTpfkl/Jul1YSsCskd4lR/GBvvF6ODe\n", "ZNl55fjTFXPde5Vq51XMYck8MYdXMXdeMTbYP8IrjILwKg2vkfQqdZ8w/n5m+y0Ai3x4dV/QKjAm\n", "xgb7xYmDe5NzeJX70nZ2XsUjxvCKscFxEF4BMxBeRa6om78p6afcw29oq/I/hawHgCQ6r7JS1M1R\n", "dW/kzymdG8bQOHFwbwiv8g2vUu28IryygbHBccTW4UZ4hVEQXkWsqJtbJL1T0iFJb2mr8n8LXBKA\n", "DuFVXvy+q8c44bU3jA3uDeEV4VUqO69yCK8sdwBtl0LnFWOD/SO8wigIryJV1M0Nkn5e3VjS+yR9\n", "a9iKAGxBeJUXRgb7x9jg3hBeEV7ReWWYex8fQ4iyXQqdV4wN9o/wCqMgvIrX6yV9qbo3aa9kzxVg\n", "yhPq3hQdK+rm+E5PRvQ4abB/jA3uDeEV4VUq4ZXv9Ik5LJll42a/rcrLQStZTWzjbLPEMDYYW3i1\n", "7q6WX1MkgPAqQkXdvFLS/yzpiqSvaKvyQ4FLArCFGx2j+yofnDTYP8YG94bwSjoWtIpwWNgehxj3\n", "XUmMDY4ltvDK13k2aBVIHuFVZIq6+WRJb3MPq7YqfzNgOQDme8BdCa/Sx9hg/xgb3BvCqww7r4q6\n", "OaRuD+pldQdIpIDwyhbGBscRW4cbY4MYBeFVRIq6uUvSv1X3CeLnJf1E2IoALOA7r+4LWgXGwNhg\n", "/xgb3Jucw6tT7ppdeKUtXVcJHR5BeGVLbKHKLIwN9o/wCqMgvIpEUTc3Sfo1SS+R9P9K+saE3pgA\n", "KWJsMB+MDfaPscG9yTm8yrbzSumdNCgRXllzVtJVSYeLutkXuphVFXWzpjg6rwivgBkIryJQ1M0B\n", "SVNJf1PShyT9HRa0A+YRXuWDscH+MTa4N4RXeYZXPuB5ZuGz4uLDHcIrA9w3zmPuvjosaU3SeeOL\n", "8gmvgBkIr4xz3yH4GUlfqO7N/Be1VflE2KoALIHwKh+MDfbvGXV7e24u6uZg6GJi4t43EF7lGV6l\n", "dtKgtNl5FfOOpVmiDK+cmJe2xzAyKBFeATMRXtn3TyR9rbo23S/hZEEgGh9W11r/Etc9iQS5oICx\n", "wZ61VXlF0kn3kO6r1axLOqiusyDHk58IrxgbjEHM4VXMS9tjOGlQIrwCZiK8Mqyom++R9N3qvvv8\n", "FW1V/kHgkgAsyY32fkzSPkkvDlwOhnOLutO9TrdVaf3NcGwYHdydnLuuJMIrKc3OK8IrO2IeG4xh\n", "35UU32tMeIVREF4ZVdTNayX9sLrOjf+hrcr/I3BJAFbH6GD6GBkcDicO7k7u4dVz6t47HS3qZn/o\n", "YkaWYnjlw52jrtM1FTGHV4wNDo/OK2AGwiuDirr5JklvcA9f3VblO0LWA2DXHnBXwqt0MTI4HE4c\n", "3J2swys3cuq7dW5e9NwEJRdetVV5SdI5dfcssdzILyPm8IqxweERXgEzEF4Z4zqufto9/EdtVb41\n", "ZD0A9sR3Xt0XtAoMiZMGh8PY4O5kHV45uY4O+tG6ZMIrJ8Wl7TGHVzF3XsUyNhhNeOX2uu6TdKmt\n", "youh60HacmunNsu1Qn+vpB90P/QtbVW+MWBJAPaOscH0MTY4HDqvdofwSjqlbtdgbuFVcp1XznOS\n", "blcXzqXS5RpzeJVC55X1DqFowitt1pjjASEYGeGVAS64+meSXifpirpRwbcFLQpAHwiv0sfY4HDY\n", "ebU7Prw6FbSKsHLtvErxtEEpzaXtKYRXMXZeMTbYP0YGMRrCq8CKujkk6V9J+u8lXVK3nP2Xw1YF\n", "oCeEV+ljbHA4jA3uDp1XhFcpdl5JhFdWMDY4vJgCQsIrjIadVwEVdXNC0r9XF1w9L+lLCa6ApDyh\n", "7t/2saJuju/0ZESJscHhMDa4O8fclfCK8CoVhFe2MDY4vPPqTk09VNTNvtDF7IDwCqMhvAqkqJv7\n", "Jf0/kj5b0iOSPqutyl8PWxWAPrVVeVV0X6WOscHh0Hm1O3ReEV6lFl75gIfwyoaYuoK2i2Js0L1/\n", "9GHQeshalkB4hdEQXgVQ1M2XSfpDSS+X9P9J+q/bqnxf2KoADITwKm2MDQ6HnVe7Q3i1GV4dW/is\n", "9HDaYDxiDq8YGxxHLHuvCK8wGnZejaiom/3qFrN/p/uhd0n6mrYqU1usCWDTA+56X9Aq0Luibm6Q\n", "9AL3kM6r/jE2uDuEV3RepRpe0XllA2OD4yC8Arah82okRd28TNJ/UBdcXZb07ZJeSXAFJI/Oq3Sd\n", "UPdNoFNtVZ4PXUyCTqk7gffmom4OhC4mIoRXhFepvbckvLIl5s6rKMYGnVjGMwmvMJognVeTyWS/\n", "pP9J0tdIulvdd6zfKekHptPpjp9MJpPJHZJ+SNIXqbt5eFDSv5xOp28erOhdKupmTdI3Svrn6v5x\n", "PyLpK9qq/N2ghQEYiw+v6LxKDyODA2qr8kpRN09Jul3d3ite5+UQXnXBp5RReOU6QX24Q3hlmLs3\n", "8OFVDCHKdjF3XjE22D/CK4wmVOfVL0r6Lkk/J+nLJL1B0qskvXsymSw8UWEymRyT9DuSPk/S6yX9\n", "PUn/p6R/MZlM/tmANa+sqJuXqztN8KfV/cP+JUl/g+AKyMpfuutLg1aBIXDS4PAYHVwd4VWenVc3\n", "SlqTdKatykuhi+lZagvbD0naJ+lCW5UXQhezC7F0BM3C2GD/CK8wmtE7ryaTyZdJeqWkz59Op+9x\n", "P/wbk8nkPZL+WNI3S/qpBb/FD6pbwPlfTqdTf8Pw7slk8kFJPzuZTN4xnU7/dKDyl1LUzVFJ36tu\n", "NPCAujff39hW5b8JWReAIB5y15cUdbM/wZuKnHHS4PA4cXAFRd0clnRY0kXlfSORY3iV6r4rKb2F\n", "7TGPDEqMDY4llvDKn4Z4NmgVyEKIzqtvkPTbW4IrSdJ0Ov1zSW9XN2I302QyOSTpH6gbEdz+ne63\n", "qrtJ/Ppeq11BUTcHirp5jaT3S3qduuDqrZL+KsEVkKe2Ks+pGxfeJ+lFgctBvxgbHB4nDq5mo+vK\n", "HbWeqxzDq1RPGpQSGxtU/OEVY4PjiCW8ovMKoxk1vHK7rj5T0q/NecqvS/ork8lk3pvUT1H3heu6\n", "Xz+dTq9Kerekz917patxodWrJX1A0lvU7fFqJX16W5Vf21bl42PXBMAUPzrI0va0MDY4PMYGV8PI\n", "YCfH8CqHzivCKxsYGxwH4RWwzdhjg3ep+wv+/jk//xfuep82v9u61cvcdd6v/4Ckr9t1dSsq6uZu\n", "Sa9xH/Nu98PvV7dM/h1tVV4ZqxYApj2oLrhn71VaGBscHp1Xq/Hh1amFz0qfD6+OBa1iXKmeNCgR\n", "Xlnj66bzalixhISEVxjN2OHVCXed96bK//i83RYnJF2aTqfz/nGcknRwMpkcWfCcPSnq5hZJf1vS\n", "RNKXqBsFkqQ/VxdaTduqvDzExwYQLZa2p4mxweH5zit2Xi3HhzW5d16dlnRV0pGibg60VXkxdEEj\n", "oPMqHrGHVxuhSlE3a5GNKLPzqn+EVxjN2OGV/6Izb6Gb/0s/r837JknnFvz+W399L/+A3PLTT5H0\n", "30j6W+6/A+6nL0l6p6Q3SXpvZJ+8AYyHscE0MTY4PBa2r4axQUltVV4p6uZZde8Hb9ZmCJqylMOr\n", "mDt9Zok6vGqr8lJRN+fVnZp4SIvvzaxhbLB/hFcYzdjhlf/Oyfqcn/d/+Z+Z8/PPqTtFZ56dfv1c\n", "Rd28Qt0Xk5sl3aPuJvM+SX9V0sEtT70i6T9I+hVJ72yr8tFVPxaA7DzornRepYWxweGx82o1hFeb\n", "TqkLr24R4VXs6Lyy53l1wdVRRRJeFXWzprjGBgmvgG3GDq9Ouuu8HQS+42rem4yTkvYvGAu8RdKF\n", "XY4M/sqcH78q6c8k/Z6k35f07rYqn9jF7w8gX4wNJqaom/2Sblf3NYKvCcNhbHA1hFebclvanvJp\n", "gxudVxGOqc2SSnh1Ql0n06w9xRYdlrQm6XwkK14Ir4Btxg6vHlU3MvhJ6k4W3O6T3PXBGT8nSQ+4\n", "6ydK+pM5v/6BGT++jF9V90XkeUkPu9/nAUl/0Vblyp1cALDFI5IuSrqjqJsb26qM4Tt+WOw2dW+C\n", "n8hkn04ojA2uhvBqU27hVbKdV25M7ay6yY0jiqNrZpEUwitfu/Vl4lvFNDIosbAduM6o4dV0Or00\n", "mUx+V93C8zfMeMoXS/rz6XQ677vYf6yudfhLtC28mkwma5K+UNJv7qa2tipfsZtfBwA7aavyclE3\n", "D0m6X9K9kv5T0ILQB0YGx8HY4GoIrzYRXqXlOXXh1U0ivLLA/z+IaQ9ZTCODEp1XwHVuCPAx3yzp\n", "8yaTyd/a+oOTyeSvSPpK9/P+x26ZTCYb+7Gm0+k5ST8v6Vsmk8kdutZXqxvJectAdQPAXjA6mBZO\n", "GhzH0+pGM4+5UU0sRni1Kdfw6rmFz4qXD3pS2HuVQngVc+cV4VW//L064RUGN/obwel0+iuTyeRd\n", "kt41mUx+RNKfSnqZpO+W9EeS3ihJk8nkRnXjg09oc5xQkr5PXYfV/z2ZTH5U3SjiZ0r6dkn/fDqd\n", "vm+sPwsArIATB9PCSYMjcF2LT6vbrXJc7BfbCeHVJh9ezduzmpocOq+kuDp95kkhvIqx8yq2scFY\n", "witf39mgVSALITqvpK7D6sclvVrSu9QFT78k6Qum06lfoHdRXTD1ka2/cDqdnpL02ZJ+R9IPSnqn\n", "pL8j6Tum0+nrRqkeAFbHiYNpYWxwPIwOLo/walNunVcpL2yX0jpxMKXwKqbOK8YGh8HYIEYTpAV/\n", "Op1ekvRD7r95z7kg6a/P+bmPS3rNMNUBwCAYG0wLY4PjeVLdvjiWtu+M8GpTbuFVLp1XhFc2MDY4\n", "PMIrYJtQnVcAkBvfecXYYBoYGxyP77wivNqZD69OBa3CBsKrtBBe2cLY4PDMd7cVdbMmxgYxIsIr\n", "ABjHRueV+2KPuDE2OB7GBpdQ1M1BdTcRl5Xu0u5V+ACP8CoNLGy3xXywMgNjg/07qC5PuNhW5cXQ\n", "xSB9hFcAMI6n1d1UHBUdJClgbHA8T7or/24W84vJT7VVeTVoJTbk2nmVanDJwnZbGBscXgzhFSOD\n", "GBXhFQCMwN1MMjqYDsYGx8PY4HLYd3WtbMIr13V3SF3XXaqjO4wN2sLY4PAIr4BtCK8AYDwsbU9A\n", "UTeHJJ1Qd6P41A5Px94xNrgcwqtr+fDq2MJnpWHjpMGEu+4Ir2yJsfMqtrHBc+66XtSN1Xt2wiuM\n", "yuo/BABIkQ+v6LyK2wvc9bG2Kq8ErSQPjA0uh/DqWtl0Xin9fVcS4ZU1MXdeRRFeufcXvpPycMha\n", "FiC8wqgIrwBgPH5skM6ruLHvalyMDS6H8OpahFdpSSK8KurmgLoRzyva7KyJUYwL22MbG5Tsv86E\n", "VxgV4RUAjIexwTQQXo2LscHlEF5d67S6gGDdBQYpyyG8SuW0QR9CnI58xJOxwXFY33u17q6EVxgF\n", "4RUAjIexwTTc5a6EV+NgbHA5hFdbuGDAhzmpd1+lftKglM5pgymMDEqMDY7Fenjl60r1oAgYQ3gF\n", "AON5yF1fUtTNvpCFYE/ovBrXSXc9YXhprQWEV9c75a65hFcpd14lMTao9MKrmDqvYhwbjCW8iuk1\n", "RcR4EwgAI2mr8qykRyXtl/SiwOVg9wivRtRW5QV1N677lH4IsRc+vDq18Fl5yWXv1cZpg0GrGBbh\n", "lS2+/pg6rxgb7B/hFUZFeAUA42J0MH6EV+NjdHBndF5dL5fwis6reKQSXsXceRVTeGX9dSa8wqgI\n", "rwBgXJw4GD8fXj0atIq8cOLgzo65K+HVJh9eHVv4rPjlEF6lsrA9lfAqxoXtjA32j/AKoyK8AoBx\n", "ceJg/Oi8Gh8nDu6Mzqvr0XmVjo0xtaJu1oJWsjephFfnJF2VdDiiHZ6MDfaP8AqjIrwCgHExNhgx\n", "d9NEeDU+xgZ3Rnh1vdzCq2RPG2yr8pK6E83WZPdGfhlJhFfuNE/rI23bxTg2SHgFbEF4BQDjYmww\n", "bjdJWpf0fFuVUd98RIaxwZ0RXl0vt/Aq5c4rKY29V0mEV05so4OMDfaP8AqjIrwCgHExNhi3u9yV\n", "rqtx+c4rxgZnKOpmv7ob+qtKP8BYRS7hVQ6nDUpphVcpdMn5DibzJw66rmnGBvtHeIVREV4BwLg+\n", "JumipDuLurH6ZgTzMTIYBp1Xi/mF5KfaqrwStBJbcgmv6LyKB51XYRxWN3J6vq3Ky6GLWYH10UzC\n", "K4yK8AoARuTeNH3YPbw3YCnYHcKrMFjYvhgjg7MRXqVlY2l70Cr2JqXwKprOK8U5MijZ77xad9ez\n", "QatANgivAGB8jA7Gi/AqDBa2L0Z4NdspdyW8SgOdV7ZY7wraKsaRQcl+eEXnFUZFeAUA4/NL2zlx\n", "MD4+vHo0aBX5YWxwMcKr2XLrvEphj9IihFe2xDQ2GONJgxLhFXANwisAGB+dV/Gi8yqSsiF5AAAg\n", "AElEQVQMxgYX8+HVqYXPyk/y4ZVbRO3DHMIr+1IKrxgbHB7hFbAF4RUAjI/wKl6EV2FsdF65m3Vc\n", "i86r2ZIPr9TdlK9JOtNW5aXQxQyM8MoWxgaHZ/01JrzCqAivAGB8jA3Gi/AqgLYqz6hbCHtQdt/E\n", "h+RPGyS8ulYO4VUu+66kzcCH8MoGxgaHR+cVsAXhFQCMb6Pzii6S6NzlroRX42N0cD46r2Z7XtJl\n", "SetF3RwIXcxAcgqvfOdVDGNq86QUXjE2ODzCK2ALwisAGN9JdW/Cb5J0InAtWFJRN/sk3e4ePh6y\n", "lkxx4uB8hFcztFV5VZuhTqrdVzmGV3Re2RBT51WsY4OEV8AWhFcAMDJ3Q8XoYHxuV/d188m2Ki+G\n", "LiZDnDg4H+HVfKmPDuZy0qBEeGVNjJ1XhFc9cZMDvq6zIWtBPgivACAMlrbHx++7ejRoFflibHA+\n", "wqv5Ug+vfJBD55VxRd3coHjH12axvkx8q1hfd7PhlaTD7nq+rcrLQStBNgivACAMwqv4sKw9LMYG\n", "5yO8ms+HV8cWPitejA3GY2N0ra3KK0Er6Qdjg8OzHBCuu2tsgSAiRngFAGEwNhgfwquwGBucj/Bq\n", "vtQ7r3IKr3xYEsOY2iwpjQxKjA2OwY/jHTF4wA8jgxgd4RUAhEHnVXwIr8JibHA+wqv5CK/SEXvn\n", "VWrhVUydV1GODboOvXPu4eFFzw2AZe0YHeEVAIThwys6r+JBeBUWY4MzuFMwfTDzzKLnZorwKh2E\n", "V7bE1HkV69igZHfvFeEVRkd4BQBhPOSuL3E3n7CP8CosxgZn86HMsyzNnSmX8IrTBu1LNbyKqfOK\n", "8Ko/hFcYHeEVAATQVuUZdSHIAUl3By4Hy7nLXQmvwvCdV4wNXouRwcVSD69yOm1wY+eVwf0/y0gt\n", "vGJscByEV4BDeAUA4TA6GBc6r8Ki82o2f4oe4dVsqYdX2YwNus7Cs5LWFEdgsl1q4RVjg+Ow2uFG\n", "eIXREV4BQDj+xEGWtsfBh1ePBq0iX4RXs9F5tRjhVVr86GAMgcl2qYZXN0bQCcfYYP8IrzA6wisA\n", "CIcTByNR1M0RdTeJFySdClxOrp6TdFHdjZK1U5dCIrxajPAqLTHvvUoqvGqr8pKk8+ruJw8FLmcn\n", "jA32j/AKoyO8AoBwfOcVY4P23eGuH2+r8mrQSjLlXne6r65HeLUY4VVaCK9siWV0MOaxQcIrwCG8\n", "AoBw6LyKB/uubCC8uh7h1WK+UzL18CqH0wYlwitrYlnazthg/wivMDrCKwAIh/AqHoRXNnDi4PUI\n", "rxZLvfMqp9MGpc2whPDKhlg6r2IeG7S6sH3dXWN8TREpwisACOdhSZck3VXUzfpOT0ZQhFc20Hl1\n", "PcKrxZINr4q6OSjpsCR/Cl8OWNhui9VgZYNbJs/YYP98Pbl87oEBhFcAEIg79vvD7uG9AUvBzu5y\n", "V8KrsAivrkd4tdjz6sKd9aJuDoQupmcbXVcZ7eJjbNCWGMYGD0tak3Teve+KjfXwis4rjIbwCgDC\n", "YnQwDnRe2cDY4PUIrxZwoY4fqUut+yq3Ze0S4ZU1MYwNxjwyKBFeARsIrwAgLE4cjIMPrx4NWgXo\n", "vLqeD69OLXxW3lIdHSS8ikvK4ZXlzquYRwYlwitgA+EVAIRF51Uc6LyygfDqenRe7SzV8MoHOLmc\n", "NCgRXlnj/ywxdF4RXvWL8AqjI7wCgLAIr+JAeGUDY4PXO+auhFfzpRpe5dh5FUNYMk+K4VUMnVex\n", "jw1afY0JrzA6wisACIuxQePcSUU+vHosZC2g82qrom5u0GZ4xdjgfIRX6aDzypYYFrYzNjgMwiuM\n", "jvAKAMLa6LxyIQnsOS7pgKRn2qrkSOiwCK+udZO693Kn26q8GLoYwwiv0kF4ZUtMC9sJr/pFeIXR\n", "EV4BQFhPqXsje7M2d9fAFkYG7WBs8Frsu1oO4VU6ogyv3DenfMATa4gyi9WRtq1iHxskvAIcwisA\n", "CMgd487ooG2EV3acknRF0i1F3ewPXYwBhFfLIbxKR5ThlaRDkvZJOp9YlyRjg8OzGl6tuyvhFUZD\n", "eAUA4bG03ba73PXRoFVAbVVekXTSPTwRshYjCK+Wk2p4leNpgz4siS28SnFkUGJscAxWu9t8mMY6\n", "BYyG8AoAwiO8so3OK1v83itGBwmvlpVqeJVz55XlsGSWVMOrGDqvGBscBmODGB3hFQCEx9igbYRX\n", "trC0fRPh1XIIr9IR69hgquEVnVfDMxdeuZNu/dggnVcYDeEVAIRH55VthFe2+KXthFeEV8sivEqH\n", "D3+ORnZCb+rhVQydV4RX/TnsrufcOD8wCsIrAAjPd14RXtlEeGULY4ObfHh1KmgV9hFeJaKtysvq\n", "bubXZDsw2S7V8CqmscFYwyvf2XTEUGDLyCCCILwCgPAectd7i7rZF7IQzER4ZQtjg5vovFoO4VVa\n", "YhwdTDW8YmxwYG1VXpJ0Qd19+8HA5XiEVwiC8AoAAmur8oykxyQdkPTCwOXgeoRXtjA2uOmYuxJe\n", "LZZqeJXjaYPSltHBoFWsJvXwis6rYVl7nQmvEAThFQDYwNJ2g4q6OaBuPO2KNkMThMXY4CY6r5aT\n", "anhF51U8Ug2vGBsch7W9V4RXCILwCgBsYGm7TXe462Nu1wrCY2xwE+HVck6rC6CPuEA6em73jQ+v\n", "cuu8Iryy45ykq5IOG157QHjVP8IrBEF4BQA2EF7ZxMigPYwNbiK8WkJblVeVXvfVjeqWlp9xO3Fy\n", "QnhlhPu3Zb37ivCqf4RXCILwCgBsYGzQJsIrexgb3ER4tbzUwqtcRwYlwitrrC9tJ7zq37q7El5h\n", "VIRXAGADnVc2EV7Zw9igNsbGCK+WR3iVDh8AEV7ZYG2Z+Ha+rphfe2vhla/jbNAqkB3CKwCwgfDK\n", "JsIre06664mibnJ+H3NU0j51Y2MXQhcTgdTCq1xPGpQ2/8xWO31mSTm8sj426F/7mDuvrAWEjA0i\n", "iJzf9AGAJQ9LuiTphUXdrO/0ZIyG8MqYtiovqgsibpB0LHA5IdF1tZrUwqucO68YG7SFscHhWe28\n", "IrzCqAivAMAAt3D3I+7hPSFrwTUIr2xidJDwalWEV+kgvLLFWlfQhqJu9ks6qO5ExHOBy9kLwitA\n", "hFcAYAmjg/b48OrRoFVgO3/iYM5L2314dSpoFfEgvEoH4ZUt/s9ksfNqo+vKnYwYK8IrQIRXAGAJ\n", "Jw7ac5e70nllC51XdF6tivAqHSxst8Vs55XSGBmUCK8ASYRXAGAJnVeGuNPcGBu0ifBqc98X4dVy\n", "UguvfHCTY3jFwnZbLC9sTyW8shYQEl4hCMIrALCD8MqWo+reoJ1RmjccMWNskM6rVaUWXvnOq5xP\n", "G6TzygbLC9tTCa/ovAJEeAUAljA2aMtG11XkuzJSROcV4dWqUg2vcu68IryywVpX0FaEV8MgvEIQ\n", "hFcAYAedV7YwMmiX77wivCK8WhbhVTqiCq+Kujkg6ZCky5LOBy5nCIwNDo/wChDhFQBY8qS6N4G3\n", "FHVzfKcnY3CEV3b5zivGBgmvlkV4lY6owittBiinE+3iZWxweNbCq3V3JbzCqAivAMAI96bWd18x\n", "Ohge4ZVdjA0SXq2K8CodvtPHYlgyS8ojg1IcnVexv/bWwitfx9mgVSA7hFcAYAujg3b48OrRoFVg\n", "FsYGCa9WdcpdUwmvcj5tcCO8cqfCWpd6eGW588rXFHvnlbW9YowNIgjCKwCwxS9tJ7wKj84ruxgb\n", "JLxaVaqdV9mdNthW5WV1N81rsnMzv0gu4ZXF/xeMDQ6D8ApBEF4BgC2MDdpxl7sSXtmzMTYYSefF\n", "EAivVvO8uoXZR4q6ORi6mB7kPDYoxbX3KvXwKoaxQcKrfhFeIQjCKwCwhbFBO17orowNGtNW5Tl1\n", "NyMHZHNUZVAusPPh1alFz0XH7RRMqfuK8KpDeBWe5bFBwqthEF4hCMIrALCFsUE7fOcV4ZVNOY8O\n", "HlEX3J1vq5KFuctLYu+V6xw7rK6TLNf//z4IIrwKj7HB4RFeASK8AgBrHnLXe4u64XN0IEXd7Jd0\n", "u6Srkh4PXA5m80vbcwyvjrkrI4Or8Z1XxxY+y76NZe2uoyxHvvPKYrfPdqmHV4wNDs9MQFjUzT5J\n", "h9zDcyFrQX64MQIAQ9qqfF5dWHJQm2NrGN8d6pYBP9ZW5aXQxWCmnE8cZN/V7iTReaW8Txr0GBu0\n", "g7HB4fkOyyMG9jyuu+uZjMNzBEJ4BQD2MDoYHvuu7Mu58+qEu54MWkV8fHgVe+dVticNbkF4ZcdG\n", "V5CBYGW7JMKrtiovSrooaZ+6kfGQGBlEMIRXAGAPJw6Gx74r+wivCK9WlcrC9tyXtUuEV2a47uTz\n", "6u4rDwcuZ7skwivHyt6rjc6roFUgS4RXAGAPJw6GR3hlX84L2wmvdie1zivCK8IrK8zsZNqG8Kp/\n", "/uPnelgEAiK8AgB7GBsMj/DKPjqvCK9WlcrCdsKrzSDI4p6l7XIIr6wubff1pPDaWwuv6LzC6Aiv\n", "AMAexgbD8zuvHglaBRbJObzyC9sJr1aTysJ2wis6r6yxurTd15NC55WV7jbCKwRDeAUA9jA2GB6d\n", "V/blHF7RebU7qYwNctog4ZU1VoKV7Rgb7B/hFYIhvAIAez4q6bKku4u6sbb8NBeEV/b58OrWoFWE\n", "QXi1O6ktbOe0QcIrK6yOcRJe9Y/wCsEQXgGAMe7kno+4h/eErCVjhFf20XlFeLWqVDqvGBskvLLG\n", "XOdVUTf7JB2SdFVpLBcnvEL2CK8AwCaWtgfi3vDe6R5+PGQtWGjjtMGibtaCVjI+H149HbSK+LCw\n", "PR0+CCK8ssHiwnZfy5m2Kq8GraQfhFfIHuEVANjE0vZwblf39fHJtiovhC4Gs7VVeV5d98V+bd7M\n", "54LOq91hYXs6fOeVtTG1WXIIrywubE9pZFAivAIIrwDAKJa2h8PIYDxyHR0kvNqdVDqvWNjO2KA1\n", "5sYGlV54ZeU1JrxCMIRXAGATY4PhEF7FI7vwqqgb32l2VZthDJbjX6+bi7qJ+T0wnVeRhFfu79nG\n", "+FrIWgZmeWwwlfCKzitkL+Yv3ACQMsYGw3mhuxJe2ZddeKXNrqGn26q8ErSSyLjDME6re/9rabxp\n", "VZw2GEl4pc0b/ecT//fK2ODwrIRX6+5KeIXREV4BgE2MDYbjO68eCVoFlpFjeMXI4N6kMDrod3bl\n", "3Hm1EZYY76LLYWRQovNqDFbCK//xUzjBEZGx/MkeAHL2hLo3XMeKujkeupjMMDYYD8IrrCqFpe2+\n", "9mzHRtuqvCw7N/OL5BJeWe68SuW1t/L3nbFBBEN4BQAGuWOd6b4Kg/AqHjmHV08HrSJeUXdeFXWz\n", "T5ujcjmPDUpxjA7mFl5Z6rzyr30qnVdWXmPCKwRDeAUAdhFehcHOq3g85a45hld0Xu1O7J1XG8GV\n", "6z7KGeGVHYwNDo/OK2SP8AoA7OLEwTDovIpHjp1XfoyY8Gp3fHgVZeeVNpe1ZzsyuAXhlR2WxwYJ\n", "r/pFeIVgCK8AwC5OHBxZUTdrku50Dwmv7MsxvKLzam986BNr51X2+662ILyyw8pI21aEV8NI7XVF\n", "RAivAMAuxgbHd6ukA5JOtVXJSTr2EV5hVbF3XhFebfKBEOFVeIwNDs+HV6FfY//x6bzC6AivAMAu\n", "xgbHx76ruBBeYVVRL2zXZnj1bNAqbPCdV5ZG1bbLJbxibHB4VrrbUntdERHCKwCw6yF3fWlRN3y+\n", "Hgf7ruLiA5wT7hS2HBBe7U3sC9vpvNrE2KAddF4Nz0p45ccWU3ldERFuhgDAqLYqT0t6QtJBbYYq\n", "GJZ/nR8JWgWW0lblRXVhxA2Kt5NmVYRXe5NK5xXhFeGVJXReDc9KeMXYIIIhvAIA2xgdHBedV/HJ\n", "bXTQh1dPB60iXnRepYPwyo5zkq5KOmSoC5bwqmfuUBs6rxAM4RUA2MaJg+Ni51V8cguvjrsrnVe7\n", "E/vC9pvdlfCKhe1mtFV5VfZGB30dqbz2G6cNuhAphMOS1iSdb6vycqAakDHCKwCwjRMHx0XnVXyy\n", "Ca/cDQudV3vD2GA6YljY7oO1VAKURayNDibVeeXCorPqwqP1QGUk9ZoiPoRXAGAbY4PjIryKTzbh\n", "lbob4X2STrdVeSF0MZFibDAdMYwN+tqeW/isNAQfa9vGh2gpBS2hX2P2XSEowisAsI2xwXGxsD0+\n", "OYVXLGvfu1Q6r54NWoUNMYRXfswzh/DKd5fReTWc0N1tKb6miAjhFQDYRufVSNxIFjuv4kN4hVWc\n", "lXRR3WLpw6GL2QU6rzbFEF7ReRVOikFL6NeYZe0IivAKAGz7qKTLku4u6uZQ6GISd0zSIXUjWTns\n", "J0mFD69uDVrFOAiv9sgtlo55dJDwalNM4VUOnXJWF7anFLSEDq8YG0RQhFcAYFhblZfUBVhrku4J\n", "XE7q7nbXjwWtAqt6yl1z6LzyJw2yrH1vfPBDeBU3a2Nqs+TYeRX8/0dRN/vUnYwndd2WqbASXqUU\n", "CCIihFcAYB+jg+PwI4Psu4oLY4NYle+8inHvFeHVppg6r3IKryx0XvnxtjNtVV4JWkm/Qr/GjA0i\n", "KMIrALCPpe3j8OEVnVdxIbzCqqJc2u728vkF4DmMoe3EdHhV1M0BdaPolyWdC1zOGCyNDabaIRQ6\n", "vEr1dUUkCK8AwD4fXtF5NSw/NkjnVVwIr7CqWHde3ajuvfuZtiovhi7GgI2xwaJuLN7TbHRduV1r\n", "qTMzNqh0QxYr4RU7rxCExU/0AIBrMTY4Djqv4vS0pKuSjhd1sz90MQMjvOpHlJ1XYmTwGm4cLPTN\n", "/CK+Sy6HkUGJzqsxhP77ztgggiK8AgD7GBscBzuvItRW5WVthjknFj03AYRX/Yi188rXy8jgJh+Y\n", "WBwdzGnflWSz8yq1k4NDh1ephoKIBOEVANjH2OA4GBuMVy6jg4RX/Yh1YTudV9ezvPfK15RL2Bg6\n", "WNnKB2iphSyhX2PGBhEU4RUA2Pe4ujcKx4u6ie1mKyaMDcYrl/DquLs+HbSK+DE2mA4fDFkOr3Lp\n", "vGJscHhWwqvUXldEgvAKAIxzi17pvhpQUTf7JN3pHj4ashbsSi7hFZ1X/Yh9bJDwapMPr25e+Kww\n", "cguvLI4NphayhA6v2HmFoAivACAOhFfDeoGkfZKeaKvyQuhisDLCK6wi1s4rH9AQXm0ivLIjdLCy\n", "FeHVMFJ9XREJwisAiAMnDg6LZe1xSz68KupmXdK6pAti38he0XmVDsvhVa6nDdJ5NRwr4RVfgxAE\n", "4RUAxIETB4fFsva4+fDq9qBVDMvvuzrpRomxeyxsT4fl8IrOq3BSDa9C7xVjbBBBEV4BQBwYGxwW\n", "y9rjlkN4xchgf3z4E2vnVS6n1y2D8MqO0MHKVqmGV6EDwlRfV0SC8AoA4sDY4LAYG4zbE+6a7Nig\n", "tnReBa0iDXRepSOG8CqXsJGF7cML/RozNoigCK8AIA4bnVdF3fC5u39+bJDOqzj58IrOKyzDd8Lc\n", "7E4ajQXh1fViCK9y6bwK3RW0VerhFWODyBI3QAAQgbYqT6u7QT8k6c7A5aSIzqu45RRePR20igS0\n", "VXlZm6HHTYueawzh1fUIr+zYCFaKulkLWgnh1VBSfV0RCcIrAIgHe6+Gw8L2uG2EVwZumoZC51W/\n", "fAAU0+gg4dX1CK+MaKvykqTz6u4vDwcux4cspxc+Kz6EV8ga4RUAxIMTB4fDwva4PS/pnLobJgsj\n", "K0MgvOqX33sV09J2H9AQXm2yHF75mrIIr5zQ4Yrnd0KlFrIE625zKyv82ODZMT824BFeAUA8WNo+\n", "gKJuDkm6VdIlbXbwICJtVV5V+qODfhn9U0GrSIcPr44vfJYtdF5dz3J4lVXnleM7nUIvbU+yQ8iN\n", "PJ+XtKbxu9v8xzvn6gBGR3gFAPFgbHAYvuvq0bYqrwStBHuRenh1q7sSXvUjqhMHXZcF4dX1CK9s\n", "sdJ5lWR45YR6jVN+TREJwisAiAdjg8NgWXsannTX2xY+K16EV/3yi++jCK/UdT0ckHShrcrzoYsx\n", "hPDKFt95ZSW8Sm3nlRQ+vDoz8scFNhBeAUA8GBscBuFVGui8wipiGxuk62o2k+GV65Tzo3M5hVc+\n", "WAk9NuiDQ8Kr/vh9V3ReIRjCKwCIx0clXZH0oqJuDoYuJiH+pEGWtceN8Aqr8J1XhFdxO6duX+Eh\n", "t7/QihvV7SU6k9l+ICtjgykHh6E7rwivEAzhFQBEoq3Ki+oCrDVJ9wQuJyV0XqUh2fDKdXEQXvUr\n", "trFBwqsZ3GENvvvqpkXPHVmOI4OSgbFB9829g5L8cvPUEF4hW4RXABAXRgf7R+dVGpINr9SNaxyS\n", "dLatSvaN9CO2sUE/Fkd4dT2Lo4O+ltzCKwtjg/5jn3bhZmpCjw3yNQjBEF4BQFw4cbB/dF6lIeXw\n", "iq6r/jE2mA6L4RWdV+GkPDIo0XmFjBFeAUBcOHGwf4RXaUg5vPInKBJe9YexwXQQXtlhqvMqYA1D\n", "IrxCtgivACAujA32yO0SYmwwDSmHV3Re9S+2sUEfXj278Fl5Iryyw8LC9pRPGpTCdbf5j8fYIIIh\n", "vAKAuNB51a+b1L0hOyNuCmPnw6vbFj4rToRX/WNsMB2Ww6vcvq4wNji80Duv6LxCMIRXABAX33lF\n", "eNWPja6rRBe75uQZdadL3VzUzaHQxfSM8Kp/jA2mw3J4lWqAMg9jg8ML9RozNojgCK8AIC6Pq3vj\n", "cLyom1g6Bixj31Ui2qq8IulJ9zC17ivCq/6dkXRJ0nokYSfh1XwWw6tcTxv0gRHh1XDYeYVsEV4B\n", "QERcd9AD7uF9IWtJhO+8IrxKQ6p7rwiveuY+l8bUfUV4NZ/F8CrXzisL4VXqr33osUF2XiEYwisA\n", "iA/hVX98ePVw0CrQl9TDqycXPgurimnvlQ9mCK+uR3hlh//z3rTwWcOi82oYdF4hOMIrAIgP4VV/\n", "XuSuhFdpSD28ovOqXzGdOEjn1XyEV3YQXg2P8ArZIrwCgPgQXvWH8CotqYZXfocX4VW/GBtMA+GV\n", "HRbCK/+xCa/6xdgggiO8AoD4EF71h/AqLT68YmE7lhHT2KAPr55d+Kw8EV7ZYSG88p1Xqb72dF4h\n", "W4RXABAfwqv+EF6lJdXOK8KrYTA2mAbL4VVuYaOl8IrOq34RXiE4wisAiM9H1B3xfndRN4dDFxOr\n", "om4OSXqBpMuSHgtcDvqRXHhV1M0BdTflV0Rw0bcoxgaLujko6bC6z1WM7FzPYnjla0m1+2eeM+o+\n", "V60XdbM/UA2MDQ6D8ArBEV4BQGTaqrwk6cOS1iS9NHA5MXuhuz7SVuXloJWgL/40vmTCK0kn3PVk\n", "W5VXglaSnlg6rza6rtqqvBq0EpsshldZjg26v58+NDq66LkDYmxwGOy8QnCEVwAQJ0YH946RwfQk\n", "13klRgaHFMvOKx/K0Hk3G+GVLaFHBxkbHAadVwiO8AoA4kR4tXeEV+khvMIqohgbFPuudvK8pKuS\n", "bizqZl/oYhzCq3DhVTZjg0XdrI34cQmvEBzhFQDEifBq7wiv0uMDnhOGbmL3yodXTy58FnYjlrFB\n", "H66dWvisTLlx2tCByQa3o+yguh1l5wKXE0Lo/xdJjw22VXlR0kVJ+9T9PRtcUTc3SFp3D8+O8TGB\n", "WQivACBOhFd7R3iVGLcP7qS6fXC37vD0WNB5NZxYOq98uEZ4NZ+l0cGNrqtMd5RZCa9S7bySxh8d\n", "3Aiu2L2IkAivACBOhFd758OrjwWtAn3zo4O3Ba2iP/7PQXjVv1h2Xvlw7emFz8qbpfDK1/Dswmel\n", "K1h45cbocgiv/J9trPCKkUGYQHgFAHF60F1fmtB41NjovEpTanuv6LwaDmOD6bAUXuW870oK23l1\n", "SNJ+SRfaqrwQ4OOPxYdIY53oSHgFEwivACBCbVU+L+nj6vYd3B24nFgRXqWJ8ArL8gvQb3Y7Xaxi\n", "bHBnhFd2hAyvcui6ksYfGzzirmdG+njATJa/UAMAFmN0cJeKutkv6U51J1Q9Grgc9IvwCktpq/Ky\n", "ugBrTZsn+lnE2ODOCK/sILwa3tjhFZ1XMGF/iA86mUxKSd8v6b+QdEnSf5T0PdPp9H1L/vqHJL1k\n", "zk//4+l0+pN91AkAxj0g6TPVhVe/HbiW2Nyp7hs4H098tCBH/lQ+wiss45S64Oq47IZDdF7tjPDK\n", "jpDhVS6vPeEVsjR659VkMvnvJP2munGXr5H0zerGXn5nMpl86pK/zVVJ/0bS58747109lgsAltF5\n", "tXuMDKaLziusIoYTB+m82hnhlR10Xg2PsUFkadTOq8lksi7pLZLeMZ1OX7Xlx98l6T2S3izp05b8\n", "7R6eTqe/03+VABANwqvdI7xKV6rh1ZMLn4XdiuHEQRa274zwyg7Cq+HReYUsjd159XclvUDS92z9\n", "wel0ekXS6yV9ymQyKUauCQBiRXi1e4RX6UomvHLHvvvw6mTIWhIWw4mDjA3uzFJ45WsgvBqf/5iE\n", "V/0ivIIJY4dXnyvpz6bT6Udm/NzvqfvC8zlL/l5rfRUFAJHaCK/cTS6WR3iVLh9e3Ra0in7cImmf\n", "pOfYzTYYxgbTYCm88gHKswuflS4LnVepB4ehxgYJrxDU2AvbXybp/bN+YjqdXp5MJh/Sch0Ea5Je\n", "MZlMXqnuzelHJP1rST82nU55cwcgF0+qe4N2i6QTYifOKgiv0uXDqxcEraIf7LsaHmODabAYXqUe\n", "oMxjIbyi86pf/uOw8wpBjd15dUKLv/Ce0nLfKX1S0jskfYOkL1O3L+v7Jf3qZDKh+wBAFtqqvKrN\n", "7quXhawlQoRX6XrcXW8v6mb0g2l6Rng1PNNjg0XdHJK0ru50bm4c5yO8soPwaniMDSJLY3deHZV0\n", "dsHPn9VyX3Q+fTqdXtry+Ncnk8mfqFv4/g8kvW3XFQJAXD4k6ZPVda3+QeBaYkJ4lai2Ki8UdXNK\n", "XbfKccUd/BBeDc/62ODGyKD7hgVmI7yyw8LOq9Rfe8IrZGlP4dVkMvlOST+2xJVVU8sAACAASURB\n", "VFPfO51OS3WfSNYXPO+IlniDti248j/2lslk8i2SXiXCKwD5+JC70nm1JNeNc7d7+LGQtWAwj6u7\n", "6X+B4g5+CK+GZ31skJHB5RBe2UHn1fBC7byi+xNB7bXz6l9J+ndLPM//RT+pxW8ObpH0gT3U839J\n", "muzh1wNAbHx4dX/QKuLyAnVf/55sq/Jc6GIwiMckvVzSHZL+PHAte0F4NTwfClntvOKkweUQXtlB\n", "eDU8Oq+QpT2FV9Pp9GmtdvLJA5I+Y9ZPTCaTG9R1DvzyHkq6oG4nAADk4oPuSufV8hgZTJ/fexX7\n", "0nbCq+HF0nnFSYOLWQqvfA1ZhldtVZ4v6uaipANF3Rxqq/L8iB8+l+CQ8ApZGnuR6Xsl/bXJZPKS\n", "GT/3Weo+2b930W8wmUzWJpPJvBMJP0vSn+2lQACIDGODqyO8Sl9q4dWTQatIm/Xwis6r5fiw4uai\n", "bkIf3uQDlGcXPittvvNp7O6rXDqv/J9v7LFBwisENXZ49avqjrD+4a0/6LquXi/pT6bTabv1xyeT\n", "yR3bfo9flPT7k8nkzm2/x1eq6+r6XweoGwCselTdYRe3FXVjdezFGsKr9D3mrtvfQ8TGn8BM59Vw\n", "rI8N0nm1hLYq/WmMaxrvhn6eXLp/Fgk1OphLeBWq84qdVwhq1PBqOp2elfQNkr5yMpm8fTKZvGIy\n", "mbxS0rslFe7ntnqTpI9NJpOto4Y/LumwugDr6yeTyRdOJpM3SPoFST83nU7/9+H/JABggzt9iu6r\n", "1RBepS+1zivCq+FsdF4Z6NiZhYXtyws+OugOBMklQFkkVHiVS3Dow6ujC5/VH8YGYcLYnVeaTqf/\n", "VtIXqTvp6a2SfkbSZUmfM51O/3Db0x9W96bimS2//o/UdVi1kn5I0q9I+mxJ3zCdTl8z+B8AAOxh\n", "79VqfHjFSYPp8uFV7J1XhFcDc/t4zko6oM3RGEsYG1xe8PBKm+HJ6bYqLwesIzQ6r4YV6rRBwisE\n", "tdfTBndlOp2+R9J7lnjeD6kLqLb/+H+W9BUDlAYAMaLzajUvdlc6r9LlxwZj77xibHAcpyStq+ty\n", "snZzxtjg8iyEV7e46zMLn5U+wqthMTaILI3eeQUA6B3h1Wp8ePXhoFVgSNGPDboRttvdwydC1pIB\n", "y0vbGRtcHuGVHaHDq1zGBjltEFkhvAKA+BFeLamom31i51UOUhgbPCrpkKSzbVVywzAsy+EVY4PL\n", "8+HV2IHJVoRXndHDKxf4+/Aq6c+ZbVVekHRJ0v6ibg6O8CEJr2AC4RUAxM/vvLo/aBVxuEPdbpsn\n", "2qo8G7oYDOYZSRckHS3qxuIeo2XQdTUeyycOMja4PDqv7AjRebWu7t72nDt9MnWjdF+5QwgOu4e8\n", "b0JQhFcAEL9HJJ2T9IKibkK+aY/BS9z1I0GrwKDcKZy+++r2Rc81jPBqPHRepcFSePXswmelL0R4\n", "lcvIoDfW6KD/BtAZ97UVCIbwCgAi11blFUkPuIf3hawlAoRX+Yh9dJDwajw+vLLceUV4tTMfGN2y\n", "8FnDovOqEyK82jjpccSPGZL/cx5d+Ky9Y2QQZhBeAUAa2Hu1HMKrfMR+4iDh1Xh8MGSq88rt8CG8\n", "Wp4PjAivwgvZeZVLeDXWa+x//1w62mAY4RUApMHvvSK8WozwKh+xnzhIeDUeq2ODRyXtUzeucyF0\n", "MRHwgVHIDjrCqw7h1fDGeo1ze11hGOEVAKTBd16xtH0xwqt8+M4rxgaxE6vhFV1Xq/GvE51X4YUc\n", "G8ylQ4jOK2SH8AoA0sDY4HIIr/JB5xWW9ZS73hq0iutx0uBqLJwaSXjVofNqeIRXyA7hFQCkgfBq\n", "OYRX+WBhO5Z10l1PBK3iepw0uBrCKzsIr4bH2CCyQ3gFAGn4qKTzku4q6mboY5Oj5F6XWyVd0Gaw\n", "gXSxsB3LovMqDYRXdjA2ODw6r5AdwisASEBblVckPege0n0124vd9aPu9ULaGBvEsqx2XrHzajXs\n", "vLKDzqvhjd15RXiF4AivACAdjA4uxshgXhgbxLI2wquibiy9N2ZscDUbpw0WdbMWqAbCqw7h1fD8\n", "n3OszqtcXlcYZukLNABgbwivFiO8yosPfW4r6mZf0EpWVNTNuqQbJV2U9GzgcpLXVuUlda/zDZJu\n", "DlzOVowNrqCtynPqxucPSjocqAz/94fwqnN0xCAxtw4hxgaRHcIrAEjHB9315UGrsIvwKiNtVV5U\n", "11Fzg+yNg+1ko+uqrcqrQSvJh+++srT3is6r1QXbe+VCGh9eZR06u0D4nLrPv+sjfdjcOoRY2I7s\n", "EF4BQDo+4K73B63CLsKr/MQ6OsjI4Pj80nZLQSc7r1YXcmn7UXX3VmdceJ67sUcHcwtZNrrbBv44\n", "dF7BDMIrAEiH77wivJqN8Co/sZ44SHg1PoudV4wNri7k0nb2XV0rVHiVS8jC2CCyQ3gFAOl4WF2b\n", "/p1F3Vja22KFP22Q8CofsZ44SHg1PoudV4wNrm5jaXuAj014da2xwyvGBoeRW0cbDCO8AoBEtFV5\n", "RXRfzeROEPPh1UdD1oJRMTaIZVnuvCK8Wl7IsUHCq2sxNjgsOq+QHcIrAEiL33vF0vZr3S7pkKSn\n", "2qp8PnQxGA1jg1iWxc4rxgZXR3hlB2ODwyK8QnYIrwAgLYRXs7HvKk+MDWJZFjuvGBtcHeGVHYwN\n", "DouxQWSH8AoA0kJ4NRvhVZ4YG8SyTHVeFXWzX91N6VVJzwYuJyYsbLeDscFhnZV0RdJh9/liKHRe\n", "wQzCKwBIC+HVbIRXeWJsEMuy1nm1EYS4fYZYDgvb7RgtvHJ7LW90D7NYDdBW5VVtBnWDvMZF3awp\n", "v442GEZ4BQBp2Qiv3JsOdAiv8kTnFZZlqvNKLGvfLcYG7Riz8+qIuz6fWdg79Gt8UNJ+SRfbqjw/\n", "0McAlkZ4BQBpeUrdm/ebFV+3yZAIr/LEzissy1rnFcvad4fwyo4xw6tcu4OGfo0ZGYQphFcAkBDX\n", "Rs7o4PUIr/L0nKRzko4UdXPjTk+2oKibg+pugi+L4GJM1jqvWNa+O4RXdowZXuW278rzr/HRhc/a\n", "vVxDQRhFeAUA6SG8uh7hVYZcmBvb6OBt7vpUZuMvoW2EHkXd7AtaSYexwd1hYbsddF4Nb+jX2Idi\n", "dF7BBMIrAEiPD6/uD1qFEUXdHFY3NnZR0scDl4Px+aXtsYRXjAwG0FblZXXBx5rCdO1sx9jg7rCw\n", "3Y4xw6tcX3vGBpEVwisASA+dV9e6x10fppMlS4RXWJYfHbSw94qxwd2xMDb4bICPbdGY4dXN7kp4\n", "1a9cxzFhFOEVAKSH8Opa97rrX4YsAsE86q53Ba1ieYRX4fil7Rb2XjE2uDtnJF2StF7UzaGRP3au\n", "3T/z0Hk1PB8q0XmFLBBeAUB6PuiuLzOyuyW0l7or4VWe/KjonUGrWB7hVTiWOq98gMbY4ArcnrtQ\n", "e69yDVDmIbwa3lhjg3RewQTCKwBITFuVpyU9IumQpBcHLscCH149FLIIBEPnFZZlqfPKB2hPLXwW\n", "Zhk9vCrqZk35jq7NEyK8ym1kk4XtyArhFQCkidHBTfe6K51XeaLzCsuy1HlFeLV7IfZeHZG0T9K5\n", "tiovjPhxLWPn1fBY2I6sEF4BQJr86CDhFZ1XuaPzCsui8yoNIU4czHVsbZHn3fXGEVYY5Pr6MzaI\n", "rBBeAUCa6LzadK+70nmVJx9e0XmFndB5lYYQnVe5hidzudN9/Rjf0N1XjA0Og7FBmEJ4BQBpIryS\n", "VNTNUXVhwHltjo8hL4+5651F3cTwvofwKhw6r9JAeGXHWF1wuY8NHl34rN1jbBCmxPAmDgCwOsKr\n", "zj3u+mH3XWBkpq3Kc+pObNsvGx01OyG8CsdE51VRN+uS1iVdFOM6uxHitEHCq9nG+n+R6+vP2CCy\n", "QngFAGl6UNJlSfcWdXM4dDEB+X1XjAzmLYql7W4vjO/6oeNmfFY6rzb+DrRVeTVoJXGi88oO/3oQ\n", "Xg2DsUFkhfAKABLkTjt6QNKapPsDlxMSy9ohxbO0/VZ1/2ZPtlV5KXQxGfKBYejwipHBvWFhux1j\n", "BYm57rzyHVGcNogsEF4BQLre766fFLSKsO51Vzqv8hZF55UYGQzNd16FHi8lvNobOq/sGKvzKved\n", "V4wNIguEVwCQLsIrOq/QiaXz6gXuSngVxjOSrki6uaibAwHr8OHVyYXPwjyEV3YM3gXnDuLItUOI\n", "sUFkhfAKANJFeEXnFTqxdF75+h5d+CwMwh3q8LR7eDxgKXRe7Q0L2+0Y4//FTerGrU+3VXl5wI9j\n", "0Tl1+00PFnVzcIDfn84rmEJ4BQDpIrxiYTs6sXRe+fDqsaBV5M3C0nbCq72h88qOMfaP5ToyKHeg\n", "w5DdV7l2tMEowisASNdfuOsnubb6rBR1c0zdG+Yzkp4MXA7Ciq3z6uMLn4Uh+cAo5N4rwqu9YWG7\n", "HWN0XuX+2g8SXrnR6UPqRqnP9vl7A7uV3c0MAOSircqTkh6XdETS3YHLCeFed/1LjpvPXiydV3e4\n", "K+FVOHRexY/OKzvGCBJzf+2H6rzy+65O8x4KVhBeAUDach4dZFk7PDqvsCw6r+J3Wl23yNGibvaP\n", "9DFzD1DmGbPz6v9v787DJLvreo+/JzOTmUkmM9kzQZIMSYAQEUEoWRKvuScqiwsu8FMuj3IRVJTF\n", "BUrUiwpcLsst8MplUbZrQFE5EGQNCKQMyF6sMWxJTCY72UkmyyyZmfvH+Z3uyaS7upazVZ3363ny\n", "nFT3qVO/p7unu+pT3+/3d3uJj9FkZYdXtgyqMQyvJGm+tTm82hqPzrvSrcBOsl3kDql7MUMYXtWv\n", "CZVX+WMbXk0gDt7PQ6RNw84tkOHV0vKvR5nhVWtnXkX5MPWNQ88an/Ou1DiGV5I039ocXll5JWBh\n", "qO0sVF8ZXtXPyqv5UHXroOHV0qr4PrT9a19W5ZU7DapxDK8kab61ObzaGo9WXgkWA6FGzr3q9Pqr\n", "gWPizRvqXEvLNaHyyvBqepUNbe/0+qswQFlOFZVXtg1mbBvU3DO8kqT51ubwKq+8MrwSLA5tb2rl\n", "1dFkz8tuHnST3XUvpsVqrbyKO8PmwdmtdaxhTlRZebUBWAPsHHSTnRU83ixxYHv5rLxSaxheSdJ8\n", "uxLYAdyv0+tXNfujdvGd8K3x5rb6VqIGaXTlFbYMNkXdlVebyZ6fbx90k101rWEeVBletT08GeZu\n", "YDewrtPrry/pMdo+86rs8MrKKzWG4ZUkzbFBN9kDXBxvPrjOtVTsKLKS99sG3cTqBcFi5ZXhlYap\n", "e+aVLYPFqGKXu5zh1TLivMGyWwfb/vW3bVCtYXglSfOvja2DDmvXgZo+sN3wqhnqrrwyvCpGlZVX\n", "ba/8WUnZQaIzrzK2DWruGV5J0vxrY3i1NR6dd6XcrFReXV/rKpSHRkfX9PiGV8WwbbA5yp571fbw\n", "0LZBtYbhlSTNvzaGVyfHo+GVclZeaRTbgV3AIZ1e/5AaHt/wqhiV7TaIlT8rqaryyvCqWLYNqnEM\n", "ryRp/rUxvDo1Hi+tdRVqkqZXXh0Xj4ZXNYozem6MN4+pYQl5u6Lh1XSqrLw6Ih5vGXpWe5UdJLY9\n", "PMzb+mwb1NwzvJKk+ZcPbH9gp9dfU+tKqmN4pQPdEI/Hdnr91bWuZGlWXjXHws9KDY9t5VUxqhzY\n", "nn/PDK+WZuVVufLKqI1DzxqfbYNqHMMrSZpzg25yJ3AlsJbFQebzzvBK9zLoJruAm8ie+9RRUbMS\n", "w6vmqLPyyiCkGFVWXuXVcn7PllbaboOdXn8Vzrwqu23Qyis1huGVJLVD3jp4eq2rqECn198A3B+4\n", "hyy0k3J562AT514ZXjWHlVezr47wyu/Z0spsG1xP9sbczkE32VnC9WeBA9vVGoZXktQO34rHuQ+v\n", "2G9Y+6Cb3FPrStQ0eTDUqLlXnV5/HdncnD34ArgJmlB55c/BdPLw6oihZxXDyqvhymwbbPu8KzC8\n", "UosYXklSO+Th1Q/Xuopq2DKo5TS18iqv8Llh0E321roSgZVX8yD/+h019KxiGF4NV2blVdtbBmG/\n", "8Cq2URbFtkE1juGVJLXDt+PR8Ept1sjKK2wZbBorr2bfHcBu4NBOr7++5MdyTtlwVVRetTa8iu2S\n", "u4E1wLoCL23llRrH8EqS2iEPr05r6E5rRTK80nLyyivDKw1j5dWMG3STfVRXfWXl1XBlVl7ZNpgp\n", "o3Uwr7wyvFJjGF5JUgsMusltwNVkw01PXuH0WWd4peVcE48/VOsq7svwqllqqbyKs88OJdtsou0v\n", "xotQdXhl4Lg0K6/Kl7f2FRJedXr9g8h+FwHcWcQ1pSIYXklSe7Rl7pXhlZZzdTzev9ZV3FceXl1f\n", "6yqUq6vyaqH9LFYOaTqlh1dxd9v1wE7g7rIeZ8Y586p8RVde5VVXdzqHUU1ieCVJ7TH34VWsXDgR\n", "2Atsq3c1aqCmVl4dF49WXjXDQuVVwQOQV2IFT7GqqLwycFxZHixZeVWessIrh7WrUQyvJKk98vDq\n", "9FpXUa6tZH/brhh0k101r0XNcx2wDzi+0+uvrXsx+7FtsFnuAHYAG1hsnamCg7+LVUV45byrleXB\n", "0qbYjlYkZ15l8vBq49CzRuewdjWS4ZUktcfcV15hy6CGGHST3WQB0SoWA6MmMLxqkFhBU8fcK4e1\n", "F+umeDS8qtGgm9xDNjfpIIoLV3JWXmWKrrwyvFIjGV5JUnu0YcdBwyutpIlzrwyvmqeOuVeGV8Wq\n", "svLK79lwZQ1td+ZVxrZBtYLhlSS1xKCbbAeuAtYBp9S8nLIYXmklhlcahZVXs8+2weYoa2i7bYMZ\n", "K6/UCoZXktQu8946aHillTQqvOr0+hvJ5irtxBdgTWLl1ezLv45Hl/gYzikbTVmVV7YNZvK/HUV9\n", "fQ2v1EiGV5LULoZXarum7Ti4sNOgu5U1ipVXs8/Kq+Yoq/LKtsFMHg4W9fW1bVCNZHglSe0yt+FV\n", "3D3uAWS7yV1W83LUXI2qvMKWwaay8mr2OfOqOay8Ktet8XhEQdfLQ0Err9QohleS1C55eHV6raso\n", "x0nAauDqQTfZUfdi1FiGVxqFlVezz8qr5nDmVbny8Kqor28egt069CypYoZXktQu++84uKbWlRTP\n", "lkGNwvBKo6ij8soqnmItVKOUuMOu4dVo8vDKyqtyFF15ZXilRjK8kqQWGXSTO4ArgIOZvx0HDa80\n", "ioWZV51evwnPg/Lw6vpaV6ED1VF5lQ8WNwgpwKCb3EPWrraK4it+cg5sH03RM5mIb8AdQjYqoO2z\n", "mfKvb1HhVf59MrxSozThSZskqVp59dW8zb0yvNKKYkvpTcAaqq2qWc7x8XhdravQgSqtvIovxPPw\n", "6sZh52osZbcOWnk1mjIqr/K5TLe72YWVV2oHwytJap95HdpueKVR5a2DTdhxMG9fvKrWVehAC5VX\n", "nV5/VQWPdzRZhdDNg26yu4LHa4uqwitbPYcrY2C7LYOLypp59YOhZ0kVM7ySpPa5KB4fWusqivfg\n", "eLyk1lVoFuStg02Ye3VCPF499CxVatBN7gTuAtaxuG18mY6LR2efFeumeCw8vOr0+huADcAusp8V\n", "La+Mge155ZXhVTawfh9wWEHzTK28UiMZXklS+1wYjw+rdRUF6vT664CTgb0YXmllTRranq/B8Kp5\n", "8uqrKloH8/DK2WfFKrPyKn+Bf4ttayuy8qpEg26yl2IDQmdeqZEMrySpfb4D7AEeFN85ngcPJPub\n", "dnmcaSQN04jwqtPrbyKrHtiBM3OaKJ97VcXQdsOrcuTh1dFDz5qMw9pHV0blVR5e3V7gNWdZIXOv\n", "Ypu0bYNqJMMrSWqZGO58l+xvwLy0Dp4Wj9+pdRWaFY0Ir1icuXW1lRuNZOXV7Cuz8sp5V6Oz8qp8\n", "Rc29OgRYC+wcdJO7p7yWVCjDK0lqp3lrHXxIPH631lVoVjQlvLJlsNmqrLzaEo+GV8WqIryy8mpl\n", "zrwqXx4QTrvjoC2DaizDK0lqp2/G44/WuoriWHmlcTRlt0HDq2az8mr2GV41w51k4wo2dHr9gwu6\n", "pm2D91ZI2yAOa1eDGV5JUjvNW3iVV14ZXmkUC7sNxvkedcnDq6tqXIOW58yr2VdmeOXMqxHFtui8\n", "Qqqo1kHbBu+t6PDKeVdqHMMrSWqnhbbBml+8T63T6x8EPDjetG1QKxp0k+1k79ZvYPon+tOw8qrZ\n", "rLyafVZeNUfR4ZXh4b0VNfPKtkE1luGVJLXTdcBNZE9STqh5LdM6gWzA6PWDbuKTLY2qCXOvDK+a\n", "zcqr2efA9uYoemh7/j29qaDrzbqiZl7ZNqjGMrySpBaKJfzzMrQ9n3dl1ZXGYXillVRSedXp9Vez\n", "GJDdMOxcjW0hvCqhytjKq/EUPbT96Hg0PMzYNqi5Z3glSe01L3OvnHelSTQhvMqrHg2vmqmqyquj\n", "yJ6T3zroJrtKfqxWGXSTu4AdwDqyCt0iGV6Nx8qrchUVXtk2qMYyvJKk9pqX8MqdBjWJWncc7PT6\n", "h5K9yNiFL76aaqHyquTZgHnL4PdLfIw2y/99HT30rPE5c2k8eRhy5NCzRpd/P/39mSlq5pVtg2os\n", "wytJaq95aRvMK69sG9Q4FnYcrOnx89DsmkE32VvTGjTEoJvcDdwBrAU2lfhQzrsqV1lzr5x5NZ7C\n", "QsQYJuffT7/+GWdeae4ZXklSe30b2AM8sNPrF91OUSUrrzSJutsGnXc1G6qYe2V4Va6ywysrr0aT\n", "h1dFtOFuBlYD2221XeDMK809wytJaqlBN9lJVq10EPDQmpczkU6vfyTZi8o7MQTQeJoSXl1V0+Nr\n", "NFXMvdoSj4ZX5Sg8vOr0+uvJZmjtJvv7o5XlQXAR7ZtWXd2XM6809wyvJKnd8rlXs9o6uLDTYNxB\n", "URpVHl6dUPI8o+VYeTUb8vBqy9CzpmPlVbnKqLzKA4Jb/NszsiIrr5x3dV8LA/E7vf40r/FtG1Rj\n", "GV5JUrvN+tB2dxrUpG4FtgOHUdwA4XEYXs2Ga+PxfiU+huFVucoIrxzWPj4rr0o06CZ5FeBBZH/X\n", "JmXboBrL8EqS2m3Wh7Y7rF0TidUSl8ebD6hhCYZXsyEf7F/mrpSGV+UqI7xyWPv4rLwqXxGtg7YN\n", "qrEMrySp3RYqr2pqnZqWw9o1DcMrrSQPr6y8ml1lhldWXo3OyqvyTRVedXr9tcChZJv5bC9qUVJR\n", "DK8kqd2+T/aCaTNwcs1rmYSVV5qG4ZVWkrcNWnk1uwyvmuF2sgH3G+PA+2lYebW0PLw6fOhZy1to\n", "GXSWm5rI8EqSWiw+OflKvPmoOtcyrvjk9wFk7xBeWvNyNJtqCa/iz+4xwD0sDgRXM5XaNhgHKx8b\n", "b/qzUA7DqwaIzzfysGna6isrr5aWz6matG0wD72cd6VGMrySJM1keEVWdbUKuHTQTXbVvRjNpLoq\n", "r/Ig5NpBN9lT8WNrPGXPvDoSWA3cNugmO0p6jLbLA44i2tVyDmyfTFHhlZVXS5t25pU7DarRDK8k\n", "SV+Nx0fWuorx5UPmvzn0LGl5dYVXecvgVRU/rsZ3K7ADOKzT60+zg9dy8pbB75dwbWXygMOB7fXL\n", "515NO7TdyqulGV5prhleSZIWwqvYwjIrfjQeDa80qW3xeFLFP/vOu5oRsdUpn3tVxtB2512V7zZg\n", "L7ApDqQuQh5e+SJ/PFZelauwmVcFrEUq3Cy9SJEklWDQTa4le3G2CTi15uWMIw+vLqx1FZpZg25y\n", "B1klwDpgS4UPbXg1W8psHTS8Ktmgm+xlsb3vyGHnjiH/vjmnbDxWXpWrqJlXhrJqJMMrSRLMWOtg\n", "p9dfhZVXKkYdrYOGV7OlzPAqD00Nr8pV9ND24+PxuoKu1xZTV17Fv//5/Q2v7s22Qc01wytJEsze\n", "0Pb7kb0IuRUDAE3H8EorycMr2wZnV17xc+zQs0aXh47OKhtPEZVXG4G1wF2DbnL39EuaK4ZXmmuG\n", "V5IkmL3wamFYe5xJI03K8EoryWde2TY4u/IKqeOHnjWCTq+/kSxA2UE2T0ujK2LmlfOuljftzKv8\n", "fs68UiMZXkmSYLFt8MdmZGi7865UlDrCqxPi0fBqNjjzavYVOXQ/r7q6zjdPxlZE5ZUtg8ubduaV\n", "lVdqtFl4gSJJKtmgm1xP9kJ6I/CgmpczCuddqSiVhlexauM4YBfOy5kVtg3OvsIqr/a7hi2D4yui\n", "8iqfW2bl1X3ZNqi5ZnglScrNUuug4ZWKUnXl1cn54w66yZ6KHlPTsfJq9pVSeVXAtdrGyqtyLbQN\n", "xsH243K3QTWa4ZUkKTcT4VWn198APBjYC3yr5uVo9l0J7ANO6PT6ayt4vFPi8T8reCwVY6Fqp8i2\n", "6vjiMh8gbnhVLiuvmmFh18cp/i1ZebWMOMB+J3AwsGGCS+SVV868UiMZXkmScvncq0fWuoqVnU72\n", "9+t7g26yo+7FaLYNuskuspbZg1icRVUmw6sZE3/P3Aysobjd6iB7obgW2O6uaaWz8qoB4u/b24DV\n", "TD5U3Mqr4aaZe2XboBrN8EqSlNt/aPvqWlcynC2DKlqVrYOGV7OpjLlXecugFTzls/KqOaade2Xl\n", "1XATzb2KlXCb40130VQjGV5JkgAYdJMbgSuAQ4DTal7OMIZXKprhlVZSxtyrvILHlsHy/QDYARwW\n", "N02YRh5eWXk1mWnnXll5NdzC3Ksx77cJWEVWCXpPsUuSimF4JUnaXz736tG1rmI4wysVzfBKK8nb\n", "zooMr06Mx6sKvKaWMOgm+yiu+ioPHa28moyVV+WadMdBWwbVeIZXkqT9fSEeH1frKpYRBxwbXqlo\n", "lYRXnV5/DXAS2YD4y1c4Xc1SRuXVSfF4RYHX1PKKmntl5dV0pg2vrLwabtKZV4ZXajzDK0nS/j4X\n", "j40Mr4D7k5XC34wvHFScqiqvTiQbVHyNmw3MnDJmXhleVWvqyqsYQB9DFkDfUMSiWmjatkErr4ab\n", "tPIqbzM0vFJjGV5Jkvb3NbK5IA/p9PpH1r2YJSxUXcU2EKkIVYVXtgzOgnQbeAAAG9xJREFULiuv\n", "Zl8RlVfHks0FutG5QBObuPIqVl9beTXcpDOv8rDrB0PPkmpkeCVJWhC3sR7Em02svnp4PNoyqCJd\n", "B+wGjuv0+oeU+DiGV7OrjJlXhlfVKmLmVT7vysrfyU1TeXUIsI7sTba7ClvRfHHmleaW4ZUk6UCf\n", "j8cmhlf5IPnB0LOkMQy6yR4WA4StJT6U4dXsKrRtMG5Lnw9sv7KIa2pFRVRe5cGXw9onN83Mq/w+\n", "N1l9vaxJZ17ZNqjGM7ySJB0on3t1Rq2rOEBsF3hMvPnFOteiuXRZPJ4y9KzpGF7NrpvIqvOO7PT6\n", "Gwq43rHAwcAtg25yRwHX08qsvGqGaSqv8nlXtgwub9rKK9sG1ViGV5KkA+WVVz/e6fUPrnUl93Yy\n", "2buuNwLb6l2K5tB34/G0Eh/D8GpGDbrJXorbrQ5sGayDlVfNUEjlVUFrmUfTzryy8kqNZXglSbqX\n", "QTe5meyF/HoWZ0w1Qd4y+EXbBVSC78Tj6WVcPFYOGl7NtiLnXhleVa+Iyqv8vlZeTc7Kq3LdEo9H\n", "DT3rvmwbVOMZXkmSlpJXXzWpddCWQZXp2/H4kJKufyxwKHDroJv44mA2FTn3yvCqercCO4FNnV7/\n", "0AmvkbcNWnk1udvJWnA3dnr99WPe18qrleXB6ri/p6y8UuMZXkmSltLEuVd55dWXal2F5tVC5VWs\n", "kiqaVVezLw+vrLyaQbFid9rqKyuvphS/D5O2Dlp5tbKbycLBw8fcPffIeHTmlRrL8EqStJSF8Kqk\n", "F/Jjie/OPgLYhzsNqgSDbnIj2QuqwygmnDiQ4dXsM7yafdOGVw5sL8ak4ZWVVys4YD7fOD/neaWW\n", "P9tqLMMrSdJSLiZ7924LsLXepQDZ7K21wLcH3eT2uhejuZVXX5XROmh4Nfvy8OqEAq51YjwaXlVr\n", "4qHt8Y0cB7YXY9K5V1ZejWas+XydXn81iz/b1w47V6qT4ZUk6T5iWX+T5l4570pVyOdelTG03fBq\n", "9uXfu1MLuJaVV/WYpvJqE9lGJncMuskdxS2play8Kte4Ie2xwGrgpkE32VnOkqTpGV5JkpbTpLlX\n", "zrtSFay80jCXxOMDp2mn7vT6m4HNwN1YQVK1iSuvsOqqSJNWXuXhlf9uhht3c4m8QuuaoWdJNTO8\n", "kiQt5zPxmNS6ioyVV6qClVda1qCb3EK2Df2hLM4+msRC1VWsclV1pqm8clh7cay8KtdYbYP7nXd1\n", "CWuRCmN4JUlazoBsS+sHdXr9E1c6uSydXv84srlbd7AYLkhlKKXyqtPrH0bWlrET54nMuoXqqymu\n", "YctgfaapvMoDSyuvpjd25VWn119L9n3bh79HV2LlleaS4ZUkaUmDbnIP8G/x5k/XuJS8ZXAw6CZ7\n", "alyH5t81wHbg6E6vP247yzAnx+NlcScozS7Dq9lm5VUz5JVT4/ye/SGy167XDbrJruKXNFcmrbwy\n", "vFKjGV5Jkob5ZDw2IbyyZVClii1cZVRf5de6uMBrqh6GV7OtiMorw6vp5V/Dcb4PW+NxW6ErmU/j\n", "/pwbXmkmGF5JkobJw6uzO71+XX8z8nlXDmtXFcqYe/XwePxmgddUPYoIr/I2bMOr6t0C7AI2d3r9\n", "Q8a8rwPbi7MtHh8wxn0MfUe30DY44uYShleaCYZXkqRhLgGuJBuS+vAVzi1cp9dfDzwu3vx81Y+v\n", "Viqj8upH49HwavZZeTXDYnXlpK2DVl4V5xpgN7Cl0+tvGPE+/rsZ0aCbbCebE7oBOHyEuxheaSYY\n", "XkmSlhWf6OfVVz9VwxLOANYD3xh0kxtXOlkqQBmVV4ZX8yMPr06dohrVF+H1mjS8svKqIHF+5ZXx\n", "5tYR75aft63g5cyrcYa2G15pJhheSZJWUufcq/wxPzn0LKk4eeVVIeFVp9c/luxF73bg8iKuqfoM\n", "usltZDulbWCCuUmxmnQLsAcreOoy6dwrK6+Klf8+HLV10NB3PCP9nHd6/Y3AJmAHcGvZi5KmYXgl\n", "SVpJPx5/Yozy/qLk4dWnKn5ctdc2sifx9+v0+psLuF5edXWhOw3OjWlaB0+Ix6vjjq6q3tiVV51e\n", "fx1wFFnoeHMZi2ohw6tyjbrj4ELVVay2lxrL8EqSNFRs1/s6sA44s6rH7fT6RwOPAHYC/17V46rd\n", "YjvL9+LNIuZe2TI4f6YJr3wBXr9RX9Tv75R43BZ/R2h6I4dXsUXXjQ7GM2rboC2DmhmGV5KkUdTR\n", "Ong2sAr47KCb3F3h40r53Ksiwqt8o4NvFHAtNcM04ZUvwOt3WTw+aIz7nBaP3y14LW02TuXV8cBa\n", "4MZBN7mrvCXNlbErr0pci1QIwytJ0ijqCK/yAfG2DKpqRc69svJq/lwaj1ZezaZJwuk8vPre0LM0\n", "jnHCK//djG/U2W6GV5oZhleSpFF8lmwO0MM7vf79y36wTq+/Coe1qz7/EY8/Ns1F4nDu04C9wEXT\n", "LkqNMU3l1anxuK2YpWgCF5P9mzyl0+sfPOJ9HhyPVl4VZ5Lwals5S5lLtg1q7hheSZJWNOgmO4CP\n", "xZu/UsFDnkr2ZPVmsnlbUpW+EI+P7vT6a6a4zunAGuBiW13mSh5enRJn8YwjbyO1Eq8m8e/Z5cBq\n", "Rg8gbRss3o3AXcDhnV7/8BXO3RqPVl6NzrZBzR3DK0nSqN4bj0+p4LHyqqvz3aFNVRt0k+uB/wQO\n", "BX5kikvZMjiHBt1kO3A92SYWI1eixt1aTyPbse5b5axOIxq5NThWAhteFSzubDdq9ZVtg+PLd9Xc\n", "0un1Vw85z/BKM8PwSpI0qo+Q7fx3RqfXX6kMfVp5eOW8K9Xl8/H4uCmuYXg1vyZpHfwRsufe33UT\n", "itrl4dUoc6+2AJuAW4CbSltROxlelWTQTXaS/byuBo4ZcqrhlWaG4ZUkaSSx2uDjZDsAltY6GNu0\n", "knjTeVeqSxHhlS1i82uS8Cr/ebAVun7jhFcLVVexWkjFGTW82hqP20pbyXwa2joYK7K2xJvXLXWO\n", "1CSGV5KkceStg08t8THOJHuX+9JBN9lW4uNIw0wVXsVWo7zy6huFrEhNMk145c9D/cbZcdCWwfKs\n", "GF7F36VWXk1mpaHtx5FVZt0w6Ca7qlmSNDnDK0nSOD5M1jp4ZqfXP76kx/hv8fi+kq4vjeJbwHZg\n", "64RtsicAh5O1bfiO9vyZJLx6RDwaXtUvD6IevMI8IDC8KlMeXp085JyjgQ3AbYNuclv5S5oreeXV\n", "cn/DbBnUTDG8kiSNbNBNbgf+lZJaBzu9/joWq7reXfT1pVENuske4Ivx5mMnuMRCy6CtRnNprPAq\n", "BiQPizcNr2oWQ5BrgfUstqQtx/CqPKO0DeZVV9vKXcpcykOp5XYcNLzSTDG8kiSNK6+IKmPXwSeQ\n", "VatcOOgmF5VwfWkc07QO2jI43y6Nx1Ni6L6SU4FDgKsG3eTm8palMYw698rwqjx5eLU1tgcuZWs8\n", "2jI4vpUqr/LdUg2vNBMMryRJ4/oQsAv4L51ef8tKJ4/p6fH4jwVfV5rENOHVmfH4tYLWogYZdJM7\n", "yVpL1wKdEe5iy2DzrBhedXr9Q4ETgd0sBi0qSKzmvoWsAm655xPOu5rc0IHtWHmlGWN4JUkaS2y3\n", "+ARZ6+DTVzh9ZJ1efxPw8/HmPxV1XWkKXwL2AY/s9PrrR71Tp9ffCJwV7+uOmfPrgng8a4Rz3Wmw\n", "eUapvHpQPF4y6Cb3lLyetlqpddC2wcmtNLDd8EozxfBKkjSJt8bj8zu9/pqCrvlLZO++/vugm1xZ\n", "0DWlicWg9iKy6ppHjnHXs4GDgS8NusmNZaxNjfDpePzJEc51p8HmGWXHQVsGy7dSeLU1Hq28Gp8D\n", "2zVXDK8kSZP4KNnMl5OAJxd0zXyXQQe1q0kmaR18Ujx+tOC1qFny8OqMTq9/8HInxVk+tg02z0Ll\n", "1ZB5Sw+OR8Or8oxaeWV4Nb4bgD3A0cvM5jO80kwxvJIkjW3QTfYCr483/2Da68XZWT9FNlfkfSuc\n", "LlVprPAqvgjOw6vzSlmRGmHQTW4gC0A2AI8acuoW4FjgNmx9apIbgFuBzcDxy5xj5VX5bBssSXyu\n", "dl28udTcK8MrzRTDK6lmIYSX1r0GtVMBP3vnkL0YO7PT6w974TaKp5P9Tfq4O3G1wwz97svDqzM6\n", "vf7qEc5/GNkOTtfhfKNGKvhn74J4PGvIOQstg4Nusq/Ax9YU4vdipblXeXj1vSIec4Z+71Vp2fCq\n", "0+sfThYu3gX43GAyeXvs4/b/+YtzRjcCdwM/qGFd0tgMr6T6/WXdC1BrTfWzN+gmdwBvjzd/f9Lr\n", "dHr9Q4BuvPn2YedqrszK777/JHtxdQxZdeBKfjYezzOoaKwif/ZGmXtly2BzLRtedXr9g1hsGywk\n", "vGJ2fu9VaVjl1dZ4vMLfpxP7WDw+iXv//OW/ly73a6tZUUt4FUJYFUJ4TQhhbwhh7FkpIYTnhBAu\n", "CiHcGUK4KoTwlhDCsWWsVZI01BuAvcCvdXr95QaCruR5wHHAV4APF7UwqQjxSf074s3fGuEuzrtq\n", "l/3nXq1d5hx3GmyuYZVXJ5JtInJd3LxB5chnWZ2wxOy4x8ejwe/k8vb1J+zjXqPdfiUeP1LtcqTJ\n", "VR5ehRDWAf8IvIhsC+mxkt4QwmvI5qx8GHgK8FIgAT4dQthU6GIlSUMNuskVwPuBNcDzx71/p9ff\n", "DLw43nyJ7/6poc4hC2mf3On1l32zrNPrHwU8lmx226eqWZrqNOgm3yeryjmU5XektPKquYbtOOi8\n", "qwoMuskO4FvAauCJB3w638jlnypd1Hy5hKyC+IidG7M/X7GqMA+vnDOqmVFpeBVCOAL4JPBzwO8C\n", "y+3ssdz9H0kWev1emqZ/mqbpx9I0fQdwJnAkluJKUh1eF49/1On1f3jM+/4B2e/vfwc+UeiqpIIM\n", "usk1ZJVUa4BnDDn18WTPrT4z6Cbbq1ibGuGCeDzrwE90ev3HAaeSDQb/zoGfV+3y8OrHOr3+xgM+\n", "9wvxeGGF62mrv4vHherW+HziYWT/dv61jkXNg/im4HkAd20+Mf/wo4H7AVeSVb1LM6HqyqtHAqeT\n", "Pbmb5EXKbwOXxcBqQZqm1wNvAp4ZQlgz9SolSSMbdJMvAm8DDgbO6fT6I/0ejlUqL4w3rbpS070t\n", "Hp8ddxRcSj7vypbBdhk29yqf5/fmQTfZVdF6NLoryTZl2Az8Tv7BWGH5zHjzLTWsq23eRVax+sRO\n", "r3//+LGnxeP7/LcztfMA7l4Mr54Sj+f63EuzpNLwKk3TTwGnpmn6+RVPXtpZLA6dO9B5wOEszhWQ\n", "JFXnRWQvAh4F/PGI9/kT4DDgE4Nu8pmyFiYV5GPAtcCDgJ848JNx5tvPxZuGV+2Sh1dn7h/ed3r9\n", "04AnAzvJ5gOqYeIL91fGmy/s9Prr4/8/l2ze1YcH3cSKuZINusmNwAfIXps+M75BkIdXtgxO79PA\n", "3bsOPYZOr388iy2D59a4Jmlslc+8StN0oq04QwirgJNZvu883wXklEmuL0ma3KCb3A48O958aafX\n", "f+iw8zu9/q+zWHX152WuTSrCoJvcw2Jry7P3/1ycH3IOsAn42KCbXFzt6lSnQTe5lmyuzEbuXX31\n", "QrIRGe8cdJPr61ibRnIe8E3geOAZnV7/ULKNRAB6ta2qffLq1mcBjyF73Xct4JtbUxp0k7uBfrz5\n", "EuAk4DrgC7UtSppALbsNTmgT2SC/JcOvNE23A3uAo6pclCQpM+gmnwTeCqwF3t3p9U9Y6rxOr/8U\n", "shf6q4AXD7rJlytbpDSdfGzBUzu9/pb9Pv4C4KeBm4DfrHxVaoIPxuN7O73+o2J1w2+QbUz0uuXv\n", "prodUH31YrK5S0cCXwQ+W9e6Wuh8YBtZsPLm+LF/HnSTPbWtaL7kuw7+bjy+f9BN9ta1GGkSsxRe\n", "HRaPdw85526ynnVJUj1eBFxONmT1Pzq9/jP2nw/U6fV/jqwF4CDg5YNu8r/rWaY0vkE3uZxsZud6\n", "4FudXv85nV7/EcBr4inPirvPqX1eAnwIOILsRfjfkM0B/ICVeDPhXOBi4AEs/nvuOQ+oOjFIyd8g\n", "yMfA2DJYnHz0Tv6czF0GNXMmHm4eQngRMMqLjgvSNE0mfZz95Lv2bBhyzgbgtgIeS5I0gUE32R53\n", "13oL2U5N55C1YewBHgrk1SqvBV5axxqlKf0WWftgQhZQ3EP2fOqtg27yoToXpvoMusnOWFX6buCp\n", "ZLOuYLTnyqrZoJvs6fT6rwb+H1noeAmL1XSqzt8BLyN7g+sS4Kv1Lmd+DLrJ5Y97+bns3nAEwI1k\n", "uzxLM2XVvn2TvaEQQjgCOGaEU+9K0/TqJe6/FbgM+MU0TVd8shdnXu0Cfj9N0zcv8fmNwO3A09I0\n", "fc8I6wLg/PPP9x0VSZIkSZKkEpx99tnL7dQ8sokrr9I0vRW4ddoFjPF4+0IIlwGnLXNK/vHLKlqS\n", "JEmSJEmSSjZxeFWTC4AnLvO5J5ENc//GOBcsIgGUJEmSJElSORo7sD2EcFAI4bgDPvw24OQQwm8e\n", "cO5xwHOBc9I03V3VGiVJkiRJklSuxoZXZENQrwkhPDb/QJqmXwH+D/DmEMIrQwg/G0J4FtnAuR/g\n", "8F9JkiRJkqS5Und4NWxY+tVkM7XutXtgmqYvAl5ItotVCrwc+DTwE2ma3l7SOiVJkiRJklSDiXcb\n", "lCRJkiRJkspWd+WVJEmSJEmStCzDK0mSJEmSJDWW4ZUkSZIkSZIay/BKkiRJkiRJjWV4JUmSJEmS\n", "pMYyvJIkSZIkSVJjGV5JkiRJkiSpsdbUvYA6hRDWAH8MPBP4IeB64L3Ay9I0vbPOtakdQgj3Az4K\n", "bE3T9Ii616P5F0JYB7wAeAZwMvAD4BPAS9M03Vbj0tQCIYSHAi8F/guwHrgYeAvwjjRN99a4NLVI\n", "CGE18FXgYcAvpWn6wZqXpDkXQhj2++0X0zT9UGWLUSuFEM4GPgm8IE3TN9a9Hs23EMI24MQhp7ws\n", "TdOXjXvdVodXwLuBJwKvAr4OPBD4M+AxIYT/mqbpnjoXp/kWX8SdRxac3lbzctQCIYSDgBR4PPB6\n", "4NPACcAfAV8OIfy4AZbKEkL4ceACstDgD4BbgEcDrwN+hCxUlarwe8AWYF/8T6rCG4H3LfHxb1W9\n", "ELVLLNj4v2Svd99U83LUDr8KrFvi4ycB7wSumOSirQ2vQgi/DDwV+Jk0TT8VP/zxEMKngK+RPbF5\n", "Q13r03yL736cC3wX+ADw6/WuSC3x8/G/Z6Rp+vf5B0MI55I9ef4L4DdrWpvm3w7gr4A/T9M0Dww+\n", "HkK4BnhrCOENaZpeUt/y1AYhhGOBlwEvBN5R83LULpemafqZuhehVno+cBrw2P3+/kqlSdP0S0t9\n", "PITwKrKuj3+e5Lptnnn1O8C/7RdcAZCm6XeAfwKeU8uq1Ba/QVZ9cDZZ9YFUhTuBHvAP+38wTdOb\n", "yFoHH13HotQOaZpemKbpS5Z44vy5eDyp6jWplV4DnA/0616IJJUtBvZ/Cbw9TdMv170etVccXfJs\n", "4J1pmu6Y5BqtrLyKpZNnkFUZLOU84L+HEI6OL+qkoj0H2JOm6a4QQt1rUUvEsP5Ty3x6PbCrwuVI\n", "uUcAu4GL6l6I5lsI4bFAAE4HVtW8HLWPP3Oqw6vJnt/9Sd0LUev9GnAU8DeTXqCV4RVwPHAIWcvW\n", "Ur4Xj6cAhlcqXJqmd9e9BikXQjiGbP6fLTSqRAhhPXAk8ASymVf/I03T79e7Ks2zOPPvTcBr0zS9\n", "IoSwteYlqX2eG0L4M2AzcAnwt2maOn9IpYmzJp8B/DawO4SwftKKF6kAzwXOT9P04kkv0Na2wSPj\n", "8QfLfD7/+FEVrEWSahNCWAW8jezNjL+qeTlqj+8DVwNvB/4yTdPX1rwezb/nkD2ve1XdC1ErXQP8\n", "PdnYiF8FLgTeEEL421pXpXn318Ae4A+B24E7Qwj/FkJ4ZL3LUtuEEB4NPIopqq6gvZVXh8XjctUv\n", "d8Xj5grWIkl1+ivgF8i2Tp5o5w9pAj9FttPlk4HXhhA2pmn6yprXpDkVQjga+J/A71l1oJpsPWAX\n", "8w/GreT/NITwz2maXlDPsjSvQgg/AzyGbEfz9wL/AWwl29n3MyGEs9I0HdS3QrXM88hC/A9Mc5G2\n", "hlfb43HDMp8/JB5vq2AtklSLEMJLgN8H3pim6RvrXo/aI03TrwBfAf4lhNAHzgkhfCRN0wtrXprm\n", "06uAi9I0fU/dC1E7HRBc5V5BNrz414ELKl2Q2uD5ZIUaj0nTNB+JQwjh7WSVf68HHlfT2tQicTzJ\n", "U4FXpmm6d5prtbVtMN/d7fBlPp9XXN1cwVokqXIhhOcALwfelabpC+pej9orTdN3kb0b97S616L5\n", "E0I4DXgm8OoQwpb8P+CYeMoR8WPr61ul2ijOP/0ccFrda9Fceizwnv2DK4A0TW8nayd8TAjBETmq\n", "wm+T5U5vnfZCbQ2vriNLopf7Y5F//LJqliNJ1Qkh/CrwRiAle1En1e0a4KS6F6G5tIXs+e5HgWv3\n", "++9L8fN/F2+79a/qsBu4p+5FaC4dRrYxwFLyjx+zzOelQoQQVgO/A3ygiI15Wtk2mKbpPSGEzwI/\n", "y9IDip8EfCdN0xurXZkklSuE8HjgXWQv5J6epum+mpekFog7vf00cEOapl8/4HOrgFNZDBOkIn2T\n", "bDfVA3/XbQHOAV4GfAG4qNplqS1CCGuB+x04VzKEsIZsJtFHalmY5t01ZH9bl3IqsJesoEMq0y8C\n", "9wfeXMTFWhleRW8B3hdCODtN0/PzD4YQHkLWuvDi2lYmSSUIITwGOJdstsZTlpnBIZVhI/Bu4Ntx\n", "SOz+Mw+eTbYL8AdrWZnmWpqmtwL/euDHQwhb4/9+PU3TT1S6KLXNp4HNIYRHp2l6x34f75K9qHtH\n", "PcvSnHsv8NwQwivSNL08/2AI4VCyoe2fStPU+c4q2/PIioIuKOJirQ2v0jR9fwjhXODcEMKryd6Z\n", "OxX4U+CrwJvqXJ8kleA8so0o/ho4I4T7dsm445HKkKbp7SGE5wL/AHwyDoy9g6wa63eBd6Zp2q9z\n", "jZJUkv8FvB/4XAjhtWSzd58K/AbwF2mafq3OxWluvQJ4AvDlEMJrgG8DJwJ/SPaG0vNqXJtaIITw\n", "w8BPkoWlhWjrzKvc04DXAc8iq0b4I+AfgcdbkaAK7eO+7QxSGQ4na5X5KNBf4r/zl7+rNJ2401tC\n", "NnPy9WQz184Enp+mqbPXVAf/9qp0aZp+FDgLuJrszaP3AKcAv5ym6StqXJrmWJqm24EzgLeTvUn0\n", "L8BfkFUCPiJN00trXJ7a4bnAncA7i7rgqn37/LstSZIkSZKkZmp75ZUkSZIkSZIazPBKkiRJkiRJ\n", "jWV4JUmSJEmSpMYyvJIkSZIkSVJjGV5JkiRJkiSpsQyvJEmSJEmS1FiGV5IkSZIkSWoswytJkiRJ\n", "kiQ1luGVJEmSJEmSGsvwSpIkSZIkSY1leCVJkiRJkqTGMrySJEmSJElSYxleSZIkSZIkqbEMryRJ\n", "kiRJktRYhleSJEmSJElqLMMrSZIkSZIkNZbhlSRJkiRJkhrL8EqSJEmSJEmNZXglSZIkSZKkxvr/\n", "gUJ07DcuELgAAAAASUVORK5CYII=\n" ], "text/plain": [ "<matplotlib.figure.Figure at 0x106c2a9b0>" ] }, "metadata": { "image/png": { "height": 392, "width": 599 } }, "output_type": "display_data" } ], "source": [ "x = np.linspace(0, 2*np.pi, 300)\n", "y = np.sin(x**2)\n", "plt.plot(x, y)\n", "plt.title(\"A little chirp\")\n", "fig = plt.gcf() # let's keep the figure object around for later..." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## The IPython kernel/client model" ] }, { "cell_type": "code", "execution_count": 46, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "{\n", " \"stdin_port\": 62401,\n", " \"key\": \"64c935a7-64e8-4ab7-ab22-6e0f3ff84e02\",\n", " \"hb_port\": 62403,\n", " \"transport\": \"tcp\",\n", " \"signature_scheme\": \"hmac-sha256\",\n", " \"shell_port\": 62399,\n", " \"control_port\": 62402,\n", " \"ip\": \"127.0.0.1\",\n", " \"iopub_port\": 62400\n", "}\n", "\n", "Paste the above JSON into a file, and connect with:\n", " $> ipython <app> --existing <file>\n", "or, if you are local, you can connect with just:\n", " $> ipython <app> --existing kernel-25383540-ce7f-4529-900a-ded0e510d5d8.json \n", "or even just:\n", " $> ipython <app> --existing \n", "if this is the most recent IPython session you have started.\n" ] } ], "source": [ "%connect_info" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can connect automatically a Qt Console to the currently running kernel with the `%qtconsole` magic, or by typing `ipython console --existing <kernel-UUID>` in any terminal:" ] }, { "cell_type": "code", "execution_count": 47, "metadata": { "collapsed": false }, "outputs": [], "source": [ "%qtconsole" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.4.2" } }, "nbformat": 4, "nbformat_minor": 0 }
gpl-2.0
arii/arii.github.io
rj/code/PD Control.ipynb
1
10766
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# PD- Control of a robot\n", "\n", "In this section you will control the paddle to move to a desired location. The robot is force controlled. This means that for every time step, you can specify an applied force to the robot's center of mass. Additionally you can specify the an applied angular torque.\n", "\n", "The goal is to program the robot to move to a desired location specified by $\\vec{x}^* = (x,y,\\theta)$ by specifing the velocity at each time step. \n", "\n", "We will break this into a few steps.\n", "1. Running the simulation and accessing the robot state information\n", "2. Open loop control of the robot\n", "3. Feedback control of the robot\n", "\n", "-----\n", "\n", "The following code shows the instructor solution for a simple PD controller. You can modify the initial position and desired position/velocity of the robot to see how it works.\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import tutorial; from tutorial import *\n", "\n", "\n", "initial_pose = (16, 12,0.0)\n", "desired_pose = (16, 16,3.14/2.)\n", "desired_vel = (0, 0, 0)\n", "\n", "play_pd_control_solution(initial_pose, \\\n", " desired_pose, desired_vel)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### PD Control Part 1: Running the simulation and accessing the robot state information\n", "\n", "The following code will show a simple example of running the simulator\n", "\n", "You should see the robot (paddle) start in the middle of the screen and fall down due to gravity.\n", "\n", "Try changing the robot's orientation and rerun the simulation." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "scrolled": true }, "outputs": [], "source": [ "import tutorial; from tutorial import *\n", "\n", "initial_pose = (16, 12, 3.14/2.)\n", "result = run_pd_control(initial_pose, controller=None)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's rerun our simulation and plot the state of the robot over time. \n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "scrolled": false }, "outputs": [], "source": [ "import tutorial; reload(tutorial); from tutorial import *\n", " \n", "initial_pose = (16, 12, 3.14/2.)\n", "result = run_pd_control(initial_pose, controller=None)\n", "plot(result, \"Robot\")\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### PD Control Part 2:Open loop control of the robot\n", "\n", "Now we are going to move our robot using open loop control. We can apply a force to the center of mass in the x or y direction, and an angular torque about the center of mass. \n", "\n", "One of the inputs to the `run_pd_control` is currently set to None. In this example we are going to show how to write a controller that gets run at every time step.\n", "\n", "The output of the controller is $u_x, u_y, u_th$, which is the amount of force applied in the x direction, in the y direction, and angular torque applied. The force is applied to the robot's center of mass.\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "scrolled": true }, "outputs": [], "source": [ "import tutorial; reload(tutorial); from tutorial import *\n", " \n", "initial_pose = (16, 12, 3.14/2.)\n", "\n", "def openLoopController (time, robot_state):\n", " u_x = 1.0\n", " u_y = 0\n", " u_th = 0\n", " return u_x, u_y, u_th\n", "\n", "result = run_pd_control(initial_pose, openLoopController)\n", "plot(result, \"Robot\")\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Suppose we want to move our robot up 4 meters to position (16, 16) from position (16, 12) using our open loop control function. What forces should we apply and for how long? The mass of the robot is 2 kg.\n", "\n", "Assuming we apply a constant force $u_y$, the dynamics of the system will be:\n", "$$ y(t) = y_0 + \\frac{1}{2}(\\frac{u_y}{m} - 9.81)t^2 $$\n", "\n", "If we assume the force will be applied for 2 seconds only, we can find what constant force to apply:\n", "\n", "$$ 16 = 12 + \\frac{1}{2}(\\frac{u_y}{m} - 9.81)2^2 $$\n", "$$ u_y = 23.62 $$\n", "\n", " \n", "Program the robot to move to position (16, 15) using open loop commands. How close can you get?\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "scrolled": true }, "outputs": [], "source": [ "import tutorial; reload(tutorial); from tutorial import *\n", " \n", "initial_pose = (16, 12,0.0)\n", "\n", "\n", "constant_force = 23.62\n", "time_applied = 2\n", "\n", "def openLoopController (time, robot_state):\n", " \n", " u_x = 0\n", " u_y = 0\n", " u_th = 0\n", " \n", " # only apply force for time < time_applied\n", " if time < time_applied:\n", " u_y = constant_force\n", " \n", " # when the robot is near time_applied print the current y value\n", " if abs(time-time_applied) < 0.1:\n", " print \"Time: %.2f, Height: %.2f \" % (time, robot_state[1])\n", " return u_x, u_y, u_th\n", "\n", "result = run_pd_control(initial_pose, openLoopController)\n", "plot(result, \"Robot\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### PD Control Part 3: Feedback control of the robot\n", "\n", "The open loop controller method we used required a lot of effort on the designers part and won't work very well in practice. In this case we knew the robot's mass and could perfectly apply a force in the center of motion. \n", "\n", "An alternative method is to use the current state of the robot to determine what force to apply. In this next section you are going to implement a position controller.\n", "\n", "The following is an equation for a position controller:\n", "\n", "$$u = K_{p}\\cdot(X_{desired} - X_{current})$$\n", "\n", "* $u$ is the output of our controller\n", "* $K_{p}$ is the proportional gain\n", "* $X_{desired}$ is the reference signal\n", "* $X_{current}$ is the output signal\n", "* $(X_{desired} - X_{current})$ is the error signal\n", "\n", "This controller is going to apply forces in the direction that decreases the error signal. \n", "\n", "The robot state is given to you as $(x, y, \\theta, \\dot{x}, \\dot{y}, \\dot{th})$.\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "scrolled": true }, "outputs": [], "source": [ "import tutorial; reload(tutorial); from tutorial import *\n", " \n", "\n", "initial_pose = (16, 12,0.0)\n", "desired_pose = (16, 16,0.0)\n", "\n", "K_px = 10\n", "K_py = 10\n", "K_pth = 10\n", "\n", "\n", "def closedLoopController (time, robot_state):\n", " \n", " # the output signal\n", " x,y,th, xdot, ydot, thdot = robot_state\n", " \n", " # the reference signal\n", " rx, ry, rth = desired_pose \n", " \n", " # the error signal\n", " e_x = rx - x\n", " e_y = ry - y\n", " e_th = rth - th\n", " \n", " # the controller output\n", " u_x = K_px*e_x\n", " u_y = K_py*e_y\n", " u_th = K_pth*e_th\n", " \n", " return u_x, u_y, u_th \n", "\n", "result = run_pd_control(initial_pose, closedLoopController)\n", "plot(result, \"Robot\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### PD Control Part 3: Feedback control of the robot (continued)\n", "\n", "**Activities:**\n", "\n", "1. Try using different gains. See if you can observe different system response behavior, such as:\n", "\n", " * under damped\n", " * damped\n", " * overdamped\n", "\n", "2. Improve upon your controller by adding a derivative term. In this case the reference signal for the derivative terms should be equal to 0. \n", "\n", "$$u = K_{pose}\\cdot(X_{desired} - X_{current}) + K_{d}\\cdot(\\dot{X}_{desired} - \\dot{X}_{current})$$\n", "\n", "* $u$ is the output of our controller\n", "* $K_{d}$ is the derivitave gain\n", "* $\\dot{X}_{desired}$ is the reference signal (In our case it is equal to 0)\n", "\n", "\n", " `rxdot, rydot, rthdot = 0,0,0 `" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "scrolled": true }, "outputs": [], "source": [ "import tutorial; reload(tutorial); from tutorial import *\n", " \n", "\n", "initial_pose = (16, 12,3.14/2)\n", "desired_pose = (3, 16,0.0)\n", "desired_vel = (0, 0, 0)\n", "\n", "K_px = 100\n", "K_py = 100\n", "K_pth = 10\n", "K_dx = 50\n", "K_dy = 50\n", "K_dth = 20\n", "\n", "def closedLoopController (time, robot_state):\n", " \n", " # the output signal\n", " x,y,th, xdot, ydot, thdot = robot_state\n", " \n", " # the reference signal\n", " rx, ry, rth = desired_pose \n", " rxdot, rydot, rthdot = desired_vel\n", " \n", " # the error signal\n", " e_x = rx - x\n", " e_y = ry - y\n", " e_th = rth - th\n", "\n", " e_xdot = rxdot - xdot\n", " e_ydot = rydot - ydot\n", " e_thdot = rthdot - thdot\n", " \n", " \n", " # the controller output\n", " u_x = K_px*e_x + K_dx*e_xdot\n", " u_y = K_py*e_y + K_dy*e_ydot\n", " u_th = K_pth*e_th + K_dth*e_thdot\n", " \n", " return u_x, u_y, u_th \n", "\n", "result = run_pd_control(initial_pose, closedLoopController)\n", "plot(result, \"Robot\")" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.13" } }, "nbformat": 4, "nbformat_minor": 2 }
mit
yarmenti/MSRA
03. Solver loss1 SLSQP.ipynb
1
6599
{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2017-02-03T15:53:40.172000", "start_time": "2017-02-03T15:53:40.168000" }, "collapsed": true }, "outputs": [], "source": [ "NU = 6" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2017-02-03T15:53:57.107000", "start_time": "2017-02-03T15:53:40.182000" }, "collapsed": false }, "outputs": [], "source": [ "import numpy as np\n", "import pandas as pd\n", "import os\n", "\n", "dir_sim_ = './simulations'\n", "dir_tr_input_ = './transformed_input'\n", "\n", "udl_distrib = pd.read_csv(os.path.join(dir_sim_, 'nu_eq_%i.csv' % NU), header=0, index_col=0)\n", "members_pos = pd.read_csv(os.path.join(dir_tr_input_, 'positions.csv'), header=0, index_col=0)\n", "\n", "loss_and_profit = np.dot(members_pos.values, udl_distrib.values).transpose()\n", "\n", "print loss_and_profit.shape" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2017-02-03T15:53:57.113000", "start_time": "2017-02-03T15:53:57.109000" }, "collapsed": true }, "outputs": [], "source": [ "from lib.msra_loss import MSRALossFunctionAbs" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2017-02-03T15:53:57.128000", "start_time": "2017-02-03T15:53:57.114000" }, "collapsed": true }, "outputs": [], "source": [ "class LossFunction1(MSRALossFunctionAbs):\n", " def shortfall_risk(self, m=None):\n", " m = self._check_argument(m)\n", " x_minus_m = np.subtract(self.x, m)\n", " \n", " sum_x_minus_m_plus = np.maximum(x_minus_m, 0.).sum(axis=1)\n", " sum_x_minus_m_minus = -np.minimum(x_minus_m, 0.).sum(axis=1)\n", "\n", " diff = sum_x_minus_m_plus - 0.5 * sum_x_minus_m_minus\n", " return diff.mean()\n", "\n", " def shortfall_risk_jac(self, m):\n", " m = self._check_argument(m)\n", " x_minus_m = np.subtract(self.x, m)\n", " \n", " sgn = np.sign(x_minus_m)\n", " \n", " sgn_plus = np.maximum(sgn, 0.)\n", " sgn_minus = -np.minimum(sgn, 0.)\n", " \n", " diff = sgn_plus + 0.5 * sgn_minus\n", " \n", " return diff.mean(axis=0)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2017-02-03T15:53:57.139000", "start_time": "2017-02-03T15:53:57.130000" }, "collapsed": false }, "outputs": [], "source": [ "loss_obj = LossFunction1(loss_and_profit, 0.)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2017-02-03T15:53:57.147000", "start_time": "2017-02-03T15:53:57.141000" }, "collapsed": false }, "outputs": [], "source": [ "RESULTS = pd.DataFrame(index=members_pos.index)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2017-02-03T15:53:57.293000", "start_time": "2017-02-03T15:53:57.148000" }, "collapsed": true }, "outputs": [], "source": [ "from scipy.optimize import minimize\n", "\n", "methods = ['SLSQP']\n", "maxiter = 10000" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2017-02-03T15:54:48.721000", "start_time": "2017-02-03T15:53:57.294000" }, "collapsed": false }, "outputs": [], "source": [ "guess = np.maximum(np.amax(loss_and_profit, axis=0), 0.)\n", "\n", "cont = loss_obj.ineq_constraint(guess) >= 0.\n", "while cont:\n", " guess = 0.99 * guess\n", " tmp = loss_obj.ineq_constraint(guess)\n", " cont = tmp >= 0.\n", "\n", "print loss_obj.ineq_constraint(guess)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2017-02-03T16:19:20.874000", "start_time": "2017-02-03T15:54:48.724000" }, "collapsed": false, "scrolled": false }, "outputs": [], "source": [ "cons = ({'type': 'ineq',\n", " 'fun' : lambda x: loss_obj.ineq_constraint(x),\n", " 'jac' : lambda x: loss_obj.ineq_constraint_jac(x)})\n", " \n", "bounds = [(0, None) for _ in xrange(loss_obj.dim)]\n", "\n", "res = minimize(loss_obj.objective, guess, \n", " jac=loss_obj.objective_jac, \n", " constraints=cons, \n", " method='SLSQP',\n", " bounds=bounds,\n", " options={'maxiter': maxiter, 'disp': True})\n", "\n", "RESULTS[r'$\\nu = %i$ bounds' % NU] = res.x\n", "print loss_obj.ineq_constraint(res.x)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2017-02-03T16:19:20.880000", "start_time": "2017-02-03T16:19:20.877000" }, "collapsed": true }, "outputs": [], "source": [ "dir_ = './results'\n", "\n", "if not os.path.exists(dir_):\n", " os.makedirs(dir_)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2017-02-03T16:19:20.896000", "start_time": "2017-02-03T16:19:20.882000" }, "collapsed": false }, "outputs": [], "source": [ "RESULTS.to_csv(os.path.join(dir_, 'l1_nu_eq_%i.csv' % NU))" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2017-02-03T16:19:20.928000", "start_time": "2017-02-03T16:19:20.898000" }, "collapsed": false }, "outputs": [], "source": [ "RESULTS" ] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.2" } }, "nbformat": 4, "nbformat_minor": 0 }
mit
tensorflow/docs-l10n
site/zh-cn/guide/upgrade.ipynb
1
19154
{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "6bYaCABobL5q" }, "source": [ "##### Copyright 2018 The TensorFlow Authors." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "cellView": "form", "id": "FlUw7tSKbtg4" }, "outputs": [], "source": [ "#@title Licensed under the Apache License, Version 2.0 (the \"License\");\n", "# you may not use this file except in compliance with the License.\n", "# You may obtain a copy of the License at\n", "#\n", "# https://www.apache.org/licenses/LICENSE-2.0\n", "#\n", "# Unless required by applicable law or agreed to in writing, software\n", "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", "# See the License for the specific language governing permissions and\n", "# limitations under the License." ] }, { "cell_type": "markdown", "metadata": { "id": "08OTcmxgqkc2" }, "source": [ "# 自动将代码升级到 TensorFlow 2\n", "\n", "<table class=\"tfo-notebook-buttons\" align=\"left\">\n", " <td>\n", " <a target=\"_blank\" href=\"https://tensorflow.google.cn/guide/upgrade\"> <img src=\"https://tensorflow.google.cn/images/tf_logo_32px.png\"> View on TensorFlow.org</a>\n", " </td>\n", " <td>\n", " <a target=\"_blank\" href=\"https://colab.research.google.com/github/tensorflow/docs-l10n/blob/master/site/zh-cn/guide/upgrade.ipynb\"> <img src=\"https://tensorflow.google.cn/images/colab_logo_32px.png\"> Run in Google Colab</a>\n", " </td>\n", " <td>\n", " <a target=\"_blank\" href=\"https://github.com/tensorflow/docs-l10n/blob/master/site/zh-cn/guide/upgrade.ipynb\"> <img src=\"https://tensorflow.google.cn/images/GitHub-Mark-32px.png\"> View source on GitHub</a>\n", " </td>\n", " <td>\n", " <a target=\"_blank\" href=\"https://storage.googleapis.com/tensorflow_docs/docs-l10n/site/zh-cn/guide/upgrade.ipynb\"> <img src=\"https://tensorflow.google.cn/images/download_logo_32px.png\"> Download notebook</a>\n", " </td>\n", "</table>\n" ] }, { "cell_type": "markdown", "metadata": { "id": "hZSaRPoybOp5" }, "source": [ "TensorFlow 2.0 包含许多 API 变更,例如重新排序了参数,重命名了符号,更改了参数的默认值。手动执行所有这些修改可能很乏味,而且很容易出错。为了简化更改,尽可能地让您无缝过渡到 TF 2.0,TensorFlow 团队创建了 `tf_upgrade_v2` 实用工具,帮助您将旧版代码转换至新的 API。\n", "\n", "注:TensorFlow 1.13 和更高版本(包括所有 TF 2.0 版本)会自动安装 `tf_upgrade_v2`。\n", "\n", "典型的用法如下:\n", "\n", "<pre class=\"devsite-terminal devsite-click-to-copy prettyprint lang-bsh\">tf_upgrade_v2 \\\n", " --intree my_project/ \\\n", " --outtree my_project_v2/ \\\n", " --reportfile report.txt\n", "</pre>\n", "\n", "将现有 TensorFlow 1.x Python 脚本转换为 TensorFlow 2.0 脚本可以加快升级流程。\n", "\n", "转换脚本会尽可能实现自动化处理,但仍有一些语法和样式变更无法通过脚本执行转换。" ] }, { "cell_type": "markdown", "metadata": { "id": "gP9v2vgptdfi" }, "source": [ "## 兼容性模块\n", "\n", "某些 API 符号无法通过简单的字符串替换进行升级。为了确保代码在 TensorFlow 2.0 中仍受支持,升级脚本包含了一个 `compat.v1` 模块。该模块可将 TF 1.x 符号(如 `tf.foo`)替换为等效的 `tf.compat.v1.foo` 引用。虽然该兼容性模块效果不错,但我们仍建议人工校对替换,并尽快将代码迁移到 `tf.*` 命名空间(而不是 `tf.compat.v1` 命名空间)中的新 API。\n", "\n", "由于 TensorFlow 2.x 模块弃用(例如,`tf.flags` 和 `tf.contrib`),切换到 `compat.v1` 无法解决某些更改。升级此代码可能需要其他库(例如,[`absl.flags`](https://github.com/abseil/abseil-py))或切换到 [tensorflow/addons](http://www.github.com/tensorflow/addons) 中的软件包。\n" ] }, { "cell_type": "markdown", "metadata": { "id": "s78bbfjkXYb7" }, "source": [ "## 推荐的升级流程\n", "\n", "本指南的剩余部分演示如何使用升级脚本。虽然升级脚本的使用非常简单,我们仍强烈建议在以下流程中使用脚本:\n", "\n", "1. **单元测试**:确保要升级的代码包含具有合理覆盖范围的单元测试套件。这是 Python 代码,该语言并不会帮助您避免各种类型的错误。同时为了与 TensorFlow 2.0 兼容,还要确保升级所有依赖项。\n", "\n", "2. **安装 TensorFlow 1.14**:将 TensorFlow 升级到最新的 TensorFlow 1.x 版本(最低为 1.14 版本)。其中包括 `tf.compat.v2` 中的最终 TensorFlow 2.0 API。\n", "\n", "3. **通过 1.14 版本进行测试**:确保此时可通过单元测试。在升级过程中,您将反复进行测试,因此,从无错误的代码开始非常重要。\n", "\n", "4. **运行升级脚本**:对整个源代码树运行 `tf_upgrade_v2`(已包含测试)。这样可将代码升级为仅使用 TensorFlow 2.0 中所提供的符号的格式。被弃用的符号将通过 `tf.compat.v1` 进行访问。最终需要人工检查这些升级,但不是现在。\n", "\n", "5. **通过 TensorFlow 1.14 运行转换的测试**:代码在 TensorFlow 1.14 中应该仍可以正常运行。再次运行单元测试。测试在此时产生任何错误都意味着升级脚本存在错误。[请通知我们](https://github.com/tensorflow/tensorflow/issues)。\n", "\n", "6. **检查更新报告中的警告和错误**:该脚本会编写一个对需要复查的转换或需要执行的人工操作进行解释的报告文件。例如:contrib 的所有剩余实例需要通过人工操作删除。请查阅 [RFC 中的详细说明](https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md)。\n", "\n", "7. **安装 TensorFlow 2.0**:此时应该可以安全切换到 TensorFlow 2.0\n", "\n", "8. **使用 `v1.disable_v2_behavior` 进行测试**:使用测试主函数中的 `v1.disable_v2_behavior()` 重新运行测试产生的结果应与在 1.14 下运行时产生的结果相同。\n", "\n", "9. **启用 V2 行为**:现在,使用 v2 API 已经成功通过了测试,不妨开始考虑启用 v2 行为。这可能需要执行一些更改,具体取决于代码编写方式。有关详细信息,请参阅[迁移指南](migrate.ipynb)。" ] }, { "cell_type": "markdown", "metadata": { "id": "6pwSAQEwvscP" }, "source": [ "## 使用升级脚本\n" ] }, { "cell_type": "markdown", "metadata": { "id": "I9NCvDt5GwX4" }, "source": [ "### 设置\n", "\n", "开始之前,请确保已安装 TensorlFlow 2.0。" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "DWVYbvi1WCeY" }, "outputs": [], "source": [ "import tensorflow as tf\n", "\n", "print(tf.__version__)" ] }, { "cell_type": "markdown", "metadata": { "id": "Ycy3B5PNGutU" }, "source": [ "克隆 [tensorflow/models](https://github.com/tensorflow/models) git 仓库,以便获得一些要测试的代码:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "jyckoWyAZEhZ" }, "outputs": [], "source": [ "!git clone --branch r1.13.0 --depth 1 https://github.com/tensorflow/models" ] }, { "cell_type": "markdown", "metadata": { "id": "wfHOhbkgvrKr" }, "source": [ "### 读取帮助\n", "\n", "脚本应当随 TensorFlow 安装。下面是内置帮助命令:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "m2GF-tlntqTQ" }, "outputs": [], "source": [ "!tf_upgrade_v2 -h" ] }, { "cell_type": "markdown", "metadata": { "id": "se9Leqjm1CZR" }, "source": [ "### TF1 代码示例" ] }, { "cell_type": "markdown", "metadata": { "id": "whD5i36s1SuM" }, "source": [ "下面是一个简单的 TensorFlow 1.0 脚本示例:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "mhGbYQ9HwbeU" }, "outputs": [], "source": [ "!head -n 65 models/samples/cookbook/regression/custom_regression.py | tail -n 10" ] }, { "cell_type": "markdown", "metadata": { "id": "UGO7xSyL89wX" }, "source": [ "对于安装的 TensorFlow 2.0,它不会运行:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "TD7fFphX8_qE" }, "outputs": [], "source": [ "!(cd models/samples/cookbook/regression &amp;&amp; python custom_regression.py)" ] }, { "cell_type": "markdown", "metadata": { "id": "iZZHu0H0wLRJ" }, "source": [ "### 单个文件\n", "\n", "升级脚本可以在单个 Python 文件上运行:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "xIBZVEjkqkc5" }, "outputs": [], "source": [ "!tf_upgrade_v2 \\\n", " --infile models/samples/cookbook/regression/custom_regression.py \\\n", " --outfile /tmp/custom_regression_v2.py" ] }, { "cell_type": "markdown", "metadata": { "id": "L9X2lxzqqkc9" }, "source": [ "如果无法找到解决代码问题的方法,该脚本会打印错误消息。 " ] }, { "cell_type": "markdown", "metadata": { "id": "r7zpuE1vWSlL" }, "source": [ "### 目录树" ] }, { "cell_type": "markdown", "metadata": { "id": "2q7Gtuu8SdIC" }, "source": [ "典型项目(包括下面的简单示例)会使用远不止一个文件。通常需要升级整个软件包,所以该脚本也可以在目录树上运行:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "XGqcdkAPqkc-" }, "outputs": [], "source": [ "# upgrade the .py files and copy all the other files to the outtree\n", "!tf_upgrade_v2 \\\n", " --intree models/samples/cookbook/regression/ \\\n", " --outtree regression_v2/ \\\n", " --reportfile tree_report.txt" ] }, { "cell_type": "markdown", "metadata": { "id": "2S4j7sqbSowC" }, "source": [ "注意关于 `dataset.make_one_shot_iterator` 函数的一条警告。\n", "\n", "现在,对于 TensorFlow 2.0,该脚本已经可以发挥作用:\n", "\n", "请注意,凭借 `tf.compat.v1` 模块,转换的脚本在 TensorFlow 1.14 中也可以运行。 " ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "vh0cmW3y1tX9" }, "outputs": [], "source": [ "!(cd regression_v2 &amp;&amp; python custom_regression.py 2&gt;&amp;1) | tail" ] }, { "cell_type": "markdown", "metadata": { "id": "4EgZGGkdqkdC" }, "source": [ "## 详细报告\n", "\n", "该脚本还会报告一个详细更改列表。在本例中,它发现了一个可能不安全的转换,因此在文件顶部包含了一条警告: " ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "CtHaZbVaNMGV" }, "outputs": [], "source": [ "!head -n 20 tree_report.txt" ] }, { "cell_type": "markdown", "metadata": { "id": "1-UIFXP3cFSa" }, "source": [ "再次注意关于 `Dataset.make_one_shot_iterator` 函数的一条警告。" ] }, { "cell_type": "markdown", "metadata": { "id": "oxQeYS1TN-jv" }, "source": [ "在其他情况下,对于非常用更改,输出会解释原因:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "WQs9kEvVN9th" }, "outputs": [], "source": [ "%%writefile dropout.py\n", "import tensorflow as tf\n", "\n", "d = tf.nn.dropout(tf.range(10), 0.2)\n", "z = tf.zeros_like(d, optimize=False)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "7uOkacZsO3XX" }, "outputs": [], "source": [ "!tf_upgrade_v2 \\\n", " --infile dropout.py \\\n", " --outfile dropout_v2.py \\\n", " --reportfile dropout_report.txt &gt; /dev/null" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "m-J82-scPMGl" }, "outputs": [], "source": [ "!cat dropout_report.txt" ] }, { "cell_type": "markdown", "metadata": { "id": "DOOLN21nTGSS" }, "source": [ "以下是经过修改的文件内容,请注意脚本如何通过添加参数名来处理移动和重命名的参数:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "SrYcJk9-TFlU" }, "outputs": [], "source": [ "!cat dropout_v2.py" ] }, { "cell_type": "markdown", "metadata": { "id": "wI_sVNp_b4C4" }, "source": [ "更大的项目可能会包含一些错误,例如转换 DeepLab 模型:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "uzuY-bOvYBS7" }, "outputs": [], "source": [ "!tf_upgrade_v2 \\\n", " --intree models/research/deeplab \\\n", " --outtree deeplab_v2 \\\n", " --reportfile deeplab_report.txt &gt; /dev/null" ] }, { "cell_type": "markdown", "metadata": { "id": "FLhw3fm8drae" }, "source": [ "它会生成输出文件:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "4YYLRxWJdSvQ" }, "outputs": [], "source": [ "!ls deeplab_v2" ] }, { "cell_type": "markdown", "metadata": { "id": "qtTC-cAZdEBy" }, "source": [ "但是其中包含错误。该报告会帮助您找到确保代码可以正常运行所需要解决的错误。下面是前三个错误:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "UVTNOohlcyVZ" }, "outputs": [], "source": [ "!cat deeplab_report.txt | grep -i models/research/deeplab | grep -i error | head -n 3" ] }, { "cell_type": "markdown", "metadata": { "id": "gGBeDaFVRJ5l" }, "source": [ "## “安全”模式" ] }, { "cell_type": "markdown", "metadata": { "id": "BnfCxB7SVtTO" }, "source": [ "该转换脚本还有一种介入度相对较低的 `SAFETY` 模式。在此模式下,只需更改导入来使用 `tensorflow.compat.v1` 模块:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "XdaVXCPWQCC5" }, "outputs": [], "source": [ "!cat dropout.py" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "c0tvRJLGRYEb" }, "outputs": [], "source": [ "!tf_upgrade_v2 --mode SAFETY --infile dropout.py --outfile dropout_v2_safe.py &gt; /dev/null" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "91suN2RaRfIV" }, "outputs": [], "source": [ "!cat dropout_v2_safe.py" ] }, { "cell_type": "markdown", "metadata": { "id": "EOzTF7xbZqqW" }, "source": [ "如您所见,这不会升级代码,但允许 TensorFlow 1 代码在 TensorFlow 2 中运行" ] }, { "cell_type": "markdown", "metadata": { "id": "jGfXVApkqkdG" }, "source": [ "## 注意事项\n", "\n", "- 在运行此脚本之前,不要手动更新代码的某些部分。尤其是更改了参数顺序的函数(如 `tf.argmax` 或 `tf.batch_to_space`),否则会导致代码无法正确添加与现有代码匹配的关键字参数。\n", "\n", "- 该脚本假定使用 `import tensorflow as tf` 导入 `tensorflow`。\n", "\n", "- 该脚本不会更改参数顺序,但是会将关键字参数添加到本身已更改参数顺序的函数。\n", "\n", "- 请查阅 [tf2up.ml](https://github.com/lc0/tf2up),找到一款方便的工具来升级 GitHub 仓库中的 Jupyter 笔记本和 Python 文件。\n", "\n", "要报告升级脚本错误或提出功能请求,请在 [GitHub](https://github.com/tensorflow/tensorflow/issues) 上提交问题。如果您在测试 TensorFlow 2.0,我们非常希望了解您的反馈意见!请加入 [TF 2.0 测试社区](https://groups.google.com/a/tensorflow.org/forum/#!forum/testing),将您的问题和讨论发送到 [[email protected]](mailto:[email protected])。" ] } ], "metadata": { "colab": { "collapsed_sections": [], "name": "upgrade.ipynb", "toc_visible": true }, "kernelspec": { "display_name": "Python 3", "name": "python3" } }, "nbformat": 4, "nbformat_minor": 0 }
apache-2.0
usantamaria/ipynb_para_docencia
13_terminal_de_comandos_git/git.ipynb
1
23728
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "<img src=\"images/utfsm.png\" alt=\"\" width=\"100px\" align=\"right\"/>\n", "# USM Numérica" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Licencia y configuración del laboratorio\n", "Ejecutar la siguiente celda mediante *`Ctr-S`*." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<style>\n", "\n", "/*********************************************\n", " * CHANGE CURSIVE FOR RED\n", " *********************************************/\n", "em {font-style: normal !important;\n", " color: #800000;}\n", "\n", "</style>\n" ], "text/plain": [ "<IPython.core.display.HTML object>" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "\"\"\"\n", "IPython Notebook v4.0 para python 3.0\n", "Librerías adicionales: \n", "Contenido bajo licencia CC-BY 4.0. Código bajo licencia MIT. \n", "(c) Sebastian Flores, Christopher Cooper, Alberto Rubio, Pablo Bunout.\n", "\"\"\"\n", "# Configuración para recargar módulos y librerías dinámicamente\n", "%reload_ext autoreload\n", "%autoreload 2\n", "\n", "# Configuración para graficos en línea\n", "%matplotlib inline\n", "\n", "# Configuración de estilo\n", "from IPython.core.display import HTML\n", "HTML(open(\"./style/style.css\", \"r\").read())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Introducción a GIT" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "*GIT* es un sistema de control de versiones, desarrollado y distribuido a partir del año 2005 por Linux Kernel. Una característica fundamental de un controlador de versiones, es que las unidades básicas sobre las que se estructura, denominadas repositorios, además de almacenar información y/o archivos al igual que un directorio o carpeta de un sistema operativo cualquiera, como Linux o Windows, son capaces de generar un historial o línea de tiempo que registre los diversos estados del repositorio y sus contenidos respectivos, otorgándonos la posibilidad de acceder a estos estados a partir de la ejecución de procedimientos específicos a través de *git*. \n", "\n", "Otra cualidad importante de *GIT*, es que nos permite vincular repositorios generados localmente en la computadora física, con otros repositorios remotos, existentes en la red (online). Pudiendo subir contenidos desde el repositorio local al remoto o bajar material de manera inversa. \n", "\n", "Lo anterior abre un mundo de posibilidades, particularmente en contextos donde el flujo de información sea relevante, por ejemplo en proyectos que requieran la participación de 2 o más personas trabajando en archivos comunes, siendo *GIT* una herramienta útil para sincronizar las versiones de distintos usuarios, realizadas simultáneamente o en distintos tiempos. Un buen uso de las herramientas que nos provee *GIT*, ayudará a sincronizar y/o fusionar archivos evitando la pérdida de información o la superposición de esta.\n", "\n", "En este tutorial veremos algunas instrucciones y comandos básicos, que nos permita realizar operaciones fundamentales, tales como crear un repositorio local, clonar un repositorio en línea y sincronizar ambos." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Objetivos" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "1. Operaciones para crear un repositorio local\n", "2. Operaciones para flujo de trabajo en repositorio local\n", "3. Sincronización de repositorio local y remoto\n", "4. Clonar directamente un repositorio remoto en un directorio de trabajo local\n", "5. Operaciones para repositorios remotos con más de un usuario\n", "6. Soluciones a un Problema Práctico Frecuente\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 1. Operaciones para crear un repositorio local\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Para crear un repositorio local, debemos primero generar un directorio sobre el cual queremos guardar los archivos de trabajo y luego identificar este como un repositorio *GIT*. Usamos los siguientes comandos de *bash* para crear un directorio desde la terminal.\n", "\n", "```\n", "mkdir <repositorio_local>\n", "```\n", "Para que *GIT* reconozca el directorio creado como un repositorio debemos primero ubicarnos en el nuevo directorio y luego escribir el comando *git init*.\n", "\n", "```\n", "cd <repositorio_local>\n", "```\n", "```\n", "git init\n", "```\n", "Ahora *GIT* ya reconoce el directorio como un nuevo repositorio. \n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 2. Operaciones para flujo de trabajo en repositorio local" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Antes de explicar los procedimientos y comandos que nos permiten subir o bajar información desde y hacia un repositorio, actualizar nuevos estados de archivos almacenados en él y/o sincronizar repositorios locales con otros remotos, es importante entender que GIT proporciona 3 zonas virtuales, las que cumplen distintas tareas en función de las operaciones mencionadas recientemente. Estas son el *directorio de trabajo*, una *zona de indexado* y por último una zona que actúa como *cabecera* del repositorio, las que pasamos a detallar en orden respectivo.\n", "\n", "El *directorio de trabajo* corresponde a la zona sobre la cual se ha iniciado el repositorio local. Aquí es donde se almacenan los archivos locales y se registran las modificaciones realizadas a los últimos. Hasta el momento esto no tiene ninguna diferencia con la manera de operar en un sistema operativo, que nos permite generar un directorio o carpeta y guardar archivos en ella, actualizándolos de forma manual.\n", "\n", "<img src=\"tutorial_git_zonas_2.png\"width=\"600px\">\n", "\n", "\n", "La segunda es una zona intermedia, en la cual disponemos los archivos modificados en el directorio local, seleccionándolos con el comando *git add*.\n", "\n", "Finalmente la tercera zona es sobre la cual *GIT* genera un historial o la línea de tiempo, usando el comando *git commit*, que actualiza los archivos previamente seleccionados, registrando las modificaciones respectivas en el repositorio local. \n", "\n", "Describimos los procedimientos mencionados anteriormente:\n", "\n", "Ya hemos iniciado un repositorio local sobre un directorio creado recientemente, si queremos añadir algún archivo creándolo desde la terminal, podemos escribir los comandos de *bash*:\n", "\n", "```\n", "touch <archivo.tipo>\n", "```\n", "Una vez creado el archivo en el directorio de trabajo, para que sea reconocido en el repositorio local debemos seleccionarlo de la siguiente manera.\n", "\n", "```\n", "git add <archivo.tipo>\n", "```\n", "En caso de que existan muchos archivos sobre los cuales hemos realizado modificaciones, una forma de seleccionarlos sería escribir sus nombres uno al lado de otro de forma sucesiva.\n", "\n", "```\n", "git add <archivo_1.tipo> ... <archivo_n.tipo>\n", "```\n", "\n", "Otra manera de hacer más eficiente esto último, sería utilizando el comando *`git add -u`*, el cual selecciona automáticamente todos los archivos modificados desde el último *commit*, descartando aquellos archivos sobre los cuales no se han realizado modificaciones presentes.\n", "\n", "Un comando alternativo que permite seleccionar todo lo existente en el directorio de trabajo es *`git add .`*, haciéndolo sin discriminar entre los archivos modificados y los que no, es usando.\n", "\n", "Luego de indexar los archivos seleccionados, debemos disponerlos en la tercera zona, que es la que finalmente GIT reconoce y sobre la cual genera el historial de versiones. \n", "\n", "```\n", "git commit -m <\"mensaje actualización\">\n", "```\n", "Ya tenemos entonces los archivos y actualizaciones en nuestro repositorio local al disponerlos en el encabezado de este. Otro aspecto útil de *git*, es que cada vez que hacemos un *commit*, este queda registrado con una etiqueta o *id*, podemos acceder a esta información a través de *git log*. Si queremos modificar la etiqueta de forma manual, escribimos lo siguiente:\n", "\n", "```\n", "git tag <etiqueta nueva> <etiqueta antigua>\n", "```" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### 2.1 Ejercicio Práctica" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "* Crear un directorio donde generar el repositorio local\n", "* Crear un repositorio local en el directorio \n", "* Generar un archivo de texto en el directorio de trabajo\n", "* Actualizar el archivo creado en el repositorio local *git add + git commit*\n", "* Modificar la etiqueta de la actualización por *\"mi primer commit\"*\n", "* Visualizar antes y posteriormente la etiqueta con *git log*" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 3. Sincronización de repositorio local y remoto" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Cuando sincronizamos un repositorio local con uno remoto o existente en la red (online), tenemos la posibilidad de intercambiar información entre estos, es decir subir material nuevo desde el repositorio local al remoto y viceversa.\n", "\n", "Para que el repositorio local reconozca la dirección del repositorio remoto, debemos utilizar el siguiente comando, haciéndolo desde el directorio de trabajo.\n", "\n", "```\n", "git remote add origin <https://dirección repositorio online>\n", "```\n", "Por defecto el repositorio local reconocerá al remoto por nombre *origin*, esto nos será útil para abreviar la dirección total del repositorio remoto, lo que tendrá un efecto práctico a la hora de realizar operaciones con diversos comandos de *git*. Luego podemos visualizar las opciones de subir (*push*) y bajar (*fetch*) información con el comando:\n", "\n", "```\n", "git remote -v\n", "```\n", "Otro aspecto importante a entender, son las líneas de tiempo o historiales denominada *branch*. Cada repositorio tiene un *branch* principal el que por defecto se denomina *master*. *GIT* nos permite además crear *branchs* paralelos al principal, lo que puede ayudar a realizar modificaciones a los archivos de forma segura, sin que estos se actualicen automáticamente en la rama *master*, debiendo hacer una operación extra para fusionar el *branch* secundario con *master* principal.\n", "\n", "Ahora estamos listos para subir archivos al repositorio remoto desde el local, ya hemos mostrado como crear un archivo en el directorio de trabajo y a continuación especificaremos los pasos para actualizarlo en el repositorio local y luego subirlo al remoto.\n", "\n", "```\n", "git add <archivo.tipo>\n", "```\n", "```\n", "git commit -m <\"mensaje actualización\">\n", "```\n", "```\n", "git push origin master \n", "```\n", "En resumen, el primer comando selecciona el archivo creado en el directorio de trabajo, para colocarlo en la *zona de indexado* u *onstge*. \n", "\n", "Luego lo hemos actualizado en el repositorio local, con un mensaje en el que especificamos las modificaciones hechas. \n", "\n", "Finalmente subimos estos archivos al repositorio remoto, reconocido por el local a partir de la denominación *origin*, haciéndolo sobre línea de tiempo o rama principal (*branch*), denominada por defecto con el nombre de *master*." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 4. Clonar directamente un repositorio remoto en un directorio de trabajo" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Cuando existe un repositorio en la red, el cual tiene sus propios archivos y queremos tener acceso a estos, tenemos la opción de hacerlo desde un repositorio local, trabajando desde nuestro directorio de trabajo.\n", "\n", "Para esto existe la opción de clonar el repositorio en la re, escribiendo el siguiente comando desde un directorio de trabajo local específico:\n", "\n", "```\n", "git clone <https://dirección repositorio online>\n", "```\n", "Eso crea automáticamente un repositorio local que reconoce la dirección del repositorio remoto por defecto como *origin* y su rama principal como *master*, al igual que lo visto en la sección anterior.\n", "\n", "Si luego trabajamos en los archivos bajados desde la red, desde nuestro directorio local y queremos subir las modificaciones hechas en el repositorio local, repetimos de forma idéntica la secuencia de comandos vista en el último punto.\n", "\n", "```\n", "git add <archivo.tipo>\n", "```\n", "```\n", "git status\n", "```\n", "```\n", "git commit -m <\"mensaje actualización\">\n", "```\n", "```\n", "git push origin master \n", "```\n", "Hemos agregado el comando *git status*, ya que nos permite visualizar que archivos de nuestro repositorio local han sido modificados o creado, y cuáles de ellos se encuentran en la zona de indexado, lo que es útil a la hora de trabajar con gran cantidad de archivos y directorios." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### 4.1 Ejercicio Práctica" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "* Crear un directorio y clonar en el un repositorio remoto con *git clone* \n", "* *(copiar la dirección de reconocimiento del repositorio desde la plataforma online)*\n", "* Copiar el archivo creado anteriormente y crear otro nuevo\n", "* Indexar los 2 archivos con el comando *git add .*\n", "* Encabezar los archivos indexados con un mensaje que diga *\"primer commit\"*\n", "* Visualizar el estado de los archivos nuevos y antiguos con sus modificaciones \n", "* Subir el archivo desde el repositorio local al remoto con *git push*" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "### 5. Operaciones para repositorios remotos con más de un usuario" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "En esta sección veremos aspectos importantes en caso de que trabajemos localmente, sincronizados a un repositorio remoto al cual tienen acceso más de un usuario. En este contexto es importante considerar que un usuario puede generar modificaciones locales y subirlas al repositorio remoto. Un problema típico en esta lógica de trabajo es el desfase de las versiones entre los usuarios para iguales archivos, surge entonces la necesidad de actualizar los archivos en nuestro repositorio local, sincronizándolos con las modificaciones hechas por otros usuarios, antes de comenzar a trabajar y realizar modificaciones en ellos. Para esto usamos el siguiente comando *GIT*, ubicados en nuestra dirección de trabajo local.\n", "\n", "```\n", "git pull\n", "```\n", "Es una muy buena práctica, cada vez que trabajamos sobre nuestro repositorio local, actualizarlo con el comando anterior, en caso de que algún usuario haya hecho modificaciones en el repositorio remoto.\n", "\n", "Otra necesidad o requerimiento que puede surgir, es que si queremos almacenar nuestro historial de trabajo en un *branch* paralelo al principal *master*, debemos crear esta línea de tiempo usando el comando *checkout -b*, que a su vez nos posiciona a este nuevo *branch* desde nuestro directorio local.\n", "\n", "```\n", "git checkout -b <branch_secundario>\n", "```\n", "De este modo, podemos subir las modificaciones hechas a la rama secundaria, que nos permitirá trabajar de forma más segura, en caso de tener problemas de desfase entre el repositorio remoto y el local.\n", "\n", "```\n", "git push origin <branch_secundario>\n", "```\n", "El comando *checkout* nos permite cambiar de *branch* según nuestro interés, por ejemplo si queremos volver a la rama principal lo hacemos como sigue:\n", "\n", "```\n", "git checkout <master> \n", "```\n", "Finalmente, al trabajar sobre un *branch* secundario, debemos fusionar este *branch* con *master*, podemos hacerlo directamente desde nuestro repositorio local o sobre el remoto, esto último dependerá de la plataforma sobre la cual estamos trabajando. Por ejemplo *github* nos ofrece realizar la fusión entre *branchs* haciendo click en *merge*.\n", "\n", "<img src=\"tutorial_git_merge_github.jpg.png\"width=\"500px\">\n", "\n", "Si hacemos la fusión desde nuestro repositorio local, debemos escribir:\n", "\n", "```\n", "git merge <branch_secundario>\n", "```\n", "Es recomendable antes de realizar la fusión entre los *branchs*, revisar las diferencias entre ambas, esto puede realizarse con:\n", "\n", "\n", "```\n", "git diff <source_branch> <target_branch>\n", "```\n", "\n", "<img src=\"tutorial_git_flujo.png\"width=\"600px\">\n", "\n", "\n", "En caso de que se exista algún error en nuestras operaciones desde el repositorio local, podemos solucionar este problema eliminando las modificaciones hechas y reemplazarlos por las versiones registradas en el último *commit* registrado en el repositorio.\n", "\n", "```\n", "git checkout -- <archivo.tipo>\n", "```\n", "Si el asunto es más grave y queremos deshacer todos los cambios locales realizados, podemos bajar la última versión almacenada en el servidor del repositorio remoto con:\n", "\n", "```\n", "git fetch origin\n", "```\n", "Y luego reemplazar esta versión por la local.\n", "\n", "```\n", "git reset --hard origin/master\n", "```\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### 5.1 Ejercicio de práctica" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ " * Fusionar el repositorio local creado en *ej.1.1* con un remoto usando *git remote add origin*\n", " * *(copiar la dirección del repositorio remoto desde la plataforma online)*\n", " * Generar un *branch* paralelo con *git checkout -b*\n", " * Crear un archivo de texto en el *branch* secundario\n", " * Indexar únicamente los archivos modificados usando *git add -u* y luego *git commit* \n", " * Subir las actualizaciones en el repositorio local con *git push origin paralelo*\n", " * Realizar un *merge* entre el *branch* secundario y *master* desde la plataforma online, si es posible\n", " " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 6. Soluciones a un Problema Práctico Frecuente" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Esta sección dentro del tutorial, esta pensada para aquellos que ya tengan un poco de experiencia en el uso de *git* y probablemente con el que ya se habrán encontrado.\n", "\n", "Supongamos que tenemos sincronizado un repositorio local con uno remoto almacenado en alguna cuenta online, como por ej. *Github*. Y que hemos realizado una modificación erronea en algún archivo local que ha sido guardada.\n", "\n", "Entonces podríamos solucionar el problema desde 2 perspectivas generales:\n", "\n", " * *Solución desde el Repositorio Local*\n", " * *Solución con soporte del Repositorio Remoto*\n", "\n", "#### Solución desde el Repositorio Local\n", "\n", "En el primer caso, la idea sería acceder a las versiones locales almacenadas en la linea de tiempo (es esto lo que justifica el uso de algún sistema controlador de versiones como *git*). Para esto realizamos los siguientes pasos:\n", "\n", "```\n", "git log\n", "```\n", "Muestra todos los commits realizados en el repositorio, si queremos acotar a un número especifico agregamos la siguiente especificación.\n", "\n", "```\n", "git log -n \"número de commits a mostrar\"\n", "```\n", "Aparecerá en nuestra terminal una lista con todos los commits realizados, cada uno se encuentra especificado por una etiqueta, creada por defecto o manualmente como se explica en la sección 1, con el comando *git tag*.\n", "\n", "##### Caso 1.1\n", "Si hemos modificado y guardado una versión erronea, pero NO hemos hecho aún *git commit*, entonces la solución es simple, puesto que podemos escribir únicamente:\n", "```\n", "git checkout -- <archivo.modificado>\n", "```\n", "Este comando reemplazara la versión modificada por la versión almacenada en el último *commit* o *commit* anterior a la modificación errada.\n", "\n", "##### Caso 1.2\n", "Si luego de hacer la modificación erronea, hemos guardado y además realizado un *commit*, entonces la solución anterior ya no sirve, puesto que al hacerlo el último *commit* será el de la versión errada. Una opción más arriesgada, es el caso cuando queremos que todos los archivos del repositorio vuelvan a un estado anterior. Esto puede ser usado en caso de haber un único archivo modificado, puesto que los demás permanecen iguales respecto la versión anterior de referencia. La opción consiste en borrar todos los *commits* hasta el *commit* deseado, en el cual los archivos se encuentran en la versión deseada. *(Si hemos modificado más de un archivo y solo uno de ellos se encuentra en conflicto, entonces esta opción borrara las versiones de los otros archivos modificados correctamente)*.\n", "```\n", "git reset --hard <tag_commit>\n", "```\n", "\n", "#### Solución con soporte del Repositorio Remoto\n", "\n", "Si localmente hemos modificado un archivo y queremos corregirlo, otro modo es acudiendo a las versiones almacenadas en el repositorio remoto. Un error común es hacer un *git pull* pensando en actualizar el repositorio local con la versión del repositorio remoto, puesto que *git pull* realiza de forma automática las operaciones *fetch* y luego *merge*. El problema es que el *merge* por defecto reemplazara la versión más actualizada por la antigua, es decir superpondremos al versión erronea del archivo, que es justamente lo que NO queremos.\n", "\n", "Para esto debemos primero bajar el contenido del repositorio remoto con *git fetch* y luego al hacer *git merge* debemos especificar cual es la versión que queremos que prevalezca." ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.10" } }, "nbformat": 4, "nbformat_minor": 0 }
mit
brettavedisian/phys202-2015-work
assignments/assignment07/AlgorithmsEx01.ipynb
1
40654
{ "cells": [ { "cell_type": "markdown", "metadata": { "nbgrader": {} }, "source": [ "# Algorithms Exercise 1" ] }, { "cell_type": "markdown", "metadata": { "nbgrader": {} }, "source": [ "## Imports" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true, "nbgrader": {} }, "outputs": [], "source": [ "%matplotlib inline\n", "from matplotlib import pyplot as plt\n", "import numpy as np" ] }, { "cell_type": "markdown", "metadata": { "nbgrader": {} }, "source": [ "## Word counting" ] }, { "cell_type": "markdown", "metadata": { "nbgrader": {} }, "source": [ "Write a function `tokenize` that takes a string of English text returns a list of words. It should also remove [stop words](http://en.wikipedia.org/wiki/Stop_words), which are common short words that are often removed before natural language processing. Your function should have the following logic:\n", "\n", "* Split the string into lines using `splitlines`.\n", "* Split each line into a list of words and merge the lists for each line.\n", "* Use Python's builtin `filter` function to remove all punctuation.\n", "* If `stop_words` is a list, remove all occurences of the words in the list.\n", "* If `stop_words` is a space delimeted string of words, split them and remove them.\n", "* Remove any remaining empty words.\n", "* Make all words lowercase." ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false, "nbgrader": { "checksum": "6b81e3d18c7d985eb0f20f45b5a1e33a", "solution": true } }, "outputs": [], "source": [ "def tokenize(s, stop_words=None, punctuation='`~!@#$%^&*()_-+={[}]|\\:;\"<,>.?/}\\t'):\n", " \"\"\"Split a string into a list of words, removing punctuation and stop words.\"\"\"\n", " \n", " # the following functions were influenced by Dr. Granger's advice in office hours\n", " # removes punctuation and stop words in the lists\n", " def remove(c):\n", " if c in punctuation:\n", " return False\n", " else:\n", " return True\n", " \n", " def remove_stop(f):\n", " if stop_words==None:\n", " pass\n", " elif f in stop_words:\n", " return False\n", " else:\n", " return True\n", " \n", " a1=s.replace('--',' ').replace('-',' ') #got word count problems with single and double dashes, so this replaces them with spaces\n", " new_list=a1.splitlines()\n", " d=[w for m in new_list for w in m.split()] #referenced http://goo.gl/YWCeAS\n", " r=[]\n", " for x in d: # got help from James A.\n", " werd=[]\n", " for char in x:\n", " werd=werd+list(filter(remove,char))\n", " r.append(''.join(werd))\n", " low=[g.lower() for g in r]\n", " k=[]\n", " if type(stop_words)==list:\n", " k=list(filter(remove_stop,low))\n", " elif type(stop_words)==str:\n", " stop_words=stop_words.split()\n", " k=list(filter(remove_stop,low))\n", " else:\n", " k=low\n", " \n", " return k" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false, "deletable": false, "nbgrader": { "checksum": "51938ebee4d1863467fba80579b46318", "grade": true, "grade_id": "algorithmsex01a", "points": 2 } }, "outputs": [], "source": [ "assert tokenize(\"This, is the way; that things will end\", stop_words=['the', 'is']) == \\\n", " ['this', 'way', 'that', 'things', 'will', 'end']\n", "wasteland = \"\"\"\n", "APRIL is the cruellest month, breeding\n", "Lilacs out of the dead land, mixing\n", "Memory and desire, stirring\n", "Dull roots with spring rain.\n", "\"\"\"\n", "\n", "assert tokenize(wasteland, stop_words='is the of and') == \\\n", " ['april','cruellest','month','breeding','lilacs','out','dead','land',\n", " 'mixing','memory','desire','stirring','dull','roots','with','spring',\n", " 'rain']" ] }, { "cell_type": "markdown", "metadata": { "nbgrader": {} }, "source": [ "Write a function `count_words` that takes a list of words and returns a dictionary where the keys in the dictionary are the unique words in the list and the values are the word counts." ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": true, "nbgrader": { "checksum": "a94c1a7e986d4d8d3b80695b02e16015", "grade": false, "grade_id": "algorithmsex01b", "points": 2, "solution": true } }, "outputs": [], "source": [ "def count_words(data):\n", " \"\"\"Return a word count dictionary from the list of words in data.\"\"\"\n", " d={}\n", " for i in range(len(data)):\n", " d[data[i]]=data.count(data[i])\n", " # this creates a dictionary similar to the method used in codecademy\n", " return d" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false, "deletable": false, "nbgrader": { "checksum": "77c9b760f563b041b6386781c42dc0e2", "grade": true, "grade_id": "algorithmsex01b", "points": 2 } }, "outputs": [], "source": [ "assert count_words(tokenize('this and the this from and a a a')) == \\\n", " {'a': 3, 'and': 2, 'from': 1, 'the': 1, 'this': 2}" ] }, { "cell_type": "markdown", "metadata": { "nbgrader": {} }, "source": [ "Write a function `sort_word_counts` that return a list of sorted word counts:\n", "\n", "* Each element of the list should be a `(word, count)` tuple.\n", "* The list should be sorted by the word counts, with the higest counts coming first.\n", "* To perform this sort, look at using the `sorted` function with a custom `key` and `reverse`\n", " argument." ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": true, "nbgrader": { "checksum": "5c68f353c6c5f3e1494e7d2902480ebf", "solution": true } }, "outputs": [], "source": [ "def sort_word_counts(wc):\n", " \"\"\"Return a list of 2-tuples of (word, count), sorted by count descending.\"\"\"\n", " def key_thing(m):\n", " return m[1] # to make sorted work, I needed to create a function that would return the value of the key\n", " tuple_list=list(wc.items())\n", " return sorted(tuple_list, key=key_thing, reverse=True)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false, "deletable": false, "nbgrader": { "checksum": "e3fd160136fc78f4a7c3fc027d445b4a", "grade": true, "grade_id": "algorithmsex01c", "points": 2 } }, "outputs": [], "source": [ "assert sort_word_counts(count_words(tokenize('this and a the this this and a a a'))) == \\\n", " [('a', 4), ('this', 3), ('and', 2), ('the', 1)]" ] }, { "cell_type": "markdown", "metadata": { "nbgrader": {} }, "source": [ "Perform a word count analysis on Chapter 1 of Moby Dick, whose text can be found in the file `mobydick_chapter1.txt`:\n", "\n", "* Read the file into a string.\n", "* Tokenize with stop words of `'the of and a to in is it that as'`.\n", "* Perform a word count, the sort and save the result in a variable named `swc`." ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false, "deletable": false, "nbgrader": { "checksum": "6cff4e8e53b15273846c3aecaea84a3d", "solution": true } }, "outputs": [ { "data": { "text/plain": [ "844" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "f=open('mobydick_chapter1.txt','r')\n", "moby_file=f.read()\n", "swc=sort_word_counts(count_words(tokenize(moby_file, stop_words=['the','of','and','a','to','in','is','it','that','as'])))\n", "len(swc)\n", "# In this cell, I am only able to find 844 unique words in the chapter.\n", "# However, I do know the answer is 848. I have searched through the entire text\n", "# file and my output to determine what words are missing or formatted\n", "# incorrectly, but couldn't find any discrepancies. I know I am not the only \n", "# with this problem, as indicated by the gitter chat." ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false, "deletable": false, "nbgrader": { "checksum": "0c74fa7fa2b9ad5a6b54a0b3f04ac9dc", "grade": true, "grade_id": "algorithmsex01d", "points": 2 } }, "outputs": [ { "ename": "AssertionError", "evalue": "", "output_type": "error", "traceback": [ "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[1;31mAssertionError\u001b[0m Traceback (most recent call last)", "\u001b[1;32m<ipython-input-9-79f30673d9f4>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m()\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[1;32massert\u001b[0m \u001b[0mswc\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m0\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m==\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m'i'\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;36m43\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 2\u001b[1;33m \u001b[1;32massert\u001b[0m \u001b[0mlen\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mswc\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m==\u001b[0m\u001b[1;36m848\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", "\u001b[1;31mAssertionError\u001b[0m: " ] } ], "source": [ "assert swc[0]==('i',43)\n", "assert len(swc)==848" ] }, { "cell_type": "markdown", "metadata": { "nbgrader": {} }, "source": [ "Create a \"Cleveland Style\" [dotplot](http://en.wikipedia.org/wiki/Dot_plot_%28statistics%29) of the counts of the top 50 words using Matplotlib. If you don't know what a dotplot is, you will have to do some research..." ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false, "deletable": false, "nbgrader": { "checksum": "6cff4e8e53b15273846c3aecaea84a3d", "solution": true } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZkAAAIwCAYAAABUXhZ1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xm4XEWd//H3h7CFbBIQEUeIIAOyx4BiCIogqKMgEQRl\nkcXBbX6GMYFxRmckzKDDjAJjRGVQdhAhCAo67AQISVgSloRVxIAIIksCCcjO9/dHVXM7ne57byd9\nbvfp+3k9Tz85fU6dc6ovPP3tOlXfKkUEZmZmRVil3RUwM7Pu5SBjZmaFcZAxM7PCOMiYmVlhHGTM\nzKwwDjJmZlYYBxnrWJKmSjqnxdccKukySc9KuqCV1665zxuSNi7q+jX32lDSUknqo9wukh5t4X0H\n7DNaeTnIWL9J+hdJ/1ez78EG+/ZrwS2LSOLaF1gPGB0R+9cezIHtDUmTavYfmfcfU0CdGpJ0qKTX\ncxBZKukPkk6XtGmlTET8MSJGRIuT3iS9XdJpkh6XtETSffnvs1Yr71Pnvi0Nhvmaq0m6SNLC/N/x\nQ628vjXmIGPNuAEYX/nFLOntwKrAdpJWqdq3CXBjMxeWNKTFdW1kI+B3EfFGg+MB/A74fM3+Q4AH\nKCbw9WVWRIwARgIfAV4E5knasqgbShoNzAHWAHaMiJHA7sAooKNbL5JWbXDoRuAg4Ana899xUHKQ\nsWbMBVYDtsvvdwZmkL6Uq/c9FBFPSNpA0qWSnsmtm7+vXCj/Ir5I0jmSngMOkfQuSTfkX81XAetW\nlV9T0rmSnpa0WNKtktarV0lJ75F0fS53t6Q98/5jgX8D9s+tgsMafM7bgLUkbZHP25L0ZTsXePOR\nlKQj8ud6RtKvc4Ct9glJD0l6StJ/K1ld0iJJW1VdZz1JL0hap0F9BBDJHyLiH0gBf2o+f0z+dV4J\n9KMlnSHpsXyvSxr8nSZJukfSBnUOTwaei4iDIuKP+f5/ioivR8TdVeV2l/S7/Lc+ueram0i6Lv/3\neir/txtVdfxhSf+c778ot87WkDQMuBzYIP83WiJp/fy3+2dJv8/XvEDS2jWf/3BJjwDX1H6YiHg1\nIqZFxCzg9QZ/ZyuAg4z1W0S8AtwCVB41fBCYCdyUtyv7bsjbvwD+CLyd9Jjqu5I+XHXJvYDpETEK\n+Hl+3QasA/wHqfVQ+cV5COmX/N8Ao4EvkX7RL0PSasBlwBXAW4GvAedJ+tuIOAb4LvCL/HjpjF4+\n7jn0tGYOye+r77NrvtZn8ud7JH/eansD44D3Ap8CDs9/w/NJv6grPgdcExHP9FKfWheTAnqjuq8J\nbEF6NHhibQFJ3yZ9vg9GxON1rvGRfI++fALYHtgG2E/SR6uOfYf0t3kP8E5yUKxyALAHqeX7t8C/\nRsQLwMeAx/N/o5ER8QQwifT/ywfzNRcDP6q53geBzYGPYh3DQcaadQM9AWUC6RHEzKp9OwM3SHon\nMB74RkS8EhF3AT9j2cdQsyPi0ry9HunL6t/yr86ZpGBR8Qop+Gyaf9HfERFL69RvR2BYRBwfEa9F\nxAzgN6Qvckitgt46yCvHzgU+lx+97J/fQ0/QOxA4LSLuzIHjX4APSNqw6lr/FRHPRsSjwP9U1eHs\nqm2Ag6kJYv3wZ1KwXbbyqTX1MeDLEfFc/hvMXLaITiQFkQ/3EthG53v05fiIWJI/4wxyizYiHoqI\na/N/y6eBk+j5cQLp73hyRDwWEYtJAan6v1GtL5GC0OMR8SpwLLBvpfWWTY2IFyPi5X7U2waIg4w1\n60ZgQn5U8daIeIj07H583rdlLrMBsCj/Mq34I/COqvd/qtreAFgcEdWtk0fo+cI5B7gS+EV+DPRf\nDZ69bwDUdho/UnPfvkT+0vw98J+kPpw/seyXX6X1UjnhBeCZmvtU1+OPuW5ExC3Ai7mDe3PSL/lL\nac47gEV19r+T9Hd/rsF5bwH+nhQc6gXpimcq9e3DE1XbfwWGA0h6m6RfSPpTfhx6DulHQrW6f58G\nxgCX5Mdyi4F7gdeAtzW4nnUIBxlr1s2kzt8jgFkAEbEEeBz4IukxxyP5/WhJw6vO3ZBlA0t15+uf\ngbW17MiljSpl8i/yf4+ILUktpE+yfOc8+b7vlJYZzrtRzX37Ujn3bFLfxNl16vs46YsvnZD6EtYB\nHqsqs2HNdvWxs0iPzA4mPTJ8pYn6AUyk/uCKR0l/91F1jkF6zPRJ4AxJ43u5/jXAxJq/Y39U/kbf\nJfV9bJUfhx7M8t83tX+fymO7ep3yfwQ+FhFrV73Wiojq1pY78zuQg4w1Jbc05pK+fKu/5G7K+27I\n5R4FZgP/mTt0twEOp+exU+11H8nXPVZpuOkE0pch8Oaw1q2VRqEtBV6lfgfuzaRf1P+Ur7NLvk5t\nf0l/XEAaUTW9Ug16AtD5wGGStpW0BulL9eZKJ3l2lKS35EeHk/L1Ks4FPk167HY2/SBpiNLgiB+S\nHk8eW1smf+leDvw433s1SR+sKXNjvu/FknZocLsTSX1gZ1UeAUp6h6QTqgct1Faxans48AKwRNI7\ngKPrlP1qvuZo4Fv0/Df6C7COpJFV5U8h9elV6vJWSXs1qEf9yqX/D9fMb6u3rUAOMrYibiB1qt9U\ntW8maTRYdeD5HOnX/uOkTuRvR8R1+Viw/C/PA4D3kx4DfZv0a79ifdKX/XOkRyXXU6cfIz+v3xP4\nOPAUcDJwcET8rpf7LnMJelpPL0XEdRHxUp1j15JGqv0yf753AZ+tudavgXnAHaR+odOr6vkocDvw\nRkTcRGNB6utZmj/7DNIX+A4RcU9NuYqDSUH4ftIX9qTachFxDSnoXyZpO2rkfpLx+Tq3SFpCat08\nS3qMWHvP2vfHkgY8PEfqW/tlzfEgDfS4CngIeBA4Lt/7flIQ/0MeebY+8APSI8Wrcl3mAO9rcO9G\nHiD9ANmA9Oj1hZo+NCuAvGiZWXtIOg14LCK+3e66DDRJC4EvVP3osC7VKGnJzAokaQzpcdlyrQiz\nbuLHZWYDTNJ/AAuA/859UWZdy4/LzMysMG7JmJlZYQZtn4wkN+HMzFZARPQ7f2rQBhlo7g9lZmbN\n/0D34zIzMyuMg4yZmRXGQcbMzAozKIKMpFntroOZ2WA0KIJMROzU7jqYmbWLpI9K61yVXhrQRd0G\nRTKmpOcjYnjNvvDoMjPrdimojLwEpg1Neya9CEsmRsSVK3i9pr47B8sQ5u6PpGZmdY2eAicOTauI\nAzAUJk8hzURduMESZOqSNLXq7fURcX2bqmJm1pUGy+OypRExomafH5eZWddr9+MyBxkzsy6XAs3o\nKendohNWNMDkaznI1JK0JCJG1uxzkDEza1Kz352DZQjzyL5LmZlZqw2KIGNmZu3hIGNmZoVxkDHr\nEO3MyjYrSqmCjKQxku6XdIakBySdJ2kPSbMk/U7SDpKGSTpd0i2Sbpe0V7vrbdaXnmGmJ+6eXiMv\ncaCxblDGZMxNgH2Ae4HbgP0jYqccTL6Z918bEYdLegtwi6RrIuKv7auyWV/am5VtVpQyBpmFEXEP\ngKR7gGvy/ruBMcDfAHtJOirvXwN4J/BA7YWc8W9mVqwyBpmXq7bfAF6p2l4VeA34dEQ82NeFImJq\ny2tntkIWnQCTJgDVWdkntLVKZi1Qqj6ZfroSmFR5I2lsG+ti1i8pA3vJRJh8dXqt+LQfZp2kjC2Z\n2ikKomb7P4AfSJpPCqJ/ANz5bx0vBxUHFusqg2JamXo8rYyZWfM8rQwg6WFJo/P28+2uj5nZYNWV\nQYblH6GZmVkblD7ISLpE0lxJd0s6ot31scHJ2fpm9ZWx47/W4RGxWNJQ4FZJv2x3hWxwqcrWrww/\nniDJo8PM6I4gc6SkvfP23wCbtrMyNhg5W9+skVIHGUm7ALsBO0bES5JmAGs2cf7UqrfO+Dcza7FS\nBxlgJLA4B5j3ADs2c7Iz/q01nK1v1kjZg8wVwJcl3Uuam2xO3u/RZTZgIuJKSRPzIzJgyUqtoW7W\nTZyMaWZm/eZkTDMz6xgOMmZmVhgHGbMWcDKmWX2l6JORdCywKCJ+kN9/B/gLaTGyj5E694+LiAvz\nsOYpEbFnLnsycFtEnFVzTffJWEv0JGNOqx5d5mRM60rd2idzOvB5AEmrAPsDfwK2BbYBPgJ8T9L6\ndc7t/ChqJTd6Sgowh5Be04amfWZWiiHMEfGIpGckbQesD9wBTAB+Hqkp9qSkG4AdgCX9va6TMc3M\nilWKIJP9DDgMeBupZbM7UNtkC9Lyy9UttIYzADgZ01rDyZhmjZSiTwZA0mrA3cAQ0vxkewNfAv4O\nWAe4DXgfsAZwI7AZsBZwOzA1Is6uuZ77ZKxlUr9M5RHZIidjWtdq9ruzNC2ZiHhV0nWkaWQCuETS\nB4C7SC2YoyPiSQBJF5IC0kJSkDErlJdONquvTC2ZVYB5wL4R8VALrueWjJlZk7pudJmkUXkI84Ok\n+cn+p0G5n+ZJMs3MrEN0fJAB1gY+HRGbAKc0KhQRR0TEfQNXLTMz60sZgszxwCaS7gD+Gxguabqk\n+ySdWykk6XpJ75W0iqQzJS2QNF/SP7at5tYnZ8qbdbcydPx/A9gyIsZK+hDwa2AL4M/ALEnjI2I2\nPUmXY4ENImJrSI/b2lFp65uXLTbrfmVoyahm+9aIeDyPMLsTGFNT/iFgY0nT8i/jfidn2kBzprxZ\ntytDS6bWy1Xbr1PzGSLiWUnbAh8FvgzsB3yh3oWc8W9mVqwyBJmlwIh+lpWkdYBXI+JiSb8DzmlU\n2Bn/7eZMebNu1/FBJiKekTRL0gLgReCJ3ooD7wDOyHk1AP9cdB1txXjZYrPuV5pkzFZzMqaZWfO6\nLhnTzMzKq5RBRtIkSfdKatjfYmZm7VfKx2WS7gN2i4jH+1F21Yh4rc5+Py4zM2tS1z8uk3QKsDFw\nhaTJkn4l6S5JcyRVEjCnSjpH0k3AWb1e0ArljH6zwa3jR5fViogv5y+rXYBjgXkRsbekDwNnkzL+\nATYHJkTEy/WvZEVzRr+ZlS7IVBGwE/BpgIiYIWkdSSNIQ5kvdYBpt9FTUoA5pLJjaB6u7CBjNkiU\nOchUNHo2+Nc+T3TGv5lZocoeZGYCBwLHSdoFeCoilkrqV6eUM/6L5ox+s8GurEEm8msqcLqku4AX\n6HkuUzlubeSMfjMr5RDmVvAQZjOz5nX9EGYzMyuPtgcZSaMkfSVv7yLpsnbXyczMWqPtQQZYG/hq\nKy4kaUgrrmOt42RMs8Gt7X0ykn4B7AU8ALxK6sB/GtiKlGh5UC43DjgBGJ6PHxoRT0i6HrgDmAD8\nHLixXrk693WfTMF6kjGnVY8uczKmWYk1+93ZCaPLvgFsGRFjJX0I+DWwBfBnYJaknYBbgR8Ce+b1\nZfYHvkNa8TKA1SJiB0mrkoJMvXI24JyMaTbYdUKQUc32rZWJLyXdCYwBngO2BK7JKTBDgOrJMS/I\n/27eR7llb+xkTDOzQnVCkKlVPRXM6/TU8Z6IGN/gnBfyv+qj3DKcjFk0J2OaDXad0PG/FBjRy/Eg\n9de8VdKOAJJWk7RFVZlKa6ivcjaAUt/Lkokw+er0cn+M2WDT9pZM7juZJWkB8CKwXCd9RLwqaV9g\nmqRRpHqfBNxbKZLLvdJHORtgOag4sJgNUm0fXdYuHl1mZta8rs34lzQmt3b6W/5Dkj5QZJ3MzKx3\npQkyK+DDQL8GAJiZWTHKFmRWlXSupHslTZe0lqSHJY0GkLS9pBmSNgK+BHxd0h2SJrS32t3J2fxm\n1pe2d/w3aTPg8IiYI+k00nQ0y3UqRcQjkk4BlkbEiQNdycHASyubWX+UrSXzaETMydvnkqaS6Y07\n9gszekqaLuYQ0mva0LTPzKxH2Voy1a0WAW8Ar9ETLNds5mLO+DczK1bZgsyGknaMiJuBA4CbSImc\n2wNXAPtUlV0KjOztYs74XxnO5jezvpUmTyZ35l8BzAXGAfcAB5MCzGnAEuB6YFxE7CppU+AiUmvn\n/0XErJrrOU9mJaV+mcojskVeWtlsEGj2u7M0QabVHGTMzJrXtcmYZmZWPg4yZmZWGAcZMzMrTKmC\nTJ6/7H5JZ0h6QNJ5kvaQNFvS7yS9L/+7bi6/iqQHJa3T7rqXkTP6zWxllarjX9IY4EFgO9L0/bcB\nd0XEFyTtBRwG3A4siYgfSNoDOCIiPlPnWu7470VPRv+06iHKzug3G+QGQ8f/woi4J1J0vAe4Ju+/\nm7RU8xnA5/O+w/N7a5oz+s1s5ZUtGROWXZ75DeCVqu1VI+JPkv4iaVdgB+BzjS7kjH8zs2KVMcj0\nx89Ic5udFb08D3TGf2+c0W9mK6+MQaY2aESd7ctIj8n8qGwFRcSVkibC5PyIbIkz+s2saaXq+O8v\nSdsDJ0TEh3op445/M7MmNfvdWcaWTK8k/TPwZdIEmmZm1kZlHF0GgKTfShopaZSkr1QduhlYEBGz\n21U3MzNLShtkIuITEbEEWJu0QqY1ycmWZla0jg0yko6W9LW8fZKka/P2rjnTf2HO5D8e2ETSHZL+\nm9T5P1zSdEn3STq3fZ+ic1Utn7x7eo28xIHGzFqtY4MMcCOwc97eHhgmaVXSkss35P0BfAN4KCLG\nRsQ/kVbMHAscCWwBbCxppwGteSk42dLMitfJQeZ2YJykEcBLwBxSsNkZmFlVrt4oh1sj4vGcI3Mn\naSaA5UiaWvXapZWVNzOzDh5dFhGvSloIHArMBuYDuwKbRMR9Uq8j6KpnBXidBp9zcCdjOtnSzIrX\nsUEmmwkcRZr48m7gJNKkmNWWAiMGuF6l52RLMxsIZQgy3wTmRMSLkl5k2UdlRMQzkmZJWgD8X371\nNiuAZTmoOLCYWWG6MuO/P5zxb2bWvMEw1b+ZmZWEg4yZmRWmNEFG0rA8lcydkhZI2k/SOEnXS5or\n6QpJ6+eyR0i6NZe9SNLQdte/Eznj38yKVpo+GUn7AB+NiC/m9yOBy4G9cuf//sAeeSnm0RGxKJf7\nD+AvEXFyzfUGdZ+Ml1c2sxXRzbMwzwe+L+l44DfAs8BWwDU5Z2YI8Hguu7Wk44BRwHA8gqqO0VPg\nxJzxD8DQPJzZfysza5nSBJmIeFDSWOATwHHADOCeiBhfp/iZpBbOAkmHALvUu6aXXzYzK1Zpgoyk\ntwOLI+I8Sc8BXwHWlbRjRNwsaTVg04i4l9R6eSLvOwj4U71rOuPfGf9mVqzSBBlga+B7kt4AXiEF\nmdeBaZJGkT7LScC9wL8BtwBP5X+Ht6XGHcwZ/2Y2EErT8d9qg73j38xsRTgZ08zMOoaDjJmZFcZB\npks50dLMOkGp+2Qk/RtwIKmD/1FgHnAtcApp1NRDwOER8Wydc7u2T8aJlmZWlEHTJyNpB+DTwDbA\nx0mrZgKcBRwdEdsCC4Bj2lPDdvLSymbWGco0hLnWTsCvIuIV4BVJlwHDgLdERGXNmbOA6Y0u4GRM\nM7NilTnIBNBXk63X492bjOlESzPrDKV9XAbMAvaUtIak4cAngReAxZIm5DIHA9e3qX5tk/pelkyE\nyVenl/tjzKw9yt7xfwxwAPAX4EnSrMxzSR3/a5E6/g+LiOfqnNu1Hf9mZkVp9ruz7EFmWES8IGkt\n4AbgiIi4s5/nOsiYmTWpm6f6r+dUSVsAawJn9jfAmJnZwOi4lkye7PKAiPiJpF2AKRGxZwH3cUvG\nzKxJ3ZAnszbw1XZXouyc8W9mnaATWzK/APYCHgBeJY0Ye5q0Cua8iDgolxsHnECaxv9p4FBSnsyF\nETEul9kU+EXlfc19urYl44x/MytKN7RkvgE8FBFjgaOBscCRwBbAxpJ2youR/RDYJyK2B84AvhMR\nDwHPSdo2X+sw4PQB/wRt54x/M+sMndjxr5rtWyPicQBJdwJjgOeALYFrJAEMAR7P5/wMOEzSZGA/\nYIeGN3LGv5lZoToxyNR6uWr7dXrqfE9EjK9T/pek+cquA+ZGxOJGF3bGv5lZsToxyCwFRvRyPEj9\nNW+VtGNE3Jwfn20aEfdGxMuSrgR+Ahw+APXtOF5a2cw6RccFmYh4RtIsSQuAF4En6pR5VdK+wLQ8\n5HlV4CTg3lzk58BE4KoBqnbHyUHFgcXM2qrjRpe1gqSjgBER0XCa/24eXWZmVpTBlvG/HEmXAO8C\ndm13XczMBruubMn0h1syZmbN64Y8maZImixpQX4dKWkjSfdJOlXS3ZKulLRmu+s50Jzxb2adoNQt\nmZz1fwbwflLAvAU4CLgNGBcR8yVdAFwaEefVnNu1LRln/JtZUQZbn8wE4OKIeBFA0sXAzsDCiJif\ny8wjJXAOIqOnwIk54x+AoXk4s4OMmQ2osgeZRksw1yZwDq13sjP+zcyKVfYgMxM4U9LxpMdlE0lL\nLn+xPyc749/MrFilDjIRcYekM4Fb866fAotJLZxlig5kvdrNGf9m1ilK3fG/Mrq549/MrCiDbgiz\nmZl1rq4OMpIOkfT2dtfDzGyw6uogQ1otc4N2V6IITrY0szIoVZ+MpDHA5aRRZeOBx4BPAZsDp5BG\nUz1EmuL/I6REzceAvwLjI+KlqmuVtk/GyZZm1i6DoU/m3cDJEbEV8CywD3AWcHREbAssAI6JiIuA\nucABEfHe6gBTfl5e2czKoYxDmGuz+TcB3hIRM/O+s4DpVeUbRlwnY5qZFauMQaY2m/8tNcdrg0rD\n54HlTcZ0sqWZlUMZg0yt54BFkiZExE2kjP/r87GlwMh2VawoTrY0s7IoY5Cpl81/KHCKpLVIHf+H\n5WNn5v3LdfyXnZdXNrMyKNXoslYq8+gyM7N2GQyjy8zMrCQcZMzMrDAOMiXljH8zK4O2BxlJwyT9\nVtKdkhZI2k/SbpJulzRf0mmSVs9lH5b0XUl3SJor6b2SrpL0e0lfqrrm0ZJulXRXTS5MV+jJ+D9x\n9/QaeYkDjZl1orYHGeBjwGMRsV1EbE0aMXUGsF9EbEMaAfeVXDaARyJiLHAjafTYRGBH4FgASXsA\n746I9wFjgXGSdh7AzzMAnPFvZuXQCUOY5wPfz6tb/oaU27IwIn6fj58F/APwg/z+0vzvAmBYRLwA\nvCDpZUmjgD2APSTdkcsNI01FU5kR4E3O+DczK1bbg0xEPChpLPAJ4DjgupoiYtncmErG/xvAK1X7\n36Dn8/xnRJzaj3tPXZE6t58z/s2sHNr+uCyv9/JSRJwHfB/4ALCRpE1ykYOBG+qdWmdfkB63HS5p\nWL7+OyS9tfU1b5+UiLlkIky+Or08A7OZdaa2t2SArYHvSaq0TL5Cmo9suqRVgVtJ0/jDsi2aqPOe\niLha0nuAOZIgPX47CHiqyA8x0Jzxb2Zl4Ix/MzPrt67I+Jc0SdK9ks5pd13MzGzFdWRLRtJ9wG4R\n8XjVvlUj4rUW3sMtGTOzJpW+JSPpFGBj4ApJz0o6W9JNwFmSNpJ0XU6yvEbSO/M5Z0r6saQ5kh6S\ntIuks3Jr6Iy2fqCCOOPfzMqgU1syC4FxwNeAPYGdIuJlSZcBF0bEOZIOA/aKiImSzgRWj4gDJO0F\nnEsapXYvcBvwhYi4q+YepW3J9GT8T6sewuwRZmZWuNK3ZKpUPsSvI6KSG7Mj8PO8fS4wIW8HcFne\nvht4IiLuiRRB7wHGFF/dgeSMfzMrh04YwtyXv9a8bxRBK4mZb7DsEs3VSZrLXsgZ/2ZmhSpDkKk2\nG/gsqRVzIGn+shXmjH8zs2J1apBZLsky+xpwhqSjgSfpWWa5t3PqvS+1iLhS0kSYnB+RLTnB/TFm\n1ok6suN/IJS549/MrF26qePfzMxKzkHGzMwK0/VBRlm769EsJ1uaWTfoij4ZSZPpGQTwM+BXwFXA\nzaSkzo9HxKM153Rsn4yTLc2sUzX73dmpo8v6TdI44FDgfaSW2S2k9WfeDRwcEbe2r3YravQUODEn\nWwIwNI8kc5Axs1IpfZAhZf1fHBEvAki6GNgZeKSvAONkTDOzYnVDkAnqzwLwQp8ndmwyppMtzaw7\nlL5PRtJY4EzSvGarkPphDgbOiYitezmvY/tkoNIvU5mPbJGTLc2sIwy6PpmIuCPPwlx5NPZTYDEl\nz/L38spm1g1K35JZUZ3ekjEz60TO+Dczs45RyiAjaYykBXX2Hytpt3bUyczMllfKINNIRBwTEde2\nux6t4Ix/M+sGZQ4yQySdKuluSVdKWlPSmZL2AZB0vKR7JN0l6XvtrmwzejL+T9w9vUZe4kBjZmVU\n5tFlmwKfjYgvSroA2Ic0oiwkrQPsHRGbA0ga2cZ6rgBn/JtZdyhzkFkYEfPz9jxgTNWxZ4GXJJ0G\n/Ca/luOMfzOzYpU5yLxctf06b2bHo4h4XdL7gN2AfYH/l7eX4Yx/M7NilTnINCRpGDAsIi6XNBt4\nqN11aoaXVzazblHmINMoizSAEcCvJa1Jmtfs6wNWqxZxxr+ZdQNn/JuZWb8549/MzDqGg4yZmRWm\nFEFG0mRJC/LrSEkbSbqvNhkzl91E0uWS5kq6UdJm7a7/inDGv5l1g47vk8nLK58BvJ+e5ZUPAm4D\nxkXE/JyMeWlEnCfpWuBLEfF7Se8HvhsRyw1f7uQ+mZ6M/2nVQ5gneoSZmbVbN64n02h55eWSMfPQ\n5fHAdOnNv8HqA1zfFnDGv5l1hzIEmUbLK9cmY65Jauksjoix/bmwM/7NzIpVhiAzEzhT0vGkIDKR\ntLzyF2vKKSKWSlooad+IuEipObN1VYtnGc74NzMrVscHmSaWV668PxD4iaR/BVYDzgfqBplO5Yx/\nM+sWHd/xX5RO7vg3M+tUTsY0M7OOUeog02gZZjMz6wylDjLdzMmYZtYNOr7jvx+GSDqVlB/zGPAp\n4B3AycBbgb8CR0TEA+2rYnOqll+ujC6bIMnJmGZWOt3QktkUODkitiKtiLkP8L/A1yJie+Bo4Mdt\nrN8KGD0lZfsfQnpNG5r2mZmVSze0ZOotw9yvrH8nY5qZFasbgkxt5v/bgGf7k/XvZEwzs2J1w+Oy\nWkuAP0jaF0DJNm2uU1NS38uSiTD56vTy5JhmVk7d0JKpl/l/EF2Q9Y8nxDSzknPGv5mZ9Zsz/s3M\nrGN0fJCRNKsfZf5R0tCBqI+ZmfVfxweZiNipH8WOBNYqui6t4mx+MxssOj7ISHo+/7uLpOslTZd0\nn6Rz8/44JA3SAAAgAElEQVRJwAbAjLz0MpI+J2m+pAV5HZqOUZXNv3t6jbzEgcbMulUZRpdVj0zY\nDtgC+DMwS9L4iJgm6evALhGxSNIGwPHAe0kzAFwl6VMR8esBr3ldXlrZzAaPMgSZardGxOMAku4k\nZffPrimzAzAjIp7J5c4DPggsF2Sc8W9mVqyyBZna7P569Q+genhdw6F27cn4dza/mQ0eHd8n009L\ngZF5+zbgQ5LWkTQE+CxwfbsqVsvZ/GY2mJShJRMNtqudClwh6bGI2E3SPwMzSK2Y30TEZUVXshnO\n5jezwcIZ/2Zm1m/O+Dczs47hIGNmZoXpmCAjaYykBVXvj5J0jKQZkv5H0h05uXKHfHy0pF9JukvS\nHElb5/1TJZ2ez3tI0tfa9Zkacca/mQ0WndzxX91ZNDQixkraGTgd2Bo4FpgXEXtL+jBwNlBZqOxv\ngQ+TRpw9IOnHEfH6ANa9oaqM/8oQ5gmSPMLMzLpSJweZaucDRMRMSSMljQJ2Aj6d98/IQ5ZHkILT\nbyPiVeAZSU+SVst8vE11r+GMfzMbPDopyLzGso/v1uylbKWV02iEwytV242SNp3xb2ZWsE4KMn8B\n1pM0GngB+CRwRT62P3C9pAnAsxGxRNJM4EDgOEm7AE9FxFJJ/R5a54x/M7NidUyQiYhXJf07cCvw\nGHBf1eGXJN1Oqu/hed9U4HRJd5GCUuX5U9A4abPtIuJKSRPzIzJgyQnujzGzbtXxyZiSZgBTIuL2\nFl/XyZhmZk1yMqaZmXWMjm/JVEh6PiKGN1H+Q8ArETGnwXG3ZMzMmtTNLZlmo+GHgfFFVGRlORnT\nzAaLjmnJSDoaeCkifijpJGCbPKPyrsAXgL2AH5BGnb0IfCoinpS0J/AtYHXgGdKIs7WAOaThy08B\nX4uIm2ru15aWTE8y5rTq0WVOxjSzUihzS+ZGYOe8vT0wTNKqwATgBmAYMCcitstlj8hlZ0bEjhHx\nXuAC4J8i4mHgFODEiBhbG2Daa/SUFGAOIb2mDU37zMy6T8cMYQZuB8blrP2XgLmkYLMzMInUv/Lb\nXHYesHvefqekC4H1Sa2ZP1Rds9do62RMM7NidUyQyXkyC4FDgdnAfGBXYJOIuE/Sq1XF36Cn7j8E\nvh8Rv8md/VObuGe/y7aOkzHNbPDomCCTzQSOAg4D7gZOIi2n3JuR9MxLdmjV/uolmTuGkzHNbDDp\npD4ZSEFmfVLfy5OkDv6Z+VjtMsyV91OB6ZLmkjr5K/svAybmJQJ2KrrizYiIKyOe2SO9HGDMrHt1\nzOiygeY8GTOz5pV5dJmZmXWZPoOMpOGShuTtzSTtJWm14qu2YiTNqtr+nqS7Jf1XO+tkZjZY9fm4\nLM9+PAFYG5hF6oh/JSIOLL56K0fSs8DaUedDtvNxWUrIrOTGLHLHv5mVRhGPyxQRfyWtQvnjiPgM\nsNWKVrBokp7P/14KDAdul7Rfe2vVo2r55d3Ta+QlnlrGzLpVv4YwS/oAabqWL+RdndyXEwARsZek\npRExtt0VWpaXXzazwaM/QeYfgX8BLomIeyRtAswotloDwxn/ZmbF6rohzLn1MqJ2u045T5BpZtak\nZr87GwYZSZdVvQ2WnQcsImKvFatisTo9yOR7u+PfzEqp2e/O3h6XVebTmkjKwj+XFGg+B/xlhWtY\nvNqZATpODioOLGbW9fozhHleRIzra1/ZOOPfzKx5RQxhXit39ldusDFpUbC2kzRG0oJ218PMzOrr\nz+iyrwMz8jT8AGOALxZWIzMz6xq9BhlJqwCjgL8FNs+774+Il4quWBNWlXQu8F7gHuDzwBakPqXh\nwNPAoRHxRPuquCx3/JvZYLFCfTKdQtIY0kqYO0XEHEmnAfcDewOfioinJe0P7BERX6g510OYzcya\n1MrRZRVXSzoKuAB4obIzIhatQP2K8GhEzMnb5wLfIk17c7UkgCH0LGrWAZzxb2aDR3+CzGdJQ4H/\noWpfABsXUqPmVTfFBCwB7omI8X2d6Ix/M7NilTrjv+px2fiIuFnSz4DfAUcAB+d9qwGbRsS9Nef6\ncZmZWZNalvFfdcHVga8AHyS1Gm4ATomIV1emoq0gaSPgCmAuMI7U8X8wsBkwjTRoYVXgpIg4reZc\nZ/ybmTWpiCBzGumL+izS46iDgdci4u9XpqLt5mRMM7PmFRFk5kfENn3tKxsHGTOz5hWR8f+6pHdX\n3WAT4LUVqVyrOePfzKyzNRxdJunrpOWWvwFcJ+kPpMdlY4DDBqR2JeU+FzOzpLeWzN8A/0PKj3kC\nWAT8kjSS67oBqFt/rSrpXEn3Spou6eOSLqkclLS7pIsHqjJeXtnMrEfDIBMRU3Kuyfqk+ctmA7sA\ncyXdNzDV65fNgB9FxBakHJktgc0lrZuPHwac1ujk1hs9JQ1PPoT0mja0p1VjZja49CcZcygwkjQc\neBQpe35+kZVqUm3G/yTgbOAgSWcCOwIH1TvRyZhmZsXqrU/mp6SJJpcCt5JaMidGxOIBqlt/1Wb8\nB3AmcBnwEnBhRLxR98SIqa2vzqITYNIEUnAmJ1ue0OspZmZdqreWzIbAGsCDwGP59exAVKpJG0ra\nMSJuBg4AZkbEnyU9DvwrsNtAViYirpQ0Mc9HBixxx7+ZDVq95snkqf63BD4AjAe2Bp4Bbo6Ibw9I\nDXvRKOM/Il6S9FlgUqM5zJwnY2bWvJYnY+aLvpMUZHYCPgmsExGjVriWA0DSycC8iDijwXEHGTOz\nJrUsyEg6khRYPkBKvpxNypuZDdwdEa+vfHWLIWkeqS9p90ZzrDnImJk1r5VB5iTgJmBORHTMeiyS\n/hH434h4cSWv4yBjZtakQh6XdRJJC4HtI+KZJs5ZpXaEWZFBxhn/Ztatipi7rBCSjpb0tbx9kqRr\n8/auOYP/x5Juk3R3JZ9F0iRgA2BGVfk9JM2WNE/ShZKG5f0PSzo+PzrbdwA/lzP+zcyytgUZ4EZg\n57y9PTBM0qp53w3AtyJiB2Bb4EOStoqIaaRk0F0iYrec1f8tYLeIGAfMAybnawbwdESMi4gLB+5j\nOePfzKyiPxn/RbkdGCdpBClpci4p2EwgZe3vL+kIUh3fTkoMvbvmGjvm/bMlAaxOGphQcUFvFXDG\nv5lZsdoWZCLi1dy/cigpMMwHdgXeDbwITCH1vTwn6QxgzQaXujoiDmhw7IU+6jB1BareB2f8m5lV\ntPNxGcBM4CjS47GZwJdJLZyRpACxRNLbgI9XnbM0Hwe4Bdgpr3GDpGGSNh2guteVOvmXTITJV6fX\nkonu+Dezwaqdj8sgBZZvkoZJvyjpRdK0MPMl3QHcDzxKGkpdcSpwhaTHcr/MocD5ktbIx79Fmgqn\nbXJQcWAxs0GvdEOYW8V5MmZmzSvNEOZ6vJyymVl36aggY2Zm3aUTg8wQSafmJMwrJa0p6QhJt0q6\nU9JFkoZKGiXp4cpJudP/j5KGSNpE0uWS5kq6UdJmA/kBJH1UWueq9HIippkNXp0YZDYFTo6IrUjr\n1+wD/DIi3hcR2wH3AV+IiOeAOyXtks/7JHBFnrjzVOBrEbE9cDTw44GqvDP+zcx6tHt0WT0LI6Ky\nvPM8YAywtaTjSMs/DyetIQMp2XJ/4Hrgs8DJkoaTZo+enhM0ISVpDpDRU+DEnPEPwNC8gJlHm5nZ\noNOJQeblqu3XSUmNZwCfiogFkg4BdsnHLwO+K2lt4L3AdcAIYHFEjO3rRs74NzMrVicGmXqGA09I\nWg04CPgTQEQ8L+k2YBpwWaTx2EskLZS0b0RcpNSc2bqqdfQmZ/ybmRWrE4NMvcSdb5Oy+5/K/w6v\nOnYBcCE9rRuAA4GfSPpXYDXgfNK0NYWLiCslTcyPyIAlnurfzAYtJ2OamVm/lToZ08zMukvXBBlJ\nUyV53RYzsw7SNUGG+n05beFkTDOzpNRBRtK3JD0gaSawWd63naSbJd0l6WJJbxngOjkZ08wsK22Q\nkTSOlIi5LfB3wA750FnA0RGxLbAAOGZga+bll83MKjpxCHN/7QxcHBEvAS9JuhQYBrwlImbmMmcB\n0xtdwMmYZmbFKnOQCaCvYXS9HncypplZsUr7uAy4Edg7z9I8AtiTtGTzYkkTcpmDSfOaDRgvv2xm\n1qPUyZiSvknq+HgSeAS4HbgWOAVYC3gIOCzP2Fx7rpMxzcya1Ox3Z6mDzMpwkDEza54z/s3MrGM4\nyJiZWWEcZArgjH8zs6Sj+2QkHQ28FBE/lHQSsE1E7CZpV+BwYAkpCXMocFFlSLKk40mjzV4DroqI\no+tcu5A+mZ6M/2nVQ5g9wszMukKz352dnidzIzAF+CGwPbCapFVJiZg3kALLYklDgGskbQ08Duwd\nEZsDSBo5sFX28stmZhWdHmRuB8blPJiXgLmkYDMBmATsL+kI0ud4O/Ae4F7SDACnAb/Jr7qc8W9m\nVqyOflwGIOka4NfAuqTVLTcDjgA+DFwNbB8Rz0k6gxQozpK0OrAbsC8wJiJ2q3NdPy4zM2tStz0u\nA5gJHAUcBtwNnATcBowkZfgvkfQ24OPADEnDgGERcbmk2aSEzAHj5ZfNzHqUJch8E5gTES9KehGY\nGRHzJd0B3A88CtyUy48Afi1pTdLcZV8f6ArnoOLAYmaDXsc/LiuKM/7NzJrnjP9M0qckvafd9TAz\nG8y6MsjkYc4TgS3aXRczs8GsY4OMpDGS7pd0rqR7JU2XNFTStyXdKmmBpP+tKn+9pJMk3Qb8EykZ\n83uS7pC0cQvr5Wx+M7N+6vSO/78lTdU/J+e9fBX4YUT8O4CksyV9MiJ+Q1rEbLWI2CEf2xS4LCIu\nblVleoYnn1gZnjxBkocnm5k10LEtmezRiJiTt88lJWHuKukWSfOBXVn2kdgFNee3uGN/9JSU/3II\n6TVtaNpnZmb1dHpLpnrom/L7HwHjIuIxSccAa1aVeaGX85fjjH8zs2J1epDZUNKOEXEzcAApF2Y8\n8Iyk4cBngAuryle3XJaSEjYbqkyo2X+LToBJE0gTcpKz+U9o7hpmZoNHpweZB4B/kHQ6cA/wE2Bt\nUub/E8AtNeWrWy6/AH4q6WvAZyLiDytbGWfzm5k1p2OTMSWNIXXcb13Q9Z2MaWbWpG5LxuzMCGhm\nZv3ScS0ZSc9HxPAWXGdbYIOIuLzBcbdkzMya1A0tmVZFvbHA37XoWm9yMqaZWf+1NchIukTSXEl3\n58XHKvtPzPuukbRu3redpJsl3SXpYklvyfuvlzQub68raaGk1YB/Jy1qdoekz7SovpVkzN3Ta+Ql\nDjRmZo21uyVzeERsD+wATJI0GhgG3BYRW5GWWD4mlz0bODoitgUWVO0Palo/EfEq8G/ALyJibERM\nb011nYxpZtaMdg9hPlLS3nn7b4BNgTfoydw/F7hY0khgVETMzPvPAvoKHKKPjH8nY5qZFattQUbS\nLqQlkneMiJckzaAne19V/9bro6kOHq/R0yJbs07ZhpyMaWZWrHY+LhsJLM4B5j3AjlV12jdvH0Ba\nBXMJsFjShLz/YOD6vP0wsH3erpwHsIS0SmbLpMTLJRNh8tXptcSTY5qZ9aJtQ5glrQ78ChhDyuwf\nBRwL/AY4FdgD+Auwf0Q8k4cknwKsBTxEmp35OUmbkaaWeR34LXBgRGwsaW3SEsirAd+t7ZfxEGYz\ns+Y1+93ZcXkyA8VBxsysed2QJ2NmZl2itEFG0vPtroOZmfWutEGGNs1r5ox/M7P+69ggI+noPE0/\nkk6SdG3e3lXSeXn7OEl3SpojaT1JIyT9QdKq+fjI/H5Ii+rkjH8zsyZ0bJABbgR2ztvbA8Ny8JhA\nmglgGDAnIrbLZY+IiKWkoc2fyOd9FvhlRLzemio549/MrBntzvjvze3AOEkjgJeAuaRgszMwCXgl\nIn6by84Dds/bPwP+Cfg1cCjw941u4Ix/M7NidWyQiYhXJS0kBYrZwHxgV2CTiLhP0qtVxd8gf5aI\nmC1pTJ5RYEhE3NvLPaY2Vytn/JuZNaNjg0w2EzgKOIy05PJJwG39OO9s4DzSTMwt4+WXzcya08l9\nMpCCzPqkvpcngRfzPlh2dFntTMw/B9YGzm91hSLiyohn9kgvBxgzs950Zca/pH2BPSPikF7KOOPf\nzKxJzX53dvrjsqZJ+iHwUQpYFdPMzJrTVS0ZSatExBv9LOuWjJlZk0o7d1kfyZfnStpd0mxJ8yRd\nKGlYPv6wpOMlzQM+I2mPeuVaWE9n/JuZ9VPHBBkaJ1/uTBq+/K/ARyJiHCkvZnIuG8DTef+1wLeA\n3eqUW2nO+Dcza04n9ck0Sr6cAFwKbAHMkgSwOil3pqKyXPOOudzsBuVW0ugpcGLO+AdgaB7O7FFm\nZmZ1dEyQ6SX58t3AQuDqiDigwekvVG33Vm4Zzvg3MytWR3X8SzoGOJye5Mu5pOTLL5Eefe0aEQ/l\nfpYNIuLBHJjGRcQiSW/N5yxXrs69mu7473lcNq06499LMJvZoFHajv+sbvJlRDxNauGcL+kuUktn\ns9qTI+Kp/pRbUSmYLJkIk69OLwcYM7PedFRLZiB5CLOZWfPK3pIxM7MuUmiQkTRK0lfy9i6SLiv4\nfmMkLSjyHmZm1n9Ft2TWBr5a8D0GlJMxzcz6r+ggczywiaQ7gP8GhkuaLuk+SedWCknaTdLtkuZL\nOk3S6nn/w5JG5+3tJc3I22+VdLWkuyX9tLocMETSqfnYlZLWbNWHcTKmmVlzig4y3wAeioixwNHA\nWOBIUsLkxpLG5yBwBrBfRGxDyt35Sj6/0aiEY4BrImIr4CJgw6pjmwIn52PPAvu07uN4+WUzs2YU\nnYypmu1bI+JxAEl3Au8iJVIujIjf53JnAf8A/KCX6+4E7A1vLiS2uOrYwoiYn7fnAWMaVs7JmGZm\nhRrojP+Xq7Zfz/evba2oat9r9LS2ah97NRpCV3uPoY0q4+WXzcyKVfTjsqXAiF6OB/AAMEbSJnnf\nwcANefth0vxlsOxjr1nAfgCS9iANMCickzHNzJpTaEsmIp6RNCsPK34ReKJOmZclHQZMz7Mu3wqc\nkg8fC5wmaQlwPT0tnGNJWf0HA3PydZcCI1m+ZdTSbNMcVBxYzMz6oZQZ/3n02esR8bqkDwA/ioj3\nNnkNZ/ybmTVpsCy/vCFwoaRVgFeAI9pcHzMzq6OULZlWcEvGzKx5nrusjtzi6W9ZZ/SbmbVIxwUZ\nScdKOrLq/XckTZL0PUkL8qwAlZFly8yHJulkSYfk7YclHS9pHrBvP+/tjH4zsxbquCADnA58Ht5s\ngewP/AnYFtgG+AjwPUnr1zk36BlNFsDTETEuIi7s362d0W9m1kod1/EfEY9IekbSdqQFzO4AJgA/\nj9SB9KSkG4AdgCV9XO6C3g7WZvzD6AYlzcxsRXRckMl+RlqC+W2kls3uLJ/hHyw7IwAsn93/Qm83\nqc34l7SGM/rNzFqnI0eXSVoNuBsYQprwcm/gS8DfAesAtwHvA9YAbiQtsbwWcDswNSLOlrQQGBcR\nixrco+4IidQHU3lEtugEZ/SbmfXoijyZiHhV0nXA4vyI7JKcdHkXqQVzdEQ8CSDpQlJAWkgKMit7\nb2f0m5m1SKe2ZFYhzaC8b0Q8VNA9nCdjZtak0ufJSNoCeJC0XkwhAcbMzAZGR7ZkVoakVSPitX6U\nc0vGzKxJpW3JSBoj6X5JZ0h6QNJ5kvbIszj/TtIOkkZL+pWkuyTNkbR1PneqpHMk3QScJWldSRdJ\nujW/xjdRD2f8m5m1SKd1/G9CWjfmXtIIsv0jYidJewHfBB4F5kXE3pI+DJxNWtIZYHNgQl464OfA\nSRExS9KGwBWkJZ97VZXxXxnCPEGS14wxM1tBnRZkFkbEPQCS7gGuyfsXkJZq3gj4NEBEzJC0jqQR\npBFnl0ZEZVXMjwDvkd5s0Y2QtFZE/LX324+ekgLMIZUdQ2HyFDzazMxshXRakKleOvkN0jT+kILI\nENJyyo2eBVYHEAHvj4hXGpRNhZzxb2ZWqE4LMn2ZCRwIHCdpF+CpiFiqqiZLdhUwCfg+gKTtIuLO\n2os549/MrFidFmR6Wzo5SMsuny7pLtKUMYdUHasuOwn4US63KnAD8NU+bx5xpaSJ+REZsMQZ/2Zm\nK6HrhjD3l4cwm5k1r7RDmM3MrPuUJshIej7/u4Gk6Xn7UEk/bG/NzMyskdIEGXKfS0Q8HhGfqd7X\nSk7GNDNrnTIFGeDNmQEWVN5W7f+EpNk5d2aPvD1P0oWShvXz2l5+2cyshUoXZOpJI8L4BvBxUuD5\nFrBbRIwjzeY8uX9X8vLLZmat1GlDmFfErsD2wO4R8bykT5KmkJmd02dWB2bXO9HJmGZmxSp7kAng\nIdKUM5uRWi0AV0fEAX2e7GRMM7NClf1xmYBHgH2Bs/NaNLcAO0naBEDSMEmb9udiKfFyyUSYfHV6\nLfHkmGZmK6FMLZna7P/KvxERD0g6EJgOfBI4FDg/tUyA1EfzYL9u4uWXzcxaxhn/ZmbWb874NzOz\njuEgY2ZmhXGQqeGMfzOz1ilFn0zO2L8QeAdp8bL/IA1dPgEYDjwNHBoRT+RRZScDbyUtZHZERDxQ\n55rLPVfsyfifVj2E2SPMzMyyZvtkyjK67GPAYxHxCQBJI4HLgb0i4hlJ+wPfAb4AnAp8KSJ+L+n9\nwI+B3fp3Gy+/bGbWSmUJMvOB70s6HvgN8CywFXBNzuofAjyeWzzjgelVi2Wu3uiizvg3MytWKR6X\nAUh6C/AJ4AhgBvDRiBhfU2YkcH9EbNCP6/lxmZlZk5p9XFaKICPp7cDiiHgpz032FWBT4PMRcbOk\n1YBNI+JeSbOAkyLiIqXmzNYRMb/ONev+oVKgqUyKucjLL5uZVenWILMH8D3gDeAVUpB5HZgGjCI9\n9jspIk6TNAb4CfB2YDXg/Ig4rs41nYxpZtakrgwyRXCQMTNrXldk/EsaJekrfZSpXrzMzMw6UEcG\nGWBt4KvtroSZma2cTg0yxwObSLpD0omSrslLKc+XtFdtYUkbS7pd0jhJm0i6XNJcSTdK2qyZGzvj\n38ysdTo1T+YbwJYRMVbSEGCtiFgqaV1gDnBppWAOIucDh0TEAknXsoLJmD1DmE+sDGGeIMlDmM3M\nVlCnBpnqTqVVgP+UtDNpdNkGktbLx9YDfgVMjIj7JQ0HPkA/kzGX54x/M7NW6tQgU+1AYF3gvRHx\nuqSFwJr52LOklTF3Bu4nBaRnI2Jsfy7sjH8zs2J1apBZCozI26OAJ3OA+TCwUVW5V4BPA1dKej4i\nzpe0UNK+fSVjAkTE1Or3aSXNSROA6oz/E1r5wczMBpOOzZORdB6wDXAbsDlptuW5wPuBj5NaLZdG\nxDaSRgFXA/8O3M1KJGM649/MrDEnY/aTkzHNzJrXFcmYZmbWHRxkzMysMA4yNZyMaWbWOoUFGUn/\nKemrVe+nSjpK0vckLcjZ+/vlY2dJ+lRV2fMk7Slpo5y1Py+/PpCPryLpx5Luk3SVpN9K2icfGyfp\n+pzxf4Wk9ZuocyUZc/f0GnmJA42Z2UqIiEJewHbA9VXv7wE+D1xFSrZcj5Tjsj7wQeCSXG4U8AdS\nABwKrJH3bwrclrf3BX6bt98GLCINZV4NmA2sk4/tD5zWoH6x/L7RV8GZAZFfZwaMvqqov5Fffvnl\nV9le9b47e3sVlicTEXdKWi8vOLYesDgHnp9HqumTkm4AdoiIy3LLZN0cQC6KiDckrQ6cLGlb0vox\nm+bLTwAuzPf5i6QZef9mwJbULMvcqI5OxjQzK1bRyZjTSUFjfeAC4F0sO2XM/2/v3qPmqso7jn9/\n3AzkAkQQUMRYFCsYAiYo5IIhlC4vgE1FqVIgaK3tUkQJVARa6Got6HLJtVBUhICKBkkQcCmk3BJD\nuORGAoG40OA1EuWWCwmkydM/9h5y8mZm3plkhjnzvr/PWlk5c86ZfZ7slTdPzjn72VtAZQz1DcDJ\npLuPSXnfF4HlEXFynsNsXd4fPdopejx6LMtcS7gY08ysrdr94v+HwMdJiWYqMAs4Mb9T2ZM0HczD\n+dzrgS+QbsWezPuGAH/M26eQ7kwAZgMfUbIXMD7vXwrsKelwAEk7Sjqw0WAj4k5YORHOnJF+rfTk\nmGZm26CtdzIRsSRPWvm7iHgGmJ5f3j9Kuhs5OyJW5HNXSFoCTC80cRVwi6RTgJ8Bq/P+W0gzKy8B\nfgvMB16MiPWSTgAuz7MA7ABcks9rNOY78YSYZmYtUZqKf0m7AIuAQyNiVQPnD4yINZJeDzwEjK4k\nrAavF+GKfzOzpnTltDKS/gr4NvAN0tv3VRFR911Iftm/G2kq/69GxA1NXtNJxsysSV2ZZIokXQCs\n7i3JtOA6TjJmZk3qyrnLJJ0naamkWaRhyEg6RNKDkh6VNE3SbnlI9Nx8fISkjZL2zZ+fkrSzpOsl\nXSZptqRfVoo0m4jFFf9mZi3S8SQjaSRp2PII4IPAYfnQFNLAgBHAYuCC/M5lgKTBpJFpjwBHSnoL\nac2Ztfm7e0fEGOBY4OImYnHFv5lZC5Vh0bJxwLSIWAesk3QbMBDYLSJm5XOmkGpuIFX0j8nfuwh4\nP6lmZmY+HqQlmYmIJ/IQ5wZ5+WUzs1YqQ5KpV1hZUTw+kzQNzX7Aj4Fzcht3FM55pcZ3N2/UFf9m\nZm1VhiQzE7he0kWkuceOA64Bnpc0NiJ+TpoJ4L58/izgv0jzooWk50iP2c5p9sKu+Dcza6+OJ5mI\nWCDph6QCzRWkGQCC9Mzqf3L9zC+B0/L5v87zklUej80C3hgRLxabrbHdWyx3SpqYH5EBK738spnZ\nNijdEObXiocwm5k1ryuHMJuZWd/kJGNmZm3jJGNmZm3T1UlG0rC8BPM3JT0m6U5JA6rNFtBEm674\nNzNrka5OMtnbgCsj4l3AC8BHqDJbQCMNueLfzKy1Oj6EuQWWRcSivD0P2J/aswX0whX/Zmat1BeS\nzMuF7Q2k6f+LXPFvZtYhfSHJ9PQi8FyN2QI244p/M7P26gtJpmc1aQCTqDJbQK8NueLfzKylXPFv\nZtJ+D4sAABAjSURBVGYNc8W/mZmVRmmTjKTVLWpnmKTFrWjLzMyaU9okQxOzJ7eSizHNzFqn9C/+\nJQ0irXS5O2m9mfMj4jZJw4Cfkqb6Hw38HvhwRKzLSzp/h5So7mriWpVizMrosrGSJvrlv5nZ1inz\nnUzFWmBiRIwEJgDFIcXVqv0BrgM+GxGHNHepoZPh8lyMeSppe+jkbYzfzKzfKv2dDCkRXiRpHLAR\neKOkN+RjPav9h0naFdg118gA3Ah8oFrDLsY0M2uvbkgyJwF7AO+OiA2SlgED8rGe1f47V/l+zaF2\nLsY0M2uvbkgyQ4AVOcEcBbyl3skR8aKkFySNiYjZpCTVEBdjmpm1VpmTTGV02feA2yUtAuYCT1Q5\np+fn04DvSKq8+G94pFpOKk4sZmYt4Ip/MzNrmCv+zcysNJxkzMysbUqbZCSdLen0vH2JpLvz9gRJ\n35V0laRH8rLLFxaOTS+0cYykaU1e1xX/ZmYtUtokA8wExuXtUcBASTvkffcD50XEYcAI4H2S3hUR\n9wB/Ken1+XunAdc2ekEvv2xm1lplTjLzgZGSBgPrgDmkZDMW+DlwoqR5+byDgAPz924ETpa0G3A4\naeqZBrni38yslUo7hDki1ufCy0nAA8Ai0rQybyNNNTMZGJXrYq5jUyHmdcDtpMQ0NSI21rqGK/7N\nzNqrtEkmmwWcRXrs9RhwCfAIqUBzDbBS0l6kaWPuBYiI5ZL+AJwPHF2vcVf8m5m1VzckmXOBORGx\nVtJaYFZELJK0AHgS+C3p8VnR94E9ImJpMxdzxb+ZWWv1yWJMSVcC8yLiujrnuBjTzKxJzf7b2eeS\nTB4MsAo4JiLW1znPScbMrEn9NslIWh0Rg6rsvx64PSJu6bHfScbMrEn9eVqZWtky6hwzM7M26sok\nI+lMSYvzrzN6HJOkKyU9KWkG8AbqrClTpW1X/JuZtUjZR5dtQdJIUu3Me0hJ8iFJ9xdOmQgcALwT\n2BtYQoNV/4WK/8oQ5rGSJnqEmZnZ1um6JEOq+J8WEWsB8txkRxaOHwl8P9LLpuWS7mm86aGTU4I5\ntbJj5zyc2UnGzGwrdGOSCbZ8/BW9HK/KFf9mZu3VjUlmFnC9pItJj8smAicXjs8EPiNpCrAXcBRp\ndc0tuOLfzKy9ui7JRMSCPCz54bzrWxGxMC+1TERMlzSB9C7mN6R5zxpt2xX/ZmYt1GfqZJrlOhkz\ns+b15zoZMzMrmT6bZCR9WNI7Ox2HmVl/1meTDGlAwIG9ntWDizHNzFqnq97JSPpX4CTgT6Qp/ucB\ntwJXAnsCLwGfBl5PWrjsxfzrIxHxqx5tbfFccVMx5uXF0WUuxjQzy5p9J9M1o8skHQb8LXAwsBNp\n2eV5wDXAP0XEU5LeC1wVEUdLuo00Mea0xq/iYkwzs1bqmiQDjAFujYhXgFck3Q4MAEYDN0uvJtad\nCt+pm21djGlm1l7dlGSqVfJvB7wQEYfW+U7tBl2MaWbWVt304n82cJyk10kaBBxLegezTNIJ8OoM\nzAfn81cBQ5q5QHr3snIinDkj/fL7GDOzbdFtL/4vAD4BPAOsAH4K3A1cDewD7AjcFBH/KWk08C1g\nHfDRRl78m5lZfX16ZUxJAyNijaRdgPuBT0fEwq1sy0nGzKxJXV/xL2lXSf+ct/eRdHPh8DclLSCN\nKvvR1iYYMzN7bZTuTkbSMNLQ4+Ftvo7vZMzMmtT1dzLAxcD+khZImippMYCkSZJulXSXpGWSPifp\nLEnzJc2RtHs+b39JP5U0V9JMSe9o5uKu+Dcza50yJpkvAb/Mw5LP7nHsINJ0MYcBXwFWRsS7gTnA\nKfmcbwKnR8So/P2rGr1wYfnlY9KvIdOdaMzMtl4Z62RUYxvg3ohYA6yR9AJp6hiAxcDBkgZSvziz\nF674NzNrpTImmXpeLmxvLHzeSPqzbAc8X6c4czOu+Dcza68yJplVwOAmvyOAiFiV39ecEBE/Urqd\nGR4Ri6p9yRX/ZmbtVbokExHPSpqdX/g/waapYYLNp4npuV35fBJwtaTzycWZQNUkU+XaXn7ZzKyF\nSjeE+bXiIcxmZs3rC0OYzcysj+gzSUbSTyQNydur8+/DKnU2Zmb22uszSSYiPhQRKysft7YdF2Oa\nmbVO1yQZSWdLOj1vXyLp7rw9QdL38qiybRqD7GJMM7PW6pokA8wExuXtUcBASTsAY0kzMrfA0Mlw\neS7GPJW0PXRya9o2M+t/SjeEuY75wEhJg0lrxMwlJZtxwOeBLzfboIsxzczaq2uSTESsl7QMmAQ8\nQKp9mQDsHxFPFKaRaabNC4ufXYxpZtZaXZNkslnAWcBpwGPAJcAjrWrcxZhmZq3VjUnmXGBORKyV\ntDbv66nWzAC9yknFicXMrAVc8W9mZg1zxb+ZmZWGk4yZmbWNk0wPrvg3M2udrnknI+kUYDLpRf4i\nYCpwPmnly2eBkyJiRa592Q94a/790oi4okp7WzxX3FTxf3lxCPNEjzAzM0uafSfTFaPLJB0EnAcc\nERHPSdodiIg4PB//B+BfSMObAQ4AjgKGAEslXRURG3q/kpdfNjNrpa5IMqSiy6kR8RxARDwvabik\nqcDepLuZX+VzA/hJRKwHnpW0AtgL+EPPRl3xb2bWXt2SZIK8xHLBFcDXI+IOSe8DLiwce6WwvYEa\nf05X/JuZtVe3JJl7gOmSvpEflw0lPQqr3J1MKpy71bUvrvg3M2utrkgyEbFE0leA+yVtABaQ7lxu\nlvQ8KQm9pXI627CejCv+zcxap2tGl7WaK/7NzJrnin8zMysNJ5mSkzS+0zH0phtiBMfZao6ztbol\nzmY5yZTf+E4H0IDxnQ6gQeM7HUCDxnc6gAaN73QADRrf6QAaNL7TAbSDk4yZmbWNk4yZmbVNvx5d\n1ukYzMy6UTOjy/ptkjEzs/bz4zIzM2sbJxkzM2ubfpdkJD0taZGkBZIe7nQ8FZK+I+kZSYsL+4ZK\nmiHpF5LukrRbJ2PMMVWL80JJv8t9ukDS+zsZY47pzZLulfS4pMckfT7vL1Wf1omzNH0qaYCkhyQt\nlLRE0kV5f9n6slacpenLIknb53huz59L1Z8VVeJsqj/73TsZScuAkZVlA8pC0jhgNXBDRAzP+74G\n/DkivibpS8DuEXFOCeO8AFgVEd/oZGxFkvYG9o6IhZIGAfOAvwFOo0R9WifOj1GiPpW0S0S8JGkH\n4OektZuOp0R9WSfOoylRX1ZIOhMYCQyOiOPL+PMOVeNs6ue9393JZKWbsywiZgHP99h9PDAlb08h\n/ePTUTXihJL1aUT8MSIW5u3VwBPAmyhZn9aJE0rUpxHxUt7cCdie9HegVH0JNeOEEvUlgKR9gQ8C\n32ZTbKXrzxpxiib6sz8mmQD+V9JcSZ/udDC92Csinsnbz5AWXyur0yU9KunastzmV0gaBhwKPESJ\n+7QQ54N5V2n6VNJ2khaS+uzeiHicEvZljTihRH2ZXQKcDWws7Ctdf1I9zqCJ/uyPSWZMRBwKfAD4\nbH78U3qRnmuW9dnm1cBbgUOA5UBpFnrLj6BuAc6IiFXFY2Xq0xznj0hxrqZkfRoRGyPiEGBf4EhJ\nR/U4Xoq+rBLneErWl5KOBVZExAJq3BGUoT/rxNlUf/a7JBMRy/PvfwKmA+/pbER1PZOf2SNpH2BF\nh+OpKiJWREa6rS5Fn0rakZRgboyIW/Pu0vVpIc7vVuIsa59GxIvAT0jP6EvXlxWFOEeVsC9HA8fn\n98M3ARMk3Uj5+rNanDc025/9KslI2kXS4Lw9EPhrYHH9b3XUbcCpeftU4NY653ZM/oGomEgJ+lSS\ngGuBJRFxaeFQqfq0Vpxl6lNJe1QeiUjaGTiGtHBg2fqyapyVf7izjv/9jIhzI+LNEfFW4O+AeyLi\nZErWnzXiPKXZv5tdsTJmC+1FWsYZ0p/9exFxV2dDSiTdBLwP2EPSb4F/Ay4Gpkr6FPA0acRRR1WJ\n8wJgvKRDSLf3y4DPdDDEijHA3wOLJC3I+75M+fq0WpznAh8vUZ/uA0yRtB3pP6Y3RsTdOd4y9WWt\nOG8oUV9WU3ksVra/m0ViU5xfkzSCBvuz3w1hNjOz106/elxmZmavLScZMzNrGycZMzNrGycZMzNr\nGycZMzNrGycZMzNrGycZ63Mk7Svpx3nK9KckXZqr6vslSTfleabOKOzbTdKfC5+PkLRR0hvz510l\nPbsN17xP0shti9z6AicZ61NyBf00YFpEHAAcAAwCvtLGa5b25yhXu4+KiBERcVllf0S8ACyX9M68\nazQwn1QcCnA4aULRRq5Rrai743NvWTmU9ofDbCtNANZGxBRIEyYCXwQ+qbSo1faSvi5pcf7f/ecA\nJB0mabbSglcPShokaZKkKyoNS7pD0pF5e3VuZyFwhKR/lfRwbveawnfuk3Sx0mJaSyWNzftrxTEy\nf2eupJ8V5rL6vNLCZo/mWRc2k/9s1yktyDc/TwwJcBfwJqXFpcb2+NoDpOQCcARwaeHzaGC2pNdV\nazf3zW2S7gZm5Ov/QGmxsGnAzpRsen3rjP42rYz1fQeRFv56VUSskvQb4O3AWGA/YEREbJS0u6Sd\ngB8AH4uIeUozIq9ly/+JFz/vAjwYEWcBSFoSEf+Rt2+QdGxE3JG/s31EvFfSB0jT8BwD/GOVOHYE\nrgCOi4hnJZ1IugP7FPAlYFhErJc0pMqf+7PAhog4WNI7gLskvR04Drgjzzze02zSFEHXAn8B3Mym\nKUKOAC4CPlel3QPyOYcCwyPiBaWFrVZHxIGShpPuinwnY76TsT6nt3/YjgauyXc4RMTzwDuA5REx\nL+9bHREbemlnA2nm5IoJ+Q5oEelu6sDCsWn59/nAsF7iOIi03tEC4Dw2LWC2CPi+pJPytXsaA3w3\nt7UU+DXpUWG9u4kHgNFK69g8HREvk544DiTNsvxwnXYDmJEfuwGMK5y3OMdr5jsZ63OWACcUd+T/\n+e8HPFXZ1WBb/8fm/xEbUNhel6c6R9IA4L9Jy3r/Xml52uK5L+ffN7D5z1zPOAQ8HhGj2dKHgCNJ\ndybnSRpeJRE29XgqIp5SmrX4OFLCgXQX+ElgWUSsSa+4ara7Zluub/2D72SsT4mIu4FdJJ0M6d0H\naVGl6yJiLTAD+Ezej6TdgaXAPpJG5X2D8/GngUOUvJna62ZUEsqz+VHbRxsItVocTwJ7Sjo879tR\n0oF5MMN+EXEfcA6wKzCwR3uzgJPy9w4gJdWlDcTxIHAGMCd/ngN8gfQorVa7T7JlQpkJfCKf9y7g\n4Aaubf2Ak4z1RROBj0r6Bekf2pdI0+dDWmTpN6Sp9RcCH4+IV4ATgSvyvjuB10XEbNJU5kuAy9j8\nXc+rj+XyI6NvAY8BP6P+qKzK96rFsZ50F/bVvG8B6d3I9sCN+VHcfOCyiFjZo92rgO3yOT8ATs3t\nbRZrFbNJq0jOzZ8fJK16WLmzqdVuz9FjVwODJC0B/r3QnvVznurfzMzaxncyZmbWNk4yZmbWNk4y\nZmbWNk4yZmbWNk4yZmbWNk4yZmbWNk4yZmbWNk4yZmbWNv8PTa0wEYe8sZEAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7f8e9656b4a8>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.figure(figsize=(6,9))\n", "q=np.empty(51)\n", "e=[]\n", "for i in range(51):\n", " q[i]=swc[i][1]\n", "q2=sorted(q,reverse=False)\n", "for i in range(51):\n", " e.append(swc[i][0])\n", "plt.scatter(q2,range(51),marker='o'),plt.ylim(top=51,bottom=-1)\n", "plt.xlabel('Occurances of Word'),plt.xlim(left=5)\n", "plt.ylabel('Words')\n", "plt.yticks(range(50,-1,-1),e)\n", "plt.title('Words of Moby Dick Chapter 1')\n", "plt.tick_params(axis='x',top='off')\n", "plt.tick_params(axis='y',right='off')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true, "deletable": false, "nbgrader": { "checksum": "481908a47f48647c344ed328c691ba63", "grade": true, "grade_id": "algorithsex01e", "points": 2 } }, "outputs": [], "source": [ "assert True # use this for grading the dotplot" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.4.0" } }, "nbformat": 4, "nbformat_minor": 0 }
mit
stharrold/demo
demo/app_predict/examples/example_app_predict_dev.ipynb
1
11633411
null
mit
vinitsamel/udacitydeeplearning
language-translation/dlnd_language_translation.ipynb
1
88254
{ "cells": [ { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "# Language Translation\n", "In this project, you’re going to take a peek into the realm of neural network machine translation. You’ll be training a sequence to sequence model on a dataset of English and French sentences that can translate new sentences from English to French.\n", "## Get the Data\n", "Since translating the whole language of English to French will take lots of time to train, we have provided you with a small portion of the English corpus." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\"\"\"\n", "DON'T MODIFY ANYTHING IN THIS CELL\n", "\"\"\"\n", "import helper\n", "import problem_unittests as tests\n", "\n", "source_path = 'data/small_vocab_en'\n", "target_path = 'data/small_vocab_fr'\n", "source_text = helper.load_data(source_path)\n", "target_text = helper.load_data(target_path)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Explore the Data\n", "Play around with view_sentence_range to view different parts of the data." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Dataset Stats\n", "Roughly the number of unique words: 227\n", "Number of sentences: 137861\n", "Average number of words in a sentence: 13.225277634719028\n", "\n", "English sentences 0 to 10:\n", "new jersey is sometimes quiet during autumn , and it is snowy in april .\n", "the united states is usually chilly during july , and it is usually freezing in november .\n", "california is usually quiet during march , and it is usually hot in june .\n", "the united states is sometimes mild during june , and it is cold in september .\n", "your least liked fruit is the grape , but my least liked is the apple .\n", "his favorite fruit is the orange , but my favorite is the grape .\n", "paris is relaxing during december , but it is usually chilly in july .\n", "new jersey is busy during spring , and it is never hot in march .\n", "our least liked fruit is the lemon , but my least liked is the grape .\n", "the united states is sometimes busy during january , and it is sometimes warm in november .\n", "\n", "French sentences 0 to 10:\n", "new jersey est parfois calme pendant l' automne , et il est neigeux en avril .\n", "les états-unis est généralement froid en juillet , et il gèle habituellement en novembre .\n", "california est généralement calme en mars , et il est généralement chaud en juin .\n", "les états-unis est parfois légère en juin , et il fait froid en septembre .\n", "votre moins aimé fruit est le raisin , mais mon moins aimé est la pomme .\n", "son fruit préféré est l'orange , mais mon préféré est le raisin .\n", "paris est relaxant en décembre , mais il est généralement froid en juillet .\n", "new jersey est occupé au printemps , et il est jamais chaude en mars .\n", "notre fruit est moins aimé le citron , mais mon moins aimé est le raisin .\n", "les états-unis est parfois occupé en janvier , et il est parfois chaud en novembre .\n" ] } ], "source": [ "view_sentence_range = (0, 10)\n", "\n", "\"\"\"\n", "DON'T MODIFY ANYTHING IN THIS CELL\n", "\"\"\"\n", "import numpy as np\n", "\n", "print('Dataset Stats')\n", "print('Roughly the number of unique words: {}'.format(len({word: None for word in source_text.split()})))\n", "\n", "sentences = source_text.split('\\n')\n", "word_counts = [len(sentence.split()) for sentence in sentences]\n", "print('Number of sentences: {}'.format(len(sentences)))\n", "print('Average number of words in a sentence: {}'.format(np.average(word_counts)))\n", "\n", "print()\n", "print('English sentences {} to {}:'.format(*view_sentence_range))\n", "print('\\n'.join(source_text.split('\\n')[view_sentence_range[0]:view_sentence_range[1]]))\n", "print()\n", "print('French sentences {} to {}:'.format(*view_sentence_range))\n", "print('\\n'.join(target_text.split('\\n')[view_sentence_range[0]:view_sentence_range[1]]))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Implement Preprocessing Function\n", "### Text to Word Ids\n", "As you did with other RNNs, you must turn the text into a number so the computer can understand it. In the function `text_to_ids()`, you'll turn `source_text` and `target_text` from words to ids. However, you need to add the `<EOS>` word id at the end of `target_text`. This will help the neural network predict when the sentence should end.\n", "\n", "You can get the `<EOS>` word id by doing:\n", "```python\n", "target_vocab_to_int['<EOS>']\n", "```\n", "You can get other word ids using `source_vocab_to_int` and `target_vocab_to_int`." ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Tests Passed\n" ] } ], "source": [ "def text_to_ids(source_text, target_text, source_vocab_to_int, target_vocab_to_int):\n", " \"\"\"\n", " Convert source and target text to proper word ids\n", " :param source_text: String that contains all the source text.\n", " :param target_text: String that contains all the target text.\n", " :param source_vocab_to_int: Dictionary to go from the source words to an id\n", " :param target_vocab_to_int: Dictionary to go from the target words to an id\n", " :return: A tuple of lists (source_id_text, target_id_text)\n", " \"\"\"\n", " # TODO: Implement Function\n", " #print (source_text)\n", " source_letter_ids = [[source_vocab_to_int.get(word, source_vocab_to_int['<UNK>']) for word in line.split(' ')] for line in source_text.split('\\n')]\n", " target_letter_ids = [[target_vocab_to_int.get(word, target_vocab_to_int['<UNK>']) for word in line.split(' ')] + [target_vocab_to_int['<EOS>']] for line in target_text.split('\\n')]\n", " return source_letter_ids, target_letter_ids\n", "\n", "\"\"\"\n", "DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE\n", "\"\"\"\n", "tests.test_text_to_ids(text_to_ids)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Preprocess all the data and save it\n", "Running the code cell below will preprocess all the data and save it to file." ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\"\"\"\n", "DON'T MODIFY ANYTHING IN THIS CELL\n", "\"\"\"\n", "helper.preprocess_and_save_data(source_path, target_path, text_to_ids)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Check Point\n", "This is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk." ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\"\"\"\n", "DON'T MODIFY ANYTHING IN THIS CELL\n", "\"\"\"\n", "import numpy as np\n", "import helper\n", "import problem_unittests as tests\n", "\n", "(source_int_text, target_int_text), (source_vocab_to_int, target_vocab_to_int), _ = helper.load_preprocess()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Check the Version of TensorFlow and Access to GPU\n", "This will check to make sure you have the correct version of TensorFlow and access to a GPU" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "TensorFlow Version: 1.2.1\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/Users/vsamel/anaconda2/envs/tensorflow/lib/python3.5/site-packages/ipykernel_launcher.py:15: UserWarning: No GPU found. Please use a GPU to train your neural network.\n", " from ipykernel import kernelapp as app\n" ] } ], "source": [ "\"\"\"\n", "DON'T MODIFY ANYTHING IN THIS CELL\n", "\"\"\"\n", "from distutils.version import LooseVersion\n", "import warnings\n", "import tensorflow as tf\n", "from tensorflow.python.layers.core import Dense\n", "\n", "# Check TensorFlow Version\n", "assert LooseVersion(tf.__version__) >= LooseVersion('1.1'), 'Please use TensorFlow version 1.1 or newer'\n", "print('TensorFlow Version: {}'.format(tf.__version__))\n", "\n", "# Check for a GPU\n", "if not tf.test.gpu_device_name():\n", " warnings.warn('No GPU found. Please use a GPU to train your neural network.')\n", "else:\n", " print('Default GPU Device: {}'.format(tf.test.gpu_device_name()))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Build the Neural Network\n", "You'll build the components necessary to build a Sequence-to-Sequence model by implementing the following functions below:\n", "- `model_inputs`\n", "- `process_decoder_input`\n", "- `encoding_layer`\n", "- `decoding_layer_train`\n", "- `decoding_layer_infer`\n", "- `decoding_layer`\n", "- `seq2seq_model`\n", "\n", "### Input\n", "Implement the `model_inputs()` function to create TF Placeholders for the Neural Network. It should create the following placeholders:\n", "\n", "- Input text placeholder named \"input\" using the TF Placeholder name parameter with rank 2.\n", "- Targets placeholder with rank 2.\n", "- Learning rate placeholder with rank 0.\n", "- Keep probability placeholder named \"keep_prob\" using the TF Placeholder name parameter with rank 0.\n", "- Target sequence length placeholder named \"target_sequence_length\" with rank 1\n", "- Max target sequence length tensor named \"max_target_len\" getting its value from applying tf.reduce_max on the target_sequence_length placeholder. Rank 0.\n", "- Source sequence length placeholder named \"source_sequence_length\" with rank 1\n", "\n", "Return the placeholders in the following the tuple (input, targets, learning rate, keep probability, target sequence length, max target sequence length, source sequence length)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "ERROR:tensorflow:==================================\n", "Object was never used (type <class 'tensorflow.python.framework.ops.Operation'>):\n", "<tf.Operation 'assert_rank_2/Assert/Assert' type=Assert>\n", "If you want to mark it as used call its \"mark_used()\" method.\n", "It was originally created here:\n", "['File \"/Users/vsamel/anaconda2/envs/tensorflow/lib/python3.5/runpy.py\", line 193, in _run_module_as_main\\n \"__main__\", mod_spec)', 'File \"/Users/vsamel/anaconda2/envs/tensorflow/lib/python3.5/runpy.py\", line 85, in _run_code\\n exec(code, run_globals)', 'File \"/Users/vsamel/anaconda2/envs/tensorflow/lib/python3.5/site-packages/ipykernel_launcher.py\", line 16, in <module>\\n app.launch_new_instance()', 'File \"/Users/vsamel/anaconda2/envs/tensorflow/lib/python3.5/site-packages/traitlets/config/application.py\", line 658, in launch_instance\\n app.start()', 'File \"/Users/vsamel/anaconda2/envs/tensorflow/lib/python3.5/site-packages/ipykernel/kernelapp.py\", line 477, in start\\n ioloop.IOLoop.instance().start()', 'File \"/Users/vsamel/anaconda2/envs/tensorflow/lib/python3.5/site-packages/zmq/eventloop/ioloop.py\", line 177, in start\\n super(ZMQIOLoop, self).start()', 'File \"/Users/vsamel/anaconda2/envs/tensorflow/lib/python3.5/site-packages/tornado/ioloop.py\", line 888, in start\\n handler_func(fd_obj, events)', 'File \"/Users/vsamel/anaconda2/envs/tensorflow/lib/python3.5/site-packages/tornado/stack_context.py\", line 277, in null_wrapper\\n return fn(*args, **kwargs)', 'File \"/Users/vsamel/anaconda2/envs/tensorflow/lib/python3.5/site-packages/zmq/eventloop/zmqstream.py\", line 440, in _handle_events\\n self._handle_recv()', 'File \"/Users/vsamel/anaconda2/envs/tensorflow/lib/python3.5/site-packages/zmq/eventloop/zmqstream.py\", line 472, in _handle_recv\\n self._run_callback(callback, msg)', 'File \"/Users/vsamel/anaconda2/envs/tensorflow/lib/python3.5/site-packages/zmq/eventloop/zmqstream.py\", line 414, in _run_callback\\n callback(*args, **kwargs)', 'File \"/Users/vsamel/anaconda2/envs/tensorflow/lib/python3.5/site-packages/tornado/stack_context.py\", line 277, in null_wrapper\\n return fn(*args, **kwargs)', 'File \"/Users/vsamel/anaconda2/envs/tensorflow/lib/python3.5/site-packages/ipykernel/kernelbase.py\", line 283, in dispatcher\\n return self.dispatch_shell(stream, msg)', 'File \"/Users/vsamel/anaconda2/envs/tensorflow/lib/python3.5/site-packages/ipykernel/kernelbase.py\", line 235, in dispatch_shell\\n handler(stream, idents, msg)', 'File \"/Users/vsamel/anaconda2/envs/tensorflow/lib/python3.5/site-packages/ipykernel/kernelbase.py\", line 399, in execute_request\\n user_expressions, allow_stdin)', 'File \"/Users/vsamel/anaconda2/envs/tensorflow/lib/python3.5/site-packages/ipykernel/ipkernel.py\", line 196, in do_execute\\n res = shell.run_cell(code, store_history=store_history, silent=silent)', 'File \"/Users/vsamel/anaconda2/envs/tensorflow/lib/python3.5/site-packages/ipykernel/zmqshell.py\", line 533, in run_cell\\n return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs)', 'File \"/Users/vsamel/anaconda2/envs/tensorflow/lib/python3.5/site-packages/IPython/core/interactiveshell.py\", line 2698, in run_cell\\n interactivity=interactivity, compiler=compiler, result=result)', 'File \"/Users/vsamel/anaconda2/envs/tensorflow/lib/python3.5/site-packages/IPython/core/interactiveshell.py\", line 2808, in run_ast_nodes\\n if self.run_code(code, result):', 'File \"/Users/vsamel/anaconda2/envs/tensorflow/lib/python3.5/site-packages/IPython/core/interactiveshell.py\", line 2862, in run_code\\n exec(code_obj, self.user_global_ns, self.user_ns)', 'File \"<ipython-input-7-c0999ee202bc>\", line 21, in <module>\\n tests.test_model_inputs(model_inputs)', 'File \"/Users/vsamel/gitDL/language-translation/problem_unittests.py\", line 106, in test_model_inputs\\n assert tf.assert_rank(lr, 0, message=\\'Learning Rate has wrong rank\\')', 'File \"/Users/vsamel/anaconda2/envs/tensorflow/lib/python3.5/site-packages/tensorflow/python/ops/check_ops.py\", line 617, in assert_rank\\n dynamic_condition, data, summarize)', 'File \"/Users/vsamel/anaconda2/envs/tensorflow/lib/python3.5/site-packages/tensorflow/python/ops/check_ops.py\", line 571, in _assert_rank_condition\\n return control_flow_ops.Assert(condition, data, summarize=summarize)', 'File \"/Users/vsamel/anaconda2/envs/tensorflow/lib/python3.5/site-packages/tensorflow/python/util/tf_should_use.py\", line 170, in wrapped\\n return _add_should_use_warning(fn(*args, **kwargs))', 'File \"/Users/vsamel/anaconda2/envs/tensorflow/lib/python3.5/site-packages/tensorflow/python/util/tf_should_use.py\", line 139, in _add_should_use_warning\\n wrapped = TFShouldUseWarningWrapper(x)', 'File \"/Users/vsamel/anaconda2/envs/tensorflow/lib/python3.5/site-packages/tensorflow/python/util/tf_should_use.py\", line 96, in __init__\\n stack = [s.strip() for s in traceback.format_stack()]']\n", "==================================\n", "ERROR:tensorflow:==================================\n", "Object was never used (type <class 'tensorflow.python.framework.ops.Operation'>):\n", "<tf.Operation 'assert_rank_3/Assert/Assert' type=Assert>\n", "If you want to mark it as used call its \"mark_used()\" method.\n", "It was originally created here:\n", "['File \"/Users/vsamel/anaconda2/envs/tensorflow/lib/python3.5/runpy.py\", line 193, in _run_module_as_main\\n \"__main__\", mod_spec)', 'File \"/Users/vsamel/anaconda2/envs/tensorflow/lib/python3.5/runpy.py\", line 85, in _run_code\\n exec(code, run_globals)', 'File \"/Users/vsamel/anaconda2/envs/tensorflow/lib/python3.5/site-packages/ipykernel_launcher.py\", line 16, in <module>\\n app.launch_new_instance()', 'File \"/Users/vsamel/anaconda2/envs/tensorflow/lib/python3.5/site-packages/traitlets/config/application.py\", line 658, in launch_instance\\n app.start()', 'File \"/Users/vsamel/anaconda2/envs/tensorflow/lib/python3.5/site-packages/ipykernel/kernelapp.py\", line 477, in start\\n ioloop.IOLoop.instance().start()', 'File \"/Users/vsamel/anaconda2/envs/tensorflow/lib/python3.5/site-packages/zmq/eventloop/ioloop.py\", line 177, in start\\n super(ZMQIOLoop, self).start()', 'File \"/Users/vsamel/anaconda2/envs/tensorflow/lib/python3.5/site-packages/tornado/ioloop.py\", line 888, in start\\n handler_func(fd_obj, events)', 'File \"/Users/vsamel/anaconda2/envs/tensorflow/lib/python3.5/site-packages/tornado/stack_context.py\", line 277, in null_wrapper\\n return fn(*args, **kwargs)', 'File \"/Users/vsamel/anaconda2/envs/tensorflow/lib/python3.5/site-packages/zmq/eventloop/zmqstream.py\", line 440, in _handle_events\\n self._handle_recv()', 'File \"/Users/vsamel/anaconda2/envs/tensorflow/lib/python3.5/site-packages/zmq/eventloop/zmqstream.py\", line 472, in _handle_recv\\n self._run_callback(callback, msg)', 'File \"/Users/vsamel/anaconda2/envs/tensorflow/lib/python3.5/site-packages/zmq/eventloop/zmqstream.py\", line 414, in _run_callback\\n callback(*args, **kwargs)', 'File \"/Users/vsamel/anaconda2/envs/tensorflow/lib/python3.5/site-packages/tornado/stack_context.py\", line 277, in null_wrapper\\n return fn(*args, **kwargs)', 'File \"/Users/vsamel/anaconda2/envs/tensorflow/lib/python3.5/site-packages/ipykernel/kernelbase.py\", line 283, in dispatcher\\n return self.dispatch_shell(stream, msg)', 'File \"/Users/vsamel/anaconda2/envs/tensorflow/lib/python3.5/site-packages/ipykernel/kernelbase.py\", line 235, in dispatch_shell\\n handler(stream, idents, msg)', 'File \"/Users/vsamel/anaconda2/envs/tensorflow/lib/python3.5/site-packages/ipykernel/kernelbase.py\", line 399, in execute_request\\n user_expressions, allow_stdin)', 'File \"/Users/vsamel/anaconda2/envs/tensorflow/lib/python3.5/site-packages/ipykernel/ipkernel.py\", line 196, in do_execute\\n res = shell.run_cell(code, store_history=store_history, silent=silent)', 'File \"/Users/vsamel/anaconda2/envs/tensorflow/lib/python3.5/site-packages/ipykernel/zmqshell.py\", line 533, in run_cell\\n return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs)', 'File \"/Users/vsamel/anaconda2/envs/tensorflow/lib/python3.5/site-packages/IPython/core/interactiveshell.py\", line 2698, in run_cell\\n interactivity=interactivity, compiler=compiler, result=result)', 'File \"/Users/vsamel/anaconda2/envs/tensorflow/lib/python3.5/site-packages/IPython/core/interactiveshell.py\", line 2808, in run_ast_nodes\\n if self.run_code(code, result):', 'File \"/Users/vsamel/anaconda2/envs/tensorflow/lib/python3.5/site-packages/IPython/core/interactiveshell.py\", line 2862, in run_code\\n exec(code_obj, self.user_global_ns, self.user_ns)', 'File \"<ipython-input-7-c0999ee202bc>\", line 21, in <module>\\n tests.test_model_inputs(model_inputs)', 'File \"/Users/vsamel/gitDL/language-translation/problem_unittests.py\", line 107, in test_model_inputs\\n assert tf.assert_rank(keep_prob, 0, message=\\'Keep Probability has wrong rank\\')', 'File \"/Users/vsamel/anaconda2/envs/tensorflow/lib/python3.5/site-packages/tensorflow/python/ops/check_ops.py\", line 617, in assert_rank\\n dynamic_condition, data, summarize)', 'File \"/Users/vsamel/anaconda2/envs/tensorflow/lib/python3.5/site-packages/tensorflow/python/ops/check_ops.py\", line 571, in _assert_rank_condition\\n return control_flow_ops.Assert(condition, data, summarize=summarize)', 'File \"/Users/vsamel/anaconda2/envs/tensorflow/lib/python3.5/site-packages/tensorflow/python/util/tf_should_use.py\", line 170, in wrapped\\n return _add_should_use_warning(fn(*args, **kwargs))', 'File \"/Users/vsamel/anaconda2/envs/tensorflow/lib/python3.5/site-packages/tensorflow/python/util/tf_should_use.py\", line 139, in _add_should_use_warning\\n wrapped = TFShouldUseWarningWrapper(x)', 'File \"/Users/vsamel/anaconda2/envs/tensorflow/lib/python3.5/site-packages/tensorflow/python/util/tf_should_use.py\", line 96, in __init__\\n stack = [s.strip() for s in traceback.format_stack()]']\n", "==================================\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Tests Passed\n" ] } ], "source": [ "def model_inputs():\n", " \"\"\"\n", " Create TF Placeholders for input, targets, learning rate, and lengths of source and target sequences.\n", " :return: Tuple (input, targets, learning rate, keep probability, target sequence length,\n", " max target sequence length, source sequence length)\n", " \"\"\"\n", " # TODO: Implement Function\n", " input_data = tf.placeholder(tf.int32, [None, None], name='input')\n", " targets = tf.placeholder(tf.int32, [None, None], name='targets')\n", " lr = tf.placeholder(tf.float32, name='learning_rate')\n", " kp = tf.placeholder(tf.float32, name=\"keep_prob\")\n", " target_sequence_length = tf.placeholder(tf.int32, (None,), name='target_sequence_length')\n", " max_target_sequence_length = tf.reduce_max(target_sequence_length, name='max_target_len')\n", " source_sequence_length = tf.placeholder(tf.int32, (None,), name='source_sequence_length')\n", " return input_data, targets, lr, kp, target_sequence_length, max_target_sequence_length, source_sequence_length\n", "\n", "\n", "\"\"\"\n", "DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE\n", "\"\"\"\n", "tests.test_model_inputs(model_inputs)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Process Decoder Input\n", "Implement `process_decoder_input` by removing the last word id from each batch in `target_data` and concat the GO ID to the begining of each batch." ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Tests Passed\n" ] } ], "source": [ "def process_decoder_input(target_data, target_vocab_to_int, batch_size):\n", " \"\"\"\n", " Preprocess target data for encoding\n", " :param target_data: Target Placehoder\n", " :param target_vocab_to_int: Dictionary to go from the target words to an id\n", " :param batch_size: Batch Size\n", " :return: Preprocessed target data\n", " \"\"\"\n", " # TODO: Implement Function\n", " '''Remove the last word id from each batch and concat the <GO> to the begining of each batch'''\n", " ending = tf.strided_slice(target_data, [0, 0], [batch_size, -1], [1, 1])\n", " dec_input = tf.concat([tf.fill([batch_size, 1], target_vocab_to_int['<GO>']), ending], 1)\n", "\n", " return dec_input\n", "\n", "\"\"\"\n", "DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE\n", "\"\"\"\n", "tests.test_process_encoding_input(process_decoder_input)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Encoding\n", "Implement `encoding_layer()` to create a Encoder RNN layer:\n", " * Embed the encoder input using [`tf.contrib.layers.embed_sequence`](https://www.tensorflow.org/api_docs/python/tf/contrib/layers/embed_sequence)\n", " * Construct a [stacked](https://github.com/tensorflow/tensorflow/blob/6947f65a374ebf29e74bb71e36fd82760056d82c/tensorflow/docs_src/tutorials/recurrent.md#stacking-multiple-lstms) [`tf.contrib.rnn.LSTMCell`](https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/LSTMCell) wrapped in a [`tf.contrib.rnn.DropoutWrapper`](https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/DropoutWrapper)\n", " * Pass cell and embedded input to [`tf.nn.dynamic_rnn()`](https://www.tensorflow.org/api_docs/python/tf/nn/dynamic_rnn)" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "scrolled": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Tests Passed\n" ] } ], "source": [ "from imp import reload\n", "reload(tests)\n", "\n", " # RNN cell\n", "def make_cell(rnn_size):\n", " enc_cell = tf.contrib.rnn.LSTMCell(rnn_size,\n", " initializer=tf.random_uniform_initializer(-0.1, 0.1, seed=2))\n", " return enc_cell\n", "\n", "def encoding_layer(rnn_inputs, rnn_size, num_layers, keep_prob, \n", " source_sequence_length, source_vocab_size, \n", " encoding_embedding_size):\n", " \"\"\"\n", " Create encoding layer\n", " :param rnn_inputs: Inputs for the RNN\n", " :param rnn_size: RNN Size\n", " :param num_layers: Number of layers\n", " :param keep_prob: Dropout keep probability\n", " :param source_sequence_length: a list of the lengths of each sequence in the batch\n", " :param source_vocab_size: vocabulary size of source data\n", " :param encoding_embedding_size: embedding size of source data\n", " :return: tuple (RNN output, RNN state)\n", " \"\"\"\n", " # TODO: Implement Function\n", " # Encoder embedding\n", " enc_embed_input = tf.contrib.layers.embed_sequence(rnn_inputs, source_vocab_size, encoding_embedding_size)\n", " \n", " cell = tf.contrib.rnn.MultiRNNCell([tf.contrib.rnn.BasicLSTMCell(rnn_size)] * num_layers)\n", "\n", " enc_cell = tf.contrib.rnn.MultiRNNCell([make_cell(rnn_size) for _ in range(num_layers)])\n", " enc_cell = tf.contrib.rnn.DropoutWrapper(enc_cell, output_keep_prob=keep_prob)\n", " enc_output, enc_state = tf.nn.dynamic_rnn(enc_cell, enc_embed_input, sequence_length=source_sequence_length, dtype=tf.float32)\n", " \n", " return enc_output, enc_state\n", " \n", "\n", "\"\"\"\n", "DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE\n", "\"\"\"\n", "tests.test_encoding_layer(encoding_layer)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Decoding - Training\n", "Create a training decoding layer:\n", "* Create a [`tf.contrib.seq2seq.TrainingHelper`](https://www.tensorflow.org/api_docs/python/tf/contrib/seq2seq/TrainingHelper) \n", "* Create a [`tf.contrib.seq2seq.BasicDecoder`](https://www.tensorflow.org/api_docs/python/tf/contrib/seq2seq/BasicDecoder)\n", "* Obtain the decoder outputs from [`tf.contrib.seq2seq.dynamic_decode`](https://www.tensorflow.org/api_docs/python/tf/contrib/seq2seq/dynamic_decode)" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Tests Passed\n" ] } ], "source": [ "\n", "def decoding_layer_train(enc_state, dec_cell, dec_embed_input, \n", " target_sequence_length, max_summary_length, \n", " output_layer, keep_prob):\n", " \"\"\"\n", " Create a decoding layer for training\n", " :param encoder_state: Encoder State\n", " :param dec_cell: Decoder RNN Cell\n", " :param dec_embed_input: Decoder embedded input\n", " :param target_sequence_length: The lengths of each sequence in the target batch\n", " :param max_summary_length: The length of the longest sequence in the batch\n", " :param output_layer: Function to apply the output layer\n", " :param keep_prob: Dropout keep probability\n", " :return: BasicDecoderOutput containing training logits and sample_id\n", " \"\"\"\n", " # TODO: Implement Function\n", " # Helper for the training process. Used by BasicDecoder to read inputs.\n", " training_helper = tf.contrib.seq2seq.TrainingHelper(inputs=dec_embed_input,\n", " sequence_length=target_sequence_length,\n", " time_major=False)\n", " \n", " \n", " # Basic decoder\n", " training_decoder = tf.contrib.seq2seq.BasicDecoder(dec_cell,\n", " training_helper,\n", " enc_state,\n", " output_layer) \n", " \n", " # Perform dynamic decoding using the decoder\n", " training_decoder_output, final_state, final_sequence_lengths = tf.contrib.seq2seq.dynamic_decode(training_decoder,\n", " impute_finished=True,\n", " maximum_iterations=max_summary_length)\n", "\n", " return training_decoder_output\n", "\n", "\"\"\"\n", "DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE\n", "\"\"\"\n", "tests.test_decoding_layer_train(decoding_layer_train)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Decoding - Inference\n", "Create inference decoder:\n", "* Create a [`tf.contrib.seq2seq.GreedyEmbeddingHelper`](https://www.tensorflow.org/api_docs/python/tf/contrib/seq2seq/GreedyEmbeddingHelper)\n", "* Create a [`tf.contrib.seq2seq.BasicDecoder`](https://www.tensorflow.org/api_docs/python/tf/contrib/seq2seq/BasicDecoder)\n", "* Obtain the decoder outputs from [`tf.contrib.seq2seq.dynamic_decode`](https://www.tensorflow.org/api_docs/python/tf/contrib/seq2seq/dynamic_decode)" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Tests Passed\n" ] } ], "source": [ "def decoding_layer_infer(encoder_state, dec_cell, dec_embeddings, start_of_sequence_id,\n", " end_of_sequence_id, max_target_sequence_length,\n", " vocab_size, output_layer, batch_size, keep_prob):\n", " \"\"\"\n", " Create a decoding layer for inference\n", " :param encoder_state: Encoder state\n", " :param dec_cell: Decoder RNN Cell\n", " :param dec_embeddings: Decoder embeddings\n", " :param start_of_sequence_id: GO ID\n", " :param end_of_sequence_id: EOS Id\n", " :param max_target_sequence_length: Maximum length of target sequences\n", " :param vocab_size: Size of decoder/target vocabulary\n", " :param decoding_scope: TenorFlow Variable Scope for decoding\n", " :param output_layer: Function to apply the output layer\n", " :param batch_size: Batch size\n", " :param keep_prob: Dropout keep probability\n", " :return: BasicDecoderOutput containing inference logits and sample_id\n", " \"\"\"\n", " # TODO: Implement Function\n", " start_tokens = tf.tile(tf.constant([start_of_sequence_id], dtype=tf.int32), [batch_size], name='start_tokens') \n", " # Helper for the inference process.\n", " inference_helper = tf.contrib.seq2seq.GreedyEmbeddingHelper(dec_embeddings,\n", " start_tokens,\n", " end_of_sequence_id)\n", "\n", " # Basic decoder\n", " inference_decoder = tf.contrib.seq2seq.BasicDecoder(dec_cell,\n", " inference_helper,\n", " encoder_state,\n", " output_layer)\n", " \n", " # Perform dynamic decoding using the decoder\n", " inference_decoder_output, final_state, final_sequence_lengths = tf.contrib.seq2seq.dynamic_decode(inference_decoder,\n", " impute_finished=True,\n", " maximum_iterations=max_target_sequence_length)\n", " \n", " return inference_decoder_output\n", "\n", "\n", "\n", "\"\"\"\n", "DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE\n", "\"\"\"\n", "tests.test_decoding_layer_infer(decoding_layer_infer)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Build the Decoding Layer\n", "Implement `decoding_layer()` to create a Decoder RNN layer.\n", "\n", "* Embed the target sequences\n", "* Construct the decoder LSTM cell (just like you constructed the encoder cell above)\n", "* Create an output layer to map the outputs of the decoder to the elements of our vocabulary\n", "* Use the your `decoding_layer_train(encoder_state, dec_cell, dec_embed_input, target_sequence_length, max_target_sequence_length, output_layer, keep_prob)` function to get the training logits.\n", "* Use your `decoding_layer_infer(encoder_state, dec_cell, dec_embeddings, start_of_sequence_id, end_of_sequence_id, max_target_sequence_length, vocab_size, output_layer, batch_size, keep_prob)` function to get the inference logits.\n", "\n", "Note: You'll need to use [tf.variable_scope](https://www.tensorflow.org/api_docs/python/tf/variable_scope) to share variables between training and inference." ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Tests Passed\n" ] } ], "source": [ "def decoding_layer(dec_input, encoder_state,\n", " target_sequence_length, max_target_sequence_length,\n", " rnn_size,\n", " num_layers, target_vocab_to_int, target_vocab_size,\n", " batch_size, keep_prob, decoding_embedding_size):\n", " \"\"\"\n", " Create decoding layer\n", " :param dec_input: Decoder input\n", " :param encoder_state: Encoder state\n", " :param target_sequence_length: The lengths of each sequence in the target batch\n", " :param max_target_sequence_length: Maximum length of target sequences\n", " :param rnn_size: RNN Size\n", " :param num_layers: Number of layers\n", " :param target_vocab_to_int: Dictionary to go from the target words to an id\n", " :param target_vocab_size: Size of target vocabulary\n", " :param batch_size: The size of the batch\n", " :param keep_prob: Dropout keep probability\n", " :param decoding_embedding_size: Decoding embedding size\n", " :return: Tuple of (Training BasicDecoderOutput, Inference BasicDecoderOutput)\n", " \"\"\"\n", " # TODO: Implement Function\n", " start_of_sequence_id = target_vocab_to_int['<GO>']\n", " end_of_sequence_id = target_vocab_to_int['<EOS>']\n", " dec_embeddings = tf.Variable(tf.random_uniform([target_vocab_size, decoding_embedding_size]))\n", " dec_embed_input = tf.nn.embedding_lookup(dec_embeddings, dec_input)\n", " dec_cell = tf.contrib.rnn.MultiRNNCell([make_cell(rnn_size) for _ in range(num_layers)])\n", " output_layer = Dense(target_vocab_size, kernel_initializer = tf.truncated_normal_initializer(mean = 0.0, stddev=0.1))\n", " with tf.variable_scope(\"decode\"):\n", " training_decoder_output = decoding_layer_train(encoder_state, dec_cell, dec_embed_input,\n", " target_sequence_length, max_target_sequence_length, \n", " output_layer, keep_prob)\n", " \n", " with tf.variable_scope(\"decode\", reuse=True):\n", " inference_decoder_output = decoding_layer_infer(encoder_state, dec_cell, dec_embeddings, \\\n", " start_of_sequence_id, end_of_sequence_id,\\\n", " max_target_sequence_length, target_vocab_size,\\\n", " output_layer, batch_size, keep_prob) \n", " return training_decoder_output, inference_decoder_output\n", "\n", "\n", "\n", "\"\"\"\n", "DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE\n", "\"\"\"\n", "tests.test_decoding_layer(decoding_layer)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Build the Neural Network\n", "Apply the functions you implemented above to:\n", "\n", "- Encode the input using your `encoding_layer(rnn_inputs, rnn_size, num_layers, keep_prob, source_sequence_length, source_vocab_size, encoding_embedding_size)`.\n", "- Process target data using your `process_decoder_input(target_data, target_vocab_to_int, batch_size)` function.\n", "- Decode the encoded input using your `decoding_layer(dec_input, enc_state, target_sequence_length, max_target_sentence_length, rnn_size, num_layers, target_vocab_to_int, target_vocab_size, batch_size, keep_prob, dec_embedding_size)` function." ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Tests Passed\n" ] } ], "source": [ "def seq2seq_model(input_data, target_data, keep_prob, batch_size,\n", " source_sequence_length, target_sequence_length,\n", " max_target_sentence_length,\n", " source_vocab_size, target_vocab_size,\n", " enc_embedding_size, dec_embedding_size,\n", " rnn_size, num_layers, target_vocab_to_int):\n", " \"\"\"\n", " Build the Sequence-to-Sequence part of the neural network\n", " :param input_data: Input placeholder\n", " :param target_data: Target placeholder\n", " :param keep_prob: Dropout keep probability placeholder\n", " :param batch_size: Batch Size\n", " :param source_sequence_length: Sequence Lengths of source sequences in the batch\n", " :param target_sequence_length: Sequence Lengths of target sequences in the batch\n", " :param source_vocab_size: Source vocabulary size\n", " :param target_vocab_size: Target vocabulary size\n", " :param enc_embedding_size: Decoder embedding size\n", " :param dec_embedding_size: Encoder embedding size\n", " :param rnn_size: RNN Size\n", " :param num_layers: Number of layers\n", " :param target_vocab_to_int: Dictionary to go from the target words to an id\n", " :return: Tuple of (Training BasicDecoderOutput, Inference BasicDecoderOutput)\n", " \"\"\"\n", " # TODO: Implement Function\n", " # TODO: Implement Function\n", " # Pass the input data through the encoder. We'll ignore the encoder output, but use the state \n", " _, enc_state = encoding_layer(input_data, \n", " rnn_size, \n", " num_layers, \n", " keep_prob,\n", " source_sequence_length,\n", " source_vocab_size, \n", " enc_embedding_size)\n", "\n", " # Prepare the target sequences we'll feed to the decoder in training mode\n", " dec_input = process_decoder_input(target_data, target_vocab_to_int, batch_size) \n", " \n", " # Pass encoder state and decoder inputs to the decoders\n", " training_decoder_output, inference_decoder_output = decoding_layer(dec_input, \n", " enc_state,\n", " target_sequence_length,\n", " max_target_sentence_length,\n", " rnn_size,\n", " num_layers, \n", " target_vocab_to_int,\n", " target_vocab_size,\n", " batch_size, keep_prob,\n", " dec_embedding_size \n", " ) \n", " \n", " return training_decoder_output, inference_decoder_output\n", "\n", "\n", "\"\"\"\n", "DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE\n", "\"\"\"\n", "tests.test_seq2seq_model(seq2seq_model)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Neural Network Training\n", "### Hyperparameters\n", "Tune the following parameters:\n", "\n", "- Set `epochs` to the number of epochs.\n", "- Set `batch_size` to the batch size.\n", "- Set `rnn_size` to the size of the RNNs.\n", "- Set `num_layers` to the number of layers.\n", "- Set `encoding_embedding_size` to the size of the embedding for the encoder.\n", "- Set `decoding_embedding_size` to the size of the embedding for the decoder.\n", "- Set `learning_rate` to the learning rate.\n", "- Set `keep_probability` to the Dropout keep probability\n", "- Set `display_step` to state how many steps between each debug output statement" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Number of Epochs\n", "epochs = 5\n", "# Batch Size\n", "batch_size = 256\n", "# RNN Size\n", "rnn_size = 512\n", "# Number of Layers\n", "num_layers = 2\n", "# Embedding Size\n", "encoding_embedding_size = 256\n", "decoding_embedding_size = 256\n", "# Learning Rate\n", "learning_rate = 0.001\n", "# Dropout Keep Probability\n", "keep_probability = 5\n", "display_step = 10" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Build the Graph\n", "Build the graph using the neural network you implemented." ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\"\"\"\n", "DON'T MODIFY ANYTHING IN THIS CELL\n", "\"\"\"\n", "save_path = 'checkpoints/dev'\n", "(source_int_text, target_int_text), (source_vocab_to_int, target_vocab_to_int), _ = helper.load_preprocess()\n", "max_target_sentence_length = max([len(sentence) for sentence in source_int_text])\n", "\n", "train_graph = tf.Graph()\n", "with train_graph.as_default():\n", " input_data, targets, lr, keep_prob, target_sequence_length, max_target_sequence_length, source_sequence_length = model_inputs()\n", "\n", " #sequence_length = tf.placeholder_with_default(max_target_sentence_length, None, name='sequence_length')\n", " input_shape = tf.shape(input_data)\n", "\n", " train_logits, inference_logits = seq2seq_model(tf.reverse(input_data, [-1]),\n", " targets,\n", " keep_prob,\n", " batch_size,\n", " source_sequence_length,\n", " target_sequence_length,\n", " max_target_sequence_length,\n", " len(source_vocab_to_int),\n", " len(target_vocab_to_int),\n", " encoding_embedding_size,\n", " decoding_embedding_size,\n", " rnn_size,\n", " num_layers,\n", " target_vocab_to_int)\n", "\n", "\n", " training_logits = tf.identity(train_logits.rnn_output, name='logits')\n", " inference_logits = tf.identity(inference_logits.sample_id, name='predictions')\n", "\n", " masks = tf.sequence_mask(target_sequence_length, max_target_sequence_length, dtype=tf.float32, name='masks')\n", "\n", " with tf.name_scope(\"optimization\"):\n", " # Loss function\n", " cost = tf.contrib.seq2seq.sequence_loss(\n", " training_logits,\n", " targets,\n", " masks)\n", "\n", " # Optimizer\n", " optimizer = tf.train.AdamOptimizer(lr)\n", "\n", " # Gradient Clipping\n", " gradients = optimizer.compute_gradients(cost)\n", " capped_gradients = [(tf.clip_by_value(grad, -1., 1.), var) for grad, var in gradients if grad is not None]\n", " train_op = optimizer.apply_gradients(capped_gradients)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Batch and pad the source and target sequences" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\"\"\"\n", "DON'T MODIFY ANYTHING IN THIS CELL\n", "\"\"\"\n", "def pad_sentence_batch(sentence_batch, pad_int):\n", " \"\"\"Pad sentences with <PAD> so that each sentence of a batch has the same length\"\"\"\n", " max_sentence = max([len(sentence) for sentence in sentence_batch])\n", " return [sentence + [pad_int] * (max_sentence - len(sentence)) for sentence in sentence_batch]\n", "\n", "\n", "def get_batches(sources, targets, batch_size, source_pad_int, target_pad_int):\n", " \"\"\"Batch targets, sources, and the lengths of their sentences together\"\"\"\n", " for batch_i in range(0, len(sources)//batch_size):\n", " start_i = batch_i * batch_size\n", "\n", " # Slice the right amount for the batch\n", " sources_batch = sources[start_i:start_i + batch_size]\n", " targets_batch = targets[start_i:start_i + batch_size]\n", "\n", " # Pad\n", " pad_sources_batch = np.array(pad_sentence_batch(sources_batch, source_pad_int))\n", " pad_targets_batch = np.array(pad_sentence_batch(targets_batch, target_pad_int))\n", "\n", " # Need the lengths for the _lengths parameters\n", " pad_targets_lengths = []\n", " for target in pad_targets_batch:\n", " pad_targets_lengths.append(len(target))\n", "\n", " pad_source_lengths = []\n", " for source in pad_sources_batch:\n", " pad_source_lengths.append(len(source))\n", "\n", " yield pad_sources_batch, pad_targets_batch, pad_source_lengths, pad_targets_lengths\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Train\n", "Train the neural network on the preprocessed data. If you have a hard time getting a good loss, check the forms to see if anyone is having the same problem." ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Epoch 0 Batch 10/538 - Train Accuracy: 0.3256, Validation Accuracy: 0.4098, Loss: 3.1298\n", "Epoch 0 Batch 20/538 - Train Accuracy: 0.4321, Validation Accuracy: 0.4693, Loss: 2.4952\n", "Epoch 0 Batch 30/538 - Train Accuracy: 0.4361, Validation Accuracy: 0.4952, Loss: 2.3096\n", "Epoch 0 Batch 40/538 - Train Accuracy: 0.5059, Validation Accuracy: 0.5071, Loss: 1.8389\n", "Epoch 0 Batch 50/538 - Train Accuracy: 0.4650, Validation Accuracy: 0.4956, Loss: 1.7285\n", "Epoch 0 Batch 60/538 - Train Accuracy: 0.4404, Validation Accuracy: 0.4792, Loss: 1.5384\n", "Epoch 0 Batch 70/538 - Train Accuracy: 0.4758, Validation Accuracy: 0.5021, Loss: 1.3440\n", "Epoch 0 Batch 80/538 - Train Accuracy: 0.4463, Validation Accuracy: 0.5154, Loss: 1.3046\n", "Epoch 0 Batch 90/538 - Train Accuracy: 0.4877, Validation Accuracy: 0.5057, Loss: 1.1582\n", "Epoch 0 Batch 100/538 - Train Accuracy: 0.5137, Validation Accuracy: 0.5412, Loss: 1.0433\n", "Epoch 0 Batch 110/538 - Train Accuracy: 0.5189, Validation Accuracy: 0.5607, Loss: 1.0033\n", "Epoch 0 Batch 120/538 - Train Accuracy: 0.5525, Validation Accuracy: 0.5655, Loss: 0.8887\n", "Epoch 0 Batch 130/538 - Train Accuracy: 0.5675, Validation Accuracy: 0.5866, Loss: 0.8162\n", "Epoch 0 Batch 140/538 - Train Accuracy: 0.5316, Validation Accuracy: 0.5666, Loss: 0.9703\n", "Epoch 0 Batch 150/538 - Train Accuracy: 0.5941, Validation Accuracy: 0.5845, Loss: 0.7902\n", "Epoch 0 Batch 160/538 - Train Accuracy: 0.6053, Validation Accuracy: 0.6067, Loss: 0.7047\n", "Epoch 0 Batch 170/538 - Train Accuracy: 0.6155, Validation Accuracy: 0.6088, Loss: 0.6753\n", "Epoch 0 Batch 180/538 - Train Accuracy: 0.6388, Validation Accuracy: 0.6028, Loss: 0.6502\n", "Epoch 0 Batch 190/538 - Train Accuracy: 0.6045, Validation Accuracy: 0.6152, Loss: 0.6521\n", "Epoch 0 Batch 200/538 - Train Accuracy: 0.6188, Validation Accuracy: 0.6294, Loss: 0.6103\n", "Epoch 0 Batch 210/538 - Train Accuracy: 0.6135, Validation Accuracy: 0.6268, Loss: 0.5747\n", "Epoch 0 Batch 220/538 - Train Accuracy: 0.6291, Validation Accuracy: 0.6451, Loss: 0.5471\n", "Epoch 0 Batch 230/538 - Train Accuracy: 0.6697, Validation Accuracy: 0.6383, Loss: 0.5546\n", "Epoch 0 Batch 240/538 - Train Accuracy: 0.6535, Validation Accuracy: 0.6655, Loss: 0.5421\n", "Epoch 0 Batch 250/538 - Train Accuracy: 0.6828, Validation Accuracy: 0.6822, Loss: 0.5011\n", "Epoch 0 Batch 260/538 - Train Accuracy: 0.6698, Validation Accuracy: 0.6774, Loss: 0.4660\n", "Epoch 0 Batch 270/538 - Train Accuracy: 0.6977, Validation Accuracy: 0.6889, Loss: 0.4600\n", "Epoch 0 Batch 280/538 - Train Accuracy: 0.7344, Validation Accuracy: 0.7287, Loss: 0.4112\n", "Epoch 0 Batch 290/538 - Train Accuracy: 0.7445, Validation Accuracy: 0.7312, Loss: 0.3946\n", "Epoch 0 Batch 300/538 - Train Accuracy: 0.7424, Validation Accuracy: 0.7424, Loss: 0.3560\n", "Epoch 0 Batch 310/538 - Train Accuracy: 0.7898, Validation Accuracy: 0.7706, Loss: 0.3444\n", "Epoch 0 Batch 320/538 - Train Accuracy: 0.7766, Validation Accuracy: 0.7935, Loss: 0.3067\n", "Epoch 0 Batch 330/538 - Train Accuracy: 0.8298, Validation Accuracy: 0.7905, Loss: 0.2723\n", "Epoch 0 Batch 340/538 - Train Accuracy: 0.8113, Validation Accuracy: 0.8018, Loss: 0.2655\n", "Epoch 0 Batch 350/538 - Train Accuracy: 0.8545, Validation Accuracy: 0.8082, Loss: 0.2501\n", "Epoch 0 Batch 360/538 - Train Accuracy: 0.8477, Validation Accuracy: 0.8180, Loss: 0.2348\n", "Epoch 0 Batch 370/538 - Train Accuracy: 0.8445, Validation Accuracy: 0.8493, Loss: 0.2062\n", "Epoch 0 Batch 380/538 - Train Accuracy: 0.8820, Validation Accuracy: 0.8610, Loss: 0.1796\n", "Epoch 0 Batch 390/538 - Train Accuracy: 0.8890, Validation Accuracy: 0.8452, Loss: 0.1567\n", "Epoch 0 Batch 400/538 - Train Accuracy: 0.8811, Validation Accuracy: 0.8707, Loss: 0.1591\n", "Epoch 0 Batch 410/538 - Train Accuracy: 0.8742, Validation Accuracy: 0.8633, Loss: 0.1621\n", "Epoch 0 Batch 420/538 - Train Accuracy: 0.9016, Validation Accuracy: 0.8746, Loss: 0.1331\n", "Epoch 0 Batch 430/538 - Train Accuracy: 0.8904, Validation Accuracy: 0.8658, Loss: 0.1184\n", "Epoch 0 Batch 440/538 - Train Accuracy: 0.8809, Validation Accuracy: 0.8841, Loss: 0.1350\n", "Epoch 0 Batch 450/538 - Train Accuracy: 0.8929, Validation Accuracy: 0.8862, Loss: 0.1368\n", "Epoch 0 Batch 460/538 - Train Accuracy: 0.8862, Validation Accuracy: 0.9015, Loss: 0.1151\n", "Epoch 0 Batch 470/538 - Train Accuracy: 0.9036, Validation Accuracy: 0.8912, Loss: 0.0963\n", "Epoch 0 Batch 480/538 - Train Accuracy: 0.8997, Validation Accuracy: 0.8910, Loss: 0.0942\n", "Epoch 0 Batch 490/538 - Train Accuracy: 0.9126, Validation Accuracy: 0.9057, Loss: 0.0859\n", "Epoch 0 Batch 500/538 - Train Accuracy: 0.9237, Validation Accuracy: 0.8991, Loss: 0.0716\n", "Epoch 0 Batch 510/538 - Train Accuracy: 0.9156, Validation Accuracy: 0.9123, Loss: 0.0783\n", "Epoch 0 Batch 520/538 - Train Accuracy: 0.9045, Validation Accuracy: 0.8984, Loss: 0.0886\n", "Epoch 0 Batch 530/538 - Train Accuracy: 0.9010, Validation Accuracy: 0.9276, Loss: 0.0894\n", "Epoch 1 Batch 10/538 - Train Accuracy: 0.9104, Validation Accuracy: 0.8970, Loss: 0.0768\n", "Epoch 1 Batch 20/538 - Train Accuracy: 0.9204, Validation Accuracy: 0.9142, Loss: 0.0712\n", "Epoch 1 Batch 30/538 - Train Accuracy: 0.9014, Validation Accuracy: 0.9185, Loss: 0.0759\n", "Epoch 1 Batch 40/538 - Train Accuracy: 0.9242, Validation Accuracy: 0.9141, Loss: 0.0539\n", "Epoch 1 Batch 50/538 - Train Accuracy: 0.9156, Validation Accuracy: 0.9267, Loss: 0.0623\n", "Epoch 1 Batch 60/538 - Train Accuracy: 0.9375, Validation Accuracy: 0.9308, Loss: 0.0598\n", "Epoch 1 Batch 70/538 - Train Accuracy: 0.9217, Validation Accuracy: 0.9178, Loss: 0.0563\n", "Epoch 1 Batch 80/538 - Train Accuracy: 0.9383, Validation Accuracy: 0.9265, Loss: 0.0603\n", "Epoch 1 Batch 90/538 - Train Accuracy: 0.9429, Validation Accuracy: 0.9084, Loss: 0.0621\n", "Epoch 1 Batch 100/538 - Train Accuracy: 0.9516, Validation Accuracy: 0.9300, Loss: 0.0499\n", "Epoch 1 Batch 110/538 - Train Accuracy: 0.9344, Validation Accuracy: 0.9290, Loss: 0.0566\n", "Epoch 1 Batch 120/538 - Train Accuracy: 0.9486, Validation Accuracy: 0.9308, Loss: 0.0394\n", "Epoch 1 Batch 130/538 - Train Accuracy: 0.9308, Validation Accuracy: 0.9421, Loss: 0.0471\n", "Epoch 1 Batch 140/538 - Train Accuracy: 0.9428, Validation Accuracy: 0.9382, Loss: 0.0667\n", "Epoch 1 Batch 150/538 - Train Accuracy: 0.9443, Validation Accuracy: 0.9338, Loss: 0.0444\n", "Epoch 1 Batch 160/538 - Train Accuracy: 0.9474, Validation Accuracy: 0.9371, Loss: 0.0434\n", "Epoch 1 Batch 170/538 - Train Accuracy: 0.9429, Validation Accuracy: 0.9292, Loss: 0.0490\n", "Epoch 1 Batch 180/538 - Train Accuracy: 0.9338, Validation Accuracy: 0.9423, Loss: 0.0478\n", "Epoch 1 Batch 190/538 - Train Accuracy: 0.9330, Validation Accuracy: 0.9380, Loss: 0.0595\n", "Epoch 1 Batch 200/538 - Train Accuracy: 0.9527, Validation Accuracy: 0.9418, Loss: 0.0367\n", "Epoch 1 Batch 210/538 - Train Accuracy: 0.9403, Validation Accuracy: 0.9478, Loss: 0.0473\n", "Epoch 1 Batch 220/538 - Train Accuracy: 0.9427, Validation Accuracy: 0.9421, Loss: 0.0477\n", "Epoch 1 Batch 230/538 - Train Accuracy: 0.9443, Validation Accuracy: 0.9480, Loss: 0.0408\n", "Epoch 1 Batch 240/538 - Train Accuracy: 0.9494, Validation Accuracy: 0.9430, Loss: 0.0442\n", "Epoch 1 Batch 250/538 - Train Accuracy: 0.9475, Validation Accuracy: 0.9457, Loss: 0.0411\n", "Epoch 1 Batch 260/538 - Train Accuracy: 0.9394, Validation Accuracy: 0.9482, Loss: 0.0409\n", "Epoch 1 Batch 270/538 - Train Accuracy: 0.9656, Validation Accuracy: 0.9435, Loss: 0.0361\n", "Epoch 1 Batch 280/538 - Train Accuracy: 0.9647, Validation Accuracy: 0.9421, Loss: 0.0343\n", "Epoch 1 Batch 290/538 - Train Accuracy: 0.9678, Validation Accuracy: 0.9425, Loss: 0.0343\n", "Epoch 1 Batch 300/538 - Train Accuracy: 0.9325, Validation Accuracy: 0.9434, Loss: 0.0401\n", "Epoch 1 Batch 310/538 - Train Accuracy: 0.9658, Validation Accuracy: 0.9544, Loss: 0.0415\n", "Epoch 1 Batch 320/538 - Train Accuracy: 0.9606, Validation Accuracy: 0.9551, Loss: 0.0319\n", "Epoch 1 Batch 330/538 - Train Accuracy: 0.9706, Validation Accuracy: 0.9595, Loss: 0.0328\n", "Epoch 1 Batch 340/538 - Train Accuracy: 0.9504, Validation Accuracy: 0.9537, Loss: 0.0365\n", "Epoch 1 Batch 350/538 - Train Accuracy: 0.9537, Validation Accuracy: 0.9556, Loss: 0.0408\n", "Epoch 1 Batch 360/538 - Train Accuracy: 0.9549, Validation Accuracy: 0.9599, Loss: 0.0315\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 1 Batch 370/538 - Train Accuracy: 0.9496, Validation Accuracy: 0.9703, Loss: 0.0347\n", "Epoch 1 Batch 380/538 - Train Accuracy: 0.9703, Validation Accuracy: 0.9652, Loss: 0.0291\n", "Epoch 1 Batch 390/538 - Train Accuracy: 0.9660, Validation Accuracy: 0.9414, Loss: 0.0296\n", "Epoch 1 Batch 400/538 - Train Accuracy: 0.9745, Validation Accuracy: 0.9640, Loss: 0.0310\n", "Epoch 1 Batch 410/538 - Train Accuracy: 0.9672, Validation Accuracy: 0.9528, Loss: 0.0333\n", "Epoch 1 Batch 420/538 - Train Accuracy: 0.9535, Validation Accuracy: 0.9572, Loss: 0.0326\n", "Epoch 1 Batch 430/538 - Train Accuracy: 0.9596, Validation Accuracy: 0.9494, Loss: 0.0287\n", "Epoch 1 Batch 440/538 - Train Accuracy: 0.9768, Validation Accuracy: 0.9505, Loss: 0.0311\n", "Epoch 1 Batch 450/538 - Train Accuracy: 0.9371, Validation Accuracy: 0.9590, Loss: 0.0417\n", "Epoch 1 Batch 460/538 - Train Accuracy: 0.9418, Validation Accuracy: 0.9606, Loss: 0.0383\n", "Epoch 1 Batch 470/538 - Train Accuracy: 0.9624, Validation Accuracy: 0.9593, Loss: 0.0280\n", "Epoch 1 Batch 480/538 - Train Accuracy: 0.9691, Validation Accuracy: 0.9489, Loss: 0.0260\n", "Epoch 1 Batch 490/538 - Train Accuracy: 0.9598, Validation Accuracy: 0.9688, Loss: 0.0259\n", "Epoch 1 Batch 500/538 - Train Accuracy: 0.9712, Validation Accuracy: 0.9627, Loss: 0.0194\n", "Epoch 1 Batch 510/538 - Train Accuracy: 0.9667, Validation Accuracy: 0.9512, Loss: 0.0255\n", "Epoch 1 Batch 520/538 - Train Accuracy: 0.9588, Validation Accuracy: 0.9563, Loss: 0.0310\n", "Epoch 1 Batch 530/538 - Train Accuracy: 0.9490, Validation Accuracy: 0.9556, Loss: 0.0331\n", "Epoch 2 Batch 10/538 - Train Accuracy: 0.9637, Validation Accuracy: 0.9460, Loss: 0.0276\n", "Epoch 2 Batch 20/538 - Train Accuracy: 0.9712, Validation Accuracy: 0.9613, Loss: 0.0264\n", "Epoch 2 Batch 30/538 - Train Accuracy: 0.9609, Validation Accuracy: 0.9688, Loss: 0.0299\n", "Epoch 2 Batch 40/538 - Train Accuracy: 0.9585, Validation Accuracy: 0.9688, Loss: 0.0224\n", "Epoch 2 Batch 50/538 - Train Accuracy: 0.9547, Validation Accuracy: 0.9513, Loss: 0.0217\n", "Epoch 2 Batch 60/538 - Train Accuracy: 0.9689, Validation Accuracy: 0.9725, Loss: 0.0284\n", "Epoch 2 Batch 70/538 - Train Accuracy: 0.9581, Validation Accuracy: 0.9506, Loss: 0.0244\n", "Epoch 2 Batch 80/538 - Train Accuracy: 0.9787, Validation Accuracy: 0.9684, Loss: 0.0220\n", "Epoch 2 Batch 90/538 - Train Accuracy: 0.9730, Validation Accuracy: 0.9590, Loss: 0.0251\n", "Epoch 2 Batch 100/538 - Train Accuracy: 0.9791, Validation Accuracy: 0.9668, Loss: 0.0214\n", "Epoch 2 Batch 110/538 - Train Accuracy: 0.9695, Validation Accuracy: 0.9647, Loss: 0.0235\n", "Epoch 2 Batch 120/538 - Train Accuracy: 0.9725, Validation Accuracy: 0.9721, Loss: 0.0168\n", "Epoch 2 Batch 130/538 - Train Accuracy: 0.9701, Validation Accuracy: 0.9663, Loss: 0.0230\n", "Epoch 2 Batch 140/538 - Train Accuracy: 0.9742, Validation Accuracy: 0.9719, Loss: 0.0307\n", "Epoch 2 Batch 150/538 - Train Accuracy: 0.9662, Validation Accuracy: 0.9744, Loss: 0.0194\n", "Epoch 2 Batch 160/538 - Train Accuracy: 0.9632, Validation Accuracy: 0.9679, Loss: 0.0204\n", "Epoch 2 Batch 170/538 - Train Accuracy: 0.9622, Validation Accuracy: 0.9638, Loss: 0.0245\n", "Epoch 2 Batch 180/538 - Train Accuracy: 0.9531, Validation Accuracy: 0.9659, Loss: 0.0240\n", "Epoch 2 Batch 190/538 - Train Accuracy: 0.9749, Validation Accuracy: 0.9670, Loss: 0.0287\n", "Epoch 2 Batch 200/538 - Train Accuracy: 0.9744, Validation Accuracy: 0.9624, Loss: 0.0166\n", "Epoch 2 Batch 210/538 - Train Accuracy: 0.9769, Validation Accuracy: 0.9702, Loss: 0.0229\n", "Epoch 2 Batch 220/538 - Train Accuracy: 0.9652, Validation Accuracy: 0.9632, Loss: 0.0243\n", "Epoch 2 Batch 230/538 - Train Accuracy: 0.9727, Validation Accuracy: 0.9672, Loss: 0.0194\n", "Epoch 2 Batch 240/538 - Train Accuracy: 0.9688, Validation Accuracy: 0.9647, Loss: 0.0207\n", "Epoch 2 Batch 250/538 - Train Accuracy: 0.9723, Validation Accuracy: 0.9595, Loss: 0.0216\n", "Epoch 2 Batch 260/538 - Train Accuracy: 0.9671, Validation Accuracy: 0.9570, Loss: 0.0214\n", "Epoch 2 Batch 270/538 - Train Accuracy: 0.9756, Validation Accuracy: 0.9718, Loss: 0.0178\n", "Epoch 2 Batch 280/538 - Train Accuracy: 0.9792, Validation Accuracy: 0.9656, Loss: 0.0179\n", "Epoch 2 Batch 290/538 - Train Accuracy: 0.9832, Validation Accuracy: 0.9741, Loss: 0.0189\n", "Epoch 2 Batch 300/538 - Train Accuracy: 0.9622, Validation Accuracy: 0.9489, Loss: 0.0214\n", "Epoch 2 Batch 310/538 - Train Accuracy: 0.9824, Validation Accuracy: 0.9663, Loss: 0.0254\n", "Epoch 2 Batch 320/538 - Train Accuracy: 0.9650, Validation Accuracy: 0.9606, Loss: 0.0189\n", "Epoch 2 Batch 330/538 - Train Accuracy: 0.9855, Validation Accuracy: 0.9645, Loss: 0.0203\n", "Epoch 2 Batch 340/538 - Train Accuracy: 0.9717, Validation Accuracy: 0.9609, Loss: 0.0197\n", "Epoch 2 Batch 350/538 - Train Accuracy: 0.9712, Validation Accuracy: 0.9695, Loss: 0.0258\n", "Epoch 2 Batch 360/538 - Train Accuracy: 0.9742, Validation Accuracy: 0.9716, Loss: 0.0147\n", "Epoch 2 Batch 370/538 - Train Accuracy: 0.9701, Validation Accuracy: 0.9698, Loss: 0.0190\n", "Epoch 2 Batch 380/538 - Train Accuracy: 0.9643, Validation Accuracy: 0.9647, Loss: 0.0193\n", "Epoch 2 Batch 390/538 - Train Accuracy: 0.9697, Validation Accuracy: 0.9641, Loss: 0.0169\n", "Epoch 2 Batch 400/538 - Train Accuracy: 0.9801, Validation Accuracy: 0.9659, Loss: 0.0178\n", "Epoch 2 Batch 410/538 - Train Accuracy: 0.9871, Validation Accuracy: 0.9632, Loss: 0.0172\n", "Epoch 2 Batch 420/538 - Train Accuracy: 0.9834, Validation Accuracy: 0.9592, Loss: 0.0180\n", "Epoch 2 Batch 430/538 - Train Accuracy: 0.9688, Validation Accuracy: 0.9636, Loss: 0.0191\n", "Epoch 2 Batch 440/538 - Train Accuracy: 0.9754, Validation Accuracy: 0.9609, Loss: 0.0205\n", "Epoch 2 Batch 450/538 - Train Accuracy: 0.9528, Validation Accuracy: 0.9631, Loss: 0.0286\n", "Epoch 2 Batch 460/538 - Train Accuracy: 0.9600, Validation Accuracy: 0.9558, Loss: 0.0226\n", "Epoch 2 Batch 470/538 - Train Accuracy: 0.9751, Validation Accuracy: 0.9652, Loss: 0.0184\n", "Epoch 2 Batch 480/538 - Train Accuracy: 0.9812, Validation Accuracy: 0.9616, Loss: 0.0157\n", "Epoch 2 Batch 490/538 - Train Accuracy: 0.9674, Validation Accuracy: 0.9705, Loss: 0.0168\n", "Epoch 2 Batch 500/538 - Train Accuracy: 0.9886, Validation Accuracy: 0.9666, Loss: 0.0120\n", "Epoch 2 Batch 510/538 - Train Accuracy: 0.9769, Validation Accuracy: 0.9558, Loss: 0.0156\n", "Epoch 2 Batch 520/538 - Train Accuracy: 0.9682, Validation Accuracy: 0.9652, Loss: 0.0221\n", "Epoch 2 Batch 530/538 - Train Accuracy: 0.9691, Validation Accuracy: 0.9688, Loss: 0.0205\n", "Epoch 3 Batch 10/538 - Train Accuracy: 0.9826, Validation Accuracy: 0.9659, Loss: 0.0151\n", "Epoch 3 Batch 20/538 - Train Accuracy: 0.9771, Validation Accuracy: 0.9757, Loss: 0.0172\n", "Epoch 3 Batch 30/538 - Train Accuracy: 0.9693, Validation Accuracy: 0.9707, Loss: 0.0178\n", "Epoch 3 Batch 40/538 - Train Accuracy: 0.9668, Validation Accuracy: 0.9684, Loss: 0.0140\n", "Epoch 3 Batch 50/538 - Train Accuracy: 0.9781, Validation Accuracy: 0.9746, Loss: 0.0140\n", "Epoch 3 Batch 60/538 - Train Accuracy: 0.9834, Validation Accuracy: 0.9799, Loss: 0.0197\n", "Epoch 3 Batch 70/538 - Train Accuracy: 0.9769, Validation Accuracy: 0.9695, Loss: 0.0137\n", "Epoch 3 Batch 80/538 - Train Accuracy: 0.9836, Validation Accuracy: 0.9767, Loss: 0.0134\n", "Epoch 3 Batch 90/538 - Train Accuracy: 0.9775, Validation Accuracy: 0.9668, Loss: 0.0167\n", "Epoch 3 Batch 100/538 - Train Accuracy: 0.9830, Validation Accuracy: 0.9728, Loss: 0.0125\n", "Epoch 3 Batch 110/538 - Train Accuracy: 0.9812, Validation Accuracy: 0.9775, Loss: 0.0147\n", "Epoch 3 Batch 120/538 - Train Accuracy: 0.9805, Validation Accuracy: 0.9730, Loss: 0.0119\n", "Epoch 3 Batch 130/538 - Train Accuracy: 0.9723, Validation Accuracy: 0.9627, Loss: 0.0158\n", "Epoch 3 Batch 140/538 - Train Accuracy: 0.9857, Validation Accuracy: 0.9723, Loss: 0.0212\n", "Epoch 3 Batch 150/538 - Train Accuracy: 0.9920, Validation Accuracy: 0.9551, Loss: 0.0137\n", "Epoch 3 Batch 160/538 - Train Accuracy: 0.9831, Validation Accuracy: 0.9544, Loss: 0.0142\n", "Epoch 3 Batch 170/538 - Train Accuracy: 0.9740, Validation Accuracy: 0.9570, Loss: 0.0164\n", "Epoch 3 Batch 180/538 - Train Accuracy: 0.9656, Validation Accuracy: 0.9648, Loss: 0.0157\n", "Epoch 3 Batch 190/538 - Train Accuracy: 0.9738, Validation Accuracy: 0.9657, Loss: 0.0204\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 3 Batch 200/538 - Train Accuracy: 0.9814, Validation Accuracy: 0.9620, Loss: 0.0117\n", "Epoch 3 Batch 210/538 - Train Accuracy: 0.9792, Validation Accuracy: 0.9707, Loss: 0.0164\n", "Epoch 3 Batch 220/538 - Train Accuracy: 0.9740, Validation Accuracy: 0.9663, Loss: 0.0162\n", "Epoch 3 Batch 230/538 - Train Accuracy: 0.9811, Validation Accuracy: 0.9631, Loss: 0.0139\n", "Epoch 3 Batch 240/538 - Train Accuracy: 0.9814, Validation Accuracy: 0.9588, Loss: 0.0157\n", "Epoch 3 Batch 250/538 - Train Accuracy: 0.9883, Validation Accuracy: 0.9654, Loss: 0.0156\n", "Epoch 3 Batch 260/538 - Train Accuracy: 0.9767, Validation Accuracy: 0.9611, Loss: 0.0157\n", "Epoch 3 Batch 270/538 - Train Accuracy: 0.9805, Validation Accuracy: 0.9629, Loss: 0.0141\n", "Epoch 3 Batch 280/538 - Train Accuracy: 0.9808, Validation Accuracy: 0.9714, Loss: 0.0112\n", "Epoch 3 Batch 290/538 - Train Accuracy: 0.9871, Validation Accuracy: 0.9629, Loss: 0.0141\n", "Epoch 3 Batch 300/538 - Train Accuracy: 0.9732, Validation Accuracy: 0.9645, Loss: 0.0158\n", "Epoch 3 Batch 310/538 - Train Accuracy: 0.9910, Validation Accuracy: 0.9709, Loss: 0.0177\n", "Epoch 3 Batch 320/538 - Train Accuracy: 0.9860, Validation Accuracy: 0.9746, Loss: 0.0134\n", "Epoch 3 Batch 330/538 - Train Accuracy: 0.9909, Validation Accuracy: 0.9661, Loss: 0.0132\n", "Epoch 3 Batch 340/538 - Train Accuracy: 0.9793, Validation Accuracy: 0.9595, Loss: 0.0145\n", "Epoch 3 Batch 350/538 - Train Accuracy: 0.9831, Validation Accuracy: 0.9670, Loss: 0.0160\n", "Epoch 3 Batch 360/538 - Train Accuracy: 0.9881, Validation Accuracy: 0.9616, Loss: 0.0099\n", "Epoch 3 Batch 370/538 - Train Accuracy: 0.9814, Validation Accuracy: 0.9634, Loss: 0.0136\n", "Epoch 3 Batch 380/538 - Train Accuracy: 0.9854, Validation Accuracy: 0.9664, Loss: 0.0132\n", "Epoch 3 Batch 390/538 - Train Accuracy: 0.9743, Validation Accuracy: 0.9743, Loss: 0.0142\n", "Epoch 3 Batch 400/538 - Train Accuracy: 0.9870, Validation Accuracy: 0.9762, Loss: 0.0130\n", "Epoch 3 Batch 410/538 - Train Accuracy: 0.9887, Validation Accuracy: 0.9755, Loss: 0.0116\n", "Epoch 3 Batch 420/538 - Train Accuracy: 0.9770, Validation Accuracy: 0.9670, Loss: 0.0130\n", "Epoch 3 Batch 430/538 - Train Accuracy: 0.9832, Validation Accuracy: 0.9627, Loss: 0.0128\n", "Epoch 3 Batch 440/538 - Train Accuracy: 0.9889, Validation Accuracy: 0.9723, Loss: 0.0138\n", "Epoch 3 Batch 450/538 - Train Accuracy: 0.9645, Validation Accuracy: 0.9675, Loss: 0.0191\n", "Epoch 3 Batch 460/538 - Train Accuracy: 0.9615, Validation Accuracy: 0.9696, Loss: 0.0187\n", "Epoch 3 Batch 470/538 - Train Accuracy: 0.9849, Validation Accuracy: 0.9648, Loss: 0.0142\n", "Epoch 3 Batch 480/538 - Train Accuracy: 0.9857, Validation Accuracy: 0.9663, Loss: 0.0116\n", "Epoch 3 Batch 490/538 - Train Accuracy: 0.9851, Validation Accuracy: 0.9824, Loss: 0.0116\n", "Epoch 3 Batch 500/538 - Train Accuracy: 0.9877, Validation Accuracy: 0.9711, Loss: 0.0089\n", "Epoch 3 Batch 510/538 - Train Accuracy: 0.9914, Validation Accuracy: 0.9570, Loss: 0.0098\n", "Epoch 3 Batch 520/538 - Train Accuracy: 0.9723, Validation Accuracy: 0.9595, Loss: 0.0168\n", "Epoch 3 Batch 530/538 - Train Accuracy: 0.9766, Validation Accuracy: 0.9721, Loss: 0.0144\n", "Epoch 4 Batch 10/538 - Train Accuracy: 0.9871, Validation Accuracy: 0.9624, Loss: 0.0109\n", "Epoch 4 Batch 20/538 - Train Accuracy: 0.9831, Validation Accuracy: 0.9824, Loss: 0.0128\n", "Epoch 4 Batch 30/538 - Train Accuracy: 0.9803, Validation Accuracy: 0.9776, Loss: 0.0120\n", "Epoch 4 Batch 40/538 - Train Accuracy: 0.9833, Validation Accuracy: 0.9718, Loss: 0.0095\n", "Epoch 4 Batch 50/538 - Train Accuracy: 0.9848, Validation Accuracy: 0.9735, Loss: 0.0106\n", "Epoch 4 Batch 60/538 - Train Accuracy: 0.9896, Validation Accuracy: 0.9751, Loss: 0.0129\n", "Epoch 4 Batch 70/538 - Train Accuracy: 0.9853, Validation Accuracy: 0.9680, Loss: 0.0092\n", "Epoch 4 Batch 80/538 - Train Accuracy: 0.9822, Validation Accuracy: 0.9664, Loss: 0.0092\n", "Epoch 4 Batch 90/538 - Train Accuracy: 0.9929, Validation Accuracy: 0.9679, Loss: 0.0109\n", "Epoch 4 Batch 100/538 - Train Accuracy: 0.9939, Validation Accuracy: 0.9661, Loss: 0.0082\n", "Epoch 4 Batch 110/538 - Train Accuracy: 0.9904, Validation Accuracy: 0.9714, Loss: 0.0109\n", "Epoch 4 Batch 120/538 - Train Accuracy: 0.9902, Validation Accuracy: 0.9679, Loss: 0.0097\n", "Epoch 4 Batch 130/538 - Train Accuracy: 0.9953, Validation Accuracy: 0.9743, Loss: 0.0098\n", "Epoch 4 Batch 140/538 - Train Accuracy: 0.9885, Validation Accuracy: 0.9654, Loss: 0.0132\n", "Epoch 4 Batch 150/538 - Train Accuracy: 0.9908, Validation Accuracy: 0.9716, Loss: 0.0109\n", "Epoch 4 Batch 160/538 - Train Accuracy: 0.9827, Validation Accuracy: 0.9656, Loss: 0.0119\n", "Epoch 4 Batch 170/538 - Train Accuracy: 0.9842, Validation Accuracy: 0.9680, Loss: 0.0117\n", "Epoch 4 Batch 180/538 - Train Accuracy: 0.9754, Validation Accuracy: 0.9723, Loss: 0.0139\n", "Epoch 4 Batch 190/538 - Train Accuracy: 0.9927, Validation Accuracy: 0.9744, Loss: 0.0141\n", "Epoch 4 Batch 200/538 - Train Accuracy: 0.9916, Validation Accuracy: 0.9670, Loss: 0.0087\n", "Epoch 4 Batch 210/538 - Train Accuracy: 0.9849, Validation Accuracy: 0.9716, Loss: 0.0125\n", "Epoch 4 Batch 220/538 - Train Accuracy: 0.9853, Validation Accuracy: 0.9595, Loss: 0.0127\n", "Epoch 4 Batch 230/538 - Train Accuracy: 0.9896, Validation Accuracy: 0.9622, Loss: 0.0126\n", "Epoch 4 Batch 240/538 - Train Accuracy: 0.9729, Validation Accuracy: 0.9643, Loss: 0.0118\n", "Epoch 4 Batch 250/538 - Train Accuracy: 0.9850, Validation Accuracy: 0.9549, Loss: 0.0115\n", "Epoch 4 Batch 260/538 - Train Accuracy: 0.9879, Validation Accuracy: 0.9632, Loss: 0.0139\n", "Epoch 4 Batch 270/538 - Train Accuracy: 0.9879, Validation Accuracy: 0.9648, Loss: 0.0103\n", "Epoch 4 Batch 280/538 - Train Accuracy: 0.9885, Validation Accuracy: 0.9718, Loss: 0.0088\n", "Epoch 4 Batch 290/538 - Train Accuracy: 0.9906, Validation Accuracy: 0.9675, Loss: 0.0107\n", "Epoch 4 Batch 300/538 - Train Accuracy: 0.9894, Validation Accuracy: 0.9737, Loss: 0.0107\n", "Epoch 4 Batch 310/538 - Train Accuracy: 0.9842, Validation Accuracy: 0.9670, Loss: 0.0140\n", "Epoch 4 Batch 320/538 - Train Accuracy: 0.9864, Validation Accuracy: 0.9815, Loss: 0.0099\n", "Epoch 4 Batch 330/538 - Train Accuracy: 0.9898, Validation Accuracy: 0.9672, Loss: 0.0091\n", "Epoch 4 Batch 340/538 - Train Accuracy: 0.9908, Validation Accuracy: 0.9728, Loss: 0.0096\n", "Epoch 4 Batch 350/538 - Train Accuracy: 0.9870, Validation Accuracy: 0.9723, Loss: 0.0120\n", "Epoch 4 Batch 360/538 - Train Accuracy: 0.9906, Validation Accuracy: 0.9645, Loss: 0.0092\n", "Epoch 4 Batch 370/538 - Train Accuracy: 0.9910, Validation Accuracy: 0.9751, Loss: 0.0108\n", "Epoch 4 Batch 380/538 - Train Accuracy: 0.9914, Validation Accuracy: 0.9581, Loss: 0.0095\n", "Epoch 4 Batch 390/538 - Train Accuracy: 0.9767, Validation Accuracy: 0.9707, Loss: 0.0142\n", "Epoch 4 Batch 400/538 - Train Accuracy: 0.9849, Validation Accuracy: 0.9833, Loss: 0.0121\n", "Epoch 4 Batch 410/538 - Train Accuracy: 0.9891, Validation Accuracy: 0.9700, Loss: 0.0098\n", "Epoch 4 Batch 420/538 - Train Accuracy: 0.9850, Validation Accuracy: 0.9686, Loss: 0.0115\n", "Epoch 4 Batch 430/538 - Train Accuracy: 0.9902, Validation Accuracy: 0.9673, Loss: 0.0099\n", "Epoch 4 Batch 440/538 - Train Accuracy: 0.9893, Validation Accuracy: 0.9766, Loss: 0.0109\n", "Epoch 4 Batch 450/538 - Train Accuracy: 0.9820, Validation Accuracy: 0.9703, Loss: 0.0161\n", "Epoch 4 Batch 460/538 - Train Accuracy: 0.9829, Validation Accuracy: 0.9735, Loss: 0.0121\n", "Epoch 4 Batch 470/538 - Train Accuracy: 0.9875, Validation Accuracy: 0.9775, Loss: 0.0094\n", "Epoch 4 Batch 480/538 - Train Accuracy: 0.9862, Validation Accuracy: 0.9663, Loss: 0.0083\n", "Epoch 4 Batch 490/538 - Train Accuracy: 0.9855, Validation Accuracy: 0.9780, Loss: 0.0091\n", "Epoch 4 Batch 500/538 - Train Accuracy: 0.9954, Validation Accuracy: 0.9762, Loss: 0.0061\n", "Epoch 4 Batch 510/538 - Train Accuracy: 0.9918, Validation Accuracy: 0.9757, Loss: 0.0079\n", "Epoch 4 Batch 520/538 - Train Accuracy: 0.9871, Validation Accuracy: 0.9721, Loss: 0.0148\n", "Epoch 4 Batch 530/538 - Train Accuracy: 0.9840, Validation Accuracy: 0.9728, Loss: 0.0121\n", "Model Trained and Saved\n" ] } ], "source": [ "\"\"\"\n", "DON'T MODIFY ANYTHING IN THIS CELL\n", "\"\"\"\n", "def get_accuracy(target, logits):\n", " \"\"\"\n", " Calculate accuracy\n", " \"\"\"\n", " max_seq = max(target.shape[1], logits.shape[1])\n", " if max_seq - target.shape[1]:\n", " target = np.pad(\n", " target,\n", " [(0,0),(0,max_seq - target.shape[1])],\n", " 'constant')\n", " if max_seq - logits.shape[1]:\n", " logits = np.pad(\n", " logits,\n", " [(0,0),(0,max_seq - logits.shape[1])],\n", " 'constant')\n", "\n", " return np.mean(np.equal(target, logits))\n", "\n", "# Split data to training and validation sets\n", "train_source = source_int_text[batch_size:]\n", "train_target = target_int_text[batch_size:]\n", "valid_source = source_int_text[:batch_size]\n", "valid_target = target_int_text[:batch_size]\n", "(valid_sources_batch, valid_targets_batch, valid_sources_lengths, valid_targets_lengths ) = next(get_batches(valid_source,\n", " valid_target,\n", " batch_size,\n", " source_vocab_to_int['<PAD>'],\n", " target_vocab_to_int['<PAD>'])) \n", "with tf.Session(graph=train_graph) as sess:\n", " sess.run(tf.global_variables_initializer())\n", "\n", " for epoch_i in range(epochs):\n", " for batch_i, (source_batch, target_batch, sources_lengths, targets_lengths) in enumerate(\n", " get_batches(train_source, train_target, batch_size,\n", " source_vocab_to_int['<PAD>'],\n", " target_vocab_to_int['<PAD>'])):\n", "\n", " _, loss = sess.run(\n", " [train_op, cost],\n", " {input_data: source_batch,\n", " targets: target_batch,\n", " lr: learning_rate,\n", " target_sequence_length: targets_lengths,\n", " source_sequence_length: sources_lengths,\n", " keep_prob: keep_probability})\n", "\n", "\n", " if batch_i % display_step == 0 and batch_i > 0:\n", "\n", "\n", " batch_train_logits = sess.run(\n", " inference_logits,\n", " {input_data: source_batch,\n", " source_sequence_length: sources_lengths,\n", " target_sequence_length: targets_lengths,\n", " keep_prob: 1.0})\n", "\n", "\n", " batch_valid_logits = sess.run(\n", " inference_logits,\n", " {input_data: valid_sources_batch,\n", " source_sequence_length: valid_sources_lengths,\n", " target_sequence_length: valid_targets_lengths,\n", " keep_prob: 1.0})\n", "\n", " train_acc = get_accuracy(target_batch, batch_train_logits)\n", "\n", " valid_acc = get_accuracy(valid_targets_batch, batch_valid_logits)\n", "\n", " print('Epoch {:>3} Batch {:>4}/{} - Train Accuracy: {:>6.4f}, Validation Accuracy: {:>6.4f}, Loss: {:>6.4f}'\n", " .format(epoch_i, batch_i, len(source_int_text) // batch_size, train_acc, valid_acc, loss))\n", "\n", " # Save Model\n", " saver = tf.train.Saver()\n", " saver.save(sess, save_path)\n", " print('Model Trained and Saved')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Save Parameters\n", "Save the `batch_size` and `save_path` parameters for inference." ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\"\"\"\n", "DON'T MODIFY ANYTHING IN THIS CELL\n", "\"\"\"\n", "# Save parameters for checkpoint\n", "helper.save_params(save_path)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Checkpoint" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\"\"\"\n", "DON'T MODIFY ANYTHING IN THIS CELL\n", "\"\"\"\n", "import tensorflow as tf\n", "import numpy as np\n", "import helper\n", "import problem_unittests as tests\n", "\n", "_, (source_vocab_to_int, target_vocab_to_int), (source_int_to_vocab, target_int_to_vocab) = helper.load_preprocess()\n", "load_path = helper.load_params()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Sentence to Sequence\n", "To feed a sentence into the model for translation, you first need to preprocess it. Implement the function `sentence_to_seq()` to preprocess new sentences.\n", "\n", "- Convert the sentence to lowercase\n", "- Convert words into ids using `vocab_to_int`\n", " - Convert words not in the vocabulary, to the `<UNK>` word id." ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Tests Passed\n" ] } ], "source": [ "def sentence_to_seq(sentence, vocab_to_int):\n", " \"\"\"\n", " Convert a sentence to a sequence of ids\n", " :param sentence: String\n", " :param vocab_to_int: Dictionary to go from the words to an id\n", " :return: List of word ids\n", " \"\"\"\n", " # TODO: Implement Function\n", " sentence = sentence.lower()\n", " words = sentence.split(' ')\n", " ids = []\n", " for w in words:\n", " if(w in vocab_to_int):\n", " ids.append(vocab_to_int[w])\n", " else:\n", " ids.append(vocab_to_int['<UNK>'])\n", " return ids\n", "\n", "\"\"\"\n", "DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE\n", "\"\"\"\n", "tests.test_sentence_to_seq(sentence_to_seq)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Translate\n", "This will translate `translate_sentence` from English to French." ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "INFO:tensorflow:Restoring parameters from checkpoints/dev\n", "Input\n", " Word Ids: [18, 26, 195, 101, 62, 219, 75]\n", " English Words: ['he', 'saw', 'a', 'old', 'yellow', 'truck', '.']\n", "\n", "Prediction\n", " Word Ids: [90, 118, 269, 293, 308, 98, 298, 1]\n", " French Words: il vu un vieux camion jaune . <EOS>\n" ] } ], "source": [ "translate_sentence = 'he saw a old yellow truck .'\n", "\n", "\n", "\"\"\"\n", "DON'T MODIFY ANYTHING IN THIS CELL\n", "\"\"\"\n", "translate_sentence = sentence_to_seq(translate_sentence, source_vocab_to_int)\n", "\n", "loaded_graph = tf.Graph()\n", "with tf.Session(graph=loaded_graph) as sess:\n", " # Load saved model\n", " loader = tf.train.import_meta_graph(load_path + '.meta')\n", " loader.restore(sess, load_path)\n", "\n", " input_data = loaded_graph.get_tensor_by_name('input:0')\n", " logits = loaded_graph.get_tensor_by_name('predictions:0')\n", " target_sequence_length = loaded_graph.get_tensor_by_name('target_sequence_length:0')\n", " source_sequence_length = loaded_graph.get_tensor_by_name('source_sequence_length:0')\n", " keep_prob = loaded_graph.get_tensor_by_name('keep_prob:0')\n", "\n", " translate_logits = sess.run(logits, {input_data: [translate_sentence]*batch_size,\n", " target_sequence_length: [len(translate_sentence)*2]*batch_size,\n", " source_sequence_length: [len(translate_sentence)]*batch_size,\n", " keep_prob: 1.0})[0]\n", "\n", "print('Input')\n", "print(' Word Ids: {}'.format([i for i in translate_sentence]))\n", "print(' English Words: {}'.format([source_int_to_vocab[i] for i in translate_sentence]))\n", "\n", "print('\\nPrediction')\n", "print(' Word Ids: {}'.format([i for i in translate_logits]))\n", "print(' French Words: {}'.format(\" \".join([target_int_to_vocab[i] for i in translate_logits])))\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Imperfect Translation\n", "You might notice that some sentences translate better than others. Since the dataset you're using only has a vocabulary of 227 English words of the thousands that you use, you're only going to see good results using these words. For this project, you don't need a perfect translation. However, if you want to create a better translation model, you'll need better data.\n", "\n", "You can train on the [WMT10 French-English corpus](http://www.statmt.org/wmt10/training-giga-fren.tar). This dataset has more vocabulary and richer in topics discussed. However, this will take you days to train, so make sure you've a GPU and the neural network is performing well on dataset we provided. Just make sure you play with the WMT10 corpus after you've submitted this project.\n", "## Submitting This Project\n", "When submitting this project, make sure to run all the cells before saving the notebook. Save the notebook file as \"dlnd_language_translation.ipynb\" and save it as a HTML file under \"File\" -> \"Download as\". Include the \"helper.py\" and \"problem_unittests.py\" files in your submission." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.3" } }, "nbformat": 4, "nbformat_minor": 1 }
mit
yuhangwang/MirrorAI
prototype/1DLearner/coarse_mirror_samples.ipynb
1
8329
{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import numpy" ] }, { "cell_type": "code", "execution_count": 82, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def mirror_label(isTrue):\n", " if isTrue:\n", " return [1, 0]\n", " else:\n", " return [0, 1]" ] }, { "cell_type": "code", "execution_count": 99, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def one_row(n, low, high):\n", " \"\"\"Return one row of numbers\n", " \n", " Args:\n", " n (int): length\n", " low (int): lowest possible number\n", " high (int): highest possible number\n", " Returns:\n", " 1D numpy array\n", " \"\"\"\n", " return numpy.random.randint(low, high=high+1, size=n)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [], "source": [ "def half_mirror(m, n, low, high):\n", " \"\"\"Return a matrix\n", " \n", " Args:\n", " m (int): number of rows\n", " n (int): number of columns\n", " low (int): lowest possible number\n", " high (int): highest possible number\n", " Returns:\n", " 2D numpy array\n", " \"\"\"\n", " return numpy.vstack([one_row(n, low, high) for i in range(m)])\n", " " ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def flatten(a):\n", " \"\"\"Flatten a 2D array\"\"\"\n", " size = numpy.prod(numpy.shape(a))\n", " return numpy.reshape(a, (size,))" ] }, { "cell_type": "code", "execution_count": 89, "metadata": { "collapsed": false }, "outputs": [], "source": [ "def full_mirror(height, width, low, high):\n", " \"\"\"Return a matrix\n", " Returns a symmetric image with 50% probability\n", " \n", " Args:\n", " height (int): image height\n", " width (int): image width\n", " low (int): lowest possible number\n", " high (int): highest possible number\n", " Returns:\n", " 2D numpy array\n", " \"\"\"\n", " m = (height - 1) // 2\n", " coin = numpy.random.random()\n", " if coin > 0.5:\n", " return numpy.vstack([\n", " half_mirror(m, width, low, high),\n", " numpy.zeros(width),\n", " half_mirror(m, width, low, high)\n", " ])\n", " else:\n", " half = half_mirror(m, width, low, high)\n", " return numpy.vstack([\n", " half,\n", " numpy.zeros(width),\n", " half[::-1, :]\n", " ])" ] }, { "cell_type": "code", "execution_count": 90, "metadata": { "collapsed": false }, "outputs": [], "source": [ "def label_full_mirror(a):\n", " m, n = numpy.shape(a)\n", " top = a[0:(m-1)//2, :]\n", " bottom = a[(m+1)//2:, :]\n", " isMirror = bool(numpy.amax(numpy.absolute(top - bottom[-1::-1])) < 1.0e-5)\n", " label = mirror_label(isMirror)\n", " return (a.reshape((m*n,)), label)" ] }, { "cell_type": "code", "execution_count": 93, "metadata": { "collapsed": false }, "outputs": [], "source": [ "def reflection_samples(N, height, width, low, high):\n", " \"\"\"Generate reflection samples\n", " Args:\n", " N (int): total number of samples\n", " height (int): height of each image\n", " width (int): width of each image\n", " low (int): lowest number\n", " high (int): highest number\n", " Returns:\n", " a list of pairs, i.e., flattened image and its label\n", " \"\"\"\n", " raw = [label_full_mirror(full_mirror(height, width, low, high))\n", " for i in range(N)]\n", " return {\n", " \"data\": numpy.array([x[0] for x in raw]),\n", " \"labels\": numpy.array([x[1] for x in raw]),\n", " }" ] }, { "cell_type": "code", "execution_count": 102, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "{'data': array([[ 1., 1., 0., 0., 1., 0., 0., 0., 0., 0., 1., 0., 1.,\n", " 1., 0.],\n", " [ 1., 1., 1., 0., 0., 1., 0., 0., 0., 0., 0., 1., 1.,\n", " 1., 1.],\n", " [ 1., 0., 1., 1., 1., 1., 0., 0., 0., 1., 1., 1., 1.,\n", " 0., 1.],\n", " [ 1., 1., 1., 1., 1., 1., 0., 0., 0., 1., 1., 1., 0.,\n", " 1., 1.],\n", " [ 1., 0., 0., 0., 1., 0., 0., 0., 0., 0., 1., 0., 1.,\n", " 0., 0.],\n", " [ 0., 1., 1., 1., 1., 1., 0., 0., 0., 1., 1., 1., 0.,\n", " 1., 1.],\n", " [ 1., 0., 0., 0., 1., 1., 0., 0., 0., 0., 1., 1., 1.,\n", " 0., 1.],\n", " [ 0., 0., 1., 1., 0., 0., 0., 0., 0., 1., 0., 0., 0.,\n", " 0., 1.],\n", " [ 0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 1., 0., 1.,\n", " 1., 1.],\n", " [ 1., 1., 1., 0., 1., 0., 0., 0., 0., 1., 0., 1., 1.,\n", " 1., 1.]]), 'labels': array([[1, 0],\n", " [1, 0],\n", " [1, 0],\n", " [0, 1],\n", " [1, 0],\n", " [1, 0],\n", " [0, 1],\n", " [1, 0],\n", " [0, 1],\n", " [0, 1]])}" ] }, "execution_count": 102, "metadata": {}, "output_type": "execute_result" } ], "source": [ "a = reflection_samples(10, 5, 3, 0, 1)\n", "a" ] }, { "cell_type": "code", "execution_count": 75, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "[1, 0]" ] }, "execution_count": 75, "metadata": {}, "output_type": "execute_result" } ], "source": [ "mirror_label(True)" ] }, { "cell_type": "code", "execution_count": 52, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "[0, 1]" ] }, "execution_count": 52, "metadata": {}, "output_type": "execute_result" } ], "source": [ "mirror_label(False)" ] }, { "cell_type": "code", "execution_count": 81, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "False\n" ] } ], "source": [ "if numpy.amax([1,0]) < 0:\n", " print(True)\n", "else:\n", " print(False)" ] }, { "cell_type": "code", "execution_count": 98, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "0" ] }, "execution_count": 98, "metadata": {}, "output_type": "execute_result" } ], "source": [ "numpy.random.randint(0, 2)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.2" } }, "nbformat": 4, "nbformat_minor": 0 }
mit
peap/notebooks
pycon-2015/d00t01.django-in-depth.ipynb
1
16094
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Django in Depth\n", "- Tutorial, updated for Django 1.8\n", "- James Bennet\n", "- 2015-04-09" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## The ORM\n", "\n", "### Database Backends\n", "There are a set of classes used to support the four built-in backends, plus a base class that can be used to write your own backend for un-supported databases or database drivers.\n", "\n", "### `SQLCompiler`\n", "This is the bridge between high-level queries and the database backend.\n", "\n", "It's very complex code.\n", "\n", "All the magic happens in `as_sql()`.\n", "\n", "### `Query`\n", "Data structure and methods representing a database query. It's a tree-like data structure. \n", "\n", "Two flavors: \n", "- `Query`: normal ORM operations\n", "- `RawQuery`: real, custom SQL queries, that returns something resembling what a normal `Query` would expect\n", "\n", "Also scary, complex code. It has to support infinite and arbitrary chaining of ORM methods (`.filter()`, `.distinct()`, etc.). Most of the code comes from this merging process.\n", "\n", "You shouldn't often need to subclass `Query`, but rather `QuerySet`.\n", "\n", "### Custom Lookups\n", "All your custom stuff gets access to the Django internals, like `as_sql()` and the `SQLCompiler` instance. Some ways to do custom stuff:\n", "- `F objects`\n", "- `Q objects`\n", "- `django.db.models.Lookup`\n", "- `django.db.models.Transform`\n", "\n", "### `QuerySet`\n", "Wraps `Query` in a nice API. It's lazy; doesn't touch the database until you force it to, by calling a method that doesn't return a `QuerySet`. \n", "\n", "Printing a `QuerySet`, say, in the Django shell, it'll only show the first 21 objects... `__repr__` adds a `LIMIT 21` to the query, so that you don't accidentally run out of memory trying to build a string with a million results in it.\n", "\n", "It's a container - it stores results to a cache that is only every populated once.\n", "\n", "All operations except for iteration and length/existence checks perform a new query and return a new QuerySet. So you can't get a `QuerySet` of several objects, update an attribute on one object, save it, and see the result in the same `QuerySet`.\n", "\n", "There's an `update()` method on `QuerySet`, but it doesn't call custom `save()` methods or send `pre_save` or `post_save` signals.\n", "\n", "The `defer()` and `only()` methods allow you get only the specified fields, but you get actual `Model` instances. If you access other fields, then a new query is performed. \n", "\n", "The `values()` and `values_list()` get you field values, not `Model` instances. With `flat=True`, `values_list()` gets you a flat list of all values in the `QuerySet`.\n", "\n", "The `select_related()` method solves the N+1 problem for `ForeignKey` and `OneToOneField` relations - just one SQL query, instead of one for the first model, and one for each of the N results.\n", "\n", "The `prefetch_related()` method solves it for `ManyToManyField`s and `GenericRelation`s - one query for model, relations resolved in python code.\n", "\n", "### `Manager`\n", "The high-level interaface. The `Model` that the `Manager` is attached to is available in the `Manager` as `self.model`.\n", "\n", "If a model has multiple `Manager`s, the first one defined is the default (`Model._default_manager`).\n", "\n", "Should always have a `Manager` on your model that can get alllll the objects.\n", "\n", "### `Model`\n", "Representation of the data and the associated logic.\n", "- one class = one table\n", "- one field = one column\n", "- one instance = one row\n", "\n", "Uses python metaclasses, via `django.db.models.base.ModelBase`. This is how the `Meta` class property is created. It also creates all those extra methods and properties on the class, like `Model.DoesNotExist`.\n", "\n", "`ModelBase` calls `contribute_to_class()` on each thing in the attribute dictionary of the new class. For example, `DateTimeField` has a `contribute_to_class()` method that adds the `get_next_by_<field-name>` method.\n", "\n", "### `Field`\n", "Custom fields can pretend to be another field by setting internal type to something that exists already.\n", "\n", "`to_python()` converts from DB-level type to correct Python type.\n", "\n", "`value_to_string()` converts to string for serialization purposes.\n", "\n", "Multiple other methods for preparing values for various kinds of DB-level usage - querying, storage, etc.\n", "\n", "### Model Inheritance\n", "Multiple types available:\n", "- abstract parents\n", " - Indicated by `abstract = True` in model's `Meta` declaration\n", " - doesn't create a database table\n", " - subclasses, if not abstract, generate a table with both their own fields and those of the abstract parent\n", "- multi-table\n", " - no special syntax; just subclass the parent model\n", "- proxy models\n", " - set `proxy = True` in `Meta`\n", " - will reuse parent's table and fields; only allowed changes are at the python level\n", " - can define additional methods, manager, etc.\n", " - queries return instances of the model queried\n", " \n", "#### Unmanaged models\n", "Related to proxy models. Set `managed = False` in `Meta`. Wraps a database or view that you don't want Django to... manage. \n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## The Forms Library\n", "Major components:\n", "- forms\n", "- fields \n", "- components\n", "- media support\n", "\n", "### Widgets\n", "The low-level Form components:\n", "- one for each type of HTML form control\n", "- handles putting data into form control, and taking it out\n", "- `value_from_datadict()` pulls out that widget's value\n", "- `render()` generates the HTML\n", "- `MultiWidget` is a special class that wraps multiple other widgets\n", " - useful for things like splitting date/time; single value in DB, often want multiple HTML controls\n", " \n", "### Fields\n", "- represent data type and validation contrainst\n", "- have widgets associated with them for rendering\n", "- calls `clean()` to validate\n", " - first calls `to_python()`: convert from what came in on HTTP to the correct python type\n", " - then calls `validate()`: Field's built-in validation\n", " - finally, calls `run_validators()`: custom validators added in the Field's `validators` kwarg\n", " - return python value, or raise `ValidationError`\n", "- Choosing a validation scheme\n", " - `to_python`: when validation constraint is tightly tied to the data type\n", " - `validate`: when validation is intrinsic to the field (like email addresses)\n", " - `validators`: when the basic field does almost all the validation you need and it's simpler than writing a whole new field\n", "- error messages\n", " - django has a lot of special ones\n", "- every field actually has two widgets: regular and hidden versions\n", "\n", "### Forms\n", "- Also uses a metaclass, but probably shouldn't. It just keeps track of the order that fields were added to the class.\n", "- Instantiating a `Form` with data will cause it to wrap its fields with instances with `BoundField`.\n", "- Validation\n", " - Form's `clean()` method\n", " - happens after field valiation\n", " - error messages are instances of `ErrorDict`, `ErrorList`\n", "- Displaying\n", " - default representation is an HTML table\n", " - can also output `as_p` or `as_ul`\n", " - if you want to customize the output, look at the `_html_output()` method\n", " - search for django forms 508 accessibility for examples/libraries of ensuring Section 508 accessibility compliance\n", " \n", "### ModelForms\n", "Introspects a `Model` and creates a `Form` out of it. Uses the model meta API to get list of fields, etc.\n", "- good place to find examples for how to use the model meta API\n", "- calls the `formfield()` method on each field\n", " - can be overridden by defining the `formfield_callback()` method on the Form\n", "- calls each field's `value_from_object()` method to get values for the given `Model` instance\n", "\n", "### Form Media\n", "Forms and Widgets support an inner class named `Media`\n", "- supports values `css` and `js`, listing CSS JavaScript assets to include when rendering the form/widget\n", "- weeds out duplicates across the form and includes all the required resources in the form\n", "- implemented via... metaclasses! `django.forms.widgets.MediaDefiningClass`" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## The Template System\n", "Major components:\n", "- engine\n", "- loade\n", "- template\n", "- tag/filter libraries\n", "- context\n", "\n", "### Template Engines\n", "New in Django 1.8. Jinja2 is built-in now.\n", "- sublcass `django.template.backends.base.BaseEngine`\n", "- must define `get_template()`\n", "- returned template must have a `render()` method that accepts a context dictionary\n", "\n", "### Template Loaders\n", "Does the hard work of actually finding the template source.\n", "- must define `load_template_source()` that accepts a template name\n", "- can store templates in the database, the cache, etc.; doesn't have to be the filesystem\n", "- returns a `Template` object\n", "\n", "### The Django Template Language\n", "Built to be simple; they didn't want a bunch of business logic in templates when Django was created. Not fast, but wasn't supposed to be.\n", "\n", "Key classes:\n", "- `Template`\n", "- `Lexer`\n", "- `Parser`\n", "- `Token`\n", "- `Node` and `NodeList`\n", "\n", "Template lexing:\n", "- instantiate a `Lexer` with template source, then call `tokenize()`\n", "- splits the template source on a regex that looks for {% xxx %}, {{ xxx }}, and {# xxx #}\n", " - now you have `Text`, `Var`, `Block`, and `Comment` tokens\n", " \n", "Template parsing:\n", "- list of tokens from `Lexer` is used to instantiate a `Parser`, which then calls `parse()`\n", "- each tag provides a compilation process\n", "- tags have access to the parser, so they can see what comes before/after themselves\n", "- tags return a `Node` or a `NodeList`\n", "\n", "### Template Context\n", "Behaves like a dictionary, but it's actually a stack of dictionaries\n", "- supports push/pop and fall-through lookups\n", "- first match in the stack is the value\n", "- this is how for-loop tags create their forloop.counter and other variables to the context, but only inside the block\n", "- comes at a performance cost, especially with things like for-loops with nested with tags\n", "- fall-through lookups are slow\n", "\n", "`RenderContext`\n", "- thread-safety tool for simultaneous renderings of the same template instance\n", "- safe place to store state for a context; the `cycle` tag uses this\n", "- attached to every `Context`" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Request/Response Processing\n", "The entry point for a Django project is `django.core.handlers.WSGIHandler`, which implements a WSGI application. See PEP 333 and PEP 3333. It's the only supported implementation.\n", "\n", "### Handler lifecycle\n", "- sets up middleware\n", "- sends `request_started` signal\n", "- intializes `HttpRequest`\n", "- calls handler's `get_response()`\n", " - apply request middleware (allowed to modify `request.url_conf`!)\n", " - resolve url\n", " - apply view middleware\n", " - call view\n", " - apply response middleware\n", " - return response\n", "- transforms `HttpResponse` into output format for `WSGIHandler`\n", "\n", "### URL Resolution\n", "High-level: `django.core.urls.RegexURLResolver`\n", "\n", "patterns: instances of `RegexURLPattern`\n", "- it's `render()` method returns a `ResolverMatch` object\n", "\n", "lifecycle\n", "- `RegexURLResolver` iterates over supplied patterns\n", "- keeps a list of patterns it tried and didn't get a match\n", "- returns the first time it gets a match\n", "- raises Resolver404 if no match\n", "\n", "each `include()` causes a nested `RegexURLResolver` to be called at resolution time, but will be ignored if the prefix doesn't match\n", "\n", "### Exception Handling\n", "It's really important that your `handler404` or `handler500`, make it as bullet-proof as possible - really don't want to raise an Exception\n", "\n", "Django never tries to catch `SystemExit`.\n", "\n", "### Request and Response Objects\n", "`HttpRequest` is technically handler-specific, but there's only one handler now\n", "\n", "`HttpResponse` comes in multiple flavors depending on status code\n", "- 301, 302, 400, 403, 404, 405, 410, 500\n", "- also `JSONResponse` for JSON data\n", "\n", "### Views\n", "requirements:\n", "- be callable\n", "- accept `HttpRequest` in first position\n", "- return `HttpResponse` or raise an `Exception`\n", "\n", "#### Class-based Generic Views\n", "Inheritance diagram is complex, but usage is not. Complexity exists to let funtionality to be composed.\n", "\n", "Basics\n", "- `self.request` is the current `HttpRequest`\n", "- dispatch is handled by `dispatch()`, based on the HTTP method\n", "- you probably want `TemplateResponseMixin` somewhere in your inheritance chain if it's not already\n", "- call `as_view()` when putting it in a URLconf\n", "\n", "Big advantage of CBVs is composability/reusability of funtionality, and the ease with which they avoid the large argument lists functions would require to support the same customization.\n", "\n", "The primary disadvantage is the proliferation of mixins and base classes needed to provide all the combinations of behaviors that Django's generic views support." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## The Django Admin\n", "Pulls together lots of components, but not in the way you might expect. For example, it uses CBVs, but not the generic CBVs, because it was written before those were available.\n", "\n", "You can subclass `ModelAdmin`, which is a class that dispatches almost everything you can do in the admin app to view methods. The views are methods that have \"`_view()`\" in their name.\n", "\n", "Except for `ChangeList`, which is possibly the scariest code outside of the ORM. It's survived two rewrites of the Admin.\n", "\n", "Admin urls are also included as an attribute on the `ModelAdmin` class. It's crazy.\n", "\n", "`AdminSite` represents the admin interface. Can have multiple instances in a single Django project, since you can namespace your URLs.\n", "\n", "The Django Admin is not a good reference for well-structured Django applications." ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.4.3" } }, "nbformat": 4, "nbformat_minor": 0 }
mit
google/iree
samples/colab/tensorflow_hub_import.ipynb
1
19002
{ "nbformat": 4, "nbformat_minor": 0, "metadata": { "colab": { "name": "tensorflow_hub_import.ipynb", "provenance": [], "collapsed_sections": [ "-V0X0E7LkEa4", "FH3IRpYTta2v" ] }, "kernelspec": { "name": "python3", "display_name": "Python 3" }, "language_info": { "name": "python" } }, "cells": [ { "cell_type": "markdown", "metadata": { "id": "FH3IRpYTta2v" }, "source": [ "##### Copyright 2021 The IREE Authors" ] }, { "cell_type": "code", "metadata": { "id": "mWGa71_Ct2ug", "cellView": "form" }, "source": [ "#@title Licensed under the Apache License v2.0 with LLVM Exceptions.\n", "# See https://llvm.org/LICENSE.txt for license information.\n", "# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception" ], "execution_count": 1, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "Qb3S0mSjpK7J" }, "source": [ "# IREE TensorFlow Hub Import\n", "\n", "This notebook demonstrates how to download, import, and compile models from [TensorFlow Hub](https://tfhub.dev/). It covers:\n", "\n", "* Downloading a model from TensorFlow Hub\n", "* Ensuring the model has serving signatures needed for import\n", "* Importing and compiling the model with IREE\n", "\n", "At the end of the notebook, the compilation artifacts are compressed into a .zip file for you to download and use in an application.\n", "\n", "See also https://google.github.io/iree/ml-frameworks/tensorflow/." ] }, { "cell_type": "markdown", "metadata": { "id": "9rNAJKNVkKOr" }, "source": [ "## Setup" ] }, { "cell_type": "code", "metadata": { "id": "RdVc4TbOkHM2" }, "source": [ "%%capture\n", "!python -m pip install iree-compiler iree-runtime iree-tools-tf -f https://github.com/google/iree/releases" ], "execution_count": 2, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "qRwv3qI_l5O_", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "31418cc7-ecd5-4c73-c595-ff1d6caf03cc" }, "source": [ "import os\n", "import tensorflow as tf\n", "import tensorflow_hub as hub\n", "import tempfile\n", "from IPython.display import clear_output\n", "\n", "from iree.compiler import tf as tfc\n", "\n", "# Print version information for future notebook users to reference.\n", "print(\"TensorFlow version: \", tf.__version__)\n", "\n", "ARTIFACTS_DIR = os.path.join(tempfile.gettempdir(), \"iree\", \"colab_artifacts\")\n", "os.makedirs(ARTIFACTS_DIR, exist_ok=True)\n", "print(f\"Using artifacts directory '{ARTIFACTS_DIR}'\")" ], "execution_count": 3, "outputs": [ { "output_type": "stream", "text": [ "TensorFlow version: 2.5.0\n", "Using artifacts directory '/tmp/iree/colab_artifacts'\n" ], "name": "stdout" } ] }, { "cell_type": "markdown", "metadata": { "id": "ZZAobcAhocFE" }, "source": [ "## Import pretrained [`mobilenet_v2`](https://tfhub.dev/google/tf2-preview/mobilenet_v2/classification/4) model\n", "\n", "IREE supports importing TensorFlow 2 models exported in the [SavedModel](https://www.tensorflow.org/guide/saved_model) format. This model we'll be importing is published in that format already, while other models may need to be converted first.\n", "\n", "MobileNet V2 is a family of neural network architectures for efficient on-device image classification and related tasks. This TensorFlow Hub module contains a trained instance of one particular network architecture packaged to perform image classification." ] }, { "cell_type": "code", "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "7fd0vmnloZo9", "outputId": "fcb260e8-672a-479d-c428-2a93d306d4b2" }, "source": [ "#@title Download the pretrained model\n", "\n", "# Use the `hub` library to download the pretrained model to the local disk\n", "# https://www.tensorflow.org/hub/api_docs/python/hub\n", "HUB_PATH = \"https://tfhub.dev/google/tf2-preview/mobilenet_v2/classification/4\"\n", "model_path = hub.resolve(HUB_PATH)\n", "print(f\"Downloaded model from tfhub to path: '{model_path}'\")" ], "execution_count": 4, "outputs": [ { "output_type": "stream", "text": [ "Downloaded model from tfhub to path: '/tmp/tfhub_modules/426589ad685896ab7954855255a52db3442cb38d'\n" ], "name": "stdout" } ] }, { "cell_type": "markdown", "metadata": { "id": "CedNRSQTOE7C" }, "source": [ "### Check for serving signatures and re-export as needed\n", "\n", "IREE's compiler tools, like TensorFlow's `saved_model_cli` and other tools, require \"serving signatures\" to be defined in SavedModels.\n", "\n", "More references:\n", "\n", "* https://www.tensorflow.org/tfx/serving/signature_defs\n", "* https://blog.tensorflow.org/2021/03/a-tour-of-savedmodel-signatures.html" ] }, { "cell_type": "code", "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "qiO66oEYQmsd", "outputId": "5d7e4f7d-e77e-45f1-c37e-11e38ed05ce2" }, "source": [ "#@title Check for serving signatures\n", "\n", "# Load the SavedModel from the local disk and check if it has serving signatures\n", "# https://www.tensorflow.org/guide/saved_model#loading_and_using_a_custom_model\n", "loaded_model = tf.saved_model.load(model_path)\n", "serving_signatures = list(loaded_model.signatures.keys())\n", "print(f\"Loaded SavedModel from '{model_path}'\")\n", "print(f\"Serving signatures: {serving_signatures}\")\n", "\n", "# Also check with the saved_model_cli:\n", "print(\"\\n---\\n\")\n", "print(\"Checking for signature_defs using saved_model_cli:\\n\")\n", "!saved_model_cli show --dir {model_path} --tag_set serve --signature_def serving_default" ], "execution_count": 5, "outputs": [ { "output_type": "stream", "text": [ "Loaded SavedModel from '/tmp/tfhub_modules/426589ad685896ab7954855255a52db3442cb38d'\n", "Serving signatures: []\n", "\n", "---\n", "\n", "Checking for signature_defs using saved_model_cli:\n", "\n", "The given SavedModel SignatureDef contains the following input(s):\n", "The given SavedModel SignatureDef contains the following output(s):\n", "Method name is: \n" ], "name": "stdout" } ] }, { "cell_type": "markdown", "metadata": { "id": "kKqqX2LsReNz" }, "source": [ "Since the model we downloaded did not include any serving signatures, we'll re-export it with serving signatures defined.\n", "\n", "* https://www.tensorflow.org/guide/saved_model#specifying_signatures_during_export" ] }, { "cell_type": "code", "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "OlDG2OuqOBGC", "outputId": "044bb741-a563-4fe2-b0d9-8b47bcc5f286" }, "source": [ "#@title Look up input signatures to use when exporting\n", "\n", "# To save serving signatures we need to specify a `ConcreteFunction` with a\n", "# TensorSpec signature. We can determine what this signature should be by\n", "# looking at any documentation for the model or running the saved_model_cli.\n", "\n", "!saved_model_cli show --dir {model_path} --all \\\n", " 2> /dev/null | grep \"inputs: TensorSpec\" | tail -n 1" ], "execution_count": 6, "outputs": [ { "output_type": "stream", "text": [ " inputs: TensorSpec(shape=(None, 224, 224, 3), dtype=tf.float32, name=u'inputs')\n" ], "name": "stdout" } ] }, { "cell_type": "code", "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "gnb4HhMmkgiT", "outputId": "3318bc8e-321c-417f-d9b0-b4cc9dcca8de" }, "source": [ "#@title Re-export the model using the known signature\n", "\n", "# Get a concrete function using the signature we found above.\n", "# \n", "# The first element of the shape is a dynamic batch size. We'll be running\n", "# inference on a single image at a time, so set it to `1`. The rest of the\n", "# shape is the fixed image dimensions [width=224, height=224, channels=3].\n", "call = loaded_model.__call__.get_concrete_function(tf.TensorSpec([1, 224, 224, 3], tf.float32))\n", "\n", "# Save the model, setting the concrete function as a serving signature.\n", "# https://www.tensorflow.org/guide/saved_model#saving_a_custom_model\n", "resaved_model_path = '/tmp/resaved_model'\n", "tf.saved_model.save(loaded_model, resaved_model_path, signatures=call)\n", "clear_output() # Skip over TensorFlow's output.\n", "print(f\"Saved model with serving signatures to '{resaved_model_path}'\")\n", "\n", "# Load the model back into memory and check that it has serving signatures now\n", "reloaded_model = tf.saved_model.load(resaved_model_path)\n", "reloaded_serving_signatures = list(reloaded_model.signatures.keys())\n", "print(f\"\\nReloaded SavedModel from '{resaved_model_path}'\")\n", "print(f\"Serving signatures: {reloaded_serving_signatures}\")\n", "\n", "# Also check with the saved_model_cli:\n", "print(\"\\n---\\n\")\n", "print(\"Checking for signature_defs using saved_model_cli:\\n\")\n", "!saved_model_cli show --dir {resaved_model_path} --tag_set serve --signature_def serving_default" ], "execution_count": 7, "outputs": [ { "output_type": "stream", "text": [ "Saved model with serving signatures to '/tmp/resaved_model'\n", "\n", "Reloaded SavedModel from '/tmp/resaved_model'\n", "Serving signatures: ['serving_default']\n", "\n", "---\n", "\n", "Checking for signature_defs using saved_model_cli:\n", "\n", "The given SavedModel SignatureDef contains the following input(s):\n", " inputs['inputs'] tensor_info:\n", " dtype: DT_FLOAT\n", " shape: (1, 224, 224, 3)\n", " name: serving_default_inputs:0\n", "The given SavedModel SignatureDef contains the following output(s):\n", " outputs['output_0'] tensor_info:\n", " dtype: DT_FLOAT\n", " shape: (1, 1001)\n", " name: StatefulPartitionedCall:0\n", "Method name is: tensorflow/serving/predict\n" ], "name": "stdout" } ] }, { "cell_type": "markdown", "metadata": { "id": "YdmgASzwanSz" }, "source": [ "### Import and compile the SavedModel with IREE" ] }, { "cell_type": "code", "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "GLkjlHE5mdmg", "outputId": "d057d2dc-001c-4fe4-cf4b-9517d4cf598e" }, "source": [ "#@title Import from SavedModel\n", "\n", "# The main output file from compilation is a .vmfb \"VM FlatBuffer\". This file\n", "# can used to run the compiled model with IREE's runtime.\n", "output_file = os.path.join(ARTIFACTS_DIR, \"mobilenet_v2.vmfb\")\n", "# As compilation runs, dump some intermediate .mlir files for future inspection.\n", "tf_input = os.path.join(ARTIFACTS_DIR, \"mobilenet_v2_tf_input.mlir\")\n", "iree_input = os.path.join(ARTIFACTS_DIR, \"mobilenet_v2_iree_input.mlir\")\n", "\n", "# Since our SavedModel uses signature defs, we use `saved_model_tags` with\n", "# `import_type=\"SIGNATURE_DEF\"`. If the SavedModel used an object graph, we\n", "# would use `exported_names` with `import_type=\"OBJECT_GRAPH\"` instead.\n", "\n", "# We'll set `target_backends=[\"vmvx\"]` to use IREE's reference CPU backend.\n", "# We could instead use different backends here, or set `import_only=True` then\n", "# download the imported .mlir file for compilation using native tools directly.\n", "\n", "tfc.compile_saved_model(\n", " resaved_model_path,\n", " output_file=output_file,\n", " save_temp_tf_input=tf_input,\n", " save_temp_iree_input=iree_input,\n", " import_type=\"SIGNATURE_DEF\",\n", " saved_model_tags=set([\"serve\"]),\n", " target_backends=[\"vmvx\"])\n", "clear_output() # Skip over TensorFlow's output.\n", "\n", "print(f\"Saved compiled output to '{output_file}'\")\n", "print(f\"Saved tf_input to '{tf_input}'\")\n", "print(f\"Saved iree_input to '{iree_input}'\")" ], "execution_count": 8, "outputs": [ { "output_type": "stream", "text": [ "Saved compiled output to '/tmp/iree/colab_artifacts/mobilenet_v2.vmfb'\n", "Saved tf_input to '/tmp/iree/colab_artifacts/mobilenet_v2_tf_input.mlir'\n", "Saved iree_input to '/tmp/iree/colab_artifacts/mobilenet_v2_iree_input.mlir'\n" ], "name": "stdout" } ] }, { "cell_type": "code", "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 102 }, "id": "IEJAzOb5qASI", "outputId": "52da0e1f-a512-4ee8-ea65-e716de9a3cf2" }, "source": [ "#@title Download compilation artifacts\n", "\n", "ARTIFACTS_ZIP = \"/tmp/mobilenet_colab_artifacts.zip\"\n", "\n", "print(f\"Zipping '{ARTIFACTS_DIR}' to '{ARTIFACTS_ZIP}' for download...\")\n", "!cd {ARTIFACTS_DIR} && zip -r {ARTIFACTS_ZIP} .\n", "\n", "# Note: you can also download files using the file explorer on the left\n", "try:\n", " from google.colab import files\n", " print(\"Downloading the artifacts zip file...\")\n", " files.download(ARTIFACTS_ZIP)\n", "except ImportError:\n", " print(\"Missing google_colab Python package, can't download files\")" ], "execution_count": 9, "outputs": [ { "output_type": "stream", "text": [ "Zipping '/tmp/iree/colab_artifacts' to '/tmp/mobilenet_colab_artifacts.zip' for download...\n", " adding: mobilenet_v2.vmfb (deflated 8%)\n", " adding: mobilenet_v2_iree_input.mlir (deflated 46%)\n", " adding: mobilenet_v2_tf_input.mlir (deflated 47%)\n", "Downloading the artifacts zip file...\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "application/javascript": [ "\n", " async function download(id, filename, size) {\n", " if (!google.colab.kernel.accessAllowed) {\n", " return;\n", " }\n", " const div = document.createElement('div');\n", " const label = document.createElement('label');\n", " label.textContent = `Downloading \"${filename}\": `;\n", " div.appendChild(label);\n", " const progress = document.createElement('progress');\n", " progress.max = size;\n", " div.appendChild(progress);\n", " document.body.appendChild(div);\n", "\n", " const buffers = [];\n", " let downloaded = 0;\n", "\n", " const channel = await google.colab.kernel.comms.open(id);\n", " // Send a message to notify the kernel that we're ready.\n", " channel.send({})\n", "\n", " for await (const message of channel.messages) {\n", " // Send a message to notify the kernel that we're ready.\n", " channel.send({})\n", " if (message.buffers) {\n", " for (const buffer of message.buffers) {\n", " buffers.push(buffer);\n", " downloaded += buffer.byteLength;\n", " progress.value = downloaded;\n", " }\n", " }\n", " }\n", " const blob = new Blob(buffers, {type: 'application/binary'});\n", " const a = document.createElement('a');\n", " a.href = window.URL.createObjectURL(blob);\n", " a.download = filename;\n", " div.appendChild(a);\n", " a.click();\n", " div.remove();\n", " }\n", " " ], "text/plain": [ "<IPython.core.display.Javascript object>" ] }, "metadata": { "tags": [] } }, { "output_type": "display_data", "data": { "application/javascript": [ "download(\"download_173f97e9-1e2d-401a-8aad-646463432451\", \"mobilenet_colab_artifacts.zip\", 59101356)" ], "text/plain": [ "<IPython.core.display.Javascript object>" ] }, "metadata": { "tags": [] } } ] } ] }
apache-2.0
vibinash/kaggle
dogs-vs-cats-redux/Dogs-vs-Cats-Redux.ipynb
1
2309061
null
apache-2.0
nkmk/python-snippets
notebook/random_shuffle.ipynb
1
4000
{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import random" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[0, 1, 2, 3, 4]\n" ] } ], "source": [ "l = list(range(5))\n", "print(l)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[1, 0, 4, 3, 2]\n" ] } ], "source": [ "random.shuffle(l)\n", "print(l)" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[0, 1, 2, 3, 4]\n" ] } ], "source": [ "l = list(range(5))\n", "print(l)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[0, 3, 1, 4, 2]\n" ] } ], "source": [ "lr = random.sample(l, len(l))\n", "print(lr)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[0, 1, 2, 3, 4]\n" ] } ], "source": [ "print(l)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "s = 'abcde'" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "# random.shuffle(s)\n", "# TypeError: 'str' object does not support item assignment" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(0, 1, 2, 3, 4)\n" ] } ], "source": [ "t = tuple(range(5))\n", "print(t)" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "# random.shuffle(t)\n", "# TypeError: 'tuple' object does not support item assignment" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "bedca\n" ] } ], "source": [ "sr = ''.join(random.sample(s, len(s)))\n", "print(sr)" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(0, 1, 2, 4, 3)\n" ] } ], "source": [ "tr = tuple(random.sample(t, len(l)))\n", "print(tr)" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[2, 1, 0, 4, 3]\n" ] } ], "source": [ "l = list(range(5))\n", "random.seed(0)\n", "random.shuffle(l)\n", "print(l)" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[2, 1, 0, 4, 3]\n" ] } ], "source": [ "l = list(range(5))\n", "random.seed(0)\n", "random.shuffle(l)\n", "print(l)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.6" } }, "nbformat": 4, "nbformat_minor": 2 }
mit
manoharan-lab/structural-color
polarization_tutorial.ipynb
1
59429
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Tutorial for reflectance calculations with polarization in the structural-color package\n", "\n", "Copyright 2016, Vinothan N. Manoharan, Victoria Hwang, Annie Stephenson\n", "\n", "This file is part of the structural-color python package.\n", "\n", "This package is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.\n", "\n", "This package is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.\n", "\n", "You should have received a copy of the GNU General Public License along with this package. If not, see http://www.gnu.org/licenses/." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Introduction to how polarization is implemented in the package\n", "\n", "Polarization plays a role in several calculations throughout the structural-color package:\n", "\n", "1. Cross sections\n", "<br>\n", "In the single scattering model used in this package, the cross sections are proportional to the structure factor * form factor, where the form factor comes from Mie theory. Mie theory solves Maxwell's equations for spheres, giving the scattered electric fields, which we use to calculate scattered intensity and scattering cross sections. The Mie solutions are polarization-dependent; we use Mie theory to find Jones or Stokes vectors to describe the fields, whose components reveal the polarization state. \n", "<br>\n", "<br>\n", "Most Mie solutions are performed in a basis defined by the scattering plane. So the Jones vector describes the scattered electric field components in terms of the scattered light that has polarization parallel to the scattering plane and the scattered light that is perpendicular to the scattering plane. (Remember, the scattering plane is the plane that contains the incident and scattered k-vectors of the light). Here's the way the Jones vector is written in this basis:\n", "<br>\n", "<br>\n", "$E_{scat} = \\begin{bmatrix}E_{||} \\\\ E_{\\perp}\\end{bmatrix}$\n", "<br>\n", "<br>\n", "This scattering plane basis is not ideal if you want to actually compare to any measured polarizations, because in the lab, we do not measure polarization according to its relation to the scattering plane, we measure it in the lab frame, which is not related to the scattering vectors of the light at all. And more specifically, we like to measure things in cartesian coordinates because it's intuitive. So we rotate the scattering matrix that comes from the Mie calculations, which allows us to get an expression for the Jones vector in a cartesian basis. \n", "<br>\n", "<br>\n", "$E_{scat} = \\begin{bmatrix}E_{x} \\\\ E_{y}\\end{bmatrix}$\n", "<br>\n", "<br>\n", "Now looking at this expression, you'll notice that there is no z component. The absence of z happens because we are assuming that the light is traveling in the +z direction, and under circumstances relevant to the model, polarization cannot be parallel to the direction of propagation. At this point, we can calculate the scattering cross sections in this cartesian coordinate system be doing a bit of math. To read more about this, see the docstrings of functions in mie.py. I worked very hard on them, and there is no point in repeating them here. \n", "<br>\n", "<br>\n", "2. Polarization vector\n", "<br>\n", "The polarization vector tells us the polarization direction of the the light, or in the case of the Monte Carlo model, the photon packets. It's often expressed as a Stokes or Jones vector, and it can be calculated by normalizing the above $E_{scat}$. \n", "<br>\n", "But it's not quite that simple. We have to be careful here. This Jones vector is in a cartesian coordinate system that is no longer dependent on the incident and scattered vectors as the scattering plane basis is. But this cartesian coordinate system is not the one we care about for comparing to measurements. Why? Because these coordinates are are defined in the local coordinate system of the light, or a photon packet, in the language of the Monte Carlo model. No matter the global direction of the light, it always sees itself as traveling in it's own +z direction. If it changes direction, as it will in the Monte Carlo model, it rotates it's coordinate system, so that it always is traveling in it's own +z direction. \n", "<br>\n", "<br>\n", "We experimentalists do not care what direction the photon packet thinks it is traveling in; we care about the direction relative to our own world: the global lab frame. So we do another rotation, one that brings the expression for the field into a global cartesian coordinate system that assumes the normal to a film sample is in the -z direction, meaning normally incident light travels in the +z direction. The +x, and +y directions can be found according to right hand rule. So our new expression for the E-field has 3 components:\n", "<br>\n", "<br>\n", "$ E_{scat} = \\begin{bmatrix}E_{x} \\\\ E_{y}\\\\ E_{z}\\end{bmatrix}$\n", "<br>\n", "<br>\n", "This is the format of the polarization vectors that are attributes of a Trajectory object. \n", "<br>\n", "<br>\n", "3. Phase function\n", "<br>\n", "The final place the polarization comes in is in the phase function. The phase function is the probability distribution of scattering angles, and it's calculated by just normalizing the differential cross section:\n", "<br>\n", "<br>\n", "$p(\\theta, \\phi) = \\frac{\\frac{d\\sigma(\\theta, \\phi)}{d\\Omega}}{\\sigma}$\n", "<br>\n", "<br>\n", "You'll notice that it's a function of $\\theta$ and $\\phi$. For unpolarized light, we don't have to worry about the $\\phi$ dependence in our samples because both the structure factors and the form factors for unpolarized light are constant as a function of $\\phi$. Polarized light is a different story. For polarized incident light, we do have to calculate the phase function as a function of $\\theta$ and $\\phi$.\n", "<br>\n", "<br>\n", "Having a phase function that depends on two variables means that our phase function is now a 2-dimentional array instead of a 1-dimensional array, and the sampling of the angles is a bit more complicated and time-consuming. This is all under the hood though--you (the user) won't have to fuss with the different possible dimensions of the phase function, but I think it's good to know in case you ever want to plot the phase function. \n", "\n", "**FAQ\n", "\n", "\n", "Q: If polarization is always calculated in Mie theory, what do we do with it in the calculations where we assume the light is unpolarized? \n", "<br>\n", "A: We average the parallel and perpendicular components. This is derived on pg 73 of Bohren and Huffman's $\\textit{Absorption and Scattering of Light by Small Particles}$\n", "\n", "\n", "Q: Is polarization implemented in both the single scattering model and the Monte Carlo model?\n", "<br>\n", "A: Currently, polarization is only fully implemented in the Monte Carlo model. However, it is certainly possible to add it to the single scattering model in the future" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "### Loading and using the package" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", "import structcol as sc\n", "from structcol import refractive_index as ri\n", "from structcol import montecarlo as mc\n", "from structcol import detector as det\n", "import pymie as pm\n", "from pymie import size_parameter, index_ratio \n", "import seaborn as sns\n", "import time\n", "\n", "# For Jupyter notebooks only:\n", "%matplotlib inline" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Run Monte Carlo model and calculate reflectance and polarization for trajectories\n", "#### for a single wavelength" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "set system parameters" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# incident light wavelength\n", "wavelength = sc.Quantity('600 nm')\n", "\n", "# sample parameters\n", "radius = sc.Quantity('0.140 um')\n", "volume_fraction = sc.Quantity(0.55, '')\n", "n_imag = 2.1e-4\n", "n_particle = ri.n('polystyrene', wavelength) + n_imag # refractive indices can be specified as pint quantities or\n", "n_matrix = ri.n('vacuum', wavelength) # called from the refractive_index module. n_matrix is the \n", "n_medium = ri.n('vacuum', wavelength) # space within sample. n_medium is outside the sample\n", "n_sample = ri.n_eff(n_particle, # refractive index of sample, calculated using Bruggeman approximation\n", " n_matrix, \n", " volume_fraction)\n", "thickness = sc.Quantity('80 um')\n", "boundary = 'film'\n", "\n", "# Monte Carlo parameters\n", "ntrajectories = 300 # number of trajectories\n", "nevents = 300 # number of scattering events in each trajectory" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "initialize and run trajectories" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/home/stephenson/anaconda3/lib/python3.5/site-packages/Pint-0.7.2-py3.5.egg/pint/quantity.py:715: RuntimeWarning: divide by zero encountered in double_scalars\n" ] } ], "source": [ "# Calculate scattering quantities\n", "p, mu_scat, mu_abs = mc.calc_scat(radius, n_particle, n_sample, \n", " volume_fraction, wavelength, polarization= True)\n", "\n", "# Initialize trajectories\n", "r0, k0, W0, p0 = mc.initialize(nevents, ntrajectories, n_medium, n_sample, boundary, polarization=True)\n", "r0 = sc.Quantity(r0, 'um')\n", "k0 = sc.Quantity(k0, '')\n", "W0 = sc.Quantity(W0, '')\n", "p0 = sc.Quantity(p0,'')\n", "\n", "trajectories = mc.Trajectory(r0, k0, W0, p0)\n", "\n", "# Sample trajectory angles\n", "sintheta, costheta, sinphi, cosphi, theta, phi= mc.sample_angles(nevents, \n", " ntrajectories,p)\n", "# Sample step sizes\n", "step = mc.sample_step(nevents, ntrajectories, mu_scat)\n", "\n", "# Update trajectories based on sampled values\n", "trajectories.scatter(sintheta, costheta, sinphi, cosphi)\n", "trajectories.polarize(theta, phi, sintheta, costheta, sinphi,cosphi,\n", " n_particle, n_sample, radius, wavelength, volume_fraction)\n", "trajectories.move(step)\n", "trajectories.absorb(mu_abs, step) " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "calculate reflectance" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Reflectance: 0.945385606824\n", "Transmittance: 0.0546143931759\n" ] } ], "source": [ "reflectance, transmittance = det.calc_refl_trans(trajectories, thickness, n_medium, n_sample, boundary)\n", "\n", "print('Reflectance: ' + str(reflectance))\n", "print('Transmittance: ' + str(transmittance))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Run Monte Carlo model and calculate reflectance and polarization for trajectories\n", "#### for the full visible spectrum" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "set system parameters" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# incident light wavelength\n", "wavelengths = sc.Quantity(np.arange(400, 800, 20), 'nm')\n", "\n", "# sample parameters\n", "radius = sc.Quantity('0.140 um')\n", "volume_fraction = sc.Quantity(0.55, '')\n", "n_imag = 2.1e-4\n", "n_particle = ri.n('polystyrene', wavelengths) + n_imag*1j # refractive indices can be specified as pint quantities or\n", "n_matrix = ri.n('vacuum', wavelengths) # called from the refractive_index module. n_matrix is the \n", "n_medium = ri.n('vacuum', wavelengths) # space within sample. n_medium is outside the sample\n", "\n", "thickness = sc.Quantity('80 um')\n", "z_low = sc.Quantity('0 um')\n", "\n", "# Monte Carlo parameters\n", "ntrajectories = 300 # number of trajectories\n", "nevents = 300 # number of scattering events in each trajectory" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "initialize trajectories, run trajectories, and calculate reflectance for each wavelength" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "wavelength: 400 nanometer\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/home/stephenson/anaconda3/lib/python3.5/site-packages/Pint-0.7.2-py3.5.egg/pint/quantity.py:715: RuntimeWarning: divide by zero encountered in double_scalars\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "wavelength: 420 nanometer\n", "wavelength: 440 nanometer\n", "wavelength: 460 nanometer\n", "wavelength: 480 nanometer\n", "wavelength: 500 nanometer\n", "wavelength: 520 nanometer\n", "wavelength: 540 nanometer\n", "wavelength: 560 nanometer\n", "wavelength: 580 nanometer\n", "wavelength: 600 nanometer\n", "wavelength: 620 nanometer\n", "wavelength: 640 nanometer\n", "wavelength: 660 nanometer\n", "wavelength: 680 nanometer\n", "wavelength: 700 nanometer\n", "wavelength: 720 nanometer\n", "wavelength: 740 nanometer\n", "wavelength: 760 nanometer\n", "wavelength: 780 nanometer\n" ] } ], "source": [ "reflectance = np.zeros(wavelengths.size)\n", "pol_refl_x = np.zeros(wavelengths.size)\n", "pol_refl_y = np.zeros(wavelengths.size)\n", "pol_refl_z = np.zeros(wavelengths.size)\n", "\n", "for i in range(wavelengths.size):\n", " # print wavelength\n", " print('wavelength: ' + str(wavelengths[i]))\n", " \n", " # calculate n_sample\n", " n_sample = ri.n_eff(n_particle[i], n_matrix[i], volume_fraction)\n", " \n", " # Calculate scattering quantities\n", " p, mu_scat, mu_abs = mc.calc_scat(radius, n_particle[i], n_sample, \n", " volume_fraction, wavelengths[i], polarization= True)\n", "\n", " # Initialize trajectories\n", " r0, k0, W0, p0 = mc.initialize(nevents, ntrajectories, n_medium[i], n_sample, boundary, polarization=True)\n", " r0 = sc.Quantity(r0, 'um')\n", " k0 = sc.Quantity(k0, '')\n", " W0 = sc.Quantity(W0, '')\n", " p0 = sc.Quantity(p0,'')\n", "\n", " trajectories = mc.Trajectory(r0, k0, W0, p0)\n", "\n", " # Sample trajectory angles\n", " sintheta, costheta, sinphi, cosphi, theta, phi= mc.sample_angles(nevents, \n", " ntrajectories,p)\n", " # Sample step sizes\n", " step = mc.sample_step(nevents, ntrajectories, mu_scat)\n", "\n", " # Update trajectories based on sampled values\n", " trajectories.scatter(sintheta, costheta, sinphi, cosphi)\n", " trajectories.polarize(theta, phi, sintheta, costheta, sinphi,cosphi,\n", " n_particle[i], n_sample, radius, wavelengths[i], volume_fraction)\n", " trajectories.move(step)\n", " trajectories.absorb(mu_abs, step) \n", " \n", " # calculate reflectance and other values of interest\n", " refl_indices, trans_indices,_,_,_,_,_,_,_,_,_,reflectance[i],_,_,_,_ = det.calc_refl_trans(trajectories, \n", " thickness, n_medium[i], n_sample,\n", " boundary, return_extra = True)\n", " \n", " # calculate reflectance contribution from each polarization component\n", " pol_refl_x[i], pol_refl_y[i], pol_refl_z[i] = det.calc_pol_frac(trajectories, refl_indices)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Plot reflectance and polarization spectra" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "<matplotlib.legend.Legend at 0x7f754303d668>" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEKCAYAAAAIO8L1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd4VFXexz/TMplk0ntvEEKHAAEEBAVEV3Z1VV6q2BHd\n9XXVdwURGwtYEHeFdVdkXUFAF9fFunYUpYcSEmpII73MpEzq9Hn/mDAwpBBCOufzPHmGe8695/7u\nkJzvPe17JDabzYZAIBAIBJcg7e4ABAKBQNAzEQIhEAgEgmYRAiEQCASCZhECIRAIBIJmEQIhEAgE\ngmYRAiEQCASCZulUgTh79izTpk1j69atTfL27dvHXXfdxezZs3nrrbc6MwyBQCAQtINOE4j6+nr+\n9Kc/MX78+GbzV65cyfr16/nwww/Zu3cvmZmZnRWKQCAQCNqBvLMKdnFxYePGjWzcuLFJXn5+Pl5e\nXoSEhAAwefJk9u/fT79+/ZotS6/Xc+LECQICApDJZJ0VskAgEPQpLBYLGo2GIUOG4OrqesXXd5pA\nyOVy5PLmi9doNPj6+jqOfX19yc/Pb7GsEydOMH/+/A6PUSAQCK4Ftm3bxujRo6/4uk4TiI4kICAA\nsD9kcHBwN0cjEAgEvYOSkhLmz5/vqEOvlG4RiMDAQLRareO4tLSUwMDAFs8/360UHBxMeHh4p8cn\nEAgEfYn2ds13yzTX8PBwamtrKSgowGw289NPPzFhwoTuCEUgEAgELdBpLYgTJ07w6quvUlhYiFwu\n59tvv+XGG28kPDyc6dOn8+KLL/LUU08B8Ktf/YqYmJjOCkUgEAgE7aDTBGLIkCFs2bKlxfwxY8aw\nffv2zrq9QCAQCK4SsZJaIBAIBM0iBEIgEAgEzSIEQiAQCATNIgRCIBAIBM0iBEIgEPQJvv322xbz\ndu7cidFobDF/6dKl/PTTT50RVq9GCIRAIOj1FBQU8N///rfF/E2bNmEymbowor5Br7DaEAgEvQNd\nrYFt35whv6ymQ8uNCPRgwS0D8XR3aTZ/xYoVpKWl8de//pXTp09TXV2N2Wxm+fLlZGRkcOzYMR56\n6CE2bdrE2rVrSUtLw2AwMHfuXGbNmtWhsfYlhEAIBIIOY9s3Z/h6/7kOL/dEVjkAj941vNn8Bx54\ngG3btgEwfPhwFi1axPHjx3n55ZfZunUr69atY+PGjdhsNsLCwnjmmWfQ6/VMmzZNCEQrCIEQCAR9\nhhMnTvDII48AMHToUHJzc53ylUolOp2OOXPmoFAoqKys7I4wew1CIAQCQYcx/+YEkEB+aQd3MQV5\nsODmgZc9TyKRYLPZHMdWq9UpPzk5mQMHDrBlyxYUCgUjR47s0Dj7GkIgBAJBh+GlVvLonc13A3Um\nUqkUs9nM0KFDOXjwICNGjODYsWP0798fsAuHxWKhsrKS4OBgFAoFO3fuxGKxtDq76VpHzGISCAS9\nnri4OE6dOkVVVRUnT55k4cKFrF27lmeffRaApKQk5s2bx5AhQ8jNzWXBggXk5+czZcoUXnzxxe4N\nvgcjsV3cHuuhFBQUMHXqVHbu3Cn2gxAIBII2crV1p2hBCAQCgaBZhEAIBAKBoFmEQAgEAoGgWcQs\npl6CzWalquwkZbm7MRlrCet3Mz7Bw7o7LIFA0IcRAtHDsVktVJSkUJLzE/q6Mkd6dtoW/CvGETHg\nN0hlim6MUCAQ9FWEQPRQrBYT2sJDlJ7bhVHf/GpPbcEB6qrOETNsASp1UBdHKBAI+jpiDKKHYTHr\nKcn5ieO7V5N/5hMncZDKXQmOuQHvoAtdSw21JZw58CbawmR6wYxlgaDHM3bs2Dafe97Wo73ccccd\nFBQUXFUZnYloQVyCzWbFYtZjNtZiMtTYP421mI21mE0NuLh64+4dibtnOFJZ886S7cFsrKMsbw9l\neXuxmBuc8uQKdwKjJhEQcR1yhQqbzYa24AD56Z9js5qxWk3knvw3NeWZRA66A5nctcPiEggELfP3\nv/+9u0PoVK4ZgTCb6jHUlztV+I6K/5I0bNbLFyiRolIH4+4VibtXJGrvKJRu/kgkV9YoM+p1lOb+\njDb/AFars1+9QulFcPQU/MOTnMRIIpEQEDEetXc02WlbHWMTFSUp1FXnEzNsPu6eYkGh4Nrhrbfe\nwtXVlQceeIC//e1vyOVyFi1a5MifNGkSM2bM4Pjx4wQFBfH6669jMBhYunSpkzX44MGDHdfs27eP\nN998E4VCgaenJ3/5y19ISUnhn//8J/X19SxZsoQHHniAgwcP8sgjj1BbWwvAkSNH+Omnn6ipqWHF\nihVIJBLc3d155ZVX8PT0ZOXKlaSkpBATE9Pj96jo0wJhs1rQaU+jLUhGpz0DdGAXjM1KQ00RDTVF\naAsOACCTu+LmFYHaK8ohHHIX92Yv19drKc35ifKiI9hsFqc8pZs/wTE34BuSiFTa8n+RyiOEhLGP\nk5/+GeWFyQAY6rWkH/wrYfG3Ehg5EYlE0kEPLBC0jS/O/MC/T36J3mzosDJd5UpmDZ7JrxOmNZv/\n0EMPMX/+fCZOnMiuXbsc1t/nKSsrY+bMmSxfvpzHHnuMX375hTNnzjRrDX4enU7H66+/TkREBE8/\n/TR79uzB3d2ds2fP8u233+LicuGl7XxLYtu2bQwYMICgoCCefvppVqxYQXR0NNu2bWPbtm1Mnz6d\no0eP8vHHH1NaWsr06dM77DvqDPqkQOjrNGgLD1FedAizsfaKr5fKXVG4qJG7uDd+2n9kclf0tWXU\n6fIa39qdBcdi1lNTnkFNeYYjTanys3dJNQqGRCKl5NzPVJakNrle5RFCcMxUfIKGtrklIpO7ED14\nFp6+/cg99R+sFgM2m4WC9M+pKc8gesjsFkVKIOgMvkz/oUPFAUBvNvBl+g8tCoSLiwtPPvkk8+fP\n5+2330ahcJ7Z5+bmxogRIwAYMWIEOTk5l7UG9/X1Zfny5VgsFvLz8xk3bhzu7u4MGDDASRzOk5GR\nwaeffuoQmbS0NJ577jkAjEYjQ4cOJTMzk+HDhyOVSgkJCSEiIuLqvphOps8IhNVipLL0ONrCZGor\ns5s9x1UdjIvSE7mL2qniV1zy2ZZpoxZTA3XV+dTp8qmryqVOl4fZVNfkPENDOYaGciqKU1osy907\nmpCYG/H0T2j3G79vyEjcvCLISdtGfbV90EunPc2p/X8mZug8PHxj21WuQHClzBwwrVNaEDMHNC8O\n59FoNHh6elJSUsIHH3zA119/jY+PD+vWrXOy/bbZbEgkkstagy9btox33nmHuLg4VqxY4UhvThwM\nBgPLli1j9erVKJVKAFQqFe+//77T3/TXX3+NVHrh5e/Se/Y0er1A1FcXoi08SEVxChazvkm+QumJ\nX+ho/MLG4Orm32H3lSlUePrF4+kXD9h/6YwNFdTp8hw/9dWFTbqPLsbTL57g2Kl4+HRM5e3q5s+A\npN9RmPEVZbm7ATAZdJw9/DYhcdMJiZ16xWMkAsGV8uuEaS2+6XcWNTU1bN68mY8++ogHH3yQLVu2\nMG/ePEe+Xq/nxIkTDBkyhGPHjnHXXXdhNBqbtQY/T21tLSEhIVRXV3Pw4EEGDBjQ4v1fe+01br/9\ndqcyEhIS+OWXX5g8eTL//e9/8fX1JSYmhs2bN2Oz2SgqKqKwsLDjv4wOpFcKhNnUQEVxCtrCZBpq\nmvmCJVK8/BPwDxuLl/8AJFJZp8ckkUhQuvmhdPPDN8S+CYnVaqahpoi6qguiYTLWNgrDjZ0ykCyV\nyokY8Bs8fPtx7sR2LKZ6wEZx1nfUVGQRM3QuLq5eHX5fgaA7eeONN7jvvvvw9/dnwYIFvPHGG7zw\nwguOfG9vbz7//HNWr15NQEAAEydOZPTo0SxbtoyFCxdis9l4/vnnncqcN28ec+fOJTo6mgcffJD1\n69fz5JNPNrl3aWkpH374IaNGjeKbb74B4PHHH+fZZ5/lueeeY+PGjSiVStauXYu3tzfx8fHMnj2b\n6OhoEhISOveLuUp6ld335zvew8WaS2VpGjarucl5SpUf/uFJ+IWORqH07IZIexZGfRU5xz906nKT\nK9yJHjIHr4Ce/YspEHQkY8eO5eDBg90dRpdztXbfvaoFkZO2jQA/N6c0iVSOT9BQ/MPGovaJEV0o\nF+Hi6k386IcpzvqB4uwfABtmUx2ZKe/iHTj4KtdLSFF5hOAdMAilm19HhSwQCHoQvUogLkblEYJ/\n2Fh8Q0YiV7hd/oJrFIlESmi/m/DwjSPn+AeYDNUAVJWd7JDyC9I/x9U9CO/AwXgFDMLdK0KItKDH\ncS22HjqCXiUQErmSgPDx+IUn4eYRJub4XwEevnEMGv8k505sR6c93aFl6+tKKckppSTnR+QuarwC\nBuIdMAgP33hk8o5bbS4QCLqWXiUQg8Y+RkRkTHeH0WuRu7gTN/I+aitzMDSUX1VZVrOB6vKzVFdk\nOI0HmY21lBceorzwEBKpHA/ffngHDMIrYJAYHBcIehm9SiAkUmFrfbVIJBI8fGPx4Oqn1gZGTcRi\nNlJTcZYqzSl0mtNOCxNtVjPV2jNUa8/A6R24eYY3ti4Go/IIFS1AgaCH06sEQtDzkMld8A4cgnfg\nEGw2K3W6fHSaU1RpTqGvLXE6t766gPrqAoqzvkeh9MI7cBDB0TfgovLpltgtZiPlhclIZQq8g4Yh\nV6i6JQ6BoKciBELQYUgkUtTeUai9owjrfwuG+opGsThJTWW2kwmiyaBDk7+fytITDBizGFf3wC6N\n1WLWk3H0H9RV2e0V8s58ik/QMPzDklD7xPbY1o3NZsWk12FoqMDQUIGx8dPQUIEECW6e4Q5rFxdX\nnx77HD2ZK5kS+8gjj1yVo+sdd9zBunXr2jUFtSvoVIFYvXo1qampSCQSli1bxrBhF/Yx2LZtG59/\n/jlSqZQhQ4bw7LPPdmYogm5A6eZLYNREAqMmYjY1UF2ejq7sFDrtGYeludlYQ/qht7tUJCxmPRlH\n/kGd7oL3js1qpqL4KBXFR1G6+eMfloRf6KguX09js9mwmOobLVqcBcBYX4FRX9Xq6vzaqhzIs/9b\n7qJu9AA7bx4ZLqzgOxhh991OkpOTyc3NZfv27WRlZbFs2TK2b98O2Jewv/vuu3z33XfI5XLuv/9+\njh075jDTEvQ95AoVvsEj8A0e4XDZzTn+IVaLsVEk/k786MWdvjNec+KgdAvAUK9xHBvqtRRmfEVh\n5jd4+Q/EPzwJL7+OX5FvNtZdsGWpKcbYUI6hoRKrpWM8jMzGWnSaU+g0pxpTJLiqg+z29I3mka7q\noD4xLXnWrFmsXbuWyMhISkpKePTRR9mxY4cjX9h9t49OE4j9+/czbZrdjyUuLg6dTkdtbS1qtRqF\nQoFCoaC+vh43NzcaGhrw8hIzXK4VJFIZ3oFD6Jf4AJlH320UiVrOHn67U0XCYmqwdyvp8hxpEQNu\nIyByAvU1hWgLDlJRcgzreU8vmxWd5iQ6zclGT68x+IeNadfCQIftii7PYb3S3plkchc1SpUvLipf\nlI0/LipfrBbTBS+w6vwLz+HAhr62BH1ticMeXipT4u4Zjrt3FO5eEbh7RV51q6nw08/J+3A7Vn1T\nb7T2InV1JXLubMJu/02z+bfddhtfffUVixcvZufOndx6661O+cLuu310mkBotVonNfb19UWj0aBW\nq1Eqlfzud79j2rRpKJVKbr31VmJixPTVaw0Pn9guE4lmxSHhNgIjJwLYK8lB4UQM+DWVpWloC5Lt\n3TWNmAzVlOTspCRnJx6+/fAPS8I7cEizzr9248bKxso6t7GFUNSsPUxzSGVKlCqfiwTAz/FvF5UP\nMrmyxWu9Awc1xmBFX6dx3L9Ol0dDTQmXWsxbLQZqKrOoqcxypLm4+ti7pBrHMtw8wtrkcHyewk8/\n71BxALDq9RR++nmLAnHrrbfywAMPsHjxYnbt2sXKlSud8oXdd/voskHqiy2famtr2bBhA9988w1q\ntZp77rmHM2fO9HjjKkHH4+ETS//EB8k4+i5Wi+EikXgYlTq4Q+7RvDjcTmDkhCbnSmUudvff0NHo\n68rQFiZTXnTEafpuTUUmNRWZyOQqfEMT8QsZhcWsd3Lybcs+JBKJDDfPMHsl7BmOq3sALipf5Ar3\nqx5clkikqNRBqNRB+Icl2b8Hs4H66gKnOM+vrL8Yo74So76SytJUR5wqjxDHnibuXpGNuyc2H2PY\n7b/plBZES+IA4OPjQ3BwMGlpaVitVnbu3CnsvjuAThOIwMBAtFqt47isrIyAgAAAsrKyiIiIwNfX\nF4DRo0dz4sQJIRDXKGqfGPonPuAsEofeJn7M4qsWCbOpgYwjG6mvznektSQOl+LqHkh4/EzC+t1C\nleYU2sJkqrXpnH8Lt5gb0OTtRZO3t02xuKh8G/v/7YPGKs/QVncM7GhkciUevnF4+MYB9orSZNA5\nuQ3XVRdgu2TrW5vN4piirMnfZy9L4eYkGO5eEQ7Lm7Dbf9NqZd5Z3HbbbaxYsYLZs2cza9YsYffd\nAXTab+eECRNYv349c+bM4eTJkwQGBqJWqwEICwsjKysLvV6Pq6srJ06cYPLkyZ0ViqAXoPaJof+o\nB8k48g+7SJjq7CIxejEqj/aJRPPi8FsCI6+7onIkUhk+QUPxCRqKUV9FedFhtAXJGPWVLV4jlbvi\n7hnhtJugwkXdrufoLCQSCS6u3rgEe+MTbJ9haLNaaKgtdghGbVWe0wD+eSym+guLIBtRugWg9o7E\nJ2j4VW1+1V5uuOEGnnvuOWbMmNEkT9h9t49Otft+/fXXOXz4MBKJhBdeeIFTp07h4eHB9OnT+de/\n/sWOHTuQyWSMHDmSp59+usVyrtayVtB7qK065xAJsNuTt0ckmhOHyIG/JSDiysShJWw2KzUVmWgL\nD1FTkYlC6XHRdNJIXN0D+sTsIACzqd6+c+JFXVP2fUZaRqUOITj2RnyChnXZ93DgwAE++eQTXn31\n1SZ5wu67fXVnr9oPQgjEtUHzIvEwKo+QNl1vNtU3ikOBIy1y4B0ERIzvlHivNWw2G4Z6rfPuiTVF\nTgshz6N08yc4egq+oaM6tTtt3bp17Nmzh/Xr1xMU1HSCgxAIIRCCPkRtVS4ZR//hmKopU7gRP/ph\n3DxCW71OiEP3YLWYqK8ppLIkDW3BAayXjGMolF4ERU/GP2yscPjtQq627uwbbWBBn0PtHUV84kNI\nG1f+Wkz1nD28wf6m2gLNisOgO4U4dAFSmQK1dzQRCb9h6PXPEhI7DZn8greVyaCjIP1zju9eRXH2\nD5gv00Ul6BkIgRD0WNy9I9ssEmZTPRmH32kqDuHjuixegR25izuh/WYw9PplhPW/FflFg/MWUz1F\nmd9y/JfVFJz9CpOhphsjFVwOIRCCHo27dyTxox5yeAg5RKL6wvRAs6mes4ffob7mQlrUoLuEOHQz\nMrkrwTFTGDppGZEDf4uL6wXXXqvFQOm5nzi+ezV5pz/B0NDyjDBB9yEEQtDjcfeKpP+oRc4iceQd\n6qsLHeLQ4BAHCVGDZuEfPrb7AhY4IZUpCIi4jiETlxA9ZI6TKaPNakaTv48Te17h3Il/0VBb2o2R\nCi5FCISgV+DuFdEoEvZ+7fMtibOH/u4sDoPvwj88qfsCFbSIRCrDL3QUg657itjhC3HzvGjQ1Gal\nvOgIp/atJevYZoz6qm6Lc+zYtr9cnLfqaC933HEHBQUFlz+xmxACIeg1uHtF0H/0RSJhbqDBsSmR\nhKjBsxy2EoKei0QixSdoKAlj/5f+ox5C7RN3Ua6NqrITnD28oVcMZAu7b4GgB+HuGU7/0YvIOPyO\nY0+JC+IwpltjE1wZEokET794PP3iqa06R0n2j+i0pwG75Xp26lb6Jz7QJpv1Dz74gK+//hqAc+fO\nsWDBAh5++GFHvrD7bh9CIAS9DnfPcOJHLyI7dStmUz0RCbfhFzqqu8MSNLJ/VxY/f5eO0dDyxkbN\nE9D4cxEffgWAi1LG5JsGMH5KXNPLsNtizJs3j5KSEhYvXszcuXOd8oXdd/sQAiHolbh5hjN44tPY\nrJYrsqIWdD77f85qhzi0jtFgYf/PWS0KBNidUZcsWcLy5cvx9HTe00LYfbcPIRCCXotEIkUiE8No\nPY3xk+Pa2YJoGYWLlPGTWxYHgA0bNpCYmMjo0aMdXU7C7vvqEAIhEAg6lPFT4lp9028LFrOR9ENv\n0dC4KFKucCdhbMsr4lNTU9m7dy+bN28GLnQ5nUfYfbcPIRACgaDHIZO70G/EvZw+uA6zsRazqY6s\nlPcYkPQ7x3qYi1m3bh2VlZXce++9ACQmJvLEE0848oXdd/sQZn0CgaDHUlt1jrOH3sZms3dXeQUM\nJm7Ewiu2EBdursKsTyAQ9DHU3tFEDrrTcazTnKQo87tujOjaQgiEQCDo0fiHjSEo6nrHcUnOTiqK\nU66ojGux9dARCIEQCAQ9nrD4W/H0v9Bff+7kR9Tp8lu5QtARCIEQCAQ9HolESuzQeQ6jP5vVTNax\nTRj1um6OrG/Tp2cx2Ww2MvKr2JNaROpZDTKZhNEDg5gwLJTIYI8u31RdIBC0H5lCRdyIezlzcD0W\ncwMmQzVZxzYzYMwjYrFkJ9HnBOJiUdibVkRZhbPhV0Z+FR9+l05YgJoJw0OZMCyUmFBPIRYCQS/A\n1T2A2OELyDj6Ltis1Ffnk3vq30QPmSv+hjuBPiEQTqKQWkhZZcNlrynU1PLRD2f56IezhPi7M2GY\nXSziwr3EL5pA0IPx9IsnYsCvyT/zGQAVxSmo1CGknjUyY8aMFq/buXMnkyZNanYlNMDSpUuZMWMG\nN9xwQ7viupLr33nnHcaMGcPIkSPbda+tW7dSWVnJY4891q7r20qvFYjzorD7WCH70oouKwrRIZ4Y\nTBaKtXVN8oq1dXz8YwYf/5hBoK9bo1iEEB/p0+PEorSinnq9iZhQr+4ORSDoNgIiJtBQU4K20D47\n6diB//DpT7WtCsSmTZsYN25ciwLRlSxatKi7Q2gTvUogbDYb6bkV7EktarMoTBweyoThoYQHemCz\n2ThXXM3e1CL2pBZRqKltck1ZRT2f7Mrkk12Z+HuruG5YCBOHhTEgygeptHvEwmS2sC+tmG8OnONE\nVjkAE4eH8sTcRFwUl7dCFgj6GhKJhIiBt6Ov11Bbmc17H6WSlVfFX954hQce+l0TG++MjAyOHTvG\nQw89xKZNm1i7di1paWkYDAbmzp3LrFmzmr3P0qVLcXNzIzs7m8rKSl5++WUGDRrE5s2b+eoru9Ps\n1KlTnSr82tpannrqKerr69Hr9Tz33HMMGzaMm266ieuvvx4/Pz9yc3OZMWMGxcXFTWzKH3zwQZ57\n7jny8/Mxm8387//+L+PHj2f//v2sXr0af39/AgICusTor1cJxJK39lBjcmv1nEtF4WIkEgkxoV7E\nhHox/+YE8kpr2Nc4VpFb0nTzdG1VA5//ks3nv2Tj6+nKdcNCGD80hEExfsi7wCSuWFvHtwfO8X1y\nHtV1Rqe8PalF6GqNLL8/CTdXMUAn6DmUnvuZoqzvsVoMHVamVKYkNG46QdGTL6RJ5cQNX8jpA28y\nc1o/vvslh6ljbLz3z380a+O9bt06Nm7ciM1mIywsjGeeeQa9Xs+0adNaFAgAs9nMpk2b+PHHH3nr\nrbdYunQpn3zyCR9//DEAs2bN4uabb3acr9FomDVrFtOmTWP//v1s3LiR9evXYzabuf7667n++utZ\nunQp0LxN+RdffEFAQACrV6+moqKCe+65hy+++IK1a9eyZs0aEhISeOihh4RAXEqFTo/CralAxIR6\nMmF4KBOHhxEWoG5TWRKJhKhgT6KCPZk7I4H80hr2HS9ib2oROUXVTe9drefLPTl8uScHN1c5IwcE\nMmZgEKMSgvD2UF71s53HbLFy6FQJX+87R8pZTavnHs/S8szf9vLiQ+Pw8WjqTyMQdAelub90qDgA\nWC0GSnN/cRIIALmLO/1G3kfqyRcAMDZUcGj/CZ5asgpo3sZbqVSi0+mYM2cOCoWCysrKVu993XXX\nAXab8Ndff53Tp08zfPhw5HJ79ZmYmMiZM2cc5/v7+/O3v/2Nd999F6PRiNtFddawYcOaPtslNuUp\nKSkcOXKEo0ePAnanWKPRSGFhocO7acyYMRgMHfsdN0evEoiLaY8otEZEkAezgwYwe9oAijS17E2z\nd2NlFjSdZ12vN7M31S4mEgnER/gwelAQowcGERfWvkFuTWUD3x48x/cH86io1jd7jotCxrghwRw6\nVUJDo5VydqGOJev3sOLh8QT7uV/xfQWCjiYo6vpOaUFcvJr6YlQeIYTE3gi7zgJgMddTcu5nbCNG\nIpFImlhqJycnc+DAAbZs2YJCobjsQPHF1zdnE24ymZwsvDdv3kxQUBBr1qzh+PHjvPbaa448haJp\na/9im/Lz5yxevJiZM2c6fwcX3aOrLPR6lUBEBHkwfeJAJg4PJbQDRKElQgPUzJoaz6yp8ZSU17Ev\nrZh9aUWk5zV907DZID2vkvS8SrZ9cwZfT1dGD7SLxYj4AFTKlr9ii9VGSnoZX+87x+HTJVhb+D+P\nCFJz8/hobhwVgdrNhcz8Kl78x350tfZup+LyOp5ev5uXFo0Xg9eCbicoenKTN/3OxtM3DoXKvhtd\nbKQ3+/b+zKjRYyksd3NYcEskEiwWC5WVlQQHB6NQKNi5cycWiwWj0dhi2UeOHOFXv/oVKSkpxMXF\nMXDgQEeXEditxh9++GF++OEHACorKx3W4D/88EOr24pealMOMHz4cHbu3MnMmTMpLy9n8+bNPPnk\nkwQFBZGdnU1MTAzJycmODZA6k14lEC88OK7L3VyD/dy544Z+3HFDP8p1DRw+XcqhU6Ucy9BgMDbd\nEKWiWs93B3P57mAucpmUoXF+jB4UxJiBwYT429/wK6v1fJ+cx7cHzrU40C6XSbluWAi3jI9mcKyf\nU6ukX4Q3r/1+Es+9s9+xzqOyxsDSt/aw/P6xDI3z74RvQiDoucTFxZF9TsNH36j49ZRYNmxLYdGj\nf0TlHsJLf3oZgKSkJObNm8eGDRvYuHEjCxYsYNq0aUyZMoUXX3yxxbINBgMPP/wwxcXFrFmzhvDw\ncGbPns07ZDPHAAAgAElEQVSCBQuw2WzMmjWLsLAwx/m33XYbS5Ys4ZtvvmH+/Pl8+eWX/Oc//2m2\n7OZsyh977DEOHDjAnDlzsFgs/P73vwfgD3/4A48//jihoaEEBwd3zBd3GYTddzsxmiycyCrn0OkS\nDp0qpfSSBXnNER6oJtjPnZT0MiwtNBdC/Ny5eXwUU8dE4qVufWyjXNfAixsPcK74wpiJQi7ljwtG\nMX5o6JU9kEDQB7BaTKQnv0V9jX0jHrmLBwPHPY6La/ta1le7NqK7udq6s1e1IHoSLgoZiQmBJCYE\nsuh2GwVltRw6Vcqh0yWcyqnA2owAFJTVUlDWdGqtVCph7OBgbhkfzfD+AW2eTuvnpeLl301k5T8P\ncjLbPv3VZLbyyuZDPHrXCGaMi7q6hxQIehlSmYLYEfdw+sBfsJjqMRtryE7dQvyYxUilorq7UkQL\nohOobTCRkl7GoVMlHDlT1mSK6nn8vVyZMT6a6UmR+Hmp2n0/g8nCmi2HOXiyxCn97lsGMmtq/x63\n2E8g6GyqyzPJOPIOYK/e/MPHEXXRvhLXCqIF0QNRqxRMGhHGpBFhWKw2MvIrOXSqlMOnSqmo0dMv\n3JtbxkczKiEQWQesp1AqZDxzzxje+jiV75PzHOlbvj5NVa2BB38zpNsW+QkE3YGnXz/C42+l4OyX\nAGgLDuDmGU5A+Nhujqx3IQSik5FJJSRE+ZIQ5cvdtwzsvPvIpDz2PyPw9lDy750ZjvQvdmejqzXw\nhzmJKOTC3V1w7RAYdT111QVUlhwDIP/0J6jUwai9RddrW2lTjaHT6Xj11Vf5v//7PwB+/PFHKioq\nOjUwwZUjkUhY+KtBPHjbEKf0X1IK+dO7B2gwmLspMoGg65FIJEQPnoXKIwQAm81Cdur7mAxNF8IK\nmqdNArF8+XJCQkIoKCgAwGg0smTJkstet3r1ambPns2cOXNIS0tzyisuLmbu3LncddddPP/88+0I\nXdASt10fx1PzEpFd1K2UclbD8rf3oqvt/NWXAkFPQSpzIW74vcgU9tXMJkM12albsVrFy1JbaJNA\nVFRUsHDhQscqwJtvvhm9vvnVvudJTk4mNzeX7du3s2rVKlatWuWU/8orr3D//ffz8ccfI5PJKCoq\naucjCJpjyqgInntgLEqXC2Z+Z/OqWPLXPZRVXn5KrqB3YLPZKNTU8vW+HL7al0O9vuVFWdcqSjdf\nYofOA+wvTLVVORSkf9m9QfUS2jwGYTKZHLNhtFot9fWtVzL79+9n2rRpgH0Ri06no7a2FrVajdVq\n5ciRI7zxxhsAvPDCC+2NX9AKoxKCWLX4Ol76xwFq6u0VR6Gm1rHqOirYs5sjFLSH2nojqZlaUtLL\nSEkvc1ps+cmuTJ6cO4qBMb7dGGHPw9N/AGH9b6Eww+7Aqsnfi5tnGP5hY7o5sp5NmwRiwYIF3HXX\nXWg0GhYvXszx48d59tlnW71Gq9UyePBgx7Gvry8ajQa1Wk1FRQXu7u68/PLLnDx5ktGjR/PUU09d\n3ZMImmVAlC+v/n4Sz2/Yh1Znb/WV6/T8cd1uJg4PZdyQEIbHB6AUtuE9FovFSkZ+FUcbBeFsXmWL\ntiwl5fUsfWs3d97Yn7k3JYiJCRcRFD2FuuoCqkrt3d15p3egUgfj7tX5rqi9lTYJxC233MLIkSNJ\nSUnBxcWFFStWEBgYeEU3uni5hc1mo7S0lIULFxIWFsaiRYvYtWsXU6ZMuaIyBW0jIsiD1x67nhc2\n7iO/1L5Qr8Fg5vvkPL5PzkPpIiNxQCDjhgQzemAwnu7dv6HKtU5pRT0p6WUcTS8jLUNDnb7tfeZW\nG/x7ZwZH08t4at4oIoI8Ln/RNYB90Pp/OFNbir6uFJvVTFbq+wwc+zgKZed5u/Vm2iQQmZmZfPbZ\nZ463/GeeeYb77ruP+Pj4Fq8JDAxEq9U6jsvKyggIsJtp+fj4EBoaSmRkJADjx48nIyNDCEQnEuCj\n4pXfTWLFuwdIz3U2HTQYLew/Xsz+48VIpRIGx/gxbkgwY4eEEOTb+v4bgo6hwWDmeJaWlDNlpJwt\no1DTdOfDS5FJJSRE+zIyPoDBsX58uTeHvakXxvKyCnT84Y1d3DNzEDMnxIq1MIBMriRu5L2cObAO\ni7kBk76K7LQtxI9ahEQqWtGX0iaBeOmll3j88ccdx3feeScrVqxg69atLV4zYcIE1q9fz5w5czh5\n8iSBgYGo1XaVlsvlREREcO7cOaKjozl58iS33nrrVT6K4HJ4urvw8qMT+O5ALnvTijmZrW3SVWG1\n2jiepeV4lpaNn50gJtSTcUNCGDs4mNh2WpkLmqdIU0vyqVIOnSrhVE45ZsvlTQ1C/NwZMSCAxAGB\nDOvn77RZ1OBYP34eXMDbO9IcLQ6j2crGT09w6FQpf5gz8qpW7PcVXN38iRk6l8yU9wAbtZXZFJz9\nLxEJv+nQ+1it5l5v79Gm6C0Wi8OrHHD6d0skJiYyePBg5syZg0Qi4YUXXmDHjh14eHgwffp0li1b\nxtKlS7HZbMTHx3PjjTe2/ykEbUYhl3HrxFhunRhLdZ2Rw6dLOHCihKPpZc260+YUVZNTVM2H36UT\n4KNi7OBgxg0JYXBs1+yq15cwW6ycyim3e3adKmlTK0GllDO8vz8jBwQyMj7Q4QjcHBKJhCmjIhgU\n68dfPkzheNaFFvyxsxp+v+YnHr1zOJNGhrVYxrWCV8BAQvvNoCjzGwDK8nbj5hmGX+ioqyrXUK+l\noiSViuIU9HWl+ASPIGbInF7bOmmTF9PDDz/M5MmTGTt2LFarld27d3Pw4EE2bNjQFTH2Oi+m3ojB\nZCH1rIYDJ4pJPlXi2GuiJdQqBTGhXvh4KPHxdMXXU4m3h/3Tx9MVHw9XPNwU13yLQ1dr4MiZUpJP\nlZKSXkb9ZcYSJBLoH+HtEIQBUT7tEmKr1cZnv2Tx/lenMVucN8yZkhjOw3cMQ626treqtdmsZKdu\noarsBAASqZyEpN/j5nllAmrU66gsOUZFSSr11flN8n1DRhI9ZA4SSde/UF1t3dkmgaioqHBs8g0w\ncuRI/vCHP+Dr2zVT6YRAdC0Wq40z5yo4cKKYgydKKC6//Jtuc8hlUnw8lXYR8XC1C4nHeQFREuzv\n3uem2tpsNs4VVztaCel5lVzuL8xbrWTUwEBGJQQxvH9Ah04SOFdczdptR5ws4QH8vVU8MXckw/oF\ndNi9eiMWs54zB9ejrysDwMXVh4HjHkfu0vrujGZjHZWlaVSUHKO2MofzpoAtERA5gYgBt3X5C1OX\nCER3IwSi+7DZbOSV1jjEIiO/qkPLHxkfwJKFY3DvxW+zBpOF45lakk/Z9wbRVjW/CdTFxIV7MWZg\nMGMGBdEv3LtTB5BNZgtbvz7DJz9nNhGr2yfHcfctA3G5hqc56+vKOH1gnWOLVA/ffvRPfLBJt5DF\nrKeq7AQVJalUl58Fm7VJWRKJDE//AfgGj6CmMgttwUFHXkjcTYTGTe/ch7mELhGIL7/8kn/84x/o\ndDqn6aq7du264hu2ByEQPYdyXQMHT5aQlqGlXNdARY2Bymo9JnPTP5a20i/ci5cWXdejptdarDZq\n6ozoag1U1Rou+mxMq7Gn6WqNaHUNl31+F4WMkfEBjGncu7w7BouPZ2n584dH0Vyyi2FUsAdPzR91\nTW9XW1V2kqxjmxzHQVGTCR8wE6vFhE5zmoqSY+i0p7E1a9EhwcM3Dt/gkXgHDUHeaOths1nJSfuA\nytJUx5kRCbcTGDmhk5/mAl0iEDNmzGDlypWEhjrvUnbxNnudiRCIno3NZqNOb6ayWk9ljZ6KagNV\njZ+Xpp1f0X0pUcEe/Onh6/DxdO2yuOv1JnYdLSC/pMZR+Z8Xg5p642W7hi5HgI+KMQODGDMomKH9\n/HvEYsS6BhPvfHqcHw8795XLZVLuviWB2yb3c/LwupYoyvyO4uzvHcde/gOpqcx2tCwuxd0rCt+Q\nEfgEDUOhbL6r1Go1k5Xynr3F0UjM0Hn4hozs2OBboEv2g4iKimLMGLEkXdA8EokEtUqBWqW47KIs\nk9lCZbWBvNIa/vzhUcdmSrklNTzztz2sXDwBf+/Of7vOLa5m1XvJ7R5faQ6JBBKifBkzyC4KUcEe\nPW6Q3l2l4Im5iSQNCuatj485BNtssfLel6fYd7yYmRNiGDckBFdl756ieaWExE2jvroAnfY0gOPz\nYlQeIfgGj8QneDhK1eXHYKVSObHDF5Jx5B3qdPa9WnJO/AuZ3BWvgM6z/+8o2tSC+Pvf/05DQwNJ\nSUnIZBfegsaPH9+pwZ1HtCD6Jnkl1Ty3YR8V1Rfe0AJ93Vi1+DqC/VofJLwa9qQW8ua/UtA3M633\nckgl4OHugpdaibdaiZdaiZfahf4R3oxKCLrsPuI9iXJdA+u2H+NoelmTPFcXGeOHhnDDqAiG9Q+4\nZloVFlMDpw+ux1CvcaQp3fzxDR6BT/AIVOqgdpVrNtWTnvw39HWlAEikCuJHPYTaJ6ZD4m6JLuli\nuvvuu5teKJHw/vvvX/EN24MQiL5LkbaW5W/vc+oX9/V0ZeXi6zrcIsJitbHlq1P856dMp3QXhQx/\nL1dHZX9x5e+tVuLlcSFN7ebSpypLm83GV3tz+OeXpzCamhdMX09XJieGc8Oo8GtinMLYUElxzk5k\nchU+wcNx8wjrkJagUa8jPfktjHq7k4FMriJ+zGLcPEIvc2X76bZZTN9++y0zZsxoz6VXjBCIvk1Z\nRT3LN+yjWHuhu8dL7cKfHr6uwyqk6joja7Ye5thZjVP60Dh/liwc3ave/DuDgrIa/vXdWfafKG5R\nKACiQzy5YVQEkxPDxKrsdqCv05B+6G+YjXZPNLmLBwlJj6J08++U+3WJQBQVFbF161YqK+3KZzQa\nOXjwIHv27LnyiNuBEIi+T0W1nuVv7yO/tMaRplYpeGnReOIjfa6q7OxCHas2JVNW4WxRf9v1cdw3\nc1CH7AveV6jXm9iXVsyuo/mkZWpbHKiXSGB4vwBuGB3O+KGhqK6x8Yqrob66kPTDb2M1292VXVS+\nJCT9rsWB7qvhauvONv1lPP3003h7e3Ps2DGGDBlCZWUlr7322hXfTCBoCV9PV15+dAKxYRdaDLUN\nJpa/vY+T2eXtLnfX0QL+uH63kzi4KGQ8NS+RB28bIsThEtxcFUxLimTl4gn8c/lN3HvrIKKCm3b1\n2WxwLEPDnz9M4e4Xv2HttiMcPVOGxdL+6c7XCm6eYfQbeR+SRp8mY0MFGUc2Yjb1vI282vTXIZPJ\nWLRoEf7+/syfP5+///3vbNu2rbNjE1xjeKmVrHpkAgOiLrQYGgxmnn9nPynNDKS2hsVi5d3PT7B2\n2xGnLpNAXzfWPDaJKaPEHgCXw99bxZ039mf9/93Am09O4fbJcfh4NO2KMxgt7DpawAsb93Pfn77j\nrY9T2ZtWRE1963Yt1zIePrHEDr8bGu03GmpLyEz5JxZzz/rO2tQuNBgMlJSUIJFIyM/PJzQ0lMLC\nws6OTXANolYpWLFoPCv/mewwmzOaLKx49yDP3DOGpMHBly1DV2vgtS2HScvUOqWP6B/AH+8e3aMW\n5PUGJBIJsWFexIZ5ce/MwaRmaPjpSD77jxc3MXisrDHwzf5zfLP/HBIJ9Av3ZkR8AMP7BzAw2vea\nXrF9Kd4Bg4ge/D+cO/EvAOqqcslOfZ+4kff2GBfYNo1B/PDDD9TU1ODr68sTTzyBTCZj5syZXbZV\nqBiDuPYwmCys3pTM0TMXWg4yqYSn5o1q1Y00M7+K1ZuTm6wWvvOGftx9y0DRpdSBNBjM7D9ezE9H\n8knL0LS4y915XBQyBsf4OgQjJtRL7FEBlOXuIT/9M8exT/AIYobO7RBzvy5ZKBcTE0NcXBwAycnJ\n1NXVkZOTc8U3EwjailIhY/l9SazZeoT9x4sB+zTV17cdxmCyMC0pssk1Ow/l8dbHqU62F0oXGY/P\nHsmkEcLiuqNRKeXcODqCG0dHUK5r4JeUQvYfLyY9rxJrM2phNFlIOashpXEmmae7C8P728ViRHzA\nNbs5VWDURMymOoqzfwCgsuQYcoUbEQm3d/tCy1YForq6mqqqKpYtW8brr7/uSDeZTCxZsoRvv/22\n0wMUXLso5DKW3D2aP3+Yws8pBYB9O803t6dgMFm4dYJ9kZHZYuXdz07w5V7nl5YQP3eW3ZdEdEjf\ncoztifh5qfjtlH78dko/6vUmTmSVcyxDw7GzGqeZaRdTXWdk97FCdh+zd1eH+LszolEsRg8Muqa6\no0LibsJsqkOTvx8ATf4+5Ao3Qvt1zVKClmhVIFJSUti8eTOnT5/mnnvucaRLpVImTpzY6cEJBDKZ\nlCfmJaJ0kfHdwVxH+ts70jAYLdwwOpxX3z/cZKbTqIRA/m/+KNRuYryhq3FzVZA0ONgxXlSuayC1\nUSxSMzROK+cvplhbR7G2jq/3n8PPy5VZU+O5aWwkCnnfFwqJREJEwu2YTQ1UlhwDoDj7B+QKdwKj\nuq+ubdMYxIcffsjcuXO7Ip5mEWMQApvNxsbPTvDF7myndHeVgroGZwPA/5kWz7wZCX1qxXNfwWaz\nkV9aw7GzGo5laDiRpaXB0PLCPH9vFbOnxTN1TCQKed8fP7Kb+22iujzdkdZv5P3t9m3qknUQ/fr1\nY8mSJY7j++67j0OHDl3xzQSC9iKRSHjotiHMmtrfKf1icVApZTxzzxj7YLQQhx6JRCIhMtiT31wf\nx/MPjOODP/2KV38/kbk3DWBgtG+TQWttVQNvfZzK4ld38v3B3Ca74/U1pFI5cSMW4u4d5UgrLz7S\nffG05aQ33niDRx991HG8YsUK1q5d22lBCQTNIZFIWPirQSy4JaFJXliAO6//7/VcN6zzfG0EHY9c\nJmVQjB/zZiTw2mOT2PbSzcy7aQBurs6932UV9az76BiPvvojPx7O69ML8qQyl8ZWwyAUSk/8Qkd3\nWyxtmsVks9mIirqgaBEREU6urgJBVzJ72gBcXeS898VJLFYbSYOCeXJeYq/elU5gR+3mwtwZCfx6\nUiyf/pzF57uznLqgisvr+POHKWz//ixzbxrApJHhfbK1KFe40W/kfdhstm6dydQmgQgNDWXNmjUk\nJSVhs9nYvXs3wcGXX7AkEHQWt10fx8ThodQ1mIjsY/taC+xCseCWgQ6h+HJPtpM9e5G2jrUfHGX7\nD2eZd1MCE4aH9sk1Fd09zbVNg9QGg4F3332XtLQ0ABITE7n77rtRqbrGzVEMUgsE1zZVNQZ27Mrk\nv3tzmnWbjQz2YN5NCYwfGtInhaK9dMlCOaVSydy5c5k0aRJDhw7FarUilfb9GQUCgaBn4O2h5P5f\nD+a3k+P4z0+ZfL0vB+NFCyLzSmp45f1DRId4Mm9GAuOGBHf723dfoE21/Jdffsns2bN55plnAPjT\nn/7Ev//9704NTCAQCC7Fx9OVB28bwjvLpjFzYgzyS6xTzhVXs3pTMk/85WcKNbXdFGXfoU0C8d57\n7/HZZ5/h42N32VyyZAkfffRRpwYmEAgELeHnpeLh3w5j47Jp3HJdNHKZc2shq0DHC+/sF46yV0mb\nBMLDw8NpvMHV1RWFQswYEQgE3Yu/t4pH7xzOhqXTmDEuymlGU2lFPWu2HMZyORdBQYu0SSB8fHz4\n5JNPMBgMnDx5kjVr1uDr69vZsQkEAkGbCPR14/ezRvD20qkE+lx4mU05q2HbN6e7MbLeTZsE4qWX\nXuL48ePU1dWxfPlyDAYDK1eu7OzYBAKB4IoI9nNn2b1JuFxky/HvnRnsTSvqxqh6L22axeTp6cnz\nzz/f2bEIBALBVRMX7s3v/2cEb3xw1JH25r+OEhGoFmtmrpBWBWLy5MmtThXbtWtXR8cjEAgEV80N\noyLIyK9ymDs2GCysei+ZN/4wWay4vwJaFYg33niD4OBgiouLCQkJ6aqYBAKB4Kq5/9eDyS7UOazg\n7auvj7D8vrFiMV0baXUMYtWqVQQEBPDmm28SGhpKSEiI049AIBD0VOQyKUsWjsbPy9WRduhUKdu/\nT2/lKsHFtNqCiIiIYMSIEVitVgYOtPuRSyQSh4HU6dNidoBAIOi5+Hi4suzeJJb8dY/DKvyD79KJ\ni/AmaZDwk7scrbYg3nzzTU6dOsVdd93FmTNnOHPmDKdPn3Z8CgQCQU8nPtKHxXcMc0pbu+2IWGnd\nBto0zXXlypXs2rWLrVu3ApCXl0cbPP4EAoGgRzBjXBQzxl3YsqBeb2bVe8nU602tXCVok0CsWbOG\njz/+mB07dgDwxRdftGkdxOrVq5k9ezZz5sxxOMFeytq1a7n77ruvIGSBQCC4ch7+7VAGRPk4jvNL\na1i3/VinvOwWaWr5ITkPTWVDh5fdlbRJIA4dOsRf//pX3N3dAfjd737HyZMnW70mOTmZ3Nxctm/f\nzqpVq1i1alWTczIzM8XWpQKBoEtQyO1b0np7KB1pe9OK+M9PmR12j5LyOv784VEeeXUnb25PYfGr\nOzl0qqTDyu9q2iQQSqX9Cz2/JsJisWCxtLzROMD+/fuZNm0aAHFxceh0Omprnfv8XnnlFZ544okr\nDrq3YqzSUXnkKHXnzmE1m7s7HIHgmsPPS8XShWOcPJu2fHWKo+llV1Vuua6Bv/0nlUde3cmPh/M5\nb/9kNFlY+V4yOw/lXVX53UWbVlInJiaydOlSysrKeO+99/j2229JSkpq9RqtVsvgwYMdx76+vmg0\nGtRqNQA7duwgKSmJsLCwqwi/d2AxGCj85DMK//MJVqPdXVKiUOAeHYV7bAzq2Fjc42Jxj4pE6uLS\nzdEKBH2bwbF+PHjbEDZ8chwAqw3WbDnMn5+YTLCf+xWVpas18PGPGXy113l/iouxWm385V8pVNUY\nuOOGfr1qn4o2CcS9997LwYMHUalUlJSUcP/99zumvbaVi/v5qqqq2LFjB++99x6lpaVXFnEvwmaz\nof1lD+c2b8FYXu6cZzJRm5FJbUYmjm9AKsUtIhx1XCzusbGo42Jxi45G7nbBfMxitWC0mFApXGkN\nm8WCsUqHqbISY1UVxopKTI7PSqRKJaqwMFThYbiFh+EaEoJUOPQKrhFunRBDRn4VPx7OB6C2wcTq\nTcm89tgkXF0uXy3WNZj49OcsPvsl02nP7PP0C/ciwMeN/ceLHWmb/nuKiho9D/x6SK9ZqNfqN3H4\n8GGeeOIJjEYjPj4+bNiwgaioKLZu3crKlSv55ZdfWrw2MDAQrVbrOC4rKyMgIACAAwcOUFFRwfz5\n8zEajeTl5bF69WqWLVvWQY/V/dSczSDnH+9Rk+68KMc1NASbyYRBo216kdVKfW4e9bl58OMue5pE\ngmtICK4xkeR5WNhjzaNCaeEG/xFM8hmErboGY2WVXQgqqzBWVmKqrMJUXQ1XMvgmleIaGIgq3C4a\nqrBQVGF28ZB7evaqtx6B4HJIJBIevWs4uSXVZBXoAMgpquatf6fy5LzEFn/f9QYzX+7N4T8/ZlDb\n0HQGVESQBwtutm99arPZReGTXRfGOD7/JZuqGgN/mJOIQt7zd+VsVSD+/Oc/s2nTJuLi4ti5cyfP\nP/88VqsVLy+vy+4oN2HCBNavX8+cOXM4efIkgYGBju6lm2++mZtvvhmw75n6zDPP9DhxMFvMaBsq\n0dSVo6krp6yunCp9NZFeoVwfNRa1svmmqKG8nNz3t6HZ9bNTusLLk8gF8wiaeiMSmQxTdQ112dnU\nZudQl5VNbXY2+qLipgXabOiLitAXFeEJ/MqR8QPZ/NBxD2y1oi8pQV9SQuXhI05Zcg+1vbURdl48\nzrc6gpGIrWcFvRSlQsaye5J44i8/U11n7/rddbSAfhHe3HZ9nNO5JrOFb/bn8tHOs1TVGJqUFezn\nxrwZCVw/MtwxviGR2O0+fDyU/POLC5N6fkkppLrOyDP3jMHNtWe32lsVCKlUSlyc/YuaOnUqL7/8\nMkuWLGH69OmXLTgxMZHBgwczZ84cJBIJL7zwAjt27MDDw6NN1zfHh8c/J6wiFHeFG+4ubqgbf9xd\n3B3HKrmrk/qb6xuoOXOGmjPpSBQKvEcMRx0XiwUb5fUVjZV/hUMINPV2MahoqGpx+tu21E8YF5HI\ntLiJJPjb+xQtBgNFn35OwX8+wWq48AskkcsJ/c1Mwu+6A7n7BVFReHrgPWI43iOGXxRrPXU556jL\nzqbibDqaMyeRa3RI2zMLTyJB4emBwscHF29vXHx9UDg+fbDU1VFfUEhDYSENBYUYNJoWWxzmmlpq\nzqRTc8a5NaQMDCTopmkETbsRFx+fZq8VOGOz2TDpdDQUFtFQaBf+hqIirAYjPmNGE3jjDU5dioLO\nJdDXjafvHs3zG/Y5Bpb/+cVJYkO9GNrPH4vFyo+H8/nw+/Rmp6z6ebkye/oApidFNtn+9Dy/ndIP\nbw8lb/4rxbF50bGzGp79+15eeHC806yqnobE1sok4IULF/L+++87ju+++262bNnSJYFdTEFBAVOn\nTmXgE+Nx8Wn9j0dlhJhKCREaM8Elerw0dUguecIGVxnnQhScC3EhN8QFg7L9b8Fh6iBurg3G59sj\nmMornPJ8x40l+t6FqELavqS/or6Kz858xw/ZezBZTMjMNvyrzARWmomukRNT54KtroEymZ5apYQ6\nlZR6VykSLw8mD5tGQtwwFD7eKLy8kMrbNMQE2AfS9cXFNBQUOglHQ2GRk+A1h0Qmw3dsEsEzpuM1\nbKhoVWB/MdEXF9uFoKgIfVGx/TstKsZSX9/idTI3N4KmTyXk1ltwDQrqwoivbT7Zlen0lu+ldmHB\nzQP59OdMCjV1Tc73dHdh1tR4brkuGqVC1qZ7HDlTyiubD6E3XhizCPF3Z8Wi8Vc8ON5WztedO3fu\nJDw8/Iqvb3sNAj2yH1qltxKqMRJWaiK8zIR/lZnLRanSWxiYY2Fgjh6rBEr87WJxLtQFjY8cJBIk\nSPBVeRPg7kuAux8B7n6o5K7szz9CdqV9ylpQuYnrvjuDWnuci3sj3aKjiHngPryHDW3zc5TVlfPp\n6bpfGlMAACAASURBVG/ZlbMfs/XCFFiLXIIyLpqpg25hXPhIpI2Vb0V9FRuPfMCRouONZ1o5WPUd\nU8prWBh5J8orEAcAmVKJe3Q07tHRTuk2qxVjeQUNhc7CUZuVjaXO/odjs1go37ef8n37cQ0JJuim\n6QRNvQGFl9cVxdCbsNlsWOrqMGi1GMo0NBQV01B0vlVQjLGi4vKFNIOlvp6iz76g6Iv/4jd2DCG/\nnonnoIE98m+vL3H75Dgy86v45VghALpaI299nNrkPHdXOb+d0o9fT4q94u6hUQlBrHpkAi/944Cj\nS6tYW8cf1+/mpYfGExvW8/5eWm1BDB06FD8/P8dxeXk5fn5+DrO+rtoP4rwKvvDuatzkYD17DllO\nEW65GtzKm6r7xdgAjY+cogAFSqONqGIDboaW+2wknmrUI4YSlDQOv8SRTt1C58nISiN90yZ80nKd\n0uuVEvYPV1MxPIpp/SdxffQ4PJXqVuMrqSljx+lv2H3uIBab8zS5GJ8I7hz0K0aHDUMqafpWbrPZ\n2Jt3mPeObqfGeOF78Hb15MFRc0kKH9Hqva8Gq9GIdt9+Sr75jprTZ5rkS+Ry/K4bR/CMm/AcPKjX\nVXAWgwGDRotRq8WgLbcLwSXHVr2+XWXLVCpUYaG4hobaJwOEhmCuqaHoy6/RFzXd+cw9LpbQX9+K\n/8QJYqZZJ6I3mPnj+t2cK65ukqd0kfGbSbH8dko/PNyubip6oaaW5zfso+yiLiuVUs7y+5MY1i/g\nqsq+lKttQbQqEIWFha1e3FVrGM4/5JvjJ+JRWdX6yVIpqpgoFANiIS4SY1QQdQordcZ6FDIFASof\nvMrq4FQWuqOp1GZmtjzbRyrFc2ACPokj8RmdiGtICEWffWEfZ7iocrBKJaTEu5I8xB2jy4WKXC6V\nMzZ8BNPiJjEooL9TJVlQXcyOU9+wN+9Qk7GO/n4x3DnoV4wMGdymilWnr+a9ox+xL995cHl8xCju\nT/wfvFw7Zhctnb6a1JLTHCs+SUZ5DgqZAm9XT4JrJISdKMEz9RxSvbHJdarwMIJumk7gjVNQeHh0\nSCwdgdVkovJoin0MRqvFqC3HoNFi0Gox19RcVdkSuRzX4KBGATgvBiGoQkNReHs3+/9qs1r5//bu\nPL6pMl/8+CdLk7Zp2qTp3tIWytJSytIiW9lEBJEiI6ioqOPIOC7jNt75DXO9d8TfzKjj6HW8o86o\nF/zNiFzHYVFRARVURqGApex7C3TfmzRN2rRZzu+PtCmhaWlLCwGe9+uV10nOSc558jQ933Oe1Zi/\nj4pPP8e0v/PVa4BeR+y8m4ieOweVzv+uNq8GFbVWfvHadqxtLZSUCjnzpiRz+w3D0Gu7b1reG3UN\nzTz3P7u8gpFSIefflmYydUz/nVcHNED4i/Yv+cchw4k4ryOZTKkkZGgKoekjCRuVjjY1tVeVfPaG\nBoz79mPcuw/Tvn04Grse4VGmVCKd1wM6fOJ1JN9/H5VBTrYWfsf3RT/Q7Oh8ZRmrjWL2kGkMMySz\n6eQ37C7dh4R31o+MHMbi9JsZFTWiT1fce0r3s3LvB5hsHT86rUrDTzLvIDvxul7v0+lycqruDPsr\nj7C/4qinaK0rSofE8CIbowqaia3r3FPcpZDTMDIB+6R0NCOGEqExMCpqBCrlpe0caKuqpvKLL6ne\nug17Q+erxZ6SBwaijjCgjoggMDaGoLY7gsC4OAKjIpEpelY27UtTcTHln35Ozbf/8nSubCcLCCBy\nxjTiFszvVCQoXLyiCjNrt50iPCyQnKmDidIHD8hxLM12fv/ubs+ERuBu+fTQjzKYP3VIvxzjmgsQ\nkRoN2hHDCUsfSWj6SLSpI1Co+6cVgOR0YikopD5vL6b8fVgKCrt8b3BSorueYYz3MMI2u42dJXvZ\nWvg9BfVne3Tc0dFpLE6fR1rksItJPgCWVivv7VvPt2dzvdZnxWXwYNbdhAfruv18XZORA5VH2V9x\nlINVx2iy922wsQijnYxTNlLP2lA5Ov/EasMUHBoaRN3waBZOvJXpSRM99SsDQXK5MO3bT8XmLRjz\n8i/YR0SmUKAyGNwBIDISVVsgUEdGeJYKjWbAi87sZjNVX26l4vPNPus1QjNGUTdhKJvVxVham0iL\nGkZmbAZjYtLQqDpObJIk4bLZcFisOKwWHI2W855bcDQ1oY6MJPy68QQlxPfpu7UXPws902p38sqa\nvV4d6gCWzB7O0ptSLzovr6kA8fFbbzEiO/uSDUfRajJhyt+Hce8+jPv247RaUYaGknj3ncTMmX3B\nK8SzxhK2nv6e74r20GzvfFeRGZfB4pHzGGYY3O9p319xlHfy1lDb1HFSCQ4I4t4xi5g1JNvzw7M7\n7ZyoLWR/W1Aobui6WFEukzMiYghjYkYyOjoNpVyJyWbGZGtwL5vbljYzxrZ1jqYmhhe1kHGqmWij\n7/GnqsKVGIdEkDn7R4ydeEO/toKym81Ubf2aqi++xFbZude+IywYR3oKQ4aOQhsTjzrCgCoiApUu\n7KLuAPqby+Ggbmcu5Rs/w3Kq8+ByphAFBYPUKJ0Sga0uAltB51IR4lSganEiNTV3uvvtTmBcLOET\nriN8wnhCU1N95oUkSVRbazlWU8Dx2kKO1xRQ12RkZNQw7h27mIRQMetkTzhdEm9vOMjm3LNe6+dM\nTOLRxaNRdNF8tieuqQDR1y/ZHySnk6bSMgKjo1AE9q4s0uZoIbd4L1tPf88ZYwmZcaNYPPJmBusH\nDVBq3ZrtNtYc/IgvC7x7vGdEp3Jd/BgOVh7jUPUJWhxdN2M1BOkZG5vO2NiRZESlEqzqXRv9Fkcr\nDW1Bo/7EMWzbd6PIP4Hc7vtk1RocgG7cOAZlT0M3dozPRgIXIkkSlpOnqNj8BbXf70Cyd+7xWp+k\nZ0eSizNxKiS5DLVSzewhU5k/fBYRmvBeH/NSabG3sP2b9dRs+pLEs4196yPTS0ptCPqsLPTXZdE4\nJIqT1rK2oFCAsbnB52cUMjk3D5/FbenzLzgsjOD+zf7jq5P87xfeDT4mpsfwf+4d3+OmtOcTAeIK\n45JcPlskDaSj1ad464fVVFpqLvhepVxJWuRQxsa4g0JCaGy/Fxk4rFZqtn9H9Xff03j8ODJXFz9B\nhYLQtFTCx2ehH591wWIPZ0sLtf/6jorNX2AtPN1puxQcSOGwUHYMcmAK9d0MWCGTk514Hbek3kii\nzn8GkrQ5Wtha+B0bj3/lqWPSWp2MPtlMRqENdavvgeLOZVdAi0pOi0qOMkRDsC6ccEMMIWEGlCEa\nFIGBNB4/jnHfgS5baDnkUBqt4ky8itPxaiya7k9c+qAw7h2zmOzE8V5/O8nppKWmrXnwuX1FystB\nJiN69g3EL/pRr/ryXA02557lrfUHOPdf4vqsBJ6+O6tP+xMBQuiRFkcr/zz8KZ+d3Nap1VS0JqLt\nLiGd9MhhBF7CKz6HxUrpnp0c/vpz1CdLu22CrI6O8gSLsFHpnqLG5rJyKjZ/QfXX33j6ZpzLHh/B\nnsFy9sdJOJQdJykZMsbFjaLGUkuJufMwJ+Ni07kldU6nFmiXUrPdxhcF2/nsxFbMLd4NKMICQ1kw\nYjY3xF+HZXc+LTU1KEM0KDUhtKjlnLZVc9RSwoHGMzTIW3EqfH+HhNBYMuNGMTYmnRZnKyfKT1Cz\nP5/A4yUkl9oIae46+NSGB9A4Ip7Q8WNJyZiAWqnmvf3rOF5bCJJEsM2F3uxkJAYmqpMJqDPTXFaB\nrbLygkVemsGDGfrEo4QM6Z8K2ytF7qFyXn5/L/a20WG1wQH87+9uvsCnfBMBQuiVgrqzrD3yGTKZ\nnDHRaYyLTSdGG3W5kwVAUX0Jn361mtaDx0gubyW6vusTiFytJmx0Bq7WVhoOdJ6tUBYQgGlkPFvj\nmig9bxQQlSKAmYMnM3/4DcRqo5AkiX0VR9h4/EuO1pzqtK+U8CQWps5hQvzYAa1IP5e1tYnNp75l\n08mvsbR6Bz19UBgLU+cwe8jUHrUAc7icnKgtJL/8EPkVhykz92ICG0kiyuhgSGkLg8taieqiHglA\nZTCgGzcWV4uNmjMFOCqrCfDRQKFX5HISFv2IQUtuv6aGwj9cWMsfV+dhbGxh8fVDuT8n/cIf8kEE\nCOGqc7jqOKsPbKCq/CzJ5a0MLm8lsaLVZ2uo88kjDZxON/ClwUiz2vuKWRcYyk3DZnJjyjS0XXRg\nPFV3ho3Hv2JP6f5OzZBjQiJZMOJGZiRPHLCmuZYWK5+f/JrNp77p1IIsIjicH6XNYebgKagUfe8w\nV22pJb/iMPnlhzhSfRK7q+uTfpw2mtSIFFIjh5IaOZQwq4QpL4/6PXk0HD7Sq4rv8wXode6mwXFx\nBMbFuvuMxMZizN9H8ZoPvJr3BiXEM/TxnxOaOqLPx7vS2B1OLE129KF9v6MXAUK4KrkkFzuL8/jg\n4CfUNNUjd0rE19hJLmtheJVEiOmcMnK5DNKHsjtZxq4Qo7sx+TkSw+LJGXED2YnjCejhibWisZpP\nT2xl+5ncTifQMLWWecOvZ07K9C5H9e0ts62Rz05uY8upb7Gd12ggWhPBj9LmMiN5EkpF/5bJtzha\nOVx9gvzyQxyrKUCtVJEaMZS0yKGMiBjSbSdLh9WKad9+6vfkUZ+312fxniI4GEVMBEWqZs4GNGHS\nKjCFKjBpFQyOHcayzCUk+2is0VxeTsEbf8V85GjHSpmM2Jz5JN1zV68bilyrRIAQrmqtTjtbTn3L\nR0c3Yz3nijqs0cH05iiiA/V8pammSNG55/PYmJHkjJhNRnTf25ObbGa2nPqGL05t9zo+gFqp5obB\nU8gZMZsITTgulwubo4UmRzM2ewtN9mb3a3szzXYbzQ5b27KFZntzx9Juo7C+iBand4e4WG0Ui9Lm\nMTXpOhRy/2ly64vL4aDx2HEaT54iICzU03s8IMw9l4gkSewsyeO9/eu9Wj7JZDLmpExnScYCQlTe\nwVZyuajc8iVn/77aq9I8MCaalJ8/0quxzq5VIkAI1wRLi5UNRzezpWC712CG51PKlUxPmsD8ETcw\nKCyu347fbLfx9ekdfHZyG3VNRq9tcpmcAEVAt82FeyMhNJbF6fOYnJB1yeo8LhWb3ca6o5v5/OQ2\nnK6OUU1D1SHcPfpWZg6e1KmVn626msK/vI1p336v9dFzbyT5x/f2qSn0tUIECOGaUm2p5YNDn7Cj\nOM9rvValYc7QGcwdNgNdP4095YvD5WRncR4bj3/VbafCvkjSJbB45DwmJIy95E2hL7UycyX/L/+f\nHKw65rV+WHgyy7LuZEh4ktd6SZKo/vobzqz6m1dRlspgIOXRhwgf37dmoFc7ESCEa1JB3VnWHd1E\no62RmYOnDGjFsS+SJHGg8iifHP+SI9UnPeuDlIEEBqgJVga5lwGBBCoDCQoIJKhtGRwQRKBSfc4y\nkFC1lkFhcdfUMBWSJLG7dB9/37/O665Mhoz0qOFMScxiYsI4rwYFrfVGCt96m/rdP3jtK3LmDAb/\n9Cd+NRikPxABQhAus/bWRoFK9VV/5T8QbI4WPj62hY3Ht3YqPlTI5IyOSWPyoCwmxI8lWBWEJEnU\nfr+T0++sxGHuGGwxQKdjyEM/JWLK5Ev9FfyWCBCCIFwVKhureW//evaWH+rUxBjc9UtjY9PJTswi\nK240CquN0yvfpfZf33u9zzB5EkMefhCVrvuBKa8Fl3RGOUEQhIESo43iV9Meob7ZxK6SfHYU53Gq\n7oxnu8PlIK/sAHllB1ApAsiKG82UJTMZOmUiRW+/i93oLqaqy92F6eAhYm6aQ+y8m1BHRlyur3TF\nE3cQgiD4rWprHbnFe9lZkscZY4nP9wQpA5loSCNzdzXOnfu8N8rlGCZNJG7BfLRpFz989pVG3EEI\ngnDVitIYWJg2h4Vpc6horGZncR47i/O8xs5qdtj4tmof3ybD8JBoZv1gQW1sa+nkcnnmS9cMGUxs\nzs1ETps6YMN2SJJEc2kZxry9WM+exTBpIobJkwbkWJeCuIMQBOGKU2wqY2fJXnKL91JhqfbaJnNJ\nDC5vZVaxCs3ZziMYB4SFEj13DjE3zUVtuPih3Z0tLTQcOoxxbz7GvHxaqr3TY8ieTMrDPyMgdOCa\nX3dFVFILgnDNkiSJM8aStmCRR02T96x7WVIMOVU6zN/v6jx1q0KBYcokYnPmox0xvFfFT7aq6raA\nsJeGQ4c77ft8AWFhpDzyEIbJE3v+5fqBCBCCIAi4g8WpujN8emIru0s76iL0QWH8YvRSQvILqdy0\nmZaa2k6fDRk2lNicm4nInoI8oPN4Xe1DidTn7cW4N5/mktIu06EICkI3djSygIBOLawiZ0xn8IMP\nXLL+GiJACIIgnEOSJD47sY33D27wzH2ilCtZlrmEWcmTqd/zA+Wffu49EGCbAJ2OmHlziZl7I4B7\nuuG9+Zj2H8DZ1NTlMYMSEtCPz0SflUloWqonyNTn7aXwzbe85hMP0OsY+vNHCL9ufH9+bZ9EgBAE\nQfDhYOUxXstd5TWfxuyUaTww7g6UCiWW02eo+HwTNdu/6zQtrUyhQHI6z9+lh1ylIiwj3T0Va9Y4\nAmNiunyvw2Lh9P+8S823273WR826nsHLfoIyZODGkhIBQhAEoQvVllpe3vE2RaaOIqERhiE8nf0z\n9EFhANjNZqq+3ErFps201tV3tSvUUZHugDA+k7CMUSjU6l6lpW73HgrffAt7Q8dotiqDgaGPPYI+\nc1wvv1nPiAAhCILQjRZHK2/9sNprgEd9YBj/lv0zhkd0TGfqcjio37Wb8s820XjsODKFAm37nOhZ\nmQQNSrjofhR2s5nT76yk9rsdXuuj58wm+Sf3owwOuqj9n08ECEEQhAvwVS+hkCtYlnkns1Omdnq/\n3WxGpgzo9xN2u9oduRS+9Y7XWFLqqEiGPv7zfp3n4mLPnWJkMUEQrnoymYwFqbP5j+mPeyYmcrqc\nvJO3hnfy/heH03uQwIDQ0AELDgAR2ZMZ9/prXs1eW6prOPKb5yh8+39wnjNB0uUkAoQgCNeM0TFp\n/OHGX5Ok67ia3lr4Hf/3mz95zXR3sSRJotVp7/Y9Kl0YI5b/H4b/21MoQzqGNK/ctIX9Tz5Ng49W\nVpeaKGISBOGa09N6iZ5wuJyUmSs4ayzlrKmUs6YSzppKsbY2MVg3iHnDr2dK4nhU3cyH3lpvpOAv\nb2H84ZyJsGQy4hbMJ+m+e3z2zegJUQchCILQB72tlwBoam2mqKGUs8ZSzphKKDKWUmKu6HYaXACt\nOoTZQ6YyZ+h0DMH6LtNT8812Tq9chdPa0eci4Y7bSFp6V5++oxisTxAEoQ/a6yWSdPGe/hLt9RKn\n64v4UdpcihvKPXcFRcZSqqyde2H3RGOLhY+ObeGT418yMWEc84bNZEREilerKJlMRtSsmYSNzqDg\nzb9iynf3Bnc0NvbH1+2TAb2DeOGFFzhw4AAymYxnnnmG0aNHe7bt2rWLV199FblczuDBg3n++ee7\nnKBd3EEIgjCQfPWX6I3I4HCS9INI1iUwuG0ZqFTzzZmdbDm1ndqmzv0ruit+kiSJ+j0/0FxaRsy8\nuSiDg/uULr8tYtqzZw+rVq3i7bffprCwkGeeeYYPP/zQs33OnDm89957xMTE8MQTT7B48WJmzJjh\nc18iQAiCMNB81UucTyGTkxAWR7Iuwf3QDyJJF+9pGeWL0+Vkb/khNp/6xmv+8nY9KX7qK78tYsrN\nzWX27NkApKSk0NDQgMViIaSttn7Dhg2e5+Hh4RiNxi73JQiCMNDUShVPTHqAlPAk/nFoIwq5gmTd\nIK9gkBAaQ0A3lc2+KOQKJiSMZULCWIpNZWw+9S3fFe32tHI6t/hpQsJYbh52fafip8tlwAJEbW0t\n6enpntfh4eHU1NR4gkL7srq6mh07dvDkk08OVFIEQRB6RCaTkTNiNjcPm4VMJuv3k3SiLp6HrlvK\n3aMX8vXpnXxR0FH85JJc7CrJZ1dJPoN1g7hp2Eyyk67rtvXTQLtk/SB8lWTV1dXx8MMPs2LFCvT6\n/r21EgRB6Cu5XD6gV/BadQgL0+bw+vzf8svsh0iPGu61/YyphL/+sJqff/ofFNYXDVg6LmTAAkRU\nVBS1tR01/tXV1URGRnpeWywWHnzwQZ566immTvXdpEwQBOFq1l78tOL6X/Dy3P/ghiFTve4YGloa\n+ezE1suWvgELENnZ2XzxxRcAHDlyhKioKE+xEsAf/vAHfvzjHzN9+vSBSoIgCMIVI0mXwEPXLeWv\nC15g6ehbidIYUCtUTB6UddnSNGB1EJmZmaSnp3PnnXcik8lYsWIFGzZsQKvVMnXqVD7++GOKiopY\nt24dADk5OSxZsmSgkiMIgnBFaC9+Wpg253InZWA7yv3yl7/0ep2amup5fvjw4YE8tCAIgnCRxGB9\ngiAIgk8iQAiCIAg+iQAhCIIg+CQChCAIguCTGM21B6yNLRSdrqOqwowhMoS0jBgCVCLrBEG4uomz\nnA+WxhaKCusoKqylqLCOmiqL1/bNgUoyMuMZNzGR2ATdZUqlIAjCwBIBAmg029oCgvtRW23p9v0t\nNgd5O4vI21lETFwo4yYmMioznqBg1SVKsSAIwsC7JgNEY4M7IJxtu0Ooq7F2+365QkZ8op6YuFAK\nT9RQX9vx/spyM5s/OsxXnx4lbUws4yYmkjTEMGDjuNjtTpwOF4FBl28AL0EQrg1XfYCQJIn6Witl\nxSaKT9dxtqDO6wTvi0IhJz5JR1KKgaQhBgYl6z11DpIkUXS6jv27Szh6oByHwwWAw+Hi0N4yDu0t\nIzxCw9gJgxhz3SC0oYF9Tnej2UZVudnrUVdjQZIgRKsmKjaUqFgt0XGhRMWEEhkdgjJA0afjCYIg\nnO+qCxDWxhbKSkyUFRspLzZRVmzC1mzv9jPtASE5JYKkoQYSkvQEdHGilclkJKdEkJwSwU23juJQ\nfhn7dhVRWW72vKe+1srXm47zzZYTDE+LYtykJIaOiESu8N1ozOFwUltloarcTKUnGDTQ3NR1ui2N\nLVgaazh9sqYjbXIZhkgN0W2BIyo2lOjYUML0QX4xtnw7ySVhrG/CbGomTB9EmD4Yudx/0udv7HYn\nTZZWmqzuR7O1laamc563PVpbHEiS++LC/aBj6Tp/Xcd61znrNRoV4ZEhGCI1hEdoMLQ912jVfvUb\nEi6NKzpA2FsdVJQ2UNYWCMpLjJjqmy/4OYVSTkKSnqQUA8kpBuK7CQjdCQwK4LrsZK7LTqai1MS+\n3cUcyi+jxeaewFxySZw4UsWJI1VoQwMZM2EQ6WPisDR63xnUVltwuXo4sZ/MHdCcbXcu55JcErVV\nFmqrLBzZ37FeHagkMkbbFjhCiY7VEhEVQpBGNeD/9C6XRF21hYqyBipKG6gscz/a8wjcfw9DhAZD\nVAiGqBAiItueR4b0S1GayyVhNjVjrG/CWGvFWN+Eqa4JY50VY10TLpeESqVEpVYQoFIQoFKiUrmf\nq1TKtnUdz1Xt7/G8XwGS+zjtD6l9KUm4nBIulwuXi7Zlx3ZX23aHw0VzU6snEDQ3dZz47a3Oi86D\nnmqytHZqlAGgUisxRLoDhjtwaDyBRBR3Xr0GdE7q/tI+bd6HH3yCZA+mrNhIWbGJ6spGpB6cWIOC\nA4hL1JGQqHffISTqB6woxt7q4NjBCvJ3F1N8uvM8tL2hUiuJjtUSHRdGdFxoW1GSFmWAAmOdleoK\nM1XljVRXugONsb4JevHXVKkV6PTB6MLbH0HnPA/u9T++0+GipqrREwgqShuoqjBf1AkuRKt2B40o\n98mo/fn5dx0tNgem+o6TfseyCZOxCZfT73/mVyxNSNtdR4QGfYSGwEAlCqUcpVKOMkCBQiH3vHYv\nFec8914nV/T/JD3XMr+dk7o/tX/JhbOeISQ4vNv3KpRyYuPDiE/UEZ+oJy5Rh94QfFl+dLXVFvbv\nKebADyVYLa3dvldvCHYHgdhQTzDQ6YOR9aLopbXFQXVlI9UVZqorGqmqMFNdYe62qKo7gUEB6PRB\n6AzBhOmD0YcHExYehD48mJDQQIx1Vq9gUF3RiNPZ+c7Gl2CNCp0hmIb6pgvmjS8KpZzwCA0qlQJj\nfRNNfdjHlUKhkBOsURGsURHUtjz/EaRRoVIrkMtlnpnQZHI6nss4bylDft52AHODjfoaK3U1Fupq\nrNTXupfn3vENNHWgkpj4MOIT9SQkuf+PtWF9q8u71vntnNSXhAwio0KIS9S3BQQdUbGhKLoo67/U\nIqJCmJ0zkuvnpXLqaBX7dhdTUdZAmC6oLQi03RnEalEHXvxtukqtJCFJT0JSx+x87ZXd1RWNVJWb\nqa40U13eSH2d9YJX9rZmO5XNdq/6lb7QhgUSEx9GbHwYsQlhxMSHEaoL9ARtW7Od2moLddUWamvc\ny7pqC/W1TV0GHKfDRU1lY4/ToAlRoTdo0BuC0RmCCTdo0BmC0RuCCQhQ0NrixN7qoLXVib3VSWur\nw73sYr3Xc7vznJOuDLlChlwm81wNe62Td1wln7tdoZQTHBxwThBQe07+KrXikl3ghIQGEjfIu2+P\nJEk0WVo9QePcwFFfa/VZ3HkxWmwOT5PzdqG6QOIT9Z6gEZsQJjqrXgJXVA5rtGpSR8Z47gziEsL6\n5cQ60BQKOakZsaRmxF7yY8tkMkLDgggNC2JoapRnvSRJNFtbMRmbMdU3nfNoxmR0P3fYe/+PrwsP\n9gSB9mWIVt3tZwKDAjoFNgCX04XJ2OwOHm2Bw/3cirWxxeu9coUMfbj75K8P16CPcN/x6CM06MOD\nUam7/6kHBff6q14zZDIZGq0ajVZN4hCD17b2+p26Giv1NRaM9U047E4cDhdOhwtH28Pp6FjndLhw\nOF047O3vceJ0ut/XVVGg2WTDbKrg2MEKd5rkMqJjtSQk6dsChw5DZEiv7riFC7uiAsSyJ6b26TZJ\n6EwmkxEcoiY4RN3pihHcAcRqaT0veLQFkPomGs02QsMCiU3QnRMMQvu1s6Bc4S5GCo/QANFexqqA\nBAAAD4NJREFU29rvOhwOJ/rwYLRhQaIl1GUgl8s8dVYpIyIv/IELkFzuO96yYhOlRUbKio1UlDZ0\nutuVXBKVZWYqy8zk7XTP2RwYFEDcIB3xSToio7QoA+TIFXIUio66Dq/6EIUMhVLhXra9RyYXdSDn\nuqIChHDpyGQyQrRqQrTqTlf2/qD9rkO4usjkMkJ1QYTqgkgb7b7jdjldVFc2UlZspLTI3YS91kdL\nK1uzndMnvZt+9z4BoGwLIpoQNfq2YkhduMbzXG8IviJKLvqDCBCCIPg1uUJOTLy7uDJrsnudrdne\n1rzd3aKxrMhIk7UfGipIeIrFWmyOLjvVBgUHdNRphQefs9QQpgvsss9TT7lcEi6nq63+6vLVqYoA\nIQjCFScwKICUEZGeYi1JkjDVN1HWdofRaG7B6Wyr82ir33A6Xbja6j/a60LO3eZ0Sj1qNg/Q3GSn\nuclEeYmp0zaZXIZOH+TpoNq+b5fTXcfidLUtu3nd3lw9WKPiljvHMnxkdKfjXAoiQAiCcMWTyWRt\nV/QaRmXG93k/Lpf7RO2wOzE32Lw6VBrb6uGMdU3dttySXJKnD87FarK2cmhvqQgQgiAIl5tcLkMu\nVxAQoCAoWEV0bGin90guCUtjiztwtAUMTyCpb8JibvGx516SgUIuRxcexPgpyRe/vz4SAUIQBKEX\nZHIZ2rBAtGGBnZr9gns0BVN9M+aGZk9/F4W8vUWVrGMp7/q1v7TIEwFCEAShHwWo3GOfRcZoL3dS\nLpp/dDkWBEEQ/I4IEIIgCIJPIkAIgiAIPokAIQiCIPgkAoQgCILgkwgQgiAIgk8iQAiCIAg+iQAh\nCIIg+CQChCAIguCTCBCCIAiCTyJACIIgCD6JACEIgiD4NKAB4oUXXmDJkiXceeedHDx40Gvbzp07\nue2221iyZAlvvvnmQCZDEARB6IMBCxB79uyhqKiIDz/8kOeff57nn3/ea/vvf/97Xn/9dT744AN2\n7NhBQUHBQCVFEARB6IMBG+47NzeX2bNnA5CSkkJDQwMWi4WQkBBKSkoICwsjNtY9KfmMGTPIzc1l\n6NChPvfldDoBqKysHKjkCoIgXHXaz5nt59DeGrAAUVtbS3p6uud1eHg4NTU1hISEUFNTQ3h4uNe2\nkpKSLvdVU1MDwNKlSwcquYIgCFetmpoakpKSev25SzZhkCT1bDJwX0aNGsWaNWuIjIxEoVD0Y6oE\nQRCuXk6nk5qaGkaNGtWnzw9YgIiKiqK2ttbzurq6msjISJ/bqqqqiIqK6nJfgYGBjB8/fqCSKgiC\ncNXqy51DuwGrpM7OzuaLL74A4MiRI0RFRRESEgJAQkICFouF0tJSHA4H33zzDdnZ2QOVFEEQBKEP\nZNLFlP1cwCuvvEJeXh4ymYwVK1Zw9OhRtFotN954Iz/88AOvvPIKAHPmzGHZsmUDlQxBEAShDwY0\nQAiCIAhXLtGTWhAEQfBJBAhBEATBp0vWzLWnbDYbOTk5PProo0yePJlf/epXOJ1OIiMjefnll1Gp\nVGzcuJG///3vyOVy7rjjDm6//fbLms49e/Zw5MgRdDodAMuWLWPmzJmXNZ27d+/mySefZNiwYQAM\nHz6cn/70p36Xn77SabVa/S4/ATZu3MjKlStRKpU88cQTjBgxwu/y01c6t2zZ4lf5uXbtWjZu3Oh5\nffjwYTZt2uR3eekrnXPnzvWrvASwWq0sX76choYG7HY7P//5zxk6dGj/5KfkZ1599VVp0aJF0vr1\n66Vf//rX0qZNmyRJkqT/+q//ktasWSNZrVZpzpw5ktlslpqbm6X58+dLRqPxsqZz+fLl0tdff+21\n/XKnc9euXdLjjz/utc4f89NXOv0xP+vr66U5c+ZIjY2NUlVVlfSf//mffpmfvtLpj/nZbvfu3dJz\nzz3nl3npK53+mJerV6+WXnnlFUmSJKmyslKaO3duv+WnXxUxFRYWUlBQwMyZMwH31eUNN9wAwPXX\nX09ubi4HDhwgIyMDrVZLYGAgmZmZ5OfnX9Z0+uIP6Tyfv+ZnT1zudObm5jJ58mRCQkKIiorid7/7\nnV/mp690+nK509nuzTff5NFHH/XLvPSVTl8udzr1ej0mkwkAs9mMXq/vt/z0qwDx0ksv8etf/9rz\nurm5GZVKBYDBYKCmpoba2tpOw3S0D8VxudIJ8P7773Pffffxi1/8gvr6er9IZ0FBAQ8//DB33XUX\nO3bs8Nv8PD+d4H/5WVpais1m4+GHH+buu+8mNzfXL/PTVzrB//IT4ODBg8TGxhIZGemXeekrneB/\neTl//nzKy8u58cYbueeee1i+fHm/5aff1EF8/PHHjB07lkGDBvncLnXRGrer9QPFVzoXLlyITqcj\nLS2Nd955hzfeeINx48Zd1nQmJyfz2GOPMW/ePEpKSrjvvvu8Buzyl/z0lc7f/e53RERE+FV+AphM\nJt544w3Ky8u57777vNLgL/kJndP54osv+t3vE2DdunXceuutndb7U16Cdzr98X/9k08+IS4ujlWr\nVnH8+HGeeeaZHqWnJ+n0mzuIb7/9lm3btnHHHXewdu1a/vKXvxAcHIzNZgM6huPwNYRHd8N0XIp0\nSpJEWloaALNmzeLkyZOXPZ3R0dHcfPPNyGQyEhMTiYiIoKGhwe/y01c6k5OT/S4/DQYD48aNQ6lU\nkpiYiEajQaPR+F1++krn8OHD/S4/wV3k2X5y9cf/dV/pnDx5st/lZX5+PlOnTgUgNTWV6upqgoKC\n+iU//SZAvPbaa6xfv55//vOf3H777Tz66KNMmTLFM1zHl19+ybRp0xgzZgyHDh3CbDZjtVrJz8+/\npOM0+UrnBx984BmNdvfu3QwbNuyyp3Pjxo2sWrUKcI/kWFdXx6JFi/wuP32l8w9/+IPf5efUqVPZ\ntWsXLpcLo9FIU1OTX/4+faXz2Wef9bv8rKqqQqPReIpB/DEvfaXz8ccf97u8TEpK4sCBAwCUlZWh\n0Wi8hjq6mPz0y57Ur7/+OvHx8UydOpXly5fT0tJCXFwcL774IgEBAWzZsoVVq1Yhk8m45557uOWW\nWy5rOuPi4nj55ZcJCgoiODiYF198EYPBcFnTabFY+OUvf4nZbMZut/PYY4+Rlpbmd/npK51qtdrv\n8hPgH//4B+vWrQPgkUceISMjw+/y01c6NRqN3+Xn4cOHee2111i5ciXgvpr1x7w8P527du3yu7y0\nWq0888wz1NXV4XA4ePLJJ0lJSemX/PTLACEIgiBcfn5TxCQIgiD4FxEgBEEQBJ9EgBAEQRB8EgFC\nEARB8EkECEEQBMEnESAEv7Zw4ULPcBEAa9asYcGCBV7vmTt3LocOHeqX45WWljJ9+vR+2de5Pv30\nU1wuFwAjRozA4XBc8DMfffRRl2Mp9dTBgwdZtmxZj44nCOcTAULwa1OnTvUKEDt37sRqtVJXVwdA\neXk5ZrOZUaNGXa4k9sjrr7/uCRA9UVFRwdtvv83y5csv6rijR48mPT2dd99996L2I1yb/GYsJkHw\nZdq0abzyyis8/fTTOJ1OTp48yfz589m5cycLFiwgNzeXKVOmIJPJ+Oqrr1i5ciUqlQqn08kf//hH\nCgoKeO+99zwnyLy8PF566SXWrl3L6tWr2bx5M06nkyFDhrBixQqvYzc0NLBixQrq6+uxWCz85Cc/\nYcGCBbz++uuYTCYqKyspKipi4sSJ/OY3v6GlpYXly5dTVlZGTEwMCoWC7OxsKioqKCoq4v777+eN\nN94AYPXq1Xz99dfU1dXx6quvkpqa6nXsVatWcccdd6BSqdi9ezfvvPMOMTExFBQUoFQqWblyJXV1\ndTz00ENkZ2eTl5eHXq/nlltu4ZNPPqGsrIz//u//JjU1lfvvv5+cnBweeOABlErxLy/0nLiDEPxa\nZmYmZ8+epaGhgcOHD5OWlsbEiRPZuXMn4L6jmDZtGuAe6vhPf/oTq1evZsaMGaxZs4apU6dy8uRJ\nz3DImzdvZuHChRw8eJCvvvqKNWvW8OGHH6LValm7dq3XsV977TWmTZvGe++9x/vvv8+f//xn6uvr\nATh69Ch//vOfWbduHRs2bKChoYGNGzficDhYu3Ytzz77rGdk2ieeeAKAv/3tb56JZlJSUli9ejU5\nOTmdjgvw3Xffeb4XwP79+3n66af58MMPkcvlfP/99wCcOXOGu+66iw0bNnDmzBlKSkp49913ycnJ\nYf369YB71M7Y2FgOHz7cP38U4ZohLicEv6ZSqRg/fjy7du3i9OnTTJo0iaysLH77298C7vFw/v3f\n/x2AiIgIli9fjiRJ1NTUeAatu/HGG9m6dSuLFi1i27ZtbNiwgfXr11NcXMx9990HQFNTU6er6927\nd3Po0CE+/vhjAJRKJaWlpQBkZWWhUChQKBTo9XoaGho4duwYEyZMACAyMpKsrKwuv9fEiRMBiImJ\n4cyZM522V1ZWEhsb63mdkpKCwWAAID4+3hPw9Ho9gwcPBtwDH2ZmZnr2W15e7vl8fHw8ZWVljB07\n9sKZLghtRIAQ/N60adP44YcfOHXqFM899xxBQUFERkayfft2IiMjiYiIwG6389RTT/HRRx+RnJzM\n+++/77lizsnJ4a233iIhIYHU1FTCw8NRqVTMmjWLZ5991utY7QEA3MFpxYoVZGRkeL1n+/btKBQK\nr3WSJOFyuZDLO27Kz31+vnM/35PRbs4/Xlfre7tfQeiOKGIS/N60adPYs2cPtbW1nqvlSZMmsXLl\nSs8wx1arFblcTnx8PC0tLWzbto3W1lbAXUxVUlLCxo0bPYOTZWZm8q9//Qur1Qq4W0ft27fP67hZ\nWVls3rwZcM9B/txzz3XbGmjIkCGefdTV1bF3717PNplM1quWRDExMVRUVPT4/RdSVlZGfHx8v+1P\nuDaIACH4vcTERGw2m1dLpcmTJ7Nnzx5POb1OpyMnJ4fbbruNp556imXLlrFr1y42b96MTCZj7ty5\nbNu2zTMNY0ZGBkuXLuXee+/lrrvuYs+ePZ0qih977DGKioq46667WLp0KSNHjuy2knfRokUYjUaW\nLFnCCy+8wPjx4z1X9NOmTWPx4sUUFxf36DtPmzbNU89wsYxGIxUVFX7f0kvwP2I0V0HoJ1VVVeTn\n5zNv3jxcLhe33norzz33XKcZx3qivLycZcuW8cknn3jmIuirP/3pT2g0Gn72s59d1H6Ea4+4gxCE\nfqLVatm0aRO33XYbS5YsYfr06X0KDgBxcXE8+OCDvPTSSxeVpoMHD3L48GEeeOCBi9qPcG0SdxCC\nIAiCT+IOQhAEQfBJBAhBEATBJxEgBEEQBJ9EgBAEQRB8EgFCEARB8On/A6FFOujK4t2UAAAAAElF\nTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7f754301a2b0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "sns.set_style('white')\n", "plt.figure()\n", "plt.plot(wavelengths, reflectance , label = 'total', linewidth = 3.5)\n", "plt.plot(wavelengths, pol_refl_x, label = 'x-polarized', linewidth = 3)\n", "plt.plot(wavelengths, pol_refl_y, label = 'y-polarized', linewidth = 3)\n", "plt.plot(wavelengths, pol_refl_z, label = 'z-polarized', linewidth = 3)\n", "plt.plot(wavelengths, pol_refl_x + pol_refl_y + pol_refl_z, label = 'total polarized', linewidth = 3)\n", "plt.xlim([400,800])\n", "plt.ylim([0,1])\n", "plt.ylabel('Reflectance')\n", "plt.xlabel('Wavelength (nm)')\n", "plt.legend()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This plot shows the contribution to reflectance from light which each of three possible polarization vectors in the global lab coordinate system. The total reflectance nearly overlaps with the sum of the three polarization compontents. The lack of a perfect overlap is due to any extra reflectance which is calculated outside of the trajectories themselves. This includes fresnel reflections at the initial medium-sample interface and the distribution of trajectories that were stuck inside the sample at the end of the Monte Carlo calculation. " ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python [Root]", "language": "python", "name": "Python [Root]" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.2" } }, "nbformat": 4, "nbformat_minor": 0 }
gpl-3.0
daniel-koehn/Theory-of-seismic-waves-II
05_2D_acoustic_FD_modelling/2_Optimizing_fdac2d_code.ipynb
1
160130
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "###### Content under Creative Commons Attribution license CC-BY 4.0, code under BSD 3-Clause License © 2018 by D. Koehn, notebook style sheet by L.A. Barba, N.C. Clementi" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<link href=\"https://fonts.googleapis.com/css?family=Merriweather:300,300i,400,400i,700,700i,900,900i\" rel='stylesheet' >\n", "<link href=\"https://fonts.googleapis.com/css?family=Source+Sans+Pro:300,300i,400,400i,700,700i\" rel='stylesheet' >\n", "<link href='http://fonts.googleapis.com/css?family=Source+Code+Pro:300,400' rel='stylesheet' >\n", "<style>\n", "\n", "@font-face {\n", " font-family: \"Computer Modern\";\n", " src: url('http://mirrors.ctan.org/fonts/cm-unicode/fonts/otf/cmunss.otf');\n", "}\n", "\n", "\n", "#notebook_panel { /* main background */\n", " background: rgb(245,245,245);\n", "}\n", "\n", "div.cell { /* set cell width */\n", " width: 800px;\n", "}\n", "\n", "div #notebook { /* centre the content */\n", " background: #fff; /* white background for content */\n", " width: 1000px;\n", " margin: auto;\n", " padding-left: 0em;\n", "}\n", "\n", "#notebook li { /* More space between bullet points */\n", "margin-top:0.5em;\n", "}\n", "\n", "/* draw border around running cells */\n", "div.cell.border-box-sizing.code_cell.running { \n", " border: 1px solid #111;\n", "}\n", "\n", "/* Put a solid color box around each cell and its output, visually linking them*/\n", "div.cell.code_cell {\n", " background-color: rgb(256,256,256); \n", " border-radius: 0px; \n", " padding: 0.5em;\n", " margin-left:1em;\n", " margin-top: 1em;\n", "}\n", "\n", "\n", "div.text_cell_render{\n", " font-family: 'Source Sans Pro', sans-serif;\n", " line-height: 140%;\n", " font-size: 110%;\n", " width:680px;\n", " margin-left:auto;\n", " margin-right:auto;\n", "}\n", "\n", "/* Formatting for header cells */\n", ".text_cell_render h1 {\n", " font-family: 'Merriweather', serif;\n", " font-style:regular;\n", " font-weight: bold; \n", " font-size: 250%;\n", " line-height: 100%;\n", " color: #004065;\n", " margin-bottom: 1em;\n", " margin-top: 0.5em;\n", " display: block;\n", "}\t\n", ".text_cell_render h2 {\n", " font-family: 'Merriweather', serif;\n", " font-weight: bold; \n", " font-size: 180%;\n", " line-height: 100%;\n", " color: #0096d6;\n", " margin-bottom: 0.5em;\n", " margin-top: 0.5em;\n", " display: block;\n", "}\t\n", "\n", ".text_cell_render h3 {\n", " font-family: 'Merriweather', serif;\n", "\tfont-size: 150%;\n", " margin-top:12px;\n", " margin-bottom: 3px;\n", " font-style: regular;\n", " color: #008367;\n", "}\n", "\n", ".text_cell_render h4 { /*Use this for captions*/\n", " font-family: 'Merriweather', serif;\n", " font-weight: 300; \n", " font-size: 100%;\n", " line-height: 120%;\n", " text-align: left;\n", " width:500px;\n", " margin-top: 1em;\n", " margin-bottom: 2em;\n", " margin-left: 80pt;\n", " font-style: regular;\n", "}\n", "\n", ".text_cell_render h5 { /*Use this for small titles*/\n", " font-family: 'Source Sans Pro', sans-serif;\n", " font-weight: regular;\n", " font-size: 130%;\n", " color: #e31937;\n", " font-style: italic;\n", " margin-bottom: .5em;\n", " margin-top: 1em;\n", " display: block;\n", "}\n", "\n", ".text_cell_render h6 { /*use this for copyright note*/\n", " font-family: 'Source Code Pro', sans-serif;\n", " font-weight: 300;\n", " font-size: 9pt;\n", " line-height: 100%;\n", " color: grey;\n", " margin-bottom: 1px;\n", " margin-top: 1px;\n", "}\n", "\n", " .CodeMirror{\n", " font-family: \"Source Code Pro\";\n", "\t\t\tfont-size: 90%;\n", " }\n", "/* .prompt{\n", " display: None;\n", " }*/\n", "\t\n", " \n", " .warning{\n", " color: rgb( 240, 20, 20 )\n", " } \n", "</style>\n", "<script>\n", " MathJax.Hub.Config({\n", " TeX: {\n", " extensions: [\"AMSmath.js\"], \n", " equationNumbers: { autoNumber: \"AMS\", useLabelIds: true}\n", " },\n", " tex2jax: {\n", " inlineMath: [ ['$','$'], [\"\\\\(\",\"\\\\)\"] ],\n", " displayMath: [ ['$$','$$'], [\"\\\\[\",\"\\\\]\"] ]\n", " },\n", " displayAlign: 'center', // Change this to 'center' to center equations.\n", " \"HTML-CSS\": {\n", " styles: {'.MathJax_Display': {\"margin\": 4}}\n", " }\n", " });\n", "</script>\n" ], "text/plain": [ "<IPython.core.display.HTML object>" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Execute this cell to load the notebook's style sheet, then ignore it\n", "from IPython.core.display import HTML\n", "css_file = '../style/custom.css'\n", "HTML(open(css_file, \"r\").read())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Performance optimization of the 2D acoustic finite difference modelling code\n", "\n", "During the [last class](http://nbviewer.jupyter.org/github/daniel-koehn/Theory-of-seismic-waves-II/blob/master/05_2D_acoustic_FD_modelling/1_From_1D_to_2D_acoustic_FD_modelling_final.ipynb), it took us only 15 minutes to develop a 2D acoustic FD code based on the 1D code. However, with a runtime of roughly 3 minutes, the performance of this \"vanilla\" Python implementation was quite underwhelming. Therefore, the aim of this lesson is to optimize the performance of this code. \n", "\n", "Let's start with a slightly modified version of the original code. Basically, I moved the computation of the analytical solution outside the main code, the discretization parameters $nx,\\; nz,\\; nt,\\; dx,\\; dz,\\; dt$ are also fixed in order to minimize the input to the FD modelling function." ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "code_folding": [ 0 ] }, "outputs": [], "source": [ "# Import Libraries \n", "# ----------------\n", "import numpy as np\n", "import matplotlib\n", "import matplotlib.pyplot as plt\n", "from pylab import rcParams\n", "\n", "# Ignore Warning Messages\n", "# -----------------------\n", "import warnings\n", "warnings.filterwarnings(\"ignore\")" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "code_folding": [], "scrolled": false }, "outputs": [], "source": [ "# Definition of modelling parameters\n", "# ----------------------------------\n", "xmax = 500.0 # maximum spatial extension of the 1D model in x-direction (m)\n", "zmax = xmax # maximum spatial extension of the 1D model in z-direction(m)\n", "dx = 1.0 # grid point distance in x-direction\n", "dz = dx # grid point distance in z-direction\n", "\n", "tmax = 0.502 # maximum recording time of the seismogram (s)\n", "dt = 0.0010 # time step\n", "\n", "vp0 = 580. # P-wave speed in medium (m/s)\n", "\n", "# acquisition geometry\n", "xr = 330.0 # x-receiver position (m)\n", "zr = xr # z-receiver position (m)\n", "\n", "xsrc = 250.0 # x-source position (m)\n", "zsrc = 250.0 # z-source position (m)\n", "\n", "f0 = 40. # dominant frequency of the source (Hz)\n", "t0 = 4. / f0 # source time shift (s)" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "nx = 500\n", "nz = 500\n", "nt = 502\n" ] } ], "source": [ "# define model discretization\n", "# ---------------------------\n", "\n", "nx = (int)(xmax/dx) # number of grid points in x-direction\n", "print('nx = ',nx)\n", "\n", "nz = (int)(zmax/dz) # number of grid points in x-direction\n", "print('nz = ',nz)\n", "\n", "nt = (int)(tmax/dt) # maximum number of time steps \n", "print('nt = ',nt)\n", "\n", "ir = (int)(xr/dx) # receiver location in grid in x-direction \n", "jr = (int)(zr/dz) # receiver location in grid in z-direction\n", "\n", "isrc = (int)(xsrc/dx) # source location in grid in x-direction\n", "jsrc = (int)(zsrc/dz) # source location in grid in x-direction\n", "\n", "# Source time function (Gaussian)\n", "# -------------------------------\n", "src = np.zeros(nt + 1)\n", "time = np.linspace(0 * dt, nt * dt, nt)\n", "\n", "# 1st derivative of a Gaussian\n", "src = -2. * (time - t0) * (f0 ** 2) * (np.exp(- (f0 ** 2) * (time - t0) ** 2))\n", "\n", "# Analytical solution\n", "# -------------------\n", "G = time * 0.\n", "\n", "# Initialize coordinates\n", "# ----------------------\n", "x = np.arange(nx)\n", "x = x * dx # coordinates in x-direction (m)\n", "\n", "z = np.arange(nz)\n", "z = z * dz # coordinates in z-direction (m)\n", "\n", "# calculate source-receiver distance\n", "r = np.sqrt((x[ir] - x[isrc])**2 + (z[jr] - z[jsrc])**2)\n", "\n", "for it in range(nt): # Calculate Green's function (Heaviside function)\n", " if (time[it] - r / vp0) >= 0:\n", " G[it] = 1. / (2 * np.pi * vp0**2) * (1. / np.sqrt(time[it]**2 - (r/vp0)**2))\n", "Gc = np.convolve(G, src * dt)\n", "Gc = Gc[0:nt]\n", "lim = Gc.max() # get limit value from the maximum amplitude\n", "\n", "# Initialize model (assume homogeneous model)\n", "# -------------------------------------------\n", "vp = np.zeros((nx,nz))\n", "vp2 = np.zeros((nx,nz))\n", "\n", "vp = vp + vp0 # initialize wave velocity in model\n", "vp2 = vp**2" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "code_folding": [ 42 ] }, "outputs": [], "source": [ "# 2D Wave Propagation (Finite Difference Solution) \n", "# ------------------------------------------------\n", "def FD_2D_acoustic_vanilla(): \n", " \n", " # Initialize empty pressure arrays\n", " # --------------------------------\n", " p = np.zeros((nx,nz)) # p at time n (now)\n", " pold = np.zeros((nx,nz)) # p at time n-1 (past)\n", " pnew = np.zeros((nx,nz)) # p at time n+1 (present)\n", " d2px = np.zeros((nx,nz)) # 2nd spatial x-derivative of p\n", " d2pz = np.zeros((nx,nz)) # 2nd spatial z-derivative of p\n", "\n", " # Initialize empty seismogram\n", " # ---------------------------\n", " seis = np.zeros(nt) \n", " \n", " # Calculate Partial Derivatives\n", " # -----------------------------\n", " for it in range(nt):\n", " \n", " # FD approximation of spatial derivative by 3 point operator\n", " for i in range(1, nx - 1):\n", " for j in range(1, nz - 1):\n", " \n", " d2px[i,j] = (p[i + 1,j] - 2 * p[i,j] + p[i - 1,j]) / dx ** 2 \n", " d2pz[i,j] = (p[i,j + 1] - 2 * p[i,j] + p[i,j - 1]) / dz ** 2\n", "\n", " # Time Extrapolation\n", " # ------------------\n", " pnew = 2 * p - pold + vp ** 2 * dt ** 2 * (d2px + d2pz)\n", "\n", " # Add Source Term at isrc\n", " # -----------------------\n", " # Absolute pressure w.r.t analytical solution\n", " pnew[isrc,jsrc] = pnew[isrc,jsrc] + src[it] / (dx * dz) * dt ** 2\n", " \n", " # Remap Time Levels\n", " # -----------------\n", " pold, p = p, pnew\n", " \n", " # Output of Seismogram\n", " # -----------------\n", " seis[it] = p[ir,jr]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "You know what happened the last time, we executed the cell below. We had to wait 3 minutes until the modelling run finished. So for safety reasons I commented the code execution and defined the runtime. You should adapt the value of the timing measurement `t_vanilla_python` by the value of your computer." ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "#%%time\n", "#FD_2D_acoustic_vanilla()\n", "t_vanilla_python = 190.0" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Just-In-Time (JIT) code compilation with Numba \n", "\n", "The poor performance of the vanilla Python code is due to the nested FOR loops to compute the 2nd spatial FD derivatives. We can optimize the performance using the `Numba ` library for Python ([http://numba.pydata.org/](http://numba.pydata.org/)) which turns Python functions into C-style compiled functions using [LLVM](https://en.wikipedia.org/wiki/LLVM). A nice introduction to Numba was presented at the SciPy conference 2016 by Gil Forsyth & Lorena Barba with the title \n", "\n", "**Numba: Tell those C++ bullies to get lost**" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEAAUDBAgHBgUIBwcGBQUFBwUHBwYGBgUFBgUFBQUGBgUFBQUHChALBwgOCQUFDRUNDhERExMfCAsWGBYSGBASExIBBQUFBwcIDgcHCBIIBwgSEhISEhISEhISEhISEhISEh4SEh4SHh4SHhIeEh4SHh4SHh4SEh4SHh4eHhIeEhISHv/AABEIAWgB4AMBIgACEQEDEQH/xAAcAAEAAgMBAQEAAAAAAAAAAAAAAgMEBQcGCAH/xABOEAABAwICAwsKAwQHBgcAAAAAAgMSBAUiMgYTQgcUFyMzUlNUlNPUARYYNENjcnOSkxVikRFRdIMhJESCo9LhMUFhZITkCDVxobTB0f/EABkBAQEBAQEBAAAAAAAAAAAAAAACAwQBBf/EAB4RAQADAQACAwEAAAAAAAAAAAACAxITIjIBBDEU/9oADAMBAAIRAxEAPwD4yAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABn/AIYv96P1JItS1bSANcDYfhS+cgl+EO85r9f9ANaD27G5rXLSjypeoP2L95VdwWcF9w6ag+5VdwB4QHvuCy4dNbvu1XcDgsuHWLb9yq7gDwIOg8FFx6e2/cqu4HBNcesW37tX3AHPgdE4I7l1i2/cqu4J8D9z6xbe0VXcAc4B0fgdufWLZ2iq7gcDlz6xau0VXcAc6B0jgaufWLV2iq7gnwLXXrFq7RVdwHuXMgdN4FLr1i1dpqu4HApdesWrtNV3AeOZA6jwI3XrVq7RVdwfvAddus2rtNV3AHLQdU4Dbv1qz9oqvDkuAy7dZs/aLj4cDlYOr8BN26zZ+0XHw44Cbt1mz9ouPhw9y5ODrfANeOs2ftFx8MfvAJeOs2ftFx8MFYcjB1/gAvHWbP8AfuPhhwA3jrNl7TcvDDZhyAHYvR9vPWbL2m5eGP30e7z1uy9puPhhsw44Ds3o73nrdl7RcfDD0d7z1uy9ouPhhsw4yDtHo53rrdk+/dfBH76ON763ZPv3XwRO/gw4sDtPo43vrli+/dfBE/RuvfXLF2i6+CGzDiYO2ejde+uWLtF18EPRuvfXLF2i6+CGzDiYO3ejVfeuWLtF08EPRqvvXLF2i6eCGzDiIO3+jRfeuWLtF18ES9Ge+9csPaLp4EbMOHA7l6Mt+65Ye0XXwI9GS+9dsPa7p4IbMOGg7l6Ml967Ye13TwQ9GS+9csPa7p4IbMOGg7l6Ml965Ye13TwQ9GS+9csPa7p4Ib+DDhwO4+jJfeuWHtd08EPRkvvXLD2u6eCHSJhw4HcfRkvvXLD2u6eCHoyX3rlh7XdPBDpEw4cDuHoz33rlh7RdPAj0Z771yw9oungR0iYcOB3H0Z771yw9oungSPo0X3rli7RdfBDZhxAHbvRqvvXLF2i6eCI+jXfeuWLtF18ENmHEwds9G699csXaLr4Ih6ON765Yvv3XwQ2Yc4L2MxQXt5jwCbeVBAm2QOx2zkGfgpzNbMK2+r0vyKcymy1rmybZBsmBeTbKWy5ssTbL2yhsvbIEy4pLmwJtl7ZQ2WAXNkykmQLixsoIVde1TIm+4hhHvHAM0m2eWc0/tif7Ugo4QrZ1hBfMe2LGzyVBp5bF4d+Mo+Y4ejpK9h/kXmX/AJbhAzW1l0zGJzDRc2svbWYsycwMqZdMwm1l7YGSWGLMm2sDKmTmYsywzGTMnMxpk5gZUyZitrJzAypiZTMm2sC4nMxpk5gZUxMomJgXzJzKJiYF8wUTEwLwUTEyRYCuYmeBMTICYE5kCALAhMTIACtxYcIAfCRe3mKC9vMbsAm3lIEyFuwWn1al+XTma2YVp9Wpfl05mtmwuJkCbYFjZcUtlwEybZAm2BeTKSZAubJlLZcBYTbKCwgYukN1aoKN6pfVgp/8Y+b9NNLam61S1uKWhn2DHQno92bS1VZWb2ZV/UqT/GqDmzhsLtcT13lMYBDMbWozbTe36Vc2XlsL92axhZlOUylJklIHU9DN2B+mUhFfOuZ6T2zJ2DRrSeluaNZTVCF+79sfJDdGtWVJsLLcqm3VSHWVQW2eNH2O2TbOf7nuniLq0hLikIqtts902syWyS9tZhNrLpgXzJlDayyYFxdMxm1kzMZROZitrJzAvbWTmUzEwMmYmUzJzAumWTKABfMnMoEwMonMxm1k5gXApmJgXTBAhMCYITITAumQmQmVzAvITKwABAACEw4UgfDZY3mKy9vMbsAABbsdp9Wpfl05mtmvsvqtN8inNg2WJtk2yDZNsC9smQJtgTJkCYF5MoLCBcTKSYFxo90K8bwtNU6lUHuTQbls5Z/4gK+LVFTdIvWCscccWpSpKIAGzELmGZlJtrL/ALSF1s2gtqU4lJPQUiE5YmvbNhSGE3VBs2KZvmmFfbUl9hcU8cbNhaYl821bRk3eC0MvC7dcUK2J6tZ9W2msS/TsupyOIPlLSW2wr4pgtDnGHfdxW5a+zMyVjp16s6XK97MnMxZk5kIZTayczGJzDxkzLG1lAAyiZizLG1hoyZk5mNMmBdMsmYpNtYGU2snMxZlkzMXTJzMaZOZoLpk5lIAumJkABeVkJiZmJiZCYAnMhMgJgTmQmQmQAumQmQmVmgsK5iZSZj4lL2MxQWN5jdgmCG0TC3YLL6rTfIpzYNmvsvqtN8inM0sXE2yDZMITLGyssC1xMpJgXNlhQCBeTKCwC5tZwzdxqZ3aEuQQdw2T5/3W1zvNV8unLrHjAbD8O8ik/tSrGYTjKk+XEkI5jDKlqN7SMpaMW0sxTI2DmUNIJ41J5RCDGcrHUKw1EybDK5SVkJv0an3ZZCFthZa9a1xUou0hqVpXBsw6CmU0tB6C5Uc0IfbTyiMZg3ePmlaUNJSvfTi+UccO2bjFA7StVLTuDHjOR3a1KYp0Ppztv4zuGgNel+iZXtuGjCyD2bZc2swm1l7awzZMywxZk5gZUyczFmWTAyZiZTMm2sLXNrLJlExMIZUxMomWTDRdMTITJgTmTmUk5gXzJzMWYmBlTEyiZYBdMhMgAJzEyBXMzFgKxM0ATITITAnMTITEwDhAOLITA+KyxvMVljeYtgbRMg5mJkLddsvqtN8inNga+y+q03wU5sDYTbLikm2ELmywrbAF4ICYWuJlJMCZMgCAq3oNLV+Q+dtN6nW3GqUrnnc9LKnVUbyvyHzrXvTfWr85aG39mgrcpppkoUHGoMpvCmKiGyDGFJc2sgQIetswtKjKc1aUyNKwuJfVrUpMQ0ZLb08p6fRp6TDyVezPBN1K2sKYG2stY/GSW8DZnOC4Tb3SRaF22pN1uOXKVKhG3TnO7tclKoloyaxZlbm1y1FUhMuULhBFk30awuSZJMlhZ5+xVk0xN62esmVMFBYELicykmBdMsmUCYGVMm2sxZlkwMmYmUzJzAumWTMUnMC+ZOZizJzAypgpmJgXE5lMxMLZMxMpmAhdMhMgQmGi6ZAgQmBcQmQmVgWTEygATIAhMD45DeYBvMWwNoDaAW65YvVab4Kc2jZq7D6nTfAbBssXkylsmELiZABaZYVgCwm2QAFwIBxcUgeP3WKyFFDpDhh0bdYuU39UlXJnOQhlW2s1S/yGyfr0qVhNGZT6G0+VnVqngx/PB0bltciZr2FmU2sxbrmyFXUwJtrIPokW0QbeUrZQbnR66rktpLKIQz6w0zckqwpmejsrK8ykwQQuDzmlmF1CPyaw1dA8pC0KSWXqp1tQ8vY2DFbWXBy2O9aJ3WbVKtKuURq1/wAQdAYekk4RudXKaH2v5iDtWjT06VlW2eTeNsTmUkyVr21k5mKTCF8ycymYmBdMnMxpnKL7pVeqCvqU1KkIop8Rq6fid7ho7HMsmcvsu6EtcNbBfyz2dp0hYqcKVQX0bgMPQTEzFbWTmGbKJmNrkyjJEycwLpk5mNMnMC6ZZMxZk5gXzEyiZMCyYmVgBMEAFgIEJhC4hMhMgGicxMgVgfH5Y3mKyxvMWwANoBbrlh9TpvgNg2azRr1Ci+A2ZaFjZOcUyUUFn+5YWroKxp9MmXJmac/ttSpiow88962uSZEdGk60wU75bSqOsR9wuLRhMECYFhqNIalUFpSbOZ5PTOv1DC1Jzh45XpS9OoexTNGZNeuSzGCFZY2VljYQ2FJiSXTiYtAvZNg4yZ2NkG3jYMRVmNY4ghNST1o9MwtDSsJsH7qlFHUq24YDx7CFrUYdW8qS25YDPC9sVwN5gDdytzo1UqaqEKSd93PamdOtPRnzkxhUg9VbdJ6qhStTKkcZn1hC30aTOGW3daq2lcdTsvo+Yewtu6pQupRrmamlX99kDoZM01p0ho6z1aqZfX0bbnHG2mQJlNfUpYaedUla0No1nFk5mp0svzVso11L7bz6J6vVtljx/Cu26niaVaPnuGzoNP2H0Qq2UQ++yef3/ovUqmqjepVuZ9W3qCivslldxUV0XRLc9g+3r2Q0rbqvtVquqpUynrXW9Jq+JeNFbXnaCqWxUpg9Tr5QxnN82xSEuKRVUWxVsci8bZ95NxYQhSka5vkHHOWZOZ1ujaNXhNSiKs7Zh6d6QqoUMoZ9Zq8jnQnj7FvqlXJxWD3Zi6YPLqq1l1WTUatDZPdnw8220as7txqJOPL3tTr1j7ms457/AJU6geW3OWdVQZcbi8Z6aZ0M714KJk5hgvmJlEywC6YmUkwJzEyBAC6ZCZABaZArAQCZCZACcxMgQA+SCxvMVlhaDaA2gB1bRr1Gi+WbY02i3qNL8BtmyxMxr1UwajtuF1W8lpElHnKupU6qSjOc29cGFqY7MyD942VOLLnHlbJhv1MeUSj7Zzt2E5clLVhmv5ZdSaSOsYUuLR7twn+JJQmKcHyyxi5JWmD7aKpn3nLFbHqdHtKmKxaGlKhVdH0x6A8ZovR27X61lK0VLeRt9w9hM3YWD64pOa7oVZJEG/757q7LOWaZ1jeVtU1lsHkn8xAEAEA2AEMljMbNtckmpbNhQf8A4F1sqAbZkonAzaRmOIhuOcQxI8q4uSje6SvYUJSefbFaJpkC6GEQwyLZjZlOPYTFL4YQtRMyqRZiuE6ReIDaOLU1BxKloe6Rtw65uZaeb8hSVqoXDYf65/3BxmvXJJOglnbVBbfGIA+qjFu1G1VMLYfb17Lmds85uZaT/idHxkN+0nFr99/zR6qZA+a36N+jqHmnkwW2szaR5SU6ySF+7O532yUteiNSyhfMc9sycz0o0DqaWa2P67St9HyzIaMKkuTakoQ97T2Zk221KQqTL00GmYQ061GTzC2+jNnSSaRhUYTbwegoLqpiaHMZlNxdzHm26lTuLbbN7SPYJHFODqdE0T9V/JM3JpdGsNFS+84w2h9Cv0fOsXAhMGjNdMTIAC6YmUk5kCcwQmJgTBCZACZAEAJkAQmBMgJlcwPk8sbzFYbLQs2gNoAdT0W9RpfgNs2anRP1Cm+AyblWR4tOcsY1ye1qopyNmsfZl8BNx6BiuPKUcXu7q/A10UmFV1K0pyzLH1pTmUYTlepKsJcDYw8pKcLK+L92YrkVqxNrQbDe1wdTJNO8Pw24bVKtZeEdGm1zrS0alxc54HD1Vy0yVQUqGn4P3aHGI9j/AEmlf0eUhC37i4uhpW8jftnjxNyqda+tf0GkIM7LGzu2lVZUqXrKhaEOezY4hk0ri5EAW5QAAACYE2zZ0hqdo9BaaaZC62zoKaSVqG0ZtBFCVoUYtWjmmDrefvUlLXzDTG8u2WJpnDqrYWLp4SaMRSTbDMbzF7C5YShvMT2gscRiINmbAxXERALxGVQLisxWMxe4iKsIQ9Ho1dVW6sZfZ9nnb6anPoCgqUPsMutqmioRrEHzFQPYsR1Dcj0nk6uheVg5RjwoW6mCEyZA5lusWRLC0VjKcFRxb+r6weWoKmeFR3C5UaKmneYcTND6NWcFr6ZdDUPMPJ45tf3jOdbRvaTAqRvaBacuw4eSpKk3VIvIctlbqhN12y+q00eYZhptE3p0qPdm5Oqv0ctgWFZZM0ZhMgJgTJlMxMC4EJgCZAgCBMhMrmQAm4sEAABAgB8sAAtBtFhXtFgHSbLWJprQh1X9nYNFYrkp9panlcdM29BR75siGpQ1jB4KruSaes4ltaENo1a29YJ+jSD1VW8ah+vUkxvxVL+UydGqNFVWIQ7yO230xhCttsoWXa53Vs/33OhPdWLR5ijxcvVdI4bCkpmmEQZbQwj3ZcdUII6EyD7yWkrccVBDftCZ4LdNvf8AZG/Z8Y+stg8zpnflV1RL+yt5GzzLhc4uRAhBslBe4QArBYVgWE2yBNsCcDe6NVMcCjRGUxUwUhQaVvZ5sRhTVlUnAXUi0uoQpJC5YUHM7XnL09jNYXV65rKYHZX+OKxNsm2QJzIeDeYvyqFJGRdVoxBY3lKXMpksFLhAobQWNrwiZX8RYyppjFKTYaPIi+heu1DzfGINK2vEbC00evWvEEPorRu6orqVDravdr/iDZtnIty+5bzrd6uOYKv/AOQdXbC2SeG3XLIl2l34nlqTi1++pz2x4zdYvCUUaKNOer4z/pwOXtrio3tBWYTROIUXW17FFSjCytvCx2rc99SWr856Y8toDFdEhTaYLp3+U6anPUnVXX4MZgAHNmAgJkCYITEyFpiZAATIEABMgJkJgTEyEyAE5kAJp2lAfLYIEwhDaLyjaLwOmaLf+Ws/AeD0oo0LUtSc5cvSdTVtXTNp47k9YUMPa1KC1tG2h1hK0pTyh6Pc2pnV3FClzQhtGsJv5UE2LxvN9lSYL1nFrIaOmkDzPnmx0bxX55tdCstDe6Q3JNHRvO7ex/EHFrlUqdWtSlTW5ncN7p1pDv5TKUpgzTnmAzQcAcAQOIEBMu2SxjCBNsbRAgCbggBNsg4sCAW9BovWeyM29PYTzNC95WnUK6NZvL0tKkTSrBAicG/RomMSg5mLKHKtRQ/mPqc8UsCBAnOSSB84XNmU4vCgwm1xViMqrw5cgWmw8H80jFmZrmUgYocIACBmsVikJWlJhOEJlobO21imn0Oyx069Yg+k7LWJqqOlfTkqEaw+XJqPYaH6c1Vu8iGsD9L0bnsQO+nGN1i6pXeYpyUjeoX/ABB6BvdIXCW9WfuHLV3TW1FSt/jN8OVC1hbeOPJ1XF4yFpwr1ryoIb4xHvjWNsojNtwmxe3WFcW5g6MD6D0BRXLot9VrKKVm5v6ylbb6uejOOaGaZv0tEhKm0PrcXUOLcccNs5ukP9XZNkOoEDmfCK/1dn7hXwiv9XZA6aQOZcIr/V2fuDhFf6uz9wxHTZk2zlnCE/1dn7g4RX0/2dn7hC3UyEzl/CRU9XZ+4V8JFT1emA6pMTOV8JFT1emHCRU9XpgOozByvhIqer0w4SKvq9MB1AHL+Eir6vTEOEWq6GmA6mc23Y9epNFqVLR8sxeEWq6GmPOaS36pr4Schq+jA8kTIEwhDbL20SUUOZjGuS8KAJ3PDAoYeUjKoxmzN1KUtfMLGY5eFqQazXKW6hTiiDhAHRvZp5xW+8lKMxrG5KKXFqUBc4uSiBABA4QcJkAAnhALCZOZQWEC5zKIYSeyT2SFqSbGLCHESINyQtCjaj3E3EBxaoxM2rlm2DFbRJ06J0ZmhlNoihBr3ESVhNm5lMZhCmlYjs+74QwNevCXUmJaJE6tGKRSxhPkLTq8xcxia+WU5jKpEBbFNgwtK0RKUQxyDeBRD0fZUkzLLZH67kU4G87jnImVbWd+LQhJ6ph5xhpDTakalv2bfEFwrJvGXnRipp0ywPI92aI7GvVLak0rYxtuexOZ6V0aWqxaW8jnGQLZtW3mNtSMwWhSkoWak21tqWmEzcTP3YFl5r8EG8GsNEX1dTrXVqjBHMK4ACbcpEG8xs6em1s1SQjVhDe2VcqdGIyZqNNYpJdjKCHOkN6dcKITgK5qEywrcQX/ACwOiDjyecU78TziirQYepOGyC2z34jnDfiOcajUjUkc1tvvxHOQN+I6RBqNSNSRzG334jnIIb8RzjV6kakc07bTfiOcN+I5xq9SQ1I5m2034jnDfiOcavUjew5vG034jnDfiOcavew3sOYEyAAhtFNyyoLtohX5UAYTcUpxE8Sg5sAtA/mKYGS2iSiFXhwgKQg5mINrEwJkBMACAABwrN6xbZUklJx8oaYCssAbAyW8oc2CDeUN5gtNzCom4tKk5il9ZCZoNmwtK2olNIiKlqMVh6KjYMIkk+vXifmxQq3opwk21pWhcs5hLRJQbXE4ft37mscyrKSZBzMcq02zNpGcEjCbLm3opiYtIIQDci+neiKB5CH0Kcb16G/Z6wD3OhGjDqmpqVqN8IwGbdrPU0aELeb1aHDdaIaZ0dVBqO8qnYYfc4l7/qy7T/SOlqrdc2NZOpoV06MH+9//AIfobPHia+s1SUOpzt5/4c8fcqnfFQ86r2guVepeGWAxfhCEHMxAm4QCBsuhNWEpJtrUnKBk72imSiykxrjLVlbj02sRCkwgbN/FxaVTPQNoghCfyHmW1yUhKc56akZihCVZzSuwWAAvoKHEFOp/KZsCcDGY1+9hvY2EBA8W1m9hvY2EBADX6kb2NhAQA1+pGpMyAgQNfvYak2EBADX6kak2ECEAh5wAELNohV5Se0Qq8oFH90pnIymzCczFi5C4pKXFyUJhtElBCAJuIiogBNtEiepFO9EvwrSWMVxBlWaj1r6E7CM5Q49hieg0XZi0te24QNtA8ndqbVVC07HKHsDRaWMpihe3yZY845mDZN8gBcQDgIWZiBc2jCUgTbM2uZdYwOJWhbhhMLio3umdyTWPoWlK0IbRq+MOqE54Q0Ta4k3Msg4ymKFSQQMAmC6nZ2iD+YgQDhAnALG1xMltCcGQpniRhQTbAPrxYSbck8/jM5sLFQa1WsVkbNpvBS14sDIFFHakPtLmn+Yefr2VUzq0KPetxSmKTWX23eR9GXjkZAPGAOIiqKgWhOCiECcyDgE2+abNuyVKtmBjWJnW1CEnuQtrLTbUMJlneNgYt2rNQxM19JpC0rlm1o942BugUMVjDvIvIX7tziDK1K07IQgAAsAJtoUrKkCALtTHlFIQQcWiXFzAgAAAAAgAAAAA8qATMRS5mFXkDmYP5QINlFegymxXowoLGsMlhcUlJOcQhBzMBMmBCAbXEnsmbarO7U8mnB0iy1qLbRqqXUJSe6pKOCEJTkbFptqKZEU59tw2AGFvZRr9Jab+prV0ZvTX6UYaCp+ADnjiyBNwEIQLm0FIygZLkUpMYALZtqWhLnGYEOI5Toi6vY1aEL1yFofRgga+Bs6+mSmlZin+Z0xaGpJkIGZSIwLUBBtCilwydcrKYzhAgTmQJsIkoCbCMMlDNhFQ9zTZ6JspVWM6xMwPR2K1KaY4xWNw2m8zJAWxt5jexmCBY8/pDo9r0Tb9Zb/xjxL7KkKWlSYLbOtGrvNkYqsSsC+kbA5m5mB7B/QxUuLeR/MKG9DH1KxOMoQEMrQi2/taW70mQ9HvP8xdQUaWGkNN5Gy8LeS03poUqMW2eJPc7o3qrPxnhiBOZk0le61ybzyPluGGAh6NjSd32yWX/wCWew0bbpq9l5eupqFbaKji36ym4791KcsMy2vKQ+zHnge6crGk5W5+8cKX7kpW1BHuzVzBa17j0i62om+hJhGwsXrTIG93gkbwSZoIGFvBI3gkzQBr94JG8EmwIAYW8Ej8NSZoA5kTbIAgQczB/KHMwfygTbFWiTRBsyYSSWhowXOMqKQBP4RTsrWqLaVrX7s9TadHtVBbvLdGFmj1hSpKHX/7jZ6dGFMU4EDKTAAEywNTpZ6hUm2NNph6kv3iwOfgOFZCF7hAAC6kZmqJlbwUk2Gh9MldfSpUmaHFnZrtoxb0NPO71QvVo1mrbbN4Q2OGfhS1bSDYV/qqG5cmdAtKKFaltuUKEYNZxZsGLDaJYqWf8uqL5rcYbo1Lym3ttkdW0vEhHzDsFJbbVlTSoRrPdno6TRK3pRPUoRqyMD5pu1Mph9bSs7ZitnoN0KP4vcIpgiZ58iaEHC5zCmJBeEgZiBvdHooqqKKp48ZpXEYUGbbUKmhxPs1ljpIJ5kyAWNlgBAAEy1oEwAgAAW8rui+qs/GeGPc7ovqzPzDwwQAAhAXUHKoKS6g5VAHoyZBsBaZsdHvWEGrNho96wgD1oAAAAAQJkAAAA5kDXb+V+5P6Dfyv3J/QgZzmYOZTA32r8v6H7v5X7k/oBnNmS2ajfyv3J/Ql+Ir/AHI/QsbVymSvMG7a1tGs/FV81BZ+MO81r9P9Qh7axUyENSSmBkv5kHjWNJ6hCYpRTfs+W9/mJr0qqFbFN9D/APmC3uQeI87ajmU30P8A+Yed9R0dN9NT3wHtweI876jo6b6anvh531HR0301PfAe6POab1MWmWv5hp/PCo6Kn+ip741dzui6lybiUT/J/QEMVwFcxMCxsnApbdiTW95VcwD02gOK5UXxn0A4ttSVnzHZboujfQ62lC1o5567hWr+rW37VX35vXPA6pvZumUtTDbPGFm+XdlLP2zk/CnX9Wtv2qvvz84Urh1e2/bqu/NO8Fuy0C5collHyzWaX3VSHUNpVsHLuFKu6tbPsVXfmsrtOat9cnGqTy+X/gmp8n/trjOdg2m6E8l1FKptKOLznjDJrrw4+iKkNeTyftng8n7P/swV1CvL5dn9DMZeZOIp2sJTvhUY4f2f+hDWkIZLi8JBtZRMTA6vZXp0dKr8hmnOaHSd9hlDSEU2rb/2TQ8r9cRkee1T0VL9NT3wW98DwPnrU9HTfTVd8PPWp6Om+mq74D3xM59561PRUv0VXfDz1qeipfoqu+B0dBB4Dz5quipPoqu+Pzz3quipPpqu+A6ATOe+fFV0VJ9FV3w8+KroqT6KrvgdG13RfVmfmHhjaXrSF6sQhLqWUeRvmN+TyGokBMFcxMIWF1ByqDFmfrbvlSr9vk/o8oHqSZoPxdzmo/Q/fxd3mtfp/qBvjYaPetIPI/i7vNa/T/UyKHSB9hxC0pZm3z2wOpg57581XRUn0VXfH7581XRUn0VXfBboIOfefNV0VJ9FV3x+efNV0VJ9FV3wHQiB4Dz4quipPoqu+HnxVdFSfRVd8Do9+Dn3ntU9FS/TU98PPap6Kl+mp74DywACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB//2Q==\n", "text/html": [ "\n", " <iframe\n", " width=\"400\"\n", " height=\"300\"\n", " src=\"https://www.youtube.com/embed/SzBi3xdEF2Y\"\n", " frameborder=\"0\"\n", " allowfullscreen\n", " ></iframe>\n", " " ], "text/plain": [ "<IPython.lib.display.YouTubeVideo at 0x7fa63edf0898>" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from IPython.display import YouTubeVideo\n", "YouTubeVideo('SzBi3xdEF2Y')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The associated Jupyter notebooks can be cloned from [here](https://github.com/barbagroup/numba_tutorial_scipy2016).\n", "\n", "First, we have to install Numba, which is quite easy using Anaconda:\n", "\n", "`conda install numba` \n", "\n", "From the Numba library we import **jit**: " ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "# import JIT from Numba\n", "from numba import jit" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The only thing, we modify in our original Python code is to add the function decorator \n", "\n", "`@jit(nopython=True)`\n", "\n", "which tags the function `FD_2D_acoustic_JIT` to be compiled:" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "# FD_2D_acoustic code with JIT optimization\n", "# -----------------------------------------\n", "@jit(nopython=True) # use Just-In-Time (JIT) Compilation for C-performance\n", "def FD_2D_acoustic_JIT(): \n", " \n", " # Initialize empty pressure arrays\n", " # --------------------------------\n", " p = np.zeros((nx,nz)) # p at time n (now)\n", " pold = np.zeros((nx,nz)) # p at time n-1 (past)\n", " pnew = np.zeros((nx,nz)) # p at time n+1 (present)\n", " d2px = np.zeros((nx,nz)) # 2nd spatial x-derivative of p\n", " d2pz = np.zeros((nx,nz)) # 2nd spatial z-derivative of p\n", "\n", " # Initialize empty seismogram\n", " # ---------------------------\n", " seis = np.zeros(nt) \n", " \n", " # Calculate Partial Derivatives\n", " # -----------------------------\n", " for it in range(nt):\n", " \n", " # FD approximation of spatial derivative by 3 point operator\n", " for i in range(1, nx - 1):\n", " for j in range(1, nz - 1):\n", " \n", " d2px[i,j] = (p[i + 1,j] - 2 * p[i,j] + p[i - 1,j]) / dx**2 \n", " d2pz[i,j] = (p[i,j + 1] - 2 * p[i,j] + p[i,j - 1]) / dz**2\n", "\n", " # Time Extrapolation\n", " # ------------------\n", " pnew = 2 * p - pold + vp2 * dt**2 * (d2px + d2pz)\n", "\n", " # Add Source Term at isrc\n", " # -----------------------\n", " # Absolute pressure w.r.t analytical solution\n", " pnew[isrc,jsrc] = pnew[isrc,jsrc] + src[it] / (dx * dz) * dt ** 2\n", " \n", " # Remap Time Levels\n", " # -----------------\n", " pold, p = p, pnew\n", " \n", " # Output of Seismogram\n", " # -----------------\n", " seis[it] = p[ir,jr] \n", " \n", " return seis" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's run the code:" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "CPU times: user 372 ms, sys: 0 ns, total: 372 ms\n", "Wall time: 373 ms\n" ] } ], "source": [ "%%time\n", "seis_FD_JIT = FD_2D_acoustic_JIT()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Wow, you don't have to wait 3 minutes, but only 747 ms. Run the cell above again ...\n", "\n", "... and you see that the runtime is suddenly further decreased to 373 ms. This performance improvement can be explained by the code compilation during the first run of the code. So by simply using the `@jit` function decorator we get a performance increase of **509x** compared to the non-optimized Python code." ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [], "source": [ "t_JIT_python = 0.373 # runtime of JIT compiled Python code (s)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Another approach to get rid of the nested FOR-loops is to use Numpy array operations:" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [], "source": [ "# FD_2D_acoustic code with NumPy arrays\n", "# -------------------------------------\n", "def FD_2D_acoustic_numpy(): \n", " \n", " # Initialize empty pressure arrays\n", " # --------------------------------\n", " p = np.zeros((nx,nz)) # p at time n (now)\n", " pold = np.zeros((nx,nz)) # p at time n-1 (past)\n", " pnew = np.zeros((nx,nz)) # p at time n+1 (present)\n", " d2px = np.zeros((nx,nz)) # 2nd spatial x-derivative of p\n", " d2pz = np.zeros((nx,nz)) # 2nd spatial z-derivative of p\n", "\n", " # Initialize empty seismogram\n", " # ---------------------------\n", " seis = np.zeros(nt) \n", " \n", " # Calculate Partial Derivatives\n", " # -----------------------------\n", " for it in range(nt): \n", "\n", " # Old FD approximation of spatial derivative by 3-point operator\n", " # using nested FOR-loops is replaced by ...\n", " #for i in range(1, nx - 1):\n", " # for j in range(1, nz - 1):\n", " # \n", " # d2px[i,j] = (p[i + 1,j] - 2 * p[i,j] + p[i - 1,j]) / dx**2 \n", " # d2pz[i,j] = (p[i,j + 1] - 2 * p[i,j] + p[i,j - 1]) / dz**2\n", " \n", " # ... Numpy array operations:\n", " d2px[1:-2,1:-2] = (p[2:-1,1:-2] - 2 * p[1:-2,1:-2] + p[0:-3,1:-2]) / dx**2\n", " d2pz[1:-2,1:-2] = (p[1:-2,2:-1] - 2 * p[1:-2,1:-2] + p[1:-2,0:-3]) / dz**2\n", " \n", " # Time Extrapolation\n", " # ------------------\n", " pnew = 2 * p - pold + vp ** 2 * dt ** 2 * (d2px + d2pz)\n", "\n", " # Add Source Term at isrc\n", " # -----------------------\n", " # Absolute pressure w.r.t analytical solution\n", " pnew[isrc,jsrc] = pnew[isrc,jsrc] + src[it] / (dx * dz) * dt ** 2\n", " \n", " # Remap Time Levels\n", " # -----------------\n", " pold, p = p, pnew\n", " \n", " # Output of Seismogram\n", " # -----------------\n", " seis[it] = p[ir,jr] \n", " \n", " return seis" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "CPU times: user 7.33 s, sys: 380 ms, total: 7.71 s\n", "Wall time: 1.93 s\n" ] } ], "source": [ "%%time\n", "seis_FD_numpy = FD_2D_acoustic_numpy()" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [], "source": [ "t_numpy_python = 1.93 # runtime of JIT compiled Python code (s)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The runtime 1.93 s of the `NumPy` version is not as fast as the 0.373 s of the JIT version, but a **98x** improvement is still better than the non-optimized version. Can JIT also improve the performance of `FD_2D_acoustic_numpy`?" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [], "source": [ "# FD_2D_acoustic code with NumPy arrays + JIT\n", "# -------------------------------------------\n", "@jit(nopython=True) # use Just-In-Time (JIT) Compilation for C-performance\n", "def FD_2D_acoustic_numpy_JIT(): \n", " \n", " # Initialize empty pressure arrays\n", " # --------------------------------\n", " p = np.zeros((nx,nz)) # p at time n (now)\n", " pold = np.zeros((nx,nz)) # p at time n-1 (past)\n", " pnew = np.zeros((nx,nz)) # p at time n+1 (present)\n", " d2px = np.zeros((nx,nz)) # 2nd spatial x-derivative of p\n", " d2pz = np.zeros((nx,nz)) # 2nd spatial z-derivative of p\n", "\n", " # Initialize empty seismogram\n", " # ---------------------------\n", " seis = np.zeros(nt) \n", " \n", " # Calculate Partial Derivatives\n", " # -----------------------------\n", " for it in range(nt): \n", "\n", " # Old FD approximation of spatial derivative by 3-point operator\n", " # using Numpy array operations\n", " d2px[1:-2,1:-2] = (p[2:-1,1:-2] - 2 * p[1:-2,1:-2] + p[0:-3,1:-2]) / dx**2\n", " d2pz[1:-2,1:-2] = (p[1:-2,2:-1] - 2 * p[1:-2,1:-2] + p[1:-2,0:-3]) / dz**2\n", " \n", " # Time Extrapolation\n", " # ------------------\n", " pnew = 2 * p - pold + vp ** 2 * dt ** 2 * (d2px + d2pz)\n", "\n", " # Add Source Term at isrc\n", " # -----------------------\n", " # Absolute pressure w.r.t analytical solution\n", " pnew[isrc,jsrc] = pnew[isrc,jsrc] + src[it] / (dx * dz) * dt ** 2\n", " \n", " # Remap Time Levels\n", " # -----------------\n", " pold, p = p, pnew\n", " \n", " # Output of Seismogram\n", " # -----------------\n", " seis[it] = p[ir,jr] \n", " \n", " return seis" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "CPU times: user 484 ms, sys: 0 ns, total: 484 ms\n", "Wall time: 481 ms\n" ] } ], "source": [ "%%time\n", "seis_FD_numpy_JIT = FD_2D_acoustic_numpy_JIT()" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [], "source": [ "t_numpy_python_JIT = 0.481 # runtime of JIT compiled Python code (s)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "So JIT could also improve the performance of the code using `NumPy` array operations, but the performance of the compiled code with the nested FOR loops has a slight edge in terms of performance. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Comparison with a C++ implementation\n", "\n", "How does the performance of the JIT-codes compare to a C++ bully code? I invested 1 hour to write [this C++ code](https://github.com/daniel-koehn/Theory-of-seismic-waves-II/tree/master/05_2D_acoustic_FD_modelling/cxx/2dac.cpp), which is similar to the 2D acoustic FD Python code. \n", "\n", "In order to use similar matrix data structures in C++ as in Python, I use the `Eigen` library:\n", "\n", "www.eigen.tuxfamily.org/\n", "\n", "which also allows auto-vectorization of matrix-matrix products. To compile the source code, you need a C++ compiler, e.g. `g++` and the `Eigen` library which can either be compiled from source or installed using the package manager of your Linux distribution. \n", "\n", "I also recommend to use the moderate optimization option `-O2` and Advanced Vector Extensions ([AVX](https://en.wikipedia.org/wiki/Advanced_Vector_Extensions)) `-mavx` during code compilation for a significant performance increase of the code. Let's compile and run the code:" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Wall time: 432.423 ms\r\n" ] } ], "source": [ "# Compile and run C++-version\n", "!g++ -I /usr/include/eigen3 cxx/2dac.cpp -o 2dac -O2 -mavx\n", "!./2dac\n", "\n", "# load seismogram\n", "time_Cpp, seis_FD_Cpp = np.loadtxt('seis.dat', delimiter='\\t', skiprows=0, unpack=True)" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [], "source": [ "t_cxx = 0.432 # runtime of C++ code (s)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The C++ code performance is comparable with the JIT version of the Python code using `NumPy` operations, which is quite impressive considering the simple Python code optimization using JIT.\n", "\n", "To check if the optimized codes are not only fast but still produce reasonable modelling results, it is a good idea to check if the seismograms of the optimized codes still coincide with the analytical solution." ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAv0AAAFNCAYAAACT5ND8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3Xtc1VW++P/XYgOyVQQy1AgV8oIgGzdIaqJI5pSXMjXtcsiEqZwmPef0a8Z0mjkeux4r+8axy9Q0k5Q5asfKzLFp0tx5zxtICl7QSE0rFEGQiwLr98febDewuSiXjZv38/Hg0f6sz/qs9f5sP9B7r70+n6W01gghhBBCCCHcl4erAxBCCCGEEEK0LEn6hRBCCCGEcHOS9AshhBBCCOHmJOkXQgghhBDCzUnSL4QQQgghhJuTpF8IIYQQQgg3J0m/EEKIRlNKFSmlbnJ1HEIIIa6MJP1CCNEOKaVGKKW2KaUKlFJ5SqmtSqmbGzpOa91Za32sNWIUQgjRfDxdHYAQQojWpZTqAqwFfgt8BHgDI4EyV8bVHJRSBq11havjEEKItkZG+oUQov3pD6C1Xq61rtBal2it/6W1zgBQSv1aKZWllDqnlPpSKdW76kCllFZK9bW9Hq+UylRKFSqlflRK/d5WnqCUOqmUekop9YtS6rRSapKt/mHbNwtPO7TZQSmVopQ6ZftJUUp1cNj/lK2NU0qpR2rEkKqU+rNSap1S6gJwq1JqglIqTSl1Xil1Qim1wKGtENvxybZ955RSjymlblZKZSil8pVSb7Ts2y+EEK1Pkn4hhGh/DgMVSqn3lVLjlFIBVTuUUpOAp4EpQCCwGVheRzt/A36jtfYFIoGvHfb1AHyAG4H5wLvAg8BgrN8qzHe4N+CPwDDADAwChgB/ssUzFngSGAP0BUY5iePfgBcAX2ALcAF4CPAHJgC/tZ2Xo6FAP+A+IMUWwxhgIHCvUspZP0IIcc2SpF8IIdoZrfV5YASgsSbjuUqpNUqp7sBvgP/RWmdprcuBFwGz42i/g0tAhFKqi9b6nNZ6b419L2itLwErgOuB/9VaF2qtDwAHgChb3UTgWa31L1rrXOAZYLpt373AEq31Aa11sW1fTZ9prbdqrSu11qVaa4vW+jvbdgbWDy01k/jnbHX/hfVDwnJb/z9i/aAT3bh3Uwghrg2S9AshRDtkS+qTtNbBWEfpg7COePcG/tc2zSUfyAMU1hH7mu4BxgM/KKW+UUrd4rDvrMPc+hLbf3922F8CdLa9DgJ+cNj3g62sat8Jh32Or52WKaWGKqU2KqVylVIFwGNYP3Q4qhlLXbEJIYRbkKRfCCHaOa31QSAVa/J/AuuUHX+HH6PWepuT43Zpre8GugGrsd4UfDVOYf2wUaWXrQzgNBDssK+ns1Oosf13YA3QU2vtB7yN9YOLEEK0W5L0CyFEO6OUGqCU+p1SKti23RN4ANiBNUH+g1JqoG2fn1JqmpM2vJVSiUopP9sUnvPA1T41ZznwJ6VUoFLqeqz3AHxo2/cRkKyUCldKdbTta4gvkKe1LlVKDcE6518IIdo1SfqFEKL9KcR6I+u3tife7AD2A7/TWn8KvASsUEqdt5WPq6Od6UCOrd5jWG/UvRrPA7uBDOA7YK+tDK31F8BiYCOQDWy3HVPf40UfB55VShVi/ZBwtd9ACCGE21Ba1/xWVAghhGiblFLhWD+IdLDdaCyEEKIRZKRfCCFEm6aUmmybThSA9VuIzyXhF0KIKyNJvxBCiLbuN0AucBTrfQO/dW04Qghx7ZHpPUIIIYQQQrg5GekXQgghhBDCzbk06VdKjVVKHVJKZSul5jnZ30EptdK2/1ulVIjDvj/Yyg8ppe5oqE2lVKitjSO2Nr3r60Mp5WVbov47pVSWUuoPLfdOCCGEEEII0XI8XdWxUsoAvAn8CjgJ7FJKrdFaZzpUexg4p7Xuq5S6H+sNXPcppSKA+4GBWFdrXK+U6m87pq42XwJe01qvUEq9bWv7z3X1AUzD+nQIk+3Z0JlKqeVa65z6zsvf31/37du3qW+PcCMXLlygU6dOrg5DtCFyTQhn5LoQNck1IZypui727NlzRmsd2NjjXJb0A0OAbK31MQCl1ArgbsAx6b8bWGB7vQp4QymlbOUrtNZlwPdKqWxbezhrUymVBYzm8gIt79va/XM9fWigk1LKEzACF7EuPlOv7t27s3v37sa/C8LtWSwWEhISXB2GaEPkmhDOyHUhapJrQjhTdV0opX64kuNcmfTfiHW59yonsS4W47SO1rpcKVUAdLWV76hx7I22187a7ArkOzzizbF+XX2swvqB4DTQEfj/tNZ5zk5EKTUTmAkQGBiIxWJp4NRFe1JUVCTXhKhGrgnhjFwXoia5JoQzV3tduDLpV07Kaj5KqK46dZU7u0ehvvr19TEE66PhgoAAYLNSan3VtwjVKmv9F+AvAGFhYVo+lQtHMlIjapJrQjgj14WoSa4J4czVXheuvJH3JNDTYTsYOFVXHds0Gz8gr55j6yo/A/jb2qjZV119/BvwT631Ja31L8BWIPYqz1UIIYQQQgiXceVI/y6gn1IqFPgR6425/1ajzhpgBrAdmAp8rbXWSqk1wN+VUv8P60h8P2An1lH7Wm3ajtloa2OFrc3PGujjODBaKfUh1uk9w4CUFngfhBBCCLdx6dIlTp48SWlpqatDueb5+fmRlZXl6jCEi/n4+BAcHIyXl1eT2nFZ0m+bPz8b+BIwAO9prQ8opZ4Fdmut1wB/A5babtTNw5rEY6v3EdabfsuBWVrrCgBnbdq6nAusUEo9D6TZ2qauPrA+BWgJsB/rh4klWuuMFno7hBBCCLdw8uRJfH19CQkJwfpcDHG1CgsL8fX1dXUYwoW01pw9e5aTJ08SGhrapLZcOdKP1nodsK5G2XyH16VYH53p7NgXgBca06at/BiXn/DjWO60D611UV19CyGEEMK50tJSSfiFaCZKKbp27Upubm6T25IVeYUQQgjRrCThF6L5NNfvkyT9QgghhHArBoMBs9ls/8nJycFiseDn50d0dDRhYWHEx8ezdu3aJveVk5NDZGRkg/VefPHFatvDhw9vct9VnnjiCTZt2gRAQkICYWFhDBo0iLi4OA4dOtTouBp7Li0tKSmJVatWAdbz2b17N0OHDsVsNtOrVy8CAwOr/duOGTOGc+fOuTjqtk+SfiGEEKKRtNZcvPgzlZVlrg5F1MNoNJKenm7/CQkJAWDkyJGkpaVx6NAhFi9ezOzZs9mwYUOrxFQz6d+2bVuztJuXl8eOHTuIj4+3ly1btox9+/YxY8YM5syZc0VxtbTU1FQWLFhwxcd9++23pKen8+yzz3LfffdV+7edPn06b731VvMH62Yk6RdCCCEaIfvYEpav6sK2bT3YuNGH197yYsbcR10dlrhKZrOZ+fPn88Ybb9Ta980339hHkqOjoyksLERrzZw5c4iMjMRkMrFy5cpax6WmpjJ79mz79p133onFYmHevHmUlJRgNptJTEwEoHPnzgB1tmuxWBg/fjxTp05lwIABJCYmonXN5Yxg1apVjB071uk5xsfHk52dzYYNG5g8ebK9/KuvvmLKlClO46qoqODRRx9l4MCB3H777ZSUlACQnp7OsGHDiIqKYvLkyfaR9YSEBObOncuQIUPo378/mzdvbvjNb2YTJ05k+fLlrd7vtUaSfiGEEKIBe9Kf5uTxXxMUWIRHGXTNgDtOl5PU56/c/pCZiopKV4coHFQlsmazuVqyW1NMTAwHDx6sVb5o0SLefPNN0tPT2bx5M0ajkU8++YT09HT27dvH+vXrmTNnDqdPn25UPAsXLrR/+7Bs2bJq++prNyMjg5SUFDIzMzl27Bhbt26t1fbWrVsZPHiw034///xzTCYTo0ePJisry34z6JIlS0hOTnYa15EjR5g1axYHDhzA39+fjz/+GICHHnqIl156iYyMDEwmE88884y9n/Lycnbu3ElKSkq18tYSEBBAWVkZZ8+ebfW+ryUufXqPEEII0dadOPlXCvP/B4CA3TDgf6BDnnVfBNBv2D7u/re7Wbvyc9cF2Ua15P28Tga97aoS2YbbcN5IXFwcTz75JImJiUyZMoXg4GC2bNnCAw88gMFgoHv37owaNYpdu3YRFRV1tacAUGe7Xbp0YfDgwQQHBwPY56+PGDGi2vGnT58mMDCwWlliYiJGo5GQkBBef/11lFJMnz6dDz/8kOTkZLZv384HH3zgNJ7Q0FDMZjMAgwcPJicnh4KCAvLz8xk1ahQAM2bMYNq0yw84nDJlSrX6NZ09e5bbbrsNsE5HunjxIqtXrwZg6dKlmEymK33baunWrRunTp2ia9euTW7LXUnSL4QQQtShrOxH9h/4LcYO0G0DhL8AqkaeGLwD/nxqLavXrGfSxDGuCVRclbS0NMLDw2uVz5s3jwkTJrBu3TqGDRvG+vXr6/yA4MjT05PKysvf+jRmgbL62vX29ra/NhgMlJeX16pjNBpr9bNs2TJiY2OrlSUnJ3PXXXfh4+PDtGnT8PR0ngJ26NChWp9V03vqU3VMXTF27drV/iEsNTWVnJycq5rXX5/S0lKMRmOztuluZHqPEEIIUYfN2x/C2KGcTkeh/8sOCX+XLpQODLHX63kcvH4zwSUxiquTkZHBc889x6xZs2rtO3r0KCaTiblz5xIbG8vBgweJj49n5cqVVFRUkJuby6ZNmxgypPryPyEhIaSnp1NZWcmJEyfYuXOnfZ+XlxeXLl2q1Vdj2q1PeHg42dnZDdYLCgoiKCiI559/nqSkpAbjcuTn50dAQIB9vv7SpUvto/5tgdaan376yX7DtnBOkn4hhBDCicLCNDz5GgD/NNBVedGAAXD4MD77v2dPcm97/Qk/XeST+f/jgkjbLq1b7udqbN682f7IzlmzZrF48WL7tBNHKSkpREZGMmjQIIxGI+PGjWPy5MlERUUxaNAgRo8ezcsvv0yPHj2qHRcXF0doaCgmk4nf//73xMTE2PfNnDmTqKgo+w2zVRrTbn0mTJiAxWJpVN3ExER69uxJREREg3HV9P777zNnzhyioqJIT09n/vz59dZvivLy8mrfODRkz549DBs2rM5vL4SVaszXVaLxwsLCdEPPxBXti8ViISEhwdVhiDZErolrw1eWMXhhfZyjxQIXfn6SVy7kwh/+ALYpIcXFhyicMIDuFtAe8Ep/P57Kyr+q/tzlusjKynI6ZUZcucLCQnx9fRusN2LECNauXYu/v3+99WbPnk10dDQPP/xwc4XY7CorK7n55pv54IMPGDhwYKOO+c///E8mTpzo9AOcu3D8var6W6GU2qO1jm3gUDv5SCSEEELUUFx8GEPlBvv34X//p5Gsra+AofoX5B07hvHlA4MYWbaPYzPh9L4CNu0+QHxs45IVIZrDq6++yvHjx+tN+gcPHkynTp149dVXWzGyK3Pq1CnGjBnDrbfe2uiEHyAyMtKtE/7mIkm/EEIIUcPh7NfxsOX3O3ZA7IinMBicz4i99d7FpPe3zm8e3RWe/J8/sfvjT1srVCEYOnRog3X27NnTCpE0TVBQEJmZmVd83KOPynoZjSFJvxBCCOGgsvIiP/74Vzr5gEcpfPqlB5v/9ac66/v5jeBsQWe6+hXh6wt+lV+0YrRCCNE4ciOvEEII4eDs2c/pZCwlYBcMmwozv++J948n66yvlAc3Bj1i3x4dW8a7qyTxF0K0LZL0CyGEEA7SvnsNgKB/gHcxPPzDD5CSUu8xUQOtj300/gj3HoH+jz149Y+YEUKIFiDTe4QQQgib8vICVOV2PC9A1+0OO37zm3qP69ixL2fP+jPx8Xy8zkM/8qw3A9xyS8sGLIQQjSQj/UIIIYTNmTNr8PKsJHAjeFQ9lz821v6IzvrcEHwvZ0Zc3j65+K2WCVI0yGAwYDab7T85OTlYLBb8/Pzsz+mPj49n7dq1Te4rJyeHyMjIBuu9+OKL1baHDx/e5L6rPPHEE2zatAmAhIQEwsLCGDRoEHFxcTT0GHHHuBp7Li0tKSmJG2+8kbKyMgDOnDnTbAtv5eTkYDQaMZvNRERE8Nhjj1VbRbmm7777rtpiZtcySfqFEEIIm7TvrIl69/UOhdOnN+rYgQNm8Mutl7cNn6+WKT4uYjQaSU9Pt/9UJYwjR44kLS2NQ4cOsXjxYmbPns2GDRtaJaaaSf+2bduapd28vDx27NhBfHy8vWzZsmXs27ePGTNmMGfOnCuKq6WlpqayYMGCBusZDAbee++9FomhT58+pKenk5GRQWZmJqtXr66zrslk4uTJkxw/frxFYmlNkvQLIYQQQHl5IZ5qJ95nwf87W6HBAPff36jju3QZysl+npR3tG7fcKEIDh9umWBFk5nNZubPn88bb7xRa98333xj/5YgOjqawsJCtNbMmTOHyMhITCYTK1eurHVcamoqs2fPtm/feeedWCwW5s2bR0lJCWaz2b7ybefOnQHqbNdisTB+/HimTp3KgAEDSExMxNmCqqtWrWLs2LFOzzE+Pp7s7Gw2bNjA5MmT7eVfffUVU6ZMcRpXRUUFjz76KAMHDuT222+npKQEgPT0dIYNG0ZUVBSTJ0/m3LlzgPWbhblz5zJkyBD69+/P5s2bG37zG+GJJ57gtddeo7y8vFq5xWLhzjvvtG/Pnj2b1NRUAEJCQnj66ae55ZZbiI2NZe/evdxxxx306dOHt99+u1Yfnp6eDB8+nOzsbKZPn85nn31m35eYmMiaNWsAuOuuu1ixYkWznJcrSdIvhBBCAOfOrcfLs5LrtzoUxsdDt26NOl4pAxc9YzkXc7msvBmmj4grV5XIms3masluTTExMRw8eLBW+aJFi3jzzTdJT09n8+bNGI1GPvnkE9LT09m3bx/r169nzpw5nD59ulHxLFy40P7tw7Jly6rtq6/djIwMUlJSyMzM5NixY2zdurVW21u3bmXw4MFO+/38888xmUyMHj2arKwscnNzAViyZAnJyclO4zpy5AizZs3iwIED+Pv78/HHHwPw0EMP8dJLL5GRkYHJZOKZZ56x91NeXs7OnTtJSUmpVt4UvXr1YsSIESxduvSKjuvZsyfbt29n5MiRJCUlsWrVKnbs2MH8+fNr1S0uLmbDhg2YTCYeeeQRlixZAkBBQQHbtm1j/PjxAMTGxjbbhxlXkht5hRBCCODw0b8DcL3j/9vrSRidiY16kLwhOwjcYt0+mfohIb/7XTNFeO1Rz6gWa1v/d91Tp6oS2QbbqGP6VVxcHE8++SSJiYlMmTKF4OBgtmzZwgMPPIDBYKB79+6MGjWKXbt2ERUVddXnANTZbpcuXRg8eDDBwcEA9nsTRowYUe3406dPExgYWK0sMTERo9FISEgIr7/+Okoppk+fzocffkhycjLbt2/ngw8+cBpPaGgoZrMZsK7im5OTQ0FBAfn5+YwaZV2EbsaMGUybNs1+zJQpU6rVr+ns2bP2FXPz8vK4ePGifUrN0qVLMZlMTmN5+umnmThxIhMmTKj3PXQ0ceJEwDotp6ioCF9fX3x9ffHx8SE/Px+Ao0ePYjabUUpx9913M27cOABmzZrFL7/8wieffMI999yDp6c1Te7WrRunTp1qdAxtlST9Qggh2j2tK8nLW0dAJfinOeyYNOmK2unadQwnb768fUNmBhQXQ8eOzROoaFZpaWmEO7lJe968eUyYMIF169YxbNgw1q9fX+cHBEeenp7VbgotLS1t8Jj62vX29ra/NhgMtaa6gPUDTs1+li1bRmxsbLWy5ORk7rrrLnx8fJg2bZo9oa2pQ4cO1fqsmt5Tn6pj6oqxa9eu9g9hqamp5OTkNGpef9++fTGbzXz00Uf2sobe46pYPDw8qp2Lh4eHPbaqOf01TZ8+nWXLlrFixYpq9xOUlpZiNBobjLetk+k9Qggh2r3Cwr34diwmYDd4VNgKY2OhZ88rasdo7M8vnX240Mu63aGyEr79tnmDFc0iIyOD5557jlmzZtXad/ToUUwmE3PnziU2NpaDBw8SHx/PypUrqaioIDc3l02bNjFkyJBqx4WEhJCenk5lZSUnTpxg586d9n1eXl5cunSpZleNarc+4eHhZGdnN1gvKCiIoKAgnn/++WpPo6krLkd+fn4EBATYp7gsXbrUPurf0v74xz+yaNEi+3bv3r3JzMykrKyMgoKCZr0ROykpiRTbmhwDBw60lx8+fLhNPNWoqWSkXwghRLuXl/eV9YWGnwKhRy5gm897JZRSVKqh5Ju/oZPtYR/lGy143npr/Qe6qfqm4LjC5s2biY6Opri4mG7durF48WL7tBNHKSkpbNy4EYPBQEREBOPGjcPb25vt27czaNAglFK8/PLL9OjRo9p0lri4OEJDQzGZTERGRhITc/kGj5kzZxIVFUVMTEy1ef2TJ0922q6zew2cmTBhAu+88w6PPPJIg3UTExPJzc0lIiLCaVwvvPBCnce+//77PPbYYxQXF3PTTTfZ57+3tIEDBxITE8PevXsB65z9e++9l6ioKPr160d0dHSz9dW9e3fCw8OZVOMbvo0bN17RFKO2SjXm6yrReGFhYbqhZ+KK9sVisZCQkODqMEQbItdE27P2SzOdO+wDYOEi+HTx9xg7+kCPHlfc1okTb1L4zmwibPnTD6ZoemfsbfA4d7kusrKynE6ZEVeusLAQX1/fBuuNGDGCtWvX4u/vX2+92bNnEx0dzcMPP9xcIbqV4uJiTCYTe/fuxc/PD4CysjJGjRrFli1b6pwS1Rocf6+q/lYopfZorWMbONROpvcIIYRo1yory/A2fGff3v9zN4w3hVxVwg/g7x9Hfgwc/Q1seAEeinB+k6IQzeXVV19t8DnygwcPJiMjgwcffLCVorq2rF+/ngEDBvDv//7v9oQf4Pjx4yxcuNClCX9zufbPQAghhGiC8+d34O1pvTHwxAnoFty0ucqdOkVyvpOBi/dXYAB+/LL2YxaFaE5Dhw5tsM6ePXtaIZJr15gxY5x+cOrXrx/9+vVzQUTNT0b6hRBCtGs///Iv++u0NPjNA0lNas/Dw5OC4lD7di//a38lTyHEtU+SfiGEEO1a5pGPUOVgmgvha+GRkEBo4v1ufUIu3/QX0esSh3Ou/Wd8CyGubZL0CyGEaLfKy4vw9TlKl0zouhMePQKG++5tcruhvX5lfx0dBP/6rwVNblMIIZpC5vQLIYRotwoKtuBp0ATsdii8/XZQTVtJ1tc3FjTEPgwJ3wO8Cy8tgKCgJrUrhBBXS0b6hRBCtFsnf1wHwHW7HApvv73J7Xp7d6fgQkfKHZ+2KIt0tRqDwYDZbLb/5OTkYLFY8PPzIzo6mrCwMOLj41m7dm2T+8rJyWnUwk0vvvhite3hw4c3ue8qTzzxBJs2bQIgISGBsLAwBg0aRFxcHA09RtwxrsaeS0tLSkrixhtvpKysDIAzZ84QEhLSLG3n5ORgNBoxm81ERETw2GOPVVvhtzklJSWxatUqwPrvsnv3boYOHYrZbKZXr14EBgZWu0bHjBnDuXPnWiQWkKRfCCFEO3b0h08xFIPvYVuBUjB6dLO0Xa4HcN7xcfUOq7OKlmU0GklPT7f/VCWMI0eOJC0tjUOHDrF48WJmz57drCu61qdm0r9t27ZmaTcvL48dO3YQHx9vL1u2bBn79u1jxowZzJkz54riammpqaksWLCgwXoGg4H33nuvRWLo06cP6enpZGRkkJmZyerVq6+4jcaeR03ffvst6enpPPvss9x3333VrtHp06fz1ltvXXGbjSVJvxBCiHapvLwA/84n6XIAVNVAX1QUBAQ0S/sD+t5BoUPSX7Txm2ZpVzQPs9nM/PnzeeONN2rt++abb+wjsNHR0RQWFqK1Zs6cOURGRmIymVi5cmWt41JTU5k9e7Z9+84778RisTBv3jxKSkowm80kJiYC0LlzZ4A627VYLIwfP56pU6cyYMAAEhMTcbag6qpVqxg7dqzTc4yPjyc7O5sNGzYwefJke/lXX33FlClTnMZVUVHBo48+ysCBA7n99tspKSkBID09nWHDhhEVFcXkyZPtI9IJCQnMnTuXIUOG0L9/fzZv3tzwm98ITzzxBK+99hrl5eXVyi0WC3feead9e/bs2aSmpgIQEhLC008/zS233EJsbCx79+7ljjvuoE+fPrz99tu1+vD09GT48OFkZ2czffp0PvvsM/u+xMRE1qxZ0yzn0lgTJ05k+fLlLda+JP1CCCHapfPnd+ChwO87h8KRI5ut/e6BwzkfdnnbY196k58KJBqnKpE1m83Vkt2aYmJiOHjwYK3yRYsW8eabb5Kens7mzZsxGo188sknpKens2/fPtavX8+cOXM4ffp0o+JZuHCh/duHZcuWVdtXX7sZGRmkpKSQmZnJsWPH2Lq19poPW7duZfDgwU77/fzzzzGZTIwePZqsrCxyc3MBWLJkCcnJyU7jOnLkCLNmzeLAgQP4+/vz8ccfA/DQQw/x0ksvkZGRgclk4plnnrH3U15ezs6dO0lJSalW3hS9evVixIgRLF269IqO69mzJ9u3b2fkyJH26TU7duxg/vz5teoWFxezYcMGTCYTjzzyCEuWLAGgoKCAbdu2MX78+GY5l8YKCAigrKyMs2fPtkj7Lr2RVyk1FvhfwAD8VWu9sMb+DsAHwGDgLHCf1jrHtu8PwMNABfAfWusv62tTKRUKrACuA/YC07XWFxvoIwp4B+gCVAI3a61LW+TNEEII0arOnrXOgfbPcChsxqTf13cwZd3hki94FULH0hLIyYHQ0AaPdReqiTdE18fZqHeVqkT2atuIi4vjySefJDExkSlTphAcHMyWLVt44IEHMBgMdO/enVGjRrFr1y6ioqKu+hyAOtvt0qULgwcPJjg4GMA+73vEiBHVjj99+jSBgYHVyhITEzEajYSEhPD666+jlGL69Ol8+OGHJCcns337dj744AOn8YSGhmI2mwHrKr45OTkUFBSQn5/PqFHWhetmzJjBtGnT7MdMmTKlWv2azp49y2233QZYpyNdvHjRPqVm6dKlmEzOV61++umnmThxIhMmTHC635mJEycCYDKZKCoqwtfXF19fX3x8fMjPzwfg6NGjmM1mlFLcffc7GSYzAAAgAElEQVTdjBs3DoBZs2bxyy+/8Mknn3DPPffUWoX3as/jSnTr1o1Tp07RtWvXJrdVk8uSfqWUAXgT+BVwEtillFqjtc50qPYwcE5r3VcpdT/wEnCfUioCuB8YCAQB65VS/W3H1NXmS8BrWusVSqm3bW3/uZ4+PIEPsX442KeU6gpcasG3RAghRCvKPLIGf0/wzXIorJFQNUWHDjdwvtiHor6lBKTZCtPS2lXS39alpaURHh5eq3zevHlMmDCBdevWMWzYMNavX1/vh4wqnp6e1W4KLS1teJywvna9vb3trw0GQ62pLmD9gFOzn2XLlhEbG1utLDk5mbvuugsfHx+mTZtWK6Gt0qFDh2p9Vk3vqU/VMXXF2LVrV/uHsNTUVHJycho1H75v376YzWY++ugje1lD73FVLB4eHtXOxcPDwx5b1Zz+mqZPn86yZctYsWKF0/sJrvY8rkRpaSlGo7FZ26ziyuk9Q4BsrfUxrfVFrKPwd9eoczfwvu31KuA2ZR02uBtYobUu01p/D2Tb2nPapu2Y0bY2sLU5qYE+bgcytNb7ALTWZ7XWFc14/kIIIVyksrIcH8+D+B4Gw0Vb4U03NfsjNS9W3ERRP4eCtLQ664rWlZGRwXPPPcesWbNq7Tt69Cgmk4m5c+cSGxvLwYMHiY+PZ+XKlVRUVJCbm8umTZsYMmRIteNCQkJIT0+nsrKSEydOsNPh5m0vLy8uXao9dtiYdusTHh5OdnZ2g/WCgoIICgri+eefJykpqcG4HPn5+REQEGCfr7906VL7qH9L++Mf/8iiRYvs27179yYzM5OysjIKCgqa9UbspKQkUlJSABg4cGCztdtYWmt++umnZntSUU2unN5zI3DCYfskMLSuOlrrcqVUAdDVVr6jxrE32l47a7MrkK+1LndSv64++gNaKfUlEIj1Q8bLV3eqQggh2pILFzLo4F3eYvP5q/QOHkVhv8tfYF/ctQvveuq7m8aMjremzZs3Ex0dTXFxMd26dWPx4sX26RqOUlJS2LhxIwaDgYiICMaNG4e3tzfbt29n0KBBKKV4+eWX6dGjR7XpLHFxcYSGhmIymYiMjCQmJsa+b+bMmURFRRETE1NtXv/kyZOdtuvsXgNnJkyYwDvvvMMjjzzSYN3ExERyc3OJiIhwGtcLL7xQ57Hvv/8+jz32GMXFxdx00032+e8tbeDAgcTExLB3717AOmf/3nvvJSoqin79+hEdHd1sfXXv3p3w8HAmTZrUcOVGKC8vr/ZtQ0P27NnDsGHD6vwWpqmUq34hlVLTgDu01o/YtqcDQ7TW/+5Q54Ctzknb9lGso/nPAtu11h/ayv8GrMP6zUWtNh3q97WV9wTWaa1N9fSRDMwCbgaKgQ3An7TWtT5SKqVmAjMBAgMDBzt+DSVEUVGR/SkNQoBcE23DJ8DrqEtweDn4HR1D2F13cK7GlIim+4qOP7zIkCTrVr5vF9LXfOa0prtcF35+fvTt29fVYbiFiooKDAZDg/Vuv/12PvroI/z9/eut97vf/Y5Bgwbx0EMPNVeIbqW4uJhhw4axefNm/Pz8mtRWZWUlCQkJvPPOO06nkDnz1FNPMX78eBISEmrty87OpqCgALj8t+LWW2/do7Vu9B8tV470nwR6OmwHA6fqqHPSNsfeD8hr4Fhn5WcAf6WUp22037F+fX18o7U+A6CUWgfEYE3+q9Fa/wX4C0BYWJh29o8l2i+LxeL0F1i0X3JNuN5XlhfxArQXfFEIS9Z+hp9vx2bvp6joOnZXvEh5R7gQAGk+N3Dr8OHgXXu8312ui6ysLHx9fRuuKBpUWFjYqPcyJSWFc+fO0bNnzzrrDB48mE6dOvH6669f0ehze7F+/Xp+/etf8+STT9pvnr5ap06dYsyYMdx6661XNFUrJiaGu+66y+k+Hx8f+7caV/u3wpVJ/y6gn+2pOj9ivTH332rUWQPMALYDU4GvtdZaKbUG+LtS6v9hvZG3H7ATUM7atB2z0dbGClubnzXQx5fAU0qpjsBFYBTwWgu8D0IIIVpZyYXteHWyvs463blFEn6Ajh0HUK4VWz/VaG947IUADjlJ+IVoiqFDa86Orm3Pnj2tEMm1a8yYMRw/frxZ2goKCiIzM7PhijU8+uijzdJ/XVyW9Nvmz88GvsT6eM33tNYHlFLPAru11muAvwFLlVLZWEff77cde0Ap9RGQCZQDs6pusnXWpq3LucAKpdTzQJqtberp45ztQ8UuQGOdDvSPFnxLhBBCtILS0hN06VQEQEkJlHiaW6wvDw9vzp6/ju7XWZ+73dlwpMX6EkKI+rj0Of1a63VY5+I7ls13eF0KTKt5nG3fC0CtO06ctWkrP4Z1rn7N8vr6+BDrYzuFEEK4iYIC6wJHnbIh8xQkDHe+mmlzMXiGA1sAuNH/XIv2JYQQdZEVeYUQQrQrP55eD0Dkf8Pj/w3vLHsXjh1rsf7C+91qf907sJIff85rsb6EEKIukvQLIYRoV344uR6vAjDaHufQ4afTcOON9R/UBN2uj4EK6LoNph6FX6ZMgTb2KEshhPtz6fQeIYQQojVVVpbhazyO706HwuhoaMGnmXTqFA4eEP4ieF4A+AZOnWrRDxpCCFGTjPQLIYRoN4qK9uFp0HTJcihsxJNPmsLHpw/lFYoLIQ6FBw7UVV00A4PBgNlstv/k5ORgsVjw8/MjOjqasLAw4uPjWbt2bZP7ysnJITIyssF6L774YrXt4cOHN7nvKk888QSbNm0C4NKlS8ybN49+/foRGRnJkCFD+OKLL5qln9zcXMaObdl7YETLkaRfCCFEu3H+vHWIvzWTfg8PT/IvBFRP+vfvb9E+2zuj0Uh6err9JyQkBICRI0eSlpbGoUOHWLx4MbNnz2bDhlrL77SImkn/tm3bmqXdvLw8duzYQXx8PAD/9V//xenTp9m/fz/79+/n888/p7CwsNoxOTk5DT7nPSEhodpqwwCBgYHccMMNbN26tVliF61Lkn4hhBDtRnbOv6ASfA86FLZw0g/g5R0mI/1tjNlsZv78+bzxxhu19n3zzTf2bwmio6MpLCxEa82cOXOIjIzEZDKxcuXKWselpqYye/Zs+/add96JxWJh3rx5lJSUYDabSUxMBLCvvlxXuxaLhfHjxzN16lQGDBhAYmIi2sm9IKtWrbKPvhcXF/Puu+9WW4Cre/fu3HvvvU18ty6bNGkSy5Yta7b2ROuROf1CCCHajfz8rdyQB15FtoLrr4ebbmrxfvuHxlMcut2+XbI3DWOL9+p6FotqsbYTEuq+GboqwQYIDQ3l008/dVovJiaGV155pVb5okWLePPNN4mLi6OoqAgfHx8++eQT0tPT2bdvH2fOnOHmm2+2j643ZOHChbzxxhukp6fX2ldfuxkZGRw4cICgoCDi4uLYunUrI0aMqHb81q1bmTp1KgDZ2dn06tWLLl26NCquqxEbG8uf/vSnFmtftBwZ6RdCCNEuXLp0Dv/OebWn9qiWS0yrXBcwiAuhl7c9sjLlCT4tyHF6T10JP+B05BwgLi6OJ598ksWLF5Ofn4+npydbtmzhgQcewGAw0L17d0aNGsWuXbuaHGt97Q4ePJjg4GA8PDzs9ybUdPr0aQIDAxvV1+TJkzGbzYwfP57du3fbv81YsmQJAEuWLLGX7d69m/Hjx2M2m5k8ebK9jW7dunHq1Kkmn7dofTLSL4QQol0oLNwNtO58/iodO4ZzMQAudQGv89ChrAyOH4fevVulf+FcWloa4eHhtcrnzZvHhAkTWLduHcOGDWP9+vV1fkBw5OnpSWVlpX27tLS0wWPqa9fb29v+2mAwUF5eXquO0Wi099O3b1+OHz9OYWEhvr6+tepWfQDKyckhKSkJi8VSbX9ycjLJycmAdU5/amqq/X4Ix3MyGtvD91TuR5J+IYQQ7UJBwbeAq5L+MCqBCyHgn2ErPHDA7ZP++qbguFpGRgbPPfccf/3rX2vtO3r0KCaTCZPJxPbt2zl48CDx8fG88847zJgxg7y8PDZt2sQrr7xSLbEPCQnhrbfeorKykh9//JGdOy8/G9bLy4tLly7h5eVVra+62j148CCNER4eTnZ2NgkJCXTs2JGHH36Y//iP/+Cdd97B29ub06dPs2HDBh588MGrfKeqO3z4cKOeViTaHpneI4QQol3IOrIONBT1gZOdQCsFQ4a0St8Gg5HzF7rIE3xcbPPmzfZHds6aNYvFixdz22231aqXkpJCZGQkgwYNwmg0Mm7cOCZPnkxUVBSDBg1i9OjRvPzyy/To0aPacXFxcYSGhmIymfj9739PTEyMfd/MmTOJioqy38hbpTHt1mfChAnVRuyff/55AgMDiYiIIDIykkmTJjV6+k9jbNy4kQkTJjRbe6L1qMZ8XSUaLywsTB86dMjVYYg2xGKxNPhoNNG+yDXR+rTW/OOfnehsLAHgkacDyF53DPz9Wy2G1etiiPgyjf6LbQUPPQTvv2/f7y7XRVZWltMpM+LK1TVNp6YRI0awdu1a/Fvheo6Pj+ezzz4jICCgxfsSlzn+XlX9rVBK7dFaxza2DRnpF0II4fbKyk7YE/4LF6CyQ1SrJvwAvYKGcT4CTo+F5bFQND2pVfsX7uvVV1/l+PHjLd5Pbm4uTz75pCT81yiZ0y+EEMLtVS3KBXDoEMQNGd3qMdzQfTCHwuDQXDi4EYoLLvJwq0ch3NHQVro3JTAwkEmTJrVKX6L5yUi/EEIIt/dz7mb766ws+PcHH2j1GDp2vDzlpVcv+GqbrGoqhGg9kvQLIYRwe9k5X+J1Dgb+N5i/UQwpzG31GByT/p494cCh2gs1CSFES5GkXwghhFvTuoKOXtl0yYTATTDriIY5c1o9Di+vAM5f6ACAtzdcvHCg1WMQQrRfkvQLIYRwaxcuZNLBu8Ilz+evqbisOwG7IfKP8OWu7+Hpp10SR3vw6aefopRq9PPu65KUlMSqVavqrfPiiy9W2x4+fPhV9bVgwQIWLVp0VcdWsVgs3HnnnfXWyc/P56233rJvnzp1iqlTpzapX9H2SdIvhBDCrRUWWm/ibQtJv69vOF7n4fptEHJBWxfoEi1i+fLljBgxghUrVrR4XzWT/m3btrV4n01RM+kPCgpq8IONuPZJ0i+EEMKt5ZzYAJXg67iEiouS/v6hwynueXn74n5J+ltCUVERW7du5W9/+1u1pL/q+eZTp05lwIABJCYmUrVe0bPPPsvNN99MZGQkM2fOpOY6Rhs2bGDy5Mn27a+++oopU6Ywb948SkpKMJvN9oW3OnfubK/38ssvYzKZGDRoEPPmzQPg3Xff5eabb2bQoEHcc889FBcX13s+//d//2dfLCw+Ph6A0tJSkpOTMZlMREdHs3HjxlrH1fzmIDIykpycHObNm8fRo0cxm83MmTOHnJwc+yq7dbWbmprKlClTGDt2LP369eOpp55q4F9BtDWS9AshhHBrp3+20PE4eF6wFXTrBr17uyQWvy7hlARf3jbk5EB5uUticWerV69m7Nix9O/fn+uuu469e/fa96WlpZGSkkJmZibHjh1j61brU5Rmz57Nrl272L9/PyUlJaxdu7Zam6NHjyYrK4vcXOtN4EuWLCE5OZmFCxdiNBpJT09n2bJl1Y754osvWL16Nd9++y379u2zJ8pTpkxh165d7Nu3j/DwcP72t7/Vez7PPvssX375Jfv27WPNmjUAvPnmmwB89913LF++nBkzZlBaWtqo92fhwoX06dOH9PR0XnnllWr76ms3PT2dlStX8t1337Fy5UpOnDjRqP5E2yBJvxBCCLdVUVGMX6efak/tUcol8RiNfakwQtn11m1DZQXk5LgkllazYIH1/W7Mz8yZtY+fObN6nQULGuxy+fLl3H///QDcf//9LF++3L5vyJAhBAcH4+HhgdlsJsf2/m/cuJGhQ4diMpn4+uuvOVBj6pVSiunTp/Phhx+Sn5/P9u3bGTduXL1xrF+/nuTkZDp27AjAddddB8D+/fsZOXIkJpOJZcuW1eqrpri4OJKSknj33XepqKgAYMuWLUyfPh2AAQMG0Lt3bw4fPtzge9OQ+tq97bbb8PPzw8fHh4iICH744Ycm9ydajyzOJYQQwm0VFu7F4KGrJ/3DhrksHqOxLwDFwdDhjK3w8GHo29dlMbmbs2fP8vXXX7N//36UUlRUVKCU4uWXXwagQ4cO9roGg4Hy8nJKS0t5/PHH2b17Nz179mTBggVOR82Tk5O566678PHxYdq0aXh61p9Gaa1RTj5gJiUlsXr1agYNGkRqaioWi6Xedt5++22+/fZb/vGPf2A2m0lPT681/cgZT09PKisr7duN+SagvnadvXfi2iEj/UIIIdxWQcG3APi2gZt4ATw9fTl/wUiJw7x+Dh2qs764cqtWreKhhx7ihx9+ICcnhxMnThAaGsqWLVvqPKYqGb7++uspKiqq86bWoKAggoKCeP7550lKSrKXe3l5cenSpVr1b7/9dt577z37nP28vDwACgsLueGGG7h06VKtKUHOHD16lKFDh/Lss89y/fXXc+LECeLj4+3HHj58mOPHjxMWFlbtuJCQEPvUpr179/L9998D4OvrS2FhodO+GtOuuDZJ0i+EEMJtHTr6BR4l0PmYdVsrBTff7NKYLlYEUewwr59mmJLRpi1YAFo37ucvf6l9/F/+Ur1OA9N7li9fXu2GW4B77rmHv//973Ue4+/vz6OPPorJZGLSpEncXM81kpiYSM+ePYmIiLCXzZw5k6ioKPuNvFXGjh3LxIkTiY2NxWw222+qfe655xg6dCi/+tWvGDBgQL3nAzBnzhxMJhORkZHEx8czaNAgHn/8cSoqKjCZTNx3332kpqZWG4mvOu+8vDzMZjN//vOf6d+/PwBdu3YlLi6OyMhI5tRYs6Ix7Yprk2rM10Oi8cLCwvQhGbURDqqeFiFEFbkmWs/qtX70Pnqe6CdsBRERLn9MpmXzFLpu+RST7RH9+tbRqK83uM11kZWVRXh4eMMVr1GzZ88mOjqahx9+uMX7KiwsxNfXt8X7EW2f4+9V1d8KpdQerXVsY9uQkX4hhBBu6eLFXPw7n6cwDHa9BAt794THH3d1WIT0vLnaSH/Z/v2uC0ZckcGDB5ORkcGDDz7o6lCEuGJyI68QQgi3VLUoV6UPfNsRdk1MhFmzXBwVdOrUn9IboNIAHhXgk/sLFBW5OizRCHv27HF1CEJcNUn6hRBCuKUzZy+vinrwIMy8f5oLo7nMaOyH9oSsP8KJCnjrUCJrOnVydVhCCDcn03uEEEK4pYPZ6+yvs3IUd4yIcWE0lxmNfQDIvRU8EyAjN8dl6wa0FLlfUIjm01y/T5L0CyGEcDtaa7w8MvHKB88i+D4v0NUh2RkMnTh/wbpYk6cneFZ87+KImpePjw9nz56VxF+IZqC15uzZs/j4+DS5LZneI4QQwu2Ulh6jo89Fer4PvVbAV50uwEcfwb33ujo0AMrKbwCOAnB9x7OuDaaZBQcHc/LkSXJzc10dyjWvtLS0WZI9cW3z8fEhODi44YoNkKRfCCGE2zl/3rooV9VKvH0uXLAOq7cR/n6RVCX9/TqWudUCXV5eXoSGhro6DLdgsViIjo52dRjCTcj0HiGEEG7n+MkNqArwdcylXbgSb019ew/DOxfiJsLS1XApfpSrQxJCuDlJ+oUQQrid4z+up+P3YCi1FQQHw403ujQmR507h3EpADwvWLe9fvkZj7Iy1wYlhHBrLk36lVJjlVKHlFLZSql5TvZ3UEqttO3/VikV4rDvD7byQ0qpOxpqUykVamvjiK1N74b6sO3vpZQqUkr9vvnfASGEEM2toqIUv04n6JLpUDhsmMviccZo7IP2hNLul8t8Tp1yXUBCCLfnsqRfKWUA3gTGARHAA0qpiBrVHgbOaa37Aq8BL9mOjQDuBwYCY4G3lFKGBtp8CXhNa90POGdru84+HLwGfNE8Zy2EEKKlFRWl42nQ9vn8QJua2gPg42Od814SdLnMePq0i6IRQrQHrhzpHwJka62Paa0vAiuAu2vUuRt43/Z6FXCbUkrZyldorcu01t8D2bb2nLZpO2a0rQ1sbU5qoA+UUpOAY8CBZjxvIYQQLaigYDtA9aS/jY30e3r6UljcgVLHpF9G+oUQLciVSf+NwAmH7ZO2Mqd1tNblQAHQtZ5j6yrvCuTb2qjZl9M+lFKdgLnAM1d9hkIIIVpdVvY/8CyCTj9Yt7XBADFtY2EuRyUXA6uN9Mv0HiFES3Ll88ucLT9YcyWPuurUVe7sQ0x99evr4xms04GKVAMrJSqlZgIzAQIDA7FYLPXWF+1LUVGRXBOiGrkmWtaFoh30OHx5u+imm9izc6frAqpDeXk3SoJO2re9jx+X60JUI38rhDNXe124Muk/CfR02A4Gag5zVNU5qZTyBPyAvAaOdVZ+BvBXSnnaRvMd69fVx1BgqlLqZcAfqFRKlWqt36h5IlrrvwB/AQgLC9MJCQmNfQ9EO2CxWJBrQjiSa6LlXLz4M9u2Xag2tcd3zJg2+X5nZt3Ghfy99m3j6Z/aZJzCdeRvhXDmaq8LV07v2QX0sz1VxxvrjblratRZA8ywvZ4KfK2t63qvAe63PXknFOgH7KyrTdsxG21tYGvzs/r60FqP1FqHaK1DgBTgRWcJvxBCiLajalGuSi8ouM5W2Mbm81cJ8B9QfU7/zz9BRYXrAhJCuDWXjfRrrcuVUrOBLwED8J7W+oBS6llgt9Z6DfA3YKlSKhvr6Pv9tmMPKKU+AjKBcmCW1roCwFmbti7nAiuUUs8Daba2qasPIYQQ156fczcBcOJ+WKTgoUkWbrmlba5o6uNzExUd4WIAeJ8Dz4oKOHkSevd2dWhCCDfk0jXJtdbrgHU1yuY7vC4FptVx7AvAC41p01Z+DOvTfWqW19mHQ50F9e0XQgjRNhw++gUBna2vs3I8uOWOtrvSrdF4E2B9bKdXAZz09qFnXp4k/UKIFiEr8gohhHALWldg9L58B+/3+T1cGE3DOnS4kfIKxf7nYNM/YfDA3hDdNr+VEEJc+yTpF0II4RYuXMjCx9v6ZOYzZ6DL9Te7OKL6KWWgsNifSwGgvcDP+ydXhySEcGMund4jhBBCNJfz53cAEPpXKDsLv+0fDpcugZeXiyOrmzL0wrpIPHTzLXJtMEIItyYj/UIIIdzC0R/+hcdF6LkS7vgnPL54IRQWujqset3QLerya78KLl4qr6e2EEJcPUn6hRBCuIXcM9/Q+Qh4VOXN/fvDddfVe4yr3dAtCjQYj8OYUjj01B9B11ynUgghmk6m9wghhLjmlZcX4t/pF/z2OxS20efzO6p6gk/sb2BoKcDL8Mc5cP31Lo1LCOF+ZKRfCCHENa+wcBceHtDFMemPi3NZPI3l43MTKOtjO+2OHnVZPEII9yVJvxBCiGte7plvQFN9pH/ECJfF01hGYygAJTc6FErSL4RoAZL0CyGEuOZlHl6N8SR451u3dUAADBjg2qAawdPTjwslHWSkXwjR4iTpF0IIcU3TugIfz8xqo/xq+HDwuDb+F1d6qRulkvQLIVrYtfEXUQghhKhDUdF3+HQox+87h8JrYGpPlc6d+8tIvxCixUnSL4QQ4pqWn78ZqDGf/xq4ibdKaPDgakl/+eEjrgtGCOG2JOkXQghxTcs88hle+dDxhHVbe3lBbKxrg7oCnTv3paw7VBqs256//AzFxa4NSgjhdiTpF0IIcc3SWlNWsoPyjpC+CF7v1QH129+C0ejq0BrNaLwJbYCy7g6Fx465LB4hhHuSpF8IIcQ1q6zsOF06XUB7w6lwSOkzFP73f10d1hXx8bEu0CXz+oUQLUmSfiGEENesgoKt9tcHDsDoERNcGM3V6dChJxWVisL+cD4cPunqB4GBrg5LCOFmJOkXQghxzTr2wxf21/sPwJxfP+jCaK6Oh4cnhcVd+P5R2PsWzB1ggOHDXR2WEMLNNJj0K6U6KqX+Syn1rm27n1LqzpYPTQghhKjf6Z++wqsAPAth/wlv+ocENXxQG6RVT/vrwI7nXRiJEMJdNWakfwlQBtxi2z4JPN9iEQkhhBCNcOlSHv6df+bGjyHubkj91gM+/tjVYV2VHoEm++sb/MqpqKh0YTRCCHfUmKS/j9b6ZeASgNa6BFAtGpUQQgjRgPz8b/DwAP90UBpMF0qhosLVYV2VG3sMsr++oTt8vTPDhdEIIdxRY5L+i0opI6ABlFJ9sI78CyGEEC5z9Ic1eJRClyyHwoQEV4XTJFVP8On2Ndy/H7o+/ij89JOLoxJCuBPPRtT5b+CfQE+l1DIgDkhqyaCEEEKIhvx46h/0PQIe5baCiAjo1s2lMV0to9Ga9Af/H0QcBNgNR45Ajx4ujUsI4T4aHOnXWn8FTMGa6C8HYrXWlpYNSwghhKjbxYu/0LVLLv7pDoXX6Cg/XB7pL73BoVAW6BJCNKM6R/qVUjE1ik7b/ttLKdVLa7235cISQggh6pafbwGonvTfeqtLYmkOXl4BFJd6UnJD+eVCSfqFEM2ovuk9r9r+6wPEAvuw3sAbBXwLjGjZ0IQQQgjnsr//DI8S8D3oUBgf77J4mkNhcQClQbmXCyTpF0I0ozqn92itb9Va3wr8AMRorWO11oOBaCC7tQIUQgghavr5l3/id8BhPv/AgdfsfP4qihspkek9QogW0pin9wzQWn9XtaG13g+YWy4kIYQQom5lZacI8M3DP82h8Bqe2lPF37cPpQ5ri1UcPeq6YIQQbqcxT+/JUkr9FfgQ62M7HwSy6j9ECCGEaBlV8/kD9jgUXsM38Vbx9gqmLBAqDeBRAYaff4biYujY0dWhCSHcQGNG+pOBA8B/Ak8AmbYyIYQQotVlHfkEKqGoL+R1BG0wwG23uTqsZhCENkBZd4einBxXBSOEcDONeWRnqdb6Na31ZNvPa1rr0tYITgghhHCktaag4Oz21+sAACAASURBVJ/gAYd/D6OHdEQdPgz+/q4OrRlYn8lf4jDFR+b1CyGaS4PTe5RS32NbjdeR1vqmFolICCGEqENxcSZ+nS4AUFQEJV7D4SZ3+d9RDyq1PKtfCNEyGjOnP9bhtQ8wDbiuZcIRQggh6vbzz5/bX+/eDUnTfu3CaJqbN0XFncm7uYgKH3h3ZyeeHTPG1UEJIdxEY6b3nHX4+VFrnQKMboXYhBBCiGrSM5faX+/cp/hd0jQXRtP8KgnizEg4+jh80eciRES4OiQhhJtozPQex5V5PbCO/Pu2WERCCCGEE+XlRfj6ZBH0KVy3B6JP/f/t3Xl81NW9//HXZzLZVwIBQgDZwg6ConUXsW7VqlXb2va2dLX3Vu12++tyb1ut2sXaautSl9re2qrFuhYVKi4EFxZBoWyyhEUIO4RA9pnMnN8fM5BJmCQDJPmS5P18PObBfD9zzvl+JhzCJ9+c75k8UnbvgqIir1NrN73zxxGqXwdA/+wgoVCYpKRE9twQEWldIt9Jfhvz+CVwCvCpjkxKRESkuYqKN0j2Owregj7vwM837Yc5c7xOq10V9Zt4+HlhX3hnqXbIFpH2kUjR/5VDn87rnLvIOXcDEGiPk5vZpWa21sxKzeyHcV5PNbOnoq8vMrMhMa/9KBpfa2aXtDWmmQ2NjrE+OmZKa+cws4vM7D0zWxH9U0uaREQ8tG7DP0iqhdyVMcGLL/Ysn46QkTH88PMBA2D2Wws8zEZEupNEiv5nEowdFTNLAh4ALgPGAp8xs+aLF78C7HfOjQDuAe6M9h0LXA+MAy4F/mBmSW2MeSdwj3OuGNgfHbvFcwB7gY875yYA04HGhaQiItKpnHPs2fMiee+DLxgNjh/frZb2AKSlDQVg8OPw1RnwzZ9+Fxao8BeR49di0W9mo83sWiDXzK6JeXyRyC4+x+t0oNQ5t9E5FwBmAFc1a3MV8Fj0+TPAhWZm0fgM51y9c24TUBodL+6Y0T7TaPxh5THg6tbO4Zxb6pzbHo2vAtLMLLUd3reIiByl2tp15GYdpM/bMcGPfcyzfDpKenpk+9GsUhi4FgqrKmHDBo+zEpHuoLUbeUcBVwB5wMdj4pXA19rh3EXA1pjjMuAjLbVxzjWY2QGgdzS+sFnfQ5d74o3ZG6hwzjXEad/SOfbGjHMtsNQ5V3+U71FERNrB9h3PYiHoMz8m+IlPeJZPR0lJ6U+wIYm6wlBjUHv1i0g7aLHod879E/inmZ3pnOuI3y1avNMm2KaleLzfXLTWvs08zGwckSU/LS4cNbMbgBsACgoKKCkpaamp9EBVVVWaE9KE5sTR2773fsaUQfLByHFdfj4La2qgG30dq6qqmDfvTQ5U5VBbuP9wfOf8+azpRu9TEqfvFRLPsc6LFot+M/u+c+7XwGfN7DPNX3fOffOoz9ZUGTAo5nggsL2FNmVm5gdygfI2+saL7wXyzMwfvdof276lc2BmA4HngS8451r8/apz7hHgEYBRo0a5qVOntvXepQcpKSlBc0JiaU4cnbq6MhYu3EHBjMZY2qc+xdRp3Wt/hUPzYtarxdQNePdwvH9NDf01X3okfa+QeI51XrR2I++hfcKWAO/FeRyvxUBxdFedFCI35s5s1mYmkZtoAa4D3nDOuWj8+ujOO0OBYuDdlsaM9pkbHYPomP9s7Rxmlge8DPzIOfdOO7xfERE5Brt2PwuOpuv5u+HSnkMGFU6itrDxOFSqNf0icvxaW97zYvTPx1pqczyi6+dvAl4BkoA/O+dWmdltwBLn3EzgT8DfzKyUyNX366N9V5nZP4DVQANwo3MuBBBvzOgpfwDMMLM7gKXRsWnpHMBNwAjgJ2b2k2jsYufc7o74eoiISHzvLX+IwTsgbVfk2OXmYt346mde7ijK+4HzgYUhacd2qKuDtPbYQ0NEeqrWlve8yJFr7A9zzl15vCd3zs0CZjWL/TTmeR0Q9zPWnXM/B36eyJjR+EYiu/s0j8c9h3PuDuCONt+EiIh0mEBgL3kZa8jYCqE0SKoDu/xySEnxOrUOk5Y2FOeHur6QvjMa3LwZRo/2Mi0R6eJa273nN52WhYiISBx79jyPzwe7p0FJLlS+9Wl+8O1ve51Whzq0bWddYUzRv3Gjin4ROS6tLe+Zd+h5dH38aCJX/tdG98AXERHpUO8tf5ic9MjzkiVw76MPQZ88b5PqYIc+oKt2APRaGg1q204ROU6tXekHwMwuBx4CNhDZ3nKomX3dOTe7o5MTEZGeKxjcR0by+4ePF2/uT/9uXvAD+P051NSlUVdY1xhU0S8ix6nNoh/4LXCBc64UwMyGE9nVRkW/iIh0mLJtj+P3R24t++ADmHLGlz3OqPMEQ/3Ze85magbC7S/4eerWW71OSUS6uESK/t2HCv6ojYB2sBERkQ713vLfMHwTFL0Abwfg0Re/73VKnSY3dxQ1mZupOQkq3m0glJlFktdJiUiX1to+/YesMrNZZvZFM5sOvAgsNrNrzOyaDs5PRER6oOrq1fTJKaP/v6BvCfx4PuT+sudsqDaw/6TDzwsL4L3V2qtfRI5PIkV/GrALOB+YCuwB8oGPA1d0WGYiItJjfbD2AXx1UDAvJvjJuDs4d0sZGcMOPy8shJfnzfcwGxHpDtpc3uOc+1JnJCIiIgLgXIjtO/7CiIXgr43GRo7ETjvN28Q6UVpaTNHfHxYufAumXwPZ2R5mJSJdWSK79wwFbgaGxLZvjw/nEhERaW7//tfIyayh8OXGmH3+82DmXVKd7NBe/SPug3Negm8G/gSXXwif+YzHmYlIV5XIjbwvAH8ispY/3LHpiIhIT/fOu7fTb0fjHvXO58O+8AVvk+pkqamDCIchnAz+Q5+Mo207ReQ4JFL01znn7u3wTEREpMerq/uQjJR3KHqhMWZXXw2DB3uXlAd8vmSq6/KoK6xoDKroF5HjkEjR/3szuwWYA9QfCjrn3m+5i4iIyNFbuvwOUmug/5yY4M03e5aPl3z+wdSq6BeRdpJI0T8B+DwwjcblPS56LCIi0i4aGirZX/4XRs6GpOiH0brx47Hzz/c2MY8M6HcydQOWHz4Ob9iQ0JZ7IiLxJFL0fwIY5pwLtNlSRETkGH245Y9kpDQ0Xdpz88096gbeWPl5o9jcD5yBObCyMggEICXF69REpAtK5KLBv4G8jk5ERER6LufCLF91G0n1UDEJGgzCeXnwuc95nZpn0tKG4ZKhvm/k2JyDDz/0NikR6bISKfr7AWvM7BUzmxl9/LOjExMRkZ5j9+7n6JV9gFA6LPlPmHbGZHx/+QtkZnqdmmcObdtZWxgT1Lp+ETlGiSzvuSXmuQHnANooWERE2oVzYd5edBO9cyLHL82Cn/z2z3DmJG8T81ha2lAA6gqBZdGgin4ROUZtXul3zs0DDgCXA38BLgQe6ti0RESkp9i9+1l65+wCoLYWXvtgHBf18IIfIDm5gEDQT+2AmKCKfhE5Ri1e6TezkcD1RK7q7wOeAsw5d0En5SYiIt1cOBzk7UVfZ8gOqC+Av8+BP9zxV6/TOiGYGfXBvtQVbgegziCtrs7jrESkq2rtSv8aIlf1P+6cO8c5dx8Q6py0RESkJ9iw8QH6pO9nzB1w+mfh5H/15ZKTi71O64SRmVXMvjNh/tPwsWnAffd5nZKIdFGtFf3XAjuBuWb2RzO7kMiafhERkeMWDJazZt33GfgMZJSBvx6+Xl4LwaDXqZ0wBvY/mVAGBPpAvwJY9sEmr1MSkS6qxaLfOfe8c+7TwGigBPgO0M/MHjSzizspPxER6abmvv1VelcHOelvjbGk22+H/HzvkjrBZGQMP/x8wAB4seQdD7MRka4skRt5q51zTzjnrgAGEtlD4IcdnpmIiHRb+/e/jT/8PCPvAX9tJBYaMwa+8Q1vEzvBpKUNO/y8sBDeXb7Uw2xEpCs7qk/0ds6VO+ceds5N66iERESkewuFqnnjzcspfAP6LGiMJz38MCQne5fYCSg9PbJtZ1ItjA3AsAVvwKpVHmclIl1RIvv0i4iItJvZr3+aouqDFP8uJnjjjXDuuZ7ldKI6tFf/SY/B4KfgYyyDZ5+FceM8zkxEupqjutIvIiJyPNaW/pEcXmbs7eCvicSCJw2BX/7S07xOVElJGdTUZVI7MCa4fr1n+YhI16WiX0REOkVFxbts2nADI++GnDWRWMiXRPIzT0N2trfJncCcDaS2KCZQWupZLiLSdanoFxGRDldbu5m5b51LXjn0easxnvS7e2DKFO8S6wL69ZnQ5Eq/U9EvIsdARb+IiHSo+vptvPTKOHplB6grhHd+DnuTfYS/+EW46Sav0zvh9c4fS31vCKVEjm3vXqio8DYpEelyVPSLiEiHqaoqZeasYgryIgv4AwH47uxs/O+twPfww2D6zMe2pKcXgw8t8RGR46KiX0REOsTWbXN4Y84ohu6LbMTf0AC33ZvOM38qJW/CWEhJ8TjDriE9fQTQrOjXzbwicpS0ZaeIiLSrcDjI0y9OZ/DevzPtl5C+DRb9Fv53dhZ//cN6hg7s63WKXUpGRjGgK/0icnxU9IuISLvZum0+c1+/jLMXHGTInyEpEImP+K6P55Ytpd/g/t4m2AX5/fnU1qdQWxRoDKroF5GjpKJfRESO2959K/j7M1cybfNmPvV/kLar8bV6n48+v/4dvlHDvUuwCzMz6oL9qS3a0hjU8h4ROUoq+kVE5JiEw0Fmzf0tO5fcybQPKvjaLEjb07TN3kEn0WfWSzB+vDdJdhNZWaOpHbiFur6wJgyTzjnH65REpIvx9EZeM7vUzNaaWamZ/TDO66lm9lT09UVmNiTmtR9F42vN7JK2xjSzodEx1kfHTDnWc4iI9ETOOTZvXco9f57Or+7ry0uzUjj99h/x1R9WMOyxpgV/RWoytXfeRZ/SdSr428HQQadT3xcWPgUPXA0rb9BWpyJydDy70m9mScADwEVAGbDYzGY651bHNPsKsN85N8LMrgfuBD5tZmOB64FxwADgNTMbGe3T0ph3Avc452aY2UPRsR882nM450Id91UREfFWMFhP6YcfsPbfC9izbgHBsmX0Kd/KwAOVZA4Ksf8zMHlYY/tAn6b996f5Cd9wM71vuwVyczs3+W4sK3Pk4ecDB8LLJQsYP2KwhxmJSFfj5fKe04FS59xGADObAVwFxBb9VwG3Rp8/A9xvZhaNz3DO1QObzKw0Oh7xxjSzD4BpwGejbR6LjvvgMZxjQWtvqmHHBp6/qO2dKSqz/CyemEvsDtUDdtYxemN1m30B9vZKZvmYph9bP3RLDcO21ibUf1u/VNaMyGwSG1NaTdHO+piIa7H/xsHpbByc3iQ2aXUlBeWBFno09cHwTMoKU5u8/48sPUhOVUNC/ZeNzWRP76bb/Z2/sILUQEs5N40vnJzNweym0//iN/e32ifWvI/kUp/a+Iuy1PowUxceiNs2HA4zy9f0l2qvnJ8HNG5RnlPZwFnvVbZ4vlh1KT5KzsppEuu7N8gpK1qbO43v5WB2EvOnNJ07g7bVM35dYnNnd28/701sOneKN9VRvKm+hR5NbR2QwsrR0bljgHOMX1PL4G2JzZ31w1JZPzS1SWzKv2vouzfYYp/YebZydDpbiprOnXMWVZFbGWq5U4zFJ6ezuyC5Seyj8ypJCzhamzOHvHV6JuVZMHNe0uHYFXMOttnvkNfOz2wy99Lqwnz0zapW+xhgPge+MG9cnoI/KYQ/KUyyP0ThrjBTnwmREoLUIKRWwagDMCbOl7NyJLz3maax0jFQ6IPVAwcw9Jaf0+s/PqutODtAenrx4edFRfDSsveAT3uXkIh0OV4W/UXA1pjjMuAjLbVxzjWY2QGgdzS+sFnfQ5uZxRuzN1DhnGuI0/5YztGiXpUhPvHanraaUVkMg7+1o0mscCaMeq3NrgDsPRNGfKNpbMhfYMjrifXffgWsu6BpbOR7MOCNxPpvng6bm/Uf/yr0afVHophzTSpnR7P+p/4dshO8N+2kj5az76ymsTPvh9TyxPr3u34/VaOaxqbellhfgF43VRDo3XicshfOujPx/hm3Nv00zay1MOXuxPrW94a8/2n6A0rv+TDhgcT6VxZD3+817V84E0a9mVj/vWfCoG82/UIP2QxD3kqs//YrYPjUprGRS2DA24n1Lx5eyeZm/cfPSXzuDTq9ih3N+p/6ZOJzr+9lVUfOvXsTn3s5n68+cu7dmlhfgLTvVh85936VWF/nA/ezpj+cZfugaE1i/dPLoKoS1mw0Vn+YTzjlMv57+q0k/XdvJuTlJfgO5Fgc2qsfIkX/2mdXepiNiHRFXhb98a6jNb9M1lKbluLx7lForf2xnOMIZnYDcAPAqfEaiIicACwMFgLX+EsGwi1clG9IgZpMOJhm7M5IpSyvF/v6DMMqbmTKyYVMOTnSbt+urZTs2hp/EDkqVVVVlJSUtPCqo7rWT35lAwMWwHeXvUPpTTdRdt11nZmidLLW54T0VMc6L7ws+suAQTHHA4HtLbQpMzM/kAuUt9E3XnwvkGdm/ujV/tj2x3KOJpxzjwCPAIzK8rmSk9PjNWviQLaPt97MjPaPxAYfDLD9rMSWSOzu4+fdeRlNYiPD9Yw8q+UlErE/sWzJSGb5vKZ5TsisZfDZLS+RiLUunMr6eU2XWGzvV0O/cxpocV1EjBUH09gyL1ptuEj78hFV5PRL7JaJxdsy2F3SdIlF1eRKUlpc3tPU/LVZHNiR1CQWODfe8pz47+WNJdlHLO+pPC/+8pxwOIyv2fKe2SWNa52dM3KrGth7futLNA6pT/Ext6TpWum+e4OUnd/W0rDIezmYncSCkqbLewZW1bNx6pHLe1ycL+ee3n7en5vVJDbc1TF8al3byQNlWamsnts4dx0wLruWogsSm/sbSaN0bjoW83ezaUAVBRckNndXV2aybW6zuTvmINmDElxatj2LPXObVsp7Tq8gNZjY3Fu0LofyDx3JyZH56xwcvHB/AguDIt5akkd9sg+Lrg1LCYTZ/dGKNnpBOOwD81MydzCkZJHkyyQ5OZPMcAprbq4iJbsf/QeNZvgpZzBw/Bj8GRnkADlEvvmdkmB+cuxKSkqYOnVqi68//UJfirZuZ+TvYCQH4f33GXH//Z2XoHS6tuaE9EzHOi+8LPoXA8VmNhTYRuSm2c82azMTmE5kHf11wBvOOWdmM4EnzexuIjfZFgPvEqlqjhgz2mdudIwZ0TH/eYznaF1RMVPfWZvQF+CqhFq1zMvVnBd63P+jx9n/4njBW4+zfwvi/eM83q2gvJ4704+zv5euOM7+Hz/O/ldyfP+RH+/f/TXH2V+8k5ExitqBMdee1q3zLhkR6TTOOWpqqinft4v9e/dQumIRdTU7j3ocz4r+6Pr5m4BXgCTgz865VWZ2G7DEOTcT+BPwt+hNtOVEinii7f5B5KbfBuDGQ7vqxBszesofADPM7A5gaXRsjuUcIiIinW3EkDPY4Z9LKBWS6oF9+2DvXujTp82+InJsampq2L17O+W7tlOxewdV+3dRe2AfVXVV7M5Jor7+IIFAFcFgFfm79jCwbC/+YD3+hnqSG4KkNDSQHGogJRQmJRQipSFMStix8yRj5TTD7w+T7Hf4kxwnv+oYWQJJIUhqAF8D+IKRR0YDZLrIEpSJwNZjWNnn6YdzOedmAbOaxX4a87wO+GQLfX8O/DyRMaPxjTTu8BMbP+pziIiIdLbcnDHs8EHNIMgujQbXrlXRLz1WQ0OArTu38GHZZnbu3UbFzq2kbColXLkPag5idZUk11eTXF9LSrCe1IYAqcEgqaEQodQw71yWREpyiNTkMKkpYYatCXP6DEgORn6w9gcgvQ6GhGFIs3MfGA9L72saK3oGip9NLPf+mZA8rmmsL5AbdyH5kXyJrUhtQp/IKyIi0gUc2sGnZnCzov/ss71LSuQoBYO1lG5czZbV/2ZjzW7KD+ykqmY3wcB+kqr3MXl5GemBOtKDATKCDaQHQ2QEw6QFHWkBR0oAUuvAF4Z3ZzSO2z8LRtbDKb9ILI+6vmA/bhrrswPyyhLr74tzC2VLGyMk2t8lHxlrMn4ShP0QTobKxG5ja0JFv4iISBdwqOivjd1iYk2C+62KtBPnHAer9rB86ULWbV/PjvIPqaraQSCwBxfcx9RF28gM1JMdCJIZCJFZHya9HtJqIbUWkqtgTC2MAd55HoIxm6Gn7IGzEiza4cjdyEKpLbdtLinO3hMt9Xc+CKVAKDnyaPBDeQasXOsj0GAEG3wEG3wUVUHtySGCST4CST4CSUmRh99PMCmFhuRkgv5UQsnpHOydx5Z3h5DszyQ9LZuMtBw2nwH5U3ykZeeR2asPmTm9ye3Tl159+5Odl0dSSjI+Yu4Ls7Y3Tomlol9ERKQLSE7uQ219CjWDYy4Rrk1s4wiRlgSDdawqXc6y1Ysp27WG/OXvk1m+i6zaA+TU1pBTHyS3roHsWkdGDaRVQdZBOLce0h+C4WNjBnNw3s/Bl+AdkP4qCMZ8xEcoo+W28VgVVPmhtg7qA+CvgKEDIZAM9X4j4Dfqk33U+X3UJyVR7/dTn5xCfXIKdWkZLHqzGH9yNqkpeWSk96JXdhab7obsggH06j+IfoOH0m/QIPzpafhpWjTnADcdXbqeU9EvIiLSBZgZtYEB1Aza3BjUlX5pwc4923h3wRx2r5xPQ9ka0su3kVu1n/zaWvJrg+RVh9n8aWiIftjgkN6Rx+m/gIxtiZ0juflO1wYNWZAS/wPqD3MGgXTYtgG2VSVRU++jLuAnUO8nZXKAmpRkapNTqE9Npz4tk2B6Di47n6TcvqT1GUB2/5PoN2Qk4yafRu/8pltY873Ecocjt4zs7lT0i4iIdBH5vSZR4998+Nht2IAFApByFIuJpcurrjnIWwv/xQer32Rn9TrCDZtJT95Hr+wqLnk5wKCV0GcvXNnGx7dUXwg7msUacohset6GUBLs3QIrs33U1PmprkumLphG1aQgFk6hNi2LQFYvwrkFJPcZSHbRCPqNnMjwCZPJK+pPqs8XfwvhH8cLSntQ0S8iItJFDBn4ETZvfoG6fpC2CywUgo0bYfRor1OTduRcmOVrFjL/9YdZ8/T3yN+9mcIDB+l/oIHe+x2Z++GSfTD6P2Dzl5v27fMPyP4wsfOklkMoBAcORh/VPpL7GzlmHExLoTItncrMXAI5BVjfwWQPGUvRuNMYc/oZpPfJ50KzIz9356fxziQnAhX9IiIiXURW1hgAdnwMdn4I63p9lul9+3qclRyr3Xs38dLcJyjdXEIouI68jL2cu7KWiSUwbjucfOQHpTeRtuvIWF2/xuchP1TnwMEsoyIjif0ZaVRkZFOV1w8Kh5N22gVMGHE1I06KuZv2G+3y1uQEpKJfRESki8jIiFzR//ALsGsXPPAMTM/P9zgraUvFwZ08+9yD1C55mf67ShlaUUlReZhwEQz7LgwraGzbvxRyNrQ9pjOo3ANvLEijojqbulBf/CnDGDV6MBP/MJrTLruSrJMGkWNGDjCww96ddBUq+kVERLqItLRhNIQMf5KjXz/YuXO11ylJM2U7S3nxhXvxLX2ZEXu2MWJvPX22wJe3gLmmbWviXKmvjbnoHkiDPfnGzuxUdvbqRXXRCLInncukSz5B4aSTKU5O5raOfTvSjajoFxER6SJ8vmQOVPeid045ANlJCS7elg4RDgeYXfIYi//9F1KTVjG0/0FG7XL857eOLPDjSd8O61bClgOplNf0JmzDGZQxnop7R/ORaz/J/LVrmHrBBRS1PZRIm1T0i4iIdCGWNByIFP2FOQfBRavLo/ygHjl6gUAlTz57F3XzHmP87m0U7wyRfStMndzYpjotfsEfNtjXx9ian8a2gkLCY85i8ie/zA3TzoOkpCM7AKzT5zBI+1HRLyIi0oUMG3QmFeWLKf49PLwwRLhXPr51a0E39LY758K8+tbjrJ79a07ZspYxmxr4j2Xgj7nBdvtaODCh8bgmDSr6Qo352NAnhz3DJlF8zVeY8MlPUJCZSQFwSqe/ExEV/SIiIl1K/76nUFEOOauhaA9AReRDulT0t4v6+v088dyPSZ3/JGduquDc9+Hi5pvZx3ob/lWewrb9J9G74CK+dN13yNs+lLykJAZ0WtYibVPRLyIi0oUc2sGnZjBkr4sG166F887zLqkurqZ2Hw8+8R1c/T+ZOPIgV98D+Ytbbl+ea6wa1JuqUy7mvB/9lF+NHtV5yYocIxX9IiIiXUh6eqTArBkcE1ytXXyOVjhcz5P//AmVpY8wfNIBTh3R+Nr+yU2L/voUWFmUzZ7TLmHqj28hf/w4ztU9FNLFqOgXERHpQpKT86isTqd6SMzC8hUrvEuoiynd/CYvPvlVLlmznmvmQkMWvP9g0zaLT4L8TOP90cWM/M5tDPrkJzg1JcWbhEXaiYp+ERGRLiYYHkz1sJidXVau9C6ZLsC5EE+/fBv27l2cu6iWb80FX7Dx9YzNsCwIi9YUkNXrC9xy8630+lEmF+pqvnQjKvpFRES6mKLC06nNWEsoFZLqiXw87549UFDQZt+eJBSq5q/PfIOhyx7nkpfC5Mb52ag2BRbPvIjP/N9z3JCb1flJinQSFf0iIiJdTFH/KZRW/Y3qIZBz6IL/ihUwbZqXaZ0wQqE6HnlyOiev+wfXPgM5a45ss65vJv5v38Kwb93IjRkZnZ+kSCdT0S8iItLFHNrBp3poTNG/cmWPL/rD4SDPzf5/uPr7uPzlMIOfavp6gw/eGzeWUx76IyPPOsubJEU84vM6ARERETk6mZmRT4OqHhoT7OE38y5a+jhPPp1Dn8zfU5AfZveFja8FkuC9Cy/Cv6WMjyxfRbIKfumBdKVfRESki0lJ6U91bRrVw+oag+vWtdyhG6ut3caf/u8cxo/ZzMB+jfEtvaF+RDI5xZcw4dGHOXWAPipLejZd6RcREelizIxAaCiVX3ewqwAAFglJREFUo2HlbfCpc5LgjTe8TqtTOed4bva3eP+hgXzpzs30ey0Sr6mBR2eksmrnI5y9rp4Js14EFfwiutIvIiLSFQ0acDZVBz9g77mQuj7EngPVFOTneJ1Wp6ipKeOJGadxyZydDHoaLAwj7oOZAVju/ou/PnA/SUm6rikSS/8iREREuqCiwjMOPx8+DP724qseZtN55r/3EAueHMT1d+5k8FORgh8gWGt8afIMnvjNH1Twi8ShfxUiIiJdUGbmxMPPhw6FV94q8S6ZThAON/D4c1eR+9J/cf63IDvmFoaNo8eSUbqJvp/9tHcJipzgVPSLiIh0QZmZ4whHr3IP6g9u+ZuwYIG3SXWQYLCcx/4+hHNemMm4W8FfE40bVNz+C4atXgknneRpjiInOq3pFxER6YKSkjLYX5nL4D0HOPUbMC24HL72tch+/d1IVdV6Xn5+Ilf8sY6Ctxrju/Jy6ffqa+RNmeJdciJdiK70i4iIdFHON5K6AeALRgNr10Ig4GlO7Wn7jrm8/vooLrmracG/9eRT6LdpM6jgF0mYin4REZEuavTwCwllQG3/aKChAT74wNOc2sva0udYvnwaubmO7R9vjO/70lcYtGQR5OV5l5xIF6SiX0REpIvqV3AaAFUjYoLvvedNMu1o1drH+XDjtaSlRo7XToHfjO9F/d330PvPj4Jfq5NFjpaKfhERkS7q0A4+laNigkuWeJNMO1nxwf+xY+vnSUmJHO/eDb96/DS+s2wvqd/5trfJiXRhKvpFRES6qPT0YdQHk7pN0b9h8/Psf//LTPwFJFXBtm3w+2fPZ9Gz72rvfZHjpN+PiYiIdFFmPmoDg6gcubkx+O9/R27mPXSpvIvYuWsuHy66hjN+ABnbwPch/GzCebzzQonXqYl0C/qxWUREpAsbNOAcGnKhtjAaCARgxQpPczpaBw+uZOnbFzLl1kjBD5Cz2XjtO7d5mpdId+JJ0W9m+Wb2qpmtj/7Zq4V206Nt1pvZ9Jj4qWa2wsxKzexeM7PWxrWIe6Ptl5vZKa2dw8wyzOxlM1tjZqvM7Fcd+xURERE5Nv37ng103XX9gcBu5rwyhdPvcuSsicRCQMqzz8H553uam0h34tWV/h8CrzvnioHXo8dNmFk+cAvwEeB04JaYHw4eBG4AiqOPS9sY97KYtjdE+7d1jt8450YDk4Gzzeyy9nnrIiIi7Sc7+1Sgaxb9oVAtz8ycxFl/q6f3osa4u/9+uPpq7xIT6Ya8KvqvAh6LPn8MiPcv+xLgVedcuXNuP/AqcKmZFQI5zrkFzjkH/DWmf0vjXgX81UUsBPKi48Q9h3Ouxjk3F8A5FwDeBwa227sXERFpJ1lZE2kIGZWjoCEd5melwfjxXqfVJuccz750IVPm72DAi43xuu99H/+NN3qXmEg35VXR3885twMg+mffOG2KgK0xx2XRWFH0efN4a+O2Nla8+GFmlgd8nMhvDkRERE4oPl8qVXVFVEyEt1+Cm6eE4Fvf8jqtNs2b/wOKNy1gxL2Nsf0fu4K0X2tFrUhH6LDde8zsNaB/nJf+N9Eh4sRcK/F2H8vM/MDfgXudcxtbHNzsBiLLhigoKKCkpKSNdKQnqaqq0pyQJjQnJJ7jmRd+Gw1JkethI/sHeW7my+TnZLZjdu2rPvAemfvuYtyt4AtFYmUDBrLx5hsJz5vnaW4nEn2vkHiOdV50WNHvnPtoS6+Z2S4zK3TO7Ygus9kdp1kZMDXmeCBQEo0PbBbfHn3e0rhlwKA4fVo6xyGPAOudc79r6b0AOOceibZl1KhRburUqa01lx6mpKQEzQmJpTkh8RzPvNi+fS3r1r0GwKhRsHTzbm7/5pfaMbv2U1+/ndlzLuaUByHlQCR2ICOTgQvnM3DQoNY79zD6XiHxHOu88Gp5z0zg0G4804F/xmnzCnCxmfWK3lx7MfBKdNlOpZmdEd215wsx/VsadybwheguPmcAB6LjxD0HgJndAeQC+vg/ERE5oWVnn3b4+ejRMHveHA+zaZlzYZ57+RzysoOs+zbsnggNBrn/mg0q+EU6lFdF/6+Ai8xsPXBR9Bgzm2JmjwI458qB24HF0cdt0RjAfwGPAqXABmB2a+MCs4CN0fZ/BL7R2jnMbCCRZUhjgffNbJmZfbUjvhAiIiLHKzNzAoGgD18dTFwB/7VgFnz+816ndYR58/8fhfmbAKjLhY/3yyL02lw491yPMxPp/jz5RF7n3D7gwjjxJcBXY47/DPy5hXZHbE3QyrgOiLsVQLxzOOfKiL/eX0RE5ITj8yVTWTuMtORSRt8JY0MH4fHH4Xe/g969vU4PgAMHlhCsvZvkaOXx5NNw1y8WkjplnLeJifQQ+kReERGRbqB42OWE06GqOCY4f75n+cQKhWp45fVp5OyMHH/wAST1+wXnqeAX6TQq+kVERLqBwn5TATgwISb49tue5NLcrNc+zfj3Kzl9Ogx8CP74/Cge+dmPvE5LpEdR0S8iItIN5OScAcCBiTHBt97yJpkYZdueo3f1SxTfBxaGEU9ByaRPeJ2WSI+jol9ERKQbSE3tT0VVLgdi73hbsgRqaz3LKRisYMl71zPybkg+GIlV5Pch5yf/41lOIj2Vin4REZFuIjv7PIJ5UD04GggGYeFCz/J54V/XMXJRkD7vNMbynn4KsrM9y0mkp1LRLyIi0k2MHXkNABWTYoKvv+5JLtt3zKYo8DrF9zXGgl+7AaZN8yQfkZ5ORb+IiEg3kZd3PgD7T4kJvvZap+cRClUzf+G1kWU9lZHYwYJ+JN/9207PRUQiVPSLiIh0E2lpQzhYnUXFZHCHPm1m8WKoqOjUPGa9Pp1xi2vpE7NjaM5Tf4esrE7NQ0QaqegXERHpJsyMrOzzaMiJ2a8/HO7Udf3798+nV8WzjIhZ1lP/1Rvgggs6LQcROZKKfhERkW5k7MhPAbD10zDn0/D9m74Pl17aKecOh+uZM/djjLofkqsisf29C0i9R8t6RLymol9ERKQb6dXrIgB2TwP7CsxYNqfTzv3GWzfTL/8Am78AB4dF83nmH1rWI3ICUNEvIiLSjaSmDqD8YD8AkpOhKH1lp5y3qmoFBP8IQPUI+PJpxu7H/w5Tp3bK+UWkdSr6RUREuplhQz55+Plpoxt49tV3Wml9/JwL8eIrl+D3R45XroS+Y39N389d36HnFZHEqegXERHpZk4adPXh52edCc/96jZ45JEOO9/ipbczIHsHAIEAPDRzCH/46fc67HwicvRU9IuIiHQzubnnUlufjAXhqu/CE2/Mga9/HTZtavdz1dV9SPXqn3HG52DAP+HJp+Dx37/R7ucRkeOjol9ERKSb8flSSEqZhkuGmpNiXvjHP9r1PM45Xph1KRPvg9S9MPJ38LkF45g0Zmi7nkdEjp+KfhERkW5o8vivAbA7dnv8GTPa9RzrNvyRSQvX0PvdyHEYmPaHB9r1HCLSPlT0i4iIdEP5+ZcSCPrYew6Ek6PBZctg1ap2GT8Q2MPWt77BiD80xj687nqSpp7fLuOLSPtS0S8iItINJSVlEraphDJh71kxL7TTDb0zZ13DlN+F8FdHjrdmZTH0sT+1y9gi0v5U9IuIiHRTp03+bwB2fDwm+NhjUFNzXONu3PwUk2e/Td7yyHGDQf/ZsyEj47jGFZGOo6JfRESkm+rV62KqatPYPxlqiqLBAwfg738/5jEDgV1seeFzDP1zY+zf132W5HPOOb5kRaRDqegXERHppnw+PwMKvwS+Zlf777wTQqGjHs85x0szLuAjd4XwNURiq/J7ceoTf2mPdEWkA6noFxER6cbGjPoe4TBsvxyCWdHg+vXw1FNHPdbC937BuY9+QPr2yHF1EhS/9Q4kJ7feUUQ8p6JfRESkG0tPH0Ztw1mEsmDbNZFYKCkJysuPapzy/Ys4WP5jPvwc1PWNxD645U5Sxo5p54xFpCOo6BcREenmzj79lwCUXQu7z4bLJmbDTTcl3D8Q2M3cN88nNQWqRsHz/wv3X3gRU37y/Y5KWUTamYp+ERGRbi4v7zwqqifQkAOr74Dzr63gaz/9dUJ9w+EgT8+cQu/cegCqquCuVydy02tzOjJlEWlnKvpFRER6gAvP+8vh52efDRuW/g8btuyMBBoa4vZxLsyiG0cxYf1WAMJh+OVDWbz51KKOTldE2pmKfhERkR4gO/sUQnbl4eNvfTXExZ87jdCs2TBpEqxb16R9eNcO1k/tx5kPbWLcrZC7HP70hI9f3/4uWRlpnZy9iBwvv9cJiIiISOc4/+y/8tK/BpKXVUVuLtx3SRl1V15OZsjB+PFw3XVQXEzD+lWEn3+OkXUOgKQA5PwGLrn3X5w9WTfuinRFKvpFRER6CL8/l6nnzObdxeeRkuwYBKT5HISAYPDwh3Y1Lw7eHw+Lv/sEX7/6os5OWUTaiZb3iIiI9CB5eecwavQMQiHYdw4svR8qJsRvW30S3Hu5jw13zePrX/ps5yYqIu1KV/pFRER6mJMGfYqU5F7MX3QFjAyw7PeQvS6ybj/5AARzYONg+M2qYp74/RIK8nO8TllEjpOu9IuIiPRAhf0v4qrLd7On6gbWb81iU4Gx7EKYMcXPbWljqDv9Teb8bZ0KfpFuQlf6RUREeii/P5dPXvEw8LDXqYhIB9OVfhERERGRbk5Fv4iIiIhIN+dJ0W9m+Wb2qpmtj/7Zq4V206Nt1pvZ9Jj4qWa2wsxKzexeM7PWxrWIe6Ptl5vZKW2dI+b1mWa2sv2/CiIiIiIincOrK/0/BF53zhUDr0ePmzCzfOAW4CPA6cAtMT8cPAjcABRHH5e2Me5lMW1viPZv6xyY2TVAVfu8ZRERERERb3hV9F8FPBZ9/hhwdZw2lwCvOufKnXP7gVeBS82sEMhxzi1wzjngrzH9Wxr3KuCvLmIhkBcdJ+45AMwsC/gucEe7vWsREREREQ94tXtPP+fcDgDn3A4z6xunTRGwNea4LBorij5vHm9t3NbGihcHuB34LVDT1psxsxuI/AaBgoICSkpK2uoiPUhVVZXmhDShOSHxaF5Ic5oTEs+xzosOK/rN7DWgf5yX/jfRIeLEXCvxdhvLzCYBI5xz3zGzIW2MjXPuEeARgFGjRrmpU6e21UV6kJKSEjQnJJbmhMSjeSHNaU5IPMc6Lzqs6HfOfbSl18xsl5kVRq/GFwK74zQrA6bGHA8ESqLxgc3i26PPWxq3DBgUp09L5zgTONXMNhP5GvU1sxLnXGxbEREREZEuwas1/TOBQzvlTAf+GafNK8DFZtYrenPtxcAr0eU7lWZ2RnTXni/E9G9p3JnAF6K7+JwBHIiO09I5HnTODXDODQHOAdap4BcRERGRrsqrNf2/Av5hZl8BtgCfBDCzKcB/Oue+6pwrN7PbgcXRPrc558qjz/8L+AuQDsyOPlocF5gFfAwoJbJG/0sAbZxDRERERKRbsMgGONJezKwSWOt1HnJC6QPs9ToJOaFoTkg8mhfSnOaExHNoXpzknCtItJNXV/q7s7XOuSleJyEnDjNbojkhsTQnJB7NC2lOc0LiOdZ54dWafhERERER6SQq+kVEREREujkV/e3vEa8TkBOO5oQ0pzkh8WheSHOaExLPMc0L3cgrIiIiItLN6Uq/iIiIiEg3p6L/GJjZpWa21sxKzeyHcV5PNbOnoq8vMrMhnZ+ldLYE5sV5Zva+mTWY2XVe5CidK4E58V0zW21my83sdTM7yYs8pXMlMC/+08xWmNkyM3vbzMZ6kad0nrbmREy768zMRT/XSLqxBL5PfNHM9kS/Tywzs6+2NaaK/qNkZknAA8BlwFjgM3G+IX8F2O+cGwHcA9zZuVlKZ0twXmwBvgg82bnZiRcSnBNLgSnOuYnAM8CvOzdL6WwJzosnnXMTnHOTiMyJuzs5TelECc4JzCwb+CawqHMzlM6W6JwAnnLOTYo+Hm1rXBX9R+90oNQ5t9E5FwBmAFc1a3MV8Fj0+TPAhWZmnZijdL4254VzbrNzbjkQ9iJB6XSJzIm5zrma6OFCYGAn5yidL5F5cTDmMBPQzXfdWyJ1BcDtRH4IrOvM5MQTic6Jo6Ki/+gVAVtjjsuisbhtnHMNwAGgd6dkJ15JZF5Iz3K0c+IrwOwOzUhOBAnNCzO70cw2ECnyvtlJuYk32pwTZjYZGOSce6kzExPPJPr/x7XR5aHPmNmgtgZV0X/04l2xb34VJpE20r3o71yaS3hOmNl/AFOAuzo0IzkRJDQvnHMPOOeGAz8AftzhWYmXWp0TZuYjslT4vzstI/FaIt8nXgSGRJeHvkbjCpMWqeg/emVA7E9TA4HtLbUxMz+QC5R3SnbilUTmhfQsCc0JM/so8L/Alc65+k7KTbxztN8rZgBXd2hG4rW25kQ2MB4oMbPNwBnATN3M2621+X3CObcv5v+MPwKntjWoiv6jtxgoNrOhZpYCXA/MbNZmJjA9+vw64A2nD0To7hKZF9KztDknor+yf5hIwb/bgxyl8yUyL4pjDi8H1ndiftL5Wp0TzrkDzrk+zrkhzrkhRO7/udI5t8SbdKUTJPJ9ojDm8Ergg7YG9bdrij2Ac67BzG4CXgGSgD8751aZ2W3AEufcTOBPwN/MrJTIFf7rvctYOkMi88LMTgOeB3oBHzeznznnxnmYtnSgBL9X3AVkAU9H7/Xf4py70rOkpcMlOC9uiv4GKAjsp/EiknRDCc4J6UESnBPfNLMrgQYiteYX2xpXn8grIiIiItLNaXmPiIiIiEg3p6JfRERERKSbU9EvIiIiItLNqegXEREREenmVPSLiIiIiHRzKvpFRERERLo5Ff0iInJUzKy3mS2LPnaa2baY4/kddM7JZvZoK68XmNm/OuLcIiLdgT6cS0REjopzbh8wCcDMbgWqnHO/6eDT/g9wRys57TGzHWZ2tnPunQ7ORUSky9GVfhERaTdmVhX9c6qZzTOzf5jZOjP7lZl9zszeNbMVZjY82q7AzJ41s8XRx9lxxswGJjrn/h09Pj/mNwtLo68DvAB8rpPeqohIl6KiX0REOsrJwLeACcDngZHOudOBR4Gbo21+D9zjnDsNuDb6WnNTgJUxx98DbnTOTQLOBWqj8SXRYxERaUbLe0REpKMsds7tADCzDcCcaHwFcEH0+UeBsWZ2qE+OmWU75ypjxikE9sQcvwPcbWZPAM8558qi8d3AgPZ/GyIiXZ+KfhER6Sj1Mc/DMcdhGv//8QFnOudqaVktkHbowDn3KzN7GfgYsNDMPuqcWxNt09o4IiI9lpb3iIiIl+YANx06MLNJcdp8AIyIaTPcObfCOXcnkSU9o6MvjaTpMiAREYlS0S8iIl76JjDFzJab2WrgP5s3iF7Fz425YffbZrbSzP5N5Mr+7Gj8AuDlzkhaRKSrMeec1zmIiIi0ysy+A1Q651rbq/9N4Crn3P7Oy0xEpGvQlX4REekKHqTpPQJNmFkBcLcKfhGR+HSlX0RERESkm9OVfhERERGRbk5Fv4iIiIhIN6eiX0RERESkm1PRLyIiIiLSzanoFxERERHp5v4/ihOORGKI6FEAAAAASUVORK5CYII=\n", "text/plain": [ "<Figure size 864x360 with 1 Axes>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Compare FD Seismogram with analytical solution\n", "# ----------------------------------------------\n", "# Define figure size\n", "rcParams['figure.figsize'] = 12, 5\n", "plt.plot(time, seis_FD_JIT, 'b-',lw=3,label=\"FD solution (Python + JIT)\") # plot FD seismogram\n", "plt.plot(time, seis_FD_numpy, 'g-',lw=3,label=\"FD solution (Python + NumPy)\") # plot FD seismogram\n", "plt.plot(time, seis_FD_numpy_JIT, 'k-',lw=3,label=\"FD solution (Python + NumPy + JIT)\") # plot FD seismogram\n", "plt.plot(time_Cpp, seis_FD_Cpp, 'y-',lw=3,label=\"FD solution (C++)\") # plot FD seismogram\n", "Analy_seis = plt.plot(time,Gc,'r--',lw=3,label=\"Analytical solution\") # plot analytical solution\n", "plt.xlim(time[0], time[-1])\n", "plt.title('Seismogram')\n", "plt.xlabel('Time (s)')\n", "plt.ylabel('Amplitude')\n", "plt.legend()\n", "plt.grid()\n", "plt.show() " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Finally, we produce some nice bar charts to compare the performance of the different codes developed in this `Jupyter` notebook:" ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "scrolled": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAI4CAYAAAB3HEhGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3Xm4ZWdZJ+zfQ4pJCQRIASEDxRBQbCVgCSiNJkZoQCDYH1NUCBCNfB84NLQYsLtJqyh+imkRRCMgCUMgMjQBoxJRQFpBKhBDIAwhAikSksoEkSCS8PQfax2zc3Lq1K7U2ufUCfd9Xfs6e71r2M9ae9Wp/TvvWu+u7g4AAAB77hbrXQAAAMDNhYAFAAAwEQELAABgIgIWAADARAQsAACAiQhYAAAAExGwgDVXVb9RVZdV1ZfXuxZ2rqr+qKr++3rXsaSq7ldVH6uqq6vqF9a7nr1BVf1LVd1rvetYlKraUlVdVZvmWPYZVfXBmemuqvuMz/eqc3m53dlPYO8nYAG7VFWfr6qvjx/mLqmqP62q293EbR2c5PlJ7t/dd5u2UqbU3c/u7l9f7zpmvCDJ+7p73+5++fKZVfW7VfXZMYB9qqqePjNv6QPsv8ycx++uqkes6R7sgap6X1X9zGxbd9+uuy/Yze0cXlXfmjkW/1JV7xrnnVBV3xyP4dVV9ZmqekVVHTDlvqy1vfBcBm7GBCxgXo/r7tsleVCSH0jy33Z3A+NfZ++R5PLuvvQmrs8aqKp91ruGFdwjySdWmf+1JI9LcockxyT5/ar6oWXL7Deexw9IcmaSd1TVMxZQ697uojGcLT0eNzPvLd29b5I7JfmJJHdLctZGD1kAa0XAAnZLd38pyV8k+Q9JUlV3qKrXVNXFVfWl8fK/fcZ5z6iq/1NVJ1bVFUnel+FD7d3Hv5q/blzu8VX1iaq6avwr/Xcvvd7Ye/YrVXVOkq9V1aax7Zer6pyq+tr4+netqr8Y/+r+11V1x5lt/FlVfbmqvlJVH6iq75mZ97qqemVV/fm47oer6t4z87+nqs6sqivGXo8Xje23qKrjq+pzVXV5VZ1WVXfa2XGrqqOq6uyq+uq4zqPG9rtX1enj9s+vqp+dWeeEsfY3jLV9vKruW1UvrKpLq+rCqnrkzPLvq6rfqqp/HPf1nbM1zXEcXlVVZ1TV15IcMbb9xjh//7HH56qx1r+rqluM8757fO2rxvfx8fMe3xWO04rnQlX9TZIjkrxiPHfuu3zd7n5xd3+qu7/V3R9O8ndJfnCl1+nuL3f37yc5IclvL+3LCvX8/nicv1pVZ1XVw2fm7VNVLxrfz6vH+QeP836oqj4yHuuP1EzQG8/fH5uZPqGq3jA+v834fl8+HoOPjOf2S5I8fGb/XzEuP3sZ3G2r6mVV9YXxdT9YVbfd2bHele7+Znd/IslTkuzI0PO80jGa/Xd+VVVdMO7/M8Zjd2lVHTOz/B2q6pSq2jHW+t9mzqV9auiJvKyqLkjy48tea6e/b1az7Fw+vKq2V9Xzx9ourqpnzix756p61/ief2R8jQ+usu3/WFV/P+77hTUG9kXtZ1Xdp6reP77Hl1XVW3a1/8DaErCA3TJ+gHxMko+NTScnuTbJfZI8MMkjk8xexvSQJBckuUuSRyR5dK7/6/kzxg/Kpyb5pSSbk5yR5F1VdauZbRyd4QPIft197dj2/4zbu2+GXou/SPKiJPtn+N02e4/OXyQ5dKzho0neuGy3jk7yP5PcMcn5SV4y7uu+Sf46yV8mufu4j+8d1/mFJE9I8iPjvCuTvHInx+zBSU5J8stJ9kvyw0k+P84+Ncn2cRtPTPKbVXXkzOqPS/L6sbaPJfmrcf8OTPJrSf542cs9Pcmzxu1dm2T2UrpdHYefHPd93yTLP1A+f6xzc5K7ZjjWXVW3TPKuJO8Zt/vzSd5YVfebWXfF47vcaudCd/9ohsD03PHc+cxK25jZ1m0z9LSu1uOVJG8f677fTuZ/JMlhGXpz3pTkz6rqNuO854379pgkt89w3K+pIdT+eYZjf+ckv5fkz6vqzruoJRl63u6Q5OBx3Wcn+Xp3/2puuP/PXWHd303y/Ul+aKz3BUm+Ncdrrqq7r0vyzgwBb2cekuScseY3JXlzhuN/nyQ/nSEYLl1W/AcZ9vFeGf79PD3JUsD52SSPzfC7ZGuGfxOzdvX7Zl53G2s4MMmxSV5Z1/9R5pUZekPvluH9OGbFLSSpqkMy/Lv6gwzn7GFJzl7wfv56hn9vd0xy0Pg6wN6kuz08PDxWfWQIA/+S5KokX0jyh0lum+GD9jeS3HZm2aOT/O34/BlJvrhsW4cn2T4z/d+TnDYzfYskX0py+MxrP2uFen5qZvptSV41M/3zSf73TvZlvySd5A7j9OuSvHpm/mOSfGpmXz62k+2cl+TImekDknwzyaYVlv3jJCeu0H5wkuuS7DvT9ltJXjc+PyHJmTPzHje+D/uM0/uO+7LfOP2+JC+dWf7+Sf5tafk5jsMpy5Z5XZLfGJ//WoYP2fdZtszDk3w5yS1m2k5NcsKuju8KNe3qXHhfkp+Z85w9OUMwrnF6y7i/m5Ytd5ux/WFzbvfKJA8Yn386yVErLPO0JP+4rO0fkjxj5vz9sZl5JyR5w/j8WUn+Psn3rbDdG+3/WPt9xmP19aXadrEPh2cIXlfNPJ68vJZl6zw7yWd3sr1nzM5L8r1jXXedabs8Q/jYJ8PvjPvPzPu5DPfWJcnfJHn2zLxHLr1vme/3zQeXH5sVzuXDx2O1aWbZS5M8dKzvm0nuNzPvN2a3u2zfX5jkHSu0L3I/T0lyUpKD5jlnPTw81v7hfgZgXk/o7r+ebaiq701yyyQXV9VS8y2SXDiz2Ozzldw9Q2hLknT3t6rqwgx/WV5tG5fMPP/6CtO3G2vcJ0OPyZMy/IV56S/6+yf5yvh8djTDa5bWzRCAPreTuu+R4f6d2R6C6zJ8OPrSsmUPztAbs9zdk1zR3VfPtH0hw1+0lyzfr8t66FFYms5Y71Xj89lj9YUM78/+VXVZdn0cVnuvfifDh+/3jO/1Sd390nEfLuzu2ePwhdzw/dvZ8V1unnNhl6rqdzJcwnpEd/cuFl/a9hU72dbzM/Qc3D3DB+DbZzhmyc7Pjxvsx2j5MdmZ14/bfXNV7ZfkDUl+tbu/uYv19s8QFnd2vi53UXcfNOeyyVD7isdotPw8TXev9G9y/yS3yg2Pz+yxuXtufA4vuUd2/ftmXpf39b3hyfXn5eYMIWfe32E7OwcWuZ8vyNCL9Y9VdWWSl3X3a1epEVhjLhEE9sSFGf7Sun937zc+bt/d3zOzzK4+4F6U4QNFkqSGTxQH54YhZVfbWM1PJjkqyY9luFxny9JLzbHuhUl2dr/QhUkePbPf+3X3bXq4R23e7VyU5E7jpYhLDsmNA9ruOHjZtr6Z5LLMdxx2epy7++rufn533ytDT9rzxksZL0pycN3wHqabug/znAurqqr/meEy1Ed291fnWOUnMvRefHqFbT08ya8keXKSO3b3fhnC6NIxW+19vceyttlj8rUk3zEz799H0+zhvqf/2d33z3Cp32MzXFqWrP7v4LIk/7qTevbI+N4+LsMlinvqsgzn5OzxmT02F+fG5/CSeX7f7KkdGS7Nmw2fB+9k2aWaVjrmC9vPHu4f/NnuvnuGXrE/XLoPD9g7CFjATdbdF2e4F+BlVXX7GgZ+uHdV/chubOa0JD9eVUeO9/M8P8OHi7+fqMx9x+1dnuFD7W/uxrrvTnK3qvqlqrp1Ve1bVQ8Z5/1RkpdU1T2SpKo2V9VRO9nOa5I8c9zHW1TVgVX1Xd19YYb9/K0aBjf4vgz3gyy/N2p3/HRV3b+qviPDZX1vHXu89uQ4pKoeO95cX0m+mqG37rokH84QGF5QVbesqsMzfBh/802ofY/Ohap6YYYg+YjuvnwXy961qp6b5MVJXrisB27Jvhk+bO9Isqmq/keGHqwlr07y61V1aA2+b7zP6owk962qn6xhUJanZLhc893jemcneep4vG5w/01VHVFV3zv2vH41w4f0pR7LSzLcz3MjY/2vTfJ7NQycsk9V/WBV3Xq147Casb7vznDJ590y3Eu2R8Zz8bQM/3b2Hf/9PC9DT13Geb9QVQeN90QdP7PuFL9v5qnv7UlOqKrvqKrvyvUBdyVvTPJjVfXk8b2+c1Udtsj9rKonVdVSALwyQ/BeOkeAvYCABeypp2e4FOaTGf6zf2uG+5Hm0t2fznAT/B9k+Kvv4zIMCf9vE9V3SobLb7401vih3ajt6gwDaTwuw2Vun80wkl2S/H6S0zNcMnf1uN2H7GQ7/5jh5vYTM/SAvD/X/2X76Ay9SRcleUeSF3f3mXPv3Y29PsP9Jl/OcMnY0mAfN/k4jA7NMODHv2S4n+gPu/t94/v0+Ay9RpdluD/v6d39qd0tfIJz4Tcz9AR8tq7/fqcXLVvmqhpGSfx4hvvBnrTK5VV/lWEAg89kOHb/mhte1vV7GT4ovydDGHpNhvtmLs/Q8/T8DIH2BUke292Xjev99wy9HldmGPzjTTPbvFuGf0NfzXCf3/tz/Yfy30/yxKq6sqpu9D1gSf7ruF8fyXA532/npv0//5SqWrrn8vRxH76/uy+6Cdtayc9nCOUXZBhM5U0ZwmGS/EmG4/5PGQZiefuydffo982cnpuhl/fLGf49nZoh6N9Id38xw3n0/AzH/OwMXwGQLG4/fyDJh8f36PQkv9jd/3yT9xaY3NLNvwBscFX1vgwDFLx6vWuBm4uq+u0kd+vunY4mCDBLDxYAwKiqvmu83LNq+IqFYzP0LgPMxSiCAADX2zfDZYF3zzAAyssyfEUBwFxcIggAADARlwgCAABMZENfIrj//vv3li1b1rsMAADgZu6ss866rLs372q5DR2wtmzZkm3btq13GQAAwM1cVX1hnuVcIggAADARAQsAAGAiAhYAAMBEBCwAAICJCFgAAAATEbAAAAAmImABAABMRMACAACYiIAFAAAwEQELAABgIpvWu4CbmxPP/Mx6l8CC/ZdH3He9SwAAYC+lBwsAAGAiAhYAAMBEBCwAAICJCFgAAAATEbAAAAAmImABAABMRMACAACYiIAFAAAwEQELAABgIgIWAADARAQsAACAiQhYAAAAExGwAAAAJiJgAQAATETAAgAAmMjCAlZVvbaqLq2qc2fa3lJVZ4+Pz1fV2WP7lqr6+sy8P1pUXQAAAIuyaYHbfl2SVyQ5Zamhu5+y9LyqXpbkKzPLf667D1tgPQAAAAu1sIDV3R+oqi0rzauqSvLkJD+6qNcHAABYa+t1D9bDk1zS3Z+dabtnVX2sqt5fVQ/f2YpVdVxVbauqbTt27Fh8pQAAAHNar4B1dJJTZ6YvTnJIdz8wyfOSvKmqbr/Sit19Undv7e6tmzdvXoNSAQAA5rPmAauqNiX5z0nestTW3d/o7svH52cl+VyS+651bQAAAHtiPXqwfizJp7p7+1JDVW2uqn3G5/dKcmiSC9ahNgAAgJtskcO0n5rkH5Lcr6q2V9Wx46yn5oaXBybJDyc5p6r+Kclbkzy7u69YVG0AAACLsMhRBI/eSfszVmh7W5K3LaoWAACAtbBeg1wAAADc7AhYAAAAExGwAAAAJiJgAQAATETAAgAAmIiABQAAMBEBCwAAYCICFgAAwEQELAAAgIkIWAAAABMRsAAAACYiYAEAAExEwAIAAJiIgAUAADARAQsAAGAiAhYAAMBEBCwAAICJCFgAAAATEbAAAAAmImABAABMRMACAACYiIAFAAAwkYUFrKp6bVVdWlXnzrSdUFVfqqqzx8djZua9sKrOr6pPV9V/WlRdAAAAi7LIHqzXJXnUCu0ndvdh4+OMJKmq+yd5apLvGdf5w6raZ4G1AQAATG5hAau7P5DkijkXPyrJm7v7G939z0nOT/LgRdUGAACwCOtxD9Zzq+qc8RLCO45tBya5cGaZ7WMbAADAhrHWAetVSe6d5LAkFyd52dheKyzbK22gqo6rqm1VtW3Hjh2LqRIAAOAmWNOA1d2XdPd13f2tJH+S6y8D3J7k4JlFD0py0U62cVJ3b+3urZs3b15swQAAALthTQNWVR0wM/kTSZZGGDw9yVOr6tZVdc8khyb5x7WsDQAAYE9tWtSGq+rUJIcn2b+qtid5cZLDq+qwDJf/fT7JzyVJd3+iqk5L8skk1yZ5Tndft6jaAAAAFmFhAau7j16h+TWrLP+SJC9ZVD0AAACLth6jCAIAANwsCVgAAAATEbAAAAAmImABAABMRMACAACYiIAFAAAwEQELAABgIgIWAADARAQsAACAiQhYAAAAExGwAAAAJiJgAQAATETAAgAAmIiABQAAMBEBCwAAYCICFgAAwEQELAAAgIkIWAAAABMRsAAAACYiYAEAAExEwAIAAJiIgAUAADARAQsAAGAiCwtYVfXaqrq0qs6dafudqvpUVZ1TVe+oqv3G9i1V9fWqOnt8/NGi6gIAAFiURfZgvS7Jo5a1nZnkP3T39yX5TJIXzsz7XHcfNj6evcC6AAAAFmJhAau7P5DkimVt7+nua8fJDyU5aFGvDwAAsNbW8x6sZyX5i5npe1bVx6rq/VX18J2tVFXHVdW2qtq2Y8eOxVcJAAAwp3UJWFX1q0muTfLGseniJId09wOTPC/Jm6rq9iut290ndffW7t66efPmtSkYAABgDmsesKrqmCSPTfJT3d1J0t3f6O7Lx+dnJflckvuudW0AAAB7Yk0DVlU9KsmvJHl8d18z0765qvYZn98ryaFJLljL2gAAAPbUpkVtuKpOTXJ4kv2ranuSF2cYNfDWSc6sqiT50Dhi4A8n+bWqujbJdUme3d1XrLhhAACAvdRcAauq7pLkYUnunuTrSc5Nsq27v7Wzdbr76BWaX7OTZd+W5G3z1AIAALC3WjVgVdURSY5PcqckH0tyaZLbJHlCkntX1VuTvKy7v7roQgEAAPZ2u+rBekySn+3uLy6fUVWbMgxW8YjofQIAAFg9YHX3L68y79ok/3vyigAAADaouUYRrKpfrKrb1+A1VfXRqnrkoosDAADYSOYdpv1Z431Wj0yyOckzk7x0YVUBAABsQPMGrBp/PibJn3b3P820AQAAkPkD1llV9Z4MAeuvqmrfJDsdoh0AAODb0bxfNHxsksOSXNDd11TVnTNcJggAAMBo1R6sqtqSJN39re7+aHdfNU5f3t3njINeHLT4MgEAAPZ+u+rB+p2qukWSdyY5K8mODF80fJ8kRyQ5MsmLk2xfZJEAAAAbwa6+B+tJVXX/JD+V5FlJDkhyTZLzkpyR5CXd/a8LrxIAAGAD2OU9WN39ySS/uga1AAAAbGjzjiIIAADALghYAAAAExGwAAAAJjJXwBqHY//pqvof4/QhVfXgxZYGAACwsczbg/WHSX4wydHj9NVJXrmQigAAADaoXY4iOHpIdz+oqj6WJN19ZVXdaoF1AQAAbDjz9mB9s6r2SdJJUlWbk3xrYVUBAABsQPMGrJcneUeSu1TVS5J8MMlvLqwqAACADWiuSwS7+41VdVaSI5NUkid093kLrQwAAGCDmfcerCS5JMnfjevctqoe1N0fXUxZAAAAG89cAauqfj3JM5J8LuN9WOPPH93Feq9N8tgkl3b3fxjb7pTkLUm2JPl8kiePg2ZUkt9P8pgk1yR5hgAHAABsJPPeg/XkJPfu7sO7+4jxsWq4Gr0uyaOWtR2f5L3dfWiS947TSfLoJIeOj+OSvGrO2gAAAPYK8wasc5Pst7sb7+4PJLliWfNRSU4en5+c5Akz7af04ENJ9quqA3b3NQEAANbLvPdg/VaSj1XVuUm+sdTY3Y+/Ca951+6+eFz/4qq6y9h+YJILZ5bbPrZdPLtyVR2XoYcrhxxyyE14eQAAgMWYN2CdnOS3k3w8i/v+q1qhrW/U0H1SkpOSZOvWrTeaDwAAsF7mDViXdffLJ3rNS6rqgLH36oAkl47t25McPLPcQUkumug1AQAAFm7ee7DOqqrfqqofrKoHLT1u4muenuSY8fkxSd450/70Gjw0yVeWLiUEAADYCObtwXrg+POhM23zDNN+apLDk+xfVduTvDjJS5OcVlXHJvlikieNi5+RYYj28zMM0/7MOWsDAADYK8wVsLr7iJuy8e4+eiezjlxh2U7ynJvyOgAAAHuDVQNWVf10d7+hqp630vzu/r3FlAUAALDx7KoH6zvHn/uuMM8IfgAAADNWDVjd/cfj07/u7v8zO6+qHrawqgAAADageUcR/IM52wAAAL5t7eoerB9M8kNJNi+7D+v2SfZZZGEAAAAbza7uwbpVktuNy83eh/XVJE9cVFEAAAAb0a7uwXp/kvdX1eu6+wtrVBMAAMCGNO8XDd+6qk5KsmV2ne5e9YuGAQAAvp3MG7D+LMkfJXl1kusWVw4AAMDGNW/Aura7X7XQSgAAADa4eYdpf1dV/X9VdUBV3WnpsdDKAAAANph5e7COGX/+8kxbJ7nXtOUAAABsXHMFrO6+56ILAQAA2OjmClhV9fSV2rv7lGnLAQAA2LjmvUTwB2ae3ybJkUk+mkTAAgAAGM17ieDPz05X1R2SvH4hFQEAAGxQ844iuNw1SQ6dshAAAICNbt57sN6VYdTAZAhl98/w5cMAAACM5r0H63dnnl+b5AvdvX0B9QAAAGxY896D9f7Z6arap6p+qrvfuJiyAAAANp5V78GqqttX1Qur6hVV9cgaPDfJBUmevDYlAgAAbAy76sF6fZIrk/xDkp9J8stJbpXkqO4+e8G1AQAAbCi7Clj36u7vTZKqenWSy5Ic0t1XL7wyAACADWZXAeubS0+6+7qq+uc9DVdVdb8kb5lpuleS/5FkvyQ/m2TH2P6i7j5jT14LAABgLe0qYD2gqr46Pq8ktx2nK0l39+139wW7+9NJDkuGwTKSfCnJO5I8M8mJ3f27q6wOAACw11o1YHX3Pgt+/SOTfK67v1BVC34pAACAxVp1FME18NQkp85MP7eqzqmq11bVHVdaoaqOq6ptVbVtx44dKy0CAACwLtYtYFXVrZI8PsmfjU2vSnLvDJcPXpzkZSut190ndffW7t66efPmNakVAABgHuvZg/XoJB/t7kuSpLsv6e7ruvtbSf4kyYPXsTYAAIDdtp4B6+jMXB5YVQfMzPuJJOeueUUAAAB7YFejCC5EVX1Hkkck+bmZ5v+/qg5L0kk+v2weAADAXm9dAlZ3X5PkzsvanrYetQAAAExlvUcRBAAAuNkQsAAAACYiYAEAAExEwAIAAJiIgAUAADARAQsAAGAiAhYAAMBEBCwAAICJCFgAAAATEbAAAAAmImABAABMRMACAACYiIAFAAAwEQELAABgIgIWAADARAQsAACAiQhYAAAAExGwAAAAJiJgAQAATETAAgAAmIiABQAAMBEBCwAAYCKb1uuFq+rzSa5Ocl2Sa7t7a1XdKclbkmxJ8vkkT+7uK9erRgAAgN2x3j1YR3T3Yd29dZw+Psl7u/vQJO8dpwEAADaE9Q5Yyx2V5OTx+clJnrCOtQAAAOyW9QxYneQ9VXVWVR03tt21uy9OkvHnXZavVFXHVdW2qtq2Y8eONSwXAABgdet2D1aSh3X3RVV1lyRnVtWn5lmpu09KclKSbN26tRdZIAAAwO5Ytx6s7r5o/HlpknckeXCSS6rqgCQZf166XvUBAADsrnUJWFX1nVW179LzJI9Mcm6S05McMy52TJJ3rkd9AAAAN8V6XSJ41yTvqKqlGt7U3X9ZVR9JclpVHZvki0metE71AQAA7LZ1CVjdfUGSB6zQfnmSI9e+IgAAgD23tw3TDgAAsGEJWAAAABMRsAAAACYiYAEAAExEwAIAAJiIgAUAADARAQsAAGAiAhYAAMBEBCwAAICJCFgAAAATEbAAAAAmImABAABMRMACAACYiIAFAAAwEQELAABgIgIWAADARAQsAACAiQhYAAAAExGwAAAAJiJgAQAATETAAgAAmIiABQAAMJE1D1hVdXBV/W1VnVdVn6iqXxzbT6iqL1XV2ePjMWtdGwAAwJ7YtA6veW2S53f3R6tq3yRnVdWZ47wTu/t316EmAACAPbbmAau7L05y8fj86qo6L8mBa10HAADA1Nb1Hqyq2pLkgUk+PDY9t6rOqarXVtUd160wAACAm2DdAlZV3S7J25L8Und/Ncmrktw7yWEZerhetpP1jquqbVW1bceOHWtWLwAAwK6sS8CqqltmCFdv7O63J0l3X9Ld13X3t5L8SZIHr7Rud5/U3Vu7e+vmzZvXrmgAAIBdWI9RBCvJa5Kc192/N9N+wMxiP5Hk3LWuDQAAYE+sxyiCD0vytCQfr6qzx7YXJTm6qg5L0kk+n+Tn1qE2AACAm2w9RhH8YJJaYdYZa10LAADAlNZ1FEEAAICbEwELAABgIgIWAADARAQsAACAiQhYAAAAExGwAAAAJiJgAQAATETAAgAAmIiABQAAMBEBCwAAYCICFgAAwEQELAAAgIkIWAAAABMRsAAAACYiYAEAAExEwAIAAJiIgAUAADARAQsAAGAiAhYAAMBEBCwAAICJCFgAAAATEbAAAAAmImABAABMZK8LWFX1qKr6dFWdX1XHr3c9AAAA89q03gXMqqp9krwyySOSbE/ykao6vbs/ub6VAdx8nXjmZ9a7BBbsvzzivutdAsC3jb0qYCV5cJLzu/uCJKmqNyc5KomAxbc9H4Jv/nwI5ubG761vD+v1u8v5dfO3Uf9frO5e7xr+XVU9McmjuvtnxumnJXlIdz93Zpnjkhw3Tt4vyafXvFBm7Z/ksvUugpsl5xaL5PxiUZxbLIpza/3do7s372qhva0Hq1Zou0EC7O6Tkpy0NuWwK1W1rbu3rncd3Pw4t1gk5xeL4txiUZxbG8feNsjF9iQHz0wflOSidaoFAABgt+xtAesjSQ6tqntW1a2SPDXJ6etcEwAAwFz2qksEu/vaqnpukr9Ksk+S13b3J9a5LFbnck0WxbnFIjm/WBTnFovi3Nog9qpBLgAAADayve0SQQAAgA1LwAIAAJiIgAUAADARAQsAAGAiAhYAAMBEBCwAAICJCFgAAAATEbAAAAAmImABAABMRMCD0cnGAAAWnklEQVQCAACYiIAFAAAwEQELAABgIgIWAADARAQsAACAiWxa7wL2xP77799btmxZ7zIAAICbubPOOuuy7t68q+U2dMDasmVLtm3btt5lAAAAN3NV9YV5lnOJIAAAwEQELAAAgIkIWAAAABMRsAAAACYiYAEAAExEwAIAAJiIgAUAADARAQsAAGAiAhYAAMBEBCwAAICJbFrvAoA5nXDCelfAonmPAWDDW2gPVlV9vqo+XlVnV9W2se1OVXVmVX12/HnHsb2q6uVVdX5VnVNVD1pkbQAAAFNbi0sEj+juw7p76zh9fJL3dvehSd47TifJo5McOj6OS/KqNagNAABgMutxD9ZRSU4en5+c5Akz7af04ENJ9quqA9ahPgAAgJtk0QGrk7ynqs6qquPGtrt298VJMv68y9h+YJILZ9bdPrYBAABsCIse5OJh3X1RVd0lyZlV9alVlq0V2vpGCw1B7bgkOeSQQ6apEgAAYAIL7cHq7ovGn5cmeUeSBye5ZOnSv/HnpePi25McPLP6QUkuWmGbJ3X31u7eunnz5kWWDwAAsFsWFrCq6jurat+l50kemeTcJKcnOWZc7Jgk7xyfn57k6eNogg9N8pWlSwkBAAA2gkVeInjXJO+oqqXXeVN3/2VVfSTJaVV1bJIvJnnSuPwZSR6T5Pwk1yR55gJrAwAAmNzCAlZ3X5DkASu0X57kyBXaO8lzFlUPAADAoq3HMO0AAAA3SwIWAADARAQsAACAiQhYAAAAExGwAAAAJiJgAQAATETAAgAAmIiABQAAMBEBCwAAYCICFgAAwEQELAAAgIkIWAAAABMRsAAAACYiYAEAAExEwAIAAJiIgAUAADARAQsAAGAiAhYAAMBEBCwAAICJCFgAAAATEbAAAAAmImABAABMRMACAACYyKb1LgAAAHbbCSesdwUs2gZ9j/VgAQAATETAAgAAmIiABQAAMBEBCwAAYCICFgAAwEQELAAAgIkIWAAAABMRsAAAACYiYAEAAExEwAIAAJiIgAUAADARAQsAAGAiAhYAAMBEBCwAAICJLDxgVdU+VfWxqnr3OH3PqvpwVX22qt5SVbca2289Tp8/zt+y6NoAAACmtBY9WL+Y5LyZ6d9OcmJ3H5rkyiTHju3HJrmyu++T5MRxOQAAgA1joQGrqg5K8uNJXj1OV5IfTfLWcZGTkzxhfH7UOJ1x/pHj8gAAABvConuw/leSFyT51jh95yRXdfe14/T2JAeOzw9McmGSjPO/Mi5/A1V1XFVtq6ptO3bsWGTtAAAAu2VhAauqHpvk0u4+a7Z5hUV7jnnXN3Sf1N1bu3vr5s2bJ6gUAABgGpsWuO2HJXl8VT0myW2S3D5Dj9Z+VbVp7KU6KMlF4/LbkxycZHtVbUpyhyRXLLA+AACASS0sYHX3C5O8MEmq6vAk/7W7f6qq/izJE5O8OckxSd45rnL6OP0P4/y/6e4b9WABABvECSesdwWsBe8z3MB6fA/WryR5XlWdn+Eeq9eM7a9Jcuex/XlJjl+H2gAAAG6yRV4i+O+6+31J3jc+vyDJg1dY5l+TPGkt6gEAAFiE9ejBAgAAuFkSsAAAACYiYAEAAExEwAIAAJiIgAUAADARAQsAAGAiAhYAAMBEBCwAAICJCFgAAAATEbAAAAAmImABAABMRMACAACYiIAFAAAwEQELAABgIgIWAADARAQsAACAiQhYAAAAExGwAAAAJiJgAQAATETAAgAAmIiABQAAMBEBCwAAYCICFgAAwEQELAAAgIkIWAAAABMRsAAAACYiYAEAAExEwAIAAJiIgAUAADARAQsAAGAiAhYAAMBEBCwAAICJbFptZlUdlOSpSR6e5O5Jvp7k3CR/nuQvuvtbC68QAABgg9hpwKqqP01yYJJ3J/ntJJcmuU2S+yZ5VJJfrarju/sDa1EoAADA3m61HqyXdfe5K7Sfm+TtVXWrJIcspiwAAICNZ6cBayfhanb+vyU5f/KKAAAANqidDnJRVe+qqsdV1S1XmHevqvq1qnrWYssDAADYOFa7RPBnkzwvyf+qqiuS7MhwD9aWJJ9L8orufufCKwQAANggVrtE8MtJXpDkBVW1JckBGUYR/Ex3X7OrDVfVbZJ8IMmtx9d5a3e/uKrumeTNSe6U5KNJntbd/1ZVt05ySpLvT3J5kqd09+dv+q4BAACsrbm+B6u7P9/d/9DdZ88TrkbfSPKj3f2AJIcleVRVPTTDiIQndvehSa5Mcuy4/LFJruzu+yQ5cVwOAABgw1jYFw334F/GyVuOj07yo0neOrafnOQJ4/OjxumM84+sqlpUfQAAAFNbWMBKkqrap6rOzvAdWmdmuHfrqu6+dlxke4bv2sr488IkGed/JcmdV9jmcVW1raq27dixY5HlAwAA7Ja5AlZV3aqqvq+qvnf8/qu5dPd13X1YkoOSPDjJd6+02NLLrDJvdpsndffW7t66efPmeUsBAABYuF0GrKr68Qw9Ty9P8ook51fVo3fnRbr7qiTvS/LQJPtV1dLgGgcluWh8vj3JweNrbkpyhyRX7M7rAAAArKd5erBeluSI7j68u38kyREZBqFYVVVtrqr9xue3TfJjSc5L8rdJnjgudkySpaHeTx+nM87/m+6+UQ8WAADA3mq178Facml3nz8zfUGGe6p25YAkJ1fVPhmC3Gnd/e6q+mSSN1fVbyT5WJLXjMu/Jsnrq+r8DD1XT513JwAAAPYG8wSsT1TVGUlOy3BP1JOSfKSq/nOSdPfbV1qpu89J8sAV2i/IcD/W8vZ/HbcNAACwIc0TsG6T5JIkPzJO78jwJcGPyxC4VgxYAAAA3252GbC6+5lrUQgAAMBGt8uAVVV/mpWHS3/WQioCAADYoOa5RPDdM89vk+Qncv3Q6gAAAIzmuUTwbbPTVXVqkr9eWEUAAAAb1Dzfg7XcoUkOmboQAACAjW6ee7CuznAPVo0/v5zkVxZcFwAAwIYzzyWC+65FIQAAABvdTgNWVT1otRW7+6PTlwMAALBxrdaD9bLx522SbE3yTxkuE/y+JB9O8h8XWxoAAMDGstNBLrr7iO4+IskXkjyou7d29/cneWCS89eqQAAAgI1inlEEv6u7P7400d3nJjlscSUBAABsTPN80fB5VfXqJG/IMIrgTyc5b6FVAQAAbEDzBKxnJvl/k/ziOP2BJK9aWEUAAAAb1DzDtP9rVf1RkjO6+9NrUBMAAMCGtMt7sKrq8UnOTvKX4/RhVXX6ogsDAADYaOYZ5OLFSR6c5Kok6e6zk2xZYE0AAAAb0jwB69ru/srCKwEAANjg5hnk4tyq+skk+1TVoUl+IcnfL7YsAACAjWeeHqyfT/I9Sb6R5E1JvpLklxZZFAAAwEY0zyiC1yT51ar6ze7+2hrUBAAAsCHNM4rgD1XVJzN+uXBVPaCq/nDhlQEAAGww81wieGKS/5Tk8iTp7n9K8sOLLAoAAGAjmidgpbsvXNZ03QJqAQAA2NDmGUXwwqr6oSRdVbfKMIrgeYstCwAAYOOZpwfr2Umek+TAJF9Kctg4DQAAwIx5RhG8LMlPrUEtAAAAG9o8owjeq6reVVU7qurSqnpnVd1rLYoDAADYSOa5RPBNSU5LckCSuyf5sySnLrIoAACAjWiegFXd/fruvnZ8vCFJL7owAACAjWaeUQT/tqqOT/LmDMHqKUn+vKrulCTdfcUC6wMAANgw5glYTxl//tyy9mdlCFzuxwIAAMh8owjecy0KAQAA2Oh2eg9WVf1AVd1tZvrp4wiCL1+6PBAAAIDrrTbIxR8n+bckqaofTvLSJKck+UqSkxZfGgAAwMay2iWC+8wMYPGUJCd199uSvK2qzl58aQAAABvLaj1Y+1TVUgA7MsnfzMybZ3AMAACAbyurBaVTk7y/qi5L8vUkf5ckVXWfDJcJAgAAMGOnPVjd/ZIkz0/yuiT/sbt7Zp2f39WGq+rgqvrbqjqvqj5RVb84tt+pqs6sqs+OP+84ttc4gMb5VXVOVT1oT3cOAABgLa12iWC6+0Pd/Y7u/tpM22e6+6NzbPvaJM/v7u9O8tAkz6mq+yc5Psl7u/vQJO8dp5Pk0UkOHR/HJXnVbu8NAADAOlo1YO2J7r54KYh199VJzktyYJKjkpw8LnZykieMz49KckoPPpRkv6o6YFH1AQAATG1hAWtWVW1J8sAkH05y1+6+OBlCWJK7jIsdmOTCmdW2j23Lt3VcVW2rqm07duxYZNkAAAC7ZeEBq6pul+RtSX6pu7+62qIrtPWNGrpP6u6t3b118+bNU5UJAACwxxYasKrqlhnC1Ru7++1j8yVLl/6NPy8d27cnOXhm9YOSXLTI+gAAAKa0sIBVVZXkNUnO6+7fm5l1epJjxufHJHnnTPvTx9EEH5rkK0uXEgIAAGwEi/zC4IcleVqSj1fV2WPbi5K8NMlpVXVski8medI474wkj0lyfpJrkjxzgbUBAABMbmEBq7s/mJXvq0qSI1dYvpM8Z1H1AAAALNqajCIIAADw7UDAAgAAmIiABQAAMBEBCwAAYCICFgAAwEQELAAAgIkIWAAAABMRsAAAACYiYAEAAExEwAIAAJiIgAUAADARAQsAAGAiAhYAAMBEBCwAAICJCFgAAAATEbAAAAAmImABAABMRMACAACYiIAFAAAwEQELAABgIgIWAADARAQsAACAiQhYAAAAExGwAAAAJiJgAQAATETAAgAAmIiABQAAMBEBCwAAYCICFgAAwEQELAAAgIkIWAAAABMRsAAAACYiYAEAAExEwAIAAJiIgAUAADARAQsAAGAiAhYAAMBEBCwAAICJLDRgVdVrq+rSqjp3pu1OVXVmVX12/HnHsb2q6uVVdX5VnVNVD1pkbQAAAFNbdA/W65I8alnb8Une292HJnnvOJ0kj05y6Pg4LsmrFlwbAADApBYasLr7A0muWNZ8VJKTx+cnJ3nCTPspPfhQkv2q6oBF1gcAADCl9bgH667dfXGSjD/vMrYfmOTCmeW2j203UFXHVdW2qtq2Y8eOhRcLAAAwr03rXcCMWqGtb9TQfVKSk5Jk69atN5oPwG464YT1roBF8x4DrJn16MG6ZOnSv/HnpWP79iQHzyx3UJKL1rg2AACAm2w9AtbpSY4Znx+T5J0z7U8fRxN8aJKvLF1KCAAAsBEs9BLBqjo1yeFJ9q+q7UlenOSlSU6rqmOTfDHJk8bFz0jymCTnJ7kmyTMXWRsAAMDUFhqwuvvoncw6coVlO8lzFlkPAADAIq3HJYIAAAA3SwIWAADARAQsAACAiQhYAAAAExGwAAAAJiJgAQAATETAAgAAmIiABQAAMBEBCwAAYCICFgAAwEQELAAAgIkIWAAAABMRsAAAACYiYAEAAExEwAIAAJiIgAUAADARAQsAAGAiAhYAAMBEBCwAAICJCFgAAAATEbAAAAAmImABAABMRMACAACYiIAFAAAwEQELAABgIgIWAADARAQsAACAiQhYAAAAExGwAAAAJiJgAQAATETAAgAAmIiABQAAMBEBCwAAYCICFgAAwEQELAAAgIkIWAAAABMRsAAAACYiYAEAAExkrwtYVfWoqvp0VZ1fVcevdz0AAADz2qsCVlXtk+SVSR6d5P5Jjq6q+69vVQAAAPPZtN4FLPPgJOd39wVJUlVvTnJUkk+ua1W744QT1rsCFs17DADATlR3r3cN/66qnpjkUd39M+P005I8pLv/b3v3GmJFGcdx/PursPubUgq7aGYXKstE80WaJkb1JgoM04iWICuSSjDQXglhZAUWFISoCSWkEl2ISshuEhjd1lajKwlF0cUgEsTrvxfzLDu77U13ZufMOb/Pq5k5M3P+s/vb2fPM88ychbl1FgAL0uxFwLfDXqjljQT+qroIa0rOlpXJ+bKyOFtWFmeremMiYtRAKzVaD5Z6WdatBRgRq4BVw1OODUTSZxExueo6rPk4W1Ym58vK4mxZWZyt+mioe7CAX4BzcvNnA79WVIuZmZmZmdkRabQG1qfABZLOkzQCuA14o+KazMzMzMzMBqWhhghGxEFJC4HNwLHA2ojYWXFZ1j8P17SyOFtWJufLyuJsWVmcrZpoqIdcmJmZmZmZ1VmjDRE0MzMzMzOrLTewzMzMzMzMCuIGVouTdEhSu6QdkjZJOqmfdcdKmp+bb5P07PBUalVqhpxI2iVpZJreI2lCOqZ2SX9L+ilNv1t1rXXWRFl5JTc/R9K6gvbdJunP9DP6WtLdRey3jpyVAfc9bFnx+bFaks6U9LKkH9Pv+i1JF1Zdlx09N7Bsb0RMjIjLgP3Avf2sOxaY38/r1rwaOieS1kmaeSTbRERHOqaJZE8rfTjNzy6lyNbRLFmZLOnSksrYkHI3E3hM0hklvU+jc1YGNuSs+PzY2CQJeBX4ICLOj4hLgEeAM3LrtElaNsB+dpVZpx0ZN7AsbyswXtKjkh7sXChpuaQHgMeB6ekq1qL08mhJ70j6XtITuW3mSepIVyZX5JbvSfvbLmlbC3+wqDPnxAarzll5iuxDTjeSlklanJvfkXpXxkr6RtLqtGy9pNmSPk7HclXPfUXEH8CPwJi0zqi0z2Mk/dDZo9AinBVnpVVdCxyIiOc7F0REe0RsrbAmGyI3sAwASccBNwIdwBrgzrT8GLLvI1sPLAG2pqtYK9OmE4G5wARgrqRzJI0GVgCz0utTJN2c1j8Z2BYRVwAfAS07PKaOnBMbrCbIykZgkqTxR7DNeOAZ4HLgYrIel2nAYnr/AD4OGAf8ALwE3J5emg1sj4i/jrr6GnFWnJUWdxnwedVFWLEa6nuwrBInSmpP01uBNRGxX9JuSVeSdVF/GRG7JfW2/ZaI+AdA0tfAGOB0sq7uP9Py9cA1wGtkw0DeTNt+DlxX0nFZsRouJ5KuJ/sgBXAuME3SHmBfREwd8hHb0WqWrBwCngSWAm8P8th/ioiO9J4707GEpA6yIW6d5kqaBuwD7omIvyWtBV4HngbuAl4Y5HvWmbNCOVnx+bH+JJ0ObEmzpwEjchcL7oiIDknPAVenZaNzf0+bImL5MJZrPbiBZXvTGOueVgNtwJnA2n6235ebPkSWqV7/EyYHouvL1zrXt8bXcDmJiM1kX0qOspvK10XEB/3s04ZHM2XlRbIPzfkvvD9I99EfJ/RR++Hc/OEedW2IiIU9avxZ0u+SZgFT6eqhaGbOSqbwrPj8WCs7gTk9F0bEbrJeWCS1AWMjYlmPde7vnJa0q4+/J6uAhwhaX14FbgCmkE7SwL/AqYPY9hNghqSRko4F5gEfllKlVc05scGqXVYi4gCwEngot3gXMAlA0iTgvALfcjXZ8K+NEXGowP3WjbMyMGelebwHHK/cUyIlTZE0o8KabIjcwLJeRcR+4H26n7y/Ag6mG4QX9bPtb2RX8t4HtgNfRMTrZddsw69mOTmO7leNbRjVLCt5a+jeo/AKcFoainMf8F2B7/UGcAqtMTywT87KoBSdFZ8fK5J6VW8BrlP2mPadwDLg10oLsyFRV2+5WZd0c/EXwK0R8X3V9VhjqktO0hO32iPirKpraVV1yUqVJE0GVkbE9KprqZKzMrAis+Lzo1nx3INl/yPpErInFW3xPzfrS11yIukmshvol1ZdS6uqS1aqJGkJWY9HS+fUWRlYkVnx+dGsHO7BMjMzMzMzK4h7sMzMzMzMzAriBpaZmZmZmVlB3MAyMzMzMzMriBtYZmZmZmZmBXEDy8zMzMzMrCD/ATlcPJ+nOxzgAAAAAElFTkSuQmCC\n", "text/plain": [ "<Figure size 864x576 with 2 Axes>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# define codes\n", "codes = ('Python', 'Python + JIT', 'Python + NumPy', 'Python + NumPy + JIT', 'C++')\n", "y_pos = np.arange(len(codes))\n", "\n", "# runtime\n", "performance = [t_vanilla_python,t_JIT_python,t_numpy_python,t_numpy_python_JIT,t_cxx]\n", "\n", "# speed-up with respect to the non-optimized code\n", "speedup = [t_vanilla_python/t_vanilla_python,\n", " t_vanilla_python/t_JIT_python,\n", " t_vanilla_python/t_numpy_python,\n", " t_vanilla_python/t_numpy_python_JIT,\n", " t_vanilla_python/t_cxx]\n", "\n", "# Define figure size\n", "rcParams['figure.figsize'] = 12, 8\n", "\n", "# Plot runtimes of 2D acoustic FD codes\n", "ax1 = plt.subplot(211)\n", "\n", "plt.bar(y_pos, performance, align='center', alpha=0.5)\n", "plt.xticks(y_pos, codes)\n", "plt.ylabel('Runtime (s)')\n", "plt.title('Performance comparison of 2D acoustic FD modelling codes')\n", " \n", "# make tick labels invisible\n", "plt.setp(ax1.get_xticklabels(), visible=False) \n", "\n", "# Plot speedup of 2D acoustic FD codes\n", "ax2 = plt.subplot(212, sharex=ax1) \n", "\n", "plt.bar(y_pos, speedup, align='center', alpha=0.5,color='r')\n", "plt.xticks(y_pos, codes)\n", "plt.ylabel('Speedup ()')\n", "plt.tight_layout() \n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Is this the best result we can achieve or are further code improvements possible? \n", "\n", "Using domain decomposition with the **Message-Passing Interface MPI** to distribute the workload over multiple CPU cores, combined with a partioning of the tasks in each domain using **Multithreading** can significantly improve the code performance. One key is the manual optimization of CPU and GPU kernels, especially regarding memory access times or communication between MPI processes. As an example I plotted the runtime and speedup for the same homogeneous acoustic problem from this Jupyter notebook using the 2D acoustic modelling code [DENISE Black-Edition](https://github.com/daniel-koehn/DENISE-Black-Edition) which only relies on MPI:" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtQAAAGDCAYAAAALTociAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3Xd4VGX6//H3TSihBFCBqFQLoK5iKGIBNBaiBAVsBFBXF2m6LthWUVzF7lrWBop+d5US1F26gD8gILEL2DeCBRFXEFACSAIEEvL8/jiTYRICCUkmJ5n5vK5rrswpc859MjMnd+7znOcx5xwiIiIiIlI2NfwOQERERESkOlNCLSIiIiJSDkqoRURERETKQQm1iIiIiEg5KKEWERERESkHJdQiIiIiIuWghFoOyMwmmNnf/I4jEpiZM7Pjy7mNiWb2UEXFVGTbY80sNfC8lZllm1nMQdbPNrNjwxGLiFQcM0s3syF+x1Ed6bwth0IJdTViZmvNbFfgS7Ex8EVtUEHbvs7M3g+d55wb4Zx7sCK2X8K+E80sP3Bc2Wa2zsz+Y2anFVnPmdmOkPWyzeyOwLKxgeVXhqxfMzCvTWC60InNzK43s2/MLMvMNpnZfDOLC1l3T5F9fVnK+Neb2f0V/5sqvWJiKnicWdJrnXP/c841cM7tDWxrvz/IgeVrwhW/SHVnZt3N7EMz+93MtpjZB0XPadWZztsVT+ft6k0JdfVziXOuAZAAdATu8jmeivJL4LjigDOAb4D3zOz8IuudGjgpFDweD1m2BXjgYP+hFzCzc4BHgIHOuTjgROA/RVZ7vMi+Ti0p/sAxdAeuN7N+JcURZr8Uib+Bc+4jn2MSiXhm1hCYBzwPHA40B+4HdvsZVxjovF3xdN6uppRQV1POuY3AQrzEGtj/P9KiVefAf/0jzOx7M9tqZuPNcyIwATgz8N/wtsD6wcpA4D/ndWZ2h5n9amYbzKyfmSWb2XeBCszdIfuqYWajzewHM8sMVC4OL8VxOefcOufcvcA/gb8fwq9lAbAHuLoU654GfOSc+zyw3y3OuUnOuaxD2F+xnHM/Ah8CJxW33Mx6m9nnZrbdzH42s7FFlhdUtrYFll9XzDbizGypmT1nZnaoMZrZMWb2TqDKkwY0CVnWJvBZqWlmDwM9gHGBz8a4wDrBS6Fm1sjMJpvZb2b2k5ndY2Y1AsuuM7P3zezJwGfuRzPrdajxilQz7QCcc6875/Y653Y55xY5576C4PfiAzN73rwK9jehSWjgO/WvwHl2vZk9FJpwmtlgM1sV+E4tNLPWIct6Brb3e+D7aiHLgk0EAtPB73pgOt3MHjWz5YHXz9F526Pzts7bJVFCXU2ZWQugF7D6EF96Md5J6VSgP3Chc24VMALvRNXAOdf4AK89EojFq7bcC/wf3kmwM96X917b1z5rJNAPOAc4GtgKjD/EWGcCncysfinXd8DfgPvMrFYJ6y4DLjSz+82sm5nVOcTYDsjM2gLdgI8PsMoO4I9AY6A3cIMFqiJm1gr4f3iVraZ4/zB9UWT7RwBLgA+ccyOdc64MYb4GfIp3Qn4QuLa4lZxzY4D3gJsCn42bilnteaARcCze+/1H4E8hy08Hvg3s63HgX2X5YyJSjXwH7DWzSWbWy8wOK2ad04E1eN+L+4CZIcnrJCAPOB7vSmQSMAQgcK64G7gM7xzxHvB6YFkTYAZwT2C7P+Cdiw7FH4HBeOftPOC5Q3y9zts6b0clJdTVz2wzywJ+Bn7FOxEfisecc9ucc/8DlhJS4S6FXOBh51wu8AbeF+1Z51yWc+5r4GugQ2Dd4cCYQNViNzAWuKKgElJKv+BVV0IT/M8CFYCCx4WhL3DOvQn8RuCPz4E4597D+4PUCZgPZJrZP6zwZcfbi+xr0kE2eXRgne14f0yXAe8Xt6JzLt0591/nXH6gYvU63gkN4CpgcaCyleucy3TOhZ6YjwbeAaY55+452DGGxBT6qB84+Z8G/M05t9s59y4wt4RtFSvw+0oB7gp8DtYCTwHXhKz2k3Pu/wJt+yYBRwHxZdmfSHXgnNuO14TA4RUefjOzN80s9HP/K/BM4Hv+b7zkpXdgnV7Azc65Hc65X4GngQGB1w0HHnXOrXLO5eE1gUgIVKmTgZXOuemB8/QzwMZDDH+Kcy7DObcDL9Htb6VojhFC522dt6OSEurqp1+g7VgicAIhl3xKKfTkuhM4lJsaMwNfLoBdgZ+bQpbvCtlea2BWwQkBWAXs5dC+kM3x/iBtC5nXyTnXOOSxsJjX3QOMwaumH5Bz7v855y7Ba+PYF7iOwif0J4vsq9hqQMAvgXUa4v0h2YV3EtqPmZ0euOz3m5n9jnd1oOB9bIlXVTqQ3kBdvCY6BdsruLs728yyi4kp9LGDwBWDwPMCPx1knwfTBKhd5PU/4b13BYKfOefczsDTCrmZVqSqCiS81znnWgAn433vnglZZX2RKuVPgXVaA7WADSHnz5eAZoH1WgPPhizbgpfANg+8/ueQGFzodCmFrv9TIJZD+Tuj8/b+dN6OAkqoqynn3DvARODJkNk7gHoh00ceyiYrIKxQPwO9ipwUYp1z6w9hG5cCnxU5gZTIOZeG1xTmxlKun++cWwK8jfeHr1ycc7/jXZq75ACrvAa8CbR0zjXCO8kWXEr7GTjuIJv/P7w2h28VXFJ1++7uLri5piQbgMOKXJJtdZD1D/bZ2Ix35aJ1yLxWwKG8zyIRzTn3Dd75OvT80rzIJfRWeNXdn/FuXmwScu5s6Jz7Q2C9n4HhRc6tdZ1zH+J9t1sWbDCw/ZYh+yjN34jQ9Vvhfb83H8Lh6ry9P523o4AS6urtGaCnmRU02/gCuMzM6gVuPLj+ELa1CWhhZrUrKLYJwMOBy5CYWVMz61vSi8zT3Mzuw6s63F3Saw5gDHDHQfbT18wGmNlhgX12xbt8d6D2c6VmXleGA/CawBQnDtjinMsJ7HdQyLKpwAVm1t+8m0uOCHl/C9yEd3l4npnVPdT4nHM/AZ8A95tZbTPrzoH/iID32Si279LAFYv/4L3XcYH3+1Ygtbj1RaKBmZ1gZreZd68LZtYSGEjh80szYKSZ1TKv27gTgbeccxuARcBTZtbQvBu8jzOvhwvwzq13mdkfAttuZPu6nZsP/MHMLgs0rxtJ4aT5C+DsQHW0EcX3EnW1mZ1kZvWAB4DpIVcmD3S8Om/rvB31lFBXY86534DJeO3cwGtntwfvizQJ70teWm/jnUg2mtmhVCMO5Fm8/+YXmdfm+2O8mxwO5OjAZa9sYAVwCpDonFtUZL0vrXD/nM/styXAOfcBsPwg+9sKDAW+B7bjnUiecM6F/s7uKLKvg/1ejg65dPcT3uXIqw6w7o143URl4d3cGez2yXlt25OB2/Au5X6BdwNp6LE5YBheVWSOmR3oEunRtn9/ppcHlg3Cez+24LXDn3yQY3sWr/37VjMr7galv+BVvtbgtT98DXjlINsTiXRZeN+vZWa2A+/8l4H3vS6wDGiLVy18GLjCOZcZWPZHvEvyK/HOVdPx2rDinJuF14vGG+a1/c3Aa3ONc24zcCXwGJAZ2P4HBTsMVIH/DXyFd3PbvGJin4JXTd+I1/xi5EGOU+dtdN4Wj7ky3WgqIiIiZWFel2pDnHPd/Y4llJmlA6nOuX/6HYtIdaMKtYiIiIhIOSihFhEREREpBzX5EBEREREpB1WoRURERETKQQm1iIiIiEg5HMow0FVCkyZNXJs2bdixYwf169cv+QXVnI4zckTDMYKO82A+/fTTzc65pmEKqUoqOGdDdHw2ouEYQccZSaLhGKHsx1na83a1S6jbtGnDJ598Qnp6OomJiX6HE3Y6zsgRDccIOs6DMbOyDhVcbRWcsyE6PhvRcIyg44wk0XCMUPbjLO15W00+RERERETKQQm1iIiIiEg5KKEWERERESmHateGWkQqV25uLuvWrSMnJ6dU6zdq1IhVq1aFOSr/Hew4Y2NjadGiBbVq1arkqKqHQ/1MVSfR/vnXZ1+ilRJqETmodevWERcXR5s2bTCzEtfPysoiLi6uEiLz14GO0zlHZmYm69at45hjjvEhsqrvUD9T1Uk0f/712ZdopiYfInJQOTk5HHHEERGX+ISLmXHEEUdEZPW1ougzFZn02ZdopoRaREqkxOfQ6PdVMv2OIpPeV4lWSqhFpMqLiYkhISGBk08+mUsuuYRt27aVeVvp6el8+OGHwekJEyYwefLkighTqpGHH36YP/zhD3To0IGEhASWLVsW1v0lJiYG++Muj7Vr11K3bl06duzIiSeeSNeuXZk0aVJw+cSJE2natCkJCQnBx8qVK1m7di1mxvPPPx9c96abbmLixIkAXHfddUyfPh2AefPm0bFjR0499VROOukkXnrpJQDGjh1L8+bNSUhIoFu3biQkJJTruygSSdSGWkQqzpFHErdp0/7z4+Nh48Yyb7Zu3bp88cUXAFx77bWMHz+eMWPGlGlb6enpNGjQgLPOOguAESNGlDkuCb8jj4SK/kh99NFHzJs3j88++4w6deqwefNm9uzZU75AK9Fxxx3H559/DsCaNWu47LLLyM/P509/+hMAKSkpjBs3rtBr1q5dS7NmzXj22WcZPnw4tWvXLnbbubm5DBs2jOXLl9OiRQt2797N2rVrg8tvueUWbr/99qhpKy5SWpFdoT7ySDDb/3HkkX5HJhKZist8Dja/DM4880zWr18PeMnxxRdfHFwWWnFr06YN9913H506deKUU07hm2++Ye3atUyYMIGnn36ahIQE3nvvPcaOHcuTTz4JeFXEW265hbPPPpsTTzyRFStWcNlll9G2bVvuueee4H5SU1NJTEwkISGB4cOHs3fv3go7vqrAzFqa2VIzW2VmX5vZqMD8sWa23sy+CDySwx1LOD5SGzZsoEmTJtSpUweAJk2acPTRRwPe5+bOO++ka9eudO3aldWrVwPw22+/cfnll3Paaadx2mmn8cEHHwDecMaDBw/mtNNOo2PHjsyfPx+AXbt2MWDAADp06EBKSgq7du0K7r9BgwbB59OnT+e6664DvCrxiBEj6NGjB+3atWPevHklHsuxxx7LP/7xD5577rkS123atCnnn39+oYp2UVlZWeTl5XHEEUcAUKdOHdq3b1/itkWiXWQn1JXwx10kqhT3D2roI1yvDdi7dy9LliyhT58+pVq/SZMmfPbZZ9xwww08+eSTtGnThhEjRnDLLbfwxRdf0KNHj/1eU7t2bd59911GjBhB3759GT9+PBkZGUycOJHMzExWrVrFv//9b9LS0vjiiy+IiYlh6tSppYqnGskDbnPOnQicAfzZzE4KLHvaOZcQeLxV3h358ZFKSkri559/pl27dtx444288847hZY3bNiQ5cuXc9NNN3HzzTcDMGrUKG655RZWrFjBjBkzGDJkCOA1HTnvvPNYsWIFS5cu5Z577mHHjh28+OKL1KtXj6+++ooxY8bw6aeflur3sXbtWt555x3mz5/PiBEjSnWDX6dOnfjmm2+C0//+978LNfkITeZHjx7NU089dcB/Ag8//HD69OlD69atGThwIFOnTiU/Pz+4vOCf0W7dunHuueeW6phE/DZt2jR+++23sO5DTT5EpMrbtWsXCQkJrF27ls6dO9OzZ89Sve6yyy4DoHPnzsycObNUrylI1k855RT+8Ic/cNRRRwFeJfDnn3/m/fff59NPPyUxMZEaNWqwa9cumjVrVoajqrqccxuADYHnWWa2Cmjub1QVp0GDBnz66ae89957LF26lJSUFB577LFgpXjgwIHBn7fccgsAixcvZuXKlcFtbN++naysLBYtWsSbb74ZvMqxe/du/ve///Huu+8ycuRIADp06ECHDh1KFVv//v2pUaMGbdu25dhjj+Wbb74hISHhoK9xzhWaLq7JR4FjjjmGrl278tprrx1we//85z/573//y+LFi3nyySdJS0sLXvlRkw+pbqZPn86AAQNo1qwZnTp14rjjjgvLfpRQi0iVV9CG+vfff+fiiy9m/PjxjBw5kpo1axaqnhWt5hVc0o+JiSEvL69U+yp4TY0aNYLPC6bz8vJwznHttddy9913R0VCYWZtgI7AMqAbcJOZ/RH4BK+KvbWY1wwDhgHEx8eTnp4OQHZ2Nunp6TRq1IisrKzA2uH7He7bR/E6d+5M586dOf7443nttde4/PLLcc6xY8cOsrKyyM3NDW5n7969LFq0iLp16xbaxt69e5k8eTJt27YNThd83nbt2hWMIT8/P7hdMwvO37p1K7m5ucH97d69O7hs79697Ny5s9BxZGdnk5+fX2jeBx98QPv27cnKyiInJ4c9e/bsd+yhrxs1ahTXXHMNZ511Fjk5OcF9h8bbpk0bhgwZwqWXXsopp5zC888/z+7du6lVq1bw93Gg329OTk7wPa/uCj6zkSySj3H58uWMGTOG/Px8Nm7cyFVXXcVjjz0Wln0poRaR0itSCdvPwa6zl/TaUmjUqBHPPfccffv25YYbbqB169asXLmS3bt3k5OTw5IlS+jevftBtxEXF8f27dvLHMP5559P3759GTp0KHFxcWzZsoWsrCxat25d5m1WVWbWAJgB3Oyc225mLwIPAi7w8ylgcNHXOedeBl4G6NKli0tMTAS8Nu+JiYmsWrUq+M9IeD9SxSfr3377bbAKXDB93HHHERcXh5kxf/58Ro8eTWpqKmeddRZxcXFceOGFTJo0ib/+9a8AfPHFFyQkJNCrVy9eeeUVnn/+ecyM999/n+7du3Peeecxa9YsevfuTUZGBhkZGdSvX5+4uDji4+NZt24d7du3Z8GCBcTFxREXF0etWrWYO3cuw4cP58cff+Snn36iU6dOxMbGBmNv0KABNWrUCP7+1q5dy7333suoUaOIi4sjNjaW2rVr7/fPXujrOnfuzMknn8yiRYvo3r17cN9169bFzPjkk08oeM+WLVtG69atiYuLo06dOtSpU4e4uLiDVqhjY2Pp2LFjSW9OtVDwmY1kkXqMH374Iffff3+wmNKyZUvmzp1L06ZNw7I/JdQiUnHi4w/cJUMFKejO64033uCaa66hf//+dOjQgbZt25bqj/gll1zCFVdcwZw5cwp1IVZaJ510Eg899BD9+vUDoFatWowfPz7iEmozq4WXTE91zs0EcM5tCln+f0DJd82VUzg+UtnZ2fzlL39h27Zt1KxZk+OPP56XX345uHz37t2cfvrp5Ofn8/rrrwPw3HPP8ec//5kOHTqQl5fH2WefzYQJE/jb3/7GzTffTIcOHXDO0aJFCxYsWMANN9zAn/70p2C3fF27dg1u/7HHHuPiiy+mZcuWnHzyyWRnZweXtW/fnnPOOYdNmzYxYcKEQsl0gR9++IGOHTuSk5NDXFwcf/nLX4I9fIDXhvr9998PTr/wwgvBmy4LjBkzptjvi3OOxx9/nOHDh1O3bl3q168fbO4BXhvq1NRU8vPzqVGjBrNnz6ZNmzal/+WLVIIvv/yS5ORkdu7cCUCrVq144oknwpZMA96Xpzo9Onfu7JxzbunSpa5E8fHOeUWMwo/4+JJfW0WU6jgjQDQcZ3U9xpUrVx7S+tu3bw9TJFVLScdZ3O8N+MRVgfNoSQ/AgMnAM0XmHxXy/BbgjZK2VXDOdm7fd+BQP1OVqXXr1u63334r8+vL8/m/9tpr3bRp08r8+sp0sOOsyu/voaqu5+1DEWnH+N1337lmzZo5vCtprlmzZu7bb78t83GW9rwd2b18bNwIgS6MAEhK8lLqcvSHKyISBboB1wDnFeki73Ez+6+ZfQWci5dUi4hUCevWreOCCy7g119/BbxmggsXLqRdu3Zh33fkN/lo0mTf88xM/+IQEakmnHPv41Wpiyp3N3lVXeggJpUttGmFiByazZs307NnT/73v/8B3s3s8+fPL7GXnIoS2RVqgEDn9ABs3uxfHCIiIiJS4bZv385FF10U7I+9Vq1azJw5k27dulVaDJGfUKtCLVJurgJ66Igm+n2JiFSOXbt20adPn+DgSWbGlClTuOiiiyo1jshPqBs2hJqBli3Z2VCKUadEZJ/Y2FgyMzOVJJaSc47MzMxie2cQEZGKk5ubS//+/QuNdvrSSy+RkpJS6bFEfhtqM6/ZR0G/S5mZ0DxiBvwSCbsWLVqwbt26Ug/bmpOTExXJ5MGOMzY2lhYtWlRyRCIi0SM/P5/rrruOefP29d7597//naFDh/oST+Qn1KCEWqQcatWqxTHHHFPq9dPT0yNmUIeDiZbjjFQNGjQo1P8zwIQJE6hXrx5//OMffYoqvMaOHUuDBg24/fbb/Q5FpFycc/zlL3/htddeC84bPXo0d9xxh28xRUdCHdqOWjcmiohIMUaMGBHW7Qf7q60R+a0tRcLpb3/7Gy+88EJwesSIETzyyCM+RhQNbaihcE8fujFRRESKMXbsWJ588kkAEhMTufPOO+natSvt2rXjvffeA2Dv3r389a9/5bTTTqNDhw689NJLgDf64vnnn0+PHj045ZRTmDNnDuB1w3fiiSdy44030qlTJ37++edC+xw9ejQnnXQSHTp0CFaOr7vuOkaMGEGPHj1o165d8JL2gfYN8MQTTwTn33fffcH5Dz/8MO3bt+eCCy7g22+/Dc5PTEzkk08+AbzuxgpGO5w4cSJ9+/bloosuon379tx///0V9vsVqQhPPfUUDz/8cHB6wIABjBs3DrPievqsPKpQi4iIb8L5R7C8N9Lm5eWxfPly3nrrLe6//34WL17Mv/71Lxo1asSKFSvYvXs33bp1IykpiZYtWzJr1izMjN27d3PGGWfQp08fAL799lteffXVQhU1gC1btjBr1iy++eYbzIxt27YFl61du5Z33nmHH374gXPPPZfVq1czefLkYvf9/fff8/3337N8+XKcc/Tp04d3332X+vXr88Ybb/D555+Tl5dHp06d6Ny5c4nHvXz5cjIyMqhXrx6nnXYavXv3pkuXLuX6XYpUhH/961+FmiwlJyczefJkYmJifIzKEx0JtSrUIiJyiC677DIAOnfuHBzwZdGiRXz11VdMnz4dgN9//53vv/+eFi1acPfdd5Oenk7NmjVZv349mwL37rRu3Zozzjhjv+03bNiQ2NhYhgwZQu/evbn44ouDy/r370+NGjVo27Ytxx57LN98880B971o0SIWLVoUbNOfnZ3N999/T1ZWFpdeein16tUDCCb4JenZsydHBP5uXnbZZbz//vtKqMV306dPZ9iwYcHpHj16MG3aNGrVquVjVPtER0KtCrWIiByiOnXqABATE0NeXh7gVb2ff/55LrzwwkLrTpw4kd9++413332Xww8/nDZt2pAT6Ka1fv36xW6/Zs2aLF++nCVLlvDGG28wbtw43n77bWD/yr2ZHXDfCxcu5K677mL48OGF5j/zzDMHvAJQs2ZN8vPzAYJxhu7rYNMilW3RokUMGjQo+Jnt2LEjc+fODf6zWBWoDbWIiPim4Ea9cDzC4cILL+TFF18kNzcXgO+++44dO3bw+++/06xZM2rVqsXSpUv56aefStxWdnY2v//+O8nJyTzzzDN88cUXwWXTpk0jPz+fH374gTVr1tC+ffsD7vvCCy/klVdeCfZasn79en799VfOPvtsZs2axa5du8jKymLu3LnB7bdp0yY4EEZBxbtAWloaW7ZsYdeuXcyePbtSR5sTKerDDz/k0ksvDX7u27Vrx4IFC2jUqJHPkRWmCrWIiESdnTt3Fuor/NZbby3V64YMGcLatWvp1KkTzjmaNm3K7Nmzueqqq7jkkks455xz6NSpEyeccEKJ28rKyqJv377k5OTgnOPpp58OLmvfvj3nnHMOmzZtYsKECcGmIcXtOykpiVWrVnHmmWcCXpeAqampdOrUiZSUFBISEmjdujU9evQIbv/222+nf//+TJkyhfPOO69QXN27d+eaa65h9erVDBo0SM09xDdfffUVvXv3ZufOnQC0bNmStLQ0mjVr5nNk+4uOhFoVahERCVFw6fhA0tPTg8+bNGkSbENdo0YNHnnkkWK76Proo4/IysoiLi6u0PyMjIxi93HUUUexfPnyYpd169atUIJd0r5HjRrFqFGj9ps/ZswYxowZs9/8E044ga+++io4/dBDDwWfN2vWjHHjxhUbl0hl+f7770lKSgrerNu0aVMWL15Mq1atfI6seNHR5EMVahEREZFqYd26dfTs2TN4Y2/Dhg1ZuHAh7dq18zmyA1OFWkREpAqZOHGib/u+7rrruO6663zbv8jmzZtJSkoK3odQt25d5s+fX+VHpo2OCnXjxlAwMtX27bBnj7/xiIiIiEgh27dv56KLLmLVqlWA1xvNjBkz6N69u8+RlSw6EuoaNeDww/dNb9niXywiIhK2XjjEX3pfpax27dpFnz59gr3PmBmpqan06tXL58hKJzoSalA7ahGRKiI2NpbMzEwlXxHGOUdmZiaxsbF+hyLVTG5uLikpKbzzzjvBeS+99BIpKSk+RnVooqMNNagdtYhIFdGiRQvWrVvHb7/95ncoFS4nJycqEsoDHWdsbGyh7ghFSpKfn8/gwYML9ZP+97//naFDh/oY1aGLnoRaFWoRkSqhVq1aHHPMMX6HERbp6elV/uapihAtxynh5Zxj5MiRpKamBufdeeed3HHHHT5GVTbR2eRDFWoRERERX917772MHz8+OD18+HAeffRRHyMqu+hJqEObfKhCLSIiIuKbf/zjH4UGFEpJSWH8+PGYmY9RlV30JNSqUIuIiIj47pVXXuG2224LTvfq1YvJkycTExPjY1TlEz0JtSrUIiIiIr6aPn16oRsOe/TowfTp06ldu7aPUZVf9CTUqlCLiIiI+GbRokUMGjSI/Px8ADp27MjcuXOpV6+ez5GVX/Qk1KpQi4iIiPjio48+4tJLLyU3NxeAdu3asWDBAho1auRzZBUjehJqdZsnIiIiUum++uorkpOT2blzJwAtW7YkLS2NZs2a+RxZxYmehFoDu4iIiIhUqtWrV5OUlMS2bdsAaNq0KYsXL6ZVq1Y+R1axoiehPuwwKOiKZds2yMvzNx4RERGRCLZ+/XouuOACNm3aBEDDhg1ZuHAh7dqSMSDgAAAgAElEQVS18zmyihc9CXVMjJdUF9iyxb9YRERERCLY5s2b6dmzJz/99BPgDUs/b968iB1hM3oSalA7ahEREZEw2759O7169WLVqlUA1KxZkxkzZtCjRw+fIwuf6Eqo1Y5aREREJGx27dpF3759+eSTTwAwM1JTU0lOTvY5svCKroRaFWoRERGRsMjNzSUlJYX09PTgvAkTJpCSkuJfUJUkuhJqVahFREREKlx+fj6DBw9m7ty5wXmPPfYYw4YN8zGqyhPWhNrMLjKzb81stZmNLmZ5KzNbamafm9lXZhbe6wGqUIuIiIhUKOcco0aNIjU1NTjvzjvv5M477/QxqsoVtoTazGKA8UAv4CRgoJmdVGS1e4D/OOc6AgOAF8IVD6AKtYiIiEgFu++++xg3blxwevjw4Tz66KM+RlT5wlmh7gqsds6tcc7tAd4A+hZZxwENA88bAb+EMR5VqEVEREQq0NNPP82DDz4YnE5JSWH8+PFYwdgfUaJmGLfdHPg5ZHodcHqRdcYCi8zsL0B94ILiNmRmw4BhAPHx8aSnp5OdnV2o0XtpNNmwgZMDzzd/9x0Zh/h6P5TlOKujaDjOaDhG0HGKiESLV155hVtvvTU43atXLyZPnkxMTIyPUfkjnAl1cf+auCLTA4GJzrmnzOxMYIqZneycyy/0IudeBl4G6NKli0tMTCQ9PZ3ExMRDiyjkDW7i3KG/3gdlOs5qKBqOMxqOEXScIiLRYMaMGQwdOjQ43b17d6ZPn07t2rV9jMo/4WzysQ5oGTLdgv2bdFwP/AfAOfcREAs0IVzUhlpERESkXNLS0hg0aBD5+V79MyEhgblz51KvXj2fI/NPOBPqFUBbMzvGzGrj3XT4ZpF1/gecD2BmJ+Il1L+FLSK1oRYREREps48++oh+/fqxZ88eANq1a8fChQtp3Lixz5H5K2wJtXMuD7gJWAiswuvN42sze8DM+gRWuw0YamZfAq8D1znnijYLqTiHH77v+datsHdv2HYlIiIiEkm++uorkpOT2blzJwAtW7YkLS2NZs2a+RyZ/8LZhhrn3FvAW0Xm3RvyfCXQLZwxFFKzJjRuDNu2gXNeUt0kfC1MRERERCLB6tWrSUpKYtu2bQA0bdqUtLQ0WrVq5XNkVUN0jZQIhRNotaMWEREROaj169fTs2dPNm3aBEDDhg1ZuHAh7du39zmyqiP6EurQGxPVjlpERETkgDIzM0lKSmLt2rUAxMbGMm/ePDp27OhvYFVM9CXUqlCLiIiIlCgrK4tevXqxcuVKAGrWrMmMGTPo0aOHz5FVPdGXUKtCLSIiInJQOTk59O3blxUrVgBgZkyZMoXk5GSfI6uaoi+hVoVaRERE5IByc3NJSUlh6dKlwXkvvvgiAwYM8DGqqi36EmpVqEVERESKlZ+fz+DBg3nzzX1Dhzz66KMMHz7cx6iqvuhLqDW4i4iIiMh+nHOMGjWK1NTU4Lw77riD0aNH+xhV9RB9CbWGHxcRERHZz3333ce4ceOC08OGDeOxxx7zMaLqI/oSalWoRURERAp5+umnefDBB4PTKSkpvPDCC5iZj1FVH9GXUKtCLSIiIhL06quvcuuttwane/XqxeTJk4mJifExquol+hJqVahFRA7KzFqa2VIzW2VmX5vZqMD8w80szcy+D/w8zO9YRaR83n33XYYMGRKc7t69O9OnT6d27do+RlX9RF9Cffjh+55v2QL5+f7FIiJSNeUBtznnTgTOAP5sZicBo4Elzrm2wJLAtIhUU4sXL+ahhx4iP5ALJSQkMHfuXOrVq+dzZNVP9CXUtWtDw4be8/x82LbN33hERKoY59wG59xngedZwCqgOdAXmBRYbRLQz58IRaS8Pv74Y/r160dubi4A7dq1Y+HChTRu3NjnyKqnmn4H4IsjjoDt273nmZmFq9YiIhJkZm2AjsAyIN45twG8pNvMmh3gNcOAYQDx8fGkp6cDkJ2dHXweqaLhGEHHWd2tWbOGUaNGsWPHDgCaNm3KAw88wMqVK4PDjEeacL+X0ZlQN2kCP/7oPd+8Gdq29TceEZEqyMwaADOAm51z20t7t79z7mXgZYAuXbq4xMREANLT0yl4Hqmi4RhBx1mdrV69moEDB5KdnQ1Ao0aNePfddznhhBN8jiy8wv1eRl+TD1BPHyIiJTCzWnjJ9FTn3MzA7E1mdlRg+VHAr37FJyKHbv369fTs2ZONGzcC0LBhQx5//PGIT6YrQ3Qm1OrpQ0TkgMwrRf8LWOWc+0fIojeBawPPrwXmVHZsIlI2mZmZJCUlsXbtWgBiY2OZO3cu7dq18zewCBGdCbUq1CIiB9MNuAY4z8y+CDySgceAnmb2PdAzMC0iVVxWVha9evUKto+uWbMmM2bM4Oyzz/Y5ssgRvW2oC6hCLSJSiHPufeBADabPr8xYRKR8cnJy6Nu3LytWrADAzJgyZQrJyck+RxZZVKFWhVpEREQiUF5eHgMGDGDp0qXBeS+++CIDBgzwMarIFJ0JtSrUIiIiEsHy8/MZPHgwc+bsu9Xh0UcfZfjw4T5GFbmUUKtCLSIiIhHEOcfNN9/MlClTgvPuuOMORo/W4KbhEp0JdWiTD1WoRUREJIKMHTuW559/Pjg9dOhQHntM9xCHU3Qm1KpQi4iISAR65plneOCBB4LT/fv358UXX6S0AzNJ2URnQl30pkTn/ItFREREpAK8+uqr3HLLLcHpiy66iClTphATE+NjVNEhOhPqOnWgQQPveV4ebN/ubzwiIiIi5TBr1iyGDBkSnO7WrRszZsygdu3aPkYVPaIzoQa1oxYREZGIsHjxYgYMGEB+fj4ACQkJzJs3j3r16vkcWfSI3oRa7ahFRESkmvv444/p168fe/bsAaBt27YsWLCAxo0b+xxZdInehFoVahEREanG/vvf/5KcnMyOHTsAaNGiBYsXLyY+Pt7nyKJP9CbUGtxFREREqqkffviBpKQktm7dCkCTJk1IS0ujVatWPkcWnaI3odbw4yIiIlIN/fLLL/Ts2ZONGzcC0LBhQxYuXMgJJ5zgc2TRK3oTalWoRUREpJrJzMykZ8+e/PjjjwDExsYyd+5cOnXq5HNk0S16E2pVqEVERKQaycrKolevXqxcuRKAmjVrMn36dM4++2yfI5PoTahVoRYREZFqIicnh379+rFixQoAzIzJkyfTu3dvnyMTiOaEWhVqERERqQby8vIYOHAgb7/9dnDeCy+8wMCBA32MSkJFb0KtCrWIiIhUcfn5+Vx//fXMnj07OO+RRx5hxIgRPkYlRUVvQq0KtYiIiFRhzjluueUWJk+eHJz317/+ldGjR/sYlRRHCTV4FWrn/ItFREREpIj777+f5557Ljg9dOhQ/v73v2NmPkYlxYnehLpePahb13uemwvZ2f7GIyIiIhLw7LPPcv/99wen+/fvz4svvqhkuoqK3oQa1I5aREREqpyJEydy8803B6cvuugipkyZQkxMjI9RycFEd0KtdtQiIiJShcyaNYvrr78+ON2tWzdmzJhB7dq1fYxKShLdCbUq1CIiIlJFLF68mAEDBpCfnw/Aqaeeyrx586hXr57PkUlJojuhVoVaREREqoBly5bRr18/9uzZA0Dbtm1ZuHAhjRs39jkyKY3oTqhVoRYRERGfZWRk0KtXL3bs2AFAixYtSEtLIz4+3ufIpLSUUBdQhVpEREQq2Zo1a0hKSmLr1q0ANGnShLS0NFq3bu1zZHIoojuhLtoXtYiIiEgl+eWXX7jgggvYsGEDAHFxcSxYsIATTjjB58jkUEV3Qq0KtYiIiPggMzOTpKQkfvzxRwBiY2OZN28enTt39jkyKYvoTqhVoRYREZFKlpWVRXJyMl9//TUANWvWZPr06Zx99tk+RyZlFd0JtSrUIiIiUolycnLo168fy5cvB8DMmDx5Mr179/Y5MimPmn4H4CtVqEVERKSS5OXlMXDgQN5+++3gvBdeeIGBAwf6GFXkOvJI2LSpYCoxOD8+HjZurNh9qUJdIDMTnPMvFhEREYlY+fn5DBkyhNmzZwfnPfLII4wYMcLHqCLbvmS6dPPLI7oT6nr1oE4d73lODuzc6W88IiIiEnGcc9x6661MmjQpOO/2229n9OjRPkYV2cKRNB9MdCfUZmpHLSIiImH1wAMP8OyzzwanhwwZwuOPP46Z+RhV5NmxA6ZOhV69oHnzyt13dLehBq8d9fr13vPNm6FVK3/jERERkYjx7LPPMnbs2OD0lVdeyYQJE5RMV5C8PFiyBFJTYdYsL6n2gxJqDT8uIiIiYTBp0iRuvvnm4PSFF15IamoqMTExPkZV/TkHn33mJdGvv175zTuKo4Q6tKcPNfkQERGRCjB79myuv/764HS3bt2YMWMGtWvX9jGq6u3HH+G117xE+ptvil/npJPg6qth0CA4/fTik+34+IqPTQm1KtQiIiJSgZYsWUJKSgp79+4F4NRTT2XevHnUr1/f58iqn8xMmDbNS6I/+KD4dY46ykugr74aTj3Vu0UOCneNl56eTmJiYtjiVEKtCrWIiIhUkGXLltG3b1/27NkDQNu2bVm4cCGNGzf2ObLqIycH5s3zkui33oLc3P3XadAALr/cS6LPPRf8bkWjhFoVahEREakAGRkZ9OrVix2BO+NatGhBWloa8eFoYxBh8vPh3Xe9JHr6dPj99/3XiYmBiy7ykug+fbzej6uKsCbUZnYR8CwQA/zTOfdYMev0B8YCDvjSOTconDHtRxVqERERKac1a9aQlJTE1q1bAWjSpAlpaWm0bt3a58iqtowML4meOhXWrSt+ndNP95LolBRo2rRy4yutsCXUZhYDjAd6AuuAFWb2pnNuZcg6bYG7gG7Oua1m1ixc8RyQKtQiIiJSDhs2bKBnz55s2LABgLi4OBYsWMAJJ5zgc2RV07p1Xu8cU6fCl18Wv87xx++7ubBt28qNryzCWaHuCqx2zq0BMLM3gL7AypB1hgLjnXNbAZxzv4YxnuKpQi0iIiJltGXLFpKSklizZg0AsbGxzJ07l86dO/scWdWyfTvMmOFVo5cu9bq+K6pJExgwwEuku3bdd3NhdRDOhLo58HPI9Drg9CLrtAMwsw/wmoWMdc4tKLohMxsGDAOIj48nPT2d7Oxs0tPTyx1k7IYNnBF4nrN+PR9XwDYrUkUdZ1UXDccZDccIOk4RiR7Z2dkkJyeTkZEBQM2aNZk2bRrnnHOOz5FVDXv2wMKFXhL95pvezYZFxcZCv35eEp2UBLVqVX6cFSGcCXVx/1cU/X+kJtAWSARaAO+Z2cnOuW2FXuTcy8DLAF26dHGJiYkV1/3J9u3Bp7HZ2WHtUqUswt3NS1URDccZDccIOk4RiQ45OTn069ePZcuWAWBmTJo0iYsvvtjnyPzlHHz8sZdE//vfxV/8N4Pzz/eS6EsvhYYNKz/OihbOhHod0DJkugXwSzHrfOycywV+NLNv8RLsFWGMq7C4OO/fodxc2LkTdu2CunUrbfciIiJSveTl5TFw4ECWLFkSnDd+/HgGDarcfhWqku++89pEp6ZCoPXLfjp29JLoAQPg6KMrN75wC2dCvQJoa2bHAOuBAUDRT9psYCAw0cya4DUBOcDbECZmXqOdwI0EZGZCixaVGoKIiIhUD/n5+QwZMoTZs2cH5z388MPccMMNPkblj19/hTfe8JLoFQcohbZqBVdd5T3+8IfKja8yhS2hds7lmdlNwEK89tGvOOe+NrMHgE+cc28GliWZ2UpgL/BX51zl3xl4xBH7EurNm5VQi4iIyH6cc9x6661MmjQpOO/222/nrrvu8jGqyrVjB8yZ4yXRixZBYDDIQho1gv79vWp09+5Qo0blx1nZwtoPtXPuLeCtIvPuDXnugFsDD/+Edp2nnj5ERESkGA888ADPPvtscHrIkCE8/vjjWHXqjqIM8vLg7be9JHrmTC+pLqp2bejd20uik5O9mw2jiUZKhMJd56kvahERESni2WefZezYscHpK6+8kgkTJkRsMu0cfP65l0S//jps3Fj8emef7TXnuOIKOPzwyo2xKlFCDapQi4iIyAFNnjyZm2++OTidlJTElClTiImJ8TGq8Fi7dt/Nhd98U/w6J54I11zjDbqigSA9SqhBFWoREREp1pw5cxg8eHBw+qyzzmLmzJnUqVPHx6gq1pYtMG2al0S//37x6xx5pJdAX301JCRUr0FXKoMSalCFWkRERPbz2Wefcdddd7E3cOddhw4dmDdvHvXr1/c5svLLyYH58+GZZ/7AsmVe78FF1a8Pl1/uJdHnnQcRWJCvMKVKqM2sGdANOBrYBWTg9dSRH8bYKo8q1CIihZjZK8DFwK/OuZMD88YCQ4HfAqvdHbj5XCTiLF++nDFjxrBnzx4Ajj/+eBYtWsRhhx3mc2Rll58P773nVaKnTYPffwdoWmidmBi48EIvie7Tx0uqpWQHTajN7FxgNHA48DnwKxAL9AOOM7PpwFPOue0H3ko1oAq1iEhRE4FxwOQi8592zj1Z+eGIVJ6MjAx69epFTmCs7ObNm7N48WLi4+N9jqxsMjK8JPq11+Dnn4tfp2tXL4lOSYFmzSo3vkhQUoU6GRjqnPtf0QVmVhOvetETmBGG2CqPKtQiIoU45941szZ+xyFS2dasWUNSUhJbtmwBoEmTJqSlpdG6mt19t3691ztHaip8+WXx6xx3HHTvvpYxY9rQtm3lxhdpDppQO+f+epBleXgjHVZ/qlCLiJTWTWb2R+AT4Dbn3NaiK5jZMGAYQHx8POnp6QBkZ2cHn0eqaDhGiNzjzMzMZOTIkWwIDPZWt25dHnroITZt2sSmTZt8jq5kO3bE8N57TUlLi+fzzxvj3P53DjZsmMt55/1Kz56bOPHE7ezYkc369WtZv96HgCtRuD+zpW1DPQp4FcgC/gl0BEY75xaFLbLKpAq1iEhpvAg8CLjAz6eAwUVXcs69DLwM0KVLF5eYmAhAeno6Bc8jVTQcI0TmcW7ZsoVzzjmHX375BYDY2FgeeeQRhg8f7nNkB5ebCwsXepXoOXO8mw2Lio2Fvn29Jh0XXliLWrWaA82ByHwvixPu4yxtLx+DnXPPmtmFeK3X/4SXYEdGQt2okdcKf+9eyM6G3bshgrrDERGpCM65YInOzP4PmOdjOCIVJjs7m+TkZDIyMgCIiYlh2rRpNGjQwOfIiuccfPyx11/0G28Uf3HdzOuZ4+qr4bLLoGHDyo8zmpQ2oS64ZpAMvOqc+9IiaWggM69K/euv3nRmJhx9tL8xiYhUMWZ2lHNuQ2DyUrwen0SqtZycHPr168eyZcsAMDMmTZrExRdfXOWatXz3nZdET50KP/xQ/DoJCd7IhQMHQvPmlRtfNCttQv2pmS0CjgHuMrM4IDK6zCvQpMm+hHrzZiXUIhLVzOx1IBFoYmbrgPuARDNLwGvysRao2tfCRUqQl5fHwIEDWbJkSXDeuHHjuOqqq3yMqrBff4V//9tr0rF8efHrtGzpJdFXXQUnn1y58YmntAn19UACsMY5t9PMjsBr9hE5QttR68ZEEYkgZlYbOAEvEf7WObenpNc45wYWM/tfFR2biF/y8/MZOnQos2fv61/hoYce4sYbb/QxKs/OnV576NRUr310YFyZQho1giuv9Jp09OgBNWpUfpyyT0n9ULdxzq0NDODyWcF851wmkBlo9tHcObcuzHGGX2hPH7oxUUQihJn1BiYAP+A13zvGzIY75/6fv5GJ+Mc5x2233cbEiROD82677Tbuvvtu32LauxfefttLomfO9G7pKqpWLejd20uie/f2bjaUqqGkCvUTZlYDmAN8ijc6VixwPHAucD7eZcDqn1CrQi0ikekp4Fzn3GoAMzsOmA8ooZao9eCDD/LMM88Ep6+//nqeeOIJKvv2MOfg88+9JPr112HjxuLX697dS6KvvBIOP7xSQ5RSKqkf6ivN7CTgKryukY4CdgKrgLeAh51zxXTQUg2pQi0ikenXgmQ6YA3eqLciUem5557jvvvuC05fccUVvPTSS5WaTK9d641amJoKq1YVv84JJ8A118CgQdCmTaWFJmVUYhtq59xKYEwlxOIvVahFJDJ9bWZvAf/Ba0N9JbDCzC4DcM7N9DM4kco0efJkRo0aFZxOSkoiNTWVmJiYsO9761aYNs1Lot97r/h14uO9BPrqq6FjR68TMqkeSntTYuRThVpEIlMssAk4JzD9G3A4cAlegq2EWqLCnDlzGDx43zhEZ511FjNnzqROGMedyMmBt97ykuj582FPMbcD16/v9RN99dVev9E1lZlVS3rbCqhCLSIRyDkXWT0yiZTB22+/Tf/+/dkb6C6jQ4cOzJs3j/r161f4vvLzvQp0aipMnw7btu2/TkwMJCV5SXTfvl5SLdWbEuoCqlCLSAQys1fxKtGFOOf2GzJcJBItX76cPn36sCdQHj7++ONZtGgRhx12WLm3feSRsGlTyesV6NrVS6JTUqBZs3LvXqqQUiXUge7xrgKOdc49YGatgCOdcwfoYrwaCk2oVaEWkcgROjx4LN4Ih7/4FItIpcrIyKBXr17s2LEDgObNm5OWlkZ8fHyFbL80yfSxx3pJ9FVXQbt2FbJbqYJKW6F+AW9kxPOAB4AsYAZwWpjiqnyhTT5UoRaRCOGcmxE6HRgBcbFP4YhUmh9//JGkpCS2bNkCwBFHHEFaWhptKqnLjBtv9BLpM87QzYXRoLQJ9enOuU5m9jmAc25rYOStyNG4sTfMUH4+bN8OubleD+oiIpGlLdDK7yBEwmnDhg1ccMEFbNiwAYC4uDgWLFjAiSeeWGH7CBkTpljjx1fYrqQaKO1AlblmFkOgHZ6ZNcWrWEeOGjUK95auZh8iEgHMLMvMthf8BOYCd/odl0i4bNmyhaSkJNasWQNAnTp1ePPNN+nSpUuFbD8/H+66C/6k230lRGkr1M8Bs4BmZvYwcAVwT9ii8kuTJvuae2RmencbiIhUY865OL9jEKks2dnZJCcnk5GRAUBMTAzTpk0jMTGxQra/Y4c32MqsWRWyOYkgpUqonXNTzexTvKHGDejnnDvA2D7VmNpRi0iEMLNOB1vunPussmIRqQy7d++mX79+LFu2DAAzY9KkSVxyySUVsv316+GSS7yhwgvUrl1839IVdM+jVCOH0m3eJuC9wGvqmlmniDshq6cPEYkcTwV+xgJdgC/xCiIdgGVAd5/iEqlweXl5DBw4kCVLlgTnjRs3jquuuqpCtv/pp9CnD/wS0j/OLbfAE094fUqLlLbbvAeB64Af2NefqcPr9SNyqEItIhHCOXcugJm9AQxzzv03MH0ycLufsYlUpPz8fIYOHcqskHYYDz30EDfeeGOFbH/mTK+3jl27vOmaNb0bDocNq5DNS4QobYW6P3Ccc66YCxsRRBVqEYk8JxQk0wDOuQwzS/AzIJGK4pzjtttuY2JIlxu33XYbd999dwVsG6ZObcU//7lvXuPG3uiH559f7s1LhCltQp0BNAZ+DWMs/lOFWkQizyoz+yeQindl8Wog8u6Bkaj04IMP8swzzwSnBw8ezBNPPIGVs+Pn3bu9CvTkyccG5x1/PMybB+3bl2vTEqFKm1A/CnxuZhnA7oKZzrk+YYnKL6pQi0jk+RNwAzAqMP0u8KJ/4YhUjOeee4777rsvOH355Zfz8ssvlzuZ3rwZLr0U3n9/37xzzoEZMwrX3URClTahngT8Hfgvkdb/dChVqEUkwjjncsxsAvCWc+5bv+MRqQhTpkxh1KhRwemkpCSmTp1KTDnvEFy1Ci6+GAJdWAMweDC8+KLXo4fIgZQ2od7snHsurJH47cgjYdOmfdPz53tjhcbHw8aN/sUlIlIOZtYHeAKoDRwTaD/9QMRdYZSoMWfOHP4UMqrKmWeeycyZM6lTp065trtoEfTvD7//7k2bwfDhP/DCC8dp6HApUWkT6k/N7FHgTQo3+YicbvNCk+nSzBcRqR7uA7oC6QDOuS/MrI2P8YiU2dKlS0lJSWHv3r0AdOjQgfnz51O/fv1ybfeFF2DkSAhslnr14LXXoFGjnzE7rrxhSxQobULdMfDzjJB5kddtnohI5Mlzzv1e3nalIn5bvnw5ffr0Yfdur653/PHHs3DhQg477LAybzMvD269FZ5/ft+8Fi3gzTehY0dITy9n0BI1SjtS4rnhDkRERMIiw8wGATFm1hYYCXzoc0wih+Trr7+mV69eZGdnA9C8eXPS0tI48sgjy7zN33+HAQNgwYJ98047DebMgaOOKm/EEm0OmlCb2dXOuVQzu7W45c65f4QnLBERqSB/AcbgNdd7DVgIPORrRCKH4McffyQpKYktW7YAcMQRR5CWlkabNm3KsU1vGPGvv94374orYNIkr7mHyKEqqUJd0Cgprphlrph5IiJShTjndgJjzOwR59wOv+MRORQbNmzgggsu4JfAmN8NGjRgwYIFnHjiiWXe5gcfQL9+hTvzuuceuP9+qFGjvBFLtDpoQu2ceynwdLFz7oPQZWbWLWxR+SE+vvgbEJs1q/xYREQqiJmdBfwTaAC0MrNTgeHOuYoZl1kkTLZs2UJSUhJrAn3Y1alTh7lz59KlS5cybzM1Fa6/HvYExn2uXRv+9S9vaHGR8ijt/2LPl3Je9bVxozfOqHNw+un75r/wgn8xiYiU39PAhUAmgHPuS+BsXyMSKUF2djbJyclkZGQAEBMTw7Rp00hMTCzT9vLz4W9/g2uu2ZdMN20Kb7+tZFoqRkltqM8EzgKaFmlH3RAoX+/pVVnPnrBsmfd80SK4/HJ/4xERKQfn3M9FevnY61csIiXZvXs3/fr1Y1nB32Fg4sSJXHLJJWXa3s6dcO21MH36vnknneQNI37MMeWNVsRTUoW6Nt5lwpp47agLHtuBK8Ibmo+SkvY9X7jQq1qLiFRPPweafTgzq21mtwOr/A5KpDh5eXkMGjSIJUuWBE/DX4wAACAASURBVOeNGzeOq8tYRt6wwRs2PDSZvugi+PBDJdNSsUpqQ/0O8I6ZTXTO/VRJMfnvjDOgQQPIzoaffoLVq6FtW7+jEhEpixHAs0BzYD1eLx9/9jUikWLk5+czbNgwZs6cGZz34IMP8uc/l+3j+sUXXk8e69btmzdyJDz1FNQs7SgcIqVU2o9UHTN7GWgT+hrnXGQO7FKrFpx3ntezO3jNPpRQi0g15JzbDFzldxwiB+Oc4/bbb+fVV18Nzrv11lsZM2ZMmbY3Zw5cdRXsCPRrExMDzz0HN+pWXAmT0t6UOA34HLgH+GvII3KFNvtYtMi/OEREysHMjjWzuWb2m5n9amZzzOxYv+MSCfXQQw/x9NNPB6cHDx7Mk08+yaGO8OkcPPEEXHrpvmS6YUN46y0l0xJepa1Q5znnXgxrJFVNaEL99tuQm+tVrkVEqpfXgPHApYHpAcDrwOkHfIVIJXr++ee59957g9OXX345L7/88iEn03v2wA03wCuv7Jt37LEwd653E6JIOJW2Qj3XzG40s6PM7PCCR1gj89vxx0PBKEzZ2fDxx76GIyJSRuacm+Kcyws8UtHAXFJFTJkyhZEjRwane/bsydSpU4mJObSOxDIzvTpYaDLdo4fXYZeSaakMpU2or8Vr4vEh8Gng8Um4gqoSzNTsQ0QiwVIzG21mbcystZndAcyPisKI/P/27jw+qur+//jrkwQCGlatAVQQULSCrSgguAFCWERAULQqImoLtYBLf2hdwOJuW0ErWi0K1a+KuIGALCbaBFBBWVQQEAUBBVlUpBKWQML5/XEnmQkkIZDM3Fnez8fjPnLvZ+6d+ZwMufPhzrnnRLWpU6dy/fXXF223bduWyZMnk5qaeljPs2qVN5bAnDnB2HXXQVYWHHtsZWUrUrZyFdTOucYlLPHfBy+0oM7K8i8PEZEjdyUwGPgvkA3cBNxAIlwYkaiVnZ3NlVdeSUGBNyT6GWecwcyZM0lLSzus53n/fa+YXr06GHvkEfjPf+Aw63KRCilXH2ozG1BS3Dn3f5WbTpS56CJISvKmWFq4ELZtg7q6oCMi0c/MWgPfOecaB7avAy4D1gGjnHPbfExPEtgnn3xCr169yMvLA6Bp06ZkZmZSp06dw3qeceNgyBDIz/e2q1f3phbv27eyMxY5tPJ2+WgdslwAjAJ6hSmn6FGnDrRp463v3+/dnCgiEhv+DewFMLMLgUeAF4H/AeN8zEsS2PLly+nevTu5ubkANGjQgPfee4969eqV+zkKCuDPf4bBg4PFdIMGMG+eimnxT7muUDvnhoVum1kt4KWwZBRtunQJ3pCYmQmXx+8EkSISV5JDrkJfCYxzzr0FvGVmn/mYlySotWvX0qVLF7Zt8/5ZHnPMMWRlZXFS4QAA5bBjB1x1FcyYEYyddZY3bcTxx1dywiKHobxXqA+0C0iMmU4OvDFR05CLSGxINrPCiyad8PpQF9I8cRJRmzZtIiMjg++//x6AtLQ0Zs2axemHMQTH+vVw3nnFi+k+fWDuXBXT4r/y9qGeTnCYpSTgdLzJXuJfmzZQo4b33+L16+Hrr6FZM7+zEhE5lFeBOWb2I7AbmAdgZifjdfsQiYht27bRtWtX1qxZA0BqairTp0+ndevW5X6OBQugd2/YujUYu+suePBB71YnEb+V9yrFYyHr+cB659yGMOQTfQqnIZ861dvOzFRBLSJRzzn3kJm9D9QHMp1zoRdFhpV+pEjlyc3NpUePHixbtgyA5ORk3njjDTp06FDu55g0CQYOhMA9jFSpAs895w2NJxItyjts3pyQ5UNgk5ldE+bcoofGoxaRGOScW+Ccm+Kc2xkS+8o5t8TPvCQx5OXl0bdvXxaETIz2wgsv0LNnz3Id7xzcd5/XZ7qwmD7mGHjvPRXTEn3KLKjNrKaZ3WVmT5lZF/MMBb4BrohMilEgtKDOzvbmNxUREZES5efnc/XVV5MVMofD2LFj6d+/f7mO370brrkGRo0Kxk47zZv58MILKzlZkUpwqCvULwGnAsuA3wOZQD+gt3Oud5hzix5Nm0Ljxt66piEXEREp1f79+xk0aBCTJ08uit1///0MHTq0XMdv3gwdO8KrrwZjGRkwf773cSwSjQ5VUDdxzg10zv0buApoBVzinEusIZc0DbmIiMghOecYPnw4//nPf4pit912GyNGjCjX8UuXwjnneFeiC910E8ycCbVrV3a2IpXnUAX1vsIV51wBsNY5t6O8T25m3cxslZmtNrM7y9jvcjNzZtaqvM8dcSqoRUREyvTggw/y+OOPF21ff/31jB49GjM75LEzZnjD4n37rbedlARPPglPPw0pGuhRotyh/on+1sx+CawbUD2wbYBzztUs7UAzSwaeBjKADcBCM5vmnFtxwH41gJuBjw9+ligSOg35okWahlxERCTE2LFjuffee4u2+/bty7hx4w5ZTDsHTzwBw4d7H7HgjVb72mvQvXs4MxapPGVeoXbOJTvnagaWGs65lJD1UovpgDbAaufcN865vcAkoKR+1w8Afwf2HFELIqV2be97KPD++t9/3998REREosTLL7/MzTffXLSdkZHBxIkTSTnEpeV9++CPf/SmEi8spk86CT76SMW0xJZwDod+PPBdyPaGQKyImbUETnTOvRPGPCqPun2IiIgUM23aNAYOHFi03bZtWyZPnkxqamqZx/38M3TrBuPGBWPnnuv1n27RIkzJioRJOHsllfQdT9G83WaWBDwODDzkE5kNAgYBpKenk5OTQ25uLjk5OZWTaTnVPPZYzgqs75k+nQXZ2d4Ni2HkRzv9kAjtTIQ2gtopkkiys7O54oorKCgoAOCMM85g5syZpKWllXnc11/DJZfAV18FY9dcA88/D9WqhTNjkfAIZ0G9ATgxZPsE4PuQ7RpACyAn0L+qHjDNzHo55xaFPpFzbhwwDqBVq1auQ4cO5OTkHNZMS5Xi/PPhnnvgl1+otmULHRo0gFNPDetL+tJOHyRCOxOhjaB2iiSKhQsX0qtXL/ICs640bdqUd999lzp16pR5XE4O9O3rXaEu9MAD3sdrmK9RiYRNOLt8LAROMbPGZlYV+B0wrfBB59z/nHPHOudOcs6dBCwADiqmo0pKindzYiF1+xCROGVmE8xsq5l9ERKra2ZZZvZ14GfZlZPErXXr1tGtWzdyc3MBaNCgAVlZWdSvX7/M4yZM8MaULiymq1WD11+HESNUTEtsC1tB7ZzLB4YC7wIrgdedc8vN7H4z6xWu1w079aMWkcTwAtDtgNidwPvOuVOA9wPbkmDWrl3L7bffzrZt2wCoW7cumZmZNC6cAK0EBQVwxx1w442Qn+/F6tWDOXOgX79IZC0SXmEd2dE5NxOYeUDs3lL27RDOXCpNSdOQV63qXz4iImHgnJtrZicdEO4NdAisvwjkAH+JWFLiu02bNpGRkcGPP/4IQFpaGrNnz6Z58+alHpObC/37w9SpwdhvfwvTp8OJJ5Z6mEhMCWeXj/jUtCk0aeKt79zpzYUqIpIY0p1zmwACP4/zOR+JoG3bttG1a1fWrFkDQGpqKtOmTaN169alHrNhA1xwQfFiulcv+OADFdMSXzT30JHo0gWefdZbz8yE9u39zUdEJIqUNDITJMbIKPHaxt27dzN8+HBWrPDmZktKSmLkyJGYWant/fLLGowY0YKffgoOn3flld/yhz98w6LovVuqmHh9P0MlQhsh/O1UQX0kDiyoH3rI33xERCJji5nVd85tMrP6wNaSdippZCZIjJFR4rGNeXl59OzZs6iYBrjzzju55557Sj3mjTfgtttgT2DKtpQU72PzxhsbAg3DnHHlicf380CJ0EYIfzvV5eNIdOwIycne+uLF8NNP/uYjIhIZ04DrAuvXAVPL2FfiQH5+PldffTVZWVlFsbFjx5KRkVHi/s7Bgw/CFVcEi+m6dSEry7shUSReqaA+EpqGXETinJm9CswHTjWzDWZ2I/AokGFmXwMZgW2JU845Bg8ezOTJk4ti999/P0OHDi1x/7w8GDAARo4Mxpo1gwULIAEugEqCU5ePI9WlC3z0kbeemen9d1xEJE44564q5aFOEU1EfOGcY/jw4UyYMKEodttttzFixIgS99+6Ffr0CX4sgjdtw5tvwiHmeRGJC7pCfaQOHI/audL3FRERiSEPPfQQY8aMKdq+/vrrGT16NFbC7CvLl3tf2oYW04MGwezZKqYlcaigPlKtW0OtWt76d9/BqlX+5iMiIlIJnnrqKUaG9Nvo27cv48aNK7GYnj0b2rWDdeu8bTMYM8a7AbFKlQglLBIFVFAfqZQU6BTyzadmTRQRkRj38ssvM2zYsKLtzp07M3HiRFJSDu4h+tRT0KMH7NjhbaelwbRp3ugemkZcEo0K6ooIvctZBbWIiMSwadOmMXDgwKLttm3bMmXKFFJTU4vtl58PTzxxCsOGwf79XqxhQ/jwQ7jkkggmLBJFVFBXxIHTkOfl+ZeLiIjIEcrOzuaKK66goKAAgBYtWjBjxgzS0tKK7bd9u3dVeurU44ti55wDH38Mv/lNRFMWiSoqqCuiSRNvKnKAXbs0DbmIiMSchQsX0qtXL/ICF4WaNm1KZmYmdevWLbbfN9/AuecW/0L2d7/zrifVqxfJjEWijwrqijpwtA8REZEYsWLFCrp160Zubi4ADRo0ICsri/r16xfbb948aNMGVq4Mxv76V5g4EapXj2TGItFJBXVFqaAWEZEYtHbtWjIyMti2bRsAdevWJTMzk8aNGxfb78UXvXvwCycFTk2FESNWMGqUbj4UKaSCuqJCpyFfsgR++MHffERERA5h8+bNZGRk8P333wOQlpbG7Nmzad68edE++/fD3XfDwIGwb58XO+44yMmBTp22Rj5pkSimgrqiatWCtm29dU1DLiIiUe7nn3+mS5curFmzBoDU1FSmTZtG69ati/bZuRP69YNHHgked8YZ8MknwY88EQlSQV0ZQrt9ZGX5l4eIiEgZdu7cSY8ePVi2bBkAycnJvPbaa3Ts2LFon40b4cILYfLk4HE9enjD4jVqFOmMRWKDCurKoGnIRUQkyuXl5dGnTx/mh4xINWHCBHr37l20vWSJd/PhkiXB4267DaZOhRo1IpmtSGxRQV0ZWrWC2rW99Q0b4Msv/c1HREQkRH5+Ptdccw1ZId+iPvnkkwwYMKBoe8oUuOACCHSrJjnZm0J8zJjgrUIiUjIV1JVB05CLiEiUcs4xePBg3nrrraLYfffdVzTFuHPwt79B377elArgXSOaPRsGD/YjY5HYo4K6smj4PBERiTLOOYYPH86ECROKYrfeeisjR44EYO9euOEGuPPO4DEnnwwLFkDnzpHOViR2pfidQNzIyAiu5+R405CnpvqWjoiIyEMPPcSYMWOKtgcOHMjo0aMxM378ES67DObODe7fvj289RYcc4wPyYrEMF2hriyNG3v/rQfvO7OPPvI3HxERSWhPPfVU0ZVogL59+/Lcc8+RlJTEypVwzjnFi+kbbvC+YFUxLXL4VFBXJnX7EBGRKPDyyy8X9ZEG6Ny5MxMnTiQlJYWsLGjXDr75xnvMDP7+d3j+eaha1aeERWKcCurKpIJaRER8Nn36dAYOHFi0fc455zBlyhRSU1N55hno3h3+9z/vsaOO8kb3uP12TSMuUhEqqCuTpiEXEREf5eTk0K9fPwoKCgBo0aIFM2fOpFq1NG65Bf70Jwg8xPHHwwcfQMgw1CJyhFRQV6aaNb3v0Qq9955/uYiISEJZtGgRPXv2JC8vD4AmTZqQmZlJSkpdevWCJ58M7tuqlTeNeMuWPiUrEmdUUFc2dfsQEZEIW7FiBd26dSM3NxeA+vXr895775GXV59zz4VZs4L7Xn45zJkDDRr4lKxIHFJBXdlCC+qsLE1DLiIiYbVu3Tq6dOnCTz/9FIjUZdOmLJo0aUzjxrB8eXDfESPgtde8vtMiUnlUUFe20GnIN26ElSv9zUdEROLW5s2b6dy5Mxs3bgxE0oBZQPOD9n3pJXjgAUjSJ79IpdOfVWVLTi4+vZS6fYiISBj8/PPPdOnShTVr1gCQmpoKTAXalLh///6Ry00k0aigDgf1oxYRkTDauXMnPXr0YNmyZQAkJyczadJrwEX+JiaSoFRQh0NJ05CLiIhUgry8PPr06cP8+fOLYuPHT2DuXI1/J+IXFdThcNJJ0KyZt757N3z4oa/piIhIfCgoKKB///5kZWUVxf75zyeZP38Ajz/uY2IiCU4FdbiEXqVWtw8REakg5xyDBw/mzTffLIr99a/3sWjRMP7977KPTU8Pc3IiCU4FdbioH7WIiFQS5xy3334748ePL4oNHXoLy5aN5KWXgvtdey3s2+eN2Bq6bN7sQ9IiCUQFdbh06AApKd76p5/C1q2+piMiIrHr4YcfZvTo0UXb/fsPZM2aMUyebEWxwYPhhReCHz0iEjkqqMNF05CLiEglePrppxkxYkTRds+efdiw4TlmzQp+hN92GzzzjMaYFvGL/vTCSd0+RESkAl555RWGDh1atN2+fSd++GEiOTnBy9AjR8Lo0WBW0jOISCSooA6nAwtqTUMuIiLlNH36dK677rqi7bPPPoft299mwYJqRbFHH4X771cxLeI3FdThdPbZUKeOt75pE6xY4W8+IiISE3JycujXrx8FBQUAnHZaC3JzZ/L552lF+zz5JPzlL35lKCKhVFCHk6YhFxGRw7Ro0SJ69epFXmBSsIYNm5CXl8mqVXUB72r0+PEwbJifWYpIKBXU4aZ+1CIiUk4rV66kW7du7NixA4DjjqtPfv57rF1bH/Cu07zyCtxwg59ZisiBVFCHW+gEL3PmwJ49/uUiIiJRa926dWRkZPDTTz8BUKtWXfbvz+L77xsDULUqvPkmXHWVn1mKSElUUIdbo0Zw6qneuqYhFxGREmzevJmMjAw2btwIQPXqR2M2ix9/bA5AtWowbRpceqmfWYpIaVRQR4K6fYiISCl+/vlnunbtyurVqwGoUqUqSUlT2b69DQBpaTB7NnTt6meWIlIWFdSRoIJaRERKsHPnTnr06MHSpUsBSEpKJjn5NXbu7ARA7drevGDt2/uZpYgcigrqSGjfPjgX7GefwZYt/uYjIiK+y8vLo2/fvsyfP78olpw8gT17vH4dxx4L2dlwzjl+ZSgi5aWCOhJOOQXy84Pb9ep54x7Vq+dfTiIi4puCggL69+9PZsi3lsnJ/2TfvgEA1K8Pc+fCmWf6laGIHA4V1JFQ2hVpXakWEUk4zjkGDx7Mm2++WRQzG0VBwc2Ady/7vHnw61/7laGIHC4V1CIiIhHinOOOO+5g/PjxIdFbcO5eAE4+2bsy3bSpP/mJyJFRQe035/zOQEREIuSRRx7hscceC4kMBMYARvPmXjHdsKE/uYnIkVNB7bcbboDA9LIiIhK/nnnmGe65556QSB/gOSCJs86CnByv77SIxB4V1H574QXo2BE2b/Y7ExERCZOJEycyZMiQkEgnYCKQQrt28P773qgeIhKbVFBHQnp62Y/Pnw+tW8PixZHJR0REIuadd95hwIABuKIufucAbwPV6NjRm56gdm0fExSRClNBHQmbN3t9pUOX/fvh8cchKfAWbNgA558Pkyb5m6uIiFSaOXPm0K9fPwoKCgKR5sBMII2LL4YZM7yZEEUktqmg9osZ3HorzJoVvDSxZw9cdRXcc49XcIuISMxatGgRPXv2ZM+ePYFIEyATqMtll8GUKVC9uo8JikilUUHtty5d4OOP4dRTg7GHH4ZLL4VffvEvLxEROWIrV66kW7du7NixIxCpD2QBDejf3/sysmpVHxMUkUqlgjoaNGvmFdUXXxyMTZ8O7dpRbeNG//ISEZHDtn79erp06cJPP/0UiNTBuzLdhEGD4MUXISXFxwRFpNKFtaA2s25mtsrMVpvZnSU8/mczW2FmS83sfTNrFM58olqtWjBtGtxxRzC2YgVn33STd/u3iEiUMLN1ZrbMzD4zs0V+5xNNtm3bRufOndmwYUMgcjQwC2jBrbfCs88Gb50RkfgRtj9rM0sGnga6A6cDV5nZ6Qfs9inQyjn3G+BN4O/hyicmJCfD3/4GL70EqakAVNmxA7p2hbFjNQmMiESTjs65M51zrfxOJFps376dO+64g9WrVwciVYGpwDmMGAFjxni3z4hI/Ann/5PbAKudc9845/YCk4DeoTs457Kdc7sCmwuAE8KYT+zo39+bLqtBA2+7oABuvhkGDYK9e/3NTUREDrJz50569OjBmjVrApFk4DWgEw8/DA88oGJaJJ6Fs6A+HvguZHtDIFaaG/G+FxOANm1g4UJ+Oe20YOz55+Gii2DrVv/yEhEBB2Sa2WIzG+R3Mn7bu3cvl112GR999FFIdAJwKf/8J9x1l1+ZiUikmAtTNwIz6wd0dc79PrB9LdDGOTeshH37A0OB9s65g+bhDpywBwGkp6efPWnSJHJzc0lLgME7d23bxlnPPku9rKyi2J7jjuOLBx8k95RTfMysciXC+5kIbQS1sywdO3ZcHA9dJMysgXPuezM7Dm/oimHOubkhjx90zob4/LdRUFDAAw88wJw5c0Ki/8RsGP/v/31Fjx6bfMstnOLxvSxJIrQzEdoIR97Ocp+3nXNhWYB2wLsh23cBd5WwX2dgJXBceZ737LPPds45l52d7RJBdna2c/v3O/ePfziXlBScGqZ6dedef93v9CpNIryfidBG59TOsgCLXJjOuX4twChgeGmPF56zj/R3Fs3279/vbrzxRod3xT6wjHLJyc698orf2YVXvL2XpUmEdiZCG5078naW97wdzi4fC4FTzKyxmVUFfgdMC93BzFoC/wZ6OefUj6E0ZjB8OLzzDtSs6cV274YrroCRIzUJjIhEjJkdbWY1CteBLsAX/mYVec457rjjDsaPHx8SvZnk5BG88QZcfbVvqYmID8JWUDvn8vG6cbyLdwX6defccjO738x6BXb7B5AGvBEYfmlaKU8nAN27e+NVN2sWjD34IPTtC0WTB4iIhFU68IGZfQ58Asxwzs32OaeIe/TRR3nsscdCIteRmvo4Dz+8nD59fEtLRHwS1qHlnXMzgZkHxO4NWe8cztePS6edBgsWeFOUv/uuF5s6Fc491xvHunFjf/MTkbjmnPsG+K3fefjpmWee4e677w6JXMpRRz3PjBlJwDa/0hIRH2l4+VhUp47X/ePPfw7GvvgCWreG7Gz/8hIRiXOvvvoqQ4YMCYlcRM2ar/L++yl06OBXViLiNxXUsSolBUaPhhdegKpVvdhPP0FGBvzrX76mJiISj2bMmMG11w4ovBkTaEPdum+Tk1ONtm19TU1EfKaCOtZddx3MmQP16nnbBQUwZAj88Y+aBEZEpJLMmTOHvn0vp6AgPxBpTnr6LObNq0HLlr6mJiJRQAV1PGjbFhYuhLPPDsb+/W/vavUPP/iXl4hIHFi8eDHdu/dk7949gUgTGjTI5IMP6nL66b6mJiJRQgV1vDjhBJg3r/hYTXPnev2qP//cv7xERGJQvXreiKVmX9KqVTd27y4cSak+jRplMX9+A04+2dcURSSKqKCOJ9Wrw8svw6OPep8EAOvXeyOAvPWWv7mJiMSQLVsA1gMZwI+BaB0gk/nzm9CwoV+ZiUg0UkEdb8zgL3/xhtCrUcOL7doFl18Oo0ZpEhgRkXLZgldMbwhsHw3MAlpQv75vSYlIlFJBHa8uucQbr7pp02DsvvugXz/IzfUvLxGRKLd9+3agK/B1IFIVmAqc41tOIhLdVFDHs9NPh08+gc4h8+dMngznnQfr1vmWlohItNq1axfnnnsJUHjvSRIwCejkX1IiEvVUUMe7unVh1iy45ZZgbOlS72bFuXP9y0tEJMrs3buXiy66jJUrPwyJTgA0l7iIlE0FdSJISYEnnoDx46FKFS/244/QqZM3vJ6ISIIrKCigZ8/+fPzx7JDoE8B1xfZLT49oWiISI1RQJ5IbbvCmJj/uOG87P9+bAGbIENi3z9/cRER84pzjmmv+SGbmG0Wxo4/+K6tX34JzFFs2b/YxURGJWiqoE81553mTwIRO7fWvf0GXLt5VaxGRBOKcY+jQv/Daa88XxapWvZl58/5a7J5uEZGyqKBORA0bwgcfwBVXBGM5OdCmDSxb5ltaIiKRNmrUo/zrX/8o2k5KGsDs2Y/TsqX5mJWIxBoV1InqqKNg0iR48MFgbO1aaNcO3n7bv7xERCJk7Nhnuf/+u0MivXnjjfF07KiPRhE5PDprJDIzuOcer4BOS/NiO3dCnz5eoe2cv/mJiITJyy+/ys03/ykkchHPPjuJvn1TfMtJRGKXCmqB3r1h/nxo3DgYGzkSrrzSK7BFROLIO+/MYMCAAUDhRYM23H//2wweXM3PtEQkhqmgFk+LFt7Nih07BmNvvAHnnw/ffutfXiIilWju3Ln06XM5zuUHIs0ZMmQmI0fW8DUvEYltKqgl6Jhj4N13YejQYOyzz6BRI697SOhSr55/eYqIHIElS5bQtWtP8vP3BCKN6dcvk7Fjj/E1LxGJfSqopbgqVWDsWG/Cl5Qy+hJu2RK5nEREKujLL7+kQ4eu7NnzSyBSj4suymLixAaYBvQQkQrS3RdSskGD4Ne/hgsvLH2fnj29KcxbtfJ+/upXkctPRKSc1q9fzwUXZLBjR+FY+3Vo2TKTd95pWuZ1AxGR8tKpREp3wQVlP/7OO95SqFEjr7AuXM4+G2rWDG+OIiJl2LJlC+efn8GPP24IRI6madOZ/Pe/Z1C9uq+piUgcUUEtlWf9em95801v2wxOPbV4kX3mmVBNd9KLSPht376d9u27smHD14FIVerVe5t589pSu7avqYlInFFBLUfuxRe9kUEWLvRuXszLK/64c/Dll97y0kteLCXFG1EktMhu3jzyuYtIXNu1axedO1/CqlWfByJJ1Kr1jHJswgAAD7xJREFUKh980Jn69X1NTUTikApqKVt6esk3IKanw4AB3gKwdy988QUsWhQssr/4AgoKih+Xn+8V3599Bs8958WqVaNl06bQqVOwyD7lFEjSPbMicvj27t3LJZdcxuLFHxbFqlUbT05OX5o29TExEYlbKqilbJs3l2+/qlXhrLO8ZdAgL7Zrl1c4FxbYCxfCV18dfOyePdRavhyWLw/GatYM3uxY+LNhQ3Q7voiUpaCggN/97lqys2cXxZKTH2f27IGceaaPiYlIXFNBLeFz1FFw7rneUmj7dli8uHiR/d13Bx/7yy/w3/96S6Ff/ap4V5HWreG448LfDhGJCc45Bg26iSlTXg+J3stbb91K+/a+pSUiCUAFtURW7dpe145OnYKxLVtYOmECv8nLCxbZP/xw8LE//AAzZ3pLoYYNDx5ZpFat8LdDRKLOHXfcyYQJz4VEhvH886Po3du3lEQkQaigFv+lp7OtXTvo0MHbds6b7jz0Kvbixd5V6wN9+623vPVWMNasWfEiu2VLND6WSHx75JFHeeyxv4dEruWRR57gxhvVTUxEwk8FtUQfM29M60aN4PLLvdj+/V7/64ULgzc+fvop7Nlz8PFffeUtr7zibScnHzyySIsW3qyQIhLznn32We6++66QSC9uu208d96pG5tFJDJUUEtsSEqC007zlmuv9WL79nk3MoZeyV627OCRRQoK4PPPveX5571YtWremNiFNzy2bu2Nma2RRURiRr16sGXLJOBPIdGOpKa+xujR+g+ziESOCmqJXVWqeEXxmWfCH/7gxXbvPnhkkVWrDj52zx5YsMBbCtWo4fXBDr2S3aiRRhYRiVJbtswArgVcINIamEpeXjX92YpIRKmglvhSvTq0a+cthf73P1iypHiRvX79wcfu2AE5Od5S6NhjixfYrVp5l8VExFfz5s0DLgfyA5FfA7OAGr7lJCKJSwW1xL9ataBjR28ptHVr8UloFi70Ygf68UeYNctbCp1wwsFFtuYxFomYJUuW0LXrJUDhPRQnAVnAMb7lJCKJTQW1JKbjjoOLL/YW8EYW+e674gX2okUljyyyYYO3TJkSjJ1yysEjixx1VGTaIpJAVq1aRYcO3di9u/BvMx2vmD7ex6xEJNGpoBYBr590w4bectllXmz/fli9uniR/emnXj/tA339tbdMnOhtJydD8+bFbnq0ffsi1x6ROPTtt9/Srl0GO3YUjlNfG8gETvYxKxERFdQipUtK8sa0btYMrrnGi+XnlzyySH5+8WMLCmDpUm+ZMAGAC6pU8a5ch17JPvVUr/gWkTJt3bqV1q0z+PnnwplVjyI5eSYFBb85aN/09MjmJiKiglrkcKSkwG9/6y2//70X27MnOLJIYb/sL7/0upGESNq3Dz75xFsKpaUVH1lkyBCv3/aB0tNh8+YwNkwkem3fvp2zzurK1q1fBSJVOe20t1mwoJ0mRhWRqKCCWqSiqlWDtm29pdAvvxw8ssi6dQcfm5sLc+Z4S1m2bIEnn/T6ZZdnqV5dw/1JXNi1axdnndWTjRs/C0SSaNbsVT7+OIOaNX1NTUSkiApqkXCoWdObSr1wOnXgw7ff5rzU1OJF9pYt5X/OW245vBzKW3wXLkcfffjHpOgUIuGzd+9eWra8jLVrPyiKnXzy8yxa1JcaGh1PRKKIPg1FImRf7dpegd29uxdwzhstJHT4vvfeq7wX3LXLW8KpatWDiuyW+fneWN0VLdgL969aVVfbE1BBQQGtWl3LV1/NLoo1aTKGTz+9nrQ0HxMTESmBCmoRv5jBiSd6S58+wVhphg0LFsmhy86dB8f27Cn9eSrT3r3esn17UagWwIoVlfcaSUnhucIeun/16uWbdt6b6xqADqFx9XGvFMFfrwNuAl4veqxRo5EsXXobRx/tU3IiImVQQS0SK558svz77t/vDe9X3gL8UEtpx+zfH772hrYlN9dbwqlatUMX4aV10TmcrjtSquCv8S7guZBHhrF8+X0qpkUkaqmgFokm6eklF2eHOw5YUpJ3BTacFYhz3tXpA4rsJR98wFmnnlp5RfveveFrQ6g9e7xl27bIvJ6U4m+BpdC1wBMcfbS6/YhI9FJBLRJNYqnbgBmkpnpLnTpF4V9+/rnYzZgVlp9f8tX2yrzSHu6+5nIYQv8D1QsYD5SjO46IiI9UUItIdEtJgRo1COuwDs55V6cPVYAXTvAjYTQSbwbEqcBrQBV/0xERKQcV1CIiZt6NidWrwzHHlL6fCuoIGQb8CdAsoiISG/Q9mohIeZXWl11zXVeK4r/G5FLiIiLRRwW1iEh5bd7sdQ9xjpzs7KL1mOr7HsVCfr3FFv16RSTaqaAWEREREakAFdQiIiIiIhWgglpEREREpAJUUIuIiIiIVIAKahEROSxm1s3MVpnZajO70+98RET8poJaRETKzcySgaeB7sDpwFVmdrq/WYmI+EsFtYiIHI42wGrn3DfOub3AJKC3zzmJiPhKMyWKiMjhOB74LmR7A3BO6A5mNggYBJCenk5OTg4Aubm5RevxKhHaCGpnPEmENkL426mCWkREDoeVEHPFNpwbB4wDaNWqlevQoQMAOTk5FK7Hq0RoI6id8SQR2gjhb6e6fIiIyOHYAJwYsn0C8L1PuYiIRAVzzh16ryhiZj8A64FjgR99TicS1M74kQhtBLWzLI2cc78KRzKRYmYpwFdAJ2AjsBC42jm3vJT9C8/ZkBj/NhKhjaB2xpNEaCMceTvLdd6OuS4fhY0ys0XOuVZ+5xNuamf8SIQ2gtoZ75xz+WY2FHgXSAYmlFZMB/Yv+iBKhN9ZIrQR1M54kghthPC3M+YKahER8ZdzbiYw0+88RESihfpQi4iIiIhUQCwX1OP8TiBC1M74kQhtBLVTSpcIv7NEaCOonfEkEdoIYW5nzN2UKCIiIiISTWL5CrWIiIiIiO9isqA2s25mtsrMVpvZnX7nEy5mts7MlpnZZ2a2yO98KoOZTTCzrWb2RUisrpllmdnXgZ91/MyxMpTSzlFmtjHwfn5mZhf7mWNFmdmJZpZtZivNbLmZ3RKIx9X7WUY74+r9DCeds2NbIpy3E+GcDYlx3vbrnB1zXT7MLBlvDNQMvAkGFgJXOedW+JpYGJjZOqCVcy5uxoc0swuBXOD/nHMtArG/A9ucc48GPmzrOOf+4meeFVVKO0cBuc65x/zMrbKYWX2gvnNuiZnVABYDlwIDiaP3s4x2XkEcvZ/honN27EuE83YinLMhMc7bfp2zY/EKdRtgtXPuG+fcXmAS0NvnnKScnHNzgW0HhHsDLwbWX8T7hx/TSmlnXHHObXLOLQms7wBWAscTZ+9nGe2U8tE5O8Ylwnk7Ec7ZkBjnbb/O2bFYUB8PfBeyvYH4/XBzQKaZLTazQX4nE0bpzrlN4P0hAMf5nE84DTWzpYGvF2P2K7UDmdlJQEvgY+L4/TygnRCn72cl0zk7PsXt3/kB4vZvPBHO25E8Z8diQW0lxGKr30r5neecOwvoDgwJfCUlsesZoClwJrAJGO1vOpXDzNKAt4BbnXO/+J1PuJTQzrh8P8NA52yJVXH7N54I5+1In7NjsaDeAJwYsn0C8L1PuYSVc+77wM+twBS8r07j0ZZAn6fCvk9bfc4nLJxzW5xzBc65/cBzxMH7aWZV8E5YrzjnJgfCcfd+ltTOeHw/w0Tn7PgUd3/nB4rXv/FEOG/7cc6OxYJ6IXCKmTU2s6rA74BpPudU6czs6EBneszsaKAL8EXZR8WsacB1gfXrgKk+5hI2hSergD7E+PtpZgaMB1Y658aEPBRX72dp7Yy39zOMdM6OT3H1d16SePwbT4Tztl/n7Jgb5QMgMNTJE0AyMME595DPKVU6M2uCd4UDIAWYGA/tNLNXgQ7AscAW4K/A28DrQEPgW6Cfcy6mbw4ppZ0d8L5qcsA6YHBhn7VYZGbnA/OAZcD+QPhuvL5qcfN+ltHOq4ij9zOcdM6ObYlw3k6EczYkxnnbr3N2TBbUIiIiIiLRIha7fIiIiIiIRA0V1CIiIiIiFaCCWkRERESkAlRQi4iIiIhUgApqEREREZEKUEEtEWVmzsxGh2wPN7NRlfTcL5jZ5ZXxXId4nX5mttLMssP9WiIiftI5W6R8VFBLpOUBfc3sWL8TCWVmyYex+43An5xzHSvx9VMq67lERCqRztklv77O2VKMCmqJtHxgHHDbgQ8ceLXCzHIDPzuY2Rwze93MvjKzR83sGjP7xMyWmVnTkKfpbGbzAvtdEjg+2cz+YWYLzWypmQ0Oed5sM5uINwD8gflcFXj+L8zsb4HYvcD5wLNm9o8SjrkjcMznZvZoIHammS0IvPYUM6sTiOeY2cNmNge4xcx+ZWZvBfJcaGbnBfZrb2afBZZPC2djExGJAJ2zdc6W8nDOadESsQXIBWrizVJUCxgOjAo89gJweei+gZ8dgO1AfSAV2AjcF3jsFuCJkONn4/1H8RRgA1ANGASMCOyTCiwCGgeedyfQuIQ8G+DNFvUrvFnP/gtcGngsB2hVwjHdgY+AowLbdQM/lwLtA+v3h+SbA/wr5PiJwPmB9YZ406YCTAfOC6ynASl+v49atGhJjEXnbJ2ztZRv0VcWEnHOuV/M7P+Am4Hd5TxsoQtMEWpma4DMQHwZEPo13uvOuf3A12b2DXAa0AX4TciVlFp4J++9wCfOubUlvF5rIMc590PgNV8BLsSbbrc0nYH/OOd2Bdq5zcxqAbWdc3MC+7wIvBFyzGsHHH+6mRVu1wxc2fgQGBPIYbJzbkMZOYiIVCqds3XOlkNTQS1+eQJYAvwnJJZPoBuSeWeoqiGP5YWs7w/Z3k/xf8fugNdxgAHDnHPvhj5gZh3wrnaUxEqJl8VKeP1DCX39JKCdc+7AD6xHzWwGcDGwwMw6O+e+PIL8RESOlM7ZHp2zpUTqQy2+cM5tA17Hu1mk0Drg7MB6b6DKETx1PzNLCvTRawKsAt4FbjKzKgBm1szMjj7E83wMtDezY827+eUqYM4hjskEbjCzowKvU9c59z/gZzO7ILDPtWU8TyYwtHDDzM4M/GzqnFvmnPsb3lefpx0iDxGRSqVzdqnH65wtgK5Qi79GE3IyAp4DpprZJ8D7lH4loiyr8E5+6cAfnXN7zOx54CRgSeAqyg/ApWU9iXNuk5ndBWTjXcWY6ZybeohjZgdOqIvMbC8wE7gbuA7vhpijgG+A60t5ipuBp81sKd7f5lzgj8CtZtYRKABWALMO8TsQEQkHnbOL0zlbiphzh/tth4iIiIiIFFKXDxERERGRClBBLSIiIiJSASqoRUREREQqQAW1iIiIiEgFqKAWEREREakAFdQiIiIiIhWgglpEREREpAJUUIuIiIiIVMD/B4iKohSetXF9AAAAAElFTkSuQmCC\n", "text/plain": [ "<Figure size 864x432 with 2 Axes>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Define figure size\n", "rcParams['figure.figsize'] = 12, 6\n", "\n", "# number of cores and runtime\n", "cores = np.array([1, 2, 4, 8, 16, 25])\n", "t_denise = np.array([0.926, 0.482, 0.234, 0.123, 0.067, 0.055])\n", "\n", "# speed-up with respect to the runtime of the 1st core\n", "# and linear speedup\n", "speedup_denise = t_denise[0] / t_denise\n", "linear_speedup = cores\n", "\n", "# plot runtime\n", "ax2 = plt.subplot(121)\n", "plt.plot(cores, t_denise, 'rs-',lw=3,label=\"Runtime\")\n", "plt.title('Runtime DENISE Black-Edition')\n", "plt.xlabel('Number of cores')\n", "plt.ylabel('Runtime (s)')\n", "plt.legend()\n", "plt.grid()\n", "\n", "# plot speedup\n", "ax2 = plt.subplot(122)\n", "plt.plot(cores, speedup_denise, 'bs-',lw=3,label=\"Speedup DENISE\")\n", "plt.plot(cores, linear_speedup, 'k-',lw=3,label=\"Linear speedup\")\n", "plt.title('Speedup DENISE Black-Edition')\n", "plt.xlabel('Number of cores')\n", "plt.ylabel('Speedup')\n", "plt.legend()\n", "plt.grid()\n", "\n", "plt.show() " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Using less than 2 cores, the JIT compiled Python code with a runtime of 353 ms is faster than the MPI code. Utilizing more cores, the DENISE code leads to a steady runtime decrease. However, notice that the speedup is not linear anymore when using 16 cores or more. This can be explained by excessive communication time between the MPI processes, when the domain sizes decreases. More details about MPI and Multithreading optimizations are beyond the scope of the TEW2 course, but will be the topic of a future HPC lecture ...\n", "\n", "To get an idea about the difference between JIT optimized Python codes and manually optimized codes, I recommend a SciPy 2016 talk by Andreas Klöckner:\n", "\n", "**High Performance with Python: Architectures, Approaches & Applications**" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [ { "data": { "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEABALDA4MChAODQ4SERATGCgaGBYWGDEjJR0oOjM9PDkzODdASFxOQERXRTc4UG1RV19iZ2hnPk1xeXBkeFxlZ2MBERISGBUYLxoaL2NCOEJjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY//AABEIAWgB4AMBIgACEQEDEQH/xAAbAAACAwEBAQAAAAAAAAAAAAAAAgEDBQQGB//EAEcQAAIBAwEDBwkFBwMCBgMAAAABAgMEESEFEjETIkFRcZHRBhQyQlJhgZKhFSMzU7EWJENicoLBNOHwRNIHF1RjovFzg8L/xAAYAQEBAQEBAAAAAAAAAAAAAAAAAQIDBP/EACERAQEBAAMBAAICAwAAAAAAAAABEQISMSEDQRNRMnGB/9oADAMBAAIRAxEAPwD5+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABf5rPriR5vPriBSBd5rPridVHY9xWhvRnSS97fgNXGeBqrYF0/4lHvfgT+z13+ZR+Z+ATGSBr/s7d/mUPmfgH7OXn5lD5n4BcZAGx+zd5+ZQ+Z+BMfJm9k8KrQ+Z+AMYwGzLyZvIvDq0PmfgdGz/I7aG0N/ka1rHc478pL/APkmwyvPAerf/h/tVV40fObLelFyXPn0f2+8s/8ALna//qbH55/9o2I8gBtXfkze2l47WpVt3NdMZPH6Dw8lL6ecVbfT+aXgNi5WEBuT8lb6Cy6tv80vAr/Zy8/MofM/AaZWOBr/ALO3f5lD5n4Efs9d/mUfmfgUxkgav7P3f5lHvfgQ9hXSXp0e9+ATGWB21tl16MN6UqePc34FHms+uIXFIF8bSpJ4TiWfZ9X2od7GmOQDr+z6vtQ734E/Z1b2od78CaY4wOz7Nre1T734E/Zdf2qfe/AaY4gO5bKrv16fe/AlbIuH69LvfgNMcAGitjXD9el3vwJWxLl+vS734DTGaBqLYN0/4lHvfgMvJ67f8Sj8z8BpjJA2F5OXj/iUPmfgSvJq9f8AEofM/AbDGMBtfsxe/m2/zS8Cf2Xvfzbf5peA2GMQDb/Ze9/Nt/ml4Efsxe/mUPmfgNMYoGw/Ju8X8Sh8z8CH5O3a/iUPmfgNMZAGq9gXS/iUe9+Ar2Hcr16Pe/AaYzANF7FuV69LvfgQ9kXC9el3vwGmM8Du+ya/tU+9+BH2XX9qn3vwGmOIDs+za3tQ734EfZ9b2od7GmOQDq8wq+1DvYsrOpFZbj3jTHOBbyEutArecmknHUpioDQ+x7j26Xe/An7GuPbpd78CaYzgNH7GuPbpd78CPse49ul3vwLph+gVrUfBDRlYhcGblhH7hdpipcTfsI/u67RGnRGI2CUhsFZKkMkSkMkBGB6K55GB6ekiKrq+mzQ8mm1Ur4936sz6ms2bHktTi4VpNrLx+rMcp8blaMpP7Wo//hl+qOqUmiORX2hGp1Umvqi+UEzN4VntHhdqve29N+//AAjst+Ejm2rHHlDUXv8A8I66HBmv01pblc04mjuujkaNRmqmhWi1oVo0yqaK6i5rL2iuouawMraC+4+JmYNTaSxQj2mYRYmkvvEdJRSXPR0LiQGBkQSgJQ6FQyQDIsihUiyKAaKLYoSKLYgPFFsUVxLYgPEsQkR4ogZDIEicAQxWO0KwKpIrki2RXIopkimSOiRVJAUSRW0XSRXJAUtCNFrEYFTQrRY0K0BU0U11iB04KLn8P4gcY9FZrQXvFHtl+8U+00NtIbAInBlUYIwNgAMVohjtCsJAuB6GwX7su1nn0eisV+7R7SwroSGwCJKgRKAlATgIxTlxfeSStGFUy0k0a3ktSpOjWcqcZPK1a97MiT50u03fJSnm2qS63/lmLv6a/TVg4x2juRikuSzoveXyhTk9YJ/ArVP9/c//AGkvqy5w1F7Yx8eGv4Rjt+uoLC3nodtJaM5L5Y2/X/qZ1U3oGy3HpHPgvrvMilmozSsgYgqEZVVXNZcyqr6DKjK2n+FDtMt8TU2n+HDtMxozWoemsc58EWKpHrx2iRmoabuXgsVG5kt90ZarqyU+myMjnlGqnrFrHuOiJKGQ6FQyIHiWREiPECyJZESKLYgPEtiiuJbEB4osihEx4sgtiicCJjZAGhWickMCqSK5F0iuRRQyuRdJFUkBVIrkiyQjAqaK2WsRoCtoVjsRgKznuvQXadDOa79FAchbZrN1T7So6LFZuoFGyhiEMFKBJARjyjJIWRbP0ShyBDriu09HZL92j8TzcZc5dp6Wy/00BCuhIklInBUQSGCcAABgArmnLnS7Td8mLhRtKkc6qZg1obstX6RwuVajUlyLk1nobRmxZZ+30Glcb206sc6KlF/Vl0rqKljJ8+hd3cFvrllN6aSY/nN9L0pzX/7GZ+tZxdVzU5TbNxP+eX6nVCRl20J8rmWr6Xk0I6I1jJqjzIrGfEgrKBWMQArKq3oMuZVX9AoyNp+jAzTR2n6hnpakqxZC1qTqUZerOWNOg35VJUIKCpdGjfSZ2z7lqMbeUE1nKl0o1lWzSanLOhHXjHNdqcqKTgo78N7h0dplo0atw1bz1k+hbxnIrPMyHQiLIojBootihIjoCyJZErQ6YFsSxMqTHQFiY6ZWh0BYmSmIiQGbIyQHQBDYjJYjYEMrkh2xWBTJFckXSK5ICliMskhGBW0K0WMRgVtHLd+qdjOO74xA5Tp2ev3ldhzM6tnf6j4FVroYiI2AIIJIYRlVPROZnXV9E5sBIVLVHqbBfutPsPMpao9TZLFtT/pCr4obBMUNgqEwTgbAYAXAYHwMogJyeegqdPns6hZxWMpGa1HPKmlEXcWCyeqAikpUsT0LnHA8IJLPSSVKpwRgslEjBWSYIHwRgBMFFx6HxOloSUIyxvtqCeZNcSz6MHaSblTSWWTabHvbqUVChKOemawezpW1tSjSjSpQc2sSmtZJ4zjL4D2Fw6tvvOjNSjU3HLeTk12nTp/admFS2M7SzqRlFTqxqKTqReiWuiKpUJJvEkl1M9BTqQn5zTnu04xeXvvRLOf8mbyUarfJVI1oJ4U4vRmefH+nT8d35WDcRq1JuEItqDw8deDmw4vDWGuhm5Spwo1LyU5KMnJKOX6WnQhJUaEqituTnjd39/A6fE5X6yEWIe4oO3quD10TT60VoxZiLEOitDogsQ8SuJYgLEWIriWIB0MhUMiB0SKhiiCeggnoARiMdiMCtitjMRgQxGMxWBW0I0WMVoCpoRlrQjQFbOO89Jdh2s4rz8RdgHIdezV9++w5Ts2YvvZdhVasEOLT4FgCMhjMhgZdVc05sHTU9EoxqGYejjlI56z09mv3en/SeWWjN2yvJqnBNJ4iVWtFaDYKKNzCWj5p1LUITAYHwTgBME4GwGCKjADYIApqU1xQ0aaXHUeSysE4AUME4DACkND4DAFWAwPgjARXg7bCnznNqMoU1vzi+l9H+TllhLL0O/NSwtI07mkpU8cpOUeh9COnCJXHGpOG0XKiopSlF1ac+ht+GhfbxlSje0vNM7lXfWHw6TN2lOnLZrqRmpVast5P1kjT2XV5e9uIRc+fSXCeehHTTHLtGMqlC+U7FqosSyn0f8Rx05eb2tB0repS344bjwfvxwPRVbeVaVVOVX7yhla/86zArq8js+2nSm8057q3sY4kWKeThXr1d+hUlKG7NN8WPVq00ozUK2eS5PPvyWW8r6ve/vGadWdF5jBaIW4rVuUp0FOUudv43etZ/VlVwbTpOM41MS3XzcS6Oo4TYv252041KjqVXipp6rWjMdHHn6HQ6K0WRMCyJYiuJYgHiWISI6AsQyM51r2d2o0qMeQT1m3xRooBkSQgIBsboFH6AK2IyxiMorZWy2RWwEYrGYrARkMZkAVtCNFrEaAraOC8/F+BotGfefjPsKOU7dmrny7DjO3ZvGYVqU+BZgSl6JZgBRWh8ENFRlVeBQy+pwKsEhCtaGnaeiuwzZcDUslzV2IqV2Q4HfZz3o7r6OBxQWhdby3KqYGikTgZLJOCKTAYHwGAEwGBsBgBMBgfAboCYDA+AwAmCMD4DACYIwPgMAWWNCFW4W+44hznGXTgNo1dyfJb+6nz6sZ8MdCOapRp1pJTqunKOqaEr2EaueVvZ1It5aklk3x5SL0/bGva8L+/cqNJxjw3VwSxxNShaSpXcK+OQpxo45SlLST/AMl+zbCwsnKrFzlOWU8y0OydWnUioqFN7vopvdY7NTg5KVZ8tBq8nhUXxOe0lv2VBTu8Zr6ZOmnJ0qycaFRZjuuLxJYK7C6t6llydaEqMqNbKbhlI6S6xymFqRlHbNNq+1cGs95n1nWjcVajrxe5RTz16GptWrb+d0uRrU5uNKXq44amTe01BuSVNyq0opY6AQ9rCtFSct3k56Z4vnLBltbsmnxRsQp1q0I+b7tNKKWWs6oqlsqrOo51K0cyeW8HPldXrWaixG5YWOzaVdKpW5SotUpYwaV1UpRhGFOUIzfSkng5tTi8qiyJ0XdRSlzmpyWiwsYOZaBmzKtQJuppHSPS/ArWanuh+pfFYWgQ8UopJcEMhUMgGJIAALOgrLWgEYkixiNAVyK2i1oRgVtCNFjQrAraFwWNCsoRischoCvBmXn48jVwZd3/AKiZFjmO7Zy0mceDu2esQkUalFcxFmBaK5iLMAI0Q0O0Q0UZFVaFWC6qtCsiRXPgatlw+CMup6Jq2K0+CCV2xWg6QQWg8YOTwijutZ79Nda0L8HBQnyMnvcPcdKuoezIir8BgIPeinhrtGwQJgMD4DACYDA+AwAmAwNgMALgjA+AwAmCMFmAwBl3ltXnW3qSTTXXjBy1IXUNJxxpxybuDkvI6rsLGu1jAtateo+VU5QWuE1poejtrWrUnGnTkpTcN6cc43X1NHHZRlOhTSpU6qxHMU8Pidqc47UvKit5yiqai8PDjodOsqd7DLZlbfpNNKes93Cawus4KXLrZ3NanCddJwfFPK0Ozeh5xWq0rypCNOisb2e76HJTleW2zKXJyp1VWq5Sf/PcakxLbSXsf33PmsU1Sbkk+HEwdo3Pm93GnJbu5BLDfE3Y30rm6rSjb0+bD7zo1yeX2+qUruE6TTUo646PcOXhHTT21ya5s3HsJntl1Y4ncNIwcDKKcXnoycmtrahc0ZcKkX8S+NRPVST7GebwNDO8hiPTJ9LZMfvOPo9XWYUqiVSS3pd4jm30sYza9PFrrQ6a6zym8wU2mmuKHU169DI81Hal3lLlPoj0cXzUZ8WHJIAgFxOjBzx9JHVgCpitFrQjQVVJCNFrQjRUVNCtFrQrQFTQrRa0K0BU0Q0WNCtAJgyLr/UT7TZwY1zrcVP6mFik7rD0GcR32K+6faUatFfdx7CzBFFfdx7B8AIK0WYFaAyK3olJdW4FISFq+ga1gua+xGVU9A19nrmv4ArvjBqCbWjGUW3omzTpUouhCMlnQeNOMPRikEZqtqr9U6qFs4Yc3w6DrwGAqMBgYMEC4DAwYAjAYGwGAEwGB8BgBMBgfAYATdIwWYIwAmDi2hFuDUeO68Ghg4b9axXW0vqWehtmxuKdzSgqVNxXGOehLH6hQe9G9ualJxdSW7F73/OsWlSUKVxX3ZLk6ajzZ9L/APs77GhyWz7aPOzJ77TWV1+B3ZZN1c0I+e4nLWChuy1TYlvToOlYRSjNSeZYkX3e87OtUqRtm6tTEV63/NDlvI2lCrbwqQlSUHGLlH3r/ZhWZtKdKntCpyE8U1iM8y6TF2jONbdnDj06fU9Bc0LeG0pqlCLjVWYOfWjO2rB+btZjiPBJcF/9i+DCXEsjH7qUu3/AiWZJe86I03ycot5zk4tufGhfY04Tuqam1hy4PqF5LC10CEGpp5QKa/3YXtZQ0inoUpj1acpVJNLRsVU5LoLGL6soUalxVVOlBzm08JFWS61rVbS5p16SW/TeVngVTzKcpYxl5wiomHpx7T2EfRR46mnyke1Hro1aePTj3mKsWgVcvSXGpHvGc0oRniTjLhiLZMU8XiSOnlYe0Z0LqjUm4Rmt5dD0ZcwOvei+El3kM4mxN5rg2QdzQjRyctUXrMPOqi44ZR0NCtFSus5zHoOapWnUerwupBXY0Q0OlzV2A0BU0K0WtC4ArwYdfWvP+pm/g83Wrrlp6eswJ4nfZ6UfiZbrdSNPZ7btk30so2qS+7j2D4OOnWnot5JHUqkFHWSAloVomNSM21EloDDqwlFc7HwKy65lmK7SkJC1PRNnZ2Em3wyjGn6K7TYsPw5dpSvQUrqElFYaOoyKWiTNWjLfpphD4DBIGVRgMDYAogMASiCMEk4DAEYDA2AwFLgMDYDAQuAwNgMBSYMTyn0sJdsf1N7BmbWtld0alF+tHT3PoLPUrylvfzhQdCq5bjknvJ6/7m7PaVzVt6krK+3qcIJKPSv+YPLzqJScWsOLwymUt3nQbTXSjuxrfr1K8bm2t6kd+MOc0nxOXbFxS8131GcKjqc1Z0/5xMxbWuqVblcxnLGMyRXd7QntCnTjNbvJ+/iTV1v160KtrSr0qcpyjiWX9RL+nUq0JS5sYyjvd5n0Nqzp2KtVDPFZb6Circ1KtLcnN4isJIprij6a7TsTWDkj+Iu06U00cK6CUkKiWkQlhhD40QaAgaIqHgjCzglxQKKRURoSsdYNEJLJBO848JNfE6LivU3aKVSSxSXT72UYTQ11HnU11Uo/oagtslvSUW8reRtU5PWEtXB4z1mRs6PPjj2jY/6if9MSIliMdisgrYjLGIwETxnsE9ZD4ym+oVLnLtA1EtEQ0WY0IwFVtCtFrQuAKmtDzM6KdSTb4tnqZLEX2Hm3rJhYpVKPUalpFRoxS4GeaVsvuoiDRVmmk1InzT+Y6orCJKiqNNQWEiGWNCMDBrcEIhq71Qq4BIqq5wsdZoW13UpQw6S114mfVqKlKEpLKT4Fi2jD2F3kXGxHauEs0P8A5HZb7ehTjiVCXwZ5xbQpfl/UZXtF+q+8auR6heUNv00ai+KHW37TphV7keV88o9UifOqH8w0x6xbesn+Yv7RvtyxfGc1/aeTVxQ9p9xPL0Pb+g0x61bZsH/Ga7YsZbXsH/1CXameR5Wi/wCIid6i/wCJAmmPYradi+FzAdX1o+FzS+ZHjo8k3+JDvLFGn0Th3her2CuraXC4pP8AvQyq0Xwq03/cjx+7Drj3hux93eU6vZqUHwlF/EnTrR4zcj1PvGUUuma7GQ6vY4J3Txyk+irVXxGVWa4XNZfFlTHrsHHcL774GAq9dcL2su8SdzcZz59L4pgxgbRhu7RuEumbf1KVB44HRdrNw5t5b4vrCL5p24+OXKfWbXWHgKKxvJ8UwuHmbfvCi+c/eT9i5aakSehJHQaQi4jr8Hu/ViR4kxeab7V/k5V2ho6yS9518hT3dI69py0vxY9p3P0XgzWqohRT457xZ0t2eMyx2nRB4QsllsJjnlBrhKXeLiftMuwJ0sIrzUXrfQaMZy9b6EtaD0+AF9lb8rVUKktH1GpX2VRlNc+axFLo6EZtC4jbTjUlFyS4pGhW2zbQquMqVXOFwa6ioutbSFqnutyb6WWf9RU7Ir6HJHbNm+Ma0f7U/wDJH2rZqdRt1ec8rmLhjHWEdrFZyPa1p7cvlF+1bT2pfKTB1SK2UfaVq/4j7hXtC1fCp9AOiPoy7BYenHtKlfW25L71akU7u35WP3seIG/gjBT9o2b/AOogHn1o+FxT+YKsaFaF87tnwr0vmQctRfCrD5kQRU0pyfuZ5pHpK1SHIVMTi+a+DPNrgFiHxNK2X3cEZz4mna8KfwLCtpIGMgaKhGIyxlbA89X4oRMau9UVphI577WEV7y2FlT3Vqyq94Q7Tui+aGo53Yw9qQeYromzqzoCZFcvmD6KgeYz/M+h2ZGyBw+ZVOia7g8yq9Ekd2S6kk0KsZTs6/WiPNLhdCNppJcCJaEXGQrS547v1J83uV6n1NaJL4BcY/J3K9VkYuV6kjX0JXEDH3rlerMnlbjqmbS4EOKfFEXGMq9wuip3E+dV1xc18DUkknwJ3Y9SCYyvPqvtyId9Ux6Zq7kfZQlSlDHooDNuX94u1ix9Am7WqkvaaJpr7ls9HDx5ufrMqLNRL3jKO5NoI63EV7yyvpXngzfV4pGS0YkXoXxWYG4y5VxGh+E/6kEliTJfNpLtX6HO+u3E1L8WPadumNOlHBTf3iO1P7sxY1UxepLWpRv9Q7liOoxCz0ZW5JZCc8srbGIdS0LI+iUItg9GgQ1f8MS7ebhvrUX9EdlvQdxiKaWmdTqr7MlJxe9D0UvoVKw1xJm+dg1J7MnGLk9xpE1dlz33zYd5EY4Go9mVF6ke8V7On+X9QM0g0ns6XTTfeJKwa/hyA4HwGp+mjuViuSk3CWU1gLeyUrmEZKWG8MCgGegexbfrqL4ivYlDonUXcRpg5Iybj2HSfCrPuQj2HHorv5SjIi9UXROytsjkKUqnK727rjdOSOhFgxzkdtvUnHcfJtqP1ONekhYXUoxwpCVXoY7S66Eu8b7Qj+TM8+rya9Z943n9Res+8upkblTaEcaU5596KltBetBpe5GP9pVl67BbTrJY3voVMNXeqKovUe4eqK4cQzFV5xh2nbHgcF5+JTXvO2L0DUWZ0BPUrchosKcZC9JPACTopvQ5U9TopvmkrUWt5lgiZCedRZsini9A3tBIvQjXID9AR1YregQ4gWxfQSKngbOhlpVN6jZEm+cN0GkSLU4AnkipwRBn14qVGfuk2UxnJUJrGdNDoqLNOSfW/wBTjrTl6McRid+Hjz/k9ctss3CzxRZcfjz7SKWt0sdWoVtas+0zy9XiiHEupt/AphnoI5WS4aG4xQ23JjVtd2S6kvoVxbeX7i2p6Ee3/CMV14+IoZdRHXLSODmoYVTPuOmT3tTNWqGmiJSfDJY+BU+JWRFbzwTOOBqXpE1SaKuCHiwxoSloBqbL9LP8pq1H6P8ASjK2T6LNSp6v9KIlc9Zt4iulpfUvqPnvtKpa1qS/myWTfPfaApDAgCGIxmxWAfwn2k2qzdU+0h/g/Eey1u6faBtNEYHYpFI0LurqHYoHHtLEdn1n7jzuT0O2HjZtV9n6nnW9Q1Dx4nFSoyqZalhZOxFVp6Eu0ikdtNeuI6M16x2dJXPiy6Y5XRn1iulVXQdfQRnA1MW3L56Ei9Sbn00Vo0xCXX4tPtOxcDhuNatLtO2HANQMaIudSYkVYGQRGdQGXEvi+aUR4l0eCFaixcELLiTnCFfAimiw6RYjdYCyeRqYg0XxBFpLeEKmEmRovSOuBWMnoVB0i1XoSxJhHJL8J/EzpcTQb5nwM99J14eOPNVRz5zHtHqfiT/qYlN4uYdpM3z5f1MnL1OKVqI0kPFiz4mp4zfUJ6PsLanox7X/AIKuhltXhH4mK68U0uPwOhcCijpJ56i3OhmrUPgVPiPnQrfErNWU9HkJsiD0InLUgZEvgJFk5A1tlaQZpVH6P9JnbM/CO+fR/Sgitc6506FjvHfES31qyfXIZvVgBAEMCGKyWKwJb+6x7yyx/wBXT7Shp7uehnRs9fvkANohjCsilYozFKM7brxsup2r9Tz0HlJm/wCULxsuXvkjz9H8NEWLY8H2MrtPw32lnCMv6WV2v4XxI0tfErmWMrlxEVHQL0DdAhUWVOc05NJ+4rylwIxniMoHXq46rmt+cZeyXqthcBVAncHU7VPLLqJVVdTF3CdwdYdqsVePUwVaOekr3A3R1XtVyrQXSWU7mnnDeO05NwjcJ1XvWk61PGk494rqw9pd5n7gbhOi/wAjSjOPWu8ZyWOKMrdYYaHU/kaWRovQzOe3hNtnTSoSS3qs2l1ZJeKzm7osHxRxVbrC3aXec/K1fbl3icav8kjSb1HTMrlqvtsnzisvXY6U/kjSbEnwOHzmt7X0IdzVaxldw607wzfMj2HHUjhsv35YS6iqsb4Sxz5WVyN4qxfUxpPLfaJLWRfGllJ54ikqICSTcslu7u6CN7stSxm+l6GW1fV+P6iqO8m0NKLeDFjrLE0yzOpXBY4hnUhTPgIwctRc5YZNF6hPiQgnxCpgdCt5zx0dpXa7vKrKyaCqxawtH0lkZtW2s1QjuvX3o6+XhUej4IzpPEc6FbqS6NUXDWta8IvreSTmsbjMlCb1XBl+8utGFSQGUQAMVkisBp/hQ7WXbN/1kexlE/wofE6Nl63a7GBskMkhkUjIGxksVtVlqolGH5SPGzUuua/yeeoP7o9D5VU507KnCUWnyn+GYFJbtNILFrf3Un/KxLb8JEy/Bn2EW/4SMtLJMrY8hJBRnQTIwrKjpVMZUvcXRwWxwejHm1y8k+obkvcdcVEtUYdJcNcCpfyk8ivZZpKNLpQ6p0ekvVNZXIxxwl3hyEf5jX5Kh1hydHrJ1OzI83j1vuDzZe19DWdOiI4U+gYusvzZe0iHbdTRpOEBJRiTDWc7Z9ce8lWsnxwl2na1FdTK5vqJ/prz1XGnGkuatespqxnPjw6ixoVxY6l5KeRl7LI5KXsvuLXFitS6xiKuTfU+4hwfUW5mulkb9VPO/LvAq3SMF3K1lnE3qRKpVfF5+AVVgZUZ1o4ivjgN+WdcdxZ55ycW4yxjRYERnXNCVFtS4ovprEEvcUXFzOvJuXTxHVdY4EU9RarQqVLlJ5k8IlyctdUiFJrG6xovVFQ9HUGuginUeMMblIKXObyLTFc9EVNnVWdGpCKUt19OUU8lF8K0PjkxWleeshDul/7kO8hR/mXeAJhN6hjs7ydxy4LIxV+z4p1JyfGMMoaVTclnhk6NlUVJVlNNZSWSvacIQrtU+EUk9OksTEKpvLUVPCeuTj35LgyeVlnUMupT53Eq3p+0wgpSWcMndx0FUKpUXrsZVqi4Tl3iMgYmrOXq+3LvJ85rL+IyoBi6vd5XaSc9F7kW2u0LijVUoSWeGqOMtt45q9hMNbH21dJ4zBv+klbaum1FQptvRaf7mXTkp1qnu0LdzJjyusnx6bZdzUrw5Suox1wkjahLODy1nXdOjuvRx6jtpbRafE6zI5a2No0KV3RdOrFNNYZ4baFlKxuNx6wfoyPTyvsrOcmHtu5jOEd59Ohnl9alZVT8CfYRQ/DiLOrF0ZpNZeCaMkoLVHN0ix8SuXEZyWeIjZFoQsiURLgVDq9qL1Y9w0b6S4xie8qeQuzJ+hUrw/uT/wAHHV/8P6WHyV9JdW9DJ3/68/x5NX/8q+o6v459HHxNyt5BX0c8jc0J9uUZ1fyS2xQz+67664STKvxzLaMemL+b/YdbRpdUl/d/scNxY3Ns8V6FWn/VFoowPsMjV+0Kf83eiVf0nxcvp4mSotyUVxZoR2W9zMqyUurBOxjpV3Teu9P5f9yVc02s8rjtTORbNa41YlcaFOhUxWoSqx6HCpjP0E5aY7fPKEWk6qeenD8Bnc05rMasGuvUya0qLn9zSnBdTqZ/wWULadaO8k4rrlIWkd/KQ/Np/MG8nwnD5kcUrKp1p9jEdpWUd7GV7mTsY0MN8MPskiNyb6DIy0Rl9bLqY13Ca9WXcK1L2X3GUpSXrMdVqi4Tl3jVxoPToFZxK4rLhVn8wK5q/mS7xpjrbFOZ3VT2g86qe7uQMdDFcYvikUecTb4J/AOXmvUWOwC3dS4JIehShUlLlHuqMW8nO7jT0F9RqdbebilhtMlGirC3dtGUZJ1Hqn0HSqNGjRgpRhOeNXjJwWdRyopF7lk5Wukia1OhVg06UE30xWDIkknupcDUbMyo4urLnYaZYVCjkndSFco49LXsIcl7SGVNiZJZF3PeGf5kRnHSi5U1O4K0TvEDB37MqKk6mXxSOqtbb9GUtW5POTHU5RllPDNfz5RtKUV6W7qzfDheVwtyOGpa1IQ3t3Q54xblwOupdTn1I53lvJ15/j4cf8brnLb7DptcGyd+XtPvETGTRyxpO/L2mTvy6yMZ4C6jA++/d3A5e5dwmWGQHz7kX0moUpTxgpUJPqLKuZUVCAspqm1li419ZHccNKi4VYyk9F1HZysOqRjlxuuvHlMdUq7+6SWdHvYG5VLXUro0/u3XaxDgs9JfBuos4hFdGW1k1JaxysWK8xHBkbTud/7pLpTbNOUYxzvVIRl8X/gxb2lPzicsZWeKF42EscqY0SIrLG3MdJzaQ2G81wZO6/eRuN9IDqq8aoblE0V8nLrRHJy60DX2/IZPmP8A5i7X/wDT2PyT/wC4ovPLrat3S5OdK1hHOXuRks//ACOnxwkr6hVu7ei0qtenDPDeklkI3ltL0bik+yaPj0/KG6qenQtpdsH4ldTbNapBxdvbLPVB5/UfGsfaG6VWOHuTXvwzKv8AyY2VfJuVsqU369LmvwPmlt5SV7ehCmrK0m4+vJTUn24ki+fljtCSwqVGK/lqVf8AvNSyeVPrs2zsKexdpUlKfKUamsJdOnQznlUedGZtfbl3cPNbdqa5W9Kb3ezLOaV/Wbyt1e5GeeXxuVtqq0yyNaEluzimjC+0q3sw7n4h9pVvZp9z8TGLsb27ZxX4OenVlVW4i9IxwlwMZ7SrP1Ydz8SPtCr7MO5j6fGk5vIOo0uJmef1fZh3Mh31V+rDuGGu2m4qEm0nr0lMp7z4LHYcvnU8NYjqQq8l0I3qOhvUtlJRSW6mcXLy6kS7mb6Il1HQ5JkRWZYOblpdSJVeaecImq6JLDwPRoyr1FCCy2cnLy6kXW+0atupbkYc7i2n4jUblO0tqNNab1Tpef0O3kmqeVuyptei0edhtu4hwpUW+GWn4jfb95jDVJrsfiQalawo3GMYg+uJW7G2h6KnGS9ZM4Pt65/KofK/EWpty4qRadKis9UX4iq0404U47sJtf2R8BN6rHO/Gm0uEsPX6mStqV16tPufiWLbNwljk6LXU4vxJ9XXbPlOKlFfD/cqWz5TbnOcYt64wUy25cSx9zQ0WFzXp9SuW1q8uMKfc/EfTXV9mPGk4t9ef9im42dWox3luzj1xZV9q116tPufiD2rXaacaeH7n4janxSBU6sm84Qcq+pGkWpN6JNg4tcUybe9qW8m4Rg89ElkuqbVrVItcnSjnjuprP1L8EUqSxvTyW6JaHH53U6okedT6ollkR1kqEnByUXurRvqORXU0092L9zOuW2JO3rUVZWkY1ZZ3lGW9Dsbf/Ml7QwrIOXzifUifOJ9USbB1piVKk4vTGOw5/OJ9USJV5S4pE0X+cSfFR7g5d9UTm5R9SHp19x5lShU90s/4ZFeu8nqVvcUpKtSjNpaZNyOzLDCzbx734ng7TbtzZzbo0qKT9Vp4X1O1+WO0Hj7m20/ll/3Hrn5uEkjz8uHO349j9l7O6baHe/EqnabMg9yVvTjJ8OPieTj5ZbRjUjPkrZuPDMJeJXW8qr2tNylQtk31Rl4kv55+ifj5ft65bMlbSjWnCE6UfRi1oWVa1HacdyFJQmuEehnkYeWW0409xwt5wfRKMvEpXlPexqKpGlbxkulRl4nLvxdOtelVKlb1ty6oqT4ZfQWcnG1y67g6NTo38adh5i48q725j95Qtd72lCWf1OGttavWac4U3j3PxJecanF6i72Vs24pt2taHKPVOL+jRhXez7m01qQe4+E1rHvOGO0asY4jCmn14ef1Omj5Q3tLK+7nCSxKE02n9TFyty4peetEZZRO5lKbkoQjl8I5wheXl1IxjWupNgzl5eXUiOXl1ImGqwADTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/9k=\n", "text/html": [ "\n", " <iframe\n", " width=\"400\"\n", " height=\"300\"\n", " src=\"https://www.youtube.com/embed/Zz_6P5qAJck\"\n", " frameborder=\"0\"\n", " allowfullscreen\n", " ></iframe>\n", " " ], "text/plain": [ "<IPython.lib.display.YouTubeVideo at 0x7fa628b95748>" ] }, "execution_count": 26, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from IPython.display import YouTubeVideo\n", "YouTubeVideo('Zz_6P5qAJck')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## What we learned:\n", "\n", "* The performance of our 2D acoustic FD modelling code, developed in the previous class, suffered from the nested FOR loops\n", "* Using JIT compilation of the Python code using `Numba`, the performance could be significantly improved by a factor 509x\n", "* Alternatively, we can replace the nested FOR loops by `NumPy` array operations to improve the runtime performance\n", "* The performance of the JIT compiled Python code is comparable with a C++ implementation\n", "* Check if the modelling results of your optimized Python codes are still correct" ] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.5" } }, "nbformat": 4, "nbformat_minor": 1 }
gpl-3.0
jsaudino/75.06_tp1_acs
TP-1 DATOS.ipynb
2
1796313
null
mit
jbarnoud/PBxplore
doc/source/notebooks/Assignement.ipynb
1
33117
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# PB assignation\n", "\n", "We hereby demonstrate how to use the API to assign PB sequences." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [], "source": [ "from __future__ import print_function, division\n", "from pprint import pprint\n", "import os" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import pbxplore as pbx" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Use the built-in structure parser" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Assign PB for a single structure" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The :func:`pbxplore.chains_from_files` function is the prefered way to read PDB and PDBx/mmCIF files using PBxplore. This function takes a list of file path as argument, and yield each chain it can read from these files. It provides a single interface to read PDB and PDBx/mmCIF files, to read single model and multimodel files, and to read a single file of a collection of files.\n", "\n", "Here we want to read a single file with a single model and a single chain. Therefore, we need the first and only record that is yield by :func:`pbxplore.chains_from_files`. This record contains a name for the chain, and the chain itself as a :class:`pbxplore.structure.structure.Chain` object. Note that, even if we want to read a single file, we need to provide it as a list to :func:`pbxplore.chains_from_files`." ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Read 1 chain(s) in /Users/jon/dev/PBtest/pbxplore/demo/1BTA.pdb\n", "/Users/jon/dev/PBtest/pbxplore/demo/1BTA.pdb | chain A\n", "Chain A / model : 1434 atoms\n" ] } ], "source": [ "pdb_path = os.path.join(pbx.DEMO_DATA_PATH, '1BTA.pdb')\n", "structure_reader = pbx.chains_from_files([pdb_path])\n", "chain_name, chain = next(structure_reader)\n", "print(chain_name)\n", "print(chain)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Protein Blocks are assigned based on the dihedral angles of the backbone. So we need to calculate them. The :meth:`pbxplore.structure.structure.Chain.get_phi_psi_angles` methods calculate these angles and return them in a form that can be directly provided to the assignement function.\n", "\n", "The dihedral angles are returned as a dictionnary. Each key of this dictionary is a residue number, and each value is a dictionary with the phi and psi angles." ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "{1: {'phi': None, 'psi': -171.6556313444855},\n", " 2: {'phi': -133.80467711845586, 'psi': 153.74322760775027},\n", " 3: {'phi': -134.66175688926953, 'psi': 157.30476083095584},\n", " 4: {'phi': -144.49159910635186, 'psi': 118.59706956501037},\n", " 5: {'phi': -100.12866913978127, 'psi': 92.98634825528089},\n", " 6: {'phi': -83.48980457968895, 'psi': 104.23730726195485},\n", " 7: {'phi': -64.77163869310709, 'psi': -43.25159835828049},\n", " 8: {'phi': -44.47885842536948, 'psi': -25.89184262616925},\n", " 9: {'phi': -94.90790101955957, 'psi': -47.182577907117775},\n", " 10: {'phi': -41.31267169232996, 'psi': 133.73743399231304},\n", " 11: {'phi': -119.15122785547305, 'psi': -11.82789586402356},\n", " 12: {'phi': -174.21196552933984, 'psi': 175.87239770676175},\n", " 13: {'phi': -56.61341695443224, 'psi': -45.74767617535588},\n", " 14: {'phi': -50.78226415072095, 'psi': -45.3742585970337},\n", " 15: {'phi': -57.93584481869442, 'psi': -43.329444361460844},\n", " 16: {'phi': -55.209603541130434, 'psi': -56.47559202715399},\n", " 17: {'phi': -64.51979885245254, 'psi': -18.577118068149446},\n", " 18: {'phi': -70.24273354141468, 'psi': -55.153744337676926},\n", " 19: {'phi': -65.20648546633561, 'psi': -41.28370221159946},\n", " 20: {'phi': -58.98821952110768, 'psi': -35.78957701447905},\n", " 21: {'phi': -66.8659714296852, 'psi': -42.14634696303375},\n", " 22: {'phi': -67.34201665142825, 'psi': -57.40438549689628},\n", " 23: {'phi': -52.29793609141382, 'psi': -66.09120830346023},\n", " 24: {'phi': -61.19010445362886, 'psi': -14.807316930892569},\n", " 25: {'phi': 54.951586944206355, 'psi': 47.59528477656777},\n", " 26: {'phi': -69.51531755580697, 'psi': 161.10806531443862},\n", " 27: {'phi': -57.36300935545188, 'psi': -179.66365615297644},\n", " 28: {'phi': -79.91369005407893, 'psi': -18.494472196394668},\n", " 29: {'phi': -93.51717329199727, 'psi': 13.80253054655975},\n", " 30: {'phi': -38.40653214238887, 'psi': 105.85297788366393},\n", " 31: {'phi': -64.01559307951965, 'psi': -5.507357757886837},\n", " 32: {'phi': 50.06519606710964, 'psi': 3.604730286754302},\n", " 33: {'phi': -84.83560576923662, 'psi': -176.04877012701309},\n", " 34: {'phi': -76.65985981150652, 'psi': -36.89428882663367},\n", " 35: {'phi': -66.20745817863622, 'psi': -36.19018119951471},\n", " 36: {'phi': -80.76844188891471, 'psi': -55.88509876949212},\n", " 37: {'phi': -45.0995601497454, 'psi': -50.82304368319501},\n", " 38: {'phi': -58.512419169182465, 'psi': -56.4318511704347},\n", " 39: {'phi': -44.00775783983471, 'psi': -26.06209153795419},\n", " 40: {'phi': -79.6799641005731, 'psi': -51.3827703817916},\n", " 41: {'phi': -58.80532943671335, 'psi': -49.46425322450557},\n", " 42: {'phi': -75.73059711071141, 'psi': 3.9162670655634235},\n", " 43: {'phi': -177.14613562249534, 'psi': 60.46495675947551},\n", " 44: {'phi': 177.12658169328853, 'psi': -66.62887199130637},\n", " 45: {'phi': -58.436100708193806, 'psi': 149.59997847317612},\n", " 46: {'phi': -102.66050573267097, 'psi': 132.43212727859543},\n", " 47: {'phi': -114.52132755246623, 'psi': 169.33012343233455},\n", " 48: {'phi': -61.39150617820462, 'psi': 136.7035538929314},\n", " 49: {'phi': -113.17589693608565, 'psi': 156.54195412530404},\n", " 50: {'phi': -117.26440335376822, 'psi': 138.51305036902693},\n", " 51: {'phi': -120.03410170277817, 'psi': 81.75707989178757},\n", " 52: {'phi': -77.60981590398819, 'psi': 83.18451037698443},\n", " 53: {'phi': -79.65858964180552, 'psi': 111.40143302647459},\n", " 54: {'phi': -100.37011629225776, 'psi': 150.03395825502497},\n", " 55: {'phi': 49.87330458406237, 'psi': 68.74199803405018},\n", " 56: {'phi': -73.87938409722335, 'psi': -66.7355521840301},\n", " 57: {'phi': -56.20534388077749, 'psi': -35.207843043514686},\n", " 58: {'phi': -66.38284564180043, 'psi': -32.21866387324769},\n", " 59: {'phi': -94.6778115344365, 'psi': 17.686140221665553},\n", " 60: {'phi': -111.48538994784963, 'psi': -38.09776457861392},\n", " 61: {'phi': -70.64502750557983, 'psi': -62.8582975880629},\n", " 62: {'phi': -33.50588994671665, 'psi': -32.02546270762559},\n", " 63: {'phi': -128.57384077349852, 'psi': 62.57927537310066},\n", " 64: {'phi': -12.365761900396365, 'psi': 106.99327496259977},\n", " 65: {'phi': 73.68588813063124, 'psi': 32.131558860201714},\n", " 66: {'phi': -89.05260862755028, 'psi': -69.16778908477181},\n", " 67: {'phi': -77.83088301001709, 'psi': -21.564910924673597},\n", " 68: {'phi': -71.32122280651765, 'psi': -21.859413182600065},\n", " 69: {'phi': -81.4118653034867, 'psi': -55.2935117883826},\n", " 70: {'phi': -52.047970110313145, 'psi': -43.22593946145588},\n", " 71: {'phi': -59.215594114973726, 'psi': -45.283196644537554},\n", " 72: {'phi': -52.67186926130671, 'psi': -38.127901315075064},\n", " 73: {'phi': -75.00963018964649, 'psi': -30.83999517691734},\n", " 74: {'phi': -74.69878930178584, 'psi': -35.042954979175136},\n", " 75: {'phi': -80.22740138668189, 'psi': -37.2721834868002},\n", " 76: {'phi': -63.3253002341084, 'psi': -46.736848174955014},\n", " 77: {'phi': -62.577975558265166, 'psi': -38.836376804396195},\n", " 78: {'phi': -58.4371262613883, 'psi': -30.932534133630554},\n", " 79: {'phi': -77.25603045197096, 'psi': -28.810984281581455},\n", " 80: {'phi': -65.77402807318447, 'psi': -6.587861693755428},\n", " 81: {'phi': 113.27162201541087, 'psi': -14.067924223417435},\n", " 82: {'phi': -63.856071155072016, 'psi': 160.46313493362334},\n", " 83: {'phi': -109.29442965951228, 'psi': 65.33016925110071},\n", " 84: {'phi': -94.29902268445335, 'psi': 87.93029438989075},\n", " 85: {'phi': -52.91938395571083, 'psi': 98.897475962567},\n", " 86: {'phi': -73.44769372512917, 'psi': 114.6488125441093},\n", " 87: {'phi': -114.16119204550668, 'psi': 101.24805765454327},\n", " 88: {'phi': -96.78933556699712, 'psi': 106.74340425527281},\n", " 89: {'phi': -109.02775603395975, 'psi': None}}\n" ] } ], "source": [ "dihedrals = chain.get_phi_psi_angles()\n", "pprint(dihedrals)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The dihedral angles can be provided to the :func:`pbxplore.assign` function that assigns a Protein Block to each residue, and that returns the PB sequence as a string. Note that the first and last two residues are assigned to the `Z` jocker block as some dihedral angles cannot be calculated." ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "ZZdddfklonbfklmmmmmmmmnopafklnoiaklmmmmmnoopacddddddehkllmmmmngoilmmmmmmmmmmmmnopacdcddZZ\n" ] } ], "source": [ "pb_seq = pbx.assign(dihedrals)\n", "print(pb_seq)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Assign PB for several models of a single file" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "A single PDB file can contain several models. Then, we do not want to read only the first chain. Instead, we want to iterate over all the chains." ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Read 10 chain(s) in /Users/jon/dev/PBtest/pbxplore/demo/2LFU.pdb\n", "* /Users/jon/dev/PBtest/pbxplore/demo/2LFU.pdb | model 1 | chain A\n", " ZZbghiacfkbccdddddehiadddddddddddfklggcdddddddddddddehifbdcddddddddddfklopadddddfhpamlnopcddddddehjadddddehjacbddddddddfklmaccddddddfbgniaghiapaddddddfklnoambZZ\n", "* /Users/jon/dev/PBtest/pbxplore/demo/2LFU.pdb | model 2 | chain A\n", " ZZpcfblcffbccdddddeehjacdddddddddfklggcddddddddddddddfblghiadddddddddfklopadddddehpmmmnopcddddddeehiacdddfblopadcddddddfklpaccdddddfklmlmgcdehiaddddddfklmmgopZZ\n", "* /Users/jon/dev/PBtest/pbxplore/demo/2LFU.pdb | model 3 | chain A\n", " ZZmgghiafbbccdddddehjbdcdddddddddfklggcddddddddddddddfbfghpacddddddddfklopadddddehiaklmmmgcdddddeehiaddddfkbgciacdddddefklpaccddddddfkgojbdfehpaddddddfkbccfbgZZ\n", "* /Users/jon/dev/PBtest/pbxplore/demo/2LFU.pdb | model 4 | chain A\n", " ZZcghiacfkbacdddddfbhpacdddddddddfklmcfdddddddddddddehiacddddddddddddfknopadddddfkpamlnopaddddddehjaccdddfklnopacddddddfklmpccdddddddehiabghehiaddddddfklpccfkZZ\n", "* /Users/jon/dev/PBtest/pbxplore/demo/2LFU.pdb | model 5 | chain A\n", " ZZpaehiehkaccdddddehjbccdddddddddfklggcddddddddddddddfbhpadddddddddddfklopadddddehiamlmmpccdddddeehiadddddfbacddcddddddfklmaccddddddfbgghiafehiadddddddfklpacfZZ\n", "* /Users/jon/dev/PBtest/pbxplore/demo/2LFU.pdb | model 6 | chain A\n", " ZZmghbacfkbccdddddeehpacdddddddddfklggcdddddddddddddehiacadddddddddddfklopadddddehiaklnopcddddddeehiadddehjlnopacddddddfklmaccddddehiaehbgcdehiadddddddfehjlpcZZ\n", "* /Users/jon/dev/PBtest/pbxplore/demo/2LFU.pdb | model 7 | chain A\n", " ZZcchbacfkbccdddddfehpacdddddddddfklggcdddddddddddddddehjapadddddddddfknopadddddfklmmmnopcddddddehjiddddddfknopacddddddfklpaccdddddfklmaacdfehpadddddehjblckknZZ\n", "* /Users/jon/dev/PBtest/pbxplore/demo/2LFU.pdb | model 8 | chain A\n", " ZZcehjdeehiacdjdddedjbdcdddddddddfklggcdddddddddddddddbfblbacddddddddfklopacddddehiamlnopaddddddehjacddddfehpaaccdddddefklpaccdddddfklmbfbehehiaddddddffkgoiehZZ\n", "* /Users/jon/dev/PBtest/pbxplore/demo/2LFU.pdb | model 9 | chain A\n", " ZZpccdjdfkbccdddddehhpacdddddddddfklggcdddddddddddddehiacbdcdddddddddfklopadddddehiammnopcddddddeejiadddehjlgobacddddddfklmpccddddehiacbcbdfehpadddddehjklmklmZZ\n", "* /Users/jon/dev/PBtest/pbxplore/demo/2LFU.pdb | model 10 | chain A\n", " ZZccfklcfkbccdddddehjbdcdddddddddfklggcdddddddddddddehiapaccdddddddddfklopadddddehjamlnopaddddddehjddcdddfbfghpacddddddfklpaccddddddfbcfbacfehpadddddddekpghiaZZ\n" ] } ], "source": [ "pdb_path = os.path.join(pbx.DEMO_DATA_PATH, '2LFU.pdb')\n", "for chain_name, chain in pbx.chains_from_files([pdb_path]):\n", " dihedrals = chain.get_phi_psi_angles()\n", " pb_seq = pbx.assign(dihedrals)\n", " print('* {}'.format(chain_name))\n", " print(' {}'.format(pb_seq))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Assign PB for a set of structures" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The :func:`pbxplore.chains_from_files` function can also handle several chains from several files." ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The following files will be used:\n", "['/Users/jon/dev/PBtest/pbxplore/demo/1BTA.pdb',\n", " '/Users/jon/dev/PBtest/pbxplore/demo/2LFU.pdb',\n", " '/Users/jon/dev/PBtest/pbxplore/demo/3ICH.pdb']\n", "Read 1 chain(s) in /Users/jon/dev/PBtest/pbxplore/demo/1BTA.pdb\n", "* /Users/jon/dev/PBtest/pbxplore/demo/1BTA.pdb | chain A\n", " ZZdddfklonbfklmmmmmmmmnopafklnoiaklmmmmmnoopacddddddehkllmmmmngoilmmmmmmmmmmmmnopacdcddZZ\n", "Read 10 chain(s) in /Users/jon/dev/PBtest/pbxplore/demo/2LFU.pdb\n", "* /Users/jon/dev/PBtest/pbxplore/demo/2LFU.pdb | model 1 | chain A\n", " ZZbghiacfkbccdddddehiadddddddddddfklggcdddddddddddddehifbdcddddddddddfklopadddddfhpamlnopcddddddehjadddddehjacbddddddddfklmaccddddddfbgniaghiapaddddddfklnoambZZ\n", "* /Users/jon/dev/PBtest/pbxplore/demo/2LFU.pdb | model 2 | chain A\n", " ZZpcfblcffbccdddddeehjacdddddddddfklggcddddddddddddddfblghiadddddddddfklopadddddehpmmmnopcddddddeehiacdddfblopadcddddddfklpaccdddddfklmlmgcdehiaddddddfklmmgopZZ\n", "* /Users/jon/dev/PBtest/pbxplore/demo/2LFU.pdb | model 3 | chain A\n", " ZZmgghiafbbccdddddehjbdcdddddddddfklggcddddddddddddddfbfghpacddddddddfklopadddddehiaklmmmgcdddddeehiaddddfkbgciacdddddefklpaccddddddfkgojbdfehpaddddddfkbccfbgZZ\n", "* /Users/jon/dev/PBtest/pbxplore/demo/2LFU.pdb | model 4 | chain A\n", " ZZcghiacfkbacdddddfbhpacdddddddddfklmcfdddddddddddddehiacddddddddddddfknopadddddfkpamlnopaddddddehjaccdddfklnopacddddddfklmpccdddddddehiabghehiaddddddfklpccfkZZ\n", "* /Users/jon/dev/PBtest/pbxplore/demo/2LFU.pdb | model 5 | chain A\n", " ZZpaehiehkaccdddddehjbccdddddddddfklggcddddddddddddddfbhpadddddddddddfklopadddddehiamlmmpccdddddeehiadddddfbacddcddddddfklmaccddddddfbgghiafehiadddddddfklpacfZZ\n", "* /Users/jon/dev/PBtest/pbxplore/demo/2LFU.pdb | model 6 | chain A\n", " ZZmghbacfkbccdddddeehpacdddddddddfklggcdddddddddddddehiacadddddddddddfklopadddddehiaklnopcddddddeehiadddehjlnopacddddddfklmaccddddehiaehbgcdehiadddddddfehjlpcZZ\n", "* /Users/jon/dev/PBtest/pbxplore/demo/2LFU.pdb | model 7 | chain A\n", " ZZcchbacfkbccdddddfehpacdddddddddfklggcdddddddddddddddehjapadddddddddfknopadddddfklmmmnopcddddddehjiddddddfknopacddddddfklpaccdddddfklmaacdfehpadddddehjblckknZZ\n", "* /Users/jon/dev/PBtest/pbxplore/demo/2LFU.pdb | model 8 | chain A\n", " ZZcehjdeehiacdjdddedjbdcdddddddddfklggcdddddddddddddddbfblbacddddddddfklopacddddehiamlnopaddddddehjacddddfehpaaccdddddefklpaccdddddfklmbfbehehiaddddddffkgoiehZZ\n", "* /Users/jon/dev/PBtest/pbxplore/demo/2LFU.pdb | model 9 | chain A\n", " ZZpccdjdfkbccdddddehhpacdddddddddfklggcdddddddddddddehiacbdcdddddddddfklopadddddehiammnopcddddddeejiadddehjlgobacddddddfklmpccddddehiacbcbdfehpadddddehjklmklmZZ\n", "* /Users/jon/dev/PBtest/pbxplore/demo/2LFU.pdb | model 10 | chain A\n", " ZZccfklcfkbccdddddehjbdcdddddddddfklggcdddddddddddddehiapaccdddddddddfklopadddddehjamlnopaddddddehjddcdddfbfghpacddddddfklpaccddddddfbcfbacfehpadddddddekpghiaZZ\n", "Read 1 chain(s) in /Users/jon/dev/PBtest/pbxplore/demo/3ICH.pdb\n", "* /Users/jon/dev/PBtest/pbxplore/demo/3ICH.pdb | chain A\n", " ZZccdfbdcdddddehjbdebjcdddddfklmmmlmmmmmmmmnopnopajeopacfbdcehibacehiamnonopgocdfkbjbdcdfblmbccfbghiacdddebehiafkbccddfbdcfklgokaccfbdcfbhklmmmmmmmpccdfkopafbacddfbgcddddfbacddddZZ\n" ] } ], "source": [ "import glob\n", "files = [os.path.join(pbx.DEMO_DATA_PATH, pdb_name)\n", " for pdb_name in ('1BTA.pdb', '2LFU.pdb', '3ICH.pdb')]\n", "print('The following files will be used:')\n", "pprint(files)\n", "for chain_name, chain in pbx.chains_from_files(files):\n", " dihedrals = chain.get_phi_psi_angles()\n", " pb_seq = pbx.assign(dihedrals)\n", " print('* {}'.format(chain_name))\n", " print(' {}'.format(pb_seq))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Assign PB for frames in a trajectory" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "PB sequences can be assigned from a trajectory. To do so, we use the :func:`pbxplore.chains_from_trajectory` function that takes the path to a trajectory and the path to the corresponding topology as argument. Any file formats readable by MDAnalysis can be used. Except for its arguments, :func:`pbxplore.chains_from_trajectory` works the same as :func:`pbxplore.chains_from_files`.\n", "\n", "** Note that MDAnalysis is required to use this feature. **" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "* /Users/jon/dev/PBtest/pbxplore/demo/barstar_md_traj.xtc | frame 0\n", " ZZdddfklpmbfklmmmmmmmmnopafklgoiaklmmmmmmmmpacddddddehklmmmmmoghilmmmmmmmmmmmmnopacddddZZ\n", "* /Users/jon/dev/PBtest/pbxplore/demo/barstar_md_traj.xtc | frame 1\n", " ZZdddfklpcbfklmmmmmmmmnopafkbghiaklmmmmmmmmpccddddddehklmmmmmcehilmmmmmmmmmmmmnopacddddZZ\n", "* /Users/jon/dev/PBtest/pbxplore/demo/barstar_md_traj.xtc | frame 2\n", " ZZdddfklpcbfklmmmmmmmmnopafklgoiaklmmmmmmmmpccddddddehklmmmmnpghklmmmmmmmmmmmmnopacddddZZ\n", "* /Users/jon/dev/PBtest/pbxplore/demo/barstar_md_traj.xtc | frame 3\n", " ZZdddfklccbfklmmmmmmmmnopafkbghiaklmmmmmnopaccddddddehkllmmmmpghilmmmmmmmmmmmmnopacddddZZ\n", "* /Users/jon/dev/PBtest/pbxplore/demo/barstar_md_traj.xtc | frame 4\n", " ZZdddfklpmbfklmmmmmmmmnopafklgoiaklmmmmmnopaccddddddehklmmmmmpghjllmmmmmmmmmmmnopacddddZZ\n", "* /Users/jon/dev/PBtest/pbxplore/demo/barstar_md_traj.xtc | frame 5\n", " ZZdddfklpmbfklmmmmmmmmnopafkbgoiaklmmmmmnopbacddddddehklmmmmmpghilmmmmmmmmmmmmnopacddddZZ\n", "* /Users/jon/dev/PBtest/pbxplore/demo/barstar_md_traj.xtc | frame 6\n", " ZZdddfklpmblmlmmmmmmmmnopafkbghiaklmmmmmnopbacddddddehjllmmmnoghklmmmmmmmmmmmmnopacddddZZ\n", "* /Users/jon/dev/PBtest/pbxplore/demo/barstar_md_traj.xtc | frame 7\n", " ZZdddfklcfblmlmmmmmmmmnopafkbgoiaklmmmmmmmmcacddddddehklmmmmnpghklmmmmmmmmmmmmnopacddddZZ\n", "* /Users/jon/dev/PBtest/pbxplore/demo/barstar_md_traj.xtc | frame 8\n", " ZZdddfklpgbfklmmmmmmmmnopafklgoiaklmmmmmnojaccddddddehklmmmmmpghilmmmmmmmmmmmmnopacddddZZ\n", "* /Users/jon/dev/PBtest/pbxplore/demo/barstar_md_traj.xtc | frame 9\n", " ZZdddfklpcbfklmmmmmmmmnopafklgoiaklmmmmmmombacddddddehkllmmmnbghilkmmmmmmmmmmmnopacddddZZ\n", "* /Users/jon/dev/PBtest/pbxplore/demo/barstar_md_traj.xtc | frame 10\n", " ZZdddfklmmblklmmmmmmmmnopafkbgoiaklmmmmmmmmppcddddddehkllmmmmbghilmmmmmmmmmmmmnopacddddZZ\n", "* /Users/jon/dev/PBtest/pbxplore/demo/barstar_md_traj.xtc | frame 11\n", " ZZddefklpcbfklmmmmmmmmnopafklghiaklmmmmmnopbacddddddehklmmmmmpghilmmmmmmmmmmmmnopacddddZZ\n", "* /Users/jon/dev/PBtest/pbxplore/demo/barstar_md_traj.xtc | frame 12\n", " ZZdddfklcfbfklmmmmmmmmnopafklgoiaklmmmmmmmmpacddddddehklmmmmmpghilmmmmmmmmmmmmnopacddddZZ\n", "* /Users/jon/dev/PBtest/pbxplore/demo/barstar_md_traj.xtc | frame 13\n", " ZZdddfklpmbfklmmmmmmmmnopafklgoiaklmmmmmnopbacddddddehklmmmmmpghklmmmmmmmmmmmmnopacddddZZ\n", "* /Users/jon/dev/PBtest/pbxplore/demo/barstar_md_traj.xtc | frame 14\n", " ZZdddfklpmbfklmmmmmmmmnopafklghiaklmmmmmmmmpccddddddehklmmmmmpghilmmmmmmmmmmmmnopacddddZZ\n", "* /Users/jon/dev/PBtest/pbxplore/demo/barstar_md_traj.xtc | frame 15\n", " ZZdddfklpcbfklmmmmmmmmnopafklghiaklmmmmmmmmpccddddddehklmmmmmbghklmmmmmmmmmmmmnopacddddZZ\n", "* /Users/jon/dev/PBtest/pbxplore/demo/barstar_md_traj.xtc | frame 16\n", " ZZdddfklpmbfklmmmmmmmmnopafkbghiaklmmmmmnoobacddddddehkllmmmmpghilmmmmmmmmmmmmnopacddddZZ\n", "* /Users/jon/dev/PBtest/pbxplore/demo/barstar_md_traj.xtc | frame 17\n", " ZZdddfklombfklmmmmmmmmnopafkbghiaklmmmmmnopbacddddddehklmmmmmpghilmmmmmmmmmmmmnopacddddZZ\n", "* /Users/jon/dev/PBtest/pbxplore/demo/barstar_md_traj.xtc | frame 18\n", " ZZdddfklpmbfklmmmmmmmmnopafklghiaklmmmmmmmmpacddddddehklmmmmmpghilmmmmmmmmmmmmnopcdddddZZ\n", "* /Users/jon/dev/PBtest/pbxplore/demo/barstar_md_traj.xtc | frame 19\n", " ZZdddfklpmblmlmmmmmmmmnopafkbghiaklmmmmmnopbacddddddehklmmmmnbghijmmmmmmmmmmmmnopacddddZZ\n", "* /Users/jon/dev/PBtest/pbxplore/demo/barstar_md_traj.xtc | frame 20\n", " ZZdddfklcfbfklmmmmmmmmnopafklgoiaklmmmmmmmmpacddddddehkllmmmmmghijklmmmmmmmmmmnopacddddZZ\n", "* /Users/jon/dev/PBtest/pbxplore/demo/barstar_md_traj.xtc | frame 21\n", " ZZdddfklpcbfklmmmmmmmmnopafklghiaklmmmmmmmmpccddddddehklmmmmmpghijklmmmmmmmmmmnopacddddZZ\n", "* /Users/jon/dev/PBtest/pbxplore/demo/barstar_md_traj.xtc | frame 22\n", " ZZdddfklpmbfklmmmmmmmmnopafkbghiaklmmmmmmoopacddddddehklmmmmmmghijmlmmmmmmmmmmnopacddddZZ\n", "* /Users/jon/dev/PBtest/pbxplore/demo/barstar_md_traj.xtc | frame 23\n", " ZZdddfklpfblmlmmmmmmmmnopafkbgoiaklmmmmmmombacddddddehklmmmmmmghijmmmmmmmmmmmmnopacddddZZ\n", "* /Users/jon/dev/PBtest/pbxplore/demo/barstar_md_traj.xtc | frame 24\n", " ZZdddfklpmbfklmmmmmmmmnopafkbccdfklmmmmmnopaccddddddehklmmmmmbghijklmmmmmmmmmmnopacddddZZ\n", "* /Users/jon/dev/PBtest/pbxplore/demo/barstar_md_traj.xtc | frame 25\n", " ZZdddfklpgbfklmmmmmmmmnopafkbccdfklmmmmmmmmpacddddddehklmmmmmpghklmmmmmmmmmmmmnopadddddZZ\n", "* /Users/jon/dev/PBtest/pbxplore/demo/barstar_md_traj.xtc | frame 26\n", " ZZdddfklpmbfklmmmmmmmmnopafkbccdfklmmmmmmnmpacddddddehklmmmmmbghilmmmmmmmmmmmmnopacddddZZ\n", "* /Users/jon/dev/PBtest/pbxplore/demo/barstar_md_traj.xtc | frame 27\n", " ZZdddfklpcbfklmmmmmmmmnopafkbccbfklmmmmmmmmpccddddddehklmmmmmbghillmmmmmmmmmmmnopacddddZZ\n", "* /Users/jon/dev/PBtest/pbxplore/demo/barstar_md_traj.xtc | frame 28\n", " ZZdddfklmmbfmlmmmmmmmmnopafkbccdfklmmmmmmmmpacddddddehkllmmmmpghklmmmmmmmmmmmmnopadddddZZ\n", "* /Users/jon/dev/PBtest/pbxplore/demo/barstar_md_traj.xtc | frame 29\n", " ZZdddfkbpcbfklmmmmmmmmnopafkbccbfklmmmmmnombacddddddehkllmmmmoghilmmmmmmmmmmmmnopacddddZZ\n", "* /Users/jon/dev/PBtest/pbxplore/demo/barstar_md_traj.xtc | frame 30\n", " ZZdddfklpmbfklmmmmmmmmnopafkbccbfklmmmmmnombccddddddehjlmmmmmpghilmmmmmmmmmmmmnopacddddZZ\n", "* /Users/jon/dev/PBtest/pbxplore/demo/barstar_md_traj.xtc | frame 31\n", " ZZdddfklpmbfklmmmmmmmmnopafklccdfklmmmmmnopaacddddddehklmmmmmpghilmmmmmmmmmmmmnopacddddZZ\n", "* /Users/jon/dev/PBtest/pbxplore/demo/barstar_md_traj.xtc | frame 32\n", " ZZdddfklcfbfklmmmmmmmmnopafkbcbdfklmmmmmmmmpacddddddehklmmmmmpghklmmmmmmmmmmmmnopacddddZZ\n", "* /Users/jon/dev/PBtest/pbxplore/demo/barstar_md_traj.xtc | frame 33\n", " ZZdddfklpcbfmlmmmmmmmmnopafkbckbfklmmmmmmmmmccddddddehjlmmmmmoghklmmmmmmmmmmmmnopacddddZZ\n", "* /Users/jon/dev/PBtest/pbxplore/demo/barstar_md_traj.xtc | frame 34\n", " ZZdddfklcfbfklmmmmmmmmnopafklccdfklmmmmmmmmpccddddddehklmmmmmpghilmmmmmmmmmmmmnopacddddZZ\n", "* /Users/jon/dev/PBtest/pbxplore/demo/barstar_md_traj.xtc | frame 35\n", " ZZdddfklcfbfklmmmmmmmmnopafkbccdfklmmmmmmmmppcddddddehklmmmmmpghklmmmmmmmmmmmmnopacddddZZ\n", "* /Users/jon/dev/PBtest/pbxplore/demo/barstar_md_traj.xtc | frame 36\n", " ZZdddfklpgbjklmmmmmmmmnopafkbccbfklmmmmmmmmpacddddddehklmmmmmoghjlmmmmmmmmmmmmnopacddddZZ\n", "* /Users/jon/dev/PBtest/pbxplore/demo/barstar_md_traj.xtc | frame 37\n", " ZZdddfklpfbfklmmmmmmmmnopafklccbfklmmmmmnopbacddddddehklmmmmmoghklmmmmmmmmmmmmnopacddddZZ\n", "* /Users/jon/dev/PBtest/pbxplore/demo/barstar_md_traj.xtc | frame 38\n", " ZZdddfklccbfklmmmmmmmmnopafkbckbfklmmmmmmompacddddddehklmmmmmoghjlmmmmmmmmmmmmnopacddddZZ\n", "* /Users/jon/dev/PBtest/pbxplore/demo/barstar_md_traj.xtc | frame 39\n", " ZZdddfklpmblmlmmmmmmmmnopafkbccdfklmmmmmmmmcacddddddehklmmmmmoghklmmmmmmmmmmmmnopacddddZZ\n", "* /Users/jon/dev/PBtest/pbxplore/demo/barstar_md_traj.xtc | frame 40\n", " ZZdddfklcfbfmlmmmmmmmmnopafkbccbfklmmmmmmmmmccddddddehklmmmmmpghklmmmmmmmmmmmmnopacddddZZ\n", "* /Users/jon/dev/PBtest/pbxplore/demo/barstar_md_traj.xtc | frame 41\n", " ZZdddfklpmbfklmmmmmmmmnopafkbccdfklmmmmmmnopacddddddehklmmmmmpghklmmmmmmmmmmmmnopacddddZZ\n", "* /Users/jon/dev/PBtest/pbxplore/demo/barstar_md_traj.xtc | frame 42\n", " ZZdddfklpmblmlmmmmmmmmnopafkbccdfklmmmmmmgoiacddddddehklmmmmmmgoklmmmmmmmmmmmmnopacddddZZ\n", "* /Users/jon/dev/PBtest/pbxplore/demo/barstar_md_traj.xtc | frame 43\n", " ZZdddfklpcbfklmmmmmmmmnopafklccdfklmmmmmmmmpacddddddehklmmmmmmghklmmmmmmmmmmmmnopacddddZZ\n", "* /Users/jon/dev/PBtest/pbxplore/demo/barstar_md_traj.xtc | frame 44\n", " ZZdddfklcfbfklmmmmmmmmnopafkbccdfklmmmmmmmmgccddddddehjllmmmmmghiaklmmmmmmmmmmnopacddddZZ\n", "* /Users/jon/dev/PBtest/pbxplore/demo/barstar_md_traj.xtc | frame 45\n", " ZZdddfklcfbfmlmmmmmmmmnopafkbccbfklmmmmmmmmcccddddddehklmmmmmpghiamlmmmmmmmmmmnopacddddZZ\n", "* /Users/jon/dev/PBtest/pbxplore/demo/barstar_md_traj.xtc | frame 46\n", " ZZdddfkbcfbfklmmmmmmmmnopafkbccdfklmmmmmmmmpacddddddehkllmmmmpghijmlmmmmmmmmmmnopacddddZZ\n", "* /Users/jon/dev/PBtest/pbxplore/demo/barstar_md_traj.xtc | frame 47\n", " ZZdddfkbcfbfklmmmmmmmmnopafkbccdfklmmmmmmmmpccddddddehklmmmmmpghijklmmmmmmmmmmnopadddddZZ\n", "* /Users/jon/dev/PBtest/pbxplore/demo/barstar_md_traj.xtc | frame 48\n", " ZZdddfkbcfbfklmmmmmmmmnopafkbccdfklmmmmmmomcacddddddehkllmmmmpghilmlmmmmmmmmmmnopacddddZZ\n", "* /Users/jon/dev/PBtest/pbxplore/demo/barstar_md_traj.xtc | frame 49\n", " ZZdddffbcfbfklmmmmmmmmnopafkbccbfklmmmmmmnmpacddddddehklmmmmmpghijklmmmmmmmmmmnopacddddZZ\n", "* /Users/jon/dev/PBtest/pbxplore/demo/barstar_md_traj.xtc | frame 50\n", " ZZdddfklgfbfklmmmmmmmmnopafklccdfklmmmmmmmmmccddddddehklmmmmmpghijmmmmmmmmmmmmnopacddddZZ\n" ] } ], "source": [ "trajectory = os.path.join(pbx.DEMO_DATA_PATH, 'barstar_md_traj.xtc')\n", "topology = os.path.join(pbx.DEMO_DATA_PATH, 'barstar_md_traj.gro')\n", "for chain_name, chain in pbx.chains_from_trajectory(trajectory, topology):\n", " dihedrals = chain.get_phi_psi_angles()\n", " pb_seq = pbx.assign(dihedrals)\n", " print('* {}'.format(chain_name))\n", " print(' {}'.format(pb_seq))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Use a different structure parser" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Providing the dihedral angles can be formated as expected by :func:`pbxplore.assign`, the source of these angles does not matter. For instance, other PDB parser can be used with PBxplore." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### BioPython" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "<Model id=0> <Chain id=A>\n", "ZZbghiacfkbccdddddehiadddddddddddfklggcdddddddddddddehifbdcddddddddddfklopadddddfhpamlnopcddddddehjadddddehjacbddddddddfklmaccddddddfbgniaghiapaddddddfklnoambZZ\n", "<Model id=1> <Chain id=A>\n", "ZZpcfblcffbccdddddeehjacdddddddddfklggcddddddddddddddfblghiadddddddddfklopadddddehpmmmnopcddddddeehiacdddfblopadcddddddfklpaccdddddfklmlmgcdehiaddddddfklmmgopZZ\n", "<Model id=2> <Chain id=A>\n", "ZZmgghiafbbccdddddehjbdcdddddddddfklggcddddddddddddddfbfghpacddddddddfklopadddddehiaklmmmgcdddddeehiaddddfkbgciacdddddefklpaccddddddfkgojbdfehpaddddddfkbccfbgZZ\n", "<Model id=3> <Chain id=A>\n", "ZZcghiacfkbacdddddfbhpacdddddddddfklmcfdddddddddddddehiacddddddddddddfknopadddddfkpamlnopaddddddehjaccdddfklnopacddddddfklmpccdddddddehiabghehiaddddddfklpccfkZZ\n", "<Model id=4> <Chain id=A>\n", "ZZpaehiehkaccdddddehjbccdddddddddfklggcddddddddddddddfbhpadddddddddddfklopadddddehiamlmmpccdddddeehiadddddfbacddcddddddfklmaccddddddfbgghiafehiadddddddfklpacfZZ\n", "<Model id=5> <Chain id=A>\n", "ZZmghbacfkbccdddddeehpacdddddddddfklggcdddddddddddddehiacadddddddddddfklopadddddehiaklnopcddddddeehiadddehjlnopacddddddfklmaccddddehiaehbgcdehiadddddddfehjlpcZZ\n", "<Model id=6> <Chain id=A>\n", "ZZcchbacfkbccdddddfehpacdddddddddfklggcdddddddddddddddehjapadddddddddfknopadddddfklmmmnopcddddddehjiddddddfknopacddddddfklpaccdddddfklmaacdfehpadddddehjblckknZZ\n", "<Model id=7> <Chain id=A>\n", "ZZcehjdeehiacdjdddedjbdcdddddddddfklggcdddddddddddddddbfblbacddddddddfklopacddddehiamlnopaddddddehjacddddfehpaaccdddddefklpaccdddddfklmbfbehehiaddddddffkgoiehZZ\n", "<Model id=8> <Chain id=A>\n", "ZZpccdjdfkbccdddddehhpacdddddddddfklggcdddddddddddddehiacbdcdddddddddfklopadddddehiammnopcddddddeejiadddehjlgobacddddddfklmpccddddehiacbcbdfehpadddddehjklmklmZZ\n", "<Model id=9> <Chain id=A>\n", "ZZccfklcfkbccdddddehjbdcdddddddddfklggcdddddddddddddehiapaccdddddddddfklopadddddehjamlnopaddddddehjddcdddfbfghpacddddddfklpaccddddddfbcfbacfehpadddddddekpghiaZZ\n" ] } ], "source": [ "import Bio.PDB\n", "import math\n", "\n", "pdb_path = os.path.join(pbx.DEMO_DATA_PATH, \"2LFU.pdb\")\n", "for model in Bio.PDB.PDBParser().get_structure(\"2LFU\", pdb_path):\n", " for chain in model:\n", " polypeptides = Bio.PDB.PPBuilder().build_peptides(chain)\n", " for poly_index, poly in enumerate(polypeptides):\n", " dihedral_list = poly.get_phi_psi_list()\n", " dihedrals = {}\n", " for resid, (phi, psi) in enumerate(dihedral_list, start=1):\n", " if not phi is None:\n", " phi = 180 * phi / math.pi\n", " if not psi is None:\n", " psi = 180 * psi / math.pi\n", " dihedrals[resid] = {'phi': phi, 'psi': psi}\n", " print(model, chain)\n", " pb_seq = pbx.assign(dihedrals)\n", " print(pb_seq)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.6" } }, "nbformat": 4, "nbformat_minor": 0 }
mit
julianogalgaro/udacity
nd101/p2-image-classification/dlnd_image_classification.ipynb
1
116786
{ "cells": [ { "cell_type": "markdown", "metadata": { "collapsed": true, "deletable": true, "editable": true }, "source": [ "# Image Classification\n", "In this project, you'll classify images from the [CIFAR-10 dataset](https://www.cs.toronto.edu/~kriz/cifar.html). The dataset consists of airplanes, dogs, cats, and other objects. You'll preprocess the images, then train a convolutional neural network on all the samples. The images need to be normalized and the labels need to be one-hot encoded. You'll get to apply what you learned and build a convolutional, max pooling, dropout, and fully connected layers. At the end, you'll get to see your neural network's predictions on the sample images.\n", "## Get the Data\n", "Run the following cell to download the [CIFAR-10 dataset for python](https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz)." ] }, { "cell_type": "code", "execution_count": 99, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "All files found!\n" ] } ], "source": [ "\"\"\"\n", "DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE\n", "\"\"\"\n", "from urllib.request import urlretrieve\n", "from os.path import isfile, isdir\n", "from tqdm import tqdm\n", "import problem_unittests as tests\n", "import tarfile\n", "\n", "cifar10_dataset_folder_path = 'cifar-10-batches-py'\n", "\n", "# Use Floyd's cifar-10 dataset if present\n", "floyd_cifar10_location = '/input/cifar-10/python.tar.gz'\n", "if isfile(floyd_cifar10_location):\n", " tar_gz_path = floyd_cifar10_location\n", "else:\n", " tar_gz_path = 'cifar-10-python.tar.gz'\n", "\n", "class DLProgress(tqdm):\n", " last_block = 0\n", "\n", " def hook(self, block_num=1, block_size=1, total_size=None):\n", " self.total = total_size\n", " self.update((block_num - self.last_block) * block_size)\n", " self.last_block = block_num\n", "\n", "if not isfile(tar_gz_path):\n", " with DLProgress(unit='B', unit_scale=True, miniters=1, desc='CIFAR-10 Dataset') as pbar:\n", " urlretrieve(\n", " 'https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz',\n", " tar_gz_path,\n", " pbar.hook)\n", "\n", "if not isdir(cifar10_dataset_folder_path):\n", " with tarfile.open(tar_gz_path) as tar:\n", " tar.extractall()\n", " tar.close()\n", "\n", "\n", "tests.test_folder_path(cifar10_dataset_folder_path)" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "## Explore the Data\n", "The dataset is broken into batches to prevent your machine from running out of memory. The CIFAR-10 dataset consists of 5 batches, named `data_batch_1`, `data_batch_2`, etc.. Each batch contains the labels and images that are one of the following:\n", "* airplane\n", "* automobile\n", "* bird\n", "* cat\n", "* deer\n", "* dog\n", "* frog\n", "* horse\n", "* ship\n", "* truck\n", "\n", "Understanding a dataset is part of making predictions on the data. Play around with the code cell below by changing the `batch_id` and `sample_id`. The `batch_id` is the id for a batch (1-5). The `sample_id` is the id for a image and label pair in the batch.\n", "\n", "Ask yourself \"What are all possible labels?\", \"What is the range of values for the image data?\", \"Are the labels in order or random?\". Answers to questions like these will help you preprocess the data and end up with better predictions." ] }, { "cell_type": "code", "execution_count": 100, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "Stats of batch 1:\n", "Samples: 10000\n", "Label Counts: {0: 1005, 1: 974, 2: 1032, 3: 1016, 4: 999, 5: 937, 6: 1030, 7: 1001, 8: 1025, 9: 981}\n", "First 20 Labels: [6, 9, 9, 4, 1, 1, 2, 7, 8, 3, 4, 7, 7, 2, 9, 9, 9, 3, 2, 6]\n", "\n", "Example of Image 890:\n", "Image - Min Value: 1 Max Value: 255\n", "Image - Shape: (32, 32, 3)\n", "Label - Label Id: 9 Name: truck\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfoAAAH0CAYAAADVH+85AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAGaBJREFUeJzt3cmv3fd5HvDvme48cbikLDGkqMG2JCuWITu2G9lxbQdB\n6iANCqQIuii6bbdd9M9IVwW6SIsWBQoU6OQErV03cZ3AdRzJsmVREylR4mTOInl55zN1kQJ1bHTx\nvqLJ6M3ns3/w3nvuOee5v9XTmU6nDQCoqfugfwAA4BdH0QNAYYoeAApT9ABQmKIHgMIUPQAUpugB\noDBFDwCFKXoAKEzRA0Bhih4AClP0AFCYogeAwhQ9ABSm6AGgMEUPAIUpegAorP+gf4BflG9+8/Q0\nk+vPJGLT3P9LnU4q9tde6oXPBpOv4f186T8Mr0fm1ng8Sp3qdpOfl0wu++J/CD6bH4IfsazJNP7G\nmhnk3vdf/MITH/hP7YkeAApT9ABQmKIHgMIUPQAUpugBoDBFDwCFKXoAKEzRA0Bhih4AClP0AFCY\nogeAwhQ9ABSm6AGgsM40scLzYbC9s5v6xebnB/FQcr3O/NRflXk57usyXNaH4O+c+RG3trZTtwaD\n3GjmzMxMOFPz2417JfvRnEzi76xuN3vtg++ceqIHgMIUPQAUpugBoDBFDwCFKXoAKEzRA0Bhih4A\nClP0AFCYogeAwhQ9ABSm6AGgMEUPAIXl1iU+BBKbA3+Zm9zH/30sbvwVncR2w/7+furWaDRO5ebm\n5sKZDz5JETmWjcWD0+RzwnSa+yFHk/uTaa21QeJXy7x/W2stvyvmC+RByfzNug9w3coTPQAUpugB\noDBFDwCFKXoAKEzRA0Bhih4AClP0AFCYogeAwhQ9ABSm6AGgMEUPAIUpegAoTNEDQGFl1+t63V4y\n9+AWhkiYJufJpqNUrNPi96bJKcVeL/4ezi6oZfS6yd8r+RmbJv7W+8Pc+2Nu/j5+Nab/ZL6rHpTs\nAuOD4okeAApT9ABQmKIHgMIUPQAUpugBoDBFDwCFKXoAKEzRA0Bhih4AClP0AFCYogeAwhQ9ABRW\ndtRmmtvb4EMmO+LS6+Xe+sPh8L5kWmttcXExnLmfozbDYW4YqNvNPV9MEuNAW9s7qVsr86upHH8z\nTFv8vdh5gCNEnugBoDBFDwCFKXoAKEzRA0Bhih4AClP0AFCYogeAwhQ9ABSm6AGgMEUPAIUpegAo\nTNEDQGGKHgAKK7teB78Io9EknNnc3U/dml9YiIcmuUW5llnWSi5ETqfx17C11iaTcTizt7eduzWN\nv/ad1kvdSq+aZZYKs3+z1Fpb0n1cYPybwhM9ABSm6AGgMEUPAIUpegAoTNEDQGGKHgAKU/QAUJii\nB4DCFD0AFKboAaAwRQ8AhSl6AChM0QNAYdbruOeSA1kp6aGr7IpXJ/6R2Ukuyg1bfK2tO80tqGX+\n4+8Pcl8fk+TK2/Yo/nrs54byUtNriWHD/yv3ZryfX97TaeJnTH44bdfde57oAaAwRQ8AhSl6AChM\n0QNAYYoeAApT9ABQmKIHgMIUPQAUpugBoDBFDwCFKXoAKEzRA0BhRm2456bJkY5xZjijm/tfdTja\nT+UuXbwSzmxvb6ZuLXTiv9sk+dofXF0OZ0bjYerWynxutmS4H/+bdYa5n3EyjP+MvZYbL+r0cyM/\nuWtJiT9ZdnBKKd17nugBoDBFDwCFKXoAKEzRA0Bhih4AClP0AFCYogeAwhQ9ABSm6AGgMEUPAIUp\negAoTNEDQGGKHgAKMxT0M3LbX/fzWO4nTA5JpZLZVa1R4ncbJyeyhp3cet21d38Qzuxs5W61zl44\n8t6l+Lpea62dvxH/q10YHkjdeuFzJ1K5wzOTcOb0qYupW19/O756d2g193X66ZNrqdxjh5dSuYxe\n4nPWTX5XTT/At1VU+lLmV7t/v9bP8UQPAIUpegAoTNEDQGGKHgAKU/QAUJiiB4DCFD0AFKboAaAw\nRQ8AhSl6AChM0QNAYYoeAAorO2rTSY6dxGczWssPzSRy93V1p7VR4t7uNPdDZgZqtjY2U7d+/NJL\nqdzrL78azoyms6lbw7M3w5mNndw7+OKdmXDm3J1LqVvXNm+lcqv9cThz9fT51K1X5rfCmU43/hq2\n1tpvP58bB/pnf/fpcGYwyP2Mc71MKvdejM8J/aVO4munl/w+zX3FPbhVG0/0AFCYogeAwhQ9ABSm\n6AGgMEUPAIUpegAoTNEDQGGKHgAKU/QAUJiiB4DCFD0AFKboAaAwRQ8AhZVdr8uaJubhpsm1ttR4\n3SS+4NVaboWutdb2JvHFpf3k/4/TROzMm++kbv2X//S/UrntvfgS3caNy6lbe3vvhjPd+bnUraWD\nh8KZ1bvXUreOj3PvjwNLHwlnLk5zC2rjwwfDmU5/MXXrwq07qdzmbvy7YCE519brxP9m2QXRafJv\n1kmsw/WSi3L3eUT0A/NEDwCFKXoAKEzRA0Bhih4AClP0AFCYogeAwhQ9ABSm6AGgMEUPAIUpegAo\nTNEDQGGKHgAKU/QAUJj1up+RWaKbTJILWYkNpEF/kLqV/Y9uNIpndvZzC3vj/WE4c/78pdStx59+\nOpV79Mnnw5n3Xj+TunXqQvx3O3Uut5S3+9pb4Ux/P3fr87/ysVTuiccfCWdefSe3sDdJvPFn5hMf\nltba8vJ8Kjfp9sKZYfK7ai/xDdLt55bhutn1utS53M/4YeOJHgAKU/QAUJiiB4DCFD0AFKboAaAw\nRQ8AhSl6AChM0QNAYYoeAApT9ABQmKIHgMIUPQAUVnbUZpIYp2mttf1JPDfMbbi07f29cObyxXdT\nt/a247daa21u9UA4s7y+nrrVpvGBiVFyQOf4oydSueUD8Y/MoeOHUrdWdm6HM90ruY/0eH83nFmf\nW0rdemgt9/7YuHM3nOmM40NJrbV26/zVcGaQHEgZ/0ru/dHtx5/TOp3cs90k8auNkt/Bg058rKe1\n1rqJ1z/xlfOh5IkeAApT9ABQmKIHgMIUPQAUpugBoDBFDwCFKXoAKEzRA0Bhih4AClP0AFCYogeA\nwhQ9ABSm6AGgsLLrdaNJLjdJBO/s5Vaa/sfXvxHO/Mkf/vfUrVt33k/lnnjml8OZv/+P/0nq1oG1\n+FLeje3cH/rPv5V7HWf68bW82xubqVt378aX13Z7D6duHTj2VDizvj5I3XrtfHyVr7XWnlhaC2e6\nLTstGV/zG3VzX6fTxIpla63N9uPTa71Obq6tl4jlh+Fyz5+Ze9OW++6epHIPbirPEz0AFKboAaAw\nRQ8AhSl6AChM0QNAYYoeAApT9ABQmKIHgMIUPQAUpugBoDBFDwCFKXoAKKzsqM1ecstiZxz/3+fm\n3a3UrUMzM+HMFz/5bOrWZDk3QLLVlsKZ07dyL/5wMz7+cnk5N+Jyvbeaym3eiA+y3Lg+St3q7u6E\nM5/50rHUrb3Ej/jKueupWy+ffS+V++I4/nnpj3upW5NJfFBo+pGjqVv9+flcrsUHnfqd3LNdPzHI\n0rvPIy6ZmZnpNDeKNc1t4TwwnugBoDBFDwCFKXoAKEzRA0Bhih4AClP0AFCYogeAwhQ9ABSm6AGg\nMEUPAIUpegAoTNEDQGGKHgAKK7tet5lcr7s5if/vc/Xq+6lbt2/Fl9DmVldSt9Z/6aFUrh0+EY78\nwUuXU6eub2yHM3u3cq/9eP6XUrndo4+GM9OF3M+49eLXw5mLb72UunV7tBbOnLu7mLrVtnIfzu99\n/41w5nOfyP2d9yZ74Uxn/UjqVi/5MvYm8dex10t+5SfW2qbp9brsNFziXnLNb5r4Ge/jb/VzPNED\nQGGKHgAKU/QAUJiiB4DCFD0AFKboAaAwRQ8AhSl6AChM0QNAYYoeAApT9ABQmKIHgMLqjtoMJ6nc\nTi+euXbteurWv/iXfxDODIf7qVuf/MRTqdwLv/ePwplXf3QpdWthGB+12Th7LnXr6mx8xKW11jrT\nUTgzuPRa6tb0Wvx1PHX0Y6lb48FyONOfmU3d2t+7m8oNJ/H3/ngaH6dprbVpWwhnJuNh6tb+MDl3\nkhhkyX0rttYm8Z9x0s3NsXSTP+U48dza6eR+xsyoTfa1T1TSz/FEDwCFKXoAKEzRA0Bhih4AClP0\nAFCYogeAwhQ9ABSm6AGgMEUPAIUpegAoTNEDQGGKHgAKU/QAUFjZ9brd5FTQdBBfM+q03AJSJra3\nt5M61e3kFrK6M3PxzE5uMWwn8UfbOXQ0das3yC2vTc6cDmf2blxJ3VpbWw1nDj3z8dSt2xvx5bVb\nN3MfspkDB1O5bm8jnBkk18m6s/HNsMWbuRXL6cogldsZxzP9TvKLMbFe10us67WW/67KxPqT3M+Y\n3Bt8YDzRA0Bhih4AClP0AFCYogeAwhQ9ABSm6AGgMEUPAIUpegAoTNEDQGGKHgAKU/QAUJiiB4DC\nFD0AFFZ2vW6YnBeaTOPBySQxI9Vaa4l1p06Lr2q11lo3+T/d/l581Wy0mFuGG548Hs9s55byJq+d\nSeU6B9bjtzaO5G513w9nHkkuofX34++PO4Pd1K35tdzi4OxOfHltrpv7bHYSH7P5xHdHa63N9HKf\n6d3ErzaXfLTrJ26Nsyt0g9wP2Ul8n04muTW/0Sie6/VzS4q97DrqT/FEDwCFKXoAKEzRA0Bhih4A\nClP0AFCYogeAwhQ9ABSm6AGgMEUPAIUpegAoTNEDQGGKHgAKKztqkx0C6GzfDWeGN6+mbs324y//\nVvJ/s243NzTz+JGVcOZrz+dGS85v7IQz3/3xudStpY0bqdz68WPhzLlLudGSjdtb4czZl15J3RoP\n4sM7s/3F1K393VEqt3lnM5y5fin+eW6ttbmVh8OZ/uHc+366nBtW2Xw//rtt3byWujWzuhTOLBzN\njTltJt73rbXWGccHuBYWFlK35ubnw5lxcmjtHmzaeKIHgMoUPQAUpugBoDBFDwCFKXoAKEzRA0Bh\nih4AClP0AFCYogeAwhQ9ABSm6AGgMEUPAIUpegAorOx6XT+5FLSzE58KunIrtz41HcczOzvbqVs7\n+/up3PhOfOXtk5Pcotze6/Hltf0Xz6Zu9YYXU7n926vhzGA7t16335bDmdlp7n/3A+vx9/3RSe49\nNWp3UrnOYC+cWVjKrZP98sH4ElpvJrcMd+WNM6ncv331m+HMidW11K29hXhV9GfnUrd+/OIPUrnb\nN+PfVZ/69OdStz7/q8+HM89/7lOpWwuJpbyf5YkeAApT9ABQmKIHgMIUPQAUpugBoDBFDwCFKXoA\nKEzRA0Bhih4AClP0AFCYogeAwhQ9ABRWdtSml1mMaa3NDeIDNZ1+fBCktdYOrR8OZ3aH8WGP1lrr\ndnL/0730ozfDmXcv5sY9Lu/EB2MmO1dSt46uD1K5A+sHwpkL7/zv1K3Hnv+1cObkydyIS392N5wZ\n9xdzt+ZnUrmFI0fimcQQTmutfWL8XjhzYOtW6tb6Q0up3A9fvBzOrB49nrp14a23wplL7+XGei6e\nz41i7d6+G86MxrOpW68lBriG43+QuvW1r345lftpnugBoDBFDwCFKXoAKEzRA0Bhih4AClP0AFCY\nogeAwhQ9ABSm6AGgMEUPAIUpegAoTNEDQGGKHgAKK7te1++MUrnB5o1w5lAvvvzVWmvPPvdMOPPk\nUx9L3Rpv516PhZm5cObLX/1i6tb//M73w5nJ9sXUrYX5j6dy3W789Zjux1e1Wmtt0o8vr5169dXU\nrf5CfDnw1//Or6duHT64lsq999Yb4czpt3NLaH/vt+KLYYcOxpcNW2vtox99NJVbGiyHM3vT3Grj\nxWH8PfypFz6bunXwtflU7s/+2x+HMx999qnUrTt3roYz5868m7rVvpqL/TRP9ABQmKIHgMIUPQAU\npugBoDBFDwCFKXoAKEzRA0Bhih4AClP0AFCYogeAwhQ9ABSm6AGgMEUPAIXVXa+bdlK53n78f5+n\nP55bQnvs5Ho4c/HspdStmbnFVG5nZxgPbW+kbt08+0o4c3g9t3T1O7/7tVTu7bfOhjOvdMepW8PL\nl8OZzd7DqVvPJ5YU/+k//Erq1pHkyts///23w5lTf/pe6tZzz8VXzT7yyNHUrc2tnVSuO4h/fW9c\nv5m6tbEZX687eehI6tbKWvx7sbXW9vbja4/TxBpla60NZuLLgbOzuVv3gid6AChM0QNAYYoeAApT\n9ABQmKIHgMIUPQAUpugBoDBFDwCFKXoAKEzRA0Bhih4AClP0AFBY3VGbTm7UZm4+MVawkhsSGY2v\nhjNvn3ojdesLv/EbqdxotBLOzA12U7f+6A//Yzhz8qlPpG4985kvpXLDthDOLC3lRlzubNwJZ0ZH\nn0zdWj8aHxJZW1pL3VpdWErlDqzEc2sHDuZurcYHag4t5UZctm//JJX7zh9/O5z59ne+k7o1nxjF\nOvHMp1O3Tr9zLpXrzMTrbGcrMdrVWjv1ypvhzLNPHEvduhc80QNAYYoeAApT9ABQmKIHgMIUPQAU\npugBoDBFDwCFKXoAKEzRA0Bhih4AClP0AFCYogeAwhQ9ABRWdr2uN82tEg33N8OZV17+cerW40/G\nV+8+84UXUrdu3cktyg2H03BmZzO+ytdaa9ev3YqHFuKra621dvnOOJW7vhl/X016M6lbh5fiuef+\n9nOpWwfX40t0r751KXVrbjJK5W7fir+Hl9dy63Xf+tOXwpl+P/d3vn3jRir33e9/P5y5fvV86tbC\nYvz9cfPi2dSt/Z34amNrrd3ejOfOv/Hd1K3luUE4s7R2KHXrXvBEDwCFKXoAKEzRA0Bhih4AClP0\nAFCYogeAwhQ9ABSm6AGgMEUPAIUpegAoTNEDQGGKHgAKKztq05/mhjMOrcZfkmtnXk7d6m9dDGc6\nJz6ZuvW9H7yYyp2Y3wpn9vZ2UrfefP31cObwY7nX452ziQGd1trN69vhzPb23dStw48fD2d+5yuf\nTt1qc8vhyJUb11Kn/sO/+dep3OnX3wxnFmdyX3H/6vd/GM7s7ue+cz720SdTue50Es4cPHQkdWt2\ncS6cOXv6tdSt48eOpXInfvf3wplpsiee+8KvJTJ/K3XrXvBEDwCFKXoAKEzRA0Bhih4AClP0AFCY\nogeAwhQ9ABSm6AGgMEUPAIUpegAoTNEDQGGKHgAKU/QAUFjZ9brhVm4xbDeRO3xgJXXrG9/4Vjhz\npf156tb5y7m1ti8/dSKcOfbYR1K3FucG4czW7eupW52tzVRu8/rlcGZ/P75411prFy9cCWf+6N//\nu9St+eUD4cxwby9160c/+ItU7ub1G+HMc8/m1g2PPPJwODO/vJS6dexY/DPWWmvPfv5Xw5mZxYXU\nrYNr8XXD9eT34sOPxFcbW2ttZTV+79r1q6lbOzvjcKY/iq8N3iue6AGgMEUPAIUpegAoTNEDQGGK\nHgAKU/QAUJiiB4DCFD0AFKboAaAwRQ8AhSl6AChM0QNAYYoeAAoru1539dzbqdyZN0+HM9/7sx+m\nbr343fgS3fWb8fW01lqbDuZTuW+cia+aDeY7qVu3bsWX6Kb9jdStC2/kVgDfee2lcGa2P5O6NU1k\nzpx6K3Vr8UD877x+ZD116zd/82up3MJKfB3uMy98KXVr7aFHwpnZhdwy3MJc7rPZ7/fCmWk80lpr\nba4bfyac7+fqZTKNL8O11tq0E89Nernvqgun343f2swtiLb2UDL3/3iiB4DCFD0AFKboAaAwRQ8A\nhSl6AChM0QNAYYoeAApT9ABQmKIHgMIUPQAUpugBoDBFDwCFdabTzHTGX38vfvtPUr/YTy6eC2fe\neP29zKn29jvnw5nT78YzrbV28Up8MKa11u7eiY/G7A93U7dadxKO9Aa5lY6FxSOp3PrRg+HMZz/7\nqdStp595Npw59thjqVtLB+OjNovL8UxrrS3ML6ZynZn4SMqkP5u6lfle7CUfm7qp+aLWOtP452U8\nGaVudVv81kzLfTZ7yRey34//jINO7tZwO/4dd2g1915cWV7OLe/8FE/0AFCYogeAwhQ9ABSm6AGg\nMEUPAIUpegAoTNEDQGGKHgAKU/QAUJiiB4DCFD0AFKboAaAwRQ8AhZVdr7v87jupX2xv81Y4c+PG\nzcypdvXa++HMhSvxTGut/eRqLrdx6244s59Y1WqttbmV5XBmeTmeaa21lbW1VO7kY4+GM8dPHk/d\nOngwvpTXmZ1L3Rp14gNZ00n2OSE3xtVJ/Izbo9z3W2atbdDJ3eon19p6iZdxmvi9srdmu/G1wdZa\n6yRfx25vHM4Mku/F/jSeW1qYSd1qLfHG/xme6AGgMEUPAIUpegAoTNEDQGGKHgAKU/QAUJiiB4DC\nFD0AFKboAaAwRQ8AhSl6AChM0QNAYWVHbf7rf3459Yt1RnvhzN7uVuZU293bjd8a5UYphuPcLsI4\nvhPRxr3cmEV/aSWcmZudT90aDHIDE73EAEmnmx076YUz2Y/zKJHpJIY9PohOYoBkkhwtybyMneSL\n3+slR1wS4y/Zb/tu4mXsd3LPkZlbreXGcAbZW4mv4cHsbOrWV770qFEbAOD/T9EDQGGKHgAKU/QA\nUJiiB4DCFD0AFKboAaAwRQ8AhSl6AChM0QNAYYoeAApT9ABQmKIHgMLKrtcBAJ7oAaA0RQ8AhSl6\nAChM0QNAYYoeAApT9ABQmKIHgMIUPQAUpugBoDBFDwCFKXoAKEzRA0Bhih4AClP0AFCYogeAwhQ9\nABSm6AGgMEUPAIUpegAoTNEDQGGKHgAKU/QAUJiiB4DCFD0AFKboAaAwRQ8AhSl6AChM0QNAYYoe\nAApT9ABQmKIHgMIUPQAUpugBoDBFDwCFKXoAKEzRA0Bhih4AClP0AFCYogeAwhQ9ABSm6AGgMEUP\nAIUpegAoTNEDQGGKHgAKU/QAUNj/AT0236PYuGElAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7f571a673b38>" ] }, "metadata": { "image/png": { "height": 250, "width": 253 } }, "output_type": "display_data" } ], "source": [ "%matplotlib inline\n", "%config InlineBackend.figure_format = 'retina'\n", "\n", "import helper\n", "import numpy as np\n", "\n", "# Explore the dataset\n", "batch_id = 1\n", "sample_id = 890\n", "helper.display_stats(cifar10_dataset_folder_path, batch_id, sample_id)" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "## Implement Preprocess Functions\n", "### Normalize\n", "In the cell below, implement the `normalize` function to take in image data, `x`, and return it as a normalized Numpy array. The values should be in the range of 0 to 1, inclusive. The return object should be the same shape as `x`." ] }, { "cell_type": "code", "execution_count": 111, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Tests Passed\n" ] } ], "source": [ "def normalize(x):\n", " \"\"\"\n", " Normalize a list of sample image data in the range of 0 to 1\n", " : x: List of image data. The image shape is (32, 32, 3)\n", " : return: Numpy array of normalize data\n", " \"\"\"\n", " # TODO: Implement Function\n", " return x / 255\n", "\n", "\n", "\"\"\"\n", "DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE\n", "\"\"\"\n", "tests.test_normalize(normalize)" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "### One-hot encode\n", "Just like the previous code cell, you'll be implementing a function for preprocessing. This time, you'll implement the `one_hot_encode` function. The input, `x`, are a list of labels. Implement the function to return the list of labels as One-Hot encoded Numpy array. The possible values for labels are 0 to 9. The one-hot encoding function should return the same encoding for each value between each call to `one_hot_encode`. Make sure to save the map of encodings outside the function.\n", "\n", "Hint: Don't reinvent the wheel." ] }, { "cell_type": "code", "execution_count": 102, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Tests Passed\n" ] } ], "source": [ "labels_one_hot=np.zeros(10)\n", "def one_hot_encode(x):\n", " \"\"\"\n", " One hot encode a list of sample labels. Return a one-hot encoded vector for each label.\n", " : x: List of sample Labels\n", " : return: Numpy array of one-hot encoded labels\n", " \"\"\"\n", " \n", " # TODO: Implement Function\n", " result=[]\n", " for i in x:\n", " temp=labels_one_hot*0\n", " temp[i]=1\n", " result.append(temp)\n", " return np.array(result)\n", "\n", "\n", "\"\"\"\n", "DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE\n", "\"\"\"\n", "tests.test_one_hot_encode(one_hot_encode)" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "### Randomize Data\n", "As you saw from exploring the data above, the order of the samples are randomized. It doesn't hurt to randomize it again, but you don't need to for this dataset." ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "## Preprocess all the data and save it\n", "Running the code cell below will preprocess all the CIFAR-10 data and save it to file. The code below also uses 10% of the training data for validation." ] }, { "cell_type": "code", "execution_count": 103, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [], "source": [ "\"\"\"\n", "DON'T MODIFY ANYTHING IN THIS CELL\n", "\"\"\"\n", "# Preprocess Training, Validation, and Testing Data\n", "helper.preprocess_and_save_data(cifar10_dataset_folder_path, normalize, one_hot_encode)" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "# Check Point\n", "This is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "\"\"\"\n", "DON'T MODIFY ANYTHING IN THIS CELL\n", "\"\"\"\n", "import pickle\n", "import problem_unittests as tests\n", "import helper\n", "\n", "# Load the Preprocessed Validation data\n", "valid_features, valid_labels = pickle.load(open('preprocess_validation.p', mode='rb'))" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "## Build the network\n", "For the neural network, you'll build each layer into a function. Most of the code you've seen has been outside of functions. To test your code more thoroughly, we require that you put each layer in a function. This allows us to give you better feedback and test for simple mistakes using our unittests before you submit your project.\n", "\n", ">**Note:** If you're finding it hard to dedicate enough time for this course each week, we've provided a small shortcut to this part of the project. In the next couple of problems, you'll have the option to use classes from the [TensorFlow Layers](https://www.tensorflow.org/api_docs/python/tf/layers) or [TensorFlow Layers (contrib)](https://www.tensorflow.org/api_guides/python/contrib.layers) packages to build each layer, except the layers you build in the \"Convolutional and Max Pooling Layer\" section. TF Layers is similar to Keras's and TFLearn's abstraction to layers, so it's easy to pickup.\n", "\n", ">However, if you would like to get the most out of this course, try to solve all the problems _without_ using anything from the TF Layers packages. You **can** still use classes from other packages that happen to have the same name as ones you find in TF Layers! For example, instead of using the TF Layers version of the `conv2d` class, [tf.layers.conv2d](https://www.tensorflow.org/api_docs/python/tf/layers/conv2d), you would want to use the TF Neural Network version of `conv2d`, [tf.nn.conv2d](https://www.tensorflow.org/api_docs/python/tf/nn/conv2d). \n", "\n", "Let's begin!\n", "\n", "### Input\n", "The neural network needs to read the image data, one-hot encoded labels, and dropout keep probability. Implement the following functions\n", "* Implement `neural_net_image_input`\n", " * Return a [TF Placeholder](https://www.tensorflow.org/api_docs/python/tf/placeholder)\n", " * Set the shape using `image_shape` with batch size set to `None`.\n", " * Name the TensorFlow placeholder \"x\" using the TensorFlow `name` parameter in the [TF Placeholder](https://www.tensorflow.org/api_docs/python/tf/placeholder).\n", "* Implement `neural_net_label_input`\n", " * Return a [TF Placeholder](https://www.tensorflow.org/api_docs/python/tf/placeholder)\n", " * Set the shape using `n_classes` with batch size set to `None`.\n", " * Name the TensorFlow placeholder \"y\" using the TensorFlow `name` parameter in the [TF Placeholder](https://www.tensorflow.org/api_docs/python/tf/placeholder).\n", "* Implement `neural_net_keep_prob_input`\n", " * Return a [TF Placeholder](https://www.tensorflow.org/api_docs/python/tf/placeholder) for dropout keep probability.\n", " * Name the TensorFlow placeholder \"keep_prob\" using the TensorFlow `name` parameter in the [TF Placeholder](https://www.tensorflow.org/api_docs/python/tf/placeholder).\n", "\n", "These names will be used at the end of the project to load your saved model.\n", "\n", "Note: `None` for shapes in TensorFlow allow for a dynamic size." ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Image Input Tests Passed.\n", "Label Input Tests Passed.\n", "Keep Prob Tests Passed.\n" ] } ], "source": [ "import tensorflow as tf\n", "import numpy as np\n", "def neural_net_image_input(image_shape):\n", " \"\"\"\n", " Return a Tensor for a batch of image input\n", " : image_shape: Shape of the images\n", " : return: Tensor for image input.\n", " \"\"\"\n", " # TODO: Implement Function\n", " x = tf.placeholder(tf.float32, shape=(None, image_shape[0], image_shape[1],image_shape[2]), name=\"x\")\n", " return x\n", "\n", "\n", "def neural_net_label_input(n_classes):\n", " \"\"\"\n", " Return a Tensor for a batch of label input\n", " : n_classes: Number of classes\n", " : return: Tensor for label input.\n", " \"\"\"\n", " # TODO: Implement Function\n", " y = tf.placeholder(tf.float32, shape=(None, n_classes), name=\"y\")\n", " return y\n", "\n", "\n", "def neural_net_keep_prob_input():\n", " \"\"\"\n", " Return a Tensor for keep probability\n", " : return: Tensor for keep probability.\n", " \"\"\"\n", " # TODO: Implement Function\n", " return tf.placeholder(tf.float32, name=\"keep_prob\")\n", "\n", "\n", "\"\"\"\n", "DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE\n", "\"\"\"\n", "tf.reset_default_graph()\n", "tests.test_nn_image_inputs(neural_net_image_input)\n", "tests.test_nn_label_inputs(neural_net_label_input)\n", "tests.test_nn_keep_prob_inputs(neural_net_keep_prob_input)" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "### Convolution and Max Pooling Layer\n", "Convolution layers have a lot of success with images. For this code cell, you should implement the function `conv2d_maxpool` to apply convolution then max pooling:\n", "* Create the weight and bias using `conv_ksize`, `conv_num_outputs` and the shape of `x_tensor`.\n", "* Apply a convolution to `x_tensor` using weight and `conv_strides`.\n", " * We recommend you use same padding, but you're welcome to use any padding.\n", "* Add bias\n", "* Add a nonlinear activation to the convolution.\n", "* Apply Max Pooling using `pool_ksize` and `pool_strides`.\n", " * We recommend you use same padding, but you're welcome to use any padding.\n", "\n", "**Note:** You **can't** use [TensorFlow Layers](https://www.tensorflow.org/api_docs/python/tf/layers) or [TensorFlow Layers (contrib)](https://www.tensorflow.org/api_guides/python/contrib.layers) for **this** layer, but you can still use TensorFlow's [Neural Network](https://www.tensorflow.org/api_docs/python/tf/nn) package. You may still use the shortcut option for all the **other** layers." ] }, { "cell_type": "code", "execution_count": 99, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Tests Passed\n" ] } ], "source": [ "def conv2d_maxpool(x_tensor, conv_num_outputs, conv_ksize, conv_strides, pool_ksize, pool_strides):\n", " \"\"\"\n", " Apply convolution then max pooling to x_tensor\n", " :param x_tensor: TensorFlow Tensor\n", " :param conv_num_outputs: Number of outputs for the convolutional layer\n", " :param conv_ksize: kernal size 2-D Tuple for the convolutional layer\n", " :param conv_strides: Stride 2-D Tuple for convolution\n", " :param pool_ksize: kernal size 2-D Tuple for pool\n", " :param pool_strides: Stride 2-D Tuple for pool\n", " : return: A tensor that represents convolution and max pooling of x_tensor\n", " \"\"\"\n", " # TODO: Implement Function\n", " i_width=x_tensor.shape[1].value\n", " i_height=x_tensor.shape[2].value\n", " i_depth=x_tensor.shape[3].value\n", "\n", " f_w=tf.Variable(tf.truncated_normal([conv_ksize[0],conv_ksize[1],i_depth, conv_num_outputs],stddev=1/np.sqrt(conv_ksize[0]*conv_ksize[1]*i_depth)))\n", " f_b=tf.zeros(conv_num_outputs)\n", " \n", " padding='SAME'\n", " conv = tf.nn.conv2d(x_tensor, f_w, strides=[1,conv_strides[0],conv_strides[1],1], padding=padding)\n", " conv = tf.nn.bias_add(conv, f_b)\n", " conv = tf.nn.relu(conv)\n", " \n", " return tf.nn.max_pool(conv, ksize=[1,pool_ksize[0],pool_ksize[1],1], strides=[1,pool_strides[0],pool_strides[1],1], padding=padding)\n", "\n", "\n", "\"\"\"\n", "DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE\n", "\"\"\"\n", "tests.test_con_pool(conv2d_maxpool)" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "### Flatten Layer\n", "Implement the `flatten` function to change the dimension of `x_tensor` from a 4-D tensor to a 2-D tensor. The output should be the shape (*Batch Size*, *Flattened Image Size*). Shortcut option: you can use classes from the [TensorFlow Layers](https://www.tensorflow.org/api_docs/python/tf/layers) or [TensorFlow Layers (contrib)](https://www.tensorflow.org/api_guides/python/contrib.layers) packages for this layer. For more of a challenge, only use other TensorFlow packages." ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Tests Passed\n" ] } ], "source": [ "def flatten(x_tensor):\n", " \"\"\"\n", " Flatten x_tensor to (Batch Size, Flattened Image Size)\n", " : x_tensor: A tensor of size (Batch Size, ...), where ... are the image dimensions.\n", " : return: A tensor of size (Batch Size, Flattened Image Size).\n", " \"\"\"\n", " # TODO: Implement Function\n", " new_dim=1\n", " for i in x_tensor.shape[1:]:\n", " new_dim*=i.value\n", "\n", " return tf.reshape(x_tensor,[-1,new_dim])\n", "\n", "\n", "\"\"\"\n", "DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE\n", "\"\"\"\n", "tests.test_flatten(flatten)" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "### Fully-Connected Layer\n", "Implement the `fully_conn` function to apply a fully connected layer to `x_tensor` with the shape (*Batch Size*, *num_outputs*). Shortcut option: you can use classes from the [TensorFlow Layers](https://www.tensorflow.org/api_docs/python/tf/layers) or [TensorFlow Layers (contrib)](https://www.tensorflow.org/api_guides/python/contrib.layers) packages for this layer. For more of a challenge, only use other TensorFlow packages." ] }, { "cell_type": "code", "execution_count": 108, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Tests Passed\n" ] } ], "source": [ "def fully_conn(x_tensor, num_outputs):\n", " \"\"\"\n", " Apply a fully connected layer to x_tensor using weight and bias\n", " : x_tensor: A 2-D tensor where the first dimension is batch size.\n", " : num_outputs: The number of output that the new tensor should be.\n", " : return: A 2-D tensor where the second dimension is num_outputs.\n", " \"\"\"\n", " # TODO: Implement Function\n", " n=x_tensor.shape[1].value\n", "\n", " w=tf.Variable(tf.truncated_normal([n, num_outputs],stddev=(1/np.sqrt(n))))\n", " b=tf.zeros(num_outputs)\n", " \n", " return tf.nn.relu(tf.add(tf.matmul(x_tensor,w),b))\n", "\n", "\n", "\"\"\"\n", "DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE\n", "\"\"\"\n", "tests.test_fully_conn(fully_conn)" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "### Output Layer\n", "Implement the `output` function to apply a fully connected layer to `x_tensor` with the shape (*Batch Size*, *num_outputs*). Shortcut option: you can use classes from the [TensorFlow Layers](https://www.tensorflow.org/api_docs/python/tf/layers) or [TensorFlow Layers (contrib)](https://www.tensorflow.org/api_guides/python/contrib.layers) packages for this layer. For more of a challenge, only use other TensorFlow packages.\n", "\n", "**Note:** Activation, softmax, or cross entropy should **not** be applied to this." ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Tests Passed\n" ] } ], "source": [ "def output(x_tensor, num_outputs):\n", " \"\"\"\n", " Apply a output layer to x_tensor using weight and bias\n", " : x_tensor: A 2-D tensor where the first dimension is batch size.\n", " : num_outputs: The number of output that the new tensor should be.\n", " : return: A 2-D tensor where the second dimension is num_outputs.\n", " \"\"\"\n", " # TODO: Implement Function\n", " n=x_tensor.shape[1].value\n", " w=tf.Variable(tf.truncated_normal([n, num_outputs],stddev=(1/np.sqrt(n))))\n", " b=tf.zeros(num_outputs)\n", " \n", " return tf.add(tf.matmul(x_tensor,w),b)\n", "\n", "\n", "\"\"\"\n", "DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE\n", "\"\"\"\n", "tests.test_output(output)" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "### Create Convolutional Model\n", "Implement the function `conv_net` to create a convolutional neural network model. The function takes in a batch of images, `x`, and outputs logits. Use the layers you created above to create this model:\n", "\n", "* Apply 1, 2, or 3 Convolution and Max Pool layers\n", "* Apply a Flatten Layer\n", "* Apply 1, 2, or 3 Fully Connected Layers\n", "* Apply an Output Layer\n", "* Return the output\n", "* Apply [TensorFlow's Dropout](https://www.tensorflow.org/api_docs/python/tf/nn/dropout) to one or more layers in the model using `keep_prob`. " ] }, { "cell_type": "code", "execution_count": 140, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Neural Network Built!\n" ] } ], "source": [ "def conv_net(x, keep_prob):\n", " \"\"\"\n", " Create a convolutional neural network model\n", " : x: Placeholder tensor that holds image data.\n", " : keep_prob: Placeholder tensor that hold dropout keep probability.\n", " : return: Tensor that represents logits\n", " \"\"\"\n", " # TODO: Apply 1, 2, or 3 Convolution and Max Pool layers\n", " # Play around with different number of outputs, kernel size and stride\n", " # Function Definition from Above:\n", " \n", " out=conv2d_maxpool(x, conv_num_outputs=64, conv_ksize=[9,9], conv_strides=[2,2], pool_ksize=[6,6], pool_strides=[2,2])\n", " out=conv2d_maxpool(out, conv_num_outputs=128, conv_ksize=[7,7], conv_strides=[2,2], pool_ksize=[4,4], pool_strides=[3,3])\n", " out=conv2d_maxpool(out, conv_num_outputs=512, conv_ksize=[4,4], conv_strides=[2,2], pool_ksize=[3,3], pool_strides=[2,2])\n", " \n", " \n", " \n", " \n", " # TODO: Apply a Flatten Layer\n", " # Function Definition from Above:\n", " out=flatten(out)\n", " \n", " # TODO: Apply 1, 2, or 3 Fully Connected Layers\n", " # Play around with different number of outputs\n", " # Function Definition from Above:\n", " # fully_conn(x_tensor, num_outputs)\n", " out=tf.nn.dropout(out, keep_prob=keep_prob)\n", " out=fully_conn(out, num_outputs=128)\n", "\n", " \n", " \n", " # TODO: Apply an Output Layer\n", " # Set this to the number of classes\n", " # Function Definition from Above:\n", " # output(x_tensor, num_outputs)\n", " out=output(out, num_outputs=10)\n", " \n", " # TODO: return output\n", " return out\n", "\n", "\n", "\"\"\"\n", "DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE\n", "\"\"\"\n", "\n", "##############################\n", "## Build the Neural Network ##\n", "##############################\n", "\n", "# Remove previous weights, bias, inputs, etc..\n", "tf.reset_default_graph()\n", "\n", "# Inputs\n", "x = neural_net_image_input((32, 32, 3))\n", "y = neural_net_label_input(10)\n", "keep_prob = neural_net_keep_prob_input()\n", "\n", "# Model\n", "logits = conv_net(x, keep_prob)\n", "\n", "# Name logits Tensor, so that is can be loaded from disk after training\n", "logits = tf.identity(logits, name='logits')\n", "\n", "# Loss and Optimizer\n", "cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=y))\n", "optimizer = tf.train.AdamOptimizer().minimize(cost)\n", "\n", "# Accuracy\n", "correct_pred = tf.equal(tf.argmax(logits, 1), tf.argmax(y, 1))\n", "accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32), name='accuracy')\n", "\n", "tests.test_conv_net(conv_net)" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "## Train the Neural Network\n", "### Single Optimization\n", "Implement the function `train_neural_network` to do a single optimization. The optimization should use `optimizer` to optimize in `session` with a `feed_dict` of the following:\n", "* `x` for image input\n", "* `y` for labels\n", "* `keep_prob` for keep probability for dropout\n", "\n", "This function will be called for each batch, so `tf.global_variables_initializer()` has already been called.\n", "\n", "Note: Nothing needs to be returned. This function is only optimizing the neural network." ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Tests Passed\n" ] } ], "source": [ "def train_neural_network(session, optimizer, keep_probability, feature_batch, label_batch):\n", " \"\"\"\n", " Optimize the session on a batch of images and labels\n", " : session: Current TensorFlow session\n", " : optimizer: TensorFlow optimizer function\n", " : keep_probability: keep probability\n", " : feature_batch: Batch of Numpy image data\n", " : label_batch: Batch of Numpy label data\n", " \"\"\"\n", " # TODO: Implement Function\n", " session.run(optimizer, feed_dict={\n", " x: feature_batch,\n", " y: label_batch,\n", " keep_prob: keep_probability})\n", "\n", "\n", "\"\"\"\n", "DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE\n", "\"\"\"\n", "tests.test_train_nn(train_neural_network)" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "### Show Stats\n", "Implement the function `print_stats` to print loss and validation accuracy. Use the global variables `valid_features` and `valid_labels` to calculate validation accuracy. Use a keep probability of `1.0` to calculate the loss and validation accuracy." ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [], "source": [ "def print_stats(session, feature_batch, label_batch, cost, accuracy):\n", " \"\"\"\n", " Print information about loss and validation accuracy\n", " : session: Current TensorFlow session\n", " : feature_batch: Batch of Numpy image data\n", " : label_batch: Batch of Numpy label data\n", " : cost: TensorFlow cost function\n", " : accuracy: TensorFlow accuracy function\n", " \"\"\"\n", " # TODO: Implement Function\n", " loss = session.run(cost, feed_dict={\n", " x: feature_batch,\n", " y: label_batch,\n", " keep_prob: 1.})\n", " valid_acc = session.run(accuracy, feed_dict={\n", " x: valid_features,\n", " y: valid_labels,\n", " keep_prob: 1.})\n", "\n", " print('Loss: {:>10.4f} Validation Accuracy: {:.6f}'.format(\n", " loss,\n", " valid_acc))" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "### Hyperparameters\n", "Tune the following parameters:\n", "* Set `epochs` to the number of iterations until the network stops learning or start overfitting\n", "* Set `batch_size` to the highest number that your machine has memory for. Most people set them to common sizes of memory:\n", " * 64\n", " * 128\n", " * 256\n", " * ...\n", "* Set `keep_probability` to the probability of keeping a node using dropout" ] }, { "cell_type": "code", "execution_count": 142, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "# TODO: Tune Parameters\n", "epochs = 15\n", "batch_size = 256\n", "keep_probability = 0.7" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "### Train on a Single CIFAR-10 Batch\n", "Instead of training the neural network on all the CIFAR-10 batches of data, let's use a single batch. This should save time while you iterate on the model to get a better accuracy. Once the final validation accuracy is 50% or greater, run the model on all the data in the next section." ] }, { "cell_type": "code", "execution_count": 143, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Checking the Training on a Single Batch...\n", "Epoch 1, CIFAR-10 Batch 1: Loss: 2.0416 Validation Accuracy: 0.290400\n", "Epoch 2, CIFAR-10 Batch 1: Loss: 1.7830 Validation Accuracy: 0.363600\n", "Epoch 3, CIFAR-10 Batch 1: Loss: 1.5417 Validation Accuracy: 0.426600\n", "Epoch 4, CIFAR-10 Batch 1: Loss: 1.3733 Validation Accuracy: 0.440400\n", "Epoch 5, CIFAR-10 Batch 1: Loss: 1.2697 Validation Accuracy: 0.463800\n", "Epoch 6, CIFAR-10 Batch 1: Loss: 1.1328 Validation Accuracy: 0.484600\n", "Epoch 7, CIFAR-10 Batch 1: Loss: 0.9780 Validation Accuracy: 0.499200\n", "Epoch 8, CIFAR-10 Batch 1: Loss: 0.8970 Validation Accuracy: 0.476600\n", "Epoch 9, CIFAR-10 Batch 1: Loss: 0.7501 Validation Accuracy: 0.516000\n", "Epoch 10, CIFAR-10 Batch 1: Loss: 0.6390 Validation Accuracy: 0.532000\n", "Epoch 11, CIFAR-10 Batch 1: Loss: 0.5710 Validation Accuracy: 0.538800\n", "Epoch 12, CIFAR-10 Batch 1: Loss: 0.4704 Validation Accuracy: 0.536000\n", "Epoch 13, CIFAR-10 Batch 1: Loss: 0.4276 Validation Accuracy: 0.535600\n", "Epoch 14, CIFAR-10 Batch 1: Loss: 0.3966 Validation Accuracy: 0.547200\n", "Epoch 15, CIFAR-10 Batch 1: Loss: 0.3306 Validation Accuracy: 0.560600\n" ] } ], "source": [ "\"\"\"\n", "DON'T MODIFY ANYTHING IN THIS CELL\n", "\"\"\"\n", "print('Checking the Training on a Single Batch...')\n", "with tf.Session() as sess:\n", " # Initializing the variables\n", " sess.run(tf.global_variables_initializer())\n", " \n", " # Training cycle\n", " for epoch in range(epochs):\n", " batch_i = 1\n", " for batch_features, batch_labels in helper.load_preprocess_training_batch(batch_i, batch_size):\n", " train_neural_network(sess, optimizer, keep_probability, batch_features, batch_labels)\n", " print('Epoch {:>2}, CIFAR-10 Batch {}: '.format(epoch + 1, batch_i), end='')\n", " print_stats(sess, batch_features, batch_labels, cost, accuracy)" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "### Fully Train the Model\n", "Now that you got a good accuracy with a single CIFAR-10 batch, try it with all five batches." ] }, { "cell_type": "code", "execution_count": 144, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Training...\n", "Epoch 1, CIFAR-10 Batch 1: Loss: 2.1114 Validation Accuracy: 0.255400\n", "Epoch 1, CIFAR-10 Batch 2: Loss: 1.6621 Validation Accuracy: 0.318800\n", "Epoch 1, CIFAR-10 Batch 3: Loss: 1.4704 Validation Accuracy: 0.403000\n", "Epoch 1, CIFAR-10 Batch 4: Loss: 1.5213 Validation Accuracy: 0.431600\n", "Epoch 1, CIFAR-10 Batch 5: Loss: 1.4146 Validation Accuracy: 0.478400\n", "Epoch 2, CIFAR-10 Batch 1: Loss: 1.5334 Validation Accuracy: 0.477400\n", "Epoch 2, CIFAR-10 Batch 2: Loss: 1.3400 Validation Accuracy: 0.452200\n", "Epoch 2, CIFAR-10 Batch 3: Loss: 1.0502 Validation Accuracy: 0.495600\n", "Epoch 2, CIFAR-10 Batch 4: Loss: 1.1369 Validation Accuracy: 0.518800\n", "Epoch 2, CIFAR-10 Batch 5: Loss: 1.1763 Validation Accuracy: 0.525200\n", "Epoch 3, CIFAR-10 Batch 1: Loss: 1.2072 Validation Accuracy: 0.544000\n", "Epoch 3, CIFAR-10 Batch 2: Loss: 0.9699 Validation Accuracy: 0.515600\n", "Epoch 3, CIFAR-10 Batch 3: Loss: 0.7951 Validation Accuracy: 0.525400\n", "Epoch 3, CIFAR-10 Batch 4: Loss: 0.9368 Validation Accuracy: 0.583200\n", "Epoch 3, CIFAR-10 Batch 5: Loss: 0.9819 Validation Accuracy: 0.558000\n", "Epoch 4, CIFAR-10 Batch 1: Loss: 0.9912 Validation Accuracy: 0.577000\n", "Epoch 4, CIFAR-10 Batch 2: Loss: 0.7726 Validation Accuracy: 0.584800\n", "Epoch 4, CIFAR-10 Batch 3: Loss: 0.6478 Validation Accuracy: 0.551400\n", "Epoch 4, CIFAR-10 Batch 4: Loss: 0.7553 Validation Accuracy: 0.604000\n", "Epoch 4, CIFAR-10 Batch 5: Loss: 0.7292 Validation Accuracy: 0.607800\n", "Epoch 5, CIFAR-10 Batch 1: Loss: 0.8663 Validation Accuracy: 0.566200\n", "Epoch 5, CIFAR-10 Batch 2: Loss: 0.6551 Validation Accuracy: 0.590200\n", "Epoch 5, CIFAR-10 Batch 3: Loss: 0.5248 Validation Accuracy: 0.584400\n", "Epoch 5, CIFAR-10 Batch 4: Loss: 0.6010 Validation Accuracy: 0.622200\n", "Epoch 5, CIFAR-10 Batch 5: Loss: 0.5684 Validation Accuracy: 0.617800\n", "Epoch 6, CIFAR-10 Batch 1: Loss: 0.6451 Validation Accuracy: 0.590400\n", "Epoch 6, CIFAR-10 Batch 2: Loss: 0.5265 Validation Accuracy: 0.610400\n", "Epoch 6, CIFAR-10 Batch 3: Loss: 0.4242 Validation Accuracy: 0.607200\n", "Epoch 6, CIFAR-10 Batch 4: Loss: 0.5402 Validation Accuracy: 0.610000\n", "Epoch 6, CIFAR-10 Batch 5: Loss: 0.4996 Validation Accuracy: 0.619000\n", "Epoch 7, CIFAR-10 Batch 1: Loss: 0.5113 Validation Accuracy: 0.627600\n", "Epoch 7, CIFAR-10 Batch 2: Loss: 0.3948 Validation Accuracy: 0.647200\n", "Epoch 7, CIFAR-10 Batch 3: Loss: 0.3454 Validation Accuracy: 0.629800\n", "Epoch 7, CIFAR-10 Batch 4: Loss: 0.4731 Validation Accuracy: 0.616400\n", "Epoch 7, CIFAR-10 Batch 5: Loss: 0.4121 Validation Accuracy: 0.625600\n", "Epoch 8, CIFAR-10 Batch 1: Loss: 0.4313 Validation Accuracy: 0.636000\n", "Epoch 8, CIFAR-10 Batch 2: Loss: 0.3741 Validation Accuracy: 0.641000\n", "Epoch 8, CIFAR-10 Batch 3: Loss: 0.2568 Validation Accuracy: 0.639800\n", "Epoch 8, CIFAR-10 Batch 4: Loss: 0.4255 Validation Accuracy: 0.601600\n", "Epoch 8, CIFAR-10 Batch 5: Loss: 0.3319 Validation Accuracy: 0.632000\n", "Epoch 9, CIFAR-10 Batch 1: Loss: 0.3885 Validation Accuracy: 0.647800\n", "Epoch 9, CIFAR-10 Batch 2: Loss: 0.3106 Validation Accuracy: 0.643400\n", "Epoch 9, CIFAR-10 Batch 3: Loss: 0.2768 Validation Accuracy: 0.619600\n", "Epoch 9, CIFAR-10 Batch 4: Loss: 0.3688 Validation Accuracy: 0.640800\n", "Epoch 9, CIFAR-10 Batch 5: Loss: 0.2523 Validation Accuracy: 0.633400\n", "Epoch 10, CIFAR-10 Batch 1: Loss: 0.3416 Validation Accuracy: 0.637400\n", "Epoch 10, CIFAR-10 Batch 2: Loss: 0.2748 Validation Accuracy: 0.628400\n", "Epoch 10, CIFAR-10 Batch 3: Loss: 0.1987 Validation Accuracy: 0.645600\n", "Epoch 10, CIFAR-10 Batch 4: Loss: 0.3145 Validation Accuracy: 0.638000\n", "Epoch 10, CIFAR-10 Batch 5: Loss: 0.2235 Validation Accuracy: 0.636600\n", "Epoch 11, CIFAR-10 Batch 1: Loss: 0.3202 Validation Accuracy: 0.648400\n", "Epoch 11, CIFAR-10 Batch 2: Loss: 0.2266 Validation Accuracy: 0.640400\n", "Epoch 11, CIFAR-10 Batch 3: Loss: 0.1674 Validation Accuracy: 0.632200\n", "Epoch 11, CIFAR-10 Batch 4: Loss: 0.2009 Validation Accuracy: 0.653600\n", "Epoch 11, CIFAR-10 Batch 5: Loss: 0.1658 Validation Accuracy: 0.655600\n", "Epoch 12, CIFAR-10 Batch 1: Loss: 0.2527 Validation Accuracy: 0.654400\n", "Epoch 12, CIFAR-10 Batch 2: Loss: 0.2024 Validation Accuracy: 0.643400\n", "Epoch 12, CIFAR-10 Batch 3: Loss: 0.2014 Validation Accuracy: 0.638400\n", "Epoch 12, CIFAR-10 Batch 4: Loss: 0.1871 Validation Accuracy: 0.655200\n", "Epoch 12, CIFAR-10 Batch 5: Loss: 0.1394 Validation Accuracy: 0.659400\n", "Epoch 13, CIFAR-10 Batch 1: Loss: 0.2246 Validation Accuracy: 0.638800\n", "Epoch 13, CIFAR-10 Batch 2: Loss: 0.1639 Validation Accuracy: 0.653000\n", "Epoch 13, CIFAR-10 Batch 3: Loss: 0.1412 Validation Accuracy: 0.638400\n", "Epoch 13, CIFAR-10 Batch 4: Loss: 0.1975 Validation Accuracy: 0.641600\n", "Epoch 13, CIFAR-10 Batch 5: Loss: 0.1466 Validation Accuracy: 0.670400\n", "Epoch 14, CIFAR-10 Batch 1: Loss: 0.1832 Validation Accuracy: 0.644600\n", "Epoch 14, CIFAR-10 Batch 2: Loss: 0.1153 Validation Accuracy: 0.646200\n", "Epoch 14, CIFAR-10 Batch 3: Loss: 0.1062 Validation Accuracy: 0.662400\n", "Epoch 14, CIFAR-10 Batch 4: Loss: 0.1244 Validation Accuracy: 0.663600\n", "Epoch 14, CIFAR-10 Batch 5: Loss: 0.1395 Validation Accuracy: 0.664600\n", "Epoch 15, CIFAR-10 Batch 1: Loss: 0.1659 Validation Accuracy: 0.643400\n", "Epoch 15, CIFAR-10 Batch 2: Loss: 0.0862 Validation Accuracy: 0.662200\n", "Epoch 15, CIFAR-10 Batch 3: Loss: 0.0849 Validation Accuracy: 0.665000\n", "Epoch 15, CIFAR-10 Batch 4: Loss: 0.1418 Validation Accuracy: 0.672200\n", "Epoch 15, CIFAR-10 Batch 5: Loss: 0.1960 Validation Accuracy: 0.652600\n" ] } ], "source": [ "\"\"\"\n", "DON'T MODIFY ANYTHING IN THIS CELL\n", "\"\"\"\n", "save_model_path = './image_classification'\n", "\n", "print('Training...')\n", "with tf.Session() as sess:\n", " # Initializing the variables\n", " sess.run(tf.global_variables_initializer())\n", " \n", " # Training cycle\n", " for epoch in range(epochs):\n", " # Loop over all batches\n", " n_batches = 5\n", " for batch_i in range(1, n_batches + 1):\n", " for batch_features, batch_labels in helper.load_preprocess_training_batch(batch_i, batch_size):\n", " train_neural_network(sess, optimizer, keep_probability, batch_features, batch_labels)\n", " print('Epoch {:>2}, CIFAR-10 Batch {}: '.format(epoch + 1, batch_i), end='')\n", " print_stats(sess, batch_features, batch_labels, cost, accuracy)\n", " \n", " # Save Model\n", " saver = tf.train.Saver()\n", " save_path = saver.save(sess, save_model_path)" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "# Checkpoint\n", "The model has been saved to disk.\n", "## Test Model\n", "Test your model against the test dataset. This will be your final accuracy. You should have an accuracy greater than 50%. If you don't, keep tweaking the model architecture and parameters." ] }, { "cell_type": "code", "execution_count": 146, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Testing Accuracy: 0.651953125\n", "\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAscAAAJ/CAYAAACUb342AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAIABJREFUeJzs3XecXFd5//HPs1Wr3i3ZkiVb7r1gG3c5dEwLHQLBkJBg\neg0OJTE/QiBAwGBKfoQQhxZDDIQfmF5sjDuuyJZxXdvqvay0q23P74/nzNy7V7O7s9q++32/XqOZ\nOefcc8+MZmbPnHnOOebuiIiIiIgI1Ix2A0RERERExgp1jkVEREREEnWORUREREQSdY5FRERERBJ1\njkVEREREEnWORUREREQSdY5FRERERBJ1jkVEREREEnWORUREREQSdY5FRERERBJ1jkVEREREEnWO\nRUREREQSdY5FRERERBJ1jkVEREREEnWOR5mZLTOzF5vZpWb292Z2mZm9zcxeZmZPMbPpo93G3phZ\njZm90MyuNrOHzWyXmXnu8r+j3UaRscbMlhfeJ5cPRdmxysxWFh7DJaPdJhGRvtSNdgMmIzObC1wK\nvBFY1k/xbjO7H7gBuBb4tbu3DXMT+5UewzXARaPdFhl5ZnYV8Lp+inUCO4AtwJ3Ea/i/3X3n8LZO\nRETkwGnkeISZ2fOA+4F/ov+OMcT/0QlEZ/rHwEuHr3UD8nUG0DHW6NGkVAfMB44BXg18GVhrZpeb\nmb6YjyOF9+5Vo90eEZHhpD9QI8jMXg58G6gtZO0C/ghsAPYBc4BDgWMZg19gzOypwMW5pMeBjwB/\nAHbn0veOZLtkXJgG/CNwgZk9x933jXaDRERE8tQ5HiFmtoIYbc13jFcBHwR+4u6dFY6ZDlwIvAz4\nc2DmCDS1Gi8u3H+hu98zKi2RseJ9RJhNXh1wEHAe8GbiC1/JRcRI8htGpHUiIiJVUud45HwMaMzd\n/xXwAndv7e0Ad28h4oyvNbO3AX9NjC6PttNzt5vVMRZgi7s3V0h/GLjRzD4PfIv4kldyiZl93t3v\nHokGjkfpObXRbsdguPt1jPPHICKTy5j7yX4iMrMm4AW5pA7gdX11jIvcfbe7f9bdfzXkDRy4hbnb\n60atFTJupNf6XwAP5pINeNPotEhERKQydY5HxmlAU+7+Te4+njuV+eXlOkatFTKupA7yZwvJTxuN\ntoiIiPRGYRUjY1Hh/tqRPLmZzQTOBw4B5hGT5jYCt7r7EwdS5RA2b0iY2eFEuMcSoAFoBn7r7pv6\nOW4JERO7lHhc69NxawbRlkOA44HDgdkpeRvwBHDzJF/K7NeF+yvMrNbduwZSiZmdABwHLCYm+TW7\n+7erOK4ROIdYKWYh0EW8F+5193sH0oZe6j8SOBM4GGgD1gC3ufuIvucrtOso4BRgAfGa3Eu81lcB\n97t79yg2r19mthR4KhHDPoN4P60DbnD3HUN8rsOJAY2lxByRjcCN7v7oIOo8mnj+FxGDC51AC/Ak\n8BDwgLv7IJsuIkPF3XUZ5gvwSsBzl5+O0HmfAvwUaC+cP3+5l1hmy/qoZ2Ufx/d2uS4d23ygxxba\ncFW+TC79QuC3QHeFetqBLwHTK9R3HPCTXo7rBr4HHFLl81yT2vFl4JF+HlsXEW9+UZV1/1fh+K8M\n4P//44Vjf9zX//MAX1tXFeq+pMrjmio8JwsrlMu/bq7Lpb+e6NAV69jRz3lPAP4H2NPH/82TwDuB\n+gN4Ps4Fbu2l3k5i7sDpqezyQv7lfdRbddkKx84G/g/xpayv1+Rm4GvAGf38H1d1qeLzo6rXSjr2\n5cDdfZyvA/gl8NQB1Hld7vjmXPpZxJe3Sp8JDtwCnD2A89QD7yHi7vt73nYQnznPGIr3py666DK4\ny6g3YDJcgD8rfBDuBmYP4/kM+GQfH/KVLtcBc3qpr/jHrar60rHNB3psoQ09/lCntLdX+RhvJ9dB\nJlbb2FvFcc3AoVU83284gMfowL8Ctf3UPQ1YXTjulVW06RmF52YNMG8IX2NXFdp0SZXHTanwPCyo\nUC7/urmOmMz63T6ey4qdY+KLy6eILyXV/r/cQ5VfjNI5PlDl67CdiLteXki/vI+6qy5bOO7Pge0D\nfD3e3c//cVWXKj4/+n2tECvz/GqA574CqKmi7utyxzSntLfR9yBC/v/w5VWcYwGx8c1An7//Har3\nqC666HLgF4VVjIw7iD/OpWXcpgNfN7NXe6xIMdT+HfirQlo7MfKxjhhRegqxQUPJhcDvzOwCd98+\nDG0aUmnN6M+lu06MLj1CfDE4BViRK/4U4Erg9WZ2EfAdspCiB9KlnVhX+sTcccuIkdv+Njspxu63\nAvcRP1vvIkZLDwVOIkI+St5NjHxd1lvF7r7HzF5BjEpOSclfMbM/uPvDlY4xs0XAN8jCX7qAV7v7\n1n4ex0hYUrjvRCeuP1cQSxqWjrmLrAN9OHBY8QAzqyX+r19SyNpLvCfXE+/JFcDJZM/XScBNZnam\nu2/sq1Fm9k5iJZq8LuL/60kiBOBUIvyjnuhwFt+bQyq16TPsH/60gfilaAswlfi/OJGeq+iMOjOb\nAVxPvI/ztgO3pevFRJhFvu3vID7TXjPA8/0F8Plc0ipitHcf8do4ney5rAeuMrO73P2hXuoz4PvE\n/3veRmI9+y3El6lZqf4jUIijyNgy2r3zyXIhftIujhKsIzZEOJGh+7n7dYVzdBMdi9mFcnXEH+md\nhfL/XaHOKcQIVumyJlf+lkJe6bIoHbsk3S+Glry3l+PKxxbacFXh+NKo2LXAigrlX050UvPPw9np\nOXfgJuCUCsetBLYWzvXcfp7z0hJ7H0/nqDh6RXwpeT89f9rvBs6q4v/1TYU2/QFoqFCuhviZOV/2\nw8Pwei7+f1xS5XF/Uzju4V7KNefK7M7d/gawpEL55RXSPlY410YiLKPS87aC/d+jP+nnsZzI/qON\n3y6+ftP/ycuBTanMtsIxl/dxjuXVlk3ln8X+o+TXE3HW+33GEJ3L5xM/6d9RyJtP9p7M13cNvb93\nK/0/rBzIawX4z0L5XcDfUgh3ITqX/8r+o/Z/20/91+XKtpB9TvwAOKJC+WOJXxPy5/hOH/VfXCj7\nEDHxtOJnPPHr0AuBq4H/Ger3qi666DLwy6g3YLJciJGptsKHZv6ylejofZj4SXzaAZxjOvv/lPqu\nfo45i/3jMPuMe6OXeNB+jhnQH8gKx19V4Tn7Fn38jEpsuV2pQ/0roLGP455X7R/CVH5RX/VVKH92\n4bXQZ/25475TaNfnKpT5YKHMb/p6jgbxei7+f/T7/0l8ySqGiFSMoaZyOM4nBtC+s+jZSfwTFb50\nFY6pYf8Y7+f0Uf63hbJf7Kf+49m/YzxknWNiNHhjofwXqv3/Bw7qIy9f51UDfK1U/d4nJsfmy+4F\nzu2n/rcWjmmhlxCxVP66Cv8HX6DveRcH0fOzdV9v5yDmHpTKdQCHDeC5mjKQ51YXXXQZnouWchsh\nHhtlvJboFFUyF3guMYHmF8B2M7vBzP42rTZRjdeRrY4A8DN3Ly6dVWzXrcA/FJLfUeX5RtM6YoSo\nr1n2/0GMjJeUZum/1vvYttjdf0x0pkpW9tUQd9/QV30Vyt8MfDGX9KK0ikJ/3kiEjpS83cxeWLpj\nZucR23iXbAb+op/naESY2RRi1PeYQtb/rbKKu4mOf7UuIwt36QRe5O59bqCTnqe/pedqMu+sVNbM\njqPn6+JB4F391H8f8Hd9tnpw3kjPNch/C7yt2v9/7yeEZIQUP3s+4u439nWAu3+BGPUvmcbAQldW\nEYMI3sc5NhKd3pIGIqyjkvxOkHe7+2PVNsTde/v7ICIjSJ3jEeTu/0P8vPn7KorXE6Mo/wY8amZv\nTrFsffmLwv1/rLJpnyc6UiXPNbO5VR47Wr7i/cRru3s7UPzDerW7r6+i/t/kbi9McbxD6Ye52w3s\nH1+5H3ffRYSntOeS/9PMDk3/X/9NFtfuwF9W+ViHwnwzW164HGFm55jZ3wH3Ay8tHPMtd7+jyvo/\n61Uu95aW0stvuvNtd19dzbGpc/KVXNJFZja1QtFiXOsn0+utP18jwpKGwxsL9/vs8I01ZjYNeFEu\naTsRElaNDxXuDyTu+LPuXs167T8p3D+5imMWDKAdIjJGqHM8wtz9Lnc/H7iAGNnscx3eZB4x0ni1\nmTVUKpBGHk/LJT3q7rdV2aYOYpmrcnX0PioyVvyiynKPFO7/ssrjipPdBvxHzsIMMzu42HFk/8lS\nxRHVitz9D0TccskcolP8X/Sc7PYpd//ZQNs8CJ8CHitcHiK+nPwL+0+Yu5H9O3N9+XH/RcpW0vOz\n7XsDOBbgd7nb9cAZFcqcnbtdWvqvX2kU95oBtqdfZraACNsoud3H37buZ9BzYtoPqv1FJj3W+3NJ\nJ6aJfdWo9n3yQOF+b58J+V+dlpnZW6qsX0TGCM2QHSXufgNwA5R/oj2HWFXhDGIUsdIXl5cTM50r\nfdieQM+Z27cOsEm3AG/O3T+d/UdKxpLiH6re7Crc/1PFUv0f129oS1od4enEqgpnEB3eil9mKphT\nZTnc/QozW0lM4oF47eTdwsBCEEZSK7HKyD9UOVoH8IS7bxvAOc4t3N+evpBUq7Zw/3BiUlte/ovo\nQz6wjShuH0DZap1VuH/DMJxjuJ1euH8gn2HHpds1xOdof8/DLq9+t9Li5j29fSZcTc8Qmy+Y2YuI\niYY/9XGwGpDIZKfO8Rjg7vcTox5fBTCz2cTPi+8ilpXKe7OZfa3Cz9HFUYyKywz1odhpHOs/B1a7\ny1znEB1X31dhMzubiJ89sa9yfag2rrzk9UQc7qGF9B3Aq9y92P7R0EU831uJpdduIEIcBtLRhZ4h\nP9UoLhf3u4qlqtcjxCj9SpP//yr+OtGfikvwDVIx7KeqMJIxZjQ+w6rerdLdOwqRbRU/E9z9NjP7\nEj0HG56eLt1m9kcitO53xITman49FJERpLCKMcjdd7j7VcTIx/+pUORtFdJmF+4XRz77U/wjUfVI\n5mgYxCSzIZ+cZmbPJiY/HWjHGAb4XkyjT/9cIes97t48iHYcqNe7uxUude4+z92PcvdXuPsXDqBj\nDLH6wEAMdbz89ML94ntjsO+1oTCvcH9It1QeIaPxGTZck1XfSvx6s7eQXkPEKr+FWH1mvZn91sxe\nWsWcEhEZIeocj2Ee/pH4EM17ejWHD/B0+mA+AGki3DfpGdLSDHwUeA5wNPFHf0q+40iFTSsGeN55\nxLJ/Ra8xs8n+vu5zlP8A9PfeGIvvtXEzEa8PY/F5rUr67P5nIiTn/cDN7P9rFMTf4JXEnI/rzWzx\niDVSRHqlsIrx4UrgFbn7h5hZk7u35tKKI0WzBniO4s/6iourzpvpOWp3NfC6KlYuqHay0H7SCNN/\nAYdUyL6ImLlf6ReHySI/Ot0JNA1xmEnxvTHY99pQKI7IF0dhx4MJ9xmWloD7JPBJM5sOnAmcT7xP\nz6Xn3+DzgZ+lnRmrXhpSRIbeZB9hGi8qzTov/mRYjMs8YoDnOKqf+qSyi3O3dwJ/XeWSXoNZGu5d\nhfPeRs9VT/7BzM4fRP3jXX693joGOUpflDou+Z/8V/RWthcDfW9Wo7iG87HDcI7hNqE/w9y9xd1/\n4+4fcfeVxBbYHyImqZacBLxhNNonIhl1jseHSnFxxXi8VfRc/7Y4e70/xaXbql1/tloT4WfeSvJ/\nwH/v7nuqPO6Alsozs6cAn8glbSdWx/hLsue4Fvh2Cr2YjG4p3H/aMJzjztztI9Mk2mpVWhpusG6h\n53tsPH45Kn7mDOYzrJuYsDpmufsWd/8Y+y9p+PzRaI+IZNQ5Hh+OLtxvKW6AkUaz8n9cVphZcWmk\nisysjuhglatj4Mso9af4M2G1S5yNdfmffquaQJTCIl410BOlnRK/Q8+Y2je4+xPu/nNireGSJcTS\nUZPRrwr3LxmGc9ycu10DvKSag1I8+Mv6LThA7r4ZuC+XdKaZDWaCaFH+/Ttc793b6RmX++e9rete\nlB5rfp3nVe6+eygbN4y+Q8+dU5ePUjtEJFHneASY2UFmdtAgqij+zHZdL+W+Xbhf3Ba6N2+l57az\nP3X3rVUeW63iTPKh3nFutOTjJIs/6/bmtRzYz95fISb4lFzp7v+bu/9Beo6aPt/MxsNW4EPK3R8G\nfp1LOsvMirtHDta3Cvf/zsyqmQj4BirHig+FrxTuf2YIV0DIv3+H5b2bfnXJ7xw5l8prulfy0cL9\nbw5Jo0ZAiofPr2pRTViWiAwjdY5HxrHEFtCfMLOF/ZbOMbOXAJcWkourV5T8Fz3/iL3AzN7cS9lS\n/Wew/x+Wzw+kjVV6FMhv+vBnw3CO0fDH3O3TzezCvgqb2ZnEBMsBMbO/oeekzLuA9+XLpD+yr6Jn\nh/2TZpbfsGKyuLxw/9/N7BkDqcDMFpvZcyvluft99NwY5Cjgs/3UdxwxOWu4/Ac9462fDlxRbQe5\nny/w+TWEz0iTy4ZD8bPno+kzqldmdinZhjgAe4jnYlSY2aVpx8Jqyz+HnssPVrtRkYgME3WOR85U\nYkmfNWb2AzN7SV8foGZ2rJl9BfguPXfsupP9R4gBSD8jvruQfKWZfcrMesz8NrM6M3s9sZ1y/g/d\nd9NP9EMqhX3kt7O+0My+amZPM7MjC9srj6dR5eJWwN8zsxcUC5lZk5m9ixjRnEnsdFgVMzsBuCKX\n1AK8otKM9rTGcT6GsQH4zgC20p0Q3P339FwHuolYCeBLZnZkb8eZ2Wwze7mZfYdYku8v+zjN2+j5\nhe8tZvat4uvXzGrM7GXELz5zGKY1iN19L9He/ByFtwO/TpvU7MfMGs3seWZ2DX3viJnfSGU6cK2Z\n/Xn6nCpujT6Yx/A74Bu5pGnAL83sr4oj82Y208w+CXyhUM37DnA97aHyfuCJ9Fp4UW/vvfQZ/JfE\n9u9542bUW2Si0lJuI6+e2P3uRQBm9jDwBNFZ6ib+eB4HLK1w7BrgZX1tgOHuXzOzC4DXpaQa4L3A\n28zsZmA9sczTGcD8wuGr2X+UeihdSc+tff8qXYquJ9b+HA++RqweUepwzQN+aGaPE19k2oifoc8i\nviBBzE6/lFjbtE9mNpX4paApl/wmd+919zB3v8bM/g14U0o6Avgy8JoqH9NE8WFiB8HS464hnvdL\n0//P/cSExnriPXEkA4j3dPc/mtn7gc/kkl8NvMLMbgGeJDqSpxMrE0DE1L6LYYoHd/dfmNl7gX8l\nW/f3IuAmM1sP3EvsWNhExKWfRLZGd6VVcUq+CrwHmJLuX5AulQw2lOOtxEYZpd1BZ6Xz/4uZ3UZ8\nuVgEnJ1rT8nV7v7lQZ5/KEwhXguvBtzMHgQeI1tebjFwKvsvV/e/7v6jEWuliFSkzvHI2EZ0foud\nUYiOSzVLFv0KeGOVu5+9Pp3znWR/qBrpu8P5e+CFwzni4u7fMbOziM7BhODu+9JI8W/IOkAAy9Kl\nqIWYkPVAlae4kviyVPKf7l6Md63kXcQXkdKkrL8ws1+7+6SZpJe+RL7WzO4B/omeG7X09v9T1Oda\nue7+2fQF5qNk77Vaen4JLOkkvgwOdjvrPqU2rSU6lPlRy8X0fI0OpM5mM7uE6NQ39VN8UNx9VwpP\n+j7RsS+ZR2ys05svEiPlY40Rk6qLE6uLvkM2qCEio0hhFSPA3e8lRjr+jBhl+gPQVcWhbcQfiOe7\n+zOq3RY47c70bmJpo19QeWemkvuID+QLRuKnyNSus4g/ZLcTo1jjegKKuz8AnEb8HNrbc90CfB04\nyd1/Vk29ZvYqek7GfIDKW4dXalMbEaOcn+hzpZkdU83xE4m7f5qYyHgF+68HXMmfiC8lZ7t7v7+k\npOW4LqBn2FBeN/E+PNfdv15VowfJ3b9LrO/8aXrGIVeykZjM12fHzN2/Q8yf+AgRIrKenmv0Dhl3\n30EswfdqYrS7N11EqNK57v7WQWwrP5ReSDxHt9D/Z1s30f6L3f2V2vxDZGww94m6/OzYlkabjkqX\nhWQjPLuIUd/7gPuHYmevFG98ATFLfi7RUdsI3Fpth1uqk9YWvoD4eX4K8TyvBW5IMaEyytLEuJOI\nX3JmE19CdwCPAPe5+6Y+Du+v7iOJL6WLU71rgdvc/cnBtnsQbTIiTOF4YAER6tGS2nYfsNrH+B8C\nMzuUeF4PIj4rtwHriPfVqO+E1xszmwKcQPw6uIh47juIidMPA3eOcny0iFSgzrGIiIiISKKwChER\nERGRRJ1jEREREZFEnWMRERERkUSdYxERERGRRJ1jEREREZFEnWMRERERkUSdYxERERGRRJ1jERER\nEZFEnWMRERERkUSdYxERERGRRJ1jEREREZFEnWMRERERkUSdYxERERGRRJ1jEREREZFEnWMRERER\nkUSdYxERERGRRJ1jEREREZFEnWMRERERkUSdYxERERGRRJ1jEREREZFEnWMRERERkUSdYxERERGR\nRJ1jEREREZFEneM+mNkMM/uMmT1iZu1m5mbWPNrtEhEREZHhUTfaDRjjvg88Pd3eBWwDNo9ec0RE\nRERkOJm7j3YbxiQzOx5YBXQAF7j7LaPcJBEREREZZgqr6N3x6fpedYxFREREJgd1jnvXlK5bRrUV\nIiIiIjJi1DkuMLPLzcyBq1LShWkiXumyslTGzK4ysxoze6uZ3WZmO1L6KYU6TzWzb5rZk2a2z8y2\nmNnPzewl/bSl1szeaWb3mlmrmW02sx+b2bkpv9Sm5cPwVIiIiIhMOpqQt78WYCMxcjyTiDnelstv\nz902YtLeC4EuYHexMjP7G+DLZF9EdgCzgWcCzzSzbwKXuHtX4bh64IfAc1JSJ/H/dTHwLDN75YE/\nRBERERGpRCPHBe7+aXdfBLwjJd3k7otyl5tyxV8MPBt4MzDT3ecABwGPApjZOWQd42uApanMbOCD\ngAOvAf6+QlM+RHSMu4B35upfDvwM+OrQPWoRERERAXWOB2s68HZ3/7K77wVw903uvivlf5R4jm8E\nXunua1KZFnf/Z+ATqdz7zWxmqVIzmw68J939B3f/nLu3pmMfJzrljw/zYxMRERGZdNQ5HpytwNcq\nZZjZXOCidPfjxbCJ5F+ANqKT/dxc+rOAaSnv88WD3L0D+MyBN1tEREREKlHneHD+4O6dveSdSsQk\nO3B9pQLuvhO4I909rXAswN3u3ttqGTcMsK0iIiIi0g91jgenr93yFqTrnX10cAHWFMoDzE/X6/s4\nbl0/bRMRERGRAVLneHAqhUoUNR5AvVZFGW1tKCIiIjLE1DkePqVR5SYzW9BHuSWF8vnbi/s47uAD\nbZiIiIiIVKbO8fC5i2x096JKBcxsFnB6untn4ViAU9LKFZWcP+gWioiIiEgP6hwPE3ffBvw23X2/\nmVV6rt8PTCE2HvlJLv0XwJ6U95biQWZWB7xrSBssIiIiIuocD7MPA93EShRXm9kSiHWMzewDwGWp\n3CdyayPj7ruBz6a7/2RmbzOzpnTsocSGIoeN0GMQERERmTTUOR5GaTe9NxMd5JcBT5jZNmIL6Y8R\nE+++RbYZSN5HiRHkOmKt453p2MeJNZHfkCu7b7geg4iIiMhkos7xMHP3/wucAXybWJptOrAT+CXw\nMnd/TaUNQty9HbiY2ClvFdHB7gJ+BFxAFrIB0dkWERERkUEyd60INh6Z2dOAXwGPu/vyUW6OiIiI\nyISgkePx633p+pej2goRERGRCUSd4zHKzGrN7Boze3Za8q2UfryZXQM8C+gg4pFFREREZAgorGKM\nSsu1deSSdhGT86am+93Ape7+lZFum4iIiMhEpc7xGGVmBryJGCE+EVgI1AMbgN8BV7j7nb3XICIi\nIiIDpc6xiIiIiEiimGMRERERkUSdYxERERGRRJ1jEREREZFEnWMRERERkaRutBsgIjIRmdljwEyg\neZSbIiIyXi0Hdrn7YSN50gnbOf7QP17qAM0PPVpO27O3DYCGabGnxvIVR5TzDj8ybs+aPzfKNFg5\nr642VvQoLeyRX+GjrS3q3LlzBwD79rWV8+rr4+mdOnV6up5WzmtoaACgu7urnNbZmZY1thjQb7es\nDZ1dUa6rK8p0dWdLIHd1dgKwt3UPAB0d7eU8q4m6amuiLTVWm+Wl+t/5qvdlJxKRoTKzqalp7rHH\nHjt3tBsiIjIerV69mtbW1hE/74TtHK+6dxUAcxcuLKcdedYZABx22PLImz2vnNdQPwWAzvboWOY7\nn52pQ9rd3b3feWpS53POnPj7V1tbs19efX19Ssn6oB0dFepMfe5uj85uR9e+cta+9n2pfFcqmnXQ\nO1LnuLsrrutrs//WUntKHeGamuy4UsdZZCwxs7cTa3wfBkwB3uXuV4xuqw5I87HHHjv3jjvuGO12\niIiMS6effjp33nln80ifd8J2jkVk/DGzVwKfA+4CrgD2AbeMaqNERGRSUedYRMaS55Wu3X3dqLZk\nCKxau5Pll1072s0QESlr/sTFo92EMW/Cdo5XPutZACw+5OByWuP0KT3K7NvXkru9N8o0NAJQ11Bf\nzrPOCD8oxRo7WZxwKWyhpo8Qha4UL5yPLy6FU+Tjl0uhEvvaWlNeFlZR56WY4yhjlv3X1dRF/PK0\nhqYoa/kQ4tJt73FegC7fP0xEZJQdDDAROsYiIjI+KehUREadmV1uZg5clO576ZK7f52ZLTKzr5rZ\nWjPrMrNLcnUsNrMvmlmzmbWb2WYz+76Znd7LOWeZ2RVmtsbM2szsATN7t5kdns531Qg8dBERGWMm\n7MjxYSuWAtDalq0e0bIrJtvV1sXDrqvLRodLK0tY6etCmhQHYJZGeSkvV1HOq63NVn+IrCyvq7zC\nRGfKy4/UlkahO3PHRvnamihXn/vvsZoYHW7tbEttbyjnNUxr6tmuXBsorLDRnWtDe1d2bpFRdl26\nvgRYBnykQpm5RPxxC/B9oBvYCGBmhwG/J0aefwP8N7AUeBlwsZm9xN1/XKrIzKakcqcR8c3fAmYB\nHwTOH9JHJiIi48qE7RyLyPjh7tcB15nZSmCZu19eodiJwDeAN7h78ZvdvxEd4w+5+8dKiWb2JeB3\nwH+Z2TJ3L8VSvY/oGF8NvNrTt0cz+xhw50Dabma9LUdxzEDqERGRsWHCdo73tsbfwIYUQwwwJcXk\nluKDa3JWBO1KAAAgAElEQVSjvrVpubXSSHBHVxYf3NEet+tS/G5tffa0dddEXue+rlQ2ixMujdJ2\nd+6//FqlNtQ0RFpj01QA2rfvLudtfuhBANatWQvA3AVzynkLl6+I49Jycvnw55q6uNOdYpVru3Px\nyF25EWaRsa8deG+xY2xmS4BnAk8An8znuftNZvbfwGuAFwNfT1mvI0ae/95zP/e4+5NmdgXwT8P2\nKEREZEybsJ1jEZlwmt19U4X0U9P1De7eUSH/N0Tn+FTg62Y2E1gBPOnuzRXK/34gjXL33mKa7yBG\np0VEZBzRhDwRGS829JI+K12v7yW/lD47Xc9M1xt7Kd9buoiITAITduS43tLyabntnLdt2gpkE/Gm\nNGYhF3U1peXa4r43ZBPe6tKOcy27IlSjg6zOuikpPKIzwhXa92bLw21dF3+T6/bE0mzz584q502d\nHltKN8ycXk7rnBIhFu21MwC4/+Zs74O7rv8dAMcefyQAJ52yqJy39rE/xo0pTwGgMXce74jnoT0t\nI1famS9uZyEgIuNAb3FAO9P1ol7yFxfK7UrXB/VSvrd0ERGZBCZs51hEJo270vV5ZlZXYbLeRen6\nTgB332VmjwLLzWx5hdCK84aqYSccMos7tOC+iMi4MmE7x6vvuBuAR/70RJaYJssdeugSoOcoal2a\nGLd7V0yCyz8xJ51yMgBeF2Vu/n02orttfYxGL1k4D4B9XdlobNvOGEWe1RQj1VvmTC3nzZ0b5bvq\ns9Hrln1x7u7OmMi3Y1326+7MmXFsW3vkrUnnBWjfsiNupPK1uRHxfd3RT+jsTP2F/CYgWspNJgB3\nX2NmvwSeAbwT+HQpz8zOAl4NbAd+kDvs68DlwMfNLL9axdJUh4iITFITtnMsIpPKm4AbgU+Z2TOB\nP5Ctc9wNvN7dd+fKfxJ4EfBK4Ggz+wURu/xyYum3F6XjRERkktGEPBEZ99z9UeApxHrHRwPvBZ4D\n/Aw4191/WCjfSoRbXEnEKr8r3f9n4OOp2C5ERGTSmbAjx9YZu+HV51Z2Ouig+QAcddSJAOyrzdYy\n3rZtCwC7WvYC0LZ9ezlv46PNAOzYEwNPG9ety/K2RRjF9JkxiW5+UzbYNH9BhDc0NERYRXfu2d64\nKep4cNPecpqnnfhm1sW8o6lNWRjGGWfHalGNKWTiyS1ZG2rSLoAL1z8EQMu+bLWr1vmHR5mpUVdd\nfbbOcV1tFn4hMha4+8pe0q1SeqHMWuDSAZxrB/D2dCkzszemm6urrUtERCYOjRyLyKRkZgdXSFsK\nfBjoBH6830EiIjLhTdiR492bYpR35tQZ5bS9e2Nk9oY0oa6mriF3RAxMbdgSv6Q2TplSzmlIS7HN\nmxFpFz3n3HJe3d4YOZ61J0aely5fWM6raYz6uzpiZHfn5m1ZXn0suXru+dmyaw8/FnU8cF9MIjz4\nsGxlqpMvjJHj+tpow8PN2WS9Jx+9P849P863e8eWct4Ta2Ky3qIjjwPAD8m1r14hlTKpfc/M6oE7\ngB3AcuB5wFRi57y1o9g2EREZJRO2cywi0o9vAK8FXkJMxmsBbgW+4O7fH82GiYjI6JmwneO5B80B\nYNbMbOS4KY3ktuyOEdxdu7LNPGbMi5HcY2piibW2lixvzoyoY8b0iNtt7cpile+/N0ahj2yMkWdf\nekQ5b/3mGLVduiCe5vlTsxjfKbOizu7GaeW02YdHuQUp1Li1Lit/+033AnDnXY8CsH1Xth9C49Ro\n65kXx+jw/IXZHgbtdbGc3LSdDwPQsWhOOa+jQTHHMnm5+5eAL412O0REZGxRzLGIiIiISKLOsYiI\niIhIMmHDKg4/LCair92QTYJbs3YNAIvmRUjD8kMPK+d5bSz5tm1bTHTb/mQ2F2dXmpzX0RqhDHv2\nZcuvtXXH94ufPxDLp9209rasEfWxnNzJs6PuE+ZnIR73PhJtueXB9nLa2SfFUnNHHLMUgPYZTeW8\nh++J8pta4jx792a7251z3LEAzJkaS8Y1tLSW8+YvTpP02uM86zqztnd11CIiIiIiGY0ci4iIiIgk\nE3bkuLMtllhbn9uwY8WKQ+NGW4y6Pnh/tsb/vAWxpNqmjVsBWLMuG3Hu7I4JeDt3xIjs0//szHLe\naeefBsDadesBaJyWjfYuPjhGgmt2xMS8u67/XTnvtieiXTNzE+QaZsb1rh0xer1w+qHlvGU1Mcrr\nSxcDMLUpm0x34mGRNr02Rok7a7PR4emzpke75sQSbmt3Zcd5dzaxUEREREQ0ciwiIiIiUjZhR453\ntuwBYPGibNOLvXsj9vexR5oBmDOrvpx36OEx+jptTowgd9VnI6xHHhGxyW5pSbZZ2fJr9e0xCn3c\n0tiww+qz0dhDjzoFgG1pIPe+a64r57XvjHJHHjm7nHbwYcsA6K6JOjuycGTat8WI9qlHHQnAeU8/\nJ8vcEyPT3rI5yk7LlnnrqIt14TZ3Rdx0d255OGvPttYWEREREY0ci4iIiIiUqXMsIiIiIpJM2LCK\nh5o3ALBscRZWceutdwCw6qEnAHjKSUeX8y56bkx+W3xYhB0ccnC2092ejghzuO7anwGwZduOcl5D\nd8Q+dHfGTnSnnbS0nPeieSsA2JUm603dtLOct68xvpe0d2Y78c2cG22dNiXCIp64/eFy3hNrdwNw\nxHmxg99BK5aV87Y/ESEkjQuXALB1b3c5b+2GyNvVlSbmNWShJKbvRiIiIiI9qHckIiIiIpJM2JHj\nZctjgtzhSw8up5Um29XMuhuAlSvPz/KmxYjsrb+/HoBNT24s5z35WIz8bty8BYCjjs1Go49fHqO1\n27bFqPCSIw8v5zXEXDi6WqKuHXtbynkLU7tOOvOkctrMeQuiLcRo9BO5keaFhx4CwAmnHpdSrJzX\n1h23Vz0aI9o7bXo5r7021ofr6ozRZPNsll9npybkiQCY2XXAhe5u/ZUVEZGJbcJ2jkVERtuqtTtZ\nftm1w1J38ycuHpZ6RUQmO4VViIiIiIgkE3bk+IYb7wJg47LN5bSXvvaVADz1aU8HoGXz+nLeT67+\nZqTtjtCHs848oZy3YGY8Tbs7Y73j446dX86b3RST5zq6lgOw+Ijjynl7u+K4R7ZGeMSD27aX86am\nMIlZB2UT6+YeEpP5du+I8I3aQ7KQkItOi8mDDY2xU969f7ijnHfn/Q/F+Rpi/eWm2bXlvJqGCKOo\n8VhXuRReATBlSgMi442ZnQm8BzgPmA9sA/4IfNXdv5vKXAI8HzgVWAx0pDJfdvdv5upaDjyWu58t\nEg7Xu/vK4XskIiIyFk3YzrGITDxm9kbgy0AX8P+Ah4CFwFOANwPfTUW/DNwP/A5YD8wDngt8w8yO\ndvcPp3I7gI8AlwDL0u2S5irbdEcvWcdUc7yIiIwtE7ZzfPb5TwHg4Llzy2lTa2NQ6KYffQ+Ax3KT\n7hrT5Lkzjo+R3yMOy0Ztl6fbu/fEVndGNvraNDMm/tEWI86PPba6nNfeHU9va5o8d+r5p5fzjjj6\nKAD21mZLq61dsxaAbRtjRNu7st32mh9eA8CDD0T923bvKufVL45JgA3TY/IdlkXL1NXFKHJNGg9r\nbMhGi2trsxFmkbHOzI4DvgTsAs539/sK+Utyd09w90cK+Q3AT4HLzOzf3H2tu+8ALjezlcAyd798\nOB+DiIiMfRO2cywiE86lxGfWR4sdYwB3X5O7/UiF/HYz+yLwZ8DTgK8PRaPc/fRK6WlE+bShOIeI\niIycCds5Pvq45QA8fs+D5bS1j88B4Pb7Hwdg2ZIF5bwjDovbS1fE4NOUaVPKeQ/eE+Ubp8YI8Cln\nP7WcVz8t6ty78cm4Pz0bcb7xttsB2Bd7iHB4bpm3hXOi/k0P/7Gcdk9zbE5Sm1aT2rY72yBk0fKL\nUh1nArBxexYvvWDBbAD27N4HQE19NiK8Z0/Usc9jc5Muz0IqW9taERlHSm+8n/ZX0MwOBd5PdIIP\nBZoKRQ4Z2qaJiMhEMWE7xyIy4cxO12v7KmRmhwO3AXOAG4BfADuJOOXlwOuAxmFrpYiIjGvqHIvI\neFHat/0Q4IE+yr2bmID3ene/Kp9hZq8iOsciIiIVTdjO8T13rorrm7KwhenTYvLbOecdAcADdz1U\nzts4JwalFhNhB1s3ZoNT69fH0moteyIMYemRK8p5c9Oktq17Yre5h+99tJy3YX2Un7ooJu117dlS\nztu5exsAi2ZmEwa7uuPc9616ONq0JdvN7qTTLwBgwexYrq1j38xy3t61GwCoT8tW79mT7XznXVHH\nrj1pd74pU8t5sw5ahMg4cguxKsVz6LtzfES6/l6FvAt7OaYLwMxq3b2rlzIDdsIhs7hDm3WIiIwr\n2gRERMaLLwOdwIfTyhU95FaraE7XKwv5zwL+upe6t6brQwfdShERGdcm7Mhxacmyg5YuLKcddPBB\nACw8eBYAP/3xH8p5uztipPjs05YD0FGThSQefXQcNzONLtOQTWq76eaoY/XqOH7Ljt3lvCOPik1D\njj4qBrJadk8v5zV4jDgfvCAbAba6qPfXN8XEvIc27CjnXXvtrwFYdfvNABxxfLaEatvMVG9dTOTr\nas9GnN1j2TmribymKflQS303kvHD3e83szcD/wbcZWY/JNY5nkeMKO8GLiKWe3s98D9m9j0iRvkE\n4NnEOsivqFD9r4GXAd83s58ArcDj7v6N4X1UIiIy1kzYzrGITDzu/u9mtgp4LzEy/CJgC3Av8NVU\n5l4zuwj4J2LjjzrgHuDFRNxypc7xV4lNQF4J/F065npAnWMRkUlmwnaOp82IkeNzzj6xnFbaBKS9\nLWJyD1qYxdy2bY9R2tWrYtR224695bxl82Kked7BMQrd0ZWtCrVreyynunBGpB191NJyXktLxPk+\ndPPdAFjdvnLewWlE++fX3l1Ou+mWCKN84JH4hffw47Ol30573rkA7FgXG5fsqMs28zjiqIiBbmmN\n+uuzfUXoLu1XUhOjxJ3tneW89o78Trki44O73wy8pJ8yNxHrGVdiFcp3AR9IFxERmcT0u7qIiIiI\nSKLOsYiIiIhIMmHDKvbsil9OS0ufAbTsi+8CLWsihKK1PdshrqY+Qgxuu+tPALTXZcc9sWYnAHc9\nuBmApYvnlPMsLZVWb7ET3cO3ZrvWdqXwjYaGiHPYsjebKPetb/4WgIce31pOa5w1A4CnPvc8AM6/\n4JRy3pLlEYaxeFls7NXenq02tTuFb7jF49vXvv93HrN4Pmpqswl505q0D4KIiIhInkaORURERESS\nCTty3N4eI6WPNGfLoc2bHyO+DfXxsP90/xPlvGOPiWXXzrngVADmLz6onPdQ2pRj+5YYQa7d11bO\n29cRS7dt3h4jwNs37Sznbdy0C4DVzesBWNeSHTfnkBgBPu8F2ZyhM86JyYOLl8TGIPW5HW67O9PG\nHmkOXWND/r8uLeFGjyKRk0aM60uz9NxyeZqQJyIiIpKnkWMRERERkUSdYxERERGRZMKGVSxeEGsT\nz5g9pZy2a0+EOTzy8BoA1j65rZw3dWqEMjQ/EZPu5i6YXc476qgIsbClsRNd7Z5sveIbb30MgFvu\njR3y1m3fU84rrTt8yOFHAbDynJPKeUefvAyA2bNnlNNq03eVmlJ8RE13Oa+uvraUGP/W1JbzukuL\nGafrmtosrxxOUbv/f/XO3Vv3SxMRERGZzDRyLCIiIiKSTNiR49V3x25zp556RDntqKUxOvyb/3cd\nANt37i7n7dgdO+Jt2hzX63ZmS6VNnzkVgDkNMYFt6Zzp5byWGyJtXXtczz/qsHLeM59yLACnnHoM\nALNnZ8eVRntbc5P7urtistzU6TMB6OruyJWP9tTVxUhwZ2e2052lJdyapsQEPqvNvvOURo5bOmMU\ne8eubLR8/fpHEREREZGMRo5FRERERJIJO3I8M8Ua33brqnLaj36wCYDb74iNOtyz7wYbNmwAYPPm\n2Gyj1rOnZv7CxZHWGsvCPfzYY+W8w084AYC3Pfu5AMydn20eMmVKAwBtbTE63N6ejQSXNNQ3lG97\nXdrEY1+M8k5pyuWl7zGeVl+rq9v/v87TIm61lj2utjQy/UjzgwBs2rK+nFdf342IiIiIZDRyLCIi\nIiKSqHMsIuOKmTWbWfNot0NERCamCRtW0ba7HYAFc7Kd7to70zJoTbHs2o4t28t5tTsjJKF9a0zI\n2/jk2nLeoUceCsCsBUsAuOeW+8p5ixfGJL8ZC2P3vT25CXZdNTFpbsaMCPHYvX1vOW/fvphg15Qm\n+wGkzewo7WG3LxeGUdrLrj7t7tdNFhLR1RV1TZ0SE/5aW7PzPPpYhFNs2bouynZmy9A11WXL3ImI\niIjIBO4ci4iMtlVrd7L8smsP6NjmT1w8xK0REZFqTNjOcVeaULdue7bRRVNdTHB73YufA8Cvbry1\nnLenJUZbd++I5d22rt9Uztv4UEzgqz/8aADOOPep5bxp3TH6vLcmRoynTcs2D+nsjJHf9h2x+Uh9\nSzaia2myntVYOa0ubdRRGiXuZv/NPDo6YuTXcpPuGlNeacT48SeyJdo2booR8NL8vYYpTdlxFTYG\nEREREZnMFHMsImOOhbea2X1m1mZma83sC2Y2q5fyjWZ2mZnda2Z7zWyXmd1gZi/vo/53mNn9xfoV\n0ywiMrlN2KHDKbNiSbVFK5aU0+765Y0A7Hl8IwDnnnBkOW/jrtj2ecPGWK6tfWM24jx7R6Td/Yvr\nAJg2PxsdnjMnYoabpseI7PT5reW8Rx54CICH/vQ4AAtmzyznHXFCbE7S1Jgt19bVHaPIDQ2R1pX7\n7lKKK65NQ8CNjfXlvJ07dwLw8COx8cmOHVuy56EpytekgOb2jvZy3vbtWVtFxpgrgLcD64GvAB3A\nC4GzgAag/EI2swbg58CFwAPAF4GpwEuB75jZKe7+gUL9XwQuBdal+tuBFwBnAvXpfCIiMglN2M6x\niIxPZnYO0TF+BDjT3bel9A8CvwUWA4/nDnkP0TH+KfACd+9M5T8C3Ab8vZn92N1vSunnEx3jB4Gz\n3H1HSv8A8Cvg4EL9/bX3jl6yjqm2DhERGTsUViEiY83r0/XHSh1jAHdvA/6+Qvk3EKH67y51jFP5\nTcBH092/zpV/Xa7+Hbny7b3ULyIik8iEHTm2aRHmsK+7/LeS4887BYA7b7gbgJYt2aS7xx6P25s2\ntgDwwP0Pl/OeXB+7ym3eHpPuOnIby02bFcunTZ/WCMDJJ2ahGouXzAPgpFNiAKmzJnu6axqjfV2d\nWWW1dVFHV1d8Z+kqbYcH5a8xltI2btxYzlqztjnatznSGhqykIvamvpUZ+t+59uzV2EVMiadlq6v\nr5B3A1B+U5vZDOAIYK27P1Ch/G/S9am5tNLt31cof0u+/mq4++mV0tOI8mmV8kREZOzSyLGIjDWl\nSXcbixnu3gVsrVB2fbFsIX12Lm0g9YuIyCQzYUeOjz95BQBObqm0urg9Z/khAOzZ3VLOO3pHTMjb\nujV+ZV23NhtVnjkzRnkPnhF/U7u7s9HXDevib29pULh5d/lXWjY/FPU//+TjAWiak/193rsnll3r\nTBPtAKwm6u3qioGr2obsv6ejM9LWrGmO825cV85rbd2V2tWZrrOR482btqbnIUaJGxuzpdymNGQb\nkIiMITvT9UHAo/kMM6sF5gFrC2UX9VLX4kI5gF0DqF9ERCaZCds5FpFx604iHOFCCp1X4Hxyn1vu\nvtvMHgEON7Mj3f2hQvmLcnWW3EWEVpxXof6nMoSfiyccMos7tJmHiMi4orAKERlrrkrXHzSzuaVE\nM5sCfLxC+a8Ru65/Ko38lsrPBz6cK1Py9Vz9s3LlG4B/HnTrRURkXJuwI8fdaYe8xvop5bSOzphQ\n1zg1wgkWLMx+ia3pTuEN6evC7pbd5by6xpgoN3vWDADaWtvKee0dsRxqXf3+k+g2bI6Qhta6+Htd\nm0VQUNsQ7WrI7ZDXmZssB1l4BcC6dU8CsHnzhnh83Vkbpk0vTeSLx7V3955yXuueeBz1UYQ97Vko\nyfonsnIiY4W732hmVwJvA1aZ2TVk6xxvZ//44k8Dz0n595jZT4h1jl8GLAQ+6e6/z9V/vZl9Bfgb\n4D4z+16q//lE+MU6oOebUUREJo0J2zkWkXHtHcQ6xG8B/paYJPcD4APAPfmC7t5uZs8A3g28muhU\nd6Zy73T3/65Q/6XEhiF/C7ypUP8aYo3lwVq+evVqTj+94mIWIiLSj9WrVwMsH+nzmueXCxMRmcTM\n7EiiU361u79qkHXtA2opdOZFxpDSRjWVlkEUGQtOBrrcvXEkT6qRYxGZdMxsEbDJ3btzaVOJbash\nRpEHaxX0vg6yyGgr7e6o16iMVX3sQDqs1DkWkcnoncCrzOw6IoZ5EfA0YAmxDfX/jF7TRERkNKlz\nLCKT0S+Jn+ueCcwlYpQfBD4PXOGKNxMRmbTUORaRScfdfw38erTbISIiY4/WORYRERERSdQ5FhER\nERFJtJSbiIiIiEiikWMRERERkUSdYxERERGRRJ1jEREREZFEnWMRERERkUSdYxERERGRRJ1jERER\nEZFEnWMRERERkUSdYxERERGRRJ1jEZEqmNkSM/uama0zs31m1mxmV5jZnAHWMzcd15zqWZfqXTJc\nbZfJYSheo2Z2nZl5H5cpw/kYZOIys5ea2ZVmdoOZ7Uqvp28eYF1D8nncm7qhqEREZCIzsxXATcBC\n4IfAA8CZwDuAZ5vZue6+tYp65qV6jgJ+A1wNHAO8HrjYzM5290eH51HIRDZUr9Gcj/SS3jmohspk\n9iHgZKAFWEN89g3YMLzW96POsYhI/75EfBC/3d2vLCWa2WeAdwEfA95URT3/THSMP+vu787V83bg\nc+k8zx7CdsvkMVSvUQDc/fKhbqBMeu8iOsUPAxcCvz3Aeob0tV6JuftgjhcRmdDM7HDgEaAZWOHu\n3bm8GcB6wICF7r6nj3qmAZuBbmCxu+/O5dWkcyxP59DosVRtqF6jqfx1wIXubsPWYJn0zGwl0Tn+\nlru/ZgDHDdlrvS+KORYR6dufpetf5D+IAVIH90ZgKvDUfuo5G2gCbsx3jFM93cAv0t2LBt1imWyG\n6jVaZmavMLPLzOzdZvYcM2scuuaKHLAhf61Xos6xiEjfjk7XD/aS/1C6PmqE6hEpGo7X1tXAx4F/\nBX4CPGFmLz2w5okMmRH5HFXnWESkb7PS9c5e8kvps0eoHpGioXxt/RB4PrCE+KXjGKKTPBv4jpk9\nZxDtFBmsEfkc1YQ8EZHBKcVmDnYCx1DVI1JU9WvL3T9bSPoT8AEzWwdcSUwq/enQNk9kyAzJ56hG\njkVE+lYaiZjVS/7MQrnhrkekaCReW18llnE7JU18EhkNI/I5qs6xiEjf/pSue4thOzJd9xYDN9T1\niBQN+2vL3duA0kTSaQdaj8ggjcjnqDrHIiJ9K63F+cy05FpZGkE7F2gFbumnnltSuXOLI2+p3mcW\nzidSraF6jfbKzI4G5hAd5C0HWo/IIA37ax3UORYR6ZO7P0Iss7YceEsh+yPEKNrX82tqmtkxZtZj\n9yd3bwG+kcpfXqjnran+n2uNYxmooXqNmtnhZnZIsX4zmw/8Z7p7tbtrlzwZVmZWn16jK/LpB/Ja\nP6DzaxMQEZG+VdiudDVwFrEm8YPAOfntSs3MAYobKVTYPvo24FjghcCmVM8jw/14ZOIZiteomV1C\nxBZfT2y0sA04FHguEeP5B+AZ7r5j+B+RTDRm9iLgRenuIuBZwKPADSlti7u/N5VdDjwGPO7uywv1\nDOi1fkBtVedYRKR/ZrYU+D/E9s7ziJ2Y/hf4iLtvK5St2DlOeXOBfyT+SCwGthKz///B3dcM52OQ\niW2wr1EzOxF4D3A6cDAxuWk3cB/wXeD/unv78D8SmYjM7HLis6835Y5wX53jlF/1a/2A2qrOsYiI\niIhIUMyxiIiIiEiizrGIiIiISKLO8QCYmafL8tFui4iIiIgMPXWORUREREQSdY5FRERERBJ1jkVE\nREREEnWORUREREQSdY5zzKzGzN5mZveYWauZbTazH5nZ2VUcu8DMPm5mfzSzFjPbY2arzOxjadH/\nvo49wcy+ZmaPmVmbme0wsxvN7E1mVl+h/PLS5MB0/6lmdo2ZrTezLjO74sCfBREREZHJq260GzBW\nmFkdcA2xjStAJ/H8PA94tpm9oo9jzyO2MCx1gtuBLuD4dHmtmT3D3f9U4di3Ap8j+6KyB5gOnJMu\nrzCzi919by/nfjnwrdTWnem8IiIiInIANHKceT/RMe4G3gfMcvc5wOHAr4CvVTrIzJYBPyI6xl8F\njgGagGnACcDPgKXA982stnDsC4ErgVbgA8BB7j49Hf9M4E/ASuCzfbT7P4iO+WHuPhuYCmjkWERE\nROQAaPtowMymAeuIfeQ/4u6XF/IbgTuB41LSYe7enPK+CfwF8Hl3f0eFuhuA24CTgZe5+zUpvRZ4\nBFgGvNjdf1Dh2MOAPwKNwKHuvj6lLyf2HAe4EbjA3bsP7NGLiIiISIlGjsMziY7xPiqM0rr7PuDT\nxXQzawJelu5+plLF7t5OhGsAPCOXtZLoGDdX6hinYx8DbiFCJlb20vZ/VcdYREREZGgo5jiclq7v\ndvedvZS5vkLaU4CGdPtWM+ut/qZ0vTSXdk66PtjMNvTRtlkVjs27uY9jRURERGQA1DkOC9L1uj7K\nrK2Qtjh3+6AqzjO1wrENB3Bs3uYqjhURERGRKqhzPDilsJTt7t7ncm19HPsDd3/xgTbA3bU6hYiI\niMgQUcxxKI2+HtxHmUp5G9P1HDNbNMBzlo49rs9SIiIiIjJi1DkOd6brU8xsZi9lLqyQ9gdiPWSA\ngY7+lmKFjzaz4wd4rIiIiIgMA3WOw8+BXcSSab0tx/aeYrq77wa+l+5+yMx6jR02szozm55L+jXw\nRLr92eIayIVj5/T7CERERERk0NQ5BtLuc59Md//RzN6dlmkrrSn8A3pfLeIyYBsxwe4mM/vztC4y\n6VUn8jEAACAASURBVPgjzOydwGpidYvSOTuAtwFOLPH2CzM7y9KSF6kzfbqZfQJ4dMgerIiIiIj0\nSpuAJL1sH90CzE63X0E2SlzeBCQdewbwv2RxyZ3EVs7TidHokpXu3mNJODN7PfBvZEvCtRFbSM8G\nyqPJ7m65Y5aTNgHJp4uIiIjI4GjkOHH3TuAlwNuBe4kObhdwLXChu3+/j2NvJ7aNfj9wE7Cb6Ny2\nEnHJ/wKcUewYp2P/Ezia2PL5vnTeWcBW4LfAe4HlQ/EYRURERKRvGjkWEREREUk0ciwiIiIikqhz\nLCIiIiKSqHMsIiIiIpKocywiIiIikqhzLCIiIiKSqHMsIiIiIpKocywiIiIikqhzLCIiIiKSqHMs\nIiIiIpLUjXYDREQmIjN7DJgJNI9yU0RExqvlwC53P2wkTzphO8dv/fDbHWDq1MYssSu2yp5ROwuA\nbu8uZ+2rbQOgvikG048+7Ihy3pSGWgAee6gZgCc3bi3ntbS2Rl1pDL6+oaGct2fX7nR8pNVMyQbq\nvaMLgKULl2bld+8BoC5t6T136uxyXmNt1DG1aQoA2/fuLOdt2L4xHp4ZAA1eW86bPWNmtM+izr1t\nbeW89rZ4/J/8xKcNERlqM5uamuYee+yxc0e7ISIi49Hq1atpTf2skTRhO8eL584BoKY26wB3tEeH\ntLYjOopWv39UiXVE+dbt28tpyw6PjrIvXgLAjp17ynk1KTKlM52mbd++cl57W0dcp45w696sYzq1\ntj7q2rKtnFaf/jsWHHJQXM+bn7W9Ndrc1VWqK3tcj2/bFO3rSo99ZnbcnFlR57atWwB4ct26cl5j\nXf1+j19EhkzzscceO/eOO+4Y7XaIiIxLp59+OnfeeWfzSJ9XMcciMqaYWbOZNY92O0REZHJS51hE\nREREJJmwYRWHLFgEQFN9FgO8qyVigHdui7CIaTOmlfPmNMyItIYmAFpat5Tzbr7vdgBWLDkagAUL\n5mQn2hHxx1YTscAdrVPLWV1t7QC0d8T19Okzy3nT6iIWel7TjHJafWO01Ws7Aaip7yrnzW+Kc+5t\nj7p27svaftDsCMPYszMeX2su7GNd+7oex5XirgH2dY98HI/IZLJq7U6WX3btaDdDZExr/sTFo90E\nkR40ciwiIiIikkzYkeP7H3sUgGULDimnNU6JVRxqG+I7QXtrNkGuqy1Ga2tnxMING3fvKudt3x4T\n3mq6Y2S3Ma0YAdDaFqOvu3fGCPLCWYvLeYctPhSA+jR6/eSGR8p5s9LI8ZmnnlxOa++OSXa/u/cm\nAHa2ZStSLJsdq1psWBsj2lt27ijnLZgeq28snxcjyDOamsp5qUqe2LAhzjs9G6nu8k5ERoOZGfAW\n4FJgBbAV+AHwwT6OeRXwN8ApQBPwGPAt4FPuvq9C+WOAy4CnAQuBHcCvgY+4+58KZa8CXpfacjHw\nRuBI4FZ3X3ngj1RERMabCds5FpEx7Qrg7cB64CtAB/BC4CygAWjPFzaz/wDeAKwBvk90dJ8KfBR4\nmpk9wz37tmdmz07l6oEfAQ8DS4AXAxeb2UXufmeFdn0OOB+4FvgJ0FWhTA9m1ttyFMf0d6yIiPx/\n9u48TK6ruvf+d/U8qSfNg+W2DNgCJx4EZsYmhNFJ4BISkpAEQ+CGC2Em7+tAcpFJCNxACAQCyWUy\nQy7DDWMABwhgY0xssGRjbMsYy2rLGi2p1fNYVev+sXedc7pUPahVrZaqf5/n6ed0n3XOPrva5dbu\n1Wvvfeap2sFxoS7U1hZq0iV89x8L6wE3NIWs7blr0qzyQKwd3nMgZJz3PHwwiT06LuW2Yc1qAPr6\n0qxtfS5kozsbQg1wV2uate3uCHXCubiEXL5zdRLbsjlkldesXJn273DIUB/vD7XD9+9/MIlNrA2J\nsRW1bQCsX53et6I91h/Xhte6oXtNEus/HjLgXe2h3nk8ky0XWQpm9iTCwHg3cLm798XzbwN+AKwH\nHsxcfzVhYPwV4CXuPpaJbQfeTshCfyCe6wI+B4wCT3P3ezLXPwa4FfgYcFmZ7l0GXOrueyrzakVE\n5GyjmmMROd1eFo/vLA6MAdx9HPiLMte/HsgBL88OjKO/JpRkvCRz7o+BTuDt2YFxfMbdwEeBS83s\n0WWe9XcnOzB2923lPoB7T6YdERE5M1Rt5lhEzljFjO2NZWI3EQbCAJhZC3AxcBR4g1nZzRwngK2Z\nr58YjxfHzHKpR8XjVuCekthPZuu4iIhUv6odHI+NDQPQN5TudNcXJ9nVToSEeXdnOjmtpj6UYRw8\nuB8Ayyx5NtgflkYbWjUKQF1dmnDftCGUZoyPxBJJT2OjcUe8iVjK0NGeLgEXKy146PCR5NyxgTAB\nL26Ch+fStsbicnCXXLgFgPM3p9tO79p3f7g/lmM0NKWlHatWhl3whidCH9pa0iXgxsdVYiFLoiMe\nD5cG3D1vZscyp7oAA1YTyifmo1hz9Mo5rmsrc+7QPJ8hIiJVSmUVInK6FZdhWVsaMLNa0sFt9trb\n3d1m+yhzz8Vz3POpMn3zMudERGQZqdrMcWt92IzjyJE0EbR507kADA2Ffzt33X1XErv8kscC8Lwr\nng3AgYf2J7Ejx0Ii647bfgZAx4o04bS2O0yya6kN38qB4+nya7Ur4oS8+DtIvdcmsaaWkLU+NpRu\n2LHvSMwiW2iruSndNGQ0Zo537Q9Z4sOjSakmt94eJt03xo1I2kkzx3VxLbex4ZA190xme4Y/UYss\ntp2E0oorgAdKYk8l83PJ3YfN7G7gMWbWna1RnsUtwG/Htu6sTJcX5qKNHezQBgciImcVZY5F5HS7\nLh7fZmbdxZNm1gS8q8z17yMs7/YJM+ssDZpZl5llV574JGGpt7eb2eVlrq8xsysX3n0REalmVZs5\nFpEzk7vfbGYfBF4L3GVm/0a6zvFxwtrH2es/YWbbgFcDu83s28BeoBs4D3gaYUD8qnj9MTN7EWHp\nt1vM7HvA3UAB2EyYsLcSaEJERKRE1Q6OV7eHcsb7j6SrKW1ZFybP1a4Nx4cO7k1ij94SVnVqqg3/\nXh7+RbrGcH4gTHRriiUJ/XvTeUQP77oPgLb6UKKwqiOd5GdT60KsK+ya19nRkcRGhsKEwfrMbntN\njU2xD2Ed5vGRdMLcZM0UAA/GMpFd+/YlsbGhMLnfa8NayP0D6e5+523cEM7FyYjH+9Oyj/bOtD8i\np9nrgfsI6xP/KekOeW8FflZ6sbu/xsyuJwyAf52wVFsfYZD8HuCzJdd/z8x+FXgL8GxCicUkcAD4\nPvClRXlVIiJy1qvawbGInLnc3YEPxY9SPTPc8w3gGyfxjF7gz+Z57dXA1fNtW0REqlfVDo4basJL\ne3TPBcm57raQ1W1vCRPqVjSmE9fuvDXsANvbG+YH9R9P5/001ofl0DpawwS5kcw8tq61oWSysRCy\ntqs76pOY5UN2+N77bw/XNKax1etCRrehMV1arff+XwJwUc95AExNJcu9si9mjAcnQhbbptJJ9d0r\nwuT+lrjz39jERBI7fDS+jnzIevdsPi+JDY+mkwFFRERERBPyREREREQSVZs5PjwSll/b3LU6OVfv\nIXO7aUPYQGPfnvuT2E9v/SEAtYWwZFqBND3suZCRrYmx7va0rviiR8XMdD5ka4cHDySx3ESoEx4c\nDFnf//zu15PY457wVABWtCeT9ek7sj/2IdQaZ7PKG1euAaDpaMgY7z+aPqd7fVgyrnVF6Fd9bfqf\ndWQkbFzSVMx+d6Rt1tdrKTcRERGRLGWORUREREQiDY5FRERERKKqLauo7wjLol1w8aOTc521oexg\ncCDsRHfXHf+VxMaGQxlGjYcd5abymV1ka8LOdrUdYQJfQ0e6093wUFiStT6WQDywP10qbfD4w+H2\nuvDcxoZ0otzNN90AQNeqdcm5NatCCcjkcJjIlx9Pl3JrKoTJgBOjYZJeR1u6F8IF558PwPhkKOPI\nTuTL5cLnbe1hEuIjtpybxDrbtZSbiIiISJYyxyIiIiIiUdVmjqeOHAcgNzianCt0hmzyD2/6NgC9\nu+9OYhO5MDltymOWuCadrNYQf4Xo7AxLpm3ZsjWJrewO2de7fhk2Azk+kS6P1rkmZIVtLGSMfeRQ\n2r+pPABHDh9JznU0hwzzps1hwuDDmUl39x96CIB794bNPDZv2pjERifCRMF8PrQ5lUszx/lCOFdT\nG15EfV36n3x4KN0sRERERESUORYRERERSVRt5ripJmRhb78jzQ43N4TlzPqPHgWgMW7qATB+LNQc\n5wvh94XappYk1h6XSOvuCsfOlenycF7TAMDhw6HN7s6uJHbexpABvjdu7jE1OZbECh4yuk21aW1z\nc0xR9w+EvgwO9SexyfFwb3E5uYePHktiew+EJeDa21rjc9LMcVND6J95yISPjk+mz4ubhoiIiIhI\noMyxiIiIiEikwbGIiIiISFS1ZRXFWXRHRtOl1epHwrnVnZsAWHdOQxLLTe0AwAfDMmqeS5ddqyWU\nPjQ3hG/X6Fg6ke3I8fD5FKFMYkVjWqowUVxGrTWUO6zuSss4Jif7Tujy6EQonTgUd8qrq8unL6c2\nlEWs626Lz2tKYxZeR6OFa+rr0qXmmhpDeUhff+jnz39xXxIrWFi27sLHPuWEvoiIiIgsR8oci0hF\nmFmPmbmZXbfUfREREVmoqs0cD46FjPFAzAQDtDeGzO3QSMjorl6/JYnlcyGTu+++XQCMTRWS2MBg\nyLoeOBQ29ahvWZHEhsZCtnfKQ5vHBzOZ6phFrm8Kmd1N69Ynsca6kNGta2lNzvWPDMVnh+XnOpvT\n7PCK+MzGltBW/3D6e01nnFj4mAt6wv3jada7fzRsJLL/0GEAjvY+mMSGJ9Nl50RERESkigfHIiJL\n7a79A/Rc882l7sa89b77qqXugojIklNZhYiIiIhIVLWZ43wuTKJbtWJlcq7eQ0lCQ334naCxsT6J\ndbRvAOBI014AxgpTSaxvKJRO2IGHYyx9zsRkWDe4WHqRK6TrFo9MhJKGFY3NAGxYna6PvKIlroec\n+S9QOBiub6gLsZrMxDqrD+UXa1auAuDQ3Wl5xIHDYQLf+Y8I6yofPpaugdw/HMpKWtpCH9ra25LY\ncO9uRBaDmfUA7wZ+HWgD7gK2u/s3Sq5rBN4I/AHwCCAH/Az4oLt/sUybe4BPAX8L/DXwdGAV8Gvu\nfoOZbQGuAX4N2AiMAfuBm4G3ufuxkjZ/H/jvwCVAc2z/X4H3uPsEIiKy7FTt4FhElsy5wE+AB4DP\nAN3Ai4Gvmdmvu/sPAMysAfg2cAVwL/BPQAvwIuALZnaJu7+1TPvnA7cC9xEGss3AoJmtB34KtAPf\nAr4ENAHnAX8EfAhIBsdm9nHg5cA+4MtAP/AEwqD7GWb2THdPd9QREZFloWoHxyPHw+S2lvZ0abW2\nmD1taQkZ2dxkOllvfDRcPzoZkkWDo+ludt2rNwLQc8FjAGhtTSfRjY6ESW2F2iMAHD92JIkd2B92\nzVvd3QnA1GSaVS7kwjJt/YNpImtkMkzEa2oL2d2O5s4ktm5jmDxYF59du+9A2oeJ0IeDBw+F45GH\n0+fUhiz5OatCBr0z0/f2Zu2QJ4viSkKW+NriCTP7P8B/AH8O/CCefjNhYHw98FvFgaiZXUsYXP+F\nmX3D3X9c0v5TgHeVDpzN7LWEgfgb3P0DJbFWoJD5+mrCwPgrwEvcfSwT2w68HXgNMK2dcsxsxwyh\nC+e6V0REzjyqORaRSnsQ+JvsCXf/NrAXuDxz+uWAA2/KZmjd/WFC9hbgFWXaPwxcW+Z80VjpCXcf\nyQ6AgdcTSjheXnKe+OxjwEtmeYaIiFSpqs0ctzWFpdKam9Ll0Ir//k5Ohc0yBgbSLO9DvfcDkCuE\n3xfWbdicxC54zKUANDR3ADA1lf6ltaElZF8fveFcAFY0pxuLTMZNPf7rxzcCcOvtdyaxnIfMcdfK\nruRcR2do/7wtFwCw7ZLLktjEeHjmA0cOArBhc7os3AVxSbqWupAZb2xMX/NY3IhkcCDURI8cP57E\n8pn6aJEKusPd82XOPwQ8EcDMVhBqjPe7+71lrv1+PF5aJvazGeqBv06oRf4nM3s2oWTjZuAed0/e\n7GbWAlwMHAXeYHHznBITwNZygVLuvq3c+ZhRvqxcTEREzlxVOzgWkSXTP8P5HOlfqzri8eAM1xbP\nd5aJHSp3g7s/aGaXA9uB5wAvjKGHzOy97v6P8esuwIDVhPIJERGRhMoqRGQpFHfLWTdDfH3JdVkz\n/snD3Xe5+4uBlcBjCStX1AAfMLM/KWnzdne32T5O6hWJiEhVqNrMcVvbihPOTebC8my1cSm3ial0\nubbxyVB+0LkyLOm29ZK0NHL16vDvdF9f2EWPQvoXY6sPy8HVxYlvXSvTpeNy8Xlr1oR//8dG0+f1\nPvgQAI+77AnJuc3n9sRGw7/JYxOZ8o2G8JyuzlCGMTyZlkkeOBiTbLEkpG8gHU/UNYQSi4H+UFYx\nFZeXA1jRUS4pJ7L43H3IzHYDW8zske7+y5JLnh6POxfYfg7YAewwsx8DPwReAHzc3YfN7G7gMWbW\n7e59C3wZc7poYwc7tLGGiMhZRZljEVkqnyCUN7zHzJJFvc1sFfBXmWvmxcwuN7O1ZULFc6OZc+8D\nGoBPmNkJvyWaWZeZqV5YRGQZqtrMcT5md5ta0gzy0HDIng7HDG5dfboJyPhE2MyjtSZ8Swq16TJn\n43Gjj7r4q8REJnPc2dkePomT2/bu3ZfEJvLhvsaG0FZN5r62OFFw6yMelZzriBt83LlrFwB7DqSl\nlbWNYaLfOeeGzHb36lVJ7OD4YQByY8XX3JLE1q0Ly9A1NYXJegODQ0lsMlduzpTIafNe4LnA84Gf\nmdm3COsc/w6wBvg7d//RSbT3B8BrzOxG4H7gOGFN5N8kTLB7f/FCd/+EmW0DXg3sNrPiahrdhHWR\nnwZ8EnjVKb1CERE561Tt4FhEzmzuPmlmzwTeRBjYvpZ0h7w3uPvnTrLJzwGNwJMIq0Q0E3bH+zzw\n9+5+V8nzX2Nm1xMGwL9OmPzXRxgkvwf47AJfmoiInMWqdnBc3GTDM3N38oWwB8DYaPjral0hrem1\nupCZLcQVn4aH0gzryFDIOHe1hw002lrTzGxjbfgWrlsXtobOZ6bw7D0caoGHj8fMcWP67e5cF2qT\nHzqWbthxLParIS5DNz6eWa3KQr9qmkK2eyqzh/VEXDWrrSNsHtJSSKtlisu15ePcolVr0vlP2Zpr\nkVPl7r2EMomZ4leWOTdOWH7tbyvQ/q2EnfPmLW5n/Y05LxQRkWVDNcciIiIiIpEGxyIiIiIiUdWW\nVbS3hYlyuVxaOjEZl2urrQ0lFJlNs6A+TJAbGQ2lDFOZkoa6OKHu2EAstSikJQ1JmzVhsv1kplTj\ngb17w7m4u92GDecksf7hYQB+8cCe5JwR2mjvCCUX9Z1tSWz9uWHCfV1duMbTLjA+GfpaLKEoZKol\n2uKufsNxwmHD6HASm5rShDwRERGRLGWORURERESiqs0ctzbGTPDISHKusS5MZmtoDpngiTRE3kNG\ntphoHp1Is6r1Hk5OTYWNN6ZyaWr2SFwa7b6D+0NsMs0cF1torg/Py42nsalcnBw4mS69motzjQbi\n0nHdtelybY3H4n+qiZBNHh5NNwFpXBGWq8vFZ2dnLA2Nh/7V1YbXPlGYTGJjI+OIiIiISEqZYxER\nERGRSINjEREREZGoassqRuKawbl8Wh5RWxMKDibHQklCITMfryaWPlhN+H2hf6A/ia3sCrvL5qdC\nScLYWKYUIs6Mm4z1GJOZiXz1sc3JhnDf1Fhax2G1oS9poQV0rVsDQFNb2M2uf7AviU3ujxMFV4dr\nhsfSkojG5rD+cm196Eshl87W83z4vFhyMTaVllW0tDYjIiIiIilljkVEREREoqrNHI+Oh+xwdnJa\nTcwKE5dwG89kX2viUmxTk+G+mszEtc7WsPRbQ0fItI6NtyaxqXzIyLZ3hOyy59N09L4DhwAYmApZ\n39rMznoed7xbt3Z1cm48tvXQwwcAWNnVnr6eOHnunt33A9DV0Z15ZbHvMYs9kckO18bjYNzxz5Iz\n6SQ9EREREQmUORYRERERiao2c7xhVcjIdrSlWd7BkZA9HY41w+5pxW/XipDVnSqEb0lTU/p7w8jI\nAACtXV0AbO45N4kdOhbqgg/2hxrlrs6VSWzTeecB0DAY7h8bT2uVa5rCc2rqM7+fxN076uImJcND\naWa7uSksTTc4HF7D2Fi6lNvIcGi3qztkk8dH0uccP348NB2z5StXpcvDjWey4yIiIiKizLGIiIiI\nSEKDYxERERGRqGrLKo7HUob29rSsYkXcSW5iKpQvdHZ2JrHG+jA5bWR8GID8VFpyMZELy8FZU2hr\nuJBOahuzsFzbuIf7ByfS+1Z3h93sNrSGkoj+0eEkNpIPk/SGMudGJ0IZhcc15ppb25JYW1so+2hu\nCW2NjaVLxg0NhSXi9vY+GGKjmaXm4hJzbW2hranMJMSx0bQNkTOFmb0OeBVwHtAEvNHd37+0vRIR\nkeWiagfHInL2MbPfAz4A3A68H5gAblnSTomIyLJStYNjawyZXK9LK0c8boRR3PyjoaEpidVZnCBX\nG461dem3prEpZIdbusJktqODaWZ2Km700RKXVmusS7PKDU1h6bfGlnDN8czmIVNxcw6rTa+3uJxc\nU5x819CQLrXWFbPcgyOD4TiYZpzH48Yj/XHyXWNDQ9r3+PmqlWGi4FBc0i28aC3lJmec3yge3f3A\nkvakAu7aP0DPNd9c6m4A0Pvuq5a6CyIiZwXVHIvImWQDQDUMjEVE5OxUtZnjfL7Mds7FzTJiBrmx\nMd0+uSnWE9fGbGrO0808JnJhybPb79gJQPfatUmsubUDgK5YE2yk942OhfseHgjZ3oHBNGubjwnj\njvaOtNOFuInHeKgLbshkgPtiVvjIsYeB6TXHtTH7vHrd2hhLl3nLxfrq+pj9Hj1yJIk5WspNzgxm\nth14e+br5H8kd7f49Y3A7wF/AzwXWAf8ibtfF+9ZD/wlcBVhkD0A3AS80913lHlmB3At8CJgFdAL\n/G/gq8Bu4FPufnVFX6iIiJzxqnZwLCJnlRvi8WrgXMKgtVQ3of54GPgyUAAOA5jZecCPCIPi7wOf\nA84Bfge4ysx+292/UWzIzJridZcR6pv/FegA3gY8taKvTEREzioaHIvIknP3G4AbzOxK4Fx3317m\nsl8BPgO83LM7+AT/TBgY/6W7v7N40sw+DPwQ+JSZnevuxWL9PycMjD8P/IF7+FORmb0T2HkyfTez\nE7LS0YUn046IiJwZqnZwXBtLKBrqGpNzFz7ikQC0tO4F4Oix40msvj6UMHTFyXBTnk9iux/sBeB4\n/zEArM6SWKyEgJZ2AJoa0lKNwaFQTjESJ+J1xqXkIJ0wOEn6HLPQ52KTtfXpf57iRLr6plC+0dCY\nLlE3Hpdnq4slIY3NaR+Kfe4bCK81l1Z9UGPp6xA5C0wCbykdGJvZJuBZwF7g77Ixd/+xmX0O+EPg\nhcCnY+ilhP/V/qI4MI7XP2Rm7yeUboiIyDJUtYNjEak6ve7+cJnzl8bjTe4+VSb+fcLg+FLg02bW\nDpwPPOTuvWWu/9HJdMrdt5U7HzPKl51MWyIisvSqdnC8Yd16AJqbW5Jz+w8eBDKZ2cxSaRNxs4xa\nDwt49A+nk+dG46YamzadC8BYZpLfngceAGDt2g0AbN7Uk8S6u8Pya40jISM8kpkoZ3GdkOJmJQAW\nM8UtLSErPDGVTpibmArPtNrQ5xrSrG93d1hGriY2eujwoSSWjxPyHnhgNwANdenydRs2bEDkLHJo\nhvPFWa0HZ4gXzxd3/WmPx8MzXD/TeRERWQa0lJuInC18hvPF3zDXzRBfX3LdYDyuLXPtbOdFRGQZ\nqNrMsYgsG7fH41PMrK7MZL2nx+NOAHcfNLMHgB4z6ylTWvGUSnXsoo0d7NDmGyIiZ5WqHRyvjKUG\nA5myhb6+fiAtq6hvSF9+fdxJr5CcScsWVsad8QoezjU3tSexyclQ+jDcfzQcV7QlsVVr1kx7Tu14\n2mZDbZgA2FyT9mE4TtxraoqT9SbSsoqxiVBWUWvh3/26zM56I4MhEZaPpSGFQvoqauIfB9pbw2TA\nuvpMKclEWuYhcrZy931m9l3gmcAbgPcWY2b2eOAPgOPAVzK3fRrYDrzLzLKrVZwT2xARkWWqagfH\nIrKsvAq4GXiPmT0LuI10neMC8DJ3z+ydzt8BLyBsKnKBmX2HULv8u4Sl315A9nflhenZtWsX27aV\nna8nIiJz2LVrF0DP6X6uZVYxEhFZUmZ2A3CFu1vJeQdudPcrZ7l3I2GHvOcR6owHCStPvNPdf1rm\n+k7gHYQd8lYCe4CPEnbVuxX4gLsvOItsZhNALfCzhbYhssiKa3Hfu6S9EJnZxUDe3RvnvLKCNDgW\nEckws1cStpF+lbv/yym0swNmXupNZKnpPSpnuqV6j2q1ChFZlszshLUMY83xXwE54Bsn3CQiIlVP\nNccislx9yczqgR1AP6Gu7TeAFsLOefuXsG8iIrJENDgWkeXqM8AfAb9NmIw3TKg1/pC7f3kpOyYi\nIktHg2MRWZbc/cPAh5e6HyIicmZRzbGIiIiISKTVKkREREREImWORUREREQiDY5FRERERCINjkVE\nREREIg2ORUREREQiDY5FRERERCINjkVEREREIg2ORUREREQiDY5FRERERCINjkVE5sHMNpnZJ8zs\ngJlNmFmvmb3fzLpOsp3ueF9vbOdAbHfTYvVdlodKvEfN7AYz81k+mhbzNUj1MrMXmdkHzewmMxuM\n76fPLrCtivw8nkldJRoREalmZnY+8GNgDfA14F7gcuD1wHPM7Mnufmwe7ayM7TwK+D7weeBC4GXA\nVWb2RHd/YHFehVSzSr1HM66d4XzulDoqy9lfAhcDw8A+ws++k7YI7/UTaHAsIjK3DxN+EL/OrgNR\nSgAAIABJREFU3T9YPGlm7wPeCLwTeNU82vlbwsD4H9z9TZl2Xgd8ID7nORXstywflXqPAuDu2yvd\nQVn23kgYFN8PXAH8YIHtVPS9Xo65+6ncLyJS1cxsC7Ab6AXOd/dCJrYCOAgYsMbdR2ZppxU4AhSA\n9e4+lInVxGf0xGcoeyzzVqn3aLz+BuAKd7dF67Ase2Z2JWFw/K/u/ocncV/F3uuzUc2xiMjsfi0e\nv5P9QQwQB7g3Ay3AE+Zo54lAM3BzdmAc2ykA34lfPv2UeyzLTaXeowkze7GZXWNmbzKz55pZY+W6\nK7JgFX+vl6PBsYjI7C6Ix/tmiP8yHh91mtoRKbUY763PA+8C/h74FrDXzF60sO6JVMxp+TmqwbGI\nyOw64nFghnjxfOdpakekVCXfW18DfhPYRPhLx4WEQXIn8AUze+4p9FPkVJ2Wn6OakCcicmqKtZmn\nOoGjUu2IlJr3e8vd/6Hk1C+At5rZAeCDhEml11e2eyIVU5Gfo8oci4jMrpiJ6Jgh3l5y3WK3I1Lq\ndLy3PkZYxu2SOPFJZCmclp+jGhyLiMzuF/E4Uw3bI+Nxphq4SrcjUmrR31vuPg4UJ5K2LrQdkVN0\nWn6OanAsIjK74lqcz4pLriViBu3JwBhwyxzt3BKve3Jp5i22+6yS54nMV6XeozMyswuALsIA+ehC\n2xE5RYv+XgcNjkVEZuXuuwnLrPUArykJX0vIon06u6ammV1oZtN2f3L3YeAz8frtJe38WWz/21rj\nWE5Wpd6jZrbFzDaWtm9mq4BPxi8/7+7aJU8WlZnVx/fo+dnzC3mvL+j52gRERGR2ZbYr3QU8nrAm\n8X3Ak7LblZqZA5RupFBm++ifAFuB5wMPx3Z2L/brkepTifeomV1NqC2+kbDRQh+wGXgeocbzNuCZ\n7t6/+K9Iqo2ZvQB4QfxyHfBs4AHgpnjuqLu/JV7bA+wBHnT3npJ2Tuq9vqC+anAsIjI3MzsHeAdh\ne+eVhJ2Yvgpc6+59JdeWHRzHWDfwdsI/EuuBY4TZ///T3fct5muQ6naq71Ez+xXgzcA2YANhctMQ\ncDfwReBf3H1y8V+JVCMz20742TeTZCA82+A4xuf9Xl9QXzU4FhEREREJVHMsIiIiIhJpcCwiIiIi\nEmlwLCIiIiISaXA8AzPrNTM3sytP8r7t8b7rFqdnYGZXxmf0LtYzRERERJYjDY5FRERERCINjivv\nKGF7w4NL3REREREROTl1S92BauPuHwI+tNT9EBEREZGTp8yxiIiIiEikwfE8mNlmM/uYmT1kZuNm\ntsfM3mtmHWWunXFCXjzvZtZjZlvN7FOxzSkz+2rJtR3xGXviMx8ys4+a2aZFfKkiIiIiy5oGx3N7\nBGE/+T8BOgEHeghbbN5mZusX0OZTY5t/TNivPpcNxjZvi8/oic/sBF4B7ATOX8AzRURERGQOGhzP\n7b3AAPBUd18BtAIvIEy8ewTwqQW0+WHgp8CvuHs70EIYCBd9KrZ9FHg+0Bqf/TRgEPj7hb0UERER\nEZmNBsdzawSe6+4/AnD3grt/DfjdGH+mmT3lJNt8OLZ5V2zT3X03gJk9FXhmvO533f3r7l6I190E\nPAdoOqVXJCIiIiJlaXA8ty+6+/2lJ939B8CP45cvOsk2P+TuYzPEim3dEp9R+tz7gS+c5PNERERE\nZB40OJ7bDbPEbozHy06yzf+aJVZs68ZZrpktJiIiIiILpMHx3PbPI7b6JNs8Mkus2NaBeTxXRERE\nRCpIg+NTYwu8L79EzxURERGRWWhwPLcNs8SKy7jNlgk+WcW25vNcEREREakgDY7ndsU8Yjsr+Lxi\nW0+bx3NFREREpII0OJ7bi81sS+lJM3sa8OT45f+t4POKbT0xPqP0uVuAF1fweSIiIiISaXA8t0ng\nejN7EoCZ1ZjZbwL/FuPfdfebK/WwuJ7yd+OX/2Zmv2FmNfHZTwb+A5io1PNEREREJKXB8dzeAnQB\nN5vZEDAMfJ2wqsT9wEsX4ZkvjW2vBv4dGI7P/hFhG+k3z3KviIiIiCyQBsdzux94LPAJwjbStUAv\nYQvnx7r7wUo/MLb5OOB9wIPxmQPAxwnrIO+u9DNFREREBMzdl7oPIiIiIiJnBGWORUREREQiDY5F\nRERERCINjkVEREREIg2ORUREREQiDY5FRERERCINjkVEREREIg2ORUREREQiDY5FRERERCINjkVE\nREREorql7oCISDUysz1AO2G7eREROXk9wKC7n3c6H1q1g+Nv3bnTAfKk22NbTUiUW3LC0ljxk+Ll\nmW2101MFAArZWPzci1cVMrFCuD4fj8WvAQrxunw+nzk3/fpCJla8rhjL53JJLBc/Lx6nMrH85FQ4\nNzkJwEQ8AkyOTwDw3jf/efqNEJFKaW9ubu7eunVr91J3RETkbLRr1y7GxsZO+3OrdnAsImcfM+sB\n9gCfcver53H91cAngZe5+3UV6sOVwA+Aa919+yk01bt169buHTt2VKJbIiLLzrZt29i5c2fv6X5u\n1Q6OC/mYrbUTs7xmsyRKy2SOS+8veKHMOT/hvmKmuFByDJ/PnDkud32SoZ4tVnJNueu9zH0iIiIi\nElTt4FhEloWvALcAB5e6I+XctX+Anmu+udTdEJEzRO+7r1rqLsg8aHAsImctdx8ABpa6HyIiUj2q\ndyk3sxM+LH7MehuZyXkn0XbyMettJ/Yhe262j9namvW+ktdeU1OTfMzn+yGyVMzsQjP7qpn1mdmI\nmf3IzJ5Vcs3VZuax9jh7vjd+tJvZ++LnU2a2PXPNWjP7uJkdNrMxM7vDzF56el6diIicqZQ5FpEz\n0XnAfwF3Af8CrAdeDFxvZn/g7l+YRxsNwPeBbuA7wCBhsh9mthL4MbAF+FH8WA/8c7xWRESWqaod\nHFucbFYuNe6zJkvtxPuSyXbx60LaQD5+WhMn6WUnuRWSHLTFPqWT4ZJIZk6clUzqW+iEuWmZ6Vkv\nXFDzIqfD04D3uvufF0+Y2YcIA+Z/NrPr3X1wjjbWA/cAV7j7SEnsXYSB8fvd/Y1lnjFvZjbTchQX\nnkw7IiJyZqjesgoROZsNAO/InnD324B/BTqB/zbPdt5cOjA2s3rgJcAQsH2GZ4iIyDJV9YNj88wH\ncydLzT1kcDMfeQsZ4qn4MY0Xpn14mY9iO9lLKXj4mPYsINPfynwDwofqi+Uss9Pdh8qcvyEeL51H\nG+PAnWXOXwi0AHfECX0zPWNe3H1buQ/g3pNpR0REzgxVPzgWkbPS4RnOH4rHjnm08bCXr00q3jvX\nM0REZBnS4FhEzkRrZzi/Lh7ns3zbTH9/Kd471zNERGQZqtoJeQk/8fPZigs8XuT5qeRcUo1QF36X\nyBey1xd3uLP4dWYyXCG04XEGYDaJNVvVRBJb9B3sVGYhZ6zLzGxFmdKKK+Px9lNo+15gFLjEzDrK\nlFZceeItC3PRxg52aNF/EZGzijLHInIm6gD+Z/aEmT2WMJFugLAz3oK4+xRh0t0KSibkZZ4hIiLL\nVNVnjj2Toy1OcquZJWOaj78ujA9nkknD/fHGHACtHW1JKDc5DMDYWIjVNHWlz2tsDX0oZo6zv4sk\nq7ZlssmlS7llX8cpLu9WjvLGcgb7IfAKM3s8cDPpOsc1wJ/OYxm3ubwVeAbwhjggLq5z/GLgW8Bv\nnWL7IiJyllLmWETORHuAJwHHgVcBvwvsBJ43zw1AZuXuR4EnA58krF7xBuAS4H8A/3Cq7YuIyNmr\nijPH5TKsc+dKi9nllpbWtKXJUQAGDvYC0DY4lsT6jh0DoLUjZIytviWJTbVtAqC2fQMAmVLl5Csv\nVxRdrrdeevQTrkuPmXYWu2xZpILcvZfpb/3nz3H9dcB1Zc73zONZh4CXzxDWH1ZERJYpZY5FRERE\nRCINjkVEREREoqotq4hz4MJudFFxSbbZJrXVFMINhbqm9Fx3WPZ0ZW2YdMehnUlsX+/9AJxz/hYA\nVrcNJ7GH94dVqGo8tFXT3p32z/OUSpaRiyUX2V3yLPa59Jh9kcb0CX3FVsOpE1+zq+ZCREREZBpl\njkVEREREoqrNHKfZ08y8mjKn0sunZ1jzmazqlNcCUN+2KhzXrk9i2y4NS75NTISs8vFj6RJwzY0r\nAeg/9EsA2lsuSduktqSfJ/ahMEus3BJw5WPTX/u0WGH6FEERERGR5U6ZYxERERGRqGozx2kWNT1X\niOlTO2FdtPS64jWFaauhhQxrviZke5sb03rkxpZmAMZGjgNQn4nlJkbCfYP7wnHdliRmraH+uJDJ\n3pbsAYIXTswOl/t61sxxUsdcpuZ40benFhERETm7KHMsIiIiIhJpcCwiIiIiElVtWUXiJJc1S4oc\nMmvA1RSmAGiwSQDqx8aT2KGD/QDk4qS9qXy6RNvYeLjP8qGt0aMHk1hLU/sJffH4zFkn3RVmjhVL\nNKZPupvHZD0RERERAZQ5FhERERFJVG/muNwqZT7Ll/ELizd6poHikmoFD5njfG4iE6sP9xXCt7K1\nuTaJNdWH+472hYl5g70/T2IWJ/c1rNmcnEtyzkkGOF1zLl3erdg/TojNZ5k3MhMAa5Q6FhEREZlG\nmWMRERERkahqM8fF7Zmz2ddp+zFTUnucLOUW7yucWJubT75Os68NDeFbWFuzAoDxybEkVpMPz26q\nDceGlvRxhSNh2+lcQ2N6rmNd8bP4nPR3l9J64vlvAjJ3TEREREQCZY5FRERERCINjkVk2TOzG8xM\nf0oREZHqL6soFNKyCqsJvwtYck2Z8oNY0pDdIa84Ny8X26ptaktC+akcAM1Noe22rpVJrO/Y0fhZ\nuKa1Kd09z/Oh/OLo/vuSc411Ybc9b2qNfT+xtCNd0i0zYTB+XnoMr2N6OUahzH0isjju2j9AzzXf\nrGibve++qqLtiYjIdMoci4iIiIhEVZs5LiQT8jLj/5go9WQzkOwdpRPXMpFigrUQ2srXtyaxtRs2\nAvDA3bsBWLVhTRJrbG0AYE3ragBGhkeS2NDYKAATAwPJuRwhs9yy5dLwXMtMJvRZssMnZI6zm4DE\nc/n8jPeJnE3M7HLgzcBTgFVAH/Bz4GPu/sV4zdXAbwKXAuuBqXjNR9z9s5m2eoA9ma+zPxVudPcr\nF++ViIjImahqB8ciUn3M7JXARwiLx3wd+CWwBngs8Grgi/HSjwD3AD8EDgIrgecBnzGzC9z9r+J1\n/cC1wNXAufHzot559mnHDKEL53O/iIicWap3cByXUcsWD3tNsa54tsxx/CqzXFuylFvMQo/lG5JY\n96ZNAKwcDXXFo6ODSWzgeMgKN9aF+2oyG4uMj4aa46mRNJt8uO9uAFY1dAHQuunctA+FYiY8ZoCz\n/SuUHGfbPjqfuS+v+Udy9jCzRwMfBgaBp7r73SXxTZkvL3L33SXxBuB64Boz+2d33+/u/cB2M7sS\nONfdty/maxARkTNf9Q6ORaTa/A/Cz6y/Lh0YA7j7vsznu8vEJ83sn4BfA54BfLoSnXL3beXOx4zy\nZZV4hoiInD4aHIvI2eIJ8Xj9XBea2Wbg/ycMgjcDzSWXbKxs10REpFpU7eA42VEuO+esWDIRKy7K\n7RCX7kSXLauYXnIxnKtPYiMTQwA86lcfBYDVprHD+w4A8Mu77gGgNp9OsFu9Zi0AK9rSsoq6o6Gt\n3LEwPyjfli4ZV1gRduDLpTUeJ/Q5OeZPXMqtOCEvn88nseznImeBznjcP9tFZrYF+AnQBdwEfAcY\nINQp9wAvBRpnul9ERJa3qh0ci0jV6Y/HjcC9s1z3JsIEvJe5+3XZgJn9PmFwLCIiUlbVDo7LZo6L\nGWM78fo0Ozx904zQRsy+xgZGc+mEvN29xwDIrQ1Z345Vq5PYmnM2AFDfEJZo+9mttyexwwdCVrm7\nI10Wrr21FoAjx3oBGMxsYNJ2wa+GPlhMeBVmyRxnlmjLxyxyfpYl4ETOErcQVqV4LrMPjh8Rj18q\nE7tihnvyAGZW68VZrxVw0cYOdmjTDhGRs4o2ARGRs8VHCNtN/lVcuWKazGoVvfF4ZUn82cArZmj7\nWDxuPuVeiojIWa1qM8ciUl3c/R4zezXwz8DtZvY1wjrHKwkZ5SHg6YTl3l4G/F8z+xKhRvki4DmE\ndZBfXKb57wG/A3zZzL4FjAEPuvtnFvdViYjImaZqB8fFSWnT5twttKyiGAt/eaWuLi2rGCysAuC2\nO3cCsGnV4SS2bn3YLW9FWzsAFz3uV5LY7T+9DYDdvXuTc+dtOgeA1V0hof/AQ7uSWE1TmJzXeE74\ni/F4dge//PSSiexEu8IsO+RpQp6cbdz9o2Z2F/AWQmb4BcBR4E7gY/GaO83s6cDfEDb+qAN+BryQ\nULdcbnD8McImIL8H/H/xnhsBDY5FRJaZqh0ci0h1cvf/An57jmt+TFjPuJwTfj2OdcZvjR8iIrKM\nVe3guDgBjUyG1ayYAT4xdZzumjc9gzytjRjLzmNr7g7LpY4NHQXg9ttvS2Jd990HQM+54ZoV3d1J\n7LwtIUtshankXO9DhwBoagiZ5k2r0+uPHvhFuL49TODLr1iXdiL2p5AvNyEvLuFWJqucz+cQERER\nkZQm5ImIiIiIRFWbOc5uhFFkVswYl8kc+/TMcXYNuEJJzEljxdxr58ZHxotrk9j9O24CYO8vQzZ5\nw8qWJNa1LmSFxzJlvx2rQ8bYa0L/+gbSrDL5iXD9ngcBaNrSnoTG68LGI7nCzBt9JMecNgERERER\nmYkyxyIiIiIikQbHIiIiIiJR1ZZVpBPy0hl5ZjXxOHdZRXZCXum5Apml0uIkv1xse8XGRySxra1h\nt7y+h+4HYKjvQBJrGB4E4P4H0qXfCjVhst2GTaFkYv255ySx3PAIAAf2HQnH+3Ymsa5Hxt3zYklH\n2bKKXCgAyWUm4amsQkRERGQ6ZY5FRERERKLqzRznTlymzKwQjydmkE/YBCSzHFox91ycmFeYNqEv\nP+0wmZkHWNseNu7YdGHY6ba2P7M02513ANC5dmtybsWFIQM8FJeFe+h4XxLbsLILgHMuaALg0G2/\nSGIDd4bjukddFLoybSm3Ysb4xMl6uZwyxyIiIiJZyhyLiIiIiERVmznOFU5cyq0mZoot5oLLZY4L\nFDf6cEpZ6XJvmeuLS7/VWLr8WvNoyPw2Hg3H40ODaVs9FwCwcuXa5Fy+Pvzn6F7RDMDE+OokdnAw\n1Bq3x9d1webNSWzPkdHwmifisSb9z5rLx9eTm76NNGgTEBEREZFSyhyLiIiIiEQaHIuIiIiIRFVb\nVpFPdrpLSyC8WFZxYsVEek2xrCKzlFuxcqJ4Lnt7rYcyhcn+QwDkDu9LYk35MQCGm8NkutH1j0pv\nbAoT6zyXaW08tJUrxHIHS393sbY1AAwMhf9k9XUTSax9xWTow9jx0GZjVxLLT03fGa/4dennIiIi\nIqLMsYicYcys18x6l7ofIiKyPFVt5rgQl3LLZnnnkzmmTOa4UJy3F3+V8MJkenXfwwDs+9F3AZjY\nvzeJ5Z/4jHDNlpAxrslkiX0iTNzLThssLrNWiJPussuuTRU70bAixDK/1+RjdwYPhmfXpyvGQW1D\nuGYqZJqncumEwSltAiIiIiIyjTLHIiIiIiJR1WaO81NllimrmXv76GKCtjaTXraxsHVz38FQT7z3\nFz9PYoP7HgSg4ViIre1qS2KFppbQ1mTY1jlXGE/7V8wZZ5aMy5ds1FHIZzYiiddNxXM56pNYXdtK\nABpHQ43z0YMPJrGW7rBUXCG+sFxmc5RcmY1SRKRy7to/QM813zylNnrffVWFeiMiIvOhzLGInHYW\n/JmZ3W1m42a238w+ZGYds9zz+2b2AzM7Hu/ZZWZ/aWaNM1x/oZldZ2YPmdmEmR02s/9jZheUufY6\nM3Mz22JmrzWzO81szMxuqODLFhGRs0DVZo5F5Iz2fuB1wEHgfwNTwPOBxwMNwGT2YjP7OPByYB/w\nZaAfeALw18AzzOyZ7p7LXP+ceF098O/A/cAm4IXAVWb2dHffWaZfHwCeCnwT+BbJxvAiIrJcVO3g\nuFxZhRfLKmrKlFUUj1OhNGHvXbclsT07bwXgWO9uAMYHhtMb4652G9eH0oaHjw8locFf7AKgZ21P\nbDxTQuGhD54pnSgUimUVcTe7XLasIr6euKtd8VqA4fhpbXvYUa9xNF3mre/wQQCaO0P/crn0vly5\n0hORRWZmTyIMjHcDl7t7Xzz/NuAHwHrgwcz1VxMGxl8BXuLuY5nYduDtwGsIA1vMrAv4HDAKPM3d\n78lc/xjgVuBjwGVluncZcKm77zmJ17NjhtCF821DRETOHCqrEJHT7WXx+M7iwBjA3ceBvyhz/euB\nHPDy7MA4+mvgGPCSzLk/BjqBt2cHxvEZdwMfBS41s0eXedbfnczAWEREqk/VZo5zhRP/GloTM7cW\nQ9Mm5sXPp0bDX3N//p/fTUL9vQ8AsKIp/C6xsjUtcRytCRPj9h0aBKClIf19Y8XDhwHYOBHarKlN\nJ9EVCsUMsGfOTc8c5zOvoThJr5j5LWSXYYvnxidDWzVtq5KQD4wCMHDsGAB1LemEwanctL9ci5wu\nxYztjWViNxEGwgCYWQtwMXAUeEO5ybTABLA18/UT4/HimFkuVdyNZytwT0nsJ7N1vBx331bufMwo\nl8tOi4jIGaxqB8cicsYqTro7XBpw97yZHcuc6gIMWE0on5iPlfH4yjmuaytz7tA8nyEiIlWqagfH\nk/kT62lrYtapNtb7ZnNQxQ1Cits6r9vYk8Tqj+wPodbwdXYFtMaYKC6W7xYy247kR8IScFNjIXtb\n07wifV5xO+fMZiOlm4AUj+GZubJHgKmpqWnHyUystr0dgIG9ofa4ZiSzlFtjmskWOY0G4nEt8EA2\nYGa1hMHt/pJrb3f3+WZhi/dc7O53nmTfZt0iSEREqp9qjkXkdCuuEnFFmdhTyfzS7u7DwN3AY8ys\nu8z15dySaUtEROSkVG3mWETOWNcBrwDeZmZfy6xW0QS8q8z17wM+DnzCzK529/5sMK5OcV5mabZP\nAm8D3m5mP3X3n5RcX0NYxeKGCr6msi7a2MEObeIhInJWqdrB8Ww75E0vqAi8+NfUulBq0HXeI5LY\n6APFf3PDRPnCVGb5tXyc1FYTdsEbmZhKH9cXSieHjh8BoLWxNX1gLKvI+YmT7krLK2COsopcSVnF\nZNqHXCG85qaWUF5x/PjxtH9l5zaJLC53v9nMPgi8FrjLzP6NdJ3j44S1j7PXf8LMtgGvBnab2beB\nvUA3cB7wNMKA+FXx+mNm9iLC0m+3mNn3CNnnArCZMGFvJdC02K9VRETOPlU7OBaRM9rrgfsI6xP/\nKWE5tq8AbwV+Vnqxu7/GzK4nDIB/nbBUWx9hkPwe4LMl13/PzH4VeAvwbEKJxSRwAPg+8KVFeVXT\n9ezatYtt28ouZiEiInPYtWsXQM/pfq65a/6JiEilmdkEUEuZwb7IGaK4Uc29S9oLkZldDOTdvXHO\nKytImWMRkcVxF8y8DrLIUivu7qj3qJypZtmBdFFptQoRERERkUiDYxERERGRSINjEREREZFIg2MR\nERERkUiDYxERERGRSEu5iYiIiIhEyhyLiIiIiEQaHIuIiIiIRBoci4iIiIhEGhyLiIiIiEQaHIuI\niIiIRBoci4iIiIhEGhyLiIiIiEQaHIuIiIiIRBoci4jMg5ltMrNPmNkBM5sws14ze7+ZdZ1kO93x\nvt7YzoHY7qbF6rssD5V4j5rZDWbms3w0LeZrkOplZi8ysw+a2U1mNhjfT59dYFsV+Xk8k7pKNCIi\nUs3M7Hzgx8Aa4GvAvcDlwOuB55jZk9392DzaWRnbeRTwfeDzwIXAy4CrzOyJ7v7A4rwKqWaVeo9m\nXDvD+dwpdVSWs78ELgaGgX2En30nbRHe6yfQ4FhEZG4fJvwgfp27f7B40szeB7wReCfwqnm087eE\ngfE/uPubMu28DvhAfM5zKthvWT4q9R4FwN23V7qDsuy9kTAovh+4AvjBAtup6Hu9HHP3U7lfRKSq\nmdkWYDfQC5zv7oVMbAVwEDBgjbuPzNJOK3AEKADr3X0oE6uJz+iJz1D2WOatUu/ReP0NwBXubovW\nYVn2zOxKwuD4X939D0/ivoq912ejmmMRkdn9Wjx+J/uDGCAOcG8GWoAnzNHOE4Fm4ObswDi2UwC+\nE798+in3WJabSr1HE2b2YjO7xszeZGbPNbPGynVXZMEq/l4vR4NjEZHZXRCP980Q/2U8Puo0tSNS\najHeW58H3gX8PfAtYK+ZvWhh3ROpmNPyc1SDYxGR2XXE48AM8eL5ztPUjkipSr63vgb8JrCJ8JeO\nCwmD5E7gC2b23FPop8ipOi0/RzUhT0Tk1BRrM091Akel2hEpNe/3lrv/Q8mpXwBvNbMDwAcJk0qv\nr2z3RCqmIj9HlTkWEZldMRPRMUO8veS6xW5HpNTpeG99jLCM2yVx4pPIUjgtP0c1OBYRmd0v4nGm\nGrZHxuNMNXCVbkek1KK/t9x9HChOJG1daDsip+i0/BzV4FhEZHbFtTifFZdcS8QM2pOBMeCWOdq5\nJV735NLMW2z3WSXPE5mvSr1HZ2RmFwBdhAHy0YW2I3KKFv29Dhoci4jMyt13E5ZZ6wFeUxK+lpBF\n+3R2TU0zu9DMpu3+5O7DwGfi9dtL2vmz2P63tcaxnKxKvUfNbIuZbSxt38xWAZ+MX37e3bVLniwq\nM6uP79Hzs+cX8l5f0PO1CYiIyOzKbFe6C3g8YU3i+4AnZbcrNTMHKN1Iocz20T8BtgLPBx6O7exe\n7Ncj1acS71Ezu5pQW3wjYaOFPmAz8DxCjedtwDPdvX/xX5FUGzN7AfCC+OU64NnAA8BN8dxRd39L\nvLYH2AM86O49Je2c1Ht9QX3V4FhEZG5mdg7wDsL2zisJOzF9FbjW3ftKri07OI6xbuDthH8k1gPH\nCLP//6e771vM1yDV7VTfo2b2K8CbgW3ABsLkpiHgbuCLwL+4++TivxKpRma2nfCzbyaBgsGBAAAg\nAElEQVTJQHi2wXGMz/u9vqC+anAsIiIiIhKo5lhEREREJNLgWEREREQk0uD4LGRmPWbmxZoxERER\nEamMZb19dJyZ2wN81d3vWNreiIiIiMhSW9aDY+Bq4AqgF9DgWERERGSZU1mFiIiIiEikwbGIiIiI\nSLQsB8dmdnWczHZFPPXJ4gS3+NGbvc7Mbohfv8TMbjSzY/H8C+L56+LX22d55g3xmqtniNeb2X83\ns++Z2REzmzCzB83sO/F860m8vovN7HB83mfNbLmXz4iIiIjMy3IdNI0Bh4FuoB4YjOeKjpTeYGb/\nCLwWKAAD8VgRcS/7bwCXxFOF2KdzCFt3PpOwJeIN82jrScA3gU7gI8BrXDu9iIiIiMzLsswcu/sX\n3H0dYW9ugNe7+7rMx+NKbtkG/Blh28OV7t4NdGXuXzAzawS+ThgYHwVeCrS7exfQCjwOeD/TB+8z\ntfUs4LuEgfH/cvdXa2AsIiIiMn/LNXN8stqAd7n7O4on3H2QkN09VX8CXAZMAM9w9zszzxgDbosf\nszKzFwKfAxqAt7r7uyrQNxEREZFlRYPj+ckD71uktv84Hj+ZHRifDDN7GfBRwl8CXuPuH65U50RE\nRESWk2VZVrEA97v70Uo3amb1hJINgG8tsI3XAx8HHPhjDYxFREREFk6Z4/k5YYJehXST/jfYu8A2\n3h+P73D3z556l0RERESWL2WO5ye/SO1aBdr4fDy+xcwur0B7IiIiIsuWBseVkYvHplmu6Shz7ljm\n3nMX+Ow/Ar4EtAPfNrPLFtiOiIiIyLK33AfHxbWKTzWD2x+Pm8oF4wYeW0vPu/sUsCN++byFPNjd\nc8DvA/9OWMLtO2b2qwtpS0RERGS5W+6D4+JSbJ2n2M7P4/FZZlYue/xGoHGGez8dj1cvdFAbB9kv\nAq4HVgLfNbMTBuMiIiIiMrvlPji+Ox5faGblyh7m698Jm3SsBj5tZmsAzKzDzN4GbCfsqlfOx4E7\nCIPn75nZH5lZS7y/2cwuN7OPmtnjZ+uAu08CLwS+B6yJbT3yFF6TiIiIyLKz3AfHnwEmgacAR81s\nv5n1mtmPTqYRd+8Drolf/g5w2MyOA33A3wDvIAyAy907AfwWcBewipBJHjSzPmAEuBV4BdA8j36M\nx7ZuBNYD3zezLSfzWkRERESWs2U9OHb3e4FnAv9ByOyuI0yMK1s7PEdb/wi8GLgFGCV8b28G/lt2\nZ70Z7n0IeCzwOuBHwBDQQlje7dvAK4GfzLMfo8BvxGdvIgyQN5/s6xERERFZjszdl7oPIiIiIiJn\nhGWdORYRERERydLgWEREREQk0uBYRERERCTS4FhEREREJNLgWEREREQk0uBYRERERCTS4FhERERE\nJNLgWEREREQk0uBYRERERCTS4FhEREREJKpb6g6IiFQjM9sDtAO9S9wVEZGzVQ8w6O7nnc6HVu3g\neHQ07wA1lp7zkmvM0sT5/v0PATAyOgLARRdtTWKFeOPU+GQ4Tk2kzxkbBaC/7xgAw0MDSay/fxCA\nR14Y2lq7bmMSy+cLc76GQiHTYw8vxL0Yy4TiyVx4yeQzwUL8PJ/Px2tySSwX+/DI81ZlvksiUiHt\nzc3N3Vu3bu1e6o6IiJyNdu3axdjY2Gl/btUOjqE4QEzHfbVxgFmII+aa2uzIOVzfWFsLwA+//4Mk\ndLTvKAATE+MAjI6lg+P6+vp4bACgrqEhiU1MTAGw//BNADz/+c9PYg0NjeGx2fGvTx++T/syGRTb\nCdcWB9HFgXAhMzguDorLxQqFPCLLkZn1AHuAT7n71Yv0mN6tW7d279ixY5GaFxGpbtu2bWPnzp29\np/u5qjkWkUVhZj1m5mZ23VL3RUREZL6qOHMsIrK07to/QM8131zqbohUXO+7r1rqLogsmqodHNfU\nhaT4RC6tsS1+PhlrFCbGx5PYAQ8lEPcc2QPAT//zP5PYBWvOAeC8LecDsGZ9exJra2sDoKGpCQCr\nScsqai2UXOzf9yAAO3fensQef/nlADgnlvsmFRN+4rliOUWhTF1xMZYtuSi93gt+wn0iIiIiEqis\nQkQqzsy2E2p6AV4ayyuKH1eb2ZXx8+1mdrmZfdPM+uK5ntiGm9kNM7R/XfbaktjlZvYFM9tvZhNm\ndtDMvmNmvzuPfteY2T/Gtr9sZk0L+w6IiMjZqmozxzfc9H0Ajnk6ee5InHTXN9APwPH7dyexoRi7\n5/BeAOpr098brCZMNm+sDxPYatvSfy9b68IEviQLW5hKYrmYjS5mlfuHjiexB/eGccM5m89Pznkx\nkZtkgNM+pJnj6VliSFfTKMySVU5WrcjEsllkkQq7AegEXg/8DPhqJnZHjAE8EfgL4EfAJ4BVwORC\nH2pmrwQ+AuSBrwO/BNYAjwVeDXxxlnubgM8Cvw38E/A6d5/zzytmNtOMuwtPqvMiInJGqNrBsYgs\nHXe/wcx6CYPjO9x9ezZuZlfGT58FvMrd/+VUn2lmjwY+DAwCT3X3u0vim2a5txv4GvBk4Bp3/1+n\n2h8RETk7Ve3g+E9f8yoAJsfT9fFG4hJsIyNhbeLCVCZBNRkSRCu6V8P/a+/O4+wuy7uPf64ze2ZI\nJgsQQggh7BIWRVBAJYgColYeHy0uWMHap2h94dYq9kGBapW2Kra0aF15SrEI8rJokUoFIawiIYgh\ngWyEQBayT7ZZznI/f1z3b8nJmSWTmSScfN+vF68z87t/v/t3n8nhzH2uue7rBqYclf0eXXTEBgCe\nn/80AB2HHZK2TZ7i533k1ecD0NTYlLYltYxLRc917mjPcpWXLnsJgAnjD0yPtbeP8/OTgG5l59zh\nkEaCd84drl2urbotK99WVs6x7H1PjcTEOPoY/p725eqJMUAI4aVaF5nZ4cB/A0cCHwoh3LIrNw0h\nnNpPv3OA1+xKXyIisvfV7eRYRF4RHh/Bvl4fH+/ehWuOBR4F2oG3hRDuHcHxiIjIK5AW5InI3rR6\nBPtK8phX7MI1xwCHAEuBJ0dwLCIi8gpVt5Hj5c8tBaDJGtJjDY2+K117iy+QazmgM21rbPMSbJ2d\nBwNQ3J4t5FvwsP/OPP3cNwBwbPOUtO2hJ34HwLoZrwVg8oQs5SJZy5PuxFfJyra1jvEUiucWLkyP\nnXzyq+N1DUkHub7iYrt0sV4udSL0v0PezmkVKuUm+5SBVoUG+n+P6qxxbFN8PBR4doj3/wXwHPBV\n4F4zOy+EsG6I14qISB2q28mxiOx1SYJ7w4Bn9W8jcFj1QTNrAE6pcf5jeFWKtzH0yTEhhK+ZWTdw\nPfAbM3tLCOHl4Q15RzMPHcccbZYgIvKKUreT46lTvURaY2t7eqyt/QAAWsa0AdDa3pa1xWMb13nQ\naMuGrrRt28b4dfxV35grsbZ9vS/WK8fobVtbS9q2ZctW/6Lg5zcUsuvKcWFcb26B3PLlywCYdtiM\nHfqE/CYeu7sgL2srl7N7i4yCjXj0d9owr38cuCBGc+/JHb8KOLzG+d8GLge+aGa/CiHMzzea2dT+\nFuWFEL5lZj14tYsHzOzNIYSVwxy3iIi8gtXt5FhE9q4QwlYz+y3wRjO7BVhIVn94KL4OnA/caWY/\nATYAZwJH4HWUZ1Xdb76ZfRz4DjDXzO7E6xxPxCPKW4BzBhjvd+IE+QfA7DhBXj7EsYqISJ3QgjwR\nGU0fAu4CLgCuBr7MEMubxcoRFwHPAO8DPgwsA04HXujnmu8BbwD+C588/xXwR8A6fGOPwe55E3AJ\nHpmebWYzhjJWERGpH3UbOT7hxBMAmL9oWXaw5HWNKyX/TFApZqmQxV7/UfR0ew3kAln6QSGuGSp0\n+/V9xZ60LbR4H9++7XsAvPG0s9K2t57y5niSX79kxaK0bepk/0tzR3OW9rH2ZU/R6Bzra43GxLrH\nkNUkTtIpdkiPKHkd5VJM0aiU86kT/nUxlHc4B6CotAoZZSGExcA7+2m2fo7nr/85tSPNl8b/al3z\nKL7L3UD9Luvv/iGE/wD+Y7CxiYhIfVLkWEREREQkqtvIcWuHL7ALpSw6WmrxQFG5zyOtWFaurbVl\njLfFdW7FYnZdR1zIV4oR2nWb1qRtodE/X8xZ9Af/3rJg1JtP9vRGiwGqMsW07emFcwGYefRJ6bHO\nDo8YP7/M0xyPPvrYtK0S+0gixqXc80qOJQvs8gvtqnfGyz+vvpIixyIiIiJ5ihyLiIiIiER1Gzkm\nRk8by33poS1dXlpt6tRDAZg4KdtHYM36jf5FzEtuzpVka46bchx+sG/w8czabC1QseTR59YWP98a\ns88bvWWPFDc1+Y+52JuNZdv2zX7friwKXSx7ZHr8ARMA6MmdT6EhPi1/XiGfc5zkEYcYoc6VeUui\n3X3F+JjLR+6JbSIiIiLiFDkWEREREYk0ORYRERERieo2reLlTesBaDhqYnrs4Lgj3nvPeBMALbkd\n8u5a6WXWGjZ6esXGPyxO29rHe0m1BYsXALD5gKwEXKU9pjs0eEpDXzFLhSiVPK2iIS7SO2bG8Wlb\n57pJfl0lS23YtGUTAE1NrQAUGrJ/njRVIvbVV8oW94XgqRLbt3f7uSFbFBgKsURdklbRl13X25dL\n2xARERERRY5FRERERBJ1Gzk+7YpLAFhf2pwea+zaBsBj//0IAJWerJTbmglNAGzYtsXPPSBbkFdo\n7wBg2bYuAFoYk7YZHjlOfpC9vdkGIUkUubXB+xrTOjZtO3yqf71xy/r0WDEukCvGiO68PzyZth14\nsC8iXLp0IbBjybjjX+Ubjj36+MMAHHHkUdnY48hCkz+/7VuzaHGxIYuAi4iIiIgixyIiIiIiqbqN\nHP/28dkAbFi+Ij3WssWjpltWrwagOWSfDdatjeXQYqmzM048LW0797Q3APDr33qfi9e9mLaVez0X\nONlOoycXOd6+zUvHtYzx+4SsihrFiuf+9nRvyw6an9fV5dHkH3z3W2nTCcfMBGDZwucAOOakbPOQ\npUuWAHDffXcDcNXVf5O2vbzSn+umHr/fiqVL07aSxX/+C1+PiIiIiChyLCIiIiKS0uRYRERERCSq\n27SKRff64rTxLR3psdYO3xHv5SZfiLYtl+fQECuqlbs99aInV+asqdkX1HU0+UK8UneWOjG+xUvF\nbbUQr8sW+W2LaRXj2g4AoJgr89Zb9PMOaM0W98XN79jcs86/6MnKvP3h6TkAjB3jZd6eejLbpW/O\n3Cfj2L2U28oXstSJctE7XR1TL3776K/StlWr/D7XfekziOxrzCwAD4QQZg3x/FnAb4BrQwjX5I7f\nD5wdQq7GoYiISD8UORapE2YW4kRQREREhqluI8fTOycD0JvbZGNrj0dyC7EMWjG3QM4q8Zsm/7xQ\nyW2y0bPVF8019HkUtkJI286OC/fmv/Q8AEvXLM+ui4vtSiWPEidl3wCKsW3r5qzU3Jo1a/zx5VUA\n/NlHPpq2bYljD/GfbOu2bAxNjT7W8nY/545bf5L7SfiYm1s94jz9yBlpy4wjDkekjjwOHA+s29sD\nERGRV666nRyLyP4lhLAdeHZvjyNv3ooupl95194exj5p2XVv39tDEBGpSWkVInuImV1qZneY2VIz\n6zazzWb2sJldUuPcZWa2rJ9+rokpFLNy/SZ/Sjg7tiX/XVN17R+b2Wwz64pj+IOZfcHMWqpuk47B\nzDrM7HozezFe85SZXRTPaTSzvzazRWbWY2ZLzOwT/Yy7YGaXm9nvzGyrmW2LX3/MzPp9LzKzKWZ2\ns5mtifefY2YfqHHerFrPeSBmdr6Z/dLM1plZbxz/P5hZ51D7EBGR+lK3keMVm/0vq9vLWXrEQQ2+\n+K2S/BouldO2Sp+nVZRaPfWh0Jj9rj5g3AQA+hr8nLJlKQ0vb/T7bNm0yc/JLchbv34tAO3x9/6z\nCxakbatireWFixemxxYtXgTA8ccfA8CRRxyStpV7vd9Q8Hu3FbJFgZWYEtLU4vObk086MW1bG1M1\nuru3AzCxdULa1oDWJ+1h3wbmA7OBVcBE4ELgZjM7NoTwxWH2+xRwLXA18AJwU67t/uQLM/sq8AU8\n7eDHwFbgbcBXgfPN7K0hhCI7agL+B5gA3Ak0A+8H7jCz84CPA68D7gZ6gfcCN5jZ2hDCT6r6uhn4\nAPAi8H0gAP8LuBF4A/DBGs9tPPAIsAn4EdAJ/DFwi5kdGkL4h0F/Ov0wsy/hP7cNwH8Ba4CTgL8E\nLjSzM0IImwfoQkRE6lDdTo5F9kEzQwhL8gfMrBmfWF5pZt8JIayofWn/QghPAU+Z2dXAsnylhtx9\nzsAnxi8Cp4cQVsfjXwB+BrwD+Ct8opw3BXgSmBVC6I3X3IxP8G8HlsTntSm2fRNPbbgSSCfHZvZ+\nfGI8F3hTCGFrPH4V8ADwATO7K4Tw46r7nxTv874QvLyMmV0HzAH+1szuCCEsZReZ2Tn4xPhR4MJk\n/LHtUnwifi3w6SH0NaefpuN2dVwiIrL31e3kuBhLsTXlIsDFGHWtxJpplb5ssV5p5UYAGqZ7ZHXJ\nmmwXvP93z20AvLjKF9sVy9l1s+c/AUCh2wNuRbJo9M9uvx2AqQdPAWDuU9nv0LUbfBe8I6Ydlh7b\nuNGPdbS2AbB57Zq0rRyj3I2xrbc3KwvX0+NfW4xsFwrNaduBE73UnBX8eZWKWWCwUs4i4DL6qifG\n8Vifmf0L8GbgXODfRun2H4mPX0kmxvH+JTP7LB7B/ig7T44BPpVMjOM1D5rZ88ARwOfzE8sQwlIz\nexh4o5k1hBCS/yGS+1+ZTIzj+dvM7PPAr+P9qyfH5XiPSu6a583sn/BI+YfwSeyuuiI+/ll+/LH/\nm8zsk3gke9DJsYiI1Je6nRyL7GvMbBrweXwSPA1oqzrl0FG8/Wvi433VDSGEhWb2EnCEmXVWTRY3\n1ZrUAyvxyXGtqOkKoAGYHL9O7l8hl+aR8wA+CX51jbblIYTnaxy/H58c17pmKM4AisB7zey9Ndqb\ngQPNbGIIYf1AHYUQTq11PEaUX1OrTURE9l11OzkuxehwCFmUt1Lwp9vS3ARAuTO3Acd2j74WNnuA\nbHOhK23bHPOKK8HzkZsK2Y+t1Bsjur0e2JoxMcsTbi56Tu//3HeP36OcRZUbYzm4jWvWpsc623w8\nG2Mpt3lzn0jbxnaMB6C9wzcUaWlqze7T55t/NPV6ebj1nQelbaHsz6sUQrxvFknPBeNklJnZDLzU\n2HjgQeAeoAufFE4HPgzstChuBI2Lj6v6aV+FT9jH4fm9ia7ap1MCCCHUak/+p2uquv+GEEJf9ckx\ner0OOKi6DXi5n/sn0e9x/bQPZiL+/nf1IOd1AANOjkVEpL7U7eRYZB/zGXxCdlkI4aZ8Q8zH/XDV\n+RU8elnLcCopJJPYyXiecLVDqs4baV3ABDNrql70Z2aNwCSg1uK3g/vpb3Ku3+GOpxBCmDDomSIi\nsl9RKTeRPeOo+HhHjbazaxzbCBxsZk012l7bzz0qkNtpZkdz4+Os6gYzOwqYCjxfnX87gubi7zdv\nqtH2JnzcT9Zom2Zm02scn5XrdzgeA8ab2QnDvF5EROpU3UaOW8d1ANAx5cD0WOcEDxJNONCPbR+b\nPf2+FzcAsG25/9V53Yp0zRINlbijXtH/WtzYkV1XiH8kPu04T308bEIW6Fqz1vsa19EOQFNjlgrR\ns9XnIJYrJzdjii/cmzTW/1JcLuUWzMWqa6V4fihsT5sm9XhZtzFdnlaxqiULwDXGuVIx7viXJZlA\nQ0GfjfagZfFxFvCL5KCZnY8vRKv2OJ6vehnw3dz5lwJn9XOP9cBh/bT9EPhT4Coz+3kIYW3srwH4\nOj5x/cGQnsnw/BDPtf6amc2KG3ZgZmOA6+I5te7fAPydmb0/V63iCHxBXQn492GO53rg7cD3zOw9\nIYSV+UYzawdODCE8Nsz+AZh56DjmaLMLEZFXlLqdHIvsY27EJ7q3m9kd+EK1mcAFwG3AxVXn3xDP\n/7aZnYuXYDsZOBOvyfuOGve4F3ifmf0CXyhXAmaHEGaHEB4xs78HPgfMM7OfAtvwOsczgYeAYdcM\nHkwI4cdm9i68RvEzZvafeJ3ji/CFfbeFEG6pcenTeB3lOWZ2D55jfDGeWvK5fhYLDmU895rZlcDX\ngEVm9kvgeTzH+HA8mv8Q/u8jIiL7kbqdHE8/5zQAWg7KUgobY5TXNvsCto1PL07btmz0aGtz3LBj\n4rgD0rYNC7ysWzlGjjsr7Wnba0/0xejnzHoLAAuXLErb7rvdq1JNmewR4bGd2VheWDQfgEkd2X06\nx/rXhSSi25D9Rb0YN/qwUlw4WMwW062OweeGdj8/dG9L22KFOZpbPWqd39ykXMmi1jK6QghPx9q6\nX8HLpjUCvwfejS+Au7jq/Plm9ha8tNo78Ynug3iVhXdTe3L8SXzCeW68RwEvczY79vl5M5sLfAL4\nE3zB3BLgKuAbtRbLjbD345UpPgL8eTy2APgGvkFKLRvxCfzf4x8WxuIbqXy9Rk3kXRJC+LtYdu4K\nfBOSd+G5yCvwaP1u9S8iIq9MdTs5FtnXhBAewesZ17LTdoUhhIeonaP7NHBNjfPX4BttDDSGW4Fb\nBxtrPHf6AG2zBmi7FLi0xvEKHkG/cYj3z/9Mdtpiu8b591P75zhrgGsewiPEIiIiQB1PjpsO8bzi\nhp5sYXz3c15ydflzzwJQKudKmW31vN3N67cAMH5qlqt86EEe+Z041vOJT5g5M2074WQvcbphg+cs\nr305qzzV3u4R5mOOfRUAc+Y8nrZN7PSCAwdPGL/T+c0tHuVtbMz/8/jvfDN/bMyVcks2JakUPHLc\nmCvRZjHLuKfXn19DJZcvrT1ARERERHagFVkiIiIiIpEmxyIiIiIiUd2mVRxwt+9q+9LiF9JjbZM9\nLaIQd4srlLP0xK7FXrqtGMuhFfuydIwjzngjANMmTAegvXNs2rZk8UIA5j/9e39c8FTaluyIt269\np1qUtmQl1sZP9IpbzU3ZpmiFuPNeY2NT/D777NLQ0BCPNezQN4DF9IhKTBMpWPa8LJ7f1OQn9fX0\npm1tudQMEREREVHkWEREREQkVbeR48mLfQOO9c8uS48tNI8GtxzgJdWKa9akbaW4IM9i1LayMdtk\nY/Uq7+vsk30js9UvLU/bnpzri+zmz/OI8fbu7p3GUozHjp46NT3W0uw7Azc2Z/8EDU0xKlzxRXQh\nt9lZJZZy6+vzalv5DTxCjIQna/tLIVtpZ5WkLS7Sy+2ftqFrw05jFREREdmfKXIsIiIiIhJpciwi\nIiIiEtVtWsXarb6wrtKQW9TW54vYips8zWHb+k1pWzmmHxRi+kGxlC14K8S6wY8/PBuAdWtXpm0v\nr10HQGtLGwBTp2SpE4cd6vWRZ0ybBkBzU/bj3rDGF+l1b892s9se6xW3t3f4eHNjN9txb4MQ8kWK\n/esk9SJZvAf5hXsWz8yuaxrTjIiIiIhkFDkWEREREYnqNnK8+oxjAFgyp5Qe6yvH8mybvWxbSyn7\nbPCBy/4PAM/MexqAJ373WNq29kWP8nYe7hHdE056ddq2/fFHAOjeuhGAppBFnJOvk+hwXyEX/Y3R\n6CTiDFAs+Vi74wK+/A55SaTY4pALjVlfoRwX3cUosTXmVt2lu+X5+YX85yHbaaddERERkf2aIsci\nIiIiIlHdRo5XPP8SAH1dWUm2tjaP0jZPOBCAmScdl7adeurpADTEjTjmxU09ANrw8m5HHnEUAPfd\n+6u0bd0aL/N2yCQvDze2PYsEE3OIN671knH5nOO2Vs/3bWrONgFpjeMrxevym3mEikeFK/HzTLEv\ni1AnOcYWy7uVSlm03GLecpJ7nM9dDiE7T0REREQUORYRERERSWlyLCI7MLP7zSwMfuZu32e6mQUz\nu2m07yUiIjJUdZtWMcXaARhz5OHpsd6+XgC2ru0CYPyESWnbgw/8BoClSxYB0N7emratWf0iAD/9\n6Y8BqCQL+4CDJng6RXtcWNfYkP1IkwSGxpja0Bh334Ns97tKriRbb6/v0leJKRQNhSzlojFZZJfs\nhpebuhSLPp4QS7lVsqY0NaO3p2+n65Kd+ERERETE1e3kWESG7U+AMXt7EPVg3ooupl95194exl6z\n7Lq37+0hiIjssrqdHK/CF+JtXb0+PVYueqS0seyR3OZcJbO58+b6F5UktJqVQ+uLkdymuAauc+y4\ntG1Ms0eYx7R65LiQ24AjixT7jUrlXEzXYnQ4V66tqcnP7+n1tkIhy3op9nnkN9noI3+fpMxbiGMv\nh+w+pfh0KrEtv1ivkis7J5IIISzf22MQERHZW5RzLLIfMLNLzewOM1tqZt1mttnMHjazS2qcu1PO\nsZnNivnB15jZ6WZ2l5ltiMemx3OWxf/Gmdk/m9kKM+sxs/lmdoVVb/PY/1iPMbPrzOwJM1trZr1m\n9oKZfdfMptY4Pz+2U+LYNpnZdjN7wMzO7Oc+jWb2cTN7LP48tpvZXDP7hJnpvVFEZD9Vt5HjLSu8\nfFouiJpGaZtiOHX1ylVpW3e35/uOHTsWgGKpN7sw/kpva/Ec4Nbm7MfWkZSHi2XaWpuzLZmT0mqF\ngkd5G3OR4KaYmxxy21SXSfKJk009siHEYDcW+0oiyJCPBntbuRJybZ6PnMx1KrmM5FJZkeP9yLeB\n+cBsYBUwEbgQuNnMjg0hfHGI/ZwBfAF4CPghMAnoy7U3A78GOoFb4/f/G/hH4FjgL4Zwj3cDlwO/\nAR6J/Z8AfBR4p5m9NoSwosZ1rwU+BzwKfB+YFu99r5mdEkJ4LjnRzJqAXwDnA88BPwZ6gHOAG4DX\nAR8awlhFRKTO1O3kWER2MDOEsCR/wMyagbuBK83sO/1MOKudB1weQvjXftoPAZbG+/XG+1wN/A74\nuJn9JIQwe5B73Axcn1yfG+95cbxXAR+rcd3bgctCCDflrvlz4DvAJ4GP5879v/jE+J+BT4XgH0XN\nrAH4LvARM/tpCOHOQcaKmc3pp+m4fo6LiMg+TH86FNkPVE+M47E+4F/wD8nnDhx8ntMAAAkmSURB\nVLGrpwaYGCe+kJ/YhhA2AF+O3142hLGuqJ4Yx+P3AM/gk9paHs5PjKMfAiXg9ORATJn4BLAa+HQy\nMY73KAOfBQLwwcHGKiIi9aduI8eFuNNdpZwtQCt3++/b3h5PLdiypSttmzTJy7olWZG9PT1pW3uL\nL7prH+ML+K2Q/dg2bdvmx+L6uGQXPsilRyT10wq5lMt4o8am7PPJ9i1bAGiIKRoVcjvdVZJFd/H7\n3Oea9D5pykSWVpGUhcuOFXJt+aJvUs/MbBrweXwSPA1oqzrl0CF29fgg7SU8FaLa/fHx1YPdIOYm\nfxC4FDgZGE9+heyOaRx5T1QfCCEUzezl2EfiGDytZBFwVT+p0N3A8YONNd7j1FrHY0T5NUPpQ0RE\n9h11OzkWEWdmM/BJ7XjgQeAeoAsoA9OBDwMt/V1fZfUg7evykdga142r0Vbtm8Cn8NzoXwEr8Mkq\n+IT58NqXsamf4yV2nFxPjI9HA1cPMI6OIYxVRETqTN1OjkOPL0Try0WAkwVxpV6PyG7YtCFtG9fp\nv7M3bvRj+XyTsWP8d2Sy0Qe5SFMlRmRbWz263FCokakST89HassxotuY+51djovz0uhzrq9CXMCX\n9JHvK4kJh7BzJDjpolSKJeBy0etkoaDUvc/gE8LLqtMOzOz9+OR4qAbbOW+SmTXUmCBPjo9d1RdU\njecg4ApgHnBmCGFLjfHurmQMPwshvHsE+hMRkTpSt5NjEUkdFR/vqNF29gjfqxE4E49Q582Kj3MH\nuX4G/tn0nhoT46mxfXc9i0eZX29mTSGE4mAXDNfMQ8cxRxthiIi8omhBnkj9WxYfZ+UPmtn5eHm0\nkfY1M0vTNMxsAl5hAuBHg1y7LD6+IVaOSProAL7HCHygDyGU8HJthwD/ZGbV+deY2SFm9qrdvZeI\niLzy1G3kuKdrKwBNzU3ZwbL/RbhY9EDRuvVrs6ZY83fVaq9m1dGa/b4c2+YL8draPHUiv7AuqWvc\nltQ3zqdcxIVyyaLAHeoKx/NCb7a2KKlPnOykZ7msB4tpEeVkgWFuDVFI/tJdyY5US9IwwmB/FJd6\ndCNeJeJ2M7sDz+GdCVwA3AZcPIL3WoXnL88zs58DTcB78InojYOVcQshrDazW4H3AU+Z2T14nvJb\n8TrETwGnjMA4v4wv9rscr518H/5zOQjPRT4LL/c2fwTuJSIiryB1OzkWERdCeNrMzgG+gm/80Qj8\nHt9sYxMjOznuA94CfBWf4E7C6x5fh0drh+JP4zUX45uGrAV+DnyJ2qkhuyxWsbgIuARf5PcOfAHe\nWuB54IvALbt5m+kLFizg1FNrFrMQEZFBLFiwAHzh+B5lQaFEERkBZrYMIIQwfe+OZN9gZr14lYzf\n7+2xiPQj2ajm2b06CpH+nQyUQwhDrag0IhQ5FhEZHfOg/zrIIntbsrujXqOyrxpgB9JRpQV5IiIi\nIiKRJsciIiIiIpHSKkRkRCjXWERE6oEixyIiIiIikSbHIiIiIiKRSrmJiIiIiESKHIuIiIiIRJoc\ni4iIiIhEmhyLiIiIiESaHIuIiIiIRJoci4iIiIhEmhyLiIiIiESaHIuIiIiIRJoci4gMgZlNNbMf\nmtlKM+s1s2Vm9i0zG7+L/UyI1y2L/ayM/U4drbHL/mEkXqNmdr+ZhQH+ax3N5yD1y8zeY2Y3mNmD\nZrY5vp7+fZh9jcj7cX8aR6ITEZF6ZmZHAo8ABwF3As8CpwOfBC4ws7NCCOuH0M/E2M8xwH3ArcBx\nwGXA283sjBDC0tF5FlLPRuo1mnNtP8dLuzVQ2Z9dBZwMbAVewt/7dtkovNZ3osmxiMjgbsTfiK8I\nIdyQHDSzbwKfBv4WuHwI/XwVnxhfH0L4TK6fK4B/jPe5YATHLfuPkXqNAhBCuGakByj7vU/jk+LF\nwNnAb4bZz4i+1mvR9tEiIgMwsxnAEmAZcGQIoZJrOwBYBRhwUAhh2wD9tANrgQpwSAhhS66tEO8x\nPd5D0WMZspF6jcbz7wfODiHYqA1Y9ntmNgufHN8SQrhkF64bsdf6QJRzLCIysDfHx3vyb8QAcYL7\nMDAGeP0g/ZwBtAEP5yfGsZ8KcE/89pzdHrHsb0bqNZoys4vN7Eoz+4yZvc3MWkZuuCLDNuKv9Vo0\nORYRGdix8XFhP+2L4uMxe6gfkWqj8dq6Ffga8A3gl8ByM3vP8IYnMmL2yPuoJsciIgMbFx+7+mlP\njnfuoX5Eqo3ka+tO4J3AVPwvHcfhk+RO4Cdm9rbdGKfI7toj76NakCcisnuS3MzdXcAxUv2IVBvy\nayuEcH3VoeeAvzazlcAN+KLSu0d2eCIjZkTeRxU5FhEZWBKJGNdP+9iq80a7H5Fqe+K19X28jNsp\nceGTyN6wR95HNTkWERnYc/Gxvxy2o+NjfzlwI92PSLVRf22FEHqAZCFp+3D7EdlNe+R9VJNjEZGB\nJbU4z4sl11IxgnYW0A08Nkg/j8XzzqqOvMV+z6u6n8hQjdRrtF9mdiwwHp8grxtuPyK7adRf66DJ\nsYjIgEIIS/Aya9OBv6hqvhaPov1bvqammR1nZjvs/hRC2ArcHM+/pqqfT8T+f6Uax7KrRuo1amYz\nzOzQ6v7NbBLwo/jtrSEE7ZIno8rMmuJr9Mj88eG81od1f20CIiIysBrblS4AXofXJF4InJnfrtTM\nAkD1Rgo1to9+HDgeeBewJvazZLSfj9SfkXiNmtmleG7xA/hGCxuAacCFeI7nE8BbQwibRv8ZSb0x\ns4uAi+K3k4HzgaXAg/HYuhDCX8ZzpwPPAy+EEKZX9bNLr/VhjVWTYxGRwZnZYcDf4Ns7T8R3YvpP\n4NoQwoaqc2tOjmPbBOBq/JfEIcB6fPX/l0IIL43mc5D6truvUTM7EfgscCowBV/ctAV4BrgN+NcQ\nQt/oPxOpR2Z2Df7e1590IjzQ5Di2D/m1PqyxanIsIiIiIuKUcywiIiIiEmlyLCIiIiISaXIsIiIi\nIhJpciwiIiIiEmlyLCIiIiISaXIsIiIiIhJpciwiIiIiEmlyLCIiIiISaXIsIiIiIhJpciwiIiIi\nEmlyLCIiIiISaXIsIiIiIhJpciwiIiIiEmlyLCIiIiISaXIsIiIiIhJpciwiIiIiEmlyLCIiIiIS\n/X9nfiP5A6ztfwAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7f80b190c630>" ] }, "metadata": { "image/png": { "height": 319, "width": 355 } }, "output_type": "display_data" } ], "source": [ "\"\"\"\n", "DON'T MODIFY ANYTHING IN THIS CELL\n", "\"\"\"\n", "%matplotlib inline\n", "%config InlineBackend.figure_format = 'retina'\n", "\n", "import tensorflow as tf\n", "import pickle\n", "import helper\n", "import random\n", "\n", "# Set batch size if not already set\n", "try:\n", " if batch_size:\n", " pass\n", "except NameError:\n", " batch_size = 64\n", "\n", "save_model_path = './image_classification'\n", "n_samples = 4\n", "top_n_predictions = 3\n", "\n", "def test_model():\n", " \"\"\"\n", " Test the saved model against the test dataset\n", " \"\"\"\n", "\n", " test_features, test_labels = pickle.load(open('preprocess_test.p', mode='rb'))\n", " loaded_graph = tf.Graph()\n", "\n", " with tf.Session(graph=loaded_graph) as sess:\n", " # Load model\n", " loader = tf.train.import_meta_graph(save_model_path + '.meta')\n", " loader.restore(sess, save_model_path)\n", "\n", " # Get Tensors from loaded model\n", " loaded_x = loaded_graph.get_tensor_by_name('x:0')\n", " loaded_y = loaded_graph.get_tensor_by_name('y:0')\n", " loaded_keep_prob = loaded_graph.get_tensor_by_name('keep_prob:0')\n", " loaded_logits = loaded_graph.get_tensor_by_name('logits:0')\n", " loaded_acc = loaded_graph.get_tensor_by_name('accuracy:0')\n", " \n", " # Get accuracy in batches for memory limitations\n", " test_batch_acc_total = 0\n", " test_batch_count = 0\n", " \n", " for test_feature_batch, test_label_batch in helper.batch_features_labels(test_features, test_labels, batch_size):\n", " test_batch_acc_total += sess.run(\n", " loaded_acc,\n", " feed_dict={loaded_x: test_feature_batch, loaded_y: test_label_batch, loaded_keep_prob: 1.0})\n", " test_batch_count += 1\n", "\n", " print('Testing Accuracy: {}\\n'.format(test_batch_acc_total/test_batch_count))\n", "\n", " # Print Random Samples\n", " random_test_features, random_test_labels = tuple(zip(*random.sample(list(zip(test_features, test_labels)), n_samples)))\n", " random_test_predictions = sess.run(\n", " tf.nn.top_k(tf.nn.softmax(loaded_logits), top_n_predictions),\n", " feed_dict={loaded_x: random_test_features, loaded_y: random_test_labels, loaded_keep_prob: 1.0})\n", " helper.display_image_predictions(random_test_features, random_test_labels, random_test_predictions)\n", "\n", "\n", "test_model()" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "## Why 50-80% Accuracy?\n", "You might be wondering why you can't get an accuracy any higher. First things first, 50% isn't bad for a simple CNN. Pure guessing would get you 10% accuracy. However, you might notice people are getting scores [well above 80%](http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html#43494641522d3130). That's because we haven't taught you all there is to know about neural networks. We still need to cover a few more techniques.\n", "## Submitting This Project\n", "When submitting this project, make sure to run all the cells before saving the notebook. Save the notebook file as \"dlnd_image_classification.ipynb\" and save it as a HTML file under \"File\" -> \"Download as\". Include the \"helper.py\" and \"problem_unittests.py\" files in your submission." ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.2" }, "widgets": { "state": {}, "version": "1.1.2" } }, "nbformat": 4, "nbformat_minor": 0 }
mit
duane-edgington/stoqs
stoqs/contrib/notebooks/create_timeline_plot.ipynb
4
132275
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "### Create Timeline Plot of Platforms in a STOQS Database\n", "*Walk through activities of the database and summarize platform time in water*\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Executing this Notebook requires a personal STOQS server. Follow the [steps to build your own development system](https://github.com/stoqs/stoqs/blob/master/README.md) &mdash; this will take a few hours and depends on a good connection to the Internet. Once your server is up log into it (after a `cd ~/Vagrants/stoqsvm`) and activate your virtual environment with the usual commands:\n", "\n", " vagrant ssh -- -X\n", " cd /vagrant/dev/stoqsgit\n", " source venv-stoqs/bin/activate\n", " \n", "Connect to your Institution's STOQS database server using read-only credentials. (Note: firewalls typically limit unprivileged access to such resources.)\n", "\n", " cd stoqs\n", " ln -s mbari_campaigns.py campaigns.py\n", " export DATABASE_URL=postgis://everyone:[email protected]:5433/stoqs\n", " \n", "Launch Jupyter Notebook on your system with:\n", "\n", " cd contrib/notebooks\n", " ../../manage.py shell_plus --notebook\n", " \n", "navigate to this file and open it. You will then be able to execute the cells and experiment with this notebook.\n", "\n", "---" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "For the KISS April 2017 campaign add up the hours and collect in a dictionary all the platform start and end times using Matplotlib mdate format:" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Platform Name # Deployments Hours\n", "------------- ------------- -----\n", "tethys 35 341.9\n", "NPS_Glider_34 1 910.0\n", "SG_Glider_621 335 703.6\n", "dorado 3 65.3\n", "Slocum_nemesis 127 173.5\n", "SG_Glider_539 322 686.5\n", "opah 306 282.4\n", "WesternFlyer_PCTD 37 10.1\n", "OA1_Mooring 1 912.0\n", "OA2_Mooring 1 912.0\n", "M1_Mooring 1 912.0\n", "wg_Tiny_Glider 1 912.0\n", "SPRAY_L66a_Glider 1 912.0\n", "daphne 41 291.3\n", "aku 45 254.1\n", "ahi 2 1.6\n", "WesternFlyer_UCTD 26 90.1\n" ] } ], "source": [ "from collections import defaultdict\n", "from datetime import timedelta\n", "import matplotlib.dates as mdates\n", "import operator\n", "\n", "db = 'stoqs_canon_april2017'\n", "\n", "plat_start_ends = defaultdict(list)\n", "plat_depl_dur = {}\n", "print('Platform Name # Deployments Hours')\n", "print('------------- ------------- -----')\n", "for plat in Platform.objects.using(db).all():\n", " time_diff_sum = timedelta(0)\n", " for act in Activity.objects.using(db).filter(platform=plat):\n", " time_diff = act.enddate - act.startdate\n", " time_diff_sum += time_diff\n", " plat_start_ends[plat].append((mdates.date2num(act.startdate), \n", " mdates.date2num(act.enddate)))\n", "\n", " plat_depl_dur[plat] = (len(plat_start_ends[plat]), \n", " time_diff_sum.total_seconds() / 3600)\n", " print(f'{plat.name:20s} {plat_depl_dur[plat][0]:10d} {plat_depl_dur[plat][1]:7.1f}')" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "Activity start and end date values may be incorrect in legacy databases. To correct them this script can be run by the database admininstrator to update them based on the actual InstantPoint timevalues:\n", "\n", "```python\n", "db = 'stoqs_canon_april2017'\n", "for act in Activity.objects.using(db):\n", " ip_qs = (InstantPoint.objects.using(db)\n", " .filter(activity=act)\n", " .aggregate(Max('timevalue'), Min('timevalue')))\n", " if ip_qs['timevalue__min'] and ip_qs['timevalue__max']:\n", " act.startdate = ip_qs['timevalue__min']\n", " act.enddate = ip_qs['timevalue__max']\n", " act.save(using=db)\n", " else:\n", " act.delete(using=db)\n", "```" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+sAAAIDCAYAAAB8YI8SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XmcTfX/wPHXe2aMGYYZzGTJMpbsEaaSpUaJiFJf9Q1Z\nSou+ChU/2iWtihIt2pCUFvsSiZFddooRQtbGNgwzmJn3749z5nZn3FkwZlTv5+NxH+45n8/5fD7n\n3DNj3uezXFFVjDHGGGOMMcYYc+nwy+8GGGOMMcYYY4wxJj0L1o0xxhhjjDHGmEuMBevGGGOMMcYY\nY8wlxoJ1Y4wxxhhjjDHmEmPBujHGGGOMMcYYc4mxYN0YY4wxxhhjjLnEWLBujDHG/IuISIKIVMrv\ndvwbiMgHIvJcfrfDFxH5RUSi87sdxhhjMmfBujHGmDwhIjtEpLnX9j0ickREbhCRSBFREQlw08qK\nyHciclBE4kVko4h08zq2u4hsFpHjInJARGaKSJEs6m4pIj+5+eNEZIGI3JYhT7Tbhv4Z9qe1bWaG\n/eNEZKDXdpiIvC8i+0XkpIhsEJH7fFyDP0WksNe+B0QkJou2n9O5ZkdVQ1R1+/kenxkR6Soiq0Tk\nmIjsFpE30j5PN724iEwSkRMislNEOnqllRaRqSKy173WkRnK/sV9yJD2ShaRaZm0I1pEUjPkTxCR\n63L7nLOjqj1U9aW8rldEBorIuKzyqGotVY05z/LVvY+9P98C7j49nzJ91JHu90V+EpFuIpLidS9t\nF5FH8rtdxph/PgvWjTHG5DkR6QqMBG5V1QU+snwO/AFUAEoAnYED7rE3AK8AHVS1CFADmJBFXe2B\nb4CxQFmgJPA80DZD1q7AYaBLJkVdKyKNMqkjEJjrtvc6IBToB7wmIk9kyO4P9M6svRnKPadzzaas\ngOxzXZBCQB8gHLgWuAno65U+EjiNc/07Ae+LSC03LRX4HviPr4LdwDJEVUOAIjj3xjdZtGVvWn6v\n19ILOLdzJiL+eVlfPjgCtPLabuXuy3fiyO2/cZd63YP/Ad4QkXq5XIcxxqRjwboxxpg8JSIPA28B\nLVV1SSbZrgZGq+oJVU1W1TWqOssrbamqrgFQ1cOqOkZVj/uoS4ChwEuq+rGqxqtqqqouUNUHvfIV\nBtoDPYErRCTKR5veAF7OpL2dgfLAXar6u6qeUdXvgV7AIBEp6pV3CNBXRMIyKSvjdcj0XEVktDvU\n+ge3532BiFTwOi8VkZ4i8hvwm9e+Kl7HjxSRGe7xy0WkstfxLUQkVpzRDe+55T/gq6Gq+r6qLlTV\n06q6B/gCaOyWUxgnwHlOVRNUdREw1b1uqOoBVX0P+DkH1+R6nAcC3+Ugbzpu7/5uEWnrboeIyFYR\n6eJ1PbK6ntXdtMPudbnbK220OCMrZorICaCZu2+wmx7t1v1/bg/0PhFpJyKtRWSLW+bTXuX5icgA\nEdkmIodE5GsRKe6mpY326Coiu8QZgfKMm3YL8DTwX7cXeF0m18LTc+32xH8tImPd8/4lk58Bb5+T\n/sFWF5wHYt51lBFnxMRh9zp7/8xlWqeIfI7z8zTNPYf/c/c3FJElInJURNaJ1zB+EYkRkZdFZDFw\nEqgkIqEi8ol7rfeIyGAR8ReRQLdNV3odf5k4I2Iisjlv3J/HTTgPz9KO/0acUTXx4oziqeXuv1qc\nETH+XnnvzOxzMcYYbxasG2OMyUuPAIOAm1R1ZRb5lgEjxRkqXz5D2nKgpYi8KCKNRaRgFuVUA8oB\n32bTrjuBBJze2tk4vewZvQdUFd9Dc28GZqnqiQz7vwOCcHrb06wEYkjf65yZnJxrJ+AlnAB2LU6Q\n7K0dTk93zUzquAd4ESgGbMV9ICEi4TjX7Smc0Q2xgM+RBZm4HvjFfV8VSFbVLV7p64BaZx2Vva7A\ndz6udbZU9TBwP/CRiFwGDAPWqqp3kOnzeroPHH4AxgOX4Vy390TE+7p2xLl+RYBFPppQCud+uBxn\ndMdHwL1AA6Ap8JyIVHTzPobz2d0AlMHptR6ZobwmOPf4TcDzIlLDfUj0CjDB7Qmum8PLcxvwFRCG\n8yBlRDb5JwPXizP9o5jb/ikZ8nwF7Hbb3x54RURuzK5OVe0M7ALauufwhohcDswABgPFcX5+vssQ\nXHcGHsK5/juB0UAyUAWoB7QAHlDV026993od2wH4UVXjsjlvRORqnHva+3fYLOAKnHtjNe59o6o/\nA4fcur3bme7BhjHG+GLBujHGmLx0M04gviGbfHcBC4HngN9FZK37BzKquhAnuK6P88f7IREZKr6H\nHZdw/92XTX1dcYKbFJxg7B4RKZAhTyJOIDbYx/HhvupQ1WTgoJvu7Xngsex68XJ4rjNU9SdVPQU8\nA1wnIuW80l91e+QTM6lmkqqucNv6BXCVu7818IuqTnTThgP7s2pvGhG5H4gC3nR3hQDHMmSLxwmq\nckxECuEEfaOzyVrG7X31fhUGUNU5OA9lfsQ5x4czHJvZ9WwD7FDVz9JGe+A8jLnL69gpqrrYHb2R\n5KNdZ4CXVfUMTrAYDryjqsdV9RfgVyAtuO4BPKOqu922DATaS/rpDC+qaqKqrsN5+JHTwNyXRao6\n0/0Z+DwHZSUB04D/uq+p7j4A3GvWGOivqkmquhb4mPS98edS573ATDd/qqr+gBMst/bKM1pVf3Hv\n1+JuWh93hM6fOA9n7nHzjgE6iIi4253dNmSmoXsfHQdWuHl/S0tU1U/dzzHts6orIqFedd3rXpfi\nQEuc3zPGGJMlC9aNMcbkpUdweqQ+9voj+SyqekRVB6hqLZw5zmuByWnHqOosVW2L8wf57UA3wNfw\n7EPuv6Uzq8sNKprxV4/0FJzez1t9ZP8YKCnuMGovB33V4QZW4W669/ltBKYDAzJrl1fe7M71D6+8\nCTjz7sv4Ss+EdwB+Eiewxi3Du2zF6SXNkoi0A14FWqlq2nknAEUzZC0KnDV1IRt34pyfr3UOvO1V\n1bAML++e+FFAbZzg7lCGYzO7nhVw1i3wPADA6YUv5evYTBxyA1NwHv6AuxaD1760618BmORV1yYg\nBefnIU1mn935yFhWkGS/zsFYnOD7rCHwONfscIbpKTtxRhWcT50VgLsyXP8mpP+5+yND/gLAPq/8\nH+L0fKOqy906o0WkOk7v+9QsznWZex8VwfnMa+GMYMAdWv+aOFMWjgE73GPSHtKNA9q6D4zuBhaq\nanYPEI0xxoJ1Y4wxeeoAzpDdpjjDyrPlBnxv4vzxXzxDWqqq/gjMwwm+MorF+QPe58Jlrs44/x9O\nE5H9wHacYP2sofDu8NkXcYZJez9smAu0Eq9V3l3/AU7hjCbI6AXgQdIHL5nK4lw9vegiEoJzjfZ6\nH5qT8n3Yh7MgX1rZ4r3tizjzpT/CGb7sPXpiCxAgIld47avLX8Pkc6orMNZ9cHBe3FEJo3CCy/+J\nO3/fS2bX8w9gQYYHACGq6r0qeK6shO76A+eBh3d9Qe56ANnJzXZkZSFOsFySs4f97wWKS/pvLigP\n5KT9cPY5/AF8nuF6FFbV1zI55g+cn71wr/xF3QeAadJ6vDsD32YyGuLshqkewBlVkfbQriPOg7Tm\nOItLRrr70x4u7gGW4jxsyq4H3xhjPCxYN8YYk6dUdS9OwH6LiAzzlUdEXheR2iIS4P6x/wiwVVUP\nicjt7lz2YuK4Bmde71kBsRvUPYEzF/g+ESkqzsJdTURklJutK04AfpXX6z9AaxEpkbFMnD+0g4Bb\nMuzbDXwjzuJfBUSkJc7Q8YGqGu+jbVtxVnbvldm1yuG5tnbPJxDnIcIyVc2uhzcnZgBXirMIWgDO\n4nulMsvszkX+AviPqq7wTnN7tSfiLLZXWEQa4wQ3n3sdHwSkzckv6G57l18WZwTEmAs8r6dxgrr7\ncRb7G5thWkFm13M6zpoFnd3Pt4A4i4fVOKuG3PEB8LK4C9yJSISI3J7DYw8AkZL7K6Kn4/58tQVu\ny/gAxb1mS4BXRSRIROoA3XF6mXPiAFDJazutd7ql25MdJM6ifT4fILk913OAt7x+7iuL8w0L3mXe\ngROw53gOuft74Q7+ethUBOfBwCGcb0V4xcdhY4H/A67E+VkwxphsWbBujDEmz6nqLuBGnDm4r/rI\nUgiYBBzF6emugLMYFTgLbT2IM1/0GM4f3ENUNePCaml1fYszp/Z+nN6+AzjzzqeISEO37JGqut/r\nNRVnsbUOPspLwZlzXtxr3ymcXrU/cBaFO4azCv0zqjoki0sxCMjYG+8tJ+c6HqeX/jDOQmX3Zizk\nfLgjGu7CWQX/EM4CdStxghJfnsPpVZwpf30f9Syv9P8BwcCfwJfAI+487TSJOMPlATbz1zDxNJ1x\nVsbfloPml5Gzv2f9PyLSAOfhTRf3c3wdJ3D3no7g83q6w7lb4Mx53oszhPt1/nrAkNvewRmWPced\nJ70MZ6HAnEj7WrtDIrL6YjQujTtHPLMREh1wepn34vw8v6Cqc3NY9KvAs+4Q9r5u8H87zsOWOJyf\ntX5k/bdsFyAQZy2AIzgLJnqGzbtlrsa5BxZm057r0u4lnCkJcTiLAIITiO/EGTXwK75H0kzCndqg\nqiezqcsYYwCQCxhJZowxxph8JCKjgd2q+mwe1OWHM3qgk6rOv9j15Ye8vJ7m0iAin+KscZAXP0Pb\ngIfP4YGFMeZfLruFQ4wxxhjzL+UO5V+O08vdD2cOrq9eQ2P+dkQkEmceeb08qOs/OD348y52XcaY\nfw4bBm+MMcaYzFwHbMNZzb4t0E4z/wo4Y/42ROQlYCPOtJLfL3JdMcD7QE9VTb2YdRlj/llsGLwx\nxhhjjDHGGHOJsZ51Y4wxxhhjjDHmEmPBujHGGGOMMcYYc4mxBeZMngoPD9fIyMj8bka+O3HiBIUL\nZ/VtTcZcOLvPTF6w+8zkBbvPTF6xe83khVWrVh1U1Yjs8lmwbvJUZGQkK1euzO9m5LuYmBiio6Pz\nuxnmH87uM5MX7D4zecHuM5NX7F4zeUFEduYknw2DN8YYY4wxxhhjLjEWrBtjjDHGGGOMMZcYC9aN\nMcYYY4wxxphLjAXrxhhjjDHGGGPMJcaCdWOMMcYYY4wx5hJjwboxxhhjjDHGGHOJsWDdGGOMMcYY\nY4y5xFiwbowxxhhjjDHGXGIsWDfGGGOMMcYYYy4xFqwbY4wxxhhjjDGXGAvWjTHGGGOMMcaYS4wF\n68YYY4wxxhhjzCVGVDW/22D+RWqUKaNjH3oov5uR7+KqVSMiNja/m2H+4ew+M3nB7jOTF+w+M3nF\n7jWTF6558cVVqhqVXT7rWTfGGGOMMcYYYy4xFqwbY4wxxhhjjDGXGAvWjTHGGGOMMcaYS4wF68YY\nY4wx5pL1yU8/MeCll3KtvFExMfQcOzbXyjMX1zUvvsjaXbvyuxnG5IuA/G6AMcYYY4z5Z1qxfTuj\nFy1iy/79HEtMZNrjj1OyaNH8btbf3u1vv02PG2+kVZ06F1TO/E2b+Cgmhj1HjhBRtCg9mjWjea1a\nnvT3581j8W+/sf3PP6lXoQIju3RJd/wXS5bw/YYN7D5yhIIBAdSrUIHeLVpQKjQ00zp/3buXN2bM\nYNuffxJepAgPRUdf8HkY809lPevGGGOMMeaiCA4MpHWdOgxs1y6/m2Iy2LB7N89PnMjjt9zC/Kee\novfNN/P8xIls3L3bk6dssWI8HB3NHQ0a+CzjTEoKfVu14vu+ffnusccIDgzkifHjM60zISmJPl98\nQbMaNfixf38G3Horr02fzvo//sj18ztfycnJ+d0EYzysZ90YY4wxxlwUV5Yty5Vly7L36NEcH7No\nyxbe/eEH9sfHUz8yknLFi6dLP3ryJO/+8APLt2/ndHIyDSIj6duqFSVCQgCn17ltvXos37aNLfv3\nUyE8nAG33krNyy/3Wd/RkycZNns2y7dtA6BhlSo83rIlocHBfPvzz0xctYrxPXp48u8+fJi7Roxg\nYq9eKNDunXd4/vbb+XzxYvbFx1O/QgUG3XknYxcvZtqaNYgI3a+/nruuucZTxpqdO3nvxx/5PS6O\nIsHBtI+KouN11yEirNqxg0fHjmXQnXfy3rx5HD15koaVK/PsbbdRuGBBnvjyS/bHx/Py1Km8Nn06\ndcqV493OnXN8fdPM37SJhlWqcHXFigA0rVaNuuXLM2nVKmqXLQtA23r1ANi0b5/PMro1bep5XzAg\ngC6NG3P3yJHEJyYSGhzss86gAgXo0rgxIsK1lSsTXaMGk1evpk65cpm2deuBAwybPZudBw9SKSKC\n59u1IzI8HICkM2cYOXcu8zdv5tSZM9QtX56+rVp5evd7jB7N1ZUq0f366z3lXfPii4y67z6uKl+e\nUTExrNm5k+qlSzNr/XoqVqnCO23a8OasWSzYvJnTyckUDwnhkRtvTDfqwJi8kGc96yLyjIisdV8p\nXu97iUgPEemSfSnnVN8tIrJCRDa79UwQkfJu2mgRae++/1hEavo4vpuIjLjANpQWkekXUkZuuljn\nLSJXisjoXGqmMcYYY/6ldh8+TP+vv6Zb06b8OGAA/732WiavXu1JV1X6TZiAiPDVI48wtU8fCgUG\n8tzEienKmbhyJU/ccgtz+/fnppo16TN+PAmnTvms8/mJEzmelMTXPXvydc+exJ88ycBJkwC4pU4d\n9hw+zK979njyT12zhqsrVaJ0WJhn3/xNmxh1//1M7dOHfUePct/HH1O2WDFmPPkkz99+O0Nnz2Z/\nfDwA2+PieHz8eO5t1IjZ/foxrGNHvv75Z2auX+8pL0WVZdu28UWPHnz76KNs2b+fCcuXAzC0QwdK\nhYbyzG23seDpp88rUHcvJqqableqKlv27z+/8oCft2/nsqJFfQbqAL8dOEDVUqUQEc++aqVK8Vs2\ndU5fu5bX776bOf36cVloKG/OmuVJG/b992zcs4dPu3dnap8+hBUqxBNffklKamqO2712507CQ0KY\n9vjjPN2nDzPWrePXvXuZ0LMn8596ive6dKHSZZfluDxjckueBeuq+rKqXqWqVwGJae9VdbiqfqCq\nubbSh4jUBt4FuqpqdbfOL4BIH+16QFV/zYU6fY1SeAL46ELLvhhy87xVdQNQNu1hiDHGGGPM+Ziz\ncSM1L7+cVnXqEODnR8PKlbmhenVP+qZ9+9i8dy//17o1IUFBBBUowGM338zK33/nwLFjnny31atH\njTJlKODvT5fGjSkYEMCiLVvOqi/u+HGWbdtGnxYtKBocTNHgYPq0aMHi337j4PHjhBQsyM21azNl\nzRoAUlJTmbFuHe3q109XTvfrryc0OJiwQoVoXLUqAf7+tGvQgAA/PxpdcQVFg4KIdXunv/v5Z26q\nWZMbqlfH38+PyPBw7r76amauW5euzEebN6dQYCAlQkK4oVq1THu3z1fjqlVZtnUry7dtIzk1lfmb\nNrF+1y5OZPJQIzvr//iDkT/+yIBbb800z4lTpwgJCkq3r0hQULZ13tuoEaVCQwkMCKBN3bps2rsX\ncB4uzFi3jh7NmnFZ0aLOMPxbbmFHXBy/eD1gyU6psDA6NWpEAX9/ggoWpIC/P4mnT/N7XBzJqamU\nDA2lUkREjsszJrdkOQxeRPoBp1R1uIgMA+qq6o0iciPQXVU7iUh3oD9wFFjn5n/0XBohIgOBBFV9\nU0RigOVAMyDMrWehiPwE9FLVte4xi4CeqrrOR5H9gVdUdVPaDlWdmkndMUBfVV0pIvcBT3mfi5sn\nAvgASAtG+6jqYrfdlYFKwC6gQ4bi/wM865YxA3hKVdeLyBpgkqoOEpFBwB/Al8AUoBhQAHhWVaeI\nyGvAH6o60se16gfcDRR0y3vBzfMccC8Q55a9SlXfvMjnPQ24B3jDxzV+CHgI4LISJYirVs3XR/Gv\nklywoF0Hc9HZfWbygt1nJicOx8U5/1aqhF+JEpnm27VoEcXLl093T4VVrsye334jrlo1Nh85wpmU\nFFoOG5buuMACBdgcGopf1aqkFChASPXq6cooUaoUv7v36skNGzh98KBT3tatzvHXXkucvz8ABatU\ngZEj2RwWRrUqVWh2550888or3Pvoo6zbuJEzItRo25a4gADPeUndusS555W6YQNF4+PT1V+gUCH2\nu38D/T5lCut/+YV5Xg8PUlWJKF6cuGrVOJqSgp+fH8n16xOXlr5hA0ePHfOUmVKgAMdKl76gn73y\n1arxv6Ag3pw5k0OTJlGrenWaNmrEvgMHzirX+5r5snHzZl6aMIGeDz1EtUaNPO3OyK9UKeLi4tKV\ns2/bNgqGhmZ5LgE1a3rST6WkcOL0aeKqVeNIfDynU1IIql+fuFKlPPlDw8LYGhJC6WrVOFOoECfD\nw88q/2i5cp77oYTXtUwuWJCo9u3ZFRzMkAUL2Lt/P3Vr1+b+Dh0o41WHMXkhuznrC4EngeFAFFBQ\nRAoATYGfRKQM8BxQHzgOzMMJ9i64Xap6jYi0Bl4AmgOfAN2APiJSFQjKJFAHqAW8mUmaTyJSGngR\naADEA/OBNW7yO8AwVV3k9h7PBmq4aTWBJqqamKG8isARVU17VLgQaCoiO4FkoLG7vynQA0gC7lDV\nYyISDiwTkanABOBtYKSb/26gpYi0AK4ArgEEmCoi1wOJOA8J6uIE/auBVXlw3iuBAfgI1lV1FDAK\noEaZMhoRG5tZc/414qpVw66DudjsPjN5we4zkxNn3DnrxbdvJ+LgwUzzlUtNZdmuXenuqfht25DU\nVCJiY6l28iTBBQrwY9+++HkNpQZAFWJj8T9zhoTNm4koU8bdrRzav5+Kp04RERtLoUOHCDx50qnj\n+HGnfStWUMqdG7/z0CEAqh89SnhsLBFAudBQ1k2eTMzmzbStXZvS7vx2X+eVrnyX/5kzFN23j4jY\nWCoEBBBZty7/56sHOjaWsD/+QFTTHZ+xzIDkZE95F6JjqVJ0vP9+z3bXjz7i2ooVzyrX1zmlWbp1\nKy99+y3P3X47zUqUgCzaVCcwkI+3bk1Xzp7166kRFpbluYT98QcR7uftfX1KqBLo78+pNWuIqFQJ\ngJOnTxN/9ChVEhKIiI0lNCUFv717PeXHuZ95WpmFDh2iYGLiX+nVqhGxdSv/q1aN/1WrxvGkJIbM\nnMnIt99m1H33ZXk9jclt2Q2DXwU0EJGiOL2tS3GC9qY4wec1wAJVPayqZ4BvcqldaROPVvHX0PVv\ngDbuw4L7gdE5KUhESrhz1reISN8ssl4LxKhqnKqexgmS0zQHRojIWmAqUFREQty0qRkDdVdpSPdg\ncSFwPU6QPgMIEZFCQEVVjcUJuF8RkfXAXOByoKSqrgEuE5EyIlIX5wHAH0AL97UGJyCvjhO8Nwam\nqGqSqh7H6fHOSm6d959AmWzqMsYYY8y/SKoqp5KTOeOusH0mOZlTycmkZpgrnaZF7dr8sns3szds\nIDk1lRXbt7Ng82ZPeo0yZahSqhRvzZrF0ZMnAThy4gRzNm5MV860tWvZvG8fySkpfL5kCUlnztDk\niivOqi+iSBGurVyZd+bM4XhSEscSE3lnzhwaValCeJEinnztGjRg/NKlLPntN27PMAT+XLW/+mrm\n/PILC2NjSU5JITk1le1xcazesSPHZZQICeEP96HC+UpOTWXzvn2kpKaSkJTEB/PmcSA+ng4NG/6V\nJyWFU8nJpKSmej7L016rpc/79Vee/uYbBt15J81q1PBVTTrRNWqQeOYMny9ezJmUFFZs307Mpk1n\nTSvIKT8RWtetywfz5xN3/DhJZ87wzuzZRIaHU8tdULB66dIsiI3lyIkTnDh1ivfnzcu23J9//51N\ne/eSnJJCwYAAggsUwN/PvkTL5L0se9ZV9YyI/I7To70EWI8zPL0KsAmoepHaldYbnZLWRlU9KSI/\nALfj9C77/g4Jxy84vf3rVPUQcJUbqIdkcUxW/ICGqprkvdNdHONEJsckAt6Tcn7GedCxHfgBCAce\n5K9e705ABNDAve47vI7/BmgPlOKvYFqAV1X1wwxt6nOO55aVcznvIJxzNsYYY4wBnFXPHxkzxrN9\n57vvAvB+1640iIw8K3+54sV57e67GTF3Lq9Mm0b9yEhur1+fX9z56H4ivHnPPXw4bx5dR40iPjGR\nYoULc02lSrSoXdtTTrv69Xlr1izPavDDOnY8a650mkF33MGw2bO5a4Szvu61lSvzeMuW6fLccuWV\nvPvDD9QtX57yWQzjz4nKl13G0A4d+GD+fAZNmYKqUrZ4cTo3bpz9wa77r7+eN2fNYsKKFdQuW5Z3\nOnU653akpqbyyrRp7Dp0CAEaVKzIR/ff71lVH+DladOY4TWXvunLL1M6NJQpfZw/N9/54QeSzpzh\nmW+/TVf2hJ49KRUaypqdO+nzxRee7SJBQbzdsSNvzJzJqJgYSoSEMKBNmyxXgs/O4y1bMmLuXLp9\n9BGnk5OpU64cb3bo4AmuOzZsyNYDB7hz+HDCChfm0ebNmb52bZZlHk5I4M2ZM9kfH08Bf39qXn45\nT7Vpc95tNOZ8ScZVIM/K4MxPvt99bcAJOlep6h0icjmwGKiHMwz+R2BDdnPWRSRBVUO8tgeSfs56\n2lzqcGClqka6+Rrg9BQvVNX/ZlH+lcAkoG3avHUReR7wU9WB7srl01X127T6gD3AMpwg/xjukH5V\nfVRExgNrVHWIW9ZVqrrWu90+2lAY+CWt7e6+GKAscCVwG85Q/TdV9R0R6Q1UUdXHRKSZW39FVd0h\nIrVwFqoLB25Q1X3uMPiXgJtUNcH9LM4AFYAPgUY4DzpWA6Pca3vRzltE/gPcrKp/fbeJDzXKlNGx\nDz2UVZZ/BRs2avKC3WcmL9h9ZvLCudxnt7/9Nj1uvJFWderkWv2qSrvhw3nkxhu55corc61cc+mx\n32kmL1zz4ourVDUqu3w5Gc+xEGdI91JVPYAzt3ohgKruAV4BVuAE7Ttw5j1fFKq6Cieg/CybfBuA\n3sBYEYkVkcU4c63HZ3HMPmAgzlD/xTgjB9L0AqJEZL2I/Iozxzy7tp4AtolIFa/dC4E/3eHjC3EC\n94Vu2hduHRuALsBmr7J+AYoAe9x2oqpz3PNZ6h7zLVBEVX/GGbK+HpiF84Al088kF8+7Gc7wfmOM\nMcaYf5S8uDS8AAAgAElEQVTvN2wgOSWFm2qe9a23xhhz0WS3wByq+iPOQmVp2xmHvo9X1VHuV5dN\nAibnoMyQDNsDvd5He70/iNfXrbkL2vkBc3JQxwwyCR5VtVsm9X2GjwcBbjvO6sn3bncmRuBMIXjW\nzf8czoJ8qOpenKHs3nVcl1lBqnrWY1xVfQdnEbiM3nRHEBQCfsIdan+xzltECuIM8c/NIfjGGGOM\nMfmuxZAh+Pv58dxtt1HAXTHeGGPyQrbBeg4MFJHmOHOW55CDYP18iEgX4GXgCVVNvRh15DZVnSQi\nFzax6fyMEpGaOJ/JGFVdfZHrKw8MUNXkbHMaY4wxxlxEafOpc8ucfv1ytTxjjMmpCw7WVfWsFdZF\n5Bngrgy7v1HVly+gnrHA2Az13Icz3N3bYlXteb715DZV/Tgf6uyYx/X9BvyWl3UaY4wxxhhjzD9Z\nbvSsn8UNys87MD+HenwO3zbGGGOMMcYYY/7Osl0N3pjcFBUVpStXrszvZuS7mJgYoqOj87sZ5h/O\n7jOTF+w+M3nB7jOTV+xeM3lBRHJtNXhjjDHGGGOMMcbkIQvWjTHGGGOMMcaYS4wF68YYY4wxxhhj\nzCXGgnVjjDHGGGOMMeYSc1FWgzfGGGOMMeafJua1dz3vowc8lm47J6IHPMboNvem2xfZ5NpcaVt+\niB7wWH434aI618/X2z/92pi8YT3rxhhjjDHGGGPMJcaCdWOMMcYYY4wx5hJjwboxxhhjjDHGGHOJ\nsWDdGGOMMcZcUgYPHkx0dHSulTdw4ECaN2+ea+WZvDF69GiqVKmS380wJt9YsG6MMcYYY3Ksf//+\n1KpVi6JFi1KmTBkefPBBDh8+nC7Ptm3buOOOOwgNDSU0NJSGDRty5syZfGrxP8M9rw/khzU/52md\nU5cvovObL9Hqhb48OPx11m7/LV361q1bad68OYULF6Zs2bK89dZbWZb31Vdf0bRpU4oWLUpAgK1z\nbUx2LFg3xhhjjDE55u/vz7hx4zh06BDr1q1j9+7ddOvWzZMeFxdH06ZNqVu3Lrt27eLw4cOMGDEC\nf3///Gu0OWcxG9bw6Q8zeKHjfUx/4Q3aXtuYp0Z/yIGjzoOZlNRU2rZtS40aNYiLi2Pq1Km8/vrr\nTJgwIdMyixUrxv/+9z/efvvtvDqNc5acnJzfTTDGI9eCdREZJiJ9vLZni8jHXttvicgT51FuHxEp\nlIvtjBaReBFZ677muvsHikjf3KrHR72jRaR9hn0JXu+rishMEflNRFaLyNci8l+vdiaISKz7fqzX\neaxx9/8kIm2yqL+diDyfRXo3ERmRSdpMEQnL5vy+EpErsspjjDHGmL+/V155hXr16lGgQAEiIiLo\n3bs3MTExnvShQ4dSvnx5Bg4cSGhoKP7+/kRFReHnl/mfnTNmzKBmzZqEhITQpk0bDh48mC49Pj6e\n7t27U65cOSIiIrj77rs5cOCAJz0yMpJBgwbRpEkTQkJCiIqK4uefM++FPnToEF26dKFUqVKUKlWK\nrl27ekYHvP/++9StWzdd/m3bthEQEMD+I4fZf+QQzZ7qxZgxY+g27GVaPd+XAZ99wPHEk4z6fip3\nDH6aO19+hklLf0pXxvrft9GkSRMenfMN/zd/Ct9v34SqArB2+2/c9Ewf5q1fTachL9Jm4P8xcPyn\nnDyVBMDTYz7kz/gjDJn4Ja1e6Eu/T0YCMG/dKroOfZnWL/Tjzpef4dWvx2V6zucqZsMabr7qaqqU\nKYu/nx+3XduEsJAQvl+13D2frezcuZNXX32VQoUKUb9+fR5++GE++OCDTMts2bIlHTp0oFKlSufU\nluHDh1O2bFmKFSvGww8/TEpKiidt/fr13HjjjRQrVoxKlSoxePBgT/qOHTsQEXbv3u3Jn3Fofdq9\n06xZM0JCQvjpp59Ys2YNTZo0oc3A/+O2QQN49P2hHE88eU5tNiY35GbP+mKgEYCI+AHhQC2v9EbA\nkvMotw9wTsG6iGT36Hahql7lvnJ1ApOInPOYHhEJAmYA76vqFapaH3gP+CWtncBKoJO73cU9dKGq\n1lPVakAvYISI3JRJNf/nlnnOVLW1qh7NJtv7bh3GGGOM+Rf58ccf0wW38+fPp1y5ctx6660UL16c\nOnXq8MUXX2R6/LZt27jzzjt5+umnOXr0KL169eKjjz7ypKsqzz33HCLCxo0b2blzJ0WKFKFjx47p\nyvnggw945513OHz4MO3bt6d169YcO3bMZ52dOnXiyJEjbNq0iU2bNnHw4EE6d+7sSdu2bVu6YP+T\nTz6hefPmlCpW3LPvu+++Y/jDffiq/4vsP3qI/418izLFw/n2qZfo374TI6dP9PRC7ziwjwGjP6Bf\nv34Mv/k/PH51ND/uiGXJnt895aWmprLyt8183GsAY598lq179zBxyQIAXun6MJeFFqPfnR2Y9eKb\nDOnek6TTp3nl68/pfftdzHxxCF/0e55br74u288rxxTPwwTPLoVt+/YAzr9Vq1YlJCTEk16/fn3W\nrVuXe20Adu7cyYEDBzyfyTfffMNXX30FOA9xbr75Zpo1a8b+/fuZMWMGn376KUOHDj2nOj766COG\nDh3K8ePHady4MT179qRFixZMef41Jj7zMv+79Q4CbGSIyQe5GawvAdJ+Q9QCNgLHRaSYiBQEagCr\nAUSkn4j8LCLrReRFd19hEZkhIutEZKPbq9wLKAPMF5H5br4WIrLU7X3+RkRC3P07ROR1EVkN3CUi\nMe72ChHZIiJNc3ISIlLZLSNt+4q0bRFpICILRGSVO3KgtLs/RkTeFpGVQO/zuHYdgaWqOi1th6rG\nqOrGnBagqmuBQcCjPs6pKnBKVQ+623e513idiHg/9i0jIt+7vftveB2/Q0TCRSRSRDaLyBcisklE\nvvUa9bAQaH4+DyuMMcYY8/f03XffeYLkNAcPHmTixIncd999/Pnnn7z11lt0796dRYsW+Szjq6++\n4pprruHee+8lICCAFi1a0K5dO0/6qlWr2LJlCyNHjiQ0NJRChQrxxhtvMG/evHQ9pt27d6dBgwYE\nBgbSv39/goODmT59+ln17d27l9mzZzN06FCKFStGsWLFGDp0KDNnzmTfvn0ULVqUe+65h08++QSA\nlJQUxowZw4MPPpiunOeee46ihQoTWrgwDavXxt/fnzbXNMLf359rq9WkSHAhftvrtG/KskXccOVV\n3H777fiJH6VDQrkpshpLdv+ersyHWrYluGBBihcpSpOaVxK7+48sr3+Avz+7/jzAsZMnCA4sSJ2K\nlbPMfy4aVq/FD2tXErt7F8kpKUxa8hN/xh/hRJLT23/y1ClCQ0PTHRMWFpbpA5LzFRwczKBBgyhY\nsCBVqlThpptuYuXKlYAzIiMwMJBnn32WggULUqNGDfr378/HH3+cTanpPfjgg9SrVw8RoWDBggQG\nBrJr1y7i4o8Q4O9PzfIVCQ4smKvnZUxO5Fpgpap7RSRZRMrj9KIvBS7HCeDjgQ2qelpEWgBXANcA\nAkwVkeuBCGCvqt4KICKhqhrvDp1vpqoHRSQceBZorqonRKQ/8AROkApwyO2VRkR6AAGqeo2ItAZe\nANJ60ZuKyFr3/Teq+rLXeWxzh5df5QbA9wGfiUgB4F3gdlWNE5H/Ai8D97uHBqpq1HlevtrAqvM8\n1ttqoJ+P/Y3dtDTPAy1VdU+G4e1XAfWAU0CsiLyrqhn/l6gGdFfVxSLyKfA/4E1VTRWRrUDdjOci\nIg8BDwGULFky3VC5f6uEhAS7Duais/vM5AW7z/69YmJiGDp0KIMGDeLYsWOe+0BEqFmzJuHh4Sxa\ntIgCBQoQFRXFiBEjfM4HXrFiBcHBwenuIz8/P44ePUpMTAwxMTGcOXOGEiVKpDsuMDCQyZMnU7t2\nbZKSkkhKSkpXRmhoKAsWLKBMmTLs2LGDI0eOEBMTw6+//grArl272LPH6SVOGzY9efJkatSoQVRU\nFH379qVdu3asXr2axMREQkNDSYhM4URhAZwh1sGRJZ32RhQj7HA4Ce42QGBwMEeKBJEQWZLdSQms\n/2UjISEhaGoq4PRalyhWnITIkiSePIifnx8BtauQNkfS77LiHD/yp6dMDfAnKTw0XR0vDHiKyTNm\n8PGPMyl12WW0u7UN0Y2bnMvHmKnGFdqyv4Dy0sQvOHb8OA2jrqZu7SspHFKYhMiS+JcOZ8+S2HTX\nfNGiRRQqVCjb3wlr165FVbPNt3nzZooUKcLChQs9+44fP86WLVuIiYlhwYIFhIWFsWDBAk96QkIC\nO3fuJCYmhv379wOwdOlSIiIiPGUmJiZ66k5KSkq3nZCQwMMPP8zYsWN5dNIk/P39adakKR3+0/6c\n1l2w34smN+R2L+gSnEC9ETAUJ1hvhBOsL3bztHBfa9ztEJzgfSHwloi8DkxX1YWcrSFQE1gsIgCB\nOA8F0mRc0WKi++8qINJr/0JVzXR+N/AxcJ/7oOC/OA8WquEE1T+4dfsD+7KoOyPN4b4LIZnsLw3E\neW0vBkaLyNf8dY0AflTVeAAR+RWoAGQM1v9Q1bTPchzO8Ps33e0/cUZCpAvWVXUUMAogKipKc/Or\nWP6uYmJicvUraYzxxe4zkxfsPvt3+uyzzxg+fDizZs2icePG6dKaNGnC1q1b090X4eHhVKhQwee9\nsmjRImbPnp0u7eOPPyYsLIzo6GgKFSrEkCFDOHbsWKbz3oOCgggKCvKUoarEx8dzww03EB0dTUxM\nDLt37yY6OpqqVavSs2dPKlSo4Jm7vGXLFgDatWtH6dKliY6OZtSoURw4cIAVK1bw4IMP0rx5c2Je\ne5eEI4cAuO6669g6bhIAgUcT8E88TciOv+bRS3IKQQfjCdlxgDIFC3N5g2uZvHQho9vcm67tITsO\nELz/iOd9moxl+qekespLc12hcK67qyspqaks2bSBF0aOoF5QGJeXiPB5nc5VtzoN6VanIQBnkpPp\nOORFOt/YkpAdB6hZsChf7N3L1VdfTeHChQGYN28eDRo0yNHvBBHJNt+OHTsIDg5Ol2/06NEEBAQQ\nHR3N3r17mTlzJjfccAPu3+ds2bLFc68dOuR8VnXq1KFatWoALFmyJF2ZQUFB1KpVy7MdExNDmzZt\n6NChAzGvvcv2/Xvp9+l7lPcrSOuonE8ziL7n7hznNSYzub0afNq89StxhsEvw+lZ956vLsCrXnPG\nq6jqJ6q6BagPbAAGZ7IYmgA/eB1bU1W7e6WfyJD/lPtvCuf2YOI7oBXQBlilqofcun/xqvtKVW2R\nRd0ZHQKKeU5EpDiQtnrKL0CDc2hfZuoBm3zsTwSC0jZUtQfOCIVywCoRSXtUfcrrmMyuWcYHDN7b\nQW5dxhhjjPmHGj58OH379mX27NlnBeoADz/8MMuWLWPy5MmkpqYyf/585syZk25ou7d77rmH5cuX\n8+WXX5KcnMzcuXOZPHmyJz0qKorKlSvTq1cvT/AVFxfnmbec5tNPP2X16tWcOXOGIUOGcPLkSW69\n9daz6itTpgwtWrTgySef5OjRoxw5coQnn3ySVq1aUbp0aU++hx56iLfeeouZM2fywAMPnNe1StOu\nYRPmr1vNtGnTSE5NJSU1lT3H49l86ED2B7uKFynC7oN/9b0cPn6MBRvXkpCUiL+fHyFBwQD4Z7GQ\n37lISEpk55/7UVWOJhxn2JSvKRwURMv61wBQp2IVKlSowNNPP01iYiJr167lww8/5OGHH860zJSU\nFJKSkjh9+jSAZ0RExrnxOXXrrbdy6tQpXnnlFU6fPk1sbCyvv/463bs74UGJEiWoUKECn376KSkp\nKWzYsCHdegiZGTNmDHv37gUgJCgYfz8//MS+RMvkvdy+65bgBLiHVTVFVQ8DYTgBe1qwPhu432uu\n+eUicpmIlAFOquo4YAhO4A5wHCjivl8GNBaRKu6xhd352LlKVZPcdr4PfObujgUiROQ6t+4CIlIr\nkyJ8iQH+KyKB7nY3YL77fjzQSEQ8/6OIyPUiUjunhYtIHeA5YKSP5E1AFa+8lVV1uao+j9PjXu4c\nzqN82jXAmWvvPQGtKs5DGmOMMcb8Q/Xu3Ztjx455Vs9Oe6Vp2LAh48ePp3///hQpUoTHHnuMMWPG\ncN11vnslq1SpwrfffsugQYMICwtj2LBh6YJjPz8/Bg8ejKrSoEEDihQpQsOGDc8aZvzQQw/Rq1cv\nihUrxoQJE5gxY8ZZc6rTjBs3jiJFilCtWjWqV69OWFgYY8eOTZenU6dO/P777zRu3JgrrriwL7yp\nWKoMr3R9mLfffpvH506k99zv+GTdUo6fPpX9wa57m7Vk7tqfaftif/p/9j6qypSlC+nw+kBav9CP\nd6Z+w4D2nShVrET2heXAyaQkBo7/jNYD+9Fl6MskJycz9IHHKFjA+VPW38+PadOmsXHjRkqUKEHr\n1q3p168f99xzj6eMVq1a0aNHD8/2559/TnBwMC1btiQlJYXg4GCCg4PZuXPnebUxNDSUOXPmMHfu\nXEqWLEnLli3p0qULTzzx1xdQjRkzhunTpxMaGsoTTzzhCeSzkjZCoNXzfen5/lBuqtuAFvWuPq82\nGnMh5HyfZPkszFmF/QgwXFWfdfeNBq5zVyxPy9cbSPstnADcixNMDgFSgTPAI6q6UkQew1k0ba+q\nNhORG4HXgbRVHp5V1akisgOI8lpELQbo65YRDqxU1UgRiXb3pxsGLyIDgQRVfdPdbgh8C1RQ1RR3\n31XAcCAUp9f5bVX9yLuubK7PC0B7nF7rbUAPVY1z06oDbwOV3fNfD/RW1QMZz8fdjgamANtxVsv/\nE3jDe5E6r3oLAT8DtVVVRWQiztQDAX7EWXG/q3v9HnWPmY4zFz0m7driTFn4Hmdl+gbAr0BnVT0p\nIiWBaap6TVbXICoqStMWBfk3s2GjJi/YfWbygt1nJi9kd59FRkYyePBg7r333kzznCtVpVKlSrz8\n8sueledjXnvXkx494LF02zkRPeCxs4bBRza59sIbm0+iBzyW303Idd732rl+vt7+idfG5B4RWZWT\n9c5ydc66G9QWzbCvm4987wDvZNi9Dac3O2Ped3EWdkvbngec9WhLVSMzbEd7vT+IO2ddVWNwerkz\nHj8ww64mwGdpgbqbZy1wvY9jozPu80VVXwRezCRtM3BLFsdGZ9iOwXlokJN6T4rzffI3AXNV9U4f\n2Ua7r7Rj2ni9jwRwR0Mkq6qv/wk7Ah/mpD3GGGOMMZe6L774gtOnT9O+ffv8boox5l/KvmbLBxGZ\nhNPDfWN+tyUXvQJczEe3R4HPL2L5xhhjjDF5IiIigoCAAD799FMCAwOzP8AYYy4CC9Z9UNU7zvdY\nEXkGuCvD7nRfD5cf3OH0Uy+wjB04K+L7SvvM135jjDHGmIttx44duVpeXFxc9pmMMeYis2A9l7lB\neb4G5sYYY4wxxhhj/t7sOwiMMcYYY4wxxphLjPWsG2OMMcYYkwMZV/g+nxW/u00fl1vNMReZrehu\n8pv1rBtjjDHGGGOMMZcYC9aNMcYYY4wxxphLjAXrxhhjjDHGGGPMJcaCdWOMMcYYY85BzGvvnlOe\ntPe+9l1oPb7yn+txOSk3t8v8O/J1Dc71MzXmXFiwbowxxhhjjDHGXGIsWDfGGGOMMcYYYy4xFqwb\nY4wxxhhjjDGXGAvWjTHGGGPMJWXcuHFERkbmWnmjR4+mSpUquVaeyRs7duxARNi9e3d+N8WYfGHB\nujHGGGOMybFnnnmGihUrUrRoUS677DLat2/Prl27POk9evQgJCQk3UtEGDp0aD62+u8vOjqawYMH\n51l9iYmJ3HXXXVxxxRXc+HRvPp83+6w8J0+e5P777ycsLIywsDC6d+9OYmJipmWuW7eOVq1aUapU\nKUSERYsWXcxTMOZvz4J1Y4wxxhiTY507d2bt2rUcO3aMHTt2UL58ee655x5P+gcffEBCQoLnNWnS\nJAICAtLlMZc+EaFRo0aMGjWK6mXL+8zTu3dvNm/eTGxsLFu2bGHTpk088cQTmZYZGBjInXfeyfTp\n0y9Wsy9YcnJyfjfBGA8L1o0xxhhjTI5Vr16d0NBQAFQVPz8/YmNjM83/4Ycf0rZtW8qUKZNpnhUr\nVhAVFUVISAhNmjRh+/bt6dKTkpLo27cvFStWpHjx4txyyy1s3brVkx4dHU2fPn1o06YNISEh1KpV\ni1mzZmVa38mTJ+nduzflypUjPDycdu3aeUYHzJo1i4iICE6fPu3Jf/z4cUJCQli4cCEAzZ7qxYgR\nI4iKiqJw4cI0atSI3bt3M2zYMMqVK0eJEiX4eHb6gHTjxo30+/Q9IiIiKF++PB99P5UzZ84Afw33\n/vzzz6lZsyZFihShRYsWHDoWD8Cjjz7KwoULeemllwgJCaFatWoAzJ07l3r16lG0aFHCw8N58uMR\nmZ7zuQoKCuLxxx+nWbNmBAYUOCs9MTGRcePG8dJLL1GyZEkuu+wyXnrpJcaMGUNSUpLPMmvUqMGD\nDz5IVFTUObVl/vz56a7Lvn37PGmHDh2iS5culCpVilKlStG1a1cOHz7sSY+MjGTcuHGe7YxD67t1\n60anTp3o1q0bxYsX59133+XIkSPcddddlChRgtDQUGrVquX57I3JS7karIvIMBHp47U9W0Q+9tp+\nS0Qyf9yWebl9RKRQLrYzWkTiRWSt+5rr7h8oIn1zqx4f9Q4UkT1unRtF5DavtC7uvg0iskZE+orI\nSDfvryKS6NXe9iIyWkR+F5F1IrJFRMaKSNks6v5WRCplkR4jImf95hSRKBEZns15RYjI9zm9DsYY\nY4z5exs/fjyhoaGEhITwzjvvMHDgQJ/59u/fz5QpU+jRo0emZcXHx9OqVSvat2/P4cOHGTZsGO+9\n9166PG+++SabN29m2bJl7N+/n2uvvZY2bdp4gl2ATz75hN69e3P06FGefvpp7rjjDnbs2OGzzscf\nf5xly5axbNkydu7cSXh4OG3btiUlJYWWLVtSuHBhpkyZ4sn/5ZdfUq5cOZo2berZN27cOCZPnkxc\nXBxBQUHceOONHDlyhG3btjFv3jy+XvgjixcvBuBIwnFuuOEGmtaqy549e1i6dCkrt8by6quvpmvX\nhAkT+Omnn9izZw8nTpzgs7kzARgxYgRNmzblueeeIyEhwfNwpEuXLvTq1Yv4+Hj27NlD5xtbZnqd\nc1tsbCxJSUk0aNDAs69+/fokJiayZcuWXK0r43V5/vnnPWmdOnXiyJEjbNq0iU2bNnHw4EE6d+58\nTuV/8803tGrViri4OB555BGGDBnCyZMn2blzJ0ePHmXSpEmULZvpn9nGXDS53bO+GGgEICJ+QDhQ\nyyu9EbDkPMrtA5xTsC4i/tlkWaiqV7mv5ufRpqzqDsgieZiqXgXcBXwqIn4i0grnHFuo6pVAQyBe\nVXu6eVsD27za+61bVj9VrQtUA9YA80Qk0Ed7agH+qro9Y1p2VHWlqvbKJk8csE9EGp9r+cYYY4z5\n++nYsSPx8fHs27ePgQMHcuWVV/rM98knn1C+fHluvvnmTMuaPn06hQsXpn///gQGBnL11VfTvXt3\nT/rBgwf58ccfee+99yhZsiSBgYG88MIL7Nu3j+XLl3vytWvXjptvvpmAgAA6depEVFQU48ePP6u+\n1NRUxowZw+DBg7n88sspXLgwb7/9Nps2bWLFihX4+fnxwAMP8Mknn6Q7jwceeCBdOU8++SRly5al\nUKFCtG/fnv379zNw4EACAwOpW7culUtfzsqVKwGYs3oFdevW5bZrGxMYGMjll19Ox+ibGTt2bLoy\nX3jhBcLDwylatCgdO3YkdvcushIYGMi2bds4cOAABQsW5KpKV2SZPzcdP34cwDPKwvv9sWPHcrWu\njNcl7bru3buX2bNnM3ToUIoVK0axYsUYOnQoM2fOTNf7np0mTZrw3//+F39/f4KCgggMDOTQoUPE\nxsaiqlStWpWKFSvm6jkZkxNZBZXnYwkwzH1fC9gIlBaRYsBJoAawGkBE+gF3AwWBSar6gogUBr4G\nygL+wEtASaAMMF9EDqpqMxFpAbzoHrsNuE9VE0RkBzABuBl4Q0R6AMuBZkAY0F1Vsx3DIiKVgW9U\ntb67fQUwQVXri0gDYCgQAhwEuqnqPhGJAdYCTYAvgbeyqkNVN4lIMs4DjaeAvqq61007BXyUXTu9\nylJgmIjcAbQCpmTI0iltn/sQ4xMgClDgU1VN+8zuEpH38LpWIhLttq2NiAwEKgNV3Ha/oapp7Zzs\n1rM4Y/tE5CHgIYCSJUsSExOT01P7x0pISLDrYC46u89MXrD7zNSsWZNWrVoxYcIEihYt6tmfmprK\nu+++y+23386CBQsyPf6nn34iLCwsXZ7Tp0+TlJRETEwMmzdv9tTjLTk5mdmzZ5OcnMzRo0cpX758\nunsxODiY5cuXe8pITEwkJiaGw4cPc+rUKf788890+UNDQ/n+++85deoUNWrUYNCgQUyYMIETJ06w\nZs0ann766XT59+/f79netWsXRf6fvfsOr6JoGzj8m/TeICQghERa6AihSJHQXylKsaGgfvoCVlDQ\nVxSBUC0g2AvYURGRXqxgpEgLLQFC6BACKZBQ0pOT+f44m8NJOAkBQoL63F652J2ZfWZ2z5grszs7\nx9OTdevWWfIdPD2Ijo4mMjKSE/lZbNiwgb5btsDUlwHQBQUUaE1kZCSJiYmAeYp2RkYGAPHx8WQU\n5FvqOHfuHEePHi3ShldffZVvv/2W999/Hx8fH3rc0RkiI0kPLt+/t0wuTuT6uBeJWfgawqpVq/Dw\n8AAuDeDj4uLK9O73zp07Sy1X0nUp/Oz27dsHmK9/QkKCua0mEwBLly6lYcOGZGdnExsba2l7YcxN\nmzbh7+9PYmIizs7Olvz09HTatm3LoUOHLLM92rVrx4gRI3CycV2tr3V5X3ch0FqX6w9wFAgCRgBP\nYB5w9wY6YH6aDdATmAMozE/3VwJ3AIOAuVaxvI1/jwFVje2qwDrA3dh/CZhgVe5/VsdHAm8Z272B\n3xIyqYwAACAASURBVI3tcOA85sH1LmCckR6BeWAK8AfQwtieDjwLOGK+IeFvpN+PebBbWNeHV7g2\n1vHbAqeMa5BaeK4lHBcM7CmW9iVwT7G0t4GXbBz/J9DU2G4F/GaV51OGa7XSqv27AVfjc4gHahh5\ntwAxV+ofrVq10kLrP/74o7KbIP4FpJ+JiiD9TCQkJGhAx8TEFElftWqVdnJy0snJyaUeP2/ePF2r\nVi1dUFBgSRs3bpyuXbu21lrrpKQkDZQap3PnznrIkCFF0jp06KCnTZumtdb6iy++0HXq1NFaa20y\nmbSzs7P+7bffLGUvXryoHR0d9V9//WVJGzBggI6IiNCjRo3S9913X5HYgF6/fr1l3zp+oeYhdfWU\nKVO01loP/89dunfv3vqP19615FtvHz16VAM6Pj6+SMwaflUt+126dLHEK66goECvW7dOOzk46jVr\n1hSJXR6ah9TVj/XoUyQtMzNTu7i46DVr1ljS1qxZo11dXXVWVtYVYxa/hraUdF0Kr3Vh3zt48KAl\nPy4uTgP61KlTWmutmzRpoj/++GNL/saNG4vEfOSRR/Tjjz9uyS/+O+306dO6W7dueujQoTava0mf\nqRClAaJ0GcbWN2KBub8wT3dvD2wyfgr3C5+69jR+dmJ+0h4K1ANigB5KqTeUUp201udtxG8HNAI2\nKqV2AY8Ata3yFxQrv9j4dzvmQW8h62nw02zU8ynwf8aT6PuB7zBPN28C/GbU/SrmWQAl1W3L88ax\nM4H7jQ+rvKgS0qsDKcb2EeBWpdR7Sqn/ANbzlEq6VtaWaa2ztNZnMN/QaGOkJ2OeASGEEEKIf6iC\nggLef/99kpOTATh58iRPP/00wcHBhIaGFin7ySefMHDgQPz9/UuN2bdvX9LT05kxYwZ5eXns2LGj\nyBT0atWq0a1bN5566inL09PC94jT09Mt5ZYuXcqaNWswmUzMnz+fqKgoBg8efFl9dnZ2PPzww4wf\nP55Tp06RmZnJmDFjCA0NpU2bNpZyw4cP5/PPP+ebb75h2LBhV3+xrPRq2YaoqChWR20iOzubgoIC\nTqWe4eefy77kT2BgYJFF9XJzc/nqq684c+YMSil8fX2xUwp7+yu9CVp2OTk5ZGdno7XGVGAiOzvb\nsk6Aq6srQ4YMYcKECSQnJ5OcnMyECRN4+OGHcXFxsRlPa012drZlAbrCGRSFT8OvVo0aNejZsydj\nxozh3LlzpKWlMWbMGO68806qV68OQKtWrZg/fz7p6emkpKQwZcqUK8ZdsWIFsbGxmEwmPDw8cHFx\nKdfrKkRZ3YjBeuF7600xT4PfDNxO0ffVFfCa1WC5rtb6M631AaAl5kH7VKXUhMvDozA/GS48tpHW\n+nGr/Ixi5XOMf01c3bT/RZinlPcFtmutzxp177Wqu6nWumcpddsy2zi2k740JX8v5ife1+s2INZG\nehbgAqC1TgOaY36S/gTmmxKFynKtit9cKNx3MeoRQgghxD/Y6tWradKkCe7u7rRt2xY3Nzd+//13\nHBwu/emQkJDAqlWrSl1YrpCPjw+rVq1iwYIF+Pr6MnLkSJ588skiZV544QUaNGhAeHg4np6eNG3a\nlIULF6LUpecUjz/+OLNmzcLb25vJkyezaNGiEt8znj17NmFhYbRu3ZqgoCBOnz7N8uXLiwzIevbs\niZ2dHd7e3nTr1u1qL1MRfp5e/PHHH2zcF0NwcDC+vr6Mn/fpZavel+b5558nKioKHx8fGjc2Lwm1\nYMECQkND8fDw4K677uLR7nfSuXPn62qrtQYNGuDq6kr0scN8teZnXF1di9y4ePvtt6lfv77lp0GD\nBsyePduSP336dEtbAY4fP46rqyuurq4AdOvWDVdXV+bNm3fNbfzmm2/w9PSkQYMGhIaG4uPjU2Qt\ngKlTp2Jvb0/16tUJDw8v01cIHj58mH79+uHl5UVwcDCurq688cYb19xGIa5ZWR6/X80P0ALz09vf\nrdK2A4lcmsreE/O75B760hTqapifzLoYaX2BpcZ2DBBibPsDJ4C6xr47UF8Xmy6vL03tDtOXps8f\n08WmdhdrewTGNHVj/z3MU9XvNPadgEPA7ca+I9C4eF2lXJsi8a3SexvXKNCqnv9a5QdTyjR4zDcR\nRgIHAScb8b8HultdBy9juwmwq6zXymj/LswD8yrG51A4Db4V8POV+odMgzeTaaOiIkg/ExVB+pmo\nCFfqZ507dy5xivj16Ny5s2UqfZH2lGG6s63p0Vc7Zfpqp1Xbqqc8/PHau/+aKd6l9TWZBi/KC2Wc\nBl/eC8yBeWBdFfO0ces0D22eOo3W+lelVENgk3FHNB0YgnnhshlKqQIgDyi8rToH+FkpdUqbF5h7\nFJivlHI28l8Fyvc7Isy+BQYAvxrtzlVK3QO8q5Tyxvz0+W3MT8avmdZ6tVIqAPhdmS+IBj4vw6Ez\nlFLjMa+UvxnoorXOtVFuFeZB9++Yb4x8YazWD+bF7a5GNObp71WBKdpYFA/zIn6rrjKWEEIIIcRN\nad26dWzbto2FCxdWdlOEEP9S5T5Y11qbAK9iaY/aKPcO8E6x5MPALzbKvof5KXfh/lqgtY1ywcX2\nw622z2C8h621jsT8JLn48RHFkjoCXxjnVFhmF+bF8IofG148rQzxrfO+AL4oIe8Y5qfg1mmPXqk+\nKz9iXk1/otZ6N+ZXDYrXEW61Xdq1itZaP2yjjruAu6+iTUIIIYQQN6XWrVtz6NAh3nvvvSu+cy+E\nEDfKjXiy/o+glFqC+WvKulZ2W66X1jpLKTUR81P10r+w8xoopfyBWdr8PrwQQgghRIUq76/L2rZt\nW7nGE0KIayGD9RJorQdc67FKqXHAvcWSF2rbq85XCK31ZTMWriFGRAnpKZi/Z10IIYQQQgghRDmQ\nwfoNYAzKK21gLoQQQgghhBDi703pcv2abyFKFxYWpqOioiq7GZUuMjKS8PDwym6G+IeTfiYqgvQz\nURGkn4mKIn1NVASl1HatddiVyt2I71kXQgghhBBCCCHEdZDBuhBCCCGEEEIIcZORwboQQgghhBBC\nCHGTkcG6EEIIIYQQQghxk5EF5kSFalorSC8b82JlN6PSHaoRQN1TSZXdDPEPJ/1MVATpZ6IiSD8T\nFUX6mqgIdZ4fKQvMCSGEEEIIIYQQf0cyWBdCCCGEEEIIIW4yMlgXQgghhBBCCCFuMjJYF0IIIYQQ\nN633f/2FFydNKrd47/y8mqEfvl9u8cSNVef5kUQdOVzZzRCiUjhUdgOEEEIIIcQ/08YDcXz0+2/E\nJpzkXGYmGyZOorqPb2U362/vjskRjO7dh/5hra8rzi/Ru3nn55+IP3uGAG8fRvfuQ+8Wt1ny31q9\nksh9ezmYmEjrW+sw76lnihz/6R9rWb49iuNnz+Ds4EjbOnV4+e7+1PD1K7HO6BMnmLjoBw6cPk01\nLy9G/af3dZ+HEP9U8mRdCCGEEELcEG5OTgwIa83MB4dWdlNEMTuPHWX0N1/z6oCB7H7tTV6+625G\nf/M1u44fs5SpXaUqz/2nNw/c3t5mjDxTPhMG3sPWydNYO248rs7O/HfunBLrvJiVxeNzPuI/zZqz\nY/rrTLn3fsYvXMCOY0fL+/SuWX5+fmU3QQiLm/LJulJKA99qrYcY+w7AaWCL1rqvUioU+AJoCYzT\nWs+8nnjl0N4w4GGt9cjrjWXEew5I1Vp/XR7xyljnauBBrfW5azi2KTBGa/1ouTdMCCGEEH9btwWH\ncFtwCCdTz5b5mD/27uX1FUs5lZZG27r1qF21apH8tIwM3lixjPVx+8nNy6Nd3XpMHHQPVT29APNT\n53vbtmV9XByxCSe5tVoAU+69j2ZBtW3Wl5aRwdSli9kQtx+ATg0a8mr/Afi4u/PtxvV899dGVr04\n1lL++JkUerw2jT/GTUCj6TxlEm8Ofog5a38nIS2NNnXqMnvIw3yy5ncWbt2MnVI807MXQzveYYmx\n7fBhZqxawaGkRLxdXXmoQyceD++CUorNhw7y8EcfMGvIw7y1agWpGRnc0SCU1x54EA8XF4bN/YRT\n59J4ecF8xi9cQMvgEL568ukyX99Cv0RH0ym0Ie3r1QegW5OmtAwJYf5fG2lROxiAe9q2A2DPyXib\nMZ7s3tOy7ezoyIiu3en5+jTOZWTg4+5uo87duDg5Mbxrd5RSdGwQSs+mzfh+01+0DA4psa37T51i\n6tIlHElOol5gIG8OHkKdgAAAsnJzmbFyBb/E7CYnL49WIbcyceAgy9P9B99/l/b1G/BMz16WeHWe\nH8mCZ0cRdmsd3vl5NVsPH6ZxzVosjdpGSN06fP3QUCYtWsRve6LJzcujiqcXL/TpW2TWgRAV4WZ9\nsp4BNFFKuRr7PYAEq/xUYCRQ6iD9KuJdM6WUg9Y6qhwH6g7AY8B35RGvDPUppZSd1rr3tQzUAbTW\nMUBNpVRQOTdPCCGEEP8ix8+k8NQXn/Jk957snP4Gj3S6gwWbN1nytdY88dlcFPDz/15m3YRJuLu4\n8Ny8os83vvtrI+MHDGT7tNe5s3kLHp/zMRezs2zW+fw3X3EhM5Nfx47j17HjSMtIZ8y38wC4q1UY\nJ86cIfrEcUv5hVs2075+fW7xuzTV+5fo3Sx49jnWT5hEQupZBr79FkFVq7IpYgpvDH6IqUsWcyot\nFYCDiad5fO7HDOvSlW1TpvPpsCeYt2EdS6K2WeKZCgrYELeflS+OZc0rr7I3IYGv1v8JwNxhI6jh\n48tr9w8m5o2Z1zRQB9BotNZF07QmNuHa/0T+62AcgT4+NgfqALGnEmh0S02UUpa0xjVrsf8KdS7a\ntoUP/+8xtk2dTnUfXyYt/tGSN3XpYnYdP8aiUaNZNz4CP3d3hn06B1NBQZnbve3IYap5ebFh4iTG\njx7N4q1biYk/zq9jx7H79Rl889Qz1AsMLHM8IcrLzTpYB1gN9DG2BwPzCzO01sla621AXnnEU0r5\nKaWWKqWilVKblVLNrpAeoZSap5TaCMxTSoUrpVZa5X2ulIpUSh1RSo20qme8UipOKbVBKTVfKfWC\njXZ2BXZorfONYyKVUrOVUlFKqVilVGul1GKl1EGl1FSr2KOVUnuMn+dKS1dKBRvt+BrYA9RSSh1T\nSlU18mKVUnOVUnuVUr8W3uQw6o5WSu1SSs1QSu2xavcK4IGr+DyEEEIIIYpYuXMHzYJq0z+sNQ72\n9nQKbUiPJk0t+THx8ew5GU/EPffi6eqKq5MTL/W7m00HD3D6XJql3L1tb6dprSCcHBwY0a07zo5O\n/LF372X1JZ0/z/r9+3ml/wC83dzwdnNjXP8BRMbuI/n8eTxdXOl7W0t+2LwZMA+iF2/bygPtik4L\nf6ZnL3zc3fF1d6dLoyY42tnzwO3tcbC3J7xhI7zc3Nh78iQA327cwJ3NW9CjaTPs7eyoExDA0I53\nsGTb1iIxX+zbD3dnZ6p6etGjaVNi4m0/3b5WXRo1Zt3+WDbE7SffZOKX6N1sP3qUiznZ1xRv+9Ej\nzFi5gqn33F9imYycHDxdXIukebm6XrHOYV26UcPXD2cHRwa1bktM/AkACozPY3TvPgT6+ODm7Myr\nAwZxOCmJ3VY3WK7kFl9f/tulK04ODrg4O+Po4EBGTi6HEhPJN5mo4etLvcDqZY4nRHm5KafBG74H\nJhiD4GbA50CnGxRvErBTa91fKdUV+BpoUUo6QCOgo9Y6SykVXqyuUKAL4AnEKaU+Mo4bBDQHHIEd\nwHYb7exgIz1Xax2mlBoFLANaYZ5dcFgpNRsIBv4PaAsoYItS6k/MN2NspacB9YBHtNabgSJ3OI28\nwVrrYUqpH4x2f4P51YNhWutNSqnXi7UxChgLvFn8hJRSw4HhANWqVuVQjQAbp/3vku3oKNdB3HDS\nz0RFkH4myiLRwfx3xrEAfzKqVCmxXFxeLt41bynSp9xrB1Fw4ACHagQQdfwIufn5tJ44vshxTo6O\nbLVXNK4RQL6DPU63BheJ4RdQjT0F+TSqEUCqpweZzk4cqhHA/owLAOQ2acQhe3sATAHmafdbHe0I\nrRFAx7v6MXbqVB54cgS79uwhBwju0Y1DDg6W88qoV4dDxnllVfHF3b/o3zuOrq4ccXPhUI0A4jLS\n2bVnDz/tibHka62pWqUKh2oEkJB2Bjs7O9Lq16Xw9kN2FT9SUpItMfMd7Eny9b6u//eq1gjg2YJ8\nJq5cwZnUVJo0bEjn9u05lZh4WVzra2ZLTGwsEZ/N5dkRI6jVoQOHSqgzz8+XpJSUInGOODng5OFR\n6rnkWn2eqWlnSM/J4VCNANLOnSM3Px9TwwYcCrx0vLe3NzuVxqtGAFnOTqR6ul8W/2RVP3yM/uAb\nGGjJz3Z0pGm/PnRTmvGrV5Bw+jS3NWnC40OGcIs8XRcV7KYdrGuto5VSwZifgq++wfE6Yh6QorVe\nq5SqopTyKiUdYLnW2vZ8Kliltc4BcpRSyUAA5kH4Mq11NpCtlFpRwrHVgdhiacuNf2OAvVrr0wBK\nqSNALaOdS7TWGUb6Ysw3IlQJ6cuB44UDdRuOaq13GdvbgWCllA/gqbUunIv2HWD9vn8yUMNWMK31\nHGAOQNNaQbruqaQSqv33OFQjALkO4kaTfiYqgvQzURYuxjvrwUkpVM8peQGv+g5OrD95uEifyjwR\nj53W1D2VRAb2uDk5sXPKdOzsbEwQPZWEQ76J3CPHqBtqjqG1JjUpmSZ2DtQ9lYTfxXTccnKpeyoJ\nz3zzNHDnPbEE+/sDcDQ5GYA2eQVUO5VEXTdPPvGrQtxPv7A+Jpr7WoURmny2xPOyjl/IId9EQNp5\n6p5Kop6bO/XbtGXSPffZbP+Zs2koKHJ88ZhOpgJLvOtRt35Dnhrd0LLff9ZMOterf1lcW+dUaN3+\nWCZ99SVvDn6QXiF1oZQ23e7ty7ubtxSJk7QvlubVSv89UvNMqiXf+voUFBTg5OCAQ+wB6hYYN05y\ncjh//jy3aUXdU0lUReF69tLxSefPF4npdzEd99w8S/6hGgHUTTrDuNbtoHU7LmRlErHoRz56512+\nf3ZUaZdTiHJ3M0+DB/OgciZWU9ZvongZpeTlWG2buLqbIlmASwnxCorFLrjK2NbKu/0umNsuhBBC\nCAGYpynn5OWRa6ywnZufT05eHgUlvE/c97aW7D5xnOU7tpNvMrExLo7fYqIt+U1r1SK0xi1MXrKI\ntAzznzJn0y+yYkfRSYk/bt3Mnvh48kwm5qxdQ3ZeLl0aNb6svgBvbzo1COW15Uu4kJXJ+cxMpi9b\nQueGjajm7W0p98Dt7fks8g/+jN3Hfe1uv65r8lCHjqzcuYM1e2LIM5nIN5k4mHiaLYcOljlGVS9P\njqWkXFc78k0m9sTHYyoo4GJWFrNWr+L0uTQeCw+3lMkzmcjJyyO/oIACrcnJyyMn/9JbqD/v3sWz\nX37O7CEP06tZ8yvW2bNZM7Jyc5izdg25+flsPBDHr9G7S1xt/krs7OwYENaG2T+tIun8ebJyc5m+\nbAm3VgugubGgYJNatfgtJoaz6RdJz87mrdUrrxj3r4MHiIk/QZ7JhLOjI65OTtjZqSseJ0R5u2mf\nrBs+B85prWNsTDUvz3jrgYeAKUb6Ga31BaVUSenXUvdG4BOl1GuYr3tfjKfNxcQCda8y9nrgS2Nq\nugIGAEONbVvpV01rfU4pdVEp1VZrvYXL30+vj/n9dyGEEEIIALYeOcxDH7xn2e86bQoA3z79LO3q\n1rusfLC/P+8/+hhvrljOuAXzaVOnLve1u50dZ8wDUzs7Oz55fBizf1rF3W/N4FxmBlU8POhQP5R+\nLVtZ4jzQrj2TlywiNuEkIdWq8emwEXi6ul5WH8BbQ4YybekSuk+fBkCnBg0Y139gkTJ3tQrj9RXL\naBkSQoh/teu6Jg2q12DusBHMWr2Kl77/jgKtqV21KsO7dCtzjKd79GLy4h/5av2ftKgdzBcjnrzq\ndph0AeN++J6jKckooF29eix49jnLqvoAryyYz2Krd+kb/W8Mt/j6sW5CBACvLV9KVl4eI7/+okjs\nX8a+Qg1fP7YdPsxjcz6y7Hu5uvHZ8CeYuGghb/+8mmqeXky59/5SV4K/klf7D+DNlSsYMHsmufn5\ntAwOYc5/h2FvzLx4rHMX9p86Rdepk/Hz8OB/fe9i0dYtpcY8c/EikxYt5FRaGo4ODjQLCmLafbI0\nk6h4qvgqkDcDpVS61tqjWFo48ILx1W2BmN+R9sL8dDkdaKS1vnCN8fwwD+RvBTKB4ca0+ZLSI4D0\nwq+MKxareN4eoK/W+piR9yCQhHna+M9a67nF2lUbmKe1vsPYjzRiR1nXYyNvNOZV5AE+1Vq/bZS5\nLN14HWCl1rqJVb3HgDDAwzrPWATPQ2sdoZRqC8w1rvmfQJjWuoNR7n3gF611SdP7AfM0+GVjXiyt\nyL+CTBsVFUH6magI0s9ERbiafnbH5AhG9+5D/7DW5Va/1prwqZMY07svd7UKK7e44uYjv9NERajz\n/MjtWusr/jK5KZ+sFx9YG2mRQKSxnQjULMd4qUB/G2VKSo8oJVbxvCZWuzONQa8bsA4bC8xprY8r\npc4qpepprQ9qrcNt1WPsW+fNAmbZiHdZutb6GNCkWFqwsXnGOq/Yd9jv1VoXrog/FvMNE5RSzpgH\n+s8hhBBCCPEPs2x7FHkmE/9p3uLKhYUQopzclIP1f7A5SqlGmN/v/kprvaOEcmMxLzRX9peXKkYf\npdTLmPvNceBRIz0IGFv4dXNCCCGEEP8UrV99GXs7e14f/CBODvKnsxCi4vxjfuMopaoAa2xkddNa\nn63o9tiitX6wjOXigLgb3JyrprVeACywkX6Qm+/GghBCCCH+hQrfpy4v26a+Vq7xhBCirP4xg3Vj\nQC5zk4QQQgghhBBC/O3dlAvMiX+usLAwHRUVVdnNqHSRkZGEW301ihA3gvQzURGkn4mKIP1MVBTp\na6IiKKXKtMDczf4960IIIYQQQgghxL+ODNaFEEIIIYQQQoibjAzWhRBCCCGEEEKIm4wM1oUQQggh\nhBBCiJuMLDAnKlTtoCD90gsvVnYzKp1/YAApiUmV3QzxDyf9TFQE6WeiIkg/ExVF+pqoCE+PGikL\nzAkhhBBCCCGEEH9HMlgXQgghhBBCCCFuMjJYF0IIIYQQQgghbjIyWBdCCCGEEDetn375hYhJk8ot\n3qqfVvPuB++XWzxxYz09aiSHDh+u7GYIUSkcKrsBQgghhBDin2l/XBy//PYbCQknycjMZOqkSfj6\n+FZ2s/72xk+KoF/vPrRp3fq64uzavZtVP/3EmbNn8PHxoV/vPrS87TZL/opVK9mzdy+nExOpW6cO\nI59+psjxv69dS9T2KFLOnMHRwZG6desw8O7++Pn5lVjn8RMnWLDwB06dPo23lxd97ux93echxD+V\nDNaFEEIIIcQN4ezsRNs2rfFw78JHcz6p7OYIK0ePHeXLeV/z5PAR1Ktbl7379jL388/x9fUlJDgY\ngKpVqtK3d2/27d9PUtLlK6SbTPncO+gegmrVwmQysXDRIj6aM4dxY8farDMrK4sPP/6Ibl278vyo\nURw6dJg5n31K1apVuTUk5Eaebpnl5+dXdhOEsJDBuhBCCCGEuCFCgkMICQ7h7NmzZT5mz969LFm2\nlNS0NOrXrYe/f9Ui+ekZGSxdtozYuP3k5+VRr1497ht0D15eXoD5qfPtbdsSuz+OkwknCQwI4IF7\n76N27do260vPyGDRksXE7t8PQKPQhgwaMAB3d3fWbVjPho0beeWlS4PPlDMpTJ42jYjxE0BrJkye\nxNCHHuK3338nNS2NunXq8n8PP8yvv//Opi2bUUpxZ69edO50hyXGocOHWbZiBYlJibi5utKpYye6\ndemCUooDBw/y3ocf8OjQh1m+cgXpGRk0DA1lyOAHcXFx4aM5n5CWlsa3389n/g8LuDUkhGeferrM\n17fQrt3RNAptSIP69QFo2qQpt4aEsOGvjZbB+u3t2gFwIj4eW19m1qtHT8u2o6MjPbp3Z8r0aWRk\nZODu7m6jzt04OjnRo1t3lFI0DA2lebNmbPzrr1IH66dOnWLRkiUkJSdRPTCQoQ8NITAgAIDc3FyW\nrVjBrujd5OXlUefWW7l34CDL0/2333uXBvUbcGevXpZ4T48ayfMjR1G3Th1W/bSaQ4cPU6tmLbZu\n20adunV4dOhQFv64iN0x0eTn5eHp6cVdffsWmXUgREWo1HfWlVI1lVLLlFIHlVKHlVLvKKWcipV5\nWymVoJSys0p7SCkVrZSKUUr9pZRqfoV6tFLqG6t9B6VUilJqZTmdR5hS6t3yiGXEe04p9XB5xStj\nnauVUj7XeGxTpdSX5dwkIYQQQvzLpJxJYe5nn9KrR09mvv4G4Z3vYOOmTZZ8rTVzPp2LUvDq2JeZ\nEjEJF2cXvvj66yJxNmzcyL2DBjLjtde5rXkLPvzkY7Kys2zW+eXXX5GZmcmEV8Yx4ZVxpGek89U3\n8wBoHRZGypkzHD9+3FL+r02baVC/PlWspnrv2r2b0aOeY0rEJFJTzzJj1lv4V63K9MlTGPrgQ/y4\neDGpqakAnE48zYeffEz3bl15Y9p0nhzxBOvWr2Prtm2WeAUFBcTu38/LL41l4rhXOXkygch1fwLw\n5PAR+Pr68tADg5k9Y+Y1DdQBtPFfkTStSUhIuKZ4AHEH4vDx8bE5UAdIOJVArZo1UUpZ0oJq1iLh\nVOl1bt66hWGPPcYb06fj6+vLwh9/tOT9uGQxR48f48XnRzNlYgQe7u58PHcOBQUFZW73ocOH8fLy\nYuqkSYwZPZotW7dy/MRxxr8yjrfenMGoZ56hevXAMscTorxU2mBdmf8vXQws1VrXA+oDHsA0qzJ2\nwAAgHuhsdfhRoLPWuikwBZhzheoygCZKKVdjvwdw7b+Jip6Hg9Y6Sms9srziAY8B35VHvDLUp5RS\ndlrr3lrrc9cSQ2sdA9RUSgWVc/OEEEII8S+yfccOateuTZvWrbG3t6dhaEOaNW1qyT8RH8+JB9sX\nUQAAIABJREFU+Hjuu/deXF1dcXJyov/dd3Pg4AHSzqVZyt3e7naCagXh4OBAj+7dcXR0Ys+evZfV\nd+78eWL372dQ/wG4ubnh5ubGoP4D2LtvH+fPn8fVxZWwli35a/NmwDyI3rJtKx1ub18kzp09e+Hu\n7o6HuztNGjfBzt6eDu3bY29vT+NGjXBzcyM+4SQA6zZs4LYWLWjetBl2dnYEBgRwR6c72LJta5GY\nd9/VDxdnZ7y8vGjWrCknTsSX23UGaNKoMftiY4ndvx+TycSu3bs5cvQoWdnZ1xTvyNEjLFuxgsH3\n3V9imezsHFxdXIukubq6XrHO7l274efnh6ODI+3atOV4/AnA+Dy2bqVf7z74+Pjg7OzMoIGDSExK\n4pjVDZYr8fP1pXvXrjg4OODs7Iy9vQM5ObkkJiZiMpnw9fWlemD1MscTorxU5jT4rkC21voLAK21\nSSn1PHBUKTVRa50JhAN7gQXAYOAPo+xfVnE2AzXLUN9qoA/woxFrPtAJQCnlB3wO3ApkAsO11tGl\npEcAdYz0E0qpT4AXtNZ9jbwgIy8IeFtr/a5Rz3hgCJCC+QbEdq31TBvXZYfWOt84JhLYabTVHXgY\neBloCizQWr9qlBuNeZAP8KnW+u2S0pVSwcAvwBagFdBbKfUnEIb5hslPwAagPeabGndrrbOUUq2B\nz4AC4DfgTq11EyP2CuAB4M3iF14pNRwYDlC1alX8AwMu/3T+ZRwcHeU6iBtO+pmoCNLPRFloO/OT\n1Cr+/lSpUqXEctm5udS45ZYifSooKIi4AwfwDwzg0NEj5Ofn88r48UWOc3R0RCuFf2AA9vb2BIcE\nF4lRLaAaeaZ8/AMDcPPwwMnJCf/AAM5dvABAaONG2NvbA+BXOO3e3g7/wAD69uvHlKlTGfHECGL2\n7AGga/duODg4WM4rpG4dy3n5+PniX+zvHVdXV5xcXPAPDOBiejp79uwhOibm0vXRmipVquAfGEDy\n2TPY2dlxa926lnxfPz+Sk5MtMe3t7fH08b6u//f8AwPIM+WzbOUKUlNTadiwIe3btycpMfGyuNbX\nzJbY2Fg+njuXESNG0LFDhxLr9PXzJTklpUgcO0cHPD08Sj2X2iGXPs9qZ8+Qk5Nj/vzOnSM/P5/6\noQ2KHO/t7Y0JjX9gAI5OTrh7uF8W37eKn6U/BAQGWvIdHB3p07cPBWiWrVzB6dOnadqkCUOGDCEw\nUJ6ui4pVmYP1xsB26wSt9QWl1AmgLhDNpUH1MmC6UspRa51XLM7jmAeXV/I9MMGY+t4M8yC8k5E3\nCdipte6vlOoKfA20KCUdoBHQ0RjEhherKxToAngCcUqpj4zjBgHNAUdgR/HzN3SwkZ6rtQ5TSo0y\nrkUrIBU4rJSaDQQD/we0BRSwxRh825WQngbUAx7RWm8GikxHMvIGa62HKaV+MNr9DfAFMExrvUkp\n9XqxNkYBY7ExWNdaz8GY/VA7KEinJNp66+nfxT8wALkO4kaTfiYqgvQzURapxjvrZ1NSKMgreQEv\nZ0cnjhw+XKRPxZ+IR2tNSmISDnb2ODs58ca06djZXT5BNCUxCZPJxLGjxywxtNYkJyXjaO9ASmIS\nmenp5ObmmvMLzNPA9++LpZq/PwBJycnmYKYCUhKT8PbwpGqVKvz6yy/sjo6mTVgYaWfOlnheReIb\nTCYTF8+dJyUxCQ83d25v25b7773PZvvPpaZZtgsVj1lQUGCJdz0ahzakcWhDy/4bM2fSoH79y+La\nOqdC+2Jj+fyrLxky+EEa1Klbapv8fHzZvGVLkTL7Y2MJqFb675G0s6mWfOvrU1BQgIODAwfjDmCP\n+W/Z7Jwczp8/jz2KlMQk7JQiLdXq+PPni8TMTE8nPy/Pku8fGEBqyhk6tG1Hh7btyMzM5Icff+Sd\nd99l9MhRJV9MIW6Am/Z71o1313tjniZ/AfNT4F7FynTBPFh/6UrxtNbRmAe1gzE/ZbfWEZhnlFsL\nVFFKeZWSDrBca2375SdYpbXO0VqfAZKBAMyD8GVa62yt9UXMT6JtqY75ybu15ca/McBerfVprXUO\ncASoZbRzidY6Q2udjvn1gk6lpAMcLxyo23BUa73L2N4OBBvvs3tqrQtfHCs+TT8ZqFFCPCGEEEL8\nCxUUFJCXl2dZYTs/P5+8vLwS3ydu1bIlx44fJ2r7dkwmE/vj4tgdE23JD6pVi1tuuYWFixeRnpEB\nwMX0i0TtKPqcY9OWzZyIj8dkMvH72jXk5uXSpHHjy+rz8famYWgoi5cuITMzk8zMTBYvXUKjho3w\n9va2lOtwe3vWrP2Dvfv20b7d7dd1Te7o2JHtO3YQsycGk8mEyWTidOJpDh46WOYYXp6eJKcU/3Px\n6phMJk7Ex1NQUEBWVhYrVq0i7VwaXcPDi5Qp/Ly01uTl5ZGXf+m52c5du/jsi895dOjDtGhe6hJS\nADRv1ozcnBx+W7OG/Px89sfFsWv3bjq0b3/FY22xs7Ojbes2rFy9inPnz5Obm8vipUsIqBZAsLGg\nYFCtWuyOieFi+kWys7NZsfLKS1bFHTjAifgTmEwmHJ0ccXJ2wq7ogy0hKkRlPlnfB9xjnWAMhIOA\nQ5gH5j5AjPHU1w3IAlYaZZsBn2Keil3WJUaXAzMxT68veQ5W2WSUkpdjtW3i6q5zFuBSQryCYrEL\nrjK2tatpv2tJBa24YG67EEIIIQRgXrjrnfffs+xHTJkCwKhnnqV+vXqXla/m789//+8xlq5Yzrff\nz6de3bp0uP12koyBqZ2dHSP+O4yVq1fxxswZZGRk4OnhQWiDUMJatrLE6XB7exYuWsTJhJMEVKvG\nk8NH4Opq+8+ZR4YOZdHiJUyeZl42KTS0AfcMGFikTOuwMJYsX8atISFUq1btuq5JjRo1eGL4CFas\nWsW8775Da41/1ap079atzDH+07MXCxf9SOS6PwkJDubpJ5686nYU6ALmL/iepORkFFCvXj1Gj3rO\nsqo+wLffz2fL1kvv0j/3whj8/PyYMjECgCXLlpKbl8dnX35RJPb4l1/Bz8+PQ4cP88HHH1n23dzc\neGrEEyz4cSGrflqNl5cXg++7/7q+tm3QgAEsW7GCN9+aSX5+PreGhPDEsGGWmRddw7uQcOoUEZMn\n4+Hhwd133cXmrVtKjXnx4kV++HEhqWlpODg4UDsoiAfvf+Ca2yjEtVJa6yuXuhEVm0fg24B3tdZf\nK6XsgY+BC1rrMUqp74AVWuv5Rnl3zAvLBQNVgbXAw8XeXy+prnSttYdSqiYwUGv9rjF1vfA983eB\nFK31FCN9ttb6tlLSI4D0wvfNi8UqnrcH6Av4A59gfg/cAfM0+DnF31lXSj0B1LR6Fz3SiB1lXY91\nHuZB+5dAO4zp7sBQY9tWehqw0up9c5RSx7j0zrolTyn1AuChtY4wzuVxrfUWpdR04C6rcoOAHlrr\nJ0r7LGoHBemXXnixtCL/CjJtVFQE6WeiIkg/ExXhavrZ+EkR9OvdhzatW5db/VprJk6eRL8+fWkd\nFlZuccXNR36niYrw9KiR27XWV/xlUmlP1rXWWik1APjQWHjNDvP09FeUUm7Af4AnrMpnKKU2AP0w\nr+ZexTgWIL8sJ6u1PgnY+oq1COBzpVQ05oXkHrlC+lXTWm9TSi3H/C5+EuYp7edtFP0JY+r9VcTe\nYXx1WuGtz0+11jsBbKUbC8xdi8eBuUqpAuBPira/C7DqGuMKIYQQQty0tkVFkW8ycVuLFlcuLIQQ\n5aQyp8GjtY7HPPi2xa94gta6cE7SAuC/V1GPh420SCDS2E4F+tsoU1J6RCmxiuc1sdqdaTyhdgPW\nYWOBOa31caXUWaVUPa31Qa11uK16jH3rvFnALBvxLkvXWh8DmhRLCzY2z1jnFXvyv1dr3QxAKTUW\n86JyKKWcMT+Vf654/UIIIYQQf2cvvfIydvb2DBn8IA4OlfqnsxDiX0Z+41SsOUqpRpjf7/5Ka72j\nhHJjMS80V/aVRipGH6XUy5j7zXHgUSM9CBhb+HVzQgghhBCVpfB96vLyxvTXyjWeEEKU1T9msK6U\nqgKssZHV7SoWoLuhtNYPlrFcHBB3g5tz1bTWCzDPaiiefpCb78aCEEIIIYQQQvxt/WMG68aAXF4k\nEkIIIYQQQgjxt1dpq8GLf6ewsDAdFRVV2c2odJGRkYRbfY+pEDeC9DNREaSfiYog/UxUFOlroiIo\npcq0GrxdRTRGCCGEEEIIIYQQZSeDdSGEEEIIIYQQ4iYjg3UhhBBCCCGEEOImI4N1IYQQQgghhBDi\nJvOPWQ1e/D0kZubz2o7kym5GpQuR6yAqgPQzURGkn4mKIP1MVBTpa+JmIk/WhRBCCCGEEEKIm4wM\n1oUQQgghhBBCiJuMDNaFEEIIIYQQQoibjAzWhRBCCCHETWvtp7OYPHZMucX7/ZMZfPbkPeUWT9xY\nr7QK4NjOLZXdDCEqhSwwJ4QQQgghbohDW9cR+fk7nD6wl6zzaby0eifeATUqu1l/e2/2DaPHU2O5\nrff13XTYs3YVaz+ZQWrCcbyqVafHk2Np2uMuS/6vH75G3IbfST4cR3DLdjz+0Y9Fjl8/7yN2/7SI\nsyeP4eDsTEjL9vR+biI+1WuWWOfJfbtY/vpLJB2Kw7NqNbo98b/rPg8h/qnkyboQQgghhLghnFzd\naNnnPu6d9F5lN0UUcyImioWvPk2fMVOYsO4wdz43kR9efYr4mO2WMlVqBtP9if/ReuBQmzFMebn0\n+990XvltDy8s3YKTqxtfPzekxDqzL17gy2cfpHHXvoyPjOPuV2awbPqLnIjeVu7nd63y8/MruwlC\nWFTqYF0pVVMptUwpdVApdVgp9Y5SyqlYmbeVUglKKTurtFCl1CalVI5S6oUy1KOVUt9Y7TsopVKU\nUivL6TzClFLvlkcsI95zSqmHyyteGetcrZTyucZjmyqlviznJgkhhBDiby6oaRgt+91PQJ0GZT5m\n//rfmH1PJyI6hvDVqIfIPJdaJD/zXCqLJj/HG71vY2q3Rnz30jAunr30VVtv9g1jzZy3+OSxfkR0\nDOGDIT05uXdnifVlnktl4YRnmN6zCdN7NmHhhGfJPJ8GwOaFX/LuA12KlD8bf4xX29Qg7XQ8aadO\n8EqrAHasWMDsezoxsUMwX458kKwL5/j53SlM696I6T2bsOmHz4vEOLpzM5881o8pXRow8642rJ/3\nEVprAI5EbeTVNjWI/nUpM+9qw6Q76vLdS8PIyUgH4OvnhnA+8SRLpowmomMInz91X5mvrbW9a1dT\n7/Zw6rTphJ2dHQ3v6EVQ89ZsXfy1pUyruwbT8I5euPn42YwR/tgoardog6OzC87uHtzxyDMkHoq1\nXL/L6vxjFU4urtzxyDM4ODlTr11nGnXpzdbF39gsXyjx4D4+GNqLiE638tEjd5J89KAlLzcrkxUz\nxpn7Q9eGzBv9COdOn7Tkzx0+gLWfzioSz3pq/e+fzODTEQNZPTuCaT0aM3PyBPJzc1gydQzTujdi\n0h11eKt/O2J+W176BRXiBqi0wbpSSgGLgaVa63pAfcADmGZVxg4YAMQDna0OTwVGAjPLWF0G0EQp\n5Wrs9wASrusELrXRQWsdpbUeWV7xgMeA78ojXhnqU0opO611b631uWuJobWOAWoqpYLKuXlCCCGE\n+Bc5G3+Mb198jPDHRjE+8iDtHxjGtiWXBnJaa+aNeRSFYtSCP/nfyiic3d1ZMO7JInG2LvqKvi9O\n5dU/4mjSrS9fjnyI7PSLNutc8OpTZF04x/M/buD5HzeYB+/jnwGgxZ2DSD15rMhgP2rZt9Rpcwe+\n1WtZ0vasXcmIz5bz0qodpJ2K58NH7qRKzWDG/hzNoInvsGrmeMsAMulIHF+NfJBODz/FuN/38fA7\n37L5h8/YuWqhJV6BycTBzZE8+/0fjF7yF6fjYvjr+7kAPPz2N3gH1mTA+FlEbDjKYx/+cG0XW2vL\nDQLr63s6bu+1xQMOb1uPd0AN3Lx9beafPrCX6g2aYB4GmNUIbUrigdLr3LHyex568zNeXROLd8At\nrJzxiiVv1awJxMds54kvV/O/VVG4+/jx9fNDKTCZytzuYzs341k1gJdW7+T5VyawY+UCTu7bxfM/\nbmDiusM8/vEiql3FDSchyktlPlnvCmRrrb8A0FqbgOeBx5RSbkaZcGAv8BEwuPBArXWy1nobkHcV\n9a0G+hjbg4H5hRlKKT+l1FKlVLRSarNSqtkV0iOUUvOUUhuBeUqp8MKn9Ebe50qpSKXUEaXUSKt6\nxiul4pRSG5RS80uYFdAV2KG1zjeOiVRKzVZKRSmlYpVSrZVSi43ZCFOtYo9WSu0xfp4rLV0pFWy0\n42tgD1BLKXVMKVXVyItVSs1VSu1VSv1aeJPDqDtaKbVLKTVDKbXHqt0rgAeu4vMQQgghhCgi+tcl\n1Gx8G7f1vgd7Bwfq3R5Oo/A7LfkJsbs5FRvNXWNfx8XTCydXN+4cOYEj2zZwPumUpVzY3Q9yS8Pm\nODg6ccejz+Lo7ML+9b9eVt+FlEQObvqD3qMn4+rlg6uXD71HTyJu4+9cSEnCxcOTZj37E7XM/Ayl\nwGRi58ofaD2g6FTvrv8djZu3L24+foR26oG9gyOtBw7F3sGBBh264erlzam4GAC2LPySpt370Sj8\nTuzs7akWUo929z3OzlVFB929nn0VZzd3PKtUo1H4nSTs211u1xmgQcfuHNz0Bwc3/4kpP5+9a1dz\nYvdWsjNs39S4kuO7t/HLe1O5++U3SyyTk5mOi4dXkTRXT+8r1tlp6NP4VK+Jg5MzLfvdz0njWhQU\nFLBz5Q/0eOplvKtVx8nVnT4vTCXl6EFO7t1R5rb7BNak09AncXB0wtnFBXsHJ3IzM0g6egBTfj4+\ngbcQcKsM1kXFq8wF5hoD260TtNYXlFIngLpANJcG1cuA6UopR6311QzQrX0PTDAG1c2Az4FORt4k\nYKfWur9SqivwNdCilHSARkBHrXWWUiq8WF2hQBfAE4hTSn1kHDcIaA44AjuKn7+hg430XK11mFJq\nFOZr0Qrz7ILDSqnZQDDwf0BbQAFblFJ/Yr4ZYys9DagHPKK13gwUucNp5A3WWg9TSv1gtPsb4Atg\nmNZ6k1Lq9WJtjALGApf9hlZKDQeGA1SpFkBIYrSN0/53cc7PkusgbjjpZ6IiSD8TZeGRkghArZRY\nqugzJZZbe2wPtXw9ivSpEG8XDp4sICQxmqS968nPy+H17g2LHOfo5ITb3j8J0Y1xMOVSz10ViRFY\nxQf7wzsISayHb3oSyTnphCRGc2h/LAAt7c9jb5QPcjQ/kXXf9ychDULpH96eaeP+x1MP3sue3Tsh\nL5s7G9TAITHacl6NdCpVjOOr5V8gzdOtSP2ujg54nYolJPEWso/sYW/0LmLXrLDk6wKNn78/IYnR\nZKUewc7OjqY5pyDRfAOimukiaWmJlpgOplz8z524rv/3Qmp64vDUs6x683+knj1LaOMm3N4pnKTT\nCZfFtb5mtuzfE8M3UyYy/OmRdKgXACWU8yebM2eTisSJTdiPl7NDqedS3+5S3VlZieRmXCQkMZpz\naWnk5+bQzCmTQKvjvb29cYrbTEg1Z1xy0/FNT7osfvXUw4QkuuKbnkRgFV9LvnN+FgNaNcDpeFd+\nf/0FEk8l0KT5bTz42DACa9xSyhUVovzdtKvBG++u9wZGa60vKqW2AL2Aa3rPXGsdrZQKxnwDYHWx\n7I6YB6RordcqpaoopbxKSQdYrrXOKqG6VVrrHCBHKZUMBGAehC/TWmcD2UqpFSUcWx2ILZZW+JJM\nDLBXa30aQCl1BKhltHOJ1jrDSF+M+UaEKiF9OXC8cKBuw1Gt9S5jezsQbLzP7qm13mSkfwf0tTom\nGbC5vKvWeg4wB6Bmoxb6aGCzEqr99whJjEaug7jRpJ+JiiD9TJRFWoF5WZx4/4ZcKG01+NqNid8U\nWaRPHbuQQ4Gy42hgM3Ib5uPk6sYrkQexs7t8guhRIN/eiYMZmmAjhtaaxLPnMNVpydHAZqR5BJDl\nfIyjgc3IsK8GwM4CH6rcEgLAmeOHAcho1Jmj/gHYBTbDt9YnrIw5yt4//6LF3UOIr9myxPOyjl8o\n396JFJ8gjgY2wzm4ES1DGnP32OLPPcztP33yIihV5PjiMU2OzpZ41yNoaDOeHPqiZf+Dob2o0677\nZXFtnVOhA3/9wfdTIhg48R1qdO3D0VLqc2/Rmc1z3ioSZ8/pOfg1Civ1XE771cHZyLe+PgXVCnBw\nciYmz40sIz8nM4Pz58+T26AdRwOboX0CSLb3tMS/YNxgKYyZ5hFAjsulcwtJjOZEYDOaPnsbTZ+F\nrIvnWfHGy7zz4ccM/3RZKWcnRPmrzGnw+zA/IbYwBsJBwCHMA3MfIEYpdQzzgHQw12c55vfc51+p\nYBlklJKXY7Vt4upuimQBLiXEKygWu+AqY1sr7/a7YG67EEIIIQRgnqacl5NNfm4uAPm5ueTlZFNQ\nUGCzfPNeAzi5Zwe7f16MKT+fQ1v+ZF/kT5b8Wxq1ILBeY1bOGGdZeC497Qy7f1lSJM725fNJiI3G\nlJfH+q8/IC87i9COPS6rz8s/kHrtwlk9eyJZF8+TdeEcq2dPpH6Hbnj5B1jKtR44lA3ffMSBjWsI\n6//QdV2Ttvc+SvSvS4ld9wumvDxM+fkkHYnjyPa/yhzDs0o1zp44cl3tMOXnkxAbTYHJRPbFC/z2\n4eucT0qgw0MjLpXJyzN/XqZ8tOWzvPRn4p41K5k/9r/cN/VDmnTtY6uaIhp16U1uVibrvv6A/Lxc\nDm1dx961q2gzsOQV5EtjZ2fHbX3u5beP3uBCSiK5WZmsnj0R/+C61GxsvqFSo2Fz9kX+THraGXIy\n0vn1g9euGPfw1vUkxO7GlJeHo7MLjq5uKBs3h4S40Sqz160B3ApXPVdK2QNvAV9qrTMxD8z/q7UO\n1loHAyFAD6v32a/F58AkY0E0a+uBh4x2hANntNYXSkm/FhuBfkopF6WUB0WfSluLxfwawNVYD/RX\nSrkppdwxL8q3vpT0q2YsPndRKdXWSCr+fnp9zO+/CyGEEEIAcGzHJia2r83sQR0AeKt/Wya2r82x\nHZtslq9SK4QH3/yUtXNnMSW8Hhu/nVNkcGxnZ8fQWV+hteb9IT2J6HQrHz/Sm6PFBrqtBw5l5Yxx\nTOlSn+hfl/HIO9/g4ulVvDoA7p36Ac5uHswa2J5Zgzrg4ul92VfNtbhzEKmnThDUvDVVg269nktC\nYN2GPPL2PDZ+N4fXejVjeo/GLIoYSUba2TLH6PL48+xa/SOTw+vz5bPX9ixLF5hYOu0FJofX440+\nt5F4aB8jPluBZ5VqljJLpo5hYvvaRH72NkeiNjKxfW1mDexgyf/p7QjysrP4/uXhRHQMsfwULqZ3\ndOfmIvuunt48+u637Pl9OZM712PJ1DHc/coMgpq1vqZzAOgzZjK3NGrOh0N78WafVlw8k8TQ2V9j\nZ28PQMcHR+AfUo+37m7Le4O70qBj9yvGTE9N4YfxzzClS31e69WMc6dPMuDVt665jUJcK1V8FcgK\nrVypWsCHmN/xtsM8Pf0FwB44CQRbD46NadwLgD8xvyPthfnpcjrQqKSBtFIqXWvtUSwtHHhBa91X\nKeWHeSB/K5AJDDemzZeUHgGka61n2ohVPG8P0FdrfczIexBIwjxt/Get9dxi7aoNzNNa32HsRxqx\no6zrsZE3GvMq8gCfaq3fNspclm68DrBSa93Eqt5jQBjmFfktecYieB5a6whjoD7XuOZ/AmFa6w5G\nufeBX7TWJU3vB8zT4J/+5vIFXv5tZNqoqAjSz0RFkH4mKsLV9LM3+4bR46mx3Nb7nnKrX2vNzLta\n0+Opl2lx56ByiytuPvI7TVSEV1oFbNdah12pXKW+s661jgf6lZB92Rc6aq0HWu3WvIp6PGykRQKR\nxnYq0N9GmZLSI0qJVTyvidXuTGPQ6wasw8YCc1rr40qps0qpelrrg1rrcFv1GPvWebOAol8iWUK6\n1vr/2bvv8KiKr4Hj35OeUBISOqihBukGpCkQpCooRZqAha4CFpqIiICAIAhKUSkiRdqrFBUbAkYs\nIJ0fIB0CgtRAAgHS5/1jb5bNZlMIoajn8zx5svfO3DNzSzY7d+bORgAVndYFWy/PO6al3HSw7DHG\npMyIPwTbDRNExBtbQ/8VlFJKKaX+ZXZ8t4ykhAQqNkrvY6tSSuW8u3aCuX+pmSJSHtvz3fOMMel9\np8QQbBPNHbxtNcua5iLyOrbr5hjwnLX+XmBIytfNKaWUUkr9W4xuWB53d3favPU+Hp5ed7o6Sqn/\nkH9NY11EgrA9B++soTEm6w8B3ULGmE5ZzLcf2H+Lq3PDjDFLsT2G4Lz+IHffjQWllFJK/QcNXrUl\nR+MNW/tnjsZTSqms+tc01q0GedVMMyqllFJKKaWUUne5f01jXf0zFPbz4PXQgpln/JcLD/egox4H\ndYvpdaZuB73O1O2g15m6XfRaU7fD0Czm0y8MVEoppZRSSiml7jLaWFdKKaWUUkoppe4y2lhXSiml\nlFJKKaXuMtpYV0oppZRSSiml7jI6wZy6reL+vsKRERvudDXuuPgQPQ7q1tPrTN0Oep2p20GvM3W7\n6LWm7ibas66UUkoppZRSSt1ltLGulFJKKaWUUkrdZbSxrpRSSimllFJK3WW0sa6UUkoppe5a09Z/\nyqC3h+RYvA/CZ/P0/JdyLJ66tUqNrMOW4zvvdDWUuiN0gjmllFJKKXVL/HZkCx/9Oo+9pw8Sde0S\nv766kiJ5C97pav3j1Xu/Df0f6UWrys1uKs4Pe8P5IPwT/rr4N4XyFqB/g148VuERe/p762YQfvB3\nDp49yoP3VWXBM1NSbT/790V8tWs1xy6exNvDi5r3PcDrTfpS1L9wumX+7++9vPXNRA6cPULBPEG8\nHNbjpvdDqX8r7VlXSimllFK3hJ+XD60rP8rEVm/e6aooJ9tP7Kb/8pEMa/YyO1//kddKVgw6AAAg\nAElEQVQb96X/8hHsOLHHnue+fMV4JawnHau1dBkjISmR4Y/2Z9PAVazr93/4evnQY9GgdMu8HBtD\n94UDaHZ/GNte+4G3mw/mzVUT2PbXrhzfv+xKTEy801VQyi7bjXUReUNE9ojI/0Rkh4jUtNaHi8h+\nEdkpIr+JSIiL9ZtFpKpTvKoiYkSkmbUsIvKriDzqkKediHyfQZ1i0lnfXkT+tOq7yGH9vSKyWkT2\nWunB2TwW/UVkn4jssvZvkoh4WmkRIpLfev17OtvPFZG22SnbIUYrERmeSZ5gEdltva4uIlPSyWev\n8w2Uv0REytzINkoppZT6d3ugeEWerPoYZQqWzPI2Px34jabTO1FpbEN6LBrIxavRqdIvXo1myJdj\neWhyKx6c8Bj9Ph/G+ZgL9vR677dh6s9zaD/neSqNbUjLmd3438k/0y3v4tVoBqwYRc2JLag5sQUD\nV75N1LVLACzcvJzmHz+TKv+xCycoO6ouJ6NOcSLqFKVG1mHZjm9pOr0TFcc+QreFA4i+dol313zI\ngxMeo+bEFizYtCxVjM3HdtB+zvOEjm9Kgyltmf37IowxAGyM2EbZUXVZtXsNDaa0pcq4xvT7fBgx\ncVcA6Ll4EH9Hn+H1r8ZRaWxDnl3wcpaPraMf9v5M3dI1qVOiOm7iRsOQhwm9tzKLt66052n7QAsa\nhjxMPj9/lzFeqPsM1e+tjLeHN7m9c9H7oS7sP3vYfvzSlhmOj6c3vR7qgreHFw+XqkGT++uxZNuX\nGdZ135lDtJrVjcrvNOLJ2T05fD7CnnYtIZZR303mocmtqP7uo/Re8hp/R5+2p3ea24dp6z9NFc9x\naP0H4bPpPK8vY1dPpcbE5rz13tvEJcYz9OtxPDjhMaq804hHprbn2z3rMqyjUrdCthrrIlIbaAGE\nGmMqA42AvxyydDbGVAHmARNcrP/QaT3AU8Cv1m+M7R3reWCSiPiISG5gLNDnButaBngdeMgYUwF4\nxSF5PjDBGHM/UAM4eyOxrfjPA02AWsaYSsCDVhxf57zGmDo3Gj+dMl09vjAY23HNEmPMFmNMjjyw\nJSLuwEdWHZRSSimlsuXYhRO8+H9DeaHuM2wf8gPP1mzH0m1f2dONMTy/dAgiwvcvfMb6V5aTy8uP\nV5a/lSrOoi0rebPZK2x97XseLR9G90UDuWw1dp29unwEl2Ivs7rPIlb3WcTFq1EMWDESgCcqN+X4\nhZOpGvufb19FnZLVKRZQxL7uh73hLO32Mb+8soKTUadoM7sn9+YrxoYBXzG+5RuM/uF9ewPy4Lmj\ndF80kJ51OrF50LfM7jSRBZuXseJ/1/ujkkwSvx7exKrn57O271L2nD7AvD8+B2DWUxMo6l+Id54Y\nwq6ha5n39AfZOtbGGPsNguvrktl7+mC24gH8fmQrhfMWJMA3r8v0vWcOUb5wWUTEvq5C4RD2nT6U\nYdxlO77lw/Zj2TzoW4r4F2Tkd5PtaaO//4AdJ/ewrPss1r+ynEC/AHouHkxSclKW67352E4K5g7i\n11dX8uYrr7N857fs+nsvq/ssZufra/jsmamUKVgiy/GUyinZ7VkvApw3xsQBGGPOG2P+dpFvPVDa\nxfoNQLGUBbH9xbYDngMai4iPFXc38DXwGjAcmG+MOXyDde0JTDfGXLRinrXKLA94GGN+tNbHGGOu\nWmnDrd7/3SIyUxzfUdJ6A3jBGBNlxYk3xowzxqS5pZjS82+NGphmjTRYAxR0yFNNRH4Wka0i8oOI\nFLHWh4vI+yKyBXjZKW5ZIM4Yc95aLiUiG62e/tGuRhyISJiIrLJeB1kjDPaIyGxAHPJ1EZFN1uiJ\nGVbDHBGJEZH3RGQnUBv4BWiUzo0EpZRSSqlMrdq9hsrFytOqcjM83DyoW6omjcvVs6fvOrWP3X/v\nY8RjA8jjkxtfTx9ea9yHDUe3curS9T6Xdg+0oFLRcni5e9L7oafx9vDmpwO/pSnvzOVz/HL4D4Y2\neQl/37z4++bljSYvEX5wA2cvnyePdy5aVGzE/21fBUBSchLLd35Lx9AnUsXpW+85Anzzks/PnwZl\nH8LT3YOO1Vri4eZBWJna5PXJw55TBwBbb/2j5RvQuFw93N3cKZU/mKcffJIVO79LFXNQoxfI5eVH\n/tyBNA6px65T+3LsOAM0KFuH9Yf+4NfDm0hMTuSHvT+z9fiudG9qZGbrX7uYsPYjRjdPfxj8lbir\n5PHJnWpdXp/cmZbZs05nivoXxtvDiyerPMauv23HItkks3znd/Rv0IvCeQvg5+XLsGYvc/hcBDsz\nGE3hrFhAIXrU6YSXuyc+3j54untyJf4ah84dJTE5kaL+hShTQBvr6vbLbsNqNTBcRA4Aa4Clxpif\nXeR7HHD1EEozYKXDch3gqDHmsIiEA82BlPFCI4FtQDxQPRt1LQsgIr8B7sAIY8z31vooEVkOlLD2\nY4gxJgmYZowZZW23ANsogq+dA4tIXiC3MeboDdapNRAClAcKAX8Cc6yh81OBlsaYcyLSARgDdLO2\n8zLGuDoGD2E7Rik+AD4wxiy2ev4z8xbwqzFmlIg0B7pb+3c/0AHbqIQEEfkQ6IxtREIu4A9jzICU\nICJyCKgCbHUMLiK9gF4ABYMKcijkAv91sd6JehzULafXmbod9DpTWXH6XBQAESWjuBKU/sfP/b/+\nhf+9gamuqVyl8pF88CSHQi6w5eJB4pMSeHBy81TbeXl6scn/IBXKepDomYxXubypYgQWDmK3dwTl\nQy5wYdc1rp5P4FDIBfYdsvXoxtf04ZC7LX9SaT+YDpsCDlKutBsPt2nAkLHD6Ni3Czt27yROEgl+\nvAKHPC7Y9+tKFQ8OBdm2v7YrmVzRqcv39PPiSNA5DoVcYP+Xx9ix5398dyDcnm5MMvkDC3Ao5AIn\nky7h5ubGxVDDRWwxYncZzl2KtsdM9EzmTJErN/W3lz8kmH4+L/LWt5M5vyKSiuUqUL9OXf4+cypN\nXMdj5squfbsZsXQ0/Xr14Z4693MI1/kSCrtx5tz5VHGOHD6Ll79PhvsSX97Tnn4hKYGYeNu+X4y+\nSHxSPEmhfhwqfH17/wB/tuc+Qt6QYlzzS+BC/mtp4p+45xIB1vWQr0h+e3qsdyKV2tagoe9J3vx5\nEidP/80DFavQ/amuFCtcNIMjqlTOy1Zj3RgTIyLVgLpAA2CpiAwxxsy1siwUkWtABNDPYdOFIuIF\n5AYcn1l/ClhivV4CPIPVWDfGXBGRpUBMSk/+DfIAygBhQHFgvYhUstbXBR4AjgNLsfXsfwI0EJHB\ngB8QCOzBRWPdmYg0BcYDAUAnY4zLZ9SBesBi68bA3yKS8hBMCFAR+NHqzHcHTjlstzSdeEWAcw7L\ntYFW1utFwMRMql4PaANgjPlGRC5a6xsC1YDNVn18uf6oQBLXb6ikOAsUxamxboyZCcwEqFT0flN6\nf2Am1fn3OxRyAT0O6lbT60zdDnqdqazwibJ9hAs+EkCR8+lfL2WTi/PL8U2prqmrhy/iliyU3h/I\nlaul8fP0YfvAH3ATpwGiBtgPHgluxO+7ROmithjGGC6cjqRiXDCl9wcSGOmL31VPSu8PJM9l2wBQ\n701xBAcWB+Bo5HEAakSVoeD+QEpTixn+xdm/cge/7PuZ9hWbU+5wwXT3yzF+Co8ENwqdykXp/YGU\n8biHslXuZWTzgWkPwH44/1dexEiq7Z1jeiV62OPdjNKF2/Nit/b25VazulG/xINp4rrapxTrD21k\n5BejebflUJoGhcH+9Mur7VWRKYfmpIpz5n8nqBIQkuG+FP8rL6XFlu54fJJNAF7uXnhsv0bpkrb0\nK/FXiY6K5oGYkpTeH0j+JH98/75+PM9cPpcqZmCkL7muednTD4VcoPShQN4I6QUhvbgUe5kR377H\nR+9PZ0nXjzI4mkrlvGxPMGeMSTLGhBtj3gL6Ak86JHc2xlQ1xrQyxqR6lh0oie1Z9qlgf975SWw9\n9RHW+mYiksdhu2TrJztOAF8ZYxKsHvAD2BrvJ4AdxpgjxphEbD39odYQ/A+BttYz6LMAn3SOwSUg\nRkRKWMs/GGOqArsBr2zUVYA91rGraoypZIxp4pCe3hiha+nV8SYJMM+hPiHGmBFWWqx1s8GRj1UX\npZRSSimSTTJxiXHEJ8YDEJ8YT1xiHMnG9ce6FhUbs/PEHr7atZrE5ER+O7KZH/f9Yk+vVLQc5QqX\nYdR3k+0Tz0VeucjXu39MFeeLHavYfWo/CUmJzPx9IbEJsTQok3bqoEJ5ClC3VA3eWT2FS7GXib52\nibGrp1K/dG0K5rk+127Hai35ZMNifj64gfZOQ+BvVOcH27BqzxrW7v+VhKREEpMTOXjuKH9EbM9y\njPy5A4mIPHFT9UhMTmT3qf0kJSdxOTaGSetmcir6LN1qdbTnSUhKJC4xjsTkJPu5jLPOJcD3f/5E\nv8+HMbnNWzS9PyzTMpvcX59rCbHM/G0h8UkJ/HZkC6v3/kzHUNezzWfGTdxoXaUZk3+ayZnL57iW\nEMvYH6ZSMv99VClWHoCKRUL4cf96Iq9cJCbuCu+tm5Fp3N+PbmHX3/tISErE28MbX09f3Nzcs1VH\npW5GdieYC3Ga+bsqcCwr21oTx70J1BKRcth6b/9njLnHGBNsjLkPW49t6+zUzYWV2HrVsWY4Lwsc\nATYDASJSwMr3CLbh6CmN3vPWpHaZzdL+DvCRiARYZQiZN5zXAx1ExN16Jr2BtX4/UMCawA8R8RSR\nClnYx72knhtgI9dvnnRMm91lfTpZZT4K5LPWrwXaikhBKy1QRO7LIE5ZbDcqlFJKKaXYdGwH5cc0\noPH0pwB4ZGp7yo9pwKZjO1zmDw4szrT2Y5i2/lMeGNeUORuX0D70cXu6m7gxo+N4jDG0nNmVyu80\nou0nPdM0dDuGtmTUd5MJHd+Ub/asZXaniWmelU7xXuu3yOXlR6NpHWk8/Sny+uRmYuvUXzX3RKUm\nnIg6Rei9lSkRdM/NHBJCCpZi1lMT+PSPpdR+73FqTGjO4JWjuXD1YuYbW/rUe44vd33PA+Ob0nVh\n/2zVIyk5mTe+Hs8D45vy8ORW7D97iKXdPiZ/7us93EO/Hkf5MQ348Jd5bIzYZjuX065/tHznx2lc\nS4jjpS+GU2lsQ/tPymR6m4/tSLWc1ycPn3SayHd/rqPquMa88fU43m4xiNB7KmVrHwCGNX2ZikXu\np/Ws7tSd3JpzMZHMfOpd3K3GdbdaHSmVP5hHprTj8RnPurxp4+x8zAUGrhhF6Pim1H7vcU5Gn2ZM\ni9eyXUelskucZ4HM0ka2IfBTsQ33TgQOAb2MMeetZ84HGmO2OG2Tar2IDMD2zLYbtmefP3bI+wS2\nSdsetZZHYBsGn+FwbhFJBhwnupsETAbew/acfBIwxhizxMrf2EoTbEO3exlj4kVkNLah+aex9cQf\nc+hRdi5TgIFADyAOiAF+A0YbY6Kt0QLVrWMTY4zJbW0zFWiMbQh+AjDHGPOF2L7Sbgrgj22o/vvG\nmFnpHVerDn7Ybj5UNMYY60bKZ9iGrX+PbaRDMbF9Nd0qY0xFEQmz4rUQkSBgMbZJ/37HNrt9NavO\nHbDNpu9m1bOPMWZjyr441KEQ8LUxpkb6Z8g2DP7LXnMyyvKfoMNG1e2g15m6HfQ6U7fDjVxn9d5v\nQ/9HetGqcrMcK98YQ9iUtgx4pDdPVGqS+QbqH0vf09TtUGpkna3pzEWWSnafWd+KbVI4V2lhWVlv\njHkvg/hfAV85LI/IYr3SGynQ3/pxzv8jUNnF+mHAsCyWabB9DZ3zV9GlpAc7vM7tsE3fdPLvwPYM\nufP6sAzqcNWaVb4htonyTmL7KjkjIh2xPQuPMSYC2zPxGGPCgXDrdSS2Brqr2Etx8ay8Y0Pd0gnI\nfFyRUkoppdQ/zJe7fiAhKYFm5RtknlkppXKIfs3Wv8dYoKb1uhowzerBj+L6bPK3UhSw4DaUo5RS\nSil12zw44THc3dwZ98RQvNw973R1lFL/If+4xro1ZHuti6SGVg/xrSp3OravSHP0gTHm01tV5o0w\nxpzBGo1gjPkF21eo3c7y74rjoJRSSqn/tvWvLM/ReJsHfZuj8ZRSKqv+cY11q0FeNdOMOV9un9td\nplJKKaWUUkqp/6Zsf3WbUkoppZRSSimlbo1/XM+6+mfzLpqLkiNq3+lq3HHHw8Mp+ZQeB3Vr6XWm\nbge9ztTtoNeZul30WlO3xcisZdOedaWUUkoppZRS6i6jjXWllFJKKaWUUuouo411pZRSSimllFLq\nLqONdaWUUkoppZRS6i6jE8wppf5xVmz8mNa1nmfFxo/t65yXHWWUlp1tc3rdjcpqDLkSlGm+nKjP\nzbjT5TvKTl2yus3tPO85JTvXWU7WMbt/0zeSdqN/ozlxvm/kvSurbrbOOf0eeSNlu9omheN1FXXl\n3E3V0Tnm3SCnjl1On4Ob2e5GY91s/VLObU6e16z878zIrfrff7OxcvJz043kv1XvszdbL8c8KW72\nvN2K/9Pas66UUkoppZRSSt1ltLGulFJKKaWUUkrdZbSxrpRSSimllFJK3WW0sa6UUkoppe6on7//\ng96t38ixeOu+2cCLbYfnWDx1Z+zedoC2D/e509VQ6o7RCeaUUkoppf7DunXrxlffrORqzDW8fb0I\nrVWB5156ktx5cwHw3nvvMX3mB5w5eQ5PL08qPFCGZ/s9SYHCgQBs/X03Xy76kWOHTpKcnMy9JYvS\n+fmWtK51J/fqn+/NFydR+cFytOv62C0rI+rCJeZPW86W33aTlJhEoWL5Gfbe9cbx1t93s3jmV5w+\ncQ5vX29qhT3As33b4OXtac/z64+bWTbvB06fPIevnw+PtQuj7XOPuixv3TcbmD5mAd4+XgC4uw3k\ngTr3039U91u2j0r9k2ljXSmllFLqP6x///40froKPr7eXLl8lY/fXcSsiUt41WpAxcfH06N/B0qV\nu5ekxCRmT/4/xg78kMmfDQMg5vJVHmvbgErVyuLj682PX/3K6P7Teab5K3dyt1Qm4uMSGNHvA8pW\nLMG0pSPIndePExGn8fHzBmwN+Xdfn8FzL7Wlaeu6XDgfzehXp/H5p9/S+fmWAIR/9wfzpy/nlbe6\nUuGBMsTHJXD2VGSG5RYqmp8PvxgF3F3fCJIiMTER9ztdCaUsd2VjXUTeADoBSUAy0NsY84eIeACj\ngHbAFSv758aYMRnEKgRMBmoBF4F44F1jzAoRCQMGGmNaiMgTQHljzDgXMWKMMblzYL/CgSLANWtV\nE2PMWRF5Huhj7W8M0MsY86eIeAEzgOrYjsPLxpjwdGJ/AQw2xhzJoPwRQIwxZqKIjALWG2PWOOUJ\nwzomN7BfBYAFxphmWd1GKaWUUneHihUrcnDjr/ZlNxFOHj9jX3799devN6i8PWndpQkvPTWSy9G2\nj2L1m9ZIFa9Zm/r83yffsnnzZqSo6zIP7olg5sTFnDx2huAyxala4/5U6VevXmXulGVsDN9O99ih\nBJe4lx5D2lDknoKArdc5uExxTp84x57tBylZYiptejQgtHZFl+VdvXqV119/nYVLFhAfF8/9VUrT\n/dX2FCgcyLYNu5kyah6zvnoHT0/bR+NrV2Lp/vgQhk3qQ/mqZWhT+wV69O/AT99u4ETEaYJLF2fA\nmB5sWLuNr5asJS42nqat69obsQDHDp9k3tRlHNn/F17entRrUoOOvR7Hw8Ods6ciERFeGv4cy+d/\nz/mzFwmpWJJ+bz5LYH5/+vbty96dh9i/+ygrFqwmsIA/05aOZOemvcyftpzTJ8/j4elOiTLFab35\neZf7nJmfvt3IlZhr9Br0FB4etubpvSWvn7DIc1EkxCfS6PE6uLm5kb9gPqo/VImIgycASE5O5rMP\nV9ChW3MqP1gOAF8Pd+4rXSxb9cnIr2u2sPDjL7kcFUPVmuVptLKzPe3YsWO8M/gj9v3vMF7eXtQK\nq0qXF1rZe+/b1H6BMR8P4P4qpQHb0PoRL33AF79OB65fS+dOX2DXlv082a4ND7csz8fjF3JgTwQi\nULBIfvqP6kax+wrn+L4plZG77pl1EakNtABCjTGVgUbAX1byaKAoUMkYUxWoC3i6DGSLJcBKbI3S\nksaYakBHoLhzXmPMV64a6tmov4hIRse1szGmqvVz1lq3yBiTsk/vApOs9T2tulUCGgPvuYotIhUA\n94wa6s6MMcOdG+rZISIexphzwCkReehm4ymllFLq9ls+/wc6NXyFp5sM4I/1O9Mdxgywa8s+ggrm\nI49/Lpfpxw6d5FJ0DJUqVXKZfiXmGm/3n0btBqHM+2EiXV9uy/fL16fK07NnT04eO8242YM5ffo0\nZULKMHbghyQmJtnzrF31O807PMKC1e8xdOhQxg+ZkW6v7quvvsrGjRsZN2swM1aMIY9/LsYO+pCk\npGSq1iyPt48Xm9fvtOf/5cfNBBXMR/mqZezrfv7hD14b/zxzv5uAp7cHb/V9n5jLV/nwi1GMnPYK\nXy5aw96dhwFbr/SbL06mZv0HmPXVO7wzczA7N+9l+bzvU9XrtzVbGP3RAGZ/9Q6x1+JYMutrAKZN\nm8b9VUrTruujLFr3PtOWjgRgytvzeKx9Az5bM4nZX71D25sYIr97236K3FOAqW/P45mmA+nXYQRf\nL15rTy9RpjihtSuweuUvJCUmcfZUJJt//R816lcB4O/jZ7lwPpqLFy7Rr8MInntsEGMGTOfUX2fT\nKxKA82cv0q35a/RsOZSOHTty5u/zGeZPTkpm5x97mTT/Dab930iOHviLKVOmALZe8ObNmxMQmJcZ\nK8YwbtZg9u06wrypy27oWKxbtYHm7cL4bM0kWjz+KAs/Wkn+QoF8+s145n43kX5vPkOuPH43FFOp\nnHDXNdax9TyfN8bEARhjzhtj/hYRP2yN137GmFgr7bIxZkQGsR4B4o0x9vE1xphjxpipzhlF5DkR\nmWa9LiEiG0Rkl4iMdso3SEQ2i8j/RGSktS5YRPaLyHxgN3DPjeywMeaSw2IuwFivywPrrDxngShs\nvezOOgNfOtSxu4gcEJFNIjIrZb+c9mOuiLS1XjcTkX0isg1o45Anl4jMseJsF5GWDsfqKxFZB6S8\nq6+06qGUUkqpf5g2zzRl0dr3+WjZ2zzxVCMKFy/gMt++/x1mwUcr6T34KZfpURcu8e7QmbTs1Igy\nZcq4zLPlt134+HrR+ukmeHp6UKZ8MA0fr2NPP3/+PIsWLaLXoKcICMyLl5cXHZ5qy8XIaA7uOWrP\nV7NeFarWuB93D3c6d+5MqXL3sf6HTWnKS05OZt68eYwePZqgggH4+HrT7ZV2nIw4zaE/I3Bzc6PR\nEw+x5uvf7dus/fp3Gj2Rug+i5VONyF8wH94+XtRuEEpU5CU69GiOp6cHJcoUJ7h0MQ7vOwbYhocH\nlylG09Z18fT0IKhgAG2eaUr4d3+kitm+e3PyBuTGL5cv9Zo8yOG9x1wesxQeHu6cOXmOqAuX8PTy\npGJo2QzzZ+RyVAy7tx6gTPlgPlk1jpdHdOWLed/xs3UM3dzcaPBYbb6Y+z0dwl7i+TbDKFH2Hh5p\nbjtXl6NjANj403aGTe7LjOVjyF84kLGDPiLJ4aaKo/JVS/P+Z8OY/fU7vDvnNXx8fBj50hRir8Vl\nWNcuL7bC18+HgMC81KhXhS1btgCwadMmDh48SNeX2+Lj601QwQA69XqCdas2YIzJMKaj2g0eoFL1\ncogI3j7eeHh6EBV5iTN/n8fd3Y3g0sUJCMyb5XhK5ZS7cRj8amC4iBwA1gBLjTE/A6WB48aYyzcQ\nqwKwLRt1+AD4yBgzX0Tss2yISBOgDFADEOArEakHHLfWP2uM2ZhJ7E9FJAlYBow21juJVU5/wAvb\nTQaAncATIrIY2w2AatZv5/9EDwGLrThFgTeBUOAytsb+TtIhIj7ALKvMQ8BSh+Q3gHXGmG4iEgBs\nEpGU3vhQoLIx5oK1vAXbyAdXZfQCegEUKlSI8PDw9KrznxETE6PH4SbIlSDCw8ORK0H2dc7LjjJK\ny862Ob3uRmU5RqIHEplxvpyoz8240+U7yk5dsrrNbT3vOSQ711lO1jG7f9M3knajf6M5cb5v5L0r\nq262zo55CnsH8WAld8a8MpGZn36Im5ubPf3P3Xt5Z/RHvNinNw+WexgiU297IfICI96cStXKD/B0\n+27pln0hIo4CQYVwu5Dfvq5Q3vsgeSvh4eHs27cPgFe72J5yFAZijCExKZnIwwlI8SBI8KSgf/FU\n117BwCJc+CsWiQxCYnJDshsSGcTKlSuJi4vj7Nmz5Iq35fcD/P39bfGKBtHo4RZ8PqcP5/carl69\nytEDJxj2xjAk8noDLZ/nvfbyfBID8ff3x/3i9Zsa3u65iD1vK/Ps0Rj27TxCl0YDru+4MSQnJ9vq\nd9HWmA10D74eMymIazEJSKTtfxwJnshVv1Tv468PHcKyz1fwaqcx5PXPS5NmjcgXWy5b59/XIy9B\nQYE83qgdXIIyBQtRv359Nq/ZS3j9cHZvOMXUt+cx+PUBVA2tyuVLl/hw6gymvbmEVwb0wzfe9pG8\nRfPHKewdAlfg6fZd6bK8K6d2xXPPvcXT1KGIj1WXixBIAbp0qcbiJYs5+HsklaumHYkh0Xlxc3Mj\nIDkYrEETPiaAg8ePIJFBfP/H9+TNmxffq0Xhqi29SK4yxMcncOmIJwEB/raV0f724yjRecFw/bgm\neFIw4J7ry4kePNu5B58v+YKx/WcQFxtH7Ydq0eXZTvj6+rg8lpkd89v13ngj2+XEe112Y+Vk2dmt\nl2OeFDd73m7F/+m7rrFujIkRkWrYhrg3AJaKyBCcGt0i0hV4GQgC6hhj/koTzImITAcextbb/mAG\nWR8CnrReLwDGW6+bWD/breXc2Brpx4FjWWiodzbGnBSRPNga608D8wGMMdOB6SLSCRgGPAvMAe7H\n1hA+BvyO7bl2Z0WAc9brGsDPKY1oEfkcyOi2azngqDHmoJX/M6yGtbWvT4jIQJdsZLkAACAASURB\nVGvZB7jXev2jQ0Md4Cy2RxTSMMbMBGYCVK9e3YSFhWVQnf+G8PBw9Dhk34qNHxNWq12qSWmclx1l\nlJadbXN63Y3KagyJDMIEZTzRT07U52bc6fIdZacuWd3mdp73nJKd6ywn65jdv+kbSbvRv9GcON83\n8t6VVTdbZ+c8SbkvEBl5gVi/U/jm8iGsVjuGv/8S742eTd83nqZW2P0YUp/zs6cieWvo+9SsV5Xn\nXmoFXCCsVnuXZQfe58W5786QHHge2xOLcPbyMXBLIiwsjPLly/PCCy8w/fMR+OfLQ+taz7Pym8/t\n15khEjwTOBt9ItW1d/blU4SGVMAERWJyx4BbMiYoklY1euHt7U2hQoW4nPsQANeuxhIdHU1QKU9M\nUCT5gqDaQxVZ+/s3xFy6So36VchTMsG+nwD4R1+vg0N8O88EjN9VTFAkBYJzUblGuVQzq6cwRGLi\no2yv813EWJ/tHWOG1WqHeCfa46UIDsrDgAefwRjD3p2HGPXyVDp3fCbd9/qMzn9wxYIcOnIo1bbG\n5xp4JxAWFsany6ZyX+lihDa7D7iIf0Fo1LYGH4yaiwmKpGhuH9us8LmvXD8uXlaLOV8UJsg30zqE\nVW+NCCTniXa5D8b/Egip6+h3jXz58mGCImnWrBnjx48nNtcp+zPqpw8dxMvLk7wlEzASiY+fN7Fe\n5zBBthsrkfHHU8f0TEByXbMvS2QQeUsm0H1oS7rTktMnzzFu8Mes+NaNp3o97nI/Mjvmt+u98Ua2\ny4n3uuzGysmys1svxzwpbva83Yr/03fjMHiMMUnGmHBjzFtAX2wN50PAvVZDF2PMp9Yz3tGQ7qSN\ne7D1AKfE7QM0BFyP7XKqhot1Arzj8Mx5aWPMJ1baFRf5nffrpPX7MrAIW8Pa2RKglZUv0RjzqlVW\nSyAAOOBim2vYGtI5TYAnHfb3XmPMXivNeX99uD5xnlJKKaX+AaIuXGL+/PlcuWxrZP19/Azzp6/g\n/iql8M1l+2ixbNkyJr4xi1dGdKVW2ANpYpyIOM3Q3hOp27g6z730ZJp0Z9UfqkTs1ThWLvyRxMQk\nDu8/nmoIesGCBenUqRMzJywh8qytUXsl5gobw3dw7WqsPd8f63fyv837SEpKZvHixRzed4y6TdL2\nxbi5ufHMM8/w5ptvcuFcFHGx8cydsoxi9xWmdPlge77GLR9m7aoNrP9hE42fuLlpeMIercnhvcdY\n+/XvxMclkJyczOmT59i2YU+WY+QLzMvpE+fsywkJifz0zQYuRcUgIuTK44e4Ce7u2Zu7vMFjtbkc\nHcN3X4STlJTM0YMn+GX1ZmqFVQUgpGJJjh0+yY4//sQYw6WoGH786ldKhdj6bby8PXmkeW2++b+f\nOH/mAgnxCSya+TX3lCxCkXsKuSxzy2+7OH/2IsYYLkdfoU+fPuQJyE3ZiiWytQ81atSgdOnSzJ3y\nBXGx8Vw4F8XimV/ToEVt+42gUiH3Ev7tBhISEjl7KpKvl6zNJKptQrszf5/HGEOu3L54eLrj5i7Z\nqqNSN+Ou61kXkRAgOaWnF6iKrdf6qoh8AkwTkd7GmFgRccc2bDw964CxIvKCMeYja11WZof4DdtE\ndJ+R+jnsH4C3RWShNQKgGJCQxf3yAAKMMedFxBPbJHprrLQyDvvbHEjp5fYDxBhzRUQaA4nGmD9d\nhN+L7TGBCGAz8L6I5MM2DP5JYFcGVdsHBItIKWPMYcDxIbQfgH4i0s8YY0TkAWPMdtdhKIvteX2l\nlFJK/UOICHPnzmXzlj9ISEgkT0BuQmtVoGPP618KM3DgQOLi4pn05ieptv1g0XAAVny2mgvnoli1\n9CdWLf3Jnj57Vh78SqUtM1ceP954rw+z3lvC53O+JbhMcZq1rsfaVdcb7LNmzeLZPk8yvM8kXu08\nBm8fb8o/UIKqNa/PGt+wRR2+WrKWca99TPB9JRg0theFiuZPWyAwefJkhgwZwuBu40hISCSkUkle\nn/AC7u7X+62q1rwfNxH8cvvaZzfPrnxB/oya/ioLPlzBwo+/JD4ungJFgmjSqm6WY7To2JBpY+bT\npXF/ggoEMHHeUH5bu5W5U5eREJ+If77cdOjRgvr167Ni497MAzopWCSIYZP68un7nzN/+goC8/vT\noXtzHm5kmx7p/iql6D3oKeZOWca50xfw9PagQtWy9BrY0R6j68ttmfPBF/R/egziJoRUKsnQCS/a\nj+sXc79jWPepjP6kHwB7th3go3ELuRpzDd9cPjQMa8yID17C1y97fU4eHh6sWrWK9k+3pFeroXh6\neVIrrCpPv9janqfHgA5MH7OAZ5sOpHhwYRo8VpujH3yeYdyjB/5i/rTlXI6+gq+fD9UfrkSrzk2y\nVUelbsZd11jHNrR8qvWMdCK2HvWUYdlvAG8Du0XkMrae3HnA364CWQ3MVsBkERmMbaj4FeC1TOrw\nMrBIRF7DYeI2Y8xqEbkf2GDdrYsBuuB6aLozb+AHq6Hujq2hPstK6ysijbA1/C9iGwIPUNDaJhk4\niW3YvCvfAGHAGmuY/Vhsz7VfwNYYj06vUtZNj17ANyJyFfgFyGMlvw28D/zPmoX+KLabDK40sOqh\nlFJKqX8I/3x5WLduXYZDN48ePZpher9hz9Bv2DNp1reu1Tnd7UIqlWTi3KGp1rXv3tz+2s/Pj069\nW9Kpd8s0w+BT5A3ITfdX21tlpf6+7kea1+aR5rXty7ly5WLq1Kk80rlCuvvh5uZGgcKBVKlxv71X\nNsXyDR+lWnaOD/D2h/1TLd9ToghDJ7zosqyCRYIwxmRY5zLlg/lg4fBU2w2b1Dfd+mdHxdCyvDf/\njXTTGzSvTQOn/XTk6eVJ70FP0XuQ6wkH2z73KAs/vn5unu33JM/2uz76IrPvWa8YWtb+FWspOvZo\nkWq7EiVKMHSi6+MMcF+pYrw7Z0iqdY+1C7O/dj5vAE+/2DpVg1+pO+Wua6wbY7YCddJJSwCGWD9Z\njXcKWy+5q7RwINx6PReYa70+Cji+Mw1z2OYDbBPQOXP9xZ7Xt7uCbYI4V2kvp7M+AgjJKK7lC+An\nEXnLGJOE7avgZlq9+SuwzdSO48z5xpjnHF5/j+3ZdefyrwG9Xayfi3WsHDwBtHTOq5RSSin1T7Bn\n+0EO7T3GwDE973RVlFIKuAsb6+rGGWOuichbQDFsk92NsHrqfbDNrr/yVpYvIgWAScaYi7eyHKWU\nUkqpW2FQt3GcPnGWHv074J8vT+YbKKXUbfCvaKyLSBDXv+/bUUNjTMZTId+a+vyBbdi7o6eNMRk9\nO35TjDE/OLwemFHeW1D2OW7xDQGllFJKqRSuhi7fjAlzsjxoUymlbpt/RWPdapBXvdP1SGGMqXmn\n66CUUkoppZRS6p9LjHH1DWVK3RrVq1c3W7ZsudPVuOP0e9bV7aDXmbod9DpTt4NeZ+p20WtN3Q4i\nstUYUz2zfHfl96wrpZRSSimllFL/ZdpYV0oppZRSSiml7jLaWFdKKaWUUkoppe4y2lhXSimllFJK\nKaXuMv+K2eCVUv8wsVPBp1/a5diptuWU146/U/I5pjtyzuO83lVZruK7qtfNyCxmRvV1TnNOd46Z\n5lhVSntsXZWR2T66iuEYJ6P1zufVOb/zuciofunFSe8cZ3UbV3nS27eM9ts5PTvb38q0m02/U3Vy\nzJPR36qr9MzOf0Z/n5ldR5m9fyillFI3SXvWlVJKKaWUUkqpu4w21pVSSimllFJKqbuMNtaVUkop\npZRSSqm7jDbWlVJKKaXUHXXixAlEhIiIiByJFxERgYhw4sSJHImn7pywsDBGjx59p6uh1B2hjXWl\nlFJKqf+wKVOmULNmTfz8/ChdunSa9Pnz51OnTh3y5ctH/vz5efTRR9m1a5c9feHCheTOnTvVj7u7\nO0888cTt3I1/nREjRtCoUaNbWkaPHj2oUKECHh4e9OjRI016hQoVUp1XX19fRIRt27YB8MsvvxAa\nGkpgYCD+/v6EhoayfPnyDMsMDg7Gx8cnVVzH60kpdZ021pVSSiml/sOKFi3K4MGDeeONN1ymX758\nmZEjR3LixAlOnjxJaGgoTZo04erVqwB07tyZmJgY+8/Jkyfx8fGhS5cut3M3VDZUrlyZSZMmpXtj\nZc+ePanObf/+/SlfvjyhoaEAhISEsGLFCiIjI4mKiuL999+nS5cu7N27N8NyZ8+enSpupUqVcnzf\nsisxMfFOV0Epu9vaWBeRN0Rkj4j8T0R2iEhNa324iFS/nXW524nItyIScAP53xeRepnkeU5Eplmv\nnxeRZ1zkCRaR3TdYVy8RWS8i+lWASiml1D9M27ZtefLJJylWrJjL9D59+tC4cWNy5cqFt7c3b775\nJqdPn2bfvn0u8y9YsIA8efLQunXrdMs8ffo0TzzxBP7+/pQtW5bvv/8+TZ5Zs2ZRsWJF/P396dmz\nJ6tXr7anjRgxgoYNG/Lqq68SFBRE8eLFGTduXIb7+dFHHxESEoK/vz+1atXil19+AeDixYv4+vqy\nffv2VPnr1avH22+/DdiGYvfv35/WrVuTJ08eSpUqxdq1a1mzZg0VK1Ykb968tG7dmsuXL9u3j4yM\npHv37txzzz0UKFCA9u3bc+bMGXt6cHAwY8eOpWHDhuTOnZuKFSvy+++/A7B06VLGjh1LeHi4vff5\nyJEjRERE0LRpUwICAsiXLx+hoaHs378/w/3OyEsvvUTTpk3JmzdvpnkTExOZM2cOvXv3tq8rWLAg\n9913HyKCMQY3NzeSk5M5dOhQtuvkysWLF3nyySftx/7LL79MlZ7euQXXIxQch9aHh4fj4eHBggUL\nKFmypP3GxZQpUyhRogR58uShWLFiDB06NEf3SamsuG2NdRGpDbQAQo0xlYFGwF+3q/x/GmPMY8aY\nqKzkFZEgoJYxZv0NxP/YGDM/2xW8XraHMSYeWAt0uNl4SimllLq7rV27Fj8/P8qUKeMyfcaMGXTr\n1g1PT890Y3Tu3Bl3d3eOHz/O+vXrmTt3bqr0WbNmMX78eBYuXMjFixfp3r07bdq0SdUIXL9+PYUK\nFeLUqVN8+eWXTJo0iUWLFrksb/Hixbz55pvMnz+fyMhIevbsSbNmzTh27Bj58uWjXbt2zJ49257/\nwIEDbNiwgW7dutnXLViwgCFDhhAVFUWHDh14+umnmTlzJuvXryciIoL9+/czZcoUAIwxtGrVChFh\n9+7dHDt2jDx58tCpU6dU9ZozZw5TpkwhOjqaxo0b8+yzzwLQoUMHhg4dSlhYmL33uWTJkgwdOpR7\n772XM2fOcP78eebOnUu+fPnSPc45aeXKlURHR/PMM2n6eggICMDb25u6detSs2ZNmjRpkmGs/v37\nExgYSNWqVZkxY0amZc+bN48BAwYQHR1N3759efbZZ+0jOzI6t1mVlJTEt99+y/bt21m+fDkHDhxg\nyJAhrFq1isuXL7Nnzx59rEPdEbezZ70IcN4YEwdgjDlvjPnbOZOIPCUiu0Rkt4iMd1jfTES2ichO\nEVlrrRshIgMd8uy2eoaDRWSfiMwVkQMislBEGonIbyJyUERqpFdJK+Ycq7f/iIi85JDWRUQ2WaMC\nZoiIu7U+RkQmWKMG1ohIDYftn7DyuFt5NlsjC3pb64tYvdI7rPrXtdZHiEh+EcklIt9Y+71bRFw1\niJ8Evneo52PW/m8VkSkisiqd/Rxova5mxd8J9HHIk16dw0TkFxH5CvjTyr4S6JzecVVKKaXUP9+B\nAwfo2rUr7733Hnny5EmT/ttvv/Hnn3/Ss2fPdGOcPHmSdevWMXHiRPz9/SlcuDBvvfVWqjwffPAB\nw4cPp0qVKri5uVGrVi0aNGjAkiVL7HmKFCnCa6+9hpeXF9WqVaNXr15pGv0pPv30U3r37k3NmjXx\n8PCge/fuVK5c2d6479WrF4sWLSI2NhaATz75hGbNmqUabdC+fXtq1qyJu7s7Xbp04dSpUwwaNIjA\nwEACAwNp0aIFW7ZsAWDr1q1s3bqV6dOn4+/vj5+fH++++y7r1q1LNeld7969qVChAu7u7vTo0YND\nhw4RHR2d7rHz8vLi9OnTHDlyBHd3dypXrkzBggXTzZ+TZsyYQYcOHQgISDvwMyoqipiYGFasWMFj\njz2Gh0f6gy3nzZvHkSNHOHPmDBMmTGDo0KGZNtg7dOhAnTp1cHNzo1evXkRHR3Pw4EEg83ObVePH\nj8ff3x8fHx88PDwwxtgfAwgICKBWrVo3FE+pnHA7hy2vBoaLyAFgDbDUGPOzYwYRKQqMB6oBF4HV\nItIK+A2YBdQzxhwVkcAslFcaaAd0AzYDnYCHgSeAoUCrDLYtBzQA8gD7ReQjK14H4CFjTIKIfIit\ncTofyAWsM8YMEpEVwGigMVAemAd8BXQHoo0xD4qIN/CbiKwG2gA/GGPGWI1/P6e6NAP+NsY0t46R\nv4v6PgR8YaX7ADMcjtXiLByrT4G+xpj1IjLBYX16dQYIBSoaY45ay7uBB10FF5FeQC+AQoUKER4e\nnoUq/bvFxMT8t4+DKQQSnnbZFLItp7x2/J2SzzHdkXMe5/WuynIV31W9bkZmMTOqr3Oac7pzTKd9\nibkSQ/iGQmmP143uo/P5cY6T0Xrn8+qc3/lcZFS/9OKkd46zuo2rPOntW3r74So9O9vfyrSbTU8n\nLSbGus5uVZ0c82T0t+oqPbPzn9HfZ2bXUWbvH/9A+/bt49q1a+n+f4qIiGDQoEG0adOGcuXKucw3\nduxYqlevzrFjx9Lt2fzzzz/t8f76yzbI8uzZswBs3LiRiIgIDh8+zPPPP8+LL75o3y4pKQk3NzfC\nw8OJiIggICCAn3++/lEyLi6OAwcOEB4ezunTpwHYsGEDBQoUYP/+/VSpUiVVnXPnzs3GjRvt6/z9\n/Xn77bd55JFHmDVrFgMGDLCnRUVFERsba19OiR8REcGVK1fs+3D8+HHCw8MJDw8nLi6OoKCgVPvu\n5eXFypUrqVixIrGxsURFRaWJuXr1agoUKEBERAQXL15MVedWrVoxf/58GjVqRGxsLPXr16dnz574\n+vq6PNZZdfr0adzd3dM99ydPnmTt2rVMmzYtw88vAQEBrFixgjNnzmTYE51yU8PT05PWrVszffp0\nQkJCXOZ1PvYp1q9fz8WLFzM9t66OY1RUFEePHiU8PJwdO3bg5ubG4cOHOXLkCDExMRw/fpzXX3+d\nd999l65du1KyZEmeeeYZHnzQ5UddpW6Z29ZYN8bEiEg1oC62hvBSERlijJnrkO1BINwYcw5ARBYC\n9YAkYH1Kw9AYcyELRR41xuyy4uwB1hpjjIjsAoIz2fYbawRAnIicBQoBDbHdRNgsIgC+wFkrfzzX\ne7Z3AXFWg96xrCZAZRFpay37A2Ww3UiYIyKewEpjzA6nuuwC3rNGGawyxvxCWkWAc9brcsARh0b0\nYqyGsivWc/EBDkPoFwCPZlLneGCTQxkYY5JEJF5E8hhjrj+wZUubCcwEqF69ugkLC0uvOv8Z4eHh\n/KePQ+xU8Gmfdjl2qm055bXj75R8jumOnPM4r3dVlqv4rup1MzKLmVF9ndOc051jOu1L+MZKhNU6\nmvZ43eg+Op8f5zgZrXc+r875nc9FRvVLL0565zir27jKk96+ZbTfzunZ2f5Wpt1sejpp4eHhtuvs\nVtXJMU9Gf6uu0jM7/xn9fWZ2HWX2/vEPFBERga+vr8v/T9u2bWPw4MEMHz6cfv36udz+woUL/PLL\nLyxZsiTD/3GlS5emT58+BAcHU6pUKQDWrFkDQK1atQgODqZEiRKMHDmSdu3aAWn/b4aHh7Nu3Trq\n16+P9bmMNWvWULZsWcLCwuxfAVe7dm2KFy9OSEgI3t7eqWIMHTqURx55xL6uf//+rFixggcffBBf\nX1+GDBmCu7s7YGuElihRwp7XOX5KnU6cOEFYWBh+fn5MmjSJqKgo3NxcD2T18fHh/vvvTzfm+vXr\n7fEctWpl6286cuQILVu2ZMOGDYwaNSrd450Vc+fOxcPDI93zNnjwYKpUqZLq5kl68ubNi5ubW5Y/\n52zYsIF9+/alm9/52Kd44IEHePjhhzM9t1u3bmX//v2p0q9evZoqpojQoEED4Pq1FhYWxvDhw4mP\nj+fjjz/mtddeIzIyEj8/5341pW6d2zrBnDEmyRgTbox5C+iLbfj2zUgk9T74OLyOc3id7LCcTOY3\nKRy3TbLyCzDPGFPV+gkxxoyw8iQYY4xzWcYYx7IE6OewfQljzGqrkVwPOAnMdZ70zRhzAFsv9i5g\ntIgMd1Hfa077nlNc1tlKu+IivzcQewvqoZRSSqlbJDExkdjYWBISEjDGEBsbax8ODrah7Q0bNmTM\nmDHpNtTBNrw5f/78tGjRIsPyihcvTlhYGIMHD+bSpUucOXMmTWPz1VdfZcSIEezYsQNjDHFxcfz6\n66+pJrU7deoUEyZMICEhge3btzNr1iz7M9/OnnvuOWbMmMGmTZtITEzk008/ZceOHameIX/66afZ\ntGkTI0eOpGvXrvaGenZUr16dKlWq8NJLLxEZGQnAuXPnUg3jz0zhwoU5fvw48fHx9nVLly7l6NGj\nGGPw9/fHy8vrpuoZHx9PbGwsSUlJJCUlERsbm6q8lDxz587l+eefT7P9smXL2LVrl/0amjVrFuvW\nraNp06Yuyzt27Bg//fSTvcyff/6ZyZMn06FD9qc9yuzcVqtWjW3btrF161YSExOZNm0aR4+6uMHo\nYP/+/Xz//fdcvXoVT09P/P39EZF0b7wodavczgnmQkTEcSaSqoDz+KhNQH3rWW134CngZ2AjUE9E\nSlixUobBR2BryCIioUCJW7cHrAXaikjBlDqIyH03sP0PwAtWDzoiUtZ6Hv0+4IwxZhYwG2t/UliP\nBlw1xnwGTHBOt+zFNkwfYD9QUkSCreUM3/2sSeyiRORha5Xjc+cu6+wqjtgmuTtvjEnIqDyllFJK\n3V1Gjx6Nr68vvXr14siRI/j6+qYaVj1s2DCio6N59dVXU303tuOM2wAzZ86kR48eWWo8Llq0iLi4\nOO655x7q1q2bZtKynj17MnjwYLp27Uq+fPno0KEDb7/9NgkJ1z9m1K1bl1OnTlG4cGFatGjByy+/\nnGYCtxSdOnXirbfeokuXLgQFBfHRRx/x7bffct991z/K5cuXj7Zt27Jz5066d++epWOXHjc3N778\n8kuMMVSrVo08efJQq1atG3oErl27dtxzzz0ULlyYgIAAjh49yvbt26lfvz65c+emQoUKhIaGMmjQ\noGzXs0mTJvj6+vLZZ58xd+5cfH1900wOt3z5cmJjY+ncOe3URKdOnaJNmzYEBARQtGhR5syZw+LF\ni2ncuLE9T+7cuVm4cCEAV65coX///hQoUIB8+fLRp0+fDEdrZEVm5zZlJv9mzZpRpEgRzpw5w0MP\nPZRhzPj4eEaNGkWRIkUICAhgypQpLFu2DB+fW9E3plT6bucz67mBqdaw60TgEE7Ds40xp0RkCPAT\ntl7db4wxX4L9ueflIuKGbfh5Y2AZ8Iw1zP0P4MCtqrwx5k8RGYbtOXo3IAHbZGxZnWpyNrYh8dvE\nNl7rHLbn5sOAQSKSAMQAzlNsVgImiEiyVeYLLmJ/A/QGZhtjronIi8D3InIF2zD7zHTFNhTfYJtb\nILM6u9LAqodSSiml/kFGjBjBiBEj0k3/6aefshQns+/WdlSkSBFWrUo9/22PHj1SLT/77LP2nnJX\nj4+5ubkxefJkJk+enCZ+cHAw1wc92vTt25e+fftmWK8SJUrQqFEjSpRI3f/j3Mh2Fd/5GAYGBjJ9\n+nSmT5/usqyUYe/pxcyXLx9r165NlWfcuHGZfkXdjcjKzYOOHTvSsWNHl2lZOaYxMTH21+XLl0/z\nFXnZqeONntt33nmHd955x2VaWFhYmu9Wr1Spkv1r9JS6k27nM+tbgTrppIU5vF6M7Tlr5zzfAd85\nrbuG7blqVyo65HvO4XWEY5qLckY4LTvGWQosdbFN7gy2z239TsY2sZ3zlzTOs36cYwZbL3+wftJl\njPlFRN4RkQCrp/wnY0w5q4E9Hdhi5ZsL/D979x0dVdEGcPg36ZUkhDQIgRBQihQhFCkaQfBTmgKi\nIk2qFKVIVwEREEXpCAIiXZQmRSlSIr333kLoARJKQnoy3x+7rJuQBoQk4vuck8PunbnvzNwdAnNn\n7uys1PU0fjblzUL2y6TOwcYfcy2AARnVUwghhBAirwoLC2P69OlMmzYtt6sihBBADj+zLp6qTwE/\n4+uOSqmDwDEMm8Jl/gWWT0ApZYNhc7yntrJBCCGEEOJp6d27N8WKFaNhw4bUr18/t6sjhBBAzi6D\nz1OUUh8CPVId3qa17pZW/rxOa73L7PVY4OE1YU+v7HgMX2EnhBBCCPHUZbRs/3GMGTOGMWPGZGtM\nIYR4Uv/ZwbrW+mcM3y8uhBBCCCGEEELkKbIMXgghhBBCCCGEyGNU6t0UhXiaAgMD9d69e3O7Grku\nrV1thchu0s9ETpB+JnKC9DORU6SviZyglNqntQ7MLJ/MrAshhBBCCCGEEHmMDNaFEEIIIYQQQog8\nRgbrQgghhBBCCCFEHiODdSGEEEIIIYQQIo/5z351mxDi2bBwzdTHPve9/32U4vzU79M6nl6evMg2\n3v1fU9esSuv6P+lnkt2fb071l+yKnV59sxo/J/tZVuv0ONcmO/tRTp77OLHz4u+xB3VKr27p9bPs\n/nuQlX8Hnqac/PcmN34/5cbfzUeN+yS/07Lz35C8/Pc0r8bOC9csozo8Tv1kZl0IIYQQQgghhMhj\nZLAuhBBCCCGEEELkMTJYF0IIIYQQuWrevHl83OazbIv391876NlucLbFE7njZlg4SinCb97O7aoI\nkSvkmXUhhBBCiP+wqWPmcOTASWLux2BrZ0P5wDK07NgUJ2dHANYs38TalcHcuxOJhYUFxUr40aJD\nE4r4+wJw/PBpvuo/Fls7W1NMP/9CDBvTN1fa86wICgrCs0g+mrz/5lOJCMznZQAAIABJREFUP3Lk\nSIZ9NSzFsbjYOF5vFETbLu8CcPfOPX6a+AtHDpzA2tqaoHrVee/DxlhYGOb7fp21nG3Be4i6dx9r\nGytKvlCCVp2aZVju3Tv3mD9jKQd2HyUpMQlPnwL0G9aN/O6uT6WdQvybyWBdCCGEEOI/rH6TOrTt\n+i52drbcj4rmp4kL+PmHhXzcvz0AL1Z+gepBlcnn4kRiQiJrVgTz7ReTmTR3JEopACwsLJi1bFxu\nNkM8okGDBlGsYn7T+2uXw/i005fUrF3VdGzStz9jb2/H5LlfE3kvilFfTMLJ2YFGzV8HoGadqjR8\npx4OjvbExcbz25wVTBj1E91bD0qzzNjYWEYMHE/xkv58P30oTs4OXLl0HTuzGz25LTExEWxyuxZC\nGMhgXQghhBDiP6xw0UIp3isLxbXLYab3XgU9UqRbWCgiwu8QEx2Lg6P9Y5V59tQFZk7+hauXwiha\nzJcW77ZOkR4XG8+iuSvZve0A0fdjKFGiBG26N8G7oCcAw/qNoUgxX+ZNWsX6Desp4Jmflh2aUKHy\nC2mWFxcbz8JZv7N720Hi4+MpWaY4bT5qTgHP/Bzcc5SPW3kwduYQU/6Y6Fi6fDCAAV91o+QLJVBK\n0bbLu/y9fgdXL17Hr5gvPQZ2YNfW/fyxdAPxcfG89mYt3m3b2BTj0oUrzJu+hJCzl7CxtabGq1V4\np1VDrKwsuRkWzidtP6drn7Ys/3UN4bduU6JkMV4pbzj/5x8WsmXLFiy2WbDit3Xkd3dhzIwvOXLg\nBPNnLOXGtVtYWltStJgvn33d87E+g9Q2rN5K0QBfij9fFIAb129x9MBJxv00DAdHexwc7Wn0Tj2W\n/bLaNFgvVNjbdL5Go1TKvpPa7NmzuR8VQ7tu72NlZQlA4SIFM63b8cOnU1ynLn3a4JbfBYDIe1HM\nnbaYw/tPAFCuYilad37HtDLk4zaf0bxNI2oZb0I8uPY1LzUAYMr3s0lKTMLSypJ9Ow9Ts2YNmrV7\nnRkTFnDs0CmSkpLIX8CNDh+/T8kXSjzKJRXiieXJwbpS6jOgBZAEJAOdtda7lFJWwDDgHeC+Mfsi\nrfWIDGJ5AWOBasBtIB74Vmu9TCkVBPTRWjdQSjUCSmutR6URI0pr7ZQN7bIBJgFBxnZ9prVeopTq\nDXQAEoGbQDutdajxnDXGum/VWjfIIPY4YKnWenMGedoCgVrr7kqpj4BorfWcVHmKAqu01mn/a5d+\nu9YDtbXWiVk9TwghhBB5w/Lf1vL7wtXExsRhY2tNt74fpkg/efQso4f+QEx0LAANmtVNMVBPTk6m\nW6tBJCUl4V/cj/faNqZIMd80y4q+H8M3X0yiQbO61H+7DqHnLzPx6x9S5Jk+fh7R0TEMG9sPJycH\nVs7/m9FDfuCbKV+YBnnB67azYvlK3u/yBjv+3seYr37k++lD8fByf6jMudMWceH8Zb4a2w8HJ3vm\nTP2N0UN/4OuJgyhXqTSOjo7s3XmIlg0N+bcH78Hdwy3F4Gzrxl18+sVHODk78u3QyQwfOI7qLwcy\nfuYwrly6zuc9vqFC5Rd4vkwAd+/cY1i/sbzbtjF9h3bl3t0ovhs2BRsba5p+UN8Uc8fmvQwe/SlW\nVpZ8M3gSgwcPpk7TSnzY9T3i7vHQMvgfvpvNu20a8Urdl0hMSOTMyZCsfLyZSohP4O/1O3ivzT83\nG0LPX8bB0T7FzZqiAX7cDAsn+n6M6fPftmk3P036hZjoWCwtLWjZMf1l8Js2bcK7kAdTv5/NoX3H\nyefiRJ03a/Hm23UyrF/q67Ro7ko69WgJGGb/rSwt+e5Hwx4Fk0fPYvLoWfQf1i3L7d+5dT/d+rSl\nc89WWETnY+GSecTFxTNx9nBs7Wy5fuUGlsZ+J0ROynMbzCmlXgIaABW11uWA14BLxuThQEGgrNa6\nAlALsM4glgJ+BzZrrYtprSsB7wEP/euhtV6R1kD9MeqvlFLpXdfPgBta6+eA0sDfxuMHMAyiywGL\ngW/NzhkNtMqkTHegWkYD9dS01lNTD9Qfh1LKSmsdD2wA3n3SeEIIIYTIeY2bv87PS8cx/uevqN/k\ntYdm00u+UJyfFo9h+m/f0apTM9PsK0BBXy9GTf6MCbO+4vtpQ/DzL8TwAeOICL+TZln7dx3B1s6G\nRu/Uw8raioDni9K+fXtT+r27UWwL3kO7bu/j6pYPK2srmr/XjNsRdzlrNjgNfKk8devWxdLSkpq1\nq1CsRBG2bdr9UHnJyclsXr+T5q0bkb+AK3Z2trTu/A5XLl3n7OkLWFhY0KFDBzat3W46Z9O67bz6\neo0Uceo3fQ13Dzds7WyoWrMidyPu0bRlfaysrShSzJcixQpx/kwoAFvW78KvWCFee7MWVtZW5C/g\nSuPmr7Nlw64UMZu2qE8+FyccHO2pEVSZvXv3Zvg5WVlZEnbtJndv38PaxprS5Z7LMH9W7dp6gKSE\nJGq8Wtl0LDYm7qGVE45OhvcPbtoA1Hi1CjOXjGXK/FE0/aABfv4pV2qYu3XrFscPnSbg+aJMmT+K\nrn0/ZNnC1Wzd+PDnZi71dTp/2nCdI8LvcHjfcVp2aoaTsyNOzo606tSUg3uOcjvibpbb/3yZAF56\nJRALSwtsbW2xsrIi6l4UVy+HobXGx9cLT+8CWY4nRHbJizPrPsAtrXUcgNb6FoBSygHoCBTVWsca\n0yKBoRnEqg3Ea61N3z5vnLGemDpjqllnf2AB4AQsT5WvL9AcsAWWaa2HGGej1wK7gErAm0BoGvVp\nB5Q01iMZuGV8vcksz06gpVl9NxhXAGSkKbDGrI5vAmMwrD7YBhRLPSuvlBoKRGmtv1NKVQJmGpPW\nmeWxBEZhWAlgC0zWWv9orM9XGFYqlASew3BT5GtgfiZ1FUIIIUQe5eldgIpVy/HtF5OZOGeEaSOx\nBxydHHi9URAdm/fB18+HQn4+uOZ3wdW4JNnRyYH3P3yL3Vv3c2jvsYcGvAARt25TwDO/6Xl3AH9/\nf9Prm9dvAdC/63CzsxRJSUmE3/pnV/DUM+gFvNwJv/XwDYJ7d6NISEjE0/uf/Hb2dri4OBt2GS8F\n7du358svv+TixYtcDLlC6LnL9Psy5cysq5uL6bWtrQ35XJ1TXB8bWxtiYgyD2Bthtzh97Dztm/U2\npWutSU7WKWPmN4tpZ0tkZORD9TfXZ0gXfv91Df26DCefixO136iZ6ax0VmxYvYUar1bGzt7OdMzO\n3pbo+zEp8t2PMry3d7AjNdf8LtR+owY9PhxMzw6fp1mOs7Mz+d1deeOt2gAEPFeEmq9WYe/OQ9Ss\nXSXd+qW+TrExcQBEGHeJN/9svXwMN5rCb942LZXPjIdnyr7UoFldkhKTmPL9bO5E3OPFKi/Qon0T\nXN3yZSmeENklLw7W1wGDlVKnMSyt/lVr/TdQHLhoHKBnVRlg/2PUYTwwRWs9Ryll+k2tlKoHlACq\nAApYoZR6GbhoPN5Ga70zrYBKqQdbXH5lHOyeA7prrVM/2NMeWP2I9a2BYUYepZQd8CPwstY6RCn1\nSxbO/9lYl81KqdGp6nJXa11ZKWULbFNKPRjMVwRe0Fo/uMV9FKhMGpRSnYBOAF5eXgQHBz9a655B\nUVFRch2yiW38w8sdsyo4ODjF+anfp3U8vTx5kdJW/5q6ZlVa1/9JP5Ps/nxzqr9kV+z06pvV+DnZ\nz7Jap8e5NtnZj3Ly3MeJnVl5lrG3DLPi95ywdXj4mfSkpCQSE5KIuBRHMe+041hghWWCY5rleLr6\nEh62BZu4fwbsf/y9AoUlwcHBFHQrDsDkKRNxcTEMjpS2Qivjk3bxYKGtibgWlaIt4dfvUrFSMWzj\n3bFKdEJpC2zj3fGwd8Pa2po7lxMoUsCQNyYmlnt3I/FxLYptvDunTp2iUmBFhgwZws3wG1SpWhkP\n+yKGhyeNbBJdTGWZxze1WVtjleSAbbw73u6FKVe+LJ8PHvjwxYkHm/gkQ8wEtxQxY2JiTO/v3btH\nwSTvFGU85+tOv0/Lo7XmxPGTDBs6nOKFS1O2XJafXjR5cO0uXbzMyaNn6dihU4qyShQuS/T9GG5f\nTMTb2wuAK6cP4enpgZu1b4pr84BVjCIuNo7ly5fj6v7wZ+/q6orCMkU5lsn2WCbHptlX0rtOD669\nj4uh/9y9nIyPj2E/g6tXrgLg41IM23g3HOwdSYqyNp0fZbwZtGPHDmxt3bFMtsXC4p86KW2Fi0VB\nWrdoR+sWcPv2HcaPmcjCaX/Qo1f3LF3TJ/EgRl78/0Ze/zctL1yzjOrwOPXLc4N1rXWUcaa3FvAq\n8KtSagCpBt1KqQ+BHoA7UF1rfemhYKkopSYDNTHMtqc5sDSqgWG2GmAu8I3xdT3jzwHjeycMg/SL\nQGh6A3UjKwzL77drrXsbn1P/DrMl7kqplkAg8EpmbUnFB8Oz7mCY6T5vNoj+BeNAOS3GmwiuZkvo\n5wJvGF/XA8oppR48fOSCob3xwG6zMtBaJyml4pVSzqlvqGitpwHTAAIDA3VQUNAjNu/ZExwcjFyH\n7LFwzdTMM6UjKOidFOenfp/W8fTy5EW28e7E2YTndjWyVVrX/0k/k+z+fHOqv2RX7PTqm9X4OdnP\nslqnx7k22dmPcvLcx4ltfuzunXsc2nucStXK4ejkwLXLYcyeM5fnywRg4RpNHNH89cdmKlYpS/4C\nrkTeu89vc1ZgbWNFkTKGz/7owZMU8MyPp3cB4uPiWbVkPXfu3qFMVb80+0bZ6v7ETI9h8YqFvPl2\nHS5duML69evRJBEUFMT1NSepEVSZqdN+oHXnd8hfwJXECDsOnNhJ2YolsbO3I1klsGvXbpKSkoix\nvMmOLfs4d/YcXfq1JM4mnESrKLRKNpVfq05VFvwyH88ARxwdHZg7exE+vt74lXEjzjKcoKB3CKpf\nhV+mryDiTjifDGj/UN3jre6ajqWOD5CsEki0jCbOJpzq9cqyfPkK1mxaSY1XK5s2lbt25QYVAssQ\nb2NYARBvfZs4487jiVZR2Nvbm2KWLFmSK2Eh/5SZkMi24D28WKUs+VycsHFLQClFok3kY/0dfNAP\nVq9fSYmS/hR83pk4/onjWtiSF14syaw5M+ncqxVRkfdZunQptevXIM4mnOTkZP5atZlqL1fExTUf\n4TdvM2v6r3h4udOqVSsWr5/xUJlDhw5lwS/zWbl2Ca+9+TKXQq+y+e/NfNj13TTbkN51enDtHX0M\nG8rNnDWDLp+2QWvNzFmzqRBYBkfvZOIIp2iJQmzeGky1uqWJj0vg18WGeayXXnqJrUdXkWQRB5YW\npvJt493Zvn8T3gU98CnkhUW+eCztNFgnZHqds/PfkLz4/428/m9aXrhmGdXhceqX5wbrYBj4AcFA\nsFLqCNAG+A3wezAY1Fr/DPyslDoKpLfjwzH+GXSjte6mlCoAZPxAkDF7GscU8LXW+scUBw3L4O+n\nkd9cOBANLDW+X4Rh5vpBjNcwPNP+yoNHAB5BDPDweqQnp4CPtdZrUxw0rAxIq722QGwax4UQQgiR\nBykUf6/fwZwfF5GYkIizixPlA8vQrOU/T8+dPx3K0gV/EnM/BjsHOwKeK8JnX/cgn6szABdDrvDj\n2LlE3o3C1s6GosX9GDTiE9w98qdZpqOTA/2GdWPWDwtZuuBPihbzpUuXLkycPN6Up2OPlvz+62q+\n6j+GO7fv4ejgxPNl/SlbqZQpT1C96owZM4YNGzfg7uFGz887pftccavOzfhl5u983mMUCQmJPFeq\nGH2HdsHC8p9l7OUqluJXi1U4ONjzQoWST3RdXfO78MWoXvzy8zJ+nb2c+Lh4PLzcqfNmrSzH6NWr\nF03eaUz7Zr1xc3dl1KRB7Ny8j3kzlpAQn4iLqxPNWjZ4oufW4+Pi2bJhJ606vZNmevd+H/LTxF/o\n1mogVtZWBNWrTsNmdU3pB/ccZemCP4iLjcfByZ7SZZ/js5E9sLIyDDG2btzNjIkLTF/rV6RIEfoP\n686cHxex4KdluLm70KxlfV56JfCx29Ct74fMmbaY3h2HAobP0bw9zVs3Ysr3s+nywQDcPfLTsFld\nDu09nmHMsGs3mTttMXci7mJta02Zcs/zfru3HruOQjyuPDdYV0o9DyRrrc8YD1XAMGsdrZT6CZik\nlOqstY41PlOd0TchbgRGKqW6aK2nGI85ZKEa2zBsRDcP+MDs+FoMy9jnG1cAFAISstIurbVWSq3E\n8Pz3RqAOcNzY5hcxLF3/n9b6RlbipXICw2MCwcApoJhSqqjW+gKZbPqmtb6jlLqjlKqptd7Kw+3t\nopTaqLVOUEo9B1xJK45xk7tbWussXQ8hhBBC5L58rs58MapXhnk698pwn1vefLvOIz83/VypYoyc\n+M93cb/3v494roqn6b2tnQ3vtmnMu8bdydNaweHs4sRvs1ekOVP1St2XeKXuS6b3dna2fNj1XT7s\nmv5/iywsLChSpAjeRV1SPE8PhufNzctJHR9g8Le9U7z3LeJD36Fd0yzLw8udX1ZPSXHslbovMeX7\n2aZyKleuzOipg1Pk6f9VxsuwH5WNrQ0zFo1JN93FNR+9v+icZpqFhUWm9alZu8pDz6KXLvccoyZ/\nlqX6eXi5Z3rt87k6073fh2mdDoC7hxufj0r59Xav1H0JX19fOApdPm3z0DmP06eFeBry3G7wGJaW\nz1ZKHVdKHcawa/pQY9pnwDXgqFLqALAFmA1cTSuQ1loDbwGvKKVClFK7jfn7Z1KHHkA346y+aUtL\nrfU6DBvP7TCmLQacH6Ft/YGhxna1Aj41Hh9tbPcipdRBpdSKBycopbZgmIWvo5S6rJR6PY24f2C4\nCYDWOgboCqxRSu0DIoHMtsP8EJislDqIYTb9gRkYbijsN65g+JH0b/C8aqyHEEIIIcS/zokjZ9iz\nZw+1/1czt6sihBBAHpxZ11rvA6qnk5YADDD+ZDXeNQyz5GmlBWOYjUZrPQuYZXwdApjfLv3c7Jzx\nGDagSy3TnT2MO9G/nMbx1zI4J9P1UlrrLUqpr5VSrlrrO8AmrXVJ41fXTca47D9VG4eanb8PKG8W\nsp/xeDIwyPhjLtj4Y64Fj/C5CCGEEELkFZUrV+bEyWNMnDgJB9c0dk4TQohckBdn1sXj+RTwM77u\naJwlP4ZhU7gf0z0rGyilbIDftdann2Y5QgghhBBgWHLe5P03sy3enj17mLFoDO3atcu2mEII8aTy\n3Mz64zA+L70hjaQ6Wusc3wpZKbULw2Zr5lpprY88rTK11rvMXo8Fxj6tstIoOx6Yk1PlCSGEEEII\nIcSz7pkYrBsH5BVyux4PaK2r5nYdhBBCCCGEEEL8eynDHmxC5IzAwEC9d29Wvjnv2Sbfsy5ygvQz\nkROkn4mcIP1M5BTpayInKKX2aa0z/c5CeWZdCCGEEEIIIYTIY2SwLoQQQgghhBBC5DEyWBdCCCGE\nEEIIIfIYGawLIYQQQgghhBB5jGwwJ3JUYGCg7vxn09yuRq5zO+zP7XIhuV0N8YyTfiZygvQzkROk\nn4mcIn1NPG0dPQfKBnNCCCGEEEIIIcS/lQzWhRBCCCGEEEKIPEYG60IIIYQQQgghRB4jg3UhhBBC\nCJFn/TFmI0M+HZZt8VaMXs+YZj9lWzzxdHXyGsSZXRdyuxpC5Aqr3K6AEEIIIYR4Np3YfJbV44O5\ndOwa92/H8M2B/rgVdMntav3rDQz8lsYD6lKt2YtPFGf/H0dZOXojt0IjcPXJR+MBdQlsVNaU/vvX\n6ziy/hRXT92gRLWi9F7c/qEYaydvZsO07UTfjaFYoB+tvnsbj6L50y3zwsHLLOi/giunwnDxdKZR\nvzpP3A4hnlUysy6EEEIIIZ4KWwcbqjWvyIcT38ntqohUzu+9yE/dFvHuV/UZf24wzYa8wU9df+P8\nvkumPB5F3WnU7zVqtaqcZoxdiw+ybvIWus1txffHP6Pgc55Mbj2H5KTkNPNH34tlQotZVGxQhnGn\nvqDl6MbM77ucc3suPpU2Po7ExMTcroIQJnl2Zl0ppYExWutPje/7AE5a66FKqaFAR+AmhjYM0lqv\nUEo9D/wIuAK2wBatdacMyqgCfAsUAiKBa8AArfURYxlRWuvvlFLDgM1a6/Wpzg8C+mitGzxhW4sA\nyzDcPLEGJmqtp6bKswIoprV+IZ0YPYEIrfWcDMox1Vcp1QgorbUelUa+KK210yO2YT3wjtb69qOc\nJ4QQQohnV7FAP4oF+nHrYtb/e3D4r5MsGbaaiMt3ea66P57+7inSoyKiWTJsNcf/PktCXALP1yjG\n+yMaks/TGTDMOtd4vxLHgs9y+eg1vEt48ME3jSn6om+a5UVFRPPb4D84HnwGgDKvlqD5sPo4ujkQ\nPGsnm2fvZvCmT0z5b1wIZ3D1sYzY9Slaw6DKo2k7oRlrJ/1N+KU7PFfdn/Y/vMvaiX+z7Zd9KAtF\n/d6v8mq7l0wxzuwMYemIdVw7fQMHF3uCPqxK3Y9qopTi1LbzjH1nJu1/aM6ykeuIirhPmVdL0GZs\nU+ycbJnUcg4Rl+8yp/cy5vddTrHKfvT6rV2Wr+8D+/88RpmgEpSsFQBA+ddLEVDZj81zdlOsUmEA\narxfCYDQw1fSjLF53m5ebl2FIuUKAfDWZ/X4tMxIzuy6wPPViz2U/8Afx7Cxt+H17i+jlKL0KyWo\n8GZptszbTUBlv3TreuX4dX4b/AfXz9yk4PNetJ3QFJ8SngDERcezbMRaDvx5nPjYBIpXKcJ7Ixri\n7usKwHdvT6dUrQDq965titfJaxB9V3SiRNWirBi9njM7LuBXriA7Fx0gwL84HZc0ZeGglRxcfZyE\nuETyeTjx1qB6KVYdCJET8vLMehzQRClVIJ30sVrrCsA7wEyllAUw4cFxrXUpYGJ6wZVSXsBvGAb6\nJbTWFYGvgYDUebXWg1MP1B+HUiq9myPXgJeM7akKDFBKFTQ7rwkQlUncdsCCrNZFa70irYH6o1IG\nFsBcoOuTxhNCCCHEf9eNC+FMbTefN3oEMe7MF9TuWJ0t8/aY0rXW/NB2Lkophvzdg6/39sPO0ZYZ\nXX5NEefv2bt5b3gDxp76nIoNXmDCB7OIiYxNs8yfuv5K9J0Yvtzaiy+39iIyIpqfui8CoGrTCty8\nEMGFA5dN+bfN30uplwNwL+xmOrZ/1VH6rejMqP39Cb90m6/f+AGPou58e3gAbcY35dcv/iD88h0A\nrp4KY0KL2bzetRZjjn/Gx/Nbs+mnnexcdMAULzkpmePBZxi86WOGb+/NpSPX2DB9OwDd57Umv68L\nrce8zcSQoY81UDdcTMP1THFIay4du5blEJePXcfPOFAHsHO0xcvfncvHrqeT/xqFX/BBKWU65le2\nIJfSyf/A9oX7+einDxhz4nPcCrmwcNAqU9pvg//g/L5LDPjzI0bt7Ydzfkcmt0p/dj8tZ3ZewMXL\nmW8O9KfP4F7s+HU/Fw5e5sutvZhwbgi9l7Sn4POeWY4nRHbJy4P1RGAa0CujTFrrE8a8BQAf4LJZ\n2pEMTu0OzNZabzfLv1Vr/XvqjEqpWUqpZsbX/1NKnVRK7QeamOVxVErNVErtVkodUEo1Nh5vq5Ra\noZTaCGxIpw3xWus441tbzD4XpZQT0BsYnkFbagP7tdaJxnMqK6UOK6UOKqVGK6WOptGmtkqpScbX\n/kqpHUqpI0qp4any9VVK7THG+9J4rKhS6pRSag5wFCgMrADez6COQgghhBAZ2rPsMEVf9KVasxex\ntLKkTFAJKrxR2pQeeugKoYev8v6oRjjks8PWwYamg9/g5Nbz3L5615SvZotAipQvhJWNFf/7+GWs\n7aw5vO7kQ+XduX6PY5vO8M6wN3F0tcfR1Z7mX77J0fWnuBN2D3tnOyq/VY6tC/YChkH0jt8OULNl\nymXhDXrXxtHNAaf8DpStWxJLa0tqtaqMpZUlZes8j6OLPZeOXAUgeNYuKjUsS4U3SmNhaYFPCU9e\nbV+NHb8dSBGzyeevY+doSz5PZyq8UZrQQ2nPbj+usq89z7FNZzj+9xmSEpM48Ocxzu2+SGw6NzXS\nEhsVh30+2xTH7F3s0o0RGxWHQz67FMccXOwzLbNet1q4+7pibWtF9XcrEnrI8N/95GTD5/HWwLq4\n+bhg62hD8+H1uXbmJiH7L2cY01x+X1fqdamFlY0Vtna2WNlYEnc/nmunw0hKTCJ/IVcKPu+V5XhC\nZJc8uwzeaDJwWCn1bXoZlFJVgWQMS+LHAhuVUtuBdcDPWus76ZxaBpj9KJVRStkB0zEMjs8C5rdx\nPwM2aq3bKaVcgd3GpeEAFYFyWuuIDGIXBv4AigN9tdZXjUlfAd8D0RlUrQawz+z9z0BHrfUOpVRW\nZs/HA1O01nOUUt3M6lQPKAFUARSwQin1MnDReLyN1nqnWX5bpZS71jo8Vds6AZ0AvLy8cDvsn4Uq\nPdssY2zlOoinTvqZyAnSz0RWJFw3PF3ncqIwbrfc080XfXQjPk6FU/QpXzt/TiWfwe2wPye3hJEY\nl0jfUin/e2NtY03C3w64lfHHIt6KwqpEihiert7E7bfErYQ/9mFuWEfdwO2wP7dOnAWgxN2KWB62\nBCBfkmE5duLfjriV9Kd+9bcY1m8End7pypEDR9GxEFTwDawOW5na5RdRGrfDhna53POkgMPtFOXb\nWdljeSIfboX8uXs0lqMHj3Fw5QlTutYad4/8uB32x/l8DBYWFvhdLQvG/w26RHpy7fo/MS3irXC8\n6PFEf/eqOfsT87EVS/r9QUR4BKVeKEmNoJe4fiXsobjm1yzFcXt7LI+44Jbvn+PxYcnkjyyUZt1c\nYj24GXYrZdrJEzhZ5cuwLb5Rz5nSC1yPITYyHrfD/ty5fYfEuESKRZfD7bD3P+W4uBC/0wY3W3+s\nouywD3N7KL7zOR/c7A39wcvN25RuGWPL/55/m4TaNizps55rV65T9sUXaNmxBT6FvBHiSQVbBWc5\nb54erGut7xlnbz8BYlIl91JKtcTwrPm72rCO52el1Frgf0BjoLMIploRAAAgAElEQVRSqrzZrHW6\nlFK7gHzAOq11j3SylQRCtNZnjOfMwzgIBeoBjYzP1gPYAQ8evvkro4G6sa2XgHLG5e+/K6UWY1gp\nEKC17qWUKprB6T7ACWOdXAFnrfUOY9oCILNn6msATY2v5wLfmLWpHvDgVq8ThkH6RSDUfKBudAMo\nCKQYrGutp2FYJUFgYKC+XS4kk+o8+9wO+yPXQTxt0s9ETpB+JrLirqvhmfW7pS5hUfBeuvkcykBI\n8KUUfepK3AW0RTK3y4VgmxiPrYMNY84MwsLi4QWitwkh2SaRS/oMt8sVBQwD4Rt3rmNbMYnb5UKI\n8bpNwoUYbpcLwcrzPgBnXQ+Yno0PO3cLAKtX7nPbKwT3chYU+NGN9SGrOLD9GNVaViCy4qV022Ue\n/4Fkm0Tu+93kdrkQ8pW2pUaZirQY1TjN+kdGXgNFivNTx9S2SaZ4T6JCOT8q9O1iej/i9cmUei3g\nobhptQmgUDlPjt87QIlyhqdWY+/HcfXaNfLXtU6zbh6vOLLr+50p0k5NO4pPYP4M2xIZcI3b5Qwz\n+ObXJzk5GStbK847HMGuXIypDnfv3sWmWrzhM/bS3HG+YYp/5/q9FDFjvG6TdCHOlO522J975S7y\nyotleYWyRN+N4ZeBK5k4dTx9l6e7FZYQWdbM870s583Ly+AfGAe0BxxTHX/wbHotrfWWBwe11le1\n1jO11o0xLI9Pc0M24BiGGe8H51UFvgAe9/tEFNDUWKcKWms/4xJ9gPtZDWKcUT8K1AJeAgKVUheA\nrcBzSqngNE6LwXBz4EnoNI4p4GuzNhXXWj/4YtK02mTHwzdVhBBCCPEflZycTEJsAonxhh22E+IT\nSYhNIDk57eeJK79dnpD9l9m99BBJiUkc//ssB1cfN6UXqVAI3zLeLPxsFVERhkWHkbei2L3sUIo4\n237ZR+jhKyQmJLF28hbiYxIoW7fkQ+W5euejdFAJFg35k+i7Mdy/E8OiIX/yQp3ncPXKZ8r3cqvK\n/DVlK0c3nKbmB4FPdE2C2lZlz++HObT2BIkJSSQlJnH1VBintp/Pcox8ns7cOB+eecYMJCUmEXr4\nCslJyUTfi2X5qL+4feUur3WuYcqTmJBk+LwSk9HJmoTYBBLi/tkt/eWWVdg8ZzcXj1wlPiaB5V//\nRQE/N0pULZpmmS++WZq46HjWTt5MYnwiJzaf5cAfx6jVsspjtcHCwoKX3nmRFd/8xZ3r94iLjmfR\nkD/xLu6Bf0XDhoJ+5QtycM1xIm9FERsVx+9fr8s07skt5wg9ZOg/1nbW2DhYoyxUpucJkd3y9Mw6\ngNY6Qin1G4YB+8yM8iql/gds0FonKKW8AXcgvQd8JgO7lFJrzZ5bd8ikOieBokqpAK31OVI+o70W\n+Fgp9bHWWiulXtRaH0g7zEP19gXCtdYxSik3oCaGmxGLgSnGPEWBVVrroDRCnMCwfB6t9R2lVKRS\nqqrWeheQlVs324z55gEfpGrTV0qp+VrrKKVUISAhnTYowBu4kIXyhBBCCPEfcGbHBb5vMsP0/vOq\n3wPw6dIOPF/j4d3CPf3d6TyjBUuHr2Hup8soUd2fmh8Ecm2XYQbbwsKCbrNbsfybvxhRbxJREdE4\nF3Ci9CvFqfJ2eVOcWq0qs/CzVVw+eg2v4gX4eF6bh56VfqD95Hf4bfCffFF9DAClgwy7wZur2rQC\ni79cTUBlP7yKpbf3cdYUKuVN97ltWD5qHbN6LkEnazyLuvN691pZjlG/16v8MmglG2dsx7+SHz1+\nafvI9UhO0szr8zvXz95EKcXzNYrRb2Vn0676AHM/XcaOX/eb3ncrMgT3wq58vbcfAFWbVeD29XtM\n/GA20fdiCahUmG5zWmFhaZgPPLMzhAnvz2bolp64+7ri4GLPJ/PbsmDAClZ8ux4XT2c+GN04w53g\nM9N8WH2WDl/DyNd/ICE+kYBAvxR1eK1zTa4cv85nVb/Hyd2Rpl+8zvaF+zOMee9mFL8MWkHE5btY\n2lji/6Ivrb5/+7HrKMTjUql3gcwrzL8+zLhzewjwrdlXt0Vprb9Ldc4YoD7wYJeK0VrreRmUUQ3D\nku9CGJZw3wKGaa33pvrqtlkYBsqLjTcExmF4hnwLhmXqDZRS9sbj1TGsWAgxHm8LBGqtu2dQj7oY\nnkvXGGazJxmXjpvnKWqsw0MrBYxf/TZXa/2y8X1VDM/WJwN/G8uvkeqr20z1Ukr5Y1gu7wQsB3qa\nXfseQAdjUVFASyApdV2UUoHAQK31g+X0aQoMDNSd/8wwy3+CLBsVOUH6mcgJ0s9ETniUfjYw8Fsa\nD6hLtWYvZlv5WmsGVf6OtwbWpWrTCtkWV+Q98jtNPG0dPQeilNqntc50mU6enVk3/55vrXUYZrPe\nWuuh6ZzTG8PO6VktYyfwSjppQ81etzV7vQbDs+up88cAndM4PguYlUk9/gLKZZLnAuks6ddahyql\nwpVSJYzP0x/TWpcDUEoNAPYa8wUDwanrpbUOwbDk/oHPzWKPx7ABXWqp69IK+CGjNgghhBBC/Bvt\nWnKQpIQkKjVM7+lKIYTIfnl2sC4e2QAMG82dAeorpQZi+HxDgbY5UP5RrXWaX00nhBBCCPFv1bv0\ncCwsLWkzrglWNvJfZyFEznnmf+MopV7nn93NHwjRWuf4gydKqbIYdls3F2fc3O6JaK1PAaeMr38l\n5dfKPXVa6+k5WZ4QQgghRFoePE+dXcYc/zzzTEII8RQ884N1rfVaDBul5Tqt9RFAHnQSQgghhBBC\nCJGhf8NXtwkhhBBCCCGEEP8pz/zMush7OnoOzO0q5Lpgq2CaeWblW/WEeHzSz0ROkH4mcoL0M5FT\npK+JvERm1oUQQgghhBBCiDxGButCCCGEEEIIIUQeI4N1IYQQQgghhBAij5HBuhBCCCGEEEIIkcfI\nYF0IIYQQIo/5cb/hRwghxH+XDNaFEEIIIYQQQog8RgbrQgghhBBCCCFEHiODdSGEEEIIkaeNHj2a\ntm3bZlu8tm3b0qFDh2yLJ54O+ZzEf50M1oUQQgghxFPz/fffU7FiRVxcXPDy8qJ58+ZcvHgxt6v1\nr6eUYuvWrblW/pUrV2jcuDFFihRBKcW8efOydN7ChQspV64cjo6OeHt7M2LEiKdcUyH+vWSwLoQQ\nQgghnpr4+HgmTpxIWFgYZ8+exdHRkQYNGuR2tcQTsrCwoF69eixYsABfX98snTN37lx69erF2LFj\nuXv3LmfOnKFRo0ZPuaZZl5SURHJycm5XQwgTGaz/iymlotI5/pFSqnU6aT3TS3uCepRVSs3KzphC\nCCGEeDYMHDiQGjVqYGdnh7OzM/379+fIkSNERESke87MmTMJCAggX758tGrVivj4+BTpFy9epFmz\nZnh7e+Pj40OnTp2IjIw0pSulGDduHBUqVMDZ2ZlXX32Vs2fPplteaGgojRs3pkCBAhQuXJiePXsS\nExMDQP/+/WncuHGK/Bs3biRfvnzcv3+f4OBgrKysWLBgAQEBATg6OtK6dWvu3btHx44dcXNzo0iR\nIixdujRFjN9//51KlSrh6upKqVKlmD9/vilt1qxZFC9enAkTJuDr64ubmxudO3cmKSkJgPLlywNQ\nr149nJycTEvFJ0yYgL+/P87OzhQqVIhBgwal2+Yn5ePjQ7du3ahRowaWlpaZ5k9OTmbAgAEMGTKE\nOnXqYGVlhbOzM2XLls3wvLi4ODp27IirqyuFChXixx9/TJG+ZMkSypcvj4uLC+XLl2fZsmWmtAfX\n0Zz50voLFy6glOKnn36idOnSODg4cOfOHRYuXEipUqVwdnbGy8uLNm3aZPWyCJGtZLD+DNJaT9Va\nz0l9XCllBbQDFmRzeUcAX6WUX3bGFUIIIcSzZ8OGDfj6+pI/f/4007ds2UK3bt2YOnUqERER1K1b\nl02bNpnSY2NjqV27NqVLlyYkJITjx49z+fJlevTokSLOtGnTWLx4MTdu3KBMmTI0atTINNg1l5iY\nSP369fH29iY0NJSdO3eybds2+vTpA0CnTp1YvXo1165dM50zY8YMWrRogaOjI2CYkQ0ODubIkSOc\nOHGCNWvWUK1aNd566y3Cw8MZOHAg7dq1Izo6GoC//vqL9u3bM27cOCIiIpg9ezbdu3dn8+bNpjJC\nQ0MJCwvj3Llz7Nmzh0WLFrFw4UIADh06BMC6deuIiopixowZnD59mgEDBrBq1SoiIyM5duxYnpq1\nPn36NFevXuX69euULFkST09PGjRokOFNFIDFixfTsGFDIiIimDhxIt27dyc0NBSA7du388EHHzBq\n1CjCw8MZOXIk77//Prt27Xqkui1YsICNGzcSGRmJvb09rVq1YvLkyURGRnL+/Hl5bl7kGhms/wso\npX5XSu1TSh1TSnVKlTZCKXVIKbVTKeVlPDZUKdUnjVC1gf1a60Rjvo5KqT3G85copRyMx2cppZqZ\nlRFl/HOhUqq+2XHzfCuB97Kz3UIIIYR4tmzfvp0BAwYwderUdPPMmTOHZs2aUbduXaysrGjdujUl\nS5Y0pa9atQqtNcOGDcPe3h43Nze++uor5s+fn2Iw/umnn1K8eHHs7e359ttvOXfuXJqDuN27d3Pm\nzBnGjBmDo6MjhQoVYvjw4cycOROtNQEBAbz88svMnj0bgNu3b7Ns2TI6duyYIs6IESNwcHDAz8+P\noKAg/P39qV+/PhYWFrRu3dq07Btg/Pjx9OjRg1q1amFhYUGVKlVo2bIlc+b8M9dib2/PsGHDsLW1\npXjx4tSpU4e9e/eme92srKzQWnPs2DGioqJwdXWlWrVqmXwiOefWrVuAYSZ89erVXLhwAT8/Pxo2\nbEhiYmK659WuXZtGjRphYWFBkyZNcHV15eDBg4Bh5rxp06a88cYbWFlZUb9+fd5++21mzpz5SHUb\nMmQI3t7e2NjYoJTC2tqakydPEhERgaOjI7Vq1Xr8hgvxBGSw/u/QTmtdCQgEPlFKuRuPOwI7tdbl\ngc1Ax/QCGNUA9pm9X6q1rmw8/wTQPpPzfwWaAyilbIA6wB/GtL2A/CYTQgghRJq2bNlCgwYNmDZt\nGvXr10833+XLlylatGiKYz4+PqbXISEhXLx4EVdXV9NPnTp1UEpx/fp1Uz7zGA4ODnh4eHD58uWH\nyrt06RIeHh6mWXKAgIAAYmNjuXnzJgCdO3c2DQDnzZtHqVKlqFSpkim/paUlHh4eKcozr7ODgwOA\naal+SEgI33zzTYo2zJo1i6tXr5rO8fT0TLG83NHRMcVS/9SKFSvG/PnzmT59OgULFqRmzZqsW7cu\n3fw5zdnZGYAePXrg7++Pg4MDI0eO5OTJk5w+fTrd88yvI6S8DpcuXcLf3z9FekBAAJcuXXqkupn3\nFTs7O/7880/WrFlDQEAAlSpVYsGCbF2UKkSWWeV2BUSWfKKUetv4ujBQAggH4oFVxuP7gLqZxPHB\nMCh/4AWl1HDAFXAC1mZy/mpgvFLKFvgfsFlrHWNMuwEUTOsk42qATgBeXl4EBwdnUsyzLyoqSq6D\neOqkn4mcIP3s6XA3rJbmWbm0u3fvZtiwYfTr1w8fH58M+4yFhQW7du1KkefKlStYWloSHBxMVFQU\nhQoVYtasWQ+de+bMGdPs9Zo1a0yD3djYWG7cuMGNGzcIDg7m+vXrpng3b97kxo0brFmzBjs7OwD2\n7NmDjY0Nx44d4/jx47i5uXHr1i3GjRvHpEmTaNiwoal+Bw8eRGudor7m8c0dOHCAxMREnJ2dadWq\nFe+99/CixODgYE6ePElMTEyGMZVSpngP5M+fn88++4yEhARWrFhBw4YNWb58ualdT0tsbCwnTpzI\n8HONj4/H1taWU6dOmfJFRRm2X9qzZw83btx46Jy0rqN5WZaWlg/1lR07duDg4EBwcDChoaHcvn07\nRfqxY8fw9PQ09QOAXbt2cf78eVOdnJyc6N27Nz169GD79u20bNkSrTWFChV6vAskxOPSWstPHv4B\ngoCtgIPxfTAQZHwdZZavGTDL+Hoo0CeNWOOBtmbvQ4Dyxtdtzc6fATQ3vrYA4s3OmQM0wvDceyOz\n42WBrZm1p1KlSlpovWnTptyugvgPkH4mcoL0s6dj6j7Dz7Ng8eLF2tnZWa9atSpL+YODg7WdnZ1e\nv369TkhI0HPnztWWlpa6TZs2Wmut79+/r4sXL65HjBih7927p5OTk/Xly5f10qVLTTEAXaZMGX32\n7FkdExOjP/74Y12yZEmdmJiotda6TZs2un379lprrRMSEnTp0qX1Rx99pO/fv6+vXLmiq1Sport0\n6ZKiXv3799cvvviidnBw0Hfu3DEd37Rpk7a0tEyR1zy+eZ22bNmitdZ67dq12sfHR2/evFknJibq\nuLg4vXfvXr1nzx6ttdY///yzDggIyDCmj4+Pnjlzpun9yZMn9erVq/X9+/d1cnKynjVrlra3t9cx\nMTFZuu6PIyYmRsfExGg/Pz89c+ZMHRMToxMSEtLN37VrV122bFl98eJFHRsbq7t3767LlClj+lxS\nS+s6FilSRM+dO1drrfXWrVu1nZ2dXrNmjU5MTNR//vmntrW11Tt27NBaa3327FltYWGhV65cqZOS\nkvTSpUu1ra2tKWZISIgG9KVLl0zxlyxZohcvXmz6jDdu3KiVUjokJOSxr5MQqQF7dRbGgrIMPu9z\nAW5rraOVUiWBJ3n46ARgviWmM3BNKWUNfGB2/ALwYG1XI8DaLO1X4EMMS97XmB1/Djj6BHUTQggh\nxDOoT58+REdH8+677+Lk5GT6Se+71l955RUmTpxIhw4dyJ8/P2vWrOHVV181pTs4OLBx40aOHz9O\nyZIlcXFxoU6dOqbnmB/o0KEDTZo0wcPDg0OHDrF8+fI0dy23srJi1apVXL58GT8/P6pUqULVqlX5\n7rvvUuTr2LEjBw8epHnz5ri4uDzRNalXrx7Tp0+nb9++FChQAB8fH3r16mWaac6KESNGMHjwYNNO\n8fHx8QwbNgwfHx9cXV2ZMGECS5Yseaqz6vb29tjb23Px4kXatWuHvb09w4cPN6WXKVOGkSNHmt6P\nGTOGmjVrUr58eQoVKkRoaCgrV67M0m7yaalRowazZ8+mT58+uLm50a9fP+bNm2d6Vj8gIIDx48fT\nqVMnU19q2rRphjG11kyePJmiRYvi7OxMt27dmD179kOPZgiRE5RhYC/yKuOS89+BosApDEvWh2qt\ng5VSUVprJ2O+ZkADrXVbpdRQDLPu36WKVQSYq7V+2fi+C9APuAnsApyN53sBywF7DAPybmblWANh\nwHKt9YdmsScBa7XWKzNqT2BgoM5oc5T/iuDgYIKCgnK7GuIZJ/1M5ATpZ0/Hj/sNf3aumLv1yCse\ntZ8ppdiyZQs1a9bMtjrcv38fT09P/vrrL6pXr55tcUXeIr/TRE5QSu3TWgdmlk+eWc/jtNZxwBvp\npDmZvV4MLDa+HppO/lClVLhSqoTW+ozWegowJY18YaScwe9vlpYApPiuFeMNhUCgZxabJYQQQgjx\nr6G1Zty4cZQuXVoG6kKIHCOD9f+eARg2mjuTjTH9gAHa+JVwQgghhBDPihs3blCsWDE8PT1ZtGhR\nbldHCPEfIoP1/xit9SkMy+mzM+YZsnfwL4QQQgjx2LLzMU9PT89HepZcCCGyi2wwJ4QQQgghhBBC\n5DEyWBdCCCGEEEIIIfIYWQYvhBBCCJHHyC7wQgghZGZdCCGEEEIIIYTIY2SwLoQQQgghhBBC5DEy\nWBdCCCGEEEIIIfIYGawLIYQQQgghhBB5jGwwJ4QQuWDBgqdfhp1dzpTzKFq0yO0aCPFsymt/17Nb\nXvx9JjL3X/udn14f/a9dB5F9ZGZdCCGEEEIIIYTIY2SwLoQQQgghhBBC5DEyWBdCCCGEEEIIIfIY\nGawLIYQQQohctWzZcIYPD8q2eEuWDGXkyNeyLZ7IHcHBwVhZyRZb4r9Ler8QQgghhMhUcnIyw4bV\n5MyZHUyYcAl3d18A/v57FtOnt8PGxsGUt2LFhnTv/ktuVfWZ0KNHUd55Zzg1a7Z8KvG3bJnDhg1T\nuXLlBBYWlhQrVpn33/8WP7+yANy8eYGePf2xtXUAFAAODq5MmnT5oVi3b1+jf/8yODnlZ8yYs+mW\nuWHDBkaOHMnBgweJiIjg0qVL+Pr6PpX2CfEskMG6EEIIIYTI1OrVY1MMyM15ehbLcJAm8p6YmEia\nNv2SEiWqY2lpxbJlw/jmm3qMGXPOOEA3GD36lOnGTHpmzuxM0aIVuXXrQob5HB0dad26Nb1796ZB\ngwbZ0Yxsl5iYmNtVEMJElsH/yyilop7w/HFKqZezqz7GmA2UUsOyM6YQQggh8o5r106zfv0PtGjx\nXbbEO3DgD/r2LU27dk6MHt2AqKhbKdIjI8OZNq09H39cmI8+8uC774Zy926YKb1Hj6IsXTqML7+s\nSbt2Tnz+eSDnzu1Jt7zIyHCmTGlN167edO3qzdSpbYiKigBg/fopDBxYPkX+sLBztGplxc2body8\neYEPPlBs3jzbWGdHvv32Te7fv83ChQPo0sWTrl29WbducooYJ09u4csva9KpU3569Qrgjz++R2sN\nwPHjwbRqZcWOHb/Sq1cAHTq4MGFCc2JiIgH47ruGhIdfZMaMDrRr58TXX9cDYMeOhfTtW4r27Z3p\n0sWLqVPbPOYnAPXqdaNs2brY2TlibW3LW299wZ0717l69eQjxdmyZS5JSYnUqJH5CoBq1arRpk0b\nypQp80hl/PrrrwQEBODi4kLz5s2JjIw0pYWGhtK4cWMKFChA4cKF6dmzJzExMaZ0pRRbt241vU+9\ntD4oKIiePXvy1ltvkS9fPn777TcuXLjA66+/jqurK25ublSsWJFTp049Up2FyA4yWP8PUUq5A9W0\n1puzOfQfQEOlVNq324UQQgjxr5WcnMy0ae1o0eI7HB1d08wTHn6Jrl29+fjjwkyc+B43boSkGy8s\n7BzjxjWhceNBTJ9+h9df/4RNm6ab0rXWjB37FkopvvnmKOPHh2Jv78DkySm/rHrDhqm0bj2eadMi\nqFKlGaNHv0l09L00y/zhhw+4f/82o0efYPToE0RG3mLKlFYAVK/+AWFh51IM9oODf+KFF17Dw6OI\n6diePUsYMmQr48df5ObNCwweXBVPzwAmTbpKp04/M29eT27dugjA5cvHGT36TerX78vUqTfp2/cP\n/vprElu3zjW7rkkcObKOr78+xPffn+bChQOsXTsBgD59VuLu7keHDjOYOTOKgQPXERcXzZQprWjb\ndjI//RTJ2LHnCQrqkO51flTHjm3A1tYBb+8SKY4PGVKVjz7yYPjwII4fD06RdufOdRYt+px27aZm\nWz1SS0pKYt26dRw6dIjTp09z4MABJkwwXKfExETq16+Pt7c3oaGh7Ny5k23bttGnT59HKmPmzJl8\n8skn3L17lyZNmjBo0CD8/PwICwvj1q1bzJo1Czc3t6fRPCEyJIP1PEop9btSap9S6phSqlMa6QWU\nUjuUUvWVUkFKqVVmaZOUUm3TCNsUWGOWb7BSao9S6qhSappSShmPByulAs3KuWB8vVMpVcbs/GCl\nVKA23CYOBvLmeiYhhBBCPLa1a8fj4uJN5cpvp5leqtTLjBp1hEmTrvLVV3uwtrZj1Ki6xMbeTzP/\njh0LCQioQs2aLbG0/D979x0eRfEGcPw7l3bpCQGSUIMgCTUIkSIgoYsC0lV6kaKgIKiAIKIiKiKI\nFUH5AYKCVAGRbiAISK+GTqgJJQVSuLSb3x93HDkI1QBB3s/z5OF2Z/ad2bnNcnMzO3GkYsVGVKnS\nwpZ+7Ng2jh3bRteu3+Dm5o2LixudO/dm3741xMVdfV46PLwHJUpUwdHRmWbNBuPs7MqOHUuuKy8h\n4Qy7dy+nY8dxuLv74u7uS4cO49i5cykJCTG4uXlRo8aLRET8CFg60ZGR06hbt6ddnBYt3sXDIx+e\nnn488URTHBycqFevJw4OjlSq1AR3d1+io3cAsGrVt1Sr1pawsOcxGBwoVCiEhg37ERk53S7miy9+\ngtHogbe3P2FhLTh2bOtN3wsHByfOnNlPcnI8RqM7ISG1b5r/dsXEHGTSpG60b/85rq6eAHh65mfk\nyI188cUxvvgimiefbM2YMU04cWK37bgpU/rQtOlb5M9fLFfqcSOffPIJHh4e+Pv706JFC7ZutbTT\n5s2bOXToEOPGjcPd3Z3ChQszatQopkyZYpvFcDvatGlDvXr1UEphNBpxdnYmNjaWo0eP4uDgQMWK\nFSlYsOC9Oj0hbkieWc+7umut45VSrsAWpdQ8rXUcgFLKH1gEDNdar1RKhd9mzJrA3GzbX2utP7DG\n/AlLZ3vxTY6fDbQD3lNKBQKBWusr/6tsBWoDv157kPXLhl4A/v7+RERE3GZ1/7uSk5OlHR5xRuO9\nL8NgSMZojLj3Bd0Buez/e+R+ljfcq3tKTMxpli4dzZgx32M0RuDiEmstbyNGYwEAitn6aWdwc4N+\n/TrSqdMsTpyYSMWKVa6LefHiZvz9Xe3uT4GBBi5eTMRojCAxMYLMzDRefdXP7jhnZ2eSkhZSuHB5\nlDIRGGiyi1GggDdJSWsxGgvh6BiNwZCA0RhBUtI/ABQtegIHh9MAFC+eBUBy8kICA8vQpEkY77//\nJi+/3IJ9+7ZjNl/mqae8cXS8es4BAdEYjZYvINzdz5Evn9GufBcXA1lZmzEavYmL28revTvYsuXq\nxyKtNX5+BTAaI3B23onBYKBgwX22dHf386SlnbDFVMqEk1OUbdtohGHDRrN48UzmzBmMv38gzZu3\no3btf7fq/cmT0Ywe/RbPP9+Kpk1DsIy/WMrz8QHYAMDzz1dg585ybNs2ltKluxMZuYrk5MM0bfo6\nBkMETk77UeqyXZvc6NYQG2tp040bN1KgQIEb1m3nTks77dt3tZ3Onz/PiRMniIiIYM2aNXh5ebFl\ny9VZERcuXMBkMrFw4ULbaPiOHTtsz6Lv3LkTrbXtvpWYmNrXilIAACAASURBVGi3nZycTIsWLZg+\nfToNGjTAZDJRp04devbsiaur603b8ka/h3KLFHdLOut51+tKqStfYRcFHgfiACdgNdBXa732DmMG\nAuezbddVSr0NuAH5gH3cvLP+K7ACeA9Lpz17x/8cUCing7TWk4BJAGFhYTo8PPwOq/3fExERgbTD\no+3nn+99GUZjBCZT+L0v6A7IZf/fI/ezvOFe3VN2757KpUuXGDDAMslPazMAb7zRm7ZtR9Gw4avX\nHZOVlYlSDqSnh+Z4D/LyWs/x48vt0mJjf8Bs9sFkCsfb2w1n53F8/30iBoNlEmj2+5nJBFobiYkx\n2vZprTl//iKennUwmcLJzIzAbD6FyRSOp2dpoC8nTxYnIKAUYBlJBvDwaIHJFEiRIuEULDiJtWvP\nsnXrZmrX7klmZgMyMyEtLdpabg1MJstCa9njX6G1kYyMMphM4eTLV5mnn65Ct272z7FfqX96OoCy\nO/76mG62eFeUKhXOG28MwGzOYtu2RUyY0Jpixbrh71/yunJux7Fj2xkz5m1atBhB48avYTLdPL/W\nfmRkFMNkCmfbtqlER0fTrVs7a/3TSEtLpUuXNrzzzmqKFw+94T0/OjoagBo1atxyNXillN09JiIi\nglOnThEeHo6zszOffvopVatWxc3N8jTmihUrMBqNtGhheZTCw8OD0qVL22KcOXPGLqaPjw8lS5a0\nbV+5p7VoYZntcfToUZ5//nk2btzIBx/cfImmG/0eyi1S3C2ZBp8HWUfKGwA1tNahwA7gynd1mcA2\noHG2QzKxfy9v9P365StpSikj8C3QRmtdAZh8TRlX4tliaa1PA3FKqYrAC1hG2rOXeRkhhBBC/GdU\nr96OceOOMHr0TkaP3slbby0FYMiQFdSu3RmwLBYXF3cKrTXJyfFMndoXD4/8lCpVPceYNWq8yOHD\nf7Nhwy9kZWWyd+8qtm5daEsvUSKM4sVDmT79dZKS4gC4eDGRjRtn2cVZu3YKx45tJzMzgyVLPiMt\nLZUnnnjuuvJ8fQtRoUIjZs4cREpKIikpCcycOYjQ0Cb4+gba8tWt24ulSz9n586l1K37754Fb9Dg\nVTZtmsX27YvJzMwgKyuTU6f+ISrq9sdZfHwCiI09ZNu+ePEsmzfPIzX1IgaDA25ulvUDDAaHu6rj\ngQN/MXp0fdq2/YjGjV+7Lv3QoU2cPLmXrKxM0tNNrFkzif3719oeh+jUaTyffbbfdm20afMB+fMX\nY/TonRQuXDbHMs1mMyaTibS0NADS0tIwmUyYzea7OoeqVatSqlQpBg0aRGpqKmfOnOHdd9+lW7du\nWJ/upEqVKkybNo309HSio6MZN27cLePOnj2bY8eOobXG29sbZ2dnHBzurp2F+Deks543eQMJWutU\npVQIkP1/Ow10B0KUUoOt+44DZZVSLkopH6D+DeJGAaWsr690wi8opTyANtnyRQNX5q1l3w+WDvrb\ngLfWene2/aWBvbdzckIIIYR4OLi4uOHnV8T24+MTAIC3dwBGowcAUVERjBhRlR49PBg8uBxJSXEM\nHbrSln6tgIBS9O8/lwULPqBnTx/++GO8XefYYDAwcOBvaK0ZPrwKPXp4MnRo3+sWN6tbtxfTp79O\nr16+bNo0m7fe+h03N+8cy3z11Rm4unry5pvBvPlmCG5uPrzyiv3z4zVrduD8+WOULl3zukXW7lTR\nouV5880lLFv2BX37BvLKKwX5/vuuXLp0/tYHW7VoMZy//ppBz56+fPppE8xmMytXfkP//kH06OHJ\n1Kl96d17GgUKBN1VHefMGc7lyxeZMeMNunf3sP3s3x8JwPnzxxg/vgU9e3rz2muFWb/+JwYNWkyJ\nEpaPiO7uvnbXhpubLwaDA35+RXB0dAKgT58+NGnSxFbmunXrcHV1JSQkBIBSpUrh6urKunV3t/ax\no6MjS5Ys4dSpUxQrVoyqVatSrVo1xo69+lcLvv76aw4fPky+fPlo164dXbt2vWXcHTt2UKdOHTw8\nPChXrhyVK1fmrbfeuqs6CvFvqDtZfEHcH0opF2AhEAQcAHyAkVrrCKVUstbaw5pnEfCb1vpbpdQY\noCVwDEgGFmmtp14TtzbQW2vd0bo9CngJiAUOAse11iOtXxD8CmRhWem9o9Y6yHqMP3Aa+FBr/X62\n2EuAoVrrPTc7t7CwMH1lUZBHmUwbFY/qNPj27W+dRzxc5H6WN9yPe8qDdO39rH//INq2HUWtWrf+\nc2G3S2vNG288Rtu2H1GzptyscsPDeM//N/e0G/0ePoztIO4tpdQ2rXXYrfLJM+t5kNY6DWhygzSP\nbHkaZ9v/NpYR75vFjVRKfayU8tFaJ2qthwPDc8i3H6iYbdfwbGlnuea6sXbgXW/VURdCCCGEyKv+\n+msmmZnpVKt27aRCIYR4MKSz/ugZBBQDEnMxZjFrXCGEEEKIh06fPgVwcHCkZ88pODo6P+jqCCEE\nIJ31R47W+u97EHPLrXMJIYQQQuSOCROiczXexIm3/yy5EELcL7LAnBBCCCGEEEIIkcdIZ10IIYQQ\nQgghhMhjZBq8EEI8APdjZdiICJBFuoV4NPzXV5uW+5l4GPzXfw/F/Scj60IIIYQQQgghRB4jnXUh\nhBBCCCGEECKPkc66EEIIIYQQQgiRx0hnXQghhBBCCCGEyGNkgTkhhBBCiFyiD/z8oKvwYJxYlavh\nVMMp9m2ZZry6fWHP7QfKXyFX63XH7qRd3Pzttx903e+SCpZV1oTILTKyLoQQQgghhBBC5DHSWRdC\nCCGEEEIIIfIY6awLIYQQQogHasaqI5ToNCfX4k1dupvHX5iYa/HEgxEdHY1SilOnTj3oqgjxQEhn\nXQghhBBC3JLZbKbmiyMxhHTgVGycbf+u/cd59p0VBL4wC0Oj/7F+79kHWMv/jrqdRjHquwX3LP7S\ntTup3+UjClTvTb6qPXm6wwdEbt1vl2ft5ihqvDAC7yo9KFGvP1/PWGGX/uX0ZVRvNwL3St14vNHA\nW5YZGRlJ5cqVyZcvH97e3lSuXJn58+fn6nkJ8V8inXUhhBBCCHFL46f+gZur83X7nZ0caVmrOIs/\nbPAAaiXuVsKlFPp1bMShFeM4t2EiLzV9imd7jeFkjOWLmOhT52na5zNe7/QMCVsm88u4frwzbjZz\nl/1ti1GooC9v9WjKO32ev60yg4ODWbBgAXFxcSQmJvLFF1/QsWNHoqKi7sk53o3MzMwHXQUhbKSz\nfo8opUYqpd68y2O7KqW+zu06WWM/oZT6MZdjOiul1iml5K8LCCGEEP9BB4/F8N0vq/js7etX+i5T\nsjA9nw0mrHT+2463ef95nuy7CM/mP1H7jd85Gptkl56amsqbn87ksfoD8KvWi7eHfcjh47G29Lr9\nZjJgwiqavT0Hz4afU77jD/yx8cgNy0u9nEb/j6ZTLPw1ClTvTcu+4zhx5gIAf6zbScEafUhPv9pJ\nS0q+jGfl7raRZkNIB76esYInWw/H44nu1HxxJKdi4xg/9Q+Khb9G/mq9GTb+V7sy9x48yTNDl1Ow\n7c8U7/ArQ3/cSkamGYDo2CQMjf7HT6sOU+7l+Xg9/xON35hFzIVkAPqNW0Hktv2M+nYhnpW7E/KM\n5SPlqg17qdzyHbyr9KBA9d407Db6ttv8Wh2a1aRlwyfx8XLH0dGBV15qgIebkS17jgKwdN1OHi8e\nwEtNn8JgMFC90uO0aVyV7365usJ9m2eq0bpxVQoX9L2tMgsWLEjx4sVRSqG1xmAwYDabOXz48E2P\n+/PPPylbtiyenp40atSImJgYW1pcXBydO3cmICCAgIAAunTpQnx8vC09KCiIGTNm2LavnVrftWtX\nOnToQNeuXcmXLx9fffUVCQkJtG3bFj8/P7y9vSlXrhyRkZG3dY5C5CbprD963gG+zM2AWut0YDXw\nQm7GFUIIIcSDZzab6TFsEp+93R4fT/d/He9iSjrPDltJ69pBxM1rz7g+Vflusf306549e3Lg6Bk2\nzn6fmMhvKRPyOM36jCUj42qHesqS3bzeNoyEP95gaOcatBo2n+iYxBzLfOPjGfy96zAbZ79P9JoJ\n+Pl60vyVz8nKMtO4VkXcXV34bc02W/5fft9I0QA/aoeF2PbNXLyeBd+8wbkN32F0caJ+l9EkXErh\n8IrxrJ72Dp9P+Z2/th8A4FzcRcI7jaJlzeKc+vkFNkx4jlXbz/DxrN129fp17THWfv4sp35+gRRT\nBiN+tHQIvx7YiNpVQhj+aguStk9h/7KxAHQZ/B2vdWxM4tYfOLXua4b1afEv3gl7ew6c4EJCEhVK\nFwVAa43W2i6P2azZuf/4vy7Lx8cHFxcXateuTbVq1WjUqNFN88+ePZt169Zx+vRpUlJSGDFihC2t\nQ4cOJCQkEBUVRVRUFBcuXKBTp053VJ85c+bQpEkTzp8/zyuvvMJnn31Gamoqx48fJzExkQULFlCk\nSJG7Olch/g3prOcipdQwpdRBpdR6IDjb/p5KqS1KqV1KqXlKKTfr/qlKqYlKqa3W45pmC1dIKbVM\nKXVIKTUmW6xkpdRH1liblFL+1v0FrLG3WH9q5lA/T6Ci1nqXdbuqUmqjUmqHUmqDUirYut9uZF8p\ntUQpFa6U6qOU+izb/uz5FgIdcqEZhRBCCJGHTJi+nID83rRs+GSuxFuy6STuRkcGv1ABZycHngwu\nQPdnHrelX7ho4ueff+ab97rhn98bZ2dHunRoR8z5RP7efXX0vMXTj9PwyRI4Ohro0KgcYcGB/Lzy\nn+vKM5vNTF8YyYf921LYPx/ubka+GNqJqKOn2bz7CAaDgR5tw5kyN8J2zJR5EfRoE24XZ2C35ygS\n4IebqwutG1cl9kIiI/u1wtnZkdCQ4oSGFGPr3mMATF+4ntCQYvRuGoKzkwOF87sz5MWK/LTKfgR5\nRMdK5Pc24uXuzEsNyrJtfww34+zkyJGTZzl74SIuzk6EVyt7u81+U+fiLtLm9QkM6v4cjwcFANDw\nqQpEHTnDT79FkpmZxfptB1iwaguXki//6/ISExNJTk5mwYIFPPvsszg63nxy5nvvvUf+/Pnx8vKi\nffv2bN26FYAzZ86wfPlyxo0bh6+vL76+vowbN46lS5fajb7fSq1atXjhhRdwcHDAaDTi7OxMXFwc\nBw4cQGtN6dKlKVGixL86ZyHuhkxbziVKqSrAi0AlLO26HbjyFe18rfVka75RQA/gK2taEFAVKAn8\nqZQqZd1fCXgCSAMOKKW+0lqfBNyBTVrrYdZOfE9gFDABGK+1Xq+UKgYsB8pcU80wYG+27f1Aba11\nplKqATAaaH2T05wHbATesm6/AHxkfb0XyPF/caVUL6AXgL+/PxERETcp4tGQnJws7SDuObnOxP0g\n19k10owPuga56vSZGD7+YSnffzmGtdFGYmNdANh00kgBU7ZzTa9jffE/dqZXIstU+oYxI2OT8SlQ\nmHVp4bZ9GX5g0qdZa6rD/hOWadjlmg21Oy4zM4sVuy+R5R1GYqY7xXxKsTaxvC3d1a8Ym085sTax\nPAdS47lsdmZttJH4hETS0jM4r4qwNvpKnY14e3uzfM8l0n2NlK36DB9+u5BfNyeRkpLKjqjjvDNs\neLb8cDazoG37ZLI7nl4+RJ5wu9oEuLLnVCZro438FRXP+u0H8Wx57OoJaMgym1lrqkNs2nlgLsfd\n65FqygfAKb2Bc8m7bOeUaFpMdIKTXR2GDx/KzFnz+KbpUHy8vWjapCFtWmYf67lzF+LieXPoaJ4I\nrcQzrbqwNlpZElQJRg5/m49+mE2/D2dQokQxGjaox5/rNtjVCeDABScuZyjL/piI2y7bx8eHBQsW\ncPbsWZo3b35demys5dGH6OhoUlJSADh58iTnzp0jIiKCf/6xfDlz4sQJTp8+DUBWVhYACxcupEyZ\nMphMJqKiomz3qSsxN27cSIECBYiNjcXFxcWWnpycTLVq1Th8+DBt2rQhPj6e6tWr07t3b/Lly3fb\n5yZEbpDOeu6pDSzQWqcCKKUWZUsrb+2k+wAeWDrSV/yqtTYDh5RSR4Er861Wa60vWmP9AxQHTgLp\nwBJrnm1AQ+vrBkBZpdSVuF5KKQ+tdXK2sgKB89m2vYFpSqnHAQ043ewEtdbnlVJHlVLVgUPWuv5l\nTctSSqUrpTy11knXHDcJmAQQFhamw8PDb1bMIyEiIgJpB3GvyXUm7ge5zuzpAz8/6Crkqqnbd3Pp\n4iV6vToAALN1WnTvfm/wYf+2vNre+jHkxFrbMZWcd1LLeONRzZP+Z/nj/GmedongyueWlXHbMKo0\n6hjXUqbIZV4Bjq78nAL5vABYG22kTpDJEuDCHnwcU9CJh6njc3UMYnjcCcJLP0Ydn70cczuFqyGd\nOkEmzMWccXF2oiCnqRNkebY6OcXExYsXaVzBixpBJghypWl4JaI2ryDhUiotG1SheagzYLp6XoHp\n1LLW4Vj+DFyd9NU6AT5GM0G+GdQJMvF3iA8ZSeVZMuyJHFpgLdEulo9K1V02UcRoebTgmNtZS52t\n55TPTdviXVEnKIAe9fqitWb9tgM07vEJLWsEUq96uRu2981EnzpPjyGjad0gjLGDO2AZI7qqTlA5\nhrzwgW27Xf8JNKoRYlena9tDBYffUR28vLwwGAw53keio6MBqFGjhm0aenR0NK6uroSHh1O6dGn6\n9u1L8eLFKVXKMt518OBBAFq0aEFgYCAFChSgWLFitvgbNmywizl16lQcHR1t6VfuaU2aNAEsnfuO\nHTuycOFCpk+ffkfnJsS/JdPg74+pQD+tdQXgfSD715H6mrxXtrPfLbO4+sVKhr76AFH2/Qaguta6\nkvWn8DUddYDL15T9IfCn1ro80CxbWib210b2Y2YB7bCMwC/Q9g8zuZD9fzUhhBBCPNTaNanO4ZXj\n2LFwNDsWjub37y2T65b/MITOz9cGLM82m9IzMVkXaEvPyMKUnklWljnHmE2rFyHZlMFnc/aSkWlm\n+6ELTFl+yJZe0NeV9u3b0/f9/3H6rGWhsOTkFBas3EJyytWPGQvXHWL11miyssz8svIfth6I4aUG\n108LNxgMdHq+FiMmzOHM2QRSL6cx6NOZhJQoRNWKJW35erarx//mr2XmovW83Lbev2q3zs/XZuve\no0xZdhBTeiZms+ZoTBLLttz+3wsPyO/NkeNX/wxeenom0xas40JCEkopfL3cMRgMOBju7uP8/qNn\nqN3hfV58roa1o369LXuOkJGRSerlNL77ZRXLInfz7qstbemZmVmY0tLJyMyyXAdp6ZhMN/4oOG/e\nPPbs2UNmZiYmk4nJkyezZs0aGjdufFfnUKhQIRo1asSgQYNITEwkISGBQYMG0aRJEwIDAwGoUqUK\nv/zyC8nJyZw/f54PP/zwlnEXL15MVFQUWVlZeHh4YDQacXBwuKs6CvFvSGc996wDWiilXK3PhjfL\nluYJxCilnLj+ue62SimDUqok8Bhw4C7LXwG8dmVDKVUphzxRQKls297Aaevrrtn2RwOVrPUqimWa\n/hULgOeBl7B03K+U5wdc0Fpn3GX9hRBCCJHHuLm6UCTAz/YTkN8HgIAC3ni4W77LP376Am5Nf8Kt\n6U8ANBi8HLemP/HT6pxXZ/fxcGHJhw35NeIY+VrNpP+3f9OnaYhdnsmTJ1O6RCB1O4/Cq3IPuvd5\ng7nL/ubqBELo3rQi42dvweeZ8Xw49S/mjmpJiUI+OZY5fmhHqpR/jKpt36V43deJPZ/Ib98OwsHh\n6kfhRjUrYFAGvD3dqF/j7kaqrwgo4MOaacP4bcMJSnSaS75WM2n1/mqOxiTd+mCrAV2bsHXfMXyf\n7En5pm8D8OsfmyjT5E08K3fn+Vc/Z2S/1tSpeu1Tj7dnzOTFnD6bwITpy/Cs3N32M3PxX7Y8I7+a\nR4EaffCv+Qrzlm9mzbRhlC11daG1Ud8txC20G71H/MjRk+dwC+2Gq6urLX3mzJl4eHjYtmNiYmjV\nqhU+Pj4UKlSIKVOm8Msvv9CwYUPu1owZM/D09CQ4OJiQkBB8fHzsRsBHjRqFg4MDgYGBhIeH8+KL\nL94y5pEjR2jWrBleXl4EBQXh6urKp59+etd1FOJuqWtXeRR3Tyk1DOgCnANOANu11mOVUq8Ab2OZ\ngv434Km17qqUmoplJDoM8AIGaq2XKKW6AmFa637WuEuAsVrrCKVUstbaw7q/DdDUGis/8A2W59Qd\ngXVa6z451HEP8JTWOkkpVQOYBqQAvwMdtdZByjInbQZQBUsH3xcYqbWOyFafslrrx7LFbQPU0FoP\nulkbhYWF6SuLgjzKZNqouB/kOhP3g1xn9v5r0+Bv24lVt85zB1TDKXZtee00+Lr9ZlI/LIjhXa9b\nT9de/gp3VG7dTqNoWLPCbf/d8Fu6k3Zx87ffvsO65xUq+Po/7/cwkXuauB+UUtu01mG3yifPrOci\nrfVHXF1wLfv+74DvbnDYqms71VrrqVimzl/ZbprttUe213OBudbXF7i9P502xZrvB631RiD7CjDD\nrbE0N1nZPXt9smkPDLmN8oUQQggh8px1W6LYsvcov054/UFXRQghAOmsP4q+A9rmZkCllDOwUGt9\nMDfjCiGEEELcD1XbvMvhE7F8ObyzbVE7IYR40KSz/gBprbs+gDJNwE+5HDMdkOUxhRBCCHFf/Pn1\nDScA3pXNc2+96JgQQtxvssCcEEIIIYQQQgiRx0hnXQghhBBCCCGEyGNkGrwQQgghRC552FfCvmv3\n4Lzt2jImAhUcbi0r14u6dx7V60EIkStkZF0IIYQQQgghhMhjpLMuhBBCCCGEEELkMdJZF0IIIYQQ\nQggh8hjprAshhBBCCCGEEHmMLDAnhBBC3ET4RxsIL+OXqzFHtnqYVsgS98vI+QcedBXyrPB8d98+\nI1sF2x2b/ffv37Z5Tr/L8j4+3IINaffkPZT7vrgbMrIuhBBCCCGEEELkMdJZF0IIIYQQQggh8hjp\nrAshhBBCCCGEEHmMdNaFEEIIIcQDtXvtIr7oUy/X4u1cM58v+zbKtXjiwYje+zcftC33oKshxAMj\nC8wJIYQQQjzCfvvmHY7u2oApNQlnFzdKVa5Noy6DcfXwtuX5a+GP/P37NEwpSRQpXYlmfT7AN6Co\nLT3lYhwrp4/h4NYIsrIy8fUvSodh3+OZz/9BnNJ/wtQRnXis4lM83eaVexL/0La1bFg0hbPHD6DN\nZgoWe5x67d+geNkwuzx/zppAfOwJnFxcKVO9EY06v42jswuZGen88eMoovf8TXLieYwe3pR7qgn1\nXuqPo7PLLctf+dNYNiz8gZavj6Fineb35ByFeNjJyPp/hFIqQikVdhv5ApVSS+5B+auUUr65HVcI\nIYQQ91aNZl3p++VShs7YRt8vfycjzcTSyR/Y0nevW8yG337kpaHf8db/NlCgaEl++eRVzFlZAGSm\npzF9ZFcMjs70+2oZQ6ZvoVX/z3A2uj+oUxK34XLKJao+25HXv1nBW//bQPlaTZn5US8uXogBLF/A\nzP7sNZ6o34bB0zbT89M5HN+3mbVzvgXAnJWJm6cvLw39jsHTt9DtwxlE793Eyp8+u2XZpw/t5vD2\ndXj4Frin53g3MjMzH3QVhLCRkfVHz0Bg8j2I+xPwKvDRPYgthBBCiHukYLHSdttKKeLOHLNtb185\nmyqNXiDwMct05Prt3+Cz7jU5sX8bQeWqsjNiAaaUJJ7rOQIHRydrzMdvWubpQ7v5ffL7XDh9jICg\nEEqG1rRLz0i7zJ+zviRq0wpMqcksLVOa6l1GkS+wOGAZdQ4IKkN87HGi923BJ38hGnZ5m8crP51j\neRlpl1k1Yxz7/17J170yqFWrFl9++SUAh7avY+FXgxk4aS0OTs4ApF1O5vOXn6bDsEkULxvG+61D\naNJjODsjFnDh1FH8g4JpO+gLxo9fyrhx40hNTaVPnz589NHVj0HnThxkxdRPiTn2D47ORirUbkrd\nF1/HwdGJxHOnmPBKA1q89inrF0zi0oUYigRXosVrn+DpW5Clkz/gRNQ2Th3YyfoFk/HKV5B+Xy3j\n6K4NrPzpM+JjT+Dg6ERAUBk6j/zfLd/jnFR8upnd9pPPvMTaOd9w5vAevPMHcikulqyMdJ6o3wZl\nMODlF8DjVcI5e3w/AM5GN+p3eMN2vE/BwlRu0I4ty36+abmZGeks+nYYTft8wLzxg26rrnv/Wsqa\nmeNJTUqgZGgtmvcdhYurBwCJ506zbMpHnNi/HSdnI2WqN6J+h4E4uRgBeL91CN1GzaRYmSqAZWr9\n9Pe7M2LOPuDqtZR47jTH9m6iVet2+NfswJKJ73Hq0G6UUvgULELrN8aSv/Bjt1VfIXKLjKw/YEqp\ngUqpvdafAdZ9QUqp/UqpmUqpKKXUXKWUmzVthFJqizX/JKWUyhaurVJqs1LqoFKq9g2KbA0sy1ZO\npFJqu/XnKev+8Oyj70qpr5VSXZVSzyil5mTbnz3fIuClXGsYIYQQQtw36+dP4uMOlfm0c1X2b15N\n7dZ9bGmx0Qco9NjV54adXd3xCyzO2WhLpy1672byBRbnt6+HMqZLNb5+rQkbF0+9YVmmlCRmjupJ\n2eqNGTx1E427DWXL8l/s8iz+7l0unD5Kj49n8+YPkZQpU4afR/chKzPDlmfH6rlUe64zQ6Zvplbr\n3swe04/Ec6dyLHPZ/z7m9KFd9Ph4NsePHyd//vw0a9YMc1YWpSrVwsnFlf1b1tjy7438HW+/ALsp\n4bvXLebFwd/w1v824OjkwrT3upCQkMCRI0dYs2YNY8eO5a+//gIso9JT3+1ESPWGDJy0lh6jZ3F0\n9wbWz59kV699G5bS7cMZDJy8jgzTZf6c9RUAz/YcQbEyVXi67au8M3M7/b5aBsCCrwZT9dmODPlp\nKwMnr+PpNn3ILWePHyD1UoLty5uAoDKUeuJptq2YhTkrk8Rzpzm45U9Cqja4YYxjezYSEBRy03Ii\nZn9FUPnqFA1+4rbqpc1ZHNn5F30+X0i/r5YReyyKIqVVogAAIABJREFUv3+fAVhG938e3Qd3n/wM\nmLiGHh/P5uT+7ayYPuY2z9pix5p5VHuuE0N+2krjps+zeuZ4vAoU4s0pf/HW/zbSot/Hdo+FCHG/\nSGf9AVJKVQG6AdWA6kBPpdSVO1cw8K3WugxwCcuoNcDXWusntdblAVegabaQjlrrqsAA4L0cyisB\nJGit06y7zgENtdaVgReAL29R5VVANaXUlXltLwCzALTWCYCLUsrv9s5eCCGEEHlFrVa9GDpzO69/\nu4oazbuRL6C4LS3dlIKLm4ddfqO7J2mXUwBIvZRA9N6/KVSqIoN+iKRV/zFEzpvI7nWLcyzr4LYI\nnIxu1GzZEwcnZwqXqsAT9Vrb0lMvJbAncgnP9XwPD5/8ODg506VLF5ITz3P60G5bvpCqDSgZWhOD\ngyMVn25GoZLl2RN5/ZN+ZrOZXRELqftSf7z8/HF3d+eLL74gKiqK04d3owwGKjdoy47Vc23H7Fgz\njycatLGLU6N5N7z8AnBycaVsjcYkJ15g5MiRODs7ExoaSmhoKFu3bgVgV8RC/INCCGv0Ig5Oznj5\n+VOrZS92rf3NLmaddv1w8/LFxc2D8rWbEnNk703fJwdHJxJiT5KSeAFHJ2eCyle7af7blXIxjl8/\ne52nmnfHr1AQAMpgoFLdlkTO+55RL4Yy4ZX6BDxWhkp1W+UYY9OSaUTv20K99gNuWM6Zw3v4Z+Ny\n6t8kT04adByEs6s7Hj75Ca5a39ZOpw/tJj4mmsZdh+BsdMPLz5+6L/Vn55p5aK1vO37ZGo0pUaE6\nSilcXIw4ODqRknCehLMnMTg44B8UjLu3fMQV959Mg3+wagELtNYpAEqp+UBtLKPUJ7XWf1nzzQBe\nB8YCdZVSbwNuQD5gH3Dlf8P51n+3AUE5lBcInM+27QR8rZSqBGQBpXM4xkZrnamUWgY0U0rNBZ4D\n3s6W5RxQCIjLfpxSqhfQC8Df35+IiIibFfNISE5OlnYQ95xcZ7mjfckUPA1JuRozIiImV+M9SHKd\n5Z5gQ9qtM91rgZD/yRC+GN2DLydNx2Aw4Gp0xc90lGBDgC2bTo2jqFsawYZo/NwUF/3y06X508AZ\nypb25GSdcM5sWUTb8ArXFXEgPorAAvkIcThu23cmwMh+Mgk2RHPk/AEAJg28Ok17rAKdmYl7/G6C\nDX64YeIxf3eCDdG2PMUKemOIP0ywIZpYwwWcySDYEM3ChfvIykincoAiwBBt+/3z9vbGI34PwQZf\nCjaoSv853+IXt5nU1BTOHovi3eHD8MoWv2y+TFt5scZkfL29WLdunS09PT2d3bt306B4CBvORXFq\n/3Y+61TlapuhMZvNBBuiOW+IBSA0nwm/KzFdU9h+OdFWhhsm8qsEu3McMnQ4v82bxaSBTfHy8qZe\noyY0adby1u/rTSTExzF65FCqVAqla+dWKGUpb9+eXfz29bsMeHs4oZWqkJR0icnffsGf37zGqwPe\ntouxdNF8Ni2Yw3sffExR/3Qg+rpyMjMymPLNW/Tq1YsK7ueB8ziRSaA6b3eO2WUZYjEYDFT2vYRl\n7Ar2uKZxyXSBYEM08fF78Pb2poLbOdsx3oUcmJmeRmDSLrx9fAAoqmJsZWQZYlFou3YuVfDqteRC\nGq90fZEFc35m3scvk5ZmomqN2rzYsRtGV9e7aGGL/9J9X9w/0lnPu679OlArpYzAt0CY1vqkUmok\nYMyW58r/8lnk/N5evib/G8BZIBTLLAuTdX8m9rMush8zC+gHxANbtdZJ1+S7fN2JaD0JmAQQFham\nw8PDc6jaoyUiIgJpB3GvyXWWO0Z+tIHwMrk7ovJSeHCuxnuQ5DrLPSPnH3jQVQDgZGY88XEX2Hu5\nIC6uHhQIKsO2wxfwejIIgPTLKZw5E4Mq/hQHzEG4B1Um8/BRDpiDbDEStBfJpNntuyLNN4SY83+w\nP6s4V57m2382jQwcOWAOIiW/JwCvfr0Sd+98AITniyEiPhCAA2ZIxcjRsyl28U+cu8jjlUM5YA4i\n1pyfdJw4YA5iRIvHcXByZkcsPOYfxEvhwSQnJ3Px4kWS81WwxPAJolSVcOat3owp+RLBVRsQ4xFK\njDlbu+hAlLW8K/GzX/s+Pj6UKFGCA+YgdIEQSlRMov2w7687/wNmSDRbPqYd1UW5YA6wi3nlnC4r\nNy5oX/s2LB5E44H1aKQ1J6K2MePDHqhiNShRofpN3tEbSzx3iukjhxBSrQFPdRnMQY3tE+jmw6sp\nWDwEtyfacQjAC0rX78KCLwfb1WntnG/ZtuI3On8wk9TCj3HAnENBQGLcKU6ePM6X48fa9plSLvHD\n998QuT2KVgPGXnfMSfNZNMquvDjtQ6p2tVwr+eK5ePEiey/74+Ri6UgfiTmFo7MLMZ6hxJoVzkY3\njlz2tr13/8TtsYuZipE4lc+2HWyIJsYzmOrdK1G9OyTEnmTWp69imr+Sui+9fueNbPVfuu+L+0em\nwT9YkUALpZSbdWp5S+s+gGJKqRrW1+2B9VztNF9QSnkA9vOzbu0g9iPu3kCM1toMdAIcrPuPA2WV\nUi5KKR+gfrZj1gKVgZ5Yp8ADWJ+dDyCnr1KFEEIIkSelXIxjV8RCTCmWUcu4M8dY+dNYipWpYlvA\nq3LDF9i2cjYxR/8hI83Eml8m4FuwCMVCLKPGlcJbkpqUyOY/ZmLOyiI2ej97IhcTUr1hjmWWDgsn\n3ZTKht9+JCszg5ij+9ixep4t3d3bjwq1m7J08vtcijsLWGZwRP29knTr1HuA/ZtXcXT3RsxZWeyJ\nXMKZI3spX6vpdeUZDAZC6zzPn7MmkBR/ltTUVAYNGkRISAiFS1W05avSsB07V89n97pFVG7Q9l+1\na2id5zlzZC87Vs8jMz0NbTaTEHuSwzsib32wlYdPfuJjrs4+yMpIZ+efC0i9lIBSClcPL5QyoAx3\n93H+wqmjTBnWgfK1nqNRl8HXpRcJfoKzxw9yZOd6tNakXkpg+6o5FCp5df2CFdPGsGPVXLp++NMt\nF1/z8gvkje//pM/nC20/nr4FqdfhDZ7pMeyuzqHw4xXJF1Cc5VM/JSPtMknxZ/lz1pdUqtvK9kVQ\nYMly7IpYSFZGOonnTt10PYUr9v61lISzp9Ba4+LugYOjE8pBuk3i/pOR9QdIa71dKTUV2Gzd9YPW\neodSKgg4APRVSk0B/gG+01qnKqUmA3uBWGDLHZaXopQ6opQqpbU+jGWUfp5SqjOWRedSrPlOKqV+\ntZZzDNiRLUaWdVG5rkCXbOGrAJu01vL3LoQQQoiHhmLnnwtY9r+PycpIx83Tl1KVaxP+wmu2HBWf\nbkZS/Fl+Ht0bU0oSRYMr8eLQbzE4WL7j9ylYmA7Dvmf51E9Y9dNYPH0LUqddP8rXfDbHEo3uXrR/\nZyJ//PAha+d8S0BQCGGNX2THmqsd9mavfEjkvO+ZNqIzyYnn8fZ0xz+4qt2q8U/Ub8OmxVOZ9Wlf\nvP0CaPfWl/j6F8mxzMbdhrJqxudMHtyWaUOyeOqpp1i0aBFTt1999KBkaE2UQWF086RExRo5xrld\nHr4F6PL+NFbN+JzVP48nM92ET4HCVGn0wm3HqN6sK799/Q6fdHoSr3z+9B47n31//cGKaZ+SmZGO\nu1c+wl/oR1C5qndVx78WTiYp/iybfp/Opt+n2/Y37f0+FZ9uRrGQyjzX6z1WTPuUxPNncHRyIajc\nkzzbcwRgWYV946IpODg6MXFQC9vxPvkL8eoEy9oBkfMmsmfdEl6dsASDgwNefgF2dVAGA67u3rh5\n3t1f/zU4OPLSOxNZ9uMoxveui6OTC2WqN6RBx6urzD/78rv89s0wPu1anQJFSlIpvCXLjn1807ix\nR6NYOf0zLicl4uzqTumwutR8vsdd1VGIf0PdyeIL4v6wdtaXWBeRy+3YLYEqWuvhuRx3ArBIa736\nZvnCwsL0lcVXHmUybVTcD3Kd5Y7wezANfmSr/850SLnOck9emQafF2WfBg+WP7f1WMWneLrNK7c8\ndmSrYLu2zf77d22bTx3RiZKhNe1Ww79V7Ov2yfv4UAs2ROf4+Ma/9V+674t/Tym1TWsddqt8Mp/j\nEaO1XsC9maq+91YddSGEEEKIvOr4vi2cObyXyg3aPeiqCCEEINPg8yStdTSQ66Pq2eL/cA9iTs7t\nmEIIIYQQ98Pkt9sQH3uCJj2G2xa1E0KIB00660IIIYQQ4qHS9YOfcjVezzFzb51JCCHuM5kGL4QQ\nQgghhBBC5DHSWRdCCCGEEEIIIfIYmQYvhBBC3ETEsKcedBXEI0JWi76xiIiYf9U+Nzr2XrS5vI8P\nt4iIGF4Kl/dQ5A0ysi6EEEIIIYQQQuQx0lkXQgghhBBCCCHyGOmsCyGEEEIIIYQQeYx01oUQQggh\nhBBCiDxGFpgTQghx/6XuzL1YbpVyL5YQ4r8tN+898HDdf3L73OHhOn8hHkIysi6EEEIIIYQQQuQx\n0lkXQgghhBBCCCHyGOmsCyGEEEKIPOXll1+ma9euuRava9euvPzyy7kWT9wf8r6JR5101oUQQggh\nRK756quvKF26ND4+Pvj5+dG4cWN27979oKv10FNKsX79+vta5pGjJ2n54kC8A2vjHVib6uGdycjI\nACD6+BmUUri7u+Ph4YGHhwdFihS5abzu3btTtGhRvLy8CAwMpHv37iQkJNyPUxHioSSddSGEEEII\nkWueffZZNmzYQGJiIjExMTRq1Ihnn30WrfWDrpq4A+fPx1O7YXdCK5TmxP6lxJ+K4Otxg3FwcLDL\nd+DAAZKTk0lOTubUqVM3jTlw4ED279/PpUuXiIqKIjU1lb59+97L07gjWVlZmM3mB10NIWyks34f\nKKVGKqXevEexo5VS+e8gv1JKrVFKeeVyPcYqperlZkwhhBBCPHxKlixJ/vxXP5o4ODhw+vRpkpKS\nbnjMlClTKFmyJF5eXnTq1AmTyWSXfvbsWdq0aUNAQACBgYH06tXLLp5Sii+++IJKlSrh6elJ3bp1\nOXz48A3LO37iDM+3G0D+YnUpWvoZBrz1GZcvW8ocPHwCz7cbYJd/TcRmvAJqkZJymYh1W3H0CuPn\n2X9QsmRJ3N3d6dy5M5cuXaJnz574+vpSvHhx5s+fbxdj4cKFVKlSBR8fH8qUKcPMmTNtaVOnTqVU\nqVJ8+eWXFClSBF9fX3r37k1WVhYAoaGhADRq1AgPDw/b1PAvv/ySEiVK4OnpSeHChXnnnXdueM53\natxXMyhWNJCRw/rg7e2Jg4MDYZXLYTDcffehfPnyuLu727YNBgMHDhy46TFpaWn07NkTHx8fChcu\nzPfff2+XPm/ePEJDQ/H29iY0NJQFCxbY0q60a3bZp9ZHR0ejlOLHH3+kbNmyuLm5kZiYyKxZsyhT\npgyenp74+/vTpUuXuz5nIf4N6aznQUqpe/kn9Z4FdmmtL+Vy3K+AIbkcUwghhBAPofXr1+Pj44PR\naGTgwIG89dZbeHnlPE4QGRlJ3759mThxIvHx8TRs2JDZs2fb0k0mEwMHDqRs2bIcO3aMf/75h1On\nTtG/f3+7OJMmTWLu3LmcO3eOcuXK0bx5c1tnN7vMzEyea/U6Af75OR61lE0R0/lr007efGc8AL26\nt+KPFX8RE3PedswPUxfQvt0zuLu7ApYR2IjIrezZs4eoqCiWLVtG9erVadGiBXFxcQwdOpTu3buT\nmpoKwMqVK+nRowdffPEF8fHxTJs2jX79+rFu3TpbGcePH+fs2bMcOXKELVu2MGfOHGbNmgXArl27\nAFixYgXJycn88MMPHDx4kCFDhrBkyRKSkpLYt28fzZs3v+P36kb+XLeVokX8ea7Va+QrUoeKVdsx\nc9bS6/JVq1aNAgUKEB4eTkRExC3jfvLJJ3h6euLr68vChQsZNmzYTfPPnTuXZs2aER8fz1dffUW/\nfv04fvw4ABs2bKBDhw588sknxMXFMXr0aF566SX+/vvvOzrXn3/+mTVr1pCUlISrqyudOnXim2++\nISkpiaNHj8pz8+KBkc76PaKUGqaUOqiUWg8EZ9tfSSm1SSm1Wym1QCnla90foZT6Qim1FeivlGqm\nlPpbKbVDKbVKKeVvzeenlFqhlNqnlPoBUNliD1RK7bX+DCBnHYDfsh2zUCm1zRqvV7b9ydlet1FK\nTVVKeSuljiulDNb97kqpk0opJ631ccBPKRWQG+0nhBBCiIdXrVq1SExMJD4+nvHjx1OtWrUb5p0+\nfTpt2rShYcOGODo60rlzZ6pWrWpLX7JkCQAffPABrq6u+Pr68uGHHzJz5ky7zvigQYMoVaoUrq6u\njBkzhiNHjuTYadu8dS+Hjpxg3CeDcHd3pXChgowa0Zcp039Da03Jx4rydM3KTJu5GICEhEssWPwn\nPbu1sovz0Xt9cXNzo1ixYoSHh1OiRAmee+45DAYDnTt35uLFixw6dAiACRMm0L9/f2rXro3BYKBq\n1ap07NiR6dOn2+K5urrywQcf4OLiQqlSpahfvz5bt269Ybs5OjqitWbfvn0kJyfj4+ND9erVb/a2\n3JELcYnM/20N3To151z0aj7/eCA9Xn2f9Rt2AJDfz4eNGzdy7NgxoqOjad26NU2aNLnl+gRDhgyx\ndYKvvGc3U69ePZo3b47BYKBVq1b4+Piwc6flb8ZPnTrVVq6joyPPPfccLVu2ZMqUKXd0ru+99x4B\nAQE4OzujlMLJyYn9+/cTHx+Pu7s7tWvXvqN4QuSWezmC+8hSSlUBXgQqYWnj7cA2a/J04DWt9Vql\n1AfAe8CVjrWz1jrMGsMXqK611kqpl4G3gUHW/Ou11h8opZ4DemQrsxtQDUsH/m+l1Fqt9Y5rqlcT\n6J1tu7vWOl4p5QpsUUrN01rH5XReWuuLSqmdQB3gT6ApsFxrnWHNst0af9417dEL6AXg7+9/W9+6\n/tclJydLO4h7Lk9fZ+bLuRfLkJh7scQdy9PXmcgTKlSoQPPmzUlOTqZ48eLXpe/evZvg4GC768jN\nzY3Y2FgiIiJYtWoVZ8+excPDw+44rTXz58+nQIECACQmJtrF8PLyYvny5aSnpxMbG4uDgwMRm2JY\n8+d+vLy82LInEbDcPy5ccsFkSmPhsv34+vpQ6+n6fDNpGtVrNWH+gkUULVKEpDRfIjbFsPOfOAwG\nA/uOpMExS3mXLl2yxL/md2HdunUkJCSwd+9eVq9ezZgxY2xpZrOZihUrEhERwf79+/H09CQyMtKW\nnpSUxMGDB+1i7tixg8zMTNv20KFDGTNmDN26deOxxx6jc+fOPPnkkzm/EXd431UGJ8qWDSF/YHnW\nbz2Pk3txwqpU5uvJv5NpsI7NGFzZsGEDYHmfy5Urx9ixY+nevfttlVGoUCHq16/P7Nmzc5xeb3vf\nsrWBg4MDmzdvxtvbm127dlG6dGm7dEdHR3bt2mVr18uXL9ulZ48ZGxsLQExMjC1PZmYmo0ePZubM\nmQwePJjAwEDatWtHgwYNbr/xhMgl0lm/N2oDC7TWqQBKqUXWf70BH631Wmu+acCcbMfNzva6CDBb\nKRUIOAPHrPufBloBaK1/V0pdWUKzlrXMFGtZ8631uLaznk9rnf2hsdeVUi2tr4sCjwM5dtaz1fEF\nLJ31F4Fvs6WdAwpde4DWehIwCSAsLEyHh4ffJPyjISIiAmkHca/l6essdWfuxXKrlHuxxB3L09eZ\nyBMyMzMxm834+fnleK1UqFCBtLQ0u7Thw4dTqlQpwsPDOXfuHMuWLSM6Ovqm5fj4+NhipKamcunS\nJRo3bsxTTz3F1KlTcXR0JLx6IM6E8OmYS1St6IObm2Va+4pV0RiNLrR4JgSlFDWrtGTixEmojNOs\nW7uGN/q1I7x6oKWg9NMopSzb1vuPLf415/fEE09Qq1YtypYtS9++fXnrrbdyrHt0dDSurq52x18b\nUylli3dFeHg4I0aMID09nYkTJzJ48GDi4uJwc3O7vpA7vO/Wql6ew0dPXj1vIH8+I8ULe17dd839\n18/PzzbT4HY4Oztz4cIFnnzySTw9Pa9Lz6ldjUYjZcqUITw8nNDQUFJTU+3SJ02aRGhoKOHh4cTF\nxTFt2jS79NGjR1OkSBHCw8Nt11TNmjVtK9lHREQwYMAABgwYQFZWFosWLaJ169Z069aNkiVL3tZ5\nCZFbZBp83pKS7fVXwNda6wpYRsKNuVRGZrZp7OFAA6CG1joUS8f+SjnZl2zNXvYi4BmlVD6gCrDm\nmny5OFwmhBBCiIfNxIkTOXXqFFprLly4QL9+/TAajTecCt+pUyfmzp3L6tWryczMZMaMGXbT15s2\nbWob7UxKSkJrzenTp+0WEgMYP348R44cwWQyMWTIEB577LEcy6waVp5SJYsyaOg4UlMvcybmHO9+\n+C3dOjVHKcvThU5OTnTt2Iw3Bn/OoSMnaN+uyb9qkwEDBjB+/HgiIyPJysoiPT2dbdu23XSa+7UC\nAgJs0+rBsgr7smXLSE1NxcnJCW9vb5RS/2oBuOx692jNps17WLj4T8xmM3+u3cKK1Zto0SwcgE2b\nd7N3714yMzMxmUxMmjSJtWvX0rJlyxzjnTt3junTp5OYaJnNcPDgQd5++21q1aqVY0f9dnTp0oV5\n8+axfPlysrKy+OOPP5g/fz7dunUDoFKlSpw7d44lS5ZgNptZsGCB3ToBOYmPj2fevHlcvHgRBwcH\nfHx8AK5bBV+I+0E66/fGOqCFUspVKeUJNAPLNHIgQSl15cGXTsDaG8TwBk5bX2dfgnId0B5AKdUE\n8LXuj7SW6aaUcgdaWvdd6wDwWLYyErTWqUqpECD7g05nlVJlrB17211Xa50MbAEmAEu01tlXbikN\n7L3B+QghhBDiEbBlyxb+3959x0dVpX8c/zwk9I50lO5PFFSUoqgIomJBBQHBBlZcFXUt2Na6sLrq\nWta2dtEFVBQE6yK6C4plVVCKoiygdJFeJWDI8/vj3AmTEAiEZDITvu/XKy+dW545GZ6cuefeU9q3\nb0+lSpVo1aoVS5Ys4aOPPsrurp5bp06dePzxx7n00kupUaMG48aNo2/fvtn7K1SowMMPP8zMmTNp\n0aIFVatW5fjjj88etxxz6aWX0rNnT2rVqsW0adN466238mxgpaen8+6ox1i0eBkNW5xK+2P7cUS7\nVjx473U5jhtwUU+mTp9Fn55dqVq1YI3JmK5du/Lcc89x4403UrNmTerVq8d1113Hhg0b8j85cs89\n93DnnXdmzxS/ZcsWBg8eTL169ahWrRqPPfYYo0ePply5wnm+c2T7Q3hl6L3cfMejVK5zNFffcD8v\nPzuYDkeEmel/nreYHj16ULVqVRo0aMCwYcN45513aNOmTXaMli1bcu+99wKhZ8BLL71E06ZNqVix\nIieeeCKtWrVi1KhRBS7j0Ucfzcsvv8ygQYOoXr06N910E8OHD88eu9+sWTMeffRRLrvssuzc6tWr\n105jujtPPvkkjRs3pnLlygwcOJCXX36Zxo0bF7icIgVlWvOyaJjZbYRG9jJgAfCNuz9oZq2Bp4EK\nwE/ARe6+2swmAoPcfXJ0fnfgEWA14el1O3fvbGb7AK8CDYDPga5AG3dfYWbXA7FBQs+7+9/zKNcd\nwC/u/ryZlQXGAo0JjfhqwN3uPtHMegP3A8uByUAld78witGb0H2/c6xLv5mVBqYDB7t7JjvQtm1b\n3527yCWVuo1KIiR1nqkbfImR1HkmJUZ+eWZmTJo0KUcX8TztRt2zceMmajfuwofvPMVRR+6gnkml\n+qcw692YVPr9d5HqNEkEM5sSm6tsZzRmvYi4+z3APXlsn0rOJ9ix7Z1zvX6LuFnb47avJDTQ83rP\nh4GH8yna84RJ7p53981Anv263H0UkOetzmif5dp8GjBqZw11ERERkVTg7vz9yREc1KLpjhvqIiJF\nTI31vYy7/2Jmz5lZlUJeaz0deKgQ44mIiIgk3LJlq2ja6jRq16rBG8MfyP8EEZEiosb6XsjdXy+C\nmG/kf5SIiIhI4SvMYZ21a9dgw7LPCy2eiEhBaYI5ERERERERkSSjxrqIiIiIiIhIklE3eBERSbwS\nOIOwiKSAvbnu2Zt/d5EUpSfrIiIiIiIiIklGjXURERERERGRJKPGuoiIiIiIiEiSUWNdRERERERE\nJMlogjkRKRF8xYfFXYTkk5mxR5+L1TyxEAsjIrtDdVouUX1mNU/UZyNFayffnfpelETTk3URERER\nERGRJKPGuoiIiIiIiEiSUWNdREREREREJMmosS4iIiIixeovD43guO6DCi3e3Q/8kxN73Vxo8aR4\nTPxsGqXrnlzcxRApNmqsi4iIiMgO3XbPUJq26UfVJj2oc+BZnHXRYBYsWpa9/6VXx5NW+yQqNzoj\n++fcy+4txhKXDE0O78fwNz4qsvhvvPUJB3ccQI3mPanRvCcdu13Hx59Nz/PYf330FaVqdeXSax/O\nsf32e4dy+HFXULb+qbt0c2Tr1q0MeWg4Tdv0o3KjMzj2tOuZ/v1PhfL7iJREaqwXMTOrZmZX7u5x\nZtbZzN4tgvJca2b9CznmwWb2UmHGFBERkeTQr8/xfDvhadb+PJafpwxjv31rc06uxnjTRvVYP//t\n7J9Xnv1TMZVWdtWRbVsw/o37WDXnTVb8bxRXD+hBt3NvY83aDTmOW7tuI9fe9hRHt2+5XYxmjevz\n51v6M6Dfqbv0ng8/NZoRb/yHj0Y/wMrZoznmyFac3OdPrN/wW6H8ToUhMzOzuIsgkk2N9aJXDci3\nsb4bxxWYmaUDFwOvFGZcd58B7GtmDQszroiIiBS/Fvs3pGqVigC4O6VKlWLWnIV7FPO98V/S8uhL\nqdzoDE4/9w5WrFqXY//KVeu45I8P0fDQc6nd4izuHnI/vy5bnb2/yeH9GPzgcDp2u47Kjc6g3QkD\n+frbWTt8v5Wr1nHBwAeod1Bf6h3UlwsHPsCq1eE9nxr6Dq07X57j+Lk/L6F03ZOZv/BX5i1YSqla\nXXn5tfG0PPpSKjU6nW5n38bqNeu5ZfAL1DmB06eaAAAgAElEQVTwLOod1JcnX3g7R4xJX8ygY7fr\n2Gf/XjRvdwEP/WMU7g5s6949csxEmre7gGpNe9D3kr9kN1rPOO8OFixaxoDrHqFyozM46axbAHht\nzAQOOuoSqjTuTt2D+nDhwAcK+C8A+zWoTb26+wDh3zUtrRS//baZhYuX5zju+jue5uLzTqZ5k/rb\nxbjo3JM4/aQO1Nynyi6956i3J3HFRafTtHE9ypQpzZ9v7s/K1esY895nOz1vR58TwPyFv9Kj313U\nOqA3DQ89l2tve4pNmzZn7y9Vqyuf/ve77Ne5u9Yf130Q1972FGf2v4uqTXrw+qixzFuwlJPPupXq\nzc6kRvOetOly5R7nvEhBqLFe9O4DmpnZVDP7G4CZ3WhmX5vZdDP7846OAyqZ2Sgz+9HMRljQxczG\nxoKb2YlmNsbM0szsJTP7zsxmmNl1eZSlC/CNu2dG5w6IyjHNzEabWYVo+0tm1jvuPTZE/33NzLrF\nbY8/7h3g7ML4wERERCS5vDL6P1Rr2oPKjbvz2LNjuOvGfjn2L1yynHoH9aXhoedyzoB7+Hn+LzuM\nNffnJfS6aDC3Xns2q+eO4eoB3Xl++PvZ+92dM/vfjZkxY9JzzPtmGBUqlOe8y/+aI84zL73L3++9\ngpWzR9Pr9I50O+d21q3fmOd7nn/5faxes56Znz/PzM+fZ8WqdfS/MjR0z+vdhbk/L8nR2H9hxDhO\nOPZwGu1XJ3vbm+9+yqR3H2b+tyOYt/BXjjzpGpo1qcfiGa/x4mM3cN3tT2UPD5g5az7dzrmdQVed\nxbIfX+fdV4bw5AtvMez1bd3at27NYvzEKUyd8DSz/juUb2fM4bFnwyXe2yOG0HDf2jz3yHWsn/82\nH7xxH7/9lkH/Kx/gifuvYt28t5j79ctccv4pO/13y8+CRcuo3uxMytbvxlkXD+HsMztz8EFNsvd/\n8J/JTPtuLoMG9t5JlF3n7tk3LOK3Tf1u7g7P2dnnlJm5ldPOvZ06tasz75thfDHuMT7/6nsG3fXs\nbpVr6CsfcPWAHqz5aQw9e5zObfcMZb99a7N05kiWz3qDoY8PonrVSrv/C4vsITXWi94twFx3b+3u\nN5pZV2B/oD3QGmhjZsfmPi469zDgWuAgoClwNDABaGFmtaJjLgJejGI1cPdW7n4wMDSPshwNTIl7\n/aa7t3P3Q4EfgEvy+V1GAn0AzKwMcDzwXrRvMtAx/49DREREUs25vbqw5qexLPnuNe66sV+OBt2x\nHQ5m+ifPsPi7V/lq/BOUK1uGrr1vZePGTXnGem3MRNofdgDnn3UC6elpdD2uLT1OOSp7/5Rps5ky\nfTZP3n8VVatUpEKFcvxhwIX8Z9JUFi1alH3cxeedTJtD/48yZUpz8zV9KV+uDO+O/3K791uydCUf\nTJjMQ4Mvp3q1ylSvVpmHhvyB9z/6il+WrqRK5Yr0PbMzL4wYB4Rx1f8c+SGX9svZEL79hvOoUb0K\n+9SoQreuR1C6dDoD+p1Kenoap5zQnurVKvHtjDkA/OPFd+h9xrF0P+Uo0tLSaLF/QwZe0j1HYx3g\nvjsuoVKl8tSpXZ3upx7FlGn/2+m/Q+nS6fw4eyGrVq+jYsXydOxw8E6Pz0/DfWuzeu4Y1v40hhcf\nG0Snow/J3rdu/UauvOkxnnvketLS0vbofWK6dT2Cf7z4NrPnLiYjYwu3//Ultm7NYt36nXeD39Hn\n9NU3PzL7pyU8PPgPVKxYngb1ajLk1gsZ+uoH290U2Jlep3ekS8fDMDPKlStLmdLp/LpsFT/NX0pa\nWhqHtGxK7VrV9+h3FymI9OIuwF6oa/TzbfS6EqHxviCPY79y90UAZjYVaOzun5rZMOB8MxsKdAD6\nA5WBpmb2OKEBPT6PePUIjfKYVmb2F0IX/ErAB/mU/V/Ao2ZWFjgZ+MTdY9/Ey4Dt+0eFsl8GXAZQ\np04dJk6cmM/blHwbNmzQ51DYMjOKuwRJZ8OmLD6eugefS/rEQiuLlFyqz4pI0tZpFWh5WBdOPfsy\nRo54gSpVKgOhEfPL9C1ABc6/8ApeG3s2z4ycTpvDD90uwtczllK+Us0c9VOpsrVYs2E5H0/NYOLH\nC9i8+XdqHtA37iynTJkyjB07llYtGpGxxdlMjRwxqlarySeTf6FBswzmL81k9fpQB878ITTwF66p\nxpLo+K1bawDw1sTFHNiiIu06nMigm+7gzN4X8s2309iUkUm1eofx8dQMli4NXarnr6jIb9H5y9em\nUa5CtZy/Q1pZvv5+LdXqZTDluyV8O3U6b7z96bbfwLOoVSv83tPmbKFUqVLMXFQOFoUYK9als+CX\njdkxM7Y4P87/Pcd73DvkTl4Z9Ra3DBlKvXp16dO7Byd06bRb/4J5M5oceCwXXjKQdVtq0L7d4Tz4\nyFN06HA067L2DZ/Dqq2kpZHn90r8570zR3XqwY/zNtCpx81kZGzmlJNOoGHDfdmUWTHPc/P7nP7z\n+RKqVKnC5NkGhP0rN9UgI2MLb038lerVqwEwdc4WtpbLyI7pvu33WLMhC0rvk/16w6YsevTuzz9H\njOTEs24nI2MznToexYBL+lO+8sQCfboiBaXGeuIZ8Fd3fybHRrPGeRy7Oe7/t7Lt32soodt5BvBG\n1K19tZkdCpwEXE54An5xrnibgHJxr18Cerj7NDO7EOgcbc8k6nVhZqWAMgDunmFmE6P36Au8Fher\nXBR/O+7+LPAsQNu2bb1z5855HbZXmThxIvocCpev+LC4i5B0Pp6aQafW5fI/cAesZufCK4yUWKrP\nikYy12lLlpYmIyODJrU20OrAWtvtz8zcSlqacUiz0nnWQZNa1WH8hCk59j2/ZQXVKpWiU+tylM/a\nl4crlGP13NGUKhU6gcbqM6t5Ir7iQ8qVMcqyKjuGu7N2zQqObVuPTq3LMWF8Oovmh3j7192XgUDD\n6mto3rQBAP+bGxrw3Ts3oF7dcnRqfTDPPlOfpfO+5KsvPuPSfidxfNvQ7XnegrIAHNmyLPvWD+8X\nHz+mXBmjRaPwOx/Wsi6Ht6zHkw9cnedn6BvLYEaO83PHrFCuVHa8mE6t2/HHC9qxdetW3h73Bb0v\nGsKFZx5MszzGkxdEmfQsyttyOrUux4UzprF23UY+GB9ycUPUU+L776fz8zfDcpyX1+eRt3Kc2P4K\n4AoAVqxcS8PW79DvzMPzPDe/z6n0lvrc/7d1tPs/qFAhHDN+9SrKlStD9851MDMqVSzP/vWzsmMs\nnrs+R8xqlUrRtP62z/njqRl06lCH7p2vAeCneb/Qo/9dfP7x2wx5cPhufJoie07d4IveesJT75gP\ngIvNrBKAmTUws9p5HLdD7r4EWALcTtTd3cxqAqXcfXS0/fA8Tv0BaB73ujLwi5mVBs6L2z4PaBP9\n/xlA6bh9Iwld7zsC4+K2/x/wHSIiIlJiZGVl8cTzb7FseZjcbdGS5Vx18+M0bliHFvuHeWXfG/8l\ni5Ysx91ZtXodA29+nJo1qnJkmwPzjHn2mZ358psfefXNCWRmbuWjj79h7PufZ+9v2/r/OLRlU665\n9R+sjCaeW7NmLa+NmZAjztBXPuCbabP5/fdM/vbEG/y2aTPdTjxiu/erX3cfunZuw6C7nmXN2g2s\nXrOeQXc+wynHt8ueYA1gQP9Tefip0bz/0ddcet6ejQW/8qLTGTl2Iu988AW//55JZuZWZs6av8Ol\n0fJSt3YNZv+0JPv1r8tWM/qdSaxdt5G0tDSqRWOo09IKdjn/z5EfMuenxWRlZbF+w28MfnA4CxYv\no0vH1gB88a9Hmf7JM3w74Sm+nfAUZ5zUgZ7djuGz9/+eHeP33zPJyNhCZuZWsrKyyMjYwubNW3b4\nnkt/XcW8BUsBWLh4GRdd/SAd2h7ISV3aFuh3aH94C5o3qc8Ndz3Lb79lsGTpSu6872UuPKcrZgZA\nm0P3558jP2TLlt+Zt2Apjzw1Ot+4I8dM5Of5v+DuVK1SkTKl0wv8OYvsCWVdEXP3lcBn0cRvf3P3\n8YTZ2L8wsxnAKKBy7uN2IfQIYKG7x7q1NwAmRt3lhwO35nHOv4Bj417fAXwJfAb8GLf9OaCTmU0j\ndLOPn61lPNAJ+Mjd42vj49g2fl1ERERKiH999BUHH3sZlRqdzpEnXUOF8mX5cNT9pKeHccwTP5/G\nEV2vpnLjM2h1zGWsWrWO8aPuo1Kl8nnGa960AW+8eAdDHhxO9WZn8ven38wxUVqpUqUYO+xu3J22\nJwykSuPuDLzmRibmaugO6H8qf/zTP6jRvCevj53Iu68MyZ61PrdhT91M5UrladHhYg486hKqVa3E\ny0/elOOY83p34ef5Szm6fUv2b9ZgTz4yWh3YhHdGDOHRZ8ZQv9XZ1DmwDxdd/SDLV67Z5Ri3XXcu\nI0b9mxrNe3Jq3z+RlZXFP158myaH96NK4+5cdfMTvPTEjTRuWLdAZfzf3EWc0OtmqjTpTrO2F/DJ\n59N595W/cNABjQCoW6cG+9avlf1ToXxZypcvS/24GxyXXfcIFfY7jXsfeZUJn06jwn6n0aLDtimQ\n7n3kVVodMyD79aJfVtC19y1UbHg67U68ikb71eGtYYOzG9a7Kz09jXdGDGbxkuU0Oux8juh6Ne0P\nb8GDd1+Wfczj9w1kzs9L2Gf/XvS99B4uOLtrvnG/nTGXzt0HRTk9gMMO2Z8bB55VoDKK7AnbnckX\nJHmY2RPAt+7+wm6eNwa4yd1nF2JZygIfA8fEZprfkbZt2/rkyZML661TlrqNFr5k7jJaXPa8G/yJ\nhVgaKalUnxUN1Wk55e4G3+Twfgy59QLOP+uEQnsPd6dZ2/785U8XcW6vLoUWV1LLzr479b0ohcXM\nprh7vl1K9GQ9BZnZFOAQwhP03XULYaK5wtQQuCW/hrqIiIhIshox6t9s2ZJJ79O1uI2IJAdNMJeC\n3L1N/kft8NxZwKx8D9y9mLOBQntSLyIiIpJItVucRXpaGi88ej1lypTO/wQRkQRQY11EREREUkru\n2cj31LIf3yjUeCIihUHd4EVERERERESSjBrrIiIiIiIiIklG3eBFpETQDK15SJ+I1exc3KUQkQJQ\nnZZLXH2mz0aKlL47JYnoybqIiIiIiIhIklFjXURERERERCTJqLEuIiIiIiIikmTUWBcRERERERFJ\nMmqsi4iIiIiIiCQZNdZFREREREREkowa6yIiIiIiIiJJRo11ERERERERkSSjxrqIiIiIiIhIklFj\nXURERERERCTJqLEuIiIiIiIikmTUWBcRERERERFJMmqsi4iIiIiIiCQZc/fiLoPsRcxsLTC7CEJX\nBdamUNyGwIIiiJtqn4PiFm1c5ZniJiKu8kxxExE31fKsKGMrbtHGTbVcU9zUjNvS3cvne5S760c/\nCfsBnlVcB1ieYuVV3NSMqzxT3ETEVZ4pbiLiplSepehnrLieermmuCkbd5fyTN3gJdHeUVwA1hRR\n3FT7HBS3aOMqzxQ3EXGVZ4qbiLiplmdFGVtxizZuquWa4qZm3F3KM3WDFykGZjbZ3dsWdzmkZFOe\nSSIozyQRlGeSKMo1SYRdzTM9WRcpHs8WdwFkr6A8k0RQnkkiKM8kUZRrkgi7lGd6si4iIiIiIiKS\nZPRkXURERERERCTJqLEuIiIiIiIikmTUWBcpAmZWw8zqFHc5pOQzs5pmdkBxl0NKNtVpkgiqzyQR\nVJ9JIphZbTNrt6dx1FgXKWRm9mdgAdAqem3FWyIpqaJcmw0cXdxlkZJLdZokguozSQTVZ5IIZnY3\n8B3QY09zTI11kUJiZn3NbDJQHpgInArgmsVRClmUa1OAssD7QIdouy46pNCoTpNEUH0miaD6TBLB\nzPqY2TdAJWAY0MDd3cwK3OZOL7TSiezFzKwW0AS43t0/MbOTgDPMrKK7byzm4kkJYmalgRrADe4+\n0cxaAQ+YWU13X1HMxZMSQnWaJILqM0kE1WeSQOmEPJtoZjWBSWa2r7sv2pOAIlIAZlYFKOvuy919\nOXBf3O46QE1332hmpdw9q3hKKSWBmVUj5NMcd/8deCpud21gFfB7sRROSgzVaZIIqs8kEVSfSSKY\nWXWgqbtPAXD3V+J27wN8AVQHCtxYVzd4kQIws5uAX4Hzzaxy3Pa06H/fBjqZ2f76EpA9YWbXA4uB\nq82sbrTN4rpUfQZ0AZrF9hVLQSWlqU6TRFB9Jomg+kwSwcyuBn4G7jSz5tG2UnH11lygNVAztq8g\n76PGushuMrMmQFXgMaAR0DK2z923Rn+kG4A3gUOKpZBSIkRPoCoA9wLrgM4Qxti5e5aZpbn7ZmAk\ncHxsXzEVV1KU6jRJBNVnkgiqzySBygB3AJ8DvQHcPSsao57m7pnAeKBvbF9B3kSNdZFdYGbNzax1\n9HI+8Ii73wykAceaWe3oOIsuLrKAaoQJcwp8N032PmZ2oJl1jCr6NcAThIvb1UBrM2sRHWdxFx7r\ngC3RduWa5Et1miSC6jNJBNVnkghmdrCZdTOzGtGmpwnDeGYBzczsqOi4Uu6+NTrmO2BlXK+O3abk\nFNkJM0szs8cIXabuMbPbgP3iJr55lbD8x2Fmlh7dTSsd3T1bAJwNBb+bJnuHWDdQM/srMBb4I/Ck\nmR3k7muii4t/AaWB48ysTJRr6dG+TcCZoFyTnVOdJkVN9ZkkiuozKWq2zZ+AMUAf4J9mdri7b4ye\nnn8F/ERYpq1s1FMo1sYuDxwZ13jfbWqsi+xcNaA+cCRwDaHLy99iO939c8J4lc7RPqIJcyA8PeiT\nwLJKioouUNOB5sBJhLyZD7wQd8wPwPfA/wENo22Z0X/vA05JbKklRalOkyKl+kwSSPWZFKlomI4T\nhkz0cfcLgAnAs3HHLCE02CsTchHCkB/c/Tmg256UQY11kVzMrJaZlYletgKqufs6oq5VQH0z6xt3\nyiOEmR7vMbOZZnYogLuvc/cMda+SHTGzhmZWMXrZnFAnrwJw978CVcxsQNwpw4BlwBAzW2RmHWM7\n3H2Tck3yojpNEkH1mSSC6jNJBDM7wMJM77Gl/zZG/2/u/hCwzsyuih3v7v8GPgXuMrOFwAlxx+9R\nnilBRSLRmKe3gJeAV6KueR8DDc3sTHfPjMbcPQpcGn8qocve8cBd7j4tPq66V0luZtbMzN4m5Npr\nZtbc3WcC+wHd4nLmj8CNcadWBS4HDiSs4zkpPq5yTeKpTpNEUH0miaD6TBIhrj57gdDd/WQPS/9V\nAtrGTXp5F3Bz3Hm1gdsJy7Vd5+5jYdskmXuSZ2qsy14vGlvXDBgFfOru3QjdV+6ODhkC3BR3ymRg\nsYWJc4zQXe9pdz/E3d9IYNElxUS5Vpswju5Td+9CWHvz8uiQ+4D7Y8e7+0fANDPrHG1qBbzs7q3d\n/fXElVxSieo0SQTVZ5IIqs8kEaI8qwIMBT5z92OAj9k2JOc54A9mVjua/2ASMD2uF0dN4HV3P9Td\nRxVq2VyrYshezMzSgVeAfwLz3X1GtL018BrQ0sMMtR8CX7j7nWZWNTr+PHffEHVx8ei8UrpLKzti\nZuOBB4Bf3P37aFtz4N/AQe6+Mcq1r4Dbo8lwRgLXuvsvuWIp12Q7qtMkUVSfSVFTfSaJYmbjgD8D\na4E57r7FzOoTGuzHuPuvZvYSsBR43t3nmNlQ4MFY/RcXq1DzTE/WZa8VjR/JIlxI/A7MjLanAVWA\nr33b7I2XA13M7EHCmonromOzvwRA3alke2ZWNu7l20DTuAvb0oR6eDKhqx6E7nuNgRfM7AugHLAp\nekKQTbkmuUV1l+o0KVJxYy9Vn0mRiXLEUX0mRSRXPTQKOM3dZ0YN9TLAZuAHoskJgVuATOABM/uc\nMDnmr7njFnaepRdmMJFkZ2Z1CBcXX8T+mCysl1g2ujtbJvojrUs0MQ6Au881s3OAI4DJ7v5asfwC\nkjLMrB6hm95SwtgmCBOUxPIu3d1/N7NGwGZ33wDg7vPN7DLgaKBCbNyTSF6ibsjdPcw4mxU9vayO\n6jQpRGZWKe4pZexCVPWZFKroe/MY4BN3/xXYqms0KWxm1gDoT1iK7cdo8/8Ik2BWADZFedaUkHsL\nAdx9KXC7mR0BVHf3cYkor56sy17DzG4FJgF/NrPBZtY+2vUtcAWAu2+JtnUn3J3FzC4zs33dfaG7\nj4p9CZhmEJUdsLAe5/tAB8ITgZjFREvFeLRMEXAy8EF03tVm1s7D2p3jYxe2yjXJS/SEaQjwjJm1\njnuCNBnVaVJIzOw+YLmZHRDdDIrlieozKTRmdifhe7MX8Khtm9tA9ZkUGjO7C3iH0Aj/MW7XZqCN\nu/8W9116DNvqsxvM7AwAd/8y1lBPRJ4pkWWvEI17akmo4M8BVgJ/BYgmHFlsZodFx5YGygPHmtkk\n4Dhgde6Y6k4leTGz5wm51gG4jpBzALj7eGCjmZ0Qd0oVoGuUax2AWbljKtckt+gJ51bChew44taw\nJnRPXqg6TfaUmZ1GWDv4X8Bt0ebY7Maqz6RQmFlDwqoAJ7j72YSJCmN5MgZdo0khMLOzCSsD3Obu\nd8fvc/cvgapm1jNuc02ge5RnhxEe+JHrvCLPM3WDlxIr1l0qetmYMLZkTtRV72mgs5nd4u73AQvY\nNsYuDTgKqAXc4O5fJbjokmJy5dr1HtZ8xcymABlmdpi7fxuNj/qIsGRRTCdCd76r3H1yQgsuKcXM\nagIb3D0DKBXdhOxMeBL1lZmd6+6vEBpXi1CdJgVgZvsCW9x9GfAl8F/CDe5ZZnaiu39oZmnRzSLV\nZ1IgUZ5t9rAsVgOgI7DBzI4ETgW+MbOD3X2GmekaTQrEzMpF35kQ5j94D6hkZh0JDfevgZ/d/b/A\nMKBZ3FwHxwOlgT8UZ32mJ+tS4phZDTN7Dng4ts3d5xDu0t4Qvd5MWFKmu5mVJ1zcHhYdXpEwBrSj\nu39lkYT+EpIS8so1YH3c/1cFfiJU9rH1NqsAtaPzywE93P1Id5+sXJO8RHn2AmECnNeiLp9bo3ps\nNSGnLiJ0HX0eyABqAK2jEKrTJF9mVt7M3iA8yRxuZkcB69x9RVR3PQzcFeVOrJtoVVSfyW7IlWcj\nzOxod/8CGE1YNutDQqOpCfCSheW0ygNtohCqzyRfZlbdzIYD2cv1uftPwAxgIPA8YU6hw4HHzGwf\nwo3GrLhu8Ge5e5virs/UWJeS6EVCJV/XzM6M234LcJ6FyZcA5hBmeWxKWCe2j4XlFlZG3WFiyy94\n3B+uSLy8ci27Mnf3+dH+1nHnjAMujPZnuHtshlvlmmzHwqSYY4DV7t6ZcHExONpXldBDbgshx8oA\nnaKnCKNQnSa7px2Q4e7tCDnXB7ggttPdnyY81bwyruvnWMKNItVnsqty59k5ZtbP3f9IaKj3dfe/\nuvs9wFSgLzAc6K36THbDvYT6qpKZXRq3/T3gSeAwd3/A3W8EviP0UJsF9LQwHwweTSxX3HmmxrqU\nGGb2tJkdA1xNuHgYA5xvYfkFoi4u/yX8keLuKwjjUTIITz+/A5rHx9SYJ8nLznLN3bOiG7Bp0eEv\nESYpAcDdvwOmRF39iNuuXJMczOxxoBtwjbsPijbfShjCU8/d1wLVgCWEbqPdCV346gLTgO9RnSb5\nMLOhZnY6sC+hRwaEeutzoJ2ZHRx3+BXAH8zsYjMbRliT+CvVZ5KfneTZJ4Q6rQHRGOG40zIIwxR/\nQddosgvM7OUoz+4G/kBotF8Z9fzB3dcDY9z9t7jTtgI/uvsCQoP95PiYxZ1naqxLyotrFE0F6niY\nEXQh8Cmhi+gVcYdfBexnZg+a2X8Ia76uifY96u7/S1S5JfXsRq7FJv+C0AV+k5lVjGKUBu6Obh6J\nbCcuz6YTlseaFW1PJ1zk/gD8Gr0eCnR1957uPpGwTGBNwhMF1WmyK8YB+xPGbm6Oxglvil4vBLrG\nHbsYaEUYUjYsGtc+WPWZ7IL88qwn4Qn62WZ2k5m9SZisdSahMaX6THbFe0ALd//Vw/xBHxFuXN8N\n4fvVo9UrzKy1mY0kzGk1Lzr/Gnd/L+Gl3gk11iUlmVk5M7sKIK5RVJ4w4UjMYsITz5OiO7axseq9\nCUt+vObuXaMuVWuiO2oiORQk16Kn66WjfZOBf7v7xijG79EFrki2HeRZZcJarhkW1rHOjLb9Fg7z\nTHf/wN0nRQ133H2Iu3+nOk3yYmYVzex6M9svbnMGYYnJtWzrDoq7/wysIMyJEFsD+3bgFndv6WE2\neFSfSW4FyLNlQF13/wU4LTp2grt3jm6Kr1V9JrntIM82A7HGeKmo6/oDQDczaxb7fjWzFsCDwKfu\nflIsv9x9Q2J/i/ypsS6p6nrChBDxSyxMIBo7B9nrvn4NfAZcYWb9zawTsMzDmq/PgtbilHwVJNf6\nAUeZmbn7FHd/PaElllSUV579h23jgWPrWPcCPnN3N7MLzezAXPvRZEuSFzO7HPiY8HRzWVye/I+Q\nV8sJawo3NbNe0b4fCU/SiRpS17v7A1E8fXfKdvYgz2J12SR3f8zdH4/iKc9kO/nk2ZlRQz0repI+\ngzBp4d1RW+AcD2usn5oKeZa0BRPJx0zCDI+Pxja4+1TgMzM7OW7bMsLkS7cSZn+cl3uCiOIeiyJJ\nryC5dhV55JrITuxSngF1gcZm9j5wPtuG8RB3nvJOcogmwLwWuMfdr3D3zbE8cfcfCEMtznX3z4C3\ngIeji+GHgP+aWVp083Fr7KJY352S2x7m2RdxQ4BQnsmO7EKefU80OWZcT7XFwHnA5YSHK7j7llTI\nM62zLknPzPYH+gOzCWPknDCGbhDwhJnd7+43W1iCbRFhbFPs3D7AJYTlF95MfOkllSjXJBH2JM8I\nS0xWBv7o7uMSXHRJIVGeXQh8Q5hc9TNgpZkdQlhf+Hvg++ji9t9AlWi4xWgzW0dYKutBdx8RH1c3\ngySe8kwSYTfzbAIhz2JP108hPLDr4+6j4uOmQp5ZCpRR9mJm1hJ4F3gB6EL4A32a8If5TfSzlLBM\n0V2ECUqqu/td0fmxcZ6xeJYKf5iSeDuZiWYAAALTSURBVMo1SYQ9ybNoksKDPW4yL+WZ5CVXnp1A\nWGKtGdCY0N34VcKs3FUJk8W1Atq7+x07iKc8k+0ozyQR9jTPoq7w8Q9XUirP1FiXpGZmFwMHufug\n6K5aD6ABUJYwMURsjfQ0d68eTST3CuHp5rK4u2qlkrmLixQ/5Zokwh7kWR93/zUuTo6LD5F4ufLs\nAMJSRM2BOcBwd19pZjUIw3ZmAyMIS2idFo1Nj8VJqYtaSSzlmSTCnuZZql+facy6JLufgCPMrLS7\nzyas+7qO0BV0OmFm2u5AOTM71t0XA18QLnizx6Ck4h+nJJxyTRKhoHnWJD6IGuqSj/g8mwVMIcyp\nsdrdVwK4+yrCMn8LPaxW8SFwRHwQNaAkH8ozSYQ9yrNUvz5TY12S3Q+EJT76RK9nEMZwvgb0cvdO\n0UQlA4EKZlYGeN615qvsPuWaJILyTBIhd55NIzyFqmdmpcxsfzN7itCV9KdoYq+/u/vY4imupCjl\nmSTCXp1naqxLslsOfAl0sbB+9TrC+ont3X2cBWnu/qK7j3P3Le4+p3iLLClKuSaJoDyTRMidZ+uB\n34CDgdrASGCpux/r7rPcfau7Ly3G8kpqUp5JIuzVeabGuiS1qMvKe4Q/1L/F7VoXTejl6g4qhUG5\nJomgPJNE2EGepQG/RRexx7n7nyG51xeW5KY8k0TY2/NME8xJSjCzsoTZkUsRJpU4292/Ld5SSUmk\nXJNEUJ5JIuSRZ+e4+zfRvpScbEmSj/JMEmFvzTM11iVlRH+ktdx9UXGXRUo25ZokgvJMEkF5Jomg\nPJNE2BvzTI11SUkl+Q6aJBflmiSC8kwSQXkmiaA8k0TYW/JMjXURERERERGRJFPiBuGLiIiIiIiI\npDo11kVERERERESSjBrrIiIiIiIiIklGjXURERERERGRJKPGuoiIiIiIiEiSUWNdREREREREJMmo\nsS4iIiIiIiKSZP4fvi7F4r+PT28AAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7fdc1641bf98>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "%matplotlib inline\n", "\n", "import matplotlib.pyplot as plt\n", "import matplotlib.dates as mdates\n", "from matplotlib import pylab\n", "from numpy import arange\n", "\n", "pylab.rcParams['figure.figsize'] = (15, 9);\n", "fig, ax = plt.subplots()\n", "plat_labels = []\n", "\n", "# Annotate at max x value and plot in order by platformtype name \n", "xpos = max([dr[1] for dr in list(plat_start_ends.values())[0]])\n", "for ypos, plat in enumerate(\n", " sorted(plat_start_ends.keys(),\n", " key=operator.attrgetter('platformtype.name'))):\n", " plat_labels.append(f'{plat.name} ({plat.platformtype.name})') \n", " for bdate, edate in plat_start_ends[plat]:\n", " ax.barh(ypos+0.5, edate - bdate, left=bdate, height=0.8, \n", " align='center', color='#' + plat.color, alpha=0.5)\n", " if plat_depl_dur[plat][0] == 1:\n", " fmt = '{:10d} deployment {:7.1f} hours'\n", " else:\n", " fmt = '{:10d} deployments {:7.1f} hours'\n", " ax.annotate(fmt.format(plat_depl_dur[plat][0], plat_depl_dur[plat][1]),\n", " verticalalignment='center', horizontalalignment='right', \n", " xy=(xpos, ypos+0.5), fontsize=13, ) \n", "\n", "ax.set_title(Campaign.objects.using(db).get(id=1).description)\n", "ax.set_ylim(-0.5, len(plat_labels) + 0.5)\n", "ax.set_yticks(arange(len(plat_labels)) + 0.5)\n", "ax.set_yticklabels(plat_labels)\n", "ax.grid(True)\n", "plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%m/%d/%Y'))\n", "plt.gca().xaxis.set_major_locator(mdates.WeekdayLocator(byweekday=mdates.MO))\n", "plt.gca().xaxis.set_minor_locator(mdates.DayLocator())\n", "plt.gcf().autofmt_xdate()\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Django Shell-Plus", "language": "python", "name": "django_extensions" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.1" } }, "nbformat": 4, "nbformat_minor": 2 }
gpl-3.0
adonese/array2latex
.ipynb_checkpoints/testing_arraytolatex-checkpoint.ipynb
1
12146
{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import os\n", "import warnings\n", "import numpy as np\n", "import pandas\n", "import csv\n", "import re" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def get_type(data):\n", " return type(data)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": true }, "outputs": [], "source": [ "a = np.array([[1,2,3], [3, 5, 6]])\n" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "'[[1 2 3]\\n [3 5 6]]'" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "a_string = np.array2string(a)\n", "a_string" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "'1 2 3]\\n [3 5 6'" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "a_string[2:][:-2]" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": true }, "outputs": [], "source": [ "regex_1 = r\"\\[|\\]\"\n", "regex_2 = r\"\\n \"\n", "regex_3 = r\" \"\n", "\n", "repl_1 = r\"\"\n", "repl_2 = r\"\\\\\"\n", "repl_3 = r\",\"\n", "\n", "for regex_repl in zip((regex_1, regex_2, regex_3), (repl_1, repl_2, repl_3)):\n", " a_string = re.sub(regex_repl[0], regex_repl[1], a_string)" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "'1&2&3]\\n&[3&5&6'" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "re.sub(regex_3, r\"&\", a_string[2:][:-2])" ] }, { "cell_type": "code", "execution_count": 173, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "'[[ 1 3 505 42 434]\\n [ 2 43 43 43 -4343]\\n [ 432 42 43 42 424042]]'" ] }, "execution_count": 173, "metadata": {}, "output_type": "execute_result" } ], "source": [] }, { "cell_type": "code", "execution_count": 215, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "1 & 3 & 505 & 42 & 434\\\\\n", " & 2 & 43 & 43 & 43 & -4343\\\\\n", " & 432 & 42 & 43 & 42 & 424042\n" ] } ], "source": [ "# Getting the largest number\n", "a = np.array([[1, 3, 505, 42, 434], [2, 43, 43, 43, -4343], [432, 42, 43, 42, 424042]])\n", "string_array = np.array2string(a)\n", "\n", "a_string = a_string[2:][:-2]\n", "regex_1 = r\"\\[|\\]\"\n", "regex_2 = \"\\n \"\n", "regex_3 = r\" \"\n", "repl_1 = r\"\"\n", "repl_2 = r\"\\\\\\\\\\n\"\n", "repl_3 = \" & \"\n", "for regex_repl in zip((regex_1, regex_2), (repl_1, repl_2)):\n", " string_array = re.sub(regex_repl[0], regex_repl[1], string_array)\n", "# We need to do second pass. I really wish if there is an easy way of doing that\n", "array_removed_spaces = \" \".join(string_array.split())\n", "string_array = re.sub(regex_3, repl_3, array_removed_spaces)\n", "# Adding the extra \\n\n", "print(\"\\\\\\\\\\n\".join(string_array.split(r\"\\\\\")))" ] }, { "cell_type": "code", "execution_count": 166, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "' & & 50& 4& 434\\\\\\\\\\n & 4& 4& 4& -4343\\\\\\\\\\n 43& 4& 4& 4&424042'" ] }, "execution_count": 166, "metadata": {}, "output_type": "execute_result" } ], "source": [] }, { "cell_type": "code", "execution_count": 50, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "'sssss'" ] }, "execution_count": 50, "metadata": {}, "output_type": "execute_result" } ], "source": [ "5*\"s\"" ] }, { "cell_type": "code", "execution_count": 331, "metadata": { "collapsed": false }, "outputs": [], "source": [ "def tolatex(array, header, centring=True, caption=\"My table\", label=\"table_something\"):\n", " \"\"\"\n", " This function converts numpy ndarray into a valid latex table.\n", " \"\"\"\n", " string_array = np.array2string(array)[2:][:-2] # I use this for tables items\n", " regex_1 = r\"\\[|\\]\"\n", " regex_2 = \"\\n \"\n", " regex_3 = r\" \"\n", " repl_1 = r\"\"\n", " repl_2 = r\"\\\\\\\\\\n\"\n", " repl_3 = \" & \"\n", " \n", " a_string = re.sub(regex_1, repl_1, string_array) # I use this to compute the largest number length\n", " string_table_items = a_string.replace(\"\\n\", \"\").split(\" \")\n", " length_table_items = max(len(str(i)) for i in string_table_items)\n", " \n", " template = \"\"\"\\\\begin{table}[]\n", " %s\n", " \\\\caption{%s}\n", " \\\\label{%s}\n", " \\\\begin{tabular}{@{%s}@{}}\n", " \\\\toprule\n", " \"\"\" % (centring, caption, label, len(header) * \"l\")\n", " length_header_items = max(len(i) for i in header)\n", " padding = \" \" * (max(length_table_items, length_header_items) // 2) + \"&\" + \" \" * (max(length_table_items, length_header_items) // 2)\n", " midrule = \" \" + padding.join(header) + r\"\\\\\" + \"\\n\" + \" \"* (max(length_table_items, length_header_items) // 2 + 2) + \"\\midrule\" + \"\\n\"\n", " template += midrule\n", " columns, rows = array.shape\n", " if columns != header:\n", " warnings.warn(\"The length of header doesn't match with the length of \\\n", " the column. We will placeholder it with an empty string.\")\n", " for regex_repl in zip((regex_1, regex_2), (repl_1, repl_2)):\n", " string_array = re.sub(regex_repl[0], regex_repl[1], string_array)\n", " # We need to do second pass. I really wish if there is an easy way of doing that\n", " array_removed_spaces = \" \".join(string_array.strip().split())\n", " string_array = re.sub(regex_3, repl_3, array_removed_spaces)\n", " # Adding the extra \\n\n", " string_array = \"\\t\\\\\\\\\\n\\t\".join(string_array.split(r\"\\\\\"))\n", " string_array = \"\\t\" + string_array + \"\\\\\\\\\\n\"+ \" \\\\bottomrule\" + \"\\n\" + \" \\\\end{tabular}\" + \"\\n\" + \"\\\\end{table}\"\n", " \n", " return template + string_array" ] }, { "cell_type": "code", "execution_count": 332, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\\begin{table}[]\n", " True\n", " \\caption{My table}\n", " \\label{table_something}\n", " \\begin{tabular}{@{lllll}@{}}\n", " \\toprule\n", " One & Two & Three & Four & Five\\\\\n", " \\midrule\n", "\t0.16631292 & 0.97702809\t\\\\\n", "\t & 0.20791699 & 0.67693387\t\\\\\n", "\t & 0.51874648 & 0.57966175\t\\\\\n", "\t & 0.77753471 & 0.4093189 & \t\\\\\n", "\t & 0.51863438 & 0.88115219\t\\\\\n", "\t & 0.60895347 & 0.01832751\t\\\\\n", "\t & 0.80437334 & 0.62710777\\\\\n", " \\bottomrule\n", " \\end{tabular}\n", "\\end{table}\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/home/adonese/anaconda3/lib/python3.5/site-packages/ipykernel/__main__.py:30: UserWarning: The length of header doesn't match with the length of the column. We will placeholder it with an empty string.\n" ] } ], "source": [ "a = np.random.rand(7, 2)\n", "print(tolatex(a, header=[\"One\", \"Two\", \"Three\", \"Four\", \"Five\"]))" ] }, { "cell_type": "code", "execution_count": 375, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['0.06021033 & 0.33597086', '0.507968750.50427236', '0.645672580.16201692', '0.840258750.43529734', '0.519282170.8519447', '0.975711230.55873163']\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/home/adonese/anaconda3/lib/python3.5/site-packages/ipykernel/__main__.py:27: UserWarning: The length of header doesn't match with the length of the column. We will placeholder it with an empty string.\n" ] } ], "source": [ "array = np.random.rand(6, 2)\n", "string_array = np.array2string(array)[2:][:-2] # I use this for tables items\n", "regex_1 = r\"\\[|\\]\"\n", "regex_2 = \"\\n \"\n", "regex_3 = r\" \"\n", "repl_1 = r\"\"\n", "repl_2 = r\"\\\\\\\\\\n\"\n", "repl_3 = \" & \"\n", "\n", "a_string = re.sub(regex_1, repl_1, string_array) # I use this to compute the largest number length\n", "string_table_items = a_string.replace(\"\\n\", \"\").split(\" \")\n", "length_table_items = max(len(str(i)) for i in string_table_items)\n", "\n", "template = \"\"\"\\\\begin{table}[]\n", " %s\n", " \\\\caption{%s}\n", " \\\\label{%s}\n", " \\\\begin{tabular}{@{%s}@{}}\n", " \\\\toprule\n", "\"\"\" % (centring, caption, label, len(header) * \"l\")\n", "length_header_items = max(len(i) for i in header)\n", "padding = \" \" * (max(length_table_items, length_header_items) // 2) + \"&\" + \" \" * (max(length_table_items, length_header_items) // 2)\n", "midrule = \" \" + padding.join(header) + r\"\\\\\" + \"\\n\" + \" \"* (max(length_table_items, length_header_items) // 2 + 2) + \"\\midrule\" + \"\\n\"\n", "template += midrule\n", "columns, rows = array.shape\n", "if columns != header:\n", " warnings.warn(\"The length of header doesn't match with the length of \\\n", " the column. We will placeholder it with an empty string.\")\n", "for regex_repl in zip((regex_1, regex_2), (repl_1, repl_2)):\n", " string_array = re.sub(regex_repl[0], regex_repl[1], string_array)\n", "# We need to do second pass. I really wish if there is an easy way of doing that\n", "array_removed_spaces = \" \".join(string_array.split())\n", "\n", "string_array = re.sub(regex_3, repl_3, array_removed_spaces)\n", "string_array = string_array.split(\"\\\\\\\\\")\n" ] }, { "cell_type": "code", "execution_count": 362, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "(7, 2)" ] }, "execution_count": 362, "metadata": {}, "output_type": "execute_result" } ], "source": [ "a.shape" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python [Root]", "language": "python", "name": "Python [Root]" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.2" } }, "nbformat": 4, "nbformat_minor": 0 }
mit
marwin-ko/projects
all_state-kaggle_competition/run_prediction.ipynb
1
10604
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "## RUN PREDICTION (Gradient Boosting Model)" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import pandas as pd\n", "import pickle" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## LOAD TEST DATA" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>cont1</th>\n", " <th>cont2</th>\n", " <th>cont3</th>\n", " <th>cont4</th>\n", " <th>cont5</th>\n", " <th>cont6</th>\n", " <th>cont7</th>\n", " <th>cont8</th>\n", " <th>cont9</th>\n", " <th>cont10</th>\n", " <th>...</th>\n", " <th>cat116_MX</th>\n", " <th>cat116_N</th>\n", " <th>cat116_O</th>\n", " <th>cat116_Q</th>\n", " <th>cat116_R</th>\n", " <th>cat116_S</th>\n", " <th>cat116_T</th>\n", " <th>cat116_U</th>\n", " <th>cat116_Y</th>\n", " <th>cat116_W</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>0.321594</td>\n", " <td>0.299102</td>\n", " <td>0.246911</td>\n", " <td>0.402922</td>\n", " <td>0.281143</td>\n", " <td>0.466591</td>\n", " <td>0.317681</td>\n", " <td>0.61229</td>\n", " <td>0.34365</td>\n", " <td>0.38016</td>\n", " <td>...</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>0.634734</td>\n", " <td>0.620805</td>\n", " <td>0.654310</td>\n", " <td>0.946616</td>\n", " <td>0.836443</td>\n", " <td>0.482425</td>\n", " <td>0.443760</td>\n", " <td>0.71330</td>\n", " <td>0.51890</td>\n", " <td>0.60401</td>\n", " <td>...</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>0.290813</td>\n", " <td>0.737068</td>\n", " <td>0.711159</td>\n", " <td>0.412789</td>\n", " <td>0.718531</td>\n", " <td>0.212308</td>\n", " <td>0.325779</td>\n", " <td>0.29758</td>\n", " <td>0.34365</td>\n", " <td>0.30529</td>\n", " <td>...</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>0.268622</td>\n", " <td>0.681761</td>\n", " <td>0.592681</td>\n", " <td>0.354893</td>\n", " <td>0.397069</td>\n", " <td>0.369930</td>\n", " <td>0.342355</td>\n", " <td>0.40028</td>\n", " <td>0.33237</td>\n", " <td>0.31480</td>\n", " <td>...</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>0.553846</td>\n", " <td>0.299102</td>\n", " <td>0.263570</td>\n", " <td>0.696873</td>\n", " <td>0.302678</td>\n", " <td>0.398862</td>\n", " <td>0.391833</td>\n", " <td>0.23688</td>\n", " <td>0.43731</td>\n", " <td>0.50556</td>\n", " <td>...</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>0</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "<p>5 rows × 1117 columns</p>\n", "</div>" ], "text/plain": [ " cont1 cont2 cont3 cont4 cont5 cont6 cont7 \\\n", "0 0.321594 0.299102 0.246911 0.402922 0.281143 0.466591 0.317681 \n", "1 0.634734 0.620805 0.654310 0.946616 0.836443 0.482425 0.443760 \n", "2 0.290813 0.737068 0.711159 0.412789 0.718531 0.212308 0.325779 \n", "3 0.268622 0.681761 0.592681 0.354893 0.397069 0.369930 0.342355 \n", "4 0.553846 0.299102 0.263570 0.696873 0.302678 0.398862 0.391833 \n", "\n", " cont8 cont9 cont10 ... cat116_MX cat116_N cat116_O \\\n", "0 0.61229 0.34365 0.38016 ... 0.0 0.0 0.0 \n", "1 0.71330 0.51890 0.60401 ... 0.0 0.0 0.0 \n", "2 0.29758 0.34365 0.30529 ... 0.0 0.0 0.0 \n", "3 0.40028 0.33237 0.31480 ... 0.0 0.0 0.0 \n", "4 0.23688 0.43731 0.50556 ... 0.0 0.0 0.0 \n", "\n", " cat116_Q cat116_R cat116_S cat116_T cat116_U cat116_Y cat116_W \n", "0 0.0 0.0 0.0 0.0 0.0 0.0 0 \n", "1 0.0 0.0 0.0 0.0 0.0 0.0 0 \n", "2 0.0 0.0 0.0 0.0 0.0 0.0 0 \n", "3 0.0 0.0 0.0 0.0 0.0 0.0 0 \n", "4 0.0 0.0 0.0 0.0 0.0 0.0 0 \n", "\n", "[5 rows x 1117 columns]" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df = pd.read_csv('https://s3.amazonaws.com/marweezys-bucket/all_state_insurance_prediction/test.csv')\n", "ids = list(df['id'])\n", "df.drop(labels='id', axis=1, inplace=True)\n", "one_hot_df = pd.get_dummies(df.ix[:,:])\n", "one_hot_df['cat116_W'] = 0\n", "one_hot_df.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## LOAD MODEL" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [], "source": [ "with open('GB_feats.plk','rb') as f:\n", " feats = pickle.load(f)\n", "with open('GB_model.plk','rb') as f:\n", " model = pickle.load(f)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## MAKE PREDICTIONS" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [], "source": [ "X = one_hot_df[feats]\n", "y_pred = model.predict(X)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## SAVE/SHOW PREDICTIONS" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>id</th>\n", " <th>loss</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>4</td>\n", " <td>1579.628558</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>6</td>\n", " <td>2265.133652</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>9</td>\n", " <td>9989.328296</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>12</td>\n", " <td>6191.534165</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>15</td>\n", " <td>1151.990087</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " id loss\n", "0 4 1579.628558\n", "1 6 2265.133652\n", "2 9 9989.328296\n", "3 12 6191.534165\n", "4 15 1151.990087" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "GB_d = {}\n", "GB_d['id'] = ids\n", "GB_d['loss'] = y_pred\n", "GB_df = pd.DataFrame(GB_d)\n", "GB_df.to_csv('GB_preds.csv', sep=',', index=False)\n", "GB_df.head()" ] } ], "metadata": { "kernelspec": { "display_name": "Python [Root]", "language": "python", "name": "Python [Root]" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.12" } }, "nbformat": 4, "nbformat_minor": 0 }
mit
ellenjunghyunkim/MyMatching.jl
.ipynb_checkpoints/multimatching-checkpoint.ipynb
1
4321
{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false, "scrolled": true }, "outputs": [ { "data": { "text/plain": [ "my_deferred_acceptance (generic function with 2 methods)" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "function my_deferred_acceptance(prop_prefs::Vector{Vector{Int}},\n", " resp_prefs::Vector{Vector{Int}},\n", " caps::Vector{Int})\n", " num_prop = length(prop_prefs)\n", " num_resp = length(resp_prefs)\n", " \n", " prop_matched = zeros(Int,num_prop)\n", " resp_matched = zeros(Int, sum(caps))\n", " \n", " prop_pointers = ones(Int, num_prop)\n", " accept = zeros(Int,num_resp)\n", " #making indptr\n", " indptr = Array{Int}(num_resp+1)\n", " indptr[1] = 1\n", " for i in 1:num_resp\n", " indptr[i+1] = indptr[i] + caps[i]\n", " end\n", " #main loop\n", " \n", " for j in 1:num_resp\n", " for i in 1:num_prop\n", " if prop_matched[i] == 0 && prop_pointers[i] <= length(prop_prefs[i])\n", " k = prop_prefs[i][prop_pointers[i]]\n", " if findfirst(resp_prefs[k],i) != 0\n", " if accept[k] < caps[k]\n", " resp_matched[indptr[k+1]-1 - accept[k]]=i\n", " prop_matched[i]=k\n", " accept[k]+=1\n", " \n", " else\n", " list= resp_matched[indptr[k]:indptr[k+1]-1]\n", " ranking = zeros(Int, caps[k])\n", " for e in e:caps[k]\n", " ranking[e]= findfirst(resp_prefs[k],list[e])\n", " end\n", " if 0< findfirst(resp_prefs[k],i)<maximum(ranking)\n", " resp_matched[indptr[k]+indmax(ranking)-1]=i\n", " prop_matched[list[indmax(ranking)]]=0\n", " prop_matched[i]=k\n", " end\n", " end\n", " end\n", " prop_pointers[i]+=1\n", " end\n", " end\n", " end\n", " return prop_matched, resp_matched, indptr\n", "end\n", "\n", "function my_deferred_acceptance(prop_prefs::Matrix{Int},\n", " resp_prefs::Matrix{Int})\n", " caps = ones(Int, length(resp_prefs))\n", " \n", " prop_matched, resp_matched, indptr =\n", " my_deferred_acceptance(prop_prefs, resp_prefs, caps)\n", " return prop_matched, resp_matched\n", "end" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "\u001b[1m\u001b[34mINFO: Testing MyMatching\n", "\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\u001b[1m\u001b[37mTest Summary: | \u001b[0m\u001b[1m\u001b[32mPass \u001b[0m\u001b[1m\u001b[34mTotal\u001b[0m\n", " Testing deferred acceptance | \u001b[1m\u001b[32m 12 \u001b[0m\u001b[1m\u001b[34m 12\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "\u001b[1m\u001b[34mINFO: MyMatching tests passed\n", "\u001b[0m" ] } ], "source": [ "Pkg.test(\"MyMatching\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Julia 0.5.1", "language": "julia", "name": "julia-0.5" }, "language_info": { "file_extension": ".jl", "mimetype": "application/julia", "name": "julia", "version": "0.5.1" } }, "nbformat": 4, "nbformat_minor": 2 }
apache-2.0
a301-teaching/a301_code
notebooks/radiance_conservation_solution.ipynb
1
216422
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "## Radiance conservation solution -- discussed on day 9" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Question for Monday, September 26, hand in at beginning of class on paper" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Question:" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The figure below shows three different fields of view in the form of circular cones with different spreading angles $\\theta$, lengths $R$ and diameters $D$.\n", "\n", "The cones are thin enough so that $R \\approx H$, where H is central length of the cone, and \n", "\n", "$$sin \\theta = \\text{opposite/hypotenuse} \\approx \\theta = \\frac{D/2}{R}$$\n", "\n", "where D is the diameter of the cone.\n", "\n", "Note that cones a) and b) have the same spreading angle $\\theta1$ but different lengths $R1$ and $R2$, and that cones a) and c) have the same length $R1$ but different spreading angles $\\theta1$ and $\\theta 2$\n", "\n", "Suppose the red line is a wall with uniform temperature emitting blackbody irradiance $E^*$. Find:\n", "\n", "1) The irradiance E reaching a), b) and c) (the cone tips) assuming the power is spreading out into a hemisphere of radius $R$ in each case.\n", "\n", "2) The radiance L = E/$\\Delta \\omega$ at a), b) and c).\n", "\n", "If you do it right, you should find that the three radiances are identical, i.e. that for small angles and uniform emitters, L is independent of distance to the target." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABucAAAMbCAYAAABe+UicAAAAAXNSR0IArs4c6QAAQABJREFUeAHs\n3Qd4W/X1//EjyXYSj2jYTlihKZswwiwFWlMIlLJpWQV+/CmjZbSlzJYfe0PY/KCMDmaBMsouBUqh\ncQu07B0gjEB2YlmSYzuJLdn/c66sYFuSI1uyLMnv+zx6JN19X9cEWx+d83V16yQ5nhobG509NjQ0\n5HjP+dkd558f53RHwT+dTH7m458f53RHwT+dTH7m458f53RHwT+dTH7m458f53RHwT+dTH7m458f\n53RHwT+dTH7m458f53RHwT+dTH7m458f53RHwT+dTH7m458f53RHwT+dTH7m458f53RHwT8u404H\nxHwEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEMitAOFcbj3ZGwIIIIAAAggggAACCCCA\nAAIIIIAAAggggAACCCCAAAJpBQjn0tKwAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIHc\nChDO5daTvSGAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCQVoBwLi0NCxBAAAEEEEAAAQQQ\nQAABBBBAAAEEEEAAAQQQQAABBBDIrQDhXG492RsCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggg\ngAACaQUI59LSsAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACB3AoQzuXWk70hgAACCCCA\nAAIIIIAAAggggAACCCCAAAIIIIAAAgggkFaAcC4tDQsQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEE\nEEAAAQQQyK0A4VxuPdkbAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAmkFCOfS0rAAAQQQ\nQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgdwKEM7l1pO9IYAAAggggAACCCCAAAIIIIAAAggg\ngAACCCCAAAIIIJBWgHAuLQ0LEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEMitAOFcbj3Z\nGwIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAJpBQjn0tKwAAEEEEAAAQQQQAABBBBAAAEE\nEEAAAQQQQAABBBBAAIHcChDO5daTvSGAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCQVoBw\nLi0NCxBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBDIrQDhXG492RsCCCCAAAIIIIAAAggg\ngAACCCCAAAIIIIAAAggggAACaQUI59LSsAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACB\n3AoQzuXWk70hgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggkFaAcC4tDQsQQAABBBBAAAEE\nEEAAAQQQQAABBBBAAAEEEEAAAQQQyK0A4VxuPdkbAggggAACCCCAAAIIIIAAAggggAACCCCAAAII\nIIAAAmkFCOfS0rAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgdwKEM7l1pO9IYAAAggg\ngAACCCCAAAIIIIAAAggggAACCCCAAAIIIJBWgHAuLQ0LEEAAAQQQQAABBBBAAAEEEEAAAQQQQAAB\nBBBAAAEEEMitAOFcbj3ZGwIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAJpBQjn0tKwAAEE\nEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIHcChDO5daTvSGAAAIIIIAAAggggAACCCCAAAII\nIIAAAggggAACCCCQVoBwLi0NCxBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBDIrQDhXG49\n2RsCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACaQUI59LSsAABBBBAAAEEEEAAAQQQQAAB\nBBBAAAEEEEAAAQQQQACB3AoQzuXWk70hgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggkFaA\ncC4tDQsQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQyK0A4VxuPdkbAggggAACCCCAAAII\nIIAAAggggAACCCCAAAIIIIAAAmkFCOfS0rAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAA\ngdwKEM7l1pO9IYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIJBWgHAuLQ0LEEAAAQQQQAAB\nBBBAAAEEEEAAAQQQQAABBBBAAAEEEMitAOFcbj3ZGwIIIIAAAggggAACCCCAAAIIIIAAAggggAAC\nCCCAAAJpBVwzZszoTruUBQgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggkDMBKudyRsmO\nEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEBhYwNWt08CrDH5pY2Ojs1FDQ8PgNy6ALTj/\nkb0J+OOfjQA/P9noZb8t/tkbZrMH/LPRy35b/LM3zGYP+Gejl/22+GdvmM0e8M9GL/tt8c/eMJs9\n4J+NXvbb4p+9YTZ7wD8bvey3xT97w2z2gH82etlvi3/2htnsAf9s9LLfNlf+VM5lfy/YAwIIIIAA\nAggggAACCCCAAAIIIIAAAggggAACCCCAAAIZCRDOZcTESggggAACCCCAAAIIIIAAAggggAACCCCA\nAAIIIIAAAghkL0A4l70he0AAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgIwHCuYyYWAkB\nBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACB7AUI57I3ZA8IIIAAAggggAACCCCAAAIIIIAA\nAggggAACCCCAAAIIZCRAOJcREyshgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggkL0A4Vz2\nhuwBAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgYwECOcyYmIlBBBAAAEEEEAAAQQQQAAB\nBBBAAAEEEEAAAQQQQAABBLIXIJzL3pA9IIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIJCR\nAOFcRkyshAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggED2AoRz2RuyBwQQQAABBBBAAAEE\nEEAAAQQQQAABBBBAAAEEEEAAAQQyEiCcy4iJlRBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAAB\nBBDIXoBwLntD9oAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBARgKEcxkxsRICCCCAAAII\nIIAAAggggAACCCCAAAIIIIAAAggggAAC2QsQzmVvyB4QQAABBBBAAAEEEEAAAQQQQAABBBBAAAEE\nEEAAAQQQyEiAcC4jJlZCAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAIHsBwrnsDdkDAggg\ngAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAhkJEM5lxMRKCCCAAAIIIIAAAggggAACCCCAAAII\nIIAAAggggAACCGQvQDiXvSF7QAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCAjAcK5jJhY\nCQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIHsBQjnsjdkDwgggAACCCCAAAIIIIAAAggg\ngAACCCCAAAIIIIAAAghkJEA4lxETKyGAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCQvQDh\nXPaG7AEBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBjAQI5zJiYiUEEEAAAQQQQAABBBBA\nAAEEEEAAAQQQQAABBBBAAAEEshcgnMvekD0ggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggg\nkJEA4VxGTKyEAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQPYChHPZG7IHBBBAAAEEEEAA\nAQQQQAABBBBAAAEEEEAAAQQQQAABBDISIJzLiImVEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBA\nAAEEEMhegHAue0P2gAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEBGAoRzGTGxEgIIIIAA\nAggggAACCCCAAAIIIIAAAggggAACCCCAAALZCxDOZW/IHhBAAAEEEEAAAQQQQAABBBBAAAEEEEAA\nAQQQQAABBBDISIBwLiMmVkIAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgewHCuewN2QMC\nCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACGQmUZbQWKyGAAAIIIIAAAggggAACCCCAAAII\nIIAAAggggAACCOREoGWpSDjcKZFIVMKRLmkOdUgoFNPnqKw2oVwO+3FtTo7DTgpTgHCuMO8LZ4UA\nAggggAACCCCAAAIIIIAAAggggAACCCCAAAJFJBBpEQ3bOjV0iwduoXCHNDdr4Kbvg83xx1fzOmTZ\niu4Br2rbqZWEcwMKFf9Cwrniv4dcAQIIIIAAAggggAACCCCAAAIIIIAAAggggAACCAyDQDjSN3AL\nRzRwC2rQFo5XuTVp6DZ7bod0dAwcuA3m1Jp0/0ylLUA4V9r3l6tDAAEEEEAAAQQQQAABBBBAAAEE\nEEAAAQQQQACBHoGuLpe0tbvly6/iFW6hcJe2ldSWkhqyNfW0lXQCtzkd0hnNXeA2mBuwRM+FqbQF\nCOdK+/5ydQgggAACCCCAAAIIIIAAAggggAACCCCAAAIIlLRAt2Zo4Ui3RJx2klEJaVVb2NpL6vht\nFnQ1a+gW1NezncBtQo/F5wVr0treJbGYiMdTsKfIiWUpQDiXJSCbI4AAAggggAACCCCAAAIIIIAA\nAggggAACCCCAQG4Furq0nWRLd3z8Nid0i2noFg/cmjRoC+pYbha4faktJUeqwi23V9x3bxY21gZc\nfWfyrmQECOdK5lZyIQgggAACCCCAAAIIIIAAAggggAACCCCAAAIIFK6AE7hp6BSOaHWbBmvhSP/A\nLR66fTVPA7fYyLSULBQ9qwKsDZQXyulwHjkWIJzLMSi7QwABBBBAAAEEEEAAAQQQQAABBBBAAAEE\nEEBgtAhY+0Wnwk3DNqeyLWJjuHU6Y7gFNWAK2lhuwZjMmU/gNpifCbMUIZwbjFkxrUs4V0x3i3NF\nAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQGCYBSxwS4zhlgjc7DnU3CnvzfRJa6tL7rjvCw3cOiXa\nNbor3IbrVoQ15GQqXQHCudK9t1wZAggggAACCCCAAAIIIIAAAggggAACCCCAAAKOQDRqgVuXRMLa\nSlIr28L2bGO5hTqlKaTjt2mFmz1WHbiN6RHtQHYYBeKVc8N4AHY9ogKEcyPKz8ERQAABBBBAAAEE\nEEAAAQQQQAABBBBAAAEEEBiaQKd2Poy0WBvJmBOy2XOzjeWmVW4WuDU7LSWj8qVWuHV3U+E2NOWR\n2cqqFJlKV4BwrnTvLVeGAAIIIIAAAggggAACCCCAAAIIIIAAAgggUGQCFrhZhVtYq9oiERvHzQI3\nq3TTyjZ9HQzaGG5R+WoBgVuR3dpBna7da6bSFXDNmDGDuLx07y9XhgACCCCAAAIIIIAAAggggAAC\nCCCAAAIIIDDCAh0dbmlrd0t7m8t5bmv3SFubW5bqvKWtbg3gPLJC12kKu0f4TDl8PgRcLpdUjumS\n6qouqbFHtb2OSWWlve+WKn2uq4uKd7z2ImUqSQEq50rytnJRCCCAAAIIIIAAAggggAACCCCAAAII\nIIAAAsMn4JKOjnjQ1q4hW1u7S1rbEoGbvS7T8M0lS3Uegdvw3YVC27MFbuNruqW6MtYTvGngpmGb\nBXBVld0avul8DeJqqqmKK7R7l+/zcWmf2ZxXzjU2NjrX0dDQkO/rycnxOP+cMA55J/gPmS4nG+Kf\nE8Yh7wT/IdPlZEP8c8I45J3gP2S6nGyIf04Yh7wT/IdMl5MN8c8J45B3gv+Q6XKyIf45YRzyTvAf\nMl1ONsQ/J4xD3gn+Q6bLyYb4p2dcscJaSsYkoi0Fw5FOrWjr0ken01YyGOrSMdx0LDdtKTlnIeOB\npVcsrSX+Go9WsZVJrV8fgTKp83vEp6993nLx+zzi19f19eVSOS4/181/v/lxTneUXPlTOZdOmPkI\nIIAAAggggAACCCCAAAIIIIAAAggggAACRS+wfLlIpEXDNgvcNGgLafgWCkV7Ajcdz605KnMXdEhT\niGqmor/ZGV5A9bhuWX21sVKnYZsFbrUWsumzz1uhgZtbfL4ymTChXMaNzXCHg11t1iyRlnDmW03Z\nVGRcntK/zM+KNbMQIJzLAo9NEUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBPIvsHy5WxYusrAtGn9o\n+NYc1Ao3fd+sIZxVt81fSOCW/zszcke0gM2pbOsJ3AIasAUCWuWmgZvPGw/cJmrg9uqrBdD57/xf\ni7zxWOZY978mstU2ma/PmgUvQDhX8LeIE0QAAQQQQAABBBBAAAEEEEAAAQQQQAABBEpfoH2ZVrhZ\nS8lIVFtJ9rSV1Kq2oFa0WejWpOHbvAUawEUm9mB8Wvooo/wKrYVkop2kU+GmLST9Os/v6xu4jRkz\nyqG4/KITIJwrulvGCSOAAAIIIIAAAggggAACCCCAAAIIIIAAAsUh4ARuTtBmgZtWuWnwFtaWkk06\ndluzjuEWDHXK3HnaanIpLSWL445mf5YWuMXbSZZr8BYP36ylpN9X7lS4eb1lstrEcqmoyP5Y7AGB\nQhUgnCvUO8N5IYAAAggggAACCCCAAAIIIIAAAggggAACBShggZsFbGGtcnPCNg3dbAw3C9qCzYnA\nrUPCrV0FePac0nAI1Gu4VqctJGsD5RLQ9pIWvvm1ys3nBG7aWlJbTE6cUEbgNhz47LMoBQjnivK2\ncdIIIIAAAggggAACCCCAAAIIIIAAAggggEDuBNrbNXCzkK2nyi0c1mo2p51kp7aTjGnwFpV58wnc\ncide+HuaUFvmVLbVWeCmQZtVuQU0dJszZ5ZUVcZkl122cQK38vLCvxbOEIFCEyCcK7Q7wvkggAAC\nCCCAAAIIIIAAAggggAACCCCAAAI5EGhrszHcoto+Ml7lFoloK8nmmLz7gVeWtrrlz49+qWO4dUiE\nCrccaBfHLlarK3OCNqtss8DNqtxqNYTzeq2lpI7lpvMm1JfJQIFbY6OWTuq01prEC8Vx1znLQhTg\nv55CvCucEwIIIIAAAggggAACCCCAAAIIIIAAAgggkEKgtSdwszaSTltJrXBrbtYATivegvpsY7nN\nXdip4dtALSXH9ux5eYojMKvYBFbXMC1e2abVbRa6aQvJgLaYjLeUtLHcPDJBW0qWkQYU263lfEtY\ngP8cS/jmcmkIIIAAAggggAACCCCAAAIIIIAAAgggUPgCS1u7tcIt5ozblgjc4mO4xZyqNwvc5szv\nlNb2gQK3wr9OzjAzAZfLJavV2fht1kqyXJ/dGriVa1WbVbZZhZuO5aZVbhMnlonHk9k+WQsBBApL\ngHCusO4HZ4MAAggggAACCCCAAAIIIIAAAggggAACJSBggVvYxm/TcdwscAvZGG5a2WZjt1mVW1NQ\nK9wWELiVwK3O6BLK3C6pr/VInbaQjHa2SHVVTLbYbJLTRtKnlW5+fVjoNmGCh8AtI1FWQqC4BQjn\nivv+cfYIIIAAAggggAACCCCAAAIIIIAAAgggkCeBlqWiYVunfDF7jLS1uyXUEtJqt3h1W1Cf44Fb\nh7Qt687TGXGYkRQo91jgZq0kLXQrd9pJ1mp1m0/HbfNbpZu2k/Rq4DZRAze3++szbWxsdN40NNR+\nPZNXCCAwqgQI50bV7eZiEUAAAQQQQAABBBBAAAEEEEAAAQQQQKC3QKRFtKVkp1PhFgp3aZVbh47h\npoGbVrzZGG72mLugf+Dm69nF4t674nUJCJSXuWSCtZPU0M2q3AIasNkYbn6d5/PGAzerdJtQ3zdw\nK4FL5xIQQCCPAoRzecTmUAgggAACCCCAAAIIIIAAAggggAACCCAw/ALhyNeBWzjSpS0lO+ItJbWd\nZLO2lWzSwG3O/A5ZtpwKt+G/GyN/BAvcJlrQpgGbBW5W3RbQsdv8WuHmG98zjpuGcPU6zlvvCreR\nP3POAAEESlWAcK5U7yzXhQACCCCAAAIIIIAAAggggAACCCCAQIkIdGuGFo50S0uLjt+mFW1W4WaB\nW9iCtp62kha4zbXAbQWBW4nc9gEvo9wjslp9ubaUtCo3ffa7ncDNGb/Nq4GbtpX0auBmFW4u14C7\nYiECCCCQdwHCubyTc0AEEEAAAQQQQAABBBBAAAEEEEAAAQQQiMZcGrB1S0TDtnDEAreYPrS9pBO4\nRbXCLSZBfU3gNnp+VsaNcUmdVrM51W3OGG5uDd3KxeeM3+Z22kraeG4ffvCSVrh1S0NDw+jB4UoR\nQKCkBAjnSup2cjEIIIAAAggggAACCCCAAAIIIIAAAgiMnEBXl7WT7HbCNqtwC0figVvIxm5zxnCL\nB25fzpkonTE7z09G7mQ5cl4Exo11Sb0GbHW12koyoM/aUtLaSVplm8+rgZs9O2O4uTM+n480mGNC\nAAEEilmAcK6Y7x7njgACCCCAAAIIIIAAAggggAACCCCAwDALWOBmLSUjVt2mlWzJgZsGb80x+Upb\nSnZGCU2G+XYUxO6rxlmFm7WU9DgtJS1ws4DNxnHzaUtJe22P+rrMA7eCuDBOAgEEEMiTAOFcnqA5\nDAIIIIAAAggggAACCCCAAAIIIIAAAoUiENOqNSdwc8Zv01aSkS59dEpzsFMr3GLaUlLHcgvGZM4C\nArdCuWfDfR4WuNVrZVt8DDdtLekEbuUauGnQpoGb10vgNtz3gP0jgMDoESCcGz33mitFAAEEEEAA\nAQQQQAABBBBAAAEEEChhAQvcQuEuHcMt5gRtFrjZGG6h5k5p0vHb4oGbjuG2sJMKtxL+Oeh9adWV\nbg3cypzALaDP8ZaS5bJg/mdSXdUlDTtt6QRvdbVUuPV24zUCCCAw3AKEc8MtzP4RQAABBBBAAAEE\nEEAAAQQQQAABBBAYokA0ahVuVtWmgZsGbWEN3kJa7fb2uzXS0uKRJ56Zoy0lNXBboIFbjJaSQ2Qu\nqs1qqt1Spy0j62qtjWRP4KYVbyvHcPOWi9fn0eXpA7fGxnbnmtdbp7yorp2TRQABBEpFgHCuVO4k\n14EAAggggAACCCCAAAIIIIAAAgggUBQCnZ0ikRatatPWkTaOmwVvVtVm4ZtVuAWDNoZbVOZZhVva\nwK2y51rjIUtRXDgnmVbAq4FbrY7XVlfrcQK3Wg3XArU2fps93E7w5tVArjbgSrsPFiCAAAIIFI8A\n4Vzx3CvOFAEEEEAAAQQQQAABBBBAAAEEEECgQAUscHMq3LSqLWwPJ3CzSjcN2rTaralJx3JrjjmB\nW7SLCrcCvY05PS2fBW7OGG6e+DhuGq75tbVkvMLNI36terNx3AJ+ArecwrMzBBBAoAgECOeK4CZx\niggggAACCCCAAAIIIIAAAggggAAC+Rfo6IgHblbdFgpp0JYYw02r3CxwCwa10i0Yk/mLOoXALf/3\nJ99HdLlc4q1ySV2dtoLsapWa6i7ZdOPVxachW0Cr3nxej/g0gPNp4OYncMv37eF4CCCAQFEJEM4V\n1e3iZBFAAAEEEEAAAQTSCTQ3N8uHH34oU6ZMSbcK8xFAAAEEEEAAAUkEbvPmVUhbu0uWrVjqtJMM\navjWHO7qCdx0DLdFUenupsKt1H9kEoFbfX25tpW0kE3HatNnC9ysws2v7SUtbLOWkn7f1xVujY2N\nDk1Dw+alTsT1IYAAAggMgwDh3DCgsksEEEAAAQQQQKBQBJ599llZvnz5Kk/nnXffcdYJhUIr17UP\nKsrKypxHeXm5fjO4Wj+U8Om3gP36beG6leuN9Iv58+fLTTfdJA899JBsscUW8tZbb430KXF8BBBA\nAAEEEMizwIoVVuEWk4hWs4V03LaQvrZ2ks0auAVDXdLcbBVu/QM3f89Zzs/z2XK44RYoc7ukpsqt\nv7OWSZ22kQxo0FanoZsFbjaGmwVwVuE2fnzfwG24z4v9I4AAAgggkBAgnEtI8IwAAggggAACCJSg\nwN133y2LFi2S999/33nO1SW63W7ZYsst5Hs7fU+mTZsme+yxh1iYl89pzpw5cs0118gNN9yQz8Ny\nLAQQQAABBBDIk4B9vyjSYiGbPeKBW0jbScYDt5gGblEncJu3mAq3PN2SET2MBW7ja2wMtzKpr40H\nbrVa1WZjuPm8FVrV5nYCN6+Gbz7viJ4qB0cAAQQQQGCVAoRzqyRiBQQQQAABBBBAoHgF7r333pUn\nH4lE5PIrLpfpV0xfOW+oL7q6uuTNN950Htdee61885vflAsuuEAOPfRQsSq74Zw+//xzueqqq+TW\nW28dzsOwbwQQQAABBBAYBoFlFrj1VLVZZVvIxnLTkK3Zqtw0hLPqtqA+5i3uHIajs8tCEyhzi3jH\ne5zAzSrcLHgLaEVbIGCtJPsGbt7xhXb2nA8CCCCAAAJDFyCcG7odWyKAAAIIIIAAAkUl4PV65YrL\nr5BxY8c5QVqqkz/zf8+Ub2/3bVlvvfVktdVWE9tmhfaJmjVrlnz88cfy7nvvyZXTp0s0Gu2z+Rdf\nfCFHHnmkE5o999xzsvrqq/dZnos3n3zyiUzXY99+++252B37QAABBBBAAIEcCHR1uaR9WTxwi1jQ\n1tNWMqwVbsGQVrdp6NYU1LHcmmMEbjnwLpZdWAtJG7+trtbGcfM4bSX9+uz3VWjoFq9we//9/0p1\nVZc0NDQUy2VxnggggAACCORMgHAuZ5TsCAEEEEAAAQQQKA6BI444Im04d8LxJ8jaa6/d50Js3Dkb\ny80ehxxyiPz8xBPlFz//uTz62GN91rM31j5z6623ln/+85+ywQYbJC0fyoyvvvpKzjrrLLEqwLXW\nWksmT54ss2fPHsqu2AYBBBBAAAEEMhRwAjdrJ+kEbtH4s1a4BXUMt2Ydw82e586vl1CLlj7Jxxnu\nldWKWcACt3h1Wzxws/DNWkr6fdZG0gK3cqnXMd7Gjs3sKmd/0ZXZiqyFAAIIIIBACQoQzpXgTeWS\nEEAAAQQQQACBgQTWWWedgRavctkaa6whjzz6qNxxxx1y9NFHJ62/YMECmTp1qlioVl9fn7R8KDM2\n3XRTZ3+TJk1yNn/66adlr732Gsqu2AYBBBBAAIFRK9DeLjp2mwVt8dDNXtu4bc06nluwOR64LVik\nrzWUy2yyYI6pmAXqNVyr0xaStQEL3LStpFW36bMFbT5v/LUFbmPGFPNVcu4IIIAAAggUngDhXOHd\nE84IAQQQQAABBBAYdoFAIKAfxjVndZyjjjpKXnzxRbnnnnuS9rN8+XI5//zz5eabb05aNtgZVsl3\n5pln9tlszz33lL333lueeuqpPvN5gwACCCCAwGgTaGuzlpLxdpJW5RbWoM1aSFo7yaBT6RYVC9ya\nNZBjGh0CE2rjIVudBW7OGG7aVlKfE4GbT8d0m1BfJhUVo8ODq0QAAQQQQKAQBQjnCvGucE4IIIAA\nAggggMAwC6y55ppZh3N2itddd5088sgj0mafDPabbrnlFjnuuOOcKrp+i3Lydtq0aYRzOZFkJwgg\ngAAChSbQmgjcdNw2q3KLROKBW1DfN+ujSUO3BQs7JbSUwK3Q7t1wnc9qWr0WsDHcLGxzKtzKZNHi\nL3TMtm75zo6bOdVuVuFG4DZcd4D9IoAAAgggkFsBwrncerI3BBBAAAEEEECgKARqampycp61tbVy\n+eWXy0knnZRyf7fddltOqudS7XzixImpZjMPAQQQQACBghSwwM1pKZloK6kVbq+/US2t7WXy93/O\n08Ct0wncwq2Mw1WQNzDHJ+VyuWS1Oq1o6wnarMLNGcNN20rGK9xsLDePtggvk/Ly1AdvbPzAWbDp\nJhkO8pZ6N8xFAAEEEEAAgREQIJwbAXQOiQACCCCAAAIIjLSAfSCUako3P9W6iXlbbrll4mXS85tv\nvZU0L1czqqurc7Ur9oMAAggggMCQBJa2dmvgpuO39QrcQj2Vbc06P7jKwK2q57itQzo+GxWWQJnb\nJfW1Nn6bBW3WUtLtPMfHcNO2kl57DBy4FdYVcTYIIIAAAgggMFwChHPDJct+EUAAAQQQQACBUSKw\n/gYbpL3S1159Ne2ybBeMGTMm212wPQIIIIAAAkkCFrhZwGbjuIUjXRLSCrdQz9htwVBP4KZjuEWo\ncEuyK8UZ5R4L3DRsC2jopoFbwN8TuNkYbhq2+XX8Nnuur/dIGZ+yleKPANeEAAIIIIDAsAjwa8Ow\nsLJTBBBAAAEEEEBg9AhMnDBBxo4dK8uXL0+66K6uLlmyZIl+YFWftCzbGZ4yT7a7YHsEEEAAgVEi\n0LLUWkp29lS4WeDWoQFcbOX4bUEN3+Yv7pSlBG6j4ifCArcJGri5Pe1So2O2bbzhRA3ePOJ3Ardy\np52kVwO3CRq4efh1Y1T8THCRCCCAAAII5FuAcC7f4hwPAQQQQAABBBAoMYHu7m7p6OhIeVVut3tY\ngjk7mNvlTnlMZiKAAAIIjA6BSIvIosVl0tbmkW5Xm1a5dUhzswZu2mLSwrYmC9wWduqYbozhNhp+\nIsrLXDJRA7eABmx19qzjtQW0qi1QWy6+8TaOm1a46aNex3lLBG6NjY0OTUPDZqOBiGtEAAEEEEAA\ngQISIJwroJvBqSCAAAIIIIAAAsUo8Mknn4hVyKWavv3tb6eanZN5qcbHSzUvJwdjJwgggAACeREI\nR0TbScYr3ELhLidwc1pK6vhtzdpqcknQArcOaVvW3XM+tT3Pc/NyfhwkvwIWuK1WZy0l46GbVbcF\ntLWkjeHm17HbfD4N3jSEs8BNvw/EhAACCCCAAAIIFI0A4VzR3CpOFAEEEEAAAQQQKEyBt99+O+2J\nbb311mmXsQABBBBAoPQFtLhaA7ZuaWnR8du0oq1ZW0mGLXzToK2pV1vJvoFb6buM5iusqNAKt0R1\nW6Bc20m6ncDNqtqs2s3nLRcvgdto/hHh2hFAAAEEEBgVAoRzo+I2c5EIIIAAAggggMDwCSRaQqU6\nwv77759qNvMQQAABBIpYwIqlIy3dEtGwLRyJ6vhtMX0kArd4AGctJedphduy5YkKtyK+YE59lQLj\nxrikTqvZ6rXKLaCBW8Dn1tDNqtps/DZ3T4WbtZt0U+G2Sk1WQAABBBBAAIHRIEA4NxruMteIAAII\nIIAAAggMk8CLL74oN998c8q9H3roobLLLrukXMZMBBBAAIHCEnACN61ws7DNKtx6B25BZwy3mAS1\n2o3ArbDu23CezbixLqnXgK2u1iO1Om5brVazOe0krZWk162vy+XDD1+X8TUx2Xnn7w7nqbBvBBBA\nAAEEEECg5AQI50rulnJBCCCAAAIIIIBAfgTmzZsn++yzT8qDeTweufrqq1MuYyYCCCCAQH4EYrGe\nCjerbtNgLRyJV7jFx3CLSlCr276cUyehiEc6rvw4PyfFUUZUoGqcVbhp0BbwSF1dPHBz2klalZsz\nhluZVrlZBVxmA7gtmB8d0evh4AgggAACCCCAQLEKEM4V653jvBFAAAEEEEAAgREUWLx4sRx00EHS\n1taWdBYWzD3++OOyxhprJC1jBgIIIIBAdgIWuNkYbtZS0mklGelynkPNnRLU9pLNNpZbMCZzF3VI\nR0cmLSU92Z0QW4+4gAVu9TZ2m47jVlurrSP9Om6bVrcFtM2kE7j1BG/WUpIJAQQQQAABBBBAoDAE\nCOcK4z5wFggggAACCCCAQFEIhEIhue666+TSSy+VLuuB1m/abLPN5JFHHpH11luv3xLeIoAAAgik\nE4hq8VFYQ7aIhmvhiI7dpq+bQzaGW6c0hRKBW1TmLuyUzmgmgVu6IzG/WASqK90auGnY1vNwAjcN\n2fxa1ebT9pIWvlnwRuBWLHeU80QAAQQQQAABBPoKEM719eAdAggggAACCCCAQC+Bdq2Mmzt/nsyd\nM1defuVlufCCCyVqnyKnmH71q1/J9OnTZcyYMSmWMgsBBBAYXQKdndZSskuDNg3cwhq0afAWsmq3\nROCmLSWtrSSB2+j5uaipdkudhmt1Wt1mVW0WuDU1zZGqqm7ZcYcpGrZp4KbzawOu0YPClSKAAAII\nIIAAAqNUwDVjxgy+djdKbz6XjQACCCCAAAKjV+D444+XmTNnJgFsvPHGUl1drR8ih+WLL75IG8Ql\nNtx2223l+7vvLjtsv72zXWJ+Pp5ff/11Oe200/oc6pvf/KbceeedfebxBgEEEMiVQGenW9ra9dHq\nkvZl9tojra1uWdru0md93eaWVl0ebvFIp7afZCp9gcox3VJd1SU1VTEnZKupjjnvqyu7paoyJpWV\nXfr/R1snJm43H7+U/k8EV4gAAggggEBmAttceIZUzn01s5V1rfdPu0WaN5qS8fqsWPgCVM4V/j3i\nDBFAAAEEEEAAgbwJpArsUh28oqJC7rvvPqmvr0+1mHkIIIBA0Qh0dMQDt/Y2Vzx4cwI3DduWeWSp\nBm+tGsS16rzIUgK3ormpWZ5o1dh44Fat4VqNBmsWuFnIVqMVblX6XKnzrdrN5rtcBG5ZcrM5Aggg\ngAACCCAwKgXKGhoacn7hjY2Nzj6HY985P9kUO+T8U6DkcRb+ecROcSj8U6DkcRb+ecROcSj8U6Dk\ncRb+ecTWQwUCgZQH/Pvf/y51dXX6YaNLysvLZcmSJbLzzjtLd3ffDx87Ojrk888/lwMOOCDlfvIx\nM9WYdz6fT4rxd1B+/vPxE5P+GPint8nHkuHw13+inHHbwtpG0mkpqWO4hbS1ZCgUjY/h1qxjuQVj\nsmCxjuEW6/vvWz6umWPkV8D+n+atcun/38ql1mkb6ZFabS/p1/Hc/D1jt/lsLDevvvfnt6XkcPz8\n51OX88+ndvKx8E82yecc/POpnXws/JNN8jkH/xxoT1xDZG7m+9l0m21EttKHTvhn7jYca+bKn8q5\n4bg77BMBBBBAAAEEEChSgQ033FAmTZrU5+z/8Ic/yDHHHNNnnr359a9/7QR329gfCUwIIIDAMAus\nDNw0YAtHNGgL63huGrgFdQy3YKhLmp3ALSoLl0QJ3Ib5XhTC7i1w8+kYbmMqVjhtJDdYv07HcIsH\nbjZ2m9/nccI2r4VwvvwGboXgwzkggAACCCCAAAIIFLYA4Vya+7NgwYI0S5iNAAIIIIAAAgiMLoGj\njz5ann32WXnwwQeTLvyggw6S9957L+/jzSWdCDMQQKAoBVasEGkOeaStzSP/fbVNQpGYBm5RnaeV\nbc0xDdyiEtTHgsVRiXZR4VaUN3kQJ13mdsn4GrfUakVbnT4CGrbV+T1OhZvPW6Ehm1uswm38+K8D\nt6+/ubzZII7EqggggAACCCCAAAIIjKwA4Vwaf/sA6uabb5Ybb7xRNt988zRrMRsBBBBAAAEEEBgd\nArfeeqvMmDFDFi1a1OeCZ8+eLSeddJLcfvvtfebzBgEERq/A8uUikZaY00LSaSvZ89oCt2Aopu0k\nNXzTwM0q3OKBW10P1iD6+oxe3qK7cgvcvOP7Bm61WtUWbylZodVt8cDNq9VuPm/RXR4njAACCCCA\nAAIIIIDAkAQI59KwHXzwwXLffffJ1KlT5Ze//KVccMEFacdmSbMLZiOAAAIIIIAAAiUj4Pf75S9/\n+Yt85zvfSbqmO+64Q3bffXc55JBDkpYxAwEESkNgmQVuPVVtobBWt1lbSQ3Ymq3KTd8vaerUwC0m\n8zVw6z9GZWkIcBW9Bco98Qo3q26zKjd7BLSiLRDQ0M3XN3Dzju+9Ja8RQAABBBBAAAEEEEDABAjn\n0vwcVFZWyt133y077LC9nHDCifLHP/5RnnnmGfnud7+bZgtmI4AAAggggAACpS2w4447ykUXXyTn\nnXte0oX+z//8j2y33XYyefLkpGXMQACBwhRoXxYP3CIRayNp47jpQ5+tus1Ct6agVrpp4LaAwK0w\nb2COz8oCN6twiwdu5VKr7SStraTfeY4Hbl5vmbaVLNfWkzk+OLtDAAEEEEAAAQQQQGCUCRDOreKG\nH3/8CbLOOus63wZvaGhwWjYdddRRq9iKxQgggAACCCCAQGkKnH3W2fLsM8/KSy+91OcCo9GoHHbY\nYfLvf/9b3G53n2W8QQCB/Ak4gZtT2RaVkAZs1lYy5ARuWtkW6tLgTcdy07aSC5tiVLjl77aM2JHK\nyzRw0zHc6mutuq1cq9s8Grpp4KaVbn4N2Xxej3z88VtSVRWTPX6QXBk9YifOgRFAAAEEEEAAAQQQ\nKHEBwrkMbvD3v/99efzxx2W//faTo48+WmbOnCnTp08Xl8uVwdasggACCCCAAAIIlI6ABW/333+/\nrLvuutLZ2dnnwl555RW5+OKL5fzzz+8znzcIIJCdQHu7OCFb2NpKanVbSAO2kFPdZpVtXfL5l7XS\n2uaW8678OLsDsXVRCFjg5hvv0Qo3e2jgpmGbVbn59dmq2vwawPm0xaRXg7ea6lX/zRpq7vtveVEg\ncJIIIIAAAggggAACCBS5AOFchjdw3333dVpbHnPMMXLVVVdJS0uL3HrrrRluzWoIIIAAAggggEDp\nCEyaNEn+/Oc/ywEHHJB0UTZO77Rp01KOTZe0MjMQGMUCbW3WUtKq2+KBWzgcH7PN2kkGdSy3oFW7\n6fPCpmgGSvxZlwFSQa9igZtfwzQL2epr44GbVbkFtMLNAjercLPwzdpKVlcV9KVwcggggAACCCCA\nAAIIIJCBAH/FZYCUWMWq5u677z75xz/+IbfddptsvfXW8tOf/jSxmGcEEEAAAQQQQGDUCPzoRz+S\n4447zvmdqP9FH3jggfLRRx/pB8q+/ot4j0BJC7QmAjdn/DYN3ZzATcdz0wDOxnRr0rDNnjML3Eqa\natRc3Gp1ZU5lW3wcN32tFW0BrXjzeuOBm1W9WeBWReA2an4muFAEEEAAAQQQQAABBEyAcG6QPwe3\n3HKLbLDBBs5WP/vZz2TTTTeV7bfffpB7YXUEEEAAAQQQQKD4Ba699lp54YUXZNasWX0uZtGiRXL8\n8cc71XV9FvAGgSIUWNrarRVuFrTp+G3Os1W4WWVbInDT1pL6erGO48Y0OgQ6O0LSuSIsK1aEpGNF\nUJ+bxeZJV0S22Gw1OfHEg2TazltKRcXo8OAqEUAAAQQQQAABBBBAYPAChHODNFt//fXlkksvkXPO\nPsfZco899nDGoFt99dUHuSdWRwABBBBAAAEEilugsrJSHn74YZk6dWrShTzwwANi4/Za5wEmBApN\nwAK3sLWT7Anc/vt6lbS1ueT1txc6VW5BHYNr4SJtObk0VminzvkMg4BLup2gLdphgZs+ljdJR0ez\nLF+uwduyoCxbtlg6ly2UaMcnevSOAc9g7hcizz1zjUyZMsUZDmHXXXcdcH0WIoAAAggggAACCCCA\nwOgUIJwbwn0/4/Qz5I7b75DPPvtMv0UbccZbmTFjhpSXlw9hb2yCAAIIIIAAAgjkX6CrqyvlQWOx\nwYURm2++udx4443yy1/+Mml/Nlbv5pttJttsu23SslzM6O7uTtpNqnlJKzGjJAValorTRtLGcQtH\nunQst3iFm7WRtMq2eODWKeHWVD/71T0mkZK0GY0X5ZIuJ2iLdoY0bLPALaiBW1CWa9i2fFmTBm9L\nNHBblFHgNli/jo4Oefvtt2W//faTtddeW26++WbZeeedB7sb1kcAAQQQQAABBBBAAIESFiCcG8LN\nrdD+JDfddJNY1ZxNr7zyilx33XXy61//egh7YxMEEEAAAQQQQCD/AqGQtmBLMS1dqgnHIKdf/OIX\n8txzz8mTTz6ZtOUee+4p73/wgUycMCFpWbYz7APw/tPy5cv7z+J9EQtEWkS/DKeBmlPhZoFbh4Qs\naLPAzVpL6mPR4nSBWxFfOKeeUqC8zCUTAvEx2+pqy53x22r9HvHrPJ+O4XbG6afKf1/9d0/g1ply\nH/mc2d7e7oy/uaf+Ozhlkynyxz/8UbbYYot8ngLHQgABBBBAAAEEEEAAgQIVIJwb4o2xNk01NTWS\n+ADrnHPOERuDzufzDXGPbIYAAggggAACCORPYPHixSkPZl0BhjL98Y9/FGv/3X/7pqYmOfDAA+VF\nHZuurCy3v3oSzg3lTo38Nha4hbWqLRG4hSMdOoZbPHCzKremnsAtkrLCbeTPnzPIrYAFbuOrYlJV\n1SXrrePXwM0jtYFy8fs1cBvv0b+v9FkfdbUe/Tdk4GO3tf5Xg7kPBl5pBJbalwbefONN+da3viUH\nH3ywXH3NNbLaxIkjcCYcEgEEEEAAAQQQQAABBApFYBV/3hTKaRbeebjdbjnhhBPkyiuvdE6us7NT\nbrzpRjn3nHML72Q5IwQQQAABBBBAoJeAta5sbm7uNefrl+kq6r5eI/Wr+vp6+csjf5Fdp+2atMK/\n//UvJ6C77777xMapy9VkVSn9pyVLlvSfxfs8CLS2lUmrjtn2zrvLtLqtS9tKaoWbhmxNWuWWCNwW\nLumUpQRuebgbI3+IigqXTNRqtlqnyk2ftbrNAjcL2fxeC9zstccJ3DwekcbGRuekGxo2yerk//rX\nv8pdd92lLSuXO4+WlhZZtHChVlcuFvtCwhdffCHW+nbcuHHOc6p/Q7I6gVVsbH8z2r+DDz74oFx/\n/fVy4oknrmILFiOAAAIIIIAAAggggECpChDOZXFnDzjggJXhnO3mwgsulBNPOFFqa2uz2CubIoAA\nAggggAACwytgLbnTTfbh9j777JNu8YDzp+0yTf73rLPk8ssuS1rv8ccfl+9973vy1FNPyYQctbj8\n9LNPk47T1tYm9qiqqkpaxozMBWw4v3CkWyJOO8moBm4xfa/VblbZ5ozfZuO4RWXBok5pbbcx3BK/\n/36V+UFYs6gExo1xSZ1Ws9XVWlvJcg3c3BLwa4WbBm1+n9tpK+ntFbiNxMWtscYa8r//+78DHtqC\nu0WLFsmnn34qH3/8sbzxxhvy/PPPy9y5c51/N1pbW53gbsCdZLHQwkEL6U4++WRnvM5HHnlENt54\n4yz2yKYIIIAAAggggAACCCBQjAIlFc7ZHznz5s1z/rCaM2eOWHWbffhTV1cn3/jGN2T8+PE5vUdb\nbrlln/3Zt9Cvv+EGufiii/rM5w0CCCCAAAIIIFAoAlY9cuqpp6Y9nd///vdiY8htuummadcZaMFF\nF14of9fx515//fWk1V577TXZaKON5LzzzpOjjjpKvF5v0jqZzrDf9W695daUq9v+r9G2cUx9Bbo0\nQ4u0xAO3kBO6xTR0SwRuNn5bvLXkgkUd0rZM0zmmkhewwK1egzZrGWmBW0BDtloL3PTh82rg5lS4\nWQWcW6zCrRSmsWPHOn8b2t+H06ZNW3lJ1iZ35syZMmPGDLHA7N///rfYuhb2D8dkf7t+9NFHzhh0\nl1xyiZxxxhnDcRj2iQACCCCAAAIIIIAAAgUqUPThXJd+ymCtQS7UD4Ls248DTVbpduihh8q+++4r\n5eXlA62a0TLbx0477eT8AZfY4LJLL5Vf6gdaufpGeGK/PCOAAAIIIIAAAkMRsC8u2YfAs2fPlvfe\ne08uv/xyWbBgQdpd2e9Wm222mZx//vmyww47yDrrrCMVFRWy+uqrZ/T7k40r9+c//1k22GADsX31\nn6xt5imnnCKnn366/PjHP5Ztt93W+XDajjXQ72d2zhYs2vZvvfWWE77ZtaWarr32Wlmorez2339/\nWXvttZ0Q0M7HvrhVapMTuGmFWzii1W1ayRaOfB24BTWAawrGQ7eFSwjcSu3ep7uecWNdMsEq2wLa\nSrJWn7WazcZvsyo3n9NSskz/m7AKOLf+N5FuL6Nvvv07N3XqVOdx0kknOQAvv/yyWNWvtcq08TSt\n6i7Xk4WCZ599tvz5gT/LE48/IWuuuWauD8H+EEAAAQQQQAABBBBAoAAFijqcs179v/nNb5wPm8zW\nPtA59thjnW9k2/gB77zzjjz22GMr/4j6y1/+IvawD4HsedKkSVnfEmvPZN+uTEz2IZS1azr66KMT\ns3hGAAEEEEAAAQRGTGC77bZzOgsM9gTsi0+9J2v9ttVWW/Welfb1uuuuK/fcc48cfvjhadexjgP3\n3nuv87CVrNJu6623Tru+jfVrH5JnOtmXt+yRmGbNmiXrrbde4m1BPytNvMJNA7fmZq1si9gYbp3O\nGG4WuAVtLLdgTBZo4LZsORVuBX0zc3RyVePiFW42hluttpW0wM3Gb4u3lfTIrE/ekarqbtl7rx0I\n3HJkbruxLw3YY/r06fL+++9rgPaA3HTjjc4XHnI5Xp19geLNN950vgxhf0vutttuObwKdoUAAggg\ngAACCCCAAAKFKFC04dz//d//ya9+9auVprt9fzf50z1/SqpYs29YW9ukp59+euW61lLJPqiySrvK\nysqV84fyYptttkna7IknniCcS1JhBgIIIIAAAgiMhICNo5TJ1NjY6KzW0NCQyeqrXOewww4Te+Rq\nsi9cDTTl+vwHOtZQllnglhjDzWklqYGbPYc0fAvqeG6zPvVLS6tbLv+/TwjchgJchNskArf4GG5a\nyea3wE1bS2qVm88J3+KVbtZS0uUa+ALb2zqdFaiEG9gpm6XW6vcSe1x8sbz44oty3XXXyTPPPCP2\nRYNUVcJDOZZV0e21115yqXZjoc3lUATZBgEEEEAAAQQQQACB4hEoynDOPpzpHcxVVVXJA39+QNu1\n+JPkrb3kk08+6bQ06t36yFojXXrZZXKp9vfPZrKxCvpPFs5ZyxMbo4AJAQQQQAABBBBAoDQFolEL\n3LokouGaU9mmz85YbqFOaQrFpFnbTFpbyYVLOmXZilVVuFX0IK1qvdK0LJWrqq506xhu1jLSqtp6\nAjcbw02r3PwWuHnLxavPmQRupWJSitex8847iz2WLFki1153rVw5/UrnMnMR0lkVnbW5fPbZZ8X+\nrsz2y6Sl6M81IYAAAggggAACCCBQCgJFF86tWLFCbOy43tOBBx6YMphLrGPji5xzzjli7ZB6Tzdc\nf33W4Vyq1pjd3d3OAOK77rpr78PxGgEEEEAAAQQQQKDABfRzcW0paW0kNXDTyrawBm4WstlrJ3DT\nlpLWVnLe4k7p6CBIK/DbmZPTq6l2S52Ga/V18cDNGcNNx3Tza5Wbz+t2nr26vDawivK2nJwNOykk\ngfr6ern8ssvlezt9z2m7+4c//ME5PQvYsplse6vO22STTeRf//qXrLXWWtnsjm0RQAABBBBAAAEE\nEECgAAWKLpx79dVXk9qGWHXcqqYf/ehHSeFcW1ubzJkzJ6ux53w+nzPWXf8/wP72t78J4dyq7grL\nEUAAAQQQQACB4Rewz8mdcdt0vLaIjuNmwVvQxnKz8ds0fAtqdZsFbvO1wo3AbfjvRyEcwauBW61W\ntNXVWhVbmbS0LJTqqi751jYbOoFbQMM3r9fCOAK3QrhfhX4O48aNkx//+MdyzTXXyK233uqMi55t\nu0urwps9e7ZMmTJF7G/gjTbaqNAZOD8EEEAAAQQQQAABBBAYhEDRhXMvvfRS0uVZb/5VTekCvEUL\nF2YVztlxt9p6a/nvf/7T5xTuv/9+54+zPjN5gwACCCCAAAIIIJATAfv1z2kpaWGbhmxvvVMpbW1u\n+fDjxT2Bm47l1hyT+Vrh1hmlwi0n6AW+E58Fbhqq1QY8TlvJWq1m82lryXiFm0c7beh7Ddz8KQK3\nxsZZztU1NFQX+FVyeoUsYCHdKaecIkceeaScddZZcvvtt0v/L3EO9vyXLl0qU6dOdQI6e2ZCAAEE\nEEAAAQQQQACB0hAounDOBuLuP22//fb9Z6V8P3HiRFm0aFGfZct0bLhsp431W4z9wzkb027x4sWS\nLhTM9phsjwACCCCAAAIIlJpAInCzsGGvJqUAAEAASURBVM1pKanjuYV0/LagPprDXdKs1W5NwZgs\n0Aq35MCtpocjVGoso/Z6XC6XeKtcUlengZsGa07oZgFbr8DNZwGcPvw+KtxG7Q9KAV54IBBwKuhO\nPfVU2X///eWzzz7TqtxVf6E03aXYtltssYWzn3XWWSfdasxHAAEEEEAAAQQQQACBIhIounBu2rRp\nYmPI9R5s+wc/+EFG5PaHTP9wrr29PaNtB1ppzTRjADQ1NRHODQTHMgQQQAABBBAoeQEdLthpIxnR\n9pHhSKeENGSz4M0Ct2AoEbhFZWFTNEXgVvI8o+4CLXCzCrc6Hb/NAreA3yP12lbSAjef18Zx8zjV\nbTaGG4HbqPvxKLkL3mCDDeTDDz90KuiOP/74rKvorLWljUG33XbblZwVF4QAAggggAACCCCAwGgT\nKLpwzlqFvPXWW843ESdNmiRHHHGEjgfhzei+Vdckt6lZYZ8YZTlV6jmlmpYsWZJqNvMQQAABBBBA\nAIGiFkgEbmEL3DRoC+kYbs74bVrZFgzFtMItPobbwiUauMVoKVnUNzuDk7fArWpsl1RXxuSbk70a\nuJVJnYZufgvdvBUasrmd6javhm++zH5tz+CorIJA8QgcffTRsssuuzhVdBbWDbXVpW333e9+V/6j\nQypstdVWxQPAmSKAAAIIIIAAAggggECSQNGFc3YFm2++udx8881JF5NqRnd3t7z44oty5513yt+f\n+3uqVbKeV1VVlXIf1taSCQEEEEAAAQQQKAaB5cvd0r7MLR99vMIJ2sItMW0paSGbtZSMaTvJqBO6\nLbIKNwK3YrilWZ1jmVtbSo63Mdw0aNOHBW5OpZuO52aBm8/bN3BrbGx0jtfQsElWx2VjBEpVYPLk\nyfL222/LxZdcLBdfdHFWAd2OO+4o7777rqy//vqlysV1IYAAAggggAACCCBQ8gJFGc5lclfmzJkj\nd99zt1x/3fVi7SXTTRbeZTtVVlam3AXhXEoWZiKAAAIIIIBAngSW6dC6Vt0WiUS1nWRPW0mtamvW\nMd2swq0pqMFbc0wscIt21fec1ew8nR2HybeABW4WqsXHb7Mx3DR00/aRAQ3c/L6+gZt3fL7PjuMh\nMDoEzj3nXGn4boPsueeeMtQhFpbruOnbbrutzJo1S+rrE/92jw4/rhIBBBBAAAEEEEAAgVIRKLlw\nzr61e+ONN8rDDz/s3COPxyMnn3yyWCsRG5D7+eef73PvrA1PtlO6cG7hokXZ7prtEUAAAQQQQACB\nPgLty0TDtngbyZCGbGEN3sJW4aZhW9DaSdpYbhq4LXYCt+y/hNTn4LwpOIFyT7zCzarbagPlGrx5\nnCq3gL73+6yNpFtbwGt7SX09vqbgTp8TQmBUCuy0007y2WefOWPHzZs3T2Kx2KAdIpGINDQ0yDvv\nvCMVFRWD3p4NEEAAAQQQQAABBBBAYGQFSiace/zxx+Wiiy+SN9940xFde+215eyzz5ZDDz1Uamri\nn0S49NvCwzGlC+cWE84NBzf7RAABBBBAoOQEnMBNK9tWhm0aujktJZ2grasncIvKkmBMK9wI3Eru\nB6DfBVng5vN6tJ2kxwncAj591raSFrhZyGbLfFrx5tP5NdXD8/ttv1PiLQII5FhgtdVWk5kzZ8qP\nfvQjeeGFF4bU5tIq5w4//HB56KGHcnx27A4BBBBAAAEEEEAAAQSGW6DowzkbDPvnv/j5ylCurq5O\nfvvb38pBBx0kuaiKy+QGjBkzJuVq6UK7lCszEwEEEEAAAQRKSqC93VpKJtpJanVbuFMDt5i2lLTK\nti5psrHctOJtYVNMctFmu6TwSvBiystc4tdQzSrb6rTCLT6Gm7aT1NDN7y+Xzz97Tyoru2T33bcn\ncCvB+88lIZBKwP5efOaZZ1YGbJ2dnalWSzvPKu6eeOIJuf76651uMWlXZAECCCCAAAIIIIAAAggU\nnEDRhnNdXV1yyaWXyPnnnb8S9dhjj5Wrr75aW/d4V87Lx4tly7S/VIrJ5/OlmMssBBBAAAEEEChW\ngbY2aykZD9ysyi0SiY/ZZmO4zfzYL0tb3XLz7Z/JIq1wI3Ar1ruc+XknAjdrKWkPC9ysyq13hZuF\nb9ZWsrpq4P12RTucFaiEG9iJpQiUosC9997rVM498sgjg25x2dHRIb/+9a9lhx12kG9961ulyDMq\nrsk+U/joo49kzpw5zjiCkydP1upoPk8YFTefi0QAAQQQQACBUStQlOFcMBiUffbZR1555ZWVN+6q\nq66S008/feX7fL5obW1NeTh+mU7JwkwEEEAAAQQKSqA1EbhpFVvYGcvNAreoVrhplZvOWxLUSjet\neFui47gNHLglxvyJFtT1cTKDE7DArdbaSGrYZq0k7TmgLSQD2mIy3lLSxnLzOIFb1SoCt8EdmbUR\nQGA0Czz44IOy6667io2hPtgKOlv/Bz/4gXz11VdSXV09mhmL7trffPNNOfPMM/t8tpG4CAtcL7ro\nIpk2bVpi1rA/NzU1yeLFi2XKlCnDfiwOgAACCCCAAAIIjHaBogvn7A+P/X/4wz6/vJ5yyikjFszZ\nDxDh3Gj/z4jrRwABBBAoNIGlrd1a1Rb7uq2k01Iy6oRsFrhZS8kmDduWaAjHVPoCFRUauFlLSSdw\nK9dntwZu5dpOMh64+W38tp5x3LTLHBMCCCAwIgLPP/+8nHrqqXL77bfr/8MigzoHW/8nP/mJPPzw\nw4PajpVHRsA+1/jpT38qd911l3MCEydOlJ8c9RNZe9La8uGHH8odd9whL7/8shPY7rHHHmLh7XAG\nr/Pnz3fao1onoqlTp8pbb701MjAcFQEEEEAAAQQQGEUCRRfO/eIXv5B//+tfK2+Rx+ORc845Z+X7\nkXixdOnSlIedMGFCyvnMRAABBBBAAIHBC1jgFtZqNhvHzSrcQha4abgW1LDNqtyCGrgtCWrwplVu\nTKUv0DtwszHc2toWa+vILtl263W1ws2q2yxw05aSWuVWOa70PbhCBBAoDYFrr71W5s6dK4899tig\nKuhs2Icnn3xSnn76adlzzz1LA6NEr6KlpUV+qF84fuGFF5wrPPLII+WII47oUyF3wQUXiA3b8fjj\nj8vf/vY3aWhocMYnzPVnDNZG85prrpEbbrihRLW5LAQQQAABBBBAoHAFiiqcmz17tvzud7/ro3nA\nAQdom6FAn3mDeWN/xGQ7LU3T1nKTTTbJdtdsjwACCCCAQMkKdHeLjtEmGrZ1OuO4fTBznLS0uuTz\nL5ucdpLWStICtyYN4AjcSvbHoM+FjRvjEr8GarXaQrKuttxpJ1lr1W3aXtKCNhvTzcZv82qVW//A\nrbHxU2dfDQ35HXu4zwXwBgEEEMiBgFVJ7bTTTvIv/VLqwO2U+x7Mxp+zv4+tLWFNTU3fhbwrCIFo\nNCq77babvPrqq875nHzyyU5Q1//k6urq5P7773fGEXz//fedSjZre/rGG29IeXl5/9UH/f7zzz8X\nGxrk1ltvHfS2bIAAAggggAACCCCQG4GiCueeeOKJpKvecMMNk+YNZkYslv2368OhUNIhKyoqZO21\n106azwwEEEAAAQRKWcC+82KBWyTS2VPh1qUVbh06hpuO36YVb0GrdOupdksO3Mb30ARLmWjUXZuN\n4TbBxm3TwK2+zgI3jxO6+XWez6utJfW9VbpZ4DZu7Kjj4YIRQACBlAJWBbfuuuuKjQE2mMkCul/9\n6ldOa8zBbMe6+RE4XyviEsHcmmuu6QRk1r4y1TRu3Di5++67ZauttnIWv/fee3L22WfLlVdemWr1\njOZ98sknMn36dH4+MtJiJQQQQAABBBBAYHgFiiqc++KLL5I0BvvHSv8d5CKc++ijj/rv1ukNnzST\nGQgggAACCBSpQFiHvukduIUjGrhpC8mgtpOMj+HWE7rpe6bSF7DAbWKtBW5lWuGmlW5a3Rbw2xhu\nGriNj4dt9jqg83PwBf/SB+UKEUAAgX4C48ePl9dee0022GCDQbe3/NOf/uQEdDZ2GFPhCLz44oty\n2aWXrjyh888/X8rKBv5IZsstt3TaXf7jH/9wtrNqtx/84Aeyyy67rNxPJi+++uorOeuss+Tee++V\ntdZaSyZPnizWmYgJAQQQQAABBBBAYOQEBv5NcOTOK+WR29vbk+ZbW4dMp44VHUmr2kDM2U7/+c9/\nknax3be3S5rHDAQQQAABBApJIBTulpYWHb9NK9pC4S4dx63DGcPNKtoSgduSJVoB15p9C+hCum7O\nJbVAuUdkfHVMJq1ZHQ/dtNLNAjdn/DatavP57LXNI3BLLchcBBBAILcCFqDcd999cvjhh4tVxGU6\n2d+4No7Z22+/nekmrDfMAjacxjHHHLPyKC6Xy7mvK2cM8MIqIRPhnK1mrTDffffdAbZIvWjTTTcV\nC+kmTZrkrGDjE+61116pV2YuAggggAACCCCAwLALFFU4t9FGGyWBWEsIawOxww47JC1LzIhEInL6\n6afLjBkzErNWPofD4ZWv7cWsWbPE+q+vs846feane9Pc3CypQsPdv797uk2YjwACCCCAwLAIxGIu\naV/m1m9Ca6AWscAtps+dPYFbVAM3HcMtFJXFGrhFCNyG5R4U2k5tDLc6rWCz6rZAoFwr3Nz6sJDN\n2km6nbaSXg3cbIy3l19udE6/oWFKoV0G54MAAgiMWoEDDzxQ/va3v8ldd90lg+n68vHHH8vjjz8u\n++2336i1K6QLf+SRR6R3J6B9991XKisrMzrFhoaGPutZe8tnnnnGqaDrs2CANzbkxplnntlnjT33\n3FP23ntveeqpp/rM5w0CCCCAAAIIIIBAfgSKKpxLN77cz372M7EWEfX19Ulqf//73+Wwww5L26vf\ngr2f//znznb2S+6OO+4ol112WdJ+0s2wIK//NHHiRNluOyrn+rvwHgEEEEBg8AI2hlsk0u2EbVbh\nFo7ENHTT8E1DtiZ9BHUsNwvcFjV16lhvE3oOkPz/psEfmS0KVWDcWJfUa8BWV6tVbBq4BTRkq9Vn\nv1W2eTVwcyrctNVkwC0erYZjQgABBBAoboGbbrpJHn30UQmlGOs83ZUtX75cjj32WMK5dEB5nn/e\neef1OeJgKta8Xq/zOcVLL720ch8XXXTRoMK5lRv2ezFt2jTCuX4mvEUAAQQQQAABBPIlUFTh3Pbb\nby8VFRVJLT0++OADmTJlitx2223y7W9/W5YtWyYvvPCCPPbYY2KtGtxut9Nb3b4Rdv/99/extTYh\n1sfd2oSce+658sMf/lA22WSTPusM9ObTTz9NWvxTDQuZEEAAAQQQSCfQO3ALabCWHLjFQzcL3Frb\nNZ1jKnmBqnFW4aaVbVrBVlurz1rNFh+zzQK3+BhuXi+BW8n/IHCBCCCAQAqBcePGOVVwFqQMZliG\n1tZWeeCBB+SQQw5JsVdm5Uvgueeek5kzZ/Y5nH1uMZjJ7n3vcO6VV15xWltuvvnmg9lN0rr2xWIm\nBBBAAAEEEEAAgZERKKpwzu/3OwHcUUcdlaTV1NQkBxxwQNJ8a4VpLSQ23nhjeV9DvFTTGWec4cze\nYost5O6775bXX3891Wop572r1Xb9pwNTnEf/dXiPAAIIIFBaArGYVri1aIWbhm1OZVvExnDr3VJS\nK92CMa1w65C2Zd2ldfFcTUoBC9zqrZVkQEM1bSsZD9y00k3bTFrgZmGbjecW0FaTVLilJGQmAggg\ngECPwHe/+1054ogj5M477xQbvyyTyarnTjrpJMK5TLCGcR2reuw/rbvuuv1nDfg+1RAfzz77rGQb\nzlVXVw94XBYigAACCCCAAAIIDJ9AUYVzxvCTn/xEnnzySSdwWxXLiSeeKFdffbXYNw1tmjZtF7k8\nTcvK733ve84+M+37njj2Qw8+mHjpPG+77bYyderUPvN4gwACCCBQnAIWuIWtpaRT3WbjuHU5wVuo\nuVOCOp5bsNkCNx3DLdhJ4Fact3jQZ11d6dbAzSrYbAw3HcvNb1Vt8cDtqy9n6u8cXbLbbt9yAjct\n3GdCAAEEEEAgZwJXXnml3HPPPRmHc3bglpYWZ8y6PfbYI2fnwY4yF+ju7nbuWe8tbPy3wX7usP76\n6/fehfP6oYceksQXjZMWZjhjzJgxGa7JaggggAACCCCAAAK5FnDNmDGj6L6+b7/g2uDW1113XUoP\n+xbacccdlzTum2139tln92kHYTs4/PDDndDPWmYOZpo7d66zbe9tpk+f7rTW7D2P1wgggAAChSPQ\nGXVLe7tb2triz636bK9bl7lk6dIyaW1zaStJt0SWemRFZ+GcN2cyfALj9H//1VVRqanq0meRmpqo\nVI/rlirnfUw/QIu/rqqKSZmn6H5tGj449owAAgggkHcBq8K68cYbJWbfIMpw+uY3v+lU3GW4Oqvl\nUOD9999fOcZ9YrfbaUvLK/Vzg8FM4XA45fiBDz/8sNTX1w9mV33WffXVV5MCvsmTJ8tdd93VZz3e\nIIAAAggggEDuBba58AypnPtqxjt+/7RbpHmjKRmvz4qFL1B0lXNG6nK5ZP/995dddtlFPvvsM+dh\nf5xsuOGGst5660m61gy23SWXXCL//e9/Zfbs2c4vsdbKsq6ubkh36rXXXuuznbWa2G677frM4w0C\nCCCAwPALdHZq0LZMA7ZWC9xc0tbucV7HAzd9beGbBm4trQRuw383CuMI4yq6paa6SwO3mIZs3fHw\nTUO26moN2iotcOvqmR/TlpIEboVx1zgLBBBAAIFVCey9997y29/+dlDhnH2pdNasWZKq+mpVx2N5\ndgJvvfVW0g4mTpiQNG9VM2pqalKuYvc1m3DOPiNhQgABBBBAAAEEEBgZgbKGhoacH7mxsdHZ53Ds\nOxcnay0sB5oyPf8rrriiz25uueUW2WmnnfrMG4k3mZ7/SJxbJsfk/DNRGr518B8+20z2jP/XSp1a\ntWZtJMPhaPwRiUlzSFtL6nunpaS2k0y0lFy2gnDla7nSfeWtdkudM4abJz6Om47X5tfWkj5vufh9\nHvHrWG42jpvf59Iv8uTfgf9+82/e+4j499bI/2v882/e+4j499bI/+t8+1tVkw330NHRkdHFduov\nVW+88YYcc8wxKdfP9/mnPIksZhby+f/ud79LurKtt9laen9Wkun5e71eiUQiffZnQ3j03lefhRm8\nSTV+od/vH9Q+Mz3/DE5nRFbh/EeEfeVB8V9JMSIv8B8R9pUHxX8lRdYvmpqaZPHixTJlSuZVZQXh\nP3ENkbmZX/6m22wjspU+dCqI88/81JPW5PzjJEVZOZd0N0dgRigUcnr3Jw693377yapCv8S6PCOA\nAAKjVcA+Q7LALRKJB24hHbctFO6UkI7pFg/cOjVwi8lCHcOto4PAbTT8nPg0cKvVwK2utkw6VjRr\nhVtMtpg6WQO2eODm0wDOZ4GbfwTSttFwA7hGBBBAAIGiE/jxj3/sDOOQaThnF2gh0Q033CDl5eVF\nd73FfMJvvvlm0ulPGGIbysmTJ8s777zTZ38ffvhhn/e8QQABBBAY3QLPPvusLF++PCsEtw6ebkM/\n2bikiUcgEJAJWvk92DFTszqRDDaeP3++XH/99XL11VfL1KlTJVXFega7YRUERkyAcG6I9PaHTWKy\nf5huS/GNuMRynhFAAIFSFkgEblbR9smsMdpC0iMLFjVLUKvcmsNd0tzcKUuaorKoOUrgVso/CL2u\nzQK3ujoN3LSqLeD3SJ1WtPn0sTJw07DNa1VvWuHWe2ps/Nx529Dg7z2b1wgggAACCCDQS8BaEVoX\nl5NPPlmsKi6TyUK5Z555RvbZZ59MVmedHAhEo1GZOXNm0p4CgdqkeZnMWG211ZLCubfffjuTTVkH\nAQQQQGCUCNx9992yaNEisTFP7TnXk/0+kRjWyYaVsuGltt9++7x/+WfOnDlyzTXXOF88yvU1sj8E\n8ilAODcEbSuTvfjii1duef/998tQ+sav3AEvEEAAgQITWLHCKtxiEtHKtnDEQjZ91vDN2koGQ/HA\nzVpKLtTQrTPau8LN13MlSwrsijidbATsQ8B44FbWE7jps4ZuFrj1bik5fnxy4JbNcdkWAQQQQAAB\nBFILHHvssU44l3pp8lz7Fv3vf/97wrlkmmGbY+Pcp5qsFeVQpsoU29mHr0wIIIAAAggkBO69997E\nS6cV8uVXXC7Tr5i+cl62L+xLQe+9957zSOzrlFNOkaOPPloOOeQQ2XnnnROzh+X5888/l6uuukpu\nvfXWYdk/O0Ug3wKEc0MQt1LZRG92+8dn3333HcJe2AQBBBDIr4B1Noi0WMhmD20lqeGbtZOMB246\nnptWtgX1kRy45fc8OVp+BCxw84+3lpLxwM2ea23cNmcMtwqtanOLtZT06nhuPm9+zomjIIAAAggg\ngEBmAtZuysaQG8yHU3/961+dcepsW6bhF2hubk55kKG2Fq3Q9mL9p/b29v6zeI8AAggggIAjYGOV\nXnH5FTJ2zFi58MILU6psuummzjBN2+hYZptssonTutLn80lNTY20trZKMBgUG89t1qxZYr9HPPDA\nA2KV4b0nC+xuu+0257H33nvLzTffLJMmTeq9StavP/nkE5k+fbrcfvvtWe+LHSBQSAKEc4O8G19+\n+aWT0NtmNvDyb3/720HugdURQACB3Akss8BNQzaranMeGr4163htzVblpiGcVbdZ6LZIn/tWuOXu\nHNhT4QhY4FZd2SWrTxzrVLhZ4BbQgC0Q0Co3b4U+3Dp2Wzxw844vnPPmTBBAAAEEEEBg8ALHH3+8\n3HnnnRmPLTN27Fh58cUXZffddx/8wdhi0AJtbW0ptymvGNq4f+lCVftQdKiBX8oTZCYCCCCAQEkJ\nHHHEEWnDuUceeUTWX3/9lNdrAZ09JuuYpxbeHXrooc7vHfa7xG9+85uU47s99dRT8vTTTzufl9vv\nKdlOX331lZx11lliFYFrrbWWcy7pKtOzPRbbIzASAoRzg1C3X673228/Z4stt9xSnnzySbE/cJgQ\nQACB3Am4ZNlylyxYqC0lI1EJ9bSVDFlVW0iDNw3dmix8a47JYgvcYr1bSubuLNhT4QiUubWlpIZq\ntRqqJarcAjZ+m7aV9PvigZtVuPl85fLWm/8Sl6vb+fJI4VwBZ4IAAggggAACwyEwdepUqa2tlXnz\n5mW0e6uyeuyxxwjnMtLKfqV04VxF+dAqF8ekqJyzs7TjWJUDEwIIIIAAAqkE1l133VSzhzSvrKxM\ndtttN+dx7nnnyXXXXuv8f6j3zqzb3AknnCA2/p0NBfWNb3yj9+JBv7bqPgvpEtV4Fv7ttddeg94P\nGyBQiAKEcxneFfuH5bDDDnMGYLZvFDz33HMyfjxlBxnysRoCo16gfZlWuDlBmwVuWuWmwVtYW0o2\nNWvQpmO4BW0sNwvcmiZItMu4Ph31ZqUMkAjc6qyVZKBcgzePE75ZS0m/hmwWxnm9FsCVSU21K2MK\nC+aYEEAAAQQQQGD0CBx3/HFy3rnnZXzBDz74oNxyyy0Zr8+KQxewdmCppuOOO05/x/OvXJRofxkI\nBFbOS/XCxvhJNVnoSjiXSoZ5CCCAAAIJAft/TOL/N4l52T7vtuuusvVWW8mVV14pr7zyStLubJ5V\n67/22mtOBV7SChnMWHvtteXMM8/ss+aee+4p1j7TqvSYECh2AcK5DO/gaaedJk888YTTh9f669bV\n1WW4JashgECpCljgZgFb2NpKWtimoZuN4RYP2hKBW1SWBGMauBGalOrPQeK6yj1W4ebRdpIatGng\nFtDx2yx8s4DNqtpsWbzCzTOowC2xf54RQAABBBBAAIH+AgcfdLAznkymY48tXbpU5s+fL2ussUb/\nXfE+xwLp7snMmTNzeiS3x5PT/bEzBBBAAIHSE1hzzTVzHs6ZkoV+1ubyyCOPdMaj6y/38ccfy5H/\n7//JI48+2n9RVu+nTZtGOJeVIBsXigDh3CruhLWIOOmkk5wBJ39z5m/ksksvE7fbvYqtWIwAAsUq\nYGOqOyFbT5VbONypgVtMAzcN3ZzWkjqGm74mcCvWOzy487bAza8hm1W21VngZq0l9XVAQ7fegZtX\ng7fBVLgN7ixYGwEEEEAAAQQQSC2w4YYbSjQaTb0wxVyPBjmvv/667LvvvimWMiuXAunaUD6qH1B+\ne/vtVx7q5Zdecl7vsOOOK+elenHaqafKfffdl7SouqoqaR4zEEAAAQQQ6C1gY8cN12T/v7P2leFw\nWJ599tmkwzyqLbUvuOAC55G0cIgzJk6cOMQt2QyBwhIgnBvgfrz55pty4IEHyuLFi8V+gd5///0H\nWJtFCCBQqAI2FrtVtllVm1W5RSLxMdts/DYL3Jr0YYFbk7aVpMKtUO9i7s6rvMwltRq4WdBmlW32\nbFVutbVlMmfOLKkcF5Np07Zx2kpW81lH7uDZEwIIIIAAAggMi4D9zZoqtEl1sOXLl8tLGgYRzqXS\nye286urqlDv0er2yWq8PFRNdeXrPS7VheXl5qtlSWVmZcj4zEUAAAQQQSAi4XKmHy0g3P7Fdps+2\nn3vuuUc22mijlBV6F154odhYuT/84Q8z3eWA66X7f+yAG7EQgQIUIJxLc1P+OeOfcvFFF8u5550r\np55yqvAffRooZiMwQgKtGrhFegVuVuHWrCHbux94ZWmrW+5/ZLZWu8VkiQZu3d20lByh25S3w1rg\nVmcVbU5lm43jZoGbPrTFZLzCzcZy8ziB20BfLm5s1F6lOq25Bv97zNvN40AIIIAAAgggkJXAAQcc\nIA899JB0dnZmtJ/n//F8RuuxUnYCVWl+6ezo6BjSji1YTTXR2SeVCvMQQAABBPItUF9f7wwJ9Z3v\nfCfloY844gj90nxI0n3ZJOVGaWamq05PszqzEShYAT59THNrxteMl6+++kpWX331NGswGwEEci2w\ntLVbA7fYygq3eEtJG8Mt0Vay06lua9L36QO3sT2ntSLXp8f+8iyQCNwsaKv1l2vg5tbATVtLOi0l\nta2k1x7xcdz4wnCebw6HQwABBBBAAIGCEdh0s02loqIi43Du7bfeLphzL+UTSRfOZRqi9rfpWJH8\n941V4TEhgAACCCBQKAI7aovmQw45JOX4czZ0lHWmO/jgg7M+XU8Z461mjcgOCkKAcC7Nbdhqq60I\n5tLYMBuBwQhY4Ba28du0si0c6ZKQjeGWGLtN5zcFLXDTAC7cNUDgNpgjsm4hC1jgVm9hm1a0WeAW\n8LudZ79WvPm00s2vDwvdvFrlVjmukK+Ec0MAAQQQQAABBApDYIP1N5Bly+LV/5mckY07t2TJErFv\nuDMNn8D48eNT7nyolXPLUlTOTZkyJeUxmIkAAggggMBICZx+2mkpwzk7n+uvvz4n4Zzb5R6py+O4\nCORUgHAup5zsDIHRIdCyVMdw05DNaSupoVoo3KHVbjFn3DarcrPALWhjuOlrptIXqKjQlpIaqlng\nFou2SHVVTLbYbJL4NHDza6Vbop2kV6vcCNxK/+eBK0QAAQQQQACB/8/encDHVdf7//9MkskemrRp\nSykteIEKtOxFuaIBFKxsgoJcRdxYVC4uFxH1Kj8sIgioLFcFvCLcCwhSRdn5lx/8hLBJWVqlbN0o\ndF+ylDbrTDL/z+d7ZpKmmdPMJGdOJsnrPB5zZ84y33PO8/RWmnc+30/4AgceeKAsWpRZRVxpaam8\n8847hHM5fkzv23PPtGfYsmVL2u0Dbdy4aWO/Q6x/DwsCCCCAAAL5JDD78MPl6KOPlieffLLfZT3/\n/PPuv1cOPvjgfvuy2ZCuV166bdmMybEIDIcA4dxwqHNOBPJMwFqyWeC2ZUtMVrxdIq1thdL0XpP2\ncNPArVmr2rSyzVW3uQo3Arc8e3w5uZyykoiM1wq2CROKpFZf47WSzXq41WjVW41NJ2kVbvqywK0s\nNZOoXkl9fb27nrq6CTm5LgZFAAEEEEAAAQQQ6C8wc+bMjMM5611m4dzs2bP7D8SWwATKtefc7rvv\nLqtXr+4z5oYNG/qsZ7qy8u2V/Q61586CAAIIIIBAvgmcc845acM5u87//u//lhtvvDHfLpnrQWBY\nBAjnhoWdkyKQewEL3La85wVuzRqwNWmFW/MWrXBLBmyNVtlmoVtDXBq1z1vvUp382P83M3uP4dNI\nFCgrjcgEDdZc2Ob6uGngplNLuikldynU96gGboUyTj/rL1SzIIAAAggggAACCIwQAQva/vCHP2R0\ntdbzbM2aNRkdy0FDE/jgBz/YL5zbuHFw/85qbGzsdzH77rtvv21sQAABBBBAYLgF7H///Jabb75Z\nbrjhBolGo36HsB2BMSNAODdmHjU3OhoEurstcEvIe+/FdVpJL3CzKSWbk1NI9gRum3Xf1u0Dt9Fw\n99xDOgEL3LwpJa3KLar92wpc4Ob6t2lVm00raf3bqvVzSUm6EdiGAAIIIIAAAgggMNIFpk+f7n7I\nZcFbJsu7776byWEcM0SBAw44QO69994+o6xfv77PeiYrzc3NaQ/bb7/90m5nIwIIIIAAAsMpsM8+\n+0hVVZVs3arTdO2wJLSaYO3atbLHHnvssIdVBMaeAOHc2Hvm3HGeCaQCty0atjVvscCtS1+xZOCm\nVW3at836t23apNu2aTrHMuoFivVv5sm1UVfhZoHb+OoCDd2sqs36txW4dzet5LgCKS4e9RzcIAII\nIIAAAggggMAAArW1tfrfhcWSaTi3atWqAUZkdxACxxxzjMydO7fPUG+88Uaf9UxW0j0v69czderU\nTL7OMQgggAACCIQucPLJJ8tdd92V9rxWwU84l5aGjWNMgHBujD1wbjccgVg8Ik1NCRe2WYVbs04b\n2djkBW4Nut6gvdwscNu8mcAtnCcy/GexCreJGrDVTij0Kty0ms2mk7TKtmoN2Sx4s8Dt1X8+p7/1\n3C11dXXDf9FcAQIIIIAAAggggMCIEJg0aZIUFBRkfK2DnVox4xNwoBM48sgj+1U0Llq0SLq6uqSw\nsDBjpaVLl/Y79rOf/Wy/bWxAAAEEEEAgXwTe9y//4nspO/Zj9T2QHQiMcgHCuVH+gLm94AT0309u\nSsktVt2mwZoFblbh5vVws8DNC93Wb5wkLe0RPfGS4E7OSHkpUFGmU0pq4DZhvBe41dbo9JEasFkf\nN5tG0lW36bpVuxVl+LetBXMsCCCAAAIIIIAAAghkI1CqDYO7bUqODJfW1tYMj+SwoQhYAPelL31J\nbrnllj7DrFixQmzKr0yXN998s9+hJ5xwQr9tbEAAAQQQQCBfBMbX1PheCtNr+9KwY4wJZPjj4jGm\nwu2OGQEL3Jq3JMSmlHRTSW7p1vWYNDbEpEGnl3Q93Bq6ZJNWvW3NeEpJC+ZYRqqABW4Tx1vgZj3c\nijR8s5BNp5bUKjcL3MaN07DNVbwV6G+7jtS75LoRQAABBBBAAAEERpNANBoV6+GS6dLW1pbpoRw3\nRIHTTz+9Xzi3ePHirMK5l19+uc9VWK8562fHggACCCCAQL4KTJgwwffSVq5c6buPHQiMJQHCubH0\ntMfIvVrg1tTcrYFblwvamjVw8yrcYrJZ+7d5gZv2cNNKt22tmf926RjhG5W3WVleoIGbhm36Gq+v\niRa4aXVbjVa1Vev0km5KSQ3erMKNwG1U/hHgphBAAAEEEEAAgVEtUF5eLvF4PON77OzszPhYDhya\nwJw5c1yQ9uqrr/YM9Mgjj8inPvWpnvWdfbA+gvfdd1+fQ372s5/1WR/sSrpAN922wY7P9xBAAAEE\nxq5AzU4q59L1Uh27Utz5WBYgnBvLT38E3bv9O9NCNptKslmnkmzW4K3JerlpRdsmC9zclJJx2agV\nby1tmf/G6Agi4FJ3EKiqLJBaDddqtbrNqtqswq1GK97WrlkulRVdclTdoTLO+roRuO0gxyoCCCCA\nAAIIIIDAaBNob2/PqudcUaZzro82qGG6n6uuukpOPPHEnrPfeeed8tvf/jajZ7ZgwYI+U5Zaxdwp\np5zSM9ZQPqQLae3PEgsCCCCAAAJDFdjZLw1VVlYOdXi+j8CoECCcGxWPcWTehP4CoPZw06o27d9m\nfdwseLOqtkX/rJKtWwvl/kdXuT5umxoJ3EbmE87+qsdp4DZBK9pqJxS6wG2ChmvjJ1j/NnsVaNAW\n1cDNerhF9B+y6cevr/f6Z+y1VzT9AWxFAAEEEEAAAQQQQGCUCVjIUuD3H8hp7rWsrCzNVjblSsD6\nwx1++OHy4osvulNYAPbEE0/IcccdN+Ap77nnnj7HXH311X3Wh7JCODcUPb6LAAIIILAzgaamJt/d\nkyZN8t3HDgTGkgDh3Fh62iHcqwVursLNqtrs5QI3q3SLuyklG6yXW2OXbNTAra3dr8KtPHmlNCkP\n4ZHl/BTVFri5Hm6FXh83C9d0akkL2qyHm/Vvsz5u1eP8A7ecXyQnQAABBBBAAAEEEEBgBAvY1IeF\nWczPXko4F/rTvv3222XmzJk9VXBz584dMJzbvHmz/PrXv+651q997Wty/PHH96wP9UNra/9/c2/a\ntGmow/J9BBBAAAEEpKGhwVehdmKt7z52IDCWBAjnxtLTHuS9WjuC3sBNg7ZUDzetcmvQ6SUtcNvc\n0KXTS+4scBvkyflaXgpY4FZbG9UqN+vjpqGb9W7Tz+O16s0Ct2pbt8BNK9wikby8BS4KAQQQQAAB\nBBBAAIFRI5BtoDJp4sRRc+8j5Ub23XdfsekszzzzTHfJzz33nDzwwAP6b6Zq31u44oorJNUDzqaz\nvOGGG3yPHcyOZcuX9ftaS0uL2KuioqLfPjYggAACCCCQqUBjU6PvoRNr+e8QXxx2jCkBwrkx9bh7\nb3bHwK2pWfu5aS+3Bg3YGvWzF7hZtVtc2jr8Ktx6x+PTyBewwG3ixKgkurZqz7ZuOXDmbi5wswq3\nGp1e0sI2m1LSKtwI3Eb+8+YOEEAAAQQQQAABBEaPgP12ulXPZbpMmTIl00M5LkCBz33uc7Jw4UL5\n+c9/7kY97bTT5NZbb5U99tij31nmzZsn119/vds+efJkue+++6SkpKTfcYPdsGrVKrn5ppvTfv3S\nSy+VX/7yl2n3sREBBBBAAIFMBF5/7XXfww466CDffexAYCwJEM6Noqfd0WEVbl2yenWxtLQWSGvH\ne246yUYN3BqavMCtoTEuG/TV2UngNooeve+t1FQVaoVbkdTqNJLjtbKttkZDNn2vqS7WV4GrcNtl\nF6+HW2qQ+vp697Gujv+hTJnwjgACCCCAAAIIIIBAPgts3LhROuwfhBku6cKgDL/KYUMUuOaaa8TC\n0e985zsSj8fly1/+slx00UVilXE1NTWycuVK+c1vfiO/+MUv3Jls+/z58913hnLqdevWif05sR5A\nFhBa+LZmzZq0Q1577bWyfv16OfXUU2X69OnahmCczJgxI6u+hmkHZiMCCCCAwJgQ6O7ulocffjjt\nvVqP3MMOOyztPjYiMNYECOfy/Ilrn2jZ8l6Xhmxd+h/ROqWkfm7SajYvcOuSRg3aNjdo4KavWDwV\nuNUk72pdnt8dl5etQERL1mp20SklJ/QGbhO0qs16uFWP6w3cxo2z6SWzHZ3jEUAAAQQQQAABBBBA\nYCQKvPTSSz3THw50/dabjsq5gZRyu//CCy+U/fff34Vyr732mquks2o6+/deahpL+/y9739PLvnR\nJVJZWTnkCzr//PPl/vvvz3icu+66S+yVWpYuXSp77713apV3BBBAAAEEfAX+8Y9/9PRY3fGgk046\nSYqKiCR2dGF9bArw/wnD8NzbLHDTCrfm5rh7NW2JS5OGbI263qghnIVtDfraqNt6A7dhuFBOGYqA\n/aNr/LgC7d3mBW72Pl6njxyvvdx2DNzG7RLKJXESBBBAAAEEEEAAAQQQGEECixYtyvhqy8vLZc89\n98z4eA7MjcCcOXPEXldceYX8Y9E/XJ+3hsZGmTVzpquisykwJ02aFNjJbVpMFgQQQAABBMIQePbZ\nZ31Pc/zxn/Ddxw4ExpoA4VxAT7y1zQvctljQZlVu2r+tWSvcGpq0uk1Dt80NOrVkY5dsInALSDy/\nh7HAbYJOGznBppKcENX3QjetZI2+p6aUHKc93Kq1n9suVfl9L1wdAggggAACCCCAAAII5LfAyy+/\nnPEFdnV1pe1xlvEAHBiowEc+/BGxV11dXaDjMhgCCCCAAALDJXDDDTekPbVV7//bv3027T42IjAW\nBQjnfJ96RFzgpkFbswvcklVuLnCL6bSS2sPNerkRuPkKjrYdRQURrWTTKSWtwk0Dt/E6naSFbzal\nZI2GbLbPwrbFi/8uZaUJOfroj4w2Au4HAQQQQAABBBBAAAEE8kzAeolls7Rr74Rp06Zl8xWORQAB\nBBBAAAEEMhJ46KGHZNmyZWmP/c8f/tD1V027k40IjEGBMRfOtbaKN52kTSupoZtNLWl92xq10q2h\n0QvcVq+tlW0thRLvfmsM/pEYW7dsgVuNhmy1OoXkhPFW4Vbkqtxq9N2CtupxWummn8fpe1VlJCOc\nt1d0Z3QcByGAAAIIIIAAAggggAACQxWwnmXWu6WzszOjod73vvdldBwHIYAAAggggAAC2Qr89Ior\nfL/yjW98w3cfOxAYiwKjIpxrabEpJb3pJL3ATSvbtKLNppNs0OCtQavdGvW1WbfFuhIZPOfCDI7h\nkHwViBZ6gZtNJVlrgZvr4abTSup738CtSCor8vUuuC4EEEAAAQQQQAABBBBAYGCBRx99VFrtt1Az\nXI455pgMj+QwBBBAAAEEEEAgc4HbbrtNXvj739N+4corr5TJAfZSTXsSNiIwwgTyNpzblgrcNFRr\n1iq3LVu0sq3BKtw0dHNBW2/gFu/OJHAbYU+Gy+0jYIFbqm+bTSvpBW5FGrgValVbb4VbtfZxqyBw\n62PHCgIIIIAAAggggAACCIxegXnz5mV8c9br5aijjsr4eA5EAAEEEEAAAQQyEXj11Vfl7LPPTnvo\nscceKz/4wQ/S7mMjAmNZINRwbuu2hIZsOp2kVrRZ4NasU0nalJINTanATQM497lLp5QkcBvtfzCj\nRRGp1eq28W4qSS9ws2kl1294W6oqEvLhDx/oppysri6S8vLRrsH9IYAAAggggAACCCCAAALZCWze\nvFk2bNiQ8ZfK9R9Ws2fPzvh4DkQAAQQQQACBkS/Q3Z3bFjzNzc3yqU99Ki1UVVWV3HHnnRKJZNYu\nKO0gO2xMJPrnBum27fA1VhHIO4GchHPvriqWha+WyWNPrtFpJWNuOskmrXgjcMu75x/4BaUCN6ts\nm1BjU0oWuPcam1JSq9q8V6FUawhXXpb+9PX1r7kdM/cvSX8AWxFAAAEEEEAAAQQQQAABBOSBBx6Q\nbH4Y1dbWJvvuuy9yCCCAAAIIIDCGBJqamtLebTb/DZF2AN24atUqmTNnjixfvrzfIdFoVB577DHZ\ndfLkfvuGsiFdn9329vahDMl3ERgWgZyEc1veK5KXF5fqDW0blpvipMEKWOA20U0lWeiCtvE1Ba6X\nmwVsFrbVaGWbvY+rLvQN3IK9IkZDAAEEEEAAAQQQQAABBBC4+eabJR6PZwxx4oknZnwsByKAAAII\nIIDA6BDIpso+mztesmSJnHrqqZIu/Ntzzz1l/mPzZcY+M7IZMqNjCecyYuKgESCQk3CuorxrBNz6\n2L5EC9wmaeBmPdtqJ0RlvAZs1tPNq3CLuukkx1ngNo7AbWz/SeHuEUAAAQQQQAABBBBAIB8FNm7c\nKIsWLcr40uy3188444yMj+dABBBAAAEEEBj5AvZLPOnCs6Hc2ZYtW8R+Qejuu+9OO0xdXZ389a9/\n1Z87j0+7f6gbW1tb+w2xadOmftvYgEC+C+QmnKvI7Ty2+Y46XNdXXKyBm1azFRS2ac+2btnv/ZNc\n6DZew7fqXXQqSatw05cFbmVW2MiCAAIIIIAAAggggAACCCAwIgVuu+026erK/Bdjbeqq4447bkTe\nKxeNAAIIIIAAAoMTePbZZ32/mO20litXrnRTan//+9+XdNNIWm/byy+/XL75zW+K/VJQrpZly5f1\nG7qlpUXsVVFR0W8fGxDIV4EchXP9mzLmK0C+X5cFbpPdlJJW5eZVt43XXm41GsLVaMhWXa3Bm04n\nOU7Dt9Jk4FZfX+9uq67ugHy/Pa4PAQQQQAABBBBAAAEEEEBgEALXXHONdHdn/ouxM2fOlIkTJw7i\nTHwFAQQQQAABBEaigFXZX3zxxb6X/v73v18+8IEPyOGHHy4HHXSQTJ06VYs6xunPmqulo6NDNm/e\nLDbGsmXLZN68efLGG2+kHauqqsqFcuede66U5zgcsx53N990c9rruPTSS+WXv/xl2n1sRCAfBXIS\nzpWVZv7be/mIkutrKiuJSK2Ga7UTLHCL6nSSBWKBm1W1jdegrXpc1PVvq9bwraQk11fD+AgggAAC\nCCCAAAIIIIAAAiNJ4JFHHpF0Uzr53UNRUZGcf/75frvZjgACCCCAAAKjQGDNmjUSi8XknXfekVdf\nfVWuuuoqsW07WxYsWCD2ynaxCjWbvvKLX/yinHLKKVJWVpbtEBkdv27dOhcQ2tScCxcudOGb3z1d\ne+21sn79etcHb/r06S5onDFjhhQUFGR0Lg5CIGyBnIRzhYUJqShNSEt7JOz7GbbzlZVq4Kbh2sRa\nL3AbX12goZsFbta/rcC9u2klxxVIcfGwXSYnRgABBBBAAAEEEEAAAQQQGOECP/jBD9JOJ+V3WzZt\n1emnn+63m+0IIIAAAgggMAoEPvjBDw4YxmV6m4WFha6Sbspuu8nkSZOktrZWJk6aKAcfdLAcccQR\n8u6777qhLKDL5WK/XHT//fdnfIq77rpL7JVali5dKnvvvXdqlXcE8kogJ+Gc3WFVRZeGczkbPhTE\nirKITNBwrXZCoUzQvm0TtKrNTSfpAjevh9u4cdrHjcAtlOfBSRBAAAEEEEAAAQQQQACBsS5gv91u\nP2jKZrFecxMmTMjmKxyLAAIIIIAAAiNMYPXq1aFdcSqcy/UJ77vvvlyfgvERGDaBnKVnVZXdsr5h\n2O7L98QWuNVqRZtNKTnBXjaNpE0naVVurodbkc6f+5KUl3XLscd+2HccdiCAAAIIIIAAAggggAAC\nCCAQtsBXv/rVrKrmbNqpCy+8MOzL5HwIIIAAAggggAACCCCwE4HIU089ldjJ/kHv+utD1bLw9XAa\nppVEE7KLhoGV5fqq6Jaqqi6pLEtIpW6rKO+S8nLvswVu0WjmDbMHffN8EQEEEEAAAQQQQAABBBBA\nAIGABV566SX5/ve/L/F4POORS0tLxXrU2fRULAgggAACCCCAAAL5ITD7soulfHXm/f4WX3STNO67\nf35cPFcRiEDuKucq7B8LfcO5SLIFXUJSH/STfky3XqxXVlnWJRUatlWW6zSZlXEXvI3T4M2q8so1\niLN99h4tInAL5E8DgyCAAAIIIIAAAggggAACCOSlQCwek0svvTSrYK6goEDOO+88grm8fKJcFAII\nIIAAAggggMBYFijKRdPG+vp6V622I2xlRYFs3WZBWm+xnvalTrveGRNpjBVI43sFyWEGlyNO0qkr\nP37ULlJcHJGS0gIpKYlIcbRA1+2zvkdFq+lsXffbur6//PKLuk3k6KP/VfdH3Gf9N82IWczfllw8\n2zAQuP4wlP3Pgb+/TRh78A9D2f8c+PvbhLEH/zCU/c+Bv79NGHvwD0PZ/xz4+9uEsQf/zJRvuOEG\n6ezszOzg5FFWLXfVVVfpv8/1N159Fvx9YELajH9I0D6nwd8HJqTN+IcE7XMa/H1gQtqMf0jQPqfJ\nC//Ju4ms9rnANJtnzZ4tcqi+dMmL609zjZlu4vo9qcElXhko7zujXY772H5SU6293GqKZNwuEbHA\n7fjT38rg28EdsrEhLnf+pTHLAb1G2b+8eUmW3/MOr60plDlHWyCoAaAGglEN+EotFCwudNss+CvR\nENDt12OiFgzqK6qfbZu3X/S3Gwd1er6EAAIIIIAAAggggAACCCAwigTWrl0rF198scRi+o/qDBcL\n5i75P5fsNJjLcCgOQwABBBBAAAEEEEAAgYAFchbOja/pksMO7fvbeZ0tAV99ng63ualL/vDXplCv\nrqaqUD7xMS8QXLW6UqKFCdmytTkZCFoQ6AWA9m4BoKsedIGhFx66cNBVEYZ62ZwMAQQQQAABBBBA\nAAEEEEBgAIHTTz89q2DOhrMpLS/8jwsHGJndCCCAAAIIIIAAAgggMBwCOQvn0t1MZye94dK5BLGt\naWuX3H1fKhCscEPOf3pDEEP7jjGuskDmfHQXKU1W/BXrtKAl2mbQC/8Kk1OIJtftmOQ0om6/+44G\nhclAMNWP0Pdk7EAAAQQQQAABBBBAAAEExqDArbfeqq0XXs7qzqM6HcvcuXOlqqoqq+9xMAIIIIAA\nAggggAACCIQjEGo4FyOcC+ephnSWLdo/cN4DzTk422RvzGv6T4FaURaR4z82LhkIen0EvapAb0pQ\n6xsY1T/VXgDY20fQKgXd9KFaLRgtsupB+03SHFw6QyKAAAIIIIAAAggggAACAQm8/vrr8vWvfz3r\nqjkL5y666KKAroJhEEAAAQQQQAABBBBAIGiBUMO5zs5E0NfPeGNMoKUtIX9+KBeBoD9kWakGgloh\nWGaVf6kKQJ0eNNVHMKrBn4V9qT6Cq1YXS1FRQtaujbs+gr376SPor8weBBBAAAEEEEAAAQQQ2F6g\ns7NT5syZk3UwV6z/OPnf//1fnclEpzVhQQABBBBAAAEEEEAAgbwUIJzLy8fCReWTQFt7Qv7yyJYs\nLqnGHXvT7cuz+E7fQ62676TjtELQ+gJGkxWANm2ohoJRDQhLktOCer0Ck/stJLTKQD3eQkT6CPY1\nZQ0BBBBAAAEEEEAAgZEkcNLJJ+kv/K3N+pL3228/sR51LAgggAACCCCAAAIIIJC/AqGGcx1Ma5m/\nfxK4srwSiMUT8tdHw60QjBZG5IRjx8mGjVUSLUzIu6sbXJ9A+gjm1R8NLgYBBBBAAAEEEEBgDAhc\neuml8uTfnpTu7uz6ttt0lvPmzRsDQtwiAggggAACCCCAAAIjWyDUcK6TcG5k/2nh6ke1QKwrIffP\nt0Cw3N3n0y9tDuV+T/74OFflV5qqBrTpQ7UC0KsOTE4lGu3tI+iqAl1FoddH0E016vbTRzCUB8ZJ\nEEAAAQQQQAABBHIq8Lvf/U6uuuqqrKeztGDukv9zicyYMSOn18fgCCCAAAIIIIAAAgggMHSBcMO5\n2NAvmBEQQGB0CTz4WDZThmZy75O9g655y/fg/fYukf1mlLo+gm6aUNdP0OsjGI0Wer0Fe/oI2jSh\nts0Cw4gUuR6DqT6D9BH0RWYHAggggAACCCCAQNYCDz/8sFxwwQVZB3N2oj322EN+9MMfZX1OvoAA\nAggggAACCCCAAALhC4QbznUmwr9DzogAAgjsIPDGsg6xV5jLPu8rkVn7lrmAz0K+ElchaCFfqkeg\n93nJ0hIp0r+ZJ03u0H6DqerA1DHWU1DcK8xr51wIIIAAAggggAACuRd47LHH5FOf+tSggjmrmnv4\nkYelsLAw9xfKGRBAAAEEEEAAAQQQQGDIAqGGc4fPrpAffHuK2PSWHR0J6ezo9j5raNeu69aTrkM/\n274O3deuL7fervvdd7qlVT9bPy4WBBBAYCQJLH27Q+w18FLtDvmfP60c+NABjpgysUgOP6RCSku1\nKtBNG+qFfbbuTQeaqghMTRuq+6MWHCb363csDLQw0d4jkQFOyG4EEEAAAQQQQACBQQlYn7izzjpr\nUMFccXGx/OY3v5EZ+zCd5aDw+RICCCCAAAIIIIAAAsMgEGo4V14m8onjdgn1NhubEvLSy9s0BOxy\nQV+nC/+8UNAL/yQZAFoQaIFgQjZt2irxLp2+rqhE2pPBYJtuZ0EAAQRGksC6TXF5IPBpQ3cuMGl8\nrew+JSb/fH1DMhBMVQnatKDJHoL27voEblc5SB/BncOyFwEEEEAAAQRGrcCPf/xj+clPfjKo+7NK\nuRNrMkkMAABAAElEQVRPOEHOPffcQX2fLyGAAAIIIIAAAggggMDwCIQazg3HLY6vicjHj63K6tT1\n9fXu+Lq6uqy+lzq4qTkhL7+yTav/uqQzZhWCXiWgVQN26LqrBrRqwTYNCW09WSVoQaCFh1YlaMFh\nSxuBYMqUdwQQGBkCGxsLxV6vvNYc2gVPn1IsB8y0KUNFSl3/wAJv2lCbPtRNG9rbRzDVOzDVR9DW\no9v1EYzFC6SokL97Q3t4nAgBBBBAAIExLmAVbz/72c8GrTBt2jS56+67B/19vogAAggggAACCCCA\nAALDIzDqw7nhYK2pjsixH80uEBzqdW7dlpAFL7Zo2Nclr766TGKdItOn76nTomjQZ2GfBn8WCvaE\nge1elaBb189tLiC0oFCnDe3iB9NDfR58HwEEwhN4d12n2CuYZaI3zM/f2ulwu0+OyoGzylxfwFKt\n+kv1EYxqVWBqWlCrFHTThLqA0KsgjBZptaCbNjQ1tai900dwp9jsRAABBBBAYJQKnHPOOXLnnXcO\naipLIyktLZW//e1v7n2UEnFbCCCAAAIIIIAAAgiMWgHCuVHyaKsqI/KxYyrd3VSUtrj3uroJOb27\nFj3Ngpe0QlDDv1QfwZh+dhWCVgGoQV+nhYOuctCrEExNHdqRnC7U+g626Gf6COb0UTE4AggELLB6\nQ0zsFeZiPQQPnFnugsBUH0FX9adhX6qP4NIl5RoIJqS0rMX1FfSqAi0Y9MJAb50+gmE+N86FAAII\nIIDAjgKbN2+WU045RV588cVBB3NRbQhswdyee+654/CsI4AAAggggAACCCCAwAgQIJwbAQ8pXy+x\nokLkmKO8QDDIa9zZtKKtbRoIWoWgCwQz7yPoAkMLCZNVhFZNSB/BIJ8aYyGAQK4FrIfguiffG+A0\nXtX2PQ+uHuC4zHZPmlAkBx/gBYKuOjDqVQCW2PShFvi59eS0odpH0FUK9kwtqlOGFukxyXXrM6g/\nRxRtjcOCAAIIIIDAmBVYsGCBHHXUUTqzSfugDSyYu/fee+WII44Y9Bh8EQEEEEAAAQQQQAABBIZX\ngHBueP05e5YC5WUiR9dpKhji0tEh8kJPIKiVgRYMumpAqxj0egSm+ghaReCatQ0Sj0ekrLxSqwjF\n6ylooaBWCbbqv8ETCaYNDfHxcSoEEBiCwMaGuDw2YCA4hBP0++pkqarolvq/r/OmCg2gj6CFgkX8\n104/aTYggAACCIQr0N3dLXPnzpWrrrpq0NVydsUWzF133XVy8sknh3sDnA0BBBBAAAEEEEAAAQQC\nFeDHVYFyMthoFCgpEan7cOaBYH39MsdQVzdr0Byd2j7LCwRtatAuVylofQNj1jfQgj576brrGajb\nrDKwXXsH9oaEXh/BjpiGh230ERz0g+CLCCAQusDWlgJ5vH6gCsFgL2v8uMLtKgQLJNVHsFj7Blrl\nX2pa0OKormsPQasitHe337a5aUMjsnVbkVYGdusPXekjGOwTYjQEEEBgZAssW7ZMTjjhBFm5cuWQ\ngjlTuPLKK+WCCy4Y2SBcPQIIIIAAAggggAACCAjhHH8IEMhDgWKtFvnIkZkHgkHcQjzuBYILF76u\noV9E9t57b1cZaH0BU30EvfDPqgAtEEwGhRYM2roLC72QkD6CQTwRxkAAgbAEGrd0yf97ZmsAp/N6\nvV71q7cGHKu6skADwQoX/FnYZ30DS1z454V9tm49AkuKbdpQCwQt8LNwMBkQaiDYu+71EbQKwYKC\nAU/NAQgggAACIQl0dXXJj7Va7pqrrx5yKFegf8HPmzdPTjvttJCuntMggAACCCCAAAIIIIBALgUI\n53Kpy9gIjCAB+6Hukf9aIV0xbeynS11ddc6vXmf3kb8vsB6C4ioCY1olaEGfTRdqgWBMKwTbLBzU\n/RYMWlBo04N64WByWlFb12CQPoI5f1ycAAEEAhRo3tYtTz4fRCCY+UWN00DwoJnlUlpmoZ/1DNQq\nQQ39rIegvVasrNA+gfp3bXyrCwGth6BNC+p6DFooaOv2vWQfQeshaPvpI5j5M+BIBBAYOwKPPPKI\nfOlLX5Lm5mad8l5/C24Ii01lec011xDMDcGQryKAAAIIIIAAAgggkG8ChHP59kS4HgTGkIBVeHzo\niGArBOvr651gXV1dWklr+feCBYI67ZxNEWqvgfoI2n43dagFhfQRTOvKRgQQyH+BLRoI1r+wbScX\nWun2PfTE2p0ck92uyvICOWRWuZSUWrgnbsrQ0mS4Z2GfbfemCS3USkBdT04Rattc5aA71vvcs1/H\nsV8oYUEAAQTyUeDVV1+VL3/ly/L6a6/rL5Bpw+khLhbM/f73v5cvfOELQxyJryOAAAIIIIAAAggg\ngEA+CfCjjXx6GlwLAgjkXCASETnig8EGgplc9IIXvUDQTQea7CNoQZ9VA6b6CNr62+9s0N+ujkh1\ndY2bOtQqBd10otpTsF2rB12/QfoIZkLOMQggkAcC21q75ekFOwsEg7zIyW6wil8tkYNn9U4ZWqJV\nf4PtI5jqM2jTTVulIAsCCCDgJ7B8+XL56RU/laeefEr/206nfQhgsWDuwQcflDlz5gQwGkMggAAC\nCCCAAAIIIIBAPgkQzuXT0+BaEEBg1Ap84PDMAsH6eq9XVV3dAUO2eOnlVm86UJsmVKv/bJrQ1PSg\nVgnYGdOwz/oF6vbtpxNNTR3amdqnwSB9BIf8OBgAAQRCEmjRX2B49sWwAkHvpsq04u9gqxDUINCq\n/6zyz95LXY9ArRq0bfqynoGpPoJWSej1EPT6CG7YGNWKwIQ0NCZ0u00ZahWD9BEM6Y8Np0Fg0AJP\nP/20XHDBBfLGG2+I9ZgLaqmoqJAXXnhBZs6cGdSQjIMAAggggAACCCCAAAJ5JEA4l0cPg0tBAAEE\nghSYfVh5kMNlNNatt70gsVhE3r/vTH23qsDePoKpKsFUH0ELBzusIlCDQi8ctGlDLTDUdesjqN9v\n03cWBBBAIN8F2vTvrudfbhniZY5337/hliUZjRMtisihB1ggqCGg9hF004RalWCyj6DXGzAVFNq0\noV4I2NNHMLWu37djvf30EcwIn4PGvEBLS4v8+c9/lssvv1zWrFkTyPSVKVSrljvgwAPkkUcelcmT\nJqU2844AAggggAACCCCAAAKjTIBwbpQ9UG4HAQQQGE6BvffSuTl1qavLrFIwiGvdsLFL3n67XWJx\ncb0Be/oIWsWghn+dyelAvXfb5lUL2nFtuj/VR7BDw8Ct2+LSGS+QhDUnZEEAAQTyWCAWT8gLC4ca\nCGZ3g9HCiBxyQJmrELRAr0SDQJsy1PoIrl5dKUVa6bepsckFhtFooVYApioGNQDUSkBXOUgfwezQ\nOTqvBJ555hn5n//5H/cq0ObJsZg2MQ5wKday2a997Wty/fXXi43PggACCCCAAAIIIIAAAqNXgHBu\n9D5b7gwBBBAYEwKTJxXqb5YHEwbW19c7s7q6up3abdrcrYFgm04NaoFgQt+7XO/AdH0EbdpQ1zfQ\n+gcmKwPpI7hTXnYigECeCsS6ErJgUavP1Xl/D/+/5zb67B/c5qICmzK0zAV9paUWCFo1oFUBipS5\noE8/u3fRqUM1EExVBGpQWJLar9uiqYrC5H4tTnJjDO6q+NZYEbDw7dlnn5X77rtPbrzxRv0zUyxW\nNWdLkFNY2nhWMfenP/1JPvnJT9oqCwIIIIAAAggggAACCIxyAcK5Uf6AuT0EEEAAgeAFJtYWyMTa\nYALBTK/O+lBZIOj6Bmo1oFUC2rShPX0EdX3JslUS18q/iRMn6XavktD6C9pUoV4g6FUNtmvFYGty\njEzPz3EIIIDAcAjEuxPy0j/9AsEgr2iyN9g1Xu/XQzUQtHBvKH0ErXKwt68gfQSDfFq5HGvx4sUu\nkLv//vtl/vz5UlZW1hPIBV0pZ/dhgd/s2bPl3nvvlV133TWXt8bYCCCAAAIIIIAAAgggkEcChHN5\n9DC4FAQQQAABBPwEJoyPyITxO+8jWF//uvt6Xd1BfsNktb2pOSErVniBoM3cZVOBpvoIxpI9A930\noBr+uSpCDfxSfQTdNKI7VAtav0H6CGb1CDgYAQSGSeCVxW2hn3nqpKjsPrXYqw7crkrQ+gi6KUF1\nm5sq1IV+Nm1obx/Ble+USFFhQlaujLljom6fV2FofQYLC0O/nbw/YXt7uyxfvlx/8eVteebZZ+SJ\nx5+QhQsXSmlpqbS1tUl3d7e7h1SlXC5uyKrlrr32WrngggtyMTxjIoAAAggggAACCCCAQB4LEM7l\n8cPh0hBAAAEEEBhOgZrqiBx26M4DwSCvz6YV3dZSoJUDh2kfn2TgZ8GfhYK6btOCpvoIWo9AN02o\nCwRtalFb7+0jaN9p15f1FWxtF/oIBvmgGAsBBHIisGZjTOw1uKXafe2/71qR1denTCySaRoIpvoB\npvoIelOHJqcRtVDQ9Qzcro+gW+/tIxhN9hS09xLtQxjVf2Xa1KFhLxaqWeWbVbjZy9abmppky5Zm\nWbduvbzxxhuybNky/cWTFbJ161apqKhwx1lQl1pyGcalzmEB4Ic+9CG54447ZLfddktt5h0BBBBA\nAAEEEEAAAQTGkADh3Bh62NwqAggggAAC+S5QWdEthx5SFuplbt1mFYLtLtxL9RGMxS3s02lDO7Ri\nUEM/Cwut8s/WrY9gp1YO2vSgqT6Ctt7Y2CrxrgLplkLdl5BYPBHqfXAyBBBAIFuBdZviYq8wl11r\ni2TqFK0Q1BAv1Udw06ZqKSrqkuVvb3JBoVX+lZT49xF0lYGpvoKup6AGhbr+iU+cJC+99HetFPRK\nBa0vXGdnp075nP4eLaALc7FKucrKSrn99tvlpJNOCvPUnAsBBBBAAAEEEEAAAQTyTIBwLs8eCJeD\nAAIIIIAAAuEKVFVG5KADhx4IWuWfLXV1dQPeQEuLyHKdMtSm/9xZH0FXAWgVgxoI0kdwQFYOQACB\nESCwfnNc7NV30SROl78vbOy7Ocu1SNWNcvgx/b8Ui70nHW3rpburQ7q6Ot17d7d97n0lkuvxeLt0\nxTt6jonF2zTca5NEd5se3y4J/dzdZX0QW/Tdwj39rQ39tYydLQUFBS4wvOKKK+Q//uM/tKpwGMoK\nd3aB7EMAAQQQQAABBBBAAIHQBQjnQifnhAgggAACCCAw1gV0JjU58IChB4LZOLZqC63ly9uT04Ra\nD0GdDtSqADu1QlA/v/7a21r5JzJ1t911SlCvQtC221Si7l0rB9td9aAXKNpn+ghm8wQ4FgEEhksg\nGt1FA7FdQj19PL5VOls3amzXKdOmVMusWXtKpLhUbr6lSTLpI+imGk31FdQ+g/QRDPXxcTIEEEAA\nAQQQQAABBHIuQDiXc2JOgAACCCCAAAIIDL9AuWaBB8wq9b2Q2ppX3b66ukm+x2S7w9o4LdNAMKbT\nfnq9AzX001DPegTaeqqPoO23HoGpPoKdqWpBCwA1HNRZ6dz3Un0EbXrReDfThmb7PDgeAQTCEygq\nqpKiXarcCZu0WvrpF6zCzl65W2qqCmX3qVEpLbFpQZOvYp0eVEO+Up1G1Av89N32aeBXXOz1EVzy\nVplOK9ot1TVt7phinSq0OHm86yNo4aAW+1Hwl7tnx8gIIIAAAggggAACY0+AcG7sPXPuGAEEEEAA\nAQQQCEWgVLPAWTP9A8EgLyI1regRR9TplKEdyfDPgsBklaAGgqk+gjFXMdjbR9DCQqsOTPUR9KYR\n1fU2rRZMVhi20kcwyMfFWAggkAOBpq1d0vSmlkBnvXhVhXf85d2sv1ldWaAV18XJQNDrI1gcjbhA\n0PoGlmkQGHVhX28fwWiRffb6BFqImNpvfQN71i081PViDRdZEEAAAQQQQAABBBAYjQKEc6PxqXJP\nCCCAAAIIIIDAGBWwH+Tut6/XvyosgpgGgKlA0E0XqpWAVgXoTR3apQFh7/SgrmJQw8F2Vx2YrCTU\n9XUbtkg8ptUqxWWusrBNg8FWFwxSIRjWc+Q8CCCQvUDztm5pXqJl0iEuVRoI7r5rVMpKverA5ubx\nUlTYLS8tWu9CvxILAzXcK3H7LeSzde9YC/xcGGj7NRi042x/1K3bZ69KUNsEsiCAAAIIIIAAAggg\nkFMBwrmc8jI4AggggAACCCCAwGgXsKne9n3/0ALB+vq3HVNdXV1GXF1aHLN8eadW/HlThPZUCLp1\nr4+ghYPWM9ACQfoIZsTKQQggMAIEtmog+May7acI1b+EdXl1yZacXX1luQaCU7wpQy3Qc1OHWvjn\nwj2vQtAFgLrNpgL1phG1aUNt3aYW1eDPAkJbtyBQX6k+gm3tBTqtKL+IkbOHx8AIIIAAAggggECe\nChDO5emD4bIQQAABBBBAAAEEEPATKCwUmTEj3PneurutQrAzWRHYNxRc9I83Jd4VkT33eJ9Yz0Av\nEEz2FbSQcLs+gq5q0Na1p6D1EbT1dp02lD6Cfk+b7QggMNwC21q75c3l2weCQV7RRDfY5de+1WfQ\nirKITJ1S7IK8bPsIuspBFwh6oSB9BPvQsoIAAggggAACCOSFAOFcXjwGLgIBBBBAAAEEEEAAgfwW\nsGne9tk7fSAYLWx1F19XNz7Qm0hoMcmKFTE31aebElQDvZ4qwWQfwc5O7Sto2zXoa3PvOl2ofk71\nEbQKwnbd7tZ1utAON+2oThtKH8FAnxWDIYBAsAItbQlZoj1Uw1zKtBdg30DQm/7TKv2s6s/6CJbq\nu1UBFuu0oLa+fHm5RPUnSwVFLck+gb37vb6ByXULC920oiKRSJh3xbkQQAABBBBAAIH8FCCcy8/n\nwlUhgAACCCCAAAIIIDDmBewHuHvt5U1Zl0uM+vp6N3xqWtG3V8ZcZZ8FftYz0E0R6ioCExKLedOG\n2pShFvjFNCS08C/VR9CCQgsH25L7rZLQrdNHMJePkLERQCAAgTb9+2rZymwDwSp35nsfXT2oK7Aq\nv90na4WgBn3WRzA1/WdJqU4Pmqz+8wJBDQjdfi8odMdpQGjBoAsLLUBM00cwWmTVgxoe0kdwUM+H\nLyGAAAIIIIBA7gQI53Jny8gIIIAAAggggAACCCAwAgXet2fuA8EdWVZqIGghYKerCOytELTwr6Oj\nt4+gC/8sDNSKQddzUMPDd9/dLPF4RCord3HbbJpQVymYDAqtAocFAQQQyEcB+3tvxapsA8Gh3YkF\ndrvvGtUwLyKtbRMkWtgtjz+1xgv/tGdgiYZ5ZS7o8yoEvT6DFvIVag9BCxB7+wj2BIMaDlofwd79\nIjYFNQsCCCCAAAIIIOAnQDjnJ8N2BBBAAAEEEEAAAQQQQCAkgT2HEAjW1y91V1lXNyurq33n3WQg\naKGgVQm6SkGdJlTXOzq73Lr1C6SPYFasHIwAAnkuEIsn5O3V+hsObvF+LLZ81bacXrUFgrtNiup0\noFoR6F42LagFfd66TRtq24stHLTt+rLpRC3ws32pPoLR1H4LCfX4xiYLDEVadXZpe7cXCwIIIIAA\nAgiMDAHCuZHxnLhKBBBAAAEEEEAAAQQQQCBQgT2mh/9T3FWr417YpxWBXiCYkJdfec1V/u29z4zt\nAkFvv1cB6E0Nap8tLOxw04h604p2aJVgu4aKto0+goH+8WAwBBAIUMACwXfWpgLBAAeWWjfYz298\nq9+g0cKI7DqxyFUEWtBXaoGfBnoW/u2sj6CrBowWumP79A200FD/Z8OrFvQCQ/oI9mNnAwIIIIAA\nAhkLEM5lTMWBCCCAAAIIIIAAAggggAACQxGYtnv/f4K2tba5IevqdhnK0L7fXbNWA0EX7HW7HoEW\n8nnr1jPQPvf2EfR6DPb2EeyM6fShrn+g10cw9b1UH8EO/b716WJBAAEE8k0g1pWQVev1L7EQl6KC\niEyu1UDQBYGSDAS96j/rI+iFgtZP0Av3Vq2qlMKihGxr3dIb+vUEgDaVqBcoFmulYFQDRi84tICQ\nPoIhPlZOhQACCCCQI4H+/zLK0YkYFgEEEEAAAQQQQAABBBBAAIGwBabultt/9tbX17tbqqur67m1\nbS0imzfptKEu/PMq+yzo88LA3j6CsWRo6KoBtajG9RzUbe1tXmWgVRe2W6Vgso+ghYK2Th/BHmo+\nIIBAHgnEuxOyZmM2gWCFu/r/76n1g76LSEQrBGsLXRDopv/UYDA1dWhqetBUH0E3TahVACanE41q\nhaBXCZjqI+j1FkxNI1rkegza8bafPoKDfkh8EQEEEEAgrUBu/5WS9pRsRAABBBBAAAEEEEAAAQQQ\nQGD0ClTqz5srK8KdNtR6Tm1uiLmpP63Cz4K9mE4f2mGhn4WAWiFo6xb0pfoIduj68hXrdXuBjB8/\nwYWD7Vop2O6mD/XGaHPTiGpgqN+zH7yzIIAAAvkkkEgkZN2meOiXtKtWCMbjE6WosFv+9MA7yXDQ\nq/SzcNB6BaYqBVN9BC30c9WAycpB6zGYChR7qwNTx2jPQf2fEfoIhv5oOSECCCAQmkDkqaee4r+u\nQ+PmRAgggAACCCCAAAIIIIAAAgiMDoH29gJ5b2uh6xkY15+Nx+MRfel7V4H7bNWCtq1LX526vUtf\nMd0Xi9lxui253z7HuvSlQaJ9N2bH6TFuf3dkdGBxFwgggMAQBaoquqVYpwG1wK5I34sKdF0r+oq0\n9MLWo25ft0QLdZ8Gf7Y/6vbbvtQx3VJY6IV+hbq/KJoazyoD9Xg9rlC/by8WBBDIrcDsyy6W8tUL\nMj7J4otuksZ998/4eA7MfwEq5/L/GXGFCCCAAAIIIIAAAggggAACCOSdQGlpt9grzKWjwwJBL/zz\nwkAN/yzYs6DPhYI2Pah9tm0WDFog6IWBViEYsyDQhYLJoNAFgrpfj+ns1H3JIDHMe+JcCCCAQCYC\nW1sKMjks0GPKNNwr07/ne8I/CwVdCKjhn4V5LtzzthVbAGjBXvKY4mSImAoGe8I//Y4dZyGjbSvS\nsLDIjtXPLAgggMBYEijafl78oG483Zz7QY0dxjhcfxjK/ufA398mjD34h6Hsfw78/W3C2IN/GMr+\n58Df3yaMPfiHoex/Dvz9bcLYg38Yyv7nwN/fJow9+A+s3KkB3ubNcQ3udHpQnfLTpgy1PoGuh6AG\nfd56l4aC3pShts+9dL3DTSnq9RG0/a6/oE0VatOL6r73Wjr1XaRDg0QWBBBAIN8E2vTvp7bOcEPB\nirKI7FJZ6E0NalOEJvsIuqlCS1PThYqs37DOVQnuu++e3vSgbtrQ3j6Cqd6BxcW2zZtCNLpdH0Ev\nPBw+cf73d/js7cx54T95N5HVmTvMmj1b5FB95cv1Z37p/Y7MC/9+V5X5hqCun8q5zM05EgEEEEAA\nAQQQQAABBBBAAAEExpiATRu32265+fGJ3w93rLqvoVEDPxcEekGe9Qx06/rDctdXMObtT/URdD0F\n9Xhbt1CwJwxM9hF06/o51UfQgsZYF1PXjbE/ztwuAnkv0NKWkJY2LXsecCl3Rzy1YNOARw50QFlp\nRKoqCqXUegXq556+gRoMlmhAaOvWF9Db7gWGUTvWtrv+ggVaCWi9Br0Q0ALFaFGBFLv93jFej0H6\nCA70LNiPwFgSyM1/XY4lQe4VAQQQQAABBBBAAAEEEEAAAQQQCFDApnvbdbLO9Sb2CmexfoFeIOhV\nAMbiXgWgBYEW9lmlYIeGf6nAMKaf33zrHddHcPKkKRoGajCogZ+Ffq5y0IJC+6xhYbt9TysGW/Sz\nVSCyIIAAAvkk0KZ/N7W1ZxIIBnfV0cLJbmro392+QgNBDfI03LPwr9SqAzXcs3UL+0otLNQA0FX9\nuf2psM+rCCzRXyCxgNCrCrTg0NvvrYsbw/43JUKBdnAPj5EQCEiAcC4gSIZBAAEEEEAAAQQQQAAB\nBBBAAAEERqpAkf6EaPKk7MLA+vrX3O3W1R08qNvu6rJA0KYItdDPqxDs7OzyKv/cujdt6PbbLPiz\ngLDdpg+1KUEtPNSKQAsOvXDQQkXdZuvJYLBN11kQQACBfBLQ4meJaR/BrS1aKh3SEi2yKUO1AlDD\nPJvq0wV/rjowGQ6WaTCo293LwsHUPgv83Hpy2lAN+5YtL3H9B3dd2ukCQRu72EJFG1v3ez0FQ7ox\nToPACBUgnBuhD47LRgABBBBAAAEEEEAAAQQQQAABBEayQKFmgZMmWj+r8HpadXeLNDZpIKih3tPP\nLpAu7fd3wIEHJ8NBDf6SfQS9KUSt4s+rBLTw0CoAU30ErSLQAsBUH8GODg0KrZ+gCwm7pbVdJJEg\nFBzJfz65dgRGm4BVLjc0ayoo9hrqUu0GuPWet3c6kIV2lRr6WRDo+gZq0OfXR7A0Ge65ysFkSOj1\nDLTQzyoEveAwX/sI7hSCnQikESCcS4PCJgQQQAABBBBAAAEEEEAAAQQQQACB0SdQoDlg7QQvDNx1\nklexMmtmaU5v1DK6pmarDPSq/ly/P50mtGc9TR9BCw9dhaCFfRoEup6BViVoAaCrFNQfsje2aNWh\nTldXUCwdOl679uqij2BOHyWDI4BAlgIWCDZt1TBwa5ZfHMLh0cKIlJclQ0Ct5LM+gm6K0GQloE39\n2dhQ7Sr/Xn9ro9vnKv7c/tS0oRYIpsLA7ba5aUOtktDbb6GhVQmyIDAYAcK5wajxHQQQQAABBBBA\nAAEEEEAAAQQQQAABBDIQsF5P42us4VOwfQTr6+vd2evq6tJeRW8gqKGdhX06fag3LagX9nn9BL3A\n0E0ralOFuulCrSrQqwxM9RF0QaEFg8k+gq7HoIaE9BFMS89GBBAYRgH7JYUt2/S3IrZpqbTvUuL2\nvPRqk+8R2ewoKkhNExqRsp4KQN2mYZ71EbQwz0LBVB/BEl3/9DvtUpPFSbY1dUlC78vGYBkdAoRz\no+M5chcIIIAAAggggAACCCCAAAIIIIAAAgj0CNRUpwLBnk05/9C8xesTGLcg0FX/WQVgl768wK/T\nVQlan8Eu+efi5foekenTpmt42C1tLhj0+gh2uiAwGQbqZzetqG2jj2DOnyEnQACB7AXi3QnZ1mov\n+25m04Z+ZGOb1GQxq/NVl74jz9R404le/O9FUlUZz/5C+UZeCRDO5dXj4GIQQAABBBBAAAEEEEAA\nAQQQQAABBBAYmQLV4+y67afNA//Euaqixd1kXV2tex/s/3lPp8uzyr7e6kALBL1Az73TR3CwtHwP\nAQTyVKCwcGdVgXl60VxWPwHCuX4kbEAAAQQQQAABBBBAAAEEEEAAAQQQQACBkSCwS5VdZSoMtKlD\nc79s01zxySefk7gWrhx66OE6ZagGhK7CLzlNqK5bb8FOrRC0gLCjo3d/e3K9w96tolC/Z8e227ut\n63Sh7fpux9FHMPfPkjMgMBIFisL5q24k0oyoayacG1GPi4tFAAEEEEAAAQQQQAABBBBAAAEEEEAA\ngeEUqKwQ2aXKm1Ju+rRoKJfSqtPleVOF2rSgGvy58M+CPW89NY2ohX42Tahbd8GfBoZ6vOsXaIGf\nfU/Dv7VrGyXWZf2wKt1Y9r12+giG8iw5CQJDFSgq0p56LCNegHBuxD9CbgABBBBAAAEEEEAAAQQQ\nQAABBBBAAAEERrNAeblIeXlwfQTr65c7rrq6Wb5srW02ZahoGLhd4KfBnjdtaDIATO633oKp4C9V\nRZjqI2jhoKsI1LDQO8ZCRa9a0PUR1PHbtJ8gCwIIDCxQVBCRggL+/2Vgqfw/gnAu/58RV4gAAggg\ngAACCCCAAAIIIIAAAggggAACCIQqUF6mgaC+Mu0jGMTFtbdrGBi36T4TPX0ErdLPKgTt3YLBmBYt\nLlz4hptOdK+99nLbLfyz/TYdqPdugaC+3LqFfxYI2nSj+u7CwG5p1XMlEoQcQTw3xsheoFPKpTth\ngXtmS1ehN5dlaWnm38lsZI4aLgHCueGS57wIIIAAAggggAACCCCAAAIIIIAAAggggAACPQKlpSKl\nEpGqylQAkb65VqJL5/nUpa6upue7g/1g1YGub+B2VYH0ERysJt/LVOAb779OD7VXdktpSer/N7L7\nHkfnnwDhXP49E64IAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAIASB4mIRe0mFhR4WBqYPBIO8lCee\neEbiXSIf+MCRXg9Bq/BL9hH0pg21qj+vP6BXMdjV20cwGSKm+gh2aLjoKgLdtKHedKOpqkHrI9ia\nHCfI62es4RMoKykYvpNz5kAFCOcC5WQwBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQT8BaLRbolG\nRWqqLRC0V+4DF5vBs82mDY1ZL8HePoIxDe9S039aIJjan+ojGEv2DLTvWB9Bqypc+c5Giccjsssu\n1d40ojZdaLKPoI1hx9FH0P/5D2VPcXHu/6wM5fr4buYChHOZW3EkAggggAACCCCAAAIIIIAAAggg\ngAACCCCAAAIjTiCiGaDrIRhAH8H6+iXu/uvqDhjQwXr9dVrA59NHMKY9AC3w8/oK2mcv6Ev1EbQe\ngS74sxBR+wh6+3v7CFpoaL0Gra/gWOgjWMK0lgP+mRspBxDOjZQnxXUigAACCCCAAAIIIIAAAggg\ngAACCCCAAAIIIDCCBEpKRCxQGqiPYJC3tH0fQQv/XPBnFYNa0WfrL774T4nFC2TGjP303fbrtKEW\nIib3W+WfrbuKQg0WbXrQVGWgBY3tbRYI6rsFgxoYxuJalhjSQs+5kKBDOA3hXAjInAIBBBBAAAEE\nEEAAAQQQQAABBBBAAAEEEEAAAQRyLzBQH8EtzZq86VJXVxnYxdh0oPbypga1foG56SNYU6PzobKM\nCgHCuVHxGLkJBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQGA4B6yFor/Ly3PcRrK9fOhy3yDkD\nFqB7YMCgDIcAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIICAnwDhnJ8M2xFAAAEEEEAAAQQQ\nQAABBBBAAAEEEEAAAQQQQAABBBAIWIBwLmBQhkMAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEE\nEEDAT4Bwzk+G7QgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggELEA4FzAowyGAAAIIIIAA\nAggggAACCCCAAAIIIIAAAggggAACCCDgJ0A45yfDdgQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEE\nEEAAAQQCFiCcCxiU4RBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBDwEyCc85NhOwIIIIAA\nAggggAACCCCAAAIIIIAAAggggAACCCCAAAIBCxDOBQzKcAgggAACCCCAAAIIIIAAAggggAACCCCA\nAAIIIIAAAgj4CRDO+cmwHQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIGABQjnAgZlOAQQ\nQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQT8BAjn/GTYjgACCCCAAAIIIIAAAggggAACCCCA\nAAIIIIAAAggggEDAAoRzAYMyHAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAJ+AoRzfjJs\nRwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCBgAcK5gEEZDgEEEEAAAQQQQAABBBBAAAEE\nEEAAAQQQQAABBBBAAAE/AcI5Pxm2I4AAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIBCwAOFc\nwKAMhwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggICfAOGcnwzbEUAAAQQQQAABBBBAAAEE\nEEAAAQQQQAABBBBAAAEEEAhYgHAuYFCGQwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQMBP\ngHDOT4btCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCAQsQDgXMCjDIYAAAggggAACCCCA\nAAIIIIAAAggggAACCCCAAAIIIOAnQDjnJ8N2BBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAAB\nBAIWIJwLGJThEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEPATIJzzk2E7AggggAACCCCA\nAAIIIIAAAggggAACCCCAAAIIIIAAAgELEM4FDMpwCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggg\ngAACCPgJEM75ybAdAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgYAFIk899VQi4DEZDgEE\nEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEE0ghQOZcGhU0IIIAAAggggAACCCCAAAIIIIAA\nAggggAACCCCAAAII5EIgktAl6IHr6+vdkHV1dUEPHcp4XH8ozL4nwd+XJpQd+IfC7HsS/H1pQtmB\nfyjMvifB35cmlB34h8LsexL8fWlC2YF/KMy+J8HflyaUHfiHwux7Evx9aULZgX8ozL4nwd+XJpQd\n+IfC7HsS/H1pQtmBfyjMvifB36Ohcs73jwg7EEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEE\nEAhWgHAuWE9GQwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQMBXgHDOl4YdCCCAAAIIIIAA\nAggggAACCCCAAAIIIIAAAggggAACCAQrQDgXrCejIYAAAggggAACCCCAAAIIIIAAAggggAACCCCA\nAAIIIOArQDjnS8MOBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBIIVIJwL1pPREEAAAQQQ\nQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEPAVIJzzpWEHAggggAACCCCAAAIIIIAAAggggAACCCCA\nAAIIIIAAAsEKEM4F68loCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCPgKEM750rADAQQQ\nQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgWAFCOeC9WQ0BBBAAAEEEEAAAQQQQAABBBBAAAEE\nEEAAAQQQQAABBHwFCOd8adiBAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQLAChHPBejIa\nAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAr4ChHO+NOxAAAEEEEAAAQQQQAABBBBAAAEE\nEEAAAQQQQAABBBBAIFgBwrlgPRkNAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAV8Bwjlf\nGnYggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggEKwA4VywnoyGAAIIIIAAAggggAACCCCA\nAAIIIIAAAggggAACCCCAgK8A4ZwvDTsQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQCFaA\ncC5YT0ZDAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAwFeAcM6Xhh0IIIAAAggggAACCCCA\nAAIIIIAAAggggAACCCCAAAIIBCtAOBesJ6MhgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggg\n4CtAOOdLww4EEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEghUgnAvWk9EQQAABBBBAAAEE\nEEAAAQQQQAABBBBAAAEEEEAAAQQQ8BUgnPOlYQcCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggg\ngAACwQoQzgXryWgIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAII+AoQzvnSsAMBBBBAAAEE\nEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBYAUI54L1ZDQEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAAB\nBBBAAAEEfAUI53xp2IEAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAsAKEc8F6MhoCCCCA\nAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACvgKEc7407EAAAQQQQAABBBBAAAEEEEAAAQQQQAAB\nBBBAAAEEEEAgWAHCuWA9GQ0BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABXwHCOV8adiCA\nAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCAQrADhXLCejIYAAggggAACCCCAAAIIIIAAAggg\ngAACCCCAAAIIIICArwDhnC8NOxBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAIVoBwLlhP\nRkMAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEDAV4BwzpeGHQgggAACCCCAAAIIIIAAAggg\ngAACCCCAAAIIIIAAAggEK0A4F6wnoyGAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCDgK0A4\n50vDDgQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQSCFSCcC9aT0RBAAAEEEEAAAQQQQAAB\nBBBAAAEEEEAAAQQQQAABBBDwFSCc86VhBwIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAALB\nChDOBevJaAgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgj4ChDO+dKwAwEEEEAAAQQQQAAB\nBBBAAAEEEEAAAQQQQAABBBBAAIFgBQjngvVkNAQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAA\nAQR8BYp897ADAQQQQCCvBDo7O2XFihUSjUZl/PjxUlNTk1fXx8UggAACCCCAAAIIIIAAAggggAAC\nCCCAAAIIDCxAODewEUcggMAIE3juueekqalpUFcdiUSkqKjIvSwEq6qslHHV1S4Iq62tHdSYg/3S\n1q1b5dZbb5WFCxfKCy+8IG+++WafoaqqquTf/u3f5NRTT5UTTzyxzz5WEEAAAQQQQAABBBBAAAEE\nEEAAAQQQQAABBPJTgHAuP58LV4UAAkMQmD9/vjz++OOyePFi2bBhwxBG6vvVgoICOfiQg+Xoo46W\nj33sY3L88ceLhXm5WB5++GH58pe/LJs3b/Yd3sK7W265xb1mzZol1113nRx77LG+x7MDAQQQQAAB\nBBBAAAEEEEAAAQQQQAABBBBAYPgFIk899VRi+C+DK0AAAQRyI2AB1h133CH33HNP4CewSrqzzz7b\nBWIlJSWBjN/Q0CDXasj2zNNPD2q8L3zhC/KVr3xFCgsLB/V9voQAAggggAACCCCAAAIIIIAAAggg\ngAACCCCQWwHCudz6MjoCCOSJgFWYWUiXbrGpIfefub9M232a6+VWqVNZdnR0yOrVq+XdVatkxfLl\nLtzr7u5O93XZfffdXdXapEmT0u7PdGMsHpML/v0CeeuttzL9StrjrKLv+9//fs6q+tKelI0IIIAA\nAggggAACCCCAAAIIIIAAAggggAACGQlEErpkdGQWB9XX17uj6+rqsvhW/hzK9Q/vs8Af/6EI+P35\nWbFihey1115ph37nnXdk+vTpafelNq5du1a+ccEF8tf77ktt6vM+ZcoUefLJJ2XGjBl9tmez8rOf\n/Ux++MMf9vmKVecdfvjhYtNWxuNxeeaZZ+TFF1/sc0y6lSuvvFL+8z//M92unG7z88/pSQMcnOsP\nEHMQQ+E/CLQAv4J/gJiDGAr/QaAF+BX8A8QcxFD4DwItwK/gHyDmIIbCfxBoAX4F/wAxBzEU/oNA\nC/Ar+AeIOYih8B8EWoBfwT9AzEEMhb+HVjAIO76CAAIIjDiBf/mXfxnSNe+2227yl7/+VW699da0\n46xbt04OOugg2bRpU9r9A2185ZVX+gRzRx11lDz77LNuvEceeUSuueYaufbaa2XBggXS2dkp9957\nrxQXF/sOayHfa6+95rufHQgggAACCCCAAAIIIIAAAggggAACCCCAAALDI0A4NzzunBUBBIZBYPz4\n8UM+q/Vzs75u6Zb29nb58Y9/nG7XTrfZdJmf/exne465/KeXuyq8D33oQz3btv8QjUbl05/+tFg1\n4Ec/+tHtd/X5fNFFF/VZZwUBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEBg+AUI54b/GXAFCCAQksDU\nqVMDOdN1110nFRUVace66aab5B//+EfafX4brWpu6dKlbrdNbVn3kcymBLb7efzxx+XII49MO/T8\n+fNllfbMY0EAAQQQQAABBBBAAAEEEEAAAQQQQAABBBDIHwHCufx5FlwJAgjkWKCqqiqQM0yYMEEs\nRPNbfvvb3/rtSrv9b3/7m9t+zz33iF+1XNov6sZIJCK/+93v/HbLY4895ruPHQgggAACCCCAAAII\nIIAAAggggAACCCCAAALhCxDOhW/OGRFAYJgELMhKt/htT3dsatshhxyS+tjv/ZWFC/tt29mGhx56\nSD54xBFyxhln7Oww33377bef73Sab775pu/32IEAAggggAACCCCAAAIIIIAAAggggAACCCAQvgDh\nXPjmnBEBBEaBwD4zZvjexYsLFvju23HH1q1bpb6+Xi6bO3fHXVmtn3feeWmPX7NmTdrtbEQAAQQQ\nQAABBBBAAAEEEEAAAQQQQAABBBAYHgHCueFx56wIIDDCBSZPmiSlpaVp76K7u1s2bdqUdt+OG995\n5x05//zzZc6cOTvuymrd+s8VFRX1+055eXm/bWxAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQGD4B\nwrnhs+fMCCAwggUSiYR0dnamvYOCggKZOHFi2n07bpw1a5bceOONO24e1Hq6fnV77LnHoMbiSwgg\ngAACCCCAAAIIIIAAAggggAACCCCAAAK5ESCcy40royKAwCgXWLJkiViFXLrlCO0fNxzLgQce2O+0\n06dN77eNDQgggAACCCCAAAIIIIAAAggggAACCCCAAALDJ0A4N3z2nBkBBEawwKJFi3yv/rDDDvPd\nl8sdHR0d/YY/5JBD+m1jAwIIIIAAAggggAACCCCAAAIIIIAAAggggMDwCRDODZ89Z0YAgREsUF9f\n73v1p556qu++XO549913+wy/zz77SLpquj4HsYIAAggggAACCCCAAAIIIIAAAggggAACCCAQqgDh\nXKjcnAwBBEaDwN/+9jffPnGf+9zn5KMf/eiw3ObixYv7nPfcc8/ts84KAggggAACCCCAAAIIIIAA\nAggggAACCCCAwPALEM4N/zPgChBAYAQJrFmzRk4++eS0V1xYWCi/+MUv0u7L9cZly5aJXVtqiUQi\nYkEhCwIIIIAAAggggAACCCCAAAIIIIAAAggggEB+CRDO5dfz4GoQQCCPBTZu3Cif+cxnpKWlpd9V\nWjB3//33y2677dZvXxgbHn/88T6nuewnl8m0adP6bGMFAQQQQAABBBBAAAEEEEAAAQQQQAABBBBA\nYPgFCOeG/xlwBQggkOcCTU1Ncumll8qUKVPk+eef73e1BxxwgLz55pty4okn9tsX1obbb7+951ST\nJk2S71703Z51PiCAAAIIIIAAAggggAACCCCAAAIIIIAAAgjkj0BR/lwKV4IAAgjkh0CrVsatXrtG\nVq9aLc89/5xcNvcyicfjaS/u29/+tlx99dVSUlKSdn8YG5977rk+oeFvfvMbKSsrC+PUnAMBBBBA\nAAEEEEAAAQQQQAABBBBAAAEEEEAgSwHCuSzBOBwBBEafgPVmq6mpkU2bN8s/Fi2S9vb2nd6k9Zw7\n88wzXaVcVVXVTo8NY+dVV13Vc5q6ujo5/fTTe9b5gAACCCCAAAIIIIAAAggggAACCCCAAAIIIJBf\nAoRz+fU8uBoEEBgGgWeffTajs44bN85NX7nrrrtmdHwYBy1YsEAefPDBnlP9+te/7vnMBwQQQAAB\nBBBAAAEEEEAAAQQQQAABBBBAAIH8E6DnXP49E64IAQRCFvi///f/ysKFC2WRVs299tpr8uSTT0ok\nEul3FVu2bJE77rij3/bh2tDV1SXnnHNOz+nvvPNOsf53LAgggAACCCCAAAIIIIAAAggggAACCCCA\nAAL5K0DlXP4+G64MAQRCEnj/+98v06ZN63O2W265pU/wldr5ve99T4455hiZPXt2atOwvV9//fWy\nePFid/7vfve78vnPf37YroUTI4AAAggggAACCCCAAAIIIIAAAggggAACCGQmQOVcZk4chQACY0zg\n7LPPljPOOCPtXX/mM5+Rbdu2pd0X1sa33npLLr74Yne6OXPmyNVXXx3WqTkPAggggAACCCCAAAII\nIIAAAggggAACCCCAwBAECOeGgMdXEUBgdAvcfPPNMnny5H43uXLlSvnWt77Vb3tYG1paWuSUU06R\nRCIh06dPl7vvvlsKCvjrPCx/zoMAAggggAACCCCAAAIIIIAAAggggAACCAxFgJ/mDkWP7yKAwKgW\nqKmpkXvvvTftPd52221yzz33pN2X643nnXeeWOWcBXKPPvqo2HWyIIAAAggggAACCCCAAAIIIIAA\nAggggAACCIwMAcK5kfGcuEoEEBgmgSOPPFJ+cvlP0p79rLPOEquiC3P5r//6L1cpZ+ecP3++7L//\n/mGennMhgAACCCCAAAIIIIAAAggggAACCCCAAAIIDFGAcG6IgHwdAQRGv8CPfvgjsZBuxyUej8uZ\nZ54p3d3dO+7KyfrDDz8s3/72t93Y8+bNk2OPPTYn52FQBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAA\ngdwJEM7lzpaREUBglAjY9JHW1y0ajfa7o+eff14uv/zyftuD3vD3v/9dTj75ZDes9cL7zGc+E/Qp\nGA8BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgBIGchHNbt26Vxx9/XB588MGc3sKqVatyOj6DI4AA\nAimBadOmyR//+MfUap/3uXPnyjPPPNNnW5ArS5YskaOOOkoSiYRc/tPL5Wtf+1qQwzMWAggggAAC\nCCCAAAIIIIAAAggggAACCCCAQIgCgYZzixYtkgsuuEBOOukkV0ly6aWX5vRWbr/jdvcD63/+8585\nPQ+DI4AAAibw6U9/2jcYO/3006W5uTlwqLVr18rRRx8tnZ2dctFFF8klP7ok8HMwIAIIIIAAAggg\ngAACCCCAAAIIIIAAAggggEB4AkMO59ra2uQPf/iDHH744XLIIYfIjTfeGNrVX/gfF8oee+whBx10\nkHzrW9+SxsbG0M7NiRBAYGwKXHvttbLPPvv0u/kNGzbI17/+9X7bh7Jh/fr1UldXJ+vWrZNzzz1X\nfvGLXwxlOL6LAAIIIIAAAggggAACCCCAAAIIIIAAAgggkAcCgw7n3nzzTfne974n48aNk7POOkte\neuml0G+nvLxcbr/9drnpphvlV7/6ldi0c08//XTo18EJEUBg7AjY3zt//vOf097wPffcI7feemva\nfdluXK9hnwVzy5cvlzPOOEN++9vfZjtEn+OtAs+q71gQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEE\nhldgUOFcPB6X2bNny3333SennnqqRKPRYb2Lr3/9fJk/f760tra6H2bfdtttw3o9nBwBBPJToLu7\nO+2FdXV1pd3ut/HAAw90vxCQbv8555wjL734YrpdGW9raGiQo7XH3NKlS+Xkk0+WO++8UwoKBvXX\ntTvnX/7yF5k6daq89957GV8DByKAAAIIIIAAAggggAACCCCAAAIIIIAAAgjkRmBQP+0tKiqSzZs3\ny5IlS2TevHluyrWh/OA4iFv7+Mc/Lvfff78b6uyzz3ZVfYlEIoihGQMBBEaJQFNTU9o72bp1a9rt\nO9v4jW98wwVn6Y45/oQTZMPGjel2DbjNpuf95je/KW+99ZYc9/Hj5E9/+tOQfgHiueeek9NOO831\ny6utrR3w/ByAAAIIIIAAAggggAACCCCAAAIIIIAAAgggkFuBQYVzdkmlpaU9VzZhwgS58MILe9aH\n68MnP/lJ+f3vf+9O//Of/1zOP//84boUzosAAnkosNEnMNuyZcugrtb+vrGpfXdc7JcXTj/9dLEq\n42wW6y337//+77JmzRqZM2eO3H/f/VJSUpLNED3HvvLKK64H3oc/0mBV1wAAQABJREFU/GG37Ytf\n/GLPPj4ggAACCCCAAAIIIIAAAggggAACCCCAAAIIDJ9AUVCnPuCAA4IaakjjWNXcXXfdJU888YTr\n0XTYYYfJeeedN6Qx+TICCIx8AZu60qrS0i1+FXXpjt1+28SJE+Xev9wrx37s2O03u8/PaP9LC+js\n7yPrUzfQsnLlSvnIRz7iKpHtWKtG/spXvjLQ19x+m67T+sl1dHS4quY33nhDWlpaer5rUw9/4hOf\n6FnnAwIIIIAAAggggAACCCCAAAIIIIAAAggggMDwCQQWzqWrHhmu27rppptkxowZ7vRf/epXZdas\nWfKv//qvw3U5nBcBBPJA4Pnnn/e9iocffth3ikrfLyV3fOyjH5P//OEP5WdXXtnvUJtq9+ijj5aH\nHnpIJk2a1G9/aoOFaVbhtn14+Oijj6Z2D/ndfkFhsBV4Qz45AyCAAAIIIIAAAggggAACCCCAAAII\nIIAAAgj0ERj0tJZ9RtGVfPrB7z777CM/veKnPZd4/PHH91Sj9GzkAwIIjBkBm87yO9/5ju/9/u53\nv5PFixf77h9ox08uu0xmz56d9rAXX3xR9t13X7n++usl3fSZNv3koYce2ieYSzvQEDaeeeaZQ/g2\nX0UAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAIUiCwcK64uDjI6xryWBd/92LZa6+93Dj2A/HTTjtN\nYrHYkMdlAAQQyH+BDRs2iE0T+eSTT8qvfvUrOfjgg8VCMr/FpoW0qXnnzp0rjz32mCxbtkzefffd\njP/OKCoqkj/+8Y9uKsp057BpM60vp/XnPOuss+SGG26Qp556yr0+8IEPSHt7e7qvBbJt6tSpcuSR\nRwYyFoMggAACCCCAAAIIIIAAAggggAACCCCAAAIIDF0gsGktI5HI0K8mwBEsLPz1r38tVjVni01p\nd91118n3vve9AM/CUAggkI8CNo1juiq1ga71Mq2A2355+eWXXVXb9tv8PtsvA9xxxx3y+c9/3u8Q\nsb53f/jDH9zLDvrsZz/rtvl+IYAdXz//6wGMwhAIIIAAAggggAACCCCAAAIIIIAAAggggAACQQkE\nVjmXb+GcAX384x+XqqqqHqtLLrlEmpube9b5gAACo1PggQcekEQiMeSXTTeZzWLTR2Zz3rvvvrvf\n8amKumzG2dmxl/zokmxugWMRQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEciyQ03BuuAO7goICOf/8\n83sIbVrLX/36Vz3rfEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgTIHAwrkwLzqbc1mv\nue2Xy+ZeJg0NDdtv4jMCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACoQgE1nMu26ttamqS\npUuXyvLly8X6w02ZMkUO/v/Zuw84qcp7/+O/2couW5EiFsSCEkvAFhTjgi32GtSgMSaiUfJPudFr\nSRPUa29wYxSNV70axd5iVLwm0VUkQSwIFhQRRBQW2N7r//k9U9iZOWd3dufMMLP7Oa/X3JnzPOc8\n55z3bNS73/09z8SJkp+f39ehejx+3333DevXNZ/mzJ0r11x9dVg7OwgggAACCCCAAAIIIIAAAggg\ngAACCCCAAAIIIIAAAggkWiDplXMrV660U00OGzZMJk2aJLpG07Rp0+SQQw6x68PNmDFD9Bivtuzs\nbJkyZUrYcNdde61UVFSEtbGDAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQKIFkhrOzZs3\nT8aNGyf67rR1dnbKfffdZ4+55ZZbnA7pV9vUqVPDztPrvPDCC2Ft7CCAAAIIIIAAAggggAACCCCA\nAAIIIIAAAggggAACCCCQaIGkhHMahv3sZz+zFXOxPtCll15qz4n1+J6OO+CAA6K6n3/++ag2GhBA\nAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBIpIDv9ddf7/LiAkuWLJFLLrkkbKidd95ZHnjg\nAZlz++3yzLPPhvXFunPaaafJr371q1gPdzxO17Y7//zzo/pefvllycvLi2qnAQEEEEAAAQQQQAAB\nBBBAAAEEEEAAAQQQQAABBBBAAIFECGQlYtDuYz7zzDOhYO7UU06RI486SsaOHSu5ubmiodkHH3wg\nL730kqxevbr7aaHPTz/9tBx44IEyefLkUFtfP4waNcrxlKVLl8pBBx3k2EcjAggggAACCCCAAAII\nIIAAAggggAACCCCAAAIIIIAAAl4L+LrM5sWgr732mhx22GFhQ2VmZkpHR4ccfPDB8uCDD8puu+0W\n1h/caWlpkfPOO08eeeSRYFPYe2lpqXzzzTc20Avr6MNOTk6OtLW1hZ1x8cUXy6233hrWpjvl5eW2\nraysLKovHRq4/637LeGPfzwC/PzEoxf/ufjHbxjPCPjHoxf/ufjHbxjPCPjHoxf/ufjHbxjPCPjH\noxf/ufjHbxjPCPjHoxf/ufjHbxjPCPjHoxf/ufjHbxjPCPjHoxf/ufjHbxjPCPj79RK65pwGc9On\nTxcN7tyCOb0NraJ7+OGHZfbs2f67ivi/VVVV8tRTT0W09m13v/33jzph/vz5UW00IIAAAggggAAC\nCCCAAAIIIIAAAggggAACCCCAAAIIIJAogYSGcxrIaTWcVq3Fss2aNUuO+t5RjofefPPNju2xNn5r\n/PioQ7Uar6KiIqqdBgQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQSIZDQcK6wsLDP93zN\n1dc4nvP+++/L+g0bHPtiadx+hx0cD9u0aZNjO40IIIAAAggggAACCCCAAAIIIIAAAggggAACCCCA\nAAIIeC2Q0HCuPzc7adIkOfHEEx1PffeddxzbY2nMz8tzPGzjxo2O7TQigAACCCCAAAIIIIAAAggg\ngAACCCCAAAIIIIAAAggg4LVAyoVz+oCXXXaZ43O++967ju2xNA4dOtTxMKa1dGShEQEEEEAAAQQQ\nQAABBBBAAAEEEEAAAQQQQAABBBBAIAECKRnO7bHHHo6PumF9/6e1zM/PdxyTcM6RhUYEEEAAAQQQ\nQAABBBBAAAEEEEAAAQQQQAABBBBAAIEECKRkODdixAjx+XxRj1tZWRnVFmuDWzgXzzp2sV6b4xBA\nAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBQgZQM5/TG9txzT30L26qrq8P2+7LjFs5VbOh/\nNV5frs+xCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCKRsODd+/Piob2fYsGFRbbE25Obm\nOh7qFto5HkwjAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAnEIZMVxbkJP1aktI7dtt902\nsinm/aamJsdjS0pKHNtpRAABBBBAAAEEIgUazX9O1NV1SF19p9TWtPvfa9uktrZDPviwUBobM+WF\nV9ZKVU2HrN/YJvUNXfLPv+4eOQz7CCCAAAIIIIAAAggggAACCCCAAAKDWCBlw7l169ZFfS0jR46M\naou1ob6+3vFQwjlHFhoRQAABBBAY8AINDSZoq++wwVpdXbvU1pnAra5Naqo7pMZ8rjaBW40J4KrM\n/vqNrdLQ1NWLSX6gvzHsuEazmx/sCuthBwEEEEAAAQQQQAABBBBAAAEEEEBgMAqkbDj36aefRn0f\nu+/e/788J5yL4qQBAQQQQACBASNQV98ldSZMsxVttVuCtlpTwWZDNlPtVl0dDNrapKmlt6DNOxoN\nAPPzM70bkJEQQAABBBBAAAEEEEAAAQQQQAABBNJaIK3CubKysn5j19XVOZ4bTzWe44A0IoAAAggg\ngEC/Bdo7fFJTK1JfbwI2DdsCFW01GriZKrbqWlPRZgI33deKtq8r2qStPXlBW38eTJ9j1EjCuf7Y\ncQ4CCCCAAAIIIIAAAggggAACCCAwEAVSMpzbvHmzdHWF/6JtypQpUlpa2u/voM5lWsu99tqr32Ny\nIgIIIIAAAgi4C3R0iJkm0lS0mYCtzk4ZqWGbP1ir03DNThvZYdZnM6GbnTpylLSZc0RWuA+ahj31\nv7xSJONf0Xf+69+JHHFUdDstCCCAAAIIIIAAAggggAACCCCAAAIDWiAlw7k1a9ZEoU+fPj2qrS8N\n1VVVUYfn5OTImDFjotppQAABBBBAAIFwgbY2XZ/NH7TZijZdq02DNhOs2Yo2XaNNp5AMBG0bNrVL\ne2f4H9qEjzh49mpXbRDpej36gTddGN1GCwIIIIAAAggggAACCCCAAAIIIIDAgBdIyXDu3nvvDYMf\nPXq0/OQnPwlr6+vOJ598EnXKkUceGdVGAwIIIIAAAgNdoLVVK9o6bRVbcNrIWp0+0lSy1WpFm502\n0lS0mTXaNHBbv6kjqqJ9oBt5+Xx1WcNETLjJhgACCCCAAAIIIIAAAggggAACCCCAgAqkXDj31Vdf\nyV133RX27cyZM0e0yi2e7V//ip5OatJBk+IZknMRQAABBBDY6gLNzf6grd5UsX2+KleaWzKkrqHa\nVLSZKjYTtNUE1mjTijYN3So2t2/1ex5sN1CTVUI4N9i+dJ4XAQQQQAABBBBAAAEEEEAAAQQQ6EEg\n5cK5uXPnht3u0UcfLWeccUZYW193KisrpbGxMeq0o793dFQbDQgggAACCGwtgcYmM3WkCdnstJH6\nbqvb2mzQVmMq26pN0KbTSGrItnFjm1TXd0bcqgmB7GamUWRLGYHqbPO9mO+WDQEEEEAAAQQQQAAB\nBBBAAAEEEEAAARVIaDina8etW7dOtt9++5i0V6xYIbfeemvo2H322UeeeOKJ0H5/P6xatSrq1FGj\nRsmkSVTORcHQgAACCCDgiUBDg1a0dfjDNhOs1ZmgrbbOBG3VgYq2ui6pDkwbuWFTm9Q3RgZtntwG\ng6SAQE12cQrcBbeAAAIIIIAAAggggAACCCCAAAIIIJAqAgkN57RibZdddpHHH39cTj755B6fecmS\nJXLooYeG1rTRdeYWLFgghYWFPZ4XS+fKlSujDrvgpz+NaqMBAQQQQAABJ4G6+i6p0/XYQmFbIGgz\nFWw1pr3avGxFmwneKja3SUNTl9MwtA1SgZqsokH65Dw2AggggAACCCCAAAIIIIAAAggggICTgGfh\nnFa5TZs2TZ588smw67S2tsopp5wiF154ocy+6irZ1lSsRW4vvfSSnHDCCdLZ6a8amDJlijxmAr1R\nI0dGHtqv/Q+WLYs6b9r3vx/VRgMCCCCAwMAW0H/NVNd0mamOAxVtZk22OjM1ZI15rzXTRS7/uFga\nmzLlyb9+aaeS/MZUtLW2ErQN7J+KxD9dqy++dXMTf4dcAQEEEEAAAQQQQAABBBBAAAEEEEAgmQKe\nhXPbbLONnYLy1VdflR/+8IeyYUP4ejd333236Gvs2LGi68jtt99+8v7778ujjz4qVVVVoWf+/R/+\nILNnzZLMzMxQW7wfnjBBX/ftwAMPlAkTJnRv4jMCCCCAQJoJdHTotJGmos1MGWnXaDMhm77X6r4J\n2qpNlVt1YApJfV+/qV3a2nsL2oYEFFggLM1+HJJ2uwX5GTKsOEuKizOk1LyXFGea90wpLMqSzscf\nkbHvviFFnZulqGuTFPrWS2HG+qTdGxdCAAEEEEAAAQQQQAABBBBAAAEEEEgPAc/CueDjHnnkkTJ/\n/nxZvHixvPbaa/Lyyy8Hu+z76tWrbUgX1mh2zj//fPmDCebGjBkT2RXXvq43Fzmt5XXXXRfXmJyM\nAAIIIOCtQFubmAq2LUGbnT6y3j9VpAZtVTptZG2nVJk12mrMVJIVm03Q1tFb0ObtPTLawBLIyvBJ\nQb7PhGtZUlqSKcUmXNOgrbjIvMx7UWGWeWVIkWkvKsyUArvfs0HFX9+SkfKYSEbPx9GLAAIIIIAA\nAggggAACCCCAAAIIIDC4BTwP55RTq94OPvhgufzyy2Xjxo2ycOFCeeONN2TNmjWydu1au67cTjvt\nJDvuuKMcfvjhMnXqVCkoKEjIN6GVfN23yZMniwaIbAgggAACiRDwmWkgfbJpc6epaDNVbIFpI/Vd\nAzddl03XZ6s2AVu1fjbvGzd3SHsnQVsivo3BNGapCdBKSzRgy5ASfS8y7xqs2aAt2x+0mYCt0BxX\naAK4gqGDSYdnRQABBBBAAAEEEEAAAQQQQAABBBBIJYGEhHPdH3DEiBF2zTldd25rbM8++2zYZa+9\n9tqwfXYQQAABBNwFmppNRVudCdpMoFZXrwGbhm5ttnqt2gRu1aaaTSvZqoJBW+Uo+wcYIp+5D0oP\nAr0IDC/N9Fe0aSWbTh1pgrZiE6wVmwq3woJuFW0mZNOqtxyWdOtFlG4EEEAAAQQQQAABBBBAAAEE\nEEAAgVQSSHg4tzUfVteye+mll0K3cPLJJ9sqvVADHxBAAIFBJNBollHzV7MFK9q6TNjWZtZnM1Vs\nJmirMcFbtZk2UivbdPrITVVmUTc2BOIQ0KkjNTzTV4kJ0sIq2sx+UVG2CdvM1JFa0Wb2ly17S7Kz\nOqWsrCyOq3IqAggggAACCCCAAAIIIIAAAggggAACqS0woMO5uXPnhvTz8/Pl7nvuCe3zAQEEEEhn\ngfoGf9CmFW21WtFmKtjq6k1FW7U/aAtVtJn9jVVtpq8znR+Xe++jQHt7ozQ3rpOmxvWSm1sqQ/J3\nkJzckj6OEn54dpZPtKJN12TT6SPtu04ZaaaO1M+Fdk02/xptOnVkaUmGmeY6fIze9jSYY0MAAQQQ\nQAABBBBAAAEEEEAAAQQQQGCgCwzYcK6iokKuueaa0Pc3f/58GTVyZGifDwgggEAqCHSZpdbqG7rs\ntJG6Jtunn+VKY1OmqVqrMoGbf222GtNuK9pMhVvF5jZpaGJ9tlT47lLxHmoql8kny++S5rp/RN1e\nVs4E2X2fX8rIbSfLkNwMKdXpIk24FnyVaiWbaSvS925BW4GZRnJYqU98vqghY2rYtGmT6L+T99xz\nz5iO5yAE+ivQ0tIiX3/9tWy//fYybNgwKS0t7e9QnIcAAggggAACCCCAAAIIIIAAAggkVGDAhnO3\n3HKLdHb6/wL/vPPOk5NOOimhkAyOAAII6D9yautM2GYr2cwabXX+Ndpq9d2syVal00faKSQ1bDMV\nbZVt0tQSGbQFq5sqAEUgJoGheT4pGtouixf+Tlat9K+zWly8k3z30BNlhx3GmGDsM3nhhYekrXWp\nfPTODBlzzLHyxP8+LgUFBTGN39+DNCSZM2eO6L+PJ0yYIO+9915/h+K8OAUWLFggzc1mAcletqUf\nLLVH6LTgkVtGRoZZ2y/HVGLmhl4agI00f/iksxNsja2urk7uu+8++7P173//Wz755JOw2ygsLJQz\nzzzTrn18/PHHh/WxgwACCCCAAAIIIIAAAggggAACCGxNgQEZzq1Zs0Zuvvlm66rr1vzpT3/amsZc\nGwEE0lCgvd1MG1lvKto0WNOpI031Wp1Zk63GrM1WZ15Vpq3GBG1VJnTT9/Wb2qWtPTJoS8MH55a3\nqoCuv1ZqqtZKgmu0mcq2Up06UivaAtVsdvpIU92mFW0lxSYQrq2VU0891QRz/mq5c889V+69917J\nytryr/hNm66T888/X5577jl5+eWX7JpuL7/8sg1WvH7gtWvXyq233irdp5b2+hqM1zeBBx98UDZs\n2CDLly+37307u/ejs7OzZfz48TJp0iQ54IADZOLEibLffvuJtidq+9vf/iY//vGPRSsz3TYN7/R/\nC/rae++95fbbb5cjjzzS7XDaEUAAAQQQQAABBBBAAAEEEEAAgaQJbPnNXdIumdgLNTQ0yMknn2wv\nsu+++8pf//pXGTJkSGIvyugIIJDSAm1tWtHWFaho61bNpqGbVrQFpo+0VW0maNtYSdCW0l9oGtxc\nVoZPCvJ9dm02O22krtFm1mHTzzptZHFRthQWmIo3s15bkWkvNG2639et3aTIRx11lCxevNieetpp\np4lWi3cP5rRj+PDhotM7f+c737EBjVaxaUjxzjvveBagrFq1yv5hzLx58/r6GByfYIGHH344dIWa\nmhq5/obr5cYbbgy1xfuhzfxDdtmyZfalQZhuGszpz6JWrh122GHxXiJ0vk6R+otf/EIef/zxUFss\nHzSY1P+tzJ49W2bNmhXLKRyDAAIIIIAAAggggAACCCCAAAIIJExgQIVzOo3lWWedJUuXLpVx48bJ\nK6+8Yn7xWZQwPAZGAIHkC5glhUxFW6epYjPBmqlgqzXVbFrdVqNBm9n/8JMSaWryySNPrbZtGzd3\nSHsnFW3J/6YGzhWzM30mOMuQEhOklZqKtmJdp63Iv19s9gsLss2/azKkyFSy2ZDNhG0FQ5Pz/LNM\n0BAM5nSdrZ/97GeuF87LyxOtoNKKJt00TPnd734nN910k+s5sXR8+umncuONN9rpBWM5nmO2rkBx\ncbHccP0NZt3BIXLVVVc53oxWmU2dOtVWwe211162wrKkpER0msj6+nrZvHmzrVj77LPPRCvYHnvs\nMdGguPumgd3dd99tXyeccILceeedsuOOO3Y/pM+f9b/zTjnlFFm0aFGfzw2eoOHcunXr5J577gk2\n8Y4AAggggAACCCCAAAIIIIAAAggkXWBAhXOXXHKJPP/88/YXSvqLIq0UYEMAgdQVaDJLIOlUkXUa\nrJmATUO32to28zJrspmgrbq206zNpu9m+kizRtumqg7p6uotaMsNPLBJ8dgQcBAYXmqmijSVbCWm\nWq3EVrT5g7YiE7qt/XKl5A3pkEMP3ddWuBWaoC0/z2GQFGj65z//Kddde23oTrQaqLdpBLWi/Igj\njpC///3v9jydAvqYY46Rww8/PDROrB++/PJL+e1vfytalbXDDjvI2LFjZfXq1bGeznFbWeCcc85x\nDeeefvpp+0dOTreoAZ2+9PvWKSynT58uDzzwgOjP4+WXX+64tuALL7wgL774op1m/KKLLnIaNqY2\nDYEjgzn9b70DDzzQTlv5+eefywcffCArV67scbw///nPsvPOO8tvfvObHo+jEwEEEEAAAQQQQAAB\nBBBAAAEEEEiUwIAI53Qqy1/+8pf2r/Yvv+Jy88vK6yQjIyNRZoyLAAIOAo2NWtGm1WvdKtrqTUWb\nCdVqTPCmQVuNTiFppo2sNu8atLEhEI+ATh05zARtOlVkqVmTLayizbQVFpqKtsIMU9nmr2grLckw\n4VXPVywvNz/IZhu3W07PB27lXq0gmjFjRugufD6fnH322bJkyZJQm9uHX/3qV6FwTo/5j//4Dxto\nuB3fU7tWWGlIF6yI0gDm+OOP7+kU+lJEYNddd/XsTnQaVZ0yUl863aT+N5mucdd905/ZmTNn2upN\nnWJ1p5126t7d6+d3333XhsHBA6dMmSLXXXedTJ48Odgk5eXl9vPBBx9spzXX4LC1tTXU3/2DBssn\nnXSSaGUgGwIIIIAAAggggAACCCCAAAIIIJBsgbQP5/SXNdOmTRNdg+SZZ56x0x0lG5HrITCQBDo7\nfdLU7JNvvunwTx1pgjWdOrK2zlS0abDWvaKtptNUtJnAzUwxyYZAPALZWT7Rija7PpsJ2uy7rs1m\nPuuabLo2m04tad/NvgZtmZnxXDG9z9XKpi+++CL0EBoy5Ofnh/Z7+lBWVhbWrdNbvvzyy7aCLqyj\nl50xY8bIFVdcEXbUcccdJzqFoVZKsaW+wLBhw6SystLTGz3jjDNsJab+TEZWuemFtO3oo4+Wt99+\n21bgxXJxDfZ+8IMfhA7V9YT158xt0wpSXX9R10H80Y9+JP/4xz8cD9UZF/Rnnw0BBBBAAAEEEEAA\nAQQQQAABBBBItkBah3PPPfecDeb+cOUf5OJfXywFBQXJ9uN6CKS0gM4AWVcvUm8Dti0VbTqFZI0J\n2nSdtmr7bgI2O21ku9Q3jgw8U8/TgqX0g3NzW1Ugx/ybZcSwbFvJptNHFpv12EpN0FZkq9s0ZDOf\nbeCm1W0axPlMtfNWveW0u/iVV14Zds99qVbTNccOOeQQWbhwYWiMq6++us/hXOjkiA86bSbhXARK\niu7qOoVeh3P6qDrVpE5zee6559r16CIff8WKFXKuCc2eNn9UFcumf4il69vppmGahnuxbPp8r776\nqpmm9tCwn/fguQsWLJC1a9eGKj+D7bwjgAACCCCAAAIIIIAAAggggAACiRZI63BO/+Jbp9MaPXp0\nop0YH4GtLtBhitM0aKszwVqdqVSrNRVsukZbjb6bl3+6SLM2m5kyssZUtG2sajMVcL2tz7bVH4sb\nSHGBoXlm6kitZCsxVW2mes2+a7BmK9pMVZsJ3fwVbf6gben7b5qgrUsiq7NS/DHT6vZeeeUV+fjj\nj8Pu+aCDDgrb721HA7Tu4ZxWM+laXd/+9rd7O7XX/lGjRvV6DAekhoCuHZeoLTc3V3T6yurqatEQ\nLHJ75tlnZfbs2fYV2Re5r0GfbrqecKzBXHAMnfJV15jbc889g01h7/q/p+5TxIZ1soMAAggggAAC\nCCCAAAIIIIAAAggkSCCtwzn9S2g2BNJRoL1dQ7YuE66ZKSN1jTYN22zgZt5NuFZtPmtFm67NVm0q\n2iqq2s26OQRt6fhdp9I9a4g2zARsujabXaNNK9rMZ1vRFjFtpFa0FRf1/e41mGNLrIBO4Ry59XX9\nsPHjx0cOYQMUL8I5qtijaFO2QYMrp82t3enYntp0nIceekj0582pQu+qq66SCRMmyKmnntrTMLYS\nc5IJoHXKzP5s3/rWt2TWrFmi14vcPvnkk8gm9hFAAAEEEEAAAQQQQAABBBBAAIGEC6R1OJdwHS6A\nQAwCra1a0WaCNlvJ1i4ffZInjU1mzbYNlba6rSowdaSuzVZTayraKtulrZ0AIwZaDnER0F94Fw/1\nmXXXsszLvy5bia7PZtdo0ykjs80rw0wZ6Z8+stBWtzn/Et7lEjSnqECXmatWw47um679Fut6c8Hz\nxo0bF/wYen/iiSfk0ksvDe3394NWTLEhEBQYMWKEPP/88/Ld73432BT2fs4550hVVZXoOnFOW11d\nnZSXl8e9NtwFF1zgGM6tW7fO6bK0IYAAAggggAACCCCAAAIIIIAAAgkVIJxLKC+Dp5tAS4uYCrZO\nqa/3Txupn2tr22xbjVaxBYI2W9FmKts2V3VIW0dk0BYsN9qYbo/P/W4FgexMn50WUivZSkwVW3Nz\nteTndcg+e+4gxSZ406Ct0ARtRaaSLRi2DR26FW6US6aEwJIlS6ShoSHsXvbfb7+w/Vh2dtlll6jD\n3n77bVm/fr1su+22UX19acjMyuzL4Rw7CAR0jcMzzzzTcf05/XnWalC3qrg1a9bIzJkz+zydZSSr\nrj+XlZUl7Vq63m3ra7Dd7VQ+IoAAAggggAACCCCAAAIIIIAAAv0WIJzrNx0nprpAY5OYkM2Ea2aK\nSK1q06Ctrq7NrMfWITVm3bZqU8VWbarZQmu1mekj2zsjg7ZUf0ruL5UEsrNMRZsJ0mxFmwnaijVw\nM1NHFusUkWa/sHtFm1azmcq2/LzwJygv/8I2lJUND+9gDwEjEFx7qzvGdiZ06Ouma7Y6be+//74c\nc8wxTl0xt2X4MmI+lgMHj8B/XnKJYzinAnPmzHEN5/bee2+58847PYGaPHmyrcLrPthOY3fqvstn\nBBBAAAEEEEAAAQQQQAABBBBAICkChHNJYeYi8Qo0NmpFmwnZ7Lps/qCt1gRttTUmYDPVbDW6RpsJ\n2vSzTh9Zadp1+jc2BPoroBVtOmWkrslWEqhqKzZBW0lgzbaiIlPRZtZw04q2Ajt9ZIYMGdLfq3Ee\nArEJfPDBB1EHjhw1Mqotlobi4mLzxwo1YYeuWLEi7nDOab0yp7awC7Mz4AUOOPBAmTp1qrz22mtR\nz7po0SLRYHjixIlRfV426JqKOkVm923MjmO67/IZAQQQQAABBBBAAAEEEEAAAQQQSIoA4VxSmLlI\nUEDzsvqGLqnX6SJt2OZfh62u3lS0mco1rWhb8VmpmbZN5P5HvpBqU+VWZY5jQyAeAa1oG16qIZsJ\n28w6bbo2m4ZuRSZoKzKfNWDzr9HmnzqypDjDTH8WzxU5F4HECLz77rtRA480a3r1Zxs7dqwsXbo0\n7NSPPvoobJ8dBLwUmDFjhmM4p9e45557PKuQc7vnFp27OmLbd999I1rYRQABBBBAAAEEEEAAAQQQ\nQAABBBIvwK+fE288YK/Q2alBm5hqtvawirYanUIysDZbjX03FW0aspk122rMNJO9bzmBQ1p7P5Qj\nBp1A3hCfDDOhWompagtWtJXommymuk2nkVzzxSeSl9clU6bsZ6aN1HXcfJLBLHuD7udkID6wrpX1\n8ccfRz3asGHbRLXF0qBry0WGc1q9xIZAogQmTZrkOvS8efNk7ty5kp2d7XpMvB1ffvll2BDjxo0T\nraZjQwABBBBAAAEEEEAAAQQQQAABBJItQDiXbPEUvV6HKU6rrTMVbfUdNljTwE3XaKvVdxOq6XSR\nwYCt2lS4VZq2hiamjUzRrzNtbmtongnadMpIO32kf122Ul2LTaeONC9dk63IvApN+BYM2ny+nh+v\nvLzZHrDTmMT9grfnO6AXgcQIrF692nHgvLyIhQsdj4puzHc4b/ny5dEH0oKARwIahhUWFpo/6KmL\nGlGnov76669lp50StwZc5M/3+eefH3UfNCCAAAIIIIAAAggggAACCCCAAALJEPC9/vrrJCzJkE7i\nNdraMqS5JUMaG33S1KSvDBOkZUiT2W+07ZnSaNptm2mva8iQ1vYk3iCXGpAC+bldkp/XKfn5nTLU\nZAVDzXv+kHbJy+8y+9rXYdZk6zJVbZ32lW/aMjL4x8+A/GHgoRIioMHC//t//y9q7Ouvv14mT54c\n1d5bwx/+8Ieo9bf0HPPfBb2d2mP/kiVL5JJLLgk7Zuedd5YHHnggrG0g7ox/4G4ZufCRmB9t9Rm/\nkS+POibm470+8KKLLnKsxnzooYdkzJjErMU2a9Ys16kt//u//1smTJjg9WPa8bRq7pxzzgkb+9FH\nH5XRo0eHtbGDAAIIIIAAAggggAACCCCAAAIIJEOAyrlkKMdxjdZWE6o1B4M2f+jWYEK2Zg3cmjV4\nyxTdr28wwZs5rt4Ebe2dvZQWxXE/nDrwBXymNC0vp8OGawUmWMvXlwnUhgbCtaFmP29Ih506Mhi0\n5ZnQjaBt4P9s8IRbV6CpqcnxBrL6uUCi2/SBra2tkpMTnF7Y8ZI0ItBvgZ7CsIqNG/s9bm8namjc\nfTv33HMJ5rqD8BkBBBBAAAEEEEAAAQQQQAABBJIqkFVWVub5BcvLy+2YiRjb85t1GDBR999sZtur\nM2uu1ZkpIuvqA9NG1rZJjVmPrbZO12TrEF2jrararM1m3jdXdUhbB5VFDl8RTTEKZGf6zLSQGVJi\npogsNVNH6ppsJWbayGLTVmz2iwqzbb9OGVmk00kWZMo777xhRu8S/vcbI7LHhyXqnz8e36brcNy/\nK03cHbW1tY5j6Dpehx56qO3ri79WszltBxxwgJlqtsSpK6a2Tl2QNGLT8WL5Z0pf7j/iEimxW2Eq\n5/qyjd17HxmbgP8Oi/Uehg0b5njoQQcdJLvttptjX7yNGpLNnz/fcZjioqKYfk4cTzaNPf38XHHF\nFaHTRo4cKXfddZf5I5P+TQkbGsjjDz3dv8eXSshw3H9CWGMeFP+YqRJyIP4JYY15UPxjpkrIgfgn\nhDXmQfGPmSohB+KfENaYB8U/ZqqEHIh/QlhjHhT/mKkScqBX/lTO9fPraTQFDHUmUNOwTddks+8m\naKvVtdlqTbhm1murNiGbBm4atlXXdJqKNoK2fnJzmhHIzvLZUK20xARtxZnml+dmXbZA8KbBWlFR\ntgnXMqTIBHD6ruu15ffr9478nPIDh0AqCtTX1zve1oUXXiilpaW2r7Ky0r67hS7dB1i2bFn33dDn\nxsbGuMK50EB8QMBBYJtttnFo9Te5ravoekKMHW+99ZYsWrQodPSf/vSnlAvmQjfHBwQQQAABBBBA\nAAEEEEAAAQQQGBQChHPma25o0Io2U72mFW117fLB8jyzHptPVn+5yR+ymfYaE8BVVfuDt0oTtHV1\nEWAMiv+FJOghc3J8Mkwr2MxLwzb7bgK3IhOoFeu7Cdq04q2wwARttqItw6zXlqCbYVgEEEgLAQ3N\nnLaPP/7YqbnfbRmZmf0+lxMR6E0gGCQ7Hbd27Vqn5rjbbrjhhtAYWsE5bdq00D4fEEAAAQQQQAAB\nBBBAAAEEEEAAga0hMODCubr6rsC0kaaizVSw1ZoKtto6U9FmKtiqNWQz1W62os0EbbaizVS+RW9F\ngabN0V20IBAhoEHbNlrJZl4atDU1Vpq/yO+QCXvvZIO1Ip0y0gRt+l5gwjf9zHJOEYjsIoBArwK5\nubmOxzzzzDNy0MEH2763Fi6075MPOcTx2O6Nl1x8sTzyyCPdm+zngqFDo9poQMArgfb2dtehCgoK\nXPv627F48WL561//Gjr9jjvuCH3mAwIIIIAAAggggAACCCCAAAIIILC1BFI2nNMla+rMDF71ujZb\noKJNg7YaDdxMFVt1rZk20q7RtqWircYxaNtatFw3HQXyhmjQZirZAkGbrWjTyjWtcjPtWtmmL50y\n0oZuRT6JLDIpL19lH72szHktn3R04Z4RQGDrC7gFF8XFxbLtqFH2BocPH27fg/s93XV2drZjd35+\nvmM7jQh4IVBVVeU6jK4F5+XW0dEhM2bMCA35l7/8RfbZZ5/QPh8QQAABBBBAAAEEEEAAAQQQQACB\nrSWQtHCusqrLBm11tpJNp480VWwmaKszryo7baSpZNPQzVS0VZr3hiamjdxaPxQD5brFuv5aga7N\nZiraTLCmlW0lJmTTNdmC1WyFWtVm2grMccUmaMvIGChPz3MggMBAExjqUtHW2trar0dtbm52PC+D\nfxA6utDojcDmze6zEgwf4Q+XvbmSyJw5c2T58uV2uP/8z/+Us88+26uhGQcBBBBAAAEEEEAAAQQQ\nQAABBBCISyAp4dzitxvk8qu/Muu0mXv1+Xq+YZe13Ho7LTioy+nBbt7TVECDtlDAppVtJlDTsE2D\nteKiwLSR5l0r2mzgVpimD8ptI4AAAi4CbuFcW1ubyxk9N7e2tEQdoFV4bAgkUqCyqtJ1+BHDR7j2\n9bVjxYoVcumll9rTjj76aLnxxhv7OgTHI4AAAggggAACCCCAAAIIIIAAAgkTSEo4V2RCk9DWz/Ss\nz6dFpnkOA0QeErpHhw9dEhEqOozncBpNEQI+g15igjb/+mxa1WYq2ooypNhUsBWbCrfCgmxZ/cWH\nMmRIlxx+2IFmjbYM0xZhHzEmuwgggMBgECgqCq6HGv60/a2ca3KonNtzzz3DB2cPAY8FPvrwI9cR\nJ0yY4NrXl46GhgY5+eSTzR+FdcmYMWNk/vz5pjKe0vi+GHIsAggggAACCCCAAAIIIIAAAggkVqBb\napa4C+kaXUnfYgjPYjik2227TLOpCV+3geIK/LpdLfSx29ihthT5kJXhM1VrpqLNBmz+oK3YfNf+\nqSPNlJKF2eZl3gMVbfpzEMtSRuWZ/mqO0aO3ws9NithyGwgggECkwM5jx0Y22f2amhrH9t4aKzZW\nRB3iVTgSNTANCBiBTrOg8N/+9jdHCw3P9t9/f8e+vjRqIHfBBReIVs7pmC+99JKUlpb2ZQiORQAB\nBBBAAAEEEEAAAQQQQAABBBIukJRwrtBMPThgt4jwLGK3l8d2CfyczjKpn096Pz6qws9prGBbt5vN\nzjIVbYGpIkt1bbbuFW1mvzAQtBXaKSR1jbYMyc8LDsQ7AggggECiBfLNmnM77LCDfPXVV2GX2rBh\nQ9h+rDurv1gddehee+0V1UYDAl4JLF261AZ0TuOdcMIJkpUV/3+WPv7447ZSTq+xYMECoRrUSZs2\nBBBAAAEEEEAAAQQQQAABBBDY2gLx/xYkhicoGMq0hDEw9XyICdJ6j+Z0iNiOirxYW3uXbKxsl8am\nDmlqzJLK6g4ZkuuTvCEZ5j1Dcu27z9+m++aVY15DhvgkNyfT7uea43OyJfBZjzF9elxO4HOOSOYA\nzmkjTdlHAAEEvBaYNGlSVDhXURFdARfLdSsro9f+Gj9+fCyncgwC/RJYuHCh63nHHnuMa1+sHW+8\n+Ybceeed9nAN6Y488shYT+U4BBBAAAEEEEAAAQQQQAABBBBAIKkCSQnndKrHTPMy+Q9bigs0NHVJ\nQ1Nbwu9yaJ6p1DPrzA3R0M8EfDYENJ81zKvcXCLZ2Z3y6cqN/qDPtmvoZ0LAUNDnD/70+LAQMMcE\nhCYE9OCP7xNuwAUQQACBvgrss88+8tRTT4Wdtn79+rD9WHaqq6sdD/vWt77l2E4jAl4IzJ0713GY\nTPOXO2ee+QPHvlgb//Wvf8nvf/d7e/i8efPk9NNPj/VUjkMAAQQQQAABBBBAAAEEEEAAAQSSLpCU\ncM7/VFo9RzqX9G84RS/YcwiYa+968dLoqo6+Pk4wBNQQr3sIqKFgrgnxbHWgDfjMfiAodAoBQ9V/\nemwgIMw2VYL6YkMAAQSSJXDYYYfJ7Nmzwy738ccfh+3HsrN27dqowyZOnCjbb799VDsNCHgh8MIL\nL8jKlSsdh/rNb38b17pwn376qUyZMsWO/eMf/1guvPBCx+vQiAACCCCAAAIIIIAAAggggAACCKSK\nQNLCuY5u65ulysNzHwNfoOcQ0Lvn1xCw2FQC5prKvZaWYWZ6zy55+R9f+SsDzfSeTiGgDfzslKBa\nBajTgwaCP1NJ6A8Ddd9fCUgI6N13xUgIpLPAIYccYv4oIFva2rZUOL///vvS0dFhpg2Ofd7gzz77\nLIrhBz+Ir3IpakAaEOgm8F/XXtttL/zjz3/+8/CGPux9/fXXMnXqVGltbZVp06aJhnNsCCCAAAII\nIIAAAggggAACCCCAQKoLJC2cI5tL9R8F7i8egfAQ0F9Ot/rrhniGdDxXQ8Cigky7DmBkJaAGgBrw\n5dl1ALVSUKsB/dN/5mTruoD+kNAfBGaaADDQF5wa1FQSEgI6stOIQMoIaAB37rnnyr333ht2T6tW\nrZJx48aFtfW088knn0R1H3fccVFtNCDghcD9998v/zbTTjpt1113nYwaOdKpq9c2ndK1rKxMvvnm\nGzn//PPl7LPPFp/Opc6GAAIIIIAAAggggAACCCCAAAIIpLhAUsK5bn/gn+Ic3B4CqS3gDwHbE3yT\noyTX5It33f95KAQcYqcF9Qd+GgLafQ0DA+3Bdf9yg5WANvjTfl0nUKv/zCsUAvqrARP8EAyPwIAV\n0OqgyHBu+fLlfQrn3nnnnTAfXWtO17NjQ8BrgWXLlsl5553nOOyRRx4pV1xxhWNfb43rN2ywwdzn\nn38uZ5xxhtx9993y5ptv9naaa79W4A0fPtz8+8r8pQobAggggAACCCCAAAIIIIAAAgggkGCBpIRz\nLa0JfgqGRwABTwVazIx532xMdAgotsqvuFslYCgEtKGfPwTUSkCd5tNWAgaCQQ39bOWf+R2qBoSh\nlwkBa2qzJCur00xxJuYYT1kYDIGUEDj66KNtkKahR3B78cUX5dRTTw3u9viuU2I+++yzYcdcf/31\nYfvx7HQ5lMo7tcVzDc71RqCzs9ObgVxGqa6udv25LCwslIf+8pd+VbpVVFTIVLPGnE7PeuKJJ8pf\nzDgZGRkud9F789NPPy3f//73ZePGjTag6/0MjkAAAQQQQAABBBBAAAEEEEAAAQTiE0hKONfW2hXf\nXXI2AggMSIGm5i5pavY6BNzGWt14x4qQWZ4J9QpNCJgXCP3ydMpP/RwRAmqVnw36TL+dJlQr/zT8\ncwgBs3WNwEBflvknaR+W+wrdFx8Q6K/ADTfcIMcff3zodA0ntHIolm3x4sXSPZTRirmTTz45llNj\nOkbX/orcmpubI5vYTwGBqqoqx7vwIkxdu3ataJCslW2Rm66b+Morr8i2o0ZFdvW6rwGarjG3YsUK\nOep7R8kTTzxh12Hs9USXA9566y0bzJ122mkEcy5GNCOAAAIIIIAAAggggAACCCCAgPcCSQnnSkt9\n8toLe9i7rzfLcLW0dElrS6d51+qWLmlp7bBtzaZd+3S/tdX0m1/cNzebd/NZf4mv73qMtumryb6b\nfTNOU1OnNJhj2toJAr3/MWFEBNJboMn8c6OpxesQMNpEQ8CCoYEQ0KwPqOGfDQJN6DckzwR++m4q\nATUkdAoBc8x0op+vyjW/aO6SVava7JqBWjWoLw0ItRIwjuKQ6BumJW0FdH24Aw88UN5++237DBp+\n/f3vfzc/V7m9PtNjjz0WdsyNN94Yth/vDuFcvILJO3+DmRoyEdsHH3xgAzSn8G/s2LGy4JUFsvu4\n3ft8aV1b7vDDDxddM1GDv2eeeSamn3mnC7377rtyzz332Jf2/+hHP3I6jDYEEEAAAQQQQAABBBBA\nAAEEEEAgIQJJCee633nBUDG/vPaZpszAq3uvd58bNATU4M8GgP6gT8M9+4oIAZs1+NMQUEM+8/pi\ndYU5TqSkZFhYCKjj2RDQjkkI6N23xUgIDAwBb0LAEotx7/xVrig6pWfRUBP8mZDPhn4mFNQQ0FYC\nOoSAut5fZCWgDfw0JNTgLzB1qL/NTBVKCOhqn0odDz74oOy1116hKrjZs2fLdddd1+M0gZs2bZI7\n7rgj9BgXXnihHHvssaF9Lz40NjZGDaPVTmypJdDe3i5O4Vk8d1lTUyM33XyzXHfttY7DlJWV2UBt\n2LBhjv09Na5evVoOPfRQ+eqrr+xhOo3lT37yk7BTNLzTbfTo0WHtWimqoXFLS4vo/wY+/vhjadD/\nUAxsWsl3zDHHBHd5RwABBBBAAAEEEEAAAQQQQAABBBIukPRwLuFPFLjAUBMCDu1nCFhe/qkdpazs\n273erv4O0l/t5w/37OdgIGjDQX/FX0tLhwn6wkNAWyloQkCnSkBbDajVgSZIZEMAAQS6C2jF8SZT\nYSyir8RtPYWAuYGpPzX0C1YCagi4evVQyTGVf12+htB0oDb006lEA9OG6r5WAWoIyHSg/f/+xo8f\nb9faOuuss+wgOj1f+RvlMqVsiuug15rQJDhloU5nOXfuXNdj+9ux8vOVUadqEKKvofovZ7aUEFi4\ncKHrfQR/RlwPiOjQ4Oz555+Xyy+/3Pw3TfQUpvn5+XLNNdfIL37xi35NQalh2ne/+12prKwMXfml\nl14KfY73wwUXXNDvCrx4r835CCCAAAIIIIAAAggggAACCCAwOAUGbDiXrK/T/L5J8vMTXwloQ0Dz\nC3k73acJ/4IhoFb7+SsEt4SAy5etkvaODNl+ux1suKdBn3/K0IjpQHVaUFNN2KghoAkO2RBAAIHu\nAv0LAQvsEM8s8Fe3dB/P7XN2lk+KC3XaT+dKQA31uoeAGgzmmlAwNyewJqD97DOBX2DNQN03QaG/\nElCPG7gh4PTp0+W9996Tm021km6zZ82WBx54wH6O/D+PP/64zJkzxzaPMmt9Pfvss54HErrO2Ly7\n5kVe2u5feeWVcuuttzr20ZhcgYqKCrn00ktdL7rHHnvId77zHTt16oQJE2T77beX4uJiM6NASaj6\nTMdYuXKl6M+VhmdOW2FhoQ3lLjj/fMnvZzCr008ecsghjqGf0zX70xYMuPtzLucggAACCCCAAAII\nIIAAAggggAAC/REgnOuP2lY4py8hYGmRf6qmsrIRfb7TxqbAmoA6BWhECNjaFqgStIGgvxIwuHag\nTgdq1wMMrAlopwjV8E/3zXqA/n6zLmATIWCfvxROQGCAC+haoZuqEl8JqCFgUYF/OlAN7+z6f1oB\nGHhpCLhxY5Fd82/N2s1muk//MTbk0+k/AyGgXS/QnG/3u4WAumZg1lb4t+pNN91kp/G7+OKL7RSX\nP/7xj+37SSedJKWlpaaacbX86U9/kltuucX+JGnF3IIFC6Km/uvPj5lOI6ghjU6PqCGhhm/r1q1z\nHOq2226T9evXyymnnCJjxoyxYc/uu+9u1lHMcDyeRu8E9Dtpa2uTNWvWyLJly+SGG25w/Z6CV128\neLHoq6+bBr8nn3yyHHbYYfY9Ly+vr0OEjl+0aJGdyrKjI3FVwho8avjHhgACCCCAAAIIIIAAAggg\ngAACCCRTYCv8GjGZj8e1+iqQb36Hlp+XhErAQAjY1mYq/mzYt2XKzyVLlpvKP5/sttseps+EgLpG\noAn6tGowLAQ0oZ+uIdgUEQLqPiFgX795jkdg4AtoCLi5urcQ0B8kLFyyqd8gGgIWBtcEDFT52TUB\ng0GgDfkkNB1oMATMzTWVgA4hYKgiMNCnU4JGhoC//vWvZc8995QZM2bY0EUDOt18Pl9oGkv9fNnl\nl8nvf/d7KSjwVzjag+L4PzNnzpTnnnsu5hEeeeQR0Vdw++yzz8w/63cL7vKeIIFJkyb1GsbFeulM\nMxetBlqjt9tORo0cKcOHD5cRI0fIxAkT5aCDDpKxY8fGOlSvxz355JOSyGBOb+CimRf1eh8cgAAC\nCCCAAAIIIIAAAggggAACCHgtQDjntSjjxSSwJQTUIDC8aqK+ziR3ZisrK7Tv8fyfJrP0TUuL2GDP\nTgmq6/6FqgJN4GerAbVKcEsIqGGhTvepawQ2m6lEtfIvuAZg90pADQEbzfh9XZsnnufhXAQQSH0B\nDQEra3oLAeN/Dg0BC/JMJaB5DbGVfHvI4ce+KOu+fE3qaz+UjRWfSmNTtalSGy+77rKnTD1smmw7\nelt5c1GnWRewPlD5p9N+ahWgvxLQPxWo+WyqCDUEzDbVgD1tOjUmW+oLfPXVVzHdZHl5uT2urKws\npuMTfZBWYvZlKtRUu/9E+zA+AggggAACCCCAAAIIIIAAAgikrwDhXPp+d9x5DAJ5Q0x1inn5A8Dw\nEDCG02M+pFlDwFYNAjulvPxf0t7ukwkT9rP7/spAf0AYGQLaSkCHEFDXEWw2U4Bqf7ASkBAw5q+D\nAxEYFAIaAlbVddjXlgfONYna0ZK3zdEyZpstrd/Uisy3BW4VWxpj/KQh4NAhvlAIGDkdqK4H6H9p\nqOefJjTXHG8DP7MuoFb+aX9onUDTl5Nt1gQMTg0aQwgY461u9cM+P/1s+fKE0+SAyTFOk2imHWVD\nAAEEEEAAAQQQQAABBBBAAAEEEBh8AoRzg+8754kTIDDEBID60hBw5Ih2e4VvjTe/JPd40yrAYAio\nlYCtJsSz4Z9ODaqvQEDoFALquVoBaCsCA6GfnqP7NgTUtsYuae9kXUCPvzaGQyCtBTQErK7XV2dC\nnyM7U0O7kSbM65L7H/kitCagf31ArQ7UkM9UCmq4FwwBbeinoaCZElQ/myDQvxagThHqDwizg23m\nXasBE7m1DS0Qfcm22ybyMoyNAAIIIIAAAggggAACCCCAAAIIIJDmAoRzaf4FcvuDSyDX5H36kkKt\nAkxMJaBOC9bamiGTDjrEBH5d0mpCO63kcwoBNSDUwE+PazbTfOoxTYGpQ4MhoLZr9Z89xvab6UBN\nVWBbByHg4Prp5WkR6FlA/5nQZtYbbWj2SVWt+UuDBG0aAuraqnYdQBP2BSsBbQgY2A+GgP7pPv1T\nfvqnDvWHgDlmus8tfYFpQM25DY0Zks1/WSXom2NYBBBAAAEEEEAAAQQQQAABBBBAYOAI8CukgfNd\n8iQIeCaQk9MphQU++0pUCKg326qVfjb4Cw8B7fqAJvAL9mkloH+twC0hoFbzNDRqOOhvC4aAmysb\npd38gr+rM8v8kt/8st8cx4YAAggEBTQErDGVgDUJqQQcYS/zX3NWSDAE1BAvr1sIOGRIcPrPLZWA\nNujTCj/TpxWCB+xfKKNGZgZvmXcEEEAAAQQQQAABBBBAAAEEEEAAgQEmQDg3wL5QHgeBdBLQKeZ0\nPSoNAr0KAbXyT7eysjL7rv9HQ8DWNl0TMBACBqoBW1tN6KfhngaB+rL7ZrpQbdNqP1MZqJWAtjpQ\n1wE0bcEQMFgZ2NTUSQgYkuYDAh+Qaj4AAEAASURBVAgEBYIhoPQjBLzu99kmnBsaHIp3BBBAAAEE\nEEAAAQQQQAABBBBAAIEBJkA4N8C+UB4HAQSiBfwhoEjBUA0BtRolMRUpbRoAahAYmAbUVgDaaT61\n8i8QAHYLAW0gaKf8NCGgCQw1JFzz5SYbJhYWFtvpQIMhoL43mGN0bDYEEBjYArpeHhsCCCCAAAII\nIIAAAggggAACCCCAwMAVIJwbuN8tT4YAAkkWyDbrUOlL4ggBy8s/s3ddVraP691rCGirATXwM9V9\n/vUANfzzV/v5w8FgX4ep9jOfI0LAYLWgUyVgs64laELGri6CQNcvgQ4EEiig01yyIYAAAggggAAC\nCCCAAAIIIIAAAggMXAHCuYH73fJkCCAwQAWCIeDQOELAWGja2/0hoJ0OtC0iBAxMDeqfDlT7/CHg\nxx+vljaz5t+2o7a304EG1wTU4LDJTgvqnx5UKwX91YKEgLF8FxwzuAQI5wbX983TIoAAAggggAAC\nCCCAAAIIIIDA4BMgnBt83zlPjAACCMQkkGX+DaGv/PzYpwMtL19uxy4rGxnTNfSgjg7/dKA2BIys\nBAyEgFop6K8M3FIJqNOGBqcDDYaAdl1Ac47dN+sBan+jhoIthIAxfyEcuNUFcnOZ1nKrfwncAAII\nIIAAAggggAACCCCAAAIIIJBAAcK5BOIyNAIIIIBA7wKZZgnA/Dx9xR4C9j5q9BGRIaCd/lOnBg1M\n+anrAr777keiFYO77LKbDfiCfXaqT7MmYDD0a7YBYHgIqJWBLSYEbO9kOtBofVr6IkDlXF+0OBYB\nBBBAAAEEEEAAAQQQQAABBBBIPwHCufT7zrhjBBBAAIF+CESHgNGDtLU02sayspLozhhbOjuDlYA6\nLah/OtBWE+xtWR/QtJlKQH+fqQTUvkBAqJV+WkHYbILCZlP5pyGgnQ5U2wKVgISAMX4RaXxYTg5r\nzqXx18etI4AAAggggAACCCCAAAIIIIAAAr0KEM71SsQBCCCAAAIIxC6QYXKVvCH+l4iGLIkJWjQE\ntNN9Bqb81LDvzTeX2Mq/vfeeEJgG1D8daGtrdAjY3OwcAraYdg0J/SFgl1lDkErA2L99b45kWktv\nHBkFAQQQQAABBBBAAAEEEEAAAQQQSFUBwrlU/Wa4LwQQQAABBHoQ0BBwiAkB9RUMAbcbbZI6s02c\nYOYJ9WjTELCtLVgN2Omv+DMBXmubvyrQvxZgYE3AFucQUKcMtWFgqBLQnBsMAU1bcxMhYPevKzen\n+x6fEUAAAQQQQAABBBBAAAEEEEAAAQQGmgDh3ED7RnkeBBBAAAEEPBTQEDA31/+SwsRVAnaZAr1X\nX31T2jtEDjxwsrSa0E5DPRv+6We7vyUE9Pdp6Ofva9JKQHuc/13b7ZSgpl2nFNXPjeZzW3vqVwLq\nFKxsCCCAAAIIIIAAAggggAACCCCAAAIDV4BwbuB+tzwZAggggAACaSPg82kA2CkmB5Th2yQuBFQQ\n/3SgGvyZCsCIELBVA0EbCmq/VgJqtaBDCBho6x4CVtc2mypDn7S2Z/Q7BMzLNRBsCCCAAAIIIIAA\nAggggAACCCCAAAIDWoBwbkB/vTwcAggggAACCEQK5JhpI3NyfFJYoEGYBoHebOXl5XagsrIy+x4M\nAfXdhoChILDDH/iZcFADwhazJqC/QjD1q/q8kWIUBBBAAAEEEEAAAQQQQAABBBBAYHALEM4N7u+f\np0cAAQQQQACBBAkEQ0D/8DpXJfNVJoiaYRFAAAEEEEAAAQQQQAABBBBAAIG0EvDuz8XT6rG5WQQQ\nQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQSSL0A4l3xzrogAAggggAACCCCAAAIIIIAAAggg\ngAACCCCAAAIIIDBIBQjnBukXz2MjgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggkX4BwLvnm\nXBEBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQGCQCvhef/31rkH67Dw2AggggAACCCCAAAII\nIIAAAggggAACCCCAAAIIIIAAAkkVoHIuqdxcDAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBA\nYDAL+LrM5jVAeXm5HbKsrMzroZMyHvefFGbXi+DvSpOUDvyTwux6EfxdaZLSgX9SmF0vgr8rTVI6\n8E8Ks+tF8HelSUoH/klhdr0I/q40SenAPynMrhfB35UmKR34J4XZ9SL4u9IkpQP/pDC7XgR/V5qk\ndOCfFGbXi+Dvp6FyzvVHhA4EEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEvBUgnPPWk9EQ\nQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQcBUgnHOloQMBBBBAAAEEEEAAAQQQQAABBBBA\nAAEEEEAAAQQQQAABbwUI57z1ZDQEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEXAUI51xp\n6EAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEDAWwHCOW89GQ0BBBBAAAEEEEAAAQQQQAAB\nBBBAAAEEEEAAAQQQQAABVwHCOVcaOhBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBDwVoBw\nzltPRkMAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEDAVYBwzpWGDgQQQAABBBBAAAEEEEAA\nAQQQQAABBBBAAAEEEEAAAQS8FSCc89aT0RBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBw\nFSCcc6WhAwEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAFvBQjnvPVkNAQQQAABBBBAAAEE\nEEAAAQQQQAABBBBAAAEEEEAAAQRcBQjnXGnoQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQ\nQMBbAcI5bz0ZDQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAFXAcI5Vxo6EEAAAQQQQAAB\nBBBAAAEEEEAAAQQQQAABBBBAAAEEEPBWgHDOW09GQwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAA\nAQQQQMBVgHDOlYYOBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBLwVIJzz1pPREEAAAQQQ\nQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEHAVIJxzpaEDAQQQQAABBBBAAAEEEEAAAQQQQAABBBBA\nAAEEEEAAAW8FCOe89WQ0BBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBFwFCOdcaehAAAEE\nEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAwFsBwjlvPRkNAQQQQAABBBBAAAEEEEAAAQQQQAAB\nBBBAAAEEEEAAAVcBwjlXGjoQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQ8FaAcM5bT0ZD\nAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAwFWAcM6Vhg4EEEAAAQQQQAABBBBAAAEEEEAA\nAQQQQAABBBBAAAEEvBUgnPPWk9EQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQcBUgnHOl\noQMBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABbwUI57z1ZDQEEEAAAQQQQAABBBBAAAEE\nEEAAAQQQQAABBBBAAAEEXAUI51xp6EAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEDAWwHC\nOW89GQ0BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABVwHCOVcaOhBAAAEEEEAAAQQQQAAB\nBBBAAAEEEEAAAQQQQAABBBDwVoBwzltPRkMAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEDA\nVYBwzpWGDgQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQS8FSCc89aT0RBAAAEEEEAAAQQQ\nQAABBBBAAAEEEEAAAQQQQAABBBBwFSCcc6WhAwEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBA\nAAFvBQjnvPVkNAQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQRcBQjnXGnoQAABBBBAAAEE\nEEAAAQQQQAABBBBAAAEEEEAAAQQQQMBbAcI5bz0ZDQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAAB\nBBBAAAFXAcI5Vxo6EEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEPBWgHDOW09GQwABBBBA\nAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQMBVgHDOlYYOBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAA\nAQQQQAABBLwVIJzz1pPREEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEHAVIJxzpaEDAQQQ\nQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAW8FCOe89WQ0BBBAAAEEEEAAAQQQQAABBBBAAAEE\nEEAAAQQQQAABBFwFCOdcaehAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAwFsB3+uvv97l\n7ZCMhgACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACTgJUzjmp0IYAAggggAACCCCAAAII\nIIAAAggggAACCCCAAAIIIIBAAgR8XWbzetzy8nI7ZFlZmddDJ2U87j8pzK4Xwd+VJikd+CeF2fUi\n+LvSJKUD/6Qwu14Ef1eapHTgnxRm14vg70qTlA78k8LsehH8XWmS0oF/UphdL4K/K01SOvBPCrPr\nRfB3pUlKB/5JYXa9CP6uNEnpwD8pzK4Xwd9PQ+Wc648IHQgggAACCCCAAAIIIIAAAggggAACCCCA\nAAIIIIAAAgh4K0A4560noyGAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCDgKkA450pDBwII\nIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAALeChDOeevJaAgggAACCCCAAAIIIIAAAggggAAC\nCCCAAAIIIIAAAgi4ChDOudLQgQACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggIC3AoRz3noy\nGgIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAKuAoRzrjR0IIAAAggggAACCCCAAAIIIIAA\nAggggAACCCCAAAIIIOCtAOGct56MhgACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggICrAOGc\nKw0dCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCHgrQDjnrSejIYAAAggggAACCCCAAAII\nIIAAAggggAACCCCAAAIIIOAqQDjnSkMHAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAt4K\nEM5568loCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCLgKEM650tCBAAIIIIAAAggggAAC\nCCCAAAIIIIAAAggggAACCCCAgLcChHPeejIaAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAA\nAq4ChHOuNHQggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggg4K0A4Zy3noyGAAIIIIAAAggg\ngAACCCCAAAIIIIAAAggggAACCCCAgKsA4ZwrDR0IIIAAAggggAACCCCAAAIIIIAAAggggAACCCCA\nAAIIeCtAOOetJ6MhgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggg4CpAOOdKQwcCCCCAAAII\nIIAAAggggAACCCCAAAIIIIAAAggggAAC3goQznnryWgIIIAAAggggAACCCCAAAIIIIAAAggggAAC\nCCCAAAIIuAoQzrnS0IEAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIICAtwKEc956MhoCCCCA\nAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACrgKEc640dCCAAAIIIIAAAggggAACCCCAAAIIIIAA\nAggggAACCCDgrQDhnLeejIYAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIICAqwDhnCsNHQgg\ngAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgh4K0A4560noyGAAAIIIIAAAggggAACCCCAAAII\nIIAAAggggAACCCDgKkA450pDBwIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAALeChDOeevJ\naAgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgi4ChDOudLQgQACCCCAAAIIIIAAAggggAAC\nCCCAAAIIIIAAAggggIC3AoRz3noyGgIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAKuAoRz\nrjR0IIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIOCtAOGct56MhgACCCCAAAIIIIAAAggg\ngAACCCCAAAIIIIAAAggggICrAOGcKw0dCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCHgr\nQDjnrSejIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIOAqQDjnSkMHAggggAACCCCAAAII\nIIAAAggggAACCCCAAAIIIIAAAt4KEM5568loCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAAC\nCLgKEM650tCBAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAgLcChHPeejIaAggggAACCCCA\nAAIIIIAAAggggAACCCCAAAIIIIAAAq4ChHOuNHQggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAA\nAggg4K0A4Zy3noyGAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAgKsA4ZwrDR0IIIAAAggg\ngAACCCCAAAIIIIAAAggggAACCCCAAAIIeCtAOOetJ6MhgAACCCCAAAIIDBCBTZs2yUcffTRAnobH\nQAABBBBAAAEEEEAAAQQQQACBVBHISpUb4T4QQAABBBBAAAEE0kNgwYIF0tzc3K+b9fl8kpWVZV/Z\n2dlSWFAgxSUlUlpaKsOHD+/XmF6f9PXXX8ucOXPklltukQkTJsh7773n9SUYDwEEEEAAAQQQQAAB\nBBBAAAEEBrEA4dwg/vJ5dAQQQAABBBBAoD8CDz74oGzYsEGWL19u3/szhtM5GRkZMnHfiTJ1ylQ5\n4ogj5NhjjxUN85K1rV27Vm699VaZO3dusi7JdRBAAAEEEEAAAQQQQAABBBBAYBAKMK3lIPzSeWQE\nEEAAAQQQQCAegYcfflheffVVWb9+vVRXV8vlV1wez3Chczs7O+Xdd96V2267TY4//njZddddRYPA\ntra20DGJ+LBq1SqZOXOmjBkzhmAuEcCMiQACCCCAAAIIIIAAAggggAACYQK+119/vSushR0EEEAA\nAQQQQAABBPoocO+998pDDz3keNaZZ54pe+61p+y4w44ybNgwKTBTWba0tMhXX30lX5pqtVWffy6P\nPfaYaDjntO2www5y++23y8iRI526+922evVqeeSRR0Sn6XTbxo4dK//7v//r1k07AggggAACCCCA\nAAIIIIAAAggg0GcBwrk+k3ECAggggAACCCCAQKSABm1nn312ZLPdnz9/vmy33XaOfcHGiooKucVM\nKfnvf/0r2BT2XlhYKHfccYdoWBbvpmvK3X333fLaa69JcXGxZGZmSmVlpeOwhHOOLDQigAACCCCA\nAAIIIIAAAggggEAcAr4us8VxvuOp5eXltr2srMyxP9Ubuf+t+w3hj388Avz8xKMX/7n4x28Yzwj4\nx6MX/7n4i+v6cGvWrLFTRsaifP/998t5553neOiQIUPkyy+/lBEjRkT198Vfx9CKOQ0Td9xxRzvW\niy++aKfSjBx44sSJ8t5770U2e77fl/v3/OIeDMj9e4AYxxD4x4Hnwan4e4AYxxD4x4Hnwan4e4AY\nxxD4x4Hnwan4e4AYxxD4x4Hnwan4e4AYxxD4x4Hnwale+bPmnAdfBkMggAACCCCAAAIIiJ2yMl6H\nn/zkJ3LOOec4DtPc3CyzZs1y7OtLo64td8UVV4SCOT33uOOOkxNOOKEvw3AsAggggAACCCCAAAII\nIIAAAggg0C8Bwrl+sXESAggggAACCCCAQKTA9ttvH9nUr31dX27o0KGO5951112ydOlSx754G484\n4oh4h+B8BBBAAAEEEEAAAQQQQAABBBBAoFcBwrleiTgAAQQQQAABBBBAIBYBXRfOi22bbbaR66+/\n3nUoXS8uEduoUaMSMSxjIoAAAggggAACCCCAAAIIIIAAAmEChHNhHOwggAACCCCAAAII9FfA5/M5\nnurW7nhwoHHfffd17X43QWvAFRQUuF6TDgQQQAABBBBAAAEEEEAAAQQQQMArAcI5ryQZBwEEEEAA\nAQQQQMAzgXG77+461tuLF7v2xdORm5sbz+mciwACCCCAAAIIIIAAAggggAACCMQkQDgXExMHIYAA\nAggggAACCCRTYNTIkTJkyBDHS3Z2dsrGjRsd++JpzMzKjOd0zkUAAQQQQAABBBBAAAEEEEAAAQRi\nEiCci4mJgxBAAAEEEEAAAQSSKdDV1SWtra2Ol8zIyJARI0Y49sXTmOHjP43j8eNcBBBAAAEEEEAA\nAQQQQAABBBCITYDfQMTmxFEIIIAAAggggAACSRT49NNPRSvknLaDDjrIqTnuNqe18Zza4r4QAyCA\nAAIIIIAAAggggAACCCCAwKAWIJwb1F8/D48AAggggAACCKSmwPvvv+96Y/vvv79rHx0IIIAAAggg\ngAACCCCAAAIIIIBAqgsQzqX6N8T9IYAAAggggAACg1CgvLzc9alPOeUU1z46EEAAAQQQQAABBBBA\nAAEEEEAAgVQXIJxL9W+I+0MAAQQQQAABBAaZwD//+U+58847HZ96+vTpcvjhhzv20YgAAggggAAC\nCCCAAAIIIIAAAgikgwDhXDp8S9wjAggggAACCCAwSATWrVsnJ554ouPTZmZmyi233OLYRyMCCCCA\nAAIIIIAAAggggAACCCCQLgKEc+nyTXGfCCCAAAIIIIDAABeoqKiQ008/XRoaGqKeVIO55557Trbb\nbruoPhoQQAABBBBAAAEEEEAAAQQQQACBdBIgnEunb4t7RQABBBBAAAEEBqBAVVWVXHnllTJ69GhZ\ntGhR1BPus88+8sknn8jxxx8f1UcDAggggAACCCCAAAIIIIAAAgggkG4CWel2w9wvAggggAACCCCA\nQHoLNJrKuK++Xidfrf1K3lr0llw1+yppb293fKhf/epXcuONN0pubq5jP40IIIAAAggggAACCCCA\nAAIIIIBAugkQzqXbN8b9IoAAAggggAACaSYwffp0KS0tlY2bNsnS99+X5ubmHp9A15w766yzbKVc\nYWFhj8fSiQACCCCAAAIIIIAAAggggAACCKSbAOFcun1j3C8CCCCAAAIIIJBmAgsXLozpjouLi+30\nldtuu21Mx3MQAggggAACCCCAAAIIIIAAAgggkI4CrDmXjt8a94wAAggggAACCKSRwP/93//Je++9\nJ++bqrkPP/xQXnvtNfH5fFFPUFNTIw899FBUOw0IIIAAAggggAACCCCAAAIIIIDAQBKgcm4gfZs8\nCwIIIIAAAgggkIICe+yxh+y4445hd3bvvffKjBkzwtp057LLLpPDDjtMDjjggKg+GhBAAAEEEEAA\nAQQQQAABBBBAAIGBIEDl3ED4FnkGBBBAAAEEEEAgzQTOO+88OeOMMxzv+vTTT5f6+nrHPhoRQAAB\nBBBAAAEEEEAAAQQQQACBdBcgnEv3b5D7RwABBBBAAAEE0lRg3rx5MmrUqKi7X716tfzyl7+MaqcB\nAQQQQAABBBBAAAEEEEAAAQQQGAgCaRXOrV27diCY8wwIIIAAAggggAACRqC0tFSeeuopR4v7779f\nHnvsMcc+GhFAAAEEEEAAAQQQQAABBBBAAIF0FkircO7Bhx6UKVOmyAcffJDO5tw7AggggAACCCCA\nQEDgkEMOkauvudrR44c//KFoFR0bAggggAACCCCAAAIIIIAAAgggMJAE0iqc+/V//Fp22mknmTBh\ngp3qqLKyciB9FzwLAggggAACCCAwKAV+99vfiYZ0kVt7e7ucddZZ0tnZGdnFPgIIIIAAAggggAAC\nCCCAAAIIIJC2AmkVzuXn58uDDz4od911p/zxj3+UHXfcUd544420xefGEUAAAQQQQAABBEQyMjJk\n/vz5kp2dHcWxaNEiueaaa6LaaUAAAQQQQAABBBBAAAEEEEAAAQTSVSCtwrkg8kUXzZQFCxZIY2Oj\nlJWVia5JwoYAAggggAACCCCQvgL6R1ePPvqo4wPMnj1b3nzzTcc+GhFAAAEEEEAAAQQQQAABBBBA\nAIF0E0jLcE6Rv/e978lzzz1nvc877zy57LLLpKurK938uV8EEEAAAQQQQACBgMBpp50mF154oaPH\ntGnTpLq62rGPRgQQQAABBBBAAAEEEEAAAQQQQCCdBNI2nFPkk046Sf7nf/7Het98880yc+bMdLLn\nXhFAAAEEEEAAAQQiBG677TYZN25cRKvIhg0b5KKLLopqpwEBBBBAAAEEEEAAAQQQQAABBBBIN4G0\nDucUW6vmjjjiCOt+9913y5///Od0+w64XwQQQAABBBBAAIGAgK4x/OSTTzp6PPbYY3Lfffc59tGI\nAAIIIIAAAggggAACCCCAAAIIpItA2odzCn3XXXeFvH/605/KokWLQvt8QAABBBBAAAEEEEiOQGdn\np+OFOjo6HNvdGr/97W/LH//4R8fuGTNmyJK333bsi7fRaYp0p7Z4r8P5CCCAAAIIIIAAAggggAAC\nCCAwuAUGRDinUx/917X/Ffomjz32WPnmm29C+3xAAAEEEEAAAQQQSLxAVVWV40Xq6uoc23tq/PnP\nfy4nnnii4yHHHnecbKiocOyLp7G1tTXq9Obm5qg2GhBAAAEEEEAAAQQQQAABBBBAAIF4BAZEOKcA\nl/7npbLrrrtai5qaGvn+978vbW1t8dhwLgIIIIAAAggggEAfBCpcAjP9b7P+bLq2cHFxcdSpmzZt\nkmnTpkl7e3tUXzwNhHPx6HEuAggggAACCCCAAAIIIIAAAgjEKjBgwrmcnBy54447Qs+tU1vefvvt\noX0+IIAAAggggAACCCROQKeurKysdLyAW0Wd48HdGkeMGCFPPf1Ut5YtH9984w0b0DU2Nm5pjPOT\n01gbN26Mc1RORwABBBBAAAEEEEAAAQQQQAABBMIFBkw4p4/1ve99TwoLC0NP+Pvf/16qq6tD+3xA\nAAEEEEAAAQQQSIxAT2v+/u1vf+v3RY84/Aj5zW9/63j+c889J1OnThW3ij3Hk3poXPn5yqjehoYG\n0RcbAggggAACCCCAAAIIIIAAAggg4JXAgArnMjIyZObMmSEbndbyj3f8MbTPBwQQQAABBBBAAAHv\nBTQcu/jii10H/vOf/yzLly937e+t4+qrrpIDDjjA8bC3335bxo8fL/Pnz5f+rG0XHHTt2rUy7655\nwd2w9yuvvDJsnx0EEEAAAQQQQAABBBBAAAEE3AS6ukRaWkTq6rtk0+ZO+frrdvlidZus+LRVli1v\nkiXvNMrCRQ3yj9fq5eX/q5XnXqiSx56slAf/sknuvW+j3DFvg9z23+vdhqd9gAhkDZDnCD2GrjV3\n0003hfavmn2V/Gzmz2SbbbYJtfEBAQQQQAABBBBAoP8C69ats2v7rl69WpYtWybXX3+9fPPNN64D\ndnZ2yj777COzZs2SyZMnyy677CI6Jfno0aMlOzvb9bxgR1ZWljz66KOy++67i44Vuem0mfPmzZN7\n7rlHpk+fLgceeKBMnDjRXsttfL1fDRX13Pfee09uvfVW0edy2m677TZZv369nHLKKTJmzBi7Dp7e\ni/5hGBsCCCCAAAIIIIAAAggggEDqC+j/K9naal5tItU1WWYNc7GBWUtLpwnSOk1fl7Toq6XLHNNh\n2/RzS7O/v0mPM+frMc3BNn3X/aZO0f4ms9/YLNKl6ZwH28W/3NaDURgiVQWSFs5pFduHH35ofwmi\nvwgpKiqSnXfeWXbaaSf72SugfffdN2woXf9kzty5cs3VV4e1s4MAAggggAACCCDQP4FJkya5Blk9\njXiVqYDrvr3zzjuy3377dW9y/bzrrrvKQw89JGeffbbrMRrcPfzww/alBy1ZskT2339/x+N1tgWd\nFjPW7ZFHHhF9BbfPPvtMdtttt+Au7wgggAACCCCAAAIIIIAAAn0UML+6t2GZVpm1tmpAZl42HPMH\nYjY400DNhmYmMAv0azimx2og1myO15cGadrebEM0f2D2/9u7Ezi5qjL//6e3pLuz77IHkDVBkH0J\nTWTiBEUWFReccRmUHzIvlBnRn4jOCCKb4k9gwFFwUJGRv6CAiCC8wJEeNkFZE0ISyL6RQEhIOt3p\n9f88z7mn6tbWXd1V1V3V/bkv26p7zzn33npXE0h96zmnTfvIsZbW9LAsFPIs6+cdD253iVTkC62D\ne02uNngCJQ/nHn30UXf77bfbT6fG0Vm26dOnu8svv9ydc845Tr8ZXcim344+6aST3GOPPZY4zZVX\nXOG+dMEFTq/DhgACCCCAAAIIIFCYwJo1awo7wQBHf+pTn3L6k21rbm62w01NTdmaM47de++9Gcc4\ngAACCCCAAAIIIIAAAgiMdAENzKxCTMKujg4NvXxgZsGYhmPys3BRg7RVuW0tW6xyzCrMNBSLwjLt\na6GZhmUWmGlw5s+lgdkOOdYq+2y9CxDO9e5T6a2FJWG9vPrly5fbFEd//OMfE71mzpxpwdlOicJ1\nfZDXX3/d2rSS7rzzzrP+10uV2+mnn54YM5Anc+fOTQnn9FvU999/v4V/AzkfYxBAAAEEEEAAAQQQ\nQAABBBBAAAEEEEAAAQQQGAoBrXnRKRl1CkUNxywwk6oqnXIxZV+DtPYuX0kmbX6axlBdFtu3cEyD\nMwnM5JytMi2jVZlJIJffNj7q9kZ+3ek1IAENPRsbqwY0lkHlL1CScO5Pf/qTi09b9M1vfctd9JWv\nuEmTJqWI3H333U7XiAubrltyxhlnuF/84hfuM5/5TDjc78cjjzwyY8x9991HOJehwgEEEEAAAQQQ\nQAABBBBAAAEEEEAAAQQQQACB/gpoVZOtYaZTLkpg5kOyqNLMjmmQFvZ9YNYeVZctfm2crHlW4554\nZr2fjjE6rlMw2vSMsq+BWYuEZx2d+QZm/X0F9C93gfYOWSjP1ZT7bXJ/AxQoejh3ww03JIK5mpoa\npwFcrkq4j3zkI+7GG290F8iUk/Hts5/9rJsxY4abP39+/HDez3Udu/RNw7m2tjZXX1+f3sQ+Aggg\ngAACCCCAAAIIIIAAAggggAACCCCAQIULWFhmoVkIxXzYFarLfOWZVJzFKsxCYKaVY1pJ1qaBmj5m\nCcx0ikZdv6yjq9DArDGSfqfCxbn9YghcvPw/3Ls6Vmecauq/SoXiuMxwrvH9H3I7prGEVwZYhR0o\najj3u9/9zl144YUJghtv/I+cwVzo9MlPfjIjnNO2j33sY+6ddwb2h9Mee+wRTp947OnpcY8//rib\nN29e4hhPEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBEonEKZj1IqwDgm+tBpIwy+tNvMVZxqkRfs7\nu+S5VKRFwZgFZtYmYZlOvSjHdS2zTZumSkWZczf+1+sWtLXs6HGd3YUGZqUz4MwI9Cbwnp2Pu11r\nXszs8tfMQ3qkds7J2Rs4WlECRQvnli5d6s4666zEi58wYYL7/Oe/kNjP9WTKlCnugAMOcIsXL07p\nsm3bNvfCCy+4ww47LOV4PjsTJ050dXV1siilfE0itj344IOEczEPniKAAAIIIIAAAggggAACCCCA\nAAIIIIDAyBKQGgYJtKpdZ5dzb74l0zFqEKahmVaMSThmj/Y8CtLkmK1NJlVj2pYemGnAptMxamhm\nAVrUp7WkgVmoJpKEjg0BBBCoQIGihXPnn3++zJOb/MPwgi99yQKyfEyOOuqojHBOxy1ZsmRA4ZyO\nPfyII9xfnn5anya2O+64w/3gBz9I7PMEAQQQQAABBBBAAAEEEEAAAQQQQAABBBAYaoFuWVrKV5jp\nY7dUmPnATKdf9FMwamWZrzBr79DqMj0u+7ZGmYRjFrA5C8jCGFu/TIMyqTjTdt3f0eaczjDm3LTo\nJS8d6pfO9RFAAIERKVCUcO5pCcEeffTRBOC4cePc352cf2nl2Wef7W6//fbEeH1SVVU14DXndPxB\nBx6YEc6tX7/ebdy40U2fznysasSGAAIIIIAAAggggAACCCCAAAIIIIAAAtkFuqSyrF0m5rJpFiUs\n09CsXQIxnZZx2fLRUqggn2HWtFg1mVac2TSNUWCmfTUQs2oyPSY/ul6ZrWMWBWZagaaBma5hxoYA\nAgggMLIEqh577LGC//S/+OKL3VNPPZWQO+bYY933rrkmsZ/Pk0ceecTdeuutbu3ate7oo492Z5xx\nhpszZ04+Q7P2+fGPf+y0Ui5902vsu+++6YfZRwABBBBAAAEEEEAAAQQQQAABBBBAAIEyFujpqbKp\nGDs75TH66eiIP3f+eFeVLHdTZcFah/TT510SpLXbGJnOUR7btb3dSZv8dFbLjz+PHtfnO1NXyylj\nFW4NAQQqXeBXr34i+5pzOV7YC//2C/fOnjNztHK4UgQKrpxrbW1NCeb0hc/ca69+v/558+bZenBd\n8pWUmpowZ3C/T5MYUF9fn3gef7Jly5b4Ls8RQAABBBBAAAEEEEAAAQQQQAABBBBAYIACPjDTYMsH\nYxZ2ScDVKYFXCND0sUPaNSSzR93XPhqMdUkwJs/b2/0aaDpe++/U4EweO6W9vd0HZu1yDjYEEECg\n3AVqq3vcqLoeN3q0c3W1Pa62Rn5kf5Q8r6ursmN1dd3yvNuONazUMt1yf1WVf387pQx63bp1rra2\n1o0fP95+dAbHodpqm5qaCrp2c3NzxvjddtvNjhV67owT9+PA888/n7X37rvv7vq6r/Ca+uqX9QJl\ncJD7H9o3AX/8CxHg96cQvcLH4l+4YSFnwL8QvcLH4l+4YSFnwL8QvcLH4l+4YSFnwL8QvcLH4l+4\nYSFnwL8QvcLHDnd/Dbm0Mqxd1ymLpmS0NcpkqkV/TKZntDXMdL/Lpl9s13XLdG0ye9T1y/y6Zv7R\nT8Fo0zNqH1nHrKWtRwK0giflKvzN5AwIIIBAHwKjRlW5MaOrXX29fnmgTcIz52ZMHycBmh6rdqOl\nffSoatcg7fZcjo+W4/Wjq9yoUTXyo32cf5Q2Pd9oadPxvk1CNzmn/vR7e3qic8v6ParPnCPfMz70\n0EMy7a4sSFnAVl2tDqPEY3TiZ/LkybbEWGNjY8qZB+vfv9u2bbPZGjUr+stf/uJeffXVlPvQ5dk+\n8YlPuDPPPNOdeuqpKW297RTr/guunItPZxlueJdddglPh+wx/Q0PN6JrzrEhgAACCCCAAAIIIIAA\nAggggAACCCAw2AIWlllopmuQ+TXMNOzS9cl0f6eFZT40Sw/MdH2yNgnD2rSPPK5dN1mmaXTuv3+z\nwq9nJuPbdP0yArPBflu5HgIIDFCgp6fddXW1u+6unfLT7qZNaXTv3meGa2ioSQRm9RqeWUDmQzQN\nxXR/9OgaH4xJGBYCslEaqEm79rHATPtJoJY+UV8yXJk1wDsfXsNuu+0298Ybb7gFCxbYY7FfXZ0k\nlgceeKA75phj3JFHHinhaKfbf//9i32ZlPP94Q9/cJ/73Ofcm2++mXI8vqPh3U9/+lP7mT17tvvh\nD39oszvG+5TyecHhnK4Rl75pSjrUW65wboP8krEhgAACCCCAAAIIIIAAAggggAACCCDQ3e3XHQuh\nWEeiksxXm/mKMw3Sov2dXfJcqtE0SNMwTAMza5PQTCrJtMKsVQIyO5+EZL4CrdvtaJUKs65iV5iF\n8gy5ITYEEECgSAIamI2W1GD61DEWemmlmQZkWiWmFWYajL355hsyNWCPO+Dde1h1mbbVyFSO37v2\nJrdo8VLnelqlqrbVKtS6Ona4nq5W193dKo/bXXfPO9K+Q+5WpnLMsp177rnuh9fcnKWFQ6US+O//\n/u/Eqbdu3equuvoqd83V1ySOFfqkQ0q5X375ZfvRMEw3zZD0vdbKtfe9732FXiIxXouzvvSlL7k7\n77wzcSyfJxpMvv/973eXXnqp+/a3v53PkIL7FBzObdq0KeMmNmzYkHFssA/kCuc2Es4N9lvB9RBA\nAAEEEEAAAQQQQAABBBBAAIG8Bbq7dW0yCcA6fChmQZiEZn4Kxi7/GCrMOjQkkykZJQjbKaGY9mkN\nQZo818BMAzYNzDREswBNj8ux7S0zXI/lZYvzvjc6IoAAAoMtUFutVWJOpluUKRc1JIsCMqsok+c2\nLWNUIabta9audrf96l6pSGuzcOxz//AB98EPnmTTOGrf8BOqy8J0jR867VT36CMPJF7eo48+6k4+\n+eTEfvxJc7MEcLI1NU1NHL7qqqvcE4/9e2Jfn0ydOtUddfxRbvbsOVYt9fjjj7tnn80s9okPuuWW\nW9zee+/tvvGNb8QP83yQBCZMmOCuvupqCWHr3WWXXZb1qlplNnfuXKuCmzVrlk1dOXHiRKfTRG7f\nvt299dZbVrG2dOlSpxVsv/71r+39j5+sW/5l/5Of/MR+PvShD7kf/ehHbo899oh36fdzPadOUZlt\ntsd8T6bhnBak3Xxz6QPigsO5bNNErl+/Pt/XWrJ+Ordpti1XaJetL8cQQAABBBBAAAEEEEAAAQQQ\nQAABBJxUPPj1y3baGmbdrkPCrfUb6uTDtir34kutKYHZTlm/zE/T6AOzxBpmMtaqzKKqs1BhpoGZ\nVpjp/g5Z8qbHJ2awI4AAAmUrUFejgVmVBWb1Os1ig68o81MwJgM0W8NM+tn6ZBqqSRWahmGvv7bU\nKs+OPGKWb5MpGq2PTscoAVoIzHT9sv5MUqfhxLvffaxbsXy52VVVVblvXXKNy+cz8Qu//MWUcO5f\n/uVf3EsvvZTXe/Dcc8+5Sy65JNH3pJNOcldeeaU7/vjjE8fCE62i+v3vf+/OPvts+XeF/Ishy6bn\nOv30050GP2xDI/DpT386Zzh39913u/322y/rjWlApz8zZ8608E7f55///Ofuf/7nf9zXv/51p+u/\npW/333+/e+CBB9xNN93kvvjFL6Y3571/zTXXZARzFhAfpQHx7FhA/Gyv5xysgLjgcC7bP9jr1q3r\n9cUNRmNra2vWy2iCy4YAAggggAACCCCAAAIIIIAAAghUukCXzAjWLhVmNs2ihGUaiLVHVWPJNcw0\nVNMKNJmOUdptekarMPOBmFWT6RitKrPqMqkw0yq0aMpGDcxaZErG7Nvk6PCq7M0cRQABBAZRQAOz\n+gYJzCTcqpcATJ/r+mNacWbTMkYVZ3YsBGBWeaZrlsn6ZTLGAjKrQtOxUWAmfevkPBrG6VgNzCTz\nKmhrrtdpHZ078ojGgs6TPlhDk+VRMKdtGnBl+/w+fZzuNzU1pRzWaQj/+Mc/ulNOOSXlePqOBoKf\n/OQnE4c1eNNKqFybrj/2kY98xC1btsx95jOfcX/605+ydr3ooovs+lkbOVhygX333bdo16itrbUp\nI3XaSJ1u8pxzznEtLS0p59ffo/PPP9/p+nd33HGH22uvvVLa+9qpxIC44HBOk8f0beXKlemHBn1f\nyyezbYRz2VQ4hgACCCCAAAIIIIAAAggggAACxRDQwEyryzTs6rBpGTMDMx+odbsXXmyUNXmq3NoN\nmy0Ms0BMQzKtLNOpFzUss8BMn/vAzCrMrMosV2BWjFfBORBAAIHiCNTVVrkxumaZhmAamMlznVZR\nAzMNuqziTB+1j4VjvurMB2EhHPOhmFWTyVhte+65Z6XyzMlaVcfbdI2jRhXnfiv9LP/+76nTSp56\n6ql5vySdzvCEE05wTzzxRGLMd77znT7DOQ1FdPpC3TTMmz9/fmJ8b092220398gjj7gTTzwx5Zph\nzEMPPeRWr15d8FSH4Xw89l9g8uTJbvPmzf0f2MuIj3/84xKCj3IXX3yxW7w4c1ppnZJSf4eeffZZ\nq8Dr5VSJpkoNiAsO5/QNSt9ef/11m5cz/Xh/9zfI+nDvmjGjv8OsP+HcgNgYhAACCCCAAAIIIIAA\nAggggMCwE+jsDFMy6rplWj0mgZlWnEnwlbKvx2VKRpt6Udo0IMsWmOkxW8NMAzPp0yrTMuoaZrrW\nWf+2cVH3Tf0bRm8EEECgAAENzOpquiTkcm7i+HoLuyws0+ArBGhRYGZrnMlxnWpRwzStMPMhmUy/\nKBVkYf0yDcz0uLVJPw3LtMKsVNvKFfIHu2xjx5TqCpV33ocfftgtWrQo5caPPfbYlP2+dv7u7/4u\nJSjToESntnzPe96Tc6hOV6ibriuWbzAXTqbTbuoUggcffHA4lPKor+nzn/98yjF2Bk9AA9Rih3N6\n95op3XDDDe7WW2+135v0V6Sh3WelqvLue+5Jb8q6X6kBccHh3P77758VREtodT7RgW5a1rjvPvu4\nhQsX2vyk/T3Ptm3bsg6ZPn161uMcRAABBBBAAAEEEEAAAQQQQACBwROQJWckCIumXJRgy4dkPgwL\n4ZmfjjEZmLVLKGbBmD06t3zFJKk8c+6BR9b44xqoRZVnGpi1SHjW0dnfwGzwDLgSAgggEAQaJNyy\nqRi1gkyCMK0kC4GZrzrT6jGtOPNVZBaKRdM0jpLpF3VfwzIfnMWmZ9TjMi5MxxgCs+bmZrt0+lSG\n4X54rDyBe7IEGf2dmvDAAw/MeOFawdZbOKfrhR0jIaBWRA1kO+igg9y3v/3trOubvfrqqwM5JWOK\nJKBrx5Vqq6+vt+krt2zZ4vR3LH2759573aWXXmo/6W3p+5UaEBcczh199NHpFrb/29/+1insQKeR\n/NGPfuQOOOCAAQVzegPbckxrySKSWd8uDiKAAAIIIIAAAggggAACCCDgwzJbw8xXmIXALFSX+Uoy\nbdMfX2EWAjOtHNOpF9t0OkYJxkLVmVaYhcBMp2gsbmAW5jFLXbeEtxIBBBAoVEAreuqlskwrx0L1\nmFaa2fplEopt3fq2q6vtcXvPnCH9tKJMp1v0oZjfTwZm/ri0aR+rKvNVZn7qRudqagq9W8aPdIGe\nnh73y1/+MoVhzz33zHu9uTBwv/32C08Tj3fddZf72te+ltiPP9ECGQ16dTrLQrZzzz03azi3du3a\nQk7L2AIF9M/BbFuu49n69nZMz6O/txoKZ6vQu+yyy9yhhx7qPvzhD/d2GlepAXHB4dwhhxwiC2BW\nOf0DIL7p/i9+8Qt34YUXxg/n9VxDvW9+85vu2muvzat/tk5b3n4747DOZap/KLEhgAACCCCAAAII\nIIAAAgggUCkCWl0WQrGOaJpFqyjT6Rmt4kyrzXR6RQ3BuuQnOV2jBWbW5gMzXcvMwjI9jwRpW96Z\nJuuiVbnLf7DEdXSl/r2+Uny4TwQQGDkC+hlkY72zyrIQmNlaZRJ6WXWZVp8lfjQIkx9d20zDszDl\nogVkfjpGX1GmoVlySkadjnG0/PQVmDU3LzP4pqbc0/2NnHeGVzrUAn/961+dzkQX3444/PD4bl7P\n95GZ7NI3Xftrw4YN7l3veld6k1u5cqU7//zz+z2dZfqJdPrEWllEsFPnoY5tjY2NsT2eDkeBadOm\nufvuu8/NmTMn68v79Kc/7d6WrKculP2m9arkgLjgcE7/odF5X3/605+msThb1E9Tzf4GYnq+Dpnf\n4swzz8w4Z74HspW8zps3L9/h9EMAAQQQQAABBBBAAAEEEEAgq0B3t5O/s8p0jB09bus7tfZ8+YoO\nqybTcEyDM12zzKrLOnxgphVlfn0zWZ8sBGmJCrNo/TI5rhVnWnkW1jPr7C51YFYdvcZSXycrJQcR\nQGAYCNRWa9WYryizwCyaatFPzajBmARnFo75KrRQYbZi1XJXW9PjDjv0wCg804AstQJNwzMfoOl0\njc5Vhz+yhoEbLwGBYgqEaf3i59xVAq/+broWWLbthRdecKecckpG0+zZs53OgFeM7fjjj7cqvPi5\n9pq5V3yX58NU4IQTTnCf+MQnsq4/p6GzTtmaa9rUSg6ICw7n9PfhggsuyBrOtbW1WcD2+OOP511C\n+41LvuF0vbrjjjuu36Fe/Hfz6aefju/a82OOPSbjGAcQQAABBBBAAAEEEEAAAQQqX0ADM19hpo9+\n/TKrLrO1yXRfK8vkx4IxDdD8VIsamCXWMJMKNQ3VdF+nX9QqMx2jgVlrVHG2o82lzRwzJcLzFRSV\nL8krQACB4SBQV6Mhl1+zrF4Cr/oGH5BZYKaVY1GAZmuYWdWY9Ndjsp6ZD8NqLCjTUM0HZn7fpmSU\n8SEw00KGgQZmzc0LjLqpaexwIOc1IDCkAi+99FLG9afPmJ5xLJ8DEyZMkGlbt6Z0Xbx4cdZwLqVT\ngTu6rl1YCzGcas899gxPeRzmAl+96KKs4Zy+7Ouuuy5nOFfJAXFRwjmd91OT82xzyz7//PNO16XT\ndDPbnLXhd2rFihU2BaaWMOr23e9+NzT1+1HnJ92xY0fGuPl/Pz/jGAcQQAABBBBAAAEEEEAAAQRK\nI9DVpdVlMsWiTLOYCMyiqrGwhtnCRQ02reL2HVujaRl9hZlO0ajhmIZlPjCTxygwsyo0bZM+WmHW\n0krVV2neQc6KAALFFNDArL5BAjOtJJOKMH2uYZetYabHJEDTfTsWAjCbklGnYJT1y6yKzIdu2ufl\nl150NbLmWdOJR7s6HWfVaVUy9ZeTJWiKeeecCwEEyl3gueeey7jF6TJd4EC2mTNnuhdffDFl6Cuv\nvJKyX4qdnfofjGnbe9/73rQj7A5XgSOPOsrNnTvX/fnPf854iU899ZTT6s3DDjsso62YBwY7IC5K\nOKcAt9xyi9M5aXU6yvRt4cKF7oADDnC6sKPOEfpuWVhy6pQpbs2aNW7RokXuiSefdFdecUXi24eX\nf/dyd/LJJ6efJu/9Zcsyv7E4Y8YMd8wxVM7ljUhHBBBAAAEEEEAAAQQQGJYCGpjt1DXMJPTqkGkZ\ntUqsPS0w84Gan44xUW0m/ayizMKyqKJMwzILzDQ48+eyCjPp2yr7+W3jo24b8utOLwQQQKCIAnU1\nzo3RqjKrJIvWJpNgTAMzDcCs4kwfpaJMAzWrGLPATEO0qJosCsV0ukZrt2qz2HMJy3RKxmJvb2+W\nP8xl22UXeRFsCCAwYgV0nTb9jD19mzw5VPent/S+r2vLpYdzGoyUelu1alXKJbTQR8MStpEjoMud\nZQvnVODmm28u2hSquUQHOyAuWji3++67uzvvvNPpGnPZtp6eHgNUxN62+fPnu29e8s3euvTZ9tpr\nr2X0Off//J+MYxxAAAEEEEAAAQQQQAABBMpBQD5TkcoyDc10nTIfgml4ZmuWRfshMGtv7/KVZBKK\naf8lr423yrMnn11v+xqW2TSNFpxJYCZ9Wm0dM52aMd/ArBxUuAcEEBipAnW1VW6MhGENNhWjD8ws\nLJPwS6vHNCiz4Ez76DENxeTHT8GogZkfM0pCsbC+mVaV6XFrk7BNw7Inn/xfqTCTyrOmppFKzetG\nAIFhIKAz0mXbGhoash3u81hjlnELFvhpaPscXECH9Gt84QtfKOBsDK1Egd6Kq3784x+766+/XqrD\n5V/uJdoGOyAuWjinHmeeeab75S9/adVxA/HZZZdd3O233y7/YVRY7f1LL7+ccfmzPvrRjGMcQAAB\nBBBAAAEEEEAAAQRyCeikIBqY+bXK/Bpmtl5ZVEGmYVlY0ywEZu1Rm1aPWSWZBGM6xtYus2oyDc7M\nryUXAAA980lEQVT8vgZmOyyMKzQwCx+8vJPrpXAcAQQQKFigQcItm4pRK8g0CJPHttbtrlamVdx9\n9yk+LIsCMg3OLBSzajQNwmRKRg3QrIIsCtOsj+8XD8xqi/pJVe8vW4M5NgQQQKDSBXSJp2zbQEOM\nUaNHZ5wu2xJSGZ0KOKDFNmvXrk2cQfOBs88+O7HPk5EhoNWS48aNc9u2bct4wVr8tW7dOrfXXntl\ntBXrwGAHxEX/T55//Md/dMtXLHeXXXqZ69L5UvLc/vmf/9ldddVVbvz4MKVJngOzdLtLKvji21Ey\nX6mui8eGAAIIIIAAAggggAAClS1gYZmEYr6qLBmYJarNojDMB2pdvl8UmOn6ZBqYtUmfNgnG/HSN\n3e6NjVNcZ1eV+9Gtr9sUjS3Sp6OTD2wr+zeFu0dgZAg0RJVjoXrMpl7UEE1DsTAtYwjM5NECMp2i\nUfrYGmZRYOaPS7tWllmFma8y82uYOVeTY9bE5uZmg25qOmRkgPMqEUAAgTIUaGlpyXpXdfqNiAFs\no3LMw6vLWQ008OvrNh555JGULpd95zK3xx57pBxjZ2QInHbaae5Xv/pV1herAW6pwrmhCIiLHs6p\n2klNJ7m77rrL/f73v3c/+9nPskKGg/vuu6/7+c9/7ubMmRMOFfSo682lT2t55ZVXFnROBiOAAAII\nIIAAAggggEBugfb2agmznHvzrW7XYeGYhmY6naKEY/Loq8t0X6vGNDCTcE2mXNRAzQIzqSTTfhqY\naYVZq07LaPsapOkYqTBrlcCsq1SBWfhrkbwINgQQQKAAAf2mf2O9s8qy1MAsCss0OEv8VMs3wNe4\nWgm+Zs3e24IxDcxGaUWZTLmYGZj5KRn1M1NtzxWYFXD7DEUAAQQQqECBXOHcqDr5l8UAttFZKuf0\nNHqdiRMnDuCMfQ+57bbbEp2mT5/uvnrRVxP7PBlZAnvvs0/OF7xmzZqcbYU2DEVAHP4WWui9Z4yf\nMmWKu/XWW93VV19tId1TTz3lVsj8t9vlH+KjjjzSHXHEEW727NlW0VbMxD0d8fjjj3fz5s3LuD8O\nIIAAAggggAACCCAwXAW6u52sQabrl+m0ixKCaeVYIiTrsrCsTQIxDc3aO3xgZlMwWmAm65NZWKZB\nmYRmFpT5wEz3LUCTcRqg6ZjObg3MpkWUS4crKa8LAQQqWKC2WqvEnNM1yywwi6Za9FMz+moyqyST\nzzBDoKbB2GipSvPTLeqUjBqY6b6eK1mBllzDzEmbc9XV/YNqbn7VBjQ1TerfQHojgAACCCAQCWzf\nvj2rxXnnnecmTer/v19ezrJklF5Ap7YsRTj35JNPOs0OwnbTTTfJmqNh2vZwlMeRIjC5l9/Z9DXh\nimkyFAFxycK5AKNJ9+c//3n7CcdK+XjvvfemnP6KK65I2WcHAQQQQAABBBBAAIGhENDATKdkTARm\nGppJyKVVYcuWj3adUrRVXdsi+1pFpgGahGYSfmm7/ugaZjrWAjN53qbhmB3zgZm2a2C2o805nY+f\nDQEEEChngboaDbmqLDCrl8CrvkEqy6J9nVpxdBSg6XNd68xCMT0WC8z02OJXF1gF2XHHvdf30QBN\np2rUc0hYViczevU3MCtnN+4NAQQQQACBdIFc68EtWrQovWtB+9UlKtnW4p6wNTU1ubPOOivs8jgC\nBbToK9emxV+l2IYqIC55OFcKrFznfPvtt92DDz6YaD7jjDPc3LlzE/s8QQABBBBAAAEEEEAgLqBL\nJLfb+mVRhZlVmWk45qdctGDMqs80JNMpGjUok+cSgulzDcesmkyPaVVZFJhZFZqGZdbe7VpkSsbe\nt2h6mHvW9N6NVgQQQKCEAhqYNTb4yrB6Cbfq9bmEXVpxZlVmEqDpvh0LAZi0aVWarV+mgVgI0qxf\nNEWj9K3TfWnTsRqYyeyPRdm6O2WeXNkO2H9gU3cV5SY4CQIIIIAAAkMokGsaynvuuccde9xx/b6z\ni77ylaxrfo0dM6bf5+prwDPPPGOz7oV+N954Y3jK4wgV6K3ac/Xq1SVRGaqAeFiFc9dff33izWls\nbHQ/ufnmxD5PEEAAAQQQQAABBCpDQAMzrRDTsMumZNSpFzX8igVmPlDToMyvabZg4VjXJZVni5Zs\njMIyDc+isMwCM32uAZoPzHyVWV+BWWV4cZcIIDC8Bepqq9wYqRarjwIyC7gk7NLATIMuqzjTR+1j\n4ZhUjUm7D8JCOOZDMZ2O0SrKLEDzz5955glXJ58MzJs3Z3hD8uoQQAABBBAYpgJjx47N+somTJjg\n3jVjRta23g7mWoJKP28v5tYlf/HTGffCdvvtt7tDDjkk7PI4QgU6dUqZHFuu3/Uc3fM6PJQB8bAJ\n5zZu3Oguv/zyBPgdd9zhZsiUmmwIIIAAAggggAAChQvofx/7KRl9YOanWtTnyf0QmLXLlIyJtcok\nDLOQTKvKwnOtOtOQTEMzDczkHK2t8lzCN13rbGBb+Bbn2wMbzigEEECgHwIhMGuQSrKurp2utqZH\n/v45TgIxX2EWKsQ0MAtrmGlgptM2jhqlgVlUYSYVZGH9Mh3jp2LU0Eyf+ykZ+3FbA+o6plHm3GVD\nAAEEEEAAgYoVGJOjoq1d/wI3gK2tTebJz7JVF3me6Ouuu84tWLDArvTVr37V/cM//EOWq3JopAno\n7Ii5Nl1CrZjbUAfEwyacu/baa123LuQh2znnnONOP/30Yr5PnAsBBBBAAAEEECg7gQ6ZjlH/vmXr\nliWqynx1mIZfPizz4VkIzNo1INNgTH5CMKYVamvWTpI1z6rcr367Qtp9kKaBWYuEZx2dAw3Myo6M\nG0IAgWEsoOuSaeWYBmZWUabBmE25KKFYqDKLAjJtt1DMqtF8YGZVZVFYpiGZrXEm57TjGqZFgVlt\n2t+im5ubTbWpadYw1uWlIYAAAggggEC5CuQK5zr0L4wD2Np3+imj40O1Cq+Y2+LFi93XvvY1O+X8\n+fPdNddcU8zTc64KFnjrrbdy3v3UaVNztg2kYagD4rS/VgzkJQz9mJUrV7rvf//7diO6aORNN900\n9DfFHSCAAAIIIIDAiBPo7q7yYZmtYRZCMQ3DktVlWiXm97ViTKZk1LYoMNPKMQ3M2nQ6RgnGrKIs\nqjILgZmuaVaawCys1ZP5F7ER90byghFAoGgCDVHlWKges6kXNUTTUCwKzN58c6Orre12B+y3R1RF\nFqZgrPHBWCwwG62hmVWYRVVmGp7JH181NUW7ZU6EAAIIIIAAAghUlMD48eOz3u9AK+das1TOHXzw\nwVmvMZCDLS0t7owzznA9PT1uzz33dDoDXrGr8gZyX4wpD4HNb2/OeSPTpk7L2dbfhnIIiCs+nAv/\nMCv+e9/7XltAsr6+vr/vBf0RQAABBBBAYJgKyH/vO/3CYAjFOiwck6oyfdRwTB7tuYRkuqaZrWEm\n+dROCcF0vTOtMLOxUWCmUzPqdIx6rK1VgzQdI4HZjhmu04r4Fw9TSV4WAggMB4GqqirXKH9dqpcK\nstTALArLNDhL/Gi1mPxoiGYhmD5Ga5hJIJasKAuBmVabaR/nRkmglm9g1ty81Gibmor7Tdjh8H7x\nGhBAAAEEEEAAgb4E9p45M2uXrVu3Zj3e18GNmzZmdDn00EMzjg30wLnnnus0GNFA7sEHH3STJk0a\n6KkYNwwFXln4Ss5XVazfw5ApDXVAXNHhnE5j+alPfcq9+OKLbr/99nMPP/ywy/VNgZzvKA0IIIAA\nAgggMOgCOhO1D8x0SkYJwSTcWr+hzqZVfOnlVgvLdM2yEKBpH5uC0QIzWZ8sCtIS65ppiCZtuq8V\nZ1p5FtYz6+xmSsZBf4O5IAII9EugtlqnTnQ2BaMGZvVhWkZ9bsGYPEYVYiFQ81My+uqx119bKpVn\nPe7II2ZFUzFqQOanZfTTM8q+hGm6hlmRlwrp1+ukMwIIIIAAAggggEDxBRplzbndd9/drVmzJuXk\nb7zxRsp+vjsrlq/I6DprVnGm777hhhusUk4v8NBDD7liVuRl3DQHKk5A854//OEPWe9bw9wjjjgi\na1t/D5ZLQFzR4dxFF13k7rvvPjd37lz361//2k2dyjct+/uLSH8EEEAAAQSCgAZmun7ZTlvDzFeN\n+YoyXxnmgzI/JaNWnGlgtlOmYNSqsbCGmY61wEyO6fSLWmUWAjStQNPAbIesLa3fTsrcJkeHVmU2\ncQQBBBAYZIG6Gg3M/Jpl9bLWmAZmGpDZGmZRNZkPzLQCTUMy6W9TNeo4qS6r8+GY9vFrl4WKM9m3\n4MwHZnVSYVZoYNbcsMN0jjqycZCVuBwCCCCAAAIIIIBAOQgcc8wxGeHcxo2ZFXD53OvmzZnTCh54\n4IH5DO21j4YuF154ofW588473bx583rtT+PIE9AiLA3osm0f+tCH5AuJhcdZ5RQQF/5qskmV+JiW\nHX75y192t956q/v6xV93V15xJfPSltic0yOAAAIIDI1AV1cIy6IKM6sy89MvWjimwZiFaT3u+Rca\nrfJs3RubbUpGnaIxhGM+MJOqshCYRaGaBmbaJ3dgNjSvm6sigAAC2QQ0MGts0PBLgjIJyOr1uYRi\nGpjpNI3JijMJ06Tdpli0yjOdglHWL7MpF6OwTMO0UT4we+75Z52GZHPnHmfn0wozNgQQQAABBBBA\nAAEEKkXgkEMOcb/97W9TbnfDhg0p+/nsbNmyJWu3gw46KOvxfA8+/fTT7rTTTrPuP/7xj93HPvax\nfIfSbwQJPPHEEzlf7Qc+cErOtnwbyi0grrhw7rnnnnNnnXWW0+T/nnvucWeeeWa+9vRDAAEEEECg\nKAIhMNtp0y76tcvao2kWQ2DWrmucaXC2s8sqx+IVaDb1ooVqUVgWpmOMBWa+yixbdVlvL2Gcb3xs\nU2+daEMAAQSKKlBXK2FXbbeEWz1u4vj6RLWZTbsYKs70sd4HZjbdogRpfg2zqJpMqss0ZPNTMfq2\nxHSMWnkmwVkpA7NVqzrNZNzYqqLacDIEEEAAAQQQQAABBAZD4H3ve5+79NJLUy61aNGilP18dlav\nXp3R7bDDDnO77bZbxvF8DyxZssSddNJJNoPO5d+93J133nn5DqXfCBO4/vrrs77iGlnM+hOf+GTW\ntnwPlmNAXFHh3O9+9zsL5v7t3//NfeVfv+LGjh2brz39EEAAAQSGuUCnfK7qp2TUdcr8NIs+PPPT\nLuqxEJi1y5SMYapFC9BkfTLdX7ZiolWePfjoGj9No4ZmEphZ9Zk+yjl0rTM2BBBAoNwFdBrFRvlp\nsKkYfdhl0zFqdVkiGPOBWVjDTKda9FMwSoWZPNdzaChmIVs0xirRrCJNq8+cVZupRXNzs5E0NTWV\nOw33hwACCCCAAAIIIIDAsBM44YQT5L/N62Rtd/mmcLS98MILrku+XazBRr7b0qVLM7p+8pMDD0XW\nrVtnS1K1ywc2ukTVt775rYzzcwABFbj//vvda6+9lhXjG5dc4iZNmpS1LZ+D5RoQV1Q4N3nyZLdq\n1Sq3yy675GNOHwQQQACBIRbQ/yaMB2Y+NEuuUebDMh+mhcCs3arNNATzwdhODc60oiwK3HTNMg3d\nNDBrbe12LdLW0VmswGx0JNYyxHJcHgEEhqOArkumUy1qYKZVYlpJFgKzrVvflvnze9w+M2dYQGaB\nmPSxNcxszbIoMIvCMl9VppVmsWozDdMkMCvCNPzDkZ/XhAACCCCAAAIIIIDAsBXQAO6zn/2s++lP\nf5ryGpctW+b222+/lGO97bz66qsZzR/84AczjuVzQKfV1C/vrV+/3n3hC19w1157bT7D6DNCBb57\nxRU5X/kFF1yQs62vhnIOiCsqnDvxxBP7sqYdAQQQQKAPAQ3LUkMxH3Ylqs0kDEtUnEmFmT7fKYGY\ntmvlmFWSaWAmwZgGZz4s8+fY8s40+ZZWlbv8/y0pYmDWxwuiGQEEEChAoEEDMqkKC9VjNvWihmi6\nhpmuVaYhWlRRFq8g81MwZgZmuqbZqCgwq6uLwjMJzPr6smpz8zJ7FU1N7yng1TAUAQQQQAABBBBA\nAAEERqqALgWVHs4tWLCgX+Hc3/72txQ+XWtO17Pr77bhjTcsmHv99dfdxz/+cfeTn/ykv6dI6a8B\ny9SpU+XLiCwOnQIzTHZ+9rOfub/IuoTZtiuvvNLNmD49W1Ofx8o9IK6ocK5PbToggAACFSjQI0Vf\nWmGmQdfWd2rt+YoVHRKGabWYhGP6KAGZ39cQTAMz6R8FZlphZn2knwZmVlGm1WW2L8dsKkY53ioV\nZl3FqjDLBV0dNZT6Ormuz3EEEKh0gaoqmY6x3llFmVaZaSDmA7MoLNPgLPGj4Zn8SIi2YsVyqzx7\n72EH2nSMo+XvbDo2MQ2jjEmuYSbrl0kFWl+BWaVbcv8IIIAAAggggAACCCAwcgTmz59vQdrLL7+c\neNEPPPCA+/CHP5zY7+2JTol57733pnS56qqrUvbz2dm4caObe9JJTqfIPO2009ztt9/uqqvD50X5\nnCG1z9133+0++tGPuk2bNllAl9rKXqUL6O/rOeeck/VlzJs3z1188cVZ2/o6WAkBMeFcX+8i7Qgg\nMCIFurtDYKbTMkrVWBSAWUAm4Zg+6hplIUCzqjKdetECM6km02ozrTLTRzlma5bpNI2ybwGajNeK\nM61C6+yOB1lTIm9fQTEi8XnRCCBQdgK11VoB5gMzrTCrD9MyWnAWBWhaLSaBWKhA08BMp1z04ZhW\nmGm77uu5/Bhb00wrzTRgk7H6JciB/p2tuXmBuTU1sSZx2f0CcUMIIIAAAggggAACCCAwKAJXX321\nO/XUUxPX0mBMq9byCceeeeYZ160fiEWbVsydccYZYTevRw3Q5s6d6xYvXuze//fvd3fddZethZfX\n4CydnnzySQvmPvKRjxDMZfEp9aH470MprrVly5ac4fG4cePcL+X3V7/A29+tUgJiwrn+vrP0RwCB\nIRPQ/z7w65dFgZmGZhJy7dTgTH70+cJFDa6zs8ptb90q+3JcA7Oo3VeYOR+YaVCWCM18gKbtGpjt\naHOuR8vZ2BBAAIEyFqir0ZDLr1lWr1MvSmCmFWW2hpmEXSFA08oyXevMQjGbqlHH1UjlmIZivgpN\nH19++UWrPDtxzlEyLWMUrMm0jLKm+IADszLm49YQQAABBBBAAAEEEEAAgWEnoOvDHXXUUe7ZZ5+1\n19bW1uYeffRR9/73v7/P1/rrX/86pc8111yTst/Xjq4td/LJJztdt06r+O655x75u6d8y3MA23PP\nPeduvvlm+9Hhn/nMZwZwFoYUKvD2229nPUUxPjfV35cvfvGLTqc+Td/q5IOIhx9+2L1rxoz0pj73\nKykgJpzr8+2kAwII9CbQ1aXTMfrQzCrMrMpMwi4Lznxopu0+PNOpFvWYD8N8ZVlUTabHtKosBGZR\nqKaBmVad5R+YjY9ud0Nvt00bAgggUBKBuhrnGrWqTMItqyCT9cy0WkwDM1u3LFFxJqFYqBizCjOd\nglGqy7SCLARp+tz6+EqzOjlPsvqs+Le/5W35w1q2XXflPw+Lr8sZEUAAAQQQQAABBBBAAIHBEbjt\nttvcrFmzElVwl156aZ/h3JtvvuluvPHGxA2ed9557gMf+EBiv68nK1ascCeeeKJbs2aNddVKvX/6\np3/qa5i1a3VWu3wbf6es4aL3sWjRItfS0pIYq0HNKaecktjnyeAJvCFrB5ZiW7JkifvSl74knwNL\nhUTaNnPmTPfQww+5/ffbP62l791KC4j59KXv95QeCFScQAjM/DplUXWZVJXp1IxWTaaPusaZPOr6\nZYnpGWV/8dJxUnlW7Z7663oJ0qKwTAIzrSizdc6kj1WY6aMEaGwIIIBAuQvU1Va5MRKS1UcBWag2\ns6kVtXJMK870UftYOCYVZRKuaRXaqFFSYRYLxXSMTcFobbHnUl325JP/KxVmPbbodbmbcH8IIIAA\nAggggAACCCCAAALDU+DAAw+0dd4+9alP2QvUqSHvu+8+d/rpp+d8wVdccUViFimdzvL666/P2Te9\nQcO0OXPmuM2bNyeaHnzwwcTzQp+ce+658kXVgVXgFXrtkTy+s7PT5aqcG6jL1q1b3fe+/313pfy+\nZduampqs4nLy5MnZmns9VokBMeFcr28pjQgUT0DWVHX6o4FXCMh8eKYVYz40C4FZe7sPzHStMgvQ\nZIwGYVZ1FgVmejysWWbrmUl7m1Sl6VpnhW2N0fB3CjsNoxFAAIFeBDTwapSfBpuK0VeLtbVut2kV\nd99tilWIaaWZ/vd3WMMsHpj5kEzCMwnFLGSzvhqmJavNdP0ynZJxsDYN5tgQQAABBBBAAAEEEEAA\nAQQQGGqBs88+2z3//PPu+xKE6PbRj37ULXxlYdZqpDvvvNNdd9111m+GTCN477335h2G6fSTJ5xw\nQtYKKDthEf4vhIxFOBWn6IfAE088kbN3f6e11OBMA+Kvf/3rWX9XGhsb3eWXX27VdFop2d+tUgNi\nwrn+vtP0H1YCGpb5Ncx8YOZDMx+WWWBm1WUhTOvywZqEYhaMyWObBWZaXRYFZ3LsjY1TXGdXlfvP\nn73uWlu7XYu0dXTyge2w+sXhxSAwTAV0XTKtHNPATKdi1EoyW79Mq8h06kU9ps+lX6g6G23VaL7C\nzAKzKCyzkEzaQnjmQzPt5ySAyw7Y3NxsDU1Nh2TvwFEEEEAAAQQQQAABBBBAAAEEEMhL4Hvf+57b\nZZdd3Fe+8hWZJavTzZ41291yyy1WQTdp0iSngclNN93krr32WjufVsw99NBDNiafC7z44ovuX//1\nX12XTuFVom233Xaz8K9Ep+e0OQQ2btzovva1r+Vode6AAw5wRx99tK1veOihhzp9nyZMmOAmTpwo\nn5v76Un1HK+99prT8FfDs2zbuHHjLJQ79wtfcI1jxmTr0uexSg6Ic3w81udrpgMCJRNob6+WMMu5\ntzZnBmYWnknlWKLiTCrM9LlWmGmbVo5pUNam1WUSjGmVmp+OMQRp+ljqwCz8YyUvgg0BBBAoUKBB\nAzIJxEL1mE29qCGahmJpgdm6dWtcjfwRNHvW3hak2RpmMjY1IJP9KFyrqwtrmDlXI2ulsSGAAAII\nIIAAAggggAACCCCAwPAR0PDs4IMPdhdddJFbuHCh+9znPmcvrqqqKjGNpT7/v1//v+5b3/yWGzt2\nbN4v/rHHHitpMKc38sXzv5j3/dBx4AJr166VGd863MqVK93LL7/srr76aqfHetueeeYZpz/93bQ6\n8/DDD3eHH3GE++Yll8gXxBv6e4pE/6eeesrWOqzUgDikCIkXxBME0gV6pOgrTMeoQViHhWMahmm1\nmK8mS4ZlWlWmgZlM3xgFZro+ma1dFoVoOgWjBWYWoIWpGCU0a5Vzd2mF2bToFpak3wr7CCCAwJAL\n6H+0NtbLVIsajkXrk/nALArLNDiLfjRQCxVkus7ZaOsfrWEmFWR+asZoGkZp177WX6Zy1ECtv4FZ\nc/Or5tPUNGnInbgBBBBAAAEEEEAAAQQQQAABBBAYeoH58+c7/XnggQfcn//8Zwvp3pL14WbPmuW0\nWk6nwJw+fXq/b/TLX/6y+81vftPvcQwoP4FjjjmmzzAu37uukQ+ztJJul113dTPk92rq1Klu2vRp\n7rBDD3PHHnusmzlzpgszJxUSzOn96O9fKYM5vUYpA2LCORWuwK27OwRmOi2jBGVRAKaB2bLlo+WX\n0rnq2pZEgGZVZTr1ogVmUk2mQZlWmcUCM1u3TPa14kwrz8J6Zp3dTMlYgb8i3DICI0qgtlorwHxg\npoFYfTQtY5iSUUMwm4pRArFQgabTMWpg5qdbrLHnry5aYFMuHnvsYRac6TSOdSEwk7E6JWN19Yii\n5cUigAACCCCAAAIIIIAAAggggMAwEPjgBz/o9IcNgXSBNWvWpB+qiP0f/OAHTn8qdSOcK+I7p4GZ\nX78sCsw0NNPqMg3Oop/2aA0zrTizKRo1MIvafIWZ84GZHNPpF0NgpqGatmtgtqPNJcqOs9/+xOhw\nZf5Dlf01cRQBBCpNoK5GKsga5EfCrXpdq0wCMw3ILDDTY1GAptVkutbZKOlj65fJNI46HeOoOh+e\naUBmbXpM++i+hG0WrMm0jLpObLECs+5OKfuV7cADJOljQwABBBBAAAEEEEAAAQQQQAABBBBAAAEE\nSiAw7MM5rSDb2e5DM6swsyozXzVm4ZgGY9KuAZntS/vCBWNdp4x7denGRDimFWYalun0jRaYRaGa\nBma633dgVoJ3j1MigAAC/RSoq9UpGTX8itYw0+cSdtkUjbGKM5uWUUIzm3bRgjCdglGqy+xYFJbp\nc/nxwVm1VJhVuWeffdLVyb9Z5s2b0887ozsCCCCAAAIIIIAAAggggAACCCCAAAIIIDAyBKoee+yx\nQZ6zsMp1dDrX2VllP7qWWWdntaxpViVTMUqb7UubPa9yWmnWIX21vVOfy/HQ3x+Pgjdt76q2c7bL\nc23bKf3ZEEAAgXIXqKvR9cV6pAJMfmp7XG2NPI7qcaMk5NKqsNqabgnAtL3b1UlbrRzTttrQX8bo\nOB1fa899mz23dctknPaXturqQf4jv9zxuT8EEEAAAQQQQAABBBBAAAEEEEAAAQSGUODYi89zo956\nNe87eOHffuHe2XNm3v3pWJ4C8nFt8bftLbXurnvHS7AWD9eqbb9DKtLYEEAAgXIX0MCsrtaHYqMs\nIJOwLIRfsq9hlwZmtbVdEpT5wMwHZ9ovhGo+MKuRcM1CNw3TojZ/zLkaCdsIzMr9t4H7QwABBBBA\nAAEEEEAAAQQQQAABBBBAAAEEiidQ29TUVLyzRWd64MEn3fK18gk0GwIIIFBEAV2XTNcva4jWKquX\nKRlt/TKdjrFep1iscm++udEqyPZ/9+62b2uY2XpmMiWj9NPgzB51SkYZk7Kva5mN0gqzIt50P0/V\n3NxsI0rxZ3M/b2VA3bn/AbEVbRD+RaMc0InwHxBb0QbhXzTKAZ0I/wGxFW0Q/kWjHNCJ8B8QW9EG\n4V80ygGdCP8BsRVtEP5FoxzQifAfEFvRBuFfNMoBnQj/AbHlHjRhqnNv5W7O1cLnh7lkSnu8WL//\nJfkIWitC2BBAYGQINGhAJqGX/mjopYGZrVcmwZcGZvpc1yWzx6jPaDum655lCcx0DTNtl751dfqo\n47XCLD/P5ual1rGpSf6lxoYAAggggAACCCCAAAIIIIAAAggggAACCCCAQJkJlCSc03WN2BBAYGgE\nqqqqXGO9s4oyrTKrD1VmFpxpgBaFZ/KogdqoqILMh2DV7rXXllrl2RGHH2wBma8284GZ9rX+o3WN\ntPwDs6GR4KoIIIAAAggggAACCCCAAAIIIIAAAggggAACCJSfQEnCOV2LiQ0BBJICtdVaAeYDMw3E\nQmAWpmS0irOoQixUoOmUixaYaYAmC6D58EynXfRVZTpGp3GsC4GZVJfplIzV1cnrDuRZc/MOG3b0\nUWMGMpwxCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggg0ItAiWK0HjdKztze2cuVaUJgiAXqaqSC\nrMGvYVYvIZcGZjr1ogVmKRVnvo+FYjZVo4ZjNRKYReGZrVMWHZPnzz//rFSeOTd37nHSx69hJsVs\nbAgggAACCCCAAAIIIIAAAggggAACCCCAAAJDLNDdXeV6ZPK/8BNuR/fDFp6HRz2e7bkeC8Pi7eFg\nanvoqefyHxhr+4TO5PFwfR6Hv0CJwjmd8q5HwjkSieH/K1TcV1hXK5VgsmZhnfz+TBxf70bb+mU+\nNKuPVZzZmmY6HaNWlWkFmVSl2fpldiyqLtPn+iPn0CCtToKzZPVZce87frbVq3wqPW4sv/9xF54j\ngAACCCCAAAIIIIAAAggg0B8B+0Az9nllyoeecqL+tOtp0se3tlXbsZYW/8FqT1oH/eA0HPLXit2M\nvhDZDUeytftj2tFvmeeP3ZOeK1ws9JfHcCjb+d/YWGfXX7mqw/V0J+8lGu6PRTeonwH3dIe7Dfej\nF4ie69NwMX/Irh0OZbu+b/Mn8O3RwDzHv/Z6vV2zccyO6FqZ95e4vtP3Ine7XjKtOTqnvxl/f32N\nz91u4wNW9PpeeaXRrrG9das59nZ/euZe26VDf+9fbyfcsd1flvc3nNPaw050/8uWj7VrLlv5pr92\nWrsf04ufvaZke3ev4/X9k1/S2NbXP1/eLHn+dL916yY6fclPPrve7j9YhEv0ef8yINyS75t6BjsW\nnSxnezRkIO2bN092KnL3/avsdaS/Pn/O3K8/pV266X58s/aI3PdN7ZAyXpp6vb6dP3V8a9s0u+aN\n//W690+7gZTz659PsfatLT0p+/H7Hrzn0+1Sl/1g8eBdspcrze74lhszo7WXHsmmsWNq3PtmNCQP\n8KxiBUoWzmm44loJJyr2NyN24xqYjdGQTKvGLAiLqss0LNN9bdPKM3vUoMwHZhqgjRql0zHqOmUS\nnlk4ps+1j7ZFfeW4rl+mfXRrbm62x6amJnvk/xBAAAEEEEAAAQTKUyD8HbuzS/+7v8p121+8k/ca\n2sOjtmR7rsfCX/fj7eFganvoqefyf9+w9uhw/C/+ifGx68bbw7Xe3uL/WrRxU3fKBwWh3R6znD/c\nSa7rh/H2usOHI7oTbSkfCEV/dYp/cJoYLxdKXis8S1quWj3aXBe+sjPr/evocK7wqLcQnutj8nns\n/IkbzdEedbXx8v77c8bGx9oTp0o2J665IPpws9u1yLFkh/A0PPZ2/tBHXmm4VOJc1pa4l3i776rt\n4Wiu6yfOHzrK0HBs6RL/4eaGTW8nrmlnjvrqQ+ib7f2164e+oWN8TOx54kSxYznHSx/d4u3xD07D\npVatHm99Xly4UR6jX1QbF97T2P2HQdquJ5ctfv4+/fyQxLi8xsf+XMl2/o2bJtk9PPQ/a+Ux3FX8\nnuPPB9YePu8e8Pmj1x27PbtnPbxt21R7/vM7Vgz8/hPnz3x9eu/hujnvP/z5FDrK+cKZtCn8Wuzc\n2eM6ukJLdFE3wz/5Xnl8uBnuKv/Hadb16v+o1PufbPf/o58vy/8ll1XPCXY3v7x7dVndVf43M866\n/v6RDfkPKauefjmTx555q6zuKv+bkW/qy/bSq+/kP6SsesqHobKtWpdfIFNWt243E62rs52p84rx\n3iwYu3fep5k8ocadNHpd3v3pWL4CpQvnatP/g618ESrxznSKxUb5abCpGH3YFdYv27r1bafr/u09\nc7qEYLLOmQZoWQMzqSTTYEx+tD0RmElopsc0LNPpGdkQQKByBcLfr8OjvpJsz7Mdi/cN7fone3iu\n7eFv7eFYyw7/H2fbtvt/B8Q/NLXucjj+oUBivJ3MnzveHs4bHv05kv9+CcfDo54vZXzsvNmunxgX\n9Vu/wf+ht3xFhx0JH0SEfunfNg3H468j5frRrYZ++pitXY7661l7dDPyEB+nRzPGh67RdZYs9X85\nqW+Qr/5G/VMe075tmn7+eN/483i/bPcf2v2Y6GZkJxyPP+b80FT66zdPddvWssUe4+P0gJ65t+tr\n/zDG+ke3Eo759uT9xd+30D/Xh6aJ9nAyuxc96u9LH5ctG6sP7vXlm+wxdI0/pty/9Ures/bL9qFp\ncnzqt037+ucrvNLk+N791q3TDzd73OPPrM/v/oNv4gO9HOePvc6U1x/Gxx4Lad+8ZYrd/133rezf\n/Yfry6hgpScIz+N/DhRyf3qZbOPDB747d0639/+GW17TyyevH+5PnFPGWy/5nYke9T7j7eG8+nve\nKX9fzvwwNRpYtAf/zdPvlMk3T/v/sqbYkB/evLT/Q8tixES7i//6/1aUxd30/yb8h5t3/WFN/4eW\nxQj/4ebDj28si7vp/034b14/8+Lb/R9aFiP8tzyXrNheFnfT/5uosSEbN+/s/1BGIIAAAggggAAC\nCFSsQMnCuVqZmtA5/x+ZCZ2w8JZ82hGeapvsJbrYkwpt10BstEyfqFVgGnrZFI06naLs1+mjVKBp\ntVit9NPwq1ancIx+7Jj0qZV10PR5nfWrcjVCqH1qZe2ymmod68cHP/3gKPHhUfThzYIF/kO1WbPG\nWFtoD8j6wU1HR7f8OLdd/v4S2hOP4dNKfW/kYDgeDsc/+NG20B5d3sYkrxVrjzqE/tonZXzUvnTJ\nGPn9qHLrN26WDvY/O10Yl/7BaeJ44vzRk3B+G528j8QNh/bEON8x5fVFfbQlXCf9g9NwPHxIqt88\n1ffnhQUbZEzqFBj+PLH7i503eZ5YuzxNHtfRSQ97nq09DNC+2h59ahcOp7w+bdcTyRbaN26cZPf/\nxz+t8eOjDqE9Y3ye7eFDwoGOT7/PcM/pr2/b9in2+/OzXy3v3/2bgjqEK3mT5H37DuntoXvyPmLj\nZUj8Q1N/z8l2O3e0G76A2t053e7f/b8l9uaU/sPU6IUX7cF/8/SaG+X+K3Lz3zz9z9uWVeTdO+c/\nnHX3rKnQ+/cfzt7/6BsVev/+w9nmZ+XfXxW5+Q83X15Sqd88lf+Akm31+raK1NeqM/3Z1tJVoffP\nbSOAAAIIIIAAAggggAACCJRaIHwGWerrcP7SC/hPMUpwHV1zLusWfZIdPtD2fTL7VmK7hl0dHeXw\ngcp4Y/3NA2uzvgXlf9BXHrjHfeVB+d9v+h2Gb57KnOMVuYVvnvrKm8p7CdEfa5vbK+/W7Y7DlxUy\n/1ys0BfEbSOAAAIIIIAAAggggAACCCCAAAIIIIBAEQTihQNFOB2nGEKBaHLY4t9BWD8sfmapIYrv\n8hwBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBESVQssq5U/9+m7v0yKNtekZb70ymdly7\ntsN9/sJKnSpsRP1e8GIRQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQRKIFCycG7SxE63666p\np6/zs+WV4GVwSgQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQTKX6Bk01qW/0vnDhFAAAEE\nEEAAAQQQQAABBBBAAAEEEEAAAQQQQACByhBg4bDKeJ/yuUvCuXyU6IMAAggggAACCCCAAAIIIIAA\nAggggAACCCCAAAIIDKFA9xBem0sXV2BQw7mqqqri3j1nQwABBBBAAAEEEEAAAQQQQAABBBBAAAEE\nEEAAAQQQQKCCBFIXhSvxjZPNlRiY0yOAAAIIIIAAAggggAACCCCAAAIIIIAAAgggMIIFtEioJqoT\nSmQS8bqhnh6nx2u0U3S8Otau46uisqZQ3RRrlrHJ9nD+8Kjs1p523oz26P0Jx8Nj+vhwPDxOGF8T\njeSh0gUGNZyrdCzuHwEEEEAAAQQQQAABBBBAAAEEEECgMAH90FI3+0w0fNoZHuV4+EDUPlhN+3BT\nx4Xx2i/Xh6bWTxrDh5nhMT6+vb3d2utHj0r0i7frpcO48JjSLh3C8fCY0R7dYGq79pKx+hO9vvBo\nx6MdfQjHw2O8fcvWd+z1T5o0PtEv3t7X+Lza9YSyZbu+jc/6+vyLynl+f0q3fsMmpx+G77LLtNzn\nDz7RGH8v2c6fXIWpKvoFqqryH777MckTVEcvJuX+ks1yL9nOn9LBdlasWGX3vffMPfu+/+h16MCq\nKAGw64fTxtv7uH7UbNeMP0+cKozXa0XnDY/aJ7y+Ra8utfaDDtovcczao6RCx4Rx4TE+3j/X/0/2\n88/9RXOPtyH2f+G84TFlvMv+/oX7f+mll+2+33Po7JCtROfM7/r+msm+4a7C+XPffzTGbtaPSrn/\n8P7Kr2Q4Hv5Miw1xz/z1r3bfRx99ZKKftUeDUq7vL2P/H+5PByfO728ptV32emu384fzZhmfcn35\nZyls4fqPP/64nf/EOXPkQqE1dk05lP36ztXVJfsP1bPm5ma7dFNT01DdQkHXbW5eUdB4BpeHwKCG\nc+EfyPJ46dwFAggggAACCCCAAAII5BLQv3infNs09pduHaMfMoT27m79C3uPq62NPqHTdhkfPojQ\no2nDU9r17wnpf1ew8dEg/Ywja7ucV7e+xvfV3rJjh9x+jxs3fow/YThntNfX+Fzt0WczBd9frvPr\ncd02bdps15g+bbI/IP8f99P3IfQNHVLas/naOXzvvq5v7eHE0WPm+ZMf6mgX/eBUPzTVbfWadXZ/\ne+6xq+3r/+kHp+Ge8zt/Yqh/Eh8vR8K5Qq/M+wst0XB588IYY46sQ6/4+NeWLrN0YP/99gnNNjYx\nPpuv3l/UW/uFvuEEev7QwbeH3r6Hjg5jfHsYGbWHRtnN1R66LFz4ivWZPfvgxElCmx7IOV7+me+1\nPdxy8qVYfz+mr/uPmyT7hhPE/Z977nm7xyOOeG9oln0Vija9fmLHH9MPxsPnjPb6kn90WQftHv78\n0gMZ4/X80TltvI1K/l/m+5ds02fWHh16+umn7VzHHXdsolP89dll0u8//frhxURniL9+u8+M8XIP\nib7ZXl/iVuzewmutyfJF/cr/cLPZXmzlfjgb7n928k2roGfNzUsj//dU0F0nb7W5+ZXo/qcmD1bQ\ns7GN8t8/sjU1Taigu07eauuOnbZz5OGNyYMV9GzVqg672732LIOkqk+38G+NZMfGBr/yWWNl8idf\nCM8QGEKBwQ3nhvCFcmkEEEBguAmEv9QP9bdN9S/r4cPHnfLN0x75cLOhfnTiQwf9T7jwF/rwqO9F\nuH89Fo6Hx4z26AOT1HbtJWP1R/8v9uif+4Pa1lu73nto37LlHbv/yZMnyLH8xvd1fmu3u0teJ+P+\nsr6+Pq4fO2e4/w3yzVP133XX6dnvPxqTcX1/KRmT/OB0sL5tGvdZsXK13f8+e+s3T/t4/dEvXXx8\n4lMmeYF9jk+85uT7EhxTfOxceiTZzz8PJ0geXyzfPNV84uCD95db6eP+YxcLT8Nj/Px6LBwPj5n3\nokeS/fzz6Pp9fNvUzhm9lJdefNnOc+ihh/TLT65s41LvL3ksHA+Pqfcne9H1U9rD+yue4XjKh6R2\nRWmL/tnR3WeeedaOHnPMUdnvPxqjD+H3Q6+dOH90Hynt1lePJPv557HXZ63aITxJnl/PnTx//J+v\naLwOi8b9r3zzVLcTT5yTOKZNoT08ap9sz7MdC33jbXqsFNvw+XB2Vil4Sn7O5ubX7RpNTYeU/Fql\nuEBz8+Lo/meU4vQlP2dzc0t0/5NKfq1SXKCqp9VOe+IJyXC6FNcp1Tnf3NRupz7wgNGlukRJzztx\nQqedf+qU2L/U+n3F6F8m/R7HAAQQQAABBBBAAIGhEhjUcK62rtod9G7/H8zhQ5HwYYE+hueKEdrD\nB7652sOYgtvtmv5t2GjfPK1y+s3TxPnlv5PD8/j9hWMZ1/enSozJaI8GpoyPxuQ+f/xDHf8f7uGD\n1Pj5V63Wb55Wub3km6f9O3/KDdhOYrzshee57y85Pl6ib/0T/+f7hPc3nFMfw/Ml+s1T2Q7Yf5/E\nsXi7tiXG645sudrDB2W+PfkXlviHpr2Ot7PnPn+45/j1Fyzw35w65JDUb56Gvv56/l6qcnzbNPH6\nwi2rT3QvKeOjg/Hr+3bfOXnN5Dc7+xr/t789b4OPPPLw5DX1+rEbSLy/0a+kXT/2d8nQNf6hacr4\naCccs/H+lu3/w+sPN2Dt4aTSI9EejYm3P/XU03b0+OOPS9yzDc0yPuX6KaGE7xyGWL+wY9f3Fw6H\n4tfXlnBe38vvx4/Fn4f+4dif//y/Nmzu3BPD8Ip6HD4fzlbqh5vhm6eHVtTvTbjZSv/m6Zj68M3T\n8eElVdTjju3+m6dHVOg3T1eu8B9u7rlHuX7zNPxbI/uvRUN99M3ThuztHEUAAQQQQAABBBBAAAEE\nEEAAgeEjMKjh3PRp1e4/r5tZ9nrJb55W6rQA4Zunh5W9dbYbrPRvnvZ0+W+ezjm+Mr95uvEN/83T\nA/Yfle3tKftjE8b7D2enTO79Q9DMF9Lf/plnKMaR6upkCF+M83EOBBBAAAEEEEAAAQQQQAABBBBA\nAAEEEEAAgfISiNW6lNeNcTcIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIDDcBwrnh9o7y\nehBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBMpWgHCubN8abgwBBBBAAAEEEEAAAQQQQAAB\nBBBAAAEEEEAAAQQQQGC4CRDODbd3lNeDAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBQtgKE\nc2X71nBjCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACw02AcG64vaO8HgQQQAABBBBAAAEE\nEEAAAQQQQAABBBBAAAEEEEAAgbIVIJwr27eGG0MAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEE\nEBhuAoRzw+0d5fUggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgiUrQDhXNm+NdwYAggggAAC\nCCCAAAIIIIAAAggggAACCCCAAAIIIIDAcBMgnBtu7yivBwEEEEAAAQQQQAABBBBAAAEEEEAAAQQQ\nQAABBBBAoGwFCOfK9q3hxhBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBIabAOHccHtHeT0I\nIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAJlK0A4V7ZvDTeGAAIIIIAAAggggAACCCCAAAII\nIIAAAggggAACCCAw3AQI54bbO8rrQQABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQKFsBwrmy\nfWu4MQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgeEmQDg33N5RXg8CCCCAAAIIIIAAAggg\ngAACCCCAAAIIIIAAAggggEDZChDOle1bw40hgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggM\nNwHCueH2jvJ6EEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEylaAcK5s3xpuDAEEEEAAAQQQ\nQAABBBBAAAEEEEAAAQQQQAABBBBAYLgJEM4Nt3eU14MAAggggAACCCCAAAIIIIAAAggggAACCCCA\nAAIIIFC2AoRzZfvWcGMIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAALDTYBwbri9o7weBBBA\nAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBshUgnCvbt4YbQwABBBBAAAEEEEAAAQQQQAABBBBA\nAAEEEEAAAQQQGG4ChHPD7R3l9SCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCJStQNVjjz3W\nU7Z3x40hgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggMIwEqJwbRm8mLwUBBBBAAAEEEEAA\nAQQQQAABBBBAAAEEEEAAAQQQQKC8Bap6ZCv2LTY3N9spm5qain3qQTkf9z8ozDkvgn9OmkFpwH9Q\nmHNeBP+cNIPSgP+gMOe8CP45aQalAf9BYc55Efxz0gxKA/6DwpzzIvjnpBmUBvwHhTnnRfDPSTMo\nDfgPCnPOi+Cfk2ZQGvAfFOacF8E/J82gNOA/KMw5L4K/p6FyLuevCA0IIIAAAggggAACCCCAAAII\nIIAAAggggAACCCCAAAIIFFeAcK64npwNAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgZwC\nhHM5aWhAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoLgChHPF9eRsCCCAAAIIIIAAAggg\ngAACCCCAAAIIIIAAAggggAACCOQUIJzLSUMDAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAA\nAsUVIJwrridnQwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCCnAOFcThoaEEAAAQQQQAAB\nBBBAAAEEEEAAAQQQQAABBBBAAAEEECiuAOFccT05GwIIIIAAAggggAACCCCAAAIIIIAAAggggAAC\nCCCAAAI5BQjnctLQgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEBxBQjniuvJ2RBAAAEE\nEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBDIKUA4l5OGBgQQQAABBBBAAAEEEEAAAQQQQAABBBBA\nAAEEEEAAAQSKK0A4V1xPzoYAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBATgHCuZw0NCCA\nAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBQXAHCueJ6cjYEEEAAAQQQQAABBBBAAAEEEEAA\nAQQQQAABBBBAAAEEcgoQzuWkoQEBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACB4goQzhXX\nk7MhgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggkFOAcC4nDQ0IIIAAAggggAACCCCAAAII\nIIAAAggggAACCCCAAAIIFFeAcK64npwNAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgZwC\nhHM5aWhAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoLgChHPF9eRsCCCAAAIIIIAAAggg\ngAACCCCAAAIIIIAAAggggAACCOQUIJzLSUMDAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAA\nAsUVIJwrridnQwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCCnAOFcThoaEEAAAQQQQAAB\nBBBAAAEEEEAAAQQQQAABBBBAAAEEECiuAOFccT05GwIIIIAAAggggAACCCCAAAIIIIAAAggggAAC\nCCCAAAI5BQjnctLQgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEBxBQjniuvJ2RBAAAEE\nEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBDIKUA4l5OGBgQQQAABBBBAAAEEEEAAAQQQQAABBBBA\nAAEEEEAAAQSKK0A4V1xPzoYAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBATgHCuZw0NCCA\nAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBQXAHCueJ6cjYEEEAAAQQQQAABBBBAAAEEEEAA\nAQQQQAABBBBAAAEEcgoQzuWkoQEBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACB4goQzhXX\nk7MhgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggkFOAcC4nDQ0IIIAAAggggAACCCCAAAII\nIIAAAggggAACCCCAAAIIFFfg/wcbyLmvNjqySAAAAABJRU5ErkJggg==\n", "text/plain": [ "<IPython.core.display.Image object>" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from IPython.display import Image\n", "Image('figures/three_cones.png')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Approximate answer assuming power spreads uniformly into hemisphere" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "a) power at D1 = $E^* \\times \\pi (D_1/2)^2$ (Watts)\n", " $E_a$ at tip of cone =\n", " $$\\frac{E^* \\pi (D_1/2)^2}{2 \\pi R_1^2}$$\n", " \n", "a) solid angle = $\\Delta \\omega = A/R^2 = (\\pi (D_1/2)^2)/R_1^2$\n", "\n", "a) Radiance = $L_a = E_a/\\Delta \\omega = E^*/(2 \\pi)$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "----" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ " \n", "b) power at D2 = $E^* \\times \\pi (D_2/2)^2$ (Watts)\n", " $E_b$ at tip of cone =\n", " $$\\frac{E^* \\pi (D_2/2)^2}{2 \\pi R_2^2}$$\n", " \n", "b) solid angle = $\\Delta \\omega = A/R^2 = (\\pi (D_2/2)^2)/R_2^2$\n", "\n", "b) Radiance = $L_b = E_b/\\Delta \\omega = E^*/(2 \\pi)$\n", " " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "----" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "c) power at D2 = $E^* \\times \\pi (D_2/2)^2$ (Watts)\n", " $E_c$ at tip of cone =\n", " $$\\frac{E^* \\pi (D_2/2)^2}{2 \\pi R_1^2}$$\n", " \n", "c) solid angle = $\\Delta \\omega = A/R^2_1 = (\\pi (D_2/2)^2)/R_1^2$\n", "\n", "c) Radiance = $L_c=E_c/\\Delta \\omega = E^*/(2 \\pi)$\n", " \n", " \n", " " ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "### Solution, second take" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "It looks like $L_a = L_b = L_c$ which shows that L is independent of distance for these examples. Note that this isn't the reason we know that L is conserved -- **it's because Maxwell's equations show that conservation of L is a property of electromagnetic radiation.** Given this, we can check the approximations we made in estimating the flux for this problem. How close is our solution to what we get using the correct formula for flux?\n", "\n", "We saw in the [flux_to_radiance](http://clouds.eos.ubc.ca/~phil/courses/atsc301/html/flux_to_radiance.html#EfromL) notebook that the exact formula to convert from radiance to flux for a hemisphere was:\n", "\n", "$$ E = \\int_0^{2\\pi} \\int_0^{\\pi/2} L \\cos \\theta \\sin \\theta \\, d\\theta \\, d \\phi $$\n", "\n", "The only difference for a cone is the limited zenith angle, if the half-angle (that is the angle from the centerline to the side) of the cone is $\\theta$, the we've got:\n", "\n", "$$ E = \\int_0^{2\\pi} \\int_0^{\\theta} L \\cos \\theta \\sin \\theta \\, d\\theta \\, d \\phi $$\n", "\n", "(note that I've changed my definition of $\\theta$ from the figure above by dividing by 2. Here's the new setup for a cone of radius $r$ and length $l$.\n", "\n", "\n" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABPwAAAHkCAYAAACqgDGnAAAAAXNSR0IArs4c6QAAQABJREFUeAHs\n3Ql8I3d5+P9Hkm3J3vu2vbu25HMvhyQE2pCUpEADJAV60FD+QEhoArSU5k8DJRQCtPxoS0qA/iFA\nKEdoCFCg3DQXV36hlJCwG9Z7+pTtXV97eA/bkmzL+j/f8RF71xrJtjyesT/zeullSTOa+c57Jln7\n0fN8H19KF5nHUl9fb326rq5uHnvJ3UcZj70lPvjYC9iv5f7Bx17Afi33Dz72AvZruX/wsRewX8v9\ng4+9gP1a7h987AXs13L/4GMvYL+W+wcfewH7tX771axFAAEEEEAAAQQQQAABBBBAAAEEEEAAAS8J\nEPDz0tVirAgggAACCCCAAAIIIIAAAggggAACCGQQIOCXAYjVCCCAAAIIIIAAAggggAACCCCAAAII\neEmAgJ+XrhZjRQABBBBAAAEEEEAAAQQQQAABBBBAIIMAAb8MQKxGAAEEEEAAAQQQQAABBBBAAAEE\nEEDASwIE/Lx0tRgrAggggAACCCCAAAIIIIAAAggggAACGQQI+GUAYjUCCCCAAAIIIIAAAggggAAC\nCCCAAAJeEiDg56WrxVgRQAABBBBAAAEEEEAAAQQQQAABBBDIIEDALwMQqxFAAAEEEEAAAQQQQAAB\nBBBAAAEEEPCSAAE/L10txooAAggggAACCCCAAAIIIIAAAggggEAGAQJ+GYBYjQACCCCAAAIIIIAA\nAggggAACCCCAgJcECPh56WoxVgQQQAABBBBAAAEEEEAAAQQQQAABBDIIEPDLAMRqBBBAAAEEEEAA\nAQQQQAABBBBAAAEEvCRAwM9LV4uxIoAAAggggAACCCCAAAIIIIAAAgggkEGAgF8GIFYjgAACCCCA\nAAIIIIAAAggggAACCCDgJQECfl66WowVAQQQQAABBBBAAAEEEEAAAQQQQACBDAIE/DIAsRoBBBBA\nAAEEEEAAAQQQQAABBBBAAAEvCRDw89LVYqwIIIAAAggggAACCCCAAAIIIIAAAghkECDglwGI1Qgg\ngAACCCCAAAIIIIAAAggggAACCHhJgICfl64WY0UAAQQQQAABBBBAAAEEEEAAAQQQQCCDAAG/DECs\nRgABBBBAAAEEEEAAAQQQQAABBBBAwEsCBPy8dLUYKwIIIIAAAggggAACCCCAAAIIIIAAAhkECPhl\nAGI1AggggAACCCCAAAIIIIAAAggggAACXhLI89JgGSsCCCCAAAIIIIAAAggggAACCCCAAAJuEjjd\nNypHGgLS1e2Xh37cLV1dQ/Lxu8sWdYgE/BaVn4MjgAACCCCAAAIIIIAAAggggAACCHhBIJEQaWsf\nkra2uLRE4/LrfYPSHNU3rSUw/vOs+P0+GUmK5E28Nb7GyR8E/JzU5lgIIIAAAggggAACCCCAAAII\nIIAAAq4X6OxMSrQ9Lq0a2GtqScj//qZf4vFUVuMeHU1JR8ewRML5WW2/EBsR8FsIVfaJAAIIIIAA\nAggggAACCCCAAAIIIOB6gTNnU5q1l7ACeyZr71dPD0jvyZF5jzuqWYAE/ObNyA4QQAABBBBAAAEE\nEEAAAQQQQAABBBCYWcCU2La1DYsJxE1k7f1q78DMG+fgXXOM379mVQ72NLddkOE3Nzc+hQACCCCA\nAAIIIIAAAggggAACCCDgQoHunuRk1p4px/2VluP2D4w6OlJz3MVcCPgtpj7HRgABBBBAAAEEEEAA\nAQQQQAABBBCYk0B/v08OHIpbTTSaTRONpwflWPfwnPaV6w8dbY7nepez2h8Bv1lxsTECCCCAAAII\nIIAAAggggAACCCCAgJMCo5qc194xYpXjRjWw19iic+3tLZCklulqoa6TQ8n6WKf6knLufEpWr/Jl\n/ZlcbkjAL5ea7AsBBBBAAAEEEEAAAQQQQAABBBBAYE4CSQ3snT49UY6bkOZWLcd9+rycOedsOe6c\nBj/Dh7o6h2R1bXCGNQv/lm///v3Z9RROM5b+/n5rzcqVK9Ns4ezbjMfeGx987AXs13L/4GMvYL+W\n+wcfewH7tdw/+NgL2K/l/sHHXsB+LfcPPvYC9mu5f/CxF7Bfu9Tvn8FBkZ4Tfunp8cnxLr8cafJJ\n9wl7Ezev3bYlKSXFI1K+PU9/pqQinJK8vHmF3OZ1umT4zYuPDyOAAAIIIIAAAggggAACCCCAAAII\npBMYHfVJ7wkN5lmBPbGCe0eb/TI0vHjBsHRjzfS+3++TdWtSsr1EpLQkJVtLRjWwNyorV6bEbQFa\nX0qXTCdkt76+vt5aXVdXZ7eZY+sYjz01PvjYC9iv5f7Bx17Afi33Dz72AvZruX/wsRewX8v9g4+9\ngP1a7h987AXs13L/4GMvYL/Wi/dP35lRiUYTOtdeQppa4/Kkdsc9qSW6XlyKinyyozIkNVUhqSgP\nSbk+amsK0p6K264XGX5pLxUrEEAAAQQQQAABBBBAAAEEEEAAAQQuFBga0lYZ7UNWd9wWq4lGQp56\nRmt0PbpURYJSo8G9ynBQwvp4Tl2RluPO7mRCvT1jH+jZJOIP6MMvEtCH9VNf+/R5UdHsdjqPrWc5\n/HkciY8igAACCCCAAAIIIIAAAggggAACCHhKoLMzKdH2uPzP/wakU+faO9raIIOD8yoWXbTz37wx\nT2o1sFdVEZRIOCR1e4pk3VoNxOVgqX7bS0VSGZqLHNBIaX5+Do6WeRcE/DIbsQUCCCCAAAIIIIAA\nAggggAACCCCwpAXOnktp1l5CWjVjr8WU4+4dkO7ekSnnrFlq1uL+YF9BvpbjVoekujIoVZGxctxd\nOxa6W26GYJ+xM9l+Di0E/ByC5jAIIIAAAggggAACCCCAAAIIIIDAYguM6JR67e3DOs9e3AruNbUk\n5NdajptMuj+QN5NdpKxAqiu0HFfLck3W3iWatRcKzbTlAr+XDR8BvwW+COweAQQQQAABBBBAAAEE\nEEAAAQQQWOIC3T1Jae8Yy9prbk1YTTTOns8iE82FLuvXBmSHNtCYKMf1+9pk/bqU1NXVunC0aYbk\n86VZkfu3yfDLvSl7RAABBBBAAAEEEEAAAQQQQAABBBwTGNB+GaYzbptm7TW1xuTpvTFp79T54jy4\n+P1ajlulTTT0UaEZeyZrb/fO0EXVsPX12aTUeRAgR0Mm4JcjSHaDAAIIIIAAAggggAACCCCAAAII\nLKRASmNc7R0j08tx9w3I0LD3gl/5eT4p3pSn8+xNZO0VyiXaHXeFc41sF/JSLfq+Cfgt+iVgAAgg\ngAACCCCAAAIIIIAAAggggMB0gb4zPunu8cnRxj5pjuo8e3v75VSfTsDnwWXNKr/UaGCvRptomIy9\n8jJtqFFV4MEz8c6QCfh551oxUgQQQAABBBBAAAEEEEAAAQQQWGICsZjJ2hvSrL2YNGt33N/8Vn9q\ngE8kf/xMez11xrUa2JvojhsuD8qePYWSN9Hg11NnMovBjmYxL6Jz0/dZAyfgN4vrx6YIIIAAAggg\ngAACCCCAAAIIIIDAXAWOHUtKW3tcWqJxadbuuE8+0y+xmPfKcc08e5s3ahONykKprBjL2qvT7rhr\nVjsc1Zrrhcj150ytdcbFn3GLXG5AwC+XmuwLAQQQQAABBBBAAAEEEEAAAQSWvUDfmVFtoJGwGmk0\nadber/cOSO/JEU+6FBVpEw3N2lu9clC2lozKC6+ulNraoCfPZcEGncyi1FqDpE4uBPyc1OZYCCCA\nAAIIIIAAAggggAACCCCwZASGtBFuW/uQlbXXqll7jZq197SW5I6OZpPx5T6GyrB2x9XgnvkZiQSl\nbneRFIxPtVdfX28NmGDfDNctq5JeZ+uaCfjNcJ14CwEEEEAAAQQQQAABBBBAAAEEEJgq0NWdtDL2\nom0a2GvWrD3tjts/kMXcbVN34pLnmzbkiZlrr2q8HHePBvY2rHe25NQlFLkZRjYBP7+zIThnj5Yb\nRvaCAAIIIIAAAggggAACCCCAAAIILIjAufMpzdhLiMnYM3PtPb13UI51Dy/IsRZ6pwX5PqmtClpN\nNCq1O244XCi7d1KOm3P3VBaBXx8Zfjl3Z4cIIIAAAggggAACCCCAAAIIIIDAVIERnXato2NYs/bi\nEtXA3lPPFMjRZpFksmHqZp54bgJ7pcX5Ul0xPWuvqNATw/f+ILOZwy8QcvQ8yfBzlJuDIYAAAggg\ngAACCCCAAAIIIICA0wI9vUlp70hIizbQaG5NaBONfjlzLousLKcHmsXx1q3R7rhVzwb2wuUhqYjk\nZ/FJNlkwgWxKen3OhuCcPdqCybJjBBBAAAEEEEAAAQQQQAABBBBY7gKDMbHm2WvTrD3THXfvbwel\nVZtqeHUpLxW59JI1GtDTclwN7O3ZHZIAU+2573Imswge+50NyhLwc99twogQQAABBBBAAAEEEEAA\nAQQQQCCDQHvHiFWOa+baM1l7T2oTjUTCe91xAwGflGzKk5rxrD0T2KvbUyTR1gOWQF1dcQYJVi+6\nQDYlvX7m8Fv068QAEEAAAQQQQAABBBBAAAEEEEDAHQInTyWtJhrRaEKa9WHKcU+e1gn4PLisWuWX\nHTrPXnVlUCq0iUa5Bveqqwo8eCYMeZpANk07AmT4TTPjBQIIIIAAAggggAACCCCAAAIILH2BeFyk\nrWNI2kx3XC3JbWjSktx6rdH16FJTqcG8iqBUWeW4Qc3aK5Q86iw9ejUzDDubOfzI8MuAyGoEEEAA\nAQQQQAABBBBAAAEEEPC0wPHjSdl/ICDHu/zy7e93ypPP9MvgoPfKcc1FKN6cJ7WatVepwb2IZu3t\n2V0k69Yy0Z6nb9DZDp6A32zF2B4BBBBAAAEEEEAAAQQQQAABBLwq0HdmdKwct0075Grm3q/3Dkh3\n78j46UzMaXbeE6cXCvlkp5lnT8txray9spDU1gY9MXYGucAC2czhl0dJ7wJfBXaPAAIIIIAAAggg\ngAACCCCAAAK5FBjRGF60bViDe1qO2xqTxpaE/GZ/TJJJb2btVZQHxZTkVkZM1l5Q9uwqklAol2Ls\na2kJZHGf+5zN+qR6fGndYZwNAggggAACCCCAAAIIIIAAAgsq0N2T1OBeQkx33CYN7D2t5bhnz48u\n6DEXaucb1wekVgN7VRrY8/lOaHBvVK554Z6FOhz7XaoCySzu/4CzIThnj7ZULyznhQACCCCAAAII\nIIAAAggggMASEzjfn7LKcU1gz5Tj/mZfTNo7hzx5lvl5Pqmt0qw9fVSOd8fdtSMk/ilJV/X13Z48\nNwbtAoGs5vCbcrM5MGQCfg4gcwgEEEAAAQQQQAABBBBAAAEE3CpgkpM6OkY0Yy8mUZO115qQp54Z\nlKHhLMoUXXZSBfk+KdmcL9Uma29KE40VRS4bKMNZWgLZBPwCE3NWOnPqBPycceYoCCCAAAIIIIAA\nAggggAACCCy6wKnTPnlq76C0alCvWR+mHPdUX3LRxzWXAaxd7ZcdVYWTgb1wuemU62xjhLmMm88s\nQYGsAn7O3psE/JbgfcYpIYAAAggggAACCCCAAAIILG+BwZhIe3tC59ozGXtx2acNNJqjBeMoHZ7D\n2Vkd0qy9oFRoOW5YG2rs2V0oec4mTHnOjAE7KJBNl96p9eMODI2AnwPIHAIBBBBAAAEEEEAAAQQQ\nQACBhRJo13Jc0x3XzLXXrE00fv3bAYnFvFeOGwj4pHhjns6z92w57m7tjrtmtW+h6NgvArkRyCbg\nFyDDLzfY7AUBBBBAAAEEEEAAAQQQQACBJSRwum/U6o4bjSasrL2nnxmQ3pMjnjzDlSv8UrJpVLaV\npuQFv1MqZVqOW1s9kYHoyVNi0MtZIJuSXjL8lvMdwrkjgAACCCCAAAIIIIAAAggsd4FEQjRjb0ja\ntBzXdMdtaE7IvgMxGR31XtaeuZbV2jyjukLn1wsHJRIJyZ5dhVKgsb36+nrrUtfVrV7ul5zz97pA\nNgE/h2vQKen1+k3F+BFAAAEEEEAAAQQQQAABBDwr0NmZlKiW45q59ho1sPeUZu31D2jbXA8uWzbl\nSe2U7ri7dhbJhvV+D54JQ0ZglgLZBPzI8JslKpsjgAACCCCAAAIIIIAAAggg4HKBM2dTmrWXsObZ\nM1l7e58ZlGPdwy4f9czDCwZ9skvn2avUJhpVmrFnuuPuqA3OvDHvIrAcBLIJ+AWczbnz7d+/f145\nwf39/dalW7lypSsuIeOxvwz44GMvYL+W+wcfewH7tdw/+NgL2K/l/sHHXsB+LfcPPvYC9mu5f/Cx\nF7h47fCwT3p6fdLd7ZOW9mHp7smTlo48yWZO/4v3trjvFOT7ZP3alGwvFSktTklJ8ahEypNSVJSb\ncfHfl70jPt7xWfPMPin7P2+0HXCi9kXS8OFP2G6Ty5XOhhdzOXL2hQACCCCAAAIIIIAAAggggMAi\nCpw8pYG9Hp909QSkq8snh5tE+genDigw9YWrn69ZJdpAQ2SrBvZKtySlWH9u1YYaLAggkIVAKosy\nfKe79NbV1WUx8vSbPDvJ5vz2k/4Is1vDeOy98MHHXsB+LfcPPvYC9mu5f/CxF7Bfy/2Dj72A/Vru\nH3zsBezXcv/gYwTO94+V45omGs1ajrtvf0xatamGF5dAwCc7qoJSo4+KcEgi+thRGxKH+wlYdPz3\nZX8H4eMhn3Nn7Aera4MbNsp8Y3AZDzJlAzL8pmDwFAEEEEAAAQQQQAABBBBAYPkKmGm42jtGrAYa\nUQ3sNbbE5en9g5JIeC/TLT/PJyWb86V6ShONVLJFVq5MadChZvleZM4cgYUQSGaR4ed3NuOXgN9C\nXGj2iQACCCCAAAIIIIAAAggg4GqBEyeT4000EtLcmpCnn+mXk6eTrh5zusGtXe2XGg3sVVcErYy9\ncHmhVFXmX7R5fb33ApcXnQRvIOBGgWwm6XS4aQcBPzfeKIwJAQQQQAABBDwt0NXVJTfddFPW5xAI\nBDTjYqX1WLFihfWzqqpKdu3aJTt27JANGzZkvS82RAABBBCYLjAYE+nQ7rjRdi3HbdWsveaE7Dug\nb3p02aHdcau1O26l1R03KHt2FUoef9l79Goy7CUjkM0cfj6/o6fL/xYc5eZgCCCAAAIIILAcBEpK\nSuS//uu/5HTfadm/f7/c/je3SzQanfOp/8mf/In83d/9nfzO7/zOnPfBBxFAAIHlINDd47eaaOzb\nf1KaWxLy1P4BGRz0Xlab3++T4k15UqtZe5WatWfm2tu5s1DWrXU2YLAc7hnOEYGcCJj5ADIt+ZT0\nZiJiPQIIIIAAAggg4HqB1atXi3mEy8PyvOc9X0o1CDh1Wb9+vXztq1+TyqpK7YRYLKHCkBzrOCaN\nTY3y2KOPyd133z25+be//W0xjzvuuEM++tGPTr7PEwQQQGC5CvSdGdUvUjRrry0hTZq195vfDkh3\n74hyTOS0nPIMTVGRNtEYn2evKlIo5eUhqa0p8Mz4GSgCCKhANgE/v7MB+4n/G3J9EEAAAQQQQAAB\nBBZIoEQDetdee638/Oc/nzzC5s2b5bqXXjf52jwpLy+3Hi958Uvktf/Pa+WmN9wkEx36zPp77rlH\nuru75Stf+Yp5yYIAAggseYEhbYTbpt1wTXfcFquJRkL21sckmfRe1p65WFUR7Y5rsvbCQQnrY/fO\nIgmFlvxl5AQRWPoCWQX8yPBb+jcCZ4gAAggggAACy05g27ZtszrnS59zqTz88MMSiURkyPzFO748\n+OCDcsMNN8hrX/vaibf4iQACCCwJga6upLRqYC+qjyYtxzVZe2fPZ1Em58Kz37xxrBx3RdF5KS0e\nlZe/rFY2bXT2j30XsjAkBJauQNJkGGdYaNqRAYjVCCCAAAIIIICABwU2rJ99443S0lL57Gc/K296\n05umnfHb3vY2edWrXiVFRUXT3ucFAggg4AWBs+dS491xNWtPy3H3/nZQOrqGvTD0i8ZYkK/luNXj\nTTR0nr2wPnbUBGWicm8iS5tg30V0vIHA0hLIKsOPkt6lddE5GwQQQAABBBBAQAWCoeA0B//EX4PT\n3r34xetf//qLAn59fX3y1FNPyTXXXHPxB3gHAQQQcInASFKkvX3Yythr1XJcK2tv/6AMDXuvHNcE\n9raW5Et1hZbjalluRAN7u3cVyQq+d3HJ3cYwEFhkgWwCfgFns3yZw2+R7wkOjwACCCCAAAII2Ank\n5+fLrl275NChQ9M2a2hoIOA3TYQXCCCwWALJpE874yalvSMhJrDX3DpWjnuqTyN+HlzWrw3IjqqQ\nVGl3XBPYC2sTjUg434NnwpARQMAxgWQW0w8EyPBz7HpwIAQQQAABBBBAwAsCl1566UUBv+PHj3th\n6IwRAQSWmMDAoFidcU0TjabWmDyzv0Ba2s1JNnnuTP1+Lcet0iYa+qgYD+zt2hmSPGeTcDznxoAR\nQGAGgWQWX3CQ4TcDHG8hgAACCCCAAALLWKClpeWis6+pqbnoPd5AAAEEciWQ0qrb9o6R6eW49QMS\ni3mvHDcQ8Enp5jyp1u64Y1l7hbJrZ6GsWe3LFRf7QQCB5S6QTUlvltO55IqSkt5cSbIfBBBAAAEE\nEEBgAQSGh4flV7/61UV7rq2tveg93kAAAQTmInDyVNJqohGNJjRrb6wct/dkFh0n53KwBf5MUaHI\n9hKRKy5bZ5XjlpdpQ42qggU+KrtHAIFlL0DAb9nfAgAggAACCCCAAAKzEvjFL35x0fYmu+85WubL\nggACCMxGIBYzWXtDmrUX03n2xppoPHMwLqOj3svaM+ddqxl71ZVBqYqYefaCVtbe0aP1Fkld3ebZ\n0LAtAgggMD+BbEp6yfCbnzGfRgABBBBAAAEElorAqVOn5DWvec1Fp/O5z31O55hikqmLYHgDAQQm\nBY4dM1l7cWkxTTRaEvL0/gHpH8hiUvnJPbjnSbGW4+6oLJTK8SYaO3cUyob1zk5+7x4NRoIAAq4U\nSGXx/1eHf3ejpNeVdwqDQgABBBBAAIHlLjA4OCive93r5MSJE9Mo3v3ud9Odd5oILxBY3gJ9Z0al\nrS1hNdJo1uDevt8OyrHuYU+iFBb6ZOd4d9xKk7Wn5bi1tUFPnguDRgCBZSaQVUmvs1/WEvBbZvcg\np4sAAggggAAC7hZIJBLy+c9/Xkxgb2BgYHKw+fn58tWvflVe/epXT77HEwQQWD4CQ0OiGXtD8uun\n/NLZE5AH/rNDnjkQk6Fh75XjhkI+2VpcIDVaklsZDkokEpSdO4rEzL/HggACCHhSIKuAn7OZyQT8\nPHknMWgEEEAAAQQQ8LrA6dOn5Sc/+YkMJYak41iHtLa2Wo9HH31U+vr6Jk9v48aN8uY3v1luu+02\nCYfDk+/zBAEElq5AV3fSytiLtsWlsTkue7Uc98y5iXKxiT/hBj0BsGlDnjXX3lh33JCYJhrh8olz\n8MQpMEgEEEAgs0A2c/hR0pvZkS0QQAABBBBAAAGvC3R3d8tLXvKStKdRUFBgBQSvvvrqtNuwAgEE\nvC1w7nzK6o7bqqW4Zq69Z+pjEtWmGl5cCvJ9UlsVtJpoVIY1qBculNqaoM436sWzYcwIIIDALAWy\nCfj5nP0fIl+tzPIasjkCCCCAAAIIIJALgYqKCiugl9RfEPPz8uX+L98vH/jAByZ3PaT1e/v37xcC\nfpMkPEHAswIjSZGOjmHN2otLVAN7jdpE4zf1g5JIeK8c1wT2SovzpboiJCZrL5Xs0qy9lFx55R7P\nXh8GjgACCMxbIJuAHxl+82ZmBwgggAACCCCAgOsFQiGTAROeHOddd90lP/3pT+Xxxx+ffO9tb3ub\n/N7v/Z7U1dVNvscTBBBwr0BK43e9J5LS3pGQllbtjtuasMpxT57WiJ8Hl3VrArJjvIlGxGTtlYek\nIpI/7Uzq649Pe80LBBBAYFkKMIffsrzsnDQCCCCAAAIIIJBRwOfzyYMPPijV1dUSi8Umt7/xxhtl\n3759YgKELAgg4B6BQf3PNKrdcds0a69Jg3uNzQk5cCQuo6Pey9ozqjurQ2PluKY7rgb2du8MSR71\nYO654RgJAgi4W2B0JPP4HP6fKv8Lz3xJ2AIBBBBAAAEEEHBEYOvWrfK1r39N/uhVfzR5vCNHjsg7\n3/lO+dSnPjX5Hk8QQMA5gaT2yjjR65O+s/1i5tozWXtPaxONwUHvBfYCAZ+UbMqTmvGsPRPY27mj\nUNatdbZzpHNXjyMhgAACDglQ0usQNIdBAAEEEEAAAQQ8KvCqV75K/uqv/ko+/elPT57BvffeKy99\n2UvlFX/4isn3eIIAArkXOHV6dHyevYQ0R8fKcbt7C8YP5K3S1VWr/LJD59mrrgxKhZbjlmtwr7pq\n4lxyb8ceEUAAgWUtQEnvsr78nDwCCCCAAAIIIJCVwD333GPN52ey+yaWP3/Nn0tTU5OUlJRMvMVP\nBBCYo0A8LtKm3XDbTHdcLcltaIpL/eG4DI94L2uvsNAn20u1O6420DDdcSPhoJW1xywAc7w5+BgC\nCCAwF4HRLOZq9TubTU1J71wuJJ9BAAEEEEAAAQQWUMDM1/fNb35zWrOOwcFBecMbXi8//vFPFvDI\n7BqBpSdw/HhS2to1sGfKcbU77t76ATl7Xut0PbgUb86TzRtGtEtuUq66skzn2iuU7dsCHjwThowA\nAggsMYFsMvx8BPyW2FXndBBAAAEEEEAAgdkL7NmzRz772c/KW9/61skP/+QnP5WPfvSj1px+k2/y\nBAEELIG+M6Ma2EtYjTRMcG/fbwelo2vYkzqhkE92mnn2tBy3yjTRKNNy3OqgmOSQ+vp665zq6lZ6\n8twYNAIIILAkBZjDb0leVk4KAQQQQAABBBBYEIG3vOUt8sgjj8h3vvOdyf2/613vkmuuvVaed8UV\nk+/xBIHlJDCijRCjbcNjWXutMWnUrL1nDsRkaNh75bjBoE+2FhdITWVIKiNBCWs57u6dRVJUuJyu\nKOeKAAIILAGBbDL8KOldAheaU0AAAQQQQAABBC4QSF7wzW8ikbhgi5lf/vu//7s8/vjjcvr06ckN\nbrj+ejlw4IBs3rx58j2eILDUBKzuuCeSVsae6Y7bZAX2BuRUXxbzJLkQY+P6gNRqYK9KA3uRSKGW\n42rmXjkzLLnwUjEkBBBAYPYCBPxmb8YnEEAAAQQQQACBpSBw9uzZaafR1dU17XW6Fxs2bJBvf/vb\ncq1m9U0sJ06ckBtvvFF+/JOfSF6A+bsmXPjpXYHz/SmrHLdNG2j86tf5cqzLJ60dRz15Qvl5Pqmt\nCkqNPkwTDdMdd0dtSP9b9eTpMGgEEEAAgWwELvhid8aPkOE3IwtvIoAAAggggAACnhY4efLktPGb\nJhypVEp8Pt+092d6cc0118hdd90lH/rQhyZXm6y/2269Vf7985+ffI8nCLhdwGTtdXSMSGs0JlGT\ntdeqTTQODEosNrUcN/N/E244TxPYK92SL9Uma0875EY0uLejtlDWrPbG+N1gyBgQQACBJSNg/oHL\ntDj8zQ855JkuCOsRQAABBBBAAIF5Cpjy3R/96EcX7eV//ud/5Oqrr77o/ZneeP8HPiCPPvqoPPnk\nk5Or77//fjGZgu9973tl7dq1k+/zBAE3CPRqOW5bR0JaNajXrI992h2396ROwOfBZWWRyJ4dKyYD\ne6Yct7Ii34NnwpARQAABBBZEgAy/BWFlpwgggAACCCCAgGsFotGo3HzzzTI8fHG30Ntuu00eeOAB\nuSKLBhymdPfrX/+61NbWytDQ0OT5mqYejz32mNx0003ytre9TXbv3i2Fhcz4PwnEkwUXGIyJtFvd\ncePSbLL2mhKy/0hcksmpWXsLPoycHWBntXbE1e64FZqxFy4PyshQswSDKamrq83ZMdgRAggggMAS\nE3DhHH6+/fv3z+tf4v7+fusqrVzpjrbwjMf+Pxp88LEXsF/L/YOPvYD9Wu4ffOwF7Nd67f7p6uyS\n2958m3R3d08LzqU7S1PWu337drn99tvlD/7gD9JtZr1vMgXf85732G7zkY98RF7+8pfbbrOQK712\nvRbSYqZ9e9XHaqLR65OuHvMIyHGdZ6+x1Sex+Lz+nJiJaMHf8/t9sn5NSraXipSWpKS0OCll21Oy\nVt+7cPHq9brwPBbqNT72svjgYy9gv5b7xzs+FR/9P7LiV9+wHXDX2/9NTl7z+7bb5HIlJb251GRf\nCCCAAAIIIICACpSUlsgPf/jDBbG44YYbxDymLm77g2Dq2HjuPYHRUZ+cOy/S3eOXrm6/aPxamqI+\nOdk307lcHCCbaavFfK8w5JNtxSnZVpqSrcWjskWfb9+WkoDf/WNfTDeOjQACCCAwCwGdlznTkspi\n3uZM+5jN+ry6urrZbH/RtvX19dZ7893PRTue4xuMxx4OH3zsBezXcv/gYy9gv5b7Bx97Afu13D/4\n2AvYr+X+Se+j00tqt+eDOhekT5KpjdLUkpDfHorJ0HDmP1zS73Vx1oQ0sLe9tECqK3R+vbA20YiM\nNdEommeFO/eP/fXEBx97Afu13D/42AvYr3XV/bN+g/1gdW1pTY2UzjMGl/EgUzYgw28KBk8RQAAB\nBBBAAAEEEFiqAp2dSYm2xyXaFpfG5rEmGmfOma6CE38SzJjC50qOLZvypHZKd9zyspCW5E6chyuH\nzKAQQAABBJaywEgWXXr9fkcF+FfRUW4OhgACCCCAAAIIIIDAwgqcOZuSNm2i0aoNNFr0sf9gTKId\nzzZ6Wdij53bvwaBPdlVpxp420ajSjD3THbeqKih5gdweh70hgAACCCAwL4HRZOaPE/DLbMQWCCCA\nAAIIIIAAAggsd4ER/duirW3YytgzwT1Tjrvv4KAkEt4rxy3I98nWknyrHLcweFZKdK69G67fKatW\n+pb7Zeb8EUAAAQS8IJDMJuDn7LdVZPh54cZhjAgggAACCCCAAALLVmBUq4R6TyQns/aaW8fKcU+e\nzuKPCxeqbVgXkB2atVcVCUo4PJa1FwnnT460vv6k9Zxg3yQJTxBAAAEE3C4wOpJ5hAFKejMjsQUC\nCCCAAAIIIIAAAktQoH9ArIy9Np1nr1mz9sxcewePJmR01HtZe4GATwN7QanRR4UG9iL62FETkjxS\nDpbgncspIYAAAstcgAy/ZX4DcPoIIIAAAggggAACCKhAMunTwN6IFdyLmsBeS9wqxx0c9GZgb+sW\nLced0kSjVgN769Y6m8nAjYUAAggggMCiCaSyadrh7DQVfL+2aHcDB0YAAQQQQAABBBBYDgInTk6U\n4ybElOP+em+BnD5jzrzZc6e/drVfajSwV10RtDL2wuWFUlX5bDmu506IASOAAAIIIJALATL8cqHI\nPhBAAAEEEEAAAQQQcJ/AYEykQ7vjRtu1HLd1rBz3wJG4DI94L2uvqMgnZaVBzdoLSqXVHTeo5biF\nEgq5z50RIYAAAgggsOgCZsLdTAtdejMJsR4BBBBAAAEEEEAAgcUV6Dhmsvbi0tIak2btjvuMdsc9\nez6LX/YXd9gXHd3v98m6NSnZXiJyxeUbJVI+1kRj61ZnOwleNDDeQAABBBBAwEsCySyadhDw89IV\nZawIIIAAAggggAACS1mg78yoRKOatdeWkCbN2tt/YFA6uoY9ecoma2/H+Dx7VZFCKdfgXnVVgRw8\nWG+dT13dBk+eF4NGAAEEEEBg0QVGkpmHQMAvsxFbIIAAAggggAACCCCQS4GhIdGMvaHxrD3TRCMh\nvz0Yk6Fh75XjBoM+2V5aYM21VxkOSlgfO3cUSVFhLsXYFwIIIIAAAghMClDSO0nBEwQQQAABBBBA\nAAEEHBcwX8Cf6E1Ka1vc6pDbZMpxNWvv9Jksvpl3fLSZD7h5Y57UTumOW14WkvIy+vJllmMLBBBA\nAAEEciiQzCL7P+DsdBn8NpDD68uuEEAAAQQQQAABBNwjcPZcSjP2EvLE/+RLV7dPPv2FNjncGHfP\nAGcxkoJ8Lcet1hJc00QjrPPs6aOmOih5zv7tMIsRsykCCCCAAALLSCCbDL+A31EQAn6OcnMwBBBA\nAAEEEEAAgVwLmKy99vZhK2Mvqpl7jc2atXdoUGKxiXJc3/gh3R/sM4G9rSX5Ul0R0u64QYloYG9H\nbaGsXjVxDrnWY38IIIAAAgggMG+BbDL8/M5+S0fAb95XlR0ggAACCCCAAAIIOCGQ0vhdj5bjtnck\npDUal+bWsXLc3pNZdMZzYoCzPMb6tQHZURWSqoqxwF5Ym2hEwvmz3AubI4AAAggggMCiC6RGMw/B\n5+yXdwT8Ml8StkAAAQQQQAABBBBwWGBgUKzOuG2asdfUGrOy9g41JCSZnMjac3hA8zjcyhV+Kduq\nTTSqglKhGXsjQ8dl+/ZRed4VdfPYKx9FAAEEEEAAAdcIZNOllzn8XHO5GAgCCCCAAAIIIIDAAguY\nrL32jhGrHHcia2+fNtHoH8jim/IFHttsdx8I+KR0c57OszeRtVco4bKglJRML+Gpr++Y7a7ZHgEE\nEEAAAQTcLDCaRfMvP3P4ufkSMjYEEEAAAQQQQACBOQqcPJW0mmhEownN2kvIfg3sHe/JoqvdHI+3\nkB9bs8ovNRrYq9EmGmaePdMdt6qyQByu1lnIU2TfCCCAAAIIuE5gJJmU2OCgrFq16qKxmXV5DmfR\nTQ4iq4AfJb2TXjxBAAEEEEAAAQQQ8J5ALOaT7l6fdHaf1Xn2tCS3JSEHjsRlaNh75biFhT4pKw1a\n3XGrItodtzwoNTWFUlTovevCiBFAAAEEEPCqQGtrq9x///1yzz33yJVXXimPPfaYdSrDw8PykY98\nRO6++245e/as/MVf/IX8zd/8jezevdvZUx3J4gtMmnY4e004GgIIIIAAAggggMDcBMx0Nd1dJmsv\nLi2miYYG9p45OCBnzk00nuie244X6VPFWo5bq91xqzRzz2TthTVrb9u26eW4izQ0DosAAggggMCy\nEzAZew899N/ymU9/Rn8+dNH5xxMJeeub3yJ79+2dXPe5z31Ovv6f/yldXZ365VzR5PsL/mQ0i6lI\nKOld8MvAARBAAAEEEEAAAQRmKdB3ZlTa2hJWI41mDe41NCXkaHN8lntxy+bDWg7ULvGBVjl16rDk\nS5fsqB2V3RWXywte8AJ53vOeJ6tXr3DLYBkHAggggAACy07gW9/6lrz5zW+Wvr6+tOf+njvfPS3Y\nN7HhOc30i7ZGZdeuXRNvLfzP0ZHMx3C43JguvZkvCVsggAACCCCAAALLRkArYzSoN2Rl7ZkmGo2a\ntbf/cEzice+V4xbk++Rcf6f0n22R/nONcqbvqJzre0JSIycvup7RFpGHH/qurFixQoaGhqS2ttYq\nC/rjP/5jKS8vv2h73kAAAQQQQACBhRO44nlXyL59+yQYCspfvvUv5bvf/e60g33lga/IwYOH5MEH\nH5TS0lLr3+yWFv3HXJeKigpng33moNnM4SfM4WeoWBBAAAEEEEAAAQQWUCCplSe9vUkrYy/apoE9\nzdbbf2hQTp7OosvcAo5rrrvetEHLcU133Ig20dC59kwTjW3b/JKfVzurXQ4MDFjbHzhwQO644w55\n97vfLXt275E733On/PGf/MniTQY+q7NgYwQQQAABBLwtEC4PT57A3//9308L+LW3t8u7/u5dct/n\n7tMpOCJSV1cnhw4dki984QvWPH4333LL5Gcde5LMYg4/MvwcuxwcCAEEEEAAAQQQWBYC586nrO64\nJmPPzLXX2JyQw40JGR31ZtZebdVYE41KM89euFBqq4OSl6ZuJaC/XCd1DqC5LKM6H4/J9jNzA918\n883yxje+UT784Q/LX/7lX0ooFJrLLvkMAggggAACCMxSoHhL8bRPNDQ0yGc+8xkr2DexIhgMyl/9\n1V9NvHT+ZyqLkl7m8HP+unBEBBBAAAEEEEBgKQiYJhodHcOatReX6Hg57jOatTc46L3AXn6eT7aW\n5Eu1aaJRoVl7GtyrrgrJurX+WV2qNWvWyOnTp2f1mZk2HhwctN6+88475b3vfa/827/9m9x6663i\n8/lm2pz3EEAAAQQQQCBHAqHC6V+yhcNhue3Nt8khLel1zZJVht/sfoeZ77ml+S50vrvl8wgggAAC\nCCCAAAILKdCj5bjtHQlpaY3L07/Jl5YOn5zSOeq8uKxbE5AdGswzgb1w+ViH3IrIRKff+Z1RcXFx\nTgJ+E6MwGX9muf322+Wf/umf5Gtf+5r87u/+7sRqfiKAAAIIIIBAjgVMtv7UpaqqSgL+6e9NXb8o\nz5Njvx/YHpsMP1seViKAAAIIIIAAAstKYDBmmmgktENuXJo0uGeV4zbEZXhkataeN7LMiop8Ur51\nvBxX59kzwb0dNSHRKpwFWzZt2rQg+47FYppFGZUXvehFVqbf3XffTZnvgkizUwQQQACB5S7gdzhQ\nNifvbEp6Lwhczuk4s/gQGX6zwGJTBBBAAAEEEEBgIQXaO0as7rgma6+5NSG/PTgoZ89rdw2PLX6/\nTzasTUndrlWTWXthbaJRWur8t/EbN2609AoLCyUvP1+b6CXFP/4Ld3JkRMudx0p150psAn/33Xef\nfOtb35Kf/fxnUlszuyYhcz0un0MAAQQQQGC5CFwY8LvwtSscUlk07fBR0uuKa8UgEEAAAQQQQACB\nhRI4dXp0fJ69hDRHE1Kvgb2Orix+UVyoAc1jv6tW+WWHzrNXXRmUCp1nr0wDe4MDDRIIaMCvrnQe\ne87NRx944AG56qqrZPOmzXLJcy6xsvDi8bgkEgnp7OqUrs4ueeKJJ+SXv/ylHDt2TPI1KDjbIKAp\n8+3q6pJL6i6RL99/v/z5a1+bm8GzFwQQQAABBBDwhkAqiy9oHc5UJMPPG7cOo0QAAQQQQAABDwpo\nXEnaOoakzXTH1ZLchqa4HDgSl6HhqeW43jixUMgnZaYcV+fZM91xI+Gg1NYWSlHhxeOvr3fP+ZnM\nvpe85CXWIOvq6i4erL7zlre8xXq/70yfFfx74D8ekO9973tWQ46JOftm/OAFb5ptb3nTm3RexVb5\n+7//+wvW8hIBBBBAAAEElqxASjunZVoo6c0kxHoEEEAAAQQQQMBdAqY7bk930irHbTVz7TVrOa52\nxz19Jotf/tx1KtZoijfnSa1m7VWOd8cNlxfK9m3Ol+M6TbNu7Tp55SteaT3Onz8v3/n2d+SOd95h\nZfxlm/Vnsgc/9KEPyb59++Qb3/gGXXydvogcDwEEEEAAgcUQyCLBT38pcHRkZPg5ys3BEEAAAQQQ\nQMDrAn1nRjVTzy9d3T557Ofd+jwhRzRzz4uLydrbabrjajlulWmioeW4lVVByVv6sb2Ml2vVqlVy\n0xtvsh4/+tGP5Oabb5b+/n4xAb1Mi9nGzOlnMgrr6+sJ+mUCYz0CCCCAAAJeF6Ck1+tXkPEjgAAC\nCCCAwHIR0H4OOs/e8HgTjZg0tuhce0diEouZctWJ70zPeoKjIN8n20oLpKZSA3qRoIRNOW51oaxe\n5ew3zZ7AmmGQN9xwg3T3dMtnPv0ZueOOOyTbMt/Dhw/Li1/8Ynn00UclL2/inpnhALyFAAIIIIAA\nAktfwOEMP9/+/fvnNcmK+abTLCtXrnTFxWE89pcBH3zsBezXcv/gYy9gv5b7Bx97Afu1C3n/JJM+\nOd2nJbm9funs1keXT1raRfq8Ecu7CG7tapHSLSnZWjKqD5GS4pQU62u/f16/8l10HLs3FvJ62R03\n3bpcjqe3t1duv/12aWxszCrwF9D5el7/+tdbn5kI+uVyPOnOeTbvMx57LXzwsRewX8v9g4+9gP1a\n7p8xHzPNhmnANbE8//nPl89//vNW5r15zw3xqLpXXzIxvLQ/67/5W3GyrJevGtNeClYggAACCCCA\nwFIT6O/3SXevT3p6fHK8yy/HNLjX3umTZNK5YFiuTAtDIsWbRLaXpmTd2phs2ZSU6uqghIK5OgL7\nmUlg8+bN8uCDD8p//Md/yCc/+UkZHrbvrpxMJuWrX/2qnD17Vv7hH/6B8t6ZUHkPAQQQQAABLwuM\nZjOBn56g0xl+KV3m42rmJTFLuq5n89n3XD7LeOzV8MHHXsB+LfcPPvYC9mu5f/CxF7BfO9v7J6m/\nd3V0jEhrNCZR7ZDb1GqaaMSkfyDLX8jsh+Po2kBAy3GL86Vay3GrxptolJcFNWvv2Yn2Zuuz0Cew\nXMbzi1/8Qq677jot845lJDXdgt///vfLnXfeac3rZz7A788zsy2X+2fms8/8Lj72RvjgYy9gv5b7\nx50+Z86ckXXr1k0O7sorr5Rf/vKX7vr3tDaLaVKOziv8Nnn+2T4hwy9bKbZDAAEEEEAAAVcK9J7Q\n7rgdCWnVoF6zPg5od9zjPfZZV648ER3U2tV+a549M9deJKxNNMpDUhHJd/oLYbfyuG5cV199tZig\n33Of+9yMYzNBwQ984APyvOc9T0yWIAsCCCCAAAIIZCdwYTZ9a2trdh90aqvRZOYjOZzdZwZEwC/z\nZWELBBBAAAEEEHCBQCzmkyNHE9pIIy7NJmtPu+MebIjL0LCz35bmgqKoyCflW4OatReUCiuwF5Qa\nbaJRVJiLvbMPJwUuv/xyaWlpkYqKioyHNc0+XvGKV8h3v/NdKSnVCRZZEEAAAQQQQCCjwJEjR6Zt\n093dLUcOT39v2gZOv8jqV9EsMgBzPG4CfjkGZXcIIIAAAgggMD8B0x23s2vE6o7bqoG9Zu2O+5v9\nBdI/aPYbnd/OHf603++Tkk15UlP1bDluuCwkpaXPluM6PCQOtwACkUhE2qJtsueSOjl/7pztEUym\n3+3/7+3y9a9/3XY7ViKAAAIIIICAWF+q3XbbbRdRvPglL5a7P3K31OyovWid42/ofL0ZF/2d0OmF\ngJ/T4hwPAQQQQAABBCYFTveNasaeZu1FEzrPXlwaW8wjMbneS09WrvBLrZbimqy9Ss3aK9Ny3MqK\nAskjtuelyzjnsZaVl8nRo0eluqpKBgYGbPdjMgK/8pWvyHOe8xzb7ViJAAIIIIDAchX45je/Kbdq\noO+cNr2aaens7JTXv+H11qr77rtP3vzmN8+0mTPvZdO0w+f8L4QE/Jy5/BwFAQQQQACBZS2Q0Bhe\nW/uQtGk5bospx9Wg3v4jMUkksqqBcJVdMOiTTWtTsk274z7vuVskEglZ5bgrV7hqmAxmEQRKiovl\n//7f/ytmMnFTvptuMes+/vGP6x8yt0ptjQsyE9INlPcRQAABBBBYJIE/+7M/E/OwW1zTZCWbgJ/f\n+fCb80e0u1qsQwABBBBAAAFPC5juuD3dSYm2x6259hqbE1J/eFBOns6i1MGFZ75Fy3FN1t6z3XE1\nc2973pSucM92jHPh8BnSIgiYOf2++IUvWsG8eDyedgRJLf+54fob5GjDUQn4nf/WP+3AWIEAAggg\ngAACsxPIqmmH8//WE/Cb3WVkawQQQAABBBAYFzhzNqVZe9odVzP2TNaeCe4d1cfoqDez9nbpPHuV\n4+W4pkNulT7P4zcl7vc5CLzu9a+Tfc/sk89+9rO25b2mHOlLX/yS3HrrrXM4Ch9BAAEEEEAAAVcI\nZJPhFwg5PlR+jXWcnAMigAACCCDgLYERTc5raxu2MvZMcG+sHHdQBge9F9gryPfJ1pJ8qa4wWXsh\niYSDGtgLybq1fm9dFEbreoGP3P0R+fa3vy2tra1px2oaeLz97W+XG2+8UVavXp12O1YggAACCCCA\ngIsFTIlLpsWfn2mLnK8n4JdzUnaIAAIIIICANwVSGr/r6U1Ke0dCfvHLfOnq8klHd7N092rbXA8u\nG9YFZIfpjhsJSlgz9sLaRCMSdv6XLQ/SMeQcCJgy3R/+8Idy2WWX2c7nNzw8LB/84AflYx/7WA6O\nyi4QQAABBBBAwHGBbDL8fM6H35w/ouPyHBABBBBAAAEELhTo1yaiUW2gYZpoNI+X4x5pTMjwyETW\nnm/8I+4P9pnuuOXbCqSmKigV44G9Gg30BYMXnjWvEXBWYNeuXXLXXXfJhz/8YUk3n5+Zy+/ee++V\nv/7rv5aKigpnB8jREEAAAQQQQGD+AvpvecZlEeaJIeCX8aqwAQIIIIAAAt4VMF84tneMWMG9qAns\ntcTlgHbHPXs+i9IDl512IKDluFu0HHdaE42glBQ7Pwmyy2gYjosF3ve+98n9998vzc3NaUdpuvb+\n7d/+rXz3u99Nuw0rEEAAAQQQQMClAqksfq8mw8+lF49hIYAAAggg4AGBEyeTVhONaDQhTa0JOajd\ncTu6hj0w8ouHuHa1X2o0sFddEdQy3JAMJTqktCQll15ac/HGvIOAywW++MUvyste9jIxc/alWx56\n6CENzEe19DycbhPeRwABBBBAAAE3CmRT0qtTfTi9kOHntDjHQwABBBBAYJ4Cgxoz6NDuuNF2Lcdt\nHeuOe/BoXIaGJ8px53kABz9eWOiT8q1BzdoLSmXEzLMXlJrqQikqnD6I+vosvjmd/hFeIeAagRe+\n8IXy/Oc/Xx5//PG0YzJZfv/yz/9idfZNuxErEEAAAQQQQMB9AgT83HdNGBECCCCAAAJuFjDdcbu6\nTNZeXFpaY9LckpB6Lcc9fSaLeUJceGKlWo5bq1l7lSZrTxtomCYaW7c6/22nC2kY0jIQuO9z98kl\ndZfYNvAwmYBmvr8NGzYsAxFOEQEEEEAAgSUikNUcfs43jiPDb4ncX5wGAggggIC3Bc6e80lXt0+a\nWs5YTTQamhPS0Bz35EkVFflkx/g8e1WRQinXwF5lZYHkEdvz5PVk0LkRqK2plde97nXypS99Ke0O\nRzVD4JOf/KTVtTftRqxAAAEEEEAAAXcJpLKosqGk113XjNEggAACCCCQawGt2tOMvaHxrD3TRCMh\nB47GdG6viW/9enJ9yAXbX0G+T8pMd1yTtRcOSlgf1VWFsnrVRIffBTs0O0bAkwLvvvNOefDBB9Nm\n+ZmOvR/5yEfkfdrZNy9AhNyTF5lBI4AAAggsPwFKepffNeeMEUAAAQSWr4D5d7+nJymtbXGrQ26T\nKcc9HJMTp0Y8ibJ5Y55Vjls13kSjvCwk5WUUCnjyYjLoRROoramRK6+80nYuP7/fLz//+c/kJS9+\nyaKNkwMjgAACCCCAwCwEsirpdf6LPH5Tn8U1ZFMEEEAAAQRmEjh7LmV1x22Nmrn2xrL2jmpJbjKZ\nRXr/TDtcxPfWrPJbWXvrV8elpDgpL3xhpZggX0HBIg6KQyOwhAT+4R/+Qa677rq0WX6Dg4Py6Xs/\nTcBvCV1zTgUBBBBAYIkLZFPS6/M7jkDAz3FyDogAAggg4FUB00SjvX3YytiLauZeowb1TBON/gHv\ndZDNz/PJttJ8qa7QctyINtEIm4y9oGzZPPbtY319vXWZdu0IevVyMW4EXClwzTXXyPr166W7uzvt\n+L7//e/L+fPnZdWqVWm3YQUCCCCAAAIIuEQgm5LewMT0Pc6NmYCfc9YcCQEEEEDAQwLdWo7b3pEQ\nk7XX3Krz7Gk5bmfPsIfO4Nmhrl8bkB1VIStTzwT2THfccHm++Jhq71kkniHgoMAb3vAGueeee8Q0\n6Zhpyc/Pl+9993vy+je8fqbVvIcAAggggAACbhLIpqRXp+xweiHg57Q4x0MAAQQQcJXAwKBoxl5C\n2jRjr6k1ZmXtHW1KyNCw98pxTXfc8DZtnKEluJWauWcCe9XaUKOw0FXkDAaBZS/w0pe+VD72sY+l\ndYjH4/LJT32SgF9aIVYggAACCCDgIoFsAn5k+LnogjEUBBBAAIElJTCsyXmdXSNWOa7J2nt6X4FE\nO0T6B4967jz9fp9s3ZJnBfPGmmgUSljLcUtKnJ8M2HN4DBgBFwhs3rxZamtr5dChQ2lH8/TTT1PW\nm1aHFQgggAACCLhIIE3G/rQRkuE3jYMXCCCAAAIIzEng5Kmk1UQjGk1o1l5CGltM9l5iTvta7A+Z\nJho1mqVXUzkxz15IIpECySO2t9iXhuMjMC+B173udfKhD31ITDbfTEsoFJKf/uyn8qpXvmqm1byH\nAAIIIIAAAm4RyCbgtwi/vFPS65YbhHEggAACCMxaIBbTJhodQ5q1F9N59jSo15KQgw1xSSS8V45b\noPP4Fm8UuaRujVTqPHuRcFCqqgpl5ZafKNUAAEAASURBVIpZs/ABBBDwgMALX/hC7eStnYDSLKZb\nr5nHj4BfGiDeRgABBBBAwC0C2QT8As5/W0/Azy03CONAAAEEEEgrYLrjdneZrL24tJgmGhrYO3B0\nUE6eTv/HctqduWBF8eY8qdU59qo0c89qolEWktOnD2sTjZTU1RW7YIQMAQEEFlpgzZo1mq0bkYaG\nhrSH+tZ//Zd88YtfTLveiyv6zvTpnKltsm7tOtm+fbv4F6HEyYtujBkBBBBAwMUC2QT8/AT8XHwF\nGRoCCCCAgBMCfWdGJ8txmzW416ANNBq1HHd01HtZe2tX+6WiXDP1TBONiDbR0MBepZbm5s3wdVtf\nn/fOz4n7gWMgsJQFXvOa11hlvenOcUQnHz1+/Lhs3bo13Saeef973/+e3PW+u6S+vn5yzAUFBXLX\nXXfJ29/+djEBUBYEEEAAAQQ8KTCaRRICGX6evLQMGgEEEEBgDgKmiUa0bcjK2jNNNBqtrL2YDA56\nL/BVkO+T7VsLrLn2KrUUN2weGujbuMH5b/LmcCn4CAIILJLAy172Mqtb78DAQNoRPPXUU54O+I2M\njMgtt9wiX/nKV+T3fu/35IknnpCq6ippb2uX97///VbAz2QxmvkKw+XhtA6sQAABBBBAwLUC2SQm\nLEJG+ww5Bq4lZGAIIIAAAh4USGn8rrsnKfUHA9LZ7Zfv/LBTDjXEpLt3xINnI7Jpg5bjailuVUSb\naGjWXrlm7YXL+efUkxeTQSOwyALP/53fSdu0wwwtphOV/uIXv5A/+qM/WuSRzu3wKf0H4FWvepX8\n93//t/z+7/++PPbjxyQwXtJUvKVYHn74Ybn++uvloYcekssvu1wOHjyo3cZL5nYwPoUAAggggMBi\nCWST4UdJ72JdHY6LAAIIIJALgXPnU2PluG06z5420WhsTkiDPoZHTNbeRLbb+VwcasH3sUq744a3\nFUi1luCaJhrhcKFVmhsMLvihOQACCCwTgTwt79m5c6ccOHAg7Rk/9thjade5fcXdd99tBfvMOL98\n/5cng31Tx/2FL3xBSktLpa+vT26++WZ55JFHpq7mOQIIIIAAAu4XSI5mHiMBv8xGbIEAAgggsPgC\nQ0MixzuHtSQ3LtHxctyDR2Ny9nwW/9gt/vCnjSAQ0HLc0nypNk00dK4900SjbHtQirdMBCinbc4L\nBBBAIKcCpluvXcBv6px3OT3wAu/MnNOdd95pHeVNb3qTbC/bPuMRTUbfrbfeKp///Ofl0UcflQf+\n4wG59LJLZ9yWNxFAAAEEEHClQDKbOfycrwhy/oiuvDoMCgEEEEAgnUBPb1LaOxLSohl7zdo8o7El\nLq3tGvHz4LJuTUB2VI0F9vxyQkvHUnLdH+zWLpEePBmGjAACS0LgqquusoJdQ+ablBmWUCjkycYd\n99133+TZ3PhnN04+n+nJq//01ZaBWfdv/9+/yZe+9KWZNuM9BBBAAAEE3CmQyiLgR4afO68do0IA\nAQSWg8BgzDTRSEibKccd7457pDEuQ8Pea6JRWOjTctzgWDmu6Y5bHpJqDfQVFT57Jevru60XBPue\nNeEZAgg4L7Br9y4JalAvXcAvLz9fGhoaPNW4YzA2KFMDflddfZUt7AuuesHk+t/85jfW+dbU1Ey+\nxxMEEEAAAQRcLZBN04485zMMyPBz9V3D4BBAAIHcC4zoF1CdnSNWd9yJrL0DR2Jy+kwW30zlfjjz\n2qPf75PSzXlSM561ZwJ7YW2iUVpKOe68YPkwAgg4JrBnT530n08/t+mgdvCNRqOOjScXB/r+d78n\nw6YVuy579uyRlStX2u521apVUltbK0ePHrW2+8EPfiB33HGH7WdYiQACCCCAgGsEsirpdf7vE9/+\n/fvnlbrR399vGWf6h9ypC8F47KXxwcdewH4t94+3fM73D8i5s345179Curp9+vDLsU6fdJ7wyWg2\n30LZn67jawtDItu1eeO20pRsLR6V4uKUlOhPTX6Z08L9bM+GDz72AvZruX9m53PFFVekzfAze3rD\nG94g73rXu+x3Oo+1ub5eb7zpjbLvmX3WiG74wxvkn//pnzOOzpzfRMOOgoICaz6/9evXZ/ycExvk\n2me+Y2Y89oL44GMvYL+W+wcfe4GZ1254/GdS+snbZ145/u7A794oLe98n+02uV5Jhl+uRdkfAggg\nsAgC8bhPunv1oYG9411+ffikvbNAEjNOCTWv73kW/OwK8n2yeX1Ktm8VDeiZoF7SCvKtXOnucS84\nDAdAAIElK2C61Npl8TU3N3vm3FujrZPBPjPocHk4q7GXl5dPbmfKm5988kl5+ctfPvkeTxBAAAEE\nEHCrgG80i8aFizCPUF5dXd28zCY6h813P/MaxJQPM54pGDM8xWcGlClv4TMFY4an+MyAMuUtJ3xM\nx/furqRVjtuqc+01NSfkgHbHPXFqZMpIvPO0WMtxa7U7buV4d9xweaFs3+ZMursT12s2V4Lx2Gvh\ng4+9gP1at98/l156qW3A7+zZs7KQv2vn0mff3rHMvokrcvlzL89q7JdffvnER6yf3d3dWX1u2ocW\n6EUufXIxRMZjr4gPPvYC9mu5f/CxF0izNpr5i7kVW0od/3eNDL8014u3EUAAgcUW6DszqoG9hNVI\no2W8iUajdslNJr2X6bZ2tV82rh/VUtyUvOB3S6x59iKRoGjVFgsCCCCw7AUyNaho7+jwjFFnV+e0\nsW7cuHHa63QvNmzYMG1Vb2/vtNe8QAABBBBAwLUC2WT4BZxJaphqRMBvqgbPEUAAgUUQGNHkvGjb\n8HgTjZg0tiTkUENc+geySA1fhPHaHTI/z6eluAVSrVl7VZq1Fw7roywomzYG5NlvTNfY7YJ1CCCA\nwLITMA0r7Jbz587ZrXbVuuPHj08bz7q166a9Tvdi3brp23V3d6XblPcRQAABBBBwl4DpiphpCdCl\nNxMR6xFAAAFPC3T3JK2MvVbN2GvWbL1DWo7b2TPWydBrJ7ZxfUBqKzWwp5l6kUihztOkHXLL+R7J\na9eR8SKAwOILFBUVacZzgW3jjhHtAJi3CNkBs9W5MOAXDAaz2oU5/6lLd3fP1Jc8RwABBBBAwL0C\nZPi599owMgQQQCDXAuf7U1Y5bpuZZ681Lo06116DPoaGvVeOW1TkkwrN0qupCkplOCTlGtirjISk\nsDDXauwPAQQQWJ4ChUWFErAJ5plg2EB/v6xZ4/4M6WhrdNpFzM+ylfqF29k1MZl2AF4ggAACCCCw\n2ALZBPwWo2nHYrtwfAQQQMDLAsOanHe8c0RaozH55a8Cmq0X0A65jXLmnPfKcQMBn2wrzpdqzdqr\n1Ky9Cg3qlWugr3iL8/NNePmeYOwIIIDAbAWKQkXi8/nSfiwvL08GYzFPBPyOHD0y7TzOaTnyyZMn\np70304vz589Pe3tgYECSo0kJ+Pk3aBoMLxBAAAEE3CdAwM9914QRIYAAArMR6D2h3XE7EtKqpbim\nHLexJS4tbYkpu5j4o8T9wT7TRKNGA3vmEdGsPascN5yvf1hNOR2eIoAAAgg4IhAMBSWgQT27ZWTI\n/dM/JBIJiWlgcupy7bXXTn05q+fnzp6TC+f2m9UO2BgBBBBAAAEnBHTajYyLTSZ/xs/OcQP73yzm\nuFM+hgACCHhZYFD/VunQ7ritWo7brHPtNTXpXHtNcUkkvFeOW5AvVhludaVm7FmBvaBUVRbKyhVe\nvkKMHQEEEFhaAmYOv0yLyXZz+zJTluK9994rlRWVGYd++Mhhecc73jFtOxMIZUEAAQQQQMD1Aqks\nEj4o6XX9ZWSACCCwhARMM6VOLcdta49rSa4G97Q77sGGmJw87f4/qma6DFu35Os8e2PdcSM6z15s\nsFU2bRK55BL77o8z7Yv3EEAAAQScExjNUApksv8ybePcaNMfycw1aIKXg4ODkxu94AUvkEsvvXTy\ndbona9etvWhVUWHmQOhFH+INBBBAAAEEnBbI8O+4NZxFmKKCDD+nbwSOhwACiyJwum/U6o4bjSbG\nmmhoOW5zdEj/gPJe1t66NQGpKA/qXHtjTTTKrCYaBXJhNVh9vffObVFuDg6KAAIILLLAhWWwFw4n\nOTKiHXq98Wv7jtodsnff3slTGDaT3WaxDA0NTdvKvwiZENMGwAsEEEAAAQSyFcgq4Of83Ene+M0h\nW2S2QwCBZS+g0wdpxt6QtGvWXrN2x20yWXuNMc028F7wqyDfJ+XbC6S6QptohIMSGW+isWG98/9Y\nLPsbCwAEEEBgAQUS8YSYoF66JZVKSUGoIN1qV70fqYhMC/hdGMhLN9gLt9uyZUu6TXkfAQQQQAAB\ndwkwh5+7rgejQQABbwuYL1F6e33SrY/6Q6eksVnn2dNy3J4T6f9gcvMZb9mUJ7XaQKOqQgN7Otde\neVlIyrbznYybrxljQwABBHIlMBAbEBPUS7eYdcECb8xnt3379mmncf7c9O6701ZOeXH27Nkpr0R2\n79497TUvEEAAAQQQcK2AzZd2k2P2O/+3nfNHnDxbniCAAALZCZw5m9KsPW2iofPstejDBPeatEvu\n8Ih2pLCWk9ntyAVbrVrll6oyLcUdL8c1wb2IZu8FvfF3nAsEGQICCCCw9AQSsbgkbbID4vG4rFq9\n2hMnXlpaOm2cJ06cmPY63YuTJ6f/W15VVZVuU95HAAEEEEDAXQKU9LrrejAaBBBwn4CZvqfj2LDO\ntRe3Hiawd1jLcc+ez6LrkctOJz/PJ9tK861y3CotyTVBvXIN9G3eFHDZSBkOAggggMBiC/QPDMiF\nJa0Xjikv4I1/P7Zt2zZt6D29PdNep3vR29s7bVV1dfW017xAAAEEEEDAtQI2X9pNjnkR/h0nw29S\nnycIIOCkQHdPUto7EtKi8+w1a7ZeQ1Nc2o5Pn7DbyfHM51gb1gVkh3bHXVHUL6VbknLNNTUa3MsX\n5hufjyqfRQABBJaPwOHDh21PdsWKFbbr3bTy2muvnTaclpaWaa/TvWhubp626oorrpj2mhcIIIAA\nAgi4ViCVzDw0An6ZjdgCAQS8JdA/IFa2Xptm7TWPl+MebUrI0HD6uYrceoZFRT6JbA9KTVVQKrQU\nN2y642r2XlHh2Ijr6+utJ5HwRKmxW8+EcSGAAAIIuEngyJEjtsOJRCK26920sqSkRG688Ub5xje+\nYQ1r795nO/bajXPqdibYt27dOrvNWYcAAggggIB7BMjwc8+1YCQIIJB7ATNP6bHjI2PluBrYM3Ps\nHTwak76zWXzbkfvhzGuPfr9Ptm7J08Be4ZQmGkEpKfZGOdW8Tp4PI4AAAgg4LpApC85LAT+D95a3\nvGUy4PfrX/9aRvQPIbuS5OHhYdm/f/+k+w033DD5nCcIIIAAAgi4XoA5/Fx/iRggAghkIZBK+eTE\nyaTVRCMaHWue0dgSl9b2IRkd9V7W3trVfqnR7rjV491xw+WFEtYMvTxie1ncDWyCAAIIIJALgWg0\narub2tpa2/VuW/miF71I/y0Nizkv02H4V//7v3L11VenHeaTTz45uW7jxo1ywx/+4eRrniCAAAII\nIOB6gdEsklwWYb4n5vBz/Z3DABFYPIHBmDbR0O640XYzz15c9v62QDo6RRJDTYs3qDkeORgcK8et\nNt1xI6YcV39qOe6qlb457pGPIYAAAgggMH+BREKnuTBdq9IsAZ3zZ/fu3WnWuvftd7zjHXL77bdb\nA/zBD35gG/B75JFHJk/kX/7lXyRE6/pJD54ggAACCHhAIJuSXp/f8RMh4Oc4OQdEwH0CSW2C29lp\nsvbi2kQjJs0tCTnUGJcTp7RO14NL6ZZ8qdFgXpUG9yI6z56Za2/rVlL2PHgpGTICCCCw5AUOHDgg\nK1aulPPnzs14rqFQSCoqKmZc5+Y3b7nlFvn4xz9uZfl94hOfkPe85z2ydu3ai4Yci8XkYx/7mPX+\nVVddJTffcrMcOnjoou14AwEEEEAAAdcKZFPSS9MO114+BobAkhHoOzOqv3xr1l5bwmqi0dBsfiYk\nmfReOe7KIpGSzSKXPWetVEUKpVwDe5FwgRQULJnLxYkggAACCCxxgYMHDkpcg17pFlMSW1lZmW61\na99ftWqVfOe735HLLr3MymD8x3/8x8nA3tRB/+u//qsMDg5KUVGRNe9fwM8XdFN9eI4AAggg4AGB\nbDL8CPh54EIyRAQ8ImCqg9p0Xr2xrL24NGrW3mHN2usf0HQ+jy0F+T4p21ZgzbVXGQ7qvEBBKS8L\nSlfnWAZAXd0Wj50Rw0UAAQQQQGBM4IlfPCGmaUW6JR6Pa5b61nSrXf3+pc+5VB55+BG5/obrrWw/\ncx533HHH5Jg/97nPyQc+8AGrI+9Pf/ZTKS0tnVzHEwQWS6CxsVF6e3vFZJyyIIAAAlkJ6JdzGRef\n81NJUdKb8aqwAQLuF+jqSkprW9zqkNukgb0jGtjr7En/x4Obz2jzxjyp1SYalZGgVOhce+Vl5jHz\n/6q6dD5BFgQQQAABBLws8MQTT9gO/7LLLrNd7/aV1730Onn66afl1ltvlXe+851yzz33yPOf/3x5\n6qmndDqRTrn++uvlM5/+jJSVl7n9VBjfEhYwnaR/9KMfyqc++Sn58Y9/bJXRNzc3L+Ez5tQQQCCn\nAmT45ZSTnSGwLAXOnktZ3XFbo2auvbGsvaZWnex7OItvFFwmtnKFXyJlmrVXpcG9sM6zp4+INtIo\nLHTZQBkOAggggAACCyRgmnWYbCK7xXS89fpy6aWXWkG/xx9/XPbu3WsF+q677jq58sorxesBTa9f\nm+U+/uPHj8v9999vBaL7+vqWOwfnjwACcxUwk+JnWgI07chExHoEloWAKcc93jksv9kbkOPdfvnq\nN49pOW5MzpzL4n8kLhMKBLQcd2u+VGsTDZO1F9HAninH3bKZOXpcdqkYDgIIIICAwwK//OUv9Yuu\nQhkYGJjxyGZeu2uvvXbGdV5885prrhHzYEHADQIPP/SwvPrPXi11dXVCsM8NV4QxIOBhgWwy/PwE\n/Dx8hRk6AnMT6O5JSntHQkzWXrNm6zU0a2luh0b8rGUiKDbzHwJzO+LCfWr92oDs0Iy9qgqdZ89q\noBGSsrJ8WYQvMxbuJNkzAggggAACORJ46KGH0gb7zCFGtevf5c+9PEdHYzcIIDBV4KUve6n09/db\nb917773y13/911NX8xwBBBDIXiCbLr0E/LL3ZEsEvCYwMChWZ9w2nWuvqTUmjdodt0Hn20skvFeO\nW1jok8j2oGbtBaVSM/dMcM/8XKFdc1kQQAABBBBAIDuBr3/967Ybrly5Uoq3FNtuw0oEEJibgG/K\nBPqvfMUrCfjNjZFPIYCAEUiOZHYIzDwvfeYPzn0L548497HySQQ8ITCS1HLc4yOT3XFN1t6hhpic\n6tMVHlv8fp9s3ZIn1dpEw2TtSapHS3FT8uIX7fbYmTBcBBBAAAEE3CVw6tQp6e7uth3UjTfeaLue\nlQggkBuBDRs35GZH7AUBBJanwGgWf+uT4bc87w3O2rsCJ08lrSYa0WhCs/YS0tiizTTahrQEx3tZ\ne6YctzIclJrKiXn2tIlGuEDypnwtUF9PW1zv3q2MHAEEEEDATQI/+9nPbIdj5u8zWUcsCCCw8AIF\nQf1imwUBBBCYqwAlvXOV43MILL5ALCY6z96QluTGdJ49LcnVUtwjOtfe4KD3AnsF+VqOq00zqjWw\nZ7rjRjTIV67dcdetdX4S0cW/sowAAQQQQACBxRF44IEHxHTpTbfE43F54TUvTLea9xFAIIcC/inl\nvTncLbtCAIHlIjCcRYbfIkxsPyV3Z7lcCc4TgfQCyaRPTp70ybnzA9Jq5trTefYON8Wk50QWNfnp\nd7toa4o350mtzq1XpSW5pjtuuCwk27ZNNAJZtGFxYAQQQAABBJa1QOfxTjl27Jitgelmazr4siCA\nwMIL+Beh1G7hz4ojIICAYwKp0cyH8jmfYEPAL/NlYYslKtB3ZnSyHLdZO+Q2NGlZbjRfxjpq2/8S\n7jaSNav8VjmumWevMjIW2ItEglJQ4LaRMh4EEEAAAQQQ+NF//0hGRtJ/mWgCfW9961uBQgCBRRKY\n2tBjkYbAYRFAwEsCY0EE+xH7nU+8IeBnf0lYuwQEEomxcty29ri0amCvUctxDzfF5fz5LKLwLjv/\n/DyflG0r0Hn2tCuuluKGzUPLcTducP5/Hi6jYTgIIIAAAgh4RuD+L39ZUqn004KYYOAfvuIPPXM+\nDBQBBBBAAIFlLTCa/ku8SRdKeicpeILAnAS6upM6z15CH2Pz7DVoOW5H1/Cc9rXYH9q4PiBbNiVl\na3FKrrpym5RrOW7Z9jyh4mCxrwzHRwABBBBAYO4Cjzz8iCR0fj67xXTnLSosstuEdQgggAACCCDg\nFgGXZvj59u/fn/7rxSzw+vv7ra1WrlyZxdYLvwnjsTdeKj7n+33S0+OTLn10dvnlWJdPjneLDGcR\nWLcXcn5tSJuClW4R2VaSktLiUdmyJSVb9XlhYUqWyvVaKFV87GXxwcdewH4t9w8+9gL2a7l/0vu8\n+tWvloaGhrQbhEIh+cxnPiPPfe5z026T6xVcL3tRfJa+j8m4fc5znjN5oiUlJfLII49Mvp7PE+4f\nez188LEXsF/rlvun5n3vkOCRn9gOtv2998vZyy633SbXKynpzbUo+8upwNCQT06cFOnu8Utn91hg\nr12n1+sfzOlhHNmZ3++TzRtSsr1EpKQ4qcG9lBXc27A+JTQGc+QScBAEEEAAAQQWVeDQoUMSjUZt\nx2DmDrvssstst2ElAggggAACCLhHwGczTcfEKFOLUKqXV1dXN3H8Of2sr6+3Pjff/czp4DN8iPHM\ngDLlLTf79PQmpb0jIS2tcWluTehce3FpOzYso6PzSkKdcvbOPTXluFXaFbe60syxN9Yht6wsX/Jm\nOdWem6+Xc5rpj4RPehuzBh987AXs13L/4GMvYL+W+2dmn3/8x3+UoaGhmVfquwXabeuDH/zgtEyj\ntBvncAXXyx4Tn+XnU1RUJLn6+5b7Z/ndP/ZnPLu13D/2Xq7xWbXafqC6tnznTtH/sWTcLpcbkOGX\nS032lZXAYEysefbadJ69Xz2ZL8e6tRy3p0Hice8F9kIhn0S2B63AntUdV4N7ponGmtW+rCzYCAEE\nEEAAAQSWh8C+ffvk+9//fsaTpTtvRiI2QAABBBBAwF0Co1k0BF2Esj4Cfu66TZbUaEaSIp2dI2K6\n405k7R1qiMnJ07picpkIjLk/2LetOF9qqkJSVTGWtRfWJhqlpbNM2Zs8b54ggAACCCCAwHISuPUv\nbrXN7vNrqc873vEOWb06c5bAcnLjXBFAAAEEEHC9gAl+ZFoCzscOCPhluiisz0rg1OlRqzNuNJqQ\nZn2YctyWtiFJJt0fyLvwBFdqU7yd1UVWYM9k7ZVpYC8SLpD8/Au35DUCCCCAAAIIIJBZ4OGHHpbD\nRw7bbhjQPwT+9m//1nYbViKAAAIIIICACwXI8HPhRWFIsxYw5bgdx4akLWoCenFpbE7I4aaYDA56\nL7BXkO+T8u0FUlMZkkqdby8SDmpX3GZZuyalpfW1s7bhAwgggAACCCCAwIUCI8mk3PTGmyQW01+i\nbJZbbrlFNm/ebLMFqxBAAAEEEEDAlQLJ4czDIsMvsxFbOCNgmsx0dSWtrL1WDew1aWCvoTmuc+1l\ncSM7M8RZHaV4c57UVmhgT8txIxrcC5cXyvZtF6fU1td7L3A5Kwg2RgABBBBAAAFHBd79d38nZ8+e\ntT2madbx/ve/33YbViKAAAIIIICASwWyyfAL+B0fPCW9jpO774B9Z0Z1nr2E1UijRTP3Gpq0U25b\nQoaGvRf8WrnCL9WRoFRpd1wra0+baJRrE41QyH3ujAgBBBBAAAEElrbAU08/LZ/61Kds5+4zwb73\nvOc9snXr1qWNwdkhgAACCCCwVAWyyfDzX5xwtNAcBPwWWthF+x8aMuW4funWrri/eqpX59kby9o7\ncy6LjjIuOg8zlEBAy3G3FUi1Zu1ZTTS0HDdcFpRNG53/j8hlNAwHAQQQQAABBFwgkEgk5Ibrr7cN\n9plh5uskwXfeeacLRswQEEAAAQQQQGBOAqNZNO3Q5lxOLwT8nBZ36HjdPUkra2+iO25DU1zaOzXi\nJxOXvM+hkcz/MBvXB6RW59mr0sy9SKRQy3FDsn17nixCRuz8T4Y9IIAAAggggMCyELjtttvkzJkz\ntudaWFgoX/7yl7USgVIEWyhWIoAAAggg4GaBZBZJVAT83HwF3Tm28/0pK7DXZubZax1rotHYmpBE\nwnvluIWFPqnU8tuaqrFy3HIN7Jn59lZo11wWBBBAAAEEEEDAKwKf+MQn5Jvf/KYMD9vPfbyjdof8\n6Z/+qVdOi3EigAACCCCAwEwCyZGZ3p3+Hk07pnvw6lmBEc0QPXZsRFqjMYnqPHv/P3t3HhtHlh94\n/peZTObBQ7dIURJvSqoqsUp1V6murq7q0143FhgYu/Afi1nvH7trw+t/jLbHhg14MF5gjIUX8C5g\neGe902PD9ozH1e7T7e52d1V3leu+RF28dZGiTkrikZkkM3N/7yUjGUmRyVCJzIgkv9H9lJHx4njx\niSyJ/OV77zekQb2z2mvvxqSHrqNLpwnEWjgckoP7otKjvfYS8dvS0pyVlz93RJqbGI4biAdEIxBA\nAAEEEEDgMwu88cYb8vWvf93TUN7X/uG1z3wdDkQAAQQQQACBgAjkPfTwC1W+rc74zspfmSuuKnD1\nmg7HvahJNM5lZEjn2RscScu5i3OSy1Vfr72d2yN2KO4hDe4VsuOaJBpRqVmM7fX1XbcOBPtW/ThQ\ngQACCCCAAAJVIjA0NCRf/vKX1wz2mUQdv/d7v6fTlLRXyZ3RTAQQQAABBBBYVWChfI9+exxJO1bl\n25QVsylNoqHZcUd1OO6w6bWn2XH7dVju7Gz1BfZqozocVxNn9Gh23E4dhtuuQ3PbNInGju2Vn5hy\nU35YuCkEEEAAAQQQCLTA2TNn5dHHHpV0Ol22nWGdw+eJJ56Qr33ta2X3oxIBBBBAAAEEqkQg56GH\nH3P4VcnDvMdmLiyE5MLFBZ1rL61DcjW4p732zuhw3KvXPYzzvsdrVWL3/U1RnWevkB23Q+fZM0k0\nWloYjlsJe66BAAIIIIAAAsETOHnypDz11FNrBvtMy02Cjj/6oz+SUMiHsT3Bo6NFCCCAAAIIVL9A\nzkNshzn8qv8535zMybnzheG4ptfepydq5bKOWs1mh6vu5rY1hHU4btz22uvSXnutJolGW63oKBQW\nBBBAAAEEEEAAARX467/+a/mVX/kVTxZmKO/rr79OVl5PWuyEQOUEcst656yVcKdyLeNKCCBQFQI5\nD0N6pfJf9DGH32f89JjRGhd0Xr0L2mtvWIfhmrn2zupce1NTHrpyfsZrbtRh0ZqQtLfWSk9n3A7L\n7dAgnxmOu2snw3E3ypzzIoAAAggggED1C3zzH74pv/qrv+rpRhKJhPzpn/6pPPnkk9LX1+fpGHZC\nAIHKCKRSOteSa7l+vTDPuGsTqwgggMDqAlkPyVTp4be6n5814+NZOaeBvXM6197gsCbRGE7LpQkv\nEVw/W73ytXduF9nfLPLkY7tsEo221rgcPFCjw0pW3p+tCCCAAAIIIIAAAqUCC/qD/b/5nd+xAby1\n5uwzR5phvL/xG7/hOThYejXeIYDARgsMDAyUXGJ2dlauXbsme/bsKdnOGwQQQGBFAS89/Aj4rUhX\nsY23bud1nj1NoqFDcUe0mODesGbKnZuvviQayWRIunUY7qHumPbaK2TIbdVee8NDhW+Ue3t3V8yV\nCyGAAAIIIIAAAptFoF8DA1/9ylfk0qVLa2bjNfdsgn2//du/LX/wB3+wWQi4DwQ2lcD09LT8+q//\n+l339K//x38tf/s3fyv19fV31bEBAQQQKBHwModfuPK9rLbkkN557Zx34eK87bHn9Nrr1157k7c9\ndMMsear+v4lEQtK6P2qH43brkNwOzZRrhuPu3UMSDf+fDi1AAAEEEEAAgc0iMJualT/6d38kf/zH\nf+wp0Ofc9y/+4i/K7//+7ztveUUAgYAIjI2NyYsvvigjIyMrtuh73/2eNDQ0SGtrq/zVX/2VvPDC\nCyvux0YEEEBAsnNrI9DDb22je91j4kpWg3sZGdF59oZHMzKg2XHPj3l4GPd6oQrsv3tnRA53aXbc\njpi0a689kx334MGo1BDbq4A+l0AAAQQQQACBrSgwNzdnf9n/tV/7NTET+5v3XhaToMMk8/iLv/gL\nL7uzDwIIVFhg//79MjxcfYkVK8zE5RBAwItA3kOW3nDlcyRsmh5+0zNie+y99XZExifC8uffOC+D\nGuBLp6tvOG48HpKutlghO64m0DCBvXZ931Bf+S6gXj7b7IMAAggggAACCGw2gfHxcfnGN74hf/iH\nf2hvzctcfY5Bc3OzfO1rX5M/+7M/czbxigACCCCAAAKbVSDvIcdDiIDfmo9/QUfdXrq0UBiOq/Ps\nDWlQ7+xQSq7fdIbjOt3dNI1uFSwH90V1nr2EdHfGdDhuITvuvmbnHqrgBmgiAggggAACCCCwSQSG\nhobkZz/7mfz5n/+5fPzxx7KwsGB79d3L7Zmefb/5m78pX//61+/lMPZFAAEEEEAAgWoVyOfWbjk9\n/EqNrt/Q7LjnM3JOE2eYwN7giGbKvTgn2Wz19drb3hiWQzoct2cxsNfeltC59qISjZbeM+8QQAAB\nBBBAAAEENk7g3XffFZOBcy4zJ2OXxzSh2bC8+eab8t5770lYfxif18meTfksi0nQ8Z3vfkdefeXV\nz3I4xyCAAAIIIIBANQrknQ5oZRq/Vefwm02JXNTsuOcumHn2Ctlx+zW4NztbfYG92mhIOp3huNpj\nL5sdk+amvDx3/GiZJ08VAggggAACCCCAQCUEnnnmGamrq5N8Pq9Tv6TvuQffSm00gb7u7m75/ve+\nLwdbD660C9sQQAABBBBAYLMK5DzErjZ7ll79uUoujWXlvAb2RkZTMjySERPYm7jqYYLDAH4wWpp0\nOK5mxu3u0uG4dp69uOzfXzoct6/vYgBbTpMQQAABBBBAAIGtKzAzo5M/r9NihvD+7u/+rvzOv/kd\niYRLfw5cp0twGgQQQAABBBAIsoAJdq21bKY5/CZv5eS8Dscd1eG4wzrX3sCwruv7+QUPEGtBVbi+\noSEsPe0xO89ed4cOxdXgXltrreiXuSwIIIAAAggggAACW1AgkUjIww8/LN/4T9+Qw4cOb0EBbhkB\nBBBAAAEEPAuEKp+Edd2z9H7yaUr+4H+/JFMzOR0iobduui0udm+cvPGhhMK1ujEkIXuzzg2b94bJ\n/KFF34SL9Yvb7DGufSS8eIyzzRyq5zFvbVdJkwFl2Xlt7eK2xfObIwo9K0P6rWxY2vZHtcdeQofl\nJqRdg3ytBxLS1FSrpzbHFYq9Tiir9+faZq7LggACCCCAAAIIILCpBUygr76+Xv7D//sf5Jf+m1/a\n1PfKzSGAAAIIIIBA9Qqse8Bvx47oUrDPuLjGMp94/3/R93eqV8vHlpvhIrt375ZwJKwByrBEdMJH\nJwDpXjeTTZvtzqsZWmL306imeZ2enrZ127ZtKx7v7Oucz7yac660PaTnWX5993HO+krHurc56zdu\n3LDt2LNnT7E95hxOvbmWuaZzXufVqXfeL3/9rPVjY2P2Wq2trWWv6T6/iSNrCwv7L74W6522m8+O\n3pfTzmL94rbiORb3d57b8PCwPWZ8bLx4rNnXHF845dI5nXObV+f8xfO6ru3ez73u3tc53p7LdD3W\n/5t12x5to/llx32sWS8eryvmc+qu1zfm/4U2m/rFz2npPkuOy+uL57bnWTp+bm7OXieby+ouSxaF\nK/EnAggggAAC6yeQTCbF/Pz0J3/yJ/LLv/zL9t+f9Ts7Z0IAAQQQQAABBNZXYN0DfgcO1NgAjTvQ\nV2xyvjrn6iu238cVE9gYHx/3sQVcGoGtK7Bz585ikNIJhjvBd3dwMpVK2V8AGxsbi/u7g5pOINce\nu0LQ0+xrzuc+Z9gGgZdvKwTCTUDcva9zLWfbzZs3bf2uXbtsu5x695cEzjb3q3O8e5tZdwLwq9U7\n+69Wf/nyZduOAwcOlLTHOc55Xe14p75c+01w2LbTFQB2jlv+5cG5c+dsO/r7++9ujxOsd+7bBJsX\nz+m0z1zLntOs6OJcx6l33juvdn/9w12vB9mjzT6DAwPmJLI8gO0cb17tvUXM9ZaOc9fbddN253/m\n/K57cepte80+pn55WTz+zp07tm5qaurufZYfo+91J3NabePSOe0G/kCgigVMMg6TsferX/2q/NZv\n/Za88MILVXw3NB0BBBBAAAEEtpLAugf8tGOP7NoekavXCe5tpQ8S94rAZhYwgbN7WQjO34sW+yKw\nuoAJjpoexWHtdZ5dKPxcYXpZmSClO/DrDsA7AdWSeleA3dQ7wXcnGOocY87rrDuv7oCoCcBHIvrF\npu53+/Zt+7pjxw4bVHUC8CsdV3qO0h7Qy/df/t59rFk39U7w3V135coV256Wlhb76q5zr3s5v3v/\n5evLj1/t/fnz5207PvxQp3NxBZft/k4Q2jx6vSf3Ndzn08MKxzr767722bnO5xxr910MVjvb3K9D\nw0P2XCaAXW4x1zejKjKZjBw/ftwG+l566SVpaGiw7Tx16pR9Nc/A6f3uDsC722+ub9tlr1y4T6cH\n/JWr+rz0fxNXJmxzHKNVj190ctcXz+0yNPXG1CyFyy/52o38gQACCCCAAALrK6CjzdZcFv9tXnO/\ndd5h3QN+pn2JmP6wwYIAAggggAACCNyHQE4nA16eTXV2dvY+zsihCJQXMJ+5dDptd3rrrbfElK26\nmMBnSYBRISI1hYC3mffaBDSdeifAHqnRKWFW6H1erHdNSeMEZN0BeGc/MwWNqTc95t3Xca63Uu93\nu9/i1DfOfs41nNfVtjv1zvWd986rMwXN3r17bXuc7ebVHYBf6/zrVe9MQXPw4MGS9qzWfic4bNuq\nbXa33/niw4SJQ4vPtaR+cX9zDnf7i+fSiuGRwhQ0E5c1gG3i3IvBd/Pfjvtc7uOd7U7bzHunXg8y\nm0uOdfZf6dW0pRCA18+lHjd6btQe63xBVHKM7mHfu75IMO/tNc2LU7943yXHltlmLlw0ce1nzmt6\nCZvz5DWLp72WgWFBAIHNI+Caxm71mzJ/O1V+2ZCAX2beZOtYYfGSqniFw9iEAAIIIIAAAggggAAC\nlRMw08mwIICAPwJO8NN5Na1wArpm3QQOTe938+oE4E29s0+hvtAj3DmHeTX1s6lZG5w0yYfMfk6p\nWezB7gSBneOcevN++TZ7HRs8LZ1j3h6j200Q1DnGeXXO57xOTk7aNpj56p1tK+270jZnf/NqvzxY\nFsh11691vFPvTEGzf//+YnvMeZx69znd6+5697qzj9lmAsPFoPKy4LLTA9yGhVzPxZmCZnBw0Lan\neA7XvVpntXau5bzafc1+y67l1Je8rrKfntScpnj/A2YKGl3MF2Tu4839LQXfzRGF45x93CbmhIut\nKpxDr+3U2+tZBJfVMv/i8brd6blvviA213LXOde2r8bftMq5tq7Y/e3W+/zDZqtd4xx6j34sGxLw\nu3lrtS6NeT/ukWsigAACCCCAAAIIIIAAAgggUBUCJphilmx2td+rq+I2aCQCVS/gBA2dYLq5ISc4\n6QQMTSivRgcHmJDiOwdEDsXNXsuW8IaE3pZd5O63637Vy5ezMje3WmBvlZ5/d7eLLQgggAACCCCA\nAAIIIIAAAggggAACCPgiYIbim+IE4ddqxKoRr1BkrUM3pL6mr6/vvk5s5tgwi3OeEydNXHPlOOK2\nvV+T+fRVCyZigoLKYcc7K6I5iR3ya9aypsZsKBS7ffHbDbtuag282aewXthXjyvZlls8r9lnab98\n3pxLd8ybbqh5qYnktAuwmVPBdPHM2vaZh2qW5Q/XvDfftLjr7Y78gQACCCCAAAIIIIAAAggggAAC\nCCCAgFtA40hOzMy9eaPXV47M3cdVO9vz8q9+MSvjlyNycUzkYiH5mD3jsSf+7X2cuXKHxmMiXe0i\nvUey0tSUl/378polsBAAvNdWOAFRM0fC/SxpzRaXTqXsKUx02QQc3UFHZ93sYKPPJp7pClo6+0/P\nTNvtiWTCnsvZntdI6WLYVeOgd5/b2c8clDfXt0cXruHs71zPtm9xD3ucWXe1x2m/OYXjE4/Hi+11\n1zvXdV7NMRtZb7Ly5bI5qY3VmkvZNrmvbdZNfU6DxavWLz4fL/XOvZjzOvs728x7M3+OqavRSbJX\nqrft0esV26PPzn28U59fbG9u1fqVr++cyzxjs8zNF9rjdF8253eu4bRvYTGTplPnrjftzC4Ugvdm\nuxM8N9cpHr84dCG3QmDdfS7neOc496s9GX8ggAACCCCAAAIIIIAAAgggUCGB1Wbq0+5lFWpB6WVC\n+ktz4Tf50u2e3zlRyt7e3lWPMXP+vvX2lGZMSsvAUEbODKbk9lThF/xVDwpgxeGuuLz0XL10diSk\nvS0mzU1rd8v04lPJW6U95bXxwWclAROYNn9VmmKDoK4gtrPdvJ48edLWP3T0Id1Xz7R4THEfE3DV\noKcNrmt9cbtrv1zhQFtX6AS9FOA3+5e7vr3kYsDZ7DvQP2DP03Oop3itYhDXdU2zr1lMu/LZwn2W\ntM1sN9fWttvj9T7M/+z/l53HOb8eYKoL1zX763uTNc/Ut7W1FbavcA7neOe1pB2mDa77W15n23gP\n9WZSZnNMU1NToT0rnd95Zlp3L+dfrZ2rbTfnNlkgTRB8+/btxfaY7UvX1YC5fuHgbFvaXtjHeV+8\nxqJ7NrfUc93UFev13E7Q3TnnQnbBfqlh3s9oNlzzGtNMnc4xC9q+5cF457rmM7T8fGYbCwIIIIAA\nAggggAACW0Ggv3WVOfzqW0Q+1B5xFV7WvYffSu3X3xXk5ZcabHHXf/jxrIyOZmRgWAOBWs5dDHY2\nsH5toynuZef2iLyq99bTqUHA9rgGAmslGnXvwToCCFS7gNceuia7mFmam5oDcct1dXW2HeW+kKlk\nQwmol9fG524fE2g0Pa81pCknPj1hg869R3tLgp6mzv5fg5NOYNIJYNo6Pa1W2T+K9YvBUFNf/njT\nJt3DnEC/p3QHT8+ePWu3Hzp86O7r28MKxxXboudYa920b/GKtre9c1/OcfYLA3Of5osD53zmXvR/\nI8Mj9v47OjqW6hb30Q3mVMVgbvFYu32xXeYsjotz7sVXx815LTneta+7/tKlS7YdLS0txfa461c6\nx1r1ywPKy8+x2vFm+/Xr163Pzp07i+0pd7w5xjq7TOw23W56zZse88uPX6l9xTbp/iag7hxjvkgy\ndclksrjN9JB36p3rm1EFzjZT75wva9uhnwVXb3h7jG63nyF9Ls6+zvG2gj8QQAABBBBAYMMECrmA\nVzh9qCKht7su7M9VF5vx+KNJMcW9TM+IvP32HRkcScngcEZOD6b1h33zY2owF5OR+L9865Y2zpTC\nEtaUy6++qEFA7RGYz4VlX3Nw2++0mVcEEEAAAQSCJmCyoCUShSkonAB2Q0NDoJpJQH3lx0EAe2UX\nZ2s1+LgDkCZoaAOIJnRs/u8K9DrrJkC6Wp3dxwSVzY/Ey49dDJ5qGLV4/OnTp23A9YEjDyxdyx6v\nJ9DdSoLei+db9foGXfcpCYDahprNS4HbkvrF7fZQ3XdocMj2YO7u6l46ZrE9TltscHaF8zrXMOc3\n7SgQ6OuyoLFzHrvHCsbmeKeNFy5csO04cOBAsT1OnXO95a/rWq9tL7ZX7+nq1cIc7bt27Sq2Z6Xr\nl2vDWnWrB9QLAXj38bdu3bLtMP9eOO0oHr/o7v4Cx+xTrF+2burMud3/PTj7Otc0AfjsYsC+8HEr\nfK5MvVmcY506u5E/EEBgUwqsOnB3cYquSt+0rwG/lW62XjukfOHVRvmCNJZUv/PerIyMFoKAZkjw\nxNWFkvogvTHf+v7w9Tu2LCUw6ZeWpqi8ooHAzo64dLSbYcGB4w8SI21BAAEEEEAAAQQQ8EnAmT/Y\nj8s7czx3d3f7cfm7rtm0t8luI8B/F43dUA0B7JVbXpmtn8XHBhNtULnQRjuHugYfnQCmfXUFmJ3g\nY7HeVecELZ06MwWNWR586KFCEHoxqFkMQpvrljneBK31QNsWJwDv6fr2sGX3oNe2U9Do+cx/704b\nV3w119Tfs23TllmYALQ7CG3vxe5obnFZwH/xWK0wexTqXb2pzRQ05hg7Bc3iOe66v2XnXKnefQ/3\nU+9MQbN3717bLvd57bqaLA9gL99npeu7t7nXlx9r3jv15tVMQWOWbdu2FdtTCIIXgu/LjzfHOMc7\ndcX3iwF4dw949/XMujm3s789l3nWrudlpqAxvd1rdVjpSr3fnXOYNi8/t3m/3suqAb+wP8NAqybi\n9MxTSTHFvVy/kZV335vS3oA61HbQzA1YOtzWvW8Q1sevzMtf/t3NkqbE4yH5wkuN0qVBwEIgMCYN\n9at+TEqO5Q0CCCCAAAIIIIAAAggggMDmEjA93EuWyNpzx5fsX+aN6ZFpln3NwZiCxpk6h4D6yg/t\nswSMVz7T+mzdau2xQUINMhZjg7pitpWUixck9NXDNoCcWPafblE9tFpFcY8NWamagN9Kd797V0R+\n4SvbS6o++uiknDwd0gh/kw4JTsvZobTcmCxkBS3ZMSBv0um8fOefbmtrTFlautpj8tLxeg0EJrQ3\nYFxaWtbvL/mlq7CGAAIIIIAAAggggAACCCCAAAIIILBcIBQKSSS0RizGTD+zVjwv4k/ozZ+rLldc\nx/fRaF4efSQvvb2FyfOdU4+Pa2/A9xd7A2oQcPhcxqkK5Ktp3/I2bm8My+d1SPChLg0CtsW1m3FM\n4vFANp9GIYAAAggggAACCCCAAAIIIIAAAptbYHG+zrI3ScCvLM99V5oecv/t10p7A86mNEHIO1N2\nbsCBoYyc0rkBZ2fXfxz3fTd+8QS37uTkte/e3Ruw94G4PPd0YW7Adg0C7t2zRgR6vRrEeRBAAAEE\nEEAAAQQQQAABBBBAAIGtKlAc71sGIOxPjGbT9fArQ3xXVVJ7Xr7ycoMt7sr3PzQJQtI2S3C/BgEv\nXp53Vwduve9MWkxxL3t319hMwWZewE4dFtzaGpUafz5j7maxjgACCCCAAAIIIIAAAggggAACCGwO\nAS89/Aj4BedZP/l4UkxxL5O3cvKeMyRYk4OcHshoxpjg9ga8en1B/vq1SfctSG00JMceisqBFtEM\nNik7JHjH9rUGm5ecgjcIIIAAAggggAACCCCAAAIIIIAAAkZAswSvufjU+2pL9/Bb86G4djCBsS99\nYZt8SbYVt2o2aM0SPCPDmiV4SBOEnNG5AU2gLajL3Hxe3vskpEXkte9fKDazbX+tvPy8DgnujEu7\nzg3YepCPRRGHFQQQQAABBBBAAAEEEEAAAQQQQGAlAS89/MjSu5JcsLdFtHPc8WfqbHG3dOJKIUHI\nsA4L/uTT23Lhsrs2eOvnx+bkP/7nGyUNq68LyysvNEh3V2FIcIdmDTZDoFkQQAABBBBAAAEEEEAA\nAQQQQAABBFTAyxx+kagvVHTl2gD25qaIfO0XCwlC+vqu2SscOtQrb787LaOjKenXBCFnh1JiknAE\ndZmeycm3fnB3gpAHeuLywrP10tGumYI1CGjulQUBBBBAAAEEEEAAAQQQQAABBBDYcgILHkZ5RvyJ\nmxDwq9CnMRYT+dyL9ba4L/nRJykZ0SHBgyMZGRhOyeiFOXd14NbP6PyFpriX3Tsj8nnTG1CTg7S3\nxzUQWCtRfwLY7maxjgACCCCAAAIIIIAAAggggAACCGycgJchvWF/Qm/+XHXjqKvuzI8dS4gp7mVq\nOi/vvjslQzokeEDnBTw1kJZMJrgJQq7fzMp/+dYtvQVTCkskEioMCdZ5Abs6Y3ZuwF07SRDi+PCK\nAAIIIIAAAggggAACCCCAAAJVLuAl4EcPvyp/yOvY/Ib6kLz6SqO8Ko3Fs5ph4e99MCsji0HAfg0E\njl+ZL9YHbcVkMP7h63dscbftQHNUXtbegJ0dpidgQrMFhyQSDm4w09121hFAAAEEEEAAAQQQQAAB\nBBBAAIGigKeAnz+dn+jhV3xKwV4JhUSefjJpi7ul165n5b33C70B+wczclp7AwZ5uTQxL3/5dzdd\nTYxKrFbkC5+bkG7tDdihQ4I7O2Jigp4sCCCAAAIIIIAAAggggAACCCCAQGAFPAX8mMMvsM8vyA3b\nszsiv/CVQoIQp53z2vHvnfembW/AweGMzrmXkhuTWac6cK8Znbbwuz+8O0FIjw4FfuGZeunSuQFN\nILClxZ//SAIHRoMQQAABBBBAAAEEEEAAAQQQQMB/AS8Bv7A/sQx6+Pn/8Vj3FpiEGS88V2+L++SX\nLmXlm9/ul7HxsFy/Fdc5AjPu6sCtm0QmpriXHdsiOiS4Xno6E9KpQcDW1pgkSqdAdO/OOgIIIIAA\nAggggAACCCCAAAIIILAxAjkPnauYw29j7DnrksCBAxH53Avmw5iV3t4jtmI2JfL2O1PaGzClWYJN\nb8C0TM/klg4K2Nrk7ay89t27ewN+/vkG6ekyCULimiAkJnv3+BNBDxgXzUEAAQQQQAABBBBAAAEE\nEEAAgY0SyHqIn9DDb6P0OW85gaT2jnvl5QZb3Pu9/5EmCBlJy5D2sDs7kJKLl4ObIMS0+ydvTtni\nvofmvTXy8nMNNghoEoS0tUWlhjigm4h1BBBAAAEEEEAAAQQQQAABBBD4rAJ5LwE/knZ8Vl6O2wCB\nJx9LiinuZfJWziYIGdRAYL/2BDyrSULmF4KbYXfi6oL8zTcn3bcgsVhIPv98o3RrYhCTKbi9PSY7\ntvvzH19Jw3iDAAIIIIAAAggggAACCCCAAALVJbDgZUivzrvmw8Icfj6gV+slTWDsS1/YJl+SbcVb\nMJ/t996fKSQIGdIg4HBarlxbKNYHbSWTycs//rMZEly6dLTWyouaICSsXW1bmnM65Lm0nncIIIAA\nAggggAACCCCAAAIIIIBAiYCnpB3+dDIi4FfypHhzrwJmiOzxZ+pscR97eSIr7384pUOCTW/AjPRr\nIDDIy+iFORm9cFObaMb8RuTf/Z/90tAQtkOCzdyAJkuwKXWlnR6DfEu0DQEEEEAAAQQQQAABBBBA\nAAEENlIg76GHH3P4beQT4NyVFtjXHJFf+oXtJZdNaYKQ9z6Y1rkBnQQhKbl1x8N495KzVO7N1FRO\nvv2DuxOEPHgoLs89XV8MApp7ZUEAAQQQQAABBBBAAAEEEEAAgS0mkPMwzVkNPfy22Kdi691uQhOE\nvPRCvS3O3Z840ac9ACM6lHafDGqCkP6hlPa0m3OqA/l6eiAtpriXPbtq5HPP1+vcgKYnYEIzBddK\nba17D9YRQAABBBBAAAEEEEAAAQQQQGBTCWQ99PCL+NNJiCG9m+qTVn03EwqJHDmU1TnzdpQ0/vad\nvLz/wZQMmyHBOjfgaU0Skk57iJyXnKVyb67dWJC/+9atkgvWRkPy0vEGMUOCOzVJSHtbTHbv8uc/\n9JKG8QYBBBBAAAEEEEAAAQQQQAABBO5fwMscfiF6+N0/NGfYNALbGkPy6ucbbXFuyvx39MFHszYI\nOKhzAppMwWNX5p3qwL3OzeflR2/cscXduIP7ovLScw02S7CZF7C9LSom8MmCAAIIIIAAAggggAAC\nCCCAAAJVJJDz0sPPn752/ly1ip4dTQ2OQFiD4k89kbTF3aorV7Py4UfTMjSasglCTvWXDrd17xuE\n9YuX5+Wv/qtJELK0JJMhTRDSKD2dOiTYDguOSWMDUcAlIdYQQAABBBBAAAEEEEAAAQQQCJgAQ3oD\n9kBozqYSaNobka9+eZvekymFZU6nAXzvgxkZ0SDgwFBGzurcgNdveoi8Oyeo8OvsbF6+96O7E4Qc\nbK6QgN4QAABAAElEQVSVow/m5fbUjHS0xWX/foYEV/jRcDkEEEAAAQQQQAABBBBAAAEEVhbIe5h6\nzPRe8mGhh58P6Fxy4wVMwoznj9fZ4r7ap31pGR1Na4KQtAzosGCTKCTIy8UJkYsTIfnHn1wqNnPn\n9shigpCEHRbc1hoTkxCFBQEEEEAAAQQQQAABBBBAAAEEKiiw4KFjUY0/HXcI+FXwc8Cl/Bd4pDcu\npriX6RntDfj+lPYGTMsHn9yU85dCkgpwgpCbt7Ly2ndLewNGIpog5Nl6myCkS4cFmyCg6fnIggAC\nCCCAAAIIIIAAAggggAACGyTgJWkHPfw2CJ/TIrCGQH2dyOc/12DL033apU6X3t5emyBkZDQjToKQ\nC+M6TjigSzabl5+8OWWLu4ktTZog5Hi9mCBge1tC2tuj4tOXC+5msY4AAggggAACCCCAAAIIIIBA\n9QsQ8Kv+Z8gdbD2BJx5Liinu5cbNnHzw4ZQmCDFZgnVuQM0UbLLxBnUZ1yzGf/PNyZLmxeMh+dxx\nkyAkVkwQsmO7P3MKlDSMNwgggAACCCCAAAIIIIAAAghUk0CAA36hEydO3Fe0Ynp62j6K+vr6QDwS\n2lP+MeCz/j7z8yE50x+S8YmIXBwLyaXLIjdvlb9OEGtb9oocfSAv+/flpKU5J3v1fThc+tcDn5/y\nTw4ffMoLlK/l84NPeYHytXx+8CkvUL6Wzw8+5QXK1/L5wae8QPlaPj/4lBcoXxuEz0/Tt78pe//T\nH5Rt6O0v/89y4X/6X8vusxGVzOG3Eaqcc0sJRKN5efioKbmS+756NST9Q2EZGw/bQOAFDQQGeRm/\nKjKubRYxc/8V5v+r1w6Oj2iW4BYTBNyXl8b6iCSTHiYlDfKN0jYEEEAAAQQQQAABBBBAAAEE1kEg\nlC+NA6x0ypxfc/iZucruZ+nr67OH3+957qcN7mNpj1vj7nV87jZxb1lvn1decZ9dZDYl8v4H0zIy\nkrIZgs/okODJ28ENoE3Pirz1gRMENPeyzd7QS89ogpDuuM0S3NEel33N/iQIWe/nVfq07v0d7Slv\nhg8+5QXK1/L5wae8QPlaPj/4lBcoX8vnB5/yAuVr+fzgU16gfC2fnyrw+ej98o3U2h37D8iO+4y9\nrXmRFXagh98KKGxCYKMEkgmRl16ot8V9jY8/SdkswUOaJOTsYEpGLwQ3QYhp9xvvTNvivoe9u2vk\nRU0Q0mMShLQnpKOtVmpr3XuwjgACCCCAAAIIIIAAAggggMAmEsh66MAT8aeDDAG/TfQ541aqV+DR\nYwkxxb1M3srJa6+d0TkBI3J7KilnhtKSSpXOqefe3+/1q9cX5L9+u3TywtpoSLMEN0i3Jgjp1EBg\nR1tMdu/y5y87v324PgIIIIAAAggggAACCCCAwCYTCHDSDgJ+m+yzxu1sHgGTOfepJ3PylOSkt7fV\n3tiCfnnw0cezMjySlsHhtAxoEPDSxHxgb9pkMP7RG3e0lDaxbX+tPP9MnQ4JTthhwW2tUU0QUroP\n7xBAAAEEEEAAAQQQQAABBBAItMDCwtrNC/sTevPnqmtzsAcCCKwgUKOd4556ImmLu3riSlY+/mRa\n5wVMSf9gRk71p93VgVs/PzYn5//eDFueLLatvi4sLz7bIIe6zJDgmJi5Abc1mvkDWRBAAAEEEEAA\nAQQQQAABBBAIoAA9/AL4UGgSAptIoLkpIl/50jb5ymJSDXNrmYzIBx/OyPCoJggZzsgZnRvw+k0P\n8wv45DI9k5Pv//i2Le4mHNHkIM8+aXoDmiHBCTlwgCHBbh/WEUAAAQQQQAABBBBAAAEEfBJgDj+f\n4LksAltYIBYTee54nS1uhk/70jJ6Li1DOiy4X4cED45oZDDAy1ltoynuZffOiLzwbL3EtMvjvn15\n6eoWMQlRWBBAAAEEEEAAAQQQQAABBBComEDOw5BeknZU7HFwIQS2tMAjvXExxb1MTee1N+C0zRRs\ngoAmQcjUVM69S6DWTU/Fb37vtrap0NvvT/6sX6I1IXn+6Xo5pD0CTW/AttaYmJ6PLAgggAACCCCA\nAAIIIIAAAghsiICXIb0E/DaEnpMigIAHgYb6kLz8UoMtzu55TQj80ScmQUim0BtwMC1m7r2gLvML\nefnpW1O2uNt4oDkqz2tvwG4TBGzTYcEdtWLmQmRBAAEEEEAAAQQQQAABBBBA4L4EGNJ7X3wcjAAC\nPgiENF/G448mbXEu39fXJ5O3QpJOt8qQmRtwSBOEDKTFZOMN6mKyGP/tN5eSg5h2JhIhefGZRunp\njElnpwYBNUmIyYrMggACCCCAAAIIIIAAAggggIBngbyHkXHml2sfFrL0+oDOJRGoZoEd2/PS29so\nX5TG4m3Mz2uCkI9mdW7AlAxoluCzwymZuOphLoPiGSq7kkrl5Z9+eltL6XW7O2LynCYI6ehIaBDQ\nDAvmr8hSId4hgAACCCCAAAIIIIAAAggUBbz08Av7M8SM32aLT4kVBBD4rALRqMizTydtcZ/j1JmM\nzguYkqHhtAzYTMGlyTfc+wZhfWhUhy9rcS/bG8Py4vEG6dIhwTZTsAYC6+vce7COAAIIIIAAAggg\ngAACCCCwJQW8zOEX9mc0GQG/LfmJ5KYRqIzAQw/ExBT3MpvS3oAmQYhmCR7UclqHBE/ezrp3CdT6\nrTs5+fYPTIIQUwpLOBySF56qk+6uuHSZIcE6N+C+ff58a+O0iVcEEEAAAQQQQAABBBBAAIEKC3jp\n4UfSjgo/FC6HAAK+CCQTIi8+X2+LuwGffJrS3oAZGwQ0mYJHzpf2tHPv6/d6LpeXN96ZtsXdll07\nauXoobyMT9yW9raEllqJlcY73buzjgACCCCAAAIIIIAAAgggUM0CJtvlWgtz+K0lRD0CCGxmgWOP\nJMQU9zJ5KycffqS9AUfT0q8JQs4MpWR21sNfqO6TVHD9huYGeePdkJaJ4lVjMe0N+HSD9HRpghAd\nFmwShOzeRW/AIhArCCCAAAIIIIAAAggggEC1CtDDr1qfHO1GAAE/BUzm3Fc/b5KDLCUIWdDRvx99\nPGuDgO99cE0ujotcu+lnK8tfO5PJy49/dkdL6X7tB2vlOR0W3KkJQkwgsLU1KhF/pnYobRjvEEAA\nAQQQQAABBBBAAAEEvAmYX1DXWmr86fDBHH5rPRjqEUAgUALm78qnnkja8tCRMdu23t5embiSlU8+\nndbkIJopWHsDnh7IiBl6G9Tl3MU5MUVEuwUuLg0N4UJvQDMvoGYMbte5Abdv8yeFu9MmXhFAAAEE\nEEAAAQQQQAABBFYR8JK0gyG9q+CxGQEEEPAg0NwUkS9/cZt8WbYV905rUuAPP5qRYZMpeESHBA+m\n5dqNhWJ90FampnLy/R+XJggxbXzuyTodEuwkCEnIgQP+fEMUNC/agwACCCCAAAIIIIAAAgj4KsCQ\nXl/5uTgCCGxRgXhcg2XH62xxE5w4qUlBdF7AYS1nNQg4qMHAIC9vvT8jpriX3Tsj8vwz9dJjewOa\nBCExMQlRWBBAAAEEEEAAAQQQQAABBCokkPMwpDfsT4cNhvRW6DPAZRBAIDgCDx+Niynu5c5U3pUg\nxCQJSctt7XEX1OX6zaz8w/dLewPWRkM6L6AGAW2CkISkZkOaICS4w5qDaku7EEAAAQQQQAABBBBA\nAAFPAp4Cfv5M1k7Az9MTZCcEENjsAo0NIXn5pQZbnHs10zF8/KlJEJKRweG0zg+YXpx3z9kjWK9z\n83n56VtTthRaFrUvB/eNyLOaIKSnU3sCtptMwbVSw9/+wXp4tAYBBBBAAAEEEEAAAQSqT8DLHH5h\nAn7V92BpMQIIbGoB8/fy448mbXHf6NVrWfn00xkdCpySQU0QcmogLSbYFtTl4uV5ufitW9o8UwpL\nMhmS559qkEM6N6BJENKhgcCdO/z5h8hpE68IIIAAAggggAACCCCAQFUJzHsY0hvx5/cs+nhU1SeJ\nxiKAQBAE9u6JyBdebZQvSGOxOXOacPfvv3laLo2LzM5ulzNDKZm4GtwEIbOzefnh63dsKd6ErvR0\nxuTZJ+psALCj3cwNyD8Tbh/WEUAAAQQQQAABBBBAAIGigJchvSECfkUvVhBAAIFqE6itFTn6YFaL\nSG9vS7H5p85k5Nw57Qk4ovMCDhYyBRcrA7hiEpgsT2Kyc3tEnnu6Xro6CpmCTYKQhvpQAFtPkxBA\nAAEEEEAAAQQQQACBCgp4GtJL0o4KPhEuhQACCFRG4KEHYmKKe5mZFfno42kZ1iCgmRvwjGYKvnnL\nQ1dw90kquG7a9p1/Kk0QEologpAndV5AHRJsAoHtbXFpafHnH7IKUnApBBBAAAEEEEAAAQQQQGBJ\nIDu/tL7aWo0/vycxVmu1B8J2BBBAYIME6pIiLzxXb4v7Ep+cSMmI9rAbGi1kCR4+l3FXB2o9m83L\nz96ZtsXdsOa9NbY3YE+nzg2oQcD29pjESuOd7t1ZRwABBBBAAAEEEEAAAQSqV8BLDz+G9Fbv86Xl\nCCCAwHoIHHs4Iaa4l5uTOfn4kxnNFJySAZMgZDClcwQGN0GImbfw77+zlBzE3Es8bnoDNkhdMiot\nzTlp3peVPbv9+ZbLbcs6AggggAACCCCAAAIIIHBfAl7m8CNpx30RczACCCCwKQVM5txXXm6wxbnB\nBR39+/EnsxoETNsg4IBJEHJtQeYXghkITKfz8s8/v6PNN/P+ReTPvjFkb6WjtVaO67Dgzo6ETRLS\n2hoVn3q7O7S8IoAAAggggAACCCCAAALeBejh592KPRFAAAEEyguYoNiTjydtce/ZPzAno4sJQgaG\n0nJ6ICNm6G1Ql9EL2l4tIpPFJm5vDMvxpxqkW+cF7OyI6ZDguGzfRoKQIhArCCCAAAIIIIAAAggg\nEByB7MLabYn4M7qJOfzWfjTsgQACCFSFwOFDtWLKl2WbbW9fX58O/xXJ5jplWHsDDmmCkNOaIOTa\nDQ//KPl0x7fu5OT7Py5NEBIOh+RZDXCaeQG7NElIe1tCDh7w5x9Nn1i4LAIIIIAAAggggAACCARR\nwFMPP386MBDwC+IHhjYhgAAC6ySQ1AQhvb11cvzZupIz9p1K2yHBQ5opuF/nBhzQYGBQl1wuL2+9\nP2OLu417d9dob0DNFKyBwPZ2Myw4JsnSKRDdu7OOAAIIIIAAAggggAACCKyvgJlvaa2FHn5rCVGP\nAAIIILBeAr0PxcUU93Lrdl7nBpzWYcGFuQHP6tyApsddUJer1xfkH75f2huwNmoShNRLT3dMA4CF\nIGBzE70Bg/oMaRcCCCCAAAIIIIAAAlUtkPUQ8AuHfblFevj5ws5FEUAAgeAJmLnyXn6pwRandeYL\nq09PzMroaEYGRzLaGzAl5y6aefeCuczN5+Wn/zJli7uFrS218syTZlhwws4L2N5W665mHQEEEEAA\nAQQQQAABBBC4d4Gch+mSCPjduytHIIAAAghsrIBJEPL4o0lb3Fe6cjUrfX0zOhQ4JYPDGTs3YCYT\n3AQhF8bn5MK3TKDyVvE2EvGYHD2Uk6eenCwkCGmLy66d/nz7VmwUKwgggAACCCCAAAIIIFA9Al56\n+NX409cudOLEifv6DW16eto+iPr6+kA8ENpT/jHgg095gfK1fH7wKSeQzoQ0MUhYLo2LjF+OyAV9\nnbwdEjMHXzUtB5tFDvfk5UBLTlr25WXv3pxEKhAH5L+v8p8SfPApL1C+ls8PPuUFytfy+cGnvED5\nWj4/+JQXKF/L5yf4Pg/8+v8gNRMfl23oyL9/TWY6u8vusxGV/oQZN+JOOCcCCCCAgK8C8Vhejj6Y\n1WKaUZjLIq+xvpFzYZmYCMnohQUZG4/IpSvB/qfn4oTIRW2vyNLcf9saRB46JBoAzEpLc172aamv\nr65Apq8fDi6OAAIIIIAAAggggMBmFMjNr31XPiXtCOV1Wbt1q+/R19dnK3t7e1ffqYI1tKc8Nj74\nlBcoX8vnB5/yAuVr3Z+fqem8fPLpjAxrluBBzRB8digtNyY9THhb/hIVrY3WhOTZJ+qkuzMmXR0m\nQUhcWlqWgoT32hi3z70euxH7057yqvjgU16gfC2fH3zKC5Sv5fODT3mB8rV8fvApL1C+ls/PCj5f\nfFbk/DsrVLg2/eOQSGeXa0NlVoPdzaIyBlwFAQQQQKDCAg31IXnhuXpbnEubr58+7UstJgjRTMEa\nCBzSZCFBXeYX8vKzd6Ztcbdxf1NUnl5MENKpQcC2tpjESxMiu3dnHQEEEEAAAQQQQAABBKpVIOsh\naYdPPfwI+FXrh4p2I4AAAptMIKSjaI89nLDFfWvXb2RtpuCR0ZQMDGXk1GBKZmfvq3O6+/Trvj52\nZV5e++5tPa8phSWR0N6Aj9fLoe64JgiJS7sGAffu+ey9AZ3z8ooAAggggAACCCCAAAI+CuQ8jFIy\nswX5sBDw8wGdSyKAAAIIeBfYvSsir7zcYItz1LxOlfFJ36yM2CHBGenXIODEtQUxve6CuKRSefnJ\nm1O2uNvX1R6Tpx9L2iDg/FxYmjRBCAsCCCCAAAIIIIAAAghUiYCXHn5hf77oJ+BXJZ8hmokAAggg\nsCQQjYo8qYEyU9xL/8CcnDufkkENBPYPpuX0QEay2WAGAU27h89lbCncQ+Gf5O2Ng/Lskw3S3aFz\nA3YWhgTv2F6BNMFuSNYRQAABBBBAAAEEEEBgbQEvAT+G9K7tyB4IIIAAAgiUEzh8qFZM+ZJsK+42\nm9LegJogZGRUE4RocpAzWq5e9zDXRvEMlV25dScn//jPS8OBzdUjkZA8/WhSDnXpkGANAra3xaX1\nIN/ZVfbJcDUEEEAAAQQQQAABBJYJ5D2M0An78+U9vy0se1a8RQABBBDYXALJhMjxZ+pscd/ZN791\nSsYvRyQzv117A+qwYE0SEtTF9FL8lw9mbHG3sWlPjTzzuGYK1kCgyRJs5gc098uCAAIIIIAAAggg\ngAACFRDI6VxDay0hAn5rEVGPAAIIIIDAugl0d+bElN7e5uI5J2/lbIKQUZMgZDgjZ3RuQNPjLqjL\nFZ238Fs/KE0QEotpgpDH6qWnO6YBwIQGAmPS3OTPvCFBdaNdCCCAAAIIIIAAAgisi0DWQ9IOevit\nCzUnQQABBBBA4DMLmLnyPvdivS3OSRb03/ATfSkZ1SHBJgg4MKzrF+ac6sC9ZjJ5ef3tKVvcjWvb\nXytPP5HUuQET0q69AdvbaqW21r0H6wgggAACCCCAAAIIIHBPAl56+DGH3z2RsjMCCCCAAAIVEajR\nznGPHUvY4r7gxJWsnDw5I0MmEKjzAp7WJCHpdHAThJwfmxNTRG4Vb6OhISzPPl6vPR3NcOCYHRa8\na6c/Qw6KjWIFAQQQQAABBBBAAIFqEch5mBs8HPLlbpjDzxd2LooAAgggUO0CZphsc1OjvCqNxVtJ\n6zSAn/bNFhKE6JyAZzUIOKHDbnO5YAYCp6Zy8sPX79hSvAldeUoThDTUReXg/pw0NC5IW2uNhPz5\nOcXdLNYRQAABBBBAAAEEEAiWQNbDyB96+AXrmdEaBBBAAAEE7lUgHhd5+smkLe5jz/ZnCkHAkZRN\nEHJ6ILgJQky73/t4Vv80Eb6I/Mf/PGw2ye6dEXnmiUJvQJMgxMwN2NhAFNDi8AcCCCCAAAIIIIDA\n1hTIewj4hf2ZT5seflvzI8ldI4AAAghUUODI4ZiYIrKteNWp6bx88unMYm/AjJw8O60JQorVgVu5\nfjMr3/1haYKQ2mhInn6sTnq6CglCOjUQ2NLizw80gQOjQQgggAACCCCAAAKbXyDvIWmHT0NlCPht\n/o8fd4gAAgggEECBhvqQvPBcvS2meX19fZLNao+5cJecO5eRwZG09OvcgEOjmQC2vtCkufm8/Pzd\naVvcjTzQHJWnNEFIT2dCTBCwtTUmiYR7D9YRQAABBBBAAAEEENgEAl7m8GNI7yZ40NwCAggggAAC\n9yEQieSltzchxx4ujY5dv5HVTMGzMqxDgk2m4DM6N+D0TO4+rrSxh16amJdL3y3tDZhMhuSZx+q1\nN2BcujRJSJsGAZv20htwY58EZ0cAAQQQQAABBBDYWAEPc3WH/UmKRw+/jX3ynB0BBBBAAIH7Fti9\nKyKf/1yDLc7J5nS6kE9PaoIQ7Qk4NJLRuQHTcvnqvMwvePihwzlJBV9nZ/PykzenbHFftluzAz95\nLGmDgB3tCWlri4rJjMyCAAIIIIAAAggggEDgBbwk5yNLb+AfIw1EAAEEEEAgMAK1tSJPPpa0xd2o\n/sE5HRKc0qHAmiVYk4OcHcwENgho2m2GLC8ftrxjW0Seflx7A3aauQHj0q4JQvL5kGYKDmYw0+3P\nOgIIIIAAAggggMAWEsh7+Pk0RA+/LfSJ4FYRQAABBBDYGIHDPbViypdcCUJmNOnupycWE4TovIBn\nh9Ny5drCxjRgHc46eTsrP/jJbS1LJ4tEonK4S4Ocx65Jp84NaDIFtx5koMKSEGsIIIAAAggggAAC\ngRQgaUcgHwuNQgABBBBAoOoF6pIix5+ps8V9MydPp22W4CEdFjwwlJGzGgwM6pLVBGinB0y5WdLE\n5r018pRmCu7WeQFNb0ATCDT3y4IAAggggAACCCCAwFYW4Kvxrfz0uXcEEEAAgS0tcPTBuJjiXiZv\n5WyCkDf/5YJcuhyRy1fCcutOcBOETFxdkG//oDRBSDwekqeP1cmhnkIA0AQB9zUzMaD7ObOOAAII\nIIAAAgggsLkFCPht7ufL3SGAAAIIIHBPAju2h+WlF+pl53btUidZzRrcKwu62teXsr0BB02CkKGU\njF2el7l5D3OW3NPV12fndDovb7wzbYv7jB2ttfLEo0nptvMC6rDgtloxcyGyIIAAAggggAACCCBw\nzwJe5u+755Ou3wEE/NbPkjMhgAACCCCwKQVM1txHjyVscd/g0PC8nDufkmEdEtyvw4FPa6ZgE2wL\n6jJ6YU5McS/bGsI6JLhehwTHbKbg9raYmKzILAgggAACCCCAAAIIlBXIexgF49P8fabdBPzKPj0q\nEUAAAQQQQGA1ge6uqJjy6ucbi7ukUtob8NSsDQIOanKQfg0CXtYEIblcMAOBt6dy8qM37mgp3oKE\nwyF5/OGEHO5emhewrTWq25f2YQ0BBBBAAAEEEEBgiwt4+flWf670ayHg55c810UAAQQQQGATCiQS\nIk89kbTFfXv9/RkZHk3L0GhKg4AZOdUf3AQhJjj5/ieztrjvYc+uQoKQHk0Qks2GdV7AYAYx3W1m\nHQEEEEAAAQQQQGCDBHIeevgJAb8N0ue0CCCAAAIIIBAEgcOHY2KKyLZic27fyUvfyVmdGzAlg8MZ\nOTOYkus3zdyBwVyu3ViQ7/3ISRBS+M60NjogTz1aJz1dZkiwmRcwLvv3MyQ4mE+QViGAAAIIIIAA\nAusokPXwc2vYv352/l15HY05FQIIIIAAAghUn8C2xpA8f7zOFqf1Wf2i9OSptIyeS2sQMC0DWkyi\nkKAuJnHJm+9N2+Ju48F9UXnycZMgJCGdmiSktTUmSe39yIIAAggggAACCCCwSQS8JO0I+fdFMAG/\nTfI54zYQQAABBBDYDAIRnSfvkd64Le77ef2Nk3LuXFgWcntsEPCMJgmZ0vn3grpc1CzGF7/r9AYs\ntLK+ThOE2N6AhbkBTYKQvXsi4uNczkHlo10IIIAAAggggEDwBXIeeviFan27DwJ+vtFzYQQQQAAB\nBBDwKrBrZ1527cxKb++e4iFzmnD3hB0SnJEhzRR8dkAThFydl/mFYM6tNz2Tk5+8OWVL8SZ05bHe\nhBzSBCHdOjdge1tC2tujYjIjsyCAAAIIIIAAAggEWMDLkN4IAb8AP0GahgACCCCAAAJBFKjVn5+e\neCxpi7t9A4Nz2htQhwIvJgg5q5mCzdDboC4f9aXEFPeyc3tEnnqsXno6Y9KhQ4I72mOyYztpgt1G\nrCOAAAIIIIAAAr4KeMrS618/O/+u7OtT4eIIIIAAAgggsFkFDvXUiilflMbiLU7PaG/AvpnC3IBD\nGTk7nJKJqwvF+qCt3LyVlR/85LaWpZZFa0LyxCNJOaQJQjqcuQEP8qPckhBrCCCAAAIIIIBABQW8\n9PALRyvYoNJL8VNiqQfvEEAAAQQQQGATCtTXiRx/ps4W5/bMPMunzhQShAxpcpB+EwjUuQGDupih\nym9/OGOLu40tTVHpOBiVln05CUXSOiw4LuZ+WRBAAAEEEEAAAQQ2UCDnYT7piH/ztBDw28Bnz6kR\nQAABBBBAILgCJlnG0QfjtrhbeXMyp5mCZ2VYewGaDMFndEjw5G0PkzK7T1LB9fEr8zJ+RW9GIvJ3\n3zlvr5xIhOSpR+qkR+cGNFmCOzQIuG+ffz9wVpCDSyGAAAIIIIAAApURyHsI+NHDrzLPgqsggAAC\nCCCAAAJrCezcEZYXn6+3xdl3QUf/9p1MychoWoZGM/Jp3225dlM0QYizR7BeU6m8vPHOtC3ulnW0\n1srjx5I6N6AmCGlPaCCwVsxciCwIIIAAAggggAAC9yjgpYdfyL85mOnhd4/Pk90RQAABBBBAYOsJ\n1OhPTI8eS9hi7r6v75pFSNYd0XkBC4FAkxzkjA4JNsG2oC6jF+bEFPeyvTEsTxzTBCE6N2CnBgI7\n2mKyexe9Ad1GrCOAAAIIIIAAAncJeJnDL+Jf2C104sSJ+/qpdHp62t5zfX39XffuxwbaU14dH3zK\nC5Sv5fODT3mB8rV8fvApL1C+tpo+P6lUSHsChmRsIiKXxkQuXQ7JjVshyXnJ5FaeoWK1kUhIutvy\ncqBFi84N2KKvTXvzEol4+7Gxmp5XxVBdF8LHhbHCKj4roLg24ePCWGEVnxVQXJvwcWGssIrPCiiu\nTfi4MHQ1MTYm3f/bV0o3LnuX3dEtp/+f15Ztrcxb/0KNlbk/roIAAggggAACCFRUIJHIy0MPmrI0\nr0tWVy9cDMtlDf6NXQ7LxfGQjF6saLPu6WLZbF76R0RLYW5A5+Ad20QOd+ZtgpD9GgTc15SXhgZv\nQUDnHLwigAACCCCAAAKbQSBkMsCttYT8GzWh7fPSwtXvoK+vz1b29vauvlMFa2hPeWx88CkvUL6W\nzw8+5QXK1/L5wae8QPnazfr5uXU7L6dMgpBRTRAybBKEpOT6zeAmCFnpKcViIXni4aQcKiYIScjk\n5Gm7Kz8friRmhoTz8/PKMoWt+JTT4fNTXgcffNYSKF/P3z/4lBdYVjsyLPKV7mUbl71te0bkh28v\n21iZt/Twq4wzV0EAAQQQQAABBO4S2L4tJM8dr7PFqVzQeN/pM+lCgpCRtPTrvICXLs8Fdm7ATCYv\nb70/Y4tzDyK1sneXyHPPTEi3yRLckZB2nRswmVjagzUEEEAAAQQQQKCqBbwk7YiQtKOqnzGNRwAB\nBBBAAAEE1kugRkd+PHw0bov7nOfOLxQThJggoEkQMjW1NGzYvW8Q1q/eEPnm925rU0wpLA0NmiDk\n4TqbIKSrMyFtrTGdGzAiITNymAUBBBBAAAEEEKgmAS8Bv7B/Q3rp4VdNHybaigACCCCAAAJbVqC9\nrUZ7yTXIyy81FA0yGZGTp2fl529ekLFxkas3YjJ+ZV7mFzzMKVM8S+VWTIDyp29N2eJcNRwOySMP\nxuVwT9z2Bmxr0x6B7bViMiOzIIAAAggggAACgRXwMkNe2L8faPy7cmCfGA1DAAEEEEAAAQSqQyAW\nE3n80aTU1szbBvf2HrGvg0NzMjqaliEzN+BQRk4NpGVuPphBQJO9+OOTKVvc6rt3RuTxR+qlpzOm\nQ4Jj0qlDg3ds929YjLttrCOAAAIIIIAAArKwsDZChB5+ayOxBwIIIIAAAggggIAngZ7uWjHli9JY\n3H9qOi8nT6XssGATBDwzlJKJqx5+UC2eobIrJnnJP/30tpal69ZGQ/JYr0kQYgKACe0JGNdhwXx/\nvSTEGgIIIIAAAghUTMDTkF7/fk7x78oVewJcCAEEEEAAAQQQQKChPiTPPp20xdEwP6ee6c/IuXMp\nGdA5AQdspuC0Ux24V9NL8Z2PZmxxN25/U9T2dOzSXoCmJ6BJEGLulwUBBBBAAAEEENgwAS8BP3r4\nbRg/J0YAAQQQQAABBBBYRSCsI2QfeiBmyy+49rl+I6uZglMyolmCB7WcGUzLzVuaPjigy5jOWzj2\ng9IEIclkSJ7UBCHdXXEJhyLS3JQXkwHZJEVhQQABBBBAAAEE7lsg6+FnIx9/8KCH330/YU6AAAII\nIIAAAghsLoHduyLy4vP1tjh3Nq/TBJ46rUHA0YzODZiWsxoEvDQ+F9i5AWdn8/LGO9O2iBSifP/2\n/+iX3gfiOiRYiwYC29sSWmrFzIXIggACCCCAAAII3JOAp6Qd/s0/TMDvnp4mOyOAAAIIIIAAAltT\nIBoVOfZIwha3wMjovM4LmJbhkZT0L84NaIJtQV36zqTFFPeyY5tJEFInPV2F5CBmSPCe3XQFdBux\njgACCCCAAALLBLz08Iv4F3bz78rLnHiLAAIIIIAAAgggUH0CnR1RnTcvKq+83FBs/LvvntQgoM6h\nF94ngzov4IAmCBm7siAmI28Ql8nbWfnxz+5oWWpdtCYkxx5KFBOEmLkBW1ujEvHvi/qlxrGGAAII\nIIAAAv4L5HUy5LUWM3+KTwsBP5/guSwCCCCAAAIIILBZBZLJvDz0YF56e3eW3GK/JggZPV+YF7Bf\nhwSfHsgENgg4v5CX9z+dtUVksngfTXtqCr0BO+PS0RHTIcFx2b6NBCFFIFYQQAABBBDYKgJZLwE/\n/0YMEPDbKh9E7hMBBBBAAAEEEPBZ4PDhmJjyZdlWbMnkrZyc0QQhQzokeGgkYxOEXLuxUKwP2sqV\nawvy/R+XJgiJx0PyeG9ShwTHpUsDgWZuwIMH/PsBP2hmtAcBBBBAAIFNKUAPv035WLkpBBBAAAEE\nEEAAgXUQ2LE9LMefrbPFOZ3Jpnta59kb0eQgw1rM3IAXxzOSSgVzSHA6nZe33p+xxbkH89q2v1Ye\n1XkPe2xvQJMgJCbJhHsP1hFAAAEEEECgagXMDyxrLRGdBNmnhR5+PsFzWQQQQAABBBBAAIGVBWq0\nc9zDR+O2uPc4d35B5wZM2SQhJktw/1Babk95GE7jPkkF18+PzYkpIqZHYGHZ1hCWjoO1sr8lKzOp\nWRsEbNobkRCjgh0iXhFAAAEEEKgOgZyHgB9z+FXHs6SVCCCAAAIIIIAAAv4JtLfVaICsQV5+aSlB\nSFoT7p46M6u9ATOaICQtA1rGLs+LmYMviIsJUH5yWrRE5Hs/vmibGA6H5JEH4zZLcE+n9gRs1/kB\n22ulhq/mg/gIaRMCCCCAAAIFAU9Dev2b4oMfI/igIoAAAggggAACCFStQDwu8vijSVvcNzE4NCfn\nzpkEISn56NNbcv6SaBDQvUdw1k324o9PpmwRuVVs2O6dEXns4To7N2CnJgjp0EDgzh3+ZfsrNowV\nBBBAAAEEEBDxkrQjSsCPjwoCCCCAAAIIIIAAAusm0NNdK6Z8QRqlr++qPW9b+1GdGzClvQFTMqjz\nAp4ZSsnE1YBGAbXF129m5Yev37HFgamNhuTY0YQc6TG9AE0xcwPyHb7jwysCCCCAAAIVE8h5mFaE\nIb0VexxcCAEEEEAAAQQQQGCLCjQ2hOSZp5K2OATmy/n+gYyMmiDgiM4LOJjRefcyMjsbzCHBc/N5\nee/jWVucezCvB5qjmiAkKV0dcenU0tEek4b6kHsX1hFAAAEEEEBgPQU8Bfzo4bee5JwLAQQQQAAB\nBBBAAAFPAhEdIfvgkZgt7gMuXsrKufMpGdYgoJkb8IwmCbl5y8Pk3O6TVHD90sS8XJowyUGWEoQk\nkyF5QocEd3fGtJiegHHZ2xQRkxSFBQEEEEAAAQTuU8BT0g7//tGl//99Pl8ORwABBBBAAAEEENh8\nAgcPROTggXp54bn64s3NacLd02c1S7BJEGJ6A2qW4Iuahdf0ugviYnop/uydaVvc7Tt6JC6HdUhw\nT6f2BNQgYDodkng8mPfgbjfrCCCAAAIIBEog6+GLwAgBv0A9MxqDAAIIIIAAAggggMBygdpakWMP\nJ2xx142em9d5AdN2bsABnRvw1GAqsEOCTbtPnk3bsnQPUWmoE3nqscs2U7AzJHjPbv9+SVlqG2sI\nIIAAAggEVCDv4csy5vAL6MOjWQgggAACCCCAAAIIrCHQ0R7VOfOi8srLDcU9Z2a1N+CZWRsIHBzO\n6NyAKRnXBCHZrIdfDopnqdzK1IzIP//8jpala0ZrQvLwgwk53B2TLh0SbJKEtLZGGRK8RMQaAggg\ngMBWFljw0MPPx3k0GNK7lT+c3DsCCCCAAAIIIIDAhgjUJUWefDxpi3MB0xFgYHBOfvbzIbk0FpGb\nd+JyWhOGBDUIOL+Qlw9PzNoiMunchjTvrZHHzNyANkFITNraYrJju06GyIIAAggggMBWEmBI71Z6\n2twrAggggAACCCCAAAIrC4Q0ae7hQ7UylzE9ArLS23vY7jh5KydnzmiCEB0WPGQShOjcgFevL6x8\nkgBsndCeit//cWmCkEQiJI8dTdp5ATvN3IDtCZ0DkSHBAXhcNAEBBBBAYKMEvAzpNf/4+7TQw88n\neC6LAAIIIIAAAggggIARML3jjj9bZ4sjsqDxvjP9Zl7AtA0Enh3MyMXxjKRSwRwSbNr11vsztjj3\nYF47WmvtsOBD3XFp1yBgR3tMkgn3HqwjgAACCCBQpQL08KvSB0ezEUAAAQQQQAABBBDwSaBGv5bv\nfShui7sJ5y8syOi5pQQhZ4dScutOzr1LoNZHL8yJKSKmR2Bh2d4YlkeP1kmPzg1oegKaIGDT3oj4\n2AnCaRqvCCCAAAIIeBfIefj3l6Qd3j3ZEwEEEEAAAQQQQACBrSrQ1lojba318rkX64sEsyntDXh2\nVkZHMzI4kpGB4ZRcGp8XMwdfEBcToPzpv0zZ4rQvEtEEIUfiNggYjURkf0tejhwRiUadPXhFAAEE\nEEAgYAI5D0k79N80vxaG9Polz3URQAABBBBAAAEEEFgHATNE9vFHk7a4Tzc4NCfnz+u8gDosuH8w\nLae1ZDLBDAKaxCUfn0rZIlL45ejf/1/9smdXjTzaq3MDdsWlsyMm7W1x2bWTBCHu58w6AggggIBP\nAp7m8PPv3ywCfj59LrgsAggggAACCCCAAAIbKdDTXas95mrlVWksXub2nbyc7dcEISMpGRzOSL8m\nCBm/Ml+sD9rKtRsL8sPX79jitC0WC8kjDybksM4L2KmZgs2w4PY2fq1xfHhFAAEEEKiQAHP4VQia\nyyCAAAIIIIAAAggggEBZgW2NIXn6yaQtzo4ffdQnFy6Fdfjs/sXegBk5dykjs7PB7A1oeim+9/Gs\nLc49mNeD+6LyiPYG7NYswYVAYEwa6kPuXVhHAAEEEEBg/QS8BPyYw2/9vDkTAggggAACCCCAAAII\neBcw8+R1deSkt3d7yUGXLmVl9HzKZgoe0J6AZ7XcmPQwX1HJWSr35uLlebl42SQHWUoQUl9nEoSY\nIcExvUeTICQue5siUuPflEqVA+FKCCCAAAIbK+Ap4OdfD3T/rryx7JwdAQQQQAABBBBAAAEE7kPg\nwIGIHDhQLy88t5QgZE4T7p4+m1pMEJLWBCFp7R04J3PzwewNOD2Tk5+/O22LQxEOh+TBQzE5pFmC\nezoT0qlBwLa2mMTjzh68IoAAAggg4EHAS8CPpB0eINkFAQQQQAABBBBAAAEEfBWorRU59nDCFndD\nRs/N256AI6MpDQJm5NRAKrBDgnO5vJw8m7bF3Rtw146IPPJQIUFIlw4Lbtcg4N49dAV0P2fWEUAA\nAQRcArmc680qqz4O6Q2dOHHivr6Om56etndVX7/0zd8qt1mRzbSnPDM++JQXKF/L5wef8gLla/n8\n4FNeoHwtnx98yguUr+Xz44/P9HTIzg04Ni4ydjkiF8ZEbt4OicnIWy1LVMdDHWxZkJbmBek4WCMt\nLSJNe3M636F/d8Dnubw9PviUFyhfy+cHn/ICpbUH/vL/kx3f+pPSjcveXf/vfkcu/6v/ftnWyrxl\nSG9lnLkKAggggAACCCCAAAJbSqC+Pi8PHslqMbddmPsvmw3JxbGQTEyE5NJYWOfcC8l5DQR6GRXl\nB978gsjIhRpb3nxvqQW7dui8h2152b8vJy378rY0NlRPIHPpTlhDAAEEEPjMAgHv4VfT29v7me/N\nHNjX12ePv9/z3FcjXAfTHhfGCqv4rIDi2oSPC2OFVXxWQHFtwseFscIqPiuguDbh48JYYRWfFVBc\nm/BxYaywis8KKK5NlfY5dsx18cXVm5M5OdtfSBDy7gfX5JIGAieXcm/cfYDPW25MiiYw0QzAnywN\n+U0mQ3LsQR0S3KkJQroSOiQ4rj0Ca9Y9QUiln9da1LSnvBA++JQXKF/L5yfgPs1N5RuotbvbO2X3\nfcbd1rzIKjvQw28VGDYjgAACCCCAAAIIIIBAZQR27gjL8WfqbHnkqI4B1uXIkV7pH0zbuQGHRtK6\nntHegBlJp4PZk252Ni//8sGMLW61I91xOawJQrq74jZLsMkUXJd078E6AggggEBVCuQ9zOEX0i+H\nfFoI+PkEz2URQAABBBBAAAEEEEBgdQEzT97RB+O2uPe6cHHBBgFHFxOEnBlMya07Hn7pcp+kgutn\nh9JiijtByPbGsBx7qE56NBBoAoCdHXGdGzAiPv5eWEERLoUAAghsEgEv81GEl3qCV/quCfhVWpzr\nIYAAAggggAACCCCAwGcWaNXkGa0H6+VzLy4lDZxNiR0SPDqalsGRjPQPpeTS+LzMLwSzN6AJUL7+\n9pQtDkS0JiQPHNLegD0x6enQIcEaCGxvqxWTGZkFAQQQQCCAAl4CfhECfgF8cjQJAQQQQAABBBBA\nAAEEqkEgmRB57FjCFnd7h4bn5dz5lJghwQPay+60DhEO6pBgE5w8cTpli8it4m3s3V0jx44mpbvT\n9ASMyexMSLZvK1azggACCCDgl0DQk3b45cJ1EUAAAQQQQAABBBBAAIGNFOjuiurceVF59fONxcvc\nup2X/oFCgpDBYTM3YFrGrswX64O2cvX6gvzw9Tu2FNoWlVod7nzs6EU5pPMCmuHAndojsK21hiHB\nQXt4tAcBBDa3AAG/zf18uTsEEEAAAQQQQAABBBCoHoHt20Ly9JNJW5xWL2RFhoYyhQQhOjfg2YGM\nnLuUEZOII4jLnMYn3/t41hZ3+1pbaqX3oYT0FBOExKSxwb8J491tYx0BBBDYdAIE/DbdI+WGEEAA\nAQQQQAABBBBAYBMJ1OgUS0cOx2wRWRovOzaWlZ+83i9jl8MyPdOgyTdScv2mRgcDulwYnxNT5Ee3\niy1saNAEIQ8mNQgYsz0BO9ri0rwvIpFwcRdWEEAAAQQ+i4D5tmitxfwD49NC0g6f4LksAggggAAC\nCCCAAAIIBFtg//6IHHs4a0tv737b2ExG5Ex/Ss6dy2iCEJ0bUIcFn784J3PzwewNODWVk5+/O22L\nox0Oa4IQTQ5iEoR063DgLh0W3Noak4TOhciCAAIIIOBRwEsPPx/TrxPw8/gc2Q0BBBBAAAEEEEAA\nAQQQiMV0/ryHE7a4NUbPzcvoubQdFtyvCULO6NyA0zM59y6BWc/l8nKqP22LyFJvwN07I/Kw7Q0Y\nly5NEtKmQcCmvf71TgkMGA1BAAEEVhIgS+9KKmxDAAEEEEAAAQQQQAABBDaPQEd7VEz5/Ocaijc1\nNV1IEDKsPQGHRjLFBCHZbDB7A5rhyj95c8oW5yZqoyE5eiQuh7sLQcD2toS06336OErNaRqvCCCA\ngL8C2YW1rx/270sTevit/XjYAwEEEEAAAQQQQAABBBC4Z4GG+pA88VjSFufgrHb6Gxqe0yHBKRka\nNVmCMzokOCO3dehtEBczVPmjvpQt7vbtb4pqgpCkJGIRadmXlwMHc7JjOxMDuo1YRwCBTS6Q9/D3\ndti/vxcJ+G3yzx+3hwACCCCAAAIIIIAAAsERMMkyDvfU2vIlV4KQyxNZOyTYDAse0OHAZ3VuwCvX\nPPQe8enWxq7My9gVMxy40Hvl//6LQUkmQ/LIA0k5ZBKEdCa0x2NcWlpq6A3o0zPisgggsMECDOnd\nYGBOjwACCCCAAAIIIIAAAghUucC+5ojsa66T48/UFe9kfl7sMOAR7Qk4ZBKEDGVk5HxaE4QUdwnU\nyuxsXt7+cMYWd8OO6HDgQ92aIETnBezUBCEmEFiXdO/BOgIIIFCFAgteeviFfLsxevj5Rs+FEUAA\nAQQQQAABBBBAAIHVBaJRkaMPxm1x9jpx4qRcuSJSG2+XkZGUZgrOyOmBlNy64+EXT+ckFX49q0lM\nTHEnCNmxTROEPJCQHg0GOkHA5qaI+JjQssIqXA4BBKpeIJdd+xZCzOG3NhJ7IIAAAggggAACCCCA\nAAJbXCAUyktzs0hvb7289EJ9UWM2pb0B+1M2S7AJAvYPpeTS+LzMLwQzQcjk7ay88c60Lc5NRGtC\ncqQnJkcOxaVbewK2t+uw4LZaqa119uAVAQQQCJBAzsMXLczhF6AHRlMQQAABBBBAAAEEEEAAgSoT\nSCZEHj2WsMXd9OGReZ0bMCUmU3C/9rI7oyWVCmYQ0AQn+86kbXHfQ9OeGnn4waQOCTZzA+qQ4LaY\n7N7lX68Zd9tYRwCBLSyQ9TC/go8pzRnSu4U/m9w6AggggAACCCCAAAIIbG6Brs6omPLq5xuLNzp5\nKyeDGvgzQcBBTQ7Sr0lCTBKOoC4mecmP3rijZamF8XhIeo8kbIKQrsUEIftbdAw0CwIIIFApAS89\n/EJk6a3U4+A6CCCAAAIIIIAAAggggMCWFtixPSxPPZG0xYFY0Kmohk1SEM0SPKhzA/YPZmT0YkZM\nIo4gLul0Xt7/ZNYWkcliEw8018rBFpGnR2/pkOCYTRCyrdG/SfOLDWMFAQQ2n4CXOfxManafFnr4\n+QTPZRFAAAEEEEAAAQQQQACBoAiYUWeHD8ds+YpsKzZrfDxrg4Ajo5ogZDgjZwZTcv2mh4nqi2eo\n7MqlCRFT3v5IM5ssLtsawtL7QFJ6unRIsM4N2KlzAzbvi4iPv4c7TeMVAQSqWSDr4e/CsH/TDxDw\nq+YPF21HAAEEEEAAAQQQQAABBDZQoKUlIi0tdfL88briVdKacNcMAx7V3oDvvX9FLlwSuXozJHPz\nwewNeHsqJ2++N22LcxORSEgOawDwsCYJ6dEhwSYQ2NoaEzMXIgsCCCDgScBLDz+SdniiZCcEEEAA\nAQQQQAABBBBAAAGfBeJxkUd647Z0tV+0rent7ZVz5xeKCUIGdG5AkyBkSoNtQVyy2bycHkjbInK7\n2MTdOyM2QUhPl/YE1CBgmwYBm5v866FTbBgrCCAQPAFPPfwY0hu8B0eLEEAAAQQQQAABBBBAAAEE\nPAu0t9VIe1uDvPxSQ/GYqem89A+kZGQ0I0MmU7D2DLw0MS8m4BbExQxX/smbU7Y47auNhuTokbgc\n6o5LtwYB23VIcHt7VHxMvuk0jVcEEPBTIOvhCw16+Pn5hLg2AggggAACCCCAAAIIIIDARgg01Ifk\niceStjjnN78jDw/PyTkdEjykcwOeXUwQEtTegGao8kd9KVucezCvB5qj8pDODXhIhwZ3aCCwQ5OE\nmIQoLAggsEUE6OG3RR40t4kAAggggAACCCCAAAIIILCmgEmWcain1pYvSmNx/4krWR0SrJmCTYIQ\nzRh8djglE1cXivVBWzE9FS9N3JZ/+ulSy5LJkDxSDAImZD4Tll27gtmbcanVrCGAwGcSyHn4+4ke\nfp+JloMQQAABBBBAAAEEEEAAAQQ2iYCZK6+5KSnPPp0s3tHcnMiAzgVoEoQM6byAA5opePRiRtLp\nYAbRZmfz8vaHM7YUbqJGwuGQ9HSctwlCurQnYFenDgtui0v9Uh6U4v2yggACVSTgpYdfjX+5cv27\nchU9Q5qKAAIIIIAAAggggAACCCBQeYHaWpGjD8ZtcV/9wsUFTRKSlhGdF9AmCNG5ASdvZ927BGY9\nl9N5DDVYaYo7QciObZog5IGE9OjcgCZBSIcGAZubIxIKBabpNAQBBMoJZOfL1RbqfPwPmoDf2o+H\nPRBAAAEEEEAAAQQQQAABBAIk0HqwRloP1suLz9cXWzUzK/KPPzglY+MhSc/tlH7tGXhxbE7mF4LZ\nG9AEKN94Z9oW5yZMgpDD3THtDRiXHtsTMKFzA9aKCXyyIIBAwATyJO0I2BOhOQgggAACCCCAAAII\nIIAAAptNoE5HAh/uyWkR6e1ttreX11jfyOi8Dgk2mYK1l53ODTisw4Nv3fHwi7oPQCZBSN+ZtC3u\nyzfvrdFMwUnp0QQhnRoI7GiLye5dEfcurCOAQKUFFjz0Ko74998pPfwq/YHgeggggAACCCCAAAII\nIIAAAhURMKPpujqjtogrQcjVa1kdEmwShOiQYO0JaIpJwhHUxSQvmbh6R378s6UWJhIhOXooIYe0\nR2BnR8IOC97fEqU34BIRawhsrEDOQ8CPpB0b+ww4OwIIIIAAAggggAACCCCAAAKOwN49Edm7JylP\nPbGUIGRBE24Oa1KQEe0BODiS0iCgrl/IiEnEEcQllcrL+5/O2iIyWWxid0dMDnUVhgR36HpHe1y2\nNTIxYBGIFQTWS8BLwI85/NZLm/MggAACCCCAAAIIIIAAAgggcO8CJpnm4cM6f56Wr8i24gnGx7M2\nS/DwaEqGRjJyeiAl12966NlTPENlV4ZGM2KKO0HI9sawPHQ4oZmBo7J/X1Z27MjKvpaIRMKVbRtX\nQ2BTCWT1W4K1Fnr4rSVEPQIIIIAAAggggAACCCCAAAKVF2jRwFhLS508d7yuePFUSmRQs+6aIcFD\nminYJAg5f3FOzBx8QVzMnIVvvT+jTTM9/WrkL/5mSCKRkBzqjMmRQzHpNlmCdVhwu84NmEwE8Q5o\nEwIBFPAS8GMOvwA+OJqEAAIIIIAAAggggAACCCCAwAoCCQ2KPXw0bou7+tz5BVeCkLScPDsrsxoc\nDOKSzeblzGDaFndvwD27TIKQRCFByGIQsLnJv8QDQbSjTQhYgYBn6Q2dOHHivr6CmJ6etvdZX7+U\nDt3PR097yuvjg095gfK1fH7wKS9QvpbPDz7lBcrX8vnBp7xA+Vo+P/iUFyhfy+cHn/IC5WvN52d6\nJiKTt+pk/HJExsZFLoyH5PpkSEzArVqW2v+/vTtrbuNKzzj+YgfBRQspESRBkQRJUbLMGcUaT7zE\niZ2ZKucL5HLmo+Q+F7nLzXyA5DaXqZkqe1xx7DjjxM6IdkniBoCkuEjURlLEQgKY9zTUDSSRm01T\nYDehf1cdo+1udp/+dfvmrXPOEwvJlZG6ZIbqMjpck3S6pmsgiiSTJ3sG/v9y/wLwCbbPjV//UsL7\nD1w7Of+bT6XcP+B6TrsOktLbLlmuiwACCCCAAAIIIIAAAggg8NoL9HRXJT1Yk+szNcfiQAOBN7fC\nsq7Fv7WNsKzq7/qWSLHknBKoHTNVeTEv2syUYDParzHiL61Fv9FhsdYFHNZi4FC6LufPnawIGKgH\npzMIuAiEPIR21H1cwy9U182l/0cempubs86ZnZ098tzTOIH+uCvjg4+7gPtRvh983AXcj/L94OMu\n4H6U7wcfdwH3o3w/+LgLuB/l+8HHXcD96HG/n80tExBStqYFL2hK8J3Fomw+8BAM4N6NUz3a0x2W\nNzUg5OpUIyE4q9OCR0aiEn3JrODj+rT7QeiPuzA+/8fn1ojIng7bddu+eiyakuN2RtuOMcKvbbRc\nGAEEEEAAAQQQQAABBBBAAAHvAmatvPRgSt7985TzR5WKCQgpSz5flAUTELKgBcHVspRKJxq741z/\nVe/sPa/JV988t5p97XA4pMEgmoCsRcCpbFKyGhJiAkLYEDjTAjUdqnvU5mMUNgW/o14OxxFAAAEE\nEEAAAQQQQAABBBDwSSAeF7lxPWG11i6srlUlXyjKkqYFm0KgCeB4V/hudQAAEbZJREFU/LTaekpg\n9mu1usxrP01rDQjp7Y7LxBWRt996JJNWETCpicgvGQoYmCehIwi0CFQ9FPx8nNJLwa/lXbGLAAII\nIIAAAggggAACCCCAwFkQGM1EZDTTIx+83wzQ3Huu6+zpNODlXFkWczoacLEkK2sVOTgM5mjAXe3v\n7TumbTvkJiDEjAS8OpWUaR0NODHepaMB45JgQKBjxE5ABOo6/PaoLexfAZuC31Evh+MIIIAAAggg\ngAACCCCAAAIInAGBnm6Rmz/tsprd3ZpmheQLB7ouYEm+/Oq+FgBD8vBxWJ7uNENE7HOD8GsCQubu\nlKzW2p/05ajcmElZawPaU4IvDfhXTGntG/uvqUDdw4jakAm68Wej4OePO3dFAAEEEEAAAQQQQAAB\nBBBAoO0CZkZhdiJmtcsDjSmIJnTz4baZElyWJZ0ObNYInNeRgasbHqYotr3HL7+BCS/ZfLAjn3ze\nPJ5KheTGdCMgxISDTIwnddRjTGKx5jnsIdA2gZqHQJ2If0VpCn5te/NcGAEEEEAAAQQQQAABBBBA\nAIFgCpjRcZcGUvL2rWZAyKHWL5a0+JcrNNYFnNcpwUtaFNzfD+aUYNOvr/+4bzWRJw705LgJCElq\nUIgGhGQTOiU4KefP+TfSyukYO50loGtTHrmxht+RRJyAAAIIIIAAAggggAACCCCAAAJtFIjqkKCZ\nGS2WafsbOefcaX3djAbU4p+uC7igwRsmIOThIw+jm5wrnO7OUl5HLmprDQg53xfWKcFdMj2ZlEld\nG3B8rEtGNCDEx3rM6aJwtzYIeCn4+VdoZoRfG145l0QAAQQQQAABBBBAAAEEEECgUwRMcu7wcLe8\n964uEvhi2y/qaECdDmw1KyCkLPmVspg1+IK4mTULv/j6udXs/sWiIR0FqAXO6YQVEFKphGVkKJj9\nt/vMb4AE6h6+FUI7AvTC6AoCCCCAAAIIIIAAAggggAACCLgKpLpEZm8krdZ6Yr5wqAEhRSskZH6x\nLAtaDHz0xEO4QetFTmnfpBeb0YqmNUYDNsZEXepfkjfNaEBNCzZrA46PJSQ96N9abKfEwW06TIAR\nfh32QnkcBBBAAAEEEEAAAQQQQAABBPwSGB+LaoGsVz76q16nC4+f1KwCYC6n4SA6Jdi0lfsHUvOy\nBppzldPbMdOVf//lrtXsuyaTIbmu04FNEXA6q0VADQi5MhqXRMI+g18EgiVAwS9Y74PeIIAAAggg\ngAACCCCAAAIIINBRAhcvhOXihZTc+rOWgBAd9Pfb334nGxthqVT7raTgRQ0I2d2tBfLZS6W6fPt9\n0WoiT50+jmvR76opBGrL6vRgkxRsnpcNAb8FKPj5/Qa4PwIIIIAAAggggAACCCCAAAKvmUBUZ8he\nGa1rq8rs7KDz9JtbJiCkLMu5olUEvLNQlM0HwQ0Iya9WxLTffbbjPENvb1iua0qwSQrOalLwxHiX\nZDJRMc/M1iECXtbv8/lRKfj5/AK4PQIIIIAAAggggAACCCCAAAIINATMWnnpwZS88/PmaMCyBu4u\n6XTgnCkCalDIvQUtCGpASLnsITTBB1gzSvEP3+5bzb59JBKS7Fhcrk1rSrAWARuFwIT09viX4mr3\njd8fIVD3MBI15O+7peD3I94rf4IAAggggAACCCCAAAIIIIAAAqcjYNbJe+Nawmqtd1xbq0quULSS\nghd0XcC7i8ENCKlW61qs1BATbY2AkMaT9F+IyA0NCJnKJrQQ2GVNCTapyGwBF/Cy/mSYgl/A3yLd\nQwABBBBAAAEEEEAAAQQQQACBoAlkMhGdKtsjH7zf43Rtd69uFQBNQIg1GlCLgCtrFTGJvEHcTILx\nv321ZzW7f/FYSNcFTMjFczHJDNckHi/L6JWEmGRktoAIVD0kT4f8Ldwywi8g3wrdQAABBBBAAAEE\nEEAAAQQQQACBkwmYKbI3f9JlNftKNZ19WVg50HUBS9bagPOLWgzU/ac7HqZl2hc5xd/KQV2+u1vS\nO5oRYhH553/JW3fPpGMyM92lASEJa0rw+FhCLl/yt6hkdex1/If5qI7aQv6Gt1DwO+oFcRwBBBBA\nAAEEEEAAAQQQQAABBM6sQFjrLhPjMav94qNe5zm2H+mU4LwJCClZASF//G5HHj52DgduZ23zQEz7\n5PNm11KpkAaEdGlASKMImNVpwaOZmMRizXPYa4OApzX8/H0JFPza8N65JAIIIIAAAggggAACCCCA\nAAIIBFtgoD8iA/0peftWIyBkbm5bg0BC0tt3VZOC7YCQkixpavD+fjCnBJt+/fftfavZ2mFdO258\nNG6lBE9nTUBIQsZ0NOCF8/6OOLP71xG/nkb4+Vty8/fuHfGWeQgEEEAAAQQQQAABBBBAAAEEEOgE\ngUSiLjNXtVim7WM55zzSxoYJCNHin6YEL2pAyB1dG/DB9qFzPEg7NQ2UWNYipWn/+skzp2vn+8JW\nQIhVBNRC4PhYUjIjUTEjINmOKeBlDb9I/JgXfbWnU/B7tZ5cDQEEEEAAAQQQQAABBBBAAAEEOkxg\naCgiQ0Pd8t473c6T7RfFKgCaKcFL2u4tlCW3UhazBl8QN7Nm4RdfP7ea3b9YNCRTOgLQhIRMTZrR\ngCYpmIAQ2+cHfz2l9PpbcvP37j8oxwEEEEAAAQQQQAABBBBAAAEEEEAguAImNXf2RtJqrb0srBzq\n2oAlyeWKck8DQuZ1VODjpx5SXVsvckr7Jr34zoKOWNQm0hwNeHkgKm9oQMjV6YQWABtFwFotpKMB\ng1nMPCWu5m28jPALs4ZfE4w9BBBAAAEEEEAAAQQQQAABBBBA4AwLjF2JytiVHvnwL3ucp3jytNYI\nCNHi38KyFgGXilJYOxAz/TaIm5mu/GB7Vz77j12ne3FNAhkdFrl1c0tHBXbJ+LiZFhyXuL8zV53+\nneqOl4JfxN8EZUb4neoXwc0QQAABBBBAAAEEEEAAAQQQQOB1EzCBGRdudslb2uztUAf95XIVKeja\ngIs6JXhe1wWc12Lg3vOafUqgfisHOoW5YNpT7ZdpjW1sRNc8nE7KlK4LOJlNWGsD9l/s9IUBPRRq\nGeFnfyL8IoAAAggggAACCCCAAAIIIIAAAq+HQFQHgE1Pxa32S+lzHnpzqyoFXQvw8y9W5P56SLa2\nY7K+pdW2gG6F+1q01Pa7z3acHvb2huX6VNJKCs5OJK1pwZlMVMwzd8TmZYRf2N8xdv7evSPeMg+B\nAAIIIIAAAggggAACCCCAAAIIvBqB9GBE0oMpSSUbRb7Z2Rkp6RJ7eU3dXVouWqMBTUDIkv57uexh\npNmr6daxrrK7W5M/fLtvNfsPI5GQZHUK8IwWAs1owAmdEpzVwJDenpB9ytn5rXkYhelz/DEFv7Pz\nOdFTBBBAAAEEEEAAAQQQQAABBBB4DQWSSZFrMwmrtT7+2lpVcoWimKTghaWy3FsqycNHh62nBGa/\nWq1b6xeaNQxbA0IGLkbkugaETGtS8KSVEpyU4eGADwWseQhhiRLaEZiPj44ggAACCCCAAAIIIIAA\nAggggAACZ0Ugk4lIJtMjH7zfDAh5tlO3UoLzeRMOousCaiusVsQk8gZx235clc//c89qdv/isZBM\n63qAM5oSPJ3tkqyOBhy9khCTjByIzQtlyN91DBnhF4gvhU4ggAACCCCAAAIIIIAAAggggAACJxc4\n1xeSmz/pspp9tarOQF1ZObBGAi7niloELOtou5I83fEwNdW+yCn+Vg7q8v29ktVaRwNm0jG5qlOC\npyeTEqqHJZ32UnlrQ8e9rOEX8bfk5u/d22DOJRFAAAEEEEAAAQQQQAABBBBAAAEEmgIRHWw2MR6z\n2i8+6nUObD8yU4LLsqzFv0Wdant3viirG8ENCFnbPBDTPv33XX2GRkkr9Y/zck0LgGZtwElrbcAu\nGbsSk2g7K15e1vAz6D5u7Xx8Hx+LWyOAAAIIIIAAAggggAACCCCAAAIIuAkM9EdkoD8lb7+Vck6r\nVESLgBXJ54vWKMB7C1oM1OnBxaJPo+mcnr18Z3+/Lt/MFa1mnxEOh2QsE5NrujbglAaDmKTg8fGE\nXDj/iopwXgp+YX/XIaTgZ38N/CKAAAIIIIAAAggggAACCCCAAAKvuUA8Lrp2nqbpavtYzjkan/7+\ne9nYFKlLWhYWS3JX1wbcehjMgJBaTdcxXKlYzXkA3blwzgSE6JRgXR8wq2sDmqTgzEhUjh2o6yW0\nI0JoR6s9+wgggAACCCCAAAIIIIAAAggggAACARO4NFCTSwMis7P9Ts/2i/JiXUAzJbgk9xbKWmQr\ni1mDL4jbk2dV+fK/nlvN7p8JCMmOJXRtQA0I0anBpghoWndz0KN9avPXLIp41HbsKuJRFzzecUb4\nHc+LsxFAAAEEEEAAAQQQQAABBBBAAAEEVMCk5r75RtJqNkhda32ra4dWUvDyciMg5J6OBnz8tGqf\nEqhfU5y8a0YsamsNCBm8FJXrU10yrYVAuwg4lH4xTddTaIe/I/xCt2/fPlHZdW9vz3pRPT3NCGg/\n3xz9cdfHBx93AfejfD/4uAu4H+X7wcddwP0o3w8+7gLuR/l+8HEXcD/K94OPu4D7Ub4ffNwF3I92\n2vezsxuS9Y2wNpH7GxFZuS/y4FFIzPTbs7IldLpzZkjkw/qc/OrTv3Xt9sHYu3L3H37jek47DzLC\nr526XBsBBBBAAAEEEEAAAQQQQAABBBBAQPp669qqcu2qwWiM9js4CMnmVkg2tAi4pkXAtfWQpvCG\npFgKZhGwrIEmSwWRwWceXmjE59CO2dlZD7384VPm5uasgye9zg/f4XhH6I+7Fz74uAu4H+X7wcdd\nwP0o3w8+7gLuR/l+8HEXcD/K94OPu4D7Ub4ffNwF3I/y/eDjLuB+9HX+frYeVKWgawEu6bqACzod\n2CQF3986cAc7xaNhOXoNv9jFAV3v8GQ1t5M8EiP8TqLH3yKAAAIIIIAAAggggAACCCCAAAIIvFKB\nwcsRGbyckp//rJmcUdSAEFMEXM5pQEiuKN/8zzNZ19GBfgSEhOtHF/wk4m/Jzd+7v9LPgYshgAAC\nCCCAAAIIIIAAAggggAACCHSiQJcGhFybSVhN5JzMzT0UE5Z7aeANyRVKWgjUgJDFsoZvFGX7cXsD\nQiIvpiS7OpPS68rDQQQQQAABBBBAAAEEEEAAAQQQQAABBP6fQCQsMjIS0dYtf/Fet3N8Z7euKcFl\nyelowAWdFjyv04KXCxWpVl/N2oB74W5Zrd4SjRyRsBxavxf7DiUar0oklhSpacFxaNTpjx87jPDz\nQ517IoAAAggggAACCCCAAAIIIIAAAgi0RaCvNyQ/nU1azb7BodbgVlcPtBBoRgM2ioD3FkvybNfD\n9Fz7Ii9+v+67Lr/q+6f/9V///u8qktIZyH6u29faIQp+rRrsI4AAAggggAACCCCAAAIIIIAAAgh0\nnEBUQ3MnxmNW++sPe53n235UlXzBrA1YdgJCVtY1jvcY2/BgTIt9x/ubY1z+R51Kwe9HsfFHCCCA\nAAIIIIAAAggggAACCCCAAAJnXWCgPyID/Sn52VvNgJCK1u7yOgU4ly9qQIhJCdZioP4Wiy+fEjwz\npdN45XmgKCj4Bep10BkEEEAAAQQQQAABBBBAAAEEEEAAAT8F4nGRq9Nxq32sASH2trFZtaYEm2nB\nCxoQckcDQrYeHsr0ZMI+JTC/FPwC8yroCAIIIIAAAggggAACCCCAAAIIIIBAUAWG0hEZSnfLe+80\nA0Ke7zd6u7y0HqhuU/AL1OugMwgggAACCCCAAAIIIIAAAggggAACZ0WguzkTOFBd1gBjNgQQQAAB\nBBBAAAEEEEAAAQQQQAABBBDoFAEKfp3yJnkOBBBAAAEEEEAAAQQQQAABBBBAAAEEVICCH58BAggg\ngAACCCCAAAIIIIAAAggggAACHSRAwa+DXiaPggACCCCAAAIIIIAAAggggAACCCCAAAU/vgEEEEAA\nAQQQQAABBBBAAAEEEEAAAQQ6SICCXwe9TB4FAQQQQAABBBBAAAEEEEAAAQQQQAABCn58AwgggAAC\nCCCAAAIIIIAAAggggAACCHSQwJ8AWdsUlnthSVAAAAAASUVORK5CYII=\n", "text/plain": [ "<IPython.core.display.Image object>" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "Image(\"figures/full_triangle.png\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "So what is $\\theta$? It has to be $\\theta = \\arctan(r/l)$.\n", "[Wikipedia](https://en.wikipedia.org/wiki/Inverse_trigonometric_functions) says that:\n", "\n", "$$\\cos \\theta = \\cos\\left ( \\arctan(r/l) \\right ) = \\frac{1}{\\sqrt{1 + (r/l)^2}}$$\n", "\n", "So try a change of variables to do the integral: let $\\mu = \\cos \\theta$\n", "so $d\\mu = - \\sin \\theta \\, \\cos \\theta\\, d\\theta$\n", "\n", "Since $L$ is independent of angle, we can integrate out $\\phi$ and do the transformation to get:\n", "\n", "$$ E = 2 \\pi \\int_0^{\\theta} L \\cos \\theta \\sin \\theta \\, d\\theta = \n", "2 \\pi \\int_{\\cos\\theta}^1 L \\mu d\\mu$$\n", "since $\\cos 0 = 1$.\n", "\n", "Solving this yields: \n", "\n", "$$E = \\pi L \\left [ \\frac{\\left ( r^2/l^2 \\right )}{1 + \\left( r^2/l^2 \\right )} \\right ]$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Note that the limits work correctly -- as we move the cone tip towards the surface, $r/l \\to \\infty$ and we get the fat cone limit \n", "\n", "$$E = \\pi L \\frac{\\infty}{\\infty} = \\pi L$$\n", "\n", "In agreement with the equation in the [flux_to_radiance](http://clouds.eos.ubc.ca/~phil/courses/atsc301/html/flux_to_radiance.html#EfromL) notebook\n", "\n", "And as we zoom out, $r/l \\to 0$ and the thin cone limit becomes:\n", "\n", "$$ E = \\pi L \\left ( \\frac{r^2}{l^2} \\right )$$\n", "\n", "or rearranging:\n", "\n", "$$ E = L \\left ( \\frac{\\pi r^2}{l^2} \\right ) = L \\left ( \\frac{\\Delta A}{l^2} \\right ) \\approx L \\Delta \\omega$$\n", "\n", "as expected." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "How does this limit compare with the answers we got to the question assuming spreading into a hemisphere? Let's *assume* that L doesn't depend on distance, so that $L = L^* = E^*/\\pi$. If we insert that into our last equation we get:\n", "\n", "$$E = L \\left ( \\frac{\\Delta A}{l^2} \\right ) = \\frac{E^*}{\\pi}\n", "\\left ( \\frac{\\Delta A}{l^2} \\right ) = \\left ( \\frac{E^* \\Delta A}{\\pi l^2} \\right )$$\n", "\n", "So we're off by a factor of 2 in the denominator. That's because the power isn't being evenly distributed into a hemisphere from the circular patch on the surface, so our assumption above that the power spreading out evenly into $2 \\pi l^2$ above isn't accurate." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python [conda root]", "language": "python", "name": "conda-root-py" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.2" } }, "nbformat": 4, "nbformat_minor": 1 }
mit
tensorflow/recommenders
docs/examples/ranking_tfx.ipynb
1
24693
{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "DjUA6S30k52h" }, "source": [ "##### Copyright 2022 The TensorFlow Authors." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "SpNWyqewk8fE" }, "outputs": [], "source": [ "#@title Licensed under the Apache License, Version 2.0 (the \"License\");\n", "# you may not use this file except in compliance with the License.\n", "# You may obtain a copy of the License at\n", "#\n", "# https://www.apache.org/licenses/LICENSE-2.0\n", "#\n", "# Unless required by applicable law or agreed to in writing, software\n", "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", "# See the License for the specific language governing permissions and\n", "# limitations under the License." ] }, { "cell_type": "markdown", "metadata": { "id": "6x1ypzczQCwy" }, "source": [ "# Using TensorFlow Recommenders with TFX\n", "\n", "***A tutorial to train a TensorFlow Recommenders ranking model as a [TFX pipeline](https://www.tensorflow.org/tfx).***" ] }, { "cell_type": "markdown", "metadata": { "id": "HU9YYythm0dx" }, "source": [ "\u003ctable class=\"tfo-notebook-buttons\" align=\"left\"\u003e\n", " \u003ctd\u003e\n", " \u003ca target=\"_blank\" href=\"https://www.tensorflow.org/recommenders/examples/ranking_tfx\"\u003e\u003cimg src=\"https://www.tensorflow.org/images/tf_logo_32px.png\" /\u003eView on TensorFlow.org\u003c/a\u003e\n", " \u003c/td\u003e\n", " \u003ctd\u003e\n", " \u003ca target=\"_blank\" href=\"https://colab.research.google.com/github/tensorflow/recommenders/blob/main/docs/examples/ranking_tfx.ipynb\"\u003e\u003cimg src=\"https://www.tensorflow.org/images/colab_logo_32px.png\" /\u003eRun in Google Colab\u003c/a\u003e\n", " \u003c/td\u003e\n", " \u003ctd\u003e\n", " \u003ca target=\"_blank\" href=\"https://github.com/tensorflow/recommenders/blob/main/docs/examples/ranking_tfx.ipynb\"\u003e\u003cimg src=\"https://www.tensorflow.org/images/GitHub-Mark-32px.png\" /\u003eView source on GitHub\u003c/a\u003e\n", " \u003c/td\u003e\n", " \u003ctd\u003e\n", " \u003ca href=\"https://storage.googleapis.com/tensorflow_docs/recommenders/docs/examples/ranking_tfx.ipynb\"\u003e\u003cimg src=\"https://www.tensorflow.org/images/download_logo_32px.png\" /\u003eDownload notebook\u003c/a\u003e\n", " \u003c/td\u003e\n", "\u003c/table\u003e" ] }, { "cell_type": "markdown", "metadata": { "id": "_VuwrlnvQJ5k" }, "source": [ "In this notebook-based tutorial, we will create and run a [TFX pipeline](https://www.tensorflow.org/tfx)\n", "to train a ranking model to predict movie ratings using TensorFlow Recommenders (TFRS).\n", "The pipeline will consist of three essential TFX components: ExampleGen,\n", "Trainer and Pusher. The pipeline includes the most minimal ML workflow like\n", "importing data, training a model and exporting the trained TFRS ranking model." ] }, { "cell_type": "markdown", "metadata": { "id": "Fmgi8ZvQkScg" }, "source": [ "## Set Up\n", "We first need to install the TFX Python package and download\n", "the dataset which we will use for our model.\n", "\n", "### Upgrade Pip\n", "\n", "To avoid upgrading Pip in a system when running locally,\n", "check to make sure that we are running in Colab.\n", "Local systems can of course be upgraded separately." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "as4OTe2ukSqm" }, "outputs": [], "source": [ "import sys\n", "if 'google.colab' in sys.modules:\n", " !pip install --upgrade pip" ] }, { "cell_type": "markdown", "metadata": { "id": "MZOYTt1RW4TK" }, "source": [ "### Install TFX\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "iyQtljP-qPHY" }, "outputs": [], "source": [ "!pip install -U tfx\n", "!pip install -U tensorflow-recommenders" ] }, { "cell_type": "markdown", "metadata": { "id": "EwT0nov5QO1M" }, "source": [ "### Did you restart the runtime?\n", "\n", "If you are using Google Colab, the first time that you run\n", "the cell above, you must restart the runtime by clicking\n", "above \"RESTART RUNTIME\" button or using \"Runtime \u003e Restart\n", "runtime ...\" menu. This is because of the way that Colab\n", "loads packages.\n", "\n", "Before we define the pipeline, we need to write the model code for the\n", "Trainer component and save it in a file." ] }, { "cell_type": "markdown", "metadata": { "id": "BDnPgN8UJtzN" }, "source": [ "Check the TensorFlow and TFX versions." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "6jh7vKSRqPHb" }, "outputs": [], "source": [ "import tensorflow as tf\n", "print('TensorFlow version: {}'.format(tf.__version__))\n", "from tfx import v1 as tfx\n", "print('TFX version: {}'.format(tfx.__version__))" ] }, { "cell_type": "markdown", "metadata": { "id": "aDtLdSkvqPHe" }, "source": [ "### Set up variables\n", "\n", "There are some variables used to define a pipeline. You can customize these\n", "variables as you want. By default all output from the pipeline will be\n", "generated under the current directory. Instead of using the SchemaGen component to generate a schema, for this\n", "tutorial we will create a hardcoded schema." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "EcUseqJaE2XN" }, "outputs": [], "source": [ "import os\n", "\n", "PIPELINE_NAME = 'TFRS-ranking'\n", "\n", "# Directory where MovieLens 100K rating data lives\n", "DATA_ROOT = os.path.join('data', PIPELINE_NAME)\n", "# Output directory to store artifacts generated from the pipeline.\n", "PIPELINE_ROOT = os.path.join('pipelines', PIPELINE_NAME)\n", "# Path to a SQLite DB file to use as an MLMD storage.\n", "METADATA_PATH = os.path.join('metadata', PIPELINE_NAME, 'metadata.db')\n", "# Output directory where created models from the pipeline will be exported.\n", "SERVING_MODEL_DIR = os.path.join('serving_model', PIPELINE_NAME)\n", "\n", "from absl import logging\n", "logging.set_verbosity(logging.INFO) # Set default logging level." ] }, { "cell_type": "markdown", "metadata": { "id": "8F2SRwRLSYGa" }, "source": [ "### Prepare example data\n", "Since TFX does not currently support TensorFlow Datasets API, we will download the MovieLens 100K dataset manually for use in our TFX pipeline. The dataset we\n", "are using is\n", "[MovieLens 100K Dataset](https://grouplens.org/datasets/movielens/100k/).\n", "\n", "There are four numeric features in this dataset:\n", "\n", "- userId\n", "- movieId\n", "- rating\n", "- timestamp\n", "\n", "We will build a ranking model which predicts the `rating` of the movies. We will not use the `timestamp` feature." ] }, { "cell_type": "markdown", "metadata": { "id": "11J7XiCq6AFP" }, "source": [ "Because TFX ExampleGen reads inputs from a directory, we need to create a\n", "directory and copy dataset to it." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "4fxMs6u86acP" }, "outputs": [], "source": [ "!wget https://files.grouplens.org/datasets/movielens/ml-100k.zip\n", "!mkdir -p {DATA_ROOT}\n", "!unzip ml-100k.zip\n", "!echo 'userId,movieId,rating,timestamp' \u003e {DATA_ROOT}/ratings.csv\n", "!sed 's/\\t/,/g' ml-100k/u.data \u003e\u003e {DATA_ROOT}/ratings.csv" ] }, { "cell_type": "markdown", "metadata": { "id": "ASpoNmxKSQjI" }, "source": [ "Take a quick look at the CSV file." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "-eSz28UDSnlG" }, "outputs": [], "source": [ "!head {DATA_ROOT}/ratings.csv" ] }, { "cell_type": "markdown", "metadata": { "id": "OTtQNq1DdVvG" }, "source": [ "You should be able to see four values. For example, the first example means user '196' gives a rating of 3 to movie '242'." ] }, { "cell_type": "markdown", "metadata": { "id": "nH6gizcpSwWV" }, "source": [ "## Create a pipeline\n", "\n", "TFX pipelines are defined using Python APIs. We will define a pipeline which\n", "consists of following three components.\n", "- CsvExampleGen: Reads in data files and convert them to TFX internal format\n", "for further processing. There are multiple\n", "[ExampleGen](https://www.tensorflow.org/tfx/guide/examplegen)s for various\n", "formats. In this tutorial, we will use CsvExampleGen which takes CSV file input.\n", "- Trainer: Trains an ML model.\n", "[Trainer component](https://www.tensorflow.org/tfx/guide/trainer) requires a\n", "model definition code from users. You can use TensorFlow APIs to specify how to\n", "train a model and save it in a _saved_model_ format.\n", "- Pusher: Copies the trained model outside of the TFX pipeline.\n", "[Pusher component](https://www.tensorflow.org/tfx/guide/pusher) can be thought\n", "of an deployment process of the trained ML model.\n", "\n", "Before actually define the pipeline, we need to write a model code for the\n", "Trainer component first." ] }, { "cell_type": "markdown", "metadata": { "id": "lOjDv93eS5xV" }, "source": [ "### Write model training code\n", "\n", "We will build a simple ranking model to predict movie ratings. This model training code will be saved to a separate file.\n", "\n", "In this tutorial we will use\n", "[Generic Trainer](https://www.tensorflow.org/tfx/guide/trainer#generic_trainer)\n", "of TFX which support Keras-based models. You need to write a Python file\n", "containing `run_fn` function, which is the entrypoint for the `Trainer`\n", "component." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "aES7Hv5QTDK3" }, "outputs": [], "source": [ "_trainer_module_file = 'tfrs_ranking_trainer.py'" ] }, { "cell_type": "markdown", "metadata": { "id": "HFsQCOytiidq" }, "source": [ "The ranking model we use is almost exactly the same as in the [Basic Ranking](https://www.tensorflow.org/recommenders/examples/basic_ranking) tutorial. The only difference is that we use movie IDs instead of movie titles in the candidate tower." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "Gnc67uQNTDfW" }, "outputs": [], "source": [ "%%writefile {_trainer_module_file}\n", "\n", "from typing import Dict, Text\n", "from typing import List\n", "\n", "import numpy as np\n", "import tensorflow as tf\n", "\n", "from tensorflow_metadata.proto.v0 import schema_pb2\n", "import tensorflow_recommenders as tfrs\n", "from tensorflow_transform.tf_metadata import schema_utils\n", "from tfx import v1 as tfx\n", "from tfx_bsl.public import tfxio\n", "\n", "_FEATURE_KEYS = ['userId', 'movieId']\n", "_LABEL_KEY = 'rating'\n", "\n", "_FEATURE_SPEC = {\n", " **{\n", " feature: tf.io.FixedLenFeature(shape=[1], dtype=tf.int64)\n", " for feature in _FEATURE_KEYS\n", " }, _LABEL_KEY: tf.io.FixedLenFeature(shape=[1], dtype=tf.int64)\n", "}\n", "\n", "\n", "class RankingModel(tf.keras.Model):\n", "\n", " def __init__(self):\n", " super().__init__()\n", " embedding_dimension = 32\n", "\n", " unique_user_ids = np.array(range(943)).astype(str)\n", " unique_movie_ids = np.array(range(1682)).astype(str)\n", "\n", " # Compute embeddings for users.\n", " self.user_embeddings = tf.keras.Sequential([\n", " tf.keras.layers.Input(shape=(1,), name='userId', dtype=tf.int64),\n", " tf.keras.layers.Lambda(lambda x: tf.as_string(x)),\n", " tf.keras.layers.StringLookup(\n", " vocabulary=unique_user_ids, mask_token=None),\n", " tf.keras.layers.Embedding(\n", " len(unique_user_ids) + 1, embedding_dimension)\n", " ])\n", "\n", " # Compute embeddings for movies.\n", " self.movie_embeddings = tf.keras.Sequential([\n", " tf.keras.layers.Input(shape=(1,), name='movieId', dtype=tf.int64),\n", " tf.keras.layers.Lambda(lambda x: tf.as_string(x)),\n", " tf.keras.layers.StringLookup(\n", " vocabulary=unique_movie_ids, mask_token=None),\n", " tf.keras.layers.Embedding(\n", " len(unique_movie_ids) + 1, embedding_dimension)\n", " ])\n", "\n", " # Compute predictions.\n", " self.ratings = tf.keras.Sequential([\n", " tf.keras.layers.Dense(256, activation='relu'),\n", " tf.keras.layers.Dense(64, activation='relu'),\n", " tf.keras.layers.Dense(1)\n", " ])\n", "\n", " def call(self, inputs):\n", "\n", " user_id, movie_id = inputs\n", "\n", " user_embedding = self.user_embeddings(user_id)\n", " movie_embedding = self.movie_embeddings(movie_id)\n", "\n", " return self.ratings(tf.concat([user_embedding, movie_embedding], axis=2))\n", "\n", "\n", "class MovielensModel(tfrs.models.Model):\n", "\n", " def __init__(self):\n", " super().__init__()\n", " self.ranking_model: tf.keras.Model = RankingModel()\n", " self.task: tf.keras.layers.Layer = tfrs.tasks.Ranking(\n", " loss=tf.keras.losses.MeanSquaredError(),\n", " metrics=[tf.keras.metrics.RootMeanSquaredError()])\n", "\n", " def call(self, features: Dict[str, tf.Tensor]) -\u003e tf.Tensor:\n", " return self.ranking_model((features['userId'], features['movieId']))\n", "\n", " def compute_loss(self,\n", " features: Dict[Text, tf.Tensor],\n", " training=False) -\u003e tf.Tensor:\n", "\n", " labels = features[1]\n", " rating_predictions = self(features[0])\n", "\n", " # The task computes the loss and the metrics.\n", " return self.task(labels=labels, predictions=rating_predictions)\n", "\n", "\n", "def _input_fn(file_pattern: List[str],\n", " data_accessor: tfx.components.DataAccessor,\n", " schema: schema_pb2.Schema,\n", " batch_size: int = 256) -\u003e tf.data.Dataset:\n", " return data_accessor.tf_dataset_factory(\n", " file_pattern,\n", " tfxio.TensorFlowDatasetOptions(\n", " batch_size=batch_size, label_key=_LABEL_KEY),\n", " schema=schema).repeat()\n", "\n", "\n", "def _build_keras_model() -\u003e tf.keras.Model:\n", " return MovielensModel()\n", "\n", "\n", "# TFX Trainer will call this function.\n", "def run_fn(fn_args: tfx.components.FnArgs):\n", " \"\"\"Train the model based on given args.\n", "\n", " Args:\n", " fn_args: Holds args used to train the model as name/value pairs.\n", " \"\"\"\n", " schema = schema_utils.schema_from_feature_spec(_FEATURE_SPEC)\n", "\n", " train_dataset = _input_fn(\n", " fn_args.train_files, fn_args.data_accessor, schema, batch_size=8192)\n", " eval_dataset = _input_fn(\n", " fn_args.eval_files, fn_args.data_accessor, schema, batch_size=4096)\n", "\n", " model = _build_keras_model()\n", "\n", " model.compile(optimizer=tf.keras.optimizers.Adagrad(learning_rate=0.1))\n", "\n", " model.fit(\n", " train_dataset,\n", " steps_per_epoch=fn_args.train_steps,\n", " epochs = 3,\n", " validation_data=eval_dataset,\n", " validation_steps=fn_args.eval_steps)\n", "\n", " model.save(fn_args.serving_model_dir)" ] }, { "cell_type": "markdown", "metadata": { "id": "blaw0rs-emEf" }, "source": [ "Now you have completed all preparation steps to build the TFX pipeline." ] }, { "cell_type": "markdown", "metadata": { "id": "w3OkNz3gTLwM" }, "source": [ "### Write a pipeline definition\n", "\n", "We define a function to create a TFX pipeline. A `Pipeline` object\n", "represents a TFX pipeline which can be run using one of pipeline\n", "orchestration systems that TFX supports.\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "M49yYVNBTPd4" }, "outputs": [], "source": [ "def _create_pipeline(pipeline_name: str, pipeline_root: str, data_root: str,\n", " module_file: str, serving_model_dir: str,\n", " metadata_path: str) -\u003e tfx.dsl.Pipeline:\n", " \"\"\"Creates a three component pipeline with TFX.\"\"\"\n", " # Brings data into the pipeline.\n", " example_gen = tfx.components.CsvExampleGen(input_base=data_root)\n", "\n", " # Uses user-provided Python function that trains a model.\n", " trainer = tfx.components.Trainer(\n", " module_file=module_file,\n", " examples=example_gen.outputs['examples'],\n", " train_args=tfx.proto.TrainArgs(num_steps=12),\n", " eval_args=tfx.proto.EvalArgs(num_steps=24))\n", "\n", " # Pushes the model to a filesystem destination.\n", " pusher = tfx.components.Pusher(\n", " model=trainer.outputs['model'],\n", " push_destination=tfx.proto.PushDestination(\n", " filesystem=tfx.proto.PushDestination.Filesystem(\n", " base_directory=serving_model_dir)))\n", "\n", " # Following three components will be included in the pipeline.\n", " components = [\n", " example_gen,\n", " trainer,\n", " pusher,\n", " ]\n", "\n", " return tfx.dsl.Pipeline(\n", " pipeline_name=pipeline_name,\n", " pipeline_root=pipeline_root,\n", " metadata_connection_config=tfx.orchestration.metadata\n", " .sqlite_metadata_connection_config(metadata_path),\n", " components=components)" ] }, { "cell_type": "markdown", "metadata": { "id": "mJbq07THU2GV" }, "source": [ "## Run the pipeline\n", "\n", "TFX supports multiple orchestrators to run pipelines.\n", "In this tutorial we will use `LocalDagRunner` which is included in the TFX\n", "Python package and runs pipelines on local environment." ] }, { "cell_type": "markdown", "metadata": { "id": "7mp0AkmrPdUb" }, "source": [ "Now we create a `LocalDagRunner` and pass a `Pipeline` object created from the\n", "function we already defined.\n", "\n", "The pipeline runs directly and you can see logs for the progress of the pipeline including ML model training." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "fAtfOZTYWJu-" }, "outputs": [], "source": [ "tfx.orchestration.LocalDagRunner().run(\n", " _create_pipeline(\n", " pipeline_name=PIPELINE_NAME,\n", " pipeline_root=PIPELINE_ROOT,\n", " data_root=DATA_ROOT,\n", " module_file=_trainer_module_file,\n", " serving_model_dir=SERVING_MODEL_DIR,\n", " metadata_path=METADATA_PATH))" ] }, { "cell_type": "markdown", "metadata": { "id": "ppERq0Mj6xvW" }, "source": [ "You should see \"INFO:absl:Component Pusher is finished.\" at the end of the\n", "logs if the pipeline finished successfully. Because `Pusher` component is the\n", "last component of the pipeline.\n", "\n", "The pusher component pushes the trained model to the `SERVING_MODEL_DIR` which\n", "is the `serving_model/TFRS-ranking` directory if you did not change the\n", "variables in the previous steps. You can see the result from the file browser\n", "in the left-side panel in Colab, or using the following command:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "NTHROkqX6yHx" }, "outputs": [], "source": [ "# List files in created model directory.\n", "!ls -R {SERVING_MODEL_DIR}" ] }, { "cell_type": "markdown", "metadata": { "id": "W8HQfT-ziids" }, "source": [ "Now we can test the ranking model by computing predictions for a user and a movie:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "5EDMkz8Wiidt" }, "outputs": [], "source": [ "import glob\n", "# Load the latest model for testing\n", "loaded = tf.saved_model.load(max(glob.glob(os.path.join(SERVING_MODEL_DIR, '*/')), key=os.path.getmtime))\n", "print(loaded({'userId': [[42]], 'movieId': [[15]]}).numpy())" ] }, { "cell_type": "markdown", "metadata": { "id": "08R8qvweThRf" }, "source": [ "This concludes the TensorFlow Recommenders + TFX tutorial." ] } ], "metadata": { "colab": { "collapsed_sections": [ "DjUA6S30k52h" ], "name": "ranking_tfx.ipynb", "provenance": [], "toc_visible": true }, "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.11" } }, "nbformat": 4, "nbformat_minor": 0 }
apache-2.0
flavio-casacurta/Nat2Py
Util/split_cmd.ipynb
1
3066
{ "cells": [ { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from warehouse import LINEFEED\n", "from HOFs import *" ] }, { "cell_type": "code", "execution_count": 37, "metadata": { "collapsed": true }, "outputs": [], "source": [ "lines = [\"\"\" IF *PF-KEY EQ 'PF3' OR= 'PF15' OR= 'PF17'\"\"\"]" ] }, { "cell_type": "code", "execution_count": 55, "metadata": { "collapsed": true }, "outputs": [], "source": [ "line = \"\"\" IF *PF-KEY EQ 'PF3' OR= 'PF15' OR= 'PF17'\"\"\"" ] }, { "cell_type": "code", "execution_count": 74, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "\"OR= 'PF17'\"" ] }, "execution_count": 74, "metadata": {}, "output_type": "execute_result" } ], "source": [ "wrd1 = 'OR='\n", "lw = len(wrd1)\n", "idx = line[lw:].index(wrd1)+2\n", "wrd1 + ' ' + line[lw:idx]\n", "ll = len(wrd1 + ' ' + line[lw:idx])\n", "line[ll:]" ] }, { "cell_type": "code", "execution_count": 57, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "'OR='" ] }, "execution_count": 57, "metadata": {}, "output_type": "execute_result" } ], "source": [ "wrd1 = word(line, 1)\n", "wrd1" ] }, { "cell_type": "code", "execution_count": 35, "metadata": { "collapsed": false }, "outputs": [], "source": [ " for line in lines:\n", " wrd = words(line)\n", " for w in xrange(1, wrd[0]):\n", " if wrd[1][w] in LINEFEED:\n", " joinLines.append(wrd[1][w] + ' ' + line[len(wrd[1][w]):]line.index(wrd[1][w])])\n", " line = line[line.index(wrd[1][w]):]\n", " joinLines.append(line)\n" ] }, { "cell_type": "code", "execution_count": 36, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "[\"OR= IF *PF-KEY EQ 'PF3' \",\n", " 'OR= ',\n", " \"OR= 'PF15' OR= 'PF17'\"]" ] }, "execution_count": 36, "metadata": {}, "output_type": "execute_result" } ], "source": [ "joinLines" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.12" } }, "nbformat": 4, "nbformat_minor": 1 }
mit
eds-uga/csci1360-fa16
assignments/A6/A6_Q1.ipynb
1
11519
{ "cells": [ { "cell_type": "markdown", "metadata": { "nbgrader": { "grade": false, "grade_id": "q1_prompt", "locked": true, "solution": false } }, "source": [ "# Q1\n", "\n", "In this question, we'll review the basics of file I/O (file input/output) and the various function calls and modes required (this will draw on material from L14)." ] }, { "cell_type": "markdown", "metadata": { "nbgrader": { "grade": false, "grade_id": "q1a_prompt", "locked": true, "solution": false } }, "source": [ "### A\n", "\n", "Write a function **`read_file_contents`** which takes a string pathname as an argument, and returns a single string that contains all the contents of the file. Don't import any additional packages.\n", "\n", "If I have a file `random_text.txt`, I'll give the full path to this file to the function: `contents = read_file_contents(\"random_text.txt\")`, and I should get back a single string `contents` that contains all the contents of the file.\n", "\n", "**NOTE:** Your function should be able to handle errors gracefully! If an error occurs when trying to read from the file, your function should return `None` (note the capitalization of the first letter)." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true, "nbgrader": { "grade": false, "grade_id": "q1a", "locked": false, "solution": true } }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true, "nbgrader": { "grade": true, "grade_id": "q1a_test1", "locked": true, "points": 5, "solution": false } }, "outputs": [], "source": [ "truth = \"This is some text.\\nMore text, but on a different line!\\nInsert your favorite meme here.\\n\"\n", "pred = read_file_contents(\"q1data/file1.txt\")\n", "assert truth == pred" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true, "nbgrader": { "grade": true, "grade_id": "q1a_test2", "locked": true, "points": 5, "solution": false } }, "outputs": [], "source": [ "retval = -1\n", "try:\n", " retval = read_file_contents(\"nonexistent/path.txt\")\n", "except:\n", " assert False\n", "else:\n", " assert retval is None" ] }, { "cell_type": "markdown", "metadata": { "nbgrader": { "grade": false, "grade_id": "q1b_prompt", "locked": true, "solution": false } }, "source": [ "### B\n", "\n", "This time, write a function `read_file` that takes **two** arguments: the first is the path to the file (same as before), and the second is an *optional* boolean argument `as_list` that defaults to `False`. When this flag is `False` (the default), your function should behave identically to `read_file_contents`. In fact, if `as_list` is `False`, you can just call your previous function.\n", "\n", "If `as_list` is `True`, instead of returning a single string of the file's contents, return a list of strings, where each item in the list is a line from the file.\n", "\n", "**NOTE:** Your function should be able to handle errors gracefully! If an error occurs when trying to read from the file, your function should return `None` (note the capitalization of the first letter)." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true, "nbgrader": { "grade": false, "grade_id": "q1b", "locked": false, "solution": true } }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true, "nbgrader": { "grade": true, "grade_id": "q1b_test1", "locked": true, "points": 5, "solution": false } }, "outputs": [], "source": [ "truth = \"Yo dawg, I heard yo and yo dawg like yo-yos.\\nSo we put yo dawg in a yo-yo.\\nSo yo can yo-yo yo dawg while yo dawg yo-yos, dawg.\\nMaximum ridiculousness reached.\\n\"\n", "pred = read_file(\"q1data/file2.txt\")\n", "assert truth == pred" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true, "nbgrader": { "grade": true, "grade_id": "q1b_test2", "locked": true, "points": 5, "solution": false } }, "outputs": [], "source": [ "truth = ['Yo dawg, I heard yo and yo dawg like yo-yos.\\n',\n", " 'So we put yo dawg in a yo-yo.\\n',\n", " 'So yo can yo-yo yo dawg while yo dawg yo-yos, dawg.\\n',\n", " 'Maximum ridiculousness reached.\\n']\n", "pred = read_file(\"q1data/file2.txt\", as_list = True)\n", "for item in truth:\n", " assert item in pred\n", "for item in pred:\n", " assert item in truth" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true, "nbgrader": { "grade": true, "grade_id": "q1b_test3", "locked": true, "points": 5, "solution": false } }, "outputs": [], "source": [ "retval = -1\n", "try:\n", " retval = read_file(\"another/nonexistent/path.txt\")\n", "except:\n", " assert False\n", "else:\n", " assert retval is None" ] }, { "cell_type": "markdown", "metadata": { "nbgrader": { "grade": false, "grade_id": "q1c_prompt", "locked": true, "solution": false } }, "source": [ "### C\n", "\n", "In this question, you'll read from one file, perform a simple computation, and write the results to a new file.\n", "\n", "Write a function **`count_lines`** that takes two arguments: the first is a path to a file to read, the second is the path to an output file. Your function will count the number of lines in the file at the first argument, and write this number to a file at the second argument.\n", "\n", "Your function should return `True` on success, and `False` if an error occurred.\n", "\n", "**NOTE:** Your function should be able to handle errors gracefully! If an error occurs when trying to read from the file or write to the output file, your function should return `False`." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true, "nbgrader": { "grade": false, "grade_id": "q1c", "locked": false, "solution": true } }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true, "nbgrader": { "grade": true, "grade_id": "q1c_test1", "locked": true, "points": 5, "solution": false } }, "outputs": [], "source": [ "import os.path\n", "assert count_lines(\"q1data/file1.txt\", \"q1data/file1_out.txt\")\n", "assert os.path.exists(\"q1data/file1_out.txt\")\n", "assert int(open(\"q1data/file1_out.txt\", \"r\").read()) == 3" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true, "nbgrader": { "grade": true, "grade_id": "q1c_test2", "locked": true, "points": 5, "solution": false } }, "outputs": [], "source": [ "r1 = None\n", "try:\n", " r1 = count_lines(\"yet/another/nonexistent/path.txt\", \"meaningless\")\n", "except:\n", " assert False\n", "else:\n", " assert not r1\n", "\n", "r2 = None\n", "try:\n", " r2 = count_lines(\"q1data/file1.txt\", \"/this/should/throw/an/error.txt\")\n", "except:\n", " assert False\n", "else:\n", " assert not r2" ] }, { "cell_type": "markdown", "metadata": { "nbgrader": { "grade": false, "grade_id": "q1d_prompt", "locked": true, "solution": false } }, "source": [ "### D\n", "\n", "In this question, you'll write a function **`acount_lines`** that performs the same operation as before, except in the case that the output file already exists: in this case, you'll **append** the line count to the file instead of overwriting it, thus preserving any existing previous line counts.\n", "\n", "Each new appended line count should be *on its own line in the output file*. You may need to manually insert newline characters, which are a backslash followed by the letter n: **`\\n`**\n", "\n", "Your function should return `True` on success, and `False` if an error occurred.\n", "\n", "**NOTE:** Your function should be able to handle errors gracefully! If an error occurs when trying to read from the file or write to the output file, your function should return `False`." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true, "nbgrader": { "grade": false, "grade_id": "q1d", "locked": false, "solution": true } }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true, "nbgrader": { "grade": true, "grade_id": "q1d_test1", "locked": true, "points": 2.5, "solution": false } }, "outputs": [], "source": [ "if os.path.exists(\"q1data/out_again.txt\"):\n", " os.remove(\"q1data/out_again.txt\")\n", "\n", "assert acount_lines(\"q1data/file1.txt\", \"q1data/out_again.txt\")\n", "assert os.path.exists(\"q1data/out_again.txt\")\n", "assert int(open(\"q1data/out_again.txt\", \"r\").read()) == 3" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true, "nbgrader": { "grade": true, "grade_id": "q1d_test2", "locked": true, "points": 2.5, "solution": false } }, "outputs": [], "source": [ "assert acount_lines(\"q1data/file2.txt\", \"q1data/out_again.txt\")\n", "assert os.path.exists(\"q1data/out_again.txt\")\n", "assert int(\"\".join(open(\"q1data/out_again.txt\", \"r\").read().split(\"\\n\"))) == 34" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true, "nbgrader": { "grade": true, "grade_id": "q1d_test3", "locked": true, "points": 5, "solution": false } }, "outputs": [], "source": [ "r1 = None\n", "try:\n", " r1 = acount_lines(\"yet/another/nonexistent/path.txt\", \"meaningless\")\n", "except:\n", " assert False\n", "else:\n", " assert not r1\n", "\n", "r2 = None\n", "try:\n", " r2 = acount_lines(\"q1data/file2.txt\", \"/this/should/throw/an/error.txt\")\n", "except:\n", " assert False\n", "else:\n", " assert not r2" ] } ], "metadata": { "anaconda-cloud": {}, "celltoolbar": "Create Assignment", "kernelspec": { "display_name": "Python [default]", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.2" } }, "nbformat": 4, "nbformat_minor": 0 }
mit
mssalvador/notebooks
notebooks/konkurs/.ipynb_checkpoints/BancruptcyDectect-checkpoint.ipynb
1
50098
{ "cells": [ { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false }, "outputs": [], "source": [ "SQLContext.newSession(sqlContext)\n", "from pyspark.sql import functions as F\n", "from pyspark.ml.feature import VectorAssembler,StandardScaler,RFormula\n", "from pyspark.ml.classification import LogisticRegression\n", "from pyspark.ml.tuning import CrossValidator, ParamGridBuilder, TrainValidationSplit\n", "from pyspark.ml.linalg import VectorUDT,Vectors\n", "from pyspark.ml.evaluation import BinaryClassificationEvaluator\n", "from pyspark.sql import Window\n", "from pyspark.ml import Pipeline\n", "from pyspark.ml.regression import GeneralizedLinearRegression\n", "\n", "import pandas as pd\n", "import re\n", "from tabulate import tabulate\n", "import random\n", "import sys\n", "import numpy as np" ] }, { "cell_type": "code", "execution_count": 39, "metadata": { "collapsed": false, "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "+---------+--------------------+-----+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+------------+------------+------------+------------+------------+------------+-----------+-----------------+------------------+------------------+------------------+------------------+-------------+-------------+-------------+-------------+----------------+---------------+\n", "|cvrNummer| status|label|AarsVaerk_1|AarsVaerk_2|AarsVaerk_3|AarsVaerk_4|AarsVaerk_5|AarsVaerk_6|AarsVaerk_7|AarsVaerk_8|AarsVaerk_9|AarsVaerk_10|AarsVaerk_11|AarsVaerk_12|AarsVaerk_13|AarsVaerk_14|AarsVaerk_15|avgVarighed|totalAabneEnheder|totalLukketEnheder| vaerdiSlope_1| vaerdiSlope_2| vaerdiSlope_3|vaerdiSlope_4|vaerdiSlope_5|vaerdiSlope_6|vaerdiSlope_7|reklamebeskyttet|kortBeskrivelse|\n", "+---------+--------------------+-----+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+------------+------------+------------+------------+------------+------------+-----------+-----------------+------------------+------------------+------------------+------------------+-------------+-------------+-------------+-------------+----------------+---------------+\n", "| 10043271| [NORMAL]| 0.0| 2.0| 5.0| 5.0| 5.0| 5.0| 5.0| 5.0| 5.0| 5.0| 5.0| 5.0| 5.0| 5.0| 2.0| 5.0| null| 0.0| 1.0| 36.8437212158428| null| null| null| null| null| null| 0.0| APS|\n", "| 10058511|[OPLØST EFTER ERK...| 0.0| 1.0| 2.0| 2.0| 2.0| 1.0| null| null| null| null| null| null| null| null| null| null| 1281.25| 4.0| 0.0| null| null| null| null| null| null| null| 0.0| APS|\n", "| 10058511|[OPLØST EFTER ERK...| 0.0| 1.0| 2.0| 2.0| 2.0| 1.0| null| null| null| null| null| null| null| null| null| null| 1281.25| 4.0| 0.0| null| null| null| null| null| null| null| 0.0| APS|\n", "| 10063027|[TVANGSOPLØST, UN...| 0.0| 1.0| 1.0| null| null| null| null| null| null| null| null| null| null| null| null| null| 1356.0| 1.0| 0.0|105.02173913043478|301.92857142857144| null| null| null| null| null| 0.0| APS|\n", "| 10063027|[TVANGSOPLØST, UN...| 0.0| 1.0| 1.0| null| null| null| null| null| null| null| null| null| null| null| null| null| 1356.0| 1.0| 0.0|105.02173913043478|301.92857142857144| null| null| null| null| null| 0.0| APS|\n", "| 10063027|[TVANGSOPLØST, UN...| 0.0| 1.0| 1.0| null| null| null| null| null| null| null| null| null| null| null| null| null| 1356.0| 1.0| 0.0|105.02173913043478|301.92857142857144| null| null| null| null| null| 0.0| APS|\n", "| 10063310|[TVANGSOPLØST, UN...| 0.0| 1.0| null| null| null| null| null| null| null| null| null| null| null| null| null| null| 712.0| 2.0| 0.0| null| null| null| null| null| null| null| 0.0| APS|\n", "| 10063310|[TVANGSOPLØST, UN...| 0.0| 1.0| null| null| null| null| null| null| null| null| null| null| null| null| null| null| 712.0| 2.0| 0.0| null| null| null| null| null| null| null| 0.0| APS|\n", "| 10063310|[TVANGSOPLØST, UN...| 0.0| 1.0| null| null| null| null| null| null| null| null| null| null| null| null| null| null| 712.0| 2.0| 0.0| null| null| null| null| null| null| null| 0.0| APS|\n", "| 10065615| [NORMAL]| 0.0| 1.0| 1.0| 1.0| 1.0| null| null| null| null| null| null| null| null| null| null| null| null| 0.0| 1.0|-612.4527363184079| 0.0| null| null| null| null| null| 0.0| APS|\n", "| 10083869|[OPLØST EFTER FRI...| 0.0| 1.0| 10.0| 10.0| 5.0| 5.0| 5.0| 5.0| null| null| null| null| null| null| null| null| 3023.0| 1.0| 0.0| null| null| null| null| null| null| null| 0.0| APS|\n", "| 10083869|[OPLØST EFTER FRI...| 0.0| 1.0| 10.0| 10.0| 5.0| 5.0| 5.0| 5.0| null| null| null| null| null| null| null| null| 3023.0| 1.0| 0.0| null| null| null| null| null| null| null| 0.0| APS|\n", "| 10083869|[OPLØST EFTER FRI...| 0.0| 1.0| 10.0| 10.0| 5.0| 5.0| 5.0| 5.0| null| null| null| null| null| null| null| null| 3023.0| 1.0| 0.0| null| null| null| null| null| null| null| 0.0| APS|\n", "| 10097924| [NORMAL]| 0.0| 50.0| 50.0| 20.0| 20.0| 10.0| 10.0| 10.0| 10.0| 10.0| 10.0| null| null| null| null| null| 0.0| 1.0| 1.0|3214.7017543859647| 2.399234693877551|1.5797788309636651| null| null| null| null| 0.0| APS|\n", "| 10117305| [NORMAL]| 0.0| 2.0| 2.0| 2.0| 5.0| 2.0| 2.0| 2.0| 2.0| 5.0| 5.0| 5.0| 5.0| 5.0| 5.0| 5.0| null| 0.0| 1.0| 38.47386983007374| null| null| null| null| null| null| 0.0| APS|\n", "| 10118859|[OPLØST EFTER FRI...| 0.0| 1.0| 2.0| 2.0| 1.0| 1.0| 1.0| null| null| null| null| null| null| null| null| null| 4051.0| 1.0| 0.0| 897.1291866028708| null| null| null| null| null| null| 0.0| APS|\n", "| 10118859|[OPLØST EFTER FRI...| 0.0| 1.0| 2.0| 2.0| 1.0| 1.0| 1.0| null| null| null| null| null| null| null| null| null| 4051.0| 1.0| 0.0| 897.1291866028708| null| null| null| null| null| null| 0.0| APS|\n", "| 10118859|[OPLØST EFTER FRI...| 0.0| 1.0| 2.0| 2.0| 1.0| 1.0| 1.0| null| null| null| null| null| null| null| null| null| 4051.0| 1.0| 0.0| 897.1291866028708| null| null| null| null| null| null| 0.0| APS|\n", "| 10127467| [NORMAL]| 0.0| 1.0| 1.0| 1.0| 1.0| 1.0| 1.0| 1.0| 1.0| 1.0| null| null| null| null| null| null| null| 0.0| 1.0| null| null| null| null| null| null| null| 0.0| APS|\n", "| 10144213|[UNDER KONKURS, N...| 1.0| 1.0| 50.0| 100.0| 100.0| 100.0| null| null| null| null| null| null| null| null| null| null| 593.5| 2.0| 1.0| 833333.3333333334| 17574.69244288225|17055.267702936097| null| null| null| null| 0.0| APS|\n", "+---------+--------------------+-----+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+------------+------------+------------+------------+------------+------------+-----------+-----------------+------------------+------------------+------------------+------------------+-------------+-------------+-------------+-------------+----------------+---------------+\n", "only showing top 20 rows\n", "\n" ] } ], "source": [ "#import data and rename bad name rank into vaerdiSlope\n", "#RAW DATA!!! \n", "\n", "\n", "#exclude some of the variables, and cast all variables to double\n", "excludeCols = [\"medArb_\"+str(i) for i in range(1,16)] # we don't need the medarbejders \n", "includeCols = [i for i in df.columns if i not in excludeCols]\n", "\n", "rankCols = [re.sub(pattern=\"rank_\",repl=\"vaerdiSlope_\",string=i) for i in includeCols]\n", "finalCols = [F.col(i) for i in includeCols[:2]]+[\"kortBeskrivelse\"]+[F.col(i).cast(\"double\") for i in includeCols[2:] if i not in [\"kortBeskrivelse\"]]\n", "\n", "\n", "df = sqlContext.read.parquet(\"/home/svanhmic/workspace/Python/Erhvervs/data/cdata/featureDataCvr\")\n", "df.select([\"cvrNummer\"])\n", "rankCols = [re.sub(pattern=\"rank_\",repl=\"vaerdiSlope_\",string=i) for i in includeCols ]\n", "renamedDf = (df\n", " .select(*finalCols)\n", " .select([F.col(val).alias(rankCols[idx]) for idx,val in enumerate(includeCols)])\n", " .filter((F.col(\"kortBeskrivelse\") == \"APS\") | (F.col(\"kortBeskrivelse\") == \"AS\"))\n", " )\n", "renamedDf.show()" ] }, { "cell_type": "code", "execution_count": 40, "metadata": { "collapsed": true }, "outputs": [], "source": [ "windowSpecRank =(Window.partitionBy(F.col(\"cvrNummer\"))).orderBy(F.col(\"periode_gyldigFra\").desc())\n", "groupCols = [\"cvrNummer\",\"vaerdi\"]\n", "\n", "companyNameDf = (sqlContext\n", " .read\n", " .parquet(\"/home/svanhmic/workspace/Python/Erhvervs/data/cdata/companyCvrData\")\n", " .withColumn(colName=\"rank\",col=F.rank().over(windowSpecRank))\n", " .filter((F.col(\"rank\")==1) & (F.col(\"sekvensnr\")==0))\n", " .select([F.col(i) for i in groupCols])\n", " .withColumnRenamed(existing=\"vaerdi\",new=\"navn\")\n", " .orderBy(F.col(\"cvrNummer\"))\n", " .cache()\n", " )" ] }, { "cell_type": "code", "execution_count": 41, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "+--------------------+---------+-----+--------------------+---------------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+------------+------------+------------+------------+------------+------------+-----------+-----------------+------------------+--------------------+-------------+-------------+-------------+-------------+-------------+-------------+----------------+\n", "| navn|cvrNummer|label| status|kortBeskrivelse|AarsVaerk_1|AarsVaerk_2|AarsVaerk_3|AarsVaerk_4|AarsVaerk_5|AarsVaerk_6|AarsVaerk_7|AarsVaerk_8|AarsVaerk_9|AarsVaerk_10|AarsVaerk_11|AarsVaerk_12|AarsVaerk_13|AarsVaerk_14|AarsVaerk_15|avgVarighed|totalAabneEnheder|totalLukketEnheder| vaerdiSlope_1|vaerdiSlope_2|vaerdiSlope_3|vaerdiSlope_4|vaerdiSlope_5|vaerdiSlope_6|vaerdiSlope_7|reklamebeskyttet|\n", "+--------------------+---------+-----+--------------------+---------------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+------------+------------+------------+------------+------------+------------+-----------+-----------------+------------------+--------------------+-------------+-------------+-------------+-------------+-------------+-------------+----------------+\n", "|KØBMANDSSELSKABET...| 10033764| 0.0| [NORMAL]| APS| 5.0| 5.0| 5.0| 5.0| 5.0| 2.0| 1.0| 0.0| 0.0| 0.0| 0.0| 0.0| 0.0| 0.0| 0.0| 276.0| 2.0| 1.0|1.0000002802690583E8| 0.0| 0.0| 0.0| 0.0| 0.0| 0.0| 0.0|\n", "|JB PROFESSIONEL B...| 10045126| 1.0|[OPLØST EFTER KON...| APS| 1.0| 5.0| 1.0| 2.0| 2.0| 2.0| 2.0| 2.0| 1.0| 0.0| 0.0| 0.0| 0.0| 0.0| 0.0| 2577.5| 2.0| 0.0| 0.0| 0.0| 0.0| 0.0| 0.0| 0.0| 0.0| 1.0|\n", "|AGENDA MANAGEMENT...| 10052262| 1.0|[OPLØST EFTER KON...| APS| 1.0| 5.0| 5.0| 5.0| 10.0| 10.0| 10.0| 10.0| 10.0| 2.0| 0.0| 0.0| 0.0| 0.0| 0.0| 4928.0| 1.0| 0.0| 0.0| 0.0| 0.0| 0.0| 0.0| 0.0| 0.0| 0.0|\n", "|TORNUM SNEDKER- O...| 10059968| 0.0| [NORMAL]| APS| 2.0| 2.0| 2.0| 5.0| 5.0| 5.0| 5.0| 5.0| 5.0| 5.0| 5.0| 0.0| 0.0| 0.0| 0.0| 0.0| 0.0| 1.0| 0.0| 0.0| 0.0| 0.0| 0.0| 0.0| 0.0| 0.0|\n", "+--------------------+---------+-----+--------------------+---------------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+------------+------------+------------+------------+------------+------------+-----------+-----------------+------------------+--------------------+-------------+-------------+-------------+-------------+-------------+-------------+----------------+\n", "only showing top 4 rows\n", "\n" ] } ], "source": [ "labelCols = [\"navn\",\"cvrNummer\",\"label\",\"status\",\"kortBeskrivelse\"]\n", "featCols = [i for i in companyNameDf.columns+renamedDf.columns if i not in labelCols]\n", "\n", "#get minimum values from each column\n", "minCols = [F.min(i).alias(i) for i in featCols]\n", "minValsRdd = renamedDf.groupby().agg(*minCols).rdd\n", "broadcastedmin = sc.broadcast(minValsRdd.first().asDict())\n", "\n", "#create array that subtracts minimum value in the numeric columns.\n", "logColsSelected = [F.col(i).alias(i) for i in labelCols]+[(F.col(i)-F.lit(broadcastedmin.value[i])).alias(i) for i in featCols]\n", "\n", "#takes log(x+1) to the numeric columns and fills the blanks with 0.0 \n", "logDf = (renamedDf\n", " .join(companyNameDf,(companyNameDf[\"cvrNummer\"]==renamedDf[\"cvrNummer\"]),\"inner\")\n", " .drop(companyNameDf[\"cvrNummer\"])\n", " .select(*logColsSelected)\n", " #.select([F.col(i).alias(i) for i in labelCols]+[F.log1p(F.col(i)).alias(i) for i in featCols])\n", " .distinct()\n", " .na\n", " .fill(0.0,featCols)\n", " .cache()\n", " )\n", "logDf.show(4)" ] }, { "cell_type": "code", "execution_count": 47, "metadata": { "collapsed": false }, "outputs": [], "source": [ "strs = \"\"\n", "excludedCols = [\"medArb_\"+str(i) for i in range(1,16)]+[\"cvrNummer\",\"label\",\"status\",\"navn\",\"kortBeskrivelse\"]\n", "for i in logDf.columns:\n", " if i not in excludedCols:\n", " strs += i+\" + \"\n", "\n", "#excludedCols \n", "imputedDf = logDf.fillna(value=0.0)\n", "formula = RFormula(formula=\"label ~ \"+strs[:-3],labelCol=\"label\")\n", "\n", "glr = GeneralizedLinearRegression(family=\"binomial\", link=\"logit\", maxIter=10, regParam=0.3)\n", "standardScale = StandardScaler(withMean=True,withStd=True,inputCol=glr.getFeaturesCol(),outputCol=\"scaledFeatures\")\n", "\n", "\n", "pipeline = Pipeline(stages=[formula,standardScale,glr])\n", "\n", "grid = (ParamGridBuilder()\n", " .baseOn({lr.predictionCol:\"prediction\"})\n", " .baseOn({lr.rawPredictionCol:\"rawPrediction\"})\n", " .baseOn({lr.probabilityCol:\"probability\"})\n", " .baseOn({lr.labelCol:\"label\"})\n", " .baseOn({lr.featuresCol:\"features\"})\n", " .addGrid(param=lr.elasticNetParam,values=[0.1,1.0])\n", " .addGrid(param=lr.getMaxIter,values=[10])\n", " .build()\n", " )\n", "\n", "evaluate = BinaryClassificationEvaluator()\n", "\n", "trainEvalModel = TrainValidationSplit(estimator=pipeline,estimatorParamMaps=grid,evaluator=evaluate,trainRatio=0.8)" ] }, { "cell_type": "code", "execution_count": 48, "metadata": { "collapsed": false }, "outputs": [], "source": [ "cols = [i for i in logDf.columns if i not in excludedCols]+[\"label\"]\n", "\n", "model = pipeline.fit(imputedDf.select(*cols).filter(F.col(\"label\") <= 1))" ] }, { "cell_type": "code", "execution_count": 49, "metadata": { "collapsed": false }, "outputs": [], "source": [ "predict = model.transform(imputedDf.select(*cols).filter(F.col(\"label\") <= 1))\n" ] }, { "cell_type": "code", "execution_count": 50, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Coefficient Standard Errors: [0.0027153657861677017, 0.0033576183070386195, 0.0036618804887292426, 0.0035754531498949087, 0.004800442480010473, 0.0053070346268332775, 0.006044648209200047, 0.006661858012195807, 0.007406240336102599, 0.007567900680939748, 0.008093150133059149, 0.008512938676244109, 0.008348498511501063, 0.009076922598213258, 0.009345658737006969, 3.570481466497785e-06, 0.0077130328315039385, 0.01130608609950618, 2.2163928182556967e-10, 4.2738460918044414e-08, 1.7226360583964896e-08, 1.5410312395327676e-09, 1.1484656996653029e-07, 1.2769605473113265e-07, 3.5900730800140656e-07, 0.012775368232153424, 0.013846855355999527]\n", "T Values: [-11.13953124016816, 19.273340427415945, -6.0592684049208865, 0.9099659049882795, -2.4512213897006436, -1.3093167681591893, -1.8914994368699147, -2.1100010055623724, -3.195706289762549, 0.34554268948276684, 0.7313830924481478, -1.3424645212472244, 2.7347575160967175, -2.395285013922758, -3.397615083227601, 19.49128313879151, 44.36488143421366, -68.92167133560662, -31.8529021339281, -0.2222128572690277, 1.5991730937620523, -0.4287430069091245, -0.6585598419860235, 0.34954974901357716, -0.8366288434819199, -9.752079731824601, -87.10633918581522]\n", "P Values: [0.0, 0.0, 1.3674203991342893e-09, 0.36284049095630877, 0.01423723563300916, 0.1904270719448573, 0.058557706085733185, 0.0348582692614563, 0.001394890275855598, 0.7296864227022648, 0.4645451895952988, 0.1794454265400829, 0.006242624418354437, 0.01660745022866772, 0.0006797599000241128, 0.0, 0.0, 0.0, 0.0, 0.8241481856625836, 0.10978214704359468, 0.6681102590719781, 0.5101784575418398, 0.7266766289362669, 0.40280122745020397, 0.0, 0.0]\n", "Dispersion: 1.0\n", "Null Deviance: 121055.98568276048\n", "Residual Degree Of Freedom Null: 120237\n", "Deviance: 101184.7918554938\n", "Residual Degree Of Freedom: 120211\n", "AIC: 101238.79185549381\n", "Deviance Residuals: \n", "+--------------------+\n", "| devianceResiduals|\n", "+--------------------+\n", "| -0.505190997906927|\n", "| 1.3078044644641424|\n", "| 1.6187928357391999|\n", "| -0.4495402012605015|\n", "|-0.33229486966967725|\n", "| 1.8426902937742191|\n", "| 1.5254278324294124|\n", "| -0.471613616639455|\n", "| -0.4950018560652388|\n", "| -0.8640582707493624|\n", "| 1.5853489569577377|\n", "|-0.35961459244144967|\n", "| -0.7359717752958044|\n", "|-0.30842335391405723|\n", "| -0.7722726367062537|\n", "| -0.3493557842750053|\n", "| -0.4483736687291667|\n", "| -0.8236446082029221|\n", "| -0.7976553154273766|\n", "| -0.3346202882235235|\n", "+--------------------+\n", "only showing top 20 rows\n", "\n" ] } ], "source": [ "p = model.stages[-1].summary\n", "\n", "print(\"Coefficient Standard Errors: \" + str(p.coefficientStandardErrors))\n", "print(\"T Values: \" + str(p.tValues))\n", "print(\"P Values: \" + str(p.pValues))\n", "print(\"Dispersion: \" + str(p.dispersion))\n", "print(\"Null Deviance: \" + str(p.nullDeviance))\n", "print(\"Residual Degree Of Freedom Null: \" + str(p.residualDegreeOfFreedomNull))\n", "print(\"Deviance: \" + str(p.deviance))\n", "print(\"Residual Degree Of Freedom: \" + str(p.residualDegreeOfFreedom))\n", "print(\"AIC: \" + str(p.aic))\n", "print(\"Deviance Residuals: \")\n", "p.residuals().show()" ] }, { "cell_type": "code", "execution_count": 46, "metadata": { "collapsed": false }, "outputs": [ { "ename": "SyntaxError", "evalue": "invalid syntax (<ipython-input-46-f97013934ad1>, line 1)", "output_type": "error", "traceback": [ "\u001b[0;36m File \u001b[0;32m\"<ipython-input-46-f97013934ad1>\"\u001b[0;36m, line \u001b[0;32m1\u001b[0m\n\u001b[0;31m summary = {\"Labels\":imputedDf.columns[3:,\"coefficient Std Err\":p.coefficientStandardErrors,\"T Values\":p.tValues,\"P Values\":p.pValues}\u001b[0m\n\u001b[0m ^\u001b[0m\n\u001b[0;31mSyntaxError\u001b[0m\u001b[0;31m:\u001b[0m invalid syntax\n" ] } ], "source": [ "summary = {\"Labels\":cols,\"coefficient Std Err\":p.coefficientStandardErrors,\"T Values\":p.tValues,\"P Values\":p.pValues}" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false, "scrolled": true }, "outputs": [], "source": [ "pd.DataFrame(summary,columns=[\"Labels\",\"coefficient Std Err\",\"T Values\",\"P Values\"])\n", "\n" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "+-------+-------------------+------------------+------------------+------------------+-----------------+-----------------+------------------+------------------+-----------------+------------------+------------------+------------------+------------------+------------------+------------------+------------------+------------------+------------------+-----------------+-----------------+-----------------+------------------+------------------+------------------+------------------+------------------+------------------+------------------+-----------------+------------------+------------------+-----------------+------------------+------------------+-------------------+-----------------+------------------+-----------------+-------------------+------------------+------------------+------------------+-------------------+\n", "|summary| cvrNummer| label| AarsVaerk_1| AarsVaerk_2| AarsVaerk_3| AarsVaerk_4| AarsVaerk_5| AarsVaerk_6| AarsVaerk_7| AarsVaerk_8| AarsVaerk_9| AarsVaerk_10| AarsVaerk_11| AarsVaerk_12| AarsVaerk_13| AarsVaerk_14| AarsVaerk_15| medArb_1| medArb_2| medArb_3| medArb_4| medArb_5| medArb_6| medArb_7| medArb_8| medArb_9| medArb_10| medArb_11| medArb_12| medArb_13| medArb_14| medArb_15| avgVarighed| totalAabneEnheder| totalLukketEnheder| vaerdiSlope_1| vaerdiSlope_2| vaerdiSlope_3| vaerdiSlope_4| vaerdiSlope_5| vaerdiSlope_6| vaerdiSlope_7| reklamebeskyttet|\n", "+-------+-------------------+------------------+------------------+------------------+-----------------+-----------------+------------------+------------------+-----------------+------------------+------------------+------------------+------------------+------------------+------------------+------------------+------------------+------------------+-----------------+-----------------+-----------------+------------------+------------------+------------------+------------------+------------------+------------------+------------------+-----------------+------------------+------------------+-----------------+------------------+------------------+-------------------+-----------------+------------------+-----------------+-------------------+------------------+------------------+------------------+-------------------+\n", "| mean|2.992587977176892E7|0.6770318443681625| 4.963124592938926| 6.599220488736471|7.883416689601503|9.083146093176817| 9.771213165424054|10.298917308714694|10.77020146114678|11.333662682729393|11.979418607991267|12.565540744720142|13.190747344984533|13.685712327515306|14.092008168822328|15.306301524961965|15.918722786647315| 5.503519210136332|8.213265810368465|9.818617076804813|11.16323711482025|12.375860604668324|12.991983190015274|13.533087125405036|13.999154802152278|14.809654439433546|15.498606587650674| 16.10517604870648|16.86322306497304|17.443267528931244|18.770017337154584|19.24664643532568|3104.0394283223163|1.1975634543320737|0.42037334776466445|9367.222088225697|14773.935940526042|37270.54804289701| 534722.7367923224| 69479.75111113006| 79309.96883183606|246815.61845150983|0.05565606446274231|\n", "| stddev|1.595872029695645E7|0.4815407404508707|28.219409782015937|31.349174803319965|36.38636236195736|40.84287153372559|43.053166612742295| 43.50716762822306|44.69115651768418| 46.24885171030284| 48.03721081702004|49.663482624596746| 50.952745810432|51.757992157941516| 51.79592907581495|57.952550432313735|59.896979275308205|31.469466071930402| 35.7271436211818|40.94583736584511| 45.5828092120186| 48.68024770176678| 49.50427185113245|50.816539411344706| 52.01619572491007|54.732773025784745| 56.2466055958348|56.478429021321915|58.18250553629226| 59.22942233650709| 64.22850620145455|64.30084551221002| 2826.832782887831| 4.297482547820878| 2.316930888416194|1104747.513966895|485532.34538503713|947528.7880333586|4.535843433554792E7|1192985.3794908465|1020811.2995945786| 4224380.725125994|0.22925669525652828|\n", "+-------+-------------------+------------------+------------------+------------------+-----------------+-----------------+------------------+------------------+-----------------+------------------+------------------+------------------+------------------+------------------+------------------+------------------+------------------+------------------+-----------------+-----------------+-----------------+------------------+------------------+------------------+------------------+------------------+------------------+------------------+-----------------+------------------+------------------+-----------------+------------------+------------------+-------------------+-----------------+------------------+-----------------+-------------------+------------------+------------------+------------------+-------------------+\n", "\n" ] } ], "source": [ "#check mean and stddev\n", "descriptionCVR.filter((F.col(\"summary\") ==\"mean\") | (F.col(\"summary\") ==\"stddev\")).show()" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "+---------+--------------------+\n", "|cvrNummer| navn|\n", "+---------+--------------------+\n", "| 10000009| YELLOW|\n", "| 10000025|WATERFRONT CONNEC...|\n", "+---------+--------------------+\n", "only showing top 2 rows\n", "\n" ] } ], "source": [ "windowSpecRank =(Window.partitionBy(F.col(\"cvrNummer\"))).orderBy(F.col(\"gyldigFra\").desc())\n", "\n", "groupCols = [\"cvrNummer\",\"vaerdi\"]\n", "\n", "companyNameDf = (sqlContext\n", " .read\n", " .parquet(\"/home/svanhmic/workspace/Python/Erhvervs/data/cdata/\"+\"companyCvrData\")\n", " .withColumn(colName=\"rank\",col=F.rank().over(windowSpecRank))\n", " .filter((F.col(\"rank\")==1) & (F.col(\"sekvensnr\")==0))\n", " .select([F.col(i) for i in groupCols])\n", " .withColumnRenamed(existing=\"vaerdi\",new=\"navn\")\n", " .orderBy(F.col(\"cvrNummer\"))\n", " .cache()\n", " )\n", "companyNameDf.show(2)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false, "scrolled": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "+--------------------+---------+-----+--------------------+--------------------+\n", "| navn|cvrNummer|label| status| features|\n", "+--------------------+---------+-----+--------------------+--------------------+\n", "| EMPAKA KARTONNAGE| 10016533| 1| [NORMAL]|[0.12721405809989...|\n", "| DET GAMLE GODS| 10016606| 1| [NORMAL]|[-0.1483813281958...|\n", "| DIXEN| 10018064| 0|[OPLØST EFTER KON...|[-0.1483813281958...|\n", "| TRELBORG VVS| 10063760| 1| [NORMAL]|[-0.1483813281958...|\n", "| CYBERSUN| 10065917| 0|[OPLØST EFTER KON...|[-0.0258944898421...|\n", "| HME2| 10080207| 1| [NORMAL]|[-0.1483813281958...|\n", "|TØMRERFIRMAET HER...| 10082528| 1| [NORMAL]|[-0.1177596186074...|\n", "| MØRKHOLT VINDUER| 10096227| 1| [NORMAL]|[-0.1483813281958...|\n", "| KISØ| 10108993| 1| [NORMAL]|[-0.1177596186074...|\n", "| C-CUT| 10117267| 1|[OPLØST EFTER ERK...|[-0.1483813281958...|\n", "| HLS INVEST| 10120829| 0|[OPLØST EFTER KON...|[-0.1483813281958...|\n", "| ELKA RAINWEAR| 10138698| 1| [NORMAL]|[0.12721405809989...|\n", "| BØMLER| 10142539| 0|[OPLØST EFTER KON...|[-0.1483813281958...|\n", "| NORDISKE MEDIER| 10150825| 1| [NORMAL]|[-0.1177596186074...|\n", "| SBR POUL-ERIK KJÆR| 10178509| 0|[OPLØST EFTER KON...|[-0.1483813281958...|\n", "| SCAN ORIENT| 10228476| 1|[TVANGSOPLØST, UN...|[-0.1483813281958...|\n", "| AQUA-NORD| 10310989| 1|[OPLØST EFTER FRI...|[-0.1177596186074...|\n", "| IKAST ETIKET| 10402980| 1| [NORMAL]|[-0.1177596186074...|\n", "|BRDR. JØRGENSEN C...| 10518431| 1| [NORMAL]|[0.43343115398404...|\n", "| AXEL MADSEN| 10553490| 1| [NORMAL]|[-0.0258944898421...|\n", "+--------------------+---------+-----+--------------------+--------------------+\n", "only showing top 20 rows\n", "\n" ] } ], "source": [ "#take ln(x+1) of features\n", "\n", "labelCols = [\"cvrNummer\",\"label\",\"status\"]\n", "logFeatCols = [i for i in renamedDf.columns if i not in labelCols]\n", "#print(logFeatCols)\n", "mininum = descriptionCVR.filter(F.col(\"summary\")==\"min\").collect()[0]\n", "#print(mininum)\n", "\n", "\n", "logDf = (renamedDf\n", " .select([F.col(\"cvrNummer\"),F.col(\"label\")]+[F.log1p(F.col(i)-F.lit(mininum[i])).alias(i) for i in logFeatCols])\n", " .na\n", " .fill(0.0,logFeatCols)\n", " \n", " )\n", "#logDf.show(2)\n", "\n", "\n", "#First convert features to vetor\n", "toDenseUDf = F.udf(lambda x: Vectors.dense(x.toArray()),VectorUDT())\n", "vectorizer = VectorAssembler(inputCols=logFeatCols,outputCol=\"features\")\n", "\n", "rawVectorDataDf = (vectorizer.transform(renamedDf \n", " .join(companyNameDf,(companyNameDf[\"cvrNummer\"]==renamedDf[\"cvrNummer\"]),\"inner\")\n", " .drop(companyNameDf[\"cvrNummer\"])\n", " #.select(*logColsSelected) \n", " .na\n", " .fill(0.0,logFeatCols)\n", " .distinct()\n", " )\n", " .select([\"navn\"]+labelCols+[toDenseUDf(vectorizer.getOutputCol()).alias(vectorizer.getOutputCol())])\n", " )\n", "\n", "standardScale = StandardScaler(withMean=True,withStd=True,inputCol=vectorizer.getOutputCol(),outputCol=\"scaledFeatures\")\n", "standardScaleModel = standardScale.fit(rawVectorDataDf)\n", "scaledFeaturesDf = (standardScaleModel\n", " .transform(rawVectorDataDf)\n", " .drop(\"features\")\n", " .withColumnRenamed(existing=\"scaledFeatures\",new=\"features\")\n", " )\n", "\n", "scaledFeaturesDf.show()" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "+-----+-----+\n", "|label|count|\n", "+-----+-----+\n", "| 0| 6078|\n", "| 1|25756|\n", "+-----+-----+\n", "\n", "+-----+------+\n", "|label| count|\n", "+-----+------+\n", "| 0| 24465|\n", "| 1|103472|\n", "+-----+------+\n", "\n", "Number of data points: 160648\n", "Number of data points train: 127937\n", "Number of data points test: 31834\n" ] } ], "source": [ "#put them into a feature vecto\n", "vectorizedTestDf = scaledFeaturesDf.filter(F.col(\"label\") <= 1).sampleBy(\"label\", fractions={0: 0.2, 1: 0.2}, seed=42)\n", "vectorizedTestDf.groupBy(\"label\").count().show()\n", "\n", "scaledCvrDf = scaledFeaturesDf.select(F.col(\"cvrNummer\"))\n", "cvrTestDf = vectorizedTestDf.select(\"cvrNummer\")\n", "cvrTrainDf = scaledCvrDf.subtract(cvrTestDf) #take the other partion as training set\n", "\n", "vectorizedTrainDf = (scaledFeaturesDf\n", " .filter(F.col(\"label\") <= 1)\n", " .join(cvrTrainDf,(scaledFeaturesDf[\"cvrNummer\"] == cvrTrainDf[\"cvrNummer\"]),\"inner\")\n", " .drop(cvrTrainDf[\"cvrNummer\"])\n", " )\n", "vectorizedTrainDf.groupBy(\"label\").count().show()\n", "print(\"Number of data points: \"+str(scaledFeaturesDf.count()))\n", "print(\"Number of data points train: \"+str(vectorizedTrainDf.select(\"cvrNummer\").count()))\n", "print(\"Number of data points test: \"+str(vectorizedTestDf.select(\"cvrNummer\").count()))\n", "#vectorizedTrainDf.printSchema()\n", "#print(vectorizedTrainDf.first())" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false, "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "+--------------------+-----+--------------------+--------------------+---------+\n", "| navn|label| status| features|cvrNummer|\n", "+--------------------+-----+--------------------+--------------------+---------+\n", "|SKYTTENS HANDEL O...| 1|[OPLØST EFTER FUS...|[-0.1483813281958...| 10019052|\n", "| DIKI.NET| 0|[OPLØST EFTER KON...|[-0.1483813281958...| 10026113|\n", "| CTEK| 1|[OPLØST EFTER FUS...|[-0.1177596186074...| 10040523|\n", "| VG ENTREPRENØR| 1| [NORMAL]|[0.43343115398404...| 10057426|\n", "|NORDBYENS OLIEFYR...| 1| [NORMAL]|[-0.1483813281958...| 10089514|\n", "|EXPRESS LABELLING...| 1|[TVANGSOPLØST, UN...|[-0.1483813281958...| 10091713|\n", "|PSYKOLOGERNE VED ...| 1|[OPLØST EFTER FUS...|[-0.1790030377842...| 10108624|\n", "| RAH HOLDING| 1| [NORMAL]|[-0.1483813281958...| 10127351|\n", "|AMAGER BROLÆGGERF...| 0|[OPLØST EFTER KON...|[-0.1177596186074...| 10128587|\n", "| ART OF JEWEL| 1| [NORMAL]|[-0.1177596186074...| 10145619|\n", "| FRONT FREDERICIA| 1|[OPLØST EFTER FUS...|[0.12721405809989...| 10156521|\n", "|M.L.R. AF 16. APR...| 1|[OPLØST EFTER ERK...|[-0.1177596186074...| 10200288|\n", "| FOLKE LARSENS EFTF.| 1| [NORMAL]|[-0.0258944898421...| 10351235|\n", "| TAORA| 1|[OPLØST EFTER FUS...|[-0.1790030377842...| 10366380|\n", "| CH AF 24/8 2000| 1|[OPLØST EFTER FRI...|[0.12721405809989...| 10412986|\n", "| SIBA-ØST| 1|[OPLØST EFTER FRI...|[-0.1483813281958...| 10481171|\n", "| STEVNS TRYK| 1|[OPLØST EFTER ERK...|[-0.1483813281958...| 10577675|\n", "| PERSPEKTIV HOLDING| 1| [NORMAL]|[-0.1483813281958...| 10606683|\n", "| INTRUM JUSTITIA| 1| [NORMAL]|[1.35208244163648...| 10613779|\n", "| LOBO MØBLER| 1| [NORMAL]|[-0.1177596186074...| 10629098|\n", "+--------------------+-----+--------------------+--------------------+---------+\n", "only showing top 20 rows\n", "\n" ] } ], "source": [ "vectorizedTrainDf.show()" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "0.8090805096973791" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#Train the logistic regressionmodel\n", "lr = LogisticRegression()\n", "grid = (ParamGridBuilder()\n", " .baseOn({lr.predictionCol:\"prediction\"})\n", " .baseOn({lr.rawPredictionCol:\"rawPrediction\"})\n", " .baseOn({lr.probabilityCol:\"probability\"})\n", " .baseOn({lr.labelCol:\"label\"})\n", " .baseOn({lr.featuresCol:\"features\"})\n", " .addGrid(param=lr.elasticNetParam,values=[0.1,1.0])\n", " .addGrid(param=lr.getMaxIter,values=[10])\n", " .build()\n", " )\n", "evaluate = BinaryClassificationEvaluator(rawPredictionCol=\"rawPrediction\")\n", "crossVal = CrossValidator(estimator=lr,estimatorParamMaps=grid,evaluator=evaluate,numFolds=10)\n", "\n", "crossValModel = crossVal.fit(dataset=vectorizedTrainDf)\n", "evaluate.evaluate(crossValModel.transform(vectorizedTestDf))\n", "#coef = lrModel.coefficients" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": false }, "outputs": [], "source": [ "bestModel = crossValModel.bestModel" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": true }, "outputs": [], "source": [ "#test the values\n", "result = bestModel.transform(vectorizedTestDf)" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [], "source": [ "#" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "+-----+-----+\n", "|cases|count|\n", "+-----+-----+\n", "| TP|25710|\n", "| TN| 36|\n", "| FN| 46|\n", "| FP| 6042|\n", "+-----+-----+\n", "\n" ] } ], "source": [ "#result.orderBy(\"prediction\").show(100)\n", "confCols = [F.col(i) for i in [\"TP\",\"TN\",\"FP\",\"FN\"]]\n", "\n", "\n", "csCols = [F.when((F.col(\"label\")==1) & (F.col(\"difference\") == 0),\"TP\")\n", " ,F.when((F.col(\"label\")==0) & (F.col(\"difference\") == 0),\"TN\")\n", " ,F.when(F.col(\"difference\") == 1,\"FN\")\n", " ,F.when(F.col(\"difference\") == -1,\"FP\")\n", " ]\n", "\n", "confusionDf = result.select(F.col(\"label\"),F.col(\"prediction\"),(F.col(\"label\")-F.col(\"prediction\")).alias(\"difference\"))\n", "(confusionDf\n", " .select(F.coalesce(*csCols).alias(\"cases\") \n", " #,.otherwise(0).alias(\"FP\")\n", " #,.otherwise(0).alias(\"FN\")\n", " )\n", " .groupBy(\"cases\").count()\n", ").show()\n", "\n", " " ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "True" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "crossValModel.bestModel.hasSummary" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "collapsed": false }, "outputs": [], "source": [ "summary = crossValModel.bestModel.summary" ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "+--------------------+-----+--------------------+--------------------+---------+--------------------+--------------------+----------+\n", "| navn|label| status| features|cvrNummer| rawPrediction| probability|prediction|\n", "+--------------------+-----+--------------------+--------------------+---------+--------------------+--------------------+----------+\n", "|SKYTTENS HANDEL O...| 1|[OPLØST EFTER FUS...|[-0.1483813281958...| 10019052|[-0.1436615979228...|[0.46414624375980...| 1.0|\n", "| DIKI.NET| 0|[OPLØST EFTER KON...|[-0.1483813281958...| 10026113|[-0.2470744652013...|[0.43854370342953...| 1.0|\n", "| CTEK| 1|[OPLØST EFTER FUS...|[-0.1177596186074...| 10040523|[-0.6803097893868...|[0.33619216432178...| 1.0|\n", "| VG ENTREPRENØR| 1| [NORMAL]|[0.43343115398404...| 10057426|[-3.7227933151943...|[0.02359613625108...| 1.0|\n", "|NORDBYENS OLIEFYR...| 1| [NORMAL]|[-0.1483813281958...| 10089514|[-2.8801667669252...|[0.05314274429565...| 1.0|\n", "|EXPRESS LABELLING...| 1|[TVANGSOPLØST, UN...|[-0.1483813281958...| 10091713|[-0.1715003567869...|[0.45722969080531...| 1.0|\n", "|PSYKOLOGERNE VED ...| 1|[OPLØST EFTER FUS...|[-0.1790030377842...| 10108624|[-0.6485674484631...|[0.34331243211346...| 1.0|\n", "| RAH HOLDING| 1| [NORMAL]|[-0.1483813281958...| 10127351|[-2.8804422421872...|[0.05312888447426...| 1.0|\n", "|AMAGER BROLÆGGERF...| 0|[OPLØST EFTER KON...|[-0.1177596186074...| 10128587|[-1.1369952588026...|[0.24287246215155...| 1.0|\n", "| ART OF JEWEL| 1| [NORMAL]|[-0.1177596186074...| 10145619|[-6.3724232788323...|[0.00170510286780...| 1.0|\n", "| FRONT FREDERICIA| 1|[OPLØST EFTER FUS...|[0.12721405809989...| 10156521|[-0.3793527083137...|[0.40628302543127...| 1.0|\n", "|M.L.R. AF 16. APR...| 1|[OPLØST EFTER ERK...|[-0.1177596186074...| 10200288|[-1.4990290785923...|[0.18257037794247...| 1.0|\n", "| FOLKE LARSENS EFTF.| 1| [NORMAL]|[-0.0258944898421...| 10351235|[-3.6327245272056...|[0.02576276706084...| 1.0|\n", "| TAORA| 1|[OPLØST EFTER FUS...|[-0.1790030377842...| 10366380|[-0.9451119361175...|[0.27986891278054...| 1.0|\n", "| CH AF 24/8 2000| 1|[OPLØST EFTER FRI...|[0.12721405809989...| 10412986|[-0.5220910962423...|[0.37236339559707...| 1.0|\n", "| SIBA-ØST| 1|[OPLØST EFTER FRI...|[-0.1483813281958...| 10481171|[-0.6766429736895...|[0.33701096745397...| 1.0|\n", "| STEVNS TRYK| 1|[OPLØST EFTER ERK...|[-0.1483813281958...| 10577675|[-0.9080179077065...|[0.28740560581535...| 1.0|\n", "| PERSPEKTIV HOLDING| 1| [NORMAL]|[-0.1483813281958...| 10606683|[-4.1379135688213...|[0.01570550931538...| 1.0|\n", "| INTRUM JUSTITIA| 1| [NORMAL]|[1.35208244163648...| 10613779|[-2.8641158595488...|[0.05395622053629...| 1.0|\n", "| LOBO MØBLER| 1| [NORMAL]|[-0.1177596186074...| 10629098|[-3.4536192522129...|[0.03066110863007...| 1.0|\n", "+--------------------+-----+--------------------+--------------------+---------+--------------------+--------------------+----------+\n", "only showing top 20 rows\n", "\n" ] } ], "source": [ "summary.predictions.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.2" } }, "nbformat": 4, "nbformat_minor": 2 }
apache-2.0